diff --git a/Entrega.ipynb b/Entrega.ipynb index a558866000ca3841bfd43f8b0ed0a0a2ca31a5db..32fff4071610702c0556b71cc5d7f1e68917429b 100644 --- a/Entrega.ipynb +++ b/Entrega.ipynb @@ -451,7 +451,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -465,7 +465,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAD4CAYAAAAQP7oXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAWY0lEQVR4nO3df5Bd5X3f8feXFcgCuwIL6iwSYwmQ4xFJ/GNuwHZSOwkxCLdjxQ2Ml5kmxMGjxEXjxo7bQD0lCVNNS38MUzo4HjWAFeKJoBo72WmUEjvE40zHCC4NYATIXhBGwthgBHLtRRKSvv3jPmqv17t7H7F3796zvF8zGp197nOe+zmHHX0499zdG5mJJEk1TlroAJKk5rA0JEnVLA1JUjVLQ5JUzdKQJFVbstAB+uHMM8/M1atX95z38ssvs2zZsvkP1GdNzN3EzNDM3GYenCbmni3zAw888L3MPOtE1lsUpbF69Wra7XbPee12m1arNYBE/dXE3E3MDM3MbebBaWLu2TJHxLdOdD1fnpIkVbM0JEnVLA1JUjVLQ5JUzdKQJFWzNCRJ1SwNSWqgB/e+xJavPsHTL0wO9HkXxc9pSNJryZPP/4CxLV/j6NHklr99gp3/+mJed/LIQJ7bKw1Japi9L77MSRG8ciyZPHyE/3PwyMCe29KQpIZ5z3kr+NnVb2TpkpP49Xev5qw3LB3Yc1eVRkSsj4jdETEREddO8/jSiLizPL4zIlZ3PXZdGd8dEZf2WjM6NkfENyLisYj4+ByPUZIWlZNHTmLrb17I7n97Gf/mn6wb6HP3vKcRESPALcD7gX3A/RExnpmPdk27GngxM8+PiDHgRuDDEbEOGAMuAM4GvhwRbyn7zLTmbwDnAG/NzGMR8Q/7caCSpLmrudK4EJjIzCcz8zCwDdgwZc4GYGvZ3g5cHBFRxrdl5qHM3ANMlPVmW/NjwA2ZeQwgM5979YcnSeqnmndPrQT2dn29D7hopjmZeSQiDgAryvi9U/ZdWbZnWvM8OlcpHwKeBz6emd+cGioiNgIbAUZHR6t+y+3k5GTVvGHTxNxNzAzNzG3mwWli7n5nHsa33C4FDmZmKyL+KXAb8I+mTsrMLcAWgFarlTW/rriJv9YYmpm7iZmhmbnNPDhNzN3vzDUvTz1D5x7DcavK2LRzImIJsBx4YZZ9Z1tzH/CFsv1F4GcqMkqSBqCmNO4H1kbEmog4hc6N7fEpc8aBq8r25cA9mZllfKy8u2oNsBa4r8eafw78Ytl+H/CNV3VkkqS+6/nyVLlHsQm4GxgBbsvMXRFxA9DOzHHgVuCOiJgA9tMpAcq8u4BHgSPANZl5FGC6NctT/nvg8xHxCeAHwEf7d7iSpLmouqeRmTuAHVPGru/aPghcMcO+m4HNNWuW8ZeAf1yTS5I0WP5EuCSpmqUhSapmaUiSqlkakqRqloYkqZqlIUmqZmlIkqpZGpKkapaGJKmapSFJqmZpSJKqWRqSpGqWhiSpmqUhSapmaUiSqlkakqRqloYkqZqlIUmqZmlIkqpZGpKkapaGJKmapSFJqmZpSJKqWRqSpGqWhiSpmqUhSapmaUiSqlkakqRqloYkqZqlIUmqVlUaEbE+InZHxEREXDvN40sj4s7y+M6IWN312HVlfHdEXNprzYj4XETsiYgHy5+3z+0QJUn9sqTXhIgYAW4B3g/sA+6PiPHMfLRr2tXAi5l5fkSMATcCH46IdcAYcAFwNvDliHhL2We2Nf9lZm7vw/FJkvqo5krjQmAiM5/MzMPANmDDlDkbgK1leztwcUREGd+WmYcycw8wUdarWVOSNGRqSmMlsLfr631lbNo5mXkEOACsmGXfXmtujoiHI+KmiFhakVGSNAA9X55aANcB3wFOAbYAvwfcMHVSRGwENgKMjo7Sbrd7Ljw5OVk1b9g0MXcTM0Mzc5t5cJqYu9+Za0rjGeCcrq9XlbHp5uyLiCXAcuCFHvtOO56Zz5axQxFxO/Cp6UJl5hY6pUKr1cpWq9XzQNrtNjXzhk0TczcxMzQzt5kHp4m5+5255uWp+4G1EbEmIk6hc2N7fMqcceCqsn05cE9mZhkfK++uWgOsBe6bbc2IGC1/B/ArwCNzOD5JUh/1vNLIzCMRsQm4GxgBbsvMXRFxA9DOzHHgVuCOiJgA9tMpAcq8u4BHgSPANZl5FGC6NctTfj4izgICeBD47b4drSRpTqruaWTmDmDHlLHru7YPAlfMsO9mYHPNmmX8l2oySZIGz58IlyRVszQkSdUsDUlSNUtD0qL1wg8OsevbB+i8mVP9MIw/3CdJc7Z3/yTr/8tXOXos+dV3rmLzh356oSMtCl5pSFqUHtz7Eplw8JVj3PP4cwsdZ9GwNCQtSu99y1msPH0ZS04KfueX1y50nEXDl6ckLUrLl53Mlz75voWOseh4pSFJqmZpSJKqWRqSpGqWhiSpmqUhSapmaUiSqlkakqRqloYkqZqlIUmqZmlIkqpZGpKkapaGJKmapSFJqmZpSJKqWRqSpGqWhiSpmqUhSapmaUiSqlkakqRqloYkqZqlIUmqZmlIkqpZGpKkalWlERHrI2J3RExExLXTPL40Iu4sj++MiNVdj11XxndHxKUnsObNEfGDV3lckqR50LM0ImIEuAW4DFgHXBkR66ZMuxp4MTPPB24Cbiz7rgPGgAuA9cBnImKk15oR0QLOmOOxSZL6rOZK40JgIjOfzMzDwDZgw5Q5G4CtZXs7cHFERBnflpmHMnMPMFHWm3HNUij/EfhXczs0SVK/LamYsxLY2/X1PuCimeZk5pGIOACsKOP3Ttl3Zdmeac1NwHhmPtvpnelFxEZgI8Do6CjtdrvngUxOTlbNGzZNzN3EzNDM3GYenCbm7nfmmtIYmIg4G7gC+IVeczNzC7AFoNVqZavV6rl+u92mZt6waWLuJmaGZuY28+A0MXe/M9e8PPUMcE7X16vK2LRzImIJsBx4YZZ9Zxp/B3A+MBERTwGnRsRE5bFIkuZZTWncD6yNiDURcQqdG9vjU+aMA1eV7cuBezIzy/hYeXfVGmAtcN9Ma2bmX2bmT2Tm6sxcDUyWm+uSpCHQ8+Wpco9iE3A3MALclpm7IuIGoJ2Z48CtwB3lqmA/nRKgzLsLeBQ4AlyTmUcBpluz/4cnSeqnqnsambkD2DFl7Pqu7YN07kVMt+9mYHPNmtPMeX1NPknSYPgT4ZKkapaGJKmapSFJqmZpSJKqWRqSpGqWhiSpmqUhSapmaUiSqlkakqRqloYkqZqlIUmqZmlIkqpZGpKkapaGJKmapSFJqmZpSJKqWRqSpGqWhiSpmqUhSapmaUiSqlkakqRqloYkqZqlIUmqZmlIkqpZGpKkapaGJKmapSFJqmZpSJKqWRqSpGqWhiSpWlVpRMT6iNgdERMRce00jy+NiDvL4zsjYnXXY9eV8d0RcWmvNSPi1oh4KCIejojtEfH6OR6jJKlPepZGRIwAtwCXAeuAKyNi3ZRpVwMvZub5wE3AjWXfdcAYcAGwHvhMRIz0WPMTmfm2zPwZ4Glg0xyPUZLUJzVXGhcCE5n5ZGYeBrYBG6bM2QBsLdvbgYsjIsr4tsw8lJl7gImy3oxrZub3Acr+y4CcywFKkvpnScWclcDerq/3ARfNNCczj0TEAWBFGb93yr4ry/aMa0bE7cAHgEeB350uVERsBDYCjI6O0m63ex7I5ORk1bxh08TcTcwMzcxt5sFpYu5+Z64pjYHLzI+Ul7D+K/Bh4PZp5mwBtgC0Wq1stVo9122329TMGzZNzN3EzNDM3GYenCbm7nfmmpenngHO6fp6VRmbdk5ELAGWAy/Msm/PNTPzKJ2XrX61IqMkaQBqSuN+YG1ErImIU+jc2B6fMmccuKpsXw7ck5lZxsfKu6vWAGuB+2ZaMzrOh/93T+ODwONzO0RJUr/0fHmq3KPYBNwNjAC3ZeauiLgBaGfmOHArcEdETAD76ZQAZd5ddO5NHAGuKVcQzLDmScDWiPgHQAAPAR/r7yFLkl6tqnsambkD2DFl7Pqu7YPAFTPsuxnYXLnmMeDnajJJkgbPnwiXJFWzNCRJ1SwNSVI1S0OSVM3SkARAZvLYs9/nwOQrCx1FQ2wofyJc0uD9u796nD/52lMsO3mEr3zqF1l+6skLHUlDyCsNSQDct2c/B185xsuHj/LtAy8vdBwNKUtDEgB/+MELeNuq5fzau9/MW3/iDQsdR0PKl6ckAfC2c07nLzb9/ELH0JDzSkOSVM3SkCRVszQkSdUsDUlSNUtDklTN0pAkVbM0JEnVLA1JUjVLQ5JUzdKQJFWzNKQ+yEx+eOjIQseQ5p2lIfXBJ+98kJ/6/bvZ/JePLXQUaV5ZGlIf/N3E90jgK7ufW+go0rzyt9xKfXDzle/gT+99mt9+37kLHUWaV5aG1AfvOe9M3nPemQsdQ5p3vjwlSapmaUiSqlkakqRqloYkqZqlIUmqZmlIkqpVlUZErI+I3RExERHXTvP40oi4szy+MyJWdz12XRnfHRGX9lozIj5fxh+JiNsi4uQ5HqMkqU96lkZEjAC3AJcB64ArI2LdlGlXAy9m5vnATcCNZd91wBhwAbAe+ExEjPRY8/PAW4GfBpYBH53TEUqS+qbmSuNCYCIzn8zMw8A2YMOUORuArWV7O3BxREQZ35aZhzJzDzBR1ptxzczckQVwH7BqbocoSeqXmp8IXwns7fp6H3DRTHMy80hEHABWlPF7p+y7smzPumZ5WerXgH8xXaiI2AhsBBgdHaXdbvc8kMnJyap5w6aJuZuYGZqZ28yD08Tc/c48zL9G5DPAVzPz76Z7MDO3AFsAWq1Wtlqtngu2221q5g2bJuZuYmZoZm4zD04Tc/c7c01pPAOc0/X1qjI23Zx9EbEEWA680GPfGdeMiN8HzgJ+qyKfJGlAau5p3A+sjYg1EXEKnRvb41PmjANXle3LgXvKPYlxYKy8u2oNsJbOfYoZ14yIjwKXAldm5rG5HZ4kqZ96XmmUexSbgLuBEeC2zNwVETcA7cwcB24F7oiICWA/nRKgzLsLeBQ4AlyTmUcBpluzPOVngW8BX+vcS+cLmXlD345YkvSqVd3TyMwdwI4pY9d3bR8Erphh383A5po1y/gw32eRpNc0fyJcklTN0pAkVbM0JEnVLA1JUjVLQ5JUzdKQJFWzNCRJ1SwNSVI1S0OSVM3SkCRVszQkSdUsDUlSNUtDklTN0pAkVbM0JEnVLA1JUjVLQ5JUzdKQJFWzNCRJ1SwNSVI1S0OSVM3SUF98ZfdzfPqLX2f/Dw8vdBRJ82jJQgfQ4vC7dz3E/h8eZtUZp/KxXzhvoeNImideaagvfut95/JTK5dzyQVvWugokuaRVxrqi43vPY+N7/UKQ1rsvNKQJFWzNCRJ1SwNSVK113RpvHL0GIeOHF3oGJLUGK/p0rjkpq9y4ea/4eixXOgoktQIVaUREesjYndETETEtdM8vjQi7iyP74yI1V2PXVfGd0fEpb3WjIhNZSwj4sw5Ht+sVq84lTVnnkbM55NI0iLS8y23ETEC3AK8H9gH3B8R45n5aNe0q4EXM/P8iBgDbgQ+HBHrgDHgAuBs4MsR8Zayz0xr/i/gfwBf6ccBzub2j1w4308hSYtKzZXGhcBEZj6ZmYeBbcCGKXM2AFvL9nbg4oiIMr4tMw9l5h5goqw345qZ+feZ+dQcj0uSNA9qfrhvJbC36+t9wEUzzcnMIxFxAFhRxu+dsu/Kst1rzVlFxEZgI8Do6CjtdrvnPpOTk1Xzhk0TczcxMzQzt5kHp4m5+525sT8RnplbgC0ArVYrW61Wz33a7TY184ZNE3M3MTM0M7eZB6eJufudueblqWeAc7q+XlXGpp0TEUuA5cALs+xbs6YkacjUlMb9wNqIWBMRp9C5sT0+Zc44cFXZvhy4JzOzjI+Vd1etAdYC91WuKUkaMj1LIzOPAJuAu4HHgLsyc1dE3BARHyzTbgVWRMQE8Eng2rLvLuAu4FHgfwLXZObRmdYEiIiPR8Q+OlcfD0fEH/fvcCVJc1F1TyMzdwA7poxd37V9ELhihn03A5tr1izjNwM31+SSJA3Wa/onwiVJJyY6tx6aLSKeB75VMfVM4HvzHGc+NDF3EzNDM3ObeXCamHu2zG/OzLNOZLFFURq1IqKdmc16vxzNzN3EzNDM3GYenCbm7ndmX56SJFWzNCRJ1V5rpbFloQO8Sk3M3cTM0MzcZh6cJubua+bX1D0NSdLcvNauNCRJc2BpSJKqLYrSiIinIuLrEfFgRLTL2Bsj4ksR8c3y9xllPCLi5vLpgA9HxDu71rmqzP9mRFw10/PNY+Y/iIhnytiDEfGBrvkn9AmI85T59IjYHhGPR8RjEfHuYT/Ps+Qe2nMdET/ZlevBiPh+RPzOsJ/rWXIP7bkuz/WJiNgVEY9ExJ9FxOui83vxdpbnvzM6vyPvVX1K6QAzfy4i9nSd57eXuf39/sjMxv8BngLOnDL2H4Bry/a1wI1l+wPAXwEBvAvYWcbfCDxZ/j6jbJ8x4Mx/AHxqmrnrgIeApcAa4AlgpPx5AjgXOKXMWTePmbcCHy3bpwCnD/t5niX3UJ/rrjwjwHeANzfhXM+Qe2jPNZ3P99kDLCtf3wX8Rvl7rIx9FvhY2f7nwGfL9hhw52zHMuDMnwMun2Z+X78/FsWVxgy6P01wK/ArXeN/kh33AqdHxChwKfClzNyfmS8CXwLWDzjzTE74ExD7LSKWA++l88spyczDmfkSQ36eZ8k9kwU/11NcDDyRmd9iyM/1LLlnMiznegmwLDof63Aq8CzwS3Q+hRR+/FyfyKeUDirzt2eZ29fvj8VSGgn8dUQ8EJ1P9AN4U2Y+W7a/A7ypbE/3SYQrZxmfL9NlBthULiFvO/7yw5BkXgM8D9weEX8fEX8cEacx/Od5ptwwvOe62xjwZ2V72M91t+7cMKTnOjOfAf4T8DSdsjgAPAC8lJ3fxj31+X/kU0rL/BUscObM/Ovy8OZynm+KiKVTM0/J9qoyL5bS+PnMfCdwGXBNRLy3+8HsXIsN23uLp8v8R8B5wNvpfDP854WL92OWAO8E/igz3wH8kPIr8I8b0vM8U+5hPtcAlNfRPwj896mPDem5BqbNPbTnuhTYBjr/c3E2cBrD8wrDtKbLHBH/DLgOeCvws3Recvq9+Xj+RVEapXnJzOeAL9K5LPxuuQSj/P1cmT4UnyY4XebM/G52Pm/kGPDf+P+Xt8OQeR+wLzN3lq+30/nHeKjP80y5h/xcH3cZ8L8z87vl62E/18f9SO4hP9e/DOzJzOcz8xXgC8DP0XkJ5/hHR3Q//4l+SumgMr8nM58tL0EdAm5nns5z40sjIk6LiDcc3wYuAR7hRz9N8CrgL8r2OPDr5R0F76JzafcsnQ+EuiQizihNfkkZG1jm4/8gFB8qx3E884J+AmJmfgfYGxE/WYYupvPhWkN7nmfLPcznusuV/OhLPEN9rmfKPeTn+mngXRFxark3cfz7+m/pfAop/Pi5PpFPKR1U5se6/oci6NyD6T7P/fv+OJG79sP4h847LB4qf3YBny7jK4C/Ab4JfBl4YxkP4BY67274OtDqWus36dzAmgA+sgCZ7yiZHi7/oUe79vl0ybwbuKxr/APAN8pjn57nc/12oF3y/Tmdd1wM7XnukXvYz/VpdP4PdnnXWBPO9XS5h/1c/yHwOJ1/ZO+g8w6oc+n8oz9B52W2pWXu68rXE+Xxc3sdywAz31PO8yPAnwKvn4/vD3+NiCSpWuNfnpIkDY6lIUmqZmlIkqpZGpKkapaGJKmapSFJqmZpSJKq/V8h/wItUSNj2wAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAVlklEQVR4nO3df5BV5X3H8fdHFiSokR+aDQESsKHJrH+ouBodMx2j+aEkE0wnsTqZSAwZZhrNmCYzBuNM2sz0j5hk6o82VbfRFFOjUqKFoTaWEB2bTkSvvxDBHytC2A2KImB0FYX99o/7IJftLu5yz957Oc/nNXNnz3nOc859vvfZ/ezhnHsXRQRmZpaXw5o9ADMzazyHv5lZhhz+ZmYZcvibmWXI4W9mliGHv5lZhgoJf0kTJS2V9JSk9ZJOlzRZ0kpJz6avk1JfSbpOUrekNZLmFDEGMzMbvqLO/K8Ffh0RHwVOANYDi4BVETEbWJXWAc4FZqfHQuD6gsZgZmbDpHo/5CXpaOAx4LioOZikp4EzI2KLpKnAfRHxEUk3puXbBvarayBmZjZsbQUcYxbwEvBzSScADwOXAe01gf4C0J6WpwGba/bvSW37hb+khVT/ZcD48eNPnjVrVgFDbQ39/f0cdlg5breUqRYoVz1lqgXKVU+jalm/fv3LEXHsYNuKCP82YA7wzYhYLela9l3iASAiQtKI/okREV1AF0BHR0esW7eugKG2hkqlQmdnZ7OHUYgy1QLlqqdMtUC56mlULZI2DbWtiF89PUBPRKxO60up/jJ4MV3uIX3dmrb3AjNq9p+e2szMrEHqDv+IeAHYLOkjqelsYB2wHJif2uYDy9LycuCi9K6f04Cdvt5vZtZYRVz2AfgmcKukccAG4GKqv1iWSFoAbALOT33vBuYC3UBf6mtmZg1USPhHxGPAYBewzh6kbwCXFPG8ZmZ2cMpx69zMzEbE4W9mliGHv5lZhhz+ZmYZcvibmWXI4W9mliGHv5lZhhz+ZmYZcvibmWXI4W9mliGHv5lZhhz+ZmYZcvibmWXI4W9mliGHv5lZhhz+ZmYZcvibmWXI4W9mliGHv5lZhhz+ZmYZcvibmWXI4W9mlqFCwl/SRklPSHpMUiW1TZa0UtKz6euk1C5J10nqlrRG0pwixmBmZsNX5Jn/JyLixIjoTOuLgFURMRtYldYBzgVmp8dC4PoCx2BmZsMwmpd95gGL0/Ji4Lya9lui6gFgoqSpozgOMzMbQBFR/0Gk54HtQAA3RkSXpB0RMTFtF7A9IiZKWgH8MCJ+l7atAr4bEZUBx1xI9V8GtLe3n7xixYq6x9kq+vr6mDBhQrOHUYgy1QLlqqdMtUC56mlULaeccsrDNVdj9tNW0HN8PCJ6Jb0PWCnpqdqNERGSRvRbJiK6gC6Ajo6O6OwcdPyHpEqlQlnqKVMtUK56ylQLlKueVqilkMs+EdGbvm4F7gJOBV7cezknfd2auvcCM2p2n57azMysQeoOf0lHSDpq7zLwaWAtsByYn7rNB5al5eXAReldP6cBOyNiS73jMDOz4Svisk87cFf1sj5twC8j4teSHgKWSFoAbALOT/3vBuYC3UAfcHEBYzAzsxGoO/wjYgNwwiDt24CzB2kP4JJ6n9fMzA6eP+FrZpYhh7+ZWYYc/mZmGXL4m5llyOFvZpYhh7+ZWYYc/mZmGXL4m5llyOFvZpYhh7+ZWYYc/mZmGXL4m5llyOFvZpYhh7+ZWYYc/mZmGXL4m5llyOFvZpYhh7+ZWYYc/mZmGXL4m5llyOFvZpYhh7+ZWYYKC39JYyQ9KmlFWp8labWkbkl3SBqX2g9P691p+8yixmBmZsNT5Jn/ZcD6mvWrgKsj4sPAdmBBal8AbE/tV6d+ZmbWQIWEv6TpwGeBn6V1AWcBS1OXxcB5aXleWidtPzv1NzOzBmkr6DjXAJcDR6X1KcCOiNid1nuAaWl5GrAZICJ2S9qZ+r9ce0BJC4GFAO3t7VQqlYKG2nx9fX2lqadMtUC56ilTLVCuelqhlrrDX9LngK0R8bCkM+seURIRXUAXQEdHR3R2dhZ16KarVCqUpZ4y1QLlqqdMtUC56mmFWoo48z8D+LykucB44L3AtcBESW3p7H860Jv69wIzgB5JbcDRwLYCxmFmZsNU9zX/iLgiIqZHxEzgAuC3EfFl4F7gi6nbfGBZWl6e1knbfxsRUe84zMxs+Ebzff7fBb4tqZvqNf2bUvtNwJTU/m1g0SiOwczMBlHUDV8AIuI+4L60vAE4dZA+bwJfKvJ5zcxsZPwJXzOzDDn8zcwy5PA3M8uQw9/MLEMOfzOzDDn8zcwy5PA3M8uQw9/MLEMOfzOzDDn8zcwy5PA3M8uQw9/MLEMOfzOzDDn8zcwy5PA3M8uQw9/MLEMOfzOzDDn8zcwy5PA3M8uQw9/MLEMOfzOzDDn8zcwyVHf4Sxov6UFJj0t6UtIPUvssSasldUu6Q9K41H54Wu9O22fWOwYzMxuZIs78dwFnRcQJwInAOZJOA64Cro6IDwPbgQWp/wJge2q/OvUzM7MGqjv8o+q1tDo2PQI4C1ia2hcD56XleWmdtP1sSap3HGZmNnyFXPOXNEbSY8BWYCXwHLAjInanLj3AtLQ8DdgMkLbvBKYUMQ4zMxuetiIOEhF7gBMlTQTuAj5a7zElLQQWArS3t1OpVOo9ZMvo6+srTT1lqgXKVU+ZaoFy1dMKtRQS/ntFxA5J9wKnAxMltaWz++lAb+rWC8wAeiS1AUcD2wY5VhfQBdDR0RGdnZ1FDrWpKpUKZamnTLVAueopUy1QrnpaoZYi3u1zbDrjR9J7gE8B64F7gS+mbvOBZWl5eVonbf9tRES94zAzs+Er4sx/KrBY0hiqv0yWRMQKSeuA2yX9PfAocFPqfxPwC0ndwCvABQWMwczMRqDu8I+INcBJg7RvAE4dpP1N4Ev1Pq+ZmR08f8LXzCxDDn8zsww5/M3MMuTwNzPLkMPfzCxDDn8zsww5/M3MMuTwNzPLkMPfzCxDDn8zsww5/M3MMuTwNzPLkMPfzCxDDn8zsww5/M3MMuTwNzPLkMPfzCxDDn8zsww5/M3MMuTwNzPLkMPfzCxDDn8zswzVHf6SZki6V9I6SU9Kuiy1T5a0UtKz6euk1C5J10nqlrRG0px6x2BmZiNTxJn/buA7EdEBnAZcIqkDWASsiojZwKq0DnAuMDs9FgLXFzAGMzMbgbrDPyK2RMQjaflPwHpgGjAPWJy6LQbOS8vzgFui6gFgoqSp9Y7DzMyGr9Br/pJmAicBq4H2iNiSNr0AtKflacDmmt16UpuZmTVIW1EHknQk8CvgWxHxqqR3tkVESIoRHm8h1ctCtLe3U6lUihpq0/X19ZWmnjLVAuWqp0y1QLnqaYVaCgl/SWOpBv+tEXFnan5R0tSI2JIu62xN7b3AjJrdp6e2/UREF9AF0NHREZ2dnUUMtSVUKhXKUk+ZaoFy1VOmWqBc9bRCLUW820fATcD6iPiHmk3LgflpeT6wrKb9ovSun9OAnTWXh8zMrAGKOPM/A/gK8ISkx1Lb94AfAkskLQA2AeenbXcDc4FuoA+4uIAxmJnZCNQd/hHxO0BDbD57kP4BXFLv85qZ2cHzJ3zNzDLk8Dczy5DD38wsQw5/M7MMOfzNzDLk8Dczy5DD38wsQw5/M7MMOfzNzDLk8Dczy5DD38wsQw5/M7MMOfzNzDLk8Dczy5DD38wsQw5/M7MMOfzNzDLk8Dczy5DD38wsQw5/M7MMOfzNzDLk8Dczy5DD38wsQ4WEv6SbJW2VtLambbKklZKeTV8npXZJuk5St6Q1kuYUMQYzMxu+os78/xU4Z0DbImBVRMwGVqV1gHOB2emxELi+oDGYmdkwFRL+EXE/8MqA5nnA4rS8GDivpv2WqHoAmChpahHjMDOz4WkbxWO3R8SWtPwC0J6WpwGba/r1pLYtNW1IWkj1Xwa0t7dTqVRGcaiN1dfXV5p6ylQLlKueMtUC5aqnFWoZzfB/R0SEpBjhPl1AF0BHR0d0dnaOytiaoVKpUJZ6ylQLlKueMtUC5aqnFWoZzXf7vLj3ck76ujW19wIzavpNT21mZtYgoxn+y4H5aXk+sKym/aL0rp/TgJ01l4fMzKwBCrnsI+k24EzgGEk9wN8CPwSWSFoAbALOT93vBuYC3UAfcHERYzAzs+ErJPwj4sIhNp09SN8ALiniec3M7OD4E75mZhly+JuZZcjhb2aWIYe/mVmGHP5mZhly+JuZZcjhb2aWIYe/mVmGHP5mZhly+JuZZcjhb2aWIYe/mVmGHP5mZhly+JuZZcjhb2aWIYe/mVmGHP5mZhly+JuZZcjhb2aWIYe/mVmGHP5mZhly+JuZZahp4S/pHElPS+qWtKhZ4zAzy1FTwl/SGOCnwLlAB3ChpI5mjMXK7Yb7uvnEj+/j8qVreGt3/4j2fWt3P99ftpa/uvH3PLzplRHtu3tPP1evfIbLlz7Oi6++Oez9IoJfPdJD1/3P8cZbe0b0nAO9taefFWv+yJtv13ecofxxxxu8/NquUTm2jb5mnfmfCnRHxIaIeAu4HZjXpLFYSe3se5tbH/wD48cexurnt/FE744R7f/Qxle47+mtvPjqm/zknmdGtG9l03bufLSH+599mX/7/aZh7/fcS69zzcpn+Pn/buS/170wouccqHf7G3x/2VpWrPljXccZzK7de7jwXx7g0l8+UvixrTEUEY1/UumLwDkR8fW0/hXgYxFxaU2fhcBCgPb29pNXrFjR8HGOlr6+PiZMmNDsYRSilWsJYMNLr7N7Tz+SmHXMEYwdowPuU1vPW3v62fhyH0Hw3vFjmXr0+GE/99t7go3bXqc/gqlHj+e948cOa7/+CJ5/uY89/cEHJ09g/NiDPz979bXX2doXTJ9U33GGsvXVXbSNEZOPGFf4sQfTyt9rI9WoWk455ZSHI6JzsG1to/7sBykiuoAugI6OjujsHHT8h6RKpUJZ6mn1Wj70pzf5/XPbOP4D7+XD7zvqXfsPrGf6tj56d7xB58xJjB0zsgD989d28fquPXxwysh+yE/c3c+e/uA948aMaL+BKpUKZ53ZunMzUq3+vTYSrVBLs8K/F5hRsz49tZkV6n1HjWfeidMOev8PTpkw4vDea8qRhzPlyJHvN67Nb8Kz0des77KHgNmSZkkaB1wALG/SWMzMstOUM/+I2C3pUuAeYAxwc0Q82YyxmJnlqGnX/CPibuDuZj2/mVnOfHHRzCxDDn8zsww5/M3MMuTwNzPLkMPfzCxDDn8zsww5/M3MMuTwNzPLkMPfzCxDDn8zsww5/M3MMuTwNzPLkMPfzCxDDn8zsww5/M3MMuTwNzPLkMPfzCxDDn8zsww5/M3MMuTwNzPLkMPfzCxDDn8zswzVFf6SviTpSUn9kjoHbLtCUrekpyV9pqb9nNTWLWlRPc9vZmYHp94z/7XAXwL31zZK6gAuAI4HzgH+WdIYSWOAnwLnAh3AhamvmZk1UFs9O0fEegBJAzfNA26PiF3A85K6gVPTtu6I2JD2uz31XVfPOMzMbGTqCv8DmAY8ULPek9oANg9o/9hgB5C0EFiYVndJWlv0IJvoGODlZg+iIGWqBcpVT5lqgXLV06haPjTUhncNf0m/Ad4/yKYrI2JZPaM6kIjoArrSGCoR0fkuuxwyylRPmWqBctVTplqgXPW0Qi3vGv4R8cmDOG4vMKNmfXpq4wDtZmbWIKP1Vs/lwAWSDpc0C5gNPAg8BMyWNEvSOKo3hZeP0hjMzGwIdV3zl/QF4B+BY4H/lPRYRHwmIp6UtITqjdzdwCURsSftcylwDzAGuDkinhzGU3XVM84WVKZ6ylQLlKueMtUC5aqn6bUoIpo9BjMzazB/wtfMLEMOfzOzDDU0/CXdLGnrYO/Zl/QdSSHpmLQuSdelPwOxRtKcmr7zJT2bHvNr2k+W9ETa5zoN8umz0axF0o8lPZXGe5ekiTXbRvTnLtJN8dWp/Y50g3zUDFHPZEkr0+u8UtKk1N7SczNIbX+T/gzJWkm3SRo/1Oub3qRwR2pfLWlmzXEGncNGkzRR0tL0vbZe0ulFzlUT6hkj6VFJK9L6ITk3kmZIulfSuvT9dllqb825iYiGPYC/AOYAawe0z6B6E3gTcExqmwv8FyDgNGB1ap8MbEhfJ6XlSWnbg6mv0r7nNrIW4NNAW1q+CrgqLXcAjwOHA7OA56je8B6Tlo8DxqU+HWmfJcAFafkG4K8bPTfAj4BFaXlRTT0tPTcD6poGPA+8p+Z1/epQry/wDeCGtHwBcMeB5rCRPz81NS0Gvp6WxwETi5yrJtTzbeCXwIoDfe+3+twAU4E5afko4Jk0tpacm2ZM9Ez+f/gvBU4ANrIv/G8ELqzp83R6cS8EbqxpvzG1TQWeqmnfr1+jaqnZ9gXg1rR8BXBFzbZ7gNPT456a9ivSQ1Q//bf3F8l+/RpVz97XvOYb++lDZW5qnmsa1U+VT6b67rYVwGeGen33zk1abkv9NNQcNqKGAfUcTfWXmQa0FzJXTahnOrAKOCvNzZDf+60+N4PUtgz4VKvOTdOv+UuaB/RGxOMDNu39od1r75+IOFB7zyDtzfI1qr/VYeS1TAF2RMTuAe2N1h4RW9LyC0B7Wj5k5iYieoGfAH8AtgA7gYcZ+vV9p4a0fSfV+RiqtkabBbwE/DxdKvmZpCMobq4a7RrgcqA/rR/oe7/V5+Yd6ZLUScBqWnRumhr+kiYA3wO+38xxFE3SlVQ/33Brs8dSlKieghxy7wtO11fnUQ3NDwBHUP1Ls4eqNqqX566PiJOA16leSnjHoTJXkj4HbI2Ih5s9liJJOhL4FfCtiHi1dlsrzU2zz/z/jOoP5eOSNlL9J+Ajkt7P0H8i4kDt0wdpbyhJXwU+B3w5TTSMvJZtwERJbQPaG+1FSVMB0tetqf1QmptPAs9HxEsR8TZwJ3AGQ7++79SQth9NdT4O9CdLGqkH6ImI1Wl9KdVfBkXNVSOdAXw+/ezfTvXSz7UcunODpLFUg//WiLgzNbfm3DThOthMhr5OvpF91/w/y/43Qx5M7ZOpXvOclB7PA5PTtoE3Fec2shaqZ5TrgGMH9Due/W9IbaB6s7ctLc9i3w3f49M+/87+N72+0ei5AX7M/jeqfnSozE1NDR8DngQmpOdeDHxzqNcXuIT9byouOdAcNvrnJ43lf4CPpOW/S/NU2Fw1qaYz2XfD95Ccm/Qa3wJcM6C9Jeem0S/ObVSvu75N9QxmwYDtG9kX/qL6H788BzwBdNb0+xrQnR4X17R3Uv0PZp4D/okBN8VGu5Y0ns3AY+lxQ03/K9O4nqbmnS5U7/g/k7ZdWdN+HNXA7E4/DIc3em6oXk9dBTwL/IZ9Qd7SczNIbT8AnkrP/4sUEoO+vsD4tN6dth/3bnPY6AdwIlAB1gD/kQKisLlqUk1nsi/8D8m5AT5O9ZLOmpoMmNuqc+M/72BmlqFmX/M3M7MmcPibmWXI4W9mliGHv5lZhhz+ZmYZcvibmWXI4W9mlqH/A/oA1TIVMqEKAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] @@ -502,7 +502,7 @@ "import matplotlib.animation as animation\n", "\n", "def actualizar(i,fig,ax,xx,yy):\n", - " ax.scatter(xx[i],yy[i],s=100,c=\"red\") \n", + " ax.scatter(xx[i],yy[i],s=len(xx),c=\"red\") \n", " print(\"Frames: %d\" %i)\n", "\n", "plt.clf()\n", @@ -533,8 +533,8 @@ "\n", "ax=fig.add_subplot(111)\n", "ax.grid(True,linestyle='-',color='0.75')\n", - "#ax.set_xlim([14000,1000])\n", - "#ax.set_ylim([-100,600])\n", + "ax.set_xlim([14000,1000])\n", + "ax.set_ylim([-100,600])\n", "#ax.set_yscale('symlog')\n", "\n", "#scat=plt.scatter(x,y,s=0.005*(z*3)**2)\n",