Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
G
Grupo-Contreras-Rico
Manage
Activity
Members
Labels
Plan
Issues
0
Issue boards
Milestones
Wiki
Code
Merge requests
0
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Escuela de Fisica
Cursos
Herramientas Computacionales 23
Tareas
Grupo-Contreras-Rico
Commits
d1f326d2
Commit
d1f326d2
authored
2 years ago
by
Fabian Eduardo Contreras Duque
Browse files
Options
Downloads
Patches
Plain Diff
Upload New File
parent
58a0bf31
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
Proyecto_Péndulo/Tiempos_promedio_masa_2.ipynb
+487
-0
487 additions, 0 deletions
Proyecto_Péndulo/Tiempos_promedio_masa_2.ipynb
with
487 additions
and
0 deletions
Proyecto_Péndulo/Tiempos_promedio_masa_2.ipynb
0 → 100644
+
487
−
0
View file @
d1f326d2
{
"cells": [
{
"cell_type": "markdown",
"id": "382ea985-e847-4344-9d8d-efa5fc59ce09",
"metadata": {},
"source": [
"# Tiempos promedio para masa 2 (1 kg)"
]
},
{
"cell_type": "markdown",
"id": "bfaa17d3-317d-43de-99c7-f204505a9a26",
"metadata": {},
"source": [
"## Masa 2 con angulo 15°"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "a876c6ca-5e87-40dc-84e8-16838d13de86",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"def calcular_promedio(numeros):\n",
"\n",
" suma = sum(numeros)\n",
" promedio = suma / len(numeros)\n",
" return promedio\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "7e563e6b-4bb4-48dd-a2d1-70a252531054",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3.242\n"
]
}
],
"source": [
"# Tiempo 10cm\n",
"lista_numeros = [3.30, 3.24, 3.25, 3.22, 3.20]\n",
"promedio = calcular_promedio(lista_numeros)\n",
"print(promedio)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "84fc648d-21ea-4723-abb9-3f53d742446d",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3.378\n"
]
}
],
"source": [
"# Tiempo 11cm\n",
"lista_numeros = [3.38, 3.35, 3.41, 3.39, 3.36]\n",
"promedio = calcular_promedio(lista_numeros)\n",
"print(promedio)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "77aebb55-93c6-43c7-a0a5-64eb1c965456",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3.5020000000000002\n"
]
}
],
"source": [
"# Tiempo 12cm\n",
"lista_numeros = [3.50, 3.46, 3.53, 3.50, 3.52]\n",
"promedio = calcular_promedio(lista_numeros)\n",
"print(promedio)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "9f7da7f7-6c65-430d-bf4d-9bd4f4cfc515",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3.646\n"
]
}
],
"source": [
"# Tiempo 13cm\n",
"lista_numeros = [3.61, 3.68, 3.63, 3.65, 3.66]\n",
"promedio = calcular_promedio(lista_numeros)\n",
"print(promedio)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "f13aa6ae-3edc-4241-bd21-5d7c680307e7",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3.812\n"
]
}
],
"source": [
"# Tiempo 14cm\n",
"lista_numeros = [3.86, 3.83, 3.76, 3.82, 3.79]\n",
"promedio = calcular_promedio(lista_numeros)\n",
"print(promedio)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "aedeefff-3f78-4d4a-9da7-de66bf99176c",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3.938\n"
]
}
],
"source": [
"# Tiempo 15cm\n",
"lista_numeros = [3.93, 3.95, 3.88, 3.97, 3.96]\n",
"promedio = calcular_promedio(lista_numeros)\n",
"print(promedio)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "9fa93745-30d8-40ab-9bd8-99b9b90fad44",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"4.053999999999999\n"
]
}
],
"source": [
"# Tiempo 16cm\n",
"lista_numeros = [4.04, 4.05, 4.10, 4.07, 4.01]\n",
"promedio = calcular_promedio(lista_numeros)\n",
"print(promedio)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "44a65e28-0447-41cb-922a-989bf8ffd871",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"4.184\n"
]
}
],
"source": [
"# Tiempo 17cm\n",
"lista_numeros = [4.16, 4.20, 4.15, 4.23, 4.18]\n",
"promedio = calcular_promedio(lista_numeros)\n",
"print(promedio)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "6ca8f874-a3ea-4f1a-8377-8ff94d30bcc8",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"4.324\n"
]
}
],
"source": [
"# Tiempo 18cm\n",
"lista_numeros = [4.32, 4.26, 4.35, 4.29, 4.40]\n",
"promedio = calcular_promedio(lista_numeros)\n",
"print(promedio)"
]
},
{
"cell_type": "markdown",
"id": "ac67cd5b-e637-4fcf-8a7e-c91823206aa8",
"metadata": {},
"source": [
"## Masa 2 con angulo 30°"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "a8d19742-351e-4662-92d4-94f6169f0291",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3.276\n"
]
}
],
"source": [
"# Tiempo 10cm\n",
"lista_numeros = [3.32, 3.24, 3.25, 3.30, 3.27]\n",
"promedio = calcular_promedio(lista_numeros)\n",
"print(promedio)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "ef7dd915-7477-4e7a-98b9-621fcb5d88a6",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3.432\n"
]
}
],
"source": [
"# Tiempo 11cm\n",
"lista_numeros = [3.44, 3.44, 3.44, 3.46, 3.38]\n",
"promedio = calcular_promedio(lista_numeros)\n",
"print(promedio)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "a6bd04a5-2104-47ee-92ab-d8ab49ae686e",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3.5480000000000005\n"
]
}
],
"source": [
"# Tiempo 12cm\n",
"lista_numeros = [3.53, 3.53, 3.52, 3.58, 3.58]\n",
"promedio = calcular_promedio(lista_numeros)\n",
"print(promedio)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "54360787-7bb7-4f8e-aac6-6e1b75dc5f15",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3.7059999999999995\n"
]
}
],
"source": [
"# Tiempo 13cm\n",
"lista_numeros = [3.71, 3.72, 3.68, 3.70, 3.72]\n",
"promedio = calcular_promedio(lista_numeros)\n",
"print(promedio)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "12919694-1372-4348-ac1b-6e220700c25f",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3.832\n"
]
}
],
"source": [
"# Tiempo 14cm\n",
"lista_numeros = [3.84, 3.82, 3.83, 3.85, 3.82]\n",
"promedio = calcular_promedio(lista_numeros)\n",
"print(promedio)"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "10ac5f27-1147-419d-83c9-4561621bda12",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3.938\n"
]
}
],
"source": [
"# Tiempo 15cm\n",
"lista_numeros = [3.93, 3.95, 3.88, 3.97, 3.96]\n",
"promedio = calcular_promedio(lista_numeros)\n",
"print(promedio)"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "db21cf0b-3b34-491f-bcdf-952023c5ce40",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"4.058\n"
]
}
],
"source": [
"# Tiempo 16cm\n",
"lista_numeros = [4.01, 4.04, 4.06, 4.10, 4.08]\n",
"promedio = calcular_promedio(lista_numeros)\n",
"print(promedio)"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "077168b9-efa7-477a-a541-59b3b10cc75d",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"4.223999999999999\n"
]
}
],
"source": [
"# Tiempo 17cm\n",
"lista_numeros = [4.21, 4.24, 4.25, 4.22, 4.20]\n",
"promedio = calcular_promedio(lista_numeros)\n",
"print(promedio)"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "ed17c778-8cc6-41d1-b7c1-5a72f90c58f8",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"4.322\n"
]
}
],
"source": [
"# Tiempo 18cm\n",
"lista_numeros = [4.32, 4.30, 4.30, 4.33, 4.36]\n",
"promedio = calcular_promedio(lista_numeros)\n",
"print(promedio)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "67042bfb-cddb-4f00-a0c9-862b8bf1a66e",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
%% Cell type:markdown id:382ea985-e847-4344-9d8d-efa5fc59ce09 tags:
# Tiempos promedio para masa 2 (1 kg)
%% Cell type:markdown id:bfaa17d3-317d-43de-99c7-f204505a9a26 tags:
## Masa 2 con angulo 15°
%% Cell type:code id:a876c6ca-5e87-40dc-84e8-16838d13de86 tags:
```
python
def
calcular_promedio
(
numeros
):
suma
=
sum
(
numeros
)
promedio
=
suma
/
len
(
numeros
)
return
promedio
```
%% Cell type:code id:7e563e6b-4bb4-48dd-a2d1-70a252531054 tags:
```
python
# Tiempo 10cm
lista_numeros
=
[
3.30
,
3.24
,
3.25
,
3.22
,
3.20
]
promedio
=
calcular_promedio
(
lista_numeros
)
print
(
promedio
)
```
%% Output
3.242
%% Cell type:code id:84fc648d-21ea-4723-abb9-3f53d742446d tags:
```
python
# Tiempo 11cm
lista_numeros
=
[
3.38
,
3.35
,
3.41
,
3.39
,
3.36
]
promedio
=
calcular_promedio
(
lista_numeros
)
print
(
promedio
)
```
%% Output
3.378
%% Cell type:code id:77aebb55-93c6-43c7-a0a5-64eb1c965456 tags:
```
python
# Tiempo 12cm
lista_numeros
=
[
3.50
,
3.46
,
3.53
,
3.50
,
3.52
]
promedio
=
calcular_promedio
(
lista_numeros
)
print
(
promedio
)
```
%% Output
3.5020000000000002
%% Cell type:code id:9f7da7f7-6c65-430d-bf4d-9bd4f4cfc515 tags:
```
python
# Tiempo 13cm
lista_numeros
=
[
3.61
,
3.68
,
3.63
,
3.65
,
3.66
]
promedio
=
calcular_promedio
(
lista_numeros
)
print
(
promedio
)
```
%% Output
3.646
%% Cell type:code id:f13aa6ae-3edc-4241-bd21-5d7c680307e7 tags:
```
python
# Tiempo 14cm
lista_numeros
=
[
3.86
,
3.83
,
3.76
,
3.82
,
3.79
]
promedio
=
calcular_promedio
(
lista_numeros
)
print
(
promedio
)
```
%% Output
3.812
%% Cell type:code id:aedeefff-3f78-4d4a-9da7-de66bf99176c tags:
```
python
# Tiempo 15cm
lista_numeros
=
[
3.93
,
3.95
,
3.88
,
3.97
,
3.96
]
promedio
=
calcular_promedio
(
lista_numeros
)
print
(
promedio
)
```
%% Output
3.938
%% Cell type:code id:9fa93745-30d8-40ab-9bd8-99b9b90fad44 tags:
```
python
# Tiempo 16cm
lista_numeros
=
[
4.04
,
4.05
,
4.10
,
4.07
,
4.01
]
promedio
=
calcular_promedio
(
lista_numeros
)
print
(
promedio
)
```
%% Output
4.053999999999999
%% Cell type:code id:44a65e28-0447-41cb-922a-989bf8ffd871 tags:
```
python
# Tiempo 17cm
lista_numeros
=
[
4.16
,
4.20
,
4.15
,
4.23
,
4.18
]
promedio
=
calcular_promedio
(
lista_numeros
)
print
(
promedio
)
```
%% Output
4.184
%% Cell type:code id:6ca8f874-a3ea-4f1a-8377-8ff94d30bcc8 tags:
```
python
# Tiempo 18cm
lista_numeros
=
[
4.32
,
4.26
,
4.35
,
4.29
,
4.40
]
promedio
=
calcular_promedio
(
lista_numeros
)
print
(
promedio
)
```
%% Output
4.324
%% Cell type:markdown id:ac67cd5b-e637-4fcf-8a7e-c91823206aa8 tags:
## Masa 2 con angulo 30°
%% Cell type:code id:a8d19742-351e-4662-92d4-94f6169f0291 tags:
```
python
# Tiempo 10cm
lista_numeros
=
[
3.32
,
3.24
,
3.25
,
3.30
,
3.27
]
promedio
=
calcular_promedio
(
lista_numeros
)
print
(
promedio
)
```
%% Output
3.276
%% Cell type:code id:ef7dd915-7477-4e7a-98b9-621fcb5d88a6 tags:
```
python
# Tiempo 11cm
lista_numeros
=
[
3.44
,
3.44
,
3.44
,
3.46
,
3.38
]
promedio
=
calcular_promedio
(
lista_numeros
)
print
(
promedio
)
```
%% Output
3.432
%% Cell type:code id:a6bd04a5-2104-47ee-92ab-d8ab49ae686e tags:
```
python
# Tiempo 12cm
lista_numeros
=
[
3.53
,
3.53
,
3.52
,
3.58
,
3.58
]
promedio
=
calcular_promedio
(
lista_numeros
)
print
(
promedio
)
```
%% Output
3.5480000000000005
%% Cell type:code id:54360787-7bb7-4f8e-aac6-6e1b75dc5f15 tags:
```
python
# Tiempo 13cm
lista_numeros
=
[
3.71
,
3.72
,
3.68
,
3.70
,
3.72
]
promedio
=
calcular_promedio
(
lista_numeros
)
print
(
promedio
)
```
%% Output
3.7059999999999995
%% Cell type:code id:12919694-1372-4348-ac1b-6e220700c25f tags:
```
python
# Tiempo 14cm
lista_numeros
=
[
3.84
,
3.82
,
3.83
,
3.85
,
3.82
]
promedio
=
calcular_promedio
(
lista_numeros
)
print
(
promedio
)
```
%% Output
3.832
%% Cell type:code id:10ac5f27-1147-419d-83c9-4561621bda12 tags:
```
python
# Tiempo 15cm
lista_numeros
=
[
3.93
,
3.95
,
3.88
,
3.97
,
3.96
]
promedio
=
calcular_promedio
(
lista_numeros
)
print
(
promedio
)
```
%% Output
3.938
%% Cell type:code id:db21cf0b-3b34-491f-bcdf-952023c5ce40 tags:
```
python
# Tiempo 16cm
lista_numeros
=
[
4.01
,
4.04
,
4.06
,
4.10
,
4.08
]
promedio
=
calcular_promedio
(
lista_numeros
)
print
(
promedio
)
```
%% Output
4.058
%% Cell type:code id:077168b9-efa7-477a-a541-59b3b10cc75d tags:
```
python
# Tiempo 17cm
lista_numeros
=
[
4.21
,
4.24
,
4.25
,
4.22
,
4.20
]
promedio
=
calcular_promedio
(
lista_numeros
)
print
(
promedio
)
```
%% Output
4.223999999999999
%% Cell type:code id:ed17c778-8cc6-41d1-b7c1-5a72f90c58f8 tags:
```
python
# Tiempo 18cm
lista_numeros
=
[
4.32
,
4.30
,
4.30
,
4.33
,
4.36
]
promedio
=
calcular_promedio
(
lista_numeros
)
print
(
promedio
)
```
%% Output
4.322
%% Cell type:code id:67042bfb-cddb-4f00-a0c9-862b8bf1a66e tags:
```
python
```
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment