Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
G
grupo-Lizarazo-Ortega
Manage
Activity
Members
Labels
Plan
Issues
0
Issue boards
Milestones
Wiki
Code
Merge requests
0
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Escuela de Fisica
Cursos
Herramientas Computacionales 23
Tareas
grupo-Lizarazo-Ortega
Commits
aa9f3411
Commit
aa9f3411
authored
2 years ago
by
Alvaro Andres Ortega Rojas
Browse files
Options
Downloads
Patches
Plain Diff
Delete Untitled.ipynb
parent
27940549
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
Untitled.ipynb
+0
-161
0 additions, 161 deletions
Untitled.ipynb
with
0 additions
and
161 deletions
Untitled.ipynb
deleted
100644 → 0
+
0
−
161
View file @
27940549
{
"cells": [
{
"cell_type": "code",
"execution_count": 44,
"id": "d8c9cc7e-12af-41a2-a3e2-17947687b52b",
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 55,
"id": "0a9bf50c-beb0-419c-8461-08b7b11db189",
"metadata": {},
"outputs": [],
"source": [
"L = np.arange(10, 32, 2)\n",
"dL = np.random.rand(len(L))\n",
"B = 0.5\n",
"alpha = 0.3\n",
"T0 = T = B*L**alpha\n",
"T = B*(L+dL)**alpha"
]
},
{
"cell_type": "code",
"execution_count": 56,
"id": "cafe1b32-cfac-4005-888d-75cb295b539b",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAXHklEQVR4nO3df4wc533f8feHS25b0AqciGdHJXk9xRFqEKqk0lc6C6nOyExVUjVKuyoa0YZpxw6uLqSm/iOAVRiw0qoAoTYt0iKKmavL0jRiMgVktkIrWTK23lKIV62OqSxTtWTTyqV3ouKjpSaW6kBLLr/9Y4bNkt5fx5u92R1+XsBhd+aZ3fne3IPPzT07N48iAjMzK68NRRdgZmaj5aA3Mys5B72ZWck56M3MSs5Bb2ZWchuLLqCbLVu2xMzMTNFlmJlNjFOnTv0gIqa6tY1l0M/MzLCwsFB0GWZmE0PSH/Zq89CNmVnJDQx6SYclrUg6PWC7vyapLenvdqzbI+klSWckPZBHwWZmtjrDnNEfAfb020BSBXgYePKKdY8Ae4EdwH5JO666UjMzuyoDgz4iTgKvD9jsHwKPAisd63YBZyLi5YhoAceBfVdbqJmZXZ01j9FL2gp8CDh0RdNWYKljeTlb1+t95iQtSFo4d+7cWssyM7NMHh/G/gbwmYhoX7FeXbbteQe1iJiPiNmImJ2a6nqFkJmZXYU8Lq+cBY5LAtgC3C3pAukZ/PaO7bYBZ3PYn5lZ6TSXmjQWGyQzCbXttVzfe81BHxE3Xnou6QjwnyPiP0raCNwk6UbgFeBe4MNr3Z+ZWdk0l5rsPrqbVrtFtVKlfqCea9gPc3nlMaAJ/GVJy5I+KelTkj7V73URcQG4n/RKnG8D/yEiXsijaDOzMmksNmi1W7SjTavdorHYyPX9B57RR8T+Yd8sIj5+xfLjwOOrL8vM7NqRzCRsVJWL0WKjqiQzSa7vP5a3QDAzu6Ys14gv1mFrg3glgV+oXf4J5xo56M3MCtZoQHuxRnyvRruSLtdy/DzW97oxMytYkkC1CpVK+pgk+b6/z+jNzApWq0G9np7JJ0m+Z/PgoDczGwu1Wv4Bf4mHbszMSs5Bb2ZWcg56M7OSc9CbmZWcg97MrOQc9GZmJeegNzMrOQe9mVmH5lKTg08fpLnULLqU3PgfpszMMs2lJnce2U3rYovqhipf/3i+94Uvis/ozcwyR082eOtCi6DNW+dbHD3ZKLqkXDjozcwuWUygXYV2BS5W0+USGGaGqcOSViSd7tG+T9Lzkp6TtCDpjo62RUnfutSWZ+FmZnk78P4a1eN19N8eonq8zoH3T/6wDYAiov8G0vuAN4GjEXFzl/a3Af83IkLSLaRTBr47a1sEZiPiB6spanZ2NhYW/HvBzNZfszm6u0iOkqRTETHbrW2YqQRPSprp0/5mx+JmoP9vDjOzMTbKu0gWJZcxekkfkvQi8F+AT3Q0BfCUpFOS5ga8x1w29LNw7ty5PMoyMzNyCvqIOJEN13wQeKij6faI2AnsBe7LhoF6vcd8RMxGxOzU1FQeZZmZGTlfdRMRJ4F3SdqSLZ/NHleAE8CuPPdnZmaDrTnoJf2sJGXPdwJV4DVJmyVdl63fDNwFdL1yx8zMRmfgh7GSjgEJsEXSMvAgsAkgIg4B9wAHJJ0H/hT4xewKnHcCJ7LfARuBL0fEV0fyXZiZWU/DXHWzf0D7w8DDXda/DNx69aWZmVke/J+xZmYl56A3Mys5B72ZWck56M1s7Mw/0eRv/rODzD9RnnvCF8n3ozezsTL/RJO//3u7odLiqd+rAnXm9pbsngTrzGf0ZjZWHj3VgEoLNrRhQytdtjVx0JvZWLnnPcll94S/5z1J0SVNPA/dmNlYSYdp6jx6qsE970k8bJODgfejL4LvR29mtjr97kfvoRszs5Jz0JuZlZyD3sys5Bz0ZmYl56A3Mys5B72ZWck56M3MSm5g0Es6LGlFUtdpACXtk/S8pOckLUi6o6Ntj6SXJJ2R9ECehZuZ2XCGOaM/Auzp014Hbo2I24BPAF8AkFQBHgH2AjuA/ZJ2rKVYMzNbvYFBHxEngdf7tL8Zf/bvtZuBS893AWci4uWIaAHHgX1rrNfM1lFzqcnBpw/SXPLtgidZLve6kfQh4CDwDuBvZau3Aksdmy0D7+3zHnPAHMD09HQeZZnZGjSXmtx5ZDetiy2qG6p8/eN1att935lJlMuHsRFxIiLeDXwQeChbrW6b9nmP+YiYjYjZqampPMoyszU4erLBWxdaBG3eOt/i6MlG0SXZVcr1qptsmOddkraQnsFv72jeBpzNc39mNkKLyWW3C2YxKboiu0prHrqR9LPA9yIiJO0EqsBrwB8DN0m6EXgFuBf48Fr3Z2br48D7axz+aJ3zWxtseiXhwJc8bDOpBga9pGNAAmyRtAw8CGwCiIhDwD3AAUnngT8FfjH7cPaCpPuBJ4EKcDgiXhjJd2FmuavVoPGlGo1GjSRJl20y+X70ZmYl4PvRm5ldwxz0ZmYl56A3Mys5B72ZWck56M3MSs5Bb2ZWcg56M7OSc9CbmZWcg97MrOQc9GZmJeegNxtznvzD1iqXiUfMbDQ8+YflwWf0ZmPMk39YHhz0ZuPMk39YDjx0YzbGPPmH5cFBbzbGPPmH5WGYGaYOAx8AViLi5i7tHwE+ky2+CfyDiPhm1rYIvAG0gQu9bopvZr3Vag54W5thxuiPAHv6tP8B8PMRcQvwEDB/RfudEXGbQ97MrBgDz+gj4qSkmT7t3+hYfAbYlkNdZmaWk7yvuvkk8ETHcgBPSTolaS7nfZmZ2RBy+zBW0p2kQX9Hx+rbI+KspHcAX5P0YkSc7PH6OWAOYHp6Oq+yzMyuebmc0Uu6BfgCsC8iXru0PiLOZo8rwAlgV6/3iIj5iJiNiNmpqak8yjIzM3IIeknTwFeAj0bEdzrWb5Z03aXnwF3A6bXuz8zMVmeYyyuPAQmwRdIy8CCwCSAiDgGfA64HfksS/NlllO8ETmTrNgJfjoivjuB7MDOzPoa56mb/gPZfBn65y/qXgVuvvjQzM8uD73VjZlZyDnqzIfm+8DapfK8bsyE0l5rsPrqbVrtFtVKlfsD3hbfJ4TN6syE0FtP7wrejzVsXWjQWG0WXZDY0n9GbDeH6NxMunq/ChhYXL1a5/s2k6JLMhuagNxvCa8/V2PClOhenG2z43wmvba7B3qKrMhuOg95sCEkCf+6hGq1XalSr6bLZpHDQmw2hVoN6HRoNPAGITRwHvdmQPAGITSpfdWNmVnIOejOzknPQm5mVnIPezKzkHPQ2cXzPGbPV8VU3NlF8zxmz1fMZvU2UxmKDVju950yr7XvOmA1jYNBLOixpRVLXaQAlfUTS89nXNyTd2tG2R9JLks5IeiDPwu3alMwkVCtVKqpQrVRJZpKiSzIbe8MM3RwBfhM42qP9D4Cfj4j/I2kvMA+8V1IFeAT4G8Ay8KykxyLif629bLtW1bbXqB+o01hskMwkHrYxG8IwUwmelDTTp/0bHYvPANuy57uAM9mUgkg6DuwDHPS2JrXtNQe82SrkPUb/SeCJ7PlWYKmjbTlbZ2Zm6yi3q24k3Uka9HdcWtVls+jz+jlgDmB6ejqvsszMrnm5nNFLugX4ArAvIl7LVi8D2zs22wac7fUeETEfEbMRMTs1NZVHWWZmRg5BL2ka+Arw0Yj4TkfTs8BNkm6UVAXuBR5b6/7MzGx1Bg7dSDoGJMAWScvAg8AmgIg4BHwOuB74LUkAF7Iz8wuS7geeBCrA4Yh4YSTfhV1Tmk3fF95sNRTRc9i8MLOzs7GwsFB0GTaGmk3YvRtaLahW08lAHPZmIOlURMx2a/N/xtpEaTTSkG+308dGo+iKzMafg94mSpKkZ/KVCp671WxIvqmZTRTP3Wq2eg56mzieu9VsdTx0Y2ZWcg56M7OSc9CbmZWcg97MrOQc9GZmJeegNzMrOQe9mVnJOejNzErOQW9XpbnU5ODTB2kuNYsuxcwG8H/G2qo1l5rsPrqbVrtFtVKlfqDuOVzNxpjP6G3VGosNWu0W7WjTardoLDaKLsnM+nDQ26olMwnVSpWKKlQrVZKZpOiSzKyPYWaYOgx8AFiJiJu7tL8b+PfATuCzEfHrHW2LwBtAm2zmqZzqtgLVtteoH6jTWGyQzCQetjEbc8OM0R8BfhM42qP9deBXgA/2aL8zIn6w6spsrNW21xzwZhNi4NBNRJwkDfNe7SsR8SxwPs/CbLw1m3DwYPpoZuNt1FfdBPCUpAB+OyLmR7w/Wweet9Vssoz6w9jbI2InsBe4T9L7em0oaU7SgqSFc+fOjbgsWwvP22o2WUYa9BFxNntcAU4Au/psOx8RsxExOzU1NcqybI08b6vZZBnZ0I2kzcCGiHgje34X8E9HtT9bP5631WyyDHN55TEgAbZIWgYeBDYBRMQhST8NLAA/AVyU9GlgB7AFOCHp0n6+HBFfHcH3YAXwvK1mk2Ng0EfE/gHtfwRs69L0Q+DWq6zLzMxy4v+MNTMrOQe9mVnJOejNzErOQW9mVnIOejOzknPQm5mVnIPezKzkHPRmZiXnoDczKzkHvZlZyTnozcxKzkFvZlZyDnozs5Jz0E+45lKTg08fpLnkyVvNrLtRzxlrI9RcarL76G5a7RbVSpX6gTq17b5JvJldzmf0E6yx2KDVbtGONq12i8Zio+iSzGwMDQx6SYclrUg63aP93ZKakt6S9KtXtO2R9JKkM5IeyKtoSyUzCRtVRVTYqCrJTFJ0SWY2hoY5oz8C7OnT/jrwK8Cvd66UVAEeAfaSTi24X9KOqyvTulquEV+sw399KH1c9rCNmf24gUEfESdJw7xX+0pEPAucv6JpF3AmIl6OiBZwHNi3lmLtco0GtBdrxMl/THuxRqNRdEVmNo5GOUa/FVjqWF7O1llOkgSqVahU0sckKboiMxtHo7zqRl3WRc+NpTlgDmB6enpUNZVKrQb1enpmnyTpspnZlUYZ9MvA9o7lbcDZXhtHxDwwDzA7O9vzF4JdrlZzwJtZf6McunkWuEnSjZKqwL3AYyPcn5mZdTHwjF7SMSABtkhaBh4ENgFExCFJPw0sAD8BXJT0aWBHRPxQ0v3Ak0AFOBwRL4zkuzAzs54GBn1E7B/Q/kekwzLd2h4HHr+60szMLA/+z1gzs5Jz0JuZlZyD3sys5Bz0ZmYl56A3Mys5B72ZWck56M3MSs5Bb2ZWcg56M7OSc9CbmZWcg97MrOQc9GZmJeegz0FzqcnBpw/SXGoWXYqZ2Y8Z5cQj14TmUpPdR3fTareoVqrUD9SpbfdMIGY2PnxGv0aNxQatdot2tGm1WzQWG0WXZGZ2GQf9GiUzCdVKlYoqVCtVkpmk6JLMzC7joZs1qm2v8Rs76zx6qsE9OxMP25jZ2BlmKsHDwAeAlYi4uUu7gH8N3A38CPh4RPx+1rYIvAG0gQsRMZtf6eOh2YRP31Oj1arxdBX+St2TdZvZeBlm6OYIsKdP+17gpuxrDvj8Fe13RsRtZQx5gEYDWi1ot9PHRqPoiszMLjcw6CPiJPB6n032AUcj9Qzwdkk35FXguEsSqFahUkkfk6ToiszMLpfHGP1WYKljeTlb9yoQwFOSAvjtiJjv9SaS5kj/ImB6ejqHstZHrQb1enomnyQetjGz8ZNH0KvLusgeb4+Is5LeAXxN0ovZXwg//oL0l8A8wOzsbHTbZlzVag54MxtfeVxeuQxs71jeBpwFiIhLjyvACWBXDvszM7NVyCPoHwMOKPVzwJ9ExKuSNku6DkDSZuAu4HQO+zMzs1UY5vLKY0ACbJG0DDwIbAKIiEPA46SXVp4hvbzyl7KXvhM4kV59yUbgyxHx1ZzrNzOzAQYGfUTsH9AewH1d1r8M3Hr1pZmZWR58CwQzs5Jz0JuZlZyD3sys5Bz0ZmYl56A3Mys5B72ZWcmVKug9d6uZ2Y8rzcQjnrvVzKy70pzRe+5WM7PuShP0nrvVzKy70gzd1LbXqB+o01hskMx47lYzs0tKE/SQhr0D3szscqUZujEzs+4c9GZmJeegNzMrOQe9mVnJDQx6SYclrUjqOg1gNoXgv5F0RtLzknZ2tO2R9FLW9kCehZuZ2XCGOaM/Auzp074XuCn7mgM+DyCpAjySte8A9kvasZZizcxs9QYGfUScBF7vs8k+4GikngHeLukGYBdwJiJejogWcDzbdmSaTTh4MH00M7NUHtfRbwWWOpaXs3Xd1r+315tImiP9i4Dp6elVF9Fswu7d0GpBtQr1OtR8Sb2ZWS4fxqrLuuizvquImI+I2YiYnZqaWnURjUYa8u12+thorPotzMxKKY8z+mVge8fyNuAsUO2xfiSSJD2Tv3RGnySj2pOZ2WTJI+gfA+6XdJx0aOZPIuJVSeeAmyTdCLwC3At8OIf9dVWrpcM1jUYa8h62MTNLDQx6SceABNgiaRl4ENgEEBGHgMeBu4EzwI+AX8raLki6H3gSqACHI+KFEXwP/1+t5oA3M7vSwKCPiP0D2gO4r0fb46S/CMzMrCD+z1gzs5Jz0JuZlZyD3sys5Bz0ZmYl56A3Mys5pRfNjJfsGvw/vMqXbwF+kGM5eXFdq+O6Vsd1rU4Z6/pLEdH1tgJjGfRrIWkhImaLruNKrmt1XNfquK7Vudbq8tCNmVnJOejNzEqujEE/X3QBPbiu1XFdq+O6Vueaqqt0Y/RmZna5Mp7Rm5lZBwe9mVnJTUzQSzosaUXS6Y51PyXpa5K+mz3+ZI/X7pH0kqQzkh5Yh7r+haQXJT0v6YSkt/d47aKkb0l6TtLCOtT1a5Jeyfb3nKS7e7x2vY/X73bUtCjpuR6vHeXx2i7p65K+LekFSf8oW19oH+tTV6F9rE9dhfaxPnUV2sck/XlJ/0PSN7O6/km2fn36V0RMxBfwPmAncLpj3T8HHsiePwA83OV1FeB7wM+Qznr1TWDHiOu6C9iYPX+4W11Z2yKwZR2P168Bvzrgdet+vK5o/5fA5wo4XjcAO7Pn1wHfAXYU3cf61FVoH+tTV6F9rFddRfcx0qlV35Y93wT8d+Dn1qt/TcwZfUScBF6/YvU+4IvZ8y8CH+zy0l3AmYh4OSJawPHsdSOrKyKeiogL2eIzpNMorqsex2sY6368LpEk4O8Bx/La37Ai4tWI+P3s+RvAt0knuC+0j/Wqq+g+1ud4DWPdj9el9qL6WKTezBY3ZV/BOvWviQn6Ht4ZEa9C+gMG3tFlm63AUsfyMsN3yDx8AniiR1sAT0k6JWluneq5P/tz/3CPPxOLPF5/Hfh+RHy3R/u6HC9JM8BfJT3rGps+dkVdnQrtY13qGos+1uN4FdbHJFWyIaMV4GsRsW79a9KDfhjqsm5drimV9FngAvA7PTa5PSJ2AnuB+yS9b8QlfR54F3Ab8Crpn7BXKux4Afvpf6Y18uMl6W3Ao8CnI+KHw76sy7pcj1mvuoruY13qGos+1ufnWFgfi4h2RNxG+tfXLkk3D/nSNR+vSQ/670u6ASB7XOmyzTKwvWN5G3B21IVJ+hjwAeAjkQ20XSkizmaPK8AJ0j/RRiYivp91tovAv+2xv6KO10bg7wC/22ubUR8vSZtIw+F3IuIr2erC+1iPugrvY93qGoc+1ud4Fd7Hsvf+Y6AB7GGd+tekB/1jwMey5x8D/lOXbZ4FbpJ0o6QqcG/2upGRtAf4DPC3I+JHPbbZLOm6S89JP1w73W3bHOu6oWPxQz32t+7HK/MLwIsRsdytcdTHKxu7/XfAtyPiX3U0FdrHetVVdB/rU1ehfazPzxEK7GOSppRdGSXpL1yqhfXqX3l/ujyqL9I/t14FzpP+hvskcD1QB76bPf5Utu1fBB7veO3dpJ++fw/47DrUdYZ0TO257OvQlXWRfoL+zezrhXWq60vAt4Dns45ywzgcr2z9EeBTV2y7nsfrDtI/h5/v+LndXXQf61NXoX2sT12F9rFedRXdx4BbgP+Z1XWa7Kqf9epfvgWCmVnJTfrQjZmZDeCgNzMrOQe9mVnJOejNzErOQW9mVnIOejOzknPQm5mV3P8DnQHJOeZxDckAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.figure()\n",
"plt.plot(L, T0, 'b.')\n",
"plt.plot(L, T, 'g.')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 57,
"id": "7d536043-8efb-4a8f-9017-7b9b13c8ea1a",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAR/ElEQVR4nO3db2zd133f8fen1yG2OclSxGqaSfRobO4yYYgz784Jl6aloSW10gdqsQJzGkRAFkAwVq/NgwJxBiTAlgfegGEoijozBM/YDCwwhs3etNaJU3DlEsB0K2rw7DiJA8FhS04ZLCdZ0z9DWTHfPeB1c0tfiT9Sl7yXR+8XQPD+fuecH78HAj46Oro8N1WFJKldPzTpAiRJ+8ugl6TGGfSS1DiDXpIaZ9BLUuNumnQBo9xyyy01Nzc36TIk6dC4cOHCq1V1ZFTbVAb93NwcKysrky5Dkg6NJL97tTa3biSpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJmgLLa8s8+OUHWV5bHvuzp/J99JJ0I1leW+bEYyfY2NxgpjfD4ulF5mfnx/Z8V/SSNGFLq0tsbG6wWZtsbG6wtLo01ucb9JI0YQtzC8z0Zuilx0xvhoW5hbE+360bSZqw+dl5Fk8vsrS6xMLcwli3bcCgl6SpMD87P/aAf41bN5LUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSStEf7eeLkOPmbsZK0B/t94uQ4uaKXpD3Y7xMnx8mgl6Q92O8TJ8fJrRtJ2oP9PnFynDqt6JPck+SlJBeTPDCi/VSS55M8l2QlyY93HStJh9X87DyffN8npzrkoUPQJ+kBDwEngePAh5Ic39ZtEbijqt4F/CPgkV2MlSTtoy4r+ruAi1X1clVtAI8Dp4Y7VNUfVlUNLm8GqutYSdL+6hL0R4G1oev1wb0/J8nPJvk68Btsreo7jx2MPzPY9lm5fPlyl9olSR10CfqMuFevu1H1ZFW9A/gZ4DO7GTsYf7aq+lXVP3LkSIeyJElddAn6dWB26PoYcOlqnavqS8BfS3LLbsdKksavS9CfB25PcluSGeBe4NxwhyR/PUkGr+8EZoBvdxkrSdpfO76PvqquJLkfeBroAY9W1YtJ7hu0Pwz8A+B0kj8F/h/wDwf/OTty7D7NRZI0Qn7wZpnp0e/3a2VlZdJlSNKhkeRCVfVHtXkEgiQ1zqCXpMYZ9JJuGIfl/Phx81AzSTeEw3R+/Li5opd0QzhM58ePm0Ev6YZwmM6PHze3biTdEA7T+fHjZtBLumHMz87fUAH/GrduJKlxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CVNlRv1hMn95G/GSpoaN/IJk/vJFb2kqXEjnzC5nwx6SVPjRj5hcj+5dSNpatzIJ0zuJ4Ne0lS5UU+Y3E9u3UhS4zoFfZJ7kryU5GKSB0a0fzjJ84OvZ5LcMdS2muSFJM8lWRln8ZKkne24dZOkBzwEvB9YB84nOVdVXx3q9k3gJ6vqu0lOAmeBdw+1311Vr46xbklSR11W9HcBF6vq5araAB4HTg13qKpnquq7g8tngWPjLVOStFddgv4osDZ0vT64dzUfAz4/dF3AF5NcSHLmaoOSnEmykmTl8uXLHcqSJHXR5V03GXGvRnZM7mYr6H986PZ7q+pSkh8BfjPJ16vqS697YNVZtrZ86Pf7I58vSdq9Liv6dWB26PoYcGl7pyTvBB4BTlXVt1+7X1WXBt9fAZ5kaytIknRAugT9eeD2JLclmQHuBc4Nd0hyK/AE8JGq+sbQ/ZuTvOm118AHgK+Mq3hJ0s523LqpqitJ7geeBnrAo1X1YpL7Bu0PA58G3gp8NgnAlarqA28Dnhzcuwn4XFV9YV9mIkkaKVXTtx3e7/drZcW33EtSV0kuDBbYr+NvxkpS4wx6SWqcQS9pV/wEqMPH0ysldeYnQB1OrugldeYnQB1OBr2kzvwEqMPJrRtJnfkJUIeTQS9pV/wEqMPHrRtJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPopUZ4TryuxrNupAZ4TryuxRW91ADPide1GPRSAzwnXtfi1o3UAM+J17V0WtEnuSfJS0kuJnlgRPuHkzw/+HomyR1dx0oaj/nZeT75vk8a8nqdHYM+SQ94CDgJHAc+lOT4tm7fBH6yqt4JfAY4u4uxkqR91GVFfxdwsaperqoN4HHg1HCHqnqmqr47uHwWONZ1rCRpf3UJ+qPA2tD1+uDe1XwM+PxuxyY5k2Qlycrly5c7lCVJ6qJL0GfEvRrZMbmbraD/xG7HVtXZqupXVf/IkSMdypIkddHlXTfrwOzQ9THg0vZOSd4JPAKcrKpv72asJGn/dFnRnwduT3JbkhngXuDccIcktwJPAB+pqm/sZqwkaX/tuKKvqitJ7geeBnrAo1X1YpL7Bu0PA58G3gp8NgnAlcE2zMix+zQXaWosry37nnZNjVSN3DKfqH6/XysrK5MuQ9oTz53RJCS5UFX9UW0egSCNmefOaNoY9NKYee6Mpo1n3Uhj5rkzmjYGvbQP5mfnDXhNDbduJKlxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMZ1Cvok9yR5KcnFJA+MaH9HkuUkf5Lkl7e1rSZ5IclzSVbGVbgkqZsdPxw8SQ94CHg/sA6cT3Kuqr461O07wC8CP3OVx9xdVa9eZ61SJ8tryyytLrEwt+AHdEt0CHrgLuBiVb0MkORx4BTwZ0FfVa8AryT56X2pUupoeW2ZE4+dYGNzg5neDIunFw173fC6bN0cBdaGrtcH97oq4ItJLiQ5c7VOSc4kWUmycvny5V08XvqBpdUlNjY32KxNNjY3WFpdmnRJ0sR1CfqMuFe7+Bnvrao7gZPALyT5iVGdqupsVfWrqn/kyJFdPF76gYW5BWZ6M/TSY6Y3w8LcwqRLkiauy9bNOjA7dH0MuNT1B1TVpcH3V5I8ydZW0Jd2U6TU1fzsPIunF92jl4Z0CfrzwO1JbgP+N3Av8PNdHp7kZuCHquoPBq8/APzzvRYrdTE/O2/AS0N2DPqqupLkfuBpoAc8WlUvJrlv0P5wkh8FVoA3A99P8nHgOHAL8GSS137W56rqC/syE0nSSF1W9FTVU8BT2+49PPT6/7C1pbPd94A7rqdASdL18TdjJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6XZfltWUe/PKDLK8tT7oUSVfRKeiT3JPkpSQXkzwwov0dSZaT/EmSX97NWB1ey2vLnHjsBJ/6rU9x4rEThr00pXYM+iQ94CHgJHAc+FCS49u6fQf4ReBf7WGsDqml1SU2NjfYrE02NjdYWl2adEmSRuiyor8LuFhVL1fVBvA4cGq4Q1W9UlXngT/d7VgdXgtzC8z0Zuilx0xvhoW5hUmXJGmEmzr0OQqsDV2vA+/u+PzOY5OcAc4A3HrrrR0fr0man51n8fQiS6tLLMwtMD87P+mSJI3QJegz4l51fH7nsVV1FjgL0O/3uz5fEzY/O2/AS1Ouy9bNOjA7dH0MuNTx+dczVpI0Bl2C/jxwe5LbkswA9wLnOj7/esZKksZgx62bqrqS5H7gaaAHPFpVLya5b9D+cJIfBVaANwPfT/Jx4HhVfW/U2H2aiyRphFRN33Z4v9+vlZWVSZchSYdGkgtV1R/V5m/GSlLjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMM+im0vLbMg19+kOW15UmXIqkBO35mrA7W8toyJx47wcbmBjO9GRZPLzI/Oz/psiQdYq7op8zS6hIbmxts1iYbmxssrS5NuiRJh5xBP2UW5haY6c3QS4+Z3gwLcwuTLknSIefWzZSZn51n8fQiS6tLLMwtuG0j6boZ9FNofnbegJc0Np22bpLck+SlJBeTPDCiPUl+ddD+fJI7h9pWk7yQ5LkkK+MsXpK0sx1X9El6wEPA+4F14HySc1X11aFuJ4HbB1/vBv7N4Ptr7q6qV8dWtSSpsy4r+ruAi1X1clVtAI8Dp7b1OQU8VlueBd6S5O1jrlWStAddgv4osDZ0vT6417VPAV9MciHJmav9kCRnkqwkWbl8+XKHsiRJXXQJ+oy4V7vo896qupOt7Z1fSPITo35IVZ2tqn5V9Y8cOdKhLElSF12Cfh2YHbo+Blzq2qeqXvv+CvAkW1tBkqQD0iXozwO3J7ktyQxwL3BuW59zwOnBu2/eA/x+VX0ryc1J3gSQ5GbgA8BXxli/JGkHO77rpqquJLkfeBroAY9W1YtJ7hu0Pww8BXwQuAj8MfDRwfC3AU8mee1nfa6qvjD2WUiSripV27fbJ6/f79fKim+5l6Suklyoqv6oNs+6kaTGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktS4poJ+eW2ZB7/8IMtry5MuRZKmRjMfDr68tsyJx06wsbnBTG+GxdOLfsC2JNHQin5pdYmNzQ02a5ONzQ2WVpcmXZIkTYVmgn5hboGZ3gy99JjpzbAwtzDpkiRpKjSzdTM/O8/i6UWWVpdYmFtw20aSBpoJetgKewNekv68ZrZuJEmjGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY1LVU26htdJchn43UnX0cEtwKuTLmKftDw3aHt+zu3wup75/dWqOjKqYSqD/rBIslJV/UnXsR9anhu0PT/ndnjt1/zcupGkxhn0ktQ4g/76nJ10Afuo5blB2/NzbofXvszPPXpJapwreklqnEEvSY0z6HeQZDbJbyX5WpIXk/zSNfr+3SSbSX7uIGvcq65zS7KQ5LlBn/9x0HXuRZe5JfnLSf5bkv816PPRSdS6F0n+QpLfGar9n43okyS/muRikueT3DmJWner49w+PJjT80meSXLHJGrdiy7zG+o7nkypKr+u8QW8Hbhz8PpNwDeA4yP69YD/DjwF/Nyk6x7X3IC3AF8Fbh1c/8ik6x7j3P4p8C8Hr48A3wFmJl17x/kFeOPg9RuA3wbes63PB4HPD/q+B/jtSdc9xrn9PeCHB69PHpa5dZ3foG1smeKKfgdV9a2q+p+D138AfA04OqLrPwH+M/DKAZZ3XTrO7eeBJ6rq9wb9DsX8Os6tgDclCfBGtoL+yoEWuke15Q8Hl28YfG1/Z8Up4LFB32eBtyR5+0HWuRdd5lZVz1TVdweXzwLHDrDE69Lxzw7GmCkG/S4kmQP+Nlt/Aw/fPwr8LPDwBMoai6vNDfgx4IeTLCW5kOT0gRd3na4xt18D/iZwCXgB+KWq+v7BVrd3SXpJnmMrCH6zqrbP7yiwNnS9zuhFytTpMLdhH2PrXy6Hxk7zG3emGPQdJXkjW3+7fryqvret+VeAT1TV5oEXNgY7zO0m4O8APw38FPCpJD92wCXu2Q5z+yngOeCvAO8Cfi3Jmw+0wOtQVZtV9S62VrN3Jflb27pk1LB9L2wMOswNgCR3sxX0nzjA8q5bh/n9CmPMlKY+M3a/JHkDW2HxH6rqiRFd+sDjWzsA3AJ8MMmVqvovB1fl3nSY2zrwalX9EfBHSb4E3MHWnvdU6zC3jwL/orY2RC8m+SbwDuB3DrDM61ZV/zfJEnAP8JWhpnVgduj6GFv/ejk0rjE3krwTeAQ4WVXfnkB51+0a8xtrprii38Fg//bfAl+rqn89qk9V3VZVc1U1B/wn4B8fkpDfcW7AfwXel+SmJH8JeDdb+91TrePcfg84Mej/NuBvAC8fTIXXJ8mRJG8ZvP6LwN8Hvr6t2zng9ODdN+8Bfr+qvnWwle5el7kluRV4AvhIVU39omNYl/mNO1Nc0e/svcBHgBcGe2qw9W6NWwGq6tDuy9NhblX1tSRfAJ4Hvg88UlVfGfWwKdPlz+0zwL9L8gJb2xyfqKrDcgTu24F/n6TH1oLtP1bVrye5D/5sfk+x9c6bi8Afs/UvmMOgy9w+DbwV+Oxg1XulDs+pll3mN1YegSBJjXPrRpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxv1/71MugtLjNzgAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"X = np.log(L)\n",
"Y = np.log(T)\n",
"\n",
"plt.figure()\n",
"plt.plot(X, Y, 'g.')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "6c99b9ca-c8c1-43ae-988f-6430c66aca0d",
"metadata": {},
"source": [
"## Ajuste lineal"
]
},
{
"cell_type": "code",
"execution_count": 60,
"id": "3ded9ca3-c33a-4b0f-8b02-04dc38c6fca6",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.28504042495634563 -0.6423000064800591\n"
]
}
],
"source": [
"alpha_exp, C_exp = np.polyfit(X,Y, 1)\n",
"print(alpha_exp, C_exp)"
]
},
{
"cell_type": "code",
"execution_count": 61,
"id": "7d0c0abf-9ba7-43db-97bd-b8c0867e093e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.5260810416785282"
]
},
"execution_count": 61,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.exp(C_exp)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c5e3186b-dd09-4813-a21c-48e980741cb2",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.8"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
%% Cell type:code id:d8c9cc7e-12af-41a2-a3e2-17947687b52b tags:
```
python
import
numpy
as
np
import
matplotlib.pyplot
as
plt
```
%% Cell type:code id:0a9bf50c-beb0-419c-8461-08b7b11db189 tags:
```
python
L
=
np
.
arange
(
10
,
32
,
2
)
dL
=
np
.
random
.
rand
(
len
(
L
))
B
=
0.5
alpha
=
0.3
T0
=
T
=
B
*
L
**
alpha
T
=
B
*
(
L
+
dL
)
**
alpha
```
%% Cell type:code id:cafe1b32-cfac-4005-888d-75cb295b539b tags:
```
python
plt
.
figure
()
plt
.
plot
(
L
,
T0
,
'
b.
'
)
plt
.
plot
(
L
,
T
,
'
g.
'
)
plt
.
show
()
```
%% Output
%% Cell type:code id:7d536043-8efb-4a8f-9017-7b9b13c8ea1a tags:
```
python
X
=
np
.
log
(
L
)
Y
=
np
.
log
(
T
)
plt
.
figure
()
plt
.
plot
(
X
,
Y
,
'
g.
'
)
plt
.
show
()
```
%% Output
%% Cell type:markdown id:6c99b9ca-c8c1-43ae-988f-6430c66aca0d tags:
## Ajuste lineal
%% Cell type:code id:3ded9ca3-c33a-4b0f-8b02-04dc38c6fca6 tags:
```
python
alpha_exp
,
C_exp
=
np
.
polyfit
(
X
,
Y
,
1
)
print
(
alpha_exp
,
C_exp
)
```
%% Output
0.28504042495634563 -0.6423000064800591
%% Cell type:code id:7d0c0abf-9ba7-43db-97bd-b8c0867e093e tags:
```
python
np
.
exp
(
C_exp
)
```
%% Output
0.5260810416785282
%% Cell type:code id:c5e3186b-dd09-4813-a21c-48e980741cb2 tags:
```
python
```
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment