diff --git a/Entrega.ipynb b/Entrega.ipynb index 3a61447c43b6b3e9489b2fcd489ad06e4b6f7245..3df5bf4dabae59e0a152090507120d8751f040b1 100644 --- a/Entrega.ipynb +++ b/Entrega.ipynb @@ -66,7 +66,8 @@ "metadata": {}, "outputs": [], "source": [ - "from Clase_estrella import *" + "from Clase_estrella import *\n", + "from Clase_estrella_mod import *" ] }, { @@ -113,7 +114,7 @@ { "data": { "text/plain": [ - "<matplotlib.image.AxesImage at 0x7fc7c5f59898>" + "<matplotlib.image.AxesImage at 0x7f219d239a20>" ] }, "execution_count": 4, @@ -312,7 +313,7 @@ { "data": { "text/plain": [ - "<matplotlib.image.AxesImage at 0x7fc7c5e86d30>" + "<matplotlib.image.AxesImage at 0x7f219cf6d470>" ] }, "execution_count": 8, @@ -936,7 +937,7 @@ " for i in range(0,len(clase_estrella_todas)):\n", " uno, dos = clase_estrella_todas[i].ajusteGauss(p1)\n", "\n", - " parametros_todas.append(dos)\n", + " parametros_todas.append(dos[2])\n", "\n", "\n", " print('En total se estan analizando '+str(len(clase_estrella_todas))+' estrellas')\n", @@ -1000,15 +1001,15 @@ "text": [ "En total se estan analizando 33 estrellas\n", " \n", - "Mediana: 1.4018568345763582\n", - "Media: -60.02889934017261\n", - "Desviacion estandar 1: 257.23862885662066\n", - "Desviacion estandar 2: 256.4579331901813\n" + "Mediana: 3.6431319397092845\n", + "Media: 10.582431466176326\n", + "Desviacion estandar 1: 35.16548117352378\n", + "Desviacion estandar 2: 34.62857206923758\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAD4CAYAAACuX5+7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAARX0lEQVR4nO3dXZBkZ3kf8P8TrXYW7a60M2hK2QiSFQ6xI19YmC2F4CR2wHYE+RAQ4oILRalALWWjwq5yKiWbi5BKLkwcTNllFyCM4k2KGBMbAuVyYssqgstJDFlhWR/IWAIDlrJIA2qxKy2eRfDmYs5uRlszmo9+e3t69PtVdfU57zmn++lHp1f/6T7ndLXWAgDQ01+YdgEAwO4jYAAA3QkYAEB3AgYA0J2AAQB0t+diPtmVV17Zjhw5cjGfEgCYkLvuuuurrbXFtZZd1IBx5MiRnDhx4mI+JQAwIVX1pfWW+YoEAOhOwAAAuhMwAIDuBAwAoDsBAwDoTsAAALoTMACA7gQMAKC7i3qhLQBg61prGY1G56eTpKrOL5+fn3/G/E4gYADADjcajTI6flPm91+aLz72VH72Lz0/B+YPJEmWn1zOz//9n8/CwsKUq3wmAQMAZsD8/kuzcGAuo6fOZu/Bvdl3+b5pl/SsHIMBAHQnYAAA3QkYAEB3AgYA0J2AAQB0J2AAAN0JGABAdwIGANCdgAEAdCdgAADdCRgAQHcCBgDQnYABAHS3YcCoqn1V9emq+qOqur+q/vUwfk1VfaqqHqqqX6uqvZMvFwCYBZv5BGM5yStaa9+T5LokN1TVy5K8M8m7W2t/NckoyZsmViUAMFM2DBhtxZPD7KXDrSV5RZJfH8aPJ3nNJAoEAGbPpo7BqKpLquruJI8luSPJ55M80Vp7eljl4SRXT6RCAGDmbCpgtNa+1Vq7LskLklyf5Ls2+wRVdayqTlTViaWlpe1VCQDMlC2dRdJaeyLJJ5L8zSSHqmrPsOgFSR5ZZ5vbWmtHW2tHFxcXx6kVAJgRmzmLZLGqDg3Tz0vyQ0keyErQeP2w2s1JPjahGgGAGbNn41VyOMnxqrokK4Hkw62136yqzyb5UFX92yR/mOQDE6wTAJghGwaM1to9SV6yxvgXsnI8BgDAM7iSJwDQnYABAHQnYAAA3QkYAEB3AgYA0J2AAQB0J2AAAN0JGABAdwIGANCdgAEAdCdgAADdCRgAQHcCBgDQnYABAHQnYAAA3QkYAEB3AgYA0J2AAQB0J2AAAN0JGABAdwIGANCdgAEAdCdgAADdbRgwquqFVfWJqvpsVd1fVT8+jL+jqh6pqruH26snXy4AMAv2bGKdp5P8ZGvtM1V1MMldVXXHsOzdrbV/P7nyAIBZtGHAaK2dTHJymD5dVQ8kuXrShQEAs2tLx2BU1ZEkL0nyqWHolqq6p6pur6r5dbY5VlUnqurE0tLSeNUCADNh0wGjqg4k+Y0kP9FaO5XkPUm+I8l1WfmE411rbddau621drS1dnRxcXH8igGAHW9TAaOqLs1KuPhga+0jSdJae7S19q3W2reTvD/J9ZMrEwCYJZs5i6SSfCDJA621n1s1fnjVaq9Ncl//8gCAWbSZs0i+L8lNSe6tqruHsZ9O8saqui5JS/LFJG+ZQH0AwAzazFkkv5+k1lj0W/3LAQC2orWW0Wj0jLH5+fmsfAExPZv5BAMA2KHOPnk2X7r1p3Jm//4kyRPLy/nuX/rFLCwsTLUuAQMAZtwVc3M5tG/ftMt4Br9FAgB0J2AAAN0JGABAd47BAIBd5MKzSqZ1RomAAQC7yKmzZ/M//8O9mb98IU+eOZXXve3lUzmjRMAAgF1m//MO5uD+K6Zag2MwAIDuBAwAoDsBAwDoTsAAALoTMACA7gQMAKA7AQMA6E7AAAC6EzAAgO4EDACgOwEDAOhOwAAAuhMwAIDuBAwAoLsNA0ZVvbCqPlFVn62q+6vqx4fxhaq6o6oeHO7nJ18uADALNvMJxtNJfrK1dm2SlyV5a1Vdm+TWJHe21l6c5M5hHgBg44DRWjvZWvvMMH06yQNJrk5yY5Ljw2rHk7xmQjUCADNmS8dgVNWRJC9J8qkkV7XWTg6LvpLkqnW2OVZVJ6rqxNLS0ji1AgAzYtMBo6oOJPmNJD/RWju1ellrrSVpa23XWruttXa0tXZ0cXFxrGIBgNmwqYBRVZdmJVx8sLX2kWH40ao6PCw/nOSxyZQIAMyazZxFUkk+kOSB1trPrVr08SQ3D9M3J/lY//IAgFm0ZxPrfF+Sm5LcW1V3D2M/neRnkny4qt6U5EtJfmQiFQIAM2fDgNFa+/0ktc7iV/YtBwDYDVzJEwDoTsAAALoTMACA7gQMAKA7AQMA6E7AAAC6EzAAgO4EDACgOwEDAOhOwAAAuhMwAIDuBAwAoDsBAwDoTsAAALoTMACA7gQMAKA7AQMA6E7AAAC6EzAAgO4EDACgOwEDAOhOwAAAuhMwAIDuNgwYVXV7VT1WVfetGntHVT1SVXcPt1dPtkwAYJZs5hOMX0lywxrj726tXTfcfqtvWQDALNswYLTWfi/J4xehFgBglxjnGIxbquqe4SuU+fVWqqpjVXWiqk4sLS2N8XQAwKzYbsB4T5LvSHJdkpNJ3rXeiq2121prR1trRxcXF7f5dADALNlWwGitPdpa+1Zr7dtJ3p/k+r5lAQCzbFsBo6oOr5p9bZL71lsXAHju2bPRClX1q0l+IMmVVfVwkn+V5Aeq6rokLckXk7xlciUCALNmw4DRWnvjGsMfmEAtAECS1lpGo9H5+dFolEPTK2dbNgwYAMDFNRqN8pZf/mTmLjuYJDn91f+b9135zSRz0y1sCwQMANiB5i47mLkDVyRJlp86NeVqts5vkQAA3QkYAEB3AgYA0J1jMABgGy480yNJ5ufnU1VTqmhnETAAYBsuPNNj+czpvO/N35+FhYUpV7YzCBgAsE2rz/TgmRyDAQB0J2AAAN0JGABAdwIGANCdgAEAdCdgAADdCRgAQHcCBgDQnYABAHQnYAAA3QkYAEB3AgYA0J2AAQB0J2AAAN1tGDCq6vaqeqyq7ls1tlBVd1TVg8P9/GTLBABmyWY+wfiVJDdcMHZrkjtbay9OcucwDwCQZBMBo7X2e0kev2D4xiTHh+njSV7TtywAYJZt9xiMq1prJ4fpryS5ar0Vq+pYVZ2oqhNLS0vbfDoAYJaMfZBna60lac+y/LbW2tHW2tHFxcVxnw4AmAHbDRiPVtXhJBnuH+tXEgAw67YbMD6e5OZh+uYkH+tTDgCwG2zmNNVfTfK/k3xnVT1cVW9K8jNJfqiqHkzyg8M8AECSZM9GK7TW3rjOold2rgUAnhNaaxmNRufn5+fnU1VTrKi/DQMGANDXaDTKR37hf+XAZZfnyTOn8rq3vTwLCwvTLqsrAQMApuDAZZfn4P4rpl3GxPgtEgCgOwEDAOhOwAAAuhMwAIDuHOQJABN24Wmpo9Fo/d/Y2CUEDACYsNFolPvfeksOzc0lSb586lS++dIfm3JVkyVgAMBFcGhuLof27UuSfH15OV+bcj2T5hgMAKA7AQMA6E7AAAC6EzAAgO4EDACgOwEDAOhOwAAAuhMwAIDuBAwAoDsBAwDoTsAAALoTMACA7gQMAKC7sX5Ntaq+mOR0km8lebq1drRHUQDAbOvxc+1/t7X21Q6PAwDsEr4iAQC6GzdgtCS/U1V3VdWxtVaoqmNVdaKqTiwtLY35dADALBg3YPyt1tr3JnlVkrdW1d+5cIXW2m2ttaOttaOLi4tjPh0AMAvGChittUeG+8eSfDTJ9T2KAgBm27YDRlXtr6qD56aT/HCS+3oVBgDMrnHOIrkqyUer6tzj/OfW2n/vUhUAMNO2HTBaa19I8j0dawEAdgmnqQIA3QkYAEB3AgYA0J2AAQB0J2AAAN0JGABAdwIGANCdgAEAdCdgAADdCRgAQHcCBgDQnYABAHQ3zq+pAsDYWmsZjUbn5+fn5zP8UjczTMAAYKpGo1He8sufzNxlB7N85nTe9+bvz8LCwrTLYkwCBgBTN3fZwcwduGLaZdCRYzAAgO4EDACgOwEDAOhOwAAAutsVB3k6xQl2ngvfl4n35iyb1X9nt1L3heu21pLk/Pqz8pp3il0RMJziBDvP6vdlEu/NGTer/85upe7RaJT733pLDs3NJUm+fOpUvnztTZm/fCFPnjmV173t5TPxmneKXREwEqc4wU7kfbm7zOp/z63UfWhuLof27UuSfH15OfufdzAH98/ea94JHIMBAHQ3VsCoqhuq6nNV9VBV3dqrKABgtm07YFTVJUl+Kcmrklyb5I1VdW2vwgCA2TXOMRjXJ3motfaFJKmqDyW5MclnexS2VctnTp+/v/DI9a1Y6wCexx9/fNuP57Gn99hrPb7HvriPfe59eW6653tzVnvS8/Ev9mNP8t/ZnfDYo9EoTywvn5//+vJynvrG6ey99NI8eebUmttsdh8f97HPfuPJjOqb2bt3OU889c2cPX02f77nz1fWe2o5X19O9u7Zs+nHvhjq3Gk4W96w6vVJbmitvXmYvynJ32it3XLBeseSHBtmvzPJ57Zf7q50ZZKvTruIGaZ/49PD8ejfePRvfNPs4V9prS2utWDiZ5G01m5Lctukn2dWVdWJ1trRadcxq/RvfHo4Hv0bj/6Nb6f2cJyDPB9J8sJV8y8YxgCA57hxAsb/SfLiqrqmqvYmeUOSj/cpCwCYZdv+iqS19nRV3ZLkt5NckuT21tr93Sp77vD10Xj0b3x6OB79G4/+jW9H9nDbB3kCAKzHlTwBgO4EDACgOwFjgqrqZ6vqj6vqnqr6aFUdGsaPVNU3quru4fbeVdu8tKruHS6//gs1/DZwVS1U1R1V9eBwPz+ll3VRrdfDYdlPDX36XFX9vVXja17Cfjgg+VPD+K8NByfvalX1T6rq/qr6dlUdXTVuH9yE9fo3LLP/bVFVvaOqHlm137161bIt9ZMZ6E1rzW1CtyQ/nGTPMP3OJO8cpo8kuW+dbT6d5GVJKsl/S/KqYfzfJbl1mL713GPt9tuz9PDaJH+UZC7JNUk+n5WDjS8Zpl+UZO+wzrXDNh9O8oZh+r1JfnTar+8i9O+vZ+UCd/8jydFV4/bB8fpn/9teP9+R5F+sMb7lfj7Xb7PQG59gTFBr7Xdaa08Ps3+QlWuFrKuqDie5vLX2B21lD/qPSV4zLL4xyfFh+viq8V3tWXp4Y5IPtdaWW2t/muShrFy+/vwl7FtrZ5N8KMmNw1/hr0jy68P2z4kettYeaK1t+uq59sFnepb+2f/62lI/p1jnTrLjeyNgXDz/PCt/DZ5zTVX9YVV9sqr+9jB2dZKHV63z8DCWJFe11k4O019JctVEq92ZVvfw6iR/tmrZuV6tN/78JE+sCiure/tcZR/cPvvf9t0yfOV5+6qv2bbaT2agNxO/VPhuV1W/m+QvrrHo7a21jw3rvD3J00k+OCw7meQvt9a+VlUvTfJfq+q7N/ucrbVWVbvm/OJt9pDBZvq3BvvgYJv9Yx3P1s8k70nyb5K04f5dWfnDgV1IwBhTa+0Hn215Vf2zJP8gySuHj5zTWltOsjxM31VVn0/y17JyqfXVX6Osvvz6o1V1uLV2cvgY+7GuL2SKttPDPPul6tca/1qSQ1W1Z/grctdc2n6j/q2zjX1wsJ3+xf63rs32s6ren+Q3h9mt9pMZ+LkOX5FMUFXdkORfJvlHrbUzq8YXq+qSYfpFSV6c5AvDx8+nquplw3e2/zTJub+gPp7k5mH65lXju9p6PcxKP95QVXNVdU1WevjprHMJ+yGYfCLJ64ftnzM9XIt9cGz2v20Yguk5r01y3zC9pX5ezJp3sJ3fm2kfZbqbb1k5UOnPktw93N47jP/jJPcPY59J8g9XbXM0K2+6zyf5xfz/q60+P8mdSR5M8rtJFqb9+qbZw2HZ24c+fS7DmQ7D+KuT/Mmw7O2rxl+UlX+0HkryX5LMTfv1XYT+vTYr380uJ3k0yW/bB8fvn/1v2/38T0nuTXJPVv5neHi7/XTb+b1xqXAAoDtfkQAA3QkYAEB3AgYA0J2AAQB0J2AAAN0JGABAdwIGANDd/wMgMvaZEEfgmwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhEAAAD4CAYAAABSSrRxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAQ3UlEQVR4nO3dbYylZX3H8e9PFgaXXXdnZLUG2C6NSoO2ChmtllYqqAU10BemwVSrVjLUKMWGxIq+ME36wrbGh6bWMFmxNlKpRajGVAtVpDEpa3cBFVhpLT7xJEtyKCtrFlf/fXEOdVh3mLNXzz1zzp7vJ5ns3Pd97bX/XHvNPb+5H65JVSFJknS4nrTWBUiSpMlkiJAkSU0MEZIkqYkhQpIkNTFESJKkJuu66PT444+vbdu2ddG1JElaZbt27XqwqrYcvL+TELFt2zZ27tzZRdeSJGmVJfnuofZ7O0OSJDUxREiSpCaGCEmS1MQQIUmSmhgiJElSE0OEJElqMlSISPLHSW5PcluSTyY5tuvCJEnSeFsxRCQ5AfgjYL6qngscBVzQdWGSJGm8DbvY1DrgyUl+DKwH7u2uJEmjUlX0er3O+p+dnSVJZ/1LGm8rhoiquifJ+4DvAT8Crquq6w5ul2QBWADYunXrqOuU1KDX63HR9huZWb9x5H3v37eXyy88k7m5uZH3LWkyrBgikswC5wMnAw8B/5jkdVX1iaXtqmoRWASYn5+v0ZcqqcXM+o3MbNi01mVIOgIN82Dly4BvV9WeqvoxcA3w692WJUmSxt0wIeJ7wIuSrE//5ufZwO5uy5IkSeNuxRBRVTuAq4GbgW8M/s5ix3VJkqQxN9TbGVX1HuA9HdciSZImiCtWSpKkJoYISZLUxBAhSZKaGCIkSVITQ4QkSWpiiJAkSU0MEZIkqYkhQpIkNTFESJKkJoYISZLUxBAhSZKaGCIkSVITQ4QkSWpiiJAkSU0MEZIkqYkhQpIkNVkxRCQ5JcmtSz4eTvL2VahNkiSNsXUrNaiqO4HnAyQ5CrgHuLbbsiRJ0rg73NsZZwP/XVXf7aIYSZI0OVa8EnGQC4BPdlGIJOnIUlX0er1O+p6dnSVJJ31reEOHiCTHAOcBly1zfAFYANi6detIipMkTa5er8dF229kZv3Gkfa7f99eLr/wTObm5kbarw7f4VyJOBe4uap+cKiDVbUILALMz8/XCGqTJE24mfUbmdmwaa3LUEcO55mI1+KtDEmSNDBUiEhyHPBy4Jpuy5EkSZNiqNsZVfUI8NSOa5EkSRPEFSslSVITQ4QkSWpiiJAkSU0MEZIkqYkhQpIkNTFESJKkJoYISZLUxBAhSZKaGCIkSVITQ4QkSWpiiJAkSU0MEZIkqYkhQpIkNTFESJKkJoYISZLUxBAhSZKaGCIkSVKToUJEks1Jrk7yzSS7k7y468IkSdJ4Wzdkuw8BX6iq1yQ5BljfYU2SJGkCrBgikmwCXgK8EaCqHgUe7bYsSZI07oa5nXEysAf4WJJbkmxPctzBjZIsJNmZZOeePXtGXqgkSRovw4SIdcDpwEeq6jTgEeCdBzeqqsWqmq+q+S1btoy4TEmSNG6GCRF3A3dX1Y7B9tX0Q4UkSZpiK4aIqrof+H6SUwa7zgbu6LQqSZI09oZ9O+Ni4MrBmxl3AW/qriRJkjQJhgoRVXUrMN9tKZIkaZK4YqUkSWpiiJAkSU0MEZIkqYkhQpIkNTFESJKkJoYISZLUxBAhSZKaGCIkSVITQ4QkSWpiiJAkSU0MEZIkqYkhQpIkNTFESJKkJoYISZLUxBAhSZKaGCIkSVITQ4QkSWqybphGSb4D7AV+Ahyoqvkui5IkSeNvqBAx8NKqerCzSiRJ0kTxdoYkSWoybIgo4Loku5IsHKpBkoUkO5Ps3LNnz+gqlCRJY2nYEPEbVXU6cC7w1iQvObhBVS1W1XxVzW/ZsmWkRUqSpPEzVIioqnsGfz4AXAu8sMuiJEnS+FsxRCQ5LsnGxz4HXgHc1nVhkiRpvA3zdsbTgWuTPNb+76vqC51WJUmSxt6KIaKq7gKetwq1SJKkCeIrnpIkqYkhQpIkNTFESJKkJoYISZLUxBAhSZKaGCIkSVITQ4QkSWpiiJAkSU0MEZIkqYkhQpIkNTFESJKkJoYISZLUxBAhSZKaGCIkSVITQ4QkSWpiiJAkSU0MEZIkqcnQISLJUUluSfK5LguSJEmT4XCuRFwC7O6qEEmSNFmGChFJTgReBWzvthxJkjQphr0S8UHgHcBPl2uQZCHJziQ79+zZM4raJEnSGFsxRCR5NfBAVe16onZVtVhV81U1v2XLlpEVKEmSxtMwVyLOAM5L8h3gKuCsJJ/otCpJkjT2VgwRVXVZVZ1YVduAC4AvVdXrOq9MkiSNNdeJkCRJTdYdTuOq+jLw5U4qkSRJE8UrEZIkqYkhQpIkNTFESJKkJoYISZLUxBAhSZKaGCIkSVITQ4QkSWpiiJAkSU0MEZIkqYkhQpIkNTFESJKkJoYISZLUxBAhSZKaGCIkSVITQ4QkSWpiiJAkSU0MEZIkqcmKISLJsUm+muRrSW5P8qerUZgkSRpv64Zosx84q6p+mORo4CtJPl9VN3VcmyRJGmMrhoiqKuCHg82jBx/VZVHSuKkqer1eZ/3Pzs6SpLP+peV0Obd7vZ7fLI5ww1yJIMlRwC7gmcCHq2rHIdosAAsAW7duHWWN0prr9XpctP1GZtZvHHnf+/ft5fILz2Rubm7kfUsr6XJu733wXmY2P41jR96zxsVQIaKqfgI8P8lm4Nokz62q2w5qswgsAszPzxs+dcSZWb+RmQ2b1roMaeS6mtv7H3l45H1qvBzW2xlV9RBwA3BOJ9VIkqSJMczbGVsGVyBI8mTg5cA3O65LkiSNuWFuZzwD+PjguYgnAZ+qqs91W5YkSRp3w7yd8XXgtFWoRZIkTRBXrJQkSU0MEZIkqYkhQpIkNTFESJKkJoYISZLUxBAhSZKaGCIkSVITQ4QkSWpiiJAkSU0MEZIkqYkhQpIkNTFESJKkJoYISZLUxBAhSZKaGCIkSVITQ4QkSWpiiJAkSU1WDBFJTkpyQ5I7ktye5JLVKEySJI23dUO0OQBcWlU3J9kI7EpyfVXd0XFtkiRpjK0YIqrqPuC+wed7k+wGTgBWNURUFb1er7P+Z2dnSdJZ/5LWnucRabSGuRLxf5JsA04Ddhzi2AKwALB169ZR1PY4vV6Pi7bfyMz6jSPve/++vVx+4ZnMzc2NvG9J48PziDRaQ4eIJBuATwNvr6qHDz5eVYvAIsD8/HyNrMIlZtZvZGbDpi66ljQlPI9IozPU2xlJjqYfIK6sqmu6LUmSJE2CYd7OCPBRYHdVvb/7kiRJ0iQY5krEGcDrgbOS3Dr4eGXHdUmSpDE3zNsZXwF83FiSJD2OK1ZKkqQmhghJktTEECFJkpoYIiRJUhNDhCRJamKIkCRJTQwRkiSpiSFCkiQ1MURIkqQmhghJktTEECFJkpoYIiRJUhNDhCRJamKIkCRJTQwRkiSpiSFCkiQ1MURIkqQmK4aIJFckeSDJbatRkCRJmgzDXIn4W+CcjuuQJEkTZt1KDarq35JsW4Va1kxV0ev1OusbIIl9LzE7O9tZ31odXX7dgHNkqS7HutfrUZ30PJkm9fsBrM3XzIohYlhJFoAFgK1bt46q21Xx6L69XHrVLjZsmht533sfvJccfax9L7F/314uv/BM5uZG37dWT5dfN86Rx+v1ely0/UZm1m8ced97H7yXmc1P49iR9zyZuh7rI+28OrIQUVWLwCLA/Pz8xAXbY457CjMbNo283/2PPExm1tu3jkhdfd3o582s39jZ17oer8uxPtLOq76dIUmSmhgiJElSk2Fe8fwk8O/AKUnuTvLm7suSJEnjbpi3M167GoVIkqTJ4u0MSZLUxBAhSZKaGCIkSVITQ4QkSWpiiJAkSU0MEZIkqYkhQpIkNTFESJKkJoYISZLUxBAhSZKaGCIkSVITQ4QkSWpiiJAkSU0MEZIkqYkhQpIkNTFESJKkJoYISZLUZKgQkeScJHcm+VaSd3ZdlCRJGn8rhogkRwEfBs4FTgVem+TUrguTJEnjbd0QbV4IfKuq7gJIchVwPnBHl4Udyv59ezvp99Ef/ZAcOMD+dcMMh33/f+3ft5derzfyfrvU6/U6m39djkeXdU/iHPH/8edN4nnEsf55XdW8klTVEzdIXgOcU1UXDrZfD/xaVb3toHYLwMJg8xTgztGXy/HAgx30eyRwbJbn2CzPsXlijs/yHJvlHYlj84tVteXgnSOLQ1W1CCyOqr9DSbKzqua7/DcmlWOzPMdmeY7NE3N8lufYLG+axmaYByvvAU5asn3iYJ8kSZpiw4SI/wCeleTkJMcAFwCf7bYsSZI07la8nVFVB5K8DfgX4Cjgiqq6vfPKDq3T2yUTzrFZnmOzPMfmiTk+y3Nsljc1Y7Pig5WSJEmH4oqVkiSpiSFCkiQ1mZgQkeTiJN9McnuSv1iy/7LBctx3JvnttaxxLSW5NEklOX6wnSR/NRibryc5fa1rXG1J/nIwZ76e5Nokm5ccm/p543L2P5PkpCQ3JLljcI65ZLB/Lsn1Sf5r8OfsWte6VpIcleSWJJ8bbJ+cZMdg/vzD4MH7qZNkc5KrB+ea3UlePE3zZiJCRJKX0l8l83lV9RzgfYP9p9J/W+Q5wDnA3wyW6Z4qSU4CXgF8b8nuc4FnDT4WgI+sQWlr7XrguVX1q8B/ApeB8wZczv4QDgCXVtWpwIuAtw7G453AF6vqWcAXB9vT6hJg95LtPwc+UFXPBHrAm9ekqrX3IeALVfXLwPPoj9HUzJuJCBHAW4D3VtV+gKp6YLD/fOCqqtpfVd8GvkV/me5p8wHgHcDSp2TPB/6u+m4CNid5xppUt0aq6rqqOjDYvIn+GifgvIEly9lX1aPAY8vZT6Wquq+qbh58vpf+N4IT6I/JxwfNPg78zpoUuMaSnAi8Ctg+2A5wFnD1oMlUjk2STcBLgI8CVNWjVfUQUzRvJiVEPBv4zcGlsxuTvGCw/wTg+0va3T3YNzWSnA/cU1VfO+jQ1I/NQf4A+Pzgc8fGMVhWkm3AacAO4OlVdd/g0P3A09eqrjX2Qfo/qPx0sP1U4KElIX1a58/JwB7gY4NbPduTHMcUzZvR/xaQRkn+FfiFQxx6N/065+hfZnwB8Kkkv7SK5a2pFcbmXfRvZUylJxqbqvrMoM276V+uvnI1a9PkSbIB+DTw9qp6uP8Dd19VVZKpeyc+yauBB6pqV5LfWuNyxs064HTg4qrakeRDHHTr4kifN2MTIqrqZcsdS/IW4JrqL2rx1SQ/pf8LTqZiSe7lxibJr9BPwl8bnOxOBG5O8kKmfGwek+SNwKuBs+tni6JMxdiswDE4SJKj6QeIK6vqmsHuHyR5RlXdN7gd+MDyPRyxzgDOS/JK4FjgKfSfA9icZN3gasS0zp+7gburasdg+2r6IWJq5s2k3M74J+ClAEmeDRxD/zekfRa4IMlMkpPpP0T41bUqcrVV1Teq6mlVta2qttGf0KdX1f30x+b3B29pvAj4nyWX16ZCknPoX4I9r6r2LTk01fNmwOXslxjc4/8osLuq3r/k0GeBNww+fwPwmdWuba1V1WVVdeLgHHMB8KWq+j3gBuA1g2bTOjb3A99Pcspg19nAHUzRvBmbKxEruAK4IsltwKPAGwY/Vd6e5FP0/9MOAG+tqp+sYZ3j5J+BV9J/aHAf8Ka1LWdN/DUwA1w/uFJzU1X9YVVN/bwZs+Xsx8EZwOuBbyS5dbDvXcB76d8+fTPwXeB316a8sfQnwFVJ/gy4hcHDhVPoYuDKQRi/i/659klMybxx2WtJktRkUm5nSJKkMWOIkCRJTQwRkiSpiSFCkiQ1MURIkqQmhghJktTEECFJkpr8L/2sxYSvR04hAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 648x288 with 1 Axes>" ] @@ -1057,15 +1058,15 @@ "text": [ "En total se estan analizando 45 estrellas\n", " \n", - "Mediana: 1.46501995989867\n", - "Media: -24.20043926725717\n", - "Desviacion estandar 1: 159.60019232223172\n", - "Desviacion estandar 2: 159.24513027547198\n" + "Mediana: 2.8120597260178433\n", + "Media: 7.613224897789264\n", + "Desviacion estandar 1: 20.98882031359488\n", + "Desviacion estandar 2: 20.754300994080676\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAD4CAYAAACuX5+7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAPrklEQVR4nO3dfYxlZ10H8O/PbnfKdrfdGbqptaVuCfWl/CGEDSLEYIov5UVasZISgzWWlCgNGDVY5A8x+gdIFCEQoRZ0NcRSEW1DYhBqqVFCcctbKbX2RSuthRb2lm27MNvq4x/3tEzLvszMPnfm3unnk5zMOc95ub85T+7d75xz7rPVWgsAQE/fs94FAAAbj4ABAHQnYAAA3QkYAEB3AgYA0N2mtXyxk046qe3cuXMtXxIAmJAbbrjh6621HQdbt6YBY+fOndmzZ89aviQAMCFVdeeh1rlFAgB0J2AAAN0JGABAdwIGANCdgAEAdCdgAADdCRgAQHcCBgDQ3ZoOtAUArExrLaPR6HHLSVJVj7XNz88/bnkaCBgAMMVGo1FGu1+d+eOPTZL8170P5e3f99Rsnd+aJFl8cDHvfOk7s7CwsJ5lfhcBAwCm3Pzxx2Zh61ySZPTQgWzetjnHnXDcOld1eJ7BAAC6EzAAgO4EDACgOwEDAOhOwAAAuhMwAIDuBAwAoDsBAwDoTsAAALoTMACA7gQMAKA7AQMA6E7AAAC6EzAAgO4EDACgOwEDAOhOwAAAuhMwAIDulh0wquqYqvpcVX10WD6jqq6vqtuq6kNVtXlyZQIAs2QlVzDekOTmJctvS/KO1tozkoySXNSzMABgdi0rYFTVaUlemuTyYbmSnJ3kw8Mmu5OcN4H6AIDDaK1lNBpl7969j02ttfUuK5uWud2fJHljkm3D8lOT3N9ae2RYvivJqQfbsaouTnJxkpx++umrLhQA+G4HHjyQOy99U/Yff3yS5P7FxTzzPe/OwsLCutZ1xCsYVfWyJPe21m5YzQu01i5rre1qre3asWPHag4BABzGiXNz2X7cceNpbm69y0myvCsYL0jy8qp6SZLjkpyQ5J1JtlfVpuEqxmlJ7p5cmQDALDniFYzW2ptaa6e11nYmuSDJP7XWfjHJtUnOHza7MMlVE6sSAJgpRzMOxm8n+Y2qui3jZzLe36ckAGDWLfchzyRJa+2TST45zN+R5Ln9SwIAZp2RPAGA7gQMAKA7AQMA6E7AAAC6EzAAgO4EDACgOwEDAOhOwAAAuhMwAIDuBAwAoDsBAwDoTsAAALoTMACA7gQMAKA7AQMA6E7AAAC627TeBQAA/bTWMhqNHluen59PVa15HQIGAGwg+w4cyL/++Y2ZP2EhD+7fl1e8/vlZWFhY8zoEDADYYI5/yrZsO/7Eda3BMxgAQHcCBgDQnYABAHQnYAAA3QkYAEB3AgYA0J2AAQB0J2AAAN0JGABAdwIGANCdgAEAdCdgAADdCRgAQHcCBgDQnYABAHQnYAAA3QkYAEB3AgYA0N0RA0ZVHVdVn6mqL1TVTVX1e0P7GVV1fVXdVlUfqqrNky8XAJgFy7mCsZjk7NbajyR5VpJzqup5Sd6W5B2ttWckGSW5aGJVAgAz5YgBo409OCweO0wtydlJPjy0705y3iQKBIAnm9Za9u7dm71792Y0GqWtd0GrsGk5G1XVMUluSPKMJO9JcnuS+1trjwyb3JXk1EPse3GSi5Pk9NNPP9p6AWDDG41Gee3l12Vuy7Y88PX/yftOejjJ3HqXtSLLesiztfa/rbVnJTktyXOT/NByX6C1dllrbVdrbdeOHTtWVyUAPMnMbdmWua0nZvNTtq53Kauyom+RtNbuT3Jtkh9Lsr2qHr0CclqSu/uWBgDMquV8i2RHVW0f5p+S5KeS3Jxx0Dh/2OzCJFdNqEYAYMYs5xmMU5LsHp7D+J4kV7bWPlpVX05yRVX9QZLPJXn/BOsEAGbIEQNGa+2LSZ59kPY7Mn4eAwDgcYzkCQB0J2AAAN0JGABAdwIGANCdgAEAdCdgAADdCRgAQHcCBgDQnYABAHQnYAAA3QkYAEB3AgYA0J2AAQB0J2AAAN0JGABAdwIGANCdgAEAdCdgAADdCRgAQHcCBgDQnYABAHQnYAAA3QkYAEB3AgYA0J2AAQB0J2AAAN0JGABAdwIGANCdgAEAdCdgAADdCRgAQHcCBgDQnYABAHQnYAAA3QkYAEB3AgYA0J2AAQB0d8SAUVVPq6prq+rLVXVTVb1haF+oqo9X1a3Dz/nJlwsAzILlXMF4JMlvttbOSvK8JK+rqrOSXJrkmtbamUmuGZYBAI4cMFpr97TWPjvMP5Dk5iSnJjk3ye5hs91JzptQjQDAjFnRMxhVtTPJs5Ncn+Tk1to9w6qvJjn5EPtcXFV7qmrPfffddzS1AgAzYtkBo6q2JvnbJL/eWtu3dF1rrSVpB9uvtXZZa21Xa23Xjh07jqpYAGA2LCtgVNWxGYeLD7bWPjI0f62qThnWn5Lk3smUCADMmuV8i6SSvD/Jza21P16y6uokFw7zFya5qn95AMAs2rSMbV6Q5NVJbqyqzw9tv5PkrUmurKqLktyZ5JUTqRAAmDlHDBittX9JUodY/aK+5QAAG4GRPAGA7gQMAKA7AQMA6E7AAAC6EzAAgO4EDACgOwEDAOhOwAAAuhMwAIDuBAwAoDsBAwDoTsAAALoTMACA7gQMAKA7AQMA6E7AAAC6EzAAgO4EDACgOwEDAOhOwAAAuhMwAIDuBAwAoDsBAwDoTsAAALoTMACA7gQMAKA7AQMA6E7AAAC6EzAAgO4EDACgOwEDAOhOwAAAuhMwAIDuBAwAoDsBAwDoTsAAALoTMACA7o4YMKrqA1V1b1V9aUnbQlV9vKpuHX7OT7ZMAGCWLOcKxl8kOecJbZcmuaa1dmaSa4ZlAIAkywgYrbV/TrL3Cc3nJtk9zO9Ocl7fsgCAWbbaZzBObq3dM8x/NcnJh9qwqi6uqj1Vtee+++5b5csBALPkqB/ybK21JO0w6y9rre1qre3asWPH0b4cADADVhswvlZVpyTJ8PPefiUBALNutQHj6iQXDvMXJrmqTzkAMBtaa9m7d+9j0/iCPo/adKQNquqvk/xEkpOq6q4kv5vkrUmurKqLktyZ5JWTLBIAps1oNMprL78uc1u2ZXH/A3nfa16YhYWF9S5rahwxYLTWXnWIVS/qXAsAzJS5Ldsyt/XE9S5jKhnJEwDoTsAAALoTMACA7gQMAKA7AQMA6E7AAAC6EzAAgO6OOA4GANBPay2j0ehxbfPz86mqdapoMgQMAFhDo9EoH3nXp7J1ywlJkgf378srXv/8DTcKqIABAGts65YTsu34jT0CqGcwAIDuBAwAoDsBAwDoTsAAALoTMACA7gQMAKA7X1MFgAlbOrjWaDRKW+d61oKAAQATNhqNctPrLsn2ubn89759efg5v7beJU2cWyQAsAa2z81l+3HH5cS5ufUuZU0IGABAdwIGANCdgAEAdCdgAADdCRgAQHcCBgDQnXEwANiwlg5wlSTz8/OpqhXvt5J9GRMwANiwRqNRXnv5dZnbsi2L+x/I+17zwiwsLCxrv4+861PZuuWEJMmD+/flFa9//rL2ZUzAAGBDm9uyLXNbT1zxflu3nJBtx698P8Y8gwEAdCdgAADdCRgAQHcCBgDQnYABAHQnYAAA3W2Ir6mudiAVAJZnkp+zPsM3pg0RMFY7kAoAyzPJz1mf4RvThggYyeoHUgFgeSb5OeszfOM5qmcwquqcqrqlqm6rqkt7FQUAzLZVB4yqOibJe5K8OMlZSV5VVWf1KgwAmF1Hc4vkuUlua63dkSRVdUWSc5N8uUdhK7W4/4HHfj7xf8BbiYPd99u7d++qj+fYjt3j+I7t2Ot97GSyn7PTduzRaJQH9+97bHnp/GqOPRqNcv/iYpLkm4uLeehbD2Tzsccu69gHvvVgRvVwNm8e73//Qw/nwAMH8u1N3x5v99BivrmYbN606buOf6hjr4Vqra1ux6rzk5zTWnvNsPzqJD/aWrvkCdtdnOTiYfEHk9yy+nJn2klJvr7eRfBd9Mt00i/TSb9Mp/Xsl+9vre042IqJP+TZWrssyWWTfp1pV1V7Wmu71rsOHk+/TCf9Mp30y3Sa1n45moc8707ytCXLpw1tAMCT3NEEjH9LcmZVnVFVm5NckOTqPmUBALNs1bdIWmuPVNUlST6W5JgkH2it3dStso3nSX+baErpl+mkX6aTfplOU9kvq37IEwDgUPxnZwBAdwIGANCdgNFJVb29qv69qr5YVX9XVduXrHvTMJz6LVX1M0vaDzrU+vDg7PVD+4eGh2hZhar6haq6qar+r6p2LWnfWVXfqqrPD9N7l6x7TlXdOJz/d9Xw3zpW1UJVfbyqbh1+zq/H7zTrDtUnwzrvlSlQVW+pqruXvD9esmTdivqIyZn6c95aM3WYkvx0kk3D/NuSvG2YPyvJF5LMJTkjye0ZPxR7zDD/9CSbh23OGva5MskFw/x7k/zqev9+szol+eGMB3j7ZJJdS9p3JvnSIfb5TJLnJakk/5DkxUP7Hya5dJi/9NE+NnXrE++VKZmSvCXJbx2kfcV9ZJpYH039OXcFo5PW2j+21h4ZFj+d8bggyXj49Ctaa4uttf9MclvGw6w/NtR6a+1AkiuSnDv8tXx2kg8P++9Oct4a/RobTmvt5tbaskePrapTkpzQWvt0G7+L/zLfOf/nZtwfiX5ZtcP0iffK9FtRH61jnU8GU3/OBYzJ+JWM//JNklOTfGXJuruGtkO1PzXJ/UvCyqPt9HdGVX2uqq6rqh8f2k7N+Jw/aun5P7m1ds8w/9UkJ69RnU8W3ivT5ZLhlu8HltwOXGkfMTlTf84nPlT4RlJVn0jyvQdZ9ebW2lXDNm9O8kiSD65lbU9my+mXg7gnyemttW9U1XOS/H1VPXO5r9laa1XlO96HsMo+YQ0dro+S/GmS30/Shp9/lPEfTrBsAsYKtNZ+8nDrq+qXk7wsyYuGy+vJ4YdUP1j7N5Jsr6pNw19mhmA/giP1yyH2WUyyOMzfUFW3J/mBjM/1aUs2XXr+v1ZVp7TW7hlupdx7dJVvXKvpk3ivrKnl9lFV/VmSjw6LK+0jJmfq/7sOt0g6qapzkrwxyctba/uXrLo6yQVVNVdVZyQ5M+OHCA861PoQTK5Ncv6w/4VJ/MXXWVXtqKpjhvmnZ9wvdwy3QPZV1fOGe/y/lO+c/6sz7o9Ev0yC98qUGAL0o34uyZeG+RX10VrW/CQ0/ed8vZ8y3ShTxg87fSXJ54fpvUvWvTnjp31vyfCNhKH9JUn+Y1j35iXtT8/4TXtbkr9JMrfev9+sThl/ON6V8dWKryX52ND+80luGvrqs0l+dsk+uzL+QL09ybvznRFvn5rkmiS3JvlEkoX1/v1mcTpUnwzrvFemYEryV0luTPLFjP/ROmW1fWSaaD9N9Tk3VDgA0J1bJABAdwIGANCdgAEAdCdgAADdCRgAQHcCBgDQnYABAHT3//VYRsJqvQzmAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAD4CAYAAACuX5+7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAONElEQVR4nO3df4zkd13H8dfbXrv1uOO6a49KWurV2JAgMcFsFMVYQzFWaIA/iCkRUpTmaiJaTA1p5Q/+MtFoEP5Q00tBm9BQtdTQkKDUAlUTqd5RIrQFaUCgtNCrDOnZI1ca3v6xA5zHXX/sfGZ3Z+/xSC63M9/Zz7yz35nZ582P71V3BwBgpB/a7AEAgO1HYAAAwwkMAGA4gQEADCcwAIDhdmzklZ177rm9b9++jbxKAGBODh069Gh37z3Ztg0NjH379uXgwYMbeZUAwJxU1ZdOtc1LJADAcAIDABhOYAAAwwkMAGA4gQEADCcwAIDhBAYAMJzAAACG29ADbcF2092ZTCZzW395eTlVNbf1AeZFYMAMJpNJrr7xrizt3D187WNHj+SGqy7JysrK8LUB5k1gwIyWdu7O0q49mz0GwJbiPRgAwHACAwAYTmAAAMMJDABgOIEBAAwnMACA4QQGADCcwAAAhhMYAMBwAgMAGE5gAADDCQwAYDiBAQAM97SBUVXvrapHquozx523UlV3VNXnp38vz3dMAGCRPJNnMP46yWUnnHddkju7++Ikd05PAwAkeQaB0d3/nOQbJ5z9miQ3Tb++Kclrx44FACyy9b4H47zufnj69deSnDdoHgBgG5j5TZ7d3Un6VNuran9VHayqg4cPH5716gCABbDewPh6VT0/SaZ/P3KqC3b3ge5e7e7VvXv3rvPqAIBFst7AuD3JldOvr0zywTHjAADbwTP5mOr7k/xbkhdW1YNV9eYkf5Tkl6vq80leMT0NAJAk2fF0F+ju159i06WDZwEAtglH8gQAhhMYAMBwAgMAGE5gAADDCQwAYDiBAQAMJzAAgOEEBgAwnMAAAIYTGADAcAIDABhOYAAAwwkMAGA4gQEADCcwAIDhBAYAMJzAAACGExgAwHACAwAYTmAAAMMJDABgOIEBAAwnMACA4QQGADCcwAAAhhMYAMBwAgMAGE5gAADDCQwAYLiZAqOqfq+q7q2qz1TV+6vq7FGDAQCLa92BUVXnJ/ndJKvd/eIkZyS5YtRgAMDi2jHg+3+4qr6dZGeSh2YfCUiS7s5kMpnb+svLy6mqua0PnN7WHRjd/dWq+tMkX07yrSQf6e6PnHi5qtqfZH+SXHjhheu9OjjtPHH0SK695VB27VkZvvaxo0dyw1WXZGVl/NoAyQyBUVXLSV6T5KIk30zyd1X1hu5+3/GX6+4DSQ4kyerqaq9/VDj9nPWc52Zp157NHgPgWZvlTZ6vSPLF7j7c3d9OcluSnx8zFgCwyGYJjC8neWlV7ay1F3IvTXL/mLEAgEW27sDo7ruT3Jrkk0k+PV3rwKC5AIAFNtOnSLr7HUneMWgWAGCbcCRPAGA4gQEADCcwAIDhBAYAMJzAAACGExgAwHACAwAYTmAAAMMJDABgOIEBAAwnMACA4QQGADCcwAAAhhMYAMBwAgMAGE5gAADDCQwAYDiBAQAMJzAAgOEEBgAwnMAAAIYTGADAcAIDABhOYAAAwwkMAGA4gQEADCcwAIDhBAYAMJzAAACGmykwquqcqrq1qj5bVfdX1c+NGgwAWFw7Zvz+dyf5h+5+XVWdlWTngJkAgAW37sCoqj1JfjHJm5Kku59I8sSYsQCARTbLSyQXJTmc5K+q6p6qurGqnnPihapqf1UdrKqDhw8fnuHqAIBFMUtg7Ejy00n+srtfkuTxJNedeKHuPtDdq929unfv3hmuDgBYFLMExoNJHuzuu6enb81acAAAp7l1B0Z3fy3JV6rqhdOzLk1y35CpAICFNuunSH4nyc3TT5B8IclvzD4SALDoZgqM7v5UktUxowAA24UjeQIAwwkMAGA4gQEADCcwAIDhBAYAMJzAAACGExgAwHACAwAYTmAAAMMJDABgOIEBAAwnMACA4QQGADCcwAAAhhMYAMBwAgMAGE5gAADDCQwAYDiBAQAMJzAAgOEEBgAwnMAAAIYTGADAcAIDABhOYAAAwwkMAGA4gQEADCcwAIDhZg6Mqjqjqu6pqg+NGAgAWHwjnsG4Jsn9A9YBALaJmQKjqi5I8qokN44ZBwDYDmZ9BuNdSd6W5DunukBV7a+qg1V18PDhwzNeHQCwCNYdGFV1eZJHuvvQU12uuw9092p3r+7du3e9VwcALJBZnsF4WZJXV9V/J7klycur6n1DpgIAFtq6A6O7r+/uC7p7X5Irkny0u98wbDIAYGE5DgYAMNyOEYt098eTfHzEWgDA4vMMBgAwnMAAAIYTGADAcAIDABhOYAAAwwkMAGA4gQEADCcwAIDhBAYAMJzAAACGExgAwHACAwAYbsh/dgYjdHcmk8nc1k6Sqhq67mQySQ9dETjdzPOxL0mWl5eHP/Y9EwKDLWMymeTqG+/K0s7dw9c+8uhDqTPPzq49K8PXXTrneTl76KrA6WSej33Hjh7JDVddkpWVsY99z4TAYEtZ2rk7S7v2DF/32OOPpZZ2Dl/72OOPDV0POD3N67FvM3kPBgAwnMAAAIYTGADAcAIDABhOYAAAwwkMAGA4gQEADCcwAIDhBAYAMJzAAACGExgAwHACAwAYTmAAAMMJDABguHUHRlW9oKo+VlX3VdW9VXXNyMEAgMW1Y4bvfTLJtd39yaraneRQVd3R3fcNmg0AWFDrDozufjjJw9Ovj1TV/UnOT7JtAqO7M5lM5rZ2klTVXNZfXl6e29rwVOZ5v0nctrcDj62nh1mewfieqtqX5CVJ7j7Jtv1J9ifJhRdeOOLqNsxkMsnVN96VpZ27h6995NGHUmeenV17Voavfezokdxw1SVZWRm/Njyded5v3La3B4+tp4eZA6OqdiX5QJK3dvdjJ27v7gNJDiTJ6upqz3p9G21p5+4s7dozfN1jjz+WWto5l7Vhs83rfsP24bF1+5vpUyRVdWbW4uLm7r5tzEgAwKKb5VMkleQ9Se7v7neOGwkAWHSzPIPxsiRvTPLyqvrU9M8rB80FACywWT5F8q9JvJUWAPgBjuQJAAwnMACA4QQGADCcwAAAhhMYAMBwAgMAGE5gAADDCQwAYDiBAQAMJzAAgOEEBgAwnMAAAIZb9392tpV0dyaTyfB1J5NJeviq8zevn8d3LS8vp8r/c7fI5nkbmef9Zp5zd69NPfq2Pa91v8v9ceP4XfPsbIvAmEwmufrGu7K0c/fQdY88+lCWznlezh666vw9cfRIrr3lUHbtWRm+9rGjR3LDVZdkZWX82myced5G5nm/mffcdebZw9ee17qJ++NGm9ftb1F/1zydbREYSbK0c3eWdu0Zuuaxxx8but5GOus5zx3+82B7mddtZN73m3nOXUs75/I4Mo912RzzuP0t8u+ap+I9GADAcAIDABhOYAAAwwkMAGA4gQEADCcwAIDhBAYAMJzAAACGExgAwHACAwAYTmAAAMMJDABgOIEBAAwnMACA4WYKjKq6rKo+V1UPVNV1o4YCABbbugOjqs5I8udJfjXJi5K8vqpeNGowAGBx7Zjhe38myQPd/YUkqapbkrwmyX0jBnu2jh09MnzNJ771v6knn8yxHbP8mLbX2seOHslkMhm+bpJMJpO57Mdkfj+TRd2P1t64tRf1/jhPi3hfn+fa876NbJbq7vV9Y9XrklzW3VdNT78xyc9291tOuNz+JPunJ1+Y5HPrH5ck5yZ5dLOH4FmxzxaPfbZ47LPN8WPdvfdkG8bn0gm6+0CSA/O+ntNFVR3s7tXNnoNnzj5bPPbZ4rHPtp5Z3uT51SQvOO70BdPzAIDT3CyB8R9JLq6qi6rqrCRXJLl9zFgAwCJb90sk3f1kVb0lyT8mOSPJe7v73mGTcSpeblo89tnisc8Wj322xaz7TZ4AAKfiSJ4AwHACAwAYTmAsgKr6k6r6bFX9Z1X9fVWdc9y266eHav9cVf3KJo7JCRxKf+urqhdU1ceq6r6qureqrpmev1JVd1TV56d/L2/2rPx/VXVGVd1TVR+anr6oqu6e3t/+ZvrhAzaRwFgMdyR5cXf/VJL/SnJ9kkwPzX5Fkp9MclmSv5gewp1N5lD6C+PJJNd294uSvDTJb0/303VJ7uzui5PcOT3N1nJNkvuPO/3HSf6su38iySTJmzdlKr5HYCyA7v5Idz85PfmJrB1zJFk7NPst3X2su7+Y5IGsHcKdzfe9Q+l39xNJvnsofbaQ7n64uz85/fpI1n5hnZ+1fXXT9GI3JXntpgzISVXVBUleleTG6elK8vIkt04vYp9tAQJj8fxmkg9Pvz4/yVeO2/bg9Dw2n32zYKpqX5KXJLk7yXnd/fB009eSnLdZc3FS70rytiTfmZ7+kSTfPO4fYu5vW8DcDxXOM1NV/5TkR0+y6e3d/cHpZd6etad0b97I2WC7q6pdST6Q5K3d/djaP4jXdHdXlc/zbxFVdXmSR7r7UFX90iaPw1MQGFtEd7/iqbZX1ZuSXJ7k0v7+wUscrn3rsm8WRFWdmbW4uLm7b5ue/fWqen53P1xVz0/yyOZNyAleluTVVfXKJGcneW6Sdyc5p6p2TJ/FcH/bArxEsgCq6rKsPR346u4+etym25NcUVVLVXVRkouT/PtmzMgPcCj9BTB97f49Se7v7ncet+n2JFdOv74yyQc3ejZOrruv7+4Luntf1u5XH+3uX0/ysSSvm17MPtsCHMlzAVTVA0mWkvzP9KxPdPdvTbe9PWvvy3gya0/vfvjkq7DRpv/Cele+fyj9P9zciThRVf1Ckn9J8ul8//X8P8ja+zD+NsmFSb6U5Ne6+xubMiSnNH2J5Pe7+/Kq+vGsvZl6Jck9Sd7Q3cc2cbzTnsAAAIbzEgkAMJzAAACGExgAwHACAwAYTmAAAMMJDABgOIEBAAz3fzvRuW/SXGACAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 648x288 with 1 Axes>" ] @@ -1098,15 +1099,15 @@ "text": [ "En total se estan analizando 32 estrellas\n", " \n", - "Mediana: 1.4056342445779744\n", - "Media: -124.0466362617896\n", - "Desviacion estandar 1: 654.9121084711437\n", - "Desviacion estandar 2: 652.8623002867687\n" + "Mediana: 6.049476951128224\n", + "Media: 11.492052569549994\n", + "Desviacion estandar 1: 38.2468281989113\n", + "Desviacion estandar 2: 37.64447829927557\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAD4CAYAAACuX5+7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAR9klEQVR4nO3de4xcZ3nH8e/TrL2pL4l38TY1SVQHGmiDKgwsKS2lQLiZUMkBUURURW4BOVzMpaKqApEgLa0EpRCBQIAhEaalhBSCQhEthAiCUEvSTeo4t6YxwSlxQ7whY+IksI6Tp3/Ma2e82fWOd9/d2bPz/UijPec9Z2ae83hm9ueZd85GZiJJklTTr/S6AEmStPQYMCRJUnUGDEmSVJ0BQ5IkVWfAkCRJ1Q0s5J2tXbs2169fv5B3KUmS5sn1119/X2aOTLVtQQPG+vXrGRsbW8i7lCRJ8yQi7ppumx+RSJKk6gwYkiSpOgOGJEmqzoAhSZKqM2BIkqTqDBiSJKk6A4YkSarOgCFJkqpb0BNtSZKkY5eZtFqtw8sAEXF4+9DQ0OH1zn0nb1tIBgxJkha5VqtFa/t5DK1cxu69D/HhJz+JVUOrAJh4cIKPvepjDA8PH973io//O6tWnMCDDz/Aa97x+4e3LSQDhiRJDTC0chnDqwZpPXSA5auXc/wJx0+776oVJ7B65YkLWN0TOQdDkiRVZ8CQJEnVGTAkSVJ1zsGQJKnBJn9rpNVqkT2s5xADhiRJDXbgwQPcdcF7eHjlSgD+94EHeOQ5b+1xVQYMSZIa78TBQdYc3/5Wyc8nJvhZj+sB52BIkqR5MGPAiIjjI+K6iLgxIm6JiL8q46dFxLURsSsivhwRy+e/XEmS1ATdvIMxAZyVmc8ENgAbI+J5wIeAizPzN4EW8MZ5q1KSJDXKjAEj2x4sq8vKJYGzgK+U8e3AOfNRoCRJap6u5mBExHERsQPYC1wF/AjYl5kHyy53AyfPS4WSJKlxugoYmfloZm4ATgHOBH6r2zuIiC0RMRYRY+Pj47OrUpIkNcoxfYskM/cB3wV+D1gTEYe+5noKsGea62zLzNHMHB0ZGZlLrZIkqSG6+RbJSESsKcu/CrwMuI120Hht2W0zcOU81ShJkhqmmxNtrQO2R8RxtAPJ5Zn5jYi4FbgsIv4G+C/gknmsU5IkNciMASMzdwLPmmL8TtrzMSRJko7gmTwlSVJ1BgxJklSdAUOSJFVnwJAkSdUZMCRJUnUGDEmSVJ0BQ5IkVWfAkCRJ1RkwJElSdQYMSZJUnQFDkiRVZ8CQJEnVGTAkSVJ1BgxJklSdAUOSJFVnwJAkSdUZMCRJUnUGDEmSVJ0BQ5IkVWfAkCRJ1RkwJElSdQYMSZJUnQFDkiRVZ8CQJEnVzRgwIuLUiPhuRNwaEbdExDvL+EURsScidpTL2fNfriRJaoKBLvY5CLw7M2+IiNXA9RFxVdl2cWb+/fyVJ0mSmmjGgJGZ9wD3lOX9EXEbcPJ8FyZJkprrmOZgRMR64FnAtWVoa0TsjIhLI2JomutsiYixiBgbHx+fW7WSJKkRug4YEbEK+Crwrsx8APgU8FRgA+13OD4y1fUyc1tmjmbm6MjIyNwrliRJi15XASMiltEOF1/MzCsAMvPezHw0Mx8DPgucOX9lSpKkJunmWyQBXALclpkf7Rhf17Hbq4Gb65cnSZKaqJtvkTwfOA+4KSJ2lLH3AudGxAYggd3A+fNQnyRJaqBuvkXyAyCm2PTN+uVIkqSlwDN5SpKk6gwYkiSpOgOGJEmqzoAhSZKqM2BIkqTqDBiSJKk6A4YkSarOgCFJkqozYEiSpOoMGJIkqToDhiRJqs6AIUmSquvmr6lKkqQFlJm0Wq3D661WizW9K2dWDBiSJC0yrVaL8z93DYMrVgOw/77/4zNrHwEGe1vYMTBgSJK0CA2uWM3gqhMBmHjogR5Xc+ycgyFJkqozYEiSpOoMGJIkqToDhiRJqs6AIUmSqjNgSJKk6gwYkiSpOgOGJEmqbsaAERGnRsR3I+LWiLglIt5Zxocj4qqIuKP8HJr/ciVJUhN08w7GQeDdmXkG8DzgbRFxBnABcHVmng5cXdYlSZJmDhiZeU9m3lCW9wO3AScDm4DtZbftwDnzVKMkSWqYY5qDERHrgWcB1wInZeY9ZdNPgZOmuc6WiBiLiLHx8fG51CpJkhqi64AREauArwLvyswj/upKZiaQU10vM7dl5mhmjo6MjMypWEmS1AxdBYyIWEY7XHwxM68ow/dGxLqyfR2wd35KlCRJTdPNt0gCuAS4LTM/2rHp68DmsrwZuLJ+eZIkqYkGutjn+cB5wE0RsaOMvRf4IHB5RLwRuAt43bxUKEmSGmfGgJGZPwBims0vqVuOJElaCjyTpyRJqs6AIUmSqjNgSJKk6gwYkiSpOgOGJEmqzoAhSZKqM2BIkqTqDBiSJKk6A4YkSarOgCFJkqozYEiSpOoMGJIkqToDhiRJqs6AIUmSqjNgSJKk6gwYkiSpOgOGJEmqzoAhSZKqM2BIkqTqDBiSJKk6A4YkSarOgCFJkqozYEiSpOoMGJIkqboZA0ZEXBoReyPi5o6xiyJiT0TsKJez57dMSZLUJN28g/F5YOMU4xdn5oZy+WbdsiRJUpPNGDAy8/vA/QtQiyRJWiLmMgdja0TsLB+hDE23U0RsiYixiBgbHx+fw91JkqSmmG3A+BTwVGADcA/wkel2zMxtmTmamaMjIyOzvDtJktQkswoYmXlvZj6amY8BnwXOrFuWJElqslkFjIhY17H6auDm6faVJEn9Z2CmHSLiS8CLgLURcTfwfuBFEbEBSGA3cP78lShJkppmxoCRmedOMXzJPNQiSZKWCM/kKUmSqjNgSJKk6gwYkiSpOgOGJEmqzoAhSZKqM2BIkqTqDBiSJKk6A4YkSarOgCFJkqozYEiSpOoMGJIkqToDhiRJqs6AIUmSqjNgSJKk6gwYkiSpOgOGJEmqzoAhSZKqM2BIkqTqDBiSJKk6A4YkSarOgCFJkqozYEiSpOoMGJIkqboZA0ZEXBoReyPi5o6x4Yi4KiLuKD+H5rdMSZLUJN28g/F5YOOksQuAqzPzdODqsi5JkgR0ETAy8/vA/ZOGNwHby/J24Jy6ZUmSpCab7RyMkzLznrL8U+Ck6XaMiC0RMRYRY+Pj47O8O0mS1CRznuSZmQnkUbZvy8zRzBwdGRmZ691JkqQGmG3AuDci1gGUn3vrlSRJkpputgHj68DmsrwZuLJOOZIkaSno5muqXwL+A3h6RNwdEW8EPgi8LCLuAF5a1iVJkgAYmGmHzDx3mk0vqVyLJElaIjyTpyRJqs6AIUmSqjNgSJKk6gwYkiSpOgOGJEmqzoAhSZKqM2BIkqTqDBiSJKk6A4YkSarOgCFJkqozYEiSpOoMGJIkqToDhiRJqs6AIUmSqjNgSJKk6gwYkiSpOgOGJEmqzoAhSZKqM2BIkqTqBnpdgCRJTZSZtFqtI8aGhoaIiB5VtLgYMCRJmoVWq8X5n7uGwRWrAZh4eD+fedMLGR4e7nFli4MBQ5KkWRpcsZrBVSf2uoxFyTkYkiSpujm9gxERu4H9wKPAwcwcrVGUJElqthofkbw4M++rcDuSJGmJ8CMSSZJU3VwDRgLfjojrI2LLVDtExJaIGIuIsfHx8TnenSRJaoK5Bow/yMxnA68E3hYRfzh5h8zclpmjmTk6MjIyx7uTJElNMKeAkZl7ys+9wNeAM2sUJUmSmm3WASMiVkbE6kPLwMuBm2sVJkmSmmsu3yI5CfhaOSXqAPBPmflvVaqSJEmNNuuAkZl3As+sWIskSVoi/JqqJEmqzoAhSZKqM2BIkqTqDBiSJKk6A4YkSarOgCFJkqozYEiSpOoMGJIkqToDhiRJqs6AIUmSqjNgSJKk6gwYkiSpOgOGJEmqzoAhSZKqM2BIkqTqDBiSJKk6A4YkSarOgCFJkqozYEiSpOoGel1ADZlJq9U6vD40NERE9LAiqRkmP3fA5489WVoWy++HfnxcLYmA0Wq1OP9z1zC4YjUTD+/nM296IcPDw70uS1r0Op87gM8f7MlSs1h+P7RaLW5521bWDA4CsG9igmd88hNL+nG1JAIGwOCK1QyuOrHXZUiN43PniezJ0rJY/j3XDA6y5vjje13GgnEOhiRJqs6AIUmSqptTwIiIjRFxe0TsiogLahUlSZKabdYBIyKOAz4JvBI4Azg3Is6oVZgkSWquuUzyPBPYlZl3AkTEZcAm4NYahR2riYf3H/45+atAx2KqGb3333//rG/P2+7dbU91+972E2/70HPn0HLN5489ae7zZynd9nz+fuj2sdJqtdg3MXF4fd/EBCs69p3ptg/84kFa8QjLl0+w76FHOLD/AL8c+GV7v4cm+PkELB9o/0r/+cQED/1iP8uXLePBhx84xqOsJzJzdleMeC2wMTPfVNbPA343M7dO2m8LsKWsPh24ffblHmEtcF+l22oy+2APwB4cYh/sAdiDQxaiD7+RmSNTbZj3r6lm5jZgW+3bjYixzBytfbtNYx/sAdiDQ+yDPQB7cEiv+zCXSZ57gFM71k8pY5Ikqc/NJWD8J3B6RJwWEcuB1wNfr1OWJElqsll/RJKZByNiK/At4Djg0sy8pVplM6v+sUtD2Qd7APbgEPtgD8AeHNLTPsx6kqckSdJ0PJOnJEmqzoAhSZKqW7QBIyK+HBE7ymV3ROzo2Paecnry2yPiFR3jU566vExEvbaMf7lMSm2EiHh7RPx3RNwSEX/XMd4XPYiIiyJiT8dj4eyObX3Rg04R8e6IyIhYW9YjIj5ejmlnRDy7Y9/NEXFHuWzuGH9ORNxUrvPxiIheHMuxiogPlGPcERHfjognl/F+6sGHy+vBzoj4WkSs6djWN8+HiPjj8pr4WESMTtrWN32YznTHuuAyc9FfgI8A7yvLZwA3AoPAacCPaE8yPa4sPwVYXvY5o1zncuD1ZfnTwFt6fUxdHveLge8Ag2X91/qwBxcBfzHFeN/0oOOYT6U9qfouYG0ZOxv4VyCA5wHXlvFh4M7yc6gsD5Vt15V9o1z3lb0+ti6P/4SO5XcAn+7DHrwcGCjLHwI+VJb76vkA/DbtEzd+DxjtGO+rPkzTm2mPdaEvi/YdjEPK/yxeB3ypDG0CLsvMicz8MbCL9mnLD5+6PDMPAJcBm8r1zwK+Uq6/HThnAQ9hLt4CfDAzJwAyc28Z76ceTKcfe3Ax8JdA58zsTcAXsu2HwJqIWAe8ArgqM+/PzBZwFbCxbDshM3+Y7VejL9CQPmRm5zmPV/J4H/qpB9/OzINl9Ye0zz8EffZ8yMzbMnOqs0L3VR+mMeWx9qKQRR8wgBcA92bmHWX9ZOAnHdvvLmPTjT8J2NfxpDw03gRPA15Q3r67JiKeW8b7qQcAW8tbwpdGxFAZ66seRMQmYE9m3jhp07H24eSyPHm8ESLibyPiJ8CfAO8rw33Vgw5voP3uC/TZ8+Eo7MP0x7rg5v1U4UcTEd8Bfn2KTRdm5pVl+Vwef/diyTlaD2j/+wzTfiv3ucDlEfGUBSxvQczQg08BH6D9v9UP0P647A0LV93CmaEP76X99viSNtNrQmZeCFwYEe8BtgLvX9ACF0A3r4sRcSFwEPjiQta2kLr8/aBFrKcBIzNferTtETEAvAZ4Tsfw0U5RPtX4z2i/ZTpQUuqiOqX50XoQEW8Brihv414XEY/R/uM1fdODThHxWeAbZXVJ9QCm70NE/A7tz5NvLHMRTwFuiIgzmb4Pe4AXTRr/Xhk/ZYr9F4VuHwu0f7F+k3bA6KseRMSfAn8EvKS8NkAfPR9msOT6MAuL58949GLiR7cXYCNwzaSxZ3DkJJ47aU9qGSjLp/H4xJZnlOv8M0dO4nlrr4+ty+N/M/DXZflptN/2ij7rwbqO5T+n/flqXz0OpujJbh6f5PkqjpzgeF0ZHwZ+THty41BZHi7bJk9wPLvXx9TlcZ/esfx24Ct92IONwK3AyKTxvnw+8MRJnn3Zh0k9mfZYF7yWXjdjhkZ9HnjzFOMX0p4lezsds79pzyb/n7Ltwo7xp5QXlF3lwTTY62Pr8viXA/8I3AzcAJzVhz34B+AmYCftv3XTGTj6ogdT9GQ3jweMAD5ZjvWmSS+2byjHugv4s47x0fKY+hHwCcoZfRf7BfhqqXsn8C/AyX3Yg120/6Oxo1w+3bGtb54PwKtpzy2YAO4FvtWPfThKf6Y81oW+eKpwSZJUXRO+RSJJkhrGgCFJkqozYEiSpOoMGJIkqToDhiRJqs6AIUmSqjNgSJKk6v4fRnkBwklTfigAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhEAAAD4CAYAAABSSrRxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAARYUlEQVR4nO3da4xdV3nG8f9DJpng2DgzxFCUxHUqIFWghaCBQtOSQoCGi0g/oCqoUKBEThF3RaJcPqBK/UBbxKUqRRkZKBUpKYSkIFooKYQgpGJqJ1ySmLSUS0gIxEgnxGDkEHj74ewwxjiZ4+WzZ87x+f+kkc/ee3n5nTVrjp/ZlzWpKiRJko7UA9a7AEmSNJ0MEZIkqYkhQpIkNTFESJKkJoYISZLUZK6PTk855ZTatm1bH11LkqQ1tnv37h9U1ZZD9/cSIrZt28auXbv66FqSJK2xJN8+3H4vZ0iSpCaGCEmS1MQQIUmSmhgiJElSE0OEJElqYoiQJElNRgoRSV6b5MYkNyT5YJIT+y5MkiRNtlVDRJJTgVcBS1X1aOA44MK+C5MkSZNt1MWm5oAHJvkpsAH4bn8lSZLWSlUxGAx6639hYYEkvfWv9bVqiKiq25K8FbgF+Anwqar61KHtkmwHtgNs3bp13HVKknowGAy4eMe1zG/YNPa+D+zfx6UXncvi4uLY+9ZkWDVEJFkALgDOAO4EPpzkBVX1gYPbVdUysAywtLRU4y9VktSH+Q2bmN+4eb3L0BQa5cbKpwHfrKq9VfVT4Ergd/stS5IkTbpRQsQtwBOTbMjwwtZ5wJ5+y5IkSZNu1RBRVTuBK4DrgK92f2e557okSdKEG+npjKp6M/DmnmuRJElTxBUrJUlSE0OEJElqYoiQJElNDBGSJKmJIUKSJDUxREiSpCaGCEmS1MQQIUmSmhgiJElSE0OEJElqYoiQJElNDBGSJKmJIUKSJDUxREiSpCaGCEmS1MQQIUmSmqwaIpKcmeRLB33cleQ1a1CbJEmaYHOrNaiqm4HHAiQ5DrgNuKrfsiRJ0qQ70ssZ5wH/V1Xf7qMYSZI0PY40RFwIfLCPQiRJ0nQZOUQkOQF4LvDh+zi+PcmuJLv27t07rvokSdKEOpIzEc8Erquq7x/uYFUtV9VSVS1t2bJlPNVJkqSJdSQh4vl4KUOSJHVGChFJTgKeDlzZbzmSJGlarPqIJ0BV/Rh4cM+1SJKkKeKKlZIkqYkhQpIkNTFESJKkJoYISZLUxBAhSZKaGCIkSVITQ4QkSWpiiJAkSU0MEZIkqYkhQpIkNTFESJKkJoYISZLUxBAhSZKaGCIkSVITQ4QkSWpiiJAkSU0MEZIkqclIISLJyUmuSPK1JHuSPKnvwiRJ0mSbG7HdO4FPVtXzkpwAbOixJkmSNAVWDRFJNgNPBl4MUFV3A3f3W5YkSZp0o1zOOAPYC7wvyfVJdiQ56dBGSbYn2ZVk1969e8deqCRJmiyjhIg54HHAu6vqbODHwOsPbVRVy1W1VFVLW7ZsGXOZkiRp0owSIm4Fbq2qnd32FQxDhSRJmmGrhoiq+h7wnSRndrvOA27qtSpJkjTxRn0645XAZd2TGd8AXtJfSZIkaRqMFCKq6kvAUr+lSJKkaeKKlZIkqYkhQpIkNTFESJKkJoYISZLUxBAhSZKaGCIkSVITQ4QkSWpiiJAkSU0MEZIkqYkhQpIkNTFESJKkJoYISZLUxBAhSZKaGCIkSVITQ4QkSWpiiJAkSU0MEZIkqcncKI2SfAvYB/wMuKeqlvosSpIkTb6RQkTnKVX1g94qkSRJU+VIQoSkKVNVDAaD3vpfWFggSW/9S5pso4aIAj6VpIBLq2r50AZJtgPbAbZu3Tq+CiU1GwwGXLzjWuY3bBp73wf27+PSi85lcXFx7H1Lmg6jhojfq6rbkjwEuDrJ16rqcwc36ILFMsDS0lKNuU5JjeY3bGJ+4+b1LkPSMWikpzOq6rbuzzuAq4An9FmUJEmafKuGiCQnJdl072vgGcANfRcmSZIm2yiXMx4KXNXdPDUH/HNVfbLXqiRJ0sRbNURU1TeAx6xBLZIkaYq4YqUkSWpiiJAkSU0MEZIkqYkhQpIkNTFESJKkJoYISZLUxBAhSZKaGCIkSVITQ4QkSWpiiJAkSU0MEZIkqYkhQpIkNTFESJKkJoYISZLUxBAhSZKaGCIkSVITQ4QkSWoycohIclyS65N8vM+CJEnSdDiSMxGvBvb0VYgkSZouI4WIJKcBzwZ29FuOJEmaFqOeiXgH8Drg5/fVIMn2JLuS7Nq7d+84apMkSRNs1RCR5DnAHVW1+/7aVdVyVS1V1dKWLVvGVqAkSZpMo5yJOAd4bpJvAZcDT03ygV6rkiRJE2/VEFFVb6iq06pqG3Ah8JmqekHvlUmSpInmOhGSJKnJ3JE0rqrPAp/tpRJJkjRVPBMhSZKaGCIkSVITQ4QkSWpiiJAkSU0MEZIkqYkhQpIkNTFESJKkJoYISZLUxBAhSZKaGCIkSVITQ4QkSWpiiJAkSU0MEZIkqYkhQpIkNTFESJKkJoYISZLUxBAhSZKarBoikpyY5ItJvpzkxiR/uRaFSZKkyTY3QpsDwFOr6kdJjgc+n+QTVfWFnmuTJEkTbNUQUVUF/KjbPL77qD6LkiZNVTEYDHrrf2FhgSS99a/+OUc0i0Y5E0GS44DdwMOBd1XVzsO02Q5sB9i6des4a5TW3WAw4OId1zK/YdPY+z6wfx+XXnQui4uLY+9ba8c5olk0Uoioqp8Bj01yMnBVkkdX1Q2HtFkGlgGWlpY8U6FjzvyGTcxv3LzeZWiCOUc0a47o6YyquhO4Bji/l2okSdLUGOXpjC3dGQiSPBB4OvC1nuuSJEkTbpTLGQ8D3t/dF/EA4ENV9fF+y5IkSZNulKczvgKcvQa1SJKkKeKKlZIkqYkhQpIkNTFESJKkJoYISZLUxBAhSZKaGCIkSVITQ4QkSWpiiJAkSU0MEZIkqYkhQpIkNTFESJKkJoYISZLUxBAhSZKaGCIkSVITQ4QkSWpiiJAkSU0MEZIkqcmqISLJ6UmuSXJTkhuTvHotCpMkSZNtboQ29wCXVNV1STYBu5NcXVU39VybJEmaYKuGiKq6Hbi9e70vyR7gVGBNQ0RVMRgMeut/YWGBJL31rxV9fi39OkrS2hnlTMQvJNkGnA3sPMyx7cB2gK1bt46jtl8yGAy4eMe1zG/YNPa+D+zfx6UXncvi4uLY+9av6utr6ddRktbWyCEiyUbgI8BrququQ49X1TKwDLC0tFRjq/Ag8xs2Mb9xcx9da435tZSk6TfS0xlJjmcYIC6rqiv7LUmSJE2DUZ7OCPAeYE9Vva3/kiRJ0jQY5UzEOcALgacm+VL38aye65IkSRNulKczPg94u7skSfolrlgpSZKaGCIkSVITQ4QkSWpiiJAkSU0MEZIkqYkhQpIkNTFESJKkJoYISZLUxBAhSZKaGCIkSVITQ4QkSWpiiJAkSU0MEZIkqYkhQpIkNTFESJKkJoYISZLUxBAhSZKarBoikrw3yR1JbliLgiRJ0nQY5UzEPwLn91yHJEmaMnOrNaiqzyXZtga1rJuqYjAY9NY3QBL77gwGA2rsvU6vPuefY31smNY50mfdCwsLvb33TeP/B9DfmNyfVUPEqJJsB7YDbN26dVzdrom79+/jkst3s3Hz4tj73veD75LjT7TvQ/qeP/khnDj2nqdT3/PPsZ5+0zpH+qr7wP59XHrRuSwujn88BoMBF++4lvkNm8bed5/vq32Oyf0ZW4ioqmVgGWBpaWnqfvg54aQHMb9x89j7PfDju8j8Bvs+pG/9sj7nn44N0zpH+qq7T/MbNk3d++p68ekMSZLUxBAhSZKajPKI5weB/wLOTHJrkpf2X5YkSZp0ozyd8fy1KESSJE0XL2dIkqQmhghJktTEECFJkpoYIiRJUhNDhCRJamKIkCRJTQwRkiSpiSFCkiQ1MURIkqQmhghJktTEECFJkpoYIiRJUhNDhCRJamKIkCRJTQwRkiSpiSFCkiQ1MURIkqQmI4WIJOcnuTnJ15O8vu+iJEnS5Fs1RCQ5DngX8EzgLOD5Sc7quzBJkjTZ5kZo8wTg61X1DYAklwMXADf1WdjhHNi/r5d+7/7Jj8g993BgbpThsO9J7fvA/n0MBoOx9nmvwWDg/DtEn+M9jZwja9e33+u/qq+aV5Oquv8GyfOA86vqom77hcDvVNUrDmm3HdjebZ4J3Dz+cjkF+EEP/U4jx2KFY7HCsVjhWKxwLFY4FiuOZCx+vaq2HLpzbHGoqpaB5XH1dzhJdlXVUp//xrRwLFY4FiscixWOxQrHYoVjsWIcYzHKjZW3AacftH1at0+SJM2wUULEfwOPSHJGkhOAC4GP9VuWJEmadKtezqiqe5K8AvgP4DjgvVV1Y++VHV6vl0umjGOxwrFY4ViscCxWOBYrHIsVRz0Wq95YKUmSdDiuWClJkpoYIiRJUpOpCRFJXpnka0luTPI3B+1/Q7cc981J/nA9a1xLSS5JUklO6baT5O+6sfhKksetd419S/K33Zz4SpKrkpx80LGZmxezvDx9ktOTXJPkpu494tXd/sUkVyf53+7PhfWudS0kOS7J9Uk+3m2fkWRnNzf+pbtJfiYkOTnJFd17xZ4kT5rhefHa7vvjhiQfTHLi0c6NqQgRSZ7CcJXMx1TVo4C3dvvPYvi0yKOA84F/6JbpPqYlOR14BnDLQbufCTyi+9gOvHsdSltrVwOPrqrfBv4HeAPM5rxweXruAS6pqrOAJwIv7z7/1wOfrqpHAJ/utmfBq4E9B23/NfD2qno4MABeui5VrY93Ap+sqt8EHsNwXGZuXiQ5FXgVsFRVj2b4oMSFHOXcmIoQAbwMeEtVHQCoqju6/RcAl1fVgar6JvB1hst0H+veDrwOOPiu2AuAf6qhLwAnJ3nYulS3RqrqU1V1T7f5BYZrmMBszotfLE9fVXcD9y5PPxOq6vaquq57vY/hfxSnMhyD93fN3g/80boUuIaSnAY8G9jRbQd4KnBF12QmxgEgyWbgycB7AKrq7qq6kxmcF5054IFJ5oANwO0c5dyYlhDxSOD3u1Mu1yZ5fLf/VOA7B7W7tdt3zEpyAXBbVX35kEMzNxaH+DPgE93rWRyLWfycDyvJNuBsYCfw0Kq6vTv0PeCh61XXGnoHwx8yft5tPxi486DAPUtz4wxgL/C+7vLOjiQnMYPzoqpuY3gW/xaG4eGHwG6Ocm6M/7eANEryn8CvHebQmxjWucjwNOXjgQ8l+Y01LG9NrTIWb2R4KWMm3N9YVNVHuzZvYng6+7K1rE2TJ8lG4CPAa6rqruEP4UNVVUmO6WfakzwHuKOqdif5g3UuZxLMAY8DXllVO5O8k0MuXczCvADo7vu4gGGwuhP4MMPLvUdlYkJEVT3tvo4leRlwZQ0Xtfhikp8z/MUhx+SS3Pc1Fkl+i+EE+HL35ngacF2SJzBjY3GvJC8GngOcVyuLnhyTY7GKWfycf0mS4xkGiMuq6spu9/eTPKyqbu8u791x3z0cE84BnpvkWcCJwIMY3hNwcpK57ifOWZobtwK3VtXObvsKhiFi1uYFwNOAb1bVXoAkVzKcL0c1N6blcsa/Ak8BSPJI4ASGv3nsY8CFSeaTnMHwpsIvrleRfauqr1bVQ6pqW1VtY/gN8riq+h7DsfjT7imNJwI/POh03TEpyfkMT9s+t6r2H3RopuZFZ6aXp++u+78H2FNVbzvo0MeAF3WvXwR8dK1rW0tV9YaqOq17f7gQ+ExV/QlwDfC8rtkxPw736t4bv5PkzG7XecBNzNi86NwCPDHJhu775d6xOKq5MTFnIlbxXuC9SW4A7gZe1P3UeWOSDzEciHuAl1fVz9axzvX078CzGN5EuB94yfqWsyb+HpgHru7OzHyhqv68qmZuXkzY8vTr4RzghcBXk3yp2/dG4C0ML3++FPg28MfrU966+wvg8iR/BVxPd6PhjHglcFkXrr/B8L3xAczYvOgu51wBXMfwffF6hste/xtHMTdc9lqSJDWZlssZkiRpwhgiJElSE0OEJElqYoiQJElNDBGSJKmJIUKSJDUxREiSpCb/DwLKIRKV3fXsAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 648x288 with 1 Axes>" ] @@ -1139,15 +1140,15 @@ "text": [ "En total se estan analizando 45 estrellas\n", " \n", - "Mediana: 1.3063649806304618\n", - "Media: -4233247.385112735\n", - "Desviacion estandar 1: 45270472.137159556\n", - "Desviacion estandar 2: 45169759.059932515\n" + "Mediana: 6.294989035387612\n", + "Media: 23.880080331840503\n", + "Desviacion estandar 1: 46.0442986200702\n", + "Desviacion estandar 2: 45.52982103540607\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAEFCAYAAAChJJ7IAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAOkElEQVR4nO3dfYxldX3H8c9Xll2E5WFXphTBdkklWmIVmw0+/dEGtKXWCBptNIbQFIMmpbWpiVVpqq1tojWWNn0w4kPcNMaH2jYYa1sooraJ2i6KD4gWahVBcdcwuDzoIuXbP+ZCVrLLzM787l7u7OuVbOaee86c+82ZzfLm3DPnVncHAGCkR816AABg/REYAMBwAgMAGE5gAADDCQwAYLgNh/LFTjzxxN62bduhfEkAYEquvfba73X3wv7WHdLA2LZtW3bu3HkoXxIAmJKq+uaB1nmLBAAYTmAAAMMJDABgOIEBAAwnMACA4QQGADCcwAAAhhMYAMBwh/RGWwDAwenuLC4u/thyklTVipa3bNny4ONDSWAAwCPY4uJiFndckC3HHJkk+cauu/PWxz4mm7dsTpLsuW1PXvnxZOGYY5IkN+/Zk5vPuCBbjtuau+7Zkxf+9jOzdevWQz63wACAR7gtxxyZrZs3JUkW7743G4/dmKOOOypJsvfOvTl+U3LCUUvL39+7N8c8+tgce8zxM5s3cQ0GADAFAgMAGE5gAADDCQwAYDiBAQAMJzAAgOH8mioAPMLse3OtxcXFnDDbcVZFYADAI8zi4mJe8a5PZtPRx+bO73077zjxR0k2zXqsg+ItEgB4BNp09LHZtPn4bHz05lmPsioCAwAYTmAAAMMJDABgOIEBAAwnMACA4QQGADCcwAAAhhMYAMBwAgMAGG7FgVFVR1TV56vqo5Pl06rqs1V1U1V9sKo2Tm9MAGCeHMwZjFcluWGf5bckuay7H59kMclFIwcDAObXigKjqk5N8qtJ3jVZriRnJ/nwZJMdSc6fwnwAwBxa6RmMP0/ymiT3T5Yfk+SO7r5vsnxLklP2941VdXFV7ayqnbt3717LrADAnFg2MKrqeUl2dfe1q3mB7r68u7d39/aFhYXV7AIAmDMbVrDNs5I8v6qem+SoJMcl+YskJ1TVhslZjFOT3Dq9MQGAebLsGYzufl13n9rd25K8JMnHu/tlSa5J8qLJZhcmuWJqUwIAc2Ut98H4vSS/W1U3ZemajHePGQkAmHcreYvkQd39iSSfmDz+epKzxo8EAMw7d/IEAIYTGADAcAIDABhOYAAAwwkMAGA4gQEADCcwAIDhBAYAMJzAAACGExgAwHACAwAYTmAAAMMJDABgOIEBAAwnMACA4QQGADCcwAAAhhMYAMBwAgMAGE5gAADDCQwAYDiBAQAMJzAAgOEEBgAwnMAAAIYTGADAcAIDABhOYAAAwwkMAGA4gQEADCcwAIDhBAYAMJzAAACGExgAwHACAwAYTmAAAMMJDABguGUDo6qOqqr/rKovVNX1VfWHk+dPq6rPVtVNVfXBqto4/XEBgHmwkjMYe5Oc3d1PSXJmknOr6ulJ3pLksu5+fJLFJBdNbUoAYK4sGxi95K7J4pGTP53k7CQfnjy/I8n50xgQAJg/K7oGo6qOqKrrkuxKclWS/0lyR3ffN9nkliSnHOB7L66qnVW1c/fu3QNGBgAe6VYUGN39f919ZpJTk5yV5IkrfYHuvry7t3f39oWFhdVNCQDMlYP6LZLuviPJNUmekeSEqtowWXVqklvHjgYAzKuV/BbJQlWdMHn86CTPSXJDlkLjRZPNLkxyxZRmBADmzIblN8nJSXZU1RFZCpIPdfdHq+orST5QVX+c5PNJ3j3FOQGAObJsYHT3F5M8dT/Pfz1L12MAAPwYd/IEAIYTGADAcAIDABhOYAAAwwkMAGA4gQEADCcwAIDhBAYAMJzAAACGExgAwHACAwAYTmAAAMMJDABgOIEBAAwnMACA4QQGADCcwAAAhhMYAMBwAgMAGE5gAADDCQwAYDiBAQAMJzAAgOEEBgAwnMAAAIYTGADAcAIDABhOYAAAwwkMAGA4gQEADCcwAIDhBAYAMJzAAACGExgAwHACAwAYTmAAAMMJDABguGUDo6oeV1XXVNVXqur6qnrV5PmtVXVVVd04+bpl+uMCAPNgJWcw7kvy6u4+I8nTk/xmVZ2R5LVJru7u05NcPVkGAFg+MLr7O939ucnjO5PckOSUJOcl2THZbEeS86c0IwAwZw7qGoyq2pbkqUk+m+Sk7v7OZNVtSU46wPdcXFU7q2rn7t271zIrADAnVhwYVbU5yd8n+Z3u3rPvuu7uJL2/7+vuy7t7e3dvX1hYWNOwAMB8WFFgVNWRWYqL93X3P0ye/m5VnTxZf3KSXdMZEQCYNyv5LZJK8u4kN3T3n+2z6iNJLpw8vjDJFePHAwDm0YYVbPOsJBck+VJVXTd57vVJ3pzkQ1V1UZJvJvm1qUwIAMydZQOju/8jSR1g9TljxwEA1gN38gQAhhMYAMBwAgMAGE5gAADDCQwAYDiBAQAMJzAAgOEEBgAwnMAAAIYTGADAcAIDABhOYAAAwwkMAGA4gQEADCcwAIDhBAYAMJzAAACGExgAwHACAwAYTmAAAMMJDABgOIEBAAwnMACA4QQGADCcwAAAhhMYAMBwAgMAGE5gAADDCQwAYDiBAQAMJzAAgOEEBgAwnMAAAIYTGADAcAIDABhOYAAAwwkMAGC4ZQOjqt5TVbuq6sv7PLe1qq6qqhsnX7dMd0wAYJ6s5AzGe5Oc+5DnXpvk6u4+PcnVk2UAgCQrCIzu/lSS2x/y9HlJdkwe70hy/tixAIB5ttprME7q7u9MHt+W5KQDbVhVF1fVzqrauXv37lW+HAAwT9Z8kWd3d5J+mPWXd/f27t6+sLCw1pcDAObAagPju1V1cpJMvu4aNxIAMO9WGxgfSXLh5PGFSa4YMw4AsB6s5NdU35/k00meUFW3VNVFSd6c5DlVdWOSZ0+WAQCSJBuW26C7X3qAVecMngUAWCfcyRMAGE5gAADDCQwAYDiBAQAMJzAAgOEEBgAwnMAAAIYTGADAcAIDABhOYAAAwwkMAGA4gQEADCcwAIDhBAYAMJzAAACGExgAwHACAwAYTmAAAMMJDABgOIEBAAwnMACA4QQGADCcwAAAhhMYAMBwAgMAGE5gAADDCQwAYDiBAQAMJzAAgOEEBgAwnMAAAIYTGADAcAIDABhOYAAAw22Y9QAjdHcWFxcfXN6yZUuqaoYTsVoP/Vkmfp4A82hdBMbi4mJe8a5PZtPRx2bvPXfmHS//hWzdunXWY7EK+/4sk/h5AsypdREYSbLp6GOzafPxsx6DAfwsAebfmq7BqKpzq+prVXVTVb121FAAwHxbdWBU1RFJ/jrJryQ5I8lLq+qMUYMBAPNrLW+RnJXkpu7+epJU1QeSnJfkKyMGO1h777nzwa8PvUjwYOzvvf7bb7991fuz74Pf9wM/ywcer/bnOa/HZH/7t2/7nvW+R+7fvle27wf+Lbz3B3dlsX6UjRv3JknuuPtHuffOe/PDDT9c2u7uvfn+3mTjhqX/pH9/797c/YM7s/HII3PXPXuGzLca1d2r+8aqFyU5t7tfPlm+IMnTuvuSh2x3cZKLJ4tPSPK11Y87V05M8r1ZD7GOOJ7jOaZjOZ7jOabjjT6mP93dC/tbMfWLPLv78iSXT/t1Hmmqamd3b5/1HOuF4zmeYzqW4zmeYzreoTyma7nI89Ykj9tn+dTJcwDAYW4tgfFfSU6vqtOqamOSlyT5yJixAIB5tuq3SLr7vqq6JMm/JjkiyXu6+/phk82/w+5toSlzPMdzTMdyPMdzTMc7ZMd01Rd5AgAciA87AwCGExgAwHACY0qq6o1VdWtVXTf589xZz7ReVNWrq6qr6sRZzzLvqupNVfXFyd/RK6vqsbOeaZ5V1Vur6quTY/qPVXXCrGead1X14qq6vqruryq/srpKs/hoD4ExXZd195mTPx+b9TDrQVU9LskvJbl51rOsE2/t7id395lJPprkD2Y8z7y7KsmTuvvJSf47yetmPM968OUkL0zyqVkPMq9m9dEeAoN5c1mS1yRxdfIA3b3vfYSPieO6Jt19ZXffN1n8TJbuD8QadPcN3X243AF6Wh78aI/uvjfJAx/tMVUCY7oumZwqfU9VbZn1MPOuqs5Lcmt3f2HWs6wnVfUnVfWtJC+LMxgj/UaSf571EJDklCTf2mf5lslzUzX1W4WvZ1X1b0l+cj+rLk3y9iRvytL/Eb4pyduy9A8OD2OZY/r6LL09wkF4uGPa3Vd096VJLq2q1yW5JMkbDumAc2a54znZ5tIk9yV536GcbV6t5JgyfwTGGnT3s1eyXVW9M0vvb7OMAx3Tqvq5JKcl+UJVJUunnj9XVWd1922HcMS5s9K/p1n6j+HHIjAe1nLHs6p+PcnzkpzTbjS0Igfxd5TVmclHe3iLZEqq6uR9Fl+QpQuVWKXu/lJ3/0R3b+vubVk6xffz4mJtqur0fRbPS/LVWc2yHlTVuVm6Ruj53X3PrOeBiZl8tIczGNPzp1V1ZpbeIvlGklfMdBrYvzdX1ROS3J/km0leOeN55t1fJdmU5KrJmbbPdLdjugZV9YIkf5lkIck/VdV13f3LMx5rrszqoz3cKhwAGM5bJADAcAIDABhOYAAAwwkMAGA4gQEAh5nJHaZ3VdWyt1Coqp+qqmuq6vOTu1Ov6MM7BQYAHH7em+TcFW77+0k+1N1PzdI9NP5mJd8kMADgMNPdn0py+77PVdXPVNW/VNW1VfXvVfXEBzZPctzk8fFJvr2S13CjLQAgSS5P8sruvrGqnpalMxVnJ3ljkiur6rey9KnLK7q1u8AAgMNcVW1O8swkfze5C22ydFfaJHlpkvd299uq6hlJ/raqntTd9z/cPgUGAPCoJHd095n7WXdRJtdrdPenq+qoJCcm2bXcDgGAw1h370nyv1X14iSpJU+ZrL45yTmT5382yVFJdi+3T59FAgCHmap6f5JfzNKZiO8meUOSjyd5e5KTkxyZ5APd/UdVdUaSdybZnKULPl/T3Vcu+xoCAwAYzVskAMBwAgMAGE5gAADDCQwAYDiBAQAMJzAAgOEEBgAw3P8Dp59v2sRLpm4AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhQAAAD4CAYAAAC0Y381AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAQM0lEQVR4nO3dbYylZ3kf8P8VLx5nvct6t7YRAqaLGoREI8WgUUpLhAkkqaFVnEpRZaTQNIo1/gAptJYqqFTRfqhUVW3aVEorbx0KVQgWIVhFKKWkKXEUqXHipW7wS1ApgcQvwbZ6Ug/eaB2jqx/mGE3MrufY93nO+Mz+ftLRnJd7Ll2659lH//O83FvdHQCAEd910A0AAOtPoAAAhgkUAMAwgQIAGCZQAADDjkxR9Oqrr+7Tp09PURoAWLGzZ88+0d3XPN+YSQLF6dOnc88990xRGgBYsar6+n5jnPIAAIYJFADAMIECABgmUAAAwwQKAGCYQAEADFsoUFTV36+q+6vqvqr6RFVdMXVjAMD62DdQVNWrkvy9JFvd/b1JLkty09SNAQDrY9GFrY4k+e6q+rMkR5M8Ml1LcGnp7sxms8nqnzx5MlU1WX2AZIFA0d0PV9W/TPKHSf40yee7+/PPHVdV20m2k2Rzc3PZfcKhNZvNcsvtd2Xj6PGl1z5/bie33Xx9Tp06tfTaAHvtGyiq6mSSG5O8NsmfJPnlqvqJ7v7FveO6+0ySM0mytbXVy28VDq+No8ezcezEQbcB8KItclHmDyX5g+5+vLv/LMmnk/y1adsCANbJIoHiD5O8uaqO1u6J2HckeXDatgCAdbJvoOjuu5N8KskXk3xp/jtnJu4LAFgjC93l0d0fTvLhiXsBANaUlTIBgGECBQAwTKAAAIYJFADAMIECABgmUAAAwwQKAGCYQAEADBMoAIBhAgUAMEygAACGCRQAwDCBAgAYJlAAAMMECgBgmEABAAzbN1BU1eur6t49jyer6gMr6A0AWBNH9hvQ3V9Ocl2SVNVlSR5Ocue0bQEA6+SFnvJ4R5L/091fn6IZAGA97XuE4jluSvKJKRrh0tHdmc1mk9Q+efJkqmqS2gBc3MKBoqouT/KjST50kc+3k2wnyebm5lKa43CazWa55fa7snH0+FLrnj+3k9tuvj6nTp1aal0A9vdCjlC8M8kXu/sbF/qwu88kOZMkW1tbvYTeOMQ2jh7PxrETB90GAEvyQq6heHec7gAALmChQFFVVyb54SSfnrYdAGAdLXTKo7ufSvIXJu4FAFhTVsoEAIYJFADAMIECABgmUAAAwwQKAGCYQAEADBMoAIBhAgUAMEygAACGCRQAwDCBAgAYJlAAAMMECgBgmEABAAwTKACAYQIFADBMoAAAhi0UKKrqqqr6VFX9flU9WFV/derGAID1cWTBcT+X5HPd/eNVdXmSoxP2BACsmX0DRVWdSPLWJH83Sbr76SRPT9sWB627M5vNJqk9m83Sk1QG4KAscoTitUkeT/Ifq+r7kpxN8v7ufmrvoKraTrKdJJubm8vukxWbzWa55fa7snH0+NJr7zzxSDauujZXLL0yAAdlkUBxJMmbkvxMd99dVT+X5INJ/vHeQd19JsmZJNna2vIF9BDYOHo8G8dOLL3u+aeeXHpNAA7WIhdlPpTkoe6+e/76U9kNGAAASRYIFN39x0n+qKpeP3/rHUkemLQrAGCtLHqXx88k+fj8Do+vJvmp6VoCANbNQoGiu+9NsjVtKwDAurJSJgAwTKAAAIYJFADAMIECABgmUAAAwwQKAGCYQAEADBMoAIBhAgUAMEygAACGCRQAwDCBAgAYJlAAAMMECgBgmEABAAwTKACAYQIFADDsyCKDquprSXaSfCvJM929NWVTAMB6WShQzP1gdz8xWScAwNpyygMAGLZooOgkn6+qs1W1faEBVbVdVfdU1T2PP/748joEAF7yFg0UP9Ddb0ryziTvraq3PndAd5/p7q3u3rrmmmuW2iQA8NK2UKDo7ofnPx9LcmeS75+yKQBgvewbKKrqyqo6/uzzJD+S5L6pGwMA1scid3m8IsmdVfXs+F/q7s9N2hUAsFb2DRTd/dUk37eCXgCANeW2UQBgmEABAAwTKACAYQIFADBMoAAAhgkUAMAwgQIAGCZQAADDBAoAYJhAAQAMEygAgGECBQAwTKAAAIYJFADAMIECABgmUAAAwwQKAGDYwoGiqi6rqv9ZVZ+dsiEAYP28kCMU70/y4FSNAADr68gig6rq1Un+RpJ/luQfTNoRC+vuzGazSWrPZrP0JJXX07rO9ZR9J8nJkydTVZPVB9bHQoEiyb9J8g+THL/YgKraTrKdJJubm8ONsb/ZbJZbbr8rG0cv+md50XaeeCQbV12bK5ZeeT2t61w/fW4nt95xNsdOnFp67fPndnLbzdfn1Knl1wbWz76Boqr+ZpLHuvtsVb3tYuO6+0ySM0mytbXly+2KbBw9no1jJ5Ze9/xTTy695rpb17m+/MqXT9I3wF6LXEPxliQ/WlVfS3JHkrdX1S9O2hUAsFb2DRTd/aHufnV3n05yU5L/3t0/MXlnAMDasA4FADBs0YsykyTd/RtJfmOSTgCAteUIBQAwTKAAAIYJFADAMIECABgmUAAAwwQKAGCYQAEADBMoAIBhAgUAMEygAACGCRQAwDCBAgAYJlAAAMMECgBgmEABAAwTKACAYQIFADBs30BRVVdU1e9U1f+qqvur6p+uojEAYH0cWWDM+SRv7+5vVtXLkvxWVf2X7v7tiXsDANbEvoGiuzvJN+cvXzZ/9JRNHSbdndlsNknt2WzmDwHAS8IiRyhSVZclOZvke5L8fHfffYEx20m2k2Rzc3OZPa612WyWW26/KxtHjy+99s4Tj2TjqmtzxdIrA8ALs1Cg6O5vJbmuqq5KcmdVfW933/ecMWeSnEmSra0tX5z32Dh6PBvHTiy97vmnnlx6TQB4MV7QXR7d/SdJvpDkhkm6AQDW0iJ3eVwzPzKRqvruJD+c5Pcn7gsAWCOLnPJ4ZZKPza+j+K4kn+zuz07bFgCwTha5y+P3krxxBb0AAGvKSpkAwDCBAgAYJlAAAMMECgBgmEABAAwTKACAYQIFADBMoAAAhgkUAMAwgQIAGCZQAADDBAoAYJhAAQAMEygAgGECBQAwTKAAAIYJFADAsH0DRVW9pqq+UFUPVNX9VfX+VTQGAKyPIwuMeSbJrd39xao6nuRsVf1adz8wcW8AwJrYN1B096NJHp0/36mqB5O8KsmhCRTdndlsNknt2WyWnqQyHKwp/90kycmTJ1NVk9UHlmuRIxTfVlWnk7wxyd0X+Gw7yXaSbG5uLqO3lZnNZrnl9ruycfT40mvvPPFINq66NlcsvTIcrKfP7eTWO87m2IlTS699/txObrv5+pw6tfzawDQWDhRVdSzJryT5QHc/+dzPu/tMkjNJsrW1tXZfyjeOHs/GsRNLr3v+qe+YKjg0Lr/y5ZP8uwHWz0J3eVTVy7IbJj7e3Z+etiUAYN0scpdHJfmFJA92989O3xIAsG4WOULxliTvSfL2qrp3/njXxH0BAGtkkbs8fiuJS60BgIuyUiYAMEygAACGCRQAwDCBAgAYJlAAAMMECgBgmEABAAwTKACAYQIFADBMoAAAhgkUAMAwgQIAGCZQAADDBAoAYJhAAQAMEygAgGECBQAwbN9AUVUfqarHquq+VTQEAKyfRY5QfDTJDRP3AQCssSP7Deju36yq0yvoZb8+MpvNJqk9m83Sk1RmlWwjh8eUf8uTJ0+mqiapvY6mnOvEfO912Od630CxqKraTrKdJJubm8sq+22z2Sy33H5XNo4eX3rtnSceycZV1+aKpVdmlZ4+t5Nb7zibYydOLb22bWS1pvpbnj+3k9tuvj6nTi1/G1lXU+5bzfefd9jnemmBorvPJDmTJFtbW5N8mds4ejwbx04sve75p55cek0OxuVXvtw2ckhM9bfkO021b+U7Hea5dpcHADBMoAAAhi1y2+gnkvyPJK+vqoeq6qenbwsAWCeL3OXx7lU0AgCsL6c8AIBhAgUAMEygAACGCRQAwDCBAgAYJlAAAMMECgBgmEABAAwTKACAYQIFADBMoAAAhgkUAMAwgQIAGCZQAADDBAoAYJhAAQAMEygAgGELBYqquqGqvlxVX6mqD07dFACwXvYNFFV1WZKfT/LOJG9I8u6qesPUjQEA6+PIAmO+P8lXuvurSVJVdyS5MckDUzZ2IefP7UxS9+k//WbqmWdy/sgi06H2S7X2Ovas9mprnz+3k9lsttSa6242m022bzXff97Uc33Qqruff0DVjye5obtvnr9+T5K/0t3ve8647STb85evT/Ll5be7dFcneeKgm7hEmOvVMM+rY65Xx1yvxvPN81/s7mue75eXFv+7+0ySM8uqtwpVdU93bx10H5cCc70a5nl1zPXqmOvVGJ3nRS7KfDjJa/a8fvX8PQCAJIsFit9N8rqqem1VXZ7kpiSfmbYtAGCd7HvKo7ufqar3JfmvSS5L8pHuvn/yzlZjrU7RrDlzvRrmeXXM9eqY69UYmud9L8oEANiPlTIBgGECBQAw7JILFFX1T6rq4aq6d/54157PPjRfXvzLVfXXD7LPw8Ky7dOqqq9V1Zfm2/I98/dOVdWvVdX/nv88edB9rqOq+khVPVZV9+1574JzW7v+7Xw7/72qetPBdb5eLjLP9tMTqKrXVNUXquqBqrq/qt4/f38p2/UlFyjm/nV3Xzd//GqSzJcTvynJX05yQ5J/N192nBfJsu0r84PzbfnZ+8c/mOTXu/t1SX59/poX7qPZ3RfsdbG5fWeS180f20n+/Yp6PAw+mu+c58R+egrPJLm1u9+Q5M1J3juf06Vs15dqoLiQG5Pc0d3nu/sPknwlu8uO8+J9e9n27n46ybPLtjOtG5N8bP78Y0l+7OBaWV/d/ZtJ/u9z3r7Y3N6Y5D/1rt9OclVVvXIlja65i8zzxdhPD+juR7v7i/PnO0keTPKqLGm7vlQDxfvmh28+sudw8KuS/NGeMQ/N3+PFM6fT6ySfr6qz8+Xvk+QV3f3o/PkfJ3nFwbR2KF1sbm3ry2c/PaGqOp3kjUnuzpK260MZKKrqv1XVfRd43JjdQzZ/Kcl1SR5N8q8OslcY9APd/absHpp8b1W9de+HvXtfuHvDJ2BuJ2U/PaGqOpbkV5J8oLuf3PvZyHa9/P8m8CWgu39okXFV9R+SfHb+0hLjy2dOJ9bdD89/PlZVd2b38O83quqV3f3o/PDkYwfa5OFysbm1rS9Rd3/j2ef208tVVS/Lbpj4eHd/ev72UrbrQ3mE4vk85/zP30ry7JXFn0lyU1VtVNVrs3sRyu+sur9DxrLtE6qqK6vq+LPPk/xIdrfnzyT5yfmwn0zynw+mw0PpYnP7mSR/Z35V/JuT/L89h5B5geynp1FVleQXkjzY3T+756OlbNeH8gjFPv5FVV2X3UM6X0tyS5J09/1V9ckkD2T3Stj3dve3DqrJw+CQL9v+UvCKJHfu7iNyJMkvdffnqup3k3yyqn46ydeT/O0D7HFtVdUnkrwtydVV9VCSDyf557nw3P5qkndl9yLBc0l+auUNr6mLzPPb7Kcn8ZYk70nypaq6d/7eP8qStmtLbwMAwy65Ux4AwPIJFADAMIECABgmUAAAwwQKAGCYQAEADBMoAIBh/x8JQq6muqc/CgAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 648x288 with 1 Axes>" ] @@ -1169,15 +1170,145 @@ "Se puede observar que el azul es el que tiene más dispersión de datos, seguido del verde y luego el rojo. Sin embargo, la dispersión presentada por la imagen completa, no es tan grande como se ve con el azul, ni tan pequeña como se ve con el rojo." ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Considerando la incertidumbre**" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Se hace el análisis considerando la incertidumbre. Se modifica la función error, cada uno de los errores se pesa con $1/\\sqrt(intensidad)$. Por efectos de practicidad se creó una nueva clase con esta modificación y se modifica la siguiente función." + ] + }, { "cell_type": "code", - "execution_count": null, + "execution_count": 27, "metadata": {}, "outputs": [], + "source": [ + "def analisis2(imagen_grisss):\n", + "\n", + " #Haciendo el análisis para toda la imagen\n", + "\n", + " estrellas_para_estadistica = estrellas_recortadas(imagen_grisss, 250)\n", + "\n", + " #Conversion a la clase estrella\n", + "\n", + " clase_estrella_todas=[]\n", + "\n", + "\n", + " for item in estrellas_para_estadistica:\n", + " clase_estrella_todas.append(Estrella_a_mod(item))\n", + "\n", + " #Recoleccion de parámetros\n", + "\n", + " p1=np.array([1,0,1,5,5]) #Para recordar: p = [a, b, c, x0, y0]\n", + "\n", + " parametros_todas=[]\n", + "\n", + " for i in range(0,len(clase_estrella_todas)):\n", + " uno, dos = clase_estrella_todas[i].ajusteGauss_mod(p1)\n", + "\n", + " parametros_todas.append(dos)\n", + "\n", + "\n", + " print('En total se estan analizando '+str(len(clase_estrella_todas))+' estrellas')\n", + "\n", + " #Para encontrar la mediana, media, moda y desviacion estandar del ajuste hecho se hace lo siguiente:\n", + "\n", + " evaluar=np.array(parametros_todas)\n", + "\n", + "\n", + " FWHM=evaluar*2*math.sqrt(2*math.log(2))\n", + "\n", + " zz=FWHM\n", + "\n", + " #Media\n", + " media=np.mean(zz)\n", + "\n", + " #Mediana\n", + " mediana=np.median(zz)\n", + "\n", + " #Moda\n", + " #moda=stat.mode(np.round(zz,3).reshape(-1))\n", + " \n", + " #moda=max(set(np.round(zz,2)), key=list(np.round(zz,2)).count)\n", + "\n", + " #Desviacion estandar con scipy\n", + " desviacion=stat.stdev(zz.reshape(-1))\n", + "\n", + " #Desviacion estandar con numpy\n", + " desviacion1=zz.std()\n", + "\n", + " print(' ')\n", + " print('Mediana: ', mediana)\n", + " print('Media: ', media)\n", + " #print('Moda: ', moda)\n", + " print('Desviacion estandar 1: ', desviacion)\n", + " print('Desviacion estandar 2: ', desviacion1)\n", + "\n", + " #Histograma\n", + "\n", + " plt.figure(figsize=(9,4))\n", + " plt.hist(zz, bins=20, histtype='bar', alpha=0.7, edgecolor = 'black', linewidth=0.2)\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "#FALTA CORREGIR ESTA FUNCIÓN\n", + "\n", + "#analisis2(imagen_grisss)" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[NbConvertApp] Converting notebook Entrega.ipynb to markdown\n", + "[NbConvertApp] Support files will be in Entrega_files/\n", + "[NbConvertApp] Making directory Entrega_files\n", + "[NbConvertApp] Making directory Entrega_files\n", + "[NbConvertApp] Making directory Entrega_files\n", + "[NbConvertApp] Making directory Entrega_files\n", + "[NbConvertApp] Making directory Entrega_files\n", + "[NbConvertApp] Making directory Entrega_files\n", + "[NbConvertApp] Making directory Entrega_files\n", + "[NbConvertApp] Making directory Entrega_files\n", + "[NbConvertApp] Making directory Entrega_files\n", + "[NbConvertApp] Making directory Entrega_files\n", + "[NbConvertApp] Making directory Entrega_files\n", + "[NbConvertApp] Making directory Entrega_files\n", + "[NbConvertApp] Making directory Entrega_files\n", + "[NbConvertApp] Making directory Entrega_files\n", + "[NbConvertApp] Writing 19233 bytes to Entrega.md\n" + ] + } + ], "source": [ "#Para guardar el notebook a .md\n", "! jupyter nbconvert --to markdown Entrega.ipynb" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { diff --git a/Entrega.md b/Entrega.md index 9fef3624d1863c4870d5c06bddc3ec7a77e9feb1..16ee48cba81364915c9980fa168ad41d45ed35d0 100644 --- a/Entrega.md +++ b/Entrega.md @@ -27,6 +27,7 @@ _Por facilidad, se creó una clase para el posterior análisis de todas las estr ```python from Clase_estrella import * +from Clase_estrella_mod import * ``` ### Paso 1 - Leer la imagen almacenada @@ -57,7 +58,7 @@ plt.imshow(imagen) - <matplotlib.image.AxesImage at 0x7fc7c5f59898> + <matplotlib.image.AxesImage at 0x7f31bea10a20> @@ -187,7 +188,7 @@ plt.imshow(imagen_grisss, cmap='gray') - <matplotlib.image.AxesImage at 0x7fc7c5e86d30> + <matplotlib.image.AxesImage at 0x7f31be7445c0> @@ -747,8 +748,113 @@ analisis(B) Se puede observar que el azul es el que tiene más dispersión de datos, seguido del verde y luego el rojo. Sin embargo, la dispersión presentada por la imagen completa, no es tan grande como se ve con el azul, ni tan pequeña como se ve con el rojo. +**Considerando la incertidumbre** + +Se hace el análisis considerando la incertidumbre. Se modifica la función error, cada uno de los errores se pesa con $1/\sqrt(intensidad)$. Por efectos de practicidad se creó una nueva clase con esta modificación y se modifica la siguiente función. + + +```python +def analisis2(imagen_grisss): + + #Haciendo el análisis para toda la imagen + + estrellas_para_estadistica = estrellas_recortadas(imagen_grisss, 250) + + #Conversion a la clase estrella + + clase_estrella_todas=[] + + + for item in estrellas_para_estadistica: + clase_estrella_todas.append(Estrella_a_mod(item)) + + #Recoleccion de parámetros + + p1=np.array([1,0,1,5,5]) #Para recordar: p = [a, b, c, x0, y0] + + parametros_todas=[] + + for i in range(0,len(clase_estrella_todas)): + uno, dos = clase_estrella_todas[i].ajusteGauss_mod(p1) + + parametros_todas.append(dos) + + + print('En total se estan analizando '+str(len(clase_estrella_todas))+' estrellas') + + #Para encontrar la mediana, media, moda y desviacion estandar del ajuste hecho se hace lo siguiente: + + evaluar=np.array(parametros_todas) + + + FWHM=evaluar*2*math.sqrt(2*math.log(2)) + + zz=FWHM + + #Media + media=np.mean(zz) + + #Mediana + mediana=np.median(zz) + + #Moda + #moda=stat.mode(np.round(zz,3).reshape(-1)) + + #moda=max(set(np.round(zz,2)), key=list(np.round(zz,2)).count) + + #Desviacion estandar con scipy + desviacion=stat.stdev(zz.reshape(-1)) + + #Desviacion estandar con numpy + desviacion1=zz.std() + + print(' ') + print('Mediana: ', mediana) + print('Media: ', media) + #print('Moda: ', moda) + print('Desviacion estandar 1: ', desviacion) + print('Desviacion estandar 2: ', desviacion1) + + #Histograma + + plt.figure(figsize=(9,4)) + plt.hist(zz, bins=20, histtype='bar', alpha=0.7, edgecolor = 'black', linewidth=0.2) + plt.show() +``` + + +```python +#FALTA CORREGIR ESTA FUNCIÓN + +#analisis2(imagen_grisss) +``` + ```python #Para guardar el notebook a .md ! jupyter nbconvert --to markdown Entrega.ipynb +``` + + [NbConvertApp] Converting notebook Entrega.ipynb to markdown + [NbConvertApp] Support files will be in Entrega_files/ + [NbConvertApp] Making directory Entrega_files + [NbConvertApp] Making directory Entrega_files + [NbConvertApp] Making directory Entrega_files + [NbConvertApp] Making directory Entrega_files + [NbConvertApp] Making directory Entrega_files + [NbConvertApp] Making directory Entrega_files + [NbConvertApp] Making directory Entrega_files + [NbConvertApp] Making directory Entrega_files + [NbConvertApp] Making directory Entrega_files + [NbConvertApp] Making directory Entrega_files + [NbConvertApp] Making directory Entrega_files + [NbConvertApp] Making directory Entrega_files + [NbConvertApp] Making directory Entrega_files + [NbConvertApp] Making directory Entrega_files + [NbConvertApp] Writing 19233 bytes to Entrega.md + + + +```python + ```