* Number of hours: 140 hours of total work. (final distribution to be defined/discussed)
* 32 hours of classes (4 hrs per week for 8 weeks)
* 16 hours of tutorials (2 hrs per week for 8 weeks)
* 32 hours of written assignments (8 homeworks of 4 hrs each)
* 60 hours of reading assignments (300 pages at 5 pages per hr)
## Course description
The objective of this course is to provide an introduction to the **Bla, bla**
## Topic overview (cada item se puede hacer un módulo independiente, pero se planean para tomarse en la secuencia indicada)
1. Física nuclear con aplicación a técnicas médicas: Aceleradores de electrones, rayos X, Fuentes $\gamma$, aceleradores de iones, procesos físicos involucrados en la generación de radiación ionizante y la absorción de dosis, aplicación en radioterapia y medicina nuclear. (6 horas)
2. Radiobiología: células, división celular, reparación del DNA, organización de tejidos, efectos de la radiación en la materia, dinámica de poblaciones celulares, curvas y modelos de dosis-efecto, dependencia de la LET, OER, RBE, clasificación del daño celular, crecimiento tumoral, efecto bystander, efectos estocásticos y determinísticos. (6 horas)
4. Imágenes médicas: Rayos X y CT, PET y RMN, Procesamiento de imágenes, segmentación. (6 horas)
***Quedan 8 horas para profundizar en geant4, radioterapia, etc**
### Pre-requisites/Co-requisites
recomendado: primer semestre laconga completo en cualquier filial
<!--
## Schedule
### Week 1: Introduction
* What is matter made of?
* Invariant masses
* Scattering, Decay rate, etc
### Week 2: Dirac equation
* Dirac equation
* Dirac field, conserved currents
* Spinors: solutions, properties
### Week 3: QED + Renornmalization
* Minimal coupling
* Feynman rules
* Scattering Moller, Compton, $\mu+e$, etc
* Propagators
* Higher-order corrections
* Renormalization
### Week 4 and 5: QCD [^1]
* Gauge principles: SU(3), comparison between QED and QCD
* Deep Inelastic Scattering (experimental evidence of the structure of the proton)
* Perturbative QCD: Feynman rules, color factors, experimental measurements (experimental color evidence)
* Confinement, hadronization and jets, alpha_S measurements
* Hadron collisions (Soft and collinear divergences, Jets and infrared safety, Initial state and factorization, Monte Carlo event generators, jet reconstruction )
### Week 6, 7 and 8: Weak interacions & SM [^1]
* Charged weak interaction
* Couplings and applications
* Theoretical basics and parity violation, experimental tests for V-A interactions
* Properties of the W boson, Z boson
* CP violation and flavor physics: matrix CKM
* The Standard Model (SM)
* Neutral currents and electroweak unification
* Tests of the EWK model and top quark
* Higgs boson: discovery and properties, constraints from W and top on the Higgs mass
* Complete Lagrangian of the SM
* The limitations of the SM
## Course material
* HALZEN, Francis; MARTIN, Alan D. Quark & Leptons: An Introductory Course In Modern
* Particle Physics. John Wiley & Sons, 2008.
* PERKINS, Donald H.; PERKINS, Donald H. Introduction to high energy physics. CAMBRIDGE university press, 2000.
* GRIFFITHS, David. Introduction to elementary particles. John Wiley & Sons, 2008.
* AITCHISON, Ian JR; HEY, Anthony JG. Gauge Theories in Particle Physics: A Practical Introduction: From Relativistic Quantum Mechanics to QED. CRC Press, 2012.
* AITCHISON, Ian JR; HEY, Anthony JG. Gauge theories in particle physics: A practical introduction, Volume 2: Non-Abelian Gauge theories: QCD and the electroweak theory. CRC Press, 2012.