Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
{
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "python",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8"
},
"kernelspec": {
"name": "python",
"display_name": "Python (Pyodide)",
"language": "python"
}
},
"nbformat_minor": 4,
"nbformat": 4,
"cells": [
{
"cell_type": "markdown",
"source": "#Experimento guia",
"metadata": {}
},
{
"cell_type": "markdown",
"source": "Servilleta Cerrada",
"metadata": {}
},
{
"cell_type": "code",
"source": "import numpy as np\n",
"metadata": {
"trusted": true
},
"execution_count": 1,
"outputs": []
},
{
"cell_type": "code",
"source": "import matplotlib.pyplot as plt",
"metadata": {
"trusted": true
},
"execution_count": 2,
"outputs": []
},
{
"cell_type": "code",
"source": "a = np.loadtxt('tiempos.txt')\nprint(a)\na.shape",
"metadata": {
"trusted": true
},
"execution_count": 3,
"outputs": [
{
"name": "stdout",
"text": "[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ]\n [0.033 0.033 0.035 0.033 0.033 0.033 0.031 0.033 0.034 0.034]\n [0.067 0.066 0.07 0.066 0.065 0.067 0.062 0.066 0.069 0.067]\n [0.1 0.099 0.105 0.099 0.098 0.1 0.093 0.099 0.103 0.101]\n [0.134 0.132 0.14 0.132 0.131 0.133 0.124 0.132 0.137 0.134]\n [0.167 0.165 0.175 0.165 0.164 0.167 0.155 0.164 0.172 0.168]\n [0.201 0.198 0.21 0.197 0.196 0.2 0.186 0.197 0.206 0.201]\n [0.234 0.231 0.245 0.23 0.229 0.233 0.217 0.23 0.24 0.235]\n [0.268 0.264 0.28 0.263 0.262 0.266 0.248 0.263 0.275 0.268]\n [0.301 0.297 0.315 0.296 0.295 0.3 0.279 0.296 0.309 0.302]\n [0.334 0.33 0.35 0.329 0.327 0.333 0.31 0.329 0.344 0.335]\n [0.368 0.363 0.385 0.362 0.36 0.366 0.341 0.362 0.378 0.369]\n [0.401 0.396 0.419 0.395 0.393 0.4 0.371 0.395 0.412 0.402]\n [0.435 0.429 0.454 0.428 0.426 0.433 0.402 0.428 0.447 0.436]\n [0.468 0.462 0.489 0.461 0.458 0.466 0.433 0.461 0.481 0.469]\n [0.502 0.495 0.524 0.494 0.491 0.5 0.464 0.493 0.515 0.503]\n [0.535 0.528 0.559 0.527 0.524 0.533 0.495 0.526 0.55 0.536]\n [0.569 0.561 0.594 0.559 0.556 0.566 0.526 0.559 0.584 0.57 ]\n [0.602 0.594 0.629 0.592 0.589 0.6 0.557 0.592 0.618 0.604]\n [0.635 0.627 0.664 0.625 0.622 0.633 0.588 0.625 0.653 0.637]\n [0.669 0.66 0.699 0.658 0.655 0.666 0.619 0.658 0.687 0.671]\n [0.702 0.693 0.734 0.691 0.687 0.7 0.65 0.691 0.721 0.704]]\n",
"output_type": "stream"
},
{
"execution_count": 3,
"output_type": "execute_result",
"data": {
"text/plain": "(22, 10)"
},
"metadata": {}
}
]
},
{
"cell_type": "code",
"source": "prom_Tiempos = a.mean(axis=1)",
"metadata": {
"trusted": true
},
"execution_count": 4,
"outputs": []
},
{
"cell_type": "code",
"source": "prom_Tiempos",
"metadata": {
"trusted": true
},
"execution_count": 5,
"outputs": [
{
"execution_count": 5,
"output_type": "execute_result",
"data": {
"text/plain": "array([0. , 0.0332, 0.0665, 0.0997, 0.1329, 0.1662, 0.1992, 0.2324,\n 0.2657, 0.299 , 0.3321, 0.3654, 0.3984, 0.4318, 0.4648, 0.4981,\n 0.5313, 0.5644, 0.5977, 0.6309, 0.6642, 0.6973])"
},
"metadata": {}
}
]
},
{
"cell_type": "code",
"source": "prom_Tiempos.shape",
"metadata": {
"trusted": true
},
"execution_count": 18,
"outputs": [
{
"execution_count": 18,
"output_type": "execute_result",
"data": {
"text/plain": "(22,)"
},
"metadata": {}
}
]
},
{
"cell_type": "code",
"source": "b= np.loadtxt('alturas1.txt')\nb=np.loadtxt('alturas1.txt', dytype=\"int\")\nb=np.loadtxt(dtype=\"int\" ,usecols = (1,10))\nprint (b)",
"metadata": {
"trusted": true
},
"execution_count": 35,
"outputs": [
{
"ename": "<class 'ValueError'>",
"evalue": "could not convert string '8,05E+00' to float64 at row 1, column 1.",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[35], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m b\u001b[38;5;241m=\u001b[39m \u001b[43mnp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mloadtxt\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43malturas1.txt\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2\u001b[0m b\u001b[38;5;241m=\u001b[39mnp\u001b[38;5;241m.\u001b[39mloadtxt(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124malturas1.txt\u001b[39m\u001b[38;5;124m'\u001b[39m, dytype\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mint\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 3\u001b[0m b\u001b[38;5;241m=\u001b[39mnp\u001b[38;5;241m.\u001b[39mloadtxt(dtype\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mint\u001b[39m\u001b[38;5;124m\"\u001b[39m ,usecols \u001b[38;5;241m=\u001b[39m (\u001b[38;5;241m1\u001b[39m,\u001b[38;5;241m10\u001b[39m))\n",
"File \u001b[0;32m/lib/python3.11/site-packages/numpy/lib/npyio.py:1356\u001b[0m, in \u001b[0;36mloadtxt\u001b[0;34m(fname, dtype, comments, delimiter, converters, skiprows, usecols, unpack, ndmin, encoding, max_rows, quotechar, like)\u001b[0m\n\u001b[1;32m 1353\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(delimiter, \u001b[38;5;28mbytes\u001b[39m):\n\u001b[1;32m 1354\u001b[0m delimiter \u001b[38;5;241m=\u001b[39m delimiter\u001b[38;5;241m.\u001b[39mdecode(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mlatin1\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m-> 1356\u001b[0m arr \u001b[38;5;241m=\u001b[39m \u001b[43m_read\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfname\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdtype\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdtype\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcomment\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcomment\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdelimiter\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdelimiter\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1357\u001b[0m \u001b[43m \u001b[49m\u001b[43mconverters\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconverters\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mskiplines\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mskiprows\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43musecols\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43musecols\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1358\u001b[0m \u001b[43m \u001b[49m\u001b[43munpack\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43munpack\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mndmin\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mndmin\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mencoding\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mencoding\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1359\u001b[0m \u001b[43m \u001b[49m\u001b[43mmax_rows\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmax_rows\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mquote\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mquotechar\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1361\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m arr\n",
"File \u001b[0;32m/lib/python3.11/site-packages/numpy/lib/npyio.py:999\u001b[0m, in \u001b[0;36m_read\u001b[0;34m(fname, delimiter, comment, quote, imaginary_unit, usecols, skiplines, max_rows, converters, ndmin, unpack, dtype, encoding)\u001b[0m\n\u001b[1;32m 996\u001b[0m data \u001b[38;5;241m=\u001b[39m _preprocess_comments(data, comments, encoding)\n\u001b[1;32m 998\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m read_dtype_via_object_chunks \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m--> 999\u001b[0m arr \u001b[38;5;241m=\u001b[39m _load_from_filelike(\n\u001b[1;32m 1000\u001b[0m data, delimiter\u001b[38;5;241m=\u001b[39mdelimiter, comment\u001b[38;5;241m=\u001b[39mcomment, quote\u001b[38;5;241m=\u001b[39mquote,\n\u001b[1;32m 1001\u001b[0m imaginary_unit\u001b[38;5;241m=\u001b[39mimaginary_unit,\n\u001b[1;32m 1002\u001b[0m usecols\u001b[38;5;241m=\u001b[39musecols, skiplines\u001b[38;5;241m=\u001b[39mskiplines, max_rows\u001b[38;5;241m=\u001b[39mmax_rows,\n\u001b[1;32m 1003\u001b[0m converters\u001b[38;5;241m=\u001b[39mconverters, dtype\u001b[38;5;241m=\u001b[39mdtype,\n\u001b[1;32m 1004\u001b[0m encoding\u001b[38;5;241m=\u001b[39mencoding, filelike\u001b[38;5;241m=\u001b[39mfilelike,\n\u001b[1;32m 1005\u001b[0m byte_converters\u001b[38;5;241m=\u001b[39mbyte_converters)\n\u001b[1;32m 1007\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 1008\u001b[0m \u001b[38;5;66;03m# This branch reads the file into chunks of object arrays and then\u001b[39;00m\n\u001b[1;32m 1009\u001b[0m \u001b[38;5;66;03m# casts them to the desired actual dtype. This ensures correct\u001b[39;00m\n\u001b[1;32m 1010\u001b[0m \u001b[38;5;66;03m# string-length and datetime-unit discovery (like `arr.astype()`).\u001b[39;00m\n\u001b[1;32m 1011\u001b[0m \u001b[38;5;66;03m# Due to chunking, certain error reports are less clear, currently.\u001b[39;00m\n\u001b[1;32m 1012\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m filelike:\n",
"\u001b[0;31mValueError\u001b[0m: could not convert string '8,05E+00' to float64 at row 1, column 1."
],
"output_type": "error"
}
]
},
{
"cell_type": "code",
"source": "prom_Altura = b.mean(axis=1)\nprom_Altura",
"metadata": {
"trusted": true
},
"execution_count": 32,
"outputs": [
{
"execution_count": 32,
"output_type": "execute_result",
"data": {
"text/plain": "array([0. , 0.0332, 0.0665, 0.0997, 0.1329, 0.1662, 0.1992, 0.2324,\n 0.2657, 0.299 , 0.3321, 0.3654, 0.3984, 0.4318, 0.4648, 0.4981,\n 0.5313, 0.5644, 0.5977, 0.6309, 0.6642, 0.6973])"
},
"metadata": {}
}
]
},
{
"cell_type": "code",
"source": "plt.plot(prom_Tiempos, prom_Altura) ",
"metadata": {
"trusted": true
},
"execution_count": 20,
"outputs": [
{
"ename": "<class 'NameError'>",
"evalue": "name 'prom_Altura' is not defined",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[20], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m plt\u001b[38;5;241m.\u001b[39mplot(prom_Tiempos, \u001b[43mprom_Altura\u001b[49m) \n",
"\u001b[0;31mNameError\u001b[0m: name 'prom_Altura' is not defined"
],
"output_type": "error"
}
]
},
{
"cell_type": "code",
"source": "prom_Altura = b.mean(axis=1)\nprom_Altura",
"metadata": {
"trusted": true
},
"execution_count": 8,
"outputs": [
{
"ename": "<class 'NameError'>",
"evalue": "name 'b' is not defined",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[8], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m prom_Altura \u001b[38;5;241m=\u001b[39m \u001b[43mb\u001b[49m\u001b[38;5;241m.\u001b[39mmean(axis\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m)\n\u001b[1;32m 2\u001b[0m prom_Altura\n",
"\u001b[0;31mNameError\u001b[0m: name 'b' is not defined"
],
"output_type": "error"
}
]
},
{
"cell_type": "code",
"source": "b = np.loadtxt('alturas.txt')\nprint(b)\n\n",
"metadata": {
"trusted": true
},
"execution_count": 9,
"outputs": [
{
"ename": "<class 'ValueError'>",
"evalue": "could not convert string '5,55E-14' to float64 at row 0, column 1.",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[9], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m b \u001b[38;5;241m=\u001b[39m \u001b[43mnp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mloadtxt\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43malturas.txt\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2\u001b[0m \u001b[38;5;28mprint\u001b[39m(b)\n",
"File \u001b[0;32m/lib/python3.11/site-packages/numpy/lib/npyio.py:1356\u001b[0m, in \u001b[0;36mloadtxt\u001b[0;34m(fname, dtype, comments, delimiter, converters, skiprows, usecols, unpack, ndmin, encoding, max_rows, quotechar, like)\u001b[0m\n\u001b[1;32m 1353\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(delimiter, \u001b[38;5;28mbytes\u001b[39m):\n\u001b[1;32m 1354\u001b[0m delimiter \u001b[38;5;241m=\u001b[39m delimiter\u001b[38;5;241m.\u001b[39mdecode(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mlatin1\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m-> 1356\u001b[0m arr \u001b[38;5;241m=\u001b[39m \u001b[43m_read\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfname\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdtype\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdtype\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcomment\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcomment\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdelimiter\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdelimiter\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1357\u001b[0m \u001b[43m \u001b[49m\u001b[43mconverters\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconverters\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mskiplines\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mskiprows\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43musecols\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43musecols\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1358\u001b[0m \u001b[43m \u001b[49m\u001b[43munpack\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43munpack\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mndmin\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mndmin\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mencoding\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mencoding\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1359\u001b[0m \u001b[43m \u001b[49m\u001b[43mmax_rows\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmax_rows\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mquote\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mquotechar\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1361\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m arr\n",
"File \u001b[0;32m/lib/python3.11/site-packages/numpy/lib/npyio.py:999\u001b[0m, in \u001b[0;36m_read\u001b[0;34m(fname, delimiter, comment, quote, imaginary_unit, usecols, skiplines, max_rows, converters, ndmin, unpack, dtype, encoding)\u001b[0m\n\u001b[1;32m 996\u001b[0m data \u001b[38;5;241m=\u001b[39m _preprocess_comments(data, comments, encoding)\n\u001b[1;32m 998\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m read_dtype_via_object_chunks \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m--> 999\u001b[0m arr \u001b[38;5;241m=\u001b[39m \u001b[43m_load_from_filelike\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1000\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdelimiter\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdelimiter\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcomment\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcomment\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mquote\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mquote\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1001\u001b[0m \u001b[43m \u001b[49m\u001b[43mimaginary_unit\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mimaginary_unit\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1002\u001b[0m \u001b[43m \u001b[49m\u001b[43musecols\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43musecols\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mskiplines\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mskiplines\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmax_rows\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmax_rows\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1003\u001b[0m \u001b[43m \u001b[49m\u001b[43mconverters\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconverters\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdtype\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdtype\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1004\u001b[0m \u001b[43m \u001b[49m\u001b[43mencoding\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mencoding\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfilelike\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfilelike\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1005\u001b[0m \u001b[43m \u001b[49m\u001b[43mbyte_converters\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mbyte_converters\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1007\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 1008\u001b[0m \u001b[38;5;66;03m# This branch reads the file into chunks of object arrays and then\u001b[39;00m\n\u001b[1;32m 1009\u001b[0m \u001b[38;5;66;03m# casts them to the desired actual dtype. This ensures correct\u001b[39;00m\n\u001b[1;32m 1010\u001b[0m \u001b[38;5;66;03m# string-length and datetime-unit discovery (like `arr.astype()`).\u001b[39;00m\n\u001b[1;32m 1011\u001b[0m \u001b[38;5;66;03m# Due to chunking, certain error reports are less clear, currently.\u001b[39;00m\n\u001b[1;32m 1012\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m filelike:\n",
"\u001b[0;31mValueError\u001b[0m: could not convert string '5,55E-14' to float64 at row 0, column 1."
],
"output_type": "error"
}
]
},
{
"cell_type": "code",
"source": "prom_Altura.shape",
"metadata": {
"trusted": true
},
"execution_count": 10,
"outputs": [
{
"ename": "<class 'NameError'>",
"evalue": "name 'prom_Altura' is not defined",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[10], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mprom_Altura\u001b[49m\u001b[38;5;241m.\u001b[39mshape\n",
"\u001b[0;31mNameError\u001b[0m: name 'prom_Altura' is not defined"
],
"output_type": "error"
}
]
},
{
"cell_type": "code",
"source": "plt.plot(prom_Tiempos, prom_Altura) ",
"metadata": {
"trusted": true
},
"execution_count": 11,
"outputs": [
{
"ename": "<class 'NameError'>",
"evalue": "name 'prom_Altura' is not defined",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[11], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m plt\u001b[38;5;241m.\u001b[39mplot(prom_Tiempos, \u001b[43mprom_Altura\u001b[49m) \n",
"\u001b[0;31mNameError\u001b[0m: name 'prom_Altura' is not defined"
],
"output_type": "error"
}
]
},
{
"cell_type": "code",
"source": "",
"metadata": {},
"execution_count": null,
"outputs": []
}
]
}