From 128ed6a898f35013f9caa35a5d56de0b37e9942f Mon Sep 17 00:00:00 2001
From: Gerardo Semprum <semprumg@jupyterMiLAB>
Date: Fri, 26 Feb 2021 15:04:48 -0500
Subject: [PATCH] Codigo desarrollado

---
 codigo/Reporte_Codigo_SemprumG.ipynb | 591 +++++++++++++++++++++++++++
 1 file changed, 591 insertions(+)
 create mode 100644 codigo/Reporte_Codigo_SemprumG.ipynb

diff --git a/codigo/Reporte_Codigo_SemprumG.ipynb b/codigo/Reporte_Codigo_SemprumG.ipynb
new file mode 100644
index 0000000..37c48cd
--- /dev/null
+++ b/codigo/Reporte_Codigo_SemprumG.ipynb
@@ -0,0 +1,591 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### Análisis de datos.\n",
+    "Gerardo Semprúm.\n",
+    "\n",
+    "Universidad Central de Venezuela.\n",
+    "\n",
+    "Módulo de datos 1."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Importando las librerias necesarias:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import pandas as pd\n",
+    "import numpy as np\n",
+    "import matplotlib.pyplot as plt\n",
+    "import sys \n",
+    "sys.path.append(\"../data-used/4B-1.csv\")\n",
+    "sys.path.append(\"../data-used/4B-6.csv\")\n",
+    "sys.path.append(\"../data-used/4B-9.csv\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Las tablas presentadas a continuación fueron el resultado analizar distintos sistemas acuosos de polimero-surfactante, con el fin de determinar la conductividad eléctrica en un rango de frecuencias entre 1 Hz y 10 kHz, usando una fuente de corriente alterna, un amplificador “Lock-in” y un condensador de placas plano-paralelas de acero inoxidable de 40mL de volumen en donde se colocó la muestra. Realizado en el laboratorio de Paramagnetismo de la \"Facultad de Ciencias\" en la \"Universidad Central de Venezuela\".\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Los datos con los que cuenta cada tabla son : frecuencia(f, (Hz)), frecuencia angular(w, (rad/s)), modulo de la impedancia(Z, (ohm)) y conductividad (s, (S/m)). **Nota: f y w son iguales en todas las tablas. Siendo w un valor calculado y f producido por un generador de frecuencias.**"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {
+    "scrolled": true
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "        f             w        Z        s \n",
+      "0       1      6.283185  178.909  0.004839\n",
+      "1      10     62.831853   61.973  0.013971\n",
+      "2      30    188.495559   37.566  0.023047\n",
+      "3      70    439.822971   26.152  0.033107\n",
+      "4     100    628.318531   22.600  0.038310\n",
+      "5     150    942.477796   19.405  0.044617\n",
+      "6     200   1256.637061   17.262  0.050157\n",
+      "7     300   1884.955592   13.977  0.061945\n",
+      "8     400   2513.274123   12.866  0.067291\n",
+      "9     500   3141.592654   11.681  0.074118\n",
+      "10   1000   6283.185307    8.773  0.098692\n",
+      "11   1500   9424.777961    7.874  0.109955\n",
+      "12   2000  12566.370610    7.338  0.117992\n",
+      "13   3000  18849.555920    6.803  0.127269\n",
+      "14   4000  25132.741230    6.564  0.131894\n",
+      "15   5000  31415.926540    6.379  0.135729\n",
+      "16   6000  37699.111840    6.292  0.137607\n",
+      "17   7000  43982.297150    6.220  0.139188\n",
+      "18   8000  50265.482460    6.171  0.140302\n",
+      "19   9000  56548.667760    6.135  0.141136\n",
+      "20  10000  62831.853070    6.101  0.141921\n"
+     ]
+    }
+   ],
+   "source": [
+    "#Definimos la primera solución (4B-1):\n",
+    "sol_1 = pd.read_csv(\"../data-used/4B-1.csv\",\";\")\n",
+    "print(sol_1)\n",
+    "\n",
+    "#Asignando columnas a variables para mejorar la manipulación de los datos:\n",
+    "z1 = sol_1.loc[:,\"Z\"]\n",
+    "s1 = sol_1.loc[:,\"s \"]\n",
+    "f = sol_1.loc[:,\"f\"]"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Como primer procesamiento de datos, graficamos la conductividad de dicha solución en función de la frecuencia aplicada:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "<matplotlib.collections.PathCollection at 0x7fa6fe80f5c0>"
+      ]
+     },
+     "execution_count": 4,
+     "metadata": {},
+     "output_type": "execute_result"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEWCAYAAAB8LwAVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAmTklEQVR4nO3de5hcVZ3u8e+bhASC3GkQQpIGg3qCMAjNbY4iAwLBQYIKmpiRi2iGo8wZxcvBE3UgmJnREeV4gJE4oIDhmgGNCiIaxRkHIR1AQkC0gSQEEMIt3OQS+M0faxWpFLurKumqru6q9/M89VTttfbetXbt7vrV3uumiMDMzKzSiFYXwMzMhiYHCDMzK+QAYWZmhRwgzMyskAOEmZkVcoAwM7NCDhA2aCSdIOk/m7DfCZKelTSyjnW/LelLVfJD0qQNLMcySe/ekG2bQdL2kn4t6RlJZ7W6PAMl6TpJx7e6HJ3EAcKQ9GFJvflL9uH8j/iOVperP5VfxBGxIiLeEBGv1No2Ik6OiDObW8LXk/RXkn4pabWkZYP0tjOBx4DNI+Izg/SeTRMRR0TERa0uRydxgOhwkk4Fzgb+EdgemACcB0xtYbHa0XPAhcDnBvE9JwJ3RT+9YSWNGsSy2HAUEX506APYAngWOLbKOmNIAeSh/DgbGJPzDgJWAp8BHgUeBk4s23YbYAHwNHALcCbwnzmvGwhgVNn6vwI+Vrb8ceBu4BngLmAv4BLgVeDPueyfL98X8CGgt+IYPg0syK+/B3ylLO9zudwPAR/N+5mU8/4auC2X/wHg9Ir9fgRYDjwOzAKWAe+u8Zm/G1hWY53rgFMq0n4HvB8Q8M38eT8NLAHeVrCP7wEvAy/lz+ndwOnAfOD7eduP5b+BC/Jn8CDwFWBktXOQ01/7nPr5XI8EbgeeAv4L2KMsbxnwWeAOYDVwBbBxWf7UvO3TwL3AlMq/D+BNwML82T8GzAO2bPX/VLs9Wl4AP1p48mEKsIayL+mCdWYDvwW2A7ryP/uZOe+gvP1sYCPgPcDzwFY5/3LgSmBT4G35C6iuAAEcm9ffJ38pTgIm5rx1vohZN0CMzV9mu5blLwKm5devfZHl438kl21T4FLWDRAHAbuTrrT3yOsenfMmk754DyQF0W/kz6IRAeI44Ddly5PzF+0Y4HBgMbBl/lz+B7BDP/t57Vjz8umkoHF0PqZNgGuA8/Pxb0cK5H9bxznoN0AAbycFsP2AkcDx+ZyVflgsy++zI7A1KQCdnPP2JQWNQ3MZxwFvLfj7mJTXGUP6u/w1cHar/6fa7eFbTJ1tG+CxiFhTZZ0ZwOyIeDQiVgFnkH45l7yc81+OiGtJX5pvyRXGHwC+HBHPRcSdwPrcP/4Y8LWIWBRJX0Qsr7VRRDwP/BCYDiBpV+CtpCuZSh8EvhsRd0bEc6Qv0PJ9/SoilkTEqxFxB3AZ8K6cfQzw44j4dUS8CHyJdGXTCNcAe0qamJdnAFfn93kZ2CwfkyLi7oh4eD32fVNE/CAiXgU2JwX1T+Vz9Cjp6mRaXneDzgGp7uP8iLg5Il6JVG/wIrB/2TrfioiHIuIJ4EfAnjn9JODCiLghf+4PRsTvK98gl+WGiHgx/11+g7XnxhrEAaKzPQ5sW+Ne9I6k2ygly3Paa/uoCDDPA28g/aobRbo1U75tvcaTbi9siEvJAQL4MPCDHDgq7UiV8knaL1csr5K0GjgZ2LZo2xxgHt/A8q4jIp4BfsLaL+rppFsoRMRC4BzgXOBRSXMlbb4euy8/3omkK7+HJT0l6SnS1cR2OX9Dz8FE4DOlfeb9jmfdv5s/lb0u/c3U/Z65hdblkh6U9DTpttm2tbaz9eMA0dluIv2yO7rKOg+R/uFLJuS0WlaRbrmMr9i25Ln8PLYs7Y1lrx8g3WcuUmsI4huALkl7kr5cL+1nvYerlI+83QJgfERsAXybdKvlddtKGku6ImuUy4Dpkg4ANgZ+WcqIiG9FxN6kW09vZv0qvss/uwdI53/biNgyPzaPiN3K8vs7B89T/dzNKdvnlhExNiIuq6N81d6z3D/mY9k9IjYH/oa158YaxAGig0XEauDLwLmSjpY0VtJGko6Q9LW82mXAFyV1Sdo2r//9Ovb9CnA1cHre72TSvehS/irS/e2/kTRS0kdZ94vh34DPStpbyaSyWy6PALtUee+XgauAfyHd476hn1WvBE6QNDl/wf9DRf5mwBMR8YKkfUlXIyXzgSMlvUPSaFI9TL//T5JGSNqY9ItdkjbO2/XnWlJgng1ckW8JIWmffGWzESnIvsAG3trKt6Z+BpwlafNcxjdJKt2qqXYObgc+nM/dFNa9vfMd4ORcTknaVNJfS9qsjmJdAJwo6ZBcnnGS3lqw3mak25mrJY1jcFuHdQwHiA4XEWcBpwJfJP3qfwA4BfhBXuUrQC+pxckS4NacVo9TSLcO/kSqxPxuRf7HSf/YjwO7kSrAS+W6CphD+hX/TC7P1jn7n0hB6ylJn+3nvS8lVQhf1V8dS0RcR2qVtRDoy8/lPgHMlvQMKTBeWbbtUuCT+X0eBp4ktejqz4GkllfXkq5U/kz6ci6U6xuuzsdQfgW0OekL+EnWtqD6lyrvW8txwGhSC6UnSYFvh1yGaufg74H3kirPZ7D274WI6CWd23PyPvuAE+opTETcApxIqgtZDdzIulewJWeQWrWtJt2Ou7qe/dv6UYQnDDIzs9fzFYSZmRVygDAzs0IOEGZmVsgBwszMCrXNYF3bbrttdHd3t7oYZmbDyuLFix+LiK6ivLYJEN3d3fT29ra6GGZmw4qkfkc48C0mMzMr5ABhZmaFHCDMzKyQA4SZmRVygDAzs0IOEGZmw9W8edDdDSNGpOd58xq6ewcIM7OBavIXdb/vOXMmLF8OEel55syGvrcDhJnZQAzCF3WhWbPg+YqJEp9/PqU3SFMDhKQpku6R1CfptIL8AyXdKmmNpGMK8jeXtFLSOc0sp5m1gVb8iodB+aIutGLF+qVvgKYFiDxp/bnAEaSpEafnWcXKrSBNJNLflJBnAr9uVhnNrAna9HZLvwbhi7rQhMoZcmukb4BmXkHsC/RFxH0R8RJwOTC1fIWIWBYRd1AwZaKkvYHtqTLrlpkNMW18u6Vfg/BFXWjOHBg7dt20sWNTeoM0M0CMI01fWbIyp9UkaQRwFtDfdJKl9WZK6pXUu2rVqg0uqFnb8e2W6umNNAhf1IVmzIC5c2HiRJDS89y5Kb1Bhmol9SeAayOi2hy/RMTciOiJiJ6ursLBCM06j2+31E5vpEH4oq763suWwauvpucGv2czA8SDwPiy5Z1yWj0OAE6RtAz4OnCcpH9ubPHM2pRvtySD8Su+pMlf1K3SzACxCNhV0s6SRgPTgAX1bBgRMyJiQkR0k24zXRwRr2sFZTbkteJWj2+3DO6v+DbWtAAREWuAU4DrgbuBKyNiqaTZko4CkLSPpJXAscD5kpY2qzxmg65Vt3p8u6WtfsW3kiKi1WVoiJ6envCEQTakdHenoFBp4sT0BdYspcBUfptp7Fj/orZCkhZHRE9R3lCtpDYb/lp1q8e3W6xB2mbKUbMhZ8KE4iuIwbrV44BgA+QrCLNmaXXLGrMBcoCw9teqTmO+1WPDnG8xWXurrLAttSSCwWtZ44Bgw5SvIKy9tbLTmNkw5wBh7a2VncbMhjkHCGtvrew0ZjbMOUBYe3NLIrMN5gBhg6cVrYnckshsg7kVkw2OVrYmcksisw3iKwgbHG5NZDbsOEDY4HBrIrNhxwHCBodbE5kNOw4QNjjcmshs2HGAsMHh1kRmw45bMdngcWsis2HFVxBmZlbIAcLMzAo5QJiZWaGmBghJUyTdI6lP0mkF+QdKulXSGknHlKXvKekmSUsl3SHpQ80sp5mZvV7TAoSkkcC5wBHAZGC6pMkVq60ATgAurUh/HjguInYDpgBnS9qyWWU1M7PXa2Yrpn2Bvoi4D0DS5cBU4K7SChGxLOe9Wr5hRPyh7PVDkh4FuoCnmlheMzMr08xbTOOAB8qWV+a09SJpX2A0cG9B3kxJvZJ6V61atcEF7TitmqPZzIaVIV1JLWkH4BLgxIh4tTI/IuZGRE9E9HR1dQ1+AYej0qiqy5dDxNpRVR0kzKxCMwPEg8D4suWdclpdJG0O/ASYFRG/bXDZOpdHVTWzOjUzQCwCdpW0s6TRwDRgQT0b5vWvAS6OiPlNLGPn8aiqZlanpgWIiFgDnAJcD9wNXBkRSyXNlnQUgKR9JK0EjgXOl7Q0b/5B4EDgBEm358eezSprR/GoqmZWJ0VEq8vQED09PdHb29vqYgx9lTO7QRpV1QPnmXUkSYsjoqcob0hXUlsTeFRVM6uTR3PtRB5V1czq4CsIMzMr5ABhZmaFHCDMzKyQA8Rw5KEyzGwQuJJ6uKlsploaKgNc8WxmDeUriOHGQ2WY2SBxgBhuPFSGmQ0SB4jhxkNlmNkgcYAYbubMSUNjlBs7NqWbmTWQA8Rw46EyzGyQ1N2KSdJWwI7An4FlRRP42CDxUBlmNgiqBghJWwCfBKaTpv1cBWwMbC/pt8B5EfHLppfSzMwGXa0riPnAxcA7I+Kp8gxJewMfkbRLRFzQpPKZmVmLVA0QEXFolbzFwOKGl8jMzIaE9amD2APoLt8mIq5uQpnMzGwIqCtASLoQ2ANYCpQqpwNwgDAza1P1XkHsHxGTm1oSMzMbUurtB3GTJAcIM7MOUm+AuJgUJO6RdIekJZLuqLWRpCl5mz5JpxXkHyjpVklrJB1TkXe8pD/mx/F1ltPMzBqk3ltMFwAfAZawtg6iKkkjgXOBQ4GVwCJJCyLirrLVVgAnAJ+t2HZr4B+AHlJdx+K87ZN1ltfMzAao3iuIVRGxICLuj4jlpUeNbfYF+iLivoh4CbgcmFq+QkQsi4g7eH3QORy4ISKeyEHhBmBKnWUdHjzpj5kNcfVeQdwm6VLgR8CLpcQazVzHAQ+ULa8E9qvz/Yq2HVe5kqSZwEyACcNpNFNP+mNmw0C9VxCbkALDYcB78+PIZhWqXhExNyJ6IqKnq6ur1cWpnyf9MbNhoNZYTNOBn0XEiRuw7weB8WXLO+W0erc9qGLbX21AGYYmT/pjZsNArSuICcBVkv5D0umS9pOkOve9CNhV0s6SRgPTgAV1bns9cJikrfIosofltPbgSX/MbBioGiAi4qsRcTDwHuB3wEeBWyVdKuk4SdtX2XYNcArpi/1u4MqIWCpptqSjACTtI2klcCxwvqSledsngDNJQWYRMDuntQdP+mNmw4AiYv03Sp3mjgAOi4jDG16qDdDT0xO9vb2tLkb95s1LdQ4rVqQrhzlzXEFtZoNO0uKI6CnMqxYgJE0EnoqI1Xn5r4CjgeXAObn56pAw7AKEmdkQUC1A1KqDuBLYNO9kT+AqUue2vyB1gjMzszZVqx/EJhHxUH79N8CFEXGWpBHA7U0tmZmZtVStK4jyFksHA78A8HzUZmbtr9YVxEJJVwIPA1sBCwEk7QAMmfoHMzNrvFoB4lPAh4AdgHdExMs5/Y2Au/2ambWxmmMxRcTlBWm3lV5LUmxIW1kzMxvSatVB/FLS30lap4uvpNGSDpZ0EeC5GszM2lCtK4gppN7Tl0naGXgK2BgYCfwMOLv8asLMzNpH1QARES8A5wHnSdoI2Bb4c0Q8NQhlMzOzFqp3PghyBfXDTSyLmZkNIfXOB2FmZh3GAcLMzAo5QJiZWaFaM8o9A/TbxyEiNm94iczMbEio1YppMwBJZ5IqqC8hjc80g9S72szM2lS9t5iOiojzIuKZiHg6Iv4VmNrMgpmZWWvVGyCekzRD0khJIyTNAJ5rZsHMzKy16g0QHwY+CDySH8fmNDMza1N1BYiIWBYRUyNi24joioijI2JZre0kTZF0j6Q+SacV5I+RdEXOv1lSd07fSNJFkpZIulvSF9b3wMzMbGDq6kktaWPgJGA30lhMAETER6tsM5I0LemhwEpgkaQFEXFX2WonAU9GxCRJ04CvkoYXPxYYExG7SxoL3CXpsnqCkpmZNUa9t5guIc0BcThwI7AT8EyNbfYF+iLivoh4Cbic11dsTwUuyq/nA4dIEqlp7aaSRgGbkCYnerrOspqZWQPUGyAmRcSXgOci4iLgr4H9amwzDnigbHllTitcJyLWAKuBbUjB4jlS09oVwNcj4ok6y2pmZg1Qb4AozST3lKS3AVsA2zWnSEC6+ngF2BHYGfiMpF0qV5I0U1KvpN5Vq1Y1sThmZp2n3gAxV9JWwJeABcBdwNdqbPMgML5seaecVrhOvp20BfA4qYXUTyPi5Yh4FPgN0FP5BhExNyJ6IqKnq6urzkMxM7N61NuK6d8i4smIuDEidomI7SLi2zU2WwTsKmlnSaOBaaTgUm4Ba2ekOwZYmKcvXQEcDCBpU2B/4Pf1HZKZmTVCrbGYTq2WHxHfqJK3RtIpwPWkGegujIilkmYDvRGxALgAuERSH/AEKYhAav30XUlLSUN7fDci7qj3oMzMbOBqNXPdLD+/BdiHtVcA7wVuqbXziLgWuLYi7ctlr18gNWmt3O7ZonQzMxs8VW8xRcQZEXEGqf5gr4j4TER8BtgbmDAYBRzS5s2D7m4YMSI9z5vX6hKZmTVMvVOObk/qi1DyUk7rXPPmwcyZ8PzzaXn58rQMMGNG68plZtYg9bZiuhi4RdLpkk4Hbga+16xCDQuzZq0NDiXPP5/SzczaQF1XEBExR9J1wDtz0okRcVvzijUMrFixfulmZsNMrVZMm0fE05K2BpblRylv647u3TxhQrqtVJRuZtYGat1iujQ/LwZ6yx6l5c41Zw6MHbtu2tixKd3MrA3UmnL0yPy88+AUZxgpVUTPmpVuK02YkIKDK6jNrE3UO9z3AuAy4IcR8Xyt9TvGjBkOCGbWtuptxXQWqYL6bknzJR2T54gwM7M2VW8rphuBG/MkQAcDHwcuBDZvYtnMzKyF6r2CQNImwAeAk0nDblxUfYs25d7TZtYh6q2DuJI0R8NPgXOAGyPi1WYWbEhy72kz6yBKo2vXWEk6HPh5RLzS/CJtmJ6enujtbXLL2+7u4r4PEyfCsmXNfW8zsyaQtDgiXjffDtTuKHdwRCwENgWmpumi14qIqxtWyuHAvafNrIPUusX0LmAhaXjvSgF0VoBw72kz6yC1Osr9Q345OyLuL8+T1Hmd5+bMWbcOAtx72szaVr2tmP69IG1+IwsyLMyYAXPnpjoHKT3PnesKajNrS7XqIN4K7AZsIen9ZVmbA53ZUc69p82sQ9S6gngLcCSwJakeovTYi9RZrjO474OZdaBadRA/BH4o6YCIuGmQyjS0uO+DmXWoeusgTpa0ZWlB0laSLqy1kaQpku6R1CfptIL8MZKuyPk3S+ouy9tD0k2Slkpa0rKxnzxznJl1qHoDxB4R8VRpISKeBN5ebYM8btO5wBHAZGC6pMkVq50EPBkRk4BvAl/N244Cvg+cHBG7AQcBL9dZ1sZy3wcz61D1BogRkrYqLeQZ5mr1odgX6IuI+yLiJeByYGrFOlNZO6bTfOAQpd54hwF3RMTvACLi8Zb14u6vj4P7PphZm1uf4b5vknSmpK8A/wV8rcY244AHypZX5rTCdSJiDbAa2AZ4MxCSrpd0q6TPF72BpJmSeiX1rlq1qs5DWU+eOc7MOlRdASIiLgbeDzwC/Al4f0Rc0sRyjQLeAczIz++TdEhBueZGRE9E9HR1dTWnJO77YGYdqt7RXCcAzwILytMiotqN+AeB8WXLO+W0onVW5nqHLYDHSVcbv46Ix/J7XUtqWvuLesrbcO77YGYdqN5bTD8BfpwfvwDuA66rsc0iYFdJO0saDUyjLMBkC4Dj8+tjgIWRhpe9Hthd0tgcON4F3FVnWc3MrAHqnVFu9/JlSXsBn6ixzRpJp5C+7EcCF0bEUkmzgd6IWABcAFwiqQ94ghREiIgnJX2DFGQCuDYifrJ+h2ZmZgNR13wQhRtKSyoDRysNynwQZmZtZoPngyjbwalliyNI9QEPNaBsZmY2RNUVIIDNyl6vIdVJFI3wamZmbaLeOogzml0QMzMbWmoN9/0jUiVxoYg4quElMjOzIaHWFcTX8/P7gTeSxkcCmE7qNGdmZm2q1nDfNwJIOquilvtHktxkyMysjdXbUW5TSbuUFvJ81Js2p0hDhCcJMrMOV28rpk8Dv5J0HyBgIvC3TStVq3mSIDOz+jvKSRoDvDUv/j4iXmxaqTZAQzvKdXenoFBp4kRYtqwx72FmNgQMuKNctjfQnbf5C0mlUV7bjycJMjOruyf1JcCbgNuB0sQ9AbRngJgwofgKwpMEmVkHqfcKogeYHBs6cNNwM2fOunUQ4EmCzKzj1NuK6U5SP4jO4EmCzMzqvoLYFrhL0i3Aa5XTbd2T2pMEmVmHqzdAnN7MQgwp8+bBrFmpQnrChHRbyYHCzDpQvYP13Shpe2CfnHRLRDzavGK1iPs/mJm9pq46CEkfBG4BjgU+CNws6ZhmFqwlZs1at2Ia0vKsWa0pj5lZC9V7i2kWsE/pqkFSF/BzYH6zCtYS7v9gZvaaelsxjai4pfT4emw7fPTXz8H9H8ysA9X7Jf9TSddLOkHSCaQZ5a5rXrFaZM6c1N+hnPs/mFmHqitARMTngPOBPfJjbkR8vtZ2kqZIukdSn6TTCvLHSLoi598sqbsif4KkZyV9tq6jGSj3fzAze03VwfokTQK2j4jfVKS/A3g4Iu6tsu1I4A/AocBKYBEwPSLuKlvnE8AeEXGypGnA+yLiQ2X580lDetwcEV+nioYO1mdm1iGqDdZX6wribODpgvTVOa+afYG+iLgvIl4CLgemVqwzFbgov54PHCJJudBHA/cDS2u8j5mZNUGtALF9RCypTMxp3TW2HQc8ULa8MqcVrhMRa0iBZxtJbwD+D3BGtTeQNFNSr6TeVatW1ShOHTxJkJnZa2oFiC2r5G3SwHJUOh34ZkQ8W22liJgbET0R0dPV1TWwdyx1klu+HCLWdpJzkDCzDlUrQPRK+nhloqSPAYtrbPsgML5seaecVriOpFHAFqQmtPsBX5O0DPgU8H8lnVLj/QbGneTMzNZRq6Pcp4BrJM1gbUDoAUYD76ux7SJg1zx/9YPANODDFessAI4HbgKOARbmIcXfWVpB0unAsxFxTq2DGRB3kjMzW0fVABERjwB/KemvgLfl5J9ExMJaO46INflX//XASODCiFgqaTbQGxELgAuASyT1AU+QgkhreJIgM7N11D0n9VA34GaulQP1Qeok534QZtbGBtLMtXO4k5yZ2TocIEo8D4SZ2TrqHc21vXkeCDOz1/EVBLiJq5lZAQcIcBNXM7MCDhDgeSDMzAo4QIDngTAzK+AAAW7iamZWwK2YSmbMcEAwMyvjKwgzMyvkAGFmZoUcIMzMrJADhJmZFXKAMDOzQg4QZmZWyAHCzMwKOUBAGs21uxtGjEjP8+a1ukRmZi3njnIe6tvMrJCvIDzUt5lZIQcID/VtZlaoqQFC0hRJ90jqk3RaQf4YSVfk/Jsldef0QyUtlrQkPx/ctEJ6qG8zs0JNCxCSRgLnAkcAk4HpkiZXrHYS8GRETAK+CXw1pz8GvDcidgeOBy5pVjk91LeZWbFmXkHsC/RFxH0R8RJwOTC1Yp2pwEX59XzgEEmKiNsi4qGcvhTYRNKYppTSQ32bmRVqZiumccADZcsrgf36Wyci1khaDWxDuoIo+QBwa0S8WPkGkmYCMwEmDOSWkIf6NjN7nSFdSS1pN9Jtp78tyo+IuRHRExE9XV1dg1s4M7M218wA8SAwvmx5p5xWuI6kUcAWwON5eSfgGuC4iLi3ieU0M7MCzQwQi4BdJe0saTQwDVhQsc4CUiU0wDHAwogISVsCPwFOi4jfNLGMZmbWj6YFiIhYA5wCXA/cDVwZEUslzZZ0VF7tAmAbSX3AqUCpKewpwCTgy5Juz4/tmlVWMzN7PUVEq8vQED09PdHb29vqYpiZDSuSFkdET1HekK6kHhQeqM/MrFBnD9bngfrMzPrV2VcQHqjPzKxfnR0gPFCfmVm/OjtAeKA+M7N+dXaA8EB9Zmb96uwA4YH6zMz61dmtmMAD9ZmZ9aOzryDMzKxfDhBmZlbIAcLMzAo5QJiZWSEHCDMzK+QA4cH6zMwKdXYzVw/WZ2bWr86+gvBgfWZm/ersAOHB+szM+tXZAcKD9ZmZ9auzA4QH6zMz61dnBwgP1mdm1q+mBghJUyTdI6lP0mkF+WMkXZHzb5bUXZb3hZx+j6TDm1bIGTNg2TJ49dX07OBgZgY0MUBIGgmcCxwBTAamS5pcsdpJwJMRMQn4JvDVvO1kYBqwGzAFOC/vz8zMBkkzryD2Bfoi4r6IeAm4HJhasc5U4KL8ej5wiCTl9Msj4sWIuB/oy/szM7NB0swAMQ54oGx5ZU4rXCci1gCrgW3q3BZJMyX1SupdtWpVA4tuZmbDupI6IuZGRE9E9HR1dbW6OGZmbaWZAeJBYHzZ8k45rXAdSaOALYDH69zWzMyaSBHRnB2nL/w/AIeQvtwXAR+OiKVl63wS2D0iTpY0DXh/RHxQ0m7ApaR6hx2BXwC7RsQrVd5vFbB8AEXeFnhsANsPR512zJ12vOBj7hQDOeaJEVF4C6Zpg/VFxBpJpwDXAyOBCyNiqaTZQG9ELAAuAC6R1Ac8QWq5RF7vSuAuYA3wyWrBIW8zoHtMknojomcg+xhuOu2YO+14wcfcKZp1zE0dzTUirgWurUj7ctnrF4Bj+9l2DuAuzWZmLTKsK6nNzKx5HCDWmtvqArRApx1zpx0v+Jg7RVOOuWmV1GZmNrz5CsLMzAo5QJiZWaGODxC1RpwdTiSNl/RLSXdJWirp73P61pJukPTH/LxVTpekb+Vjv0PSXmX7Oj6v/0dJx7fqmOohaaSk2yT9OC/vnEcH7sujBY/O6a0fPbgBJG0pab6k30u6W9IBHXCOP53/pu+UdJmkjdvtPEu6UNKjku4sS2vYeZW0t6QleZtvSVLNQkVExz5I/TPuBXYBRgO/Aya3ulwDOJ4dgL3y681IHRUnA18DTsvppwFfza/fA1wHCNgfuDmnbw3cl5+3yq+3avXxVTnuU0kdK3+cl68EpuXX3wb+V379CeDb+fU04Ir8enI+92OAnfPfxMhWH1eV470I+Fh+PRrYsp3PMWkctvuBTcrO7wntdp6BA4G9gDvL0hp2XoFb8rrK2x5Rs0yt/lBafEIOAK4vW/4C8IVWl6uBx/dD4FDgHmCHnLYDcE9+fT4wvWz9e3L+dOD8svR11htKD9IwLL8ADgZ+nP/4HwNGVZ5jUqfNA/LrUXk9VZ738vWG2oM0HM395AYmleeuTc9xafDOrfN5+zFweDueZ6C7IkA05LzmvN+Xpa+zXn+PTr/FVNeoscNRvqx+O3AzsH1EPJyz/gRsn1/3d/zD6XM5G/g88Gpe3gZ4KtLowLBu2Qc0evAQsTOwCvhuvq32b5I2pY3PcUQ8CHwdWAE8TDpvi2nv81zSqPM6Lr+uTK+q0wNEW5L0BuDfgU9FxNPleZF+PrRF22ZJRwKPRsTiVpdlEI0i3Yb414h4O/Ac6dbDa9rpHAPk++5TScFxR2BT0kRiHaUV57XTA0TbjRoraSNScJgXEVfn5Eck7ZDzdwAezen9Hf9w+Vz+J3CUpGWkCakOBv4fsKXSYJGwbtnbYfTglcDKiLg5L88nBYx2PccA7wbuj4hVEfEycDXp3LfzeS5p1Hl9ML+uTK+q0wPEImDX3BpiNKlCa0GLy7TBcquEC4C7I+IbZVkLgFJrhuNJdROl9ONyi4j9gdX5cvZ64DBJW+Vfb4fltCElIr4QETtFRDfp3C2MiBnAL4Fj8mqVx1v6HI7J60dOn5Zbv+wM7Eqq0BtyIuJPwAOS3pKTDiENatmW5zhbAewvaWz+Gy8dc9ue5zINOa8572lJ++fP8LiyffWv1ZUyrX6QWgP8gdSiYVaryzPAY3kH6RL0DuD2/HgP6f7rL4A/Aj8Hts7rizRv+L3AEqCnbF8fJU312gec2Opjq+PYD2JtK6ZdSP/4fcBVwJicvnFe7sv5u5RtPyt/DvdQR+uOFh/rnkBvPs8/ILVWaetzDJwB/B64E7iE1BKprc4zcBmpjuVl0pXiSY08r0BP/vzuBc6hoqFD0cNDbZiZWaFOv8VkZmb9cIAwM7NCDhBmZlbIAcLMzAo5QJiZWSEHCGtLkl6RdHvZo7vVZapG0o6S5tex3g5aO2rtQaXXZfnfk3RM8dYg6euSDh54ia0TjKq9itmw9OeI2LMoI3cUUkS8WpTfChHxEGs7fVVzKvCdAbzV/8/bLxzAPqxD+ArCOoKk7jwHwMWkzkLjJX1O0qI8nv4ZZesel9N+J+mSnLbOL3NJz5a9ft1+8vvdLek7SvMY/EzSJjlvkqSf5/3fKulNef07y7b9j5x3q6S/LDuUDwA/reN4e8qunpZICoCIWA5sI+mNA/g4rUP4CsLa1SaSbs+v7wc+TRpa4fiI+K2kw/LyvqReqQskHUgas+eLwF9GxGOStq72JlX2syKnT4+Ij0u6kvTl/n1gHvDPEXGNpI1JP9S2K9vto8ChEfGCpF1JPWx78vAQT0bEi2XrvrPsOAEmkHqU95J6XCPpX1g3qNxKGsvo36sdm5kDhLWrdW4x5TqI5RHx25x0WH7clpffQPpC/wvgqoh4DCAinqjxPv3tZwVpgLnbc/pioFvSZsC4iLgm7/+FXL7yfW4EnCNpT+AV4M05fQfSUN/l/iMijiw7zu+VZ0r6EGkwv8PKkh8ljYpqVpUDhHWS58peC/iniDi/fAVJf9fPtmvIt2QljSDN5FZtP91A+S/9V4BN6iznp4FHSMFqBPBCTv8zaZyhukh6G3A6cGBEvFKWtXHel1lVroOwTnU98FGluTOQNE7SdqTK22MlbZPTS7eYlgF759dHkX7lV9tPoYh4Blgp6ei8/hhJYytW2wJ4OFeif4Q0NS6kQSW76zk4SVuSbk0dFxGVVx1vJtXDmFXlAGEdKSJ+RprH+iZJS0jzKmwWEUuBOcCNkn4HlIZN/w7wrpx2APlqpL/91Hj7jwD/W9IdwH8BlRXG5wHH5/d6a9l7PQfcK2lSHYc4FZgIfKdUWQ2vzRcyiTQarFlVHs3VbBiR9D5g74j44gC23ysivtTYklk7ch2E2TCSWz5tM4BdjALOalR5rL35CsLMzAq5DsLMzAo5QJiZWSEHCDMzK+QAYWZmhRwgzMys0H8DbXuylitznD8AAAAASUVORK5CYII=\n",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "#Grafico de la Conductividad vs la frecuencia \n",
+    "plt.title(\"Conductividad 1 vs frecuencia\")\n",
+    "plt.ylabel(\"Conductividad (S/m)\")\n",
+    "plt.xlabel(\"Frecuencia(Hz)\")\n",
+    "\n",
+    "plt.scatter(f,s1,color=\"red\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "<matplotlib.collections.PathCollection at 0x7fa6fe71aba8>"
+      ]
+     },
+     "execution_count": 5,
+     "metadata": {},
+     "output_type": "execute_result"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAibklEQVR4nO3de5wcVZ338c+XhFsQTCIBY0gyXHVB1wAjC8qyCIrAqogKghFCvMTdVXdX11Ux7oL65PEG6/O4rGJQFpCIsILKg6hcVNRV0AnXILAkmJDEQIY7EkRIfs8f53RTGXpmai7dNdP9fb9e/eqqU5fzq66Z/nXVOVWliMDMzAxgi6oDMDOzscNJwczM6pwUzMyszknBzMzqnBTMzKzOScHMzOqcFGzckPRTSe9uch0/kDSvmXWMJknHSlot6Q+S9q06npGQNCtvx4SqY+lkTgqGpJWSXlN1HGNBRBwVEecPZ1lJn5Z0m6RnJJ0+yqH15wzg/RHxvIi4qUV1NkVE3Ju3Y2PVsXQyJwWz0bMc+Ajw/RbWORu4vdEESRNbGIe1CScF24ykUyT9t6QvSnpE0j2SXpnLV0taXzy9Iuk8SWdLulrS45KukzS7MP0ledpDku6SdHyfZf9D0vfzsjdI2r0w/bWS7pT0qKSzABWm7S7px5IelPSApCWSJhemr5T0YUm35uUvlrRNYfoxkm6W9JikFZKOzOX1U1SD1dFXRJwfET8AHh/kM36RpCclTS2U7Zvr2FLSHvlzfDSXXdxgHVtL+gMwAbhF0orCdn9U0q3AE5ImSjpQ0i/z/rxF0qGF9UyV9J+Sfi/pYUnfzeWnSPpFnzpD0h6F+s+QdK+k+/PfwLZ52qGS1kj6p/z3sk7S/MJ6tpV0pqRVeRt/kcu6ch0T83zzJd2R/zbukfTegT5XGx1OCtbIXwC3Ai8Avgl8C3gFsAfwDuAsSc8rzD8X+DSwI3AzsARA0nbA1XkdOwEnAF+WtHdh2ROATwJTSL+0F+VldwQuAz6R17sCeFVhOQGfAV4E/BkwEzi9z3YcDxwJ7Ar8OXBKXvcBwAXAPwOTgUOAlQ0+hzJ1DFlE/B74FfCWQvHbgW9HxNOkz/Iq0meyC/DvDdbxVETU9sHLI2L3wuQTgb8mbdvOpCOX/wVMBT4MXCppWp73G8AkYB/SPvpiyc34LLAXMIf0dzED+NfC9BcCz8/l7wL+Q9KUPO0MYH/glTmmjwCbGtSxHng9sAMwH/iipP1KxmfDFRF+dfiL9IX4mjx8CnB3YdrLgAB2LpQ9CMzJw+cB3ypMex6wkfQF+jbg533q+ipwWmHZrxWmHQ3cmYdPBq4vTBOwBnh3P9vwJuCmPtv0jsL454GzCzF8sZ/1/LRsHQN8nhcCpw8yz7uBHxe2bTVwSB6/AFgM7FKirgD26LPd7yyMfxT4Rp9lfgTMA6aTvoynNFjvKcAvGtWV430C2L0w7SDgd3n4UOBJYGJh+nrgQNIP0SdJiaxvnV25jon9bOt3gX+o8n+lE14+UrBG7i8MPwkQEX3LikcKq2sDEfEH4CHSr+vZwF/k0xaPSHqEdFTxwsKy9xWGNxTW+6I+643iuKSdJX1L0lpJj5G+iHfssx39rXsm6chjQCXrGK5LgYMkTScdqWwCfp6nfYT0xftrSbdLeucQ1726MDwbOK7PPjiYlBBmAg9FxMNDXP800tHF0sI6f5jLax6MiGcK47XPf0dgG8p9/kdJul7p1OMjpB8No/X5Wz/cEGWjYWZtIJ9Wmgr8nvTldF1EvHYY61zXZ70qjgP/m/Sr8mUR8ZCkNwFnlVz3amD3QecaWR0DioiHJV1FOpr6M9LRVuRp9wHvAZB0MHCNpJ9FxPKyqy8MryYdKbyn70w5IU2VNDkiHukz+QnSF39t3mIif4D0w2CfiFhbMqbisn8kff639DeTpK1JifNk4HsR8XRu71B/y9jo8JGCjYajJR0saSvS+fDrI2I1cAWwl6STcgPqlpJeIenPSqzz+8A+kt6cGx7/ns2PMLYH/gA8KmkGqX2grK8D8yUdLmkLSTMkvaTBfEOqI2/fNqT/q4mSttHAfe6/SfrSe2serq3nOEm75NGHSV/yjc65l3Eh8AZJr5M0Icd0qKRdImId8ANSO8+UHP8heblbSJ//nLxNp9dWGBGbgHNI5/h3yjHPkPS6wYLJy54L/JtSg/sESQflJFC0FbA10As8I+ko4IhhfgY2BE4KNhq+CZxGOm20P6kxmoh4nPSPfALpyOE+4HOkf/YBRcQDwHGkBs0HgT2B/y7M8klgP+BRUgK5rGywEfFrcsNlXv460mmWvoZaxzmkX9AnAgvz8EkDzH85abvui4jir+ZXADco9S66nHQe/Z5B6m4oJ+djgI+TvmBXk5Jb7X//JOBp4E7Sef9/zMv9D/Ap4BrgbmCznkiktorlwPX51No1wItLhvVh4DbgN6S/mc/R57so/+38PXAJKTG+nfRZWJMpH7GaDYuk84A1EfGJqmMxs5HzkYKZmdU5KZiZWZ1PH5mZWZ2PFMzMrG5cX6ew4447RldXV9VhmJmNK0uXLn0gIqY1mjauk0JXVxc9PT1Vh2FmNq5IWtXfNJ8+MjOzOicFMzOrc1IwM7M6JwUzM6tzUjAzs7qOTApLlkBXF2yxRXpfsqTqiMzMxoZx3SV1OJYsgQULYMOGNL5qVRoHmDu3urjMzMaCjjtSWLjw2YRQs2FDKjcz63QdlxTuvXdo5WZmnaTjksKsWUMrNzPrJE1LCpLOlbRe0rJC2cWSbs6vlZJuzuVdkp4sTDu7WXEtWgSTJm1eNmlSKjcz63TNbGg+j/SQ8wtqBRHxttqwpDNJjzmsWRERc5oYD/BsY/LChemU0axZKSG4kdnMrIlJISJ+Jqmr0TRJAo4HDmtW/QOZO9dJwMyskaraFP4SuD8i7i6U7SrpJknXSfrL/haUtEBSj6Se3t7e5kdqZtZBqkoKJwIXFcbXAbMiYl/gQ8A3Je3QaMGIWBwR3RHRPW1aw9uBm5nZMLU8KUiaCLwZuLhWFhFPRcSDeXgpsALYq9WxmZl1uiqOFF4D3BkRa2oFkqZJmpCHdwP2BO6pIDYzs47WzC6pFwG/Al4saY2kd+VJJ7D5qSOAQ4BbcxfVbwN/ExEPNSs2MzNrrJm9j07sp/yUBmWXApc2KxYzMyun465oNjOz/jkpmJlZnZOCmZnVOSmYmVmdk4KZmdU5KZiZWZ2TgpmZ1TkpmJlZnZOCmZnVOSmYmVmdk4KZmdU5KZiZWZ2TgpmZ1TkpmJlZnZOCmZnVOSmYmVmdk4KZmdU5KZiZWZ2TgpmZ1TUtKUg6V9J6ScsKZadLWivp5vw6ujDtVEnLJd0l6XXNisvMzPrXzCOF84AjG5R/MSLm5NeVAJL2Bk4A9snLfFnShCbGZmZmDTQtKUTEz4CHSs5+DPCtiHgqIn4HLAcOaFZsZmbWWBVtCu+XdGs+vTQll80AVhfmWZPLnkPSAkk9knp6e3ubHauZWUdpdVL4CrA7MAdYB5w51BVExOKI6I6I7mnTpo1yeGZmna2lSSEi7o+IjRGxCTiHZ08RrQVmFmbdJZeZmVkLtTQpSJpeGD0WqPVMuhw4QdLWknYF9gR+3crYzMwMJjZrxZIuAg4FdpS0BjgNOFTSHCCAlcB7ASLidkmXAL8FngHeFxEbmxWbmZk1poioOoZh6+7ujp6enqrDMDMbVyQtjYjuRtN8RbOZmdU5KZiZWZ2TgpmZ1TkpmJlZnZOCmZnVOSmYmVmdk4KZmdU5KZiZWZ2TgpmZ1TkpmJlZnZOCmZnVOSmYmVmdk4KZmdU5KZiZWZ2TgpmZ1ZVOCpK2kzShmcGYmVm1+k0KkraQ9HZJ35e0HrgTWCfpt5K+IGmP1oVpZmatMNCRwk+A3YFTgRdGxMyI2Ak4GLge+Jykd7QgRjMza5GBntH8moh4um9hRDwEXApcKmnLpkVmZmYt129SKCYESVOAmcX5I+LGRknDzMzGr4GOFACQ9GngFGAFELk4gMMGWe5c4PXA+oh4aS77AvAG4E95ffMj4hFJXcAdwF158esj4m+GujFmZjYygyYF4Hhg94j40xDXfR5wFnBBoexq4NSIeEbS50jtFR/N01ZExJwh1mFmZqOoTJfUZcDkoa44In4GPNSn7KqIeCaPXg/sMtT1mplZ85Q5UvgMcJOkZcBTtcKIeOMI634ncHFhfFdJNwGPAZ+IiJ83WkjSAmABwKxZs0YYgpmZFZVJCucDnwNuAzaNRqWSFgLPAEty0TpgVkQ8KGl/4LuS9omIx/ouGxGLgcUA3d3d0Xe6mZkNX5mksCEivjRaFUo6hdQAfXhEBEBEPEU+ComIpZJWAHsBPaNVr5mZDa5MUvi5pM8Al7P56aMbh1qZpCOBjwB/FREbCuXTgIciYqOk3YA9gXuGun4zMxuZMklh3/x+YKGsTJfUi4BDgR0lrQFOI/U22hq4WhI82/X0EOBTkp4mnaL6m3yRnJmZtZDyGZxxqbu7O3p6fIbJzGwoJC2NiO5G08pcvLY18Bagi82vaP7UaAVoZmZjQ5nTR98DHgWWUmhTMDOz9lMmKewSEUc2PRIzM6tcmSuafynpZU2PxMzMKtfvkYKk20i9jCYC8yXdQzp9JCAi4s9bE6KZmbXKQKePXt+yKMzMbEwY6HkKqwAkvRrYJxffHhE/aUVgZmbWegOdPpoBXAb8kdTzCOC4fMvrYyNibQviMzOzFhro9NFZwFci4rxioaSTgS8DxzQxLjMzq8BAvY/27psQACLiAuAlTYvIzMwqM1BSaDhN0hbAhOaEY2ZmVRooKVwh6RxJ29UK8vDZwJVNj8zMzFpuoKTwEdLtLVZJWippKbCS9GS0D7cgNjMza7GBuqQ+DXxY0r8Ae+TiFcXnIJiZWXvp90hB0sEAEfFkRNyWX8UH4+wg6aWtCNLMzFpjoC6pb5H0eeCHpOsUeoFtSEcNrwZmA//U9AjNzKxlBjp99EFJU0nPUjgOmA48CdwBfDUiftGaEM3MrFUGvHV2fiTmOfllZmZtrsyts83MrEM0NSlIOlfSeknLCmVTJV0t6e78PiWXS9KXJC2XdKuk/ZoZm5mZPVezjxTOA/o+te1jwLURsSdwbR4HOArYM78WAF9pcmxmZtZHmcdxkrue7k3qfQTU74E0oIj4maSuPsXHAIfm4fOBnwIfzeUXREQA10uaLGl6RKwrE6OZmY3coElB0mmkL/G9Sbe3OAr4BTBoUujHzoUv+vuAnfPwDGB1Yb41ucxJwcysRcqcPnorcDhwX0TMB14OPH80Ks9HBTGUZSQtkNQjqae3t3c0wjAzs6xMUngyIjYBz0jaAVgPzBxBnfdLmg6Q39fn8rV91rtLLttMRCyOiO6I6J42bdoIwjAzs77KJIUeSZNJ1yosBW4EfjWCOi8H5uXhecD3CuUn515IBwKPuj3BzKy1Bm1TiIi/y4NnS/ohsENE3Fpm5ZIuIrVH7ChpDXAa8FngEknvAlYBx+fZrwSOBpYDG4D5Q9gOMzMbBQM9o/klEXFno+sFJO0XETcOtvKIOLGfSYc3mDeA9w22TjMza56BjhQ+RLpe4MwG0wI4rCkRmZlZZQa6Id6C/P7q1oVjZmZVGrShWdL7ckNzbXyKpL8bYBEzMxunyvQ+ek9EPFIbiYiHgfc0LSIzM6tMmaQwQZJqI5ImAFs1LyQzM6tKmXsf/RC4WNJX8/h7c5mZmbWZMknho6RE8Ld5/Grga02LyMzMKlPm4rVNpNtY+1bWZmZtrsxdUl8FnA7MzvOLdK3Zbs0NzczMWq3M6aOvAx8k3fdoY3PDMTOzKpVJCo9GxA+aHomZmVWuTFL4iaQvAJcBT9UKy9z7yMzMxpcySeEv8nt3ocz3PjIza0Nleh/53kdmZh2izJECkv4a2AfYplYWEZ9qVlBmZlaNMjfEOxt4G/ABUnfU40jdU83MrM2UuffRKyPiZODhiPgkcBCwV3PDMjOzKpRJCk/m9w2SXgQ8DUxvXkhmZlaVMm0KV+TnKXwBuJHU88j3PjIza0Nleh99Og9eKukKYJuIeLS5YZmZWRX6TQqS3jzANCLisuFUKOnFwMWFot2AfwUmkx7e05vLPx4RVw6nDjMzG56BjhTekN93Al4J/DiPvxr4JekK5yGLiLuAOVB/YM9a4DvAfOCLEXHGcNZrZmYj129SiIj5AJKuAvaOiHV5fDpw3ijVfziwIiJWFR7uZmZmFSnT+2hmLSFk9wOzRqn+E4CLCuPvl3SrpHMlTWm0gKQFknok9fT29jaaxczMhqlMUrhW0o8knSLpFOD7wDUjrVjSVsAbgf/KRV8BdiedWloHnNlouYhYHBHdEdE9bdq0kYZhZmYFZXofvV/SscAhuWhxRHxnFOo+CrgxIu7P9dxfmyDpHOCKUajDzMyGoNS9j0jXJzweEddImiRp+4h4fIR1n0jh1JGk6YXTVMcCy0a4fjMzG6Iyj+N8D7AAmEo6vTMDOJvUSDwskrYDXgu8t1D8eUlzSBfHrewzzczMWqDMkcL7gAOAGwAi4m5JO42k0oh4AnhBn7KTRrJOMzMbuTINzU9FxJ9qI5Imkn7Nm5lZmymTFK6T9HFgW0mvJfUW+n/NDcvMzKpQJil8jHTridtI5/mvBD7RzKDMzKwaZbqkbpJ0PqlNIYC7IsKnj8zM2lCZ3kd/TepttIL05LVdJb03In7Q7ODMzKy1yvQ+OhN4dUQsB5C0O+mqZicFM7M2U6ZN4fFaQsjuAUZ64VqlliyBri7YYov0vmRJ1RGZmY0NZY4UeiRdCVxCalM4DvhN7XkLw32uQlWWLIEFC2DDhjS+alUaB5g7t7q4zMzGgjJHCtuQ7oz6V8ChpJ5I25Ket/D6pkXWJAsXPpsQajZsSOVmZp2uTO+j+a0IpFXuvXdo5WZmnaRM76NdgQ8AXcX5I+KNzQureWbNSqeMGpWbmXW6Mm0K3wW+TrqKeVNTo2mBRYs2b1MAmDQplZuZdboySeGPEfGlpkfSIrXG5IUL0ymjWbNSQnAjs5kZaLCLkyW9HdgTuAp4qlYeETc2N7TBdXd3R09PT9VhmJmNK5KWRkR3o2lljhReBpwEHMazp48ij5uZWRspkxSOA3Yr3j7bzMzaU5nrFJYBk5sch5mZjQFljhQmA3dK+g2btymMyy6pZmbWvzJJ4bSmR2FmZmNCmSuar2tFIGZmVr1+k4Kkx2n8LGYBERE7jKRiSStJd1vdCDwTEd2SpgIXk66eXgkcHxEPj6QeMzMrr9+G5ojYPiJ2aPDafqQJoeDVETGn0F/2Y8C1EbEncG0eNzOzFinT+6iVjgHOz8PnA2+qLhQzs85TZVII4CpJSyXlJxqwc0Ssy8P3ATv3XUjSAkk9knp6e3tbFauZWUco0/uoWQ6OiLWSdgKulnRncWJEhKTntGlExGJgMaTbXLQmVDOzzlDZkUJErM3v64HvAAcA90uaDpDf11cVn5lZJ6okKUjaTtL2tWHgCNKV05cD8/Js84DvVRGfmVmnqur00c7AdyTVYvhmRPwwXzV9iaR3AauA4yuKz8ysI1WSFCLiHuDlDcofBA5vfURmZgZjr0uqmZlVyEnBzMzqnBTMzKzOScHMzOqcFMzMrK4jk8KSJdDVBVtskd6XLKk6IjOzsaHK21xUYskSWLAANmxI46tWpXGAuXOri8vMbCzouCOFhQufTQg1GzakcjOzTtdxSeHee4dWbmbWSTouKcyaNbRyM7NO0nFJYdEimDRp87JJk1K5mVmn67ikMHcuLF4Ms2eDlN4XL3Yjs5kZdGDvI0gJwEnAzOy5Ou5IwczM+uekYGZmdU4KZmZW56RgZmZ1TgpmZlbX0UnBN8YzM9tcy5OCpJmSfiLpt5Jul/QPufx0SWsl3ZxfRzczjtqN8Vatgohnb4znxGBmnUwR0doKpenA9Ii4UdL2wFLgTcDxwB8i4oyy6+ru7o6enp5hxdHVlRJBX7Nnw8qVw1qlmdm4IGlpRHQ3mtbyi9ciYh2wLg8/LukOYEar4/CN8czMnqvSNgVJXcC+wA256P2SbpV0rqQp/SyzQFKPpJ7e3t5h193fDfCmTh32Ks3Mxr3KkoKk5wGXAv8YEY8BXwF2B+aQjiTObLRcRCyOiO6I6J42bdqw61+0CLbc8rnljz/udgUz61yVJAVJW5ISwpKIuAwgIu6PiI0RsQk4BzigmTHMnQs77PDc8j/9yQ/cMbPOVUXvIwFfB+6IiH8rlE8vzHYssKzZsTz0UONytyuYWaeq4i6prwJOAm6TdHMu+zhwoqQ5QAArgfc2O5BZsxr3QHK7gpl1qip6H/0CUINJV7Y6lkWLYP58ePrpzctr7Qq+vbaZdZqOvqJ5oHaFefPc4GxmnaejkwL0366wcaOvcDazztPxSaG/6xUANmxwTyQz6ywdnxQWLYJJk/qf7p5IZtZJOj4pzJ0LixfDhAmNp0f4Dqpm1jk6PilASgznn9//EcOqVXDSSSA5QZhZe3NSyGpHDLNnN55eu5msb7FtZu3MSaFg7tx022w1uoqiYMMGeMc7fNRgZu3HSaGBgXokFfmowczajZNCA4P1SCpyt1UzaydOCg30bV8Y7HRS2W6rfia0mY11Tgr9qLUvRMA3vtF/AzSUO9000mdCO6GYWSs4KZRQSxAXXvjc00qTJqXTTYNZuDCdaioqe+ppPCeUqup2EjUbpogYt6/9998/Wu3CCyNmz46Q0vuFF5ZbTopIX+mbv6TBl509u/Gys2eXi3fSpM2XmzSpfNwjUVXdVW5zrf7h/I2M13qrrLvT6h2tuoGe6Od7tfIv9pG8qkgKwzWSL/aqEspIVVV3ldvciYmw07a5HT5rJ4UxYCQ7s6qEMlJV1V3lNndiIuy0bW6Hz3qgpOA2hRYp9miS0vvixeUe5NOoi2zZtoz+GsHLXosxElXVXeU299cTrdk3Vqyq3irr7rR6W1W3k0IL1RqsN21K72Wf7FZVQhmpququcps7MRF22ja3/Wfd3yHEeHiNp9NHVRrvjWLjrV6f527vbW6Hzxq3KZi1Tqclwirr7rR6R6vugZKC0vSxQ9KRwP8FJgBfi4jP9jdvd3d39PT0tCw2M7N2IGlpRHQ3mjam2hQkTQD+AzgK2Bs4UdLe1UZlZtY5xlRSAA4AlkfEPRHxJ+BbwDEVx2Rm1jHGWlKYAawujK/JZXWSFkjqkdTT29vb0uDMzNrdWEsKg4qIxRHRHRHd06ZNqzocM7O2MtaSwlpgZmF8l1xmZmYtMKZ6H0maCPwPcDgpGfwGeHtE3N7P/L3AqhFUuSPwwAiWH286bXvB29wpvM1DMzsiGp5qmTj8eEZfRDwj6f3Aj0hdUs/tLyHk+Ud0/khST3/dstpRp20veJs7hbd59IyppAAQEVcCV1Ydh5lZJxprbQpmZlahTk8Ki6sOoMU6bXvB29wpvM2jZEw1NJuZWbU6/UjBzMwKnBTMzKyuI5OCpCMl3SVpuaSPVR3PSEiaKeknkn4r6XZJ/5DLp0q6WtLd+X1KLpekL+Vtv1XSfoV1zcvz3y1pXlXbVIakCZJuknRFHt9V0g15uy6WtFUu3zqPL8/TuwrrODWX3yXpdRVtSimSJkv6tqQ7Jd0h6aAO2McfzH/TyyRdJGmbdtvPks6VtF7SskLZqO1XSftLui0v8yVJGjSo/u6p3a4v0vUPK4DdgK2AW4C9q45rBNszHdgvD29Puvhvb+DzwMdy+ceAz+Xho4EfAAIOBG7I5VOBe/L7lDw8pertG2C7PwR8E7gij18CnJCHzwb+Ng//HXB2Hj4BuDgP7533/dbArvlvYkLV2zXA9p4PvDsPbwVMbud9TLrn2e+AbQv795R228/AIcB+wLJC2ajtV+DXeV7lZY8aNKaqP5QKdsJBwI8K46cCp1Yd1yhu3/eA1wJ3AdNz2XTgrjz8VeDEwvx35eknAl8tlG8231h6kW5/ci1wGHBF/oN/AJjYdx+TLoQ8KA9PzPOp734vzjfWXsDz8xek+pS38z6u3Rxzat5vVwCva8f9DHT1SQqjsl/ztDsL5ZvN19+rE08fDXon1vEqHzLvC9wA7BwR6/Kk+4Cd83B/2z+ePpf/A3wE2JTHXwA8EhHP5PFi7PXtytMfzfOPp+3dFegF/jOfMvuapO1o430cEWuBM4B7gXWk/baU9t7PNaO1X2fk4b7lA+rEpNCWJD0PuBT4x4h4rDgt0s+Etuh7LOn1wPqIWFp1LC00kXSK4SsRsS/wBOm0Ql077WOAfB79GFJCfBGwHXBkpUFVoIr92olJoe3uxCppS1JCWBIRl+Xi+yVNz9OnA+tzeX/bP14+l1cBb5S0kvQQpsNIj2+drHRDRdg89vp25enPBx5k/GwvpF94ayLihjz+bVKSaNd9DPAa4HcR0RsRTwOXkfZ9O+/nmtHar2vzcN/yAXViUvgNsGfuxbAVqVHq8opjGrbcm+DrwB0R8W+FSZcDtV4I80htDbXyk3NPhgOBR/Oh6o+AIyRNyb/SjshlY0pEnBoRu0REF2nf/Tgi5gI/Ad6aZ+u7vbXP4a15/sjlJ+ReK7sCe5Ia5caciLgPWC3pxbnocOC3tOk+zu4FDpQ0Kf+N17a5bfdzwajs1zztMUkH5s/w5MK6+ld1I0tFDTtHk3rprAAWVh3PCLflYNLh5a3Azfl1NOl86rXA3cA1wNQ8v0jPwV4B3AZ0F9b1TmB5fs2vettKbPuhPNv7aDfSP/ty4L+ArXP5Nnl8eZ6+W2H5hflzuIsSvTIq3tY5QE/ez98l9TJp630MfBK4E1gGfIPUg6it9jNwEanN5GnSEeG7RnO/At3581sBnEWfzgqNXr7NhZmZ1XXi6SMzM+uHk4KZmdU5KZiZWZ2TgpmZ1TkpmJlZnZOCtQ1JGyXdXHh1VR3TQCS9SNK3S8w3Xc/eDfbQ2nBh+nmS3tp4aZB0hqTDRh6xdYKJg89iNm48GRFzGk3IF+8oIjY1ml6FiPg9z16INZAPAeeMoKp/z8v/eATrsA7hIwVrW5K68j30LyBdwDNT0j9L+k2+H/0nC/OenMtukfSNXLbZL3BJfygMP2c9ub47JJ2j9ByAqyRtm6ftIemavP4bJe2e519WWPbnedqNkl5Z2JS3AD8ssb3dhaOk2yQFQESsAl4g6YUj+DitQ/hIwdrJtpJuzsO/Az5Iuq3BvIi4XtIRefwA0tWhl0s6hHSPnE8Ar4yIByRNHaiSAdZzby4/MSLeI+kS0hf6hcAS4LMR8R1J25B+kO1UWO164LUR8UdJe5KudO3Ot2Z4OCKeKsz7l4XtBJhFurK7h3TlM5K+wOaJ5EbSvYMuHWjbzJwUrJ1sdvootymsiojrc9ER+XVTHn8e6Uv85cB/RcQDABHx0CD19Leee0k3cbs5ly8FuiRtD8yIiO/k9f8xx1dc55bAWZLmABuBvXL5dNJts4t+HhGvL2znecWJkt5GumHeEYXi9aS7jZoNyEnB2t0ThWEBn4mIrxZnkPSBfpZ9hnyKVdIWpCeeDbSeLqD4i34jsG3JOD8I3E9KUFsAf8zlT5Lu61OKpJcCpwOHRMTGwqRt8rrMBuQ2BeskPwLeqfTsCSTNkLQTqQH2OEkvyOW100crgf3z8BtJv+YHWk9DEfE4sEbSm/L8W0ua1Ge25wPrckP4SaTHxkK6cWNXmY2TNJl02unkiOh7dLEXqV3FbEBOCtYxIuIq0nOdfyXpNtJzCbaPiNuBRcB1km4BarcgPwf4q1x2EPmoo7/1DFL9ScDfS7oV+CXQt9H3y8C8XNdLCnU9AayQtEeJTTwGmA2cU2twhvrzNvYg3WXVbEC+S6rZGCfpWGD/iPjECJbfLyL+ZXQjs3bkNgWzMS73WHrBCFYxEThztOKx9uYjBTMzq3ObgpmZ1TkpmJlZnZOCmZnVOSmYmVmdk4KZmdX9f1t2it7dmewpAAAAAElFTkSuQmCC\n",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "#Grafico de la impedancia vs frecuencia:\n",
+    "plt.title(\"Impendancia 1 vs frecuencia\")\n",
+    "plt.ylabel(\"Impedancia (Ohm)\")\n",
+    "plt.xlabel(\"Frecuencia(Hz)\")\n",
+    "plt.scatter(f,z1,color=\"blue\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Es normal observar dicho comportamiento en las graficas debido a la ecuación que rige todo el estudio que se realiza. La relación entre conductividad-impedancia queda descrita por:\n",
+    "$$ \\sigma = \\frac{C_{cond}}{Z} $$\n",
+    "\n",
+    "Siendo sigma la letra asignada a la conductividad y C una constante asociada al condensador de placas paralelas que se usó en el experimento. \n",
+    "\n",
+    "Como sugiere la formulación, la conductividad será inversamente proporcional a la impedancia del sistema. Se obtienen  ambas graficas para demostrar el comportamiento de ambas variables, en las soluciones siguientes solo se trabajará con la impedancia "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "       f              w        Z         s\n",
+      "0       1      6.283185  140.774  0.006150\n",
+      "1      10     62.831853   34.563  0.025050\n",
+      "2      30    188.495559   19.715  0.043916\n",
+      "3      70    439.822971   14.192  0.061006\n",
+      "4     100    628.318531   12.613  0.068643\n",
+      "5     150    942.477796   11.084  0.078109\n",
+      "6     200   1256.637061   10.038  0.086251\n",
+      "7     300   1884.955592    8.631  0.100317\n",
+      "8     400   2513.274123    7.804  0.110945\n",
+      "9     500   3141.592654    7.243  0.119529\n",
+      "10   1000   6283.185307    6.063  0.142806\n",
+      "11   1500   9424.777961    5.673  0.152609\n",
+      "12   2000  12566.370610    5.519  0.156880\n",
+      "13   3000  18849.555920    5.361  0.161490\n",
+      "14   4000  25132.741230    5.292  0.163609\n",
+      "15   5000  31415.926540    5.251  0.164881\n",
+      "16   6000  37699.111840    5.225  0.165693\n",
+      "17   7000  43982.297150    5.212  0.166124\n",
+      "18   8000  50265.482460    5.199  0.166524\n",
+      "19   9000  56548.667760    5.188  0.166882\n",
+      "20  10000  62831.853070    5.187  0.166933\n"
+     ]
+    }
+   ],
+   "source": [
+    "#Definiendo la segunda solución (4B-6):\n",
+    "sol_2 = pd.read_csv(\"../data-used/4B-6.csv\",\";\")\n",
+    "print(sol_2)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "#Asignando columnas a variables para mejorar la manipulación de los datos:\n",
+    "z2 = sol_2.loc[:,\"Z\"]\n",
+    "s2 = sol_2.loc[:,\"s\"]\n",
+    "f = sol_2.loc[:,\"f \"]"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "<matplotlib.collections.PathCollection at 0x7fa6fe691b00>"
+      ]
+     },
+     "execution_count": 8,
+     "metadata": {},
+     "output_type": "execute_result"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAiMklEQVR4nO3de5xdVX338c/XZLgJTBIYMCSBREAtGgWcKhdLwVEE5GIVKGghIBqf1hteKmBt0fbpI+CFaq1iEAta5FJAISgKjHirgkwQGK4lIJBgIEFgQIg4wO/5Y6057BzOzJzMzDl75pzv+/U6r+y99mWttffk/M7ae+21FRGYmZkBvKjsApiZ2eThoGBmZhUOCmZmVuGgYGZmFQ4KZmZW4aBgZmYVDgo2ZUj6iaT3NDiPKyQtamQeE0nSX0laIekPknYpuzzjIWnbXI9pZZelnTkoGJLulfSmsssxGUTE/hFxzvpuJ2krSedJ+p2kAUn/I+n1jShjlc8DH4iITSPiN03Ir2Ei4v5cj2fLLks7c1AwmxibAtcDrwVmAecA35e0aYPz3Q64tdYCSdMbnLe1IAcFW4ekY/Kv3NMlPSbpHkl75PQVklYXL69IOlvSGZKukvSEpJ9K2q6w/BV52SOS7pR0eNW2/yHp+3nb6yRtX1j+Zkl35F/eXwFUWLa9pB9L+r2khyWdK2lGYfm9kj4u6ea8/QWSNiosP0TSjZIel3S3pP1yeuUS1Wh5FEXEPRHxxYhYFRHPRsQSYAPg5TWO8TaS1kqaVUjbJefRIWmHfBwHctoFNfaxoaQ/ANOAmyTdXaj3CZJuBp6UNF3SbpJ+mc/nTZL2LuxnlqT/zC2cRyV9r/B38IuqPEPSDoX8Py/pfkkP5b+BjfOyvSWtlPSx/PeyStKxhf1sLOkLku7LdfxFTpuf85ie1ztW0u35b+MeSe+rdextYjkoWC2vB24GtgC+A5wP/DmwA/A3wFeqfgG/C/gXYEvgRuBcAEkvBq7K+9gKOAL4qqSdCtseAXwGmAksB/41b7slcAnwqbzfu4E9C9sJ+CywDfBnwDzg01X1OBzYD1gAvBo4Ju/7dcC3gL8HZgB7AffWOA715FGTpJ1JQWF59bKI+B3wK+AdheR3AhdFxCDpWF5JOiZzgX+vsY+nI2LoHLwmIrYvLD4SeGuu29bA94H/S2rBfBy4WFJXXvfbwCbAK0nn6PR66gecArwM2Jn0dzEH+KfC8pcAnTn9OOA/JM3Myz5PalHtkcv0CeC5GnmsBg4ENgeOBU6XtGud5bOxigh/2vxD+kJ8U54+BrirsGwhEMDWhbTfAzvn6bOB8wvLNgWeJX2B/jXw86q8vg6cXNj2G4VlBwB35OmjgWsLywSsBN4zTB3eBvymqk5/U5g/DTijUIbTh9nPT+rNY4TjuTnQD5w0wjrvAX5cqNsKYK88/y1gCTC3jrwC2KGq3u8uzJ8AfLtqmx8Bi4DZpC/jmTX2ewzwi1p55fI+CWxfWLY78Ns8vTewFpheWL4a2I30Q3QtKZBV5zk/5zF9mLp+D/hw2f9fWv3jloLV8lBhei1ARFSnFVsKK4YmIuIPwCOkX9fbAa/Ply0ek/QYqVXxksK2Dxamnyrsd5uq/UZxXtLWks6X9ICkx4H/IrUoiobb9zxSy2NEdeZRvc3GwFJSQPvsCKteDOwuaTappfIc8PO87BOkL95fS7pV0rtHK2uVFYXp7YDDqs7BG0gBYR7wSEQ8up777yK1LpYV9vnDnD7k9xHxTGF+6PhvCWxEfcd/f0nXKl16fIz0o2HE42/j5xtRNhHmDU3ky0qzgN+Rvpx+GhFvHsM+V1XtV8V54P+RflUujIhHJL0N+Eqd+14BbD/qWuuZh6QNSb9mVwIjXv+OiEclXUlqTf0ZqbUVedmDwHvzPt8AXC3pZxHxgktRw+2+ML2C1FJ4b43yzgZmSZoREY9VLX6S9MU/tG4xkD9M+mHwyoh4oM4yFbf9I+n43zTcSvlYXkxqMV4aEYP5foeG28YmhlsKNhEOkPQGSRuQrodfGxErgMuBl0k6Kt9A7ZD055L+rI59fh94paS35xuPH2LdFsZmwB+AAUlzSPcH6nUWcKykHkkvkjRH0itqrFd3HpI6gItIX5aLIqLWNfJq3yF96R2ap4f2dZikuXn2UdKXfD37q+W/gIMkvUXSNEkb5RvBcyNiFXAF6T7PzHx+9srb3UQ6/jsr3aD/9NAOc93OJF3j3yqXeY6kt4xWmLztN4EvKt1wnyZp9xwEijYANgTWAM9I2h/Yd4zHwNaDg4JNhO8AJ5MuG72WdDOaiHiC9B/5CFLL4UHgVNJ/9hFFxMPAYaQbmr8HdgT+p7DKZ4BdgQFSALmk3sJGxK/JNy7z9j8lXWaptj557EG6Kbov8JjSQ1h/kPQXI2xzGaleD0ZE8VfznwPXKfUuuox0Hf2euipXJQfnQ4BPkr5gV5CC29D//aOAQeAO0nX/4/N2/wv8M3A1cBewTk8k0r2K5cC1+dLa1dToaTWMj5PuuVxP+ps5larvovy38yHgQlJgfCfpWFiDKbdYzcZE0tnAyoj4VNllMbPxc0vBzMwqHBTMzKzCl4/MzKzCLQUzM6uY0s8pbLnlljF//vyyi2FmNqUsW7bs4YjoqrVsSgeF+fPn09fXV3YxzMymFEn3DbfMl4/MzKzCQcHMzCocFMzMrMJBwczMKhwUzMysYkr3PhqL/v5+ent7GRgYoLOzk56eHhYuXFh2sczMJoWGtRQkfTO/n/WWGss+lt/FumWel6QvS1qu9E7dhrxyr7+/n6VLlzIwMADAwMAAS5cupb+/vxHZmZlNOY28fHQ26f2465A0jzS88P2F5P1JQwjvCCwGvtaIAvX29jI4OLhO2uDgIL29vY3IzsxsymlYUIiIn5HGSq92Oul1g8VBlw4BvhXJtcCM/FaoCTXUQqg33cys3TT1RrOkQ4AHql4oAjCHdd8ruzKn1drHYkl9kvrWrFmzXvl3dnauV7qZWbtpWlCQtAnp7U//NJ79RMSSiOiOiO6urppDdwyrp6eHjo6OddI6Ojro6ekZT5HMzFpGM3sfbQ8sAG5K72BnLnCDpNcBD7DuS9nn5rQJNdTLyL2PzMxqa1pQiIh+YKuheUn3At0R8bCky4APSDofeD0wkF8qPuEWLlzoIGBmNoxGdkk9D/gV8HJJKyUdN8LqPwDuIb0I/Ezg7xpVLjMzG17DWgoRceQoy+cXpgN4f6PKYmZm9fEwF2ZmVuGgYGZmFQ4KZmZW4aBgZmYVDgpmZlbhoGBmZhUOCmZmVuGgYGZmFQ4KZmZW4aBgZmYVDgpmZlbhoGBmZhUOCmZmVuGgYGZmFQ4KZmZW4aBgZmYVDgpmZlbhoGBmZhUOCmZmVuGgYGZmFQ0LCpK+KWm1pFsKaZ+TdIekmyV9V9KMwrKTJC2XdKektzSqXGZmNrxGthTOBvarSrsKeFVEvBr4X+AkAEk7AUcAr8zbfFXStAaWzczMamhYUIiInwGPVKVdGRHP5Nlrgbl5+hDg/Ih4OiJ+CywHXteospmZWW1l3lN4N3BFnp4DrCgsW5nTzMysiUoJCpL+AXgGOHcM2y6W1Cepb82aNRNfODOzNtb0oCDpGOBA4F0RETn5AWBeYbW5Oe0FImJJRHRHRHdXV1dDy2pm1m6aGhQk7Qd8Ajg4Ip4qLLoMOELShpIWADsCv25m2czMDKY3aseSzgP2BraUtBI4mdTbaEPgKkkA10bE/4mIWyVdCNxGuqz0/oh4tlFlMzOz2vT8FZypp7u7O/r6+souhpnZlCJpWUR011rmJ5rNzKzCQcHMzCocFMzMrMJBwczMKhwUzMyswkHBzMwqHBTMzKzCQcHMzCocFMzMrMJBwczMKhwUzMyswkHBzMwqHBTMzKzCQcHMzCocFMzMrMJBwczMKhwUzMyswkHBzMwq6g4Kkl4saVojC2NmZuUaNihIepGkd0r6vqTVwB3AKkm3SfqcpB2aV0wzM2uGkVoK1wDbAycBL4mIeRGxFfAG4FrgVEl/04QymplZk0wfYdmbImKwOjEiHgEuBi6W1DHcxpK+CRwIrI6IV+W0WcAFwHzgXuDwiHhUkoAvAQcATwHHRMQNY6qRmZmN2bAthWJAkDRT0qsl7Tr0qV6nhrOB/arSTgR6I2JHoDfPA+wP7Jg/i4GvrW9FzMxs/EZqKQAg6V+AY4C7gcjJAbxxpO0i4meS5lclHwLsnafPAX4CnJDTvxURAVwraYak2RGxqq5amJnZhBg1KACHA9tHxJ8mIL+tC1/0DwJb5+k5wIrCeitz2guCgqTFpNYE22677QQUyczMhtTTJfUWYMZEZ5xbBTHqii/cbklEdEdEd1dX10QXy8ysrdXTUvgs8BtJtwBPDyVGxMFjyO+hoctCkmYDq3P6A8C8wnpzc5qZmTVRPUHhHOBUoB94bpz5XQYsAk7J/15aSP+ApPOB1wMDvp9gZtZ89QSFpyLiy+u7Y0nnkW4qbylpJXAyKRhcKOk44D7S/QqAH5C6oy4ndUk9dn3zMzOz8asnKPxc0mdJv+aLl49GfI4gIo4cZlFPjXUDeH8dZTEzswaqJyjskv/drZA2apdUMzObekYNChGxTzMKYmZm5avn4bUNgXeQhqaorB8R/9y4YpmZWRnquXx0KTAALKNwT8HMzFpPPUFhbkRUj2FkZmYtqJ4nmn8paWHDS2JmZqUbtqUgqZ/Uy2g6cKyke0iXj0TqRfrq5hTRzMyaZaTLRwc2rRRmZjYpDBsUIuI+AEn7AK/MybdGxDXNKJiZmTXfSJeP5gCXAH8k9TwCOEzSqcBfRYQHrDMzazEjXT76CvC1iDi7mCjpaOCrpBfjmJlZCxmp99FO1QEBICK+BbyiYSUyM7PSjBQUai6T9CJgWmOKY2ZmZRopKFwu6UxJLx5KyNNnkIa6NjOzFjNSUPgEaXiL+yQtk7QMuBd4HPh4E8pmZmZNNlKX1EHg45L+EdghJ98dEU81pWRmZtZ0w7YUJL0BICLWRkR//jxVWL65pFc1o5BmZtYcI3VJfYek04Afkp5TWANsRGo17ANsB3ys4SU0M7OmGeny0UckzSK9S+EwYDawFrgd+HpE/KI5RTQzs2YZcejsiHgEODN/zMysxdUzdPaEk/QRSbdKukXSeZI2krRA0nWSlku6QNIGZZTNzKydNT0o5DGVPgR0R8SrSA/CHQGcCpweETsAjwLHNbtsZmbtrpSWAumy1caSpgObAKuANwIX5eXnAG8rp2hmZu2rntdxkrue7kTqfQRUxkBabxHxgKTPA/eTblxfSerd9FhEPJNXWwnMGaYsi4HFANtuu+1YimBmZsMYtaUg6WTg3/NnH+A04OCxZihpJmmE1QXANsCLgbrfAR0RSyKiOyK6u7q6xloMMzOroZ7LR4cCPcCDEXEs8Bqgcxx5vgn4bUSsyU9NXwLsCczIl5MA5gJ+X4OZWZPVExTWRsRzwDOSNgdWA/PGkef9wG6SNpEkUsC5DbiGFIAAFgGXjiMPMzMbg3qCQp+kGaRnFZYBNwC/GmuGEXEd6YbyDUB/LsMS4ATgo5KWA1sAZ401DzMzGxtFRP0rS/OBzSPi5oaVaD10d3dHX19f2cUwM5tSJC2LiO5ay0Z6R/MrIuIOSbvWWLZrRNwwkYU0M7PyjdQl9aOkrp9fqLEsSM8VmJlZCxlpQLzF+d99mlccMzMrUz3PKbw/32gemp8p6e8aWiozMytFPb2P3hsRjw3NRMSjwHsbViIzMytNPUFhWn6eAABJ0wCPYGpm1oLqGfvoh8AFkr6e59+X08zMrMXUExROIAWCv83zVwHfaFiJzMysNKMGhTzExdfyx8zMWtioQUHSnsCnge3y+gIiIl7a2KKZmVmz1XP56CzgI6Rxj55tbHHMzKxM9QSFgYi4ouElMTOz0tUTFK6R9DnSew+eHkr02EdmZq2nnqDw+vxvcUQ9j31kZtaC6ul95LGPzMzaRD0tBSS9FXglsNFQWkT8c6MKZWZm5ahnQLwzgL8GPkjqjnoYqXuqmZm1mHrGPtojIo4GHo2IzwC7Ay9rbLHMzKwM9QSFtfnfpyRtAwwCsxtXJDMzK0s99xQuz+9T+BxwA6nnkcc+MjNrQfX0PvqXPHmxpMuBjSJiYDyZ5iDzDeBVpCDzbuBO4AJgPnAvcHh+d4OZmTXJsEFB0ttHWEZEXDKOfL8E/DAiDpW0AbAJ8EmgNyJOkXQicCJphFYzM2uSkVoKB+V/twL2AH6c5/cBfkl6wnm9SeoE9gKOAYiIPwF/knQIsHde7RzgJzgomJk11bBBISKOBZB0JbBTRKzK87OBs8eR5wJgDfCfkl5DGmjvw8DWQ3kADwJb19pY0mJgMcC22247jmKYmVm1enofzSt8WQM8BIzn23g6sCvwtYjYBXiSdKmoIiKCdK/hBSJiSUR0R0R3V1fXOIphZmbV6gkKvZJ+JOkYSccA3weuHkeeK4GVEXFdnr+IFCQeyq2QodbI6nHkYWZmYzBqUIiIDwBnAK/JnyUR8cGxZhgRDwIrJL08J/UAtwGXAYty2iLg0rHmYWZmY1PX2Eek5xOeiIirJW0iabOIeGIc+X4QODf3PLoHOJYUoC6UdBxwH3D4OPZvZmZjUM/rON9LurE7C9gemENqOfSMNdOIuJF1h+IeMuZ9mpnZ+NVzT+H9wJ7A4wARcRepm6qZmbWYeoLC0/lZAgAkTWeYnkFmZja11RMUfirpk8DGkt4M/DewtLHFMjOzMtQTFE4kPWzWD7wP+AHwqUYWyszMylHPgHjPSToHuI502ejO/HCZmZm1mHp6H72V1NvobtKb1xZIel9EXNHowpmZWXPV85zCF4B9ImI5gKTtSU81OyiYmbWYeu4pPDEUELJ7gPE8uGZmZpNUPS2FPkk/AC4k3VM4DLh+6H0L43yvgpmZTSL1BIWNSCOj/mWeXwNsTHrfQjDG9yqYmdnkU0/vo2ObURAzMytfPb2PFpAGsJtfXD8iDm5csczMrAz1XD76HnAW6Snm5xpaGjMzK1U9QeGPEfHlhpfEzMxKV09Q+JKkk4ErgaeHEiPihoaVyszMSlFPUFgIHAW8kecvH0WeNzOzFlJPUDgMeGlx+GwzM2tN9TzRfAswo8HlMDOzSaCelsIM4A5J17PuPQV3STUzazH1BIWTG14KMzObFOp5ovmnjchY0jSgD3ggIg7MD8mdD2wBLAOO8n0MM7PmGvaegqQnJD1e4/OEpMcnIO8PA7cX5k8FTo+IHYBHgeMmIA8zM1sPwwaFiNgsIjav8dksIjYfT6aS5gJvBb6R50Xq4npRXuUc4G3jycPMzNZfPb2PGuHfgE/w/HMPWwCPRcQzeX4lMKfWhpIWS+qT1LdmzZqGF9TMrJ00PShIOhBYHRHLxrJ9RCyJiO6I6O7q6prg0pmZtbd6eh9NtD2BgyUdQHpXw+bAl4AZkqbn1sJc4IESymZm1taa3lKIiJMiYm5EzAeOAH4cEe8CrgEOzastAi5tdtnMzNpdWfcUajkB+Kik5aR7DGeVXB4zs7ZTxuWjioj4CfCTPH0P8Lpm5Nvf309vby8DAwN0dnbS09PDwoULm5G1mdmkVmpQKEN/fz9Lly5lcHAQgIGBAZYuXQrgwGBmbW8yXT5qit7e3kpAGDI4OEhvb29JJTIzmzzaLigMDAysV7qZWTtpu6DQ2dm5XulmZu2k7YJCT08PHR0d66R1dHTQ09NTUonMzCaPtrvRPHQz2b2PzMxeqO2CAqTA4CBgZvZCbXf5yMzMhuegYGZmFQ4KZmZW4aBgZmYVDgpmZlbhoGBmZhUOCmZmVuGgYGZmFQ4KZmZW4aBgZmYVDgpmZlbhoGBmZhUOCmZmVtH0oCBpnqRrJN0m6VZJH87psyRdJemu/O/MZpfNzKzdlTF09jPAxyLiBkmbAcskXQUcA/RGxCmSTgROBE5oRAH6+/v9PgUzsxqa3lKIiFURcUOefgK4HZgDHAKck1c7B3hbI/Lv7+9n6dKllXcyDwwMsHTpUvr7+xuRnZnZlFLqPQVJ84FdgOuArSNiVV70ILD1MNssltQnqW/NmjXrnWdvby+Dg4PrpA0ODtLb27ve+zIzazWlBQVJmwIXA8dHxOPFZRERQNTaLiKWRER3RHR3dXWtd75DLYR6083M2kkpQUFSBykgnBsRl+TkhyTNzstnA6sbkXdnZ+d6pZuZtZMyeh8JOAu4PSK+WFh0GbAoTy8CLm1E/j09PXR0dKyT1tHRQU9PTyOyMzObUsrofbQncBTQL+nGnPZJ4BTgQknHAfcBhzci86FeRu59ZGb2Qk0PChHxC0DDLG7Kz/WFCxc6CJiZ1VBGS2HS8PMKZmbratugMPS8wlD31KHnFQAHBjNrW2079pGfVzAze6G2DQp+XsHM7IXaNiiknrG1ecgLM2tXbRsU0kPTtXksJDNrV20bFEZ6gnlwcJArrriiiaUxM5sc2jYo1HqyuWjt2rVuLZhZ29FIl1Emu+7u7ujr6xvz9v39/Xz3u98d9lKSJCLCzzCYWUuRtCwiumsua+egACkwXHLJJaOvmDlAmNlU56AwitNOO421a9eu93YOEGY2FY0UFNr2nkLR/vvvP+L9heH4rW1m1mradpiLouqRU4fuJdRj6CnoeloL4xlrqaxtzay9OChkxZFTq8dFGk09T0GPZ6ylsradCGUFpDIDYbvV2ce6tersy0c1LFy4kIMOOqjut7HVs954xloqa9vxGgpIQ0GzWZfbysq3zLzbLd8y8271OjsoDGPhwoUcf/zxnHzyybz97W8f9ou/3re2jWespbK2Ha+yAlKZgbDd6uxj3bx8m5W3Lx/VofrS0liabp2dnTW/iOtpZZS17XiVFZDKDITtVmcf6+bl26y83VJYT8UWxPHHH1/3tbzxvBu6rG3Ha7jA0+iAVFa+ZebdbvmWmXer19lBoUmq71N0dnZy0EEH1RVUytp2vMoKSGUGwnars4918/JtVt5+eM0ayr1DWr/OPtZTr85T6olmSfsBXwKmAd+IiFOGW9dBwcxs/U2ZJ5olTQP+A9gf2Ak4UtJO5ZbKzKx9TKqgALwOWB4R90TEn4DzgUNKLpOZWduYbEFhDrCiML8yp1VIWiypT1LfmjVrmlo4M7NWN9mCwqgiYklEdEdEd1dXV9nFMTNrKZMtKDwAzCvMz81pZmbWBJOq95Gk6cD/Aj2kYHA98M6IuHWY9dcA940xuy2Bh8e47VTlOrcH17k9jKfO20VEzUstk2qYi4h4RtIHgB+RuqR+c7iAkNcf8/UjSX3DdclqVa5ze3Cd20Oj6jypggJARPwA+EHZ5TAza0eT7Z6CmZmVqJ2DwpKyC1AC17k9uM7toSF1nlQ3ms3MrFzt3FIwM7MqDgpmZlbRlkFB0n6S7pS0XNKJZZdnrCTNk3SNpNsk3Srpwzl9lqSrJN2V/52Z0yXpy7neN0vatbCvRXn9uyQtKqtO9ZI0TdJvJF2e5xdIui7X7QJJG+T0DfP88rx8fmEfJ+X0OyW9paSq1EXSDEkXSbpD0u2Sdm/18yzpI/nv+hZJ50naqNXOs6RvSlot6ZZC2oSdV0mvldSft/myJI1aqIhoqw/p+Ye7gZcCGwA3ATuVXa4x1mU2sGue3oz04N9OwGnAiTn9RODUPH0AcAUgYDfgupw+C7gn/zszT88su36j1P2jwHeAy/P8hcARefoM4G/z9N8BZ+TpI4AL8vRO+dxvCCzIfxPTyq7XCPU9B3hPnt4AmNHK55k05tlvgY0L5/eYVjvPwF7ArsAthbQJO6/Ar/O6ytvuP2qZyj4oJZyE3YEfFeZPAk4qu1wTVLdLgTcDdwKzc9ps4M48/XXgyML6d+blRwJfL6Svs95k+5CGP+kF3ghcnv/gHwamV59j0oOQu+fp6Xk9VZ/34nqT7QN05i9IVaW37Hnm+cExZ+XzdjnwllY8z8D8qqAwIec1L7ujkL7OesN92vHy0agjsU5Fubm8C3AdsHVErMqLHgS2ztPD1X2qHZN/Az4BPJfntwAei4hn8nyx/JW65eUDef2pVOcFwBrgP/Mls29IejEtfJ4j4gHg88D9wCrSeVtGa5/nIRN1Xufk6er0EbVjUGg5kjYFLgaOj4jHi8si/URomX7Hkg4EVkfEsrLL0kTTSZcYvhYRuwBPki4rVLTgeZ5JepfKAmAb4MXAfqUWqgRlnNd2DAotNRKrpA5SQDg3Ii7JyQ9Jmp2XzwZW5/Th6j6VjsmewMGS7iW9hOmNpNe3zlAaUBHWLX+lbnl5J/B7pladVwIrI+K6PH8RKUi08nl+E/DbiFgTEYPAJaRz38rnechEndcH8nR1+ojaMShcD+yYezFsQLopdVnJZRqT3JPgLOD2iPhiYdFlwFAPhEWkew1D6UfnXgy7AQO5mfojYF9JM/MvtH1z2qQTESdFxNyImE86dz+OiHcB1wCH5tWq6zx0LA7N60dOPyL3WlkA7Ei6KTfpRMSDwApJL89JPcBttPB5Jl022k3SJvnvfKjOLXueCybkvOZlj0vaLR/Dowv7Gl7ZN1lKurFzAKmnzt3AP5RdnnHU4w2kpuXNwI35cwDpWmovcBdwNTArry/SO7DvBvqB7sK+3g0sz59jy65bnfXfm+d7H72U9J99OfDfwIY5faM8vzwvf2lh+3/Ix+JO6uiVUXJddwb68rn+HqmXSUufZ+AzwB3ALcC3ST2IWuo8A+eR7pkMklqEx03keQW68/G7G/gKVZ0Van08zIWZmVW04+UjMzMbhoOCmZlVOCiYmVmFg4KZmVU4KJiZWYWDgrUESc9KurHwmV92mUYiaRtJF9Wx3mw9PxLs3kPTheVnSzq09tYg6fOS3jj+Elu7mD76KmZTwtqI2LnWgvzgjiLiuVrLyxARv+P5h7BG8lHgzHFk9e95+x+PYx/WRtxSsJYkaX4eP/9bpId35kn6e0nX57HoP1NY9+icdpOkb+e0dX6BS/pDYfoF+8n53S7pTKV3AFwpaeO8bAdJV+f93yBp+7z+LYVtf56X3SBpj0JV3gH8sI76dhdaSf2SAiAi7gO2kPSScRxOayNuKVir2FjSjXn6t8BHSEMaLIqIayXtm+dfR3oy9DJJe5HGx/kUsEdEPCxp1kiZjLCf+3P6kRHxXkkXkr7Q/ws4FzglIr4raSPSj7GtCrtdDbw5Iv4oaUfSU67deViGRyPi6cK6f1GoJ8C2pKe6+0hPPSPpc6wbSG4gjRt08Uh1MwMHBWsd61w+yvcU7ouIa3PSvvnzmzy/KelL/DXAf0fEwwAR8cgo+Qy3n/tJA7jdmNOXAfMlbQbMiYjv5v3/MZevuM8O4CuSdgaeBV6W02eThswu+nlEHFio59nFhZL+mjRY3r6F5NWkkUbNRuWgYK3sycK0gM9GxNeLK0j64DDbPkO+vCrpRaS3nY20n/lA8Rf9s8DGdZbzI8BDpAD1IuCPOX0taUyfukh6FfBpYK+IeLawaKO8L7NR+Z6CtYsfAe9WevcEkuZI2op0A/YwSVvk9KHLR/cCr83TB5N+zY+0n5oi4glgpaS35fU3lLRJ1WqdwKp8I/wo0itjIQ3aOL+eykmaQbrsdHREVLcuXka6r2I2KgcFawsRcSXpnc6/ktRPeifBZhFxK/CvwE8l3QQMDUF+JvCXOW13cqtjuP2Mkv1RwIck3Qz8Eqi+6ftVYFHO6xWFvJ4E7pa0Qx1VPATYDjhz6IYzVN63sQNphFWzUXmUVLNJTNJfAa+NiE+NY/tdI+IfJ7Zk1qp8T8FsEss9lrYYxy6mA1+YqPJY63NLwczMKnxPwczMKhwUzMyswkHBzMwqHBTMzKzCQcHMzCr+P6frnt41ttteAAAAAElFTkSuQmCC\n",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "#Graficando la impendancia de la segunda solución:\n",
+    "plt.title(\"Impendancia 2 vs frecuencia\")\n",
+    "plt.ylabel(\"Impedancia (Ohm)\")\n",
+    "plt.xlabel(\"Frecuencia(Hz)\")\n",
+    "plt.scatter(f,z2,color=\"gray\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "        f             w        Z        s\n",
+      "0       1      6.283185  112.323  0.00771\n",
+      "1      10     62.831853   25.317  0.03420\n",
+      "2      30    188.495559   15.905  0.05443\n",
+      "3      70    439.822971   12.770  0.06780\n",
+      "4     100    628.318531   11.825  0.07321\n",
+      "5     150    942.477796   10.788  0.08025\n",
+      "6     200   1256.637061   10.019  0.08641\n",
+      "7     300   1884.955592    8.908  0.09720\n",
+      "8     400   2513.274123    8.196  0.10563\n",
+      "9     500   3141.592654    7.678  0.11276\n",
+      "10   1000   6283.185307    6.704  0.12915\n",
+      "11   1500   9424.777961    6.394  0.13540\n",
+      "12   2000  12566.370610    6.248  0.13857\n",
+      "13   3000  18849.555920    6.108  0.14175\n",
+      "14   4000  25132.741230    6.025  0.14370\n",
+      "15   5000  31415.926540    5.979  0.14482\n",
+      "16   6000  37699.111840    5.954  0.14541\n",
+      "17   7000  43982.297150    5.932  0.14597\n",
+      "18   8000  50265.482460    5.920  0.14626\n",
+      "19   9000  56548.667760    5.918  0.14630\n",
+      "20  10000  62831.853070    5.907  0.14657\n"
+     ]
+    }
+   ],
+   "source": [
+    "#Definiendo la tercera soplución (4B-9):\n",
+    "sol_3 = pd.read_csv(\"../data-used/4B-9.csv\",\";\")\n",
+    "print(sol_3)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "#Asignando columnas a variables para mejorar la manipulación de los datos:\n",
+    "z3 = sol_3.loc[:,\"Z\"]\n",
+    "s3 = sol_3.loc[:,\"s\"]\n",
+    "f = sol_3.loc[:,\"f\"]"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "<matplotlib.collections.PathCollection at 0x7fa6fe6d3198>"
+      ]
+     },
+     "execution_count": 11,
+     "metadata": {},
+     "output_type": "execute_result"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAfdklEQVR4nO3debwcVZ338c+XhC2AJoGIIZDcSFAGdRDMINuD7Ao6gApuCCEqcUZHEXUURueFy/goboiPCgRRogZBAYEBAWVVRgET9nUIBEgwkLAvCUiS3/PHOV1ULrfvrdy+3X3T/X2/Xv3qqnOq6pzTdW//+lSdqlJEYGZmBrBWuytgZmbDh4OCmZkVHBTMzKzgoGBmZgUHBTMzKzgomJlZwUHB1hiSrpL00SaXcbGkac0sYyhJepekBZKelbRdu+vTCEkTcztGtLsu3cxBwZB0v6S9212P4SAi9ouIWYNZV9KVkpZIelrSzZIOHOr69eE7wL9FxIYRcWMLymuaiHgwt2NFu+vSzUa2uwJmHeQo4I6IWC7pLcBlkl4bEYuaWOYk4Pa+MiSNjIjlTSzbOpB7CrYKSUdI+h9JJ0h6UtJ9knbO6QskLS4fXpF0uqSTJf1B0jOSrpY0qZS/dc57XNLdkt7ba90fSboor3udpC1L+ftIukvSU5J+CKiUt6WkKyQ9JulRSbMljS7l3y/pc5JuyeufJWm9Uv6Bkm7Kv+rvlfT2nF4cohqojN4i4pbSl3AAawNb9PEZbyZpmaSxpbTtchlrS5qSP8enctpZfWxjXUnPAiOAmyXdW2r3FyTdAjwnaaSkHSX9Oe/PmyXtXtrOWEk/k/Q3SU9IOq/0d3BNrzJD0pRS+d+R9KCkR/LfwPo5b3dJCyV9Nv+9LJI0vbSd9SV9V9IDuY3X5LSeXMbIvNx0SXfmv437JH2s3mdvQygi/OryF3A/sHeePgJYDkwnfeH8F/Ag8CNgXWBf4Blgw7z86Xl+t5x/InBNztsAWJC3NRLYDngU2Ka07mPADjl/NnBmztskb/dg0pfr0bleH835U4B9cpnjgD8C3+/VpuuBzYCxwJ3Av+S8HYCn8vprAROArXPeVVXLqPNZXgg8TwoKlwBr1VnuCuDI0vy3gZPz9K+AL+a6rQfs2k95AUzp1e6bSMFo/dy2x4D98/b2yfPj8vIXAWcBY/Ln/NbS38E19coCTgAuyJ/tRsB/A9/IebvnffXVvM39gaXAmJz/o/w5TyD9je2cP+OeXMbIvNw7gC1JPwbemrexfbv/Xzr91fYK+NX+Fy8PCveU8t6Y/1E3LaU9BrwpT59O/iLP8xsCK/KX0vuAP/Uq6xTguNK6Pynl7Q/clacPB64t5QlYSP7C7qMNBwE39mrTh0rz3yp96Z4CnFBnO1dVLaOfz3NtYD/gM/0s81HgilLbFgC75fmfAzOBzSuU1VdQ+HBp/gvAL3qtcykwDRgPrKx9Wfda5gjqBIVc3+eALUt5OwHz8/TuwLLal3tOWwzsSApMy4Bt+yizh1JQ6CP/POCodv+/dPrLh4+sL4+UppcBRETvtA1L8wtqExHxLPA46Rf6JOAt+bDFk5KeBA4FXl1a9+HS9NLSdjfrtd0oz0vaVNKZkh6S9DTwS1LvoqzetrcA7n15s1dVsYyXiYgXI+JiYF9JB9RZ7BxgJ0njSb2slcCfct7nSV+810u6XdKHByqzlwWl6UnAIb32wa6kgLAF8HhEPLGa2x8HjALmlrZ5SU6veSxWPZ9R+/w3IfV+qnz++0m6Nh96fJL0o2HAz98a4xPNNhSK4+aSNiQdUvgb6cvp6ojYZxDbXNRru2LV4/P/l/Sr8o0R8bikg4AfVtz2AtJhiYE0Ugak/68+y4mIJyT9ntSb+gdSbyty3sPAkQCSdiWdsP5jRMyrWG751scLSD2FI3svlAPSWEmjI+LJXtnPkb74a8uWA/mjpB8Gr4+IhyrWqbzu86TP5eZ6C0lalxQ4DwfOj4gX8/kO1VvHhoZ7CjYU9pe0q6R1gK+RDvssIB1ff62kw/IJ1LUl/ZOkf6iwzYuA10t6dz7x+ClW7WFsBDwLPCVpAvDvq1Hf04DpkvaStJakCZK27mO5ymUonVDfL58wXVvSh0g9gKv7qccZpC+9g/N0bVuHSNo8zz5B+pJfuRrtK/sl8M+S3iZphKT18ongzSONiroY+LGkMbneu+X1biZ9/m9SOkH/5doGI2IlcCpwgqRX5TpPkPS2gSqT1/0p8D2lE+4jJO2Ug0DZOqTzDEuA5ZL2I53PsiZzULChcAZwHOmw0ZuBDwFExDOkf+T3k3oODwPHk/7Z+xURjwKHAN8kncPYCvif0iJfAbYnnTC+CDi3amUj4nrSye8T8vpXkw6z9LY6ZYj0xbmY9EV2FPC+iLihn3UuILXr4Ygo/2r+J+A6pdFFF5COo983cMteLgfnA4H/yPVaQAputf/9w4AXgbty3T+d1/tf0oniy4B7gFVGIpHOVcwDrs2H1i4DXlexWp8DbgX+SvqbOZ5e30X5b+dTwK9JgfGDpM/Cmky5x2o2KJJOBxZGxJfaXRcza5x7CmZmVnBQMDOzgg8fmZlZwT0FMzMrrNHXKWyyySbR09PT7mqYma1R5s6d+2hEjOsrb40OCj09PcyZM6fd1TAzW6NIeqBeng8fmZlZwUHBzMwKDgpmZlZwUDAzs4KDgpmZFbovKMyfDef1wBlrpff5s9tdIzOzYWONHpK62ubPhutnwIqlaX7pA2keYPKh7auXmdkw0V09hZu/+FJAqFmxNKWbmVmXBYWlD65euplZl+muoDBq4uqlm5l1me4KCtt+HUaMWjVtxKiUbmZmXRYUJh8KO8yEUZMApfcdZvoks5lZ1l2jjyAFAAcBM7M+dVdPwczM+uWgYGZmBQcFMzMrOCiYmVnBQcHMzAoOCmZmVnBQMDOzgoOCmZkVHBTMzKzgoGBmZgUHBTMzKzgomJlZwUHBzMwKDgpmZlZwUDAzs0LTgoKkn0paLOm2UtpYSX+QdE9+H5PTJekHkuZJukXS9s2ql5mZ1dfMnsLpwNt7pR0DXB4RWwGX53mA/YCt8msGcFIT62VmZnU0LShExB+Bx3slHwjMytOzgINK6T+P5FpgtKTxzaqbmZn1rdXnFDaNiEV5+mFg0zw9AVhQWm5hTnsZSTMkzZE0Z8mSJc2rqZlZF2rbieaICCAGsd7MiJgaEVPHjRvXhJqZmXWvVgeFR2qHhfL74pz+ELBFabnNc5qZmbVQq4PCBcC0PD0NOL+UfngehbQj8FTpMJOZmbXIyGZtWNKvgN2BTSQtBI4Dvgn8WtJHgAeA9+bFfwfsD8wDlgLTm1UvMzOrr2lBISI+UCdrrz6WDeATzaqLmZlV4yuazcys4KBgZmYFBwUzMys4KJiZWcFBwczMCg4KZmZWcFAwM7OCg4KZmRUcFMzMrOCgYGZmBQcFMzMrOCiYmVnBQcHMzAoOCmZmVnBQMDOzgoOCmZkVHBTMzKzgoGBmZgUHBTMzKzgomJlZwUHBzMwKDgpmZlZwUDAzs4KDgpmZFRwUzMysUDkoSNpA0ohmVsbMzNqrblCQtJakD0q6SNJi4C5gkaQ7JH1b0pTWVdPMzFqhv57ClcCWwLHAqyNii4h4FbArcC1wvKQPtaCOZmbWIiP7yds7Il7snRgRjwPnAOdIWnswhUo6GvgoEMCtwHRgPHAmsDEwFzgsIv4+mO2bmdng1O0plAOCpDGS/lHS9rVX72WqkjQB+BQwNSLeAIwA3g8cD5wQEVOAJ4CPrO62zcysMf31FACQ9DXgCOBe0i978vueDZa7vqQXgVHAory9D+b8WcCXgZMaKMPMzFbTgEEBeC+w5VAdyomIhyR9B3gQWAb8nnS46MmIWJ4XWwhM6Gt9STOAGQATJ04ciiqZmVlWZUjqbcDooSpQ0hjgQGAysBmwAfD2qutHxMyImBoRU8eNGzdU1TIzM6r1FL4B3CjpNuCFWmJEHDDIMvcG5kfEEgBJ5wK7AKMljcy9hc2Bhwa5fTMzG6QqQWEW6STwrcDKISjzQWBHSaNIh4/2AuaQhsAeTBqBNA04fwjKMjOz1VAlKCyNiB8MVYERcZ2ks4EbgOXAjcBM4CLgTEn/ldNOG6oyzcysmipB4U+SvgFcwKqHj24YbKERcRxwXK/k+4AdBrtNMzNrXJWgsF1+37GU1uiQVDMzG4YGDAoRsUcrKmJmZu1X5eK1dYH3AD3l5SPiq82rlpmZtUOVw0fnA0+RLjB7YYBlzcxsDVYlKGweEZUvLjMzszVXlSua/yzpjU2viZmZtV3dnoKkW0mjjEYC0yXdRzp8JCAi4h9bU0UzM2uV/g4fvbNltTAzs2GhblCIiAcAJO0BvD4n3x4RV7aiYmZm1nr9HT6aAJwLPE8aeQRwiKTjgXdFhG9YZ2bWYfo7fPRD4KSIOL2cKOlw4Mek21+bmVkH6W/00Ta9AwJARPwc2LppNTIzs7bpLyj0mSdpLdJzlc3MrMP0FxQulHSqpA1qCXn6ZOB3Ta+ZmZm1XH9B4fOk21s8IGmupLnA/cDTwOdaUDczM2ux/oakvgh8TtJ/AlNy8r0RsbQlNTMzs5ar21OQtCtARCyLiFvza2kp/xWS3tCKSpqZWWv0NyT1PZK+BVxCuk5hCbAeqdewBzAJ+GzTa2hmZi3T3+GjoyWNJT1L4RBgPLAMuBM4JSKuaU0VzcysVfq9dXZEPA6cml9mZtbhqtw628zMuoSDgpmZFRwUzMysUOVxnOShp9uQRh8BxT2QzMysgwwYFCQdB+xOCgq/A/YDrgEcFMzMOkyVw0cHA3sBD0fEdGBb4JVNrZWZmbVFlaCwLCJWAsslvQJYDGzR3GqZmVk7VDmnMEfSaNK1CnOBZ4G/NLNSZmbWHgMGhYj4eJ48WdIlwCsi4pZGCs1B5ifAG4AAPgzcDZwF9JDuxvreiHiikXLMzGz19HdDvK3z+/a1FzAWGJmnG3EicElEbE06R3EncAxweURsBVye583MrIX66yl8BpgBfLePvAD2HEyBkl4J7AYcARARfwf+LulA0igngFnAVcAXBlOGmZkNTn83xJuR3/cY4jInk+64+jNJ25LOUxwFbBoRi/IyDwOb9rWypBmkYMXEiROHuGpmZt1twNFHkj6RzwHU5sdI+ng/qwxkJLA9cFJEbAc8R69DRRERpN7Iy0TEzIiYGhFTx40b10A1zMystypDUo+MiCdrM/nk75ENlLkQWBgR1+X5s0lB4hFJ4wHy++IGyjAzs0GoEhRGSFJtRtIIYJ3BFhgRDwMLJL0uJ+0F3AFcAEzLadOA8wdbhpmZDU6V6xQuAc6SdEqe/1hOa8QngdmS1gHuA6aTAtSvJX0EeAB4b4NlmJnZaqoSFL5ACgT/muf/QLrGYNAi4iZgah9ZezWyXTMza0yVi9dWAifll5mZdbAqd0ndBfgyMCkvL9IAodc0t2pmZtZqVQ4fnQYcTbqeYEVzq2NmZu1UJSg8FREXN70mZmbWdlWCwpWSvg2cC7xQS4yIG5pWKzMza4sqQeEt+b08WmjQ9z4yM7Phq8roo6G+95GZmQ1TVXoKSHoH8HpgvVpaRHy1WZUyM7P2qHJDvJOB95GuQhZwCGl4qpmZdZgq9z7aOSIOB56IiK8AOwGvbW61zMysHaoEhWX5famkzYAXgfHNq5KZmbVLlXMKF+bnKXwbuIE08qihex+ZmdnwVGX00dfy5DmSLgTWi4inmlstMzNrh7pBQdK7+8kjIs5tTpXMzKxd+usp/HN+fxWwM3BFnt8D+DPpCmczM+sgdYNCREwHkPR7YJuIWJTnxwOnt6R2ZmbWUlVGH21RCwjZI8DEJtXHzMzaqMroo8slXQr8Ks+/D7iseVUyM7N2qTL66N8kvQvYLSfNjIjfNrdaZmbWDpXufUS6PuGZiLhM0ihJG0XEM82smJmZtV6Vex8dCZwNnJKTJgDnNbFOZmbWJlVONH8C2AV4GiAi7iENUzUzsw5TJSi8EBF/r81IGkm61YWZmXWYKkHhakn/AawvaR/gN8B/N7daZmbWDlWCwjHAEuBW4GPA74AvNbNSZmbWHlWGpK6UNAu4jnTY6O6I8OEjM7MONGBQyI/iPBm4l/TktcmSPhYRFze7cmZm1lpVrlP4LrBHRMwDkLQlcBHgoGBm1mGqnFN4phYQsvuAhi9ckzRC0o35GQ1ImizpOknzJJ0laZ1GyzAzs9VTJSjMkfQ7SUdImkYaefRXSe/u75kLFRwF3FmaPx44ISKmAE8AH2lg22ZmNghVgsJ6pDujvhXYnTQSaX3S8xbeOZhCJW0OvIP8WE9JAvYkXTkNMAs4aDDbNjOzwasy+mh6E8r9PvB5YKM8vzHwZEQsz/MLSbfTMDOzFqoy+mgy8Emgp7x8RBwwmAIlvRNYHBFzJe0+iPVnADMAJk70Yx3MzIZSldFH5wGnkc4lrByCMncBDpC0P+nQ1CuAE4HRkkbm3sLmwEN9rRwRM4GZAFOnTvX1EmZmQ6hKUHg+In4wVAVGxLHAsQC5p/C5iDhU0m+Ag4EzgWnA+UNVppmZVVPlRPOJko6TtJOk7WuvJtTlC8BnJM0jnWM4rQllmJlZP6r0FN4IHEYaHVQ7fBR5viERcRVwVZ6+D9ih0W2amdngVQkKhwCvKd8+28zMOlOVw0e3AaObXA8zMxsGqvQURgN3Sfor8EItcbBDUs3MbPiqEhSOa3otzMxsWKhyRfPVraiImZm1X92gIOkZ+n4Ws4CIiFc0rVZmZtYWdYNCRGxUL8/MzDpTldFHZmbWJRwUzMys4KBgZmYFBwUzMys4KJiZWcFBwczMCg4KZmZWcFAwM7OCg4KZmRUcFMzMrOCgYGZmBQcFMzMrdGdQmD8bzuuBM9ZK7/Nnt7tGZmbDQpWH7HSW+bPh+hmwYmmaX/pAmgeYfGj76mVmNgx0X0/h5i++FBBqVixN6WZmXa77gsLSB1cv3cysi3RfUBg1cfXSzcy6SPcFhW2/DiNGrZo2YlRKNzPrct0XFCYfCjvMhFGTAKX3HWb6JLOZGd04+ghSAHAQMDN7me7rKZiZWV0OCmZmVmh5UJC0haQrJd0h6XZJR+X0sZL+IOme/D6m1XUzM+t27egpLAc+GxHbADsCn5C0DXAMcHlEbAVcnufNzKyFWh4UImJRRNyQp58B7gQmAAcCs/Jis4CDWl03M7Nu19ZzCpJ6gO2A64BNI2JRznoY2LTOOjMkzZE0Z8mSJa2pqJlZl2hbUJC0IXAO8OmIeLqcFxEBRF/rRcTMiJgaEVPHjRvXgpqamXWPtgQFSWuTAsLsiDg3Jz8iaXzOHw8sbkfdzMy6WTtGHwk4DbgzIr5XyroAmJanpwHnt7puZmbdrh09hV2Aw4A9Jd2UX/sD3wT2kXQPsHeebw4/ZMfMrE8tv81FRFwDqE72Xk2vgB+yY2ZWV/dd0eyH7JiZ1dV9QcEP2TEzq6v7goIfsmNmVlf3BQU/ZMfMrK7uCwq1h+ysvfFLaSPWb199zMyGke4LCjUrl700/ffH0ggkD001sy7XnUGh3gikOUe1pz5mZsNEdwaFeiONXnzMvQUz62rdGRT6G2l07TQHBjPrWt0ZFPobaRQr4C+HwfUfb119zMyGie4MCpMPhXU27meBgHknu8dgZl2nO4MCwJtPfPn1CqsI+MuHfMM8M+sqLb8h3rBRu/ndtdPSIaN6fMM8M+si3dtTgPQlv+Ms6t+0NVux1L0GM+sK3R0UIAWGKf/CgIEBUq/hL4fBGXKAMLOO5KAAsMOPYadfwKhJFRbOj46uHVZancDgh/uY2TDnoFAz+VA46H7Y6ZcDnIAuWZ3nMNQe7rP0ASBWP6g0ElAcjMysIgeF3mo3zKvUa6D6cxgaebhPIwGl0WDUqHYFpG4rt51lu80d1WZFxJBusJWmTp0ac+bMaV4BvR/d2ZdRk1IPYyBnrEVx6GkVgg+u7H/d83ryl/ogym5k3Ub19fmNGJWCbjNHcnVbue0s221uXblDWLakuRExta889xT687JeQ6+T0avzHIZGHu7TyNPi2vmkuXY9+rTbym1n2W5z68ptUdkOCgOpnWv4YJRORiu9r050buThPo0ElHY+aa5dAanbym1n2W5z68ptUdkOCqujCBAr0/vqdBVX6XWsZlBpJKC080lz7QpI3VZuO8t2m1tXbovKdlBopcEGlUYCSiPrNqpdAanbym1n2W5z68ptUdk+0WzNNX92Ot659MH0a2bbr7cmIHVbue0s221e49rc34lmBwUzsy7j0UdmZlaJg4KZmRUcFMzMrOCgYGZmBQcFMzMrrNGjjyQtAfq4sU8lmwCPDmF11gRuc3dwm7tDI22eFBHj+spYo4NCIyTNqTckq1O5zd3Bbe4OzWqzDx+ZmVnBQcHMzArdHBRmtrsCbeA2dwe3uTs0pc1de07BzMxerpt7CmZm1ouDgpmZFboyKEh6u6S7Jc2TdEy76zNYkraQdKWkOyTdLumonD5W0h8k3ZPfx+R0SfpBbvctkrYvbWtaXv4eSdPa1aaqJI2QdKOkC/P8ZEnX5badJWmdnL5unp+X83tK2zg2p98t6W1takolkkZLOlvSXZLulLRTp+9nSUfnv+vbJP1K0nqdtp8l/VTSYkm3ldKGbL9KerOkW/M6P5DU65nCfYiIrnoBI4B7gdcA6wA3A9u0u16DbMt4YPs8vRHwv8A2wLeAY3L6McDxeXp/4GLSw6Z3BK7L6WOB+/L7mDw9pt3tG6DtnwHOAC7M878G3p+nTwb+NU9/HDg5T78fOCtPb5P3/brA5Pw3MaLd7eqnvbOAj+bpdYDRnbyfgQnAfGD90v49otP2M7AbsD1wWyltyPYrcH1eVnnd/QasU7s/lDbshJ2AS0vzxwLHtrteQ9S284F9gLuB8TltPHB3nj4F+EBp+btz/geAU0rpqyw33F7A5sDlwJ7AhfkP/lFgZO99DFwK7JSnR+bl1Hu/l5cbbi/glfkLUr3SO3Y/56CwIH/Rjcz7+W2duJ+Bnl5BYUj2a867q5S+ynL1Xt14+Kj2x1azMKet0XJ3eTvgOmDTiFiUsx4GNs3T9dq+pn0m3wc+D6zM8xsDT0bE8jxfrn/Rtpz/VF5+TWrzZGAJ8LN8yOwnkjagg/dzRDwEfAd4EFhE2m9z6ez9XDNU+3VCnu6d3q9uDAodR9KGwDnApyPi6XJepJ8IHTPuWNI7gcURMbfddWmhkaRDDCdFxHbAc6TDCoUO3M9jgANJAXEzYAPg7W2tVBu0Y792Y1B4CNiiNL95TlsjSVqbFBBmR8S5OfkRSeNz/nhgcU6v1/Y16TPZBThA0v3AmaRDSCcCoyWNzMuU61+0Lee/EniMNavNC4GFEXFdnj+bFCQ6eT/vDcyPiCUR8SJwLmnfd/J+rhmq/fpQnu6d3q9uDAp/BbbKoxjWIZ2UuqDNdRqUPJLgNODOiPheKesCoDYCYRrpXEMt/fA8imFH4KncTb0U2FfSmPwLbd+cNuxExLERsXlE9JD23RURcShwJXBwXqx3m2ufxcF5+cjp78+jViYDW5FOyg07EfEwsEDS63LSXsAddPB+Jh022lHSqPx3Xmtzx+7nkiHZrznvaUk75s/w8NK26mv3SZY2ndjZnzRS517gi+2uTwPt2JXUtbwFuCm/9icdS70cuAe4DBiblxfwo9zuW4GppW19GJiXX9Pb3baK7d+dl0YfvYb0zz4P+A2wbk5fL8/Py/mvKa3/xfxZ3E2FURltbuubgDl5X59HGmXS0fsZ+ApwF3Ab8AvSCKKO2s/Ar0jnTF4k9Qg/MpT7FZiaP797gR/Sa7BCXy/f5sLMzArdePjIzMzqcFAwM7OCg4KZmRUcFMzMrOCgYGZmBQcF6wiSVki6qfTqaXed+iNpM0lnV1huvF66E+zutelS/umSDu57bZD0HUl7Nl5j6xYjB17EbI2wLCLe1FdGvnBHEbGyr/x2iIi/8dJFWP35DHBqA0X9v7z+FQ1sw7qIewrWkST15Pvn/5x08c4Wkv5d0l/zvei/Ulr28Jx2s6Rf5LRVfoFLerY0/bLt5PLulHSq0jMAfi9p/Zw3RdJlefs3SNoyL39bad0/5bwbJO1casp7gEsqtHdqqZd0q6QAiIgHgI0lvbqBj9O6iHsK1inWl3RTnp4PHE26pcG0iLhW0r55fgfSlaEXSNqNdH+cLwE7R8Sjksb2V0g/23kwp38gIo6U9GvSF/ovgdnANyPit5LWI/0Ye1Vps4uBfSLieUlbka5ynZpvy/BERLxQWvb/lNoJMJF0Vfcc0lXPSPo2qwaSG0j3DTqnv7aZgYOCdY5VDh/lcwoPRMS1OWnf/Loxz29I+hLfFvhNRDwKEBGPD1BOve08SLqB2005fS7QI2kjYEJE/DZv//lcv/I21wZ+KOlNwArgtTl9POmW2WV/ioh3ltp5ejlT0vtIN8vbt5S8mHSnUbMBOShYJ3uuNC3gGxFxSnkBSZ+ss+5y8uFVSWuRnnbW33Z6gPIv+hXA+hXreTTwCClArQU8n9OXke7pU4mkNwBfBnaLiBWlrPXytswG5HMK1i0uBT6s9OwJJE2Q9CrSCdhDJG2c02uHj+4H3pynDyD9mu9vO32KiGeAhZIOysuvK2lUr8VeCSzKJ8IPIz0yFtJNG3uqNE7SaNJhp8Mjonfv4rWk8ypmA3JQsK4QEb8nPdP5L5JuJT2TYKOIuB34OnC1pJuB2i3ITwXemtN2Ivc66m1ngOIPAz4l6Rbgz0Dvk74/BqblsrYulfUccK+kKRWaeCAwCTi1dsIZiudtTCHdYdVsQL5LqtkwJuldwJsj4ksNrL99RPzn0NbMOpXPKZgNY3nE0sYNbGIk8N2hqo91PvcUzMys4HMKZmZWcFAwM7OCg4KZmRUcFMzMrOCgYGZmhf8PAVEOwjRNrisAAAAASUVORK5CYII=\n",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "#Graficando la impendancia de la segunda solución:\n",
+    "plt.title(\"Impendancia 3 vs frecuencia\")\n",
+    "plt.ylabel(\"Impedancia (Ohm)\")\n",
+    "plt.xlabel(\"Frecuencia(Hz)\")\n",
+    "plt.scatter(f,z3,color=\"orange\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Observamos el mismo comportamiento en todas las soluciones pero con cierta singularidad: Las concentraciones de polimero-surfactante varian en cada preparado, causando así una mayor o menor conductividad dependiendo con que solución se trabaje. "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "[<matplotlib.lines.Line2D at 0x7fa6fe63c748>,\n",
+       " <matplotlib.lines.Line2D at 0x7fa6fe5d3a20>,\n",
+       " <matplotlib.lines.Line2D at 0x7fa6fe5d3a90>]"
+      ]
+     },
+     "execution_count": 12,
+     "metadata": {},
+     "output_type": "execute_result"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAALJCAYAAAAakz+MAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA1+ElEQVR4nO3de5hlV10n7s+XpAk0DYRw6YRA0oCAAzhG0qNoGOwKiojReAEMtlziJTqjcxF1FIMDyuTnjcuMwwgGIQFtaJCAYoPKJV2g0aAJRAhyMYFOuCZAAiQ0hEDW74+zKznpVFWfTtepdbrqfZ/nPHX22vvsvfZZOckna6+9drXWAgBAP3foXQEAgPVOIAMA6EwgAwDoTCADAOhMIAMA6EwgAwDoTCADuqmq+ar6mSkf46+r6unTPMZ+jn/nqvqrqvpiVf15r3qslKp6aVX9Zu96wFpzeO8KACuvqvYk+ZnW2tt716W31tr3d67CE5NsTnLP1trXO9floLXWfr53HWAt0kMGMF3HJ/nIUmGsqvyPMSCQwVpXVc+oqguq6kVV9YWq+mhVfddQ/vGqunr8kl5VnTtclnpbVV1XVe+squPH1n/zsO6aqvpwVT15n8/+v6p68/DZd1fVg8bWf29VfWi4fPfiJDW27kFVdX5Vfb6qPldVO6rqyLH1e6rqV6rqfcPnX1tVdxpbf2pVXVJVX6qqy6vq8UP5zZdF93eMfb63l1TV8/cp+8uqeubw/teq6pPDeX64qh67yD5+K8n/TPLjVXV9Vf30Pu3x+STPraojqur5VXVlVV01fP93nuDc9lTV94xt99yq+rOx5UdV1T8M7f4vVbVtbN18VT1vqMt1VfXWqrrX2PpHj33241X1jLE2/l/D+3tU1a6q+mxVXTu8v99i3yewPIEM1ofvSPK+JPdM8uokO5P8hyTflOQnk7y4qjaNbb89yfOS3CvJJUl2JElV3SXJ24Z93CfJaUn+qKoeNvbZ05L8VpJ7JLksyVnDZ++V5A1Jnj3s9/IkJ419rpL8TpL7Jvl3Se6f5Ln7nMeTkzw+yQOS/Pskzxj2/e1JXpXkV5McmeQxSfYs8j1McowFr8koSNVwjHskeVySnVX10CS/mOQ/tNbumuT7Fjtea+05Sf6/JK9trW1qrb18WPUdST6a0aXMs5L8bpKHJDkhozY5NqMgdyDndusTrTo2yZuT/K8kRyX5lSTnVdW9xzb7iSSnZ9SWdxy2yRDA/zrJ/01y76FelyxymDskOSejXsDjknwlyYv3VzfgtgQyWB8+1lo7p7X2jSSvzSiI/HZr7YbW2luTfC2jILDgza21d7XWbkhyZpLvrKr7JzklyZ5hX19vrb03yXlJnjT22Te21v5puES3I6P/mCfJE5J8oLX2+tbajUn+d5LPLHyotXZZa+1tQ50+m+SFSb57n/P4w9bap1pr1yT5q7F9/3SSVwyfv6m19snW2of2/RImPMaCv0vSkvzHYfmJSf6xtfapJN9IckSSh1XVhtbantba5UvsZzGfaq393+E7+mqSM5L8UmvtmtbadRmFuNMO5NwW8ZNJ3tJae8vwubcluSijdlhwTmvtI621ryR5XW75Pn8iydtba69prd3YWvt8a+2SfQ8wlJ/XWts71PusLP19AssQyGB9uGrs/VeSpLW2b9l4D9nHF9601q5Pck1GvUrHJ/mO4TLWF6rqCxn1ph099tnPjL3fO7bf++6z3za+XFWbq2rncBnwS0n+LKOetHFL7fv+GfW4LWvCY4zXb2eSpwxFP5Ghp7C1dlmS/55R79rVwz7vu7/jj/n42Pt7J9mY5OKx7/RvhvKJz20Rxyd50j5t9egkx4xtc7Df58aq+uOqumL4Pt+V5MiqOux21BfWNYEMWMz9F94MlzKPSvKpjILEO1trR469NrXW/tME+/z0Pvut8eWMeoVakm9prd0tox6eymQ+nuRB+93qwI/xmiRPHC7hfUdGvYFJktbaq1trj84o+LQkvzdhXTNsv+BzGQXih499p3dvrS2Eo+XO7csZhbkF48H440n+dJ+2uktr7XcnqN+k3+cvJ3loku8Yvs/HDOWTthswEMiAxTxhGNR9x4zGkl3YWvt4kl1JHlJVT62qDcPrP1TVv5tgn29O8vCq+tEa3Vn4X3PrAHHXJNcn+eIw/ulXD6C+L09yelU9tqruUFXHVtU3L7LdAR1juCT7uSR/kuRvW2tfSJKqemhVnVxVR2R0yfErSW46gPqOH+OmJC9L8qKqus+w/2Or6vsmOLdLkpw2tMPWjC6rLvizJD9YVd9XVYdV1Z2qatuEg+53JPmeqnpyVR1eVfesqhMW2e6uGZ37F6rqqCTPOcDTBwYCGbCYV2f0H9drkpyYUU9ShnFCj8tofNOnMrrk9XsZjadaVmvtcxmNNfvdJJ9P8uAkF4xt8ltJHpnkixmFtzdMWtnW2j9lNDj9RcPn35lRz9W+bs8xXp3ke4a/C44YzuNzGX0H90nyrEnru4hfy+gGiAuHS39vz6jnaX/n9psZ9WRdm9G53VzHIUCfmuQ3knw2o16vX80E/95vrV2Z0VizX87on4FLknzrIpv+7yR3zuh7uDCjS63A7VCjYRIAI1V1bpJPtNae3bsuAOuFHjIAgM4EMgCAzlyyBADoTA8ZAEBnh/RDbe91r3u1LVu2TP04X/7yl3OXu9xl6sdhctpkNmmX2aNNZpN2mT2r0SYXX3zx51pr915s3SEdyLZs2ZKLLrpo6seZn5/Ptm3bpn4cJqdNZpN2mT3aZDZpl9mzGm1SVVcstc4lSwCAzgQyAIDOBDIAgM4EMgCAzgQyAIDOBDIAgM4EMgCAzgQyAIDOBDIAgM4EMgCAzgQyAIDOBDIAgM4EMgCAzgQyAIDOBDIAgM4EMgCAzgQyAIDOBLJl7NiRbNmSnHzyd2fLltEyAMBKO7x3BWbVjh3JGWcke/cmSeWKK0bLSbJ9e8+aAQBrjR6yJZx55kIYu8XevaNyAICVJJAt4corD6wcAOD2EsiWcNxxB1YOAHB7CWRLOOusZOPGW5dt3DgqBwBYSQLZErZvT84+Ozn++KSq5fjjR8sG9AMAK00gW8b27cmePcn5578ze/YIYwDAdAhkAACdCWQAAJ0JZAAAnQlkAACdCWQAAJ0JZAAAnU0tkFXVK6rq6qq6dKzstVV1yfDaU1WXDOVbquorY+teOq16AQDMmsOnuO9zk7w4yasWClprP77wvqpekOSLY9tf3lo7YYr1AQCYSVMLZK21d1XVlsXWVVUleXKSk6d1fACAQ0W11qa381Eg29Vae8Q+5Y9J8sLW2tax7T6Q5CNJvpTk2a21v1tin2ckOSNJNm/efOLOnTunVv8F119/fTZt2jT14zA5bTKbtMvs0SazSbvMntVok7m5uYsXss++pnnJcjlPSfKaseVPJzmutfb5qjoxyV9U1cNba1/a94OttbOTnJ0kW7dubdu2bZt6Zefn57Max2Fy2mQ2aZfZo01mk3aZPb3bZNXvsqyqw5P8aJLXLpS11m5orX1+eH9xksuTPGS16wYA0EOPaS++J8mHWmufWCioqntX1WHD+wcmeXCSj3aoGwDAqpvmtBevSfKPSR5aVZ+oqp8eVp2WW1+uTJLHJHnfMA3G65P8fGvtmmnVDQBglkzzLsunLFH+jEXKzkty3rTqAgAwy8zUDwDQmUAGANCZQAYA0JlABgDQmUAGANCZQAYA0JlABgDQmUAGANCZQAYA0JlABgDQmUAGANCZQAYA0JlABgDQmUAGANCZQAYA0JlABgDQmUAGANCZQAYA0JlABgDQmUAGANCZQAYA0JlABgDQmUAGANCZQAYA0JlABgDQmUAGANCZQAYA0JlABgDQmUAGANCZQAYA0JlABgDQmUAGANCZQAYA0JlABgDQmUAGANCZQAYA0JlABgDQmUAGANCZQAYA0JlABgDQmUAGANCZQAYA0JlABgDQmUAGANCZQAYA0JlABgDQmUAGANCZQAYA0JlABgDQmUAGANCZQAYA0JlABgDQmUAGANCZQAYA0JlABgDQmUAGANCZQAYA0JlABgDQmUAGANCZQAYA0JlABgDQmUAGANCZQAYA0JlABgDQmUAGANCZQAYA0JlABgDQmUAGANCZQAYA0JlABgDQmUAGANCZQAYA0JlABgDQmUAGANCZQAYA0JlABgDQmUAGANCZQAYA0JlABgDQmUAGANCZQAYA0NnUAllVvaKqrq6qS8fKnltVn6yqS4bXE8bWPauqLquqD1fV902rXgAAs2aaPWTnJnn8IuUvaq2dMLzekiRV9bAkpyV5+PCZP6qqw6ZYNwCAmTG1QNZae1eSaybc/NQkO1trN7TWPpbksiTfPq26AQDMksM7HPMXq+ppSS5K8suttWuTHJvkwrFtPjGU3UZVnZHkjCTZvHlz5ufnp1vbJNdff/2qHIfJaZPZpF1mjzaZTdpl9vRuk9UOZC9J8rwkbfj7giQ/dSA7aK2dneTsJNm6dWvbtm3bClfxtubn57Max2Fy2mQ2aZfZo01mk3aZPb3bZFXvsmytXdVa+0Zr7aYkL8stlyU/meT+Y5vebygDAFjzVjWQVdUxY4s/kmThDsw3JTmtqo6oqgckeXCSf1rNugEA9DK1S5ZV9Zok25Lcq6o+keQ5SbZV1QkZXbLck+TnkqS19oGqel2Sf03y9SS/0Fr7xrTqBgAwS6YWyFprT1mk+OXLbH9WkrOmVR8AgFllpn4AgM4EMgCAzgQyAIDOBDIAgM4EMgCAzgQyAIDOBDIAgM4EMgCAzgQyAIDOBDIAgM4EMgCAzgQyAIDOBDIAgM4EMgCAzgQyAIDOBDIAgM4EMgCAzgQyAIDOBDIAgM4EMgCAzgQyAIDOBDIAgM4EMgCAzgSy/dm9O4867bRk9+7eNQEA1iiBbDm7dyennJI7XXVVcsopQhkAMBUC2VKGMJa9e0fLe/cKZQDAVAhki9k3jC0QygCAKRDIFnP66bcNYwv27h2tBwBYIQLZYs45J9m4cfF1GzeO1gMArBCBbDFzc8muXbcNZRs3jsrn5vrUCwBYkwSypewbyoQxAGBKBLLlDKHsq5s3C2MAwNQIZPszN5cLd+4UxgCAqRHIAAA6E8gAADoTyAAAOhPIAAA6E8gAADoTyAAAOhPIAAA6E8gAADoTyAAAOhPIAAA6E8gAADoTyAAAOhPIAAA6E8gAADoTyAAAOhPIAAA6E8gAADoTyAAAOhPIAAA6E8gAADoTyAAAOhPIAAA6E8gAADoTyAAAOhPIAAA6E8gAADoTyAAAOhPIAAA6E8gAADoTyAAAOhPIAAA6E8gAADoTyAAAOhPIAAA6E8gAADoTyAAAOhPIAAA6E8gAADoTyAAAOhPIAAA6E8gAADoTyAAAOhPIAAA6E8gAADoTyAAAOhPIAAA6E8gAADqbWiCrqldU1dVVdelY2R9U1Yeq6n1V9caqOnIo31JVX6mqS4bXS6dVLwCAWTPNHrJzkzx+n7K3JXlEa+3fJ/lIkmeNrbu8tXbC8Pr5KdYLAGCmTC2QtdbeleSafcre2lr7+rB4YZL7Tev4AACHip5jyH4qyV+PLT+gqt5bVe+sqv/Yq1IAAKutWmvT23nVliS7WmuP2Kf8zCRbk/xoa61V1RFJNrXWPl9VJyb5iyQPb619aZF9npHkjCTZvHnziTt37pxa/Rdcf/312bRp09SPw+S0yWzSLrNHm8wm7TJ7VqNN5ubmLm6tbV1s3eFTPfIiquoZSU5J8tg2pMHW2g1JbhjeX1xVlyd5SJKL9v18a+3sJGcnydatW9u2bdumXuf5+fmsxnGYnDaZTdpl9miT2aRdZk/vNlnVS5ZV9fgk/yPJD7XW9o6V37uqDhvePzDJg5N8dDXrBgDQy9R6yKrqNUm2JblXVX0iyXMyuqvyiCRvq6okuXC4o/IxSX67qm5MclOSn2+tXbPojgEA1pipBbLW2lMWKX75Etuel+S8adUFAGCWmakfAKAzgQwAoDOBDACgM4EMAKAzgQwAoDOBDACgM4EMAKAzgQwAoDOBDACgM4EMAKAzgQwAoDOBDACgM4EMAKAzgQwAoDOBDACgM4EMAKAzgQwAoDOBDACgM4EMAKAzgQwAoDOBDACgM4EMAKAzgQwAoDOBDACgM4EMAKAzgQwAoDOBDACgM4EMAKAzgQwAoDOBDACgM4EMAKAzgQwAoDOBDACgM4EMAKAzgQwAoDOBDACgM4EMAKCzw3tXYFZdcMHRufHGq25enp8f/d2wYXNOOukzfSoFAKxJesiWMB7GJikHALi9BDIAgM4EMgCAzgQyAIDOBDIAgM4EsiVs2LD5gMoBAG4v014sYXxqi/n5+Wzbtq1fZQCANU0PGQBAZwIZAEBnAhkAQGcCGQBAZwIZAEBnAhkAQGcCGQBAZwIZAEBnAhkAQGcCGQBAZwIZAEBnAhkAQGcCGQBAZwIZAEBnAhkAQGcCGQBAZxMHsqq6S1UdNs3KAACsR0sGsqq6Q1X9RFW9uaquTvKhJJ+uqn+tqj+oqm9avWoCAKxdy/WQ7U7yoCTPSnJ0a+3+rbX7JHl0kguT/F5V/eQq1BEAYE07fJl139Nau3HfwtbaNUnOS3JeVW2YWs0AANaJJQPZeBirqnskuf/49q219ywW2AAAODDL9ZAlSarqeUmekeTyJG0obklOnl61AADWj/0GsiRPTvKg1trXpl0ZAID1aJJpLy5NcuSU6wEAsG5N0kP2O0neW1WXJrlhobC19kNTqxUAwDoySSB7ZZLfS/L+JDdNtzoAAOvPJIFsb2vtD6deEwCAdWqSQPZ3VfU7Sd6UW1+yfM/UagUAsI5MEsi+bfj7qLEy014AAKyQ/Qay1trcalQEAGC9mmRi2COS/FiSLbn1TP2/Pb1qAQCsH5NcsvzLJF9McnHGxpABALAyJglk92utPX7qNQEAWKcmman/H6rqW6ZeEwCAdWrJHrKqen9Gd1MenuT0qvpoRpcsK0lrrf371akiAMDattwly1NWrRYAAOvYkpcsW2tXtNauSPLAJD84vB44Vr5fVfWKqrp6eA7mQtlRVfW2qvq34e89hvKqqj+sqsuq6n1V9ciDOzUAgEPDkoGsqo6tqncneW5GoeyBSZ5bVf9UVcdOuP9zk+x7Q8CvJ3lHa+3BSd4xLCfJ9yd58PA6I8lLJjwGAMAhbblLli9O8pLW2rnjhVX1tCR/lOTU/e28tfauqtqyT/GpSbYN71+ZZD7Jrw3lr2qttSQXVtWRVXVMa+3T+z8NAIBDV43yzyIrqj7cWnvoga5bZNstSXa11h4xLH+htXbk8L6SXNtaO7KqdiX53dba3w/r3pHk11prF+2zvzMy6kHL5s2bT9y5c+ck1Tgo119/fTZt2jT14zA5bTKbtMvs0SazSbvMntVok7m5uYtba1sXW7dcD9milzOr6g5JDluJirXWWlUtngiX/szZSc5Okq1bt7Zt27atRFWWNT8/n9U4DpPTJrNJu8webTKbtMvs6d0my81DtquqXlZVd1koGN6/NMlbDuKYV1XVMcP+jkly9VD+yST3H9vufkMZAMCatlwg+x8ZPTLpiqq6uKouTrInyZeS/MpBHPNNSZ4+vH96Ro9mWih/2nC35aOSfNH4MQBgPVjykmVr7cYkv1JVv5nkm4biy1treyfdeVW9JqMB/Peqqk8keU6S303yuqr66SRXJHnysPlbkjwhyWVJ9iY5/cBOBQDg0LTcTP2Pbq39fWvtK0nev8j6uyU5rrV26W0/PdJae8oSqx67yLYtyS/sv8oAAGvLcoP6f6yqfj/J3yS5OMlnk9wpo96yuSTHJ/nlqdcQAGCNW+6S5S9V1VFJfizJk5Ick+QrST6Y5I8XpqcAAODgLNdDltbaNUleNrwAAJiC5e6yBABgFQhkAACdCWQAAJ0tO4ZsQVU9IsnDMrrLMknSWnvVtCoFALCe7DeQVdVzMprc9WEZTd76/Un+PolABgCwAia5ZPnEjCZy/Uxr7fQk35rk7lOtFQDAOjJJIPtKa+2mJF8fZue/Ord+CDgAAAdhkjFkF1XVkRnNRXZxkuuT/OM0KwUAsJ7sN5C11v7z8PalVfU3Se7WWnvfdKsFALB+LPdw8W9urX2oqh65yLpHttbeM92qAQCsD8v1kD0zyRlJXrDIupbk5KnUCABgnVnu4eJnDH/nVq86AADrz37vsqyqXxgG9S8s36Oq/vMyHwEA4ABMMu3Fz7bWvrCw0Fq7NsnPTq1GAADrzCSB7LCqqoWFqjosyR2nVyUAgPVlknnI/ibJa6vqj4flnxvKAABYAZMEsl/LKIT9p2H5bUn+ZGo1AgBYZyaZGPamJC8ZXgAArLD9BrKqOinJc5McP2xfSVpr7YHTrRoAwPowySXLlyf5pYyeY/mN6VYHAGD9mSSQfbG19tdTrwkAwDo1SSDbXVV/kOQNSW5YKPQsSwCAlTFJIPuO4e/WsTLPsgQAWCGT3GXpWZYAAFM0SQ9ZquoHkjw8yZ0Wylprvz2tSgEArCeTPFz8pUl+PMl/yWjKiydlNAUGAAArYJJnWX5Xa+1pSa5trf1Wku9M8pDpVgsAYP2YJJB9Zfi7t6rum+TGJMdMr0oAAOvLJGPIdlXVkUn+IMl7MrrD0rMsAQBWyCR3WT5veHteVe1KcqfW2henWy0AgPVjyUBWVT+6zLq01t4wnSoBAKwvy/WQ/eDw9z5JvivJ+cPyXJJ/yGjmfgAADtKSgay1dnqSVNVbkzystfbpYfmYJOeuSu0AANaBSe6yvP9CGBtcleS4KdUHAGDdmeQuy3dU1d8mec2w/ONJ3j69KgEArC+T3GX5i1X1I0keMxSd3Vp743SrBQCwfkz0LMuM5h+7rrX29qraWFV3ba1dN82KAQCsF5M8y/Jnk7w+yR8PRccm+Ysp1gkAYF2ZZFD/LyQ5KcmXkqS19m8ZTYUBAMAKmCSQ3dBa+9rCQlUdntHjkwAAWAGTBLJ3VtVvJLlzVX1vkj9P8lfTrRYAwPoxSSD79SSfTfL+JD+X5C1Jnj3NSgEArCeTTHtxU1W9Msm7M7pU+eHWmkuWAAArZL+BrKp+IMlLk1yepJI8oKp+rrX219OuHADAejDJPGQvSDLXWrssSarqQUnenEQgAwBYAZOMIbtuIYwNPprEpLAAACtkkh6yi6rqLUlel9EYsicl+eeq+tEkaa29YYr1AwBY8yYJZHdKclWS7x6WP5vkzkl+MKOAJpABAByESe6yPH01KgIAsF5NcpflA5L8lyRbxrdvrf3Q9KoFALB+THLJ8i+SvDyj2flvmmptAADWoUkC2Vdba3849ZoAAKxTkwSy/1NVz0ny1iQ3LBS21t4ztVoBAKwjkwSyb0ny1CQn55ZLlm1YBgDgIE0SyJ6U5IGtta9NuzIAAOvRJDP1X5rkyCnXAwBg3Zqkh+zIJB+qqn/OrceQmfYCAGAFTBLInjP1WgAArGOTzNT/ztWoCADAerVkIKuq6zK6m/I2q5K01trdplYrAIB1ZMlA1lq762pWBABgvZrkLksAAKZIIAMA6EwgAwDoTCADAOhMIAMA6EwgAwDoTCADAOhMIAMA6EwgAwDoTCADAOhMIAMA6EwgAwDoTCADAOhMIAMA6EwgAwDoTCADAOjs8NU+YFU9NMlrx4oemOR/Jjkyyc8m+exQ/huttbesbu0AAFbfqgey1tqHk5yQJFV1WJJPJnljktOTvKi19vzVrhMAQE+9L1k+NsnlrbUrOtcDAKCb3oHstCSvGVv+xap6X1W9oqru0atSAACrqVprfQ5cdcckn0ry8NbaVVW1OcnnkrQkz0tyTGvtpxb53BlJzkiSzZs3n7hz586p1/X666/Ppk2bpn4cJqdNZpN2mT3aZDZpl9mzGm0yNzd3cWtt62LregayU5P8QmvtcYus25JkV2vtEcvtY+vWre2iiy6aUg1vMT8/n23btk39OExOm8wm7TJ7tMls0i6zZzXapKqWDGQ9L1k+JWOXK6vqmLF1P5Lk0lWvEQBAB6t+l2WSVNVdknxvkp8bK/79qjoho0uWe/ZZBwCwZnUJZK21Lye55z5lT+1RFwCA3nrfZQkAsO4JZAAAnQlkAACdCWQAAJ0JZAAAnQlkAACdCWQAAJ0JZAAAnQlkAACdCWQAAJ0JZAAAnQlkAACdCWQAAJ0JZAAAnQlkAACdCWQAAJ0JZAAAnQlkAACdCWQAAJ0JZAAAnQlkAACdCWQAAJ0JZAAAnQlkAACdCWQAAJ0JZAAAnQlkAACdCWQAAJ0JZAAAnQlkAACdCWQAAJ0JZAAAnQlkAACdCWQAAJ0JZAAAnQlkAACdCWQAAJ0JZAAAnQlky9ixI9myJTn55O/Oli2jZQCAlXZ47wrMqh07kjPOSPbuTZLKFVeMlpNk+/aeNQMA1ho9ZEs488yFMHaLvXtH5QAAK0kgW8KVVx5YOQDA7SWQLeG44w6sHADg9hLIlnDWWcnGjbcu27hxVA4AsJIEsiVs356cfXZy/PFJVcvxx4+WDegHAFaaQLaM7duTPXuS889/Z/bsEcYAgOkQyAAAOhPIAAA6E8gAADoTyAAAOhPIAAA6E8gAADoTyAAAOhPIAAA6E8gAADoTyAAAOhPIAAA6E8gAADoTyAAAOhPIAAA6E8gAADoTyAAAOhPIAAA6E8gAADoTyAAAOhPIAAA6E8gAADoTyAAAOhPIAAA6E8gAADoTyAAAOhPIAAA6E8gAADoTyAAAOhPIAAA6E8gAADoTyAAAOhPIAAA6E8gAADoTyAAAOhPIAAA6O7zXgatqT5Lrknwjyddba1ur6qgkr02yJcmeJE9urV3bq44AAKuhdw/ZXGvthNba1mH515O8o7X24CTvGJYBANa03oFsX6cmeeXw/pVJfrhfVQAAVke11vocuOpjSa5N0pL8cWvt7Kr6QmvtyGF9Jbl2YXnsc2ckOSNJNm/efOLOnTunXtfrr78+mzZtmvpxmJw2mU3aZfZok9mkXWbParTJ3NzcxWNXBW+l2xiyJI9urX2yqu6T5G1V9aHxla21VlW3SYuttbOTnJ0kW7dubdu2bZt6Refn57Max2Fy2mQ2aZfZo01mk3aZPb3bpNsly9baJ4e/Vyd5Y5JvT3JVVR2TJMPfq3vVDwBgtXQJZFV1l6q668L7JI9LcmmSNyV5+rDZ05P8ZY/6AQCspl6XLDcneeNomFgOT/Lq1trfVNU/J3ldVf10kiuSPLlT/QAAVk2XQNZa+2iSb12k/PNJHrv6NQIA6GfWpr0AAFh3BDIAgM4EMgCAzgQyAIDOBDIAgM4EMgCAzgQyAIDOBDIAgM4EMgCAzgQyAIDOBDIAgM4EMgCAzgQyAIDOBDIAgM4EMgCAzgQyAIDOBDIAgM4EMgCAzgQyAIDOBDIAgM4EMgCAzgQyAIDOBDIAgM4EMgCAzgQyAIDOBDIAgM4EMgCAzgQyAIDOBDIAgM4EMgCAzgQyAIDOBDIAgM4EMgCAzgQyAIDOBDIAgM4EMgCAzgSy/dixIznttEflDndItmwZLQMArKTDe1dglu3YkZxxRrJ3752SJFdcMVpOku3bO1YMAFhT9JAt48wzk717b122d++oHABgpQhky7jyygMrBwC4PQSyZRx33IGVAwDcHgLZMs46K9m48dZlGzeOygEAVopAtozt25Ozz042b/5qqpLjjx8tG9APAKwkd1nux/btybHHXpht27b1rgoAsEbpIQMA6EwgAwDoTCDbn92786jTTkt27+5dEwBgjRLIlrN7d3LKKbnTVVclp5wilAEAUyGQLWUIYzdP1b93r1AGAEyFQLaYfcPYAqEMAJgCgWwxp59+2zC2YO/e0XoAgBUikC3mnHNuO0X/go0bR+sBAFaIQLaYublk167Fn5u0a9doPQDAChHIlrJvKBPGAIApEciWM4Syr27eLIwBAFMjkO3P3Fwu3LlTGAMApkYgAwDoTCADAOhMIAMA6EwgAwDoTCADAOhMIAMA6EwgAwDoTCADAOhMIAMA6EwgAwDoTCADAOhMIAMA6EwgAwDoTCADAOhMIAMA6EwgAwDoTCADAOhMIAMA6EwgAwDoTCADAOhMIAMA6Ewgm9COHcmWLckd7jD6u2NH7xoBAGvF4b0rcCh4+9vvkxe9KNm7d7R8xRXJGWeM3m/f3q9eAMDaoIdsAn/yJw+8OYwt2Ls3OfPMPvUBANYWPWRLuOCCo3PjjVclSXbuvKX8mms258d+7DNJkiuv7FEzAGCtWfUesqq6f1Xtrqp/raoPVNV/G8qfW1WfrKpLhtcTVrtu4xbC2L6OOuqW8uOOW63aAABrWY8esq8n+eXW2nuq6q5JLq6qtw3rXtRae36HOh2wjRuTs87qXQsAYC1Y9R6y1tqnW2vvGd5fl+SDSY5d7XocjOOPT84+24B+AGBlVGut38GrtiR5V5JHJHlmkmck+VKSizLqRbt2kc+ckeSMJNm8efOJO8cHeK2ouWXW7Z7SMZnU9ddfn02bNvWuBvvQLrNHm8wm7TJ7VqNN5ubmLm6tbV1sXbdAVlWbkrwzyVmttTdU1eYkn0vSkjwvyTGttZ9abh9bt25tF1100VTqNz9fS67btq1fiGVkfn4+27Zt610N9qFdZo82mU3aZfasRptU1ZKBrMu0F1W1Icl5SXa01t6QJK21q1pr32it3ZTkZUm+vUfdFmzYsPmAygEAbq9VH9RfVZXk5Uk+2Fp74Vj5Ma21Tw+LP5Lk0tWu27iTTvrMze/9nwwAME097rI8KclTk7y/qi4Zyn4jyVOq6oSMLlnuSfJzHeoGALDqVj2Qtdb+PsliA7Testp1AQCYBR6ddIA8ZBwAWGkenXQAduwYPVTcQ8YBgJWkh+wAnHlmPGQcAFhxAtkBWOph4h4yDgAcDIHsACz1MHEPGQcADoZAdgDOOmv0UPFxHjIOABwsgewAbN8+eqj48ccnVR4yDgCsDHdZHqDt2wUwAGBl6SEDAOhMIJvAke9972gW2N27e1cFAFiDBLL92b073/KsZ41mgT3lFKEMAFhxAtlydu9OTjklh91ww2h5796bQ5lHKAEAK8Wg/qUMYWyxqfm//vhT8me1K1fcMJfEI5QAgIOjh2wpp59+2zA2OPxre/OSG06/VZlHKAEAt5dAtpRzzrntLLCDL2djTs85tyn3CCUA4PYQyJYyN5fs2rXo1Pw/s3lX5jN3m494hBIAcHsIZMsZQtk3jjhitLxxY7JrV055wZxHKAEAK0Yg25+5ubz/d35n9JykXbuSuTmPUAIAVpS7LCfwhW/7tmTPnluVeYQSALBS9JCtAHOSAQAHQw/ZQdqxYzQH2cIMGeYkAwAOlB6yg3TmmYvOHWtOMgBgYgLZQVpq7jFzkgEAkxLIDtJSc4+ZkwwAmJQxZMu44IKjc+ONVyVJ5udvKd+wYXNOOukzSUZzj42PIUvMSQYAHBg9ZMtYCGPLlZuTDAA4WHrIVoA5yQCAg6GHDACgM4EMAKAzgQwAoDOBbBkbNmxevPzaJLt3L/tZj1MCACZlUP8yFqa2uORFL8oJz372PnNbnJLs2pXMzd3mcx6nBAAcCD1k+7N7d77lWc9a/PlIp5yyaE+ZxykBAAdCINuf00/PYTfcsPi6vXuT00+/TbHHKQEAB0Ig259zzsk3jjhi8XVHHJGcc85tipd6bNJRRxlXBgDcljFk+zM3l7//qzumbbhtL9mGa27ISYt8ZLHHKW3YkFx3XfL5z4+WjSsDABboIZtA23DdouU3HpVFx5Et9jilu90t+drXbv1548oAgEQgO3hLDO7fvj3Zsye56abR32uuWfzjxpUBAALZQZrfnVzwp4sP7h+31LiypcoBgPVDIFsBNx6VRQf3jzvrrGTjxluXbdyYPOEJBvoDwHpnUP9KWWSC2HELA/fPPHN0mfK440Zh7JWvNIEsAKx3esgmco/9b7KfRykltx1X9pa3mEAWABDIJvSGbNvWlt1ivk7OBbuPOqC9mkAWAEgEshV1Y107UU/ZAgP9AYBEIDsgGzZs3v9GT3nKxPtbaqD/WWcdYMUAgEOaQHYATjrpM9nWzl92m/mdV2V+vnLBBUfvd3+LTSB79tkG9APAeuMuywM1N5fM73+zG2+8aqLdbd8ugAHAeqeHbJoOYDwZALB+CWS3w0RjyZL9zt4PAJAIZLfLSSd9Jtu2tf2PJzv3iszP182vScaVTcOOHZ4GAACzTCA7GPuZnX9fk44rW0k7doxm/7/iiqS1W54GIJQBwOwwqP8gbdiw+YCC1vx83ebzJ530mZWu1s3OPHPppwG4mQAAZoMesoM0fvly2zOOz7b3vOCAPj/tXrPVfBqAS6MAcPvoIVspc3OjB1Ru2ZKce2AfnWav2XHHjS5TLla+khYujXpQOgAcOD1kK+2ccw56FyvZa7ZaTwNY7tLoSlrohTv55O/WCwfAmiGQrbS5uWxo9+hdi5ut1tMAVuPS6K1vUCg3KACwZghkU3DS3DWjMWU/sDHb5pJtJ9f+PzRF27ePrqbedNPo7zQuIa7Gg9JXqxdutRhzB8ACgWxa5uaSXbtGXVLPf342XHuAn1+hWf4vuODoW82FNq050Vbj0uhq3qAwbWttOhKXkgEOjkA2TQsD/Z/5zJx05FiP2fBa1grN8r/UeLSVvrtzy5aj8+Y3V3bvvuX15jdXtmxZueD3xjcefav9L7ze+MY+E+4ejLXU27eWLiWvpV7LtRSStQvrgbssV8tCj9kpp4z+y3vEEdlwzQ258ajbbrrh2qzIzQGraTWC393vvvi+liqfZS984dE56qjb1vuaazYnmd68dNOwadPRefObb3suX/zioXUu73jH0Tn22Kty7rn7lm/OYx976JxH4lxm1Vo5lwsuOHrRf7dPe17Nadj3XObnR397nItAtpoWQtnppyfnnJOTkuQHTrl1V8nGjaNtDvApABxaFgtjy5XPsrUSlA87bPH6LlU+y5zLbFor57JaV15Wwyydi0uWq23hMubc3C0BbWHw1UqHsf2NQ1uhcWoAwMERyHobH/y/0j1j+xuHtkLj1AQ/ADg4AtksGO81W0nnnLPk3Z0rOk5tNYLfWgp9a+lcAFgRAtlaNje36N2d235gY0468vyVC4CrEfxOPz0brlniGNdk5Xr7VsNq9VyuhrUSLtfKeSTOZVatlXNZK+eRzNy5CGRr3bTHqQ3HmHrwO+ecnPTUffY/vE566sZD667U1eq5XA1rJSivlfNInMusWivnslbOI5m9c2mtHbKvE088sa2G3bt3r8pxpur881s7/vjR32keY+PG1pLR35U+1vj+F17TOM5qWCvnsth5HIrns1bOozXnMqvWyrmslfNorcu5JLmoLZFpuoeqg3kJZDNo2sFv2qFvNa2Vc1nL4fJQPI/WnMusWivnslbOo7VVPxeB7CAJZDPm/PPbVzZvPjR//PtajZ7L1bAWw+WhfB6tOZdZtVbOZa2cR2urei7LBTJjyDj0zM3lwp0718bkudO6w3a1DWMVv7p586E9sfE0p6FZbWulTRLtMou0yYqrUWA7NG3durVddNFFUz/O/Px8tm3bNvXjMDltMpu0y+zRJrNJu8ye1WiTqrq4tbZ1sXV6yAAAOhPIAAA6O6QvWVbVZ5NcsQqHuleSz63CcZicNplN2mX2aJPZpF1mz2q0yfGttXsvtuKQDmSrpaouWuqaL31ok9mkXWaPNplN2mX29G4TlywBADoTyAAAOhPIJnN27wpwG9pkNmmX2aNNZpN2mT1d28QYMgCAzvSQAQB0JpABAHQmkC2jqh5fVR+uqsuq6td712ctq6r7V9XuqvrXqvpAVf23ofyoqnpbVf3b8PceQ3lV1R8ObfO+qnrk2L6ePmz/b1X19F7ntJZU1WFV9d6q2jUsP6Cq3j18/6+tqjsO5UcMy5cN67eM7eNZQ/mHq+r7Op3KmlBVR1bV66vqQ1X1war6Tr+V/qrql4Z/f11aVa+pqjv5rayuqnpFVV1dVZeOla3Yb6OqTqyq9w+f+cOqqhWr/FJPHV/vrySHJbk8yQOT3DHJvyR5WO96rdVXkmOSPHJ4f9ckH0nysCS/n+TXh/JfT/J7w/snJPnrJJXkUUnePZQfleSjw997DO/v0fv8DvVXkmcmeXWSXcPy65KcNrx/aZL/NLz/z0leOrw/Lclrh/cPG35DRyR5wPDbOqz3eR2qrySvTPIzw/s7JjnSb6V7mxyb5GNJ7jwsvy7JM/xWVr0dHpPkkUkuHStbsd9Gkn8atq3hs9+/UnXXQ7a0b09yWWvto621ryXZmeTUznVas1prn26tvWd4f12SD2b0L7hTM/qPT4a/Pzy8PzXJq9rIhUmOrKpjknxfkre11q5prV2b5G1JHr96Z7L2VNX9kvxAkj8ZlivJyUleP2yyb7sstNfrkzx22P7UJDtbaze01j6W5LKMfmMcoKq6e0b/0Xl5krTWvtZa+0L8VmbB4UnuXFWHJ9mY5NPxW1lVrbV3Jblmn+IV+W0M6+7WWruwjdLZq8b2ddAEsqUdm+TjY8ufGMqYsqHr/tuSvDvJ5tbap4dVn0myeXi/VPtot5X3v5P8jyQ3Dcv3TPKF1trXh+Xx7/jm739Y/8Vhe+2ych6Q5LNJzhkuI/9JVd0lfitdtdY+meT5Sa7MKIh9McnF8VuZBSv12zh2eL9v+YoQyJgpVbUpyXlJ/ntr7Uvj64b/IzFPyyqqqlOSXN1au7h3XbjZ4RldknlJa+3bknw5o8swN/NbWX3DuKRTMwrM901yl+hxnDmz/NsQyJb2yST3H1u+31DGlFTVhozC2I7W2huG4quGbuIMf68eypdqH+22sk5K8kNVtSejy/YnJ/k/GXXtHz5sM/4d3/z9D+vvnuTz0S4r6RNJPtFae/ew/PqMAprfSl/fk+RjrbXPttZuTPKGjH4/fiv9rdRv45PD+33LV4RAtrR/TvLg4Q6ZO2Y06PJNneu0Zg1jJ16e5IOttReOrXpTkoU7XJ6e5C/Hyp823CXzqCRfHLqk/zbJ46rqHsP/sT5uKON2aK09q7V2v9balox+A+e31rYn2Z3kicNm+7bLQns9cdi+DeWnDXeWPSDJgzMaHMsBaq19JsnHq+qhQ9Fjk/xr/FZ6uzLJo6pq4/Dvs4V28Vvpb0V+G8O6L1XVo4Y2ftrYvg5e7zsiZvmV0R0YH8noLpcze9dnLb+SPDqjbuT3JblkeD0hozEV70jyb0nenuSoYftK8v+Gtnl/kq1j+/qpjAbCXpbk9N7ntlZeSbbllrssH5jRfyQuS/LnSY4Yyu80LF82rH/g2OfPHNrrw1nBO5PW4yvJCUkuGn4vf5HRnWB+K/3b5beSfCjJpUn+NKM7Jf1WVrcNXpPRGL4bM+pN/umV/G0k2Tq07+VJXpzhiUcr8fLoJACAzlyyBADoTCADAOhMIAMA6EwgAwDoTCADAOhMIAO6q6pvVNUlY68tveu0nKq6b1W9foLtjqmqXcP7bQvvx9afW1VPXPzTSVU9v6pOPvgaA7Pu8P1vAjB1X2mtnbDYimECxmqt3bTY+h5aa5/KLZN9LueZSV52EIf6v8Pnzz+IfQCHAD1kwMypqi1V9eGqelVGkzDev6p+tar+uareV1W/Nbbt04ayf6mqPx3KbtXzVFXXj72/zX6G432wql5WVR+oqrdW1Z2Hdd9UVW8f9v+eqnrQsP2lY5/9u2Hde6rqu8ZO5ceS/M0E57t1rHfw/VXVkqS1dkWSe1bV0QfxdQKHAD1kwCy4c1VdMrz/WJJfyuiRMU9vrV1YVY8blr89o9m131RVj8no2X/PTvJdrbXPVdVRyx1kmf1cOZQ/pbX2s1X1uozC1J8l2ZHkd1trb6yqO2X0P7L3Gdvt1Um+t7X21ap6cEYzhW8dHntzbWvthrFt/+PYeSbJcRk9/eCijGbfT1X9QW4d4t6T0TMRz1vu3IBDm0AGzIJbXbIcxpBd0Vq7cCh63PB677C8KaMA9a1J/ry19rkkaa1ds5/jLLWfKzN6MPQlQ/nFSbZU1V2THNtae+Ow/68O9Rvf54YkL66qE5J8I8lDhvJjknx2n+P/XWvtlLHzPHd8ZVX9eEYPCn/cWPHVSe67n/MCDnECGTCrvjz2vpL8Tmvtj8c3qKr/ssRnv55hSEZV3SHJHfezny1JxnuyvpHkzhPW85eSXJVROLxDkq8O5V/J6HmFE6mqRyR5bpLHtNa+MbbqTsO+gDXMGDLgUPC3SX6qqjYlSVUdW1X3yWiw+5Oq6p5D+cIlyz1JThze/1BGvVjL7WdRrbXrknyiqn542P6Iqtq4z2Z3T/Lp4aaDpyY5bCj/SJItk5xcVR2Z0aXOp7XW9u1Ve0hG4+iANUwgA2Zea+2tSV6d5B+r6v1JXp/krq21DyQ5K8k7q+pfkrxw+MjLknz3UPadGXrbltrPfg7/1CT/tarel+Qfkuw7wP6Pkjx9ONY3jx3ry0kur6pvmuAUT01yfJKXLQzuT5Kq2pDkm5JcNME+gENYtdZ61wFgTaqqH0lyYmvt2Qfx+Ue21n5zZWsGzBpjyACmZLgz854HsYvDk7xgpeoDzC49ZAAAnRlDBgDQmUAGANCZQAYA0JlABgDQmUAGANDZ/w+PloHU2fTKiAAAAABJRU5ErkJggg==\n",
+      "text/plain": [
+       "<Figure size 720x864 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "#Ajustamos el tamaño del plot a 10x12 pulgadas para observar de mejor manera el plot.\n",
+    "plt.figure(figsize=(10,12))\n",
+    "plt.subplot(111)\n",
+    "\n",
+    "plt.title(\"Impendancia vs frecuencia\")\n",
+    "plt.ylabel(\"Impedancia (Ohm)\")\n",
+    "plt.xlabel(\"Frecuencia(Hz)\")\n",
+    "plt.grid()\n",
+    "plt.xlim(-500,10500) \n",
+    "plt.ylim(3, 185)\n",
+    "\n",
+    "#Graficando la impedancia de cada una de las soluciones:\n",
+    "plt.plot(f,z1,\"ob\", f,z2,\"Dr\", f, z3,\"sy\")\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Después de alcanzar cierto rango de frecuencias (~1500 Hz), se obtiene una cota diferente para cada solución a pesar de que los valores alcanzados son muy cercanos. También se observa una clara disminución en la impedancia de las soluciones a medida que la frecuencia va aumentando."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "De forma equivalente, podemos graficar la conductividad:\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 13,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "[<matplotlib.lines.Line2D at 0x7fa6fe5b92e8>,\n",
+       " <matplotlib.lines.Line2D at 0x7fa6fe553550>,\n",
+       " <matplotlib.lines.Line2D at 0x7fa6fe553668>]"
+      ]
+     },
+     "execution_count": 13,
+     "metadata": {},
+     "output_type": "execute_result"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmcAAALJCAYAAADxpISPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABEzklEQVR4nO3dfZxkZX3n/c9vhgYsUUDURoGZxkCSHaNBHdHsRJ1GYyAZxRiMkI7iRDNrEvZOdJO94W5jlGRuVzeouytubKPjUysiqwkZ8TF0k9zEB0ANiIQ44vQAyqAC6tABBvjdf5zTUFPT010909V1VfXn/XrVq+pc55yqX/VFwZfrXOecyEwkSZJUhhXdLkCSJEkPM5xJkiQVxHAmSZJUEMOZJElSQQxnkiRJBTGcSZIkFcRwJmm/RcSrIuL/68D7roqIXRGxso1t/zoi/myO9RkRJ+xnHdsj4gX7s+8CPuP3I2Jn/X2P6uRndVpEPCcibux2HVKvM5xJfSgifjsirq7/g//9iPhMRPxyt+val9YQlJk7MvOwzHxgvn0z87WZ+RedrbAzImIAeDvwwvr7/qjbNR2IzPynzPy5btch9TrDmdRnIuL1wDuB/xcYBFYB7wZO72JZmt0gcChw/WwrI+KgpS1HUgkMZ1IfiYjDgfOBP8zMT2bm3Zm5OzP/PjP/tN7mkIh4Z0R8r368MyIOqdetj4hbIuK/RMTt9ajbxqb3PyoiLo2In0TEV4GfaVo3VB9CPKipbTIiXtO0/HsRcUNE/DQivhURT4+ID1MFyL+vR/r+a/N7RcTLI+Lqlu/5uoi4tH79gYj4y6Z1f1rX/b2I+N2W/X49Ir5e139zRLypZf0rImIqIn4UEaNz/J2fFRG3NR92jYjfiIhr69cn1yOXP6kPWb59lvf4WWDmEOBdEXF53Z4R8YcR8W3g23Xbhoj4RkTcFRH/HBFPbXqf4yLikxHxg7rud9Xtb4qIj+yrfyLi8Ih4X/23ujUi/nLm+8wcro6Iv4qIOyPiuxFxWtN7PSYittR/4zsj4m/r9vURcUvTdudGxHea+vs39vU3lfQww5nUX36JaiTmU3NsMwo8GzgJ+EXgZOANTeuPBg4HjgFeDVwYEUfW6y4E7gGeAPxu/WhLRLwMeBPwSuDRwIuBH2XmK4AdwIvqQ3tva9n174Gfi4gTm9p+G/joLJ9xKvAnwK8AJwKt88Xurj//CODXgd+PiJfU+64B/jfwCuCJwFHAsbN9l8z8Sv1ep+yjpv8B/I/MfDRVgL14lvf4N+DJ9eIRmdn8Xi8BngWsiYinAe8H/lNd03uAS+uQvRLYCkwBQ1R9dtFsNc/iA8D9wAnA04AXAq9pWv8sqvD4WOBtwPsiIup1HwYadf2PB96xj8/4DvAcqn+e3gx8JCKe0GZ90rJlOJP6y1HADzPz/jm2GQHOz8zbM/MHVP/RfEXT+t31+t2ZeRmwiyocrQR+E3hjPSL3TeCDC6jtNcDbMvOqrGzLzKn5dsrMaeDvgLMA6pD288Cls2z+W8CWzPxmZt5NFQab32syM6/LzAcz81rgY8Dz6tVnAFsz8x8z817gz4AH5yjtY001PQr4tboNqr/hCRHx2MzclZlfnu97tnhLZt6Rmf8ObALek5lfycwHMvODwL1UAftkqiD5p3Wf3JOZ856gERGDdb1/XO93O1XAOrNps6nMfG897++DVIF8sA5XpwGvzcw7639OrpjtczLzE5n5vfrv/XGqkcCTF/i3kJYdw5nUX34EPHaeuUpPpBppmTFVtz30Hi3hbho4DHgccBBwc8u+7TqOaiRlf3yUOghRjVD9bR3aWj2ROeqrD0dO1IcAfwy8lmpkaK9963A31wT9jwIvrQ8JvxT4WlPYfDXws8C/RsRVEbGhnS/ZpPk7rAb+S31I866IuIvqb/nE+nlqnjA+m9XAAPD9pvd8D9Uo2IzbZl40/a0Pqz/zjsy8c74PiYhXNh2OvQv4BR7+e0vaB8OZ1F++RDWq8pI5tvke1X+cZ6yq2+bzA6rDYMe17Dvj7vq50dR2dNPrm2mao9Yi5/nsLwCPi4iTqELaXoc0a9+foz7q/S4FjsvMw4G/BmK2fSOiQTUSOXvBmd+iCn+n0XKYNTO/nZlnUYWdtwKXRMQj5/6Ke7590+ubgc2ZeUTTo5GZH6vXrdpHGL+bufviXuCxTe/56Mx8MvO7GXhMRBwx10YRsRp4L3AOcFRmHgF8k4f/3pL2wXAm9ZHM/DHwRqp5Yi+JiEZEDETEaRExM5frY8AbIuJxEfHYevuP7Os9m977AeCTwJvq910DnN20/gfArcDvRMTKejJ+cxj7G+BPIuIZUTmh/g84wE7gSXN89m7gE8B/Bx5DFdZmczHwqohYU4erP29Z/yiqUZ97IuJkqlA14xJgQ0T8ckQcTHVixXz/jvwo8EfAc+v6AIiI34mIx2Xmg8BddfNch0jn8l7gtfWoX0TEI6M6seFRwFepQuV/q9sPjYh19X7fAJ4b1TXjDgfOm3nDzPw+8Hnggoh4dESsiIifiYjnMY96388A746II+t/vp47y6aPpAqZPwCI6sSSX9jPv4G0rBjOpD6TmRcAr6ea5P8DqpGOc4C/rTf5S+Bq4FrgOuBrdVs7zqE6tHUb1YTyLS3rfw/4U6rDgU8G/rmprk8Am6kCzU/reh5Tr34LVWC8KyL+ZB+f/VGqCf6f2NdhvMz8DNVlRC4HttXPzf4AOD8ifkoVSi9u2vd64A/rz/k+cCdwC3ObmbN2eWb+sKn9VOD6iNhFdXLAmfX8sQXLzKup/q7vqmvaBryqXvcA8CKqSf076npfXq/7AvBxqn6+hurEgWavBA4GvlW/7yVU88ra8QqqeXX/CtwO/PEsdX8LuIBqNHcn8BTgyjbfX1rWInO+owmSJElaKo6cSZIkFcRwJkmSVBDDmSRJUkEMZ5IkSQXpm5vqPvaxj82hoaGOf87dd9/NIx+5kMsVqdPskzLZL+WxT8pkv5RnKfrkmmuu+WFmPm62dX0TzoaGhrj66qvn3/AATU5Osn79+o5/jtpnn5TJfimPfVIm+6U8S9EnEbHPO6x4WFOSJKkghjNJkqSCGM4kSZIKYjiTJEkqiOFMkiSpIIYzSZKkghjOJEmSCmI4kyRJKojhTJIkqSCGM0mSpIIYziRJkgpiOJMkSSqI4UySJKkghjNJkqSCGM4kSZIKYjiTJEkqiOFMkiSpIIYzSZKkghjOJEmSCmI4kyRJKojhTJIkqSCGM0mSpIIYziRJkgpiOJMkSSqI4UySJB2YiQkYGqqee93EBM8+88yufhfDmSRJ2n8TE7BhA0xNVc+9HNDq73Lozp1d/S6GM0mSuqWAUZoDMhPMpqer5enp3g1oBX0Xw5kkqbf0yyG0QkZp9ltrmJnRiwGtsO9iOJMk9Y5+OYRW0CjNftu4ce8wM2N6ulrfKwr7LoYzSVoOev3wGfRHoIHiRmn225Yt0GjMvq7RqNb3isK+i+FMkvpdrx8+g/4JNFDcKM1+Gx6GrVv3DjWNRtU+PNyduvZHYd/FcCZJ/axfRpv6JdBAcaM0B6Q11PRiMJtR0HcxnEnSvvT6xPN+Gm3q50Azo1eDzcz3Wb26N+tvVn+XewYHu/pdDGeSNJt+mHjeT6NN/RpoChilWRTDw7B9e+/W32x4mC9fdFFXv4vhTJJa9cuhwH4abYL+DDQFjNKoPIYzSWrWT4cC+220CfrrEBoUMUqj8hjOJC2+Xr5sQz8dCoT+G22C/jqEJs3CcCZpcfX6ZRv67VAgePhM6jGGM0mLpx/mavXjoUDw8JnUQwxnkhZHP8/V6vVgJqmnGM4kLY5+navVLxPPJfUMw5mkxdGvc7WceC5piRnOJC2Ofp2rJUlLzHAmafE4V0uSDpjhTCpFr9/HcYaXbZCkA2I4k0rQD/dxbOZlGyRpvxnOpG7rh2uDSZIWjeFM6qZ+ujaYJGlRGM6kbuq3a4NJkg6Y4Uzqpn68Npgk6YB0NJxFxKkRcWNEbIuIc2dZ/9yI+FpE3B8RZ7SsWxURn4+IGyLiWxEx1Mlapa7w2mCSpBYdC2cRsRK4EDgNWAOcFRFrWjbbAbwK+Ogsb/Eh4L9n5n8ATgZu71StUld5bTBJUpNOjpydDGzLzJsy8z7gIuD05g0yc3tmXgs82Nxeh7iDMvML9Xa7MnMfE3OkPuB9HCVJtcjMzrxxdZjy1Mx8Tb38CuBZmXnOLNt+ANiamZfUyy8BXgPcBxwPfBE4NzMfaNlvE7AJYHBw8BkXXXRRR75Ls127dnHYYYd1/HPUPvukTPZLeeyTMtkv5VmKPhkeHr4mM9fOtu6gjn7y/jsIeA7wNKpDnx+nOvz5vuaNMnMMGANYu3Ztrl+/vuOFTU5OshSfo/bZJ2WyX8pjn5TJfilPt/ukk4c1bwWOa1o+tm5rxy3AN+pDovcDfws8fXHLkyRJKk8nw9lVwIkRcXxEHAycCVy6gH2PiIjH1cunAN/qQI2SJElF6Vg4q0e8zgE+B9wAXJyZ10fE+RHxYoCIeGZE3AK8DHhPRFxf7/sA8CfAP0TEdUAA7+1UrZIkSaXo6JyzzLwMuKyl7Y1Nr6+iOtw5275fAJ7ayfokSZJK4x0CJEmSCmI4kyRJKojhTL1tYoJnn3kmTEx0uxJJkhaF4Uy9a2ICNmzg0J07YcMGA5okqS8YztSb6mDGdH1Xr+lpA5okqS8YztR7WoPZDAOaJKkPGM7UezZu3DuYzZiertZLktSjDGfqPVu2QKMx+7pGo1ovSVKPMpyp9wwPw9atewe0RqNqHx7uTl2SJC0Cw5l6U2tAM5hJkvqE4Uy9qw5o9wwOGswkSX3DcKbeNjzMly+6yGAmSeobhjNJkqSCGM4kSZIKYjiTJEkqiOFMkiSpIIYzSZKkghjOJEmSCmI4U+dMTMDQkDcilyRpAQxn6oyJCdiwAaamqmcDmiRJbTGcafHNBLPp6Wp5etqAJklSmwxnWlytwWyGAU2SpLYYzrS4Nm7cO5jNmJ6u1kuSpH0ynGlxbdkCjcbs6xqNar0kSdonw5kW1/AwbN26d0BrNKp2b1AuSdKcDGdafK0BzWAmSVLbDGfqjJmAtnq1wUySpAU4qNsFqI8ND8P27d2uQpKknuLImSRJUkEMZ5IkSQUxnEmSJBXEcCZJklQQw5kkSVJBDGeSJEkFMZxJkiQVxHAmSZJUEMOZJElSQQxnkiRJBTGcSZIkFcRwJkmSVBDDmSRJUkEO6nYBkiRJ3XbllUeze/fOh5YnJ6vngYFB1q27bUlrMZxJkrTESgoCB6L1e8zote8BzPo95mrvJMOZJKknGATK0y/fozTOOZMk9QSDgJYLR84kqY/1y+EzaTlx5EyS+pijTVLvceRMklr009wmSe0ZGBjc5+9+qRnOJKmFo03qtJKCwIHol+8B7PE/XpOTk6xfv75rtRjOJEk9wSBQHkeSO8NwJknqCQYBLReGM0mLxjMDy9NPo03ScmE4k7RonKtVnn45fCYtJ15KYzmamIChoepZ0l72NarkaJOkpeDI2XIzMQEbNsD0dPW8dSsMD3e7KqkoHoKV1E2OnC0nzcEMHg5ojqBJklQMw9ly0RrMZhjQJEkqiuFsudi4ce9gNmN6ulovHSDnaknSgXPO2XKxZcvsI2cAjUa1Xl3RT7cK8sxASb1sfBxGR2HHjuexahVs3gwjI0tfhyNny8XwcDX5v9HYs73R8KSALvPyE5LUfePjsGkTTE1BZjA1VS2Pjy99LYaz5aQ1oBnMJEkCqhGz2aZlj44ufS2Gs+VmJqCtXm0wkyQdsPHx6tKZK1ZUz90YaVoMO3YsrL2TnHO2HA0Pw/bt3a5CktTjZg4Fzow4zRwKhO7M1ToQq1ZV9c/WvtQcOZMkSfulpEOBB2rz5tmnZW/evPS1dDScRcSpEXFjRGyLiHNnWf/ciPhaRNwfEWfMsv7REXFLRLyrk3VK3eTlJ6TlaeZw4CmnPK9nDweWdCjwQI2MwNhYNesnIlm9ulruxghgxw5rRsRK4ELgV4BbgKsi4tLM/FbTZjuAVwF/so+3+QvgHztVo1SCXrtchqQDt+fhwOjZw4ElHQpcDCMj1WNy8oquXgqokyNnJwPbMvOmzLwPuAg4vXmDzNyemdcCD7buHBHPAAaBz3ewRkmSlly/HA4s6VBgP+lkODsGuLlp+Za6bV4RsQK4gH2PqEmS1LP65XDgnocC6eqhwH5S6tmafwBclpm3RMQ+N4qITcAmgMHBQSYnJzte2K5du5bkc9Q++6RM9kt5+qFPvvjFx/M3f/Mkbr/9EB7/+Ht5zWtu4gUvuL3bZS3Y4x//bHbuPHSW9nuYnPxyFyraf8ccAx/4wJ5tPf6PWdd/K50MZ7cCxzUtH1u3teOXgOdExB8AhwEHR8SuzNzjpILMHAPGANauXZtLcXzYW9KUxz4pk/1Snl7vk/FxeMc7Hj4cuHPnobzjHWv4D/9hTc+N1FxwwZ6XoIDqcOAFFxza033UL7r9W+lkOLsKODEijqcKZWcCv93Ojpn50M8sIl4FrG0NZlreWu9HOfM/OL14P0pJ7ZlrnlavhbOZeqv7OCarVkXX7uOo8nRszllm3g+cA3wOuAG4ODOvj4jzI+LFABHxzIi4BXgZ8J6IuL5T9ai/eD9Kafnpl3laM0ZGquuBX375FWzfbjDTwzo65ywzLwMua2l7Y9Prq6gOd871Hh8APtCB8iRJPaTfLtsg7Yt3CJCkPtcPFzsFL9ug5cNwJkl9bOZip1NTkPnwxU57MaB52QYtF4YzSepj/XKx0xkz87QefBDnaalvGc7Uk7wfpdSefptELy0HpV6EVppT8+Uyun09GqlkTqKXeo8jZ5LUx5xEL/Uew5kk9bE9J9Gnk+ilHmA4k6RZzFx+YsUKevryE+DFTqVe45wzLbrWWyvN8NZK6hUzl5+YOctx5vITYLCR1HmOnGnReWsl9bp+u/yEpN5iOJOkFl5+QlI3Gc4kqcW+LjPh5SckLQXDmSS18PITkrrJcCZJLbyHo6Ru8mxNLbqBgcF9nq0p9YqREcOYpO4wnGnRebkMSZL2n4c1JUmSCmI4kyRJKojhTJIkqSCGM0mSpIIYziRJkgpiOJO0qMbHYWgITjnleQwNVcuSpPZ5KQ1Ji2Z8HDZtmrlpeDA1VS2D1wyTpHY5ciZp0YyOzgSzh01PV+2SpPYYziQtmh07FtYuSdqb4UzSolm1amHtkqS9Gc4kLZrNm6HR2LOt0ajaJUntMZxJWjQjIzA2BqtXQ0SyenW17MkAktQ+w5mkRTUyAtu3w+WXX8H27QYzSVoow5kkSVJBDGeSJEkF8SK0y8iVVx7N7t0792ofGBhk3brbulCRJElq5cjZMjJbMJurXZIkLT3DmSRJUkEMZ5IkSQUxnEmSJBXEcCZJklQQw9kyMjAwuKB2SZK09LyUxjLi5TLKNT4Oo6OwY0d1k/DNm72yviQtV4YzqcvGx2HTJpierpanpqplMKBJ0nLkYU2py0ZHHw5mM6anq3ZJ0vJjOJO6bMeOhbVLkvqb4UzqslWrFtYuSepvhjOpyzZvhkZjz7ZGo2qXJC0/hjOpy0ZGYGwMVq+GiOp5bMyTASRpufJsTakAIyOGMUlSxZEzSZKkghjOJEmSCmI4kyRJKojhTJIkqSCGM0mSpIIYziRJkgpiOJMkSSqI4UySJKkghjNJkqSCGM4kSZIKYjiTJEkqiOFMkiSpIIYzSZKkghjOJEmSCmI4kyRJKojhTJIkqSCGM0mSpIIYziRJkgpiOJMkSSpIR8NZRJwaETdGxLaIOHeW9c+NiK9FxP0RcUZT+0kR8aWIuD4iro2Il3eyTkmSpFJ0LJxFxErgQuA0YA1wVkSsadlsB/Aq4KMt7dPAKzPzycCpwDsj4ohO1VqUiQkYGqqeJUnSstPJkbOTgW2ZeVNm3gdcBJzevEFmbs/Ma4EHW9r/LTO/Xb/+HnA78LgO1lqGiQnYsAGmpqpnA5okScvOQR1872OAm5uWbwGetdA3iYiTgYOB78yybhOwCWBwcJDJycn9KnQhdu3a1ZHPOeLrX+cp553HynvvrRqmp3ngtNO47i1v4a6nPW3RP6+fdKpPdGDsl/LYJ2WyX8rT7T7pZDg7YBHxBODDwNmZ+WDr+swcA8YA1q5dm+vXr+94TZOTkyz650xMwBveADPBrLby3ns56Q1vgK1bYXh4cT+zj3SkT3TA7Jfy2Cdlsl/K0+0+6eRhzVuB45qWj63b2hIRjwY+DYxm5pcXubaybNwI09Ozr5uertZLkqRloZPh7CrgxIg4PiIOBs4ELm1nx3r7TwEfysxLOlhjGbZsgUZj9nWNRrVekiQtCx0LZ5l5P3AO8DngBuDizLw+Is6PiBcDRMQzI+IW4GXAeyLi+nr33wKeC7wqIr5RP07qVK1dNzxcHbpsDWiNhoc05zA+Xp3Yesopz2NoqFqWJKnXdXTOWWZeBlzW0vbGptdXUR3ubN3vI8BHOllbcWYC2oYN1aFMg9mcxsdh06aZo8HB1FS1DDAy0s3KJEk6MN4hoCQzAW31aoPZPEZH956mNz1dtUuS1MuKPltzWRoehu3bu11F8XbsWFi7JEm9wpEz9aRVqxbWLklSrzCcqSdt3jz7+RObN3enHkmSFovhTD1pZATGxqrpeRHJ6tXVsicDSJJ6neFMPWtkpJqed/nlV7B9u8FMktQfDGeSJEkFMZxJkiQVxHAmSZJUEMOZJElSQQxnkiRJBTGcSZIkFcRwJkmSVBDDmSRJUkEMZ5IkSQUxnEmSJBXEcCZJklSQg7pdgCpXXnk0u3fv3Kt9YGCQdetu60JFkiSpGxw5K8RswWyudkmS1J8MZ5IkSQUxnEmSJBXEcCZJklQQw5kkSVJBDGfdNDEBQ0MwMcHAwOCsm+yrXZIk9ScvpdEtExOwYQNMT8OGDazbuhWGh7tdlSRJ6jJHzrqhOZjBQwGNiYnu1iVJkrrOcLbUWoPZDAOaJEnCcLb0Nm7cO5jNmJ6u1kuSpGXLcLbUtmyBRmP2dY1Gtb4PjI9X5zqsWFE9j493uyJJknqD4WypDQ/D1q17B7RGo2rvg5MCxsdh0yaYmoLM6nnTJgOaJEntMJx1Q2tA66NgBjA6OvuUutHR7tQjSVIvMZx1y0xAW726r4IZwI4dC2uXJEkP8zpn3TQ8DNu3d7uKRbdqVXUoc7Z2SZI0N0fOtOg2b559St3mzd2pR5KkXmI406IbGYGxseqIbUT1PDZWtUuSpLl5WFMdMTJiGJMkaX84ciZJklQQw5kkSVJBDGeSJEkFMZxJkiQVxHAmSZJUEMOZJElSQQxnkiRJBfE6Z11w5ZVHs3v3zr3aBwYGWbfuti5UJEmSSuHIWRfMFszmapckScuH4UySJKkghjNJkqSCGM4kSZIKYjiTJEkqiOGsCwYGBhfULkmSlg8vpdEFXi5DkiTtiyNnkiRJBTGcSZIkFcRwJkmSVBDDmSRJUkEMZ5IkSQUxnEmSJBXEcCZJklQQw5kkSVJBDGeSJEkFMZxJkiQVxHAmSZJUEMPZUpmYgKGh6lmSJGkfDGdLYWICNmyAqanq2YAmSZL2oaPhLCJOjYgbI2JbRJw7y/rnRsTXIuL+iDijZd3ZEfHt+nF2J+vsqJlgNj1dLU9PG9AkSdI+dSycRcRK4ELgNGANcFZErGnZbAfwKuCjLfs+Bvhz4FnAycCfR8SRnaq1Y1qD2QwDmiRJ2odOjpydDGzLzJsy8z7gIuD05g0yc3tmXgs82LLvrwJfyMw7MvNO4AvAqR2stTM2btw7mM2Ynq7WS5IkNTmog+99DHBz0/ItVCNh+7vvMa0bRcQmYBPA4OAgk5OT+1XoQuzatavtzznij/6Ip5x3HivvvXevdQ8ccgjX/dEfcdcS1NzvFtInWjr2S3nskzLZL+Xpdp90Mpx1XGaOAWMAa9euzfXr13f8MycnJ2n7c9avh5NO2vvQZqPByq1bOWl4uAMVLj8L6hMtGfulPPZJmeyX8nS7T9o+rBkRR0bEkyPiSRHRzn63Asc1LR9bt7XjQPYty/AwbN0KjUa13GhUy10KZuPj1RU9VqyonsfHu1KGJEnahzlDVkQcHhH/T0RcB3wZeA9wMTAVEZ+IiLkSxlXAiRFxfEQcDJwJXNpmXZ8DXlgHwiOBF9ZtvWkmoK1e3fVgtmlTdUWPzOp50yYDmiRJJZnvsOYlwIeA52TmXc0rIuIZwCsi4kmZ+b7WHTPz/og4hypUrQTen5nXR8T5wNWZeWlEPBP4FHAk8KKIeHNmPjkz74iIv6AKeADnZ+YdB/JFu254GLZv72oJo6Oznzg6OgojI92pSZIk7WnOcJaZvzLHumuAa+bZ/zLgspa2Nza9vorqkOVs+74feP9c76+F2bFjYe2SJGnptX1CQEQ8FRhq3iczP9mBmtQhq1ZVhzJna5ckSWVoK5xFxPuBpwLX8/A1yRIwnM3jyiuPZvfunXu1DwwMsm7dbUtay+bN1RyzlhNH2bx5ScuQJElzaHfk7NmZ2Xp1f7VhtmA2V3snzcwrGx2tDmWuWlUFM+ebSZJUjnbD2ZciYk1mfquj1ajjRkYMY5IklazdcPYhqoB2G3AvEEBm5lM7VpkkSdIy1G44ex/wCuA69r4PpiRJkhZJu+HsB5nZ7gVkJUmStJ/aDWdfj4iPAn9PdVgT8FIa7RgYGNzn2ZqSJEmt2g1nj6AKZS9savNSGm1Y6stlSJKk3jZnOIuIs4DPZ+bGJapHkiRpWZtv5GwV8ImIGAD+AfgM8NXMzI5XJkmStAytmGtlZr41M08Bfg34F+B3ga9FxEcj4pUR4cQpSZKkRdTWnLPM/CnwqfpBRKwBTqO6/tmvdqw6SZKkZWa+OWergbsy88f18jDwEmAK+F+ZeUHHK5QkSVpG5jysCVwMPBIgIk4CPgHsAH4RuLCjlUmSJC1D8x3WfERmfq9+/TvA+zPzgohYAXyjo5VJkiQtQ/ONnEXT61OoztgkM72FkyRJUgfMN3J2eURcDHwfOBK4HCAingDc1+HaJEmSlp35wtkfAy8HngD8cmburtuPBkY7WJckSdKyNO+lNDLzolnavj7zOiLCi9JKkiQtjvnmnE1ExH+OiFXNjRFxcEScEhEfBM7uXHmSJEnLy3wjZ6dS3RXgYxFxPHAXcCiwEvg88M7mUTRJkiQdmDnDWWbeA7wbeHd9f83HAv+emXctQW2SJEnLTlu3bwKoTwb4fgdrkSRJWvbmm3MmSZKkJWQ4kyRJKojhTJIkqSBzzjmLiJ8C+7yGWWY+etErkiRJWsbmO1vzUQAR8RdUJwN8mOp+myNUdw2QJEnSImr3sOaLM/PdmfnTzPxJZv5v4PROFiZJkrQctRvO7o6IkYhYGRErImIEuLuThUmSJC1H7Yaz3wZ+C9hZP15Wt0mSJGkRtXUR2szcjocxJUmSOq6tcBYRhwKvBp5MdW9NADLzdztUlyRJ0rLU7mHNDwNHA78KXAEcC/y0U0VJkiQtV+2GsxMy88+AuzPzg8CvA8/qXFmSJEnLU7vhbHf9fFdE/AJwOPD4zpQkSZK0fLU15wwYi4gjgT8DLgUOA97YsaokSZKWqXbP1vyb+uUVwJM6V44kSdLyNt+9NV8/1/rMfPviliNJkrS8zTfn7FH1Yy3w+8Ax9eO1wNM7W1oPm5iAoaHqWZIkaQHmu/H5mwEi4h+Bp2fmT+vlNwGf7nh1PebKK49m9+6d1a3hPwBwCkzCwMAg69bd1tXaJElSb2j3bM1B4L6m5fvqNjXZvXvngtolSZJatXu25oeAr0bEp+rll1CPDak2MVGNmM21fnh4ycqRJEm9qa2Rs8zcDGwE7qwfGzPzLZ0srOds3Hhg6yVJkpj/bM1HZ+ZPIuIxwPb6MbPuMZl5R2fL6yFbtgCnzLNekiRpbvMd1vwosAG4Bsim9qiXvebZjOFhmJxnvSRJ0jzmO1tzQ/18/NKU09sGBgZnnfw/MOC5E5IkqT1tnRAQEZcCHwP+LjOnO1tS73rochkTE9Ucsy1bHDGTJEkL0u6lNC4AngPcEBGXRMQZEXFoB+vqbcPDsH27wUySJC1Yu/fWvAK4IiJWUs16/z3g/cCjO1ibJEnSstPudc6IiEcALwJeTnXrpg92qihJkqTlqt05ZxcDJwOfBd4FXJGZD3ayMEmSpOWo3ZGz9wFnZeYDnSxGkiRpuZvvIrSnZOblwCOB0yP2vD9RZn6yg7VJkiQtO/ONnD0PuJxqrlmrBAxnkiRJi2i+i9D+ef3y/Mz8bvO6iPDCtJIkSYus3euc/Z9Z2i5ZzEIkSZI0/5yznweeDBweES9tWvVowIvQSpIkLbL55pz9HNWNz49gz3lnP6W6EK0kSZIW0Xxzzv4O+LuI+KXM/NIS1SRJkrRstTvn7LURccTMQkQcGRHv70xJkiRJy1e74eypmXnXzEJm3gk8rSMVSZIkLWPt3iFgRUQcWYcyIuIxC9i3r1155dHs3r1zr/aBgUHWrbutCxVJkqRe1u7I2QXAlyLiLyLiL4F/Bt42304RcWpE3BgR2yLi3FnWHxIRH6/XfyUihur2gYj4YERcFxE3RMR5C/hOS2q2YDZXuyRJ0lzaCmeZ+SHgpcBO4DbgpZn54bn2iYiVwIXAacAa4KyIWNOy2auBOzPzBOAdwFvr9pcBh2TmU4BnAP9pJrhJkiT1s7bCWUSsAnYBl9aPXXXbXE4GtmXmTZl5H3ARcHrLNqcDH6xfXwI8P6obeCbwyIg4CHgEcB/wk3ZqlSRJ6mXtzhv7NFVggiosHQ/cSHWB2n05Bri5afkW4Fn72iYz74+IHwNHUQW104HvAw3gdZl5R+sHRMQmYBPA4OAgk5OTbX6d/bdr1662P2cp6tHC+kRLx34pj31SJvulPN3uk7bCWX148SER8XTgDzpSUeVk4AHgicCRwD9FxBcz86aWusaAMYC1a9fm+vXrO1hSZXJykubPmavvlqIe7d0nKoP9Uh77pEz2S3m63SftnhCwh8z8GnuPgrW6FTiuafnYum3WbepDmIcDPwJ+G/hsZu7OzNuBK4G1+1Nrpw0MDC6oXZIkaS5tjZxFxOubFlcATwe+N89uVwEnRsTxVCHsTKrQ1exS4GzgS8AZwOWZmRGxAzgF+HBEPBJ4NvDOdmpdag9dLmNiAjZuhC1bYHi4u0VJkqSe1e7I2aOaHodQzUFrndy/h8y8HzgH+BxwA3BxZl4fEedHxIvrzd4HHBUR24DXAzOX27gQOCwirqcKeVsy89r2v9YSm5iADRtgaqp6npjodkWSJKlHtTvn7M378+aZeRlwWUvbG5te30N12YzW/XbN1l6kmWA2PV0tT09Xy1u3OoImSZIWbM5wFhF/z8Nnae4lM1+8r3XLQmswm2FAkyRJ+2m+kbO/qp9fChwNfKRePovqgrTL28aNewezGdPT1frt25e0JEmS1NvmDGeZeQVARFyQmc1nS/59RFzd0cp6wZYts4+cATQa1XpJkqQFaPeEgEdGxJNmFuozMB/ZmZJ6yPBwdeiy0dizvdHwkKYkSdov7Yaz1wGTETEZEVcAE8Afd6yqXtIa0AxmkiTpALR7tuZnI+JE4Ofrpn/NzHs7V1aPmQloXudMkiQdoHbvrQnwDGCo3ucXI4LM/FBHqupFw8NO/pckSQes3TsEfBj4GeAbVPe8hOoSG4YzSZKkRdTuyNlaYE1m7vOaZ5IkSTpw7Z4Q8E2q65xJkiSpg9odOXss8K2I+Crw0IkAy/4OAZIkSYus3XD2pk4WIUmSpEq7l9K4IiIGgWfWTV/NzNs7V5YkSdLy1Nacs4j4LeCrwMuA3wK+EhFndLKw5Wh8HIaGYMWK6nl8vNsVSZKkpdbuYc1R4Jkzo2UR8Tjgi8AlnSpsuRkfh02bHr5N59RUtQwwMtK9uiRJ0tJq92zNFS2HMX+0gH3VhtHRve+fPj1dtUuSpOWj3ZGzz0bE54CP1csvBz7TmZJ6w5VXHs3u3Tv3ah8YGGTdutsW/H47diysXZIk9ad2Twj404h4KfDLddNYZn6qc2WVb7ZgNlf7fFatqg5lztYuSZKWjzkPTUbECRGxDiAzP5mZr8/M1wM/iIifWZIKl4nNm6HR2LOt0ajaJUnS8jHfvLF3Aj+Zpf3H9TotkpERGBuD1ashonoeG/NkAEmSlpv5DmsOZuZ1rY2ZeV1EDHWmpOVrZMQwJknScjffyNkRc6x7xCLWIUmSJOYPZ1dHxO+1NkbEa4BrOlNSbxgYGFxQuyRJUjvmO6z5x8CnImKEh8PYWuBg4Dc6WFfx9udyGZIkSfOZM5xl5k7gP0bEMPALdfOnM/PyjlcmSZK0DLV7nbMJYKLDtUiSJC173oJJkiSpIIYzSZKkghjOJEmSCmI4kyRJKojhTJIkqSCGM0mSpIIYzg7UxAQMDVXPkiRJB8hwdiAmJmDDBpiaqp4NaJIk6QAZzvbXTDCbnq6Wp6cNaJIk6YAZzvZHazCbYUCTJEkHqK3bN6nZS5mMO+HTe7YO3AHrfpMqoG3cCNu3d6M4SZLU4xw5W7A7Z23d/Zj6RaMBW7YsXTmSJKmvGM4WU6MBW7fC8PC8m46PVyd5rlhRPY+Pd7w6SZLUAzysuZgWEMw2bXp4ytrUVLUMMDLSwfokSVLxHDlbTG0EM4DR0dnPJRgd7UBNkiSppxjOumDHjoW1S5Kk5cNwtmBHzto6MDDY9jusWrWwdkmStHw452zBPsn69esP6B02b95zzhlU5xJs3nxglUmSpN7nyFkXjIzA2BisXg0R1fPYmCcDSJIkR866ZmTEMCZJkvbmyJkkSVJBDGeSJEkFMZxJkiQVxHAmSZJUEMOZJElSQQxnkiRJBTGcSZIkFcRwJkmSVBDDmSRJUkEMZ5IkSQUxnEmSJBXEcLYExsdhaAhWrKiex8e7XZEkSSqVNz7vsPFx2LQJpqer5ampahm88bkkSdqbI2cdNjr6cDCbMT1dtUuSJLUynO2viYnqGOXExJyb7dixsHZJkrS8Gc72x8QEbNhQHaPcsGHOgLZq1cLaJUnS8mY4W6Ajvv71KpDNHKucnp4zoG3eDI3Gnm2NRtUuSZLUynC2EBMTPOW882afRLaPgDYyAmNjsHo1RFTPY2OeDCBJkmbX0XAWEadGxI0RsS0izp1l/SER8fF6/VciYqhp3VMj4ksRcX1EXBcRh3ay1rZs3MjKe++dfd30NGzcOOuqkRHYvh0efLB6NphJkqR96Vg4i4iVwIXAacAa4KyIWNOy2auBOzPzBOAdwFvrfQ8CPgK8NjOfDKwHdneq1rZt2cIDhxwy+7pGA7ZsWdp6JElS3+nkyNnJwLbMvCkz7wMuAk5v2eZ04IP160uA50dEAC8Ers3MfwHIzB9l5gMdrLU9w8Nc95a3zD6JbOtWGB7uTl2SJKlvRGZ25o0jzgBOzczX1MuvAJ6Vmec0bfPNeptb6uXvAM8Cfgd4BvB44HHARZn5tlk+YxOwCWBwcPAZF110UUe+S7Ndu3Zx7Le/zVPOO4+V997LA4ccwnVveQt3Pe1pHf9szW7Xrl0cdthh3S5DLeyX8tgnZbJfyrMUfTI8PHxNZq6dbV2pdwg4CPhl4JnANPAPEXFNZv5D80aZOQaMAaxduzbXr1/f8cImJyc56XWvg5NOquagbdnCSY6YddXk5CRL0fdaGPulPPZJmeyX8nS7TzoZzm4FjmtaPrZum22bW+p5ZocDPwJuAf4xM38IEBGXAU8H/oFSDA9Xs/slSZIWUSfnnF0FnBgRx0fEwcCZwKUt21wKnF2/PgO4PKvjrJ8DnhIRjTq0PQ/4VgdrlSRJKkLHRs4y8/6IOIcqaK0E3p+Z10fE+cDVmXkp8D7gwxGxDbiDKsCRmXdGxNupAl4Cl2XmpztVqyRJUik6OucsMy8DLmtpe2PT63uAl+1j349QXU5DkiRp2fAOAZIkSQUxnEmSJBXEcCZJklQQw5kkSVJBDGeSJEkFMZxJkiQVxHAmSZJUEMOZJElSQQxnkiRJBTGcSZIkFcRwJkmSVBDDmSRJUkE6euPzfnLllUeze/dOACYnH24fGBhk3brbulOUJEnqO46ctWkmmLXbLkmStD8MZ5IkSQUxnEmSJBXEcCZJklQQw5kkSVJBDGdtGhgYXFC7JEnS/vBSGm2auVzG5OQk69ev724xkiSpbzlyJkmSVBDDmSRJUkEMZ5IkSQUxnEmSJBXEcCZJklQQw5kkSVJBDGeSJEkFMZwtsvFxGBqCFSuq5/HxblckSZJ6iRehXUTj47BpE0xPV8tTU9UywMhI9+qSJEm9w5GzRTQ6+nAwmzE9XbVLkiS1w3C2iHbsWFi7JElSK8PZIlq1amHtkiRJrQxni2jzZmg09mxrNKp2SZKkdhjOFtHICIyNwerVEFE9j415MoAkSWqfZ2suspERw5gkSdp/jpxJkiQVxHAmSZJUEMOZJElSQQxnkiRJBTGcSZIkFcRwJkmSVBDDmSRJUkEMZ5IkSQUxnEmSJBXEcCZJklQQw5kkSVJBDGeSJEkFMZxJkiQVxHC2CMbHYWgIVqyonsfHu12RJEnqVYazBTri61+vEtjEBFAFsU2bYGoKMqvnTZsMaJIkaf8YzhZiYoKnnHdelcA2bICJCUZHYXp6z82mp2F0tDslSpKk3mY4a9fEBGzYwMp7762Wp6dhwwaeNDUx6+Y7dixhbZIkqW8YztpRB7PZhsi2xgbWs3dAW7VqiWqTJEl9xXDWjo0b9w5mtUZO84HYuGdbAzZvXorCJElSvzGctWPLlipxzabR4NvnbWH1aoiA1athbAxGRpa2REmS1B8O6nYBPWF4GLZu3fvQZqMBW7fyguFhtjtSJkmSFoEjZ+2qA9oDhxxSLdfBjOHh7tYlSZL6iuFsIYaHue4tb6mOXRrMJElSB3hYc4HuetrTYPv2bpchSZL6lCNnkiRJBTGcSZIkFcRwJkmSVBDDmSRJUkEMZ5IkSQXpaDiLiFMj4saI2BYR586y/pCI+Hi9/isRMdSyflVE7IqIP+lknZIkSaXoWDiLiJXAhcBpwBrgrIhY07LZq4E7M/ME4B3AW1vWvx34TKdqlCRJKk0nR85OBrZl5k2ZeR9wEXB6yzanAx+sX18CPD8iAiAiXgJ8F7i+gzVKkiQVpZPh7Bjg5qblW+q2WbfJzPuBHwNHRcRhwP8NvLmD9UmSJBWn1DsEvAl4R2buqgfSZhURm4BNAIODg0xOTna8sF27di3J56h99kmZ7Jfy2Cdlsl/K0+0+6WQ4uxU4rmn52Lpttm1uiYiDgMOBHwHPAs6IiLcBRwAPRsQ9mfmu5p0zcwwYA1i7dm2uX7++A19jT5OTkyzF56h99kmZ7Jfy2Cdlsl/K0+0+6WQ4uwo4MSKOpwphZwK/3bLNpcDZwJeAM4DLMzOB58xsEBFvAna1BjNJkqR+1LE5Z/UcsnOAzwE3ABdn5vURcX5EvLje7H1Uc8y2Aa8H9rrcRsnGx2FoCFasqJ7Hx7tdkSRJ6nUdnXOWmZcBl7W0vbHp9T3Ay+Z5jzd1pLgDND4OmzbB9HS1PDVVLQOMjHSvLkmS1Nu8Q8B+Gh19OJjNmJ6u2iVJkvaX4Ww/7dixsHZJkqR2GM7206pVC2uXJElqh+FsP23eDI3Gnm2NRtUuSZK0vwxn+2lkBMbGYPVqiKiex8Y8GUCSJB2YUu8Q0BNGRgxjkiRpcTlyJkmSVBDDmSRJUkEMZ5IkSQUxnEmSJBXEcCZJklQQw5kkSVJBDGeSJEkF8TpnbbjyyqPZvXvnQ8uTk9XzwMAg69bd1p2iJElSX3LkrA3NwayddkmSpP1lOJMkSSqI4UySJKkghrMDNDQE4+PdrkKSJPULw9kBmpqCTZsMaJIkaXEYztowMDA4a/sdd1Tt09MwOrqUFUmSpH7lpTTa0Hy5jBUrkszYa5sdO5ayIkmS1K8cOVugxz/+3lnbV61a4kIkSVJfMpwt0GtecxONxp5tjQZs3tydeiRJUn8xnC3QC15wO2NjsHo1RFTPY2MwMtLtyiRJUj9wztl+GBkxjEmSpM5w5EySJKkghjNJkqSCGM4kSZIKYjiTJEkqiOFMkiSpIIYzSZKkghjOJEmSCmI4kyRJKojhTJIkqSCGM0mSpIIYziRJkgpiOJMkSSqI4UySJKkghjNJkqSCGM4kSZIKYjiTJEkqiOFMkiSpIIYzSZKkghjOJEmSCmI4kyRJKojhbCEmJnj2mWfCxES3K5EkSX3KcNauiQnYsIFDd+6EDRsMaJIkqSMMZ+2ogxnT09Xy9LQBTZIkdYThbD6twWyGAU2SJHWA4Ww+GzfuHcxmTE9X6yVJkhaJ4Ww+W7ZAozH7ukajWi9JkrRIDGfzGR6GrVv3DmiNRtU+PNyduiRJUl8ynLWjNaAZzCRJUocYztpVB7R7BgcNZpIkqWMMZwsw/r1hhtjOiucPMzQE4+PdrkiSJPWbg7pdQK8YH4dNm2B6+lAApqaqZYCRkS4WJkmS+oojZ20aHZ39Umejo92pR5Ik9SfDWZt27FhYuyRJ0v4wnLVp1aqFtUuSJO0Pw1mbNm+e/VJnmzd3px5JktSfDGdtGhmBsTEYHLyHCFi9ulr2ZABJkrSYPFtzAUZG4Jhjvsz69eu7XYokSepTjpxJkiQVxHAmSZJUkI6Gs4g4NSJujIhtEXHuLOsPiYiP1+u/EhFDdfuvRMQ1EXFd/XxKJ+uUJEkqRcfCWUSsBC4ETgPWAGdFxJqWzV4N3JmZJwDvAN5at/8QeFFmPgU4G/hwp+qUJEkqSSdHzk4GtmXmTZl5H3ARcHrLNqcDH6xfXwI8PyIiM7+emd+r268HHhERh3SwVkmSpCJ0MpwdA9zctHxL3TbrNpl5P/Bj4KiWbX4T+Fpm3tuhOiVJkopR9KU0IuLJVIc6X7iP9ZuATQCDg4NMTk52vKZdu3YtyeeoffZJmeyX8tgnZbJfytPtPulkOLsVOK5p+di6bbZtbomIg4DDgR8BRMSxwKeAV2bmd2b7gMwcA8YA1q5dm0tx/bHJyUmvc1YY+6RM9kt57JMy2S/l6XafdPKw5lXAiRFxfEQcDJwJXNqyzaVUE/4BzgAuz8yMiCOATwPnZuaVHaxRkiSpKB0LZ/UcsnOAzwE3ABdn5vURcX5EvLje7H3AURGxDXg9MHO5jXOAE4A3RsQ36sfjO1WrJElSKTo65ywzLwMua2l7Y9Pre4CXzbLfXwJ/2cnaJEmSSuQdAiRJkgpiOJMkSSqI4UySJKkghjNJkqSCGM4kSZIKYjiTJEkqiOFMkiSpIIYzSZKkghjOJEmSCmI4kyRJKojhTJIkqSCGM0mSpIIYziRJkgpiOJMkSSqI4axN4+MwNASnnPI8hoaqZUmSpMV2ULcL6AXj47BpE0xPAwRTU9UywMhINyuTJEn9xpGzNoyOzgSzh01PV+2SJEmLyXDWhh07FtYuSZK0vwxnbVi1amHtkiRJ+8tw1obNm6HR2LOt0ajaJUmSFpPhrA0jIzA2BqtXQ0SyenW17MkAkiRpsRnO2jQyAtu3w+WXX8H27QYzSZLUGYYzSZKkghjOJEmSCmI4kyRJKojhTJIkqSCGM0mSpIIYziRJkgpiOJMkSSqI4UySJKkghjNJkqSCGM4kSZIKYjiTJEkqiOFMkiSpIIYzSZKkghjOJEmSCmI4kyRJKshB3S6gF1x55dHs3r3zoeXJyep5YGCQdetu605RkiSpLzly1obmYNZOuyRJ0v4ynEmSJBXEcCZJklQQw5kkSVJBDGeSJEkFMZy1YSCPXFC7JEnS/vJSGvOZmGDdhnthepZ1jXth6wQMDy95WZIkqT85cjafjRtherZkRtW+cePS1iNJkvqa4Ww+W7ZAozH7ukajWi9JkrRIDGfzGR6GrVu5/+A9A9r9Bzdg61YPaUqSpEVlOGvD+PeGeVFs5W6qgHY3DV4UWxn/nsFMkiQtLsNZG0ZH4bP3DrOBrWxnNRvYymfvHWZ0tNuVSZKkfuPZmm3YsaN6nmSY49m+V7skSdJiceSsDatWLaxdkiRpfxnO2rB5894nbDYaVbskSdJiMpy1YWQExsZg9WqISFavrpZHRrpdmSRJ6jeGszaNjMD27XD55VewfbvBTJIkdYbhTJIkqSCGM0mSpIIYziRJkgpiOJMkSSqI4UySJKkghjNJkqSCGM4kSZIKYjiTJEkqiOFMkiSpIIYzSZKkgnQ0nEXEqRFxY0Rsi4hzZ1l/SER8vF7/lYgYalp3Xt1+Y0T8aifrlCRJKkXHwllErAQuBE4D1gBnRcSals1eDdyZmScA7wDeWu+7BjgTeDJwKvDu+v0kSZL6WidHzk4GtmXmTZl5H3ARcHrLNqcDH6xfXwI8PyKibr8oM+/NzO8C2+r3kyRJ6msHdfC9jwFublq+BXjWvrbJzPsj4sfAUXX7l1v2Pab1AyJiE7AJYHBwkMnJycWqfZ927dq1JJ+j9tknZbJfymOflMl+KU+3+6ST4azjMnMMGANYu3Ztrl+/vuOfOTk5yVJ8jtpnn5TJfimPfVIm+6U83e6TTh7WvBU4rmn52Lpt1m0i4iDgcOBHbe4rSZLUdzoZzq4CToyI4yPiYKoJ/pe2bHMpcHb9+gzg8szMuv3M+mzO44ETga92sFZJkqQidOywZj2H7Bzgc8BK4P2ZeX1EnA9cnZmXAu8DPhwR24A7qAIc9XYXA98C7gf+MDMf6FStkiRJpejonLPMvAy4rKXtjU2v7wFeto99NwObO1mfJElSabxDgCRJUkEMZ5IkSQUxnEmSJBXEcCZJklQQw5kkSVJBDGeSJEkFieqar70vIn4ATC3BRz0W+OESfI7aZ5+UyX4pj31SJvulPEvRJ6sz83GzreibcLZUIuLqzFzb7Tr0MPukTPZLeeyTMtkv5el2n3hYU5IkqSCGM0mSpIIYzhZurNsFaC/2SZnsl/LYJ2WyX8rT1T5xzpkkSVJBHDmTJEkqiOFMkiSpIIazNkXEqRFxY0Rsi4hzu11PP4uI4yJiIiK+FRHXR8Qf1e2PiYgvRMS36+cj6/aIiP9Z9821EfH0pvc6u97+2xFxdre+Uz+JiJUR8fWI2FovHx8RX6n//h+PiIPr9kPq5W31+qGm9zivbr8xIn61S1+lL0TEERFxSUT8a0TcEBG/5G+l+yLidfW/v74ZER+LiEP9rSy9iHh/RNweEd9salu030dEPCMirqv3+Z8REYtSeGb6mOcBrAS+AzwJOBj4F2BNt+vq1wfwBODp9etHAf8GrAHeBpxbt58LvLV+/WvAZ4AAng18pW5/DHBT/Xxk/frIbn+/Xn8Arwc+Cmytly8Gzqxf/zXw+/XrPwD+un59JvDx+vWa+jd0CHB8/dta2e3v1asP4IPAa+rXBwNH+Fvpep8cA3wXeES9fDHwKn8rXemL5wJPB77Z1LZovw/gq/W2Ue972mLU7chZe04GtmXmTZl5H3ARcHqXa+pbmfn9zPxa/fqnwA1U/7I7neo/RNTPL6lfnw58KCtfBo6IiCcAvwp8ITPvyMw7gS8Apy7dN+k/EXEs8OvA39TLAZwCXFJv0tovM/11CfD8evvTgYsy897M/C6wjeo3pgWKiMOp/uPzPoDMvC8z78LfSgkOAh4REQcBDeD7+FtZcpn5j8AdLc2L8vuo1z06M7+cVVL7UNN7HRDDWXuOAW5uWr6lblOH1cP7TwO+Agxm5vfrVbcBg/XrffWP/bb43gn8V+DBevko4K7MvL9ebv4bP/T3r9f/uN7eflk8xwM/ALbUh5r/JiIeib+VrsrMW4G/AnZQhbIfA9fgb6UUi/X7OKZ+3dp+wAxnKlZEHAb8H+CPM/Mnzevq/0vxOjBLKCI2ALdn5jXdrkUPOYjqkM3/zsynAXdTHaZ5iL+VpVfPYTqdKjw/EXgkjkQWqdTfh+GsPbcCxzUtH1u3qUMiYoAqmI1n5ifr5p31MDL18+11+776x35bXOuAF0fEdqpD+6cA/4Nq6P+gepvmv/FDf/96/eHAj7BfFtMtwC2Z+ZV6+RKqsOZvpbteAHw3M3+QmbuBT1L9fvytlGGxfh+31q9b2w+Y4aw9VwEn1mfaHEw1YfPSLtfUt+q5Fu8DbsjMtzetuhSYOUvmbODvmtpfWZ9p82zgx/WQ9eeAF0bEkfX/yb6wbtN+yMzzMvPYzByi+g1cnpkjwARwRr1Za7/M9NcZ9fZZt59Zn6F2PHAi1aRaLVBm3gbcHBE/Vzc9H/gW/la6bQfw7Iho1P8+m+kXfytlWJTfR73uJxHx7LqfX9n0Xgem22dS9MqD6iyOf6M6W2a02/X08wP4Zaph5muBb9SPX6Oag/EPwLeBLwKPqbcP4MK6b64D1ja91+9STaLdBmzs9nfrlwewnofP1nwS1X8wtgGfAA6p2w+tl7fV65/UtP9o3V83skhnNy3XB3AScHX9e/lbqrPJ/K10v1/eDPwr8E3gw1RnXPpbWfp++BjVvL/dVCPNr17M3wewtu7j7wDvor7z0oE+vH2TJElSQTysKUmSVBDDmSRJUkEMZ5IkSQUxnEmSJBXEcCZJklQQw5mkokTEAxHxjabHULdrmktEPDEiLmljuydExNb69fqZ103rPxARZ8y+N0TEX0XEKQdesaTSHTT/JpK0pP49M0+abUV9ocfIzAdnW98Nmfk9Hr6w6FxeD7z3AD7qf9X7X34A7yGpBzhyJqloETEUETdGxIeoLvZ4XET8aURcFRHXRsSbm7Z9Zd32LxHx4bptjxGpiNjV9Hqv96k/74aIeG9EXB8Rn4+IR9TrToiIL9bv/7WI+Jl6+2827ftP9bqvRcR/bPoqvwl8to3vu7Zp1PC6iEiAzJwCjoqIow/gzympBzhyJqk0j4iIb9Svvwu8juq2NWdn5pcj4oX18slUV/S+NCKeS3UvwjcA/zEzfxgRj5nrQ+Z4nx11+1mZ+XsRcTFVsPoIMA78t8z8VEQcSvU/uI9vetvbgV/JzHsi4kSqq5OvrW+9c2dm3tu07XOavifAKqq7LlxNddV/IuK/s2eg+xrVPRr/z1zfTVJvM5xJKs0ehzXrOWdTmfnluumF9ePr9fJhVGHqF4FPZOYPATLzjnk+Z1/vs4PqptXfqNuvAYYi4lHAMZn5qfr976nra37PAeBdEXES8ADws3X7E4AftHz+P2Xmhqbv+YHmlRHxcqqbmL+wqfl24InzfC9JPc5wJqkX3N30OoC3ZOZ7mjeIiP+8j33vp57CERErgIPneZ8hoHmE6wHgEW3W+TpgJ1VQXAHcU7f/O9X9E9sSEb8AvAl4bmY+0LTq0Pq9JPUx55xJ6jWfA343Ig4DiIhjIuLxVBPlXxYRR9XtM4c1twPPqF+/mGp0a673mVVm/hS4JSJeUm9/SEQ0WjY7HPh+fcLCK4CVdfu/AUPtfLmIOILqcOgrM7N1tO1nqebdSepjhjNJPSUzPw98FPhSRFwHXAI8KjOvBzYDV0TEvwBvr3d5L/C8uu2XqEfh9vU+83z8K4D/KyKuBf4ZaJ2c/27g7Pqzfr7ps+4GvhMRJ7TxFU8HVgPvnTkxACAiBoATgKvbeA9JPSwys9s1SFLfi4jfAJ6RmW84gP2fnpl/triVSSqNc84kaQnUZ3gedQBvcRBwwWLVI6lcjpxJkiQVxDlnkiRJBTGcSZIkFcRwJkmSVBDDmSRJUkEMZ5IkSQX5/wG0qdrLlJ5AzAAAAABJRU5ErkJggg==\n",
+      "text/plain": [
+       "<Figure size 720x864 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "plt.figure(figsize=(10,12))\n",
+    "plt.subplot(111)\n",
+    "\n",
+    "plt.title(\"Conductividad vs frecuencia\")\n",
+    "plt.ylabel(\"Conductividad (S/m)\")\n",
+    "plt.xlabel(\"Frecuencia(Hz)\")\n",
+    "plt.grid()\n",
+    "plt.plot(f,s1,\"ob\", f,s2,\"Dr\", f, s3,\"sy\")\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Si fijamos una frecuencia (en este caso, 4 kHz) podemos hacer un histograma para mostrar la conductividad o resistividad en cada una de las soluciones:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 14,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEWCAYAAAB8LwAVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAjhklEQVR4nO3df7gdVX3v8fcnCSH8kICARyDBRInaoEjhEEov6gGuCBUIahACIigardJWvVFpqRGj7a0alGuB1igRCMYAKbRRohGBja1SSAgQCDT2iJGE37+CnNgQAt/7x6wDw86cs+ec7NlnJ/m8nmc/mVmz1uzv8Cz298ysmTWKCMzMzOoNG+oAzMysPTlBmJlZIScIMzMr5ARhZmaFnCDMzKyQE4SZmRVygrCtiqQzJf1HBfvdV1KPpOEl6v6zpC/2sz0k7TfIOFZJ+t+DaTvA76lJ+mjV32PtzQnCWkLSqZKWph/ZhyX9RNLhQx1XX+p/iCPigYjYOSJeaNQ2Ij4REV+pNsLmkTQjJa1SiacoeUjqkrSmmghtqDhBWOUkfRa4APh7oAPYF7gYmDyEYRkg6Q3AScDDQx2LtR8nCKuUpNHATOBTEXFNRKyLiOcj4kcR8blUZ3tJF0h6KH0ukLR92tYlaY2k/yPpsXT28eHc/neXtFDS7yXdBrwht21c+st4RK7sFX/9SvqYpPskPSvpXkkHSZpLlsR+lM54Pp/fl6STJS2tO87PSFqYli+V9NXcts+luB+S9JG6du+RdEeKf7Wk8+q2ny7pd5KelHRug//W/e6rDxcBXwA29LPfvSQtl/S5EvtD0mHpv1vvZ72kVWXaWntxgrCqHQaMAq7tp865wJ8ABwJvAyYBf5vb/lpgNLAPcBZwkaTd0raLgPXAXsBH0qcUSScB5wEfAnYBTgCejIjTgQeA49Nlpa/XNf0R8CZJE3JlpwLzCr7jGGA68C5gAlB/GWdd+v5dgfcAfy7pxNR2IvBPwOnA3sDuwJh+DqnPfRVJx/9cRCzqp8544Gbgwoj4Rj/f/ZKIuCX9d9sZ2A24FfhhmbbWXpwgrGq7A09ExMZ+6pwGzIyIxyLiceDLZD+KvZ5P259PP2Y9ZD/Qw4H3AzPSmck9wGUDiO2jwNcjYklkuiPid40aRcQfgH8DpgKkRPFmYGFB9Q8A34+IeyJiHVlCyu+rFhF3R8SLEbGc7If0nWnzFODHEfGLiHgO+CLwYj9x9bevV5D0KrJLfn/Vz6FOBG4CvhQRs+u2fVvS2t4P8OM+9vFt4FmyPwJsC+MEYVV7Etgjf5mnwN5A/of5d6nspX3UJZg/ADsDewIjgNV1bcsaC/xmAPXz5pESBNnZw7+mxFFvb/qJT9Khkm6S9LikZ4BPAHsUtU0J5sm+Amqwr3rnAXMjYlVf+yNL3A8CCwq2/WVE7Nr7AY4riOfjQBdwakT0mdisfTlBWNVuAZ4DTuynzkPA63Lr+6ayRh4HNpL90Ofb9lqX/t0xV/ba3PJqcmMWdRpNc3w9sKekA8kSxSaXl5KH+4mP1G4hMDYiRgP/DKioraQdyc7I+tLfvuodBfylpEckPZK+5ypJX8jVOQ94AphX5vbePElvB74CTI6I3w+krbUPJwirVEQ8A8wgGzc4UdKOkraTdKyk3mv7PwT+VtKekvZI9a8ose8XgGuA89J+JwJn5LY/TvYX8AclDU8DxPmE8D1guqSDldlPUm+iehR4fT/f/TxwNfAN4NVkCaPIVcCZkiamH/gv1W1/FfBURKyXNInsbKTXAuA4SYdLGkk22N/f/7P97aveUcBbyMZ9DiRLyB8nG9Pp9TzZHU47AZdLKvV7IWks2XF/KCJ+XaaNtScnCKtcRJwPfJZs4Plxsr/czwb+NVX5KrAUWA7cDSxLZWWcTXa56RHgUuD7dds/BnyO7NLM/sCvcnFdDfwd2V/ez6Z4Xp02/1+ypLVW0vQ+vnse2aDz1X2NsUTET8hu8b0R6E7/5n0SmCnpWbLEeFWu7QrgU+l7HgaeBvp71qDPfRXE9WREPNL7AV4Ano6Inrp6G4D3kd2ePKdkkjgq1V+Qu5NpRYl21mbkFwaZmVkRn0GYmVkhJwgzMyvkBGFmZoWcIMzMrFB/Dy9tUfbYY48YN27cUIfxknXr1rHTTjsNdRjWJtwfLK+d+sPtt9/+RETsWbRtq0kQ48aNY+nSpY0rtkitVqOrq2uow7A24f5gee3UHyT1OfuALzGZmVkhJwgzMyvkBGFmZoWcIMzMrJAThJmZFXKCMDOzQk4QZmZWyAnCzMwKOUGYmVmhreZJarOmmtfXmzoHadQsmHdE8/Z3qt/jYtWr9AxC0jGSVkrqlnROwfZ3SFomaaOkKXXb9pX0M0n3SbpX0rgqYzUzs1eqLEGkl5xfBBwLTASmpncG5z0AnEnxC98vB74REX8ETAIeqypWMzPbVJWXmCYB3RFxP4Ck+cBk4N7eChGxKm17Md8wJZIREXF9qveK9+SamVn1qkwQ+5C9nL7XGuDQkm3fCKyVdA0wHvg5cE5EvJCvJGkaMA2go6ODWq22uTE3TU9PT1vFYwM0alZTd9czbAy1Zu7TfWuLtqX8PrTrIPUI4O3AH5NdhrqS7FLUJflKETEbmA3Q2dkZ7TJ9LrTXdL42CM0cUAZqo2bRtX5683bY5UHqLdmW8vtQ5SD1g8DY3PqYVFbGGuDOiLg/IjYC/woc1NzwzMysP1UmiCXABEnjJY0ETgEWDqDtrpJ633J0JLmxCzMzq15lCSL95X82sBi4D7gqIlZIminpBABJh0haA5wEfEfSitT2BWA6cIOkuwEB360qVjMz21SlYxARsQhYVFc2I7e8hOzSU1Hb64EDqozPzMz65qk2zMyskBOEmZkVcoIwM7NCThBmZlbICcLMzAo5QZiZWSEnCDMzK+QEYWZmhZwgzMyskBOEmZkVcoIwM7NCThBmZlbICcLMzAo5QZiZWSEnCDMzK9Su76Q2M2sf89Tc/Y2a1dz3np9azTvKKz2DkHSMpJWSuiWdU7D9HZKWSdooaUrB9l0krZF0YZVxmpnZpipLEJKGAxcBxwITgamSJtZVewA4E5jXx26+AvyiqhjNzKxvVZ5BTAK6I+L+iNgAzAcm5ytExKqIWA68WN9Y0sFAB/CzCmM0M7M+VJkg9gFW59bXpLKGJA0DzgemVxCXmZmV0K6D1J8EFkXEGqnvwSFJ04BpAB0dHdRqtdZEV0JPT09bxWMDNGpWU3fXM2wMtWbu032rtbbR/lBlgngQGJtbH5PKyjgMeLukTwI7AyMl9UTEKwa6I2I2MBugs7Mzurq6NjvoZqnVarRTPDZAzbzDBKiNmkXX+iaeEHdVc9eK9WEb7Q9VJoglwARJ48kSwynAqWUaRsRpvcuSzgQ665ODmZlVq7IxiIjYCJwNLAbuA66KiBWSZko6AUDSIZLWACcB35G0oqp4zMxsYCodg4iIRcCiurIZueUlZJee+tvHpcClFYRnZmb98FQbZmZWyAnCzMwKOUGYmVkhJwgzMyvkBGFmZoXa9Unq1mvn6XwrmsrXzKw/PoMwM7NCThBmZlbICcLMzAo5QZiZWSEnCDMzK+QEYWZmhZwgzMyskBOEmZkVKv2gnKTdgL2B/wFWRcSLlUVlZmZDrt8EIWk08ClgKjASeBwYBXRI+k/g4oi4qfIozcys5RqdQSwALgfeHhFr8xskHQycLun1EXFJRfGZmdkQ6XcMIiLeFRFz65ND2nZ7RHy6v+Qg6RhJKyV1S9rkndKS3iFpmaSNkqbkyg+UdIukFZKWSzp5gMdlZmabaSBjEAcA4/JtIuKafuoPBy4C3gWsAZZIWhgR9+aqPQCcCUyva/4H4EMR8d+S9gZul7S4KFGZmVk1SiUISXOAA4AVQO/gdAB9JghgEtAdEfenfcwHJgMvJYiIWJW2vWLAOyJ+nVt+SNJjwJ7A2jLxmpnZ5it7BvEnETFxgPveB1idW18DHDrAfSBpEtkA+W8Ktk0DpgF0dHRQq9UGuvuXjZo1+LYFeoaNodasfW7OcdngtHN/APeJVttG+0PZBHGLpIl1l4cqJ2kvYC5wRtFttRExG5gN0NnZGV1dXYP/sma9uyGpjZpF1/r6K2eD1OX3QbRcO/cHcJ9otW20P5RNEJeTJYlHgOcAARERB/TT5kFgbG59TCorRdIuwHXAuRHxn2XbmZlZc5RNEJcApwN38/IYRCNLgAmSxpMlhlOAU8s0lDQSuBa4PCIWlPw+MzNrorIJ4vGIWDiQHUfERklnA4uB4cCciFghaSawNCIWSjqELBHsBhwv6csRsT/wAeAdwO6Szky7PDMi7hxIDGZmNnhlE8QdkuYBPyK7xAT0f5tr2r4IWFRXNiO3vITs0lN9uyuAK0rGZmZmFSibIHYgSwxH58oa3eZqZmZbsEZzMU0FfhYRH25RPGZm1iYanUHsC1wtaTvgBuAnwG0R4XvszMy2co3mYvpaRBwJ/BlwF/ARYJmkeZI+JKmjFUGamVnrlRqDiIhnye42uhZA0kTgWLLnI95dWXRmZjZkGo1BvA5YGxHPpPUjgBOB3wH/GBHnVx6hmZkNiUavHL0K2AmyKbiBq8lmYH0b2UytZma2lWp0iWmHiHgoLX+Q7GG38yUNA+6sNDIzMxtSjc4glFs+kuxOJvw+ajOzrV+jM4gbJV0FPEw2HcaN8NIsqxsqjs3MzIZQowTxaeBkYC/g8Ih4PpW/Fji3wrjMzGyINbzNNSLmF5Td0bssSX5wzsxs69NoDOImSX8had98oaSRko6UdBlwRnXhmZnZUGl0BnEM2dPTP0zvdVgLjCKbvvtnwAX5swkzM9t69JsgImI9cDFwcZqPaQ/gfyJibQtiMzOzIVR2um/SAPXDFcZiZmZtpNEYxGaRdIyklZK6JZ1TsP0dkpZJ2ihpSt22MyT9d/p4nMPMrMUqSxCShpNNx3EsMBGYmib5y3sAOBOYV9f21cCXgEOBScCXJO1WVaxmZrapKs8gJgHdEXF/RGwA5gOT8xUiYlVELAfqn8x+N3B9RDwVEU8D15MNmJuZWYs0ms31WbJXixaKiF36ab4PsDq3vobsjKCMorb7FMQ3DZgG0NHRQa1WK7n7AqNmDb5tgZ5hY6g1a5+bc1w2OO3cH8B9otW20f7Q6C6mVwFI+grZAPVcsvmZTiN7unpIRcRsYDZAZ2dndHV1DX5n845oTlBJbdQsutZPb87OuvwcYsu1c38A94lW20b7Q9lLTCdExMUR8WxE/D4i/om6y0UFHgTG5tbHpLIyNqetmZk1QdkEsU7SaZKGSxom6TRgXYM2S4AJksZLGgmcAiws+X2LgaMl7ZYGp49OZWZm1iJlE8SpwAeAR9PnpFTWp4jYCJxN9sN+H3BVRKyQNFPSCQCSDpG0Ju3vO5JWpLZPAV8hSzJLgJmpzMzMWqTsO6lX0fiSUlG7RcCiurIZueUlZJePitrOAeYM9DvNzKw5SiUISaOAs4D9yeZiAiAiPlJRXGZmNsTKXmKaS/YOiHcDN5P91f9sVUGZmdnQK5sg9ouILwLrIuIy4D2Uf6bBzMy2QGUTRO+b5NZKegswGnhNNSGZmVk7KDub6+x0u+kXyW5V3RmY0X8TMzPbkpW9i+l7afFm4PXVhWNmZu2i0VxMn+1ve0R8s7nhmJlZu2h0BvGq9O+bgEN4+Uno44HbqgrKzMyGXqPJ+r4MIOkXwEER8WxaPw+4rvLozMxsyJS9i6kD2JBb35DKzMxsK1X2LqbLgdskXZvWTwQurSIgMzNrD2XvYvo7ST8B3p6KPhwRd1QXlpmZDbVGdzHtEhG/T++IXpU+vdte7RlWzcy2Xo3OIOYBxwG388pXjyqt+5kIM7OtVKO7mI5L/45vTThmZtYuSt3FJGmhpKmSdqw6IDMzaw9lb3M9n2yA+j5JCyRNSe+I6JekYyStlNQt6ZyC7dtLujJtv1XSuFS+naTLJN0t6T5Jfz2QgzIzs81XKkFExM0R8UmyMYfvkL1+9LH+2kgaDlwEHAtMBKZKmlhX7Szg6YjYD/gW8LVUfhKwfUS8FTgY+Hhv8jAzs9YoewaBpB2A9wOfIJt247IGTSYB3RFxf0RsAOaz6WtLJ+f2swA4SlLvAPhOkkYAO5A9mPf7srGamdnmKzsGcRVwH3AkcCHwhoj4iwbN9gFW59bXpLLCOhGxEXgG2J0sWawDHgYeAGb5llozs9Yq+yT1JcDUiHihymByJgEvAHsDuwH/LunnEXF/vpKkacA0gI6ODmq12uC/cdSswbct0DNsDLVm7XNzjssGp537A7hPtNo22h8aPSh3ZETcCOwETM6u/rwsIq7pp/mDwNjc+phUVlRnTbqcNBp4EjgV+GlEPA88JumXQCfwigQREbOB2QCdnZ3R1dXV3+H0b94Rg29boDZqFl3rpzdnZ13RuI41Vzv3B3CfaLVttD80usT0zvTv8QWf4xq0XQJMkDRe0kjgFF6eLrzXQuCMtDwFuDEiguyy0pEAknYC/gT4r4ZHY2ZmTdPoQbkvpcWZEfHb/DZJ/T48FxEbJZ0NLAaGA3MiYoWkmcDSiFhIdulqrqRu4CmyJALZ3U/fl7SC7Knt70fE8gEem5mZbYayYxD/AhxUV7aA7BbUPkXEImBRXdmM3PJ6slta69v1FJWbmVnrNBqDeDOwPzBa0vtym3YBGj4oZ2ZmW65GZxBvIhtr2JVs3KHXs8DHKorJzMzaQKMxiH8D/k3SYRFxS4tiMjOzNlD2SepPSNq1d0XSbpLmVBOSmZm1g7IJ4oCIWNu7EhFPA39cSURmZtYWyiaIYZJ2611Jb5greweUmZltgcr+yJ8P3CLparLnEqYAf1dZVGZmNuRKJYiIuFzSUtLTzcD7IuLe6sIyM7OhVipBSNoX6CE3VYakfSPigaoCMzOzoVX2EtN1ZO9ogOz9DOOBlWQP0ZmZ2Vao7CWmt+bXJR0EfLKSiMzMrC2UfqNcXkQsAw5tcixmZtZGyo5BfDa3Ooxs4r6HKonIzMzaQtkxiFflljeSjUn8S/PDMTOzdlF2DOLLVQdiZmbtpdF03z/i5buXNhERJzQ9IjMzawuNziB636r9PuC1wBVpfSrwaFVBmZnZ0Gs03ffNAJLOj4jO3KYfpSer+yXpGOD/kb1y9HsR8Q9127cHLid7M92TwMkRsSptOwD4DtnLiV4EDklvoDMzsxYoe5vrTpJe37uS3ke9U38NJA0ne7f0scBEYKqkiXXVzgKejoj9gG8BX0ttR5CdrXwiIvYHuoDnS8ZqZmZNUPYups8ANUn3k03W9zrg4w3aTAK6I+J+AEnzgclAfg6nycB5aXkBcKEkAUcDyyPiLoCIeLJknGZm1iRl72L6qaQJwJtT0X9FxHMNmu0DrM6tr2HTh+teqhMRGyU9A+wOvBEISYuBPYH5EfH1+i+QNA2YBtDR0UGtVitzOMVGzWpcZwB6ho2h1qx9bs5x2eC0c38A94lW20b7w0De6XAwMC61eZskIuLySqLKvuNw4BDgD8ANkm6PiBvylSJiNjAboLOzM7q6ugb/jfOOGHzbArVRs+haP705O+vq80Yyq0o79wdwn2i1bbQ/lH2Sei7wBuBO4IVUHGQDzH15EBibWx+TyorqrEnjDqPJBqvXAL+IiCfS9y8ie3r7BszMrCXKnkF0AhMjYiBpagkwIQ1oPwicApxaV2chcAZwC9lLiG6MiN5LS5+XtCOwAXgn2SC2mZm1SNkEcQ/ZcxAPl91xGlM4G1hMdpvrnIhYIWkmsDQiFgKXAHMldQNPkSURIuJpSd8kSzIBLIqI68p+t5mZbb6yCWIP4F5JtwEvDU43epI6IhYBi+rKZuSW1wMn9dH2Cl5+MM/MzFqsbII4r8ogzMys/ZS9zfVmSR1kdxUB3BYRj1UXlpmZDbVST1JL+gBwG9nloA8At0qaUmVgZmY2tMpeYjqXbC6kxwAk7Qn8nOzpZzMz2wqVnYtpWN0lpScH0NbMzLZAZc8gfpqeTfhhWj8Z+Ek1IZmZWTsoO0j9OUnvI5v+AmB2RFxbXVhmZjbUGr1Rbj+gIyJ+GRHXANek8sMlvSEiftOKIM3MrPUajSNcAPy+oPyZtM3MzLZSjRJER0TcXV+YysZVEpGZmbWFRgli13627dDEOMzMrM00ShBLJX2svlDSR4HbqwnJzMzaQaO7mD4NXCvpNF5OCJ3ASOC9FcZlZmZDrN8EERGPAn8q6QjgLan4uoi4sfLIzMxsSJV9DuIm4KaKYzEzszbi6TLMzKxQpQlC0jGSVkrqlnROwfbtJV2Ztt8qaVzd9n0l9Uhq4tu9zcysjMoShKThwEXAscBEYKqkiXXVzgKejoj9yN45/bW67d/Ecz6ZmQ2JKs8gJgHdEXF/RGwA5gOT6+pMBi5LywuAoyQJQNKJwG+BFRXGaGZmfSg7m+tg7AOszq2vAQ7tq05EbJT0DLC7pPXAF4B3AX1eXpI0DZgG0NHRQa1WG3y0o2YNvm2BnmFjqDVrn5tzXDY47dwfwH2i1bbR/lBlgtgc5wHfioiedEJRKCJmA7MBOjs7o6ura/DfOO+IwbctUBs1i671TRo66Yrm7MfKa+f+AO4TrbaN9ocqE8SDwNjc+phUVlRnjaQRwGiylxEdCkyR9HWy6T5elLQ+Ii6sMF4zM8upMkEsASZIGk+WCE4BTq2rsxA4A7gFmALcGBEBvL23gqTzgB4nBzOz1qosQaQxhbOBxcBwYE5ErJA0E1gaEQuBS4C5krqBp8iSiJmZtYFKxyAiYhGwqK5sRm55PXBSg32cV0lwZmbWLz9JbWZmhZwgzMyskBOEmZkVcoIwM7NCThBmZlbICcLMzAo5QZiZWSEnCDMzK+QEYWZmhZwgzMyskBOEmZkVcoIwM7NCThBmZlbICcLMzAo5QZiZWSEnCDMzK1RpgpB0jKSVkrolnVOwfXtJV6btt0oal8rfJel2SXenf4+sMk4zM9tUZQlC0nDgIuBYYCIwVdLEumpnAU9HxH7At4CvpfIngOMj4q1k76yeW1WcZmZWrMoziElAd0TcHxEbgPnA5Lo6k4HL0vIC4ChJiog7IuKhVL4C2EHS9hXGamZmdap8J/U+wOrc+hrg0L7qRMRGSc8Au5OdQfR6P7AsIp6r/wJJ04BpAB0dHdRqtcFHO2rW4NsW6Bk2hlqz9rk5x2WD0879AdwnWm0b7Q9VJojNJml/sstORxdtj4jZwGyAzs7O6OrqGvyXzTti8G0L1EbNomv99ObsrCuasx8rr537A7hPtNo22h+qvMT0IDA2tz4mlRXWkTQCGA08mdbHANcCH4qI31QYp5mZFagyQSwBJkgaL2kkcAqwsK7OQrJBaIApwI0REZJ2Ba4DzomIX1YYo5mZ9aGyBBERG4GzgcXAfcBVEbFC0kxJJ6RqlwC7S+oGPgv03gp7NrAfMEPSnenzmqpiNTOzTVU6BhERi4BFdWUzcsvrgZMK2n0V+GqVsZmZWf/8JLWZmRVygjAzs0JOEGZmVsgJwszMCjlBmJlZIScIMzMr5ARhZmaFnCDMzKyQE4SZmRVygjAzs0JOEGZmVsgJwszMCjlBmJlZIScIMzMr5ARhZmaFnCDMzKyQE4SZmRWqNEFIOkbSSkndks4p2L69pCvT9lsljctt++tUvlLSu6uM08zMNlVZgpA0HLgIOBaYCEyVNLGu2lnA0xGxH/At4Gup7UTgFGB/4Bjg4rQ/MzNrkSrPICYB3RFxf0RsAOYDk+vqTAYuS8sLgKMkKZXPj4jnIuK3QHfan5mZtciICve9D7A6t74GOLSvOhGxUdIzwO6p/D/r2u5T/wWSpgHT0mqPpJXNCb0Zpu8BPNGUXZ2mpuzGhlIT+wO4T2zx2qo/vK6vDVUmiMpFxGxg9lDHUUTS0ojoHOo4rD24P1jeltIfqrzE9CAwNrc+JpUV1pE0AhgNPFmyrZmZVajKBLEEmCBpvKSRZIPOC+vqLATOSMtTgBsjIlL5Kekup/HABOC2CmM1M7M6lV1iSmMKZwOLgeHAnIhYIWkmsDQiFgKXAHMldQNPkSURUr2rgHuBjcCnIuKFqmKtSFte+rIh4/5geVtEf1D2B7uZmdkr+UlqMzMr5ARhZmaFnCAGSNJwSXdI+nFar6XpQO6UdF96NqOo3e6SbpLUI+nC1kZtVRpsn0h1D5B0i6QVku6WNKp1kVsVNuM3YqSk76d+cJekrlbGXWSLfg5iiPwVcB+wS67stIhYKunVwG8kXZqeHs9bD3wReEv62NZjUH0i3dp9BXB6RNwlaXfg+ZZFbVUZ7G/ExwAi4q2SXgP8RNIhEfFia8LelM8gBkDSGOA9wPf6qLIzsA7Y5I6riFgXEf9BlihsK7E5fQI4GlgeEXcBRMSTW+Ddepazmf1hInAjQEQ8BqwFhvRhOieIgbkA+DxQn9F/IGk5sBL4iv8n36ZcwOD7xBuBkLRY0jJJn682VGuBCxh8f7gLOEHSiPT818G88oHhlnOCKEnSccBjEXF7webTIuIAYF9guqQ+5zaxrUcT+sQI4HDgtPTveyUdVVnAVqkm9Ic5ZPPOLSVLNL+i+EyjZTwGUd7/IsvufwaMAnaRdEW+QkQ8LmkZcKikg4AvpU0fjYilrQ3XWmCz+gTZj8EvIuIJAEmLgIOAG1p1ANZUzfiN+ExvXUm/An7dmtCL+QyipIj464gYExHjyJ74vjEiPpivI2lH4I+B30TEtRFxYPo4OWyFmtAnFgNvlbRjGrB+J9nsAbYF2tz+kPrBTqneu4CNETGk/cFnEM3xA0n/A2wPXNrHKSaSVpHd2TBS0onA0UPdAawyDftERDwt6Ztk85YFsCgirmtxnNYaZX4jXgMslvQi2eSkp7cywCKeasPMzAr5EpOZmRVygjAzs0JOEGZmVsgJwszMCjlBmJlZIScIa1uSzk2znC5PM2Ee2qB+TdKg5q5JDyW1DUl/U7f+q/TvOEn3pOVOSd9uwnddKmnK5u7Htj5+DsLakqTDgOOAgyLiOUl7ACOr+r6I+NOq9j1IfwP8fe9KUXzpYTs/hGmV8RmEtau9gCci4jmAiHgiIh4CkHRUmm//bklzJG1f31hST255iqRL03KHpGvTfPt3SfrTfH1lviHpnrT/k1N5VzpDWSDpvyT9QJLStoMl3Szp9jTx3l6p/C8l3ZvOgOYXxHimcu8GkfTj9D3/AOyQzpp+UH88ufpdevmdA4tS/TslPSPpjHS28e9pIsBluWOVpAuVvaPg52QPaPXuc4akJen4Z+eOsd9jsa1URPjjT9t9yKZFvpNsLpqLgXem8lHAauCNaf1y4NNpuQZ0puWe3L6mkD29CnBlrv5wYHS+PvB+4Pq0rQN4gCxZdQHPAGPI/rC6hWyCve3IJlXbM7U/GZiTlh8Ctk/LuxYc45nAhbn1HwNd9fHXxTcOuCctdwE/rqt3MLAcGA3sCIxK5ROApWn5fblj3JtsWukpadurc/uaCxxf5lj82To/PoOwthQRPWQ/dtOAx4ErJZ0JvAn4bUT0TmJ2GfCOAez6SOCf0ne8EBHP1G0/HPhh2vYocDNwSNp2W0SsiewFLneS/Vi/iewFUNdLuhP4W7IkAtkP9Q8kfRDYOIAYByVdhpsLnJqOazvgu5LuBq4me98AZP+9eo/xIdI7CJIjJN2a2hwJ7D8Ux2LtwWMQ1rYimzO/BtTSD9YZwB1lm+eWm/Uaz+dyyy+Q/f8jYEVEHFZQ/z1kP8bHA+dKemtE5H9cN/LKy7yDjlPScGA+MDMi7knFnwEeBd6Wvqffl1Upe93pxWRnYaslnZeLqdGx2FbIZxDWliS9SdKEXNGBwO/IXrgyTtJ+qfx0sr/y6z0q6Y8kDQPemyu/Afjz9B3DJY2ua/fvwMlp255kP4q39RPqSmDPNKiOpO0k7Z++d2xE3AR8geySz851bVcBB0oaJmksMCm37XlJ2/XzvfX+geztdPnxgdHAw+mM53SyS0oAv8gd417AEam8Nxk8IWlnsktzlDwW2wr5DMLa1c7AP0ralewv7W5gWkSsl/Rh4GplU2QvAf65oP05ZNf0Hye706f3B+2vgNmSziI7C/hzsvGEXtcCh5G93SuAz0fEI5LeXBRkRGxIt4h+OyWbEWQve/k1cEUqE/DtiFhb1/yXwG/Jpvi+D1iW2zYbWC5pWUSc1ud/pZdNB1aky1wAM8jOBv5F0oeAn5K96rL3GI9M3/tA7/FHxFpJ3wXuAR4h+28LWWJpdCy2FfJsrmZmVsiXmMzMrJAThJmZFXKCMDOzQk4QZmZWyAnCzMwKOUGYmVkhJwgzMyv0/wEpCaBapHxBcAAAAABJRU5ErkJggg==\n",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "#Creando listas de valores de conductividad y solución que posee dicha conductividad\n",
+    "\n",
+    "cond_1 = sol_1.loc[14,\"s \"]\n",
+    "cond_2 = sol_2.loc[14,\"s\"]\n",
+    "cond_3 = sol_3.loc[14,\"s\"]\n",
+    "\n",
+    "cond = [cond_1, cond_2, cond_3]\n",
+    "sol = [\"4B-1\",\"4B-6\",\"4B-9\"]\n",
+    "\n",
+    "plt.title(\"Conductividad a 4kHz\")\n",
+    "plt.ylabel(\"Conductividad (S/m)\")\n",
+    "plt.xlabel(\"Soluciones utilizadas\")\n",
+    "plt.bar(sol,cond,width=0.3,color=\"orange\")\n",
+    "plt.grid()\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Concluyendo así que la solución 4B-6, resulta ser la mas conductora de las tres soluciones estudiadas."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 15,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "[<matplotlib.lines.Line2D at 0x7fa6fe4b8dd8>]"
+      ]
+     },
+     "execution_count": 15,
+     "metadata": {},
+     "output_type": "execute_result"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEWCAYAAAB8LwAVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAfB0lEQVR4nO3deZQdZZ3/8fcngQAB2QQjkKWjRDQIInTC4LC0cXBwREAmrC0at7gxbgPKb6KIQWYcHT0cB1CiIoJBDAxogCCioePMwEhCCEtgwgmYlZ0xSBNZQr6/P+ppUrmpvre609V90/m8zrmnq56nnqpv9am+3656qp5SRGBmZlZryEAHYGZmzckJwszMCjlBmJlZIScIMzMr5ARhZmaFnCDMzKyQE4QNKpKmSPqvCtY7WlKnpKEllv2BpK/WqQ9J+/YyjmWS/qY3bXu4nQ5JH6t6O9bcnCCsX0g6XdKC9CX7mKSbJR0+0HF1p/aLOCJWRMROEfFKo7YR8cmIOL/aCPuOpHNT0iqVeIqSh6Q2SauqidAGihOEVU7SF4ELgX8GRgCjgUuA4wcwLAMkvRE4CXhsoGOx5uMEYZWStAswHfhMRFwXEc9HxMsRcUNEnJ2W2U7ShZIeTZ8LJW2X6tokrZL0j5KeTGcfH86t/7WSZkv6s6Q7gTfm6lrSf8bb5Mo2+u9X0sclPSjpOUkPSDpY0pVkSeyGdMbzpfy6JJ0iaUHNfn5B0uw0fbmkb+Tqzk5xPyrpIzXt3ivp7hT/Sknn1dSfIWm5pGckTWvwu667rm5cDHwZeKnOeveSdK+ks0usD0mHpd9b1+cFScvKtLXm4gRhVTsM2B64vs4y04C/Ag4C3gZMBL6Sq389sAuwD/BR4GJJu6W6i4EXgL2Aj6RPKZJOAs4DPgjsDBwHPBMRZwArgPely0rfqml6A7CfpHG5stOBqwq2cQxwFnA0MA6ovYzzfNr+rsB7gU9JOiG1HQ98HzgD2Bt4LTCyzi51u64iaf9fjIg5dZYZC8wDLoqIb9fZ9qsi4o70e9sJ2A34A/DzMm2tuThBWNVeCzwdEevqLNMOTI+IJyPiKeDrZF+KXV5O9S+nL7NOsi/oocDfA+emM5P7gZ/2ILaPAd+KiPmRWRoRyxs1ioi1wK+A0wBSongzMLtg8ZOBn0TE/RHxPFlCyq+rIyLui4j1EXEv2RfpUal6MnBjRPw+Il4EvgqsrxNXvXVtRNJryC75fa7Oro4HbgO+FhEzauq+J2lN1we4sZt1fA94juyfANvCOEFY1Z4B9shf5imwN5D/Yl6eyl5dR02CWQvsBOwJbAOsrGlb1ijg4R4sn3cVKUGQnT38MiWOWntTJz5Jh0q6TdJTkp4FPgnsUdQ2JZhnuguowbpqnQdcGRHLulsfWeJeDVxbUPfZiNi16wMcWxDPJ4A24PSI6DaxWfNygrCq3QG8CJxQZ5lHgTG5+dGprJGngHVkX/T5tl2eTz+H58pen5teSa7PokajYY5vBfaUdBBZotjk8lLyWJ34SO1mA6MiYhfgB4CK2koaTnZG1p1666r1LuCzkh6X9HjazixJX84tcx7wNHBVmdt78yQdAZwPHB8Rf+5JW2seThBWqYh4FjiXrN/gBEnDJW0r6T2Suq7t/xz4iqQ9Je2Rlv9ZiXW/AlwHnJfWOx74UK7+KbL/gD8gaWjqIM4nhB8BZ0k6RJl9JXUlqieAN9TZ9svANcC3gd3JEkaRWcAUSePTF/zXaupfA/xfRLwgaSLZ2UiXa4FjJR0uaRhZZ3+9v9l666r1LuCtZP0+B5El5E+Q9el0eZnsDqcdgSsklfq+kDSKbL8/GBEPlWljzckJwioXEd8BvkjW8fwU2X/uZwK/TIt8A1gA3AvcByxMZWWcSXa56XHgcuAnNfUfB84muzSzP3B7Lq5rgAvI/vN+LsWze6r+F7KktUbSWd1s+yqyTudruutjiYibyW7xnQssTT/zPg1Ml/QcWWKclWu7GPhM2s5jwJ+Aes8adLuugrieiYjHuz7AK8CfIqKzZrmXgBPJbk++rGSSeFda/trcnUyLS7SzJiO/MMjMzIr4DMLMzApVmiAkHSNpiaSlks4pqD9S0kJJ6yRNzpW/U9Ki3OeFevdzm5lZ36vsElO66+EhsgeEVgHzgdMi4oHcMi1kDyidBcyOiE1up5O0O9m125Hd3EZoZmYVqHdv+uaaCCyNiEcAJF1NNvbOqwmi6x5sSfXukZ4M3OzkYGbWv6pMEPuw8QNCq4BDe7GeU4HvFlVImgpMBdhhhx0OGTVqVNFipaxfv54hQ9wlY9Xw8WVV2pzj66GHHno6IvYsqqsyQWw2SXsBBwC3FNWnx/9nALS2tsaCBQuKFiulo6ODtra2Xrc3q8fHl1Vpc44vSd2OPlDlvzSr2fgJ0pGprCdOBq5PDyWZmVk/qjJBzAfGSRqbngI9leLBzOo5DY8CaWY2ICpLEOnJ0jPJLg89CMyKiMWSpks6DkDSBGVvoToJuDT/tGW6w2kU2VDDZmbWzyrtg0hDM8+pKTs3Nz2fbsa3T3c47VNlfGZm1j3fVmFmZoWcIMzMrJAThJmZFXKCMDOzQk4QZmZWyAnCzMwKOUGYmVkhJwgzMyvkBGFmZoWcIMzMrJAThJmZFXKCMDOzQk4QZmZWyAnCzMwKOUGYmVkhJwgzMyvkBGFmZoWcIMzMrJAThJmZFXKCMKvQzJnQ0gKTJh1FS0s2b7al2GagAzAbrGbOhKlTYe1aALF8eTYP0N4+kJGZleMzCLOKTJvWlRw2WLs2KzfbEjhBmFVkxYqelZs1GycIs4qMHt2zcrNm4wRhVpELLoDhwzcuGz48KzfbEjhBmFWkvR1mzIAxY0AKxozJ5t1BbVsKJwizCrW3w7JlMHfuPJYtc3KwLYsThJmZFXKCMDOzQk4QZmZWyAnCzMwKOUGYmVkhJwgzMyvkBGFmZoWcIMzMrFClCULSMZKWSFoq6ZyC+iMlLZS0TtLkmrrRkn4j6UFJD0hqqTJWMzPbWGUJQtJQ4GLgPcB44DRJ42sWWwFMAa4qWMUVwLcj4i3ARODJqmI1M7NNVfnCoInA0oh4BEDS1cDxwANdC0TEslS3Pt8wJZJtIuLWtFxnhXGamVmBKhPEPsDK3Pwq4NCSbd8ErJF0HTAW+C1wTkS8kl9I0lRgKsCIESPo6OjodbCdnZ2b1d6sHh9fVqWqjq9mfeXoNsARwNvJLkP9guxS1I/zC0XEDGAGQGtra7S1tfV6gx0dHWxOe7N6fHxZlao6vqrspF4NjMrNj0xlZawCFkXEIxGxDvglcHDfhmdmZvVUmSDmA+MkjZU0DDgVmN2DtrtK2jPNTyLXd2FmZtWrLEGk//zPBG4BHgRmRcRiSdMlHQcgaYKkVcBJwKWSFqe2rwBnAb+TdB8g4IdVxWpmZpuqtA8iIuYAc2rKzs1Nzye79FTU9lbgwCrjMzOz7vlJajMzK+QEYWZmhZwgzMyskBOEmZkVcoIwM7NCThBmZlbICcLMzAo5QZiZWSEnCDMzK+QEYWZmhUoPtSFpN2Bv4C/AsohY36CJmZltweomCEm7AJ8BTgOGAU8B2wMjJP0PcElE3FZ5lGZm1u8anUFcS/Zu6CMiYk2+QtIhwBmS3hARPy5qbGZmW666CSIijq5TdxdwV59HZGZmTaEnfRAHAi35NhFxXQUxmZlZEyiVICRdRvZuhsVAV+d0AE4QZmaDVNkziL+KiPGVRmJmZk2l7HMQd0hygjAz24qUPYO4gixJPA68SPaO6IgIvxLUzGyQKpsgfgycAdzHhj4IMzMbxMomiKciYnalkZiZWVMpmyDulnQVcAPZJSbAt7mamQ1mZRPEDmSJ4d25Mt/mamY2iDUai+k04DcR8eF+isfMzJpEozOI0cA1krYFfgfcDNwZEVF5ZGZmNqDqPgcREf8aEZOAvwPuAT4CLJR0laQPShrRH0GamVn/K9UHERHPAdenD+mhufeQPR/xt5VFZ2ZmA6ZRH8QYYE1EPJvm3wmcACwH/j0ivlN5hGZmNiAaDbUxC9gRQNJBwDXACuBtwMWVRmZmZgOq0SWmHSLi0TT9AeCyiPiOpCHAokojMzOzAdXoDEK56UlkdzLh91GbmQ1+jc4g5kqaBTwG7AbMBZC0F/BSxbGZmdkAapQgPg+cAuwFHB4RL6fy1wPTKozLzMwGWMPbXCPi6oKyu7umJckPzpmZDT6N+iBuk/QPkkbnCyUNkzRJ0k+BD3XXWNIxkpZIWirpnIL6IyUtlLRO0uSaulckLUofjyRrZtbPGp1BHEP29PTPJY0F1gDbA0OB3wAX5s8m8iQNJbsV9mhgFTBf0uyIeCC32ApgCnBWwSr+EhEHld4TMzPrU3UTRES8AFwCXJLGY9qD7It7TYl1TwSWRsQjAJKuBo4HXk0QEbEs1fmuKDOzJlN2uG9SB/VjPVj3PsDK3Pwq4NAetN9e0gJgHfDNiPhl7QKSpgJTAUaMGEFHR0cPVr+xzs7OzWpvVo+PL6tSVcdX6QQxAMZExGpJbyC73fa+iHg4v0BEzABmALS2tkZbW1uvN9bR0cHmtDerx8eXVamq46tRJ/XmWA2Mys2PTGWlRMTq9PMRoAN4e18GZ2Zm9VWZIOYD4ySNlTQMOBUodTeSpN0kbZem9wD+mlzfhZmZVa/RaK7Pkb1atFBE7Fynbp2kM4FbyO56uiwiFkuaDiyIiNmSJpANIb4b8D5JX4+I/YG3AJemzushZH0QThBmZv2o0V1MrwGQdD5ZB/WVZOMztZM9XV1XRMwB5tSUnZubnk926am23e3AAY3DNzOzqpS9xHRcRFwSEc9FxJ8j4vtkt6yamdkgVTZBPC+pXdJQSUMktQPPVxmYmZkNrLIJ4nTgZOCJ9DkplZmZ2SBV9p3Uy/AlJTOzrUqpBCFpe+CjwP5kYzEBEBEfqSguMzMbYGUvMV1J9g6IvwXmkd159FxVQZmZ2cArmyD2jYivAs9HxE+B99KzcZXMzGwLUzZBdL1Jbo2ktwK7AK+rJiQzM2sGZQfrmyFpN+CrZMNl7AScW7+JmZltycrexfSjNDkPeEN14ZiZWbNoNBbTF+vVR8R3+zYcMzNrFo3OIF6Tfu4HTGDDaKzvA+6sKigzMxt4jQbr+zqApN8DB0fEc2n+POCmyqMzM7MBU/YuphHAS7n5l1KZmZkNUmXvYroCuFPS9Wn+BODyKgIyM7PmUPYupgsk3QwckYo+HBF3VxeWmZkNtEZ3Me0cEX+WtDuwLH266naPiP+rNjwzMxsojc4grgKOBe5i41ePKs37mQgzs0Gq0V1Mx6afY/snHDMzaxal7mKSNFvSaZKGVx2QmZmVM3MmtLTApElH0dKSzfelsre5foesg/pBSddKmpzeEWFmZgNg5kyYOhWWL4cIsXx5Nt+XSaJUgoiIeRHxabI+h0vJXj/6ZN+FYWZmPTFtGqxdu3HZ2rVZeV8p+xwEknYgG2LjFOBg4Kd9F4aZmfXEihU9K++Nsn0Qs4AHgUnARcAbI+If+i4MMzPridGje1beG2X7IH5MlhQ+GRG3RcT6vgvBzMx66oILYHjNbUPDh2flfaXRg3KTImIusCNwvKSN6iPiur4LxczMympvz35OmwYrVgSjR4sLLthQ3hca9UEcBcwl63uoFYAThJnZAGlvzz4dHfNoa2vr8/U3elDua2lyekT8MV8nyQ/PmZkNYmX7IP6joOzavgzEzMyaS6M+iDcD+wO7SDoxV7Uz4AflzMwGsUZ9EPuRDda3Kxv3QzwHfLyimMzMrAk06oP4FfArSYdFxB39FJOZmTWBsn0Qn5S0a9eMpN0kXVZNSGZm1gzKJogDI2JN10xE/Al4eyURmZlZUyibIIZI2q1rJr1hrvQ4TmZmtuXpyXDfd0g6X9I3gNuBbzVqJOkYSUskLZV0TkH9kZIWSlonaXJB/c6SVkm6qGScZmbWR0qdBUTEFZIWkA3WB3BiRDxQr42kocDFwNHAKmC+pNk17VYAU4CzulnN+cDvy8RoZmZ9q1SCkDQa6ARm58siot7AshOBpRHxSFr+auB44NUEERHLUt0mg/9JOgQYAfwaaC0Tp5mZ9Z2y/Qg3kY29BLADMBZYQvYQXXf2AVbm5lcBh5bZmKQhZJe1PgD8TZ3lpgJTAUaMGEFHR0eZ1Rfq7OzcrPZm9fj4sipVdXyVvcR0QH5e0sHAp/s8mg0+DcyJiFW1I8jWxDUDmAHQ2toamzNYVUdHRyWDXZmBjy+rVlXHV6/uRIqIhZIanQ2sBkbl5kemsjIOA46Q9GlgJ2CYpM6I2KSj28zMqlG2D+KLudkhZK8cfbRBs/nAuDTq62rgVOD0MtuLiFdHNJc0BWh1cjAz619lb3N9Te6zHVmfxPH1GkTEOuBM4Bay15XOiojFkqZLOg5A0gRJq4CTgEslLe7dbpiZWV8r2wfx9d6sPCLmAHNqys7NTc8nu/RUbx2XA5f3ZvtmZtZ7jYb7voENdy9tIiKO6/OIzMysKTQ6g/i39PNE4PXAz9L8acATVQVlZmYDr9Fw3/MAJH0nIvIPq92Qnqw2M7NBqmwn9Y6S3tA1k+5M2rGakMzMrBmUfQ7iC0CHpEcAAWOAT1QWlZmZDbiydzH9WtI44M2p6H8j4sXqwjIzs4HWkyepDwFaUpu3SSIirqgkKjMzG3Bln6S+EngjsAh4JRUH4ARhZjZIlT2DaAXGR0S3z0SYmdngUvYupvvJnoMwM7OtRNkziD2AByTdCbzaOe0nqc3MBq+yCeK8KoMwM7PmU/Y213mSRgATUtGdEfFkdWGZmdlAK9UHIelk4E6yYblPBv4gaXKVgZmZ2cAqe4lpGjCh66xB0p7Ab4FrqwrMzMwGVtm7mIbUXFJ6pgdtzcxsC1T2DOLXkm4Bfp7mTwFuriYkMzNrBmU7qc+WdCJweCqaERHXVxeWmZkNtEZvlNsXGBER/x0R1wHXpfLDJb0xIh7ujyDNzKz/NepHuBD4c0H5s6nOzMwGqUYJYkRE3FdbmMpaKonIzMyaQqMEsWuduh36MA4zM2syjRLEAkkfry2U9DHgrmpCMjOzZtDoLqbPA9dLamdDQmgFhgHvrzAuMzMbYHUTREQ8AbxD0juBt6bimyJibuWRmZnZgCr7HMRtwG0Vx2JmZk1kqx8uY+ZMaGmBSZOOoqUlmzczs/JDbQxKM2fC1Kmwdi2AWL48mwdobx/IyMzMBt5WfQYxbVpXcthg7dqs3Mxsa7dVJ4gVK3pWbma2NdmqE8To0T0rNzPbmmzVCeKCC2D48I3Lhg/Pys3MtnZbdYJob4cZM2DMGJCCMWOyeXdQm5lt5QkCsmSwbBnMnTuPZcucHMzMulSaICQdI2mJpKWSzimoP1LSQknrJE3OlY9J5YskLZb0ySrjNDOzTVX2HISkocDFwNHAKmC+pNkR8UBusRXAFOCsmuaPAYdFxIuSdgLuT20frSpeMzPbWJUPyk0ElkbEIwCSrgaOB15NEBGxLNWtzzeMiJdys9vhS2FmZv2uygSxD7AyN78KOLRsY0mjgJuAfYGzi84eJE0FpgKMGDGCjo6OXgfb2dm5We3N6vHxZVWq6vhq2qE2ImIlcKCkvYFfSro2jS6bX2YGMAOgtbU12traer29jo4ONqe9WT0+vqxKVR1fVV66WQ2Mys2PTGU9ks4c7geO6KO4zMyshCoTxHxgnKSxkoYBpwKzyzSUNFLSDml6N+BwYEllkZqZ2SYqSxARsQ44E7gFeBCYFRGLJU2XdByApAmSVgEnAZdKWpyavwX4g6R7gHnAv0XEfVXFamZmm6q0DyIi5gBzasrOzU3PJ7v0VNvuVuDAKmMzM7P6fPuomZkVcoIwM7NCThBmZlbICcLMzAo5QZiZWSEnCDMzK+QEYWZmhZwgzMyskBOEmZkVcoIwM7NCThBmZlbICcLMzAo5QZiZWSEnCDMzK+QEYWZmhZwgzMyskBOEmZkVcoIwM7NCThBmZlbICcLMzAo5QZiZWSEnCDMzK+QEYWZmhZwgzMyskBOEmZkVcoIwM7NCThBmZlbICcLMzAo5QZiZWSEnCDMzK+QEYWZmhZwgzMyskBOEmZkVcoIwM7NCThBmZlao0gQh6RhJSyQtlXROQf2RkhZKWidpcq78IEl3SFos6V5Jp1QZp5mZbaqyBCFpKHAx8B5gPHCapPE1i60ApgBX1ZSvBT4YEfsDxwAXStq1qljNzGxT21S47onA0oh4BEDS1cDxwANdC0TEslS3Pt8wIh7KTT8q6UlgT2BNhfGamVlOlQliH2Blbn4VcGhPVyJpIjAMeLigbiowNc12SlrSizi77AE8vRntzerx8WVV2pzja0x3FVUmiM0maS/gSuBDEbG+tj4iZgAz+mhbCyKitS/WZVbLx5dVqarjq8pO6tXAqNz8yFRWiqSdgZuAaRHxP30cm5mZNVBlgpgPjJM0VtIw4FRgdpmGafnrgSsi4toKYzQzs25UliAiYh1wJnAL8CAwKyIWS5ou6TgASRMkrQJOAi6VtDg1Pxk4EpgiaVH6HFRVrEmfXKoy64aPL6tSJceXIqKK9ZqZ2RbOT1KbmVkhJwgzMyu0VSQISUMl3S3pxjTfkYYAWSTpwfQ8RVG710q6TVKnpIv6N2rbUvT2+ErLHpgbVuY+Sdv3X+S2JdiM769hkn6Sjqt7JLX1dNtN/RxEH/ocWUf5zrmy9ohYIGl34GFJl0fESzXtXgC+Crw1fcyK9Or4krQN8DPgjIi4R9JrgZf7LWrbUvT2++vjABFxgKTXATdLmlD0TFl3Bv0ZhKSRwHuBH3WzyE7A88ArtRUR8XxE/BdZojDbxOYcX8C7gXsj4h6AiHgmIoqWs63UZh5f44G5ABHxJNlQRT16mG7QJwjgQuBLQG3WnCnpXmAJcL7/MK2XLqT3x9ebgJB0SxrV+EvVhmpboAvp/fF1D3CcpG0kjQUOYeOHlxsa1AlC0rHAkxFxV0F1e0QcCIwGzpLU7XgkZkX64PjaBjgcaE8/3y/pXZUFbFuUPji+LiMbA28BWaK5neIzjW4N9j6IvybLoH8HbA/sLOln+QUi4ilJC4FDJR0MfC1VfSwiFvRvuLaF2azji+yP9/cR8TSApDnAwcDv+msHrKn1xffXF7qWlXQ78BA9MKjPICLi/0XEyIhoIRvqY25EfCC/jKThwNuBhyPi+og4KH2cHKyuPji+bgEOkDQ8dVgfRW44fNu6be7xlY6rHdNyRwPrIqJHx9dgP4OoZ6akvwDbAZd3cxqHpGVkdw8Mk3QC8O6e/pJtq9Tw+IqIP0n6Ltm4ZQHMiYib+jlO2zKV+f56HXBLet/OauCMnm7EQ22YmVmhQX2JyczMes8JwszMCjlBmJlZIScIMzMr5ARhZmaFnCCsaUmalkY5vTeNXHlog+U7JPXqxe3pIaKmIemfauZvTz9bJN2fplslfa8PtnW5pMmbux4bfLbm5yCsiUk6DDgWODgiXpS0BzCsqu1FxDuqWncv/RPwz10zRfGlh+38QKdVxmcQ1qz2Ap6OiBcBIuLpiHgUQNK70vj490m6TNJ2tY0ldeamJ0u6PE2PkHR9Gh//HknvyC+vzLcl3Z/Wf0oqb0tnKNdK+l9JMyUp1R0iaZ6ku9LAe3ul8s9KeiCdAV1dEOMU5d4zIunGtJ1vAjuks6aZtfuTW75NG94RMEcb3t/+rKQPpbON/0wDAS7M7askXaTsnQK/JXugqmud50qan/Z/Rm4f6+6LDVIR4Y8/TfchG8Z4EdnYMZcAR6Xy7YGVwJvS/BXA59N0B9Capjtz65pM9rQpwC9yyw8FdskvD/w9cGuqGwGsIEtWbcCzwEiyf6zuIBtgb1uyQdD2TO1PAS5L048C26XpXQv2cQpwUW7+RqCtNv6a+FqA+9N0G3BjzXKHAPcCuwDDge1T+ThgQZo+MbePe5MNAz051e2eW9eVwPvK7Is/g/PjMwhrShHRSfZlNxV4CviFpCnAfsAfI6Jr0LGfAkf2YNWTgO+nbbwSEc/W1B8O/DzVPQHMAyakujsjYlVkL1xZRPZlvR/Zy6RulbQI+ApZEoHsi3qmpA8A63oQY6+ky3BXAqen/doW+KGk+4BryN4PANnvq2sfHyW9MyB5p6Q/pDaTgP0HYl+sObgPwppWZGPcdwAd6QvrQ8DdZZvnpvvqNZ4v5qZfIfv7EbA4Ig4rWP69ZF/G7wOmSTogIvJfruvY+DJvr+OUNBS4GpgeEfen4i8ATwBvS9up++IrZa87vYTsLGylpPNyMTXaFxuEfAZhTUnSfpLG5YoOApaTvSClRdK+qfwMsv/yaz0h6S2ShgDvz5X/DvhU2sZQSbvUtPtP4JRUtyfZl+KddUJdAuyZOtWRtK2k/dN2R0XEbcCXyS757FTTdhlwkKQhkkYBE3N1L0vats52a32T7O10+f6BXYDH0hnPGWSXlAB+n9vHvYB3pvKuZPC0pJ3ILs1Rcl9sEPIZhDWrnYB/l7Qr2X/aS4GpEfGCpA8D1ygbIns+8IOC9ueQXdN/iuxOn64vtM8BMyR9lOws4FNk/QldrgcOI3sbVwBfiojHJb25KMiIeCndIvq9lGy2IXs5y0PAz1KZgO9FxJqa5v8N/JFsiO8HgYW5uhnAvZIWRkR7t7+lDc4CFqfLXADnkp0N/IekDwK/Jns1Zdc+TkrbXdG1/xGxRtIPgfuBx8l+t5Allkb7YoOQR3M1M7NCvsRkZmaFnCDMzKyQE4SZmRVygjAzs0JOEGZmVsgJwszMCjlBmJlZof8PJfnG2VIC2LQAAAAASUVORK5CYII=\n",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "plt.ylim(0.120, 0.170)\n",
+    "\n",
+    "plt.title(\"Conductividad a 4kHz\")\n",
+    "plt.ylabel(\"Conductividad (S/m)\")\n",
+    "plt.xlabel(\"Soluciones utilizadas\")\n",
+    "plt.grid()\n",
+    "plt.plot(sol,cond,\"ob\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.7.3"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
-- 
GitLab