From b27efe2ceaaf319fa0f43cd07ab3112b36cf1706 Mon Sep 17 00:00:00 2001
From: sirias <sirias@wolfram.com>
Date: Fri, 19 Feb 2021 00:58:35 -0500
Subject: [PATCH] version final tarea un arreglo

---
 ...ckpoint.ipynb => entrega-checkpoint.ipynb} | 500 +++++++++---------
 entrega.html                                  | 387 +++++++-------
 entrega.ipynb                                 | 500 +++++++++---------
 entrega/{Ejercicios_clase_5.md => entrega.md} | 343 ++++++------
 entrega/output_49_1.png                       | Bin 26851 -> 29109 bytes
 entrega/output_62_1.png                       | Bin 32245 -> 32100 bytes
 6 files changed, 854 insertions(+), 876 deletions(-)
 rename .ipynb_checkpoints/{Ejercicios_clase_5-checkpoint.ipynb => entrega-checkpoint.ipynb} (97%)
 rename entrega/{Ejercicios_clase_5.md => entrega.md} (85%)

diff --git a/.ipynb_checkpoints/Ejercicios_clase_5-checkpoint.ipynb b/.ipynb_checkpoints/entrega-checkpoint.ipynb
similarity index 97%
rename from .ipynb_checkpoints/Ejercicios_clase_5-checkpoint.ipynb
rename to .ipynb_checkpoints/entrega-checkpoint.ipynb
index bae957d..ddea917 100644
--- a/.ipynb_checkpoints/Ejercicios_clase_5-checkpoint.ipynb
+++ b/.ipynb_checkpoints/entrega-checkpoint.ipynb
@@ -1011,7 +1011,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 103,
+   "execution_count": 145,
    "metadata": {
     "id": "-wDngj8nv0t7"
    },
@@ -1072,7 +1072,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 104,
+   "execution_count": 146,
    "metadata": {
     "colab": {
      "base_uri": "https://localhost:8080/",
@@ -1114,7 +1114,17 @@
        "  </thead>\n",
        "  <tbody>\n",
        "    <tr>\n",
-       "      <th>90</th>\n",
+       "      <th>132</th>\n",
+       "      <td>22738.039821</td>\n",
+       "      <td>-239.832795</td>\n",
+       "      <td>3.010661</td>\n",
+       "      <td>75.973813</td>\n",
+       "      <td>2.731824</td>\n",
+       "      <td>178.538460</td>\n",
+       "      <td>6.419787</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>133</th>\n",
        "      <td>14409.841451</td>\n",
        "      <td>-222.262629</td>\n",
        "      <td>2.343065</td>\n",
@@ -1124,7 +1134,17 @@
        "      <td>5.848958</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>516</th>\n",
+       "      <th>578</th>\n",
+       "      <td>31219.909353</td>\n",
+       "      <td>105.300441</td>\n",
+       "      <td>2.585564</td>\n",
+       "      <td>31.073563</td>\n",
+       "      <td>4.308750</td>\n",
+       "      <td>73.022872</td>\n",
+       "      <td>10.125563</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>687</th>\n",
        "      <td>267271.868327</td>\n",
        "      <td>115.166949</td>\n",
        "      <td>2.769692</td>\n",
@@ -1134,34 +1154,14 @@
        "      <td>5.758053</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>477</th>\n",
-       "      <td>107493.971955</td>\n",
-       "      <td>96.620752</td>\n",
-       "      <td>3.101467</td>\n",
-       "      <td>26.096038</td>\n",
-       "      <td>3.044724</td>\n",
-       "      <td>61.325689</td>\n",
-       "      <td>7.155100</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>288</th>\n",
-       "      <td>169.559297</td>\n",
-       "      <td>-16.954423</td>\n",
-       "      <td>2.975433</td>\n",
-       "      <td>25.863356</td>\n",
-       "      <td>3.902506</td>\n",
-       "      <td>60.778886</td>\n",
-       "      <td>9.170890</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>441</th>\n",
-       "      <td>21979.573625</td>\n",
-       "      <td>66.797420</td>\n",
-       "      <td>2.603415</td>\n",
-       "      <td>20.616066</td>\n",
-       "      <td>2.744205</td>\n",
-       "      <td>48.447755</td>\n",
-       "      <td>6.448882</td>\n",
+       "      <th>600</th>\n",
+       "      <td>325077.772735</td>\n",
+       "      <td>112.668325</td>\n",
+       "      <td>120.781525</td>\n",
+       "      <td>28.345852</td>\n",
+       "      <td>191.375356</td>\n",
+       "      <td>66.612752</td>\n",
+       "      <td>449.732087</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>...</th>\n",
@@ -1174,7 +1174,7 @@
        "      <td>...</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>21</th>\n",
+       "      <th>27</th>\n",
        "      <td>202.186462</td>\n",
        "      <td>2.289328</td>\n",
        "      <td>2.644426</td>\n",
@@ -1184,7 +1184,7 @@
        "      <td>4.316290</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>29</th>\n",
+       "      <th>37</th>\n",
        "      <td>210.588381</td>\n",
        "      <td>1.978485</td>\n",
        "      <td>3.167382</td>\n",
@@ -1194,7 +1194,7 @@
        "      <td>4.304869</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>30</th>\n",
+       "      <th>38</th>\n",
        "      <td>217.389734</td>\n",
        "      <td>1.980785</td>\n",
        "      <td>2.331454</td>\n",
@@ -1204,7 +1204,7 @@
        "      <td>4.014588</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>26</th>\n",
+       "      <th>33</th>\n",
        "      <td>216.603135</td>\n",
        "      <td>2.821754</td>\n",
        "      <td>3.173432</td>\n",
@@ -1214,7 +1214,7 @@
        "      <td>4.278035</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>27</th>\n",
+       "      <th>34</th>\n",
        "      <td>222.917653</td>\n",
        "      <td>2.823663</td>\n",
        "      <td>2.336885</td>\n",
@@ -1225,40 +1225,40 @@
        "    </tr>\n",
        "  </tbody>\n",
        "</table>\n",
-       "<p>524 rows × 7 columns</p>\n",
+       "<p>695 rows × 7 columns</p>\n",
        "</div>"
       ],
       "text/plain": [
-       "            height      mean_x    mean_y      std_x     std_y      FWHM_x  \\\n",
-       "90    14409.841451 -222.262629  2.343065  74.058552  2.488918  174.037597   \n",
-       "516  267271.868327  115.166949  2.769692  29.110955  2.450235   68.410745   \n",
-       "477  107493.971955   96.620752  3.101467  26.096038  3.044724   61.325689   \n",
-       "288     169.559297  -16.954423  2.975433  25.863356  3.902506   60.778886   \n",
-       "441   21979.573625   66.797420  2.603415  20.616066  2.744205   48.447755   \n",
-       "..             ...         ...       ...        ...       ...         ...   \n",
-       "21      202.186462    2.289328  2.644426   2.005263  1.836719    4.712369   \n",
-       "29      210.588381    1.978485  3.167382   1.943865  1.831859    4.568083   \n",
-       "30      217.389734    1.980785  2.331454   1.931921  1.708335    4.540015   \n",
-       "26      216.603135    2.821754  3.173432   1.804289  1.820440    4.240079   \n",
-       "27      222.917653    2.823663  2.336885   1.803631  1.702241    4.238533   \n",
+       "            height      mean_x      mean_y      std_x       std_y      FWHM_x  \\\n",
+       "132   22738.039821 -239.832795    3.010661  75.973813    2.731824  178.538460   \n",
+       "133   14409.841451 -222.262629    2.343065  74.058552    2.488918  174.037597   \n",
+       "578   31219.909353  105.300441    2.585564  31.073563    4.308750   73.022872   \n",
+       "687  267271.868327  115.166949    2.769692  29.110955    2.450235   68.410745   \n",
+       "600  325077.772735  112.668325  120.781525  28.345852  191.375356   66.612752   \n",
+       "..             ...         ...         ...        ...         ...         ...   \n",
+       "27      202.186462    2.289328    2.644426   2.005263    1.836719    4.712369   \n",
+       "37      210.588381    1.978485    3.167382   1.943865    1.831859    4.568083   \n",
+       "38      217.389734    1.980785    2.331454   1.931921    1.708335    4.540015   \n",
+       "33      216.603135    2.821754    3.173432   1.804289    1.820440    4.240079   \n",
+       "34      222.917653    2.823663    2.336885   1.803631    1.702241    4.238533   \n",
        "\n",
-       "       FWHM_y  \n",
-       "90   5.848958  \n",
-       "516  5.758053  \n",
-       "477  7.155100  \n",
-       "288  9.170890  \n",
-       "441  6.448882  \n",
-       "..        ...  \n",
-       "21   4.316290  \n",
-       "29   4.304869  \n",
-       "30   4.014588  \n",
-       "26   4.278035  \n",
-       "27   4.000267  \n",
+       "         FWHM_y  \n",
+       "132    6.419787  \n",
+       "133    5.848958  \n",
+       "578   10.125563  \n",
+       "687    5.758053  \n",
+       "600  449.732087  \n",
+       "..          ...  \n",
+       "27     4.316290  \n",
+       "37     4.304869  \n",
+       "38     4.014588  \n",
+       "33     4.278035  \n",
+       "34     4.000267  \n",
        "\n",
-       "[524 rows x 7 columns]"
+       "[695 rows x 7 columns]"
       ]
      },
-     "execution_count": 104,
+     "execution_count": 146,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1276,7 +1276,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 105,
+   "execution_count": 147,
    "metadata": {},
    "outputs": [
     {
@@ -1311,7 +1311,7 @@
        "  </thead>\n",
        "  <tbody>\n",
        "    <tr>\n",
-       "      <th>27</th>\n",
+       "      <th>34</th>\n",
        "      <td>222.917653</td>\n",
        "      <td>2.823663</td>\n",
        "      <td>2.336885</td>\n",
@@ -1321,7 +1321,7 @@
        "      <td>4.000267</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>26</th>\n",
+       "      <th>33</th>\n",
        "      <td>216.603135</td>\n",
        "      <td>2.821754</td>\n",
        "      <td>3.173432</td>\n",
@@ -1331,7 +1331,7 @@
        "      <td>4.278035</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>30</th>\n",
+       "      <th>38</th>\n",
        "      <td>217.389734</td>\n",
        "      <td>1.980785</td>\n",
        "      <td>2.331454</td>\n",
@@ -1341,7 +1341,7 @@
        "      <td>4.014588</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>29</th>\n",
+       "      <th>37</th>\n",
        "      <td>210.588381</td>\n",
        "      <td>1.978485</td>\n",
        "      <td>3.167382</td>\n",
@@ -1351,7 +1351,7 @@
        "      <td>4.304869</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>21</th>\n",
+       "      <th>27</th>\n",
        "      <td>202.186462</td>\n",
        "      <td>2.289328</td>\n",
        "      <td>2.644426</td>\n",
@@ -1371,47 +1371,47 @@
        "      <td>...</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>309</th>\n",
-       "      <td>151.959876</td>\n",
-       "      <td>6.048875</td>\n",
-       "      <td>3.048254</td>\n",
-       "      <td>6.335821</td>\n",
-       "      <td>3.106507</td>\n",
-       "      <td>14.889180</td>\n",
-       "      <td>7.300292</td>\n",
+       "      <th>80</th>\n",
+       "      <td>126.345557</td>\n",
+       "      <td>7.503358</td>\n",
+       "      <td>2.717318</td>\n",
+       "      <td>8.605995</td>\n",
+       "      <td>3.441961</td>\n",
+       "      <td>20.224088</td>\n",
+       "      <td>8.088608</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>351</th>\n",
-       "      <td>195.582213</td>\n",
-       "      <td>7.582757</td>\n",
-       "      <td>2.703236</td>\n",
-       "      <td>6.548991</td>\n",
-       "      <td>3.505496</td>\n",
-       "      <td>15.390128</td>\n",
-       "      <td>8.237915</td>\n",
+       "      <th>98</th>\n",
+       "      <td>191.987149</td>\n",
+       "      <td>10.993017</td>\n",
+       "      <td>2.720394</td>\n",
+       "      <td>9.802730</td>\n",
+       "      <td>3.154057</td>\n",
+       "      <td>23.036415</td>\n",
+       "      <td>7.412033</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>425</th>\n",
-       "      <td>251.594399</td>\n",
-       "      <td>7.994551</td>\n",
-       "      <td>1.593031</td>\n",
-       "      <td>6.646625</td>\n",
-       "      <td>3.216397</td>\n",
-       "      <td>15.619568</td>\n",
-       "      <td>7.558533</td>\n",
+       "      <th>261</th>\n",
+       "      <td>220.500255</td>\n",
+       "      <td>12.860922</td>\n",
+       "      <td>2.878011</td>\n",
+       "      <td>9.887140</td>\n",
+       "      <td>2.760608</td>\n",
+       "      <td>23.234779</td>\n",
+       "      <td>6.487429</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>47</th>\n",
-       "      <td>115.774855</td>\n",
-       "      <td>4.630637</td>\n",
-       "      <td>2.210311</td>\n",
-       "      <td>7.270685</td>\n",
-       "      <td>5.813427</td>\n",
-       "      <td>17.086110</td>\n",
-       "      <td>13.661553</td>\n",
+       "      <th>218</th>\n",
+       "      <td>229.036678</td>\n",
+       "      <td>21.346080</td>\n",
+       "      <td>2.787659</td>\n",
+       "      <td>17.666989</td>\n",
+       "      <td>2.664696</td>\n",
+       "      <td>41.517424</td>\n",
+       "      <td>6.262035</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>288</th>\n",
+       "      <th>372</th>\n",
        "      <td>169.559297</td>\n",
        "      <td>-16.954423</td>\n",
        "      <td>2.975433</td>\n",
@@ -1422,40 +1422,27 @@
        "    </tr>\n",
        "  </tbody>\n",
        "</table>\n",
-       "<p>462 rows × 7 columns</p>\n",
+       "<p>585 rows × 7 columns</p>\n",
        "</div>"
       ],
       "text/plain": [
-       "         height     mean_x    mean_y      std_x     std_y     FWHM_x  \\\n",
-       "27   222.917653   2.823663  2.336885   1.803631  1.702241   4.238533   \n",
-       "26   216.603135   2.821754  3.173432   1.804289  1.820440   4.240079   \n",
-       "30   217.389734   1.980785  2.331454   1.931921  1.708335   4.540015   \n",
-       "29   210.588381   1.978485  3.167382   1.943865  1.831859   4.568083   \n",
-       "21   202.186462   2.289328  2.644426   2.005263  1.836719   4.712369   \n",
-       "..          ...        ...       ...        ...       ...        ...   \n",
-       "309  151.959876   6.048875  3.048254   6.335821  3.106507  14.889180   \n",
-       "351  195.582213   7.582757  2.703236   6.548991  3.505496  15.390128   \n",
-       "425  251.594399   7.994551  1.593031   6.646625  3.216397  15.619568   \n",
-       "47   115.774855   4.630637  2.210311   7.270685  5.813427  17.086110   \n",
-       "288  169.559297 -16.954423  2.975433  25.863356  3.902506  60.778886   \n",
-       "\n",
-       "        FWHM_y  \n",
-       "27    4.000267  \n",
-       "26    4.278035  \n",
-       "30    4.014588  \n",
-       "29    4.304869  \n",
-       "21    4.316290  \n",
-       "..         ...  \n",
-       "309   7.300292  \n",
-       "351   8.237915  \n",
-       "425   7.558533  \n",
-       "47   13.661553  \n",
-       "288   9.170890  \n",
+       "         height     mean_x    mean_y      std_x     std_y     FWHM_x    FWHM_y\n",
+       "34   222.917653   2.823663  2.336885   1.803631  1.702241   4.238533  4.000267\n",
+       "33   216.603135   2.821754  3.173432   1.804289  1.820440   4.240079  4.278035\n",
+       "38   217.389734   1.980785  2.331454   1.931921  1.708335   4.540015  4.014588\n",
+       "37   210.588381   1.978485  3.167382   1.943865  1.831859   4.568083  4.304869\n",
+       "27   202.186462   2.289328  2.644426   2.005263  1.836719   4.712369  4.316290\n",
+       "..          ...        ...       ...        ...       ...        ...       ...\n",
+       "80   126.345557   7.503358  2.717318   8.605995  3.441961  20.224088  8.088608\n",
+       "98   191.987149  10.993017  2.720394   9.802730  3.154057  23.036415  7.412033\n",
+       "261  220.500255  12.860922  2.878011   9.887140  2.760608  23.234779  6.487429\n",
+       "218  229.036678  21.346080  2.787659  17.666989  2.664696  41.517424  6.262035\n",
+       "372  169.559297 -16.954423  2.975433  25.863356  3.902506  60.778886  9.170890\n",
        "\n",
-       "[462 rows x 7 columns]"
+       "[585 rows x 7 columns]"
       ]
      },
-     "execution_count": 105,
+     "execution_count": 147,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1467,7 +1454,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 106,
+   "execution_count": 148,
    "metadata": {},
    "outputs": [
     {
@@ -1482,7 +1469,7 @@
     },
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4YAAAFRCAYAAAAo17OzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABoUElEQVR4nO3deZycZZnv/89Ve69JOhshgSSEsCcEDGsOyrAJIwOKKCgoeNxQGWfEOcJsgIyenwsqw8gcRcSoo4LgDDIcPMrIIkyIJkIEQliSEJLOQjp7L7XX/fujnupUOt1JdXdVPVXV3/fr1a9UPev1dHf6rutezTmHiIiIiIiIjF0BvwMQERERERERfykxFBERERERGeOUGIqIiIiIiIxxSgxFRERERETGOCWGIiIiIiIiY5wSQxERERERkTFOiaHUFDP7jpn9Y5mudbiZ9ZhZ0Hv/pJl9rBzXHnCfHjM7otzXHeQ+i83sS5W+z4B7Xmtmz1TzniIiMjiVkQe8j8pIkVFSYihVY2brzCxuZt1mtsvMlpjZdWbW/3vonLvOOfdPJV7rvAMd45xb75xrdc5lyxH/Ae7T6pxbW8l7jGVewZv1PlwUvr5tZmd4v0vBomO/N8S273iv9/vgY2Znm1ln0fsnzcyZ2YkDjvsPb/vZlXpWERm7VEbKSKiMlHJSYijV9hfOuTZgJvAV4Ebg++W+iZmFyn1NKZ3llfPvy7Peh4vC1/XAcvJ/w04uOu4soHPAtrcDvxvm/V4DPlx4Y2YTgTOArpEELyJSIpWRY4DKSKlVSgzFF8653c65h4ErgGvM7ATYtyuImU0ys0e8mtMdZva0mQXM7MfA4cB/ejVjXzCzWV5N1UfNbD3weNG24gJwjpn9wcz2mNkvzazDu9c+NWLetv4aVzMLmtnfmdkar7btj2Z2mLfPmdmR3utxZvYjM+syszfN7B8Kf/wLXU7M7HYz22lmb5jZRUN9j8zsJDN7zrvf/UBswP6LzWxFUc3y/CGu83/M7PYB235pZjd4r28qeq6Xzew9B4jpTDNbZma7vX/PLNr3pJl92cz+G+gDjjCzY8zsMe/n96qZvb/o+D/37tdtZhvN7G+Guu9gnHNpYCn5Qg0zmwJEgJ8P2HYUwy/0fgJcUVSr+gHgP4DUMK8jIjJsKiNVRqqMFD8oMRRfOef+QL726qxBdn/e2zcZmAr8Xf4U9yFgPfma1Vbn3NeKznkHcCzwziFu+WHgfwLTgAxwZ4mh3kD+D9+fA+3eNfoGOe5fgHHAEV4sHwY+UrT/NOBVYBLwNeD7ZmYDL2JmEeAh4MdAB/AA8N6i/ScB9wKfBCYC3wUeNrPoIDH9jPwfcPPOnQBcANzn7V9D/vs/Dvgi8G9mNm2QmDqA/0v+ezYR+Cbwfy1fU1jwIeATQBv5msPHgJ8CU4ArgX81s+O8Y78PfNKrHT8BeHyQ2A/md3gFnPfvM95X8bY3nHOdg5x7IJuAl8l/nyD/c/zRCOITERkxlZEqI1VGSjUpMZRasIn8H/aB0uQLp5nOubRz7mnnnDvItW51zvU65+JD7P+xc+4l51wv8I/A+4tqvA7kY8A/OOdedXl/cs5tLz7Au86VwN8657qdc+uAb5AvCAredM59zxvT8UPv+aYOcr/TgTBwh/fsDwLLivZ/Aviuc+73zrmsc+6HQNI7b6CnAcfeDxaXk+92sgnAOfeAc26Tcy7nnLsfeB04dZDrvAt43Tn3Y+dcxjn3M+AV4C+KjlnsnFvpnMsAFwLrnHM/8I5/HvgF8D7v2DRwnJm1O+d2OueeG+Se/d8Pr9a38FV4zqeA/+EV6Gd5z/qsd3xh21MDrnVn8bWAR4a454+AD5vZMcB459yzB4hPRKRSVEbuT2XkgO+HykgpByWGUgumAzsG2f51YDXwGzNba2Y3lXCtDcPY/yb5gmVSCdc9jHyt4YFM8q735oB7TC96v6XwwjlXqE1tHeRahwIbBxTyxdedCXx+wB/vw7zz9uFd4z7ytbkAHyTfDQQAM/twUXebXeRrJgf7nhw6IIbBnq/4+zsTOG1AjFcBh3j730u+dvlNM3vKzM4Y5J4FS51z44u+lha2k//+nUC+5vNp51yPF0dh28AuMp8tvhZw8RD3/HfgHOB68rXSIiJ+UBm5P5WR+1IZKWWhxFB8ZWankP+jud90z16N4uedc0cAlwA3mNm5hd1DXPJgtaWHFb0+nHyN3DagF2guiitIvntOwQZgzkGuvc273swB99h4kPMGsxmYPqALzeED4vnygIKg2auhHMzPgMvNbCb5rjq/APDef4/8H/aJXiHwErBf1x3ytdYzB2wb+HzF3/8NwFMDYmx1zn0KwDm3zDl3KfkuNA+RH/cwLM65BPla4r8ApjnnXvF2Pe1tm8/wx04Urt0H/Ar4FCr0RMQHKiOHpDKyBCojZbiUGIovzKzdzC4mX0v3b865Fwc55mIzO9L7w78byAI5b/db5McoDNfVZnacmTUDtwEPel1WXgNiZvYuMwsD/wAUj0W4B/gnM5trefMHjBvAu87PgS+bWZtXoNwA/NsI4nyW/PiOz5pZ2MwuY9+uK98DrjOz07x4WrzY2wa7mNdFZZv3HL92zu3ydrWQL6i6AMzsI+RrEQfzKHCUmX3QzEJmdgVwHEN3M3nEO/5D3jOEzewUMzvWzCJmdpWZjXP5AfJ72PuzHa7fAX8FLCna9oy3bbNz7mC12Afyd8A7vC5PIiJVoTLyoFRGlk5lpJRMiaFU23+aWTf5mrK/Jz84+yNDHDsX+C+gh3wh8K/OuSe8ff8f8A9e94vhzNT1Y2Ax+e4qMeCzkJ8BDvg0+UJhI/na0eLB2N8kX6D9hvwf6O8DTYNc/y+9c9eS/8P7U/ID4IfFOZcCLgOuJd+F6Ary3TYK+5cDHwe+Dewk353o2oNc9qfAed6/heu8TH6Mx7PkP0jMA/57iJi2k+9S8nlgO/AF4GLn3LYhju8mPzD9SvI1qVuAr7L3w8SHgHVmtge4jnwXmpF4inyNanGN+jPetqdHeE0AvHElWrxYRKpFZWQJVEYOi8pIKZm5g45TFhERERERkUamFkMREREREZExTomhiIiIiIjIGKfEUEREREREZIxTYigiIiIiIjLGKTEUEREREREZ40J+B1ApkyZNcrNmzfI7DBERqYI//vGP25xzkw9+pIDKSBGRsWI45WPDJoazZs1i+fLlfochIiJVYGZv+h1DPVEZKSIyNgynfFRXUhERERERkTFOiaGIiIiIiMgYp8RQRERERERkjGvYMYYiUj/S6TSdnZ0kEgm/Q5EaF4vFmDFjBuFw2O9QREQqTuWjlKoc5aMSQxHxXWdnJ21tbcyaNQsz8zscqVHOObZv305nZyezZ8/2OxwRkYpT+SilKFf5qK6kIuK7RCLBxIkTVejJAZkZEydOVM25iIwZKh+lFOUqH5UYikhNUKFXHvfccw87duzwO4yKaeTfEzO70MxeNbPVZnbTIPuvM7MXzWyFmT1jZscV7ftb77xXzeyd1Y1cRCqpkf/uSfmU4/dEiaGICBAMBlmwYAHHH388J554It/4xjfI5XIALF++nM9+9rNDnrtu3Tp++tOfDrl/06ZNXH755QAsXryY66+/ftTxFl+z4Ktf/SpNTU10dHQM61pnn302Rx99NAsWLGDBggU8+OCDfO5zn+OOO+7oP+ad73wnH/vYx/rff/7zn+eb3/wm69at44QTTtjnerfeeiu33347ANdeey3Nzc10d3f37//rv/5rzIxt27YNK85GZmZB4C7gIuA44APFiZ/np865ec65BcDXgG965x4HXAkcD1wI/Kt3PRER8TR6xWk5KDEUEQGamppYsWIFK1eu5LHHHuNXv/oVX/ziFwFYuHAhd95555DnHigxzGQyHHrooTz44INljXewa954441cddVVI7reT37yE1asWMGKFSu4/PLLWbRoEUuWLAEgl8uxbds2Vq5c2X/8kiVLOPPMM0u69pFHHskvf/nL/ms9/vjjTJ8+fURxNrBTgdXOubXOuRRwH3Bp8QHOuT1Fb1sA572+FLjPOZd0zr0BrPauJyIyaqo4HTsVp0oMRUQGmDJlCnfffTff/va3cc7x5JNPcvHFFwPw1FNP9RcQJ510Et3d3dx00008/fTTLFiwgG9961ssXryYSy65hHPOOYdzzz13v8Jhw4YNnH322cydO7c/+Rx4zO23386tt94KwOrVqznvvPM48cQTOfnkk1mzZs0+xycSCT7ykY8wb948TjrpJJ544gkgX8hedtllXHjhhcydO5cvfOELJX8PzjzzTJ599lkAVq5cyQknnEBbWxs7d+4kmUyyatUqTj755JKudeWVV3L//fcD8OSTT7Jo0SJCof3nPnvzzTeZO3cu27ZtI5fLcdZZZ/Gb3/ym5Jjr3HRgQ9H7Tm/bPszsM2a2hnyL4WeHc66IyEio4nTsVJwqMRQRGcQRRxxBNptl69at+2y//fbbueuuu1ixYgVPP/00TU1NfOUrX+Gss85ixYoVfO5znwPgueee48EHH+Spp57a79p/+MMf+MUvfsELL7zAAw88wPLlyw8Yy1VXXcVnPvMZ/vSnP7FkyRKmTZu2z/677roLM+PFF1/kZz/7Gddcc03/APQVK1Zw//338+KLL3L//fezYcOGwW7BVVdd1Z/wbt++nUMPPZRQKMT69etZsmQJZ5xxBqeddhrPPvssy5cvZ968eUQiEQDWrFnTf+6CBQv4zne+s8+1jzrqKLq6uti5cyc/+9nPuPLKKweNYebMmdx444186lOf4hvf+AbHHXccF1xwwQG/N2ONc+4u59wc4EbgH4Zzrpl9wsyWm9nyrq6uygQoIg1NFaf+VJzee++9/PVf/3X/++9973v9nzfKSctV1JiuzqVD7ps84/QqRiLijw2v/JK+7k1lvWZz26EcdsylBz+wBIsWLeKGG27gqquu4rLLLmPGjBmDHnf++ecP2WXl/PPPZ+LEiQBcdtllPPPMM7z73e8e9Nju7m42btzIe97zHiC/TtFAzzzzDH/5l38JwDHHHMPMmTN57bXXADj33HMZN24cAMcddxxvvvkmhx122H7X+MlPfsLChQv32XbmmWeyZMkSlixZwg033MDGjRtZsmQJ48aNY9GiRf3HzZkzhxUrVvS/LxTYxS677DLuu+8+fv/73/Pd73530GcF+NjHPsYDDzzAd77znX2uOQZsBIp/MDO8bUO5D/g/wznXOXc3cDfAwoUL3cD9sq+hymOVxeKXWikfD1ZxumjRInp6eojFYnzlK1/h9ttv55FHHgHyCdlzzz3HCy+8QEdHB+vWrdvnGn/4wx946aWXaG5u5pRTTuFd73oXkyZNGjKWq666iptuuon3vOc9JBIJcrncPnEVV5y+8sorXHDBBf3l44oVK3j++eeJRqMcffTR/OVf/uWg5eNVV11FU1MTAL/97W8HrTjduHEjzz77LOPGjRu04rRgy5Yt/M3f/E3/+6OOOoqHH364v+L06quv5le/+tV+Mbz//e/ny1/+Ml//+tcJh8P84Ac/OGBZOlJqMRQRGcTatWsJBoNMmTJln+033XQT99xzD/F4nEWLFvHKK68Men5LS8uQ1x44c5iZEQqF+sdsAGVbkiEajfa/DgaDZDKZks8tdJd58cUXOeGEEzj99NN59tlnh9VNpuCKK67gH//xHzn//PMJBIYuevr6+ujs7ASgp6dnWPeoc8uAuWY228wi5CeTebj4ADObW/T2XcDr3uuHgSvNLGpms4G5wB+qELOISL9Cxemdd97Jrl27Bm35gtIqTpuamvorTocyWMVpc3PzPsc888wzXH311cDQFaexWKy/4nQwxV1JC5W6xRWnZ5xxBmeccUb/+8EqTgtf11133X7XL644PeusswaNobW1lXPOOYdHHnmEV155hXQ6zbx584b83oyUWgxFpKaUq2VvNLq6urjuuuu4/vrr90vi1qxZw7x585g3bx7Lli3jlVde4bDDDttn8PjBPPbYY+zYsYOmpiYeeugh7r33XqZOncrWrVvZvn07ra2tPPLII1x44YW0tbUxY8YMHnroId797neTTCbJZrP7XO+ss87iJz/5Ceeccw6vvfYa69ev5+ijj+a5554b1ffhzDPP5Pbbb+eII44gGAzS0dHBrl27WLlyJd/73veGda2ZM2fy5S9/mfPOO++AxxXGgcycOZOPf/zj/bXMjc45lzGz64FfA0HgXufcSjO7DVjunHsYuN7MzgPSwE7gGu/clWb2c+BlIAN8xjmXHfRGIlK3aqF8hH0rTletWtW//aabbuJd73oXjz76KIsWLeLXv/71oOc3YsXpYYcdxje+8Q3a29v5yEc+Mqw4rrjiCt72trdxzTXXHLDi9GMf+xj/+3//b4455phh36NUajEUEQHi8Xj/rGvnnXceF1xwAbfccst+x91xxx2ccMIJzJ8/n3A4zEUXXcT8+fMJBoOceOKJfOtb3zrovU499VTe+973Mn/+fN773veycOFCwuEwN998M6eeeirnn38+xxxzTP/xP/7xj7nzzjuZP38+Z555Jlu2bNnnep/+9KfJ5XLMmzePK664gsWLF+9T4I3UvHnz2LZtG6effvo+28aNG3fArj1D+eQnP8mcOXOG3P/UU0+xbNmy/uQwEonwgx/8YESx1yPn3KPOuaOcc3Occ1/2tt3sJYU45/7KOXe8c26Bc+7PnHMri879snfe0c65/fshiYiUQSkVpzfeeCOnnHIKr7zyCm1tbSOqOI3H4zz00EMsWrRon4rTZDLZX2FYXHEKkEwm6evr2+d6hYpTYJ+K09E688wzeeSRR+jo6Nin4vTZZ58ddo+aQsXppz/96QMed9ppp7FhwwZ++tOf8oEPfGA04Q9JLYYiIrBfK1yxs88+m7PPPhuAf/mXfxn0mMcff3yf99dee23/61mzZvHSSy/1by/eV+yzn/3soNN+z507d7/rA/3XjMVigyZQA+81VOvbk08+Oej2YDDInj179tm2ePHifd4XP1tB8RjDgccXDBxXAvCOd7yDpUv3juv693//90HPFRGR6ilUnKbTaUKhEB/60Ie44YYb9jvujjvu4IknniAQCHD88cdz0UUXEQgE+itOr732WiZMmHDAexUqTjs7O7n66qv7x74XKk6nT5++X8XpJz/5SW6++WbC4TAPPPDAPq1un/70p/nUpz7FvHnzCIVCZa84/eAHP7jPtp6enhFXnJbi/e9/PytWrDjo93GkzLnGHH++cOFCd7CZ/mqRJp+RsWjVqlUce+yxfochdWKw3xcz+6NzbuEQp8gA9VpGVpMmn5FaoPJRil188cV87nOf49xzzx10/2jLR3UlFRERERERqVG7du3iqKOOoqmpaciksBzUlVRERERERKRGjR8/vn821UpSi6GIiIiIiMgYp8RQRERERERkjFNiKCLSQO655x527NjhdxgiIiJSZ5QYioiQX5qhsI7hiSeeyDe+8Y3+BXWXL18+6DISBevWreOnP/3pkPs3bdrE5ZdfDuSXb7j++utHHW/xNQu++tWv0tTUREdHx6ivPxzXXnstDz74YFXvKSIiMhyqOD04TT4jIjXnQMu2jEQp08s3NTWxYsUKALZu3coHP/hB9uzZwxe/+EUWLlzYv5bSYAqJYfF6RgWZTIZDDz207InTYNe88cYbR33dbDZLMBgc9XVERKQxBINB5s2b17+O4Yc//GE+97nPEQgEWL58OT/60Y+48847Bz133bp1LFmyZNDyEfKVnJ/97Gd58MEHWbx4McuXL+fb3/72qOItvmbBV7/6VWbMmOFLxenFF1+8X0VurVJiKCIywJQpU7j77rs55ZRTuPXWW3nqqae4/fbbeeSRR3jqqaf4q7/6KwDMjN/97nfcdNNNrFq1igULFnDNNdcwYcIE/v3f/52enh6y2Sw//OEPufjii/sXgt+wYQNnn302Gzdu5Oqrr+aWW25h3bp1+xxz++2309PTw6233srq1au57rrr6OrqIhgM8sADDxAMBvuPTyQSfOpTn2L58uWEQiG++c1v8md/9mcsXryYhx9+mL6+PtasWcN73vMevva1r+33vLNmzeKKK67gscce4wtf+AIdHR3ccsstJJNJ5syZww9+8ANaW1u57bbb+M///E/i8Thnnnkm3/3udzGz6v1gRETGOFWcHpwqTkdOXUlFRAZxxBFHkM1m2bp16z7bb7/9du666y5WrFjB008/TVNTE1/5ylc466yzWLFiBZ/73OcAeO6553jwwQd56qmn9rv2H/7wB37xi1/wwgsv8MADD3CwhcavuuoqPvOZz/CnP/2JJUuWMG3atH3233XXXZgZL774Ij/72c+45pprSCQSAKxYsYL777+fF198kfvvv58NGzYMeo+JEyfy3HPPcd555/GlL32J//qv/+K5555j4cKFfPOb3wTg+uuvZ9myZbz00kvE43EeeeSR0r6ZIiLSEAoVp9/+9rdxzvHkk09y8cUXA/DUU0+xYMECFixYwEknnUR3dzc33XQTTz/9NAsWLOBb3/oWixcv5pJLLuGcc87h3HPPZd26dZxwwgn91y9UnM6dO5cvfvGLAPsdc/vtt3PrrbcCsHr1as477zxOPPFETj75ZNasWbPP8YlEgo985CPMmzePk046iSeeeALID+u47LLLuPDCC5k7dy5f+MIXBn3eWbNmceONN3LyySfzwAMP8Jvf/IYzzjiDk08+mfe973309PQAcNttt3HKKadwwgkn8IlPfALnXHm/8VWixFBEZBgWLVrEDTfcwJ133smuXbsIhQbveHH++ecP2WXl/PPPZ+LEiTQ1NXHZZZfxzDPPDHm/7u5uNm7cyHve8x4AYrEYzc3N+xzzzDPPcPXVVwNwzDHHMHPmzP71js4991zGjRtHLBbjuOOO48033xz0PldccQUAS5cu5eWXX2bRokUsWLCAH/7wh/3nPPHEE5x22mnMmzePxx9/nJUrVw4Zt4iINCZVnDZuxakSQxGRQaxdu5ZgMMiUKVP22X7TTTdxzz33EI/HWbRoEa+88sqg57e0tAx57YHdL82MUCjUP9kN0F9wjVY0Gu1/HQwGyWQygx5XiNc5x/nnn8+KFStYsWIFL7/8Mt///vdJJBJ8+tOf5sEHH+TFF1/k4x//eNliFBGR+qeK0/qvOFViKCIyQFdXF9dddx3XX3/9fkncmjVrmDdvHjfeeCOnnHIKr7zyCm1tbXR3d5d8/ccee4wdO3YQj8d56KGHWLRoEVOnTmXr1q1s376dZDLZX9vY1tbGjBkzeOihhwBIJpP09fXtc72zzjqLn/zkJwC89tprrF+/nqOPPnpEz3766afz3//936xevRqA3t5eXnvttf4kcNKkSfT09GgWUhGRMUoVp41bcarEUEQEiMfj/ctVnHfeeVxwwQXccsst+x13xx13cMIJJzB//nzC4TAXXXQR8+fPJxgMcuKJJ/Ktb33roPc69dRTee9738v8+fN573vfy8KFCwmHw9x8882ceuqpnH/++RxzzDH9x//4xz/mzjvvZP78+Zx55pls2bJln+t9+tOfJpfLMW/ePK644goWL168T4E3HJMnT2bx4sV84AMfYP78+Zxxxhm88sorjB8/no9//OOccMIJvPOd7+SUU04Z0fVFRKR+qeK0sStONSupiNScUmZJK7dsNjvkvrPPPpuzzz4bgH/5l38Z9JjHH398n/fXXntt/+tZs2b1zzZ67bXX7rOv2Gc/+9lB10ucO3fuftcH+q8Zi8X4wQ9+sN/+gfcaaszDunXr9nl/zjnnsGzZsv2O+9KXvsSXvvSl/bYvXrx40OuKiEj9K1ScFpar+NCHPsQNN9yw33F33HEHTzzxBIFAgOOPP56LLrqIQCDQX3F67bXXMmHChAPeq1Bx2tnZydVXX90/42mh4nT69On7VZx+8pOf5OabbyYcDvPAAw8QCOxt9/r0pz/Npz71KebNm0coFCpbxWkymQTy5eJRRx3VX3F6yCGH1HXFqdXrrDkHs3DhQnewAau16EDTEPvxYVmkGlatWsWxxx7rdxhSJwb7fTGzPzrnhp4zXfZRr2VkNQ1VHqsslmpS+SjDMdryUV1JRURERERExjglhiIiIiIiImOcEkMRqQmN2q1dyku/JyIiIpWhxFBEfBeLxdi+fbs+9MsBOefYvn07sVjM71BERKpGZaOUohy/J5qVVER8N2PGDDo7O+nq6vI7FKlxsViMGTNm+B2GiEhVFCpOJ06cuN/yECIF5ao4rWpiaGYXAv8MBIF7nHNfGbD/BuBjQAboAv6nc+5Nb981wD94h37JOffDqgXug11bX8Llckw4ZL7foYhUXDgcZvbs2X6HISIiUlNUcSqlKkfFadUSQzMLAncB5wOdwDIze9g593LRYc8DC51zfWb2KeBrwBVm1gHcAiwEHPBH79yd1Yq/mtLJPezZ9ioAbR1zCEVafI5IRERERKpNFadSTdUcY3gqsNo5t9Y5lwLuAy4tPsA594Rzrs97uxQopL3vBB5zzu3wksHHgAurFHfV7dq6Egvkc/bunWt9jkZERERERBpdNRPD6cCGoved3rahfBT41QjPrVvJ+E7i3ZtonziXprZD6d21jlwu63dYIiIiIiLSwGpyVlIzu5p8t9GvD/O8T5jZcjNbXq99sePdGwGjrWMubR1Hksum6Nuz4aDniYiIiIiIjFQ1E8ONwGFF72d42/ZhZucBfw9c4pxLDudc59zdzrmFzrmFkydPLlvg1ZROdhOKtBAIhok2TyIQjJLs2+53WCIiIiIi0sCqmRguA+aa2WwziwBXAg8XH2BmJwHfJZ8Ubi3a9WvgAjObYGYTgAu8bQ0nk+omHG0HwMwIR9tJJ3b7HJWIiIiIiDSyqiWGzrkMcD35hG4V8HPn3Eozu83MLvEO+zrQCjxgZivM7GHv3B3AP5FPLpcBt3nbGorLZUknewhH2vq3hWPtpFPdWtxUREREREQqpqrrGDrnHgUeHbDt5qLX5x3g3HuBeysXnf+S8R2AIxTdmxhGou305DJk031DnygiIiIiIjIKVU0MZa+uzqX7bevr3gSwb4uh1600ndxTncBERERERGTMqclZSceqTLIbgHBUiaGIiIiIiFSPEsMakk52EwzFCATD/dsCwQjBUEyJoYiIiIiIVIwSwxqSTnUTKupGWhCOtisxFBERERGRilFiWCOcc6ST3ft0Iy3IJ4bdOJfzITIREak0M7vQzF41s9VmdtMg+28ws5fN7AUz+62ZzSzal/Vm8u6fzVtERGS4lBjWiFw2iculh0wMncuSijfcCh0iImOemQWBu4CLgOOAD5jZcQMOex5Y6JybDzwIfK1oX9w5t8D7ugQREZERUGJYIzKpXgBC4db99hUmoEn0dlU1JhERqYpTgdXOubXOuRRwH3Bp8QHOuSecc4V1i5YCM6oco4iINDglhjUim0kAEAzH9tsXDDcDkErsqmZIIiJSHdOBDUXvO71tQ/ko8Kui9zEzW25mS83s3UOdZGaf8I5b3tWlikYREdmX1jGsEf2JYWiQxDAUA0yJoYjIGGdmVwMLgXcUbZ7pnNtoZkcAj5vZi865NQPPdc7dDdwNsHDhQleVgEVEpG6oxbBG5BNDIxCM7rfPzAiGm0gldlY/MBERqbSNwGFF72d42/ZhZucBfw9c4pxLFrY75zZ6/64FngROqmSwIiLSmJQY1ohsJkEwFMXMBt0fCjeTiu+qblAiIlINy4C5ZjbbzCLAlcA+s4ua2UnAd8knhVuLtk8ws6j3ehKwCHi5apGLiEjDUFfSGpHNJAgM0o20IBhuVouhiEgDcs5lzOx64NdAELjXObfSzG4DljvnHga+DrQCD3gViOu9GUiPBb5rZjnylb1fcc4pMRQRkWFTYlgj8i2GQyeGoXAzfXs6cbksFghWMTIREak059yjwKMDtt1c9Pq8Ic5bAsyrbHQiIjIWqCtpjcgdNDFsApcjnequYlQiIiIiIjIWKDGsAc45spnkARPD/iUr4upOKiIiIiIi5aXEsAbksknAHbQrKWgtQxERERERKT8lhjXgQGsYFuxd5F4thiIiIiIiUl5KDGtAKYlhIBDKz0yqJStERERERKTMlBjWgL2J4f6L2xeLxMarK6mIiIiIiJSdEsMaUEgMD7SOIUAkNoGkupKKiIiIiEiZKTGsAdlMAguECAQOvKxkpGm8ZiUVEREREZGyU2JYAw62hmFBJDqOXDZJNpOsQlQiIiIiIjJWKDGsAdl0aYlhONoGQDq5p9IhiYiIiIjIGKLEsAZks6Umhu0ApJPdlQ5JRERERETGECWGNSCbSQ4vMUypxVBERERERMrnwLOdSMU5l8PlMgSCkYMeu7fFUImhiIjIcHR1Lh10++QZp1c5EhGR2qQWQ5/lsimAkhLDYKgJC4SUGIqIiIiISFkpMfRZNlN6YmhmhCNtGmMoIiIiIiJlpa6kPstl80tPBEtIDCE/M6laDEVERMrLuRzbN/2RRO9bTJg6H+ccZuZ3WCIiVaPE0GfD6UoK+XGGid6uSoYkIiIypiTjO1izYjHx7s2A8da6p2gedzgTD12o5FBExgwlhj4bfmLYRveONZUMSUREZMxwuSxvvPBTUvGdzJ5/Ne0Tj2LL2t/y1ptPEWueROuE2X6HKCJSFRpj6LP+xDAULen4cLSdbCZOLpuuZFgiIiJjwpZ1T9C7+00OP/YyOg45kVC4ielH/Tmxlins3LJCwzdEZMxQYuizfGJomAVLOj4cKaxlqAloRERERiOT6mXTmseYcMgCOqad1L/dLMDE6acAxp5tr/kXoIhIFSkx9Fk2myIQipY8hiEcbQO0lqGIiMhode9YDcCMo961375gKEbL+Jn07tlANpOsdmgiIlWnxNBnuWyq5BlJoXiRe7UYioiIjFQum6Zn1zo6pp5IJDZ+0GNaJ8wBl6N317qqxiYi4gclhj7LZVMlTzwDxYmhWgxFRERGqmfXG7hchqmz3j7kMZFYO9HmSXTvXItzrorRiYhUn2Yl9VkumyIUaS35+FCkBSygxFBERGSEnHP07FxLtHkSvXs66d3TOeSxrROOYPvGP5Ds206sZVIVoxQRqS61GPpsuC2GZgHCkVZ1JRURERmhdGI3mVQvLeMOP+ixTa2HAEaiZ3PlAxMR8ZESQx855/KTzwwjMYR8d1K1GIqIiIxM355OwGhqO/SgxwaCYaLNk4j3bKl8YCIiPlJi6CPnsuByw5p8BiAcaSOdUmIoIiIyXM45+vZ0EmuZTLDENYSb2qaRTu4hk+qtcHQiIv5RYuij/sXtR9RiqK6kIiIiw5VO7CaT7qW5fUbJ5+S7k6JWQxFpaEoMfZTLjDQxbCOT6sXlspUIS0REpGH1dW+k1G6kBeFoG6FIK/FujTMUkcalWUl9NNwWw67OpQAk+rYDji1v/o5QuInJM06vVIgiIiINJdHzFpGmjpK7kRbEWqfSu3MdLpfFAsEKRSci4h+1GPooO8KupMFwLH9+JlH2mERERBpVLpsildhJrGXKsM+NNU/CuSx93ZsqEJmIiP+UGPool00CDHvymWCokBjGyx6TiIhIo0r0dgGMKDGMNE0EoGfXG2WNSUSkVigx9FEumwZG0GLoJYY5tRiKiIiULNG7FbMg0eaOYZ8bCjcRDDfTs1OJoYg0JiWGPsplk5gFhz1WYW+LoRJDERGRUiV6txJtmYTZyD7+RJsn0bNrHc65MkcmIuI/JYY+ymVTBIY5+B3ALEAgGFViKCLSIMzsQjN71cxWm9lNg+y/wcxeNrMXzOy3ZjazaN81Zva693VNdSOvH5l0H5lUz4i6kRbEmieSSfWQjG8vY2QiIrWhqolhCQXf283sOTPLmNnlA/ZlzWyF9/Vw9aKunFw2TSAYHtG5wVCMbFqJoYhIvTOzIHAXcBFwHPABMztuwGHPAwudc/OBB4Gveed2ALcApwGnAreY2YRqxV5Pkn3bAIg1jzwxjDZPAlB3UhFpSCUvV2Fm84DLgUOB4r6Pzjn30RLOLxR85wOdwDIze9g593LRYeuBa4G/GeQScefcglLjrQe5XJpAYHjjCwuCoZhaDEVEasQoy8hTgdXOubXete4DLgX6y0fn3BNFxy8FrvZevxN4zDm3wzv3MeBC4Gcjf5rGlIzvwCxIONY+4muEIm0EQ0307lrHpOmnlDE6ERH/lZQYmtmFwC8HOd4ABxw0MaS0gm+dty9XSlz1LpdNEYq0jujcYChGOrmnzBGJiMhwlaGMnA5sKHrfSb4FcCgfBX51gHOnH+R+Y1KqbweRpo4Rjy8EMDOax82gd8/GMkYmIlIbSv3r+HdAGOghX9ClgRTQC7xZ4jVGW3jFzGy5mS01s3cP47yalcumCQRG0ZU0k9AAeBER/5WjjCyJmV0NLAS+PoJzP+GVo8u7urrKGVbNy2XTpBK7iDYNfzbSgVraZ5Do2UIulylDZCIitaPUxPBEoBsoDHZ/DjiGfMH3qQrENZiZzrmFwAeBO8xszsAD6q3Qy+VGMcYwHANc/1qIIiLim9GWkRuBw4rez/C27cPMzgP+HrjEOZcczrkAzrm7nXMLnXMLJ0+eXEJYjaNvTyfgiIxgmYqBmttm4FyWeM+W0QcmIlJDSk0MY8DrzrldQA6IOufeJF/43F7iNUouvAbjnNvo/bsWeBI4aZBj6qbQcy6Hy2VGNfkMaMkKEZEaMNoychkw18xmm1kEuBLYZ5I1MzsJ+C75pHBr0a5fAxeY2QRv0pkLvG1SpGd3vuG2HC2Gze35zk75ZFNEpHGUmhjuAgqjtbcDJ5jZjcDRwBElXuOgBd9QvAIv6r2eBCyiaGxiPSp0QbFRdCUFJYYiIjVgF6MoI51zGeB68gndKuDnzrmVZnabmV3iHfZ1oBV4oHh2bm/SmX8iX8YuA24rTEQje/XuWk8o3NJfdo5GpKmDYKhJiaGINJxSZyV9DTjFzNqBZ4FLgP/t7Xu+lAs45zJmVij4gsC9hYIPWO6ce9jMTgH+A5gA/IWZfdE5dzxwLPBdb1KaAPCVAbOZ1h2XTQEQCI50VtImQImhiEgNKEcZ+Sjw6IBtNxe9Pu8A594L3DvMmMeU3t3riZShtRC8CWjap9OnCWhEpMGUmhh+CTgBGA/8L+B4YA75CWSuL/VmJRR8y8h3MR143hJgXqn3qQe5bBpg9F1JtZahiIjfylJGSmWkk3tIJ3fTMn7mwQ8uQVfnUrAAfd2b2LphSf8sp5NnnF6W64uI+KWkxNA592v2HbMw18w61F1l5HI5LzEcYVdSCwSxQFgthiIiPlMZWdv6ujcBEImNL9s1I7EJ4HKkE3uINJXvuiIifhoyMTSzw4Gkc+4t7/Vgx7QCOOfWVyi+hjXaFkPQIvciIn5RGVk/4pVIDL1kMJXYpcRQRBrGgVoM15EfK7HIez3UgnnuINeRQfQnhiNsMYR8YphTYigi4od1qIysC33dm4jEJoyqInagULgFsyDp5O6yXVNExG8Hm5XUBrwe6kuGKZcb3eQzoBZDERGfqYysA317NtHcfmhZr2lmhKPtpJN7ynpdERE/HagW8yNAV9FrKaNCi6EFRl6RXEgMnXOY6bOHiEgVqYysA9lMimTfNjqmLSj7tcPRduK9b5X9uiIifhkyK3HO/XCw11IeuVwaC4RHldAFQzGcy5LLJAiGm8oYnYiIHIjKyNrV1bm0/3WybzvgSKd6CEfbhz5pBMKxdnp3v0k2kyQYipb12iIifihpgXsz+7iZ3WtmxxdtO97b9vHKhde4XDY96vEOwXB+yYp0qrscIYmIyAiojKxdqcQuACLRcWW/dti7prqTikijKCkxJL8u06XAqqJtq8gv4vs35Q5qLMiVIzH01jJMJ5UYioj4SGVkjUondmOBMMFwc9mvXWiB1AQ0ItIoSk0MDwM6nXO5wgbv9UZg0Gm65cByuTSBwMgnnoHixFC1lSIiPlIZWaNSyd1EYuMqMg4/GIoRCEZIJ1QGi0hjKDUxTABHmtnUwgbv9ZHePhmm8rYYqlASEfGRysga5JwjndxT9rGFBYWZSVMqg0WkQZQ6JeYfgPOAJWa22Nt2DRADnqlAXA0v32I4usTQAmGwgLqSioj4S2VkDcpmErhcpmKJIeS7k/buXo9zQy1jKSJSP0pNDL9OvtCbBdzqbTMgB3y17FGNAblsatQthmZGMBTT5DMiIv5SGVmDCr1pKpsYjsPlMmQz8YrdQ0SkWkrqSuqc+y/gSmAdexfsfQO40jn3eMWia1DO5XC5zKgTQ8h3J1VXUhER/6iMrE17E8O2it0jHPMmoEloAhoRqX8lr67unHsAeMDMJnnvt1UsqgaXzeSHnNgou5JCITFUi6GIiJ9URtaeTLKbQDBCIFi5NQYj/TOTqoJWROpfyYkhgJlFgab8S+ufac05t77cgTWybDqfGJarxTDevXnU1xERkdFRGVlbChPPVGJG0oJAMEIw1KQJaESkIZSUGJrZUcD3gTMH2e1KvY7kFcYijHbyGcgnhtlMvCyznIqIyPCpjKw9hRlJm8fNqPi9wtF2rWUoIg2h1OUqvgcsYu/YiYFfMgz9iWFwdOsYQtGSFameUV9LRERGRGVkjcllk+RyacKRyk08UxCOtZNOduNy2YrfS0SkkkqtxXwb+dnV/hl4GchULKIxIJMuJIblaTGEfJeZaNOEUV9PRESGTWVkjanGxDMF4eg4cDmS8e3EWqZU/H4iIpVSamLYCWSdc5+vZDBjRWHymfJ0JW0CNPBdRMRHKiNrTGFStkouVVFQmIAm3r1FiaGI1LVSu5L+AzDHzP68ksGMFXu7kpYjMczPtqaZSUVEfKMyssakk91YIETA61VTSaFCYtijieBEpL4NZ4F7A/7TzHYDu4r2OefcnHIH1siyXlfScixXkS/0jHRKLYYiIj5RGVljMqluwpG2is5IWhAIBAlFWon3bKn4vUREKqnUxHBm0evx3leBK1cwY0U2k8AC4bIUWGZGKNJKRi2GIiJ+URlZY9KpHqJNE6t2v3C0nXjPW1W7n4hIJZSaGP4IFW5lk0nHy7q0RH6qbCWGIiI+URlZQ1wuSzbdR2jczIMfXCbhaDt7tr2qpaNEpK6VlBg6566tcBxjSjYTL8vEMwXhaJsmnxER8YnKyNqSSfcCEI62Vu2e+UluHIm+LprbDq3afUVEyqnkRXfNLAi8HzgdeAv4N2AW8JJzbkdFomtQ2UyizC2GbcS7N5XteiIiMjwqI2tHoQdNKFL5pSoKCrOfJnreUmIoInWrpFlJzWwcsJR8QXc9cDFwHPAE8NmKRdegsuXuShppJ53qwblc2a4pIiKlURlZWzKpHgDCkSq2GEZawQLEezXOUETqV6nLVXyFvQv4FmZMeQyIAxdWIK6Gls0kCAQiZbteONoGLkcm1Vu2a4qISMlURtaQdKqHQDBa1bF+FggSbZpIQhPQiEgdKzUxvBToAfqn3HbOZYH1wBEViKuhZTPln3wGtMi9iIhPVEbWkEyqp6qthQVNrVM1M6mI1LVSE8OJwBrn3PoB23NAe3lDamzO5chmkmVZw7AgHM2Po9DMpCIivlAZWUPSyW5C0eqNLyyItU4lGd9OLpep+r1FRMqh1MRwI3CMmR1b2GBmpwLHAp2VCKxRZTNJwJV9jCGgRe5FRPyhMrJGZDMJctkkIT9aDFumgsuR6N1a9XuLiJRDqYnhQ0AUWEF+raaTgSXevv8oe1QNLJuJA5R9VlJQi6GIiE8eQmVkTUj0bQOqO/FMQax1aj6GHiWGIlKfSk0MbwaeB8LkB9ZHvHP/BNxWmdAaUzbtJYZl7EoaCIYJhpqUGIqI+ENlZI1IeomhHy2GsZYpgBHv3VL1e4uIlEOpC9z3mNnpwAeAU73Ny4CfOedSlQquEWUzCQACwfLNSgpa5F5ExC8qI2tHsm87AKFIS9XvHQiEiDZP0sykIlK3Sl7g3jmXBn7kfckI9XclLWOLIUA40qYxhiIiPhltGWlmFwL/DASBe5xzXxmw/+3AHcB84Ern3INF+7LAi97b9c65S0YSQyNIxrfnl6oIlPzxpqw0M6mI1LOS/nKa2b0H2O2ccx8tUzwNL5Mu/xhDyC9Z0bP7zbJeU0REDm60ZaSZBYG7gPPJT1azzMweds69XHTYeuBa4G8GuUTcObdgWEE3qGTfdl+6kRbEWqayq+tlcrmMb8mpiMhIlfpX61ryA+oHMm+7EsMS7e1KWr7EsKtzKelUD+nELrZueBaz/PrKk2ecXrZ7iIjIkK5ldGXkqcBq59xaADO7j/zaiP2JoXNunbcvN/pwG1eybzvh2Djf7t/Ump+ZNNnbRVPbNN/iEBEZiVInn1k/4Gs3+QIvB6iZahgKk8+Ucx1DgGC4Cedy5HLpsl5XREQOarRl5HRgQ9H7Tm9bqWJmttzMlprZu4dxXkPJZdOkk3sIhas/vrCgMDNpvFfdSUWk/pQ6+cysgdvM7GzgYeCWskbU4LKZOIFQrL9Vr1yCoab89dNxgmWe2EZERIZWA2XkTOfcRjM7AnjczF50zq0ZJKZPAJ8AOPzww6sQVnWlEjsBR9iHiWcKYs2TAdMENCJSl0ptMdyPc+5JYDnwd2WLZgzIZuKEQrGyXzcUjvVfX0RE/DXMMnIjcFjR+xnetlLvtdH7dy3wJHDSEMfd7Zxb6JxbOHny5FIvXzf2zkjq3xjDQDBMtHkS8R4tWSEi9afUyWc+PGBTEJgDLALUd3EYMulEf+teORW3GIqISPWUoYxcBsw1s9nkE8IrgQ+WeO8JQJ9zLmlmk7x7fq3U2BuJn0tVFGtqnUKiV4vci0j9KXXymcUMPbD+2bJFMwZkM3GC4Qokht41C5PbiIhI1SxmFGWkcy5jZtcDvyafVN7rnFtpZrcBy51zD5vZKcB/ABOAvzCzLzrnjgeOBb7rTUoTAL4yYDbTMSO/VEWEQDDqaxyxlkPY1bVKM5OKSN0Zzl+swQbFPQt8rEyxjAnZTJxIbELZr2sWIBCMqsVQRMQfoyojnXOPAo8O2HZz0etl5LuYDjxvCTBvWJE2qGTfdqJNE8s+hn+49s5Muo2mtkN8jUVEZDhKTQxnD3jvgK3OOTVPDVM2nSDYWv4WQ4BgOEZGYwxFRKpNZWQNSMa3E2uZ4ncYRTOTblFiKCJ1pdRZSbUkRZlkM3FCFehKCvlxhupKKiJSXSoj/edcjmR8B+MmHet3KJqZVETqVkmzkprZd8xsrZktKNp2opmtMbN/rVh0Dca5HNlMkmAFZiUFCIWa1JVURKTKVEb6L53sxuUyRJo6/A7Fm5l0InElhiJSZ0pdruIvgJBzbkVhg3PuT+RbHC+pQFwNKZtJAq4ik89AfgKaXDaJc7mKXF9ERAalMtJnqfgOAKI1kBhCfpxhQovci0idKTUxnAR0D7K9B2i8xZAqpNDNsxLLVeSv661lqFZDEZFqUhnps2QhMWyujcQw1jKVRN82crmM36GIiJSs1MRwO3CUmS0qbDCzM4GjvX1SgsLi85XqSqolK0REfKEy0meFFsNKzPo9Ek2th/TPTCoiUi9KTQwfJ7+20uNm9lsz+y3wBPnpuX9b6s3M7EIze9XMVpvZTYPsf7uZPWdmGTO7fMC+a8zsde/rmlLvWUsKLXmVnHwG9iagIiJSFWUpI2XkkomdhCJtBIJhv0MB6J8dNa7upCJSR0pNDG8BdgNh4GzvKwzs8vYdlJkFgbuAi4DjgA+Y2XEDDlsPXAv8dMC5Hd59TgNOBW4xs9qoFhyGvS2Gle1KmlFXUhGRahp1GSmjk+rbUTPjC6GQGBqJni1+hyIiUrKSEkPn3BpgIbAYWOV9/QA41Tm3tsR7nQqsds6tdc6lgPuASwfcZ51z7gVg4Owp7wQec87tcM7tBB4DLizxvjUjm67sGMNAMAIWUIuhiEgVlamMlFFIxmsrMeyfmbR3q9+hiIiUrNQF7gsF3/8cxb2mAxuK3neSbwEc6bnTRxGLLwqLzwfDlRljaGbekhUaYygiUk1lKCNlhFwuSyq5uyaWqigWa5mqFkMRqSslJ4ZmNgv4W+B04DXgG8AFwC+ccysrEt0wmdkngE8AHH744T5Hs79KTz4D+Qlo1GIoIlJd9VBGNpquzqUAZFK94HKkEjv7t9WCptap7N62ilwuQyBQ8sctERHflLrA/bHAc8DHgHnkW+tSwK3AdSXeayNwWNH7Gd62sp3rnLvbObfQObdw8uTamyE8m04QCMUwK3Vo5/AFQzEtVyEiUkVlKiNlhDLpXgBC4RafI9lXU+s0cDkS6k4qInWi1AzlK8B44OXCBufcc8BO8oPsS7EMmGtms80sAlwJPFziub8GLjCzCd6kMxd42+pKNhOvaGsh5McvZjNxnHMVvY+IiPQrRxkpI5RJ9QEQijT7HMm+mtqmARDv3uxzJCIipSk1MXwHsAV424DtG9i3JW9IzrkMcD35hG4V8HPn3Eozu83MLgEws1PMrBN4H/BdM1vpnbsD+CfyyeUy4DZvW13JZuKEKp0YhptwLkcul67ofUREpN+oy0gZuUKLYTBcW4lhrHkSFggR797kdygiIiUptdN7BOh0zqXMrHj7ePJTcpfEOfco8OiAbTcXvV5GvpvoYOfeC9xb6r1qUSadqNiMpAX9axmqO6mISLWUpYyUkcmkewmGmys6TGMkLBCkqfUQ+tRiKCJ1otS/oq8Dx5rZx7z3MTP7X8DhwKsViawBZTNxghVa3L4g5M14qgloRESqRmWkjzKpPkI11lpY0NQ2jXiPEkMRqQ+lJoZ3AwZ8F3DAieTHVDjg+5UJrfFk09UZY1i4l4iIVIXKSB9l0701N/FMQVPrNDKpHtLJPX6HIiJyUKUucH8XcJf31rwvgO94+6QE2Uyi4i2GhetnM1rLUESkGlRG+sflsmQzCUKR2kwMm9sOBVB3UhGpC8NZ4P4vzex24BRv03Ln3LqKRNWAnMvlC68KjzE0CxAIRtViKCJSRSoj/ZFJezOS1nBXUoB49ybGTTra52hERA7soImhmYWBt4DtwFHOuTcrHlUDymWSgKt4V1KAYDhGRmMMRUQqTmWkv/pnJK3RFsNQuJlwbLzGGYpIXThoV1LnXBpIAAmnxfFGLON17ax0V1LYu5ahiIhUlspIf2VShcXta7PFEKC5dZq6kopIXSi1K+kdwJfM7Hzn3GMVjKdhFRK1Si9XARAKNZGK76z4fUREBFAZ6ZtMug8sUJWy9WC6OpcOur2pbRq7t79KLpchECh5BI+ISNWV+hfqIiAH/D8ze5V8t5lCzahzzp1bieAaSWHMXzUKr2C4iVw2qUJIRKQ6VEb6JD8jaTMD1o+sKU1th4LLkeh5i+b26X6HIyIypFKzhncUvT7G+3LkZ15T15kSFFoMC+sMVlJhHGM62U20aULF7yciMsapjPRJLa9hWNDcPwHNZiWGIlLThkwMzWw+0OucWwM8Vb2QGlNh+YhqtRgCpJO7lRiKiFSAysjakEn30txU28lWtHkSFgjT17OJiX4HIyJyAAdqMVwBPAssIl8butQ5d2Y1gmpE2XR1J58BSCd2V/xeIiJj1ApURvoql02Ty6YI1uji9gVmAZpaDyGuCWhEpMYdaFZSB0w2Mw1SK4PC8hHBYLTi9yokn6mkEkMRkQpRGemzWl/DsFhz2zT6ujehiWtFpJYdKDHcDMwB8gvwwWlmlh3kK1OVSOtcNhMnEIxigWDF7xUIhDELkkrsqvi9RETGKJWRPiusYRiq0TUMizW1TSOb7iOd3ON3KCIiQzpQYvhv5AfOF6b6sgN8yUFk04mqdCMFMDOC4WZS8V1VuZ+IyBikMtJne9cwrIPEsPVQAHUnFZGaNmQXGOfcTWb2LHA88CWgE/h+tQJrNNlMnFCo8jOSFoTCzWoxFBGpEJWR/sum+zALEghG/A7loJoKM5P2bGLc5GN8jkZEZHAHHBvhnPsl8EszuwB4yTn3xeqE1Xiy6XhVF+ANhptI9m2r2v1ERMYalZH+yqR6CUVaanoNw4JQuIlIUwd9ezb6HYqIyJBKGjTvnDu7wnE0vEwmQSQ2rmr3C4Wb6U31kMumCQTDVbuviMhYozLSH5l0b110Iy1obp9B755Ov8MQERnSgcYYShllM/H+heerIejN0qaZSUVEpNE45/pbDOtFS/t0UvEd/bOpiojUGiWGVZJNx6s2+Qzsnb5bE9CIiEijyaR7cS7bXwlaD5rbZwCoO6mI1CwlhlXgXM6bfKZ6BViosJZhYmfV7ikiIiNjZhea2atmttrMbhpk/9vN7Dkzy5jZ5QP2XWNmr3tf11Qvav+k4juA+liqoqtzKV2dS+nzZiTt2rCErs6lPkclIrI/JYZVkE3nF7ev5iK8+YluTDOTiojUODMLAncBFwHHAR8ws+MGHLYeuBb46YBzO4BbgNOAU4FbzGxCpWP2W7LPSwzraIxhMBTNLyWlcllEapQSwyoojCeoZldSCwQJR9tUAImI1L5TgdXOubXOuRRwH3Bp8QHOuXXOuReA3IBz3wk85pzb4ZzbCTwGXFiNoP2UrKMWw2KR2ARScfXkEZHapMSwCvxoMQSIxMarK6mISO2bDmwoet/pbav0uXUrFd9BIBglEChpcvWaEWkaTybdSy6b8jsUEZH9KDGsgr0thtVNDMOx8Zp8RkREADCzT5jZcjNb3tXV5Xc4o5KM76h6ZWs5RGL5Xr5qNRSRWqTEsAoymXxi6E+L4S6cc1W9r4iIDMtG4LCi9zO8bWU91zl3t3NuoXNu4eTJk0cUaK1IxrfXXTdSgGhTPjFMKjEUkRqkxLAKCl1JqznGEPKJoculyWrNJBGRWrYMmGtms80sAlwJPFziub8GLjCzCd6kMxd42xqWczlSiV11NfFMQSAYIRRp7Z9VVUSkligxrIJCV9JQqLqJYX/NpMYZiojULOdcBriefEK3Cvi5c26lmd1mZpcAmNkpZtYJvA/4rpmt9M7dAfwT+eRyGXCbt61hpRK7weXqssUQINLUQTK+Q715RKTm1Neo7TqVTfcRCMWwQLCq9+0fy9C3gxZvYV0REak9zrlHgUcHbLu56PUy8t1EBzv3XuDeigZYQ/rXMKzDFkOAaFMHfbvXk07sItLU8CuLiEgdUYthFWTSfVVvLYR84QN7p/UWERGpd8n4dgBCkfqbfAbyLYYAvbvX+xyJiMi+lBhWQTYd92X2tGC4iWCoSWMZRESkYeQrO63qM32XSyQ2DixA7+4NBz9YRKSKlBhWQSbd51sBFm3q6K9dFRERqXep+A4isfGY1edHGLMAkdh4tRiKSM2pz7+qdSaT7vNtvaX8IHdNPiMiIo0hGd/RP1SiXkWbOujd04nLZf0ORUSknxLDKshm4lVfqqIg2tRBKr4D53K+3F9ERKSckn07iDTXd2IYaZqIy6Xp697kdygiIv2UGFaYc873FkPnsqST3b7cX0REpFxy2TSZVHf9txg2TwSgZ9c6fwMRESmixLDCctkkuJyvLYaAJqAREZG6V5hlO1LniWEo3EQkNoFeJYYiUkO0jmGFbV3/3wDEu7fQ1bm06vePNu9dsqJ1wuyq319ERKRcCpWc0aYO4j1bfI5mdFrHz6J75xqcc5iZ3+GIiKjFsNJy2TQAgWDYl/sXFrnXWoYiIlLvkkWJYb1rGT+TdHIPqYQmiBOR2qDEsMJy2RQAgWDEl/sHgmHC0XZ1JRURkbqXjO/AAmFCkTa/Qxm11vGzAI0zFJHaocSwwnI5fxNDgEjTBLUYiohI3Ut5S1U0QtfLprZpBIJRena+4XcoIiKAEsOKy/rcYgiFRe6VGIqISH1rhDUMC8wCtI6fqcRQRGqGEsMK2zvG0M/EcBLpxO7+WEREROqNc45kfEfdz0harHXCHBK9b5FO9fgdioiIEsNKy2VTmAUIBIK+xRBrmQw4kvHtvsUgIiIyGpl0L7lMgljzJL9DKZu2jiMA6Nm51udIRESUGFZcLpvytbUQIOoVosm+bb7GISIiMlKFMqywOHwjaGk/jEAgTPcOJYYi4j8lhhWWyyQJBKO+xlBIDBO9SgxFRKQ+7U0MG6fF0AJBWibk1zMUEfGbEsMKy2aTBEL+thiGwk2Ewi0k+7p8jUNERGSkkn3bASPSNMHvUMqqbcIcEj1byKR6/Q5FRMY4JYYVlssmCfrcYggQbZlEQl1JRUSkTiX6thFpmkAgEPI7lLJq65gDoFZDEfGdEsMKy2aSBEL+J4ax5kkaYygiInUr2betoSaeKWhun0EgGKF7x2q/QxGRMU6JYQXlchlcLlMbLYbNk0kn95DNJP0ORUREZFiccyT7tjXUxDMFgUCItglz2LP9db9DEZExrrH6Y9SYwngBv1oMuzqX9r9OJXYCsGXdE0w/8kJf4hERERmJbLqPbCbRUBPPFGufeBS7t60i2beDaHPjrNMoIvWlqi2GZnahmb1qZqvN7KZB9kfN7H5v/+/NbJa3fZaZxc1shff1nWrGPVIZb8HaWmgxDEVagb0xiYiI1IvCGPloU4MmhpOOAmDPjtd8jkRExrKqJYZmFgTuAi4CjgM+YGbHDTjso8BO59yRwLeArxbtW+OcW+B9XVeVoEepkITVwhjDQmKYTioxFBGR+lIYIx9raczEMNo8mXB0nLqTioivqtlieCqw2jm31jmXAu4DLh1wzKXAD73XDwLnmplVMcaySqfzXUlrocUwEAgRDDWRSXX7HYqIiMiw7F2qojG7WZoZ7ZOOonv76ziX8zscERmjqpkYTgc2FL3v9LYNeoxzLgPsBgojzWeb2fNm9pSZnTXYDczsE2a23MyWd3X5v2af32MMBwpH20gnlRiKiEh9SfZtIxIb33BLVRRrn3gU2Uyc3t0bDn6wiEgF1Mtf2M3A4c657Wb2NuAhMzveOben+CDn3N3A3QALFy50PsS5j3xXUiMQCPsdCgDhaDs9O9/AuRxmmpBWRETqQ6Kvi1jLZL/DKKviCeIActkUYOzuWkXr+Jn+BCUiY1o1s4ONwGFF72d42wY9xsxCwDhgu3Mu6ZzbDuCc+yOwBjiq4hGPUibVQyAUpVZ6w4aj7TiXJRXf5XcoIiIiJXHOkejdSqxlit+hVFQgGCHaPJHdXS/7HYqIjFHVTAyXAXPNbLaZRYArgYcHHPMwcI33+nLgceecM7PJ3uQ1mNkRwFxgbZXiHrF0qpdgMOJ3GP3C0XYA4r1bfI5ERESkNOnkbnLZVMO1GA6mqXUa8Z7NJOM7/Q5FRMagqiWG3pjB64FfA6uAnzvnVprZbWZ2iXfY94GJZrYauAEoLGnxduAFM1tBflKa65xzO6oV+0hl0j01M74Q8mMMARI9b/kciYiISGkSvVsBGr7FEKCpbRqAWg1FxBdVHWPonHsUeHTAtpuLXieA9w1y3i+AX1Q8wDLLpHoJhmJ+h9EvEIwQDDUR71GLoYiI1IdEb34yubGQGIajbUSbJ7G7axVTDl/kdzgiMsZoBpIKKowxrCXhaBtxtRiKiEidSPRuJRCKEYq0+R1KVYyffBzdO1aTTcf9DkVExph6mZW07uRyGbKZRE2sYVgsHG2nZ9c6zUwqIiJ1Yc+O1wmFmti28fd+h1IV46fO4603f8eurpeZeOjb/A5HRMYQZQYVUmtrGBaEo+24XIZkvOaHaIqIiJBJ9vSPkR8LWsYdTjg6jp1vveB3KCIyxigxrJD8GobUZIshQELjDEVEpMZlMwmymTihMZQYmgWYMHU+e7a9qu6kIlJVSgwrJJP2WgxrLTGMjQOMvj2b/A5FRETkgBJ92wAIj5HxhQUTDpmPc1l2aXZSEakiJYYVki60GIZqZx1DgEAgRKxlCn17Ov0ORUREPGZ2oZm9amarzeymQfZHzex+b//vzWyWt32WmcXNbIX39Z2qB19BheWVxlJX0q7OpfR1byYYamLLuifp6lxKV+dSv8MSkTFAk89USDqxB4BgqMnnSPbX3D6DPdtfwzmHmfkdjojImGZmQeAu4HygE1hmZg8754qbiz4K7HTOHWlmVwJfBa7w9q1xzi2oZszVkp9F2whFWv0OparMjJZxh7Fn++v5iexqaOkrEWlcajGskHRyN4FglEAw7Hco+2lpn0Em1U06ucfvUEREBE4FVjvn1jrnUsB9wKUDjrkU+KH3+kHgXBsDNXvxns2Eo+1jchbtlvEzAUfv7g1+hyIiY8TY+0tbJanEbiKxcX6HMajmcTMA1J1URKQ2TAeKP/13etsGPcY5lwF2AxO9fbPN7Hkze8rMzqp0sNUU797sjY0fe8LRdiKxCfTuetPvUERkjFBiWCHp5O7+GUBrTXPboeQnoFFiKCJS5zYDhzvnTgJuAH5qZoMWPmb2CTNbbmbLu7q6qhrkSGTSfaSTu4nUaFlaDS3jZ5JO7iaV2OV3KCIyBigxrJBUck/NthgGghFirVPpVWIoIlILNgKHFb2f4W0b9BgzCwHjgO3OuaRzbjuAc+6PwBrgqMFu4py72zm30Dm3cPLkyWV+hPKLd+eXVQpHa7MsrYbmcYeBBejZ+YbfoYjIGKDEsAKcy5FO7qnpwqylfQZ9ezpxzvkdiojIWLcMmGtms80sAlwJPDzgmIeBa7zXlwOPO+ecmU32Jq/BzI4A5gJrqxR3RcV7NgMQjo3dFsNgMEJL+2H07npTaxqKSMUpMayATKoHXK6mE8Pm9hlkUj2kEjv9DkVEZEzzxgxeD/waWAX83Dm30sxuM7NLvMO+D0w0s9Xku4wWlrR4O/CCma0gPynNdc65HVV9gAqJ9+SXbKjF2b2rqbVjDs5l2b75j36HIiINTstVVEAqsRuASGwc6VS3z9EMrnXCbAB6dq4l2tThczQiImObc+5R4NEB224uep0A3jfIeb8AflHxAH0Q795CU9u0Mb+sUrRpApGmDrauX8Lkw84ckzO0ikh16K9LBaST+cSwlmdSa2o9hGC4me4da/wORUREZB/O5Yj3bKGp9RC/Q6kJbR1zSPZ1sXvbK36HIiINTIlhBfS3GNbwTGpmAdomHKHEUEREak4qvpNcNqnE0NPcPoNIbAJb1v5WcwOISMUoMayAdHI3WIBQpNXvUA6orWMOqcROkvGGGI4iIiINondPflnH5nGHHeTIscEswNRZZ9O7ez09OxtibiERqUFKDCsglcivu1Tr4wDaJswBUKuhiIjUlL7dnZgF1WJYZNL0UwhFWtm89r/8DkVEGpQmn6mAdHJPTY8vLIi1TiUUbqFn5xomTT/F73BERESAfIthU9uhBAL6mFIQCIY5ZNbZdL72CHu2r6Z94pEAdHUuHfT4yTNOr2Z4ItIAartJq07lWwxrPzE0C9DaMYc921/HuZzf4YiIiOBcjr49G2lRN9L9TD7sTMKx8Wx8/f9qrKGIlJ0SwzJzzpFO7q7pNQyLTZhyAunkHnp3vel3KCIiIiR6u8hlk7S0KzEcKBAMM33OO+nb08nOt17wOxwRaTBKDMssl0mQy6aI1EFXUoBxk4/FAiF2vPUnv0MRERGhb7cmnjmQjkNPpql1Ghtf+7/ksim/wxGRBqLEsMwKM3xGYhN8jqQ0wVCMcZOOYddbL6o7qYiI+K53zwYCwSixlsl+h1KTzAIcduy7SSV2snntb/0OR0QaiBLDMkv0dQEQbZnkcySlm3DIiaSTe+jZ+YbfoYiIyBjXu3sDze3Ta35mbz+1TTiCjmkn89a6p0gnu/0OR0QahP7qllmyN58YxprrJzEcN+lYLBBm+6Y/+h2KiIiMYdlMir7ujbSOn+l3KDVvxlEXEwhG2L5puXr8iEhZaB7oMkv0bSMcG08gGPE7lCENNrV1y7jD2L5pOdPmnEe0qcOHqEREZKzr3b0OXI5Wb51dGVo42sbhx17GGy/+hD3bXmPc5GP8DklE6pxaDMss2betrloLC9onHQ1mbHnjCb9DERGRMap7xxqwAK3jZ/kdSl3omLaA5vYZ7O56mVR8l9/hiEidU2JYRs45Er1dROswMQyFm2kdP4vtG5eR7NvhdzgiIjIGde9cQ0v7DIKhqN+h1I0JhywgGIqyfdMyXC7rdzgiUseUGJZRNt1HNhOv25nU2icdjQVCrH3hx+Syab/DERGRMSSbSdG3u1PdSIcpGIrSMe1tpJN72NW10u9wRKSOKTEso8KMpLHm+kwMQ+FmZs/7AH17Onlz5QOqeRQRkarp3b0O57K0dRzhdyh1p6ntEFonzKZ7++vEuzf7HY6I1CklhmWU7N0GUJddSQvGTzmeQ4+8kB1bnufVZf9KwptlVUREpJI0vnB0Jkw9kXBsPNs3LiOT6vU7HBGpQ0oMyyjR1wUWqPtZPacdcS6z519ForeLlUtuZ+0LP6FvT6ffYYmISAPbvW0VreNmEgzF/A6lLlkgyKQZp+GAbZ2/J5fL+B2SiNQZJYZllOzbRrSpAwsE/Q5l1DoOWcDxi/6GqYefxe6uVaxa+s+8tvy7ShBFRKTskvEdxLs3M27KcX6HUtfCkVYmTl9IKrGTzlcf9jscEakzSgzLKNG7ta67kQ4UjrYz4+iLmf/2v2f63HcR79nCqqV3suHVh1UTKSIiZbN768sAjJ98vM+R1L/mtkNpm3gUXRueZfum5X6HIyJ1RAvcl0k2kyLeu5VxU+q7UOvqXDro9mA4xiGz/4xdW19i65tPs7trFZNmnM4hs95R5QhFRKTR7OpaSaxlSt3O6l1rxk85HnJZ3lz5INHmybSOn+l3SCJSB5QYlknfng3gcrSOa9w/voFghI5pJxNtnsT2TX/krXVPMnHaSYSj7X6HJiIidSqT7qN751oOmXW236HUtKEqbgdjFuCIEz/Eqt/fyZoVizn29L8iEhtfueBEpCGoK2mZ9O5+E4CWcYf7HEnltYw7nCkzzyKbjvPa8rtJp3r8DklEROrUrq0rweXUjbTMQpEWjjzpI+SyadY8v5hcNuV3SCJS45QYlknPrvVEmycRirT4HUpVxJonMfnwRSTj21nz/A/IZdN+hyQiInVo28Y/EG2eTPO4w/wOpeE0tR7C7HkfpK97E2+8dD/O5fwOSURqmLqSloFzjt7db9I+8Wi/Q6mqWMtkZs/7IGv/9GPeeOk+jph/FWaqaxARkdLEe96id9c6ps99F2bmdzgNpbjr6fipJ7DrrRd4bXk3Ry38lC/f66G6wk6ecXqVIxGRoSgxLINUfCeZVM+YHNydSff2Fzirn0swfuo8QH/oRUTk4LZt/D1mQSYeutDvUBpa+8SjyGaSdG9/jc1rfsOhR77T75BEpAYpMSyDsTS+cDBtHXPJpHrZs/01QpFWWifM9jskERGpcblsmu2b/si4KccTjrb6HU7DGz/lBHLZFJvX/hfBcDNTZ57ld0giUmOUGJZB9861BIIRmloP8TsUX5gZEw45kUyqlx2bnycYbvY7JBERqXFbN/w32XQfUw5b5HcoY4KZ0THtJMKRVjpffRizAFMO1/deRPbSgLBRcrksO996gXGTj8UCQb/D8Y1ZgEkzTiMcbWdb51Li3Vv8DklERGpUNpNgyxtP0D7xKNo6jvA7nDHDLMDs+VcxbvLxbHjlITaveQznnN9hiUiNUGI4Sru3v0o23UfHtJP9DsV3gWCYyYefSSAQYvXz3yed3ON3SCIiUoPeevNpsuk+Dj3yQr9DGXMCgRBzTvwQHdPexqY1v+GNF3+qpSxEBFBiOGo7Nj9HMNzMuDE2I+lQQuFmJh92Jpl0H6uf/wHZjAobERHZK97zFlveeJzxU06gRUtU+MICQWadcAWHHnkRO7f8iVVL76R393q/wxIRn2mM4ShkMwl2bV3JpOmnjOlupANFmiYwe/5VrHl+Maufu4c5J11LSOMORUTGvFwuwxsv/oxgMMrhx77H73DGNDNj2hHn0DJuBute+jmv/P7bTJpxGtOOOJdIbPyorp1O9pDo3UKidyuZVC/ZbIp49yYsECIYihKKtBGJjSMQjJTnYUSkLJQYjsLW9UtwuYy6kQ5i/OTjmD3/Kta9+DNe/cO/MmfBh4m1TPE7LBER8YlzOTas+g/i3RuZs+BawtF2v0MS8ktZHH/m59m4+tds61zK9o3LGD/1BDoOOYm2CUcQDDcNeW4m3Ue8ZwuJni3Ee94i3vMWiZ4tZNK9+xxnFsThwOX22R4Kt9C9/XVaJxxBW8eRxFqmaD1LER8pMRyhRN82Nq99jPFTTqB1/Cy/w6lJHYecSCjczNoX/o1Vz97B9KPexeQZp6t1VURkjMknhQ+xbeMfOGT2OYyfcrzfIUmRYLiJw499N1NnvZ2tbz7N9s3PsXPLnwAj2jyRSGwCwVAULEAm1UMm1UM61UM23dd/jUAwSlPrVMZNOZ6m1qk0tUwl1jqVUKSVQCBEV+dSXC5LNpskndxDKrGLdGIXPbvXs/OtFwAIRVppmzCHto58ohhtnqxEUaSKqpoYmtmFwD8DQeAe59xXBuyPAj8C3gZsB65wzq3z9v0t8FEgC3zWOffrKoa+D5fLsv7lX2CBEIcd826/wqgL7RPnctwZN7Bu5f1seOUhtq5/hqmz3sGEqScSOkAtpIjIWNMoZeRAqcQu1r30c7p3vM7UWWdrwhmfdXUuHXT75BmnE23q4LBjLmX6Ue+id9c6unesZfe2VSTj23G5DM45gqGolwQeQijcQjjaTjjWTjDUtE8Sl0zsJJnYuc89LBAkFGgmFG7uX+Jr0vTTSMV30L1zDd078l873/oTkE82Yy2TiTR1EI60Eoq2MW3Wnw1awXyg5yrX98cPQ8UzFL/irAa/fja19jtRSVVLDM0sCNwFnA90AsvM7GHn3MtFh30U2OmcO9LMrgS+ClxhZscBVwLHA4cC/2VmRznnstWKvyCT6mXNn35Mz841zDzuciKxcdUOoe5EYuOYe/LH2d21ik1rfs36l3/Bhld+Sev4WbR1zKF1whG0jDucQEAN2CIyNjVKGVksGd9J1/r/zn+ocjkOP/YyJs04XS1AdSAQCNHWcSRtHUcSjlW2y69ZvlUy2jyRSdNPxTlHMr6dzWseI9HbRbKvi749nf3Hb17zWD4hjbQSirQSDDcRCIRJJXZiFsQCIQKBIBYIYhYkYKH8a+99/t8QFgjs3VfYHgiSSccxC/R/YQFffmddLksmHSed3EMumyaXTZHLpshmU4ADDMPAyL8OBAkEwnTvWE0wFCMYaiIYbiIYiuWfQ6QE1fwkfiqw2jm3FsDM7gMuBYoLvUuBW73XDwLftvz/xkuB+5xzSeANM1vtXe/ZSgbsXI5sJkEm1Uui9y32bHuNHVueJ5fLMOuEK5l46Nsqefu6NlTtyqQZp5NK7KRv9wYSvV1071jt7TFiLZOJtUylqXUqkdj4fC1ktI1guIVAIEQgEMKC4fwfcH2wkCGUtiZXmdbtKtP6X64c8ZRtLTJHNpsim47n//6le0knu9m1dSXZTH5b4Ss/xb0RCIYxCxAMNfV/WMv/21L0eu/2YCjm24etGlZXZaRzDpfLkM0myWVSZLMJ0sluUvEdxHs207NzHfGezYAx4ZATOfTIdxJrnlSpcKSBmBmx5km0TphN64TZAGQzSa/7ajeR6Pj+rqyZVLeXOKXIpHtxuSwD60N2bH5u9DEFwmxZ+zjBsJdwhfIJVyjcRCAU3ZuIhaIEg1EvoTQvITMww2XTZLMpctkk2Uzh3wSZdB/ZdB+ZdB+ZdLz/dS6bHFGs2/b7/GWEws35v8fhFoJFr/duz/8bDDXlP2sF8glzwEu088nz6JJL53L5L+9n5HK5/L8ul094C+VKJkE2k/TKmyTZbP59LpMk3rMFl8uQy2XI5dL95d7mtb/FMALBCIFghKD3byAU3fd98VcgBM55cWX74ysk4IUkPJdNeffNeq3mGXK5LDjHljeeyH+/vIqFQCCc/30IRvMt66EowWDMex3bd7v3Pn9MJF8mer8rfiby1UwMpwMbit53AqcNdYxzLmNmu4GJ3valA86dXrlQ8zOnPf9ff0fxB0gLhJgwdT5TZ76d5vaK3r5hmRnRpg6iTR1A/o99sm8bqcROAoEQ8Z7N7Nr6Egf74G4WhAN+qLQDvOMg5w6ihA/dpX0sr52EpCzJCJQ1IZHaFgiE+2ugw82TCAQjOBxNLVPyFWnpOOlUL4nerfTsXEsm3ccBf65ejfys499Px7STqvYcNaquysi31j3Bxtd/Nei+QChGS9t0ph/1LiZMnd//915kpIKh/AfqaPPEIbvvFSqknXNe4pFPQDqmntj/Pue8D/e5HM5l+o/J9ScrWfbseB0KSYxXAZLLpYlEx3vJS5xUYgfZdKI/eRlx+WWBfFIWbiYYbiISbSfYekj/+1C4mb7ujQMSmrCXOHiluHP517ksuVya9o65ZDPxfJKZiZNJ9ZFJ9+YTz1Qvqfh2+vZsIJPq3S+JPkiwg352sv0/YXk7vO1e8jXS71GgkEwFo7hcBguECEWasUC4v3Ix1jylKKlLksumSSV3k+vbN8kbOPnRkCxQlExGyeXSBCxIIBjBAs0EAkGwANGmDu93KJ8s5rJpMqkekpnt/Yn/iNcI9RLFcLSdeW//u5FdYwQaqu+emX0C+IT3tsfMXi3htEnAtspF5btGfr5GfjZo7Odr5GeDxn6+CjzbVw5+yMHNLMdFGtkIy8h606j/9/Rc9UXPVV9q/Ln+fiQnFT9TyeVjNRPDjUDxSrYzvG2DHdNpZiFgHPkB9qWci3PubuDu4QRlZsudcwuHc049aeTna+Rng8Z+vkZ+Nmjs52vkZ/NZTZaR9aZRfz/1XPVFz1VfGvG5RvpM1ezEugyYa2azzSxCfqD8wwOOeRi4xnt9OfC4yw8Yehi40syiZjYbmAv8oUpxi4iIVJrKSBER8VXVWgy98RDXA78mPxX3vc65lWZ2G7DcOfcw8H3gx97A+R3kC0a8435OfhB+BviM37OtiYiIlIvKSBER8VtVxxg65x4FHh2w7eai1wngfUOc+2XgyxUIq6G71dDYz9fIzwaN/XyN/GzQ2M/XyM/mqxotI+tNo/5+6rnqi56rvjTic43omay0qd1FRERERESkUWnFSxERERERkTFuTCeGZnahmb1qZqvN7Ca/4xktM7vXzLaa2UtF2zrM7DEze937d4KfMY6UmR1mZk+Y2ctmttLM/srbXvfPZ2YxM/uDmf3Je7Yvettnm9nvvd/P+70JKeqSmQXN7Hkze8R730jPts7MXjSzFWa23NtW97+XBWY23sweNLNXzGyVmZ3RSM8njWGw/4f1qFHL8SGe61Yz2+j9zFaY2Z/7GeNINOpnkwM8V13/zBr189YBnmuxmb1R9PNacLBrjdnE0MyCwF3ARcBxwAfM7Dh/oxq1xcCFA7bdBPzWOTcX+K33vh5lgM87544DTgc+4/28GuH5ksA5zrkTgQXAhWZ2OvBV4FvOuSOBncBH/Qtx1P4KWFX0vpGeDeDPnHMLiqaGboTfy4J/Bv6fc+4Y4ETyP8dGej5pHAP/H9ajxTRmOb6Y/Z8L8uXAAu/r0UH217pG/Wwy1HNBff/MGvXz1lDPBfC/in5eKw52oTGbGAKnAqudc2udcyngPuBSn2MaFefc78jPVFfsUuCH3usfAu+uZkzl4pzb7Jx7znvdTf7D6XQa4PlcXo/3Nux9OeAc4EFve10+G4CZzQDeBdzjvTca5NkOoO5/LwHMbBzwdvKzYeKcSznndtEgzydSaxq1HB/iuepeo342OcBz1bVG/bx1gOcatrGcGE4HNhS976QBfukHMdU5t9l7vQWY6mcw5WBms4CTgN/TIM/ndbVcAWwFHgPWALuccxnvkHr+/bwD+AKQ895PpHGeDfJ/fH9jZn80s0942xri9xKYDXQBP/C6At9jZi00zvNJ4xjs/2GjaOT/b9eb2QteV9O66m45UCN+NoH9ngvq/GfWqJ+3Bj6Xc67w8/qy9/P6lplFD3adsZwYjjneQsh1PQ2tmbUCvwD+2jm3p3hfPT+fcy7rnFsAzCDfmn2MvxGVh5ldDGx1zv3R71gq6H84504m3y39M2b29uKd9fx7SX5Jo5OB/+OcOwnoZUCXqDp/PmkcB/x/2Cga7P/b/wHmkO/6thn4hq/RjEKjfjYZ5Lnq/mfWqJ+3Bj6XmZ0A/C355zsF6ABuPNh1xnJiuBE4rOj9DG9bo3nLzKYBeP9u9TmeETOzMPk/UD9xzv27t7lhng/A66b3BHAGMN7MCmuN1uvv5yLgEjNbR7679jnkx6w1wrMB4Jzb6P27FfgP8gVNo/xedgKdRTWPD5JPFBvl+aRBDPH/sFE05P8359xb3ofZHPA96vRn1qifTQZ7rkb5mUFDft4C9nmuC70uwc45lwR+QAk/r7GcGC4D5nozEUWAK4GHfY6pEh4GrvFeXwP80sdYRswbl/Z9YJVz7ptFu+r++cxsspmN9143AeeT78//BHC5d1hdPptz7m+dczOcc7PI/x973Dl3FQ3wbABm1mJmbYXXwAXASzTA7yWAc24LsMHMjvY2nQu8TIM8nzSGA/w/bBQN+f+tkDh53kMd/swa9bPJUM9V7z+zRv28NcRzvVJUOWHkx00e9Oc1phe496bZvQMIAvc6577sb0SjY2Y/A84GJgFvAbcADwE/Bw4H3gTe75yruwHgZvY/gKeBF9k7Vu3vyPd5r+vnM7P55Ac7B8lX1vzcOXebmR1BvpWtA3geuNqr9alLZnY28DfOuYsb5dm85/gP720I+Klz7stmNpE6/70s8Ka3vgeIAGuBj+D9ntIAzyf1b6j/hz6GNGKNWo4P8Vxnk++S6IB1wCeLxuXVhUb9bHKA5/oAdfwza9TPWwd4rseByYABK4DriiapGfxaYzkxFBERERERkbHdlVRERERERERQYigiIiIiIjLmKTEUEREREREZ45QYioiIiIiIjHFKDEVERERERMY4JYYiIiIiIiJjnBJDkSozsyfNzA3x9VEz2+29/lbROccXHXN30faZRds/MuD66wbc9+yiY6/1ts0acP+/G3DOVQP2n12574yIiIxlKh9F/KXEUMQ/KfKL4BZ/bQGWePvfXnTsUK/fUfT6d2WI6VNmFip6/9kyXFNERGQ4VD6K+CB08ENEpEI2O+dOH7jRzOYDFwInmlm7c24PcJa3eytwtJlNcc5tZW8huMk5t2aU8aSBGcBlwM/N7DTgVG97eJTXFhERKZXKRxEfqMVQpPYUajaDwCLv9VnAbuD7Re9hb8H3dBnu+6D3718O+PfBQY4VERGpNpWPIhWkxFDEPzNt/zEU44FlQNw75u1mdgT5msr/Bp4s2n4IMNd7P1g3mX2uDzxxkHiWAMuB/2FmFwHvAzYDD4zw+UREREZC5aOID9SVVMQ/KeD5AdsyzrmUmf0eOJv8GIlXvH2/I184ZcjXiC4pOm+wGtGB128Hjj1ITHcCPwLuAyLAd8l3lREREakWlY8iPlBiKOKfQcdQeH5HvuBbCKwrbHPO9ZjZ88DbgIu97TuAlw52fW/GtIPVit4PfB2YSr7g/A5wykHOERERKSeVjyI+UFdSkdpU6PoSJt9lpY98N5bCvgBwpff+GeecK8dNnXOFwg7g5865t8pxXRERkTJR+ShSIUoMRWrTs+ztohICljrnCu9/V7QdyjOwvtiXgcnAx8t8XRERkdFS+ShSIUoMRWqQc64P+GPRpuLB808DuSH2lePeaefcNudcopzXFRERGS2VjyKVY2VqYRcREREREZE6pRZDERERERGRMU6JoYiIiIiIyBinxFBERERERGSMU2IoIiIiIiIyxikxFBERERERGeOUGIqIiIiIiIxxSgxFRERERETGOCWGIiIiIiIiY5wSQxERERERkTHu/wcKvEy2dEtfIwAAAABJRU5ErkJggg==\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4sAAAFRCAYAAADdKTgDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABxIklEQVR4nO3deZxcdZ3v/9entu7qJemkk0BCyAKEPSFgWCSDw7AJVwYUUUBQ8KqIyDgjMyPMhsroXB1RuYzcUVSIOiIIzijD4A9RFsEQTYDIviQhJJ21k06nt+rqWr6/P86pptJLUp2uqlNV/X4+Hk2qzvo53U1/6/NdzTmHiIiIiIiISL5Q0AGIiIiIiIhI5VGyKCIiIiIiIsMoWRQREREREZFhlCyKiIiIiIjIMEoWRUREREREZBgliyIiIiIiIjKMkkWpGmb2bTP7pyJda46Z9ZhZ2H//uJl9vBjXHnKfHjM7pNjXHeE+y8zsS6W+z5B7XmVmT5XzniIiMpzKx73eR+WjyDgoWZSKYGbrzSxhZt1m1mlmy83sGjMb/B11zl3jnPvnAq911t6Occ5tcM41OecyxYh/L/dpcs6tK+U9JjK/QM74HzpyX98ys3f6v0vhvGO/O8q2b/uvh30gMrPTzawt7/3jZubM7Lghx/2Xv/30Uj2riExMKh9lf6h8lGJRsiiV5M+dc83AXOArwA3A94t9EzOLFPuaUjjzFPNvz9P+h47c13XAKry/byfkHXca0DZk27uA347xfq8DH8m9MbNW4J1A+/4ELyJSAJWPE4DKR6lEShal4jjndjvnHgAuAa40s2Nhz64kZjbNzB70a1k7zOxJMwuZ2Y+AOcB/+7VonzOzeX6t1sfMbAPwaN62/ILxUDP7g5l1mdkvzGyqf689as/8bYO1s2YWNrO/N7O1fs3cM2Z2sL/Pmdlh/uvJZvZDM2s3s7fM7B9zhUKuy4qZ3WJmu8zsTTM7b7TvkZkdb2bP+ve7F6gfsv98M1udVwu9aJTr/LuZ3TJk2y/M7Hr/9Y15z/Wymb1vLzGdamYrzWy3/++pefseN7Mvm9nvgD7gEDM70swe8X9+r5nZB/OO/1/+/brNbJOZ/c1o9x2Jcy4FrMAr7DCzGUAM+OmQbYcz9sLwx8AleTWwlwH/BQyM8ToiImOi8lHlo8pHKTcli1KxnHN/wKvpOm2E3X/t75sOHAD8vXeK+zCwAa8Wtsk596955/wpcBTw7lFu+RHgfwMzgTRwW4GhXo/3B/F/AZP8a/SNcNy/AZOBQ/xYPgJ8NG//ycBrwDTgX4Hvm5kNvYiZxYCfAz8CpgL3Ae/P2388cCfwSaAV+A7wgJnVjRDTT/D+sJt/7hTgHOAef/9avO//ZOCLwH+Y2cwRYpoK/A/e96wV+AbwP+bVKuZ8GLgaaMarZXwEuBuYAVwK/D8zO9o/9vvAJ/2a9GOBR0eIfV9+i1/w+f8+5X/lb3vTOdc2wrl7sxl4Ge/7BN7P8Yf7EZ+IyH5R+ajyUeWjlIuSRal0m/H+4A+Vwiu05jrnUs65J51zbh/X+oJzrtc5lxhl/4+ccy8653qBfwI+mFc7tjcfB/7ROfea8/zRObcz/wD/OpcCf+ec63bOrQe+jldA5LzlnPuuP07kB/7zHTDC/U4BosCt/rPfD6zM23818B3n3O+dcxnn3A+ApH/eUE8Cjrc/cFyM121lM4Bz7j7n3GbnXNY5dy/wBnDSCNd5D/CGc+5Hzrm0c+4nwKvAn+cds8w595JzLg2cC6x3zt3lH/8c8DPgA/6xKeBoM5vknNvlnHt2hHsOfj/8GuLcV+45nwD+xC/oT/Of9Wn/+Ny2J4Zc67b8awEPjnLPHwIfMbMjgRbn3NN7iU9EpBRUPg6n8nHI90Plo4yXkkWpdAcBHSNs/xqwBviVma0zsxsLuNbGMex/C6/AmVbAdQ/Gq2Hcm2n+9d4aco+D8t5vzb1wzuVqXptGuNYsYNOQwj//unOBvx7yR/1g/7w9+Ne4B6/mF+BDeN1IADCzj+R11+nEq8Uc6Xsya0gMIz1f/vd3LnDykBgvBw70978fryb6LTN7wszeOcI9c1Y451ryvlbktuN9/47FqyV90jnX48eR2za0i81n8q8FnD/KPf8TOAO4Dq8GW0Sk3FQ+DqfycU8qH2XclCxKxTKzE/H+mA6bftqvffxr59whwAXA9WZ2Zm73KJfcV83qwXmv5+DV3u0AeoGGvLjCeN17cjYCh+7j2jv8680dco9N+zhvJFuAg4Z0wZkzJJ4vDykgGvzazJH8BLjYzObidfX5GYD//rt4f/Bb/cLhRWBY1x+8Gu65Q7YNfb787/9G4IkhMTY55z4F4Jxb6Zy7EK8Lzs/xxlKMiXOuH69G+c+Bmc65V/1dT/rbFjH28Ri5a/cBvwQ+hQpDESkzlY+jUvlYAJWPMhZKFqXimNkkMzsfr0bvP5xzL4xwzPlmdphfIOwGMkDW370Nb9zDWF1hZkebWQNwM3C/3+XldaDezN5jZlHgH4H88Q3fA/7ZzBaYZ9GQsQj41/kp8GUza/YLmuuB/9iPOJ/GGzPyGTOLmtlF7Nn15bvANWZ2sh9Pox9780gX87u47PCf42HnXKe/qxGvAGsHMLOP4tU4juQh4HAz+5CZRczsEuBoRu+m8qB//If9Z4ia2YlmdpSZxczscjOb7LyB+F28/bMdq98Cfwksz9v2lL9ti3NuXzXee/P3wJ/6XaZEREpO5eM+qXwsnMpHKYiSRakk/21m3Xi1av+ANwj8o6McuwD4NdCDVzj8P+fcY/6+/wP8o999YyyzhP0IWIbX3aUe+Ax4s88B1+IVFpvwalLzB31/A6+g+xXeH+7vA/ERrv8X/rnr8P4g34030H5MnHMDwEXAVXhdkC7B6/aR278K+ATwLWAXXnekq/Zx2buBs/x/c9d5GW/cyNN4HzAWAr8bJaadeF1S/hrYCXwOON85t2OU47vxBsBfilfruhX4Km9/yPgwsN7MuoBr8Lrg7I8n8Gpf82vfn/K3Pbmf1wTAH6uiRZdFpBxUPhZA5eOYqHyUgpjb55hnERERERERmWjUsigiIiIiIiLDKFkUERERERGRYZQsioiIiIiIyDBKFkVERERERGQYJYsiIiIVzMzONbPXzGzNSAusm9k1ZvaCv0D4U2Z2dN6+v/PPe83M3l3eyEVEpNpNyNlQp02b5ubNmxd0GCIiUmLPPPPMDufc9H0fWZn8Rc5fB87GW5JgJXCZP3V/7phJzrku//UFwLXOuXP9pPEneOvMzcJbTuFwf127Eal8FBGZOAopIyPlCqaSzJs3j1WrVgUdhoiIlJiZvRV0DON0ErDGObcOwMzuAS4EBpPFXKLoyy0Wjn/cPc65JPCmma3xr/f0aDdT+SgiMnEUUkZOyGRRRESkShyEtxB7Thtw8tCDzOzTwPVADDgj79wVQ849aIRzrwauBpgzZ05RghYRkdqgMYsiIiJVzjl3u3PuUOAG4B/HeO4dzrklzrkl06dXbY9dEREpASWLIiIilWsTcHDe+9n+ttHcA7x3P88VERHZg7qhikjFSqVStLW10d/fH3QoUuHq6+uZPXs20Wg06FCKbSWwwMzm4yV6lwIfyj/AzBY4597w374HyL1+ALjbzL6BN8HNAuAPZYlaREpOZaQUajxlpJJFEalYbW1tNDc3M2/ePMws6HCkQjnn2LlzJ21tbcyfPz/ocIrKOZc2s+uAh4EwcKdz7iUzuxlY5Zx7ALjOzM4CUsAu4Er/3JfM7Kd4k+GkgU/vbSZUEakuKiOlEOMtI5UsikjF6u/vVyEo+2RmtLa20t7eHnQoJeGcewh4aMi2m/Je/+Vezv0y8OXSRSciQVEZKYUYbxmpMYsiUtFUCBbH9773PTo6OoIOo2T0eyIiE5H+9kkhxvN7omRRRGQvwuEwixcv5phjjuG4447j61//OtlsFoBVq1bxmc98ZtRz169fz9133z3q/s2bN3PxxRcDsGzZMq677rpxx5t/zZyvfvWrxONxpk6dOqZrnX766RxxxBEsXryYxYsXc//99/PZz36WW2+9dfCYd7/73Xz84x8ffP/Xf/3XfOMb32D9+vUce+yxe1zvC1/4ArfccgsAV111FQ0NDXR3dw/u/6u/+ivMjB07dowpThERkfGo9QrV8VCyKCKyF/F4nNWrV/PSSy/xyCOP8Mtf/pIvfvGLACxZsoTbbrtt1HP3liym02lmzZrF/fffX9R4R7rmDTfcwOWXX75f1/vxj3/M6tWrWb16NRdffDFLly5l+fLlAGSzWXbs2MFLL700ePzy5cs59dRTC7r2YYcdxi9+8YvBaz366KMcdNCwZQBFRKRCqUK19itUlSyKiBRoxowZ3HHHHXzrW9/COcfjjz/O+eefD8ATTzwxWGAcf/zxdHd3c+ONN/Lkk0+yePFivvnNb7Js2TIuuOACzjjjDM4888xhhcXGjRs5/fTTWbBgwWBCOvSYW265hS984QsArFmzhrPOOovjjjuOE044gbVr1+5xfH9/Px/96EdZuHAhxx9/PI899hjgFboXXXQR5557LgsWLOBzn/tcwd+DU089laeffhqAl156iWOPPZbm5mZ27dpFMpnklVde4YQTTijoWpdeein33nsvAI8//jhLly4lEhk+lP6tt95iwYIF7Nixg2w2y2mnncavfvWrgmMWEZHSUIVq7VeoKlkUERmDQw45hEwmw/bt2/fYfsstt3D77bezevVqnnzySeLxOF/5ylc47bTTWL16NZ/97GcBePbZZ7n//vt54oknhl37D3/4Az/72c94/vnnue+++1i1atVeY7n88sv59Kc/zR//+EeWL1/OzJkz99h/++23Y2a88MIL/OQnP+HKK68cnGJ99erV3Hvvvbzwwgvce++9bNy4cdR75JLgnTt3MmvWLCKRCBs2bGD58uW8853v5OSTT+bpp59m1apVLFy4kFgsBsDatWsHz128eDHf/va397j24YcfTnt7O7t27eInP/kJl1566YgxzJ07lxtuuIFPfepTfP3rX+foo4/mnHPO2ev3RkREyksVqsFUqN5555381V/91eD77373u4OfOYpBs6FWkfa2FaPumz77lDJGIlJ+G1/9BX3dm4t6zYbmWRx85IVFudbSpUu5/vrrufzyy7nooouYPXv2iMedffbZo3Z1Ofvss2ltbQXgoosu4qmnnuK9733viMd2d3ezadMm3ve+9wHeGkpDPfXUU/zFX/wFAEceeSRz587l9ddfB+DMM89k8uTJABx99NG89dZbHHzwwcOu8eMf/5glS5bsse3UU09l+fLlLF++nOuvv55NmzaxfPlyJk+ezNKlSwePO/TQQ1m9evXg+1wBnu+iiy7innvu4fe//z3f+c53RnxWgI9//OPcd999fPvb397jmiJBGK08VlksQamUMnJfFapLly6lp6eH+vp6vvKVr3DLLbfw4IMPAl6S9uyzz/L8888zdepU1q9fv8c1/vCHP/Diiy/S0NDAiSeeyHve8x6mTZs2aiyXX345N954I+973/vo7+8nm83uEVd+heqrr77KOeecM1hGrl69mueee466ujqOOOII/uIv/mLEMvLyyy8nHo8D8Jvf/GbECtVNmzbx9NNPM3ny5BErVHO2bt3K3/zN3wy+P/zww3nggQcGK1SvuOIKfvnLXw6L4YMf/CBf/vKX+drXvkY0GuWuu+7aa3k6VmpZFBEZg3Xr1hEOh5kxY8Ye22+88Ua+973vkUgkWLp0Ka+++uqI5zc2No567aGzlZkZkUhkcPwHULTFl+vq6gZfh8Nh0ul0wefmutm88MILHHvssZxyyik8/fTTY+pek3PJJZfwT//0T5x99tmEQqMXSX19fbS1tQHQ09MzpnuIiEiwchWqt912G52dnSO2kEFhFarxeHywQnU0I1WoNjQ07HHMU089xRVXXAGMXqFaX18/WKE6kvxuqLnK3vwK1Xe+8528853vHHw/UoVq7uuaa64Zdv38CtXTTjttxBiampo444wzePDBB3n11VdJpVIsXLhw1O/NWKllUUSqQrFaAMejvb2da665huuuu25YYrd27VoWLlzIwoULWblyJa+++ioHH3zwHoPT9+WRRx6ho6ODeDzOz3/+c+68804OOOAAtm/fzs6dO2lqauLBBx/k3HPPpbm5mdmzZ/Pzn/+c9773vSSTSTKZPddbP+200/jxj3/MGWecweuvv86GDRs44ogjePbZZ8f1fTj11FO55ZZbOOSQQwiHw0ydOpXOzk5eeuklvvvd747pWnPnzuXLX/4yZ5111l6Py40pmTt3Lp/4xCcGa6JFRKQyykjYs0L1lVdeGdx+44038p73vIeHHnqIpUuX8vDDD494fi1WqB588MF8/etfZ9KkSXz0ox8dUxyXXHIJ73jHO7jyyiv3WqH68Y9/nH/5l3/hyCOPHPM99kUtiyIie5FIJAZnejvrrLM455xz+PznPz/suFtvvZVjjz2WRYsWEY1GOe+881i0aBHhcJjjjjuOb37zm/u810knncT73/9+Fi1axPvf/36WLFlCNBrlpptu4qSTTuLss8/myCOPHDz+Rz/6EbfddhuLFi3i1FNPZevWrXtc79prryWbzbJw4UIuueQSli1btkcBuL8WLlzIjh07OOWUU/bYNnny5L12CRrNJz/5SQ499NBR9z/xxBOsXLlyMGGMxWLcdddd+xW7iIiURiEVqjfccAMnnngir776Ks3NzftVoZpIJPj5z3/O0qVL96hQTSaTgxWJ+RWqAMlkkr6+vj2ul6tQBfaoUB2vU089lQcffJCpU6fuUaH69NNPj7n3Ta5C9dprr93rcSeffDIbN27k7rvv5rLLLhtP+MOoZVFEZC+GttblO/300zn99NMB+Ld/+7cRj3n00Uf3eH/VVVcNvp43bx4vvvji4Pb8ffk+85nPjDj9+IIFC4ZdHxi8Zn19/YhJ1dB7jdZK9/jjj4+4PRwO09XVtce2ZcuW7fE+/9ly8scsDj0+Z+gYFYA//dM/ZcWKt8eI/ed//ueI54qISHnlKlRTqRSRSIQPf/jDXH/99cOOu/XWW3nssccIhUIcc8wxnHfeeYRCocEK1auuuoopU6bs9V65CtW2tjauuOKKwfH0uQrVgw46aFiF6ic/+UluuukmotEo99133x6tc9deey2f+tSnWLhwIZFIpOgVqh/60If22NbT07PfFaqF+OAHP8jq1av3+X0cK3POFfWC1WDJkiVuX7MMViJNcCMTzSuvvMJRRx0VdBhSJUb6fTGzZ5xzS0Y5RYao1vKx3DTBjVQClZGS7/zzz+ezn/0sZ5555oj797eMVDdUERERERGRKtTZ2cnhhx9OPB4fNVEcj7Imi2Z2rpm9ZmZrzOzGEfZfb2Yvm9nzZvYbM5ubt+9KM3vD/7oyb/s7zOwF/5q32dBO0iIiIiIiIjWopaWF119/nfvuu68k1y9bsmhmYeB24DzgaOAyMzt6yGHPAUucc4uA+4F/9c+dCnweOBk4Cfi8meU65P478Alggf91bokfRUREREREpOaVs2XxJGCNc26dc24AuAfYY55f59xjzrncVEUrgNyq1u8GHnHOdTjndgGPAOea2UxgknNuhfMGX/4QeG8ZnkVERERERKSmlTNZPAjYmPe+zd82mo8Bv9zHuQf5rwu9pojIhPS9732Pjo6OoMMQERGRKlKRE9yY2RXAEuBrRbzm1Wa2ysxWtbe3F+uyIlLjwuHw4DqLxx13HF//+tcHFwBetWrViEta5Kxfv56777571P2bN2/m4osvBrylJK677rpxx5t/zZyvfvWrxONxpk6dOu7rj8VVV13F/fffX9Z7ioiIjJUqVEdXznUWNwEH572f7W/bg5mdBfwD8KfOuWTeuacPOfdxf/vsIduHXRPAOXcHcAd4U4PvzwOISLD2tnzM/ihkmvt4PM7q1asB2L59Ox/60Ifo6urii1/8IkuWLBlc52kkuWQxf62lnHQ6zaxZs4qeTI10zRtuuGHc181kMoTD4XFfR0REakc4HGbhwoWD6yx+5CMf4bOf/SyhUIhVq1bxwx/+kNtuu23Ec9evX8/y5ctHLCPBq/z8zGc+w/3338+yZctYtWoV3/rWt8YVb/41c7761a8ye/bsQCpUzz///GEVvJWmnMniSmCBmc3HS+guBfb47TCz44HvAOc657bn7XoY+Je8SW3OAf7OOddhZl1mdgrwe+AjwMgrY4uIjNOMGTO44447OPHEE/nCF77AE088wS233MKDDz7IE088wV/+5V8CYGb89re/5cYbb+SVV15h8eLFXHnllUyZMoX//M//pKenh0wmww9+8APOP//8wcXrN27cyOmnn86mTZu44oor+PznP8/69ev3OOaWW26hp6eHL3zhC6xZs4ZrrrmG9vZ2wuEw9913H+FwePD4/v5+PvWpT7Fq1SoikQjf+MY3+LM/+zOWLVvGAw88QF9fH2vXruV973sf//qv/zrseefNm8cll1zCI488wuc+9zmmTp3K5z//eZLJJIceeih33XUXTU1N3Hzzzfz3f/83iUSCU089le985ztoYmoRkfJSheq+qUJ17MrWDdU5lwauw0v8XgF+6px7ycxuNrML/MO+BjQB95nZajN7wD+3A/hnvIRzJXCzvw3gWuB7wBpgLW+PcxQRKbpDDjmETCbD9u3b99h+yy23cPvtt7N69WqefPJJ4vE4X/nKVzjttNNYvXo1n/3sZwF49tlnuf/++3niiSeGXfsPf/gDP/vZz3j++ee577772Nfi6Jdffjmf/vSn+eMf/8jy5cuZOXPmHvtvv/12zIwXXniBn/zkJ1x55ZX09/cDsHr1au69915eeOEF7r33XjZu3DjSLWhtbeXZZ5/lrLPO4ktf+hK//vWvefbZZ1myZAnf+MY3ALjuuutYuXIlL774IolEggcffLCwb6aIiNSMXIXqt771LZxzPP7445x//vkAPPHEEyxevJjFixdz/PHH093dzY033siTTz7J4sWL+eY3v8myZcu44IILOOOMMzjzzDNZv349xx577OD1cxWqCxYs4Itf/CLAsGNuueUWvvCFLwCwZs0azjrrLI477jhOOOEE1q5du8fx/f39fPSjH2XhwoUcf/zxPPbYY4A3LOSiiy7i3HPPZcGCBXzuc58b8XnnzZvHDTfcwAknnMB9993Hr371K975zndywgkn8IEPfICenh4Abr75Zk488USOPfZYrr76arw5OatHWccsOucecs4d7pw71Dn3ZX/bTc65XFJ4lnPuAOfcYv/rgrxz73TOHeZ/3ZW3fZVz7lj/mte5avsJiEhNWLp0Kddffz233XYbnZ2dRCIjd9w4++yzR+3qcvbZZ9Pa2ko8Hueiiy7iqaeeGvV+3d3dbNq0ife9730A1NfX09DQsMcxTz31FFdccQUARx55JHPnzuX1118H4Mwzz2Ty5MnU19dz9NFH89Zbb414n0suuQSAFStW8PLLL7N06VIWL17MD37wg8FzHnvsMU4++WQWLlzIo48+yksvvTRq3CIiUrtUoVp7FaoVOcGNiEilWrduHeFwmBkzZuyx/cYbb+R73/seiUSCpUuX8uqrr454fmNj46jXHtp108yIRCKDE+oAgwXZeNXV1Q2+DofDpNPpEY/Lxeuc4+yzz2b16tWsXr2al19+me9///v09/dz7bXXcv/99/PCCy/wiU98omgxiohIbVCFavVWqCpZFBEpUHt7O9dccw3XXXfdsMRu7dq1LFy4kBtuuIETTzyRV199lebmZrq7uwu+/iOPPEJHRweJRIKf//znLF26lAMOOIDt27ezc+dOksnkYI1kc3Mzs2fP5uc//zkAyWSSvr6+Pa532mmn8eMf/xiA119/nQ0bNnDEEUfs17Ofcsop/O53v2PNmjUA9Pb28vrrrw8mhtOmTaOnp0ezn4qITGCqUK29ClUliyIie5FIJAaXzjjrrLM455xz+PznPz/suFtvvZVjjz2WRYsWEY1GOe+881i0aBHhcJjjjjuOb37zm/u810knncT73/9+Fi1axPvf/36WLFlCNBrlpptu4qSTTuLss8/myCOPHDz+Rz/6EbfddhuLFi3i1FNPZevWrXtc79prryWbzbJw4UIuueQSli1btkcBOBbTp09n2bJlXHbZZSxatIh3vvOdvPrqq7S0tPCJT3yCY489lne/+92ceOKJ+3V9ERGpbqpQrc0K1XLOhioiMi6FzMxWbJlMZtR9p59+OqeffjoA//ZvI0/E/Oijj+7x/qqrrhp8PW/evMFZTq+66qo99uX7zGc+M+J6jgsWLBh2fWDwmvX19dx1113D9g+912jjJ9avX7/H+zPOOIOVK1cOO+5LX/oSX/rSl4ZtX7Zs2YjXFRGR2pCrUM0tnfHhD3+Y66+/fthxt956K4899hihUIhjjjmG8847j1AoNFihetVVVzFlypQR7vC2XIVqW1sbV1xxxeBMq7kK1YMOOmhYheonP/lJbrrpJqLRKPfddx+h0NvtZNdeey2f+tSnWLhwIZFIpGgVqsmkt/Lfl770JQ4//PDBCtUDDzywKitUbSLOB7NkyRK3r0GxlWhvUyIH8SFapNReeeUVjjrqqKDDkCox0u+LmT3jnBt97nbZQ7WWj+U2WnmssljKSWWkjMX+lpHqhioiIiIiIiLDKFkUERERERGRYZQsikhFm4hd5WXs9HsiIiJSfEoWRaRi1dfXs3PnTiUCslfOOXbu3El9fX3QoYiIlJXKRynEeH5PNBuqiFSs2bNn09bWRnt7e9ChSIWrr69n9uzZQYchIlI2uQrV1tbWYUtViOSMt0JVyaKIVKxoNMr8+fODDkNERKTiqEJVCjWeClUliyIiIiIiVUYVqlIOGrMoIiIiIiIiwyhZFBERERERkWGULIqIiIiIiMgwSharVDLRQe/uDUGHISIiJWZm55rZa2a2xsxuHGH/9Wb2spk9b2a/MbO5efsyZrba/3qgvJGLiEi10wQ3VSiTGaB9w3KymSSx+haidZOCDklERErAzMLA7cDZQBuw0swecM69nHfYc8AS51yfmX0K+FfgEn9fwjm3uJwxi4hI7VDLYhXq3PYC2cwAZmF2t78adDgiIlI6JwFrnHPrnHMDwD3AhfkHOOcec871+W9XAFpwUkREikLJYpVJJjro7VxPc+sCmqceRl/XRlLJrqDDEhGR0jgI2Jj3vs3fNpqPAb/Me19vZqvMbIWZvXekE8zsav+YVVqvTURE8ilZrDL9PdsBmDztCJpbF2AWprtjTcBRiYhI0MzsCmAJ8LW8zXOdc0uADwG3mtmhQ89zzt3hnFvinFsyffr0MkUrIiLVQMlilRno7yQSbSQUjhGO1FHXMI1kX0fQYYmISGlsAg7Oez/b37YHMzsL+AfgAudcMrfdObfJ/3cd8DhwfCmDFRGR2qJkscqkkruJ1k8efB+LTyGV7CKbSQUYlYiIlMhKYIGZzTezGHApsMespmZ2PPAdvERxe972KWZW57+eBiwF8ifGERER2auyJosFTP/9LjN71szSZnZx3vY/y5v6e7WZ9efGXpjZMjN7M2/f4vI9UXllMynSAz3E6lsGt3mvHYnuLUGFJSIiJeKcSwPXAQ8DrwA/dc69ZGY3m9kF/mFfA5qA+4YskXEUsMrM/gg8BnxlyCyqIiIie1W2pTMKnP57A3AV8Df55zrnHgMW+9eZCqwBfpV3yN865+4vWfAVIjeRzdCWRYDero00tswJJC4RESkd59xDwENDtt2U9/qsUc5bDiwsbXQiIlLLyrnO4uD03wBmlpv+ezBZdM6t9/dl93Kdi4Ff5k0TPmEM9HcC7NGyGI7ECYXr6OsaNoRFRERERERkv5WzG+pYp/8ezaXAT4Zs+7KZPW9m38yNz6hFqf7dhEJRwpH44DYzIxZvoa+rLcDIRERERESk1lTVBDdmNhOvS83DeZv/DjgSOBGYCtwwyrlVv47UQH8n0foWzGyP7bH6KSR6t2mSGxERERERKZpyJosFTf+9Dx8E/ss5N5gVOee2OE8SuAuvu+sw1b6OlHNZUskuYnnjFXNi9S3gsvR1by5/YCIiIiIiUpPKmSzuc/rvAlzGkC6ofmsj5jW3vRd4cfyhVp6BRCfOZYjWTRq2LzeGMdGjGVFFRERERKQ4ypYsFjL9t5mdaGZtwAeA75jZS7nzzWweXsvkE0Mu/WMzewF4AZgGfKnkDxOAgWQnAOFow7B94WgDFoqQ7NtR5qhERERERKRWlXM21EKm/16J1z11pHPXM8KEOM65M4obZWVK9e8GIBKND9tnZtTFp5Ls21nusEREREREpEZV1QQ3E1lu2Yz8mVDz1TVMU8uiiIiIiIgUjZLFKjHQvxsLRQmFoyPur2toJdm3E+dcmSMTEREREZFaVNZuqFKY9rYVw7b1dK4bsQtqTl18GtlsivRA94iT4IiIiIiIiIyFWharRCaVGLULKkB9QysA/eqKKiIiIiIiRaBksUqkUwnCe2tZ9JNFTXIjIiIiIiLFoGSxCrhshmwmSWSEZTNyYvVTwEKa5EZERERERIpCyWIVyKQTAHttWbRQWMtniIiIiIhI0ShZrALplJcsRvYyZhGgLt6qlkURERERESkKzYZaBQppWQRvrcWe3W/hnMPMyhGaiIhIzRppdnIRkYlELYtVINeyGN7LmEXwJrnJpvtJp3rLEZaIiIiIiNQwJYtVIJPqIxSKEgrtvSG4Lj4FgIHErnKEJSIiIiIiNUzJYhXI7GPZjJxYvZ8s9neWOCIREREREal1SharQDpdaLLYAsBAv1oWRURERERkfJQsVoFsOkl4HzOhgjemMRSOMZDoLH1QIiIiIiJS05QsVjjnHJl0P+FwbJ/Hmhmx+ha1LIqIiIiIyLgpWaxwLpsGHKFIXUHHx+qnaMyiiIiIiIiMm5LFCpdJ9wMQDheYLMZbNBuqiIhICQz072Z3+6skureSzaaDDkdEpOT2vhaDBC6bGQDYZ8tibuHgVLKHdKqXbRueIhSKMH32KSWPUUREpNb1dK5n15bncC4LQLRuEgfMO51QOBpwZCIipaOWxQo31pbFSLTBOy/VV7KYREREJpK+7s10bH6GWLyVWYedS+tBJ5JKdrFz8zM454IOT0SkZJQsVrhCWxZzwn6ymE4lShaTiIjIROFcls5tzxOJNTNj7p8QiTXSOHkOLTMWkujeRE/nm0GHKCJSMkoWK1wmnQTG0rLoLbGhlkUREZHx6+5YQ3qglykHLMLs7Y9Nza0LiMVb6drxmloXRaRmKVmscNlMEgtFsFC4oOPDfrKYVrIoIiIyLtlsht3tr1LfeADx5gP32GdmTGpdQCbVR6J7c0ARioiUVlmTRTM718xeM7M1ZnbjCPvfZWbPmlnazC4esi9jZqv9rwfyts83s9/717zXzPa9IGEVyaSTBbcqApiFCEfiShZFRETGKdG9CZdNMWna4SPujzfPIhxtoHvnG2WOTESkPMqWLJpZGLgdOA84GrjMzI4ectgG4Crg7hEukXDOLfa/Lsjb/lXgm865w4BdwMeKHnyAsplkweMVcyLRBnVDFRERGafezrcIRxuoa5g+4n4zo3nqYSQTO7XGsYjUpHK2LJ4ErHHOrXPODQD3ABfmH+CcW++cex7IFnJBMzPgDOB+f9MPgPcWLeIKMNaWRfAmuVHLooiIyP4bSOyiv3c7jZPn4n3cGFnj5DmA0de1qXzBiYiUSTmTxYOAjXnv2/xthao3s1VmtsLM3utvawU6nXO5lXHHes2Ktz8ti+FonEwqoQH3IiIi+2nnlmcBaGqZu9fjwpE66hqmkehWsigitaeaJriZ65xbAnwIuNXMDh3LyWZ2tZ9srmpvby9NhEXmnNuvlkVvRlRHNpMsTWAiIiI1bte256mLtxKJNe7z2IZJs0glu+nvrY7PFyIihYqU8V6bgIPz3s/2txXEObfJ/3edmT0OHA/8DGgxs4jfujjqNZ1zdwB3ACxZsqQqmtxcNgU4QpGxzdnz9lqL6ooqIiKyL+1tK/Z4n04lSHRvpmXGsQWdH2+exa6tf6Rz+4scOP/PShGiiEggytmyuBJY4M9eGgMuBR7YxzkAmNkUM6vzX08DlgIvO6+f5WNAbubUK4FfFD3ygLy9xmL9mM6LRHJrLSaKHpOIiJRXATOJX29mL5vZ82b2GzObm7fvSjN7w/+6sryRV6/+nq0A1DcduI8jPZFoA7H6Fjq3v1TKsEREyq5syaLf8ncd8DDwCvBT59xLZnazmV0AYGYnmlkb8AHgO2aW+6t7FLDKzP6Ilxx+xTn3sr/vBuB6M1uDN4bx++V6plLLdSNVy6KIyMRU4EzizwFLnHOL8CZ8+1f/3KnA54GT8SaZ+7yZTSlX7NUs0bONcCROtG5SwefEm2fRu3uDyl4RqSnl7IaKc+4h4KEh227Ke70Sryvp0POWAwtHueY6vEKw5uxvy2IoHMMspJZFEZHqNziTOICZ5WYSz1WY4px7LO/4FcAV/ut3A4845zr8cx8BzgV+Uoa4q5ZzWfp7t9EwafZeZ0Edqr5xOrvbX6a7Yy1TDhjxI4uISNWppgluJpz9bVk0M29G1LSSRRGRKjfWmcQ/BvxyP88VINm3E5dNEy+wC2pOLD6VUChK9661JYpMRKT8ytqyKGPzdsvi2GZDBQhHtNaiiMhEYmZXAEuAPx3jeVcDVwPMmTOnBJFVl/7e7QDUN84Y03lmIRqnzKOnQ8miiNQOtSxWsEwmiYUiWCg85nMj/lqLIiJS1QqaSdzMzgL+AbjAOZccy7nOuTucc0ucc0umT59etMCrVbJvB7H6FkLh6JjPbZ5yKImeraQGekoQmYhI+SlZrGDZTIpQeGxdUHPC0QYy6QQumylyVCIiUkb7nEnczI4HvoOXKG7P2/UwcI4/o/gU4Bx/m4zCuSwDiQ7qGqbt1/nNU70loHs61hUzLBGRwChZrGDZzADh/U4WveUzUgPdxQxJRETKqJCZxIGvAU3AfWa22swe8M/tAP4ZL+FcCdycm+xGRjaQ2IVz2f1OFhsnHUwoHKN715oiRyYiEgyNWaxg2czAfrcs5tZaHOjvJFbfUsSoRESknAqYSfysvZx7J3Bn6aKrLcm+HQDUNbTu1/kWCtPYMpeezvVFjEpEJDgFJ4tmthC4GJgF5A+ic865jxU7MPGSxYi/ZuJY5dZaHOjfXcyQRERkDFR2Vpdk304isSbCkbEtWZWvafJctqz7DZl0knBk7BPUiYhUkoKSRTM7F/jFCMcb4PCm6pYiG1fLYq4ban9nESMSEZFCqeysLs45komdxJtnjes6jZPnAI6+rrbBMYwiItWq0DGLfw9EgR68Qi4FDAC9wFulCW1ic86NK1m0UBQLRRhQsigiEhSVnVUkPdBNNjNAXXz/uqDmeMki9O7eUIywREQCVWiyeBzQDcz13z8LHIlX6H2qBHFNeC6bAtj/ZNGMcCSuZFFEJDgqO6vIQGIXALH41HFdJxJrpC7eqmRRRGpCocliPfCGc64TyAJ1zrm38NZruqVEsU1o2cwAsP/JInhdUTVmUUQkMCo7q0iyfxdmYaJ1zeO+VmPLHHp3b8A5V4TIRESCU2iy2AlM8l/vBI41sxuAI4BDShDXhJcZTBbHvihwTjjaoJZFEZHgdKKys2oMJLzZw81s3NdqnDyHVLKLVFIVtiJS3QpNFl8H5pjZJOBpvDEY/4I3aP+FEsU2oeVaFsPh/Z9JLRyJkx7oIZtNFyssEREpnMrOKuFcllR/J7H4lKJcr3Gy1/O4t1NDU0WkuhWaLH4J+AegBfhbYC3eYP1NeIsFS5FlM7kxi/vfsujNiOpI9XcVKSoRERkDlZ1VIpXsxrlM0ZLFePNMzML0dm0syvVERIJS0NIZzrmHgYfzNi0ws6nOuY7ShCXFGLP49lqLndQ1jG/AvoiIjI3Kzuox0O9PblNfnGQxFIpQ33Qgfd2bi3I9EZGgjJosmtkcIOmc2+a/HumYJgDnnKb8KrJiTXADMJDsLEZIIiKyDyo7q9NAYhcWihCJNRXtmg2TZrF7+8s454oyDlJEJAh7a1lcjzfGYqn/erQpvdw+riP7IZsZwEIRzArtKTxcrmUxpUluRETKZT0qO6vOQGIXsfop407q2ttWDL7OZgZIp3rZuv4xZs4/Y7whiogEYl+ZiA15PdqXFFkmMzCuVkXwusForUURkbJT2VlFXDZDKrmbWH1LUa8b9a+X0hJWIlLF9lar+VGgPe+1lFG2CMkiQKx+stZaFBEpH5WdVaa/bwfOZYnWTy7qdWN13vVUYSsi1WzUZNE594ORXkt5ZDMDhIuQLEbrW1RQiYiUicrO6pPo2QJ4lavFFApHicSaVAaLSFUraECcmX3CzO40s2Pyth3jb/tE6cKbuIrXstiiLjAiIgFQ2VkdEt1bACMaay76tWOqsBWRKlfo7Cl/C1wIvJK37RXgAuBvih2UFDdZTKd6B9dtFBGRslHZWQUS3VuI1jVjoXDRrx2tbyGT6iOdShT92iIi5VBosngw0Oacy+Y2+K83ASNODT4SMzvXzF4zszVmduMI+99lZs+aWdrMLs7bvtjMnjazl8zseTO7JG/fMjN708xW+1+LC42nUjnnijpmETRmQkQkAEUpO6W0+nq2EK0rbhfUnFwZnNB6iyJSpQpNFvuBw8zsgNwG//Vh/r59MrMwcDtwHnA0cJmZHT3ksA3AVcDdQ7b3AR9xzh0DnAvcamYtefv/1jm32P9aXeAzVSyXTQPeeIfxys3upkluRETKbtxlp5RWOtVHqr+z6OMVc3JlcF/3ppJcX0Sk1Apd4+kPwFnAcjNb5m+7EqgHnirwGicBa5xz6wDM7B687jkv5w5wzq3392XzT3TOvZ73erOZbQemA50F3ruqZDMDAEVpWXx76u7OcV9LRETGpBhlp5RQonsrQMlaFsOResKRevq6lCyKSHUqNFn8Gl6BNw/4gr/NgCzw1QKvcRCwMe99G3BygecOMrOTgBiwNm/zl83sJuA3wI3OueRYr1tJipksDk7dnewc97VERGRMilF2SgnlZkIt9rIZ+aL1LeqGKiJVq6BuqM65XwOXAut5ezHhN4FLnXOPliy6IcxsJvAj4KN5Y0D+DjgSOBGYCtwwyrlXm9kqM1vV3t4+0iEVI1PEZDEUjhKJNmrMoohImVVK2SmjS3RvIRxtIBypL9k9YvUtJHq3a6I5EalKhY5ZxDl3n3PuUGAGMMM5d6hz7v4x3GsT3mD/nNn+toKY2STgf4B/cM6tyItri/MkgbvwuruOFP8dzrklzrkl06dPH0PY5ZdrWSzGOouQm7pbYxZFRMqtCGWnlFCidyvxpgMxs5LdI1bfAi5Lomdrye4hIlIqBSeLAGZWB8SBBjObk/sq8PSVwAIzm29mMbza1gcKvG8M+C/gh0MLWb+1EfP+0r8XeLHAeCpWrvYxFBr/BDfgda9Ry6KISDDGWXZKiTjn6O/ZTrzxgH0fPA65Lq596ooqIlWooDGLZnY48H3g1BF2u0Ku45xLm9l1wMNAGLjTOfeSmd0MrHLOPWBmJ+IlhVOAPzezL/ozoH4QeBfQamZX+Ze8yp/59MdmNh2ve89q4JpCnqmSZbPF64YKXq1mz651RbmWiIgUphhlp5ROeqCbTDpBfVNpk8VItJFQpJ6EZkQVkSpUaEH1XWDpeG/mnHsIeGjItpvyXq/E65469Lz/AP5jlGueMd64Kk02k8IsVLQFgmP1LWTS/WTS/SUdlyEiInsoStkppZHo2QZAfeMBJBM7SnYfM6OheRZ9XWpZFJHqU2iy+A682dv+L95SF+mSRSRkMwNFa1Vsb1tBf583oc+2t35LtG4SANNnn1KU64uIyKhUdlaw/l4vWYw3zShpsgjQ0DyLHW2/x7ksZmMaASQiEqhCk8U2IOOc++tSBiOebCaFFWm8IkA40gB4iw/nkkURESk5lZ0Vpr1tcH48dm17nlAoyq7tL5V0ghuAePNMstkUyUQH9Q3TSnovEZFiKrR66x+BQ83sf5UyGPEUs2URIBKNA5BJJYp2TRER2SeVnRUslewmWjep5IkiQLxpJuAt1SEiUk0KbVn8Gt4EMv9tZruBzrx9zp8WXIokm00VdWxh2E8W00oWRUTKSWVnBUslu4g3zyrLveJNBwJGonsLUw5YWJZ7iogUQ6HJ4ty81y3+V44rVjDiyWYGitpd1CxEOFJPJq1kUUSkjFR2VqhMOln0snZvQuEo9Y3TSfSoZVFEqkuhyeIPUcFWNtlMilC4eGMWAcKROJlUX1GvKSIie6Wys0Klkl0AZR3HH2+aSW/XxrLdT0SkGApKFp1zV5U4DvE5l8VlU4RCxRuzCBCONgwWjiIiUnoqOyvX28lic9nuGW+eya5tf9QyViJSVQpeENjMwsAHgVOAbXjrHs4DXnTOdZQkugkok+4HKHrLYiQap79nK865sgzmFxERlZ2VKj3Qg1mYcCRetnsOTnLTs5Wmlnllu6+IyHgUNBuqmU0GVuAVctcB5wNHA48BnylZdBNQbsbSYs6GCt4kN85lcNlUUa8rIiIjU9lZuVLJbiJ1zWWtPI03a0ZUEak+hS6d8RXeXlw495f1ESABnFuCuCasdDqXLBa7ZTG31qImuRERKROVnRUqNdBNNNZU1nvG6lsIReo1yY2IVJVCk8ULgR5gcJpv51wG2AAcUoK4JqzcJDRFH7MYya21qEluRETKRGVnBXLZDJlUH5FY+cYrApgZDU0zSXRvLet9RUTGo9BksRVY65zbMGR7FijfVGITwNvdUIs8G6paFkVEyq0oZaeZnWtmr5nZGjO7cYT97zKzZ80sbWYXD9mXMbPV/tcD+/UUNSY10AOUd3KbnHjzgfT1bME5TZIrItWh0GRxE3CkmR2V22BmJwFHAW2lCGyiersbarFbFusBI5NWy6KISJmMu+z0J8i5HTgPb7zjZWZ29JDDNgBXAXePcImEc26x/3XB2B+h9qRzyWKZu6GCN8lNNt3PQH9n2e8tIrI/Ck0Wfw7UAavx1ow6AVju7/uvokc1gZWqZdHMCEfjalkUESmfnzP+svMkYI1zbp1zbgC4B6976yDn3Hrn3PN4LZayD6lkNwCRQFoWNcmNiFSXQpPFm4DngCjeIP2Yf+4fgZtLE9rE5CVzhleZXFyRSHwwGRURkZIrRtl5EJC/knubv61Q9Wa2ysxWmNl7x3BezUoNdBOOxAmFCl49rGjiTQcCaJIbEakaBf2ldM71mNkpwGV4tZwAK4Gf+DWdUiSZdB+hcKwk03mHo3EGEruKfl0RERmuQsrOuc65TWZ2CPComb3gnFubf4CZXQ1cDTBnzpwyhRWcdLKbSABdUMEbEhKLTyXRvTmQ+4uIjFXB1WrOuRTwQ/9LSiSTShS9C2pOOBon3b1ZA+tFRMqkCGXnJuDgvPez/W2F3n+T/+86M3scOB5YO+SYO4A7AJYsWVLTBYRzjtRAD42TD973wSXS0DyTPnVDFZEqUVCyaGZ37mW3c859rEjxTHjpVKLok9vkRCIN4LJkM2oMFhEptSKVnSuBBWY2Hy9JvBT4UIH3nwL0OeeSZjYNWAr8ayHn1qpsJonLpgJrWQSIN82ic/vLZDMDJSvvRUSKpdCWxavwBucPZf52JYtFkkmXtmURtNaiiEiZXMU4y07nXNrMrgMeBsLAnc65l8zsZmCVc+4BMzsRb8KcKcCfm9kXnXPH4M26+h0zy+KNlfyKc+7lYjxYtXp7JtTyT26T401y40j0bAu0hVNEpBCFJosb2LPAmwy04M28NnT9KBmHdKqPSLSxJNceXGsxrUluRETKoChlp3PuIeChIdtuynu9Eq976tDzlgMLxxRxjUsN9AIQiZWmnC3E4IyoPVuULIpIxSt0gpt5Q7eZ2enAA8DnixrRBJdJJYjVt5Tk2hG1LIqIlI3KzsrjtSxaoMliXXwqoVBUy2eISFUodOmMYZxzjwOrgL8vWjQTnHNZMun+ko1hCIXrwEJaa1FEJCAqO4OVHughEm3AbL8//oybWYh480wliyJSFQqd4OYjQzaFgUPxBsunCr2ZmZ0L/F///O85574yZP+7gFuBRcClzrn78/ZdCfyj//ZLzrkf+NvfASwD4njddP7SVel0n9l0EnAlG7NoZlprUUSkTIpVdkrxpAd6A21VzIk3zWTX9hdwzpVkqSwRkWIpdMziMkYfpP90IRcwb5X524Gz8RYVXmlmDwwZbL8Bb0KAvxly7lS8LjtL/Die8c/dBfw78Ang93jJ4rnALwt8roqSG0tYytnRwtG4uqGKiJTHMsZZdkpxpQd6aAhgnGB724o93mcy/WRSfaSSXcTqJ5c9HhGRQo2lH4aN8PU08PECzz8JWOOcW+cvRnwPcGH+Ac659c655/EG/+d7N/CIc67DTxAfAc41s5nAJOfcCr818YfAe8fwTBUl1+IXCpWmZREgEm0grWRRRKRcxlt2SpGkU31ks6mKaFmM1nkJYqJHXVFFpLIV2rI4f8h7B2x3zvWP4V4HARvz3rcBJ4/j3IP8r7YRtlel3FjC0rYsNpJJb8BlM1goXLL7iIhIUcpOKZJk3w6AQNdYzMm1Jia6tzB52pEBRyMiMrpCZ0N9q9SBlJqZXQ1cDTBnzpyAoxlZJu21+JVqzCJAJOYtnzHQv5u6hqklu4+IyERXC2VnLUn27QQgWgHJYigcIxyJa5IbEal4BXVDNbNvm9k6M1uct+04M1trZv+vwHttAvIHCsz2t43n3E3subbUqNd0zt3hnFvinFsyffr0Am9bXpkytCxGorlksaNk9xARkaKVnVIk/bmWxRKtZTxW0frJ9KkbqohUuELHLP45EHHOrc5tcM79Ea9l8oICr7ESWGBm880sBlyKt9ZUIR4GzjGzKWY2BTgHeNg5twXoMrNTzJtO7CPALwq8ZsVJl2nMIkAysatk9xAREaA4ZacUSbJvB+FIvGKGYMTqJtPfu51sNh10KCIioyo0WZwGdI+wvQcoqJnOOZcGrsNL/F4Bfuqce8nMbjazCwDM7EQzawM+AHzHzF7yz+0A/hkv4VwJ3OxvA7gW+B6wBlhLlc6ECpBJJ8BCWKjQoaRjF861LCbUsigiUmLjLjuleJJ9OytivGJOtH4yuCz9vduDDkVEZFSFZiU7gcPNbKlz7ncAZnYqcARQ8F8559xDeMtb5G+7Ke/1SvbsVpp/3J3AnSNsXwUcW2gMlSyd6iMSiZd0zSWzEOFIXC2LIiKlV5SyU4oj2beDusbKydHzJ7lpaJ4VcDQiIiMrtGXxUbzFhB81s9+Y2W+Ax/CmAP9NqYKbaDLpBOFovOT3iUQbGOhXsigiUmIqOytEJt1POtVbEZPb5ERiTVgookluRKSiFZosfh7YDUSB0/2vKNDp75MiyKQShCOlTxbDsUYG1LIoIlJqKjsrRG4m1ErqhmoWIt54gNZaFJGKVlCy6JxbCywBluGNN3wFuAs4yTm3rmTRTTDpVIJIuVoWk7tx2UzJ7yUiMlGp7Kwcb6+xWBkzoebEm2fSp5ZFEalgBc+k4hd6/7uEsUx4mXSCuobWkt8nEm0Al2UguZu6uNZaFBEpFZWdlaG/AlsWwUsWd25eRSrZQ7SusmITEYHCu6FiZvPM7Dtm9kczu89fruImMzumlAFOJJlUgkgZuqHm1phSV1QRkdJS2VkZkokdRGLNhEo42/j+iDfNBCDRszngSERERlbQX00zOwr4HTAZb2B+LzAAfAFv+u+/KFF8E4ZzjnSZJrgJx3LLZyhZFBEpFZWdlSPZt5P6hmlBhzFMvNlPFru3MKn18ICjEREZrtCWxa8ALcDLuQ3OuWeBXXgD9mWcspkkuGxZJrjxWi+NZL/WWhQRKSGVnRUi2bejLMM8xioaayISa9YkNyJSsQpNFv8U2Aq8Y8j2jcDBRY1ogsqkEgBlmeDGQmGidZPUsigiUloqOytAJj1AKtlFXQW2LAI0NM+kr3tr0GGIiIyo0GQxBnQ45waGbG/BmwZcximd9pLFcnRDBYjFp5BUsigiUkoqOyvAQMKb3KYSWxbBG7fY37NVM5SLSEUqNFl8AzjKzD7uv683s78F5gCvlSSyCSbXshiONJTlfnX1UxhIqBuqiEgJqeysAP3+shmV2rIYb56Jc5nBOEVEKkmhyeIdeIPzvwM44Di8sRgO+H5pQptY0qk+oDzdUMFrWdRaiyIiJaWyswIk/WUz6uIV2rKYN8mNiEilKShZdM7dDtzuvzX/C+Db/j4Zp0zZu6FOBZcllewqy/1ERCYalZ2VIZnYSSTaWLbK2LGqb5wBFtIkNyJSkQpecMg59xdmdgtwor9plXNufUmimoAGJ7gpw2yoAHXxKQAkE7uI+a9FRKS4VHYGr1JnQs0JhSLEG2eoZVFEKtI+k0UziwLbgJ3A4c65t0oe1QSUTiUAIxSpK8v9YvVegjjQ3wEcUpZ7iohMFCo7K0eybydNU+YFHcZexZtn0t2xLugwRESG2Wey6JxLmVk/0O+cc2WIaULKpBOEo3HMCh1GOj6x+hYAzYgqIlICKjsrQzabZqC/k7p4ZU5u0962AoBsJkUquZutb/2WcDjG9NmnBByZiIin0MzkVuAIMzu7hLFMaJlUomxdUAFC4ai31mK/kkURkRK5FZWdgfJm/XYV3Q0VIFo/GYBU/+6AIxER2VOhYxbPA7LA/2dmr+F1rcnVlDrn3JmlCG4iSfsti+UUq5/CgFoWRURKRWVnwCp92YycaJ2fLCZ3U984PeBoRETeVmiy+Kd5r4/0vxzezG7qXlMEmVRf+ZPF+BR6d28o6z1FRCYQlZ0Byy2bUV/hyWI4Uk8oHGNALYsiUmFGTRbNbBHQ65xbCzxRvpAmpnQqQUOZZyWti09h17bncS5btrGSIiK1TGVnZUn27SAcqSccbQg6lL0yM2L1LQz0dwYdiojIHvbWsrgaeBpYilc7usI5d2o5gpqIMqk+IpHyFmax+imDay3mJrwREZFxWY3KzorhLZsxDTPb98EBi9W30LXzDVw2E3QoIiKD9pYsOmC6mRW8FqPsH+eypFN9Za/5jMWnApBMdChZFBEpDpWdFSA3y2hf1yZi8SmD7ytZtH4K4Eglu4IORURk0N76Hm4BDgWSeIXfyWaWGeErXZZIa1g27X2LI2Ues1jnJ4sDfR1lva+ISA1T2VkhchWxkVhT0KEUJBZvAdAs5SJSUfaWLP4H3iD8XN8N28tXQczsXDN7zczWmNmNI+yvM7N7/f2/N7N5/vbLzWx13lfWzBb7+x73r5nbN6PQeCpFOpUACKBlcQpgJBM7y3pfEZEaVvSyU/ZPOtUHOCKxxqBDKUgk2oiFogwkOoMORURk0KjdZJxzN5rZ08AxwJeANuD7+3sjMwsDtwNn+9daaWYPOOdezjvsY8Au59xhZnYp8FXgEufcj4Ef+9dZCPzcObc677zLnXOr9je2oKXTfQBEypwshkIRYvUtg7PFiYjI+BS77JT9lx7oASASrY6WRU1yIyKVaK9jKpxzvwB+YWbnAC865744jnudBKxxzq0DMLN7gAuB/GTxQuAL/uv7gW+ZmTnn8qcYvwy4ZxxxVJzMQC9Q/mQRoK6hVS2LIiJFVOSyU/ZT2i9bo1XSsgheV9TujrVks2lCIQ17FZHgFbRegnPudOfcdeO810HAxrz3bf62EY9xzqWB3UDrkGMuAX4yZNtdfhfUf7JqmPJsiKC6oYKfLKplUUSk6IpUdhYyhONdZvasmaXN7OIh+640szf8ryvHG0s1SQ/0YBYmFKkPOpSC5WYp7+/ZFnQoIiJAgclipTCzk4E+59yLeZsvd84tBE7zvz48yrlXm9kqM1vV3t5ehmgL542rCKhlMd5KOtVLxk9YRUSkcuQN4TgPOBq4zMyOHnLYBuAq4O4h504FPg+cjNe75/NmVt4FfQOUGughEmuqimUzcnIzk/d1tQUbiIiIr5zJ4ibg4Lz3s/1tIx7jTzs+Gchv9rqUIa2KzrlN/r/deAXlSSPd3Dl3h3NuiXNuyfTp08fxGMWX8ccshss4G2p72wra21aQTHgzoW5d/3hVTC0uIjLBDA7hcM4N4A3DuDD/AOfceufc80B2yLnvBh5xznU453YBjwDnliPoSpAe6K2ayW1yIrEmLBShr2voxyMRkWCUM1lcCSwws/lmFsNL/B4YcswDQK6bzMXAo7nximYWAj5I3nhFM4uY2TT/dRQ4H3iRKpNO9REK1wUyPiFXkKZTvWW/t4iI7FMhQzhKcW5Vc86RTvVWzbIZOd4kN1PoVcuiiFSIsmUnzrm0mV0HPAyEgTudcy+Z2c3AKufcA3gzxv3IzNYAHXgJZc67gI25CXJ8dcDDfqIYBn4NfLcMj1NUmVRf2ddYzIlEvWQxNaBkUURkIjKzq4GrAebMmRNwNMWRSfWByxKtsmQRvK6oPZ1v4rIZLBQOOhwRmeDK2pTlnHsIeGjItpvyXvcDHxjl3MeBU4Zs6wXeUfRAyyydSgQyuQ1AKBwlFK4bnGJcREQqSiFDOPZ27ulDzn186EHOuTuAOwCWLFnihu6vRrmZUKutGyp4M6K6jjSJ3m00NM8KOhwRmeCqaoKbWpVO9QUyuU1OJNY4WLCKiEhFKWQIx2geBs4xsyn+xDbn+NtqXirlr7FYlS2L3hxEGrcoIpVAyWIFyKT6AmtZBD9Z1JhFEZGK4y8jlRvC8Qrw09wQDjO7AMDMTjSzNryeOd8xs5f8czuAf8ZLOFcCN/vbal56oBcsRDgSzBCP8YjEmgiF6zQjqohUBK34WgHSAY5ZBIhEm+hLbcRlM4HFICIiIytgCMdKvC6mI517J3BnSQOsQOmBHqKxxqpaNiPHzGhonqVkUUQqgloWA+bN2BZsN9To4IyofYHFICIiUizpgR4i0errgprTMGk2fd1bVIkrIoFTshiwbCYJLhtwN1SvQNUkNyIiUu2cc1W5xmK+hsmzcdkUid5tQYciIhOcksWApVMJgMAnuPFi0bhFERGpbqlkF85lqnJym5zGyd4SJr27NwQciYhMdEoWA5bxu34GmSyGwnWYhTUjqoiIVL1kXztAVa6xmFMXbyUcbVCyKCKBU7IYsNw4wXAkuGTRzIjEmkipG6qIiFS5/r4dAETqmgOOZP+ZGY2T59DbqWRRRIKlZDFgldCyCFprUUREakOytx2r0mUz8jVOnkN/73Yy6f6gQxGRCUzJYsAGWxYDXDoD3l5r0blsoHGIiIiMR3/fDiKxpqpcNiNf0+Q5gKN398agQxGRCUzJYsAqYYIb7/5N4LKkkl2BxiEiIjIe/b3tRGLV2wU1p0GT3IhIBVCyGLB0qhcLRQmFo4HGkZsRNdm3M9A4RERE9pfLZkgmdlb15DY5kWic+sYZShZFJFBKFgOWHughWgFrQeUKViWLIiJSrZL9u8BlidRVf7II+JPcvIVzLuhQRGSCigQdwESXTvVVxFpQ3phJI5lQsigiItUp2Vv9y2YAtLetAMC5LOlUL1vW/ZpoXTPTZ58ScGQiMtGoZTFg6YEeItHgWxbNQkRiDWpZFBGRqjW4bEYNjFkEqGtoBdTrR0SCo2QxYOmB3sHxgkGLRJvo9xczFhERqTbJvnbCkTihcCzoUIoiEmsmFI6RTOwIOhQRmaCULAYsnaqcZDFa10yyt13LZ4iISFXq791BXcO0ql82I8fMqGtoVcuiiARGyWKAspkU2cyAt2xFBYjEmslmU1o+Q0REqlKyr536xulBh1FUdfFW0gM9ZNL9QYciIhOQJrgJ0LYNTwLQ37ttcDB7kKJ13hiP/t7txOpbgg1GRERkDLKZFAP9ndQ1TAs6lKLKPY9aF0UkCGpZDFA2nQSomLEVudnj+ns1blFERKpL0p/cpr6htloWY/UtmIUGn09EpJyULAYok/GSxXCkLuBIPKFIPaFIPf2924MORUREZExyE7TVN9ZWy6KFwsTirZqATkQCoWQxQNn0AAChcGUki2ZGfcN0tSyKiEjV6e/1Wt5qrRsqQH3jdFL9u0kP9AYdiohMMGVNFs3sXDN7zczWmNmNI+yvM7N7/f2/N7N5/vZ5ZpYws9X+17fzznmHmb3gn3ObVdEUaLmWxVCFtCyCVyCpZVFERKpNsm8H0bpJhCP1QYdSdLlJe7p3rQs4EhGZaMqWLJpZGLgdOA84GrjMzI4ectjHgF3OucOAbwJfzdu31jm32P+6Jm/7vwOfABb4X+eW6hmKLZtJAkYoFA06lEH1jTNIJXeT8cdTioiIVIP+vvaabFUEiMWnYhamu2NN0KGIyARTzpbFk4A1zrl1zrkB4B7gwiHHXAj8wH99P3Dm3loKzWwmMMk5t8I554AfAu8teuQlkkknCYVjFbUeVK72MqmxESIiUkWSve3U12iyaBairmEa3R1rgw5FRCaYciaLBwEb8963+dtGPMY5lwZ2A63+vvlm9pyZPWFmp+Ud37aPa1asbGagYia3yalvmAFoRlQREake6VQf6VQvdTU2E2o+b5jINq2FLCJlVS0T3GwB5jjnjgeuB+42s0ljuYCZXW1mq8xsVXt7ZSRC2XSyYia3yalraAWMRO+2oEMREREpyOCyGTU2E2q+ukavMrdLXVFFpIzKmSxuAg7Oez/b3zbiMWYWASYDO51zSefcTgDn3DPAWuBw//jZ+7gm/nl3OOeWOOeWTJ9eGTWPmUyScKQy1ljMCYWj1DVMo79HyaKIiFSHXG+YWm5ZjNW3EIk20rXj1aBDEZEJpJzJ4kpggZnNN7MYcCnwwJBjHgCu9F9fDDzqnHNmNt2fIAczOwRvIpt1zrktQJeZneKPbfwI8ItyPEwxZDMDFdeyCBBvnkmiZ2vQYYiIiBTEa1k0v3dMbTIzJk07nK4dr+NcNuhwRGSCKFuy6I9BvA54GHgF+Klz7iUzu9nMLvAP+z7QamZr8Lqb5pbXeBfwvJmtxpv45hrnXIe/71rge8AavBbHX5bjecbLZTOVmyw2HUCybycZfx1IERGRSpbo3U5dQyuhUCToUEpq0rQjSad66etq2/fBIiJFUNa/qs65h4CHhmy7Ke91P/CBEc77GfCzUa65Cji2uJGWXjqVAKi4bqgA8aaZgKO/dxuNkw/e5/EiIiJB6u/ZRr0/pq+WTW49AjB273iVxslzgg5HRCaAapngpuakUz0AFdqyeCCAuqKKiEjFc9kM/X3tg2VXLYvEGmmcfDBdO14LOhQRmSCULAYkPdALQLgCk8W6hlYsFFWyKCIiFa+/bwe47IRoWQSYNO0IendvJJXsCToUEZkAlCwGJJXsBiAUqQ84kuHMQsSbDiDRsyXoUEREREbV3raC7RueBKC/dzvtbStob1sRcFSl1TLjWMDR2f5i0KGIyASgZDEgqeRuAMLRyksWwZvkJtGtlkUREalsucrXSF1zwJGUR7xpJnXxVjq3vRB0KCIyAShZDEgq2Q0WIhSKBh3KiOJNM0kPdA92lxUREalEqWQXkWhjzc+EmmNmtBywkK6ONaRTfUGHIyI1TsliQFIDXYQj9XjLQ1aeePNMAPq6NwcciYiIyOhSya4J06qYM+WAheCy7G5/OehQRKTGKVkMSCrZTbgCxyvmNDQfBKC1nEREpGI5lyU10EO0blLQoZRVw6TZROsms0tdUUWkxJQsBiSV7KroZDESayQWn0rv7o1BhyIiIjKi9EAvuOyESxbNQkw98Di6drym4SIiUlJKFgPiJYvxoMPYq8bJB9PXpWRRRCRIZnaumb1mZmvM7MYR9teZ2b3+/t+b2Tx/+zwzS5jZav/r22UPvsRSyS6ACZcsAkyd9Q6cy9Cx9bmgQxGRGqZkMQDZTIpMur+iWxYBGicdzEB/p9ZyEhEJiJmFgduB84CjgcvM7Oghh30M2OWcOwz4JvDVvH1rnXOL/a9ryhJ0GQ30dwITM1lsaJ5FvHkWOzetCjoUEalhShYDkKsJrdRlM3IaJh0MoNZFEZHgnASscc6tc84NAPcAFw455kLgB/7r+4EzrVJnTyuyVP9uIrFmQqFw0KEEonXWEvq6N2mpKxEpGSWLARhMFiu8ZbFh0kGAadyiiEhwDgLy/wi3+dtGPMY5lwZ2A63+vvlm9pyZPWFmp5U62HIbSO4mVj856DACM3Xm8WAhdmz+Q9ChiEiNUrIYgLeTxcoesxiO1FHfOINetSyKiFSjLcAc59zxwPXA3WY2rL+mmV1tZqvMbFV7e3vZg9xfmVSCTKqPaH1L0KEEJhprYsoBC9m5aSWZdDLocESkBilZDEAq2Q1Ufssi+JPc7N6Icy7oUEREJqJNwMF572f720Y8xswiwGRgp3Mu6ZzbCeCcewZYCxw+9AbOuTucc0ucc0umT59egkcojb6eLQDE6iZuyyLAjDl/QibdT8eWZ4IORURqkJLFAKQGusBChMKxoEPZp6aW+aRTvfT3bgs6FBGRiWglsMDM5ptZDLgUeGDIMQ8AV/qvLwYedc45M5vuT5CDmR0CLADWlSnukkt0e8lidAJ3QwVonDyXhkmz2b7hd6rYFZGiU7IYgFSyi2ismWqYf6C59TAAuneuCTgSEZGJxx+DeB3wMPAK8FPn3EtmdrOZXeAf9n2g1czW4HU3zS2v8S7geTNbjTfxzTXOuY6yPkAJJbo3EwrHqqKXTimZGTPmLKW/dztdO18LOhwRqTGRoAOYiAaSXVUzzXddfCqx+FS6Ot5gxtw/CTocEZEJxzn3EPDQkG035b3uBz4wwnk/A35W8gAD0te9hWj95KqoeC21KQcuZtOah9my9tdMaj1C3xMRKRq1LAYgleyummQRYNLUBXTvWofLZoIORUREBOeyJHq2EqtrCTqUihAKRZg5/8/o3f0W3R1vBB2OiNQQtSwGIJXsoqllXtBhFKx56mHs2PR7+ro30Th5TtDhiIjIBNffsw2XTRGLtwQdSlm1t60Ycfv02afQetBJbFn3KFvW/prmqQsws70eLyJSCLUsllk2kyKT6iNWRS2LzVO9cYtdGrcoIiIVILf+b6x+SsCRVI5QKMLMQ86gp/NNdre/EnQ4IlIjlCyWWTLhzS0Qa2jdx5GVI1rXRLxpJl07Xg06FBEREXq7NhCOxInEmoIOpaJMO+hk6htn0Pb6gxo6IiJFoW6oZTbgJ4t18akkerYGHM1wo3VZicWnsLv9ZQYSu4jFVZMrIiLB6d3dRsPk2ZrIZQgLhZl9+Pmsee5O2jc+jYX1MU9ExqesLYtmdq6ZvWZma8zsxhH215nZvf7+35vZPH/72Wb2jJm94P97Rt45j/vXXO1/zSjjI41ZMi9ZrCYNk701oTu2/jHgSEREZCLLZlIkerbQOElj6EcyadqRNLcuYNPah0mnEkGHIyJVrmzJor8w8O3AecDRwGVmdvSQwz4G7HLOHQZ8E/iqv30H8OfOuYV4Cw//aMh5lzvnFvtf20v2EEUwkOjAQhEiseagQxmTaKyJxslz6Nj6XNChiIjIBNbXvQlclsbJs4MOpSKZGXOOugiXTbNr62qcc0GHJCJVrJwtiycBa5xz65xzA8A9wIVDjrkQ+IH/+n7gTDMz59xzzrnN/vaXgLiZ1ZUl6iJLJjqoi0+tyq4zUw88nkT3ZhI924IORUREJqjc5DaanXt09Q3TmHXoOV6Z3b153yeIiIyinMniQcDGvPdt/rYRj3HOpYHdwNCZYN4PPOucS+Ztu8vvgvpPVuFZWDKxi1iVdUHNmXLgIrAQ7W1PBx2KiIhMUH27NxKtm1xV6xUH4YC57yJa30LH1tVkMwNBhyMiVaqqZkM1s2PwuqZ+Mm/z5X731NP8rw+Pcu7VZrbKzFa1t7eXPthRDCQ6qKvSCWKidZNonfUOdrT9noH+3UGHIyIiE1BP53q1KhbAQmFaZ76DbDrJrm0vBB2OiFSpciaLm4CD897P9reNeIyZRYDJwE7//Wzgv4CPOOfW5k5wzm3y/+0G7sbr7jqMc+4O59wS59yS6dOnF+WBxiqdSpBJJ6q2ZRFg5vwzcS7LtvWPBx2KiIhMMMnELgb6d9E89ZCgQ6kKsXgLk1oX0Nu5XkNIRGS/lDNZXAksMLP5ZhYDLgUeGHLMA3gT2ABcDDzqnHNm1gL8D3Cjc+53uYPNLGJm0/zXUeB84MXSPsb+G6jSmVDz1TW00jrrHbS3rSDZ1xF0OCIiMoH07FoHQNMUJYuFmjT9aCKxZjo2ryKj7qgiMkZlW4DHOZc2s+uAh4EwcKdz7iUzuxlY5Zx7APg+8CMzWwN04CWUANcBhwE3mdlN/rZzgF7gYT9RDAO/Br5brmcaq2pdNmOoWYecza5tL/DmC3dzxImfwkLhoEMSEZEJoHvXOsKROPGmA4MOpaKMtkYyQCgUZtpBJ7L1zcfYteU5ps0+uYyRiUi1K+tqrc65h4CHhmy7Ke91P/CBEc77EvClUS77jmLGWErJxE6Aqu6GChCLT2HuURfx5gt3s3ntIxy04NygQxIRkQmgZ9c6mqbMx6yqplwIXCw+hcnTj2Z3+0v07p7F9NmnBB2SiFQJ/bUto4FEB+FIPZFoQ9ChjNvUmcfTOutEtr75G7ZveCrocEREpMYN9O8m2beDZnVB3S+Tph1OLD6Vji3PMdDfGXQ4IlIllCyWUbKvo6pbFdvbVuzx1TB5NvHmWWx89RdsXf+4Fv4VEZGS6dn1JgBNUw8NOJLqZBai9aATwWVZ/+JPcS4bdEgiUgWULJZRomcr8cYDgg6jaMxCTJt9Mi0HLGLT6//Dhlf+E5fNBB2WiIjUoK6O1wlH4jQ0zwo6lKoVjTUx5cBFdHe8QfvG5UGHIyJVQMlimaRTfaSSu4k3zww6lKIyC3HIoss5YN6fsaNtBW88933SqUTQYYmISA1xLsvu9leYNO0IjVccp8aW+UyedhRtr/+PltMQkX3SX9wySXRvAai5ZBG8hHH24f+Lucd8kJ6Odbz2h2+R7NsRdFgiIlIj+ro2kR7oYfL0o4IOpeqZGU1TD8EsxJpnv8f2jcsHh5eIiAylZLFMcsliLXafyRUyzmWYPmcpA/2dvPz0N+n218MSEREZj93tLwPG5NYjgg6lJoQj9UydeQID/Z3sbn8l6HBEpIIpWSyTvp7NRKKNRGLNQYdSUvWN0zlg3umEwjHeeOa7dO18I+iQRESkyu3e8SqNLXOJxBqDDqVmNEw6iMbJc+na8SrJvp1BhyMiFUrJYpkkurcQb56JmQUdSslF65o5YN7p1DVMY81zd9HdsSbokEREpEoN9O+mr6uNydPUBbXYphx4HOFoAzs3rySbTQcdjohUICWLZeCyGW8m1BocrziacKSOw9/xSeriU1nz7J10d6wNOiQREalCu7Y9D0DLjGMCjqT2hMJRWmctIT3QS6f/fRYRyadksQySiZ24bJqGptobr7g3ne0v0nrQEkKRet545ru0vf6gBtCLiMiY7Nz8DA2TZhNvqp2lpypJfeN0JrUeTs+uN+nYujrocESkwihZLIO+7s1Abc6Eui/hSD0HzHsX4Wic7RuWM9C/O+iQRESkSiS6t5Lo3kTrzHcEHUpNmzzjGOrirbz10v30924POhwRqSBKFsugd/cGLBShfoLWioYj9cyY8yeEQhG2b3hKy2qIiEhBdm55BizElAMXBx1KTTML0Tr7JEKhCGv/+COymYGgQxKRCqFksQy6drxOU8t8QqFI0KEEJhJrZMbcPwGX5fVnvksq2RV0SCIiUsFcNkPHlmeZPO1IonVNQYdT8yLRBuYvvIz+nm1seOW/ynrv3BJcQ79EJHhKFktsoH83/b3bmNR6eNChBC5aN4npBy8lPdDDG898l3SqL+iQRESkQnVsfY5Usovps08JOpQJY9K0I5h5yJns3LyK7Rt+F3Q4IlIBlCyWWNfO1wGYNE3JIkBdw1QOXXwl/b3trHnuLnV1ERGRYZzLsvXNx4k3HcikaUcGHc6EMvPQs5k8/Wg2vvoLOre/GHQ4IhIwJYsl1rXzdSKxJuJNE29ym9EkEx20HrSE3s71vPL729i+cbm6nIiIyKDd7a/Q37uNA+efMSHWJ64kZiHmL7ychkmzWff83XTtfCPokEQkQEoWS8i5LN0732BS6+Eq7IZomDSbqTOPp79nGzs3rcI5F3RIIiJSAVw2w+a1vyJWP4UpBywKOpwJKRyJcdgJ/5v6hlbWPHcnu9tfDTokEQmIksUS6u18i3SqV+MVR9E05RAmzziGvq6NdGx5VgmjiIiwfeNyEt2bmX34+VgoHHQ4E1Y01sThS66hvvEA1qy+i21vPalyWmQCUrJYQts2PEU4EqdlxrFBh1KxJrUewaRpR9LbuZ6OLc/gXDbokEREJCAD/bvZvOZhJrUeQcsBC4MOZ8KLxBo54sRraJl+FG2vPcC6P/6Qgf7OoMMSkTKauGs5lFiyr4PObS9w4PzTCUfqgg6nYpkZLTOOAYyuHa+w7o8/ZP7CywmFo0GHJiIiZZTNpln3/H/gXJY5R71XwzcqRDhSzyHHfYRt63/L5rUP0/W7N5h+8CnMmPMnxOpbCr5ONjNAMrGLgUQHycQuMukE4HDO0dfVRjgSJxJtIByNE4k1Yqb2DJFKoGSxRLZveBKzENMPXhp0KFWhZcbRhMMxdm17ntdXfYdDjvswsfrJQYclIiJl4Jxjw8s/o7dzPfMXXUFdw7SgQ5I8ZiEOnH86Uw5YyKY3fsm29b9l2/onaJg0m6aW+dQ1TBtM8DLpBLvbXyGTSZJJ9ZNO9ZIe6CWbSY7hfmFi8Skk+3bS1DKXppb5RGKN+x3/aBPoaVmWsdP3cuJRslgCfV2baG9bwZQDFyvhGYPm1sOYcuAi1r94L6+suJV5x3yQydOPCjosEREpoWw2zYaX72fn5meYecjZTD3wuKBDklHUNbRyyHFXkEzsomPLs3TteI32thW4bGrYsWYhQpF6ItFG4s0ziUQbmXrgccTiU6iLTyUcbcAwMKO9bQWZVB/pVIJ0qpdU/26SiQ62v/Uk29Y/DkB94wE0TzmEpimH0DRlvj5fiZRJWZNFMzsX+L9AGPiec+4rQ/bXAT8E3gHsBC5xzq339/0d8DEgA3zGOfdwIdcst/RAL2tX/4BItJHZh78nyFCq0pQDFlHfeADr/vgj1jx3Jy0zFjLrsHOINx1Y8nurtkxEKlEpys5KkejZxlsv309v53pmHno2Mw85O+iQpAB18SnMPORMZh5yJs5lSSW7yaT7cdk04WiczvaXMQsP60o8debxI17PLEQk1kQk1gRMH9zeOvMd9HW10b3rTXp2rWXnlmdpb3sawF+W7EDiTQdS1zCNaF0z0VgzkVgToXCMUCiChSKEQmoXGS/nsmRSCTLpJOmBXvB/rt73OKou4zWubP8HmVkYuB04G2gDVprZA865l/MO+xiwyzl3mJldCnwVuMTMjgYuBY4BZgG/NrPcFKP7umbZ9HVtYv2L95JKdnHEidcSrWsOIoyqF286gKPe+VdsW/8EW9b9hs7tL9A89TAmTz+KxkkHE4tPIRSK4lzGq4Uc6PW6uaT6Bl9n00nCkTrC0QYi0TiRaJNXkNR5BYmFIrhsxjsn1UtmoJfezrfIpPvJpJNk/VpSC4VJJ7upa5hGfeMM6hqmE47EAv4OichEUYqy0zmXKe9T7Mk5R6J7E+0bV7Bj80rC4TrmL/zQqImElM9YK01HO360BG2s6ymHwlGapsynacp84AxcNkNf92a2rn+cVHI3yb6d9Ox6k0J+pc3CWCiMWch/HWLHxhVYOEI4XEcoHCMcqSMUrnv733AdoUjM319H1641Q5JQw8xonXWinzAZzmVw2TTZTIpsNo3LpshmUmQySbLpATp3vOztz6bz/s0Mvh4qVt+CYVgoBJaLP0SybyeYDd7XG+NpedtC3r9mGEZTyzzMwmAhLBTCCAHO/9yT/5Ugneon2beDbDZFNjOAGyGuvO8soXCM7Rt+R6xuErH6FqL1LcTqW4jVT/be17WU7LNTUBX9E6mBoZzVLScBa5xz6wDM7B7gQiC/wLsQ+IL/+n7gW+b9xl8I3OOcSwJvmtka/3oUcM2SyGZSZNL9DPR3kujZyu72l+lsf5lItIFDF19JY8ucUodQk/L/54vEGpl12Lvp2fUmyb522l7774Ku4RUCEVw2XVABMtL53gQ7Rjabpqdj7R77Y/Ut1DfOoL7xAOobp/sJaDPRWBPhSL1XGIUig3/QJ4q3p1R3Q3cMPzZ3jBtaUCXJpBNkUn107niFbHrAK2AzSVzWmyk3Wtfs1UJHG7zKgFgjkWjj4MQI4Ug9kYj3r/fz8H4WXgE6cX4exeJc1v/Q433gcVnvb1861UcmlaCz/SVvf2aATGbA+2CRSRGtn/z2h6pwzP8ZxYlEG70JLKINe7wOhaNvf5BRLXW+UpSdT5cyYO93ZsCreMsMkE71kuzbyUCig/6+HfTsWsdAfycWijLtoJOYddi7icaaShmS1AgLhWmcfDCTWhcMbnPOkc0kyaT7aWqZT3qgh2w2hcv4iZhL09P5lpeQuQzOZf2ELku0bhLZbO7z3G7vOpkBsunkmD4/FPr5ZORnivp/K/3PDuz59y890OOVry6Dc24w/ky6H1zWL3udf0zWK1/9bfk6t7+41zhCfpmZK0Nzf5dD4Zj3byiGhf20wXn/yWbTZP0kOBJrYKB/N33dm0kP9Ay7fjgS9xPIFqJ+Ehmrn0w01uw9dyi8R0LvJdCZwZ+hy2b8smhgjzKpp/PNwZ9t1j8HsnTteM0vU2ywguDtMunthP/t739k8F/A/x3J/b5kvc+UeUl+7+4Nb+/L+53a3f4qFgoT8n+eIcvdM/e9jA1+T8PhGKHQ0O0xvzyMvJ3s+xUBQZWN5UwWDwI25r1vA04e7RjnXNrMdgOt/vYVQ849yH+9r2sW3Zsv/ISOLc/usS1aN4kZBy9l5qFnEYk2lDqECSMcqWPy9COZPvsqBhK7SPRsYyDZ6f8xMPq6N3n/s0Xq/P/B6gjlrcvl/XHxPsRm0l4XioamA8lmM363l4bBD61du9YSjtQPqxFtnfkOkn076e/dTn/fdu/fnu3s2LVisAVyVIMJY2H/gxd01Fj+WOQlaiO9GnrM20fs65jyrLVlFiYUqSMcjg3+0QfIZlMkerb6Lcl9Y4vHQv44mVCBP5WxXL0E35cSrGs27Oe714MLW84mlxSG/MIPjEy63/swkU56yWW6n8K+R4aFwjRPPYwFJ3ys8FhrU6nKzpJIJbt4/ol/HnV/tG4SjS3zOPCQM5lywHFEovFShiMTgJkNJjmTpx0x4jH70wqU+9uVSx4zmSQdW1fvkTDkkrSmlrngHA43mJSEQlEsHPGTgehgS2Vn+0tvt0wWUDk21lbdnFwSmYtr2sx37JHc5P62e0li3bDK1LG2AufHmc2mSfXvZqB/NwPJTlL9nQz0d3rv+zvp3b2BdKp3TNffG69SOPx2wmkhXNZ/TtzbSV/ez27cHSz8z3eDLdUWAgv5CXxmWItxNpsquDzdy00HW4qxEIctvpJJo/zOF9OE6chtZlcDV/tve8zstQJPnQbsKE1UgdOzVSc9W/Wq5ecr0bN9fLwXmFuMKGrZCOXjTmrz97RW//+rxeeqxWeC2nyuWnwmqIrn+j9jPWGkZ9pnGVnOZHETcHDe+9n+tpGOaTOzCDAZb7D+3s7d1zUBcM7dAdwx1qDNbJVzbslYz6sGerbqpGerXrX8fLX8bAErVdk5aGj5WKs/Sz1X9ajFZ4LafK5afCaozefa32cq5wCelcACM5tvZjG8QfcPDDnmAeBK//XFwKPOa0d/ALjUzOrMbD6wAPhDgdcUERGpVqUoO0VERApStpZFfxzFdcDDeNN/3+mce8nMbgZWOeceAL4P/MgfhN+BVyjiH/dTvAH9aeDTudncRrpmuZ5JRESklEpVdoqIiBSirGMWnXMPAQ8N2XZT3ut+4AOjnPtl4MuFXLPIxtx1tYro2aqTnq161fLz1fKzBaoUZec+1OrPUs9VPWrxmaA2n6sWnwlq87n265nMlWCmPREREREREaluWnRMREREREREhlGyOAozO9fMXjOzNWZ2Y9DxjJeZ3Wlm283sxbxtU83sETN7w/93SpAx7g8zO9jMHjOzl83sJTP7S3971T8bgJnVm9kfzOyP/vN90d8+38x+7/9+3utPfFGVzCxsZs+Z2YP++5p4NjNbb2YvmNlqM1vlb6uV38sWM7vfzF41s1fM7J218mwTXa2VfTkj/f9YbWq4HB/pub5gZpv8n9dqM/tfQcY4VrX62WQvz1W1P69a/Zy1l+daZmZv5v2sFu/rWkoWR2BmYeB24DzgaOAyMzs62KjGbRlw7pBtNwK/cc4tAH7jv682aeCvnXNHA6cAn/Z/VrXwbABJ4Azn3HHAYuBcMzsF+CrwTefcYcAuoJpXLv9L4JW897X0bH/mnFucN1V1rfxe/l/g/3POHQkch/fzq5Vnm7BqtOzLN/T/x2qzjNosx5cx/LnAKwcW+1+lnJuiFGr1s8lozwXV+/Oq1c9Zoz0XwN/m/axW7+tCShZHdhKwxjm3zjk3ANwDXBhwTOPinPst3ix5+S4EfuC//gHw3nLGVAzOuS3OuWf91914H1oPogaeDcB5evy3Uf/LAWcA9/vbq/b5zGw28B7ge/57o0aebRRV/3tpZpOBd+HNwIlzbsA510kNPJvUXtlXS2q4HB/puaparX422ctzVa1a/Zy1l+caMyWLIzsI2Jj3vo0q/59hFAc457b4r7cCBwQZzHiZ2TzgeOD31NCz+d00VwPbgUeAtUCncy7tH1LNv5+3Ap8Dsv77Vmrn2RzwKzN7xsyu9rfVwu/lfKAduMvvPvw9M2ukNp5toqvlsm+k/x9rQS3/f3edmT3vd1Otqu6a+Wr4s8k83n4uqOKfV61+zhr6XM653M/qy/7P6ptmVrev6yhZFMCrgWA/axwqgZk1AT8D/so515W/r9qfzTmXcc4tBmbj1fwfGWxExWFm5wPbnXPPBB1LifyJc+4EvC59nzazd+XvrOLfywhwAvDvzrnjgV6GdKWq4meT2rXX/x9rQY39f/fvwKF43ee2AF8PNJr9VKufTUZ4rqr+edXq56yhz2VmxwJ/h/d8JwJTgRv2dR0liyPbBByc9362v63WbDOzmQD+v9sDjme/mFkU74/Wj51z/+lvrolny+d39XsMeCfQYma5dVKr9fdzKXCBma3H6+52Bt5YuFp4Npxzm/x/twP/hVcA1cLvZRvQlldDeT9e8lgLzzbR1WzZN8r/j7WgJv+/c85t8z/oZoHvUoU/r1r9bDLSc9XCzwtq8nMWsMdznet3JXbOuSRwFwX8rJQsjmwlsMCfCSkGXAo8EHBMpfAAcKX/+krgFwHGsl/8MW7fB15xzn0jb1fVPxuAmU03sxb/dRw4G2+MwGPAxf5hVfl8zrm/c87Nds7Nw/t/7FHn3OXUwLOZWaOZNedeA+cAL1IDv5fOua3ARjM7wt90JvAyNfBsUptl317+f6wFNfn/XS6h8r2PKvt51epnk9Geq5p/XrX6OWuU53o1r7LC8MZh7vNnZV4ruAzlT/t7KxAG7nTOfTnYiMbHzH4CnA5MA7YBnwd+DvwUmAO8BXzQOVdVg8zN7E+AJ4EXeHvc29/j9aGv6mcDMLNFeAOrw3iVOz91zt1sZofgtcZNBZ4DrvBriaqSmZ0O/I1z7vxaeDb/Gf7LfxsB7nbOfdnMWqmN38vFeJMSxYB1wEfxfz+p8meb6Gqt7IPR/38MMKT9UsPl+EjPdTpel0YHrAc+mTfWr+LV6meTvTzXZVTpz6tWP2ft5bkeBaYDBqwGrsmbCGfkaylZFBERERERkaHUDVVERERERESGUbIoIiIiIiIiwyhZFBERERERkWGULIqIiIiIiMgwShZFRERERERkGCWLIiIiIiIiMoySRZEKYWaPm5kb5etjZrbbf/3NvHOOyTvmjrztc/O2f3TI9dcPue/pecde5W+bN+T+fz/knMuH7D+9dN8ZERGZ6FRGigRDyaJI5RnAW7g3/2srsNzf/668Y0d7/ad5r39bhJg+ZWaRvPefKcI1RURExkplpEgZRfZ9iIiU2Rbn3ClDN5rZIuBc4Dgzm+Sc6wJO83dvB44wsxnOue28XShuds6tHWc8KWA2cBHwUzM7GTjJ3x4d57VFRETGQmWkSBmpZVGkeuRqP8PAUv/1acBu4Pt57+HtgvDJItz3fv/fvxjy7/0jHCsiIhIElZEiJaBkUaTyzLXh4zFagJVAwj/mXWZ2CF5t5u+Ax/O2Hwgs8N+P1L1mj+sDj+0jnuXAKuBPzOw84APAFuC+/Xw+ERGR/aUyUqSM1A1VpPIMAM8N2ZZ2zg2Y2e+B0/HGW7zq7/stXmGVxqs1XZ533ki1pkOvPwk4ah8x3Qb8ELgHiAHfwetiIyIiUk4qI0XKSMmiSOUZcTyG77d4BeESYH1um3Oux8yeA94BnO9v7wBe3Nf1/Vna9lVzei/wNeAAvIL028CJ+zhHRESk2FRGipSRuqGKVJdcl5koXleXPrzuL7l9IeBS//1TzjlXjJs653KFH8BPnXPbinFdERGRIlIZKVJkShZFqsvTvN21JQKscM7l3v82bzsUZ+B+vi8D04FPFPm6IiIixaAyUqTIlCyKVBHnXB/wTN6m/MH5TwLZUfYV494p59wO51x/Ma8rIiJSDCojRYrPitQCLyIiIiIiIjVELYsiIiIiIiIyjJJFERERERERGUbJooiIiIiIiAyjZFFERERERESGUbIoIiIiIiIiwyhZFBERERERkWGULIqIiIiIiMgwShZFRERERERkGCWLIiIiIiIiMsz/DzGuMizLGvx1AAAAAElFTkSuQmCC\n",
       "text/plain": [
        "<Figure size 1080x360 with 2 Axes>"
       ]
@@ -1521,7 +1508,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 107,
+   "execution_count": 149,
    "metadata": {},
    "outputs": [
     {
@@ -1545,7 +1532,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 108,
+   "execution_count": 150,
    "metadata": {},
    "outputs": [
     {
@@ -1571,7 +1558,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 109,
+   "execution_count": 151,
    "metadata": {
     "colab": {
      "base_uri": "https://localhost:8080/",
@@ -1585,7 +1572,7 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "{'MEAN_FWHM_x': 7.940323515966517, 'MEAN_FWHM_y': 7.337040419590766}\n"
+      "{'MEAN_FWHM_x': 8.379209150177722, 'MEAN_FWHM_y': 7.576010416841125}\n"
      ]
     }
    ],
@@ -1602,14 +1589,14 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 110,
+   "execution_count": 152,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "{'MEDIAN_FWHM_x': 7.396254460793973, 'MEDIAN_FWHM_y': 6.900833212383647}\n"
+      "{'MEDIAN_FWHM_x': 7.670810006638417, 'MEDIAN_FWHM_y': 6.99528444605464}\n"
      ]
     }
    ],
@@ -1628,7 +1615,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 111,
+   "execution_count": 153,
    "metadata": {
     "colab": {
      "base_uri": "https://localhost:8080/",
@@ -1642,7 +1629,7 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "{'INCERTIDUMBRE_FWHM_x': 0.15200550254891215, 'INCERTIDUMBRE_FWHM_y': 0.12480846830393083}\n"
+      "{'INCERTIDUMBRE_FWHM_x': 0.15034065812442832, 'INCERTIDUMBRE_FWHM_y': 0.12213295193042271}\n"
      ]
     }
    ],
@@ -1659,7 +1646,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 112,
+   "execution_count": 163,
    "metadata": {},
    "outputs": [
     {
@@ -1694,54 +1681,54 @@
        "  </thead>\n",
        "  <tbody>\n",
        "    <tr>\n",
-       "      <th>27</th>\n",
-       "      <td>222.917653</td>\n",
-       "      <td>2.823663</td>\n",
-       "      <td>2.336885</td>\n",
-       "      <td>1.803631</td>\n",
-       "      <td>1.702241</td>\n",
-       "      <td>4.238533</td>\n",
-       "      <td>4.000267</td>\n",
+       "      <th>33</th>\n",
+       "      <td>215.742228</td>\n",
+       "      <td>2.844406</td>\n",
+       "      <td>3.220690</td>\n",
+       "      <td>1.602668</td>\n",
+       "      <td>1.513167</td>\n",
+       "      <td>3.766270</td>\n",
+       "      <td>3.555943</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>26</th>\n",
-       "      <td>216.603135</td>\n",
-       "      <td>2.821754</td>\n",
-       "      <td>3.173432</td>\n",
-       "      <td>1.804289</td>\n",
-       "      <td>1.820440</td>\n",
-       "      <td>4.240079</td>\n",
-       "      <td>4.278035</td>\n",
+       "      <th>34</th>\n",
+       "      <td>216.970464</td>\n",
+       "      <td>2.845412</td>\n",
+       "      <td>2.329821</td>\n",
+       "      <td>1.614164</td>\n",
+       "      <td>1.493453</td>\n",
+       "      <td>3.793286</td>\n",
+       "      <td>3.509615</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>30</th>\n",
-       "      <td>217.389734</td>\n",
-       "      <td>1.980785</td>\n",
-       "      <td>2.331454</td>\n",
-       "      <td>1.931921</td>\n",
-       "      <td>1.708335</td>\n",
-       "      <td>4.540015</td>\n",
-       "      <td>4.014588</td>\n",
+       "      <th>37</th>\n",
+       "      <td>209.845863</td>\n",
+       "      <td>1.956937</td>\n",
+       "      <td>3.215590</td>\n",
+       "      <td>1.708841</td>\n",
+       "      <td>1.524611</td>\n",
+       "      <td>4.015777</td>\n",
+       "      <td>3.582837</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>29</th>\n",
-       "      <td>210.588381</td>\n",
-       "      <td>1.978485</td>\n",
-       "      <td>3.167382</td>\n",
-       "      <td>1.943865</td>\n",
-       "      <td>1.831859</td>\n",
-       "      <td>4.568083</td>\n",
-       "      <td>4.304869</td>\n",
+       "      <th>335</th>\n",
+       "      <td>174.734848</td>\n",
+       "      <td>2.770882</td>\n",
+       "      <td>2.760025</td>\n",
+       "      <td>1.710865</td>\n",
+       "      <td>1.624143</td>\n",
+       "      <td>4.020532</td>\n",
+       "      <td>3.816736</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>21</th>\n",
-       "      <td>202.186462</td>\n",
-       "      <td>2.289328</td>\n",
-       "      <td>2.644426</td>\n",
-       "      <td>2.005263</td>\n",
-       "      <td>1.836719</td>\n",
-       "      <td>4.712369</td>\n",
-       "      <td>4.316290</td>\n",
+       "      <th>38</th>\n",
+       "      <td>211.627049</td>\n",
+       "      <td>1.961099</td>\n",
+       "      <td>2.326209</td>\n",
+       "      <td>1.715538</td>\n",
+       "      <td>1.499931</td>\n",
+       "      <td>4.031515</td>\n",
+       "      <td>3.524837</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>...</th>\n",
@@ -1754,90 +1741,91 @@
        "      <td>...</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>400</th>\n",
-       "      <td>148.694932</td>\n",
-       "      <td>3.251515</td>\n",
-       "      <td>3.323809</td>\n",
-       "      <td>3.311014</td>\n",
-       "      <td>3.089162</td>\n",
-       "      <td>7.780883</td>\n",
-       "      <td>7.259531</td>\n",
+       "      <th>543</th>\n",
+       "      <td>131.093045</td>\n",
+       "      <td>3.193123</td>\n",
+       "      <td>2.503308</td>\n",
+       "      <td>4.758416</td>\n",
+       "      <td>2.706784</td>\n",
+       "      <td>11.182277</td>\n",
+       "      <td>6.360943</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>32</th>\n",
-       "      <td>120.009106</td>\n",
-       "      <td>2.582832</td>\n",
-       "      <td>2.669800</td>\n",
-       "      <td>3.323717</td>\n",
-       "      <td>2.781075</td>\n",
-       "      <td>7.810735</td>\n",
-       "      <td>6.535527</td>\n",
+       "      <th>23</th>\n",
+       "      <td>224.503205</td>\n",
+       "      <td>7.472670</td>\n",
+       "      <td>2.648100</td>\n",
+       "      <td>4.762666</td>\n",
+       "      <td>1.649086</td>\n",
+       "      <td>11.192264</td>\n",
+       "      <td>3.875353</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>150</th>\n",
-       "      <td>140.401733</td>\n",
-       "      <td>2.814937</td>\n",
-       "      <td>2.461857</td>\n",
-       "      <td>3.330074</td>\n",
-       "      <td>3.020962</td>\n",
-       "      <td>7.825674</td>\n",
-       "      <td>7.099261</td>\n",
+       "      <th>397</th>\n",
+       "      <td>117.626414</td>\n",
+       "      <td>4.050571</td>\n",
+       "      <td>2.602593</td>\n",
+       "      <td>4.788907</td>\n",
+       "      <td>2.907534</td>\n",
+       "      <td>11.253932</td>\n",
+       "      <td>6.832705</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>281</th>\n",
-       "      <td>192.304218</td>\n",
-       "      <td>3.922074</td>\n",
-       "      <td>2.380541</td>\n",
-       "      <td>3.330268</td>\n",
-       "      <td>2.254765</td>\n",
-       "      <td>7.826129</td>\n",
-       "      <td>5.298697</td>\n",
+       "      <th>331</th>\n",
+       "      <td>120.648167</td>\n",
+       "      <td>3.944006</td>\n",
+       "      <td>2.661164</td>\n",
+       "      <td>4.870656</td>\n",
+       "      <td>2.857321</td>\n",
+       "      <td>11.446041</td>\n",
+       "      <td>6.714704</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>228</th>\n",
-       "      <td>123.573138</td>\n",
-       "      <td>2.781581</td>\n",
-       "      <td>2.546152</td>\n",
-       "      <td>3.334843</td>\n",
-       "      <td>2.962802</td>\n",
-       "      <td>7.836880</td>\n",
-       "      <td>6.962584</td>\n",
+       "      <th>622</th>\n",
+       "      <td>240.208357</td>\n",
+       "      <td>6.285389</td>\n",
+       "      <td>1.606621</td>\n",
+       "      <td>4.905659</td>\n",
+       "      <td>2.470669</td>\n",
+       "      <td>11.528298</td>\n",
+       "      <td>5.806073</td>\n",
        "    </tr>\n",
        "  </tbody>\n",
        "</table>\n",
-       "<p>206 rows × 7 columns</p>\n",
+       "<p>529 rows × 7 columns</p>\n",
        "</div>"
       ],
       "text/plain": [
-       "         height    mean_x    mean_y     std_x     std_y    FWHM_x    FWHM_y\n",
-       "27   222.917653  2.823663  2.336885  1.803631  1.702241  4.238533  4.000267\n",
-       "26   216.603135  2.821754  3.173432  1.804289  1.820440  4.240079  4.278035\n",
-       "30   217.389734  1.980785  2.331454  1.931921  1.708335  4.540015  4.014588\n",
-       "29   210.588381  1.978485  3.167382  1.943865  1.831859  4.568083  4.304869\n",
-       "21   202.186462  2.289328  2.644426  2.005263  1.836719  4.712369  4.316290\n",
-       "..          ...       ...       ...       ...       ...       ...       ...\n",
-       "400  148.694932  3.251515  3.323809  3.311014  3.089162  7.780883  7.259531\n",
-       "32   120.009106  2.582832  2.669800  3.323717  2.781075  7.810735  6.535527\n",
-       "150  140.401733  2.814937  2.461857  3.330074  3.020962  7.825674  7.099261\n",
-       "281  192.304218  3.922074  2.380541  3.330268  2.254765  7.826129  5.298697\n",
-       "228  123.573138  2.781581  2.546152  3.334843  2.962802  7.836880  6.962584\n",
+       "         height    mean_x    mean_y     std_x     std_y     FWHM_x    FWHM_y\n",
+       "33   215.742228  2.844406  3.220690  1.602668  1.513167   3.766270  3.555943\n",
+       "34   216.970464  2.845412  2.329821  1.614164  1.493453   3.793286  3.509615\n",
+       "37   209.845863  1.956937  3.215590  1.708841  1.524611   4.015777  3.582837\n",
+       "335  174.734848  2.770882  2.760025  1.710865  1.624143   4.020532  3.816736\n",
+       "38   211.627049  1.961099  2.326209  1.715538  1.499931   4.031515  3.524837\n",
+       "..          ...       ...       ...       ...       ...        ...       ...\n",
+       "543  131.093045  3.193123  2.503308  4.758416  2.706784  11.182277  6.360943\n",
+       "23   224.503205  7.472670  2.648100  4.762666  1.649086  11.192264  3.875353\n",
+       "397  117.626414  4.050571  2.602593  4.788907  2.907534  11.253932  6.832705\n",
+       "331  120.648167  3.944006  2.661164  4.870656  2.857321  11.446041  6.714704\n",
+       "622  240.208357  6.285389  1.606621  4.905659  2.470669  11.528298  5.806073\n",
        "\n",
-       "[206 rows x 7 columns]"
+       "[529 rows x 7 columns]"
       ]
      },
-     "execution_count": 112,
+     "execution_count": 163,
      "metadata": {},
      "output_type": "execute_result"
     }
    ],
    "source": [
-    "parameters_df=parameters_df[(parameters_df[\"FWHM_x\"]<np.median(parameters_df[\"FWHM_x\"])+3*np.std(parameters_df[\"FWHM_x\"])/math.sqrt(len(parameters_df[\"FWHM_x\"]))) & (parameters_df[\"FWHM_y\"]<np.median(parameters_df[\"FWHM_y\"])+3*np.std(parameters_df[\"FWHM_y\"])/math.sqrt(len(parameters_df[\"FWHM_y\"])))]\n",
+    "#elimina valores extremos del dataset\n",
+    "parameters_df=parameters_df[(parameters_df[\"FWHM_x\"]<np.mean(parameters_df[\"FWHM_x\"])+2.5*np.std(parameters_df[\"FWHM_x\"])) & (parameters_df[\"FWHM_y\"]<np.mean(parameters_df[\"FWHM_y\"])+2.5*np.std(parameters_df[\"FWHM_y\"]))]\n",
     "parameters_df.sort_values('FWHM_x',ascending=True)"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 113,
+   "execution_count": 164,
    "metadata": {},
    "outputs": [
     {
@@ -1852,7 +1840,7 @@
     },
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4IAAAFRCAYAAAAhPBPJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAB9YklEQVR4nO3deZicZZ3v//e3lu6q3vfudHf2hZCNBEJYIohswsig4gIKjnjcFZ2RmTMy58yg49Fz1MFlGDk/RVTcQXBGkQODjCyCbAkQyE72dHeS3ve9qu7fH1UdO51O0km666nq+ryuqy+qnnqWTxeduut+7s2cc4iIiIiIiEjm8HkdQERERERERJJLFUEREREREZEMo4qgiIiIiIhIhlFFUEREREREJMOoIigiIiIiIpJhVBEUERERERHJMKoISkoxs++a2T9N0rlmmVmPmfkTz58ys49MxrnHXKfHzOZN9nnHuc69Zvblqb7OmGvebGbPJvOaIiIyPpWRx72OykiRk6SKoCSNme01s34z6zazDjN7zsw+YWaH/w6dc59wzv2vCZ7r8uPt45zb75zLc85FJyP/ca6T55zbPZXXyGSJgjaa+DIx8vMdM7sg8bfkH7Xv94+x7buJx0d90TGzS8ysftTzp8zMmdlZY/b7j8T2S6bqdxWRzKUyUk6Fykg5HaoISrL9pXMuH5gNfBX4PPCDyb6ImQUm+5wycRY3mZ8vzye+TIz83AKsJ/4Zdvao/S4C6sdsuxj440le7w3gr0aemFkpcAHQfCrhRUQmSGVkBlAZKalCFUHxhHOu0zn3EHA98EEzWwZHdu0wszIzezhxZ7TNzJ4xM5+Z/RSYBfwucefr781sTuJO1IfNbD/wxKhtowu8+Wb2kpl1mdlvzawkca0j7nglth2+o2pmfjP7H2a2K3E37WUzm5l4zZnZgsTjQjP7iZk1m9k+M/vHkQ/7kS4kZnaHmbWb2R4zu/pY75GZrTKzVxLXux8IjXn9GjPbMOrO8YpjnOf/M7M7xmz7rZndmnh826jfa4uZvfM4mS40s3Vm1pn474WjXnvKzL5iZn8C+oB5ZrbYzB5P/P/bbmbvHbX/XySu121mDWb2d8e67nicc8PAC8QLMcysAsgCfjVm2yJOvpD7OXD9qLum7wP+Axg6yfOIiJw0lZEqI1VGSjKoIiiecs69RPzu1EXjvPy3idfKgUrgf8QPcR8A9hO/c5rnnPv6qGPeDJwJvPUYl/wr4L8BM4AIcOcEo95K/IPuL4CCxDn6xtnv34BCYF4iy18BHxr1+nnAdqAM+DrwAzOzsScxsyzgN8BPgRLgAeBdo15fBfwQ+DhQCnwPeMjMssfJ9EviH9iWOLYYuBK4L/H6LuLvfyHwz8DPzGzGOJlKgP9H/D0rBb4J/D+L3wkc8QHgY0A+8TuDjwO/ACqAG4D/a2ZLEvv+APh44u73MuCJcbKfyB9JFGiJ/z6b+Bm9bY9zrn6cY4/nALCF+PsE8f+PPzmFfCIip0xlpMpIlZEylVQRlFRwgPgH+VjDxAuj2c65YefcM845d4JzfdE51+uc6z/G6z91zm1yzvUC/wS8d9QdreP5CPCPzrntLu4151zr6B0S57kB+AfnXLdzbi/wDeIf/CP2Oee+nxiT8ePE71c5zvXOB4LAtxO/+4PAulGvfwz4nnPuRedc1Dn3Y2AwcdxYzwCOP3+ReDfxbiQHAJxzDzjnDjjnYs65+4EdwJpxzvM2YIdz7qfOuYhz7pfANuAvR+1zr3Nus3MuAlwF7HXO/Six/6vAr4H3JPYdBpaYWYFzrt0598o41zz8fiTu6o78jPyeTwNvShTgFyV+1+cT+49se3rMue4cfS7g4WNc8yfAX5nZYqDIOff8cfKJiEwVlZFHUxk55v1QGSmnQhVBSQU1QNs42/8F2An83sx2m9ltEzhX3Um8vo94QVI2gfPOJH5X8HjKEufbN+YaNaOeHxp54JwbuVuaN865qoGGMYX66PPOBv52zIf1zMRxR0ic4z7id2sB3k+8WwcAZvZXo7rPdBC/8zjee1I9JsN4v9/o93c2cN6YjDcCVYnX30X87vE+M3vazC4Y55ojXnDOFY36eWFkO/H3bxnxO5vPOOd6EjlGto3t8vLZ0ecCrjnGNf8duBS4hfhdZxERL6iMPJrKyCOpjJRTooqgeMrMziX+IXnU9MuJO4Z/65ybB1wL3Gpml428fIxTnuhu6MxRj2cRv+PWAvQCOaNy+Yl3txlRB8w/wblbEuebPeYaDSc4bjwHgZoxXWJmjcnzlTEf/DmJO5Dj+SXwbjObTbzrza8BEs+/T/yDvDTxob8JOKorDvG70rPHbBv7+41+/+uAp8dkzHPOfRLAObfOOfd24l1ifkN83MJJcc4NEL8L/JfADOfctsRLzyS2reDkxz6MnLsPeBT4JCrkRMQDKiOPSWXkBKiMlBNRRVA8YWYFZnYN8btwP3PObRxnn2vMbEHig74TiAKxxMuNxMcYnKybzGyJmeUAXwIeTHRBeQMImdnbzCwI/CMweizBPcD/MrOFFrdiTL9/Euf5FfAVM8tPFCC3Aj87hZzPEx+f8VkzC5rZdRzZFeX7wCfM7LxEntxE9vzxTpboctKS+D0ec851JF7KJV4wNQOY2YeI3yUczyPAIjN7v5kFzOx6YAnH7jbycGL/DyR+h6CZnWtmZ5pZlpndaGaFLj6gvYs//789WX8E/hp4btS2ZxPbDjrnTnSX+nj+B/DmRBcmEZGkUBl5QiojJ05lpByTKoKSbL8zs27id8L+J/HB1B86xr4Lgf8Ceoh/6P9f59yTidf+D/CPie4UJzOT1k+Be4l3PwkBn4X4DG3Ap4gXAg3E736OHjz9TeIF2O+JfyD/AAiPc/7PJI7dTfyD9hfEB6yfFOfcEHAdcDPxLkHXE++GMfL6euCjwHeAduLdg24+wWl/AVye+O/IebYQH6PxPPEvDsuBPx0jUyvxLiJ/C7QCfw9c45xrOcb+3cQHkt9A/E7pIeBr/PnLwweAvWbWBXyCeJeYU/E08Tumo++YP5vY9swpnhOAxLgQLRYsIsmiMnICVEaeFJWRckzmTjiuWERERERERKYTtQiKiIiIiIhkGFUERUREUpiZXWXxxaZ3jjczpMUX4m5OzGy4wcw+4kVOERFJLwGvA4iIiMj4ErMz3gVcQXxM1jozeygxdmm0+51ztyQ9oIiIpC21CIqIiKSuNcBO59zuxAQZ9wFv9ziTiIhMA6oIioiIpK4ajlyEup4jF6ge8S4ze93MHjSzmeO8LiIicoRp2zW0rKzMzZkzx+sYIiKSBC+//HKLc678xHtOS78DfumcGzSzjwM/Bi4du5OZfQz4GEBubu45ixcvTm5KERFJuuOVj9O2IjhnzhzWr1/vdQwREUkCM9vndYYp0gCMbuGrTWw7LLF+2Yh7gK+PdyLn3N3A3QCrV692KiNFRKa/45WP6hoqIiKSutYBC81srpllEV98+qHRO5jZjFFPrwW2JjGfiIikqWnbIigiIpLunHMRM7sFeAzwAz90zm02sy8B651zDwGfNbNrgQjQBtzsWWAREUkbqgiKiIikMOfcI8AjY7bdPurxPwD/kOxcIiKS3jKqIjg8PEx9fT0DAwNeR5EUFwqFqK2tJRgMeh1FREREMpS+u8pEncp314yqCNbX15Ofn8+cOXMwM6/jSIpyztHa2kp9fT1z5871Oo6IiIhkKH13lYk41e+uGTVZzMDAAKWlpfqHJMdlZpSWlurum4iIiHhK311lIk71u2tGVQQB/UOaJPfccw9tbW1ex5gy+jsRERGRVKDvJDIRp/J3knEVQa/5/X5WrlzJ0qVLOeuss/jGN75BLBYDYP369Xz2s5895rF79+7lF7/4xTFfP3DgAO9+97sBuPfee7nllltOO+/oc4742te+RjgcpqSk5KTOdckll3DGGWewcuVKVq5cyYMPPsjnPvc5vv3tbx/e561vfSsf+chHDj//27/9W775zW+yd+9eli1bdsT5vvjFL3LHHXcAcPPNN5OTk0N3d/fh1//mb/4GM6OlpeWkcoqIiIjI9DLdGzFOhSqCSRYOh9mwYQObN2/m8ccf59FHH+Wf//mfAVi9ejV33nnnMY89XkUwEolQXV3Ngw8+OKl5xzvn5z//eW688cZTOt/Pf/5zNmzYwIYNG3j3u9/N2rVree655wCIxWK0tLSwefPmw/s/99xzXHjhhRM694IFC/jtb397+FxPPPEENTU1p5RTRERERNSIMZ0bMVQR9FBFRQV333033/nOd3DO8dRTT3HNNdcA8PTTTx/+o1u1ahXd3d3cdtttPPPMM6xcuZJvfetb3HvvvVx77bVceumlXHbZZUf9wdXV1XHJJZewcOHCw5XNsfvccccdfPGLXwRg586dXH755Zx11lmcffbZ7Nq164j9BwYG+NCHPsTy5ctZtWoVTz75JBD/h3vddddx1VVXsXDhQv7+7/9+wu/BhRdeyPPPPw/A5s2bWbZsGfn5+bS3tzM4OMjWrVs5++yzJ3SuG264gfvvvx+Ap556irVr1xIIHD0f0r59+1i4cCEtLS3EYjEuuugifv/73084s4iIiEimUCPG9G3EUEXQY/PmzSMajdLU1HTE9jvuuIO77rqLDRs28MwzzxAOh/nqV7/KRRddxIYNG/jc5z4HwCuvvMKDDz7I008/fdS5X3rpJX7961/z+uuv88ADD7B+/frjZrnxxhv59Kc/zWuvvcZzzz3HjBkzjnj9rrvuwszYuHEjv/zlL/ngBz94eFDqhg0buP/++9m4cSP3338/dXV1x7zGSAW3tbWV6upqAoEA+/fv57nnnuOCCy7gvPPO4/nnn2f9+vUsX76crKwsAHbt2nX42JUrV/Ld7373iHMvWrSI5uZm2tvb+eUvf8kNN9wwbobZs2fz+c9/nk9+8pN84xvfYMmSJVx55ZXHfW9EREREMp0aMbxpxPjhD3/I3/zN3xx+/v3vf/9wXeB0ZNTyEaPVbfstfd0HJvWcOfnVzFz89kk519q1a7n11lu58cYbue6666itrR13vyuuuOKYzdxXXHEFpaWlAFx33XU8++yzvOMd7xh33+7ubhoaGnjnO98JxNciGevZZ5/lM5/5DACLFy9m9uzZvPHGGwBcdtllFBYWArBkyRL27dvHzJkzjzrHz3/+c1avXn3EtgsvvJDnnnuO5557jltvvZWGhgaee+45CgsLWbt27eH95s+fz4YNGw4/H/kQGO26667jvvvu48UXX+R73/veuL8rwEc+8hEeeOABvvvd7x5xzlTTXP9CUq5TXnt+Uq4jIiLilWSVqSMmu2xNle+uJ2rEWLt2LT09PYRCIb761a9yxx138PDDDwPxCtgrr7zC66+/TklJCXv37j3iHC+99BKbNm0iJyeHc889l7e97W2UlZUdM8uNN97Ibbfdxjvf+U4GBgaIxWJH5BrdiLFt2zauvPLKw99dN2zYwKuvvkp2djZnnHEGn/nMZ8b97nrjjTcSDocB+MMf/jBuI0ZDQwPPP/88hYWF4zZijDh06BB/93d/d/j5okWLeOihhw43Ytx00008+uijR2V473vfy1e+8hX+5V/+hWAwyI9+9KPjfs+dKLUIemz37t34/X4qKiqO2H7bbbdxzz330N/fz9q1a9m2bdu4x+fm5h7z3GNnDzIzAoHA4X7dwKQtkZCdnX34sd/vJxKJTPjYkSb2jRs3smzZMs4//3yef/75k2paH3H99dfzT//0T1xxxRX4fMf+8+7r66O+vh6Anp6ek7qGiIiIiBxppBHjzjvvpKOjY9yWLZhYI0Y4HD7ciHEs4zVi5OTkHLHPs88+y0033QQcuxEjFAodbsQYz+iuoSMNLKMbMS644AIuuOCCw8/Ha8QY+fnEJz5x1PlHN2JcdNFF42bIy8vj0ksv5eGHH2bbtm0MDw+zfPnyY743E5WxLYKT1XJ3Opqbm/nEJz7BLbfcclSlbdeuXSxfvpzly5ezbt06tm3bxsyZM48YUHoijz/+OG1tbYTDYX7zm9/wwx/+kMrKSpqammhtbSUvL4+HH36Yq666ivz8fGpra/nNb37DO97xDgYHB4lGo0ec76KLLuLnP/85l156KW+88Qb79+/njDPO4JVXXjmt9+HCCy/kjjvuYN68efj9fkpKSujo6GDz5s18//vfP6lzzZ49m6985Stcfvnlx91vpK/47Nmz+ehHP3r4TpWIiIhIKkqF765wZCPG1q1bD2+/7bbbeNvb3sYjjzzC2rVreeyxx8Y9fjo2YsycOZNvfOMbFBQU8KEPfeikclx//fWcc845fPCDHzxuI8ZHPvIR/vf//t8sXrz4pK9xLGoRTLL+/v7DMy9dfvnlXHnllXzhC184ar9vf/vbLFu2jBUrVhAMBrn66qtZsWIFfr+fs846i29961snvNaaNWt417vexYoVK3jXu97F6tWrCQaD3H777axZs4YrrriCxYsXH97/pz/9KXfeeScrVqzgwgsv5NChQ0ec71Of+hSxWIzly5dz/fXXc++99x7xj+hULV++nJaWFs4///wjthUWFh63O8CxfPzjH2f+/PnHfP3pp59m3bp1hyuDWVlZ/OhHPzql7CIiIiKZYiKNGJ///Oc599xz2bZtG/n5+afUiNHf389vfvMb1q5de0QjxuDg4OGb96MbMQAGBwfp6+s74nwjjRjAEY0Yp+vCCy/k4YcfpqSk5IhGjOeff/6ke7ONNGJ86lOfOu5+5513HnV1dfziF7/gfe973+nEPyxjWwS9MraVbbRLLrmESy65BIB/+7d/G3efJ5544ojnN9988+HHc+bMYdOmTYe3j35ttM9+9rPjTvW7cOHCo84PHD5nKBQat8I09lrHal176qmnxt3u9/vp6uo6Ytu99957xPPRv9uI0WMEx+4/Ymzfc4A3v/nNvPDCn8cJ/Pu///u4x4qIiIhkupFGjOHhYQKBAB/4wAe49dZbj9rv29/+Nk8++SQ+n4+lS5dy9dVX4/P5Djdi3HzzzRQXFx/3WiONGPX19dx0002H55UYacSoqak5qhHj4x//OLfffjvBYJAHHnjgiFa1T33qU3zyk59k+fLlBAKBSW/EeP/733/Etp6enlNuxJiI9773vWzYsOGE7+NEmXNuUk6UalavXu3GzpK5detWzjzzTI8SSbpJhb8XTRYjMjFm9rJzbvWJ9xQYv4wUme7ScbKYVPguIqnjmmuu4XOf+xyXXXbZuK+P9/dyvPJRXUNFRERERERSVEdHB4sWLSIcDh+zEngq1DVURJJCrZsiIiIiJ6+oqOjwbKeTSS2CIiIiIiIiGUYtgiJymHMxBnqb6euqY6i/nchwH2D4/FlkhQrJziklt2Am/mDY66giIiIichpUEZRTcs8993Ddddcdc0FQSS+D/W0073+OtsbXGB7oOLzd54/PrBWLDYMbWcPHCOVWkFs0i4KSRRSUnUFAFUMRERGRtJLUrqFmdpWZbTeznWZ223H2e5eZOTNbPWrbPySO225mb01O4snn9/sPryN41lln8Y1vfOPwIpnr168fd1mHEXv37uUXv/jFMV8/cOAA7373u4H4cgq33HLLaecdfc4RX/va1wiHw0mvBN588808+OCDSb3mdBeNDtF28BU2Pfs1Gvc/Q07eDGYvfQ9LLvw7Vl3+f1h12ZdZddmXOfvy/8Pyi/+Rhed8lOoFV5IdLqGjaTN7Nv6c1576ItvXfZfGfX9kaFQlUkRERCRV3HPPPbS1tXkdI6UkrUXQzPzAXcAVQD2wzswecs5tGbNfPvDXwIujti0BbgCWAtXAf5nZIufcsRflm4DJnrxiIpNUhMNhNmzYAEBTUxPvf//76erq4p//+Z9ZvXr14fVSxjNSERy9ZsmISCRCdXX1pFeUxjvn5z//+dM+bzQaxe/3n/Z55NT1dx+k9eArxCKDlM+8gKq5byErVDTuvmY+skKFZIUKKShdBMS7kfZ27qezeSudzVuo3/476rf/jtyi2ZRUrqSocjlZocIk/kYiIiIy2fx+P8uXLz+8juBf/dVf8bnPfQ6fz8f69ev5yU9+wp133jnusXv37uW5554b97srxBscPvvZz/Lggw9y7733sn79er7zne+cVt7R5xzxta99jdraWk8aMa655pqjGlVSRTK7hq4BdjrndgOY2X3A24EtY/b7X8DXgP8+atvbgfucc4PAHjPbmTjf81OeegpVVFRw9913c+655/LFL36Rp59+mjvuuIOHH36Yp59+mr/+678GwMz44x//yG233cbWrVtZuXIlH/zgBykuLubf//3f6enpIRqN8uMf/5hrrrnm8MLrdXV1XHLJJTQ0NHDTTTfxhS98gb179x6xzx133EFPTw9f/OIX2blzJ5/4xCdobm7G7/fzwAMP4Pf7D+8/MDDAJz/5SdavX08gEOCb3/wmb3nLW7j33nt56KGH6OvrY9euXbzzne/k61//+lG/75w5c7j++ut5/PHH+fu//3tKSkr4whe+wODgIPPnz+dHP/oReXl5fOlLX+J3v/sd/f39XHjhhXzve9/DzJL3P2aac87R1bqdzqbNBLMLqZi1lpoFV530ecx85BXNIa9oDjULr2agt5n2xtdpP/Qaddt/S932h8grmkNx1VkUVy6fgt9EREQks6gR48TUiDFxyewaWgPUjXpen9h2mJmdDcx0zv2/kz02Xc2bN49oNEpTU9MR2++44w7uuusuNmzYwDPPPEM4HOarX/0qF110ERs2bOBzn/scAK+88goPPvggTz/99FHnfumll/j1r3/N66+/zgMPPMCJFg++8cYb+fSnP81rr73Gc889x4wZM454/a677sLM2LhxI7/85S/54Ac/yMDAAAAbNmzg/vvvZ+PGjdx///3U1dWNdwlKS0t55ZVXuPzyy/nyl7/Mf/3Xf/HKK6+wevVqvvnNbwJwyy23sG7dOjZt2kR/fz8PP/zwxN5MOSHnHO2HXqWzaTM5BTOpPE4r4MkK5ZYzY95lLLnwVpau/e9Uz7+CSKSfum2/4fWnv0zj3qfpad9DLDo8KdcTERGR5BppxPjOd76Dc46nnnqKa665BoCnn36alStXsnLlSlatWkV3dze33XYbzzzzDCtXruRb3/oW9957L9deey2XXnopl112GXv37mXZsmWHzz/SiLFw4UL++Z//GeCofe644w6++MUvArBz504uv/xyzjrrLM4++2x27dp1xP4DAwN86EMfYvny5axatYonn3wSiA+huu6667jqqqtYuHAhf//3fz/u7ztnzhw+//nPc/bZZ/PAAw/w+9//ngsuuICzzz6b97znPfT09ADwpS99iXPPPZdly5bxsY99DOfc5L7xUyRllo8wMx/wTeBvT+McHzOz9Wa2vrm5efLCeWDt2rXceuut3HnnnXR0dBAIjN94e8UVVxyzmfuKK66gtLSUcDjMddddx7PPPnvM63V3d9PQ0MA73/lOAEKhEDk5OUfs8+yzz3LTTTcBsHjxYmbPnn14TZPLLruMwsJCQqEQS5YsYd++feNe5/rrrwfghRdeYMuWLaxdu5aVK1fy4x//+PAxTz75JOeddx7Lly/niSeeYPPmzcfMLRM3Ugnsad9DQekZlNaci883NXe2QrkVzJh/BUsv/FuWXPi3zJh3OdHIAG0HX6HhjYdpqX+JgZ7GtPmgFBERkTg1YkyfRoxkdg1tAGaOel6b2DYiH1gGPJXoBlgFPGRm107gWACcc3cDdwOsXr06Lb5h7t69G7/fT0VFBVu3bj28/bbbbuNtb3sbjzzyCGvXruWxxx4b9/jc3Nxjnntsd0ozIxAIHJ6cBjj8j+F0ZWdnH37s9/uJRCLj7jeS1znHFVdcwS9/+csjXh8YGOBTn/oU69evZ+bMmXzxi1+ctIyZrrN5y+FKYGHF0qR1tw3nVRFeUEUgO5+hgXZ6O/bR21lHX1cd/kCYvOI55BXPxx/IPvHJREREJCWNNGLceOONXHfdddTW1o6730QaMYDDjRjveMc7xt13vEaMsZ599lk+85nPAMduxAAON2LMnDnzqHOM14gBMDQ0xAUXXADEGzG+/vWv09fXR1tbG0uXLuUv//Ivx82dSpLZIrgOWGhmc80si/jkLw+NvOic63TOlTnn5jjn5gAvANc659Yn9rvBzLLNbC6wEHgpidmnRHNzM5/4xCe45ZZbjvpSvmvXLpYvX87nP/95zj33XLZt20Z+fj7d3d0TPv/jjz9OW1sb/f39/OY3v2Ht2rVUVlbS1NREa2srg4ODh+9Y5OfnU1tby29+8xsABgcH6evrO+J8F110ET//+c8BeOONN9i/fz9nnHHGKf3u559/Pn/605/YuXMnAL29vbzxxhuHK31lZWX09PRoltBJ0tuxj66WbeQWzUlqJXA0MyM7XELJjFXULnobpTXnEcwuoLN5Kwd2PErboQ1EhnqTnktEREQmbnQjxmi33XYb99xzD/39/axdu5Zt27aNe3y6N2Js2LCBDRs2sGXLFn7wgx8cbsR48MEH2bhxIx/96EfTphEjaRVB51wEuAV4DNgK/Mo5t9nMvpRo9TvesZuBXxGfWOY/gU+f7oyhXunv7z+8fMTll1/OlVdeyRe+8IWj9vv2t7/NsmXLWLFiBcFgkKuvvpoVK1bg9/s566yz+Na3vnXCa61Zs4Z3vetdrFixgne9612sXr2aYDDI7bffzpo1a7jiiitYvHjx4f1/+tOfcuedd7JixQouvPBCDh06dMT5PvWpTxGLxVi+fDnXX38999577xH/iE5GeXk59957L+973/tYsWIFF1xwAdu2baOoqIiPfvSjLFu2jLe+9a2ce+65p3R++bOhgQ5aD75Cdk45JTNWpcTEO+bzk1tYS8XsNzFj/hXkFNTS07abAzsfo+3gBqKRQa8jioiIyBhqxJhejRhJXVDeOfcI8MiYbbcfY99Lxjz/CvCVycwzkZmSJls0euz66yWXXMIll1wCwL/927+Nu88TTzxxxPObb7758OM5c+Ycng305ptvPuK10T772c+Ou17hwoULjzo/cPicoVCIH/3oR0e9PvZax+oXvXfv3iOeX3rppaxbt+6o/b785S/z5S9/+ajt995777jnlWOLRYdpqX8Rvz+bstrziA/FTS3B7AJKa1ZTWLGErpZt9LTvordzP8WVK8gtmp0SFVcREZFMNdKIMbJ8xAc+8AFuvfXWo/b79re/zZNPPonP52Pp0qVcffXV+Hy+w40YN998M8XFxce91kgjRn19PTfddNPhGUlHGjFqamqOasT4+Mc/zu23304wGOSBBx7A5/vzd51PfepTfPKTn2T58uUEAoFJa8QYHIzfsP7yl7/MokWLDjdiVFVVpVUjhk3XyRpWr17txg4w3bp1K2eeeaZHiSTdpMLfy+lOE93asI7ezv1UzL6YUG75MfdLxk2Rif4uQwNdtB96lcG+FkK5FZTWnIs/cHS//2Px4gaPeM/MXnbOHXsOcznCeGWkyHQ32UsvnMhklEep8F1E0sd4fy/HKx9Tr3lARCZFf/dBejv3U1C2+LiVwFSTFSqgYvbFFFetZLCvlYO7/ouB3qYTHygiIiIiE5bUrqEikhyx6BBtB18hmF1AYfmJ7yQm+y7piZgZ+SXzCeWW01z3Ak37nqW4aiX5JfO8jiYiIiIyLWRci+B07Qorkyvd/046mjYRjQxSWr06JccFTlQwu4CquW8hlFdB+6FX6Wjakvb/b0RERERSQfp+QzwFoVCI1tZWfZGU43LO0draOu56NOlgsL+dnvY95JfMJyt8/EHZ6cDnD1I+cy25RbPpatlKR+NG/RsWEZGMoTJPJuJU/k4yqmtobW0t9fX1NDc3ex1FUlwoFDrmQqipzDlH+8FX8fmzKSxf4nWcSWNmlMw4B7MA3W07MF+Aoorp8/uJiIiMZ6QRo7S0VLNoyzGdaiNGRlUEg8Egc+fO9TqGyJTp66xjaKCd0urV+PxBr+NMKjOjuOosnIvS1bIVvz+L/NIFXscSERGZMqneiJHsdX/9gVNb+iETnEojRkZVBEWmMxeL0tG8mWCoiJzCWV7HmRLxlsGziUWHaG98jUBWHuH8Kq9jiYiITIlUb8RI/pIcK5N6vekuo8YIikxnPe17iA73UVSxbFp3HzEzSmvOJRgqoqXhRYYHu7yOJCIiIpJ2VBEUmQZi0WE6W7aSnVNOKLfC6zhTzucLUD7zAsz8tNS/QCwW8TqSiIiISFpRRVBkGuhq3UEsOkRR5fRuDRwtEMyhtOZchge7aT+4wes4IiIiImlFFUGRNBeNDNDd+gY5BTVkh0u8jpNU4bxKCsoW09u5j97Oeq/jiIiIiKQNVQRF0lxnyzaci1FYvtTrKJ4oLD+TrFAx7YdeJRoZ8DqOiIiISFpQRVAkjUUjA/S07yG3aDbB7Hyv43jCzEdpzWpcLELbgVe08K6IiIjIBKgiKJLGulp3gItRUHaG11E8FcwuoLBiKf09B+lo2uR1HBEREZGUp4qgSJqKRgbpadtFTsFMgll5XsfxXH7JAoKhQuq2/UZdREVEREROQBVBkTTV3bYL56IUlC32OkpKMPNRMuNshge7ObDz917HEREREUlpqgiKpKFYdJjutp2E86vJChV4HSdlZIdLKKtdQ1PdnxjobfY6joiIiEjKUkVQJA11t+/GxYYpVGvgUarnX4nPF6RhxyNeRxGZFGZ2lZltN7OdZnbbcfZ7l5k5M1udzHwiIpKeVBEUSTOxWITu1h2EcivJChd7HSflBLMLqJp7CR1Nm+hu3+11HJHTYmZ+4C7gamAJ8D4zWzLOfvnAXwMvJjehiIikK1UERdJMb8c+YtHBjJ8p9HgqZ19MMLuQ+u0P41zM6zgip2MNsNM5t9s5NwTcB7x9nP3+F/A1QDMliYjIhAS8DiAiE+eco7ttJ1mhYrJzyryOk7J8/ixqFlzF3s33037odUpmrPQ6ksipqgHqRj2vB84bvYOZnQ3MdM79PzP778kMJ5JOnHNEhroZ6G1maKCd4cFuopEBXCyKmQ9fIJtgVj7ZOaWE86oIZOV6HVlkSiW1ImhmVwH/CviBe5xzXx3z+ieATwNRoAf4mHNui5nNAbYC2xO7vuCc+0TSgoukiP6eg0SGeiitWYOZeR0npZVUn03j/mdo2PEIRZXL8Pl030umHzPzAd8Ebp7Avh8DPgYwa9asqQ0mkkIGeptoaVhPS8OLRIf7APD5swlmF5CdU4rPF8DFYkQjAwz2tdDXVUc7kJ1bTkHJQkJ5VSpzZVpK2jejUeMcriB+R3OdmT3knNsyardfOOe+m9j/WuKF21WJ13Y551YmK69IKupu3YE/mENOQY3XUVKemY/aRW9jx8vfp7VhHeUzL/A6ksipaABmjnpem9g2Ih9YBjyV+KJaBTxkZtc659aPPpFz7m7gboDVq1e7qQwt4jXnYnQ2b6Gp7jm6W3eA+QjllFNYdgah3AoCx1h/N95q2ENfVwM97btprnuO7JwyiivPIitclNxfQmSKJfMW+eFxDgBmNjLO4XBF0DnXNWr/XEAFlUjCYH8bg30tFFWuIN4IICeSX7KQ3MJZHNrzBKU156pVUNLROmChmc0lXgG8AXj/yIvOuU7gcD9xM3sK+LuxlUCRTOFiUVoPrOfgnicY6m8jmF1I9YKrKKtZQ0fz5hMeb2YEs/MpLF9MQdkiejv20tG0hUN7nqCwfAkFZWeodVCmjWR+KzrhOAcAM/s0cCuQBVw66qW5ZvYq0AX8o3PumSnMKpJyult3YL4AeUVzvI6SNsyMGfOuYOerP6DtwCuU1a7xOpLISXHORczsFuAx4sMqfuic22xmXwLWO+ce8jahSGpwsSgtB9ZzaPcfGBpoJ6egltpFb6OofCnm85/SOc185BXPI6eglraDr9LZvJnBvmbKas/D58+a5N9AJPlS7va4c+4u4C4zez/wj8AHgYPALOdcq5mdA/zGzJaOaUHU+AeZtiJDvfR1NZBfugCfP+h1nLRSUHYGOQW1HNzzB0qrzznlLwQiXnHOPQI8Mmbb7cfY95JkZBJJFc45Opo20bDjEQb7WsgpmMmsM99JQdniSWu58/mzKKs9j572CtoOvsqhPU9SMetNmkxG0l4y+5edaJzDWPcB7wBwzg0651oTj18GdgGLxh7gnLvbObfaObe6vLx8snKLeK67bScA+SULPE6SfkZaBYf622g7+KrXcUREZJL0dOxj+7q72P3aTzDzM3/Vh1h83mcoLD9zSrpv5hXPpWL2xcQigzTufZrhwa4THySSwpJZETw8zsHMsoiPcziiS4uZLRz19G3AjsT28sRkM5jZPGAhoJWiJSPEosP0dOwlp6CWQDDH6zhpqbD8TML51Rzc8wdcLOp1HBEROQ3DQz3s3fQrtr/0HYb625m95N0sueBzFJUvmfLxe6HcMirmvBnnYjTu/SPDQz1Tej2RqZS0rqETHOdwi5ldDgwD7cS7hQJcDHzJzIaBGPAJ51xbsrKLeKmnfQ8uFqGgdOGJd5ZxxVsFL2f3az+hrfE1Smec7XUkERE5Sc7FaKl/kYYdjxKNDlI55y3MmHcZ/kB2UnNkhQqpnHMxjXufpnnfs1TOvQR/IJTUDCKTIaljBE80zsE599fHOO7XwK+nNp1I6nEuRnfbTrJzyskKF3sdJ60VVSwllFtJ496nKKlapVnfRETSyGB/O3s33UdP+27yi+cz88x3Es6r9CxPMLuA8llradr7R5r2P0vl7DdrDL+kHc1BL5LC+rrqiUb61Ro4Ccx8VM6+mP7ug3S37fI6joiITIBzjpaGdWx57hv0dTUwe+l7Wbj6455WAkdkh0som3k+wwNdNNc9r6EHknZUERRJUc45ulp3EMjKI5RX5XWcaaFkxioCWXk07nva6ygiInIC0cggu1//Gfs2/4qcghqWXHgrZTXnplSPjnBeFaXVqxnsa6bt4Cs4pyWwJX2k3PIRIhLX076b4YEOSmaoG+Nk8fmDlM+8kIO7fk9/T2NK3FEWEZGjDfa3sevVH9Hf00jNwr+gcs6bMUvN9ovcolkMD/XQ1bKVrHCxZviWtJGa/6JEhMa9T+PzZ5NTONvrKNNK+cwLMF+Apv3PeB1FRETG0d22i20v3MnQQCcLz/4wVXPfkrKVwBGF5WcSzptB+6HXGeht9jqOyISk9r8qkQw10NtEZ8tW8orn4dMC6JMqmJVHafU5tB54WdN+i4ikmLaDG3jj5bvxB3NYfN5nKCg7w+tIE2JmlNacSyArl5b6F4kM93kdSeSEVBEUSUGN+/6I+QLkl8zzOsq0VDn7YlwsQnPd815HERGRhJaGdezZ+Avyiuaw+LzPEMot9zrSSYkPP7gA56K01L1ALDrsdSSR41JFUCTFDA/10HrgZUpnnKN1iaZIKLeCwrIzaa57jlgs4nUcEZGM13rwFfZt/hUFpQtZePaHCQTDXkc6JcHsAkqrVzM00E7d9oe8jiNyXJosRiTFNNc9h4tFqJxzMd3tu72OM21VzH4TO17+Pu2HXqO0+hyv44iIeK65/oWkXq+89nwAOpq3sHfT/eQXz2f+ypvTfj2+nIIa8ksX0VL/AnlFc1TGSMpSRVAkhcSiwzTvf47CsjMJ5VaoIngKJvpFxjlHICuPA7t+Tyx28t13Rr7AiIjIqevramDPaz8jJ7+a+avSvxI4oqhiKS4WYd+WX5OTX0M4X8tASepR11CRFNJ6YB2R4V4q51zidZRpz8zIK57HUH8bQ/0dXscREck4w4Nd7Hz1R/izclmw6kPTajiEmY95K27EH8hm12s/IRoZ8DqSyFFUERRJES4W5dDep8ktnEVe8Vyv42SEvKLZmPnpbt/ldRQRkYziXIzdr/+c6HAfC1beTDC7wOtIky6YXcC8FTcx2N/K3s0PaLF5STmqCIqkiPamTQz1t1E55xItIJ8kPn8WOYUz6eusIxYd8jqOiEjG6GzeSk/7bmYteRc5BTVex5ky+SXzqVlwFR2Nr9O0/1mv44gcQRVBkRTgnKNxz5Nk55RTVLHU6zgZJb9kPs5F6enY53UUEZGMMNDbRFfLNkpr1mTERCqVcy6hsHwp9W88TE/HXq/jiBymiqBICuhu20lfdwOVc96Mmf5ZJlNWqIiscCk97bvUbUdEZIrFosO0HniZQFYuM894u9dxksLMmLPserJDxex+7WcMD/Z4HUkEUEVQJCU07n2KQFY+pTPO9jpKRsovmUdkqJeB3kavo4iITGsdTRuJDvdRWr0afyDL6zhJEwiGmXfWB4gM97Jn489xLuZ1JBFVBEW81tfVQFfrG1TOftO0mTY73eTk1+DzZ9PTvsfrKCIi09ZAXws97XvIL1lIdk6Z13GSLqeghllnvpPutp0c2PV7r+OIqCIo4rVDe5/C58+mrPYCr6NkLPP5yS2aRX/3QU3xLSIyBZyL0X7wVfyBMIUVS7yO45mymjWU1pzLod1/oLN5q9dxJMOpIijiocG+NtoPvUZ57fkEgmGv42S0vKI5gKNXk8aIiEy67radDA92UVx1Fj5fwOs4npq1+J2E82vY/frP6es+4HUcyWCqCIp4qHHfHzHzUTH7Iq+jZLxgdgHZOWX0dOzVpDEiIpMoGhmks3kbobxKwvnVXsfxnM8fZMGqD+EPhNj5yg8ZGuj0OpJkKFUERTwyPNhDS8NLlMw4m6xQoddxhHirYGSoh8G+Fq+jiIhMG50tW3GxYYorV2id3ISsUCELzv5vRCMD7Hz1R0Qjg15HkgykiqCIRxr3/REXi1A19xKvo0hCuKAG8wXp6dCkMSIik2F4sJuett3kFc8lmF3gdZyUkpNfzbwVN9Hfc5Ddr/8MF4t6HUkyTFIrgmZ2lZltN7OdZnbbOK9/wsw2mtkGM3vWzJaMeu0fEsdtN7O3JjO3yGSLDPXSXPcniqvOIpRb4XUcSfD5AuQWzqSvq4FYdMjrOCIiaa+zeQtmPgrLM3eCmOMpLF/MrMXvoKtlmyqDknRJqwiamR+4C7gaWAK8b3RFL+EXzrnlzrmVwNeBbyaOXQLcACwFrgL+b+J8Immpcd8zxKLDzJh3mddRZIy84rngYvR27vc6iohIWhsa6KSvq578kgX4AyGv46Ss8pkXUHvGtXQ0bVJlUJIqmS2Ca4Cdzrndzrkh4D7g7aN3cM51jXqaC4zM2PB24D7n3KBzbg+wM3E+kbQTGe6jaf+zFFcuJ5xX5XUcGSMrVERWqJie9j2aNEZE5DR0Nm/FfAHySxd6HSXlVc6+SJVBSbpkVgRrgLpRz+sT245gZp82s13EWwQ/ezLHiqSDpn3PEosOUqXWwJSVWzyH4cEuhgbavY4iIpKWhgY66e9uSLQGZnsdJy2Mrgzu3HCv1rWVKZdyk8U45+5yzs0HPg/848kca2YfM7P1Zra+ubl5agKKnIbocD9N+5+hqGIZOZpCO2XlFszEzE9PuyaNERE5Fd2tOzDzqzXwJFXOvohZS95NV+sbbF/3fxns1w1JmTrJrAg2ADNHPa9NbDuW+4B3nMyxzrm7nXOrnXOry8vLTy+tyBRo3P8s0cgAM+Zd7nUUOQ6fP0hOYS19nXXEosNexxERSSuR4X56O/eTWzwHvz/L6zhpp7z2PBas+m8M9rez9YVv09m8zetIMk0FknitdcBCM5tLvBJ3A/D+0TuY2ULn3I7E07cBI48fAn5hZt8EqoGFwEtJSS0ySSLDfTTu+yOF5UvJKVDP5lSXVzSX3o599HXVxyeQERGRCelu2wk4CkrUGniqCsvO4MzzPsvu137Kzld/QPnMC6hZ+LYTdrNtrn8hSQllOkhaRdA5FzGzW4DHAD/wQ+fcZjP7ErDeOfcQcIuZXQ4MA+3ABxPHbjazXwFbgAjwaeecRtFKWjm05ylikUFqFlzldRSZgKxwCcHsfHo69qoiKCIyQbHoMD3tu8kpqCWQlet1nLQWyi1n8XmfoWHnozTte5bO5q3ULrqGosoVmJnX8WQaSGaLIM65R4BHxmy7fdTjvz7OsV8BvjJ16USmzvBgF037n6WkaiXhfM0Umg7MjNyiOXQ0bmR4sEsLIYuITEBPxx5cLEJ+6SKvo0wLPn+QmWdcS3HFcvZv+w92v/4zcgpmMmP+5RSWLcZsakd5xWIRYpEBotFhcDHM/PgC2fgDIVVGp4GkVgRFMtXBPU/gXJQZC670OoqchNzCWXQ0bqK3Yz9Flcu8jiMiktKci9HdupPsnHKyw8Vex5lW8orncub5f0NrwzoO7v4Du179EdnhUkpr1lBctYJQTtlpnd/FogwPdTM80MXwYCdDg10MD3YRHe4bd3/zBcgOlxDOryanoFYzw6YpVQRFpthQfzstdS9QVn3uaX9QS3L5AyFCeZX0du6jsGKp7n6KiBxHX2c90Ug/JTNWeR1lWjLzUVZ7HqXVq2lvfJ3m+hc4sPNRDux8lOyccvKL5xGLDRHIKsAfyMbnz8LnDwKGczFcLIKLDRMZ7iMy1EdkuJfhwW6GB7uIDPXw5+W7jWB2PtnhEoJFc/AHw/j8WRg+nIsSjQwyPNjJQG8z7Yc20NG4kfySBRSULcKnyYHSiiqCIlPswO7/AmDGfM0Umo7yiubQUv8CA72NhPPUrVdE5Fi623YSyMonpM/KKWU+PyUzVlEyYxVD/e20N22iu3UH7Y2vnfTag4GsXILZheQU1BDMLiCYXUgwO29CXU6dcwwPdtLV+gZdrdvp7dxHac0aQrmauT9dTLgiaGbLgXcTn7XTP+ol55z78GQHE5kO+nsaaT2wnoqZF5IVKvI6jpyCcF4VPn8WvR37VBGUk6ayUzLFUH8HQwPtFFedNeHeE5rh8vRlhYupnH0RlbMvwrkYh/Y8yfBQN7HoELHoENHIEOAwXwCfz4/5AgSCOQSCOfiDOac1xtDMyAoVUVazhsGShbQ2vETTvj9SXHUW+SULJu+XlCkzoYqgmV0F/Hac/Y14O7IKM5FxNOx4BJ8/S+sGpjHz+ckpmElPxx5i0SF1e5EJU9kpmaSnYzdmfnILZ3kdJWOZ+Qhk5XoyW2t2uJiquZfSemA97Ydew8WiFJSdkfQccnImehvgfwBBoId4ATYMDAG9wL6piSaS3rrbdtLZvIUZcy/VFNppLq9oNrgYvV31XkeR9KKyUzJCLDpMb2cdOYW1ulmWwXz+IGW155FTMJOOpk10t+32OpKcwEQrgmcB3cDsxPNXgMXEC7RPTkEukbTmXIz67Q+TFSqiYtabvI4jpykYKiKYXUBvh767y0lR2SkZobezDheLkFc8z+so4jEzH6U15xLKq6L90AYGepu8jiTHMdGKYAjY4ZzrAGJAtnNuH9AA3DFF2UTSVtuhDfR1N1C94KrEjF2SzuJrCs5mqL+N4cEur+NI+lDZKdOec46e9t0EQ4VkhbRkhMTLzLKaNQSz82ipf/GkJ7CR5JnoZDEdwMhqyq3AMjP7PHAGEJmCXCJpKxYd5sCOR8nJr9EU2tPIn9cU3EdR5fKkTXJQXnt+Uq4jU6IDlZ0yzQ31tzM82Elx1SotsSOHxbuJns+h3X+g9cDLlM+8UH8fKWiiLYJvALPMrAB4nviYh/9NvCK5cYqyiaSlpv3PMjTQQe0Z15zWbFySWv68puB+nHMnPkBEZadkgJ6O3ZgvQG7hTK+jSIoJZhdQWLGMgZ5D9HZqaEUqmui31C8D/xMoAv47sIv4wPcG4JYpSSaShiJDvRzc8wSFZWdq6uRpKK9oDtHIAAO9jV5HkfSgslOmtVh0iL7OenILZmoYhIwrv2QB2eFSOho3EosOeR1HxphQRdA595hz7hvOuf3OuR3OuYVAmXNulnNu/RRnFEkbB3Y/Tiw6RM2it3kdRabA6DUFRU5ksspOM7vKzLab2U4zu22c1z9hZhvNbIOZPWtmSyb1FxE5hr6uepyLkls8x+sokqLMjOKqlcSiQ3Q2b/M6joxxzDGCZjYLGHTONSYej7dPHoBzbv8U5RNJGwO9zTTXPU9ZzRrCeZVex5EpoDUF5UQmu+w0Mz9wF3AFUA+sM7OHnHNbRu32C+fcdxP7Xwt8E7jq9H4TkRPr6dhPMDtfk8TIcWWFi8gtmkN3207yiucSzM73OpIkHG+ymL3ExzSsTTw+1qAYd4LziGSEhh2P4PMFqZ5/pddRZArlFs2ip30XfV0N5BXP9TqOpJ69TG7ZuQbY6ZzbDWBm9wFvBw5XBJ1zo6eyzT3ONUUmzfBgN0P9rRRVLNMkIHJCRRVL6euso7N5K2W1a7yOIwkn6hpqYx4f60cko/W076GjaRNVcy/Rna5pLitUTCArj95OdYSQY5rMsrMGqBv1vD6x7cgLmn3azHYBXwc+ewqZRU7KyGdgTuG4Dd8iR/AHQuSVzKevq07LMKWQ492N/BDQPOqxiIzDOUf9Gw8TzC6gcvbFXseRKWZm5BbOorN5C5GhXgJZuV5HktTiSdnpnLsLuMvM3g/8I/DBsfuY2ceAjwHMmqUv73LqnHP0du4nlFtJIBj2Oo6kiYLShfS07aKzZTtlNed6HUc4TkXQOffj8R6LyJHaD71Gb+d+Zi99r8aMZYiRimBvZx2F5Yu9jiMpZArKzgZg9Lz8tYltx3If8P8dI9vdwN0Aq1evVvdROWWDfc1Eh/soqljmdRRJI/5AiLzieXS37SRSfiaBrDyvI2W8Cc0aamYfNbMfmtnSUduWJrZ9dOriiaS2WHSYhh2PEM6fQWn1OV7HkSQJZOWSnVNGb+c+rSkoxzRJZec6YKGZzTWzLOAG4KEx11k46unbgB2nm13keHo79mG+AOH8aq+jSJrJL41/XHW37fY4icDE1xH878QHp28dtW0rcC3wd5MdSiRdxBePb6d20V9q8fgMk1s4i8hQD0MD7V5HkdR12mWncy5CfM3BxxLH/so5t9nMvpSYIRTgFjPbbGYbgFsZp1uoyGSJxSL0dTWQU1CLz+f3Oo6kmUAwTE5BDT0de4nFIl7HyXgTne1zJvCGcy42ssE5FzOzBmDRlCQTSXHDQz2HF48vKF144gNkWskpqKHt0AZ6O/eTHS7xOo6kpkkpO51zjwCPjNl2+6jHfz0JWUUmpK+rAeei5BXN9jqKpKn8kgX0ddXT27GP/JL5XsfJaBNtwhgAFpjZ4cXREo8XJF4TyTgHd2nx+Ezm82cRzptBX2c9o77ni4ymslOmnb7O/QSCuWSFS72OImkqK1xCVqiY7radGl7hsYlWBF8CQsBzZvZPZvZPwJ8S216aqnAiqWqgt4nm+hcorzlPi8dnsNyiWcSigwz0NHodRVKTyk6ZVqLD/Qz0NpFTOFNrB8opMzPySubFh1f0t3odJ6NNtGvovwCXA3OALya2GRADvjbRi5nZVcC/An7gHufcV8e8fivwESBCfPrt/+ac25d4LQpsTOy63zl3LSIe2f3azzDzkZVTQnP9C17HEY+E86rw+bPo7dxPOH+G13Ek9UxK2SmSKnq76gHILZx5gj1Fji+noJb2Q6/R07GX7Jwyr+NkrAm1CDrn/ov4TGV7+fNCuHuAG5xzT0zkHGbmB+4CrgaWAO8zsyVjdnsVWO2cWwE8SHxh3BH9zrmViR9VAsUz3W076e85SEHZYvyBkNdxxENmPnIKaunvPkAsOux1HEkxk1F2iqSSvs46gqEigtkFXkeRNOfzBcgpqKWvs17lp4cmPM2hc+4B59x8oAKocM7Nd849eBLXWgPsdM7tds4NEV/r6O1jrvGkc64v8fQF4usliaQM52LUbX8YfzCHgpIFXseRFJBbOAvnYvR1HW9pN8lUk1B2iqSE4cQsybkFag2UyZFXNAfnoio/PXRS892bWTYQBnLMbNbIzwQPrwHqRj2vT2w7lg8Dj456HjKz9Wb2gpm942Ryi0yWtgOv0N/dQFHFMkzTZgvxQe+BrDx6O/d7HUVS1GmWnSIpoa8z/hUup1D36GVy/Ln83Od1lIw1oTGCZrYI+AFw4Tgvu4meZ6LM7CZgNfDmUZtnO+cazGwe8ISZbXTO7Rpz3MeAjwHMmqUyViZXLDpEw87/JKdgJjkFKgglzszILZxFZ/MWIsN9BII5XkeSFJHsslNkqjjn6O2sIzunTJ9xMmlUfnpvoi2C3wfW8ucxDmN/JqKB+JpKI2oT245gZpcD/xO41jk3OLLdOdeQ+O9u4Clg1dhjnXN3O+dWO+dWl5eXTzCWyMQ07n2a4cFOZp7xl5otTY6Qk5g4YeSOuUjCZJSdIp4bHuwkMtR9+LNOZLKM3FjvS0xEJMk10buR5xCf5exfgS3EZ/U8WeuAhWY2l3gF8Abg/aN3MLNVwPeAq5xzTaO2FwN9zrlBMysjXrCOnkhGZEoND/VwaO/TFFUsI694Lv29Wi5A/iyYlUdWqJjernoKys7wOo6kjskoO0U819tZBxg5+ccb0SNy8oLZ+WSFiunrrKOgdJHXcTLORCuC9UDUOfe3p3oh51zEzG4BHiO+fMQPnXObzexLwHrn3EPEp9rOAx5ItLiMLBNxJvA9M4sRb8X8qnNuy6lmETlZh3Y/QSw2TM3Cq72OIikqp3AmHY2vMzzYpRn1ZMRpl50iXnPO0ddZRyivEn8g2+s4Mg3lFNbS0biR4cFugtn5XsfJKBOtCP4j8DMz+wvn3COnerHEsY+M2Xb7qMeXH+O454Dlp3pdkdMx1N9Oc91zlFavJpRb4XUcSVG5BbV0NL5Ob2c9RRVjV8aRDDUpZaeIlwb7WohG+ikq1NcwmRo5BTPpaNxIX1cDheWLvY6TUU5mQXkDfmdmnUDHqNdcYmpskWnpwO7HAaief4XHSSSV+YNhsnPK6evaT2H5mRpHKqCyU6aBvq46zPyE82d4HUWmqUAwTFa4hP5uVQSTbaIVwdmjHhclfka4yQojkmoGeptobVhPxaw3kRUq8jqOpLjcwpm0HXyFoYEOssPFXscR76nslLQ2skZqOL8an0+T3MrUycmvpqNpE5GhXgJZuV7HyRgT/Vf9E1RoSQY6sPMxfP4squZd6nUUSQM5BTW0HXyVvs79qggKqOyUNDfQ00gsOkSuZguVKRYuqKGjaRN93QcoKF3odZyMMaGKoHPu5inOIZJy+rrqaW98nRnzLieYled1HEkDPn8W4bwq+rrqKapcoe6hGU5lp6S73s46fP4sQnmVXkeRaS6YlUcwu4B+VQSTasLt/GbmB94LnA80Aj8D5gCbnHNtU5JOxEMNO/4TfzCHytkXex1F0khO4Uz6ew4y2NdCKFfrmWY6lZ2SrmKxCP3dB8gtmoXZRJedltGa61/wOkJaCefX0NWylWhkAH8g5HWcjDChf9lmVgi8QLwAuwW4BlgCPAl8dsrSiXiku203Xa3bqZr7FvzBsNdxJI2E82dg5qe3c7/XUcRjKjslnfV3H8S5KDkF6hYqyZGTmJBooEdrNSfLRG/xfJU/L4w70tfpcaAfuGoKcol4xjlHw85HCGYXUDFzrddxJM34fAHC+dX0dzXgXMzrOOItlZ2Stno79+MPhMnOKfM6imSIYKgInz+bflUEk2aiFcG3Az3A4amunXNRYD8wbwpyiXimq2UbvR37mDHvcnz+oNdxJA3lFs4kFhumv+eQ11HEWyo7JS1FI4MM9DSSUzhTY50lacyMcF4VA72NOKd5tpJhohXBUmCXc25sX6cYUDC5kUS841yMhp2Pkp1TRlnNGq/jSJoK5VXi82fR11nvdRTxlspOSUt93Q2A02yhknShvCpi0SGG+jWEOhkmWhFsABab2ZkjG8xsDXAmoG86Mm20H3qN/u6DVM+/EvP5vY4jacrMR05BDf3dB4jFIl7HEe+o7JS01NdZRyArn2B2oddRJMOE8yoA1KMmSSZaEfwNkA1sIL4m0tnAc4nX/mPSU4l4wMWiHNj1e8J5MyiuOsvrOJLmcgpm4lyU/u6DXkcR7/wGlZ2SZiJDvQz2tZBbOEvdQiXpfP4sssOlqggmyUQrgrcDrwJB4gPesxLHvgZ8aWqiiSRXy4F1DPa1UL3wKk2VLactO6cMfyBEX5cafjKYyk5JO71ddQDqFiqeCeVVMTzQQTQy4HWUaW+iC8r3mNn5wPuAkYFT64BfOueGpiqcSLLEosMc3PU4uUWzKSw788QHiJyAmRHOr6G3Yw+x6LAmHspAKjsl3Tjn6OusIytcSiAr1+s4kqHC+VV0Nm+mv+cQeUVzvI4zrU14QXnn3DDwk8SPyLTSVPcnhge7mLv8/eoKI5Mmp6CGnvZd9Pcc0t31DKWyU9LJ8GAnw4NdFFet9DqKZLBgdiH+QIiBnkZVBKfYhCqCZvbD47zsnHMfnqQ8IkkXjQxwaM+TFJQuIr9k/okPEJmg0d1DVRHMPCo7Jd30dtYBRk5BrddRJIOZGaG8KvoS6/FquM7UmWiL4M3EB7qPZYntKswkbTXufZrocB/VC6/2OopMM0d0D41F8Pkm3AlDpoebUdkpacK5GH2ddYTyKvEHsr2OIxkunFdJb8deBvvaCOWWeR1n2ppoFXv/mJ9O4gVZDNg3NdFEpt7wUA+N+56hqHIFuboDKlMgp6AG52KaPTQzqeyUtNHTvptopJ/cwlleRxEhlFsJGAOaPXRKTXSymDljt5nZJcBDwBcmNZFIEh3a8wSx6BA1C97qdRSZprJzyvCpe2hGUtkp6aT14KuYL0A4f4bXUUTw+YNkh0sY6G3yOsq0dsqdbp1zTwHrgf8xaWlEkmhooIPmuucprVlNKLfC6zgyTZkZOfnVDPQc0uLyorJTUlIsOkxH4+vk5FerC7ukjOzcCoYG2olFNcnyVJnoZDF/NWaTH5gPrAWGJzuUSDIc2PU4OEf1vCu8jiLTXE5BLT3tu+nvPqhWwQyislPSRWfLNqKRAXLULVRSSCi3nK6WrQz0tZCTX+11nGlpord97uXYA96fn7Q0Ikky0NtE64H1VMy8kKxwsddxZJpT99CMdS8qOyUNtB18hUBWHqHccq+jiByWHS7BzM9Ab5MqglPkZLqG2jg/zwMfmfAJzK4ys+1mttPMbhvn9VvNbIuZvW5mfzCz2aNe+6CZ7Uj8fPAkcosc5cDO3+PzBaiae5nXUSQDqHtoRjvtslNkKkWG++hs3kpJ1SpN0y8pxXx+snNKGdQ4wSkz0RbBuWOeO6DJOTcw0QuZmR+4C7gCqAfWmdlDzrkto3Z7FVjtnOszs08CXweuN7MS4gPrVyeu/XLi2PaJXl9kRF9XPe2Nr1E17zKC2Xlex5EMoe6hGem0y06RqdbRuBHnopTMWEVfd4PXcUSOEMqtoKNpE9HIAP5AyOs4086Ebv045/aN+dl/CgXZGmCnc263c24IuA94+5jrPOmc60s8fQEYmc//rcDjzrm2ROXvceCqk7y+CAANO/4TfzCHqtlv9jqKZJDsnDJ8/mz6uuq9jiJJMkllp8iUaj34Ctk55VpEXlJSdmIyP80eOjUmVBE0s++a2W4zWzlq21lmtsvM/u8Er1UD1I16Xp/YdiwfBh49xWNFxtXdtouu1u1UzXkL/mDY6ziSQcyMnIIadQ/NIJNUdopMmcG+Fnrad1NafQ5m5nUckaNkhYowX5CB3mavo0xLE+0M/pdAwDm3YWSDc+414l1Lr53sUGZ2E/FuoP9yksd9zMzWm9n65mb9wciRnHPUv/H/CGYXUjFrrddxJAPlFNRqcfnMktSyU+RktRxYDxil1ed4HUVkXGZGKLdcLYJTZKIVwTKge5ztPcBEp5hqAEYPjKlNbDuCmV0O/E/gWufc4Mkc65y72zm32jm3urxcM1/JkTqaNtHXVUf1givx+YNex5EM9OfuoRqHkyEmo+wUmRLOxWg98DIFpYvIChV5HUfkmEK55USH+4gM9XgdZdqZaEWwFVhkZoebUczsQuCMxGsTsQ5YaGZzzSwLuAF4aPQOZrYK+B7xSuDoqv9jwJVmVmxmxcCViW0iE+JiURp2PEoot4LSGbrzKd4YPXuoi0W9jiNTbzLKTpEp0d22k+GBDkprzvU6ishxhQ6PE1Rvv8k20VlDnwDeDzxhZs8mtr2J+DTYf5jICZxzETO7hXgFzg/80Dm32cy+BKx3zj1EvCtoHvBAoq/6fufctc65NjP7X8QrkwBfcs61TTC7ZJDm+hfG3d7TvofBvmbKas+n5cC6cfcRSYZwQTU9HXsY6G0inD/D6zgytU677BSZKi0N6/AHcyiqWOp1FJHjCmTl4wuE1D10Cky0IvgF4G1AIXBJYpsB7YnXJsQ59wjwyJhtt496fPlxjv0h8MOJXktkRCwWobN5C1nhEsJakFQ8FsqtwHwB+roPqCI4/U1K2Sky2SLDfXQ0baKs5jx8vol+FRTxhpkRyomPE3TOaWKjSTTR5SN2EZ+85V5ga+LnR8Aa59zuKUsnMgl62nYRjQxQVLFMHx7iOTMf4bwZ9HcfwLmY13FkCqnslFTVdnADLhahrGa111FEJiSUW04sOshAb6PXUaaVCd8GShRo/20Ks4hMulh0iM6W7YTyqgjlam4GSQ05BdX0ddUx2Neqv8tpTmWnpKLWA+sI588gnK+VuCQ9ZCfKyp723YTzqjxOM31MdLIYzGyOmX3PzF4zswfM7Hwzu93M1LlcUlZny3ZcbJiiimVeRxE5LJRXBeajv/uA11FkiqnslFTT332Qvq56SqvPVS8ZSRuBYC7+QIju9j1eR5lWJtQiaGZnAn8iPs7BgF5gCPgi8SmwPzNF+UROWWS4j562neQUziIrVOh1HJHDfL4AodwK+roPUFS5Ql/GpimVnZKKmuufx3wBSmec7XUUkQkzM7Jzyuhp361xgpNooi2CXwWKgC0jG5xzrxAf8H7JpKcSmQQdjZsANCOapKSc/Bqiw30MD3R4HUWmzqSUnWZ2lZltN7OdZnbbOK/famZbzOx1M/uDmc0+/egyHUUjA7QeeIXiyrMIZOV6HUfkpGTnlDM82MVgX4vXUaaNiVYE3wwcAsYuwFbHkQu9i6SEwb5W+rrqyC9dRCCY43UckaOMzBjap+6h09lpl51m5gfuAq4GlgDvM7MlY3Z7FVjtnFsBPAh8/XRCy/TVdvBVYtFBymde4HUUkZMWyi0D4kuCyeSYaEUwC2hzzg2N2V4EBCc1kchpcs7R3vg6/kCIgrIzvI4jMi5/IJvsnDKNE5zeJqPsXAPsdM7tTpznPuDto3dwzj3pnOtLPH0BqD31yDJdOedornuecH41uYWzvI4jctICWfkEgrl0t+/yOsq0MdGK4A7gTDP7SOJ5yMz+OzAL2D4lyUROUV9XHUP9bRRWLNX6SJLSwvnVDA92MTzU43UUmRqTUXbWEG9BHFGf2HYsHwYePdmgMv31du6jv+cg5TMv0PgqSUtmRl7xPLUITqKJVgTvJj7Q/XuAA84iPvbBAT+YmmgiJy8Wi9DRuIlgqIjcQg2TkdSWk18NQH9Xg8dJZIoktew0s5uIr1v4L8d4/WNmtt7M1jc3N0/25SXFNdc9jy8QoqRqlddRRE5Zfsk8hgbaGexv9zrKtDDRBeXvIj5GAeKF2sitpO8mXhNJCd2tO4hG+inWTIySBgJZuQRDRRonOE1NUtnZwJHjCWsT245gZpcD/xO41jk3eIw8dzvnVjvnVpeXa/3KTBIZ6qX90GuUzjgHfyDb6zgipyyveB4APeoeOilOZkH5z5jZHcC5iU3rnXN7pySVyCkYGuikq2U74fwaLdItaSMnv5rO5i1Eh/vxB8Nex5FJNgll5zpgoZnNJV4BvAF4/+gdzGwV8VbHq5xzTaefWqabloZ1OBelfOb5XkcROS3hvCr8gTDd7XsorV7tdZy0d8KKoJkFgUagFVjknNs35alETsGBnf+Jw1FcqcXjJX2E82vobN5CX/dB8kvmeR1HJslklZ3OuYiZ3QI8BviBHzrnNpvZl4hXKh8i3hU0D3gg0RNiv3Pu2sn4PST9uViU5ro/kVc8j3BelddxRE6LmY+84rn0tO/2Osq0cMKKoHNu2MwGgAHnnEtCJpGT1ttZR+uB9fHlIrLyvI4jMmHB7HwCWbn0dzeoIjiNTGbZ6Zx7BHhkzLbbRz2+/HTOL9Nbe+NGhgY6mLn4nV5HEZkU+cXz6GzewtBAJ1mhQq/jpLWJdg39NvBlM7vCOff4FOaRaaq5/oUpO7dzjsY9T+ILhCgsWzxl1xGZCmZGOL+G7tYdxKLD+PxakWca+TYqO8VDzjka9z1Ndk45heUqH2V6+PM4wT2UzFjpbZg0N9GK4NVADPhPM9tOvLvLyB1O55y7bCrCiUxEb8dehgbaKa05V1+iJS3l5M+gu/UN+nsOkVs4oXXGJT2o7BRP9bTvpq+rnllL3oXZRCeKF0ltOfnV+PzZdLfvUkXwNE20IvjmUY8XJ34c8RnQ1F1UPBONDNLRtInsnDJyCvQFWtJTVrgUnz+b/u4DqghOLyo7xVONe58mEMyldMY5XkcRmTTm85NXNEfrCU6CY1YEzWwF0Ouc2wU8nbxIIhPX2bSZWHSY4qqVWi5C0la8e+gM+rrqcS6mO/dpTGWnpIqB3iY6W7YyY/4V6i0j005+yTwadjzK8FAPQc0NccqO1yK4AXgeWEv8ruYLzrkLkxFKZCIG+9vo6dhDfslCDRaWtBfOn0Fvx14GepsJ51V6HUdO3QZUdkoKaNz7R8wXoHym/vxk+hk9TrC4crnHadLX8W47O6DczCa81qBIsjjnaD+4AX8gRGH5mV7HETltodxKzPz0a3H5dKeyUzw3PNhN68GXKa1erdYSmZZyCmoxX1DLSJym41UEDwLzgUHiBdt5ZhYd5yeSlKQio/R27GFooJ2iyhXq8iLTgs/nJ5RXSX/3QbRST1pT2SmeO7T3KZyLUTnnzSfeWSQN+XwB8opm092+y+soae14FcGfER/QPjLwyo7zI5I08QliNpOdU05OQa3XcUQmTTh/BtFIP8MDHV5HkVOnslM8NTzYRXPd85TOWEUop8zrOCJTJq94Hv3dh4gM93kdJW0ds+uKc+42M3seWAp8GagHfpCsYCLH0tG0SRPEyLQUzpsBQF/3AbLCxR6nkVOhslO8Fm8NjFI173Kvo4hMqfzieRzE0dO+l6KKJV7HSUvHHcPgnPst8FszuxLY5Jz759O5mJldBfwr4Afucc59dczrFxNfgHcFcINz7sFRr0WBjYmn+51z155OFklPg31t9HbsJb90IVmhAq/jiEwqfyCb7Jwy+rsPUlSx1Os4coomu+wUmag/twaerdZAmfZyC2dhvgA97btUETxFExrM7py75HQvZGZ+4C7gCuJ3SNeZ2UPOuS2jdtsP3Az83Tin6HfOrTzdHJK+nHO0H3o1PkFMmSaIkekpnD+DjsaNRIZ6CWTleh1HTsNklJ0iJ+PQnidxLsaMeZd5HUVkyvn8QXILZ9GtCWNOWTIXq1oD7HTO7XbODQH3AW8fvYNzbq9z7nUglsRckiZ62vcwNNChCWJkWgvnVwPx7qEiIhM1PNhFc/0LlM44h2y1BkqGyCueS19XA9HIgNdR0lIyK4I1QN2o5/WJbRMVMrP1ZvaCmb1jvB3M7GOJfdY3NzefRlRJNdHIIJ1NmzRBjEx7waw8gtkF9Hcf9DqKiKSRg3ueSLQGXup1FJGkyS+eB4lxgnLyklkRPF2znXOrgfcD3zaz+WN3cM7d7Zxb7ZxbXV5envyEMmU6mjYRi0UomaEJYmT6C+dXM9jXQjQ65HUUEUkDA73NNNc9T1n1uWoNlIySWzgHzEdPh7qHnopkVgQbgJmjntcmtk2Ic64h8d/dwFPAqskMJ6lrsH9kgpgFBLM1QYxMf+H8GYBjQK2CIjIBDTsewecLUr3gSq+jiCSVP5BFbsFMuttUETwVyawIrgMWmtlcM8sCbgAemsiBZlZsZtmJx2XAWmDL8Y+S6cA5R/vBDZogRjJKVqgYfyCkcYIickLdbbvpaNpE1dxLdLNUMlJ+yTx6u+qIRtSL5mQlrSLonIsAtwCPAVuBXznnNpvZl8zsWgAzO9fM6oH3AN8zs82Jw88E1pvZa8CTwFfHzDYq01Rvx16GBtopqlyuCWIkY5gZ4fwZDPQ0EosOex1HRFKUczHq33iYYHYhlbMv9jqOiCfyiueBi9HbudfrKGlnQstHTBbn3CPAI2O23T7q8TriXUbHHvccsHzKA0pKiUWH6GjaRHZOGTkFM098gMg0Es6vpqd9D91tOyksV2u4iByt/dBr9HXVMWfZ9fj8WV7HEfFEXtEcMB/d7bspKF3kdZy0kk6TxUiG6WjaQiw6RHHVWZogRjJOKKcc8wXoaNp84p1FJOPEosM07HiEcH4NJTPO9jqOiGf8gRA5+TX0aJzgSVNFUFLS0EAHPe27yCueT1aoyOs4IklnPj/hvCo6mjfjnJZWFZEjHdzzB4YGOph5xl9ipq9zktnyi+fR27lfwylOkj45JOWMTBDj82dRVLHE6zgingnnzyAy1ENv536vo4hIChnobaJxz1OUzDib/JKjVtMSyTh5xfNwLqry8iSpIigpp6+rjsH+VooqlmnMg2S0cF4VmI+OJs2NJSJxzjn2b/0PfP4sahdd43UckZSQVzwXMLrb1T30ZKgiKCklFh2mo3EjWaFicovmeB1HxFM+fxb5xfPpbNY4QRGJazv0Kt1tO6lZeDXB7Hyv44ikhEAwTDh/Bj2qCJ4UVQQlpXS1vkE0MkBx1UpNECMCFFUsZaC3iYHeJq+jiIjHIsP91G//HTkFMymrPc/rOCIpJb94Hj0d+4jFIl5HSRuqCErKiAz30d36BjmFM8nOKfE6jkhKKCqPj5PV7KEi0rDjESJDvcxe8i5NECMyRl7xPFxsmL7OOq+jpA19ikjKGPmiW1SxzOMkIqkjK1xMOL+GDnUPFcloXa07aKl/gcrZF5FTUON1HJGUk188D0DjBE9CUheUFzmWwf42+jr3U1B2BoFgjtdxRFJKUcVSDu56nOHBbo0JEskgzfUvAPHx8wd3/xeBrDyC4ZLD20XkzwJZuYTyqhLjBC/zOk5aUIugeM45R8eh1/H5sykoPcPrOCIpp6hiKeDobN7qdRQR8UBH0yaiw32UVp+Dz+f3Oo5IyoqPE9yLi0W9jpIWVBEUz/V3H0gsF7EUnz/odRyRlBPOm0FWqJiOpk1eRxGRJBvobaKnfTf5JQvIzinzOo5ISssrnkcsOkRfV4PXUdKCKoLiKReL0tG4kWB2gZaLEDkGM6OoYildbTuIRoa8jiMiSRKLDtN64GUCWbkUViz1Oo5IyvvzOMFdHidJD6oIiqe623cRGe6lqHKFlosQOY7C8qW4WISu1u1eRxGRJGlvfI3ocB8l1avx+TStg8iJBLPzCeVW0t220+soaUEVQfFMNDJIZ/M2QnlVhPMqvY4jktLyi+fiD4S1uLxIhmg/9Bq9HfsoKFtMSF1CRSYsv3QBPe17tJ7gBKgiKJ7patmGiw1TXLnc6ygiKc98fgrLz6SjeasGwYtMc0MDHezb8muyQsUUlp/pdRyRtFJQsoBYbJjejn1eR0l5qgiKJyJDvXS37ya3aA7B7AKv44ikhaLypUSH++jp2Ot1FBGZIs7F2LPxPpyLUlq7RgvHi5ykvOL5gKl76ATo00U8MTINvu50ikxcQdkizPxaXF5kGmvc+zQ97buYufjtBLPyvI4jknYCwTA5BbV0te3wOkrKU0VQkm5ooIvezn3kl8zX4vEiJ8EfCJFfupCOps0457yOIyKTrK+rngM7H6OoYjml1ed6HUckbRWULqS3s45oZMDrKClNFUFJus7mTZgvSEHZYq+jiKSdooqlDPW3MdDT6HUUEZlEsegQu1//BYGsPGYvfbdm0hY5DfklC8HF6Gnf43WUlKaKoCTVYF8r/d0HKShdhN+f5XUckbRTVL4EgI5mLS4vMp3Ubf8dg30tzFl2g3rLiJymvKLZmC+g7qEnoIqgJI1zjo6mTfgCIfJLF3gdRyQtBbMLyC2cRUeTxgmKTBcdTZtpqX+BytkXU6DyUeS0+fxB8orm0N2qiuDxJHV1UjO7CvhXwA/c45z76pjXLwa+DawAbnDOPTjqtQ8C/5h4+mXn3I+TElomzUBPI4N9LRRXrdTCuCKnobB8KQd2PsrQQCdZoUKv44hkhOb6F6bkvNHIAAd3PU4wVEhWuHjKriOSafJLFnJg56MMD/YQzNbES+NJWougmfmBu4CrgSXA+8xsyZjd9gM3A78Yc2wJ8AXgPGAN8AUzK57qzDJ5RloDA8Fc8orneh1HJK0VVSwF0OLyImnOOUdrw3pcLEJZzRrM5/c6ksi0MdK6rmUkji2ZXUPXADudc7udc0PAfcDbR+/gnNvrnHsdiI059q3A4865NudcO/A4cFUyQsvk6OuqY3iwk8KKpVoTSeQ0hXIryM4pU/dQkTTX07aLgd5GiipXaE1dkUmWU1CLPxCiW+MEjymZ38hrgLpRz+sT26b6WPFYLBahs2kLwVAhOQW1XscRSXtmRlH5UrrbdhEd7vc6joicgqGBTtqbNhLKqyKveJ7XcUSmHTMf+SXz6VKL4DFNq6YZM/uYma03s/XNzc1ex5GElvoXiQz3UlSxTNNhi0ySooqlOBels3W711FE5CS5WJTWhpfw+YKUVp+jslFkiuSXLIovudSresF4klkRbABmjnpem9g2acc65+52zq12zq0uLy8/5aAyeaKRQQ7u/i+yc8oJ5VZ6HUdk2sgtmk0gmKvuoSJpqKNpE8ODXZRWr8YfCHkdR2TaKkysWd3Zss3jJKkpmRXBdcBCM5trZlnADcBDEzz2MeBKMytOTBJzZWKbpLim/c8QGeqhqGKp7niKTCIzH4UVS+hs2UYsFvE6johMUH/PIbrbdpJXMp9wfpXXcUSmteycEkK5FXSpIjiupFUEnXMR4BbiFbitwK+cc5vN7Etmdi2AmZ1rZvXAe4DvmdnmxLFtwP8iXplcB3wpsU1SWGSol0N7n6aoYinZOaVexxGZdorKlxKLDNDTvtvrKDKFzOwqM9tuZjvN7LZxXr/YzF4xs4iZvduLjDIx0cggrQdeJphdQFHFcq/jiGSEgrLF8TH1kSGvo6ScpI4RdM494pxb5Jyb75z7SmLb7c65hxKP1znnap1zuc65Uufc0lHH/tA5tyDx86Nk5pZTc3DPE8Qig1QvuNrrKCLTUkHpQswXVPfQaex0ll6S1OKco+3Ay8SiQ5TWrMGnpSJEkqKwbDHORelu16QxY02ryWIkdQz1t9Nc9xyl1asJ52lsoMhU8PmzKChdREfTZpxzXseRqXE6Sy9JCunp2EN/z0GKKpaRFSr0Oo5IxsgrnovPn0VXs7qHjqWKoEyJA7viQzir51/hcRKR6a2oYinDg530dU907i1JM5O2fJJm1vbO8GAXHYdeJ5RbQX7JAq/jiGQUny9AfslCOlu26abpGKoIyqTr6z5A64FXqJi1lqxwsddxRKa1ovIlYD46Gjd6HUVSnGbW9oZzMVoa1mE+PyXVqzVxmogHCssXMzTQzkBvk9dRUooqgjLpGnY8ij8QomrupV5HEZn2Alm5FJQsoO3QBt3pnJ5OZ+klSQGdTZsZHuigZMbZBIJhr+OIZKSRZSQ0e+iRVBGUSdXdtpOulm1Uzb2UQDDH6zgiGaG4aiVD/W30du73OopMvtNZekk8NtDbRFfrG+QVzSWn4JR69IrIJMgKFRHKq9J6gmOoIiiTxjlH/RuPEAwVUTFrrddxRDJGccUyzBeg/dAGr6PIJDudpZfEW7HoEK0N6wlk5VFUtcLrOCIZr7BsMT3te4hGBryOkjJUEZRJ0974On1dddTMfys+f9DrOCIZwx8MU1i2mLZDr+GcJo6cbk5n6SXxhnOOtoOvEI0MJJaKCHgdSSTjjSwj0dW6w+soKUMVQZkUsViEAzseJZxXRUn12V7HEck4JVWriAx10922y+soIhmvt3M/fV0NFFYsJVuTpomkhLyiOfgDITqbt3gdJWWoIiiToqX+RQb7W6lZ+BeY6c9KJNkKy8/E58+m7dCrXkcRyWjDQz20H9pAdk4ZBaWLvI4jIgnm81NYfiYdzVtwsajXcVKCvrHLaYtGBji463HyiudTkJiVSUSSy+cPUlSxjI7GjcRiEa/jiGQk52K0NqwDjNKac7VUhEiKKapYRnS4j56OvV5HSQmqCMppO7TnSSLDvdQu+gsVeiIeKpmxkmhkQNNji3iks3kbQ/1tiaUiNHO2SKopKF2M+QJ0NG3yOkpKUEVQTstgXyuNe5+mZMbZ5BbO8jqOSEYrKFlIIJhLm2YPFUm6wb5Wulq2kls4i9zCWq/jiMg4/IEsCkoX0dG0SWvvooqgnKb6Nx7GfH5qFv6F11FEMp75/BRXraCjaTOR4X6v44hkjFh0mJaGl/AHcyiuWul1HBE5jqKKZQwNdNDXVe91FM+pIiinrKt1Jx1Nm6iaeylZoUKv44gIUFp9Li4WoV2TxogkTduhDUSH+ymrWaPlk0RSXFHFUjAf7Y2veR3Fc6oIyilxsSj1239LVqiYytkXex1HRBJyCmoJ58+gpWGd11FEMkJvZx19nfspLF9Mdk6p13FE5AQCwRwKShfRfuj1jO8eqoqgnJKWhhfp7zlE7Rl/qbufIinEzCirWUNfVz193Qe8jiMyrUWGemk7+CpZ4RLNmi2SRkqqzmJooJ3ezv1eR/GUKoJy0oYHu2nY8Z/kF8+nqGKZ13FEZIySGWdjvgAtDS95HUVk2nLO0XpgPeAoqzlXa+iKpJGi8qWY+Wk/lNndQ/WpJSet/o3fEYsOMWvJdVouQiQFBYI5FFUso+3AK8Siw17HEZmWulq3M9jXQnHVSgJZeV7HEZGT4A+GKShbTHvjazgX8zqOZ1QRlJPS1foGbQdfpWruWwjlVngdR0SOoazmXKKRfq2VJDIFBvvb6GzaQk5BrZZOEklTpTNWMTzYRXfbTq+jeEYVQZmwWHSY/Vv+neyccqrmXup1HBE5jvySBWSFitU9VGSSxaLDtNS/iD8YpmTGKvWMEUlTheVL8AdCtB542esonlFFUCbs4O4/MNjfyuwl12mCGJEUZ+ajtOZcutt2MtjX5nUckWnBOUfbwVdGLRWR5XUkETlFPn+Q4qqz6GjcSDQy6HUcT6giKBPS332Qxr1PUVp9DvklC7yOIyITUFZzLmC0NLzgdRSRaaG3Yy99XfUUVizVUhEi00DpjHOIxYbpaNrodRRPJLUiaGZXmdl2M9tpZreN83q2md2feP1FM5uT2D7HzPrNbEPi57vJzJ3pYrEIezb+En8wTO2iv/Q6johMUFaoiKKKpTTXv6hJY0RO09BAF+2HNhDKraCgdJHXcURkEuQWzSE7XJqxa+8mrSJoZn7gLuBqYAnwPjNbMma3DwPtzrkFwLeAr416bZdzbmXi5xNJCS0AHNj5e/p7DjJ76XsIZOV6HUdETkLFrLVEh/toO/Sq11FE0lYsOkRrw4uYL0hpzbkaFygyTZgZpTVr6GnfzUBvk9dxki6ZLYJrgJ3Oud3OuSHgPuDtY/Z5O/DjxOMHgctMn7ae6m7fTePepyirOY+i8rH1dhFJdXnF8wnlVdG0/08457yOI5KW6rY/xPBgF6U15+IPhLyOIyKTqKxmNZiP5voXvY6SdMmsCNYAdaOe1ye2jbuPcy4CdAIjnfDnmtmrZva0mV003gXM7GNmtt7M1jc3N09u+gwUjQywd9P9ZIWLqT1DXUJF0pGZUTHrTfR3H6CnfZfXcUTSTtvBDbTUv0hB6SLCeZVexxGRSRbMLqCoYhmtB9Zn3DCKgNcBJuggMMs512pm5wC/MbOlzrmu0Ts55+4G7gZYvXq1bn1PQHP9+JNIOOdoO/AyQ/1tVM55s7qViaSx0hlnc2Dnf3Joz1Oa7EnkJPT3HGLf5l+RWzSHwoqlXscRkSlSXnseHY2v0974OqXV53gdJ2mS2SLYAMwc9bw2sW3cfcwsABQCrc65QedcK4Bz7mVgF6CR2lOot2MvvZ37KChbTHZOmddxROQ0+PxBKma9ia7W7fR1H/A6jkhaiA73s2vDT/AFQsw/6wOYaaJ1kekqv2QBodwKmvY/m1HDKJL5qbYOWGhmc80sC7gBeGjMPg8BH0w8fjfwhHPOmVl5YrIZzGwesBDYnaTcGWewv422xMxohRoXKDItlM+8AJ8/i8a9T3kdRSTlOefYu/l+BvtbmXfWTQSzC7yOJCJTyMxHxaw30ddVT0/HHq/jJE3SKoKJMX+3AI8BW4FfOec2m9mXzOzaxG4/AErNbCdwKzCyxMTFwOtmtoH4JDKfcM5pheQpEI0M0lL3Av5AiNKaNZoZTWSaCARzKKs9n7aDGxjo1RhqkeNp3PsUHU2bqV10DfnF87yOIyJJUFp9Dv5gDk37nvE6StIkdYygc+4R4JEx224f9XgAeM84x/0a+PWUB8xwzjlaG14iGh2kcs4l+APZXkcSkUlUNecSmuue5+Du/2Lu8vd5HUckJXU0baFhx6MUV62kYtabvI4jIkni82dRXns+h/Y8yUBvM6Hccq8jTTl1eBcgXglsP/QqA71NlFStJDtc7HUkEZlkwex8KmZeQNvBVzNyvSSRE+nrPsCejT8np6CGOUvfo14xIhmmYtZazOfn0J4nvY6SFKoICgBdLdvpad9DQeki8orneh1HRKZI5Zy34PMFOLDrca+jiKSU4cEudr76I/yBMAtWfQifP8vrSCKSZMHsAsprz6f14MsM9k3/UWiqCAo9HXvpbN5MTuEsCiuWeR1HRKZQMDuPijkX035oA72ddSc+QCQDxKLD7NrwY6JDvSxY9SFNDiOSwSrnXIKZj0N7/uB1lCmnimCG6+85RNuBVwjlVlBafY66wYhkgKo5lxDIyqP+jYczappskfG4WJTdr/+M3s465ix/HzkFNV5HEhEPZYUKKas5j5YD66f9MApVBDNYZ/M2muueJxgqoKz2fK2RJJIh/IEQ1fOvoKd9Nx1Nm7yOI+IZ52Ls2/IAnc1bmLn4HRRXLvc6koikgBnzLsPnC9Kw41Gvo0wpffPPUB1NW9i14V6C2QVUzLoInz/odSQRSaKymvMI582gbvtDRCODXscRSTrnHPVv/D9aD7zMjPlXUjHrQq8jiUiKCGbnUzX3EjqaNtHTPn3XFVRFMAO1N25k12s/JpxfTeXsi7RMhEgGMp+fWWe+k+GBDg7u1sQxknkO7XmCpn1/pHzWWmbMu9zrOCKSYipnX0wwu4D9236Li0W9jjMlVBHMMM31L7D79Z+RW1DLonM+qlnRRDJYXvFcSmvOpXHfM/R11XsdRyQpnHMc2PU4B3b+JyUzVjHzjGs1Pl5EjuLzZ1F7xrX0dzfQVPec13GmhCqCGcK5GPXbf8f+Lb+moHQRC8/5KP5g2OtYIuKx2kXXEMzKY8/G+4hFh72OIzKlnHMc2PmfHNz1e0qrz2HOshs0Pl5Ejqm4cgUFpWdwYOdjDA10eB1n0unTLwNEI0Ps2vATGvf9kfKZF7Jg5c34AyGvY4lICggEc5i95D0M9DZyYOdjXscRmTLxMYG/49CeJyirPY/ZS9+rSqCIHJeZMevMd4KLsXfT/TgX8zrSpNIn4DTX33OIbS/emZgR7e3MOvOdmM/vdSwRSSGF5Yspqz2fxn1P09G0xes4IpMuFh1m78Zf0rTvGSpmvYlZZ75LlUARmZDsnFJqF7+d7radNO17xus4k0qfgtOUc46W+hfZ+sKdRIZ7WXj2h6mY9SavY4lIipp5xrXk5Newd9N9DPa1eh1HZNIMD/bwxvrv0XboVaoXXEWtxgSKyEkqq1lDYflSGnY8Sm/Hfq/jTBpVBKehyFAvezb+gn1bHiSvaDZLLvgcBWVneB1LRFKYzx9k3ll/BcDOV39IZLjP40Qip6+/O94rpq/7APNWfIAZ8y5TJVBETpqZMWfpewiGCtn12o8ZGuj0OtKkUEVwGnHO0XbwVTb/6V9ob3yd6gVXsfCcjxLMLvA6moikgeycEuav/CsG+1rZteHHxGIRryOJnBLnHM31L7L1xTuJxSKcce4nKa5a4XUsEUljgaxc5q/8INHhfnZt+PG0WINXFcFpYrCvjZ2v/pA9G39BVriEJef/TeLOp/4Xi8jE5ZcsYPay99LTvpvdG36iyqCknchwH7tf/xn7E71izjz/r8ktnOl1LBGZBnLyq5m74kb6uhvYteHetJ9tO+B1ADk9keE+Du7+A837/4T5/NSecS0Vs9aqAigip6x0xtnEIoPs3/rv7NrwY+af9QGtOSppoaN5C/u3/gfDg13ULPwLKue8WeWhiEyqooqlzFn6HvZuup9dG+5l3lkfxB9IzzJSFcE0FY0M0lz/PId2P0E0MkBpzWqq57+VrFCh19FEZBoon3kBmI/9W37N9nXfZcGqm9XNXFLWYF8bddt/S2fzFkK5Fcxfc4taAUVkypRWr8a5GPs2P8iOl7/H/FUfIpiV53Wsk6aKYJqJDPXStP9PNNX9iehwHwWlZ1C76G2E82d4HU1Eppny2vPii82//nO2vnAnc5e/n/ySeV7HEjksMtxH474/0rj3acx81Cx8GxWz34TPp683IjK1ymrWEAjmsPv1n7P1hX9l/lkfILdwltexToo+KdNEb1c9LfUv0nbgZWKxYQrLl1I19y3kFc32OpqITGNFFUs5Y82n2f36z3hj/XepmnsJM+Zdgc8f9DqaZLDhoR6a9v2Rpv3PEYsOUlx1FrWLriErVOR1NBHJIEUVy1i85tPs2vATtr/0f6madylVcy9Nm5tR6ZEyQw0PdtHeuJGWhnX0dzdgviAlVSupnPNmwnmVXscTkQyRU1DDmef/NXXbH+LQnidpO/QatQv/gqLK5Rp/JUnjnKO3cx8t9S/RfmgDsViE4qoVzJh7OeH8Kq/jiUiGyimo5cwL/oa6rb/h4K7HaT/0OrWL3kZB2eKUX65GFcEU4pxjsK+FzpZtdDRupKdjL+AI51czc/E7KZmxikAw7HVMEclA/kCIOUvfS+mMc9i/9T/Y/frPCOdXUznnzRRXrkibu5+SXpxzDPQ00tG8mbaDrzLQ24jPn03JjFVUzL5YN0VFJCUEgjnMXfF+iqvOov6Nh9n56g/JLZxN1dxLKCxfkrI3TZNacpvZVcC/An7gHufcV8e8ng38BDgHaAWud87tTbz2D8CHgSjwWefcY0mMPiWcizHQ20xfZx3d7bvoatvJ8EAHAOG8GcyYfwXFlcsJ5Vam/B0FEckM+SXzWXLhrbQdfIVDe55k78ZfUrfttxRVLKO4cgUFJQswn9/rmNPK6ZSd6WhooJPejn10d+yms3krQ/1tAOQWzmb2kvdQXHUW/kC2xylFRI5WVLGUgrIzaKl/ica9T7Frw48JZhdSMmMVheVnklc4O6XKyKRVBM3MD9wFXAHUA+vM7CHn3JZRu30YaHfOLTCzG4CvAdeb2RLgBmApUA38l5ktcs5Fk5X/dMRiEYYHuhjsb2Ggt4mB3ib6exrp62ogFo0vRukP5pBfsoCCuZdSULqQ7Jwyj1OLiIzPzEdp9WpKZpxNV+sbtB18hfZDr9Ha8BL+QJjcotnkFc4it2g24fxqAsFc3cw6RadTdiY/7cQ554hFBhga6KC/t4mBnkOJcrGeoYF2AMwXpKBkAVVz30Jh2ZmaFVtE0oLPF6Bi1oWU155HR/NmWhvWJya1egpfIERByUJyi2aRk19NOL/a09lGk9kiuAbY6ZzbDWBm9wFvB0YXZm8Hvph4/CDwHYt/e3g7cJ9zbhDYY2Y7E+d7fqrCOudwsWFisQguFiEWi+IOPz7yv9HIAJHhfqKRxM9wP0ODXQwPdjI80EVkuPeIc/sCIcK5FZRWn0NuwUxyCmsJ5VakbLOxiMh4zHwUli2msGwxsegwXa3b6WjeSm/HPg60bAccEO9Wmp1TRna4hEBWHoFgLoGsnMR/cwnnzSCYne/tL5O6TrnsdM65qQoVi0WIRQaJHVFORnDRYWKxKLHoUKJMHDhcLkaG+xga7GR4oJOhgc7DN0LjjOycUnIKZ1Ix+03kFc0hnF+tLscikrbM56e4cgXFlSuIDvfT1baTrpZtdLW+QUfTxsP7BYK5ZIWLyQoVkRUqSpSTOfiDOQSzcskvWTBlGZP5CVsD1I16Xg+cd6x9nHMRM+sEShPbXxhzbM3URQVcjFf/8D9P+jDzBfAHwgSz88nKLiK3cBZZ2YUEQ4Vkh0sJ5ZYTyMrX3XERmVZ8/iBFFcsoqlgGQGS4n76uOvp7Ghnsa2Gwr4W+7oNEhnuJDvcdceycZTdQWn2OF7HTwemUnS1TFapp3x9p2PHohPf3+bPwB8JkhQoJ5VZSULqIrFARwVAhoZxyQrkVmolWRKYtfzBMceVyiiuXA/Hl4Pq6D9DffYCB3maGBtoZ6G2mq3XHETfJAll5nHXJF6Ys17S61WZmHwM+lnjaY2bbvcyTRGVMYYGfJjL9Pcj03x/0HqTx73/HZJxEa+mcwEmWkWn89zRl9J6MT+/L0fSeHE3vydEm+J588XSvc8zyMZkVwQZg5qjntYlt4+1Tb2YBoJD4wPeJHItz7m7g7knMnBbMbL1zbrXXObyU6e9Bpv/+oPcg03//aex0ys4jnEwZqb+no+k9GZ/el6PpPTma3pOjpcJ7ksxBaeuAhWY218yyiE/+8tCYfR4CPph4/G7gicQYh4eAG8ws28zmAguBl5KUW0RExCunU3aKiIgcU9JaBBPjFm4BHiM+BfYPnXObzexLwHrn3EPAD4CfJiaDaSNe4JHY71fEB8dHgE+ny4yhIiIip+p0yk4REZHjSeoYQefcI8AjY7bdPurxAPCeYxz7FeArUxowfWVcd9hxZPp7kOm/P+g9yPTff9o6nbLzNOjv6Wh6T8an9+Voek+OpvfkaJ6/J6beIyIiIiIiIplFC9eJiIiIiIhkGFUE05yZ+c3sVTN72OssXjCzvWa20cw2mNl6r/N4wcyKzOxBM9tmZlvN7AKvMyWLmZ2R+H8/8tNlZn/jda5kM7PPmdlmM9tkZr80s5DXmSQ9mVnIzF4ys9cSf1P/7HWmVJHp5e1YKn+Plsnl8bGonB5fqpTb6hqa5szsVmA1UOCcu8brPMlmZnuB1c65jF2bxsx+DDzjnLsnMatgjnOuw+NYSWdmfuLT6J/nnNvndZ5kMbMa4FlgiXOuPzGx1iPOuXu9TSbpyMwMyHXO9ZhZkPjf1l87517wOJrnMr28HUvl79FUHh9fppbTY6VSua0WwTRmZrXA24B7vM4i3jCzQuBi4rMG4pwbyuBC5zJgV4YWLgEgnFhDLgc44HEeSVMurifxNJj4yfg7xipv5URUHk9IJpfTY6VEua2KYHr7NvD3QMzjHF5ywO/N7GUz+5jXYTwwF2gGfpTosnSPmeV6HcojNwC/9DpEsjnnGoA7gP3AQaDTOfd7b1NJOkt0gdwANAGPO+de9DhSKvg2Km/HyvTydyyVxyeWkeX0WKlUbqsimKbM7BqgyTn3stdZPPYm59zZwNXAp83sYq8DJVkAOBv4/5xzq4Be4DZvIyVfogvOtcADXmdJNjMrBt5O/EtINZBrZjd5m0rSmXMu6pxbCdQCa8xsmceRPKXy9pgyvfwdS+XxcWRyOT1WKpXbqgimr7XAtYk++vcBl5rZz7yNlHyJuyo455qA/wDWeJso6eqB+lF37B8kXhBlmquBV5xzjV4H8cDlwB7nXLNzbhj4d+BCjzPJNJDo1vYkcJXHUbym8nYcKn+PovL4+DK5nB4rZcptVQTTlHPuH5xztc65OcSb2p9wzmVUK4CZ5ZpZ/shj4Epgk7epkss5dwioM7MzEpsuA7Z4GMkr7yNzu5vsB843s5zERB+XAVs9ziRpyszKzawo8TgMXAFs8zSUx1TeHk3l79FUHp9QJpfTY6VMuR3w4qIik6QS+I/4vyECwC+cc//pbSRPfAb4eaLbxW7gQx7nSarEl5ArgI97ncULzrkXzexB4BUgArwK3O1tKkljM4AfJ2b38wG/cs5puQQZS+Xv+DK6PD6WTC+nx0qlclvLR4iIiIiIiGQYdQ0VERERERHJMKoIioiIiIiIZBhVBEVERERERDKMKoIiIiIiIiIZRhVBERERERGRDKOKoIiIiIiISIZRRVAkyczsKTNzx/j5sJl1Jh5/a9QxS0ftc/eo7bNHbf/QmPPvHXPdS0bte3Ni25wx1/8fY465cczrl0zdOyMiIplM5aNIcqkiKOKdIeDFMT+HgOcSr188at9jPX7zqMd/nIRMnzSzwKjnn52Ec4qIiJwMlY8iSRA48S4iMkUOOufOH7vRzFYAVwFnmVmBc64LuCjxchNwhplVOOea+HOhd8A5t+s08wwDtcB1wK/M7DxgTWJ78DTPLSIiMlEqH0WSQC2CIqln5M6lH1ibeHwR0An8YNRz+HNB98wkXPfBxH8/M+a/D46zr4iISLKpfBSZRKoIinhnth09BqIIWAf0J/a52MzmEb8T+SfgqVHbq4CFiefjdXs54vzAkyfI8xywHniTmV0NvAc4CDxwir+fiIjIqVD5KJIE6hoq4p0h4NUx2yLOuSEzexG4hPgYh22J1/5IvDCKEL/j+dyo48a74zn2/AXAmSfIdCfwE+A+IAv4HvGuLyIiIsmi8lEkCVQRFPHOuGMgEv5IvKBbDewd2eac6zGzV4FzgGsS29uATSc6f2JGsxPd9bwf+BegknhB+V3g3BMcIyIiMplUPookgbqGiqSmka4sQeJdUPqId0sZec0H3JB4/qxzzk3GRZ1zI4UbwK+cc42TcV4REZFJovJRZJKoIiiSmp7nz11OAsALzrmR538ctR0mZyD8aF8ByoGPTvJ5RURETpfKR5FJooqgSApyzvUBL4/aNHqw+zNA7BivTca1h51zLc65gck8r4iIyOlS+SgyeWySWsxFREREREQkTahFUEREREREJMOoIigiIiIiIpJhVBEUERERERHJMKoIioiIiIiIZBhVBEVERERERDKMKoIiIiIiIiIZRhVBERERERGRDKOKoIiIiIiISIZRRVBERERERCTD/P/wHEaYR32c/wAAAABJRU5ErkJggg==\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4IAAAFRCAYAAAAhPBPJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAB80UlEQVR4nO39eXyddZ3//z9eZ0lO9n1Pum90L7RlqSCyCcqA4gIKCo4bKuOMzHyVz3xmUBn9/HREZRyZUVREHREFHWQcFFG2Qil0oVC6b2mapc2+7znv3x/npKZp0iZtkivJed5vt3PrOdf6zKHk1ff7uq7325xziIiIiIiISOzweR1AREREREREJpYagiIiIiIiIjFGDUEREREREZEYo4agiIiIiIhIjFFDUEREREREJMaoISgiIiIiIhJj1BCUScXMvmdm/zxGx5phZq1m5o9+fs7MPjYWxx50nlYzmzPWxx3iPA+Z2VfG+zyDznmbmb04kecUEZGhqUae8jyqkSKjpIagTBgzKzWzDjNrMbNGM9tgZreb2fG/h865251z/zLCY11xqm2cc2XOuWTnXN9Y5D/FeZKdcwfH8xyxLFpo+6L/mOh/fdfMLoz+XfIP2PYHwyz7XvT9Sf/QMbNLzax8wOfnzMyZ2YpB2/13dPml4/WzikjsUo2UM6EaKWdDDUGZaH/lnEsBZgJfA74A/GisT2JmgbE+poycRYzl75eXo/+Y6H/dAWwm8jvs3AHbXQyUD1p2CfDCKM+3F/hw/wczywIuBGrOJLyIyAipRsYA1UiZLNQQFE8455qcc08ANwK3mtlSOPHWDjPLNrPfRXtG681svZn5zOxnwAzgf6I9X583s1nRnqiPmlkZ8MyAZQML3lwze9XMms3st2aWGT3XCT1e0WXHe1TNzG9m/2hmB6K9aVvMrCS6zpnZvOj7NDP7qZnVmNlhM/un/l/2/beQmNm9ZtZgZofM7JrhviMzW2VmW6Pn+yUQGrT+WjPbNqDnePkwx/lPM7t30LLfmtmd0fd3Dfi5dprZu0+R6SIz22RmTdE/Lxqw7jkz+6qZvQS0A3PMbJGZPR3977fHzN4/YPt3RM/XYmYVZvYPw513KM65HmAjkSKGmeUCccCvBi1bwOiL3M+BGwf0mn4A+G+ge5THEREZNdVI1UjVSJkIagiKp5xzrxLpnbp4iNV/H12XA+QB/xjZxX0IKCPSc5rsnPvXAfu8FTgHePswp/ww8NdAAdALfGeEUe8k8ovuHUBq9BjtQ2z370AaMCea5cPARwasPx/YA2QD/wr8yMxs8EHMLA54HPgZkAk8CrxnwPpVwIPAJ4Es4PvAE2YWP0SmXxD5hW3RfTOAq4BHousPEPn+04AvA/9lZgVDZMoE/pfId5YFfAv4X4v0BPb7EPAJIIVIz+DTwMNALnAT8B9mtji67Y+AT0Z7v5cCzwyR/XReIFrQon++GH0NXHbIOVc+xL6nUgnsJPI9QeS/40/PIJ+IyBlTjVSNVI2U8aSGoEwGlUR+kQ/WQ6QYzXTO9Tjn1jvn3GmO9SXnXJtzrmOY9T9zzr3pnGsD/hl4/4AerVP5GPBPzrk9LuJ151zdwA2ix7kJ+D/OuRbnXCnwTSK/+Psdds79IPpMxk+iP1/eEOe7AAgC90V/9seATQPWfwL4vnPuFedcn3PuJ0BXdL/B1gOOv/xD4r1EbiOpBHDOPeqcq3TOhZ1zvwT2AWuHOM47gX3OuZ8553qdc78AdgN/NWCbh5xzO5xzvcDVQKlz7sfR7V8Dfg28L7ptD7DYzFKdcw3Oua1DnPP49xHt1e1/9f+czwNviRbwi6M/68vR7fuXPT/oWN8ZeCzgd8Oc86fAh81sEZDunHv5FPlERMaLauTJVCMHfR+qkXIm1BCUyaAIqB9i+TeA/cAfzeygmd01gmMdGcX6w0QKSfYIjltCpFfwVLKjxzs86BxFAz4f7X/jnOvvLU0e4liFQMWgoj7wuDOBvx/0y7okut8Josd4hEhvLcAHidzWAYCZfXjA7TONRHoeh/pOCgdlGOrnG/j9zgTOH5TxZiA/uv49RHqPD5vZ82Z24RDn7LfROZc+4LWxfzmR728pkZ7N9c651miO/mWDb3n57MBjAdcOc87fAJcBdxDpdRYR8YJq5MlUI0+kGilnRA1B8ZSZrSHyS/Kk4ZejPYZ/75ybA1wH3Glml/evHuaQp+sNLRnwfgaRHrdaoA1IHJDLT+R2m35HgLmnOXZt9HgzB52j4jT7DaUKKBp0S8yMQXm+OugXf2K0B3IovwDea2Yzidx682uA6OcfEPlFnhX9pf8mcNKtOER6pWcOWjb45xv4/R8Bnh+UMdk59ykA59wm59z1RG6JeZzIcwuj4pzrJNIL/FdAgXNud3TV+uiy5Yz+2Yf+Y7cDvwc+hYqciHhANXJYqpEjoBopp6OGoHjCzFLN7FoivXD/5ZzbPsQ215rZvOgv+iagDwhHVx8j8ozBaN1iZovNLBG4B3gsegvKXiBkZu80syDwT8DAZwl+CPyLmc23iOWD7vsnepxfAV81s5RoAbkT+K8zyPkykeczPmtmQTO7gRNvRfkBcLuZnR/NkxTNnjLUwaK3nNRGf46nnHON0VVJRApTDYCZfYRIL+FQngQWmNkHzSxgZjcCixn+tpHfRbf/UPRnCJrZGjM7x8zizOxmM0tzkQfam/nLf9vRegH4W2DDgGUvRpdVOedO10t9Kv8IvDV6C5OIyIRQjTwt1ciRU42UYakhKBPtf8yshUhP2P8l8jD1R4bZdj7wJ6CVyC/9/3DOPRtd9/8D/il6O8VoRtL6GfAQkdtPQsBnITJCG/BpIkWggkjv58CHp79FpID9kcgv5B8BCUMc/2+i+x4k8ov2YSIPrI+Kc64buAG4jcgtQTcSuQ2jf/1m4OPAd4EGIrcH3Xaawz4MXBH9s/84O4k8o/EykX84LANeGiZTHZFbRP4eqAM+D1zrnKsdZvsWIg+S30Skp/Qo8HX+8o+HDwGlZtYM3E7klpgz8TyRHtOBPeYvRpetP8NjAhB9LkSTBYvIRFGNHAHVyFFRjZRhmTvtc8UiIiIiIiIyneiKoIiIiIiISIxRQ1BERERERCTGqCEoIiIiIiISY9QQFBERERERiTFqCIqIiIiIiMSYgNcBxkt2drabNWuW1zFERGQCbNmypdY5l3P6LQVUI0VEYsWp6uO0bQjOmjWLzZs3ex1DREQmgJkd9jrDVKIaKSISG05VH3VrqIiIiIiISIxRQ1BERERERCTGqCEoIiIiIiISY6btM4IiMnX09PRQXl5OZ2en11FkkguFQhQXFxMMBr2OIiIy7lQfZaTOpD6qISginisvLyclJYVZs2ZhZl7HkUnKOUddXR3l5eXMnj3b6zgiIuNO9VFG4kzro24NFRHPdXZ2kpWVpSInp2RmZGVlqWdcRGKG6qOMxJnWRzUERWRSUJEbGz/84Q+pr6/3Osa40d8TEYk1+r0nI3Emf0/UEBQRAfx+PytXrmTJkiWsWLGCb37zm4TDYQA2b97MZz/72WH3LS0t5eGHHx52fWVlJe9973sBeOihh7jjjjvOOu/AY/b7+te/TkJCApmZmaM61qWXXsrChQtZuXIlK1eu5LHHHuNzn/sc99133/Ft3v72t/Oxj33s+Oe///u/51vf+halpaUsXbr0hON96Utf4t577wXgtttuIzExkZaWluPr/+7v/g4zo7a2dlQ5RUREztR07yg9E2oIiogACQkJbNu2jR07dvD000/z+9//ni9/+csArF69mu985zvD7nuqhmBvby+FhYU89thjY5p3qGN+4Qtf4Oabbz6j4/385z9n27ZtbNu2jfe+972sW7eODRs2ABAOh6mtrWXHjh3Ht9+wYQMXXXTRiI49b948fvvb3x4/1jPPPENRUdEZ5RQRkYmljtLp21GqhqCIyCC5ubk88MADfPe738U5x3PPPce1114LwPPPP3+8IKxatYqWlhbuuusu1q9fz8qVK/n2t7/NQw89xHXXXcdll13G5ZdfflIxOHLkCJdeeinz588/3tgcvM29997Ll770JQD279/PFVdcwYoVKzj33HM5cODACdt3dnbykY98hGXLlrFq1SqeffZZIFJUb7jhBq6++mrmz5/P5z//+RF/BxdddBEvv/wyADt27GDp0qWkpKTQ0NBAV1cXu3bt4txzzx3RsW666SZ++ctfAvDcc8+xbt06AoGTxyo7fPgw8+fPp7a2lnA4zMUXX8wf//jHEWcWEZGxp47S6dtROqENQTO72sz2mNl+M7triPW3m9l2M9tmZi+a2eIB6/5PdL89Zvb2icwtIrFnzpw59PX1UV1dfcLye++9l/vvv59t27axfv16EhIS+NrXvsbFF1/Mtm3b+NznPgfA1q1beeyxx3j++edPOvarr77Kr3/9a9544w0effRRNm/efMosN998M5/5zGd4/fXX2bBhAwUFBSesv//++zEztm/fzi9+8QtuvfXW4w+Mb9u2jV/+8pds376dX/7ylxw5cmTYc/Q3cOvq6igsLCQQCFBWVsaGDRu48MILOf/883n55ZfZvHkzy5YtIy4uDoADBw4c33flypV873vfO+HYCxYsoKamhoaGBn7xi19w0003DZlh5syZfOELX+BTn/oU3/zmN1m8eDFXXXXVKb8bERGZOOoo9aaj9MEHH+Tv/u7vjn/+wQ9+cPzfG2djwqaPMDM/cD9wJVAObDKzJ5xzOwds9rBz7nvR7a8DvgVcHW0Q3gQsAQqBP5nZAudc30Tll6mrpnzjWR8jp/iCMUgiI3Fk929pb6kc02MmphRSsuj6MTnWunXruPPOO7n55pu54YYbKC4uHnK7K6+8cthbUK688kqysrIAuOGGG3jxxRd517veNeS2LS0tVFRU8O53vxuIzBM02Isvvsjf/M3fALBo0SJmzpzJ3r17Abj88stJS0sDYPHixRw+fJiSkpKTjvHzn/+c1atXn7DsoosuYsOGDWzYsIE777yTiooKNmzYQFpaGuvWrTu+3dy5c9m2bdvxz/0FeqAbbriBRx55hFdeeYXvf//7Q/6sAB/72Md49NFH+d73vnfCMUVk6jvbehzrtXiy1MfTdZSuW7eO1tZWQqEQX/va17j33nv53e9+B0QaYFu3buWNN94gMzOT0tLSE47x6quv8uabb5KYmMiaNWt45zvfSXZ29rBZbr75Zu666y7e/e5309nZSTgcPiHXwI7S3bt3c9VVVx2vj9u2beO1114jPj6ehQsX8jd/8zdD1sebb76ZhIQEAP785z8P2VFaUVHByy+/TFpa2pAdpf2OHj3KP/zDPxz/vGDBAp544onjHaW33HILv//970/K8P73v5+vfvWrfOMb3yAYDPLjH//4lLV0pCbyiuBaYL9z7qBzrht4BDjhb55zrnnAxyTARd9fDzzinOtyzh0C9kePJyIyLg4ePIjf7yc3N/eE5XfddRc//OEP6ejoYN26dezevXvI/ZOSkoY99uCRvcyMQCBw/JkLYMymSIiPjz/+3u/309vbO+J9+29/2b59O0uXLuWCCy7g5ZdfHtVtL/1uvPFG/vmf/5krr7wSn2/40tPe3k55eTkAra2tozqHiIh4p7+j9Dvf+Q6NjY1DXtmCkXWUJiQkHO8oHc5QHaWJiYknbPPiiy9yyy23AMN3lIZCoeMdpUMZeGtofyfuwI7SCy+8kAsvvPD456E6Svtft99++0nHH9hRevHFFw+ZITk5mcsuu4zf/e537N69m56eHpYtWzbsdzNSEzmhfBEw8J6kcuD8wRuZ2WeAO4E44LIB+w7sRiqPLhORaWasrtydjZqaGm6//XbuuOOOkxptBw4cYNmyZSxbtoxNmzaxe/duSkpKTnjY+3Sefvpp6uvrSUhI4PHHH+fBBx8kLy+P6upq6urqSE5O5ne/+x1XX301KSkpFBcX8/jjj/Oud72Lrq4u+vpOvBni4osv5uc//zmXXXYZe/fupaysjIULF7J169az+h4uuugi7r33XubMmYPf7yczM5PGxkZ27NjBD37wg1Eda+bMmXz1q1/liiuuOOV2/c9xzJw5k49//OPHe5FFRGLdZKiPcGJH6a5du44vv+uuu3jnO9/Jk08+ybp163jqqaeG3H86dpSWlJTwzW9+k9TUVD7ykY+MKseNN97Ieeedx6233nrKjtKPfexj/L//9/9YtGjRqM8xnEk3WIxz7n7n3FzgC8A/jWZfM/uEmW02s801NTXjE1BEpqWOjo7jo6JdccUVXHXVVXzxi188abv77ruPpUuXsnz5coLBINdccw3Lly/H7/ezYsUKvv3tb5/2XGvXruU973kPy5cv5z3veQ+rV68mGAxy9913s3btWq688koWLVp0fPuf/exnfOc732H58uVcdNFFHD169ITjffrTnyYcDrNs2TJuvPFGHnrooRMK3JlatmwZtbW1XHDBBScsS0tLO+WtOsP55Cc/ydy5c4dd//zzz7Np06bjjcG4uDh+/OMfn1F2EREZeyPpKP3CF77AmjVr2L17NykpKWfUUdrR0cHjjz/OunXrTugo7erqOt5BOLCjFKCrq4v29vYTjtffUQqc0FF6ti666CJ+97vfkZmZeUJH6csvvzzqO2b6O0o//elPn3K7888/nyNHjvDwww/zgQ984GziHzeRVwQrgIE33hZHlw3nEeA/R7Ovc+4B4AGA1atXu8HrRUSGM/gq20CXXnopl156KQD//u//PuQ2zzzzzAmfb7vttuPvZ82axZtvvnl8+cB1A332s58dchju+fPnn3R84PgxQ6HQkA2mweca7urac889N+Ryv99Pc3PzCcseeuihEz4P/Nn6DXxGcPD2/QY/FwLw1re+lY0b/3Lzx29+85sh9xURkYnT31Ha09NDIBDgQx/6EHfeeedJ29133308++yz+Hw+lixZwjXXXIPP5zveUXrbbbeRkZFxynP1d5SWl5dzyy23HH92vb+jtKio6KSO0k9+8pPcfffdBINBHn300ROuqn3605/mU5/6FMuWLSMQCIx5R+kHP/jBE5a1traecUfpSLz//e9n27Ztp/0eR8qcm5j2kpkFgL3A5UQacZuADzrndgzYZr5zbl/0/V8BX3TOrTazJcDDRJ4LLAT+DMw/1WAxq1evdqcbiU9igwaLmfx27drFOeec43UMmSKG+vtiZlucc6uH2UUGUY0UL2iwmNFTfZSBrr32Wj73uc9x+eWXD7l+tPVxwm4Ndc71AncATwG7gF8553aY2T3REUIB7jCzHWa2jchzgrdG990B/ArYCfwB+IxGDBURERERkemusbGRBQsWkJCQMGwj8ExM5K2hOOeeBJ4ctOzuAe//9hT7fhX46vilExERERERmVzS09OPj3Y6libdYDEiIiIiIiIyvtQQFBERERERiTFqCIqITCM//OEPqa+v9zqGiIiITHJqCIqIEJkqoX8ewRUrVvDNb37z+AS2mzdvHnJah36lpaU8/PDDw66vrKzkve99LxCZTuGOO+4467wDj9nv61//OgkJCWRmZp718Ufjtttu47HHHpvQc4qIiIyGOkpPNqGDxYiIjMRYTPkx0EiGHE9ISGDbtm0AVFdX88EPfpDm5ma+/OUvs3r16uNzGQ2lvyE4cD6hfr29vRQWFo55Q2moY37hC1846+P29fXh9/vP+jgiIjI9+P1+li1bdnwewQ9/+MN87nOfw+fzsXnzZn7605/yne98Z8h9S0tL2bBhw5D1ESKdmp/97Gd57LHHeOihh9i8eTPf/e53zyrvwGP2+/rXv05xcbEnHaXXXnvtSR23k4UagiIig+Tm5vLAAw+wZs0avvSlL/H8889z77338rvf/Y7nn3+ev/3byADHZsYLL7zAXXfdxa5du1i5ciW33norGRkZ/OY3v6G1tZW+vj5+8pOfcO211x6feP3IkSNceumlVFRUcMstt/DFL36R0tLSE7a59957aW1t5Utf+hL79+/n9ttvp6amBr/fz6OPPorf7z++fWdnJ5/61KfYvHkzgUCAb33rW7ztbW/joYce4oknnqC9vZ0DBw7w7ne/m3/913896eedNWsWN954I08//TSf//znyczM5Itf/CJdXV3MnTuXH//4xyQnJ3PPPffwP//zP3R0dHDRRRfx/e9/HzObuP8wIiIxTh2lp6eO0pHTraEiIkOYM2cOfX19VFdXn7D83nvv5f7772fbtm2sX7+ehIQEvva1r3HxxRezbds2Pve5zwGwdetWHnvsMZ5//vmTjv3qq6/y61//mjfeeINHH32U003sffPNN/OZz3yG119/nQ0bNlBQUHDC+vvvvx8zY/v27fziF7/g1ltvpbOzE4Bt27bxy1/+ku3bt/PLX/6SI0eODHmOrKwstm7dyhVXXMFXvvIV/vSnP7F161ZWr17Nt771LQDuuOMONm3axJtvvklHRwe/+93vRvZlymmZ2dVmtsfM9pvZXUOsv93MtpvZNjN70cwWR5fPMrOO6PJtZva9iU8vIrGiv6P0u9/9Ls45nnvuOa699loAnn/+eVauXMnKlStZtWoVLS0t3HXXXaxfv56VK1fy7W9/m4ceeojrrruOyy67jMsvv5zS0lKWLl16/Pj9HaXz58/ny1/+MsBJ29x777186UtfAmD//v1cccUVrFixgnPPPZcDBw6csH1nZycf+chHWLZsGatWreLZZ58FIo9p3HDDDVx99dXMnz+fz3/+80P+vLNmzeILX/gC5557Lo8++ih//OMfufDCCzn33HN53/veR2trKwD33HMPa9asYenSpXziE5/AOTe2X/w4UUNQRGQU1q1bx5133sl3vvMdGhsbCQSGvrHiyiuvHPYWlCuvvJKsrCwSEhK44YYbePHFF4c9X0tLCxUVFbz73e8GIBQKkZiYeMI2L774IrfccgsAixYtYubMmcfnG7r88stJS0sjFAqxePFiDh8+POR5brzxRgA2btzIzp07WbduHStXruQnP/nJ8X2effZZzj//fJYtW8YzzzzDjh07hs0tI2dmfuB+4BpgMfCB/obeAA8755Y551YC/wp8a8C6A865ldHX7RMSWkRiljpKp09HqRqCIiJDOHjwIH6/n9zc3BOW33XXXfzwhz+ko6ODdevWsXv37iH3T0pKGvbYg2+nNDMCgcDxwWmA44XqbMXHxx9/7/f76e3tHXK7/rzOOa688kq2bdvGtm3b2LlzJz/60Y/o7Ozk05/+NI899hjbt2/n4x//+JhlFNYC+51zB51z3cAjwPUDN3DONQ/4mARMje5mEYkZ6iideh2lagiKiAxSU1PD7bffzh133HFSo+3AgQMsW7aML3zhC6xZs4bdu3eTkpJCS0vLiI//9NNPU19fT0dHB48//jjr1q0jLy+P6upq6urq6OrqOt6bmJKSQnFxMY8//jgAXV1dtLe3n3C8iy++mJ///OcA7N27l7KyMhYuXHhGP/sFF1zASy+9xP79+wFoa2tj7969xxt92dnZtLa2apTQsVUEDOyKLo8uO4GZfcbMDhC5IjhwGNvZZvaamT1vZhePb1QRiXXqKJ0+HaVqCIqIAB0dHcenj7jiiiu46qqr+OIXv3jSdvfddx9Lly5l+fLlBINBrrnmGpYvX47f72fFihV8+9vfPu251q5dy3ve8x6WL1/Oe97zHlavXk0wGOTuu+9m7dq1XHnllSxatOj49j/72c/4zne+w/Lly7nooos4evToCcf79Kc/TTgcZtmyZdx444089NBDJxS40cjJyeGhhx7iAx/4AMuXL+fCCy9k9+7dpKen8/GPf5ylS5fy9re/nTVr1pzR8eXMOefud87NBb4A/FN0cRUwwzm3CrgTeNjMUofa38w+YWabzWxzTU3NxIQWkWlFHaXTq6NUo4aKyKQzklHMxlpfX9+w6y699FIuvfRSAP793/99yG2eeeaZEz7fdtttx9/PmjXr+Gigt9122wnrBvrsZz875HyF8+fPP+n4wPFjhkIhfvzjH5+0fvC5hntmobS09ITPl112GZs2bTppu6985St85StfOWn5Qw89NORxZcQqgJIBn4ujy4bzCPCfAM65LqAr+n5L9IrhAuCkB2uccw8ADwCsXr1at5aKyIj0d5T2Tx/xoQ99iDvvvPOk7e677z6effZZfD4fS5Ys4ZprrsHn8x3vKL3tttvIyMg45bn6O0rLy8u55ZZbjo9I2t9RWlRUdFJH6Sc/+UnuvvtugsEgjz76KD7fX65zffrTn+ZTn/oUy5YtIxAIjFlHaVdXFxCpiwsWLDjeUZqfnz+lOkptqoxqM1qrV692p3vAVGLDWAy17EXDJJbs2rWLc845x+sYMkUM9ffFzLY454Yfw3wSM7MAsBe4nEgDcBPwQefcjgHbzHfO7Yu+/yvgi8651WaWA9Q75/rMbA6wHljmnDvlrMmqkeKFs63HsViLVR9lNEZbH3VFUERExEPOuV4zuwN4CvADDzrndpjZPcBm59wTwB1mdgXQAzQAt0Z3vwS4x8x6gDBw++kagSIiIqCGoIiIiOecc08CTw5adveA9387zH6/Bn49vulERGQ60mAxIjIpTNfb1GVs6e+JiIjI2FBDUEQ8FwqFqKur0z/y5ZScc9TV1REKhbyOIiIyYVQbZSTO5O+Jbg0VEc8VFxdTXl6OhrSX0wmFQhQXF3sdQ0RkQvR3lGZlZZ00XYNIvzPtKFVDUEQ8FwwGmT17ttcxREREJhV1lMpInUlHqRqCIiIiIiKTkDpKZTzpGUEREREREZEYo4agiIiIiIhIjFFDUEREREREJMaoISgiIiIiIhJj1BAUERERERGJMWoIioiIiIiIxBhNHyEyAjXlG8/6GDnFF4xBEhEREW+MRS0UkclDDUGRQZxzdLXX0dl6lJ6uZnyBOOJC6SSlzcTnD3odT0RERETkrKkhKDJAb3cb9Ue30dl6FDCC8SmEOxtoazxMY/VO0nOXkJwxBzPzOqqIiIiIyBlTQ1AkqqujnprDL+JcmPS8ZSSnzz5+BbCrvZ6mmh00HN1Gd2cjmQWrMNMjtiIiIiIyNakhKEKkoVddth6fP468mRcTjEs+YX18YiY5M95CU81Ommt341yYrMLVujIoIiIiIlOSGoIS8/p6Oqg5sgG/P57cWZcQCCYOuZ2ZkZ67BDMfTTU7CQQTSc9dMsFpRURERETOnu5tk5jmXJja8ldw4V6ySy4athE4UGr2IpLSZ9Fcu5uOlqMTkFJEREREZGypISgxrbl2D10ddWQWnktcKHVE+5gZmfkrCcanUl+1hb6+7nFOKSIiIiIytia0IWhmV5vZHjPbb2Z3DbH+TjPbaWZvmNmfzWzmgHV9ZrYt+npiInPL9NTT1UJT7W4SU4tJSpsxqn3N5yercDV9vV00HH19nBKKiIiIiIyPCWsImpkfuB+4BlgMfMDMFg/a7DVgtXNuOfAY8K8D1nU451ZGX9dNSGiZtpxz1B99DTM/GXnLz+gYcQkZpGYvpL2pjK722jFOKCIiMj309XXT3dFId2czzjmv44hI1EQOFrMW2O+cOwhgZo8A1wM7+zdwzj07YPuNwC0TmE9iSEdrFV1tNWTkr8QfTDjj46RmL6St8TANR18nb/ZlGkVURESESIdrR2sVLXX7TugsNV+ApLQS0rLPOav6KyJnbyJvDS0Cjgz4XB5dNpyPAr8f8DlkZpvNbKOZvWuoHczsE9FtNtfU1Jx1YJmenAvTVP0mgbhkkjNmn9WxfL4A6blL6e5spK2pbIwSioiITF3hvh7qKjZRe+RlenvaSctZTHbxBWQWriYxtYjWhlIq9z+luinisUk5fYSZ3QKsBt46YPFM51yFmc0BnjGz7c65AwP3c849ADwAsHr1at17IENqayyjp6uF7OILxmRS+MS0Elrq99FUs5OktBJNNC8iIjGrr7eL6sMv0NPVTFrOElKzF5xQF5PTZ5KavYj6yi3UVWyit7udtJxFHiYWiV0T+S/WCqBkwOfi6LITmNkVwP8FrnPOdfUvd85VRP88CDwHrBrPsDI9ORemqXYXcaEMElIKx+SYZkZazmL6etppazw8JscUERGZasJ9PVSXvUhvdys5M95CWs6iITtHg3HJ5M54C4lpJTTV7KClbr8HaUVkIhuCm4D5ZjbbzOKAm4ATRv80s1XA94k0AqsHLM8ws/jo+2xgHQOeLRQZqbamMvp62knLOWdMn+cLJecTF8qgqXY3zoXH7LgiIiJTgXOO2vKN9HQ2kV18IQnJeafcPjL69hoSUgpoOPY67S2VE5RURPpNWEPQOdcL3AE8BewCfuWc22Fm95hZ/yig3wCSgUcHTRNxDrDZzF4HngW+5pxTQ1BGxTlHc+0egvFphJLzx/TYkauC50SuCuqZBxE5AyOYYul2M9serY8vDhx528z+T3S/PWb29olNLgLNtbvpbKsms2AVCSkjq7FmRlbRWuJCGdRVbKa3p32cU4rIQBP6jKBz7kngyUHL7h7w/oph9tsALBvfdDLddbRU0tvdSlbR2nEZ3TOUnE8wPo2Wun0kpc3UCKIiMmIDpli6kshgapvM7IlBnZ4PO+e+F93+OuBbwNXRBuFNwBKgEPiTmS1wzvVN6A8hMauzrYammp0kps0gKX3WqPb1+QJkF6+l6uCfqavYTO7Mi1U/RSaIRrWQmNFct49AMInE1OJxOb6ZkZo1n56uZjpbj43LOURk2jo+xZJzrhvon2LpOOdc84CPSUD/oGjXA48457qcc4eA/dHjiYy7cLiP+qqtBIJJZBasOqNGXCAumYy85XS119DacOD0O4jImFBDUGJCV0cD3R11JGfOHdeexsS0EvyBBJrr9o7bOURkWhrRFEtm9hkzOwD8K/DZUe6rKZZkzDXX7qK3u5WMglX4fGd+o1lS+ixCSbk0Vu+gr7dzDBOKyHDUEJSY0FK/H/MFSB7lLSujZeYjJXMuXe01dHc2jeu5RCT2OOfud87NBb4A/NMo933AObfaObc6JydnfAJKTOnpaqa5di9JaTNOOzjM6ZgZGfkrceE+GqvfHKOEInIqagjKtNfX20l70xGS0mfi8wfH/XxJ6bPAfLQ2HBz3c4nItDGiKZYGeAR41xnuKzImGo+9ifn8pOeNzTAOwfgUUrPm09Z4mK6O+jE5pogMTw1BmfZaG0oBR0rG3Ak5nz8QT1JqCW1NZYT7eibknCIy5Y1kiqX5Az6+E9gXff8EcJOZxZvZbGA+8OoEZJYY1tlWTUdrFWnZi/AHQmN23NTsRfj8cTRV7xizY4rI0NQQlGnNuTCtjYeIT8whGJ8yYedNzpyDC/dqKgkRGZERTrF0h5ntMLNtwJ3ArdF9dwC/IjK/7h+Az2jEUBlPzjkajm3HH0wkJXPemB7b5w+Smr2IzrZqOtuqT7+DiJyxCZ0+QmSitdTvp6+nnfTcJRN63rhQBnGhdFobDpKcMUdDYYvIaY1giqW/PcW+XwW+On7pRP6io6WSns5GsgpXYz7/mB8/JWMOLXX7aKzeQd6sHNVQkXGiK4IyrdWWv4rPH0diykkD6I0rMyM5Yw49Xc10tddN6LlFRETGi3OOppqdBOKSSUybMS7nMJ+ftJxFdHfU06WrgiLjRg1BmbZ6ultprH6TpLQZ49JjeTqJaSWYL6g5kUREZNpoby6np6uZtJzF43qlLiltJv5AiKbaPeN2DpFYp4agTFv1lVtwri8yiqcHfL4AyekzaW+u0JxIIiIy5TnnaK7dQzA+hcTU4nE9l/n8pGTNp6u9RnfWiIwTNQRlWnLOUVvxKklpM4gLpXmWIzljDuCiI5eKiIhMXZ2tx+jpaiIla+GEPLeXnDEHnz+OZl0VFBkXagjKtNTWWEpnWzXZxed7miMYn0J8Yg6tjYdwLuxpFhERkbPRXLcXfyCBpLSS0288Bny+AMkZc+horaKnu3VCzikSS9QQlGmptuIVfP54MvJWeh2F5IzZ9PW001K/3+soIiIiZ6StqYyu9hpSsuZhNnH/fIzcWWO01ut5e5GxpoagTDt9vV00HH2DzPwV+ANxXschMaUQnz+O2vJXvI4iIiJyRo4eeg7zBUlOnz2h5w0EE0hMLaa1sZS+3q4JPbfIdKeGoEw7jTU7CId7yCw4z+soQOSB96S0GTRW76CnS7e2iIjI1NLZVkNj9ZukZM7B5w9O+PlTMufiwr3UVW6e8HOLTGdqCMq0U1+5lbhQOskZs7yOclxyxmyc61MRExGRKefY4ecjo3hmzvPk/PGJWcSFMqgue0nP24uMITUEZVrp6WqhuW4vmQXnTugzDKcTjE8lOX02tRWv4JzzOo6IiMiI9HS1Ule5hazC1fgDIc9ypGTNo6u9hua6fZ5lEJluJs+/lEXGQP3RbYAjs+Bcr6OcJLv4fLraa2ltOOh1FBERkRGprdiIC/eSN/NiT3MkphYTiEuhuuxFT3OITCdqCMq0Ul+1lYSUIhKS87yOcpKMvOX4AwkaNEZERKYEF+6j5sjLpGYtIJSU62kWMx85JRfSXLubzrYaT7OITBdqCMq00dlWTXtzOVkFq7yOMiSfP0hm4bk0HHuD3u42r+OIiIicUkP1m/R0NZMzY53XUQDIKT4fzEdthTpURcaCGoIybdRXvQYYGfkrvY4yrJyi8yODxlRt9TqKiIjIKdWUvURcQiZp2Yu8jgJEnrdPz1lMXcVmwuFer+OITHlqCMq04JyjrmorKVnziAuleR1nWAkpBSSlzaC2fKMGjRERkUmrvbmC1sZD5JZcNKkGX8suPp/enjaaqnd4HUVkyps8/2eLnIW2psN0d9STNQkHiRksu/h8OtuqaWss9TqKiIjIkKqPvITPFySraK3XUU6QmrWAuFAGNXreXuSsqSEo00J95VbMFyQ9d6nXUU4rI28lPn+8ipiIiExKvd1t1Fe9RmbheQSCCV7HOYGZj+yiNbTU76OrvdbrOCJTmhqCMuWFw73UH3ud9Nwlns5xNFL+QByZBatoOPY6vT3tXscRERE5QW3Fq7hwL7klk2OQmMEiVymN2opNXkcRmdLUEJQpr7l2D3097VPittB+OcUX4MK90QFuREREJofIlBEbSMmYS0JKvtdxhhQXSiMt55xog7XP6zgiU5YagjLl1VdtJRBMIjVrgddRRiwxtYjE1GJqy1/RoDEiIjJpNNbspLuzcdJMGTGc7OLz6e1upbFmp9dRRKYsNQRlSuvr6aCxZicZBSsxn9/rOKOSXXw+Ha1VtDcf8TqKiIgIEJ0yIpROes5ir6OcUlrWQoLxadTqeXuRM6aGoExpDdXbceHeKXVbaL/M/JX4/HEaNEZERCaFjpajtDQcIKfkoknfuWo+P1lFq2mu20t3Z6PXcUSmJDUEZUqrr9xKfGI2iaklXkcZNX8gRGb+ShqObqOvt9PrOCIiEuOqj7yE+QJkT7IpI4aTXbgGcNRVbvY6isiUpIagTFndnY20NBwks+BczMzrOGcku/h8wn3dGjRGREQ81dvTTn3lFjILVhGIS/I6zojEJ2aRkjGX2opNOBf2Oo7IlKOGoExZkcaTI6tglddRzlhiagkJKQXUVrzqdRQREYlhdRWbCId7Ju2UEcPJKl5Ld0c9LfUHvY4iMuWoIShTVn3VVpLSZhKfmO11lDNmZmQXnU97czltTWVexxERj5jZ1Wa2x8z2m9ldQ6y/08x2mtkbZvZnM5s5YF2fmW2Lvp6Y2OQyHTgXpvrIBpLTZ5OYWuR1nFHJyF2GPxCiTh2qIqMWGOmGZrYMeC9QCAx8gtg55z46wmNcDfxbdP8fOue+Nmj9ncDHgF6gBvhr59zh6LpbgX+KbvoV59xPRppdpp/2lko6Wo9SsujdXkc5a1mF51G5/w8cO/wCc5bf4nUcETkDZ1MjzcwP3A9cCZQDm8zsCefcwHHxXwNWO+fazexTwL8CN0bXdTjnVo7NTyKxqKl2N90d9RTNf4fXUUbN5w+SWbCK2opNlPS0Ewgmeh1JZMoYUUMw2oD77RDbG+CA0zYEz6bQmVkm8EVgdfR8W6L7Nowkv0w/9VVbwXxk5q/wOspZ8wdCZBdfwLHS5+maX098QqbXkURkFMagRq4F9jvnDkaP9whwPXC8Pjrnnh2w/UZAvUYyZqrLXiQYn0ZG7lKvo5yRrKK11Bx5mfqqbeTOuMjrOCJTxkhvDf1HIAi0EilsPUA30AYcHuExjhc651w30F/ojnPOPeuca49+3AgUR9+/HXjaOVcfbfw9DVw9wvPKNONcmPqqbaRlL5oyD7SfTu6MdWBG9eH1XkcRkdE72xpZBAycULQ8umw4HwV+P+BzyMw2m9lGM3vXKHKL0NlWTUvdPnJKLpz0U0YMJzGliISUAt0eKjJKI20IrgBagP5nErYCi4gUuk+N8BhnU+hGu69MYy31B+npaiJzCs4dOJy4UDqZ+SuprXiV3p720+8gIpPJWNTIETGzW4jcHfONAYtnOudWAx8E7jOzucPs+4log3FzTU3NWMaSKay67CXM/GQXne91lDMWed5+Le0tFbQ3V3gdR2TKGGlDMATsc841AmEgPvrsXgVw71iHGqbQjWQ/FbkYUF+1BZ8/nvScxV5HGVN5s95KuK+bWk0wLzLVnG2NrAAGToZaHF12AjO7Avi/wHXOua7+5c65iuifB4HngCGHUnbOPeCcW+2cW52TkzOCWDLd9fV2Ule5hYz8lQTjk72Oc1YiU0n5qa3c5HUUkSljpA3BRiA1+r4OWGpmXwAWAnNGeIyzKXQj2ldFbvoL93XTcGw7GfnL8fmDXscZU4kphaRkzqe67EXC4V6v44jIyDVydjVyEzDfzGabWRxwE3DC6J9mtgr4PpHaWD1geYaZxUffZwPrGPBsocip1FVsJtzXFXk8YYoLBBNJz1tKfeVWwn09XscRmRJG2hDcC8wws1TgZSLPQvw/Ig/Gbx/hMc640AFPAVdFC14GcFV0mcSYxuodhPu6yCo4z+so4yJv1lvp6WrWBPMiU8tZ1UjnXC9wB5G6tgv4lXNuh5ndY2bXRTf7BpAMPDpomohzgM1m9jrwLPC1QYOwiQwpMmXESySlzSQpreT0O0wB2UVr6evtoLF6h9dRRKaEkU4f8RVgKZAO/H/AEmAukWf17hjJAZxzvWbWX+j8wIP9hQ7Y7Jx7ghMLHUCZc+4651y9mf0LkcYkwD3OufoRZpdppK5yC3GhdJIzZnsdZVykZi0gITmfo4eeJavwPMw01afIFDAWNfJJ4MlBy+4e8P6KYfbbACw7k9AS25pr99LVXkvhsqu8jjJmUjLnERfKoLbiVTILVnodR2TSG1FD0Dn3FCdegZtvZpmjbYydaaGLrnsQeHA055Pppaermea6veTPvmzaNpDMjII5V3LwjZ9RX/UaWYXT88qnyHQyVjVSZCJVH3mJQFwK6XnTpx/BzEdW0WqqDvyJrg5NxyRyOsP+a9rMZphZ3oD3J7yA5AHvRcZd5HZJR1bh9BktdCjpeUtJSC6g6uCfcOE+r+OIyBBUI2Uq62yrobl2NzklF+DzjfTmsKkhq3ANEHn+UURO7VT/95cSedZhXfS9G2Y7d5rjiIyJuqotJKaWEErK9TrKuDLzUTjvKg5s+wl1VVvJLlrjdSQROVkpqpEyRdUc2YCZn5ziC7yOMubiEzJIyZpHXeUmCuZeMW3vIBIZC6f7v8MGvR/uJTKu2lsq6WipiplbJdNylpCUNoPK/X8g3NftdRwRGZpqpEw5fb2d1FZsIiNvOcH41NPvMAVlF62lu7ORlrp9XkcRmdRO1Uv5EaBmwHsRz9RXbgXzkZm/0usoE8LMKF5wLXs2/QfHDr9AwZxhH58VEW+oRsqUVFe5JTplxFu8jjJu0nOX4g8mUlu5idTshV7HEZm0hm0IOud+MtR7kYlUU74R5xy1Fa+QkJxHQ/VIZyuZ+pIzZpOeuzQ6guga4kJpXkcSkSjVSJmKqo+8TNXBPxMXyqC9tZL21kqvI40Lny9AZsEqao9spLe7jUBckteRRCalEd04bWYfN7MHzWzJgGVLoss+Pn7xRKCzrZq+3k6S0mZ6HWXCFS14J86FKd/7P15HEZFhqEbKVNHZVk1vdwspmXO9jjLusovW4lyf5uUVOYWRPkH7/wHXE5nott8u4DrgH8Y6lMhAbU2HMV+QhOR8r6NMuFBiNvmz30bD0ddprtvrdRwRGZpqpEwJLfX78fnjSUwt9jrKuEtMKSQxtZjaildxbrixnERi20hHMisB9jrnwv0LnHNhM6sAFoxLMhEg3NdDR3MlSekzMJ/f6zhnpaZ84xntFwgmEYhL4tAbD7P04n/EH4gb42QicpZUI2XS62yrobP1KKnZi6ZsPR1tHY1PzKbh6DYq9/+BuISMaTlKqsjZGOkVwU5gXv+cSQDR9/Oi60TGRXtLJc71xeRtof3M5yez4Dx6e9qo2Pe/XscRkZOpRsqkV132IpgvJm4L7ZeUVoKZj9bGUq+jiExKI20IvgqEgA1m9s9m9s/AS9Flr45XOJG2xsMEgknEJWR6HcVToaQcUjLnUXNkg24RFZl8VCNlUuvtaaeuYhNJaSX4AyGv40wYnz+OhNQi2pqOEA73eR1HZNIZaUPwG9E/ZwFfir7mEJko9+tjHUoEoKu9jq72GpLSZ2GmqbjScpcSSsrl0PZH6Olq8TqOiPyFaqRMajVHNhIO95CSOd/rKBMuOX0WLtxDR0uF11FEJp0RNQSdc38CbgJK+csEuYeAm5xzz4xbOolptZWbAEhKn+FxksnB5/MzZ/kt9PV2cGj7wwx4HElEPKQaKZNZONxLzZGXSMmaH5PTEMUn5uAPJtLaUOp1FJFJZ6RXBHHOPeqcmwvkArnOubnOucfGL5rEMufC1FVsJpScRyCY6HWcSSMhpYAZ57yblvr9lO/V84Iik4VqpExWDUe30dPVTN7MS7yO4gkzIzl9Fl3tNXS113odR2RSGXFDEMDM4oEEINHMZvS/xieaxLLmur30dDWRnD7L6yiTTlbhGnJmrKP68AtUl73kdRwRiVKNlMnGOcexwy8QSsojNWuh13E8k5QeGXCutmKzx0lEJpeRTii/wMzWA+1Ebn05NOB1cNzSScyqrdhEIJhEQkqh11EmHTOjZOF1pOUs5sju39JYvcPrSCIxTTVSJquW+gN0tFSRN/OSmH7WPhBMJJScR13lZj1WITLASK8I/gBYx1+efRj8Ehkzvd1tNFXvILPwXMxGddE6Zpj5mL3sZhJTizj4xs9pazridSSRWKYaKZPSscPPE4hLJrNglddRPJecPoueriaaazXytki/kU4ofx4QBv4N2An0jlsiiXl1VVtxro/swrW0NpV6HWfS8gfimLfqr9n9yr+zf+uPWLDmUyQk551+RxEZa6qRMul0tB6juXY3BXOvwucPeh3HcwkphQSCSdRWvEpaziKv44hMCiNtCJYDfc65vx/PMCLOOWorXiUxtYSElHw1BE8jGJ/C/PM+zp5N/8nezd9n4ZpPEUrK8TqWSKxRjZRJp7psPeYLkFNyoddRJgUzH5mF51JTtoGe7laCccleRxLx3Ejvu/snYK6ZvWM8w4i0Nx2hs/Uo2UVrvI4yZYSScliw+hPgwuzd8gBdHfVeRxKJNaqRMqn0dLdSV7mFrILz1OAZILtwLc71UV+11esoIpPCSK8IfoPIcw7/Y2ZNQOOAdS46ZLbIWasp34jPH6/nGYZRU75x2HXZJRdwrPQFdm38N/JmvXXYaTdyii8Yr3gisUo1UiaV6rIXceE+cmde7HWUSSUhJZ/E1BJqy18ld8bFMT2AjgiM/IrgTCBIpNClA7MGvUTOWm9PO/VHt5FZsAp/IOR1nCknLpRO7sy3EO7rpvrwevp6O72OJBIrVCNl0ujr7aSmbAPpuUv03PgQsovX0tl2jHYNsiYy4iuCPwXceAYRqa/cigv36IrVWYhPyCR3xjqqD79I9eH15M68BH8g3utYItOdaqRMGrXlr9DX20H+rLd5HWVSysxfSfnuJ6ip2EhSuqb5lNg2ooagc+62cc4hMc45R035yySlzSAxtcjrOFNafGI2OTMuoqbsJarL1pM38xJ8/jivY4lMW6qRMlmEw70cO/wCKRlz1cgZhj8QIrPgXOqqtlA8/50E4pK8jiTimRFP0mZmfjP7gJn9m5n9o5nNMLNLzCxzPANKbGhtOERnWzXZuho4JkJJuWSXXEhPVwvVh18k3NfjdSSRaU01UiaD+sot9HQ1kz/nMq+jTGq5M9bhwr3UVrzqdRQRT42oIWhmacBG4L+AO4BrgcXAs8Bnxy2dxIya8pfxBxLIzF/hdZRpIyE5n+zi8+nubKSm7CXCYU1tJjIexqJGmtnVZrbHzPab2V1DrL/TzHaa2Rtm9mczmzlg3a1mti/6unVMfiiZcpwLc7T0ORJTikjJnO91nEktIaWA5Iw51Bx5GefCXscR8cxIrwh+jb9MmNs/xNLTQAdw9TjkkhjS09VK47HtZBWep1sYx1hiSiFZRWvp6qijrvxVnNNjTCLj4KxqpJn5gfuBa4g0ID9gZosHbfYasNo5txx4DPjX6L6ZwBeB84G1wBfNLONsfyCZehqPvUlXey35s9+m0TBHIHfGOro7G2iq2el1FBHPjLQheD3QChwfAts51weUAXPGIZfEkLrKTTjXp9tCx0lSWjEZ+SvoaK1SwRMZH2dbI9cC+51zB51z3cAj0WMe55x71jnXHv24ESiOvn878LRzrt4510CkAaoO2hjjnONo6bPEJ2aTnrfM6zhTQnrOEoKhdKrLXvI6iohnRtoQzAIOOOfKBi0PA6ljG0liiXNhao68THLGHA1zPY6SM+aSlD6L5trd1B/d5nUckenmbGtkETBwLPvy6LLhfBT4/RnuK9NQS/0+2pvLyZt1KWYjHv4hppnPT07xhbTU76ej9ZjXcUQ8MdLfFhXAIjM7p3+Bma0FziFSdETOSFPNTro7G8idsc7rKNOamZFZsIr4hCxK3/wV7c3631ZkDE1YjTSzW4DVRCaxH+2+nzCzzWa2uaamZixjiceOHnqWYHwqWYXneR1lSskpPh/zBajRVUGJUSOdR/Bx4O+AbUTmSjoX2BBd999jHUpiR3XZSwRD6aTnLPE6yrRn5iO75AKqy15i/7afsPjCzxEIJnodS2Q6eJyzq5EVQMmAz8XRZScwsyuA/wu81TnXNWDfSwft+9xQJ3HOPQA8ALB69Wo9MDwF1ZRvPGlZV0c9LfX7Sc9dRl3lZg9STV2BuCQy81dSV7WFwvlXqyZKzBnpFcG7iTyoHiTyIHxcdN/XgXvGJ5pMdx2tR2mp309uyYWYz+91nJjgD4SYu+LD9Ha1cHjHoxo8RmRsnG2N3ATMN7PZZhYH3AQ8MXADM1sFfB+4zjlXPWDVU8BVZpYRHSTmqugyiRHNNbvx+YIkZ8z2OsqUlDvzYsJ93dQcednrKCITbqQTyrea2QXAB4g81A6RwvWL6IPtIqNWXfYS5guQXXS+11FiSlJaCYXzr6Zi7/9SW76RnJILvY4kMqWdbY10zvWa2R1EGnB+4EHn3A4zuwfY7Jx7gsitoMnAo9ERIcucc9c55+rN7F+i5wO4xzlXP6Y/oExa3R0NdLRWkZazGJ8/6HWcKSkxpZDUrIVUl71I3sxL9D1KTBnpraE453qAn0ZfImelt6ed+sotZBasIhCX5HWcmFJTvhGfP55QUi5Hdv+W3p72Uf83yNEIryInONsa6Zx7Enhy0LK7B7y/4hT7Pgg8eCbnlamtqWYX5guSkjnP6yhTWv7st7F38/eoq9yszlGJKSNqCJrZqQqMc859dIzySIyoq9hEONxDbokGifFCZPCYc6k68DT1Va+RM2Od5p0SOUOqkeKF7o5GXQ0cI8kZc0hMLeFY6fNkF5+vkVclZoz0iuBtRB6AH8yiy0dU5MzsauDfiNz68kPn3NcGrb8EuA9YDtzknHtswLo+YHv0Y5lz7roRZpdJxrkw1Uc2kJw+m8RUjXLulUBcEul5S2k4+jrtTWUkpc/0OpLIVHUbY1AjRUajqbb/auDc028sp2Rm5M++lIOv/4yGY9vJzF/hdSSRCTHShmAZJxa5NCCdyBxJg+dNGpKZ+YH7gSuJDKe9ycyecM4NnOG6jEhB/YchDtHhnFs5wrwyiTVW76C7o57i+e/0OkrMS86YS1vTERqOvUEoOQ9/IOR1JJGp6KxrpMhodHc20tFSSVrOOfj8cV7HmRbSc5cSn5jNsUPPkpG3XHfJSEwY0bVv59ws59zsAa9M4DKgHfjiCM+1FtjvnDsYfXj+EeD6Qecpdc69QaR4yjR17PALxIUySM/VlBFeMzOyCs8jHO6l4ejrXscRmZLGqEaKjJieDRx7Zj7yZl1Ke0sFLfX7vI4jMiHO+CZo59xzwGbgH0e4SxFwZMDn8uiykQpFJ8LdaGbvGsV+Mom0NZbR1lhK7syLNWXEJBGMTyUtexHtzeV0tB71Oo7ItHAGNVJkRLo7m+hoqSQlc56uBo6xrMLzCManUnXgT5peSWLCSAeL+fCgRX5gLrAO6BnrUMOY6ZyrMLM5wDNmtt05d2BQzk8AnwCYMWPGBMWS0Th2+Hn8gRDZRWu8jiIDpGYtoK3xMA1H3yA0N1cPyouMwiSpkRIjIlcDA6Rm6WrgWPP5AuTPvpwju/+b5rq9pGUv9DqSyLga6TOCDzH8g/AjnYGzAigZ8Lk4umxEnHMV0T8PmtlzwCrgwKBtHgAeAFi9erW6ciaZrvZ6Go5tJ2/WW/Us2iRjPj/p+cupPfIyrQ0HdbuRyOg8xNnXSJHTilwNrCA1e5GuBo6T7OK1HCt9jsr9fyA1a4GeFZRpbTTd/jbE62XgYyPcfxMw38xmm1kccBPwxIhObJZhZvHR99lEell3nnovmWyqy9aDGbkzNGXEZJSQXEB8Ug5N1Tvp6zvtHNgicqKzrZEip9VUsxPzBUjJmu91lGnL5wtQMPdK2pvLaax+0+s4IuNqpA3B2YNes4BE59w659z+kRzAOdcL3AE8BewCfuWc22Fm95jZdQBmtsbMyoH3Ad83sx3R3c8BNpvZ68CzwNcGjTYqk1xvTwe1FZvIzF9JXCjd6zgyBDMjI28F4XAPTTX630tkFM66RoqcTmvjYTpaKknNWoBfVwPHVVbBucQn5lC5/ymc0/iFMn2N6NZQ59zhsTiZc+5J4MlBy+4e8H4TkVtGB++3AVg2FhnEG7XlGwn3dZE38xKvo8gpxIXSSM6YQ2v9QVIy5hCMT/U6ksikN1Y1UmQ4zjkq9v4vPn+8rgZOAPP5KZx3FYfe+DkNR18ns2CV15FExsWIrgia2ffM7KCZrRywbIWZHTCz/xi3dDIthMO9VJe9RErmPE0gPwWk5SzGfAEajm33OorIlKAaKeOtuXY3rY2HIvMG+kY6vIOcjYy85SSkFFB54I+Ew71exxEZFyP9bfJXQJ9zblv/Aufc62YWAK4DPj0O2WQaqCnfSFtjGT1dTaTnLqGmfKPXkeQ0/IF40rIX0lj9Jp3ttYQSs72OJDLZqUbKuHEuTPm+J4lPzCY5Y7bXcWKGmY+iee9g/2s/orrsRfJnXep1JJExN9JnBLOBliGWtwI5YxdHphvnHM31ewnEpRBKzvc6joxQcuZc/IEQTcfe1FxKIqenGinjpr5yK52tRymad7Wm9plgaTmLSMs+h6oDf6Knq9nrOCJjbqS/UeqABWZ2fLhHM7sIWBhdJzKkrvYaejqbSM2aryGYpxCfL0Bq9iK6Ouro1CTzIqejGinjItzXQ8WBp0hMLSE9b7nXcWJS8aLrcOFeKvY9efqNRaaYkTYEnyEyQe4zZvZnM/szkdE7DfjzeIWTqa+5bh8+fzxJaTO8jiKjlJwxm0AwicbqHboqKHJqqpEyLmqObKCns5HiBe9QZ6pHQonZ5M26hLrKLbQ2lnodR2RMjbQh+EWgCQgCl0ZfQaAxuk7kJB2tx+hsPUpK5hzM5/c6joySmY+03MX0dDXR3lzudRyRyUw1UsZcb08HVQf/TGrWQlIy53kdJ6blz76cYHwqR3b/VtNJyLQyooagc+4AsBp4iMgcgLuAHwNrnXMHxy2dTGnVh9dj5iM5Y67XUeQMJaaWEIxPpalmh4qfyDBUI2U8HCt9lr7eTooWvMPrKDHPH4ineMG1tDeXU1v+itdxRMbMiMcgjha6vx7HLDLJnM0In329ndRWbiI5bSb+QPwYppKJZGak5S6h9sjLtDWWkpwxx+tIIpOSaqSMpe7OJo4dXk9mwSoSUwq9jiNARv5KastfoXzv/5KWcw5xoXSvI4mctREPP2Vms8zs+2b2upk9amYXmNndZrZkPAPK1NTacBBcmJQs3c4y1SUkFxCXkElTzS7C4T6v44hMSqqRMpaqDvwRnKNw3tu9jiJRZsbMJe8DF+bwjsf07LxMCyOdUP4cYCvwMWAZUAR0A18Cbh+vcDI1uXAfLfUHCSXnE4xP9TqOnCUzIz13KX29nbTWH/A6jsikoxopY6mj9Ri1FZvIKbmI+IRMr+PIAPGJWRQteCfNdXuoq9zsdRyRszbSK4JfA9KBnf0LnHNbgQYiD8WLHNfWdIRwXxepmfO9jiJjJJSUQygpj+a6PYT7eryOIzLZqEbKmKnc/3t8/jgK5lzudRQZQk7JhSRnzKF8zxN0dzZ5HUfkrIz0GcG3AkeB84DOAcuPALPGOJNMYc45Wur3EYxPIz5J8yhPJ+m5Szh66Bma6/aRN/Nir+OITCaqkTImWhtLaazeQeG8qwnEJXkdRwbpHzshJWs+bY2H2bf1h+SUXDTiqT1yii8Yz3giozbSK4JxQL1zrnvQ8nQiQ2SLANDZVk1PVzMpmkB+2olLyCAhpYiW+n30dLd6HUdkMlGNlLPmnKNi75ME4lLInaHOtsksGJdMeu5SOluPRsZEEJmiRtoQ3AecY2Yfi34Omdn/B8wA9oxLMpmSWur24QuESEot9jqKjIP03MW4cC9HDz3rdRSRyUQ1Us5aU80uWhsPUTj3SvyBOK/jyGkkZ84llJxPw7E3dIuoTFkjvTX0AeDfge8DDlgRfTngR+MTTaaa7s5mOtuOkZazWBPIT1PB+FSS0mdSc2QDeTMv1vDZIhGqkTIiw03L5Jzj6MGnCcQl43BnNX2TDG8sv1czI6vwPKoO/pna8lfIn3MZPt+IZ2UTmRRGOqH8/cD90Y8WfQF8L7pOhJb6fdEJ5DXX3HSWln0OOEfVgT95HUVkUlCNlLPV1nSYnq4W0nOXYDbimb3EY/5AiOzC1fR2t9B49A2v44iM2oh/2zjn/gaYA7w/+prrnPvMeAWTqaWvt5O2pjKS0jWB/HQXiEsip+RCais30dlW43UckUnhbGukmV1tZnvMbL+Z3TXE+kvMbKuZ9ZrZewet6zOzbdHXE2f7s8jECof7aKreSVwo8hy2TC2h5DxSsxbQ2niI9uZyr+OIjMppr2GbWRA4BtQBC5xzh8c9lUw5xyeQz9QE8rEgf/Zl1Ja/QuWBPzJn+c1exxHxzFjUSDPzE7mieCVQDmwysyecczsHbFYG3Ab8wxCH6HDOrRzteWVyaK3fT19vB1lFazTI2hSVlruEzvZa6iq3EAylE4xL9jqSyIic9oqgc66HyHDYnc45N/6RZKrRBPKxJxifQu7Mi2k4uo32lkqv44h4Zoxq5Fpgv3PuYHTk0UeA6wedp9Q59wYQPqvAMqmE+7ppqt1DKDmPkKZcmrLMfGQXrcUwastfwYX7vI4kMiIjvTX0PmChmV05jllkimpr1gTysShv1qX4AwlU7vuD11FEvHYfZ1cji4jMOdivPLpspEJmttnMNprZu84wg3igqXYPLtxDeu5Sr6PIWQrEJZFZtJqezkYajul5QZkaRjq80TVEeiH/YGZ7iNwG09/z6Zxzl49HOJn8nHO01h8gGJ+iCeRjTCCYQP7sS6nY93ta6g+QkjnX60giXvG6Rs50zlWY2RzgGTPb7pw7MHgjM/sE8AmAGTNmjHMkOZ3ennZa6veTmDZDIzBPE4kphaRkzaelbh/xidkkpZV4HUnklEZ6RfCtRCbMNWBR9PNbgUujL4lR3R0NdHc2kpwxV882xKDcGRcTDKVTvud/cE53rEnMOtsaWQEM/BdjcXTZiDjnKqJ/HgSeA1YNs90DzrnVzrnVOTnquPNaU80uANJzFnucRMZSeu5S4hKyqK/aSk9Xi9dxRE5p2CuCZrYcaIv2Kj4/cZFkKmlpOID5AiSlqXc5Fvn8QYrmX0Pp9l9QX7mVrKLVXkcSmRBjXCM3AfPNbDaRBuBNwAdHmCMDaHfOdZlZNrAO+NezzCPjrLuzmbbGUlIy5xGIS/I6jowhMx/ZxWs5Gp1fMG/22/BpbmWZpE51a+g24GUiReWtwEbn3EUTEUqmhr7eTtqby0lOn43PH/Q6jngkM38l1YdfpGL/70nPW44/EOd1JJGJsI0xqpHOuV4zuwN4CvADDzrndpjZPcBm59wTZrYG+G8gA/grM/uyc24JcA7wfTMLE7nL52uDRhuVSaip+k3MFyA1e5HXUWQcBIKJZBWuoebISzQefZ3MwnO9jiQypFM1BB2QY2YjfY5QYkxrY2l0yghNIB/LzHyULPwr9mz6D44dfo7CuVd5HUlkIoxpjXTOPQk8OWjZ3QPebyJyy+jg/TYAy8Yig0yMzvZaOlqrSMtZonl3p7GElHxSsxbSXLeH+KRs3Tklk9KpnhGsAuYCXUQK3vnRSWsHv3onJKlMKs6Faa0/SCgpV1NGCMkZs8nIW86xQ8/R3dnkdRyRiaAaKaPmnKPx2Jv4AyFSsjTv7nSXlruY+IQs6iu30tPV7HUckZOcqiH4X0QefO8fAcRO8ZIY09FSRV9vB8kZuhooEUXz34FzYSr2/q/XUUQmgmqkjFpHaxXdHXWk5pyDz6cbrqY7Mx9ZxedjPj+15a8Q7uv2OpLICYb9LeScu8vMXgaWAF8hMq/RjyYqmExurQ0H8QcSSEgp8DqKTBLxiVnkz34bVQf/RFbRalKzFngdSWTcqEbKaDkXpql6B4G4ZJLTZ3kdRyZIIJhAVtEaaspeomz348xa8n6vI4kcd8ruKOfcb4HfmtlVwJvOuS9PTCyZzHq6W+lsqyYtZzFmI52BRGJB/uzLqD+6jbJd/83iC+/UIEIyralGymg0HH2dnq5msorWqnbGmITkfFKzF1FXsYmUjDlkFWqEbZkcRvSbyDl3qXPujvEOI1NDW0MpAEnq0ZRBfP4gM855N13ttRw99IzXcUQmhGqknI4L91G5/ymC8Wkkpp405o/EgLScc0jOmEPZzt/Q0XrM6zgiwMgnlBcBooPENB0mIbmAQDDB6zgyCaVmLSCzYBVHDz2rYiciAtRWbqKro4703CWY6bHRWGTmY87ym/EF4jn4+s8I9/V4HUlEDUEZnY6WKsK9nSRlzPI6ikxixQuuw+ePo2zXb3Au7HUcERHPhPt6qDrwJ5LSZhJKzvc6jngoGJ/KrKU30dl2jIp9T55+B5FxpoagjEpr46HIIDEqZnIKwfhkihdcS2vDQarLXvI6joiIZ2qObKCnq4mi+dfoaqCQlr2QnBnrqC57kea6vV7HkRinhqCMWG9PO52tx0hKn6kH3eW0sorWkJazmIp9T9LRUuV1HBGRCdfX20nVoWdIyZpPSuZcr+PIJFE8/52EknIpffOX9Pa0ex1HYtiE/mvezK42sz1mtt/M7hpi/SVmttXMes3svYPW3Wpm+6KvWycutfRrjQ4So2GvZSTMjJmL34c/EOLQ9of1PISIxJxjh9fT19NO0bxrvI4ik4jPH2T2sg/S291G2c5f45zzOpLEqAlrCJqZH7gfuAZYDHzAzBYP2qwMuA14eNC+mcAXgfOBtcAXzSxjvDPLXzjnaGssJZSURyAuyes4MkUE45OZteT9dLQepWL/H7yOIyIyYXq72zhW+jzpuUtJSivxOo5MMompRRTOezsNx96gvmqr13EkRk3kFcG1wH7n3EHnXDfwCHD9wA2cc6XOuTeAwaNLvB142jlX75xrAJ4Grp6I0BLR2XqMvt4OkjNmex1Fppi0nHPIKbmQ6sMv6HkIEYkZR0ufJ9zXTeG8t3sdRSapvFlvJTl9NmW7/puujnqv40gMmsiGYBFwZMDn8uiyMdvXzD5hZpvNbHNNTc0ZB5WTtTUdxuePIyGlwOsoMgUVL7iWUFIeB9/4uYqdiEx7vd1t1Bx5iYz8FRpcTYZl5mPWspvAjNLtj2iUbZlw02rED+fcA8651c651Tk5OV7HmTbCfd20t1SSmFaiQWLkjPj8ccxdeSu4MAe2PUS4r9vrSCIi4+bY4RcI9/VQMOcKr6PIJBefkMmMRe+itfEQ1YfXex1HYkxgAs9VAQy8Sb44umyk+146aN/nxiSVnFZbczm4MMlpM72OIlNYKCmH2ctuZv9rD1K641GSM+ac9VDqOcUXjFE6EZGx0dvdRnXZS2TkLychOc/rODIFZBacS8OxN6jY/wfScs4hlJTrdSSJERN5eWcTMN/MZptZHHAT8MQI930KuMrMMqKDxFwVXSYToK3xMMH4VIKhdK+jyBSXlrOIwnlX03B0Gy16XlBEpqFjh9cT7uvS1UAZscgo2+/B5wtS+uavdIuoTJgJawg653qBO4g04HYBv3LO7TCze8zsOgAzW2Nm5cD7gO+b2Y7ovvXAvxBpTG4C7okuk3HW09VCd0d9dO5ATYQrZy9/9ttIz1tOY/WbtDeP9KYAEZHJr7enneqyF0nPW65nA2VUgvGplJzzLtqaDusWUZkwE3lrKM65J4EnBy27e8D7TURu+xxq3weBB8c1oJykrfEwYCSlzfA6ikwTZsbspTeyo7mc2opXyfVfTCgp2+tYIiJnrTp6NbBQVwPlDGTmr6LhqG4RlYmjkT9kWM452prKCCXn4Q+EvI4j04jPH0dOyUUEgonUHNlAd2eT15FERM5Kb09H5Gpg7lKNsC1nJHKL6A34/HGUvvlL3SIq404NQRlWZ1t1ZO7AdA0SI2PPH4gnd8Zb8Pn81JS9RG9Pu9eRRETOWHXZevp6OymYe6XXUWQKC8anMmPRu2hrKuNY6Qtex5FpbkJvDZWppa3pMD5fkIRk9WzK+AjEJZEz4y0cK32O6sPryZv1Vl19FpEpp6+ng+rDL5Keu4TElEKv48gkVVO+cUTbOedISCmkYv/vCYe7CcanAhopW8aergjKkPp6u+horiQxrRjz+b2OI9NYXCiNnBnrIv+QKntRcwyKyJRTfeQl+no7KJijq4Fy9syMzIJV+HwB6iq34JzzOpJMU2oIypAaq9/EuT4SNUiMTIBQYjbZJRfQ09lMddkGwuFeryOJiIxIX283xw6vJy37HBJTi7yOI9OEPxAiI38l3R31mm5Jxo1uDZUh1Ve9hj+YSHxCltdRZBIa6e0to5GQnE928Vpqy1+h9sjL5JRcpKvRIjKpDPW7r7luH3097YSS88bld6PErsTUYtqby2ms2UlCSsFZ//3SraUymK4Iykl6ulporttLUlqJ5g6UCZWYWkxm4Xl0tlVTW/GqRkwTkUnNuTAtdfuIT8wmPlEdpzK2TrhFtGKzaqKMOTUE5SQNR18HnOYOFE8kp88iPW85HS2V1Fdu1bMREhPM7Goz22Nm+83sriHWX2JmW82s18zeO2jdrWa2L/q6deJSS1vTEfp6O0jNWuh1FJmmjt8i2tlAc90+r+PINKOGoJykrmorCSmFx0epEploqVnzSctZTFvTYRqOva7GoExrZuYH7geuARYDHzCzxYM2KwNuAx4etG8m8EXgfGAt8EUzyxjvzBIZ2bG5dg/B+DRCyXlex5FpLDG1mISUIppqdmreXRlTagjKCTrbamhvPkJWwbleR5EYl5q9iJTM+bTWH6CpZqfXcUTG01pgv3PuoHOuG3gEuH7gBs65UufcG8Dge8PeDjztnKt3zjUATwNXT0ToWNfRUklvdwup2Qv1GIWMq7/cIhqkrlK3iMrYUUNQTlBf9RpgZOSv9DqKxDgzIz1vGUnps2iu3U1zrUZNk2mrCDgy4HN5dNl47ytnqP9qYCCYpJFCZUL4A/FkFqyip7OR5trdXseRaUINQTnOOUd91VZSMucSF0rzOo5ItBf0XBJTi2ms3k5rw0GvI4lMWWb2CTPbbGaba2pqvI4zpXW119Ld2UBK1gLM9E8pmRiJqUUkppXQVLOb7o4Gr+PINKDfXnJce9MRujrqyNRtoTKJmBlZRWsIJedRX/UabU1HTr+TyNRSAZQM+FwcXTam+zrnHnDOrXbOrc7JyTmjoBLRXLsHnz+e5PSZXkeRGJOZvxJ/ID5yi2i4z+s4MsWpISjH1R3divkCZOQu9TqKyAnMfGQXX0B8YjZ1FZvoaKnyOpLIWNoEzDez2WYWB9wEPDHCfZ8CrjKzjOggMVdFl8k46e5ooLPtGKlZ8zXXqUw4nz+OzIJz6elqpqlml9dxZIpTQ1AAcOE+Gqq2kZazGH8wwes4Iifx+QLklFxEXCiNmvKNdLbp1jaZHpxzvcAdRBpwu4BfOed2mNk9ZnYdgJmtMbNy4H3A981sR3TfeuBfiDQmNwH3RJfJOGmu24v5AiRnzPE6isSohJSCyPPzdXvoaq/zOo5MYQGvA8jk0Fy3j96eNrIKVnkdRWRYPn+QnBlv4Vjp89QeeZmc4gsIJekWN5n6nHNPAk8OWnb3gPebiNz2OdS+DwIPjmtAAaCnq4X25nJSsxbi8we9jiMxLCNvOZ1t1dRVbiZ/zuX4fPonvYyerggKAPVVW/EHEkjNXuR1FJFT8gfiyZ1xEZix/7Uf09vT4XUkEYkRzXV7wXykZM3zOorEOJ8/SFbBefR2t9JUvcPrODJFqSEo9PV20Vj9Jhn5y9WjJFNCIC6Z7OIL6e6o59Ab/6UH5kVk3HV3NtHWVEZy+iz8gZDXcUQIJeeSnDGHlvr9elxCzogagkJj9ZuEwz0aLVSmlFBSNjMW30Bz3V6O7P0fr+OIyDRXXbYeXJjUrPleRxE5Lj1vGYFgEnWVmwmHe72OI1OMGoJCfdVrxIUySE6f5XUUkVHJLlpL7sxLqCl7idqKTV7HEZFpqrennZojG0lMLSEQl+x1HJHjfL4AmUWr6etpp/HYG17HkSlGDcEY19PVQnPdXjILVmlSXJmSiue/g5TMeZTt+g3tzSOdek1EZORqjrxMuK+L1OyFXkcROUkoMZuUzPm0Nhyio/WY13FkCtG//GNc/dFtgNNtoTJlmc/P7GU3EwgmceD1n9Lb0+51JBGZRsJ93VQfXk9q9iLiQmlexxEZUnruEoLxKdRXbqavt8vrODJFqCEY4+qrXiMhpYiE5Dyvo4icsWB8MnNW3EJPZxOl2x/BubDXkURkmqit2ERvTxv5s9/mdRSRYZnPT1bR+fT1dVNfuQXnnNeRZApQQzCGdbZV0958RHMHyrSQnD6L4oV/RVPtLo4eetbrOCIyDbhwH8dKnycpfSbJ6bO9jiNySnGhNNJzl9LRWkVrwyGv48gUoIZgDKuveg0wMvJXeh1FZEzklFxERv5KKg/8kdbGUq/jiMgUV390G92dDeTPvgwz8zqOyGmlZM4jlJRH47E36Olq9jqOTHJqCMYo5xx1VVtJyZynZx5k2jAzZp5zA3GhdA698XM9LygiZ8y5MEdLnyOUnE9a9iKv44iMiJmRVbQa8wWoLX9V8+zKKakhGKPamg7T3VFPlgaJkWnGH0xgzvKb6e5q5vCOR/WchIickaaa3XS2HiV/1qUaVVumFH8gRFbhefR0NdFYvcPrODKJBbwOIN6or9qK+YKk5y31OorIGasp3zjsuvScJTRWb+fQ9l+Qkjln2O1yii8Yj2giMgmd6nfGQM45jpU+hz+YSF9f14j3E5ksElIKSM6YQ0v9PkLJeRoUUIakLq4Y5MJ91B99nfTcxfgDIa/jiIyLlKz5hJLyaDj2Ot2dTV7HEZEppKu9lu6OelKzFuhqoExZ6XnLCcanUlexid6eDq/jyCSk324xqKluD3097Zo7UKa1/uckfP44astfIRzu9TqSiEwRzbW78fnjSUqf5XUUkTPm8/nJLj4fF+6lrkLPC8rJ1BCMQfVVW/EHE0nLWuh1FJFx5Q+EyC5cTW93Cw1HX/c6johMAd0dDXS2VZOSNR+fz+91HJGzEoxPJbPwXLraa6nY/wev48gko4ZgjOnr7aSxegeZ+SswFTiJAaHkPFKzFtLWWEpb0xGv44jIJNdUuwfzBUjJGP7ZYpGpJCltBskZszlW+pwGj5ETqCEYYxqOvo4L95JZcJ7XUUQmTFruYuISMqmv2kpvd6vXcURkkurpaqGjpYKUjLn4/EGv44iMmYy8FSSmFlP65i/pbKvxOo5MEhPaEDSzq81sj5ntN7O7hlgfb2a/jK5/xcxmRZfPMrMOM9sWfX1vInNPJ7UVmwgl5ZKUNsPrKCITxsxHdtFawCLzKrmw15FEZBJqrtuLmY+UrHleRxEZU+bzM2f5h8CMA9seok+DxwgT2BA0Mz9wP3ANsBj4gJktHrTZR4EG59w84NvA1wesO+CcWxl93T4hoaeZjtZjtDUdJqtoDWbmdRyRCRWISyKr8Dy6OxtoOPaG13FEZJLp7WmnrfEwSemzNKK2TEvxiZnMXfFhOttrOfjGz9UpKhN6RXAtsN85d9A51w08Alw/aJvrgZ9E3z8GXG5qsYyZusrNYD6ydFuoxKjE1CJSMufRWn+A9uYKr+OIyCTSUrcPgNSsBR4nERk/KZlzmXHOu2mu20PF3v/1Oo54bCIbgkXAwJEayqPLhtzGOdcLNAFZ0XWzzew1M3vezC4e77DTjQv3UVe5hbTsRQTjU7yOI+KZ9LxlxIUyqKvcoucFRQSAvt4uWhsOkZRWQiAuyes4IuMqp/gCckrWcezwC9SWv+p1HPHQVBkspgqY4ZxbBdwJPGxmqYM3MrNPmNlmM9tcU6MHYQdqqttDb3cL2UVrvI4i4ikzH9nF5wNofkERAaClfh/O9ZGarWmVJDaULPwrUrMWcHjXr2msftPrOOKRiWwIVgAlAz4XR5cNuY2ZBYA0oM451+WcqwNwzm0BDgAn3bvhnHvAObfaObc6JydnHH6EqauuYhOBuGTSss/xOoqI5/7yvGAj5Xt/53UcEfFQX28XLfUHSEwtIhh/Uh+zyLRkPj9zVnyYpNRiDr7xc1rqD3gdSTwQmMBzbQLmm9lsIg2+m4APDtrmCeBW4GXgvcAzzjlnZjlAvXOuz8zmAPOBgxMXfeqpKd94/H3/3IEpmfOordzkYSqRyaP/ecGaspdISZ9DRv5yryOJiAda6vfjwr2kqqNUYow/EM+8VX/Nnk3/yf7XfszCNbeTmFrsdSyZQBN2RTD6zN8dwFPALuBXzrkdZnaPmV0X3exHQJaZ7SdyC2j/FBOXAG+Y2TYig8jc7pyrn6jsU11bUxngSEqf5XUUkUklPW8ZSWkzKN3xK9pbKr2OIyITrK+vm5b6/SSkFBEXSvM6jsiEC8QlMf+8jxMIJrJvyw9VC2PMhD4j6Jx70jm3wDk31zn31eiyu51zT0Tfdzrn3uecm+ecW+ucOxhd/mvn3JLo1BHnOuf+ZyJzT2XOOVobDhGXkElcSLe8iAxk5mPOig/jD8Rz4LUf09OlwWNEYklL3T5cuJe0HF0NlNgVF0pj/nkfx/xB9m76T1obDnkdSSbIRN4aKh7obKumt7uVrEINEiMylLhQGnNX3saeTf/Jgdd/woLVn8Tnm/hfjQNv5z5TOcUXjEES8YKZXQ38G+AHfuic+9qg9fHAT4HzgDrgRudcqZnNInKXzZ7ophs11+7IhI9fDSzU1UCJeaGkHBat+TR7tzzAvi0/YO7KWzV4UgyYKqOGyhlqrT+Azx9PYurgmTpEpF9SWgmzl95IW2MpZTsfwznndSSJIWbmB+4HrgEWAx8ws8WDNvso0OCcmwd8G/j6gHUHonfMrFQjcOSa6/braqDIAHEJGSxc82nik7LZ/9qPqa96zetIMs7UEJzGervb6GitIjljFubzex1HZFLLyF9BwdyrqKvcQtWBP3odR2LLWmC/c+6gc64beAS4ftA21wM/ib5/DLjczGwCM04rkZFC90WvBqZ7HUdk0gjGp7Bg9adISpvBoe0Pc2T3E7hwn9exZJyoITiNtTZEBlZNzpjjcRKRqaFgzhVkFa2l6uCfOHZ4vddxJHYUAUcGfC6PLhtym+jga01AVnTdbDN7zcyeN7OLhzuJ5tr9i+a6PdGrgUu8jiIy6QSCCSxY/UlyZ7yF6rL17N38fXq6mr2OJeNADcFpyoX7aG0sJSGlkEAw0es4IlOCmTFz8XtIz11G+Z4nqC57yetIIqdTBcxwzq0iMtr2w2Y25Mhgmms3orennZb6AySlzdQgaiLDMJ+fkkXXM3vZB2lvLmfny9+m/ug2PToxzaghOE21NZcT7usmJXOu11FEphQzH7OXf5C0nCUc2f04x0qf9zqSTH8VQMmAz8XRZUNuY2YBIA2oc851OefqAJxzW4ADwIJxTzyFNdXsAuf0bKDICGQWrGLRBZ8lLpTOoTd+zv7XHqSrQzO4TRdqCE5TrfUHCMSlEJ8Yu72+ImfK5wswd8WHyMhbTvne30WekXBhr2PJ9LUJmG9ms80sDrgJeGLQNk8At0bfvxd4xjnnzCwnOtgMZjYHmA8cnKDcU05PVwttjYdJzpxDIC7J6zgiU0JCcj6L1t5B8cLraG04yM6X7qVy/x/p7enwOpqcJU0fMQ21NpbS3dlARv5KNJaAyJkxn5/Zy28muCeV6rL1dLbXMHvpTfrHo4w551yvmd0BPEVk+ogHnXM7zOweYHN0rt0fAT8zs/1APZHGIsAlwD1m1gOEgdudc+quH0ZTzQ7MfKRlL/I6isiUYj4/eTMvJiN3KUf2/A9VB5/mWNl68ma8hdyZF4/oMaSznSZJUySNPTUEp6Gjh57F548jKX2m11FEpjQzHyWLrieUlMuR3b9l18b7mLnk/aRmzfc6mkwzzrkngScHLbt7wPtO4H1D7Pdr4NfjHnAaaGs6QntzBanZi/AHQl7HEZmS4hIymLvyw7S3VFJ14Ono4GovkJG/guyi80lKm6GLEFOIGoLTTEfrMZpqdpKafY4nk2KLTEc5JReSmFrMoe0Ps2/LA2QVrqFw3ts1CbXIFOGc48ju3+Lzx5OapUcoRc5WYkohc1feSntLJdVlL9FwdBt1FZtISM4ns+Bc0nOXEkrS40mTnVoK08yx0ucxX1CDxIiMsaS0EhZfeGfkdpjSF6g/+ho5xReQM2MdocRsr+OJyCnUV22lrekwmQXn4fMHvY4jMiUNd2tnUloJCcn5tDeX09pYSsW+J6nY9yTB+FQSUopITC0kGJ+mK4WTkBqC00hXez11VVvIKbkQfyDe6zgi047PH6Ro/jvILrqAygN/pPrIBqrLXiQpfSbpOUtIyZhLQmqhrsaLTCJ9vV1U7HuSxNRiPTIhMk58/iDJGbNJzphNb087HS2VtDdX0ly7i+baXfiDiSSmFJKQUkh8YrYahZOE/rUyjRw99GfMfOTPehtNtbu8jiMybcUnZjJ72U0UL3gHtRWbaDi2nYp9/Y93GcH4VOISMogPZeAPJuIPhPAH4qN/DnoFEwnGay4zkfFy9NAz9HQ1M2fFh+hoPep1HJFpLxBMJCVzHimZ8+jr7aSjpYr2lkpaGg7SUr8fnz+OhJRCElIKCCXl4fP5vY4cs9QQnCa62uuprdxMTsmFem5JZIIE41MpmHM5BXMup7uzibbGUjpaj9Ld2UBXRwOtTYfp6+mgr7cTGH4SXp8/nkBcMvGJmYSS8ggl5WCm2X1EzlZXey3HSp8ns+BcktNnqSEoMsH8gdDxK4Xhvh46247R3lxJe3MFbY2lmPlJSCkgKW0moeRc1b4JpobgNFF18OnjVwNFZOLFhdKIy19BBitOWuecI9zXTV9vJ329nYR7u+jr7aCvt4ue7hY622poqt1FS/0BWur2Yb4gSWnFJKfPJi4hw4OfRmTqiwwQ8wTm81M0/x1exxGJeT5/kMTUYhJTi3EuTGdbDR0tFbQ3V9DeXI7PH09S2gySM2YTjE/xOm5MUENwGmhvqaSucgt5My/R1UCRScjMoreGxgND/z9aU55PONwX7S2toK2xjNaGQ8Qn5ZCWvZhQkgakERmNhqPbaKrdRdGCd6o2ikwyZj4SkvNISM4jI38lHS1VtDWV0VK/n5b6fYSS8kjJnEsoOV/PE44jNQSngYq9T+IPhMifc5nXUUTkLPh8fhJTCklMKSScv5LWhkM01++j+vDzJKaWkJ63jEAwweuYIpNeT1cLZbsfJyltBnkzL/E6jsikcLYTuo8XMx+JqUUkphbR19NBa2MprQ0HqTmygUBcMqnZi0hKK/E65rSkhuAU11y7h+a6PRQvuJZAMNHrOCIyRnz+IKnZC0jOnENz7V6a6/bQ0VJJas45pGbN13MUIqdQtvtxwr1dzFzyfv2/IjKF+IMJpOWcQ2r2QtqbK2iu3UN95WaaanZiGFlFazQy9xjSNzmFhcO9lO1+nPjEbHJmrPM6joiMA58vQHruYpLTZ9Jw7A2aqt+ko7mCrOK1BOOSvY4nMuk0HH2DxmNvUDjvGhKS87yOIyJnwMxHUloJianFdLYepal2N2W7fkPVwT+RP+ttZJdcoAbhGNA3OIUdK32ervZa5p37Uf3PIHKGJuutMoMF4pLIKbmQ9uZy6iq3cvTgn8nIX0FS2kw9PyES1dPdStmu35CYWkz+rLd6HUdEzpKZRaaZSM4nlJhF1cE/c2TPbzlWtp6ieVeTkb9CV/3PgloPU1Rney1VB/9Meu5S0rIXeR1HRCZIYmoxcQmZ1FVsor5yC52tx8gsOBefP+h1NBFPORem9M1f0tfXxawl78c0N5nItGFmpGYtICVzPi11eynf9ySHtj/M0dLnKJ7/DlKzF3odcUpSQ3AK6i92Pp+fkkXXex1HRCZYIJhI7sxLaK7dQ1PNDro7m8gpucDrWCKeOnb4BZprdzPjnHeTkFLgdRwRGQdmRmr2Qs7Jmk/90W1U7vsD+7b+kJTM+RQteAdJqcVeR5xS1BCcgqoPr6etsZRZS28kLpTudRwR8YCZkZaziPjETGrLX+XowWcIJeaQWbDK62giE66l/gAV+35Pet5ysosv9DqOiIyDoR7lyJv1VloaDtJcu5vdG/+NxNRi0nOXEBjiGfqcYnWYDqabaqeYtqYjVOz7PWk5i8ksOM/rOCLisVBSLvlzLiculM6h7Q9TtutxwuFer2OJTJiujnoOvP5TQonZzFryPj0zKxJDzOcnNWs+hfOuJjV7ER0tVVTu/yMNR1+nr7fL63iTnq4ITiG9Pe0cfP1nBONTIs8/qNiJCBAIJpA76xK62uuoPvwC7c1HmLPiQ7pjQKa93p4O9r/2Y3Bh5q68DX8g5HUkEfGAzx8kPXcJyRlzaKrZSUv9flobD5OWvZDkzHn49MzwkHRFcIpw4T4OvfFzerqambP8QwTikryOJCKTiJmPkoV/xZzlH6Kj9Ri7Xr6P5rq9XscSGTfhvh4ObHuIrrYa5qz4MKGkHK8jiYjHAsEEsgrPI3/OFcQnZtFY/SZV+5+irfEwzoW9jjfpqCE4BTjnKNv13zTX7WXG4htISp/hdSQRmaQy8pdzzgV/SyA+hX1bfkjVgadV/GTaCYd7Ofj6z2htOMispTeRmjXf60giMonEhdLInbGO3JkX4w/EU1e5mV0b/00dpIOoITjJOeeo3P8HaiteIX/2ZWQXrfU6kohMcqGkHBat/RsyC1ZReeCP7H/tx/R2t3kdS2RMhPt6OPj6z2iq3cWMc24gs2Cl15FEZJIKJeWSN/sysorW0tfTwb4tP2Dflh/Q3lLpdbRJQQ3BSSzSCHyKo4eeIbvofArnvd3rSCIyRfgDccxaehMzzrmBlrp97Np4H811+7yOJXJWenva2bf1hzTV7GTGOe8mp0QjhIrIqZkZSWklLHnL5ylecC1tTUfY9fJ9HHz9Z3S0VHkdz1MaLGaScuE+ynb9N7UVr5BVtJYZi2/ATO12ERk5MyOn5EISU4s5tP0X7NvyANnF51M8/534gwlexxMZlc62ag5s+wld7XXMXvZBTZUiIqPi8wXIm/VWsorWcKz0earLXqLh2Buk5y6lYM4VJKYWeR1xwqkhOAn1dLVwaPvDtNTvJ3/25RTOe7tGCBWRM5aUVsLiCz9H5YE/cqz0eZpqdlOy6HrSc5fqd4tMCQ1HX6d0x6P4fAHmn/cxUjLneR1JRKaoQDCRovnXkDfrrVQfXk912Ys0Vr9JWs5i8mddSlL6rJipjWoITjJNNbso3fEofb0dzFzyfrKL1ngdSUSmAZ8/SPGCd5KRt5zDO37Fwdd/SlL6TIrnv5PkjNlexxMZUm93G0d2/5b6o6+RlDZD06KIyJgJBBMpnPd2cmdeQk3Zixw7vJ49NTtJTC0md8ZbyMhfgc83vZtK0/unm0K6Ouqp2Pu/NBx7g1BSHgvO+zgJKQVexxKRaSYprYRzLvg76iq3UHngKfZs+g/SchaTN/OtJGfMjpleUJncwuFeao68TNWBp+nr66Jw3tvJn/U2THOBicgYCwQTKJh7Jbkz30p91Waqy16i9M1HKN/zP2QWnktW4WoSUwq9jjku1BD0WGdbDdVl66ktfxXMKJx7FXmz3zbteyBExDvm85NdvJbMgpUcO7w+ervoThJSCsgteQsZ+SvxB+K8jikxqK+ng7rKLRwtfY6eriZSsxZQvPA6EpLzvI4mItOcPxBHTslFZBdfQHPdPmrLX6GmbAPVh9eTkFJIRt4K0nOXEErKnTadphPa2jCzq4F/A/zAD51zXxu0Ph74KXAeUAfc6Jwrja77P8BHgT7gs865pyYw+pjq7emgqWYn9VVbaa7bh5mPrKLVFMy5Qre8iMiE8fnjKJhzOXkzL6au6jVqyl7k8M5HKdv936RlLyQ9dxlpOecQCCZ6HTUmxGqNDPd101S7h8bqN2msfpNwXzfJ6bOZtfT9pGTOnzb/4BKRqcHMR1r2QtKyF9Lb3Ub90W2Ru2j2/57K/b8nPjGbtOxFJGfMISVjDoG4JK8jn7EJawiamR+4H7gSKAc2mdkTzrmdAzb7KNDgnJtnZjcBXwduNLPFwE3AEqAQ+JOZLXDO9U1U/jPlnKOnq4m2piORV2MprU2HwYWJC2VQMOcKckouIBif6nVUEYlRPn8cOcXnk120ltbGQzQce4PGY2/SWL0DMBKS80hKn0Vy2kwSUgoIJeXg8+uK4ViKpRrZ29NOe3N5tC6W0Vy3DxfuwR9IICN/BTnFF5KUVuJ1TBERAnFJkYnpZ6yju7OJppqdNFbvoKZ8I9VlLwIQSsojMbWYxJQCElIKSEjOJxCXMiU6sSbyiuBaYL9z7iCAmT0CXA8MLHLXA1+Kvn8M+K5FvsXrgUecc13AITPbHz3ey+Md2rkwLtyHC/cSdn3R93246PtwuIe+3g56e9rp62mnt6eD3p42ujsa6Oqop6ujnnBvJ5Gf2U9CSiH5sy4lLeccktJmaEoIEZk0zIyUaA9nycLraG8up6l2N22Nh6k/uo3a8o3Htw2G0gklZBGMTyUYn0IwPhV/MAG/P4Q/EI8vEP3TF8TMh/n8mPnBfJj5MZ8vsly/A/tNqRoZqY29hPt6CId7CYd7cP3v+3oI93XR29NOb08bvd1tdHc20NUeqYm93S3HjxOfmE120VrSc5eSkjFbzwCKyKQVF0ojp+RCckouJBzupb3pCC0NB2ltLKWlfh/1VVuOb2u+APEJmcSFMgjGJxMIJhGISyIQTCYQl4jPH4/PF8DnD2K+ID5/EJ8viM8XiPwePF4fbVwblBPZECwCjgz4XA6cP9w2zrleM2sCsqLLNw7ad1wn+3AuzNan7wLcqPf1+eOIC6UTl5BJcvpsQkk5JKWVkJBSqGf/RGRKMPORlDaDpLQZQOR3YmdbNZ2tx+hsr6GzrYaujjpamw7T09WMC/ee6ZmYtewmsgrOHbvwU9OUqpHHSp+jYt/vR7ax+YiLTyM+IZO0nEWEEnMiveepxQQ0n6WITEE+X4DkjNknjLrd091KR0slnW21dHfU09VRR3dnI51tx+jtbiMc7hn1eQJxyay49ItjGf3E44/bkT1gZp8APhH92Gpme4bYLBuonbhUk5K+gwh9D/oO+ul78PQ7+MZYHGTmWBxkOlONHBf6vkZP39no6PsavWn2nX3pbA8wbH2cyIZgBTDwpv/i6LKhtik3swCQRuSB+JHsi3PuAeCBU4Uws83OudWjTj+N6DuI0Peg76Cfvgd9B5OAauQUpO9r9PSdjY6+r9HTdzZyE/lwxiZgvpnNNrM4Ig+2PzFomyeAW6Pv3ws845xz0eU3mVm8mc0G5gOvTlBuERGR8aYaKSIiE2rCrghGn2e4A3iKyNDYDzrndpjZPcBm59wTwI+An0UfdK8nUgiJbvcrIg/N9wKfmayjoYmIiIyWaqSIiEw0i3Qmxg4z+0T09piYpe8gQt+DvoN++h70HUiE/h6Mjr6v0dN3Njr6vkZP39nIxVxDUEREREREJNZpAicREREREZEYExMNQTMrMbNnzWynme0ws7/1OpOXzMxvZq+Z2e+8zuIFM0s3s8fMbLeZ7TKzC73O5AUz+1z0/4c3zewXZhbyOtNEMLMHzazazN4csCzTzJ42s33RPzO8zDjehvkOvhH9f+INM/tvM0v3MKJMINXIMxPrtXS0VHtHL1br9Giopp+dmGgIEnl4/u+dc4uBC4DPmNlijzN56W+BXV6H8NC/AX9wzi0CVhCD34WZFQGfBVY755YSGZziJm9TTZiHgKsHLbsL+LNzbj7w5+jn6ewhTv4OngaWOueWA3uB/zPRocQzqpFnJtZr6WjFfO0djRiv06PxEKrpZywmGoLOuSrn3Nbo+xYiv3yKvE3lDTMrBt4J/NDrLF4wszTgEiKj7+Gc63bONXoayjsBICE6H1kiUOlxngnhnHuByIiLA10P/CT6/ifAuyYy00Qb6jtwzv3ROdcb/biRyFx0EgNUI0cv1mvpaKn2nrGYrNOjoZp+dmKiITiQmc0CVgGveBzFK/cBnwfCHufwymygBvhx9JaeH5pZktehJppzrgK4FygDqoAm59wfvU3lqTznXFX0/VEgz8swk8BfA7/3OoRMPNXIEbuP2K6lo6XaO0qq02dFNX2EYqohaGbJwK+Bv3PONXudZ6KZ2bVAtXNui9dZPBQAzgX+0zm3CmgjBm8ZiN4vfz2R4lwIJJnZLd6mmhyiE3TH7HDKZvZ/idwq+HOvs8jEivUaOVKqpWdEtXeUVKfHRqzX9NOJmYagmQWJFLifO+d+43Uej6wDrjOzUuAR4DIz+y9vI024cqDcOdff2/0YkeIUa64ADjnnapxzPcBvgIs8zuSlY2ZWABD9s9rjPJ4ws9uAa4GbneYWiimqkaOiWjp6qr2jpzp95lTTRygmGoJmZkTuS9/lnPuW13m84pz7P865YufcLCIPHD/jnIup3iXn3FHgiJktjC66HNjpYSSvlAEXmFli9P+Py4ntB/efAG6Nvr8V+K2HWTxhZlcTudXtOudcu9d5ZOKoRo6OaunoqfaeEdXpMxfzNX2kYqIhSKT37kNEeu22RV/v8DqUeOZvgJ+b2RvASuD/eRtn4kV7ZR8DtgLbifwueMDTUBPEzH4BvAwsNLNyM/so8DXgSjPbR6QX9mteZhxvw3wH3wVSgKejvyO/52lImUiqkTIRYr72jkYs1+nRUE0/O6a7f0RERERERGJLrFwRFBERERERkSg1BEVERERERGKMGoIiIiIiIiIxRg1BERERERGRGKOGoIiIiIiISIxRQ1BERERERCTGqCEoMsHM7Dkzc8O8PmpmTdH33x6wz5IB2zwwYPnMAcs/Muj4pYPOe+mAbW+LLps16Pz/OGifmwetv3T8vhkREYllqo8iE0sNQRHvdAOvDHodBTZE118yYNvh3r91wPsXxiDTp8wsMODzZ8fgmCIiIqOh+igyAQKn30RExkmVc+6CwQvNbDlwNbDCzFKdc83AxdHV1cBCM8t1zlXzl6JX6Zw7cJZ5eoBi4AbgV2Z2PrA2ujx4lscWEREZKdVHkQmgK4Iik09/z6UfWBd9fzHQBPxowGf4S6FbPwbnfSz6598M+vOxIbYVERGZaKqPImNIDUER78y0k5+BSAc2AR3RbS4xszlEeiJfAp4bsDwfmB/9PNRtLyccH3j2NHk2AJuBt5jZNcD7gCrg0TP8+URERM6E6qPIBNCtoSLe6QZeG7Ss1znXbWavAJcSecZhd3TdC0SKUS+RHs8NA/Ybqsdz8PFTgXNOk+k7wE+BR4A44PtEbn0RERGZKKqPIhNADUER7wz5DETUC0QK3WqgtH+Zc67VzF4DzgOujS6vB9483fGjI5qdrtfzl8A3gDwihfJ7wJrT7CMiIjKWVB9FJoBuDRWZnPpvZQkSuQWlnchtKf3rfMBN0c8vOufcWJzUOddf3AB+5Zw7NhbHFRERGSOqjyJjRA1BkcnpZf5yy0kA2Oic6//8woDlMDYPwg/0VSAH+PgYH1dERORsqT6KjBE1BEUmIedcO7BlwKKBD7uvB8LDrBuLc/c452qdc51jeVwREZGzpfooMnZsjK6Yi4iIiIiIyBShK4IiIiIiIiIxRg1BERERERGRGKOGoIiIiIiISIxRQ1BERERERCTGqCEoIiIiIiISY9QQFBERERERiTFqCIqIiIiIiMQYNQRFRERERERijBqCIiIiIiIiMeb/D+9n1NxOrzgqAAAAAElFTkSuQmCC\n",
       "text/plain": [
        "<Figure size 1080x360 with 2 Axes>"
       ]
@@ -1883,14 +1871,14 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 114,
+   "execution_count": 165,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "{'MEDIAN_FWHM_x': 6.361155779828058, 'MEDIAN_FWHM_y': 5.865753036777117}\n"
+      "{'MEDIAN_FWHM_x': 6.61783565447222, 'MEDIAN_FWHM_y': 6.0911794566979856}\n"
      ]
     }
    ],
@@ -1900,14 +1888,14 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 115,
+   "execution_count": 166,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "{'INCERTIDUMBRE_FWHM_x': 0.05897470200906251, 'INCERTIDUMBRE_FWHM_y': 0.0583083389179374}\n"
+      "{'INCERTIDUMBRE_FWHM_x': 0.07111893293495501, 'INCERTIDUMBRE_FWHM_y': 0.059722316688425}\n"
      ]
     }
    ],
@@ -1936,7 +1924,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 116,
+   "execution_count": 167,
    "metadata": {
     "colab": {
      "base_uri": "https://localhost:8080/",
@@ -1971,7 +1959,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 117,
+   "execution_count": 168,
    "metadata": {
     "colab": {
      "base_uri": "https://localhost:8080/",
@@ -2031,7 +2019,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 118,
+   "execution_count": 169,
    "metadata": {
     "colab": {
      "base_uri": "https://localhost:8080/",
@@ -2054,14 +2042,14 @@
      "output_type": "stream",
      "text": [
       "\u001b[91mFWHM FOR CHANNEL RED\u001b[0m\n",
-      "{'MEAN_FWHM_x': 6.85040177317909, 'MEAN_FWHM_y': 6.286265858550066}\n",
-      "{'INCERTIDUMBRE_FWHM_x': 0.07397839012804115, 'INCERTIDUMBRE_FWHM_y': 0.06519770408323534}\n",
+      "{'MEDIAN_FWHM_x': 7.9183883547135165, 'MEDIAN_FWHM_y': 7.35922763918757}\n",
+      "{'INCERTIDUMBRE_FWHM_x': 0.1159148719780544, 'INCERTIDUMBRE_FWHM_y': 0.08836013787487608}\n",
       "\u001b[91mFWHM FOR CHANNEL GREEN\u001b[0m\n",
-      "{'MEAN_FWHM_x': 6.245164160492783, 'MEAN_FWHM_y': 5.852337602343364}\n",
-      "{'INCERTIDUMBRE_FWHM_x': 0.05644305840123783, 'INCERTIDUMBRE_FWHM_y': 0.05873235620560445}\n",
+      "{'MEDIAN_FWHM_x': 7.2816934101996456, 'MEDIAN_FWHM_y': 6.823136964119058}\n",
+      "{'INCERTIDUMBRE_FWHM_x': 0.09670234009426094, 'INCERTIDUMBRE_FWHM_y': 0.07626498914594818}\n",
       "\u001b[91mFWHM FOR CHANNEL BLUE\u001b[0m\n",
-      "{'MEAN_FWHM_x': 5.656095446703643, 'MEAN_FWHM_y': 5.248410485649535}\n",
-      "{'INCERTIDUMBRE_FWHM_x': 0.0511572917957581, 'INCERTIDUMBRE_FWHM_y': 0.04996212650827945}\n"
+      "{'MEDIAN_FWHM_x': 6.707228331976005, 'MEDIAN_FWHM_y': 6.143125344552874}\n",
+      "{'INCERTIDUMBRE_FWHM_x': 0.0772819315486433, 'INCERTIDUMBRE_FWHM_y': 0.06542214124518661}\n"
      ]
     }
    ],
@@ -2085,11 +2073,11 @@
     "    # calcula parametros\n",
     "    parameters_df = star_parameters(temp[:,:,i],stars)\n",
     "    parameters_df=parameters_df[(parameters_df[\"height\"]<255)]\n",
-    "    parameters_df=parameters_df[(parameters_df[\"FWHM_x\"]<np.median(parameters_df[\"FWHM_x\"])+3*np.std(parameters_df[\"FWHM_x\"])/math.sqrt(len(parameters_df[\"FWHM_x\"]))) & (parameters_df[\"FWHM_y\"]<np.median(parameters_df[\"FWHM_y\"])+3*np.std(parameters_df[\"FWHM_y\"])/math.sqrt(len(parameters_df[\"FWHM_y\"])))]\n",
+    "    parameters_df=parameters_df[(parameters_df[\"FWHM_x\"]<np.mean(parameters_df[\"FWHM_x\"])+2.5*np.std(parameters_df[\"FWHM_x\"])) & (parameters_df[\"FWHM_y\"]<np.median(parameters_df[\"FWHM_y\"])+2.5*np.std(parameters_df[\"FWHM_y\"]))]\n",
     "    \n",
     "    #muestra resultados\n",
     "    print(bcolors.RED +\"FWHM FOR CHANNEL \"+color[i] + bcolors.ENDC)\n",
-    "    print({\"MEAN_FWHM_x\":np.mean(parameters_df[\"FWHM_x\"]),\"MEAN_FWHM_y\":np.mean(parameters_df[\"FWHM_y\"])})\n",
+    "    print({\"MEDIAN_FWHM_x\":np.median(parameters_df[\"FWHM_x\"]),\"MEDIAN_FWHM_y\":np.median(parameters_df[\"FWHM_y\"])})\n",
     "    print({\"INCERTIDUMBRE_FWHM_x\":np.std(parameters_df[\"FWHM_x\"])/math.sqrt(len(parameters_df[\"FWHM_x\"])),\"INCERTIDUMBRE_FWHM_y\":np.std(parameters_df[\"FWHM_y\"])/math.sqrt(len(parameters_df[\"FWHM_y\"]))})\n"
    ]
   },
@@ -2097,7 +2085,7 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "Encontramos que el mejor canal es el azul con $$FWHM \\approx 6 $$"
+    "Encontramos que el mejor canal es el azul con $$FWHM \\approx 7 $$"
    ]
   },
   {
diff --git a/entrega.html b/entrega.html
index 3c19543..b1aa177 100644
--- a/entrega.html
+++ b/entrega.html
@@ -2,7 +2,7 @@
 <html>
 <head><meta charset="utf-8" />
 
-<title>Ejercicios_clase_5</title>
+<title>entrega</title>
 
 <script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/2.0.3/jquery.min.js"></script>
@@ -14150,7 +14150,7 @@ $$estrella=mean_{pixels}+3*std_{pixels}$$
 </div>
 <div class="cell border-box-sizing code_cell rendered">
 <div class="input">
-<div class="prompt input_prompt">In&nbsp;[103]:</div>
+<div class="prompt input_prompt">In&nbsp;[145]:</div>
 <div class="inner_cell">
     <div class="input_area">
 <div class=" highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">star_parameters</span><span class="p">(</span><span class="n">image</span><span class="p">,</span><span class="n">stars</span><span class="p">):</span>
@@ -14221,7 +14221,7 @@ $$estrella=mean_{pixels}+3*std_{pixels}$$
 </div>
 <div class="cell border-box-sizing code_cell rendered">
 <div class="input">
-<div class="prompt input_prompt">In&nbsp;[104]:</div>
+<div class="prompt input_prompt">In&nbsp;[146]:</div>
 <div class="inner_cell">
     <div class="input_area">
 <div class=" highlight hl-ipython3"><pre><span></span><span class="n">parameters_df</span><span class="o">.</span><span class="n">sort_values</span><span class="p">(</span><span class="s1">&#39;FWHM_x&#39;</span><span class="p">,</span><span class="n">ascending</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
@@ -14237,7 +14237,7 @@ $$estrella=mean_{pixels}+3*std_{pixels}$$
 
 <div class="output_area">
 
-    <div class="prompt output_prompt">Out[104]:</div>
+    <div class="prompt output_prompt">Out[146]:</div>
 
 
 
@@ -14271,7 +14271,17 @@ $$estrella=mean_{pixels}+3*std_{pixels}$$
   </thead>
   <tbody>
     <tr>
-      <th>90</th>
+      <th>132</th>
+      <td>22738.039821</td>
+      <td>-239.832795</td>
+      <td>3.010661</td>
+      <td>75.973813</td>
+      <td>2.731824</td>
+      <td>178.538460</td>
+      <td>6.419787</td>
+    </tr>
+    <tr>
+      <th>133</th>
       <td>14409.841451</td>
       <td>-222.262629</td>
       <td>2.343065</td>
@@ -14281,7 +14291,17 @@ $$estrella=mean_{pixels}+3*std_{pixels}$$
       <td>5.848958</td>
     </tr>
     <tr>
-      <th>516</th>
+      <th>578</th>
+      <td>31219.909353</td>
+      <td>105.300441</td>
+      <td>2.585564</td>
+      <td>31.073563</td>
+      <td>4.308750</td>
+      <td>73.022872</td>
+      <td>10.125563</td>
+    </tr>
+    <tr>
+      <th>687</th>
       <td>267271.868327</td>
       <td>115.166949</td>
       <td>2.769692</td>
@@ -14291,34 +14311,14 @@ $$estrella=mean_{pixels}+3*std_{pixels}$$
       <td>5.758053</td>
     </tr>
     <tr>
-      <th>477</th>
-      <td>107493.971955</td>
-      <td>96.620752</td>
-      <td>3.101467</td>
-      <td>26.096038</td>
-      <td>3.044724</td>
-      <td>61.325689</td>
-      <td>7.155100</td>
-    </tr>
-    <tr>
-      <th>288</th>
-      <td>169.559297</td>
-      <td>-16.954423</td>
-      <td>2.975433</td>
-      <td>25.863356</td>
-      <td>3.902506</td>
-      <td>60.778886</td>
-      <td>9.170890</td>
-    </tr>
-    <tr>
-      <th>441</th>
-      <td>21979.573625</td>
-      <td>66.797420</td>
-      <td>2.603415</td>
-      <td>20.616066</td>
-      <td>2.744205</td>
-      <td>48.447755</td>
-      <td>6.448882</td>
+      <th>600</th>
+      <td>325077.772735</td>
+      <td>112.668325</td>
+      <td>120.781525</td>
+      <td>28.345852</td>
+      <td>191.375356</td>
+      <td>66.612752</td>
+      <td>449.732087</td>
     </tr>
     <tr>
       <th>...</th>
@@ -14331,7 +14331,7 @@ $$estrella=mean_{pixels}+3*std_{pixels}$$
       <td>...</td>
     </tr>
     <tr>
-      <th>21</th>
+      <th>27</th>
       <td>202.186462</td>
       <td>2.289328</td>
       <td>2.644426</td>
@@ -14341,7 +14341,7 @@ $$estrella=mean_{pixels}+3*std_{pixels}$$
       <td>4.316290</td>
     </tr>
     <tr>
-      <th>29</th>
+      <th>37</th>
       <td>210.588381</td>
       <td>1.978485</td>
       <td>3.167382</td>
@@ -14351,7 +14351,7 @@ $$estrella=mean_{pixels}+3*std_{pixels}$$
       <td>4.304869</td>
     </tr>
     <tr>
-      <th>30</th>
+      <th>38</th>
       <td>217.389734</td>
       <td>1.980785</td>
       <td>2.331454</td>
@@ -14361,7 +14361,7 @@ $$estrella=mean_{pixels}+3*std_{pixels}$$
       <td>4.014588</td>
     </tr>
     <tr>
-      <th>26</th>
+      <th>33</th>
       <td>216.603135</td>
       <td>2.821754</td>
       <td>3.173432</td>
@@ -14371,7 +14371,7 @@ $$estrella=mean_{pixels}+3*std_{pixels}$$
       <td>4.278035</td>
     </tr>
     <tr>
-      <th>27</th>
+      <th>34</th>
       <td>222.917653</td>
       <td>2.823663</td>
       <td>2.336885</td>
@@ -14382,7 +14382,7 @@ $$estrella=mean_{pixels}+3*std_{pixels}$$
     </tr>
   </tbody>
 </table>
-<p>524 rows × 7 columns</p>
+<p>695 rows × 7 columns</p>
 </div>
 </div>
 
@@ -14401,7 +14401,7 @@ $$estrella=mean_{pixels}+3*std_{pixels}$$
 </div>
 <div class="cell border-box-sizing code_cell rendered">
 <div class="input">
-<div class="prompt input_prompt">In&nbsp;[105]:</div>
+<div class="prompt input_prompt">In&nbsp;[147]:</div>
 <div class="inner_cell">
     <div class="input_area">
 <div class=" highlight hl-ipython3"><pre><span></span><span class="n">parameters_df</span><span class="o">=</span><span class="n">parameters_df</span><span class="p">[(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;height&quot;</span><span class="p">]</span><span class="o">&lt;</span><span class="mi">255</span><span class="p">)]</span>
@@ -14418,7 +14418,7 @@ $$estrella=mean_{pixels}+3*std_{pixels}$$
 
 <div class="output_area">
 
-    <div class="prompt output_prompt">Out[105]:</div>
+    <div class="prompt output_prompt">Out[147]:</div>
 
 
 
@@ -14452,7 +14452,7 @@ $$estrella=mean_{pixels}+3*std_{pixels}$$
   </thead>
   <tbody>
     <tr>
-      <th>27</th>
+      <th>34</th>
       <td>222.917653</td>
       <td>2.823663</td>
       <td>2.336885</td>
@@ -14462,7 +14462,7 @@ $$estrella=mean_{pixels}+3*std_{pixels}$$
       <td>4.000267</td>
     </tr>
     <tr>
-      <th>26</th>
+      <th>33</th>
       <td>216.603135</td>
       <td>2.821754</td>
       <td>3.173432</td>
@@ -14472,7 +14472,7 @@ $$estrella=mean_{pixels}+3*std_{pixels}$$
       <td>4.278035</td>
     </tr>
     <tr>
-      <th>30</th>
+      <th>38</th>
       <td>217.389734</td>
       <td>1.980785</td>
       <td>2.331454</td>
@@ -14482,7 +14482,7 @@ $$estrella=mean_{pixels}+3*std_{pixels}$$
       <td>4.014588</td>
     </tr>
     <tr>
-      <th>29</th>
+      <th>37</th>
       <td>210.588381</td>
       <td>1.978485</td>
       <td>3.167382</td>
@@ -14492,7 +14492,7 @@ $$estrella=mean_{pixels}+3*std_{pixels}$$
       <td>4.304869</td>
     </tr>
     <tr>
-      <th>21</th>
+      <th>27</th>
       <td>202.186462</td>
       <td>2.289328</td>
       <td>2.644426</td>
@@ -14512,47 +14512,47 @@ $$estrella=mean_{pixels}+3*std_{pixels}$$
       <td>...</td>
     </tr>
     <tr>
-      <th>309</th>
-      <td>151.959876</td>
-      <td>6.048875</td>
-      <td>3.048254</td>
-      <td>6.335821</td>
-      <td>3.106507</td>
-      <td>14.889180</td>
-      <td>7.300292</td>
+      <th>80</th>
+      <td>126.345557</td>
+      <td>7.503358</td>
+      <td>2.717318</td>
+      <td>8.605995</td>
+      <td>3.441961</td>
+      <td>20.224088</td>
+      <td>8.088608</td>
     </tr>
     <tr>
-      <th>351</th>
-      <td>195.582213</td>
-      <td>7.582757</td>
-      <td>2.703236</td>
-      <td>6.548991</td>
-      <td>3.505496</td>
-      <td>15.390128</td>
-      <td>8.237915</td>
+      <th>98</th>
+      <td>191.987149</td>
+      <td>10.993017</td>
+      <td>2.720394</td>
+      <td>9.802730</td>
+      <td>3.154057</td>
+      <td>23.036415</td>
+      <td>7.412033</td>
     </tr>
     <tr>
-      <th>425</th>
-      <td>251.594399</td>
-      <td>7.994551</td>
-      <td>1.593031</td>
-      <td>6.646625</td>
-      <td>3.216397</td>
-      <td>15.619568</td>
-      <td>7.558533</td>
+      <th>261</th>
+      <td>220.500255</td>
+      <td>12.860922</td>
+      <td>2.878011</td>
+      <td>9.887140</td>
+      <td>2.760608</td>
+      <td>23.234779</td>
+      <td>6.487429</td>
     </tr>
     <tr>
-      <th>47</th>
-      <td>115.774855</td>
-      <td>4.630637</td>
-      <td>2.210311</td>
-      <td>7.270685</td>
-      <td>5.813427</td>
-      <td>17.086110</td>
-      <td>13.661553</td>
+      <th>218</th>
+      <td>229.036678</td>
+      <td>21.346080</td>
+      <td>2.787659</td>
+      <td>17.666989</td>
+      <td>2.664696</td>
+      <td>41.517424</td>
+      <td>6.262035</td>
     </tr>
     <tr>
-      <th>288</th>
+      <th>372</th>
       <td>169.559297</td>
       <td>-16.954423</td>
       <td>2.975433</td>
@@ -14563,7 +14563,7 @@ $$estrella=mean_{pixels}+3*std_{pixels}$$
     </tr>
   </tbody>
 </table>
-<p>462 rows × 7 columns</p>
+<p>585 rows × 7 columns</p>
 </div>
 </div>
 
@@ -14575,7 +14575,7 @@ $$estrella=mean_{pixels}+3*std_{pixels}$$
 </div>
 <div class="cell border-box-sizing code_cell rendered">
 <div class="input">
-<div class="prompt input_prompt">In&nbsp;[106]:</div>
+<div class="prompt input_prompt">In&nbsp;[148]:</div>
 <div class="inner_cell">
     <div class="input_area">
 <div class=" highlight hl-ipython3"><pre><span></span><span class="n">fig</span><span class="p">,</span> <span class="p">(</span><span class="n">ax1</span><span class="p">,</span><span class="n">ax2</span><span class="p">)</span> <span class="o">=</span> <span class="n">pyplot</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span><span class="mi">5</span><span class="p">))</span>
@@ -14626,7 +14626,7 @@ C:\Users\ECF0124A\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut
 
 
 <div class="output_png output_subarea ">
-<img src="
+<img src="
 "
 >
 </div>
@@ -14646,7 +14646,7 @@ C:\Users\ECF0124A\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut
 </div>
 <div class="cell border-box-sizing code_cell rendered">
 <div class="input">
-<div class="prompt input_prompt">In&nbsp;[107]:</div>
+<div class="prompt input_prompt">In&nbsp;[149]:</div>
 <div class="inner_cell">
     <div class="input_area">
 <div class=" highlight hl-ipython3"><pre><span></span><span class="nb">print</span><span class="p">({</span><span class="s2">&quot;MIN_FWHM_x&quot;</span><span class="p">:</span><span class="n">np</span><span class="o">.</span><span class="n">min</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_x&quot;</span><span class="p">]),</span><span class="s2">&quot;MIN_FWHM_y&quot;</span><span class="p">:</span><span class="n">np</span><span class="o">.</span><span class="n">min</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_y&quot;</span><span class="p">]),</span><span class="s2">&quot;MAX_FWHM_x&quot;</span><span class="p">:</span><span class="n">np</span><span class="o">.</span><span class="n">max</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_x&quot;</span><span class="p">]),</span><span class="s2">&quot;MAX_FWHM_y&quot;</span><span class="p">:</span><span class="n">np</span><span class="o">.</span><span class="n">max</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_y&quot;</span><span class="p">])})</span>
@@ -14684,7 +14684,7 @@ C:\Users\ECF0124A\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut
 </div>
 <div class="cell border-box-sizing code_cell rendered">
 <div class="input">
-<div class="prompt input_prompt">In&nbsp;[108]:</div>
+<div class="prompt input_prompt">In&nbsp;[150]:</div>
 <div class="inner_cell">
     <div class="input_area">
 <div class=" highlight hl-ipython3"><pre><span></span><span class="nb">print</span><span class="p">({</span><span class="s2">&quot;MODE_FWHM_x&quot;</span><span class="p">:</span><span class="n">st</span><span class="o">.</span><span class="n">mode</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_x&quot;</span><span class="p">]),</span><span class="s2">&quot;MODE_FWHM_y&quot;</span><span class="p">:</span><span class="n">st</span><span class="o">.</span><span class="n">mode</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_y&quot;</span><span class="p">])})</span>
@@ -14722,7 +14722,7 @@ C:\Users\ECF0124A\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut
 </div>
 <div class="cell border-box-sizing code_cell rendered">
 <div class="input">
-<div class="prompt input_prompt">In&nbsp;[109]:</div>
+<div class="prompt input_prompt">In&nbsp;[151]:</div>
 <div class="inner_cell">
     <div class="input_area">
 <div class=" highlight hl-ipython3"><pre><span></span><span class="nb">print</span><span class="p">({</span><span class="s2">&quot;MEAN_FWHM_x&quot;</span><span class="p">:</span><span class="n">np</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_x&quot;</span><span class="p">]),</span><span class="s2">&quot;MEAN_FWHM_y&quot;</span><span class="p">:</span><span class="n">np</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_y&quot;</span><span class="p">])})</span>
@@ -14742,7 +14742,7 @@ C:\Users\ECF0124A\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut
 
 
 <div class="output_subarea output_stream output_stdout output_text">
-<pre>{&#39;MEAN_FWHM_x&#39;: 7.940323515966517, &#39;MEAN_FWHM_y&#39;: 7.337040419590766}
+<pre>{&#39;MEAN_FWHM_x&#39;: 8.379209150177722, &#39;MEAN_FWHM_y&#39;: 7.576010416841125}
 </pre>
 </div>
 </div>
@@ -14760,7 +14760,7 @@ C:\Users\ECF0124A\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut
 </div>
 <div class="cell border-box-sizing code_cell rendered">
 <div class="input">
-<div class="prompt input_prompt">In&nbsp;[110]:</div>
+<div class="prompt input_prompt">In&nbsp;[152]:</div>
 <div class="inner_cell">
     <div class="input_area">
 <div class=" highlight hl-ipython3"><pre><span></span><span class="nb">print</span><span class="p">({</span><span class="s2">&quot;MEDIAN_FWHM_x&quot;</span><span class="p">:</span><span class="n">np</span><span class="o">.</span><span class="n">median</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_x&quot;</span><span class="p">]),</span><span class="s2">&quot;MEDIAN_FWHM_y&quot;</span><span class="p">:</span><span class="n">np</span><span class="o">.</span><span class="n">median</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_y&quot;</span><span class="p">])})</span>
@@ -14780,7 +14780,7 @@ C:\Users\ECF0124A\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut
 
 
 <div class="output_subarea output_stream output_stdout output_text">
-<pre>{&#39;MEDIAN_FWHM_x&#39;: 7.396254460793973, &#39;MEDIAN_FWHM_y&#39;: 6.900833212383647}
+<pre>{&#39;MEDIAN_FWHM_x&#39;: 7.670810006638417, &#39;MEDIAN_FWHM_y&#39;: 6.99528444605464}
 </pre>
 </div>
 </div>
@@ -14798,7 +14798,7 @@ C:\Users\ECF0124A\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut
 </div>
 <div class="cell border-box-sizing code_cell rendered">
 <div class="input">
-<div class="prompt input_prompt">In&nbsp;[111]:</div>
+<div class="prompt input_prompt">In&nbsp;[153]:</div>
 <div class="inner_cell">
     <div class="input_area">
 <div class=" highlight hl-ipython3"><pre><span></span><span class="nb">print</span><span class="p">({</span><span class="s2">&quot;INCERTIDUMBRE_FWHM_x&quot;</span><span class="p">:</span><span class="n">np</span><span class="o">.</span><span class="n">std</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_x&quot;</span><span class="p">])</span><span class="o">/</span><span class="n">math</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_x&quot;</span><span class="p">])),</span><span class="s2">&quot;INCERTIDUMBRE_FWHM_y&quot;</span><span class="p">:</span><span class="n">np</span><span class="o">.</span><span class="n">std</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_y&quot;</span><span class="p">])</span><span class="o">/</span><span class="n">math</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_y&quot;</span><span class="p">]))})</span>
@@ -14818,7 +14818,7 @@ C:\Users\ECF0124A\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut
 
 
 <div class="output_subarea output_stream output_stdout output_text">
-<pre>{&#39;INCERTIDUMBRE_FWHM_x&#39;: 0.15200550254891215, &#39;INCERTIDUMBRE_FWHM_y&#39;: 0.12480846830393083}
+<pre>{&#39;INCERTIDUMBRE_FWHM_x&#39;: 0.15034065812442832, &#39;INCERTIDUMBRE_FWHM_y&#39;: 0.12213295193042271}
 </pre>
 </div>
 </div>
@@ -14837,10 +14837,11 @@ C:\Users\ECF0124A\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut
 </div>
 <div class="cell border-box-sizing code_cell rendered">
 <div class="input">
-<div class="prompt input_prompt">In&nbsp;[112]:</div>
+<div class="prompt input_prompt">In&nbsp;[163]:</div>
 <div class="inner_cell">
     <div class="input_area">
-<div class=" highlight hl-ipython3"><pre><span></span><span class="n">parameters_df</span><span class="o">=</span><span class="n">parameters_df</span><span class="p">[(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_x&quot;</span><span class="p">]</span><span class="o">&lt;</span><span class="n">np</span><span class="o">.</span><span class="n">median</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_x&quot;</span><span class="p">])</span><span class="o">+</span><span class="mi">3</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">std</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_x&quot;</span><span class="p">])</span><span class="o">/</span><span class="n">math</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_x&quot;</span><span class="p">])))</span> <span class="o">&amp;</span> <span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_y&quot;</span><span class="p">]</span><span class="o">&lt;</span><span class="n">np</span><span class="o">.</span><span class="n">median</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_y&quot;</span><span class="p">])</span><span class="o">+</span><span class="mi">3</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">std</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_y&quot;</span><span class="p">])</span><span class="o">/</span><span class="n">math</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_y&quot;</span><span class="p">])))]</span>
+<div class=" highlight hl-ipython3"><pre><span></span><span class="c1">#elimina valores extremos del dataset</span>
+<span class="n">parameters_df</span><span class="o">=</span><span class="n">parameters_df</span><span class="p">[(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_x&quot;</span><span class="p">]</span><span class="o">&lt;</span><span class="n">np</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_x&quot;</span><span class="p">])</span><span class="o">+</span><span class="mf">2.5</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">std</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_x&quot;</span><span class="p">]))</span> <span class="o">&amp;</span> <span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_y&quot;</span><span class="p">]</span><span class="o">&lt;</span><span class="n">np</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_y&quot;</span><span class="p">])</span><span class="o">+</span><span class="mf">2.5</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">std</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_y&quot;</span><span class="p">]))]</span>
 <span class="n">parameters_df</span><span class="o">.</span><span class="n">sort_values</span><span class="p">(</span><span class="s1">&#39;FWHM_x&#39;</span><span class="p">,</span><span class="n">ascending</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
 </pre></div>
 
@@ -14854,7 +14855,7 @@ C:\Users\ECF0124A\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut
 
 <div class="output_area">
 
-    <div class="prompt output_prompt">Out[112]:</div>
+    <div class="prompt output_prompt">Out[163]:</div>
 
 
 
@@ -14888,54 +14889,54 @@ C:\Users\ECF0124A\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut
   </thead>
   <tbody>
     <tr>
-      <th>27</th>
-      <td>222.917653</td>
-      <td>2.823663</td>
-      <td>2.336885</td>
-      <td>1.803631</td>
-      <td>1.702241</td>
-      <td>4.238533</td>
-      <td>4.000267</td>
+      <th>33</th>
+      <td>215.742228</td>
+      <td>2.844406</td>
+      <td>3.220690</td>
+      <td>1.602668</td>
+      <td>1.513167</td>
+      <td>3.766270</td>
+      <td>3.555943</td>
     </tr>
     <tr>
-      <th>26</th>
-      <td>216.603135</td>
-      <td>2.821754</td>
-      <td>3.173432</td>
-      <td>1.804289</td>
-      <td>1.820440</td>
-      <td>4.240079</td>
-      <td>4.278035</td>
+      <th>34</th>
+      <td>216.970464</td>
+      <td>2.845412</td>
+      <td>2.329821</td>
+      <td>1.614164</td>
+      <td>1.493453</td>
+      <td>3.793286</td>
+      <td>3.509615</td>
     </tr>
     <tr>
-      <th>30</th>
-      <td>217.389734</td>
-      <td>1.980785</td>
-      <td>2.331454</td>
-      <td>1.931921</td>
-      <td>1.708335</td>
-      <td>4.540015</td>
-      <td>4.014588</td>
+      <th>37</th>
+      <td>209.845863</td>
+      <td>1.956937</td>
+      <td>3.215590</td>
+      <td>1.708841</td>
+      <td>1.524611</td>
+      <td>4.015777</td>
+      <td>3.582837</td>
     </tr>
     <tr>
-      <th>29</th>
-      <td>210.588381</td>
-      <td>1.978485</td>
-      <td>3.167382</td>
-      <td>1.943865</td>
-      <td>1.831859</td>
-      <td>4.568083</td>
-      <td>4.304869</td>
+      <th>335</th>
+      <td>174.734848</td>
+      <td>2.770882</td>
+      <td>2.760025</td>
+      <td>1.710865</td>
+      <td>1.624143</td>
+      <td>4.020532</td>
+      <td>3.816736</td>
     </tr>
     <tr>
-      <th>21</th>
-      <td>202.186462</td>
-      <td>2.289328</td>
-      <td>2.644426</td>
-      <td>2.005263</td>
-      <td>1.836719</td>
-      <td>4.712369</td>
-      <td>4.316290</td>
+      <th>38</th>
+      <td>211.627049</td>
+      <td>1.961099</td>
+      <td>2.326209</td>
+      <td>1.715538</td>
+      <td>1.499931</td>
+      <td>4.031515</td>
+      <td>3.524837</td>
     </tr>
     <tr>
       <th>...</th>
@@ -14948,58 +14949,58 @@ C:\Users\ECF0124A\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut
       <td>...</td>
     </tr>
     <tr>
-      <th>400</th>
-      <td>148.694932</td>
-      <td>3.251515</td>
-      <td>3.323809</td>
-      <td>3.311014</td>
-      <td>3.089162</td>
-      <td>7.780883</td>
-      <td>7.259531</td>
+      <th>543</th>
+      <td>131.093045</td>
+      <td>3.193123</td>
+      <td>2.503308</td>
+      <td>4.758416</td>
+      <td>2.706784</td>
+      <td>11.182277</td>
+      <td>6.360943</td>
     </tr>
     <tr>
-      <th>32</th>
-      <td>120.009106</td>
-      <td>2.582832</td>
-      <td>2.669800</td>
-      <td>3.323717</td>
-      <td>2.781075</td>
-      <td>7.810735</td>
-      <td>6.535527</td>
+      <th>23</th>
+      <td>224.503205</td>
+      <td>7.472670</td>
+      <td>2.648100</td>
+      <td>4.762666</td>
+      <td>1.649086</td>
+      <td>11.192264</td>
+      <td>3.875353</td>
     </tr>
     <tr>
-      <th>150</th>
-      <td>140.401733</td>
-      <td>2.814937</td>
-      <td>2.461857</td>
-      <td>3.330074</td>
-      <td>3.020962</td>
-      <td>7.825674</td>
-      <td>7.099261</td>
+      <th>397</th>
+      <td>117.626414</td>
+      <td>4.050571</td>
+      <td>2.602593</td>
+      <td>4.788907</td>
+      <td>2.907534</td>
+      <td>11.253932</td>
+      <td>6.832705</td>
     </tr>
     <tr>
-      <th>281</th>
-      <td>192.304218</td>
-      <td>3.922074</td>
-      <td>2.380541</td>
-      <td>3.330268</td>
-      <td>2.254765</td>
-      <td>7.826129</td>
-      <td>5.298697</td>
+      <th>331</th>
+      <td>120.648167</td>
+      <td>3.944006</td>
+      <td>2.661164</td>
+      <td>4.870656</td>
+      <td>2.857321</td>
+      <td>11.446041</td>
+      <td>6.714704</td>
     </tr>
     <tr>
-      <th>228</th>
-      <td>123.573138</td>
-      <td>2.781581</td>
-      <td>2.546152</td>
-      <td>3.334843</td>
-      <td>2.962802</td>
-      <td>7.836880</td>
-      <td>6.962584</td>
+      <th>622</th>
+      <td>240.208357</td>
+      <td>6.285389</td>
+      <td>1.606621</td>
+      <td>4.905659</td>
+      <td>2.470669</td>
+      <td>11.528298</td>
+      <td>5.806073</td>
     </tr>
   </tbody>
 </table>
-<p>206 rows × 7 columns</p>
+<p>529 rows × 7 columns</p>
 </div>
 </div>
 
@@ -15011,7 +15012,7 @@ C:\Users\ECF0124A\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut
 </div>
 <div class="cell border-box-sizing code_cell rendered">
 <div class="input">
-<div class="prompt input_prompt">In&nbsp;[113]:</div>
+<div class="prompt input_prompt">In&nbsp;[164]:</div>
 <div class="inner_cell">
     <div class="input_area">
 <div class=" highlight hl-ipython3"><pre><span></span><span class="n">fig</span><span class="p">,</span> <span class="p">(</span><span class="n">ax1</span><span class="p">,</span><span class="n">ax2</span><span class="p">)</span> <span class="o">=</span> <span class="n">pyplot</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span><span class="mi">5</span><span class="p">))</span>
@@ -15061,7 +15062,7 @@ C:\Users\ECF0124A\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut
 
 
 <div class="output_png output_subarea ">
-<img src="
+<img src="
 "
 >
 </div>
@@ -15074,7 +15075,7 @@ C:\Users\ECF0124A\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut
 </div>
 <div class="cell border-box-sizing code_cell rendered">
 <div class="input">
-<div class="prompt input_prompt">In&nbsp;[114]:</div>
+<div class="prompt input_prompt">In&nbsp;[165]:</div>
 <div class="inner_cell">
     <div class="input_area">
 <div class=" highlight hl-ipython3"><pre><span></span><span class="nb">print</span><span class="p">({</span><span class="s2">&quot;MEDIAN_FWHM_x&quot;</span><span class="p">:</span><span class="n">np</span><span class="o">.</span><span class="n">median</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_x&quot;</span><span class="p">]),</span><span class="s2">&quot;MEDIAN_FWHM_y&quot;</span><span class="p">:</span><span class="n">np</span><span class="o">.</span><span class="n">median</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_y&quot;</span><span class="p">])})</span>
@@ -15094,7 +15095,7 @@ C:\Users\ECF0124A\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut
 
 
 <div class="output_subarea output_stream output_stdout output_text">
-<pre>{&#39;MEDIAN_FWHM_x&#39;: 6.361155779828058, &#39;MEDIAN_FWHM_y&#39;: 5.865753036777117}
+<pre>{&#39;MEDIAN_FWHM_x&#39;: 6.61783565447222, &#39;MEDIAN_FWHM_y&#39;: 6.0911794566979856}
 </pre>
 </div>
 </div>
@@ -15105,7 +15106,7 @@ C:\Users\ECF0124A\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut
 </div>
 <div class="cell border-box-sizing code_cell rendered">
 <div class="input">
-<div class="prompt input_prompt">In&nbsp;[115]:</div>
+<div class="prompt input_prompt">In&nbsp;[166]:</div>
 <div class="inner_cell">
     <div class="input_area">
 <div class=" highlight hl-ipython3"><pre><span></span><span class="nb">print</span><span class="p">({</span><span class="s2">&quot;INCERTIDUMBRE_FWHM_x&quot;</span><span class="p">:</span><span class="n">np</span><span class="o">.</span><span class="n">std</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_x&quot;</span><span class="p">])</span><span class="o">/</span><span class="n">math</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_x&quot;</span><span class="p">])),</span><span class="s2">&quot;INCERTIDUMBRE_FWHM_y&quot;</span><span class="p">:</span><span class="n">np</span><span class="o">.</span><span class="n">std</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_y&quot;</span><span class="p">])</span><span class="o">/</span><span class="n">math</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_y&quot;</span><span class="p">]))})</span>
@@ -15125,7 +15126,7 @@ C:\Users\ECF0124A\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut
 
 
 <div class="output_subarea output_stream output_stdout output_text">
-<pre>{&#39;INCERTIDUMBRE_FWHM_x&#39;: 0.05897470200906251, &#39;INCERTIDUMBRE_FWHM_y&#39;: 0.0583083389179374}
+<pre>{&#39;INCERTIDUMBRE_FWHM_x&#39;: 0.07111893293495501, &#39;INCERTIDUMBRE_FWHM_y&#39;: 0.059722316688425}
 </pre>
 </div>
 </div>
@@ -15153,7 +15154,7 @@ $$FWHM\approx 6 pixeles$$</p>
 </div>
 <div class="cell border-box-sizing code_cell rendered">
 <div class="input">
-<div class="prompt input_prompt">In&nbsp;[116]:</div>
+<div class="prompt input_prompt">In&nbsp;[167]:</div>
 <div class="inner_cell">
     <div class="input_area">
 <div class=" highlight hl-ipython3"><pre><span></span><span class="n">figure</span><span class="p">,</span> <span class="n">plots</span> <span class="o">=</span> <span class="n">pyplot</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="n">ncols</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">nrows</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span><span class="mi">10</span><span class="p">))</span>
@@ -15194,7 +15195,7 @@ $$FWHM\approx 6 pixeles$$</p>
 </div>
 <div class="cell border-box-sizing code_cell rendered">
 <div class="input">
-<div class="prompt input_prompt">In&nbsp;[117]:</div>
+<div class="prompt input_prompt">In&nbsp;[168]:</div>
 <div class="inner_cell">
     <div class="input_area">
 <div class=" highlight hl-ipython3"><pre><span></span><span class="n">color</span><span class="o">=</span><span class="p">[</span><span class="s1">&#39;b&#39;</span><span class="p">,</span><span class="s1">&#39;r&#39;</span><span class="p">,</span><span class="s1">&#39;g&#39;</span><span class="p">]</span>
@@ -15266,7 +15267,7 @@ $$FWHM\approx 6 pixeles$$</p>
 </div>
 <div class="cell border-box-sizing code_cell rendered">
 <div class="input">
-<div class="prompt input_prompt">In&nbsp;[118]:</div>
+<div class="prompt input_prompt">In&nbsp;[169]:</div>
 <div class="inner_cell">
     <div class="input_area">
 <div class=" highlight hl-ipython3"><pre><span></span><span class="n">color</span><span class="o">=</span><span class="p">[</span><span class="s1">&#39;RED&#39;</span><span class="p">,</span><span class="s1">&#39;GREEN&#39;</span><span class="p">,</span><span class="s1">&#39;BLUE&#39;</span><span class="p">]</span>
@@ -15288,11 +15289,11 @@ $$FWHM\approx 6 pixeles$$</p>
     <span class="c1"># calcula parametros</span>
     <span class="n">parameters_df</span> <span class="o">=</span> <span class="n">star_parameters</span><span class="p">(</span><span class="n">temp</span><span class="p">[:,:,</span><span class="n">i</span><span class="p">],</span><span class="n">stars</span><span class="p">)</span>
     <span class="n">parameters_df</span><span class="o">=</span><span class="n">parameters_df</span><span class="p">[(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;height&quot;</span><span class="p">]</span><span class="o">&lt;</span><span class="mi">255</span><span class="p">)]</span>
-    <span class="n">parameters_df</span><span class="o">=</span><span class="n">parameters_df</span><span class="p">[(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_x&quot;</span><span class="p">]</span><span class="o">&lt;</span><span class="n">np</span><span class="o">.</span><span class="n">median</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_x&quot;</span><span class="p">])</span><span class="o">+</span><span class="mi">3</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">std</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_x&quot;</span><span class="p">])</span><span class="o">/</span><span class="n">math</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_x&quot;</span><span class="p">])))</span> <span class="o">&amp;</span> <span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_y&quot;</span><span class="p">]</span><span class="o">&lt;</span><span class="n">np</span><span class="o">.</span><span class="n">median</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_y&quot;</span><span class="p">])</span><span class="o">+</span><span class="mi">3</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">std</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_y&quot;</span><span class="p">])</span><span class="o">/</span><span class="n">math</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_y&quot;</span><span class="p">])))]</span>
+    <span class="n">parameters_df</span><span class="o">=</span><span class="n">parameters_df</span><span class="p">[(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_x&quot;</span><span class="p">]</span><span class="o">&lt;</span><span class="n">np</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_x&quot;</span><span class="p">])</span><span class="o">+</span><span class="mf">2.5</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">std</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_x&quot;</span><span class="p">]))</span> <span class="o">&amp;</span> <span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_y&quot;</span><span class="p">]</span><span class="o">&lt;</span><span class="n">np</span><span class="o">.</span><span class="n">median</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_y&quot;</span><span class="p">])</span><span class="o">+</span><span class="mf">2.5</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">std</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_y&quot;</span><span class="p">]))]</span>
     
     <span class="c1">#muestra resultados</span>
     <span class="nb">print</span><span class="p">(</span><span class="n">bcolors</span><span class="o">.</span><span class="n">RED</span> <span class="o">+</span><span class="s2">&quot;FWHM FOR CHANNEL &quot;</span><span class="o">+</span><span class="n">color</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">+</span> <span class="n">bcolors</span><span class="o">.</span><span class="n">ENDC</span><span class="p">)</span>
-    <span class="nb">print</span><span class="p">({</span><span class="s2">&quot;MEAN_FWHM_x&quot;</span><span class="p">:</span><span class="n">np</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_x&quot;</span><span class="p">]),</span><span class="s2">&quot;MEAN_FWHM_y&quot;</span><span class="p">:</span><span class="n">np</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_y&quot;</span><span class="p">])})</span>
+    <span class="nb">print</span><span class="p">({</span><span class="s2">&quot;MEDIAN_FWHM_x&quot;</span><span class="p">:</span><span class="n">np</span><span class="o">.</span><span class="n">median</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_x&quot;</span><span class="p">]),</span><span class="s2">&quot;MEDIAN_FWHM_y&quot;</span><span class="p">:</span><span class="n">np</span><span class="o">.</span><span class="n">median</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_y&quot;</span><span class="p">])})</span>
     <span class="nb">print</span><span class="p">({</span><span class="s2">&quot;INCERTIDUMBRE_FWHM_x&quot;</span><span class="p">:</span><span class="n">np</span><span class="o">.</span><span class="n">std</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_x&quot;</span><span class="p">])</span><span class="o">/</span><span class="n">math</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_x&quot;</span><span class="p">])),</span><span class="s2">&quot;INCERTIDUMBRE_FWHM_y&quot;</span><span class="p">:</span><span class="n">np</span><span class="o">.</span><span class="n">std</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_y&quot;</span><span class="p">])</span><span class="o">/</span><span class="n">math</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">parameters_df</span><span class="p">[</span><span class="s2">&quot;FWHM_y&quot;</span><span class="p">]))})</span>
 </pre></div>
 
@@ -15323,14 +15324,14 @@ $$FWHM\approx 6 pixeles$$</p>
 
 <div class="output_subarea output_stream output_stdout output_text">
 <pre><span class="ansi-red-intense-fg">FWHM FOR CHANNEL RED</span>
-{&#39;MEAN_FWHM_x&#39;: 6.85040177317909, &#39;MEAN_FWHM_y&#39;: 6.286265858550066}
-{&#39;INCERTIDUMBRE_FWHM_x&#39;: 0.07397839012804115, &#39;INCERTIDUMBRE_FWHM_y&#39;: 0.06519770408323534}
+{&#39;MEDIAN_FWHM_x&#39;: 7.9183883547135165, &#39;MEDIAN_FWHM_y&#39;: 7.35922763918757}
+{&#39;INCERTIDUMBRE_FWHM_x&#39;: 0.1159148719780544, &#39;INCERTIDUMBRE_FWHM_y&#39;: 0.08836013787487608}
 <span class="ansi-red-intense-fg">FWHM FOR CHANNEL GREEN</span>
-{&#39;MEAN_FWHM_x&#39;: 6.245164160492783, &#39;MEAN_FWHM_y&#39;: 5.852337602343364}
-{&#39;INCERTIDUMBRE_FWHM_x&#39;: 0.05644305840123783, &#39;INCERTIDUMBRE_FWHM_y&#39;: 0.05873235620560445}
+{&#39;MEDIAN_FWHM_x&#39;: 7.2816934101996456, &#39;MEDIAN_FWHM_y&#39;: 6.823136964119058}
+{&#39;INCERTIDUMBRE_FWHM_x&#39;: 0.09670234009426094, &#39;INCERTIDUMBRE_FWHM_y&#39;: 0.07626498914594818}
 <span class="ansi-red-intense-fg">FWHM FOR CHANNEL BLUE</span>
-{&#39;MEAN_FWHM_x&#39;: 5.656095446703643, &#39;MEAN_FWHM_y&#39;: 5.248410485649535}
-{&#39;INCERTIDUMBRE_FWHM_x&#39;: 0.0511572917957581, &#39;INCERTIDUMBRE_FWHM_y&#39;: 0.04996212650827945}
+{&#39;MEDIAN_FWHM_x&#39;: 6.707228331976005, &#39;MEDIAN_FWHM_y&#39;: 6.143125344552874}
+{&#39;INCERTIDUMBRE_FWHM_x&#39;: 0.0772819315486433, &#39;INCERTIDUMBRE_FWHM_y&#39;: 0.06542214124518661}
 </pre>
 </div>
 </div>
@@ -15342,7 +15343,7 @@ $$FWHM\approx 6 pixeles$$</p>
 <div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
 </div><div class="inner_cell">
 <div class="text_cell_render border-box-sizing rendered_html">
-<p>Encontramos que el mejor canal es el azul con $$FWHM \approx 6 $$</p>
+<p>Encontramos que el mejor canal es el azul con $$FWHM \approx 7 $$</p>
 
 </div>
 </div>
diff --git a/entrega.ipynb b/entrega.ipynb
index bae957d..ddea917 100644
--- a/entrega.ipynb
+++ b/entrega.ipynb
@@ -1011,7 +1011,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 103,
+   "execution_count": 145,
    "metadata": {
     "id": "-wDngj8nv0t7"
    },
@@ -1072,7 +1072,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 104,
+   "execution_count": 146,
    "metadata": {
     "colab": {
      "base_uri": "https://localhost:8080/",
@@ -1114,7 +1114,17 @@
        "  </thead>\n",
        "  <tbody>\n",
        "    <tr>\n",
-       "      <th>90</th>\n",
+       "      <th>132</th>\n",
+       "      <td>22738.039821</td>\n",
+       "      <td>-239.832795</td>\n",
+       "      <td>3.010661</td>\n",
+       "      <td>75.973813</td>\n",
+       "      <td>2.731824</td>\n",
+       "      <td>178.538460</td>\n",
+       "      <td>6.419787</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>133</th>\n",
        "      <td>14409.841451</td>\n",
        "      <td>-222.262629</td>\n",
        "      <td>2.343065</td>\n",
@@ -1124,7 +1134,17 @@
        "      <td>5.848958</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>516</th>\n",
+       "      <th>578</th>\n",
+       "      <td>31219.909353</td>\n",
+       "      <td>105.300441</td>\n",
+       "      <td>2.585564</td>\n",
+       "      <td>31.073563</td>\n",
+       "      <td>4.308750</td>\n",
+       "      <td>73.022872</td>\n",
+       "      <td>10.125563</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>687</th>\n",
        "      <td>267271.868327</td>\n",
        "      <td>115.166949</td>\n",
        "      <td>2.769692</td>\n",
@@ -1134,34 +1154,14 @@
        "      <td>5.758053</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>477</th>\n",
-       "      <td>107493.971955</td>\n",
-       "      <td>96.620752</td>\n",
-       "      <td>3.101467</td>\n",
-       "      <td>26.096038</td>\n",
-       "      <td>3.044724</td>\n",
-       "      <td>61.325689</td>\n",
-       "      <td>7.155100</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>288</th>\n",
-       "      <td>169.559297</td>\n",
-       "      <td>-16.954423</td>\n",
-       "      <td>2.975433</td>\n",
-       "      <td>25.863356</td>\n",
-       "      <td>3.902506</td>\n",
-       "      <td>60.778886</td>\n",
-       "      <td>9.170890</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>441</th>\n",
-       "      <td>21979.573625</td>\n",
-       "      <td>66.797420</td>\n",
-       "      <td>2.603415</td>\n",
-       "      <td>20.616066</td>\n",
-       "      <td>2.744205</td>\n",
-       "      <td>48.447755</td>\n",
-       "      <td>6.448882</td>\n",
+       "      <th>600</th>\n",
+       "      <td>325077.772735</td>\n",
+       "      <td>112.668325</td>\n",
+       "      <td>120.781525</td>\n",
+       "      <td>28.345852</td>\n",
+       "      <td>191.375356</td>\n",
+       "      <td>66.612752</td>\n",
+       "      <td>449.732087</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>...</th>\n",
@@ -1174,7 +1174,7 @@
        "      <td>...</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>21</th>\n",
+       "      <th>27</th>\n",
        "      <td>202.186462</td>\n",
        "      <td>2.289328</td>\n",
        "      <td>2.644426</td>\n",
@@ -1184,7 +1184,7 @@
        "      <td>4.316290</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>29</th>\n",
+       "      <th>37</th>\n",
        "      <td>210.588381</td>\n",
        "      <td>1.978485</td>\n",
        "      <td>3.167382</td>\n",
@@ -1194,7 +1194,7 @@
        "      <td>4.304869</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>30</th>\n",
+       "      <th>38</th>\n",
        "      <td>217.389734</td>\n",
        "      <td>1.980785</td>\n",
        "      <td>2.331454</td>\n",
@@ -1204,7 +1204,7 @@
        "      <td>4.014588</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>26</th>\n",
+       "      <th>33</th>\n",
        "      <td>216.603135</td>\n",
        "      <td>2.821754</td>\n",
        "      <td>3.173432</td>\n",
@@ -1214,7 +1214,7 @@
        "      <td>4.278035</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>27</th>\n",
+       "      <th>34</th>\n",
        "      <td>222.917653</td>\n",
        "      <td>2.823663</td>\n",
        "      <td>2.336885</td>\n",
@@ -1225,40 +1225,40 @@
        "    </tr>\n",
        "  </tbody>\n",
        "</table>\n",
-       "<p>524 rows × 7 columns</p>\n",
+       "<p>695 rows × 7 columns</p>\n",
        "</div>"
       ],
       "text/plain": [
-       "            height      mean_x    mean_y      std_x     std_y      FWHM_x  \\\n",
-       "90    14409.841451 -222.262629  2.343065  74.058552  2.488918  174.037597   \n",
-       "516  267271.868327  115.166949  2.769692  29.110955  2.450235   68.410745   \n",
-       "477  107493.971955   96.620752  3.101467  26.096038  3.044724   61.325689   \n",
-       "288     169.559297  -16.954423  2.975433  25.863356  3.902506   60.778886   \n",
-       "441   21979.573625   66.797420  2.603415  20.616066  2.744205   48.447755   \n",
-       "..             ...         ...       ...        ...       ...         ...   \n",
-       "21      202.186462    2.289328  2.644426   2.005263  1.836719    4.712369   \n",
-       "29      210.588381    1.978485  3.167382   1.943865  1.831859    4.568083   \n",
-       "30      217.389734    1.980785  2.331454   1.931921  1.708335    4.540015   \n",
-       "26      216.603135    2.821754  3.173432   1.804289  1.820440    4.240079   \n",
-       "27      222.917653    2.823663  2.336885   1.803631  1.702241    4.238533   \n",
+       "            height      mean_x      mean_y      std_x       std_y      FWHM_x  \\\n",
+       "132   22738.039821 -239.832795    3.010661  75.973813    2.731824  178.538460   \n",
+       "133   14409.841451 -222.262629    2.343065  74.058552    2.488918  174.037597   \n",
+       "578   31219.909353  105.300441    2.585564  31.073563    4.308750   73.022872   \n",
+       "687  267271.868327  115.166949    2.769692  29.110955    2.450235   68.410745   \n",
+       "600  325077.772735  112.668325  120.781525  28.345852  191.375356   66.612752   \n",
+       "..             ...         ...         ...        ...         ...         ...   \n",
+       "27      202.186462    2.289328    2.644426   2.005263    1.836719    4.712369   \n",
+       "37      210.588381    1.978485    3.167382   1.943865    1.831859    4.568083   \n",
+       "38      217.389734    1.980785    2.331454   1.931921    1.708335    4.540015   \n",
+       "33      216.603135    2.821754    3.173432   1.804289    1.820440    4.240079   \n",
+       "34      222.917653    2.823663    2.336885   1.803631    1.702241    4.238533   \n",
        "\n",
-       "       FWHM_y  \n",
-       "90   5.848958  \n",
-       "516  5.758053  \n",
-       "477  7.155100  \n",
-       "288  9.170890  \n",
-       "441  6.448882  \n",
-       "..        ...  \n",
-       "21   4.316290  \n",
-       "29   4.304869  \n",
-       "30   4.014588  \n",
-       "26   4.278035  \n",
-       "27   4.000267  \n",
+       "         FWHM_y  \n",
+       "132    6.419787  \n",
+       "133    5.848958  \n",
+       "578   10.125563  \n",
+       "687    5.758053  \n",
+       "600  449.732087  \n",
+       "..          ...  \n",
+       "27     4.316290  \n",
+       "37     4.304869  \n",
+       "38     4.014588  \n",
+       "33     4.278035  \n",
+       "34     4.000267  \n",
        "\n",
-       "[524 rows x 7 columns]"
+       "[695 rows x 7 columns]"
       ]
      },
-     "execution_count": 104,
+     "execution_count": 146,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1276,7 +1276,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 105,
+   "execution_count": 147,
    "metadata": {},
    "outputs": [
     {
@@ -1311,7 +1311,7 @@
        "  </thead>\n",
        "  <tbody>\n",
        "    <tr>\n",
-       "      <th>27</th>\n",
+       "      <th>34</th>\n",
        "      <td>222.917653</td>\n",
        "      <td>2.823663</td>\n",
        "      <td>2.336885</td>\n",
@@ -1321,7 +1321,7 @@
        "      <td>4.000267</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>26</th>\n",
+       "      <th>33</th>\n",
        "      <td>216.603135</td>\n",
        "      <td>2.821754</td>\n",
        "      <td>3.173432</td>\n",
@@ -1331,7 +1331,7 @@
        "      <td>4.278035</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>30</th>\n",
+       "      <th>38</th>\n",
        "      <td>217.389734</td>\n",
        "      <td>1.980785</td>\n",
        "      <td>2.331454</td>\n",
@@ -1341,7 +1341,7 @@
        "      <td>4.014588</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>29</th>\n",
+       "      <th>37</th>\n",
        "      <td>210.588381</td>\n",
        "      <td>1.978485</td>\n",
        "      <td>3.167382</td>\n",
@@ -1351,7 +1351,7 @@
        "      <td>4.304869</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>21</th>\n",
+       "      <th>27</th>\n",
        "      <td>202.186462</td>\n",
        "      <td>2.289328</td>\n",
        "      <td>2.644426</td>\n",
@@ -1371,47 +1371,47 @@
        "      <td>...</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>309</th>\n",
-       "      <td>151.959876</td>\n",
-       "      <td>6.048875</td>\n",
-       "      <td>3.048254</td>\n",
-       "      <td>6.335821</td>\n",
-       "      <td>3.106507</td>\n",
-       "      <td>14.889180</td>\n",
-       "      <td>7.300292</td>\n",
+       "      <th>80</th>\n",
+       "      <td>126.345557</td>\n",
+       "      <td>7.503358</td>\n",
+       "      <td>2.717318</td>\n",
+       "      <td>8.605995</td>\n",
+       "      <td>3.441961</td>\n",
+       "      <td>20.224088</td>\n",
+       "      <td>8.088608</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>351</th>\n",
-       "      <td>195.582213</td>\n",
-       "      <td>7.582757</td>\n",
-       "      <td>2.703236</td>\n",
-       "      <td>6.548991</td>\n",
-       "      <td>3.505496</td>\n",
-       "      <td>15.390128</td>\n",
-       "      <td>8.237915</td>\n",
+       "      <th>98</th>\n",
+       "      <td>191.987149</td>\n",
+       "      <td>10.993017</td>\n",
+       "      <td>2.720394</td>\n",
+       "      <td>9.802730</td>\n",
+       "      <td>3.154057</td>\n",
+       "      <td>23.036415</td>\n",
+       "      <td>7.412033</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>425</th>\n",
-       "      <td>251.594399</td>\n",
-       "      <td>7.994551</td>\n",
-       "      <td>1.593031</td>\n",
-       "      <td>6.646625</td>\n",
-       "      <td>3.216397</td>\n",
-       "      <td>15.619568</td>\n",
-       "      <td>7.558533</td>\n",
+       "      <th>261</th>\n",
+       "      <td>220.500255</td>\n",
+       "      <td>12.860922</td>\n",
+       "      <td>2.878011</td>\n",
+       "      <td>9.887140</td>\n",
+       "      <td>2.760608</td>\n",
+       "      <td>23.234779</td>\n",
+       "      <td>6.487429</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>47</th>\n",
-       "      <td>115.774855</td>\n",
-       "      <td>4.630637</td>\n",
-       "      <td>2.210311</td>\n",
-       "      <td>7.270685</td>\n",
-       "      <td>5.813427</td>\n",
-       "      <td>17.086110</td>\n",
-       "      <td>13.661553</td>\n",
+       "      <th>218</th>\n",
+       "      <td>229.036678</td>\n",
+       "      <td>21.346080</td>\n",
+       "      <td>2.787659</td>\n",
+       "      <td>17.666989</td>\n",
+       "      <td>2.664696</td>\n",
+       "      <td>41.517424</td>\n",
+       "      <td>6.262035</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>288</th>\n",
+       "      <th>372</th>\n",
        "      <td>169.559297</td>\n",
        "      <td>-16.954423</td>\n",
        "      <td>2.975433</td>\n",
@@ -1422,40 +1422,27 @@
        "    </tr>\n",
        "  </tbody>\n",
        "</table>\n",
-       "<p>462 rows × 7 columns</p>\n",
+       "<p>585 rows × 7 columns</p>\n",
        "</div>"
       ],
       "text/plain": [
-       "         height     mean_x    mean_y      std_x     std_y     FWHM_x  \\\n",
-       "27   222.917653   2.823663  2.336885   1.803631  1.702241   4.238533   \n",
-       "26   216.603135   2.821754  3.173432   1.804289  1.820440   4.240079   \n",
-       "30   217.389734   1.980785  2.331454   1.931921  1.708335   4.540015   \n",
-       "29   210.588381   1.978485  3.167382   1.943865  1.831859   4.568083   \n",
-       "21   202.186462   2.289328  2.644426   2.005263  1.836719   4.712369   \n",
-       "..          ...        ...       ...        ...       ...        ...   \n",
-       "309  151.959876   6.048875  3.048254   6.335821  3.106507  14.889180   \n",
-       "351  195.582213   7.582757  2.703236   6.548991  3.505496  15.390128   \n",
-       "425  251.594399   7.994551  1.593031   6.646625  3.216397  15.619568   \n",
-       "47   115.774855   4.630637  2.210311   7.270685  5.813427  17.086110   \n",
-       "288  169.559297 -16.954423  2.975433  25.863356  3.902506  60.778886   \n",
-       "\n",
-       "        FWHM_y  \n",
-       "27    4.000267  \n",
-       "26    4.278035  \n",
-       "30    4.014588  \n",
-       "29    4.304869  \n",
-       "21    4.316290  \n",
-       "..         ...  \n",
-       "309   7.300292  \n",
-       "351   8.237915  \n",
-       "425   7.558533  \n",
-       "47   13.661553  \n",
-       "288   9.170890  \n",
+       "         height     mean_x    mean_y      std_x     std_y     FWHM_x    FWHM_y\n",
+       "34   222.917653   2.823663  2.336885   1.803631  1.702241   4.238533  4.000267\n",
+       "33   216.603135   2.821754  3.173432   1.804289  1.820440   4.240079  4.278035\n",
+       "38   217.389734   1.980785  2.331454   1.931921  1.708335   4.540015  4.014588\n",
+       "37   210.588381   1.978485  3.167382   1.943865  1.831859   4.568083  4.304869\n",
+       "27   202.186462   2.289328  2.644426   2.005263  1.836719   4.712369  4.316290\n",
+       "..          ...        ...       ...        ...       ...        ...       ...\n",
+       "80   126.345557   7.503358  2.717318   8.605995  3.441961  20.224088  8.088608\n",
+       "98   191.987149  10.993017  2.720394   9.802730  3.154057  23.036415  7.412033\n",
+       "261  220.500255  12.860922  2.878011   9.887140  2.760608  23.234779  6.487429\n",
+       "218  229.036678  21.346080  2.787659  17.666989  2.664696  41.517424  6.262035\n",
+       "372  169.559297 -16.954423  2.975433  25.863356  3.902506  60.778886  9.170890\n",
        "\n",
-       "[462 rows x 7 columns]"
+       "[585 rows x 7 columns]"
       ]
      },
-     "execution_count": 105,
+     "execution_count": 147,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1467,7 +1454,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 106,
+   "execution_count": 148,
    "metadata": {},
    "outputs": [
     {
@@ -1482,7 +1469,7 @@
     },
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4YAAAFRCAYAAAAo17OzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABoUElEQVR4nO3deZycZZnv/89Ve69JOhshgSSEsCcEDGsOyrAJIwOKKCgoeNxQGWfEOcJsgIyenwsqw8gcRcSoo4LgDDIcPMrIIkyIJkIEQliSEJLOQjp7L7XX/fujnupUOt1JdXdVPVXV3/fr1a9UPev1dHf6rutezTmHiIiIiIiIjF0BvwMQERERERERfykxFBERERERGeOUGIqIiIiIiIxxSgxFRERERETGOCWGIiIiIiIiY5wSQxERERERkTFOiaHUFDP7jpn9Y5mudbiZ9ZhZ0Hv/pJl9rBzXHnCfHjM7otzXHeQ+i83sS5W+z4B7Xmtmz1TzniIiMjiVkQe8j8pIkVFSYihVY2brzCxuZt1mtsvMlpjZdWbW/3vonLvOOfdPJV7rvAMd45xb75xrdc5lyxH/Ae7T6pxbW8l7jGVewZv1PlwUvr5tZmd4v0vBomO/N8S273iv9/vgY2Znm1ln0fsnzcyZ2YkDjvsPb/vZlXpWERm7VEbKSKiMlHJSYijV9hfOuTZgJvAV4Ebg++W+iZmFyn1NKZ3llfPvy7Peh4vC1/XAcvJ/w04uOu4soHPAtrcDvxvm/V4DPlx4Y2YTgTOArpEELyJSIpWRY4DKSKlVSgzFF8653c65h4ErgGvM7ATYtyuImU0ys0e8mtMdZva0mQXM7MfA4cB/ejVjXzCzWV5N1UfNbD3weNG24gJwjpn9wcz2mNkvzazDu9c+NWLetv4aVzMLmtnfmdkar7btj2Z2mLfPmdmR3utxZvYjM+syszfN7B8Kf/wLXU7M7HYz22lmb5jZRUN9j8zsJDN7zrvf/UBswP6LzWxFUc3y/CGu83/M7PYB235pZjd4r28qeq6Xzew9B4jpTDNbZma7vX/PLNr3pJl92cz+G+gDjjCzY8zsMe/n96qZvb/o+D/37tdtZhvN7G+Guu9gnHNpYCn5Qg0zmwJEgJ8P2HYUwy/0fgJcUVSr+gHgP4DUMK8jIjJsKiNVRqqMFD8oMRRfOef+QL726qxBdn/e2zcZmAr8Xf4U9yFgPfma1Vbn3NeKznkHcCzwziFu+WHgfwLTgAxwZ4mh3kD+D9+fA+3eNfoGOe5fgHHAEV4sHwY+UrT/NOBVYBLwNeD7ZmYDL2JmEeAh4MdAB/AA8N6i/ScB9wKfBCYC3wUeNrPoIDH9jPwfcPPOnQBcANzn7V9D/vs/Dvgi8G9mNm2QmDqA/0v+ezYR+Cbwfy1fU1jwIeATQBv5msPHgJ8CU4ArgX81s+O8Y78PfNKrHT8BeHyQ2A/md3gFnPfvM95X8bY3nHOdg5x7IJuAl8l/nyD/c/zRCOITERkxlZEqI1VGSjUpMZRasIn8H/aB0uQLp5nOubRz7mnnnDvItW51zvU65+JD7P+xc+4l51wv8I/A+4tqvA7kY8A/OOdedXl/cs5tLz7Au86VwN8657qdc+uAb5AvCAredM59zxvT8UPv+aYOcr/TgTBwh/fsDwLLivZ/Aviuc+73zrmsc+6HQNI7b6CnAcfeDxaXk+92sgnAOfeAc26Tcy7nnLsfeB04dZDrvAt43Tn3Y+dcxjn3M+AV4C+KjlnsnFvpnMsAFwLrnHM/8I5/HvgF8D7v2DRwnJm1O+d2OueeG+Se/d8Pr9a38FV4zqeA/+EV6Gd5z/qsd3xh21MDrnVn8bWAR4a454+AD5vZMcB459yzB4hPRKRSVEbuT2XkgO+HykgpByWGUgumAzsG2f51YDXwGzNba2Y3lXCtDcPY/yb5gmVSCdc9jHyt4YFM8q735oB7TC96v6XwwjlXqE1tHeRahwIbBxTyxdedCXx+wB/vw7zz9uFd4z7ytbkAHyTfDQQAM/twUXebXeRrJgf7nhw6IIbBnq/4+zsTOG1AjFcBh3j730u+dvlNM3vKzM4Y5J4FS51z44u+lha2k//+nUC+5vNp51yPF0dh28AuMp8tvhZw8RD3/HfgHOB68rXSIiJ+UBm5P5WR+1IZKWWhxFB8ZWankP+jud90z16N4uedc0cAlwA3mNm5hd1DXPJgtaWHFb0+nHyN3DagF2guiitIvntOwQZgzkGuvc273swB99h4kPMGsxmYPqALzeED4vnygIKg2auhHMzPgMvNbCb5rjq/APDef4/8H/aJXiHwErBf1x3ytdYzB2wb+HzF3/8NwFMDYmx1zn0KwDm3zDl3KfkuNA+RH/cwLM65BPla4r8ApjnnXvF2Pe1tm8/wx04Urt0H/Ar4FCr0RMQHKiOHpDKyBCojZbiUGIovzKzdzC4mX0v3b865Fwc55mIzO9L7w78byAI5b/db5McoDNfVZnacmTUDtwEPel1WXgNiZvYuMwsD/wAUj0W4B/gnM5trefMHjBvAu87PgS+bWZtXoNwA/NsI4nyW/PiOz5pZ2MwuY9+uK98DrjOz07x4WrzY2wa7mNdFZZv3HL92zu3ydrWQL6i6AMzsI+RrEQfzKHCUmX3QzEJmdgVwHEN3M3nEO/5D3jOEzewUMzvWzCJmdpWZjXP5AfJ72PuzHa7fAX8FLCna9oy3bbNz7mC12Afyd8A7vC5PIiJVoTLyoFRGlk5lpJRMiaFU23+aWTf5mrK/Jz84+yNDHDsX+C+gh3wh8K/OuSe8ff8f8A9e94vhzNT1Y2Ax+e4qMeCzkJ8BDvg0+UJhI/na0eLB2N8kX6D9hvwf6O8DTYNc/y+9c9eS/8P7U/ID4IfFOZcCLgOuJd+F6Ary3TYK+5cDHwe+Dewk353o2oNc9qfAed6/heu8TH6Mx7PkP0jMA/57iJi2k+9S8nlgO/AF4GLn3LYhju8mPzD9SvI1qVuAr7L3w8SHgHVmtge4jnwXmpF4inyNanGN+jPetqdHeE0AvHElWrxYRKpFZWQJVEYOi8pIKZm5g45TFhERERERkUamFkMREREREZExTomhiIiIiIjIGKfEUEREREREZIxTYigiIiIiIjLGKTEUEREREREZ40J+B1ApkyZNcrNmzfI7DBERqYI//vGP25xzkw9+pIDKSBGRsWI45WPDJoazZs1i+fLlfochIiJVYGZv+h1DPVEZKSIyNgynfFRXUhERERERkTFOiaGIiIiIiMgYp8RQRERERERkjGvYMYYiUj/S6TSdnZ0kEgm/Q5EaF4vFmDFjBuFw2O9QREQqTuWjlKoc5aMSQxHxXWdnJ21tbcyaNQsz8zscqVHOObZv305nZyezZ8/2OxwRkYpT+SilKFf5qK6kIuK7RCLBxIkTVejJAZkZEydOVM25iIwZKh+lFOUqH5UYikhNUKFXHvfccw87duzwO4yKaeTfEzO70MxeNbPVZnbTIPuvM7MXzWyFmT1jZscV7ftb77xXzeyd1Y1cRCqpkf/uSfmU4/dEiaGICBAMBlmwYAHHH388J554It/4xjfI5XIALF++nM9+9rNDnrtu3Tp++tOfDrl/06ZNXH755QAsXryY66+/ftTxFl+z4Ktf/SpNTU10dHQM61pnn302Rx99NAsWLGDBggU8+OCDfO5zn+OOO+7oP+ad73wnH/vYx/rff/7zn+eb3/wm69at44QTTtjnerfeeiu33347ANdeey3Nzc10d3f37//rv/5rzIxt27YNK85GZmZB4C7gIuA44APFiZ/np865ec65BcDXgG965x4HXAkcD1wI/Kt3PRER8TR6xWk5KDEUEQGamppYsWIFK1eu5LHHHuNXv/oVX/ziFwFYuHAhd95555DnHigxzGQyHHrooTz44INljXewa954441cddVVI7reT37yE1asWMGKFSu4/PLLWbRoEUuWLAEgl8uxbds2Vq5c2X/8kiVLOPPMM0u69pFHHskvf/nL/ms9/vjjTJ8+fURxNrBTgdXOubXOuRRwH3Bp8QHOuT1Fb1sA572+FLjPOZd0zr0BrPauJyIyaqo4HTsVp0oMRUQGmDJlCnfffTff/va3cc7x5JNPcvHFFwPw1FNP9RcQJ510Et3d3dx00008/fTTLFiwgG9961ssXryYSy65hHPOOYdzzz13v8Jhw4YNnH322cydO7c/+Rx4zO23386tt94KwOrVqznvvPM48cQTOfnkk1mzZs0+xycSCT7ykY8wb948TjrpJJ544gkgX8hedtllXHjhhcydO5cvfOELJX8PzjzzTJ599lkAVq5cyQknnEBbWxs7d+4kmUyyatUqTj755JKudeWVV3L//fcD8OSTT7Jo0SJCof3nPnvzzTeZO3cu27ZtI5fLcdZZZ/Gb3/ym5Jjr3HRgQ9H7Tm/bPszsM2a2hnyL4WeHc66IyEio4nTsVJwqMRQRGcQRRxxBNptl69at+2y//fbbueuuu1ixYgVPP/00TU1NfOUrX+Gss85ixYoVfO5znwPgueee48EHH+Spp57a79p/+MMf+MUvfsELL7zAAw88wPLlyw8Yy1VXXcVnPvMZ/vSnP7FkyRKmTZu2z/677roLM+PFF1/kZz/7Gddcc03/APQVK1Zw//338+KLL3L//fezYcOGwW7BVVdd1Z/wbt++nUMPPZRQKMT69etZsmQJZ5xxBqeddhrPPvssy5cvZ968eUQiEQDWrFnTf+6CBQv4zne+s8+1jzrqKLq6uti5cyc/+9nPuPLKKweNYebMmdx444186lOf4hvf+AbHHXccF1xwwQG/N2ONc+4u59wc4EbgH4Zzrpl9wsyWm9nyrq6uygQoIg1NFaf+VJzee++9/PVf/3X/++9973v9nzfKSctV1JiuzqVD7ps84/QqRiLijw2v/JK+7k1lvWZz26EcdsylBz+wBIsWLeKGG27gqquu4rLLLmPGjBmDHnf++ecP2WXl/PPPZ+LEiQBcdtllPPPMM7z73e8e9Nju7m42btzIe97zHiC/TtFAzzzzDH/5l38JwDHHHMPMmTN57bXXADj33HMZN24cAMcddxxvvvkmhx122H7X+MlPfsLChQv32XbmmWeyZMkSlixZwg033MDGjRtZsmQJ48aNY9GiRf3HzZkzhxUrVvS/LxTYxS677DLuu+8+fv/73/Pd73530GcF+NjHPsYDDzzAd77znX2uOQZsBIp/MDO8bUO5D/g/wznXOXc3cDfAwoUL3cD9sq+hymOVxeKXWikfD1ZxumjRInp6eojFYnzlK1/h9ttv55FHHgHyCdlzzz3HCy+8QEdHB+vWrdvnGn/4wx946aWXaG5u5pRTTuFd73oXkyZNGjKWq666iptuuon3vOc9JBIJcrncPnEVV5y+8sorXHDBBf3l44oVK3j++eeJRqMcffTR/OVf/uWg5eNVV11FU1MTAL/97W8HrTjduHEjzz77LOPGjRu04rRgy5Yt/M3f/E3/+6OOOoqHH364v+L06quv5le/+tV+Mbz//e/ny1/+Ml//+tcJh8P84Ac/OGBZOlJqMRQRGcTatWsJBoNMmTJln+033XQT99xzD/F4nEWLFvHKK68Men5LS8uQ1x44c5iZEQqF+sdsAGVbkiEajfa/DgaDZDKZks8tdJd58cUXOeGEEzj99NN59tlnh9VNpuCKK67gH//xHzn//PMJBIYuevr6+ujs7ASgp6dnWPeoc8uAuWY228wi5CeTebj4ADObW/T2XcDr3uuHgSvNLGpms4G5wB+qELOISL9Cxemdd97Jrl27Bm35gtIqTpuamvorTocyWMVpc3PzPsc888wzXH311cDQFaexWKy/4nQwxV1JC5W6xRWnZ5xxBmeccUb/+8EqTgtf11133X7XL644PeusswaNobW1lXPOOYdHHnmEV155hXQ6zbx584b83oyUWgxFpKaUq2VvNLq6urjuuuu4/vrr90vi1qxZw7x585g3bx7Lli3jlVde4bDDDttn8PjBPPbYY+zYsYOmpiYeeugh7r33XqZOncrWrVvZvn07ra2tPPLII1x44YW0tbUxY8YMHnroId797neTTCbJZrP7XO+ss87iJz/5Ceeccw6vvfYa69ev5+ijj+a5554b1ffhzDPP5Pbbb+eII44gGAzS0dHBrl27WLlyJd/73veGda2ZM2fy5S9/mfPOO++AxxXGgcycOZOPf/zj/bXMjc45lzGz64FfA0HgXufcSjO7DVjunHsYuN7MzgPSwE7gGu/clWb2c+BlIAN8xjmXHfRGIlK3aqF8hH0rTletWtW//aabbuJd73oXjz76KIsWLeLXv/71oOc3YsXpYYcdxje+8Q3a29v5yEc+Mqw4rrjiCt72trdxzTXXHLDi9GMf+xj/+3//b4455phh36NUajEUEQHi8Xj/rGvnnXceF1xwAbfccst+x91xxx2ccMIJzJ8/n3A4zEUXXcT8+fMJBoOceOKJfOtb3zrovU499VTe+973Mn/+fN773veycOFCwuEwN998M6eeeirnn38+xxxzTP/xP/7xj7nzzjuZP38+Z555Jlu2bNnnep/+9KfJ5XLMmzePK664gsWLF+9T4I3UvHnz2LZtG6effvo+28aNG3fArj1D+eQnP8mcOXOG3P/UU0+xbNmy/uQwEonwgx/8YESx1yPn3KPOuaOcc3Occ1/2tt3sJYU45/7KOXe8c26Bc+7PnHMri879snfe0c65/fshiYiUQSkVpzfeeCOnnHIKr7zyCm1tbSOqOI3H4zz00EMsWrRon4rTZDLZX2FYXHEKkEwm6evr2+d6hYpTYJ+K09E688wzeeSRR+jo6Nin4vTZZ58ddo+aQsXppz/96QMed9ppp7FhwwZ++tOf8oEPfGA04Q9JLYYiIrBfK1yxs88+m7PPPhuAf/mXfxn0mMcff3yf99dee23/61mzZvHSSy/1by/eV+yzn/3soNN+z507d7/rA/3XjMVigyZQA+81VOvbk08+Oej2YDDInj179tm2ePHifd4XP1tB8RjDgccXDBxXAvCOd7yDpUv3juv693//90HPFRGR6ilUnKbTaUKhEB/60Ie44YYb9jvujjvu4IknniAQCHD88cdz0UUXEQgE+itOr732WiZMmHDAexUqTjs7O7n66qv7x74XKk6nT5++X8XpJz/5SW6++WbC4TAPPPDAPq1un/70p/nUpz7FvHnzCIVCZa84/eAHP7jPtp6enhFXnJbi/e9/PytWrDjo93GkzLnGHH++cOFCd7CZ/mqRJp+RsWjVqlUce+yxfochdWKw3xcz+6NzbuEQp8gA9VpGVpMmn5FaoPJRil188cV87nOf49xzzx10/2jLR3UlFRERERERqVG7du3iqKOOoqmpaciksBzUlVRERERERKRGjR8/vn821UpSi6GIiIiIiMgYp8RQRERERERkjFNiKCLSQO655x527NjhdxgiIiJSZ5QYioiQX5qhsI7hiSeeyDe+8Y3+BXWXL18+6DISBevWreOnP/3pkPs3bdrE5ZdfDuSXb7j++utHHW/xNQu++tWv0tTUREdHx6ivPxzXXnstDz74YFXvKSIiMhyqOD04TT4jIjXnQMu2jEQp08s3NTWxYsUKALZu3coHP/hB9uzZwxe/+EUWLlzYv5bSYAqJYfF6RgWZTIZDDz207InTYNe88cYbR33dbDZLMBgc9XVERKQxBINB5s2b17+O4Yc//GE+97nPEQgEWL58OT/60Y+48847Bz133bp1LFmyZNDyEfKVnJ/97Gd58MEHWbx4McuXL+fb3/72qOItvmbBV7/6VWbMmOFLxenFF1+8X0VurVJiKCIywJQpU7j77rs55ZRTuPXWW3nqqae4/fbbeeSRR3jqqaf4q7/6KwDMjN/97nfcdNNNrFq1igULFnDNNdcwYcIE/v3f/52enh6y2Sw//OEPufjii/sXgt+wYQNnn302Gzdu5Oqrr+aWW25h3bp1+xxz++2309PTw6233srq1au57rrr6OrqIhgM8sADDxAMBvuPTyQSfOpTn2L58uWEQiG++c1v8md/9mcsXryYhx9+mL6+PtasWcN73vMevva1r+33vLNmzeKKK67gscce4wtf+AIdHR3ccsstJJNJ5syZww9+8ANaW1u57bbb+M///E/i8Thnnnkm3/3udzGz6v1gRETGOFWcHpwqTkdOXUlFRAZxxBFHkM1m2bp16z7bb7/9du666y5WrFjB008/TVNTE1/5ylc466yzWLFiBZ/73OcAeO6553jwwQd56qmn9rv2H/7wB37xi1/wwgsv8MADD3CwhcavuuoqPvOZz/CnP/2JJUuWMG3atH3233XXXZgZL774Ij/72c+45pprSCQSAKxYsYL777+fF198kfvvv58NGzYMeo+JEyfy3HPPcd555/GlL32J//qv/+K5555j4cKFfPOb3wTg+uuvZ9myZbz00kvE43EeeeSR0r6ZIiLSEAoVp9/+9rdxzvHkk09y8cUXA/DUU0+xYMECFixYwEknnUR3dzc33XQTTz/9NAsWLOBb3/oWixcv5pJLLuGcc87h3HPPZd26dZxwwgn91y9UnM6dO5cvfvGLAPsdc/vtt3PrrbcCsHr1as477zxOPPFETj75ZNasWbPP8YlEgo985CPMmzePk046iSeeeALID+u47LLLuPDCC5k7dy5f+MIXBn3eWbNmceONN3LyySfzwAMP8Jvf/IYzzjiDk08+mfe973309PQAcNttt3HKKadwwgkn8IlPfALnXHm/8VWixFBEZBgWLVrEDTfcwJ133smuXbsIhQbveHH++ecP2WXl/PPPZ+LEiTQ1NXHZZZfxzDPPDHm/7u5uNm7cyHve8x4AYrEYzc3N+xzzzDPPcPXVVwNwzDHHMHPmzP71js4991zGjRtHLBbjuOOO48033xz0PldccQUAS5cu5eWXX2bRokUsWLCAH/7wh/3nPPHEE5x22mnMmzePxx9/nJUrVw4Zt4iINCZVnDZuxakSQxGRQaxdu5ZgMMiUKVP22X7TTTdxzz33EI/HWbRoEa+88sqg57e0tAx57YHdL82MUCjUP9kN0F9wjVY0Gu1/HQwGyWQygx5XiNc5x/nnn8+KFStYsWIFL7/8Mt///vdJJBJ8+tOf5sEHH+TFF1/k4x//eNliFBGR+qeK0/qvOFViKCIyQFdXF9dddx3XX3/9fkncmjVrmDdvHjfeeCOnnHIKr7zyCm1tbXR3d5d8/ccee4wdO3YQj8d56KGHWLRoEVOnTmXr1q1s376dZDLZX9vY1tbGjBkzeOihhwBIJpP09fXtc72zzjqLn/zkJwC89tprrF+/nqOPPnpEz3766afz3//936xevRqA3t5eXnvttf4kcNKkSfT09GgWUhGRMUoVp41bcarEUEQEiMfj/ctVnHfeeVxwwQXccsst+x13xx13cMIJJzB//nzC4TAXXXQR8+fPJxgMcuKJJ/Ktb33roPc69dRTee9738v8+fN573vfy8KFCwmHw9x8882ceuqpnH/++RxzzDH9x//4xz/mzjvvZP78+Zx55pls2bJln+t9+tOfJpfLMW/ePK644goWL168T4E3HJMnT2bx4sV84AMfYP78+Zxxxhm88sorjB8/no9//OOccMIJvPOd7+SUU04Z0fVFRKR+qeK0sStONSupiNScUmZJK7dsNjvkvrPPPpuzzz4bgH/5l38Z9JjHH398n/fXXntt/+tZs2b1zzZ67bXX7rOv2Gc/+9lB10ucO3fuftcH+q8Zi8X4wQ9+sN/+gfcaaszDunXr9nl/zjnnsGzZsv2O+9KXvsSXvvSl/bYvXrx40OuKiEj9K1ScFpar+NCHPsQNN9yw33F33HEHTzzxBIFAgOOPP56LLrqIQCDQX3F67bXXMmHChAPeq1Bx2tnZydVXX90/42mh4nT69On7VZx+8pOf5OabbyYcDvPAAw8QCOxt9/r0pz/Npz71KebNm0coFCpbxWkymQTy5eJRRx3VX3F6yCGH1HXFqdXrrDkHs3DhQnewAau16EDTEPvxYVmkGlatWsWxxx7rdxhSJwb7fTGzPzrnhp4zXfZRr2VkNQ1VHqsslmpS+SjDMdryUV1JRURERERExjglhiIiIiIiImOcEkMRqQmN2q1dyku/JyIiIpWhxFBEfBeLxdi+fbs+9MsBOefYvn07sVjM71BERKpGZaOUohy/J5qVVER8N2PGDDo7O+nq6vI7FKlxsViMGTNm+B2GiEhVFCpOJ06cuN/yECIF5ao4rWpiaGYXAv8MBIF7nHNfGbD/BuBjQAboAv6nc+5Nb981wD94h37JOffDqgXug11bX8Llckw4ZL7foYhUXDgcZvbs2X6HISIiUlNUcSqlKkfFadUSQzMLAncB5wOdwDIze9g593LRYc8DC51zfWb2KeBrwBVm1gHcAiwEHPBH79yd1Yq/mtLJPezZ9ioAbR1zCEVafI5IRERERKpNFadSTdUcY3gqsNo5t9Y5lwLuAy4tPsA594Rzrs97uxQopL3vBB5zzu3wksHHgAurFHfV7dq6Egvkc/bunWt9jkZERERERBpdNRPD6cCGoved3rahfBT41QjPrVvJ+E7i3ZtonziXprZD6d21jlwu63dYIiIiIiLSwGpyVlIzu5p8t9GvD/O8T5jZcjNbXq99sePdGwGjrWMubR1Hksum6Nuz4aDniYiIiIiIjFQ1E8ONwGFF72d42/ZhZucBfw9c4pxLDudc59zdzrmFzrmFkydPLlvg1ZROdhOKtBAIhok2TyIQjJLs2+53WCIiIiIi0sCqmRguA+aa2WwziwBXAg8XH2BmJwHfJZ8Ubi3a9WvgAjObYGYTgAu8bQ0nk+omHG0HwMwIR9tJJ3b7HJWIiIiIiDSyqiWGzrkMcD35hG4V8HPn3Eozu83MLvEO+zrQCjxgZivM7GHv3B3AP5FPLpcBt3nbGorLZUknewhH2vq3hWPtpFPdWtxUREREREQqpqrrGDrnHgUeHbDt5qLX5x3g3HuBeysXnf+S8R2AIxTdmxhGou305DJk031DnygiIiIiIjIKVU0MZa+uzqX7bevr3gSwb4uh1600ndxTncBERERERGTMqclZSceqTLIbgHBUiaGIiIiIiFSPEsMakk52EwzFCATD/dsCwQjBUEyJoYiIiIiIVIwSwxqSTnUTKupGWhCOtisxFBERERGRilFiWCOcc6ST3ft0Iy3IJ4bdOJfzITIREak0M7vQzF41s9VmdtMg+28ws5fN7AUz+62ZzSzal/Vm8u6fzVtERGS4lBjWiFw2iculh0wMncuSijfcCh0iImOemQWBu4CLgOOAD5jZcQMOex5Y6JybDzwIfK1oX9w5t8D7ugQREZERUGJYIzKpXgBC4db99hUmoEn0dlU1JhERqYpTgdXOubXOuRRwH3Bp8QHOuSecc4V1i5YCM6oco4iINDglhjUim0kAEAzH9tsXDDcDkErsqmZIIiJSHdOBDUXvO71tQ/ko8Kui9zEzW25mS83s3UOdZGaf8I5b3tWlikYREdmX1jGsEf2JYWiQxDAUA0yJoYjIGGdmVwMLgXcUbZ7pnNtoZkcAj5vZi865NQPPdc7dDdwNsHDhQleVgEVEpG6oxbBG5BNDIxCM7rfPzAiGm0gldlY/MBERqbSNwGFF72d42/ZhZucBfw9c4pxLFrY75zZ6/64FngROqmSwIiLSmJQY1ohsJkEwFMXMBt0fCjeTiu+qblAiIlINy4C5ZjbbzCLAlcA+s4ua2UnAd8knhVuLtk8ws6j3ehKwCHi5apGLiEjDUFfSGpHNJAgM0o20IBhuVouhiEgDcs5lzOx64NdAELjXObfSzG4DljvnHga+DrQCD3gViOu9GUiPBb5rZjnylb1fcc4pMRQRkWFTYlgj8i2GQyeGoXAzfXs6cbksFghWMTIREak059yjwKMDtt1c9Pq8Ic5bAsyrbHQiIjIWqCtpjcgdNDFsApcjnequYlQiIiIiIjIWKDGsAc45spnkARPD/iUr4upOKiIiIiIi5aXEsAbksknAHbQrKWgtQxERERERKT8lhjXgQGsYFuxd5F4thiIiIiIiUl5KDGtAKYlhIBDKz0yqJStERERERKTMlBjWgL2J4f6L2xeLxMarK6mIiIiIiJSdEsMaUEgMD7SOIUAkNoGkupKKiIiIiEiZKTGsAdlMAguECAQOvKxkpGm8ZiUVEREREZGyU2JYAw62hmFBJDqOXDZJNpOsQlQiIiIiIjJWKDGsAdl0aYlhONoGQDq5p9IhiYiIiIjIGKLEsAZks6Umhu0ApJPdlQ5JRERERETGECWGNSCbSQ4vMUypxVBERERERMrnwLOdSMU5l8PlMgSCkYMeu7fFUImhiIjIcHR1Lh10++QZp1c5EhGR2qQWQ5/lsimAkhLDYKgJC4SUGIqIiIiISFkpMfRZNlN6YmhmhCNtGmMoIiIiIiJlpa6kPstl80tPBEtIDCE/M6laDEVERMrLuRzbN/2RRO9bTJg6H+ccZuZ3WCIiVaPE0GfD6UoK+XGGid6uSoYkIiIypiTjO1izYjHx7s2A8da6p2gedzgTD12o5FBExgwlhj4bfmLYRveONZUMSUREZMxwuSxvvPBTUvGdzJ5/Ne0Tj2LL2t/y1ptPEWueROuE2X6HKCJSFRpj6LP+xDAULen4cLSdbCZOLpuuZFgiIiJjwpZ1T9C7+00OP/YyOg45kVC4ielH/Tmxlins3LJCwzdEZMxQYuizfGJomAVLOj4cKaxlqAloRERERiOT6mXTmseYcMgCOqad1L/dLMDE6acAxp5tr/kXoIhIFSkx9Fk2myIQipY8hiEcbQO0lqGIiMhode9YDcCMo961375gKEbL+Jn07tlANpOsdmgiIlWnxNBnuWyq5BlJoXiRe7UYioiIjFQum6Zn1zo6pp5IJDZ+0GNaJ8wBl6N317qqxiYi4gclhj7LZVMlTzwDxYmhWgxFRERGqmfXG7hchqmz3j7kMZFYO9HmSXTvXItzrorRiYhUn2Yl9VkumyIUaS35+FCkBSygxFBERGSEnHP07FxLtHkSvXs66d3TOeSxrROOYPvGP5Ds206sZVIVoxQRqS61GPpsuC2GZgHCkVZ1JRURERmhdGI3mVQvLeMOP+ixTa2HAEaiZ3PlAxMR8ZESQx855/KTzwwjMYR8d1K1GIqIiIxM355OwGhqO/SgxwaCYaLNk4j3bKl8YCIiPlJi6CPnsuByw5p8BiAcaSOdUmIoIiIyXM45+vZ0EmuZTLDENYSb2qaRTu4hk+qtcHQiIv5RYuij/sXtR9RiqK6kIiIiw5VO7CaT7qW5fUbJ5+S7k6JWQxFpaEoMfZTLjDQxbCOT6sXlspUIS0REpGH1dW+k1G6kBeFoG6FIK/FujTMUkcalWUl9NNwWw67OpQAk+rYDji1v/o5QuInJM06vVIgiIiINJdHzFpGmjpK7kRbEWqfSu3MdLpfFAsEKRSci4h+1GPooO8KupMFwLH9+JlH2mERERBpVLpsildhJrGXKsM+NNU/CuSx93ZsqEJmIiP+UGPool00CDHvymWCokBjGyx6TiIhIo0r0dgGMKDGMNE0EoGfXG2WNSUSkVigx9FEumwZG0GLoJYY5tRiKiIiULNG7FbMg0eaOYZ8bCjcRDDfTs1OJoYg0JiWGPsplk5gFhz1WYW+LoRJDERGRUiV6txJtmYTZyD7+RJsn0bNrHc65MkcmIuI/JYY+ymVTBIY5+B3ALEAgGFViKCLSIMzsQjN71cxWm9lNg+y/wcxeNrMXzOy3ZjazaN81Zva693VNdSOvH5l0H5lUz4i6kRbEmieSSfWQjG8vY2QiIrWhqolhCQXf283sOTPLmNnlA/ZlzWyF9/Vw9aKunFw2TSAYHtG5wVCMbFqJoYhIvTOzIHAXcBFwHPABMztuwGHPAwudc/OBB4Gveed2ALcApwGnAreY2YRqxV5Pkn3bAIg1jzwxjDZPAlB3UhFpSCUvV2Fm84DLgUOB4r6Pzjn30RLOLxR85wOdwDIze9g593LRYeuBa4G/GeQScefcglLjrQe5XJpAYHjjCwuCoZhaDEVEasQoy8hTgdXOubXete4DLgX6y0fn3BNFxy8FrvZevxN4zDm3wzv3MeBC4Gcjf5rGlIzvwCxIONY+4muEIm0EQ0307lrHpOmnlDE6ERH/lZQYmtmFwC8HOd4ABxw0MaS0gm+dty9XSlz1LpdNEYq0jujcYChGOrmnzBGJiMhwlaGMnA5sKHrfSb4FcCgfBX51gHOnH+R+Y1KqbweRpo4Rjy8EMDOax82gd8/GMkYmIlIbSv3r+HdAGOghX9ClgRTQC7xZ4jVGW3jFzGy5mS01s3cP47yalcumCQRG0ZU0k9AAeBER/5WjjCyJmV0NLAS+PoJzP+GVo8u7urrKGVbNy2XTpBK7iDYNfzbSgVraZ5Do2UIulylDZCIitaPUxPBEoBsoDHZ/DjiGfMH3qQrENZiZzrmFwAeBO8xszsAD6q3Qy+VGMcYwHANc/1qIIiLim9GWkRuBw4rez/C27cPMzgP+HrjEOZcczrkAzrm7nXMLnXMLJ0+eXEJYjaNvTyfgiIxgmYqBmttm4FyWeM+W0QcmIlJDSk0MY8DrzrldQA6IOufeJF/43F7iNUouvAbjnNvo/bsWeBI4aZBj6qbQcy6Hy2VGNfkMaMkKEZEaMNoychkw18xmm1kEuBLYZ5I1MzsJ+C75pHBr0a5fAxeY2QRv0pkLvG1SpGd3vuG2HC2Gze35zk75ZFNEpHGUmhjuAgqjtbcDJ5jZjcDRwBElXuOgBd9QvAIv6r2eBCyiaGxiPSp0QbFRdCUFJYYiIjVgF6MoI51zGeB68gndKuDnzrmVZnabmV3iHfZ1oBV4oHh2bm/SmX8iX8YuA24rTEQje/XuWk8o3NJfdo5GpKmDYKhJiaGINJxSZyV9DTjFzNqBZ4FLgP/t7Xu+lAs45zJmVij4gsC9hYIPWO6ce9jMTgH+A5gA/IWZfdE5dzxwLPBdb1KaAPCVAbOZ1h2XTQEQCI50VtImQImhiEgNKEcZ+Sjw6IBtNxe9Pu8A594L3DvMmMeU3t3riZShtRC8CWjap9OnCWhEpMGUmhh+CTgBGA/8L+B4YA75CWSuL/VmJRR8y8h3MR143hJgXqn3qQe5bBpg9F1JtZahiIjfylJGSmWkk3tIJ3fTMn7mwQ8uQVfnUrAAfd2b2LphSf8sp5NnnF6W64uI+KWkxNA592v2HbMw18w61F1l5HI5LzEcYVdSCwSxQFgthiIiPlMZWdv6ujcBEImNL9s1I7EJ4HKkE3uINJXvuiIifhoyMTSzw4Gkc+4t7/Vgx7QCOOfWVyi+hjXaFkPQIvciIn5RGVk/4pVIDL1kMJXYpcRQRBrGgVoM15EfK7HIez3UgnnuINeRQfQnhiNsMYR8YphTYigi4od1qIysC33dm4jEJoyqInagULgFsyDp5O6yXVNExG8Hm5XUBrwe6kuGKZcb3eQzoBZDERGfqYysA317NtHcfmhZr2lmhKPtpJN7ynpdERE/HagW8yNAV9FrKaNCi6EFRl6RXEgMnXOY6bOHiEgVqYysA9lMimTfNjqmLSj7tcPRduK9b5X9uiIifhkyK3HO/XCw11IeuVwaC4RHldAFQzGcy5LLJAiGm8oYnYiIHIjKyNrV1bm0/3WybzvgSKd6CEfbhz5pBMKxdnp3v0k2kyQYipb12iIifihpgXsz+7iZ3WtmxxdtO97b9vHKhde4XDY96vEOwXB+yYp0qrscIYmIyAiojKxdqcQuACLRcWW/dti7prqTikijKCkxJL8u06XAqqJtq8gv4vs35Q5qLMiVIzH01jJMJ5UYioj4SGVkjUondmOBMMFwc9mvXWiB1AQ0ItIoSk0MDwM6nXO5wgbv9UZg0Gm65cByuTSBwMgnnoHixFC1lSIiPlIZWaNSyd1EYuMqMg4/GIoRCEZIJ1QGi0hjKDUxTABHmtnUwgbv9ZHePhmm8rYYqlASEfGRysga5JwjndxT9rGFBYWZSVMqg0WkQZQ6JeYfgPOAJWa22Nt2DRADnqlAXA0v32I4usTQAmGwgLqSioj4S2VkDcpmErhcpmKJIeS7k/buXo9zQy1jKSJSP0pNDL9OvtCbBdzqbTMgB3y17FGNAblsatQthmZGMBTT5DMiIv5SGVmDCr1pKpsYjsPlMmQz8YrdQ0SkWkrqSuqc+y/gSmAdexfsfQO40jn3eMWia1DO5XC5zKgTQ8h3J1VXUhER/6iMrE17E8O2it0jHPMmoEloAhoRqX8lr67unHsAeMDMJnnvt1UsqgaXzeSHnNgou5JCITFUi6GIiJ9URtaeTLKbQDBCIFi5NQYj/TOTqoJWROpfyYkhgJlFgab8S+ufac05t77cgTWybDqfGJarxTDevXnU1xERkdFRGVlbChPPVGJG0oJAMEIw1KQJaESkIZSUGJrZUcD3gTMH2e1KvY7kFcYijHbyGcgnhtlMvCyznIqIyPCpjKw9hRlJm8fNqPi9wtF2rWUoIg2h1OUqvgcsYu/YiYFfMgz9iWFwdOsYQtGSFameUV9LRERGRGVkjcllk+RyacKRyk08UxCOtZNOduNy2YrfS0SkkkqtxXwb+dnV/hl4GchULKIxIJMuJIblaTGEfJeZaNOEUV9PRESGTWVkjanGxDMF4eg4cDmS8e3EWqZU/H4iIpVSamLYCWSdc5+vZDBjRWHymfJ0JW0CNPBdRMRHKiNrTGFStkouVVFQmIAm3r1FiaGI1LVSu5L+AzDHzP68ksGMFXu7kpYjMczPtqaZSUVEfKMyssakk91YIETA61VTSaFCYtijieBEpL4NZ4F7A/7TzHYDu4r2OefcnHIH1siyXlfScixXkS/0jHRKLYYiIj5RGVljMqluwpG2is5IWhAIBAlFWon3bKn4vUREKqnUxHBm0evx3leBK1cwY0U2k8AC4bIUWGZGKNJKRi2GIiJ+URlZY9KpHqJNE6t2v3C0nXjPW1W7n4hIJZSaGP4IFW5lk0nHy7q0RH6qbCWGIiI+URlZQ1wuSzbdR2jczIMfXCbhaDt7tr2qpaNEpK6VlBg6566tcBxjSjYTL8vEMwXhaJsmnxER8YnKyNqSSfcCEI62Vu2e+UluHIm+LprbDq3afUVEyqnkRXfNLAi8HzgdeAv4N2AW8JJzbkdFomtQ2UyizC2GbcS7N5XteiIiMjwqI2tHoQdNKFL5pSoKCrOfJnreUmIoInWrpFlJzWwcsJR8QXc9cDFwHPAE8NmKRdegsuXuShppJ53qwblc2a4pIiKlURlZWzKpHgDCkSq2GEZawQLEezXOUETqV6nLVXyFvQv4FmZMeQyIAxdWIK6Gls0kCAQiZbteONoGLkcm1Vu2a4qISMlURtaQdKqHQDBa1bF+FggSbZpIQhPQiEgdKzUxvBToAfqn3HbOZYH1wBEViKuhZTPln3wGtMi9iIhPVEbWkEyqp6qthQVNrVM1M6mI1LVSE8OJwBrn3PoB23NAe3lDamzO5chmkmVZw7AgHM2Po9DMpCIivlAZWUPSyW5C0eqNLyyItU4lGd9OLpep+r1FRMqh1MRwI3CMmR1b2GBmpwLHAp2VCKxRZTNJwJV9jCGgRe5FRPyhMrJGZDMJctkkIT9aDFumgsuR6N1a9XuLiJRDqYnhQ0AUWEF+raaTgSXevv8oe1QNLJuJA5R9VlJQi6GIiE8eQmVkTUj0bQOqO/FMQax1aj6GHiWGIlKfSk0MbwaeB8LkB9ZHvHP/BNxWmdAaUzbtJYZl7EoaCIYJhpqUGIqI+ENlZI1IeomhHy2GsZYpgBHv3VL1e4uIlEOpC9z3mNnpwAeAU73Ny4CfOedSlQquEWUzCQACwfLNSgpa5F5ExC8qI2tHsm87AKFIS9XvHQiEiDZP0sykIlK3Sl7g3jmXBn7kfckI9XclLWOLIUA40qYxhiIiPhltGWlmFwL/DASBe5xzXxmw/+3AHcB84Ern3INF+7LAi97b9c65S0YSQyNIxrfnl6oIlPzxpqw0M6mI1LOS/nKa2b0H2O2ccx8tUzwNL5Mu/xhDyC9Z0bP7zbJeU0REDm60ZaSZBYG7gPPJT1azzMweds69XHTYeuBa4G8GuUTcObdgWEE3qGTfdl+6kRbEWqayq+tlcrmMb8mpiMhIlfpX61ryA+oHMm+7EsMS7e1KWr7EsKtzKelUD+nELrZueBaz/PrKk2ecXrZ7iIjIkK5ldGXkqcBq59xaADO7j/zaiP2JoXNunbcvN/pwG1eybzvh2Djf7t/Ump+ZNNnbRVPbNN/iEBEZiVInn1k/4Gs3+QIvB6iZahgKk8+Ucx1DgGC4Cedy5HLpsl5XREQOarRl5HRgQ9H7Tm9bqWJmttzMlprZu4dxXkPJZdOkk3sIhas/vrCgMDNpvFfdSUWk/pQ6+cysgdvM7GzgYeCWskbU4LKZOIFQrL9Vr1yCoab89dNxgmWe2EZERIZWA2XkTOfcRjM7AnjczF50zq0ZJKZPAJ8AOPzww6sQVnWlEjsBR9iHiWcKYs2TAdMENCJSl0ptMdyPc+5JYDnwd2WLZgzIZuKEQrGyXzcUjvVfX0RE/DXMMnIjcFjR+xnetlLvtdH7dy3wJHDSEMfd7Zxb6JxbOHny5FIvXzf2zkjq3xjDQDBMtHkS8R4tWSEi9afUyWc+PGBTEJgDLALUd3EYMulEf+teORW3GIqISPWUoYxcBsw1s9nkE8IrgQ+WeO8JQJ9zLmlmk7x7fq3U2BuJn0tVFGtqnUKiV4vci0j9KXXymcUMPbD+2bJFMwZkM3GC4Qokht41C5PbiIhI1SxmFGWkcy5jZtcDvyafVN7rnFtpZrcBy51zD5vZKcB/ABOAvzCzLzrnjgeOBb7rTUoTAL4yYDbTMSO/VEWEQDDqaxyxlkPY1bVKM5OKSN0Zzl+swQbFPQt8rEyxjAnZTJxIbELZr2sWIBCMqsVQRMQfoyojnXOPAo8O2HZz0etl5LuYDjxvCTBvWJE2qGTfdqJNE8s+hn+49s5Muo2mtkN8jUVEZDhKTQxnD3jvgK3OOTVPDVM2nSDYWv4WQ4BgOEZGYwxFRKpNZWQNSMa3E2uZ4ncYRTOTblFiKCJ1pdRZSbUkRZlkM3FCFehKCvlxhupKKiJSXSoj/edcjmR8B+MmHet3KJqZVETqVkmzkprZd8xsrZktKNp2opmtMbN/rVh0Dca5HNlMkmAFZiUFCIWa1JVURKTKVEb6L53sxuUyRJo6/A7Fm5l0InElhiJSZ0pdruIvgJBzbkVhg3PuT+RbHC+pQFwNKZtJAq4ik89AfgKaXDaJc7mKXF9ERAalMtJnqfgOAKI1kBhCfpxhQovci0idKTUxnAR0D7K9B2i8xZAqpNDNsxLLVeSv661lqFZDEZFqUhnps2QhMWyujcQw1jKVRN82crmM36GIiJSs1MRwO3CUmS0qbDCzM4GjvX1SgsLi85XqSqolK0REfKEy0meFFsNKzPo9Ek2th/TPTCoiUi9KTQwfJ7+20uNm9lsz+y3wBPnpuX9b6s3M7EIze9XMVpvZTYPsf7uZPWdmGTO7fMC+a8zsde/rmlLvWUsKLXmVnHwG9iagIiJSFWUpI2XkkomdhCJtBIJhv0MB6J8dNa7upCJSR0pNDG8BdgNh4GzvKwzs8vYdlJkFgbuAi4DjgA+Y2XEDDlsPXAv8dMC5Hd59TgNOBW4xs9qoFhyGvS2Gle1KmlFXUhGRahp1GSmjk+rbUTPjC6GQGBqJni1+hyIiUrKSEkPn3BpgIbAYWOV9/QA41Tm3tsR7nQqsds6tdc6lgPuASwfcZ51z7gVg4Owp7wQec87tcM7tBB4DLizxvjUjm67sGMNAMAIWUIuhiEgVlamMlFFIxmsrMeyfmbR3q9+hiIiUrNQF7gsF3/8cxb2mAxuK3neSbwEc6bnTRxGLLwqLzwfDlRljaGbekhUaYygiUk1lKCNlhFwuSyq5uyaWqigWa5mqFkMRqSslJ4ZmNgv4W+B04DXgG8AFwC+ccysrEt0wmdkngE8AHH744T5Hs79KTz4D+Qlo1GIoIlJd9VBGNpquzqUAZFK94HKkEjv7t9WCptap7N62ilwuQyBQ8sctERHflLrA/bHAc8DHgHnkW+tSwK3AdSXeayNwWNH7Gd62sp3rnLvbObfQObdw8uTamyE8m04QCMUwK3Vo5/AFQzEtVyEiUkVlKiNlhDLpXgBC4RafI9lXU+s0cDkS6k4qInWi1AzlK8B44OXCBufcc8BO8oPsS7EMmGtms80sAlwJPFziub8GLjCzCd6kMxd42+pKNhOvaGsh5McvZjNxnHMVvY+IiPQrRxkpI5RJ9QEQijT7HMm+mtqmARDv3uxzJCIipSk1MXwHsAV424DtG9i3JW9IzrkMcD35hG4V8HPn3Eozu83MLgEws1PMrBN4H/BdM1vpnbsD+CfyyeUy4DZvW13JZuKEKp0YhptwLkcul67ofUREpN+oy0gZuUKLYTBcW4lhrHkSFggR797kdygiIiUptdN7BOh0zqXMrHj7ePJTcpfEOfco8OiAbTcXvV5GvpvoYOfeC9xb6r1qUSadqNiMpAX9axmqO6mISLWUpYyUkcmkewmGmys6TGMkLBCkqfUQ+tRiKCJ1otS/oq8Dx5rZx7z3MTP7X8DhwKsViawBZTNxghVa3L4g5M14qgloRESqRmWkjzKpPkI11lpY0NQ2jXiPEkMRqQ+lJoZ3AwZ8F3DAieTHVDjg+5UJrfFk09UZY1i4l4iIVIXKSB9l0701N/FMQVPrNDKpHtLJPX6HIiJyUKUucH8XcJf31rwvgO94+6QE2Uyi4i2GhetnM1rLUESkGlRG+sflsmQzCUKR2kwMm9sOBVB3UhGpC8NZ4P4vzex24BRv03Ln3LqKRNWAnMvlC68KjzE0CxAIRtViKCJSRSoj/ZFJezOS1nBXUoB49ybGTTra52hERA7soImhmYWBt4DtwFHOuTcrHlUDymWSgKt4V1KAYDhGRmMMRUQqTmWkv/pnJK3RFsNQuJlwbLzGGYpIXThoV1LnXBpIAAmnxfFGLON17ax0V1LYu5ahiIhUlspIf2VShcXta7PFEKC5dZq6kopIXSi1K+kdwJfM7Hzn3GMVjKdhFRK1Si9XARAKNZGK76z4fUREBFAZ6ZtMug8sUJWy9WC6OpcOur2pbRq7t79KLpchECh5BI+ISNWV+hfqIiAH/D8ze5V8t5lCzahzzp1bieAaSWHMXzUKr2C4iVw2qUJIRKQ6VEb6JD8jaTMD1o+sKU1th4LLkeh5i+b26X6HIyIypFKzhncUvT7G+3LkZ15T15kSFFoMC+sMVlJhHGM62U20aULF7yciMsapjPRJLa9hWNDcPwHNZiWGIlLThkwMzWw+0OucWwM8Vb2QGlNh+YhqtRgCpJO7lRiKiFSAysjakEn30txU28lWtHkSFgjT17OJiX4HIyJyAAdqMVwBPAssIl8butQ5d2Y1gmpE2XR1J58BSCd2V/xeIiJj1ApURvoql02Ty6YI1uji9gVmAZpaDyGuCWhEpMYdaFZSB0w2Mw1SK4PC8hHBYLTi9yokn6mkEkMRkQpRGemzWl/DsFhz2zT6ujehiWtFpJYdKDHcDMwB8gvwwWlmlh3kK1OVSOtcNhMnEIxigWDF7xUIhDELkkrsqvi9RETGKJWRPiusYRiq0TUMizW1TSOb7iOd3ON3KCIiQzpQYvhv5AfOF6b6sgN8yUFk04mqdCMFMDOC4WZS8V1VuZ+IyBikMtJne9cwrIPEsPVQAHUnFZGaNmQXGOfcTWb2LHA88CWgE/h+tQJrNNlMnFCo8jOSFoTCzWoxFBGpEJWR/sum+zALEghG/A7loJoKM5P2bGLc5GN8jkZEZHAHHBvhnPsl8EszuwB4yTn3xeqE1Xiy6XhVF+ANhptI9m2r2v1ERMYalZH+yqR6CUVaanoNw4JQuIlIUwd9ezb6HYqIyJBKGjTvnDu7wnE0vEwmQSQ2rmr3C4Wb6U31kMumCQTDVbuviMhYozLSH5l0b110Iy1obp9B755Ov8MQERnSgcYYShllM/H+heerIejN0qaZSUVEpNE45/pbDOtFS/t0UvEd/bOpiojUGiWGVZJNx6s2+Qzsnb5bE9CIiEijyaR7cS7bXwlaD5rbZwCoO6mI1CwlhlXgXM6bfKZ6BViosJZhYmfV7ikiIiNjZhea2atmttrMbhpk/9vN7Dkzy5jZ5QP2XWNmr3tf11Qvav+k4juA+liqoqtzKV2dS+nzZiTt2rCErs6lPkclIrI/JYZVkE3nF7ev5iK8+YluTDOTiojUODMLAncBFwHHAR8ws+MGHLYeuBb46YBzO4BbgNOAU4FbzGxCpWP2W7LPSwzraIxhMBTNLyWlcllEapQSwyoojCeoZldSCwQJR9tUAImI1L5TgdXOubXOuRRwH3Bp8QHOuXXOuReA3IBz3wk85pzb4ZzbCTwGXFiNoP2UrKMWw2KR2ARScfXkEZHapMSwCvxoMQSIxMarK6mISO2bDmwoet/pbav0uXUrFd9BIBglEChpcvWaEWkaTybdSy6b8jsUEZH9KDGsgr0thtVNDMOx8Zp8RkREADCzT5jZcjNb3tXV5Xc4o5KM76h6ZWs5RGL5Xr5qNRSRWqTEsAoymXxi6E+L4S6cc1W9r4iIDMtG4LCi9zO8bWU91zl3t3NuoXNu4eTJk0cUaK1IxrfXXTdSgGhTPjFMKjEUkRqkxLAKCl1JqznGEPKJoculyWrNJBGRWrYMmGtms80sAlwJPFziub8GLjCzCd6kMxd42xqWczlSiV11NfFMQSAYIRRp7Z9VVUSkligxrIJCV9JQqLqJYX/NpMYZiojULOdcBriefEK3Cvi5c26lmd1mZpcAmNkpZtYJvA/4rpmt9M7dAfwT+eRyGXCbt61hpRK7weXqssUQINLUQTK+Q715RKTm1Neo7TqVTfcRCMWwQLCq9+0fy9C3gxZvYV0REak9zrlHgUcHbLu56PUy8t1EBzv3XuDeigZYQ/rXMKzDFkOAaFMHfbvXk07sItLU8CuLiEgdUYthFWTSfVVvLYR84QN7p/UWERGpd8n4dgBCkfqbfAbyLYYAvbvX+xyJiMi+lBhWQTYd92X2tGC4iWCoSWMZRESkYeQrO63qM32XSyQ2DixA7+4NBz9YRKSKlBhWQSbd51sBFm3q6K9dFRERqXep+A4isfGY1edHGLMAkdh4tRiKSM2pz7+qdSaT7vNtvaX8IHdNPiMiIo0hGd/RP1SiXkWbOujd04nLZf0ORUSknxLDKshm4lVfqqIg2tRBKr4D53K+3F9ERKSckn07iDTXd2IYaZqIy6Xp697kdygiIv2UGFaYc873FkPnsqST3b7cX0REpFxy2TSZVHf9txg2TwSgZ9c6fwMRESmixLDCctkkuJyvLYaAJqAREZG6V5hlO1LniWEo3EQkNoFeJYYiUkO0jmGFbV3/3wDEu7fQ1bm06vePNu9dsqJ1wuyq319ERKRcCpWc0aYO4j1bfI5mdFrHz6J75xqcc5iZ3+GIiKjFsNJy2TQAgWDYl/sXFrnXWoYiIlLvkkWJYb1rGT+TdHIPqYQmiBOR2qDEsMJy2RQAgWDEl/sHgmHC0XZ1JRURkbqXjO/AAmFCkTa/Qxm11vGzAI0zFJHaocSwwnI5fxNDgEjTBLUYiohI3Ut5S1U0QtfLprZpBIJRena+4XcoIiKAEsOKy/rcYgiFRe6VGIqISH1rhDUMC8wCtI6fqcRQRGqGEsMK2zvG0M/EcBLpxO7+WEREROqNc45kfEfdz0harHXCHBK9b5FO9fgdioiIEsNKy2VTmAUIBIK+xRBrmQw4kvHtvsUgIiIyGpl0L7lMgljzJL9DKZu2jiMA6Nm51udIRESUGFZcLpvytbUQIOoVosm+bb7GISIiMlKFMqywOHwjaGk/jEAgTPcOJYYi4j8lhhWWyyQJBKO+xlBIDBO9SgxFRKQ+7U0MG6fF0AJBWibk1zMUEfGbEsMKy2aTBEL+thiGwk2Ewi0k+7p8jUNERGSkkn3bASPSNMHvUMqqbcIcEj1byKR6/Q5FRMY4JYYVlssmCfrcYggQbZlEQl1JRUSkTiX6thFpmkAgEPI7lLJq65gDoFZDEfGdEsMKy2aSBEL+J4ax5kkaYygiInUr2betoSaeKWhun0EgGKF7x2q/QxGRMU6JYQXlchlcLlMbLYbNk0kn95DNJP0ORUREZFiccyT7tjXUxDMFgUCItglz2LP9db9DEZExrrH6Y9SYwngBv1oMuzqX9r9OJXYCsGXdE0w/8kJf4hERERmJbLqPbCbRUBPPFGufeBS7t60i2beDaHPjrNMoIvWlqi2GZnahmb1qZqvN7KZB9kfN7H5v/+/NbJa3fZaZxc1shff1nWrGPVIZb8HaWmgxDEVagb0xiYiI1IvCGPloU4MmhpOOAmDPjtd8jkRExrKqJYZmFgTuAi4CjgM+YGbHDTjso8BO59yRwLeArxbtW+OcW+B9XVeVoEepkITVwhjDQmKYTioxFBGR+lIYIx9raczEMNo8mXB0nLqTioivqtlieCqw2jm31jmXAu4DLh1wzKXAD73XDwLnmplVMcaySqfzXUlrocUwEAgRDDWRSXX7HYqIiMiw7F2qojG7WZoZ7ZOOonv76ziX8zscERmjqpkYTgc2FL3v9LYNeoxzLgPsBgojzWeb2fNm9pSZnTXYDczsE2a23MyWd3X5v2af32MMBwpH20gnlRiKiEh9SfZtIxIb33BLVRRrn3gU2Uyc3t0bDn6wiEgF1Mtf2M3A4c657Wb2NuAhMzveOben+CDn3N3A3QALFy50PsS5j3xXUiMQCPsdCgDhaDs9O9/AuRxmmpBWRETqQ6Kvi1jLZL/DKKviCeIActkUYOzuWkXr+Jn+BCUiY1o1s4ONwGFF72d42wY9xsxCwDhgu3Mu6ZzbDuCc+yOwBjiq4hGPUibVQyAUpVZ6w4aj7TiXJRXf5XcoIiIiJXHOkejdSqxlit+hVFQgGCHaPJHdXS/7HYqIjFHVTAyXAXPNbLaZRYArgYcHHPMwcI33+nLgceecM7PJ3uQ1mNkRwFxgbZXiHrF0qpdgMOJ3GP3C0XYA4r1bfI5ERESkNOnkbnLZVMO1GA6mqXUa8Z7NJOM7/Q5FRMagqiWG3pjB64FfA6uAnzvnVprZbWZ2iXfY94GJZrYauAEoLGnxduAFM1tBflKa65xzO6oV+0hl0j01M74Q8mMMARI9b/kciYiISGkSvVsBGr7FEKCpbRqAWg1FxBdVHWPonHsUeHTAtpuLXieA9w1y3i+AX1Q8wDLLpHoJhmJ+h9EvEIwQDDUR71GLoYiI1IdEb34yubGQGIajbUSbJ7G7axVTDl/kdzgiMsZoBpIKKowxrCXhaBtxtRiKiEidSPRuJRCKEYq0+R1KVYyffBzdO1aTTcf9DkVExph6mZW07uRyGbKZRE2sYVgsHG2nZ9c6zUwqIiJ1Yc+O1wmFmti28fd+h1IV46fO4603f8eurpeZeOjb/A5HRMYQZQYVUmtrGBaEo+24XIZkvOaHaIqIiJBJ9vSPkR8LWsYdTjg6jp1vveB3KCIyxigxrJD8GobUZIshQELjDEVEpMZlMwmymTihMZQYmgWYMHU+e7a9qu6kIlJVSgwrJJP2WgxrLTGMjQOMvj2b/A5FRETkgBJ92wAIj5HxhQUTDpmPc1l2aXZSEakiJYYVki60GIZqZx1DgEAgRKxlCn17Ov0ORUREPGZ2oZm9amarzeymQfZHzex+b//vzWyWt32WmcXNbIX39Z2qB19BheWVxlJX0q7OpfR1byYYamLLuifp6lxKV+dSv8MSkTFAk89USDqxB4BgqMnnSPbX3D6DPdtfwzmHmfkdjojImGZmQeAu4HygE1hmZg8754qbiz4K7HTOHWlmVwJfBa7w9q1xzi2oZszVkp9F2whFWv0OparMjJZxh7Fn++v5iexqaOkrEWlcajGskHRyN4FglEAw7Hco+2lpn0Em1U06ucfvUEREBE4FVjvn1jrnUsB9wKUDjrkU+KH3+kHgXBsDNXvxns2Eo+1jchbtlvEzAUfv7g1+hyIiY8TY+0tbJanEbiKxcX6HMajmcTMA1J1URKQ2TAeKP/13etsGPcY5lwF2AxO9fbPN7Hkze8rMzqp0sNUU797sjY0fe8LRdiKxCfTuetPvUERkjFBiWCHp5O7+GUBrTXPboeQnoFFiKCJS5zYDhzvnTgJuAH5qZoMWPmb2CTNbbmbLu7q6qhrkSGTSfaSTu4nUaFlaDS3jZ5JO7iaV2OV3KCIyBigxrJBUck/NthgGghFirVPpVWIoIlILNgKHFb2f4W0b9BgzCwHjgO3OuaRzbjuAc+6PwBrgqMFu4py72zm30Dm3cPLkyWV+hPKLd+eXVQpHa7MsrYbmcYeBBejZ+YbfoYjIGKDEsAKcy5FO7qnpwqylfQZ9ezpxzvkdiojIWLcMmGtms80sAlwJPDzgmIeBa7zXlwOPO+ecmU32Jq/BzI4A5gJrqxR3RcV7NgMQjo3dFsNgMEJL+2H07npTaxqKSMUpMayATKoHXK6mE8Pm9hlkUj2kEjv9DkVEZEzzxgxeD/waWAX83Dm30sxuM7NLvMO+D0w0s9Xku4wWlrR4O/CCma0gPynNdc65HVV9gAqJ9+SXbKjF2b2rqbVjDs5l2b75j36HIiINTstVVEAqsRuASGwc6VS3z9EMrnXCbAB6dq4l2tThczQiImObc+5R4NEB224uep0A3jfIeb8AflHxAH0Q795CU9u0Mb+sUrRpApGmDrauX8Lkw84ckzO0ikh16K9LBaST+cSwlmdSa2o9hGC4me4da/wORUREZB/O5Yj3bKGp9RC/Q6kJbR1zSPZ1sXvbK36HIiINTIlhBfS3GNbwTGpmAdomHKHEUEREak4qvpNcNqnE0NPcPoNIbAJb1v5WcwOISMUoMayAdHI3WIBQpNXvUA6orWMOqcROkvGGGI4iIiINondPflnH5nGHHeTIscEswNRZZ9O7ez09OxtibiERqUFKDCsglcivu1Tr4wDaJswBUKuhiIjUlL7dnZgF1WJYZNL0UwhFWtm89r/8DkVEGpQmn6mAdHJPTY8vLIi1TiUUbqFn5xomTT/F73BERESAfIthU9uhBAL6mFIQCIY5ZNbZdL72CHu2r6Z94pEAdHUuHfT4yTNOr2Z4ItIAartJq07lWwxrPzE0C9DaMYc921/HuZzf4YiIiOBcjr49G2lRN9L9TD7sTMKx8Wx8/f9qrKGIlJ0SwzJzzpFO7q7pNQyLTZhyAunkHnp3vel3KCIiIiR6u8hlk7S0KzEcKBAMM33OO+nb08nOt17wOxwRaTBKDMssl0mQy6aI1EFXUoBxk4/FAiF2vPUnv0MRERGhb7cmnjmQjkNPpql1Ghtf+7/ksim/wxGRBqLEsMwKM3xGYhN8jqQ0wVCMcZOOYddbL6o7qYiI+K53zwYCwSixlsl+h1KTzAIcduy7SSV2snntb/0OR0QaiBLDMkv0dQEQbZnkcySlm3DIiaSTe+jZ+YbfoYiIyBjXu3sDze3Ta35mbz+1TTiCjmkn89a6p0gnu/0OR0QahP7qllmyN58YxprrJzEcN+lYLBBm+6Y/+h2KiIiMYdlMir7ujbSOn+l3KDVvxlEXEwhG2L5puXr8iEhZaB7oMkv0bSMcG08gGPE7lCENNrV1y7jD2L5pOdPmnEe0qcOHqEREZKzr3b0OXI5Wb51dGVo42sbhx17GGy/+hD3bXmPc5GP8DklE6pxaDMss2betrloLC9onHQ1mbHnjCb9DERGRMap7xxqwAK3jZ/kdSl3omLaA5vYZ7O56mVR8l9/hiEidU2JYRs45Er1dROswMQyFm2kdP4vtG5eR7NvhdzgiIjIGde9cQ0v7DIKhqN+h1I0JhywgGIqyfdMyXC7rdzgiUseUGJZRNt1HNhOv25nU2icdjQVCrH3hx+Syab/DERGRMSSbSdG3u1PdSIcpGIrSMe1tpJN72NW10u9wRKSOKTEso8KMpLHm+kwMQ+FmZs/7AH17Onlz5QOqeRQRkarp3b0O57K0dRzhdyh1p6ntEFonzKZ7++vEuzf7HY6I1CklhmWU7N0GUJddSQvGTzmeQ4+8kB1bnufVZf9KwptlVUREpJI0vnB0Jkw9kXBsPNs3LiOT6vU7HBGpQ0oMyyjR1wUWqPtZPacdcS6z519ForeLlUtuZ+0LP6FvT6ffYYmISAPbvW0VreNmEgzF/A6lLlkgyKQZp+GAbZ2/J5fL+B2SiNQZJYZllOzbRrSpAwsE/Q5l1DoOWcDxi/6GqYefxe6uVaxa+s+8tvy7ShBFRKTskvEdxLs3M27KcX6HUtfCkVYmTl9IKrGTzlcf9jscEakzSgzLKNG7ta67kQ4UjrYz4+iLmf/2v2f63HcR79nCqqV3suHVh1UTKSIiZbN768sAjJ98vM+R1L/mtkNpm3gUXRueZfum5X6HIyJ1RAvcl0k2kyLeu5VxU+q7UOvqXDro9mA4xiGz/4xdW19i65tPs7trFZNmnM4hs95R5QhFRKTR7OpaSaxlSt3O6l1rxk85HnJZ3lz5INHmybSOn+l3SCJSB5QYlknfng3gcrSOa9w/voFghI5pJxNtnsT2TX/krXVPMnHaSYSj7X6HJiIidSqT7qN751oOmXW236HUtKEqbgdjFuCIEz/Eqt/fyZoVizn29L8iEhtfueBEpCGoK2mZ9O5+E4CWcYf7HEnltYw7nCkzzyKbjvPa8rtJp3r8DklEROrUrq0rweXUjbTMQpEWjjzpI+SyadY8v5hcNuV3SCJS45QYlknPrvVEmycRirT4HUpVxJonMfnwRSTj21nz/A/IZdN+hyQiInVo28Y/EG2eTPO4w/wOpeE0tR7C7HkfpK97E2+8dD/O5fwOSURqmLqSloFzjt7db9I+8Wi/Q6mqWMtkZs/7IGv/9GPeeOk+jph/FWaqaxARkdLEe96id9c6ps99F2bmdzgNpbjr6fipJ7DrrRd4bXk3Ry38lC/f66G6wk6ecXqVIxGRoSgxLINUfCeZVM+YHNydSff2Fzirn0swfuo8QH/oRUTk4LZt/D1mQSYeutDvUBpa+8SjyGaSdG9/jc1rfsOhR77T75BEpAYpMSyDsTS+cDBtHXPJpHrZs/01QpFWWifM9jskERGpcblsmu2b/si4KccTjrb6HU7DGz/lBHLZFJvX/hfBcDNTZ57ld0giUmOUGJZB9861BIIRmloP8TsUX5gZEw45kUyqlx2bnycYbvY7JBERqXFbN/w32XQfUw5b5HcoY4KZ0THtJMKRVjpffRizAFMO1/deRPbSgLBRcrksO996gXGTj8UCQb/D8Y1ZgEkzTiMcbWdb51Li3Vv8DklERGpUNpNgyxtP0D7xKNo6jvA7nDHDLMDs+VcxbvLxbHjlITaveQznnN9hiUiNUGI4Sru3v0o23UfHtJP9DsV3gWCYyYefSSAQYvXz3yed3ON3SCIiUoPeevNpsuk+Dj3yQr9DGXMCgRBzTvwQHdPexqY1v+GNF3+qpSxEBFBiOGo7Nj9HMNzMuDE2I+lQQuFmJh92Jpl0H6uf/wHZjAobERHZK97zFlveeJzxU06gRUtU+MICQWadcAWHHnkRO7f8iVVL76R393q/wxIRn2mM4ShkMwl2bV3JpOmnjOlupANFmiYwe/5VrHl+Maufu4c5J11LSOMORUTGvFwuwxsv/oxgMMrhx77H73DGNDNj2hHn0DJuBute+jmv/P7bTJpxGtOOOJdIbPyorp1O9pDo3UKidyuZVC/ZbIp49yYsECIYihKKtBGJjSMQjJTnYUSkLJQYjsLW9UtwuYy6kQ5i/OTjmD3/Kta9+DNe/cO/MmfBh4m1TPE7LBER8YlzOTas+g/i3RuZs+BawtF2v0MS8ktZHH/m59m4+tds61zK9o3LGD/1BDoOOYm2CUcQDDcNeW4m3Ue8ZwuJni3Ee94i3vMWiZ4tZNK9+xxnFsThwOX22R4Kt9C9/XVaJxxBW8eRxFqmaD1LER8pMRyhRN82Nq99jPFTTqB1/Cy/w6lJHYecSCjczNoX/o1Vz97B9KPexeQZp6t1VURkjMknhQ+xbeMfOGT2OYyfcrzfIUmRYLiJw499N1NnvZ2tbz7N9s3PsXPLnwAj2jyRSGwCwVAULEAm1UMm1UM61UM23dd/jUAwSlPrVMZNOZ6m1qk0tUwl1jqVUKSVQCBEV+dSXC5LNpskndxDKrGLdGIXPbvXs/OtFwAIRVppmzCHto58ohhtnqxEUaSKqpoYmtmFwD8DQeAe59xXBuyPAj8C3gZsB65wzq3z9v0t8FEgC3zWOffrKoa+D5fLsv7lX2CBEIcd826/wqgL7RPnctwZN7Bu5f1seOUhtq5/hqmz3sGEqScSOkAtpIjIWNMoZeRAqcQu1r30c7p3vM7UWWdrwhmfdXUuHXT75BmnE23q4LBjLmX6Ue+id9c6unesZfe2VSTj23G5DM45gqGolwQeQijcQjjaTjjWTjDUtE8Sl0zsJJnYuc89LBAkFGgmFG7uX+Jr0vTTSMV30L1zDd078l873/oTkE82Yy2TiTR1EI60Eoq2MW3Wnw1awXyg5yrX98cPQ8UzFL/irAa/fja19jtRSVVLDM0sCNwFnA90AsvM7GHn3MtFh30U2OmcO9LMrgS+ClxhZscBVwLHA4cC/2VmRznnstWKvyCT6mXNn35Mz841zDzuciKxcdUOoe5EYuOYe/LH2d21ik1rfs36l3/Bhld+Sev4WbR1zKF1whG0jDucQEAN2CIyNjVKGVksGd9J1/r/zn+ocjkOP/YyJs04XS1AdSAQCNHWcSRtHUcSjlW2y69ZvlUy2jyRSdNPxTlHMr6dzWseI9HbRbKvi749nf3Hb17zWD4hjbQSirQSDDcRCIRJJXZiFsQCIQKBIBYIYhYkYKH8a+99/t8QFgjs3VfYHgiSSccxC/R/YQFffmddLksmHSed3EMumyaXTZHLpshmU4ADDMPAyL8OBAkEwnTvWE0wFCMYaiIYbiIYiuWfQ6QE1fwkfiqw2jm3FsDM7gMuBYoLvUuBW73XDwLftvz/xkuB+5xzSeANM1vtXe/ZSgbsXI5sJkEm1Uui9y32bHuNHVueJ5fLMOuEK5l46Nsqefu6NlTtyqQZp5NK7KRv9wYSvV1071jt7TFiLZOJtUylqXUqkdj4fC1ktI1guIVAIEQgEMKC4fwfcH2wkCGUtiZXmdbtKtP6X64c8ZRtLTJHNpsim47n//6le0knu9m1dSXZTH5b4Ss/xb0RCIYxCxAMNfV/WMv/21L0eu/2YCjm24etGlZXZaRzDpfLkM0myWVSZLMJ0sluUvEdxHs207NzHfGezYAx4ZATOfTIdxJrnlSpcKSBmBmx5km0TphN64TZAGQzSa/7ajeR6Pj+rqyZVLeXOKXIpHtxuSwD60N2bH5u9DEFwmxZ+zjBsJdwhfIJVyjcRCAU3ZuIhaIEg1EvoTQvITMww2XTZLMpctkk2Uzh3wSZdB/ZdB+ZdB+ZdLz/dS6bHFGs2/b7/GWEws35v8fhFoJFr/duz/8bDDXlP2sF8glzwEu088nz6JJL53L5L+9n5HK5/L8ul094C+VKJkE2k/TKmyTZbP59LpMk3rMFl8uQy2XI5dL95d7mtb/FMALBCIFghKD3byAU3fd98VcgBM55cWX74ysk4IUkPJdNeffNeq3mGXK5LDjHljeeyH+/vIqFQCCc/30IRvMt66EowWDMex3bd7v3Pn9MJF8mer8rfiby1UwMpwMbit53AqcNdYxzLmNmu4GJ3valA86dXrlQ8zOnPf9ff0fxB0gLhJgwdT5TZ76d5vaK3r5hmRnRpg6iTR1A/o99sm8bqcROAoEQ8Z7N7Nr6Egf74G4WhAN+qLQDvOMg5w6ihA/dpX0sr52EpCzJCJQ1IZHaFgiE+2ugw82TCAQjOBxNLVPyFWnpOOlUL4nerfTsXEsm3ccBf65ejfys499Px7STqvYcNaquysi31j3Bxtd/Nei+QChGS9t0ph/1LiZMnd//915kpIKh/AfqaPPEIbvvFSqknXNe4pFPQDqmntj/Pue8D/e5HM5l+o/J9ScrWfbseB0KSYxXAZLLpYlEx3vJS5xUYgfZdKI/eRlx+WWBfFIWbiYYbiISbSfYekj/+1C4mb7ujQMSmrCXOHiluHP517ksuVya9o65ZDPxfJKZiZNJ9ZFJ9+YTz1Qvqfh2+vZsIJPq3S+JPkiwg352sv0/YXk7vO1e8jXS71GgkEwFo7hcBguECEWasUC4v3Ix1jylKKlLksumSSV3k+vbN8kbOPnRkCxQlExGyeXSBCxIIBjBAs0EAkGwANGmDu93KJ8s5rJpMqkekpnt/Yn/iNcI9RLFcLSdeW//u5FdYwQaqu+emX0C+IT3tsfMXi3htEnAtspF5btGfr5GfjZo7Odr5GeDxn6+CjzbVw5+yMHNLMdFGtkIy8h606j/9/Rc9UXPVV9q/Ln+fiQnFT9TyeVjNRPDjUDxSrYzvG2DHdNpZiFgHPkB9qWci3PubuDu4QRlZsudcwuHc049aeTna+Rng8Z+vkZ+Nmjs52vkZ/NZTZaR9aZRfz/1XPVFz1VfGvG5RvpM1ezEugyYa2azzSxCfqD8wwOOeRi4xnt9OfC4yw8Yehi40syiZjYbmAv8oUpxi4iIVJrKSBER8VXVWgy98RDXA78mPxX3vc65lWZ2G7DcOfcw8H3gx97A+R3kC0a8435OfhB+BviM37OtiYiIlIvKSBER8VtVxxg65x4FHh2w7eai1wngfUOc+2XgyxUIq6G71dDYz9fIzwaN/XyN/GzQ2M/XyM/mqxotI+tNo/5+6rnqi56rvjTic43omay0qd1FRERERESkUWnFSxERERERkTFuTCeGZnahmb1qZqvN7Ca/4xktM7vXzLaa2UtF2zrM7DEze937d4KfMY6UmR1mZk+Y2ctmttLM/srbXvfPZ2YxM/uDmf3Je7Yvettnm9nvvd/P+70JKeqSmQXN7Hkze8R730jPts7MXjSzFWa23NtW97+XBWY23sweNLNXzGyVmZ3RSM8njWGw/4f1qFHL8SGe61Yz2+j9zFaY2Z/7GeNINOpnkwM8V13/zBr189YBnmuxmb1R9PNacLBrjdnE0MyCwF3ARcBxwAfM7Dh/oxq1xcCFA7bdBPzWOTcX+K33vh5lgM87544DTgc+4/28GuH5ksA5zrkTgQXAhWZ2OvBV4FvOuSOBncBH/Qtx1P4KWFX0vpGeDeDPnHMLiqaGboTfy4J/Bv6fc+4Y4ETyP8dGej5pHAP/H9ajxTRmOb6Y/Z8L8uXAAu/r0UH217pG/Wwy1HNBff/MGvXz1lDPBfC/in5eKw52oTGbGAKnAqudc2udcyngPuBSn2MaFefc78jPVFfsUuCH3usfAu+uZkzl4pzb7Jx7znvdTf7D6XQa4PlcXo/3Nux9OeAc4EFve10+G4CZzQDeBdzjvTca5NkOoO5/LwHMbBzwdvKzYeKcSznndtEgzydSaxq1HB/iuepeo342OcBz1bVG/bx1gOcatrGcGE4HNhS976QBfukHMdU5t9l7vQWY6mcw5WBms4CTgN/TIM/ndbVcAWwFHgPWALuccxnvkHr+/bwD+AKQ895PpHGeDfJ/fH9jZn80s0942xri9xKYDXQBP/C6At9jZi00zvNJ4xjs/2GjaOT/b9eb2QteV9O66m45UCN+NoH9ngvq/GfWqJ+3Bj6Xc67w8/qy9/P6lplFD3adsZwYjjneQsh1PQ2tmbUCvwD+2jm3p3hfPT+fcy7rnFsAzCDfmn2MvxGVh5ldDGx1zv3R71gq6H84504m3y39M2b29uKd9fx7SX5Jo5OB/+OcOwnoZUCXqDp/PmkcB/x/2Cga7P/b/wHmkO/6thn4hq/RjEKjfjYZ5Lnq/mfWqJ+3Bj6XmZ0A/C355zsF6ABuPNh1xnJiuBE4rOj9DG9bo3nLzKYBeP9u9TmeETOzMPk/UD9xzv27t7lhng/A66b3BHAGMN7MCmuN1uvv5yLgEjNbR7679jnkx6w1wrMB4Jzb6P27FfgP8gVNo/xedgKdRTWPD5JPFBvl+aRBDPH/sFE05P8359xb3ofZHPA96vRn1qifTQZ7rkb5mUFDft4C9nmuC70uwc45lwR+QAk/r7GcGC4D5nozEUWAK4GHfY6pEh4GrvFeXwP80sdYRswbl/Z9YJVz7ptFu+r++cxsspmN9143AeeT78//BHC5d1hdPptz7m+dczOcc7PI/x973Dl3FQ3wbABm1mJmbYXXwAXASzTA7yWAc24LsMHMjvY2nQu8TIM8nzSGA/w/bBQN+f+tkDh53kMd/swa9bPJUM9V7z+zRv28NcRzvVJUOWHkx00e9Oc1phe496bZvQMIAvc6577sb0SjY2Y/A84GJgFvAbcADwE/Bw4H3gTe75yruwHgZvY/gKeBF9k7Vu3vyPd5r+vnM7P55Ac7B8lX1vzcOXebmR1BvpWtA3geuNqr9alLZnY28DfOuYsb5dm85/gP720I+Klz7stmNpE6/70s8Ka3vgeIAGuBj+D9ntIAzyf1b6j/hz6GNGKNWo4P8Vxnk++S6IB1wCeLxuXVhUb9bHKA5/oAdfwza9TPWwd4rseByYABK4DriiapGfxaYzkxFBERERERkbHdlVRERERERERQYigiIiIiIjLmKTEUEREREREZ45QYioiIiIiIjHFKDEVERERERMY4JYYiIiIiIiJjnBJDkSozsyfNzA3x9VEz2+29/lbROccXHXN30faZRds/MuD66wbc9+yiY6/1ts0acP+/G3DOVQP2n12574yIiIxlKh9F/KXEUMQ/KfKL4BZ/bQGWePvfXnTsUK/fUfT6d2WI6VNmFip6/9kyXFNERGQ4VD6K+CB08ENEpEI2O+dOH7jRzOYDFwInmlm7c24PcJa3eytwtJlNcc5tZW8huMk5t2aU8aSBGcBlwM/N7DTgVG97eJTXFhERKZXKRxEfqMVQpPYUajaDwCLv9VnAbuD7Re9hb8H3dBnu+6D3718O+PfBQY4VERGpNpWPIhWkxFDEPzNt/zEU44FlQNw75u1mdgT5msr/Bp4s2n4IMNd7P1g3mX2uDzxxkHiWAMuB/2FmFwHvAzYDD4zw+UREREZC5aOID9SVVMQ/KeD5AdsyzrmUmf0eOJv8GIlXvH2/I184ZcjXiC4pOm+wGtGB128Hjj1ITHcCPwLuAyLAd8l3lREREakWlY8iPlBiKOKfQcdQeH5HvuBbCKwrbHPO9ZjZ88DbgIu97TuAlw52fW/GtIPVit4PfB2YSr7g/A5wykHOERERKSeVjyI+UFdSkdpU6PoSJt9lpY98N5bCvgBwpff+GeecK8dNnXOFwg7g5865t8pxXRERkTJR+ShSIUoMRWrTs+ztohICljrnCu9/V7QdyjOwvtiXgcnAx8t8XRERkdFS+ShSIUoMRWqQc64P+GPRpuLB808DuSH2lePeaefcNudcopzXFRERGS2VjyKVY2VqYRcREREREZE6pRZDERERERGRMU6JoYiIiIiIyBinxFBERERERGSMU2IoIiIiIiIyxikxFBERERERGeOUGIqIiIiIiIxxSgxFRERERETGOCWGIiIiIiIiY5wSQxERERERkTHu/wcKvEy2dEtfIwAAAABJRU5ErkJggg==\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4sAAAFRCAYAAADdKTgDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABxIklEQVR4nO3deZxcdZ3v/9entu7qJemkk0BCyAKEPSFgWCSDw7AJVwYUUUBQ8KqIyDgjMyPMhsroXB1RuYzcUVSIOiIIzijD4A9RFsEQTYDIviQhJJ21k06nt+rqWr6/P86pptJLUp2uqlNV/X4+Hk2qzvo53U1/6/NdzTmHiIiIiIiISL5Q0AGIiIiIiIhI5VGyKCIiIiIiIsMoWRQREREREZFhlCyKiIiIiIjIMEoWRUREREREZBgliyIiIiIiIjKMkkWpGmb2bTP7pyJda46Z9ZhZ2H//uJl9vBjXHnKfHjM7pNjXHeE+y8zsS6W+z5B7XmVmT5XzniIiMpzKx73eR+WjyDgoWZSKYGbrzSxhZt1m1mlmy83sGjMb/B11zl3jnPvnAq911t6Occ5tcM41OecyxYh/L/dpcs6tK+U9JjK/QM74HzpyX98ys3f6v0vhvGO/O8q2b/uvh30gMrPTzawt7/3jZubM7Lghx/2Xv/30Uj2riExMKh9lf6h8lGJRsiiV5M+dc83AXOArwA3A94t9EzOLFPuaUjjzFPNvz9P+h47c13XAKry/byfkHXca0DZk27uA347xfq8DH8m9MbNW4J1A+/4ELyJSAJWPE4DKR6lEShal4jjndjvnHgAuAa40s2Nhz64kZjbNzB70a1k7zOxJMwuZ2Y+AOcB/+7VonzOzeX6t1sfMbAPwaN62/ILxUDP7g5l1mdkvzGyqf689as/8bYO1s2YWNrO/N7O1fs3cM2Z2sL/Pmdlh/uvJZvZDM2s3s7fM7B9zhUKuy4qZ3WJmu8zsTTM7b7TvkZkdb2bP+ve7F6gfsv98M1udVwu9aJTr/LuZ3TJk2y/M7Hr/9Y15z/Wymb1vLzGdamYrzWy3/++pefseN7Mvm9nvgD7gEDM70swe8X9+r5nZB/OO/1/+/brNbJOZ/c1o9x2Jcy4FrMAr7DCzGUAM+OmQbYcz9sLwx8AleTWwlwH/BQyM8ToiImOi8lHlo8pHKTcli1KxnHN/wKvpOm2E3X/t75sOHAD8vXeK+zCwAa8Wtsk596955/wpcBTw7lFu+RHgfwMzgTRwW4GhXo/3B/F/AZP8a/SNcNy/AZOBQ/xYPgJ8NG//ycBrwDTgX4Hvm5kNvYiZxYCfAz8CpgL3Ae/P2388cCfwSaAV+A7wgJnVjRDTT/D+sJt/7hTgHOAef/9avO//ZOCLwH+Y2cwRYpoK/A/e96wV+AbwP+bVKuZ8GLgaaMarZXwEuBuYAVwK/D8zO9o/9vvAJ/2a9GOBR0eIfV9+i1/w+f8+5X/lb3vTOdc2wrl7sxl4Ge/7BN7P8Yf7EZ+IyH5R+ajyUeWjlIuSRal0m/H+4A+Vwiu05jrnUs65J51zbh/X+oJzrtc5lxhl/4+ccy8653qBfwI+mFc7tjcfB/7ROfea8/zRObcz/wD/OpcCf+ec63bOrQe+jldA5LzlnPuuP07kB/7zHTDC/U4BosCt/rPfD6zM23818B3n3O+dcxnn3A+ApH/eUE8Cjrc/cFyM121lM4Bz7j7n3GbnXNY5dy/wBnDSCNd5D/CGc+5Hzrm0c+4nwKvAn+cds8w595JzLg2cC6x3zt3lH/8c8DPgA/6xKeBoM5vknNvlnHt2hHsOfj/8GuLcV+45nwD+xC/oT/Of9Wn/+Ny2J4Zc67b8awEPjnLPHwIfMbMjgRbn3NN7iU9EpBRUPg6n8nHI90Plo4yXkkWpdAcBHSNs/xqwBviVma0zsxsLuNbGMex/C6/AmVbAdQ/Gq2Hcm2n+9d4aco+D8t5vzb1wzuVqXptGuNYsYNOQwj//unOBvx7yR/1g/7w9+Ne4B6/mF+BDeN1IADCzj+R11+nEq8Uc6Xsya0gMIz1f/vd3LnDykBgvBw70978fryb6LTN7wszeOcI9c1Y451ryvlbktuN9/47FqyV90jnX48eR2za0i81n8q8FnD/KPf8TOAO4Dq8GW0Sk3FQ+DqfycU8qH2XclCxKxTKzE/H+mA6bftqvffxr59whwAXA9WZ2Zm73KJfcV83qwXmv5+DV3u0AeoGGvLjCeN17cjYCh+7j2jv8680dco9N+zhvJFuAg4Z0wZkzJJ4vDykgGvzazJH8BLjYzObidfX5GYD//rt4f/Bb/cLhRWBY1x+8Gu65Q7YNfb787/9G4IkhMTY55z4F4Jxb6Zy7EK8Lzs/xxlKMiXOuH69G+c+Bmc65V/1dT/rbFjH28Ri5a/cBvwQ+hQpDESkzlY+jUvlYAJWPMhZKFqXimNkkMzsfr0bvP5xzL4xwzPlmdphfIOwGMkDW370Nb9zDWF1hZkebWQNwM3C/3+XldaDezN5jZlHgH4H88Q3fA/7ZzBaYZ9GQsQj41/kp8GUza/YLmuuB/9iPOJ/GGzPyGTOLmtlF7Nn15bvANWZ2sh9Pox9780gX87u47PCf42HnXKe/qxGvAGsHMLOP4tU4juQh4HAz+5CZRczsEuBoRu+m8qB//If9Z4ia2YlmdpSZxczscjOb7LyB+F28/bMdq98Cfwksz9v2lL9ti3NuXzXee/P3wJ/6XaZEREpO5eM+qXwsnMpHKYiSRakk/21m3Xi1av+ANwj8o6McuwD4NdCDVzj8P+fcY/6+/wP8o999YyyzhP0IWIbX3aUe+Ax4s88B1+IVFpvwalLzB31/A6+g+xXeH+7vA/ERrv8X/rnr8P4g34030H5MnHMDwEXAVXhdkC7B6/aR278K+ATwLWAXXnekq/Zx2buBs/x/c9d5GW/cyNN4HzAWAr8bJaadeF1S/hrYCXwOON85t2OU47vxBsBfilfruhX4Km9/yPgwsN7MuoBr8Lrg7I8n8Gpf82vfn/K3Pbmf1wTAH6uiRZdFpBxUPhZA5eOYqHyUgpjb55hnERERERERmWjUsigiIiIiIiLDKFkUERERERGRYZQsioiIiIiIyDBKFkVERERERGQYJYsiIiIVzMzONbPXzGzNSAusm9k1ZvaCv0D4U2Z2dN6+v/PPe83M3l3eyEVEpNpNyNlQp02b5ubNmxd0GCIiUmLPPPPMDufc9H0fWZn8Rc5fB87GW5JgJXCZP3V/7phJzrku//UFwLXOuXP9pPEneOvMzcJbTuFwf127Eal8FBGZOAopIyPlCqaSzJs3j1WrVgUdhoiIlJiZvRV0DON0ErDGObcOwMzuAS4EBpPFXKLoyy0Wjn/cPc65JPCmma3xr/f0aDdT+SgiMnEUUkZOyGRRRESkShyEtxB7Thtw8tCDzOzTwPVADDgj79wVQ849aIRzrwauBpgzZ05RghYRkdqgMYsiIiJVzjl3u3PuUOAG4B/HeO4dzrklzrkl06dXbY9dEREpASWLIiIilWsTcHDe+9n+ttHcA7x3P88VERHZg7qhikjFSqVStLW10d/fH3QoUuHq6+uZPXs20Wg06FCKbSWwwMzm4yV6lwIfyj/AzBY4597w374HyL1+ALjbzL6BN8HNAuAPZYlaREpOZaQUajxlpJJFEalYbW1tNDc3M2/ePMws6HCkQjnn2LlzJ21tbcyfPz/ocIrKOZc2s+uAh4EwcKdz7iUzuxlY5Zx7ALjOzM4CUsAu4Er/3JfM7Kd4k+GkgU/vbSZUEakuKiOlEOMtI5UsikjF6u/vVyEo+2RmtLa20t7eHnQoJeGcewh4aMi2m/Je/+Vezv0y8OXSRSciQVEZKYUYbxmpMYsiUtFUCBbH9773PTo6OoIOo2T0eyIiE5H+9kkhxvN7omRRRGQvwuEwixcv5phjjuG4447j61//OtlsFoBVq1bxmc98ZtRz169fz9133z3q/s2bN3PxxRcDsGzZMq677rpxx5t/zZyvfvWrxONxpk6dOqZrnX766RxxxBEsXryYxYsXc//99/PZz36WW2+9dfCYd7/73Xz84x8ffP/Xf/3XfOMb32D9+vUce+yxe1zvC1/4ArfccgsAV111FQ0NDXR3dw/u/6u/+ivMjB07dowpThERkfGo9QrV8VCyKCKyF/F4nNWrV/PSSy/xyCOP8Mtf/pIvfvGLACxZsoTbbrtt1HP3liym02lmzZrF/fffX9R4R7rmDTfcwOWXX75f1/vxj3/M6tWrWb16NRdffDFLly5l+fLlAGSzWXbs2MFLL700ePzy5cs59dRTC7r2YYcdxi9+8YvBaz366KMcdNCwZQBFRKRCqUK19itUlSyKiBRoxowZ3HHHHXzrW9/COcfjjz/O+eefD8ATTzwxWGAcf/zxdHd3c+ONN/Lkk0+yePFivvnNb7Js2TIuuOACzjjjDM4888xhhcXGjRs5/fTTWbBgwWBCOvSYW265hS984QsArFmzhrPOOovjjjuOE044gbVr1+5xfH9/Px/96EdZuHAhxx9/PI899hjgFboXXXQR5557LgsWLOBzn/tcwd+DU089laeffhqAl156iWOPPZbm5mZ27dpFMpnklVde4YQTTijoWpdeein33nsvAI8//jhLly4lEhk+lP6tt95iwYIF7Nixg2w2y2mnncavfvWrgmMWEZHSUIVq7VeoKlkUERmDQw45hEwmw/bt2/fYfsstt3D77bezevVqnnzySeLxOF/5ylc47bTTWL16NZ/97GcBePbZZ7n//vt54oknhl37D3/4Az/72c94/vnnue+++1i1atVeY7n88sv59Kc/zR//+EeWL1/OzJkz99h/++23Y2a88MIL/OQnP+HKK68cnGJ99erV3Hvvvbzwwgvce++9bNy4cdR75JLgnTt3MmvWLCKRCBs2bGD58uW8853v5OSTT+bpp59m1apVLFy4kFgsBsDatWsHz128eDHf/va397j24YcfTnt7O7t27eInP/kJl1566YgxzJ07lxtuuIFPfepTfP3rX+foo4/mnHPO2ev3RkREyksVqsFUqN5555381V/91eD77373u4OfOYpBs6FWkfa2FaPumz77lDJGIlJ+G1/9BX3dm4t6zYbmWRx85IVFudbSpUu5/vrrufzyy7nooouYPXv2iMedffbZo3Z1Ofvss2ltbQXgoosu4qmnnuK9733viMd2d3ezadMm3ve+9wHeGkpDPfXUU/zFX/wFAEceeSRz587l9ddfB+DMM89k8uTJABx99NG89dZbHHzwwcOu8eMf/5glS5bsse3UU09l+fLlLF++nOuvv55NmzaxfPlyJk+ezNKlSwePO/TQQ1m9evXg+1wBnu+iiy7innvu4fe//z3f+c53RnxWgI9//OPcd999fPvb397jmiJBGK08VlksQamUMnJfFapLly6lp6eH+vp6vvKVr3DLLbfw4IMPAl6S9uyzz/L8888zdepU1q9fv8c1/vCHP/Diiy/S0NDAiSeeyHve8x6mTZs2aiyXX345N954I+973/vo7+8nm83uEVd+heqrr77KOeecM1hGrl69mueee466ujqOOOII/uIv/mLEMvLyyy8nHo8D8Jvf/GbECtVNmzbx9NNPM3ny5BErVHO2bt3K3/zN3wy+P/zww3nggQcGK1SvuOIKfvnLXw6L4YMf/CBf/vKX+drXvkY0GuWuu+7aa3k6VmpZFBEZg3Xr1hEOh5kxY8Ye22+88Ua+973vkUgkWLp0Ka+++uqI5zc2No567aGzlZkZkUhkcPwHULTFl+vq6gZfh8Nh0ul0wefmutm88MILHHvssZxyyik8/fTTY+pek3PJJZfwT//0T5x99tmEQqMXSX19fbS1tQHQ09MzpnuIiEiwchWqt912G52dnSO2kEFhFarxeHywQnU0I1WoNjQ07HHMU089xRVXXAGMXqFaX18/WKE6kvxuqLnK3vwK1Xe+8528853vHHw/UoVq7uuaa64Zdv38CtXTTjttxBiampo444wzePDBB3n11VdJpVIsXLhw1O/NWKllUUSqQrFaAMejvb2da665huuuu25YYrd27VoWLlzIwoULWblyJa+++ioHH3zwHoPT9+WRRx6ho6ODeDzOz3/+c+68804OOOAAtm/fzs6dO2lqauLBBx/k3HPPpbm5mdmzZ/Pzn/+c9773vSSTSTKZPddbP+200/jxj3/MGWecweuvv86GDRs44ogjePbZZ8f1fTj11FO55ZZbOOSQQwiHw0ydOpXOzk5eeuklvvvd747pWnPnzuXLX/4yZ5111l6Py40pmTt3Lp/4xCcGa6JFRKQyykjYs0L1lVdeGdx+44038p73vIeHHnqIpUuX8vDDD494fi1WqB588MF8/etfZ9KkSXz0ox8dUxyXXHIJ73jHO7jyyiv3WqH68Y9/nH/5l3/hyCOPHPM99kUtiyIie5FIJAZnejvrrLM455xz+PznPz/suFtvvZVjjz2WRYsWEY1GOe+881i0aBHhcJjjjjuOb37zm/u810knncT73/9+Fi1axPvf/36WLFlCNBrlpptu4qSTTuLss8/myCOPHDz+Rz/6EbfddhuLFi3i1FNPZevWrXtc79prryWbzbJw4UIuueQSli1btkcBuL8WLlzIjh07OOWUU/bYNnny5L12CRrNJz/5SQ499NBR9z/xxBOsXLlyMGGMxWLcdddd+xW7iIiURiEVqjfccAMnnngir776Ks3NzftVoZpIJPj5z3/O0qVL96hQTSaTgxWJ+RWqAMlkkr6+vj2ul6tQBfaoUB2vU089lQcffJCpU6fuUaH69NNPj7n3Ta5C9dprr93rcSeffDIbN27k7rvv5rLLLhtP+MOoZVFEZC+GttblO/300zn99NMB+Ld/+7cRj3n00Uf3eH/VVVcNvp43bx4vvvji4Pb8ffk+85nPjDj9+IIFC4ZdHxi8Zn19/YhJ1dB7jdZK9/jjj4+4PRwO09XVtce2ZcuW7fE+/9ly8scsDj0+Z+gYFYA//dM/ZcWKt8eI/ed//ueI54qISHnlKlRTqRSRSIQPf/jDXH/99cOOu/XWW3nssccIhUIcc8wxnHfeeYRCocEK1auuuoopU6bs9V65CtW2tjauuOKKwfH0uQrVgw46aFiF6ic/+UluuukmotEo99133x6tc9deey2f+tSnWLhwIZFIpOgVqh/60If22NbT07PfFaqF+OAHP8jq1av3+X0cK3POFfWC1WDJkiVuX7MMViJNcCMTzSuvvMJRRx0VdBhSJUb6fTGzZ5xzS0Y5RYao1vKx3DTBjVQClZGS7/zzz+ezn/0sZ5555oj797eMVDdUERERERGRKtTZ2cnhhx9OPB4fNVEcj7Imi2Z2rpm9ZmZrzOzGEfZfb2Yvm9nzZvYbM5ubt+9KM3vD/7oyb/s7zOwF/5q32dBO0iIiIiIiIjWopaWF119/nfvuu68k1y9bsmhmYeB24DzgaOAyMzt6yGHPAUucc4uA+4F/9c+dCnweOBk4Cfi8meU65P478Alggf91bokfRUREREREpOaVs2XxJGCNc26dc24AuAfYY55f59xjzrncVEUrgNyq1u8GHnHOdTjndgGPAOea2UxgknNuhfMGX/4QeG8ZnkVERERERKSmlTNZPAjYmPe+zd82mo8Bv9zHuQf5rwu9pojIhPS9732Pjo6OoMMQERGRKlKRE9yY2RXAEuBrRbzm1Wa2ysxWtbe3F+uyIlLjwuHw4DqLxx13HF//+tcHFwBetWrViEta5Kxfv56777571P2bN2/m4osvBrylJK677rpxx5t/zZyvfvWrxONxpk6dOu7rj8VVV13F/fffX9Z7ioiIjJUqVEdXznUWNwEH572f7W/bg5mdBfwD8KfOuWTeuacPOfdxf/vsIduHXRPAOXcHcAd4U4PvzwOISLD2tnzM/ihkmvt4PM7q1asB2L59Ox/60Ifo6urii1/8IkuWLBlc52kkuWQxf62lnHQ6zaxZs4qeTI10zRtuuGHc181kMoTD4XFfR0REakc4HGbhwoWD6yx+5CMf4bOf/SyhUIhVq1bxwx/+kNtuu23Ec9evX8/y5ctHLCPBq/z8zGc+w/3338+yZctYtWoV3/rWt8YVb/41c7761a8ye/bsQCpUzz///GEVvJWmnMniSmCBmc3HS+guBfb47TCz44HvAOc657bn7XoY+Je8SW3OAf7OOddhZl1mdgrwe+AjwMgrY4uIjNOMGTO44447OPHEE/nCF77AE088wS233MKDDz7IE088wV/+5V8CYGb89re/5cYbb+SVV15h8eLFXHnllUyZMoX//M//pKenh0wmww9+8APOP//8wcXrN27cyOmnn86mTZu44oor+PznP8/69ev3OOaWW26hp6eHL3zhC6xZs4ZrrrmG9vZ2wuEw9913H+FwePD4/v5+PvWpT7Fq1SoikQjf+MY3+LM/+zOWLVvGAw88QF9fH2vXruV973sf//qv/zrseefNm8cll1zCI488wuc+9zmmTp3K5z//eZLJJIceeih33XUXTU1N3Hzzzfz3f/83iUSCU089le985ztoYmoRkfJSheq+qUJ17MrWDdU5lwauw0v8XgF+6px7ycxuNrML/MO+BjQB95nZajN7wD+3A/hnvIRzJXCzvw3gWuB7wBpgLW+PcxQRKbpDDjmETCbD9u3b99h+yy23cPvtt7N69WqefPJJ4vE4X/nKVzjttNNYvXo1n/3sZwF49tlnuf/++3niiSeGXfsPf/gDP/vZz3j++ee577772Nfi6Jdffjmf/vSn+eMf/8jy5cuZOXPmHvtvv/12zIwXXniBn/zkJ1x55ZX09/cDsHr1au69915eeOEF7r33XjZu3DjSLWhtbeXZZ5/lrLPO4ktf+hK//vWvefbZZ1myZAnf+MY3ALjuuutYuXIlL774IolEggcffLCwb6aIiNSMXIXqt771LZxzPP7445x//vkAPPHEEyxevJjFixdz/PHH093dzY033siTTz7J4sWL+eY3v8myZcu44IILOOOMMzjzzDNZv349xx577OD1cxWqCxYs4Itf/CLAsGNuueUWvvCFLwCwZs0azjrrLI477jhOOOEE1q5du8fx/f39fPSjH2XhwoUcf/zxPPbYY4A3LOSiiy7i3HPPZcGCBXzuc58b8XnnzZvHDTfcwAknnMB9993Hr371K975zndywgkn8IEPfICenh4Abr75Zk488USOPfZYrr76arw5OatHWccsOucecs4d7pw71Dn3ZX/bTc65XFJ4lnPuAOfcYv/rgrxz73TOHeZ/3ZW3fZVz7lj/mte5avsJiEhNWLp0Kddffz233XYbnZ2dRCIjd9w4++yzR+3qcvbZZ9Pa2ko8Hueiiy7iqaeeGvV+3d3dbNq0ife9730A1NfX09DQsMcxTz31FFdccQUARx55JHPnzuX1118H4Mwzz2Ty5MnU19dz9NFH89Zbb414n0suuQSAFStW8PLLL7N06VIWL17MD37wg8FzHnvsMU4++WQWLlzIo48+yksvvTRq3CIiUrtUoVp7FaoVOcGNiEilWrduHeFwmBkzZuyx/cYbb+R73/seiUSCpUuX8uqrr454fmNj46jXHtp108yIRCKDE+oAgwXZeNXV1Q2+DofDpNPpEY/Lxeuc4+yzz2b16tWsXr2al19+me9///v09/dz7bXXcv/99/PCCy/wiU98omgxiohIbVCFavVWqCpZFBEpUHt7O9dccw3XXXfdsMRu7dq1LFy4kBtuuIETTzyRV199lebmZrq7uwu+/iOPPEJHRweJRIKf//znLF26lAMOOIDt27ezc+dOksnkYI1kc3Mzs2fP5uc//zkAyWSSvr6+Pa532mmn8eMf/xiA119/nQ0bNnDEEUfs17Ofcsop/O53v2PNmjUA9Pb28vrrrw8mhtOmTaOnp0ezn4qITGCqUK29ClUliyIie5FIJAaXzjjrrLM455xz+PznPz/suFtvvZVjjz2WRYsWEY1GOe+881i0aBHhcJjjjjuOb37zm/u810knncT73/9+Fi1axPvf/36WLFlCNBrlpptu4qSTTuLss8/myCOPHDz+Rz/6EbfddhuLFi3i1FNPZevWrXtc79prryWbzbJw4UIuueQSli1btkcBOBbTp09n2bJlXHbZZSxatIh3vvOdvPrqq7S0tPCJT3yCY489lne/+92ceOKJ+3V9ERGpbqpQrc0K1XLOhioiMi6FzMxWbJlMZtR9p59+OqeffjoA//ZvI0/E/Oijj+7x/qqrrhp8PW/evMFZTq+66qo99uX7zGc+M+J6jgsWLBh2fWDwmvX19dx1113D9g+912jjJ9avX7/H+zPOOIOVK1cOO+5LX/oSX/rSl4ZtX7Zs2YjXFRGR2pCrUM0tnfHhD3+Y66+/fthxt956K4899hihUIhjjjmG8847j1AoNFihetVVVzFlypQR7vC2XIVqW1sbV1xxxeBMq7kK1YMOOmhYheonP/lJbrrpJqLRKPfddx+h0NvtZNdeey2f+tSnWLhwIZFIpGgVqsmkt/Lfl770JQ4//PDBCtUDDzywKitUbSLOB7NkyRK3r0GxlWhvUyIH8SFapNReeeUVjjrqqKDDkCox0u+LmT3jnBt97nbZQ7WWj+U2WnmssljKSWWkjMX+lpHqhioiIiIiIiLDKFkUERERERGRYZQsikhFm4hd5WXs9HsiIiJSfEoWRaRi1dfXs3PnTiUCslfOOXbu3El9fX3QoYiIlJXKRynEeH5PNBuqiFSs2bNn09bWRnt7e9ChSIWrr69n9uzZQYchIlI2uQrV1tbWYUtViOSMt0JVyaKIVKxoNMr8+fODDkNERKTiqEJVCjWeClUliyIiIiIiVUYVqlIOGrMoIiIiIiIiwyhZFBERERERkWGULIqIiIiIiMgwSharVDLRQe/uDUGHISIiJWZm55rZa2a2xsxuHGH/9Wb2spk9b2a/MbO5efsyZrba/3qgvJGLiEi10wQ3VSiTGaB9w3KymSSx+haidZOCDklERErAzMLA7cDZQBuw0swecM69nHfYc8AS51yfmX0K+FfgEn9fwjm3uJwxi4hI7VDLYhXq3PYC2cwAZmF2t78adDgiIlI6JwFrnHPrnHMDwD3AhfkHOOcec871+W9XAFpwUkREikLJYpVJJjro7VxPc+sCmqceRl/XRlLJrqDDEhGR0jgI2Jj3vs3fNpqPAb/Me19vZqvMbIWZvXekE8zsav+YVVqvTURE8ilZrDL9PdsBmDztCJpbF2AWprtjTcBRiYhI0MzsCmAJ8LW8zXOdc0uADwG3mtmhQ89zzt3hnFvinFsyffr0MkUrIiLVQMlilRno7yQSbSQUjhGO1FHXMI1kX0fQYYmISGlsAg7Oez/b37YHMzsL+AfgAudcMrfdObfJ/3cd8DhwfCmDFRGR2qJkscqkkruJ1k8efB+LTyGV7CKbSQUYlYiIlMhKYIGZzTezGHApsMespmZ2PPAdvERxe972KWZW57+eBiwF8ifGERER2auyJosFTP/9LjN71szSZnZx3vY/y5v6e7WZ9efGXpjZMjN7M2/f4vI9UXllMynSAz3E6lsGt3mvHYnuLUGFJSIiJeKcSwPXAQ8DrwA/dc69ZGY3m9kF/mFfA5qA+4YskXEUsMrM/gg8BnxlyCyqIiIie1W2pTMKnP57A3AV8Df55zrnHgMW+9eZCqwBfpV3yN865+4vWfAVIjeRzdCWRYDero00tswJJC4RESkd59xDwENDtt2U9/qsUc5bDiwsbXQiIlLLyrnO4uD03wBmlpv+ezBZdM6t9/dl93Kdi4Ff5k0TPmEM9HcC7NGyGI7ECYXr6OsaNoRFRERERERkv5WzG+pYp/8ezaXAT4Zs+7KZPW9m38yNz6hFqf7dhEJRwpH44DYzIxZvoa+rLcDIRERERESk1lTVBDdmNhOvS83DeZv/DjgSOBGYCtwwyrlVv47UQH8n0foWzGyP7bH6KSR6t2mSGxERERERKZpyJosFTf+9Dx8E/ss5N5gVOee2OE8SuAuvu+sw1b6OlHNZUskuYnnjFXNi9S3gsvR1by5/YCIiIiIiUpPKmSzuc/rvAlzGkC6ofmsj5jW3vRd4cfyhVp6BRCfOZYjWTRq2LzeGMdGjGVFFRERERKQ4ypYsFjL9t5mdaGZtwAeA75jZS7nzzWweXsvkE0Mu/WMzewF4AZgGfKnkDxOAgWQnAOFow7B94WgDFoqQ7NtR5qhERERERKRWlXM21EKm/16J1z11pHPXM8KEOM65M4obZWVK9e8GIBKND9tnZtTFp5Ls21nusEREREREpEZV1QQ3E1lu2Yz8mVDz1TVMU8uiiIiIiIgUjZLFKjHQvxsLRQmFoyPur2toJdm3E+dcmSMTEREREZFaVNZuqFKY9rYVw7b1dK4bsQtqTl18GtlsivRA94iT4IiIiIiIiIyFWharRCaVGLULKkB9QysA/eqKKiIiIiIiRaBksUqkUwnCe2tZ9JNFTXIjIiIiIiLFoGSxCrhshmwmSWSEZTNyYvVTwEKa5EZERERERIpCyWIVyKQTAHttWbRQWMtniIiIiIhI0ShZrALplJcsRvYyZhGgLt6qlkURERERESkKzYZaBQppWQRvrcWe3W/hnMPMyhGaiIhIzRppdnIRkYlELYtVINeyGN7LmEXwJrnJpvtJp3rLEZaIiIiIiNQwJYtVIJPqIxSKEgrtvSG4Lj4FgIHErnKEJSIiIiIiNUzJYhXI7GPZjJxYvZ8s9neWOCIREREREal1SharQDpdaLLYAsBAv1oWRURERERkfJQsVoFsOkl4HzOhgjemMRSOMZDoLH1QIiIiIiJS05QsVjjnHJl0P+FwbJ/Hmhmx+ha1LIqIiIiIyLgpWaxwLpsGHKFIXUHHx+qnaMyiiIiIiIiMm5LFCpdJ9wMQDheYLMZbNBuqiIhICQz072Z3+6skureSzaaDDkdEpOT2vhaDBC6bGQDYZ8tibuHgVLKHdKqXbRueIhSKMH32KSWPUUREpNb1dK5n15bncC4LQLRuEgfMO51QOBpwZCIipaOWxQo31pbFSLTBOy/VV7KYREREJpK+7s10bH6GWLyVWYedS+tBJ5JKdrFz8zM454IOT0SkZJQsVrhCWxZzwn6ymE4lShaTiIjIROFcls5tzxOJNTNj7p8QiTXSOHkOLTMWkujeRE/nm0GHKCJSMkoWK1wmnQTG0rLoLbGhlkUREZHx6+5YQ3qglykHLMLs7Y9Nza0LiMVb6drxmloXRaRmKVmscNlMEgtFsFC4oOPDfrKYVrIoIiIyLtlsht3tr1LfeADx5gP32GdmTGpdQCbVR6J7c0ARioiUVlmTRTM718xeM7M1ZnbjCPvfZWbPmlnazC4esi9jZqv9rwfyts83s9/717zXzPa9IGEVyaSTBbcqApiFCEfiShZFRETGKdG9CZdNMWna4SPujzfPIhxtoHvnG2WOTESkPMqWLJpZGLgdOA84GrjMzI4ectgG4Crg7hEukXDOLfa/Lsjb/lXgm865w4BdwMeKHnyAsplkweMVcyLRBnVDFRERGafezrcIRxuoa5g+4n4zo3nqYSQTO7XGsYjUpHK2LJ4ErHHOrXPODQD3ABfmH+CcW++cex7IFnJBMzPgDOB+f9MPgPcWLeIKMNaWRfAmuVHLooiIyP4bSOyiv3c7jZPn4n3cGFnj5DmA0de1qXzBiYiUSTmTxYOAjXnv2/xthao3s1VmtsLM3utvawU6nXO5lXHHes2Ktz8ti+FonEwqoQH3IiIi+2nnlmcBaGqZu9fjwpE66hqmkehWsigitaeaJriZ65xbAnwIuNXMDh3LyWZ2tZ9srmpvby9NhEXmnNuvlkVvRlRHNpMsTWAiIiI1bte256mLtxKJNe7z2IZJs0glu+nvrY7PFyIihYqU8V6bgIPz3s/2txXEObfJ/3edmT0OHA/8DGgxs4jfujjqNZ1zdwB3ACxZsqQqmtxcNgU4QpGxzdnz9lqL6ooqIiKyL+1tK/Z4n04lSHRvpmXGsQWdH2+exa6tf6Rz+4scOP/PShGiiEggytmyuBJY4M9eGgMuBR7YxzkAmNkUM6vzX08DlgIvO6+f5WNAbubUK4FfFD3ygLy9xmL9mM6LRHJrLSaKHpOIiJRXATOJX29mL5vZ82b2GzObm7fvSjN7w/+6sryRV6/+nq0A1DcduI8jPZFoA7H6Fjq3v1TKsEREyq5syaLf8ncd8DDwCvBT59xLZnazmV0AYGYnmlkb8AHgO2aW+6t7FLDKzP6Ilxx+xTn3sr/vBuB6M1uDN4bx++V6plLLdSNVy6KIyMRU4EzizwFLnHOL8CZ8+1f/3KnA54GT8SaZ+7yZTSlX7NUs0bONcCROtG5SwefEm2fRu3uDyl4RqSnl7IaKc+4h4KEh227Ke70Sryvp0POWAwtHueY6vEKw5uxvy2IoHMMspJZFEZHqNziTOICZ5WYSz1WY4px7LO/4FcAV/ut3A4845zr8cx8BzgV+Uoa4q5ZzWfp7t9EwafZeZ0Edqr5xOrvbX6a7Yy1TDhjxI4uISNWppgluJpz9bVk0M29G1LSSRRGRKjfWmcQ/BvxyP88VINm3E5dNEy+wC2pOLD6VUChK9661JYpMRKT8ytqyKGPzdsvi2GZDBQhHtNaiiMhEYmZXAEuAPx3jeVcDVwPMmTOnBJFVl/7e7QDUN84Y03lmIRqnzKOnQ8miiNQOtSxWsEwmiYUiWCg85nMj/lqLIiJS1QqaSdzMzgL+AbjAOZccy7nOuTucc0ucc0umT59etMCrVbJvB7H6FkLh6JjPbZ5yKImeraQGekoQmYhI+SlZrGDZTIpQeGxdUHPC0QYy6QQumylyVCIiUkb7nEnczI4HvoOXKG7P2/UwcI4/o/gU4Bx/m4zCuSwDiQ7qGqbt1/nNU70loHs61hUzLBGRwChZrGDZzADh/U4WveUzUgPdxQxJRETKqJCZxIGvAU3AfWa22swe8M/tAP4ZL+FcCdycm+xGRjaQ2IVz2f1OFhsnHUwoHKN715oiRyYiEgyNWaxg2czAfrcs5tZaHOjvJFbfUsSoRESknAqYSfysvZx7J3Bn6aKrLcm+HQDUNbTu1/kWCtPYMpeezvVFjEpEJDgFJ4tmthC4GJgF5A+ic865jxU7MPGSxYi/ZuJY5dZaHOjfXcyQRERkDFR2Vpdk304isSbCkbEtWZWvafJctqz7DZl0knBk7BPUiYhUkoKSRTM7F/jFCMcb4PCm6pYiG1fLYq4ban9nESMSEZFCqeysLs45komdxJtnjes6jZPnAI6+rrbBMYwiItWq0DGLfw9EgR68Qi4FDAC9wFulCW1ic86NK1m0UBQLRRhQsigiEhSVnVUkPdBNNjNAXXz/uqDmeMki9O7eUIywREQCVWiyeBzQDcz13z8LHIlX6H2qBHFNeC6bAtj/ZNGMcCSuZFFEJDgqO6vIQGIXALH41HFdJxJrpC7eqmRRRGpCocliPfCGc64TyAJ1zrm38NZruqVEsU1o2cwAsP/JInhdUTVmUUQkMCo7q0iyfxdmYaJ1zeO+VmPLHHp3b8A5V4TIRESCU2iy2AlM8l/vBI41sxuAI4BDShDXhJcZTBbHvihwTjjaoJZFEZHgdKKys2oMJLzZw81s3NdqnDyHVLKLVFIVtiJS3QpNFl8H5pjZJOBpvDEY/4I3aP+FEsU2oeVaFsPh/Z9JLRyJkx7oIZtNFyssEREpnMrOKuFcllR/J7H4lKJcr3Gy1/O4t1NDU0WkuhWaLH4J+AegBfhbYC3eYP1NeIsFS5FlM7kxi/vfsujNiOpI9XcVKSoRERkDlZ1VIpXsxrlM0ZLFePNMzML0dm0syvVERIJS0NIZzrmHgYfzNi0ws6nOuY7ShCXFGLP49lqLndQ1jG/AvoiIjI3Kzuox0O9PblNfnGQxFIpQ33Qgfd2bi3I9EZGgjJosmtkcIOmc2+a/HumYJgDnnKb8KrJiTXADMJDsLEZIIiKyDyo7q9NAYhcWihCJNRXtmg2TZrF7+8s454oyDlJEJAh7a1lcjzfGYqn/erQpvdw+riP7IZsZwEIRzArtKTxcrmUxpUluRETKZT0qO6vOQGIXsfop407q2ttWDL7OZgZIp3rZuv4xZs4/Y7whiogEYl+ZiA15PdqXFFkmMzCuVkXwusForUURkbJT2VlFXDZDKrmbWH1LUa8b9a+X0hJWIlLF9lar+VGgPe+1lFG2CMkiQKx+stZaFBEpH5WdVaa/bwfOZYnWTy7qdWN13vVUYSsi1WzUZNE594ORXkt5ZDMDhIuQLEbrW1RQiYiUicrO6pPo2QJ4lavFFApHicSaVAaLSFUraECcmX3CzO40s2Pyth3jb/tE6cKbuIrXstiiLjAiIgFQ2VkdEt1bACMaay76tWOqsBWRKlfo7Cl/C1wIvJK37RXgAuBvih2UFDdZTKd6B9dtFBGRslHZWQUS3VuI1jVjoXDRrx2tbyGT6iOdShT92iIi5VBosngw0Oacy+Y2+K83ASNODT4SMzvXzF4zszVmduMI+99lZs+aWdrMLs7bvtjMnjazl8zseTO7JG/fMjN708xW+1+LC42nUjnnijpmETRmQkQkAEUpO6W0+nq2EK0rbhfUnFwZnNB6iyJSpQpNFvuBw8zsgNwG//Vh/r59MrMwcDtwHnA0cJmZHT3ksA3AVcDdQ7b3AR9xzh0DnAvcamYtefv/1jm32P9aXeAzVSyXTQPeeIfxys3upkluRETKbtxlp5RWOtVHqr+z6OMVc3JlcF/3ppJcX0Sk1Apd4+kPwFnAcjNb5m+7EqgHnirwGicBa5xz6wDM7B687jkv5w5wzq3392XzT3TOvZ73erOZbQemA50F3ruqZDMDAEVpWXx76u7OcV9LRETGpBhlp5RQonsrQMlaFsOResKRevq6lCyKSHUqNFn8Gl6BNw/4gr/NgCzw1QKvcRCwMe99G3BygecOMrOTgBiwNm/zl83sJuA3wI3OueRYr1tJipksDk7dnewc97VERGRMilF2SgnlZkIt9rIZ+aL1LeqGKiJVq6BuqM65XwOXAut5ezHhN4FLnXOPliy6IcxsJvAj4KN5Y0D+DjgSOBGYCtwwyrlXm9kqM1vV3t4+0iEVI1PEZDEUjhKJNmrMoohImVVK2SmjS3RvIRxtIBypL9k9YvUtJHq3a6I5EalKhY5ZxDl3n3PuUGAGMMM5d6hz7v4x3GsT3mD/nNn+toKY2STgf4B/cM6tyItri/MkgbvwuruOFP8dzrklzrkl06dPH0PY5ZdrWSzGOouQm7pbYxZFRMqtCGWnlFCidyvxpgMxs5LdI1bfAi5Lomdrye4hIlIqBSeLAGZWB8SBBjObk/sq8PSVwAIzm29mMbza1gcKvG8M+C/gh0MLWb+1EfP+0r8XeLHAeCpWrvYxFBr/BDfgda9Ry6KISDDGWXZKiTjn6O/ZTrzxgH0fPA65Lq596ooqIlWooDGLZnY48H3g1BF2u0Ku45xLm9l1wMNAGLjTOfeSmd0MrHLOPWBmJ+IlhVOAPzezL/ozoH4QeBfQamZX+Ze8yp/59MdmNh2ve89q4JpCnqmSZbPF64YKXq1mz651RbmWiIgUphhlp5ROeqCbTDpBfVNpk8VItJFQpJ6EZkQVkSpUaEH1XWDpeG/mnHsIeGjItpvyXq/E65469Lz/AP5jlGueMd64Kk02k8IsVLQFgmP1LWTS/WTS/SUdlyEiInsoStkppZHo2QZAfeMBJBM7SnYfM6OheRZ9XWpZFJHqU2iy+A682dv+L95SF+mSRSRkMwNFa1Vsb1tBf583oc+2t35LtG4SANNnn1KU64uIyKhUdlaw/l4vWYw3zShpsgjQ0DyLHW2/x7ksZmMaASQiEqhCk8U2IOOc++tSBiOebCaFFWm8IkA40gB4iw/nkkURESk5lZ0Vpr1tcH48dm17nlAoyq7tL5V0ghuAePNMstkUyUQH9Q3TSnovEZFiKrR66x+BQ83sf5UyGPEUs2URIBKNA5BJJYp2TRER2SeVnRUslewmWjep5IkiQLxpJuAt1SEiUk0KbVn8Gt4EMv9tZruBzrx9zp8WXIokm00VdWxh2E8W00oWRUTKSWVnBUslu4g3zyrLveJNBwJGonsLUw5YWJZ7iogUQ6HJ4ty81y3+V44rVjDiyWYGitpd1CxEOFJPJq1kUUSkjFR2VqhMOln0snZvQuEo9Y3TSfSoZVFEqkuhyeIPUcFWNtlMilC4eGMWAcKROJlUX1GvKSIie6Wys0Klkl0AZR3HH2+aSW/XxrLdT0SkGApKFp1zV5U4DvE5l8VlU4RCxRuzCBCONgwWjiIiUnoqOyvX28lic9nuGW+eya5tf9QyViJSVQpeENjMwsAHgVOAbXjrHs4DXnTOdZQkugkok+4HKHrLYiQap79nK865sgzmFxERlZ2VKj3Qg1mYcCRetnsOTnLTs5Wmlnllu6+IyHgUNBuqmU0GVuAVctcB5wNHA48BnylZdBNQbsbSYs6GCt4kN85lcNlUUa8rIiIjU9lZuVLJbiJ1zWWtPI03a0ZUEak+hS6d8RXeXlw495f1ESABnFuCuCasdDqXLBa7ZTG31qImuRERKROVnRUqNdBNNNZU1nvG6lsIReo1yY2IVJVCk8ULgR5gcJpv51wG2AAcUoK4JqzcJDRFH7MYya21qEluRETKRGVnBXLZDJlUH5FY+cYrApgZDU0zSXRvLet9RUTGo9BksRVY65zbMGR7FijfVGITwNvdUIs8G6paFkVEyq0oZaeZnWtmr5nZGjO7cYT97zKzZ80sbWYXD9mXMbPV/tcD+/UUNSY10AOUd3KbnHjzgfT1bME5TZIrItWh0GRxE3CkmR2V22BmJwFHAW2lCGyiersbarFbFusBI5NWy6KISJmMu+z0J8i5HTgPb7zjZWZ29JDDNgBXAXePcImEc26x/3XB2B+h9qRzyWKZu6GCN8lNNt3PQH9n2e8tIrI/Ck0Wfw7UAavx1ow6AVju7/uvokc1gZWqZdHMCEfjalkUESmfnzP+svMkYI1zbp1zbgC4B6976yDn3Hrn3PN4LZayD6lkNwCRQFoWNcmNiFSXQpPFm4DngCjeIP2Yf+4fgZtLE9rE5CVzhleZXFyRSHwwGRURkZIrRtl5EJC/knubv61Q9Wa2ysxWmNl7x3BezUoNdBOOxAmFCl49rGjiTQcCaJIbEakaBf2ldM71mNkpwGV4tZwAK4Gf+DWdUiSZdB+hcKwk03mHo3EGEruKfl0RERmuQsrOuc65TWZ2CPComb3gnFubf4CZXQ1cDTBnzpwyhRWcdLKbSABdUMEbEhKLTyXRvTmQ+4uIjFXB1WrOuRTwQ/9LSiSTShS9C2pOOBon3b1ZA+tFRMqkCGXnJuDgvPez/W2F3n+T/+86M3scOB5YO+SYO4A7AJYsWVLTBYRzjtRAD42TD973wSXS0DyTPnVDFZEqUVCyaGZ37mW3c859rEjxTHjpVKLok9vkRCIN4LJkM2oMFhEptSKVnSuBBWY2Hy9JvBT4UIH3nwL0OeeSZjYNWAr8ayHn1qpsJonLpgJrWQSIN82ic/vLZDMDJSvvRUSKpdCWxavwBucPZf52JYtFkkmXtmURtNaiiEiZXMU4y07nXNrMrgMeBsLAnc65l8zsZmCVc+4BMzsRb8KcKcCfm9kXnXPH4M26+h0zy+KNlfyKc+7lYjxYtXp7JtTyT26T401y40j0bAu0hVNEpBCFJosb2LPAmwy04M28NnT9KBmHdKqPSLSxJNceXGsxrUluRETKoChlp3PuIeChIdtuynu9Eq976tDzlgMLxxRxjUsN9AIQiZWmnC3E4IyoPVuULIpIxSt0gpt5Q7eZ2enAA8DnixrRBJdJJYjVt5Tk2hG1LIqIlI3KzsrjtSxaoMliXXwqoVBUy2eISFUodOmMYZxzjwOrgL8vWjQTnHNZMun+ko1hCIXrwEJaa1FEJCAqO4OVHughEm3AbL8//oybWYh480wliyJSFQqd4OYjQzaFgUPxBsunCr2ZmZ0L/F///O85574yZP+7gFuBRcClzrn78/ZdCfyj//ZLzrkf+NvfASwD4njddP7SVel0n9l0EnAlG7NoZlprUUSkTIpVdkrxpAd6A21VzIk3zWTX9hdwzpVkqSwRkWIpdMziMkYfpP90IRcwb5X524Gz8RYVXmlmDwwZbL8Bb0KAvxly7lS8LjtL/Die8c/dBfw78Ang93jJ4rnALwt8roqSG0tYytnRwtG4uqGKiJTHMsZZdkpxpQd6aAhgnGB724o93mcy/WRSfaSSXcTqJ5c9HhGRQo2lH4aN8PU08PECzz8JWOOcW+cvRnwPcGH+Ac659c655/EG/+d7N/CIc67DTxAfAc41s5nAJOfcCr818YfAe8fwTBUl1+IXCpWmZREgEm0grWRRRKRcxlt2SpGkU31ks6mKaFmM1nkJYqJHXVFFpLIV2rI4f8h7B2x3zvWP4V4HARvz3rcBJ4/j3IP8r7YRtlel3FjC0rYsNpJJb8BlM1goXLL7iIhIUcpOKZJk3w6AQNdYzMm1Jia6tzB52pEBRyMiMrpCZ0N9q9SBlJqZXQ1cDTBnzpyAoxlZJu21+JVqzCJAJOYtnzHQv5u6hqklu4+IyERXC2VnLUn27QQgWgHJYigcIxyJa5IbEal4BXVDNbNvm9k6M1uct+04M1trZv+vwHttAvIHCsz2t43n3E3subbUqNd0zt3hnFvinFsyffr0Am9bXpkytCxGorlksaNk9xARkaKVnVIk/bmWxRKtZTxW0frJ9KkbqohUuELHLP45EHHOrc5tcM79Ea9l8oICr7ESWGBm880sBlyKt9ZUIR4GzjGzKWY2BTgHeNg5twXoMrNTzJtO7CPALwq8ZsVJl2nMIkAysatk9xAREaA4ZacUSbJvB+FIvGKGYMTqJtPfu51sNh10KCIioyo0WZwGdI+wvQcoqJnOOZcGrsNL/F4Bfuqce8nMbjazCwDM7EQzawM+AHzHzF7yz+0A/hkv4VwJ3OxvA7gW+B6wBlhLlc6ECpBJJ8BCWKjQoaRjF861LCbUsigiUmLjLjuleJJ9OytivGJOtH4yuCz9vduDDkVEZFSFZiU7gcPNbKlz7ncAZnYqcARQ8F8559xDeMtb5G+7Ke/1SvbsVpp/3J3AnSNsXwUcW2gMlSyd6iMSiZd0zSWzEOFIXC2LIiKlV5SyU4oj2beDusbKydHzJ7lpaJ4VcDQiIiMrtGXxUbzFhB81s9+Y2W+Ax/CmAP9NqYKbaDLpBOFovOT3iUQbGOhXsigiUmIqOytEJt1POtVbEZPb5ERiTVgookluRKSiFZosfh7YDUSB0/2vKNDp75MiyKQShCOlTxbDsUYG1LIoIlJqKjsrRG4m1ErqhmoWIt54gNZaFJGKVlCy6JxbCywBluGNN3wFuAs4yTm3rmTRTTDpVIJIuVoWk7tx2UzJ7yUiMlGp7Kwcb6+xWBkzoebEm2fSp5ZFEalgBc+k4hd6/7uEsUx4mXSCuobWkt8nEm0Al2UguZu6uNZaFBEpFZWdlaG/AlsWwUsWd25eRSrZQ7SusmITEYHCu6FiZvPM7Dtm9kczu89fruImMzumlAFOJJlUgkgZuqHm1phSV1QRkdJS2VkZkokdRGLNhEo42/j+iDfNBCDRszngSERERlbQX00zOwr4HTAZb2B+LzAAfAFv+u+/KFF8E4ZzjnSZJrgJx3LLZyhZFBEpFZWdlSPZt5P6hmlBhzFMvNlPFru3MKn18ICjEREZrtCWxa8ALcDLuQ3OuWeBXXgD9mWcspkkuGxZJrjxWi+NZL/WWhQRKSGVnRUi2bejLMM8xioaayISa9YkNyJSsQpNFv8U2Aq8Y8j2jcDBRY1ogsqkEgBlmeDGQmGidZPUsigiUloqOytAJj1AKtlFXQW2LAI0NM+kr3tr0GGIiIyo0GQxBnQ45waGbG/BmwZcximd9pLFcnRDBYjFp5BUsigiUkoqOyvAQMKb3KYSWxbBG7fY37NVM5SLSEUqNFl8AzjKzD7uv683s78F5gCvlSSyCSbXshiONJTlfnX1UxhIqBuqiEgJqeysAP3+shmV2rIYb56Jc5nBOEVEKkmhyeIdeIPzvwM44Di8sRgO+H5pQptY0qk+oDzdUMFrWdRaiyIiJaWyswIk/WUz6uIV2rKYN8mNiEilKShZdM7dDtzuvzX/C+Db/j4Zp0zZu6FOBZcllewqy/1ERCYalZ2VIZnYSSTaWLbK2LGqb5wBFtIkNyJSkQpecMg59xdmdgtwor9plXNufUmimoAGJ7gpw2yoAHXxKQAkE7uI+a9FRKS4VHYGr1JnQs0JhSLEG2eoZVFEKtI+k0UziwLbgJ3A4c65t0oe1QSUTiUAIxSpK8v9YvVegjjQ3wEcUpZ7iohMFCo7K0eybydNU+YFHcZexZtn0t2xLugwRESG2Wey6JxLmVk/0O+cc2WIaULKpBOEo3HMCh1GOj6x+hYAzYgqIlICKjsrQzabZqC/k7p4ZU5u0962AoBsJkUquZutb/2WcDjG9NmnBByZiIin0MzkVuAIMzu7hLFMaJlUomxdUAFC4ai31mK/kkURkRK5FZWdgfJm/XYV3Q0VIFo/GYBU/+6AIxER2VOhYxbPA7LA/2dmr+F1rcnVlDrn3JmlCG4iSfsti+UUq5/CgFoWRURKRWVnwCp92YycaJ2fLCZ3U984PeBoRETeVmiy+Kd5r4/0vxzezG7qXlMEmVRf+ZPF+BR6d28o6z1FRCYQlZ0Byy2bUV/hyWI4Uk8oHGNALYsiUmFGTRbNbBHQ65xbCzxRvpAmpnQqQUOZZyWti09h17bncS5btrGSIiK1TGVnZUn27SAcqSccbQg6lL0yM2L1LQz0dwYdiojIHvbWsrgaeBpYilc7usI5d2o5gpqIMqk+IpHyFmax+imDay3mJrwREZFxWY3KzorhLZsxDTPb98EBi9W30LXzDVw2E3QoIiKD9pYsOmC6mRW8FqPsH+eypFN9Za/5jMWnApBMdChZFBEpDpWdFSA3y2hf1yZi8SmD7ytZtH4K4Eglu4IORURk0N76Hm4BDgWSeIXfyWaWGeErXZZIa1g27X2LI2Ues1jnJ4sDfR1lva+ISA1T2VkhchWxkVhT0KEUJBZvAdAs5SJSUfaWLP4H3iD8XN8N28tXQczsXDN7zczWmNmNI+yvM7N7/f2/N7N5/vbLzWx13lfWzBb7+x73r5nbN6PQeCpFOpUACKBlcQpgJBM7y3pfEZEaVvSyU/ZPOtUHOCKxxqBDKUgk2oiFogwkOoMORURk0KjdZJxzN5rZ08AxwJeANuD7+3sjMwsDtwNn+9daaWYPOOdezjvsY8Au59xhZnYp8FXgEufcj4Ef+9dZCPzcObc677zLnXOr9je2oKXTfQBEypwshkIRYvUtg7PFiYjI+BS77JT9lx7oASASrY6WRU1yIyKVaK9jKpxzvwB+YWbnAC865744jnudBKxxzq0DMLN7gAuB/GTxQuAL/uv7gW+ZmTnn8qcYvwy4ZxxxVJzMQC9Q/mQRoK6hVS2LIiJFVOSyU/ZT2i9bo1XSsgheV9TujrVks2lCIQ17FZHgFbRegnPudOfcdeO810HAxrz3bf62EY9xzqWB3UDrkGMuAX4yZNtdfhfUf7JqmPJsiKC6oYKfLKplUUSk6IpUdhYyhONdZvasmaXN7OIh+640szf8ryvHG0s1SQ/0YBYmFKkPOpSC5WYp7+/ZFnQoIiJAgclipTCzk4E+59yLeZsvd84tBE7zvz48yrlXm9kqM1vV3t5ehmgL542rCKhlMd5KOtVLxk9YRUSkcuQN4TgPOBq4zMyOHnLYBuAq4O4h504FPg+cjNe75/NmVt4FfQOUGughEmuqimUzcnIzk/d1tQUbiIiIr5zJ4ibg4Lz3s/1tIx7jTzs+Gchv9rqUIa2KzrlN/r/deAXlSSPd3Dl3h3NuiXNuyfTp08fxGMWX8ccshss4G2p72wra21aQTHgzoW5d/3hVTC0uIjLBDA7hcM4N4A3DuDD/AOfceufc80B2yLnvBh5xznU453YBjwDnliPoSpAe6K2ayW1yIrEmLBShr2voxyMRkWCUM1lcCSwws/lmFsNL/B4YcswDQK6bzMXAo7nximYWAj5I3nhFM4uY2TT/dRQ4H3iRKpNO9REK1wUyPiFXkKZTvWW/t4iI7FMhQzhKcW5Vc86RTvVWzbIZOd4kN1PoVcuiiFSIsmUnzrm0mV0HPAyEgTudcy+Z2c3AKufcA3gzxv3IzNYAHXgJZc67gI25CXJ8dcDDfqIYBn4NfLcMj1NUmVRf2ddYzIlEvWQxNaBkUURkIjKzq4GrAebMmRNwNMWRSfWByxKtsmQRvK6oPZ1v4rIZLBQOOhwRmeDK2pTlnHsIeGjItpvyXvcDHxjl3MeBU4Zs6wXeUfRAyyydSgQyuQ1AKBwlFK4bnGJcREQqSiFDOPZ27ulDzn186EHOuTuAOwCWLFnihu6vRrmZUKutGyp4M6K6jjSJ3m00NM8KOhwRmeCqaoKbWpVO9QUyuU1OJNY4WLCKiEhFKWQIx2geBs4xsyn+xDbn+NtqXirlr7FYlS2L3hxEGrcoIpVAyWIFyKT6AmtZBD9Z1JhFEZGK4y8jlRvC8Qrw09wQDjO7AMDMTjSzNryeOd8xs5f8czuAf8ZLOFcCN/vbal56oBcsRDgSzBCP8YjEmgiF6zQjqohUBK34WgHSAY5ZBIhEm+hLbcRlM4HFICIiIytgCMdKvC6mI517J3BnSQOsQOmBHqKxxqpaNiPHzGhonqVkUUQqgloWA+bN2BZsN9To4IyofYHFICIiUizpgR4i0errgprTMGk2fd1bVIkrIoFTshiwbCYJLhtwN1SvQNUkNyIiUu2cc1W5xmK+hsmzcdkUid5tQYciIhOcksWApVMJgMAnuPFi0bhFERGpbqlkF85lqnJym5zGyd4SJr27NwQciYhMdEoWA5bxu34GmSyGwnWYhTUjqoiIVL1kXztAVa6xmFMXbyUcbVCyKCKBU7IYsNw4wXAkuGTRzIjEmkipG6qIiFS5/r4dAETqmgOOZP+ZGY2T59DbqWRRRIKlZDFgldCyCFprUUREakOytx2r0mUz8jVOnkN/73Yy6f6gQxGRCUzJYsAGWxYDXDoD3l5r0blsoHGIiIiMR3/fDiKxpqpcNiNf0+Q5gKN398agQxGRCUzJYsAqYYIb7/5N4LKkkl2BxiEiIjIe/b3tRGLV2wU1p0GT3IhIBVCyGLB0qhcLRQmFo4HGkZsRNdm3M9A4RERE9pfLZkgmdlb15DY5kWic+sYZShZFJFBKFgOWHughWgFrQeUKViWLIiJSrZL9u8BlidRVf7II+JPcvIVzLuhQRGSCigQdwESXTvVVxFpQ3phJI5lQsigiItUp2Vv9y2YAtLetAMC5LOlUL1vW/ZpoXTPTZ58ScGQiMtGoZTFg6YEeItHgWxbNQkRiDWpZFBGRqjW4bEYNjFkEqGtoBdTrR0SCo2QxYOmB3sHxgkGLRJvo9xczFhERqTbJvnbCkTihcCzoUIoiEmsmFI6RTOwIOhQRmaCULAYsnaqcZDFa10yyt13LZ4iISFXq791BXcO0ql82I8fMqGtoVcuiiARGyWKAspkU2cyAt2xFBYjEmslmU1o+Q0REqlKyr536xulBh1FUdfFW0gM9ZNL9QYciIhOQJrgJ0LYNTwLQ37ttcDB7kKJ13hiP/t7txOpbgg1GRERkDLKZFAP9ndQ1TAs6lKLKPY9aF0UkCGpZDFA2nQSomLEVudnj+ns1blFERKpL0p/cpr6htloWY/UtmIUGn09EpJyULAYok/GSxXCkLuBIPKFIPaFIPf2924MORUREZExyE7TVN9ZWy6KFwsTirZqATkQCoWQxQNn0AAChcGUki2ZGfcN0tSyKiEjV6e/1Wt5qrRsqQH3jdFL9u0kP9AYdiohMMGVNFs3sXDN7zczWmNmNI+yvM7N7/f2/N7N5/vZ5ZpYws9X+17fzznmHmb3gn3ObVdEUaLmWxVCFtCyCVyCpZVFERKpNsm8H0bpJhCP1QYdSdLlJe7p3rQs4EhGZaMqWLJpZGLgdOA84GrjMzI4ectjHgF3OucOAbwJfzdu31jm32P+6Jm/7vwOfABb4X+eW6hmKLZtJAkYoFA06lEH1jTNIJXeT8cdTioiIVIP+vvaabFUEiMWnYhamu2NN0KGIyARTzpbFk4A1zrl1zrkB4B7gwiHHXAj8wH99P3Dm3loKzWwmMMk5t8I554AfAu8teuQlkkknCYVjFbUeVK72MqmxESIiUkWSve3U12iyaBairmEa3R1rgw5FRCaYciaLBwEb8963+dtGPMY5lwZ2A63+vvlm9pyZPWFmp+Ud37aPa1asbGagYia3yalvmAFoRlQREake6VQf6VQvdTU2E2o+b5jINq2FLCJlVS0T3GwB5jjnjgeuB+42s0ljuYCZXW1mq8xsVXt7ZSRC2XSyYia3yalraAWMRO+2oEMREREpyOCyGTU2E2q+ukavMrdLXVFFpIzKmSxuAg7Oez/b3zbiMWYWASYDO51zSefcTgDn3DPAWuBw//jZ+7gm/nl3OOeWOOeWTJ9eGTWPmUyScKQy1ljMCYWj1DVMo79HyaKIiFSHXG+YWm5ZjNW3EIk20rXj1aBDEZEJpJzJ4kpggZnNN7MYcCnwwJBjHgCu9F9fDDzqnHNmNt2fIAczOwRvIpt1zrktQJeZneKPbfwI8ItyPEwxZDMDFdeyCBBvnkmiZ2vQYYiIiBTEa1k0v3dMbTIzJk07nK4dr+NcNuhwRGSCKFuy6I9BvA54GHgF+Klz7iUzu9nMLvAP+z7QamZr8Lqb5pbXeBfwvJmtxpv45hrnXIe/71rge8AavBbHX5bjecbLZTOVmyw2HUCybycZfx1IERGRSpbo3U5dQyuhUCToUEpq0rQjSad66etq2/fBIiJFUNa/qs65h4CHhmy7Ke91P/CBEc77GfCzUa65Cji2uJGWXjqVAKi4bqgA8aaZgKO/dxuNkw/e5/EiIiJB6u/ZRr0/pq+WTW49AjB273iVxslzgg5HRCaAapngpuakUz0AFdqyeCCAuqKKiEjFc9kM/X3tg2VXLYvEGmmcfDBdO14LOhQRmSCULAYkPdALQLgCk8W6hlYsFFWyKCIiFa+/bwe47IRoWQSYNO0IendvJJXsCToUEZkAlCwGJJXsBiAUqQ84kuHMQsSbDiDRsyXoUEREREbV3raC7RueBKC/dzvtbStob1sRcFSl1TLjWMDR2f5i0KGIyASgZDEgqeRuAMLRyksWwZvkJtGtlkUREalsucrXSF1zwJGUR7xpJnXxVjq3vRB0KCIyAShZDEgq2Q0WIhSKBh3KiOJNM0kPdA92lxUREalEqWQXkWhjzc+EmmNmtBywkK6ONaRTfUGHIyI1TsliQFIDXYQj9XjLQ1aeePNMAPq6NwcciYiIyOhSya4J06qYM+WAheCy7G5/OehQRKTGKVkMSCrZTbgCxyvmNDQfBKC1nEREpGI5lyU10EO0blLQoZRVw6TZROsms0tdUUWkxJQsBiSV7KroZDESayQWn0rv7o1BhyIiIjKi9EAvuOyESxbNQkw98Di6drym4SIiUlJKFgPiJYvxoMPYq8bJB9PXpWRRRCRIZnaumb1mZmvM7MYR9teZ2b3+/t+b2Tx/+zwzS5jZav/r22UPvsRSyS6ACZcsAkyd9Q6cy9Cx9bmgQxGRGqZkMQDZTIpMur+iWxYBGicdzEB/p9ZyEhEJiJmFgduB84CjgcvM7Oghh30M2OWcOwz4JvDVvH1rnXOL/a9ryhJ0GQ30dwITM1lsaJ5FvHkWOzetCjoUEalhShYDkKsJrdRlM3IaJh0MoNZFEZHgnASscc6tc84NAPcAFw455kLgB/7r+4EzrVJnTyuyVP9uIrFmQqFw0KEEonXWEvq6N2mpKxEpGSWLARhMFiu8ZbFh0kGAadyiiEhwDgLy/wi3+dtGPMY5lwZ2A63+vvlm9pyZPWFmp5U62HIbSO4mVj856DACM3Xm8WAhdmz+Q9ChiEiNUrIYgLeTxcoesxiO1FHfOINetSyKiFSjLcAc59zxwPXA3WY2rL+mmV1tZqvMbFV7e3vZg9xfmVSCTKqPaH1L0KEEJhprYsoBC9m5aSWZdDLocESkBilZDEAq2Q1Ufssi+JPc7N6Icy7oUEREJqJNwMF572f720Y8xswiwGRgp3Mu6ZzbCeCcewZYCxw+9AbOuTucc0ucc0umT59egkcojb6eLQDE6iZuyyLAjDl/QibdT8eWZ4IORURqkJLFAKQGusBChMKxoEPZp6aW+aRTvfT3bgs6FBGRiWglsMDM5ptZDLgUeGDIMQ8AV/qvLwYedc45M5vuT5CDmR0CLADWlSnukkt0e8lidAJ3QwVonDyXhkmz2b7hd6rYFZGiU7IYgFSyi2ismWqYf6C59TAAuneuCTgSEZGJxx+DeB3wMPAK8FPn3EtmdrOZXeAf9n2g1czW4HU3zS2v8S7geTNbjTfxzTXOuY6yPkAJJbo3EwrHqqKXTimZGTPmLKW/dztdO18LOhwRqTGRoAOYiAaSXVUzzXddfCqx+FS6Ot5gxtw/CTocEZEJxzn3EPDQkG035b3uBz4wwnk/A35W8gAD0te9hWj95KqoeC21KQcuZtOah9my9tdMaj1C3xMRKRq1LAYgleyummQRYNLUBXTvWofLZoIORUREBOeyJHq2EqtrCTqUihAKRZg5/8/o3f0W3R1vBB2OiNQQtSwGIJXsoqllXtBhFKx56mHs2PR7+ro30Th5TtDhiIjIBNffsw2XTRGLtwQdSlm1t60Ycfv02afQetBJbFn3KFvW/prmqQsws70eLyJSCLUsllk2kyKT6iNWRS2LzVO9cYtdGrcoIiIVILf+b6x+SsCRVI5QKMLMQ86gp/NNdre/EnQ4IlIjlCyWWTLhzS0Qa2jdx5GVI1rXRLxpJl07Xg06FBEREXq7NhCOxInEmoIOpaJMO+hk6htn0Pb6gxo6IiJFoW6oZTbgJ4t18akkerYGHM1wo3VZicWnsLv9ZQYSu4jFVZMrIiLB6d3dRsPk2ZrIZQgLhZl9+Pmsee5O2jc+jYX1MU9ExqesLYtmdq6ZvWZma8zsxhH215nZvf7+35vZPH/72Wb2jJm94P97Rt45j/vXXO1/zSjjI41ZMi9ZrCYNk701oTu2/jHgSEREZCLLZlIkerbQOElj6EcyadqRNLcuYNPah0mnEkGHIyJVrmzJor8w8O3AecDRwGVmdvSQwz4G7HLOHQZ8E/iqv30H8OfOuYV4Cw//aMh5lzvnFvtf20v2EEUwkOjAQhEiseagQxmTaKyJxslz6Nj6XNChiIjIBNbXvQlclsbJs4MOpSKZGXOOugiXTbNr62qcc0GHJCJVrJwtiycBa5xz65xzA8A9wIVDjrkQ+IH/+n7gTDMz59xzzrnN/vaXgLiZ1ZUl6iJLJjqoi0+tyq4zUw88nkT3ZhI924IORUREJqjc5DaanXt09Q3TmHXoOV6Z3b153yeIiIyinMniQcDGvPdt/rYRj3HOpYHdwNCZYN4PPOucS+Ztu8vvgvpPVuFZWDKxi1iVdUHNmXLgIrAQ7W1PBx2KiIhMUH27NxKtm1xV6xUH4YC57yJa30LH1tVkMwNBhyMiVaqqZkM1s2PwuqZ+Mm/z5X731NP8rw+Pcu7VZrbKzFa1t7eXPthRDCQ6qKvSCWKidZNonfUOdrT9noH+3UGHIyIiE1BP53q1KhbAQmFaZ76DbDrJrm0vBB2OiFSpciaLm4CD897P9reNeIyZRYDJwE7//Wzgv4CPOOfW5k5wzm3y/+0G7sbr7jqMc+4O59wS59yS6dOnF+WBxiqdSpBJJ6q2ZRFg5vwzcS7LtvWPBx2KiIhMMMnELgb6d9E89ZCgQ6kKsXgLk1oX0Nu5XkNIRGS/lDNZXAksMLP5ZhYDLgUeGHLMA3gT2ABcDDzqnHNm1gL8D3Cjc+53uYPNLGJm0/zXUeB84MXSPsb+G6jSmVDz1TW00jrrHbS3rSDZ1xF0OCIiMoH07FoHQNMUJYuFmjT9aCKxZjo2ryKj7qgiMkZlW4DHOZc2s+uAh4EwcKdz7iUzuxlY5Zx7APg+8CMzWwN04CWUANcBhwE3mdlN/rZzgF7gYT9RDAO/Br5brmcaq2pdNmOoWYecza5tL/DmC3dzxImfwkLhoEMSEZEJoHvXOsKROPGmA4MOpaKMtkYyQCgUZtpBJ7L1zcfYteU5ps0+uYyRiUi1K+tqrc65h4CHhmy7Ke91P/CBEc77EvClUS77jmLGWErJxE6Aqu6GChCLT2HuURfx5gt3s3ntIxy04NygQxIRkQmgZ9c6mqbMx6yqplwIXCw+hcnTj2Z3+0v07p7F9NmnBB2SiFQJ/bUto4FEB+FIPZFoQ9ChjNvUmcfTOutEtr75G7ZveCrocEREpMYN9O8m2beDZnVB3S+Tph1OLD6Vji3PMdDfGXQ4IlIllCyWUbKvo6pbFdvbVuzx1TB5NvHmWWx89RdsXf+4Fv4VEZGS6dn1JgBNUw8NOJLqZBai9aATwWVZ/+JPcS4bdEgiUgWULJZRomcr8cYDgg6jaMxCTJt9Mi0HLGLT6//Dhlf+E5fNBB2WiIjUoK6O1wlH4jQ0zwo6lKoVjTUx5cBFdHe8QfvG5UGHIyJVQMlimaRTfaSSu4k3zww6lKIyC3HIoss5YN6fsaNtBW88933SqUTQYYmISA1xLsvu9leYNO0IjVccp8aW+UyedhRtr/+PltMQkX3SX9wySXRvAai5ZBG8hHH24f+Lucd8kJ6Odbz2h2+R7NsRdFgiIlIj+ro2kR7oYfL0o4IOpeqZGU1TD8EsxJpnv8f2jcsHh5eIiAylZLFMcsliLXafyRUyzmWYPmcpA/2dvPz0N+n218MSEREZj93tLwPG5NYjgg6lJoQj9UydeQID/Z3sbn8l6HBEpIIpWSyTvp7NRKKNRGLNQYdSUvWN0zlg3umEwjHeeOa7dO18I+iQRESkyu3e8SqNLXOJxBqDDqVmNEw6iMbJc+na8SrJvp1BhyMiFUrJYpkkurcQb56JmQUdSslF65o5YN7p1DVMY81zd9HdsSbokEREpEoN9O+mr6uNydPUBbXYphx4HOFoAzs3rySbTQcdjohUICWLZeCyGW8m1BocrziacKSOw9/xSeriU1nz7J10d6wNOiQREalCu7Y9D0DLjGMCjqT2hMJRWmctIT3QS6f/fRYRyadksQySiZ24bJqGptobr7g3ne0v0nrQEkKRet545ru0vf6gBtCLiMiY7Nz8DA2TZhNvqp2lpypJfeN0JrUeTs+uN+nYujrocESkwihZLIO+7s1Abc6Eui/hSD0HzHsX4Wic7RuWM9C/O+iQRESkSiS6t5Lo3kTrzHcEHUpNmzzjGOrirbz10v30924POhwRqSBKFsugd/cGLBShfoLWioYj9cyY8yeEQhG2b3hKy2qIiEhBdm55BizElAMXBx1KTTML0Tr7JEKhCGv/+COymYGgQxKRCqFksQy6drxOU8t8QqFI0KEEJhJrZMbcPwGX5fVnvksq2RV0SCIiUsFcNkPHlmeZPO1IonVNQYdT8yLRBuYvvIz+nm1seOW/ynrv3BJcQ79EJHhKFktsoH83/b3bmNR6eNChBC5aN4npBy8lPdDDG898l3SqL+iQRESkQnVsfY5Usovps08JOpQJY9K0I5h5yJns3LyK7Rt+F3Q4IlIBlCyWWNfO1wGYNE3JIkBdw1QOXXwl/b3trHnuLnV1ERGRYZzLsvXNx4k3HcikaUcGHc6EMvPQs5k8/Wg2vvoLOre/GHQ4IhIwJYsl1rXzdSKxJuJNE29ym9EkEx20HrSE3s71vPL729i+cbm6nIiIyKDd7a/Q37uNA+efMSHWJ64kZiHmL7ychkmzWff83XTtfCPokEQkQEoWS8i5LN0732BS6+Eq7IZomDSbqTOPp79nGzs3rcI5F3RIIiJSAVw2w+a1vyJWP4UpBywKOpwJKRyJcdgJ/5v6hlbWPHcnu9tfDTokEQmIksUS6u18i3SqV+MVR9E05RAmzziGvq6NdGx5VgmjiIiwfeNyEt2bmX34+VgoHHQ4E1Y01sThS66hvvEA1qy+i21vPalyWmQCUrJYQts2PEU4EqdlxrFBh1KxJrUewaRpR9LbuZ6OLc/gXDbokEREJCAD/bvZvOZhJrUeQcsBC4MOZ8KLxBo54sRraJl+FG2vPcC6P/6Qgf7OoMMSkTKauGs5lFiyr4PObS9w4PzTCUfqgg6nYpkZLTOOAYyuHa+w7o8/ZP7CywmFo0GHJiIiZZTNpln3/H/gXJY5R71XwzcqRDhSzyHHfYRt63/L5rUP0/W7N5h+8CnMmPMnxOpbCr5ONjNAMrGLgUQHycQuMukE4HDO0dfVRjgSJxJtIByNE4k1Yqb2DJFKoGSxRLZveBKzENMPXhp0KFWhZcbRhMMxdm17ntdXfYdDjvswsfrJQYclIiJl4Jxjw8s/o7dzPfMXXUFdw7SgQ5I8ZiEOnH86Uw5YyKY3fsm29b9l2/onaJg0m6aW+dQ1TBtM8DLpBLvbXyGTSZJJ9ZNO9ZIe6CWbSY7hfmFi8Skk+3bS1DKXppb5RGKN+x3/aBPoaVmWsdP3cuJRslgCfV2baG9bwZQDFyvhGYPm1sOYcuAi1r94L6+suJV5x3yQydOPCjosEREpoWw2zYaX72fn5meYecjZTD3wuKBDklHUNbRyyHFXkEzsomPLs3TteI32thW4bGrYsWYhQpF6ItFG4s0ziUQbmXrgccTiU6iLTyUcbcAwMKO9bQWZVB/pVIJ0qpdU/26SiQ62v/Uk29Y/DkB94wE0TzmEpimH0DRlvj5fiZRJWZNFMzsX+L9AGPiec+4rQ/bXAT8E3gHsBC5xzq339/0d8DEgA3zGOfdwIdcst/RAL2tX/4BItJHZh78nyFCq0pQDFlHfeADr/vgj1jx3Jy0zFjLrsHOINx1Y8nurtkxEKlEpys5KkejZxlsv309v53pmHno2Mw85O+iQpAB18SnMPORMZh5yJs5lSSW7yaT7cdk04WiczvaXMQsP60o8debxI17PLEQk1kQk1gRMH9zeOvMd9HW10b3rTXp2rWXnlmdpb3sawF+W7EDiTQdS1zCNaF0z0VgzkVgToXCMUCiChSKEQmoXGS/nsmRSCTLpJOmBXvB/rt73OKou4zWubP8HmVkYuB04G2gDVprZA865l/MO+xiwyzl3mJldCnwVuMTMjgYuBY4BZgG/NrPcFKP7umbZ9HVtYv2L95JKdnHEidcSrWsOIoyqF286gKPe+VdsW/8EW9b9hs7tL9A89TAmTz+KxkkHE4tPIRSK4lzGq4Uc6PW6uaT6Bl9n00nCkTrC0QYi0TiRaJNXkNR5BYmFIrhsxjsn1UtmoJfezrfIpPvJpJNk/VpSC4VJJ7upa5hGfeMM6hqmE47EAv4OichEUYqy0zmXKe9T7Mk5R6J7E+0bV7Bj80rC4TrmL/zQqImElM9YK01HO360BG2s6ymHwlGapsynacp84AxcNkNf92a2rn+cVHI3yb6d9Ox6k0J+pc3CWCiMWch/HWLHxhVYOEI4XEcoHCMcqSMUrnv733AdoUjM319H1641Q5JQw8xonXWinzAZzmVw2TTZTIpsNo3LpshmUmQySbLpATp3vOztz6bz/s0Mvh4qVt+CYVgoBJaLP0SybyeYDd7XG+NpedtC3r9mGEZTyzzMwmAhLBTCCAHO/9yT/5Ugneon2beDbDZFNjOAGyGuvO8soXCM7Rt+R6xuErH6FqL1LcTqW4jVT/be17WU7LNTUBX9E6mBoZzVLScBa5xz6wDM7B7gQiC/wLsQ+IL/+n7gW+b9xl8I3OOcSwJvmtka/3oUcM2SyGZSZNL9DPR3kujZyu72l+lsf5lItIFDF19JY8ucUodQk/L/54vEGpl12Lvp2fUmyb522l7774Ku4RUCEVw2XVABMtL53gQ7Rjabpqdj7R77Y/Ut1DfOoL7xAOobp/sJaDPRWBPhSL1XGIUig3/QJ4q3p1R3Q3cMPzZ3jBtaUCXJpBNkUn107niFbHrAK2AzSVzWmyk3Wtfs1UJHG7zKgFgjkWjj4MQI4Ug9kYj3r/fz8H4WXgE6cX4exeJc1v/Q433gcVnvb1861UcmlaCz/SVvf2aATGbA+2CRSRGtn/z2h6pwzP8ZxYlEG70JLKINe7wOhaNvf5BRLXW+UpSdT5cyYO93ZsCreMsMkE71kuzbyUCig/6+HfTsWsdAfycWijLtoJOYddi7icaaShmS1AgLhWmcfDCTWhcMbnPOkc0kyaT7aWqZT3qgh2w2hcv4iZhL09P5lpeQuQzOZf2ELku0bhLZbO7z3G7vOpkBsunkmD4/FPr5ZORnivp/K/3PDuz59y890OOVry6Dc24w/ky6H1zWL3udf0zWK1/9bfk6t7+41zhCfpmZK0Nzf5dD4Zj3byiGhf20wXn/yWbTZP0kOBJrYKB/N33dm0kP9Ay7fjgS9xPIFqJ+Ehmrn0w01uw9dyi8R0LvJdCZwZ+hy2b8smhgjzKpp/PNwZ9t1j8HsnTteM0vU2ywguDtMunthP/t739k8F/A/x3J/b5kvc+UeUl+7+4Nb+/L+53a3f4qFgoT8n+eIcvdM/e9jA1+T8PhGKHQ0O0xvzyMvJ3s+xUBQZWN5UwWDwI25r1vA04e7RjnXNrMdgOt/vYVQ849yH+9r2sW3Zsv/ISOLc/usS1aN4kZBy9l5qFnEYk2lDqECSMcqWPy9COZPvsqBhK7SPRsYyDZ6f8xMPq6N3n/s0Xq/P/B6gjlrcvl/XHxPsRm0l4XioamA8lmM363l4bBD61du9YSjtQPqxFtnfkOkn076e/dTn/fdu/fnu3s2LVisAVyVIMJY2H/gxd01Fj+WOQlaiO9GnrM20fs65jyrLVlFiYUqSMcjg3+0QfIZlMkerb6Lcl9Y4vHQv44mVCBP5WxXL0E35cSrGs27Oe714MLW84mlxSG/MIPjEy63/swkU56yWW6n8K+R4aFwjRPPYwFJ3ys8FhrU6nKzpJIJbt4/ol/HnV/tG4SjS3zOPCQM5lywHFEovFShiMTgJkNJjmTpx0x4jH70wqU+9uVSx4zmSQdW1fvkTDkkrSmlrngHA43mJSEQlEsHPGTgehgS2Vn+0tvt0wWUDk21lbdnFwSmYtr2sx37JHc5P62e0li3bDK1LG2AufHmc2mSfXvZqB/NwPJTlL9nQz0d3rv+zvp3b2BdKp3TNffG69SOPx2wmkhXNZ/TtzbSV/ez27cHSz8z3eDLdUWAgv5CXxmWItxNpsquDzdy00HW4qxEIctvpJJo/zOF9OE6chtZlcDV/tve8zstQJPnQbsKE1UgdOzVSc9W/Wq5ecr0bN9fLwXmFuMKGrZCOXjTmrz97RW//+rxeeqxWeC2nyuWnwmqIrn+j9jPWGkZ9pnGVnOZHETcHDe+9n+tpGOaTOzCDAZb7D+3s7d1zUBcM7dAdwx1qDNbJVzbslYz6sGerbqpGerXrX8fLX8bAErVdk5aGj5WKs/Sz1X9ajFZ4LafK5afCaozefa32cq5wCelcACM5tvZjG8QfcPDDnmAeBK//XFwKPOa0d/ALjUzOrMbD6wAPhDgdcUERGpVqUoO0VERApStpZFfxzFdcDDeNN/3+mce8nMbgZWOeceAL4P/MgfhN+BVyjiH/dTvAH9aeDTudncRrpmuZ5JRESklEpVdoqIiBSirGMWnXMPAQ8N2XZT3ut+4AOjnPtl4MuFXLPIxtx1tYro2aqTnq161fLz1fKzBaoUZec+1OrPUs9VPWrxmaA2n6sWnwlq87n265nMlWCmPREREREREaluWnRMREREREREhlGyOAozO9fMXjOzNWZ2Y9DxjJeZ3Wlm283sxbxtU83sETN7w/93SpAx7g8zO9jMHjOzl83sJTP7S3971T8bgJnVm9kfzOyP/vN90d8+38x+7/9+3utPfFGVzCxsZs+Z2YP++5p4NjNbb2YvmNlqM1vlb6uV38sWM7vfzF41s1fM7J218mwTXa2VfTkj/f9YbWq4HB/pub5gZpv8n9dqM/tfQcY4VrX62WQvz1W1P69a/Zy1l+daZmZv5v2sFu/rWkoWR2BmYeB24DzgaOAyMzs62KjGbRlw7pBtNwK/cc4tAH7jv682aeCvnXNHA6cAn/Z/VrXwbABJ4Azn3HHAYuBcMzsF+CrwTefcYcAuoJpXLv9L4JW897X0bH/mnFucN1V1rfxe/l/g/3POHQkch/fzq5Vnm7BqtOzLN/T/x2qzjNosx5cx/LnAKwcW+1+lnJuiFGr1s8lozwXV+/Oq1c9Zoz0XwN/m/axW7+tCShZHdhKwxjm3zjk3ANwDXBhwTOPinPst3ix5+S4EfuC//gHw3nLGVAzOuS3OuWf91914H1oPogaeDcB5evy3Uf/LAWcA9/vbq/b5zGw28B7ge/57o0aebRRV/3tpZpOBd+HNwIlzbsA510kNPJvUXtlXS2q4HB/puaparX422ctzVa1a/Zy1l+caMyWLIzsI2Jj3vo0q/59hFAc457b4r7cCBwQZzHiZ2TzgeOD31NCz+d00VwPbgUeAtUCncy7tH1LNv5+3Ap8Dsv77Vmrn2RzwKzN7xsyu9rfVwu/lfKAduMvvPvw9M2ukNp5toqvlsm+k/x9rQS3/f3edmT3vd1Otqu6a+Wr4s8k83n4uqOKfV61+zhr6XM653M/qy/7P6ptmVrev6yhZFMCrgWA/axwqgZk1AT8D/so515W/r9qfzTmXcc4tBmbj1fwfGWxExWFm5wPbnXPPBB1LifyJc+4EvC59nzazd+XvrOLfywhwAvDvzrnjgV6GdKWq4meT2rXX/x9rQY39f/fvwKF43ee2AF8PNJr9VKufTUZ4rqr+edXq56yhz2VmxwJ/h/d8JwJTgRv2dR0liyPbBByc9362v63WbDOzmQD+v9sDjme/mFkU74/Wj51z/+lvrolny+d39XsMeCfQYma5dVKr9fdzKXCBma3H6+52Bt5YuFp4Npxzm/x/twP/hVcA1cLvZRvQlldDeT9e8lgLzzbR1WzZN8r/j7WgJv+/c85t8z/oZoHvUoU/r1r9bDLSc9XCzwtq8nMWsMdznet3JXbOuSRwFwX8rJQsjmwlsMCfCSkGXAo8EHBMpfAAcKX/+krgFwHGsl/8MW7fB15xzn0jb1fVPxuAmU03sxb/dRw4G2+MwGPAxf5hVfl8zrm/c87Nds7Nw/t/7FHn3OXUwLOZWaOZNedeA+cAL1IDv5fOua3ARjM7wt90JvAyNfBsUptl317+f6wFNfn/XS6h8r2PKvt51epnk9Geq5p/XrX6OWuU53o1r7LC8MZh7vNnZV4ruAzlT/t7KxAG7nTOfTnYiMbHzH4CnA5MA7YBnwd+DvwUmAO8BXzQOVdVg8zN7E+AJ4EXeHvc29/j9aGv6mcDMLNFeAOrw3iVOz91zt1sZofgtcZNBZ4DrvBriaqSmZ0O/I1z7vxaeDb/Gf7LfxsB7nbOfdnMWqmN38vFeJMSxYB1wEfxfz+p8meb6Gqt7IPR/38MMKT9UsPl+EjPdTpel0YHrAc+mTfWr+LV6meTvTzXZVTpz6tWP2ft5bkeBaYDBqwGrsmbCGfkaylZFBERERERkaHUDVVERERERESGUbIoIiIiIiIiwyhZFBERERERkWGULIqIiIiIiMgwShZFRERERERkGCWLIiIiIiIiMoySRZEKYWaPm5kb5etjZrbbf/3NvHOOyTvmjrztc/O2f3TI9dcPue/pecde5W+bN+T+fz/knMuH7D+9dN8ZERGZ6FRGigRDyaJI5RnAW7g3/2srsNzf/668Y0d7/ad5r39bhJg+ZWaRvPefKcI1RURExkplpEgZRfZ9iIiU2Rbn3ClDN5rZIuBc4Dgzm+Sc6wJO83dvB44wsxnOue28XShuds6tHWc8KWA2cBHwUzM7GTjJ3x4d57VFRETGQmWkSBmpZVGkeuRqP8PAUv/1acBu4Pt57+HtgvDJItz3fv/fvxjy7/0jHCsiIhIElZEiJaBkUaTyzLXh4zFagJVAwj/mXWZ2CF5t5u+Ax/O2Hwgs8N+P1L1mj+sDj+0jnuXAKuBPzOw84APAFuC+/Xw+ERGR/aUyUqSM1A1VpPIMAM8N2ZZ2zg2Y2e+B0/HGW7zq7/stXmGVxqs1XZ533ki1pkOvPwk4ah8x3Qb8ELgHiAHfwetiIyIiUk4qI0XKSMmiSOUZcTyG77d4BeESYH1um3Oux8yeA94BnO9v7wBe3Nf1/Vna9lVzei/wNeAAvIL028CJ+zhHRESk2FRGipSRuqGKVJdcl5koXleXPrzuL7l9IeBS//1TzjlXjJs653KFH8BPnXPbinFdERGRIlIZKVJkShZFqsvTvN21JQKscM7l3v82bzsUZ+B+vi8D04FPFPm6IiIixaAyUqTIlCyKVBHnXB/wTN6m/MH5TwLZUfYV494p59wO51x/Ma8rIiJSDCojRYrPitQCLyIiIiIiIjVELYsiIiIiIiIyjJJFERERERERGUbJooiIiIiIiAyjZFFERERERESGUbIoIiIiIiIiwyhZFBERERERkWGULIqIiIiIiMgwShZFRERERERkGCWLIiIiIiIiMsz/DzGuMizLGvx1AAAAAElFTkSuQmCC\n",
       "text/plain": [
        "<Figure size 1080x360 with 2 Axes>"
       ]
@@ -1521,7 +1508,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 107,
+   "execution_count": 149,
    "metadata": {},
    "outputs": [
     {
@@ -1545,7 +1532,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 108,
+   "execution_count": 150,
    "metadata": {},
    "outputs": [
     {
@@ -1571,7 +1558,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 109,
+   "execution_count": 151,
    "metadata": {
     "colab": {
      "base_uri": "https://localhost:8080/",
@@ -1585,7 +1572,7 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "{'MEAN_FWHM_x': 7.940323515966517, 'MEAN_FWHM_y': 7.337040419590766}\n"
+      "{'MEAN_FWHM_x': 8.379209150177722, 'MEAN_FWHM_y': 7.576010416841125}\n"
      ]
     }
    ],
@@ -1602,14 +1589,14 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 110,
+   "execution_count": 152,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "{'MEDIAN_FWHM_x': 7.396254460793973, 'MEDIAN_FWHM_y': 6.900833212383647}\n"
+      "{'MEDIAN_FWHM_x': 7.670810006638417, 'MEDIAN_FWHM_y': 6.99528444605464}\n"
      ]
     }
    ],
@@ -1628,7 +1615,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 111,
+   "execution_count": 153,
    "metadata": {
     "colab": {
      "base_uri": "https://localhost:8080/",
@@ -1642,7 +1629,7 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "{'INCERTIDUMBRE_FWHM_x': 0.15200550254891215, 'INCERTIDUMBRE_FWHM_y': 0.12480846830393083}\n"
+      "{'INCERTIDUMBRE_FWHM_x': 0.15034065812442832, 'INCERTIDUMBRE_FWHM_y': 0.12213295193042271}\n"
      ]
     }
    ],
@@ -1659,7 +1646,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 112,
+   "execution_count": 163,
    "metadata": {},
    "outputs": [
     {
@@ -1694,54 +1681,54 @@
        "  </thead>\n",
        "  <tbody>\n",
        "    <tr>\n",
-       "      <th>27</th>\n",
-       "      <td>222.917653</td>\n",
-       "      <td>2.823663</td>\n",
-       "      <td>2.336885</td>\n",
-       "      <td>1.803631</td>\n",
-       "      <td>1.702241</td>\n",
-       "      <td>4.238533</td>\n",
-       "      <td>4.000267</td>\n",
+       "      <th>33</th>\n",
+       "      <td>215.742228</td>\n",
+       "      <td>2.844406</td>\n",
+       "      <td>3.220690</td>\n",
+       "      <td>1.602668</td>\n",
+       "      <td>1.513167</td>\n",
+       "      <td>3.766270</td>\n",
+       "      <td>3.555943</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>26</th>\n",
-       "      <td>216.603135</td>\n",
-       "      <td>2.821754</td>\n",
-       "      <td>3.173432</td>\n",
-       "      <td>1.804289</td>\n",
-       "      <td>1.820440</td>\n",
-       "      <td>4.240079</td>\n",
-       "      <td>4.278035</td>\n",
+       "      <th>34</th>\n",
+       "      <td>216.970464</td>\n",
+       "      <td>2.845412</td>\n",
+       "      <td>2.329821</td>\n",
+       "      <td>1.614164</td>\n",
+       "      <td>1.493453</td>\n",
+       "      <td>3.793286</td>\n",
+       "      <td>3.509615</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>30</th>\n",
-       "      <td>217.389734</td>\n",
-       "      <td>1.980785</td>\n",
-       "      <td>2.331454</td>\n",
-       "      <td>1.931921</td>\n",
-       "      <td>1.708335</td>\n",
-       "      <td>4.540015</td>\n",
-       "      <td>4.014588</td>\n",
+       "      <th>37</th>\n",
+       "      <td>209.845863</td>\n",
+       "      <td>1.956937</td>\n",
+       "      <td>3.215590</td>\n",
+       "      <td>1.708841</td>\n",
+       "      <td>1.524611</td>\n",
+       "      <td>4.015777</td>\n",
+       "      <td>3.582837</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>29</th>\n",
-       "      <td>210.588381</td>\n",
-       "      <td>1.978485</td>\n",
-       "      <td>3.167382</td>\n",
-       "      <td>1.943865</td>\n",
-       "      <td>1.831859</td>\n",
-       "      <td>4.568083</td>\n",
-       "      <td>4.304869</td>\n",
+       "      <th>335</th>\n",
+       "      <td>174.734848</td>\n",
+       "      <td>2.770882</td>\n",
+       "      <td>2.760025</td>\n",
+       "      <td>1.710865</td>\n",
+       "      <td>1.624143</td>\n",
+       "      <td>4.020532</td>\n",
+       "      <td>3.816736</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>21</th>\n",
-       "      <td>202.186462</td>\n",
-       "      <td>2.289328</td>\n",
-       "      <td>2.644426</td>\n",
-       "      <td>2.005263</td>\n",
-       "      <td>1.836719</td>\n",
-       "      <td>4.712369</td>\n",
-       "      <td>4.316290</td>\n",
+       "      <th>38</th>\n",
+       "      <td>211.627049</td>\n",
+       "      <td>1.961099</td>\n",
+       "      <td>2.326209</td>\n",
+       "      <td>1.715538</td>\n",
+       "      <td>1.499931</td>\n",
+       "      <td>4.031515</td>\n",
+       "      <td>3.524837</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>...</th>\n",
@@ -1754,90 +1741,91 @@
        "      <td>...</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>400</th>\n",
-       "      <td>148.694932</td>\n",
-       "      <td>3.251515</td>\n",
-       "      <td>3.323809</td>\n",
-       "      <td>3.311014</td>\n",
-       "      <td>3.089162</td>\n",
-       "      <td>7.780883</td>\n",
-       "      <td>7.259531</td>\n",
+       "      <th>543</th>\n",
+       "      <td>131.093045</td>\n",
+       "      <td>3.193123</td>\n",
+       "      <td>2.503308</td>\n",
+       "      <td>4.758416</td>\n",
+       "      <td>2.706784</td>\n",
+       "      <td>11.182277</td>\n",
+       "      <td>6.360943</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>32</th>\n",
-       "      <td>120.009106</td>\n",
-       "      <td>2.582832</td>\n",
-       "      <td>2.669800</td>\n",
-       "      <td>3.323717</td>\n",
-       "      <td>2.781075</td>\n",
-       "      <td>7.810735</td>\n",
-       "      <td>6.535527</td>\n",
+       "      <th>23</th>\n",
+       "      <td>224.503205</td>\n",
+       "      <td>7.472670</td>\n",
+       "      <td>2.648100</td>\n",
+       "      <td>4.762666</td>\n",
+       "      <td>1.649086</td>\n",
+       "      <td>11.192264</td>\n",
+       "      <td>3.875353</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>150</th>\n",
-       "      <td>140.401733</td>\n",
-       "      <td>2.814937</td>\n",
-       "      <td>2.461857</td>\n",
-       "      <td>3.330074</td>\n",
-       "      <td>3.020962</td>\n",
-       "      <td>7.825674</td>\n",
-       "      <td>7.099261</td>\n",
+       "      <th>397</th>\n",
+       "      <td>117.626414</td>\n",
+       "      <td>4.050571</td>\n",
+       "      <td>2.602593</td>\n",
+       "      <td>4.788907</td>\n",
+       "      <td>2.907534</td>\n",
+       "      <td>11.253932</td>\n",
+       "      <td>6.832705</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>281</th>\n",
-       "      <td>192.304218</td>\n",
-       "      <td>3.922074</td>\n",
-       "      <td>2.380541</td>\n",
-       "      <td>3.330268</td>\n",
-       "      <td>2.254765</td>\n",
-       "      <td>7.826129</td>\n",
-       "      <td>5.298697</td>\n",
+       "      <th>331</th>\n",
+       "      <td>120.648167</td>\n",
+       "      <td>3.944006</td>\n",
+       "      <td>2.661164</td>\n",
+       "      <td>4.870656</td>\n",
+       "      <td>2.857321</td>\n",
+       "      <td>11.446041</td>\n",
+       "      <td>6.714704</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>228</th>\n",
-       "      <td>123.573138</td>\n",
-       "      <td>2.781581</td>\n",
-       "      <td>2.546152</td>\n",
-       "      <td>3.334843</td>\n",
-       "      <td>2.962802</td>\n",
-       "      <td>7.836880</td>\n",
-       "      <td>6.962584</td>\n",
+       "      <th>622</th>\n",
+       "      <td>240.208357</td>\n",
+       "      <td>6.285389</td>\n",
+       "      <td>1.606621</td>\n",
+       "      <td>4.905659</td>\n",
+       "      <td>2.470669</td>\n",
+       "      <td>11.528298</td>\n",
+       "      <td>5.806073</td>\n",
        "    </tr>\n",
        "  </tbody>\n",
        "</table>\n",
-       "<p>206 rows × 7 columns</p>\n",
+       "<p>529 rows × 7 columns</p>\n",
        "</div>"
       ],
       "text/plain": [
-       "         height    mean_x    mean_y     std_x     std_y    FWHM_x    FWHM_y\n",
-       "27   222.917653  2.823663  2.336885  1.803631  1.702241  4.238533  4.000267\n",
-       "26   216.603135  2.821754  3.173432  1.804289  1.820440  4.240079  4.278035\n",
-       "30   217.389734  1.980785  2.331454  1.931921  1.708335  4.540015  4.014588\n",
-       "29   210.588381  1.978485  3.167382  1.943865  1.831859  4.568083  4.304869\n",
-       "21   202.186462  2.289328  2.644426  2.005263  1.836719  4.712369  4.316290\n",
-       "..          ...       ...       ...       ...       ...       ...       ...\n",
-       "400  148.694932  3.251515  3.323809  3.311014  3.089162  7.780883  7.259531\n",
-       "32   120.009106  2.582832  2.669800  3.323717  2.781075  7.810735  6.535527\n",
-       "150  140.401733  2.814937  2.461857  3.330074  3.020962  7.825674  7.099261\n",
-       "281  192.304218  3.922074  2.380541  3.330268  2.254765  7.826129  5.298697\n",
-       "228  123.573138  2.781581  2.546152  3.334843  2.962802  7.836880  6.962584\n",
+       "         height    mean_x    mean_y     std_x     std_y     FWHM_x    FWHM_y\n",
+       "33   215.742228  2.844406  3.220690  1.602668  1.513167   3.766270  3.555943\n",
+       "34   216.970464  2.845412  2.329821  1.614164  1.493453   3.793286  3.509615\n",
+       "37   209.845863  1.956937  3.215590  1.708841  1.524611   4.015777  3.582837\n",
+       "335  174.734848  2.770882  2.760025  1.710865  1.624143   4.020532  3.816736\n",
+       "38   211.627049  1.961099  2.326209  1.715538  1.499931   4.031515  3.524837\n",
+       "..          ...       ...       ...       ...       ...        ...       ...\n",
+       "543  131.093045  3.193123  2.503308  4.758416  2.706784  11.182277  6.360943\n",
+       "23   224.503205  7.472670  2.648100  4.762666  1.649086  11.192264  3.875353\n",
+       "397  117.626414  4.050571  2.602593  4.788907  2.907534  11.253932  6.832705\n",
+       "331  120.648167  3.944006  2.661164  4.870656  2.857321  11.446041  6.714704\n",
+       "622  240.208357  6.285389  1.606621  4.905659  2.470669  11.528298  5.806073\n",
        "\n",
-       "[206 rows x 7 columns]"
+       "[529 rows x 7 columns]"
       ]
      },
-     "execution_count": 112,
+     "execution_count": 163,
      "metadata": {},
      "output_type": "execute_result"
     }
    ],
    "source": [
-    "parameters_df=parameters_df[(parameters_df[\"FWHM_x\"]<np.median(parameters_df[\"FWHM_x\"])+3*np.std(parameters_df[\"FWHM_x\"])/math.sqrt(len(parameters_df[\"FWHM_x\"]))) & (parameters_df[\"FWHM_y\"]<np.median(parameters_df[\"FWHM_y\"])+3*np.std(parameters_df[\"FWHM_y\"])/math.sqrt(len(parameters_df[\"FWHM_y\"])))]\n",
+    "#elimina valores extremos del dataset\n",
+    "parameters_df=parameters_df[(parameters_df[\"FWHM_x\"]<np.mean(parameters_df[\"FWHM_x\"])+2.5*np.std(parameters_df[\"FWHM_x\"])) & (parameters_df[\"FWHM_y\"]<np.mean(parameters_df[\"FWHM_y\"])+2.5*np.std(parameters_df[\"FWHM_y\"]))]\n",
     "parameters_df.sort_values('FWHM_x',ascending=True)"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 113,
+   "execution_count": 164,
    "metadata": {},
    "outputs": [
     {
@@ -1852,7 +1840,7 @@
     },
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4IAAAFRCAYAAAAhPBPJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAB9YklEQVR4nO3deZicZZ3v//e3lu6q3vfudHf2hZCNBEJYIohswsig4gIKjnjcFZ2RmTMy58yg49Fz1MFlGDk/RVTcQXBGkQODjCyCbAkQyE72dHeS3ve9qu7fH1UdO51O0km666nq+ryuqy+qnnqWTxeduut+7s2cc4iIiIiIiEjm8HkdQERERERERJJLFUEREREREZEMo4qgiIiIiIhIhlFFUEREREREJMOoIigiIiIiIpJhVBEUERERERHJMKoISkoxs++a2T9N0rlmmVmPmfkTz58ys49MxrnHXKfHzOZN9nnHuc69Zvblqb7OmGvebGbPJvOaIiIyPpWRx72OykiRk6SKoCSNme01s34z6zazDjN7zsw+YWaH/w6dc59wzv2vCZ7r8uPt45zb75zLc85FJyP/ca6T55zbPZXXyGSJgjaa+DIx8vMdM7sg8bfkH7Xv94+x7buJx0d90TGzS8ysftTzp8zMmdlZY/b7j8T2S6bqdxWRzKUyUk6Fykg5HaoISrL9pXMuH5gNfBX4PPCDyb6ImQUm+5wycRY3mZ8vzye+TIz83AKsJ/4Zdvao/S4C6sdsuxj440le7w3gr0aemFkpcAHQfCrhRUQmSGVkBlAZKalCFUHxhHOu0zn3EHA98EEzWwZHdu0wszIzezhxZ7TNzJ4xM5+Z/RSYBfwucefr781sTuJO1IfNbD/wxKhtowu8+Wb2kpl1mdlvzawkca0j7nglth2+o2pmfjP7H2a2K3E37WUzm5l4zZnZgsTjQjP7iZk1m9k+M/vHkQ/7kS4kZnaHmbWb2R4zu/pY75GZrTKzVxLXux8IjXn9GjPbMOrO8YpjnOf/M7M7xmz7rZndmnh826jfa4uZvfM4mS40s3Vm1pn474WjXnvKzL5iZn8C+oB5ZrbYzB5P/P/bbmbvHbX/XySu121mDWb2d8e67nicc8PAC8QLMcysAsgCfjVm2yJOvpD7OXD9qLum7wP+Axg6yfOIiJw0lZEqI1VGSjKoIiiecs69RPzu1EXjvPy3idfKgUrgf8QPcR8A9hO/c5rnnPv6qGPeDJwJvPUYl/wr4L8BM4AIcOcEo95K/IPuL4CCxDn6xtnv34BCYF4iy18BHxr1+nnAdqAM+DrwAzOzsScxsyzgN8BPgRLgAeBdo15fBfwQ+DhQCnwPeMjMssfJ9EviH9iWOLYYuBK4L/H6LuLvfyHwz8DPzGzGOJlKgP9H/D0rBb4J/D+L3wkc8QHgY0A+8TuDjwO/ACqAG4D/a2ZLEvv+APh44u73MuCJcbKfyB9JFGiJ/z6b+Bm9bY9zrn6cY4/nALCF+PsE8f+PPzmFfCIip0xlpMpIlZEylVQRlFRwgPgH+VjDxAuj2c65YefcM845d4JzfdE51+uc6z/G6z91zm1yzvUC/wS8d9QdreP5CPCPzrntLu4151zr6B0S57kB+AfnXLdzbi/wDeIf/CP2Oee+nxiT8ePE71c5zvXOB4LAtxO/+4PAulGvfwz4nnPuRedc1Dn3Y2AwcdxYzwCOP3+ReDfxbiQHAJxzDzjnDjjnYs65+4EdwJpxzvM2YIdz7qfOuYhz7pfANuAvR+1zr3Nus3MuAlwF7HXO/Six/6vAr4H3JPYdBpaYWYFzrt0598o41zz8fiTu6o78jPyeTwNvShTgFyV+1+cT+49se3rMue4cfS7g4WNc8yfAX5nZYqDIOff8cfKJiEwVlZFHUxk55v1QGSmnQhVBSQU1QNs42/8F2An83sx2m9ltEzhX3Um8vo94QVI2gfPOJH5X8HjKEufbN+YaNaOeHxp54JwbuVuaN865qoGGMYX66PPOBv52zIf1zMRxR0ic4z7id2sB3k+8WwcAZvZXo7rPdBC/8zjee1I9JsN4v9/o93c2cN6YjDcCVYnX30X87vE+M3vazC4Y55ojXnDOFY36eWFkO/H3bxnxO5vPOOd6EjlGto3t8vLZ0ecCrjnGNf8duBS4hfhdZxERL6iMPJrKyCOpjJRTooqgeMrMziX+IXnU9MuJO4Z/65ybB1wL3Gpml428fIxTnuhu6MxRj2cRv+PWAvQCOaNy+Yl3txlRB8w/wblbEuebPeYaDSc4bjwHgZoxXWJmjcnzlTEf/DmJO5Dj+SXwbjObTbzrza8BEs+/T/yDvDTxob8JOKorDvG70rPHbBv7+41+/+uAp8dkzHPOfRLAObfOOfd24l1ifkN83MJJcc4NEL8L/JfADOfctsRLzyS2reDkxz6MnLsPeBT4JCrkRMQDKiOPSWXkBKiMlBNRRVA8YWYFZnYN8btwP3PObRxnn2vMbEHig74TiAKxxMuNxMcYnKybzGyJmeUAXwIeTHRBeQMImdnbzCwI/CMweizBPcD/MrOFFrdiTL9/Euf5FfAVM8tPFCC3Aj87hZzPEx+f8VkzC5rZdRzZFeX7wCfM7LxEntxE9vzxTpboctKS+D0ec851JF7KJV4wNQOY2YeI3yUczyPAIjN7v5kFzOx6YAnH7jbycGL/DyR+h6CZnWtmZ5pZlpndaGaFLj6gvYs//789WX8E/hp4btS2ZxPbDjrnTnSX+nj+B/DmRBcmEZGkUBl5QiojJ05lpByTKoKSbL8zs27id8L+J/HB1B86xr4Lgf8Ceoh/6P9f59yTidf+D/CPie4UJzOT1k+Be4l3PwkBn4X4DG3Ap4gXAg3E736OHjz9TeIF2O+JfyD/AAiPc/7PJI7dTfyD9hfEB6yfFOfcEHAdcDPxLkHXE++GMfL6euCjwHeAduLdg24+wWl/AVye+O/IebYQH6PxPPEvDsuBPx0jUyvxLiJ/C7QCfw9c45xrOcb+3cQHkt9A/E7pIeBr/PnLwweAvWbWBXyCeJeYU/E08Tumo++YP5vY9swpnhOAxLgQLRYsIsmiMnICVEaeFJWRckzmTjiuWERERERERKYTtQiKiIiIiIhkGFUERUREUpiZXWXxxaZ3jjczpMUX4m5OzGy4wcw+4kVOERFJLwGvA4iIiMj4ErMz3gVcQXxM1jozeygxdmm0+51ztyQ9oIiIpC21CIqIiKSuNcBO59zuxAQZ9wFv9ziTiIhMA6oIioiIpK4ajlyEup4jF6ge8S4ze93MHjSzmeO8LiIicoRp2zW0rKzMzZkzx+sYIiKSBC+//HKLc678xHtOS78DfumcGzSzjwM/Bi4du5OZfQz4GEBubu45ixcvTm5KERFJuuOVj9O2IjhnzhzWr1/vdQwREUkCM9vndYYp0gCMbuGrTWw7LLF+2Yh7gK+PdyLn3N3A3QCrV692KiNFRKa/45WP6hoqIiKSutYBC81srpllEV98+qHRO5jZjFFPrwW2JjGfiIikqWnbIigiIpLunHMRM7sFeAzwAz90zm02sy8B651zDwGfNbNrgQjQBtzsWWAREUkbqgiKiIikMOfcI8AjY7bdPurxPwD/kOxcIiKS3jKqIjg8PEx9fT0DAwNeR5EUFwqFqK2tJRgMeh1FREREMpS+u8pEncp314yqCNbX15Ofn8+cOXMwM6/jSIpyztHa2kp9fT1z5871Oo6IiIhkKH13lYk41e+uGTVZzMDAAKWlpfqHJMdlZpSWlurum4iIiHhK311lIk71u2tGVQQB/UOaJPfccw9tbW1ex5gy+jsRERGRVKDvJDIRp/J3knEVQa/5/X5WrlzJ0qVLOeuss/jGN75BLBYDYP369Xz2s5895rF79+7lF7/4xTFfP3DgAO9+97sBuPfee7nllltOO+/oc4742te+RjgcpqSk5KTOdckll3DGGWewcuVKVq5cyYMPPsjnPvc5vv3tbx/e561vfSsf+chHDj//27/9W775zW+yd+9eli1bdsT5vvjFL3LHHXcAcPPNN5OTk0N3d/fh1//mb/4GM6OlpeWkcoqIiIjI9DLdGzFOhSqCSRYOh9mwYQObN2/m8ccf59FHH+Wf//mfAVi9ejV33nnnMY89XkUwEolQXV3Ngw8+OKl5xzvn5z//eW688cZTOt/Pf/5zNmzYwIYNG3j3u9/N2rVree655wCIxWK0tLSwefPmw/s/99xzXHjhhRM694IFC/jtb397+FxPPPEENTU1p5RTRERERNSIMZ0bMVQR9FBFRQV333033/nOd3DO8dRTT3HNNdcA8PTTTx/+o1u1ahXd3d3cdtttPPPMM6xcuZJvfetb3HvvvVx77bVceumlXHbZZUf9wdXV1XHJJZewcOHCw5XNsfvccccdfPGLXwRg586dXH755Zx11lmcffbZ7Nq164j9BwYG+NCHPsTy5ctZtWoVTz75JBD/h3vddddx1VVXsXDhQv7+7/9+wu/BhRdeyPPPPw/A5s2bWbZsGfn5+bS3tzM4OMjWrVs5++yzJ3SuG264gfvvvx+Ap556irVr1xIIHD0f0r59+1i4cCEtLS3EYjEuuugifv/73084s4iIiEimUCPG9G3EUEXQY/PmzSMajdLU1HTE9jvuuIO77rqLDRs28MwzzxAOh/nqV7/KRRddxIYNG/jc5z4HwCuvvMKDDz7I008/fdS5X3rpJX7961/z+uuv88ADD7B+/frjZrnxxhv59Kc/zWuvvcZzzz3HjBkzjnj9rrvuwszYuHEjv/zlL/ngBz94eFDqhg0buP/++9m4cSP3338/dXV1x7zGSAW3tbWV6upqAoEA+/fv57nnnuOCCy7gvPPO4/nnn2f9+vUsX76crKwsAHbt2nX42JUrV/Ld7373iHMvWrSI5uZm2tvb+eUvf8kNN9wwbobZs2fz+c9/nk9+8pN84xvfYMmSJVx55ZXHfW9EREREMp0aMbxpxPjhD3/I3/zN3xx+/v3vf/9wXeB0ZNTyEaPVbfstfd0HJvWcOfnVzFz89kk519q1a7n11lu58cYbue6666itrR13vyuuuOKYzdxXXHEFpaWlAFx33XU8++yzvOMd7xh33+7ubhoaGnjnO98JxNciGevZZ5/lM5/5DACLFy9m9uzZvPHGGwBcdtllFBYWArBkyRL27dvHzJkzjzrHz3/+c1avXn3EtgsvvJDnnnuO5557jltvvZWGhgaee+45CgsLWbt27eH95s+fz4YNGw4/H/kQGO26667jvvvu48UXX+R73/veuL8rwEc+8hEeeOABvvvd7x5xzlTTXP9CUq5TXnt+Uq4jIiLilWSVqSMmu2xNle+uJ2rEWLt2LT09PYRCIb761a9yxx138PDDDwPxCtgrr7zC66+/TklJCXv37j3iHC+99BKbNm0iJyeHc889l7e97W2UlZUdM8uNN97Ibbfdxjvf+U4GBgaIxWJH5BrdiLFt2zauvPLKw99dN2zYwKuvvkp2djZnnHEGn/nMZ8b97nrjjTcSDocB+MMf/jBuI0ZDQwPPP/88hYWF4zZijDh06BB/93d/d/j5okWLeOihhw43Ytx00008+uijR2V473vfy1e+8hX+5V/+hWAwyI9+9KPjfs+dKLUIemz37t34/X4qKiqO2H7bbbdxzz330N/fz9q1a9m2bdu4x+fm5h7z3GNnDzIzAoHA4X7dwKQtkZCdnX34sd/vJxKJTPjYkSb2jRs3smzZMs4//3yef/75k2paH3H99dfzT//0T1xxxRX4fMf+8+7r66O+vh6Anp6ek7qGiIiIiBxppBHjzjvvpKOjY9yWLZhYI0Y4HD7ciHEs4zVi5OTkHLHPs88+y0033QQcuxEjFAodbsQYz+iuoSMNLKMbMS644AIuuOCCw8/Ha8QY+fnEJz5x1PlHN2JcdNFF42bIy8vj0ksv5eGHH2bbtm0MDw+zfPnyY743E5WxLYKT1XJ3Opqbm/nEJz7BLbfcclSlbdeuXSxfvpzly5ezbt06tm3bxsyZM48YUHoijz/+OG1tbYTDYX7zm9/wwx/+kMrKSpqammhtbSUvL4+HH36Yq666ivz8fGpra/nNb37DO97xDgYHB4lGo0ec76KLLuLnP/85l156KW+88Qb79+/njDPO4JVXXjmt9+HCCy/kjjvuYN68efj9fkpKSujo6GDz5s18//vfP6lzzZ49m6985Stcfvnlx91vpK/47Nmz+ehHP3r4TpWIiIhIKkqF765wZCPG1q1bD2+/7bbbeNvb3sYjjzzC2rVreeyxx8Y9fjo2YsycOZNvfOMbFBQU8KEPfeikclx//fWcc845fPCDHzxuI8ZHPvIR/vf//t8sXrz4pK9xLGoRTLL+/v7DMy9dfvnlXHnllXzhC184ar9vf/vbLFu2jBUrVhAMBrn66qtZsWIFfr+fs846i29961snvNaaNWt417vexYoVK3jXu97F6tWrCQaD3H777axZs4YrrriCxYsXH97/pz/9KXfeeScrVqzgwgsv5NChQ0ec71Of+hSxWIzly5dz/fXXc++99x7xj+hULV++nJaWFs4///wjthUWFh63O8CxfPzjH2f+/PnHfP3pp59m3bp1hyuDWVlZ/OhHPzql7CIiIiKZYiKNGJ///Oc599xz2bZtG/n5+afUiNHf389vfvMb1q5de0QjxuDg4OGb96MbMQAGBwfp6+s74nwjjRjAEY0Yp+vCCy/k4YcfpqSk5IhGjOeff/6ke7ONNGJ86lOfOu5+5513HnV1dfziF7/gfe973+nEPyxjWwS9MraVbbRLLrmESy65BIB/+7d/G3efJ5544ojnN9988+HHc+bMYdOmTYe3j35ttM9+9rPjTvW7cOHCo84PHD5nKBQat8I09lrHal176qmnxt3u9/vp6uo6Ytu99957xPPRv9uI0WMEx+4/Ymzfc4A3v/nNvPDCn8cJ/Pu///u4x4qIiIhkupFGjOHhYQKBAB/4wAe49dZbj9rv29/+Nk8++SQ+n4+lS5dy9dVX4/P5Djdi3HzzzRQXFx/3WiONGPX19dx0002H55UYacSoqak5qhHj4x//OLfffjvBYJAHHnjgiFa1T33qU3zyk59k+fLlBAKBSW/EeP/733/Etp6enlNuxJiI9773vWzYsOGE7+NEmXNuUk6UalavXu3GzpK5detWzjzzTI8SSbpJhb8XTRYjMjFm9rJzbvWJ9xQYv4wUme7ScbKYVPguIqnjmmuu4XOf+xyXXXbZuK+P9/dyvPJRXUNFRERERERSVEdHB4sWLSIcDh+zEngq1DVURJJCrZsiIiIiJ6+oqOjwbKeTSS2CIiIiIiIiGUYtgiJymHMxBnqb6euqY6i/nchwH2D4/FlkhQrJziklt2Am/mDY66giIiIichpUEZRTcs8993Ddddcdc0FQSS+D/W0073+OtsbXGB7oOLzd54/PrBWLDYMbWcPHCOVWkFs0i4KSRRSUnUFAFUMRERGRtJLUrqFmdpWZbTeznWZ223H2e5eZOTNbPWrbPySO225mb01O4snn9/sPryN41lln8Y1vfOPwIpnr168fd1mHEXv37uUXv/jFMV8/cOAA7373u4H4cgq33HLLaecdfc4RX/va1wiHw0mvBN588808+OCDSb3mdBeNDtF28BU2Pfs1Gvc/Q07eDGYvfQ9LLvw7Vl3+f1h12ZdZddmXOfvy/8Pyi/+Rhed8lOoFV5IdLqGjaTN7Nv6c1576ItvXfZfGfX9kaFQlUkRERCRV3HPPPbS1tXkdI6UkrUXQzPzAXcAVQD2wzswecs5tGbNfPvDXwIujti0BbgCWAtXAf5nZIufcsRflm4DJnrxiIpNUhMNhNmzYAEBTUxPvf//76erq4p//+Z9ZvXr14fVSxjNSERy9ZsmISCRCdXX1pFeUxjvn5z//+dM+bzQaxe/3n/Z55NT1dx+k9eArxCKDlM+8gKq5byErVDTuvmY+skKFZIUKKShdBMS7kfZ27qezeSudzVuo3/476rf/jtyi2ZRUrqSocjlZocIk/kYiIiIy2fx+P8uXLz+8juBf/dVf8bnPfQ6fz8f69ev5yU9+wp133jnusXv37uW5554b97srxBscPvvZz/Lggw9y7733sn79er7zne+cVt7R5xzxta99jdraWk8aMa655pqjGlVSRTK7hq4BdjrndgOY2X3A24EtY/b7X8DXgP8+atvbgfucc4PAHjPbmTjf81OeegpVVFRw9913c+655/LFL36Rp59+mjvuuIOHH36Yp59+mr/+678GwMz44x//yG233cbWrVtZuXIlH/zgBykuLubf//3f6enpIRqN8uMf/5hrrrnm8MLrdXV1XHLJJTQ0NHDTTTfxhS98gb179x6xzx133EFPTw9f/OIX2blzJ5/4xCdobm7G7/fzwAMP4Pf7D+8/MDDAJz/5SdavX08gEOCb3/wmb3nLW7j33nt56KGH6OvrY9euXbzzne/k61//+lG/75w5c7j++ut5/PHH+fu//3tKSkr4whe+wODgIPPnz+dHP/oReXl5fOlLX+J3v/sd/f39XHjhhXzve9/DzJL3P2aac87R1bqdzqbNBLMLqZi1lpoFV530ecx85BXNIa9oDjULr2agt5n2xtdpP/Qaddt/S932h8grmkNx1VkUVy6fgt9EREQks6gR48TUiDFxyewaWgPUjXpen9h2mJmdDcx0zv2/kz02Xc2bN49oNEpTU9MR2++44w7uuusuNmzYwDPPPEM4HOarX/0qF110ERs2bOBzn/scAK+88goPPvggTz/99FHnfumll/j1r3/N66+/zgMPPMCJFg++8cYb+fSnP81rr73Gc889x4wZM454/a677sLM2LhxI7/85S/54Ac/yMDAAAAbNmzg/vvvZ+PGjdx///3U1dWNdwlKS0t55ZVXuPzyy/nyl7/Mf/3Xf/HKK6+wevVqvvnNbwJwyy23sG7dOjZt2kR/fz8PP/zwxN5MOSHnHO2HXqWzaTM5BTOpPE4r4MkK5ZYzY95lLLnwVpau/e9Uz7+CSKSfum2/4fWnv0zj3qfpad9DLDo8KdcTERGR5BppxPjOd76Dc46nnnqKa665BoCnn36alStXsnLlSlatWkV3dze33XYbzzzzDCtXruRb3/oW9957L9deey2XXnopl112GXv37mXZsmWHzz/SiLFw4UL++Z//GeCofe644w6++MUvArBz504uv/xyzjrrLM4++2x27dp1xP4DAwN86EMfYvny5axatYonn3wSiA+huu6667jqqqtYuHAhf//3fz/u7ztnzhw+//nPc/bZZ/PAAw/w+9//ngsuuICzzz6b97znPfT09ADwpS99iXPPPZdly5bxsY99DOfc5L7xUyRllo8wMx/wTeBvT+McHzOz9Wa2vrm5efLCeWDt2rXceuut3HnnnXR0dBAIjN94e8UVVxyzmfuKK66gtLSUcDjMddddx7PPPnvM63V3d9PQ0MA73/lOAEKhEDk5OUfs8+yzz3LTTTcBsHjxYmbPnn14TZPLLruMwsJCQqEQS5YsYd++feNe5/rrrwfghRdeYMuWLaxdu5aVK1fy4x//+PAxTz75JOeddx7Lly/niSeeYPPmzcfMLRM3Ugnsad9DQekZlNaci883NXe2QrkVzJh/BUsv/FuWXPi3zJh3OdHIAG0HX6HhjYdpqX+JgZ7GtPmgFBERkTg1YkyfRoxkdg1tAGaOel6b2DYiH1gGPJXoBlgFPGRm107gWACcc3cDdwOsXr06Lb5h7t69G7/fT0VFBVu3bj28/bbbbuNtb3sbjzzyCGvXruWxxx4b9/jc3Nxjnntsd0ozIxAIHJ6cBjj8j+F0ZWdnH37s9/uJRCLj7jeS1znHFVdcwS9/+csjXh8YGOBTn/oU69evZ+bMmXzxi1+ctIyZrrN5y+FKYGHF0qR1tw3nVRFeUEUgO5+hgXZ6O/bR21lHX1cd/kCYvOI55BXPxx/IPvHJREREJCWNNGLceOONXHfdddTW1o6730QaMYDDjRjveMc7xt13vEaMsZ599lk+85nPAMduxAAON2LMnDnzqHOM14gBMDQ0xAUXXADEGzG+/vWv09fXR1tbG0uXLuUv//Ivx82dSpLZIrgOWGhmc80si/jkLw+NvOic63TOlTnn5jjn5gAvANc659Yn9rvBzLLNbC6wEHgpidmnRHNzM5/4xCe45ZZbjvpSvmvXLpYvX87nP/95zj33XLZt20Z+fj7d3d0TPv/jjz9OW1sb/f39/OY3v2Ht2rVUVlbS1NREa2srg4ODh+9Y5OfnU1tby29+8xsABgcH6evrO+J8F110ET//+c8BeOONN9i/fz9nnHHGKf3u559/Pn/605/YuXMnAL29vbzxxhuHK31lZWX09PRoltBJ0tuxj66WbeQWzUlqJXA0MyM7XELJjFXULnobpTXnEcwuoLN5Kwd2PErboQ1EhnqTnktEREQmbnQjxmi33XYb99xzD/39/axdu5Zt27aNe3y6N2Js2LCBDRs2sGXLFn7wgx8cbsR48MEH2bhxIx/96EfTphEjaRVB51wEuAV4DNgK/Mo5t9nMvpRo9TvesZuBXxGfWOY/gU+f7oyhXunv7z+8fMTll1/OlVdeyRe+8IWj9vv2t7/NsmXLWLFiBcFgkKuvvpoVK1bg9/s566yz+Na3vnXCa61Zs4Z3vetdrFixgne9612sXr2aYDDI7bffzpo1a7jiiitYvHjx4f1/+tOfcuedd7JixQouvPBCDh06dMT5PvWpTxGLxVi+fDnXX38999577xH/iE5GeXk59957L+973/tYsWIFF1xwAdu2baOoqIiPfvSjLFu2jLe+9a2ce+65p3R++bOhgQ5aD75Cdk45JTNWpcTEO+bzk1tYS8XsNzFj/hXkFNTS07abAzsfo+3gBqKRQa8jioiIyBhqxJhejRhJXVDeOfcI8MiYbbcfY99Lxjz/CvCVycwzkZmSJls0euz66yWXXMIll1wCwL/927+Nu88TTzxxxPObb7758OM5c+Ycng305ptvPuK10T772c+Ou17hwoULjzo/cPicoVCIH/3oR0e9PvZax+oXvXfv3iOeX3rppaxbt+6o/b785S/z5S9/+ajt995777jnlWOLRYdpqX8Rvz+bstrziA/FTS3B7AJKa1ZTWLGErpZt9LTvordzP8WVK8gtmp0SFVcREZFMNdKIMbJ8xAc+8AFuvfXWo/b79re/zZNPPonP52Pp0qVcffXV+Hy+w40YN998M8XFxce91kgjRn19PTfddNPhGUlHGjFqamqOasT4+Mc/zu23304wGOSBBx7A5/vzd51PfepTfPKTn2T58uUEAoFJa8QYHIzfsP7yl7/MokWLDjdiVFVVpVUjhk3XyRpWr17txg4w3bp1K2eeeaZHiSTdpMLfy+lOE93asI7ezv1UzL6YUG75MfdLxk2Rif4uQwNdtB96lcG+FkK5FZTWnIs/cHS//2Px4gaPeM/MXnbOHXsOcznCeGWkyHQ32UsvnMhklEep8F1E0sd4fy/HKx9Tr3lARCZFf/dBejv3U1C2+LiVwFSTFSqgYvbFFFetZLCvlYO7/ouB3qYTHygiIiIiE5bUrqEikhyx6BBtB18hmF1AYfmJ7yQm+y7piZgZ+SXzCeWW01z3Ak37nqW4aiX5JfO8jiYiIiIyLWRci+B07Qorkyvd/046mjYRjQxSWr06JccFTlQwu4CquW8hlFdB+6FX6Wjakvb/b0RERERSQfp+QzwFoVCI1tZWfZGU43LO0draOu56NOlgsL+dnvY95JfMJyt8/EHZ6cDnD1I+cy25RbPpatlKR+NG/RsWEZGMoTJPJuJU/k4yqmtobW0t9fX1NDc3ex1FUlwoFDrmQqipzDlH+8FX8fmzKSxf4nWcSWNmlMw4B7MA3W07MF+Aoorp8/uJiIiMZ6QRo7S0VLNoyzGdaiNGRlUEg8Egc+fO9TqGyJTp66xjaKCd0urV+PxBr+NMKjOjuOosnIvS1bIVvz+L/NIFXscSERGZMqneiJHsdX/9gVNb+iETnEojRkZVBEWmMxeL0tG8mWCoiJzCWV7HmRLxlsGziUWHaG98jUBWHuH8Kq9jiYiITIlUb8RI/pIcK5N6vekuo8YIikxnPe17iA73UVSxbFp3HzEzSmvOJRgqoqXhRYYHu7yOJCIiIpJ2VBEUmQZi0WE6W7aSnVNOKLfC6zhTzucLUD7zAsz8tNS/QCwW8TqSiIiISFpRRVBkGuhq3UEsOkRR5fRuDRwtEMyhtOZchge7aT+4wes4IiIiImlFFUGRNBeNDNDd+gY5BTVkh0u8jpNU4bxKCsoW09u5j97Oeq/jiIiIiKQNVQRF0lxnyzaci1FYvtTrKJ4oLD+TrFAx7YdeJRoZ8DqOiIiISFpQRVAkjUUjA/S07yG3aDbB7Hyv43jCzEdpzWpcLELbgVe08K6IiIjIBKgiKJLGulp3gItRUHaG11E8FcwuoLBiKf09B+lo2uR1HBEREZGUp4qgSJqKRgbpadtFTsFMgll5XsfxXH7JAoKhQuq2/UZdREVEREROQBVBkTTV3bYL56IUlC32OkpKMPNRMuNshge7ObDz917HEREREUlpqgiKpKFYdJjutp2E86vJChV4HSdlZIdLKKtdQ1PdnxjobfY6joiIiEjKUkVQJA11t+/GxYYpVGvgUarnX4nPF6RhxyNeRxGZFGZ2lZltN7OdZnbbcfZ7l5k5M1udzHwiIpKeVBEUSTOxWITu1h2EcivJChd7HSflBLMLqJp7CR1Nm+hu3+11HJHTYmZ+4C7gamAJ8D4zWzLOfvnAXwMvJjehiIikK1UERdJMb8c+YtHBjJ8p9HgqZ19MMLuQ+u0P41zM6zgip2MNsNM5t9s5NwTcB7x9nP3+F/A1QDMliYjIhAS8DiAiE+eco7ttJ1mhYrJzyryOk7J8/ixqFlzF3s33037odUpmrPQ6ksipqgHqRj2vB84bvYOZnQ3MdM79PzP778kMJ5JOnHNEhroZ6G1maKCd4cFuopEBXCyKmQ9fIJtgVj7ZOaWE86oIZOV6HVlkSiW1ImhmVwH/CviBe5xzXx3z+ieATwNRoAf4mHNui5nNAbYC2xO7vuCc+0TSgoukiP6eg0SGeiitWYOZeR0npZVUn03j/mdo2PEIRZXL8Pl030umHzPzAd8Ebp7Avh8DPgYwa9asqQ0mkkIGeptoaVhPS8OLRIf7APD5swlmF5CdU4rPF8DFYkQjAwz2tdDXVUc7kJ1bTkHJQkJ5VSpzZVpK2jejUeMcriB+R3OdmT3knNsyardfOOe+m9j/WuKF21WJ13Y551YmK69IKupu3YE/mENOQY3XUVKemY/aRW9jx8vfp7VhHeUzL/A6ksipaABmjnpem9g2Ih9YBjyV+KJaBTxkZtc659aPPpFz7m7gboDVq1e7qQwt4jXnYnQ2b6Gp7jm6W3eA+QjllFNYdgah3AoCx1h/N95q2ENfVwM97btprnuO7JwyiivPIitclNxfQmSKJfMW+eFxDgBmNjLO4XBF0DnXNWr/XEAFlUjCYH8bg30tFFWuIN4IICeSX7KQ3MJZHNrzBKU156pVUNLROmChmc0lXgG8AXj/yIvOuU7gcD9xM3sK+LuxlUCRTOFiUVoPrOfgnicY6m8jmF1I9YKrKKtZQ0fz5hMeb2YEs/MpLF9MQdkiejv20tG0hUN7nqCwfAkFZWeodVCmjWR+KzrhOAcAM/s0cCuQBVw66qW5ZvYq0AX8o3PumSnMKpJyult3YL4AeUVzvI6SNsyMGfOuYOerP6DtwCuU1a7xOpLISXHORczsFuAx4sMqfuic22xmXwLWO+ce8jahSGpwsSgtB9ZzaPcfGBpoJ6egltpFb6OofCnm85/SOc185BXPI6eglraDr9LZvJnBvmbKas/D58+a5N9AJPlS7va4c+4u4C4zez/wj8AHgYPALOdcq5mdA/zGzJaOaUHU+AeZtiJDvfR1NZBfugCfP+h1nLRSUHYGOQW1HNzzB0qrzznlLwQiXnHOPQI8Mmbb7cfY95JkZBJJFc45Opo20bDjEQb7WsgpmMmsM99JQdniSWu58/mzKKs9j572CtoOvsqhPU9SMetNmkxG0l4y+5edaJzDWPcB7wBwzg0651oTj18GdgGLxh7gnLvbObfaObe6vLx8snKLeK67bScA+SULPE6SfkZaBYf622g7+KrXcUREZJL0dOxj+7q72P3aTzDzM3/Vh1h83mcoLD9zSrpv5hXPpWL2xcQigzTufZrhwa4THySSwpJZETw8zsHMsoiPcziiS4uZLRz19G3AjsT28sRkM5jZPGAhoJWiJSPEosP0dOwlp6CWQDDH6zhpqbD8TML51Rzc8wdcLOp1HBEROQ3DQz3s3fQrtr/0HYb625m95N0sueBzFJUvmfLxe6HcMirmvBnnYjTu/SPDQz1Tej2RqZS0rqETHOdwi5ldDgwD7cS7hQJcDHzJzIaBGPAJ51xbsrKLeKmnfQ8uFqGgdOGJd5ZxxVsFL2f3az+hrfE1Smec7XUkERE5Sc7FaKl/kYYdjxKNDlI55y3MmHcZ/kB2UnNkhQqpnHMxjXufpnnfs1TOvQR/IJTUDCKTIaljBE80zsE599fHOO7XwK+nNp1I6nEuRnfbTrJzyskKF3sdJ60VVSwllFtJ496nKKlapVnfRETSyGB/O3s33UdP+27yi+cz88x3Es6r9CxPMLuA8llradr7R5r2P0vl7DdrDL+kHc1BL5LC+rrqiUb61Ro4Ccx8VM6+mP7ug3S37fI6joiITIBzjpaGdWx57hv0dTUwe+l7Wbj6455WAkdkh0som3k+wwNdNNc9r6EHknZUERRJUc45ulp3EMjKI5RX5XWcaaFkxioCWXk07nva6ygiInIC0cggu1//Gfs2/4qcghqWXHgrZTXnplSPjnBeFaXVqxnsa6bt4Cs4pyWwJX2k3PIRIhLX076b4YEOSmaoG+Nk8fmDlM+8kIO7fk9/T2NK3FEWEZGjDfa3sevVH9Hf00jNwr+gcs6bMUvN9ovcolkMD/XQ1bKVrHCxZviWtJGa/6JEhMa9T+PzZ5NTONvrKNNK+cwLMF+Apv3PeB1FRETG0d22i20v3MnQQCcLz/4wVXPfkrKVwBGF5WcSzptB+6HXGeht9jqOyISk9r8qkQw10NtEZ8tW8orn4dMC6JMqmJVHafU5tB54WdN+i4ikmLaDG3jj5bvxB3NYfN5nKCg7w+tIE2JmlNacSyArl5b6F4kM93kdSeSEVBEUSUGN+/6I+QLkl8zzOsq0VDn7YlwsQnPd815HERGRhJaGdezZ+Avyiuaw+LzPEMot9zrSSYkPP7gA56K01L1ALDrsdSSR41JFUCTFDA/10HrgZUpnnKN1iaZIKLeCwrIzaa57jlgs4nUcEZGM13rwFfZt/hUFpQtZePaHCQTDXkc6JcHsAkqrVzM00E7d9oe8jiNyXJosRiTFNNc9h4tFqJxzMd3tu72OM21VzH4TO17+Pu2HXqO0+hyv44iIeK65/oWkXq+89nwAOpq3sHfT/eQXz2f+ypvTfj2+nIIa8ksX0VL/AnlFc1TGSMpSRVAkhcSiwzTvf47CsjMJ5VaoIngKJvpFxjlHICuPA7t+Tyx28t13Rr7AiIjIqevramDPaz8jJ7+a+avSvxI4oqhiKS4WYd+WX5OTX0M4X8tASepR11CRFNJ6YB2R4V4q51zidZRpz8zIK57HUH8bQ/0dXscREck4w4Nd7Hz1R/izclmw6kPTajiEmY95K27EH8hm12s/IRoZ8DqSyFFUERRJES4W5dDep8ktnEVe8Vyv42SEvKLZmPnpbt/ldRQRkYziXIzdr/+c6HAfC1beTDC7wOtIky6YXcC8FTcx2N/K3s0PaLF5STmqCIqkiPamTQz1t1E55xItIJ8kPn8WOYUz6eusIxYd8jqOiEjG6GzeSk/7bmYteRc5BTVex5ky+SXzqVlwFR2Nr9O0/1mv44gcQRVBkRTgnKNxz5Nk55RTVLHU6zgZJb9kPs5F6enY53UUEZGMMNDbRFfLNkpr1mTERCqVcy6hsHwp9W88TE/HXq/jiBymiqBICuhu20lfdwOVc96Mmf5ZJlNWqIiscCk97bvUbUdEZIrFosO0HniZQFYuM894u9dxksLMmLPserJDxex+7WcMD/Z4HUkEUEVQJCU07n2KQFY+pTPO9jpKRsovmUdkqJeB3kavo4iITGsdTRuJDvdRWr0afyDL6zhJEwiGmXfWB4gM97Jn489xLuZ1JBFVBEW81tfVQFfrG1TOftO0mTY73eTk1+DzZ9PTvsfrKCIi09ZAXws97XvIL1lIdk6Z13GSLqeghllnvpPutp0c2PV7r+OIqCIo4rVDe5/C58+mrPYCr6NkLPP5yS2aRX/3QU3xLSIyBZyL0X7wVfyBMIUVS7yO45mymjWU1pzLod1/oLN5q9dxJMOpIijiocG+NtoPvUZ57fkEgmGv42S0vKI5gKNXk8aIiEy67radDA92UVx1Fj5fwOs4npq1+J2E82vY/frP6es+4HUcyWCqCIp4qHHfHzHzUTH7Iq+jZLxgdgHZOWX0dOzVpDEiIpMoGhmks3kbobxKwvnVXsfxnM8fZMGqD+EPhNj5yg8ZGuj0OpJkKFUERTwyPNhDS8NLlMw4m6xQoddxhHirYGSoh8G+Fq+jiIhMG50tW3GxYYorV2id3ISsUCELzv5vRCMD7Hz1R0Qjg15HkgykiqCIRxr3/REXi1A19xKvo0hCuKAG8wXp6dCkMSIik2F4sJuett3kFc8lmF3gdZyUkpNfzbwVN9Hfc5Ddr/8MF4t6HUkyTFIrgmZ2lZltN7OdZnbbOK9/wsw2mtkGM3vWzJaMeu0fEsdtN7O3JjO3yGSLDPXSXPcniqvOIpRb4XUcSfD5AuQWzqSvq4FYdMjrOCIiaa+zeQtmPgrLM3eCmOMpLF/MrMXvoKtlmyqDknRJqwiamR+4C7gaWAK8b3RFL+EXzrnlzrmVwNeBbyaOXQLcACwFrgL+b+J8Immpcd8zxKLDzJh3mddRZIy84rngYvR27vc6iohIWhsa6KSvq578kgX4AyGv46Ss8pkXUHvGtXQ0bVJlUJIqmS2Ca4Cdzrndzrkh4D7g7aN3cM51jXqaC4zM2PB24D7n3KBzbg+wM3E+kbQTGe6jaf+zFFcuJ5xX5XUcGSMrVERWqJie9j2aNEZE5DR0Nm/FfAHySxd6HSXlVc6+SJVBSbpkVgRrgLpRz+sT245gZp82s13EWwQ/ezLHiqSDpn3PEosOUqXWwJSVWzyH4cEuhgbavY4iIpKWhgY66e9uSLQGZnsdJy2Mrgzu3HCv1rWVKZdyk8U45+5yzs0HPg/848kca2YfM7P1Zra+ubl5agKKnIbocD9N+5+hqGIZOZpCO2XlFszEzE9PuyaNERE5Fd2tOzDzqzXwJFXOvohZS95NV+sbbF/3fxns1w1JmTrJrAg2ADNHPa9NbDuW+4B3nMyxzrm7nXOrnXOry8vLTy+tyBRo3P8s0cgAM+Zd7nUUOQ6fP0hOYS19nXXEosNexxERSSuR4X56O/eTWzwHvz/L6zhpp7z2PBas+m8M9rez9YVv09m8zetIMk0FknitdcBCM5tLvBJ3A/D+0TuY2ULn3I7E07cBI48fAn5hZt8EqoGFwEtJSS0ySSLDfTTu+yOF5UvJKVDP5lSXVzSX3o599HXVxyeQERGRCelu2wk4CkrUGniqCsvO4MzzPsvu137Kzld/QPnMC6hZ+LYTdrNtrn8hSQllOkhaRdA5FzGzW4DHAD/wQ+fcZjP7ErDeOfcQcIuZXQ4MA+3ABxPHbjazXwFbgAjwaeecRtFKWjm05ylikUFqFlzldRSZgKxwCcHsfHo69qoiKCIyQbHoMD3tu8kpqCWQlet1nLQWyi1n8XmfoWHnozTte5bO5q3ULrqGosoVmJnX8WQaSGaLIM65R4BHxmy7fdTjvz7OsV8BvjJ16USmzvBgF037n6WkaiXhfM0Umg7MjNyiOXQ0bmR4sEsLIYuITEBPxx5cLEJ+6SKvo0wLPn+QmWdcS3HFcvZv+w92v/4zcgpmMmP+5RSWLcZsakd5xWIRYpEBotFhcDHM/PgC2fgDIVVGp4GkVgRFMtXBPU/gXJQZC670OoqchNzCWXQ0bqK3Yz9Flcu8jiMiktKci9HdupPsnHKyw8Vex5lW8orncub5f0NrwzoO7v4Du179EdnhUkpr1lBctYJQTtlpnd/FogwPdTM80MXwYCdDg10MD3YRHe4bd3/zBcgOlxDOryanoFYzw6YpVQRFpthQfzstdS9QVn3uaX9QS3L5AyFCeZX0du6jsGKp7n6KiBxHX2c90Ug/JTNWeR1lWjLzUVZ7HqXVq2lvfJ3m+hc4sPNRDux8lOyccvKL5xGLDRHIKsAfyMbnz8LnDwKGczFcLIKLDRMZ7iMy1EdkuJfhwW6GB7uIDPXw5+W7jWB2PtnhEoJFc/AHw/j8WRg+nIsSjQwyPNjJQG8z7Yc20NG4kfySBRSULcKnyYHSiiqCIlPswO7/AmDGfM0Umo7yiubQUv8CA72NhPPUrVdE5Fi623YSyMonpM/KKWU+PyUzVlEyYxVD/e20N22iu3UH7Y2vnfTag4GsXILZheQU1BDMLiCYXUgwO29CXU6dcwwPdtLV+gZdrdvp7dxHac0aQrmauT9dTLgiaGbLgXcTn7XTP+ol55z78GQHE5kO+nsaaT2wnoqZF5IVKvI6jpyCcF4VPn8WvR37VBGUk6ayUzLFUH8HQwPtFFedNeHeE5rh8vRlhYupnH0RlbMvwrkYh/Y8yfBQN7HoELHoENHIEOAwXwCfz4/5AgSCOQSCOfiDOac1xtDMyAoVUVazhsGShbQ2vETTvj9SXHUW+SULJu+XlCkzoYqgmV0F/Hac/Y14O7IKM5FxNOx4BJ8/S+sGpjHz+ckpmElPxx5i0SF1e5EJU9kpmaSnYzdmfnILZ3kdJWOZ+Qhk5XoyW2t2uJiquZfSemA97Ydew8WiFJSdkfQccnImehvgfwBBoId4ATYMDAG9wL6piSaS3rrbdtLZvIUZcy/VFNppLq9oNrgYvV31XkeR9KKyUzJCLDpMb2cdOYW1ulmWwXz+IGW155FTMJOOpk10t+32OpKcwEQrgmcB3cDsxPNXgMXEC7RPTkEukbTmXIz67Q+TFSqiYtabvI4jpykYKiKYXUBvh767y0lR2SkZobezDheLkFc8z+so4jEzH6U15xLKq6L90AYGepu8jiTHMdGKYAjY4ZzrAGJAtnNuH9AA3DFF2UTSVtuhDfR1N1C94KrEjF2SzuJrCs5mqL+N4cEur+NI+lDZKdOec46e9t0EQ4VkhbRkhMTLzLKaNQSz82ipf/GkJ7CR5JnoZDEdwMhqyq3AMjP7PHAGEJmCXCJpKxYd5sCOR8nJr9EU2tPIn9cU3EdR5fKkTXJQXnt+Uq4jU6IDlZ0yzQ31tzM82Elx1SotsSOHxbuJns+h3X+g9cDLlM+8UH8fKWiiLYJvALPMrAB4nviYh/9NvCK5cYqyiaSlpv3PMjTQQe0Z15zWbFySWv68puB+nHMnPkBEZadkgJ6O3ZgvQG7hTK+jSIoJZhdQWLGMgZ5D9HZqaEUqmui31C8D/xMoAv47sIv4wPcG4JYpSSaShiJDvRzc8wSFZWdq6uRpKK9oDtHIAAO9jV5HkfSgslOmtVh0iL7OenILZmoYhIwrv2QB2eFSOho3EosOeR1HxphQRdA595hz7hvOuf3OuR3OuYVAmXNulnNu/RRnFEkbB3Y/Tiw6RM2it3kdRabA6DUFRU5ksspOM7vKzLab2U4zu22c1z9hZhvNbIOZPWtmSyb1FxE5hr6uepyLkls8x+sokqLMjOKqlcSiQ3Q2b/M6joxxzDGCZjYLGHTONSYej7dPHoBzbv8U5RNJGwO9zTTXPU9ZzRrCeZVex5EpoDUF5UQmu+w0Mz9wF3AFUA+sM7OHnHNbRu32C+fcdxP7Xwt8E7jq9H4TkRPr6dhPMDtfk8TIcWWFi8gtmkN3207yiucSzM73OpIkHG+ymL3ExzSsTTw+1qAYd4LziGSEhh2P4PMFqZ5/pddRZArlFs2ip30XfV0N5BXP9TqOpJ69TG7ZuQbY6ZzbDWBm9wFvBw5XBJ1zo6eyzT3ONUUmzfBgN0P9rRRVLNMkIHJCRRVL6euso7N5K2W1a7yOIwkn6hpqYx4f60cko/W076GjaRNVcy/Rna5pLitUTCArj95OdYSQY5rMsrMGqBv1vD6x7cgLmn3azHYBXwc+ewqZRU7KyGdgTuG4Dd8iR/AHQuSVzKevq07LMKWQ492N/BDQPOqxiIzDOUf9Gw8TzC6gcvbFXseRKWZm5BbOorN5C5GhXgJZuV5HktTiSdnpnLsLuMvM3g/8I/DBsfuY2ceAjwHMmqUv73LqnHP0du4nlFtJIBj2Oo6kiYLShfS07aKzZTtlNed6HUc4TkXQOffj8R6LyJHaD71Gb+d+Zi99r8aMZYiRimBvZx2F5Yu9jiMpZArKzgZg9Lz8tYltx3If8P8dI9vdwN0Aq1evVvdROWWDfc1Eh/soqljmdRRJI/5AiLzieXS37SRSfiaBrDyvI2W8Cc0aamYfNbMfmtnSUduWJrZ9dOriiaS2WHSYhh2PEM6fQWn1OV7HkSQJZOWSnVNGb+c+rSkoxzRJZec6YKGZzTWzLOAG4KEx11k46unbgB2nm13keHo79mG+AOH8aq+jSJrJL41/XHW37fY4icDE1xH878QHp28dtW0rcC3wd5MdSiRdxBePb6d20V9q8fgMk1s4i8hQD0MD7V5HkdR12mWncy5CfM3BxxLH/so5t9nMvpSYIRTgFjPbbGYbgFsZp1uoyGSJxSL0dTWQU1CLz+f3Oo6kmUAwTE5BDT0de4nFIl7HyXgTne1zJvCGcy42ssE5FzOzBmDRlCQTSXHDQz2HF48vKF144gNkWskpqKHt0AZ6O/eTHS7xOo6kpkkpO51zjwCPjNl2+6jHfz0JWUUmpK+rAeei5BXN9jqKpKn8kgX0ddXT27GP/JL5XsfJaBNtwhgAFpjZ4cXREo8XJF4TyTgHd2nx+Ezm82cRzptBX2c9o77ni4ymslOmnb7O/QSCuWSFS72OImkqK1xCVqiY7radGl7hsYlWBF8CQsBzZvZPZvZPwJ8S216aqnAiqWqgt4nm+hcorzlPi8dnsNyiWcSigwz0NHodRVKTyk6ZVqLD/Qz0NpFTOFNrB8opMzPySubFh1f0t3odJ6NNtGvovwCXA3OALya2GRADvjbRi5nZVcC/An7gHufcV8e8fivwESBCfPrt/+ac25d4LQpsTOy63zl3LSIe2f3azzDzkZVTQnP9C17HEY+E86rw+bPo7dxPOH+G13Ek9UxK2SmSKnq76gHILZx5gj1Fji+noJb2Q6/R07GX7Jwyr+NkrAm1CDrn/ov4TGV7+fNCuHuAG5xzT0zkHGbmB+4CrgaWAO8zsyVjdnsVWO2cWwE8SHxh3BH9zrmViR9VAsUz3W076e85SEHZYvyBkNdxxENmPnIKaunvPkAsOux1HEkxk1F2iqSSvs46gqEigtkFXkeRNOfzBcgpqKWvs17lp4cmPM2hc+4B59x8oAKocM7Nd849eBLXWgPsdM7tds4NEV/r6O1jrvGkc64v8fQF4usliaQM52LUbX8YfzCHgpIFXseRFJBbOAvnYvR1HW9pN8lUk1B2iqSE4cQsybkFag2UyZFXNAfnoio/PXRS892bWTYQBnLMbNbIzwQPrwHqRj2vT2w7lg8Dj456HjKz9Wb2gpm942Ryi0yWtgOv0N/dQFHFMkzTZgvxQe+BrDx6O/d7HUVS1GmWnSIpoa8z/hUup1D36GVy/Ln83Od1lIw1oTGCZrYI+AFw4Tgvu4meZ6LM7CZgNfDmUZtnO+cazGwe8ISZbXTO7Rpz3MeAjwHMmqUyViZXLDpEw87/JKdgJjkFKgglzszILZxFZ/MWIsN9BII5XkeSFJHsslNkqjjn6O2sIzunTJ9xMmlUfnpvoi2C3wfW8ucxDmN/JqKB+JpKI2oT245gZpcD/xO41jk3OLLdOdeQ+O9u4Clg1dhjnXN3O+dWO+dWl5eXTzCWyMQ07n2a4cFOZp7xl5otTY6Qk5g4YeSOuUjCZJSdIp4bHuwkMtR9+LNOZLKM3FjvS0xEJMk10buR5xCf5exfgS3EZ/U8WeuAhWY2l3gF8Abg/aN3MLNVwPeAq5xzTaO2FwN9zrlBMysjXrCOnkhGZEoND/VwaO/TFFUsI694Lv29Wi5A/iyYlUdWqJjernoKys7wOo6kjskoO0U819tZBxg5+ccb0SNy8oLZ+WSFiunrrKOgdJHXcTLORCuC9UDUOfe3p3oh51zEzG4BHiO+fMQPnXObzexLwHrn3EPEp9rOAx5ItLiMLBNxJvA9M4sRb8X8qnNuy6lmETlZh3Y/QSw2TM3Cq72OIikqp3AmHY2vMzzYpRn1ZMRpl50iXnPO0ddZRyivEn8g2+s4Mg3lFNbS0biR4cFugtn5XsfJKBOtCP4j8DMz+wvn3COnerHEsY+M2Xb7qMeXH+O454Dlp3pdkdMx1N9Oc91zlFavJpRb4XUcSVG5BbV0NL5Ob2c9RRVjV8aRDDUpZaeIlwb7WohG+ikq1NcwmRo5BTPpaNxIX1cDheWLvY6TUU5mQXkDfmdmnUDHqNdcYmpskWnpwO7HAaief4XHSSSV+YNhsnPK6evaT2H5mRpHKqCyU6aBvq46zPyE82d4HUWmqUAwTFa4hP5uVQSTbaIVwdmjHhclfka4yQojkmoGeptobVhPxaw3kRUq8jqOpLjcwpm0HXyFoYEOssPFXscR76nslLQ2skZqOL8an0+T3MrUycmvpqNpE5GhXgJZuV7HyRgT/Vf9E1RoSQY6sPMxfP4squZd6nUUSQM5BTW0HXyVvs79qggKqOyUNDfQ00gsOkSuZguVKRYuqKGjaRN93QcoKF3odZyMMaGKoHPu5inOIZJy+rrqaW98nRnzLieYled1HEkDPn8W4bwq+rrqKapcoe6hGU5lp6S73s46fP4sQnmVXkeRaS6YlUcwu4B+VQSTasLt/GbmB94LnA80Aj8D5gCbnHNtU5JOxEMNO/4TfzCHytkXex1F0khO4Uz6ew4y2NdCKFfrmWY6lZ2SrmKxCP3dB8gtmoXZRJedltGa61/wOkJaCefX0NWylWhkAH8g5HWcjDChf9lmVgi8QLwAuwW4BlgCPAl8dsrSiXiku203Xa3bqZr7FvzBsNdxJI2E82dg5qe3c7/XUcRjKjslnfV3H8S5KDkF6hYqyZGTmJBooEdrNSfLRG/xfJU/L4w70tfpcaAfuGoKcol4xjlHw85HCGYXUDFzrddxJM34fAHC+dX0dzXgXMzrOOItlZ2Stno79+MPhMnOKfM6imSIYKgInz+bflUEk2aiFcG3Az3A4amunXNRYD8wbwpyiXimq2UbvR37mDHvcnz+oNdxJA3lFs4kFhumv+eQ11HEWyo7JS1FI4MM9DSSUzhTY50lacyMcF4VA72NOKd5tpJhohXBUmCXc25sX6cYUDC5kUS841yMhp2Pkp1TRlnNGq/jSJoK5VXi82fR11nvdRTxlspOSUt93Q2A02yhknShvCpi0SGG+jWEOhkmWhFsABab2ZkjG8xsDXAmoG86Mm20H3qN/u6DVM+/EvP5vY4jacrMR05BDf3dB4jFIl7HEe+o7JS01NdZRyArn2B2oddRJMOE8yoA1KMmSSZaEfwNkA1sIL4m0tnAc4nX/mPSU4l4wMWiHNj1e8J5MyiuOsvrOJLmcgpm4lyU/u6DXkcR7/wGlZ2SZiJDvQz2tZBbOEvdQiXpfP4sssOlqggmyUQrgrcDrwJB4gPesxLHvgZ8aWqiiSRXy4F1DPa1UL3wKk2VLactO6cMfyBEX5cafjKYyk5JO71ddQDqFiqeCeVVMTzQQTQy4HWUaW+iC8r3mNn5wPuAkYFT64BfOueGpiqcSLLEosMc3PU4uUWzKSw788QHiJyAmRHOr6G3Yw+x6LAmHspAKjsl3Tjn6OusIytcSiAr1+s4kqHC+VV0Nm+mv+cQeUVzvI4zrU14QXnn3DDwk8SPyLTSVPcnhge7mLv8/eoKI5Mmp6CGnvZd9Pcc0t31DKWyU9LJ8GAnw4NdFFet9DqKZLBgdiH+QIiBnkZVBKfYhCqCZvbD47zsnHMfnqQ8IkkXjQxwaM+TFJQuIr9k/okPEJmg0d1DVRHMPCo7Jd30dtYBRk5BrddRJIOZGaG8KvoS6/FquM7UmWiL4M3EB7qPZYntKswkbTXufZrocB/VC6/2OopMM0d0D41F8Pkm3AlDpoebUdkpacK5GH2ddYTyKvEHsr2OIxkunFdJb8deBvvaCOWWeR1n2ppoFXv/mJ9O4gVZDNg3NdFEpt7wUA+N+56hqHIFuboDKlMgp6AG52KaPTQzqeyUtNHTvptopJ/cwlleRxEhlFsJGAOaPXRKTXSymDljt5nZJcBDwBcmNZFIEh3a8wSx6BA1C97qdRSZprJzyvCpe2hGUtkp6aT14KuYL0A4f4bXUUTw+YNkh0sY6G3yOsq0dsqdbp1zTwHrgf8xaWlEkmhooIPmuucprVlNKLfC6zgyTZkZOfnVDPQc0uLyorJTUlIsOkxH4+vk5FerC7ukjOzcCoYG2olFNcnyVJnoZDF/NWaTH5gPrAWGJzuUSDIc2PU4OEf1vCu8jiLTXE5BLT3tu+nvPqhWwQyislPSRWfLNqKRAXLULVRSSCi3nK6WrQz0tZCTX+11nGlpord97uXYA96fn7Q0Ikky0NtE64H1VMy8kKxwsddxZJpT99CMdS8qOyUNtB18hUBWHqHccq+jiByWHS7BzM9Ab5MqglPkZLqG2jg/zwMfmfAJzK4ys+1mttPMbhvn9VvNbIuZvW5mfzCz2aNe+6CZ7Uj8fPAkcosc5cDO3+PzBaiae5nXUSQDqHtoRjvtslNkKkWG++hs3kpJ1SpN0y8pxXx+snNKGdQ4wSkz0RbBuWOeO6DJOTcw0QuZmR+4C7gCqAfWmdlDzrkto3Z7FVjtnOszs08CXweuN7MS4gPrVyeu/XLi2PaJXl9kRF9XPe2Nr1E17zKC2Xlex5EMoe6hGem0y06RqdbRuBHnopTMWEVfd4PXcUSOEMqtoKNpE9HIAP5AyOs4086Ebv045/aN+dl/CgXZGmCnc263c24IuA94+5jrPOmc60s8fQEYmc//rcDjzrm2ROXvceCqk7y+CAANO/4TfzCHqtlv9jqKZJDsnDJ8/mz6uuq9jiJJMkllp8iUaj34Ctk55VpEXlJSdmIyP80eOjUmVBE0s++a2W4zWzlq21lmtsvM/u8Er1UD1I16Xp/YdiwfBh49xWNFxtXdtouu1u1UzXkL/mDY6ziSQcyMnIIadQ/NIJNUdopMmcG+Fnrad1NafQ5m5nUckaNkhYowX5CB3mavo0xLE+0M/pdAwDm3YWSDc+414l1Lr53sUGZ2E/FuoP9yksd9zMzWm9n65mb9wciRnHPUv/H/CGYXUjFrrddxJAPlFNRqcfnMktSyU+RktRxYDxil1ed4HUVkXGZGKLdcLYJTZKIVwTKge5ztPcBEp5hqAEYPjKlNbDuCmV0O/E/gWufc4Mkc65y72zm32jm3urxcM1/JkTqaNtHXVUf1givx+YNex5EM9OfuoRqHkyEmo+wUmRLOxWg98DIFpYvIChV5HUfkmEK55USH+4gM9XgdZdqZaEWwFVhkZoebUczsQuCMxGsTsQ5YaGZzzSwLuAF4aPQOZrYK+B7xSuDoqv9jwJVmVmxmxcCViW0iE+JiURp2PEoot4LSGbrzKd4YPXuoi0W9jiNTbzLKTpEp0d22k+GBDkprzvU6ishxhQ6PE1Rvv8k20VlDnwDeDzxhZs8mtr2J+DTYf5jICZxzETO7hXgFzg/80Dm32cy+BKx3zj1EvCtoHvBAoq/6fufctc65NjP7X8QrkwBfcs61TTC7ZJDm+hfG3d7TvofBvmbKas+n5cC6cfcRSYZwQTU9HXsY6G0inD/D6zgytU677BSZKi0N6/AHcyiqWOp1FJHjCmTl4wuE1D10Cky0IvgF4G1AIXBJYpsB7YnXJsQ59wjwyJhtt496fPlxjv0h8MOJXktkRCwWobN5C1nhEsJakFQ8FsqtwHwB+roPqCI4/U1K2Sky2SLDfXQ0baKs5jx8vol+FRTxhpkRyomPE3TOaWKjSTTR5SN2EZ+85V5ga+LnR8Aa59zuKUsnMgl62nYRjQxQVLFMHx7iOTMf4bwZ9HcfwLmY13FkCqnslFTVdnADLhahrGa111FEJiSUW04sOshAb6PXUaaVCd8GShRo/20Ks4hMulh0iM6W7YTyqgjlam4GSQ05BdX0ddUx2Neqv8tpTmWnpKLWA+sI588gnK+VuCQ9ZCfKyp723YTzqjxOM31MdLIYzGyOmX3PzF4zswfM7Hwzu93M1LlcUlZny3ZcbJiiimVeRxE5LJRXBeajv/uA11FkiqnslFTT332Qvq56SqvPVS8ZSRuBYC7+QIju9j1eR5lWJtQiaGZnAn8iPs7BgF5gCPgi8SmwPzNF+UROWWS4j562neQUziIrVOh1HJHDfL4AodwK+roPUFS5Ql/GpimVnZKKmuufx3wBSmec7XUUkQkzM7Jzyuhp361xgpNooi2CXwWKgC0jG5xzrxAf8H7JpKcSmQQdjZsANCOapKSc/Bqiw30MD3R4HUWmzqSUnWZ2lZltN7OdZnbbOK/famZbzOx1M/uDmc0+/egyHUUjA7QeeIXiyrMIZOV6HUfkpGTnlDM82MVgX4vXUaaNiVYE3wwcAsYuwFbHkQu9i6SEwb5W+rrqyC9dRCCY43UckaOMzBjap+6h09lpl51m5gfuAq4GlgDvM7MlY3Z7FVjtnFsBPAh8/XRCy/TVdvBVYtFBymde4HUUkZMWyi0D4kuCyeSYaEUwC2hzzg2N2V4EBCc1kchpcs7R3vg6/kCIgrIzvI4jMi5/IJvsnDKNE5zeJqPsXAPsdM7tTpznPuDto3dwzj3pnOtLPH0BqD31yDJdOedornuecH41uYWzvI4jctICWfkEgrl0t+/yOsq0MdGK4A7gTDP7SOJ5yMz+OzAL2D4lyUROUV9XHUP9bRRWLNX6SJLSwvnVDA92MTzU43UUmRqTUXbWEG9BHFGf2HYsHwYePdmgMv31du6jv+cg5TMv0PgqSUtmRl7xPLUITqKJVgTvJj7Q/XuAA84iPvbBAT+YmmgiJy8Wi9DRuIlgqIjcQg2TkdSWk18NQH9Xg8dJZIoktew0s5uIr1v4L8d4/WNmtt7M1jc3N0/25SXFNdc9jy8QoqRqlddRRE5Zfsk8hgbaGexv9zrKtDDRBeXvIj5GAeKF2sitpO8mXhNJCd2tO4hG+inWTIySBgJZuQRDRRonOE1NUtnZwJHjCWsT245gZpcD/xO41jk3eIw8dzvnVjvnVpeXa/3KTBIZ6qX90GuUzjgHfyDb6zgipyyveB4APeoeOilOZkH5z5jZHcC5iU3rnXN7pySVyCkYGuikq2U74fwaLdItaSMnv5rO5i1Eh/vxB8Nex5FJNgll5zpgoZnNJV4BvAF4/+gdzGwV8VbHq5xzTaefWqabloZ1OBelfOb5XkcROS3hvCr8gTDd7XsorV7tdZy0d8KKoJkFgUagFVjknNs35alETsGBnf+Jw1FcqcXjJX2E82vobN5CX/dB8kvmeR1HJslklZ3OuYiZ3QI8BviBHzrnNpvZl4hXKh8i3hU0D3gg0RNiv3Pu2sn4PST9uViU5ro/kVc8j3BelddxRE6LmY+84rn0tO/2Osq0cMKKoHNu2MwGgAHnnEtCJpGT1ttZR+uB9fHlIrLyvI4jMmHB7HwCWbn0dzeoIjiNTGbZ6Zx7BHhkzLbbRz2+/HTOL9Nbe+NGhgY6mLn4nV5HEZkU+cXz6GzewtBAJ1mhQq/jpLWJdg39NvBlM7vCOff4FOaRaaq5/oUpO7dzjsY9T+ILhCgsWzxl1xGZCmZGOL+G7tYdxKLD+PxakWca+TYqO8VDzjka9z1Ndk45heUqH2V6+PM4wT2UzFjpbZg0N9GK4NVADPhPM9tOvLvLyB1O55y7bCrCiUxEb8dehgbaKa05V1+iJS3l5M+gu/UN+nsOkVs4oXXGJT2o7BRP9bTvpq+rnllL3oXZRCeKF0ltOfnV+PzZdLfvUkXwNE20IvjmUY8XJ34c8RnQ1F1UPBONDNLRtInsnDJyCvQFWtJTVrgUnz+b/u4DqghOLyo7xVONe58mEMyldMY5XkcRmTTm85NXNEfrCU6CY1YEzWwF0Ouc2wU8nbxIIhPX2bSZWHSY4qqVWi5C0la8e+gM+rrqcS6mO/dpTGWnpIqB3iY6W7YyY/4V6i0j005+yTwadjzK8FAPQc0NccqO1yK4AXgeWEv8ruYLzrkLkxFKZCIG+9vo6dhDfslCDRaWtBfOn0Fvx14GepsJ51V6HUdO3QZUdkoKaNz7R8wXoHym/vxk+hk9TrC4crnHadLX8W47O6DczCa81qBIsjjnaD+4AX8gRGH5mV7HETltodxKzPz0a3H5dKeyUzw3PNhN68GXKa1erdYSmZZyCmoxX1DLSJym41UEDwLzgUHiBdt5ZhYd5yeSlKQio/R27GFooJ2iyhXq8iLTgs/nJ5RXSX/3QbRST1pT2SmeO7T3KZyLUTnnzSfeWSQN+XwB8opm092+y+soae14FcGfER/QPjLwyo7zI5I08QliNpOdU05OQa3XcUQmTTh/BtFIP8MDHV5HkVOnslM8NTzYRXPd85TOWEUop8zrOCJTJq94Hv3dh4gM93kdJW0ds+uKc+42M3seWAp8GagHfpCsYCLH0tG0SRPEyLQUzpsBQF/3AbLCxR6nkVOhslO8Fm8NjFI173Kvo4hMqfzieRzE0dO+l6KKJV7HSUvHHcPgnPst8FszuxLY5Jz759O5mJldBfwr4Afucc59dczrFxNfgHcFcINz7sFRr0WBjYmn+51z155OFklPg31t9HbsJb90IVmhAq/jiEwqfyCb7Jwy+rsPUlSx1Os4coomu+wUmag/twaerdZAmfZyC2dhvgA97btUETxFExrM7py75HQvZGZ+4C7gCuJ3SNeZ2UPOuS2jdtsP3Az83Tin6HfOrTzdHJK+nHO0H3o1PkFMmSaIkekpnD+DjsaNRIZ6CWTleh1HTsNklJ0iJ+PQnidxLsaMeZd5HUVkyvn8QXILZ9GtCWNOWTIXq1oD7HTO7XbODQH3AW8fvYNzbq9z7nUglsRckiZ62vcwNNChCWJkWgvnVwPx7qEiIhM1PNhFc/0LlM44h2y1BkqGyCueS19XA9HIgNdR0lIyK4I1QN2o5/WJbRMVMrP1ZvaCmb1jvB3M7GOJfdY3NzefRlRJNdHIIJ1NmzRBjEx7waw8gtkF9Hcf9DqKiKSRg3ueSLQGXup1FJGkyS+eB4lxgnLyklkRPF2znXOrgfcD3zaz+WN3cM7d7Zxb7ZxbXV5envyEMmU6mjYRi0UomaEJYmT6C+dXM9jXQjQ65HUUEUkDA73NNNc9T1n1uWoNlIySWzgHzEdPh7qHnopkVgQbgJmjntcmtk2Ic64h8d/dwFPAqskMJ6lrsH9kgpgFBLM1QYxMf+H8GYBjQK2CIjIBDTsewecLUr3gSq+jiCSVP5BFbsFMuttUETwVyawIrgMWmtlcM8sCbgAemsiBZlZsZtmJx2XAWmDL8Y+S6cA5R/vBDZogRjJKVqgYfyCkcYIickLdbbvpaNpE1dxLdLNUMlJ+yTx6u+qIRtSL5mQlrSLonIsAtwCPAVuBXznnNpvZl8zsWgAzO9fM6oH3AN8zs82Jw88E1pvZa8CTwFfHzDYq01Rvx16GBtopqlyuCWIkY5gZ4fwZDPQ0EosOex1HRFKUczHq33iYYHYhlbMv9jqOiCfyiueBi9HbudfrKGlnQstHTBbn3CPAI2O23T7q8TriXUbHHvccsHzKA0pKiUWH6GjaRHZOGTkFM098gMg0Es6vpqd9D91tOyksV2u4iByt/dBr9HXVMWfZ9fj8WV7HEfFEXtEcMB/d7bspKF3kdZy0kk6TxUiG6WjaQiw6RHHVWZogRjJOKKcc8wXoaNp84p1FJOPEosM07HiEcH4NJTPO9jqOiGf8gRA5+TX0aJzgSVNFUFLS0EAHPe27yCueT1aoyOs4IklnPj/hvCo6mjfjnJZWFZEjHdzzB4YGOph5xl9ipq9zktnyi+fR27lfwylOkj45JOWMTBDj82dRVLHE6zgingnnzyAy1ENv536vo4hIChnobaJxz1OUzDib/JKjVtMSyTh5xfNwLqry8iSpIigpp6+rjsH+VooqlmnMg2S0cF4VmI+OJs2NJSJxzjn2b/0PfP4sahdd43UckZSQVzwXMLrb1T30ZKgiKCklFh2mo3EjWaFicovmeB1HxFM+fxb5xfPpbNY4QRGJazv0Kt1tO6lZeDXB7Hyv44ikhEAwTDh/Bj2qCJ4UVQQlpXS1vkE0MkBx1UpNECMCFFUsZaC3iYHeJq+jiIjHIsP91G//HTkFMymrPc/rOCIpJb94Hj0d+4jFIl5HSRuqCErKiAz30d36BjmFM8nOKfE6jkhKKCqPj5PV7KEi0rDjESJDvcxe8i5NECMyRl7xPFxsmL7OOq+jpA19ikjKGPmiW1SxzOMkIqkjK1xMOL+GDnUPFcloXa07aKl/gcrZF5FTUON1HJGUk188D0DjBE9CUheUFzmWwf42+jr3U1B2BoFgjtdxRFJKUcVSDu56nOHBbo0JEskgzfUvAPHx8wd3/xeBrDyC4ZLD20XkzwJZuYTyqhLjBC/zOk5aUIugeM45R8eh1/H5sykoPcPrOCIpp6hiKeDobN7qdRQR8UBH0yaiw32UVp+Dz+f3Oo5IyoqPE9yLi0W9jpIWVBEUz/V3H0gsF7EUnz/odRyRlBPOm0FWqJiOpk1eRxGRJBvobaKnfTf5JQvIzinzOo5ISssrnkcsOkRfV4PXUdKCKoLiKReL0tG4kWB2gZaLEDkGM6OoYildbTuIRoa8jiMiSRKLDtN64GUCWbkUViz1Oo5IyvvzOMFdHidJD6oIiqe623cRGe6lqHKFlosQOY7C8qW4WISu1u1eRxGRJGlvfI3ocB8l1avx+TStg8iJBLPzCeVW0t220+soaUEVQfFMNDJIZ/M2QnlVhPMqvY4jktLyi+fiD4S1uLxIhmg/9Bq9HfsoKFtMSF1CRSYsv3QBPe17tJ7gBKgiKJ7patmGiw1TXLnc6ygiKc98fgrLz6SjeasGwYtMc0MDHezb8muyQsUUlp/pdRyRtFJQsoBYbJjejn1eR0l5qgiKJyJDvXS37ya3aA7B7AKv44ikhaLypUSH++jp2Ot1FBGZIs7F2LPxPpyLUlq7RgvHi5ykvOL5gKl76ATo00U8MTINvu50ikxcQdkizPxaXF5kGmvc+zQ97buYufjtBLPyvI4jknYCwTA5BbV0te3wOkrKU0VQkm5ooIvezn3kl8zX4vEiJ8EfCJFfupCOps0457yOIyKTrK+rngM7H6OoYjml1ed6HUckbRWULqS3s45oZMDrKClNFUFJus7mTZgvSEHZYq+jiKSdooqlDPW3MdDT6HUUEZlEsegQu1//BYGsPGYvfbdm0hY5DfklC8HF6Gnf43WUlKaKoCTVYF8r/d0HKShdhN+f5XUckbRTVL4EgI5mLS4vMp3Ubf8dg30tzFl2g3rLiJymvKLZmC+g7qEnoIqgJI1zjo6mTfgCIfJLF3gdRyQtBbMLyC2cRUeTxgmKTBcdTZtpqX+BytkXU6DyUeS0+fxB8orm0N2qiuDxJHV1UjO7CvhXwA/c45z76pjXLwa+DawAbnDOPTjqtQ8C/5h4+mXn3I+TElomzUBPI4N9LRRXrdTCuCKnobB8KQd2PsrQQCdZoUKv44hkhOb6F6bkvNHIAAd3PU4wVEhWuHjKriOSafJLFnJg56MMD/YQzNbES+NJWougmfmBu4CrgSXA+8xsyZjd9gM3A78Yc2wJ8AXgPGAN8AUzK57qzDJ5RloDA8Fc8orneh1HJK0VVSwF0OLyImnOOUdrw3pcLEJZzRrM5/c6ksi0MdK6rmUkji2ZXUPXADudc7udc0PAfcDbR+/gnNvrnHsdiI059q3A4865NudcO/A4cFUyQsvk6OuqY3iwk8KKpVoTSeQ0hXIryM4pU/dQkTTX07aLgd5GiipXaE1dkUmWU1CLPxCiW+MEjymZ38hrgLpRz+sT26b6WPFYLBahs2kLwVAhOQW1XscRSXtmRlH5UrrbdhEd7vc6joicgqGBTtqbNhLKqyKveJ7XcUSmHTMf+SXz6VKL4DFNq6YZM/uYma03s/XNzc1ex5GElvoXiQz3UlSxTNNhi0ySooqlOBels3W711FE5CS5WJTWhpfw+YKUVp+jslFkiuSXLIovudSresF4klkRbABmjnpem9g2acc65+52zq12zq0uLy8/5aAyeaKRQQ7u/i+yc8oJ5VZ6HUdk2sgtmk0gmKvuoSJpqKNpE8ODXZRWr8YfCHkdR2TaKkysWd3Zss3jJKkpmRXBdcBCM5trZlnADcBDEzz2MeBKMytOTBJzZWKbpLim/c8QGeqhqGKp7niKTCIzH4UVS+hs2UYsFvE6johMUH/PIbrbdpJXMp9wfpXXcUSmteycEkK5FXSpIjiupFUEnXMR4BbiFbitwK+cc5vN7Etmdi2AmZ1rZvXAe4DvmdnmxLFtwP8iXplcB3wpsU1SWGSol0N7n6aoYinZOaVexxGZdorKlxKLDNDTvtvrKDKFzOwqM9tuZjvN7LZxXr/YzF4xs4iZvduLjDIx0cggrQdeJphdQFHFcq/jiGSEgrLF8TH1kSGvo6ScpI4RdM494pxb5Jyb75z7SmLb7c65hxKP1znnap1zuc65Uufc0lHH/tA5tyDx86Nk5pZTc3DPE8Qig1QvuNrrKCLTUkHpQswXVPfQaex0ll6S1OKco+3Ay8SiQ5TWrMGnpSJEkqKwbDHORelu16QxY02ryWIkdQz1t9Nc9xyl1asJ52lsoMhU8PmzKChdREfTZpxzXseRqXE6Sy9JCunp2EN/z0GKKpaRFSr0Oo5IxsgrnovPn0VXs7qHjqWKoEyJA7viQzir51/hcRKR6a2oYinDg530dU907i1JM5O2fJJm1vbO8GAXHYdeJ5RbQX7JAq/jiGQUny9AfslCOlu26abpGKoIyqTr6z5A64FXqJi1lqxwsddxRKa1ovIlYD46Gjd6HUVSnGbW9oZzMVoa1mE+PyXVqzVxmogHCssXMzTQzkBvk9dRUooqgjLpGnY8ij8QomrupV5HEZn2Alm5FJQsoO3QBt3pnJ5OZ+klSQGdTZsZHuigZMbZBIJhr+OIZKSRZSQ0e+iRVBGUSdXdtpOulm1Uzb2UQDDH6zgiGaG4aiVD/W30du73OopMvtNZekk8NtDbRFfrG+QVzSWn4JR69IrIJMgKFRHKq9J6gmOoIiiTxjlH/RuPEAwVUTFrrddxRDJGccUyzBeg/dAGr6PIJDudpZfEW7HoEK0N6wlk5VFUtcLrOCIZr7BsMT3te4hGBryOkjJUEZRJ0974On1dddTMfys+f9DrOCIZwx8MU1i2mLZDr+GcJo6cbk5n6SXxhnOOtoOvEI0MJJaKCHgdSSTjjSwj0dW6w+soKUMVQZkUsViEAzseJZxXRUn12V7HEck4JVWriAx10922y+soIhmvt3M/fV0NFFYsJVuTpomkhLyiOfgDITqbt3gdJWWoIiiToqX+RQb7W6lZ+BeY6c9KJNkKy8/E58+m7dCrXkcRyWjDQz20H9pAdk4ZBaWLvI4jIgnm81NYfiYdzVtwsajXcVKCvrHLaYtGBji463HyiudTkJiVSUSSy+cPUlSxjI7GjcRiEa/jiGQk52K0NqwDjNKac7VUhEiKKapYRnS4j56OvV5HSQmqCMppO7TnSSLDvdQu+gsVeiIeKpmxkmhkQNNji3iks3kbQ/1tiaUiNHO2SKopKF2M+QJ0NG3yOkpKUEVQTstgXyuNe5+mZMbZ5BbO8jqOSEYrKFlIIJhLm2YPFUm6wb5Wulq2kls4i9zCWq/jiMg4/IEsCkoX0dG0SWvvooqgnKb6Nx7GfH5qFv6F11FEMp75/BRXraCjaTOR4X6v44hkjFh0mJaGl/AHcyiuWul1HBE5jqKKZQwNdNDXVe91FM+pIiinrKt1Jx1Nm6iaeylZoUKv44gIUFp9Li4WoV2TxogkTduhDUSH+ymrWaPlk0RSXFHFUjAf7Y2veR3Fc6oIyilxsSj1239LVqiYytkXex1HRBJyCmoJ58+gpWGd11FEMkJvZx19nfspLF9Mdk6p13FE5AQCwRwKShfRfuj1jO8eqoqgnJKWhhfp7zlE7Rl/qbufIinEzCirWUNfVz193Qe8jiMyrUWGemk7+CpZ4RLNmi2SRkqqzmJooJ3ezv1eR/GUKoJy0oYHu2nY8Z/kF8+nqGKZ13FEZIySGWdjvgAtDS95HUVk2nLO0XpgPeAoqzlXa+iKpJGi8qWY+Wk/lNndQ/WpJSet/o3fEYsOMWvJdVouQiQFBYI5FFUso+3AK8Siw17HEZmWulq3M9jXQnHVSgJZeV7HEZGT4A+GKShbTHvjazgX8zqOZ1QRlJPS1foGbQdfpWruWwjlVngdR0SOoazmXKKRfq2VJDIFBvvb6GzaQk5BrZZOEklTpTNWMTzYRXfbTq+jeEYVQZmwWHSY/Vv+neyccqrmXup1HBE5jvySBWSFitU9VGSSxaLDtNS/iD8YpmTGKvWMEUlTheVL8AdCtB542esonlFFUCbs4O4/MNjfyuwl12mCGJEUZ+ajtOZcutt2MtjX5nUckWnBOUfbwVdGLRWR5XUkETlFPn+Q4qqz6GjcSDQy6HUcT6giKBPS332Qxr1PUVp9DvklC7yOIyITUFZzLmC0NLzgdRSRaaG3Yy99XfUUVizVUhEi00DpjHOIxYbpaNrodRRPJLUiaGZXmdl2M9tpZreN83q2md2feP1FM5uT2D7HzPrNbEPi57vJzJ3pYrEIezb+En8wTO2iv/Q6johMUFaoiKKKpTTXv6hJY0RO09BAF+2HNhDKraCgdJHXcURkEuQWzSE7XJqxa+8mrSJoZn7gLuBqYAnwPjNbMma3DwPtzrkFwLeAr416bZdzbmXi5xNJCS0AHNj5e/p7DjJ76XsIZOV6HUdETkLFrLVEh/toO/Sq11FE0lYsOkRrw4uYL0hpzbkaFygyTZgZpTVr6GnfzUBvk9dxki6ZLYJrgJ3Oud3OuSHgPuDtY/Z5O/DjxOMHgctMn7ae6m7fTePepyirOY+i8rH1dhFJdXnF8wnlVdG0/08457yOI5KW6rY/xPBgF6U15+IPhLyOIyKTqKxmNZiP5voXvY6SdMmsCNYAdaOe1ye2jbuPcy4CdAIjnfDnmtmrZva0mV003gXM7GNmtt7M1jc3N09u+gwUjQywd9P9ZIWLqT1DXUJF0pGZUTHrTfR3H6CnfZfXcUTSTtvBDbTUv0hB6SLCeZVexxGRSRbMLqCoYhmtB9Zn3DCKgNcBJuggMMs512pm5wC/MbOlzrmu0Ts55+4G7gZYvXq1bn1PQHP9+JNIOOdoO/AyQ/1tVM55s7qViaSx0hlnc2Dnf3Joz1Oa7EnkJPT3HGLf5l+RWzSHwoqlXscRkSlSXnseHY2v0974OqXV53gdJ2mS2SLYAMwc9bw2sW3cfcwsABQCrc65QedcK4Bz7mVgF6CR2lOot2MvvZ37KChbTHZOmddxROQ0+PxBKma9ia7W7fR1H/A6jkhaiA73s2vDT/AFQsw/6wOYaaJ1kekqv2QBodwKmvY/m1HDKJL5qbYOWGhmc80sC7gBeGjMPg8BH0w8fjfwhHPOmVl5YrIZzGwesBDYnaTcGWewv422xMxohRoXKDItlM+8AJ8/i8a9T3kdRSTlOefYu/l+BvtbmXfWTQSzC7yOJCJTyMxHxaw30ddVT0/HHq/jJE3SKoKJMX+3AI8BW4FfOec2m9mXzOzaxG4/AErNbCdwKzCyxMTFwOtmtoH4JDKfcM5pheQpEI0M0lL3Av5AiNKaNZoZTWSaCARzKKs9n7aDGxjo1RhqkeNp3PsUHU2bqV10DfnF87yOIyJJUFp9Dv5gDk37nvE6StIkdYygc+4R4JEx224f9XgAeM84x/0a+PWUB8xwzjlaG14iGh2kcs4l+APZXkcSkUlUNecSmuue5+Du/2Lu8vd5HUckJXU0baFhx6MUV62kYtabvI4jIkni82dRXns+h/Y8yUBvM6Hccq8jTTl1eBcgXglsP/QqA71NlFStJDtc7HUkEZlkwex8KmZeQNvBVzNyvSSRE+nrPsCejT8np6CGOUvfo14xIhmmYtZazOfn0J4nvY6SFKoICgBdLdvpad9DQeki8orneh1HRKZI5Zy34PMFOLDrca+jiKSU4cEudr76I/yBMAtWfQifP8vrSCKSZMHsAsprz6f14MsM9k3/UWiqCAo9HXvpbN5MTuEsCiuWeR1HRKZQMDuPijkX035oA72ddSc+QCQDxKLD7NrwY6JDvSxY9SFNDiOSwSrnXIKZj0N7/uB1lCmnimCG6+85RNuBVwjlVlBafY66wYhkgKo5lxDIyqP+jYczappskfG4WJTdr/+M3s465ix/HzkFNV5HEhEPZYUKKas5j5YD66f9MApVBDNYZ/M2muueJxgqoKz2fK2RJJIh/IEQ1fOvoKd9Nx1Nm7yOI+IZ52Ls2/IAnc1bmLn4HRRXLvc6koikgBnzLsPnC9Kw41Gvo0wpffPPUB1NW9i14V6C2QVUzLoInz/odSQRSaKymvMI582gbvtDRCODXscRSTrnHPVv/D9aD7zMjPlXUjHrQq8jiUiKCGbnUzX3EjqaNtHTPn3XFVRFMAO1N25k12s/JpxfTeXsi7RMhEgGMp+fWWe+k+GBDg7u1sQxknkO7XmCpn1/pHzWWmbMu9zrOCKSYipnX0wwu4D9236Li0W9jjMlVBHMMM31L7D79Z+RW1DLonM+qlnRRDJYXvFcSmvOpXHfM/R11XsdRyQpnHMc2PU4B3b+JyUzVjHzjGs1Pl5EjuLzZ1F7xrX0dzfQVPec13GmhCqCGcK5GPXbf8f+Lb+moHQRC8/5KP5g2OtYIuKx2kXXEMzKY8/G+4hFh72OIzKlnHMc2PmfHNz1e0qrz2HOshs0Pl5Ejqm4cgUFpWdwYOdjDA10eB1n0unTLwNEI0Ps2vATGvf9kfKZF7Jg5c34AyGvY4lICggEc5i95D0M9DZyYOdjXscRmTLxMYG/49CeJyirPY/ZS9+rSqCIHJeZMevMd4KLsXfT/TgX8zrSpNIn4DTX33OIbS/emZgR7e3MOvOdmM/vdSwRSSGF5Yspqz2fxn1P09G0xes4IpMuFh1m78Zf0rTvGSpmvYlZZ75LlUARmZDsnFJqF7+d7radNO17xus4k0qfgtOUc46W+hfZ+sKdRIZ7WXj2h6mY9SavY4lIipp5xrXk5Newd9N9DPa1eh1HZNIMD/bwxvrv0XboVaoXXEWtxgSKyEkqq1lDYflSGnY8Sm/Hfq/jTBpVBKehyFAvezb+gn1bHiSvaDZLLvgcBWVneB1LRFKYzx9k3ll/BcDOV39IZLjP40Qip6+/O94rpq/7APNWfIAZ8y5TJVBETpqZMWfpewiGCtn12o8ZGuj0OtKkUEVwGnHO0XbwVTb/6V9ob3yd6gVXsfCcjxLMLvA6moikgeycEuav/CsG+1rZteHHxGIRryOJnBLnHM31L7L1xTuJxSKcce4nKa5a4XUsEUljgaxc5q/8INHhfnZt+PG0WINXFcFpYrCvjZ2v/pA9G39BVriEJef/TeLOp/4Xi8jE5ZcsYPay99LTvpvdG36iyqCknchwH7tf/xn7E71izjz/r8ktnOl1LBGZBnLyq5m74kb6uhvYteHetJ9tO+B1ADk9keE+Du7+A837/4T5/NSecS0Vs9aqAigip6x0xtnEIoPs3/rv7NrwY+af9QGtOSppoaN5C/u3/gfDg13ULPwLKue8WeWhiEyqooqlzFn6HvZuup9dG+5l3lkfxB9IzzJSFcE0FY0M0lz/PId2P0E0MkBpzWqq57+VrFCh19FEZBoon3kBmI/9W37N9nXfZcGqm9XNXFLWYF8bddt/S2fzFkK5Fcxfc4taAUVkypRWr8a5GPs2P8iOl7/H/FUfIpiV53Wsk6aKYJqJDPXStP9PNNX9iehwHwWlZ1C76G2E82d4HU1Eppny2vPii82//nO2vnAnc5e/n/ySeV7HEjksMtxH474/0rj3acx81Cx8GxWz34TPp683IjK1ymrWEAjmsPv1n7P1hX9l/lkfILdwltexToo+KdNEb1c9LfUv0nbgZWKxYQrLl1I19y3kFc32OpqITGNFFUs5Y82n2f36z3hj/XepmnsJM+Zdgc8f9DqaZLDhoR6a9v2Rpv3PEYsOUlx1FrWLriErVOR1NBHJIEUVy1i85tPs2vATtr/0f6madylVcy9Nm5tR6ZEyQw0PdtHeuJGWhnX0dzdgviAlVSupnPNmwnmVXscTkQyRU1DDmef/NXXbH+LQnidpO/QatQv/gqLK5Rp/JUnjnKO3cx8t9S/RfmgDsViE4qoVzJh7OeH8Kq/jiUiGyimo5cwL/oa6rb/h4K7HaT/0OrWL3kZB2eKUX65GFcEU4pxjsK+FzpZtdDRupKdjL+AI51czc/E7KZmxikAw7HVMEclA/kCIOUvfS+mMc9i/9T/Y/frPCOdXUznnzRRXrkibu5+SXpxzDPQ00tG8mbaDrzLQ24jPn03JjFVUzL5YN0VFJCUEgjnMXfF+iqvOov6Nh9n56g/JLZxN1dxLKCxfkrI3TZNacpvZVcC/An7gHufcV8e8ng38BDgHaAWud87tTbz2D8CHgSjwWefcY0mMPiWcizHQ20xfZx3d7bvoatvJ8EAHAOG8GcyYfwXFlcsJ5Vam/B0FEckM+SXzWXLhrbQdfIVDe55k78ZfUrfttxRVLKO4cgUFJQswn9/rmNPK6ZSd6WhooJPejn10d+yms3krQ/1tAOQWzmb2kvdQXHUW/kC2xylFRI5WVLGUgrIzaKl/ica9T7Frw48JZhdSMmMVheVnklc4O6XKyKRVBM3MD9wFXAHUA+vM7CHn3JZRu30YaHfOLTCzG4CvAdeb2RLgBmApUA38l5ktcs5Fk5X/dMRiEYYHuhjsb2Ggt4mB3ib6exrp62ogFo0vRukP5pBfsoCCuZdSULqQ7Jwyj1OLiIzPzEdp9WpKZpxNV+sbtB18hfZDr9Ha8BL+QJjcotnkFc4it2g24fxqAsFc3cw6RadTdiY/7cQ554hFBhga6KC/t4mBnkOJcrGeoYF2AMwXpKBkAVVz30Jh2ZmaFVtE0oLPF6Bi1oWU155HR/NmWhvWJya1egpfIERByUJyi2aRk19NOL/a09lGk9kiuAbY6ZzbDWBm9wFvB0YXZm8Hvph4/CDwHYt/e3g7cJ9zbhDYY2Y7E+d7fqrCOudwsWFisQguFiEWi+IOPz7yv9HIAJHhfqKRxM9wP0ODXQwPdjI80EVkuPeIc/sCIcK5FZRWn0NuwUxyCmsJ5VakbLOxiMh4zHwUli2msGwxsegwXa3b6WjeSm/HPg60bAccEO9Wmp1TRna4hEBWHoFgLoGsnMR/cwnnzSCYne/tL5O6TrnsdM65qQoVi0WIRQaJHVFORnDRYWKxKLHoUKJMHDhcLkaG+xga7GR4oJOhgc7DN0LjjOycUnIKZ1Ix+03kFc0hnF+tLscikrbM56e4cgXFlSuIDvfT1baTrpZtdLW+QUfTxsP7BYK5ZIWLyQoVkRUqSpSTOfiDOQSzcskvWTBlGZP5CVsD1I16Xg+cd6x9nHMRM+sEShPbXxhzbM3URQVcjFf/8D9P+jDzBfAHwgSz88nKLiK3cBZZ2YUEQ4Vkh0sJ5ZYTyMrX3XERmVZ8/iBFFcsoqlgGQGS4n76uOvp7Ghnsa2Gwr4W+7oNEhnuJDvcdceycZTdQWn2OF7HTwemUnS1TFapp3x9p2PHohPf3+bPwB8JkhQoJ5VZSULqIrFARwVAhoZxyQrkVmolWRKYtfzBMceVyiiuXA/Hl4Pq6D9DffYCB3maGBtoZ6G2mq3XHETfJAll5nHXJF6Ys17S61WZmHwM+lnjaY2bbvcyTRGVMYYGfJjL9Pcj03x/0HqTx73/HZJxEa+mcwEmWkWn89zRl9J6MT+/L0fSeHE3vydEm+J588XSvc8zyMZkVwQZg5qjntYlt4+1Tb2YBoJD4wPeJHItz7m7g7knMnBbMbL1zbrXXObyU6e9Bpv/+oPcg03//aex0ys4jnEwZqb+no+k9GZ/el6PpPTma3pOjpcJ7ksxBaeuAhWY218yyiE/+8tCYfR4CPph4/G7gicQYh4eAG8ws28zmAguBl5KUW0RExCunU3aKiIgcU9JaBBPjFm4BHiM+BfYPnXObzexLwHrn3EPAD4CfJiaDaSNe4JHY71fEB8dHgE+ny4yhIiIip+p0yk4REZHjSeoYQefcI8AjY7bdPurxAPCeYxz7FeArUxowfWVcd9hxZPp7kOm/P+g9yPTff9o6nbLzNOjv6Wh6T8an9+Voek+OpvfkaJ6/J6beIyIiIiIiIplFC9eJiIiIiIhkGFUE05yZ+c3sVTN72OssXjCzvWa20cw2mNl6r/N4wcyKzOxBM9tmZlvN7AKvMyWLmZ2R+H8/8tNlZn/jda5kM7PPmdlmM9tkZr80s5DXmSQ9mVnIzF4ys9cSf1P/7HWmVJHp5e1YKn+Plsnl8bGonB5fqpTb6hqa5szsVmA1UOCcu8brPMlmZnuB1c65jF2bxsx+DDzjnLsnMatgjnOuw+NYSWdmfuLT6J/nnNvndZ5kMbMa4FlgiXOuPzGx1iPOuXu9TSbpyMwMyHXO9ZhZkPjf1l87517wOJrnMr28HUvl79FUHh9fppbTY6VSua0WwTRmZrXA24B7vM4i3jCzQuBi4rMG4pwbyuBC5zJgV4YWLgEgnFhDLgc44HEeSVMurifxNJj4yfg7xipv5URUHk9IJpfTY6VEua2KYHr7NvD3QMzjHF5ywO/N7GUz+5jXYTwwF2gGfpTosnSPmeV6HcojNwC/9DpEsjnnGoA7gP3AQaDTOfd7b1NJOkt0gdwANAGPO+de9DhSKvg2Km/HyvTydyyVxyeWkeX0WKlUbqsimKbM7BqgyTn3stdZPPYm59zZwNXAp83sYq8DJVkAOBv4/5xzq4Be4DZvIyVfogvOtcADXmdJNjMrBt5O/EtINZBrZjd5m0rSmXMu6pxbCdQCa8xsmceRPKXy9pgyvfwdS+XxcWRyOT1WKpXbqgimr7XAtYk++vcBl5rZz7yNlHyJuyo455qA/wDWeJso6eqB+lF37B8kXhBlmquBV5xzjV4H8cDlwB7nXLNzbhj4d+BCjzPJNJDo1vYkcJXHUbym8nYcKn+PovL4+DK5nB4rZcptVQTTlHPuH5xztc65OcSb2p9wzmVUK4CZ5ZpZ/shj4Epgk7epkss5dwioM7MzEpsuA7Z4GMkr7yNzu5vsB843s5zERB+XAVs9ziRpyszKzawo8TgMXAFs8zSUx1TeHk3l79FUHp9QJpfTY6VMuR3w4qIik6QS+I/4vyECwC+cc//pbSRPfAb4eaLbxW7gQx7nSarEl5ArgI97ncULzrkXzexB4BUgArwK3O1tKkljM4AfJ2b38wG/cs5puQQZS+Xv+DK6PD6WTC+nx0qlclvLR4iIiIiIiGQYdQ0VERERERHJMKoIioiIiIiIZBhVBEVERERERDKMKoIiIiIiIiIZRhVBERERERGRDKOKoIiIiIiISIZRRVAkyczsKTNzx/j5sJl1Jh5/a9QxS0ftc/eo7bNHbf/QmPPvHXPdS0bte3Ni25wx1/8fY465cczrl0zdOyMiIplM5aNIcqkiKOKdIeDFMT+HgOcSr188at9jPX7zqMd/nIRMnzSzwKjnn52Ec4qIiJwMlY8iSRA48S4iMkUOOufOH7vRzFYAVwFnmVmBc64LuCjxchNwhplVOOea+HOhd8A5t+s08wwDtcB1wK/M7DxgTWJ78DTPLSIiMlEqH0WSQC2CIqln5M6lH1ibeHwR0An8YNRz+HNB98wkXPfBxH8/M+a/D46zr4iISLKpfBSZRKoIinhnth09BqIIWAf0J/a52MzmEb8T+SfgqVHbq4CFiefjdXs54vzAkyfI8xywHniTmV0NvAc4CDxwir+fiIjIqVD5KJIE6hoq4p0h4NUx2yLOuSEzexG4hPgYh22J1/5IvDCKEL/j+dyo48a74zn2/AXAmSfIdCfwE+A+IAv4HvGuLyIiIsmi8lEkCVQRFPHOuGMgEv5IvKBbDewd2eac6zGzV4FzgGsS29uATSc6f2JGsxPd9bwf+BegknhB+V3g3BMcIyIiMplUPookgbqGiqSmka4sQeJdUPqId0sZec0H3JB4/qxzzk3GRZ1zI4UbwK+cc42TcV4REZFJovJRZJKoIiiSmp7nz11OAsALzrmR538ctR0mZyD8aF8ByoGPTvJ5RURETpfKR5FJooqgSApyzvUBL4/aNHqw+zNA7BivTca1h51zLc65gck8r4iIyOlS+SgyeWySWsxFREREREQkTahFUEREREREJMOoIigiIiIiIpJhVBEUERERERHJMKoIioiIiIiIZBhVBEVERERERDKMKoIiIiIiIiIZRhVBERERERGRDKOKoIiIiIiISIZRRVBERERERCTD/P/wHEaYR32c/wAAAABJRU5ErkJggg==\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4IAAAFRCAYAAAAhPBPJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAB80UlEQVR4nO39eXyddZ3//z9eZ0lO9n1Pum90L7RlqSCyCcqA4gIKCo4bKuOMzHyVz3xmUBn9/HREZRyZUVREHREFHWQcFFG2Qil0oVC6b2mapc2+7znv3x/npKZp0iZtkivJed5vt3PrOdf6zKHk1ff7uq7325xziIiIiIiISOzweR1AREREREREJpYagiIiIiIiIjFGDUEREREREZEYo4agiIiIiIhIjFFDUEREREREJMaoISgiIiIiIhJj1BCUScXMvmdm/zxGx5phZq1m5o9+fs7MPjYWxx50nlYzmzPWxx3iPA+Z2VfG+zyDznmbmb04kecUEZGhqUae8jyqkSKjpIagTBgzKzWzDjNrMbNGM9tgZreb2fG/h865251z/zLCY11xqm2cc2XOuWTnXN9Y5D/FeZKdcwfH8xyxLFpo+6L/mOh/fdfMLoz+XfIP2PYHwyz7XvT9Sf/QMbNLzax8wOfnzMyZ2YpB2/13dPml4/WzikjsUo2UM6EaKWdDDUGZaH/lnEsBZgJfA74A/GisT2JmgbE+poycRYzl75eXo/+Y6H/dAWwm8jvs3AHbXQyUD1p2CfDCKM+3F/hw/wczywIuBGrOJLyIyAipRsYA1UiZLNQQFE8455qcc08ANwK3mtlSOPHWDjPLNrPfRXtG681svZn5zOxnwAzgf6I9X583s1nRnqiPmlkZ8MyAZQML3lwze9XMms3st2aWGT3XCT1e0WXHe1TNzG9m/2hmB6K9aVvMrCS6zpnZvOj7NDP7qZnVmNlhM/un/l/2/beQmNm9ZtZgZofM7JrhviMzW2VmW6Pn+yUQGrT+WjPbNqDnePkwx/lPM7t30LLfmtmd0fd3Dfi5dprZu0+R6SIz22RmTdE/Lxqw7jkz+6qZvQS0A3PMbJGZPR3977fHzN4/YPt3RM/XYmYVZvYPw513KM65HmAjkSKGmeUCccCvBi1bwOiL3M+BGwf0mn4A+G+ge5THEREZNdVI1UjVSJkIagiKp5xzrxLpnbp4iNV/H12XA+QB/xjZxX0IKCPSc5rsnPvXAfu8FTgHePswp/ww8NdAAdALfGeEUe8k8ovuHUBq9BjtQ2z370AaMCea5cPARwasPx/YA2QD/wr8yMxs8EHMLA54HPgZkAk8CrxnwPpVwIPAJ4Es4PvAE2YWP0SmXxD5hW3RfTOAq4BHousPEPn+04AvA/9lZgVDZMoE/pfId5YFfAv4X4v0BPb7EPAJIIVIz+DTwMNALnAT8B9mtji67Y+AT0Z7v5cCzwyR/XReIFrQon++GH0NXHbIOVc+xL6nUgnsJPI9QeS/40/PIJ+IyBlTjVSNVI2U8aSGoEwGlUR+kQ/WQ6QYzXTO9Tjn1jvn3GmO9SXnXJtzrmOY9T9zzr3pnGsD/hl4/4AerVP5GPBPzrk9LuJ151zdwA2ix7kJ+D/OuRbnXCnwTSK/+Psdds79IPpMxk+iP1/eEOe7AAgC90V/9seATQPWfwL4vnPuFedcn3PuJ0BXdL/B1gOOv/xD4r1EbiOpBHDOPeqcq3TOhZ1zvwT2AWuHOM47gX3OuZ8553qdc78AdgN/NWCbh5xzO5xzvcDVQKlz7sfR7V8Dfg28L7ptD7DYzFKdcw3Oua1DnPP49xHt1e1/9f+czwNviRbwi6M/68vR7fuXPT/oWN8ZeCzgd8Oc86fAh81sEZDunHv5FPlERMaLauTJVCMHfR+qkXIm1BCUyaAIqB9i+TeA/cAfzeygmd01gmMdGcX6w0QKSfYIjltCpFfwVLKjxzs86BxFAz4f7X/jnOvvLU0e4liFQMWgoj7wuDOBvx/0y7okut8Josd4hEhvLcAHidzWAYCZfXjA7TONRHoeh/pOCgdlGOrnG/j9zgTOH5TxZiA/uv49RHqPD5vZ82Z24RDn7LfROZc+4LWxfzmR728pkZ7N9c651miO/mWDb3n57MBjAdcOc87fAJcBdxDpdRYR8YJq5MlUI0+kGilnRA1B8ZSZrSHyS/Kk4ZejPYZ/75ybA1wH3Glml/evHuaQp+sNLRnwfgaRHrdaoA1IHJDLT+R2m35HgLmnOXZt9HgzB52j4jT7DaUKKBp0S8yMQXm+OugXf2K0B3IovwDea2Yzidx682uA6OcfEPlFnhX9pf8mcNKtOER6pWcOWjb45xv4/R8Bnh+UMdk59ykA59wm59z1RG6JeZzIcwuj4pzrJNIL/FdAgXNud3TV+uiy5Yz+2Yf+Y7cDvwc+hYqciHhANXJYqpEjoBopp6OGoHjCzFLN7FoivXD/5ZzbPsQ215rZvOgv+iagDwhHVx8j8ozBaN1iZovNLBG4B3gsegvKXiBkZu80syDwT8DAZwl+CPyLmc23iOWD7vsnepxfAV81s5RoAbkT+K8zyPkykeczPmtmQTO7gRNvRfkBcLuZnR/NkxTNnjLUwaK3nNRGf46nnHON0VVJRApTDYCZfYRIL+FQngQWmNkHzSxgZjcCixn+tpHfRbf/UPRnCJrZGjM7x8zizOxmM0tzkQfam/nLf9vRegH4W2DDgGUvRpdVOedO10t9Kv8IvDV6C5OIyIRQjTwt1ciRU42UYakhKBPtf8yshUhP2P8l8jD1R4bZdj7wJ6CVyC/9/3DOPRtd9/8D/il6O8VoRtL6GfAQkdtPQsBnITJCG/BpIkWggkjv58CHp79FpID9kcgv5B8BCUMc/2+i+x4k8ov2YSIPrI+Kc64buAG4jcgtQTcSuQ2jf/1m4OPAd4EGIrcH3Xaawz4MXBH9s/84O4k8o/EykX84LANeGiZTHZFbRP4eqAM+D1zrnKsdZvsWIg+S30Skp/Qo8HX+8o+HDwGlZtYM3E7klpgz8TyRHtOBPeYvRpetP8NjAhB9LkSTBYvIRFGNHAHVyFFRjZRhmTvtc8UiIiIiIiIyneiKoIiIiIiISIxRQ1BERERERCTGqCEoIiIiIiISY9QQFBERERERiTFqCIqIiIiIiMSYgNcBxkt2drabNWuW1zFERGQCbNmypdY5l3P6LQVUI0VEYsWp6uO0bQjOmjWLzZs3ex1DREQmgJkd9jrDVKIaKSISG05VH3VrqIiIiIiISIxRQ1BERERERCTGqCEoIiIiIiISY6btM4IiMnX09PRQXl5OZ2en11FkkguFQhQXFxMMBr2OIiIy7lQfZaTOpD6qISginisvLyclJYVZs2ZhZl7HkUnKOUddXR3l5eXMnj3b6zgiIuNO9VFG4kzro24NFRHPdXZ2kpWVpSInp2RmZGVlqWdcRGKG6qOMxJnWRzUERWRSUJEbGz/84Q+pr6/3Osa40d8TEYk1+r0nI3Emf0/UEBQRAfx+PytXrmTJkiWsWLGCb37zm4TDYQA2b97MZz/72WH3LS0t5eGHHx52fWVlJe9973sBeOihh7jjjjvOOu/AY/b7+te/TkJCApmZmaM61qWXXsrChQtZuXIlK1eu5LHHHuNzn/sc99133/Ft3v72t/Oxj33s+Oe///u/51vf+halpaUsXbr0hON96Utf4t577wXgtttuIzExkZaWluPr/+7v/g4zo7a2dlQ5RUREztR07yg9E2oIiogACQkJbNu2jR07dvD000/z+9//ni9/+csArF69mu985zvD7nuqhmBvby+FhYU89thjY5p3qGN+4Qtf4Oabbz6j4/385z9n27ZtbNu2jfe+972sW7eODRs2ABAOh6mtrWXHjh3Ht9+wYQMXXXTRiI49b948fvvb3x4/1jPPPENRUdEZ5RQRkYmljtLp21GqhqCIyCC5ubk88MADfPe738U5x3PPPce1114LwPPPP3+8IKxatYqWlhbuuusu1q9fz8qVK/n2t7/NQw89xHXXXcdll13G5ZdfflIxOHLkCJdeeinz588/3tgcvM29997Ll770JQD279/PFVdcwYoVKzj33HM5cODACdt3dnbykY98hGXLlrFq1SqeffZZIFJUb7jhBq6++mrmz5/P5z//+RF/BxdddBEvv/wyADt27GDp0qWkpKTQ0NBAV1cXu3bt4txzzx3RsW666SZ++ctfAvDcc8+xbt06AoGTxyo7fPgw8+fPp7a2lnA4zMUXX8wf//jHEWcWEZGxp47S6dtROqENQTO72sz2mNl+M7triPW3m9l2M9tmZi+a2eIB6/5PdL89Zvb2icwtIrFnzpw59PX1UV1dfcLye++9l/vvv59t27axfv16EhIS+NrXvsbFF1/Mtm3b+NznPgfA1q1beeyxx3j++edPOvarr77Kr3/9a9544w0effRRNm/efMosN998M5/5zGd4/fXX2bBhAwUFBSesv//++zEztm/fzi9+8QtuvfXW4w+Mb9u2jV/+8pds376dX/7ylxw5cmTYc/Q3cOvq6igsLCQQCFBWVsaGDRu48MILOf/883n55ZfZvHkzy5YtIy4uDoADBw4c33flypV873vfO+HYCxYsoKamhoaGBn7xi19w0003DZlh5syZfOELX+BTn/oU3/zmN1m8eDFXXXXVKb8bERGZOOoo9aaj9MEHH+Tv/u7vjn/+wQ9+cPzfG2djwqaPMDM/cD9wJVAObDKzJ5xzOwds9rBz7nvR7a8DvgVcHW0Q3gQsAQqBP5nZAudc30Tll6mrpnzjWR8jp/iCMUgiI3Fk929pb6kc02MmphRSsuj6MTnWunXruPPOO7n55pu54YYbKC4uHnK7K6+8cthbUK688kqysrIAuOGGG3jxxRd517veNeS2LS0tVFRU8O53vxuIzBM02Isvvsjf/M3fALBo0SJmzpzJ3r17Abj88stJS0sDYPHixRw+fJiSkpKTjvHzn/+c1atXn7DsoosuYsOGDWzYsIE777yTiooKNmzYQFpaGuvWrTu+3dy5c9m2bdvxz/0FeqAbbriBRx55hFdeeYXvf//7Q/6sAB/72Md49NFH+d73vnfCMUVk6jvbehzrtXiy1MfTdZSuW7eO1tZWQqEQX/va17j33nv53e9+B0QaYFu3buWNN94gMzOT0tLSE47x6quv8uabb5KYmMiaNWt45zvfSXZ29rBZbr75Zu666y7e/e5309nZSTgcPiHXwI7S3bt3c9VVVx2vj9u2beO1114jPj6ehQsX8jd/8zdD1sebb76ZhIQEAP785z8P2VFaUVHByy+/TFpa2pAdpf2OHj3KP/zDPxz/vGDBAp544onjHaW33HILv//970/K8P73v5+vfvWrfOMb3yAYDPLjH//4lLV0pCbyiuBaYL9z7qBzrht4BDjhb55zrnnAxyTARd9fDzzinOtyzh0C9kePJyIyLg4ePIjf7yc3N/eE5XfddRc//OEP6ejoYN26dezevXvI/ZOSkoY99uCRvcyMQCBw/JkLYMymSIiPjz/+3u/309vbO+J9+29/2b59O0uXLuWCCy7g5ZdfHtVtL/1uvPFG/vmf/5krr7wSn2/40tPe3k55eTkAra2tozqHiIh4p7+j9Dvf+Q6NjY1DXtmCkXWUJiQkHO8oHc5QHaWJiYknbPPiiy9yyy23AMN3lIZCoeMdpUMZeGtofyfuwI7SCy+8kAsvvPD456E6Svtft99++0nHH9hRevHFFw+ZITk5mcsuu4zf/e537N69m56eHpYtWzbsdzNSEzmhfBEw8J6kcuD8wRuZ2WeAO4E44LIB+w7sRiqPLhORaWasrtydjZqaGm6//XbuuOOOkxptBw4cYNmyZSxbtoxNmzaxe/duSkpKTnjY+3Sefvpp6uvrSUhI4PHHH+fBBx8kLy+P6upq6urqSE5O5ne/+x1XX301KSkpFBcX8/jjj/Oud72Lrq4u+vpOvBni4osv5uc//zmXXXYZe/fupaysjIULF7J169az+h4uuugi7r33XubMmYPf7yczM5PGxkZ27NjBD37wg1Eda+bMmXz1q1/liiuuOOV2/c9xzJw5k49//OPHe5FFRGLdZKiPcGJH6a5du44vv+uuu3jnO9/Jk08+ybp163jqqaeG3H86dpSWlJTwzW9+k9TUVD7ykY+MKseNN97Ieeedx6233nrKjtKPfexj/L//9/9YtGjRqM8xnEk3WIxz7n7n3FzgC8A/jWZfM/uEmW02s801NTXjE1BEpqWOjo7jo6JdccUVXHXVVXzxi188abv77ruPpUuXsnz5coLBINdccw3Lly/H7/ezYsUKvv3tb5/2XGvXruU973kPy5cv5z3veQ+rV68mGAxy9913s3btWq688koWLVp0fPuf/exnfOc732H58uVcdNFFHD169ITjffrTnyYcDrNs2TJuvPFGHnrooRMK3JlatmwZtbW1XHDBBScsS0tLO+WtOsP55Cc/ydy5c4dd//zzz7Np06bjjcG4uDh+/OMfn1F2EREZeyPpKP3CF77AmjVr2L17NykpKWfUUdrR0cHjjz/OunXrTugo7erqOt5BOLCjFKCrq4v29vYTjtffUQqc0FF6ti666CJ+97vfkZmZeUJH6csvvzzqO2b6O0o//elPn3K7888/nyNHjvDwww/zgQ984GziHzeRVwQrgIE33hZHlw3nEeA/R7Ovc+4B4AGA1atXu8HrRUSGM/gq20CXXnopl156KQD//u//PuQ2zzzzzAmfb7vttuPvZ82axZtvvnl8+cB1A332s58dchju+fPnn3R84PgxQ6HQkA2mweca7urac889N+Ryv99Pc3PzCcseeuihEz4P/Nn6DXxGcPD2/QY/FwLw1re+lY0b/3Lzx29+85sh9xURkYnT31Ha09NDIBDgQx/6EHfeeedJ29133308++yz+Hw+lixZwjXXXIPP5zveUXrbbbeRkZFxynP1d5SWl5dzyy23HH92vb+jtKio6KSO0k9+8pPcfffdBINBHn300ROuqn3605/mU5/6FMuWLSMQCIx5R+kHP/jBE5a1traecUfpSLz//e9n27Ztp/0eR8qcm5j2kpkFgL3A5UQacZuADzrndgzYZr5zbl/0/V8BX3TOrTazJcDDRJ4LLAT+DMw/1WAxq1evdqcbiU9igwaLmfx27drFOeec43UMmSKG+vtiZlucc6uH2UUGUY0UL2iwmNFTfZSBrr32Wj73uc9x+eWXD7l+tPVxwm4Ndc71AncATwG7gF8553aY2T3REUIB7jCzHWa2jchzgrdG990B/ArYCfwB+IxGDBURERERkemusbGRBQsWkJCQMGwj8ExM5K2hOOeeBJ4ctOzuAe//9hT7fhX46vilExERERERmVzS09OPj3Y6libdYDEiIiIiIiIyvtQQFBERERERiTFqCIqITCM//OEPqa+v9zqGiIiITHJqCIqIEJkqoX8ewRUrVvDNb37z+AS2mzdvHnJah36lpaU8/PDDw66vrKzkve99LxCZTuGOO+4467wDj9nv61//OgkJCWRmZp718Ufjtttu47HHHpvQc4qIiIyGOkpPNqGDxYiIjMRYTPkx0EiGHE9ISGDbtm0AVFdX88EPfpDm5ma+/OUvs3r16uNzGQ2lvyE4cD6hfr29vRQWFo55Q2moY37hC1846+P29fXh9/vP+jgiIjI9+P1+li1bdnwewQ9/+MN87nOfw+fzsXnzZn7605/yne98Z8h9S0tL2bBhw5D1ESKdmp/97Gd57LHHeOihh9i8eTPf/e53zyrvwGP2+/rXv05xcbEnHaXXXnvtSR23k4UagiIig+Tm5vLAAw+wZs0avvSlL/H8889z77338rvf/Y7nn3+ev/3byADHZsYLL7zAXXfdxa5du1i5ciW33norGRkZ/OY3v6G1tZW+vj5+8pOfcO211x6feP3IkSNceumlVFRUcMstt/DFL36R0tLSE7a59957aW1t5Utf+hL79+/n9ttvp6amBr/fz6OPPorf7z++fWdnJ5/61KfYvHkzgUCAb33rW7ztbW/joYce4oknnqC9vZ0DBw7w7ne/m3/913896eedNWsWN954I08//TSf//znyczM5Itf/CJdXV3MnTuXH//4xyQnJ3PPPffwP//zP3R0dHDRRRfx/e9/HzObuP8wIiIxTh2lp6eO0pHTraEiIkOYM2cOfX19VFdXn7D83nvv5f7772fbtm2sX7+ehIQEvva1r3HxxRezbds2Pve5zwGwdetWHnvsMZ5//vmTjv3qq6/y61//mjfeeINHH32U003sffPNN/OZz3yG119/nQ0bNlBQUHDC+vvvvx8zY/v27fziF7/g1ltvpbOzE4Bt27bxy1/+ku3bt/PLX/6SI0eODHmOrKwstm7dyhVXXMFXvvIV/vSnP7F161ZWr17Nt771LQDuuOMONm3axJtvvklHRwe/+93vRvZlymmZ2dVmtsfM9pvZXUOsv93MtpvZNjN70cwWR5fPMrOO6PJtZva9iU8vIrGiv6P0u9/9Ls45nnvuOa699loAnn/+eVauXMnKlStZtWoVLS0t3HXXXaxfv56VK1fy7W9/m4ceeojrrruOyy67jMsvv5zS0lKWLl16/Pj9HaXz58/ny1/+MsBJ29x777186UtfAmD//v1cccUVrFixgnPPPZcDBw6csH1nZycf+chHWLZsGatWreLZZ58FIo9p3HDDDVx99dXMnz+fz3/+80P+vLNmzeILX/gC5557Lo8++ih//OMfufDCCzn33HN53/veR2trKwD33HMPa9asYenSpXziE5/AOTe2X/w4UUNQRGQU1q1bx5133sl3vvMdGhsbCQSGvrHiyiuvHPYWlCuvvJKsrCwSEhK44YYbePHFF4c9X0tLCxUVFbz73e8GIBQKkZiYeMI2L774IrfccgsAixYtYubMmcfnG7r88stJS0sjFAqxePFiDh8+POR5brzxRgA2btzIzp07WbduHStXruQnP/nJ8X2effZZzj//fJYtW8YzzzzDjh07hs0tI2dmfuB+4BpgMfCB/obeAA8755Y551YC/wp8a8C6A865ldHX7RMSWkRiljpKp09HqRqCIiJDOHjwIH6/n9zc3BOW33XXXfzwhz+ko6ODdevWsXv37iH3T0pKGvbYg2+nNDMCgcDxwWmA44XqbMXHxx9/7/f76e3tHXK7/rzOOa688kq2bdvGtm3b2LlzJz/60Y/o7Ozk05/+NI899hjbt2/n4x//+JhlFNYC+51zB51z3cAjwPUDN3DONQ/4mARMje5mEYkZ6iideh2lagiKiAxSU1PD7bffzh133HFSo+3AgQMsW7aML3zhC6xZs4bdu3eTkpJCS0vLiI//9NNPU19fT0dHB48//jjr1q0jLy+P6upq6urq6OrqOt6bmJKSQnFxMY8//jgAXV1dtLe3n3C8iy++mJ///OcA7N27l7KyMhYuXHhGP/sFF1zASy+9xP79+wFoa2tj7969xxt92dnZtLa2apTQsVUEDOyKLo8uO4GZfcbMDhC5IjhwGNvZZvaamT1vZhePb1QRiXXqKJ0+HaVqCIqIAB0dHcenj7jiiiu46qqr+OIXv3jSdvfddx9Lly5l+fLlBINBrrnmGpYvX47f72fFihV8+9vfPu251q5dy3ve8x6WL1/Oe97zHlavXk0wGOTuu+9m7dq1XHnllSxatOj49j/72c/4zne+w/Lly7nooos4evToCcf79Kc/TTgcZtmyZdx444089NBDJxS40cjJyeGhhx7iAx/4AMuXL+fCCy9k9+7dpKen8/GPf5ylS5fy9re/nTVr1pzR8eXMOefud87NBb4A/FN0cRUwwzm3CrgTeNjMUofa38w+YWabzWxzTU3NxIQWkWlFHaXTq6NUo4aKyKQzklHMxlpfX9+w6y699FIuvfRSAP793/99yG2eeeaZEz7fdtttx9/PmjXr+Gigt9122wnrBvrsZz875HyF8+fPP+n4wPFjhkIhfvzjH5+0fvC5hntmobS09ITPl112GZs2bTppu6985St85StfOWn5Qw89NORxZcQqgJIBn4ujy4bzCPCfAM65LqAr+n5L9IrhAuCkB2uccw8ADwCsXr1at5aKyIj0d5T2Tx/xoQ99iDvvvPOk7e677z6effZZfD4fS5Ys4ZprrsHn8x3vKL3tttvIyMg45bn6O0rLy8u55ZZbjo9I2t9RWlRUdFJH6Sc/+UnuvvtugsEgjz76KD7fX65zffrTn+ZTn/oUy5YtIxAIjFlHaVdXFxCpiwsWLDjeUZqfnz+lOkptqoxqM1qrV692p3vAVGLDWAy17EXDJJbs2rWLc845x+sYMkUM9ffFzLY454Yfw3wSM7MAsBe4nEgDcBPwQefcjgHbzHfO7Yu+/yvgi8651WaWA9Q75/rMbA6wHljmnDvlrMmqkeKFs63HsViLVR9lNEZbH3VFUERExEPOuV4zuwN4CvADDzrndpjZPcBm59wTwB1mdgXQAzQAt0Z3vwS4x8x6gDBw++kagSIiIqCGoIiIiOecc08CTw5adveA9387zH6/Bn49vulERGQ60mAxIjIpTNfb1GVs6e+JiIjI2FBDUEQ8FwqFqKur0z/y5ZScc9TV1REKhbyOIiIyYVQbZSTO5O+Jbg0VEc8VFxdTXl6OhrSX0wmFQhQXF3sdQ0RkQvR3lGZlZZ00XYNIvzPtKFVDUEQ8FwwGmT17ttcxREREJhV1lMpInUlHqRqCIiIiIiKTkDpKZTzpGUEREREREZEYo4agiIiIiIhIjFFDUEREREREJMaoISgiIiIiIhJj1BAUERERERGJMWoIioiIiIiIxBhNHyEyAjXlG8/6GDnFF4xBEhEREW+MRS0UkclDDUGRQZxzdLXX0dl6lJ6uZnyBOOJC6SSlzcTnD3odT0RERETkrKkhKDJAb3cb9Ue30dl6FDCC8SmEOxtoazxMY/VO0nOXkJwxBzPzOqqIiIiIyBlTQ1AkqqujnprDL+JcmPS8ZSSnzz5+BbCrvZ6mmh00HN1Gd2cjmQWrMNMjtiIiIiIyNakhKEKkoVddth6fP468mRcTjEs+YX18YiY5M95CU81Ommt341yYrMLVujIoIiIiIlOSGoIS8/p6Oqg5sgG/P57cWZcQCCYOuZ2ZkZ67BDMfTTU7CQQTSc9dMsFpRURERETOnu5tk5jmXJja8ldw4V6ySy4athE4UGr2IpLSZ9Fcu5uOlqMTkFJEREREZGypISgxrbl2D10ddWQWnktcKHVE+5gZmfkrCcanUl+1hb6+7nFOKSIiIiIytia0IWhmV5vZHjPbb2Z3DbH+TjPbaWZvmNmfzWzmgHV9ZrYt+npiInPL9NTT1UJT7W4SU4tJSpsxqn3N5yercDV9vV00HH19nBKKiIiIiIyPCWsImpkfuB+4BlgMfMDMFg/a7DVgtXNuOfAY8K8D1nU451ZGX9dNSGiZtpxz1B99DTM/GXnLz+gYcQkZpGYvpL2pjK722jFOKCIiMj309XXT3dFId2czzjmv44hI1EQOFrMW2O+cOwhgZo8A1wM7+zdwzj07YPuNwC0TmE9iSEdrFV1tNWTkr8QfTDjj46RmL6St8TANR18nb/ZlGkVURESESIdrR2sVLXX7TugsNV+ApLQS0rLPOav6KyJnbyJvDS0Cjgz4XB5dNpyPAr8f8DlkZpvNbKOZvWuoHczsE9FtNtfU1Jx1YJmenAvTVP0mgbhkkjNmn9WxfL4A6blL6e5spK2pbIwSioiITF3hvh7qKjZRe+RlenvaSctZTHbxBWQWriYxtYjWhlIq9z+luinisUk5fYSZ3QKsBt46YPFM51yFmc0BnjGz7c65AwP3c849ADwAsHr1at17IENqayyjp6uF7OILxmRS+MS0Elrq99FUs5OktBJNNC8iIjGrr7eL6sMv0NPVTFrOElKzF5xQF5PTZ5KavYj6yi3UVWyit7udtJxFHiYWiV0T+S/WCqBkwOfi6LITmNkVwP8FrnPOdfUvd85VRP88CDwHrBrPsDI9ORemqXYXcaEMElIKx+SYZkZazmL6etppazw8JscUERGZasJ9PVSXvUhvdys5M95CWs6iITtHg3HJ5M54C4lpJTTV7KClbr8HaUVkIhuCm4D5ZjbbzOKAm4ATRv80s1XA94k0AqsHLM8ws/jo+2xgHQOeLRQZqbamMvp62knLOWdMn+cLJecTF8qgqXY3zoXH7LgiIiJTgXOO2vKN9HQ2kV18IQnJeafcPjL69hoSUgpoOPY67S2VE5RURPpNWEPQOdcL3AE8BewCfuWc22Fm95hZ/yig3wCSgUcHTRNxDrDZzF4HngW+5pxTQ1BGxTlHc+0egvFphJLzx/TYkauC50SuCuqZBxE5AyOYYul2M9serY8vDhx528z+T3S/PWb29olNLgLNtbvpbKsms2AVCSkjq7FmRlbRWuJCGdRVbKa3p32cU4rIQBP6jKBz7kngyUHL7h7w/oph9tsALBvfdDLddbRU0tvdSlbR2nEZ3TOUnE8wPo2Wun0kpc3UCKIiMmIDpli6kshgapvM7IlBnZ4PO+e+F93+OuBbwNXRBuFNwBKgEPiTmS1wzvVN6A8hMauzrYammp0kps0gKX3WqPb1+QJkF6+l6uCfqavYTO7Mi1U/RSaIRrWQmNFct49AMInE1OJxOb6ZkZo1n56uZjpbj43LOURk2jo+xZJzrhvon2LpOOdc84CPSUD/oGjXA48457qcc4eA/dHjiYy7cLiP+qqtBIJJZBasOqNGXCAumYy85XS119DacOD0O4jImFBDUGJCV0cD3R11JGfOHdeexsS0EvyBBJrr9o7bOURkWhrRFEtm9hkzOwD8K/DZUe6rKZZkzDXX7qK3u5WMglX4fGd+o1lS+ixCSbk0Vu+gr7dzDBOKyHDUEJSY0FK/H/MFSB7lLSujZeYjJXMuXe01dHc2jeu5RCT2OOfud87NBb4A/NMo933AObfaObc6JydnfAJKTOnpaqa5di9JaTNOOzjM6ZgZGfkrceE+GqvfHKOEInIqagjKtNfX20l70xGS0mfi8wfH/XxJ6bPAfLQ2HBz3c4nItDGiKZYGeAR41xnuKzImGo+9ifn8pOeNzTAOwfgUUrPm09Z4mK6O+jE5pogMTw1BmfZaG0oBR0rG3Ak5nz8QT1JqCW1NZYT7eibknCIy5Y1kiqX5Az6+E9gXff8EcJOZxZvZbGA+8OoEZJYY1tlWTUdrFWnZi/AHQmN23NTsRfj8cTRV7xizY4rI0NQQlGnNuTCtjYeIT8whGJ8yYedNzpyDC/dqKgkRGZERTrF0h5ntMLNtwJ3ArdF9dwC/IjK/7h+Az2jEUBlPzjkajm3HH0wkJXPemB7b5w+Smr2IzrZqOtuqT7+DiJyxCZ0+QmSitdTvp6+nnfTcJRN63rhQBnGhdFobDpKcMUdDYYvIaY1giqW/PcW+XwW+On7pRP6io6WSns5GsgpXYz7/mB8/JWMOLXX7aKzeQd6sHNVQkXGiK4IyrdWWv4rPH0diykkD6I0rMyM5Yw49Xc10tddN6LlFRETGi3OOppqdBOKSSUybMS7nMJ+ftJxFdHfU06WrgiLjRg1BmbZ6ultprH6TpLQZ49JjeTqJaSWYL6g5kUREZNpoby6np6uZtJzF43qlLiltJv5AiKbaPeN2DpFYp4agTFv1lVtwri8yiqcHfL4AyekzaW+u0JxIIiIy5TnnaK7dQzA+hcTU4nE9l/n8pGTNp6u9RnfWiIwTNQRlWnLOUVvxKklpM4gLpXmWIzljDuCiI5eKiIhMXZ2tx+jpaiIla+GEPLeXnDEHnz+OZl0VFBkXagjKtNTWWEpnWzXZxed7miMYn0J8Yg6tjYdwLuxpFhERkbPRXLcXfyCBpLSS0288Bny+AMkZc+horaKnu3VCzikSS9QQlGmptuIVfP54MvJWeh2F5IzZ9PW001K/3+soIiIiZ6StqYyu9hpSsuZhNnH/fIzcWWO01ut5e5GxpoagTDt9vV00HH2DzPwV+ANxXschMaUQnz+O2vJXvI4iIiJyRo4eeg7zBUlOnz2h5w0EE0hMLaa1sZS+3q4JPbfIdKeGoEw7jTU7CId7yCw4z+soQOSB96S0GTRW76CnS7e2iIjI1NLZVkNj9ZukZM7B5w9O+PlTMufiwr3UVW6e8HOLTGdqCMq0U1+5lbhQOskZs7yOclxyxmyc61MRExGRKefY4ecjo3hmzvPk/PGJWcSFMqgue0nP24uMITUEZVrp6WqhuW4vmQXnTugzDKcTjE8lOX02tRWv4JzzOo6IiMiI9HS1Ule5hazC1fgDIc9ypGTNo6u9hua6fZ5lEJluJs+/lEXGQP3RbYAjs+Bcr6OcJLv4fLraa2ltOOh1FBERkRGprdiIC/eSN/NiT3MkphYTiEuhuuxFT3OITCdqCMq0Ul+1lYSUIhKS87yOcpKMvOX4AwkaNEZERKYEF+6j5sjLpGYtIJSU62kWMx85JRfSXLubzrYaT7OITBdqCMq00dlWTXtzOVkFq7yOMiSfP0hm4bk0HHuD3u42r+OIiIicUkP1m/R0NZMzY53XUQDIKT4fzEdthTpURcaCGoIybdRXvQYYGfkrvY4yrJyi8yODxlRt9TqKiIjIKdWUvURcQiZp2Yu8jgJEnrdPz1lMXcVmwuFer+OITHlqCMq04JyjrmorKVnziAuleR1nWAkpBSSlzaC2fKMGjRERkUmrvbmC1sZD5JZcNKkGX8suPp/enjaaqnd4HUVkyps8/2eLnIW2psN0d9STNQkHiRksu/h8OtuqaWss9TqKiIjIkKqPvITPFySraK3XUU6QmrWAuFAGNXreXuSsqSEo00J95VbMFyQ9d6nXUU4rI28lPn+8ipiIiExKvd1t1Fe9RmbheQSCCV7HOYGZj+yiNbTU76OrvdbrOCJTmhqCMuWFw73UH3ud9Nwlns5xNFL+QByZBatoOPY6vT3tXscRERE5QW3Fq7hwL7klk2OQmMEiVymN2opNXkcRmdLUEJQpr7l2D3097VPittB+OcUX4MK90QFuREREJofIlBEbSMmYS0JKvtdxhhQXSiMt55xog7XP6zgiU5YagjLl1VdtJRBMIjVrgddRRiwxtYjE1GJqy1/RoDEiIjJpNNbspLuzcdJMGTGc7OLz6e1upbFmp9dRRKYsNQRlSuvr6aCxZicZBSsxn9/rOKOSXXw+Ha1VtDcf8TqKiIgIEJ0yIpROes5ir6OcUlrWQoLxadTqeXuRM6aGoExpDdXbceHeKXVbaL/M/JX4/HEaNEZERCaFjpajtDQcIKfkoknfuWo+P1lFq2mu20t3Z6PXcUSmJDUEZUqrr9xKfGI2iaklXkcZNX8gRGb+ShqObqOvt9PrOCIiEuOqj7yE+QJkT7IpI4aTXbgGcNRVbvY6isiUpIagTFndnY20NBwks+BczMzrOGcku/h8wn3dGjRGREQ81dvTTn3lFjILVhGIS/I6zojEJ2aRkjGX2opNOBf2Oo7IlKOGoExZkcaTI6tglddRzlhiagkJKQXUVrzqdRQREYlhdRWbCId7Ju2UEcPJKl5Ld0c9LfUHvY4iMuWoIShTVn3VVpLSZhKfmO11lDNmZmQXnU97czltTWVexxERj5jZ1Wa2x8z2m9ldQ6y/08x2mtkbZvZnM5s5YF2fmW2Lvp6Y2OQyHTgXpvrIBpLTZ5OYWuR1nFHJyF2GPxCiTh2qIqMWGOmGZrYMeC9QCAx8gtg55z46wmNcDfxbdP8fOue+Nmj9ncDHgF6gBvhr59zh6LpbgX+KbvoV59xPRppdpp/2lko6Wo9SsujdXkc5a1mF51G5/w8cO/wCc5bf4nUcETkDZ1MjzcwP3A9cCZQDm8zsCefcwHHxXwNWO+fazexTwL8CN0bXdTjnVo7NTyKxqKl2N90d9RTNf4fXUUbN5w+SWbCK2opNlPS0Ewgmeh1JZMoYUUMw2oD77RDbG+CA0zYEz6bQmVkm8EVgdfR8W6L7Nowkv0w/9VVbwXxk5q/wOspZ8wdCZBdfwLHS5+maX098QqbXkURkFMagRq4F9jvnDkaP9whwPXC8Pjrnnh2w/UZAvUYyZqrLXiQYn0ZG7lKvo5yRrKK11Bx5mfqqbeTOuMjrOCJTxkhvDf1HIAi0EilsPUA30AYcHuExjhc651w30F/ojnPOPeuca49+3AgUR9+/HXjaOVcfbfw9DVw9wvPKNONcmPqqbaRlL5oyD7SfTu6MdWBG9eH1XkcRkdE72xpZBAycULQ8umw4HwV+P+BzyMw2m9lGM3vXKHKL0NlWTUvdPnJKLpz0U0YMJzGliISUAt0eKjJKI20IrgBagP5nErYCi4gUuk+N8BhnU+hGu69MYy31B+npaiJzCs4dOJy4UDqZ+SuprXiV3p720+8gIpPJWNTIETGzW4jcHfONAYtnOudWAx8E7jOzucPs+4log3FzTU3NWMaSKay67CXM/GQXne91lDMWed5+Le0tFbQ3V3gdR2TKGGlDMATsc841AmEgPvrsXgVw71iHGqbQjWQ/FbkYUF+1BZ8/nvScxV5HGVN5s95KuK+bWk0wLzLVnG2NrAAGToZaHF12AjO7Avi/wHXOua7+5c65iuifB4HngCGHUnbOPeCcW+2cW52TkzOCWDLd9fV2Ule5hYz8lQTjk72Oc1YiU0n5qa3c5HUUkSljpA3BRiA1+r4OWGpmXwAWAnNGeIyzKXQj2ldFbvoL93XTcGw7GfnL8fmDXscZU4kphaRkzqe67EXC4V6v44jIyDVydjVyEzDfzGabWRxwE3DC6J9mtgr4PpHaWD1geYaZxUffZwPrGPBsocip1FVsJtzXFXk8YYoLBBNJz1tKfeVWwn09XscRmRJG2hDcC8wws1TgZSLPQvw/Ig/Gbx/hMc640AFPAVdFC14GcFV0mcSYxuodhPu6yCo4z+so4yJv1lvp6WrWBPMiU8tZ1UjnXC9wB5G6tgv4lXNuh5ndY2bXRTf7BpAMPDpomohzgM1m9jrwLPC1QYOwiQwpMmXESySlzSQpreT0O0wB2UVr6evtoLF6h9dRRKaEkU4f8RVgKZAO/H/AEmAukWf17hjJAZxzvWbWX+j8wIP9hQ7Y7Jx7ghMLHUCZc+4651y9mf0LkcYkwD3OufoRZpdppK5yC3GhdJIzZnsdZVykZi0gITmfo4eeJavwPMw01afIFDAWNfJJ4MlBy+4e8P6KYfbbACw7k9AS25pr99LVXkvhsqu8jjJmUjLnERfKoLbiVTILVnodR2TSG1FD0Dn3FCdegZtvZpmjbYydaaGLrnsQeHA055Pppaermea6veTPvmzaNpDMjII5V3LwjZ9RX/UaWYXT88qnyHQyVjVSZCJVH3mJQFwK6XnTpx/BzEdW0WqqDvyJrg5NxyRyOsP+a9rMZphZ3oD3J7yA5AHvRcZd5HZJR1bh9BktdCjpeUtJSC6g6uCfcOE+r+OIyBBUI2Uq62yrobl2NzklF+DzjfTmsKkhq3ANEHn+UURO7VT/95cSedZhXfS9G2Y7d5rjiIyJuqotJKaWEErK9TrKuDLzUTjvKg5s+wl1VVvJLlrjdSQROVkpqpEyRdUc2YCZn5ziC7yOMubiEzJIyZpHXeUmCuZeMW3vIBIZC6f7v8MGvR/uJTKu2lsq6WipiplbJdNylpCUNoPK/X8g3NftdRwRGZpqpEw5fb2d1FZsIiNvOcH41NPvMAVlF62lu7ORlrp9XkcRmdRO1Uv5EaBmwHsRz9RXbgXzkZm/0usoE8LMKF5wLXs2/QfHDr9AwZxhH58VEW+oRsqUVFe5JTplxFu8jjJu0nOX4g8mUlu5idTshV7HEZm0hm0IOud+MtR7kYlUU74R5xy1Fa+QkJxHQ/VIZyuZ+pIzZpOeuzQ6guga4kJpXkcSkSjVSJmKqo+8TNXBPxMXyqC9tZL21kqvI40Lny9AZsEqao9spLe7jUBckteRRCalEd04bWYfN7MHzWzJgGVLoss+Pn7xRKCzrZq+3k6S0mZ6HWXCFS14J86FKd/7P15HEZFhqEbKVNHZVk1vdwspmXO9jjLusovW4lyf5uUVOYWRPkH7/wHXE5nott8u4DrgH8Y6lMhAbU2HMV+QhOR8r6NMuFBiNvmz30bD0ddprtvrdRwRGZpqpEwJLfX78fnjSUwt9jrKuEtMKSQxtZjaildxbrixnERi20hHMisB9jrnwv0LnHNhM6sAFoxLMhEg3NdDR3MlSekzMJ/f6zhnpaZ84xntFwgmEYhL4tAbD7P04n/EH4gb42QicpZUI2XS62yrobP1KKnZi6ZsPR1tHY1PzKbh6DYq9/+BuISMaTlKqsjZGOkVwU5gXv+cSQDR9/Oi60TGRXtLJc71xeRtof3M5yez4Dx6e9qo2Pe/XscRkZOpRsqkV132IpgvJm4L7ZeUVoKZj9bGUq+jiExKI20IvgqEgA1m9s9m9s/AS9Flr45XOJG2xsMEgknEJWR6HcVToaQcUjLnUXNkg24RFZl8VCNlUuvtaaeuYhNJaSX4AyGv40wYnz+OhNQi2pqOEA73eR1HZNIZaUPwG9E/ZwFfir7mEJko9+tjHUoEoKu9jq72GpLSZ2GmqbjScpcSSsrl0PZH6Olq8TqOiPyFaqRMajVHNhIO95CSOd/rKBMuOX0WLtxDR0uF11FEJp0RNQSdc38CbgJK+csEuYeAm5xzz4xbOolptZWbAEhKn+FxksnB5/MzZ/kt9PV2cGj7wwx4HElEPKQaKZNZONxLzZGXSMmaH5PTEMUn5uAPJtLaUOp1FJFJZ6RXBHHOPeqcmwvkArnOubnOucfGL5rEMufC1FVsJpScRyCY6HWcSSMhpYAZ57yblvr9lO/V84Iik4VqpExWDUe30dPVTN7MS7yO4gkzIzl9Fl3tNXS113odR2RSGXFDEMDM4oEEINHMZvS/xieaxLLmur30dDWRnD7L6yiTTlbhGnJmrKP68AtUl73kdRwRiVKNlMnGOcexwy8QSsojNWuh13E8k5QeGXCutmKzx0lEJpeRTii/wMzWA+1Ebn05NOB1cNzSScyqrdhEIJhEQkqh11EmHTOjZOF1pOUs5sju39JYvcPrSCIxTTVSJquW+gN0tFSRN/OSmH7WPhBMJJScR13lZj1WITLASK8I/gBYx1+efRj8Ehkzvd1tNFXvILPwXMxGddE6Zpj5mL3sZhJTizj4xs9pazridSSRWKYaKZPSscPPE4hLJrNglddRPJecPoueriaaazXytki/kU4ofx4QBv4N2An0jlsiiXl1VVtxro/swrW0NpV6HWfS8gfimLfqr9n9yr+zf+uPWLDmUyQk551+RxEZa6qRMul0tB6juXY3BXOvwucPeh3HcwkphQSCSdRWvEpaziKv44hMCiNtCJYDfc65vx/PMCLOOWorXiUxtYSElHw1BE8jGJ/C/PM+zp5N/8nezd9n4ZpPEUrK8TqWSKxRjZRJp7psPeYLkFNyoddRJgUzH5mF51JTtoGe7laCccleRxLx3Ejvu/snYK6ZvWM8w4i0Nx2hs/Uo2UVrvI4yZYSScliw+hPgwuzd8gBdHfVeRxKJNaqRMqn0dLdSV7mFrILz1OAZILtwLc71UV+11esoIpPCSK8IfoPIcw7/Y2ZNQOOAdS46ZLbIWasp34jPH6/nGYZRU75x2HXZJRdwrPQFdm38N/JmvXXYaTdyii8Yr3gisUo1UiaV6rIXceE+cmde7HWUSSUhJZ/E1BJqy18ld8bFMT2AjgiM/IrgTCBIpNClA7MGvUTOWm9PO/VHt5FZsAp/IOR1nCknLpRO7sy3EO7rpvrwevp6O72OJBIrVCNl0ujr7aSmbAPpuUv03PgQsovX0tl2jHYNsiYy4iuCPwXceAYRqa/cigv36IrVWYhPyCR3xjqqD79I9eH15M68BH8g3utYItOdaqRMGrXlr9DX20H+rLd5HWVSysxfSfnuJ6ip2EhSuqb5lNg2ooagc+62cc4hMc45R035yySlzSAxtcjrOFNafGI2OTMuoqbsJarL1pM38xJ8/jivY4lMW6qRMlmEw70cO/wCKRlz1cgZhj8QIrPgXOqqtlA8/50E4pK8jiTimRFP0mZmfjP7gJn9m5n9o5nNMLNLzCxzPANKbGhtOERnWzXZuho4JkJJuWSXXEhPVwvVh18k3NfjdSSRaU01UiaD+sot9HQ1kz/nMq+jTGq5M9bhwr3UVrzqdRQRT42oIWhmacBG4L+AO4BrgcXAs8Bnxy2dxIya8pfxBxLIzF/hdZRpIyE5n+zi8+nubKSm7CXCYU1tJjIexqJGmtnVZrbHzPab2V1DrL/TzHaa2Rtm9mczmzlg3a1mti/6unVMfiiZcpwLc7T0ORJTikjJnO91nEktIaWA5Iw51Bx5GefCXscR8cxIrwh+jb9MmNs/xNLTQAdw9TjkkhjS09VK47HtZBWep1sYx1hiSiFZRWvp6qijrvxVnNNjTCLj4KxqpJn5gfuBa4g0ID9gZosHbfYasNo5txx4DPjX6L6ZwBeB84G1wBfNLONsfyCZehqPvUlXey35s9+m0TBHIHfGOro7G2iq2el1FBHPjLQheD3QChwfAts51weUAXPGIZfEkLrKTTjXp9tCx0lSWjEZ+SvoaK1SwRMZH2dbI9cC+51zB51z3cAj0WMe55x71jnXHv24ESiOvn878LRzrt4510CkAaoO2hjjnONo6bPEJ2aTnrfM6zhTQnrOEoKhdKrLXvI6iohnRtoQzAIOOOfKBi0PA6ljG0liiXNhao68THLGHA1zPY6SM+aSlD6L5trd1B/d5nUckenmbGtkETBwLPvy6LLhfBT4/RnuK9NQS/0+2pvLyZt1KWYjHv4hppnPT07xhbTU76ej9ZjXcUQ8MdLfFhXAIjM7p3+Bma0FziFSdETOSFPNTro7G8idsc7rKNOamZFZsIr4hCxK3/wV7c3631ZkDE1YjTSzW4DVRCaxH+2+nzCzzWa2uaamZixjiceOHnqWYHwqWYXneR1lSskpPh/zBajRVUGJUSOdR/Bx4O+AbUTmSjoX2BBd999jHUpiR3XZSwRD6aTnLPE6yrRn5iO75AKqy15i/7afsPjCzxEIJnodS2Q6eJyzq5EVQMmAz8XRZScwsyuA/wu81TnXNWDfSwft+9xQJ3HOPQA8ALB69Wo9MDwF1ZRvPGlZV0c9LfX7Sc9dRl3lZg9STV2BuCQy81dSV7WFwvlXqyZKzBnpFcG7iTyoHiTyIHxcdN/XgXvGJ5pMdx2tR2mp309uyYWYz+91nJjgD4SYu+LD9Ha1cHjHoxo8RmRsnG2N3ATMN7PZZhYH3AQ8MXADM1sFfB+4zjlXPWDVU8BVZpYRHSTmqugyiRHNNbvx+YIkZ8z2OsqUlDvzYsJ93dQcednrKCITbqQTyrea2QXAB4g81A6RwvWL6IPtIqNWXfYS5guQXXS+11FiSlJaCYXzr6Zi7/9SW76RnJILvY4kMqWdbY10zvWa2R1EGnB+4EHn3A4zuwfY7Jx7gsitoMnAo9ERIcucc9c55+rN7F+i5wO4xzlXP6Y/oExa3R0NdLRWkZazGJ8/6HWcKSkxpZDUrIVUl71I3sxL9D1KTBnpraE453qAn0ZfImelt6ed+sotZBasIhCX5HWcmFJTvhGfP55QUi5Hdv+W3p72Uf83yNEIryInONsa6Zx7Enhy0LK7B7y/4hT7Pgg8eCbnlamtqWYX5guSkjnP6yhTWv7st7F38/eoq9yszlGJKSNqCJrZqQqMc859dIzySIyoq9hEONxDbokGifFCZPCYc6k68DT1Va+RM2Od5p0SOUOqkeKF7o5GXQ0cI8kZc0hMLeFY6fNkF5+vkVclZoz0iuBtRB6AH8yiy0dU5MzsauDfiNz68kPn3NcGrb8EuA9YDtzknHtswLo+YHv0Y5lz7roRZpdJxrkw1Uc2kJw+m8RUjXLulUBcEul5S2k4+jrtTWUkpc/0OpLIVHUbY1AjRUajqbb/auDc028sp2Rm5M++lIOv/4yGY9vJzF/hdSSRCTHShmAZJxa5NCCdyBxJg+dNGpKZ+YH7gSuJDKe9ycyecM4NnOG6jEhB/YchDtHhnFs5wrwyiTVW76C7o57i+e/0OkrMS86YS1vTERqOvUEoOQ9/IOR1JJGp6KxrpMhodHc20tFSSVrOOfj8cV7HmRbSc5cSn5jNsUPPkpG3XHfJSEwY0bVv59ws59zsAa9M4DKgHfjiCM+1FtjvnDsYfXj+EeD6Qecpdc69QaR4yjR17PALxIUySM/VlBFeMzOyCs8jHO6l4ejrXscRmZLGqEaKjJieDRx7Zj7yZl1Ke0sFLfX7vI4jMiHO+CZo59xzwGbgH0e4SxFwZMDn8uiykQpFJ8LdaGbvGsV+Mom0NZbR1lhK7syLNWXEJBGMTyUtexHtzeV0tB71Oo7ItHAGNVJkRLo7m+hoqSQlc56uBo6xrMLzCManUnXgT5peSWLCSAeL+fCgRX5gLrAO6BnrUMOY6ZyrMLM5wDNmtt05d2BQzk8AnwCYMWPGBMWS0Th2+Hn8gRDZRWu8jiIDpGYtoK3xMA1H3yA0N1cPyouMwiSpkRIjIlcDA6Rm6WrgWPP5AuTPvpwju/+b5rq9pGUv9DqSyLga6TOCDzH8g/AjnYGzAigZ8Lk4umxEnHMV0T8PmtlzwCrgwKBtHgAeAFi9erW6ciaZrvZ6Go5tJ2/WW/Us2iRjPj/p+cupPfIyrQ0HdbuRyOg8xNnXSJHTilwNrCA1e5GuBo6T7OK1HCt9jsr9fyA1a4GeFZRpbTTd/jbE62XgYyPcfxMw38xmm1kccBPwxIhObJZhZvHR99lEell3nnovmWyqy9aDGbkzNGXEZJSQXEB8Ug5N1Tvp6zvtHNgicqKzrZEip9VUsxPzBUjJmu91lGnL5wtQMPdK2pvLaax+0+s4IuNqpA3B2YNes4BE59w659z+kRzAOdcL3AE8BewCfuWc22Fm95jZdQBmtsbMyoH3Ad83sx3R3c8BNpvZ68CzwNcGjTYqk1xvTwe1FZvIzF9JXCjd6zgyBDMjI28F4XAPTTX630tkFM66RoqcTmvjYTpaKknNWoBfVwPHVVbBucQn5lC5/ymc0/iFMn2N6NZQ59zhsTiZc+5J4MlBy+4e8H4TkVtGB++3AVg2FhnEG7XlGwn3dZE38xKvo8gpxIXSSM6YQ2v9QVIy5hCMT/U6ksikN1Y1UmQ4zjkq9v4vPn+8rgZOAPP5KZx3FYfe+DkNR18ns2CV15FExsWIrgia2ffM7KCZrRywbIWZHTCz/xi3dDIthMO9VJe9RErmPE0gPwWk5SzGfAEajm33OorIlKAaKeOtuXY3rY2HIvMG+kY6vIOcjYy85SSkFFB54I+Ew71exxEZFyP9bfJXQJ9zblv/Aufc62YWAK4DPj0O2WQaqCnfSFtjGT1dTaTnLqGmfKPXkeQ0/IF40rIX0lj9Jp3ttYQSs72OJDLZqUbKuHEuTPm+J4lPzCY5Y7bXcWKGmY+iee9g/2s/orrsRfJnXep1JJExN9JnBLOBliGWtwI5YxdHphvnHM31ewnEpRBKzvc6joxQcuZc/IEQTcfe1FxKIqenGinjpr5yK52tRymad7Wm9plgaTmLSMs+h6oDf6Knq9nrOCJjbqS/UeqABWZ2fLhHM7sIWBhdJzKkrvYaejqbSM2aryGYpxCfL0Bq9iK6Ouro1CTzIqejGinjItzXQ8WBp0hMLSE9b7nXcWJS8aLrcOFeKvY9efqNRaaYkTYEnyEyQe4zZvZnM/szkdE7DfjzeIWTqa+5bh8+fzxJaTO8jiKjlJwxm0AwicbqHboqKHJqqpEyLmqObKCns5HiBe9QZ6pHQonZ5M26hLrKLbQ2lnodR2RMjbQh+EWgCQgCl0ZfQaAxuk7kJB2tx+hsPUpK5hzM5/c6joySmY+03MX0dDXR3lzudRyRyUw1UsZcb08HVQf/TGrWQlIy53kdJ6blz76cYHwqR3b/VtNJyLQyooagc+4AsBp4iMgcgLuAHwNrnXMHxy2dTGnVh9dj5iM5Y67XUeQMJaaWEIxPpalmh4qfyDBUI2U8HCt9lr7eTooWvMPrKDHPH4ineMG1tDeXU1v+itdxRMbMiMcgjha6vx7HLDLJnM0In329ndRWbiI5bSb+QPwYppKJZGak5S6h9sjLtDWWkpwxx+tIIpOSaqSMpe7OJo4dXk9mwSoSUwq9jiNARv5KastfoXzv/5KWcw5xoXSvI4mctREPP2Vms8zs+2b2upk9amYXmNndZrZkPAPK1NTacBBcmJQs3c4y1SUkFxCXkElTzS7C4T6v44hMSqqRMpaqDvwRnKNw3tu9jiJRZsbMJe8DF+bwjsf07LxMCyOdUP4cYCvwMWAZUAR0A18Cbh+vcDI1uXAfLfUHCSXnE4xP9TqOnCUzIz13KX29nbTWH/A6jsikoxopY6mj9Ri1FZvIKbmI+IRMr+PIAPGJWRQteCfNdXuoq9zsdRyRszbSK4JfA9KBnf0LnHNbgQYiD8WLHNfWdIRwXxepmfO9jiJjJJSUQygpj+a6PYT7eryOIzLZqEbKmKnc/3t8/jgK5lzudRQZQk7JhSRnzKF8zxN0dzZ5HUfkrIz0GcG3AkeB84DOAcuPALPGOJNMYc45Wur3EYxPIz5J8yhPJ+m5Szh66Bma6/aRN/Nir+OITCaqkTImWhtLaazeQeG8qwnEJXkdRwbpHzshJWs+bY2H2bf1h+SUXDTiqT1yii8Yz3giozbSK4JxQL1zrnvQ8nQiQ2SLANDZVk1PVzMpmkB+2olLyCAhpYiW+n30dLd6HUdkMlGNlLPmnKNi75ME4lLInaHOtsksGJdMeu5SOluPRsZEEJmiRtoQ3AecY2Yfi34Omdn/B8wA9oxLMpmSWur24QuESEot9jqKjIP03MW4cC9HDz3rdRSRyUQ1Us5aU80uWhsPUTj3SvyBOK/jyGkkZ84llJxPw7E3dIuoTFkjvTX0AeDfge8DDlgRfTngR+MTTaaa7s5mOtuOkZazWBPIT1PB+FSS0mdSc2QDeTMv1vDZIhGqkTIiw03L5Jzj6MGnCcQl43BnNX2TDG8sv1czI6vwPKoO/pna8lfIn3MZPt+IZ2UTmRRGOqH8/cD90Y8WfQF8L7pOhJb6fdEJ5DXX3HSWln0OOEfVgT95HUVkUlCNlLPV1nSYnq4W0nOXYDbimb3EY/5AiOzC1fR2t9B49A2v44iM2oh/2zjn/gaYA7w/+prrnPvMeAWTqaWvt5O2pjKS0jWB/HQXiEsip+RCais30dlW43UckUnhbGukmV1tZnvMbL+Z3TXE+kvMbKuZ9ZrZewet6zOzbdHXE2f7s8jECof7aKreSVwo8hy2TC2h5DxSsxbQ2niI9uZyr+OIjMppr2GbWRA4BtQBC5xzh8c9lUw5xyeQz9QE8rEgf/Zl1Ja/QuWBPzJn+c1exxHxzFjUSDPzE7mieCVQDmwysyecczsHbFYG3Ab8wxCH6HDOrRzteWVyaK3fT19vB1lFazTI2hSVlruEzvZa6iq3EAylE4xL9jqSyIic9oqgc66HyHDYnc45N/6RZKrRBPKxJxifQu7Mi2k4uo32lkqv44h4Zoxq5Fpgv3PuYHTk0UeA6wedp9Q59wYQPqvAMqmE+7ppqt1DKDmPkKZcmrLMfGQXrcUwastfwYX7vI4kMiIjvTX0PmChmV05jllkimpr1gTysShv1qX4AwlU7vuD11FEvHYfZ1cji4jMOdivPLpspEJmttnMNprZu84wg3igqXYPLtxDeu5Sr6PIWQrEJZFZtJqezkYajul5QZkaRjq80TVEeiH/YGZ7iNwG09/z6Zxzl49HOJn8nHO01h8gGJ+iCeRjTCCYQP7sS6nY93ta6g+QkjnX60giXvG6Rs50zlWY2RzgGTPb7pw7MHgjM/sE8AmAGTNmjHMkOZ3ennZa6veTmDZDIzBPE4kphaRkzaelbh/xidkkpZV4HUnklEZ6RfCtRCbMNWBR9PNbgUujL4lR3R0NdHc2kpwxV882xKDcGRcTDKVTvud/cE53rEnMOtsaWQEM/BdjcXTZiDjnKqJ/HgSeA1YNs90DzrnVzrnVOTnquPNaU80uANJzFnucRMZSeu5S4hKyqK/aSk9Xi9dxRE5p2CuCZrYcaIv2Kj4/cZFkKmlpOID5AiSlqXc5Fvn8QYrmX0Pp9l9QX7mVrKLVXkcSmRBjXCM3AfPNbDaRBuBNwAdHmCMDaHfOdZlZNrAO+NezzCPjrLuzmbbGUlIy5xGIS/I6jowhMx/ZxWs5Gp1fMG/22/BpbmWZpE51a+g24GUiReWtwEbn3EUTEUqmhr7eTtqby0lOn43PH/Q6jngkM38l1YdfpGL/70nPW44/EOd1JJGJsI0xqpHOuV4zuwN4CvADDzrndpjZPcBm59wTZrYG+G8gA/grM/uyc24JcA7wfTMLE7nL52uDRhuVSaip+k3MFyA1e5HXUWQcBIKJZBWuoebISzQefZ3MwnO9jiQypFM1BB2QY2YjfY5QYkxrY2l0yghNIB/LzHyULPwr9mz6D44dfo7CuVd5HUlkIoxpjXTOPQk8OWjZ3QPebyJyy+jg/TYAy8Yig0yMzvZaOlqrSMtZonl3p7GElHxSsxbSXLeH+KRs3Tklk9KpnhGsAuYCXUQK3vnRSWsHv3onJKlMKs6Faa0/SCgpV1NGCMkZs8nIW86xQ8/R3dnkdRyRiaAaKaPmnKPx2Jv4AyFSsjTv7nSXlruY+IQs6iu30tPV7HUckZOcqiH4X0QefO8fAcRO8ZIY09FSRV9vB8kZuhooEUXz34FzYSr2/q/XUUQmgmqkjFpHaxXdHXWk5pyDz6cbrqY7Mx9ZxedjPj+15a8Q7uv2OpLICYb9LeScu8vMXgaWAF8hMq/RjyYqmExurQ0H8QcSSEgp8DqKTBLxiVnkz34bVQf/RFbRalKzFngdSWTcqEbKaDkXpql6B4G4ZJLTZ3kdRyZIIJhAVtEaaspeomz348xa8n6vI4kcd8ruKOfcb4HfmtlVwJvOuS9PTCyZzHq6W+lsqyYtZzFmI52BRGJB/uzLqD+6jbJd/83iC+/UIEIyralGymg0HH2dnq5msorWqnbGmITkfFKzF1FXsYmUjDlkFWqEbZkcRvSbyDl3qXPujvEOI1NDW0MpAEnq0ZRBfP4gM855N13ttRw99IzXcUQmhGqknI4L91G5/ymC8Wkkpp405o/EgLScc0jOmEPZzt/Q0XrM6zgiwMgnlBcBooPENB0mIbmAQDDB6zgyCaVmLSCzYBVHDz2rYiciAtRWbqKro4703CWY6bHRWGTmY87ym/EF4jn4+s8I9/V4HUlEDUEZnY6WKsK9nSRlzPI6ikxixQuuw+ePo2zXb3Au7HUcERHPhPt6qDrwJ5LSZhJKzvc6jngoGJ/KrKU30dl2jIp9T55+B5FxpoagjEpr46HIIDEqZnIKwfhkihdcS2vDQarLXvI6joiIZ2qObKCnq4mi+dfoaqCQlr2QnBnrqC57kea6vV7HkRinhqCMWG9PO52tx0hKn6kH3eW0sorWkJazmIp9T9LRUuV1HBGRCdfX20nVoWdIyZpPSuZcr+PIJFE8/52EknIpffOX9Pa0ex1HYtiE/mvezK42sz1mtt/M7hpi/SVmttXMes3svYPW3Wpm+6KvWycutfRrjQ4So2GvZSTMjJmL34c/EOLQ9of1PISIxJxjh9fT19NO0bxrvI4ik4jPH2T2sg/S291G2c5f45zzOpLEqAlrCJqZH7gfuAZYDHzAzBYP2qwMuA14eNC+mcAXgfOBtcAXzSxjvDPLXzjnaGssJZSURyAuyes4MkUE45OZteT9dLQepWL/H7yOIyIyYXq72zhW+jzpuUtJSivxOo5MMompRRTOezsNx96gvmqr13EkRk3kFcG1wH7n3EHnXDfwCHD9wA2cc6XOuTeAwaNLvB142jlX75xrAJ4Grp6I0BLR2XqMvt4OkjNmex1Fppi0nHPIKbmQ6sMv6HkIEYkZR0ufJ9zXTeG8t3sdRSapvFlvJTl9NmW7/puujnqv40gMmsiGYBFwZMDn8uiyMdvXzD5hZpvNbHNNTc0ZB5WTtTUdxuePIyGlwOsoMgUVL7iWUFIeB9/4uYqdiEx7vd1t1Bx5iYz8FRpcTYZl5mPWspvAjNLtj2iUbZlw02rED+fcA8651c651Tk5OV7HmTbCfd20t1SSmFaiQWLkjPj8ccxdeSu4MAe2PUS4r9vrSCIi4+bY4RcI9/VQMOcKr6PIJBefkMmMRe+itfEQ1YfXex1HYkxgAs9VAQy8Sb44umyk+146aN/nxiSVnFZbczm4MMlpM72OIlNYKCmH2ctuZv9rD1K641GSM+ac9VDqOcUXjFE6EZGx0dvdRnXZS2TkLychOc/rODIFZBacS8OxN6jY/wfScs4hlJTrdSSJERN5eWcTMN/MZptZHHAT8MQI930KuMrMMqKDxFwVXSYToK3xMMH4VIKhdK+jyBSXlrOIwnlX03B0Gy16XlBEpqFjh9cT7uvS1UAZscgo2+/B5wtS+uavdIuoTJgJawg653qBO4g04HYBv3LO7TCze8zsOgAzW2Nm5cD7gO+b2Y7ovvXAvxBpTG4C7okuk3HW09VCd0d9dO5ATYQrZy9/9ttIz1tOY/WbtDeP9KYAEZHJr7enneqyF0nPW65nA2VUgvGplJzzLtqaDusWUZkwE3lrKM65J4EnBy27e8D7TURu+xxq3weBB8c1oJykrfEwYCSlzfA6ikwTZsbspTeyo7mc2opXyfVfTCgp2+tYIiJnrTp6NbBQVwPlDGTmr6LhqG4RlYmjkT9kWM452prKCCXn4Q+EvI4j04jPH0dOyUUEgonUHNlAd2eT15FERM5Kb09H5Gpg7lKNsC1nJHKL6A34/HGUvvlL3SIq404NQRlWZ1t1ZO7AdA0SI2PPH4gnd8Zb8Pn81JS9RG9Pu9eRRETOWHXZevp6OymYe6XXUWQKC8anMmPRu2hrKuNY6Qtex5FpbkJvDZWppa3pMD5fkIRk9WzK+AjEJZEz4y0cK32O6sPryZv1Vl19FpEpp6+ng+rDL5Keu4TElEKv48gkVVO+cUTbOedISCmkYv/vCYe7CcanAhopW8aergjKkPp6u+horiQxrRjz+b2OI9NYXCiNnBnrIv+QKntRcwyKyJRTfeQl+no7KJijq4Fy9syMzIJV+HwB6iq34JzzOpJMU2oIypAaq9/EuT4SNUiMTIBQYjbZJRfQ09lMddkGwuFeryOJiIxIX283xw6vJy37HBJTi7yOI9OEPxAiI38l3R31mm5Jxo1uDZUh1Ve9hj+YSHxCltdRZBIa6e0to5GQnE928Vpqy1+h9sjL5JRcpKvRIjKpDPW7r7luH3097YSS88bld6PErsTUYtqby2ms2UlCSsFZ//3SraUymK4Iykl6ulporttLUlqJ5g6UCZWYWkxm4Xl0tlVTW/GqRkwTkUnNuTAtdfuIT8wmPlEdpzK2TrhFtGKzaqKMOTUE5SQNR18HnOYOFE8kp88iPW85HS2V1Fdu1bMREhPM7Goz22Nm+83sriHWX2JmW82s18zeO2jdrWa2L/q6deJSS1vTEfp6O0jNWuh1FJmmjt8i2tlAc90+r+PINKOGoJykrmorCSmFx0epEploqVnzSctZTFvTYRqOva7GoExrZuYH7geuARYDHzCzxYM2KwNuAx4etG8m8EXgfGAt8EUzyxjvzBIZ2bG5dg/B+DRCyXlex5FpLDG1mISUIppqdmreXRlTagjKCTrbamhvPkJWwbleR5EYl5q9iJTM+bTWH6CpZqfXcUTG01pgv3PuoHOuG3gEuH7gBs65UufcG8Dge8PeDjztnKt3zjUATwNXT0ToWNfRUklvdwup2Qv1GIWMq7/cIhqkrlK3iMrYUUNQTlBf9RpgZOSv9DqKxDgzIz1vGUnps2iu3U1zrUZNk2mrCDgy4HN5dNl47ytnqP9qYCCYpJFCZUL4A/FkFqyip7OR5trdXseRaUINQTnOOUd91VZSMucSF0rzOo5ItBf0XBJTi2ms3k5rw0GvI4lMWWb2CTPbbGaba2pqvI4zpXW119Ld2UBK1gLM9E8pmRiJqUUkppXQVLOb7o4Gr+PINKDfXnJce9MRujrqyNRtoTKJmBlZRWsIJedRX/UabU1HTr+TyNRSAZQM+FwcXTam+zrnHnDOrXbOrc7JyTmjoBLRXLsHnz+e5PSZXkeRGJOZvxJ/ID5yi2i4z+s4MsWpISjH1R3divkCZOQu9TqKyAnMfGQXX0B8YjZ1FZvoaKnyOpLIWNoEzDez2WYWB9wEPDHCfZ8CrjKzjOggMVdFl8k46e5ooLPtGKlZ8zXXqUw4nz+OzIJz6elqpqlml9dxZIpTQ1AAcOE+Gqq2kZazGH8wwes4Iifx+QLklFxEXCiNmvKNdLbp1jaZHpxzvcAdRBpwu4BfOed2mNk9ZnYdgJmtMbNy4H3A981sR3TfeuBfiDQmNwH3RJfJOGmu24v5AiRnzPE6isSohJSCyPPzdXvoaq/zOo5MYQGvA8jk0Fy3j96eNrIKVnkdRWRYPn+QnBlv4Vjp89QeeZmc4gsIJekWN5n6nHNPAk8OWnb3gPebiNz2OdS+DwIPjmtAAaCnq4X25nJSsxbi8we9jiMxLCNvOZ1t1dRVbiZ/zuX4fPonvYyerggKAPVVW/EHEkjNXuR1FJFT8gfiyZ1xEZix/7Uf09vT4XUkEYkRzXV7wXykZM3zOorEOJ8/SFbBefR2t9JUvcPrODJFqSEo9PV20Vj9Jhn5y9WjJFNCIC6Z7OIL6e6o59Ab/6UH5kVk3HV3NtHWVEZy+iz8gZDXcUQIJeeSnDGHlvr9elxCzogagkJj9ZuEwz0aLVSmlFBSNjMW30Bz3V6O7P0fr+OIyDRXXbYeXJjUrPleRxE5Lj1vGYFgEnWVmwmHe72OI1OMGoJCfdVrxIUySE6f5XUUkVHJLlpL7sxLqCl7idqKTV7HEZFpqrennZojG0lMLSEQl+x1HJHjfL4AmUWr6etpp/HYG17HkSlGDcEY19PVQnPdXjILVmlSXJmSiue/g5TMeZTt+g3tzSOdek1EZORqjrxMuK+L1OyFXkcROUkoMZuUzPm0Nhyio/WY13FkCtG//GNc/dFtgNNtoTJlmc/P7GU3EwgmceD1n9Lb0+51JBGZRsJ93VQfXk9q9iLiQmlexxEZUnruEoLxKdRXbqavt8vrODJFqCEY4+qrXiMhpYiE5Dyvo4icsWB8MnNW3EJPZxOl2x/BubDXkURkmqit2ERvTxv5s9/mdRSRYZnPT1bR+fT1dVNfuQXnnNeRZApQQzCGdbZV0958RHMHyrSQnD6L4oV/RVPtLo4eetbrOCIyDbhwH8dKnycpfSbJ6bO9jiNySnGhNNJzl9LRWkVrwyGv48gUoIZgDKuveg0wMvJXeh1FZEzklFxERv5KKg/8kdbGUq/jiMgUV390G92dDeTPvgwz8zqOyGmlZM4jlJRH47E36Olq9jqOTHJqCMYo5xx1VVtJyZynZx5k2jAzZp5zA3GhdA698XM9LygiZ8y5MEdLnyOUnE9a9iKv44iMiJmRVbQa8wWoLX9V8+zKKakhGKPamg7T3VFPlgaJkWnGH0xgzvKb6e5q5vCOR/WchIickaaa3XS2HiV/1qUaVVumFH8gRFbhefR0NdFYvcPrODKJBbwOIN6or9qK+YKk5y31OorIGasp3zjsuvScJTRWb+fQ9l+Qkjln2O1yii8Yj2giMgmd6nfGQM45jpU+hz+YSF9f14j3E5ksElIKSM6YQ0v9PkLJeRoUUIakLq4Y5MJ91B99nfTcxfgDIa/jiIyLlKz5hJLyaDj2Ot2dTV7HEZEppKu9lu6OelKzFuhqoExZ6XnLCcanUlexid6eDq/jyCSk324xqKluD3097Zo7UKa1/uckfP44astfIRzu9TqSiEwRzbW78fnjSUqf5XUUkTPm8/nJLj4fF+6lrkLPC8rJ1BCMQfVVW/EHE0nLWuh1FJFx5Q+EyC5cTW93Cw1HX/c6johMAd0dDXS2VZOSNR+fz+91HJGzEoxPJbPwXLraa6nY/wev48gko4ZgjOnr7aSxegeZ+SswFTiJAaHkPFKzFtLWWEpb0xGv44jIJNdUuwfzBUjJGP7ZYpGpJCltBskZszlW+pwGj5ETqCEYYxqOvo4L95JZcJ7XUUQmTFruYuISMqmv2kpvd6vXcURkkurpaqGjpYKUjLn4/EGv44iMmYy8FSSmFlP65i/pbKvxOo5MEhPaEDSzq81sj5ntN7O7hlgfb2a/jK5/xcxmRZfPMrMOM9sWfX1vInNPJ7UVmwgl5ZKUNsPrKCITxsxHdtFawCLzKrmw15FEZBJqrtuLmY+UrHleRxEZU+bzM2f5h8CMA9seok+DxwgT2BA0Mz9wP3ANsBj4gJktHrTZR4EG59w84NvA1wesO+CcWxl93T4hoaeZjtZjtDUdJqtoDWbmdRyRCRWISyKr8Dy6OxtoOPaG13FEZJLp7WmnrfEwSemzNKK2TEvxiZnMXfFhOttrOfjGz9UpKhN6RXAtsN85d9A51w08Alw/aJvrgZ9E3z8GXG5qsYyZusrNYD6ydFuoxKjE1CJSMufRWn+A9uYKr+OIyCTSUrcPgNSsBR4nERk/KZlzmXHOu2mu20PF3v/1Oo54bCIbgkXAwJEayqPLhtzGOdcLNAFZ0XWzzew1M3vezC4e77DTjQv3UVe5hbTsRQTjU7yOI+KZ9LxlxIUyqKvcoucFRQSAvt4uWhsOkZRWQiAuyes4IuMqp/gCckrWcezwC9SWv+p1HPHQVBkspgqY4ZxbBdwJPGxmqYM3MrNPmNlmM9tcU6MHYQdqqttDb3cL2UVrvI4i4ikzH9nF5wNofkERAaClfh/O9ZGarWmVJDaULPwrUrMWcHjXr2msftPrOOKRiWwIVgAlAz4XR5cNuY2ZBYA0oM451+WcqwNwzm0BDgAn3bvhnHvAObfaObc6JydnHH6EqauuYhOBuGTSss/xOoqI5/7yvGAj5Xt/53UcEfFQX28XLfUHSEwtIhh/Uh+zyLRkPj9zVnyYpNRiDr7xc1rqD3gdSTwQmMBzbQLmm9lsIg2+m4APDtrmCeBW4GXgvcAzzjlnZjlAvXOuz8zmAPOBgxMXfeqpKd94/H3/3IEpmfOordzkYSqRyaP/ecGaspdISZ9DRv5yryOJiAda6vfjwr2kqqNUYow/EM+8VX/Nnk3/yf7XfszCNbeTmFrsdSyZQBN2RTD6zN8dwFPALuBXzrkdZnaPmV0X3exHQJaZ7SdyC2j/FBOXAG+Y2TYig8jc7pyrn6jsU11bUxngSEqf5XUUkUklPW8ZSWkzKN3xK9pbKr2OIyITrK+vm5b6/SSkFBEXSvM6jsiEC8QlMf+8jxMIJrJvyw9VC2PMhD4j6Jx70jm3wDk31zn31eiyu51zT0Tfdzrn3uecm+ecW+ucOxhd/mvn3JLo1BHnOuf+ZyJzT2XOOVobDhGXkElcSLe8iAxk5mPOig/jD8Rz4LUf09OlwWNEYklL3T5cuJe0HF0NlNgVF0pj/nkfx/xB9m76T1obDnkdSSbIRN4aKh7obKumt7uVrEINEiMylLhQGnNX3saeTf/Jgdd/woLVn8Tnm/hfjQNv5z5TOcUXjEES8YKZXQ38G+AHfuic+9qg9fHAT4HzgDrgRudcqZnNInKXzZ7ophs11+7IhI9fDSzU1UCJeaGkHBat+TR7tzzAvi0/YO7KWzV4UgyYKqOGyhlqrT+Azx9PYurgmTpEpF9SWgmzl95IW2MpZTsfwznndSSJIWbmB+4HrgEWAx8ws8WDNvso0OCcmwd8G/j6gHUHonfMrFQjcOSa6/braqDIAHEJGSxc82nik7LZ/9qPqa96zetIMs7UEJzGervb6GitIjljFubzex1HZFLLyF9BwdyrqKvcQtWBP3odR2LLWmC/c+6gc64beAS4ftA21wM/ib5/DLjczGwCM04rkZFC90WvBqZ7HUdk0gjGp7Bg9adISpvBoe0Pc2T3E7hwn9exZJyoITiNtTZEBlZNzpjjcRKRqaFgzhVkFa2l6uCfOHZ4vddxJHYUAUcGfC6PLhtym+jga01AVnTdbDN7zcyeN7OLhzuJ5tr9i+a6PdGrgUu8jiIy6QSCCSxY/UlyZ7yF6rL17N38fXq6mr2OJeNADcFpyoX7aG0sJSGlkEAw0es4IlOCmTFz8XtIz11G+Z4nqC57yetIIqdTBcxwzq0iMtr2w2Y25Mhgmms3orennZb6AySlzdQgaiLDMJ+fkkXXM3vZB2lvLmfny9+m/ug2PToxzaghOE21NZcT7usmJXOu11FEphQzH7OXf5C0nCUc2f04x0qf9zqSTH8VQMmAz8XRZUNuY2YBIA2oc851OefqAJxzW4ADwIJxTzyFNdXsAuf0bKDICGQWrGLRBZ8lLpTOoTd+zv7XHqSrQzO4TRdqCE5TrfUHCMSlEJ8Yu72+ImfK5wswd8WHyMhbTvne30WekXBhr2PJ9LUJmG9ms80sDrgJeGLQNk8At0bfvxd4xjnnzCwnOtgMZjYHmA8cnKDcU05PVwttjYdJzpxDIC7J6zgiU0JCcj6L1t5B8cLraG04yM6X7qVy/x/p7enwOpqcJU0fMQ21NpbS3dlARv5KNJaAyJkxn5/Zy28muCeV6rL1dLbXMHvpTfrHo4w551yvmd0BPEVk+ogHnXM7zOweYHN0rt0fAT8zs/1APZHGIsAlwD1m1gOEgdudc+quH0ZTzQ7MfKRlL/I6isiUYj4/eTMvJiN3KUf2/A9VB5/mWNl68ma8hdyZF4/oMaSznSZJUySNPTUEp6Gjh57F548jKX2m11FEpjQzHyWLrieUlMuR3b9l18b7mLnk/aRmzfc6mkwzzrkngScHLbt7wPtO4H1D7Pdr4NfjHnAaaGs6QntzBanZi/AHQl7HEZmS4hIymLvyw7S3VFJ14Ono4GovkJG/guyi80lKm6GLEFOIGoLTTEfrMZpqdpKafY4nk2KLTEc5JReSmFrMoe0Ps2/LA2QVrqFw3ts1CbXIFOGc48ju3+Lzx5OapUcoRc5WYkohc1feSntLJdVlL9FwdBt1FZtISM4ns+Bc0nOXEkrS40mTnVoK08yx0ucxX1CDxIiMsaS0EhZfeGfkdpjSF6g/+ho5xReQM2MdocRsr+OJyCnUV22lrekwmQXn4fMHvY4jMiUNd2tnUloJCcn5tDeX09pYSsW+J6nY9yTB+FQSUopITC0kGJ+mK4WTkBqC00hXez11VVvIKbkQfyDe6zgi047PH6Ro/jvILrqAygN/pPrIBqrLXiQpfSbpOUtIyZhLQmqhrsaLTCJ9vV1U7HuSxNRiPTIhMk58/iDJGbNJzphNb087HS2VtDdX0ly7i+baXfiDiSSmFJKQUkh8YrYahZOE/rUyjRw99GfMfOTPehtNtbu8jiMybcUnZjJ72U0UL3gHtRWbaDi2nYp9/Y93GcH4VOISMogPZeAPJuIPhPAH4qN/DnoFEwnGay4zkfFy9NAz9HQ1M2fFh+hoPep1HJFpLxBMJCVzHimZ8+jr7aSjpYr2lkpaGg7SUr8fnz+OhJRCElIKCCXl4fP5vY4cs9QQnCa62uuprdxMTsmFem5JZIIE41MpmHM5BXMup7uzibbGUjpaj9Ld2UBXRwOtTYfp6+mgr7cTGH4SXp8/nkBcMvGJmYSS8ggl5WCm2X1EzlZXey3HSp8ns+BcktNnqSEoMsH8gdDxK4Xhvh46247R3lxJe3MFbY2lmPlJSCkgKW0moeRc1b4JpobgNFF18OnjVwNFZOLFhdKIy19BBitOWuecI9zXTV9vJ329nYR7u+jr7aCvt4ue7hY622poqt1FS/0BWur2Yb4gSWnFJKfPJi4hw4OfRmTqiwwQ8wTm81M0/x1exxGJeT5/kMTUYhJTi3EuTGdbDR0tFbQ3V9DeXI7PH09S2gySM2YTjE/xOm5MUENwGmhvqaSucgt5My/R1UCRScjMoreGxgND/z9aU55PONwX7S2toK2xjNaGQ8Qn5ZCWvZhQkgakERmNhqPbaKrdRdGCd6o2ikwyZj4SkvNISM4jI38lHS1VtDWV0VK/n5b6fYSS8kjJnEsoOV/PE44jNQSngYq9T+IPhMifc5nXUUTkLPh8fhJTCklMKSScv5LWhkM01++j+vDzJKaWkJ63jEAwweuYIpNeT1cLZbsfJyltBnkzL/E6jsikcLYTuo8XMx+JqUUkphbR19NBa2MprQ0HqTmygUBcMqnZi0hKK/E65rSkhuAU11y7h+a6PRQvuJZAMNHrOCIyRnz+IKnZC0jOnENz7V6a6/bQ0VJJas45pGbN13MUIqdQtvtxwr1dzFzyfv2/IjKF+IMJpOWcQ2r2QtqbK2iu3UN95WaaanZiGFlFazQy9xjSNzmFhcO9lO1+nPjEbHJmrPM6joiMA58vQHruYpLTZ9Jw7A2aqt+ko7mCrOK1BOOSvY4nMuk0HH2DxmNvUDjvGhKS87yOIyJnwMxHUloJianFdLYepal2N2W7fkPVwT+RP+ttZJdcoAbhGNA3OIUdK32ervZa5p37Uf3PIHKGJuutMoMF4pLIKbmQ9uZy6iq3cvTgn8nIX0FS2kw9PyES1dPdStmu35CYWkz+rLd6HUdEzpKZRaaZSM4nlJhF1cE/c2TPbzlWtp6ieVeTkb9CV/3PgloPU1Rney1VB/9Meu5S0rIXeR1HRCZIYmoxcQmZ1FVsor5yC52tx8gsOBefP+h1NBFPORem9M1f0tfXxawl78c0N5nItGFmpGYtICVzPi11eynf9ySHtj/M0dLnKJ7/DlKzF3odcUpSQ3AK6i92Pp+fkkXXex1HRCZYIJhI7sxLaK7dQ1PNDro7m8gpucDrWCKeOnb4BZprdzPjnHeTkFLgdRwRGQdmRmr2Qs7Jmk/90W1U7vsD+7b+kJTM+RQteAdJqcVeR5xS1BCcgqoPr6etsZRZS28kLpTudRwR8YCZkZaziPjETGrLX+XowWcIJeaQWbDK62giE66l/gAV+35Pet5ysosv9DqOiIyDoR7lyJv1VloaDtJcu5vdG/+NxNRi0nOXEBjiGfqcYnWYDqabaqeYtqYjVOz7PWk5i8ksOM/rOCLisVBSLvlzLiculM6h7Q9TtutxwuFer2OJTJiujnoOvP5TQonZzFryPj0zKxJDzOcnNWs+hfOuJjV7ER0tVVTu/yMNR1+nr7fL63iTnq4ITiG9Pe0cfP1nBONTIs8/qNiJCBAIJpA76xK62uuoPvwC7c1HmLPiQ7pjQKa93p4O9r/2Y3Bh5q68DX8g5HUkEfGAzx8kPXcJyRlzaKrZSUv9flobD5OWvZDkzHn49MzwkHRFcIpw4T4OvfFzerqambP8QwTikryOJCKTiJmPkoV/xZzlH6Kj9Ri7Xr6P5rq9XscSGTfhvh4ObHuIrrYa5qz4MKGkHK8jiYjHAsEEsgrPI3/OFcQnZtFY/SZV+5+irfEwzoW9jjfpqCE4BTjnKNv13zTX7WXG4htISp/hdSQRmaQy8pdzzgV/SyA+hX1bfkjVgadV/GTaCYd7Ofj6z2htOMispTeRmjXf60giMonEhdLInbGO3JkX4w/EU1e5mV0b/00dpIOoITjJOeeo3P8HaiteIX/2ZWQXrfU6kohMcqGkHBat/RsyC1ZReeCP7H/tx/R2t3kdS2RMhPt6OPj6z2iq3cWMc24gs2Cl15FEZJIKJeWSN/sysorW0tfTwb4tP2Dflh/Q3lLpdbRJQQ3BSSzSCHyKo4eeIbvofArnvd3rSCIyRfgDccxaehMzzrmBlrp97Np4H811+7yOJXJWenva2bf1hzTV7GTGOe8mp0QjhIrIqZkZSWklLHnL5ylecC1tTUfY9fJ9HHz9Z3S0VHkdz1MaLGaScuE+ynb9N7UVr5BVtJYZi2/ATO12ERk5MyOn5EISU4s5tP0X7NvyANnF51M8/534gwlexxMZlc62ag5s+wld7XXMXvZBTZUiIqPi8wXIm/VWsorWcKz0earLXqLh2Buk5y6lYM4VJKYWeR1xwqkhOAn1dLVwaPvDtNTvJ3/25RTOe7tGCBWRM5aUVsLiCz9H5YE/cqz0eZpqdlOy6HrSc5fqd4tMCQ1HX6d0x6P4fAHmn/cxUjLneR1JRKaoQDCRovnXkDfrrVQfXk912Ys0Vr9JWs5i8mddSlL6rJipjWoITjJNNbso3fEofb0dzFzyfrKL1ngdSUSmAZ8/SPGCd5KRt5zDO37Fwdd/SlL6TIrnv5PkjNlexxMZUm93G0d2/5b6o6+RlDZD06KIyJgJBBMpnPd2cmdeQk3Zixw7vJ49NTtJTC0md8ZbyMhfgc83vZtK0/unm0K6Ouqp2Pu/NBx7g1BSHgvO+zgJKQVexxKRaSYprYRzLvg76iq3UHngKfZs+g/SchaTN/OtJGfMjpleUJncwuFeao68TNWBp+nr66Jw3tvJn/U2THOBicgYCwQTKJh7Jbkz30p91Waqy16i9M1HKN/zP2QWnktW4WoSUwq9jjku1BD0WGdbDdVl66ktfxXMKJx7FXmz3zbteyBExDvm85NdvJbMgpUcO7w+ervoThJSCsgteQsZ+SvxB+K8jikxqK+ng7rKLRwtfY6eriZSsxZQvPA6EpLzvI4mItOcPxBHTslFZBdfQHPdPmrLX6GmbAPVh9eTkFJIRt4K0nOXEErKnTadphPa2jCzq4F/A/zAD51zXxu0Ph74KXAeUAfc6Jwrja77P8BHgT7gs865pyYw+pjq7emgqWYn9VVbaa7bh5mPrKLVFMy5Qre8iMiE8fnjKJhzOXkzL6au6jVqyl7k8M5HKdv936RlLyQ9dxlpOecQCCZ6HTUmxGqNDPd101S7h8bqN2msfpNwXzfJ6bOZtfT9pGTOnzb/4BKRqcHMR1r2QtKyF9Lb3Ub90W2Ru2j2/57K/b8nPjGbtOxFJGfMISVjDoG4JK8jn7EJawiamR+4H7gSKAc2mdkTzrmdAzb7KNDgnJtnZjcBXwduNLPFwE3AEqAQ+JOZLXDO9U1U/jPlnKOnq4m2piORV2MprU2HwYWJC2VQMOcKckouIBif6nVUEYlRPn8cOcXnk120ltbGQzQce4PGY2/SWL0DMBKS80hKn0Vy2kwSUgoIJeXg8+uK4ViKpRrZ29NOe3N5tC6W0Vy3DxfuwR9IICN/BTnFF5KUVuJ1TBERAnFJkYnpZ6yju7OJppqdNFbvoKZ8I9VlLwIQSsojMbWYxJQCElIKSEjOJxCXMiU6sSbyiuBaYL9z7iCAmT0CXA8MLHLXA1+Kvn8M+K5FvsXrgUecc13AITPbHz3ey+Md2rkwLtyHC/cSdn3R93246PtwuIe+3g56e9rp62mnt6eD3p42ujsa6Oqop6ujnnBvJ5Gf2U9CSiH5sy4lLeccktJmaEoIEZk0zIyUaA9nycLraG8up6l2N22Nh6k/uo3a8o3Htw2G0gklZBGMTyUYn0IwPhV/MAG/P4Q/EI8vEP3TF8TMh/n8mPnBfJj5MZ8vsly/A/tNqRoZqY29hPt6CId7CYd7cP3v+3oI93XR29NOb08bvd1tdHc20NUeqYm93S3HjxOfmE120VrSc5eSkjFbzwCKyKQVF0ojp+RCckouJBzupb3pCC0NB2ltLKWlfh/1VVuOb2u+APEJmcSFMgjGJxMIJhGISyIQTCYQl4jPH4/PF8DnD2K+ID5/EJ8viM8XiPwePF4fbVwblBPZECwCjgz4XA6cP9w2zrleM2sCsqLLNw7ad1wn+3AuzNan7wLcqPf1+eOIC6UTl5BJcvpsQkk5JKWVkJBSqGf/RGRKMPORlDaDpLQZQOR3YmdbNZ2tx+hsr6GzrYaujjpamw7T09WMC/ee6ZmYtewmsgrOHbvwU9OUqpHHSp+jYt/vR7ax+YiLTyM+IZO0nEWEEnMiveepxQQ0n6WITEE+X4DkjNknjLrd091KR0slnW21dHfU09VRR3dnI51tx+jtbiMc7hn1eQJxyay49ItjGf3E44/bkT1gZp8APhH92Gpme4bYLBuonbhUk5K+gwh9D/oO+ul78PQ7+MZYHGTmWBxkOlONHBf6vkZP39no6PsavWn2nX3pbA8wbH2cyIZgBTDwpv/i6LKhtik3swCQRuSB+JHsi3PuAeCBU4Uws83OudWjTj+N6DuI0Peg76Cfvgd9B5OAauQUpO9r9PSdjY6+r9HTdzZyE/lwxiZgvpnNNrM4Ig+2PzFomyeAW6Pv3ws845xz0eU3mVm8mc0G5gOvTlBuERGR8aYaKSIiE2rCrghGn2e4A3iKyNDYDzrndpjZPcBm59wTwI+An0UfdK8nUgiJbvcrIg/N9wKfmayjoYmIiIyWaqSIiEw0i3Qmxg4z+0T09piYpe8gQt+DvoN++h70HUiE/h6Mjr6v0dN3Njr6vkZP39nIxVxDUEREREREJNZpAicREREREZEYExMNQTMrMbNnzWynme0ws7/1OpOXzMxvZq+Z2e+8zuIFM0s3s8fMbLeZ7TKzC73O5AUz+1z0/4c3zewXZhbyOtNEMLMHzazazN4csCzTzJ42s33RPzO8zDjehvkOvhH9f+INM/tvM0v3MKJMINXIMxPrtXS0VHtHL1br9Giopp+dmGgIEnl4/u+dc4uBC4DPmNlijzN56W+BXV6H8NC/AX9wzi0CVhCD34WZFQGfBVY755YSGZziJm9TTZiHgKsHLbsL+LNzbj7w5+jn6ewhTv4OngaWOueWA3uB/zPRocQzqpFnJtZr6WjFfO0djRiv06PxEKrpZywmGoLOuSrn3Nbo+xYiv3yKvE3lDTMrBt4J/NDrLF4wszTgEiKj7+Gc63bONXoayjsBICE6H1kiUOlxngnhnHuByIiLA10P/CT6/ifAuyYy00Qb6jtwzv3ROdcb/biRyFx0EgNUI0cv1mvpaKn2nrGYrNOjoZp+dmKiITiQmc0CVgGveBzFK/cBnwfCHufwymygBvhx9JaeH5pZktehJppzrgK4FygDqoAm59wfvU3lqTznXFX0/VEgz8swk8BfA7/3OoRMPNXIEbuP2K6lo6XaO0qq02dFNX2EYqohaGbJwK+Bv3PONXudZ6KZ2bVAtXNui9dZPBQAzgX+0zm3CmgjBm8ZiN4vfz2R4lwIJJnZLd6mmhyiE3TH7HDKZvZ/idwq+HOvs8jEivUaOVKqpWdEtXeUVKfHRqzX9NOJmYagmQWJFLifO+d+43Uej6wDrjOzUuAR4DIz+y9vI024cqDcOdff2/0YkeIUa64ADjnnapxzPcBvgIs8zuSlY2ZWABD9s9rjPJ4ws9uAa4GbneYWiimqkaOiWjp6qr2jpzp95lTTRygmGoJmZkTuS9/lnPuW13m84pz7P865YufcLCIPHD/jnIup3iXn3FHgiJktjC66HNjpYSSvlAEXmFli9P+Py4ntB/efAG6Nvr8V+K2HWTxhZlcTudXtOudcu9d5ZOKoRo6OaunoqfaeEdXpMxfzNX2kYqIhSKT37kNEeu22RV/v8DqUeOZvgJ+b2RvASuD/eRtn4kV7ZR8DtgLbifwueMDTUBPEzH4BvAwsNLNyM/so8DXgSjPbR6QX9mteZhxvw3wH3wVSgKejvyO/52lImUiqkTIRYr72jkYs1+nRUE0/O6a7f0RERERERGJLrFwRFBERERERkSg1BEVERERERGKMGoIiIiIiIiIxRg1BERERERGRGKOGoIiIiIiISIxRQ1BERERERCTGqCEoMsHM7Dkzc8O8PmpmTdH33x6wz5IB2zwwYPnMAcs/Muj4pYPOe+mAbW+LLps16Pz/OGifmwetv3T8vhkREYllqo8iE0sNQRHvdAOvDHodBTZE118yYNvh3r91wPsXxiDTp8wsMODzZ8fgmCIiIqOh+igyAQKn30RExkmVc+6CwQvNbDlwNbDCzFKdc83AxdHV1cBCM8t1zlXzl6JX6Zw7cJZ5eoBi4AbgV2Z2PrA2ujx4lscWEREZKdVHkQmgK4Iik09/z6UfWBd9fzHQBPxowGf4S6FbPwbnfSz6598M+vOxIbYVERGZaKqPImNIDUER78y0k5+BSAc2AR3RbS4xszlEeiJfAp4bsDwfmB/9PNRtLyccH3j2NHk2AJuBt5jZNcD7gCrg0TP8+URERM6E6qPIBNCtoSLe6QZeG7Ss1znXbWavAJcSecZhd3TdC0SKUS+RHs8NA/Ybqsdz8PFTgXNOk+k7wE+BR4A44PtEbn0RERGZKKqPIhNADUER7wz5DETUC0QK3WqgtH+Zc67VzF4DzgOujS6vB9483fGjI5qdrtfzl8A3gDwihfJ7wJrT7CMiIjKWVB9FJoBuDRWZnPpvZQkSuQWlnchtKf3rfMBN0c8vOufcWJzUOddf3AB+5Zw7NhbHFRERGSOqjyJjRA1BkcnpZf5yy0kA2Oic6//8woDlMDYPwg/0VSAH+PgYH1dERORsqT6KjBE1BEUmIedcO7BlwKKBD7uvB8LDrBuLc/c452qdc51jeVwREZGzpfooMnZsjK6Yi4iIiIiIyBShK4IiIiIiIiIxRg1BERERERGRGKOGoIiIiIiISIxRQ1BERERERCTGqCEoIiIiIiISY9QQFBERERERiTFqCIqIiIiIiMQYNQRFRERERERijBqCIiIiIiIiMeb/D+9n1NxOrzgqAAAAAElFTkSuQmCC\n",
       "text/plain": [
        "<Figure size 1080x360 with 2 Axes>"
       ]
@@ -1883,14 +1871,14 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 114,
+   "execution_count": 165,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "{'MEDIAN_FWHM_x': 6.361155779828058, 'MEDIAN_FWHM_y': 5.865753036777117}\n"
+      "{'MEDIAN_FWHM_x': 6.61783565447222, 'MEDIAN_FWHM_y': 6.0911794566979856}\n"
      ]
     }
    ],
@@ -1900,14 +1888,14 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 115,
+   "execution_count": 166,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "{'INCERTIDUMBRE_FWHM_x': 0.05897470200906251, 'INCERTIDUMBRE_FWHM_y': 0.0583083389179374}\n"
+      "{'INCERTIDUMBRE_FWHM_x': 0.07111893293495501, 'INCERTIDUMBRE_FWHM_y': 0.059722316688425}\n"
      ]
     }
    ],
@@ -1936,7 +1924,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 116,
+   "execution_count": 167,
    "metadata": {
     "colab": {
      "base_uri": "https://localhost:8080/",
@@ -1971,7 +1959,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 117,
+   "execution_count": 168,
    "metadata": {
     "colab": {
      "base_uri": "https://localhost:8080/",
@@ -2031,7 +2019,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 118,
+   "execution_count": 169,
    "metadata": {
     "colab": {
      "base_uri": "https://localhost:8080/",
@@ -2054,14 +2042,14 @@
      "output_type": "stream",
      "text": [
       "\u001b[91mFWHM FOR CHANNEL RED\u001b[0m\n",
-      "{'MEAN_FWHM_x': 6.85040177317909, 'MEAN_FWHM_y': 6.286265858550066}\n",
-      "{'INCERTIDUMBRE_FWHM_x': 0.07397839012804115, 'INCERTIDUMBRE_FWHM_y': 0.06519770408323534}\n",
+      "{'MEDIAN_FWHM_x': 7.9183883547135165, 'MEDIAN_FWHM_y': 7.35922763918757}\n",
+      "{'INCERTIDUMBRE_FWHM_x': 0.1159148719780544, 'INCERTIDUMBRE_FWHM_y': 0.08836013787487608}\n",
       "\u001b[91mFWHM FOR CHANNEL GREEN\u001b[0m\n",
-      "{'MEAN_FWHM_x': 6.245164160492783, 'MEAN_FWHM_y': 5.852337602343364}\n",
-      "{'INCERTIDUMBRE_FWHM_x': 0.05644305840123783, 'INCERTIDUMBRE_FWHM_y': 0.05873235620560445}\n",
+      "{'MEDIAN_FWHM_x': 7.2816934101996456, 'MEDIAN_FWHM_y': 6.823136964119058}\n",
+      "{'INCERTIDUMBRE_FWHM_x': 0.09670234009426094, 'INCERTIDUMBRE_FWHM_y': 0.07626498914594818}\n",
       "\u001b[91mFWHM FOR CHANNEL BLUE\u001b[0m\n",
-      "{'MEAN_FWHM_x': 5.656095446703643, 'MEAN_FWHM_y': 5.248410485649535}\n",
-      "{'INCERTIDUMBRE_FWHM_x': 0.0511572917957581, 'INCERTIDUMBRE_FWHM_y': 0.04996212650827945}\n"
+      "{'MEDIAN_FWHM_x': 6.707228331976005, 'MEDIAN_FWHM_y': 6.143125344552874}\n",
+      "{'INCERTIDUMBRE_FWHM_x': 0.0772819315486433, 'INCERTIDUMBRE_FWHM_y': 0.06542214124518661}\n"
      ]
     }
    ],
@@ -2085,11 +2073,11 @@
     "    # calcula parametros\n",
     "    parameters_df = star_parameters(temp[:,:,i],stars)\n",
     "    parameters_df=parameters_df[(parameters_df[\"height\"]<255)]\n",
-    "    parameters_df=parameters_df[(parameters_df[\"FWHM_x\"]<np.median(parameters_df[\"FWHM_x\"])+3*np.std(parameters_df[\"FWHM_x\"])/math.sqrt(len(parameters_df[\"FWHM_x\"]))) & (parameters_df[\"FWHM_y\"]<np.median(parameters_df[\"FWHM_y\"])+3*np.std(parameters_df[\"FWHM_y\"])/math.sqrt(len(parameters_df[\"FWHM_y\"])))]\n",
+    "    parameters_df=parameters_df[(parameters_df[\"FWHM_x\"]<np.mean(parameters_df[\"FWHM_x\"])+2.5*np.std(parameters_df[\"FWHM_x\"])) & (parameters_df[\"FWHM_y\"]<np.median(parameters_df[\"FWHM_y\"])+2.5*np.std(parameters_df[\"FWHM_y\"]))]\n",
     "    \n",
     "    #muestra resultados\n",
     "    print(bcolors.RED +\"FWHM FOR CHANNEL \"+color[i] + bcolors.ENDC)\n",
-    "    print({\"MEAN_FWHM_x\":np.mean(parameters_df[\"FWHM_x\"]),\"MEAN_FWHM_y\":np.mean(parameters_df[\"FWHM_y\"])})\n",
+    "    print({\"MEDIAN_FWHM_x\":np.median(parameters_df[\"FWHM_x\"]),\"MEDIAN_FWHM_y\":np.median(parameters_df[\"FWHM_y\"])})\n",
     "    print({\"INCERTIDUMBRE_FWHM_x\":np.std(parameters_df[\"FWHM_x\"])/math.sqrt(len(parameters_df[\"FWHM_x\"])),\"INCERTIDUMBRE_FWHM_y\":np.std(parameters_df[\"FWHM_y\"])/math.sqrt(len(parameters_df[\"FWHM_y\"]))})\n"
    ]
   },
@@ -2097,7 +2085,7 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "Encontramos que el mejor canal es el azul con $$FWHM \\approx 6 $$"
+    "Encontramos que el mejor canal es el azul con $$FWHM \\approx 7 $$"
    ]
   },
   {
diff --git a/entrega/Ejercicios_clase_5.md b/entrega/entrega.md
similarity index 85%
rename from entrega/Ejercicios_clase_5.md
rename to entrega/entrega.md
index dced20f..adfde9f 100644
--- a/entrega/Ejercicios_clase_5.md
+++ b/entrega/entrega.md
@@ -627,7 +627,17 @@ parameters_df.sort_values('FWHM_x',ascending=False)
   </thead>
   <tbody>
     <tr>
-      <th>90</th>
+      <th>132</th>
+      <td>22738.039821</td>
+      <td>-239.832795</td>
+      <td>3.010661</td>
+      <td>75.973813</td>
+      <td>2.731824</td>
+      <td>178.538460</td>
+      <td>6.419787</td>
+    </tr>
+    <tr>
+      <th>133</th>
       <td>14409.841451</td>
       <td>-222.262629</td>
       <td>2.343065</td>
@@ -637,7 +647,17 @@ parameters_df.sort_values('FWHM_x',ascending=False)
       <td>5.848958</td>
     </tr>
     <tr>
-      <th>516</th>
+      <th>578</th>
+      <td>31219.909353</td>
+      <td>105.300441</td>
+      <td>2.585564</td>
+      <td>31.073563</td>
+      <td>4.308750</td>
+      <td>73.022872</td>
+      <td>10.125563</td>
+    </tr>
+    <tr>
+      <th>687</th>
       <td>267271.868327</td>
       <td>115.166949</td>
       <td>2.769692</td>
@@ -647,34 +667,14 @@ parameters_df.sort_values('FWHM_x',ascending=False)
       <td>5.758053</td>
     </tr>
     <tr>
-      <th>477</th>
-      <td>107493.971955</td>
-      <td>96.620752</td>
-      <td>3.101467</td>
-      <td>26.096038</td>
-      <td>3.044724</td>
-      <td>61.325689</td>
-      <td>7.155100</td>
-    </tr>
-    <tr>
-      <th>288</th>
-      <td>169.559297</td>
-      <td>-16.954423</td>
-      <td>2.975433</td>
-      <td>25.863356</td>
-      <td>3.902506</td>
-      <td>60.778886</td>
-      <td>9.170890</td>
-    </tr>
-    <tr>
-      <th>441</th>
-      <td>21979.573625</td>
-      <td>66.797420</td>
-      <td>2.603415</td>
-      <td>20.616066</td>
-      <td>2.744205</td>
-      <td>48.447755</td>
-      <td>6.448882</td>
+      <th>600</th>
+      <td>325077.772735</td>
+      <td>112.668325</td>
+      <td>120.781525</td>
+      <td>28.345852</td>
+      <td>191.375356</td>
+      <td>66.612752</td>
+      <td>449.732087</td>
     </tr>
     <tr>
       <th>...</th>
@@ -687,7 +687,7 @@ parameters_df.sort_values('FWHM_x',ascending=False)
       <td>...</td>
     </tr>
     <tr>
-      <th>21</th>
+      <th>27</th>
       <td>202.186462</td>
       <td>2.289328</td>
       <td>2.644426</td>
@@ -697,7 +697,7 @@ parameters_df.sort_values('FWHM_x',ascending=False)
       <td>4.316290</td>
     </tr>
     <tr>
-      <th>29</th>
+      <th>37</th>
       <td>210.588381</td>
       <td>1.978485</td>
       <td>3.167382</td>
@@ -707,7 +707,7 @@ parameters_df.sort_values('FWHM_x',ascending=False)
       <td>4.304869</td>
     </tr>
     <tr>
-      <th>30</th>
+      <th>38</th>
       <td>217.389734</td>
       <td>1.980785</td>
       <td>2.331454</td>
@@ -717,7 +717,7 @@ parameters_df.sort_values('FWHM_x',ascending=False)
       <td>4.014588</td>
     </tr>
     <tr>
-      <th>26</th>
+      <th>33</th>
       <td>216.603135</td>
       <td>2.821754</td>
       <td>3.173432</td>
@@ -727,7 +727,7 @@ parameters_df.sort_values('FWHM_x',ascending=False)
       <td>4.278035</td>
     </tr>
     <tr>
-      <th>27</th>
+      <th>34</th>
       <td>222.917653</td>
       <td>2.823663</td>
       <td>2.336885</td>
@@ -738,7 +738,7 @@ parameters_df.sort_values('FWHM_x',ascending=False)
     </tr>
   </tbody>
 </table>
-<p>524 rows × 7 columns</p>
+<p>695 rows × 7 columns</p>
 </div>
 
 
@@ -783,7 +783,7 @@ parameters_df.sort_values('FWHM_x',ascending=True)
   </thead>
   <tbody>
     <tr>
-      <th>27</th>
+      <th>34</th>
       <td>222.917653</td>
       <td>2.823663</td>
       <td>2.336885</td>
@@ -793,7 +793,7 @@ parameters_df.sort_values('FWHM_x',ascending=True)
       <td>4.000267</td>
     </tr>
     <tr>
-      <th>26</th>
+      <th>33</th>
       <td>216.603135</td>
       <td>2.821754</td>
       <td>3.173432</td>
@@ -803,7 +803,7 @@ parameters_df.sort_values('FWHM_x',ascending=True)
       <td>4.278035</td>
     </tr>
     <tr>
-      <th>30</th>
+      <th>38</th>
       <td>217.389734</td>
       <td>1.980785</td>
       <td>2.331454</td>
@@ -813,7 +813,7 @@ parameters_df.sort_values('FWHM_x',ascending=True)
       <td>4.014588</td>
     </tr>
     <tr>
-      <th>29</th>
+      <th>37</th>
       <td>210.588381</td>
       <td>1.978485</td>
       <td>3.167382</td>
@@ -823,7 +823,7 @@ parameters_df.sort_values('FWHM_x',ascending=True)
       <td>4.304869</td>
     </tr>
     <tr>
-      <th>21</th>
+      <th>27</th>
       <td>202.186462</td>
       <td>2.289328</td>
       <td>2.644426</td>
@@ -843,47 +843,47 @@ parameters_df.sort_values('FWHM_x',ascending=True)
       <td>...</td>
     </tr>
     <tr>
-      <th>309</th>
-      <td>151.959876</td>
-      <td>6.048875</td>
-      <td>3.048254</td>
-      <td>6.335821</td>
-      <td>3.106507</td>
-      <td>14.889180</td>
-      <td>7.300292</td>
+      <th>80</th>
+      <td>126.345557</td>
+      <td>7.503358</td>
+      <td>2.717318</td>
+      <td>8.605995</td>
+      <td>3.441961</td>
+      <td>20.224088</td>
+      <td>8.088608</td>
     </tr>
     <tr>
-      <th>351</th>
-      <td>195.582213</td>
-      <td>7.582757</td>
-      <td>2.703236</td>
-      <td>6.548991</td>
-      <td>3.505496</td>
-      <td>15.390128</td>
-      <td>8.237915</td>
+      <th>98</th>
+      <td>191.987149</td>
+      <td>10.993017</td>
+      <td>2.720394</td>
+      <td>9.802730</td>
+      <td>3.154057</td>
+      <td>23.036415</td>
+      <td>7.412033</td>
     </tr>
     <tr>
-      <th>425</th>
-      <td>251.594399</td>
-      <td>7.994551</td>
-      <td>1.593031</td>
-      <td>6.646625</td>
-      <td>3.216397</td>
-      <td>15.619568</td>
-      <td>7.558533</td>
+      <th>261</th>
+      <td>220.500255</td>
+      <td>12.860922</td>
+      <td>2.878011</td>
+      <td>9.887140</td>
+      <td>2.760608</td>
+      <td>23.234779</td>
+      <td>6.487429</td>
     </tr>
     <tr>
-      <th>47</th>
-      <td>115.774855</td>
-      <td>4.630637</td>
-      <td>2.210311</td>
-      <td>7.270685</td>
-      <td>5.813427</td>
-      <td>17.086110</td>
-      <td>13.661553</td>
+      <th>218</th>
+      <td>229.036678</td>
+      <td>21.346080</td>
+      <td>2.787659</td>
+      <td>17.666989</td>
+      <td>2.664696</td>
+      <td>41.517424</td>
+      <td>6.262035</td>
     </tr>
     <tr>
-      <th>288</th>
+      <th>372</th>
       <td>169.559297</td>
       <td>-16.954423</td>
       <td>2.975433</td>
@@ -894,7 +894,7 @@ parameters_df.sort_values('FWHM_x',ascending=True)
     </tr>
   </tbody>
 </table>
-<p>462 rows × 7 columns</p>
+<p>585 rows × 7 columns</p>
 </div>
 
 
@@ -956,7 +956,7 @@ print({"MODE_FWHM_x":st.mode(parameters_df["FWHM_x"]),"MODE_FWHM_y":st.mode(para
 print({"MEAN_FWHM_x":np.mean(parameters_df["FWHM_x"]),"MEAN_FWHM_y":np.mean(parameters_df["FWHM_y"])})
 ```
 
-    {'MEAN_FWHM_x': 7.940323515966517, 'MEAN_FWHM_y': 7.337040419590766}
+    {'MEAN_FWHM_x': 8.379209150177722, 'MEAN_FWHM_y': 7.576010416841125}
     
 
 #### Mediana de FHWM
@@ -966,7 +966,7 @@ print({"MEAN_FWHM_x":np.mean(parameters_df["FWHM_x"]),"MEAN_FWHM_y":np.mean(para
 print({"MEDIAN_FWHM_x":np.median(parameters_df["FWHM_x"]),"MEDIAN_FWHM_y":np.median(parameters_df["FWHM_y"])})
 ```
 
-    {'MEDIAN_FWHM_x': 7.396254460793973, 'MEDIAN_FWHM_y': 6.900833212383647}
+    {'MEDIAN_FWHM_x': 7.670810006638417, 'MEDIAN_FWHM_y': 6.99528444605464}
     
 
 #### Incertidumbre
@@ -976,14 +976,15 @@ print({"MEDIAN_FWHM_x":np.median(parameters_df["FWHM_x"]),"MEDIAN_FWHM_y":np.med
 print({"INCERTIDUMBRE_FWHM_x":np.std(parameters_df["FWHM_x"])/math.sqrt(len(parameters_df["FWHM_x"])),"INCERTIDUMBRE_FWHM_y":np.std(parameters_df["FWHM_y"])/math.sqrt(len(parameters_df["FWHM_y"]))})
 ```
 
-    {'INCERTIDUMBRE_FWHM_x': 0.15200550254891215, 'INCERTIDUMBRE_FWHM_y': 0.12480846830393083}
+    {'INCERTIDUMBRE_FWHM_x': 0.15034065812442832, 'INCERTIDUMBRE_FWHM_y': 0.12213295193042271}
     
 
 Vemos que hay una gran diferencia entre la media y la mediana de la distribución, esto se debe a que nuestros resultados para el FWHM tiene unos valores extremos inesperados y muy altos. Por ejemplo, uno de los FWHM es 60, esto significaría que no podemos distinguir dos estrellas en una imagen de 60x60, lo cual sabemos que es falso. Una manera de evitar este problema es tomar la mediana como referente en lugar de la media, ya que esta ordena los valores y toma el valor que está en la posición central, ignorando los valores extremos. 
 
 
 ```
-parameters_df=parameters_df[(parameters_df["FWHM_x"]<np.median(parameters_df["FWHM_x"])+3*np.std(parameters_df["FWHM_x"])/math.sqrt(len(parameters_df["FWHM_x"]))) & (parameters_df["FWHM_y"]<np.median(parameters_df["FWHM_y"])+3*np.std(parameters_df["FWHM_y"])/math.sqrt(len(parameters_df["FWHM_y"])))]
+#elimina valores extremos del dataset
+parameters_df=parameters_df[(parameters_df["FWHM_x"]<np.mean(parameters_df["FWHM_x"])+2.5*np.std(parameters_df["FWHM_x"])) & (parameters_df["FWHM_y"]<np.mean(parameters_df["FWHM_y"])+2.5*np.std(parameters_df["FWHM_y"]))]
 parameters_df.sort_values('FWHM_x',ascending=True)
 ```
 
@@ -1019,54 +1020,54 @@ parameters_df.sort_values('FWHM_x',ascending=True)
   </thead>
   <tbody>
     <tr>
-      <th>27</th>
-      <td>222.917653</td>
-      <td>2.823663</td>
-      <td>2.336885</td>
-      <td>1.803631</td>
-      <td>1.702241</td>
-      <td>4.238533</td>
-      <td>4.000267</td>
+      <th>33</th>
+      <td>215.742228</td>
+      <td>2.844406</td>
+      <td>3.220690</td>
+      <td>1.602668</td>
+      <td>1.513167</td>
+      <td>3.766270</td>
+      <td>3.555943</td>
     </tr>
     <tr>
-      <th>26</th>
-      <td>216.603135</td>
-      <td>2.821754</td>
-      <td>3.173432</td>
-      <td>1.804289</td>
-      <td>1.820440</td>
-      <td>4.240079</td>
-      <td>4.278035</td>
+      <th>34</th>
+      <td>216.970464</td>
+      <td>2.845412</td>
+      <td>2.329821</td>
+      <td>1.614164</td>
+      <td>1.493453</td>
+      <td>3.793286</td>
+      <td>3.509615</td>
     </tr>
     <tr>
-      <th>30</th>
-      <td>217.389734</td>
-      <td>1.980785</td>
-      <td>2.331454</td>
-      <td>1.931921</td>
-      <td>1.708335</td>
-      <td>4.540015</td>
-      <td>4.014588</td>
+      <th>37</th>
+      <td>209.845863</td>
+      <td>1.956937</td>
+      <td>3.215590</td>
+      <td>1.708841</td>
+      <td>1.524611</td>
+      <td>4.015777</td>
+      <td>3.582837</td>
     </tr>
     <tr>
-      <th>29</th>
-      <td>210.588381</td>
-      <td>1.978485</td>
-      <td>3.167382</td>
-      <td>1.943865</td>
-      <td>1.831859</td>
-      <td>4.568083</td>
-      <td>4.304869</td>
+      <th>335</th>
+      <td>174.734848</td>
+      <td>2.770882</td>
+      <td>2.760025</td>
+      <td>1.710865</td>
+      <td>1.624143</td>
+      <td>4.020532</td>
+      <td>3.816736</td>
     </tr>
     <tr>
-      <th>21</th>
-      <td>202.186462</td>
-      <td>2.289328</td>
-      <td>2.644426</td>
-      <td>2.005263</td>
-      <td>1.836719</td>
-      <td>4.712369</td>
-      <td>4.316290</td>
+      <th>38</th>
+      <td>211.627049</td>
+      <td>1.961099</td>
+      <td>2.326209</td>
+      <td>1.715538</td>
+      <td>1.499931</td>
+      <td>4.031515</td>
+      <td>3.524837</td>
     </tr>
     <tr>
       <th>...</th>
@@ -1079,58 +1080,58 @@ parameters_df.sort_values('FWHM_x',ascending=True)
       <td>...</td>
     </tr>
     <tr>
-      <th>400</th>
-      <td>148.694932</td>
-      <td>3.251515</td>
-      <td>3.323809</td>
-      <td>3.311014</td>
-      <td>3.089162</td>
-      <td>7.780883</td>
-      <td>7.259531</td>
+      <th>543</th>
+      <td>131.093045</td>
+      <td>3.193123</td>
+      <td>2.503308</td>
+      <td>4.758416</td>
+      <td>2.706784</td>
+      <td>11.182277</td>
+      <td>6.360943</td>
     </tr>
     <tr>
-      <th>32</th>
-      <td>120.009106</td>
-      <td>2.582832</td>
-      <td>2.669800</td>
-      <td>3.323717</td>
-      <td>2.781075</td>
-      <td>7.810735</td>
-      <td>6.535527</td>
+      <th>23</th>
+      <td>224.503205</td>
+      <td>7.472670</td>
+      <td>2.648100</td>
+      <td>4.762666</td>
+      <td>1.649086</td>
+      <td>11.192264</td>
+      <td>3.875353</td>
     </tr>
     <tr>
-      <th>150</th>
-      <td>140.401733</td>
-      <td>2.814937</td>
-      <td>2.461857</td>
-      <td>3.330074</td>
-      <td>3.020962</td>
-      <td>7.825674</td>
-      <td>7.099261</td>
+      <th>397</th>
+      <td>117.626414</td>
+      <td>4.050571</td>
+      <td>2.602593</td>
+      <td>4.788907</td>
+      <td>2.907534</td>
+      <td>11.253932</td>
+      <td>6.832705</td>
     </tr>
     <tr>
-      <th>281</th>
-      <td>192.304218</td>
-      <td>3.922074</td>
-      <td>2.380541</td>
-      <td>3.330268</td>
-      <td>2.254765</td>
-      <td>7.826129</td>
-      <td>5.298697</td>
+      <th>331</th>
+      <td>120.648167</td>
+      <td>3.944006</td>
+      <td>2.661164</td>
+      <td>4.870656</td>
+      <td>2.857321</td>
+      <td>11.446041</td>
+      <td>6.714704</td>
     </tr>
     <tr>
-      <th>228</th>
-      <td>123.573138</td>
-      <td>2.781581</td>
-      <td>2.546152</td>
-      <td>3.334843</td>
-      <td>2.962802</td>
-      <td>7.836880</td>
-      <td>6.962584</td>
+      <th>622</th>
+      <td>240.208357</td>
+      <td>6.285389</td>
+      <td>1.606621</td>
+      <td>4.905659</td>
+      <td>2.470669</td>
+      <td>11.528298</td>
+      <td>5.806073</td>
     </tr>
   </tbody>
 </table>
-<p>206 rows × 7 columns</p>
+<p>529 rows × 7 columns</p>
 </div>
 
 
@@ -1169,7 +1170,7 @@ pyplot.show()
 print({"MEDIAN_FWHM_x":np.median(parameters_df["FWHM_x"]),"MEDIAN_FWHM_y":np.median(parameters_df["FWHM_y"])})
 ```
 
-    {'MEDIAN_FWHM_x': 6.361155779828058, 'MEDIAN_FWHM_y': 5.865753036777117}
+    {'MEDIAN_FWHM_x': 6.61783565447222, 'MEDIAN_FWHM_y': 6.0911794566979856}
     
 
 
@@ -1177,7 +1178,7 @@ print({"MEDIAN_FWHM_x":np.median(parameters_df["FWHM_x"]),"MEDIAN_FWHM_y":np.med
 print({"INCERTIDUMBRE_FWHM_x":np.std(parameters_df["FWHM_x"])/math.sqrt(len(parameters_df["FWHM_x"])),"INCERTIDUMBRE_FWHM_y":np.std(parameters_df["FWHM_y"])/math.sqrt(len(parameters_df["FWHM_y"]))})
 ```
 
-    {'INCERTIDUMBRE_FWHM_x': 0.05897470200906251, 'INCERTIDUMBRE_FWHM_y': 0.0583083389179374}
+    {'INCERTIDUMBRE_FWHM_x': 0.07111893293495501, 'INCERTIDUMBRE_FWHM_y': 0.059722316688425}
     
 
 Tomaremos el promedi de los resultados en MEAN_FWHM y diremos que:
@@ -1247,11 +1248,11 @@ for i in range(3):
     # calcula parametros
     parameters_df = star_parameters(temp[:,:,i],stars)
     parameters_df=parameters_df[(parameters_df["height"]<255)]
-    parameters_df=parameters_df[(parameters_df["FWHM_x"]<np.median(parameters_df["FWHM_x"])+3*np.std(parameters_df["FWHM_x"])/math.sqrt(len(parameters_df["FWHM_x"]))) & (parameters_df["FWHM_y"]<np.median(parameters_df["FWHM_y"])+3*np.std(parameters_df["FWHM_y"])/math.sqrt(len(parameters_df["FWHM_y"])))]
+    parameters_df=parameters_df[(parameters_df["FWHM_x"]<np.mean(parameters_df["FWHM_x"])+2.5*np.std(parameters_df["FWHM_x"])) & (parameters_df["FWHM_y"]<np.median(parameters_df["FWHM_y"])+2.5*np.std(parameters_df["FWHM_y"]))]
     
     #muestra resultados
     print(bcolors.RED +"FWHM FOR CHANNEL "+color[i] + bcolors.ENDC)
-    print({"MEAN_FWHM_x":np.mean(parameters_df["FWHM_x"]),"MEAN_FWHM_y":np.mean(parameters_df["FWHM_y"])})
+    print({"MEDIAN_FWHM_x":np.median(parameters_df["FWHM_x"]),"MEDIAN_FWHM_y":np.median(parameters_df["FWHM_y"])})
     print({"INCERTIDUMBRE_FWHM_x":np.std(parameters_df["FWHM_x"])/math.sqrt(len(parameters_df["FWHM_x"])),"INCERTIDUMBRE_FWHM_y":np.std(parameters_df["FWHM_y"])/math.sqrt(len(parameters_df["FWHM_y"]))})
 
 ```
@@ -1261,17 +1262,17 @@ for i in range(3):
     
 
     FWHM FOR CHANNEL RED
-    {'MEAN_FWHM_x': 6.85040177317909, 'MEAN_FWHM_y': 6.286265858550066}
-    {'INCERTIDUMBRE_FWHM_x': 0.07397839012804115, 'INCERTIDUMBRE_FWHM_y': 0.06519770408323534}
+    {'MEDIAN_FWHM_x': 7.9183883547135165, 'MEDIAN_FWHM_y': 7.35922763918757}
+    {'INCERTIDUMBRE_FWHM_x': 0.1159148719780544, 'INCERTIDUMBRE_FWHM_y': 0.08836013787487608}
     FWHM FOR CHANNEL GREEN
-    {'MEAN_FWHM_x': 6.245164160492783, 'MEAN_FWHM_y': 5.852337602343364}
-    {'INCERTIDUMBRE_FWHM_x': 0.05644305840123783, 'INCERTIDUMBRE_FWHM_y': 0.05873235620560445}
+    {'MEDIAN_FWHM_x': 7.2816934101996456, 'MEDIAN_FWHM_y': 6.823136964119058}
+    {'INCERTIDUMBRE_FWHM_x': 0.09670234009426094, 'INCERTIDUMBRE_FWHM_y': 0.07626498914594818}
     FWHM FOR CHANNEL BLUE
-    {'MEAN_FWHM_x': 5.656095446703643, 'MEAN_FWHM_y': 5.248410485649535}
-    {'INCERTIDUMBRE_FWHM_x': 0.0511572917957581, 'INCERTIDUMBRE_FWHM_y': 0.04996212650827945}
+    {'MEDIAN_FWHM_x': 6.707228331976005, 'MEDIAN_FWHM_y': 6.143125344552874}
+    {'INCERTIDUMBRE_FWHM_x': 0.0772819315486433, 'INCERTIDUMBRE_FWHM_y': 0.06542214124518661}
     
 
-Encontramos que el mejor canal es el azul con $$FWHM \approx 6 $$
+Encontramos que el mejor canal es el azul con $$FWHM \approx 7 $$
 
 ## Resultados
 
diff --git a/entrega/output_49_1.png b/entrega/output_49_1.png
index e76a62efeaf66e38c14be3b977fe0b3d28d7df95..6a129b844a136f32fcac99e310fac45a983e520d 100644
GIT binary patch
literal 29109
zcmd43c{G%N+&?@BMTk(cl{JiYib3Kl%916!Y-JhBGBVc2T9Kv57Q;wNBxPdCzD&wK
zh7y`=gP210eVgYqzW06q?%(g+&vVXm&hy7JM`vVaKG$`9-rMW-dcUtpFgLxz!FGxb
z0)cQC8t7R-AWTUR2*b6*EZ{FAGH@pFq#mem7ift@1cuxU@PL@y4D|Ow2KwA`Jss>3
zfVzeBgDJoiRG_E50t5X~8j6a(|Mdn1WPqolVj?#?SmcPmfjtTWVLwj)#{kK}o`gW|
zh#BhrV-<@1I}(O<49Z)e4Hj3<&q)3$OxMwEXMCV_=7ycb{m<`@*s}0m(=lIs6W<OO
zhlvy8I)6I~U#odEe9bCeL+mi=>}LwsHU3Y>OrqNxCC*6XeM~nku9}&--q@r~Dk=JA
zY>`*?#?pE(@}h{z8`8G=h)LA!ic`1x!}x=TL8Eyu!+-obb*<v8*umrTS$ke?`Xlvb
z1~l>D<#r__etkXq!~LXW(!Xz0d6cGKatg8T3)?9cbMj8ctYzE(h@w?vBI-{LiUj0~
zz%&bg3<{55>>|z?ziRAxf_C;mm}Ra!6BARxcD6N)UYUB?4nJ$3k$3|!+YP;m7(oo&
zLUeV{oq`GO3I~y#Cb2tIMqJRqX!0GBuRrO$I#s15K1y-pRsiXp+?1A-N|O$0Q&c0s
zWlRMhvfX4nUhmeV*;$F)!99#Pt%C3Cek;GQH;I@g&Q+gj+skU&TeZ+CjlX(TR@5Wv
zb$Es=xZuoRJ$a~Zf+Izaz(LqZiZ~8S;@!!yfUoebAba}uA0`hE1`%ZIn~>7KghNjC
zs=5!=MUN#fMdFx5I~tVnHk3S_o&7_KViu6hl;hEzS4#AZ_+L%Hsll355r_gq**U!1
z&7Lv|glacYWYybVlQ?GxW5<wFqSXmeJ0HFBVfe7fcLQxiAErgG(aPO>OXjeh`<NgM
zS&``TCJLu@yJy$;{zp85Ulre^hW{AZJq$wxzi;ZnkZ<nKb|BU-!MxS*Rm3?_RIF}U
zS0ZM_6;Vf=Gl6L$KP;qTgpr7z?Txw<uSF|p;V_3hTlNO8jM?2f%!rEnkRoyJE^X~`
zSkGDorU9v_oOc@`*X>h9TPO+J5mCb{=8_kpFH(-dG`|r=mZBnY7&7ZhGR<XwueRGK
z9kbW%wIQ5<Qeb{dkegG&3+No({PV>3A#A;Qv5g=ZcK&@91C9CUqa_V7F}D}X*QQ=}
zUXf9gOtL7)qM`_;e>8j_j70ri$mJA*>^6iX?kK%y!0}ghsBhrHsJk-$yo>YK{I<9$
zQB1IybN&u71<olOtV>Z0>AT*mkNt<67}8@d?b=;r3_pjYbr8G>=O`{Q3%MAMhImX%
zbUu?dV-e#9!$Qwc)CGU(MZ@QOo1BZ$nEuDd`pg#h-{(fn^HPK;B2l#K^$Rq2N)jO|
zn@r?(&0*W+8r^uyx5=`oJ>4%m9e%R<lviu1NBE&?!E6Rcwq0$Q=1=YQ9fI^;&Z=9?
zl`HWPE|Ezti(9mdQ&Ce$bf5a5YI6-5FAyrQuybg%XX)V%cYb_(<h8BW^bN>J0^t&v
zyR=W?%50YVFs(tgAk|3cq5MP#x9_3K2Gz4pdeBm^C`AqG-IyrGi`llCm1?4_`(M>J
za#nV~s#n2i5Sm67V-yuT8%%n~+L&ys^Q(ReyHloZ`ipgcMOdkM&y?W>;oUxdjO#6N
zDC+#8Fm-q#4<$ey=87(i8Z|d#Os>-QcYHMH>j8^K&0nMrBdCr8>LH4YEdJjP4~B6q
z#-Zk~kZL}l=A{XxgnX(no~XW&hEm|bvcC->jZBHsgce~Gru}jmiWe;R7j|e0iw=H(
z=8V+dJvA|GJFlJ(+5e*W+iWF&?G|lwxKcXKakg^Tn}I7iphuKZR2eTG!%rRVLnoN&
z74lkL<Sbsk)4p+O>gA&>`qr>A2#fpBPQ7Q@%*4Ed;RV^N2U?ZqqS$c+j13`(tF`pz
zaPF=Bwb4@nDfgF0k=+gcq^aA^xtFU4pf~!SG;7mpQ87&-%UAYp(CW1|2di0e(<dmG
zLPrcBO8AstL4$w3l(q={L92Kh92M7c+206J@Lzs%QjwK&b)!iXC$%jPLpKvg)tj|Y
zHgM|o<wl!dm6H*)<d#y&h;QnHlWnO(svnZNJ(qFJSnW<N+Hp8jH7Ab6L9cN5-%BwA
zd1W{QYSf~FKfbh|&6ykd6Bn`TO&vZ%U?!{~f)RcjXS0TFyJtRy;i#1U(Z7(pF>&?P
z&7mXc09D3^^OHX{cW1kW15!+O;7AFF==*VjpD-|qXNp`hr%&zvB&O~js{TQoo(Njo
z5{Rbl*M&wcI_x!%>))^&6s<osUvsIFBcgG4fp(daa7I~GoqCa(f_3<VtviNeC-p3~
zT0BZXm5JgmZ}r4rNHw;5PG;Lf{L1S~Cu_Vn7@7`UjAgsTEd$F;d1<j_2eO$8KRuIW
zlO<r9;6n@Az%d{B6Sok-*)FH&SX6Wd#u_+~!=LS(ZX&Ma+B5mX{F}z6rh=Z25=Y$-
z*C?VfyGtBnO#5Uaf41k>C*_AX2e)JvJz(DJ>^ZYBv>z$({8mBOvH&b8hpazGUYn{T
zoJRy#h?>0=MXwl~SgEU?Tg;!lNp&o4D&@vOyjg(_C;H*Zzs^wnVLMMS`ouXNir3|Z
zqUGmNyASs~<8#Ofh~NxN3vn(0mOED;v*}d7hZim#V~jci?HO9nX!1=$`MI1QMXziS
z^0%Fe^z@8OrzS6!ghR0)HN^u5l%V+{MnXT{rbVkA-hKH}s1CAuzW2T@d{>(~?6%)X
zW7>T=7U2fPKiE5L7dJTaN@VkBD87ebaDtCNck#Bx3Ts3Z6YlvA->B&P0@D(A8STV=
z&Ftd->9NOZy^&Y3C?<kF!8+9GiNdGZ_0*vzw#`F}@;6R6hZL5s-yzq<;CG`?gJA;5
z;r6~zQ6+xHCPB%fyig~L{Zl`Vgmc2j)T`VwChL}12rh}Xv$cGivdF0RO{Mpv#M)@@
z#ahZ-iuB@bmlf}^{N*aGn*6~-1kutL`dRvgLRJ^~b*3h>LB+e5Jw(m+JSgql7_aaD
zZ|XfCkw`j^A0+y88?e94C7(yE-)qv@v_u34jy5)}^q{+mqfVpk`g(;wP1?!k#U{Da
z)7`lz0#AyGS-AFGSRry!hgTy+?J>LhBo|gvt3%oiNq>xXP}F?3A*n`zw#H2ONUA~Y
z6)s7K&Jw$u9ZbjlqnzrvOTu}%F>p2+aq%g(qBLTzT8ee44YP1ue0)YWrhzZ;=wu+z
z`&RWTP6BbBLE#WfdW++W-(B+j$x*{vq#B9EBFwub+{UVxn&sA6F_k;K7MD%i-LL8C
z6&eXWs5*u=74%>3y-%F$BdqBhg^Mo?^Ialoc|AbkSjt$kVV<Vf?(uV{{(P=XM?BUf
z^^iK$yg7x1BH9)@FHEYD1V4Snw!SG&+}tt@2e2s9`?$aV=ni?m^6M~DeTa4sA2&Do
zer-XbL5tBViw_?^ejOVV4LoZxJ~KOu(L$?!^*Z<4JkeM3J%KnqDS0=GQM6N=K;(y0
zM;FH$S=$>TA=N{~#u&9v-Ha42kA&;MX*~*gZ(r~zOw;EsvGeuyJ*TDyLyle`LVx=g
z>Z((J)S#rnUy1qJ+Q0o1JJqvP@w3qnW0d@hQS*|pIsrS7vLV$ZB8kz0pg=LA4QCPO
zibK=K3uDX{e5I_oOB7_qUmcs27te%(bDmjPusw5j#~tyZvhv&Ls7T;h$#E?DaHv;%
zW$v;wZOWOnr?NQpO<!8<pKAg#u_uuNC19^CzFHmTZ`)|x(9+P*xX1a@eHASxc06@|
z-SAB73i<`ue|N>^aiydaiqqL{$>Y_N$&<4#G!3#3e>AY}5~e2{@f|gYbLklg8Pl5C
z@6J_2Ew!9rdhbJ4DXW{Wz0;N()s4kPu9be7yi;VFr%~jc7rFgM=*|~zsB?XGOVSAx
zZEs_R+!OiK0of3=m>trzGZMZ#DJmLH8;sf;44)JnyRo;uCWM|VM>{UCyKFL64F|A8
zY@LGmI5;>0LqfRbX{Alua>Pf%n!%4`OaTyHdcDThzhn*~rsBj>D7L@UcIBI~;!?YK
z%3_zxewt$BQW6AeU-4kbug>>7YU3%isP7h{JEvuDW6b4y=#|=O4z*#zRF+Gl%izvZ
zN)&OXztq0r?)eig;mXEY3Laa_QxJE&eem3mPsWN3=R$Xvr@GYFzFV@_uHSqp+)7{m
zlegCP@0UV>z3)9BAk1`2bU&`kSph4>^Ln*D5*WVICLBKNFxITzHkqPL+M?!j5ssT(
zP`0}v6t%kqt_d~ySZ(=Nx>-f&l568uH?jikrb0D^kp!PSN&*3TGq$Dmv7q|iYM=f4
z8=r3IYOH2E_|?QJhL5vD-rD2i@Fb0-$z;vs<EHSKkKTjxcfzBhv_<!RU$L+DKhq`}
zbs<G-{Un92_JmU)H}x4>ft?>pLFMl_ej2-PX{MD~oF92AI?MTPf?JB#)9GnM@ZX>M
zDwtoHw$9@Zj+>tSeI2|evoVTRgrsQi!@-_N@(5ha*nd|w>iX#(^W2Z}`#!2&w~F&x
z>2|;82Ey{2dF<`Kwy$LYR}r{>iBtW-RjJSGe}^`HM0Uwn`S1L#!rxuH{VaUhaAFDW
zvejt||NEiO4(xgU-kc{x=sMZ6hPJ;GHjyA5=d{BWwaKKtL+%OP-=fwmH161ayxs5Y
zR<pa@wY6HT-7QMnyz*4hg+#=_Hhx5brQHzqi_Pr2zofOtJLPafSl5WPnf_t)LIeHJ
z^k<*p>O0@jztSjqnjtFQ15mNl!-A?lH-Me%SMnBq0Xt0pDb7dqzp;ioRzI<WvJifL
z^k(gGst;8j+h4ERs9qm`C~AsEYt{w-osibvIs&%mPrNcQPcuu<uR6voV#YFjZ`OtS
z`(?^B7DXb@Zd}&W>on$j^U3P<Xc#qbx8G&2pR%(MxlwmNUp?_3e1T2sdL`e>`P_>;
z87h~>EFuM6_Lw6^a+B_M$4%P{h5w4xuNnCE%D85KdzOCPHNRgZWox0=<J<Bg*2yn}
zgVcBC@V9(@nJF)l6edcFpG`C@L@dO&1&4&-Z}mxyf@o(LJ!N!B3wZ5ri_0!E<cdg`
z1d2+US{rm>r4V5~?#sVAAVLwVU+dQf9E8FbKYcD+niQpFOBz3&EC2i5(u^JjP?tvR
zEUxL9Nv>*n_*Q_F*)t+IDb^It)!s`WVAd!*jttKh=%?@uJwLwDMAI7EB86NIw~0=P
z+MOH@8H)(t85$d%%n|$N<hu(t_RxPyGE@Rw_}&1IdR1KfaC`f1<8mg>AGpXO<vtgq
zbK3eGzGr!Nr3V%?V>N(tX=*#azxYslaUx0aTW>ERLHb!cdUQpk2%OMuXqHQ)y4q-{
z_yT%t=l8;bbZ+-Nw{2wXOewChQ=N*1*<CJkZpZ=NpIlq3kqn<Wyg#A1@A^e$dAUnb
zS|o*OF?Vbi@rA7)EVi`TX9f#f{>3e4g{t%$=^Web9y{8oy}S51j1t4jB4>rGo?wgI
z>T=;s8ow{Pd)j4xIcw|ZVB_U;r=~y>{OKL0VRQSy^@C;yxH%tUl-*iIhLH73mm4=4
z7E%o)>}msLaE;qD@l-Wc)#ST>3-Fm3fm8!`|6Nw|4=q`<GcznM4?o}h_9yTYb-I>J
zcU*cx#0GTATmVVHZN@nr)ghU+XhvH#!vYt0p!@QKVMIg(s9_AfeSNSZbbP$Q`vAT-
zRU^TId3kx_l~4Y;$@gX{H2l48&^dAI*Q)2v&D|k_*l*#pb!2$tTyWjRMcb}GBW>63
zbxr5!E?a*{<4PVq9E8HPEn;ua&*pfS2?Xzf7y3*!eZQQ{$;p9FK7xfVeqs$<>$f$0
zWdUNv|NBC>U5Upvy*Ik$*CA~$8yfPw%WC3g%j*2>T&sfrUguYEY;TTbx33A11eY(%
zDjL2ha=&k5D)ov;!ONHTLobkeqV`eq^(&^Fa0;XnIYuJoY2Lbhd*TzT=&xZ^&#Rgm
z3>ojavXW230;g_}NH<i$Xbn1OgY>aUPu&8Z*iXPkNpT#4@QHYFdM0UGi+}^aubF!4
z0RQ#m(&2}nujXlFl1Qc?XeAqWMi!F)T&ITuC>1K6c|iltDP50cFq$C>`I}#)S-f9>
ze6G@I@B^>A2J)f6a3nodKijB(_)z3-{43+E<;BljDWQ?_Hm^lM*wEwN^IM@|`07hh
zVN0Pb$ABXXp>3Mg%bju?*9*46DPp6xvZBU8Z4z41TGy8c-~|mFg2nT$=ImQMoQg$l
z?oze2=c++<%%rDd{Um<w$CuR?>R0SOcyW*WXVddMGIAw%r+&~-I`7NQ7%h@t{`$f5
zQ>eWzaKWNnzlp+h(+Lnf)AR#f*uSE^%}sZOB!2k`dN9upyaUDcr#DVAx4XiBTvwsy
z7td39hsrAq)lGC8B@1i9r!p+pf2e{eXb3)XsvD#^Lr$&L-fJ7$OJ9z^b*u?cy7{QZ
zbvS6yX@{>4Aim3I_}-`u`!h*D3l*c=w!6D~$GRZLKw@*NCyE5}#KvoL6RGt3d<k28
zZy+7+X^oAIT4h<K=FID_&4qFFG6dY=Nr`3g{I!B@5P&H)8zyDCYv3eDX75PnhpPyx
z`Td%&TbQosQV=xT{QMgDnY&_K<-n9C2nl*^WZ0~V+Nt7B30wVoWg|4I-`bX=@tGP@
zM6q#mg0j9Fv2}3;)AI<vw|S45J<dt=WIZAxVlUpXzZd;@z-VK0G9{&2ONg_tzyD)f
zrAOD(ze^Ws<bdTiD5us%&)+BcqP6$>v^`o9tJ>oCs8RdWcxqz2LD-b6m1PNUs=)(L
zran7H?X7)It^+wVY_7cRaICHnil~eY84Y`&TkwgkzqG72QO2@pZq2!dt-rETwXAv~
z@zc^O_|JV#4KKUc8Tu~!)&7xs@%8Kmz*i#gP=n5B`TXtg#de^Ory3Og=6fT$-TQF;
z$3R~nevI!;>?Va(yBz?QjjaeFITVR+?Oy+ljx<R>7yMBhF%y6B<K1$&`sQm_g!uwb
zT1Z~rj!?#XVo}DI)%D|E4=k4tpZoOKiZL@aZ2@FiDn5S?>iH~eI(}!P>XDV2)xSEU
z>~}J`gI@72h=`uQCX`Ykm4pZ`!!#fe-o&|9?sXR=0_agIh;>0&Zf@0r5e)sAR;z;C
z0eTuUEvJgyYx?b9P4fKfSFd6RU83@K=Id}0gNhCnUWl8NV9EuG7exi8dAI#$4}&ol
zl@z@b6SdZp#}+OE7l0qxtjA1g{My%CJaQw37UY*8`mfYkIGu_2SdzH$8080K8b~$k
z54UG7fD4jphOPAFqKDrMEU<{&Aq4@sk0Av@%^_dCk%sb%U14$AKNgA<c=jKw6lKEf
zFC6}nz0ue`rkaz&&@|ju!@7lIZzzgyf3OP5Xi9Q&^7GHf0L+xNNIgEBP39x;P`vf)
zr~46=okW|DRaGZuE5s}&o5vR^8cA)!Awn*+?LpQP5N7~W;*GEWdh62ktZtzZ{e3T2
z4LJ=;7fbysiT@EQ&(Ef`Slc=s;L-s!&~_hX%358qB?a-TF|bk_^8X@-?ql+pcbOK8
zNj2`HHN{-&8+W31=FSW~bUIE@4`KCZ4Yj<#(8C0B|9WLOasRA)&JM__z&#j#G)8FB
zJ?Hn#%tVsQu9)#tsDLB&mPC!aa@4z5*g%bLfFl#1U40zb4KU2j;lXZql?R{4@3>si
z)4P2IE`%6wj=et%jr=7pI!<?!0`qt}9r!G||AY>!zZ_5k0F19d#Xptq?h-vOeg^Qm
zr^2HPz%{<H?SZORKIHy+RO5C(P6fR_rz30CqfOhr$yc9QgzcCxx)FovZZrO^z`VZs
zR|!8EvjCxLP%Ei_@1ESusyFl{G3=An2X7*r5W#GVXo@(YUCu2j{!!l}0T^H?nsAVl
zwwg~g(oyv%`KsaO`&<{>>A$<|Pq{GOK<utpHBGe&BI%I!=F&uqW7t&YRg6k3ZMTP3
z2#^Orr(BVXOeAndpIT<s{D#{B03-oi0RmKxo{)RC*Jd~1(@!1z3c%axxSI~U>BVh*
zJs8j>5Urx){-KMT`}>g>*GkOFZ}-arSUI-Ys<w&O-hqMS+RDUrLC3{K)O)aODq;aG
zO54WKH0Hvn-MMX&S&q%(DHocl7dO-aXX>PC)56j^BtV5Z8!{4f!o<X6IDDmhcO#0X
zmY{c!o+=l@shVD{x4Bc7En;UHOLT+gItMuV)w5X2J{#{kGepi{(H%rTRXqFd=SG%u
z3>z5oZ5W!MUB$HNS^oef>5p&Xpj@Y*38!wzBU4bk+%mQQAA|HCgA>2$h%A49wRj64
z$#&oy7<JUN$PTh;FPQk~gmY+2KEUX7ORR2eFuezSV7_6)**SEanf|QmHw^zK@8#<|
zMfS{}dW$Db7`trqH0`h9!az;8uW&y?-&;uaeC@0qKocOvi-D~H73BSUWKn$l_eYMg
zGgXai@>tY`{mn^i)czLa0&tT5<e<AtZG9sn-H+8q+tbZ1c1*M+ZB45+bpUs*rrcwv
zBOCY%5oX^MsnsTeo};Xx_}<Vt6FqVW@7?@rruZ8dV-+Fq5#6Uq8ne)3&3U*feEiTr
znNwZc(%#-4z5aWEkfHOt3+q4JqSc_k=)f3Y7!N?1!sk)>f=dUsr*qFE(pW;o#z-5W
zPjaIGG6ystkzS193XgvFOa$WBxP>siu%wr)wQg6|xP7}`UA^>*eH&DRDiS~vp2uo_
zSKsi68Zsf(I9h~0Ma@H~!>+X1d-bS=K$7ru)JSGkL?&w9j+Qf6b9?7VynzWFe1a^j
z^&i+!PfR>y7!C-;mA^9qU~l_={xrHELj4aWacV7cWMstW=Z6G<Tq7Xg2M7Cld*8Py
zn`y1_+B)9(pP2-B7Yfwil>rCj<IsF#g_=Xrd~!C60BGX_|5)%VIuk*(-T#CFTdQn(
zam$?!IbNn*?4;A{+rvPWs<SG%j^=yAr~c`2yuqvMRer(%_z1udbLD&VC<X{$1X!Dn
zz5u*W4vlnkn|wVe@-wK97_TRG|M(2#J~KJAzrUZOk@Ml_!oEM;DP1kI*hv705P%E5
z1v~)wCT1auwgY?*_4ngo09}-5W>;KHFbjX-r3?zYFJQ21HU|t=#vE|HK}QtFpi{`m
z`!9Zfe}1GBLps+3IVRQCB_b1$=GwYC_Qrh>#=2Lou!6J8r|nXqPPG|Kobc$sLsfVb
z)ikZ+*Nw;SC=?9u*)t7-T>ZarP{_|)#dN}TGMZi=IRsVxzi?lf8^q@W#J@Wq(&W~i
za~`s~zP`LYi{p}t>nk#OSzLStpPv|i^~M|XcMWXTbcO2xNoJAY|Gz+zaQ?nxGf#4b
zhhs3=1A6^K`~jobo+<tC;RAh}@6pjMUH!p^P9*FEMR0SM_<>95X6p|i#mS1PD8v$p
zHa?iEi0=_VpU|NHgV5HI;$~lV0kNK6+J948b}C#8Ia>e8-V|3m^G0iZY6sLE*u>pr
z5UVGHBW^6_tgWrlA?oLKu7*LcN$CR)xdS7??`O){a%#@gbBfFMx2!l{mr5UU{2(6?
z6rYrucgyE3jdMk1111sq<4)D+T{*gb0!p4+vU=PKNi)U#>^ZxFy8vJ+dvs=S&o5Rw
z#@=>t5Cj3yLb+P{e~0Hp3wnqCy8j=D&WrC&M`6|SSXSezBqyMl049P$@m^NW%2$lU
zig)keslxqJp6P|O6k}aFbG`7pbJ!GLvc}Bo=bxX*Dt}u@!e~um1taEz$(KGpO_@@?
z9`?4vuG7$?@KMYD)6^NTlLwFgy=`oupBwKq<uOOs{=_W8LHoGSwSRDs?xT{76}BYx
z;Q3)XpX@CF$UYND@LxhB&CUtFiMM(S=vUvsz-2TV-CJM~TZ+SZuFsMGd3Z+5LKR&1
zz`(#wW9#@|kE(R7J6?ddd!6gt-CDWNc?rn66R&lx+0H-v*H^)TtuOPvvEV#~|9|dm
zms+WO{bymGgMJJ#Ndy8wId4Q|E74ErCT$I|UV+g<BAS%(HDNm{h{~U|yU*)Wlj03N
z_8n5QKASG^JmPae1xBKLoBu^n`aMoV&{-f5n+bmjWF5ixpn2*~YQTp4KoNMTj`^4f
zwoO|KPn1iudQ~-68LaZxyvvnuW_X>EOoSkA23Iwm3WS3V(~xHH#-e8FT>~vb>=rAW
zDuN=dZ6R$T*ZnQ@^b&PDTr&-&G=BeeG(*iY<`j!ub{V{E(NXsNGY^o);Qt+N643xY
zmlAzqF%2Pw$BA>dY1!7-aVC0t%QE(FRra)o7_u+?J)Glk;s$?Fotp{aT0*=*FL93T
z#*xL3_1&mElyNi{LsbsB;8G8YG%}8Ln7}%yL~O6B=*x+T_3MBW5%|3z!Q(5zo6Md3
z{o0_?V|SM;y*I%sw|p2mNoeh%u}W5$Ci^BUg^}v0QZ=Gp)j<mpUWEIH%iO1j!wdKF
z&cd|1gaI>=aM2{QGnsQ@xrWRqGl65YAD}ih{7HYA_ib;B5WyD~h3ob1phwqb5H{4N
zXDm?WW$9KxBFLqHGcaGJ?J2;}1H^BL;5(!1+FiNZ=#Q8+YO8ZLSp|lMA;%_`wXTJE
zz+}ELX?>Y-V5thj2`9|U{}U?->^^}tW*TJRV!}bRgGdeT2(?@?^Zrd2rkv=VIB4n}
z-uIov{lgbn!adrdZ-8r|tt(%_*s%L(CV##~wJm@pMVR<^1~F`J86q=7+Q&4g^NRM1
zd}3;;-MvrsqesggpQ|Jukx&4=0??PeM7VURawKD8`|UN711A*f8wiZv)mcNDpsbET
z5KnXW(MtA#q<0$|9vcC9Nii<dCdV({Jh~dfIQO;UWb&6Iv9rHtPpLlmkD-jFOuXQX
zT`^6h`xU_~&S&SqWygq*dtU38?2kOqz1Ez%Nl}G~^CJszrSgRKgHevc0jvH)Y6#Wi
zIOFcmVYxI;I1ijVn{8OBv&On9`MXY(^w({EqEE`-@@*N3yH&T+1P|DnOilpUY7<%m
zm*}DWE_JnRK6Pp(+>EE19alH2)Zdt#fwH&gP;d>K<U_fx$x|v;gOCbQHx6=yMS3R&
zI*;03V03JKqVPJ>TYUO_Rl|wUJG%uo&tmkXNgnY7CZ{SD)#8-Dz7)82aCL?7&Zkg*
zmAxuVo)^NGz#6@fO*XDs>GlzE?)r87lER)F49yVAkj)Za@{8+ubd0++WZdiX`-pKb
zCjP`Hb3@mrU;lf#Hkl~Z@47`a=Y&D6phDCjtoZ?)R0B&C^zblRTVOfO^O$SM6Y;&J
zIBjmoe*XQxAG&M}_UO31ANkQP#(bs!{8h`Y7Y8FTypPjbWR-iH1ljeE#J&`t$9a26
zlB<qW9Wmm^>HCy=-D<$^wM90NT|ZZ@1(pexv)?v#3O_~mNnF+0h)<{dJ9qOa_Bwy5
zo>b<^kL<EK5trm3dozjuCRF|B?&U^>mPeY=-uA2M`X&M52V2+z{>)bG6Xzpk=>EV1
z7T~&ONzl#t1@vF=pyvg?_QK;3w6FaKbGt6jgM%1+J!}7#@lQq;^zyn2g8R9`=$ohd
z|JstRJMKC&+b#P;$agKzMv&v!&%{pd93bs=pSl$sz@3_)C!b_}da&Z;XjiuWqEt;s
z(T-v9-7fB@2Md2!k_4}&&xrFT^057FI8&`~kvTf%OIg4J5K!Q8{wn=+=G@4Suyzgk
z(Djg~aIu5qmIN8`m+ELZc~$&iB<M6<|97~^Jv;+y6XT;{7%B=YxTjX6%$uzI<To_J
z{9rMQKJY4>DufBt9{2ajZ_5z?Dfi>Q14`}HAeZ?o<gy4A7&!gY);3e@Mf}%Hk8;ym
z*s=^an2vFt$cDB$&`V6b!I7h@3y6@NQi<BCwC<w&oLBS;f2}w2-#?^~D**Z7+2!gt
zPO++Z82Bd3SMZq_Z=zDfx{PEBy>U1IOzAoJl<Kd*uJgf<hn1+AXAVE*?=B|x>gCfG
zHnoALEe0PxX)5;HR%8Q%NToH-cL(}J#@W?p+CR)Qp8ZEU%_z7WwE}}v?{R`T2zPK%
z)w&M+sOHFuY*R@i{`C0xcD-@OrzGE=;|b?sZu9xa63%~vhjGfo_|txm>X}h<|9N;;
z%tFP8U(Qh~?@;Tvir@0(1$2X^F3rx{UAp@`ONJHNJoh)nr28Fve2c@MpG!H{Pv{pS
z=zB!I%EPYz-n{zx<Y#a|8+s2|MS<)SH}V%}F%}A0nr7Pg;fc6<+et^N|H=zAN{2f!
zKEuX7T_2`7NOXqbL6?5=@XnYAq9@1xCs9G9LeULTx`$(3uIy36kL?WB4-(fKPT%C~
zC`@Orl4Z<}J$z;2V0Nrk=4-=|EEDBhKgY%AQ`CCIgnXZ)se&HKSM>@nfC$gAKUpmd
z=YpTACK8iH0)DViWGVC93aS1i`Sm7+_Mv@iN-nA9bF>qoEm0&qx&q_=2_zV?uPi~A
zK$BIVc$8Fi_=@0b@9c{ck+7FxGdCrUYkq7kkN;j6Pzil@=<OZSI~0invH>|UEeZxB
z7O-fMcK(2WU@*#2N@P?YSM&x@F4>d@p3>d?8a>F{_XQ2+UNnVhK2E1jL=2y_pZujB
z{dMqTN%*IP_zXk!^p^Y4kHZ#*c70>tsNt;<m0)~i7U|8bk%y|uywi5KJF!YzK55(w
zdsVi8VFUQ^&MoRwPX@2sn7YBq=2VTDQ$?x2=@$4{oFi3@nZ-IVh99o(CvpmRbs&O2
z=KGZ0Mj{nW9_UYFhj35zk(aHmsHQ_r=$Z7q-(V%RB&mug;r#r{k2piTfn?pEg?Gt4
zC&a{J6El{abEEICjP|To@qIa{ws{yWP9d({qh8AR__12}%=tW22qc8wvMiL%8Fo}<
zhU=!5cavAvuO}U(p9;mlzH;lK`KFQvfyg3{)^g@NQRK6hvUgF1sGTGsIIYKs`$fFL
z=}vM*HIE&o$N3bK0<*}EHg!lgnHN^N;$p`1lu=O=mp|pE<2U_XF2;pdYdN~Uq1AOS
zo0Oy%;4LqeC;~h^!<GS-@IR`174@mMxcz7EAm7!5t5d|aQoWc!xNB53S#^TU+*#(+
z@nUQlpa`W!wna<ourVSSk8y(BKuG7<3obHHG!ajCO3?>3J3dP&vPFHPqG^GJau?=s
zUoCEFXX<W|MOToxH86Ag7c0uuiGO9mMXB%|TiS35ff|#(B!$_j$C$|2&h<mT;vf4<
zn11lH_(c7Z>-n_~eZSM0yF_McE-n!@e}+<UX2`D--N1vB`_sGfl!^UH&9p|n?)&LE
zWS8q%q0i7l5S*zqYVdS;G-e9H(_@`Ifki_XHu(sA`?DcTDR8RBE=rVv#2jf6S6%uP
zWxtKC`l@tm-P!XW;Wv$UH0p+205X%e<UF|~4j^NHNzoBMDeRuF{W%!&^7jv56d+Yr
zZ2<E{n`Jiuj2xT>Whl$!xZ-<IaG)16&CeQblzo&;1aY?8`Lp7z+e&cP#1F(J=EGM$
z41nv`b4A!fjH9)MC&O%+Y?(llv-nV|b=E!@Q2MS$I@uS7ICH9)__FvCK-=FrKSFKZ
zUzJLT6|*~gVHzdAe;trQi+;8o!(lK}u+LCUP|p(Tsv*^A0tp!W6q)5ae;|}vS0Gt|
z`E<vBXZQF%3pktb>|G(tU87@|c!MpFm2Qx)CYp!(IGLlGzp|+O0a;ikzzVE;c?S#D
zO=fMppLN!+XJ}2yKUw?bCYauf%6-&a17%9!1Tpk?aI4$0LGn3TV}K6^<xVAlVs`_e
z>G3^N{)Q=-1=C2&Q2@$2Uq8WoiNP_L5F!AGCyFfg{DtfbD2_WG8OG+$UB0aP<VP%u
z3_c?$EqwK?&`b1Sj@T6`F`lE350)cDRzar+t_uOEYcpo?1we{IEL*nW?%M_|TH4?9
z&x=y|jz(d~_wyg-2e<gy`hKWnJtM8@KQhvjfHO-cAu5kmpUh_d#q|P3s!8F~R9Z@F
ziElzo*iF&b9CIQ*0i(4?t%7Z`+{aAC%B7l9%jNAeakrKoE8p&LU;@+p-RF*fPl&fl
zyO#!1@rlir!)=0;#iE&~VuH3^u4RI^qdd9A0ruA|nR}~1Qcp|B1D^VLRs-ZNNOEIY
z<tODw0Ik32RZfcH(u)zP*HvIX3TYrXygK6RiXuIh18{+tUH>F~#DRx5GtXK=tJg#o
zrsEV&t9?El+99?&KWhF6L>{BHS4F5$F9&gLOq*RO!S;8=n?rX@LKSiuf6&~&KJu3+
z1M?jca9PdLb{*Ffkn+v%cbueoybA&5059CuE$DF70&|9C$J-f$NHtZ91Kzc-^vX@V
zfWh9=I>bVquAN7K1(d)71{F~!5I0{0bx$_hxOEBL4M7srZ65&ade0Kzh9g&(T^0@{
zpT`SEi$`BFIyU$qOW-PhTjN=OQ~1y4^oXMbzNo<8J}Oa9{@m>|Ja`*>;h|MUl9dHt
zrI^JCn+d-Q>ok~equi=jK1sW$=0%I;X;Cehy3YT3d@tWnUML}5<oB6elM`}K0NJsf
zBw0|Dt)isMH#1&1;_g%ou2ff9Ub56LtmVsrMjqK@ea^h;a6^9d#-2%N60>ot2dqXp
zX=kkBcX#}Z!CDBPj4Y^9OkiilGUr-ru6|8x30=8LY+eoag?6riYqIG5CP1or81ryN
zRbB~SLaIsr_CT`bBz_a*<h<|aA0Y{iK(2q>Nt#jaT`=>rbiukS^Cp^)1)iq2@dLED
zQ=dP|f##5fPXECUO*e`B$(Djpu|>PG6|N@!OiEAYpqCBA#45PJ#`Xcr@FxOT!S^?Z
zBOOtW-syr<6ID1Z^dt@gu<4kh*6Lb9yZb?=VfbR1_|BPJ0fH_!k?pU{1;;WE<yVG&
zAeub1z(ORj5FiJWrZYc>Y>qaP5G)48cgeN;$_SFSTm6~D_(QHPn0Ssbt)E%E_EIpV
zG8_HH+D~5ZfN?4;$@cn=s+VMIa_u6Fui*sOa9Q7YY{V>D)@@3+u07XU_?U66@^FWk
z&fCa}f$Km&76p4()P!Uuc>t!UFcah!G`ePWQ%<bk=es)?lD(hmY#ineV|tME1bTVa
z!O9%e=mfA^>A%U0p_!#EylhtzzT{Z3BpF!CdFfy=5zWMTFrK|!DLjeX(fiY!Tb(#q
z@#BSpl9(8SIoV#AXT$*_e#%>6`=i^N_k5|cw!i0OqSze|*QZte<)biCkcq+>ylVDW
zi|?`y`tpJcx<<BV1|NzaIPX^A{}m_v4tWM3<2)nYy`N%YQ|2ISlzOMJUDK+YI5h@w
zQ;v%~|1+c_4K@BCK2ybm$*eF~odj|WP}e@9&5lbF`{QB@b!wspg8LjoS5E?>FQfVD
z!}i_EWAEhrPJG8Y3SfKhg7K?Yz_)i|J`?AnhgoQAH}@MORPajvn*JjG=ln4kVXa^9
zISAH-kxP{u45D{P!c189;oAuLupQcfdeslwbtekU8k%LoG#dJFsk3{&=)l~5!yd&M
zHX8j`-ZbHV1Kbth;qS6hl;-H7SNNUHY4Q&j!JZHRbC^cf@w{ezCcAj*U;P3?oD->^
zS68HR`X6xF6|+E6!?TUMc#JP=5mO%XXx$rNGKl^y`*8HkJn4>$v7TOQ;Yn~T^A~72
zoemI;sdt-G?{3$EI}r?mWY5{}o^p;+<J!E})Ey07>}SN?Ird(8AwtkUAco4Rf=`b=
z`Cb*dlGQyYMNuO>Ce{41!#NlxVxXL+BYAT|8y`WIy_$F}*yzX<LRWshLSXB~nmk>>
zvMzn@_nK7W!j#208-`XMSBo*uL!~^0)}A5yNG*y}UWU2p?Eg1{Y@17#g*o((j$ZtB
zhELq`3y8&Jo&?p~fOQyPtc}PrFO36{XM}uD3zaC6wEztU1ls$BI(LatY_k0q^^klp
zNqB=r>9cysYt;O{^04>u(Hk@@m>axDPf1bHQDDE?lf08wBx33oYwMDEY5z5FXeN5;
z$5fWLJ+xIL=}B&_gBu`Eo$n4G>{*E1QW29fK5azYW{gq6_=Tr;$2`!@WI+XjAZ%E_
z#IV3}(|2SSS2GEWuv{cUx&G$>D_cGC=%ym&;U#warjOh!``?;Qgq9ORWo^pVm3dFm
z4yjRsaCAUypwwy~Y?J_}{$3!P)-Odzh+g2VQ7DU`BS!1jU`i4Z3}1|(eCH0X(=D6C
z8t0OO2%mLMR`-D+a?Hrlw*e$AfX^l*V=be#!3_r6u;-D-LQnMGM%Zp;)pzD^t+pXl
zg>mSf+msyLXC-MK_?Fo?Hs^PUp0XhQ8bCOCi|CGFdiQzmRgHflEN`U)rj=@5`0N2f
z55%XH*FS4cH~xeor~lW4BJRuVGmX`H8f4!s!~2=?Xtk_~YI-x&>I3sVw>5e9Z+qZJ
zQaB5!e(1BnX0K9zlUZ~kCK&*AFbWohy(|dhk8lEGHmNh9;%su(lZW;dM=ehLNz<1A
zZmaKY?SpjqCn{g9pr^7b(iqS|NS|lEMaFDWeEVxq%ir%iE80I&>ppv{;&5;8g(P9$
zrnVX=!tE4;gc#3j-SigK)8HPLSqm2NXFgJ~e7EYwbl~40p-Eg+0O`18)HCz=iW+?V
zBQFH|qMw<c?JWDNm>GCaFd7t&3Nmkp9_t!MpV3`K?o?OV4|iupV=i^iMP;g-T;j!h
za04}i>4~9aVz3Di$E3kZ(9Aih>uM#x62x@sZ%I+)`+;AWu=#?38a<=}MxX0qNc9n<
ze16A7iCh!DAfKB*%=r80%nc~Lp3KIQb@6IFvRw@mCajE?U!d77IqmG8f(|n8rGk!$
z;rc=OecNO?8>NX31WV#ir|(cbxP_V2J5cfqAAy~CeO1GLwIUd)JAQWUai8HTeX`<>
zG593cwNEyxbo5sp>c-E|oC?QSxm?4^0E4`$!0WzBbAosXw}~Qi43UGa6(fKzpJX%Q
z&qLW}!a0}JvsyeXALzCS;twB7Rz1p}3=rd8SxvdYp$=CRd0qhdtfR~~>bnXkD%Nby
z$9@1&mNmvQ+BbAogv8_=ND9i3s6BEveV+B~-7Z&&Q^if5a-^Dyqthq2xij-JWwm<m
z+h_YrI9H-MO#}MynMF^-JnC@q?V-FtL%^7@*iiTa1{tVKSC~>5@@4D;kDL3oesd+o
zv5iWokv#m#R@ZPqAQcC7uEwInPb{e0<K2bFYTlQ@knP1-g}f!cQD;Z^M%EhlX$Gvr
zy=tkqff`v*{yGoks(}|$HNgJIfz@Qs_nMp=uo^(O&Nv*_pE=+0INmA~cn*7v$PND-
zB-N4S2Smt%{^?<fbNZtAlO69qzCOs<dcbM{<f9lX(Nw#wRyoFO0S*(GVIWd|HbP&o
z^<}SnIiKAuc1Xz`&3|^x%Jn#5Xv93}g5Vpv7Ss9etVb~>&l>^m`Z)!wyYpagK?U#G
z4fREw;38)!<NNmqnReEA&r6-}Wy%N%$i;@P#H_CQd{Q?_1NFF|*Zt0M|3Zv#<`9T?
zhARxduMYdXxLYT9yWD|)mO(t-hMr6?kLu=DrQ2%&=SS90dLV*VpL|w@*fNBq_$NF-
z`IXaxKK&3aST96%xMJ#n8q{H;I?|&P<w;(U7pu?)B`%8dJ45Nxz#|O?yZMD3+>0yc
zV=~`(d?g;fGD)9|lgZDA?N_Y)xA6@ediFGR_%3yLB~<=t1y_l?8YETcI{(3*W`RA;
zjiyGQ9X-959W^f+lWTnZ=a*lSs5o1UqhqQ;xRL;ns?+2ylf#ZZX-Y%qHoY@nI~dQ%
zCZpT@ox6=V0*}*WSvF^_w_fxh@d9#b$tmW&SAnFpY_bf&BlIH{A{Udtc|OlV0uv}&
z;Qv;lFYMvVJ1jhPiIHH0T%b(1lLVNP2_pFL;%iI;5Git_qA^Y!jvPv!B&<p-A2zTe
z*8t*V{z;IBC&^6mYlHfe9WbI`{i**psfKs)63y61BHf6$0q{QfDd~|0d!|`n%fiDR
zR4EFjegnVf8#@}6PFv7`p@rZgcACGkHKR2lV5G~UkNE)#D85{e)4?rJpCrHaUP!+P
zbd^-uYvy2rCS=~D3Pp-|Yp`@R^pDkx-|0iY^u#zQ74ERxNBOyBK8j`L$;B`uR7DjH
z>v=cLV>a>`SJkO$2vrU{wq5Tt)PXlXQVCr}jNbN#;?=repmw@I_LP)c(AP_R)%&!i
zbdiP1<*^?unWUd)m{sY)O{b*>7{?ZPmnqfpC$Wr4gr%8~N2&pc2yp{+ni*i4+{k9E
z3?V<4d?F9kM(M8I7KU|AJkHz&e0<9Fg5AfvXsPeZW`60DCIOQMt3K=>VlDLwkHtzQ
z3I4zna*uwXbl0l}?wu6?5?_kJhjNKQ5l3(3cL#y<9QgkK#_G{C2duu0_s(Nuj#b8E
z31FT?{tM;NYb^&lDru1myq6nxsR~2>Ltr9MlTLj-lw~Lx-(QvS>nAr|pUeQDy>s#-
z^!oD-SEq2<0&^>%%Nkgp4gB-yCKi>#R2to+c>UaQEXrQx&wkqDn}=g(3A)$40Sh`U
zt9d^Yun-<!f=`q7{-a#`c#!)+AJ&48EsruSen~Yp=F$>NS20@y29w9W>q6UIP^UJk
zxYO#Q9b)teuShjJE9*{2c3;xgjY&14n?qv^P^O8{k-+_L)_(%?$$>onl7e_I1pR1*
zR}-y+jg|^o?=tyX6BE?B-3QlC_>(f-O8}{Ml?fzHs9Y8;qy?Tip@hub8j8U$@$)&~
zLU0`w@M&T|>P9yS1k792D`*<;!k;bmj4<zlc`C|AXvahiL6JSYEHO>c*shcOwfSo`
zxE~@uqfLd5Chojqz3X-O2KEMeC{b(FQ)SQHBBC(O>C23CmX-)$vyWei#ywtKJGZ#R
z*rR>KZW8N2RlFR|<$rUZfmE|bs-Z5i(5Ps&#duWNXR~8KLphJf5G1I>Y)$8v9um-P
zi&yz12PaOjWfsv(qVMU0isabp5NwoMXc^&-FG=*We>4zw#P!7$r)&C!6?{J{;8E>p
zR-X{kTFSUHD}&(5XcdEW%H;6<U0fx1rR}R>yXJ3|P}MX;B*6n_ch<3D2k6PyI!$HL
z+{ZYhbq4K-9UrBnYO9pOex@>95f@Xb)%Cm-QTjb5Bj>+jIr^o5z0}{2o0+$XVmcDj
z^7){TkXsv9B3YLL^cY)q4^Mf+^}mNsUuWn50+P5;f;T;xgfa(RI*&)@k~Lrs*s8y9
zn1eThh9jVT8JAhvi0f64slz67HI?6A4+j4CJ{=>{!5O3S0ebmGjeGe^_l;xRsV_1?
z4%(}E+QReB<ATlC?T*zFdgrxTw+*_lehet3^!si1xN#oK_ZV^IJa#t_E8S2Q$Hb}u
zt1}`jBxSq|0!W6ep+D5Cn18F_Es43NbK(R=wt7U1Vb(2hO)BN3^aF7}hkF$B8UpcW
z+@Rhy?#7oHslKtgJReozK%hIn1aKb95}5M7f%WWb4C#LuEdumG59ZBu5fa`;bYA{n
zg3TO~shWRN<UNa>aVF^j+Y>`+g09``-hx866Qqw&Df*pF7Os;Dny*6BA~fY(>s?Jh
zM5<In_Zo)obL#84Tg4(IHDiD%P=cBdfgplq{STQhx~PM$TxgfWFJzs}!kW?goJ~&D
za2_E~+{cAk$ieGqCNytGoF^eGuv-#;Y}~++K3Dt7HlxBaQJh?LzqYlr<Lioa%`LBI
zeE#P^*_Zp^v2?Az<$>sV{8%;_8Qr#61fiLf+{^U>`qsEt{jZG#J;9T|Z4XWrfEGQe
z5i^Z`2X1<9bv3a&`vT;m!WVRDLF5OAUQFK}?riU$g><p@LY@cWugv&AmtST%xX#=3
z5Bo`dH=2pN%`Y|@8V$&DYNCyK#c!+wJCxz+_+zzj=4y6$hk8|+`&SdCKUVh)YOeFA
z*WDps?O2c$Q@I8dBOxTN+)e;iFbzbbZ^b}7DY?PiQ#f(rF0JlC`PEQN;Jw<ofwVDc
z9$!e7$LX5f+Uf&J&IfQ(K@+0`|0iSq5I<*qS@NY1WfiW+xnr8^3S1E@#5qmG`W0AR
zk4xEv6il-ygTYh+1CB3HTQEJ4ZDDH#des(Wdx5kBVLjLG2S)Ir&3#ZI4xRprSEm^0
z>0P$zbpbasvuz412_SDoDk?$38IaoxO=qu#ACE&N2V$hEkF*7JdD3rKm!Y2wFh%-y
z+^v5eDqpQ9oAK9GDV3}(M!%#NS5Rnh5P3pZ4F{>lGsY>DY25=0+V<5x_EObL*A*YT
zHyvEk834M($W<?)pD(n^p7Ivs@g9&+6SF7>fP=>SgRS1Jef=@vlm26`d!2<m5DyHc
zRToH9=?A8`4osmVrKKZF)^}pAgfgBx*Hef?d-vW1!p-YmcV(79IF%*N2l*+N#j#Z;
zZ#}IgAn+1%d`s~YE4mvPfsYe(nsbMXc)*SdR{a>mTf;Jv4D>;qgfqcAi5KUaaBBD_
z=4l8nQ=;OC6llvOpUaqv3|g~1Y493Eu)z^vOUT}Sg+S)dij&A^2`J1bxW1mOAwb%~
zq4!ssnBWw6efdew&B$B2xpv=5E<V37V*bh7{ySa9l?0HRQDV;nHZuXzV73~-ng*|A
z&Vn}d2<Py8(|H;@WoZARK=D;_U4bccmSpCfY}X!Wah(Die+KizP~xXuW#^CbH%Kf4
z|2O)krLsBux2tcQKm@b<zi7IZiSmmue328)B3&)>+2=JRXh{Ylal9^m3kL?^tF3}r
za2B4r-A7`@z6g5K34-jmi=ge4#5fe4M;HfMp^-@cp$t<=h&XSFT-ToKn)5w)?-+xS
z1)YXm<prB}r2;8!VmZw$-0Iu{{CK2X;kS~WUL4sI#DX!#Ub}Yzi}HxSrQ2C}{K3mR
zL^k2e8W({o4e5@T6|-Oj3tUpoMLcgxuMPDu_3In0WQ_Ka(gy<7JLKL|e|YOEx%iL}
zCO*Enm-x$uau}vbj}0%3)e9h8Gw6=Lt{QM{qHFOyHNX{PmJxfwd?Orur>|=ZL|f73
zqs0Lcvn+7q?_sJS&^!^i@t}7d{TUk6Va%(;eqx3@@<~&?rTNX#bO3Io@8L<1jR1X9
zue^MyREXsmT#MqRr#ET?cxZ7LE@ibzXq4zT<7{~d5T>p4mQ7wDkDi^?($|wZmYK)U
zC7*lEWxT@`kg&5tZaN@WS=_vA!r$$~-3!`G>=&*zK9MR4l>O%t##8cLlG#nrO}eAt
zP+6WPCid~Fho=XqK0vvU7V<r;k<p+61NsFRJzx<|jBgiNAE>B46?)1p(N?pzSv};o
z`n{ZZm6D5MsmuHbpatIdmY<fY2ffHU_5k)Ij?3pNbHIi+J~1TqSM`2e;c!$vPS5@K
z*PlW)Zq#D<>iJ*JiBc;-G4{Z1J!&atd~!ALAe=ctAf8t1@^TrJa$S<SzW@~KNHz-S
zbKRq-@ZQmF5kCe_=Csh*u@1yjfpIyfrv~13s(&Mr#63jtc2wykrU+q=23))W2Vh`l
z0{F^P?JRo>cqRCe4871PF^g;94E9+^PwzU8aSV0Y{zIH|gn`>w2eQeJ#piG^JbG^r
zeC0ye{(4upPtd6C0Fi%ZM`Qzs8B%-M8!D@>kqJ5c+~W@04WJct-F4wkJ!P|6VYv=+
zI4fMNy!H7d83T!*@v$$CN@yI^oZi<X?pTys4!Mt@Ovs8>rR?mW#bNABRZN~cgVzC!
zf>WJInsaUh1?uokM6k@FHHC*doDw6tGiZN!cUZkjW1+q)4^_IZR{8u@Uj#(26AO*g
z<p!3yk8eqcZ{Osto6FeC68X(=n&(~e(}Qt=OfQ_9EEd%SiM)xRLckXbG{Te7c?Ydf
zCM7&NnmuOMeMy(XzCXJYgT!FesmsMDn~qj{3f-~75_J^K_uaXlmlaskE1ka8FK~61
zKNTHbT7RoJ>}>meKKY|N{+8|;4m4jXh3|v&J=A<4bvS6Ue()bcYyF1rekFIx9n!0q
z5uMp5ZVC*M;43GbB2Rpes<@rK>=XaIw%}eq^bLse!rzHj!Tc%@CY=!LZ!xdB=O)hV
zfbY#v+r`PX2^ya_<XXMKFU4EJrIB%O3L&$wK<20Wk4{X7>nkOEdJOm$gQT!r#SoJG
zA=8znix)a;{!5y3j`L!tJ}y1{+CzENNTc7l)yxhgnt)#%<Ns%y`3%*R`63tg(O?~Q
z1z|JF9Kn=v3ZQQ9H;G`tA^?`Y5%iH+5KKJaz#RF1QYmqfNi)rh0`184+Ke;r5&>`9
zZyE_@o-!048CDN@i1JH7`E{)R>1$g$*^;%?294{23*JT#u>qz0$<<I;fu9pC)cUHt
zf|$yuqnzXZBn}G4=V~Pyn60HVRGr}Vn*Z(Yf~VrYjh=}7ewWkX8vy!4P~HNZ_wP1w
z?$jF@Fnh-%P$m2pf*(v~i<}G~GU=4%5?cr_YnBob{EQb3Mngdw%_g6t1@Xc~LsMnb
zP1m^D2ANeZp0RyWWZB@+R23gTXL;rl+~|&<HHwsKx@OZ|A)pR)49nm27O7Qyg@-iw
zUI>g6>xH8aVl?wmiWqV?L6$nq6bftIYbOpsghP*bkm{lz*Bl852dZD>i<2yo9N|?*
zQ!K4Of+7P{oS@g>u6+JEP=wsYRPd!Sr3}+V%yIv7EvbfUF<m_GD%`p2%U)~cAtx#X
zpuC(KLfjZi=g$mqzw&?HZ@j@IdU9&GEygm=XO?;N+Nw?$G|%XeN)3n3Ss_W@GC{1X
zqn@6u5x9=^;Q2q7ND<+`{{fB2e<|)n+&u1b4aU6mouF(e>_u(zxr9+)P@vfk4)o^s
zz1-`WrfbY9H72GK18}?dU_Mu0#{F=c*S~mo|BEVhbLh6S>=Xb>nes`aLVBmF&WdG%
z@i*r7!fiUW)wchh4YGgYq@sAHVDl2&V&CvFPFNj;Kr}svSFL}hKBkP%+C^zbN3|Nm
zZ5h>ez;bt=p8!f35Aj&aQv8=3K>W^$0~~(n-R5<MZw$$RF6-s~HunAE0gGulO$U`X
z4!0TAD-?<6(R+@DOmB7m#E85oZ+&xJRlJSp<@M|p*k0Lt*ZG;IyMOTesD1wpSZc(<
zXDy)MtzutiX7A<nDcw?y7;&&lkQ0lstT_4JN9u@zpud_GPNyGKZ83|#Sd?{5t7~Ii
z2mTJ37i`l%55fK0*tC}DSC&Vj3DVU|u3xKxKw08f;(mhU@g@KWK&>64JW>sHYKMdp
z;;#l8@iRSLs*7a7K;xQ&vSZJKi;A~uaCgzvu`VmmwmgB96!N8a8V?RX4FBXWQSJVf
z2zJ2W|ElcE<Dm?{_U%hqvZQ3Gh*BgbV~s3@h?1R97_vkmyFp3HlHJ(1l)cEBWl~wP
zXKS)ei+vdq$~NzL^nJg}`+MI%e)E|>d_HFGdG7l;_qorx&UKv!$wMCL*X%$kRc$tz
zI?{%W<AxGu&u~7>Ecls?gjIY`83U58syV2ZRq+*mvPJ!r(n(jvlI}tFoT<td%?P9;
zJe?UAwYePin1y3+jZ@|w*t_BC*l`wtS9t~IXhF+9U~=Smu7jKY$LCMp2<9Q}Tqc%5
z@)^_&fUqS0cKw3d&4FQBsprbEBabv_ufS5d7aZ87dj&N|r?5#8s!%;LK=N5jY{zH_
z-!okOftHQ7Pu*zd2Hf=66=W44c{inWRG!#lh_I*iiet9l;BCYD4X|Ylzhg)0LflSI
zUs1COeoVuMS4-4cHF$4&Wh_Zk5QnUez<>zBY`Yyp@w%#*0$(FKqc3hYxSec&9R(;e
zJ5Y`!d%?9??cP_S8CR!@+D&Ez`HC)(s&=}_9BxAM!qJ|#e@<O3I0qJPCTQ&Ka<K9f
zFsbzeC@#2v=(dJ?0J&zlib4|th;)THBcrwF8RVenLS~#OooHGC)EG^Nw9BflBTO<4
zgIUt3^7VJG3oH?HgTWE!Ky$I}Ca`fh2_1n|P8Vq5CbnU&nJNMsw?MC~G;O1KMmhAV
zzQ?j5a4rFE-?gQu5V!YKGV4<HjK6VqJ>&Z{+hgot6fh2elo`wnR5lwX7?FA#>Ymzr
z<>InGo{Itk(=i4I6Q(QZG@2JlulCmvzHj(S-3B`-(E5}ylGl(`Y03qleo_cs2EfFr
zaQ!D@p~&u<dzz@Bkfm`B-v7w|pagW6<Mn{_AmET8P4B-ICkN`NQDxakoG1LEpvZEy
zJ@y21(f^%0g578g%#c=1#~i?GKw-dLZ~F}#NJt>0ea05zssAfx@Wv#ZK~U1Fl`ij4
zfbufjQVe=I?IGj767pI!*yso%VO1-*44H9nt>y#4Rpn4U_Zm&#TF>IWGVIWt<9{JU
zwFF*A_)jiWmYu^@yQR8XVVBKD>I@35-<DGev)qrxQZ%V9p5SDbi&I{WKxqhh#xA#9
z1Cf{h{hfxjWG4d}NHuQml6--6-AZ$<E8#<Ipj1~46yhm~{KTfCE#?ecc&xvY>*Sc}
zo=zv>Gmtbk$xa0xrXq>?{1A%KJkA(my}yEAzhq4^{}me;^o5xEh5jM?GJCG<k{gFc
z`5cj8M>q)>qJN>2Kf@Olnjy2lM_s%FDwDNT+_@W==M#M6l~Im{MNXK^o5EFX`7TM6
z_JE7C<@3+z9|kk`kV11fD7qxIqKiXB1#At(I7XZ(CuOE0=}YJr(dC-fHGqpcBcx^n
zUtil}Dg^hk-EqL&!_`QYu&V(+ZzYy-BjYsGUM!WY(n8>!aA2R_{s$)+{Y?VHMJY@T
zr<vx|hz^{)D7-1rmHeBqSuMQd?I|;r0B`LK3vQ_>oOX<BuH>L`2QWRsBy$?ofeZ6U
zKh)eM$@I2K_(0XZF!ZO2?*qH;B=^6?X1lcICHzxseu|P`mX=Hkv#D+v^k~KrU_;Zm
z2&BNWi=9uzrG1NX-eOpKa#ulH0&vm&LuCy6T+%h6c84U6k2v2unw)L))OMCc315~^
zE#WKuZjPRI1*dVstZX_;xsJu_pcn0LfHI)J2chHi66>ZS)YPCSOv+@!kk^5wI$Uvc
z%J0cTQ|6(Kq+LZ;9aoEG!gufHc3V_@iYS`zJmgK>SUwGi+Ak$ckLp}kJ(YFk*z}c4
z4xe5N0^M_F&H*BL2m-GRHWmO!Au#lz6M!ThN=rd(U7OrX<yT8;_Q+ILM<-Z7Sp1^;
z_6v&TJX~N-qbCmnC{HZ|V@-LMM7UV5lvkQ?`Sv-gGxtbd@y%^+!N9x}4s^f~^Cokz
zouh!X)9XlJZ8q$?4{ijeZU2S)wnk!4-XFS^>UZY4yv1I`H64Mi4eXS?=c}n=Kh!=n
z6y-EPoaO#f;09FBKd?8UNjkg00O`=N_<2U;3lzu~;^*m(Koltx^R+|eeF_U83_{>}
z0b&>!s|;S?NvFvKq92gn>|M;*T=ky~NPaiQ_Y!t)?(URK8;K+NKW<Yr^?uaidYke?
zxVISLTjo2}d>qoa?uL(!Q-_)w_&B+$`h5_dN>ZLMVbVBBVCDkuC>`I&N8h0I!s^a?
zFA=DU`D$=%M%!C=c0WkA#=Pcz`LrZb3i2Q2P(cAHowl3j^{B6dNAPM_HB1Mzmtvz<
znjTKoN3GMq?`P~QNJ32nh7il<Z)0U)2D!~5yFYcgnyTg0<k_=_X)-HPft++xHc?2b
zM-@10Jy~%E?{W!hbHe4jo8bN5<tUi8kzjW`#+7l2v>1VSWdX_TU+2YP1-0NP(LT2%
zQ+uy2?<?$aJvhj|2|ZcPeD}GqxsASW2#GR|Y5a#mcL+zQ-`N>YAt+!s6;N791PAim
zuq|uDdtibGGA4>rX{W8Sq_+3GTCG7g$)P+O2?{9tY1cMpn{iPdI?mT|9{YUoE;}3J
zBV0((aL`I%P7w4BoIV=r&-8gBRi5d$@X|n?zhj!)lkHN+kL>Q;%)o``K$$q%r(dY^
z=8~5#-UIhK{{~#^(?Z7LehAzT3G*>!4kARL)PJXcvdB)V5b2Se2UV<Rr+cbQpL|>3
z6-Fh?wI_=v+hdR&7W`KJDK-&qp(m6FwYg5!*}l5*NjdP=2vj9pS*U)J8LIwww-zt=
z`7V#fqOhTo?DQEbl*i<<)zN!SJE~wq8WDPB2Lr2OKYZjbKL{#`ahdxT$oZn5BZlXl
z8d=7#;zu#)qQ<;``88j{{Siw*%d`uk?ESUi+Jp}|-uy_pmr!#{2<I*dE+Cf<?meJQ
z%=!WC0uWBjk3HIrC)9+qFXP{Olk7GT@7p1Ox3PNeb{c3wjKox5I^(^(iofXogP|9!
zej=hFU5o<o+1u>`_;6XQ3c!&q33f=X?eH|_14S-fEnek8)2mEX!t=a@Ke^ZHf34p}
zwqtad{ciW76ceUuPA{ug304ZDjZ$$sevd9$RLY|6)B89+Dp88Tc#*{zEqC9xo9<Me
zs<ig03W>m4B{Y2XEcm=XIvc{!K;UNC7vUU|u$eWhXDDhtOBmrKj1Fr#eBbMT&^(EU
z*ZeaFItGaz(w$<Z%cqInD6<IZ<xV)tBFhxdGYZv8bL?p;$WGJ|!EvJ|MW4aezAkUM
z7ef7fiRet~q(^iy*9}meo=}Z>^;^GIZp^BAM2Qjp9nIJxyS{I!=c%*wMExSY;+ZCI
zCF%gfpA^)ehU!D?w|^A8@Di&Kp+Al3OAaNJtqo~AoKqR+U=ul1Axd{7e!e8xhRy0z
zKdn2-G_)OqtezUpRM|0~O7=oWM!C4h`}SN&k|lRfk8X2~^10CPMLz1^_xGFG`L-54
zH#m!cxIF*)moM00uZ*`&&sW&@G(+R%%!!xTo>bBBT{5YtDn58;6R@ZrpB_yoll2p3
zgFDHS`Fqcl*YiUoN`?y21QT?u08oz%q4xtYBkw%9j-)CA`;S!ZxD*9k!bj^zUOCa!
zq1u)CeC0AIj@UtQq$d~$-;?~>DYnniezYYzUeI(%4SX6nU1qq;Y-~Pn(EB3a1A{7<
z<yp42{Itz1k6q8&#{EOk;qgM&?H9Ia;_)XQ%lR-@I^Is#91oMQ56@q|*|vr9=A#b=
zv8MzC-p-7UUVQh1klbp^ur~zf|NBpo_oB`hX~l?;RS8|S=I2FX|0(<bcc((Ytc61$
zMfSZoCL6UmWWIpyJn>yH!bDQsq)3=Kwq7brzH&zb0gY`0+A(@?89g$Z*3;^ex4uN5
ztvYSh_a#*GIXmKG4G`{d<C&!eyf?lV|F`h0NH-5kS2{nA-vy2S^h;A+H6dPmS;_XT
z-ih*4T$`4|T5J0*oOwD8JUD?@lbNdAvGzq_aDGjH-Y|#V4fkkpsGiY0p}DR6KFc!!
z9JgC!Ekokva>qG`R5#_&V*&<6sbWw5L(`=iS+nnV5P2hjsEtBRjQ}mQb7w6vuo^cI
zFElHlB`o*iiEi=764W(Tg><!b4Ewp^U2_tCG4cbQoaXBe+>a!WX;};0XubFNama77
zA@2Ae&<nl?XEnyEFqf(|>HMah6uhBp_|?Q%^3@aLcn{@H++Cu;%Y6&Zy7UmwKGMG8
z|3;d<IK|vxZa@9kz#5W(>9|VE-~faqyQ@}EfPw0h^-^tKfTYXHM8JA~-&QGW)ZN8@
zb}2|y{CpMQt`~)$pq%CrYY!g(-s|o3pq)`<00E9Gx>G(CC%Nz{H%#ps?mNi=J3}1V
z0{Zz7F8()RJ;Ey-cOkG1uS4E;A~psBH+pbV$F<A(CwYNxv3YJ$F5GPqn#ln+7BkcL
z{J=y|^U1VJPyi}`y0O*d7V6IF_R7_$zcV`1_Wm^8hG(zB>eEcs{5`L{_QskX=ozlD
zP}NYgY5X_b1R<{@xQQ3XXA1MbaoQl&7OQIx)Q4*BcZ%M`^lc4YCHfIRd{S)Q;d$|C
zR|@p{liVC1<Yq?*Lu`m>PcrD&yea+pK2D)0A<1XA?cq?7LzfEVEWQwsyl86{*z&)3
zWBaYRB#1Jjb|(tOQ4CRrQcB|pmv<`N0xgI)l&&&SH_|njmDn9BbhwVTeqj=t+6k++
zG`ZK)?R{8AlgigjRdAAwnZ84EkjVl03(PM&yz-*t`4gO&FUrTuRy$ihS4_y}bt=|`
zM~7)toSJhe{(nL^_N8Z6Pj5!vY&O2s_FgBjVDaIeeSiutUOli3zf|tMAjtcgIP#C5
zvKx|1&g*C?D#$ZuFc(z}Y3qvuDUH^z#q<vdLe3ZSNS|@LLM$gp4XS>?+lS*Xe7GOi
z(kC~kR@v}}r_#miBphB4xiJ4C2}A7+<Don%9-GI9kkuo_x+QwXxe<>f1Rm*XS!qsz
z+5X{S!};ZbGv4UsNfRf()dNn~$<<st2q9yJuqsS(`5G&;Ow6neSN3Wq$6H$y@;BW(
zr+M5p1oUW;F|zGWEjLp`BRcyI73~y%NillSn|*WScMpwrI1)Q)_<&m0pIH()#Hjvl
z7Z8do*dHM!F@e9}?pde2**vjp{s8pgAV@=WiqhRokdsR8z0;cAE^9TG@hZoe)<t36
z|5Lu&uI!N+Y;bYS2#G=?jCh|nC;ZV)zsKoZN{&kC+ZXNs$#O&zcsP_VY5?(iaA)l+
z`AJQS-_!I+kGi!`m+1LnHg{u)x&$|B(b4?VH-7%g0hc?A<Azzj6@8y<*VwWa(M}(l
z_~;SSGn-f1ciV1?-OFg(FWF_Aq-ZAsNps!SFX@@JAy9&{aYv0Vh*LNJ7!-stgdwWb
zPV=UMk3jG!gai=5A||4-4e6a~*%45HgCtZB=vgqQnFmc0V_uVQ+!y==r=P;T`nWK*
zd@@4JE$savurSP7ZMjF_{y<rDvaKNvS)l!wV1YnR1*uCIj+XCI+l9GgWFSbFtUKL2
zdq-ah?+$bcZhBs6VMJSBKW)Y5JYFwe(CNubmjdaG9`OZ7gr3+!;^rdUe~7nKCfPMN
z^4<8d=Ipm?CM)x4?w&==a>pQqR(Vr-j`e(dxHVN|?%IQ<tEP5hN6+<WJtzBfv9&$7
zdBp_$_iCr)hk0LkN~@*Q7Q{dK^suW$`yg|AUB8n_*8>#2r1_C8Cg4AFxD=#4dwx<A
z@_XS5ex2?T>6y>9a>(*DoiGu-4+5_9&Rq{`#lf2CJA4m-pl5+60oBte|93)&h75FB
za~+;=JYP;x_<nHqTXEg$r)`LkSdoz9$R)1!OwV;Xz-$A82OmEaT<u6&IsQO}4R*q%
zb_W1fl<(d4rW1W1M}2@EhCuD@mD@a~lEvUi{w-LB3xa(Yy(bGM1p&FvwRS(1EDa<Y
zWOuZIsD(0dV%4re>m*@6*t>w<TcA`!+=f$F(8%_<tQ>l61r$<~;&tIW>CR4G6OA8z
zNF(g#s*P&Lye@HRIb~v{0TfB<_wj-ePn$}I&CrVro$GnW)9sh&ULd|ZK@|@t|40bV
zX3BLTgkiLXoG{6|6*oUp_jrLP-~h5!DPfx#4|NSuCY`+ujP2|1^jWU^2?2lx2mEOd
z56CNTq_!ijC`_8KHTRY}9beZ2$(5dRoWiy}x?y84$a)UKIP4%N6dJ5p@c@AP+hq=y
zyD7cLIQU-kzkV>*wOaRcbNF+^otoNIIBqjRt_Ijq1oc#g#L>ay&|&*1OfnThN|W`i
z(SKO&vGXv+)*8`K`Ee_~xvwYZAKE9KP02?^0n?8M5{4$(1G{TRX^wt3S<xt9s1yRi
zxjk~Jj3T^YcRn+cQ#KwN4k~ya2mK9Vc8rf=KCsU&_&sqiF#5h<z4z?IKH+YehYckW
z?oQr@j5&`Uz4ZTnmwhw^32lr|@Vd)z7@i$`|5d9bt6`a9u&CjQv&*^syQVf&dS%8c
z!)S#IGVISmTLs(h6&T)ISeQ@4HR<32iICyLt~+*wdixEbZt@2FSGk>X?|l}#CP;>5
zzrA;~#|3~#Ift)R+IbqZ(*?5cXvySiN7*>zveNrq&f>1btv*Ke*<hCEH*wrzs7T6i
z01jR*Mk(3sG_?bYp&TkKAYdEUnFs5IC7LJ5s@EI6lRgQo&F-Tu{tukzu<er-tbMC*
zq>}=cL=bxgXl_q~4oE^Ed;r%DM=KB+h^}3|LjxCO*nt^vgf{{Ni#PMun4&L%MpX^0
zo4tHrAFIV7_Y($Lw#~f{-bo-t)*&PRP}RuIGp{z<ltV!$YD-MDe%G#)Q{{GU<-m0W
zU(8gEQNSE!NyW+m%d|C5I-sp`wb6EX<2Z8vAo~EH!lS(eKMyzNXsl+8<|<S)V)&<p
zQZysK2Hb#h;jztopZX;e;j?NtBR2WS_8il<OcGx8t>682wal2x|9T4K`EOyro%+gs
ze{%3$5`;p7jb7rVMb+`%;Edr++arhQKC+z9oevX9c2kpfVDtn?i>u-4u7b?xZtESR
zr`q$`*6ro)3tkZ*^R0Gr`1}fU6x@tJ@5OJOC?I&?e2916f4c^u93bBKGiP$@ooRuQ
z2^<WNmO|bc6UI{6xO!}OP>BWM9iP>eeUK*-+H=;nLD4cSPIFgwdEj^B`GddH-4;)&
zt_@Kt(Tq{f)0_s5&ieW`-;%@;YQJXLb=RXqqE(Q+I~tJ#ffP*$Z9Lw3rQlN>HP=-T
zb<XYl7DVhA6r_@KFWnwV^BMp2Ev(d5J9$;)W7j2MJvW<)kL$Wj`C#~c&?r_}@NBtA
zdA>v8hc<@)u5g#FrqG+V+|4_Lv*7)@))FQ5vd&#nfCN|2qFYq$*dV-Vv=5Jr$*u7H
z@~G&opS$dHuh<sUj<;NV58*8n=FbBqQV&`K0C?SNjEXkq$Z`$8aw0fH;DL(60dDcB
zG8;Wc$(ds_K^9BclCgD}g45rnN}R~_xLs8!k3F?vGJzTxfGaGU2Vb_!dM4qn@A2DT
z{k|iT?lf&AC5EyQT|UB@vssHF{PJ+Vx&34vWVUzShYhh8JF*Cb7aVYr3(Oh&W8`E;
zrU4NBVb_9qkHYF1VO^!i&6@Na&~<?G@i+74!Vuo+)!Lfe4LVD^K26YQf*wtvS0>s%
z*63-!H!aBCs-2qUj}K^JG7~{?+M2rwI#-)*Q@y<*n#bSdJ0@N9|IP%OG@yb~?XZNk
zs$G3t)+d`NLb^8JCJS;}js+g0m)0wnn!d_Sif{G22zwCMZG7sox_rQE8t0-pk<g~A
z5L-RJ_0f;W1fJY-9aC9?P1V0E4X5m{d7oI7fM=ae#wWr}TCsdLTblP9%c#hht0NS#
zd_m3<-_3DXzATN7aZB}~5-HV~EAKk&(>$^>&Tu1q<g<XcIH4oj^I9=_Hj<iUGn8_k
zb@L0|c`G}eObz@e4ab9T7@wd?c%q~RcwiFq*bvY6Ti(MeV~v=D7q7J|bTnBV73FMV
zpzI=##FFEWq|F|O;LQnr0gVdeIa*Rj5`}vTCxUv>ZFXQ)fUp8w#-jn<wXva!xcTyH
zSN3mn<OgM?4v76r8$wh$(ujYv?{_eg2boQ7H(N4{fO3G!C7E!D?8E8W8G~Hxr)^*#
z#7q-DF0LicIAL)buY*(%SZZ3gr|N}XiTz2Q0;h=c`1}S52BD<!#bT2bT=I246`MI4
zm>H6v{*2McUqq+mJ-1%q--H?g$Qm=jBhT_Y-(<80d*t}4QEzlGMBqNQ=lJ8Q=lY(i
zo=i$;&u|{oD?)9#96(8QU-Sxb^1+|7LTQ>0rie(J4$Tj!sPoi)3^W#uw*O9i&wzxw
zkJd}qSC#^}EGXsf1n__OW<E&n`R-4=V?uJV1nG=$d}jH!kP8+QsExsIT19KJ6=!U%
zg%-GWkhwpAv#4hj&1UwkV+qM|!9Kkz=Fy-Rm!_L2X+`qH;0wLlnVy1^n;&jFpAB$6
zAEX*B(4m3rvE)K#Y!Xa9tU37-cT7KI)(BV%i4N0kDCKq@gKc}u0jKMe8R~=%Y5yIT
zq}A8=Cn51^4O5rx_Jh-iYJuRixH58^B!{CcoB5HXsKmMP$L5FK;|=Vo?QWL&KkMS>
zdcMb(p1$vP`^=7Z?P2plao;qo_TVYYZRbC5bXO0_s083}r&QgriK<_d)?H3K4B3AD
z)|=dh>9g5BCd2M%1#t$b)Sz_2^d>-teVwC~D?5OlyD&rh?BM)4&l7d(DkPyE+}n(-
zcFb0py;YQC{_~a2w;9fZO7vymT|33EIlT-fE=bNSJRmQSur^DUcrstxc7siQcbvCo
z0Q7EgA+>L&eHq<3$+d^$CpP_P`zUI?KAbr~_ubcnSv@@q5{(Msb!qdP`ze*<BPO)D
zSgFvH^)A#p{0j#Wjxkc7SVOvhw_@u{9l1tR#J3*6LA>}%41ywVdU4yyEIYO^be!A+
zM%ZiCKYt106gN)-wgKc~>m!62vcwsHY`n?k7iPD}Z)X`MirXi)?<_06$9%Fl@c3aK
zbsGj1P?h-bEo<@hH-qev{j7y-&S`&GfS))+8r8v$-y@BuFU)_gxcQRyuKs;S>l@_z
z2i*IOcZ`1sISAGt^63~>pPx(mSyW+*uptC_Bbj%4>02?^0O;5dYxB2$(xS2>gS!%>
z6#vS+o@P9ey~q(gKlNtl{$8^#;Y7}dTTQIt+O^}GXQFj{+H7kxni|v}hBTekJr_=U
z+^=ZK*zsEa$F3Nl*LdxOVfj6<U=|T#D>6$@QMkMKJ8Id>dJhFT0&&d3va!$kB)&;(
z_U(z=9FEuGN8yg~nHiCy&-{paotIEU<Ykdgii3_LqP)woLDN=RwsxCZE>+rGS7gzH
zhNG$G?6@b6UphSJqep)1RQhV(9DVt*|5YW`R12;%Pji)o0aKxF)6v^bgFWv<+LWIe
ztq*c9@YEg}=PA{b*}B(s>!|r4R%c{b({il)_6VQoR=4MUu>mfsy?+?}Fvd^rpi@p(
zD~z^ZrZ;>1YG0^WLyTt5R@Z^P2Q#hC7!Wvby7+d?S5WDu(aoQ@tRK`@ZgBjZ*=oVW
z)T!Qbf4{l|NoL_E90&{(-*p^T)?XWv$%P-L3O?8cfAK3Z^%H*acxpq*`rM6NyDxU!
zCS8co;cvh9=*U~Bat5F&zT6q>8Xc0NbnP0Y9FZ8z>~sR&TbprrA)Qa<Y_46QMa7n1
z#g-H0DFcG6z5O5KLM5$pMyoIW^$VR-U&ifDPEn-)Q=_H4&dMY^NeS)RSAo^h<*1IO
zsP6BW?Ql|jN%31XXbAARe8Xoa<N<BmqgR=50n7UVI2c}i*zuX&CVg~<vhX;X2G*_C
z!w<%Tj81$zynd~Ya{CssuZA#ku@+O44*KZaxJw5200-jCF0uxN4J#!pGvVH~vAF;u
zbx!K0EwMesyu7t}#G~TzG@&3iz1U~q=gPp(a@qn;+bPBV*>1gVgL4kcxJ-0LAy)>Y
z!%EHC9IhkYD(~EG!w(<}n7V62y#-zmua?Q|`Iq+5x@S2&5jT1ZGu%1<q0aeQ=R6zI
z-_!HbQ;9`Zl>FxoepERK`h-xMT3Fu!B_4Q^OA6s|$9&Yzihu98;&?{@i5xICr|Wk$
zzC+Xr(~TqC-`Py|LZi%}YbX>VP-YV@h4JI<T&OqW9TrmMMji8M6+fLgt{2Dq%L;Cj
zjh!8;c@NLjG+1F$wlansP@9&@%`%1+8w4BiZi5P?Qq%3!io_{X48~=0yNHW4XL^ZC
z-Rj@lipqU{(d^9ax(KK-RpXs5F^Yiijiu;Y#L_f3b?WC78EaU>iX|rsO(N6O$Q}Gm
zqB%;Q_V>x9%fR%)pUzA+I!)Fh#@DS^{BpuhrkbTn8+a6NS?pL6$!=YIjJ%=iD~0iP
zDK8yf&$mneBDXk{hkp@mNtD>C!JncBZ1P!ZN;ap%YI&P|H|@aYO2I(4NzS<g_;I*c
zL(-fIT<pEwXC!pVN>hwbn;&%5{{Ag>Q*2Ds`_E~b0Ak|~<<i*QW_>28MglW-duY__
zuqkUcT{<(~+h?olD!HA~j$(atxNz-HhZA~<pXj^en{zSUnbUymdkYgA<oUG|4^$_-
z?2sn2LQ1~{!AR@xdKQ=#2cQY<ZU)7F7w`~D=!u~GZfB~9ljMvWoY2&&@^@(!6+I1i
zhZl~ZK=dN6_xF_l89i%6JshMSSaBYz77K^<IvX>ps4}R_b~X(irU<-Cr%=Al9VKg3
z15Km}zf8XBc9P=OIh12AI^8+DaH7m5mweb!S&WSJgsvAP&uhg6i^+c+ewVi?j0K#2
z@h!usIH2p$hB<U`?VfGl>7Gr&7*>_e0p}237-Xg7$a^vfCq=15z4K9aD88}uOGc+`
zBHU9t%=dw<!`x14AAn0oJ)Gv&O~a=ZwiV{KNK<#(KLcIvIYBD=Hr~$QO0`7ls`(yd
z@zDKQ!8g0uFBL<`^+arA*Gc#+uhFSW3QN|r$=mvc8J915l@#oF56n&#Wp&$PTBxw0
z>wd?nt_AU|dGNtv4b$+Zt_M^$77se1%5fAsjl<NDc8y6UoTRA1s5Ce7j7v$FUHg>h
zsxOn*@t&KQ8V|j~)pa)!*C1SR%iQ8Ux-sKwQ!jL?Tgn!;ikci^L;*`?%hQu!r0T6?
z@zZ#3H@bJgi6H%v995AiOm1}Ra$ZrI#srb{LJ+HWlKkX0(A2%x;intd%NDn^IZvT`
z@K6oc1GHO3aiWn<Q1{7T6rnTUqp;6a``HqO>ofAkCE@|f<}%AIiQD7!7I(V*1zn7G
zx9nx<axSt5uMCe%INlonVdsXyAHS{|_{Gk9U7hbXvGZ4_Mkf04<v5cZoYa&BHP99H
zs2dZzYKrj}QSwdW?!rrwQcF&HDYoMlJJ=#xsXyfFr?Y<6N1fb+^|OoZO)pHwT2ySv
zI>t@;NR^f~Ej8a*T(PsYI91Iwp}XmOY9HOAdzZiL=SR&g9RXCSEZWqSlo|8^EL)sO
z)OECeJ+ejy_d7c0bpwwF9q{rU86N+>npHY$2Rz9OUetx}yyE4dE7+(LCX`swe3>?#
zx@5^QtRM!L#<CURwzvhWOy=Hc$MR4v-s|!wbeQHxjJJRAie>*0=z&*X#wz9iv`d+G
zD4xIHOU5#t$=%j_H}PAe+e6MG@gjW@y&_I}u=E=;k9vh6Tm6~tLPI6Hg^3z|+B|By
zBD#{c6b8E=jv~PAL0-{W{mcgcbfr+)L0<paeGhm8fRg+l4{eLya|08Vg5#N(v&K{o
zW4Al&+#=iLCnM_?+*T^F?yajstTm(=?-q**mlWwAJ6NS3sqLZjO7-sJ+-z*PY5j|j
zX`mN~#soLstXi7vc<SZIIJu<GTHSXWn8{eP2T6*ynCQCo43Q=&IFXt!+2(3+Us&^p
zZZ8CQ{F8_(kYELf=0q9f5mIwhIxC(o^pWrgv96khy6Y!y!?UgU>=Z<-(5`Gt*HH4@
zGHv7hd{Y(3NGixkz?{kT`Qf1S4zEXEy@kI`-1H`WT?k%k6Bt<!Adfd5{7Kpt<b`q*
zJ57AFfDjN4bANVJeElwA8W?}RNof-L`!ZNKPm%&#Rw@rOh%Svs_19yf=BT3<1k)$*
zCyBZp^9n?2JQuNH+fNY|d;6KBUT!$7c<xUoif(2?!o4o$Bmya@Z@Jm5ZkDtuW^p6F
zxlrnQy62ciMV@M@5~Ga6VTn<?t$o$>k0{6A&fSFChn~(!!3!TXc316=!b4J(7wuPe
zEC1UmZY3=p>C|JCsU#N?g~iCw>bA+3H3K&v@g*rDMP2Z(VSL!83^Yj2{S3<<7Y)iO
z{Y3Lb+zAV#M8&#A@f!c5L_PBMwJuqs@D#bJyCH}1x@m61kMDq<Fj_#5TSU(WsAvW4
zeRZQ1LR3ZY#H=wg+C`qzju_A&PTd!z%lW4kjORlp%&`^3Z2D|d=7*QG$MUw`{?Vl(
zTwUA$eN1F(gk{PcD}kt4^_XBDkGmiDQ;F|doq!bd2mAXM@;Jc1M?LpNgdKytm~wzA
ku=|2D|NqlaJIJgOC6c1;hqgT65sDO=7j)E0RIGyk3%flr?*IS*

literal 26851
zcmaI82RxPU|37~0S@w*GY*{C}D0?R(vgbjzV`Xc|imW&sBqFjRB<qw_ImpW1bYze0
z^}FugpU?02{d~XQ|NnmE!J~7#uj_iv=kxV?-D33h)Gv^;lEYxI3z`}#1~3>w6by!U
zmy{U%5C3p=HTWj$t7__N=!x(Ru=R0->Du~wxq14!x!7^~JNh79JU!qda1jY%PG?_V
zFQlBPsQdrDLB!L?NmMkJh5|f<%uC}w5(cB7gTC-!nP_Gh%voPk<+f2EdTsI{8tsVM
zIPWzMuF#abbS3iYlS)29O4p0uE6KPCV)^;`11I!ZoZ4i+xJAV0<WdN>eq~c_dz=4g
zhEjs<#`mvWI?=pJgi5B#)X6<ca>1fC!>7mjIm<?JlbU`3#y5?JruSEdDvWNf?D_^A
zm9JQJ%RY<#d&OJgwGdF#{Jp{j#OeS3z%rl89Q)75-ddEZD$vy-!xP2z_p(RRD*wGL
zNn9@`Z;&2-oPavDN0s}1MD1qW{}Fs%fC?>T8@}w7dl@eOdSaM;K_RYtRXeS@HzL@|
z713+7lf%U&A(NIw(wO*NBk8Vz9lx<XVg)PgftW<pc41#;jQSydo(C_X8+v5-@9<cy
zG!n4Sqs=$au6{j^T{P!->jTSZbMtS(@s3uXvvw6M=$o6}5l(?E+Mi$Bw@A0uZUk2B
zAJ5n$oU-ma^&RtdV^O0q1PRAfp2wqULHB4_8jRGwYrKt5^#Mx{?J@P#OWE*lGR&yW
z94|J<pq_pY)fLEIOxxM$s-Ail_hon&<Fg&!swX11F8m6KsjVYux%BJQia^04&>le-
z36CgGA{6B^;7UufkNB=pY^+7u4jwt#Q~xYdD8d!HN;py{6phlAs8(;x9AHQ6eLxXm
zS35DYnD8J;duy@k`&PO`>fLTPHv{`>=kUFNFh67WGDbzaOIsU;6(sGZYR_0r;1rpo
z)2LC_irTeAgnvd|FKRStYQ-C|#|>YRsFv<t<sc6~p|I4$uKL5rT@aobqpHfGiP+Vv
z@Zg??>C;<on6tQUH`Tk{+b37bcfzr&dwAnvE(qzs3QxhH^7QW2n<UY{b>QX*L_<?}
zukhGDP~s@|?9viJf>^aZc2#@>w_k#4YFRo^++QDdM_lS&^^E$oVS`4x*a#ddU4Uod
zt3>2djrh~Iiv9`1x43Kc?g(#2F=9}xf}2aiO_1AItt6gakzbtNS{8S9t9fs^^tONa
z)VMTD2KkBQ8U6kho12H3L-%kK!?8UNNxXzNd#-pK+RlXI4@6LUImP5n-8!S1&Lvoz
zk~|`oUAK<##?V*^a}X;Sd^o>8V{AjaDLHeDKoE%9A!uf<%yix&*@SIQy*}l`+sDr(
z<i(#Rx-3<_#3_Cnf5PFl(~}LefKA}mtd-A>6)zreZF(Z4++SqKMVxD&1xwK!@NR}*
zvo<u{yfQ;~>(XInYiC3*zF~w=WVmGYe4~8}RY?Ckc166vkQXCVzXAe@(EA(kDU+>Q
zX*4qXF*=wtD<b_{crNET@}!S+j*f;!JS_<lfR?0yc&b@t%n8R{Wd8z15vr&D19II3
zhnD|Z<Kfq{D~Fp?UOj)0T<5`Ah;Algj^iFQUR<!pD9Yfh{2qq;^tg*EU>bVTFw=6l
zPua+o2+tRyq~ue+J)ymq2DX$p4ht{(v<yUwc|F@-rNZxu-3!M*C`YdE_tcjn*Pq?$
zm-l>Cgx5Jm#h9M5;a^3Dk=>6#dZZvlaOeh(Kz13w7b}evfs?ZP_Be|U*?ss7!;ENb
z!u?gW`EPU=j0t}Qja1xB2)}$lw5hN$a@`A!s*%U}%i(e^E##a|Q&s$|+cXaBDT+9s
zWms~0*n3nO5Mn!SNKo$Qv{e(K9`zBI7(taaDvk-nO;nRa-%%+rFj8B;<G2v9@$9>X
z00~c&0YxE!Jn`t6pN-_^CAhgOLORW>>_Y3vIq%^kM+36qoADuKvynR6<@>)Pf^|fL
zTHb7aku`a%>(0Jl_6+|L3H^5aa5h;;7=~k`wQ*-})^c89yQUt-adr9vAq;-(bvGc(
za>13C<T!^-jx*|WPQ}5oJe`dDt#}i>XMxAl+Rgrly71ud*dFGE93t&(<a}K7OUBxi
z^Rw(*&A)bBa2AP7>bBz;5sBPu&5T}K)cYp^Gi)<K+co`MTw(ew^@?dp#|A6{j(KhR
zA&!Wm7w7r))4sh{&*yO2NOf2`Ogdw<{^_K$#kNh&n`aD73h0pM6H>33oJC@VG@66;
zJ`>yY+%9kGZkWR2?T-Y$*deZF$xwJj(LGBrceow#=+)@EJT`1^L|3;P?_s%I3$X9-
zL|{uXR#!G@E3Jpww`+dFN!%_SgtSkeU%(g=*tz-jgpy-q>#(u`0*4~ksggMM#e{q6
z2@lQYT405;IIAuHn``b_y_=nS^yQNzC*%k8f`3%nNCdf`6-ZPO3UWJs1c^WtTRMpq
z;kDM@_w1=>B9Z-N2bb?ZZf&{r6<^kK-+ZBypK^Ez;g3d164c>Q1zFy+BCtd3iNGlc
z&SCV4svk)X_~2Qt4|ho7F9GZAjTFtgpJnoD0(LS^Iv4Wt<RGCp^Zp1{#D2P5XquoL
zUOmtlXx2C~PTY_&tm>Gx&(`AKv$pMD^Fs9PCm42>d%=~4WQX4?6&3metAy|;@?ujC
zfIn=LKU1E9Kj~hjhs*!Oav}WFP|uNvc-z4v$JOlR(|F-T!UAJ^@pbOi$aR~V5t8iy
zjC`ZW9WE~8Jc;dBMrtqh91Bu)V)Bf}!!z$oA7)my@F~h1b1SpSGaZP&dKPkJv!bV-
zuQBwTW0T5iKW-K~xNC1Cez-0uK2!Z77w_W1^+P3F?!&RZxz8ihSFK;2MxAghZ4l@_
zwm27ULJlXNw;mgA6U;nomrchPAt>jWe!4`yJt;+goKC<&(tKg{>U8$f*kg;mBFw|7
zmZvL?I$`mh)eDLmSc0?Q=#1Kw4TJ56Hu9T9Gj_O%+A9egyozF{THBJv<`ETD`>k!y
zBK#1wBp(w(m@<<BV?&-l@P2*-pQ<fV57dP<dh?hynyQqjIy#UUsa=c%&W5UgoM6cK
zPZC!vWc)Ab{BPF(%3Rc@|2OM9#2ec2|IPXm9sds<D20*e3#9Ps`cxyjx8*5mXo?>x
zo^2(Lqme08VFe%w(j>jNlUcNH<&6S&*d1;!hCRCiL~VocJYrYAd6z|iOG1jWD8$Ib
z;Qs-M|FN>`h<Fs2fnxvf>)F}aS82&wl#^JQ;@UIB?TKf-MmE3(1@#v5Q%l$u^8p~)
zvUGCdb9Z;gW=c}PcjVcM@Ak;ndQR(s|E+fF-IHgdNs2W*<bT6&a`?8qfNQQnh3j)$
z44v`PH#`&z9iN_2cYSm`iy+4v`b9yGH0D?hUHv?h%li{ZDtZ6aP5Jm(mxXCMc*75@
zm1H%r_5sf03V1bBx7$<HO?yNq!`iX=Mx#mhYWC1`3l+iQr1N#n!_@hGm6*I}Qff-#
z`;|6$ogCpe_;LcdrVl!#zb^W~gsq#=y<vOR$~g@llX7841GyLL!v_j=Ey4~LVZv68
z87mbnVS`(Y*3~obtWO1Xb#;AxeJNMWoN_~@)Hy=0Q!onKe11f9<6!1-$T~82K0$tc
zN%2?qMhG9r@kr;<bokj$E-q{Ogm>j<+58hay%Ahc-BgfJ-E^2dY}hLJT6cH1Z$QBQ
z#`#LinJYHleZ2O9P>&h{aeGE&hHFM<hM+wr7gy9%|FEZ?2s0ev8HBq`VnN16WkGuK
zF5o5&&DQmxb{AQY(P{89Gc!%!+Yt$wlrOyRygYBxa>QVLGRK5x`qAr3z|=$B3*2RX
zajb&`ThLM-v|q>P0hO*(f%DHT{DzFVKTX{U+oro$YWg{rLFnVjcGvw6&NSLDh4DDk
zyWYExOWiBC7!5y3=Fyhf!NRpa?Io#S{w5lJ*mdT5^Xy<=Cs!d<#apV<FmkA;zNV+1
z-iyP_WecyT{-&y@ISkj-O#iW0Hr=<U39odooR3T5L5U2zJVOzLYl$-?9LWQwL#3zB
z_UgQQwiZ(E_-wT^5o`_`-q~fM=F9e_ot&JU@Ey>-ar$RK*t9ajGjzoqQjNAq{S#!5
z>@#HV&489KwyjYY(4l*y*lhVa#Y470>{{J)Pg&g*Ic9n2o$N;Aj?7jYo$TR4%6;Gt
z3Y~nkWD46!iDI5pH}vFwU(E@eBjdFGYUMxbXc0L36g(tdG-Q^7C!DJ1#*R)-=-z!8
zkia)GKJ+bf^Gosp>sL`aRS$*)^%M>llFR)T(@cEMPxlEn!S1V^`?!?yPH_ssJKfSK
z`2dmeT6gaBF7KcBowk4_6fR_}O!(R;_Z{nbjw@hS;fUI(khoc=XUOvCuNrUXd{>Ro
zf<T`vZ8Yj^x23Wif#n>#wVdva*RPZ}KpMWIczPWeV#uP9^=xT%k6n8#17v#yGxfNf
z`OhRA3&lk_V;f`P2dx|j?V@3yDMTAF1XMRL+lyUP%w5JNmhDaoJ1l2^iWJ{Fe4{PY
z&8qD^Ygqq80iSPYvR-gfJZ2fTK<b{u{xAsL^8%;ZnTr#JPFD>?{Mq9(c)(EZrpI)1
zwldYtRDJ%oqurJJRSslMXm8@8Y=72Xg=68abWx|N#)m3gG_aqg_Xon)9}!U;^aM0l
z_tqrJE%Sf+^l79X$)|Wc+WT?)yAa89+h17J1Te*rWy9RLOVbC$o$LW@Ocq|B@mi$q
zpCi{ra1(5R8gN7*%Tb|UurISlx68}RzZ3FvUC?DHIx|8~1#dK+>{_4uogZ(6ZUmp^
zN`KevG9Jt*?|GxVo^@mXkDwaYT;hd_ljP=gUB@N_ay*aCANz(xv63*3@!DL}C6Aes
zcja?cT_W}!@hp!o2b>+^s74(ZPj-5p=GtOl7QirW0LyPYp4_<nXJmcdL&{^~Yw*<0
zWzH78zFWOFb|}LS)5FOy;+<@*SQPx>TFo#_21G6vX%99SbQ;g*L*8fX{v%<-2jA|5
zefjc~Vt>^C7s{y$=-{RB{Vx}!Comn)FF}%=?|5$C_geL|vl|6}29)rpMU;M|U8G@E
zV!dHQA?*BkdS`MYEZ~O|(ZNWkLI<SVfaaa-&~jN~H^SI(F?gf9ay`|7Vyo=1Y=E?v
zGzKg-i8-yR$op=e);^bRCcr^;&-)Xw)1aWB=ytommb5qSi33iJw@o$*9I6u-%`J6x
z5@3AeI9AA%0)M|rclPl3m1?LrYq=4`1X2&H#LIW(pJKB-KE>=e;%<WU;8Q=L;LTuy
zZU$Nf+9Nt$oCo0~5C}6yEuSs)Pv6O+_1WU9#d%;vs)mMiu$I#`Pm(g3$&cRLkllcj
zU-~fj!KUlwwUh4Y6W#OU`~<n!XB=T4Tju^OzpMBKqS{cHc;or$2CmEcOv3v7XqfC-
z>&Xm>qKwUbIfDm(9cQe@m5lhY4obo?cTIZImkvrGTY+fRIL58-LKT!jVcObVFNQD6
zATv-j<WG+}-C&O9$yZpP@3mYce(WHDO76YpoBj|4A=%j{bTT07Jlq>~dN!n6I1?*W
zKErXo#UXosvO`7~B@%RWbhNa(O8Ba%$jNm7EwU@39w9Z3<yzoNdHC@F2G278vuBA}
znOXrfv|IQAqB^o3!%;$A9j(!#)c!j=VCq}BWdpJM;iG;*y{yd4BO$$K5~l4gNaT(}
zCuD9Gp}Rwv9}GqBO-ozme8t)=H7U|QwKEh!z6QS3&W}F}>QPt^TLw&q4U3k`+*~QG
zCVrk*Q<DY-M)k`NpO{!ZeCjLL-S}`P>SQWD)r?ZLpfL5Fqvv(tgCEyFt$aK?TG`j0
z176w+?#Yn$ybNSNpJrk;TiJSX+-dXR^Nqa``_+;6j|&TVF9$7MS#R36D%8vV{<F+{
zv^iA1tgP(D_E&BwXnv@v5x4K4gl?KTT@Ogn;r)iFKDO8ZF=~!a@sJFMMqaFF+GAZA
zuD~tjC;kHA>eA5uEEe9o02yC2cLFCfWq)7aXCM>PdLN$Y<Ei~9zcLiuX?syL9JSLU
zzY)>N&=HA6%cdlTpUj`uV4wHMri)jvL|PNvp0UDBXu%sUn69IPnLkcpdkFe5dNZsW
z6KRM&<cuRHK}d&eI{P0rE`z!Uc_B|ih4f6y%!XP{3$r}tAbU<!IO2yw!Enpj?kk+M
zUHfm_XY3u)&0817#>Wr8sw+s8%9MYcBcIx<t@G}d9A>MW`(w{>%zS<ve(sqd`zynC
zI^PJgKfJlE!1Gd9Tz0@^5W(>3CVaZWIw!q5+0kBK$gsJJxn43@RVK@}lfxZgrRc!9
zn2;6oX}P5)y_>s6Q{c=J;b$Sx_bRVhr7yE$($gXEqMRT>TyD5RCmT}dd<(*P^*|gb
z#c&0uoQJ&TwQi%hpj;5qzb*P;v!oM+%0E78k7L>}oOwP7v^rAjeyJ!o>_}l8xK{wC
z{HF5Z0-xeHv@9}e;vA&e_im$AXA5GqF`JJ$PHa@(4|C%t@_Xv@(MTj3X}woFxytiY
z26y&dHlPvd5s6&yMI(jcdQPhXruus7Pmiy}M5o>sU?`HF3gj+A`;b>OZj%EL$Xz1y
zymS7>pC8J?W*?k$V+R~0My+j4ExgHJ=<xntSsBL#J&iTA0Uz|q0aJgtkfgq}v@}vQ
z_h-~8m)$=x6L?6G;^}XK%K>99Mel7}i6MBl9Z3~pbA6Ud^BSmxRay&Kysz$6$O2!N
zBA@`w@+Sj8ypY^|0IuB6S3s`c>em+C^%R{lS*^}JU41nW)|)LK(6T~sIvn3__n23o
zU_;VqWjy7Mg6z_sjo8<mo56ddwSil6p;JtX=C`+)TO&J}DA`Q#HxmLHAHUJwPgptH
z4?o|(-OE6ev@BqRE*x-C%A@8u`tj`JY}BPa`E>vRXJYtrIH^g!PPRIceX2|}q=dk;
zf$5v^>STCff*Az$<mKh-kCxvZcQ!K#>J{C|ZMJUz4SYn?qxld4bWU|+6QfY(0jczG
zut=dDD3SE3l4FI;DTs6*duwxYa%fD@FXv7-!WD(?mC7vbdlz8qJJ`aTfz1R|qRt*9
z@#ZGIcOEJ+W(!_@50Jl~UF9?r{5T)!F-u+a6}D@pb}t3oV)knLZmea<R{LM{I)UtE
z_dR#+QupIw_)7|k?>6|a&ArV}cwJoV^0lCnZ7|K~FDEHbd(NTQ94<AaWe}J5KUf3A
zSNd<Q*W)hxua3+HFaz>p-~^R3Usz}6RVK^=@q7iI_56&;FJ07HVM&6P2*SsZwqG1e
zyN|UkrdwZJNcV(-lRCTSmLx^<(NIPI;Gl}Sdgt2;MK%aJQz;zS7;gxGGA3Jz%uN|x
z1#T`$+^w$Kcol(xE@?^0_jc{%uv(AF?<9%`xA#^@TbWu8R2fAqMp|C>+mOfDZUw0k
zp>(1Ei21M@Ghj2^xYcn<J#^AdN?VMXZP!mlr9hnU@$FyTS;H*}v(FSyY!&wFdx0uV
zn?qz3kNOfn0uLm)88G?DPZ%WaAKNtBX=q?!P7gOfliY6%6bBdxHx5AU+qrAah|eH#
z86&V6v)b*y0m^E$R`n<Yg-<RCOsat4$K&+|*~L`DkGnt3A1)UceFR_+a)&_h^TE58
zBOw?zei}qn2n3g!)x;7}FnWOqBxd`C@a%N@JUb`na@DA?;>j#k{lQ$^G1H^zN?QVm
zp<I&oSb(zTOLGrfu+L*Q<ndbFz`#H&z{TGIEUpI$U}<@oi<xp8AVffsjuY=(rG-Ek
z#223^U1>h-_S|*~-*bZSHb}!6&CLo>s(^q`^IlEG+I}NI({oT-gg6I<^#MLRJ3EMY
z*RG~$0!-IR6}CxWW^P`;Ry%&sdwz0fZc7G=SkP(2tCvr0pqjQZ`Z8KjPhHPa6R-hq
z0DE6_BSt^@ttgCpww(HdEs8+2WZ;gXE<g;{hu=+PK$e4maPIL04i*T^ED(qs65L+H
z9>>`xN!V7L_2w4}(M@nDuga$#6`z&`6?Ra)o4~+gc(h-NxsQDa-JA9sw#;A=Z9d@o
zi$i~9x@ugdg_WAVe{{UjlFMWrk_3Ifa7l_XC^3ePZyPv=H=t2lZ$v|5&W|e2=Rp3l
zpZ)SQWG8EyaOP;G!fCY1vGGs8cH6x7WuU(PW)v4!KQ%c+(f`71-rIb}XB0NYX!2#N
z1O!M!C<TJ`fKJYsPaiSHF^T?4))tvXBYS4Sx{g43Q1&<-7BxcmK->fz5q8WDsS~+U
zR)=31wEF<0#~XS#wp0KmaR551?%j$}d6XEkzzt=D6g@fMbb<I^sa8I&R&{*@;(@4%
z^}!b=;?OA&CcWpMOZ#kp<J$o;+XOTv3f?307(_+Xe$z(ipFe+KUgPd{-rog^z&7|c
zWA23D<18MwY#F}>MG6OI#%pG65P<y`q9J`syb<XApAh=Gq@?$#WBL|I_mmG?{tJMH
z*}Z25H29beB!OP9-60bKFRXZ{81fhPY&W6j=Dr0;TI#}#^B?CE=DVe*+5RY)Sa=h`
zw9`cvL6|@QpbU{hp!a8|xEp}uq5a2Ppd*7kfKC%KxyVu%9ethG7%k<|UJPm!Nw-Ta
z8(xA)4;*iAG;Bau+PnAWK6PRzM0i2!`u+-6_u&KO!?nms(e8MC{z1jj3qP#Ap5MF9
zx)#n(N&L-0;_+pZ=waE;LtJhzK(~-3ing3cOrM|aYXa{9N$MBG!XPp=&v70&YDZ6#
zbW{{Oa8w~<47vO*6B8zY*w}}y!%xFBCo&~nA=vfbvL~ntq=%e#UJj0Dm-h#|d$^SM
z%oOa<ut*PLgl>R-LHTri<mXR7Sm1%+W0(eS%AeicHDptDk6c{t$pRm&ac|7E)Vd`n
zKT#n_r8n&8chS!D`RR12RTFE()RdJ~@LJ8;Rj>X6O`u_CMgy88aV>_T=jPreK&yn&
zo%5$%#%NGGfS^3&)W_@rfXYA?AO<iB$Wu&~zBD_yUOr|@pSc*m?J_{kU+v574jMk(
z2%hc&2<Pv2KtBLTp9tCMMh7hyqr=Y**^pTA)6VmQPQ_oqY#q){4$%*Pp#ThV%v}iu
z0_08a5(ms2!dr}@R*iQerP)&W?jW}2+CydtIBcN%y*pTdvV`I}6muXj2)Re&PWHwE
z;3q77yQ(S$Va0PF-V5nT3Kd5Wq74w5LUnFZ@(X~1{{O;--Cn66z}?oXD@Fhl9=$!R
zjRtH#Y?$Pzf+eo~;4@WN<@8zPKI;Q)D+p1055s$8ag|`>rwPaX>CJ8F&41pU)`Beu
z{#c2P);JY1LNmU6ckttx0^}c+)7}9S-XwQ!Y!OD@ikMGS%!w2E6n%^HhqX7fsD$m8
zCj?XP^u5PMN52i3SWha>yX4LJ9{u@!Y>W=uPRU*PmF3CHb`kPXYSLBr{UgBPyNeWd
z1wfWk=cgAmZ+DSE5pFNe-Bo8F0?+(<<=LQLd-2dpsVqtLUu1yyu4d`h0QK>f?fnAQ
zdu3+rAZ)J$FdOg@ABT!pE6U-ba^RMGcPktnBrh0Wekc6$fx#hvtN7UVT_`$3*MI9l
z7Lz?6E3^Er-NFZwd>W{_tAv31;7D_5gTkLKJXsw0N&dYl7OE7Ms5$1RzGiFT%LE`I
zL>f>9IeGct%gfvH^u^xqO@S374%nljHH_&6_4xGAAE&pexri1^WXc}cIU|_x&nXEb
zg8?38sXQm1vA;#Ugnw3qT-WuSmc%FqJ`4LMyWd(uwEo!A-1^I+kB*E(^K@Rck%bH!
z0_6U`rB4GxBX7Ysg6i!qL$u0p3j6>(96>fl0v<dfyYJIy+e<)^jSNNX3Cy@+7!W`4
zCh&y`**4WTCbEZOTQd8<-CP~r6NI_5BS}@wLJ~9}S(Jd{gMsc4n|+{Q<(O>UPf%B0
zClI-&0J=I)kmbF>4fOm4O&f%lkv(gh$)7tTDBjTr46TiQqNP|s?yYCLh9;;%k5OT@
zl%#9@jfr}_pFLHZ7eaq9MA}<s{_Q|-ZZgX`S0=r%R{8g2O@f8UN`UF#LU2FkfzLey
zctd7LU0(&&PUD@7Q6IRuRYmCg`N>Oo`DOMZ?(FKxU4={I)w8c~G5@rYjld$$F}A83
zPJ!clwg?<vIF-d5TKgi-0yhCVrBA^>;AA4^GefC*{&cY)s7a$@r0#H0$0x6jum9hL
zOHj-r1ivyz-QaOB6MQNr4jTj?-ZW1xy~nk&UDp|Wc$N)<E`p-b{Q_UgGB2Au2?k55
zKCa2<f6SKlcOTcQN_e7r>M6Z$9zOA4*hK!NZQWRrt&7KUKge&`AcU~1wi^@d7{#PJ
zBI$T_564+!yBsz7f=SiKj_RJ;uN4?hnoaxzLj?;<R+!~*mx(U3SFZhfJ&a?YnFx*y
z7GlaiPu^mW;HIC<Vpe;-_GdxDVIWjF_g__Xa${Xe#|lsyI(A=KnIf$8jLRD?yPiE^
zn2q_X4hL-UxBHr%B|24?BD{=1^%%O05@}mmlYw9;+eryqPsi~;lYZ6*&5D0MjQ{(g
zAD!T`ni+LMtq|aW;7W?UYiG)hMi!(@9{X}%`^pzJDU-f)MFJG-um49G+f%F>w10`<
z$7QH);j#2x#P)h_x4DXn1L*zyjJA-9>3Z`_hcde>IaYdtoSloyJ_kh<*$@#IF&{yd
zG3rflG5E6S5;}|O25Cr{v-N~*9p?BGAy}VAAFMA?Yz0%A{du~_!23$`kH4`bFIYeJ
zf0SzZ(8#BLaWC=VC2aX1V}elwNv<qS7&T?*-Z&GbG{Fn4)e?jTK=SMZkrz}q<eS`;
z5BWFWz1|mxn|mO%yH_WbvmFq*n+fJqLvLc$XlO>$e~OpVoW|HXzi1PqCxB%2mDvel
zLO>B2K<}RO8$IrfP=_UEjmGuVOA_?@^-NxvxKIhglu23yh~FM>+bh);=#;ss<JaqY
zv7}L18a)2@6ve>iKm0Fd%vdXrlL|U7C(0qzD{-g<&?^Iyog43MG5U5a@gxVibV}?-
ziHANo!G(X<X)tLRh3dG>QB6$1H@>IlakY2Es^9Jh(N>ZM);~y!i`Hn>H|b|h>b^=!
z+5h|lC$q;rz;-kUe0m(Qt3flvx2Qi3%hvT{JqTXP<1Q07U;Kbi703|1(!`>XNYw0#
zkljvevi9zQnl?$chCmhD*P@j9qVl}pp}}(A^}>v#_r(7i1K``3e1h6Zi$6z=S9;9x
zvG3e`0kL6xE9CP0EBkeEH~e(&?B#Mhqkq~!jQrxIcs;UJs0BQ_)-xWVxn(`Uzn?6=
zX{#h&sM5r+e-ILIzV=T~Nk9>(a^{vRGvlh|f)&J@!DV2jMd^A=AjX!H`g^ZV36IcU
z%P+tJnME|k%$~)KGsU%ayaUM-x>B=&ed}vbQhi9ca_g#8WWlH8zq2VCC;_mOQ5}4W
zC!~ZI8%rGuTpAJoaL1%7aA1OqwNbXWugWD@NNGx?lq&se|M#H%kNUdA*vgC%-;%2@
z>IXFhaD8Qd4fgL){f0Mc4F;Sh?V{%2ZFNwC6L4l}UKADADQ^F#EA}0Ssm|5_t-RJn
z3BpH7k1sdWwd+If_|?nTPlVm~c!8zJM3$B&X{>-zId`#2AR?Kz)#fc3#gl){)o9!o
z5dU*u$}k9ImnYortoHvz2gf(%1qxk`JKA>$wKXWOD8h?D%}hn*dsjW%xb$g~%7(d4
zh8zcu4e<*KiN^VDKb%^BYmpy%N5xE)YeiiJYAd`tFK=3HC%(1b9kKQEQ<3xK02w+e
z%eM>qDjk$OQ3{vB>_*h~6C~3p!SNihUiHGBjhluBTiMv0aLF~gM7yrB>Fu9ccW7L5
zR92pV<i*crz`$z1RDA~g=-TfCuMgR7ym}&8<ql9bu>bPX@6L~gW8I62dlGUNWs~$j
z#{5=4m3{wGV0EHOsZ|;*p>MZT9b)I4L8L9Gz$Q@Y_?FBW2v&_dW!Z5cvopi%E52M|
z_F&7TFsAKy5v(J}z2cDRRkQ}fUkPP#QOCZ#5p{*lo#4YuNWjj18>Sa9@%d9V)6F*g
zYF!7YKkK8nfPVd*fkcXcMC#p27Faa%0+WJkpdqGsBay5^r(rp{!W@mOQei*r&G@i*
z>G=V}pGrD-x#qyw0g$*M&z&2f-Ie!O+-fCG!<Rl<L={(0DJ+O5nacP5()8W1h(ngg
z_QgaS<sx`??~7z{(YstbJkT#75`G1Mhl;}!H1f}?h4zPsv`xWszb6M|7v7iACD<Hy
zD85)7*DG~2V92MZDHf?=K63kbEee76CF$PZN(W1xubni?Nc7tLMa8A}x@FH`YOkG;
ziv)BuTS>Ia9J09WlwL}1@h2ex2LGH#XF5j@<NQGW&#O-2N4BrKQ=<3XibHI;xD*WR
zmbh_MGd``EA;g?)F5KA=%jc4?=#f3z^QCn~=~T8!KFJy@OwwDwlCoUp1>F4XuH91p
zS^Jv$pdHi|<>G2h(_7_DS$|U>s`d@H(2(-_o-&P#vleA&YF9jn1wd=<i&bf)+Mq;X
zyX)s!Fz8W0H0yjRPeW+S<2jr@spHLk&Cu%;jIAKW!LA<F5+q#nJWBv(@eQt5VH6Ek
zxWLo5!<bZ<klc{O*k)GL-+*KnNpHvhOs>kuHOB$u!!Q4(yx_B!aCjK+-MtK8E3C#q
z+-W14rH<b#d!I|*`BE<&I+-O%jf##wPX+g<>*7-eZ=-D9zF_X?x||Xnt&y+w#~&}A
zUp)T0F5xSnO~>b&Dh0sv|J)VHB3Aohx5N`A`&XK&!hH=4)tr655^QrXkxSE1N)J>U
z0#Clq3+&>%V@d|mvzzy9L6U|>-jWP>g6e49QBOv{Dx9fg@%2@^viH<Wr~@+sVGi7G
zNEju1z>X2V#mNk@t$t4IsuDbS2zxJURQK^}%V(^WR5cTJwGJUw?K~}s*!#5ar|ZXE
z!GZGSKpFK$e*yx@<V)7veG%^|YVW|sRg+f|V@pOfJ>I=43-8JpT_o6Z1Rdx7U9a8O
z<!B2jT~6l9ef6L9<K4`_o;8}_)tp{TUNl~8n|N?}56nNXawn1`vf?4mA65q|!YjhB
z%NTv~pxx?Da_BfLS~Bs5c)ZjdeEk3e8W#;7Q4?FlPDEFva^zfdBAC7FqwNu;5BU$I
zx)SLc*}}3w>y4XuWH4VwQg4xY%O-H1g5ptL2IM^t+W5P^{*&LQY5*W5I_gr#P0*=!
ziV~IYS+&pwVrA=E<@d#BlxCc`!!tWl<2NwE8Zti>=3Jj}xf3eu{#iHcEcjiNDlSJu
zbDoyUoH_awBT6DW1tVd*E?)5Ak!N<DsEL-vu1LBrP3(t+r3nxPKorN)#DM6VmKTq{
z=*Ay3t=UZE#m_+$<`;o1;#df?Hz@HW0X9dIC`u>>&+P1e70}xup~lN)a7pWQ<sje|
z^U@XTA8#V*e^4~upOaKG4{XP})uXOSRtHecH)f`F6_OFE^`%`;`2h=rwv`_*9D}mF
zAWYb-@Cd0mo0i|z@afZcmV4b@jspd>4bf5;!ln8n&BmNwER8COqzfoR%FG{Z+f;dV
ziJ#Ix{Gv=$$mjiH@;1o~Fa-7#LlP;Eb?d<pESLT0T2vG75Mv{-I5z{{GMCl&GU-xe
zYwT3-X6;%l=q#LF{@5m)&el^8>#1+ZMgrbI!FMOeLdo=bzULjjndo>MRBUACIAX@)
zWnk~iJ`!+7Wi4Gwd(28tz2&Wo(Q>${tJVh-R&$bCB8|lJ=<%h~2F5^I8J8FK%Y{FX
zBG0-U)g%uooxhROB(aK(N%*jc4Py~m_X$7JjyNSt!sW>hL=FqQT>Hwc379fQ2|fE!
z0B{==I0ZD%*0NoT>RvnS(K~c7R4MRI&17E3C(o~`BjC#zeU9nF(C}EzzapB}Z^Rc}
zZptAPe(mgLcT>>!_WQfOJVelVsiX~4K0kLhk_AjvkxdHD;CkxQ5dK*x%Q^NvzgG-_
zuLAu&z=Gji)*T`Q9zr@Q+`+r+W_S1}`mOyF)C!6p+q~6;ycccY#1nc!rX4#L=@h9Q
zalW<|+?+}wgOfnq<3D(WX?psI3hLF2VD<3M2r^(NPf?+LvH>^1)S;!PK_+Z74X+yY
zlRaG*kD4^W_g+8mEy%qt@T;=`)VUPlF3r@WumQtOQB25VGdfeJCRbuo^J=IY$(+ZE
z28uv_EBFk~9!4gE$4qr1IumGf@sP}+Tyz(~Lm$%hH9(v_aEjK(s(8Pcq~49y=8vUj
z4V2razZ<A&IToY@Yw!gONQC|ROeJ#L1ZPkQ1Ho?Olda~ta8ZgA+Un&>T=c=4g0>&B
z`>uQJ)j&IPgO-j9KC+_XY_=u_6ol_@nL<EI!I0(t_|Ye6JnER|qT`a>@5yF-3h08P
zucvK%0`qFD65`jZTO$jQ>(@4RZ8|^T%iw;R@Ha<Ejxj3#;Mxaw+-141IG3hD+2kOW
zHu44}Io6IyGs@v44x#s7gKrK#dbrLxoOJsSUlg|+NKbYdQ00B@ncv&^QVOu+=r-Q?
z5-$H&`X7m^Ie#y#S6LdWw0V+br414{US8IY5=g%^xd49!%^u|z$Cna>221r#ggM`@
za6vrDUjtJ39%M;Fqsac2afkbsNuR4gzEWHsk(yPKg$89dGUIpkGk_7GUmVqmb(oft
zE4;>kT+`a;KiA}$b_yMkMMB8C=hUlm*x+)#1uMl9^|T*E%Hrs*<gTj#&wppmj*e!F
z{{D4rXsG_fxnGs1{ES9X5TJ|C6kG_uy!Q_ZXaTVCDs$}1-7)YqewWB#`0+>7q${G6
z$z6VGd~fUf)8UU6Qa6{kE`Ih3`xfh4(!d6w<X2K40L$Vw5g1pWw_}U{NJHVLlvs^?
zegW~TEg}PNFeR_u-+dLGJC<I&_(1q;8n^hLpAtHJVB#qHK*Q1DxfY+leWciDFXU*2
zrE}yU;dQQle&D}U1ajHP`Y*&AyJ|K+Ts|#geCn@9V!ra_M9#J8*Q7z&pXGkO!M8~j
zyLmy0i;B##G^A=8d`84^8ut8>;yN((%+W#U*OR6cSPHjmnM?F(0mAtHm30Bl4e00I
z`=>-tQJRK=k5vn9r^@mC;)vLZ;6c=mjQd}pCdetiWpP1t+D_(E+Yfx($_NO8A80!|
zT=<Tl{b*5W7jp$bg}rsFM5OXHdjT-C1$Nw`*Zd=kXkytN&PftdvwHVAUcK9cK>&T!
z#OMbW-~fAo9X}>-auLj8P5?mK0lpPGsjO09rnRiKj6N2f(XwF=W?Bs;_}DMIAK3od
zRljG^s~-E7PWfv9pD{E!b`B)18%)<)8#~F(wgU*JGd?R#aX3#!Iq+>*AO_3(aHGyx
zxP&;pd*K;+gufwK>58}!)HBL8Qu~>sQ<Zf~Oo`L9UXqym6rNJ@=$^{5^|zQS5h&Hj
z!V~S4T$gUyy5@;U$tpLwT;`YW+Qp`t9u5uz9MA_`!<?M1*T_z-{}FhG*kA$V^jA`$
zbafZA9|<QJUDIkxSYYVjiud1U0pxpBr%|{X9UJ|16WHv{r!1OTo!xH_n!fb;mpOt-
zlDxr1!DbR+yN!{UNNWj7KwQ0iSD2Ohk{OC~?pg!1rKSRG<C|m3f{)9Wr0=>n45<@p
zQuO@ieMV!awN(m|waVH<E**{zov{S6d^Hk&EzX%Day4qv1$bsU%6Z_)UF$n4Dp9)N
zA;leSaH82I886x7t+h6@LZg!~P(3qvU^hbMkd4f(a1gUswcSQ-`|`NsU*EJ;X;T;E
zcGa;psMQiNzN?=R!8_HY3c}%FjX^{58G%?Q_N+1ab38+EL-I>*acpmGAqrIMLh>c5
zIsl6@<y66}7#nKlDcOzW$IPe{G+%Iv3??`m!1@z3#O}%BCeS`4KfhL4ne_Vzn<R<;
ziTBm|8@zyo?Insmz9iMg_Gp+<lM<4tn#BO1d(Z^N{)z|NybygWTT>>HLMC9lQYjex
z*(!Qdgc^UpmKyZ?Q1G(vFTVU*m+qZ^3m`3lz2?RZxzQRtATXbiGI%(qXm)me`k)e4
z;szxi1#rKzg^0G)q`LD2_A!SA@2s<YaBWk`n|zgmasWf*aOGuQZ1!4GbfR65{G79R
zbHNB)3<w~}n)~>m?s9J}2lP<cVwy!V$1j$Rg{rE2FJ4d$=oThz<d9(xq&SeaVcbkc
zdZ?=cQy$fMjlCA--qs+UwiX01`VAms^*j<?euKj|g5>1Yxx7JB5PJ7}S8!jm+l{R<
zHRN`{O)qf(?FctVV^xP=RV}V-vAXbOFMqDL7%c~_$TyHtN)%s)eMu6mWmYr$jNcY4
z*`u$rY*O519P+e@;(!sM^N=!{faxA*dDKf#S0LnaY_I|>SVWz7$h_7S)QrCYzj)zW
z^6ZwF+0gqiMp9b$ObsQvAJH1@LXzT*^h<b0MHBu#j*+_<8iwe1d5-YK+z{dqUz?(%
z??At)Q&Ln?_LNAs%uo^zD&I8*bgeNMR@}r9-Z=7B@I&PXZas@%5y_7CTPr!)x)bw%
zU;*W5)(4{R|K_38xBOgGIJ!oUhh<t%B)#~k2}m#xXqwwA9>s1xVuL8c@5IkeBQ3q_
z2-n1<g~nfbrMj-Fa*`)erRD%9^BKK*MbV7Xyzo(1($b{aZg5<5s&aA6tnw{-)7xQX
zg(;CdQ_bi6!A2K^vtkHRL+=^rL!sc#WhF-kU5!8P1SRrYI=4&x9w<az1}0&U3u2fj
zaSq9s1(KiYjmUGtiF>FYtcFr+JW-CTTCAi|WKo$Aoj*_pPNfkPlgDu_3h>?tnvF?=
ze=SZiv7a&e8$%Ld*woz>kt>TcNFy(&afFk>@IP;NYmu8RSgEv$LaGPp2bQOyJ+#42
z`XpNFPCpQgL7kS>%#>_8ao9rWH`3hzo@@4TS8mDl7lNr+E(I2M7MK4lOs`?sF(ETr
zxQWNA$5oiPsqx*OdTljYWp0g*I$U}QY3j*VVd-^9FV)FsKAEFUBqM8RB*!(w8y7@V
zM9!I&zlz@Pt3K|ovNBXrx#;o1vEXl=Z|B>cd(~L%W&fTg3*V8T8M7Hr;(8TO=Cd)q
zE&bME+TR+YEoOyP?^Yar>f=4X6@yX2v?G%hvu%Q95(&=++E&`NH7&E|w#s)%f!{_{
zzuQD=Jpvi4PmaDraHcjGu=*F}j=qiy#h3@U2{RbHA@O7^`ZOjF=>f35^pV#k6Cj@1
z5t-@r>A}og)b-JERm1V?({t1`EHMUrx%U-kT%`~3MM>VG9x#)q^rj-&l_P9ElHq(7
ze13z-0#5VbgX6-#<{r(9?GUvS*q5234bQx-l)nMMo)S#@^qpdJ<ts6`OQXr8rfR`i
zs@x&AG;$of>NaCL^Rh~9aHa|+6RBU?Vq9VID6jBjcfk9RW6lUDp-0^#a9q&AO{l@;
z@dGEYR=z!DELRKfz;a<SC!4MBsPFl`p_Ru|A9)tzL~href;Rv%x<R^@yZA&Ra$VC#
zb~C^+4ng@9G5192eU-H|eZsD_wTjA#Bv!(Q+sm}?m}RQgV56q*IN;hQ=$27;POhQN
zm(b=i54RT#M6IRwdNh`&nOkp(>43_^*5zyWuW;=a4SsV{xM5>Rok1XsKN#T6Eb&_<
ze8ozZp$?d<#%^j}yah2<vU+rZ?u$?))yu#QvRk=G5f?;CV{lm6;K-$zTy0}|*9X~3
zuTA16;xtYL{I*f;ls7BSMypie#13%pN3-NtqoyP&QpN$-9uh{-I~E{C>=DBRExfr#
zQ!8k57epOiS2hy7?je8)htWl}h*gWq;Sxv^h?-Y)wdi2Y5;jr;;@mAps!wi-ExWS4
zf2lk&RHFq4KxvYt$GY@0ar;e*kW!uZ@noYqXbm@|(F#{aPU`p)P=IUW$QJ|@ArU|E
z;)p-8Z^dz;A>-l=Pcku2(<CX#AVJLUQiuxwxYwie={aa$ggjSOagYJt>_io~5mDA7
zD|zRFp;R{Kh}jt<FccXzHG4o@OF(YC09=L66*U*YtO`%@xC_PKH-q;zYp$xIz^RoO
zmj2e-mbC=A3@in?PjMCr4k0A-yzDCh{Fx{tmF0Vy)ybKo0a&*()HVJw|JSH8@#^q0
zQ{M|6^=zX$$u>j?9wO4Gnb06h!FMCIBhl>DjztNTOu3Vb?O7;aE^jFAIB8jy&xuC7
zKzgX!K1QzJSukf4h2WP!mL`5VS4!`#F#JqVl}FacS^z^Kek0NERD5s|_FD1<vr-t^
zRtZvBwt%EKn$VZ3s)@w8vHgW$!H@20+AiaTij^|Qx1gev^uU1SceTS6akuj4ZDKzq
z(p09Ufb)W`Rdi}82)Xj$^@?kPZerE&$o!^IgGXQHcG8x${#I&3^1y;m8C$imM>lCf
zx#~}^4iJYZ5HAN`OKtx=V$U3Yd~K8P@OOQ<`EvJvR6xQTP&b_rEbxX9Ofz^f&TnHS
z(_rJiHu<%OY3LB*J>FNKHq78C!0ot@9Fq-|10LD7DB~^VvP+h)gMg?GMPxjG0^1q4
z4I#?a?LGF?|JI5yr?Q|p@x|1$Plf6c=n;8{SC74AWQ%IL7L~T9m3bF{#-s<Vek=m{
zDa+$`;qw%EFPK?la;}9v0}EFr(<<X8SZ%IUGMg@jp2B2?Wb10%g0sm>{d>y%dfr4F
zM`)8wIAtT(iEL(81^#KRdG)LjUM3I`-fEWQ&MIGp91))p$}1WSX~prWcQra(g~V5L
zQ6B={{Y$t+>l8%O=WOjwg#?#krvj2a@z{RX52(|`iIT_llC-9=*gGSpl0nH86kc^5
z`MDjR09Ybe-@yB_grCtBRRRc8u@Dbm6heyPz<kDcMsns7h6p1H#^Qu%C&f^sd=YnG
zY+(np3hLD@T6Yu(4#}Jcfgu}M?&_;aWkOXs2ZJWS1Zm}u>xLc`{w!Xds*SY}QRdX&
z?z~1rGoAVgbNU{G#B@eHTrgiTz?5P9c&1$c9g3>5SI`aPvUNXX>%6uX#<H&5$kL-G
zZ5I>rbH;4~dUeg@3YUSZBY1P@iNtTH^~0FUJ!)dOa@|Xo7HSmuy&j}o6v70~EPf%z
zO&~FP+mBbZ-&1C|BC5NE@h!-1Sj^S85Q~UalT8)CnF7a`0pO}|cD=IDDT;u5qmc|v
ziP6!2gw$CCxKlNE@u*|3AG3XH&KxVmqu!WWMP3Ck2$+5dNhML>c*NSJkvbkvjsK<J
zhbLBTh%KcH<k+-?oBz&kAUNRL{<bJFBjsss`3;0(!EENJEH4ptk@WJVP*Ccee%qzN
zQm+(eD`sIHV_W)=mXVZZV`?D)lvjBKY6gM{mwbEPU`qp!1Gf!*(%WSB|6L}qQftmy
zvVkfE=F3eF?($~89f>a>I(20!kuQ$cs7ZYjpPKZoAebyFOGr+~{;Du_LGdp25u`96
zsg~Cj1f7|qosFQ)b!-h@7=6bOQ;O#Z;xB{QL^J0?cVG!rO9#E}f<%d81trO!W~M&|
zrJe^Sf@)<k73gFH5D<qjd0}D}I*nvzj?>7>wj2hASnN$drh}&9)9)G_jss1S(g5}V
z4FTu~8qJU^_~^e8@d{`1O5gw4C>pU5cw9gT@ao*PsHZDVaI-Fbl>$}}ygC=F0P0do
z8q=Z78ox*cl@N<5TJO)CiFU90&(M1g_~0f!#i|TNpt}|+D##PXuTxNystrN5s0xB-
zl4dYG`KOnOK}6s_Z-=hj7!Dle;_9oIJk-<3x`;K*-JW`Bq07bu-yM@9-UWjD{vD|W
z!K+#=M^0DE`WRdFKcc+c8ar5GH7sSEO$=}rtQs(~qV_E{;d#HcQeP8;kp`%=V)XL6
zM!2KF)Alvj>UQc^^?sRv!D?9Y*9iS)$E0IdLvR!J4Dm&_474>`q9%CM<dR9T8>I(8
z^@RE?zq52cQ3>m(Rqfh*l1sn%sj1kVwV|#>OC<dYHUC4xM34g0j+mCYI7v<v;lXJk
zbtt9ox5%Ds^OzY{O<SzBBzc9+#~2H#VkHfg0y!YLtBTw%aDtzSr2@L{&mgq=Fz(mh
z@33d!McD#_>ZkzvCWVe;p9Lo?!(kLHy%{CN3gtZmTQ+;SQQZ$NO6?oqC6<oj_&=K0
zDr`-EOeo@YBcQx75T!%e?WXVpq+fy?#!W9+4Q&sjAJj187o;>m)diynz*Syo?)Og^
zjeolb&;ldrz;Ja;Oc)6_mk*5Ofw%?U4GLi{>r0;oWdjhBj~=Lu`ug$Z;%V^to19pI
zUe6#o*t=l5Zc0}n>CdIPJt72NrWw_ha)|nNush!~AkmS6Uoa4Q{AHWwv(1OOeZi}_
z#RbsV6Zu_`ZOp7&D@~E(*Fi}tFUD21;3Yf1_yi>uZ<}KCvkT%S`+|^Rn#PKS6dfOR
zyj`SC`vwE)6LE@U(D{WpUk86$l7djFEpthqBxRgrjV^cAI;dOBLoTQ+r*C)Qxj@px
zRCrWH5c2J|!$3@lFE^1G{Lw7JV9V0DJ{Pq23P9cp9u_No+*Y}(5A)+=NXnFQU}DBi
z=py!ny>4vsyrMe@tHF1@4iJa_+iiF<<C8Dl&`@<Tbz0I{SK+Z31ud!C$;HK2ndI=4
zJvY0F1^W;%MB(5?!ggsEeay3|4R3%2f?1IE<tIadRlfs`nPx74&hei6yRlPn0#@*t
z?*&1C$UX?V(E14UL^KRZK-uev9h3!LXt7@3K+89L@xI=u!+ZOxRQZE_il<q>b$4Gt
z#phPzhKlH~ruh>6pjqH)2^#v&9=W$Sa`akS0SfMq>|oYnafEN3J;lAdvee!GmxCAd
z$>5I6DOXgrk9`fc*iWmAW1|OId7_Mybvxfl9a64lH=6@)2f8I70(py!Ta%elWsW<+
z-h$9HC=BkKvFOPPDGVYqeOvj`*3M~Y9k5JpdjwPF=sQI17}kT;;rzdJCM@j{6~WfS
zMxqbS3+Ch_j!a8l1Hf;Yt^IokadmC1@(IX23hF#uRiIa5{6ZJUR9EqftMM?#LkGaV
z=s}skQ!z|<op>B#)$_z`wU<9K9{i3#%14+-3`7`4nq%FR-q`P%SM_RBt~kfriqUtA
z^1Si6uks+3wpEZnp6@LJDt?lwj~l^aq6eG*$Bcm=czHEqA_6&0cH<X%d=@=Uc7xc$
z^!cmP)Y5#$R=cDTLIdyJ1*m7+R!M&1EKV5xPY+sSE$eSf;kWy{KlOe>4AZwcnR%%B
zU3_*kX<S(E@J?!rWPvdvnxs?ES$+hd#*i*$>-(+D5I_!KV%7hQ$4m_kEe6QsC&zER
z4RUmqRk1s?YJMO|pJWCtCV>jETe=fBD}qKEH&sMOQ+BD%RKDH^uhKZ)1aHyQAw2*U
znqByoqE7Ez1|aINrL;kWv!Q~x4tQBBi4}STxuxbi*$(RMn7pnx-yU>drAacY{r}FY
ztS^zW1~Ha?k|6SPGGC#0S<5vxRw;N19YD#XU;pi=7~Amf0uWY#A>b^CKjwre)sY|6
zBR$@rCJ~5qSjMOT;wM=n)j>I`>`%`m-U;2|f)9&VR$ZCx8`_4?i_2B*)SUf;w<VgD
zn;xnZ{2Cm7yC#>WyH7*fUU{psWPgpL>qp&VMo(K%;w`?}Q?DMWPU6;3zqBi{J*h$>
zzYmCSEU~Hb5pdU5fYF_SpEL}o=&f?~4{i#9(FpdtakdN&{h`L5*PevT5(F3Rf|pr~
z1HK*j!<3SavO<W#umh~AVfdI06l9xIneW|}V&8Y%`vBrF=n&YmK;6p)A^Eapcxbxz
zRjG@@w>H)<kSLm}6vRR|^G@Q-@fh8gmntm5EP8POz}H;ww=#xs>de)!q>(_-I@IVc
z?rkaY1Fg~>_og=|oB_}bIM?$lEYp38Mz5_@v*ea02V%M$PcMRTl3ZY+fZ-Wim%Qd2
z8@w&pOn~!go&e~*0G%8vAANl|z>e7^GrH@|@0EW*#VOcD2C`?LQ5jbSs%Zb*YvD6`
z9c2`7TE{GP2kL6dg%i-w2!N@DFQD}C5nXXDDuVYFs7`(|$#9f6z{S||PpE)-2`eZ$
zD1S(>ed=y`J`HPYsQUpb-pl)mQX7_4ul>HPmP|uCu^>-F_Z428yJ;Shfbccz?0p@K
zV?~44l%{8+qro^#KUf_WX)}_3%*0qfYzAr&1{=w$F}6*vEQ%?<K2*g|c%$i(#$Ns1
z4n4TDE&Z6}ku4~2LT&D(PwAl1hi|KtB-NtKQuA}G8U}TX$MT@tWy9%|BQypGp^mJ^
zr1nE?<LgSpU4^wSgpck9`8Ur(F+PH}HMZ+$!jAN*>N=FoG(ugUNK#T@@joQw7K7fz
zgDBco@^Sf&AH8i}w7=Wd&rCt%c=<UJFf{eaUJbKSzb|aGO`b`5y9XfLM$@)xfv$fB
z5h>xL=5}gV6r~I(hBmizf>InS%2%{r=aK2o)fQ!etl9)_*wSeIPn?E|3Q&p#@b#J+
zYR+Yb*Wa4mn>)Z;%@PJrB}yx0Lb#n>6ytAk>g-<x0*4yH3@^K`k`d-NcYxs)x+ds-
z(*lJxUCK*E?LY8uoAE9T!|7?ZvcR^x5GjO8XSK{xUv!^*xpwvVQ^<2=Fi}tdTC{lF
z{ntNl=zlM92iw1C{<R<oGAL*c5<H!k3=#;nJ4!_fnvg8e<2kCOaml>JNxdzfTJ>Nh
zgWwh5dRt(A1}u>bmf(we|4Z}lu!*10XkA$zZ;k+zMmU-Cf;%6yfJ6=cpo=Zhq7RFO
zh~XvB%1hDY+ker06<Sio!4!?WdR!|x2&$ivx1wvwkR#Qnet&<d{QZ&rV8)j~ycRRc
z2D$XT7Cjz+{7T13IvvGrCF?mbjK&h<_9@Ygw@;t0m)<oukiMa=jBB*+u`_bMbbz00
z_e}|C3;5@unjRqDb*~oQ-c#>h4f8zT=yrQq7y1&_{<r6y{h;Hf0gLD7F*9dzN>#JS
zCUG#gGZ^=U`Ow+$F>h2#0=`Xe!f;3e$h6RuAA*r^9bW`Lfk43q(Ro2;H6Npgn@Gac
zMN}}ZnS;M3GZSiQlJ-iy_{Ec<FU+k<b{Tpgn1W$x17>axR~KxX*w_t}moFOhZlWtn
zM(zG%%97m+`vybRG)#q$%S0KAcT{N=?O1BM=CzAalhRO1CTaQ|Lq_(sa@DfrwRpq*
zOqR8jgxA5xD_{Z-yok<{4+a_aNTleSHvZIJ2#QCF5UdiDb9XysjqV`!Qc>BGBNwo%
zbbrfK0e*)qh}>y=N)mGQagD!iB8^bZJ$G)}OVeIZnFdG`0G6rAOBcf`qcw;IyR1jL
zF|$4OYluCmnJaMlDcQQB15PkyiJ62^Fp2mowACkum>6(VlOD5^!$6h$ru;Ofo(+-t
z;vR4q<<}K)rd<v#t^Dui$mU=^qx3eb>t?De2dFbb9xi(`$?C`do_{00*@0EU$k;R>
zMZh@S#ToQ5cO|h*$sA3h0q>A9C;gjyL9J2wYclCP4AYB{3v=;!_khZ*R;gp`be@qB
zNIYXVk|r%hAz8)W9nzsp$3u3z)uL4YPhnpk4R!neZ>Q`k*`qwPP`0euDn<4!i7d&;
zzKnetw22T&Otut4h%AwvY}p=5Bzu;zk9Ec}%=a44^ZEWh|NPFk)9L7(@t%9``?{~?
zb-iBKz@U{dTAmFtw<!Fs$Amj3S+cloZ2EHI5Nn;em2><bz9P@u1S>IsY4*Xrko~C!
zmj$;yLu!87#bd~*v6O=;E60m#EwvNKP>1*B9T>z|Vm(Q$_bDVz0dxE9kTb$N+~*fQ
zG#pXJRZf0Z#D2|tf?Co{6=m=i2AwG6p4d~j?Nz)iS;Mk!!$8ia=(+>3<hi;%TeTTE
z7x;{KPz8kCWmNlq(wNs~E;-=1uV-CZ(hCdW5Im#D*rgClqbqe1?U3$0yN?R%xx^C5
z!f=@tt51TQ`@^ogq9iJcVmO|Ca0VVpQKjPvLng~<A6ZE3AJV)!dOlJ-?=N80xF34N
z6!lG)zgQxG?Xbgp%Q!MEkY`lkcAR$0;U`P<N5_|}K=A#7zOJ2TeMf}H`6GmeP5@<2
zds)MUIP&!Eud+2fD$L--)W@!=e3{^uf`SCJ@7yqf>E`uj7F(JV29ChbgQhERo*q=q
zhCKw+jnTkuzKlIZf47-eM^-*M#kG0@j!>c*GK3fc*R%cy07YM&BDu6?fU^M`O&5pW
z7j>eTmlCOKLPBd`4$=j|INV(ZM^W*}D9Xqh#UujBkxYlM0riCLW$fBh>SIjkmq=4@
zdvB;6PlHc;b+LrwnS&kRw<`SC^K6d-Rq@dIT=~DfLoThQ>eHF{W&@L6NHjOST!lCs
z?zevvo?kG(1zq&oMz&aSmAGyrb@?LN5UcDqj5=;`MCq~Ouw|oM7<z{{`gv>OKeG=4
z-yOSyKrky{B9dMx9bNM5;<ZPZP*_qItm5+ByF{}Q9Y0^CsSN`ad!H#Yw<Ge6dsva(
z-r`R9lEcIK3#|6$4zNj{9x|a;uT{jBe9rFK+o!1t{nVDPXdzM2sdT7sD_{oXF$Q%(
zb(xgW700*J@w=)M=G>H*1HfkCAZ$F?m*1>OlHY`^gjA5*eE+qlY4%sncbC&e?x-;F
z>{)k7vi=l65v8?gBb4`j{D<K-$|V3ccC0$6xO2(xaEwi^XW`G|0E<LLoeF@9a=Pfq
z=8AtGtl>c<aB~HqDSyDJ;;0RJ^l9ODB(&22BTX5mfYG6FAwxMJ9<wVUa7Rc4TN1k^
zmup%bGA<}4!}}ka-enY>vU{boA{76NbhjmFNQPnLq1#!;LGy_9e!k&6i2!9lFHHf1
zZqg>5xi>i^>B*-;mb)r4kS+=#$d#9MToc*#E`R<DPHMA7Jz0O@gGn$xdegC3B>&m0
zdsry-+|bT5z|LAZAhn=KZU^#O&U`~&W)KaD$J(_+DxU6q{jXg2%0yyVsAJV&0_95u
zOfp&<C-k|#BbscM!VwtoYE1#slq}IvqwI}VVplcytYJqC9l0XZn}AFjqLoW)UXXRH
zaTdq<z(5foGLrE<(AsEbuwW)|-JvEx+XEQ4lEs=;jWx_#QpG=~D<j$8l=v#FK0@d7
zE1&CxB7@gBDCB53emcP^yJ@KUQ%<Q3Q<v>f&CW~GNiyoR8yl&dFX9eScjB2h`r6&Y
zP~g?zMCR{Z@YnDDNu(4Ub`o+$f1-zc*yW;s3fY)Ut6wb{N`H+k2oSEThQlS|wRr|5
z_7t&MOl1X@4bzQXJaLjG5$axZpEap7;&#3lzOgfKbWnU^RgPZabv(Rs4^DN>0820(
zu%+5-IY&T8ppNq@3K+g{xFjuz`I}!k23EBk5ahpwct}Eu>kc~SYvKU2`2Kev+!A#s
z3bTQO+epgi>P>LcAz<BiLi93zV)dA^^KF=NzU#bNd&Ut>V)woG(M6fIz{&AWw-(il
z)b*R%^;HHaDk^Z_cM)LCQ3bESAK&`9(r9st?6*({x!xy|M|@o~nvzKU^ZuO&y_<$`
zvxcg0wWOtUy%tK#fw$Aue)&&t@VHC59fnItTe%7A20lL|@P)PEa5@#mZlVEb2IL+L
z40+bz=mN?<X9fL<B_pwMH@8XDLxk_?UNVPDjZZo=W(<zX07m`&TRaSIe@jI&DZ_m}
zVIEzh$ZfAL)4Q*ww4~KgwB{7JPjtvjKO`VaAiKcu3g!WO&`$KAn4jkJ_o<#gjB0}Z
zm94gMB_$WcdCsyhNCtH&%n$dqb$zv1g-~xVc8j51BtZj;_~-qq0Ajhvy=<Zo@UGet
zhSZ6bHQn{AP^w%^^fg^l#NxKxtDXLGuC|dimIm_rj-!%+H|`$`jLwh(j-Pv6wDq9b
zB@%G>e7nG>n}(wPY|)!GaO`m%6g=Kbl^TC}fAL#(-3PbM1qrT%=B5`pB!|;T!OSGL
z)^KQZ{d<+*E)7-&P<Af&Iie7*%B9+}kD~2`H-IgyE?jx|>rW0A-k5%oN#kgKyC^Kq
zBQt+TgaxserA&e<o<~{(<)&sO3Nmllfy=JV`X`Uk-S|~wU*S)9u5S8}Zw}tt`3w)Y
zE<eYb!fOFW=~A!u@<w=pT;FW+&61qPux!XD^A<;|narbayQbXZyes>=d9uZ#nfubg
z6UAW*8-P{_z`tHdz6-ktnQFmZdivkOyo?AZzbTjl1VxT`Za@oHAzA*E9R$UDbBSdk
zaA}uT{Lw~%32>h3DZl`~(Iv-Leee3Bm^j1JBzs=v7t7oUu}i~~5NE+-d11}3Y3?yR
zO3xlo?~ghXCc@7V@g=BFf~0hjJ#EnPn&XW=&;bB{9!B@Wn@3S!%?p}rnf_uA=K~86
zOw#E2T4^|{9(Il+qE~#`88#T2SiNAE8PVs&MLsk{W)#itYB5}!L?F8N$iQ9s0k1dL
z53<bMdHC#@FC|_)P~3QZ%vojuR&o|3h(HL~gHY6e4w}rbmquyy5@75?v#wm~wU<>f
zyk@DGpSHwX4N11fknX&as&Vra(o&3dbGkAta}lVyTVQcH*TCY=_6$<9XYZLRe&lt(
zSd6h$d;j%CyrzrYGQD!TtM12f>u^vK3|Bj!$e%*6F*FgFGB29)w`OpDoD6YJsTEFW
z-{yVwyr1)M5yLl1awzGk_L*$^<(W+D)?OSu%Lz+sS}8EjySv+6RYs`1#R7T25{O=4
z^^z_>AVL`o0=-#C$5Q=#QCyeFDbn<%9Ld9VRhAZ1#xfm`E|Z*^dx0k6YVCGMd|0tV
z4Y`><UnYNs86N|X$+kFPv7HPuovQBG{@U5HYxYUL$M12c+U{k+B&jo}y{^-bBmg_>
z^jKxQyWv8m-r|C}JV@wen+1xAk)Xo5znG+33|UniBDqVTcuaqW4p!K+v~U+V#J5Jf
z7VbI1p7ME^j+yTO_qXlPlGRTe(88H(jHfbAc$7ptjwsiJT0Mb_am+dOJ5D=zI^RoI
z!u_`f#Aj5P5M)>9<5oTdVD2)Zy~@CXO484}(Auz1JU^!VJ$HP(?d^#da=6Xf(`?+9
z6~KED067Iv)ltVnAYItw(U>WXR7gH2*?l@GdgJ$crN&2plEGhJ=r72>P(RZjRnl=a
zmOc8){28#ffh)C%=F&4hutFHj`9`C=U<<NF$OpF}9|Xp*_|B@D;MB0`27$TNwht8s
zT@bH_!_CSp&Z$}(<&AK<lTxL84NHEfGCl_!bFK1J?wTRJn?vHaS8qa*(PN{oy-I5j
zAvEMd?hm%g??~LV8S|Z2icSnZfyi}aVU6wm9x(RaXHY(?JLn|H4`dlL%NOUjbA$^Q
z^H2IZ`^nrCCA_{gzL@^4K_}JSKmH7BZ2DPok;g`X!oX}!<QYlPz~fHJeoE66LoHlU
z37%8CK0Q(9Oi)Cq3h{mW8>`24cklZL;D&g*21j)|q8ih0*7RXxu4mA|O?q4emM#WS
zt1ZKSsCfVK)!5r`U2qD5fX%p9IK5p?I%q9F*K#bnY?oK3kz09&3hI`m!Gn|aZjy#}
zsfQb90~@D`?<%Ew#0sGGn!<6*M9yO%SkTH%;7v*s=5YD<ab_|EnIX?phD>JA-LZLu
z?h#)W1Y4H33<BuKkZBNaaUItiQmF4yA)+wuAA0D{Rcjm9qD(_HBz4a4INO<F4E~Io
z9iFCxk#w9@JGbuNN^56-%SW#&B#SqS)Gh6ph`X$>Ir+{ANPqTYz$C+URFBfTFMEsB
zRREXMQWCe%)Z`OtmDm=Rroqp0e`{l0n1pq!1L*R2%zwlF%e)ek;`&v9Qjip(EJz&!
z3vb_8bJpeB$*7aTxtSu+wzx0rpdhV$Q*5N8TwMChyx!GGgwQE(A)uOnN+XgFMIPk_
zmDGi?4R*6J-{dtzop)-QM%xV(s)!Uf>M%Y(R)w#GaAQquh7aB!a%a{w`^d?&(C_hf
zzSjoy?8teS3`(`PLSg|2#(91y@lR=$VRFLvG}WgdXg61xUu*<d9%&`^W3r{D1?$!<
zC28}U74x@*3(ca%uH0wB!LZg_cdou@*#vbbLUuul4lZVH^y+(`3!sD;a*BYKkO<3Z
zjtI7h64vl2P+`5sSYOW&dCd{sFtDZRRuTCvmgzoWdMZ(ocz&RIThd~`u~x#aJ}kUc
zYfV9f#LGg;N$2e{{~6^*7f;-U<hS-3+q$MHPw*^esC;+OY0>-#E~=eFd5a2EE8%5F
zZn7}QF#5R&joz%Xqlb<#So>+%8~Eu#Z}lFJ9sBpmx*6OM-_fssSMPh>73NVjYl#Kc
z%R@y?)>G%idD5YQF8w(ulC+Ut1d-at91Y&EWc9Nn9luW=L>YIF)o*?nYXVu&Cof}2
zzd`WDT;x1;O7;OxE;7xdYFt1g7O=_2mq9XycGW5Qu1cM_&h8>)dm7mpD3T%ls@FR%
zq5^d_{FVQCO?q@NI7&tAmf@mNv$k9+baAChwf-8AkJrnHhsp`+9TJx<Nib#P+WDdv
zp7&2GRt^?#<ewyi)XF|dEUYX#@I8lfYTkAIjELN~ha7ul7-PeS88M+*dP$*7F-GG=
zTj17}zk%BqUDfBO4;+xgFP?u^!<^9m<zU9rDwHLRcf+N&A)9{r7{+6SQ>M^mW}jry
zWd*?`;Y|IL9AP$j710bx&il^VPOAVRcA$C_`OT-Q3o=5-2F^6E|0t!7IWJ5U+FZ2V
z)yI-N%r~DrTYQ-@I5hVPhAugX&k0m~SI>@ImHn+FJD?-hU!u#FptU53{#DVfD8eFm
z{GrfsmlexDj=h_G>P<d>S0fom71k{k#&?g!=t|p&#)V6Hu|$`!MU;s<52P{Ptq**M
zIX{SRVZPQRdA#;d9!)Jux)i6NuVJjo0A#%p>SSh5igwU}Vn*84!h(+fnom~f?I@tC
zIcjc=XdySDXrT<FAlf2s%3;2MI+q`GOr2>ct?sVN9amO7pg{Y{l)eHi+{A$OmZ8zo
z2yI7H=War9{WBAk#^SbViC0IuR|9JaxPKKD#$PZ9@$xNBQxVQ_jlo@FS8%q697#(h
z)G2#URK*Jhx%3RU3xc4QE!w!O{j+I}u>{zIMxSnz+)as^luk#!Gd;s<Up~L6QB2uy
zakbdEqa+XopS6UIL57v?38aMg*}qc=P=xZc)7@tmv`Qy9VuKFGS=i~8MooV4(Y?}W
z5vSh_wkEek+1<OSDZ~qY=Gw(1p#<&N_N-QfVF)EdV_j=46V(x_22boAZL#BLI2=xM
zxWL_<NxPOo^^+ioI@BMt*L9H89uf4_nxSSSWNf^QKy20w-AhJlOfX8CE#Jcq-J)4C
zj|Nes&`-_xcu|~FKon#&kZg!8KDj^wB+mQoeUmm?{sDPN+^wYyS3C`*Z}6_m%i{Op
z7)!M>bG**S{@M-{eNYl*RsIw#ou8%Q(Iiat4JwQgcwHuBf*x2t-?wX7z_a$+SybYt
zbP~i@4Dlc{Kts54sMPDPAuW{I<OSuXYF4^u;`9K?Yz5zGCk`8I`eSicXJ?1Q^0{uC
z0Go*^p*^NksLj^kLGcmbCPMq{dw_IbF_ISw^bqmMm}7FAtv+mysYW?&8KH@s0IQbh
zBx-|Tj_iS?#^*f;nb^7QgMvJ?(bojo%vNZxRfte7Uh{TBxonD4H#nK@$<`MpxIJAz
zVgevNKS+h2KYdU2SpQPG)FlB)u}0gz2gT<A)gRKD9H#=84G{_cMSE5ey)Gv4=;saN
z_6WAnp4_QznPh*Y_8ITeP2^^{JfrMLy?z8)r&+SmwlVig6XUUS32Qg)Q9-D^n4s%R
zKXXe+RXT3-N0Q)>(?QV1IKi=EYWSe-wyiV0`!i#+rL|3Bpe=^9=N;Y^R)r5*GvTM|
z@^iP{o4O!4@l^0ig0>&N(?5Tf6XKt2%Nv>0*5KNz2snvkVi4Vp4bjE)v-MUT0ldRL
zm3XCKEkR2m|Jn;Ep>;s_J|6O2C_XZJ0pMwas0<As!(~!-rC3zxZAgApBw7aFT%%Q|
ze?r2L4DD)CW^oZ?HP&cOXiB`-=2ba(8T7@K8!Al*cyI_yzjxVa_a<D}pHQN*ODL<R
z_%TfHpD>SR28n!5d6FU0M)&%%K<saJx+i;%?;1Pf=%~)f@@R`1uAi`<mz_7d6h4+u
zlIsbLwvY!GSVR%>rp9$4?&jinF6S2fX#F~%Sl>Jte0i=$<?Id3Vb82nTNj12QpSmR
ziw7Bx(h0N+4>!IGRANt@&qzU9{E5|70e#^wq7tTx8DGKEWxM;bZA<uqDQ?M^_oxQU
z7k<^A8GgMbpiMK`=sxX`=X+&8PWK(#&_Dxr7a_P!Y|g^J{MCtjKxcr$ijwVZVS=o0
zW;t?autEeBR=DU2V8;i(LWjp`Y{hEeXMuWtDQDYz7v}`-XY^9Il6v7|l=qi?Woti$
zs%4Ay%e`3rcQIPjAIi;XKpw01wn(MC)<b;YO6J)dP0;3R{N)q3I4sk~ExXebBck_O
z>qgs5FO`ToKSw=9Cl!TiAsOsC*5_=R$m|z;Acnj`FYkvFpAXV)u{8mi+Rv3(8GFx$
ziYphJiVmXKeu6J+>97!;EYYYd`=K^dc>`5*110@%3FA0z_qZ8VbM(rv2@|TdzEh+{
zjcbUmz16=jn~2{u-%{%~wsas=9H0b+PbeF<&DfB}1gNatDudqVW8OY{gn$*#4mmC}
z`2}*tWnyKL$`%2%Li#YIj-vhaf1duoZ?$2n{U&xROFvk7>z_w+tySFE)%v;g{oB9z
z&{fnsLL+6gA4hp}K#<&OISi%r=P2*(c#n|gPNXNK-*SHeWRbTpz?OB*_~%`Q>NOS;
zsZsd^zWPv!#9cTdhZkE7nrIoT+u@z2zfm=X(m}DHXtpEAi}L{=eht%g;djl9TmE}A
zz>$fdYsq`I6YVGHKBZUw{QFn;U~4x`)P7(T!Rep>%zok$J+r9&;Q+NzvG5}GQ;pOg
zWYiowuOw#_AX5^!t#99?Nz(O0<>{gY^soPImk8BPaf(V-4tA8i9nw@AmWNsGk^!T8
zK9ADGqhF(W5eVo&w<F4WI}UyfTj0Cx5I`n+jNWexD7)l83@rz2^?3JQ^^tQ6uh7(o
z$l>>ZarN%9t_};S;uFw=7`~0KO`t|dk9F`#6`OQ8#iLVt)VqbFtP6=@TiN>UYXYf@
zw<SSF)^R&=C~c2(N?mHfE{^hw$vt8R*Ve`Wd8%U(x>|p8<E~qwW7N?1zdIh)-K$fp
zbFZWASdtC?z*X8*_Z0N!RD=OJnUmZ3_!>UjkZuJ`G^Gx$($szx*W}KtI=QZjW1-Y_
zPZ8eotHu*%T@`0SQ|fN+)4TT{9KB<_SrZFI8;pjdkH~uF@?^aIQ83Lx8ghkW;`+LB
z%ME`edmc*SseunoQV6-4#Qik-^_e;f>|&29Zt&ZUeJ6>2q-xMVi`DC<UagHlSzKW9
zP8Uz&p!i7fDFx}6f;=~&G+~ft!*v2Pf^F?KGFdX12pd~GMS(3qXwCdd9$rcg=n5Fs
zK4_fx<eJzqw|I${UJ8<f>ENoa0ry}&9J-TijCy3MT83+Si0R!*@FnsNC!SUB^<rz7
zf+2_T?&0qiHgM!B<vI1IV!`4AN?NWC`Lp!Kew9}UhO4Y7`QLU?203b;Rvd_lLjl#)
zi3@gOGggS=khqZXKK^cuSE)I<6Ez>@09j=+k`o)_f3ROgxlIwXF{Yd0p31l$92jha
z2$m|=^&RH=gJ(-*^dwha{YEivgAkSK+R&KdSRz_~csNaT9ZVXcw=n7Zw%{VCcLpUL
zx}QqFK(HIgPWwuulz=Q)-Prwt-`IVFR%7-~fu%*uja_Z^Qe@0Wmr~S{9l$V>kG__Q
z%0MXwDiT=-|M=UW$XeF;F!VhJ7)ZX~gS~TpE?5?$BQ!3$FNwh6{-kUX0yIz>AL2rZ
zQ^^WP=4@3GvgL!}&}a$4zs_<k5r>K7voYA+GS2O1pL-&&!uD`ZS1cU-XG!Q3GJ@z1
zMuB>c%;m~2uV#<?<*c%KbNdXgW*_|8JF>`qi7s1msjQO4Vmr!u%Ag9X{90k1%3QaY
zg{N|(5gY3`>KHY!h{c?qV3RbvSyPFVn{LUw+)zwDaVU>GvCX_rt^I*u;Z2dEcKIdq
zE8XMVGdmfo3~R(feW_`p3}(b^ENqBpRdHdHv?gtufPx!4Xw_?|F$$bt0e$twdYBbS
zg;F`9{2BHOMws|ZvL1H1f}(TS_-G2&EG#Jry)AccbZ{r&f~?|^D@kgV3kN$LPG8Vb
zcncYFOdPhGNaa@HbLXBCz{9R7NXcYmaVzmuz=)jB3C2|?GQ_}rg!9uupn_^j)nWgF
z!T$7x0DI%4Q|PO-9$!h5dPYf5b~?_uL(Gqn^&7j!djOZSxJ|Fy7^_?ic6RwYvf98%
z&U(5<n{N|yIqPIOK5M9&l8yo|kEvO5z5c-lp-kCDBSh{>{*{cGT$z@Mc8qEaoBXMg
zd;)<}4*3{*a!BF!GPV`(_jwT`S-dk%t3cakG60adPZF9}wI)8F(wDFN_ouBKO@z1f
zs!UhK3+|brD$F)B)|qZQ2f5OYkdBonR*S4=eXXH=PUaZ;a$-NVm#kZO%Qc%Aru0ne
ze$?G)<~4J>IP9yr5U)Dn7tJ$2pThO^2*K=<c@ZQX`@79(eG6Jb+d{}Mge*n~<!}=2
z+Q|Jg4h1HXkN!J9@VXwfCP;rIX8+$v^M403JdgbUeBnv#dC6k<A`!;5Eq%%1<?4gm
zJ#sB4d67OnIJDZZvINXvqZz?3y|?+iRo2PnMy%y_>oTUqrQNH*Mgn4Ld;XLf0VI^)
zmCvoem|zcfCVvB8IAGzqr1yDTe{<Kz_W8Uag8jTdaY(`()E5tAjg%s``8`)b4tG@=
z8ZxKKdpc$*Pf`fKHLXOtFuT3^8gRj_1g-7f<!tLJP~Il@74dp4Bb2kwwywK#NovB#
zHNf}vAaG*N#s9d;dMdj~F9UbnLHcpsY3!D1oy)|Y8rIsi9`DJyviA;;wPf1H*Q-X8
zs4mj+FHfJyAT3nVnJ9jID%4hGL}7Lr;Z3#k_6LzBRpd8{PHZqh`Hl=asDSy3dyMZJ
zvi4A-HR2>WmQtFMIdXLeg4K<yGasHa1I-;i@5B!IutZnIYxF*!Y!ZPZ+@va~_Kc;h
zZR_Cki|6EB3%Pni2VH5S71gzTpzd6uJPqSeeBvR_<*>tAl;EuXq^Y*(`J!&tOqkK-
zU2sBnZ6ywE)D4Hcs9shGNnr90a&0bo{4-*VIgmH;R?P%~$?b<~7d+sc@ZkeY3}Sy9
z&F!)YjoW6v43v4(P($XHi9g`PBwuLJPC-6xU?Rzkzy5FsE>f(7{?1tg0pMyl^c62H
zzh|R(Bab<X4K^v^{UKRc^D7~=t*)g#ko3wP7*6%iD`Sua%-c3SS%2y`bSWzYaPd=P
z_LvcAjQRWILD*AHQCLR2jje<ANmBS`jg`*?4)@_tr0>sx)&npF{*QtC|Ce?C`?wV%
a?a?Z&GEYs*Gw_8&WEyHZ*9)#%J^CN1_7nmD

diff --git a/entrega/output_62_1.png b/entrega/output_62_1.png
index 9dc53f19b8e8adb9afd1eb6218289e834fe8586a..112aed9a4925db90072ec5956fb44d3540b26eda 100644
GIT binary patch
literal 32100
zcma&O2UL?$7cEFfM7s1URg@w`N~kKm2m&ffml8xep?6e}jsXM$p(stHiS&*lO+t_^
zy%Uh$JIsy$d;gnxv*xXdWJOK<a?3gU?7h$ZjCiD@MsbzpDjpslg@(GaJ{}(7Ydk!B
zy(=W(Z*IuZb%7VCyUH_n1811K*9$iryoWE`T^yX<9qcT*JZ;?IcFs-^5r~Mm5Z6n0
zcNe&fsHo$AKOo}lW-BThNka}ULgu3W9FB)aPKSHq<E5gQ@bLWmG?ec@_C~Fr`}n7O
zq+ebtn%QdT90cgrIlGHi*c5PmBl{IRM{xCOEbFcLXte)_UVqpl=JPXmWg9l6-eYBU
z8e(>9w(ELT4+PymKB{xJOU><R+JtUSb7FJy?E3i~<8OEQOgUG>SD_;(=#L9Sho^NV
zhvO)C_`iqx+LjOdJ>`E7{v?*y-2Wb8sucHWa1R7ic39SbJ{Ya1^yuHmc-ueUxcTp6
zv{r-Ei5hL_CR^C0oN7nv3s^C1DK0P&gI17a=-_bAcnV2_40o{4$x$Ik4ckxU-e7#v
zkd4v^>~$K%#{$)i9l0+E?(CefENv#pZHaP9h`m_3DrDROR-HDw-TV$yJDv`|6#rpm
z>iWeI1-HS}T4PP7pDif1`NXHgNjrAg%7lzwo_@MaSq=&qL5oCRnC?*hIUsEnIyKun
z*SP#GR<6}k<llnDqS46F$ou2xUhc=a^ZVtI>TCKjiI9&hg0@N&_mMAy7ExOGFamSJ
zCcLwkMY@)-kTQk5Xp~Cy;%0JkHtzD1_zwI#vTGCg<EGaVsf;|ywtn2~t!6xOxg>>j
z6NnJK!tgePcU~z_ZO0o@M+yy6U)Pn!rlR1wcv1w_siXSR+ryNQZprd#6+hM09*0Kc
zF?!9m<=RZpCwcQssq*K28K2`)pEGZvgKY@Or%WJzL+I3=wQ5)rv-}8|yjh=3hu`BK
zv@`7TC5-e_qn$Cjh_?=d9Bo)Wy$d-lKn|shzJQ$OUzi`9SHDjgZG;V5z}}(PQfHfZ
zAjUQ@<816HA2mzGg%M<2G7IZ{e5d1B7gF!_``dKtXnNnF7sXMnXX<FZE@FinGHwlf
z*rzDU@^u3WIsJlcB&r~Uqa6@PdG_<o>JIdjqQ$9~a_@*Gj2?DC)tc^g6I07!!Gquq
zLoO1ywv>_x8@DV+P4tGalJ2Dj;vG3>`6YJH&@f93spEbjue`bvnU8{((ypY}d4~@L
zahfI*F5q7>jkX0`xyjQHPhCTuj^Lj*&`XngpWewoyR$WN5C1p0zwKMSP2QcT4fcDl
z_L$a{91b_{vD^_zU2JVpBPmkk{6lC>czN}#6Ya2dA1y@b&3456o=om)gKf*nla@Cv
z0wF>(r!90a21VsObL!(z$G!kaaAC08r&TKI<BNe{QNl|b7_pM|FQSX&POl_lfAS;q
zs6C>CQ|c`;u2A*fnSqwpdm=7$Tb!^e>ALl}U|m(e=4682Ylw4qGcKdwpMsj00w_#8
zJE4XOKb!LP$<}yx<nJ#u&+GPbWrlY$8^k;YzY@1`u}<<qIS@fLtdzsl<Br*v#tzG3
zC+uSP`LHHw@Di((eMLB?aRp^hc){#_8O%{^aLlx&i>Z|tne)J!Otw&b>Zm0<QpD6U
zU`+(K9&$Gyow9pk&bdys+jT!Fnom(<>+!A-9I6BzbOb*n91bElYJzXjV@)#Q8v^$X
z-J8D;6UH{5Da|!1JMk0{xnSh~q6*zHq3Q5uq62*UchVTykN`|=CKT%n{tC~NFi658
z?Hvj(i-I?{4Bab$Z*=snn-d07G>FzYQhoh{)=!61U}}q%P`gKmH0wj_LHn1eUP9*x
zhOMY<#ntY<_0wc|#pP$y%-%vXUahFz{FZk;4m9sKP=3ePkCm0%qh2j^J?0?|;QWGc
z;|F-sm38Gar{%F!@OcYo&sr98QsT80J9FDftMXNigDbJd4{{8*9)HX3kd<3zQz2B~
zTo0N@t!@fG<d}OFdao_(lfqUFB&3;hue*-7Zkp^<hxc1`XW<soh>2nRU}S)I%Q_@R
z*_Y$piOyA08>YWl)}wO_5r#8y8^)zrcOkFr8%LEkx(oB1rN*vR_d$~tW-7~qpomRp
zK}1H+KBji~W$cB`8)u*6wH7P<5lT2_8ZQ~&i+aU_foA*lzp3cv09a9`xWAo<EWWX$
zwUaZOoGl*~w24Y1G$Ea^gC!r9axA^iU!@Rc-U=i^a8w&*QK+-M@77)LObb*CuFZ#f
zI_`NxNYk_D?w(TQUcJfUu7!@i@6#l+%ot=@LF#t18E?uS28o#P-L(&1#&S|0t7Ooh
z=U(!=^cPDj`{vqG8c81ECdP@M!I>yF3Oy9W!%pyHC-#+{B79JtaPsUq)GBX3`I+Ip
z5V(_<`_Reqx5em-(RUYC)r8HY3ZapxaPNB(ZqL3Tc(Pao^Fa;p{(;u-Su^5pbh%ta
zjVt_=97zS>BYMK0MRi5ZkdtR8`uodCOITEo5KRrKw~#OSFEcJ{*yi1Gt}We`7F)8w
zD`!#2p6c+$Hyft{z9@5ibBXfAm-w}GN2QR?V{rr)qF@iZ52+8Kb5=RVcd19FbM_=$
z@5vA!{QjvLHK-aC3os+5?}>);RRapJk8jmQXCGw{F{F%=_6S+PqzIyzFRBpJD%F>d
z_H3`Dj<P^xJJ56JH5fz-jvyUNJMIn|@AJh!GPY<9wh>iLegehnjA#Yiy1ddL;Y*$n
z-ud=XjGXXLC&C~m@kPOnn{?|z=%P?{-9MLnJ9qZg!bUw6wgj?1bc&u|f|Ox3J-j5m
z5cHL8d#T!g!n{R|7}tH!VtYgU0qd3>w@TJ)^-XNcyZmOAoZxdrr|1GFKA95RrSqp#
z4uD_>FSx0S;v(TCtTp&GF`dHqrD$s@vV+cHGxIH8Atc<@q?4YhtqRvnXwJ(orDY@J
zvbV(%LDE8mW-R;$><DA!3y#l(3REVms6uwwDFZiE{IqgT{@%?kkBgnScU1Vfu;FVH
zItxiDkZm~x$3Teu5}0qXVyhJab%2O+0&!HQvR(`u{!pi$9+)dqb{*dKpQ<mOz8v{~
zF80^|k%9;@0O9{g!OxW75&U*7PtU3}3HziGF=b_I0*BFWxx>(8_=zy_V;&V{%eI2Q
z^A(O)FsTwzJ!w*Y>`KbY{J}`}1DV#xpI8LBX<2oiaC+E({y&h6ymiQHZgG#jy}d_f
zW;(XE`6GJP@#LWot}`;yT_b6X<>nUOc+6>&gUM0&0+>n0ZBbDHKEBZB<**kpvkrvD
zFQ}TSDf{B$B058Ud{vs8dtPT>PjyavHQR}To~GBs(=-0Vhg@!fd~2AsjZJ~AiLzzb
z-|Xn0$YC`JA{A@>M+jC{#j{zeg3{7Mnf98#X*!w+iIYYF9#{S#T~O(1@XrDjZyT0a
zcg6D+Ju7?d9JrhIw)F*`r1KQoR`GQ7#i6jU@Z#({P7coi8ymjOfK5Mq@8ys0YUX2Q
zF*2JiRtKjiBh5Mw9uOdr$ZVP6++?#~KSIf$*Shh6t1gsvaLmIqPuUJ9y{5Mvr!Eev
zcgx}e){d~vm#58G<LMKI+}vCt)4IL4^8qVb=5teio5V9!<4!zcVu+-qr1{m$jm-;6
zNOo0~=VPdfvNC4See<R~9c~Zt$jHbX#;ao3Wj(j{26T5%r!O-^gO0oLip&~QH~q1)
zts8z{!YrJfMMFbF<qrN>S*3b?whEjjH=kKbb5_WnKR?4N+KyK_;x2O7bl6yATpdfn
zDv3u;`L3Y2*rp?vy`y^i>kC3gQ}@2`Sb66uxxmx$X%59<NUxldo?ajGB4C0Mxv~8#
z<9c5J)9mD`t*w>YY9aJLte<X!cEEe(J1R%a$Xj-M6@wbMii|2Flad%V>Q+UDOU-+K
zeYkymP~F_4L?!>zW5l$>CfT%oG1)v&UrgF<;YzZZui!4WS8?hOTSHId;Z%2W(;gq*
z!RB-?y`jnXNc!8-hZAt9%S;Q|xR<Br4kFI~txb1Q*{h*j836~+x%3}9*UXZXG@ZO!
z>doxMDqbGb1d)Py(1<pliQ~z7u34<~=jP<({Qmv>o}nRQz32Me1iY8Mugs}#g+K7P
z+nitv{JG3&QidQTq2rdU|Ir;Vn*6G&Bo}FP8>2az^YW;J#+HEwQI`L2{xTma0054m
z4^l=0A@%m*`+x*{LdIb*(bUm7{M8Fx_hxz6!9fICn7hmtgM#ku@9UYG2K?CZ+iXle
z-E7Wu9Iq-1Jolxgr9B!OX==xPN0sCF(F9h3v}L&1*k`S*!~5bGt1EL*SlaZfH0a!Z
z%6p!IBVbPtM5_NUA*pG9Naiux*86;aWE5-~F)^_~QS;@+sTicnc^V@cxJ~ZVxIa8k
z73~bR+x%iD*<rdV9rwxxb+i5h-;;7#{rmT(kPt8Rl}AsXwue!$)@=PChhCoT`W!DN
zk2d%~x|4)?L_{cq2}vp0ro9$_eemD(o0gsZL(U+Sm6sP57Df`d9cAt^@KA~Z`C<u;
z^v8voLFUQz>9ZxN=MCOshNd1vg3YWnG)U>cH}~_h_r8;IE^J<GY{mv%e5VR@Ih$s+
zwfd14cL$>AqUgf+h|)p4TmY~aQip@D@D0Dd^-{tnViR^p>M0^2{Hq~~$Wa0yDU=tJ
z3kvi6=bv-(<R85jQ|IP!wLWyVb1q;Tu;S0VuK#WML<~Ay=doI|i;=B8UP`N-4P(72
zBEsQTf4j87?T_)Jl7=14Z{NP*)qpp=x7!$fM(U>|7OFtvKYsjpYs0IVH5^TM_fM2)
zQ|I(q&otiGmwntY4619Y(GS1oY^Pg8ON-EAd#;U5!9OKFK0YCKdpGkEHB@Mr`E~76
zl!#?(7=^>1uOYIV4GEEvS0x?(+%qy_SsgBxZJL~@g^z-L-tIjo_RV5-stHl!@Of)!
z<`cRZba|?DQG~~N`lrKtuTSlG>afY{hnR}>U)gbAw$)1SZ-X5J9*HF&XNQNMKKMv&
zemXW%b2#O9Jh>T2s?1_xT<x?NBQ?bZfh6?z_tV90|1B)t0f`@<lG2$fVegHVo!0R5
zJox(Dsp%MoOUkM94X=UGQ4MJ}g&QL+vHg?vUhttOhU}$r03+r>BJ(IHWQ3A4?nnjg
zN+}I@q&YVs-@YZny8tjkHL7Q%r}w>Ev{~E8XzV?E?s+VS{4d3`Rz<eU28-_m8Qyad
z^X$3R6K>?qm*<<hzqT$8n=?xT_Y3{!S*N*}uI<c&j7qF@&*9&RoH4R!hHqqn8tY9Y
zJ?oqSFY#&V;B8TvHm8yU+{X>WPH><WC%`Q(LdhW)KD{X*C3X0A(QDF!5eM`u%gYv%
zbslSAb2`rx;^V{Q4`vXJ=;(V~E@wz`3v`}(cwC&~#nk5E!1%cAT)?Sw&}dVDtX8tf
z;%jn|82~{XLyn^7P7T|t7sr{GNDw2mna)T315;BvK0Z*q;^N|LnRnsg-ucbhd$QBV
zlrb?eN@k<45gv*Byu56iH`y_d*mENyA_N?E=b}X2x`nIpTD=m(9()7~pv3HL|1wBm
z11vAOXv2H(+&aR3l+ipjubvJ()#%{-qvs0(kP3MN3PpB{)JIQ)O#xF$%gEqJ5;m4x
z^MdHpK|lJ_+}X;=aho~&&Waqh4VDd&p81A<O1Y+bD^7$CVFxQJnMjXGO=WRvKKI-J
zl`4V75#+4J=r<c7<ErR~X_94rhfbQBnmXQpPTeyCPwf7#u4<^O&un*aVnI&wii*bl
z{rl?g-@ocQI!j*7r|gF20TP0Of}m*c9?i$?mUuNrm6V8_oai(#&w)uU0fdDnn|d<)
z9d6_n6-9$6`R1`YTz<kKQn$>#(RgSE;NT6|DG-e9?W&$@e?Yo#z0qU0$HByYq4{Fu
z?Goul&+}eaGzyv!7j!n?;fDbHW77I_oQtK}N{MNGtZ4IUNj)xXyApI2x<EdA|1HQ5
zn+THeOiW5l-0E=-Oc)$|tN?03^sNpM`JF!4^p4`{Dc@hQ{h;Jpoi$$`UOuaM+4s3u
z45cCUEE>KMh@CK*A#YKPftf>2-y$6)%X=gwB<ATJDd*+J#>UQPe=>D#qc`ywdg2d|
zP0p_VbfZ2lS1b9O|FPTa?_47$aEk6^(T>f-a?7@>P3P;*nFl8JBPEOSn?6+F4J_`p
z(6E%B>6#lL0Og+RMmVTp5H@o6Kg~Q}vjs(Z`o;0iqKSK-3Y)wyjs%<xWb(67mOG4!
z<06p5cljgT)d{3gl>>8SWu=MBcVYn{EiEnC#bTM(;{^f5E&w3!OaVyumfH>F&BuJN
zsgVvmo9E2b^8~Wpk7woP`47gX7Lf3N8vUfe7TON#jrH|?pN~_-fF;yfzPbMQuguha
z>95(>vkD8N4h|0JVn?R+uA+YH`Bvd}FAx-S1QO}<Ky3x2x7=S@*omyB;`xehrdvHI
z?3p}jv0GcMRJ$Qm{xc49oKgrwqT9hCQd10S$rM<c8AY}7Quqe`41O@c!}{;5D#~Gy
zqg&(ma0MRs#JjxMyi{0_?3LR^lVv*BuUE})+V-Tj0d(>4KW_0L3^*vyWOrlQINrr(
zy8F)@i79>j{hlK4JC<eR?--yMQVVX))4Fi@E?M`#)l#538$F@$S9RGsI44nLB-k3R
zZu$_zdg->?f#Y^J4(S1D8JN}^8yHaHqMlLWJfZfQ^1*711BMnLce+-7<gbt<^!$g!
zh{>B?tn8GY@3><%0)cS-1>g5dOiE6MgN$Yi@@#C*uK4_UIVZMXH*hCmBH(b6=*@jl
zkNfCKzTkFo30L`WC6oF}w2#^fsp8Rhx}?ggsti}P74-%Hf;j4xf6k%y3ze2~5RW7d
zZfsdpW^qjmrjo&WUi$-Uf;*Y-oddDujwzNb=WA(I&L9^ey10f`9I_AtQRSJ>8lh|X
zh9nAk=D9xB2F0T0J+2|S!%j{uVa6zU;k!{461|w~qA$Ou^ce&shLkiO7%3dq_PT;{
zPE{LNvG4lBiNXW3PvC{8i(emX4#j$=jLP@XJiy<$Q_c>nis^*Eu2wyq#6P?GhwKdh
zC|dOz{XbiArKGG3K}^o@{{8zq4m?}h+6%=WrLh@A8Eh468~B@-2iH#n>5u*%<<k9A
z97vP?fq}R<PnjhCNei+6p;nr3)EoEsj~>zH`7cKg17bqk4M%XPk+(huaeSx0{S=qn
zyGKM-X;RJ{Zbt6{0cVyw+iGnsDJ?2mXxt1CrAF$^#>#F;uQm|Ijc%@*U&;V-Yz>2D
z>~E{h13EnqczD`xI1oP3VKSP!k{{o+f#3dorhP2-TRn_TS6$r#>;~RrL&IHwOz)SL
zU`=O>qUFB(f9K)M6uHeeq+Jv~1~xV}UT0v4^-;3>5092!oj=&$pFKS7JpsZ*T>j`h
z5P-C&KgV~fprcm*4R~fNcDKxD7ZwQOVJCgl-?lRVBrl+6t?&0~xYJW{81RqT0YUKx
zFf1I}_ul%isBm>H6JXCBG4os3V6RRH#TmSB7M7NFS_rAW!g^Sm_HsqHLFU6Z8xMEt
zr_W=tnL!!N=i{At9k6y#T3SrKCffjVJ_A|=z~F6WW@bRdnm<-nerRe^070ASvR*mD
zk?DQjiQqBuUC9M(#{~rUR-0%b0>>GuY5||Hb97wPGC!d`J>0||j63J&<&iW`_h!c_
zL{4uiHU-$)3S^!P=Ho^maxd69VAZ%`-O+je<2#PI2!V{O#>R9&7jYaaE$DnCNPY#I
zE@96gHRa8tt9X7l^YRSag+?z#nV)f+nwp~1Ws`BlnpZ#oB=+H!;^nTQJ22(@R2a9<
zH-k7KX*HL3xVgo2*mLs%?M4g~f8^#?N`cr?1_T6vz03T12K3Y7#p%D?Dl%`*0Q{us
zpt95z)YNjvaY<bG<A3#7eahjtCYBL&ahwo)j-y2&U{b-D-l%Z~Bn~`W3)t<E+C}#I
zhmDvAr2|Fu=+PsWA18pNb3&|657y7-7@KE?jh%DL%jtpvZ{O}VzldKSuinMI0yw<p
z6I)ayROK}J3#U~Kn|A0g_VN|Wz}G%4HS4Kv+84$HMVV64aqK5RISn;6(&p32P1OUN
zUv|jRAy`!h`XFu8RH>+W5?z%xDhcuHLjy4F6)%rn-f@H-G)Cx(a+iGq>;vq%2nL$r
zw*kfFHXfLe&(ji<E}*QQSH7YL^mPIVE8H@CxNW$z?i`f%j>9(`6wz25vjAX@>hIT2
z5;65XJ34321^NaHCLrFTF+KrAi9b-I1QwSU=O&;6;)F5Skz}xysIRy!=REFIdj@J!
z;nU)|QQJ&n?l`*%msSdsfc+tKrebDq(8aFOMMF8PXO7(bhya`6ClaS{aubww&RU$P
z0NTxG`gBUo-u^Zo_&t^VaM24O$o%K%GFzZhRpw{XxPFE8bs&5?(!Hj-yqb2|Sy)-g
zh{Br6=6>BSWjkO<1iUOBEHe;H|C6@AlQ-AWBB!UPZve|l!gc*BA|=K9hoorJ5jT!_
z;zcnCTLQk(fn}}x4{7JQeznYd+mez~L2khZS8nknohCXl>9WtOo!D{eT|n`;YdZj^
zC^3qc{vfy8f%I*SWtR=>5$3Ul1<nM{uvmy~g<OP9;ZezAlc3nA1eaI+?OW;yF|{B1
zM%L+Qjg&2uWHj@2)e3Owt0e8c#TD3`IWaLomoyD_=WOepVorAU8^D$TC)>DjsH>^T
za`5MkbN*cjK}gH?ce~*E(7z6C9UYuOn}??>>+9@p^%o5oD2_+~;m{7Ae`?_ZiYI+>
z%WG>31DO|h<Kz#R#;cvNI7*#jbA6cL6!crt;gc;qE&GI0E*J@_qZA_Tm<<?B1oPjU
z>Avi_IJCW{Z(z{6UOkOr_nL6k&t7i{A;ghIQJ~_Ao|lIKH2}!;11+uY@VHB0HyD_k
z>w?GyOj;T!8J_<##$_CxNCPtHfvc++?p-{P*cH{)nJx`LKc(O@9&c^3KKa`>aRw0+
zZ&k%pVn&k|Ez!oG7w4z=FYWEEHm4dpSOZ2!M=PqTUM2o6dqQ+=Em9;-L^cE&(2l00
zuH}|?VHzKW9i$@Vonee|&W~v#Jit5@{xc6ec6RoT{J5IA$lEo4zZ4#UWcBX%1oVp&
zP<$Iewm_LKsa;}85;c#V-n4Ctr1uA|hQfO7aEWQR-_$M#cmsob1<CsG4%5O${U&UE
ztkT41@q>_2#q!YsFok-LFkVfqJB!`5%b%j8efO5hI!-}~Ka^&J0ggT4Js%^t_ghKe
zdQD$vSJx~K3kf-o@NkUq2f3*A;l^Z6e*W%uTo4Ly$sJ&V08AW4^=&Vrq1X*COb;>W
zWEr@-(%)%?R$r~5^9DZsyRm7s!V6ehj|2SS!=9gS84z|V?70Jl*^jfsB0F;+@p|ZX
zBXjfVud5=Bd-}L1-o^R!Wk9E6hR+g`PGQ<}+_7W2H&tTw=w(**q~|!<D#^*3t)lFL
ze<;ppSvhLiwhDW2;~#gd2;8a-^Mie?sMveki=*{vl8!QV^`-ucx51A&)b1FVHg^|X
zZGPSgj>pf8%I*%^y|R^whp83Gx_uI;wHG-{Fq1=SkAhR-QQ_<;qw1u{&hS02!~<Q<
z?T=Ie;Xn%S=B$IIRlp^ezXGRLlF)3beaUz1F8k)q#`UW4&dyHh#aci$ySuw<7n6)*
z<J8Bd^^6`rcGp*10ePvh(RAtrI5-Yh6sFBf;Qu@4dah;%oE_?dC}2-WPwAy*W-8{&
zXgYq0eg!f5$DaIJ9$U6PyH>fT(#o5(HdYx0$3Qz)nZ#AD?H{(GtE91EoUQ(}kaE1Q
zj5R2ALeM_CkDZ9cA4hv()}xv(Z_h+wYKLG+goCo!6SM>6SB_^(DA~oLt}lqW(DLGr
zvS(3GIBo8#8gqK6fZpp*B}}auq@K|G>J}l6-~p=D0>e(wwXnlHiGLH`#j95JY9^}b
zK>G&YaXDRK2?0bY>tFj83mTCGx|Bwqhrx$Ivgp8Ol0f;U72wv&^aDC2E~q^+K4{~x
zvKbK`-udSdz)d;EtD&C@3kMW;786nM!J#3VtDy}zqxHpORvTW-!e+!j>y)06(ZI|s
zHmo9ffb5?ii?esFAAntg+1RAtHGQMr3|YVV<lhCaks#&$s&F2$GC#dX;xF}djsE}|
z7-hnH8BH6x73TlHP3QkR@533#KbanK-Vi5{SY+)zVS=_XM&G9eywEvXMff_R3v_r9
z_fc^7%8|ZN-^7d(n16`$+=CU~+@7CUDqnV8TvL0Y2zdVD_nf_0_tmPw$FARby)F1w
zmi48*oVL}zPCq>PJxYuevMcii_jRD1r}T*TOJR0KYOCm+Ny=V>4R3z0LLl+i!p4le
zRQ9`Uld4{}JV@fgI|DpbV1C@<65#p|ay}ZGR&iu1#x@`s>7un1UIh4C@<Sn04-9&A
zQtiFwO;U<}4AqJMYpxr_v%IF=J@J+K4E=`Rte7$JJem3mKV@w?5|L3)1mS!rAxlO?
zr_pOF{@o6ky1>@W*l<ipSu#l(+c9*RHT$L|!cs*e{pi&JcYMEXpGkdMY*IGedwtwT
ztsTH<#ENS@sZ7~DtQj)2Om2E8pQbP)k8hK;=j)qShBh^AxatW08+jFf#f_IR!?aNj
z$hb4ii=ym82QqF4b50q}>~UBM_6UGg37_~{a>Kj#1_y>77_2+d8boPmripzC=)npU
zx<~{xn%-p#2td*P>lsAHk=b8KMRL|~){s2A=HG&5pc-3~u&9JPLARK;N(qNOq_Iy`
z%|{-pzeHAn(BllCfG9HiboVYZxsoyGz(jKz3!+O7#>8~MGKtIY?RyMN_NjZ>LNL(M
z`Ed0?WlDx}hCiDq*((;XIJ^-;*;7!i<Yg^RV_JmiQgkiV)$Hj_9VM(6N`G={OV7{a
zu2{T%heFL<!1=(2Mdh)w@>}(H_TW>(9;Z6XLK5b|ITf`1-+G~iC%3t6ow=PUgb8A=
z9hq>LN}}QjnmM<i);LVfMmE}iW=F5l^*Kt83=X0^ERY!}@`1<a{2?{g@eo+%P?>)d
z-b$_3%7#Nuae+fLZaK6~XPY?w-jdYwTd?u<8`J21uI;%^Y|T)@FIE{o9HxKkP%*bo
zaIQ=P8t@i5Nl-*GC1bIzjWr2H_TXoTm9JxJ2?-D37<oK7ysy6duO|JtlwR2jW#<=$
zuFa9RTk9YFte`ded)W85JONDN;ayR{d<#pfqyDyv{vH_8Hp0;AmouUsF(wSy#-}!h
zpZpRYeB$t_x<0)ErNY6_5MfGpEINEO%en<SxBQJRWt6_<lDGtp@z@vj!aPyFl)EBF
zTEx=(Ra_p*m{;J*==$**t^U=Hg%p^o5ytYwcg)USPL96=WGnL3j{y0{$&KpHUbk@p
zZ-n`DLsspLYu5tCn>@mf@9xlAR<2Vsshx^7H|y)P;A5ENIC?HPEtpRA@^1N)mcxj<
z1cjtRy?4rwmQNil*a<U)uQL}^<%xqY(ddTSYG-1}`LJ}1zp@HEr7)o#Yc(Kt4MO0t
zV>>Z>?ve;o{~KgoKKT<0;wJ|zV2m%N4`kMbKhPyURz7+7OzAgtgnR;Dj(CkA5Og<R
zzz$QMU*61`#)}V8BYjBcO8IpZZAO|w+_Z!OiLcrQRfDf{yxz8Z8^7DJ_Xkn<8mnA#
z^)Hf?21>}2Vz~lLdye8bQA#$SarA#(`-dU~J(cw<4u$;X7W8C-JcVU2)u(+%a}Suo
zlIK<D2cQfhJMYn*L}$S_G-kT)cW-cPT|~Y(7{?Q0opu+W^r(2;KR&7Xv~SFnc@mO{
z(!HY)lT;S~P;BtZCvI^|!n|j7@tqd0($H%W_tP@~m26_1ypWkOZW-z$nSIzon?-$;
zfE0GY>_1$lx*=9rUL2N}n$DZo!zCCn{P|%2n82E`H23dJW<lW}?G1F)6GavNaMjB9
zDSal@arf>-{2ZKfg*G7(sS=q0LS>BOV!ENq)?+dXZSlZmUCy*zk;a<r2FGdKyUcny
zLKr8FtwX`z1)ulLM?}}V)Wn^9DJFWYVa-q^ldWpPC4!7@SOkdtd(35KPd2<W1r#02
z2Zm~dlk6V6wix!2jCK&ZXCXwXs|T^;;ERk{`mSri4wxabcxSh_M)fud1(U4N5+fTR
zT0ca;esbh*8<_oE|3v74M(y3Fn^~pR@N0CDoi5-&LCSCaX3kw=b&f^h+u1ftJbZ8w
z({%}VFUgqIT4mk?>HqSjft!Z`Ezs&QXtj)hfUQ4)ruNFptGrrIQ4KqYj;u6#C54&!
z__ph;0!!gETlQOSw_C5S{Hhok8Q1U|paCE|w@cb_?ys>@-r`>&$;NgFkLaur`y`k|
z;!Wf|!n|=?oS!AGG2-|v2OHCKhw}T;b^Y?Cfno2Il337P$P2%w3yvZk7_n;Nt7*1R
zkU=vQsde>VkvTrJd3);1zkuQvUyQMi%snPlXrlYW7;s7Cl7MVW8+EWy*!oLkoy0Ue
z`t%`yExXaEEz$>8o)d#>Do1Cocb{xBm0Lx2{st>y*He3^IObirF8T&jruYl&Lk#K-
z`QfWuWHihO8l5utcgXcS<&G`sEyaBSUU<#i;>{bJ!M!hkK4R9zKv`lPJ2<s@`QTG2
z9OGCj9A03mUdfDq(QSScjw&NdS9oCksd8{LzcfF6Z-S4`cdF(QiR(vqBUZ|Il$e^*
zi>OY!7>mf<X8E=zbK)kMz!l|-PuaQg85q@XR}HNcE>k!a`K%}b>b@+Rx<6IKHuMPL
z`swy-@#3MR=Ez=7HOpTbgv&9vAv{nkN_o>B5Iql<YeDI2kAla7P$rs-*U(NA6T#le
z%mnb|?lm}&TlkuL9vo#uR{7Q$+Z6=@5M-Y3xAKtzh?64v8Hxa<aO|bCNPd1HvI5mM
z@0%+k=*WL@FFbEde%_N3@hl&l)-m4yVC+&NDju0n3IM!o1!Cu1@*AZNiq9ex`?6$G
z>5f7uE;;0r!OmLu<QF!odJTt1(@7B77`b8ejJI!r@Chf+^-01FeC88R@;~5DFYZ`g
zdBx3VKl@g$IvJ1)Knq}|^w*ggaX~dW{7lo<SYosd>zB&Il=;Blk`ip3i^!TC12~jd
z4swz)h$|$gB7VSGjs!O>X87{U;!pYY9uF{rv|6~mE~uKL_rLHK-+AiG9=Z@cy0>33
zpx->bieneHpaOv+%A)^m>4l{0rGNCqbE}HsRUbb@Sss|O?0-u38}u3d5uvMD#|^Pu
zYA`%NEN~o<+f6l=!<TZGSVJdM{v(!xh)!KwIIprSv1zJ=Ouo9)9k*(-F%q&@-uZP3
zN%yYaytfc?2$mj~m-$-NRe(SZ_K!YQvf59}vBrGIQt2EW8;E1)el!j~amv_&M`_#Q
z*1*8L_Cw7hnJ(t?hFCWfw{{2AssRlh4MGt6XBNwo?G3~1E}U&gJpUOg{#nFNqjx+i
z`UY;%LDGJ#brMAqV|A7x*YfG2b@`wHl9lwOGpJpeSn%cHd+wF`hP9!9Y#kBa=ye0T
zmR;Bwwp168VMC2{;_q!vRB69=-sc$1Q$Ax-nvLSEKk}~|v$u1UUiJXR3_(*+{3o3J
zFkWicQWwsf$3PdZ^|5YEMHe2fEr1(2U{D|4CUVop?}CxX1Ef15BxAX&s;rzx#JG{Y
z)Y+W_6Xr@xT(x6>a6<VQ`vEz_RI%umhim`a{63J#esJh>;=+blao$Wtb=Yj}T{gcr
zQyY?i;)I8z^p*D0_S_{BAXe!kdU&0J3Y=&)$55HaD($aXUW+>p8a9$J0i<e-6)!@4
z+U0rE{@8I}21H$_;80?tvdIH}fDsL`1j-rJy1mb}P1|5UX3fBrwS91dpFw4pyt*y;
zd>0q9?6%Ly1c^bB$*S_tCW!%a*C=ePeLdW+w2)+Sw}8aFTSOsqDnl~$i<dXMiuJEF
zxl7w9RA^ORE6BeD2{O_MW+AY60440~h5j>!_g~@~-u5!`7QQSV(bIXKS{V#*Lc({-
z>>mdoco4Ao6wSyh?^OWaz0Kpyrx4T-nF6SiX5%DoW~#7RAEMV}W*yKFWZc>(iHgBZ
zuzADaScgF>nEYaBYvUlN9}a;sFs^s?FYd7c8jdUXjq>Ye;2a_i^uA+TVU3GuEnkAw
z`;_n8hJrC;kq^z(XpsFNZ3IgJD-MufH<+vX9SD@f%#X%Cd?&z}`QLRW(y*#`rD#3S
zY#MP5yUwV|BaB78d{fzr`)+V_R(x^D(2<W?n_I#@WJFI@2vE46gO;zl&HJ)|Wi4)Z
zcX%zQzTCB6n^_FCHn+R7?vz^w17}&3^MpXyYOb!XWR<}Ln2B$TWlpb3XUCiRE3g+o
zsgUB_#_in|>U44LL>*s@B?w4;qu~dDe+>Qw84JN>tR2PBxa;hcpoj6xX7t$yfcyXA
zjXxBS{))S7T=@&1G^T4`DJVWyDYPpY*YdK>9&uI9<Hdb(Vd;dXzoleE0iT%~vqTV=
zGVDT=CDtjsw0Zz{ScY~Uw_$)D=zbIA2}>}oA#nj|dLR?onTR{g_<S-w27CiA$P_es
zRoWJpD?b7z|9!pO(D;B(z#@Y<`BR#3tsNOm_)h^CB3>*REVwk|flO>?A~;&6{T$Jr
zz*A`PVMGt}%<>f(2)Mzg4S#W&7V*M^J`KPK|9T=#Yu7C^EiW~B;eAqY<VSoF96~mD
z8Zh)Uz8^-LnX>MY2!X+@8Pjz^=75rk+v>QK|A!SifCfigSz!mZkTj@;X(rM!swpGo
z&w@C+G-KXLCrSK(Z9<CCf(J^ktJ5@0k@}Mk`xowP2BwuTSk*Oe(MMOV`M>@H#VW}B
zuri@IGj_k^l)*MhzC2HF=?FH<A~~|hPRuUX8HWT#I-SsCCv;U)P4hAjk~C$E;=uWV
zNi#L5{qs<)UhO3no9r0@JZXB)gAEWyTLYdRG}Q!^30Wc`;BI8ti5AywbHb;x*s-29
zgO+9jDb*32B#Q0P<u3aS*zF|y{`H=qcOb%gKox%eH4-dl;$8*a6@FiK4eMV_dP;Z3
zf=}0}$605B2PBDl^L`_r^KYqGc<lKbe>#<n=55wi+<#*H-QRktbW7&f^Ig&h){N#Y
zW&PNdRC8Vb2YDk1V4JpQsg@8Q$YLo~;|{O5$h$Ns$Y3+rzn-h!Yg847ed#viWy(}l
z-OvZYh$sSOpUnq(^2KohQ`3pdhIVyligPutD;2bY4)XV;ev`0q%!<V_%3w{Tew#1H
z0>!e5vX2X#xN==>x|!X33~I>fcqUI_BL8Fe*Igik!KHF+L{r77Dl&C8qCG5B_h<J(
zh9df8$61~eT|+&pkgIc$<|GbOoPl?uCDTS#A$}t_-J*U2<kXr}aMKh)?HQ<E6A;S{
zf15}!$#F|ulgIH&37%2#g)MCrK~(tlI^CEpCR>AL)%sFxD-cqkXmG=?V%ViopyU7@
zTu|)&VJhQbV3UhGq3hXTCyiLSargxLZVY~utqk@lAt%uWq`bCu?KI-$8&{m4_N+Z#
zu&8d04}AuLa1%r$gU?i;@VYR4g_NN;yBgRSJEc2BYjBJN!3!>hlQlD9m(6GISn__y
zSS!-kGCeY{B+gXK*h95}BsB0TpVF);O*49UM^t<W<rq_hN1_vE#AfPA0I4T9YHsns
z)RtT<VrnCoGf6|R!8hLNdt&5gP{!*h<Mf0C$m?g~ll%LgxEdFI_JL?Vp)nTzl-oe#
zxS)7q!Q(nY&?<-GyDFE&NfYI>S1@xt1_HRMcXYX+JI|P*iqi@Cp~rxWgDmrL_xAA{
zvkqp12*FTLsPjRI`%j_h?38fxlyIZFGmVC&J!f;FbNR8H39Gt#q<|QECU4;rhHO)t
zwk2F;+H&~VSpf76|HKHrkKBt$a-3sftO+0<$U%^zNLtk~>Iri6o$|*sHr%}r&J?++
z+MPLP#V|F$@pbVHRmjaqT%Ncif2OqmWq*5G*Le#^C+4}GhmFC84HNBh8+1P(QpcKz
zx{xC3s>qK%z@6S9C#_&3DpIE;@2|<pyi5&;2lv1ZWVVF1D(}Df8gWff+~%hisA#-`
z#S43~+W4a?_A9IFS!KQ;rIhpDB6K*n=`94`Q=SF2&{~KfZ1*>qy70l_XV|d$@>$E9
z^H9n^Ybd|hbmZ*!knjx<(v8S-azs0Ci#(?Gga(#ums8?K4tOun{C?~<Cb&|61Dcur
zE`zUdOAdW^D8KXi9R`V=|4rk`Cj6!yPqjbnA2QRL{e~<2Fnw_>4G^?db58(%`hpPZ
zXVn8r_3*lYSxA~Q44Lg1oo@Frs>F}l+vP4cVI>!^*rmG0h2AEIG0FGn=+{s~x2>2=
zJ@b8*=b;0;zw$fX#h*&(TXR3*^oh7<a&^ULAfNL)TJ34yt1pyi5haulJ9yn>S}*L!
z(6E%}Q^AJ<4Z#cen=0+53!WNkPiOa-h23wi_-JXUi(~<v=rXGSI727(V;-AZs}6-9
zYdxg^mzmj(*<1QraHG(Lg4*XoPg!UE@#SGMt<Ufa)4fJkn5<Xoe0X$3-4|iryd-MP
zU;8q@YQ%T-q&II-I-HVuJTdMPF`D<_rGY*d{DKfy8Dbj^MrNYs$iaFn&C!XgccrSC
zF7jVpG81#$<f3IJ&p&N$C28c`;1e$yGrqO*vLF&^%s1ec^gdDY&9Czyu8EO#fU?Y~
zuX41Z0gdT{PaU{<oT1;31_w6p5Zf>o=hl}afQrUd|3RH0tz()jSc@M`@1UU*@h$?{
z+`oF0?g#p&nTxQW<T+^vW%Ir7s27}>^fb<&RevQuHmv27vH58X2ImAE!Z|8_edF4Q
z!L?9aWLJbaUXj5DiVylBA|4ww(O}sC1AYG<rKYs6ZhISf0>UF9qyDbU>t&X?2X<y^
zw1}JF=7>m8Yqf{IE8?7t#>)7EVa-yW81hWfd$8}fUd1`&RM*GcGl>TX&7Vs%DeVa3
zlqx6fap(%R(fZV_pb)sNoK;?&+BBsDilQ&O%@2BEZvjlG;Pj~?4n1FhK|jWkOJ^@~
zK_nc|!;NoI!*eE?ON;c-P=vz$(@XpjI^=TIw8)Ii3}?GcV&^@_hwsG9-@je(FU{7j
zd1NVhTt2PZ+BX6?#OnWCSTf=L)9vGV4Q=5Au$x-ig1lmtDPxg_u1+;&C}qoWbv5zZ
z_y;oBALryK_zOrO9z(R2I1ShuB{evo#tP&Pj_%mzg5!70>x@_U0aKX!%}Q0iHy8Ai
zGn{qan%gZ2#8^Kr#>)3^7K}#aImoj+vd8G6^JbSNZyjES)Vz(hgKB>19A#Re|E^<U
zc8Su!>pR^2w5r^$;-|%j*>78L{CJMW3Y5>t0h{gfpTlObMTmp~)n7S=rU%?9qWn(e
z>&b~vUnAp&+d)kOY!lRrrmJs*DPRY^;HO2a&!#liP#RIy-U@7tpM2K7>}>`gbJ#$V
z>cOqwIML7}{lO^pSJ&<GODyR$?D&ARD4o}40=nt#Aoo~mEH&k!4=#zB?Uc4y`xI^Q
z%_EzZsF61hSFPAJiLweCV}T$8F2akvf|`D}WLnK%i@y)lfJWQ~qU9_UMDQyKHAz~^
z!}sw}pyKF6paBdb6H01Yp#Zn|(`h7#(&0e_P6V3A-9)wTg40m&-e_Z>bSpok;i+q8
z&br2Tfz}Ab_E>mt-_zygY3ns_HVtJtaI-?fbLk1K9z-(8F3yAj>NbI;87lt%u}6S{
zAvA1r42fKEH;JT?FA&sXYQaxOyJ+f9aqJHquqUF_xKfrqP#Qcpa)X(%4QWXy=ZTv`
zyRW$ua6^7d0qk_(G)|$l8e-?jfOZdHz?m<VBRD|QXLePhZb8q55OMXPVSCN(0;xa0
z0SE)y27yxOUcH&1^K_QQ4OWzWvPBNu!vzp>5#YwHu6AfgS*s|(4;~5ok0Y*f35guc
zE+ti#<sBNz{K*KNo6RlgVZwD~rvT{P84s6<ehu`O;y=n<DasEtKaS|}vqQ42XFYNj
zg_b%uru&~Ywyvski#?Rk=Pyh;A#|^JjF8%mPYE1Wpw{LE6Et0f$v?dz-lAT5<pS?n
zhj~T-(-|!@1n3c9u5guanV?lY`ea}!$0?0#FkpU5AGP<|*~`p%@FJe&f#vNlYwZOR
z5g31f;>snX6rwUp_*3mAcB<5y!B~Shs7Wp;{*dj(8gobZ01R|3iCg<oSt0qsm)*91
zhjcEb`fusz`LE{kpw+l%UzZGcd9mq%YBbFD03ui1D>$+N^b*5Mf8e?q9dI(iP!OSj
zL2DXexN)lPDhTByLU2z{GiUD|ZVdF*Z8JWx%C~P5{UwNWfw}PGY*zu3@$j;1s%P4E
zHdU8K^Vhaal6n!iJ3u49&Ov^O{Jnu2Zq<k(oXAkDzCl$;#>Ugvu3Z4MwkOm#>rVwN
zN|23Ka;@PNQtY@K1tk?=qRrcQw`X5Z=w^PbP43{CvI7Q38zBM4T(IX}{ZD_t-W{A_
z=BjrQ#_a2vR}KMdBH;&E<iIzbaLP+7*u#7C!5$(q)>WO)3k9dcdpS$7%wc*4O|E}D
zM)??BiuQ;-9nYk8V2vJs?4;ZxMVU&yxyv-cE`Ip?jS<*%ZnkD?9*G)!H~2Dt4$=Z4
z#^=@ECMF*odnNiTaz>j=J?D2WVL3^oGRDYRR~9sW5YN9}4dMb4Ku|y=QD*~PO}(+2
zce3Ss;w#%2%S(G32SdxN>p6K2guuw(n>eEW7B$j8>KW}x@r_@6?)Ga%;t6jOnu5}a
zNb<ww$f4)qx}CgU?J{4en$-b=UBEOD1#wNSKI0xp2f4vgxmfypWc>a`QMC`djs7pR
zxyJE^z~_QL>iTtg$BBO=KZOA=xXKlCLkt5|dwARpNDG%(B_P-aMnJDYAtImh*7&}3
z4<|_N()wRWms&+=8-wM2{<gIdCou$>;X|FwK*?|eZT9y|)g!q}oJrOY%R7gp(d~!9
z0wJft$n!Mhc{Z}=PPrCZ2rfsc>G0A~S{Y|O)v-wP12fe+*+gB}kbLN!Iq$>>D9s2v
zT%NoEtpc0_p@<a+h2d2#WOx?1H~&#>x-p+Y!^o~hb*4F3HrPI-t);xhwnI4mXLRaL
z@-``LC)#}0Bhiirup*oc2JH|qjUO)_I`WHiw0}}f{r?tilf|$q(UUq4?ZBHzHxxO%
zVh>7d5UJjU+5`Y33;<{$8VZyMGxi67_iZ#Tlwz8-Q^pm4_7B`6b=j9*h-c~_7}A_C
zTeqgq$Tw!{cxI`2<2fLJe?MoJoIODeSZQ<5&lJ7NK^}*khS-PS<x;eOMUgrluzUrs
zFq`+aqmkt%WD8@+Zb)SdV~^0hLl76z7r43_hJM1JH0Jf)QR4y|UI#jdUq)Aegzb&4
zxZy4T`zjkJ!8mk;G!Y-(ek1wk`?_BbrAP9|A9QHw8;Jp{2AFsH-|3h+ZH;+G{?}QH
zJ}V9^%5NAt!f{?hb2GLnNOr3NUNQw8xtD|gg>sB(9yR}Rr5tGLgp6vSy$v4tVrXA~
zbO-8e2UrHSfLo&pD5bH#NQ9{f3#?c*EF<7AUd1+OyS1}Xz~y7(AxrUz3Q<dAlY^X-
zOCD^9l_dvzYnnSQLZ>^+-)8-<ADsi&df<`Pxx!dlcUPK+AdH9O;zk~_S662{6c{i0
z+50KLMvxQhpJt$M;fBcO2ZbPui7_|y-IX!wps5Mgp)<V<vwCwN6$z3n^60IQ=JXl;
zde6!9Q|oIFpT*oQHx3?B<}c%1Z_2z=-UF+u&C7!cSw(aJhcU^*{}xcpAU8C-fW@^-
z{JHPR{RlmtbhRzlnayBF<t0rS#y`}ihtr^dTB>=BY7r@|<Y0xiWqwuIF7eba5P*fS
zysXOndi0~01}BfTtYy4W<%J0PdtJf3ZGAQZcgk-EUy?TrK}RGkrnN}dPbVG;fMWMQ
z+G+B4<cNn7o#pJF8{%w-Q_yTx1+{=m|DkC}4X^mFp}t{d=#OK=LVis&GhiO|5ptiw
z4PIRSChpTCA%38mX?w93tJxJy>pFFXru2d+O_`y3n^Hg5y60Kx;@y$WBByHY0QB7i
z5n8Hz6vjY0K_n;ULI^P?_UEj@Kn>+Bh74Msz>;X#d6&K{i$~D(NYrm1zvi_?1FDsn
zD7$M3tQHXQqX0VToO0-Xfm@A<TS&v@1}PCg_M?{HtaE2SH9epO5N_(;G@@szsc%FU
zx?7rOxp}E?+=M{IlLKHA&rNrX0e7ONj<PGWxCG9CGYXWDdeVO~r?WV#t0lXS=0-OP
zJ_5!5?O8Mbge9!$fEp_1DQ0OKO|nzCS3E@|l>?#!Xn>%gSnm75qEK9`57hiUc};ER
z72MHI-{4GDb8g$*>il#79iR=wO`QyYHboy$W1xE<>5Hg&UM2y>t#>Ka*>|OsTR?i8
zWd-F&>+SaYTRmw*^W61Qg)4I2{MZi##RV|NCGz-qDA0liMi*<<WnR07p9?37FnSS!
zJg>mre+5^g;g|sT=pFUw&xL=Kr6-h}B1j^(A6Rdtzzbxy?(RP+MF8`3DV-Logga}o
z5vyuS!NvnzbYNxAK3mzfX3Q)_81liQ_abK;l{tbr(Vx229xtHRUd>F0Pn_&1VJAjN
zioszEs%MlF3n)K_mO2Fszdb9U2<w0b)M&50Go&W@9;J}>^Kp#Z#)o?*v_Lu8NuS89
zKeXY^?cI}!?|kgRYW0XmMK!yi>hjgh#DKF9xB(5Qx5PK4m(gKX<6StM<VBE)^@mw7
z3oz8)<x1~l(|Ch@$P)h#o^D56%Wv#LXSiS}P_uQ>>i5sz-JtB7MHxeXG>At?0JFV5
zJ7ey6b5BMSt%XU^G9I8|iEX@p6H0}valD9v<s$o>&X=GO*59YEVT6GK*U+p3$pEAb
zFw}a=lzQV4)h1qD>e@_wmCo1+A?(B&eyR41cozH7+?C$Se_eK_0PhQ$nUniiK@Uvh
z{T%OKcRkj&$bluV-aC{?V+MhIyV}dcwvju#yoysr@$H{gBcoF?DA@d93Og`UO+PJS
zkXa3}JmNPnNBl3b6Yv(;45wO+7L5z&Is+I&TvZYHG5Hd<$<h`m9#J8Y)CXE4pg$>L
z^OKhbSo^|$H0wQ!fCcRXJF&ur1PEN^I@z@4mj$3zl~F<xTUPXA_X;@G;4!0{YNlcN
zL!C70cq>aK&_d)Z<udc?qt=uaRN<X+XbS{ZH3{{yc!bf#%fw3&vuY=5i|>>6Jn}gU
zq5j8cxCw!n&-!;*V4CZ$lp)oxsOTTO1qfOmZbL%w-pZ?)XS>G)U<*+^^_OXY$O01!
zx6?H&E0EVzVrOr*c+x}432riP)k@bnD5K!?eTr16qwtnnGc8$;9C#df&l-Iz>)iN}
zB?rEs-zETjj(wpqUMmH~mE-OL`5p0M3Q~`HMCY>H&(RTe#6YA8MG=>T9|BA>VQsFG
z?RG#cPW1u<I)gsZ&hhT#h2+mwn;9#fiJ<>w)@=O@*KtUC0o(37998yx?v>#yigW-p
z;tg{x<gU$6>%{ja_x$xK9}dZ`tjeyl{o!`|R9=kW&L4VQP6yhkU8%s`vg^i@Ke}_M
z3F-pqtKod&`B%VG8hv9{9;}R=kikw|AlO>|UtRT44?I{^JNj41A^x;fIeXt^FFr8u
zRslg6A&HT^m0;qmOIk^v1{i{d$<4`CX>lS5505kPtP9mciIZt9>+6_0)ku_%{rn3V
zqgxt1M#1KWgdI<wey{y0u=J?*QV=z86e=DNvpoC=n6YKjARGUu%@Rn5Fjghqtj2#P
z$-w-RwQ`Y_?9c<yeA?3NPQjm{{py$$CHwRH`r=E}(YpI!&vK-2UWqgYdh6gq6!aiU
zNObUaj|EX)^zWvQpt$2AI699|Zf^@O0f=*m2Dhpgvwd|4MY7*1zhtU*7Z(OR4B()$
z=91h)E=6LXHroC1!LA<StaET%^*lI$BL%v8+`A+vsxl34P%)rW#G7;dk<UyV_@^LU
zm>GG_9d``xWx}0|FA1;{t1t$<5<&%e%28{U&w|tH##YSorVn$lA|LbovqumMch5q+
z`@b>vKRf47U$1;iTaE+wQJ`{bTt&2xn*<_s(fm-Wsu5SqFl5{(pG}KPd&N({)!VT(
z{R;p=Ose0Os5~U;Mp88a)QV9pj}^<-v+qatGnZNub0`xV{m5;}1SG@5j;TQtP44`B
zFo(P*x7+E(YJ#a=m3aq93p;3(dbh&6FN8s#@(V{nSXepbH0%8hCWd+X*Qi12uRLQi
z6%fw>O4nB=O}!_z^hQcPHLy3pDWy7@zsrNXyWIKN;IiDn9cT;52WWgl-nkYGSbzJ|
zDmc}2>p<S;Bt|7K1tCe4c|-jE1_bBlpF)5$OmVd99hy*3TI<BA5F`hBuAo<$orn@k
z1BVxYdsuhtrrRsPjzwO@I%MUSBj$)VAK89Udk`_Y&{Oxe?w4?dWD-u3YR6REI8w<X
zyF!qxYJNXUtWIZvmmTzK9pp7Nm)Ou)+&aV~<0>ZF0RQcqGT8vUsY_czza1C5Pe?Dd
zUkyJ1rhpH-K;9w%0>EKFVS75D(ODt>kI&<MW$_O0WDBkj<|MSo{U;{E>DqQf??$Ya
zKzq1kL~r35A8^K^b#n_~?;<lh?*Ppq2l6@zm^zUR4Xvv;#d<lz^S!@UR!Aiq7+*vJ
z{?(2S@8F7MsB7lv5EAb~^<2sPXLUJoLvhXQGp4-w2y0l*qR7XC&Tasppc~%-^ln1@
ztDNZE4Ge!QyO}PqmuL;HHpcSYQ@zjxO6jBj=4E^moD%q$r92U+N*XFf8(2Ad?G$!U
zhm?N>V@w&HgjHF~5&jw+9CM*INl6r%#E1{^@iI~;zt=G65&7}Y9n{tYE1m@0MH*DL
z%hWjN+vvgC(R`bPj7wXw9eZmH+T=Xxk1p6OZf}WMFh3%4Cp0H;;w*I$m#B5&1g<<8
zIMahm$5<2}gh$>>5X`G$m~#steGZ5ctAgx(CLCM{)`lOw)h?ay!~^Z%>%jBs@$dtD
zU=3_dxn%$C*XD%%A?Y~x$r#*TPt_L1HZtt~*2SE$0J#f>WW}49sB}{>ZmCWl9JIid
zqETR!r4&qD`T<pSbqQ?ob>;^;U7>(>ef0080|gTpISWP6d(7Xf3DiP%gE9Esad_qJ
z(h1rxFi>#b3e+VY1&!UCx&lBZO8YJ|gHtR3Yb<eUoFA+RzY(jJ9XRAL+fYdMlMh^s
zWQ9}q2A{oxW6ZnJ>iu^Mi6(dF3gmH;w%40G8#e{ldyViCzu!CV+)CC_c(^`?t|3G)
z^<LmugjOfljok30lK>#AaS<#IgnRiCD%)~1foM*@GyNl`s!NC|S=)C*9~|3JZC9p7
ze!|)Aq$n#GXH+01a`ciEjduV{Ib^)i--B85x9Xa}%8QJCvp3NO8l`Gf@~glJ>Qa`_
z#~6XFHDaaGlRnfu3y}sZZufr`_9f6%u5aIlA{9bq%se(owrQ&<ks(r)CZ&+M$X2F=
zQW2Tc-q|R#3YF3zQ%TCUB}p=dY$7E>hJ3%r`Tp;B-tT+Y`da6#)jI32_wzjWeP7r0
zn;xij6re_Wd0*QnGS~coT&d<5dsk=Z4^F=Q0zu?1;~pW4>>I;OC*9U)bcy?gYAmfQ
zC-(s7vZ6S0`jggw{MjNafO{hQ(xSGP-qT;1gIm($<*XT$u+(#H`96{yVDsC2e`!!3
z)TB{F^*Y0yj|<V3Z`ZvwGg~p+5VJCf{p|W@JHv1T8hCm&o7;Snl7jejjGIFB{Xt1v
z?ZVw?`shPVEg(9Zqgvgx(kcgNJceF0jh%V?&Tottk0t7JcyOx@>n|6T^SS=ijY0Y}
z!*5|iURL4b1c=Py-)n}>_y~vZkj?2ea9g7d47CSq%k+zfdnWDh38z4YM>%pzs-|`@
zJnqoYM+b7}50Z*bG&Bo2PZ!lxExtVMa=Qa1?UzKc`MO)Zo2-gfzWeMKKHld|eD+({
z!ehw?mg#VPV8<H0{Ce{>bMkAY*!m9(e%+T29zXsesodaesJ^=MpSt<EcK-(x(x}kW
zbiaSwn{Bw-xMp51yWH=^%$NA?f85(8zthsrlN-~mM$PBt*OE%YnBxb(t$w_0X%@7n
z<0x_A^zkdO$X>4T`jo;XYyXXNyxoA0RD#|F4VJ6Uv#X#l@df>yqTG7t4YfyodK-*G
z2DwvmK9DE4mg(K8P|pJ`<9fS&n=&~jHrw{b1IAfL;rv%>I72EgqOX%zmnD{j-qBmM
z!{q1#j#u2=KjJf#JwIka6tQP``U23)=Vzpx_sK<uGsvF`LF{E3I2E@rw2(){RJ-5@
zMIS$KPOM&(>H~|b6ygp%yaCaWSoDDZR+<<pXM?6;fXv)cr@-(wuEx&M0XpS+jIj=F
zhEBm@AuW=Y&eQ8)E=}F?cW6i6r-{IW-}nKcHsc69GV*LY(}%g2+9J^<N@^XZZ&dS>
zBTX;($rB<<a*CqJlT$iU&tO9*P_?$nsaXom6Jd2ZStq4NB3k6LuKBGp?M>VsVDvNJ
zP?4c|bobckq0k)}>mzm(W09{GPTGC-T2(jOL=jYxWnIP!_S)%t*OZ|P7L$GHjIhHg
zpO$bP*6Q?N$pxvLHoQgc@O(7kA2RvdlTl)?vAw6P45S-YTjBD%1s~)Vem1k*7l|`}
zr|YLR=befrTq4I;>*=40b6oA}suS{uLq03dm%Q@N%+@P?cH0KV?RG&#b2q&S&>L-;
zgRPu4`)HkqRvcHCMFqDpRgTlemwB3YK<gggWOETiuIFw^5v{n|ieR1yzCJoih9uSU
z%AG8hVyEUg-ulz^<Z)W&&eQJwTA=HUzUEhKXSEp#37BPHLU}?j2u0A<dZ{tpXg_&U
zumUinO#8VXVEm%>m$A@bMBKZ&;db2rEMj*m=9=`B=A2wZntnhz$>YWMGl;ZA=xHs>
z{la$fYo@t*Qx*(iqSr<Ehs1*O5soVgZuQmd(2xvDVY~pBA+Mfkt+`-Ttb>zWQ1mW)
zb9V<<pSO!Fq@`*ZXA{@XtQq&1;*VZ+F8amOeg5FdWusg%@^0qYM0ROu=j`y5^{(yj
zn$=>ft(LuD9)+Evd+?4)?SXWE-<<nEO0i+z+djTLnd#9^R!DfCmnv|VqmSdT;o^=z
z4W{ng<pE0adFHE`7hUu9O_WvkS#Mti+0vVuLrhFj4ec!euHz!m@@3#y9{H3EYQXA&
z#*bm2>q#Y4U?ShvJO(U9l&b{#ZJ9|sL&>v0q}Z!=j>L;JHdq;97rzmGCZ;T4G};+T
zIfjO`kbwNpqkbQR;180?%s%>s`W*3s?2RO;1Fu+^7l17Syd-ux&!yRQz4Ve=#u2V0
zHai*h!iE^d)l~D77$pG4nV6{j)V*RZh{D-he@+|?j3M|yTrQTjV;kzA3nA?d;3h=O
zjm{`liYC}eHVtBKZ;zyVO!P1g{yK*aLBjX#urjO7GZcAZdn=NePuE+Tuca{{yCW2@
z>zp?@Ve&Dw-}-l`Hdp`I)dz>?VC(wvLE1n)AML3N^x-K`l|H!g@%EW&D%d8-l6UXB
zACVYEc3j~Wc7i6ceJr_#?2GiN=n+0S>ura&sj!)TYe?LB_OCRF>92kG`y+|XV^P=`
zieYY<^ynoM5L&1}A|s!js?iry74ncyAzJ(vX6L(x0AOXZ6*WqU!tCi6sx($9$~+C(
zqE?A<gC`4YE%do4d3WrUWH~<AoJ_xy5e+dBb>M!(e#brs=C9<Dh27-Isrp3|zj2R{
z^CX%QowWKzX^Q-D24FXH`&UZ}Ub12`JeobB*8^iAP>;4ESNEq9p;Vb~r2Ujd(%#<9
zLLE61btT9$^&EHHDX4g&%-nl!)ktqx?c}|<a?<gNu<Z`_ms{u2Jjm9Z=Ns2M5$S)L
z``vEFCY8q0MF$~#i^H6Wlp7JK?xOYs$A+*FbWa|4``3rKpRq|rRD1*`{IB>baXf@t
zwds~KrZ`KpK3f!U`Q3npfz+!6jb0xce;ByR*#1-4U-u41fmYFGr{Ye=u$cX<f>Uu5
zBcN`m^uot>H>c_J!b3``kH*}u@(E@fD?BdGh@wSyUe;gM{cim7?@eLhRdk2T&5g~C
zI~$&Z2#`$xbniI+fFJth?JZ2Z9?0<Gt8)Ke8^GPAPk8<O-u)Y3b$CvywbNm_xUW@6
zOf;5OeS?Q&1VIDsQSU5f{w(`BDKu=br393;>ex(eLce8dwg!xuxq3vN(Q;<sM&8#Q
zH_P1aG@p{+Zqd7<@=*m0`&*$y`MJnzwt|;V$znd$4ynx8@qAu}@`LWqmdaI-8vafY
zE|93Q4!(IB9|H##5c<qmDChhA7s2&rydzDit=Zzs^T&a!j1=>pAMhkphQ~|(CKp5p
z6!w@by-{=N=zl<r4Xw@pvR;XDUrTtTxvH8K1JbNwP+5K9iuF&Dc3DYscTPUNk`itn
zNJ!lz{3D`fR*2bJTsq$8@bN)%Mb!K6F)oQGXkLwORs5{B|0)$^fHqpd0Utiz6Hm2C
z-)i3*1tf=Y*niCvHSXfghEEDxQR`%T`aXRT#-iP&##)R@DleQC`zFfhNBX0YWf(t*
z=Wc$Kqkb>@(&wgSKqoS%kLbE|va02;(QOV<$WPSXxRTH;Tkls^x!h8F(rM0}-|AV<
zZeYmt-@Cp+DHpX{7g071c*a0t9edX+$pD|zQHPs>z60H1?x#8K_ufny$R1D2M+gY{
z`#b*|l2|kmwD`$ehB`K+?TW*SLIli$J`rd(zU%VqNk!o={P#6_`G~IzID%+}TUcO1
z!-Maewus)ZQEvTF$y#DH)mKQgpj0d@T~<Ko#&C_UGwkKwOlX<|8AG~kq(cr)Un{0V
zek8X<_m};yC|~Akev)H2LN(#kM;KRpje~rKw^)R&ab6!h-fB{RXeack54B^)ve^XU
z-V_431gnHvR^ZHee9!rjyhQq_>gOALgDZE_)P(%qk%Fics>HpnB(P%I!tms@gj*+f
zDEDj4n{>inaunPRan1@kRS#upKgf7W2SNVkx1G7NN-OvvS?7G+0L^>5_Hlk)3RzbA
zm)w&A*CI0F^d0vz$)9h$U8KPJ!XJi}-iWPayz`9_3g8EcmMy-{34kCBnP#4r#=UMw
zhpn#OTjwnA9of%|6_8l=XGgp2>YklAqHLTGopv0q@ZlAdbHMzl<Xe5{=bxDmP=k6}
zmdyW({ij<9o=b%qn1u?vcu94Rx<f;Wi~H)H{R2yIzPO$=@Z`Ogmz6)DrUyZQ<8P0*
zlZ()dk$Tn<u+z7fgKv_5+Z+yB8K(jT_yz2f_|%fHszd|gjM)p)&ajotLbV|}0-nny
z@ELK4sT`_KEm-t6b}FEx-=#o)L%zu9AIzYQ`)!r4;&79li(MVKo3a#eiFHt~0=}Ix
zHRDdG_c$YpK`8#&(ajQ?-gt9s2v=jF%CCB=C#Y!>WgY^h0w}_FjV<P<Tet|(l3YZ1
zl!=|E_G`XErFGL1U}=fF83uApE?5DQx*I1=tFNBqy(ZJNuk?~W)#R)}5^jT_*ueL7
z8F8_6%QGVfiLn?HG={UxI}Nhxc}stn5MTquqVR!KfA!6%DuCW|9uaFXH886@FgN=?
zKTDm8D>MywcF+Z~ORIwseSC>L*Qf{0A!GF^-fMkm<o0%Rp*T}0^Pzl)GG9?|_o^KA
z;+;>79@-bVrALu97krfm+{8`q<6CYCo0;rpPx7jD*C0`8DiRPB0whgpb#R)l8!C|b
zXouK_y1UJcj*Tw=;mW$L2;dj@&ZO=j)XTK&=uX+sEn6t<Q18@eKz>QjgxnXT@oVEe
zL7Ge6fl<PRbg1zdu;PO1o96CLecZ#`1?($1rPPXEUC>&?d6H97@}Varg<WTluKQ_3
zsulUc5EN~>58-U(q=vy8e`2*j{Yr%d`i9#Xw~oW2#Pi|NZFO_;)H48Dcf>eO<U0HV
ziHtw!&~N5J1q&3T@n4xePtJ95F`rto+Qcim0$+CUZTe2X<IB`!v*g@oY1qHN8GtoJ
zEO{+Uev4d;x>MdJE0$Sc^*H?PCz!r>?t<d!C=6a>x>u@nfE##<!jl1|z6B+JyG4TQ
zokcq8T@-(x7QY{BoO9>gj!IKA;|z`)OmdEZmq-UT1V)Uw1_R!$WH7JLn4%#T6gGo;
z+~lF~m@O6$ruUtw%~)3E2b{)vNUa`D$?k4$&!b6Mryn)HZ*SRR_K|}zW~o9GK^>CM
zzV>cUQSxv!7je&Tb{_Gzg<}MOSIvhLx6~u3q8QS!#R;X>2@B($<q0((tk@IbF_So~
zl|8M?lEh4RhMCWN^M;&pQxIN0m<3XM$7sZTOrVtu221OCN4h*Aj@wso_PuUe)qVwn
z-Ck8Fu4{ORiOg;b7-MK@0gL}aPq_c{zX_)oL1`QX>P1og(i`>}U4Nr9Fzj-(=(`A(
zf@X7`xegR8jPn%23X|t_z4?^m6?mZ7p#BoOT}<#k!9?dIt26@OJJHq<JNL$~t3Jg8
zAGK(bL}VyIDg9S6h|`%>A+-DrMc!RO6%%zH#y*_^U3TFbirVZGhWKEpiXt(>I5VJl
zuF4HdJYO?9dOEP*tq^zK{1|&7XHD-rxRIbYf3Vnw81DD$1)~e{Bp90ylKwOZ#TF?H
ztkkAW{mbu~9Nsog{!qrx!5{6uh5aVHaTvSN;KHqgvu49u=)qD>G(pm=7|i@Sd3H*v
zGzy2(Vm4@GiT=3m2%(s?h799P$|(Wr{kca{jjfF!W(2^-oer!#3-`b%vCyE?x2g08
zr0{+Z^dx9g@FbwLX#f}tC1q2FytM&rPw?dp4Ck`miO*$m_Zd01o%Ypg__$}g_te^%
z&{*sOECWo9m!YBwur*+Yi=8(>6$*Q~S!~^&?8IGGTBMbo*t<ufhi0WPnb&9#hEiMV
zhr53u@FJ^XsfQjFJbf*h=W-w}&N>P|AJpVd&@nsHzT!G|LtnRJn6V>QB`|_ey+Z}%
zdK;zfhMYL`TQbY86GKQ33?($9I|GBRIU}FMu@h9b^Hz#9qekMBp+$7HvZcjeVU=G<
zWcVk3pW^*qCzldnVd&UPaLZ2$BMAi@zKyB!hGb%gYe}Tf^Tdve8_H)KYzbdQBbNPf
zT7CV{ac$_9Pj&rHd*9kPjC)Gkjz(sW)DcSn!h|di7&t~>L6~uI-eng)t|e}4u8c^}
zw>wABJcWn#Zh~5ie*frMb&5@!fu*xhR;yIy(|agsjyG~4`SG+A2QS};OFstM+NR+T
z45KiXEM(D};~W?7+NO5tbn)KCj<bdo?za!Y*F|<;3^ua<t_uE{@D!-?KJk)zZI-5_
z5~TQM0C>8bx7n#%8UT{sHyku_e+h|K&GMU<jxN1Z7{IHh{%c<VR;4+y5rCtv=AVfp
z<YahG%l8HQh_|Qkf*V>27jblrYnCHZ4lQlZeQij*AcZILYO0l4643vczM<zhOFDj5
zBRQo~I03=(m5xw0uUD3JW;|6x-zf*Y?cg|}?THGf#qE7425Nj=@ZQm(w<>uuA{l5(
z8ryeUCUHf?xmHV=AH~QrFzg1v)%Z6(ESw&feWTr{SW+SQW0u(7L)ptA__z7uPk`Bk
z4oXKoV&QW>=?)+bSN@#OWUV8P5K+i)bcUXd(G@goJX!C??SP*+fBH_~lQAx`>O3jm
ze5<!G$<f#JE~9kX*)@kx2+`KUW=V`(P!FIch%MiBDO0sTr1wP-EWNO2yqed?g-1mu
z-u)96|BG;Fw5QB3NR`YxrAfol0obD$bj%M7_}3DyWQ>CyseD8?k=c22LvG$l!lrR!
z<F4#Se_8SXYEhnLB!)rVgqsV%X-Oy&&F0rUsc-bp8&y3i;o+<TgZd?J-+WjWwRL`X
z3z^muH8JkgSN^aXRa-(AiAoEEKir(1KyZrpCd6w>rGdBykSqwY5n3<!fb!7F65k`^
z($OeLhcoX7a6>V!wn8U@{U2=aJt#^PUE;yZH}5IoCRj6(zb*E0dGabJxPT0hZKmj4
zF>yjz$qr)CWf)iE4|t^#L%sRIVf$`D^*jJQp1zn`3?1XY!OxVDbv`lb>Ez5-;-SMk
zxdN^u>#4r=n68OoM^NbVGL51;bsjOa@7hHrm-b6}I+aHi1ixZ984;;3e5BTuK|!9f
z6iX%G<%<-)#wTilN{|(*W*DDoI9MS&y853zBj|=Bm==?G*B?7r)Vhz*3tp~>;%t>n
zx4iIrk<h1Q8uP)5y!S*VLul(HAGR2Wa<SSrb+uMBbKl(v3A$)dyPnLg99r~8hliT0
z6z{n3IuX(mo)th(f#ed(7@hG;^A|P%tt5J56laa}V)Gp%5j4i(kz=~8?qmq)np9Q`
z1sHj)yVptfg*}&d6Njz7OY&f7nqj9tm+eWn`%$!KZ|jcgJ@7e{Ta{b&K^8T-;b3sc
zc;Djr`~KeQF@MO1y9*_i1Vr_rcBP$SmY}|Dd(|-qKEcleHe;iTia4>iNS<h`22-iQ
zexTuWQQeRxDX@c~D*5AH<5i#tkkCII!o+EfcCniVqd(y`yVI7=T4=N&q^tvAIA2_%
z4Ni7Urm{V&b0#^w%|4z21rE^m+i8iBcY8$FW-q3Km0#G#v&q9L?}D~^ktMaoiPUOq
zoxy#K+wFGiHmtjU2<C1T0&in+x}4i8z<x99oD}nS+>LzKYw}tIgoO>^<=0&J58>J!
z7vZtUhE0J}PZ%j_Pp=~UOXDV!-29b(htrFBf}M{|slDV2J@Ee+S|!ef<=ufc6;KZB
z?1ZU^_4n8FqjFyZgIT}^Mt0eG3WIY2=O!x>Y$a7x^UzUGpJH>Cn)$(=uWW<@+!TPv
zre)L$$_b7>7*Az+%aAn2_qmU!%ckpiS7`-2_|8sbf~lxy^s$YGUJw!v`j)5C={FNJ
z*A}Wm8_k9P;MnT8HyLyOl{X$-H!)4yw*9X+(VTMwW$k%Unt3~8kA0N>vij$HgX;)Q
z;@{?Tj2D`Z;mjF2y_U8`=!}ut6r*!hg>{8$*FNS`BwxhP4hy#r8E;9VeOK~c;xe~f
z=sFw13AAJ{)U*xL@1*4pSsy-RE!qW8gs6a~3PeBXN>XkgSp&&9PIOtJyM={>ZWY|C
zz<ifi6SkyEVZ+?>7!;=mp0)gYmpCxO^yK>Kf$zzWkuKCso@nZSP?AEiH0<=%Wp%LV
z$t?PzLHb6K!+&7|itqm*z|v*?b;f=>4njzrPXMHtt;yr(;h63mm{<6F_^T*gXe1i5
zDjf{%O<`HFeRBPw#9`jVPb-AY9RB)Cy`I@ResanZKMS-{vBt1NY_(*+$DM4ro$nf8
zic?Q~vP+DzucMl{NukZbFU~imRk4yM?XGfqvh=Kpd3>wj$a&gf-Wl;O?sNV0>CZQR
zk5pKKt<vq<&a%y;)yaBauS@OE7Ke$tCM?E|ckPF!EfN0EG_TD6qY?OcQ$^W2{iDNg
z4{7>YEv2r`xb#-kEnh#RUdqz`TNh2&Fw+iNqN3{^V4+oxZ<KmT2ErR5^M6eX)5`C<
z=*iq?#V4miPIIUGGVbn?^Xdg1Ht2S<h7ExZYi&neyAvL?%zci@D-5U`G*M@MSVpe~
zoC8UmEZJdY-zcC7N2}TzyRDUNcd+#gK<t3#vakJb<H9?wW={Qxvf!mp+87=jq@8Qx
z;tVE?3c0e0pMDSh$GxM!b4<*VD{p=0r#MasJ@HCwzVArSmC?ESNXwAR#)3)hIVBjE
zck3u~h2x5R!U(T(#;+8x(V6A!#$0C+9whFa+~4JHvBk!x-GdZZ$4J#KioCorqVMx;
zB&frNJE4#`%c>8+oVa%Xtf{y2^NZge{2pqb2?}_2qcmEfXA5to>)VUdE+^J1$YjNC
zQER}7VSS#qfie<k0%h5sR3)H!ZvfTgSTAIt<Cj(cJpR&2tGDLp4R`HyG-=Q#14j5D
z?I!yY9_M(YW>R1ax2vbBGpn{U`)|M2X59^SxFCy1n%9AiC@N4uCmUujCrK4u4~~6E
zSCD9#)j=;afq^;rKN7fYCmo#FrFnA^>Hu{Y8z|Bc&WiJ=EH_=$Y#QQVjd|RxS%j&`
zzF}dSf@&i3mi9U3-)70oJKIQ4EMQjMX`TO@dl3WzX(A=1WwOq1SxeM>UtO-LIkfXn
zN2gJ0oY%2Jhc{!7c&MIEMRjZWp78kDztgfrQcY*MuwONq#aOGP`)R3@7B`h&f_}5j
zdMC7|U_nip^lkr~sn!Mt-g=QAJGPFz7=$#nhIxHB%X?00;QPQ&-5YcT3#kpfkF=7A
zi3=T<Mp8%(Z9`gGORcBk6D7!ifBO_Ss|5~NOuf#CBC~7@Y3=Nrj2x%Jk!7`!F(i4E
z;#1Hr#jZ~(n%%NFu3EN2p<=VsN6xU&))dOO0;%oRb$pDo5b*%ltx2@k(+6LvDCetU
zJU+v}mpiR*e@nnGr{@>jXu>i58#0Sh6iuz=uWr^{kaG)mpI3nQRD!aJN1#EHQiv>2
zN=&ScYcD_ETs=*F+B=)+R5zh}!<_Ul+-PT4(6*ro_pat1NiQ)McU^-(%0l=ZVCP38
zOp8ZfKrQ+85;z~kOauL0ZtG*?%Fhp_k0Nd5R^&2kObd<X#)BI$bjRNaidIUnk2E)i
zCnuhIkbz}i<XOu}uqGhlHF+M@EdN69f%?6B^mW3GEMsLOrVX^PI8h+UQfNB9z5!Sp
z21XMTCR`J?geJ`FeUE8E%E85r40r`M*zLMd6&`gTu_7z&{G5BwP~QvZ>Q9N`;E5$U
zth!a@QP>kvgRcDqff&Jy{bhdKQdi*hb$7<W!Sm)11PqOz_nW;cQvxd|53o<r>I#Yv
zjD^{2E+)j{Vodf0Zbm;0+;thDo7RzSjINi;boslnM)g_9Th8E2*ft3(BAW97@{W0L
zuG_7G>PT~07})m=1;zu9*{m+3z7s3~x-L^D)dB!Hz!P}#V7i9#_3-3{2>I;g@v&AW
zXYGr{E+&NieWZRBRDv_(Y;S#lxW%Iq6n^y+uaunB16wSXulFPLNiI6YDOZAKV|+#N
zt?^XC`H#af(aj(Ble;@3m@i<V5KpzcDk*Nnd+Z$voi)k%)#ZMd&FBZ>T-U=>pg@sC
zF(j1a8Ch4ru^trTdyk9?!YYzzfVLS8+7|)|lPJPjsQB#jAbfk~5FiAcG<7_WUPOgT
zAupt;=9CmgfUSeUlvw@<&&ap9JOCGQ;bS3@bAm^J5p1zlM^}aR8o%*qc1w^U(*{Ci
zVxGY>1)qZvRlRa1^xepsiwL3tMGrxXDHh#{t69`PrY0)Vh(oy5Yui-DlYOa6WB2Kw
z13mjVjU2mQU3?#2Yqyna&CY`?x*T9|J5MEOGr|H(a8daD$kgGL1l)7G-Dt-wJ46M?
z%A`$QUje;RRF!#oA#J<kx5%Z-Mi=yrT5HU$!s3qb$0U!Z1!x6QCFeuDtLBZ9?>cPp
z#4W8pF9i$_CCG^GN%LLXus1yO2$vnUV?)!HIMW(N`r}L0oZIH~4_c>M>a+=eUzdL~
z|9;fROWUfHzJe;D?uzHi6cD|7DWjG6P7UXMZ);sKS9j8bMIS3%4jAC7b$cIbUTd%_
zPlJ#EcMPiX9m-_8dZB1JZ0OJ{rIvWU5FpU7p?lX(o;?S>j48ZM^zwLoj7IYhcvMDV
zYKu*M97T{xRM~_hILnTgNGYM`$2UcvUX$rnEc7f!m?Sk13axBtZrtkbpaLc?kNhAM
z4-1>!grG0_9%f$ZTHb71av7CnImm&3s)hP?EM$OQCO91_-;bb-z5@{E#w6n`X{Icf
z&Dm8ved<N&VTSFmbF+x=xHx%%C-W<Po7=d-=j1g+Rz=WPC!7xUB7`bHeM02DHu)k9
z^NHWj(I=}sV6-6u5~4UE$O;&?$NG5hHN<=4c4ubB)AM(`A1&yKFO61G9{^i-q1wT7
zm(CBd`G^BKS?3CdF*bEX-YZO&SuiOdFFCgjHnuqZ!4ohL+~oQq@=jal;;J=4sRiQ)
z`%<QN&(=$OUs4>*SHG~ZJDwm`0LlQ)^&aa=dxKJM_1S#0zKmc~W4l>PL1!%RQn(~g
z^$nTvG^1=94y8n@5k7$8Sno-;DNarI-<J?qZm@5*{`^6H>pjka>j)_pNOQ>HKw26q
zn%KK-IK@MQWhuSPdkHu)BvS|zl4T76OE8>cb$0KYn_t~k`0-jpn^yDim=odKRG{ds
zI~}OfIU#?!SfA1Go~4{R#|LUMVAUxzt8HG3zpX!`H(!X+WEd*$m!_HkS|M&T>IO8Z
zxU33*`>DETCKn>!i_}B+O^CJXLa!~#?X(>ag$Wi8a0pZooYTdBV*!>xyu@vq2M;ja
z3S0mDZT`ZX{QHRqc6iFGCPHZ@FcLxo<`zC#WsY(8Yk#HlB89%#1NYtzy2uI@Wc_7Z
zF@4T5pu_t?By^{Ek{51Ceyss4PaH4^nP?ZEyNXSQ!+e=Yx9Akz{xp>@JJ~IVTAVGn
zXJ~pe)O&A;zz!YR?)y+=|DmYD2g5|^ur3}vMWE<#m>{htfbaQVYY6AS{pxKdtr6S?
zXPu_I-o?=ZMa@6~Y@|KIb8;A@a|pb~F9B%UP8p;xNSvK@#^EJfub=xVViCg3VmA&7
z;&98=o8kCgXG|^X-uBF4OLi%y{PFT}2d`s&1<!fsrOLSMdMQLg@IasqUxn$8*>eyf
zC4d6$W%y5yF@DDS7<pX*BuM}z=(cD@Gu!@gx`2D6#l&9>entN(1r$o8<VYEGUf@dw
zMYVC_@p%M>7Zi*2-JMiJ-%HFPuQ@6g5R&C!<_h>K2=H$2bXq#5ROZFfXzc;CR||Dm
z%B{aUHJZO4ukIEnoOJ|lm8t&gI)%9~c!#v!#h^pyOqxP-_Rctd1`bDX#YE!*z8B$1
zo#^k>BOo}1FCrR^1116MeNSnJ#pf(mWnRFqe?w;Fw#{+Fq$LCC541G%h=%ukTRtle
z^ldlfp+mvnUju3Mhoiw9<gyO&5x3i4MNv+Iz0M-QulU6n^0lYcK>@#SZmc9)`OYM%
zcO6y(ryrVb<*hVb`+m{cD`-<>O8U<(W|g)R-^&PTFN}i$Lg-0C;ffvl>?c)s8X_JA
zZyVSq31u2`x*V&?KNNEe<-)Gi<k2umDXjIcWvRd-3+VdO?_WX0V}^y!e^tG;*jlG}
z?=O09&&+BQ=GVOslSCsuE6l&25fCMl<e;U(aZi3YD?HTtiw$G1HJE6eSVvw9iC#mr
z5a9?u{QWfJ$oN)^YqGK#-J=VMwTvr*^~)c1KmE%mafn~D(6R##@n3c7MV^cf&u^bc
zgu4;;6s6$tub_ZSwl7){M@mYxdC|Q@-xxwFZ~Qn;LF)(o0oV%Pd?U?yh}G)zIs=?i
zU)scmdHtrTVRr5owK&l2vD$<A1SWa9B~rtt97=h62xiT!rtVVnuA&82x6mxXG^rd^
zx{5e>VW}l_0om*Tgh$T%LPJk~x$)eq%I0AFh&f=>1cdPr*Jy>bLBjMfl~EX%sI{#z
z9Whvl^i!cvoPl%Az@jBmV&n7F&6*p5%qoJgtEsUIt=BG1Hfx;DNj3m`koRf2oXCX%
zbG(E(t%KYQtm`;eMV0(8it6M>9H)>Hs}RDM_ueaE63Yj&9!)#4i`Is{OklNGqyvM4
z>1YVwr2W=1r-Vk-h`^$+Obt|cO6oKVY9fLj(#PtIl{-iEiJU;2FK+WPQL^fXWn=qM
zrkjor=B*1}!BD0LuJAAF)cPJMZCJIjZ#3cX^CZUkYq$VCaC<w^)6}f<Ujn1k2zU4M
zXq64Qpa`M4l~@-P4KE~sja|=w>dqGvMcGEW{xX8&Bv=d3R0Qn?!yPzk9G)iII~Ehi
zm)YACt(0t`&!5$b?t}(&&Q$QHQ0&AX>Pb$jcuDT!ZtJJ7xmqx-Utt`o*Hy%Pnxm*T
zMg8`D092C_kU!u+muWGOMJ;DMHNaF}69%+U8BG<+baufvO=w$se=?0#T4y`a{Nvye
zbtSWKU<ItwRIGBlx^&`n<DQbs)!(#<OerrrZ6L$6M`N?dNJ!I~>%tTXSN*|p144=o
zIvgi_T#3v0T<Y7|awWYD$-tBFAY_nr1s74FT-yErQbGtSb8FFBgqTlLIJN$noSmJt
z+3mPbY81Vy_-_$zd;XHX(vkBQfs;FKA6f{D%as=+mK-O@eWYJN^!DvEGHrM31xt`$
zu@VkHOhRN2u~tyG;dkX!BN`vGG$ZfN=Ku7YU893nzU;q}CDww-mOzUCL)9dNOz{g3
zS4x>k%LOk)Umu@n(|y`pK!D?vX<WpB^W6-zpUB-JQk}BT%3);SAPl+S{i+f<2<#U{
zdf9b#1>O7q^*#>i5ZY!ATmGeMy_-4VehywbSzuK5YB1E8PB~m5Lu!@U+)>-J>hn`I
z)wat^CIrs}HB1CO>7Vv`av4GloInI4@i^xK_@8GR#rnVH<{*L7%Tp;Xt;N#7Oy*CK
zs=_*!1XMOIW{U)98jPq!7k=kA7#orBg`NasWgfIgNCbTSnD^3q9tB6jKLW9%n%;_F
zHDqjp4USpAY_?IjigEeR4E0atS?Zq+Y3m=@mUB*9<cW#qT`k37i#Qsb>Rz)y@Yjjc
z4Y*z47$Dey-tS$LWL`vR`?}XLLTOYB0IOK4@$nlD)w3aA7r+j2<l*Va!w*wBuxK4G
zx9f?uSwQ))B%?ju%h*PEXn+?NRVx8^f&fo;nYrS!>tOt2>V+#<{PtzidchFOht~^-
z&q!`MB6Y%6JW;4++1mLyN<O-Nn-(FhbLV)FUaQUb+1FNS+Dn!3G3N(ITkgc~KRw8E
z5&{n8J>_9wN``nbHr6WFdCt($Ol=hB&jkc@ZRz#3hxHTPQNKswEhGdMMC%?*=4)(h
zidr&}IzXd78d7|Kkd%_2){Tj`<1j~L*mwRgF24UKJQ9j$nFQpng$Yt*OIdlZ7HFhp
zg`02Hvx6zKMJei8J6bv89SSKY9udiGO}mW|keYJhb^rI1um_3$_UAbD=I)cRNC(l`
zs-BqExXnkM(%AF_W<R+(1z!5JRy;T5$)1GxvI~oX_^0@$1_FPMZJey$FX7mSe|4>|
zN(fJtZMW=f>F=KwD|H=D2^#R=SMvy>LxZzW?PvBJ;wx_zt7sRo#cuBnos1ibB;F?x
zYJCx&L&z;NcIsd4-x&UG;^vQ=X=U6&+zBCWy~{IyxQ~scT#YU(Y-se=@)r8zRjqim
zj8>;rq$A5;tiQn}St;aD#*fY=n|kP!hOgSR1J7x7Tz#B{J9nK#P}T^n-?FkoZZ8TJ
zZBKK4!s&+$zEA%xwl^ju%}C0pP|0dh#L0;@vix-u9BH(>8Mlza8<pgiiOegFNFT*&
zKGL+|*f^D%^+VdA^FrB$b5oLIt4zZFN=E(fucrIYwb#6|{m&a(Ke}=#5pPDo`&)&C
z@K&ic8;YFkJaUM5zw+O@3D+5TlV~BW<;Qbo_d?PR?V{HVkH@s{>P1URnY{~1)3#%C
zm$mDLgq>FY(rq+UL&U`0&x{U<dutmRsai!r4f>?#44sZkfB4D-W`nzVNz<OB9TRHl
z=F&|yB%#4asQ!V*>um<dTynG1Qm8JA1pWQ~{z#!jhAs)Ir?%L~ko*TcLk}Oh{PSHo
zd$1RC9f!@b3!N8fE7;Q(+8_d5P?X-S=xJ?1y&Q4}f|@0hMU<0zKUw{(fgzclfB90m
zl5|-~oPnWpq=s8nq}y@MiXYtvTwb01zUrz-VPnR~vfBgBYZb-LGoP+zwSDZzEAq<E
zUU_cum6x=JtAl6e-Qe0IYDF4dg0dMuzR(BHFf{|j-fm=<meG|uAiHbeR4NZ(^U#{`
zNY2CjGxAe^l`2XU)f)}Pzisql&Nh&n#b=+y)!6z7a_*5cUQc{--gxSL>fOeSTQ|;~
zu}_!LiKW$X*svG+NxWJ!!JfwbLX!3Ktp^gKPK_m{O5HdR-+W8)2Bm=GiLf%~?GQy)
zn^dXA*St+E+r4A6yQS-E)e<V~ILjw=!^}4|)d-Ztd@9Jw$ojm|>~^EGk!Dbs{cX6b
z-&7QamLp3jFvU5Y*79fz;&UUL4{Tb_#$5Qf5sBX}a$KIG;T`LPH^+6`E|RCUtn0|W
zA(1ZR^LohZt<!jLMBC~~N+G1_SAL6;t!`&I8$R+)+>`Tq``zZT#t7P_o3w=y%b%oe
zWS#3dEg5r{vw&1&)g{oSPMTitDQEG-`(_)txwCavB(8h8djT6CndL^OY_9MOiQL5O
z&2n(EVOus^^toqKs#;Mi9N@_*eJigZ&?O`Npl-nJ(u^G4puRng#>#j`PELlyJ37D8
zr<0ofpLf%z@m^DVSPf<QCG>mfk$D{othU`<;k0#8s?Q`o4IGm%Ok@|P9<U#qi>ZzH
z&OMRFcJgXj`HIQ>%Lg_cbJ{2LwCOt%c}kl79lLY4M@PF2^yA?OG!2l1M>T^o@o-Es
zCx*8f27E6zvitE<H_@-pGbAm!MZChSYtCQXx!Wl4xD;nGM{C54s$WIpE}<&MIrisE
z*J>1blctq_YId2CT8%S>$K8)ONqD|I%iX!qDkLYPT&|quYC<!Ci$TD?Y&?4V+U9|V
zT^9NqvrB@BxMf2_`yF>}1(0V(>_}z2Q}Cbv2zDN6ium*Yf8DZrC1Z$8qP%>r=Z2T_
zPIOA%tB+@I-K2K(4}-l{U%h`a>jE=yAmoH+q-wHe|ID0@OIk8_e!0&~nJ7}!j^B=v
z721JUI{)zDEL<9}YN3{4vz_|U)-N69rz@s~tEC%r7;DwKMx9@GQSo&$ZcQnxvvcHh
zB3sk+8fEx=<&ruNvX|yPyaP0aQdjY+p{c3DfK+>$xp(w>`o01BMz19QfDrpGuC9Gf
zXY}rAJ=^4$^cq2xqAE?saXdHIAPmGZxIRm2zi?3ShIb2QTq>L=cicLp&&3K_JH_f;
zIyHJ<rWh}Vp}F9TI+ze&l<_bjE!2cti+xqY3DpfnWWxYiJC0QGdz+-FQnQ;roLH|U
zA>}u&;jhJ(9Qv5rq6uB!>aGUT4BjYf$PD|IQM2G3-t5saz;#6Y;oW9(^9iRyHpCEB
zAM^ETUt)M=_xd==dS1?P@!PK{KSvN0yfa~7BiIq+5S^}R#D?HO(Ugh1wuSgIOaCl2
z{IJAual6~ihru*TK@;N$CzG?_s%jy3$ENm?47nRA1<j+^E3`v4$zJ>wSaG9qNDhgA
zNqeM>6hjb{PNPqG9_JB!x-cuH=7h@Z;Mod`hWhm|N$#hAAUE5!u_1MMBi@*eTOcY&
z+ybbI<K7G$|La|A%J!+BJ~%h?BIK)@7XJ(WvAxpVlanG+`;b}gk*9Yh3b`*viZU$Q
zjrWdMq=)jC6mq|Kc~?A=GNHqAOQEDV_}gO56=mUxp7Dq(phgn;<<KMC!b6$=^Z#Fa
u^Zy(1s_%am@W0;vDe^xo<-R%oAI=}zb{6Wa#v9MsOpSIL78o2o|Gxksy)k_N

literal 32245
zcma&NbzGED7d1+w0wN_XN=nC2Lyag%N(hQbN(|C5bcYB?Ni#5jgaQUgNJxr94}*jv
z(jW}oo!=SX_p5vFAD18VLx<sc&N+MUwbxqbJTZDYYE)NPt`HCqP-&>EJR~3>4ksWW
z)W1Xq-npef*A0F^JyoB08o0teeV%#P5<Gb3>E`6>>11zp)7#bqVeje!5rK$E2;F?{
z>FI`$6BTv-Ump;0^{^8aeMLh7E^^sT-55bYKtYFp5fWsfm<R}htTa@V4Si8-6MmT}
z+nkMygWB}<_mc<fo<94Luj5JXKH-dZYU_G4OLQf{cbp+72?>$FVcyIQAcnu$GC^Ug
zhU3a^_mhYt;)KGTE??`?+4uBGo;+xJzdptBh+RHMXHetoO6l@(W7!AM_qqP*x{Ntr
zSAy63P>AS%U+N2+e(ZNt{(U8DF(}jEzmg~mU%mOyuV3n`>izpA_xBRc+no5X<Y$I7
z^#4BBE%yGBrlxq+M%F0o!C*ZcX`F~WqU+C-s7loCsP8l_?!+uS*!SzK$2P(D=S!Qh
znU0fA@P6K%EKW`drL?5Zri32#q?DppZ@A-;Yf@FgkQM2wtB?RJM(G(m>f&k+BF_zb
zR(?5mWqWRI4mGxc>P28x`M56J%TjQtF~zizE}NKe>8wKu@$DUUNW;yo+P@rMHVzUi
z)*50u)q)1ZtF$m5gNJvDF&N~ivGx8*B6?rz-Lelu66USML!HPTbtpTSLgm?8ga}6_
zRUpHm!e&Hwb2O5a_XH*3eq9EcC)&@~tQ~hcPV|xQoY{N7<V=KUxznkE>2OZNe1mGb
z{C;kxF~1w(k3fMLRTW-!TN^SxX8zK<49Z(C5M@KqgKKVzo5~OqGBxitu__5jfULV+
zbsr{I9Fm7Tqt7Hg6>-O{Z1g$l%<2qB^*O;d(Iw7>6pcsl{bZyUa@4i&Be(k}u619Y
z8usQw2Y4{#gack9=q|Hn3&}?M_8~{Z(Q|hpCoxE=>`^7iNoNxENs<UR+&c>SC42M+
zq~Z9<MiTOqM3oWkNCU^Ec)v3i$e7qNcI%Zj3U>jilJ9Uj`GlOv@(mm-nR1LpHtonF
zMI@`d;J=WE8<B<P0X>*zD|iUeai|}><~Qbs?&-yt3w(q9%Y_AZ*@!co3cl~t`E}hF
zh4|h|fu<10d?e~33YLP8aq2X`K7qQOl{CEDAU-E%lIz}yjz&qQB?)jny00k#aw*pX
z+oW>3KCC*|cv>4X(i5gR9fGEI=OEapYe8h;P$$PF){~T|%Z+<X8K;8NErgKJOKv!l
z!b#23h;`A>a5VI|V{~IG^sc2jXRiez2g}~EU#s^U%0szLVn|g5pLmtfv`njR80|FS
zv{|9K1?lOvLs`8mfz-ZTn99!XU9DM;-|4b7Om(z%qFcuzvl}6|Hv3!qF-{$_NX^g-
zwNphw(&o#ju-K`~Y+HoW)_0V)<RcP^TL=U~Swk-z;aapO=LCnov+D;E(=qOqd0iYD
z^v`21l(G+*o17C7Wx*)xL>$5A$iowot&2n$G%}Ervsl}<s7F05Ng~aVCe_d_^pO1M
z$#*nG;V8EL8Ezbch5Cdef(D=?E2tG%#|q2~>+FHuBf21I^ciOVG<S4qGZ9<ACbBMt
zGhJC^r^VG19+KlsYY{G@n^dzLr(F9`Tyq{%%GMlu!w8Dq!;*)$*3z|{M6`a@FAt$S
z%tfrL;!KC32iBHi?&DAT2@+r-Nxm{$F5Kh<C<L`E?y4-#3R`~?#@?Fcj@^;Aj6$pz
zW9y?4>lv-m)1qo?h;oEW6+(o_lyub#dv?3x;zMhB*a7!GJ6U?BaTua(0(#IRJECwJ
z%)P#xa2j`-t4r*vNk7fV6Fh>WJ4tj3@W<4zvjvGv&sdx8@U>bXN3Gs;K@U#dw_~EU
z8Pbx}449z{XP|zHLH%fuO5GWg9lId?efe|}<DEU~OebqJq0!i!=&SrtI&25a9c;Ae
z+e3>RlUZPqD$M0z@ta1m)|+I>VC&z9y%di;UfjWwoqJ=V_AqF7HFeaS(yWgo;iPV(
z2{{3L->C3wzvs1<9ofl%hl;%4eOsm$4}7HECNtw?h#tj^OsSr(Zz(|n{$NCya9LdD
zZdiu+W4~uM@>>V4%v<u={jxZJTIl_n__gir(E%J$8MH&{g1wHuF7nXKj)q3GBu*i#
zr;DpJF4dsm)f?X)43_8omf!GhZ;brQkQG!mxhciC13V+XF)+>`chO}Lqn~I;(=zvq
zXqO0D=y4R|Q_HMRj)8rvH=)I4D=x55@yWU<kcVZ7n_0o*yLZyWIZmN5@~`KPcs5-i
z*$*05`pOAu`&)ERBN`>Q@>?#;z8Ac@)i7Aq>BM?+5+8iA5?b78gF#?}Xj`GRSm=TG
zteI8ty}<D{4R<WnwHAugj8;nAcnw;spS$MM^xsaUI8+0*Fa066z+V+Ku>e=1hV5UH
zlDJel&<_-z!AarXR9g*hFa*|_%`VRo<D@(r(M%UjRDte|M|U!zK4xQ_VvzF$7DP9+
zJ(c~4FCj<AFhZA3xy1a1zA3g|NK{2$ueH){38BRuF>EqGdUfe<))K+wBT@Zy9C=&D
z5Q?l(FSb#J`IA;Y%xa@b?zqbS>6T9VqQ_wJq2dh$){EP`hsRt@ia2vLDtd~Ct)Huv
z6B5vZB*m=yTVC#5m)>@>x}fF`j(UU4afI7t8K)yBp2H(Wl-@MO!Y*1AjYCMzS$tiF
zYwYO8uFBzbJTs1c&&f9zR2X?_l8W@0{q72I@#)wWv84!vCp)!3s$6D$+Rpj5z72E8
zbu?3iT@d+4hb&%L;Koy8M$V}>6Jyrt`5-C3bi)E-d|;Oe^CAx^om-2e8HuRS8^H-T
z6wV&ZlK$R^3AuSea48XS-p`#d@!&LKpAk*|F^?WMe$9>D4YDPoJVLkeQhfW^f4Z>M
zC)9g(BEm)Kn|%nOY3|`hmtV~_j>0X4EzzsJVK8<s1Hmm3&Jc=fq7Z7+Ig}%`<9q^5
zo;-EuRA=edwBzYf?|1UhCipMXz;NG;OoJ`SE%|qa8=0`|-}@N;T)I$n-8JFsLY&<N
z5*|c`_jBpfl038*bY#n({D%y@qx*8{)jtkk!}N$mRYm1tCeqAytNoo%f()dnopIJh
z2jf)t4Wl%xszXDgAxc<I3_jg;NLvM&BsEnI)cz$03AiopZC`zogQ(?J1bm`M_}?Xq
z%A{I#aO3M}66OO!*8|y<=xA-?_xPI?m9Zq4zWAEU#aMD<O9T=yfw>`Bg`8^?;pFsq
zVLv8S{qZBF4+-g9VFE0KM6~79BNkD1iVo1xY9S6@La|C#B@)BPMA#crkU^A(Om|#d
z)}gVCqB<^`V1!@i(h`SiIA!gyY`@AaHoPdodqj{ioYzbKL4r7!nGX+~<b^7NN23Em
z%M*P#apM!M69gZO%Dn}+R8`)!fWKa55dio7`iqdF&#4S)OJfmuoIfC+IU1+0TTWWT
zE1m~tP-;Jhr%B1{C<G0pfz+3BlNjcSb(XFYC0xltP!r}!RXK)T`aw3nYHSGx!1|wg
zi{Zw(TDh!iCX|-9U<4PhS53hsCMDi;$|@*m2L&k-6BC=OCDAipi7ff_iHC{OpB)55
zMIyDip+_aB$7dw&{iR<cBPn@#{U|6x3{pO){>lS8@aK;v_*(=HyC;_bVq<eV$R{mE
z_UA?!vy?HWwUyxQ+qcJ2+?}@Y)b#Y_^=$AFU(G2qTTY$52FLr4NC?mFWpN*jBdDF7
zoy|KlC649s)X?zF2Db!F@wQL0JA-oh(OK~0GSlwCw_4DZk5z{qGR?|D*NH99j`srh
ztMU{VDgqAH=NVfL+r=$lZqo!C!3Pb5bqA9H_4DZ_I`SKfh=jvGBhB|^+1?cu{Vl?J
zb@ODnbuim~_L$eiUpInUsSBrc0Bt^7bLE)CeR2&F<T&b5y9&D)YdJG%KI(I=^w}^^
z7dG)mA2lDgi+Xgj`w+P8^vR^8q}=oIIhYx_Sa3ZjgA~4fJ7461Pv@>(i3wJ5ok)Rj
zjq6vVMn69z&X#dq*y`lK4XAO<=Up7-5k6`1m-3nP!-*#<nyZS@#^{-u^?`xNmil$d
z<8ZJGKbOX>4g<NV{*ZHowA1g_msG622Mtqwf4(^St=HoSqT8*itE)fz?JRshfr0fi
z^__{NlRF3}r8r!34GB0j)m7Lck&==sPBp-n+HkaZ4y(8!&90uRDyh#@kj&H(*2fLI
zHEf{k-X}Feu(>;=%W+<4^2LE+Vq#+4d(2s32Lt(NTA%D1v|=(Iu+d~1u=d5&f9b8M
z_o%Jf*|(oRf4YNp{OmT<_C2ky;$+;tlRa=N)`G+mhs`k!KAJ~){W3-c?T@bh`LYsy
zMova{_#;XQy*=M+4DO+;bi{q_A}V0QYsCHMBclqpnY-ub8yCTC8{Z-s&AWE`VbrY)
zec8q}PRvI~N7c2p5Lwx-U!P2%C#zL_o@J~qbzvtPEgYf6x&E)dIF8U>VpHT8Yz{hk
zQs;I{SXdZsB`)%Hku&(>WJ*`I3Is&`ogP=mt}|Ls^@sJ&LLV1P{NV7gCwgCgy)L3*
z{c9{0tMn!Y(tqu0)X}n0OOGm}85%73;W$o-yj8Hgu??RhL%Oh_;d%@IC7$536^otY
zmGYfdV(QPqXUB8!`mGMuqupXypJRDb2cloGGmaUO;Coiqu-=CGUFXi#ayl=1G))fk
z_0?Mj7p}WFKN$sYA54Y7yu7?R8#~lVYrlL+TV8e`3L`i<*ud4}a_7P+M5Y^euyaSa
zJUfu<LKe-aj~|5yyx0DC9sW)eG}@j3nI4T0eOev8umJxvHg+^G8q!TAGcM-xa<s~B
z=cqp<S2uV&C2)>)%Cb9|$JB2=tux3KpAHf^EaHv!=))Q6kgloIzA3ig^RtbR3pcZA
zPn+Rwn!=yXC&ED!<h*+*=+RG%>FK@(bOdBx{oXGV{8a1Lzpem`VE1VeEUTN%>>D>S
zbteUdPGIUY;iUj#)Huh!!Q?ZwzV5=p!s3gQpSp}5;bdMJwac4_<Q-8G0KA0nua1Hg
zXC=TV6#ez<M4xTCY4_L0Ix$E{qFg6F?;n?&2cc^yL>ph@asv|ZFB8|Mw3jc*as$?(
zS12fq8@$(M&KCOf`oWrBg>f8RV_N&VQa0CovOd?&Xz@2->SVI6MX*&(X`AMT?=)fa
z$;8GDcdX%%>BZfLWd`N}!4J#0I5}t2Y|=`(cpID^q-~V(IiR03cnd2kD!#aTtNHk6
zIlkIAH@{O8Z(aF~Plc88799<Z%K&l|XW2xXc4@PvojLjVqCnI$YMa)aQ`6GeA-(Z3
zlU>fW6CLtXM>=F=WT0Br{<2I&S2&MJmo;wpe4jFt0Y&|xyjj!RTiOogPL_9svFkWn
z_n(WGp}iVKc=(;;T+D^*{=Iv|{jdv#$jHb!X{$I{&&6vY2R<P_herjfvA&D>QCDTG
z#yy7~C>$>qs@eK(1WffBHE%PV&s&^FT8ecg2JaTm1^4IN{&LCR>0o{0@GMwBKp^3F
z@R)P0d%xnrkEyAC5Z2Ke=drp@+`__*opEbBY6%EYSnEviL~D_7((9a@pu>u(4L;f!
z?Ze+my!-L2GL=rF5?I(pU~b6yQHsM;4)?RYksaNOU0qZ6c80^i&hwr1m6gKg<{P28
zxw$D{UxNCJX0tD%nZwF&6crX)kEaV~KH&mztTZ0&E;J`)_4n^zwu=6$ex=?AG7}_h
z4K!TzSJ++9O#O>x`CL>&g{<Ntb<;%P75=@y(-F;dbcE(pavwfYld&@O98jHuclGwp
z4Qh$b&qQ&+$7-A@si~_1kG8FwW$4l>gu_#Qdicm?WoP66>YH%wxQF3e=aDiqd_B$g
zW>mRM$btEH;M0yt&!009b}kEg(TnfTf_Ji~HbER-_w;CHWo12gcIFWkO^o6Q&iqjJ
z_0{QVpo60$Xb!>O<tMkUl97|g+%Hr^Z4|_c%mVy|W|;f)yEbl-;j1|gf}Kt?GKYRT
zm}#RB{hJ`aZaLZL2cn^=skykgXbB)G5MULo6w#Nfm|Y$?FNjCb&I#9|^2629s-s0U
znE#<p8Xm|5G$S|4+-$fy02)%ewyf2R`HqcEc5o#swBcLBYDH&<Vz8XF6$S-OaRrr6
zPfx#@PaU*a<Y5|ewueGsp@Ewb911R69r&s^Ke#xb5;AW*EGl;wa-h+!JU>7G4iPm2
zcgLee;0%R@tV4@y$jO+HNlhGs;NxqQWcA0(AB-!kNP}DQs<3jg`2N7x_$y1w(RZX_
zvi%i<;J=^CKR;Y1ix>|+S^H>Q^%B5DczY}($K*vZ?2I4uJwCz5AE)ta@gx5pSTuvY
zWBQ6GaUdKBkW7e;rh^+>iHnB9AVlfu*FmzKa@8<gzkZ`uzO^FobdJOB{Pd_Z@NB6#
z4?gkLD@riJ*x2|KtdiW@RlIqGwBn3s%DXtlK|yB(+06=?Nbzv=07!S&;2qXqWo7{?
zTpiQX(=*uzAiD@a@Rn9q<Yxo9;+a}$;+cw9@IwRHgeMHq_v3JRA?HN_Rq>Kmfy)MY
za_hmk9G@EixKC#pTc(3R)h(f6Le?fEO%gR}&ed8X^)JASBsAotHiXqDk1yAEHX0{0
z6}U6giCDlq8+!L3sx~p$xw=1iziJNfAkae#vD9ozcDLzSYTG3DpLRN!1uT~qcTB7w
zoGdLb%UO*z0Xl=;8E6@c9<V0qT!&dXO(8;MT8{b}H{0?$FQ1;YT%6Q(;<<;-*QEP#
zGc(UXBjGq~C9eaJo%m;CZ0cMZ-*lDo65ncNc<lW&n%g<TgGb;_A3Y-@$H7xD^}W44
zJeWk`(wOYgC8ed%_cU{J92c^+Q^E4zEMJoY42^#LMK@^KAaFY+&*o@*o`fh&!xild
zayJBB1FGG?1)Ujv(0tJ3^!xM7i;X!IB*NvPPO1Yy^0f|Za=q8eW30lCb|S6DSB=OP
z#s}BAB*fwSl?a!;m;-vImN<Ik`k;Gdrs1IoXX#v)W7!NM?}RPG%zL!1Jn`Vbqj6i`
z>>i$!0-<22rbZrnU6_;YDn}KqufVXBp-S@IPuckJ^OcvBEN(g#r)UU=<Nwde$$TID
z%OevZPUfGzwDR7%q$Q`zjl=Tr)YvBSN;j6Dr`D49-17HI3I4+#EWkH0@BsMe2KWg(
zLRn8kG~&!zaw8<6relQZ#-eQF1TL}vBSS1z1gr7)&P(%;Uz<qAh9|4ir{*Z%VYr89
zu+_=KW%+RLG^DdkRSw*H%zZx~0||wgC_0S6xD$ZA<@!Kpwi|bFLS4?~`^(sFD;`wq
zCMR-bq@2UYIEv=~O=-gpJ+1)o>b1wQ2VrR}PX3Hsiu$fmPBIBXsBkzPq0zM9$ryii
zz<ZNHTJc1R<p6e1XOa>w8bqxnaw`AW>^$U&*Jy?@ctKCLFTQWbUL-~00#lbsjgr|#
z@(b-D0n+EFk=$d>v5}yRj-U{m=Y~8F!Af&K8V9|t`pXwTcCNSFpHzQfPFu}d8SW^4
z#$s-GV4az(ER;4!T4M`qgb7^;(usbyh9F0QvZ-L4&kpU*ZM5P{F$8D|NG!n}0|Poh
zGw?Y*i)X>cP5yf`dk;Gx4{6w%;N8*c+;_da_KJ*BJN|Ltqah_%NtX7FgS>sezr%Yz
z97TK6f@sc&)c(fM_w}x~1PvwEo8d~8cOyX*`EQ$%pc|6*z1NGY`~-9QOiHHC<(F$O
z62=QgQw__CN<5&(`EA_i_d$duMo)uby&0mg#)N5$v!51Q_5DFt^ZGlF_g0R&b%Wb-
zd?umm|5OFwVXOxYf@oGYrIXSA?db?=4**V;!Ds%>J2@Mu$CCp%wyiJaLGge7Jk@0p
zFRNe3Dr9-|P*tMgWf`Hj9L^h92SKf4VZy)`wrCv*y-;!(8w)!@AtG9DK*o@=Q#%H^
z{#PCu8oC`!_#gnW-)<KTPAbj|&cahue6PX(yXAbPg{&2G2#WC^s{q(<T<^idaXL-T
zFCwxqb#XSew6t`KC4L)xBGVC!VzX@p;FGCGH;<&Gq}$K~nXO3Cz_6x(gBun7>^|el
zy1LXB0KG=*5qx=vXujtzE*%>Ocs@G~GI9eZCf3RaJJJ9WR`=$$>FlXfURS?f6TGJK
z1EgbdWyKma&_=KVe^)Fnj`dqMfFi6rKVI=W-Re97SQG#n+hH4HbL;f<%^h4nP7QWU
z<LBoWxTIw<>(g?=es*?-7c7AQI=^F*4`A>t1a{!(*BtD-K9VYm(#$XES)@ieyMCC!
zzYKl1%Aa4Aq9}*IsYUL0jM&3=S-i$Vv?lhWx&*WCx&Jh#HxkJUpTcKqRSC@;8b}@Y
z?p2nj#KZCa=6S!pGm$w|7*Fh3ONyejSzoqH;&Vw&1A`%&v5mU9tANOg;N=yhU*VoC
z+rkHnGXX|3Pa0Nfr)fO&5R^A=U!hhyyr~O2+ttSfFTKq;+$#_110)bjOs&uwbDg^R
z|0nhD0$P{=f8Fzw4ZFFH`0<d7v*DjV<9#k`YH5L9YgBi--Fvj1(Siv%8wuI!5iI}g
zzvqBgpG0oG!nL0PO_6r~qY@GVqlTSsq9?VXw{UE0QRZ)}>>*H6NU4I3;B@zu`E-c&
zq^(f>=Hv9Tvkk-kmT>i=ysyqJGke7?+H;e|OZHRugya<XN9X`X{bd0X0PE8nfk?m$
zDUdg0q4;zI+M*J#jXynA_3@FZo$zMuSJ<HxG%EXRGIe|%B!TFNd4MpU-~ec521sQ)
zT4@{A4;zgBC*+RuE|{lFg4V(E;^i{YX9P}11lTB8xfLO-(uosZz@X28+Yq>TkHZRd
zk&jQmyyD9Xq>ZM|{|W+9xBUJCUdV-99E8BuH{^krqI7Z8kJulz!)NH`$<#$Ig-Bf}
zAdJ}ujX1^K-Ccssx1vEYcnWUYo4!?%7zAv_zs*|)+_ve7Vi1na2h*;)b8H-tsy%p3
zbA7$vcAKB&+Mh4u{wtrx{ct&+o}Sk(#ZCDJv@;m7RUuDa36{O7u1<B6#dwXFb%Of@
zU{<_*e1?AfXvGtHg1h<GpirpV>dtCazXvET!q2{2R`CAZAm0Zmy&?^9ZEbhKN3_y~
zo=r6e&6(qXRwSPW!q&1kUHGF}Lpol(fl58x6vy{uJedGsgp1+J#WTT9j4++d!^^86
zQp!urslQOM{W4NMHFxV7Fqt8wTB4^W>86LZm`oq&Ko@~Cxkdg=e3X4@NK9C6NA=Mg
zuxFMeD`lmfcR$X?o64C0p5Sku{ac!o;|ZBU+9KH#QUx3Mh|csA;Kln8`w)LLZ;}&k
zezrc@#M&~Y3%mi7S{KE}vzjrNIcL`Z)<lKvOO7LD^A(*pSPu@z$H%R61Dt#`Azark
zvE`!3WKR=kJZ<glID%IXPGVFz=hkJCN1&YyMyB6HLymg6%sH5trt#bkbTzvL3=(e;
zpsM4LWmSH?Gn$sq+6RlgYN>FKXw3CgZ_4N8hk5(U?+=U_t63PapWn%BoQ3{n=<np{
zQrhaqmp2a}VB@}X@pzRv{Oeaj!;}h(c<A?drVZat`Hl&n#`|#<xk3BJN;}AYf=(AS
z0U$Vl2k(?1;zptg#Uv%sq>QEnXjbv&^S$z+kr6c$6IQJZk$KUJZPCuY9L?lW&bq5l
zp2HD+La~Q`MXBQ(7f~yo*fc0^K^C__AWASIhx^61-|!7n+2<tk`I;|(%xJL+0s+B8
zXdN({5{@4>JC2B?i&|ju77kYNz!XS}`@z9Vz*M1Ax|mCZ>419z^gCUUX?X@R(D3nN
z;6$i6ItoTaL_}>o`HRCDn3(k9S?d30rFcYwfeIi5bC>zu5&{E)v4j6?9neyxkmI4e
z-vGr4nwpyMaym*d$kx^tl*IG&9~y&W6^Ui(&VR4>X*lq>NkX{fP49NcJsKAAXMHP$
zqrr&00j-kUTS0RypGxJWe@d<vSY}=qPp*#V_^QX-a$v0ZjCCHXi4O?;Dq{tRT^Mjn
zKHK(Q4+cVl%?0hd`HdWJW^kM>stvuP;j(8?#+j1T0ax<(mD3(*?I@->_4%IsWJPwE
z1x?<Q1z4DF-g;cV`O?M)tT7NhpJ9Oo+Nhhcc{8$b|75?mrLWSq_X!XffN}zXoCQ<|
zXiEQ_zhAY@UTuz_fS~YcS~2_hq$2#^PxGcMAa>Vkr?5bU)XlyUeA4K<HFJhv8V^uh
zl~(OnL>f2mUS*f_L?0>bmFm*Owm)eOgpOE*C;~Lwpt*?Fx$ox(#UmT&NGJH4Gn%>)
z0x4NoQWA|<(Rle&+r0M)6|i1k>=}Gil^=HXDRuK*ZyhKP<ndcHT7F?C#pH=r`>Kq%
z^*O^|`r*N$nrvcuj>5HRvVtV#axTElyO<o%ndb3K8fJQv(1S~xU760c9M)4>9SRp$
zHq*K>kR)U>uZg7p>hTIshG`pk5w*6QjkUx#^wa4oxTANnU7L?K=b(rMwp^;+g=|-)
z*)IclUXsvYKGPOSkthdqJ4EH{MdL%E)}#c4#4=-(&&DKIF0ifMel)3FFF9)lR@4qK
zijGRw@N=)jrCG<S;sJ!F1(sd;XD6Dv{ekeeRU%Et#|BR-UV!x3t==f8MZntA1iOT@
za%dTh0K{lZ4MvMs2BOK8HVIvt_I~|0aw)n>G5t8}rNOtRL3=+B1Dio{0^tK`Z*T8x
z`lZfwA6UgQ6P`me%o=Je;tmcD2@dGP!%i3$1W!kd>2DbMjaJ;rj!(}2Q)B?u&lWfJ
z`5fOLf%O3j+wjq&w~x49J{aj{`KK<fiUB1kXqW5vPA!IeqNr`EcS(nC;?L)VN$i;+
zra4p3<w*QMtK&gZ%(=)tVzX)v|Fmz-*8!^H5f<j=*>YjMHA|N0+mA8##<B-oML^qp
zZHu}*Wk$6`QC&8vYNeZIDubQAA)=jv90uincT{*)Lk^Vv<qr(>Y7XntS`AYe1m0Nf
zx6>PaviV$|7SV7X8#eiljsqC=oSby&Kn`#wvsEl!1CV_y)9lW(qnHhD-V>3fm`vs)
zo}J6{=|iRmL=R4K-_|+sfHxWwc=1eC*v2$=+H>uSV2a?xg^pa7G)+9^!>3JhJe{OE
zhGGr>cyOwb@=3nY((^yb`xpQ0y@$%j!S@tMK_>kA^*AUgb?%=}FSqV5xn%jdB`0@Z
z@oxr(PcZOQd3322NBvL<AzZIowd63WsWx~2jP*KAQe3`-F7K@2xsJqpM__yi18FEJ
zBNM=``q1<?z1+gxl2Qy*?c|%$)=?F|kj1PQO2ZnSijgI+BA9TN7qbX0c(t^15)&OA
zXIDg1SY2&c^}JU+$ARlUaQq{_-Tb#(@Ukm)Y2~B!^EWwz%RdiKmCNU}1t5iW%R;Ew
z!Jm~3EwI?rK~nQhS{fRpMCoL7(yCX;S(t&z@hv)(=D!Q6zJoBv4h}RTElZ+NZN}!E
zNZPIRZ&fj>QO{ii<L^AaF>@+VZVd*Z9b@Q<RzFW>6HM`MS`sPjxb#ZfPH`<D`s#tc
zVTIFE9}aPdrX!YzNuc2EjOt7BhQ<VLu=dH`;0Owm%xd77oJmb`j)BhY+O`#011ye0
zPicn;b6P#za!2U;mRvI4mw5`dENxg89VV28<W%(McU`F1gs)-ps~1ec_3UAF-&SPt
zd0?-~pqwPh7*F|Q;+PCdDrFO;)tHcCIMb+krRVz4SbgFo*1voXTrj$b3T%iCn%ebB
zqhj@+G!L)b&b=)JOZliL4oDvl3-ji`?H2W?da8Qd@v2<Jph|DmK9~Ns8dyH(+lEoI
z?{hE}x;qwTRJ~aSF4si@PD3Pje0}N@8mq78{c=QKfdSzEXDj|QMRJfjf4$i7vNg5%
z)f@G!SNF-5?8j7fzG;UW`<ZucnFe<gh3DU0t~tAJrh?bsI(P8X_&HHSfh(X-72cQA
z)D+v%mzZ+`lZAfXIWX@87o*Xz2OCdC`A<AE*K2ZK?0o3H!r;r!XA9<h`-9m%gNZz*
zMd$thOrz%^m<E+s?M6rYOMXMgY5n&&i<o}KqGz34=4v!Z`u`6lor3{q9g=fFj5Ht>
zPhPD5Vt?Tw*nNdDfSqq1h=`J`fXnO;vKL*Z*1Xt~hOFSh(<0LjmX|k`ASM#n;G<Rx
zVo_e1e6Y}h_=VPX?NqWF_!gJPzw0YtXQ3_D@cMX-dd?IB;#O=;^?3+dI|h{@87FTH
zLY<v6Zc5#O@We!Sy&!44dXtk5hbnAv<}=Q>szmgFcvc3U3prdjZJ+Er7z$qW(u9B9
zl}qj_eNVW2U$LAV%i0w2UrhpooNRPc@+Iq_5GpUfGA}yAK{?EPb16t7G!=S<q_()3
zZTVPf6#DkX&ihL?^Zx9{Hkv$NIG@9f2rsT2h6SJy7VJC6e4)C;`ftb&GZ8Ma$Uedv
zqA|LL=4sT4%3yeGQS^Ck1nBLzKN&|L{n+{5rWxivm^-(7{(I|^YFh8+k>`}wI}XSW
z;S`BWZfi3Ku@ae><FAjURJ_S|fm!n0{)w*E_gIyv6N1g7s>^W3*Et5S`Wai>tyH*(
zDfhqp7<r^7|2oG+N4fj%UB5>H2-~Nce`E^v=h(__2CE@*kcxj%V-gOv7P7eJ?B5qp
zXCueJxd(43?lG@mxw^oz%S0F~^PY}!{D}U;Tx8-ORafiI-l^g*&)DZ7qMP_dd;Wh@
z*u#RS|0pbAVu?ygh;^4~m(ZUdj2cQQg=eL3R-V$X`K9a7uO>dBN0;VP4W4+D<&R$>
z>U<I+GwJaAo`n&y;#z}!SwO-nO5&AZKc}E+>bS*Sn^!zL*N<l0uM)teC9pGYsz0D3
zQVtiUcSzIJ+bly^BZ7qKAC=vlymXT<*`o6Gc$+cXpB)lFq252z8yt|c%t!X|m=iV<
z`d)O!V(WFL-C*vJfGdX$6=`>pv}dgJpHhFsP3Q74ExU4MnyK%Ff4Kd@_@3I%0^JQ)
zI7!tGKu~SvQBJ^p2M4Mn?*-((`5bte)Yh)VOYdF0O|YQcj4U|;<V4a<@HMHa-16Ic
z_`bjo($hl3I+7nFkn90wYuQZTr;2DyNS4OLG4GUF;y%FMthEZJ{wxFd)CG=TsA5*H
zPm9lf7YJTNjXA+Bh<?fAZfr~Et2?+=+!iMPg?N6z!Nl^MulP+m2tr{=ApgQn-XOFO
z2=IO`@McX!`QT_H@>?^!$D#i_u0QMV)E(}lhwJ-wh;@-^u#FDeOl&0&i)a<XnSMa#
z5TABn(i7~JhY!h-HJtaFcD<xtTYM$RgDrZYsvqik1MK_4Hoily`Jo>=FG|8`?v7O?
zQjma;t#$rBNVc(|)nLFvLAM+DJV!%z^0bRTv-=}tN<(>cR>QG==cwxT2gStP{VRX2
zHuvN!>OK@-d61=jf6!dwBqQfJ>id%e!VLm9ER`JYDP5uknKxl<$Bk)J!x*&o5484c
zV`E^YN33rds91s{9ts7W<ly^HNu!R(p35J;A8}Vvu}R+bT(v&=+VK1AkFMAbB;;q*
zlfX$k0KW*$udWLW{ck~=2R@YKdQjHPw=y~o?&P*)V;ThoEKml~i3r&OtyrWm+up8o
zYXW+I8*Ky0996Kq^(L)=hYMZs9bB9TtmqxF&J|hv($A;bZAU-xYhfz1j0a&T)%Saf
zs}s9|H7&dBFOSENO@AkZ>ZcL(X`;yOt$_S-34w)1W}KDe`WYAaq=CO;QfX>+Sw0;b
z&Mg*cc9oKN4c!n)WJ(#>jd>Zyw0Rk4YEoGl>swkJL@jbX|BdHNj8D3Iy9ueN-GL)4
z|I?O~rX6a{iyPco1Ka+*G$iRIdm?T8)rU}=Fi@Gy=XbmxB7nhGib9CT2jso;o2oLz
zHj#wfOdY1=Ou1ERO`<D_{RTZ4>6Bd`X)Q07&QV`>7rE~<rUSt6KY09!;gJwes)+_L
zAa0jFeQONNn!zs15cvR^2{qjlm+e>_WC!Czi~X=GqzgFBwy~rApA)sLeVEq#s*EFL
zOA&jYvS@PK@z>>;`^P_7WG`a^4YAFc=j#!kwQJk>4x$~3NJxL_<>a@{3Q|ohU@5@3
z?szWuF_9X++hqGGeJ3`P98oOKC;!*gHT1Di&<d}0^>C#c&3mEj^KCi=h>ZOt*8~2n
z0K(=$G|+Xk!Qz7XMEc?tDx4+V)K}0}3ir-1F~QB8;qA{4%&U&?)}{qzi+Mit1Qm^M
z({R#`3^ixZgk9Bym$1&+Y#rfU%GVJM!MY*3)|%t`fKwGx?blYU{Nxyz8dC3TYkA{=
z%@)_{+m9VDFs7v5`|-0f?W0=-{4l*bDeIy@<wZx6?%a-Dih=Cd%IzV|BMb$gRqxLF
zeetI<ItC_cVx2|DyMNr_qv$^udxV%uu1ssCiJZ5i#byIGI0AYJXsul@iuPLsk|?Eq
zjH%f5KHh$Xn;9ZnOcBUTQ?uWLR^RY79tw_)F3PNlVD+7wZ`dM7{7dxP^50j~>8#*@
z8f)DY%t$|GjG;X6W7qim0^e<w<4?|`kB9(;+>z_4HiVv70iuDJ*a3~2Cg}x;!s_TD
z#rCU(&xeiu*Ls8x<OVfjs9|*kxPt28raMA%t6tnmbNGJWj-R&wv@OWLLa&&2>bGmd
z+bSV=bbcZ<3rZm=Zp43+Vc+?jf%GkfvG0D=Ws>jaYH~byb@IUoBKboHn1GE5Tpp%b
zLif4bL42cPRZBpcPOLRFB|w}XVS?%8&CitpVJfUXX2bI;-?IAi$RhLd#{ED7xvbjH
zK0{}J8T;+dd$Nau6`Mh%x3w4t9$pXuFg5H@|Hn!qLCNC1e=xMm^N&k7eXsByt9C%u
zZVDz6gYXJ@Z%_E#Z*Bz?t8`_>!Lr{G#>Ll?b@XAdg;utp#EM_!`m?EYi<A_Ld$Jb2
zcQlsuNA!~D2mLMClV;2XaHg|fsrLPtF2USRy%5%WXY6?D)Ghlx!fZ8gPwlYE!}#;^
zy&(tL7sy0EK^HVf7ktDKb_-AclDqWr(V!8zKL2B~xLX*dYQAM!K4<fyv0yawXvt-2
z-isbA;jC%gMEM13(T#)R@g$%%tt;v&BAI5bjSMp4zo&X8`>3B+_-R1#Of7o<-2=+K
zT74*vR`_Nfw^GP;Xe0!1bgt{{_##v9Sah1y1oa9R_G1Lx6%cL-AXG|?-5A*8%ZI8j
zjKK=CDFbFmKaDDM?@zJ8r5YGk46n#C^R(C~VO5uwe&ha)NerZ;QLnV7<1ZVuia;7d
zB>!_D|DLOYwr;06{u=K93B9uDGNxhSL!5?~j6<Fq^BO!ZiT>!u58C&zvzm&{tM-EL
zAb*i}9*aQweH%vHliM(vRjdA$_u5y3*X$^%_kGzlNbuyC2f*~JJCBv#La>0R-tQ4b
zs@aregiYQrF9f*Z$o_ye2IzpNO)Mcddsk#N=q|lP`urk~raY*$o9lNMSpdig2x8-}
zk)L;rR#*+O!9&$ZY59r2e@CWw?1qM#JMn-q^y`iV1&|b7qQ>gpI!G`ak>WQmjqRFK
z0QF`2y%zwc1qk@;mwN$uZMgn-ANPsM3vGmUj=F`j@G|njmN2ITDJpg#c=OR|m{=qO
zkOgzd$}A~Rg1z|@A;75lFyhYry%by{|68;4AL^$2errc0;m<(Cs~ZcTp@l{%9bi6R
z!Tl(yz4cAKt}9uzuE^$QeK`c&+wu3=asSea(zF*_w<U<RZ;AU9hxm@Z_z5Q%N28@T
z;V9G=G^U?L;+&i*w^^8rs{B~<8#O^|0{kD<&tdcJJ@pLri{D2*)XXf4fX>?72CJeV
zq44{j)^{x+{jxvm<&U_(@cm$EQxXM~^}p3+%@H<nuXy%K(CB&2_=}Hvw<xgZu7Ek>
zb6bTg!dxwx5}eDAR%1ChqhXBIlRBU+FI2x<_l9hTbZP0wzp*^?{hXa!GXZD_Po~+l
z7b-P5#i9=+@4yt|HArkq##n!L4GHasg5m#%MvyHJX~RfojgmnEeqqw%{MR^WJHbX=
zEia_D%O;j`Z_xCB@6`t^XR67J7n{Z=0JH1ZqVf-6PdvNuI?cYk%8vrBbfp*K6P`H-
z=o#i?`^K9Ow%Gy^$(|Y?E@dG(>L}`1o)9&<da8=fFk<WHvGr-KBVn$*31&p&1VW@`
zMCY!vft>cG?o$weAE1vSNAzvt8fWXLt#-ZF59D3}$;isG2yU8tnoN2~e5-t}=;Jn$
zQ7@q5i>IXXLtDLM0i<xaV`vVxega#6Yg%b~tq`2p@{0G*qKL!%-t?YU!i~Q{xKMwF
zxGN=9(=o3X+Fw+Gy%0VW=xA)rT!Mxwk4rLv*3Xi>uku$CFyr<>LI7|6>^$?2u+8de
z${Js79+NnRe%0?^p&LuEgy%_DnW0TcU;z@HuZkkx1@+U$UVZrXS8HmTi9*!OH<6cQ
zf0`12=1PA_CbzWVqFzk~2VzS&u8eYh+^ziAmo)wikCb*<+`0$0k6elRbgrAt5&pkT
zcL$<ZsF#awum>l3`6X7&(5$=iw)599XpF9I18+Q_9}E+p<i&PANNsY1@kJYJO+Ekx
z=VWmZ!n`^{rGb>|{&-260HUT?4h~VKpM?6LFcsMPh8)BP@ZH<nt1J4ci~jleg%I$?
zAq!^fUi8qbc`$XIXTm`_ULXi~WYrK%nh6G;O^S&Ec?%5GyM1xvzQXm7$F7w7wN-nO
zu0x}ZeJkn`4@i@JKY6v@g=A|r()ti@p5u>T-o=e4poeM+xe_^uf}g>sNZyA<wrXi;
z2uo;ieh-pdKjDg;*Xrii>t8U;Fp|ueObFWb`q|0%8nngBOD<!VWv^%sv-rNh(u<wO
z>?rlFj|BH%jY95#)?Q+KSVQMs<y;nWOXISwocdFsKp4fVOhP*eV4L@F<8a6c?PuT_
zUi+U6ua%sx(?z<<g3u)N(xyEQb$>wfDYP2LZ<VABgeO3LWavk?%fJlqm)n02&WcJX
zS1gJF?Cj<*;d!050!aAv9$~vJzr6fsxI)RbfOPD_r(uz=FAI7YGLa)&HZ1D!*qhjT
zwNSMVr-q>6xfUgCg#}@=gx8YFJM5+<BZ%SKA_tzCz&`q{tC+a)0;s2?i;eGREs9&Q
z(b{)(J8u9^5WEDyMVmq?<TcXHRLi~HW8d|J+Pmc(;&BBoVSPSNpDx_t<e=u)Zbf62
zL|8EJ%uO6~dPp=1s^QW7;;^E}B&rfWzbWcYo2D{Tl<msBLcIXe3*4xn)*1%HD`@?k
z$%6niC%&evqC6_Uw}Y01CpjJqM<Mqdzsp@+KPPT5Kcg9)c?f!qp6QoxJ)KeeoT>H#
zN@_2N!jJY%OTK#%W&kf~*w<NoLUu^Iu4Y`rmh%?Bc?|jfjvpZ0yWe^t^1@!CdXIzF
z?L+jmJdTKO-StZYHC*`Fs&qa0RWzHLg`MJnIt=*0e(bhSC3f^52iyP@(cU#MXW^Jp
z_VbSZ)z!dMFhIa_X=15px&&G|x;k+EZ8&P8mk4oFq3~ELP`+Fe!)i8l89@C56D68*
zZxc7)5O3+NG&(~Yu8P<s{|-(oFe#y8Y2zsY>UQ68g{(zM{}`xC0{8(un6~2Xu)$XX
z;hYAmt?L&=mL2%eBmf%r1JD`bruY{-!=H>){yzCS=1tqx!&lVb!*8pEAGE%NHN(BL
zwQ3pXf(9@0wfOR!-9HgwA5FtYBY};54I^?BXjU<K*SlsqIS8;+gFlbS%s!1Rt&IbZ
ziREs6Rz1v2yAF5~y<t9dd0&QL%RJz@noS#WI^@;k02X`2&$+LVjL8fFfJ30d0euF%
zqKW+koUurGS7{*8t`|ank9dvVC`W2$k}hjzd)GEHwiFdalU60#R?if*uh6}zCj)#_
z@IBCVZCcENAg@31h=?Q{3ce2`pv6)hKQLWa81x@kz5JFOSuNeDGSm!v2pS*|cf1=J
zsr-=qS8tGJq^I7fvv^<m$}5m0cga;>l02B!3fVhx(1ZCiH9*E%4czhyNV;q=%8x86
zww8ehdr;W<vGZ6XkMP!ugo&efUFQ4x3_#r!0i*oh4xF!?q+K=-4_<%P=@0_tH&MQX
z(v*~hO|8wPF}%r>V5Na%j$}rN{-pn7FH-(ox{j&IY!95V-YozVzbhoC?P|vkjr{V}
zIQ?7T`Ayp|xFiFyl!SK=fU4P-OGdS-2!`7cPPDF~cZ@>Y(G=CXI?5tRz*39@))a7?
z3#@)+gBmF2XA<B9j<Rc1b3?C&{wP0ler?rN#@N?J3jHg$XT>2Lz^S0^`A~57gA7<Y
zz})N<A9!VX>Guq3g}~}g4Z?-v2f?_w>Zr=#W3Uml>m{StH2oeOXO@heb-aRwm$bwK
z@CV1ekM&0RhjI}Kx%(3&_rRHpYMU46UJM{9z{3E#ajS^$bJAbrqK!CvYnMaMr&bBb
ziGmy1HDtIcr@i2H_J!62weIfn0s22fU3nw)<7)cz+eHsN^!{@W)1ZJjEk~k{YOfZe
z@LR+Er+{z;S5$jLOm07({_M5(0zIV{!omN%Ksel$pbGPmz&H0WGwR|&BWJz)tIC+7
zw?G_8Nd8b>V;({MaxzVRdfxbMIv9oEQ@W#KTWk}Wn=p|nddFo(8&Hf_z{%2kQV|!H
zdvDj<;kl|n)?)3jDDef|ZK8Ae&#{NC2V~Rf{2IK;FM)Rfv^hznt)0X2U;EqOC<5p%
zpq%hgd{b%g?#mO;=w__H2L;@L=|!Aiiwz+F8#xvk&^rCt)jBf4iDT$NCSsixTYrYF
zXUEn@-T`N#(h)9a^mg<btmNJ>9bg#u71a8%tG;Vplp<Btv8n9Qfi(1BYO+VcPiNE!
z>=~T3&nW__2%ZPy-D9MIzHBb@N5v+aC;;x6T!4w2eV>LdxCc7?j$A^VJ4QSlE=|GY
ziIw8LkyxvHBNX9sK|fEY!AjiJ2Q-qdaUV;YUz&Mm68{@1(s>o$hE+)j%#G2FRFC>2
zq$&!9FuA|BPk|fvp*yjl2&Ai9-VLTpqFY(|tt%#Pk%I1W2L%dtg6;u@53rUNgFTQ-
z=4NxP%xpq;N`8Exp!DkvlTY|gw9N}(Buwv+mga`M1?1<-{Pn(q;vmK#Gb%vlz|#Un
zxlP(GqxEFJmr!F=mT>Tx2KiMZk{m=~ab=$(R!Wt(Z_`rd-q|PmM?yo~H$CpEGH3xY
zQV6yzZNE5zyuZx1%;I2ugJVUFyKt|10~}$ZdxQ`j$SJcI5j4~W@@!Ja>&0v9EKFq;
zSqbZ2qf*6M7e!XkAB;Dl1-Vkd6{M<8PnVsg&P*NE6sOuI`Q5*1nBwveI=y0VU(Zd%
zpI-Z+uv`%x_Z_Ns#!5{G%yN%?&|s4I;c&nf3jjk*$~Px6t_LJ`cvfR{3DrPR*Nd5?
zKIPi{R&kO!+8LTih{<{@y5X^mLV$k32Mmy#OhA+u#e@$=?pCiARN2Y{Q^B8IO;!h=
zC39OhV!M*?%-$6j49;zpcf{F7C%v)+AQ3qq+myh?Z*!#wOJ=#-c={#AxzmGV^Majg
z?7t6?JU-Be+C~KR0jKu%`zH%t^cq~}ccL3-{Q#D5KMdv#`>0UPW!reUkHrDbAyvhZ
zH9Dw2md;xf<heW>Q&a;ydJwE@*gR$63xG*-U$&VCTOME}N}u>|cS>s5;{Ms3Qs8+<
zvgv&B5o6iqrLj=<;%u|OzQDMA)=V&S>HsP$t6MZa#MBD_m~2cddW7b515IA+%KpV!
z&`o&LCxu;;+YHT^=vwSOVBxTJNSR_H8{4Hv4H^I_s9~=^w#5jMyMcY*I%zx4|GRgb
zd5eDfIs|x@tf3~%#U>@-Y20>Byq{>G7u%0J0PBgoBc`pROr^*k0DfcM+3ic0vxeZ^
ze2EZ|uKWgNgjA7P4y1C^X}ANsEQ&Ev^tPGrEV0c~z=iVHevskWAiKyGxXwEbe)$|k
zB0*x@sP{=pXNcluV^v<j&<Sw`;26@r+^eEe&}#vw8v^_4r^!d)R?q32+n5NhXO7Oa
z56~tua+}k2%aZ%pZyjnc?AXx&D+X|b!e(4-9B6g#a+<McB;oZoky?O8+Y1Pq-US35
z=rtDenTnXlBo;(>TM_VmUGUwSM>}So_1=xM)ZtBS3}6wr%b~ilopzsrSA;Hzpxl)N
z59d5g>Cr(xF8F>%xhtJyAZy@A-op=pY-=vGM;Yzb`m^&DKB#tFY$3=XMudv;)-Ycq
zZk8U1MUFmdZ6OMtzJVJz>TC=a+@!gAH}H7vVgWUl;VXQ_NqhC{6x2tU^Tz1epMJ5O
zq%?!Oh%*YnofE+x1lR*uTpQPw4S5N~=$^LbD1Wkmf5S3imoUmNTv0Va6!@C^_sR!`
zDl&k<4y5VF%U>?Z;m%_ZwQU2AcJ9^%gtDR#y4ru);0xsIL}g^@1RIbl9&7Iah9_$%
z6G8>`z-Qw$04UR9I35wTL%?R@(gsvrdDQAO?DdE{`W{@#<BG%5hSEP9iA_U1Mc?~X
zQF1d@E<B$ze3TR<kt7bVIR28i<yGeM#ZkNpeffxWLfm-Z8=?|7Y@ZKS(U*4QDe<Z&
zcFh}0MPsqDxMp3pRfH%L-P$FcUEzr-qQqGZJBKiZh((1bgZ;-O`qw716gaD0FLqaZ
znQp@rJ#fbtGiagidQu0f)b1oBNpf6)08G*I;m$<1vGg@E4~)~Vu6`2g@_*Ysx<IQ?
z6DKD4-;e;OkM_fnO>;ILvD)c1#N|JxChq9BOK1<lDYle1K!t)-#BZ?<+o$Jn^5>UB
z&KX3C^$r$oJx=RS$8lb%aZ>pJ+iNZz61vUEih|x~SAbdNwUpXi(9gD$$FX3XZfw3l
zI)k~fAjbcTKN635jX;O_j=kV6w&aD93S8pBVnDo9?RKsM)dDya05JNb)k*`K_p-Rf
zwU1o##oBr96846{{;r_cPLcoG#))6G4&f~bJIvDLa`-0|GeEDb`vsMet(<_4yguA;
zndZ0r`P(`N;UkZG48AimGIYh#yU_o!$aUbkTNzox4-#IdWXeAKn^3RbW|Nx3nag@(
zm0Mys=&%a(ytwfv8(P{b+}%<G4N16bdGo6lVZvy;Jq6>H&`7v+hA-(R+4NbVk66{C
z)`QRwD8z%p8b;zEY`ro>kjwmYLazFK8%-+eJ-6o@L!e`DmHUdEH9Zx%b1nqTPEco)
zW&Qv?!LDghLicTXRfUl;V{#_wQ77vFm&bPa=#fq2D|~l(<C!$#E`bHiYwr$th`F}d
z{}#>^jd3Bo!POjyrp`fR_pNHR`s2p$p^N`uiEpS^*To6Zx$|x+LSkuL+fUykTzX64
zG*IIxZ<w->w02+H2T<(%0>y5;z$63I<}LG{4ca~<htnJ!c^olTyIoEja&v4&R)T7t
z{?{O&^FRQA;Q(y8P50^2IoBoxasrw$SFwKuy5hgcl)*7qhYOuA_BTr!5+9z@K};Z0
zAD8p~$IZ~MCj|~dvyQ8sqAG*6Q3r5;`E84%Gr%@V^!;Ogf#DG`Bnvn(xb%En9qfnw
zYb`1II&km+ZLl3Y=T2wIh^du>Q<D8s>v|_)Np47Frv`W0QN%M~=P#}N(S3G=WKk2q
zbDyy0GC9oYiyb@QNxv%vApE%Q#ktEPk`(6xhHs;VH^3v=_v^Z^a3wq7cM_eS=(c~9
zN&2S)it5JOkk#ygk>D83KiNjJQM#I1EnRuvLAHe@Pd8<}XBbe$cc7*Jx5;*PGtr$H
zozWRS*C3Poydw^FSl=(0ErUKs46I0SsWbqt?=M{`SxuFc`7xvpQoamMk;Z>rqy$e4
zz{5<pZ<~S5r#NvS1`z8D{McK`9$-TOuhN)zMEEk(aKH&72HIq%Q2@Np|K2ozJ)c>}
zwz#Na5-SI82UH(`7kd$qPGFBB7);ZlZS54`*dzstT9ODxyg-nRLO2^F>!9yZ$)D2!
z0O=V8yV0tH>N+#p#{pL*evjO}ZM1@f%cbQcmswR@I-4K|JSuWjB_k(&AZx{9Q||85
z%eWEzPQY^;f{>ek!EnX$Lq_3`FE!q2BxoS5BYQ%ma5>PsXE4UMsKHqV$gt9^lk2D7
zJ_9%g3eV1Rp|}>&GNO;R7Le!30Vk%>^|zs<%hv_ElTtEYKYyd<D8<*S;<^=>1`~~w
z9~@b7f5TDdaK$6W7Z}>#v1*q9Efz<70$1xh3?u~R->#3;G=2|!Rv3)A2H?{i^$T!b
zen;+=O|)gnr94<Rej(r>-nGPvtuv)%IS74An3ya6lJ7p)vI3!(DZb$mc>V@llWP7t
zmis#EyB6GQFhmnDL}67fd^1Z1-OD<M#~u?0<RKu}vc-Ni$<M$=A6jN0T%0V5ne@c!
zlT;e#OygeWB;t7q;IKfDWL=qmG`nL5%4oxjek;94M?))Uf+}>#DL>gWzfk}Px|hdN
zFXWhcpVBxHT+bdwa<O8ZsN8tpxXMX5gA+jUU<V1Dk)_=^0_@7Z2crg91PDqro<-1X
zfK;j;1{Hc!FwfFEe?*`A`->d`g5g454RF0vs@GIbH=B6}M_Uo#*=*}UgBah|_5!@s
z+vW$kT_y*-rQ`)*bj+Hjg1dmdk&RO_u!e9TD8Rls=qXwgcX^gTUR8d7`~DJdH$a?P
z;&LM8S>nkm+RkROKzoOR7;dB9FfZ_Ny{1ip2Wi5^!t%wGAvaYlGFXBoGQo7^o6Nij
zKzMU6&p#4Z_@OK*F%7m8Tni|A4l+lNT2Dfg!VFeIE#z=7-wB}9D}f2dHohkd&ie2R
z$?u@aqfwzq8f<xftu=MU;%D9)J$FD%CO{Vep1+`}=1sv7Fp2!OqennmfT&&jx5W(k
z^uSly4>vBhnSxI2sva~v-~)z5X2a>(@)fQWV4b|o-8b7kU>ls+qkLOwFxU-D7O<TG
zjzs|n$L6!8_bot7!*an%pyJ;z1j6C_-{%@vQ3#IQA_Yzja5Bd2d4CFhst9L`&3O#<
zHRPLtiF=P|FbepQ?Rx(rysxAD3B)1-$qXWVOuMq>P=_5xK98O5Lz90^w2fI4z;HWD
zft^{f<METC9I!TRh?*yLyz1r=@A&0=@1nASLbeCa0x$(%Yzu6WSAy6xi=d1&TszIl
zPX1h)PxoWD`;+yYA>bl2PiL0YnDV!b)PTyn$xS`#_><iH5)ab)ufzfdH;dnp;jFS0
zB_Vj|8UVY0&x`VaKLtX4E7jyO6LFTJr{)9C%1o$rEpn8n^<FC@uT+vcEju_m0K5z-
zib;T8$aer$H%kMa-+wsDzXYCd_y9C2o?hvzY#v2`y-RRJW*h9XdH3YF<REkjSHdpD
z?d?^PpFe*SvG5hg|H=5lzf(yP50K2@QBBHSw!ztL;4VCT2;2p=xs|_vjXqE`6veHM
zUjgoIjH*=kwjmNI^bjd{3P&dON79#k@~P?)AZ=x3)%F?%8xuH(Om&onfmH}tR>|Z4
zQQ4P3L)riBlcdcfBq>WxmMB>(vR1YcDwHfC%S753q>!b}77Z$+u_Q~BRHCFp$vQ?+
zBq|X@_9TS-uiNuH@B4e-bN=Ul{+-V0oDMVh{k^~6&vJdP>$=O9;=>yB!9oHh#p|8C
zr8%Z_jC<E|m;Nlc66Y|0(W!gd<G{hL4_u#9QXZ+2$jX@Q^o5LBGM`<+IJ4Q)CDCI1
zO_YxUo*yp}@xjZw+2)1mfao=`O=Zk_-4ifBu=wWk^x{V~oq8?_`tTy=J>~oXN?{}O
z_-gi;ZQW5g#vG>vDdxA_vY$$&4;W1c3`=@NiguN<zI2XqgXjZnU6SiI7ExmWWsIEu
z#VKM^MSd@5+NdD=I^gU>s<FsBwK7?iw=2quoRc+DtJSwEzFk6}gYoCx=4qn0>|_<m
z-}<`@?NiC$J<oyX-qw794z4~cnR_!{9Up#$+dH`EIap}{AltinNIA3x#3<TQB1iN-
zsx_l!H@$tr&rXYH9?*9<bq*|o=w&szsmMHl3;yV0s?f+fe|$!b{p<2%OVDEOmQ{{f
z)Z;K!S@?v{Zz`crvzO7gOEZvjCB1$&x3rU0RH)ZA<k_AR_w2<&j(@UAPRj}GW|u3d
ztONcWMUFyYK~^TaW>v)>(VAG?qTXerXK!xq>!hqxC%$d7v?aePVVZPY#a8`Dt2L#t
zmicFBe%`)+brBmS7Km%TcGj-|jVtnA(|~2&=_P~)N-cIfGYXSXAHKRZahARjCLn#R
zIP>w8g-zgJlx}dTZlP3Cbhr}onF4fom*BwCKi75P_i@PO9CdJW$H85BN&R~$zJepi
zQ)j(mD+8I#rW-B4yD2keRWt_mUCGESvW&Ts2a#pCx|Y8?;yKBTefJPspg{Bh-^z^l
zY?Ko&b`*p4kL~0`EnJWWlvDi~16rkeSqVot4EUn5f&Yhs=`g*!-G<%PUM<@9-`oy6
z6^CjXK^y@wX)JUD=J3R0`pF)=x$08fTIpN;%jp7OIcN<lb7w>XH3UfWEn!Dd7y4#k
zu6|;!AL(xT_k|9)P!K4X{X5#D$~^=h{KE=g@`TgR?dM;V!o?HfBgXALIkV2CS1J3C
zQeKx{4L?Q_>~Pw<%2(4EbL<9@r=zl;S8Dm+j?_ndu{fbzV@8w3)IN@&2zbCOA)?Cj
z!e23hmM2Q8x4gC9nZogz50)qO(uL2%CsaQKB~&e%Gk3V)$IarKeltg-o_`nZi{7&h
zZsNnbX?efTvfBz+MO##+9LhJuaX5If3QQG?U9O;8toZb~@dbu(1Xm}ktMsYoI6wK~
z$?cobAtRoU7&@;|Zx)ypV=?69dHaTWsK5*mjcA>VUAj7#oPVd~z1ZXtX@a}`nC{w>
zWTzXP1L4im<^OV)W6lIjdPdKz9ex#Vzsp5$<BFRAL#)3FytKJusks8cUjXOtr+l|b
zYBQ$j5S3fdW?-b1cDGwI;6?aZq2(hN>HIa}F@oMKcc)uq)wf;ieECzJb=f<5bg&Ie
zSHZPIc9)FuqB9?TL3Z6^`M^X%yhB|@;_EY!pQj{BixLo279-|bzV|)J1xCwVN&&*9
zv}C+3ptLI86Stc8W?o(NWr6W>x7lNh^Dz?zM#s7~aQ;Wm!mcC77m#_?x!<FUSNhPL
zQ&Q_rlz3@PTzw1K^=lY;SD#2~xyaPi0OLfzt7)bZXyW~FCG%)BJrK-bm3$s%e}GEy
zC+52%JM;aAYklpGCZt8UBIc`ajJM+MzEv_646G}HxV*+MfmZ<3f#S4JL4>?I#Bmc6
z-{3DTdqetu>30Ck56=rCX|u|L?Hw0RkVa(h>!|2Y>X}))Jc&szO!~H*McQE5gY)((
z-~|UrY*^AgmPI=pDl%nJM?@s{rBnuR&QW)k(-x_yAdmF8f64U>jUy0J2kwYq`E}^E
z^Oi{rpRG>M5}?l)yL^K~bzNe5I%9fO+N;2&eBMOe&PtDmKJmYFifVaZj!<lw{XQyF
z=je6XGd;>;AeUm&exai#e~yA^_$?iSeRMLf9UUUE)RzHWd|4_wuVPc_{z}@C=aK2>
z%U<k9c&bu3sJAAelZY5m%#|Or25&aDpz-;?bp8tiX1sUQ{(SE{ywB<F_L{@??bwfT
zm{M_d><X>^mf)tZxWtXh;=SBrKYzZ=W?GdyNX?%owqZ>}AF2QjRNfS{<_2QpWkJSg
zoO8Rm9^Z_?{%3Hi^-qMotu<Dqd{CY3cF#Zg<k`(d7xMADUJdiCF-$M=emq2ETfpP(
zf3=&aOc`~Yu44YtP+amsTdG>mY%g>vJ7<n9-@ozwZ==`-)W?{IC~3ayL?T}WD57cE
ziS43$p*fq2tu3j_Gh>(&m9W=<%=l(Pj=YOvU_YW+u+S_GYc?dU{bt5Ln2SZy{#C}Q
zlaS~}l2KR@iHS})2+eIfc;jgAuEja<>IPYzt0cQbNEY;~=HCd*vz<_=^qX;}6n<tl
zZQZ(c_pdIg*PENQVicC8r60M9lVE0jwptU}UZnrTIBrJqEqB)tN!x(4<HE<P-1H%7
zdqMIdOj?O%u*oDUb^$QV`8)Mj$*7r{nzyu+(mEG;{Er^rFG};jx_Xb98WRDL?-?_1
zJmOhuJae5ZDQjb%pE!rsckykqXd@@<6I#Sdi^5G|MdP0(d9_M*CFb0BTs6K<uaa+&
zcPH2}tZsP(+z}qkWNG9ri~a!@|KU*fh%t`}jqI-^di<;uo6H-a6sZYk1awal$4nmm
z85k0u2K?9O+N1t>bm}FhJKP}#sX_<9HQm~kt!Gvik~ACsYOh`P>rSaakRMPD>~I+0
z{$p1+!o760%he<pj?q8O(_AnSBC(CV<wnc(Fe^C;(q|!6KEE|@1)WN$gCDCWv?OPW
z4#amq)uCBw#+<ajimYxHNsqx0A7txaSlW~LYU=S1%mu-mY{sq~(zLiHh?h|PjC7G6
z{vh_`A&g+LzCTZGML4`{LIF(dKi|)VS=ef*^<vtarO;^W-)Vq(dP31e5^j&aeDd`u
zF83vfUDh{ufD}*=?#nx~W!P1v_@(;z#PV*Mdk!c}vKo)6(G^;|JC>YZztL9HwV9v3
zm|~z-auGCWRQVIrHnhX5Cb!6Gyxz%DUp1~}3Zcq{E;$L;GZUj~Wm+gxdXFWjZpA)-
zue)?&w@Rzov*Ow+F*7!!_^8~=a1%Wg!`MQyx$0I9X;SiC-|AC~$9U1i(rndk`cz11
z-R@t$8=!k8_zM`+qlcA=5GEf(2|6*|f>UI!Kdfqs4AQ+fMp)*o=!nRhcLyys1uriJ
z!!;a-)NAoiZkq;+{ZE#oh5R!JXC^aLh_5X`FqB@#%<!%ND#cG%g{a0#)v#}oS*Y{=
z`E^IR-}EtBxiyoX8Ic5=TOQGYT4VHKvuQ`e{%8I@OA&KCH)U#!yPF`SM}&Nq25%p8
zW})x$>l)2)CXkzJP{ePq<MphGZYCj_iyzoEeXn~7t7u6azp)Ex!BlHc?}wddt9S6O
zxb{dGXgJXmoVl@xy$>k8*{21TzQ&8)+NKPd!l?n7f2Li2i)fkMf8teC>E6&ha$G|r
zwT&tLtSQy#p&Hvw=LsiTHJ~NvCDo7JY%^v~|Mc*j^v-%{p}AG_gK1ycb=h3|+$I6~
zHDH=b4tr{i7@3{>=JU-P4cXqo-Flj`LX0gF8=p?P_0zZi5QyOz&VT<wY7DJs%fwre
z!5VsGzS{=l%4Cg4<FZf*sI%*2K3hxjPJ-tVL23N-qPB0n`+%QNSqi_z8*Sy`n&{DW
zv8p4BoVLV4%|P@~o_f-zYC#Jyy?(_d26V%MxVX)lAM`=zi)S6sU!O(r-z}tZzGpsN
z0w)Ud&|_lxeG$~bEh_%v2Nnm2+~zrZ<*p;C5)YOvSYGvLIqL?euERLz!<VncvuGAK
zA6h(Hae_C>eDe@d^qXW)cbpb2N4Io6Ekeq^lDw-@>=mf$^24?&#R4C`F{ap!MeqRQ
zh8ZKzpeHNPhuJ4A=n#C0`y{H%vb}lwA(z9mVD{CVY_@{D`&{5Ltc_HO_gd?l^FXmO
zk^4Ib{4VA*pJSeRMPR(OoPJy9@q*;sCSCe3%ycoUKzn1!uc<G%iaE$A{^qUVGN%q$
z+;PgN`QKKcm9K5-^e45fo>Qz`%}=7SFBnuH2Aj3Fo6x1hXuYxwopaF@m%*&Zq=eWU
zuLwj_rt?j*jOV6`sMFUm&vU7noZgNve4D$-+00s5_|AXf&YT!_NjyJCJ)TD$^jUMQ
z+%8u7%*Sy>)i*a6Il0&@VOw#H4BmulXzo$WEJ3KfbhKcB@kP)CcLB3|TZJN{!CZMm
z=w{tdx7lOi#{`A`MVFnQi81?~!vl%jkYZp--V7#dlIacA?NKKFWp_0JlB0-1Cmxng
zJLjJa4v#%i_@!4XB=dxOhI;)Vh|CA`!Keut=lZfGf6^JGqffx*@%Ny;ee(2qWmiIl
z6sf<SPF(D7T&xO!E!Az`K<y)Q{X1hED*`wk6>F=;!!+D|>FK592yl&72h(pQH%k|q
zhEeaW9r^O9)S@&8@`r4X`#~<D3EcDZH{&XUzD|n-JL~3#l9V}lHN?x<OU$3Q8)NTC
zUe&pxf4t1(X)B(c5XeCHxK<>#*s0XcJI*1VSQSDP;w|BouBA4PwIeaHy`_Xgi8pbL
zfwJ-b+be_Cq<g{xV#lXr#gMz`y>Hv)oo}gZj<A3MMwr37$Zi*@Tv87slH)N)45w{~
zgZf-vVD{T^sAx1ZzlV%-d{N1-3x8EVAN`C+X<VsQC3A~hqvb!5GRN-TA}2}b1QA?5
zAT7*){lyIR%;Tv_-@o`J0QCT$fe^dMU}hQ;`L?yF8He-mj#@*L760MOwyoo!L8bV(
z=>32iE@NXznR;-ozGfo8Yj+0(SE&lH@-o5W##}^pqm{>#FwtCOVxpEk+%g7!2tv(>
zp8Z=<MTt)X#c)Ibg7_%bEbg_@Mcgw82YQgp6ANOtK1+0z8=oD}k)$u#iHre4#QBqF
zd8G)FWOUf!>5ygWlbe6KG1|!%`g_b9-stk+%wYTN-hZ2*$dM0g>mU(tOWfMYxVB%2
zwoVKLb|Q_Pu5fV5%%jG(fb4>sba*9e7OSl;*%f873~Xk|t;+G+$%{~HE5F-`IVYa0
z(PEI5(>&`f2o~XV?5+Kc0@Z4#Uyq*Ll=I_<Bp8pfn94?%{n;NOcg>x7&gBt6!i1P;
z>AK5OBu|$5uM;zTfYFW!A0$f6c(5LX6`!`g*ZS!K!lkU#3bD*vp6ejZ@rvyB6EiHg
z0K|(N+k3Q0Z99LshsIAiEM~T~-{v{xR9O0X;MfR>S~&}om+zY|mEm3R0<fB{=X+z*
zW$Wf)vfzq|9C8aTJgk!RYUbUESus2v**jYGxHDO)5<hV*u_*#VG$f4ojB5}z-x6Z4
z3n~CkF=jL}UN09D6ZgLVCaD4H2H=5A`yZR|;mSmDh<*aoth`(4ynzu$H7h66Y%L!!
zJ0(fk0OU-N-~aOA6RLJQn5zN8MF{X^n#G>E+m3V4<kRh(zk7$daJ;bkwX#23es6;^
z(RV?JV>H6Nx$)lD=6?;IVPLv&d67W%nz}Isj**d3o>Q~J7(9i3jeXUs|E(US3c4hL
z&iM+X+sthCM5g+&)D0_dHWM<x^;+l}NwQg>G`FKdLDb+M(KT$8Mk^7&KjqxqDAuSZ
zB1W(+lIVG3SAd;d4+z?5qwoV{d7_hv7sNyqvlviZkltyMtMS~k0=I&vQ$=9PSen`m
z$%fdb4p!$7;6mj>J7fuo-xHdnZ^*UCW$G~5!`B}?hT`=i$}18X$E*<ya$Glxa&QWa
zYNk-%92A!!^MU1>^|bXAzsO+5ZLbT&Z%4oUk@4ifd0-uL-wx>iGC)G9_jg7nRddf(
zg@eWdhIhlK!bTiT@R&zTRF#bmk8Xjm3CJ(n_}B*Q>JGm11y7zCU37yH1>o)V>upVp
z4(`yG-dN(z2?p?^<aR=8mkc%K#YkQYyP`JmgJtUj&MvO4Prr5g&VsT?6Y5SbvHsQ{
z9uIfCUVbg57b^oz%){UVM-#vq#J)L=YnQ>sKp`dl*zGUy-I3eUFQom*K-G*2r4MUQ
zC$V0C$R7bA%-p8fU`b^pBmG&&WN@~B&-|W7eN820-WP-35hivJ7BQ!7?Cf1ud9+Qb
z;t-?K9GIU^RHw1N^U4$<#PKc|7~W=FgM%J>+$}ZoGb<3>{^pJml1!PzLYl+VE76&C
zYHVV?<L;u~BUH_|ozwx;An!>Y6N=xI{y0C{&84(&y{suLb)T}jO%oJ|p)JlxdQw_M
z21w;fZyI}utJVYb31I~{HXSGqk0}i+)Oqpz%U+{-?evL{2lZR>y`#eh!0?D)=f9+Y
z%SwA>VfkWya5P1JlY(;6yJNFr5M(i}eb1e#4P#^yba#c+!J9Ivgu^#A8k=ik-dYe{
zaoQ#2x$~D0!%oAvibWA7!Vm;P=}ep(i_{-`zdb^JCKz&`aw6JCBz=6$Rf-o+Se5d%
zbuy;DCp0T8c)@#@<M>IImfH6MzIn3=e!pGWZ832IHqv#vyVnt_Fss~mFQ1UI2>v>c
zuXfG9RXeyZfMGJfJp=m3b4trh(b8!D6Tg~!>tfx1>{{XF$i4-F`Z8uy`L0f~O=K#4
zGNd^8PKZ?L6!U0x!lz$cTe(VBQjabg=5E(?<Q?W#*^vC5seIbNhKsAr4*7#vcS2Lc
z{ifpw$sI@3<JB4PEin{ff)Ei~^+>7V={;A;XnFd<oy{EJG=L<#vlKowhC}U));@;6
zSlDItUvoI)7Pg(nu-eIe$~$Vm^}rd)?|$6NhzuJ+@;B8BUK?;MEynlIRGS+MA!as+
zkh5|#JxC*81NA~@S(<I<{1{pKm#Tj$#F@Vjj2s})AonF@d)8uOAsvzZDF%Bd&B28O
z#S&zVFh=Oj5VMarwt$dE%JWM`Y|0c<k${e%*F3Ua$@EU9h{{v~J$GyVSY2Hm+QajI
zt4~nQnKT}XG>OG_LNl1}Q;bgcn<V<Pri<5yCqof}ZaoC>^6mP@2!*0|cg~dgp^`cJ
zuXxbCavOWlmz9gZn-mmux>A)-LzNGHr~+^k9D1y%%SR03OxGmbLFMIs8^|q&7MQA5
zNGwFt=<-p{<gWFnmWOqnlG(C!p|Uw{um{Dul(%%Jpyn^7c4L(dW+nnuSEn24PryW5
zCh{F5=j=hh2osWu1o-?tM_UXCwQzKp$)2G4wOEi?E9I1vXNj&dv!I_L04ch6Hc9PX
z`aW==_}f=>2tCOy&11|BoGHHY!Gy)|SgC*T5WS_l{K2u(S&}{7jwe9&fvNcc2pS+P
z$V6;}RurpF_l>BzE)co&P2&rwhm<cc`{h*NIi*q8U+8IH@_}iulpjWa-WnODtc3C~
zm&aZj{K37iy%1(x&WApHJ)$&5TZ<&bNRQ_CW@&XWY`-yX3^AsRomvN2MVAC(n$_7y
zlBh+jB6D_I!`{k204UdtjNWqTzGgu^SuY52oTb7OLQ2(WzP)z`Q`mC+jeEcMHG5E{
z7`FyWYe83wZ@OESl|j;rO}l?o3F46B&FM<crgy5HBz+JsAchwOiFOg&{b*{HC3q(o
z-|87QQW#Y1iEPhpyA;Tap(oiHRKFc%0jA175&SDqphVWE=v(DKy%e1hk!ljoRot;t
z?GD@FtET|1Hy7*k>Ri%KpWWVr@?@2`!hl#x(=UR~EOyBr^sMcWITI_eJViklJs`Tr
z-pt;WISXsj`}(wX`$DX4!<cApsDUSz_Cv~18$>^Xh{M3gfXQpKs_76YweRn2_Dl@p
zSzId&i4qI*4QN|I%vJ71{~3W}b7U}sXl{QINh^M1Dkw;wdKt-PhkK>SoT$`A#CuX*
zDq7~G9bqo%G*?Mg{~j9XvSa}DaqwfXta~0mCmtk;+=N#E0I9zf1tu>Vt<R7(w-Dl*
zzSUqXNoBRipZOV4B?+9HzvfQEnNVkBrZ|jxXI957TPn174uscJHt>9{jE)xc(7an!
zk{U@F*UN1YrgM4w(A(^_EP(2rB$9`xg!C3>umCDkW#V!gfxZPE^m)e&+MpfuhWMFR
z5=$)(6ebkz%=^laj%FMu?rG#AH5%g4WtW#qUW-@=QI2Hi<&EoL_VfzrVyDn{I*k9$
zb7_c6F|72-V=dUc)oN1v?u0G%Y5Y`(1{U88^9hg!k>I6l<1)k3A#hR$MSR<h$9`f`
zuEZUsW&F`!FlC!<Jt3UXTW>7cf?Qh;mCeALJ6P#zH}Jk5Nqp2r9SzW*$YYDTM=cJV
zl@_bBJ^A2vv!{9JiwCvtkp>IYp7ePlzFJ&KxJuTGt%Ws$<%1}+dF4+0#Kw?hJ3ZQR
zmn*6vky>DR-Y7yg=YWAX(AwzdNZO0AQQS2iv7rTc{%+InB|>LN;&Su{v2HH9jn0vN
zgrEkGDm;UvN-Z?XL2`?loCjF^2ek8$DVfzG=@IfuJbKUz!Id^L*s$K(XidVd8x%ev
z@>5`{Pi+d(P(`-Aw86zxsZED$Tx=}-7JawJP+CMPBlGuG@rr=6M^^l~fY_*<JUNZ@
zgb|bqBoD;ZM*%LmhF}S_|DFws4u17$K-Wuoy&>Yp{Jb8OcGlfHJ~Bv>n5oIm!B1fe
z_t*q(0?2+4>LN)~!YAg^l<XbrTU~K_=60wl6(ukbJ1zE_io2Kfe6W5D)?BFY=9mwL
zdICT;Q0u2=97-ZCX$Po`fk{(@-r3hI8-efJ{CQ=f#7&&-8H*Yc&%s?lT_Oz5m)?L#
zP<C+&Nw%Cxh@~-j1BC;RPB~Zq;u&|12|3Ig>JsH+4UBVGPQXUs@?mc{5-%6()j$|7
zd>BcAt`D^;q*!_`QL!S2onLUs^C}Qs`9}c9;BdFEzoTyD(G!tQLtT|H>8=ys@@eN-
zwv<fnpUYqPBmYwJsP+N0B+1Pks*bWBQELPGBqF$8dusET=y}l-Kr@Q}p~bcHU6e&3
z=-=s~CX7P%Fu`soi1IM|$T%`+3yVNhBYM#{?{?dz(az>xl~m>?z^0=gcL0XDW+p(k
z$WYm@1mFdv+PqtS1~?b@@wjGe|0F>;kkgGOop@fLA7c3SUdz%Yme9YwD+$wCi5(+1
z7R67tfcOL?RzUSF@QQ#Pg>--WppGIme*IF-?x8Db%MW+o0(l&n2TT-Vkmp{eZrEC8
zWgss^>w?NnT^~w~j-31+5Q9{eQLpdD*%EBP6a!M!y_o)?P9qMF;GX@|O^%OLpAiVX
zJIDhHfd|J3Ox&EG)TrAVMGbpRw3{gRc1zBA70_FJRa)ICk1vm&DWrc&@te_Cxe@n4
zyOR04?&!`Ac5yW`sTXt@_zwyMDVhwVl^~WQOG5C6WUty>a+~a|XV&;eR~Ui^VyZgF
z(b97ffUnV74ZFk#9z)W(7^nQF!2{(n9~Uwecj@Ecyvt{ffkool!3ORv&msC@(w`vX
zKqCD2I782D$LqTV*w$_uKXb548}_3C@pu)964t%0XqE7KWzz(ajLjY>Q0s_b4r$;2
z7G^pBI;}C>S>DMLQfrb@nEd_t7gIv&d`CSd?Z<;LUw*O=+F4LE-aeY$Jy%G_Ui)6C
zQ;x&~W<L6fxzhUfUCQQ!7?h3ZoxFi=G;#O<ERiX^TpWY9VR+A5mo&^yY`H`E^@x5@
z^)p^U@ZTeV<G+_Kzr2(Xv${Y#p|un3NCS<&7piz*J*ioN*Kr6M%v#HMv15$3_mbx5
z-~2T43Xqzi#LDGqI^3oh5!}ov-LpoqR=xQMh0Rf-l%K&Wy7yK?ojtf<Z~^?v3yufw
z)}_u&#2EqI)EHJqG_z!#&VPC}JpDm~$YH7@JIKqe-XgJ|{7n-452r8P4m4ZUODHFa
zBO+^V?=Md1M3FV-X1p@)@Z0*p!4w^Pw&lUGwm{}aj^*=m!RKS!Z3w0gx;hG{(mq<;
z#`b!iG}mR#=_;XQgIA0k<#{;TxSu`}AoLm8z{n-v<JInA?j1~>KCT4!G#^^89H{u1
znn6T<WACf=v6I<_|2f2EYV&bQm}s8eI((kWqFbMKdME<&<o#tIlG5AY3}14&u$<|3
zfq3}x&>g_HAQEQ)!9%i3o&BMB@+`6qRHCNv86mu4EUK7>;I?7ryc;@_yiQ5e2D#91
zrJ(<XBz-JDuESwmcU0!&2E~Wv<*!ToD1{*tlBfb%?iaqvB1JZskI%zEt08f7qKK(W
z;==h<7#*ZQoxQT>{mLV>PWQH{<p|H&2fcZLVG!GfjQIT5AIHC795k}cxIxk<3hXxi
zcA8S_afvZM4!?S}%9&LYWAQx9lPq<c)%K)SV(DHisR^zYdqV*l*%Hc-#J*&9`{1n8
z;19sNhLTb~s>f~~s=S5dk^Z;9ghU3(YOlS&HX+7=?ug)TtTR>j@e^KSzv!sWPdTpV
zrty}!k{Wi9cJtF+fTYM#>~#@ZRJ@)`(gdM9Els|x18<3o>bt(&vR5LBWI8q3FxhON
zrP%Gu!Q10FDBnt$6JmG%-QehD8g(%qLq4E(zt59sB;z4M@qO`o9fm(k_6LG`R@-Mp
zip7`BtMRDM8f&jz`pa~7uNyuKWA5IgpH0lZZd|+pWFAAk%sq-4F%jy*jc47so+tT0
z5hBTjSl<6}*g0+I^Nk0_)|&pcF18G6>`;2lPX9k3QORaSI9}{S9)g1oqBmAK`e|91
zOK^_*b+`uH`g8e`%8|sQw2>zV;-Nx~0!6TUV~_-)iZ&GB=W~T0DNg@2uD+}p#l`#P
zs~iA~fOVExDVKWpS3oXJGIlK>w)dlXIGtPZMDZv);OPKRfCJX0Xwk)><U}hMmL3dt
z;w$zNKt+2&w~!4St=}VNYWtz!t39AxOXgE7L=RS-oc1trbRoMg_4w3ILRpK>Ya3g1
z?8LN=4c{|n)T9+WGIr#x3pa{bNMTz*XiIP;8npwPg)H?IxeB%(cY&^4n&DvD)gSrD
z<h;=W<&+dcz6`p;UxQ8MO0lQ^8aN%A85oov&}2hl7Pq0^i*@?jDJOWQ_3RwxqatO=
z&r}4obbo3rg=V{_HjS#CWBpc7`2eKpU_E3&4GXXmz^J4wgG!K&czplJK!c_<8s)KB
z+g>l4*l19|VqW&fa-7lZnF)rN2*_F}D=PoUmt>}T^Dn8NTu<;+4v;z?eAI7V#;kF!
zub2wczXX6rIfMAv$rP~M{4sYw#Co_|mH61~Ctlp#8HZ0gvYk=y_=z2E=xtQs(p$F^
zTR;%vV;YpV4;{Pe2pz6-xY1%9yoBf9v_Py!ukK9beB}|PkP-sjC!9xGc73^HoEj#2
zovzf!JQW)G0Fjr-`wi(0GVQ9(U#MZn6h6}v_y-1<+eVWT>W6$b@{`wsX$zDvr6O>5
z<J(8Cv3_xzR)|rCDjXUf4T%sD4ePz@sxChr3?K6&!X-(N20)rw(We$?oD$j?4~L82
z!Y#jFCh1-DC)^OS6UL;8tBpuJT~PozI^usIxPnA0+W>fBxZ?NFTi>32Il^}OxfSyx
zs>pIEqz+A*6BLybl_&{KR)K?evuck5GH+<0t+*s4YP&W~h{AftPiz<7#RA#)XX_yD
zQm9moT%Oc->XEYYN;E!i$jqDK7~LO0Y)uQPJ$hz|bfv>crxzEujD3umlZQ8?@6kWG
z%98~*;(c3YdmZ4&l?12Z2g8gQ0p_ORZHZy&A?SI#^QJd|m)uhDwUQ{Y*M&0#*rM1!
z5650>K+D1K9F&p0XY-X<K4(Z0@#AaWem(1ZY+~fmfpb<uW$sS*^DZal{kfvGI%qrC
z$5QNB(+*bFAK}O<7z=K6{Pl3W0mQsdtIwv@q^1*|&vT|8g3p~;nzMQEOz6c&(-(OC
zxI-`QF!=p+HO|%NM=8fN+I=|GwP;_p2?c50)a?1m>37MV@<RDdIrG+&vhI3Uw4lZ9
z|MGi?h#}o6W1P9_a_%>8onA8a_zw?&gLfOJm&mc7S$EwGGs!^}!?gY_{_FVDl!L1W
zT|Zk(luH=ZE1L_IsR|+H+s$ecWO0DZ@a)QAms};3^l$ZCR;^Dt&6yB0V|%vlm(Lg1
zvYZ?5>+H;%9355@{<om-6PBP3)JPjnOqvL!qG;vR7M-f->m`-b`y@yNqxo)JW`tv6
zI0WygJXGJ$gahxyIoMO&b8L>bZK{_^|M79OBeJgK54G^cNg3+(l9cIK)U*QX8<pD(
zJ74HDJQ;Uq2E5xCuv#ep%lZ1OysaeVf|?^u%NBMMryQE;AlE<E5^Elxyw?1{EJ9nh
zQSXG6mi(APgKxX5(}P2cYp<Jc9+#gJ&?JVLI77vy?p&AE0zU#j=b2O4u<3$WJER^n
zsYI9iUvG*h{+giyKtTmgXgCWZ@4@H!n~y4g^%{Ml+5^wJ8;LUuZ=9g)#8a{me3{<3
zvA36|ypxyD_wDB=G>`=lJse-Gk=nN*n=wk6t91lvO97O>qO)f=`?N}Q;267W{9IMA
zWHvOdrfXG@6uFae>oHXVSN#?#0u5<L4%}A#)d>f=&TylPHL|z6m`na#e41PGwf$Zt
zJczdyM1D4a9Z|f)Jp-Y#<sA&?`*{~w*N#D*oSx;Z(7q63G3tnhEd4=*u42EB34gUN
z5<Al0E)>WgO2%{uLk9ei1%|fEt?n7!C{BsBXHYRYA{_0|FoQ=KR-a-DyH2<l9@wg{
zFDV7B2J_&^Sr`|jA^)^Ye&@puHpL`s{YHn_hg(hKY`kv#4|Pv6@AP~%9yjiLr&t4~
z&wlZhUJ6-1Y|U<SCP!&YF(Q@Tw3;{^7Q?8h=SXYyur3b=C{~2Y?CYzwz{E1A#kl#a
zmjarz_WGJja5rI1<$`!+{&?Uq(Gd|rRceW1%9p-`#+u&vq+YO6<A7j$pX$$qN)PoR
z2U=OYWN>^Bp5!0h!b(|vz3Bax58}bt!Tcf|HPr);S1}M{nnQ#P^O{&IHI0m#DnMX$
zOuja5JI;4pea!x~?6zxrivw4>onpx==C2OU<7~dsBGA6TQFagS^mV$t7fV0x>Z~^+
z$VHx~EBj9z`g=kH@o{h8ku@tWD;V_hbzgCK7#v!3-F(kef<PH#5g8U$50|{LBgPa4
z;WI$oA0b`(I4l6`S(t`@6Jn8Is0UfwyfV8_%x(Hv7QWIt1Lf-MF#QFfw4|0`4wSqz
z-0MLyjB7cV!s)3loG{|qaj1o!C}a!swR+)Hr=|<>&B=y_qZFIfO)}C2XBIoG(Sui-
zS0sfN=U}Q<^0BeSAP&B>|EYpB5T=~qd6D2Zy=GV}GRWUg<75i;__7bq6b(VP|Jj_E
z+t?=`974miX~o(VksW{OX#Xey&WtWUjaFWNQs-|)yRzmReU~SAKg`s;wJ+gvxj$tm
zW~W|@J@91HkLEuJtMX$8K!KkLTnF9&greK+GxCD=UyqLRh%Ou2p9q@0@00W3>w>u!
za+gsaL|w$LTa%D9G@uao)T{^+s-o=0LXrAdj&QNPW(FtU;-c0+=-HEIBC2M$$>8GD
z%2oX?eyMRcLs+l2?&yp{TJu_b*j#DKlyLQCIOJ}sB*hjo*;&{~a2G`t-}rtG;UZ>k
zhK&`krnm{UTqJx00q_~e#}RVx`T1Ve3f79QB5{+8Z0ESFe2i0f0|~NZ-+W`iRtEs*
zb?@}K?V_w^hjn)URvhIX=6Q+HPIb*D(&LjWtXnP+;^j-b;J7JRRnz>*lb^mH>T3iS
zkRTW6x;#mNtOa`q7Egz8re6%gKF=Q(F=C$m4A-qhAt?Nyu?*W?-a;tH{fh*!hMx1|
z<CFRL8rWoEd9laB?(X3S27Z&_g&>_6zF#j>9<8lsmsiAw>s%vU?I82L`4Sim4lO~{
z>N%Eq$ET8iYc=2mhEKI{=EmknPv280aO1n?_tBZs`kWc3=W22&Bt=?zMyu-Q7m1(Z
z=_5lyl`afDk6uP8`5MiAdR*1@XL8i;q1v}UlSNI3s^3aaBnOOm=TVtIlmJ*SaO}R#
zhHkWTz~TgjGxZ8I&f%hwgn`~5naNneJo=n^yr5bAS$yx%_RQHospD%JgJyx**09zw
zOhmFvvTpTiiKKkKj(^k>KgZq5c<CR@-0nUn&T5A3+3r6--XsKy&(p@fJ>DK(zVgzg
z;ML5Ht<3IuOG2*4#@p)Ym2bcif)B2!MT5<J!Oj(gs7jmr*MEwtO8J6Qq@~Zfud{Eb
zeHgMT=czOd-knt&1u_IF>$`Ui-U3JKB!6GI{Xb^r9K*@ZqEkZc8!T2S2D;jv`rzsE
z+y6>$iB1o(R6!rNB|RKf?HTHIJF~kYYrG5pL}!kFb4xCf$^4Ah{}6xZ`b(N&6pBB@
zd*~V&^vSyZeJcJR`Zn4t=0B$tzGZGnXgQNN>Q}~$VD@iUX{AtX>oAp5k&2`z(I$d)
zel)sLf;xTfxv1pV(_1JituB-j)%+{XbV)6`brsWIIloyT$YQqNC)1MF+cj`NE-2<&
zb=Sy)+YE7socPx7s}j4J{rep^?}1HSMW1Fhh2kIbo>dfe@J0pm>{886MzM_29mi<u
zy;q$F$cHIsI~sdZ@N!zVPqK?r{;GCs$8hRB9i<0N>sUqp&rPL!tC&lxd{|=%)>kIJ
zG&yLn?T6J8*~-tKiS6nddTS{z;gET)(K*AsD0fAfDuq%|+8XTtj79pan7^alsUv?u
z2V-?j`wq6Uqt(R~n>g1n4(!~-qt@;zPPW)|Pi90lVWN6MqeAXPm!75gZX@aI_$a-i
z+z7`rQ(K0|b(x)__Fkn!b^WfG<TM}BR1|hwa5lc@p?3@&OqrT>TR8ym=si?tuL{-(
zo+;g)iWk`WpRgcr+vOe7#-Yj?gUkJ?W-d3eMeamp&CegFHeRiixkl^yc_7>J_#IM0
zCbNGP82sZ8o2@l}NweEpO5c}e)%82&aY<QosI8uuWl-+~+qZ8yu};b%Z3(NOl*|4w
zd5g-11)t5PcNuNI;z8MZ`i5}>ox15e!*<cTd3doTy^^Mx@#9y5^7Cn|(1@ptm%7$|
zxvQ-?3p4WyN(;iZe~)usPi(1wb~!#EyjV_+oftgJ(d2hyeed^>-+NE>OGw%;b4|Px
zV#T0dw&xis?J5;#+vQV_ubep5z9UAZTJ=g#(=W-BS1b2E%lzRhil?9UV`4(Nh#|hg
zwdNRhTs(D9f<XnHTfO|oN8kajmK%cUU5VCzs+`-69pfHn$JVN!T6kL}Uq#@?Cayxi
zmDL-D)=`UZ^z*Q`<}=FmB(8JXYOy4tVXCRSyM9D%sU7FhQPucL%g^Gbb5A^F&)j1&
zDH0p*NF&9i3rxgJl&qass=%Pm_8ybm9k5{HbXx1{<Lx`e+2ow^>sK}e$M`3`1~pE&
zu77*G(3*MA7Pk!?lOsE;1WU+J#z#3zyjbo<^F^?sCX}CQYF{%^$f`8X@UpEnoI6N3
zNj|(ngbge|@djt&)ii&fF2X++Zy<|;Rmt2R5rCa@KlZ;~2rXI7?3Y!cR!&Ubr~62Y
z2YI|x+J(2nj^7^0H#|1`CSi0)jQVMp!GJ&2sg<GBJS*WGUF6B^yKeGH1E-p9(sj$o
zi?GW|THF3wN#{~9TOiLt^T-!xt+S)hb~DbKq^RbX-e#vHou}gB7)!6lkjTr_@U}~3
zeY~raB~kpAxu3&|^Dv!w>Fkmx>qoo<PhO<&!?T~D-aG}tL!avCQm%qhpVB;Lzow(9
zlmD=4y*w<N_sU7=$Lh+5lClqfV`WGjxZxMT|7Ov&<2&jEb^AC|(r&!0JV-~SyM!+~
zKQAoI=wWuia=IRt$nS8WnAU={g$H<k%KR$&!0hHP5uB81&)(a5C-_1*yVJ*Cy<@sG
zPNr&9^uD-X9Q`2gGaj{tnkOSl@KVUC>^+m~W9Q@bk;EOpS864}HA=;w|H=7@m6wh|
zqGt3=F=AOs=VaUM&Whqr^<UH6rF5ApZ<%4icI`DwAZWO!fag)2_G7Q)B2YI*SWleS
z2;jF;ZF&2}TDlp1O8HhH)L;*R*4AKCnQcK%2Kj=Y#-2$`2&cySZJ#{Y-X<uDg;%Cq
zYDY+hJiQo^o=Lm6aeK$XJ-@?F?Gia%$J2Jj@6TN-%d|p2iMsB>YGSx~InL7_A)SnG
zb%_Ps9GjTTu0LotuM``P#tsrK5R*Q<X4=hxvnC|Q?8j;B9kc5-hWL5HAr7xC=2VFJ
zsCwr9l!|Wu$~@DGf=fwMc~((KwI&v}s@HsSz4Ga!u{O-V_nf5Z?f=Jn#{d6!>D*?P
cd^J5gENYNo7|58#E7&>6`eu6fb~uLqAIhmDkN^Mx

-- 
GitLab