Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
G
Grupo-Contreras-Rico
Manage
Activity
Members
Labels
Plan
Issues
0
Issue boards
Milestones
Wiki
Code
Merge requests
0
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Escuela de Fisica
Cursos
Herramientas Computacionales 23
Tareas
Grupo-Contreras-Rico
Commits
58a0bf31
Commit
58a0bf31
authored
1 year ago
by
Fabian Eduardo Contreras Duque
Browse files
Options
Downloads
Patches
Plain Diff
Upload New File
parent
e4ef3af1
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
Proyecto_Péndulo/Tiempos_promedio_masa_1.ipynb
+482
-0
482 additions, 0 deletions
Proyecto_Péndulo/Tiempos_promedio_masa_1.ipynb
with
482 additions
and
0 deletions
Proyecto_Péndulo/Tiempos_promedio_masa_1.ipynb
0 → 100644
+
482
−
0
View file @
58a0bf31
{
"cells": [
{
"cell_type": "markdown",
"id": "ec27a35e-ad34-4c25-8649-b4e39e867309",
"metadata": {},
"source": [
"# Tiempos promedio para Masa 1 (0.1 kg)"
]
},
{
"cell_type": "markdown",
"id": "73321332-ed25-4e92-84e2-1cbd317a84d9",
"metadata": {},
"source": [
"## Masa 1 con angulo 15°"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "4362c3bf-8ff2-407c-a673-c3ace0d50e04",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"def calcular_promedio(numeros):\n",
"\n",
" suma = sum(numeros)\n",
" promedio = suma / len(numeros)\n",
" return promedio\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "ec6b6a24-a6a2-4bb2-a7f3-6753b6aef47a",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3.272\n"
]
}
],
"source": [
"# Tiempo 10cm\n",
"lista_numeros = [3.25, 3.33, 3.27, 3.24, 3.27]\n",
"promedio = calcular_promedio(lista_numeros)\n",
"print(promedio)\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "72cbb4f0-fa18-45ca-af31-38feb9642fcb",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3.3879999999999995\n"
]
}
],
"source": [
"#tiempo 11cm\n",
"lista_numeros = [3.41, 3.36, 3.41, 3.38, 3.38]\n",
"promedio = calcular_promedio(lista_numeros)\n",
"print(promedio)\n"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "6b26ee73-bd2d-4bf5-84a0-14fc20c83e42",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3.55\n"
]
}
],
"source": [
"#tiempo 12cm\n",
"lista_numeros = [3.58, 3.55, 3.60, 3.50, 3.52]\n",
"promedio = calcular_promedio(lista_numeros)\n",
"print(promedio)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "4c29acba-8d39-4e56-8188-8dac5a6724df",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3.6900000000000004\n"
]
}
],
"source": [
"#tiempo 13cm\n",
"lista_numeros = [3.74, 3.72, 3.68, 3.62, 3.69]\n",
"promedio = calcular_promedio(lista_numeros)\n",
"print(promedio)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "61272125-d531-4cda-9521-207e0ec653fa",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3.816\n"
]
}
],
"source": [
"#tiempo 14cm\n",
"lista_numeros = [3.79, 3.82, 3.85, 3.82, 3.80]\n",
"promedio = calcular_promedio(lista_numeros)\n",
"print(promedio)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "fbc31b7c-b0b4-4a1d-acf8-4c1e6310c41d",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3.9560000000000004\n"
]
}
],
"source": [
"#tiempo 15cm\n",
"lista_numeros = [3.94, 3.91, 3.95, 4, 3.98]\n",
"promedio = calcular_promedio(lista_numeros)\n",
"print(promedio)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "35259e72-e584-4386-a63e-583303fd79d9",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"4.056\n"
]
}
],
"source": [
"#tiempo 16cm\n",
"lista_numeros = [4.06, 4.01, 4.07, 4.04, 4.10]\n",
"promedio = calcular_promedio(lista_numeros)\n",
"print(promedio)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "12d1950c-e60d-4089-8c9a-02f2e70622a1",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"4.132\n"
]
}
],
"source": [
"#tiempo 17cm\n",
"lista_numeros = [4.16, 4.12, 4.12, 4.13, 4.13]\n",
"promedio = calcular_promedio(lista_numeros)\n",
"print(promedio)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "b1bcba72-aa86-4037-a73f-f1800250216d",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"4.314\n"
]
}
],
"source": [
"#tiempo 18cm\n",
"lista_numeros = [4.31, 4.35, 4.34, 4.31, 4.26]\n",
"promedio = calcular_promedio(lista_numeros)\n",
"print(promedio)"
]
},
{
"cell_type": "markdown",
"id": "b730e402-62a1-4cec-a798-e4fa1cb5da99",
"metadata": {
"tags": []
},
"source": [
"## Masa 1 con angulo 30°"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "a1fcba13-ac1d-4532-90bc-01b4dae8e039",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3.2560000000000002\n"
]
}
],
"source": [
"# Tiempo 10cm\n",
"lista_numeros = [3.28, 3.27, 3.24, 3.22, 3.27]\n",
"promedio = calcular_promedio(lista_numeros)\n",
"print(promedio)\n"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "87b2e4b6-0fe0-492a-aeda-d5e1866306c5",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3.4239999999999995\n"
]
}
],
"source": [
"# Tiempo 11cm\n",
"lista_numeros = [3.39, 3.46, 3.46, 3.41, 3.40]\n",
"promedio = calcular_promedio(lista_numeros)\n",
"print(promedio)"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "392b3ace-e436-4f02-af8b-57ab0fe68b91",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3.5499999999999994\n"
]
}
],
"source": [
"# Tiempo 12cm\n",
"lista_numeros = [3.55, 3.57, 3.55, 3.53, 3.55]\n",
"promedio = calcular_promedio(lista_numeros)\n",
"print(promedio)"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "4d376828-5ad4-4c75-978a-28cb554bc777",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3.7079999999999997\n"
]
}
],
"source": [
"# Tiempo 13cM\n",
"lista_numeros = [3.77, 3.71, 3.65, 3.69, 3.72]\n",
"promedio = calcular_promedio(lista_numeros)\n",
"print(promedio)"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "fd32f722-33e3-4ad3-88c3-1844e7a29d83",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3.8579999999999997\n"
]
}
],
"source": [
"# Tiempo 14cm\n",
"lista_numeros = [3.85, 3.80, 3.86, 3.88, 3.90]\n",
"promedio = calcular_promedio(lista_numeros)\n",
"print(promedio)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "f8540d16-30b4-47a4-aea4-08440553882e",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3.992\n"
]
}
],
"source": [
"# Tiempo 15cm\n",
"lista_numeros = [3.96, 3.99, 3.98, 3.94, 4.09]\n",
"promedio = calcular_promedio(lista_numeros)\n",
"print(promedio)"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "de612079-a81e-4437-9a40-52b41014d720",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"4.112\n"
]
}
],
"source": [
"# Tiempo 16cm\n",
"lista_numeros = [4.12, 4.13, 4.12, 4.12, 4.07]\n",
"promedio = calcular_promedio(lista_numeros)\n",
"print(promedio)"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "2c842496-9ec0-4d04-b84c-1726f1d320c2",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"4.232000000000001\n"
]
}
],
"source": [
"# Tiempo 17cm\n",
"lista_numeros = [4.20, 4.23, 4.26, 4.23, 4.24]\n",
"promedio = calcular_promedio(lista_numeros)\n",
"print(promedio)"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "9ccefd0a-32e7-4b98-aef4-7c1d11027672",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"4.35\n"
]
}
],
"source": [
"# Tiempo 18cm\n",
"lista_numeros = [4.26, 4.34, 4.42, 4.36, 4.37]\n",
"promedio = calcular_promedio(lista_numeros)\n",
"print(promedio)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
%% Cell type:markdown id:ec27a35e-ad34-4c25-8649-b4e39e867309 tags:
# Tiempos promedio para Masa 1 (0.1 kg)
%% Cell type:markdown id:73321332-ed25-4e92-84e2-1cbd317a84d9 tags:
## Masa 1 con angulo 15°
%% Cell type:code id:4362c3bf-8ff2-407c-a673-c3ace0d50e04 tags:
```
python
def
calcular_promedio
(
numeros
):
suma
=
sum
(
numeros
)
promedio
=
suma
/
len
(
numeros
)
return
promedio
```
%% Cell type:code id:ec6b6a24-a6a2-4bb2-a7f3-6753b6aef47a tags:
```
python
# Tiempo 10cm
lista_numeros
=
[
3.25
,
3.33
,
3.27
,
3.24
,
3.27
]
promedio
=
calcular_promedio
(
lista_numeros
)
print
(
promedio
)
```
%% Output
3.272
%% Cell type:code id:72cbb4f0-fa18-45ca-af31-38feb9642fcb tags:
```
python
#tiempo 11cm
lista_numeros
=
[
3.41
,
3.36
,
3.41
,
3.38
,
3.38
]
promedio
=
calcular_promedio
(
lista_numeros
)
print
(
promedio
)
```
%% Output
3.3879999999999995
%% Cell type:code id:6b26ee73-bd2d-4bf5-84a0-14fc20c83e42 tags:
```
python
#tiempo 12cm
lista_numeros
=
[
3.58
,
3.55
,
3.60
,
3.50
,
3.52
]
promedio
=
calcular_promedio
(
lista_numeros
)
print
(
promedio
)
```
%% Output
3.55
%% Cell type:code id:4c29acba-8d39-4e56-8188-8dac5a6724df tags:
```
python
#tiempo 13cm
lista_numeros
=
[
3.74
,
3.72
,
3.68
,
3.62
,
3.69
]
promedio
=
calcular_promedio
(
lista_numeros
)
print
(
promedio
)
```
%% Output
3.6900000000000004
%% Cell type:code id:61272125-d531-4cda-9521-207e0ec653fa tags:
```
python
#tiempo 14cm
lista_numeros
=
[
3.79
,
3.82
,
3.85
,
3.82
,
3.80
]
promedio
=
calcular_promedio
(
lista_numeros
)
print
(
promedio
)
```
%% Output
3.816
%% Cell type:code id:fbc31b7c-b0b4-4a1d-acf8-4c1e6310c41d tags:
```
python
#tiempo 15cm
lista_numeros
=
[
3.94
,
3.91
,
3.95
,
4
,
3.98
]
promedio
=
calcular_promedio
(
lista_numeros
)
print
(
promedio
)
```
%% Output
3.9560000000000004
%% Cell type:code id:35259e72-e584-4386-a63e-583303fd79d9 tags:
```
python
#tiempo 16cm
lista_numeros
=
[
4.06
,
4.01
,
4.07
,
4.04
,
4.10
]
promedio
=
calcular_promedio
(
lista_numeros
)
print
(
promedio
)
```
%% Output
4.056
%% Cell type:code id:12d1950c-e60d-4089-8c9a-02f2e70622a1 tags:
```
python
#tiempo 17cm
lista_numeros
=
[
4.16
,
4.12
,
4.12
,
4.13
,
4.13
]
promedio
=
calcular_promedio
(
lista_numeros
)
print
(
promedio
)
```
%% Output
4.132
%% Cell type:code id:b1bcba72-aa86-4037-a73f-f1800250216d tags:
```
python
#tiempo 18cm
lista_numeros
=
[
4.31
,
4.35
,
4.34
,
4.31
,
4.26
]
promedio
=
calcular_promedio
(
lista_numeros
)
print
(
promedio
)
```
%% Output
4.314
%% Cell type:markdown id:b730e402-62a1-4cec-a798-e4fa1cb5da99 tags:
## Masa 1 con angulo 30°
%% Cell type:code id:a1fcba13-ac1d-4532-90bc-01b4dae8e039 tags:
```
python
# Tiempo 10cm
lista_numeros
=
[
3.28
,
3.27
,
3.24
,
3.22
,
3.27
]
promedio
=
calcular_promedio
(
lista_numeros
)
print
(
promedio
)
```
%% Output
3.2560000000000002
%% Cell type:code id:87b2e4b6-0fe0-492a-aeda-d5e1866306c5 tags:
```
python
# Tiempo 11cm
lista_numeros
=
[
3.39
,
3.46
,
3.46
,
3.41
,
3.40
]
promedio
=
calcular_promedio
(
lista_numeros
)
print
(
promedio
)
```
%% Output
3.4239999999999995
%% Cell type:code id:392b3ace-e436-4f02-af8b-57ab0fe68b91 tags:
```
python
# Tiempo 12cm
lista_numeros
=
[
3.55
,
3.57
,
3.55
,
3.53
,
3.55
]
promedio
=
calcular_promedio
(
lista_numeros
)
print
(
promedio
)
```
%% Output
3.5499999999999994
%% Cell type:code id:4d376828-5ad4-4c75-978a-28cb554bc777 tags:
```
python
# Tiempo 13cM
lista_numeros
=
[
3.77
,
3.71
,
3.65
,
3.69
,
3.72
]
promedio
=
calcular_promedio
(
lista_numeros
)
print
(
promedio
)
```
%% Output
3.7079999999999997
%% Cell type:code id:fd32f722-33e3-4ad3-88c3-1844e7a29d83 tags:
```
python
# Tiempo 14cm
lista_numeros
=
[
3.85
,
3.80
,
3.86
,
3.88
,
3.90
]
promedio
=
calcular_promedio
(
lista_numeros
)
print
(
promedio
)
```
%% Output
3.8579999999999997
%% Cell type:code id:f8540d16-30b4-47a4-aea4-08440553882e tags:
```
python
# Tiempo 15cm
lista_numeros
=
[
3.96
,
3.99
,
3.98
,
3.94
,
4.09
]
promedio
=
calcular_promedio
(
lista_numeros
)
print
(
promedio
)
```
%% Output
3.992
%% Cell type:code id:de612079-a81e-4437-9a40-52b41014d720 tags:
```
python
# Tiempo 16cm
lista_numeros
=
[
4.12
,
4.13
,
4.12
,
4.12
,
4.07
]
promedio
=
calcular_promedio
(
lista_numeros
)
print
(
promedio
)
```
%% Output
4.112
%% Cell type:code id:2c842496-9ec0-4d04-b84c-1726f1d320c2 tags:
```
python
# Tiempo 17cm
lista_numeros
=
[
4.20
,
4.23
,
4.26
,
4.23
,
4.24
]
promedio
=
calcular_promedio
(
lista_numeros
)
print
(
promedio
)
```
%% Output
4.232000000000001
%% Cell type:code id:9ccefd0a-32e7-4b98-aef4-7c1d11027672 tags:
```
python
# Tiempo 18cm
lista_numeros
=
[
4.26
,
4.34
,
4.42
,
4.36
,
4.37
]
promedio
=
calcular_promedio
(
lista_numeros
)
print
(
promedio
)
```
%% Output
4.35
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment