diff --git a/Entrega.ipynb b/Entrega.ipynb index b04efc243f7238ab55a45d6bb2a8a2f70d650134..131ac72651798476ff3f09be7d0cbb122d845c54 100644 --- a/Entrega.ipynb +++ b/Entrega.ipynb @@ -241,7 +241,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -408,7 +408,7 @@ }, { "cell_type": "code", - "execution_count": 77, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -451,12 +451,21 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 7, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAT0klEQVR4nO3df6yk1X3f8ffHuwaC47Jguzd0d1XWzcrR9R/Y+BpjOaqoSWIgVpZUsQWK6g2hWqkhllNHSiCW2kbqH3ZS1TZtilkFp+uIGCixy4rSWGSNleYPr32JMQYWwjU/yq6AtR0gba/ihvDtH3OA2e3dZZc7O3P3Oe+XNJrnOc+ZmfOdc+9nZs8zczdVhSSpL6+b9QAkSdNn+EtShwx/SeqQ4S9JHTL8JalDhr8kdWgi4Z9kQ5LbkjyUZF+S9yY5K8ldSR5p12e2vklyXZKlJPclOW8SY5AkHbtJvfP/LPAnVfUTwLnAPuAaYE9VbQX2tH2AS4Ct7bIDuH5CY5AkHaOs9kteSc4A7gXeWmN3luRh4MKqeirJ2cDXquptSW5o2188vN+qBiJJOmbrJ3AfW4DvAX+Q5FzgHuBjwNxYoD8NzLXtjcCTY7ff39oOCf8kOxj9y4DTTjvtXVu2bJnAUNeGF198kde9bhinW4ZUCwyrniHVAsOqZ1q17Nu37/tV9ZaVjk0i/NcD5wEfraq9ST7LK0s8AFRVJTmuf2JU1U5gJ8D8/Hw9+OCDExjq2rC4uMjCwsKshzERQ6oFhlXPkGqBYdUzrVqSPHGkY5N46dkP7K+qvW3/NkYvBs+05R7a9cF2/ACweez2m1qbJGlKVh3+VfU08GSSt7Wmi4AHgd3A9ta2Hbi9be8GPtI+9XMB8Lzr/ZI0XZNY9gH4KHBTklOAR4ErGb2w3JrkKuAJ4MOt753ApcASsNz6SpKmaCLhX1X3AistYF20Qt8Crp7E40qSXpthnDqXJB0Xw1+SOmT4S1KHDH9J6pDhL0kdMvwlqUOGvyR1yPCXpA4Z/pLUIcNfkjpk+EtShwx/SeqQ4S9JHTL8JalDhr8kdcjwl6QOGf6S1CHDX5I6ZPhLUocMf0nqkOEvSR0y/CWpQxMJ/ySPJ/lOknuTLLa2s5LcleSRdn1ma0+S65IsJbkvyXmTGIMk6dhN8p3/P6mqd1TVQtu/BthTVVuBPW0f4BJga7vsAK6f4BgkScfgRC77bAN2te1dwGVj7V+oka8DG5KcfQLHIUk6TKpq9XeSPAY8CxRwQ1XtTPJcVW1oxwM8W1UbktwBfLKq/rwd2wP8ZlUtHnafOxj9y4C5ubl33XHHHase51qxvLzM6aefPuthTMSQaoFh1TOkWmBY9Uyrlne/+933jK3GHGL9hB7jJ6vqQJK/D9yV5KHxg1VVSY7rVaaqdgI7Aebn52thYcXxn5QWFxcZSj1DqgWGVc+QaoFh1bMWapnIsk9VHWjXB4EvA+cDz7y0nNOuD7buB4DNYzff1NokSVOy6vBP8oYkb3xpG/gZ4H5gN7C9ddsO3N62dwMfaZ/6uQB4vqqeWu04JEnHbhLLPnPAl0fL+qwH/qiq/iTJN4Fbk1wFPAF8uPW/E7gUWAKWgSsnMAZJ0nFYdfhX1aPAuSu0/wC4aIX2Aq5e7eNKkl47v+ErSR0y/CWpQ4a/JHXI8JekDhn+ktQhw1+SOmT4S1KHDH9J6pDhL0kdMvwlqUOGvyR1yPCXpA4Z/pLUIcNfkjpk+EtShwx/SeqQ4S9JHTL8JalDhr8kdcjwl6QOGf6S1CHDX5I6NLHwT7IuybeS3NH2tyTZm2QpyS1JTmntp7b9pXb8nEmNQZJ0bCb5zv9jwL6x/U8Bn66qHweeBa5q7VcBz7b2T7d+kqQpmkj4J9kE/Czw+20/wPuB21qXXcBlbXtb26cdv6j1lyRNyfoJ3c9ngN8A3tj23wQ8V1UvtP39wMa2vRF4EqCqXkjyfOv//fE7TLID2AEwNzfH4uLihIY6e8vLy4OpZ0i1wLDqGVItMKx61kItqw7/JB8EDlbVPUkuXPWImqraCewEmJ+fr4WFhUnd9cwtLi4ylHqGVAsMq54h1QLDqmct1DKJd/7vA34uyaXAacDfAz4LbEiyvr373wQcaP0PAJuB/UnWA2cAP5jAOCRJx2jVa/5VdW1Vbaqqc4DLga9W1S8CdwO/0LptB25v27vbPu34V6uqVjsOSdKxO5Gf8/9N4ONJlhit6d/Y2m8E3tTaPw5ccwLHIElawaRO+AJQVV8Dvta2HwXOX6HP3wAfmuTjSpKOj9/wlaQOGf6S1CHDX5I6ZPhLUocMf0nqkOEvSR0y/CWpQ4a/JHXI8JekDhn+ktQhw1+SOmT4S1KHDH9J6pDhL0kdMvwlqUOGvyR1yPCXpA4Z/pLUIcNfkjpk+EtShwx/SeqQ4S9JHVp1+Cc5Lck3knw7yQNJfru1b0myN8lSkluSnNLaT237S+34OasdgyTp+Ezinf8PgfdX1bnAO4CLk1wAfAr4dFX9OPAscFXrfxXwbGv/dOsnSZqiVYd/jfzvtvv6ding/cBtrX0XcFnb3tb2accvSpLVjkOSdOwmsuafZF2Se4GDwF3Ad4HnquqF1mU/sLFtbwSeBGjHnwfeNIlxSJKOzfpJ3ElV/R3wjiQbgC8DP7Ha+0yyA9gBMDc3x+Li4mrvcs1YXl4eTD1DqgWGVc+QaoFh1bMWaplI+L+kqp5LcjfwXmBDkvXt3f0m4EDrdgDYDOxPsh44A/jBCve1E9gJMD8/XwsLC5Mc6kwtLi4ylHqGVAsMq54h1QLDqmct1DKJT/u8pb3jJ8mPAD8N7APuBn6hddsO3N62d7d92vGvVlWtdhySpGM3iXf+ZwO7kqxj9GJya1XdkeRB4OYk/xb4FnBj638j8IdJloC/Ai6fwBgkScdh1eFfVfcB71yh/VHg/BXa/wb40GofV5L02vkNX0nqkOEvSR0y/CWpQ4a/JHXI8JekDhn+ktQhw1+SOmT4S1KHDH9J6pDhL0kdMvwlqUOGvyR1yPCXpA4Z/pLUIcNfkjpk+EtShwx/SeqQ4S9JHTL8JalDhr8kdcjwl6QOGf6S1KFVh3+SzUnuTvJgkgeSfKy1n5XkriSPtOszW3uSXJdkKcl9Sc5b7RgkScdnEu/8XwB+varmgQuAq5PMA9cAe6pqK7Cn7QNcAmxtlx3A9RMYgyTpOKw6/Kvqqar6i7b9v4B9wEZgG7CrddsFXNa2twFfqJGvAxuSnL3acUiSjt1E1/yTnAO8E9gLzFXVU+3Q08Bc294IPDl2s/2tTZI0JesndUdJfhT4Y+DXquqvk7x8rKoqSR3n/e1gtCzE3Nwci4uLkxrqzC0vLw+mniHVAsOqZ0i1wLDqWQu1TCT8k7yeUfDfVFVfas3PJDm7qp5qyzoHW/sBYPPYzTe1tkNU1U5gJ8D8/HwtLCxMYqhrwuLiIkOpZ0i1wLDqGVItMKx61kItk/i0T4AbgX1V9e/HDu0Gtrft7cDtY+0faZ/6uQB4fmx5SJI0BZN45/8+4J8B30lyb2v7LeCTwK1JrgKeAD7cjt0JXAosAcvAlRMYgyTpOKw6/Kvqz4Ec4fBFK/Qv4OrVPq4k6bXzG76S1CHDX5I6ZPhLUocMf0nqkOEvSR0y/CWpQ4a/JHXI8JekDhn+ktQhw1+SOmT4S1KHDH9J6pDhL0kdMvwlqUOGvyR1yPCXpA4Z/pLUIcNfkjpk+EtShwx/SeqQ4S9JHTL8JalDhr8kdWgi4Z/k80kOJrl/rO2sJHcleaRdn9nak+S6JEtJ7kty3iTGIEk6dpN65/+fgYsPa7sG2FNVW4E9bR/gEmBru+wArp/QGCRJx2gi4V9Vfwb81WHN24BdbXsXcNlY+xdq5OvAhiRnT2IckqRjs/4E3vdcVT3Vtp8G5tr2RuDJsX77W9tTY20k2cHoXwbMzc2xuLh4Aoc6XcvLy4OpZ0i1wLDqGVItMKx61kItJzL8X1ZVlaSO8zY7gZ0A8/PztbCwcELGNguLi4sMpZ4h1QLDqmdItcCw6lkLtZzIT/s889JyTrs+2NoPAJvH+m1qbZKkKTmR4b8b2N62twO3j7V/pH3q5wLg+bHlIUnSFExk2SfJF4ELgTcn2Q/8a+CTwK1JrgKeAD7cut8JXAosAcvAlZMYgyTp2E0k/KvqiiMcumiFvgVcPYnHlSS9Nn7DV5I6ZPhLUocMf0nqkOEvSR0y/CWpQ4a/JHXI8JekDhn+ktQhw1+SOmT4S1KHDH9J6pDhL0kdMvwlqUOGvyR1yPCXpA4Z/pLUIcNfkjpk+EtShwx/SeqQ4S9JHTL8JalDhr8kdWhm4Z/k4iQPJ1lKcs2sxiFJPZpJ+CdZB/wecAkwD1yRZH4WY5GkHs3qnf/5wFJVPVpV/xe4Gdg2o7FIUnfWz+hxNwJPju3vB94z3iHJDmAHwNzcHIuLi9Mb3Qm2vLw8mHqGVAsMq54h1QLDqmct1DKr8H9VVbUT2AkwPz9fCwsLMx7R5CwuLjKUeoZUCwyrniHVAsOqZy3UMqtlnwPA5rH9Ta1NkjQFswr/bwJbk2xJcgpwObB7RmORpO7MZNmnql5I8qvAV4B1wOer6oFZjEWSejSzNf+quhO4c1aPL0k98xu+ktQhw1+SOmT4S1KHDH9J6pDhL0kdMvwlqUOGvyR1yPCXpA4Z/pLUIcNfkjpk+EtShwx/SeqQ4S9JHTL8JalDhr8kdcjwl6QOGf6S1CHDX5I6ZPhLUocMf0nqkOEvSR0y/CWpQ6sK/yQfSvJAkheTLBx27NokS0keTvKBsfaLW9tSkmtW8/iSpNdmte/87wf+KfBn441J5oHLgbcDFwP/Kcm6JOuA3wMuAeaBK1pfSdIUrV/NjatqH0CSww9tA26uqh8CjyVZAs5vx5aq6tF2u5tb3wdXMw5J0vFZVfgfxUbg62P7+1sbwJOHtb9npTtIsgPY0XZ/mOT+SQ9yht4MfH/Wg5iQIdUCw6pnSLXAsOqZVi3/8EgHXjX8k/wp8GMrHPpEVd2+mlEdTVXtBHa2MSxW1cKr3OSkMaR6hlQLDKueIdUCw6pnLdTyquFfVT/1Gu73ALB5bH9Ta+Mo7ZKkKTlRH/XcDVye5NQkW4CtwDeAbwJbk2xJcgqjk8K7T9AYJElHsKo1/yQ/D/wH4C3Af0tyb1V9oKoeSHIroxO5LwBXV9Xftdv8KvAVYB3w+ap64BgeaudqxrkGDameIdUCw6pnSLXAsOqZeS2pqlmPQZI0ZX7DV5I6ZPhLUoemGv5JPp/k4Eqf2U/y60kqyZvbfpJc1/4MxH1Jzhvruz3JI+2yfaz9XUm+025zXVb49tmJrCXJ7yZ5qI33y0k2jB07rj930U6K723tt7QT5CfMEeo5K8ld7Xm+K8mZrX1Nz80Ktf3L9mdI7k/yxSSnHen5bR9SuKW1701yztj9rDiH05ZkQ5Lb2s/aviTvneRczaCedUm+leSOtn9Szk2SzUnuTvJg+3n7WGtfm3NTVVO7AP8YOA+4/7D2zYxOAj8BvLm1XQr8dyDABcDe1n4W8Gi7PrNtn9mOfaP1TbvtJdOsBfgZYH3b/hTwqbY9D3wbOBXYAnyX0QnvdW37rcAprc98u82twOVt+3PAv5j23AC/A1zTtq8Zq2dNz81hdW0EHgN+ZOx5/aUjPb/ArwCfa9uXA7ccbQ6n+fszVtMu4J+37VOADZOcqxnU83Hgj4A7jvazv9bnBjgbOK9tvxH4yza2NTk3s5joc/j/w/824FzgcV4J/xuAK8b6PNye3CuAG8bab2htZwMPjbUf0m9atYwd+3ngprZ9LXDt2LGvAO9tl6+MtV/bLmH07b+XXkgO6Tetel56zsd+sB8+WeZm7LE2MvpW+VmMPt12B/CBIz2/L81N217f+uVIcziNGg6r5wxGL2Y5rH0iczWDejYBe4D3t7k54s/+Wp+bFWq7HfjptTo3M1/zT7INOFBV3z7s0Eu/tC956U9EHK19/wrts/LLjF7V4fhreRPwXFW9cFj7tM1V1VNt+2lgrm2fNHNTVQeAfwf8T+Ap4HngHo78/L5cQzv+PKP5OFJt07YF+B7wB22p5PeTvIHJzdW0fQb4DeDFtn+0n/21Pjcva0tS7wT2skbnZqbhn+R04LeAfzXLcUxakk8w+n7DTbMey6TU6C3ISfe54La+uo1RaP4D4A2M/tLsyWo9o+W566vqncD/YbSU8LKTZa6SfBA4WFX3zHosk5TkR4E/Bn6tqv56/NhamptZv/P/R4x+Kb+d5HFG/wT8iyQ/xpH/RMTR2jet0D5VSX4J+CDwi22i4fhr+QGwIcn6w9qn7ZkkZwO064Ot/WSam58CHquq71XV3wJfAt7HkZ/fl2tox89gNB9H+5Ml07Qf2F9Ve9v+bYxeDCY1V9P0PuDn2u/+zYyWfj7LyTs3JHk9o+C/qaq+1JrX5tzMYB3sHI68Tv44r6z5/yyHngz5Rms/i9Ga55nt8hhwVjt2+EnFS6dZC6N3lA8Cbzms39s59ITUo4xO9q5v21t45YTv29tt/guHnvT6lWnPDfC7HHqi6ndOlrkZq+E9wAPA6e2xdwEfPdLzC1zNoScVbz3aHE7796eN5X8Ab2vb/6bN08TmakY1XcgrJ3xPyrlpz/EXgM8c1r4m52baT84XGa27/i2jdzBXHXb8cV4J/zD6j1++C3wHWBjr98vAUrtcOda+wOg/mPku8B857KTYia6ljedJ4N52+dxY/0+0cT3M2CddGJ3x/8t27BNj7W9lFJhL7Zfh1GnPDaP11D3AI8Cf8kqQr+m5WaG23wYeao//hy0kVnx+gdPa/lI7/tZXm8NpX4B3AIvAfcB/bQExsbmaUU0X8kr4n5RzA/wkoyWd+8Yy4NK1Ojf+eQdJ6tCs1/wlSTNg+EtShwx/SeqQ4S9JHTL8JalDhr8kdcjwl6QO/T9yxC3VGuA26gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 432x288 with 0 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAD4CAYAAAAQP7oXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAWY0lEQVR4nO3df5Bd5X3f8feXFcgCuwIL6iwSYwmQ4xFJ/GNuwHZSOwkxCLdjxQ2Ml5kmxMGjxEXjxo7bQD0lCVNNS38MUzo4HjWAFeKJoBo72WmUEjvE40zHCC4NYATIXhBGwthgBHLtRRKSvv3jPmqv17t7H7F3796zvF8zGp197nOe+zmHHX0499zdG5mJJEk1TlroAJKk5rA0JEnVLA1JUjVLQ5JUzdKQJFVbstAB+uHMM8/M1atX95z38ssvs2zZsvkP1GdNzN3EzNDM3GYenCbmni3zAw888L3MPOtE1lsUpbF69Wra7XbPee12m1arNYBE/dXE3E3MDM3MbebBaWLu2TJHxLdOdD1fnpIkVbM0JEnVLA1JUjVLQ5JUzdKQJFWzNCRJ1SwNSWqgB/e+xJavPsHTL0wO9HkXxc9pSNJryZPP/4CxLV/j6NHklr99gp3/+mJed/LIQJ7bKw1Japi9L77MSRG8ciyZPHyE/3PwyMCe29KQpIZ5z3kr+NnVb2TpkpP49Xev5qw3LB3Yc1eVRkSsj4jdETEREddO8/jSiLizPL4zIlZ3PXZdGd8dEZf2WjM6NkfENyLisYj4+ByPUZIWlZNHTmLrb17I7n97Gf/mn6wb6HP3vKcRESPALcD7gX3A/RExnpmPdk27GngxM8+PiDHgRuDDEbEOGAMuAM4GvhwRbyn7zLTmbwDnAG/NzGMR8Q/7caCSpLmrudK4EJjIzCcz8zCwDdgwZc4GYGvZ3g5cHBFRxrdl5qHM3ANMlPVmW/NjwA2ZeQwgM5979YcnSeqnmndPrQT2dn29D7hopjmZeSQiDgAryvi9U/ZdWbZnWvM8OlcpHwKeBz6emd+cGioiNgIbAUZHR6t+y+3k5GTVvGHTxNxNzAzNzG3mwWli7n5nHsa33C4FDmZmKyL+KXAb8I+mTsrMLcAWgFarlTW/rriJv9YYmpm7iZmhmbnNPDhNzN3vzDUvTz1D5x7DcavK2LRzImIJsBx4YZZ9Z1tzH/CFsv1F4GcqMkqSBqCmNO4H1kbEmog4hc6N7fEpc8aBq8r25cA9mZllfKy8u2oNsBa4r8eafw78Ytl+H/CNV3VkkqS+6/nyVLlHsQm4GxgBbsvMXRFxA9DOzHHgVuCOiJgA9tMpAcq8u4BHgSPANZl5FGC6NctT/nvg8xHxCeAHwEf7d7iSpLmouqeRmTuAHVPGru/aPghcMcO+m4HNNWuW8ZeAf1yTS5I0WP5EuCSpmqUhSapmaUiSqlkakqRqloYkqZqlIUmqZmlIkqpZGpKkapaGJKmapSFJqmZpSJKqWRqSpGqWhiSpmqUhSapmaUiSqlkakqRqloYkqZqlIUmqZmlIkqpZGpKkapaGJKmapSFJqmZpSJKqWRqSpGqWhiSpmqUhSapmaUiSqlkakqRqloYkqZqlIUmqVlUaEbE+InZHxEREXDvN40sj4s7y+M6IWN312HVlfHdEXNprzYj4XETsiYgHy5+3z+0QJUn9sqTXhIgYAW4B3g/sA+6PiPHMfLRr2tXAi5l5fkSMATcCH46IdcAYcAFwNvDliHhL2We2Nf9lZm7vw/FJkvqo5krjQmAiM5/MzMPANmDDlDkbgK1leztwcUREGd+WmYcycw8wUdarWVOSNGRqSmMlsLfr631lbNo5mXkEOACsmGXfXmtujoiHI+KmiFhakVGSNAA9X55aANcB3wFOAbYAvwfcMHVSRGwENgKMjo7Sbrd7Ljw5OVk1b9g0MXcTM0Mzc5t5cJqYu9+Za0rjGeCcrq9XlbHp5uyLiCXAcuCFHvtOO56Zz5axQxFxO/Cp6UJl5hY6pUKr1cpWq9XzQNrtNjXzhk0TczcxMzQzt5kHp4m5+5255uWp+4G1EbEmIk6hc2N7fMqcceCqsn05cE9mZhkfK++uWgOsBe6bbc2IGC1/B/ArwCNzOD5JUh/1vNLIzCMRsQm4GxgBbsvMXRFxA9DOzHHgVuCOiJgA9tMpAcq8u4BHgSPANZl5FGC6NctTfj4izgICeBD47b4drSRpTqruaWTmDmDHlLHru7YPAlfMsO9mYHPNmmX8l2oySZIGz58IlyRVszQkSdUsDUlSNUtD0qL1wg8OsevbB+i8mVP9MIw/3CdJc7Z3/yTr/8tXOXos+dV3rmLzh356oSMtCl5pSFqUHtz7Eplw8JVj3PP4cwsdZ9GwNCQtSu99y1msPH0ZS04KfueX1y50nEXDl6ckLUrLl53Mlz75voWOseh4pSFJqmZpSJKqWRqSpGqWhiSpmqUhSapmaUiSqlkakqRqloYkqZqlIUmqZmlIkqpZGpKkapaGJKmapSFJqmZpSJKqWRqSpGqWhiSpmqUhSapmaUiSqlkakqRqloYkqZqlIUmqZmlIkqpZGpKkalWlERHrI2J3RExExLXTPL40Iu4sj++MiNVdj11XxndHxKUnsObNEfGDV3lckqR50LM0ImIEuAW4DFgHXBkR66ZMuxp4MTPPB24Cbiz7rgPGgAuA9cBnImKk15oR0QLOmOOxSZL6rOZK40JgIjOfzMzDwDZgw5Q5G4CtZXs7cHFERBnflpmHMnMPMFHWm3HNUij/EfhXczs0SVK/LamYsxLY2/X1PuCimeZk5pGIOACsKOP3Ttl3Zdmeac1NwHhmPtvpnelFxEZgI8Do6CjtdrvngUxOTlbNGzZNzN3EzNDM3GYenCbm7nfmmtIYmIg4G7gC+IVeczNzC7AFoNVqZavV6rl+u92mZt6waWLuJmaGZuY28+A0MXe/M9e8PPUMcE7X16vK2LRzImIJsBx4YZZ9Zxp/B3A+MBERTwGnRsRE5bFIkuZZTWncD6yNiDURcQqdG9vjU+aMA1eV7cuBezIzy/hYeXfVGmAtcN9Ma2bmX2bmT2Tm6sxcDUyWm+uSpCHQ8+Wpco9iE3A3MALclpm7IuIGoJ2Z48CtwB3lqmA/nRKgzLsLeBQ4AlyTmUcBpluz/4cnSeqnqnsambkD2DFl7Pqu7YN07kVMt+9mYHPNmtPMeX1NPknSYPgT4ZKkapaGJKmapSFJqmZpSJKqWRqSpGqWhiSpmqUhSapmaUiSqlkakqRqloYkqZqlIUmqZmlIkqpZGpKkapaGJKmapSFJqmZpSJKqWRqSpGqWhiSpmqUhSapmaUiSqlkakqRqloYkqZqlIUmqZmlIkqpZGpKkapaGJKmapSFJqmZpSJKqWRqSpGqWhiSpWlVpRMT6iNgdERMRce00jy+NiDvL4zsjYnXXY9eV8d0RcWmvNSPi1oh4KCIejojtEfH6OR6jJKlPepZGRIwAtwCXAeuAKyNi3ZRpVwMvZub5wE3AjWXfdcAYcAGwHvhMRIz0WPMTmfm2zPwZ4Glg0xyPUZLUJzVXGhcCE5n5ZGYeBrYBG6bM2QBsLdvbgYsjIsr4tsw8lJl7gImy3oxrZub3Acr+y4CcywFKkvpnScWclcDerq/3ARfNNCczj0TEAWBFGb93yr4ry/aMa0bE7cAHgEeB350uVERsBDYCjI6O0m63ex7I5ORk1bxh08TcTcwMzcxt5sFpYu5+Z64pjYHLzI+Ul7D+K/Bh4PZp5mwBtgC0Wq1stVo9122329TMGzZNzN3EzNDM3GYenCbm7nfmmpenngHO6fp6VRmbdk5ELAGWAy/Msm/PNTPzKJ2XrX61IqMkaQBqSuN+YG1ErImIU+jc2B6fMmccuKpsXw7ck5lZxsfKu6vWAGuB+2ZaMzrOh/93T+ODwONzO0RJUr/0fHmq3KPYBNwNjAC3ZeauiLgBaGfmOHArcEdETAD76ZQAZd5ddO5NHAGuKVcQzLDmScDWiPgHQAAPAR/r7yFLkl6tqnsambkD2DFl7Pqu7YPAFTPsuxnYXLnmMeDnajJJkgbPnwiXJFWzNCRJ1SwNSVI1S0OSVM3SkARAZvLYs9/nwOQrCx1FQ2wofyJc0uD9u796nD/52lMsO3mEr3zqF1l+6skLHUlDyCsNSQDct2c/B185xsuHj/LtAy8vdBwNKUtDEgB/+MELeNuq5fzau9/MW3/iDQsdR0PKl6ckAfC2c07nLzb9/ELH0JDzSkOSVM3SkCRVszQkSdUsDUlSNUtDklTN0pAkVbM0JEnVLA1JUjVLQ5JUzdKQJFWzNKQ+yEx+eOjIQseQ5p2lIfXBJ+98kJ/6/bvZ/JePLXQUaV5ZGlIf/N3E90jgK7ufW+go0rzyt9xKfXDzle/gT+99mt9+37kLHUWaV5aG1AfvOe9M3nPemQsdQ5p3vjwlSapmaUiSqlkakqRqloYkqZqlIUmqZmlIkqpVlUZErI+I3RExERHXTvP40oi4szy+MyJWdz12XRnfHRGX9lozIj5fxh+JiNsi4uQ5HqMkqU96lkZEjAC3AJcB64ArI2LdlGlXAy9m5vnATcCNZd91wBhwAbAe+ExEjPRY8/PAW4GfBpYBH53TEUqS+qbmSuNCYCIzn8zMw8A2YMOUORuArWV7O3BxREQZ35aZhzJzDzBR1ptxzczckQVwH7BqbocoSeqXmp8IXwns7fp6H3DRTHMy80hEHABWlPF7p+y7smzPumZ5WerXgH8xXaiI2AhsBBgdHaXdbvc8kMnJyap5w6aJuZuYGZqZ28yD08Tc/c48zL9G5DPAVzPz76Z7MDO3AFsAWq1Wtlqtngu2221q5g2bJuZuYmZoZm4zD04Tc/c7c01pPAOc0/X1qjI23Zx9EbEEWA680GPfGdeMiN8HzgJ+qyKfJGlAau5p3A+sjYg1EXEKnRvb41PmjANXle3LgXvKPYlxYKy8u2oNsJbOfYoZ14yIjwKXAldm5rG5HZ4kqZ96XmmUexSbgLuBEeC2zNwVETcA7cwcB24F7oiICWA/nRKgzLsLeBQ4AlyTmUcBpluzPOVngW8BX+vcS+cLmXlD345YkvSqVd3TyMwdwI4pY9d3bR8Erphh383A5po1y/gw32eRpNc0fyJcklTN0pAkVbM0JEnVLA1JUjVLQ5JUzdKQJFWzNCRJ1SwNSVI1S0OSVM3SkCRVszQkSdUsDUlSNUtDklTN0pAkVbM0JEnVLA1JUjVLQ5JUzdKQJFWzNCRJ1SwNSVI1S0OSVM3SUF98ZfdzfPqLX2f/Dw8vdBRJ82jJQgfQ4vC7dz3E/h8eZtUZp/KxXzhvoeNImideaagvfut95/JTK5dzyQVvWugokuaRVxrqi43vPY+N7/UKQ1rsvNKQJFWzNCRJ1SwNSVK113RpvHL0GIeOHF3oGJLUGK/p0rjkpq9y4ea/4eixXOgoktQIVaUREesjYndETETEtdM8vjQi7iyP74yI1V2PXVfGd0fEpb3WjIhNZSwj4sw5Ht+sVq84lTVnnkbM55NI0iLS8y23ETEC3AK8H9gH3B8R45n5aNe0q4EXM/P8iBgDbgQ+HBHrgDHgAuBs4MsR8Zayz0xr/i/gfwBf6ccBzub2j1w4308hSYtKzZXGhcBEZj6ZmYeBbcCGKXM2AFvL9nbg4oiIMr4tMw9l5h5goqw345qZ+feZ+dQcj0uSNA9qfrhvJbC36+t9wEUzzcnMIxFxAFhRxu+dsu/Kst1rzVlFxEZgI8Do6CjtdrvnPpOTk1Xzhk0TczcxMzQzt5kHp4m5+525sT8RnplbgC0ArVYrW61Wz33a7TY184ZNE3M3MTM0M7eZB6eJufudueblqWeAc7q+XlXGpp0TEUuA5cALs+xbs6YkacjUlMb9wNqIWBMRp9C5sT0+Zc44cFXZvhy4JzOzjI+Vd1etAdYC91WuKUkaMj1LIzOPAJuAu4HHgLsyc1dE3BARHyzTbgVWRMQE8Eng2rLvLuAu4FHgfwLXZObRmdYEiIiPR8Q+OlcfD0fEH/fvcCVJc1F1TyMzdwA7poxd37V9ELhihn03A5tr1izjNwM31+SSJA3Wa/onwiVJJyY6tx6aLSKeB75VMfVM4HvzHGc+NDF3EzNDM3ObeXCamHu2zG/OzLNOZLFFURq1IqKdmc16vxzNzN3EzNDM3GYenCbm7ndmX56SJFWzNCRJ1V5rpbFloQO8Sk3M3cTM0MzcZh6cJubua+bX1D0NSdLcvNauNCRJc2BpSJKqLYrSiIinIuLrEfFgRLTL2Bsj4ksR8c3y9xllPCLi5vLpgA9HxDu71rmqzP9mRFw10/PNY+Y/iIhnytiDEfGBrvkn9AmI85T59IjYHhGPR8RjEfHuYT/Ps+Qe2nMdET/ZlevBiPh+RPzOsJ/rWXIP7bkuz/WJiNgVEY9ExJ9FxOui83vxdpbnvzM6vyPvVX1K6QAzfy4i9nSd57eXuf39/sjMxv8BngLOnDL2H4Bry/a1wI1l+wPAXwEBvAvYWcbfCDxZ/j6jbJ8x4Mx/AHxqmrnrgIeApcAa4AlgpPx5AjgXOKXMWTePmbcCHy3bpwCnD/t5niX3UJ/rrjwjwHeANzfhXM+Qe2jPNZ3P99kDLCtf3wX8Rvl7rIx9FvhY2f7nwGfL9hhw52zHMuDMnwMun2Z+X78/FsWVxgy6P01wK/ArXeN/kh33AqdHxChwKfClzNyfmS8CXwLWDzjzTE74ExD7LSKWA++l88spyczDmfkSQ36eZ8k9kwU/11NcDDyRmd9iyM/1LLlnMiznegmwLDof63Aq8CzwS3Q+hRR+/FyfyKeUDirzt2eZ29fvj8VSGgn8dUQ8EJ1P9AN4U2Y+W7a/A7ypbE/3SYQrZxmfL9NlBthULiFvO/7yw5BkXgM8D9weEX8fEX8cEacx/Od5ptwwvOe62xjwZ2V72M91t+7cMKTnOjOfAf4T8DSdsjgAPAC8lJ3fxj31+X/kU0rL/BUscObM/Ovy8OZynm+KiKVTM0/J9qoyL5bS+PnMfCdwGXBNRLy3+8HsXIsN23uLp8v8R8B5wNvpfDP854WL92OWAO8E/igz3wH8kPIr8I8b0vM8U+5hPtcAlNfRPwj896mPDem5BqbNPbTnuhTYBjr/c3E2cBrD8wrDtKbLHBH/DLgOeCvws3Recvq9+Xj+RVEapXnJzOeAL9K5LPxuuQSj/P1cmT4UnyY4XebM/G52Pm/kGPDf+P+Xt8OQeR+wLzN3lq+30/nHeKjP80y5h/xcH3cZ8L8z87vl62E/18f9SO4hP9e/DOzJzOcz8xXgC8DP0XkJ5/hHR3Q//4l+SumgMr8nM58tL0EdAm5nns5z40sjIk6LiDcc3wYuAR7hRz9N8CrgL8r2OPDr5R0F76JzafcsnQ+EuiQizihNfkkZG1jm4/8gFB8qx3E884J+AmJmfgfYGxE/WYYupvPhWkN7nmfLPcznusuV/OhLPEN9rmfKPeTn+mngXRFxark3cfz7+m/pfAop/Pi5PpFPKR1U5se6/oci6NyD6T7P/fv+OJG79sP4h847LB4qf3YBny7jK4C/Ab4JfBl4YxkP4BY67274OtDqWus36dzAmgA+sgCZ7yiZHi7/oUe79vl0ybwbuKxr/APAN8pjn57nc/12oF3y/Tmdd1wM7XnukXvYz/VpdP4PdnnXWBPO9XS5h/1c/yHwOJ1/ZO+g8w6oc+n8oz9B52W2pWXu68rXE+Xxc3sdywAz31PO8yPAnwKvn4/vD3+NiCSpWuNfnpIkDY6lIUmqZmlIkqpZGpKkapaGJKmapSFJqmZpSJKq/V8h/wItUSNj2wAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] @@ -465,6 +474,26 @@ "needs_background": "light" }, "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "MovieWriter ffmpeg unavailable; using Pillow instead.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Frames: 0\n", + "Frames: 0\n", + "Frames: 1\n", + "Frames: 2\n", + "Frames: 3\n", + "Frames: 4\n", + "Frames: 5\n" + ] } ], "source": [ @@ -472,46 +501,54 @@ "import matplotlib.pyplot as plt\n", "import matplotlib.animation as animation\n", "\n", - "def actualizar(i,fig,scat):\n", - " scat.set_offsets(([3000,i],[5000,i],[10000,i]))\n", + "def actualizar(i,fig,ax,xx,yy):\n", + " ax.scatter(xx[i],yy[i],s=100,c=\"red\") \n", " print(\"Frames: %d\" %i)\n", - " \n", - " return scat,\n", "\n", + "plt.clf()\n", "fig=plt.figure()\n", "\n", - "x=glum\n", - "y=gtem\n", - "z=grad\n", + "xx=[0.00010884, 0.00012753, 0.00023036, 0.00026866, 0.0004725, 0.0006132]\n", + "yy=[5050.64469616, 5967.54345019, 6674.16152397, 7216.76297425, 7795.184395, 8402.69528332]\n", "\n", - "xx=dlum\n", - "yy=dtem\n", - "zz=drad\n", "\n", - "a=mlum\n", - "b=mtem\n", - "d=mrad\n", + "#x=glum\n", + "#y=gtem\n", + "#z=grad\n", "\n", - "aa=slum\n", - "bb=stem\n", - "dd=srad\n", + "#xx=dlum\n", + "#yy=dtem\n", + "#zz=drad\n", "\n", + "#a=mlum\n", + "#b=mtem\n", + "#d=mrad\n", "\n", - "ax=fig.add_subplot(111)\n", - "ax.grid(True,linestyle='-',color='0.75')\n", - "ax.set_xlim([14000,1000])\n", - "ax.set_ylim([-100,600])\n", + "#aa=slum\n", + "#bb=stem\n", + "#dd=srad\n", "\n", - "scat=plt.scatter(x,y,c=x)\n", - "#scat=plt.scatter(xx,yy,c=0.005*(zz*3)**2,p=xx)\n", - "#scat=plt.scatter(a,b,c=0.005*(d*3)**2,p=a)\n", - "#scat=plt.scatter(aa,bb,c=0.005*(dd*3)**2,p=aa)\n", - "scat.set_alpha(0.1)\n", + "#print(xx)\n", + "#print(yy)\n", "\n", - "anim=animation.FuncAnimation(fig,actualizar,fargs=(fig,scat),frames=100,interval=100)\n", + "ax=fig.add_subplot(111)\n", + "ax.grid(True,linestyle='-',color='0.75')\n", + "#ax.set_xlim([14000,1000])\n", + "#ax.set_ylim([-100,600])\n", + "#ax.set_yscale('symlog')\n", + "\n", + "#scat=plt.scatter(x,y,s=0.005*(z*3)**2)\n", + "scat=plt.scatter(yy,xx,s=np.arange(1,7,1))\n", + "#scat=plt.scatter(a,b,s=0.005*(d*3)**2)\n", + "#scat=plt.scatter(aa,bb,s=0.005*(dd*3))\n", + "#scat=plt.scatter(xx,yy)\n", + "#scat.set_alpha(0.8)\n", + "\n", + "anim=animation.FuncAnimation(fig,actualizar,fargs=(fig,ax,xx,yy),frames=len(xx),interval=1000)\n", "plt.show()\n", "\n", - "\n", + "anim.save('Hertzsprung-Russell Diagram.gif') \n", + "plt.close()\n", "\n", "\n", "\n", @@ -519,6 +556,13 @@ "\n", "\n" ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<img src=\"Hertzsprung-Russell Diagram.gif\">" + ] } ], "metadata": {