diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..87620ac7e74efee566c6ee9d2ed7281ebafb4788 --- /dev/null +++ b/.gitignore @@ -0,0 +1 @@ +.ipynb_checkpoints/ diff --git a/ENTREGA.ipynb b/ENTREGA.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..ebdaa1e7e81860faf8880b9a8a6b444d259a366f --- /dev/null +++ b/ENTREGA.ipynb @@ -0,0 +1,1300 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# David Ramos - UIS" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ejercicio 1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Investigue sobre el diagrama de Hertzsprung-Russell, una herramienta muy\n", + "potente en astronomia, y describa un poco al respecto para darle contexto al\n", + "resto de la tarea**" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "El diagrama de Hertzsprung-Russell es un gráfico entre la luminosidad (o variables equivalentes) y la temperatura efectiva (o variables independientes) de un conjunto de estrellas. La información valiosa que este gráfico muestra es que la luminosidad y temperatura de las estrellas no están distribuidas aleatoreamente sino que se agrupan en ciertas regiones, las cuales se han identificado como diferentes fases de la vida de una estrella. Asà pues, a lo largo de su vida, una estrella sigue un camino evolutivo sobre el diagrama (el camino preciso dependerá de cuánta masa de gas tenÃa la estrella cuando fue formada)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**El objetivo es generar un diagrama HR lo más parecido al de esta referencia. No lucirá idéntico por que no se usarán exactamente los mismos datos, y las unidades pueden ser ligeramente distinta. La idea sà es dejar su figura lo más parecida a la de referencia en el estilo: colores, escalas en los ejes, tamaño de los marcadores, leyendas, textos en el gráfico, etc.**" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Los datos para crear la figura están en la carpeta *data*. Cada tabla contiene las informaciones sobre un tipo de estrellas según indican los nombres de archivo. La información viene en 3 columnas: luminosidad en luminosidades solares, Temperatura en Kelvin y Radio de la estrella en unidades arbitrarias**" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Primero cargo los datos" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from matplotlib import rc\n", + "import matplotlib.ticker" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "ms = np.loadtxt('data/ms.csv', delimiter =',', skiprows = 1, unpack = True)\n", + "giants = np.loadtxt('data/giants.txt', delimiter =' ', skiprows = 1, unpack = True)\n", + "supergiants = np.loadtxt('data/supergiants.txt', delimiter =' ', skiprows = 1, unpack = True)\n", + "dwarfs = np.loadtxt('data/dwarfs.csv', delimiter =',', skiprows = 1, unpack = True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Algunas personalizaciones generales como el tamaño y el tipo de letra de los labels y ticks" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "rc('axes', linewidth = 1.3, labelweight = 'bold', labelsize = '18')\n", + "rc('font', weight = 'bold')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Ahora sà creo el gráfico" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAALSCAYAAAAr9MuhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9d3hcV3bne393BeScAwNIgjkHMCmQIiW1sii1krvVLbU6uMdux3vtCe+43b7jO3Nnxp65cx3H7lbOdotUoFpUoihSTABIMCcwI+ecClX7/aMACqQAEgCrUAi/z/PUQ6JO2OsUwTpnnb3O3sZai4iIiIiIiASWI9QBiIiIiIiIjEdKtkRERERERIJAyZaIiIiIiEgQKNkSEREREREJAiVbIiIiIiIiQaBkS0REREREJAiUbMmEZYzJMcbYPq9nQx1TMEyU4xQRkbHBGHOhzznpxVDHM1EYY17s87lfCHU8E4WSLRnT+kkkel8+Y0yrMabYGPOvxpiHQx1rIBhjphpj/sIY84UxpsIY02mM6TDGlBtjdhpj/pMxZq0xxhnqWPtjjFl/zb/T+lDHJCIyng3iPHnGGPOqMebWUMc6GMaY5caYl4wxZ40x7T3nwDJjzCFjzOvGmH9rjEkMdZxyfT3XMb2/i1+EOp5gcoU6AJEgMUAUMKPn9W1jzH+x1v6H0IY1PMYYF/AXwL8F+kukMnpetwL/EcgDCnqW1QF/0mfd/OBFKiIiY0TveTK35/UdY8wPrbUvhDasgRljngGe55udBZk9r0XAbwHbgPqRjW5MeBM42vP3xlAGMpEo2ZLxpgB4C/9JJAf4IRDes+xPjTF/ba2tDVFsw2KMMcArwFN93vYBn+JPnFqBJGAhcBv+k+cV1tom4K9GJFgRERntes+TEcAa4L6e9w3wX40xL1lrfaEKbiA9vVV/x9eJVinwa6AC/3lvNv4bjpkhCTDIeq4Foq21LcPdh7X2I+CjwEUlg2Kt1UuvMfvCn1DZPq8Xr1n+N9csX32dbZ/ts+wXfZf1027f7X7Rz/K5wD8AJ/EnQ+3AKeB/AtlDPMZnr2nvIrB4gHUjgWeAnEEeZxLwX4FPgPP473R5gFpgN/4esch+2rnQ9zPHf1f0NaAK6MR/5+yZ63xm/b0u9Fl3NvAr4EzPZ9cFlONPLv8B2Bjq3z299NJLr7HwGsR5cu81y9P72Ucy8Oc938GNPd/JJcDrQN4A7Yb3bHO257xwAfh/gOhrzyGDPI6HrokzZ4D1VgMp17w3YHv9nGNz+ix7se85CogD/rrnPNzZc2y/AMIHiGUV8DJwrudc1gocBv4vIKmf9b/o094XwFTgVaAS/03WZ/usuxz4EGgCmoHPgfVDOZ5r2t7UE+sh/AlsJ9DWc4yvAqv6iffatqYDPwWKeo63pud3JKvPNr/gm+f/a1/P9qzrAP4N8GXPvrrx//4VA+/hr+SJDvX/sRu91LMl41LPHaAp+O/a9VU+Am3/EPh7IOyaRbN6Xs8YYx601n41yF3+n9f8/KS19lB/K1pr24GXhhBuFvCn/byfhP+zWwM8ZYy53VrbOsA+lgKF+E9CveYDLxpjsNYOJR6MMbPx33mNuWZRb6nkCvxJ5WdD2a+IiPSrtM/ffVxTfmeMWQF8AKRfs102/pK9J4wxf2it/ds+2zh7trmzz/pT8ZfC34G/V22ori2hX4Y/AbqKtXbvMPY9GFHATvylir2m408o1xpj7rXWensXGGN+jj+xMNfsZ2HP6xljzN3W2lMDtJcF7OObnzvGmA34E63wPm/fAazreX84nga+3c/703tev2WM+b619rXr7ONF/BU2vSLw/44sNcYssdZ2DjGmfwR+fM17cT2vGcCD+BPBga5PRgUlWzLePNNT092f16y1F4PZuDFmFfBPfF3mcAR4F/+X7VP4vxwSgc3GmJnW2uvWTBtjMvEnLr0OB/hE4sPf+7Yf/52sevxJ4lzgMfzfEcvw31kaqBRxUc92/xN/EvRjvj4p/ju+Tv7+BP/x/7TPtv+I/64ZfF0//gO+TrQagBfw39FK79n+9qEepIiIXM0YEwGsBe7q8/a/Wmu7+qwTC7zP1xf8lcAb+J8FvhP/97ET+F/GmCJr7a6e9X7G1YnWWeBt/D1kPwDcwwi5CH+vR2/y8mtjzEX8CUkRsAf4ylrrGca+ByMVSAD+Gf856Qn85yTwf4a/C/x/AMaYx/A/Z93rK/wVJNHA9/DfOJyC/1pgYd8krY+ZPX9uAQ7iT25re/7dXuHqROst/JUgDwEPDPP4GvA/nnAc/zm9A0gB7gfm4L+u+V/GmF9bazsG2Mdt+G+E7sbfU7aw5/05PT+/BXwMtOC/rpjes/wc/qqVXvnGmBjguT7vfQ5sx3/ck/A/m973+mj0CnXXml563cyLb5ZHDPTaBcTeYNtn+yz7Rd9l/bTbbxkh8K993i8CwvosS8Lfrd67/A8HcXx517T11jXLFwxwvF8M5jj7rJON/4vwd4D/A39v2pE+23x2zfoX+izzAUv7LPuf17QX22fZ+muWre8nlv+3z/J/7Ge5G5ga6t89vfTSS6+x8BrCeXIzEH/Ntj/rs7wDmNxnmeHqEsQtfZad6PN+PX1K5vAnG33bfXEIx/JXNziGWvw3+ZzXbHdhoPYYfNmdBb7XZ1lSz7H1LjveZ1lBn/e3AqbPsrnX7HNTn2VfXLPsD/v5DJ64Zp3/0mdZBHB6kMdzoZ99u/An4M8Cf4D/WuCvr9nfbdf57N7pPdaez6e7z7K/vqatvsf6RT+xJFyz74x+1pkERIT6/9iNXurZkvGm98Ff8N+J+y7+h2VvAb4yxtxhgztARt/u88VAp7+isV+34k8shsIOI6YB9Txw/AL+u2EDBor/C20ge6y1B/v8fG1JRCL+evLB2oH/Sx7gt40xK/GfuIvx15J/boPcQykiMsEcBv7MfrPaou85LRy4dINzGj09EnP6vP++tbauz8+v438md8i9W9ba/9MYcxT/OWJJP6skAf8Ff4/MtSX4N8uDP/beWOqMMe/jTx4B5hpjovGfp5f12e4+wHeDz21LP+/XA3/bz/t51/z8qz4xdRhjXsdf2jgkxpingP8FpN1g1etdD/yD7cmCej6f3qoU8F8LDJq1tsEYc5ivyzaPGWP24+8lPYm/F/PggDsYRTTPlow3x6y1f9Xz+hP8J4reBGUhMKyh302fb0ljTPh1Vk0awm5TB7FOyTU/z7nm53L85Xl/wvCGuf0V8DDXT7Tg6nKFa1245udra7KH9D1jrd0M/CX+XkDwPxP2HeDn+EeeKjfG/O5Q9ikiIlcU4H9W95/w91aB/4J2pzFmxjXrDuWclmSMceDvkeirsu8P1l8yN+ybntbaF621S/GX4m3CP8jT8WtW+93rnKuvPd9d7/zWV639Zrlf5TU/J+BPKm50Tu1roGuBs9ba7n7eT7jm52ufRa8YQtsAGGOW4h/k6kaJFgz/emA4Ocdv4a8SAv/v4j34yzX/BjhgjCk0xgzmWiqk1LMl45q19mzPnZXe/4x3DHLTa4e9jcQ/Kg98XUfdnzq+/rI6SJ+7YP24NpH6BmttuTHmGF/XJS82xiy31hb2LK+l51kqY8zPGMKdI2NMFP4erV7bgZ8A5621XmPM28Djg9jVtfXxN937Zq39M2PM/4N/VKm5+Ovi78DfWxiBv278N9baczfblojIBHPMWvvfAYwxv8FfPgj+i/i/4euh4MF/TuvVBPynG+zb8s35m64a4KFn8IzkoYXcT0PWVuJ/JvpdY8y/7/n7gz2LI3ravdTzc99zeuQ1u7reOb2vZGOM85qE69rBKxr4uuytN+H6HPjNdfZ7baLYa6BBHxqu+TkN/2jCvTKu09ZAHufrZMjiHyzjfWttszFmHnBskPsJ6PWAtfY4/sE1ZuPvLcwF5uG/SRzZ895/5epnu0YdJVsyrhljpuMvJ+g12LKFhmt+Xg183nPX7t9fZ7tdwKM9f88CXrXWXnWXqWcfG/GXxQ3GX+OfxLHXm8aY+6y1Zwa5/UASuHp0pw+stcU9MaYx+MR0KK79Io66dgVjzDSgwVpbj/9B28963k/i67uhTvw9Xkq2RESGyVq7xRizDfhWz1v3GmNus9bu7Pl5F/5nhMA/AlyhtXb7tfsxxiwAEnpKyJqNMSf5uhLjAWNMUp9Swu8wjBJCY8xy/KPl/bO1tm9ygbXWGmP6zj/V+6xYr4Y+f19qjAmz1nYZY7LxT5cyGO6e2F/piSeJr5M7gBO2Z9ReY8xBvi4lzMD//PFV82MZY9w92+8ZZPu99l/z83fxV4P0DnrynSHuD66+TmoE3rRfz7X2VD/rB0Lf64FvXAsAGGOWAQetf8TGU33e//+A3+v58dqyylFHydYAjDFh+B8qvWD7jMwjo958Y0xvnXYa/i+dvt35u765Sb/2XfPzO8aYj/HP/7Son/V7/RX+sgYH/jteR4wx/4r/7loU/pPPOvw9bXdw9d2ogbyEfzSg3iFZc/HXLn+A/xmmbvxD6n5jeNgbqMJ/Akro+fk/GmPS6XkImKu/fAPl2t68/9sYswT/nC0HrbWf4T/O/2KM2Yn/y7Uc/7/hPddsW4eIiNys/8TXyRb4n/fpHUnwJeD/x9fnl98YYzbj740x+K+TbsE/rclf8PU59p+A/9Hz90RgvzHmLfznlR8MM85Y/Dc7/70xpgj/4Byl+G++rQLu7bPuTmtt32eF9+G/QQf+c+gBY8wJ/OfhofSy/coYcyv+0Qif5OqSvn/q8/f/ytfPj8/Df87ejL/ELw5/tcr6nr9PY2iPAbwHlOG/oQvwf/X0/JzH3+Mz2J66vvo+a52A/995J/65vDYNY3+D0fd6YHlPAtXbE/l31j+VzZdAvTFmB/5jrsf/zNizfbYd/dcCoR6hY7S+8H9x2FOnTlkZvc6fP3+9UYmueuXk5NjS0tIBt33hhReu2vf69ev73c8DDzxw1c9//ud/ftV2v/zlL21YWNgN49m+ffugj7Ozs9P+0R/9kTXGDOpYH3300UEd53/7b/+t3+2zs7PtXXfddeXnqVOnXhXP1KlTryx75plnrlr2wgsvXLWv8+fPX7U8Ly+v3zZ/93d/11pr7X//7//9hsd3yy232O7u7kF/fiIiE9W154Brv7Ot/eb5bufOnVeW7d+/32ZkZNzwe7nvudDj8dgNGzb0u97ChQttSkrKdePpz/bt2wd1/ktJSbFHjhy5atvjx4/biIiIb6zrdDrtPffcM+A565lnnrnyfnp6+oDnrw0bNliPx3NVm7/4xS8Gdc7u2966deuuvL9u3boBP4vPPvvMhoeHf2Nfxhh77733XvXexYsX+z2evuf1uro6O2nSpH7j+8EPfjDgNcSNzvfXu1bYunXrgJ9JdXW1tdba6Ojo6352TqfTfvDBBwN+TiHQb06hATJk3HK5XCQnJ7N27Vr+8i//koMHD5KVlXXjDXts2bKFn/70p6SnpxMWFsacOXP467/+azZv3nzd7X74wx9y+PBhfu/3fo/58+cTHR2N0+kkKSmJlStX8gd/8Ad8+umn3H774KeLCgsL43/8j//BqVOn+NM//VNWr15NcnIyLpeLyMhIJk+ezJ133sl//I//kd27d/PrX/96UPv9kz/5E/73//7fzJ07F7fbTWpqKt/97nfZt2/fkD6roXjnnXd48sknSU1NxeH45lfQQw89xF/8xV9wzz33MGPGDOLi4q58fmvXruW//bf/xieffILTee38liIiMhx/9md/dtXPv/jFL678PS8vj2PHjvGXf/mXrF69moSEBJxOJ7GxsSxYsIBnnnmGN954gz/5kz+5so3L5WLr1q38/Oc/Z9q0abjdbiZPnswf/dEfsXPnTqKjo4cc49q1a/n888/5+c9/zsaNG5k1axaJiYk4nU7i4+NZsWIF/+E//AeOHTvGggULrtp27ty5fP7556xfv56oqChiYmK46667+PLLL3nyyScH1X5ERATbt2/nT//0T5k6dSput5ucnBz+7M/+jK1bt+JyXV0s9ud//ufs37+f5557jpkzZxIZGYnL5SI1NZVbb72Vf/fv/h179uwhJydnyJ/Fhg0b2LVrF/fccw8xMTFER0dz++238/HHH3PbbbddtW5i4o0f5U5MTGTXrl088cQTJCQkEBERweLFi3n++ef5+c9/PuT4BuO+++7jl7/8JYsXLyY8vP8xN/7+7/+eH/3oRyxdupSMjAzcbjcRERFMnz6d7373u+zevZv7778/KPEFUu9Y+HINY8ws4NSpU6eYNWtWqMMRERGRILLW0t7eTnd3N93d3RhjcLlchIWFDXgxKOPbs88+y0svvQTA1KlTuXDhQmgD6tHR0UF4eDjXDiff3d3N6tWrKSwsBGDOnDmcOHEiFCFOVP2OQqlntkRERGRCsdZSX19PeXk5ZWVllJeXUV5WRkdn/49ox8VEkzVpMpmZmWRmZpKVlTWs3hmRQPjiiy/43d/9XZ566inmzp1LQkICly9f5vnnn7+SaAH88R//cQijlF5KtkRERGRC6Ojo4NChQxTs309Nnf+5egeWVG8bszxNJHvbcFsfzp6B2LqNgw7jorozmsqmOk6ePHllXzk5OeTl5TF79myVNcuIO3fuHP/5P//nAZf/8R//MT/+8Y9HMCIZiJItERERGdcqKirIz8/nyOFDeLq9ZHa3sLGjgszuZlK8rbgGOR1Qp3FS6YyhxB3P0fNd/MuFC8RGR7NsxQqWL19ObGxskI9EBObPn8/PfvYzdu7cSUlJCY2NjYSHhzN58mTWrl3Lj370I9asWRPqMKWHntkagJ7ZEhERGdva2tr4zW9+w9GjR3FhmdtRyeKOcjK8LTfe+AZ8wHl3Egcjs7jgTsTpcLBu/XpuueWWfgf/EZFxT89siYiIyMRw8uRJPnj/Pdrb2ljTdonlHWVE2O6A7d8BzPDUMcNTR70jgp1ROXz++eecOH6MTY88SlpaWsDaEpGxSz1bA1DPloiIyNjTtzcrzdvGPc0nSfO2jkjbp8JS+Cx2Jp2OMPVyiUw86tkSERGR8au+vp5XXnqJxsYG1rZdYlX7ZZyDfB4rEGZ31TC5rpHPomfw+eefc/nyJR5//AncbveIxSAio4tut4iIiMiYV11dzQu/+hXtjXU81XiIte2XRjTR6hVlPTzYcpI7W85w5swZXn3lFTo7O0c8DhEZHZRsiYiIyJhWV1fHyy++iK+lkScbisjqbg51SCzprOCB5lOUXL7E66+9hsfjCXVIIhICSrZERERkzGpububll17E29bME41FpHrbQh3SFXO6qrmv+RSXLl/i7bffxufzhTokERlhSrZERERkTLLWsmXzZtqaGvl2w2GSve2hDukb5nRVc2dLMcXFxXz11VehDkdERpiSLRERERmTDhw4wLnz51nXci4gc2cFy5LOCmZ1VvPFF9upqqoKdTgiMoKUbImIiMiY09jYyMfbtjHF08jizvJQh3NDd7aeJcLn4d3Nm1VOKDKBaOh3EZEJwlpLY2MjZWVllJeX09TURHd3N06nk6ioKLKyssjMzCQlJQVj+p0uRGRUsNby3rvvYj2dfKvlVP+T24wyUdbDxuYzvI+Lr776ittuuy3UIYnICFCyJSIyznV2dnL48GEKCvKpqqoGwOEwxMW4cbkMPh80tXjYt89/tz02Nobly1ewbNkyYmNjQxm6SL9OnDjBufPnubPlHPG+sTOs+uyuGk51VrPjiy9YsmSJ/n+JTABKtkREximfz8e+ffv44osv6OrqIjMtgnvWpzEpI5L0lHBcLkefdS01dV2UVrZz7FQzX3zxBV9++SV5eXls2LCBsLCwEB6JyNX279tHvO1i0RgoH7zW7W0XOB2eSmFhIevXrw91OCLX1dLSQnl5OS0tLXR3d195OZ1OXC4XLpeLyMhIMjIySEhIUFVEP5RsiYiMQ7W1tbz77hYuXy5hZk4061ZnkpUeMeCJ0OEwpKWEk5YSztL5CdTWd7G7sI59+/Zx+vQpHn54E1OnTh3hoxD5pqqqKi5eusTtbaVj8sHzBF8HOZ56DhQUcNttt+F0OkMdkgjgn0ahvLz8Sql5WUkJLW2Dn0ohIiyMzOzsKyXpWVlZSsBQsiUiMu5cvnyZ119/DWw3m+7OZNHcuCGf7JITw3jwzgwWzo7l3U8qeemll9i0aROLFi0KUtQig1NQUIATy4LOilCHMmxL28vY7E7k1KlTzJs3L9ThyATW0tLCgQMHOFBQSGNzk/9Na4loaCGyrIbsyjqiKuoIa27FdPtwdHsxXi/W4cDndmKdTjzREbSnJ9GWnkRlaRUXks9hHf5zTmR4BIuXLmHFihUkJyeH8EhDR8mWiMg4UlpayquvvkJMlOF7j0wlIf7myv9yJkfz06en8uZ7pWzevBljDAsXLgxQtCJD09nZyaGiImZ3VBFlu0MdzrBN89QRZ7vIz89XshUkHo+HioqKK7009fX1eLq66PZ48Pl8uFwu3GFhREZFkZ6efqU3Jj4+ftz3xFhruXTpEgUFBRw/dgyftcReqiS7uISoijoiq+pxem7w/8vru7JOWHMb0RV1Vxb5nA46UuJpy0imeUo6+9rb2bt3L9OnTycvL49Zs2bhcIzFfunhUbIlIjJOtLa28vrrrxEVYXj2scnExrgDst/wMCff2TSJ1zaXsGXLFpKTk8nKygrIvkWGori4mC6Ph0VjuFcL/PPuLGwv46sLYbS0tBATExPqkMY8n8/H6dOnOXnyJGUlJdTU1mJ7lkV0dRHd0ICruxuXz4uxFp/DQafTRXNUJMWxcVjT2xMTTtakSUyePJklS5YQHx8fuoMKsK6uLg4dOkT+vv1U19bg9HSTfKiYlKIzRNQ3B6wdh9dHVGU9UZX1pBwqxhNdSO2iXEraOjh37hyxMTGsyMtj2bJlE+J3X8mWiMg48eHWrXR2dvDMozkBS7R6uV0Onnowm79/9QJbtmzmJz/5bVwunUJkZJWWluLEktkduAvDUJnk8ZdslZeXM3PmzBBHM3b1lsEV7N9Pc2sr4R4PCdVVzKqrI6G+noT6OiLa2687PYDX4aApIYGGxCQakpKoqaribHExO774gtlz5pCXl8e0adPGdI/XmTNneG/LFlra2oiqbmBK4UkSTl7E6fEGvW13awcZe46SvvcYjbnZ1CydxfaWFnbt3Mnd3/oWy5cvH9Of7Y3oTCkiMg4cP36c4ydOsGFtKmkp4UFpIyLCyYMb03n93RK+/PJLNmzYEJR2RAZSXl5GircN55U+i7ErzdsCQFlZmZKtYbh8+TL79u3jxPHj+KwltbKCuWdOk1FWhsMO7ffD6fORWFdHYl0dnPW/1xodzYUZuZz3eDh58iRJCQnkrVrF0qVLCQ8PzndsMHR0dLBt2zaKioqIrGti5kf7iC6tDsncdMZaEs6UkHCmhI6kOEruzGPr1q0cO3qUhzdtIiEhIQRRBZ+SLZExyuPx0NXVhdPpJCIiItThSAhZa/nyyx2kJodzy4qkoLY1c1oMC2bFsm/fXm655ZYxddEhY5u1lvKyMub09AiNdeHWS6Kvk/LysTd8fSj1TR7c3d1MO1vMtOJiYloC29sZ3drK/MOHmHP0CGWTp3B+5iy2NTSw56uvePiRR5g+fXpA2wuG3t6s1tZW0vceI2PPURxeX6jDAiCirokZb39G7aIZXN7o5e//7u/GbS+Xki2RMcJaS0lJCQcOHODS5cvU1dZeWRYdHUN2dhYLFy5k7ty5Gkp4gikpKaGysooHNmbgcAT/JLV6WRJHT1/k8OHD5OXlBb09EYD6+no6uzykj4MSwl4ZnkZKS0tCHcaYcebMGd5/911aWlqYdeI4s44fw+UNbhmc0+dj8sULTL54gdqUFA6uWsMrr7zCsmXLuPvuu0flDadre7NmfbCbqMq6G284wgyQcvgscRfKuXTPmnHby6VkS2QMqK2t5d333uPypUs43W6i0rJJXTAdZ3gEPm83nQ21nC8p4/Tp08TExvLA/fcze/bsUIctI6SwsJCwMAcLZ8eNSHtZ6RFkpkVQWFigZEtGTFVVFQCp3a0hjiRwUrtbOdHSSkdHhyoUrqNv8hDb3Mzte3f7S/5GWHJNDXd89CEnFizkoLUUnz7NQ5s2MWPGjBGPZSB1dXW8/OJLNDU1jrrerIGENbX5e7kW53J5g5d/+Pu/5zvf/e64mdtRyZbIKHf06FG2vPsuOJxkLL+NhJzZONzfHPzAWktL+SWqD+/jzTffZMWKFdx7770TanjVierixQvkTo0mLGxk/q2NMczJjWH77ipdJMqI6erqAiBiDA/5fq3wnmPp6urS/6MBVFVV8dorr9Dc3MysE8eZfewoTl/okgen18uCQ0VklVzmwOq1vPrqq9xyyy1s3Lgx5OVvVVVVvPzii3Q2NjHzX7YTXVYT0niGwgAph4qJvVDOuSc28urLr/DEU0+Oi+cZdRUmMoodO3aMX//614QnpjL93idJmrmg30QL/BfAsVlTmXbXt0mes5iCggLef/997BAfFJaxpb29nYaGRjLTRvZCLaunPT1vIiOlu9ufmLgY3Xfph8Jl/cfSe2xytdLSUl741a/oqq3l9k8/Zt6RwyFNtPpKqq3ljo8+JOdsMV999RUffPABvhDG1vtZeWobyH314zGVaPUV3thK7mvbCKus5c033uD48eOhDummKdkSGaXq6+vZ8u67RKVkMGXd/bgjowe1nXE6SV+ylpR5yykqKuLw4cNBjlRCqaLCP9/QSCdbve31ti8SbOPxxpHpGVVxPB7bzbp06RIvvfgizoYGbvtkW0jKBm/E6fWyuCCfWcePceDAATZv3hyShKuqqopXX34ZW9tA7qsfEVnbOOIxBJK7rZPc1z8hsrSaX//rv3L69OlQh3RTlGyJjFIffPABFshecxcO19DnTEpdsIKolAx+85uPaGtrC3yAMiq0t7cDEBs9slXhUZFOjPm6fZFg653XzTuOLl26jf9YNGfd1crLy3nt1VcJ70m0oltH73N6Bph35DDzDhVx9OhRtm7dOqLJc+8zWr6GZma88QnhjaP3sxoKZ5eHGf/yORGVdbz91ltcvHgx1CEN2/j5xhIZRyorKzl37hzJ85bjjh7e7OrG4SBjxe10dnZw8ODBAEcoo0XvXVQzwt/mxhgcDoM3yCOBifTqTUg8I/3LHkQe4x851j1AefhEVFdXx6svv4yruYm1n39GREdHqEMalFknT1zp4frss89GpM2Ojg5eeeklOhsbmf7mp+Mm0erl7Opmxtuf465r4vVXX6WmZmyWRo6fbyyRcaSoqAjjdJIwfe5N7SciIZmo1EwlW+PYlQtQz8iWIfl8Fq/X6iJRRkxSkn8OuVpnVIgjCZw6ZxThYW4iIyNDHcqo4PP5eOfXv6a7pYW1n31GVPvYqsqYe+QwU3ue4Tp37lzQ2/v4449pbGxk2r9sH/OlgwNxtXcy441P8LW1syVEZZo3S8mWyCh0+fJlIpPScIXf/HM4MZlTqK2tVbnXOJWYmAhATX3niLZbU9d1VfsiwZaWlobT4aDSNbze/tGowh1HZlZ2yEexGy327t1LaVkZC/P3B3yS4pFggEUHDxDT2sJ7W7bQ2Rm87+Xi4mIOHjxI2r7jxIzRwTAGK6ylneyP91NaVsbevXtDHc6QKdkSGYWqqqqISEwJyL5699M7R42ML6mpqbhcLsoqR7bUpqzK315WVtaItisTl9PpJD0tjUpXbKhDCQgvhhpnlP4P9aipqeHzzz4jo7SESZfG7vM5Tq+XpXv20NjUxCeffBKUNjo6OnhvyxYi6prJ2H0kKG2MNoknLhJ/poTPP/tszJUTKtkSGWWstXg8HhzuwMxK73CHAV/PUSPji8PhICMjg8tlI9tzebmsHbfbTXJy8oi2KxNbZnY2le44xsPYfTXOKLwYMjMzQx1KyPl8PrZs3oyzs5MlBfmM9X6+5NoaZpw+RWFhYVDKCT/++GOaW1qYsvWrUT9hcaAYYPIn+zEdnWOunFDJlsgoY4zB6XTi6/YEZH++3rlpNNrVuDV37lzKKjuorBmZ3q2uLh9HTzcxd+5cTZotIyozM5NOHNQ5xv4zTuU9PXTq2epTPliQP2YGxLiReUcOE9PawrubNwe0nLC3fDB933GiK0bfcPjB5G7tGJPlhDpLioxCqalpdDbUBmRfnQ3+7va0tLSA7E9GnyVLluByOSk43DAi7R051URXl48VK1aMSHsivXJzczHA8fCx/312LCKT5MTECf/co8fjYeeXX5JeXjamywev5fR6WbJ3L00tLRQVFQVknx6Ph/e2bCGyfuKUD16rbzlh3Sice60/SrZERqFJk7Jpr63E57n53q3WyhLi4uOJjh7cpMgy9kRFRbFgwUKKjjdRWx/cctGuLh+78uvIyEhn0qRJQW1L5Frx8fHMmjWLI1FZdI/hYrNKZzTlrhhWrFw54QfHOH78OB2dneSePDmG/0X7l1JTTWJ9Hfn79wdk7q0jR47Q3NpK9rZ9E6Z88Fr+csJ8fN1e9u/fH+pwBkXJlsgotHjxYnzdHhou3tys6V0tTbSUX2bJ4sUBikxGqw0bNuByuXn3kwp8vuA90fLJrioamrq49977JvxFooRG3sqVtOHiTFhgBhEKhaKITFxOJ0uWLAl1KCGXv28fMS0tpFRVhjqUoJh2+jS1dXVcuHDhpvZjrWX/3n1E1jYRc3liD3jlbm0n4eRFig4cGBPPoyvZEhmFsrOzycrKouZoPt2dw6tft9ZScWAXTpeL5cuXBzhCGW1iY2O55557uVzWxq78wJSgXuvUuWYKDjewevVqpkyZEpQ2RG5k+vTpJCUkUBSZHepQhqXDODkRkcHCRYuIiLj56T3GsrKyMkrLy5l2+tS469XqlX35EmEeD/n5+Te1n9LSUiqrq0gpHH89gMORUnSaTo+Ho0ePhjqUG1KyJTIKGWN48MEH8XV1Ur5/O3YYo+7UFx+jpewiGzdsIC4uLghRymizaNEiFi5YwPY9NeQfqg/ovs9fbuVfPywnMzODDRs2BHTfIkNhjGHFypWUumK57IoPdThDVhiRTTeGvLy8UIcScgUFBTh9XiZfOB/qUILG6fUy5WwxJ0+epLl5+HOH5efn4+z2knj8QuCCG8OiS2uIrGlk/959ASnRDCYlWyKjVEZGBnfffTfNpRco3fPpoJ/fstZSe/owFYU7yc3NZdWqVUGOVEYLYwwPb9rErFkz+XB7JZ/vrsbrvbmTkLWWQ8cbeW1LCYmJSXz3u0/jdrsDFLHI8CxfvpzE+Hg+iptN1xi6lKl2RrEvagrz58+f8EO+d3V1ceTwYSadP09YAJ5PHs2mFRdjfb5hD5TR1tbG0SNHSTx8FqenO7DBjVEGSDlwisrqKkpLS0MdznWNnW8okQlo1apV3HXXXTRdPsu5bW/TXHrhundwOhpqubxjK5UHvmLmzJk88cQTGpp7gnE6nTzxxJMsWbyYnftr+dVbF6msHl4panOLhzffL2XLx+VkZ0/i2Wd/oIFWZFQICwvjoU2baDTh7IzKCXU4g+LF8JvYOURGRnHfffeFOpyQq6iooNvrJXOUXygHQnRrC3EtzVy6dGlY2x88eBCf9ZFSdCbAkY1ticcv4PR4b7pEM9g08Y7IKLd27VomTZrElnff5fLO3xAWE0d05hQiE1Nxhkfg83bT2VBLW1UZbTUVuN1u7r33XvLy8jSAwQTldDr9PVyzZ7N16wf879cvMjc3hhWLEsiZFHXD34vKmg7yDzVw+GQT1hruvvtuVq1apcRdRpWcnBxWrlzJ/v37mdVVy+TuxlCHdF37IydR5YzmiQcfJCoqKtThhFxZWRkACfVjY/jumxVfU0N5SQnW2iGfmw8UFBBTUk1k7ej+HR9pTk83iUfOcjTMzX333Ud4eHioQ+qXki2RMWDKlCn87u/8DidPnuTAgQNcvnCK+jNfPxRqjCEtLY1b7rqLJUuW6EQugH+y46lTp7Jr1y6Kig5y/Mxl4uPcZKdHkJkWQVKCG5fLgc9raWz2UF7VQVlVJ9W1nbhcThYsWMStt95KcnJyqA9FpF8bN27kzKlTfGRn83T9ASLt6CyxKnfFsidqKgsWLGDu3LmhDmdUKC8vJ6Krc9xMYnwjCfV1XO7ooLm5eUjPUbe1tVHX0EDW2ZIgRjd2xZ0ro2bZLMrLy8nJyQl1OP1SsiUyRjidTubPn8/8+fPx+XzU19fT2dmJ0+kkKSlJz9FIv6Kiorj77ru54447OHbsGGfOnKGsrJTjZ6q/sW50dBRZWVNYunwaS5YsITIyMgQRiwxeWFgYj3z727z04ov8On4hTzQcJgxvqMO6So0zil/HLyQuPp5777031OGMGmUlJcRX14Q6jBGTUOcftKi8vHxIyVZ5eTkAURUTowdwqKIq/Z+Lki0RCSiHw6HeBhkSt9vNkiVLrszr097eTmNjI93d3TidTmJiYoiJiVHpqYw5kydP5vEnnuCtt97infgFPNp4dNQkXLWOSP4lfhGu6Fi+/8yzqjro0dXVRU1dHXMmSAkhQHxDPcZaysrKmD179qC36y23jKycOJ/VULjbOghr67ySlI5GKsAXEZmAIiMjycjIYNKkSWRmZhIbG6tES8as2bNn8+ijj1LqjufthEW0m9DfS650RvNm4lKIjuN733+GxMTEUIc0alRW+icwjp9AyZbL6yW2pYWKioohbVdeXk54UxuuzvE9YuPNiCytovTy5VCHMSAlWyIiIjLmLViwgCeffJJqdxyvJi7jsis08wta4FB4Bm8mLCEsLoHnfvgj0tLSQhLLaNXR85xWeGdniCMZWWFtbVeOfbDKSkqILPtm2bd8LaqynrqGBjpH6e+Tki0REREZF2bPns0zzz6LIyGNt+IX83nU9BGdh6vREc6/xC3kk5iZTMqZznM//BFJSUkj1v5Y0d3tH8jE6R0d5Z4jxen10t3VNej129raaGxuvvJckvQvsuLr57ZGo9D3s4uIiIgEyOTJk/np7/wOn332Gfv37+dcRArfajoV1KHhLXA4PIMvYmZg3GHcf/e3WL58uUpzB9CbbDkmWLLl8HnpHsIEzr0lhxoc4/pG+yAZSrZERERkXAkLC+Pee+9l7ty5vLdlC2+ZcLK7m1jSXsbMrhpcDDw5/FC0GRdHw9M5FJVNowln2rRpPPTQQyQkJARk/+NV75x9doIlo9YYHE7noNdvbW0FwN3cFqyQxgV3WwfGZ2lrG52fk5ItERERGZdycnL46e/8DoWFhRTs38/Whjii6GZhWxnzO6tI9LUz1Mt9L4YKVyyHwjM4FZGGF8OUKZO5a+Uq5s2bp96sQXC5/JefviEkHuOB1+kkfAjTtFzpAeyeWD2Aw+Hw+fAModdwJCnZEhERkXErLCyMNWvWsHr1as6dO0f+/v3sP+1iX9QUwvGR5mkivbuFjO5mkr1tuK0Pl/VhDXTjoMO4qHZFU+mKpcIdS40zGi+GMLeLpYuXkJeXpwEwhqh3Xshu18S6DPW6XLiGkGz1Jg9mgpVbDofD67uSnI42E+u3XERERCYkYwwzZsxgxowZNDY2UlxcTHl5OeWlpRysqsLr8113+/AwN5lZWazMzCIrK4uZM2cSHh4+QtGPL71lli2xcaRUT4yR9izQkpDA1CFMAeDtSbIc3df/3RQwXt+Vz2u0UbIlIiIiE0p8fDzLly+/8rPX66Wqqoq6ujq6u7vxeDw4HA5cLhdut5u0tDSSkpJUIhggiYmJhIeF0ZCUBOfOhjqcEdEWFU2Xy01WVtagt3H2lFn6nA4mVsHl0FmHufJ5jTZKtkRERGRCczqdZGZmkpmZGepQJgRjDFnZ2dRXVYU6lBHTkOTv0RrK71jvs23WNTqTiNHE53Re+bxGG82zJSIiIiIjKjMzk6b4eLyOiXEp2pCYjMMY0tPTB71N77NtPiVbN+RzOpRsiYiIiIgAZGVl4TOG5vj4UIcyIhqSkkhNTR1SQhAZGQlAd3REsMIaF7ojwrAOc+XzGm2UbImIiIjIiOp9dqk2JSXEkQSfz+GgMSWFrOzsIW2XkZEBQFt6UjDCGjfa0v0lmr2f12ijZEtERERERlRCQgJpqalcmpEboCmmR6/y7Gy6XC7mzJkzpO1iYmKIiYpSsnUD7T2fz1AGHxlJSrZEREREZEQZY8hbuZLG+ATqk5NDHU5QnZ85m4S4OHJzc4e8bdakSbRnjf/ev5vRlp5EfGysyghFRERERHotWrSIMJeLc7kzQx1K0DTFxVGTmsqKlStxDGMwkMzMTDoSYvC6R+fgD6NBe3Yq2ZMnhzqMASnZEhEREZERFxYWxuKlSymbMpXOcTpB9PncmTgdDpYuXTqs7bOyssAY2tMGPxnyRNIdEUZnbNSonrZByZaIiIiIhEReXh4+h4OL06aHOpSA87hcXJ4+g/kLFhAVFTWsffQmEW0Zem6rP72DYyjZEhERERG5RmpqKtNyciieP5+OiPE1xPmp+QvodjpZuXLlsPcRGxtLXEwMzTmjN5kIpeapGRhG7+AYoGRLRERERELovvvvxxcWTtGKvHEzMmFtcgrFs+ewfPlysoc45Pu1lixbRtO0TDrjogMU3fjgczqoWzKL2XPmjNrBMUDJloiIiIiEUEpKCnds3EhF9iRKpkwNdTg3zet0cnDNGuLj4rjrrrtuen/Lly/HGAe1i4c+muF41jBrCt3hbvLy8kIdynUp2RIRERGRkFq9ejWTsrM5kpc35ssJjy9cREt0DA9t2kR4AAb+iIuLY/ac2dQunYXPqUv3XjXLZpGUkMC0adNCHcp16V9MRERERELK4XDw8KZNY76csDYlhbOzZrN8+XKmTw/coB95eXl0h7tpmD0lYPscy9rSEmjNSiFv1SqMMaEO57qUbImIiIhIyKWkpLDhzjupyJ7EiYWLQh3OkLXExLL/tnUBKx/sa9q0aSQlJFCzbHZA9ztW1SyZicvhZPHixaEO5YY0Q5qIiIiIjAqrV6+mtraWQsDl8TDr5IlQhzQobZFRfLXxTpxxcTz9/e8HpHywL2MMeatWsa2hgba0RKKq6gO6/7GkO9xN/YLpLF68aFQPjNFLPVsiIiIiMioYY7jvvvtYsGABxxcv4fScuaEO6YZao6P56s678MbG8vT3v09KSkpQ2lm8eDERYWGU3L0SO8pL54KpbN1SrNPJqlWrQh3KoCjZEhEREZFRw+FwsGnTpisJ17FFi0ftM1xNcXHsvOtbeBMS+N73vx/UyXUjIyO59/77ac1Mpmr5xCwnbMrJpHZxLmtvuYX09PRQhzMoKiMUERERkVHF6XTyyCOPEB4eTiHQHB/P4vx8IjvaQx0aABa4NG0aR5evIDw2ju898wxpaWlBb3fhwoUcP3aMM14f8WdLiahvDnqbo4U3zM3l+9aQnJTE+vXrQx3OoKlnS0RERERGHYfDwf3338/dd99NzaTJfH7/A1yamhPyXq72yEj23r6egytXk5kzjR/++McjkmiBv8zy/gceICwygkv3r51Q5YSl65fiiY7gkUcfxeUaO/1FYydSEREREZlQjDGsWbOGmTNn8u6WLRxwuSibPIUlBfuJ6OgY0Viu9GYtWwHh4dxz112sXLlyxIcej42N5d7772fz5s1UL59NWsHJEW0/FHrLB2+55Rays7NDHc6QKNkSERERkVEtJSWFHzz3HPv27ePzTz/l8/R0Zhw/Rs65s4R3dga1bQtUZWRQPGcu1ekZTJk8mYc3bSIpKSmo7V5P33LCuHNlRNQ1hSyWYOsOH5vlg72MtaHujB2djDGzgFOnTp1i1qxZoQ5HRERERIDa2lo+3LqVc+fP47CWrEsXmVZ8hqSaGgLZx9QVFsbFadO5MGsWrVHRREVEcPv69SHpzepPS0sLf/93f4e3pp6Zr3xEWMvoeJ4tkLxuJ2ef2Eh7dirP/fCHo71Xq99fCiVbA1CyJSIiIjJ61dTUUFBQQNGBA3R6PMQ3NTKluJik2hriGhpw+nxD2p8F2qOiaEhMoiI7m9KpOXgdDqZMnkzeypXMnTsXp9MZnIMZpvLycl58/gUcNfXkvroNd3twe/lGks/p4Nyj62nJyeCxxx9n3rx5oQ7pRpRsDYWSLREREZHRr6uri6NHj7J/3z4qq6oAMNYS19REQm0NCXV1xDQ34ez24vR5MdbiczjwOp10hkfQkJhIQ1ISjSmpdLrdALhdLhYtXkxeXt6oH2L84sWLvPLyy4RX1jHjrc9wjYOEy+d0cOHBW2icOZmHHnqIpUuXhjqkwVCyNRRKtkRERETGDmstjY2NlJeXU1ZW5v+zpIT2GzzTZYwhNSWFrOxsMjMzycrKIj09HXdP4jUWFBcX8+YbbxBW28j0Nz8d0yWFXreT85vW0ZyTwT333DNmJi9mIidbxpgc4Hyft45ZaxfcYBslWyIiIiJjWG8CVl9fT3d3N93d3fh8PlwuFy6Xi8jISFJTU8dUYjWQCxcu8MZrr2Hqm5n+5qdENIy9Obi6I8I49+31tGWl8ODY6dHqpWQLWAOUAB5rbeUNtlGyJSIiIiJjRllZGa+8/DKe1jayPi8k+VBxQAcNCabGaVmU3Lea7uhIHnv8cebOnRvqkIaq3496og39vhWoBn4OvB3iWEREREREAiYrK4vf/ulPee/ddznvctIweypTPtpDWFNbqEMbUHe4m9I7llG3cAYpyck88uijZGVlhTqsgHGEOoDBMsb8oTHmsDHGa4yxxphfXLM8whjzN8aYKmNMuzHmK2NMb5FnE/Bd4A7gNPCSMSZ5ZI9ARERERCS4EhIS+N73v8/9999Px4xsTv7wQWoW5zIaa9kap2Vy6kcPUr9wBrfeeiu//dOfjqtEC8ZWz9ZyoA64DEztZ/n/C/w2cBT4DHgS+MQYM91aWwO8DmCMeQF4EJgO1AY/bBERERGRkWOMYcWKFeTm5l7VyzV5217CG1tDHR7dEWGUrl86bnuz+hozyZa19nsAxpgtXJNsGWPSgOcAH7DRWltljOkGngZ+ZozZDUwCdgPfATqAcyMXvYiIiIjIyOrt5SosLOTjbds4/uOHiD9bSsrBM8ReKB/x57na0pOoXjqThnnTsE4nt956C+vWrcPlGjMpyZCNlyObD7iBC9baqp73CvAnW0uAj4E/BXLwD5DxPWttv71axpifAD8BwoMbsoiIiIhIcPX2cs2aNYv8/HwKIws4mzuJ8MZWUg6cIunoOVwdXUFr3+dyUj97CjXLZ9OWnoTb6WTpkiWsXLmStLS0oLU7WoyXZKt3trmWPu/19pFmWGt3A3MGsyNr7T8B/9Q7GmHgQhQRERERCY24uDg2btzIunXrOHHiBPn793M5Ppry25eQcPw88efKiKyoI6yp9aZ7vDxREbSlJ9Gck0H9ohl0h7lJTkpi3apVLFq0iIiIiIAc01gwXpKt3mHcY/q81/v3ihGORURERERkVHK5XCxcuJCFCxdSWVlJfn4+h8PCqFs4w7+8y0NkWS1RFbVEVtYRVVlHWFMbpp/poizQHR1BW1oSbRlJtKcn0Z6dSleUv0DMYQxz5s4lLy+PqVOnYsxYGYg+cMZLsnUc8ABTjDHpPXNo5fUsOxS6sERERERERqf09HQeeOAB7rnnHiorKykvL6esrIyyklKqa6rx9UmwjM/i8PlweH34HA58ToN1XD2weVJCArMnTyYzM5OsrCwyMjIID5/YT+aMmWTLGPMj4FZgWc9bm3omK95ird1ijHkR+DHwmTHmKPAE/rLCvw1BuCIiIiIiY4LL5SI7O5vs7Owr73V3d19JwFpbW+nu7sbj8eD1enE6nbhcLlwuFxEREWRmZiqxGsCYSbbwJ1rP9Pl5cc/rArAF+AP8vVtPALnAXuD/sNZWj2iUIiIiIiJjXH8JmAydsf3UXwr0DpBx6tQpZs2aFepwRERERERk9Or3gTRHf2+KiIiIiIjIzVGyJSIiIiIiEgRKtkRERERERIJAyZaIiIiIiEgQKNkSEREREREJAiVbIiIiIiIiQaBkS0REREREJAiUbImIiIiIiASBki0REREREZEgULIlIiIiIiISBEq2REREREREgkDJloiIiIiISBAo2RIREREREQkCJVsiIiIiIiJBoGRLREREREQkCJRsiYiIiIiIBIGSLRERERERkSBQsiUiIiIiIhIESrZERERERESCQMmWiIiIiIhIECjZEhERERERCQIlWyIiIiIiIkGgZEtERERERCQIlGyJiIiIiIgEgZItERERERGRIFCyJSIiIiIiEgRKtkRERERERIJAyZaIiIiIiEgQKNkSEREREREJAiVbIiIiIiIiQaBkS0REREREJAiUbImIiIiIiASBki0REREREZEgULIlIiIiIiISBEq2REREREREgkDJloiIiIiISBAo2RIREREREQkCJVsiIiIiIiJBoGRLREREREQkCJRsiYiIiIiIBIGSLRERERERkSBQsiUiIiIiIhIESrZERERERESCQMmWiIiIiIhIECjZEhERERERCQIlWyIiIiIiIkGgZEtERERERCQIlGyJiIiIiIgEgZItERERERGRIFCyJSIiIiIiEgRKtkRERERERIJAyZaIiIiIiEgQKNkSEREREREJAiVbIiIiIiIiQaBkS0REREREJAiUbImIiIiIiASBki0REREREZEgULIlIiIiIiISBEq2REREREREgkDJloiIiIiISBAo2RIREREREQkCJVsiIiIiIiJBoGRLREREREQkCJRsiYiIiIiIBIGSLRERERERkSBQsiUiIiIiIhIESrZERERERESCQMmWiIiIiIhIECjZEhERERERCQIlWyIiIiIiIkGgZEtERERERCQIlGyJiIiIiIgEgZItERERERGRIFCyJSIiIiIiEgRKtkRERERERIJAyZaIiIiIiEgQKNkSEREREREJAiVbIiIiIiIiQaBkS0REREREJAiUbImIiIiIiASBki0REREREZEgULIlIiIiIiISBEq2REREREREgkDJloiIiIiISBAo2RIREREREQkCJVsiIiIiIiJBoGRLREREREQkCJRsiYiIiIiIBIGSLRERERERkSBQsiUiIiIiIhIESrZERERERESCQMmWiIiIiIhIECjZEhERERERCQIlWyIiIiIiIkGgZEtERERERCQIlGyJiIiIiIgEgZItERERERGRIFCyJSIiIiIiEgRKtkRERERERIJAyZaIiIiIiEgQKNkSEREREREJAiVbIiIiIiIiQaBkS0REREREJAiUbImIiIiIiASBki0REREREZEgULIlIiIiIiISBBMi2TLGzDPGXDDGdBpjzhljvh3qmEREREREZHybEMkW0AT8CFgCtAD/d0ijERERERGRcc8V6gBGgrW2BCgxxrjxJ17VIQ5JRERERETGuTHTs2WM+UNjzGFjjNcYY40xv7hmeYQx5m+MMVXGmHZjzFfGmFV9lv8O0AqsBP51ZKMXEREREZGJZswkW8ByoA64PMDy/xf4GVAJbAHWAJ8YY1J6lr8GrAB2A/9gjDHBDFZERERERCa2MVNGaK39HoAxZgswte8yY0wa8BzgAzZaa6uMMd3A08DPjDGfAF78yVoX0GGttSMYvoiIiIiITDBjqWfreuYDbuCStbaq572Cnj+XANOB94DDQBbwzEA7Msb8xBhTAPw6aNGKiIiIiMi4N2Z6tm4gvefPlj7vtfb8mWGtfQV4ZTA7stb+E/BPxphZwKnAhSgiIiIiIhPJeEm2Knv+jOnzXu/fK0Y4FhERERERuQ6v10tdXR1dXV14PB6stbhcLlwuFwkJCURGRoY6xIAYL8nWccADTDHGpFtrK4G8nmWHQheWiIiIiMjEZq2loqKCsrIyysvLKSstpbKyCp/1DbhNfEwsWZMnkZmZSVZWFpMmTSI8PHwEow6MMZNsGWN+BNwKLOt5a5MxJgfYYq3dYox5Efgx8Jkx5ijwBP6ywr8NQbgiIiIiIhNae3s7RUVF5O/bR31jIwDOrm7Cy2pJKK8lorIBZ3sXxusFn8W6nPjcTjxJsbRnJnG2rJITcVEAuBxOFi5eRF5eHpmZmaE8rCEZM8kW/kSr78AWi3teF/AP9f4H+Hu3ngBygb3A/2Gt1QTGIiIiIiIjpKysjPz8fI4cPozX5yOqpIbMA2eIulyNu76Focy/5I1w05GZRNPcqRzq8nDw4EGys7LIW7mS+fPn43KN7nTGaAT0/vUOkHHq1ClmzZoV6nBEREREREa19vZ2tm3bxqFDh3B0e4k7dI7EwjNEVDUEZP/ecDeNi6bRsHIOnYkxJMYnsOnRR5gyZUpA9n+T+s0hlWwNQMmWiIiIiMjgnD59mve2vEtbaytJXx0jee8JnJ2eoLRlgdYZmVTev4quuChWrVrFxo0bcbvdQWlvkPpNtkZ3v5uIiIiIiIxafXuzImqayNn8FRGV9UFt0wAxZ8uJ+ocPqNqwhH3A6ZMn2fToo6Oll+sK9WwNQD1bIiIiIiIDa2xs5OUXX6Suvp6UXUdJ2XkM4xt4hMFgaZ2aRsXDa/HERfHQww+zZMmSEY+BAXq2HCMdhYiIiIiIjG01NTX86p9/SWNVDVNf/pTUHUdCkmgBRF+sIucfPyDqQiXvvvsu+/btC0kc/VGyJSIiIiIig9bQ0MBLL7xIe20dU176mKjLoR/829nVzaQ3thN76jIfffQR+fn5oQ4JULIlIiIiIiKD1NLS4k+0GhqZ/NInRFQ2hDqkKxxeH9m/3kXMmVI+/PBDjhw5EuqQlGyJiIiIiMiNWWvZsnkzTfX1TH7tMyKqG0Md0jcYnyX717uIulzNu1u2UFtbG9J4lGyJiIiIiMgNFRUVcfbcOVI/OUBkaWiTmOtxdHvJ+vUu6Ohiy+Yt+EL0LBko2RIRERERkRtobGzkow9/Q9SlKhILToc6nBtyt7ST9pt8SkpLQjpghpItEREREREZkLWW9997j+6ODjLf29P/GOejUPyR88ScKeWzTz8NWTmhki0RERERERnQ8ePH/eWDnx4krKE11OEMmgEytu6Hji4+3Lo1JDEo2RIRERERkQHt3bOXsIbWMVE+eC13SztJu45y7vx5qqtHfoh6JVsiIiIiItKviooKSkpLSMg/NWbKB6+VUHQW4/NRUFAw4m0r2RIRERERkX4VFBTg8PpIOHQu1KEMm6utk9hjFyk6cJCurq4RbVvJloiIiIiIfENHRweHi4qIPXIeZ8fIJimBllh4hq5uz4hPdKxkS0REREREvuHEiRN4vF4SDxSHOpSbFllSQ0R1IwcPHBjRdl0j2pqIjLiWlhaam5txOp0kJSXhcum/vYiIiNxYSUkJzq5uIspG7wTGg2WAqOIyKtIT8Xq9OJ3OEWlXV10i49SZM2fYt28fZ8+evfJeZGQkS5cuZdWqVcTFxYUwOhERERntykpLCS+rHbMDY1wroqKOOp+P6upqMjIyRqRNJVtjRHd3Nw6HA4dDlZ9yfdZaPv74Y/bu3UtYVDSZi/KISkrB191Nw6Vz7Nmzh4MHi3j66e+SlZUV6nBFRERkFOru7qaqqorEcdCr1SuyrA6AsrIyJVviv2g+ePAge/bspaamGmMczJ49i9tvv53MzMxQhyej1J49e9i7dy9psxcyKe9WHI6vu8mTp8+mo7GeM5+9z6uvvsZPf/rb6uESERGRb6iqqsJnLRHldaEOJWDc9c04Pd2UlZWxbNmyEWlT3SSjlLWWrVu38v7773PufD0nTkdRfC6co0dP88tf/orz58+HOkQZhTweD1/u3El89lQmr7z9qkSrV0R8IjM3PkhHRzv79u0LQZQiIiIy2lVUVAD+0rvxwgDhZbVUlJWPWJtKtkapS5cuUVhYSPG5SLbvTOB0cTRHT8TwyfZEmlsMW7a8i8/nC3WYMsocPXqUzo4OMhYsw5iBK6wj4hOJnzyNgweL6O7uHsEIRUREZCxob28HwNXcHuJIAsvV3E5bW+uItadka5QqKirC63Vw8nQ09Hksscvj4PipSJqaGrlw4ULI4pPRqaSkBFd4BDFpN34WK3HKDNrb26ivrx+ByERERGQs8Xg8AJhub4gjCSzT7cXjGbkbzUq2RqnGxkYam5x4fd/snWhocF9ZR6Qvn8+Hw+W6bq9WL0fPEPBe7/j6EhUREZGb5/V6wWfHzUiEvYzXh28Er300QMYoFRsbS1ysF4fD4rsm4YqP82fjGthArhUbG4unrQ1PexvuyKjrrttWVwNATEzMSIQmEnA+n4/i4mIuXbpEe3s7xhiioqKYM2eORtoUEblJLpcLHAZrDMbaUIcTMNblGLE5tkDJ1qi1ePFiDh8+zKwZbZw8E33lfZfLx9zZbcTExDJt2rQQRiij0aJFi9i5cyfVZ46TtWjFgOv5fF5qi4+Tm5urZEvGnPb2dgoLCyksyKehsQmHAyLDHFgL7V0+du7cSVZWJnl5K1m4cOGInlRFRMYLV08FjHU5MJ7xUwVjXU5c7pFLgZRsjVLTpk1j0aJFwGFSUzyUVYQR5rZMndJJRLiPBx98QHNuyTekpKQwY8YMLhwrJD57CtHJad9Yx1rL5fxddLW1snLlyhBEKTJ8VVVVvP7aqzQ2NTM11cGda1zMznbgdPgrADq6LIcv+ig4W8m7777LgQMHeOqpp4iKun5Pr4iIXC062n+z3xMXTXhtU4ijCZzu+BjiYmNHrL0hJ1vGmEXAHcAioPdKrgo4Auyw1h4MXHgTlzGGhx9+mIyMDPbu3UdSov/5rOnTp7Nu3TqmTJkS4ghltHrooYf41a+e5/THm0mfv4zUmfNxR0ZhraWlsoyKYwdoLL3ImjVrmDlzZqjDFRm06upqXnjheVx4eG6jm0nJ37zhFBFmWDnTSV6ug6OXfLyXf5mXXnqRH/zgOSIiIkIQtYjI2NQ7p2tHZtK4SbasMXRkJI5oqfmgki1jTCTwY+C3gTk3WPc08A/AP1trx9dYkSPM4XCwZs0aVq9eTXt7Oy6Xi7CwsFCHJaNcXFwcP/zhc7z33nucLdpH+aH9uKOi8XV3093ZQUREBHfddRdr1qwJdagig9bV1cXrr72Kky6e3eAmKeb6j2wbY1g41UlUuOGNndW8886v+c53vhv0OK21lJaWkp+fT8nlr58li4yMZGrONPLy8sjIyAh6HCIiNys1NRWnw0FHRhLxRy+EOpyA6EqOxedyXkkkR8INky1jzA+A/wT0RnWjQUlmAf8T+FNjzH+01r54UxHKlYe+RQYrLi6Op59+mpqaGg4fPkxzczNOp5Ps7GwWLFiA2+0OdYgiQ3LkyBEaGpv43robJ1p9zchwsH6Bk8+PFFNeXh60E6y1liNHjrBn924qKisJc8KMxC6iEn1gDS2eJg4X1XPgwAEmT57ELbfcyuzZs4MSi4hIIDgcDjIyMqjPqgh1KAHTkZkEMOp6tn4FWPxJVjvwJbAPOA3U9byfBMwGVgK3AZFAFvBL4MVABy0ig5OSksKGDRtCHYbITbHWkr9/H+kJDnLShj4I8fIZTr487qOgoIAHH3ww4PH5fD4++ugj8vPzSY32cV9uOwtSuwi/5gzb7mnjUFUYheWXefPNN1m3bh3r1q0b1FQNIiKhkJWdTXnW5SuJwFjXnpGEy+kkJSVlxNoc7DNb+4G/BbZYa6875bIxJgbYBPweMPBwaCIiIoNQUlJCZVU19y8f3Bxy14oMMyycYjhy5DB33XVXQJ/dstby4YcfUlhYyJrsDjZOa2egECPdltXZneRldrK1OIodO3ZgreWOO+4IWDwiIoE0efJk8vPzaZuSRvSlqlCHc1Ms0DZrEtnZ2SM6yNxgkq07rbWfD3aH1toW4FXgVWOMbqnLmNfU1ERBQQHHT5ygs7OLxMQEli1dyoIFC64MiyoiwVNaWgrAnOzhnxxnZzs4eL6b6upqJk+eHKjQ/EPQFxaydpI/0RoMpwMenNmGAb788kvS09OZN29ewGISEQmUOXPmEO4Oo2H5zDGfbLVNS6czMYZly5ePaLs3PHMNJdEK5LYio8H58+f527/7O3bu3Eltl5OW8CRKqht49913ef7552lrawt1iCLjXkdHBwCRNzE+UFS4uWpfgeDz+di1aydT4rrZkDO08aCMgfty20iJ8rFr55fYcTRhqIiMH263m6XLl9E8dwrd0WN7RNf65bOIDA8f8ZtbAe1DM8YsMMYsMsbo6XsZ85qamnjjzTfpdkXC4vswc9djZqzCLrwHctdSXlnJO++8E+owRca93kmJvb7h76Pbe/W+AqG4uJjGxiZWZncMWDp4PU4H5GW2U15RSVlZWcDiEhEJpBUrVmAdhoalM0IdyrB5YiNpnj2JZStWjHhVUsCSLWPM/wYOAQeBFmPMQWPMr4wxvxOoNkRGUkFBAZ6uLuzMWzARX09+Z4zBJE+G7AWcPXuWysrKEEYpMv7FxMQAUNsy/N6fup5teyfpDIT8/Hxiwy2zkjzD3sfCtC7CnP59iYiMRsnJyUyfNo2GFbOxjrE5TEb9splgDMtHuIQQAtuz9R38A5UYwA0sBn4A/E0A2xAZMcdPnIC49KsSraukTgfgxIkTIxiVyMQza9YsnE4HB895h72PA+d8pCQnkZaWFpCYrLWcO3eOeSmdOG/iTBrugllJnZw7WxyQuEREgmH1mjV4YiKoXTv2ni/tSoyhfs085syZQ2Ji4oi3H8hkqx7YAqQCa4DfwT/0e2EA2xAZMZ2dXRAWOeBy4w7HOFx0dXWNYFQiE090dDTz5y/g0EVLl2fovVtldT7K6nysyFsZsGHWu7q68Pl8xITdRG1jj9gwS3t74J4lExEJtJkzZzJ//nxqbl9ER2p8qMMZNAuUP7QGV2Q49957b0hiCGSy9c+Aw1pba63dZ639R2vtT6y1KwPYhoxjPp+PxsbGUTPoRGJiAqa1bsAH121bA9bXTUJCwsgGJjIBrVixgi6P5YtjQ+vd8vosnx724na7WLx4ccDi6f1eCMRJ1BjwaYAMERnl7rvvPiKjIinfdMuYKSesXzGLtsmp3HPvvcTFxYUkhkA+IfYskGOMeQN4Cci31tYGcP8yTnm9Xnbu3Mn+/ALa2/zTuE2ZMoU77riDnJyckMW1bOlSLr/7LtSVQPLVQ0Vba6H0OE6ni4ULF4YoQpGJY/LkyaxYsYK9BQVEh8PaOc4b9lJ5vZYt+7u5UOXjoYceCOj8WuHh4RhjaOu++QuO9m5DZER4AKISEQmeqKgoHnjoId5++21q184jZdexUId0XV2JMVTfuYzc3FyWLFkSsjgC2bM1Df/zWk8AW4EqY8wlY8y7AWxDxhmfz8fbb7/Njh07qO4Mp9w9kyp3DudKqnj55Zc5depUyGJbsGABGZmZcG4vtuwE1tMJ+Hu0KN4DdZe5/fbbiIwcuNRQRALn3nvvZd68eXx2xMvmfd1UNvRfwmet5Vylj5d3dHPsso+NGzeydOnSgMZijCEzM4NTteHcTKeU1wdn6sLJyp4UuOBERIJk7ty5V8oJW6ZnhjqcAXnD3ZQ+fjuuyHAefPDBgJWQD0cge7aeAZYAS3v+TAAmAdkBbEPGmdOnT3P69Gkq3TOoc399sVHvyian8xAffLCVmTNnjuhM371cLhffe/ppfv3OO5w7exguHwaHE3xenE4Xt61fz2233TbicYlMVA6Hg8cee4zPP/+cvXv3cPSSh8kpDuZPdhAdAdZCQ6vl0AVLbbOPqMgINm26J6Dlg32tWJHHe++Vc6nRxdSE7mHt41Stm5Yuf5mkiMhY8MADD1BTXU3pk+uY/OpnRF2uDnVIV/G5nJT81h10pSfyW088EbLywV4mWBMpGmNy8CdeS621Pw9KI0FkjJkFnDp16hSzZs0KdTjj1ptvvsnxMxc4Hb6Kayeqie2uZlLXcZ5++mlmzAjt3A6VlZWcOHGCrq4uEhISWLBgAVFRUSGNSWQia2tro6ioiMKCfOrqG65aNmlSNnl5K5k3b15Q51PxeDz8j//x10yLaeaxua1D3t5aeOVILI0mmd/7vd8PyU0lEZHhaG1t5flf/pKGmlomvbGd6ItVoQ4JAG+Yi5LfuoP2yal8+7HHmD9//kg232/3WcDOQsaYP8M/x1aRtbbEWnsBuABsDlQbMv40N7fQTtQ3Ei2ADod/bp2WlpaRDusb0tPTSU9PD3UYItIjKiqKtWvXsmbNGpqbm+no6MAYQ1RUVEDn0roet9vNihV57Nq1i0OVHhanD21k0n2l4VxsdPGtb61WoiUiY0p0dDTPPvccL7/4Ipe/s4Gsd3YRd6okpDF1R0dQ8p076MxI4pFHHhnpRGtAgbzl9xf4R1jEGFMHFOFPvg5aa98IYDsyjiQmJhBVUY2xPqy5+mIj0tcEQHz8zQ8x2traSl1dHeHh4aSmpoa0dldEAscYQ1xcXMjKRNavX09JSQkfnLmAMbAobXAJ1/7ScD45H8W8efNYtWpVkKMUEQm82NhYfvDDH/LqK69Q+vjttB4sJu2TAzi7hldWPVwWaJo3lar7V2Ijw3nyySdHVVVawMoIjTFb8ZcNZvR52wJYa50BaWQEqYxwZJw9e5ZXX32VGtdkqt3TrvRwOW0X0zqLSI2P5Pd/72fDTo5aWlr46KOPOH7iBNbnf5g+OSWFOzduZM6cOQE7DhGZuDo7O3nzzTe4cOEiC1I7ycvqJDvW+40Oe2vhYqOL/WXhnKoNY86c2Xz7248FtdRRRCTYuru72b59O3t278bV0k7Ge3uIOVcxMm1HR1Bxbx7NcyaTlZnJpkceITU1dUTa7ke/F6sBf2bLGJMBrASeAx4CLltrpwa0kRGgZGtkWGt57733KCoqotMZS5MjCaf1kOitwuWA733vaaZOHd6vT3t7O//8y19S39BIe3wO3VGpODztRDSex9nZxGMjX8srIuOU1+vls88+o7CwgK4uDxkxPuYmdxLl9mGB1i4Hx2rCqWlzEBkRzspVq7n99ttVPigiY4LX66Wrqwuv14vT6SQsLAyn8+q+lJKSEra88w619fUkHCwmZedR3E3BmTvV53TQtCCH6ruX44sI544Nd7B27dpQf6eOTLJ11c6N+RDYY639T0FrJEiUbI0cay2FhYXs27efmppqHA4Hc+fO5bbbbrup56R27NjBF198QdOkW+iOSv56gc9LfMlXJLh9/OEf/kGo/2OKyDjS2dnJkSNHyM/fT1XV1SN0ZWVlkpe3kvnz5+N2u0MUoYjIjdXX13PmzBnKy8spLSmhpraWvjmDMYbU5BSyJmWTmZnJzJkzSUxMvKqXy1pLzJlSEgvOEH2uvP9MZIi64qNpWJZL4/JZdEe4R0NvVl/BTbaMMV/x9XNaRUAx8CKwzFo7JSCNjCAlW6Hh9XpxOBwBeabq//ubv6Gqw0HzpLXfWOZuLiO2vIDvfe97TJ8+/abbGu+stZw9e5YDBw5QW1eH2+UiNzeX5cuXExsbG+rwREalrq4uOjo6AIiMjFSCJSKjms/no7i4mPz8fIqLiwFwd3QRWVZDZGUdrrZOHF4vPqeT7qhw2jKS6MhKxRPu/26bOXMmeXl5zJgxg+bmZgoLCynMz6eto4OwxlbiC88QdbmaiIp6HJ7BPddlga7kODoyk2iaP5WW3CyMMcyeM4e8vDymTZs2mp7DD+5ohMAaYHU/7wen/1DGpWu7pG9GW2sb3sj+J9zzhvkThLY2/XreSGdnJ2+99Rbnz58nLDKK+LQMWjs72LFjB7t27WLTpk0sWLAg1GGKjDphYWGEhYWFOgwRCQFrLfX19ZSVlVFRUUF7ezs+nw+Xy0V8fDxZWVlkZmYSGRkZ6lCB3hLAzdTW1+Fu6yTj4GmSjp0jrLH1uj1SFn9vU92C6Vxo7+TMmTOkJCez6ZFH2LBhA7fffjsnTpwgf/9+Lsf3jBRrLeH1LYSX1hBRUY+zowvT7cVYi8/lxLqc/gQrK5mOzCR8Lv+1YVREJLevzGPZsmUBGTxtpAQy2fp9YFnPa16ffb8WwDZEBi0xMZG2hjr/U+nX3PVwd9RdWUcGZq3lX//1X7lw8SJzb93ApDkLcPQkxK2NDRzb8THvvPMOMTEx5OTkhDZYERGREKuvr6ewsJCDhYW09fRsG58lzOPBWIvX6cDTp5c7MyODFXl5LFy4MCS9333L/twt7eR8XkjCmcsY3+Aq3wwQ3thK5ldHyNhzlIZZUyjbsJxf/fKXrL3lFtavX8/ChQtZuHAhzc3NlJeXU1ZW5v/zcglV7f3f9HY5nGRkZpCZlXUlMU1NTR2Tj34E5ZktY0wYMAfottYeD3gDI0BlhGNfQUEBW7dupTV9MZ3xXw+yYTztJJR8RVpiDP/mpz8dTd3Po05paSm//OUvmbXqNqYtWfGN5d1dXXz19ktkpqXy/e9/PwQRioiIhF5jYyMf/eY3nDx1CmMtKRdLSLpcTlxNHdH1jTh6RkQG8ISH0ZycSFNqMpWzptEaH0d4WBi33Hort9xyy4glFM3Nzbz68itU1VSTfOgM2V8cDMiw7d4wN6Xrl1K7OJf01FSe/v73iYmJ6Xfd9vZ2urq68Hg8WGtxuVy4XC6io6PHYmIV9EmNHdZaH4C1tgs4HKh9iwzH0qVLOXHiBOfOHSK8uZSu3tEIW0pxOwwPP/SQEq0+er/o3G73lc+lqKgIp8vN5HkL+93GFRbGpHmLKM7fTWNjI3FxcZSXl9PY2Eh4eDhTpkzRsNYiIjJuWWs5ePAg2z76CG9HJzmHj5N1opiItvYBt3F3dpFUVklSWSVTDx2nISOVywvn8HlXFyeOHWPTo4+SlpYW1Libmpp44VfP01RXx/QtO4k/XxawfTu7PEz5eD/xxSVc2HQ7z//yV/zgh8/1+4x3ZGTkqCmlDJZADpDxETAZWNzz+imw31r7zwFpYISpZ2t86O7uZu/eveTnF9DU1IjD4WT+/Hncdttto2XkmpCy1lJUVMT+/flUVJQD/nnIVublsXz5ct5++23Ka+tZ+9jTA+6j+tJ5DvxmCxs3buTw4SNUV1ddWRYZFcXKvDwNcS0iIuOO1+tly5YtHD16lISKaubu2ENkc+uw91eVM5nTt6/EGxHBI48+GrTpadra2nj+l7+ioaqaGW99SnR5bVDaAWjJSuHckxtJTEvluR/9aLwnVkEfjbAcOGqtvcsYUwxMx//c3B9aa/8mII2MICVb44u1lu7ubpxOpy76e1hr2bx5M0eOHCE6MZmUaTMxxlB76RzN1ZXMmDGDiIgIis9fYN13f4QZ4HMrOXGEY19+CkBccgrTFy0lPjWdjtZWLh4/TMX5s8ydO5fHHntMn72IiIwLXq+Xf3n7bU6dPs30gkNMLToemKHNI8I5cvftNKWl8Mijj7JwYf+VJcNlreXtt9/m1PET5L71KTEl1Tfe6CY1T07j7BMbmbtgPo8//njQ2wuhoI9GmAQUG2MW4k+0dgAzgR8BYy7ZkvHFGKNhl69RUFDAkSNHmLpsDZMXr7hSOjh5cR4Vp45y5qvPmTdvHp1trVRfOk9azoxv7MNaS8nJo2AMaZOnsvK+h3E6e75WUiEjZzrFRQUc+2oHhw8fZsmSJSN4hNDR0cHRo0epra3F6XQyZcoUcnNzR33S5/P5aGlpwVpLdHS0SjFFREaZrVu3cur0aWbuLmDy8TMB229YRydLtn7OoXvXs/mdzURHRwd0ippjx45x8uRJsnYWjUiiBRB7uYqMXYc47jAcP36cefPmjUi7o0Ugz+AN+BOu2/D3aP1fwBPAdwPYhogEgLWWvfv2EZuaflWi1Stj9gJqL5/nwoULxMXFc2LX50QnJBKdkHTVPorzd9NYVQHAots3fp1o9TFj8XIuHT9Cfn7+iCVb1lp27NjB7t278Xg8uNwufF4fX331FQkJ8dx//wPk5uaOSCxD0djYSH5+PgcPHqCtp94/LMzNokWLWblypUpfRURGgVOnTnHw4EGmFh0PaKLVy+n1smjbDgofuYct77zD7/zsZ0RERNz0fltbW9n6wQdEV9aRln8yAJEOXvr+EzTOmcoH773P1KlTiY6OHtH2QymQt3f3Ad8G/groAvYCkQzQpSYiodPc3ExdbS2pM+YMOEhI2vTZtLW1cdddd+KwPr76l1c49NmHXDp2iLMH9vHV2y9z7uB+YmJiiE9NJzo+od/9GGPIyp1NWVkZ3d03P8rRYPzmN79hx44dTJ0xice//zC//cfP8pM/fpZvPbwRh8vB66+/zpkzgT9B3owLFy7wD//w9+ze/RVTJkdy/73TeeC+GcydncDBgwf4x3/8R44ePRrqMEVEJrT29nbef/ddYuobmXbgSNDacXm6mbt9N80tLXz88ccB2efu3bvp7Ohg8tbdmCCMRn49xlqmfLCb9o529u7dO6Jth1ogk61/C1wGwoH/ZK1txz9QRkkA2xCRAPD1DEF7vUmkHT2la4mJifzkJz9hZV4e9ZcvcGLX5xTn7yYhOpJHHnmExMTEG5a59c7N5esz9G2wXL58mfz8fBavWMDdD20gLdPfG+R0OsidM41vP/0gyamJvPfee3i93qDHMxjV1dW88cbrxMW6+Nm/WcaTj89hxfIMli9LZ9PDM/mj31/G5EkxvPPOO5w7dy7U4YqITFhffvklbW1tzN2++6rh3IMhrrqOKYdPcPDgQcrLy29qX93d3RwsLCTuTAmRtU0BinBoImsbiT9byoGCghG7+ToaBCzZstaesNZOAyKttf/ZGBMLnAPeCVQbIhIYsbGxREZFUXf5woDr1F2+gNPlIjk5mfj4eO655x7+5E/+hD/+4z/m3/7bf8uPfvQjFi1aREZGBvVVFXQOMDEhQNXF8yQmJo7Ic3MFBQWEhYex8rbl/fbahYWHseq2FbS0tHDq1KmgxzMYO3fuxBjL09+ZS1LSN0tFoqPD+K0n55IQH8727dtDEKGIiHR1dXGwsJDUc5eIrWsYkTanHjqO0+sjPz//pvZz7Ngx2js7ST14OkCRDU/KwTO0dXRw4sSJkMYxkgL6lLgx5udAhTGm1lrbbK39trX2/xfINkTk5jmdTpYtXUrt5fPUl178xvLm6kqqzp5k4YIFV9WJO51OYmNjr3pvxYoV+LxeTuXvob/RTSsvnKO2vJTly/tPfgLt/Plz5OROISxs4MRuyvRJhIWHcf78+aDHcyOtra0cP36MxYtSiYsLH3C98HAnK/MyKCkpoaKiYgQjFBERgKNHj9Lp8TApCM9pDcTd5SH99DmOHD5Me/vAc3fdyKGiIsIbW4m5VBnA6IYu9kI54U1tFBUVhTSOkRToIbkigYSel4iMYrfeeitpqakc++R9zuzeTkN5CY0VZZzbt5Mjv3mH2OgYNmzYcMP9pKWlsXLlSs4fKaLw4600VFViraW9pZmT+3ez/6P3SM/IIC8vbwSOCrq7vddNtAAcDgdut2tUlBGWlZXh9fqYNzf5huv2rnPp0qVghyUiItc4euQI0U3NxFeOzCh+vbJOFtPt9Q67GsNaS2lJCbHnSkM+kIIBYs6XUnr5cr83aMcjjScsMkFFRETw7LPP8vHHH3Pk6FEqTvof9HU4HMydO5dvfetb/c723p977rmHiIgI9uzZQ2nx1SeD2bNn8/DDDxMWFhbwY+hPYmIiFaVVWGsH7ElramimtaWNhISEgLbt8Xi4fPkynZ2dREdHM2nSpBsOM99btx4eNvDzc73CetaZSLXuIiKjgbWWstJSkksrRjxhia2tx9XtpaysbFij+tbV1dHV3U1URV3ggxuGqIo6aj0e6uvrSUpKuvEGY5ySLZEJLDIykocffpi77rqLsrIyADIyMoiJiRnSfowx3HHHHaxZs4bjx4/T2NhIeHg4c+bMGfEv0qVLl7J161ZKL5UzaWpWv+scKjiKMSZgQ9F3dXWxY8cODhw4QEdHx5X3ExLiWbVqNatWrRow8etNaCurWsnIuP5QuFXVbVdtIyIiI6O+vp5Oj4fYmvoRb9sAMTV1lJWWDmv73vN7ZOUoSbZ64igvL1eyJSKj06VLlygsLKS2tpbIyEgWLlzI/Pnzrzu64PVERUUFZN6piIgIli1bdtP7uRmLFi3iq6++Ytu7n3Pvo3eSNSnjyjKfz8ehgqMcLjzGsmXLiIuLu+n2Ojs7efnllykvL2f2nHQWL5lETEw4NTUtHDxwmW3btlFWVsYjjzzSb8KVnZ1NUlIihQeqWLwo7bptFRZWEhYWxuzZs286bhERGbyqqioAYutGPtkCiKmto7InhqFqbGwEIKK+OZAhDVt4Txy9cY13SrZExhBrLZ9++im7d+/G6Q4jIimN6ooqios3k5+fz9NPP014+MCDLEwEYWFhPP3007z66itsfu0D0rPSyJ6cgae7m3OnLtLa0srs2bO59957A9Letm3bKC8v59HHljJ7TvqV99Mz4pg3P5Ovdp7lyx1HmDRpEitXrvzG9sYY8vJWsm3bNvYXlLNyRWa/7Zw6XceRY9Xk5a0csZJMERHx6+rqAsDV6QlJ+65OD57u7uuWyA+kt/TcdIf+OWUAh8cfh8cTms9ypA0q2TLGjI5/HZEJ7sSJE+zevZvE3PmkL1mDw+XGWkvTxTOU7tvORx99xMMPPxzqMEMuOTmZ3/7tn1JUVMSBAwcoyj+K0+lkypQprLh/BbNnzw7IyIhtbW0cPnyYpcsmX5Vo9TLGcMttMzhbXM3+/fvIy8vrt92VK1dy/vx5fvPRaSor21i1MpO01CgAGho6KDhQyZ69ZWRmZrJx48abjltERIYrVIM6DL/dK+cdY2AUDEphe+IZiRGKR4PB9mwZ/P/KN/pUQv8vKDLKNDQ00NXVRVJS0g0n/72Rvfv2ERYTR8by2658SRljiM+ZRVtNBUeOHOGuu+4iKioqEKGPaREREaxevZrVq1cHrY2TJ0/i9XpZumzygOsYY1iybDJb3z9CRUUFmZnf7LlyOBw88cQTbNu2jQMHCjlwsJK4uHAcxtDY1AEY5s2bx4MPPqheLRGRIeod9e5mLu5754n0jsB8kf3xut24nM5hHUPvtYfP7cTZFfoBlnxh/nhGYu7N0WAoV36D+dedGCmqyCBcvHiRbR9/THnPg6nhERGsWrmSdevW3XCEuoGUlZURP2Nev1+2sZOmU198jKqqKnJycm4mdBmk3jlPEpOun9z2Lm9rG3jiZ6fTyX333ce6des4dOgQVVX+ERUTExNZunQp8fHxgQtcRGScstZy7tw5zpw5Q1lpKZUVFXT1lNFFRUSQmZ1NVlYW8+bNIyMj4wZ7+1pysn/qjZbEeGJrR/65rZakBFKSbzxFSH96Y+9ISSC6rCaQYQ1LR7L/fJY8zOMZawabbP0gqFGIjDOXL1/m5VdewYRFEjFzOY6wSDxVl/jyyy9pbm7moYceGtZ+XU4X3q7Ofpd5u/yj4N1s75kMXu/zcU1NHaSkDDyCY3Oj/9+m72TQA4mOjmbt2rWBCVBGpYaGBpqamrDWEh0dTXJy8oQppxEJFp/PR0FBAXt376a+sRGnz0dCfR2T6usI6+wEY2iPjKSmqpJzxcXs3LmTSdnZ3HrbbYMadCglJQWX00lzShKZxReCf0B9WKAlLYWc7OxhbZ+V5R+Zty09aVQkW20Z/hEI+6v0GI8GdVVmrX0p2IGIjCefb98OrnCi8+7D4fZfkIdlTKP9TCEHDx5k7dq1pKSkDHm/c+bM5six43QvWo0r8uveFGst9WeOERMTe+VLVYJv9uzZfPjhhxwqKmHjnXMGXK+oqIT4+LgJc2KRb/L5fJw8eZL8/P1cuHDxqmUZ6WmsyFvJwoULVSYqMgw1NTVs2byZ0rIykupqyTt9iqzSyzh9vn7X73K7uZQznXNtrbxZWsqCBQu49957r1uC73A4yMzMpLFy5JOVtvhYPG7XsM/vsbGxREVE0JaeGODIhqctPYmYyKgJM42JboGLBFhnZycXzp8nPGfhlUSrV/iUeXReOs6pU6eGlWytXbuWY8ePc3H7u6QuWk10WhZdLY3UHDtAW3UZ991337BLFGXoYmNjmTt3LoX5J5k5M40pU785X8jBA5e4eKGWjRs36t9mgmpvb+fNN9/g0qXLxIdb7pjSSlZ0N8ZATbuTA5VePvjgA/bs/orvfPfpCTHvjEigFBcX89abb+Lo7CCvIJ9Jly/e8JmWMI+H3DOnmF58mlNz5nHcWi5duMD3nnnmuufmufPm8XFJCc1JCcTWNQT0OK6nfPYMjDHMmjVrWNsbY5iSk8PZ+iZ8jnwcAyShI8HndNCcO4lZ03JCFsNI05lfJMC8Xv/gncb1zQc/TU+JX+8wrEOVlpbGd7/zHcKsl5JdH3Hqnec5//Gvaa8q4c4772TFihXDD1yG5b777iM+PpE3Xstn20fHqShvpKWlk4sXatn864P8ZusxZsyYwZo1a0IdqoRAV1cXr776CqUll3lwRjM/W1rDrdntTE/wMC3eQ15GBz9ZVMd35jbQ1lTPSy++QFNTU6jDFhkTzp07x5tvvEFMXS0bf/MBkweRaPXlsJa5J46x7tNtdNbX8dILL1BfP/DzWEuWLMHpcFA69+bnpRwsr9NJ+dxc5syZc1NzQy5fvhxPZBiNswYe0GkkNMyaQne4m+XLl4c0jpF0w54tY8wvgP9lrR3S04DGmETgD621fz7M2ETGpMjISFJSUqivvED4lLkY8/U9ja7y8wBMnTp12PvPycnhD//wDykuLr4yqfGcOXMG9TyQBF50dDTPPfcc27Zto+jAMQrzvy4Ri4gI55ZbbuGOO+4Y9oTTMrbt2LGDsrJynpjdyOykrn7XMQZmJHh4el4dLx2DrVs/4Ld+6zsjHKnI2NLU1MTbb75JTEMDt27/lLCbmLMpsaGe2z7/hC833s1bb77Jj3/yk36/syMjI1m4aBFHPN1MPXSCyJbWmzmEQSmdm4vH7SYvL++m9jNjxgwS4uKoWTaLxJMXb7xBkNQsm0VSQgLTpk0LWQwjbTBlhD8H/tgY8zrwJrDD2v4H6Tf+J3zXA98BngSiASVbMqEYY7jtttvYvHkzrYd3EJGzEEd4JF1VF+k8V0T2pEk3lWyBv3Z8uOUEEnhRUVE88sgj3H333Zw9e5bOzk6io6OZOXPmhBnaVr7J4/Fw8EAhc5M7B0y0+sqI9rIqs5Wdp89QX19PYuLoeL5CZLSx1vL+++/T3dnJql07birR6hXX1MSyfXvYe8vt7Nq1i3Xr1vW73vr16zl+9Cgn161mydbPgjoMd1tcDOdXLmFmbu5NjzJsjCFv1So+aWqiaWo6cRcrAxPkEDTlZNCalcKtq1ZNqEGBBpNseYEY4Mc9r1ZjTAFwBqjFP9x7EjAbWIY/waLn/YkxNbTINRYtWkRLSwvbt2+npaDkyvtTc3J4/LHHJtSXzHjR2dlJZWUl1lrS0tKIjIz8xjrR0dEsWrQoBNHJaHT8+HHaOzpZMb190NssS+tgV2k0hYWF3HnnnUGMTmTsKi4upri4mEWHi4hpbQnYfrPKSpl86QJf7tjB0qVL+y3bi4+P5+577uGDDz6gdN5MJh0/E7D2+/IZw4l1a3CFR/DgQw8F5LohLy+Pwvx8Lt+3ljm/fB+nZ+Tm3PKGubl831qSk5Im3CMPg0m2FgB/Bdzf83MMsK7nda2+vwnvA396U9GJjGFr165l6dKlnDlzhq6uLrKzszUa3RjU3t7OZ599xuHDh/H03D11uVwsWLCAjRs3EhMz8JDvMrGVlJQQ4YKpcYO/7xgX7iMr2kNZz/x8IvJN+/fvJ6Kzk+nFpwO+77lHj3B58lQOHDjA+vXr+11n2bJlnDxxgjPWEt7SRuql0oDGYI3hxLrVNKan8MgD9wds1D63282mRx/l+eefp3T9UqZ8kh+Q/Q5G6fqleKIjeOTRRyfcFDU3HCDDWnvKWvsgsBx4HmjCn1T192oEfgkst9Y+bK09FazARcaCyMhIFi1axIoVK5RojUHt7e288MILHDx4kNlzs/j2k2t57KlbmL9oMkePHuH5539FS0vg7qrK+OLxeAhzWoZ6Qzrcaens7H8+PZGJrqGhgeLiYnKKT+Po/6mWmxLT2kJ6ZQWF+fkM8NQMxhgee/xxMjMzOXrXbVROnxKw9n0OB8fuWENlbg4bNmwIeLXE5MmTWbNmDbVLZlKzcEZA9z2QmsW51C7OZe0tt5A9zLnCxrJBp5bW2oPAj4wxPwGWAAuB1J7F1cARoMhaG7rxJEVEAujzzz+ntraWx55ay9RpaVfenzYjnQWLpvL2azvZtm0b3/72t0MYpYxWYWFhdHQbfBYcQ0i42rsdRGrAG5F+Xbp0CYDskstBayP78iUOZGRSV1dHcnJyv+uEh4fzvWee4Y3XXufYBkNddgYz9x7EdRPPjzWlJHHijjW0xsdx5513cssttwx7X9ezceNGqiorOfsti/H5SD52PijtANQumM7lu/KYmZvLHXfcEbR2RrMh9+P1JFMHel4iIuNSZ2cnhw4dYt6CSVclWr2yspNYtCSHg4XHueeee4iOju5nLzKRTZ06lfz8fM42hDEz8cYDZADUtTsob3Wxfkrg7pSLjCdlZWU4fT5im4M3RUJCfd2VtgZKtgAiIiL43jPfZ8eOHXwF1E/JZtr+ItLOXcTpHXzfQ0d0FJcXzKZkwWxiYmL4zsMPM3PmzJs9jAE5nU6efOop3nj9dc7fZ/DERpG+7zgmgD2F1hgqVs+n4tZFTJ82jcefeGLCjso7sYomRUQGqaqqCo/Hw6w5A5c8zJqbTWH+WcrKyoJ6YpSxac6cOcRER1FQ0TXoZKuwMhKHw7Bs2bIgRycyNtXW1hLb1BSUEsJecU2NYC01NTU3XNflcrFx40bmzJnDe1ve5URkBMVrlpN5spjky2XE1tR/o7fLAh0x0TSnJlGRm0PNlGwwhiVLlvCtb31rRKZycbvdfOe732XLli0cA5pmTmbK1t1E1N18EtueHM+l+9fQlp7EggULePjhhyfcc1p9TdwjFxG5jt5a/euNANW7bKC6fhl76urqKCoqoqGhAWMMycnJLFmyZFiTiTqdTlbkreSLL77gYGUES9M7rrv+hUY3+yuimL9gQcAeiBcZbzweD07P4G5eDJfDWpzW0t09+NH6srOz+env/BsuXLhAfn4+J8PDuLRoLgBRLW24W1sxPh8+l4v2hHg8bv8leFREBLeuWMHy5ctJSEgIxuEMyOVy8e1vf5s5c+aw9YMPOPWD+0jJP0lK0RnCm4Y+h1hnfDQ1S2ZSvWIOEZGRPPbgg8yfPz8IkY8tSrZERPqRlpaGy+XizKkypudm9LvOmVNlGGNGdPATay2XLl3i+PHjdHZ2Ehsby+LFi0lJSQl4W83NzVRXV2OMIS0tbVyXSjY3N/P+++9z5swZjIH4SH8iffiw5YsvvmDevHk88MADQ77jfOutt3Lp0iU+OHeOFo+DVZlthF1TSeP1wdGacD48H0dSUjL33ntvoA5LZNxxOp3YIJejWfxDrzscNxxH7irGGKZNm8a0adNoa2ujrKyM8vJyKioqaG9vx+v14nK5iI+PJysri6ysLNLT00NaXmeMYcGCBeTk5PDRRx9x3OGgauVc4s6VkXzkLFHltbhb2vudT8wCnphIWrNSqFswnabpWRhjmL9ggcrr+1CyJSLSj4iICBYuXMjhw4eYv2gqkyZfXbdfWdFA0YHzzJkzZ8R6IRoaGnj77bcoL6/A7XYQGemmpaWLXbt2MW/ePB5++GHCwsJuup2Kigp27NjBqVOnrvTaORwO5s+fz7p16677DMNY1NTUxPPP/4q2liZun+Fl2WQvcT05VX0bFFxysu/EMaqrKnn2B8/1O8faQJxOJ0899RSbN2/mixMn2FMWzaLUNjKjuzEGatudFFVH0dJlyM7O4rd+6ztD2r/IRBMXF0dpbBwWgjahcFtUNNYY4uPjh72PqKgocnNzyc3NDWBkwRMTE8Njjz1G4113UVhYSGFkAedn+Mvo3R1dRJbV4GrrwHh9WKeD7qgI2rNS8ET4zzlRkZHcnpfHsmXLbupzG4+UbImIDGDjxo1cvHiRf3l9FwuXTGX2nGyMw3DmVBmHDl4gMiKSb33rWyMSS2trKy+99CIdHa08eG8OC+cl4XY7aWn1kF9Yxc49x+ns6OA73/3ukO/G9nXhwgVef/01XE7LmqVx5E6JwgKnz7dSdOIYZ86c5vvff2ZcTGXQ0tLCwYMH2bXzS7q7PcSEQ1MHtHQa4iL8SWZiFNw1x8v0FB9vHqjh/fff44knnhxSO263m8cff5ySkhLy8/M5cPwY3oqvH57Pzc0lLy+P3Nzcm/q3E5kIsrKyKHK7aY+MIqq9LShtNCQmAYyL77mhio+PZ8OGDaxbt46ysrIrvXPlZWV0tLfj7fbidDmJjIxkes/8oZmZmWRlZU3YATBuRMmWiIxpra2t1NfXExkZGfAel+joaJ577jk+/vhjDh88xsGCc4C/l2fu3LncddddI3YHb9++fTQ0NPKj788lO+vriZRjot3ccXs2MTFuPvz4HMXFxcyaNWtYbXR0dPDWW28SH+Pg+5syiIn++hQxbVIkKxfH8/LmCt588w1+//f/YEyfWPPz89m27SO8Xh9TEi1J0ZbObjhW4aCo1MmcdB+PLOrG3XOIM1Isa3K87DpxkoaGhiE/W2GMYfLkyUyePJkHHniA1tZWfD4f0dHRI/IwvMh40TtPU2VGBtPOnwtKG5XpGbgcDtLT04Oy/7HA6XRe+c6SmzPkZMsYM9daeyIYwYiIDFZTUxPbtm3jxIkTV0rdMjMzufPOO5k+fXrA2omOjuaRRx7h7rvvpry8HICMjAxiYmJusGXg+Hw+DhwoZFZuwlWJVl/LFqfw5e5yCgsKhp1sHT58mI6OTr77YNZViVavxDg3961L5o0PKjhx4gQLFiwYVjuhVlBQwIcffkhuquXuuV5S+nykHR7Iv2j44rSDtw64+K3l3Th7OpuWT/by1XknBw4cYMOGDcNuPywsLCDlniITUWZmJqnJyZzPnU3O+XMBLyX0uNyU5ExjwaJFE3oEPQmc4dQrHDPG7DHG/LYxRkWZIgFkraWiooILFy7Q3t4e6nCCprOzk3PnznH+/Hm6uoY+qlRLSwvPP/88Z86cYeGKJXzr0QdYu+F2WtvbePXVVzlz5kzAY46Ojr5Sfz+SiRb4e5xaW9uYnjPwiHhOp4NpU2KorqkedjvHjh0lIyWc7PSBe1pyp0YSF+Pm2LFjw24nlFpbW/noo9+Qm2p5avnViRZAhBtuy7U8sNDHuVoHh8u+Pk3GR0JKNIMaDlpEgsMYQ96qVTQkJFCdFviep3O5M+l2OsnLywv4vmViGm7KvrLn9T+NMVuAF4FPrMY/Fhm2yspK3tm8marKSsDfhb9y5UruvPPOcfMch8/nY/v27ezfv/9KkhUeHs7atWu57bbbrjvMel+7d++mubmZh77zGGmZX59sZy2cy3uv/SsfffQRubm5g97faNf779/l8V53vS6P76Z+V9rb2kiJv/5pwRhDQpyTtrbgPCsRbAcOHMDr9XH3XC/X+6iWTLLsu2DJv+RgSbaP3l8lY/y/xyISOkuWLGHPV19xcOUaNv7mA1zewQ/Rfj3NsbGcmL+Q2bNnk5WVFZB9igwn2WoCem+vRgBP9rzKjDEvAS9ZawN/W1lkHGtvb+ell1/G44PERbfgioqltfQse/bsweVy3VTJ0mjy0UcfkZ+fz9RZc5g+fyHWZyk+UsT27dvxeDxs3LhxUPs5dOgQU3OnX5Vogb88a/HKZWz/8BNKSkoGVWt+8eJF9uzZw/nz5wGYMmUKq1evZsaMGUM/wCCJiIggIyOdY8fruXV1Zr9JZFt7N2fPN7F48dLhtxMZSUNTy3XXsdbS1OIlPXNsjph37NhRpiTZb/RoXcsYWDbZx0fHndS3QVK0v8Swrg1yNNKWSEi53W42PfooL7zwAkXLVrA8f+9NlxN2O13kr76FsMgIHnjggYDEKQLDKyNMBR7A35tVh3/kTQNkA/8eOGmM2WWM+aExRgPsiwxCUVER7W1tJK+8i5icOUSkZZO89HYis6axb99+PNfMPj8WNTY2UlBQwMxFS7nlvofInDqNrGnTue3BR5g6ey579uwZVG+Jz+ejra2NxJSkfpcnpvgHyWhpuX7SAFBYWMiLL77IpcsXmTN/KnMX5FBeUcqrr77K7t27h3aAQZaXt5LK6jb2FVR+Y5nPZ/no04t0d/tuqvRl3rz5lFd3Ul7dOeA65y6309DkYd68ecNuJ5TaWltJihpcEUZSzxmstct/GXeo1EG3139XXURCa8qUKaxfv55LOdMoWrqCmymt8rhc7L59PY2JSWx65NERLxWX8W3IPVvWWg/wIfChMcYJ3Al8G9gE9M6quabn9dfGmL+01v5VYMIVGZ8qKytxRUYTlnD1xLSRGVOoKztPQ0MDqampIYouME6fPo21ltlLl1/1vjGGOctWcPHUCc6ePcvChQuvux+Hw0FsbCzVFd9MOoAr799olMC6ujq2bt3KtBlZ3P/Ibbjc/q/D2+9cxrb39/DJJ58wffp0MjL6n9B4pC1ZsoTTp0+z7bNTXLzczLLFqcTFhlFZ3c7+gkpKy1vZsGED0dHRbN++ncOHD9Hc3ExkZCTz5y9g5cqVJCX1n6D2Wrx4Mdu3b+f9z2p4+uEMoiKvHm2wqaWbD3fUEhMTPWaTLbfbTecgK446eu5xuJ1Q2wo7z7mYNGnShBwOWmQ0uv322+nq6mI30BIXz7L8vUS3tQ5pH7VJyRxYvZaWmFgeeeQRZs+eHZxgZcK6qWFWrLVeY8w+YBawGn+y1XtzweAvN/yvxhiUcIkMLCYmBm9HO97OdpzhX5dneZrqMMaMi1nYu7v9V7hh4d8cfMEdFn7VOjeydOlSvvzyS0rOX2LStClX3m9raaVoXyHp6ek3vCAuLCwEYOO9q64kWuB/Vm7Dt/I4d6aEgoKCUVNO4nA4ePzxx/nyyy/Jz8/n5Omvq7WTkhJ5+OE7yczM5B//8R9obW0jd1os82Yl09DQRX7+fg4cOMBTTz113ZEaIyMjefzxx3nzzTf5xzdLWT4/ltypkVgLp863ceBYM16fg6effvK6o3R1dnZy+PBhDhwopL6+HpfLybRpM8jLy2PKlCkDbjcSpuZM4+jhBjo8PiLc11/3WJkhym2paDJ8etoNzgg2bdo0InGKyI0ZY7jzzjtJSkpi20cf8dk99zPzxDFyzp8lsqPjuts2xcZxduYsLkzPJTY2lu89+ijTpk0bochlIhl2smWMuRP4IfAwEN53EVAMbAGeAKYAPwWUbIkMYMmSJezevZu6AztIXHwLzoho2svP03L+BLNnzyYqKirUId603uenLp4+yewly65adunMKQAmTZo0qH2tWbOGk6dO8dE77zN9di6Zk7Npbmzi5JHjdHd5ePzbj91wcIyqqipS0xOJif3mZxsRGU5mdgqVlf33noWK0+nkjjvu4LbbbuPixYt0dHQQGxvL5MmT8Xq9/O3f/g0O4+Gnz84iPfXrpL2xqYvXf32et956k9/7vd+/bolMbm4uzz77LF988QU79p9lx/56wH9RM2vWLO64447rzj1TX1/PK6+8TH19A5kpbhbnuujsspw8fZyjR4+yevVq7r777pANXpKXl8fBgwfZf8Fw+8yBC4+qmuF0lcHpMLx31EVqSjJPPPlUwOdyE5GbY4xh+fLlzJgxgw+3buWE08nJ+QtJLy8jsa6WhIZ6wjo7wRjaIyNpSEyiNjWN2uQUnA4Hy5ct48477yQ8PPzGjYkMw3Dm2fpz4Fn8SdT/n737Do/yvBK//32maEa9V1BDSIgqBEj0bqqxjWMbsMEG23Gc4tSN433Ts+W3u0mcdXY3cRI7NrZxAzsGA8Y006sQCIEEEhJIoN57mfa8fwwaGFRAQkICzue6dME89cwIpDlzn/vcgGNOog3YAvxJVdUdV499Dzh93bFCiA4EBASwZMkStmzZQvGu9SgaDarNRlBQ0IAZWbldgwYNIjw8nNMH96HX64mMH4Gq2riUeZazxw4TGxt7y6WSRqORNatXs3fvXk6fPk3OuWwA4uLimDVr1i2Veen1elqaW1FVtcM3/s1NrXh6DMwkV6fTtWvgce7cOWpr61j5eLRTogXg7eXCE49E8qe/Z3Hy5ElmzJjR5fUHDx7MqlWrqK6upqysDEVRCAkJwcur89bzAGazmXXr3qOlqY6nF/sSPejaWlKLzCq7j9dz9OhRvLy8mDx5cjefde8IDQ1l+PB49p47j4fBSmK4yo3f/rJ6eP+4Fo1GQ9SQGCZNmsSQIUPume6WQtyLfHx8eGrlSiorKzlx4gQXsrI4V13d7jiNohAUFMTcUaNITEy8JypHxMCmdLdbu6IoNuylgm2/dSqAvwN/UVU1/4Zj3YF6QFVV1bn4f4BTFCUOyMrKyurxAqFCdFdtbS1nzpyhubmZwYMHM2zYsHum7TvYm1Z88MEHFBcXo9VqUVUVm81GeHg4Tz75JK6u3e9wZ7FYaGpqwsXFBaOx8/WhbnT69Gk2btzIw4/PZEis84ha4ZUyNqzbyaJFi0hOTu52TP1hw4YNFFzJ4QcvxneaFLz9YQ5mqyff+MaLfRJDWloamzZt4smFPsSGt/+UWFVV3t9WQ2mNjh/+8Edotf3za8FsNvPRRx9x8eJFgjxhXLgVXzdotUBGsYbsMgV3NzcWLX6Qy5cvU1lZiaIoBAcHM378eHx8fPolbiFE97S2tlJWVkZrayuKouDm5kZgYKAsViz6Soe/fHv6r00BjgN/Aj5WVbWzVUmbgdk9vIcQ9x1vb2+mTZvW32H0GQ8PD1544QVyc3O5ePEiiqIwdOhQoqKiejxqoNPpbjri0pGRI0dy4OABvtx8mJlzxzNsRCQoCjnnL7NvVyre3t4kJCT0KKb+YDKZcHfTdfk6erjrKK3o/iLSt+rUqVME+OgYOtilw/2KojBptBsffFnDhQsXiI+P77NYuqLX63nqqac4ffo0KSnH+TLzWrmom5srEycmUFpayoYNG9BqIMhTRVUhJ+cCBw8eJDExkcWLF981b9hMJhOlpaWYTCZcXV0JCQnp0w9xVFXFbDZjsVgwGo331AdG4u5iMBhuaQkQIfpST35T5AH/B7ypqmpdVweqqmoD9vXgHkKIe1RbgjV06NB+jUOn0/H0qqf5+OOP2fnFUXZtOwbY3ygGBgayYsWKu6qG38fHh7y8i7S0WDEa248Y2WwqhcXNBAb23RuPutoaIgK7TvjCAu1dKWpqavosjluh1WoZN24ciYmJVFdX09TU5Ejc31/3HiUlJcyONTNusBW3q7ljbTMcz9dx9NQpmpoaWbZs+YBOJKqrqzl27Bhpp07RarqWZHt6uDN+QhJJSUm9Oh+0oaGBkydPcvLECWrr6wF7ydaw+HiSkpJu60MVIYS4W/Uk2YoCfgscBZwWolEUZQqwF3vZ4N3zLkUIcV/y9vbmhRdeIC8vj0uXLqGqKpGRkcTExNx1bwrHjRvHiRMnOHKinNnT2rerT8+sprbOxPwF4zo4u3fo9XqaWrvuANbcYnMcOxAoioKfn5+jLf6+ffsoKi5hWaKJYUE2p2O9XWFevAUvV5Ud57PJyMi46VIF/eXSpUt8/NGHmM1mhnvUM9K/AaPWRp1FR3qdF3v37iXt1ElWPf1MrzT9SE9P5/PPN2G12ojSNTDOUI8WGzWqgbNZVs6dO8eQ6GieWLasW+W+Qghxt7udMsKOaK5e83bWlhNCiDtGURSio6Pv+pa/oaGhjB41iv1HzmIyWZmcZF+Hq6nZQurpSvYeKiUiPLxPS/dihsZy/PhR6puseLp1PB/r9AV7MnZjg4+BwGazkZp6giH+tnaJ1vWSI6ycuKwnJSVlQCZbpaWlfPjhB3hrmlkRWYSP3nlJhVGeDRQ0G1hfEsa6997lhW+8eFsjXG3zHyN0jSx0L8Bf67wo9iy1mNNmP3ZfUlm37j1Wr14zYJJtIYToa7dTcN5RQnV3zCQXQoh70CNLl6LT6zmaeopjJyswGnW0tlqx2VTiYmN59Gtf69Oyt6SkJI4dO8bWg/U8Mdcbrdb5c7micjPHM5qJi4sbkE0miouLqa9v4IExXa/3pigwJszM3pwrNDU1DbilGfbs2YPOZmbl4EI8ddYOjxns2sry0CLevqLh+PHjzJo1q0f3qq+vZ/PnnxOpa2SZ60V0Svu3BnpFZYJLJZ6KmX8UKuzbt48HHnigR/cTQoi7zS0lW1fbvf/y+k3AwS7KbOpvMy4hhBDdpNVqefjhh5k+fTpnzpyhvr4eV1dXRo0aRVBQUJ/f38/Pj4ULF7Jt2zbe3FTNxFGuhAfraTWpnMlp4eT5ZtzcPQfscgatrfYRGS/jzYszvIzXzhlIyVZtbS3Z2VlM9qnpNNFqM8jYSoxbE6knUpg+fXqPukOmpqZitdlY5Halw0TresP0dQwz13Iy9QSzZs26axqMCDEQtba2cvHiRYqKiigvL8dkMqHVavHx8SE0NJSoqChHebToX935SXdjZtVRpqVe/TrQ44iEEELcFl9f35uupdVXkpOT8fDwYO+ePXy+r8KxXaPRMGLESObPn4+np2eH51ZVVXHixAlyLmRjtljw9fVj3LhxDB8+vEeJwPUd8W5lDl7bXKLaZgV8u04capqdzxkoLly4gKrCWK9b+8xzrFcdn5a4UVRU1O2ubaqqcvLECYbo6vHV3FqXy3EuFWQ1eZOZmcmYMWO6dT8hhP3n5OHDh0lPS8NstaKoKq61DWhbWlF1Wi75eHFCZ/95GR0dzeTJk4mNje3nqO9vPflYqe03UGe/uY4C3+tZOEIIIe52I0aMYPjw4RQUFFBdXY1WqyUyMhIPD49Ozzl16hSbN29GQWVImA5XL4WC8gY+/fQSYWGhrFy56pZGkGw2G2fPnuX48eMUFhYC4OpqJDFxHBMnTuxymYCQkBB8vL04VVjD6LDOkwebCqeL9ERFRfVobbi+1NxszwK9dF2XQrbxujqfq+287t6rvrGRiYYuGxM7idQ2okGlrKys2/cT4n5ms9k4duwYu3ftQrVYCMi6RNC5i3iUVaG1XhvFVoFmH08qYyIoamrhg0uXGDFiBIsXL5YFnPvJrSZbrwFrsSdYF7F/Lx8HUq87xgZUqara2IvxCSGEuAspikJ4ePgtjZbk5uby+eefMyRUxyNTjXi62eeVqapKRp6Fzw+X8PHHH7FmzbNdjlBZrVY++eQTzp8/j7+HwszhCgYdXK5s4ciRw5w6dZJVq54mLCysw/M1Gg0TkpLZtWsXZ4s1jArtuEnGoYtaapthflLSLbwSd1Zb44kWmwYPTddlhAAtVo3Ted1hsdgTtZuVD15PUUCnXDtXCHFzFouFDRs2kJ2djV9eIUP2HMfQ1PEHJArgVlOPW2oGg05lUpg4nHM2lcv5+TyzejWBgYF3Nnhxa8mWqqq1QC2Aoij7sSdbWaqq5vdhbEIIIe4xNpuNrKwsUlNTqagoR6fTYTKZ8XTTsHy2K3rdtWRKURRGRetpMal8cewK+fn5REVFdXrtr776ivPnzzNvtMKkoYojMZsUCxX1Ku8fauWDD97npZe+22n538SJE8nOzmLjmSuU1ltIirA45mdVNCgcydOSVqhj1KhRDB8+vNdel94SGRkJQGaDB8k+tTc9PrPBA71OR2hoaLfv1TaqV2vreBHrjjTZtJhUZcCNCAoxUNlsNtZ//DEXLlwg+kAqoWeyOy0tu5HGphKemolvfhHnHpnLO2+/zXNf/7rM5brDut2WSlXVWaqqzlZVNaMvAuoLiqLoFUU5qiiKWVGUkv6ORwgh7kdms5kPPviA9evXU16SR2RAC/5u9TQ21NPQZCMz39zheQkxeowuGk6fPt3ptVtbWzmRksLocIXJsZp2I2ABngqPJSs0NjaRnp7e6XV0Oh0rV65i5MiRHL6k43/2G/nTQSP/d8DI64cMpBe7MHHiRB599NEBuRZbaGgog8LCOFHrg6Xz7vUANFi0ZNR7EhsX16O5Z3q9nqFDYzhj8cd6i4Nb6Wb7m7yBmKgKMRAdOnSICzk5DNmXQlg3Eq3reVTUMPIfOzHV1vHphg3YbDf54SB61U1HthRFeevqX/9dVdXc6x53RVVV9fnbC61XqcBnQAMwqp9jEUKI+9LWrVvJzc1l8WQ3xsUZ0Gjsbxsamm18tq+Bzw+34OepITzI+VeTXqfg56nQ0NDQ6bWzsrIwmc0kxXT+GeJgP4VQH4X09NMkJ3e+UomLiwuPPfY4c+bM5dSpU1RVVaEoCuOCg0lMTBzw8x6mz5jBRx99xMbSYJYGl6Lr4CVptGj4sDAUqwqZmZmkpqYyfvz4bt8rKSmZD3NyyTD7MsalustjW1UNJy2BREZE3JHumELc7crKyti7Zw/+OZcJzci5rWu5VdcRvecY2Qv0HD58mGnTpvVSlOJmbqWMcA32ZOVNIPe6xzczYJItVVUtwH8pijIcSbaEEKLXmEwmGhoaMBgMXSYhdXV1pKenM3GkgQnxzqMoHq4als/15H821HAk09Qu2bLZVOqaVBot5bz11lsYjUZGjBjByJEjHXON2hKxwI4bHToEekF+7a116vP19WXOnDm3dOxAMmzYMBYsWMD27dt5w2QgybuGkZ4NGDU26ixaTtd5kVrrRatNwyNBJZxp8GbLli24uroyYsSIbt1r6NChDB40iO1FKh4aM0N0HSfEraqGfzRHUWfT80gP1/QS4n5z4MABNGYzQ/an9Mr1AnIuUz6skIP795OcnIyLy62XAIue6+kiFzcbxbz12bK3ekNF+QHwHDASe/njb1RV/fV1+43A74DlgCdwEviRqqrHejsWIYS439XU1LBv3z7Onj2DxWJvxBAZGcn06dOJiYlpd/z58+dRVZUJwzouV3PRK4wZauBYZgsWq4ruugWRLxRYaGi24WKpw8dQT0U1bLpwgT17vmLlylUEBQVhMBgAqGuGwC56PdQ1g9EwsNq194VJkybh4+PDxs8+48tyPV+WO0+KH+LayEy/KsKMrQxzb+KdosHs2rmD4cOHd6s8UqPRsOLJJ3n3nbVsKFcYoa9mnL6CMG0zigLNqpYzJl9SzYHUqi48/PDDREdH9/bTFeKe09DQQGZGBsEZObg0t/bKNRVg0MlMzkYN4uzZs4wbN65Xriu6divJ1m+u/nn5hsd32nigCrgCRHaw/zXgReAssBt70rVTUZQhqqpWdHC8uA1RUVHk59v7o6xevZq1a9f2b0BCiDumqqqKt99+i9aWZsbEuRIeYqC23sKp84WsW7eOpUuXkpCQ4HROS0sLAD6enZf5eXtoUFUwma8lW6XVVjYfacHNAN992IBBr0FVVS6V2th0pJH33n2Hb37r28TFxaHRKJzKU5k/puNkoapBJa9cZebM7o3e3K2CgoJoNZkY61mLn96MSdXgqrEy1K0JP5dr8+N0GpXJPtV8VmogJyen22vyuLu789zzX2f37t2cTkvjbJMvBo2KFpVmm4KKwuDBg3ho9hyGDBnS209TiHtSdnY2NlUlODO3V6/rVVyOa10DmZmZkmzdITdNtlRV/U1Xj+8UVVWfBlAUZSM3JFuKogRhH/WyAXNVVS1TFMUCrAJeAn6tKEo84A1or/79sqqqTXfwKfSKvLy8dp8KBgcHk5+f7/hk93pjx45tN6n80qVLXXb0GqhKSkp49dVX2b59O5cuXaKlpQUfHx/8/f2Ji4sjISGBJ598sttlMEKI7tm6dSsWcwvPPxZEkN+1YaTJCZ58+EUFW7ZsJjY21mldrLaFjEsqrQwK7PhXT2mVBUWBQxmtuBs0XC63cuGKBRc9PDffiEFvT9QURWFIiJYnZyn8bVsTJ0+eZPr06YwYMZLjmWcZEqwyNNg54Woxq2w8oaLTaXs0N+ludPHiRQCm+Fbjq++61fow9wZ0GpWLFy/2aAFUg8HA4sWLmTt3LmfPnqW8vByLxYKbmxsjRowgJCSkR89BiPtVUVEROrMFt6qbdxXtDgXwLCilKLAAVVUHZKOfe01PywgHmpGAHshTVbVtpcQT2JOtsVcfn7vu+HPAbGDvjRdSFOUbwDeA9pnLAFVaWsr777/Pc88957R9165dXXbvuh0/+9nPqK21/wAYNarvp8GdPn2aOXPmUFVV5bS9oqKCiooKsrKy2Lx5M/7+/pJs3SPq6uo4fvw4RUVFuLm5MXbsWGJiYuQXQz+rrKzk4sWLzE72dkq0APR6DQun+fCX9aWkpaUxZcoUx77hw4ezbdsXHD7bzOOzPNp9H2sbrJy9aMbDw5MjGfY5VXqdFo0GvrHQiG8HI2IhvhqigrWcTjvF9OnTWbx4MeVlpXx4uJzhYQqjwu3rbF2pVEnNg8ZWeOyxrzkSv3udyWRfmNlVc/POY1oFDBrVcU5PGQyG+yaZFaIvlZaU4FZe1aPugzfjUVFNWWsrDQ0N983Pw/7U7WTr6twoL+wdB8uvbnsIeBIwAu+oqrqpV6O8ueCrf14/M7dtceUQAFVVb+nfq6qqfwP+pihKHJDVaxH2sddee61dsvXqq6/22f1eeOGFPrt2R771rW85Ei03NzeWLVtGTEwMqmr/JPb48eNkZmbe0ZhE3ykuLubdd9+ltbUV/+AQiktLycjIYPLkycyfP7+/w7uvlZaWAhAb2fG8pyB/F3w89ZSUOK+yYTQamTp1Gnv37mXL4SZmjnXFy/1qSWCxhS+ONKHV6Vm9ejU+Pj6ORTybqvM6TLTaBPsoFF2y/+h3dXXl2eeeZ9++faSdOklm4bV5DjExMcyYMYOIiIjbfQnuGm0ji7UWHUZt10lUi1VDs1Uj618JMUC0NDej66W5WjfSttp/HrS2tkqydQd0e50t4F+AYmAngKIo84FN2OdIPQL84+q2O6n06p8e121r+/s9va6WVqsF4MyZM+zcudOxPTMzk+3btzsd05GqqipeeeUV5s2bR3R0NN7e3uj1evz9/ZkyZQq/+93vaG5uv0p5VFQUimJfNHTNmjWO7Xl5eY7tiqKwdu1adu/ezdy5c/Hy8sLd3Z3Zs2dz9OjRW36OdXV1HDlyxPH4T3/6E2+//TY///nP+cUvfsHbb79NRkYGubm5zJs3r8Nr7NixgyeeeILw8HAMBgNeXl4kJyfz+9//nqamjqtJjx07xsKFC/Hy8sLT05M5c+awd+9e1q5d6/Qc8/LyHOfMmjXLsX3WDR239u7d63Te3r17bzvOG78POTk5rFy50tEwYNSoUbzzzjudvrZbt27l8ccfJzIyEqPRiJeXF/Hx8Tz//PPk5jrXiZvNZt58800eeOABAgMDcXFxISAggPnz57Nhw4ZO79ETW7duRaPT8eizz/PQyqdZ9o1vMWxMAkeOHKGoqKhX7yW6p+3nicnccR8km03FZLF1+HNnxowZTJkyhVPZrfxxQw2vf1bHa+vrWLe9nlargVWrnsbf3x+tVovBYMDNzY26JhWbrfOeS9UNqlOCYDAYmD9/Pj/80T/x3HPPsXr1ar7//e+zatWq+yrRAoiOjkajKJyo80a9SduqMw2e2FSkMkCIAUKj1aJq+qiS42plgUbTkzRAdFdPygiTsZd8fnH18bNX/7z+X8T3gR23EVd3ZQJmIEJRlGBVVUuBpKv7+qaOboB45JFH+Mc//gHAH/7wB0ey8Yc//AH16m/XpUuX8umnn3Z4flFREb/97W/bba+qquLIkSMcOXKEjz76iP379/dobZk333yTw4cPO2IBe9IxZ84cTp48SXx8/E2vYbVanR6fOXMGi8WCTuf8z7ejideqqvLiiy/yxhtvOG03mUykpKSQkpLCu+++y65du5zWffnyyy955JFHnEpq9uzZw759+1i8ePFNY+6unsZ5vVOnTjF+/Hjq6uoc2zIyMhzJ8OrVqx3bzWYzTz31FJ988onTNVpbW8nKyiIrK4uHHnrI0VWuqqqKhQsXkpLi3H62srKSnTt3snPnTp588knWrVt32z+8a2pqKCwsJGnmLLx97QugarVaJsyYxYWMs2RkZBAWFnZb9xA9FxERgU6n4/T5RiJC21db51xuoanZytChQ9vtUxSFefPmMWHCBE6ePEllZSVarZahQ4cycuTIdv+nR44cyZkzZzh3xcrIyPa/rmoabFwosjJ5cvtSZr1eT3h4+G0807tXcXExx48f5+yZM9hUlbQ6b640u5LsU8MYj3p0GufMq8Gi5UiNLy56PVu3bMHP35/ExESio6OlbFeIfuLj60uBn3efXLvZ29M+d0tGte6IniRbsdhbu5+5+nji1cc/AWYAD2HvHNirFEX5OjANaGudslRRlChgo6qqGxVFWQu8AOxWFOUssAx7WeH/9XYsA8no0aOpr69n586dbN++nXPnzuHv78+6desA+3orDz74YKfJlkajIT4+nuTkZEJCQvD19cVkMnHu3Dk++eQTLBYLJ0+e5PXXX+fHP/5xt+M7dOgQ8fHxfO1rXyMtLY0vvrDn6M3Nzfzxj3/k9ddfv+k1fH19iYqKcowg/eEPf+Dtt99m0qRJjB07luTkZGbPno23d/sfSq+++qpTArNo0SImT55MeXk57777LrW1tZw5c4ZVq1axY8cOR2xr1qxxJFqKorBixQqGDh3Kli1b2LJlS7dfh5vpSZw3Sk9Px9fXlx/+8Ic0NzfzxhtvOBLV//zP/3RKtl5++WWnRMvPz49ly5YRGhpKbm4umzdvdrr2M88840i0jEaj4/XIyMjg448/xmaz8eGHHzJq1Ch++tOf3tZrYbHYJ/IbjM7lTDq9Hq1Wi9ls7ug0cYe4urqSmJhISkoKIYF6xo/wcCxOXFjWypZ91fj4eHf5QYqvry9z58696b1iY2MJDAxga0olrgaF6GCN481/Vb2N9QdM6PV6kpKSbnKl+8fJkyfZsmUzekVljEcdwQYTrTYNZ+o92FYeRHqdJytCizFqbagqFLQY+bwsiAaLlhB9HcbqGi6WFXL27FlCgoNY8eRTHf5sFUL0rdDQULK9PLDqdWjNXTe46a7GID8CAwIc6xSKvtWTZMv/6p/FiqIYgAigRVXVVxVFycCebPn1VoDXmQasvu5xwtWvPGAj9tE0M/YkayhwFPintnll97J/+qd/YufOnaiqyn//938TGhpKa6u9zvcHP/hBl59MjhgxgnPnzlFYWEhKSgpFRUU0Nzczfvx4zp49y9mzZwHYtm1bj5Kt8PBwjh8/7vj0ZNy4cZw6dQqA48eP3/J1/vjHP/Loo49is9kneldXV7Nt2za2bdsGgIuLC6tWreJ3v/sdfn72f342m81p1O5b3/oWf/7znx2PFy1a5Bil2rlzJ2lpaYwdO5bPP//cMS8F4Be/+AW/+Y29CefPfvYzEhMTOXfu+n4rt6encd5IURR2795NYmIiYE+KXnvtNcC+xlF9fT2enp7U1NQ4XT8iIoITJ04QGHhtHZ6GhgZH2eLZs2fZunWrY98777zDsmXLHI/Dw8Md8b/66qu88sorXZau3oyfnx+eXl5kpZ9myPARjmvlZmZgNplkjZ4BYP78+VRVVbHtQC6HTzUwKFhPbYONwtJWPD09eOqplbf1b6CNRqPhqadW8t5777Luq2pCfDWE+inUNqpcLLHh4qJn+fIV+Pj43P6TGgBar05Y1+v1eHp6dntUKScnh82bNzPErYmvhZRi1F5rjDHZt4bMBnc2lQTztyvhxLg1UdjqSrnJBb1i4wn/AmLd7P/nLapCRpMnO8tV1r79Fl9/4Rs9qmwQQvRcZGQkKApVUYMIvJDfa9e1GPTUDg5h3F3Ylfpu1ZNkq+2ndwAwAvu8r5yr29rqvdpP8rlNqqquAdZ0sb8Z+M7Vr/vKggULGDlyJBkZGbz33nuOX4r+/v6sXr2ajz/+uNNzq6urefbZZ/n888+dSv1uVFBQ0KPYnn76aadh6ri4OEeyVV1dfcvXefjhh9m3bx///u//zq5duxyjH21MJhNvvfUWZ86c4ejRo2g0GrKysigvv5Zrv/76612OpB08eJCxY8e2K5W7fkTIYDCwYsUKfvWrX91y7DfT0zhvNHnyZEeiBfZRzetVV1fj6enJkSNHnEaHfvSjHzklWgAeHh54eNinPR44cMBp3/Lly1m+fHmHsVVVVXHu3Lnb6lCp0WiYO2cOGzdu5PP33iEyNpa66mrysrMYPHhwu+cl7jydTsdTTz3F+fPnOXnyJKU11RgMBubNG0ViYmKvNlnw8fHhxRe/yenTp0lLO8WF0jqMRiMzZoxk/PjxeHl59dq9+ktJSQmHDx8mIyPD8YFSYEAAScnJjB8//pZLc/fv24eP3sIToSXobygVVBQY6dlIg6WSnRUBZDT7YbZYGOlWx2LfElyuO16nqCS41xGgM/FeeWSflU/3VENDA5cuXcJkMmEwGBgyZIjTMgNC3AuioqLw9famZMywXk22SuOHYNNqpGvoHdSTZCsfiAN+D9RgLyE8e3Vf20QKWUT4DvvRj37E888/T0tLi2Px0G9+85s3fdPz/PPPs2nTzZtHto2UddeN63ldvxZY25uKWzVt2jS2bdtGQ0MDx48f5/jx4+zYsYM9e/Y4jklJSeHAgQPMnDmzXZv4m2lLeGpqapy2BwcHd/m4Mzcmr529hj2N80ZdvdZw7fW+8X43Gynqrfi6IyEhAb1ez4EDBzh99AgGg8FRLioTegcGjUbDiBEj7khDBRcXF5KSku7JcsGsrCw2bFiPDhvjAxoJczfTYlVIr7TwxRdfcOHCBZYvX37TkcLy8nKuFBTwQEBNu0Treonedeyr8kfnYsBDaeURv2I6G0AbZGhhuGstp9PSmDp1KllZWY5R/8DAQMaMGXNHk5yysjL279/PucxMbNf9fNVqNIwcNYoZM2bg7+/fxRWEuHsoikLypElsr62lcshg/C/27EPv65mNBgqTRhM+eLCsfXcH9STZ2goMA8KvfgG0TWJpS5PTbzMu0U0rV67kpz/9qeMXoYuLCy+99FKX5zQ1NfH55587Hs+ePZu//e1vREdHo9VqWbZs2W13mbuxHrg3Jlt7eHgwZ84c5syZwz//8z/z6quvOpU45ufbPwFqKyds8/jjjzNx4sROrzt58mSAdiVJpaWlTs03ri8xvNH1icCNXRwvXLjQ4Tk9jfNGt/pa33i/S5cudXqvjo5/5ZVXCAgI6PT4tqYat6vtjbzNZnN0XBTiXlJdXc0nGzYQbGzlybhK3HTXEoikoCZOlLnx5YULfPXVV512Wm1TVmZfYjLarevCEheNymBjMxebYIJXTaeJVpsx7nWcLffmf//nf7DabLhpbSjASauGXbt2MmFCEvPmzeuVstGuXLp0iQ8/+ACN1cQ4aykjbZW4YaYBF85qAsg4YyU76zwrVz3N4MGD+zQWIe6UpKQkTp9KI3fOJDyLt+DS3NLja6lA7swkrEYDSx56qPeCFDfVk2TrX7F3+puOvWzwHeCjq/seBFrpYLFg0bcMBgPf+c53+OUvfwnAk08+edNPLWpqapw6/S1ZssTRQaysrMxpxKi/Pf3007z00ksdJiE3dtNp+2Rz2LBhBAQEUFFhH2itqqriBz/4QbuOZ83Nzaxfv56pU6cCtPv0/J133nHM2TKZTHz00Ud05vpELSsri5qaGnx8fKitreVPf/pTh+f0NM6emjx5Mnq93lFK+N///d+sWrXK6RPhpqYmGhoaCAoKYtq0aU7nGwyGDufvlZSUcOTIkV5vry0jWeJedeLECaw2K4/HVDklWmAv+0sKbuJKgwupJ1KYOXMmLi4unV6rOx9GtN3JXXvzSfceV48J1TQw37uEEL39zV6ZxUBKkx/Hjh2jtraWJ554os/+r1ZVVfHRhx/ibWngCcs5PLlWBu2JmVBbI0m2YtarI/jw/ff55re/LV3WxD1Bq9Wy9GuP8sbf/sa5h+cwYuMu9K3dX3hcBfKmjKVyaARz58zptKux6BvdTrZUVa0FZiqK4g80qKraet2+3vlIW/TI9773PUaPHg1AcnLyTY8PCgrCx8fHUTb3b//2b5SWlqIoCu+9957jzf9AsG7dOtatW0dkZCTTpk0jJiYGFxcXsrOzWb9+veM4T09Ppk+fDtjfpL/88su88sorAHz11VeMHj2aJUuW4O/vT1VVFenp6ezfv5/m5mbH3KyHH36Y4OBgxwjWv/7rv5KTk0NMTAxbtmzpsjnGxIkT+eyzzwD7+mCJiYkkJydz6NAhCgsLOzynp3H2lI+PD9/+9rf54x//CNhHAuPj43niiScIDQ0lPz+fzZs389e//pWlS5cyevRoFi1a5GhG8i//8i8cPHiQKVOm4OrqSlFRESdOnCAlJYXp06fz6KOP3lZ8QvQFVVUpLCzkzJkzNDY24uHhwdixY/u1lObsmXRivVvwNnReUj0+qImMKlcuXLjAyJEjOz2urbw5p9GNYEPnb8ZarBoKWlwBhRrLzTuRVV89ZqpbuSPRAgjStfKgVzGBulZ2nYe0tDTGjRvX2WVuy9GjR7GaTTxuOe+UaF3PBxOPWc7z95YxnDhxgtmzZ/dJLELcacHBwSxfsYKPPvyIs08sIPbLg3hU3Pqcd4tBT+6MJCriopgwYcJtf2Aruq8nI1ttmoAliqK09fc9D3xxtVGF6Afe3t4sXbr0lo/X6XT89Kc/5Sc/+QlgL2lp6yo3aNAg5s2b57RQ8kCQn5/vKBO8kVar5c9//rPThPmXX36ZCxcu8OabbwL2rnznz5/v8h6urq6sXbvWsc6Wqqp88MEHgD0xWrx4saOF/Y2ee+45Xn31Vce8pby8PEfL+gcffNCpq9/1ehLn7fjtb39LYWGho/17RUVFl0053nvvPRYtWuRoHvLVV1/x1Vdf9Vl8QvQmk8nEJ598woULF9BrFTxdoa5Z5dixY4wcOZKlS5e2G0m+ExqbmvAP7Hp0yd9o39/Z4uuO4/z9iYqKJLXQygTvWgzajudtpdZ6YbYphIeHk15kY6Z3BdouBsVONfigoPJxXQQudTZGGmsZ71ZNkM7+OWuSaxWnW/1IOX6MxMTEXi/3NZlMnE5LI95WiRddf6LvTwsxag2pJ1KYMWNGn5c2CnGnxMbG8vQzT/Pphg2kL1tIaNp5wtKzMDR0/nPBqtNSERvJ5cmJmF2NzJo1kxkzZkhJfj/o0W8XRVHmAO8DN45DliuK8pSqqvIu7C7x8ssv4+3tzWuvvUZOTg4+Pj7Mnz+f//qv/+JnP/tZf4fncOrUKceiwrm5uZSVlVFVVYXBYCA8PJxp06bx0ksvkZCQ4HSeoii88cYbrFixgjfffJOjR49SXFyMzWYjICCA4cOHM2PGDL72ta85nbdw4UL279/PL3/5Sw4fPgzAhAkT+OUvf0l+fn6nyVZgYCD79+/n5ZdfZt++fVitVsaOHcv/9//9f3h4eHSabPU0zp5ycXFhw4YNbNmyhbVr13L8+HHKysrQ6XSEhIQwdepUxygp2N/IHT58mPfee4+PP/6YtLQ0Kisr0el0hIWFMWbMGObMmcPjjz/eK/EJ0Zs+++wf5ORcYO5wlQnRKgYdNJvg2EXYn5GBXq/nkUceueNxuRqN1JoauzymttWeMBiNxnb7WltbsVqtGI1GNBoNM2fO4t13L/NRcRiPhZTgobtWJq6qcKrOk72V/gyLi2NCUhLvv/8++2oDmO1d0eHcrfNNHuS0uDPMWE+x2UiDVUd6iw+nWnyZ51FCkls1igJjDZXsLHWhurq63RzP21VWVobJbCZOvbVGPcNsleQ2+VBdXd3l3FIh7jZRUVF8+6WX2LFjB6cVhaKx8fhcKcGzpAL3imq0JhOqRkuzrxcNgX5Ux4Rj0esIDgrikaVLCQ0N7e+ncN9Sumr33eEJijIUSAPsdQjXqFcfNwKJqqrmtD/77qEoShyQlZWVRVxcXH+HIwaQtWvX8uyzzzoeX7p0qV0nQCHEwFBaWspf/vIXZg1TmdHBqgE7zsLRiwrf//737/h6XV988QUnT6Tw/YRS3PUdlxJuvuRNRo0XP/qnf8JoNGKz2UhPTyfl+HGKiosBcDUaGJs4jkmTJnH58mV7KbNqY7h7PcEGEy02DZkNXtSYtURHR7NixQr0ej1ffPEFJ06cYIRrHZO8qgh1sY9W1Vl0pDb4cKTejzB9C08FXKZZ1fJ2WRS+WhNuGgvZrV4s9SpghLGOnFYP1tdG8Pzzz/d6c4pLly7x7rvvssJ6jgi1/qbHZyu+bNTG8o1vfEPeXIp7Vk1NDampqZzLzKSyg47B7q6uRMfEMGHCBCIiImQ0687p8IXuycjWT4C2Xq/NQNbVvw/DnoC5AS8DL/bg2kIIIUSvOXv2LBoFJnSywsHEIXD0ImRkZNz2XAZVVamtrcVsNuPl5dVu+YUbJScnc+LECT676MOyodW43FD6l1Fp5HSFG+MnjHUkWp988gnnzp0jwGhhVnA9Bo2Ny41Gjh49QvrpNJ5+ZjXf/va3SUlJ4XTaKTIa7KV3EeHhzE1OZsSIEY5GFosXL8bNzY3Dhw6RWeqFh8aMVlGps+pRgeGu9Sz2sa/ZpcdCskcVe+qCeM4/lzqrnv2NgQw31NFgs7+VuNnz7UhTUxOnT5+mvLwcRVEICgpizJgxjmVL2lrL12AggpsnWzUYnM4T4l7k4+PD3LlzmTt3LiaTifLycsxmMxqNBl9fX2kQM8D0JNmai30U6yDwNVVVKwGuNsz4FJgBPNBrEQohhBA91NzcjNFFwc2l4yoOL1fQKO2XaugOVVVJS0vj6JHDlJXbGwvpdFpGjRrNrFmz8Pb27vC8gIAAHn74YT7/fBOvnw1iXGAjYe4mmi0azlS6kVNrIHzwYEfb971793Lu3DkeCKliUkCdo/QvOaCe8pYa3s8L5YP31/Hd732fhQsXsmDBAsxmMzqdrsNOgYqiMHv2bFRV5cCBA0QamlAAH10dY9xq8dE5N6MY5VbHnrogrpjcSXav4vPaQeSb3Uhv8cXPx6dbZXtWq5UdO3aQeuIEVpsNd4295PGkTcuunTtJnjiRuXPnEhQUhL+fL+lVwYyxdN20SQXStcEMCgvr9DUX4l7j4uLCoEGD+jsM0YWeJFtt39HftyVaAKqqViqK8ir2ZCuswzOFEEKIO8jb25umVpXqRvB1b7+/tA5sKrf85txisVBfX4+Liwvu7u6oqsqOHTs4evQoIR42FgxtxU2vkl+j5cyZNC5cyObZZ5/rdLHdsWPH4u3tzcGDB9h78dqadx7u7sycae8c1rZUQ8rx48R7NTI5sK7ddQKNZh4aVMYHeRoyMjJISEhAUZQu28W3aSsxeti38wWOAQyKPSGyqApDDPa5ZmebvSkwuxIbGMimTZsACAkJISEhwTE6dSObzcaG9evJys4mQVPBBF05gRp7p8NSmyvHbUEcPnyYmpoaoqOjMZvNVKpuvKqdQADNjLWVMVytxAXn0suzSgBVGHjkHlz8Wghx9+pJsmUC9IBvB/vaZsbefPEOIe5Sa9asYc2aNf0dhhDiFiQkJLBnzx4OXFB5KAGnZEJVYX922yjUqC6v09DQwP79+zl9Og2TyT7iM3jwIGJihnL06FGSBrWyIKbFcf1RQWaSB5l49zRs2rSR5557vtNrR0dHEx0dTW1tLbW1tej1eoKCgtBqtVgsFs6dO0d2djYtra0MD+q8ocYQjxZ8DVZHsnWr2jq4lpkNBLu0dnpcqdnepMPzuvW5zrT6oGBftN1La0UFTp/Wsnv3LqZNm95h97OTJ0+SlZ3NA9oCJmjLnfYFa5p5SJOPv7WF/ZmQmZlJEM0MoxaAPLzYro3miBrGE9Ys/GnBisJpJZCvtJFERUU5NfcRQoj+1pNk6wKQCPynoii1wKGr26cC/w/7SH5274QnhBBC9JyXlxeTJ0/m8OHDmC0qk4eCvweU1cGhC5BdqjBnzsxOR2EA6uvreeutv1NfV8uIIDNRvlYaTQppxQXsKyjERQsPDGlpNyoU6G5jakQzO3MLKCkpabeml81mIycnh+LiYjQaDVFRUYSHhzuSk9TUVPZ8tZvGpmsljhuvBJJV18SDgyoxap1HdhQFfPUmGhu77nB4oxEjRvDll9tIbfRlsUtJp8elNvpgUKzEGerJarXPCVGB4fpqprmWE6C1J2qlFiNHWgLZu3cvJpPJUQYJ9pLLlOPHCNY0M15T3tFtAJisKSXd6o9OtbKaDMescxW4rHqymRjWaUcQr1aSo/WnUdUxZMgQli1bJi3fhRADSk+SrY3Yk61g4B837FOw/yz87PbCEkIIIXrHAw88gF6v5/DhQ2QUXRuVMbi4MG/eTCZPntzl+du2baOxvpbV45oY5H0twZkUYeYfZ42cL9dS26LB3619R8ERgWZ25rpy5coVp2Tr4sWLfL5pI7V1zk0fQkOC+dpjj5OTk8P27duJ9Gjl4Zg6BrubaDBrSat051iZB9UmHauH2JtXtFFVqDa7EODeQb1kF1xdXUlMHEdKSgqDXZoZ417b7pjUBh8ym72Z5F6BVlE51uiPgkqSSwVz3Z0TtGBdC4+4X8HYZOXw4cOMGTPGsehyRUUFZeUVLNCWd1myqCgwVlvBXusgGlS9YzFjBYiknmVk8Q4jOa0JJnZoLElJSQwdOlS6rgkhBpyeJFv/DTwNDOVau3eu/h3sI1+v3XZkQgghRC9QFIVZs2YxadIkzp8/T2NjI56ensTHx990TlN9fT3nz59nUoTJKdEC0Gpg0bBWsivcOFnswryYlvb3vvrn9cusXL58mQ/efx9fg5nHY+uJ9WnFalPIqDKyt0Dl7bf+TktLK3HezTwRXYnm6kWMWgsPDKol3L2V9ZcCSK3yZFLAtflbFxuMVLdqGeLlhc1m67ApRmfmz59PRUUFWy7BmWZvxrrV4Kk1U2vVk9bowxWTG7GGepLcqvisZjBlFiM6RWW6W2mH11MUmOFayhmzHykpKSxZsgS4tjizj9L1AsUAvop9pKwJnSPZamMvLawizyWUJ554Ar1ef8vPVQgh7qRuJ1uqqjYoijIdeB14GOdkayPwbVVVG3otQiGEEKIXGI1Gxo4d261zSkpKUFWVYQEdT0X2MKgM8rJRWNdx6dq5CnsSEB4e7ti2c+dOPPQW1oyoxFVnT8J0GpVxQc2Ee5p444w/NlVhTlitI9G63jCfFga7t5JaeS3ZKmvR83lBAFpFJTU1laamJh5//PFbTrh0Oh0rV67kyJEjnEg5zqbqa63TDYqVKJcG9Nj4c0UsVlXBRa9nmFKGi9L5Wp1uGitDdHVcyr227GZbe/gm9eZvPxpV+2t3YyOMNsOp4rzJn9LS0l5f30sIIXpLT0a2UFW1FPiaoig+QOzVzRdUVa3ppbiEEOKelJ+fz+HDhykvL8PLy5ukpCRGjBgh5U8DVFuyYrF1/v0x26DJpKCqzg04qpo1HLzsyqBBYY4FdsvLyykoKGBeRKMj0bpeoKuVkf4tnKkw4uvSea+pWK8W9hR7c7jci4ImA9l1brhprTwXVcjFRld2nzvHgQMHmDlz5i0/V61Wy7Rp05gyZQolJSVcuXKF3Nxc8vPyyDNpcTUaSBw/mqSkJP7+5psYr3Yn7IpRsWI2XxuVCgoKwsvDg7NN/oykustzz9p88VOb8aHjph0uXO2OaJGeXEKIgatHyVabq8lVSu+EIoQQ97aMjAw++eQT3N1diIryobi4nE8++YQZM2Ywe/bs/g5PdGDw4MHo9TrOlOiI9mufXFQ0KpTU20e11qZ5MDbE3vo9r0bH6VIDGr2RRx5Z6ji+utqeYER4dl5GF+FpIr3ClQazFh9DxwmNRbVndbtL/HDTWpnsX0uSXx2eeivBrmYuN7mScvwYU6dORafr3q96jUZDWFgYYWFhTJw4EbCXQV7/gYCXlycltTVdXkdVodTmhpe3j9O1xyclsWfPHi7aPBmi6Xih4vM2H4pUD+Zwmc7S3ArsTU1kAVchxEDW42RLUZRYIA57u/d2PwtVVX33NuISQoh7itVqZfv2LwkL8+KZ1Yno9VpsNpVNmzI5cOAA48ePd7TgFgOHwWAgMXEcx48fJ8LHSkKoxTF6Vd+q8I8MV/R6HTNmzOTUyVS2ZNcA9qRixIgRzJ49Gz8/P8f12uYWNZg7L+9rMNuTt9IWXYfJlqrC2So3Ag2tPBNVglFja9dsYqxvPReuuFFQUEBUVFTPX4Crbhx5TRibyO7dVZRZjATp2s9VAyi0ulFqMbL4htLNiRMnkpmRwT/KVWarBYzWVOGi2EsFW1UNabYA9lrDCFUbSKCsw2urQJomhLCQ0E7XMBNCiIGg28mWoiiBwDvAgi4OUwFJtoQQ4qrS0lLq6xt4YN5I9Hr7m2mNRmHq1EjOniklNzeXxMTEfo5SdOSBBx6grKyMzefyOHJZJcrXTEOrhguVOhSNluXLlzN06FCmTp1KRUUFZrMZHx8f3Nzc2l0rPDwcN1cjp8rciPNtP7plU+F0hRsajcK+Yh8i3MvalRseLPWk2qTDqFHIrncjwaf9NGkPnb20zmS6eSOKnhg3bhyHDh7ks6ZInvS4iJfGuYFFtdWFz5sicXdzZcyYMU77DAYDz6xezfqPP2bnZYX9tkGE0YAKFOKJWbU3Ng6nDh3tSy1V4CCDqFQNLL068na3aW5upqSkBLPZjLu7O2FhYVJKLMQ9qicjW/8LLOztQIQQ4l7WNvfHanWe7G+1qk77xcCj1+tZtWoV6enppKae4GxFJS56PeMnjCA5OdkxsqIoCoGBgR1eo7i4mJKSEnQ6HWMTx3H48GEOFLozNazR0QTDZIUv8ryobtEwY8Z0Dh08yF+zQhnvX3+19buGtEp38hqMRLi3YLUpbC4KxGRTSPJzLscrbrY3ovD29u6T18TNzY0nn3qKD95fx9/qhjFSX80QfT0qkGP25JzZF73ByKqVqxxNMW48f/WaNRQUFJCamkp5eRkKCiODghg/fjypqakcT1OoUl2ZQCnh2J/fZTxJJZgcxZfExMR2idxAV15ezuHDhzl75gwW67VRS19vL8YnJZOcnCydFYW4x/Qk2VrItZbv54FKQGanCiFEF4KDg/H19eXw4cvExPjj4eGC2Wxl756LaLVaYmNjb34R0W+0Wi2JiYlOo482m438/HwKCgrw9PQkKiqqXdJcXl7Opk0bKSwsunYtjQY/Pz/2FkBqmTtDvZuxqArZNa60WmD27NnMmDGDoUOHsnPnDvZeKXCc66W38EBoNRMD7cnHx5cC2F3qxyjvRlyvLnJssikcr/YhLDTEsb5VX4iIiOCFb7zIoUOHOHMmnbRGe7mki17H2PFjmTJlCr6+vp2erygK4eHhTp0a2wwaNAgfHx+OHjlMTqsvmqsjXDYUXA0GZk+ZwvTp0wfUaFB5eTkZGRk0Njai1+uJjo4mJibG8W8iNzeXjz/6CNVsYlhdETENpbjYLNTq3choCWfXrjrOZWayctWqLhfZFnePqKgo8vPzAVi9ejVr1669I/dds2YN77zzDgCRkZHk5eXdkfuKjvUk2Wo759eqqv5LbwYjhBD3KkVRWLJkCR988AH/+z+HCQvzpKysiZYWM4sXL+6w5EwMXFlZWWzb9gW1tdfWufL28mThosXEx8cDUFNTw9q1b6OYm1gQ3USsn4kWi8KpUiOpJTYGDRqEwWAgu6QYRVGIjR9CcnKyI/kIDw8nMjKKK1cKeCyyHF8XC8GuZqd28HNCa/lbthtnajxI9q+jpMWF7SX+VJt0PDVnbp+/Dv7+/jz88MMsWLDA0fzDz8/vpuuX3YyiKMycOZMpU6aQmZlJRUUFAIGBgQwfPnxAjf5UVVWxZfNmLuXloaBiUG2YFQ1HjhzBx9uLefMXEBAQwMcffYRXUy0PFabiYb3WYTGktY5hDSXkugexHZX16z/mmWdWD6hE8m6Ql5dHdHR0u+2KouDq6upo+PLNb36TadOm9UOE3We1Wtm0aRP/+Mc/SElJobS0lIaGBlxdXRk8eDBjx45l4cKFLFy4sE8/WLkds2bNYt++fQDMnDmTvXv39m9A/aAnydZxYCaQ2suxCCHEPW3IkCG8+OKLHD9+nLKyMmJjI5gwYQIRERH9HZrohpycHD7++GOC3K08MLKVEA8rJQ1aDl22sX79ep588kliY2M5ePAgppZmXkioIcDtWvloqEcj3gYrX+UXsmbNGiIjIzu9V0VFBYGuFkb4NHe4P9jVjKvWyv4KX07U+FDVqkWv0/Hoow8zdOjQXn/unTEYDISEhPT6dfV6PQkJCb1+3d5SWVnJW39/E1tTI1Nq8xjZWIybzYwVhVzXAFLNUWzYsIHBgwejmE08XHgCd2vH8+hiGsuYVp7FfpROEwfRfaqq0tTURE5ODjk5OXzwwQf8/e9/59lnn+3v0Lp06tQpVq1aRWZmZrt9DQ0NnD9/nvPnz/PRRx/x4IMPsmXLFsf+FStWMGrUKKDvSonFretJsvVzYC/wkqIou1RV7XgBDCGEEO0EBgby4IMP9ncYANTV1WGxWPD19ZVP0W+Rqqrs3rUTP1cbaxIbcbn6W9TPzcJQfwt/T/Vg966dDBkyhDPp6YwIaHFKtNokh7ZwqNCd06dPd5ls6XQ6Wqyadmt4tbHYwKxq8PT2IzgkhKSICBISEgZsGZqqquTn53P58mVUVSUoKIi4uDi02o4XhR7IVFVlw8cfozY1sKzkBL6WawmxFpW45nKGNFeyKXA0BVdURtcWdJpotRlRV8jxgFhSUlIk2bpNEyZMYPny5bS0tHDkyBG++OILwP59e+WVV1i9evWAnSubkpLCnDlzaGi41vwmPDycxYsXExERgdlsJj8/n0OHDpGdnd3u/LbRLjEw9CTZ+jpwBZgPXFYU5QhQdcMxqqqqz99ucEIIIXpfUVERX3yx1TGPyM/Pl7lzH2DEiBH9HNnAV1FRQUlpGYviWh2JVhsXLSQPauWL7HKKi4sxmc0EuXW8TpZeC75Gq9ObqY7ExcVx9uxZcuuNDPVq32I9o8Ydi81eojpkyJAeP6874cqVK2z+fBPlFZVO2z3d3Zm/cKHjk/i7RX5+PqXl5TxQfcEp0bqeDhsjG4opMPoR21B602vqVBvR9SXkX3Lv7XDvOyNHjuTHP/6x4/GkSZM4duwYYJ9fV15e3q70rrKykv/7v/9jy5YtZGdn09zcTFBQEDNmzOCHP/whSUlJ7e7T2trKf/7nf/Luu+9SUFBAaGgoK1as4Be/+EWP4jabzaxcudLpZ8OPf/xj/uM//qPDNfMyMzNJTXUuNutqztbGjRv5xz/+wenTpyktLaW6uhqtVktoaCiTJ0/mu9/9rmN9vTZr1651GgnMzc1lx44d/OUvfyErKwt3d3fmz5/P73//e8LCwgD49a9/zW9+8xun6+zbt8/pg723336bNWvWYLPZ+Otf/8qHH35IZmYmNTU1uLu7ExgYyIgR9kZEP/zhD3F3vzv/X/Qk2VoDjl6sgcBDnRwnyZYQQgww1dXVvPvuOxj0KvOmB+Ki15B6ppYNGzawcuXKO1p6djdqbra/qfZ1bT9adf12s9mMi15PWWPHIzYmK1S3aAn18OjyfsOHD8fL04MtBTaejC4l2PVai/UrjS7sLPYjOChwwI+CFBQU8O477+ChtrBYX0y8tgYtKhdtnhxuDuHTTz/FarUO6JLBG6WlpWFQrQxr6ngtsDbaq2+ZXGy31kvMxWbBbJG+Y71t0KBBjr9rNJp2zVtOnDjBkiVLKC11TooLCwv58MMPWb9+Pa+99hovvfSSY5/VamXJkiXs2rXLsS0/P5//+q//Ys+ePbS0dLwGXVc2bdrEhQsXHI8XLFjA7373u06PHzFiRLc+KFu3bh2ffvppu+0XL17k4sWLfPjhh7z77rusXLmy02usWbOGAwcOOB63tLTw4YcfcurUKfv/iw46kHblm9/8Jm+88YbTtrq6Ourq6sjNzWXz5s2sWrXqvkq2wHkR445qT9ovjCGEEKLfHT16FIvFzDdXDsHHy95kIGGEN39+N48DB/ZLsnUTPj4+AFyp0RLj137U6kqtPbny8/NjTEICp06eYGpTc7tSwuNF9s6DY29Y8PdGOp2Op1au4r133+Fv2aFEe7TgbzBT1uLC5UYDPt5eLF/x5IAuA1VVla1bNuOutvC0SxbuyrVEIlZbR7Smno9NQ9n2xVaGDx9+28017pS6ujr8TA3o1I4T7zZGmz1BrtO7EmDqeiQToF7nipursVdiFPZE4PDhw+zcudOx7fHHH3f6d1ZfX89DDz3kSLSCg4N58skn8fPzY9euXezfvx+r1cr3v/99xo4d62iw8X//939OiVZMTAzLli2jsrKSt99+G7PZef25W3F9nAAvvvhit6/RFR8fHx54wF7J4Ovri9FopKKigq1bt3L+/HlsNhvf//73eeyxxzAaO/53eODAAebOncuUKVPYuHEjZ86cAeD8+fNs3LiR5cuXM3/+fDw8PHj99de5ePEiYJ+3/K1vfctxnaSkJBoaGnjrrbcc2+bMmcPs2bNpbW2loKCAlJQUMjIyevU1uNN6kmz95uaHCCGEGIgKCwsJD3V1JFoAep2G4UM9OJZW2I+R3R28vLwYOnQoKfk5jAoxE+B27bPFyiaFlEIDMTExeHt7M23aNM5lZvDOWZg6qJFYPxOtFoWTpUZOlRoZPjy+w7bnNwoODuZb3/4OJ06c4Ez6aUoam/D09GTeFHsr+oE6P6tNYWEhJaVlLNCXOCVabXSKykxdIetM7pw5c4bx48f3Q5Tdp9FosGpuPtcsrLUWvc1CptcghjSWd3lsg9ZAnkcgE0eN7q0w71vvvPOOo5TuekuXLuVvf/tbu2NLSkoAe7OXlJQUx//Nn//850yePJljx45hs9n4/e9/70i2/vKXvziu4ePjw/Hjx/Hzsy+BMG3aNJ555plux11QUOD0uK27aZvHH3+8w5GpPXv2MGvWrJte/80338RisXD8+HGys7Opra0lJCSExYsXc/78ecBeTpmSksL06dM7vMajjz7Kp59+iqIo/OAHPyAoKAjr1XXjjh8/zvLly5kyZQpTpkxhy5YtjmQrPDzcqbQT7F1brdetOff++++3a7ZTUFBAQEDATZ/bQNXtZEtVVUm2hBDiLuXq6kpFWTmqqjqNhlTXmnCVT9NvycKFC3nrrb/z9xMwJsREsIeNsgYNp0td0OmNLFq0CLB3AVvz7HNs2rSJnXkF7Myzl8BotRqSksYzf/78Wx6Rcnd3Z+bMmcycObPPnldfycnJAeyNPAqtboRpmto1+xikacJdY6WgoOCuSbZCQ0O5mJtDndaAl7XzXmFaVFxUK3luARS4+jK4ubrD41TgqH8MNhQmTJjQR1Hf38aMGcO//uu/tuvQd31JXGtra5cdYg8ePAhc6wjY5qGHHnIkWgBPPfUUzz//fI9Gt67X26PWH330Ed///vcpK+u6/PXGpO963/rWtxxx+fn5ERAQ4BgVbFsC4lb5+PgwZswY0tPTAftcu+TkZGJiYoiPj2fq1KlO6xvejXpaRiiEEOIulJCQwKef5rDrYDmzJgWg1Sqkn6vlfG4DU6ZM6e/w7gr+/v58/esvsHfvXk5lnMVqtaHVahg5chQzZ850esMVEBDA888/T0lJCaWlpeh0OqKjo++LddWamprYunUr5662rv7KYp8zE6g084C+kEjttZI6Rel4TsJANn78eA4dPMgpz3Bm1uR0elyRizeNWgMebm5sDRvHrNIMYhtKHQs1AzRp9Rzxj+W81yCmT5/u9G9I9MyECRNYtmwZOTk5vPvuu7S0tJCens706dM5ceIEMTExjmOrqm7s89a5qqoqbDYbNTU1TttvbLah1Wrx9/d3jJjdqsGDBzs9Pn/+vNPo1urVq5k0aRInTpzg448/7ta1T506xcqVK7HZui59BXvS2ZmoqCinx9fP0bqVa9/oww8/ZOXKlaSlpVFVVcWXX37ptH/cuHF8+eWXBAYGdvvaA8FNky1FUdoKKf9dVdXc6x53RboRCiHEADRy5Ehyc3M5nJpGSnoNWo1CS6uV8PDBd+WoSX/x9fXl0Ucf5cEHH6S5uRlXV9cu5xqFhIT0yTpUA1VLSwtr33qLqqoKkvXljNRV46JYybd6ctQUyMemITzhcpHoqwlXic2VBpv2rnqNfHx8GJuYyKlT4GNpZkxDYbuEsVzvwdagMXh7erLqmWf4x6efsFPRcMQ6jCH1JbjYLNTq3bjoGYwVhenTpzN79ux+eT73mpEjR/Lyyy8DsGjRIh599FHAXrb23e9+19EKHnBKbr28vG7aSVBRlHajYzc21rBarVRWOnfevBXz5s1zKnN86623WLp0qePxQw89xEMPPcTatWu7nWxt2LDBkQwpisK6det46KGH8PT0JDMzk5EjR97SdW5cVPx2R99GjBjBqVOnyMrK4uTJk+Tk5JCZmcmmTZtobm7m5MmTvPLKK05zu+4mtzKytQb76PabQC7O3Qi7IsmWEEIMMIqi8PDDD5OQkEBmZiZWq5WYmBiGDRt2V6511N9cXFx6taGDqqrk5OSQlpZGbW0tnp6ejB07lri4uF4tJ7JarZw7d47c3FxsNhthYWEkJCR0OiG+uw4ePEhFZSXLjReJ0l0bwfLRVDFMV8O6pqF8aQ7nRc05AA6YQ9HptHdVN0KAxYsX09jQwN4LcNZzEKPqC/ExN9Gq0ZHtHsxF1wA8PTxY9cwzBAQE8PUXvkF2djYpx49z7oorZosVd1cj40ePYcKECXftJ/cD3dKlS1mwYAHbt28HYNu2bRw4cMAxJ2natGmsX78esDc+GT9+fIdJ79mzZ6mpqUFRFDw9PYmPj3eUEm7ZsoWqqipH4vbBBx/0qITwkUceYejQoY7y282bN/Ob3/yGX/ziF7e9LlhFRYXj797e3qxYscJxzY8++ui2rt2Z6xOzpqamDo85efIkiYmJDBs2jGHDhjm2f+973+N///d/AfvaY3er3uhG2BHpRiiEEAOUoihERUW1KwUR/ctms/Hpp5+SmZmJu14l2NhKYbmB8+fPExcXx7Jly3olIS4rK+OD99dRW1ePm9aGTgPp6el8tXs3X3vsMac3Oz1htVo5dTKVodpap0SrjVGxMdWllE2tUZywBJBn8+KizYuF8+f1WrJ3p+h0OpavWEFaWhopx46xt+xaa2o3o5Ep48czadIkPK62+NdoNMTHxzvKwm6cOyn6zi9+8QtHsgXwm9/8xtFJcPXq1fz7v/+7Y3SqbSRsxIgRqKpKXl6eYwHhX/3qV44GGd/4xjf40Y9+BNjnKiUnJ7N8+XIqKip4++23exSnXq/nvffeY+7cuY7k5Ne//jXvv/8+ixcvJiQkhPr6enbs2NHta1//f7umpoZFixYxffp0UlNT2bhxY4/ivZnryyJTU1P53ve+55gT953vfAdXV1dmzJiBr68vM2fOJCwsDF9fXwoKCli7dq3j3Lu5tPZWkq22hhiXb3gshBBCiF5y6NAhMjMzmR1Wx+TgBrQasKqQUubOzuxs9u3bx5w5c27rHs3Nzbz37jvQ2sDyoGJiXO3NKopbDWyrCmb9+vU8//zzjoVJO9PWHKC1tRVfX1/i4uIcC67W1dXR1NzCUENdp+cP1dVBK3xlGYyLXs+iBQ+QnJx8W8+tv2g0GsaNG0diYiKVlZU0NTWh1+sJDAzscBHa60midedMnTqVWbNmsXfvXgB2797NwYMHmTZtGl5eXmzevJmHH36YkpISWltbb2mk57vf/S5btmzhq6++AuyL/f6///f/ABg9ejTFxcVOo0m3atKkSezZs4eVK1c6RrguXLjAH//4xw6Pd3FxcST0XXnuued47bXXHM0vduzY4Ujann322R4niF154oknHEmTzWZzjFSBfb2utm6qBQUFvP/++x1eQ6vV8pOf/KTXY7tTbpps3dh9ULoRCiGEEL3LZrORcvwYMV6tTAu9NhqkVWBScCOXGwycOJHCjBkzbvoGvitpaWk0NDbxbGgBYYZrE+BDDa08GVTAn4uGcOTIER577LEOz7darWzbto1TJ09iU68Vsbi7ubJg4SJGjx7tKEuydlEE07YvPj6epUuXdnsR1IFIUZS7uj31/eAXv/iFI9kC+4hR2+hWUlISGRkZvP7662zZsoXz589TX1+Pm5sbkZGRjB8/noULF/LQQw85ztfpdGzdupX/+I//4L333qOgoICQkBAef/xxfvWrX5GQkNCjZAsgOTmZzMxMNmzYwGeffUZqaiplZWW0trbi6elJREQEY8aMYfbs2TzyyCO3NPLj6+vLwYMH+clPfsKOHTtoaWlh2LBhfP/732f27Nl9kmwtXryYN998k//93/91fEBzoz//+c8cOHCA1NRUiouLqaysRKvVEhYWxuTJk/ne9753134YA6CoqlT8dURRlDggKysri7i4uP4ORwghxD2spqaGP/7xjzwYUcO4wPbzGs5UurIxz5dvf/vbtzWv5+9//zvW8lyeC73c4f4vKwNJa/TjZz//ebtRF1VV+fTTT8nIyGCcoYrxxkq8tBaumN041BxEocWVJ554guHDh/M/r72GV2MxT7l23KUvzezHl63hPPfcc7e01tjdSFVVLl26RGFhIaqqEhgYSFxcnMyNFOLe1eEnTD3+eExRlFggDvDr6OKqqr7b02sLIYQQ95O2N+AmW8ejQW3bb/eNutnUipem80n7HloLVpsNq9XabgStqKiIjIwMprmWMd3t2uK8MS4NROobea9uCDt3bGf48OFMSE5m165dpJt9GaN3XnenxubCQXMYIcFB7dpc3yuys7PZ/uU2qqprnLZ7uLkxa86cu2YtMSHE7et2sqUoSgDwLrCgi8PUq8cIIYQQ4iY8PDwICQ4irdJCUlAj2utyLpsKpyrcCfD3w9fX97bu4x8QSF5lKRabgk7TvrIlv8UdH2+vDksV09LS0Csqycb27ax1ispEYzmbao3k5+czadIkcnNz+eISZFt9GKWrwgUbeVYP0q0BoHdl6aNfuyfnLJ09e5ZPP/0Uf3MjC2ryGNJcjqKqFBj9SPWOZMuWLTQ2NjJjxoz+DlUIcQf0pIfk/wILsY9mdfUlhBBCiFugKArTZ8ykvFnHhlw/SpvtyU55s45PLvpR3KRn2vQZt52cjB8/niarhoO1ftw4iyCryZ28FlfGjZ/Q4bn19fX4ak0YNB0vWhqsawHsDTK0Wi1PPfUU06dPp0gfxMaWKNa3DOGEJZjoYSN5/utfb7cI7O1qbm6mvLychob2HRDvlObmZj7ftJGw1lqWFacwrKkUvWpDh0pUSyWPlp5kWEMJe/bsabcukxDi3tSTMsKF2EeuFCAD6NnMPyGEEEI4jBgxgkWLFrFjx3YuZBrRKPZRLa1Gw7x5c3tlDaro6GjGjh3LobQ0ilqNjPaoQ6+oZDW5k9HoRVhoKBMnTuzwXFdXV/Jteiyqgk5pPypWZbWvN+bm5gbYmwfMmTOHGTNmUFpaitVqxc/P75a6pnVHYWEhB/bvJ/tCtiOBjIgIZ9q06cTGxlJWVsb58+cxmUz4+voycuTIPmsxn5aWhtliZWZlFnq1fVKqAWZWZ5PjEUxKSgpLlizpkziEEANHT5KtttGwl1RV/XNvBiOEEELcz5KTkxk1ahRnz56lrq4OT09PRo0ahbu7+81PvgVti1oHBARw7OgRPq+wJ0Yuej1JyYnMmTOn00WaR48eTVpaGumtPowzOs/DUlVIaQnA3c2V6Ohop306nY5Bgwb1Svw3ysnJ4aMPP8TFZibZWkqg2kQtBtIvm/jggyv4+/tTWWkve9SgYkNh+5fbmD5jJtOmTev1Msbs7GwCTQ0EmjsfXTPaLAxpLCP7/DmQZEuIe15Pkq19wIOAjH8LIYQQvczNza1P2xwrisLUqVOZPHky5eXl2Gw2/P39O02y2kRHRxMZEcHOK2BWNSQYqjFqbFRaXdjfFES+2Z1FD8y6Y932Wltb+WTDBvxtjSw3ZeKKxbEvyVTMJl0suRUqE8xFTDIXYcRCqcado/pBfPXVV1gsFmbPnt2rMZlaWnCztm9tfSM3qwmTqfNGJUKIe0dP5mz9E1AN/E5RlPmKonj1ckxCCCGE6GMajYbg4GBCQ0NvmmiBPUlb8eSTREcP4aumEP6nJp7Xaobzt5pYsi2+zJkzh6SkpDsQuV16ejqtJhPzzblOiRaADpWFlov20SxFgysWFCDE1sgjrdmMsJRz8MAB6uvrezUmDy8vqlw8uNmiOlUuHrh79M5opRBiYOv2yJaqqhcURXkDeAXYBh2ugK6qqtrzVReFEEIIMeAYjUZWPf00RUVFZGZm0traio+PDwkJCb0+F+tm8vLy8MFEqNrY4X53LESptVzWejttV4Appitk6gI5depUr3YFHD16NNnZ2eS5+hPd3L5rI0C1zpUrRl9mJYzttfsKIQaunrR+/w7wE641yRBCCCHEfSQsLIywsLB+jcFms6HD1uUbET02Ouqd6Ku24o3ZMZ+rtwwfPhxvT0++so3ga8Wp+FqcF6hu0ujZFjQGF52OcePG9eq9hRADU09Gn36IJFlCCCHEgKGqKmfOnCHl+HEqKspxc3NjTMJYJk6c2Ged9/pbcHAw588bqcGAD+3nSZlRyFe8ibTWtNtnA0xoen1+mVar5cmVK3l37Vo+HDSRYfXFDGkuR6OqXDH6kuk1GItOz/Lly/H09OzVewshBqaeJFuDsI9q/QP4L6ASOvzgSAghhBB9TFVVtm7dSmpqKv4GCyNdG6kyubB3bw2ZGWdZ8+xzuLq69neYvW7cuHHs37+ffboIHrJcaDcJ/ah2EC2KjrHm9v28Lml9aEZLTExMr8cVHBzMCy++yIEDBziTfpoMT/sIoEZRiB8+nGnTphEaGtrr9xVCDEw9SbYygbHA31VVPdG74QghhBCiOy5evEhqaiqT/WqYE1hF2zTqi42ufFgA+/btY+HChf0bZB/w8vJizpw57N69m0b9cJIsxQSpTdQqBk5pg8nS+ONra2aQrc7pvDrFhd3GGLw8PIiPj++T2Hx8fHjooYeYN28eFRUVjo6PvdXCXwhx9+hJsvVzYDPwtKIoO1S1g1X7hBBCCHFHpKWl4aZTmRlwLdECGOLezHCPBk6nnWLBggW9vqbUQDBt2jRcXV3Zt2cPnzVea45scHEhPDiYK1eu8LbbOEabS3BXzRRpPMjUB6FxMfD0ihV93qbeaDQyePDgPr2HEGJg60my9QRwCVgBzFAU5ThQe8Mxqqqqz99ucEIIIYToWl1dHQH6FnQdLOYSYmwls96E2Wy+pfbud6Px48czduxYLl26RF1dHa6ursTExODi4kJGRgZHjxxhf6EBAJ1Wy6jRo5k2bRr+/v79HLkQ4n7Qk2RrDTiWkBgELO3kOEm2hBBCiD7m4+NDdqERs01Br3Fe4amw2YibqxG9Xt9P0d0ZWq2WoUOHtts+cuRIRo4cSWNjIyaTCXd393s26RRCDEw9WdQY7N0IlRv+rtywXQghhBB9bNy4cbRYFXaW+WO7Ltc6V+dOVoM7YxPH3ZMlhN3h7u6Or6+vJFpCiDuuJyNbv+n1KIQQQgjRI5GRkUyZMoXDhw9zodGDSNdGqswGippdGBQW1quL9gohhOgeRVXVmx91H1IUJQ7IysrKIi4urr/DEUIIITqlqirZ2dmcOJFCRXkZbm7ujB6TwPjx4++6EkJVVTGbzWi12j5vYCGEEL2owxKCnoxsCSGEEGIAURSFYcOGMWzYsP4OpcdUVSUlJYXjx45SWVUNwNChQ5k+fToRERH9HJ0QQvRMt5MtRVFuqR5BVdX93Q9HCCGEEPcbVVXZuHEj6enphCpNzNRU06zqyMi18k5uLk8sW9Zna2LdKovFQmNjIy4uLvfkItFCiL7Rk5GtvVzrRtgZtYfXFkIIIcR95sKFC6SnpzNVKWaattixfYpazEe2ODZv2sTQoUPR6e78W4vGxkb279/P6VOnaDWbAYiMjGDatOkddkAUQojr9bQbIXTchVA6EgohhBCiW06ePImHYmGypthpu0GxMVMppKmlhfPnz9/xuOrr6/n7G29w4vgxousKmFebxZT6S1RfyuH9998nNTX1jsckhLi79OQjosu0H9kKANyvbq+l/SLHQgghhBAdqqmqIpQGtB18VDtIabAfU1NzZ4MCtm/fTn1tDcsqTxFmrndsn9B4hc99R/HF1q3Exsbi5eV1x2MTQtwduj2ypapqlKqq0Td8eQIPAFVAPTC5twMVQgghxL3JzcODStzoqEFyJUbAvlbWndTQ0MC5zEwSGgucEi0AHSpz6i5gU22cPHnyjsYlhLi73E4ZoRNVVb8CfgeEA//RW9cVQgghxL0tISGBKtWFTNXXabtNhUO2UPQ6LcOHD7+jMZWWlmJTVYa0VHa438faQoC1meLi4g73CyEE9H4TC+PVP5f08nWFEEIIcY8aNWoUqSdOsLUArqiexCo1NKMjTQ2kUHVn/py5GI3Gm1+oF7Wt8WXWdLzWlwpYlN5dC6yxsZHTp09TXl6OXq8nLi6OmJgYFEWmwgtxt+pJ6/dfdnKdwcCTVx/f2bF+IYQQQty1tFotK1etYseOHaSfPs1pawAA3l6ePDRzFuPGjbvjMQ0aNAijiwuZxmCGtFa121+k96JGY2DqkCG9cr+jR4+ya+dOrDYb7jYzJkVLSkoKgQEBPPnUU/j6+t78IkKIAUdROyqQ7uoERbHReet35eq+g6qqzrzN2PqVoihxQFZWVhZxcXH9HY4QQghxX2hpaaG8vBydTkdwcDAaTa/NeOi2Xbt2cejQIWbW5ZLYVOCYe1GpdWOj/xjM7t58/wc/xMXF5bbuk5aWxqZNm4iqL2NSWTZ+pkasKOR6hXAgdCSuPr68+K1v3fHRPSFEt3Q4BN3TMsKuxrOrgH/q4XWFEEIIcR8zGo2Eh4f3dxgAzJ49m4rycvZlw0mPcAa1VtOgNVDg4oPR4MKqlatuO9Gy2Wzs/eorgptrWFiQhubq59laVOLqivEwN7NRM5G0tDQmTZrUG09LCHEH9STZeqeDbSpQDWQDH6iqWt/BMUIIIYQQdw2tVsvyFSs4f/48qamplFaU42IwMGvESMaPH4+Hh8dt3+Py5cvU1tczsTLPkWhdL6y5huCWOtJP25OttookmcclxN2h28mWqqrP9kUgQgghhBADjaIoDB8+vM+6ITY2NgLg19rQ6TG+LfVcrqnh3XffJT8vDxWVQWFhJCVPZPTo0ZJ4CTGA9Wo3wqvNM34AqKqq+vfmtYUQQgghBgKz2cylS5cwmUwEBwcTGBjY42u1rR9WZfDAz9TY4TGVRk+amlsov3Ce0TVFaFSVS6YmPissIjc3l6VLl0rCJcQA1dut310BHzpvoCGEEEIIcVdSVZUjR45wYP8+WlpNju2RERE8snRpjzoGRkRE4O3pyWn/aKLry9De8Baq0M2XcqMXwY3VLM077ig1nFiWTWpgDCnpEB4ezoQJE7q8z8WLFzl+7Jh9ZExVCRs0iKTkZOLj4yVRE6IP9V+LHyGEEEKIu8ihQ4fYuXMnobXFfK3yNE+XpTC9NpfS/EusfestR0lgd2g0GmbPnUupqzdfhidSabDPA7MoGs57h7EtfBwa1caiy6lOc7oUYHx5LoEtdRw7eoSuukvv3r2b9957j/xzGUQVXiCm8ALlF7JYv349GzduxGazdTtuIcSt6e2RLSGEEEKIu0JtbS2HDh0i48wZWk0mgoOCSJo4kYSEhHajPS0tLezft4+hzeUsqc5wtGUOsDQS0VrN+8p4jh8/zuzZs7sdR0JCAq2trezcsZ2PPQJxs1kwKRosigYFlbjqQlxtlnbnKUBsTRGHjV40NTU5ShKvl5GRwcGDBxlWns+UyxloVXtiNenyWdJCYzkJBAcHM2XKlG7HLYS4OUm2hBBCCHHfqaqq4q2/v0lLUxOxpgo8ba1cLGpk06YSCgsLWbx4sVPClZ2djdliYULD5Xbr3wRZGohsreZs+ukeJVsAycnJjBo1ivT0dMrLy9Hr9cTFxfH+unUYreZOz1Oujmh1NrJ15PBhvE1NTM0/41TOpAESiy9Q4hXAsSNHmDRpUr+uaSbEvUqSLSGEEELcd778chuWpgaerjtNgK0JgBkteew1RnPiBIwcOZKoqCjH8S0tLQB4WVs6vJ63pZnyltbbisnNza3dWlqDwwdzydzM5NKsDhc5vegdiq+3V4ejWs3NzRQWFTG+/HKH80YUILb8Mvs8/SkrKyMkJOS24hdCtHdLH2EoimK9lS/gJ30crxBCCCHEbamvr+fChRwSWwodiRbYk49pLfkYsJGWluZ0TkBAAAAFLu2bYKjAFaM//leP6U3JyROp0xk5FhTbrvvYWd9wit18mJA8scMmFxaLvfTQYOl8ZMxwddSs7VghRO+61ZEtBfvPkpu1q5EuhEIIIYQY0Orr6wEIsbRf20qPDX9LA3V1dU7bo6Oj8fPx4ZAthkFlNXjY7N0IVeCERzjVWiOzkpJ6PdYRI0Ywbtw4Tp6Ey17BDK0pRKuqXPQOocTVh9ihQ5k4cWKH57q7u+NmNFLkFcCI8vwOjynyCkCjKPj5+fV67EKI7pUR3kpfUOkdKoQQQogBzcvLC4ASnQdDLVVO+0xoqNR5EH/1mDaKovDoY4/x3jvvsDZkErFNpXhYTeS5BlCmc2fkiBGMGjWq12NVFIUlS5YwePBgjh09wrGr3Qr9fHxYMHEiSUlJaLXaDs/VaDQkjh/P4UPNlHj4EdLg/FxrjO5kBUUyfMQI3Nzcej12IcStJ1vP9mkUQgghhBB3iIeHB7GxsZy6YGOYqYLAq6WEKnDQNZJWNCQmJrY7b/Dgwbzw4oscOnSIcxkZmCxmggIDeTApmXHjxvVZgwlFUUhMTCQxMZGWlhZUVcVoNN7S+lhTp07lXGYmXw6bxMiSiwypKkSjquT7hHAmbCgubh7MnTu3T+IWQoDS1boM9zNFUeKArKysLOLi4vo7HCGEEEL0ourqat76+5s0NTYSY6rEy9bKJYM/VYqR5ORkFi5ceNNkRlXVu2JB4IaGBrZu3UrW+fNO8z2io6J4cMkS/P39+y02Ie4hHf4wkGSrE5JsCSGEEPe2uro6Dh8+fHWdrVaCgoJJnjiR0aNH3xVJVHfV1tZy5coVbDYbYWFhjqYfQoheIclWd0iyJYQQQgghhLhFHSZbsnqdEEIIIYQQQvQBSbaEEEIIIYQQog9IsiWEEEIIIYQQfUCSLSGEEEIIIYToA5JsCSGEEEIIIUQfuNVFjYUQQgghxABlNps5f/48tbW1eHp6Eh8fj8Fg6JN7lZSUcObMGZqbm/H19SUhIQEvL68+uZcQdztJtoQQQggh7mLnzp3j800baWk1Oba56PUsfvBBEhISeu0+FouFjZ99RkZmJhpVxWA106zVs2fPHubOncvUqVN77V5C3Csk2RJCCCGEuEtduXKFDRs2ENBUwwOF5whqrKHC1YuUQfFs3LgRd3d3hg4d2iv3+uKLL8jIzGRM3jmGF+RgsJipN7pzMmYUu3btwsPDo1eTOyHuBTJnSwghhBDiLnXw4EEMFhMPXjhGWEMVOtVGSFMNi3KO42Fu4eCBA71yn7q6OtLS0ogvyGFs3jkMFjMAni2NTM84hn9DLQf270dV1V65nxD3Ckm2hBBCCCHuQqqqkpuTQ0xVIS42i9M+nWojtvIK+ZcvYzabb/teFy5cQFVVhhVdbLdPA8QWXqSyqorKysrbvpcQ9xJJtoQQQggh7lI2VUWr2jrc17a9N0ab2hI2g9nU4X6DuRWwz+sSQlwjyZYQQgghxF1IURQiIyK46DcIq6I47bMBuX6DCQkKwsXF5bbvFRISAkChX0iH+wv9Q9Brtfj6+t72vYS4l0iyJYQQQghxl5oydSoNOgO7osZR5+IKQIPeyJ7IsVQb3JkybVqv3CcyMpIAPz/SYkbRYHRz2lfkG8TFkEjGjB3bZ+3mhbhbKTKRsWOKosQBWVlZWcTFxfV3OEIIIYQQHTp27Bjbt29HVVWMNgstGi2gMHv2bGbMmNFr9ykuLubdtWsxt7YQVXoFz+ZGyrz9KfILJigwkDXPPourq2uv3U+Iu4zS4UZJtjomyZYQQggh7hZ1dXWcPn3asahxQkICPj4+vX6fqqoqDh06xNn0dEwWC57u7oybMIHJkyfLqJa430my1R2SbAkhhBBCdExVVWw2G1qttr9DEWKg6DDZkjlbQgghhBCiWxRFkURLiFug6+8AhBBCCCFE/1JVlfT0dI4dPUppaSkGFxdGjRnDtGnT8PLy6u/wbspkMnH58mUsFgvBwcHSFVEMGJJsCSGEEELc53bu3MmRI0fwaW5gRGURjQY3UltaOJ+ZyXNf/3qfzP/qDTabjX379nHsyBFar1u8OWbIEJY89NCAjVvcPyTZEkIIIYS4j5WUlHDkyBHiiy8yKTfdMfGk6ko2X4ydye7du3nsscf6NcbObN26lZMnTzKo4DJDLuXiYmqlOCSMC1YLb//977zw4ot4eHj0d5jiPiZztoQQQggh7mNpaWloVRvj8s45zfD3a6pjaEkemRkZmEymbl+3paWFtLQ0Dh06xLlz57Barb0XNFBaWsrJkyeJzT7P5GOHCC4rwbemmhHnM5ixdxf19fUcPny4V+8pRHfJyJYQQgghxH2ssbERN7MJg9Xcbp9vYx02VaWlpQUXF5dbvuaJEyfYsX07ZovFsc3D3Y3Hn1hGZGRkr8R9+vRpNKqN+KyM9nHXVBNWeIW0kyeZN28eitJhozgh+pyMbAkhhBBC3Mf8/f1p0BtoMLRfkLjEOwCDXo+bm9stX+/cuXNs3bqVgNJCFh7bzfKvNjLr1EE0FeW8v24dVVVVvRJ3fX09bi0tGDoZdfOpraG5tRWbzdYr9xOiJyTZEkIIIYS4jyUmJqJoNByMG0+Lzj56pQK5gYO5FDSYsePGodPdejHUgf378W5qYNapgwTUVaO3WhhcUcLclL1YzWaOHj3aK3F7eHjQbDBi0us73F/r5Y3RxQWNpuu3u0VFRWzatIm//PnPvPG3v7F3717q6+t7JUYhpIxQCCGEEOI+5u3tzcOPPMKmTZtYP3EhgbWVNLm6U2dwI3zwYObMmXPL12ppaaG4pISxhXloVdVpn3trM6EVxVzMyemVuBMSEjh69ChZcSMYnXHaaV+tlzdFgyNISkzssoTw4MGD7N69G63Vin9JCS16F/YVFXH08GGeWrWKiIiIXolV3L8k2RJCCCGEuM8lJCQQGhpKSkoKJcXFBLm6MmfUKEaOHNmtUS3VkWCpHe5X1OuPuT0hISGMHTuWNKDZ1ZXoq90IS0IHkTV8JG7u7kyZMqXT83Nzc9m9ezdhefmMPn4c/dX5ZQ2enqTMnsWHH3zA93/wA4xGY6/EK+5P90WypSiKHjgAjAcqVVUN6eeQhBBCCCEGlKCgIB588MHbuobRaCQkKIhLTVGMyM9Gc11i1WQwUhwYQuLQobcbqsNDDz2Em5sbKVotlyOjHdsjIyJ4+JFHulyQ+eiRIxhbWxl79Cia6+Z1edTXM/bQIQ4tWEB6ejrJycm9Fq+4/9wXyRb2j1c+AxqAUf0cixBCCCHEPUlRFKbNmMEnZWXsS5jC2JyzeDfWUeobSGp8IopOz8SJEzs9X1VVLl++zKVLlwAYOnQogwYN6rQUUKPRMG/ePKZPn05eXh4Wi4Xg4GACAwNvGmteXh6D8/KcEq02vpVVuDc1kZeXJ8mWuC33RbKlqqoF+C9FUYYjyZYQQgghRJ8ZOXIkDQ0N7Nyxg62BoY7tbkYjTz7xBAEBAR2e19TUxMcffsjlggLHtn379jEkOpply5djMBg6vafRaCQ+Pr57gaoqSlcVjb1U7ijubwMq2VIU5QfAc8BI7J0Sf6Oq6q+v228EfgcsBzyBk8CPVFU9dseDFUIIIYQQHZo4cSKjR48mMzOTxsZG/P39iY+P73L+1ycbNlB45TITzp4kuiAPVVHIiYjhtKqyaeNGli1f3qsxRkRFUdzUxPBTp5zKHQFqfX1pdHeXBhnitg2oZAv7nKoq4ArQ0Yp3rwEvAmeB3diTrp2KogwBXIFTHZyTqKrqlT6JVgghhBBCdMjNzY0JEybc0rHFxcVcystj7Ll0YvNzHduHX8zCrNOToShUVVXh5+fXa/FNmjSJDy5eJH1iMqNSTqCzWgFocncnbdpUDHo9Y8eO7bX7ifvTgEq2VFV9GkBRlI3ckGwpihKEfdTLBsxVVbVMURQLsAp46eoIWMfj0vbz4wFvQHv175dVVW3qi+chhBBCCCFuXX5+PgBRhfnt9kUV5pMRN5LLly/3arIVGxvLrFmz2AuURkTgX1SERe9CZUgwOr2eJ598UjoRits2oJKtmxgJ6IE8VVXLrm47gT3ZGnsL55+74e+zgb03HqQoyjeAbwCdFwYLIYQQQoheo9VqAbBo2781NV8tPWw7pjfNnDmTIUOGkJKSQmFAADqdjinDhpGUlIS3t3ev30/cf+6mZCv46p8N121rvPrnTVu5q6ra+Yp2zsf9DfiboihxQFa3IhRCCCGEEN0WGxuLAmRHxzI+49qsEBXIjopFq9EQExPTJ/cODw8nPDy8T64txN2UbJVe/dPjum1tfy+5w7EIIYQQQohe4uPjw7jx40kFzDo9Q65cwqYo5EbGcDksgimTJuHm5tbfYQrRbXdTspUJmIEIRVGCVVUtBZKu7jvdf2EJIYQQQojbtWjRIvR6PSc0Gi6F2xcodtHpmD55MrNnz+7n6IToGUUdQGsIKIrydWAaMAcIx55EpQEbVVXdqCjK34AXgAzsHQmXYS8lHKKqankvxxIHZGVlZREXF9eblxZCCCGEEJ1obm7mypUrKIpCREREl+trCTGAdDhlaaCNbE0DVl/3OOHqVx6wEfg+9tGtZcBQ4CjwT72daAkhhBBCiP7h6uoqH3SLe8aAGtkaSGRkSwghhBBCCHGLOhzZ0tzpKIQQQgghhBDifiDJlhBCCCGEEEL0AUm2hBBCCCGEEKIPSLIlhBBCCCGEEH1Aki0hhBBCCCGE6AOSbAkhhBBCCCFEH5BkSwghhBBCCCH6gCRbQgghhBBCCNEHJNkSQgghhBBCiD6g6+8AhBBCCCGEEHZ5eXmkpKRQWlyM0Whk1JgxJCYmYjAY+js00QOSbAkhhBBCCDEAHDx4kN27d6M3mfEuKKHOy4PtxcWcPHGCNc89h5ubW3+HKLpJki0hhBBCCCH6WVFREbt37ybwQh5xe4+jtVoBqAoPJXPRDLZv386jjz7a5TVUVaWgoICamho8PDyIjIxEo5FZQ/1Jki0hhBBCCCH62YkTJ9BarcTuT3EkWgB+V4oJycwhQ6tj4cKFuLq6dnh+YWEhGz/7jIrKSsc2Lw9PHnxoCXFxcX0ev+iYpLpCCCGEEEL0s8rKSjxKK9GZLe32+RSWYlVt1NbWdnhuRUUF765dS/3lAmJ2HSVh3Rbith3Akl/ARx9+RF5eXh9HLzojyZYQQgghhBD9zM3NjRZfL1RFabevyccLoNNRrUOHDmFtbWXkx18SdO4ibtV1+OdcYeSG7bg0NrF3z54+jV10TpItIYQQQggh+tmYMWNodTVSNDLWaXurmytFCfFERkTg7e3d4bnnMjLwy8rD0NjstF1nthB45gL5ly/T1NTUZ7GLzsmcLSGEEEIIIfrZsGHDGBoTQw5QHR6CX34RrR7ulIyKBVdX5i9Y0Om5ZosFfXNrh/v0zS0AWCztyxNF35NkSwghhBBCiH6m0WhYvmIFBw4c4MTx4+REDgIgNjaWOXPmEBIS0um5oSEhVMXUEXE4jRuLEKuHhOPu5oaHh0cfRi86I8mWEEIIIYQQA4BOp2P27NnMnDmTxsZGXFxcbmkx4+RJk/isuJi8GeOJOJyG1mLFplEoHhtPTWQosydOlBbw/USSLSGEEEIIIQYQjUaDp6fnLR8/evRoioqKOAZUjIjBrbSSlgBfTEYX4uPjmTp1at8FK7okyZYQQgghhBB3MUVRWLhwIcOHD+fUqVNUV1fj4eFBQkICsbGxKB10OBR3hiRbQgghhBBC3AMiIyOJjIzs7zDEdaR4UwghhBBCCCH6gCRbQgghhBBCCNEHJNkSQgghhBBCiD4gyZYQQgghhBBC9AFJtoQQQgghhBCiD0iyJYQQQgghhBB9QJItIYQQQgghhOgDkmwJIYQQQgghRB+QRY2FEEIIIYS4j6mqypUrVygsLMRgMBAfH4+bm1t/h3VPkGRLCCGEEEKI+1RjYyMfffAhBUWFjm1fbN3KvPnzmThxYj9Gdm+QZEsIIYQQQoj71PqPP6boyhUi9pzAJ/sKZg9XiqYl8KXtS3x9fYmLi+vvEO9qMmdLCCGEEEKI+1BRURGXr1whbN8pAk/noG9uxa28hiGbDmCob+LI4cP9HeJdT0a2hBBCCCGEuA8VFxcD4JtzxWm7xmbDK6eAIl/v/gjrniIjW0IIIYQQQtyHjEYjAK3eHu32mbzdMRoNdzqke44kW0IIIYQQQtyHYmNjMej1FE1LwKq/VvBWFxlCbXQYY8aO7b/g7hFSRiiEEEIIIcR9yMXFhcVLlrDxs884++KjeOVcwezpRn1ECIH+/kydOrW/Q7zrSbIlhBBCCDGAREVFkZ+fD8Dq1atZu3Zt/wYk7mljxozBx8eHw4cPU+jjjYvBwMyEMUyaNMlRZih6TpItIYQQQgggLy+P6Ohop23BwcHk5+djMLSfuzJ27FhOnz7ttO3SpUtERUX1ZZh9oqSkhFdffZXt27dz6dIlWlpa8PHxwd/fn7i4OBISEnjyyScZMWJEf4cq+kBERAQRERH9HcY9SZItIYQQQohOlJaW8v777/Pcc885bd+1a1e7RKu3/OxnP6O2thaAUaNG9ck9rnf69GnmzJlDVVWV0/aKigoqKirIyspi8+bN+Pv7S7IlRDdJsiWEEEII0YXXXnutXbL16quv9tn9XnjhhT67dke+9a1vORItNzc3li1bRkxMDKqqcvHiRY4fP05mZuYdjUmIe4V0IxRCCCGE6IBWqwXgzJkz7Ny507E9MzOT7du3Ox3TkaqqKl555RXmzZtHdHQ03t7e6PV6/P39mTJlCr/73e9obm5ud15UVBSKoqAoCmvWrHFsz8vLc2xXFIW1a9eye/du5s6di5eXF+7u7syePZujR4/e8nOsq6vjyJEjjsd/+tOfePvtt/n5z3/OL37xC95++20yMjLIzc1l3rx5HV5jx44dPPHEE4SHh2MwGPDy8iI5OZnf//73NDU1dXjOsWPHWLhwIV5eXnh6ejJnzhz27t3L2rVrnZ5jXl6e45xZs2Y5ts+aNcvpenv37nU6b+/evbcd543fh5ycHFauXElQUBAGg4FRo0bxzjvvdPrabt26lccff5zIyEiMRiNeXl7Ex8fz/PPPk5ub63Ss2WzmzTff5IEHHiAwMBAXFxcCAgKYP38+GzZs6PQe4i6gqqp8dfAFxAFqVlaWKoQQQoh736VLl1TA8fW1r33N8feFCxc6jnv++ecd2x977DGncy5duuQ47syZM077OvoaN26c2tDQ4BRHZGSkY//q1as7jW/q1Kmqoijtrunq6qqeO3fulp5zVVWV07k/+tGPVLPZfEvn2mw29YUXXujy+Y0ePVotLS11Om/btm2qi4tLu2M1Go26ZMmSTl/PmTNnOrbPnDnT6Zp79uxxOm/Pnj23Hef134cxY8aoXl5eHZ67du1ap/NMJpP6+OOPd3m/zz77zHF8ZWWlmpSU1OXxTz75pGq1Wm/p+yL6TYc5hZQRCiGEEEJ0YPTo0dTX17Nz5062b9/OuXPn8Pf3Z926dQAMGzaMBx98kE8//bTD8zUaDfHx8SQnJxMSEoKvry8mk4lz587xySefYLFYOHnyJK+//jo//vGPux3foUOHiI+P52tf+xppaWl88cUXADQ3N/PHP/6R119//abX8PX1JSoqyjGC9Ic//IG3336bSZMmMXbsWJKTk5k9ezbe3t7tzn311Vd54403HI8XLVrE5MmTKS8v591336W2tpYzZ86watUqduzY4YhtzZo1mEwmABRFYcWKFQwdOpQtW7awZcuWbr8ON9OTOG+Unp6Or68vP/zhD2lubuaNN97AarUC8J//+Z+sXr3acezLL7/MJ5984njs5+fHsmXLCA0NJTc3l82bNztd+5lnniElJQWwLzLc9npkZGTw8ccfY7PZ+PDDDxk1ahQ//elPe+11EXdIZ1nY/f6FjGwJIYQQ95UbR45+9atfqV9++aXj8QsvvKD+8pe/dDx+/fXX1bfffrvTkZg2BQUF6meffab+6U9/Un//+9+rv/vd79RRo0Y5zpkzZ47T8bc6shUeHq7W1dU59icmJjqNmN2qTZs2qRqNptNRFRcXF/W5555TKysrHedYrVY1MDDQccy3vvUtp2t+8cUXTtc4deqUqqqq+tFHHzlt/+Uvf+k4p6WlRR0+fHivjmz1NM4bvw+KoqgnT5507PvBD37gdF7b96G6ulrV6/WO7REREWpZWZnTPevr6x2jaDeOfn788cdOx/7kJz9x7PPz81MtFksn30UxAHSYU8icLSGEEEKITixYsICRI0cC8N577/GnP/0JAH9/f6fRjI5UV1ezdOlSwsPDefTRR/nOd77Dj3/8Y15++WXOnj3rOK6goKBHsT399NN4eno6HsfFxTnd+1Y9/PDD7Nu3j4ULF6LTtS96MplMvPXWWyxcuBCbzQZAVlYW5eXljmNef/11pzlTixcvdrrGwYMHARwjOG2ufw0NBgMrVqy45bhvRU/jvNHkyZNJTEx0PB42bJjT/rbX+8iRI5jNZsf2H/3oRwQGBjod6+HhQVBQEAAHDhxw2rd8+XKn+H7729869lVVVXHu3LmbPmcxsEiyJYQQQgjRhR/96EcAtLS0UFlZCcA3v/lNXF1duzzv+eefZ9OmTW0VM51qbW3tUVw3rud1/VpgbUnRrZo2bRrbtm2jurqa3bt38x//8R/Mnj3b6ZiUlBRHcnBjm/ibaUt4ampqnLYHBwd3+bgzN76mnb2GPY3zRl291nDt9b7xfjeu29ZX8YmBS+ZsCSGEEEJ0YeXKlfz0pz+ltLQUABcXF1566aUuz2lqauLzzz93PJ49ezZ/+9vfiI6ORqvVsmzZstvuMqfX650eK4pyW9cD+6jLnDlzmDNnDv/8z//Mq6++6jSfLD8/H7DPQ7re448/zsSJEzu97uTJkwHw8fFx2l5aWsqQIUOcHndGo7k2RnBjF8cLFy50eE5P47zRrb7WN97v0qVLnd6ro+NfeeUVAgICOj0+Jiamy+uJgUeSLSGEEEKILhgMBr7zne/wy1/+EoAnn3ySkJCQLs+pqalxNFAAWLJkCUOHDgWgrKyMPXv29F3A3fT000/z0ksvdZiEXF+mCPbySbCX0QUEBFBRUQHYR2h+8IMftCtDbG5uZv369UydOhWApKQkp/3vvPMOv/nNbwB7ueJHH33UaZzXJ2pZWVnU1NTg4+NDbW2to7zzRj2Ns6cmT56MXq93lBL+93//N6tWrXK8bmBPxBsaGggKCmLatGlO5xsMhg6bpZSUlHDkyBEiIiJuKz5x50myJYQQQghxE9/73vcYPXo0AMnJyTc9PigoCB8fH0fZ3L/9279RWlqKoii89957jjf/A8G6detYt24dkZGRTJs2jZiYGFxcXMjOzmb9+vWO4zw9PZk+fTpgH2V6+eWXeeWVVwD46quvGD16NEuWLMHf35+qqirS09PZv38/zc3NjrlZDz/8MMHBwY4RrH/9138lJyeHmJgYtmzZ0uWcpIkTJ/LZZ58B9vXBEhMTSU5O5tChQxQWFnZ4Tk/j7CkfHx++/e1v88c//hGwjwTGx8fzxBNPEBoaSn5+Pps3b+avf/0rS5cuZfTo0SxatIht27YB8C//8i8cPHiQKVOm4OrqSlFRESdOnCAlJYXp06fz6KOP3lZ84s6TZEsIIYQQ4ia8vb1ZunTpLR+v0+n46U9/yk9+8hPA3kChrdnBoEGDmDdvntNCyQNBfn6+o0zwRlqtlj//+c94eXk5tr388stcuHCBN998E4Dz589z/vz5Lu/h6urK2rVreeSRRzCZTKiqygcffADYE6PFixc7Wtjf6LnnnuPVV191zFvKy8tztKx/8MEH2bp1a4fn9STO2/Hb3/6WwsJCR/v3ioqKLtvwv/feeyxatMjRPOSrr77iq6++6rP4xJ0lDTKEEEIIIfrAyy+/zF//+leGDx+OXq8nMDCQlStXcuzYMcLCwvo7PIdTp07xhz/8gUceeYRRo0YRFBSETqfD3d2d+Ph4vv71r5OamsqqVauczlMUhTfeeINdu3axYsUKoqKiMBgM6PV6QkNDmTNnDr/+9a9JT093Om/hwoXs37+f+fPn4+HhgYeHB7NmzWLXrl088cQTncYZGBjI/v37WbJkCZ6enri5uTFlyhQ2b97c5TplPY2zp1xcXNiwYQObN2/mscceIzw8HIPBgLu7OzExMTzzzDOOUVKwl2YePnyYt956iwULFhAcHIxOp8NoNDJkyBCWLl3K//zP//Dhhx/2SnzizlJu1iHnfqUoShyQlZWV5dRKVQghhBBC9I21a9fy7LPPOh5funSpXSdAIQaoDrumyMiWEEIIIYQQQvQBSbaEEEIIIYQQog9IsiWEEEIIIYQQfUDmbHVC5mwJIYQQQgghblGHc7ak9bsQQgghhBDilhQXF1NQUICHhwdxcXFotdr+DmlAk2RLCCGEEEII0SWr1cqnn3zCuevWKPN092DVM08TFBTUj5ENbDJnSwghhBBCCNGlQ4cOce78eYIPpDP8zxuJ3rCXlvJK1n/0MTItqXOSbAkhhBBCCCG6dPrUKTzySwk5fBaX+ia8LhYRsuckldVVFBUV9Xd4A5YkW0IIIYQQQogutba2oq9vctqma2xx7BMdk2RLCCGEEEII0aWY2Fjq4iNo8fcCwKbVUJEUj16nY9CgQf0c3cAlDTKEEEIIIYQQXZo5cyYXsrPJfu5B3ArLMQX4YHZ1YfH8+RgMhv4Ob8CSdbY6IetsCSGEEEIIcU1tbS1Hjx6lsKAATy8vxo8fz5AhQ/o7rIFC1tkSQgghhBBC9Iy3tzcLFizo7zDuKjJnSwghhBBCCCH6gCRbQgghhBBCCNEHJNkSQgghhBBCiD4gyZYQQgghhBBC9AFJtoQQQgghhBCiD0iyJYQQQgghhBB9QJItIYQQQgghhOgDkmwJIYQQQgghRB+QZEsIIYQQQggh+oAkW0IIIYQQQgjRByTZEkIIIYQQQog+IMmWEEIIIYQQQvQBSbaEEL1i7dq1KIri+MrLy7ul8/Ly8pzOW7t2bZ/GKdprbGzk5ZdfZujQoRgMBsf3Ys2aNf0dmhBCCHFXk2RLiPvIl19+6ZTYfPrpp+2OCQ0Ndez39PTEarU67d+1a5fTNTZu3NinMV9/r1//+td9eq/rRUVFOd1bq9Xi6upKUFAQY8aMYfny5axbt46WlpY7FlNf+fa3v83vf/97cnNzMZlM/R2OEEKI/7+9O4+Pur73Pf76ZCELISQQCCBgDBC2WMMqWwDZBMUWqwJ6tLKd9tS2p/TeqlfPPffY5ZzT9T5ardrTWjc8oAgt9RZRsZFVWZU9bCKIBAhb2ImE+d4/fjPDTEhIgEwmIe/n4zGP+f2+39/vO5/fwGMmn/kuP7luxEU7ABGpPQMHDiQ2NjaYQC1evJh77rknWL99+3YOHDgQSNj7NQAAKAVJREFU3D916hQff/wxffr0CZYtXrw4uG1m5OfnX1NMzZo145e//GVwP/S16hKfz8e5c+c4d+4chw4dYuPGjcyePZvHH3+cGTNmMGzYsGiHeFXKysp4/fXXg/u5ubk88MADxMfHk5ubG8XIRERE6j8lWyINSJMmTejZsyerV68GwhOnivYDZZUlW7m5uTRv3vyaYkpNTeWHP/zhNbURaenp6Tz55JOcP3+eoqIiFi5cyLZt2wAoKipi1KhRzJs3j7Fjx0Y50uo7ceIEqampFBUVhfVmTZ8+nalTp0YxMhERkeuHhhGKNDBDhw4Nbm/cuJGjR48G9wOJVHJyMk2bNg0rAzh79iyrVq0K7g8ZMqTS13HO8eKLL9KzZ0+SkpLIyMjggQceoKioKOy4yuZsDR06FDMLO/ZHP/pRpfPCzp8/zwsvvMCIESNo0aIFjRo1IiMjg1GjRvHmm29W782pRCAhfOKJJ3jmmWcoLCzk6aefDsZ34cIFHnrooeB7OX/+/LA4Q6/55z//ebD8rrvuCnudTp06BeuefPLJYPmLL77IxIkT6d69Oy1btqRRo0akpKTQtWtXvvWtb1FYWHhJzE899VRYDKdPn+aJJ54gOzub+Ph4/vmf/5msrCxuvPHGsPOmTZt2yb/Fvn37+P73v0+3bt1o3Lgx8fHxZGZmkpeXx5QpUyocjioiIlLe559/zsqVK9mwYQOlpaXRDqdWqGdLpIEZMmRIcNiec44lS5Ywbtw44GJi1b9/fxITE5k/fz7Lli3D5/MRExPDihUrwj4cL5dsPfLII7zzzjvB/XPnzjFr1iw++eQT1q1bR0JCQo1d09GjRxk9enSwxy7gyJEjLFy4kIULF3L//ffz2muvERNz7b8xmRnf+973KCws5PnnnwegpKSEF154gccee4zBgwcTFxdHWVkZAEuWLGHixIlAePIa+t4WFRWxc+fOYN3w4cOD28899xxr164Ni+H8+fNs3bqVrVu38sorr/DOO++EJdLljRkzhqVLl17xtR4+fJg+ffqwf//+sPLi4mKKi4tZv349u3btChuOKiIiUl5BQUHY91B60zQmTZlMampqFKOKPCVbIg1Mfn7+JfO2xo0bx65du/jiiy8AL4lKSkpi/vz5lJSUsH79enr06HHJMMPBgwdX+jrvvPMOw4cPZ8CAAcybN4+NGzcCsHXrVubNm8eECRMuG+e3v/1txo4dy6OPPhosGzlyJKNGjQruN2vWDIBvfOMbwUQrMTGRiRMn0rFjRzZv3swbb7yBz+dj1qxZ5ObmhvUYXatvfvObwWQL4O9//zuPPfYYTZo0oW/fvnz44YfAxWTL5/OxfPny4PElJSVs2LCBvLy8sPc2MTGRgQMHBvdbtGjB2LFj6dixI+np6cTHx3PgwAH+8pe/sHfvXkpLS/nud7/Lpk2bKo116dKl9O3bl5EjR1JaWkp6ejoDBw5k9+7d/Md//EfwuAkTJtC7d2/Amz83Z86cYKKVmJjI5MmTadeuHYcOHWLPnj0VDj0VEREJtXv3bpYuXUrauk/JXLyecy3S2Dt+CPPnz+f++++PdngRpWRLpIFJTU0lLy8v2FOyaNEiILzHJZBsBSxevJgePXoEjwXo0qULLVu2rPR17r77bubOnYuZMX36dFq2bBlM8FatWlVlshWoD022BgwYcMn8rk2bNjF//vzg/iuvvML48eOD++3ateMXv/gFAL/+9a95/PHHiY2NvexrV1fnzp3D9gPJKng9U6HJFsC6des4ceIEAM2bN+fIkSMsXrz4kmRrwIABJCYmBvcXLFjAuXPnWLFiBZ9++iknT56kXbt2jBgxgpdeegmAzZs3s3fvXtq1a1dhrF//+td58803L+nZK59sjR49OmzJ94ULFwa3hwwZwnPPPRd2vs/nq/Yy/yIi0jAFhtO3KviY2HPnSTl9gNTNu9nXJCXKkUWe5myJNEChw802bNhASUlJ8I/9xMREbr31Vnr27EmTJk0AL9kqLS1l5cqVwfMuN4QQvJ6pwJymZs2akZGREaw7duxYTV3KJUPjJkyYEDZXKZBogTfcsKL5TVfLORe2HzrHLHQY4JYtWzh69GjwPe7UqRN33HEHcDHJDU22Qs8F+O1vf0tmZia33XYb06ZN4wc/+AGPPvpoMNEKCE32ynvyySevaghlfn5+8Lx3332Xbt26MX78eJ588klmzZrFoUOHyM7OvuJ2RUSk4Qj8gFja3JsP7swozWga9sPu9UrJlkgDFJoo+Xw+li5dGvxj/9ZbbyUhIYHY2FgGDRoEeAnNRx99FHZPqaqSraysrLD90DlaPp/vWi8hKHSBj+o4dOhQjb12YEXCgLZt2wa3+/fvT3JyMuAlZUuXLg32cA0ePDg4BHPJkiUcOHCArVu3Bs8NTbbeeustpk+fHuwRu5zLTTbu0qVLNa7oUr169eKZZ54hLS0NgMLCQt58803+8z//kwceeIAbbriBJ5544qraFhGRhqFr166kpqTw+f3DKBrdh90PjeDsDRn0Dxkyf73SMEKRBijQWxFIel599dXgULDQeVhDhw5lwYIFHDlyhGeffTasjaqSrfj4+LD98isL1pTAvK2Axx9/PKwXrbwOHTrU2Gv/8Y9/DNsPTZIaNWrEoEGDeO+99wCv52rZsmWA9x73798f8BbxCB2a17Rp0+CcKSDsHliNGzdmzpw5wWGeb7/9NnfeeWe1Ym3cuPEVXt1FjzzyCFOnTmXVqlVs2bKFTz/9lA8//JDly5dz4cIFfvaznzFmzJjLzuETEZGGKykpiUlTpvC3t96iKCWZpKQkhuXn07Nnz2iHFnFKtkQaoLS0NG655RY++eQTgLClu0OTqNDt0GM6duxImzZtaiFSwlb1O3PmzCX1gd63gISEhArv23XgwAE++ugj2rdvf80xOed49tln+f3vfx8sS09PZ9q0aWHHDR8+PJhszZgxg8OHDwNespWVlUXr1q3Zv38/Tz/9dPCcIUOGhM0pC5wDkJ2dzejRo4P7oYlYpAQWx2jdujX5+fnBm1g750hPT+f48eMArF69WsmWiIhUKj09nYcefjjaYdQ6JVsiDdSQIUOCyVZg7lF8fHywxwW8IWQpKSmcOnUqbH5SVb1aNalt27bBXreXX36ZhIQEmjZtSkZGBpMmTeLmm29mzJgxLFiwAIAf//jHLFu2jAEDBpCUlERRURFr1qxh9erV5Ofnc/fdd19xDCdOnOBXv/oVZWVlFBUV8d5774UNIYyNjWXGjBmkp6eHnRfa0xVImtq1axccYjl48GDeeOONYMJS/hzwFuEILFKxceNGJkyYQG5uLosWLaKgoOCKr+VKLV++nPHjx9OvXz9yc3Np3bo18fHxLF26NCzu8j2MIiIiomRLpMEaOnQov/nNb8LK+vTpE5xnBF6v0sCBA3n33XfDjqvNZOu+++4L3hfs0KFD/PSnPwWge/fuwVXzZsyYwZgxY4LLvxcUFNRoInLs2LGwVRFDtW3blldffZXbbrvtkroePXqQnp4etiBIaO9PINkKVT7Zmj59Oq+++mpwztbs2bOZPXs2AJMnT75kkYxIcM7x0Ucf8dFHH1VY36lTJ+69996IxyEiIlLfaIEMkQYqPz//knlUFQ0Dq+hGubU5XOwnP/kJjz32GFlZWcTFVfz7UPPmzfnwww958cUXuf3228nMzCQuLo7ExESys7MZN24cTz/9NLNmzbrqOMyMRo0akZGRQW5uLuPHj+e1115j586dFSZaADExMZfUhb535ZPWzMxMunfvHlbWoUMHli5dypgxY2jcuDHJycn069ePt956i2984xtXfT3VNWDAAH72s5/xta99jZycHNLS0oiNjaVp06b06tWLf/3Xf2XlypXBlStFRETkIiu/dLF4zCwH2LZt2zZycnKiHY6IiIiIiNRdFa4Epp4tERERERGRCFCyJSIiIiIiEgFKtkRERERERCJAyZaIiIiIiEgEKNkSERERERGJACVbIiIiIiIiEaBkS0REREREJAKUbImIiIiIiESAki0REREREZEIULIlIiIiIiISAUq2REREREREIqBBJFtm1s3MdptZqZntMrN7oh2TiIiIiIhc3xpEsgWcAKYBecAp4N+jGo2IiIiIiFz34qIdQG1wzn0BfGFm8XiJ16EohyQiIiIiIte5OtWzZWbTzWyDmV0wM2dmT5WrTzSzZ8ys2MzOmtlyM7u1mm0/ApwG+gJzaj56ERERERGRi+pUsgX0Ao4Ceyup/w3wXeAgMA/oDyw0swwza2dmhyt4tPOf+99Ab+BD4Hkzs0heiIiIiIiINGx1ahihc+4hADObB9wYWmdmLYEpgA8Y7pwrNrMy4EHgu865p4CMito1s4HABbxE7kvgnHPORegyRERERERE6lzP1uV0B+KBz51zxf6yNf7nvCrOzQbeAjYAbYCHKzvQzL5pZmuAudcUrYiIiIiINGh1qmerCpn+51MhZaf9z60ud6JzbgYwozov4pz7A/AHM8sBtl1pkCIiIiIiIlC/erYO+p9TQsoC2wdqORYREREREZHLqk89W1uA80B7M8t0zh0E+vjr1kcvLBERERERqQ2lpaXs2rULgOzsbBISEqIc0eXVqWTLzKYBg4Ce/qJxZpYFzHPOzTOzl4F/BP5uZpuA8XjDCn8XhXBFRERERKSWnDhxgpf+9CdKTpwAIC01lclTp5KamhrlyCpX14YRDsJbvCKwXPst/v08//73gefw5m+NA1YAo5xzukmxiIiIiMh17IMPPuDE0RLavPYBbV7ztj/44INoh3VZdapnyzk3CZh0mfqzwHf8DxERERERaSBKSkpodPAYjXfuB6DRgWMcP348ylFdXp1KtkRErjfOOY4dO0ZpaSnp6ekkJiZGOyQREZF6qU2bNuy+YTdHht4MwLm2zWnTpk2Uo7o8JVsiIhGyY8cOCgoKOHDAWzA1NjaW3NxcRo0aRXJycpSjExERqV+GDh3KoUOH2OHf79SpE0OGDIlqTFUx51y0Y6iTAvfZ2rZtGzk5OdEOR0TqmcLCQmbPnk1GRgZ9+vQhNTWVXbt28fHHH9OsWTOmTJmiXi4REZGrcPLkSQCaNGkS5UjCWEWF6tkSEalhPp+PBQsW0KZNGyZNmkR8fDwAXbp0oUuXLsyYMYNVq1YxePDgKEcqIiJS/9SxJOuy6tpqhCIi9d5nn33GyZMnyc/PDyZaAdnZ2dx0002sX6/bA4qIiFzvlGyJiNSwwPCGli1bVljfsmVLTp06VZshiYiISBQo2RIRqWFNmzYFoKioqML6/fv31+kbMIqIiEjN0JwtEZEalpWVRXp6OkuWLKFDhw4kJSUF6woLC/n8888ZOXJkFCO8yDnHvn37WLduHSdOnCA5OZmvfOUr3HTTTZhVONdXREREqkmrEVZCqxGKyLXYtWsXM2fOJDk5mR49egRXIywsLKRNmzY8/PDDl8znqm0+n4+//vWvbNiwgUaNGtGsWTNKSko4d+4c2dnZTJgwgUaNGkU1RhERkXqiwl8olWxVQsmWiFyrvXv3snjxYj799FMAEhMT6dGjB0OHDq0TScz777/P8uXLyc/PZ+DAgSQkJFBWVsbHH3/MO++8Q7du3bj33nujHaaIiEh9oKXfRURqU7t27XjwwQc5e/YsX375JSkpKcTGxkY7LABKS0tZvXo1ubm5DBs2LFgeFxdH3759OXXqFEuXLmXYsGE0a9YsipGKiIjUX1ogQ0QkwpKSkmjatGmdSbQAdu/ezZdffkmvXr0qrO/ZsycAO3bsqM2wREREritKtkREGqCysjKAsMU7QiUnJ4cdJyIiIldOyZaISAOUmZkJwM6dOyusD/RoVXavMBEREamaki0RkQYoIyODrKwsli9fzuHDh8PqTp48SUFBAenp6XTo0CFKEYqIiNR/Wo2wElqNUESud0eOHOGll17iyy+/JDc3lzZt2nD48GHWr1/PhQsXePDBB2nfvn20wxQREakPtPT7lVCyJSINQUlJCUuWLGHjxo2UlZURExND165dyc/PDw41FBERkSop2boSSrZEpCEpKyvj7NmzJCQk1Il7gImIiNQzus+WiIhULC4ujiZNmkQ7DBERkeuKFsgQERERERGJACVbIiIiIiIiEaBhhCIiUm845zh58iRmRkpKCmYVDpEXERGpE5RsiYhInefz+VixYgWrV6+mpKQEgObNm3PrrbfSu3dvJV0iIlInKdkSEZE6zefzMXfuXLZs2cKNN95I//79cc6xadMm3n77bfbv389dd92lhEtEROocJVsiIlKnbdq0iS1btjBixAgGDhwYLO/bty8FBQUsW7aMLl266DYdIiJS5yjZEhGROm3NmjU0b96cAQMGhJWbGUOHDmXdunWsWbOmTiVbPp+PHTt2sG/fPsyM9u3bk52drd43EZEGRsmWiIjUacXFxdxyyy0VJiqxsbFkZ2ezZ8+eKERWsV27dvHWW29x/PjxsPLmzZszbtw42rZtG6XIRESktinZEhGROi0uLo6zZ89WWn/27Fni4urG19mePXuYOXMmzZo1Y8KECeTk5ODz+SgsLKSgoIAZM2YwZcoUMjMzox2qiIjUAt1nS0RE6rScnBwKCws5ffr0JXUlJSXs3LmTzp07RyGySy1cuJAmTZowefJkunTpQkxMDHFxcdx8881MnjyZuLg4CgoKoh2miIjUEiVbIiJSp/Xr1w/nHDNnzqS4uDhYvn//fmbOnEl8fDx9+vSJYoSegwcPsm/fPvr160dSUtIl9ampqfTq1Yvt27dz4sSJKEQoIiK1rW6MuxAREalEy5YtGT9+PHPmzOH555+nRYsW+Hw+jhw5QkJCAhMnTiQtLS3aYXLkyBEAsrKyKj0mKyuLpUuXcvToUVJTU2spMhERiRYlWyIiUufl5OQwffp0PvnkE/bu3QtA7969ycvLIzExMcrReQLzxqqaXwYQHx9fKzGJiEh0KdkSEZF6ITk5Oew+W3VN+/btiY+PZ/369ZX2bq1fv56UlBRatWpVu8GJiEhUaM6WiIhIDUhMTCQvL49169axYcOGsDrnHCtWrGDHjh307t2b2NjYKEUpIiK1ST1bIiIiNWTkyJEUFxfzl7/8hVWrVtGlSxd8Ph9btmzh4MGDdO7cmUGDBkU7TBERqSXmnIt2DHWSmeUA27Zt20ZOTk60wxERkXqirKyMtWvXsmbNGg4fPgxAq1at6N27Nz169CAmRoNKRESuQ1ZhoZKtiinZEhGRa+Gc4/z58wA0atQoytGIiEiEVZhsaRihiIhIBJiZkiwRkQZOYxlEREREREQiQMmWiIiIiIhIBGgYoYiIiNSIM2fOsHXrVs6cOUNSUhJdunShcePG0Q5LRCRqlGyJiIjINSkrK+Pdd9/lk08+4cKFC8HyBQsWkJeXx+jRo4mL058cItLw6JNPRERErprP5+ONN95g586d9OzZk759+9KsWTOOHj3K6tWrWbt2LSUlJdx///26mbOINDhKtkREROSqbdy4kZ07d3LnnXfSu3fvYHlmZiZjx46ldevW/O1vf2PDhg306NEjipFeX3w+Hzt27GDfvn1cuHCBxo0b0717d5o2bRrt0EQkhJItERERuWpr1qyhefPm9OrVq8L6nj17snLlStasWaNkqwY451i7di3Lli3j+PHjAMTFxVFWVsb7779PTk4Oo0ePJi0tLbqBigigZEtERESuknOOL774gkGDBmFW4f08MTO6du3KkiVL8Pl8xMRoIeSr5ZzjvffeY8WKFbRv357bb7+dnJwcYmNjKSkpYe3ataxevZoXXniBSZMmkZGREe2QRRo8feKJiIjIVXHOAVSZQAXqA8fL1dmwYQMrVqygT58+TJo0ia5duwbnwaWlpTF8+HCmTp0KwMyZM8MWKxGR6FCyJSIiIlclJiaGzMxMtm/fftlEavv27bRo0UILZFwD5xwffvghrVq1YsyYMZX2JLZo0YK77rqLY8eOsXXr1lqOUkTKU7IlIiIiV61Xr14cOHCAwsLCCuu3bt1KUVFR2OIZcuX27t1LcXExffr0qTTRCujUqRNpaWmsWbOmlqITkcoo2RIREZGrlpeXxw033MDcuXNZvHgxp0+fBuD06dMsWbKEOXPm0Lp1ay2OcY0OHjwIeIlUVWJiYujYsWPwHBGJHi2QISIiIlctPj6eBx98kHnz5rFo0SIWL15MQkICpaWlOOfo1KkTd999N/Hx8dEOtV7z+XwA1R6KGRMTEzxHRKJHyZaIiIhck8TERCZOnMihQ4fYvHkzZ86cISkpidzcXFq0aBHt8K4LqampAOzfv58OHTpUefzBgweD54hI9CjZEhERkRrRokULhg4dGu0wrkudOnUiKSmJtWvXVplsFRcXs2fPHkaMGFFL0YlIZTRnS0RERKSOi4uLo2fPnhQWFl52lcGysjLefvtt4uLiNE9OpA5QsiUiIiJSDwwePJg2bdrw5ptvsmzZMs6ePRusc86xd+9eXn31Vfbs2cNXv/pVkpOToxitiACYbjBYMTPLAbZt27aNnJycaIcjIiIiwrlz5/jzn//Mjh07iIuL46abbiI+Pp7Dhw9TXFxMQkICY8eOJTc3N9qhijQ0Fd6TQclWJZRsiYiISF114MABVq9eTVFREWVlZaSkpJCbm8vNN99Mo0aNoh2eSENUYbKlBTJERERE6plWrVpx1113RTsMEamC5myJiIiIiIhEgJItERERERGRCFCyJSIiIiIiEgFKtkRERERERCJAyZaIiIiIiEgEKNkSERERERGJACVbIiIiIiIiEaBkS0REREREJAKUbImIiIiIiESAki0REREREZEIULIlIiIiIiISAUq2REREREREIkDJloiIiIiISAQo2RIREREREYkAJVsiIiIiIiIRoGRLREREREQkApRsiYiIiIiIRICSLRERERERkQhQsiUiIiIiIhIBSrZEREREREQiQMmWiIiIiIhIBMRFO4A6LB7gs88+i3YcIiIiIiJSh3Xu3DkH2O2c+zK03JxzUQqpbjOzUcC70Y5DRERERETqhc7Oue2hBUq2KmFmjYGBwD7gfJTDEakpc4F7oh2EiIjUCn3mi9SuS3q2NIywEs6508B70Y5DpCaZWWn5X1xEROT6pM98kejTAhkiIiIiIiIRoGRLpGH5Q7QDEBGRWqPPfJEo05wtERERERGRCFDPloiIiIiISAQo2RIREREREYkAJVsidZiZTTezDWZ2wcycmT1Vrv4+M9tsZqVmttvMHitXn2VmfzWzU2Z23Mxmm1mrkPoYM3vKzL7wt7HOzO4o18ZtZrbazM6Z2X4z+4WZaSVTEZFaYGaL/J//oY9NIfXfMbNP/Z/h28zs4XLn32JmH5jZWTM7YmZ/NLMmIfWJZvaMmRX7j1luZrfW5jWKXM/0B5NI3dYLOArsBW4MrTCz/sAbwGngdWA48HMzO+6c+y8ziwHmA93wbmOQANwHtAP6+5t5DPg3YLe/jQnAW2Z2i3Nus5ndCCwAYv2v1Qd4FLgAPBGhaxYRkUv9NmR7P4CZTQR+BxwCZgFfBV42swPOuXf9SdVCoAXePbduAqYBKcD9/rZ+A3wL2AT8He97YKGZZTvnDkf6okSud+rZEqnDnHMPOeeGAusqqH4cMOAp59zDQODXzEAS9FW8RGujc+52vGRsD9DPzIb6e6d+6D/2Xn8bv8RLrB71l/8AL0n7vXPuQeBOf/n3zCylZq5SRESq4pybHvL4ub/4f/mfv+2cm8TFz+7A98BUvETrb865e4EhwDlgvJllm1lLYArgA4Y75+4H/htoAnw34hcl0gAo2RKpv3r4n9eUe77RzNJC6tcCOOcuAJ/4y/Lweria433JflyujbyKXsM5txMoARoDHWviIkREpGpmdszMSszs72bWx/+DWa6/uvz3QJ7/ufxn+ClgK97ff18BugPxwOfOueJK2hCRa6BhhCL1V6b/+ZT/+XRIXasK6kOPCa0/4y7eAyK0vqLXCByTFnKMiIhEzkngb8A+vCHgw4B38UYuxPqPKf890NTMEqn6eyCxinoRuUZKtkTqr4NAe7yx94Q8Axzw15cvT6mgPtnMYpxzvnL1gdfofJk2REQksr4a+EHMzBoB2/Hm8I7Emz8bi/e5fISLn8/HnXPnzKyq74HjVdSLyDXSMEKR+mud/7mv/7mP//lz51xJSH0f88QCPf1l6/EW3TiK9znQq1wb6yt6DTPrBDTF++VzZ81choiIVMTMkoHWlVR/CWz2b5f/HqjsM7wJ0AVwwEZgC3AeaG9mmZW0ISLXwC6OHhKRusbMpgGD8IaNtMP78lsHzMNbfWopcAZvlakRQBvgEefc8/7VCDfjfbEuxFvoYjCwyjl3q7/9J4F/x1s4YwkwHq/HO885t8nMsoBteL+cvo73hd0J+IVz7vHIXr2ISMMW8hlcgPc53R9vrtVBvPlao/AWtDgEvA18DW+Y9x3OuQX+5OozvPm5c4FsvHlcs51zE/yv8QfgH/G+LzbhfQ+cBrKdc4dq4zpFrmfq2RKp2wbhrTLYzr9/i38/zzm3HG/p3s/9z4Hl2H8P4B8WeAfeWP8BeL1ac4G7Q9r/OfBTvAnSE/G+1Mc55zb529jtb2Md3rLxqcCvgf8dgWsVEZFwR4BXgRy8z/5MvB/bhjvnDjvnZgLfx5tz9QBe0jXVObcAwDl3Em+44WK81WSzgBfxkquA7wPP+dseB6wARinREqkZ6tkSERERERGJAPVsiYiIiIiIRICSLRERERERkQhQsiUiIiIiIhIBSrZEREREREQiQMmWiIiIiIhIBCjZEhERERERiQAlWyIiIhJkZtPMzPkfw2qgvak12Z6ISH2iZEtEpAEws90hf/BW5zE02jHXJ2aWZmZPBR7RjudqmVkK8BP/7grnXEFI3aTQ/yPlzosxs5dD6r80s6/7q18F9vq3f21m+ttDRBoMfeCJiIhcuzTg30Ie9dU3gVb+7d9V5wQziwVeAx72F5UCX3fO/RnAOXce+IO/Lg/4ak0FKyJS18VFOwAREakV9wKJIftTgMn+7QPAfeWO31gbQdU1ZpbinDsV7TiqYmbxgDnnvqzBNg34tn/3DPDXasYxE+//F8BZYJxz7r1yh87iYo/ZPwHzrjVeEZH6QD1bIiINgHNujXNuWeABfB5SXRpa568/b2aPmdkqMzthZqVmtsPM/q+ZtQht28yGhgwf221mnc1svpmdMrNiM3vGzJLMrIl/+6CZnTWzJWbWu1xbT4W09bKZDTKzRf62jpnZ62bWrvz1mVkzM/uJma33H3vWzDb720spd2zocLhFZtbHzBaa2Qn8w93MrLeZvWZmG83skJmdN7OTZrbOzH4U2qaZLQI+K/calwzJLFeWVdn7F1KeVe6c1v73pBiv96hbyLETzOw9MzvsH8K338xmmdlXLvf/opxeQEf/9pKqkk4zawTM4WKidRoYW0GihXPuU2Cbf3ekmTW7grhEROot9WyJiEgYM8sAPgByy1V1BH4AjDezfOfcZ5ecDE2BJUBL/35j4LtAG+AG4NaQY/OBBWaW7Zw7WUFbA4AHgPiQsgnAQDPr5Zwr9sfb0R9v23Lnd8Mb0nePmQ1xzh2t4DU6AouBJP/+cf9zb+Afyh2bAtzif9xpZv2cc2UVtBkpi4FOoQX++U8z8N6nUK2AicDdZnafc+7/VaP9ISHbK6tx/DxgjH/7JHCnc27pZY5fCXTG+6F3CPCXaryGiEi9pp4tEREp71kuJlrrgPvx/qie6y+7AXilknPTgCLgbuCpkPKv4yUp04F7gGJ/eQaXJgoBnYAFwFjge0Cgp6Ut8O8hx73GxUTrA/9r34WXnOC/lt9U8ho3AEeBfwRGAf/HX74B+J/+tkYAt+ENtVztr+/lr8MfW/lhmPkhj08qee0r1d4f3+14c6sOA9/i4vt3GPgOMBL4KeCABGCGmaVXo/2bQ7Z3VOP4QKJ1HBhVRaIFsD1k+0p63ERE6i31bImISJCZpeElQwG/AL7wb/8Ob3GDeCDfzDo757ZxqQecc4Vm9lfgUbzeLYCnnXO/9b/OMLzEACCnknCKgPsC85LMLAH4lb/uXjP7Fl7vVaC37DzwM7z5RgDPcLG3ZqKZPVLB0DgH3OGc2+DfX+h/XgX0BH7of42mXPoDZT/gTefcRjML65nzD8WsaY86554JLTCzqSG7L+EliQDvAncCPfBiHw/8VxXthw4PPXIFce0EtlTjuNCexZaVHiUich1RsiUiIqFygNiQ/ZmXOTaXi/NwAkqcc4UAzjlnZke5mGx9FHLc4ZDtyubvrCy3AERoApOG1yvWLaQsHi/JqEg83hC2teXKd4YkWqFeBB6qpK2A6vQW1aS5FZSFXv+j/kdFyg8JrYpV4xjnP64XsNDMbnfOlVxjmyIi1xUNIxQRkauVUkHZ8XL7vpDtkkraqa0/wiuKd3/5AjO7gfBE6zd4Qwzz8e4ZFXAt36GhP3a2qPSocJfEegUquvbyDoVsV2cBiylc/PftC7xfxXDF0DaLKz1KROQ6omRLRERCbQcuhOx3ds5Z+QeQ4pyrbN5WTenrX1o8YGDI9nG83rHCkLKzQNpl4l3MpVwFZaGrHR5xzv3AObfQPzTwhkpiDU0qAwtXlHcsZDt0MY+7KmkzPFDnKoo19Pq/Vcm1J+DN8apK6HL/nasRz8t499YK/H/pBRSYWfNKTglts0HeWkBEGh4NIxQRkSDnXImZ/ZmLCz68bWa/xJuXkwbcCAwGuvgfkXQDMNvMXgCyCL9Z8BznnA/YaGargT54KwoWmNnTeEu4twBuAobh/bg4opqvuytku7mZ/QuwBm+J8+GVnHOUi8PqAH5gZqsAn3Nuub9sOxfnlz1rZs/iJShVDVe8nD/hzS0D+LV/Wf7VQCO8pLE33jy7PsDuKtpaFLLdtzov7px7zczK8FZEjMO7aXGBmY1wzh0qd3igTYe3YqWIyHVPyZaIiJT3HaAr3jyfDsDvKzhmTy3EsQVvxbtx5cr3Af8Ssv8PQAFeb1FP4OUK2qqoV6tCzrliM3sdb+l08Fb2A68HZynecMLy55wysxVAf3/Rr0LOCXzXPg38t3+7G96qjwCbuPI5VQG/BwbhrRiZEhLr1fgYLyHMAQZbNW/w7Jx73Z9wzcK71q8AH5jZcOfcQQguzx9YCOV959zhilsTEbm+aBihiIiE8fdI9MVbiW8F3pC983irA67AW3b9nkobqDmr8VYTLMC7Ye5xYDYwMPBHvD/eHXh/4P8Yb5n1U3g3/f0crwflX4B/usLXnoY3V+sLvOGJK4E7/LFU5iHgbbx7Tl3COTcTbwGLPXjv5w7gfwDfv8LYQtv0OecewFtt8B28eVdleEMsN+AlY3fgv1lzFW05Lq5YmMTFpe2rE8ccvN7Q8/6i7sAiM2vt378/5PDnq9uuiEh9ZxUPARcREal9ZvYUF4cLvuKcmxS9aBoeM2uMlwS2xlsNsl8NtNkI+BSv53Ed0Ms/BFRE5Lqnni0REREBwDl3GvhX/+6tZlbZHLUr8RAXFwT5oRItEWlIlGyJiIhIkHPuTyGrGf69rrUnIlKfKNkSERERERGJAM3ZEhERERERiQD1bImIiIiIiESAki0REREREZEIULIlIiIiIiISAUq2REREREREIkDJloiIiIiISAQo2RIREREREYmA/w9T+HzzFPXWVQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 1008x864 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# creo el bastidor\n", + "\n", + "fig, ax = plt.subplots(figsize=(14,12))\n", + "\n", + "# personalización de los ejes\n", + "\n", + "\n", + "# escala logarÃtmica en ambos ejes\n", + "ax.set_xscale('log')\n", + "ax.set_yscale('log')\n", + "\n", + "# elimino los ejes superior y derecho\n", + "ax.spines['right'].set_visible(False)\n", + "ax.spines['top'].set_visible(False)\n", + "\n", + "# fijo el tamaño de los números de eje\n", + "ax.tick_params(axis='both', which='major', labelsize=12)\n", + "\n", + "# especifico los ticks que aparecen\n", + "ax.set_xticks([5000,10000])\n", + "ax.set_xticks([], minor=True)\n", + "\n", + "# elimino la notación cientÃfica del eje x\n", + "ax.get_xaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter())\n", + "ax.get_xaxis().set_minor_formatter(matplotlib.ticker.NullFormatter())\n", + "\n", + "# nombro los ejes\n", + "ax.set_xlabel('Temperature (K)')\n", + "ax.set_ylabel('Luminosity (L$_{sun}$)')\n", + "\n", + "# invierto el eje x\n", + "ax.invert_xaxis()\n", + "\n", + "\n", + "# escala de color\n", + "\n", + "# defino la escala de colores como los valores extremos de la intensidad\n", + "allTemps = np.concatenate([ms[1], giants[1], supergiants[1],dwarfs[1]], axis=0)\n", + "min_T, max_T = allTemps.min(), allTemps.max()\n", + "\n", + "\n", + "\n", + "# grafico los datos, tomando la superficie de cada marcador proporcional a su radio\n", + "\n", + "ax.scatter(ms[1],ms[0],s = 20*ms[2], c = ms[1], cmap = 'RdYlBu', vmin = min_T, vmax = max_T,\n", + " linewidths=1.5, edgecolor = 'grey')\n", + "\n", + "ax.scatter(giants[1],giants[0],s = 20*giants[2], c = giants[1], cmap = 'RdYlBu', vmin = min_T, vmax = max_T,\n", + " linewidths=1.5, edgecolor = 'grey')\n", + "\n", + "ax.scatter(supergiants[1], supergiants[0],s = 20*supergiants[2], c = supergiants[1], cmap = 'RdYlBu',\n", + " vmin = min_T, vmax = max_T, linewidths=1.5, edgecolor = 'grey')\n", + "\n", + "ax.scatter(dwarfs[1], dwarfs[0],s = 20*dwarfs[2], c = 'white', linewidths=1.5, edgecolor = 'grey')\n", + "\n", + "\n", + "# añado etiquetas de cada conjunto de estrellas como texto\n", + "\n", + "ax.text(5500,0.01,'Main Sequence', fontsize = 20, weight = 'bold')\n", + "ax.text(13000,6,'Main Sequence', fontsize = 20, weight = 'bold')\n", + "ax.text(4500,2,'Red Giants', fontsize = 20, weight = 'bold')\n", + "ax.text(5000,0.3e7,'Red Supergiants', fontsize = 20, weight = 'bold')\n", + "ax.text(11500,0.3e7,'Blue Giants', fontsize = 20, weight = 'bold')\n", + "ax.text(10000,0.002,'White Dwarfs', fontsize = 20, weight = 'bold')\n", + "\n", + "\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ejercicio 2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Después de tener un diseño de base para el ejercicio No. 1, en este ejercicio se pide generar una animación, en la cual se reproduzca el miso gráfico de antes pero las estrellas vayan apareciendo progresivamente.**" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib notebook\n", + "from matplotlib.animation import FuncAnimation" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "/* global mpl */\n", + "window.mpl = {};\n", + "\n", + "mpl.get_websocket_type = function () {\n", + " if (typeof WebSocket !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof MozWebSocket !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert(\n", + " 'Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.'\n", + " );\n", + " }\n", + "};\n", + "\n", + "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = this.ws.binaryType !== undefined;\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById('mpl-warnings');\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent =\n", + " 'This browser does not support binary websocket messages. ' +\n", + " 'Performance may be slow.';\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = document.createElement('div');\n", + " this.root.setAttribute('style', 'display: inline-block');\n", + " this._root_extra_style(this.root);\n", + "\n", + " parent_element.appendChild(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message('supports_binary', { value: fig.supports_binary });\n", + " fig.send_message('send_image_mode', {});\n", + " if (fig.ratio !== 1) {\n", + " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n", + " }\n", + " fig.send_message('refresh', {});\n", + " };\n", + "\n", + " this.imageObj.onload = function () {\n", + " if (fig.image_mode === 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function () {\n", + " fig.ws.close();\n", + " };\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "};\n", + "\n", + "mpl.figure.prototype._init_header = function () {\n", + " var titlebar = document.createElement('div');\n", + " titlebar.classList =\n", + " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", + " var titletext = document.createElement('div');\n", + " titletext.classList = 'ui-dialog-title';\n", + " titletext.setAttribute(\n", + " 'style',\n", + " 'width: 100%; text-align: center; padding: 3px;'\n", + " );\n", + " titlebar.appendChild(titletext);\n", + " this.root.appendChild(titlebar);\n", + " this.header = titletext;\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._init_canvas = function () {\n", + " var fig = this;\n", + "\n", + " var canvas_div = (this.canvas_div = document.createElement('div'));\n", + " canvas_div.setAttribute(\n", + " 'style',\n", + " 'border: 1px solid #ddd;' +\n", + " 'box-sizing: content-box;' +\n", + " 'clear: both;' +\n", + " 'min-height: 1px;' +\n", + " 'min-width: 1px;' +\n", + " 'outline: 0;' +\n", + " 'overflow: hidden;' +\n", + " 'position: relative;' +\n", + " 'resize: both;'\n", + " );\n", + "\n", + " function on_keyboard_event_closure(name) {\n", + " return function (event) {\n", + " return fig.key_event(event, name);\n", + " };\n", + " }\n", + "\n", + " canvas_div.addEventListener(\n", + " 'keydown',\n", + " on_keyboard_event_closure('key_press')\n", + " );\n", + " canvas_div.addEventListener(\n", + " 'keyup',\n", + " on_keyboard_event_closure('key_release')\n", + " );\n", + "\n", + " this._canvas_extra_style(canvas_div);\n", + " this.root.appendChild(canvas_div);\n", + "\n", + " var canvas = (this.canvas = document.createElement('canvas'));\n", + " canvas.classList.add('mpl-canvas');\n", + " canvas.setAttribute('style', 'box-sizing: content-box;');\n", + "\n", + " this.context = canvas.getContext('2d');\n", + "\n", + " var backingStore =\n", + " this.context.backingStorePixelRatio ||\n", + " this.context.webkitBackingStorePixelRatio ||\n", + " this.context.mozBackingStorePixelRatio ||\n", + " this.context.msBackingStorePixelRatio ||\n", + " this.context.oBackingStorePixelRatio ||\n", + " this.context.backingStorePixelRatio ||\n", + " 1;\n", + "\n", + " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", + " 'canvas'\n", + " ));\n", + " rubberband_canvas.setAttribute(\n", + " 'style',\n", + " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n", + " );\n", + "\n", + " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n", + " if (this.ResizeObserver === undefined) {\n", + " if (window.ResizeObserver !== undefined) {\n", + " this.ResizeObserver = window.ResizeObserver;\n", + " } else {\n", + " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n", + " this.ResizeObserver = obs.ResizeObserver;\n", + " }\n", + " }\n", + "\n", + " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n", + " var nentries = entries.length;\n", + " for (var i = 0; i < nentries; i++) {\n", + " var entry = entries[i];\n", + " var width, height;\n", + " if (entry.contentBoxSize) {\n", + " if (entry.contentBoxSize instanceof Array) {\n", + " // Chrome 84 implements new version of spec.\n", + " width = entry.contentBoxSize[0].inlineSize;\n", + " height = entry.contentBoxSize[0].blockSize;\n", + " } else {\n", + " // Firefox implements old version of spec.\n", + " width = entry.contentBoxSize.inlineSize;\n", + " height = entry.contentBoxSize.blockSize;\n", + " }\n", + " } else {\n", + " // Chrome <84 implements even older version of spec.\n", + " width = entry.contentRect.width;\n", + " height = entry.contentRect.height;\n", + " }\n", + "\n", + " // Keep the size of the canvas and rubber band canvas in sync with\n", + " // the canvas container.\n", + " if (entry.devicePixelContentBoxSize) {\n", + " // Chrome 84 implements new version of spec.\n", + " canvas.setAttribute(\n", + " 'width',\n", + " entry.devicePixelContentBoxSize[0].inlineSize\n", + " );\n", + " canvas.setAttribute(\n", + " 'height',\n", + " entry.devicePixelContentBoxSize[0].blockSize\n", + " );\n", + " } else {\n", + " canvas.setAttribute('width', width * fig.ratio);\n", + " canvas.setAttribute('height', height * fig.ratio);\n", + " }\n", + " canvas.setAttribute(\n", + " 'style',\n", + " 'width: ' + width + 'px; height: ' + height + 'px;'\n", + " );\n", + "\n", + " rubberband_canvas.setAttribute('width', width);\n", + " rubberband_canvas.setAttribute('height', height);\n", + "\n", + " // And update the size in Python. We ignore the initial 0/0 size\n", + " // that occurs as the element is placed into the DOM, which should\n", + " // otherwise not happen due to the minimum size styling.\n", + " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n", + " fig.request_resize(width, height);\n", + " }\n", + " }\n", + " });\n", + " this.resizeObserverInstance.observe(canvas_div);\n", + "\n", + " function on_mouse_event_closure(name) {\n", + " return function (event) {\n", + " return fig.mouse_event(event, name);\n", + " };\n", + " }\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mousedown',\n", + " on_mouse_event_closure('button_press')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseup',\n", + " on_mouse_event_closure('button_release')\n", + " );\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband_canvas.addEventListener(\n", + " 'mousemove',\n", + " on_mouse_event_closure('motion_notify')\n", + " );\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseenter',\n", + " on_mouse_event_closure('figure_enter')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseleave',\n", + " on_mouse_event_closure('figure_leave')\n", + " );\n", + "\n", + " canvas_div.addEventListener('wheel', function (event) {\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " on_mouse_event_closure('scroll')(event);\n", + " });\n", + "\n", + " canvas_div.appendChild(canvas);\n", + " canvas_div.appendChild(rubberband_canvas);\n", + "\n", + " this.rubberband_context = rubberband_canvas.getContext('2d');\n", + " this.rubberband_context.strokeStyle = '#000000';\n", + "\n", + " this._resize_canvas = function (width, height, forward) {\n", + " if (forward) {\n", + " canvas_div.style.width = width + 'px';\n", + " canvas_div.style.height = height + 'px';\n", + " }\n", + " };\n", + "\n", + " // Disable right mouse context menu.\n", + " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n", + " event.preventDefault();\n", + " return false;\n", + " });\n", + "\n", + " function set_focus() {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'mpl-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " continue;\n", + " }\n", + "\n", + " var button = (fig.buttons[name] = document.createElement('button'));\n", + " button.classList = 'mpl-widget';\n", + " button.setAttribute('role', 'button');\n", + " button.setAttribute('aria-disabled', 'false');\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + "\n", + " var icon_img = document.createElement('img');\n", + " icon_img.src = '_images/' + image + '.png';\n", + " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", + " icon_img.alt = tooltip;\n", + " button.appendChild(icon_img);\n", + "\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " var fmt_picker = document.createElement('select');\n", + " fmt_picker.classList = 'mpl-widget';\n", + " toolbar.appendChild(fmt_picker);\n", + " this.format_dropdown = fmt_picker;\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = document.createElement('option');\n", + " option.selected = fmt === mpl.default_extension;\n", + " option.innerHTML = fmt;\n", + " fmt_picker.appendChild(option);\n", + " }\n", + "\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "};\n", + "\n", + "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", + "};\n", + "\n", + "mpl.figure.prototype.send_message = function (type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "};\n", + "\n", + "mpl.figure.prototype.send_draw_message = function () {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1], msg['forward']);\n", + " fig.send_message('refresh', {});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", + " var x0 = msg['x0'] / fig.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n", + " var x1 = msg['x1'] / fig.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0,\n", + " 0,\n", + " fig.canvas.width / fig.ratio,\n", + " fig.canvas.height / fig.ratio\n", + " );\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch (cursor) {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_message = function (fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", + " for (var key in msg) {\n", + " if (!(key in fig.buttons)) {\n", + " continue;\n", + " }\n", + " fig.buttons[key].disabled = !msg[key];\n", + " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", + " if (msg['mode'] === 'PAN') {\n", + " fig.buttons['Pan'].classList.add('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " } else if (msg['mode'] === 'ZOOM') {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.add('active');\n", + " } else {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message('ack', {});\n", + "};\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function (fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = 'image/png';\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src\n", + " );\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data\n", + " );\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " } else if (\n", + " typeof evt.data === 'string' &&\n", + " evt.data.slice(0, 21) === 'data:image/png;base64'\n", + " ) {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig['handle_' + msg_type];\n", + " } catch (e) {\n", + " console.log(\n", + " \"No handler for the '\" + msg_type + \"' message type: \",\n", + " msg\n", + " );\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\n", + " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", + " e,\n", + " e.stack,\n", + " msg\n", + " );\n", + " }\n", + " }\n", + " };\n", + "};\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function (e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e) {\n", + " e = window.event;\n", + " }\n", + " if (e.target) {\n", + " targ = e.target;\n", + " } else if (e.srcElement) {\n", + " targ = e.srcElement;\n", + " }\n", + " if (targ.nodeType === 3) {\n", + " // defeat Safari bug\n", + " targ = targ.parentNode;\n", + " }\n", + "\n", + " // pageX,Y are the mouse positions relative to the document\n", + " var boundingRect = targ.getBoundingClientRect();\n", + " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n", + " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n", + "\n", + " return { x: x, y: y };\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys(original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object') {\n", + " obj[key] = original[key];\n", + " }\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function (event, name) {\n", + " var canvas_pos = mpl.findpos(event);\n", + "\n", + " if (name === 'button_press') {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * this.ratio;\n", + " var y = canvas_pos.y * this.ratio;\n", + "\n", + " this.send_message(name, {\n", + " x: x,\n", + " y: y,\n", + " button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event),\n", + " });\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "};\n", + "\n", + "mpl.figure.prototype.key_event = function (event, name) {\n", + " // Prevent repeat events\n", + " if (name === 'key_press') {\n", + " if (event.which === this._key) {\n", + " return;\n", + " } else {\n", + " this._key = event.which;\n", + " }\n", + " }\n", + " if (name === 'key_release') {\n", + " this._key = null;\n", + " }\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which !== 17) {\n", + " value += 'ctrl+';\n", + " }\n", + " if (event.altKey && event.which !== 18) {\n", + " value += 'alt+';\n", + " }\n", + " if (event.shiftKey && event.which !== 16) {\n", + " value += 'shift+';\n", + " }\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", + " if (name === 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message('toolbar_button', { name: name });\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "\n", + "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n", + "// prettier-ignore\n", + "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "\n", + "mpl.default_extension = \"png\";/* global mpl */\n", + "\n", + "var comm_websocket_adapter = function (comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function () {\n", + " comm.close();\n", + " };\n", + " ws.send = function (m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function (msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data']);\n", + " });\n", + " return ws;\n", + "};\n", + "\n", + "mpl.mpl_figure_comm = function (comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = document.getElementById(id);\n", + " var ws_proxy = comm_websocket_adapter(comm);\n", + "\n", + " function ondownload(figure, _format) {\n", + " window.open(figure.canvas.toDataURL());\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element;\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error('Failed to find cell for figure', id, fig);\n", + " return;\n", + " }\n", + " fig.cell_info[0].output_area.element.on(\n", + " 'cleared',\n", + " { fig: fig },\n", + " fig._remove_fig_handler\n", + " );\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function (fig, msg) {\n", + " var width = fig.canvas.width / fig.ratio;\n", + " fig.cell_info[0].output_area.element.off(\n", + " 'cleared',\n", + " fig._remove_fig_handler\n", + " );\n", + " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable();\n", + " fig.parent_element.innerHTML =\n", + " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + " fig.close_ws(fig, msg);\n", + "};\n", + "\n", + "mpl.figure.prototype.close_ws = function (fig, msg) {\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "};\n", + "\n", + "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width / this.ratio;\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] =\n", + " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message('ack', {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () {\n", + " fig.push_to_output();\n", + " }, 1000);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'btn-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " var button;\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " continue;\n", + " }\n", + "\n", + " button = fig.buttons[name] = document.createElement('button');\n", + " button.classList = 'btn btn-default';\n", + " button.href = '#';\n", + " button.title = name;\n", + " button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message pull-right';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = document.createElement('div');\n", + " buttongrp.classList = 'btn-group inline pull-right';\n", + " button = document.createElement('button');\n", + " button.classList = 'btn btn-mini btn-primary';\n", + " button.href = '#';\n", + " button.title = 'Stop Interaction';\n", + " button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n", + " button.addEventListener('click', function (_evt) {\n", + " fig.handle_close(fig, {});\n", + " });\n", + " button.addEventListener(\n", + " 'mouseover',\n", + " on_mouseover_closure('Stop Interaction')\n", + " );\n", + " buttongrp.appendChild(button);\n", + " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", + " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", + "};\n", + "\n", + "mpl.figure.prototype._remove_fig_handler = function (event) {\n", + " var fig = event.data.fig;\n", + " if (event.target !== this) {\n", + " // Ignore bubbled events from children.\n", + " return;\n", + " }\n", + " fig.close_ws(fig, {});\n", + "};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (el) {\n", + " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (el) {\n", + " // this is important to make the div 'focusable\n", + " el.setAttribute('tabindex', 0);\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " } else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager) {\n", + " manager = IPython.keyboard_manager;\n", + " }\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which === 13) {\n", + " this.canvas_div.blur();\n", + " // select the cell after this one\n", + " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", + " IPython.notebook.select(index + 1);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " fig.ondownload(fig, null);\n", + "};\n", + "\n", + "mpl.find_output_cell = function (html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i = 0; i < ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code') {\n", + " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] === html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "};\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel !== null) {\n", + " IPython.notebook.kernel.comm_manager.register_target(\n", + " 'matplotlib',\n", + " mpl.mpl_figure_comm\n", + " );\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"1400\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "MovieWriter ffmpeg unavailable; using Pillow instead.\n" + ] + } + ], + "source": [ + "fig, ax = plt.subplots(figsize=(14,12))\n", + "\n", + "\n", + "# defino los extremos de luminosidad y temperatura\n", + "allTemps = np.concatenate([ms[1], giants[1], supergiants[1],dwarfs[1]], axis=0)\n", + "min_T, max_T = allTemps.min(), allTemps.max()\n", + "\n", + "allLumi = np.concatenate([ms[0], giants[0], supergiants[0],dwarfs[0]], axis=0)\n", + "min_L, max_L = allLumi.min(), allLumi.max()\n", + "\n", + "# personalización de los ejes\n", + "\n", + "\n", + "# escala logarÃtmica en ambos ejes\n", + "ax.set_xscale('log')\n", + "ax.set_yscale('log')\n", + "\n", + "# elimino los ejes superior y derecho\n", + "ax.spines['right'].set_visible(False)\n", + "ax.spines['top'].set_visible(False)\n", + "\n", + "# fijo el tamaño de los números de eje\n", + "ax.tick_params(axis='both', which='major', labelsize=12)\n", + "\n", + "# especifico los ticks que aparecen\n", + "ax.set_xticks([5000,10000])\n", + "ax.set_xticks([], minor=True)\n", + "\n", + "# elimino la notación cientÃfica del eje x\n", + "ax.get_xaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter())\n", + "ax.get_xaxis().set_minor_formatter(matplotlib.ticker.NullFormatter())\n", + "\n", + "# nombro los ejes\n", + "ax.set_xlabel('Temperature (K)')\n", + "ax.set_ylabel('Luminosity (L$_{sun}$)')\n", + "\n", + "# invierto el eje x\n", + "ax.invert_xaxis()\n", + "\n", + "# añado etiquetas de cada conjunto de estrellas como texto\n", + "\n", + "\n", + "ax.text(5500,0.01,'Main Sequence', fontsize = 20, weight = 'bold')\n", + "ax.text(13000,6,'Main Sequence', fontsize = 20, weight = 'bold')\n", + "ax.text(4500,2,'Red Giants', fontsize = 20, weight = 'bold')\n", + "ax.text(5000,0.3e7,'Red Supergiants', fontsize = 20, weight = 'bold')\n", + "ax.text(11500,0.3e7,'Blue Giants', fontsize = 20, weight = 'bold')\n", + "ax.text(10000,0.002,'White Dwarfs', fontsize = 20, weight = 'bold')\n", + "\n", + "# uno todos los arreglos para poder animar\n", + "\n", + "Lumis = np.concatenate((ms[0], giants[0], supergiants[0],dwarfs[0]))\n", + "Temps = np.concatenate((ms[1], giants[1], supergiants[1],dwarfs[1]))\n", + "Rads = np.concatenate((ms[2], giants[2], supergiants[2],dwarfs[2]))\n", + "\n", + "#creo un sample de la figura y esta se va a sobre escribir\n", + "plt.figure(1)\n", + "scat = ax.scatter(Temps,Lumis,s = 20*Rads, c = Temps, cmap = 'RdYlBu',linewidths=1.5, edgecolor = 'grey',vmin = min_T, vmax = max_T)\n", + "\n", + "\n", + "# animation\n", + "\n", + "def animate(i):\n", + " data = np.hstack((Temps[:i,np.newaxis], Lumis[:i, np.newaxis]))\n", + " scat.set_offsets(data)\n", + " return scat,\n", + "\n", + "anim = FuncAnimation(fig, animate, frames=len(Temps)+1, \n", + " interval=200, blit=False, repeat=False)\n", + "\n", + "anim.save('animation.gif')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.3" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/animation.gif b/animation.gif new file mode 100644 index 0000000000000000000000000000000000000000..d462d302efbbfea6aee4d28d39587465371844c4 Binary files /dev/null and b/animation.gif differ