diff --git a/Entrega.ipynb b/Entrega.ipynb
index 4ee2a3fbc11f71e2a0bb7160d02e32a00ec0d08f..c2679f600f5580b73186d78e5fecd665838c61be 100644
--- a/Entrega.ipynb
+++ b/Entrega.ipynb
@@ -113,7 +113,7 @@
     {
      "data": {
       "text/plain": [
-       "<matplotlib.image.AxesImage at 0x7fcc33b1e7b8>"
+       "<matplotlib.image.AxesImage at 0x7f64067b77b8>"
       ]
      },
      "execution_count": 4,
@@ -312,7 +312,7 @@
     {
      "data": {
       "text/plain": [
-       "<matplotlib.image.AxesImage at 0x7fcc33a172b0>"
+       "<matplotlib.image.AxesImage at 0x7f64067006d8>"
       ]
      },
      "execution_count": 8,
@@ -830,7 +830,8 @@
     "clase_estrella=[]\n",
     "\n",
     "for item in lista_estrellas:\n",
-    "    clase_estrella.append(Estrella_a(item))\n"
+    "    clase_estrella.append(Estrella_a(item))\n",
+    "\n"
    ]
   },
   {
@@ -901,7 +902,9 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "Para encontrar la mediana, media, moda y desviacion estandar del ajuste hecho se hace lo siguiente:"
+    "Para hacer el análisis estadístico se analiza toda la imagen. Se observan unicamente las estrellas con intensidad mayor a 250. <br>\n",
+    "\n",
+    "Para hacer esto se crea la función _analisis_"
    ]
   },
   {
@@ -910,19 +913,137 @@
    "metadata": {},
    "outputs": [],
    "source": [
-    "evaluar=np.array(parametros)\n",
+    "def analisis(imagen_grisss):\n",
+    "\n",
+    "    #Haciendo el análisis para toda la imagen\n",
+    "\n",
+    "    estrellas_para_estadistica = estrellas_recortadas(imagen_grisss, 250)\n",
+    "\n",
+    "    #Conversion a la clase estrella\n",
+    "\n",
+    "    clase_estrella_todas=[]\n",
+    "\n",
+    "\n",
+    "    for item in estrellas_para_estadistica:\n",
+    "        clase_estrella_todas.append(Estrella_a(item))\n",
+    "\n",
+    "    #Recoleccion de parámetros\n",
+    "\n",
+    "    p1=np.array([1,0,1,5,5])   #Para recordar: p = [a, b, c, x0, y0]\n",
+    "\n",
+    "    parametros_todas=[]\n",
+    "\n",
+    "    for i in range(0,len(clase_estrella_todas)):\n",
+    "        uno, dos = clase_estrella_todas[i].ajusteGauss(p1)\n",
+    "\n",
+    "        parametros_todas.append(dos)\n",
+    "\n",
+    "\n",
+    "    print('En total se estan analizando '+str(len(clase_estrella_todas))+' estrellas')\n",
+    "\n",
+    "    #Para encontrar la mediana, media, moda y desviacion estandar del ajuste hecho se hace lo siguiente:\n",
     "\n",
+    "    evaluar=np.array(parametros_todas)\n",
     "\n",
-    "FWHM=evaluar*2*math.sqrt(2*math.log(2))\n"
+    "\n",
+    "    FWHM=evaluar*2*math.sqrt(2*math.log(2))\n",
+    "\n",
+    "    zz=FWHM\n",
+    "\n",
+    "    #Media\n",
+    "    media=np.mean(zz)\n",
+    "\n",
+    "    #Mediana\n",
+    "    mediana=np.median(zz)\n",
+    "\n",
+    "    #Moda\n",
+    "    #moda=stat.mode(np.round(zz,3).reshape(-1))\n",
+    "    \n",
+    "    #moda=max(set(np.round(zz,2)), key=list(np.round(zz,2)).count)\n",
+    "\n",
+    "    #Desviacion estandar con scipy\n",
+    "    desviacion=stat.stdev(zz.reshape(-1))\n",
+    "\n",
+    "    #Desviacion estandar con numpy\n",
+    "    desviacion1=zz.std()\n",
+    "\n",
+    "    print('  ')\n",
+    "    print('Mediana: ', mediana)\n",
+    "    print('Media: ', media)\n",
+    "    #print('Moda: ', moda)\n",
+    "    print('Desviacion estandar 1: ', desviacion)\n",
+    "    print('Desviacion estandar 2: ', desviacion1)\n",
+    "\n",
+    "    #Histograma\n",
+    "\n",
+    "    plt.figure(figsize=(9,4))\n",
+    "    plt.hist(zz, bins=20, histtype='bar', alpha=0.7, edgecolor = 'black', linewidth=0.2)\n",
+    "    plt.show()"
    ]
   },
   {
    "cell_type": "code",
    "execution_count": 23,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "/home/vargass/.local/lib/python3.7/site-packages/scipy/optimize/minpack.py:475: RuntimeWarning: Number of calls to function has reached maxfev = 1200.\n",
+      "  warnings.warn(errors[info][0], RuntimeWarning)\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "En total se estan analizando 33 estrellas\n",
+      "  \n",
+      "Mediana:  1.4018568345763582\n",
+      "Media:  -60.02889934017261\n",
+      "Desviacion estandar 1:  257.23862885662066\n",
+      "Desviacion estandar 2:  256.4579331901813\n"
+     ]
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAD4CAYAAACuX5+7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAARX0lEQVR4nO3dXZBkZ3kf8P8TrXYW7a60M2hK2QiSFQ6xI19YmC2F4CR2wHYE+RAQ4oILRalALWWjwq5yKiWbi5BKLkwcTNllFyCM4k2KGBMbAuVyYssqgstJDFlhWR/IWAIDlrJIA2qxKy2eRfDmYs5uRlszmo9+e3t69PtVdfU57zmn++lHp1f/6T7ndLXWAgDQ01+YdgEAwO4jYAAA3QkYAEB3AgYA0J2AAQB0t+diPtmVV17Zjhw5cjGfEgCYkLvuuuurrbXFtZZd1IBx5MiRnDhx4mI+JQAwIVX1pfWW+YoEAOhOwAAAuhMwAIDuBAwAoDsBAwDoTsAAALoTMACA7gQMAKC7i3qhLQBg61prGY1G56eTpKrOL5+fn3/G/E4gYADADjcajTI6flPm91+aLz72VH72Lz0/B+YPJEmWn1zOz//9n8/CwsKUq3wmAQMAZsD8/kuzcGAuo6fOZu/Bvdl3+b5pl/SsHIMBAHQnYAAA3QkYAEB3AgYA0J2AAQB0J2AAAN0JGABAdwIGANCdgAEAdCdgAADdCRgAQHcCBgDQnYABAHS3YcCoqn1V9emq+qOqur+q/vUwfk1VfaqqHqqqX6uqvZMvFwCYBZv5BGM5yStaa9+T5LokN1TVy5K8M8m7W2t/NckoyZsmViUAMFM2DBhtxZPD7KXDrSV5RZJfH8aPJ3nNJAoEAGbPpo7BqKpLquruJI8luSPJ55M80Vp7eljl4SRXT6RCAGDmbCpgtNa+1Vq7LskLklyf5Ls2+wRVdayqTlTViaWlpe1VCQDMlC2dRdJaeyLJJ5L8zSSHqmrPsOgFSR5ZZ5vbWmtHW2tHFxcXx6kVAJgRmzmLZLGqDg3Tz0vyQ0keyErQeP2w2s1JPjahGgGAGbNn41VyOMnxqrokK4Hkw62136yqzyb5UFX92yR/mOQDE6wTAJghGwaM1to9SV6yxvgXsnI8BgDAM7iSJwDQnYABAHQnYAAA3QkYAEB3AgYA0J2AAQB0J2AAAN0JGABAdwIGANCdgAEAdCdgAADdCRgAQHcCBgDQnYABAHQnYAAA3QkYAEB3AgYA0J2AAQB0J2AAAN0JGABAdwIGANCdgAEAdCdgAADdbRgwquqFVfWJqvpsVd1fVT8+jL+jqh6pqruH26snXy4AMAv2bGKdp5P8ZGvtM1V1MMldVXXHsOzdrbV/P7nyAIBZtGHAaK2dTHJymD5dVQ8kuXrShQEAs2tLx2BU1ZEkL0nyqWHolqq6p6pur6r5dbY5VlUnqurE0tLSeNUCADNh0wGjqg4k+Y0kP9FaO5XkPUm+I8l1WfmE411rbddau621drS1dnRxcXH8igGAHW9TAaOqLs1KuPhga+0jSdJae7S19q3W2reTvD/J9ZMrEwCYJZs5i6SSfCDJA621n1s1fnjVaq9Ncl//8gCAWbSZs0i+L8lNSe6tqruHsZ9O8saqui5JS/LFJG+ZQH0AwAzazFkkv5+k1lj0W/3LAQC2orWW0Wj0jLH5+fmsfAExPZv5BAMA2KHOPnk2X7r1p3Jm//4kyRPLy/nuX/rFLCwsTLUuAQMAZtwVc3M5tG/ftMt4Br9FAgB0J2AAAN0JGABAd47BAIBd5MKzSqZ1RomAAQC7yKmzZ/M//8O9mb98IU+eOZXXve3lUzmjRMAAgF1m//MO5uD+K6Zag2MwAIDuBAwAoDsBAwDoTsAAALoTMACA7gQMAKA7AQMA6E7AAAC6EzAAgO4EDACgOwEDAOhOwAAAuhMwAIDuBAwAoLsNA0ZVvbCqPlFVn62q+6vqx4fxhaq6o6oeHO7nJ18uADALNvMJxtNJfrK1dm2SlyV5a1Vdm+TWJHe21l6c5M5hHgBg44DRWjvZWvvMMH06yQNJrk5yY5Ljw2rHk7xmQjUCADNmS8dgVNWRJC9J8qkkV7XWTg6LvpLkqnW2OVZVJ6rqxNLS0ji1AgAzYtMBo6oOJPmNJD/RWju1ellrrSVpa23XWruttXa0tXZ0cXFxrGIBgNmwqYBRVZdmJVx8sLX2kWH40ao6PCw/nOSxyZQIAMyazZxFUkk+kOSB1trPrVr08SQ3D9M3J/lY//IAgFm0ZxPrfF+Sm5LcW1V3D2M/neRnkny4qt6U5EtJfmQiFQIAM2fDgNFa+/0ktc7iV/YtBwDYDVzJEwDoTsAAALoTMACA7gQMAKA7AQMA6E7AAAC6EzAAgO4EDACgOwEDAOhOwAAAuhMwAIDuBAwAoDsBAwDoTsAAALoTMACA7gQMAKA7AQMA6E7AAAC6EzAAgO4EDACgOwEDAOhOwAAAuhMwAIDuNgwYVXV7VT1WVfetGntHVT1SVXcPt1dPtkwAYJZs5hOMX0lywxrj726tXTfcfqtvWQDALNswYLTWfi/J4xehFgBglxjnGIxbquqe4SuU+fVWqqpjVXWiqk4sLS2N8XQAwKzYbsB4T5LvSHJdkpNJ3rXeiq2121prR1trRxcXF7f5dADALNlWwGitPdpa+1Zr7dtJ3p/k+r5lAQCzbFsBo6oOr5p9bZL71lsXAHju2bPRClX1q0l+IMmVVfVwkn+V5Aeq6rokLckXk7xlciUCALNmw4DRWnvjGsMfmEAtAECS1lpGo9H5+dFolEPTK2dbNgwYAMDFNRqN8pZf/mTmLjuYJDn91f+b9135zSRz0y1sCwQMANiB5i47mLkDVyRJlp86NeVqts5vkQAA3QkYAEB3AgYA0J1jMABgGy480yNJ5ufnU1VTqmhnETAAYBsuPNNj+czpvO/N35+FhYUpV7YzCBgAsE2rz/TgmRyDAQB0J2AAAN0JGABAdwIGANCdgAEAdCdgAADdCRgAQHcCBgDQnYABAHQnYAAA3QkYAEB3AgYA0J2AAQB0J2AAAN1tGDCq6vaqeqyq7ls1tlBVd1TVg8P9/GTLBABmyWY+wfiVJDdcMHZrkjtbay9OcucwDwCQZBMBo7X2e0kev2D4xiTHh+njSV7TtywAYJZt9xiMq1prJ4fpryS5ar0Vq+pYVZ2oqhNLS0vbfDoAYJaMfZBna60lac+y/LbW2tHW2tHFxcVxnw4AmAHbDRiPVtXhJBnuH+tXEgAw67YbMD6e5OZh+uYkH+tTDgCwG2zmNNVfTfK/k3xnVT1cVW9K8jNJfqiqHkzyg8M8AECSZM9GK7TW3rjOold2rgUAnhNaaxmNRufn5+fnU1VTrKi/DQMGANDXaDTKR37hf+XAZZfnyTOn8rq3vTwLCwvTLqsrAQMApuDAZZfn4P4rpl3GxPgtEgCgOwEDAOhOwAAAuhMwAIDuHOQJABN24Wmpo9Fo/d/Y2CUEDACYsNFolPvfeksOzc0lSb586lS++dIfm3JVkyVgAMBFcGhuLof27UuSfH15OV+bcj2T5hgMAKA7AQMA6E7AAAC6EzAAgO4EDACgOwEDAOhOwAAAuhMwAIDuBAwAoDsBAwDoTsAAALoTMACA7gQMAKC7sX5Ntaq+mOR0km8lebq1drRHUQDAbOvxc+1/t7X21Q6PAwDsEr4iAQC6GzdgtCS/U1V3VdWxtVaoqmNVdaKqTiwtLY35dADALBg3YPyt1tr3JnlVkrdW1d+5cIXW2m2ttaOttaOLi4tjPh0AMAvGChittUeG+8eSfDTJ9T2KAgBm27YDRlXtr6qD56aT/HCS+3oVBgDMrnHOIrkqyUer6tzj/OfW2n/vUhUAMNO2HTBaa19I8j0dawEAdgmnqQIA3QkYAEB3AgYA0J2AAQB0J2AAAN0JGABAdwIGANCdgAEAdCdgAADdCRgAQHcCBgDQnYABAHQ3zq+pAsDYWmsZjUbn5+fn5zP8UjczTMAAYKpGo1He8sufzNxlB7N85nTe9+bvz8LCwrTLYkwCBgBTN3fZwcwduGLaZdCRYzAAgO4EDACgOwEDAOhOwAAAutsVB3k6xQl2ngvfl4n35iyb1X9nt1L3heu21pLk/Pqz8pp3il0RMJziBDvP6vdlEu/NGTer/85upe7RaJT733pLDs3NJUm+fOpUvnztTZm/fCFPnjmV173t5TPxmneKXREwEqc4wU7kfbm7zOp/z63UfWhuLof27UuSfH15OfufdzAH98/ea94JHIMBAHQ3VsCoqhuq6nNV9VBV3dqrKABgtm07YFTVJUl+Kcmrklyb5I1VdW2vwgCA2TXOMRjXJ3motfaFJKmqDyW5MclnexS2VctnTp+/v/DI9a1Y6wCexx9/fNuP57Gn99hrPb7HvriPfe59eW6653tzVnvS8/Ev9mNP8t/ZnfDYo9EoTywvn5//+vJynvrG6ey99NI8eebUmttsdh8f97HPfuPJjOqb2bt3OU889c2cPX02f77nz1fWe2o5X19O9u7Zs+nHvhjq3Gk4W96w6vVJbmitvXmYvynJ32it3XLBeseSHBtmvzPJ57Zf7q50ZZKvTruIGaZ/49PD8ejfePRvfNPs4V9prS2utWDiZ5G01m5Lctukn2dWVdWJ1trRadcxq/RvfHo4Hv0bj/6Nb6f2cJyDPB9J8sJV8y8YxgCA57hxAsb/SfLiqrqmqvYmeUOSj/cpCwCYZdv+iqS19nRV3ZLkt5NckuT21tr93Sp77vD10Xj0b3x6OB79G4/+jW9H9nDbB3kCAKzHlTwBgO4EDACgOwFjgqrqZ6vqj6vqnqr6aFUdGsaPVNU3quru4fbeVdu8tKruHS6//gs1/DZwVS1U1R1V9eBwPz+ll3VRrdfDYdlPDX36XFX9vVXja17Cfjgg+VPD+K8NByfvalX1T6rq/qr6dlUdXTVuH9yE9fo3LLP/bVFVvaOqHlm137161bIt9ZMZ6E1rzW1CtyQ/nGTPMP3OJO8cpo8kuW+dbT6d5GVJKsl/S/KqYfzfJbl1mL713GPt9tuz9PDaJH+UZC7JNUk+n5WDjS8Zpl+UZO+wzrXDNh9O8oZh+r1JfnTar+8i9O+vZ+UCd/8jydFV4/bB8fpn/9teP9+R5F+sMb7lfj7Xb7PQG59gTFBr7Xdaa08Ps3+QlWuFrKuqDie5vLX2B21lD/qPSV4zLL4xyfFh+viq8V3tWXp4Y5IPtdaWW2t/muShrFy+/vwl7FtrZ5N8KMmNw1/hr0jy68P2z4kettYeaK1t+uq59sFnepb+2f/62lI/p1jnTrLjeyNgXDz/PCt/DZ5zTVX9YVV9sqr+9jB2dZKHV63z8DCWJFe11k4O019JctVEq92ZVvfw6iR/tmrZuV6tN/78JE+sCiure/tcZR/cPvvf9t0yfOV5+6qv2bbaT2agNxO/VPhuV1W/m+QvrrHo7a21jw3rvD3J00k+OCw7meQvt9a+VlUvTfJfq+q7N/ucrbVWVbvm/OJt9pDBZvq3BvvgYJv9Yx3P1s8k70nyb5K04f5dWfnDgV1IwBhTa+0Hn215Vf2zJP8gySuHj5zTWltOsjxM31VVn0/y17JyqfXVX6Osvvz6o1V1uLV2cvgY+7GuL2SKttPDPPul6tca/1qSQ1W1Z/grctdc2n6j/q2zjX1wsJ3+xf63rs32s6ren+Q3h9mt9pMZ+LkOX5FMUFXdkORfJvlHrbUzq8YXq+qSYfpFSV6c5AvDx8+nquplw3e2/zTJub+gPp7k5mH65lXju9p6PcxKP95QVXNVdU1WevjprHMJ+yGYfCLJ64ftnzM9XIt9cGz2v20Yguk5r01y3zC9pX5ezJp3sJ3fm2kfZbqbb1k5UOnPktw93N47jP/jJPcPY59J8g9XbXM0K2+6zyf5xfz/q60+P8mdSR5M8rtJFqb9+qbZw2HZ24c+fS7DmQ7D+KuT/Mmw7O2rxl+UlX+0HkryX5LMTfv1XYT+vTYr380uJ3k0yW/bB8fvn/1v2/38T0nuTXJPVv5neHi7/XTb+b1xqXAAoDtfkQAA3QkYAEB3AgYA0J2AAQB0J2AAAN0JGABAdwIGANDd/wMgMvaZEEfgmwAAAABJRU5ErkJggg==\n",
+      "text/plain": [
+       "<Figure size 648x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
    "source": [
-    "zz=FWHM"
+    "analisis(imagen_grisss)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "**Analisis para R,G,B independientemente**"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Para hacer el análisis estadístico para R,G y B independientemente se analiza toda la imagen de cada una de ellas por separado. Se observan unicamente las estrellas con intensidad mayor a 245.\n",
+    "\n",
+    "(Se utiliza la función creada anteriormente)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "_PARA ROJO_"
    ]
   },
   {
@@ -934,54 +1055,58 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "Mediana:  2.9331335083105\n",
-      "Media:  6.958263965191911\n",
-      "Moda:  15.497\n",
-      "Desviacion estandar 1:  6.4437838006164565\n",
-      "Desviacion estandar 2:  6.280623550702009\n"
+      "En total se estan analizando 45 estrellas\n",
+      "  \n",
+      "Mediana:  1.46501995989867\n",
+      "Media:  -24.20043926725717\n",
+      "Desviacion estandar 1:  159.60019232223172\n",
+      "Desviacion estandar 2:  159.24513027547198\n"
      ]
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAD4CAYAAACuX5+7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAPrklEQVR4nO3dfYxlZ10H8O/PbnfKdrfdGbqptaVuCfWl/CGEDSLEYIov5UVasZISgzWWlCgNGDVY5A8x+gdIFCEQoRZ0NcRSEW1DYhBqqVFCcctbKbX2RSuthRb2lm27MNvq4x/3tEzLvszMPnfm3unnk5zMOc95ub85T+7d75xz7rPVWgsAQE/fs94FAAAbj4ABAHQnYAAA3QkYAEB3AgYA0N2mtXyxk046qe3cuXMtXxIAmJAbbrjh6621HQdbt6YBY+fOndmzZ89aviQAMCFVdeeh1rlFAgB0J2AAAN0JGABAdwIGANCdgAEAdCdgAADdCRgAQHcCBgDQ3ZoOtAUArExrLaPR6HHLSVJVj7XNz88/bnkaCBgAMMVGo1FGu1+d+eOPTZL8170P5e3f99Rsnd+aJFl8cDHvfOk7s7CwsJ5lfhcBAwCm3Pzxx2Zh61ySZPTQgWzetjnHnXDcOld1eJ7BAAC6EzAAgO4EDACgOwEDAOhOwAAAuhMwAIDuBAwAoDsBAwDoTsAAALoTMACA7gQMAKA7AQMA6E7AAAC6EzAAgO4EDACgOwEDAOhOwAAAuhMwAIDulh0wquqYqvpcVX10WD6jqq6vqtuq6kNVtXlyZQIAs2QlVzDekOTmJctvS/KO1tozkoySXNSzMABgdi0rYFTVaUlemuTyYbmSnJ3kw8Mmu5OcN4H6AIDDaK1lNBpl7969j02ttfUuK5uWud2fJHljkm3D8lOT3N9ae2RYvivJqQfbsaouTnJxkpx++umrLhQA+G4HHjyQOy99U/Yff3yS5P7FxTzzPe/OwsLCutZ1xCsYVfWyJPe21m5YzQu01i5rre1qre3asWPHag4BABzGiXNz2X7cceNpbm69y0myvCsYL0jy8qp6SZLjkpyQ5J1JtlfVpuEqxmlJ7p5cmQDALDniFYzW2ptaa6e11nYmuSDJP7XWfjHJtUnOHza7MMlVE6sSAJgpRzMOxm8n+Y2qui3jZzLe36ckAGDWLfchzyRJa+2TST45zN+R5Ln9SwIAZp2RPAGA7gQMAKA7AQMA6E7AAAC6EzAAgO4EDACgOwEDAOhOwAAAuhMwAIDuBAwAoDsBAwDoTsAAALoTMACA7gQMAKA7AQMA6E7AAAC627TeBQAA/bTWMhqNHluen59PVa15HQIGAGwg+w4cyL/++Y2ZP2EhD+7fl1e8/vlZWFhY8zoEDADYYI5/yrZsO/7Eda3BMxgAQHcCBgDQnYABAHQnYAAA3QkYAEB3AgYA0J2AAQB0J2AAAN0JGABAdwIGANCdgAEAdCdgAADdCRgAQHcCBgDQnYABAHQnYAAA3QkYAEB3AgYA0N0RA0ZVHVdVn6mqL1TVTVX1e0P7GVV1fVXdVlUfqqrNky8XAJgFy7mCsZjk7NbajyR5VpJzqup5Sd6W5B2ttWckGSW5aGJVAgAz5YgBo409OCweO0wtydlJPjy0705y3iQKBIAnm9Za9u7dm71792Y0GqWtd0GrsGk5G1XVMUluSPKMJO9JcnuS+1trjwyb3JXk1EPse3GSi5Pk9NNPP9p6AWDDG41Gee3l12Vuy7Y88PX/yftOejjJ3HqXtSLLesiztfa/rbVnJTktyXOT/NByX6C1dllrbVdrbdeOHTtWVyUAPMnMbdmWua0nZvNTtq53Kauyom+RtNbuT3Jtkh9Lsr2qHr0CclqSu/uWBgDMquV8i2RHVW0f5p+S5KeS3Jxx0Dh/2OzCJFdNqEYAYMYs5xmMU5LsHp7D+J4kV7bWPlpVX05yRVX9QZLPJXn/BOsEAGbIEQNGa+2LSZ59kPY7Mn4eAwDgcYzkCQB0J2AAAN0JGABAdwIGANCdgAEAdCdgAADdCRgAQHcCBgDQnYABAHQnYAAA3QkYAEB3AgYA0J2AAQB0J2AAAN0JGABAdwIGANCdgAEAdCdgAADdCRgAQHcCBgDQnYABAHQnYAAA3QkYAEB3AgYA0J2AAQB0J2AAAN0JGABAdwIGANCdgAEAdCdgAADdCRgAQHcCBgDQnYABAHQnYAAA3QkYAEB3AgYA0J2AAQB0d8SAUVVPq6prq+rLVXVTVb1haF+oqo9X1a3Dz/nJlwsAzILlXMF4JMlvttbOSvK8JK+rqrOSXJrkmtbamUmuGZYBAI4cMFpr97TWPjvMP5Dk5iSnJjk3ye5hs91JzptQjQDAjFnRMxhVtTPJs5Ncn+Tk1to9w6qvJjn5EPtcXFV7qmrPfffddzS1AgAzYtkBo6q2JvnbJL/eWtu3dF1rrSVpB9uvtXZZa21Xa23Xjh07jqpYAGA2LCtgVNWxGYeLD7bWPjI0f62qThnWn5Lk3smUCADMmuV8i6SSvD/Jza21P16y6uokFw7zFya5qn95AMAs2rSMbV6Q5NVJbqyqzw9tv5PkrUmurKqLktyZ5JUTqRAAmDlHDBittX9JUodY/aK+5QAAG4GRPAGA7gQMAKA7AQMA6E7AAAC6EzAAgO4EDACgOwEDAOhOwAAAuhMwAIDuBAwAoDsBAwDoTsAAALoTMACA7gQMAKA7AQMA6E7AAAC6EzAAgO4EDACgOwEDAOhOwAAAuhMwAIDuBAwAoDsBAwDoTsAAALoTMACA7gQMAKA7AQMA6E7AAAC6EzAAgO4EDACgOwEDAOhOwAAAuhMwAIDuBAwAoDsBAwDoTsAAALoTMACA7o4YMKrqA1V1b1V9aUnbQlV9vKpuHX7OT7ZMAGCWLOcKxl8kOecJbZcmuaa1dmaSa4ZlAIAkywgYrbV/TrL3Cc3nJtk9zO9Ocl7fsgCAWbbaZzBObq3dM8x/NcnJh9qwqi6uqj1Vtee+++5b5csBALPkqB/ybK21JO0w6y9rre1qre3asWPH0b4cADADVhswvlZVpyTJ8PPefiUBALNutQHj6iQXDvMXJrmqTzkAMBtaa9m7d+9j0/iCPo/adKQNquqvk/xEkpOq6q4kv5vkrUmurKqLktyZ5JWTLBIAps1oNMprL78uc1u2ZXH/A3nfa16YhYWF9S5rahwxYLTWXnWIVS/qXAsAzJS5Ldsyt/XE9S5jKhnJEwDoTsAAALoTMACA7gQMAKA7AQMA6E7AAAC6EzAAgO6OOA4GANBPay2j0ehxbfPz86mqdapoMgQMAFhDo9EoH3nXp7J1ywlJkgf378srXv/8DTcKqIABAGts65YTsu34jT0CqGcwAIDuBAwAoDsBAwDoTsAAALoTMACA7gQMAKA7X1MFgAlbOrjWaDRKW+d61oKAAQATNhqNctPrLsn2ubn89759efg5v7beJU2cWyQAsAa2z81l+3HH5cS5ufUuZU0IGABAdwIGANCdgAEAdCdgAADdCRgAQHcCBgDQnXEwANiwlg5wlSTz8/OpqhXvt5J9GRMwANiwRqNRXnv5dZnbsi2L+x/I+17zwiwsLCxrv4+861PZuuWEJMmD+/flFa9//rL2ZUzAAGBDm9uyLXNbT1zxflu3nJBtx698P8Y8gwEAdCdgAADdCRgAQHcCBgDQnYABAHQnYAAA3W2Ir6mudiAVAJZnkp+zPsM3pg0RMFY7kAoAyzPJz1mf4RvThggYyeoHUgFgeSb5OeszfOM5qmcwquqcqrqlqm6rqkt7FQUAzLZVB4yqOibJe5K8OMlZSV5VVWf1KgwAmF1Hc4vkuUlua63dkSRVdUWSc5N8uUdhK7W4/4HHfj7xf8BbiYPd99u7d++qj+fYjt3j+I7t2Ot97GSyn7PTduzRaJQH9+97bHnp/GqOPRqNcv/iYpLkm4uLeehbD2Tzsccu69gHvvVgRvVwNm8e73//Qw/nwAMH8u1N3x5v99BivrmYbN606buOf6hjr4Vqra1ux6rzk5zTWnvNsPzqJD/aWrvkCdtdnOTiYfEHk9yy+nJn2klJvr7eRfBd9Mt00i/TSb9Mp/Xsl+9vre042IqJP+TZWrssyWWTfp1pV1V7Wmu71rsOHk+/TCf9Mp30y3Sa1n45moc8707ytCXLpw1tAMCT3NEEjH9LcmZVnVFVm5NckOTqPmUBALNs1bdIWmuPVNUlST6W5JgkH2it3dStso3nSX+baErpl+mkX6aTfplOU9kvq37IEwDgUPxnZwBAdwIGANCdgNFJVb29qv69qr5YVX9XVduXrHvTMJz6LVX1M0vaDzrU+vDg7PVD+4eGh2hZhar6haq6qar+r6p2LWnfWVXfqqrPD9N7l6x7TlXdOJz/d9Xw3zpW1UJVfbyqbh1+zq/H7zTrDtUnwzrvlSlQVW+pqruXvD9esmTdivqIyZn6c95aM3WYkvx0kk3D/NuSvG2YPyvJF5LMJTkjye0ZPxR7zDD/9CSbh23OGva5MskFw/x7k/zqev9+szol+eGMB3j7ZJJdS9p3JvnSIfb5TJLnJakk/5DkxUP7Hya5dJi/9NE+NnXrE++VKZmSvCXJbx2kfcV9ZJpYH039OXcFo5PW2j+21h4ZFj+d8bggyXj49Ctaa4uttf9MclvGw6w/NtR6a+1AkiuSnDv8tXx2kg8P++9Oct4a/RobTmvt5tbaskePrapTkpzQWvt0G7+L/zLfOf/nZtwfiX5ZtcP0iffK9FtRH61jnU8GU3/OBYzJ+JWM//JNklOTfGXJuruGtkO1PzXJ/UvCyqPt9HdGVX2uqq6rqh8f2k7N+Jw/aun5P7m1ds8w/9UkJ69RnU8W3ivT5ZLhlu8HltwOXGkfMTlTf84nPlT4RlJVn0jyvQdZ9ebW2lXDNm9O8kiSD65lbU9my+mXg7gnyemttW9U1XOS/H1VPXO5r9laa1XlO96HsMo+YQ0dro+S/GmS30/Shp9/lPEfTrBsAsYKtNZ+8nDrq+qXk7wsyYuGy+vJ4YdUP1j7N5Jsr6pNw19mhmA/giP1yyH2WUyyOMzfUFW3J/mBjM/1aUs2XXr+v1ZVp7TW7hlupdx7dJVvXKvpk3ivrKnl9lFV/VmSjw6LK+0jJmfq/7sOt0g6qapzkrwxyctba/uXrLo6yQVVNVdVZyQ5M+OHCA861PoQTK5Ncv6w/4VJ/MXXWVXtqKpjhvmnZ9wvdwy3QPZV1fOGe/y/lO+c/6sz7o9Ev0yC98qUGAL0o34uyZeG+RX10VrW/CQ0/ed8vZ8y3ShTxg87fSXJ54fpvUvWvTnjp31vyfCNhKH9JUn+Y1j35iXtT8/4TXtbkr9JMrfev9+sThl/ON6V8dWKryX52ND+80luGvrqs0l+dsk+uzL+QL09ybvznRFvn5rkmiS3JvlEkoX1/v1mcTpUnwzrvFemYEryV0luTPLFjP/ROmW1fWSaaD9N9Tk3VDgA0J1bJABAdwIGANCdgAEAdCdgAADdCRgAQHcCBgDQnYABAHT3//VYRsJqvQzmAAAAAElFTkSuQmCC\n",
+      "text/plain": [
+       "<Figure size 648x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
     }
    ],
    "source": [
-    "#Media\n",
-    "media=np.mean(zz)\n",
-    "\n",
-    "#Mediana\n",
-    "mediana=np.median(zz)\n",
-    "\n",
-    "#Moda\n",
-    "moda=stat.mode(np.round(zz,3).reshape(-1))\n",
-    "\n",
-    "#Desviacion estandar con scipy\n",
-    "desviacion=stat.stdev(zz.reshape(-1))\n",
-    "\n",
-    "#Desviacion estandar con numpy\n",
-    "desviacion1=zz.std()\n",
-    "\n",
-    "print('Mediana: ', mediana)\n",
-    "print('Media: ', media)\n",
-    "print('Moda: ', moda)\n",
-    "print('Desviacion estandar 1: ', desviacion)\n",
-    "print('Desviacion estandar 2: ', desviacion1)"
+    "analisis(R)"
    ]
   },
   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "Para hacer el histograma"
+    "_PARA VERDE_"
    ]
   },
   {
    "cell_type": "code",
    "execution_count": 25,
-   "metadata": {
-    "scrolled": true
-   },
+   "metadata": {},
    "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "En total se estan analizando 32 estrellas\n",
+      "  \n",
+      "Mediana:  1.4056342445779744\n",
+      "Media:  -124.0466362617896\n",
+      "Desviacion estandar 1:  654.9121084711437\n",
+      "Desviacion estandar 2:  652.8623002867687\n"
+     ]
+    },
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhsAAAD4CAYAAABFaCS4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAATeklEQVR4nO3df6zdd33f8eertmNjHGIb30HqH1w2UiZAhMBdGhptSumYDETxtKZS0EqTDuSJJSVsaBVhUkojbYJ1gkKNiKwkS4CIBIWUuSisjUpaijYCN24S4hhWr2PEabrcxDd2nMAN7t77434z3d7cyz33+nzuybn3+ZCO/P3x/p7v+3Ntn/O63/P9fk+qCkmSpFZ+ZtANSJKklc2wIUmSmjJsSJKkpgwbkiSpKcOGJElqau2gdrxt27YaHR0d1O4lSVIf3XfffU9U1chc6wYWNkZHRxkfHx/U7iVJUh8l+d/zrfNjFEmS1JRhQ5IkNWXYkCRJTRk2JElSU4YNSZLUlGFDkiQ11XPYSLImyZ8n+eoc69YnuT3JkST3Jhnta5eSJGloLebIxtXA4XnWvReYrKrXAJ8EPn66jUmSpJWhp5t6JdkBvAv498C/maNkD/DRbvoOYF+SVFX1o8nFqComJyeXvC1AkmXd9nlbtmw5re0lSSvb6bzHPW8Q7zW93kH0d4HfBM6cZ/124BGAqjqV5DjwcuCJmUVJ9gJ7AXbt2rWEdhc2OTnJv7zhT1m/cb5W5/f0E3/FxzZ+gVds3rjobX/w+DP8zs++nE1bNi16W4Cpk1N86l2fYuvWrUvaXpK08k1OTnLnp/8bmza+bEnbn3z2BP/sA7+w7O81C4aNJBcDj1fVfUkuOp2dVdV+YD/A2NhYs6Me6zeeyfpNZy16u6lnTrBl4zq2blq/6G0nn3mOM848gw0v27DobSVJ6tWmjS/jzJcu/j1ukHo5Z+NC4JIkPwBuA96W5Auzah4FdgIkWQucBTzZxz4lSdKQWjBsVNU1VbWjqkaBy4CvV9Wvzio7AFzeTV/a1Sz7+RqSJOnFZ8nf+prkOmC8qg4ANwKfT3IEOMZ0KJEkSVpc2KiqPwH+pJu+dsbyHwO/0s/GJEnSyuAdRCVJUlOGDUmS1JRhQ5IkNWXYkCRJTRk2JElSU4YNSZLUlGFDkiQ1ZdiQJElNGTYkSVJThg1JktSUYUOSJDVl2JAkSU0ZNiRJUlOGDUmS1JRhQ5IkNWXYkCRJTS0YNpJsSPLtJA8kOZTkt+eouSLJRJL7u8f72rQrSZKGzdoeaqaAt1XVySTrgG8m+VpVfWtW3e1VdVX/W5QkScNswbBRVQWc7GbXdY9q2ZQkSVo5ejpnI8maJPcDjwN3V9W9c5T9cpIHk9yRZGc/m5QkScOrp7BRVX9TVW8CdgDnJ3nDrJI/AEar6o3A3cAtcz1Pkr1JxpOMT0xMnEbbkiRpWCzqapSqegq4B9g9a/mTVTXVzd4AvGWe7fdX1VhVjY2MjCyhXUmSNGx6uRplJMnmbvolwNuB782qOXvG7CXA4T72KEmShlgvV6OcDdySZA3T4eRLVfXVJNcB41V1APhAkkuAU8Ax4IpWDUuSpOHSy9UoDwLnzbH82hnT1wDX9Lc1SZK0EngHUUmS1JRhQ5IkNWXYkCRJTRk2JElSU4YNSZLUlGFDkiQ1ZdiQJElNGTYkSVJThg1JktSUYUOSJDVl2JAkSU0ZNiRJUlOGDUmS1JRhQ5IkNWXYkCRJTRk2JElSU4YNSZLU1IJhI8mGJN9O8kCSQ0l+e46a9UluT3Ikyb1JRpt0K0mShk4vRzamgLdV1bnAm4DdSS6YVfNeYLKqXgN8Evh4X7uUJElDa+1CBVVVwMludl33qFlle4CPdtN3APuSpNtWkiR1qorJycklbTs5OfmCN+BhsGDYAEiyBrgPeA3wmaq6d1bJduARgKo6leQ48HLgiVnPsxfYC7Br167T61ySpCE0OTnJoSuvYvP69Yve9ocnTvCTt/yrBl211VPYqKq/Ad6UZDPw+0neUFUPLXZnVbUf2A8wNjY2jOFMkqTTtnn9ejZv2LDo7Y5PTfFkg35aW9TVKFX1FHAPsHvWqkeBnQBJ1gJnwVD+PCRJUp/1cjXKSHdEgyQvAd4OfG9W2QHg8m76UuDrnq8hSZKgt49RzgZu6c7b+BngS1X11STXAeNVdQC4Efh8kiPAMeCyZh1LkqSh0svVKA8C582x/NoZ0z8GfqW/rUmSpJXAO4hKkqSmDBuSJKkpw4YkSWrKsCFJkpoybEiSpKYMG5IkqSnDhiRJasqwIUmSmjJsSJKkpgwbkiSpKcOGJElqyrAhSZKaMmxIkqSmDBuSJKkpw4YkSWrKsCFJkpoybEiSpKYWDBtJdia5J8nDSQ4luXqOmouSHE9yf/e4tk27kiRp2KztoeYU8KGqOpjkTOC+JHdX1cOz6v6sqi7uf4uSJGmYLXhko6oeq6qD3fTTwGFge+vGJEnSyrCoczaSjALnAffOsfqtSR5I8rUkr59n+71JxpOMT0xMLL5bSZI0dHoOG0k2AV8GPlhVJ2atPgi8qqrOBX4P+Mpcz1FV+6tqrKrGRkZGltiyJEkaJj2FjSTrmA4at1bVnbPXV9WJqjrZTd8FrEuyra+dSpKkodTL1SgBbgQOV9Un5ql5ZVdHkvO7532yn41KkqTh1MvVKBcC7wG+m+T+btlHgF0AVXU9cCnw/iSngB8Bl1VV9b9dSZI0bBYMG1X1TSAL1OwD9vWrKUmStHJ4B1FJktSUYUOSJDVl2JAkSU0ZNiRJUlOGDUmS1JRhQ5IkNWXYkCRJTRk2JElSU4YNSZLUlGFDkiQ1ZdiQJElNGTYkSVJThg1JktSUYUOSJDVl2JAkSU0ZNiRJUlOGDUmS1NSCYSPJziT3JHk4yaEkV89RkySfTnIkyYNJ3tymXUmSNGzW9lBzCvhQVR1MciZwX5K7q+rhGTXvAM7pHj8PfLb7U5IkrXILHtmoqseq6mA3/TRwGNg+q2wP8Lma9i1gc5Kz+96tJEkaOos6ZyPJKHAecO+sVduBR2bMH+WFgYQke5OMJxmfmJhYZKuSJGkY9Rw2kmwCvgx8sKpOLGVnVbW/qsaqamxkZGQpTyFJkoZMT2EjyTqmg8atVXXnHCWPAjtnzO/olkmSpFWul6tRAtwIHK6qT8xTdgD4te6qlAuA41X1WB/7lCRJQ6qXq1EuBN4DfDfJ/d2yjwC7AKrqeuAu4J3AEeBZ4Nf73qkkSRpKC4aNqvomkAVqCriyX01JkqSVwzuISpKkpgwbkiSpKcOGJElqyrAhSZKaMmxIkqSmDBuSJKkpw4YkSWrKsCFJkpoybEiSpKYMG5IkqSnDhiRJasqwIUmSmjJsSJKkpgwbkiSpKcOGJElqyrAhSZKaMmxIkqSmFgwbSW5K8niSh+ZZf1GS40nu7x7X9r9NSZI0rNb2UHMzsA/43E+p+bOqurgvHUmSpBVlwSMbVfUN4Ngy9CJJklagfp2z8dYkDyT5WpLXz1eUZG+S8STjExMTfdq1JEl6MetH2DgIvKqqzgV+D/jKfIVVtb+qxqpqbGRkpA+7liRJL3anHTaq6kRVneym7wLWJdl22p1JkqQV4bTDRpJXJkk3fX73nE+e7vNKkqSVYcGrUZJ8EbgI2JbkKPBbwDqAqroeuBR4f5JTwI+Ay6qqmnUsSZKGyoJho6revcD6fUxfGitJkvQC3kFUkiQ1ZdiQJElNGTYkSVJThg1JktSUYUOSJDVl2JAkSU0ZNiRJUlOGDUmS1JRhQ5IkNWXYkCRJTRk2JElSU4YNSZLUlGFDkiQ1ZdiQJElNGTYkSVJThg1JktSUYUOSJDW1YNhIclOSx5M8NM/6JPl0kiNJHkzy5v63KUmShlUvRzZuBnb/lPXvAM7pHnuBz55+W5IkaaVYu1BBVX0jyehPKdkDfK6qCvhWks1Jzq6qx/rVpCSpv6qKycnJJW+/ZcsWkvSxI61kC4aNHmwHHpkxf7Rb9oKwkWQv00c/2LVrVx92LUlaisnJSQ5deRWb169f9LZPTU3x+s/sY+vWrQ0600rUj7DRs6raD+wHGBsbq+XctyTpb9u8fj2bN2wYdBtaBfpxNcqjwM4Z8zu6ZZIkSX0JGweAX+uuSrkAOO75GpIk6XkLfoyS5IvARcC2JEeB3wLWAVTV9cBdwDuBI8CzwK+3alaSJA2fXq5GefcC6wu4sm8dSZKkFcU7iEqSpKYMG5IkqSnDhiRJasqwIUmSmjJsSJKkpgwbkiSpKcOGJElqyrAhSZKaMmxIkqSmDBuSJKkpw4YkSWrKsCFJkpoybEiSpKYMG5IkqSnDhiRJasqwIUmSmjJsSJKkpnoKG0l2J/l+kiNJPjzH+iuSTCS5v3u8r/+tSpKkYbR2oYIka4DPAG8HjgLfSXKgqh6eVXp7VV3VoEdJkjTEejmycT5wpKr+sqqeA24D9rRtS5IkrRS9hI3twCMz5o92y2b75SQPJrkjyc65nijJ3iTjScYnJiaW0K4kSRo2/TpB9A+A0ap6I3A3cMtcRVW1v6rGqmpsZGSkT7uWJEkvZr2EjUeBmUcqdnTL/r+qerKqprrZG4C39Kc9SZI07HoJG98Bzkny6iRnAJcBB2YWJDl7xuwlwOH+tShJkobZglejVNWpJFcBfwisAW6qqkNJrgPGq+oA8IEklwCngGPAFQ17liRJQ2TBsAFQVXcBd81adu2M6WuAa/rbmiRJWgm8g6gkSWrKsCFJkpoybEiSpKYMG5IkqSnDhiRJasqwIUmSmjJsSJKkpgwbkiSpKcOGJElqyrAhSZKaMmxIkqSmDBuSJKkpw4YkSWrKsCFJkpoybEiSpKYMG5IkqSnDhiRJaqqnsJFkd5LvJzmS5MNzrF+f5PZu/b1JRvveqSRJGkoLho0ka4DPAO8AXge8O8nrZpW9F5isqtcAnwQ+3u9GJUnScFrbQ835wJGq+kuAJLcBe4CHZ9TsAT7aTd8B7EuSqqo+9tqzqWefXtJ2z/3oJJP5CWecMbXobZ965ic89/Rz/Hjtj5e076mTU0xOTi5p29O1devWvj3XsWPH+vZcq4E/+8FZ7T/7yclJnppa/GsdwFNTU2w8jdcrf/ZL/9kfn5rimR89zRnr1i1p+5PPnljSdqcrC+WBJJcCu6vqfd38e4Cfr6qrZtQ81NUc7eb/Z1fzxKzn2gvs7WZfC3y/XwNpbBvwxIJVK5NjX50c++rk2Fevfoz/VVU1MteKXo5s9E1V7Qf2L+c++yHJeFWNDbqPQXDsjn21ceyOfTVqPf5eThB9FNg5Y35Ht2zOmiRrgbOAJ/vRoCRJGm69hI3vAOckeXWSM4DLgAOzag4Al3fTlwJfH9T5GpIk6cVlwY9RqupUkquAPwTWADdV1aEk1wHjVXUAuBH4fJIjwDGmA8lKMnQf/fSRY1+dHPvq5NhXr6bjX/AEUUmSpNPhHUQlSVJThg1JktSUYWMeSXYmuSfJw0kOJbl60D0ttyRrkvx5kq8OupfllmRzkjuSfC/J4SRvHXRPyyXJv+7+zT+U5ItJNgy6p1aS3JTk8e5eQc8v25rk7iR/0f25ZZA9tjLP2H+n+zf/YJLfT7J5gC02M9fYZ6z7UJJKsm0QvbU239iT/Eb3d38oyX/s934NG/M7BXyoql4HXABcOcdt2le6q4HDg25iQD4F/Neq+vvAuaySn0OS7cAHgLGqegPTJ4WvtBO+Z7oZ2D1r2YeBP66qc4A/7uZXopt54djvBt5QVW8E/gdwzXI3tUxu5oVjJ8lO4J8AP1zuhpbRzcwae5JfZPpO4OdW1euB/9TvnRo25lFVj1XVwW76aabfbLYPtqvlk2QH8C7ghkH3stySnAX8I6avsqKqnquqpwba1PJaC7yku2fORuCvBtxPM1X1DaavoJtpD3BLN30L8E+Xs6flMtfYq+qPqupUN/stpu+rtOLM8/cO09/t9ZvAir1yYp6xvx/4WFVNdTWP93u/ho0edN9iex5w74BbWU6/y/R/uv874D4G4dXABPCfu4+Rbkjy0kE3tRyq6lGmf6v5IfAYcLyq/miwXS27V1TVY930XwOvGGQzA/QvgK8NuonlkmQP8GhVPTDoXgbg54B/2H1r+58m+Qf93oFhYwFJNgFfBj5YVYP5BptlluRi4PGqum/QvQzIWuDNwGer6jzgGVbuofS/pTs/YQ/TgetngZcm+dXBdjU43c0JV+xvufNJ8u+Y/ij51kH3shySbAQ+Alw76F4GZC2wlelTBv4t8KUk6ecODBs/RZJ1TAeNW6vqzkH3s4wuBC5J8gPgNuBtSb4w2JaW1VHgaFU9fyTrDqbDx2rwj4H/VVUTVfUT4E7gFwbc03L7P0nOBuj+7Psh5RezJFcAFwP/fBXdCfrvMR2wH+he93YAB5O8cqBdLZ+jwJ017dtMH9Hu6wmyho15dKnuRuBwVX1i0P0sp6q6pqp2VNUo0ycHfr2qVs1vt1X118AjSV7bLfol4OEBtrScfghckGRj93/gl1glJ8fOMPPrFy4H/ssAe1lWSXYz/fHpJVX17KD7WS5V9d2q+jtVNdq97h0F3ty9FqwGXwF+ESDJzwFn0OdvwDVszO9C4D1M/1Z/f/d456Cb0rL5DeDWJA8CbwL+w2DbWR7d0Zw7gIPAd5l+jVixt3FO8kXgvwOvTXI0yXuBjwFvT/IXTB/p+dgge2xlnrHvA84E7u5e864faJONzDP2VWGesd8E/N3uctjbgMv7fVTL25VLkqSmPLIhSZKaMmxIkqSmDBuSJKkpw4YkSWrKsCFJkpoybEiSpKYMG5Ikqan/B7d2NjY9YLofAAAAAElFTkSuQmCC\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAD4CAYAAACuX5+7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAR9klEQVR4nO3de4xcZ3nH8e/TrL2pL4l38TY1SVQHGmiDKgwsKS2lQLiZUMkBUURURW4BOVzMpaKqApEgLa0EpRCBQIAhEaalhBSCQhEthAiCUEvSTeo4t6YxwSlxQ7whY+IksI6Tp3/Ma2e82fWOd9/d2bPz/UijPec9Z2ae83hm9ueZd85GZiJJklTTr/S6AEmStPQYMCRJUnUGDEmSVJ0BQ5IkVWfAkCRJ1Q0s5J2tXbs2169fv5B3KUmS5sn1119/X2aOTLVtQQPG+vXrGRsbW8i7lCRJ8yQi7ppumx+RSJKk6gwYkiSpOgOGJEmqzoAhSZKqM2BIkqTqDBiSJKk6A4YkSarOgCFJkqpb0BNtSZKkY5eZtFqtw8sAEXF4+9DQ0OH1zn0nb1tIBgxJkha5VqtFa/t5DK1cxu69D/HhJz+JVUOrAJh4cIKPvepjDA8PH973io//O6tWnMCDDz/Aa97x+4e3LSQDhiRJDTC0chnDqwZpPXSA5auXc/wJx0+776oVJ7B65YkLWN0TOQdDkiRVZ8CQJEnVGTAkSVJ1zsGQJKnBJn9rpNVqkT2s5xADhiRJDXbgwQPcdcF7eHjlSgD+94EHeOQ5b+1xVQYMSZIa78TBQdYc3/5Wyc8nJvhZj+sB52BIkqR5MGPAiIjjI+K6iLgxIm6JiL8q46dFxLURsSsivhwRy+e/XEmS1ATdvIMxAZyVmc8ENgAbI+J5wIeAizPzN4EW8MZ5q1KSJDXKjAEj2x4sq8vKJYGzgK+U8e3AOfNRoCRJap6u5mBExHERsQPYC1wF/AjYl5kHyy53AyfPS4WSJKlxugoYmfloZm4ATgHOBH6r2zuIiC0RMRYRY+Pj47OrUpIkNcoxfYskM/cB3wV+D1gTEYe+5noKsGea62zLzNHMHB0ZGZlLrZIkqSG6+RbJSESsKcu/CrwMuI120Hht2W0zcOU81ShJkhqmmxNtrQO2R8RxtAPJ5Zn5jYi4FbgsIv4G+C/gknmsU5IkNciMASMzdwLPmmL8TtrzMSRJko7gmTwlSVJ1BgxJklSdAUOSJFVnwJAkSdUZMCRJUnUGDEmSVJ0BQ5IkVWfAkCRJ1RkwJElSdQYMSZJUnQFDkiRVZ8CQJEnVGTAkSVJ1BgxJklSdAUOSJFVnwJAkSdUZMCRJUnUGDEmSVJ0BQ5IkVWfAkCRJ1RkwJElSdQYMSZJUnQFDkiRVZ8CQJEnVzRgwIuLUiPhuRNwaEbdExDvL+EURsScidpTL2fNfriRJaoKBLvY5CLw7M2+IiNXA9RFxVdl2cWb+/fyVJ0mSmmjGgJGZ9wD3lOX9EXEbcPJ8FyZJkprrmOZgRMR64FnAtWVoa0TsjIhLI2JomutsiYixiBgbHx+fW7WSJKkRug4YEbEK+Crwrsx8APgU8FRgA+13OD4y1fUyc1tmjmbm6MjIyNwrliRJi15XASMiltEOF1/MzCsAMvPezHw0Mx8DPgucOX9lSpKkJunmWyQBXALclpkf7Rhf17Hbq4Gb65cnSZKaqJtvkTwfOA+4KSJ2lLH3AudGxAYggd3A+fNQnyRJaqBuvkXyAyCm2PTN+uVIkqSlwDN5SpKk6gwYkiSpOgOGJEmqzoAhSZKqM2BIkqTqDBiSJKk6A4YkSarOgCFJkqozYEiSpOoMGJIkqToDhiRJqs6AIUmSquvmr6lKkqQFlJm0Wq3D661WizW9K2dWDBiSJC0yrVaL8z93DYMrVgOw/77/4zNrHwEGe1vYMTBgSJK0CA2uWM3gqhMBmHjogR5Xc+ycgyFJkqozYEiSpOoMGJIkqToDhiRJqs6AIUmSqjNgSJKk6gwYkiSpOgOGJEmqbsaAERGnRsR3I+LWiLglIt5Zxocj4qqIuKP8HJr/ciVJUhN08w7GQeDdmXkG8DzgbRFxBnABcHVmng5cXdYlSZJmDhiZeU9m3lCW9wO3AScDm4DtZbftwDnzVKMkSWqYY5qDERHrgWcB1wInZeY9ZdNPgZOmuc6WiBiLiLHx8fG51CpJkhqi64AREauArwLvyswj/upKZiaQU10vM7dl5mhmjo6MjMypWEmS1AxdBYyIWEY7XHwxM68ow/dGxLqyfR2wd35KlCRJTdPNt0gCuAS4LTM/2rHp68DmsrwZuLJ+eZIkqYkGutjn+cB5wE0RsaOMvRf4IHB5RLwRuAt43bxUKEmSGmfGgJGZPwBims0vqVuOJElaCjyTpyRJqs6AIUmSqjNgSJKk6gwYkiSpOgOGJEmqzoAhSZKqM2BIkqTqDBiSJKk6A4YkSarOgCFJkqozYEiSpOoMGJIkqToDhiRJqs6AIUmSqjNgSJKk6gwYkiSpOgOGJEmqzoAhSZKqM2BIkqTqDBiSJKk6A4YkSarOgCFJkqozYEiSpOoMGJIkqboZA0ZEXBoReyPi5o6xiyJiT0TsKJez57dMSZLUJN28g/F5YOMU4xdn5oZy+WbdsiRJUpPNGDAy8/vA/QtQiyRJWiLmMgdja0TsLB+hDE23U0RsiYixiBgbHx+fw91JkqSmmG3A+BTwVGADcA/wkel2zMxtmTmamaMjIyOzvDtJktQkswoYmXlvZj6amY8BnwXOrFuWJElqslkFjIhY17H6auDm6faVJEn9Z2CmHSLiS8CLgLURcTfwfuBFEbEBSGA3cP78lShJkppmxoCRmedOMXzJPNQiSZKWCM/kKUmSqjNgSJKk6gwYkiSpOgOGJEmqzoAhSZKqM2BIkqTqDBiSJKk6A4YkSarOgCFJkqozYEiSpOoMGJIkqToDhiRJqs6AIUmSqjNgSJKk6gwYkiSpOgOGJEmqzoAhSZKqM2BIkqTqDBiSJKk6A4YkSarOgCFJkqozYEiSpOoMGJIkqboZA0ZEXBoReyPi5o6x4Yi4KiLuKD+H5rdMSZLUJN28g/F5YOOksQuAqzPzdODqsi5JkgR0ETAy8/vA/ZOGNwHby/J24Jy6ZUmSpCab7RyMkzLznrL8U+Ck6XaMiC0RMRYRY+Pj47O8O0mS1CRznuSZmQnkUbZvy8zRzBwdGRmZ691JkqQGmG3AuDci1gGUn3vrlSRJkpputgHj68DmsrwZuLJOOZIkaSno5muqXwL+A3h6RNwdEW8EPgi8LCLuAF5a1iVJkgAYmGmHzDx3mk0vqVyLJElaIjyTpyRJqs6AIUmSqjNgSJKk6gwYkiSpOgOGJEmqzoAhSZKqM2BIkqTqDBiSJKk6A4YkSarOgCFJkqozYEiSpOoMGJIkqToDhiRJqs6AIUmSqjNgSJKk6gwYkiSpOgOGJEmqzoAhSZKqM2BIkqTqBnpdgCRJTZSZtFqtI8aGhoaIiB5VtLgYMCRJmoVWq8X5n7uGwRWrAZh4eD+fedMLGR4e7nFli4MBQ5KkWRpcsZrBVSf2uoxFyTkYkiSpujm9gxERu4H9wKPAwcwcrVGUJElqthofkbw4M++rcDuSJGmJ8CMSSZJU3VwDRgLfjojrI2LLVDtExJaIGIuIsfHx8TnenSRJaoK5Bow/yMxnA68E3hYRfzh5h8zclpmjmTk6MjIyx7uTJElNMKeAkZl7ys+9wNeAM2sUJUmSmm3WASMiVkbE6kPLwMuBm2sVJkmSmmsu3yI5CfhaOSXqAPBPmflvVaqSJEmNNuuAkZl3As+sWIskSVoi/JqqJEmqzoAhSZKqM2BIkqTqDBiSJKk6A4YkSarOgCFJkqozYEiSpOoMGJIkqToDhiRJqs6AIUmSqjNgSJKk6gwYkiSpOgOGJEmqzoAhSZKqM2BIkqTqDBiSJKk6A4YkSarOgCFJkqozYEiSpOoGel1ADZlJq9U6vD40NERE9LAiqRkmP3fA5489WVoWy++HfnxcLYmA0Wq1OP9z1zC4YjUTD+/nM296IcPDw70uS1r0Op87gM8f7MlSs1h+P7RaLW5521bWDA4CsG9igmd88hNL+nG1JAIGwOCK1QyuOrHXZUiN43PniezJ0rJY/j3XDA6y5vjje13GgnEOhiRJqs6AIUmSqptTwIiIjRFxe0TsiogLahUlSZKabdYBIyKOAz4JvBI4Azg3Is6oVZgkSWquuUzyPBPYlZl3AkTEZcAm4NYahR2riYf3H/45+atAx2KqGb3333//rG/P2+7dbU91+972E2/70HPn0HLN5489ae7zZynd9nz+fuj2sdJqtdg3MXF4fd/EBCs69p3ptg/84kFa8QjLl0+w76FHOLD/AL8c+GV7v4cm+PkELB9o/0r/+cQED/1iP8uXLePBhx84xqOsJzJzdleMeC2wMTPfVNbPA343M7dO2m8LsKWsPh24ffblHmEtcF+l22oy+2APwB4cYh/sAdiDQxaiD7+RmSNTbZj3r6lm5jZgW+3bjYixzBytfbtNYx/sAdiDQ+yDPQB7cEiv+zCXSZ57gFM71k8pY5Ikqc/NJWD8J3B6RJwWEcuB1wNfr1OWJElqsll/RJKZByNiK/At4Djg0sy8pVplM6v+sUtD2Qd7APbgEPtgD8AeHNLTPsx6kqckSdJ0PJOnJEmqzoAhSZKqW7QBIyK+HBE7ymV3ROzo2Paecnry2yPiFR3jU566vExEvbaMf7lMSm2EiHh7RPx3RNwSEX/XMd4XPYiIiyJiT8dj4eyObX3Rg04R8e6IyIhYW9YjIj5ejmlnRDy7Y9/NEXFHuWzuGH9ORNxUrvPxiIheHMuxiogPlGPcERHfjognl/F+6sGHy+vBzoj4WkSs6djWN8+HiPjj8pr4WESMTtrWN32YznTHuuAyc9FfgI8A7yvLZwA3AoPAacCPaE8yPa4sPwVYXvY5o1zncuD1ZfnTwFt6fUxdHveLge8Ag2X91/qwBxcBfzHFeN/0oOOYT6U9qfouYG0ZOxv4VyCA5wHXlvFh4M7yc6gsD5Vt15V9o1z3lb0+ti6P/4SO5XcAn+7DHrwcGCjLHwI+VJb76vkA/DbtEzd+DxjtGO+rPkzTm2mPdaEvi/YdjEPK/yxeB3ypDG0CLsvMicz8MbCL9mnLD5+6PDMPAJcBm8r1zwK+Uq6/HThnAQ9hLt4CfDAzJwAyc28Z76ceTKcfe3Ax8JdA58zsTcAXsu2HwJqIWAe8ArgqM+/PzBZwFbCxbDshM3+Y7VejL9CQPmRm5zmPV/J4H/qpB9/OzINl9Ye0zz8EffZ8yMzbMnOqs0L3VR+mMeWx9qKQRR8wgBcA92bmHWX9ZOAnHdvvLmPTjT8J2NfxpDw03gRPA15Q3r67JiKeW8b7qQcAW8tbwpdGxFAZ66seRMQmYE9m3jhp07H24eSyPHm8ESLibyPiJ8CfAO8rw33Vgw5voP3uC/TZ8+Eo7MP0x7rg5v1U4UcTEd8Bfn2KTRdm5pVl+Vwef/diyTlaD2j/+wzTfiv3ucDlEfGUBSxvQczQg08BH6D9v9UP0P647A0LV93CmaEP76X99viSNtNrQmZeCFwYEe8BtgLvX9ACF0A3r4sRcSFwEPjiQta2kLr8/aBFrKcBIzNferTtETEAvAZ4Tsfw0U5RPtX4z2i/ZTpQUuqiOqX50XoQEW8Brihv414XEY/R/uM1fdODThHxWeAbZXVJ9QCm70NE/A7tz5NvLHMRTwFuiIgzmb4Pe4AXTRr/Xhk/ZYr9F4VuHwu0f7F+k3bA6KseRMSfAn8EvKS8NkAfPR9msOT6MAuL58949GLiR7cXYCNwzaSxZ3DkJJ47aU9qGSjLp/H4xJZnlOv8M0dO4nlrr4+ty+N/M/DXZflptN/2ij7rwbqO5T+n/flqXz0OpujJbh6f5PkqjpzgeF0ZHwZ+THty41BZHi7bJk9wPLvXx9TlcZ/esfx24Ct92IONwK3AyKTxvnw+8MRJnn3Zh0k9mfZYF7yWXjdjhkZ9HnjzFOMX0p4lezsds79pzyb/n7Ltwo7xp5QXlF3lwTTY62Pr8viXA/8I3AzcAJzVhz34B+AmYCftv3XTGTj6ogdT9GQ3jweMAD5ZjvWmSS+2byjHugv4s47x0fKY+hHwCcoZfRf7BfhqqXsn8C/AyX3Yg120/6Oxo1w+3bGtb54PwKtpzy2YAO4FvtWPfThKf6Y81oW+eKpwSZJUXRO+RSJJkhrGgCFJkqozYEiSpOoMGJIkqToDhiRJqs6AIUmSqjNgSJKk6v4fRnkBwklTfigAAAAASUVORK5CYII=\n",
       "text/plain": [
        "<Figure size 648x288 with 1 Axes>"
       ]
@@ -993,58 +1118,55 @@
     }
    ],
    "source": [
-    "#Histograma\n",
-    "\n",
-    "plt.figure(figsize=(9,4))\n",
-    "plt.hist(zz, bins=5, histtype='bar', alpha=0.7, edgecolor = 'black', linewidth=0.2)\n",
-    "plt.show()"
+    "analisis(G)"
    ]
   },
   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "------------------------------------------------------------------"
+    "_PARA AZUL_"
    ]
   },
   {
    "cell_type": "code",
    "execution_count": 26,
    "metadata": {},
-   "outputs": [],
-   "source": [
-    "estrellas_para_estadistica = estrellas_recortadas(imagen_grisss, 230)\n"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 27,
-   "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "[NbConvertApp] Converting notebook Entrega.ipynb to markdown\n",
-      "[NbConvertApp] Support files will be in Entrega_files/\n",
-      "[NbConvertApp] Making directory Entrega_files\n",
-      "[NbConvertApp] Making directory Entrega_files\n",
-      "[NbConvertApp] Making directory Entrega_files\n",
-      "[NbConvertApp] Making directory Entrega_files\n",
-      "[NbConvertApp] Making directory Entrega_files\n",
-      "[NbConvertApp] Making directory Entrega_files\n",
-      "[NbConvertApp] Making directory Entrega_files\n",
-      "[NbConvertApp] Making directory Entrega_files\n",
-      "[NbConvertApp] Making directory Entrega_files\n",
-      "[NbConvertApp] Making directory Entrega_files\n",
-      "[NbConvertApp] Making directory Entrega_files\n",
-      "[NbConvertApp] Writing 14510 bytes to Entrega.md\n"
+      "En total se estan analizando 45 estrellas\n",
+      "  \n",
+      "Mediana:  1.3063649806304618\n",
+      "Media:  -4233247.385112735\n",
+      "Desviacion estandar 1:  45270472.137159556\n",
+      "Desviacion estandar 2:  45169759.059932515\n"
      ]
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAEFCAYAAAChJJ7IAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAOkElEQVR4nO3dfYxldX3H8c9Xll2E5WFXphTBdkklWmIVmw0+/dEGtKXWCBptNIbQFIMmpbWpiVVpqq1tojWWNn0w4kPcNMaH2jYYa1sooraJ2i6KD4gWahVBcdcwuDzoIuXbP+ZCVrLLzM787l7u7OuVbOaee86c+82ZzfLm3DPnVncHAGCkR816AABg/REYAMBwAgMAGE5gAADDCQwAYLgNh/LFTjzxxN62bduhfEkAYEquvfba73X3wv7WHdLA2LZtW3bu3HkoXxIAmJKq+uaB1nmLBAAYTmAAAMMJDABgOIEBAAwnMACA4QQGADCcwAAAhhMYAMBwh/RGWwDAwenuLC4u/thyklTVipa3bNny4ONDSWAAwCPY4uJiFndckC3HHJkk+cauu/PWxz4mm7dsTpLsuW1PXvnxZOGYY5IkN+/Zk5vPuCBbjtuau+7Zkxf+9jOzdevWQz63wACAR7gtxxyZrZs3JUkW7743G4/dmKOOOypJsvfOvTl+U3LCUUvL39+7N8c8+tgce8zxM5s3cQ0GADAFAgMAGE5gAADDCQwAYDiBAQAMJzAAgOH8mioAPMLse3OtxcXFnDDbcVZFYADAI8zi4mJe8a5PZtPRx+bO73077zjxR0k2zXqsg+ItEgB4BNp09LHZtPn4bHz05lmPsioCAwAYTmAAAMMJDABgOIEBAAwnMACA4QQGADCcwAAAhhMYAMBwAgMAGG7FgVFVR1TV56vqo5Pl06rqs1V1U1V9sKo2Tm9MAGCeHMwZjFcluWGf5bckuay7H59kMclFIwcDAObXigKjqk5N8qtJ3jVZriRnJ/nwZJMdSc6fwnwAwBxa6RmMP0/ymiT3T5Yfk+SO7r5vsnxLklP2941VdXFV7ayqnbt3717LrADAnFg2MKrqeUl2dfe1q3mB7r68u7d39/aFhYXV7AIAmDMbVrDNs5I8v6qem+SoJMcl+YskJ1TVhslZjFOT3Dq9MQGAebLsGYzufl13n9rd25K8JMnHu/tlSa5J8qLJZhcmuWJqUwIAc2Ut98H4vSS/W1U3ZemajHePGQkAmHcreYvkQd39iSSfmDz+epKzxo8EAMw7d/IEAIYTGADAcAIDABhOYAAAwwkMAGA4gQEADCcwAIDhBAYAMJzAAACGExgAwHACAwAYTmAAAMMJDABgOIEBAAwnMACA4QQGADCcwAAAhhMYAMBwAgMAGE5gAADDCQwAYDiBAQAMJzAAgOEEBgAwnMAAAIYTGADAcAIDABhOYAAAwwkMAGA4gQEADCcwAIDhBAYAMJzAAACGExgAwHACAwAYTmAAAMMJDABguGUDo6qOqqr/rKovVNX1VfWHk+dPq6rPVtVNVfXBqto4/XEBgHmwkjMYe5Oc3d1PSXJmknOr6ulJ3pLksu5+fJLFJBdNbUoAYK4sGxi95K7J4pGTP53k7CQfnjy/I8n50xgQAJg/K7oGo6qOqKrrkuxKclWS/0lyR3ffN9nkliSnHOB7L66qnVW1c/fu3QNGBgAe6VYUGN39f919ZpJTk5yV5IkrfYHuvry7t3f39oWFhdVNCQDMlYP6LZLuviPJNUmekeSEqtowWXVqklvHjgYAzKuV/BbJQlWdMHn86CTPSXJDlkLjRZPNLkxyxZRmBADmzIblN8nJSXZU1RFZCpIPdfdHq+orST5QVX+c5PNJ3j3FOQGAObJsYHT3F5M8dT/Pfz1L12MAAPwYd/IEAIYTGADAcAIDABhOYAAAwwkMAGA4gQEADCcwAIDhBAYAMJzAAACGExgAwHACAwAYTmAAAMMJDABgOIEBAAwnMACA4QQGADCcwAAAhhMYAMBwAgMAGE5gAADDCQwAYDiBAQAMJzAAgOEEBgAwnMAAAIYTGADAcAIDABhOYAAAwwkMAGA4gQEADCcwAIDhBAYAMJzAAACGExgAwHACAwAYTmAAAMMJDABguGUDo6oeV1XXVNVXqur6qnrV5PmtVXVVVd04+bpl+uMCAPNgJWcw7kvy6u4+I8nTk/xmVZ2R5LVJru7u05NcPVkGAFg+MLr7O939ucnjO5PckOSUJOcl2THZbEeS86c0IwAwZw7qGoyq2pbkqUk+m+Sk7v7OZNVtSU46wPdcXFU7q2rn7t271zIrADAnVhwYVbU5yd8n+Z3u3rPvuu7uJL2/7+vuy7t7e3dvX1hYWNOwAMB8WFFgVNWRWYqL93X3P0ye/m5VnTxZf3KSXdMZEQCYNyv5LZJK8u4kN3T3n+2z6iNJLpw8vjDJFePHAwDm0YYVbPOsJBck+VJVXTd57vVJ3pzkQ1V1UZJvJvm1qUwIAMydZQOju/8jSR1g9TljxwEA1gN38gQAhhMYAMBwAgMAGE5gAADDCQwAYDiBAQAMJzAAgOEEBgAwnMAAAIYTGADAcAIDABhOYAAAwwkMAGA4gQEADCcwAIDhBAYAMJzAAACGExgAwHACAwAYTmAAAMMJDABgOIEBAAwnMACA4QQGADCcwAAAhhMYAMBwAgMAGE5gAADDCQwAYDiBAQAMJzAAgOEEBgAwnMAAAIYTGADAcAIDABhOYAAAwwkMAGC4ZQOjqt5TVbuq6sv7PLe1qq6qqhsnX7dMd0wAYJ6s5AzGe5Oc+5DnXpvk6u4+PcnVk2UAgCQrCIzu/lSS2x/y9HlJdkwe70hy/tixAIB5ttprME7q7u9MHt+W5KQDbVhVF1fVzqrauXv37lW+HAAwT9Z8kWd3d5J+mPWXd/f27t6+sLCw1pcDAObAagPju1V1cpJMvu4aNxIAMO9WGxgfSXLh5PGFSa4YMw4AsB6s5NdU35/k00meUFW3VNVFSd6c5DlVdWOSZ0+WAQCSJBuW26C7X3qAVecMngUAWCfcyRMAGE5gAADDCQwAYDiBAQAMJzAAgOEEBgAwnMAAAIYTGADAcAIDABhOYAAAwwkMAGA4gQEADCcwAIDhBAYAMJzAAACGExgAwHACAwAYTmAAAMMJDABgOIEBAAwnMACA4QQGADCcwAAAhhMYAMBwAgMAGE5gAADDCQwAYDiBAQAMJzAAgOEEBgAwnMAAAIYTGADAcAIDABhOYAAAw22Y9QAjdHcWFxcfXN6yZUuqaoYTsVoP/Vkmfp4A82hdBMbi4mJe8a5PZtPRx2bvPXfmHS//hWzdunXWY7EK+/4sk/h5AsypdREYSbLp6GOzafPxsx6DAfwsAebfmq7BqKpzq+prVXVTVb121FAAwHxbdWBU1RFJ/jrJryQ5I8lLq+qMUYMBAPNrLW+RnJXkpu7+epJU1QeSnJfkKyMGO1h777nzwa8PvUjwYOzvvf7bb7991fuz74Pf9wM/ywcer/bnOa/HZH/7t2/7nvW+R+7fvle27wf+Lbz3B3dlsX6UjRv3JknuuPtHuffOe/PDDT9c2u7uvfn+3mTjhqX/pH9/797c/YM7s/HII3PXPXuGzLca1d2r+8aqFyU5t7tfPlm+IMnTuvuSh2x3cZKLJ4tPSPK11Y87V05M8r1ZD7GOOJ7jOaZjOZ7jOabjjT6mP93dC/tbMfWLPLv78iSXT/t1Hmmqamd3b5/1HOuF4zmeYzqW4zmeYzreoTyma7nI89Ykj9tn+dTJcwDAYW4tgfFfSU6vqtOqamOSlyT5yJixAIB5tuq3SLr7vqq6JMm/JjkiyXu6+/phk82/w+5toSlzPMdzTMdyPMdzTMc7ZMd01Rd5AgAciA87AwCGExgAwHACY0qq6o1VdWtVXTf589xZz7ReVNWrq6qr6sRZzzLvqupNVfXFyd/RK6vqsbOeaZ5V1Vur6quTY/qPVXXCrGead1X14qq6vqruryq/srpKs/hoD4ExXZd195mTPx+b9TDrQVU9LskvJbl51rOsE2/t7id395lJPprkD2Y8z7y7KsmTuvvJSf47yetmPM968OUkL0zyqVkPMq9m9dEeAoN5c1mS1yRxdfIA3b3vfYSPieO6Jt19ZXffN1n8TJbuD8QadPcN3X243AF6Wh78aI/uvjfJAx/tMVUCY7oumZwqfU9VbZn1MPOuqs5Lcmt3f2HWs6wnVfUnVfWtJC+LMxgj/UaSf571EJDklCTf2mf5lslzUzX1W4WvZ1X1b0l+cj+rLk3y9iRvytL/Eb4pyduy9A8OD2OZY/r6LL09wkF4uGPa3Vd096VJLq2q1yW5JMkbDumAc2a54znZ5tIk9yV536GcbV6t5JgyfwTGGnT3s1eyXVW9M0vvb7OMAx3Tqvq5JKcl+UJVJUunnj9XVWd1922HcMS5s9K/p1n6j+HHIjAe1nLHs6p+PcnzkpzTbjS0Igfxd5TVmclHe3iLZEqq6uR9Fl+QpQuVWKXu/lJ3/0R3b+vubVk6xffz4mJtqur0fRbPS/LVWc2yHlTVuVm6Ruj53X3PrOeBiZl8tIczGNPzp1V1ZpbeIvlGklfMdBrYvzdX1ROS3J/km0leOeN55t1fJdmU5KrJmbbPdLdjugZV9YIkf5lkIck/VdV13f3LMx5rrszqoz3cKhwAGM5bJADAcAIDABhOYAAAwwkMAGA4gQEAh5nJHaZ3VdWyt1Coqp+qqmuq6vOTu1Ov6MM7BQYAHH7em+TcFW77+0k+1N1PzdI9NP5mJd8kMADgMNPdn0py+77PVdXPVNW/VNW1VfXvVfXEBzZPctzk8fFJvr2S13CjLQAgSS5P8sruvrGqnpalMxVnJ3ljkiur6rey9KnLK7q1u8AAgMNcVW1O8swkfze5C22ydFfaJHlpkvd299uq6hlJ/raqntTd9z/cPgUGAPCoJHd095n7WXdRJtdrdPenq+qoJCcm2bXcDgGAw1h370nyv1X14iSpJU+ZrL45yTmT5382yVFJdi+3T59FAgCHmap6f5JfzNKZiO8meUOSjyd5e5KTkxyZ5APd/UdVdUaSdybZnKULPl/T3Vcu+xoCAwAYzVskAMBwAgMAGE5gAADDCQwAYDiBAQAMJzAAgOEEBgAw3P8Dp59v2sRLpm4AAAAASUVORK5CYII=\n",
+      "text/plain": [
+       "<Figure size 648x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
     }
    ],
    "source": [
-    "#Para guardar el notebook a .md\n",
-    "! jupyter nbconvert --to markdown Entrega.ipynb"
+    "analisis(B)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Se puede observar que el azul es el que tiene más dispersión de datos, seguido del verde y luego el rojo. Sin embargo, la dispersión presentada por la imagen completa, no es tan grande como se ve con el azul, ni tan pequeña como se ve con el rojo."
    ]
   }
  ],
diff --git a/Entrega.md b/Entrega.md
index d67512a2427f5be8d6302a176ffd7b5d801799ea..95057b49a7591b1b386d2646d3f8b26408820d2f 100644
--- a/Entrega.md
+++ b/Entrega.md
@@ -57,7 +57,7 @@ plt.imshow(imagen)
 
 
 
-    <matplotlib.image.AxesImage at 0x7f38c3d63940>
+    <matplotlib.image.AxesImage at 0x7fc8d32b48d0>
 
 
 
@@ -187,7 +187,7 @@ plt.imshow(imagen_grisss, cmap='gray')
 
 
 
-    <matplotlib.image.AxesImage at 0x7f38c3c5b198>
+    <matplotlib.image.AxesImage at 0x7fc8d31f9f98>
 
 
 
@@ -527,6 +527,7 @@ clase_estrella=[]
 for item in lista_estrellas:
     clase_estrella.append(Estrella_a(item))
 
+
 ```
 
 
@@ -555,7 +556,6 @@ for i in range(0,len(clase_estrella)):
 
 fig, axs = plt.subplots(2, 2, figsize=(6,6))
 
-<<<<<<< HEAD
 axs[0, 0].imshow(graficas[0], cmap='gray')
 axs[0, 0].set_title('Estrella 1')
 axs[0, 1].imshow(graficas[1], cmap='gray')
@@ -579,19 +579,56 @@ for ax in axs.flat:
 
 **Análisis estadistico**
 
+
+```python
+
+```
+
+
+```python
+#Haciendo el análisis para toda la imagen
+
+estrellas_para_estadistica = estrellas_recortadas(imagen_grisss, 245)
+
+#Conversion a la clase estrella
+
+clase_estrella_todas=[]
+
+
+for item in estrellas_para_estadistica:
+    clase_estrella_todas.append(Estrella_a(item))
+    
+#Recoleccion de parámetros
+
+p1=np.array([1,0,1,5,5])   #Para recordar: p = [a, b, c, x0, y0]
+
+parametros_todas=[]
+
+print(len(clase_estrella_todas))
+
+for i in range(0,len(clase_estrella_todas)):
+    uno, dos = clase_estrella_todas[i].ajusteGauss(p1)
+    
+    parametros_todas.append(dos)
+```
+
+    54
+
+
 Para encontrar la mediana, media, moda y desviacion estandar del ajuste hecho se hace lo siguiente:
 
 
 ```python
-evaluar=np.array(parametros)
+evaluar=np.array(parametros_todas)
+
 
-evaluar=evaluar*2*math.sqrt(2*math.log(2))
+FWHM=evaluar*2*math.sqrt(2*math.log(2))
 
 ```
 
 
 ```python
-zz=evaluar
+zz=FWHM
 ```
 
 
@@ -618,58 +655,45 @@ print('Desviacion estandar 1: ', desviacion)
 print('Desviacion estandar 2: ', desviacion1)
 ```
 
-    Mediana:  2.9331335083105
-    Media:  6.958263965191911
-    Moda:  15.497
-    Desviacion estandar 1:  6.4437838006164565
-    Desviacion estandar 2:  6.280623550702009
 
+    ---------------------------------------------------------------------------
 
-Para hacer el histograma
+    StatisticsError                           Traceback (most recent call last)
 
+    <ipython-input-25-0b358d0ceb36> in <module>
+          6 
+          7 #Moda
+    ----> 8 moda=stat.mode(np.round(zz,3).reshape(-1))
+          9 
+         10 #Desviacion estandar con scipy
 
-```python
-#Histograma
 
-plt.figure(figsize=(9,4))
-plt.hist(zz, bins=5, histtype='bar', alpha=0.7, edgecolor = 'black', linewidth=0.2)
-plt.show()
-```
+    /usr/lib/python3.7/statistics.py in mode(data)
+        504     elif table:
+        505         raise StatisticsError(
+    --> 506                 'no unique mode; found %d equally common values' % len(table)
+        507                 )
+        508     else:
 
 
-    
-![png](Entrega_files/Entrega_53_0.png)
-    
+    StatisticsError: no unique mode; found 3 equally common values
 
 
-------------------------------------------------------------------
+Para hacer el histograma
 
 
 ```python
-estrellas_para_estadistica = estrellas_recortadas(imagen_grisss, 230)
+#Histograma
 
+plt.figure(figsize=(9,4))
+plt.hist(zz, bins=5, histtype='bar', alpha=0.7, edgecolor = 'black', linewidth=0.2)
+plt.show()
 ```
 
+------------------------------------------------------------------
+
 
 ```python
 #Para guardar el notebook a .md
 ! jupyter nbconvert --to markdown Entrega.ipynb
 ```
-
-    [NbConvertApp] Converting notebook Entrega.ipynb to markdown
-    [NbConvertApp] Support files will be in Entrega_files/
-    [NbConvertApp] Making directory Entrega_files
-    [NbConvertApp] Making directory Entrega_files
-    [NbConvertApp] Making directory Entrega_files
-    [NbConvertApp] Making directory Entrega_files
-    [NbConvertApp] Making directory Entrega_files
-    [NbConvertApp] Making directory Entrega_files
-    [NbConvertApp] Making directory Entrega_files
-    [NbConvertApp] Making directory Entrega_files
-    [NbConvertApp] Making directory Entrega_files
-    [NbConvertApp] Making directory Entrega_files
-    [NbConvertApp] Making directory Entrega_files
-    [NbConvertApp] Writing 13781 bytes to Entrega.md
-
-=======
->>>>>>> 0f2da7af2bf4815482fe5f2f1fa9eb1e200e0f1f