Skip to content
Snippets Groups Projects
Commit 1d6c359f authored by Yineth Melissa Pérez Ayala's avatar Yineth Melissa Pérez Ayala
Browse files

Update ejercicio2-1.ipynb

parent fb22b6fe
No related branches found
No related tags found
No related merge requests found
prueba
#Tarea de la clase 3. Melissa Pérez
#En este primer punto se pretende reproducir el diagrama de Hertzprung-Russell que describe la evolución estelar.
import matplotlib.pyplot as plt
#Se importa la librería matplotlib la cuál se usará para hacer la gráfica.
# Install a pip package in the current Jupyter kernel
import sys
!{sys.executable} -m pip install numpy
Requirement already satisfied: numpy in /home/perezy/.local/lib/python3.7/site-packages (1.20.1)
import sys
!{sys.executable} -m pip install pandas
import sys
!{sys.executable} -m pip install pandas
Requirement already satisfied: pandas in /home/perezy/.local/lib/python3.7/site-packages (1.2.2)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-packages (from pandas) (2.8.1)
Requirement already satisfied: numpy>=1.16.5 in /home/perezy/.local/lib/python3.7/site-packages (from pandas) (1.20.1)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.7/dist-packages (from pandas) (2020.1)
Requirement already satisfied: six>=1.5 in /usr/lib/python3/dist-packages (from python-dateutil>=2.7.3->pandas) (1.12.0)
import pandas
data = pandas.read_csv("data_dwarfs.csv")
#Se instalan las librerías pandas y numpy con el fin de leer los datos
print(data)
lum temp radius
0 0.000109 5050.644696 7.096930
1 0.000128 5967.543450 4.583996
2 0.000230 6674.161524 4.151078
3 0.000269 7216.762974 3.491754
4 0.000472 7795.184395 3.472736
5 0.000613 8402.695283 3.077338
lum = list(data["lum"])
temp = list(data["temp"])
radius = list(data["radius"])
colores = []
for i in range(len(temp)):
colores.append(2**13)
lum = list(data["lum"])
temp = list(data["temp"])
radius = list(data["radius"])
colores = []
for i in range(len(temp)):
colores.append(2**13)
data = pandas.read_csv("data_ms.csv")
lum = lum + list(data["lum"])
temp = temp + list(data["temp"])
radius = radius + list(data["radius"])
colores = colores + list(data["temp"])
data = pandas.read_csv("data_ms.csv")
lum = lum + list(data["lum"])
temp = temp + list(data["temp"])
radius = radius + list(data["radius"])
colores = colores + list(data["temp"])
data = pandas.read_csv("data_supergiants.txt", sep=" ")
print(data)
lum = lum + list(data["lum"])
temp = temp + list(data["temp"])
radius = radius + list(data["radius"])
colores = colores + list(data["temp"])
data = pandas.read_csv("data_supergiants.txt", sep=" ")
print(data)
lum = lum + list(data["lum"])
temp = temp + list(data["temp"])
radius = radius + list(data["radius"])
colores = colores + list(data["temp"])
lum temp radius
0 359749.335156 3801.042587 278.055832
1 416869.383470 4398.962354 190.278395
2 1000000.000000 5465.163392 140.809113
3 920449.571753 7837.395137 46.187556
4 779830.110523 10200.701561 19.604244
data = pandas.read_csv("data_giants.txt", sep=" ")
print(data)
lum = lum + list(data["lum"])
temp = temp + list(data["temp"])
radius = radius + list(data["radius"])
colores = colores + list(data["temp"])
data = pandas.read_csv("data_giants.txt", sep=" ")
print(data)
lum = lum + list(data["lum"])
temp = temp + list(data["temp"])
radius = radius + list(data["radius"])
colores = colores + list(data["temp"])
lum temp radius
0 304.228573 3654.601099 145.483474
1 58.884366 3808.609875 66.642938
2 9.246982 3991.751692 27.603430
3 58.505945 4164.818180 50.832968
4 32.033176 4425.773883 33.290931
#Se traen los datos y se van agregando a tres listas lum, temp y radius.
#También se crea la lista colores con la que se establece el color de las enanas blancas.
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
fig.figsize=(12,10)
ax.scatter(temp, lum, s=radius, c=colores, cmap = 'coolwarm_r',alpha=1)
ax.set_xlabel("Temperatura ($K$)", fontsize=15)
ax.set_ylabel("Luminosidad ($L_s$)", fontsize=15)
ax.set_xlim(15000, 3000)
ax.set_ylim(0.00001, 10000000)
plt.xscale("log", base=2)
plt.yscale("log")
ax.set_title('HRD')
plt.xticks([12000,9000,6000,3000],[12000,9000,6000,3000])
plt.yticks([10**-5,10**-2,10**1,10**4,10**7])
ax.grid(True)
fig.tight_layout()
plt.text(8000, 10**-3, 'Enanas blancas')
plt.text(12000, 1, 'Sequencia principal')
plt.text(11000, 10**5, 'Gigantes azules')
plt.text(4500, 1, 'Gigantes rojas')
plt.text(5000, 12000, 'Super gigantes')
plt.show()
#Se crea el gráfico definiendo cada uno de sus elementos para que sea lo más similar posible.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment