diff --git a/CursoAnalisisLA-CoNGA.ipynb b/CursoAnalisisLA-CoNGA.ipynb index 8790064ccf97dd5b3198cb8dfc58e4813e69ea07..9248d977ec3e0680aee8abc160375090698ea9a6 100644 --- a/CursoAnalisisLA-CoNGA.ipynb +++ b/CursoAnalisisLA-CoNGA.ipynb @@ -13,6 +13,14 @@ "4. Profundizando en el proceso de minimización" ] }, + { + "cell_type": "markdown", + "id": "decreased-television", + "metadata": {}, + "source": [ + "Antes de empezar, importamos las librerÃas necesarias" + ] + }, { "cell_type": "code", "execution_count": 1, @@ -32,6 +40,14 @@ "import numpy as np" ] }, + { + "cell_type": "markdown", + "id": "handy-order", + "metadata": {}, + "source": [ + "Creamos lienzos sobre los que mostrar los plots" + ] + }, { "cell_type": "code", "execution_count": 2, @@ -39,8 +55,37 @@ "metadata": {}, "outputs": [], "source": [ - "c1 = ROOT.TCanvas('c1','c1',900, 600)\n", - "ROOT.gStyle.SetPalette(1)" + "cModels = ROOT.TCanvas('cModels','cModels',1200, 400) #este lo usaremos para los modelos\n", + "cModels.Divide(3,1) #lo dividimos en una red the 3x1\n", + "cToys = ROOT.TCanvas('cToys','cToys',1200, 600) #este lo usaremos para los modelos\n", + "cToys.Divide(2,1) #lo dividimos en una red the 3x1\n", + "c1 = ROOT.TCanvas('c1','c1',900, 600)#este es comodin, por si queremos dibujar algo\n", + "ROOT.gStyle.SetPalette(1) #opcional: cambia la paleta de colores en los plots. " + ] + }, + { + "cell_type": "markdown", + "id": "genetic-incidence", + "metadata": {}, + "source": [ + "## Modelos de señal y fondo y \"toys\"\n", + "El modelo que vamos a construir está \"inspirado\" en el descubrimiento del boson de Higgs en su canal de desintegración difotón:\n", + "- La forma de la señal es descrita por una distribución Gaussiana. \n", + "- La forma del fondo es descrita por una distribución exponencial. \n", + "El número de eventos totales se podrÃa expresar de la siguiente forma: \n", + "$ N_{total} = N_{sig}\\times PDF_{sig} + N_{bkg}\\times PDF_{bkg} = N_{total} \\left(f_{sig}\\times PDF_{sig} +(1-f_{sig})\\times PDF_{bkg}\\right)$\n", + "donde:\n", + "- $N_{total,sig,bkg}$ son el número de eventos totales, de señal y de fondo respectivamente. \n", + "- $PDF_{sig}$ y $PDF_{bkg}$ son las funciones de densidad de probabilidad de la señal y fondo respectivamente. \n", + "- $f_{sig}$ es la fracción de eventos de señal con respecto al número de eventos totales $\\left(=N_{sig}/(N_{sig}+N_{bkg})=N_{sig}/N_{total}\\right)$" + ] + }, + { + "cell_type": "markdown", + "id": "clean-sunset", + "metadata": {}, + "source": [ + "Primero, definimos las variables y parámetros que necesitamos: " ] }, { @@ -50,81 +95,214 @@ "metadata": {}, "outputs": [], "source": [ - "ROOT.gRandom.SetSeed(10)" + "fSig = 0.05\n", + "nEntries = 10000\n", + "minVal = 100.000 \n", + "maxVal = 160.000" + ] + }, + { + "cell_type": "markdown", + "id": "shared-journey", + "metadata": {}, + "source": [ + "Cada componente del modelo (señal o fondo) va a ser definido como una PDF en el intervalo definido arriba (minVal,maxVal). " + ] + }, + { + "cell_type": "markdown", + "id": "academic-prospect", + "metadata": {}, + "source": [ + "Como hemos dicho, la señal está descrita por una distribución gaussiana, centrada en un valor de masa 'mass' y con una anchura 'sigma'. \n", + "En este caso tenemos herramientas que normalizan automáticamente la distribución. " ] }, { "cell_type": "code", "execution_count": 4, - "id": "paperback-recommendation", + "id": "lesbian-ordinance", + "metadata": {}, + "outputs": [], + "source": [ + "#PDF de la señal, más info: https://root.cern.ch/root/html524/TMath.html#TMath:Gaus\n", + "signalModel = ROOT.TF1('signalModel','TMath::Gaus(x,[0],[1],1)',minVal,maxVal) \n", + "signalModel.SetParNames('mass','sigma') #nombres de los parámetros\n", + "signalModel.SetParameters(125,2.4) #valores de los parámetros\n", + "cModels.cd(1)\n", + "signalModel.Draw()" + ] + }, + { + "cell_type": "markdown", + "id": "cleared-scottish", + "metadata": {}, + "source": [ + "El fondo, descrito por una exponencial, require una normalización explÃcita.\n", + "Nosotros hoy la vamos a hacer utilizando directamente la integral de la función calculada de forma numérica. \n", + "Sin embargo, en este caso tiene solución análitica (es un buen ejercicio, comprobad que la sabéis obtener...)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "hollow-dispute", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Integral fondo en el rango utilizado: 34.940289404389894\n" + ] + } + ], + "source": [ + "#PDF del fondo, una exponencial\n", + "bkgModel = ROOT.TF1('bkgModel','TMath::Exp(-(x-[1])/[0])',minVal,maxVal)\n", + "bkgModel.SetParameters(50,100)\n", + "normBkg = 1./bkgModel.Integral(minVal,maxVal) \n", + "print('Integral fondo en el rango utilizado: {}'.format(bkgModel.Integral(minVal,maxVal)))\n", + "bkgModel = ROOT.TF1('bkgModel','{}*TMath::Exp(-(x-[1])/[0])'.format(normBkg),minVal,maxVal)\n", + "bkgModel.SetParNames('tau','delta')\n", + "bkgModel.SetParameters(50,100)\n", + "cModels.cd(2)\n", + "bkgModel.Draw()" + ] + }, + { + "cell_type": "markdown", + "id": "connected-march", + "metadata": {}, + "source": [ + "Ahora, combinamos ambas PDF en una sola, incluyendo la cantidad de eventos de señal y fondo. " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "composed-hunter", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "34.940289404389894\n", "Formula based function: fullModel \n", - " fullModel : [1]*(signalModel*[0]+(1-[0])*bkgModel) Ndim= 1, Npar= 6, Number= 0 \n", + " fullModel : (signalModel*[0]+[1]*bkgModel) Ndim= 1, Npar= 6, Number= 0 \n", " Formula expression: \n", - "\t[nbkg]*((TMath::Gaus(x,[mass],[sigma],1))*[fsig]+(1-[fsig])*(0.028620255213866665*TMath::Exp(-(x-[delta])/[tau]))) \n", + "\t((TMath::Gaus(x,[mass],[sigma],1))*[nsig]+[nbkg]*(0.028620255213866665*TMath::Exp(-(x-[delta])/[tau]))) \n", "List of Variables: \n", "Var 0 x = 0.000000 \n", "List of Parameters: \n", - "Par 0 fsig = 0.010000 \n", - "Par 1 nbkg = 100000.000000 \n", + "Par 0 nsig = 500.000000 \n", + "Par 1 nbkg = 9500.000000 \n", "Par 2 delta = 100.000000 \n", "Par 3 mass = 125.000000 \n", "Par 4 sigma = 2.400000 \n", "Par 5 tau = 50.000000 \n", "Expression passed to Cling:\n", "\t#pragma cling optimize(2)\n", - "Double_t TFormula____id3232091492946900739(Double_t *x,Double_t *p){ return p[1]*((TMath::Gaus(x[0],p[3],p[4],1))*p[0]+(1-p[0])*(0.028620255213866665*TMath::Exp(-(x[0]-p[2])/p[5]))) ; }\n" + "Double_t TFormula____id14889634374136314836(Double_t *x,Double_t *p){ return ((TMath::Gaus(x[0],p[3],p[4],1))*p[0]+p[1]*(0.028620255213866665*TMath::Exp(-(x[0]-p[2])/p[5]))) ; }\n" ] } ], "source": [ - "minVal = 100.000 \n", - "maxVal = 160.000\n", - "#normTerm = '(1./([0]*(TMath::Exp(-({}-[1]))-TMath::Exp(-({}-[1])))))'.format(minVal,maxVal)\n", - "#print(normTerm)\n", - "bkgModel = ROOT.TF1('bkgModel','TMath::Exp(-(x-[1])/[0])',minVal,maxVal)\n", - "bkgModel.SetParameters(50,100)\n", - "normBkg = 1./bkgModel.Integral(minVal,maxVal)\n", - "print(bkgModel.Integral(minVal,maxVal))\n", - "bkgModel = ROOT.TF1('bkgModel','{}*TMath::Exp(-(x-[1])/[0])'.format(normBkg),minVal,maxVal)\n", - "bkgModel.SetParNames('tau','delta')\n", - "bkgModel.SetParameters(50,100)\n", - "signalModel = ROOT.TF1('signalModel','TMath::Gaus(x,[0],[1],1)',minVal,maxVal)\n", - "signalModel.SetParNames('mass','sigma')\n", - "signalModel.SetParameters(125,2.4)\n", - "#fullModel = ROOT.TF1('fullModel','[0]*signalModel+[1]*bkgModel',minVal,maxVal)\n", - "fullModel = ROOT.TF1('fullModel','[1]*(signalModel*[0]+(1-[0])*bkgModel)',minVal,maxVal)\n", - "fullModel.SetParName(0,'fsig')\n", + "fullModel = ROOT.TF1('fullModel','(signalModel*[0]+[1]*bkgModel)',minVal,maxVal)\n", + "fullModel.SetParName(0,'nsig')\n", "fullModel.SetParName(1,'nbkg')\n", - "fullModel.SetParameter('fsig',0.01)\n", - "fullModel.SetParameter('nbkg',100000)\n", + "fullModel.SetParameter('nsig',nEntries*fSig)\n", + "fullModel.SetParameter('nbkg',nEntries*(1-fSig))\n", "fullModel.FixParameter(2,100)\n", - "fullModel.Print('v')" + "fullModel.Print('v')\n", + "cModels.cd(3)\n", + "fullModel.Draw()" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 7, + "id": "paperback-recommendation", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKwAAAF0CAIAAACBkDb7AAAABmJLR0QAAAAAAAD5Q7t/AAAgAElEQVR4nO3dTdazuHawYfiSdsZQvTOIk7UkRpA5JHOo6gXczBnFmUKqnyDWSuaRmfA1dlmlRwKMbX62pPtqvMsvYFuWrf1ogyTaeZ4bAAAAAEAd/t/dBQAAAAAAXIckEAAAAAAqQhIIAAAAABUhCQQAAACAipAEAgAAAEBFSAIBAAAAoCIkgQAAAABQkX8YhuHuMuBOzrn/+7//++WXX+4uCAAAyJtzbrtHcXavI3x959zf//73pmkW324YBuectfaDdxmGYc8To8OiypHivSyDP6xZ+SDpmzrnPnvZ6NvZ/rJ2VsJi8RafuP19bdv5u4p+HrX3fmd8xBizUavGmPCYxVcIj/zs3b8o/jyOY1rsvu+/ec13ffARFova970xxhgTbdz+kUdfVsgYM47j/pfaeK68UbQFAIDy9H3/siMhf6/PK0PYQdrohvm/7B+8hfSgPjgs/a/wnQRfqrAvEW7cU7y1HstaNynaGP5348vaWQlrxVv8nVzQMQ4/Ed0zksAPjQH55UmL9eYg+qQ/Mp+D7fytR43tyyTQv3vf977AF+eBUTDaKYqMc5KNh/Xpv5q1l9r4aqLt2y/18rnffFkAAOi3PzU6tee9Mwncf2439UESKP0T/6/fmGZl0smRw6Lezv4kcK1vk/a7/MbwfLd/hfOSwPS573aMIx8kgXIJ4YP3KgZzAj9kAzKkVi6Le+HBcrV9e8uVuq5rmmae57DM8zwbYx6PxwVlc85N0/TxUGRfvcMwTNPkg1rf9+HLvhylYIyJxmkMwyCVs/aOa14+995vHACAUw3DsD1ISqR9pAtE/Q35i7yntEeZ59l/6jlIhEKPx8MYI0MlpYSHzNgahqFt28X+SXSYT8PGcTz1O1qs+eu7SdKHrLl7RhJ4Osmsoo3S1KONkkiEiWW4vXkOpA6f4o9Pt4dbwv/KSy0OB5Vda2+RxtDoyGhL+HHS1ww//uLn2tMsoyi5WP79uq5Lv6lDnmuMYfItPiMdgrQRiXRX2lrTLb5hplv8S/n3TUsSnmdpn3xjjLYsFqBJ2nh6+iwt5GJVfFADYSHTc0ZtQt63bduw/LKrWfHf//3f8kZ7Gn70dm/1vRYPfhk/nXPRG/nH4a7oxaWewyeGlb/xRFQiOrcbNrQ0IPjDojASBRPZstg09reavu+jP9DyFjY5X79Y4PTt0s7Pxl7v8XiM47iWdaRZn5zX3vhcO1lrZZDnyyOHYZCLY2mXLI2Z6XPDzx7WSRrM5XH0Uo/HIy1k+NbR97Vdqo0nhmrvnt12DbIgi4MA5+e16XSv39IEV73D6+DRtxO2CrnqFR6TDjpdfOVwDPTO732jSPPSlfdwSziEPSy5L0M6pHPjlcMnhtfum2TYwMcvFX3qtW9z8aVePpcRofiY/KIWf0J+TLX/1YUhwjxnJkcP/Ev5kTD+QTR4KXxf/9sOf+Tpr31xS1Sk+Rkf/JH+g0RFGsdRjlyrisUtMsq9CYYz+QJEW8KajAJCNEwoHZq1EUj/67/+y3+KPYPePw4OUj/p9pcDnGSwWfgiYRn8XqnJ8GXDJ6ZVvfZE1CCKUb7j4Vuo3xuGAmlZ8oPx3Qb58Sz+1//gfb/CPzF6zfBx+qdZnhv+8qMCR3/xfUn8rrUnprvCOvH/hsWQx1EznJMeRVhvi68QblxsgGsH+41hN9K/afrZ5fjw00UhfbFOotAR1bB/tfSrXPyWF98i+t7Xfh5RqK+5e1bvJz9QGl+E/4k3S8O+56Xf+tprRqEkbIci7cGE5Qn/u5b8pLaLlCZF4ZYmydbWwmJ0fBRK1g7z/40iWtSelSSBM/OP8ZGwz52mLuEfYJ8NRnvTDroJZtWOz6QojA/yVzPsbEVbFt8uKtLiluaZT6ZJYHRMVIBoS/SJvHTLzkL2T+GWKAkM6z/qwZifZ+Lk8b//+7/3zzWros7r2oOQCRJmX//RSy1GMP9BxiBF3KiocT0JDJ84PpnkfEH4jukTUYnoV7T9o4ryAX+YCc62pJ2BqMs0/jxDsZEERm/k/1KHhUz/xG90S9J8I3pimiYt0pYEpkxy/st/Xv/ptutnDhK28B2jylnsGEdlCyskeotoy1qve06q8eV3VDaGg17B/BwRujgWNByN3eybSBZewjbGhMMGonV7t5fxDQdjiI+LtGYOrisuvsI4jjKSRMYDFDmaqOZx5/iMC9bRTkcu+TDih+TNzz+EfsT1OI5d11lru66TiCGDkcIRMv5d/BCp8H3ldcKRjY/Hw7+jRI/FwV3y37RIMjIzjIF+HJQMW5LH8i5t28oW/3Zhsf3bhUPBoy3GmHBLVEj/1i+HbkqRfA2E40ittfM8930vG+VKoBwstT3Ps39uH6zIF5bHlyH8pDLGXj6yTNiWl5JjFoeK+eOttXKkTcbihrb3+rdwyZLu6c9v8YmoRBiRmme8CgNF+iNJB0CmP8XwVxcFjTAUTNO0/ZPrgxGhi2NBZX2BcIvvVqXHh0cuPrGwP/eLQ8f9f6Vio+1RfFt7zfDPSlSNabVHvdDo+P1PTItR2Pe1H0ngFcIOShr1RPgnX4YyX1k8fyL8qCJJ9JSO12LAjVhrfbep1PHZ1UYZXMw32ybIgsJ+ieQSkhn6Zw3D0HVdeN4nJdnjOI4SHMZxlJdqns2273vZEp3KCYu0hw8aYbEl9ZJyyqvJmaNxHMO8aBgGyZR80itJmntOrg4L+Va08YWJOqPD865ci0+JtoRTE/1GGwj3yieNXiotdpg9NkGwlVMATdDfGvZNt04RvvAWOaEzTVPXdXKeaC0JjJ618/Xdc6Zuu2PJk+ZnX39x7tnaU5qmmaYpashROR+PR3ga/WVG+r3wvJWEoJensT62+Nn9d+dz4Ojd93yVPjNf7BivdR19sF07LSV75YcX/kIIYimSwCuEJzw2ftbyS5W/+nsi1Mei8BSehI46Nx8XSY6XvE6aom/ea+1Q6iTtM718o7eOB/Ly1i9c2mzY0ZfsSLb4E+HDc6Ep/0Q5xTMH69ct9s8kv/LHhA+iv+LWWn8SPSrS2mcMCynpqGzx6yhIYukzQ+llyhbJ65pgyV+/Jfy80WmmYRje6qtJeYafAyukJ+pW7n28s1M7rC8uvfFS4bW4sMMaPSX8mvZ3ssO3WPt0wAYJFzLqUrLBl9FsZ7hzzkm3fkymrq3xqcues9JRYaKRVmk5F4dT7vkgiyWM3mUtC/KfRSLk2nmo7y0GyfBMk3QdF5fe2RZ9KWtvkW5P6yqVfiOlXmD4BkngRfrnKk+LY0Gbpum6zg9Tds8z1mfwf9QX94atXYokQXZPkaJIIR0mPxDUn6pfa9hSM18u10tOiJL4VKp5DsJc3OXTkq7rwiQtFHZoomYiSVQ0KCs80WufIwbDJ4a5kHuuaR5ukVCzUSRv54n8qEj2OQypCdLIaPhi+L6+SH5Qg/s5gG1PGR6PRzgWVApzRvcizHtlS/hhZaP/sGH2GH6/1trwMul2krnIZ/Lpaf7w50fvChEfH+zz5FGT/IFeS3tecs9hDm/9mOW600Y/JEpj/AXAxTRs4792c4j1mv21YZ8DK3yUODUJjCxe8UtrdecHkb2L12ZtsoJo9C7Ry4bxMC3A2k9l/0mBIpEEXiT8NafRwfdgoi1ncM8L5emutAFH/bz979L+XHt9e4xZ8+yWSZ9sT49QpOfn0mEbelQbZfAxa61c2vIPmqbxM9n6vpdxVjIGUjZGk3v9MX6op/zFtcF0u2mawuFMLphUFk7JkwHefj1uybj88CcfK+TtpLO1WKSUL6R/Oz+VsW1b+eAST+RFwjrxLzs8h3qGRQpf3Pf/5Fk2mCe5n1/oJdwihXHBRctpmuQuESlfCWFttD81z4GgUe4dft3NyrgJH2fkGAm/+4Nq+nmbleDvK7ZZCm5q4zBOkl5XD+8Y4X+N4QH2eerKJ3Vv3aXJ/yx3XtK3z7m1i8OaJDyG/ZbmZ58tbFnh2/XJDYrlLNX+D+KF19Mknpw6KGy/6LMvlkrqwf9tCutkI/74EaGLodj8vHl1OLg9rfaotOHvquu6tV/INZmzXl8vLYO960mmdd48F0GKlk7yKVO6mNXiK0db5ODouelCSdEx4d/sqHiLRYrWjPJPDz9suIhfVLzx5+Kl4Zb0fcOF9dJlnaI1wRaXsXr5UtFrbn+baZVuP3dmdVCcZs/vKj3ms2ft9NkTPyvkxy+VV3sMV+BMN0YWI1toXFpGNd3bJ3d6SJ8YHrDxRNSgWVoi0gs7D+GvKDqm+bk6aPj64RPDZxlj+uA2AOEf68VumC/k4oqmaYHnoAvkX2HPE1+uPJl2JKLPtfbxN15hPnp10OjMV9Q9Swvvnxh9rWZpzU9fseGLhB8zOp2UdvCi30BUmPSJUTUu1mo9SAIPsDMJjJrBvHSLiCjEND+TlmYpxqXvtZhSpn+5m8Q4jmGrjuLaWpF8wdIyhMIok4aANEcN/wxsZG5paN6ulluSwJd/CQBgw1v53kaXTqxFsPmZyPk/NEc9ETUwyW1sxqftJ/pjNk6krj3LH7znjfa/7Lu7PivAWkdi8XX2pyv763CtDKkPPl34lJ3vsvE6H3wpe35+b9VVedr5/dmrOEk4kcNvCa9x+8UDTn3Tl0Xa+G/69HRmTvOccbTzKnw4HkNGgqVPXCuGDMzwP/I9L7Vm46X2PLdh1AGATx0+cWXjBV9G9c+eiOLJuLu3epUyAjwaS1lPvzT6+Nv2dyT8Gs6Hl2GnqKjyw9hfpMt88IstzZ0ZKCq2/7dnft7J+q1zzNEl05Ne6qWm7lNNAIAapBcDXx7fPMfymWRCR/GkH75z/Pb+TkvzHJy1fZiv84+v0a0JB469VfKL1fZ7S7EwDO7R77sjfHohMVwDY/uJ0eztU19qg6yerO0EGAAAx3p3wItzbnwuWCWLGFX1t9LnSHvs70jsf823XnY/+Spl2VL7vKPssW9xiJ0d0YIxHBS3sUt3j335FEnGXo5e8PcEWxvzeeBLvSyzzvAHAACAOpEEAgAAAEBFGA4KAAAAABUhCQQAAACAipAEAgAAAEBFSAIBAAAAoCIkgQAAAABQEZJAAAAAAKgISSAAAAAAVIQkEAAAAAAqQhIIAAAAABX5x7sLAAAAgC3DMDRNY6211kYb5V/hnHPORYcBQIorgQAAAHq1beuca5qm6zrJ7pxzslEeyGHOua7r5LAwMwSAVDvP891lAAAAwAJJ7aS35h8PwyAZYPO8PDgMQ9u24zhKlti2dPAAbCFGAAAA6CUjPOWxZHdhZuhzvzDxCxNCAEhpnBPoBzYAuAunh/YgWAH3qiRShRlg3/eyxRgjIcgYkyZ7xhifOhKpgNspDFYak8BGZU0B9aDHsB/BCrhLVZFqGIbH49H3fbgYjL8kOAzD9iRAIhVwI53BSuNwUAayA/eiDe5ERQE3qqcB+sVg/JZwtKdzTqYIrg0HraeiAJ10tkFWBwUAAFDKOTdNU5gBNs/RnvLYXwM0xoTXA5kQCGCD0uGgAAAAkGQvHE4mo0Dbtn08Hn5LE9w3YpqmcRzvKCyAbGi8OqnzmilQD9rgTlQUcCMaoL9FRLQx2kJFAffS2QZVlkllTQH1oA3uFE31ptKAKxGpdqKigHvpbINKh4NGwx5uLAkAbCBAAdCPM1YAIkqTQMITAADAIehWAYiwOigAAAAAVIQkEAAAAAAqQhIIAAAAABUhCQQAAACAiihdGAaXkkXDmDUOvI+ljAFkgD/0AH4iCcRT2/LnAXjXH22GtgNAsT9OVj1PWnHGCoDSJJCT69f5ee8gAABQmHmeuRgIIKQ0CSTxuwcXA1Ei55xzzlprrd25dxgG/++eF6HtAMgDwQpA0zQsDIM/8CcBhbLWSi7XdZ1zbs9eGYngnGvbVjYOw9B1nTyIk0DfdrioDkAzghWAQKvwmlvbaixVsfz4EP9XgcqvXklt0H+WYRjkat723vAw/7ht23EcJf0LK+fPxzQf4HIlRapT/agoghVwOZ3BSulwUFwkPB0Y5oFAEYZhMMb4x+3PX/ji3sUBn8YYGQuaXkv8A80HQBYIVgCapjk8CXwxbaZpZG+4JZ17g6vpOzkB3MUHKOfc4/EYx7F5Dg19PB5N08gWL0osGxa1ApAFJgcCdTtyTuD23BsR7fJTbuKOFADcx1rbdV04BLTv+3mex3GUyYHeHGqaOdhyT9EBINGG7i4MAA2OvBI4TZPv98hcmnCvtXaapnCLjMXyh6UXCXEPzg6iFFsDONf3SsoX7ZIzXNZaY8wwDFuDF2hBAJSJT0tJJkiwAip22DzFaNGFtRmQ4foKMmpUnhimfzpnTxZocXY49xFCWW1wcWEYH3PSvT4uRS8SXhVcXCTGH/rHg1IqEFCrpEh1quWKIlgBV9EZrO5cGGaapmmaZJpN8/M01cZoBYWVmDfqE0Xr+75tW2OMH6rgnOu6Th6ne6O4JKMV+r7vuk4OM8ZsjVlg0QUAJ/CDEb66o2mIYAXU7eb7BBpjZPJM1K+a191XWAD5GYZhnmf5V7ZYa8OB69HeKOD4e0X4wzbGl/5A7wrAQfwCCl3X+c5SuqqCnOGSw95Yb49gBVTpsKuT/v5af7zuO8NBm5/n5nVeMy3Q4shPhoOCNrhbNGaBO3EBV6okUoUdJP84uqOpdKhe39E0RbACzqczWB12JTBc9yW8+9bOVRnCpwBALpbHKaTZIAB8xFrr70wT3sNGHsspeL89HFS1a9gCwQqo1ZFzArfn3qQkbPlT6QpTZAD4EPNtABwkHALa932zuaqCkPnM4RPXXnwmWAFVOnJO4PbcGzHPc3SaSm69RQZ4NSI+cA3aGoCvDcMgGaCf7Le2qsKiXUstEKyAmmgcoqpz4Gxp1ub+MT0AtMHdXlcUDQo4TT2Ryo/8DLekqypE8wC3bmaTIlgBp9EZrG5eHRTq6PuNAhljvg2A7zjnpmmKJvgtrqpgjAkXBX19l4gQwQqozJ33CdwQDl5XmDoDwF7MtwHwheg+EE3TyNSbdFUF55zcN2KaJr+WzBsIVkBNNF6d1HnNtDQbt4LgLhHVow3utHqLiOQ4f8TJJQIqQqRqgmVCN7a8UVEEK+AEOoOVyjKprKnSkARiHW1wp7e7VtQqcBwi1U7vVRTBCjiazmCldDgoABSobelaAbje3mELwRMIVkDZSAIB4Hx+sg1dKwCXe+MqBMEKqAOrg1Zpz8xvZocDx6I7BSALBCugAiSBFVuL8kR/4FScYQGQBYIVUC6SQAC4CnfiApAFghVQOqVzArlPIIAsvB2smG8DIAsEK6BoSpNAEj8AWfgkWHFHZgBZIFgB5VKaBALAUZxzcvfk6AbKG3uHYfD/bm/8CufXAVzi7VtEJM8nWAGFYU4ggJJZayVt67rOObdnr/SWnHNt28pGeSwPFjPJtzHfBsCF5p/eeuYfDwhWQFk03sC+bTWWqigSyjcq+eUBKFpJbdB/lmEY5KLf9t7wMP9YrhNKumitDdPFryrKd6pKqW3gSiVFqlMdUFEEq7dQXfhJZ7BiOCiAYg3DYIzxj6MBUYt7F0eNTtPkM8P0cuLnmG8DIAsEq52iWmIYLRQjCazP/jhO8EJ9fAbonHs8HuM4yn99AmmMCfPAdr1BvXHaj7YGIAsEq51Im6EecwJrtR3ECfGom7W267pxHH1O2Pe9zKWRq4L+yHndrndivg2ALBCsXlocBUp1QSuSQADF2l7EZW1v27bW2nme0/VCm+RK4AHoWgHIAsFqD19LnE+HbhrnKX67kDG27Vz0hbVhKqZzBvNnFheG8Yt8pnvDNWC8cGPbtv4K4ZEVRYsD3lRSpDpVOmr9gBWtqPlUWjOsEIOmabQGK5VlUllT5SAJxCsltcFhGB6PhzFmmib5UM65rut87hftjXpLct1PniKHhVcCj08CGxodsFdJkepUB1cUwWrRWrXQm4LWYKWyTCprqhwkgXilvDa4fX+/nXf/Sw87pWtVVs0D5ykvUp3k+IoiWKXW6oS6gtZgpbJMKmuqHCSBeIU2uBPn14EbVRWp/H1K0zNW4fmpcFi7P+CsJLAhWAW2k8DFXaiGzmB18MIw/lbLGwe8tR0ANGsD374Wiy4AWNK2rXSTuq5LxyP4OcwycF0OiyY2H4xgFdmoB31df0AcmZhKYLLWys21FodXhWsqhBvPmmaDFFcC8QptcKdTKoqmB+xTSaQKpzGHj5umsdaGE5XXlq06q6IIVt52VVBR1dMZrI68WbxfWaF5LrUX7pVQlT5rz1QcAKgLd2QG0DRN01hrx3H0j/126WX1fR92t6IDruhiEayAPB02HHQYBmOMf5zme865NAn2IeyoYgBA3hhnBeAnn8u1beu7TF3XbUylie5o2q77vFgEK7Hz41deS9Dn5pvFr4WwU6IVGmIQkAO6VgB+GoZBMkC/Qoy/PLjHvO6rYhGsvI2a5EopVDpyOOi7NkKYwoGzRdlfvQzzAG4xz3SqAAi5Ehh2jaZpkjVgRDrjaJqmc9eG8QhWQJ4OuxL4wbhzCWFt2z4ej2mauMqnC7kfoAGBEaibc26apmjYlL+O1/e9MUYyQGNMmPhdveYCwQrIypFJoJ8HGM4P3BiwvhjCACAjJw5WZ5wVgGc/ak+occ49Hg9rrSwTel0Raw5Wb33kCusHih05HLTve7nZg18mNFrLGAAKc2588+OsGJgN1GoYho2BndGueZ4vWhQ0UnmwevmRGTQLfY6/bcX30UfnzTQK8dbNarizTa1ogztdVFG0RGAJkWqn6yqqwmC1/yNXWDl40hmsVJZJZU0VgiQQO9AGd7o0CWxojMAPRKqd0hGkZ9VbhcGKJBA76AxWd64OCgB4rfJxVgC+dlEHtLZg9cEIz0pqBjm4+T6BAIDXal53AUBGKgxWO5M6cj8oo/RKYDh0QeH1UwAQ1wUr1hUAkAWCFZADpUkgiR+ALNwQrBhNBCALBCtAMYaDAkAmKhxnBSBHBCtAPZLAmnwWi4ngyJxzbhgGueHyzr1rN+Zyzq29zkXoWgHIQvHBqtTPhWqQBNZn/9gMRnEgf9ZaSee6rkvzt8W9Ms3POde2bfgU51zXdecX+ZXiu1YAjtb+dNG71hCsPugpFVwbyIrG21bovJlGCT64Rw23talSSW3Qfxa53Bflgene8LDoKdJzGsfRWhs9/QYV3o8L+KmkSHWqmyuq1GD1WQeJblWVdAYrpQvDAMD3hmEwxvjH0fnvxb3WWp/jhay1fd/fPBY0VNv9uABkimAFqEQSCAB/8hmgc+7xeIzjKI+bphmGIc0PNwZWnX7aj3XYAWSBYAXoozQJ5D6BAG5krZ2myY/87LpuLRCpCFCcXweQhWKCFTkt8qd0YZg5cHdZAORqcWDny71t21pr53mWA+QyoKymME1T13WLC4feo4Z1FwAUoMhgRR8VOdM4T1Hn7MkSsDAM9impDS4uDOOckwQv3StzAtfSPNmlYmGYUKnrLgCbtDRA9RRVVDHB6uPeUTE1gHcoaoMBpcNBAeAQfd+3bWuMmaZJQrDc6UEep3unaZqm6fF4yNONMYoWg1nDfBsAm6LZy7f1RwlW1ADU0JiY6kyXS8CVQOxTXhv0l/4+2LtBUUVxdhn1UdQAddNVUWUEq296R/Ss6qOrDT6pLJPKmioBSSD2oQ3upKuiyuhaAbvpaoCKqauo3IPVl+WnZ1UfdW2waRqGgwLANxQtZczNuIByyUTl6EamsjGcwxzObb60fG8pI1jlW3KgaRq1q4PieN+MQWf8OrBC11LGGsoA4Ght28rk5K7rwoWpmqZxzvm9MuFZDlO0iPEighVwN41XJ7VMXy7MlytZ8S3UROe4BYU0VlTu46yA3TQ2wBOEa1n5x+Fyx/5x27b+7qZh5SitqHyD1Zf9onw/OD6lsw0qvRKo6+Q6AOSiyJtxARWz1o7j6B/7B4vX+sJRoNpXNq42WNGzhQ7MCQSAspQx3wbAUzgEtO/7cItz7vF4+CzRk9vbRGNHF915tj3HYFVbyopyKb0SCAD4XLWn2IFCDcMgGWB4AdBa23WdHwK6YV53arFfyzRY3V5vwNe4EggAn1O0Omgkx1PsAJZIjhdFGMkJ18Z8TtOkfW0Yj2AF3OHgeYov1yZOb8qcLnCsc/Zk9lgYBrvRBnfKoKJYgQDlyqABHiFcGMaTjlaU5oUbM1gYJpJLsDqkU0TPqjI62+CRw0F96Om6bu3UVLQrXeAYAHAYfX91ALxFekdtoGmaaZoej4ffIqfXZX6gtVaWCb211O/LIlgdO2Y1rxGwKM6RialPc8OViz1r7TRNTdP4weuLCxw3WtPl7HElELvRBnfKo6JyOb8OvCmPBni5dMhVNhWlP1gd2COic1UTnW3wsDmBwzAYY/zjdB0qn+D5LRujRgEAx2C+DVCTjHtWBCvgQncuDLOxwLHStYwBIEd0rYC6Rd0qvV0pghVwlftXB5VhotECx3rDEwDkyHetANQnp24VwQq4xGELw3w2/EBmM8/znPHoBQAVi1ZryEAu5QRQOW3BSlt5gO8cmQTKui/Nz/mBG2t+Wmuj257iLEQu4ByK7rn8UqY3ZQZQG83B6thQr/ADohpH3iKi73u5svd4PCT3k5vbrB2/uMAxTvRN5CJOAQXQ3LUCAK/4YKX/vCFKd/yKpenaxO/SuY5q3r5ciZiFjCtTWBuU28+sLUe8uFdGKITjFML72fiNuVaU/nXYgR1ybYCXy7iiVAWrw/tCdK6qobMNHnklUHBBD4Ae1lpJ27quS0enL+6V2X3OubZtfeIngxpk40VFP0/xp9gBlEFPsLq9AMDRNCamOtPlvHElEO8oqQ36zzIMg7+at7E3PMw/btvWr2Dctq2fzJx3Rak6xQ68L+8GeKH01FVm9aYhWJ3REaJzVQ2dwer+W0QsCgOWwloDkIVwkaphGKKe0OLexVGjfd/7jcaYQsY7sA47UI28u1IEK+AESpPAvKMVgGz5BM859wpFzTcAACAASURBVHg8xnFsgnmAwzBM0xQmgRujQ7OJY9yUGUAWCFbAcY6fEwgAubPWdl3nh4A2wRTBKLWb191Q7nfpmW8DABvuDVanvinhFzchCQRQrO1xm2t75Y418zz7A2RhmHEcN258mivyQABZuD1YHX5qL4tzhSiXxnmKOmdP5o2FYfCOktrg4sIw/k426V6ZExjeB0IOC68Kpi+ePQ3rLgBvKqcBnqyoirolWJ3XC6J/VQedbVDpnEAAOETf923bGmOmaZIQ7Jzruk4ep3unaZqm6fF4yNONMf4eEuFrRlli9vy6C0y5AaAZwQo4iMbEVGe6nDeuBOId5bVBf+nvg70bSqsorgciK6U1wNNkf4uI1JXB6tT3on9VB53BSmWZVNZU3kgC8Q7a4E4FVhSNHfkosAGeo8yKuixYnfpGhNw66GyDSoeDcp9AAFkoM1gxzgpAFghWwKeUJoHl9KU0YNE/4DSlBSvm2wAqyTxkWbkq2hhOUQ4XuLq0fNcrKVgV8BGQIW4RUY3v4wvJJFCD29dhB/CT3KS0aZqu63x2JxvlFqayRVa9ksNKW7xq0QXB6uwwSO6H+2gcoqpz4GzGDhlxzrD1mtAGdyq5olgkBuqV3AAD4YLG/nF4zxt/Y5vwZjZh5RReUbkv3EL/qgI62yBXAgEACa4HAjpYa8dx9I/lQbimsbVWssHwADnmmhLejGAFfIQkEACwhK4VoEM4BLTv+6ZppmkKk8D0KcaYMAls151b9GucFKzKqBxgBUkgAHyutL5URN/wFaBOMtqz73uZ7GeM8bv2XPGb151W5Gudd9KqmCoCflK6OigAZKGcLtQ2Fq8D7iPX+qJoE44ITU3TVMXaMKGS1gsFzqdxnqLO2ZMZY2EYvIk2uFMtFcUiMVCpkgYYLgwTbpS1YZqm8evB+BVimqoWhokcGK+u6fkQYCugsw0qvRJY5v2XASBHnF8H7uMzPb9lnme5BmitnabJGCP/ldtFOOemafJryVTHx6svXTbC/6gCA2/SmJjqTJczxpVAvIk2uFNdFcXpaihTVwNcsjgiNN1YXUUdEqyu7PbQxSqdzjaoskwqaypjJIF4E21wp+oqijwQmlTXAD9VY0V9GawujnV0sUqnsw2yOigAYB9uGgEgC4cEK329duBAFyWB4QzmtQOuKQkAHKjwW0SkyAOBDBV4b8CXPg5WldQPqndFEujXquq6bi3Z29gFAGoVeLutl8gDgdyUeW/Al74JVvXUEmp1xeqg0zT5iJNeD5S1rS4oRqWO7aWxNiCAhvVCAWQiDFbNjtTuxnNbhFNc6/QkcBgGY4x/nA5CSNc+xvG+DyssYYyyOOdkDb3Fuy0v7pURDdXdf3kNeSCALIQdmO14ddfaV3SxcAelC8O06+4uGoDsbY9RX9wrwcffhuuyoqrGuFAAWZjnH/FqMWSx+jEqo/Rm8RUNWAdwue0x6uleGdHgrwRuL3NVF64HAshFdEmweeZ7YU5IHEM1Tk8CrbX0lgDosT1GfXHv2qhRNA0DmQDkI8r6othFBoiaXJEE+nVfwt6VzLc5+90B4Hs+WDnnHo/HOI5+18YY9epGNHAxENAqilTVRacIFwCBa4aD9n3ftq0xxg+ycs51XVd7DAKQFTmlNY5jeAKLONY0DAoFtCNSLVBYJ4RQXOiKhWGGYZjnWf6VLdbaKB7N88yFQQAX2A41a3vbtpXARaRaxiIxAPAxcj9crlV4cqhtNZYqVztvjHPxS0G34tug/4CyxIvMW/Zj1NO9MicwvTlE8RX1NpbXw4VogDtRUXmgl1UunW1Q6eqgAHCe7THq6d5pmqZpejwe8nRjDOtdLWNcKAAAOdCYmDJ9+UhcCcT7dJ6yOtz28lR7Fq+qpKLexvVAXIIGuBMVlQd6WeXS2QZVlkllTeWKJBDvow3uxBmrVeSBOB+RaicqKg/0ssqlsw0yHBQAPqcwrKvAuFBAE85YZYOYiauQBAIATkAeCKhB1pcBHzOBS1xxiwjc5oxoQoQCsBP3jQAAQCWSwAocdf6P84gA3kUeCBwkXZR4GIbo1jXOObm3zVWFApArkkAAwJnIA4EjdF3nszvnXNu2ciNTP99PbnUjR6b3NQWAEEkgAOBk5IHAF6y10couzjm5Yak8kJSv67pxHIdhmOfZ39cU+SFO4hIkgQDwuTZwd1l0Iw8EPuWci1Z2sdZO0ySPp2nyNzUN727KoND8MO8GF1KaBNKvApCFOXB3WdQjDwQOYq01xkg3yRgT5n5CrhP6/7brriw2AD2UJoH0qwCgQOSBwBFk/Oc8z+M4TtP0cgbgvO6C0gJQSGkSCAAoE3kg8LXH4yGJn7V2HMd05Gc4RhQAUiSBAIBrkQcC3wlHe/rLgH6FGEESCGBDq3AkQNtqLFWWpIN1YGUe/oJQiTa4ExX1FZ8BUof4SG0NsG3bcRx9ahdO5/P1IFMEp2mKjqyqovJGYCyRzjb4j3cXAABQpXn+o7vTtnR3gJeiTuQ8z3IxMLziJxu5BpgxHxiBk2lMTHWmy1niSiA+QhvcKVpYj0r7BKe98Ski1U5UVGboaxVHZxvkSiAAfE5hWM8M1wOB83HGCkBE6cIw3MEGwFGcc8MwrN03eW1vtOT69ovgK6wTA5yM20IAiChNAglVBzivO0VHDfmw1ko613VdmsKt7R2G4fF4hP/tuk4eMNnmFOSBABAiGOJkGoeo6hw4m5+TxpQzVL0CJbVB/1nkOl6UBy7u9QMQwgX3/FJ7YeWUVFEqMD8Q76AB7kRF5Ye+Vll0tkGlVwIB4HvDMBhj/ONpmvbsned5HMfwSH9LLoaDnovrgQAAXIKFYQDgBedc27YyQDTKDzfmLSs87ZcB1okBAOB8B18J/GABhmEYogUYAECVtm37vpcrhDI50JvX3VXa7HE9EACAkx2ZBL67AIOcXJd5OKwCCuBw24u4vLXEi4Qva60xhvNWpyMPBA7V/nR3cbAP3xTOdOQ8xXcXYAgPs9b6LFHn7Mn8sDAMPlVSG1yMS865aJWXKGo557quW1sYZnGRGByPdWKwiQa4ExWVJbpbBdHZBg+bExgtsRCdZ1rca631i7BP08TJdQCH6/u+bVtjzDRNEoLDBC/du/YiXdfJYcYY7hJxEeYHAgBwjsMS0+g8epTyru211sqKfH7xvWZzoYWGtRb240ogPqXzlNU3/KW/D/ZuHFZeRWnE9UCsoAHuREVlie5WQXS2wTtvESGX/mSthehKIGstADjQIZMDuQB4j3B+IDNkAFSFoIfTHJYEftDHejwefq2FcRy5AReA7LDWwhXC03/UM4AacNkDJzsyCfS3Wg5nAPp1X9K94RBQJgQCyBHjFC4yzywZCgDAUY68Wfy7CzCE919umOwHANjGUjHAR6KhCvS4ABw/T/HdBRj8pcI/y6Ry9mR+Tl0Y5oxXhhq0wZ2oqHsQhdA0DQ1wNyoqV8S6UuhsgyrLpLKmMnNq4GDFqtLRBneiom5D3wg0wN2oqIzR4yqCzjZ45+qgOJ2+HxwAHID5gahPun7eMAzRkgrOObkp11WFApArpUkgC+4BALaQB6IyXdeF2V3btvJf31OShRjkSNbbA7BN49VJnddMM3Pq+AEGJ5SONrgTay3cj3GhFasnUvkl1sdxlDUU5HKfJIHDMFhrrbVt2/oDwsqpp6IKRIgrgs42eOTqoABQG4VhvS6sF4oKRFf8mmCZPRn/6beHy+xtL9SHPPgQBxxN6XBQAAB2YVwo6jNN0+PxaNu267rFiTPhrZibn7NsItcVGoAmJIEAgMyFeSCdWtTBGDPP8zzPxpiXV/zmdZcUFl8jsuFoJIEAgPyFfVl6SyhdmPgNwyAzBkPTNDEWtBAk6jgHSSAAoAjzzNBQVMJa60d7DsNgjGmaxhizNj8QACIsDAMAnwtn1DCwSgWWikEFZEVQH38k+Djn5L4R0zSN43hrAXECYhoOpXHFUlZdPwC3iMAXdK5lrBAVpRfrqleABtgsLQGabqGiSkDXK2c626DKMqmsqcyQBOILtMGdqCjVyANLRwPciYoqAV2vnOlsg8wJLNE1k2GYcoNMyH20wtXS9+wNp9b4LelG6MX8QOCJ20IUgu8OxyEJLNd5pxz0ncwA1lhrJXPrui7N9Nb2DsPweDz8f2WmTcPNl7NDHgg0TZPcIuLu4uB9fGs4msarkzqvmebkgjEDDEsoWklt0H8WudwX5YGLe6O1Fpqmsdb6dDFclK+kiipZmAHyfRWEBrgTFVUIhrhnS2cbVFkmlTWVE5JAfKeYNhglftHn2tjrnOu6zv9XdsmR4ZXAYiqqfOSBJaIB7kRFlYPeV550tkFuEQEAr/nLg8aY8HLixuwahRG/XvJdcOsIAAUgiOEIzAkEgNf6vpe5NNM0hUngvO6+wmIFUwQBZI2/LDgOSSCAYm0v4vLWEi9+XdDoSiAyQx4IoABEMHxNaRLIQsYAvmetnaZJHg/DYIyRx3523+LelDHGJ4HTNLFAaN7CPJA/MagDt4goBxcDcRClcwIZSQXgEH3ft21rjJmmSQJLuOhLunfRMAxyD4lpmowxJIHZm+c/0z9m16ACdKsKROzCdzQuVqNzCZ2csDoovlNeG9y+v9/Ou/+lh5VXUdVhyfWc0QB3oqIKRDcsKzrboMoyqaypnJAE4ju0wZ2oqBKQB2aLBrgTFVUgAldWdLbBg+cEOufk1lv79w7D4CfbAEBemGaTPZaKAZAdAhe+dmQSaK2VdE4mz+zZ27atPKb/dJgra5JvDdXjnhAlYKkYANnhjw6+c+TCMOHKCukVv3SvLMfnD9s5LQe7nB0awmUVACB3LBUDIFOELHzksCGqkteFl/jCV17ca62Vy4NR+qdz4Gw2Lputx7TActEGd6KiCsRMm3zQAHdKB1tRb+UgZOVAZ7C68xYR0zRN0/R4POS/Ye1sjA5VWIkAgEL4S4KcXEdB6DsVi5CFT918s3hjjMyliW69Na+7r7AAgAqw4gKAjBCy8JHDksDt6XyLe8PEbxiGaZqOKgwAXIPVQcvEUjHQZ2Pp9fDxxiLtKBZ5IN53ZBLoszhZ8UUeSyRa3Gut9XEqfAoA5IJxCsUKv1D6VVBgcen1tm39fbacc13XyZHcfKs65IF405FzAvu+b9vWGOMXApV4JI/TvcMwWGv96XO6UAAAReSvkp9v07D0Au4RnkmPtof/7bpuHEdZci9MDlEL5gfiHccvVrN9p4fFvawOeiRWB8XXaIM7UVG1CM+s842rUVsDbNtWcjz5r4z8lEFV/pbLvkLCg2urqNqxXqg+Otvg8QvDfDA5kNsDAgD0mmeGWkGbxdGhXngf5ubn7OXIBUXFpQhW2OfOW0QAAJANhlpBDWvtOI77j1d4FQInIlhhB41XJ6PzUgpLqBrDQfE1neMWFKKiasRQKzVqa4DRCM9o7zzPDAfFDwQrNXS2wZvvE7iGBfc+dP2lfwYboG6MqqoOd4+AAr6P1Pe93HK5aRpjTLgYDHNtakewwiaGg5bomszZDzYAKsaJqhqF0Y/RVlDDOde2rXNumqa3BouiWAQrrNN4dVLnNdM8XDxEkxGhhaIN7kRF1Y5VQ29FA1yULsNORYFgdS+dbVDpcFAAOIospL62jN7a3sVbbPml2IGm4Yby0IhRoFhAsEKCJBBAyeS+yc3Kcupre4dheDwe0cHOua7rTiwrcsTdI5ADbgsBghUizAkEULJpmvwYjPSK3+LetR4SGSBWsSA7dFM4FA33IFjhiSQQQLGGYTDG+MdRdre2d57n9KKftbbve8aCYhVdKwBZIFihaRqGgwLAS5L7Lc4SbNddXEjcjwXZAWSBYAW1VwLD/hNjGADcq+u6tUBEgMIPLMgOIAsEq+opvRLIzeIBfG97lbyda+j5iYJt207T1HXd4iVB4A/R6gucZQegE8GqbkqTQAD4nrV2miZ5HM4AlLxubW/6Iv6clDFmHEeSQLzGguwAskCwqpXS4aD4xF1Nl1EEUKzv+7ZtjTF+IVBZ9EUep3uBw8gvyi/A0HCPZtwmmqVMuMMPBKsqabyBfdtqLFUGbmm3BIsSldcGnXMbgz+3924or6JwirD/zQ/mODTAnago7EWwOofONqiyTCprKgMkgTgIbXAnKgpvoHd1NBrgTlQU3kOwOprONsicQAD4HPeEwF5MvAGQBYJVHZgTCACfU3huD3pFE2/48QDQiWBVAaVXAjm5DgAoU7gmOwCoRbAqmtIrgZxcBwAUy9+mmVPsADQjWJVLaRIIAEDJwq5Vw+oLOBe3iMDnCFaFIgkEAOAOvmvVcJYd5yLrw1cIViU6eE6gc24YBufcu3vXnoK9GK4N3IEJzPjKPP+YdcOvCIBOBKviHJkEWmuHYWiapuu6NKnb2Nu2rezCt+46N0MsQK3mwN1lQbZYkB07pD2rYRii7tP2uXjgWwSrghyZBE7TJNGn7/s0qVvba609sAy4Gh1fAPgeZ9nxSnQOXUYfOOfatpXtzrmu6+RIzq3jLASrUhx2A3s58+TDU9v+eOW1vZIWWms3notdbpyty0Th4tAGd6KicLywR8Wva1M9DdBaO01T0zTjOMqp87Bb5R+3besPCCunnorCpQhWu+lsgzffJ3Bx4Gjzc5pN5PIyAgBwFc6yI+Gci3qQfopNJBxdxaBQnItglbk7Vwe11o7juLhLYboMAMBFWIsPm3yy55x7PB5pb8oY45zzh22cQ6fHha8QrLJ1WBIoQzrf2jtNkwxeFzovlQIAcAP5g8jtubBOhon6IaAb6F/hRASrPB02HNQPWG+aZhgGY4w8ltxvca9fUq/ve2MMEQpAdhisjnOxFh9WtG1rrZ3neTEDnKaJhfdwKYJVbo4cDtr3fdu2xphpmvy6L13XyeN0LwDkjmiG03GWHQlrbboSuzEmvGkESSCuRrDKyvEjMMMx6O/u/aNMjAv9AKuD4ji0wZ2oKFyKtfh+qq0BRot/hrtkBqBsl7Pt4RjR2ioK9yNY/aSzDaosk8qaUs03thuTwLveHScorA3K4unW2sUzUGt7o7swh6ux+42FVRTyQO/qiQa4KD3bTkXhHgSrJ51t8OZbROBId/289P2sAc8vpL54Q5q1vcMwPB6P8L+yipXcievsMgNbmHiDTYwChRYEK900JqY602XVbh+QeXsBcKiS2qD/LOG9lbf3+jQvvNVyOArLT8UpqaKQn+rPstMAd0pPXVFvuBTBSmWwuvM+gRvCgKWw1gBkIVypeBiGqCe0tneeZ1nUyh/Z970/uW6M4UQ7VOD2XNiNrhTuRLBSSWkSSLQCoIefBzgMQ7TwOrdgxp1Yiw9AFghW+jAnEABek9mAzrkotZvX3VVUVIeJNwCyQLDShCQQQLG2x23uH9UpC8OM45guLQOoMM9/9q7alt4VAKUIVmponKeoc/akardfWL+9ADhUSW1wcekXv4T62rIxMidwcWGYxRcHtIh6VEX/PmmAO1FR0IhgdTelcwLxBj0nUZjsC336vvd3T5YQHCZ46d6UZIbROjHh3QIBRcKJNw1n6ABoRbC6m8bEVGe6rJeSZqOkGDhCeW0wvXvy/r0byqsoFKX0E+00wJ24RQS0I1jdQWWZVNaUXkqyLyXFwBFogztFXSsqDRqVe4cuItVOVBTyQLC6ltLhoNwnEEAWCFDQjpXZAWSBYHUtpUkg/SoAAA7DzZoBZIFgdRVuEQEAQAVYmR1AFghWlyAJBACgGtysGUAWCFYnIwnMHK0CAPAWzrIDyALB6kxK5wTiPXoGTDN6GwCyEE28aTT9KcHRWMoYGSNYnYMkEAcJmyhQDZYyRsa4WXM1iE7IG8HqBCSBAPA5ulbIHr0rAFkgWB2KOYEAAFQvnHvTMOFcI+dctGUYhmEYomOGYUiPBMpBsDqI0iSwDdxdFgAA6sAyDIp1XRdmd23bOuecc76n5Jzruk6OjJJDoDQEq6+1Cscyta3GUiml6lK4qsLgC7TBnagoFCvsUWn9kdfTAK210zQ1TTOOo7W2aRq53Cc5obXWWjsMQ9u2/oCwcuqpKNSIYPUppVcCkTFOxgBA7jjLrolzLupBOuck2WuaxlrrrxD6jc3S8FGgQASrT5EE5kzbD13fSQ4AwOeiiTfa/uhUbJqmMAlMDzDGRGNH11xRXOBsBKv3Hbw6qAxOkJEJO/fKsHUGr3+O1Au4D7eIQOFYjk8lY4x/vOeKH9EJ5SNYvenIK4EyJL1J5i5v7JX+k0xrZtwCgOzMgbvLApwmXY6PE+132+41hZcKgYoQrHY7cp6in/UYzlfe2BseFj7WOXtSI4UnORQWCe+rpw1+MHihCZZlr6eigD+pWYahtgYYrvsS3grCb/crxDQsDAM0BKsXDhsOOgyDH5wgS1S93LvW8QKAC0j8sdZ2Xee7Vi/3DsPweDwYwY56hWOuOPF3Ex+gpmkyxvjMUMZVTdM0juO9JQTuR7DadPCcwLf4TpVz7vF4hAFrY6aywkwasbalmUG/aZp8PElvr7y4l0UUgD/MM3NvLpYuEBquEeqPSTcCVSNYrbgzCRRyHis6DU+m95rOzmjY0gDFPhi80Dw7WHI7ZqB2LMNwt8VkjwwQiBGslhy2MMx20Fnb27attXaeZ2LWh6r/BQP3YuF11I5lGHJAdAIIVpEjk8BpmuRxeBJdxlAt7rXW9n3P1BoA+ZrX3V004EL0rnQjOgF/IFg9HTkctO/7tm2NMX4ujYybksfp3mmapml6PB7y9OjGpgBwHmvtRsDZ3gtgGWOuAGSBYHXsLSLE9ozkPfOVda6jqov/1SqsqCobUmEqaYOLd7XxMWrtnjfhua1KKgr4RHRy/YSWQgPciYoCttQarI5fGOazyYH4hL7f059YIBTqvTt4AcAbONEOIAu1BiuNianOdFkX5T9Q5cXDK1W1wW8GL1RVUcDnzjnRTgPciYoC9qopWKks088vQGEJ76c8y1JePLyiM1opREUBbzi6d0UD3ImKAt5TR7C6/z6BixTWFACkwpNWBC5gS61jrjTg9DrwhjqCldIkEFtyWcqWaYGoAH0p4D119K60IVIBbys9WB12n0BcTfOvUHPZAAC341ZdALJQbrAiCQQAAHcot3cFoCglBiuSQAAAcJ8Se1cAClRWsCIJzE1ev7a8SgsAuEtZvSsAxSolWJEE5kn/pDv9JQQAaFNK7wpA4fIPVqwOCgCf4xYRwPFKX5TvetwiAjhFzsFKaRJIv2pZbucYgOIRoICz5Ny70oZIBZwoz2ClNAkkWm3Jq3K4WyAA4GN59q4AVCe3YKU0CUQJ5plLlwCAAyz2rqo3DEPTNNZaa220Uf4FcLV8ghULw+RD8c8IAIDTRSsx1K1tW+dc0zRd1/mUTzY651r6DMCNcghWrcKBl22rsVT3U39ZeYH/I5RXsatHG9yJigJuVHMDdM51XScf3z8ehkEywOZ5eVCSw5orCtBAZxvkSmAmMj2lp+8XDxyrDdxdFgC1kPGfku8Nw2CMkf/6caHWWtkLAIuYE5iVfHMqlodBoRSe2wNQg77vu66TxxKIpmny40KjJHDjLBVBDKgTVwJzkPUVBv66AABwKOfc4/EYx3Ge577v5QKgXA/0B4THz+uuLTgALZQmgQpHWN1fkqVIfX+pliyX6u6i5lRXOJRzTqbK7N87DEO0tt72i6ii80dFqXZSWKRGa6lq5pwzxkjuNwzDNE1++42leovOHxWl2o9S5U5pEsg5qj8V8Gv2X2IBnwW58UsjdF2Xdo8W96bL6w3DIMOuhmEIl2IHgFtYa9PELzxR9Xg8uEsEgA0aF6vRuYTObaXaXBQ0p7q6e3XTnOrqbjpL9Rn/WcJ18zb2Li6v17btOI6S/oWVo7OiKNV+CkulsEgNpVIpzAN9gJJ/p2kyxoQnthRWFKXaj1LtR6n2Y2EY3cq7dMYKMbiQXzRPHkejRBb3Li6vJ90pVtsDoIeEozBkyX+jLQCw6ObhoL///vtvv/32+++/73/K9mDf8/ZuO+V927Zpmrb5/OqZrroKLp4oKtX571teqco2TVOYBMoDWYOhbduu68ZxDI9vN228ET+qa97341IpLNKp71teqSqR5nvvZoA6vz5KtR+l2k9nqe5yZxL4z//8z3/729+apvmXf/mXt/LA8rVtgdcAm5+TA4v8gMjf4vJ6bdv2fT/P8ziOfk12wZp7APTbf34KQCXuTAL/93//93/+53/+4z/+49dff5VssHaSGoXRubx+ZPiJSAVxsu0z4mt7F8d8yhIL1lpjDMstAMgLp6gARG6bp/jbb79JEvhHOaK1Ftaf2DZNFXv3rTyR8d6V9E/Xt1Dn3nnWOYP5M+3SwjB+zky6N7wVRPtcD6b9uTDM4iIxG2/N3hz3KiwSe9/aC0/nF8Re9rL3ZhtjmU7166+//vWvf/X/DUtyd5UAuC0yHK7v++Y5yFO2yKS+tb3zPBtjZIsxJj3Mb5wJVsDdrgkjubv7WwKgMVhpvBIIAMfaXi4v3bt4PGvuAQCAMtyWev3+++9/+9vfSAIBAAAA4Er/cNcKB3/5y1/+7d/+zVr7yy+//Pbbb03T/Ou//mvznJkT3fTm73//e9M0v/zyyzVlc86l7zUMg7ZSKawrKYC2Ui1uv71U4SQ0X4zbS9Xo+F0ppLOiCFYfl0pDsCJSfVyqRsePSiGdFUWk+rhUGiJVWqrF7beXimD1rjtXB/3111+7rpMbRcglwbZt5cvz6xc752RB9q7rLstXu65zP5cHHIbh8Xj4/2oolVSR1JV7rnVxb6l8ARR+g03TtG3rC6ChVOEvSk+p/M/p3m9QocWKUvhTJ1jtKZWSYEWk+rhURKo1RKqPS0Wk2lkqj2C1p1Sqg9VdkxH9zbj+8z//U7b0fe9XXDDGyF25mqYZx1E2XlBaXyr/pnMwSDXccm+pwrryj28vlf/WZmXfoN/uK+32Uo3jGK4voqRU0e9Ktl9cKoW2K0rVdJhUOQAAA41JREFUT51gtbNUtwcrItU3pSJSLSJSfVMqItX+UoXbCVbbpVIerG67Euickw//T//0T36Lv1RqrfVpdHT99JpShebncoKhe0tlrV08eXBvqYZh8KWapin8Nm8slX9TWeDRu7dU8o5SY+G7314qKYBzLhyoc2WpFNqoqIZg9apUBKudRWqIVO+UikiVIlJ9Uyoi1f5SNQSrd0qlOVjdORw0svb79owxCsP6LaWy1vpf1ePxSCPXXaVqmmYYhrZtjTHpl3jXN7g4jMG7q1TTNMmDxeLdUqppmh6PR9u2Xdf5cQu3l0ohgtV+BKv9iFT7i0Sk2oNItR+R6i0Eq/1F0hysFCWB/ipqU+U5vA9Ya7uu8/etVmIYhnEcp2lSMivDWpuecbzdMAzzPMspq77vldRVEwztWPx7A0GwehfB6iUi1VuIVHsQqd5FpNqDYPUWzcFKURLYvApS4TktPe4qVdu21tp5nhff/ZZS+SZnre37Pv02bynVNE1yAubxeEzTlJ6Juf13Za31p6+8W0oVRqhhGJSUSieC1X4Eqz2IVPsRqfYjUu1HpNqJYLWf8mClKAkMR/H6a/HGmDCbVxKtbi+VhIPoPMftpZIRz/6xFOD2Uvn5r+FU79tLFU4/kLNWSkrl2+AwDH7at8I2eC+C1X4Eq52IVG+Viki1B5FqPyLVfgSrt0qlOlh9vqbMEZqfyw0ZY6Llhubnb6tJFia6rFTzcwZzdMyNpYq+xHB1phtLFQ0PCI+5/Rucf67RdHup1NZVOHzoxlIpRLD6rFQEq51F8ohUL0s1E6nWEak+KxWRan+pPILVy1LNuoOVumWUF6tDZ0CnVGsFSMtwe6kW3V4qtXWls1TaEKy+dHup1DbAyO1FUltROkulDZHqS7eXSm0DTN1eKrV1pbNU7Zyc/wAAAAAAlErRnEAAAAAAwNlIAgEAAACgIiSBAAAAAFARkkAAAAAAqAhJIAAAAABUhCQQAAAAACpCEggAAAAAFSEJBAAAAICKkAQCAAAAQEVIAgEAAACgIiSBAAAAAFARkkAAAAAAqAhJIAAAAABUhCQQAAAAACpCEggAAAAAFSEJBAAAAICKkAQCAAAAQEVIAgEAAACgIiSBAAAAAFARkkAAAAAAqAhJIAAAAABUhCQQAAAAACpCEggAAAAAFSEJBAAAAICKkAQCAAAAQEVIAgEAAACgIiSBAAAAAFCR/w+Tq8jH9Kx0MQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<IPython.core.display.Image object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "cModels.Draw()" + ] + }, + { + "cell_type": "markdown", + "id": "defensive-doctrine", + "metadata": {}, + "source": [ + "## Generar toys a partir de un modelo\n", + "El modelo expuesto anteriormente sirve de base para generar \"datos\", que vamos a utilizar para el ajuste de los parámetros. \n", + "Los toys se generan utilizando un generador de números aleatorios de ROOT.\n", + "La siguiente celda genera entonces los toys de señal y fondo y los dibuja. " + ] + }, + { + "cell_type": "code", + "execution_count": 8, "id": "indonesian-charles", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Input signal events: 537\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKwAAAI8CAIAAABTc6RnAAAABmJLR0QAAAAAAAD5Q7t/AAAgAElEQVR4nO3dS5KrSJYAUGirbWWBZr2SenvoGgCD7j3U20jVTNC5MHrgFd4e/EKK0AfwcywtTQIkuSviceP6txzHsQAAACAP//HuAgAAAPA6kkAAAICMSAIBAAAyIgkEAADIiCQQAAAgI5JAAACAjEgCAQAAMiIJBAAAyIgkEAAAICOSQAAAgIxIAgEAADIiCQQAAMjIX95dAHi1uq6Louj7/uEXP0/f923bDsMQj1RV1bZtKN7ETsoMwB4cKOq1bbvx0YtRL8THuq7btn1m0eBsynEc310GeKmyLIuiuOU3v+/7y+Vy48VPEsuwZlK2PZQZgP04UNQLRd12vV7TVLBt267rqqrS9Al30RMIzxKC2SRc3StmgLHrL8S52DFYlppyAHi/h0S9oGma9Gnf93EszOVyEfXg5ySBsKqu6/dGmhhH05gax+rEJtu2beMwmLeXGYCD2kkECY2e8+Mx6sX2UODbLAwD+xUaPquqWpv7V1VVURRd1724YADwYjHqpTPkge/RE0ju0j6020ewhI64jRd+2Uj55TtE26fuioXxQ++qLACnsf+ot+HeqPdlSSwnQ75GyEz8zQ8NiqmqqtIrr9fr4j+T+QuLomiaZvIRa2cXL1j8x7hYqtsruFiXySeGB9fr9a6PAOAozhT1YknikTB7cP6StU+Z16VpmjgFce1z4XwMByVTsTUxvfsPw/Bl22RZlnGUZhCOd10XWxbT4+FxfNu+79PVz9Iry7KctKTGcS8/7LVLlxidfOJP3haAozhE1PtSrMKXZQ4Pxs/5Z9qRGEuSVgQy8u4sFF4t/vJP2inn7YvzNtF4ZNJ1Fg5OWiIXr4yfkh5Pu+nSiyfdd1VVNU3zZa/d/H0W3zwNonoCAc7qQFEvjUoTacxKXzLvCVz7Ezd+6EYv5QjZ8OtOdr4MDxtH1kaMLA5H2Qh786Rr7dTiMM7wWWuZ241lHldiMwBncqCotxjvJrFvuyRrlR3Xx5quZaRwboaDkqn5YJKfDLls23Ycx1umxa99VjwymaQeFuyeNIIWRTEMw+VyKcvyy0nt4UMXZ3SYEA+QiaNEvW3DMGxMZFgbBZqWZP5xlkkjT5JAMvXtdcnCg7Isv7FP0UY+tnE8fG6IuCEhTK/sum67LmH+w9omEzeUGoDDO1DUW1sYJuax8zxwkhxulHPxe9iIv3BWkkAy9e1wmM6nD31xt3THxZdsfHQ4/uXi1yEMj8kIlmEYvgzM8j2AnB036kVt28bAt1iAmMvFtdCi7SgpRJIhSSDcJ/TINU0z6Y77xipn2/oPaxfUdb0dDgHgh14W9W4R94vvum5yqqqqvu9jyioswjZJIHxH27axOy6GnHnT40QIXWtRczJspm3by+Wy/Z537fN745UAMPGCqPdD4d3atl3LEr98LWRFEgh3mHfNxdl64el20+P20JfJ8UeNTtmIwcIeABteGfVuFDctTA+mTxdXo7ll8jxkRRIIdwhdc99Oz9LNcyen5guXxQcbH7ex8NrkQxcjnNEyAGx4ZdS7xS1Rr/hYCjWdMB+vn79QeyiZevIWFLA7G7/5k1PzHZPmW+sGcWzMfL+jxQ12N46nB+PHLS6Vtr3Z7pdvbrN4gBwcKOqlF8+l3X2Tksyj5NqVGyVZ+5bglPy6k52fhMM076qqqmmadK784ra54bIYcubvkEa1eTJWfFZ9SA8uxrP0SJrvhQ+Nj9c+F4BzOFDUK26TvmotCYyf2zTN/P0nJVnLdeHE/LqTnZ+Ew/FzPEvNI1Aa59IgNK7EubVMbL7Db/qha3nj5OC82KHA2x8NwNEdKOqtBbu1tx3Xk8C0POkHzdehiUvdrO1PCKdUjje3uwBR3L8hzC5Ym9IQllOrP6y9w/zs2ieGB9sfumFenrC7rvsAABteH/WeJy1JqEhd18MwhE0m3lUqeDFJIJxcGnTnp8IC3+4DAJxbyPcW09fQHto0jfXSyIckEE5uI9PT9glAJkKmNw952kPJky0i4ORiB2BZljHyhb7BsG+Ehk8ATi/uG5FGvbZtQwb4qD3r4Sj0BML5xWbOOaNfAMhEbP2c8/cwudETCOdX1/U4jpPlsMMaazJAADLR933Yb3AeDd9bMHg9PYEAAAAZ0RMIAACQEUkgAABARv7y7gIAnFZYkZxnMJcBYM9EwOd5SASUBAI8kVzlGfxtAbB/IuAzPCoCGg4KAADsTtu22zlPugfyA/V9X87UdT35rCd9+mtIAgEO4F2BMJiEw8VAaLsRAB5rO66FszfGvrquvxGnqg9FUQzDcLlc6rr+xqfvkOGgAAdwYyCMwWlDXdd3xcK4vXLTNOFTQiBsmiZ9k+MGQgCOKGyDfOPFwzDcEiJTkzBXFEVZliEgnoCeQIDDC4HwxrzurgAWUr6qqsL7t23b930Iul3XxcvGcZQEAvBUNwaau+LRXRfHxtDbX7JbkkCA43lZIAwH5+nlmQIhAHsWpyRcLpfJ3Id0MsLksnhlOF4URdd16cvDPIvJxT8xf590JkUoxr29kc8jCQQ4jHcFwvmRtm2v12sMZpPANplDGJ6aNAjAN4QJCNfrNbQ/Xi6XcHwSm8Lx+ZV1XV+v16IoqqqKkauu667rwpF48ZczL8IQmMVELoTXSWSM5amqKhZ7L0YAnuOB99gwK734HN7i+4fw1jRN/NztK0PYS985DYRFUcSz4frJSxZrGoaMpi+5Xq8h8sXyPOrbELwAdu4hN+oQQdLwEeJUiEdp7JvEwXhlWp54NobCSYEnsXI7dUo/cRI6J+VM6zL50G94VATUEwhwGGGSeljWZW1AZjgyvzKILaDhQZzyFxaVads2BJjYYFnXdXh5WAwm9Pht9+mF147jGD7FkFEAfiINOmvDKcPxdLJ6jGhzizMd0lgZVYm1AsQev/TUvM9wb8NhJIEAh/GWQBheHvv0hmEIo0k34tnkHRYjKwA8UAhSYRpCWMZs7cpwajGMpq9qmqZPhFA4WWU0Rts07KblifYzGzCQBAKczcMDYbgmhMDxY5RL13XzPHDxs/YW+QA4n77v47yGruvSPf1uceMeS8Vske0YFvfW17dNEghwNg8MhIs5ZOxanDd8zt8BAF4jzmsYx7GqqmEYFhOzOCEiPbjRKrohTf/WYuI+SQIBTuhRgTDkkPd++uIbAsCThGWu03CzEXoWY98tKVx4yWScZxDWiYk5ZIi8kxJ++f6vJAkEOJXHBsIQ6taWn5kHwvmMxO0CAMDPhegTt3kIq50Vn3v2YjCq67qqqjipIV48mcHe9337ISx1FlpF1xpVQ+KXTraP4bht2931Ez5kjVEA5h54jw3pVnokNDquLZOdngqvjQtVF5+XqE4X4I4Xp6tsh3eLW0TMt52YvGc4G5/aIgIgQw+5Ud8e+8aP6JNK404MRpMdkhYvXtsiIt0tab4pxbi5z8TivhTf8KgIKI4CPMtbksDxoYFw8YLJy8dZYrm4OujGNoP3kgQC7Ny7btShpXIx4oRTN178wPKkjbA/bw991BdbjivrhgPwQ2X5zntsWNI6bgk4P5UOaNm4eHJNkWwzuC2On+n7/nK5XK/XRy0Y894vFoAvZX6jDuM/028gHPl5KHzUF5v1jwfgqfIMgWVZht3n45G6rodheOBXkecXC3Agmd+oQ+tnVVVx2mGYE/jz7+RhX+xD+hP34wHfCMDjvPum+AZxTmAYAzOfZPhzeX6xX3rz7zrAZ+++Kb7ZZE7gz2cDBo/6Ys+Wo2fe6gDsSrZ3pMkyaE3TPHZp7Gy/2G1lWS4e910Br+dG/SSGgy7zCwfshzvSk/hiF/lagP1wR3qSR32xf/n5WwCwZq1zBgDOTQTcM0kgwBNpB30Gf1gA7J8I+AyPioD/8ZB3AQAA4BAkgQAAABmRBAIAAGREEggAAJARC8MA8ER936dP67pOT02eTl6bngXg6Pq+n9/qv7GRbNu2j91+9l0mcfCVJIEAL5VbCLxcLvFxVVWh7nVdD8MQDl6v17qu+75PrwysLAdwJm3bDsNQVVU8sp0ChegwObgYRncijW6TEBbCXAh58Wk4FYPj9js8liQQ4KVOHwJToZDzQDgMQzjYtu3lchnHsa7r9LK6rg+R4gJwl6Zpbr+9x3QotRgW9yDUK0a3STknDZ1pQliWZfshxse6rp9aU3MCAV6taZo+sR0OjxUC59J0N+j7vmma8Hix7uGgsaAAmQihsK7rsizLsoxjRoqiCE9D1CvLMjyIASIcTF9VFEXbtuHIi+NI13UxqIV0Lp6q6zoGvuKjhTQWL/xVEN7her3Ga54a6CWBALtwjhA4ETr9JsWLA1lDLeZZYtd1R0lxAbhLCHZRuNv3fR8yqHEcm6YJnWbhVOwuC11n4WDMr8LByatCKhX7015cu8mD4iMUpo2ek8EvXdel5Xx2H+C/jedyvhoBx7V4R6qqqqqqJhEDWFEU6eP4JuFgSJbC49BSOLkgviqcja+qquqZtdzSNE389FD+eCo2doZypi9pmmb7bd3qF/lagP1Yi4BFUVSJcMNPo1762vggXjkmETANMeNHNEwj4IvFOD4JcPN4HYUrYy3Cq0IcDA/mn/KoW705gQCvNh/hGZsAw4O2bbuum59tmmbSqNm2bVVV6asmbYfv7VJLGz5Dj2XswwztoJOJ8kVRdF03Wg8G4KTW5gTOR4V8KQ42SQ+GgZehVzBdcOUFQr3C/6/X6+VyCX16aTHSgTxhDZjJFzIJiM+bHm84KMCrrc0J/EkIDMLBGAL3MBx0fjCO/yk+8tt0FOs3vgQA8jQZ6hKbRGMn24uDYAhwk9g3DMPlcgl5aczrQsHGcVxL855dckkgwLHtLQSmwizH8Did5Rhj3mRyfP++HZPOoVzy7kIBfN9GV166+EoYbFJ8TIkvPlaZXlxc7UnSkNe2bRjS2fd9OpLzer2GRHEySzCoqipdWuapraInHA66GPAMLgKOayM1ClssxMvCdgthXGhICNMLXi8uWhOehqQ0LloTDqZjXBeDIrcT7ICd67oune9QfHXjClMGFk+FkZZpNCk+ZkZMDr7GJLptpK/h1Hwf3UnQfOotvTxZwCjLs9UIOK7FO1K6D2wUMrd0DEl8bQgGoe0w7p4X873JG8apBWlz2F2bMj3DpLtv4+CN3OoX+VqA/XjUHemWESLza34SYn7o5x+9/Q6P+mLPFjCEQGA/sg2Bz+ZWv8jXAuyHO9KTSAKX+YUD9sMd6Ul8sYt8LcB+uCM9yaO+WAvDkLWy/P3uIgDslDskwFlJAgEAADIiCQQAAMiIJBAAACAjkkAAAICMSAIBAAAyIgkEAADIiCQQAAAgI5JAAACAjEgCAQAAMiIJBOC5+r6/5WCfeH6hAHi1tm3nd/i2bdu2fUNp3mQnMa4cx/HdZXiksjxbjXiqsvw9jn97dyk4rcU7Utu2dV3XdT05GP9/PpPvoa7rYRjC46ZpQq3Lskxfsn0nd6tfNPkOo29/V+6QwLct3qjDbWpyfPHgsfR9P8lv0xvy9XoNQT8Nf/FgKr1g7Qt5VATUEwjwUl3XXS6X+cGu695Snqdq23aSmbRtOwzDOI7jOF6v17TW1+t1/PDykp7EuOTdhQL4JE2Wjt76GdK/SViv67qqqnAHbpomnE3DXzyYSi+oqmqeIj6WJBDgDc4UArc1TZM+7fu+qqrwOES4+FU8O+AB8HZxAEjQdV0aJvq+Lz/E6JAejK+t6zo9/rLyL4pxLRiGIUa0tLKxpovxbhIfY5fgsyy2Gh7X+WrEUxXFP95dBM5s8Y4UwkBsI4xH4sXX6zXeomPnWHqwaZpwsKqq9Pgzq/J9oYTbp9JaFJ+7BBfttrLv9fCvxR0S+La1CDgJCpMjMQSkYTEGvsmV8wveZRLWJ6cmX8X1eq2qal7gULumacJL1kLho271J+wJLJe8u1AA/2/ewpc2Cl4ulxgC43CRy+USQ2AcQjkMw+VyiVHhWD2KYfxMTP9CQhsqeLlcdjJvHoDHCkMlw02+bdu0Dy08DQExPA6XXa/XEOAmHWixY61pmn1Gjbquu65LGzr7vr9cLmlXYXpxURRd172mLidMAteSZoCdyCoEzoUBPH3fp3Pl+76Pj2OtATifuq5DROu6Lm2+7Pt+GIbYhTMMQzpfoCzLSQTc8ySCEOmKohjHMS1nXdexuXPykrquQ2tviI/zCx7rL099dwAWhRDY9/28jTCEwPRIuqrYZOLBnkPgmtABeMSSA/BzYc2wkOCFRsBwfDJRPAhdZzFqHGJ836TMQbo2eKxpesEwDOmMx2cX8oQ9gQD7FxYBiyEwHk+XFAtCrni5XNq2DQ2EbyryY4QKznfISOP64jgZAE6jqqrL5TJv1kznSoREMQ2UR4mAYQbHJJCFdUTj4yKpVHhaVVW84AXzO/QEArzHWghMd00oy/J6vR4xBK4JAX6ygVJIdOPBeewE4ExCvjdJdcJ4yEksCGGxLMt05cz9h8LJzk+hDTddqSQOAooZ49oFT3K2/XbtIMxdbIXMU61tlRvXcQljQcOtPyzxEo+Hiyd7qYcQGAaFhmgRR5uEPGr/cXHbZGzMGrf6RQ//WtwhgW/7yR1pHgvSIzdGin2ajwC694JH3erPFkf9ZcBd/InDUwmBT+JWvyj9Wh5yc3OHBL7NjfpJHvXFmhMIsEdri0evneUo4toAi1M+fnIWAG50thxdqwN30c7NU7kjPclBv9gw6LdIhvUWRZFWZLIowmSrjO2zhZ5AYE8OeqPePz2BAHAkIQMMywOEbaCKZAm4sGBs2CRqHMemadI9srbPAsBdzpaja3XgLtq5eSp3pCc56BdblmVc6SceiR16cVvhb5yNR/QEAjtx0Bv1/j3qi7VFBAC8wmTj4CA9MtkvpKqqyfjPjbMAcDvDQQHgFdLFXeO+iGnH4PZ6P5OzFgcC4Nv0BMICg6CA5wmTA4uiaJomPFic3RdXgrl97l/cZbgoirL8tXHl2miisvydPPsV388tEeBM3pkEhkWu522ZYcvjeMFdZwFg5+LaMF3XFR8bP2xcf3un38/nBKavKku5H8A5vS0J7Pt+cTJDugR2WPpsbYHs+VkAOISw3V/IA9caNLcDnPAHwLe9YU5g3/dt28bBMCkLZANwSn3fb68KU8j6AHiVNyzems5YmCyV9tgFsuFLayOmzAnkIbK6Iy0mOenZ+Hie+dy7xskRv9iwU/xki4gwvCXUJX0cpFtKLJ61RQSwW2s36v7DjRO75jFiMhJwz7PD1gLcvFEvXLYRK6OHRcDxTcImudfrNT1YFEVVVemRsCL2LWfjNU8oLKdVFP+46zjcZe2OdL1em6apqioObdg2uVXGd4h+VMofC/fzjbAy2dsgrU547fwl2zfzg97qJ9UPq8LEH1/4KmKYmwS4xbPzGJo8fsBNzJ0Q+LbFG3W474XwN7nLTf7ID67X6/x4eGH1Ib2Rvsu8nHHdr7UYt5iRpUcWv5DxcRFwd0ng5Kc4SQInZ8P3O3mHJxSW05IE8lSZhMD000N5JhdUVTXPY8ckRn55cP6JPyjvO02i/uS7mqTTky9t++woCQT2ZC35Se9dachYvH4tAqYhbzGneJnQJju5n6ftm4thMRUbc9daRSceFQF3tE/g2gLZG2cXlTd7TLkB7tF13fV6DbOj+76vqire6O7a+7tpmjio5nq9dl33xjljcTROunxXtFGvSSdhkDagnkwI88E4jpMfWV3X8YJxHOcbA26cBTicEAqLjzlf8Y/zuq7D3+q3xLW6rquqimGobdvw2niTDKtwxU98xs1zEsvatk13ANoYsJouDxb+JHh42dbsKAl84ALZN/p5mQF+6AQhML2d9n2/mMJdLpdQpDQWtm27uA/Qnid4/Fz9YfuC750F2LOmaS6XSzobMNzQYidYkSwCEto3b3nbtNMotLSOH3Ot4/Hw4OHxZXHHu2EY4vHtTYAul0s6ymMYhkn4fp4dJYGLLJUGnMz5QuCkDIvvH8rz9h5LAN6obduwKmTXdZOWyvAgBIi4JfjtA0PCkJPQBRcXWYkHYyQdhuE17YxhH4Tw0WsZ3WQ0UJGMKS0+L6X5DLtLAmV9wLmdMgSGvse0vzEVxy6G6py7ow+ADaENdPyYAveoVCcMpByGIcTWdOZXDIgxsD7kE7eFYFfX9fV6XZsTcblcJqNj0jE7zy7hvpLAqqomX1PYGHDj7CvHznIaZfk7/FcUv+Ljsvz97nKRi5OFwBC3xnH83qbnAOSg7/s03t24RcQt0t62+aqTRVGEDXXSqXrPNm/hnZiH4xfHyn0lgXE3pPB0MrJo+yzcbhz/Fv4rin/Ex7bD4gVOGQLjpPaJ2KUZRsXMywlAPuZ/uq9tlxev+XJCRJzlHl6SDjYJQ1Ti467rXjYWdFKMtLTp40lXVpgqMn/Vs9y+jMpjrS3n+sAFsuFLtojgqRbvSMXn7RzSrW6KpR1xiqXNgtIFssMK2vG1YeeJ+ZvH++ePqjQzuS3Hj0iXuk7TzsVNEeZvu11Ot/pFxXe3iHAnBB5u8UY9Dxnp9SFApNesbTuUvsPkgrVMYTGYPkoaeTeKMXk82dvpyzQnvvAhZX7QlvOPtj1gaeNsWe60RuxTWf5e7ABcOw53WbwjTXrGimR1zbIsQ39dek2IdvO9BNLh8eFV6efGx2H+4eT9f1Cn73vgqqRu9YvSr+Wum5g7IfBwGzfqtb/k0zDxk5Dxyrl/275Riy8L/6gIeLY46i8D7uJPH55KCHwSt/pFkkBgP9yon0QSuMwvHHfxpw9P5Y70JL7YRWsrDH35XbkTAg/nRv0kj/pi97UwDADwbcmkkX8kj//NGsgABJJAAACAjEgCAQAAMvKXdxcA4MwetRE8AByLCLhnkkCAZznZnHiz/PcvmfX3K/3ry/ouwIudLF6cLwJKAgHgJGKyV5YSPwBWmRMIAACQEUkgAABARiSBAAAAGTnhnMDFlYhONpUTAADge06YBMr3AAAA1hgOCgAAkBFJIACwwCYTAGclCQQAAMiIJBAAACAjJ1wYBgDylK6PXZa/wgPrpQEwoScQAE5i/FAU/0geA8AnkkAAAICMSAIBAAAyIgkEAADIiCQQAAAgI1YHhX8ry9/Js1/JGnt2TAYA4DwkgfBvaaZXlhI/AADOSRIIANkx9gEgZ5JAAMiOsQ8AObMwDAAAQEb0BALAmSUjPw37BKAoJIEAcG4x2TPsE4DAcFAAAICMnLAnsEwHu3wYx/H1JQEAANibEyaB8j0AAIA1J0wCASBP6ViYsvwVHmgbBWBCEggAJyHfA+AWFoYBAADIiCSQrFktHQCA3EgCAYCfSrakB2DvJIEAAAAZkQQCAABkRBIIAACQEUkgAABARiSBAAAAGZEEAgAAZEQSCAAAkBFJIAAAQEYkgQAAABmRBAIAAGREEggAAJARSSAAAEBG/vLuAgAAj1GW5fzgOI6vLwkAe3bCJFAIBCBPgh0AtzhhEigEAgAArDEnEACyNo5/e3cRAHgpSSAAAEBGJIEAAAAZkQQCQBYM+wQgkAQCAABkRBIIAACQEUkgAABARiSBAPA6bdvWdV3Xddu2k1PlzOSajde+TFn+ftdHA/AoJ9wsHgD2qSzLoiiqqiqKouu6ruuu12td10VR9H2//dq6rodhCI+HYej7/suXAMAiSSAssIYe8HAh2YtZX1EUZVleLpdxHOM16dlU27bDMDRNE/oA27btuq7v+8WLX+Zzr+Cvsvz/J+6iAHtWprHnBMrybDUC2Ak32B8qy7KqqrT7LuRy4VtNHy++tiiK9Oz83V7zAyrL34sJ3tpxgBM4XwTc45zA7TkPe5gRAQD3qqpqErnSFC4+XhvnGQaRpk/j6FAAuMvuhoPO50ukabcZEQAc1DxgzbO4MhlSOenom4z8TAPi4Tyk21DfI8C37asnMM6XCNnd9XotiiK2m8YZEeM4juPYNE3IA99WXAD4lr7vQ74XIl3xkRDGGBc6+kIEvD3SzdcXXfOMSgFwFPtKAkMIjI2dkwXTuq4rPueE6VMAOIS6ri+XS/F5GZjr9TqOYwxqfd9XVRUC3+2rv4w3e3SdADiSfSWBkwkPQRr8zIgA4LhCB2Ac1ZIGuHmmt711hIEwAHzbvuYEtm17uVzKsmyapph1/RX3tIYCwK70fX+5XCYz/b4UA5+sD4BH2VdPYF3X6ZIwRVGEbLBYCX6LOaEZEQDsUBgCuhjOQg/hxtqh85EvwzAsDp8BgC/tqycwrHU22Qy3+NgW4sY3MdUBgL2JGd18KnuIcWEGYNgDqUjWQovXXC6Xuq7D+8RrXlF0AE5nR/sehnEyMQMMQloYChmGia6dDc63kyPATrjB/kSIcYun4rc6GaIyCXmTd0gXlYkvP8pm8U99E4CHO18E3FdPYLGyD1Lf99vz4wFgz+q6/vIPiHEcww5JsT9w/g5pTyAAfM+OksCY5qWxLY12izMi4lAZADi6xfRvcsGLigLAee1rYZgwI2KyO3yc+B6OT3YRNCMCAADgdjvqCSw+ugHj0qBFUaRLadd1fb1ewx4S4cj1en1LOQEAAA5qX0lg8TH+c23OgxkRAAAAP7G7JDAwIwIAAOAZ9jUnEAAAgKeSBAIAAGREEggAAJARSSAAnES55N2F2ouy/P3uIgDsxU4XhgEA7jWO47uLAMAB6AkEAADIiJ5AAGDL54GUv9IRpuP4t5cXB4CfkgQCAFvSTK8sJX4Ah2c4KAAAQEYkgQAAABmRBAIAP2WMKMCBnHBO4OKeSFbNBoA3esjqMpaoAXiIEyaB8j0A2JuHrC5jiRqAhzAcFAAAICOSQAAAgIxIAgEAADIiCQQAAMiIJBAAACAjJ1wdFAA4ilt2fSjL3xYCBXggSSAAnMQRd8q16wPA60kCAeAkdp7vAbAT5gQCAABkRBIIAACQEUkgAABARiSBAAAAGZEEAgAAZEQSCAAAkBFbRAAA57S2E73dCIHMSQIBgG+ezz4AABmXSURBVPMoy98xx7MTPcAiw0EBAAAycsKewDKO9kiM4/j6kgAAAOzNCXsCxyXvLhQA5OjzrDwAduGESSAA8CSm1QGcgCQQAAAgI5JAAACAjEgC4Q4mtwB7Vi55d6EA2J0Trg4KAHmyEBoAt9ATCAC81ENWl7FEDcC3SQIBAAAyIgkEAADIiCQQAAAgI5JAAACAjFgdFADYnc9b8vyKW11YDwbg5ySBAMAupAle+rgsd537leXvPRcPYM5wUAAAgIxIAgEAADIiCQQAAMiIJBAAyNTn5WcAciEJBAAAyIgkEAAAICMn3CKijHsJJcZxfH1JAAAA9uaESaB8DwAAYM0Jk0AyZ9NeIFvZjoX5vL7Lr/RrEBEA5iSBAHASOeR7i9JMryyXE7+7skHticC5WRgGAAAgI3oCAYBHWhucqW8NYCckgQDAI90yOBOANzIcFAAAICOSQAAAgIxIAgEAADIiCQQAAMiIJBAAACAjkkAAeJ22beu6ruu6bdvHngWAG9kiAgBepCzLoiiqqiqKouu6ruuu12td1+FsXdfDMITHwzD0fd/3fXzt9lkAuN0eewL7vtcOysN93rwY4NVCsne9XkP+No5jURSXyyWcbdt2GIamacZxHMexaZqQ6d1yFgDuUoYgtB9t23ZdVxRFVVWhyTMtYdoOGq6ZhMCy3F2NeLGy/L24MfHa8Ye8OeTADfaHyrKchK0Q8sK3GjoJ0284vX77bDyywx/Q6++9D7n4eZ8IHNE+b7A/sa+ewL7vu64LLZ1931+v1+Kj6bTQDsqblOXv+F9R/Pr8FOBWVVVNxrBMQlgYJpo+nbR7bpzlxYQG4ND2NScwRMcYI+u6bpomng09hPFsaEBt21YeyFOl7btlWWjuBb5nHq0mWVxs9Fw0OTsZGnNuO7zxviw06GYEnmFfPYHDMExaOtu2TdtNtYOyQ9p9gXv1fR9GeIYxL4utmTHru72ts7zZIyoBwFHtqyewKIqw4kvf9yEhDMvApGffVjIAeITYiReXBr2rD3DDyaasPMnnlrtfaUaszw3IxI6SwNDSGVeFaZqm67rL5RJi5For6bwn8PYGTsESgFfq+z4sB9o0zZdrXG93AJoK8W0G+QPsKAmMYm7Wtm1ZlpfLZRxH7aAAHFrIAOfrWqcXbL/8CYUCIEc7mhMY0rzJrL90YZg5ERGAowh9gGuRaz7LPSyIvXF2EjEB4Ea76wnc7vGT9QFwROm275NTcWXsy+USpz+EaJguiL1xltxYMhT4oX0lgVVVhV0f4pE069tuJQWA/QtT31Mh6tV1fb1eL5dLnNkeFg4NFs9aLA2A79nRcNAiCYTxaZrmTc5qBwXgKOq6HldMrrler9frdT4ZfvssR2FXIWAP9tUTGHaH77outnSGXSLi2Y1WUgA4gUdtF5Gtb4+TtHUEkI99JYHFx+7w6ZyHVGgHXTsLAPA9to4A8rG7JDDQDgoAAPAM+5oTCACcif40gB2SBAIAAGRkp8NB4S5m8wMAwI0kgZyB2fwAAHAjw0EBAG7yvF3+7B8IvJKeQAA4iTIdDf8h3Y8eAAo9gQBwGuOSdxeK19GdCNxIEggAAJARSSAAAF/QzQhnIgkEAADIyAkXhjEtHgA4LpvfAs92wiRQvgcAvMzDEzOb3wLPZjgoAABARiSBAAAAGTnhcFCITKsAYINYAORJEsiZmVYBAAATkkAAgMcry9+PbXxMhrcY2wL8iCQQAOAAYrJnbAvwQ5JAuMPn8aVaZAG4yQ5DxlpH5cM7MIEdkgTCN2mRBeBGQgawK7aIAAAAyIieQAA4iTIdaPhhHMfXl+TodNYB5yYJBICTkO8BcAvDQQEAADIiCQQAAMiIJBAAACAj5gQCAKxKtvgr0l3+fr54zNo7P+TNATZIAgEAVqX52GN3+XveOwNskwQCAByV7kTgGySBAABH9dTuRBkmnNUJk0Bb5QIA/JwBq3BWJ0wC5XsAAABrbBEBAACQEUkgZ2OwCgCnIagBzyAJBAAAyIgkEAAAICOSQAAAvuPzHhLAYZxwdVAAyJNNkt7OxnrAIUgCAeAk5HtvZ2M94BAkgQAAR/KT3DLpq/y11HM8PS6PhVOSBAIA5CImdWsdlQ/pwCzL37JH2DMLwwAAvIjUCNgDSSAAAEBGJIEAAAAZkQSSCyNwAACgkAQCAABkRRIIAACQEUkg/JSBpgDsWbI3IEBRSAIBAACycsLN4suynB8cx/H1JQEAzuR5Qz8MKgFe6YQ9geOSdxcKAOC5DppJGq0Kr3fCJBAAAIA1kkAAAL7wkG5GnX6wE5JAAACAjJxwYRgAyJOl0QC4hSQQAE5CvgfALQwHBQAAyIieQAAA7pCs7/IrHYP8mj0qyvL3kz7oee8MeyMJBADgDjFTKsujbk4ImTMcFAAAICN6AgEAHi+3LrLPewC+YZgocDtJIABAdtYSs28nbOkLDROFnTMcFAAAICO7TgLruu77fnKwbdu6ruu6btv2DWUCAAA4sv0mgXVdD8MwSQLruu66bhiGYRi6rqvr+j2FA4AfWGzlLGcmzZ2aQQF4iJ0mgX3fD8MwOdi27TAMTdOM4ziOY9M08ywRAHZuMcZ9Gc40gwLwKDtNAi+XS1VVk4Nd1xVFEZs/wwOtoQAcRd/3bdteLpe1C67X65hIQ55mUAAeZY+rg5ZlWVVV3/dlurpwURRFMckMq6qaN6YCwD5tpH8ho1vr35s3g3Zd17atPJA1J9iwoSx/H6WocDi7SwJDhFuLaka/AHBc4zgWRdH3/TwbjIFvLRvUDMpdbNgAbNjXcNC+77uuu16vi6fmBxdzwvnE+jWPLj4A/EhZlpfL5XK5lGU5iXHbTyFzn3s+gS/sKwkMUwEXA9vt0W682QNLzuu53QNnErr14qy/0NG3PTpmTjMoB1KWv8N/RfErPhbc4TV2NBw0hLrJytdhDn1YEXv+EnMhADiH6/WaRrq+78NyoCEI3vgm2jfZoS9nJxqtCq+3oyQwCHPfo7AWdox/sj4ATmme6cX9cjWDcmhmJ8IO7Wg4aNu28+GaYWBMiH/zSfBhvey3lBYAXkAzKAAPt6Mk8EtxvGh4Gh7YJxCAowu7Ik0iWpr1LTaDzjfUBW5k8iGZO1ISWNf19XodhiFMah+GYXEdUQA4lrquq6rqui4mfnF3+Pi00AwKwIPsbk5gaj7Bva7rcRy3d9QFgMMJnYHp/oFN08Q0LzSDhq0jwpHJQjJwbmury/x8huGX69bAKe06CVwj7AFwXKFBc348tHKGlWAW14nRDEq2nre6jHVryNMhk0AAOKW1LZHSC15UFLiBlAkO6khzAgEAAPghSSAAAEBGJIEAADySYaKwc5JAAAB4DzsW8haSQAAAgIxIAgEAADIiCQQAAMiIfQIB4CTKspwfXNyYHvbp8wS5X+lvtMVm4IEkgfAsZflbxAJeSb7H0aVxsywlfvAskkAAgDM7ayql2xC+7YRJoMEwAACnp9sQvu2ESaB8DwAAYI3VQQEAeBs9ePB6J+wJ5NySCQBG/wPAkbw3WK/NIfQnBBmSBHIw8U5t9D8AcDtzCCEyHBQAACAjkkAAAICMSAIBAAAyIgkEAOAwnjeXbz+zBD+vYQOPJwkEAADIiCQQAABWrfXL6a/juCSBAAAAGbFPIAAAvI5t63k7SSAAnEQZ/5ZMjOP4+pIAG2xbz9tJAgHgJOR7ANzCnEAAAHguq8iwK5JAAACAjEgCAQDYHTPl4HkkgQAAABk54cIw1kbjjdYWfS60aALA0wiycJcTJoHyPd7Ios8AAOyc4aAAAAAZkQQCAHBONmb4IV/gWUkCAQDIi/kaZE4SCAAAkBFJIAAAQEZOuDooAAAci12meCVJIEflhggAnIZdpnglSSAAAHyy0S+3eFzOxrFIAgHgJMqlP1THcXx9SeDobumX01/HcVkYBgBOYlzy7kJBXmysxyFIAgEA4D30JfIWkkAAAICMmBMIAACPZ9cHdksSCAAAj3fiXR/K8veZqpMhw0EBAIBnsVjODkkCAQAAMiIJBAAAyIgkEAAAICMnXBimTJde+mC3XACAHFiT84d8gTk4YRIo3wMAyNaJ1+R8DV9gDgwHBQAAyIgkEJ5FyxkAADskCQQAAMiIJBAAACAjkkAAANgRM0p4NkkgAJxEueTdhQJ4os8bWnCrE24RAQB5skkSPMNav1w8fqyN9cry9w5LxYtJAgEA4PtsrMfhGA4KAAAHYOgjj6InEAAA+MKxRr2yTRIIAADPdYI0yajXM9ljEti2bd/3RVHUdd227V1nAQCA99JtuHO7SwLDYtZVVRVF0XVd13XX67Wu63C2ruthGMLjYRj6vg8JIQAAsBO6DXduXwvDhGTver2G7C4sdX25XMLZtm2HYWiaZhzHcRybpgl54PvKC99hVjcAAG+0ryRwGIaqqmK/X1EUTdPEx13XFUURh4CGB0aEAgAA3G5fSWBVVZOkbtLRF4aJpk/j6FAAOIq6rhdHsrRtW9f12qT37bMAcKN9zQmcR8RJjpd2EgLAEfV9v9iCuT3v3ax4+AZT0X7IF3hW++oJTPV9HxaJuV6vxVJ+WKzkhOXNnlsBHsckOuAc+r5v2zbOdU9tz3s3Kx6AB9ppEljXdYiRcWnQ2/sAx5s9rfgAsOByuYT57XPb897Nigcy9/ougXN3QuwuCQwdgLG9czv30wgKwIGEJsgwwmVue967WfEAPMru5gReLpeqqtayO1kfAGe13e45OZtOEQSAu+wrCQxDQNcyvXmrZ+gwfEHBAOB51ua9h6h3ewPo7dPdzYkAjuvzQM1f6Z3PSjY32lESmE5/n5yKkx8ul0tcVju0iZoRAcDR3dUHuEFqB0Rl+TtmRCfLmtIyl+Uhq/B2O0oCo/mk+ZDp1XV9vV4vl0ts6VybVgEAR7fdAWh+BBCkyd6a12RNt5SEndhREljX9ZdNmOGatCcQAM5B1gcn8PAs6GSdeOzEjpLA20n/ADiZ7Xnvi2cn64UCp3TioY+v7znUVxntbosIAMhQnPgQnk7mvW+fBYC7HLInEABOZnve++JZ42KAR7m3i0x/2tFJAgHgpdbmwG/PezcrHoBHkQTCK5jVDdzoUdtFAOyEP3V2SBIIr3DiWd0AAByLhWEAAAAyIgkEAADIiOGg7JRJdAAA8AySQHbKJDoAgJy9vktg/RP/8YyPeyNJIAAAsDuv7xJY+8SyLIviVB0S5gQCAABk5IQ9gWXaVfxhcVteADgTERAyZ0mFoCx/Z1XfbzhhEijaAZAnERAyl+GSCjnU8RlOmAQCAMC5JZ1+b+7x209JuJ0kEAAADiZZs+S+dOvhudldJdnTgp9Zp6mSQAAAOIATJC37WfAzc5JAAADI0Q5HclrT5TUkgQAAkKNvjynl6OwTCAAAkBFJIAAAQEYkgfBqhlsAAPBGkkAAACBfn7eRyIIkEAAAICOSQHYkw2YYAAB4MUkgB2ASHQBAzl7/1+C5//6UBAIAAGTEZvEAAMDhJROLfpXl/x8/d5/e90gCAeAkyvSvng/jOL6+JMDbZZj5xCqXZY7Vv4skEABOQr4HwC3MCQQAgKPaT5fXfkrCl/QEAgAAr5Ymja+ZzidNjU6YBJoRAQAAB2I634udcDjouOTdhYIvJA1gAAAvJe/KzQmTQAAAANaccDgox/K5B8ymLgAA8FySQN7s85xgiR8AAE+31g+Ryd+ikkAAACAvmfdDmBMIAACQEUkgAABARiSBAAAAGZEEAgAAZEQSCAAAnEduq7x8g9VB4Z2S5YntkQgAwCtIAuGdYrKX4drEwMOVaWPSh3EcX18SAPZMEggAJyHfA+AW5gQCAABkRBIIu5ZMGgQAODmzY15DEsiO+GcPAADPJgkEAADIiCQQAAAgIydcHdQC2QAAwI0ynJF0wiRQvgcAALDGcFAAAICMSAIBAAAycsLhoHBE6WD0z3sD/kpnuWY4Zh0AgMeSBMLufE4IJX4AADyS4aDHs7j86fmo5rfe7ffXF72cHyXwKJn8Q1PN08ihjkU21TwZSSAAAEBGJIEAAAAZkQQCAABkxMIwAHASizNzxnF8fUkA2DNJIACchHwPgFtIAnmusvw93+Fg8SDfY1NBAADuknUSWJbl7Y2md1387De/y/NK8tTv5C77+ek8vI6f9wxcePO1TQXLsiyKW5NAP8qfl+Qu+/mH9tRqsmeZ/BLu5xbhtvlD+ym2H+UP7eenk3kEPF4S+Pe///3PP/8siuKPP/747//+73cXBwAA4EgOlgT+9a9/DRlgURR//vnnn3/++b//+7/vLRIAAMCBHCkJDH2A//Vf/xU6AP/+97//z//8z7/+9a///M//fHfR+GRjltrHKVPXAADgPY40FjasfJ0WuCzLP/74I+0M3M/waCX5uOZ3OkstXH/LwjAn/k6e9+aL3/bDi/HUN1eSM5WEF9vPj15JlORAJTlosZVk5yXZv4NtFv/HH39MnsbRoYA+VQAAvnTsJBAAAIC7HGZO4L/+9a/5wcWewDKdbfaV512sJMk1v+bXpwdfVpLXvPlBS3LQYivJ69+cPcvhl1BJlOS9FytJtiU5mcMkgTeu/nKy0boAcCMREIAbHWw46IQJgQAAAHc5WBIo6wMAAPiJIyWB8xmAYdvAd5UHAADgcI6UBIZ8769//Wvf9+FBURRh4/iiKNq2reu6ruu2beev3T67N3VdhzredfZYdSy+WxHV3KHt39hwwbwix6pjsVLNcmZSnWNVc+1H2ff9aX5dD839RARUzb0RAUXAA9Xxk/FQJv1+//znP8PxqqrS41VVpa/aPrs31+u1KIrr9XrX2WPVcVyvSCx/rFF6zTmqGQ5OqplecKxqbv/Gjh/VaZpmfvAodRy/+lGm0poeq5prP8qmaWL5j/7remjfu/8f6wckAhYi4KGqKQJOiIAvK/DPHSYJvF6v8cfwz3/+M6Z/48ePJ/7ahafxp7h9dlfSOs5LuHH2QHUcNysS/i2lB9N/b6ep5uQmEu47k3odoprbv7HxmnlgOFAdx81qbof/A1XzyzrGWoSnMc4dqI6H9u37/4F+QCKgCDgeqpoioAh4oDouOkwSWCS2byjhSPwJbZ/dlY06bp89UB3HryoyKXb4F5W+cPv6/diu5qRR8JS/sfGaeTvogeo4blYz/f1ce+HkyD6ruVHH8ONLjzRNE3+aB6rjoYmAIuCZqikCHqWOowh46gh4mDmBobiLXc9F0kUbnw7DcOPZ/diu40++gV3ZqEhVVXVdb7z2HNW8Xq/zaqZHjlLN7d/J4qNSiyPsj1LHYrOasWp93x+6mht1HIZhUou2bdOZD0ep46GJgCJgcZZqioDFcepYiICnjoCHSQK3bd83J2e3Lz6oc9Sx7/vJtNqu69Kn56hmmEBcfNw3w+O0LueoZtu2wzCMK7tXn6OOQVmWl8vlcrmUZbldr4NWM8x3r+s6VHAS7M9Rx0MTAc9RRxEwXjC5/nWFexwRsDhLNU8cAQ+fBC62PcSfwfZ6Tedw1jr2fV+WZVEUoW3mlNUM981hGJqm2WgyPKK+77uu2247PIHQ4BdHhoQmwPBn3DmqGWrRdV34Y7RpmmEYLpdLOH6OOh6aCHjWOoqAhyYCnqOap4+Af3l3AX7qrhbQUzplHeu6DjeXOG7klNUcxzE0hYb7S2hqenehHuNyuawNbTpNHYvZuKbQqt113Zl+lEFsz27bNrT7juN4sjoekQh4yjqKgEcnAp6pmsV5I+DhewIXbWfnJ8jdv3TcOobmz9A0+OW/seNWMwrDDKqqmgz7SR2umqEhMFQtjp4PI53W6nK4Ogbz38/t9uzDVTNUZzLnIa6ituhwdTwfEfC4dRQB5w5XTRHwNNU8fQQ8fE9gIOado45934f2s9PcQeZCJJi0k8V233jN6wv2cJOgPgzDMAyZDFTLoZr9x2SeE9fxKETAc9RRBIzXvL5gDycCFqeu5jki4Bl6AudL8YRWtI2zk7T+6E5Tx8vlUqz/izpHNUO0m9QxfXqCarZtO1mGuPiYNhDb1Y5ex+KjzX6ykMPJfpTFUi1CHc/0ozw0EfA0dRQBi1NUUwQMzlHNk0fA8VAWN6acbN042dNj8eyed3Lc3nzz9m9gz3UclyqS7qk6kV5w9GqOHyPL13ZzPlw1t39jg+LzLkmHq+O4Us1JyU/5o9zeG/dwdTw0EVAEPHo1RxHwgHUcRcCTRsAzJIFjcvec3FxuObs33wiB49HqOG6GwLm1a45YzWBSwerz1qLHquY3QuB4tDqON/8oD13NtTpOpkAc+tf10ERAEfDo1QwmFTz0LUUETB26mhlGwHJc2cPkiNIu2nvPnkMOdSzOUs04asJv7NHr2Pd9mB5w7h+lG+zO+QHlUMfiLNUUAYuz1FEE/PLsbp0qCQQAAGDbGRaGAQAA4EaSQAAAgIxIAgEAADIiCQQAAMiIJBAAACAjkkAAAICMSAIBAAAyIgkEAADIiCQQAAAgI5JAAACAjEgCAQAAMiIJBAAAyIgkEAAAICOSQAAAgIxIAgEAADIiCQQAAMiIJBAAACAjkkAAAICMSAIBAAAyIgkEAADIiCQQAAAgI5JAAACAjEgCAQAAMiIJBAAAyIgkEAAAICOSQAAAgIxIAgEAADIiCQQAAMiIJBAAACAjkkAAAICMSAIBAAAyIgkEAADIiCQQAAAgI5JAAACAjEgCAQAAMiIJBAAAyIgkEAAAICOSQAAAgIxIAgEAADIiCQQAAMiIJBAAACAjkkAAAICM/B+zWXlYh4SRgwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<IPython.core.display.Image object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ - "nbins = 240 \n", + "nbins = 60 \n", + "ROOT.gRandom.SetSeed(100) #importante fijar una semilla para la reproducibilidad de resultados. \n", + "toySignal = ROOT.gRandom.Poisson(nEntries*fSig) #el número de eventos señal y fondo lo obtenemos del valor de nuestro modelo y le permitimos que fluctue de forma Poissoniana. \n", + "toyBkg = ROOT.gRandom.Poisson(nEntries*(1-fSig))\n", + "print('Input signal events: {}'.format(toySignal))\n", "histoBkg = ROOT.TH1D('histoBkg',\"histoBkg\",nbins, minVal,maxVal)\n", "histoSig = ROOT.TH1D('histoSig',\"histoSig\",nbins, minVal,maxVal)\n", - "histoBkg.FillRandom('bkgModel',100000)\n", - "histoSig.FillRandom('signalModel',5000)" + "histoBkg.FillRandom('bkgModel',toyBkg)\n", + "histoSig.FillRandom('signalModel',toySignal)\n", + "cToys.cd(1)\n", + "histoSig.Draw('e')\n", + "cToys.cd(2)\n", + "histoBkg.Draw('e')\n", + "cToys.Draw()" + ] + }, + { + "cell_type": "markdown", + "id": "stone-opening", + "metadata": {}, + "source": [ + "Y ahora, los combinamos y hacemos el ajuste de los parámetros. " ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 9, "id": "coordinated-adjustment", "metadata": {}, "outputs": [ @@ -132,28 +310,21 @@ "name": "stdout", "output_type": "stream", "text": [ - " FCN=1260.56 FROM MIGRAD STATUS=FAILED 443 CALLS 444 TOTAL\n", - " EDM=-nan STRATEGY= 1 ERR MATRIX NOT POS-DEF\n", - " EXT PARAMETER APPROXIMATE STEP FIRST \n", + " FCN=63.0316 FROM MIGRAD STATUS=CONVERGED 136 CALLS 137 TOTAL\n", + " EDM=1.06449e-08 STRATEGY= 1 ERROR MATRIX ACCURATE \n", + " EXT PARAMETER STEP FIRST \n", " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 7.56581e-01 nan -nan -7.15827e+03\n", - " 2 nbkg 1.39762e+05 nan -nan -3.87503e-02\n", + " 1 nsig 5.81424e+02 5.92347e+01 1.79365e-01 1.17869e-06\n", + " 2 nbkg 9.62311e+03 1.83066e+02 3.98543e-01 -3.18049e-07\n", " 3 delta 1.00000e+02 fixed \n", - " 4 mass 6.93248e+01 nan -nan -8.52617e+01\n", - " 5 sigma 5.49043e+01 nan -nan 1.95448e+01\n", - " 6 tau 1.15287e-03 nan -nan -inf\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Warning in <Fit>: Abnormal termination of minimization.\n" + " 4 mass 1.25194e+02 2.69660e-01 1.04322e-03 -2.35283e-04\n", + " 5 sigma 2.54389e+00 2.77719e-01 8.94879e-04 -4.00985e-04\n", + " 6 tau 4.68561e+01 1.39443e+00 3.13290e-03 -1.00685e-04\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4AAAAI8CAIAAAAvKVK6AAAABmJLR0QAAAAAAAD5Q7t/AAAgAElEQVR4nO3dbZKiyroG0OTGmRc4me5hiMPonowwMu6P7MqNfImKCLhW7DhhCSJm16l66s2vrGmaAAAAa/m/T98AAADfRQAFAGBVAigAAKsSQAEAWJUACgDAqgRQAABWJYACALCq/336BgB2oKqqsizjg+euUBTFxKHouSsD7E5mIXqAu6qqOp1OIYSnf2ZmWTZ9Qp7nT6dbgH1RAQVY1fl8To+rqqrrOj6u6zrLsuv1+koptCzLy+USXgjKACsQQAHWk+d57MrvKIoiJtHT6SQ7AodnEhLA51VVlSqjgwkV4EhUQIGVVFWVxjhOZKz2aXen5sy85qMevWz7nKdvI/WeXy6XwYu0n3xu0lL7cwVJF/igBuA9Ykkvz/NmqE/5fD73X5Ln+cwzr9dr/8z4Xv0L9p/v3N70PeR5nt5u8CJzbnjsDgevdr1e775L57TBc/o3cLfFAFagCx54uzQBPM/zFO/6db4sy+I4yPxHOrMzPbwsyzgnvXPNuq5fXMwo3UP7ynVdp7drK4oi1iz7H+2520gN0qlTdt4lvdHpdGpXi9vRuX1a6P0TLNhiAM/4dAIGDqtdk+sUBfs/glKJsVP8i092CnWDTw6WDx+qgKZYNna3gzc85zbG7rmvfwNjLxy81fTuc25p8GSAFaiAAm/Xn/rd/OSnVH5rV/LaZ/Z7lvsvicqyjAny6aGNqf46dredt5u+jcGi6Uzpmv0HSXyXOUuHxnPyPO+07dhHAHg3ARR4u8FEmHq37762aZp2QoovGRwDGt/o7jUHTUS9dLdt8V0GR14uOLmnKIpYLXjlIlVVddoQ4LMEUODtBkcZdlJaOifLsqIoXkxLT7x8+iVjAyUHnx+r0S4l7gv6XM5uX+Hu5kwAbyKAAptQFEWqJsZJP1mWZVnWyakp0qUT2l7v9R6chh96QXNswMDgNZ/Qf7uYF9PHTNOS5ivLsiiKV64AsBTrgAKf0S4Txsflj/YGlZfL5XK59DeoHEuK822wS3ow16ZNkqI4lLMoivlF0LSRff8ir0R2gKcJoMBnjBUR2zNjqqqKhbr+BpWLx8eY88YiXeft+ul57JoP3UP67OmFKWXmef70R04p83w+W3we2AJd8MDbDSanzpOdTXpCCLHIl3JnTE53h1f2rzOmkzWf60yf/mgPBdBU920Xd2P+fiV9phc2TSN9AhshgAJvN5h7UrSKX55Op9PpND+xjW1WGa/Teb5f1+znuXbRsX/l/hXinQ+OpHwi57V7ySfubfqWxq48dkgeBT5FAAXerq7rsTnvKR6NrcrU75WOCzD1r5n669tLI41VTAfHPqZM2d+iqX9y/8bS8xMLRYWfGm0S5wa1e8n7tzQzkg4aa4HUXADry15cXg5gTHsPyaiTMttDEtslwLRkertXup2f2vNy4sljZ4ZWfEzZLhVf67runN/OmufzuX3Z+KD9M7NzG+E2QHd+us5Z86g/1yq1YXsZ+U6rtpsxnR8/bHy+3wLtaV7hZ+19e3IC6/nE9kvAV2jvANn/4dPZQ7JpbW7ZMbGR5tNnXq/X+Hb9l/Tn18dzBn9mDl68/9Gae3/qD75k7H7a9995eacNJxo2fqj2xcduAGBxKqDAu6RqXPw5kzqd4+yisVe1Twv3xinGNZvimXFdoekzw8/cpuk7b9/D9GX7F59z/qPG7if14Lc/0Vg7j10ktaEhocBqBFDgXToBFAAik5AAAFiVAAoAwKoEUAAAViWAAu/1+qbtAByMSUgAAKxKBRQAgFUJoAAArOp/n74BAGDr5uwly9d6YjynAAoA3GfSCIOe++NEFzwAAKsSQAEApmRZVpbl/JM7iqKY//IvYRkmAOCOLPvqwJBlWZ7nVVXNPDm0lkCu6zodeqgNy7Ksqmrmm37Qc98bxoACACysExzLsrxcLg9ltaqq2uH1YHTBAwDbNV0CfOXomsqyjDXR/i09WubcRVn0LgEUANiWOOayLMssy06nUxxJ2T6hqqr4ZDxaFEX/CmNH+wM6i6JoXz9dPOqnvXhjyczxnfE67ZPTB+zfZ5ZlsfzZvn68z8Hz96cBAJi0cmBIKeV8Pl+v1/P53Akt7aOxspjn+eDRwdeez+f228UrxMfX67V/8fb10wWv12s6oX3BiXzVPhSvk+d5vE76snMb8Wi6yXR+/30/5bnvDQEUALjjIwG0na5iIIvPxKwWY1mU53mKbu00GXXOnw6g/fjYCbj9EwbD8cTnGrvPzjOdLwfftx27P+W57w1d8ADAFrV7q2N38+VyGTzaHhZZ13UqW7bPnL8Q0uDL0xuFEFIRNIrh+NFxmVVVNbcTkqanHKW0dwxmwQMAO5DneYxocX2iuq7j6kjFj3RmXdfPjY+MIbLz2vaXgyekQ0+8afws4V76TG8RHWB2vAooALA5nTJkR1VVcRxkXdeXy+V0OvXnFbWdz+f3Tdl56Mrpc8UZSLGmWxRFe7zp2LucTqd4fhyf+vwdb4AKKACwOf0iX+eZoihi7bCqqpjMUh00z/OHdh5KV44vn+hML4ricrl0ip0TZdG2eEvptMvlMn9x+1j1nH/+9qmAAgBb1A5b8XGsEXZWTYoFzvRl6qlvv7azWNJ0jOu8vD8Utb/IfLgXQONC9Onkwcw60bHeX8Jp95acBwUAHNHKgSGllDh1PXU3x6NjKxZ1vhx8bbp45+jYy1O07SzDNPZl05rCH7U71tsz9zu3kU5LJ/QXh+p/5C0Euefu4fP3DQBs3PoBNK6s1C6ZddZd6hTU2kf74yMnjuZ5HkNkOqEzyb0fMTvv3lkLKQzpL9jZeZd0G+E2Z6fXdt60HW1faerXPXcDz+wfDwB8lYc2MV/k7eJ4x6gzyT1KA0AHj4afOeMTR8Nkv/nrJ8xRlmX7DjvX7HyE/ida5B5e9Nz3hgAKANzxqQC62jvytOe+N0xCAgBgVZZh+k97Sh0AAG8igN4wIAEA+lau0fh1fHi64AEAWJUKKABwn4FqLEgABQDu0y3OoOf+MtEFDwDAqlRAb9xN8f7+AwB4kQB6Q74EAHg3XfAAwEuqqsrGLfIWWZZ9dsPJ9ymKYnDPp7RLZ1mWnUP9Ru6cM/HaF48uRQUUAFhAnudPR5aqqk6n00Q/ZJ7nhwygVVXVdd1/viiK9Hxd13EX+JnXnH7tK0eX1PBDawDAoOlfkdfrNYRwPp+fvn68wtMv36Pr9Xo+n2MYu16v7UPx+dSe8ct0Tmyrzktmvnbw6Mwvxzz3D/dd/9jTvu1bHwBmej2AXq/XGIPO53Oe53metxNVnufxCumc9CBeNr28fcF4nf77xmzXeZetaVcDOzfZLxGGEPI8j49jLpy+7NhrYzs/d3TiHadPGH7VE685KgEUAAa9HkBjHIzxKD1IKTNFsXiR9jkxAHWSUDra79FNV0vnvFKafbfBcmY/9rWjYXrcD+V3X/vK0THPxSdjQAGABVRV1R8DGqezxMd1XZ/P53ROnDoTX1UURWcMaF3XeZ6Pzc6p6/p6vcYrx/GjaSrP5XJpvzDLssvl8tb5NO9wd8Bre3ZXp6E6r20P63zx6IIEUABgAXVdj82nSY/bQTDP8+lwMzb9JUbMdNmiKM7n8+VyGTy5aZp3TaN5j8G77cwNCiGkKF+W5eVyGZtKv9QtLT4DTAAFABbQrm6+rt/J3tF+r3b2irk2y7Lz+Vz8WOquVnD3blPpN4pV5DfVKWfe0hMEUABgN2LWHKy2xkJd7NOvqupyucSy6LLJ+CMmetjDT310rE7ZqYxOF0pXqxZbiB4A2I2YsQbnFaX4FQNo8zPFZ6x3fsueCILp4z/02k/lUQEUANiZTjAqiiJOyol7MqWjRVHEDLqvYaD90bFx/lb4+YCdgm5/BELnte0lBSaOns/niaPLEkABgAXEvu++h64w57SYk9KV46T4mM9iFfB0OsVLpYn5+xoG2rnn+CA9mef55XJJbdX++NOvvXs0fjl2dGFPLN10VFoDAAZN/4qMVcbppNFfUbLzTDx5cNXP/jPtpUM7h/o3s9m16JvxbY06n2JwpfqkMyBh+rWvHB30XHzK+h/ja7WX1BrzUHNl2d/WC389c08AsAFZtkZgiAuCzq9Wxirg2MybOClnX7XPjlc+4MRrXzza8dz3hgD6n8X/35Vlf2PuTA8AYI/WCaDs0XPfG8aAAgCwKgEUAIBVWYj+Rhq1qcccAOBNVEBvNM0v0RMA4K0EUAAAViWAAgCwKgEUAIBVCaAAAKxKAAUAXlIURZZlYxsKxkO73pFog4qiSNvBt6XdpKb3cL97wt03epEA+pgs+5v++/S9AMC29JPKO7ILVVXVdd1/Psuyy+USH18ulyzLBtu/KIrBl89/o9dZB/RhaXfNT98IAGxL3J2888xnbuWg4hbwKWW2xZa/Xq/pnyDLstPp1Nknc2amnHijRaiAAgALyPO8n1cul0ue5/2TY1Qd6wge60eOqah9wrcF3NPpNBYK67rO87z9B8D5fB68wuC/yPw3WoQACgAsIIbFdiJMYbFzZlEUp9Opruu6rmNPcfslqR+5f7Qsy7Is2yecTqevyqBN0zRNc71e+4c66XNQPGFOi0280SIEUABgAf1wEx93UlFZlnVdX6/XdsRJ58S02jRNVVXpaPuasc6XTghDAfc7VVXVaYpOCTO2fKdH/lME0Bs/k/h+ZyM+fYMAsF2dXvjB/vf4ZEqcRVGcz+c0KrEsy3bVbbBi1/4yz/M3zZLZtVhIDiGkxowDOgc75T/CJKQb8c+CLPs7tiO8uUcAMKYsy9gnnkZnjpUn28+3A2U7cb51EsyBpUnu7QlJcejndqrFAigAsIwYd8qyTLOFBifFx9Gfndem2Ho6neIzeZ6fz2cZdL7UeufzuZ014+POpK7YZR/ncq17myEIoGNSpXOsFAoA9KXIONj/HrNOJx61xUJduyYqgM4U02en9do6LZn+DPhIADUGdEDT/Ir/ffpGAGBnUhE0jPe/dxJS3EgpDM2a/6oZ7i+Ktc+x7ZGaWyGE8/ncNM2nOuVVQAGAxcQAGottg6W1WCKNCyqFn6nZcXJMuwc/tDqUuSvlzn6gnBMxY1NPVKYXJ4ACAEuKEXNstfMYcS6XS+oRbk+Oia9Ny85cr9e0Ivp2JtBsWX/Ewvx2W7PenG1kOagtyLJua/Snw6dnJmbKP3cyAGxW/1fk6wZnKYVWDEqH+jt8sh3PfW+ogAIAHzCWKfvPS5/Hs49JSGPLwrdrxWP7xs45CgDAag5SAU1rroYQ6rpOy4/NOQoAwJr2UQFtevI8Txt5pQl08VDc0as9HWzi6Cuy7G/87/VLAQB8j11OQirL8nK5pDuPc+XaHyTLsrQQ6/TRtocmIU080z9kEhIAu/aOSUgcw3PfG/uogHZcLpe4YFjSWeshz/P2Hl/TRwEAWNP+xoC2t1joPDn9kvaXbw2gOuXhCe3/4+gxADi2nQXQqqrqur5er+1n+qeliPnoWM+08m3rmd8PPvMnDP36tLk83JWGrHz6RgB4r50F0Fj4bFc0H6p93vXKGNCJgZ7p+Yd+syoIAbA7Y8vLQ9vOxoCm7WKnTRc+d7QGU9P8Ej0B2L6qquIS3afT6XQ69Zfrvqssy34/ZOfiE8uBf4miKAY/ddwsauZ651tYOn1PATQ2xGBzHCBxpkWd9D8CsDun0ymEcL1e06KH6cloIl/OlOf59Xq9Xq/n8zld/6v2l4kDEfvPl2V5Op3iocvlMtHOMcqn/eI7J08fXVh/ic3NCiHked5/Pk5y75yZFv4cPDp4nX5rhPBn/jP9Q0NvMXpO/zoPXRn2zjc8bNl0YIhxsPNknLDRXof7iYu0L5XSbfuu9pVknhZjd/y8nXbotHP8cjDnNL0W67y2E5k6R8c890+wpwpoGBlT0hkY2pkmP310JrVJABgzNiE4LYOY9iAsy7K/jfbTVcyYkDrZYLAzuqqq/rt0bmbLTqdTKkx2dPqHi6I4n88TY3Dba1PG01Ij1HU9cXRZu5mE1J9+lBRFcb1e44iT+Ex7mvzg0fmDo81eB4A5yrLshLyUXVLfcUxRcSBj6qCv6/pyuXQW7Z4j/jZv90p3Nt9O29ZUVXW5XGIwTbeUbubR911f+hTtUQ1RJzWGySpbOyAlqQUGj77LE1XTzYpDQ5472jxbQ9YFD4vwDQ9bdvdXZMoVeZ4Pdtp2ethT4mkfHXuXsS745rbXOF4kndbpjA63HdN3hwRs0GA7hBDioNjYFHGk7JxLXa/X+JL++dNHO56MT0+85qgEUPgg3/CwZXN+RaYMlLSTaDvwDQ4ufD2Aht7Yx/abdgY49k/evn47tGuWMfp3kv2YwX+jmUf7Jz/yIf7ZTRc8ALBlqec3DriMPeBhqEd4cK3QpTbK7gz9TI9j73wcIZoGpL7+dhuRUmNcbeB0OrVz5OD5cWDu4L9R+2gav7v8HRM91xoqoLAI3/CwZdO/Isfqbe2k0S5GDnZ/91etaV8/jFT10ltMjF9MLww/Vc+J99qysS74ibrvXdNNMaehnmvJnc2CPwyrfgJwGGPrcY7tHbPU9Op4hfgu8ZqDXcap1JqKrDP3tdm1fvO2q79Je1bWxNHFCaAfY5cjAA5jcJGgsYg5uCTiE/3vcUr4WJ97fKP2UurtFYsO0//eH7owthtqGoTQP/nu0cUJoADAS2LXcHtvzFhO6xca0wkxNrVXr7z7LmVLSpbtnvfz+dy+ZhyH2r6B+C5jC2ruVGedys6njpsbtdN2HNY5eHKe5xNHF/ZEt/1RPdcaz40BffRB+m/sGdg7Y0Bhy+7+ihwcgjk4zz0NWOxPmR97l8GLD6431ElL/Xnu8U3nTO7eoLGxsBOfur8xUr8Z25eaPjroufiU9d/sa83Z8LTfXFn2N/akpweTb9E9ec6DOS+HvfNdDVuWZbMCQyyepb2I+ifE4mV73GF8sOxYw7E+6GOb/6mnm/3Rf5SZ3xsdlmG6sUIcN+sIgKOKkWUiuHRGXr4pI35b9Izmf+rpM9dpPQF0Veo6AAAmIQEAsCoVUADgvjkzJWAmARQAuMOU5dc9N1nnqHTBAwCwKgEUAIBVCaAAAKxKAAUAYFUmIS3A2vIAAPMJoK+ytjwAwEMEUGA32r0N/vYD2C9jQIE9aZpfoifA3gmgAACsShf8jbv7jH3PHgb6OgGANxFAb3xPvpwj5k5z/AGAZQmgQ1IdVB4FAFiaADopJtE3x9CHSoz9k9MzOsoBgF0QQIfExJnqoO+MoQ+lxv7J6Zm3dpTLuLzIkGIA2gTQcYMxNHxdv/w6GZfDM6QYgMQyTPc0TTdxZlm4N1keAIAxKqDzpAy6Sr88AMCBCaAP0i8PAPAaAfQpnRgaNl0QXXz+hwklAMArBNAX7KdffvH5HyaUAABPMwlpCZ2JSmYpAQCMUwFdzoqrh8JXUWsHOBgBdGliKLyB0cYAR6IL/j10ygMAjFABvZHdi4nNQ7XMT1RD50xRN40dAPggAfTGY/ly9kVDWHXp0DlT1J+bxm4oHgDwOgF0LbtaOnSQWikr8wcPwFEJoOsaWzo07CmJwmr82QNwSCYhfUhnllIwUQkA+BYqoB81VBBtQghB1YdvoZ8d4AsJoNswNFFJEuVL6GcH+Da64LdEvzwA8AUE0M3Jwh/r2AMAB6YLfruy8KdpftnVk4NJgz4net4NDAU4NgF082wuz4Gk0DkRMQ0JBTg8XfA7oVMeADgKFdBdebAaqh8TANggAXSL7gTH4c3l//TOmtWPOWdAHgDAggTQzZkbBG9jaBN+h+z3o2ND5wzIgzfxXQfwtQTQG9m9gZXN1mb/9Kqhlq9nF1TcAb6ZSUg3mns+fYMjmiZrd8HHKUpmKQEAm6QCeiCdamiwZhMfppMdgEEC6NH8W74+WDqUTdDVDkCfAHpcg8NDH5+otHHtGpusAwC7IIAe3VC//MEmKsXcqbcXAPbCJKTv0DTDE5UAAFYngH4ZW3oCAJ+mC/4b/ZuotNzqoQZiAgDz7SmAVlVVlmUIoSiK+KCtLMuqqp47+qUe3Fn+3sVuBmKKpADAmN0E0LIsL5dLCCHP88vlcrlc2svCF0VR13V8XNd1VVUxbs45+u0WjaG3F/4XSV/Zbt5W9QBwPPsYA1pV1eVyOZ/PTdNUVXW9XkMIRVHEo2VZ1nUdjzZNcz6fY8qcc5QoC386Y0Ob8HuRKzfNr/jfK1dY5E4AgI3YRwCNneap67woivP5nAJorIymo52Tp49ywxQlAOD99tEFX9d1nuftZzoJsnM0z/PU5373KF1v65QHAAh7qYCGn8lDRVFkWVYURacPPVVDx147/2Sifqe8aigAsIgdBNCYNePEoxBCHMR5Op3i84OjOVPEfHSsZ/ayFz7oJumUBwCWto8u+ChNey/LMsuy0+nUNM1Dtc/5b7FHc/aifHK/yl11ylsBamX9BrctKgDTdhBAY4jsjOM8n8+xIDpouvB5yCnwc5LWq2msF0M3u6e8GLSyfoOL/gBM2EEXfDRdy/zCxPkxOuUBgNfsI4DGxefbz7QzZX9We1z4c+Jop57Kw25jaBN+i6EAwEz7CKBpB870ZTtido7GB52FP8eO8or3LV8PABzYDsaAhp+V5y+XS5pmnud5e1366/V6Op3S0bhV0sRRKzEtqWmy7O9/0fNfO//53A0BAJu2jwAaQijLsizL2PPej49FUcRdOp84yjJupyg14XfIfm92pjwA8EG7CaDRK4suiZ4ryMKfpvm1lwWbWJyVBwCYY2cBlH3QKf+VPrL0krWfAPZIAGVh/wWCwU75oCC6bxsMfJZ9BdgdAZQlDSSSzvL1Qb/87gl8ALxoH8swsXtN01+zydKhAPCdVEBZ1662lWePNjhIAIAOFVA+wX6evFPT/BI9AbZMBfRGdi8GNWp1y8nCnxAnJ/37WjUUAL6CCuiN5p5P3+DRNM2vf8NDE9VQADg6FVD+SSPnHuq7XGwqtLGhAPA1BFBCaIXOhwLl8sPsejG0CSEEg/kA4FAEULo+v76jGAoAhyaAcmNDc4d1ygPAQZmExKYNLF//0Muzv/G/hW8LAHiBAMoO3MTQ2dPk42KQG6rpAgAhBF3wbMSsOfhNo0ceAA5AAOXzHpiDb37SumxrCcA7CKCsbYERmYPzk9qr2bOcmDsH/9UMrgXgOQIoH7BMLe02hjbhd8h+65RfjYIoAE8TQNmi+aW1LPxpml865QFgRwRQNuqxAlvTZNnfJvz+96UpSl+g/1eKIQEAeyGAciDWrv8a/b9PDAkA2BHrgN7I7vn0DXJff+36/yqjAMAGqIDeaFTLPm2xXlTVUGauLwvA6gRQNmT5lCCGfrEH1pcFYF264Dm+gQ3ljaYAgM8RQPkaTSOGAsAW6IJnPZvoCdUpDwCfJoCykm3NAhFDAeBzBFD2pF1DXSDRiqEj7PwOwFsJoOxMzJ1LhiExdEgn32+rgA3AzpmEBCEEU5QAYD0CKLSIoQDwfgIo9IihAPBOAiiMEEMB4D1MQuIbPTCbvj9F6evnJwHAi1RA+VJN8+uBmd3taqhSKAC8RgX0RnYvWDSqX9+saazWBACvE0BvyJfcYdFQAHiZAAqPO9bA0IX3lwKAewRQ9mGL+0C2Y+jOS6HL7y8FAOMEUHZg02W5DQwMVcK8KzWR9gHYAgGUb7dANNnAwFAlzAnpX1b7AGyEAMpXa0eTV5PoBmIoAOyCAMpxvFLf6hfJnuzXfiSG9t/i453paoQArEAA5SDeEdee79eeHUPHcudHgqDxkQCsQwCFtxmMoeHJfvmPF0cBYCkCKF/kM/3LnRganh8eumxxVG87AJ8igLJXz+Wnj9UO21vJ/zxoQghhpfsZLKCqpALwEQIou/TxCToLr9kU/rxyY7Pf2VJNAGzC/336BmBPmubXMtm3adpd8E34vcA1AWAnBFC+QnuZz+3Iwp+brvn2OFEAOC5d8Deyewmgsa74Dq3ZX/9MN31rM88m/A7Zb8vXA3BsKqA3mns+fYPswBPd9Del0BDnJ+mUB+CwBFDYjKbJ2rOR9MgDcFC64OEZr24cP6E9Tf7ZFUOtWg/AlgmgcF9nAlN/4/jl3zH8+a8X/qmlmiy6BMBmCaBwx4fXrjc/CYDDEUBh23oL16+5fxIAvIMACl0b6ba+GWbaNFn2t9spP1QN3cjNA8AEARRuPLyC0ntmIw0PMx3cxrO9o5L5RgDswW6WYcp6yrJsn1CWZVEURVF0np9zFJ4Tl/xcOfZZNBSAvdtHBbSqqukTiqKo6zo+ruu6qqr2S6aPwu5k2d84KX5OpzwAbM1uKqCht01RqmWWZVnX9fl8js+fz+eYMucchd25Kbs2Tacaavl6ALZvHwF0Oi9eLpcQQjuPtr+cPgoH0O+Un46hWfbXXCUAPmhnXfDxQVEUnRPyPO98mfrc7x6Fg+hPURrqkTdRaZpNpABWsI8AGmWtok6e551RnhMv7BxtDwmFo7ndydOioR1zVi2wiRTAu+2jCz7mxTSOM5YwYzf6YO98SpyPjvXsz7V/1EufE5ZiYOiQj6xaAEDfPgLo9XptzzqqqirP8zi486Ha513Ny577gLC82/lJTfgthrbFgbDKnAAfsY8A2s+R8ZmxAud04dMUeL7Ho/OTvoRSKMBn7WkMaN/MrnaJky345OyW2Tt5AsAKdlABraqqv+9RO1P2Z7XHhT8njnbmxcPr5vTnLl51e6wT2aKhQ/TFA6xvBwE0ljkvl0t/bfn0ZWhVQ+ODzsKfY0dhEalLd2a+XCTxPPqm6WViaKIvHuAj9tEF3zRNlmWn0yk9cz6fU4gsiuJ6vZ5OpzQJ/Xq9pjMHjz46OQkW9GjceUtxbt6ioQDwDvsIoCGEpmniHu5FUQzOSYonhJEZSxNHYcteL85N5dfbRUP/ewYA3mk3ATSEMBg9Oyc8fRQOaVZ+bZqbUmgQQwF4rx2MAQXezsBQAFYkgAI/xFAAVrGnLng4sA0tA9Sfn/F1VFIAABcNSURBVBR0ygOwJAEUPm+LywCJoQC8jS54YJxOeQDeQAAF7hFDAViULvgb2b1fq40uSL6WTnkAFiKA3pAv4Q4xFICX6YIHHtfvlAeA2VRA4b02tL7S4uzkCcBTBFB4uy2usrQgO3kC8CBd8MDLTJMH4BECKLAQA0MBmEcXPLzLkUd/TjAwFIB7BFB4i4OP+7zLwFAAxumCB97DwFAARgigwDuJoQD0CKDA+4mhALQYAwqsZdvbeH7ppDGATxBAgXVtMoZ++6QxgHXpggc+waKhAF9MBfRGdu+3YPPpOg0cikVDAb6SAHpDvoQPsGgowJfRBQ9sgGnyAN9EAAU2QwwF+A4CKLAxYijA0QmgwCaJoQDHJYACGyaGAhyRAApsnhgKcCyWYQJ2YpNbKLW1N/O0tRLABBVQYFe2XQ1tml+iJ8BdAiiwQ3byBNgzARTYrXYM3VgpFIAJAiiwcxvukQdgkAAK7N+2B4YC0CGAAkdhYCjATliG6UZ27zdWs6U1X4AB7dWatrdUEwBBAO2QL+EgmmbLK4YCfDld8MBBGRgKsFUCKHBoYijA9gigwBcQQwG2RAAFvoYYCrANAijwZcRQgE8TQIGvZNFQgM8RQIEvZjd5gE8QQIGvp0ceYF0Woge43T8phJBlTQgh/PrY/QAcmgoowA/zkwBWIYAC3BJDAd5MAAUYkIU/YijAmwigAONUQwHewCSkG9m9Xy1N+1cR8CV6U5T+exKAxwmgN+RLYJQYCrAQARTgEUMxNAt/PndDAPsjgAI87jaGNuG3UijAfAIowLAs+xsfNM3IivTtGKpHHmA2ARRgQAqdKYYm7Wea5lcW/jThdzoWQgh65AEmWYYJ4GFN8+umLHq7WlMTflutCWCCCijALP1SaFd/fpIeeYAhAijAHfcHg7Y1TZb9/dcpb2AowJBddsEXRVFVVefJsiyLoiiKoizL/kumjwKMib3t3T73GS/777H9kwBu7a8CWhRFXddVVRVF0XkyPo5H2wl1+ijAW1i4HmDEziqgVVWlKJmUZVnX9fl8bpqmaZrz+RxT5pyjAO9lN3mAnmxfm09mWZbneQyUqTM9buDe/iDxtJgyp492Lr6v1gA+K8v+Ns2v+L/95wdf0H3Gzxz4GmJG254qoGPBMYSQ53nny3ahdPoowEo61dCgIAp8qd2MAY31zrGu8/Z40LtH20NCAV5xf22mvpRB1xoe2lk5/03vAjDfPgJoVVWXy+V6vQ4e6j+ZIuajYz2zl0sRquvwPV4NcyvOUoq3+kxcBniDfQTQ0+mU5/lgmfOh2udd4iOwNpPlge+zgwAaO987S3hWVZWW9uy/ZLrwaQo8sDliKPBNdhBAo8vl0v6yruu6rlP6lDiBI7CZJ/AddjALvizL5lYIIa7rGQNof1Z7XKcpPh482pkXD/BWWfY3/Xf/7PZkedPkgSPaQQC9K/XRxy/jg9RfP30U4H3aodNmngDJbrrgJxRFcb1eT6dTmsPeni8/ePTRyUkAz3lppryBocBB7TKA9ueqF0XRNE0c69kPl9NHATbNwFDgcHYZQMcsuyQTwIa0Y6hSKLBzRxgDCvAtDAwFDuFQFVCA45s9MNS+R8BmCaAAOzQvhtr5HdgmXfAAu9VeMTTolAd2QwUUYHmrdn9brQnYGwEUYGEf6fjOwp8QQhN+/3ydNSGEoAse2CJd8Deyez59gwCjmuZXaJqYRP/RKQ9skgrojf4S9wDraPfav1pD1SkPbJsKKMBWPLxf/KQs/OlMUfqvgx7gowRQgEMzUx7YHl3wAJuTuuMXK4jqlAe2RAUUYFtiR/w7ptL3O+VVQ4GPEEABvoxOeeDTBFCArySGAp8jgAJ8MTEU+AQBFODriaHAugRQAEIIYiiwHsswAaxq+SWWlmXBJuD9BFCA9aTQ2d54c74lt+ucJoYC76QLHmBP3rRE6Nib6ZQH3kEFFGDrBsul63Xl96uhSqHAawTQG9m9P+4bP3aBT+ikzHZX/nO9+R33O/fbMVSPPPAaAfSGfAnsy4Llz3iplESHI2nTLDgwdL0hrcDGGAMKwLDh8aaLDgxddUgrsBkqoADcmNWnb5o88AIBFID/zKlHthLqn6b5JYYCjxJAAT5pkSlE67sZMKoaCjxIAAX4sIMMghRDgdlMQgJgOdauB2ZQAQX4IistX68aCkwSQAE+Y/3Rny/uRP/E+8U3Cz/v+t+Tj7NoKByJAArwAYeJUPdLqsvF0M5S+cB+CaAAPOmBkupQDG1CCOEgQRx4iElIAKylM0UpmKUEX0oFFGC7NtXdvNjNpAz6Ez2b8Dtkv9vZ1IhPODYBFGCjVghej2bKJ25pIkpmkxspGfEJByaA3sju9QQ1lhEBjmWFmHsnSjZNlv1twu9/X/77Ofzn3Xf1HKVZWIQAekO+BPiM21lK/U75CSuHQqVZeJ1JSABsRn8jpbmv+6UeCTsigAKwMU2T/XTBN+G3afJwPAIoAJt0Wwr9b5AosH8CKABb1SqFhmDRUDgOk5AA2IrhmT0vzE8CtkkABWBDxuYSTS8a+hEpLpv/BI/SBQ/AfmymUz7Ouxc94TkqoABHM2eJyjctY7nSkpz7WTQUGCSAAhzKnFD11uC13jrttzE0ZFkTQghzP76V5OGDdMEDsGeb6ZQH5lMBBWAlb5y106uG/vcksD0CKAB3LNJbnULn+/q+NzhTHhgkgAIwZX8zdR6shpqWBOsTQG9k90YONf6SBtiFR2KoaUmwMgH0hnwJcCRxftJ/+8jHmfI2UoJPMwsegCNrml/dmfIhJtHfI68A3k4FFIDPe6L7++GXNE18VbsgGkIInWx6FHYKZcsEUAA+7OmE9OQL722kdJhpSU3zy8BWtkkABWBtD6Wid+0a2luzqb2RkmlJ8FYCKACreqim+PYCZNN8T6c8bIcACsDRPDc8dKJTHliWAArAAT1ROh3ulJdE4Q32tAxTWZZFURRFUZblskcB4J+hNZvCvW1KgIfsowJaVdXpdAoh5HkeQrhcLpfLpb1ofFEUdV3Hx3VdV1VVVdXMowDQ9WVrNsHK9lEBjemzaZqYHa/Xawgh1TLLsqzr+nw+N03TNM35fI4pc85RABaRZX87Iy/7z+xS07S74Jvwe6waGj/vzE/90MlwPNkuNp/Msux8Prd7z7Msy/M85si4gXtzs4Tb3KOdd9lFawB8syz7m9ZI6gz0nFi/s/+q/smD59xcpxM9U5V0+lXLfYqHxCvPuRnWIWa07aML/nq9FkXRebL9TOyab3+Z+tzvHgXgGN6+wNNaazZZhZTD20cXfMqasQs+FjXbBdF+PB18+ZyTAWDK7E55YMw+KqBJHAwaQjifz/HB4GjONOvo0bGe2cs/RFTXAb7C7dKhnY2UgGk7C6BpHtLlcgk/iytNnP9osVN8BOABNlKCp+wsgIYQ4nKeMYOOLeo5Xfg0BR6AJd3bSMloTujYQQCtqqosy05qbC/tGSROAN5jfnbsb6T070HThBU2tYdd2UEADSHUdV2WZbve2c6U/VntceHPiaOdefEAEHpxc4GZ8sHwUBiwg1nwcRzn5XLpry2fvgyt4Z7xQXuZ+omjABA1za/03+vX6kyWt58ntO2jAto0TZZlaQp8CCHP8xQii6K4Xq+n0ynNYY9bJU0ctRITwLf5zEDM3mT5m+eXs9Ty9bCOfQTQ8DP/PT4eXJQ+nfDoUQAO77OZrDs8NPwk0UVjqOXr2ZHdBNAwIzsuuyQTALyimwVT3LR6KF9vTwEUAPZluPI62C9vIWq+yQ4mIQHAAZmlxBcTQAHgY7LwpxNDb5ZwgoPSBQ8AnzY8WX7tLT1NpWc1KqAAsA23nfJN+L1+v/wyy6DCPQIoAGxIt1M+GB7KAemCv5Hd+394Y5YiACuIW3r2N5d//NdQ6ljvLxSq2MmnCKA35EsAtuW1NZtSxOznTkvW80G64AFg86zZxLGogALAS9YrJR5oBXsjAb6cAAoAz3s9PHXGaM55y/iy9PoQwvprNr3OSIBvJoACsDNHiiyDYzRnvjK+7N9X4XfIfu+0GsoXEkAB2BPdtTd61dAmhBA0EVtnEhIA7FzTZO0u+JEpSln290jFY3ZNBRQADmGwU/7neZVjNkUABYCFvanQOGfmeBb+3CxfH+5PllcWZX0CKAAs6a21xjkzx7Psb5wUP38jJfVRViaAAsBxdKPk8JpNe109dA4rjO6CSUgAcHSdjZRCnC//+6jbKTXNL9Fz41RAAeA7pAx6O0LUyk2sTwUUAL5M0wyv3HTQgigbpAJ6I7v3/73muINmAPis/tSih3fpfFRnhGjY8cae7IsAekO+BOAj+hHz+V06H/Rv5aYwsLGnCT28iQAKAIQQxjb2DJ0kuiNvLyHzLAEUALZuLP+9JRc2TZb9bcLv9tukiUo7qomuVkLmCQIoAGzadM576/DQmyT6Mzx0zmL4ME0ABQDGjW0x/8hEpR3VTVmHAAoA3NHfYj5NVJp6VS93LlU3lWj3TgAFAOaJw0NnbzEf3pkOjQTYNQvRAwAPGlrHXhZkPgEUAL5Ulv19KTXebjF/4M3lWZwueAD4Rkt1jneHh97rlIegAgoALGBwc3kYoQIKAPuz/oDLWe84uGbTvWro3f2Kpue82+5ojwRQANiZ9ZPWY+/Y29LzvyfHrzwdcMfmvNvuaKcEUADgDTpbev5spDT/ApvNlFYhfZ0AeiO7N2ClMaoaAOZ7ZCOlfmf6svFuweBoFdIXCaA35EsAWF6nU76dRH9+867TmS44boQACgCsIlV52v2Nlm36SgIoALCMuRPS+0k0PWiaoEL5BQRQAOAZnZj4TB96r2s+ZFnTOTr5puyUAAoAPGzJ6UGDXfOhWxZd+E35KAEUANiGdsnTONFDE0ABgO0ZGycqhh6CAAoAbNjgvkpho0nUGvUzCaAAwOYNTVf67/k3eDpKWmp0DgEUAOjaaH5at19+kSjZevkD25AengAKANzYQd9xr1++CSFkv7fZL/8TZLMQNt+waxFAAYB9Gl1GtJvzNlrQ/WICKACwZz+bJzXh979nbvvld1DQ/T4CKABwCI/Ml5+7ayjvIYDeyDp7MPQ0mxxcAgCb8sEu7yz8aZpf0/Pln9k1lEUJoDfkSwB40SZqitax3zYBFAA4riXWsddfvzgBFAA4upF17AenzPdeqr9+eQIoAPAd+v3yQdf8ZwigAMCXGRshGiTRlfzfp28AAOAzsvCnmzizLNxbEofXCaAAwHdrmm4SzbL/lrXnDQRQAIAQwk8STWI1VEH0DYwBBQBomZgyn/2+Sag8a08BtCzLqqpCCEVRlGW54FEAgOhnuaU//xZguq2A/uuaz36nPej/PW+J0EfsJoDGTTLzPA8hXC6Xy+VyvV6LoohHi6Ko6zo+ruu6qqoYN+ccBQCIBnLk7djQ9uPm56glQh+1jzGgMWher9eYHeOGmafTKR4ty7Ku6/P53DRN0zTn8zmmzDlHAYBjyLK/bw+CTfPvv9a7GiT6hGwXu59nWZbneTs1lmV5uVyaf392ZOF2G/f2+dNHO++yi9YAABbRDqzP9KH3omf203Hfv7KY0baPLvg8zzsDNzvxMXbNt79Mfe53jwIA3+nVgZu96UpN+B2HhxoSOm0fXfBVVaXhnlEnQXaOdnSOTp8MAPCAoWVE9ctP20cAbauqKvaqX6/X0CuFRiliPjrWM3vZax8OANitwWVEGbKPLvgkzWdPU+Afqn3eZXAGAPCS/jKi9OymAhoLn2k++3SynC58mgIPALxXf748LfuogFZVdTqdBqeupxOmX/6GmwIA4Bn7qIDGJT/HcmR/VnsslE4c7cyLBwBgNTuogLaXlO8cis+UZXk6nYqiSJtttk+ePgoAwMp2sCZq7H8fPJRuvnNOe5fOu0cTK8QCAE/Isr9p/fmxFUDFjLZDtUW7xvno0eA7AwB4igD6qB10wc+37JJMAAC8w6ECKADAR7Q3f+cu1eD/qI0DAG8iZrTtYxkmAAAOQwAFAGBVAigAAKsSQAEAWJVZ8DeyLJs+wfBhAIAXCaA35MsVmAa4Ao28Du28Ao28Ao3M+nTBAwCwKgEUAIBVCaAAAKxKAAUAYFUCKAAAqxJAl3d3Lacvv84itvahtnadpWztc23tOovY2ofa2nWWsrXPtbXrLGJrH2pr16FNAAUAYFUCKAAAqxJAAQBYlQAKAMCqBFAAAFYlgAIAsKqsaZpP38NWWGcBAHgfoSsRQAEAWJUueAAAViWAAgCwKgEUAIBVCaAAAKzqiwJoURRVVfWfL8uyKIqiKMqyfPQofWPtPH1UOz/EN/M6tPMKpn9ixBP6LamRHzLYyFlPpzE18qPGvpmrqvITY0DzHa7Xawjher12ns/zvN0aeZ7PP0rfWDtPH9XODxlrxtR6qT3b52jkRw22c3yy087tE7TzQ6Z/YjQ/7Xk+n/tPauSZpr+T29rtrJEfNfbNfD6fUxv6idF2/AB6vV7TP3/nOyM+n/4vF79M50wfpWOinaePauf5Jpox/hRrP9n+SaeRHzLRzp3fH/FXTqdhtfMc0z8x0jn9YKSR55to5Onor5EfcredU0vGL1PK/PJ2Pn4Abf9tMf27JD6TvjOmj9Ix0c7TR7XzfNPN2Gm0+LOs/cLp80mm27lTjfND4znTPzHSOf0KqEaeb6KR2z8fxl7YeUYjj5lo5/gN3H7mfD6n7+cvb+fjjwGNn3OwuyG0SuLpy7quZx6lbbqdX/lXIJloxjzPi6KYeK1Gnm+ina/Xa7+d289o55mmfyaEn1YdHFGnkWeaaOTUsFVVaeQXTbRzXdedlizLsj3W85vb+fgBdNr07+zO0emTeZp2fl1VVZ0B7JfLpf2lRl5EnCsQfn5tx8ftxtTOiyjLsq7rZmSjPo28lCzLTqfT6XTKsmy6VTXy0+LsoqIoYiN34v43t/P3BtDBv/nSv/30rEyWop3foaqqLMtCCPEvco38DvHXdl3X5/N5olbHE6qqulwu03U7XhTLbKkvOBbe4h+xGnkpsSUvl0ssB5zP57quT6dTfF47/+/TN/AxD9U+eRPtvLiiKOKvltRZrJHfoWmaWASNv1pihePTN3UQp9NpbEiJRl5KZzBJLOdfLhffye+QavllWcaqc9M02vl7K6CDpv8i8ffKOrTzc2LhM9bk7v5008iviz1reZ53Rju0aedHxSJcbNs0Wi6OMBlrTI38hLGhzBp5QbFJO6M803z5QV/Vzt9bAY0kzi3Qzq+rqirWjfz+eJ8YgzololRyTuesf2PH08n0dV3XdW2I1Ao08jrSCPJvbuevroD2p5vF6tHE0c6fMrxOOy/idDqF8Z9lGnkRMWt2Grn9pXZ+XVmWnbVaws9QxVRP0sgvir0lnWmLvpPfod+SsZ19M4cvD6Cpryd+GR+k/09OH2Up2vl16TdH2ZOeDxp5IZfLpd3g7b9atfMKNPLriqKIQ0d8J79bpyW1842lFhTduLFdHzoTLac3K/ue/Qme9txWnNr5If1mnFhMcewcjXzX9JanSWfVaO38kLtbcTZDi/9r5IfM/E7WyC+6uxWnnxgdWTOy0NpXaZfEHz3KUrTzCjTyIlLdyA+ND9LIr0vL2fpOfjcxo08ABQBgVV89BhQAgPUJoAAArEoABQBgVQIoAACrEkABAFiVAAoAwKoEUAAAViWAAgCwKgEUAIBVCaAAAKxKAAUAYFUCKAAAqxJAAQBYlQAKAMCqBFAAAFYlgAIAsCoBFACAVQmgAACsSgAFAGBVAigAAKsSQAEAWJUACgDAqgRQAABWJYACALAqARQAgFUJoAAArEoABQBgVQIoAACrEkABAFiVAAoAwKoEUAAAViWAAgCwKgEUAIBVCaAAAKxKAAUAYFUCKAAAqxJAAQBY1f8DTuKm0prgo00AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4AAAAI8CAIAAAAvKVK6AAAABmJLR0QAAAAAAAD5Q7t/AAAgAElEQVR4nO3dbZaqyJoGUKLXnRc4mcphiMM4ZzLCyOgfURkVAuIXIuDeq9ftTEHESOvkk298ha7rCgAAWMr/ffoGAAD4LgIoAACLEkABAFiUAAoAwKIEUAAAFiWAAgCwKAEUAIBF/e/TNwCwAU3T1HUdv3juClVVTRyKnrsywOYEC9ED3NQ0zeFwKIri6X8zQwjTJ5Rl+XS6BdgWFVCARR2Px/R10zRt28av27YNIZzP51dKoXVdn06n4oWgDLAAARRgOWVZxq78nqqqYhI9HA6yI7B7JiEBfF7TNKkyOppQAfZEBRRYSNM0aYzjRMbKT7s5NefOaz7q0cvm5zx9G6n3/HQ6jV4kf/C5SUv5+yokXeCDOoD3iCW9siy7sT7l4/E4fEpZlneeeT6fh2fG1xpecPh47/am76Esy/Ryoxe554av3eHo1c7n881X6Z02es7wBm62GMACdMEDb5cmgJdlmeLdsM4XQojjIMtf6cze9PC6ruOc9N4127Z9cTGjdA/5ldu2TS+Xq6oq1iyHb+2520gN0qtT9l4lvdDhcMirxXl0zk8rBj+CGVsM4BmfTsDAbuU1uV5RcPhPUCox9op/8cFeoW70wdHy4UMV0BTLrt3t6A3fcxvX7nloeAPXnjh6q+nV77ml0ZMBFqACCrzdcOp395ufUvktr+TlZw57lodPieq6jgny6aGNqf567W57Lzd9G6NF0zulaw6/SOKr3LN0aDynLMte2157CwDvJoACbzeaCFPv9s3ndl2XJ6T4lNExoPGFbl5z1ETUS3ebi68yOvJyxsk9VVXFasErF2mapteGAJ8lgAJvNzrKsJfS0jkhhKqqXkxLTzx9+inXBkqOPn6tRjuXuC/oczk7v8LNzZkA3kQABVahqqpUTYyTfkIIIYReTk2RLp2Qe73Xe3QafjEImtcGDIxe8wnDl4t5Mb3NNC3pfnVdV1X1yhUA5mIdUOAz8jJh/Lr+lW9QeTqdTqfTcIPKa0nxfivskh7NtWmTpCgO5ayq6v4iaNrIfniRVyI7wNMEUOAzrhUR85kxTdPEQt1wg8rZ42PMedciXe/lhun52jUfuof03tMTU8osy/Lpt5xS5vF4tPg8sAa64IG3G01OvQd7m/QURRGLfCl3xuR0c3jl8DrX9LLmc53p02/toQCa6r55cTfm71fSZ3pi13XSJ7ASAijwdqO5J0Wr+O3hcDgcDvcntmubVcbr9B4f1jWHeS4vOg6vPLxCvPPRkZRP5Ly8l3zi3qZv6dqVrx2SR4FPEUCBt2vb9tqc9xSPrq3KNOyVjgswDa+Z+uvzpZGuVUxHxz6mTDncoml48vDG0uMTC0UVvzXaJM4NynvJh7d0ZyQdda0FUnMBLC+8uLwcwDX5HpJRL2XmQxLzEmBaMj3vlc7zUz4vJ5587cwii48p26Xia9u2vfPzrHk8HvPLxi/yfzN7t1FcBujev673rHk0nGuV2jBfRr7XqnkzpvPjm42PD1sgn+ZV/K69b09OYDmf2H4J+Ar5DpDDf3x6e0h22eaWPRMbaT595vl8ji83fMpwfn08Z/TfzNGLD99ad+tP/dGnXLuf/P57T++14UTDxjeVX/zaDQDMTgUUeJdUjYv/zqRO5zi76Nqz8tOKW+MU45pN8cy4rtD0mcXv3KbpO8/vYfqyw4vfc/6jrt1P6sHP39G1dr52kdSGhoQCixFAgXfpBVAAiExCAgBgUQIoAACLEkABAFiUAAq81+ubtgOwMyYhAQCwKBVQAAAWJYACALCo/336BgCAtbtnL1m+1hPjOQVQAOA2k0YY9dwfJ7rgAQBYlAAKADAlhFDX9f0n91RVdf/Tv4RlmACAG0L46sAQQijLsmmaO08usiWQ27ZNhx5qw7qum6a580U/6LnPhjGgAAAz6wXHuq5Pp9NDWa1pmjy87owueABgvaZLgK8cXVJd17EmOrylR8ucmyiL3iSAAgDrEsdc1nUdQjgcDnEkZX5C0zTxwXi0qqrhFa4dHQ7orKoqv366eDRMe/HGkjvHd8br5CenNzi8zxBCLH/m14/3OXr+9nQAAJMWDgwppRyPx/P5fDwee6ElPxori2VZjh4dfe7xeMxfLl4hfn0+n4cXz6+fLng+n9MJ+QUn8lV+KF6nLMt4nfRt7zbi0XST6fzh637Kc58NARQAuOEjATRPVzGQxUdiVouxLCrLMkW3PE1GvfOnA+gwPvYC7vCE0XA88b6u3Wfvkd63o6+bx+5Pee6zoQseAFijvLc6djefTqfRo/mwyLZtU9kyP/P+hZBGn55eqCiKVASNYjh+dFxm0zTd5YSk6SlHKe3tg1nwAMAGlGUZI1pcn6ht27g6UvUrndm27XPjI2OI7D03/3b0hHToiReN76W4lT7TS0Q7mB2vAgoArE6vDNnTNE0cB9m27el0OhwOw3lFuePx+L4pOw9dOb2vOAMp1nSrqsrHm157lcPhEM+P41Ofv+MVUAEFAFZnWOTrPVJVVawdNk0Tk1mqg5Zl+dDOQ+nK8ekTnelVVZ1Op16xc6Ismou3lE47nU73L24fq573n79+KqAAwBrlYSt+HWuEvVWTYoEzfZt66vPn9hZLmo5xvacPh6IOF5kvbgXQuBB9Onk0s050rA+XcNq8OedBAQB7tHBgSCklTl1P3c3x6LUVi3rfjj43Xbx39NrTU7TtLcN07dsum8If5R3r+cz93m2k09IJw8Whhm95DUHuuXv4/H0DACu3fACNKyvlJbPeuku9glp+dDg+cuJoWZYxRKYTepPchxGz9+q9tZCKMcMFO3uvkm6juMzZ6bm9F82j7StN/brnbuCZ/eMBgK/y0Cbms7xcHO8Y9Sa5R2kA6OjR4nfO+MTRYrLf/PUT7lHXdX6HvWv23sLwHc1yDy967rMhgAIAN3wqgC72ijztuc+GSUgAACzKMkz/yafUAQDwJgLoY4xYAOALLVyj8dt29wTQCz7xAADvJoACALcZqMaMBFAA4DadhIx67i8Ts+ABAFiUAAoAwKJ0wQMAr5rohz0ej3Vdz/UqFqgv7tjkaeJoOqEoimtbTE0cncurGxvUdT3Xp+rjFt7mAQC24uavyBhAh1u0F7+7Td7zKlVVTZ8sgDZNczgc8kd6P5eqqtq2Td8Om6t3Qu/Pg97R4fWHnoxPr+9AH9/e+Xx+8VIf93prAMAu3fwVGcPA669yPB5fvMiOnc/nmLti6ErfphPiHwCpDXvfdl13PB7zn1Q8IUW4eDSd3zv5mufi06uR63g85n/ubDqJCqAAMGr2ADqaFq4F0JvRYvqE7SaTnpi48kdiBk1vcPhT6D1leEL+yLA0OXzFoc8E0OR8Pm89iQqgADBqlgAa82Wsq/V6YocPpmiVl/FG81OePfJDqUA4enSLRvuu01vrhdEoNmx8MP/62vV7fwC8L4DONgu+qqqmabrfJNq27eFwCCHEx+d6FQBgu06n0+l0Op/P5/M55qE44rOu69ThmwfHuq7btj0ej6MDQ+PA0+PxGK/Wtm0+FyqOlYxHYzJ535Saz+qN2hyKSSxNLSqymUa5rut6E3tuXvl5T4TWO+U10fe9yoy2cp8AsLCbvyLvSRrDSDA8IVXghgMcu8sK6LA4l1f4huXAsiy3XgS91gVfZDXj0S742Krp6/ynMzrmIR9gefOunotP71oHtGma+FfLm64PAKxNOaZ3wsS3Q720lGvbtvf0WL3La3j516M1v22JbyeEEN9LXdf5jPiqqlKhN63ENExip9MpVoVjofB0Og2XM2qaJj3xXY32RGidsOmRoLO3BgDsw81fkcV9Y0BvTpHpVUB7KaIYzJgZht1eiTQ+EiPX9O1twrB+2YtzvVCeT2wfTorvrowr7R2dbrrn4tM8FdCYskMIh8Mh/kUS7zU+PstLAAD0VJfy0aJN06TRn6fT6XA47CCT1HXddV2sX3a/Qzbz0Jkm5MQT4oP5G+/VO6eL0PHPgHcUQV/dCWl6OdPNmdjIIeomh7kAAIspy3I6deQzoWNi2UdprPcWhu8oT+Hp29Ee+SQucX8+n5dpn1croPGdpHLuptNncd9IWwDg42JpM3+kaZoQQhoJ2isqbT2iFL9vKq9HxjeVImMIofeu8yZKCw6MnjB6NM+vM3ui2z63jxEV0eutAQC7dPNXZAwVxyvSOfcvk35zDOj0tkBpSvi1TYO2qPeWhzsV5aM8eyePntDbCak3SHQ4wHTUc636lp9EGnmwLVv/XALAm9wZQKerXfcE0HT+zQDaDZaaHw1b145uVG8S0nDi13ASUu+EXpuMrjw//NlNeC4+PbV//HX58IKu60IIZVluZdWDEGZujQdf/W/X/fOpVweACYv9ikwLDD36lDgJ6dGjG/X6W67reuLpxe/88nsa7bnPxpyfp7QhQVw+quu6mEe3kkEFUAAY9dlfkazZc5+N2Raij3+snM/nmKnjg03TxK2x5noVAAC2brYAem2eVAymm6iAAgCwgHdtxQkAAKNm7oIfVjrT2qdzvRAAAJv26k5ISVVVZVkeDoc0gb+u69PpVGQblQIAwMyT2lLoTBbb0+l1ZsEDwCiz4Lnm88swbZ0ACgCjBFCu+fAyTADAd4p7lPd2Ic/FozvYjf2DJlovLt1/bcWhdPTOJYmmrzaXeQJovmlBGDPLqwAAK5TCymhqkTtf1zRNb4hjFKP/4XA4nU6Hw6GX8pumyY8eDofpUZG980MI74uhMwTQuq7jveYPpqlIZVkOt2oFAPZnNGuOJifu1zTN4XAYfTy2bdzjPsat0+mUUmN8Vjwa93lv23bi74H8/Hi1w+Hwpgz6agCNs456KTPuxpne6osvAQCs38Qv/VSWGprON/eknx1vdpMKnNeOFkURdz4viqKqqjgWM18Z83g85vtTFtf/HkhbWo5ebXavBtD4NuKO9cOjTdPEtZlefJXFjI4fMJYAAG4aXRE8PjgMMbG3N6arEEIvRfSO9vqCq6qqqqp3zi5jaFVVx+PxeDyOJvhrcT9//P6ViEa3tHxfJfGlABrvdbqHfVtbcXa3fPoGAWClYnbpZc3YTdo7M/Upn8/n8/kcU04efeLR4/F4Pp/jauK9YlbbtofDYeKEfaiqqq7ruq5Hc2TsK88fiXErNngsYeZPTDXR993w/WZbiD7Ji72FPZAA4Gscj8dhD+8wCcSwmMJT7EdNlbZU3so3U4xDG/NLHY/HGHavnbB71xp2WG+OZ7ZtW5bltS71+CPoteH7BlLOvwzTtZwOAOxbDACp2/Na/3sxqMPlZw5Ld6NMrs/FAQnFoA4YtW17M0rG9jwcDmnNpjTy8B392C9VQNPnbOJTkv91AgDsWOqFT/NdRvvfi8vJ2qOaX2Yz35SS4rXtJ2OxOY58mFg3/nw+x3WNYhk7/ux6oyPmMkMFdHp5BYsvAMD3OB6P90yCKcuyupRKd/lqlPGCKxm2uEKpThnHg04nxdjIxfWKZqw9x4G5Xde9dQLPq2NAY1gOIQxDdz7E+MVXAQA2oaqq0+mU+scnRhxeO9RbD6i4vgz7l4tBqyzLa+v/n06nJ+ZPb2MMaFVVaanSuIxClJatulYNBgD2J1UxR/vfi2zOUP5gXPAyBqkYeobTt+m5Z6Gh3tHRtZbSoeFGSsXbZs3P0AUfC7bx/tpfRVEcj8d7BhEDAHuSeuGvZYCYGeJansVvrS6dH2NrPpNJ+XNUauSefEZXvpVRXddxIny6Qr7Geb6YQJH1Y79pstdsyzDFdarmuhoAsFGxF764nl3i43HD8fRg6iyOW3znh+J4v7jwp7DRM9FLntotPXKtv/7a+e8bRXl1JtQKpVl1owNHXjkaDeeFhfC36/55/c7vseRrAcBDJqZOvyLOc491u+lD8Vvp8wkTjTzL+c99NrYRQFMdOK0IUGR/KhW/q6emb3sBf/poIoACwKg3BVB24LnPxvwL0b9D2jIhpvJYEM5n2LVtG4ecxtGocSn/e44CALCwbfxBE0LoDfsIIaRCZhw/m7+R+4/2XkUFFACGVEC55rnPxvx7wb/D6FpO+SO9hR7Ksuz1uU8cBQBgSdvogs+Xok2L/ucF0ZtL/098CwDAkuapgMaJacOyYlmWdV3PGPjS0gBpWdTR0Zxp1tGjYz3TaljZIz8PXeHOKnQIfweP/QxevNApDwDszwwBNKW9uK9rfDBtZnA4HGbcDCnNQ0oLjD1U+7zn+vm37xuXObxsCOImAPAVXg2gaY75xGavh8NhxpHLcWGqmEGvvehD21IBALCkV8eApk20pk94JfPF1VB7D/YekTgBgG8Wu4ivHYo7Vt6ZiOL5b41P25iE1LZtL+PmjTKc1R6LshNHe/PiAYAX1XUdMmmr94eEEK49q3f9+BLvzkkbkm/7not90afTKe59Or2bVGzkeP7hcJj4cbyqe03MeWmZ96EY9V58lXir5/N59EXjuvRlWY6+4ujRdKneqwwe+fPind9vydcCgIfc/FWeKjvH4/F4PKZv81+48fGJi8Rf2ddCRV5ailKYmcghXyK2xrAdYqPdk4K6LDLFE9JG8NMv/VzMezUadtlnrizLY2b0w/e0Xm7ufYJTG42+4vTR/CUGjwigAHAjZPRqPfmz8iferEndE0Cv/YqfJWxsTi/hDJtu+HMZ/UlFwx/QaJsPX+Lh++66GWbBx4ECp9OpbdteZ/eMyzB1XZeKwKNDQtMJjx4FAF4Re3WHfbXH4/F0Oo3O5cjdPGFC/BUfe427QbnqlStvQlVVqTAcFwjKxZ9Lr8992Eq53hjFqqru+Qk+44nQulfD1lABBYDuVpVromM3PdhLOfHBFJ6iJyqg125geOWJi8wyXPCzRpsuf1/n8/mJIvE9LfNc021jEhIAsFqxxhYnuPTqoKlydj6fU0xMlblYtIvZqMi2m3nUcMvD0+kUxzKmK+cdob2i4L436E7ziuKkoulJSFEseYYQ2rbt9fLP5e0BdN6dkACAtUkdwWnqdJyf3jsnfRG/jumz67r4SPfCkuHxgin7xuVuYopKV473E8/ME2d8Vq9iuien0+l4PMYsXpblxDLqSdM0qYneNAv+7QE0jg1996sAAB9U13Xs541lzrZtT6fTRL1tNPbNkgJHB6Qej8eURuKrpBNGB0ruSdwtKO3jU4yNFu2JP83YBX9PYH3C2wNoqn4DAPsWI07MLqkmOlpCG50Z/HSXaX619HUuRq5895xeufS5192EXnx86M3eGVif8PYAmirtAMAuja4GX9d1rEAtUFy8tgB7EheIzAPJMJLuz6MBLI6deMutDMywDBM3hfC36/759F0AwFvEMucwBU6kmVSVnEXsXo8vV1VV27bTIxfT+lD5wND9iY0cN+FMD04PjBw9+o4KsVnwAMBL4q7Xw8w3sQL36Gz05yqR8VJpvN/olePWnb0Xqus637t7f6qqygdxpuU8U1s1TZNXPWNTpKGi8WjxpgrxE0s37dWwNeZam/Oe61gHFIDVmg4MKdDE2dbxkRTs0mm9RSXjt2njx3wzz9FXSbtKpg0Xrz2l9+DoNpXpufc2wbpNLKHaC375OcMtrIbFzpurhz7XhmF4Zw+5c3L+Jorb+d9G1wyb657u9bnOAYCPCOFGYGiaZriKZ1wLaXhOejx2l6cTzufz4XCIs7aHL5HWDe29xOiCj70r9+4kXW34+F6lifD3nBwHVNx5/s3PxvizXgygvR/wNS++yjKGLbhkuBRAAVitO0NG6rq9ll2GyeahrPOQ912Z3GcCaJH9QTOx3NImfvYCKACMei5k8A2e+2zMMAs+rm5wOp02kTIBAPiseZZhmncxBQBgbe6ZKQF3mi2A7qMyH8Lfywd+hv+56SgH4Nvs47f8ZxnGkLMQ/YVeuAxB3AQAmJmF6AEAWJQACgDAogRQ4AMG460B+CICKAAAixJAAQBY1KsBNIRQVdWX7KMKAMDrXg2gXdfVdV3XtST6Ius9AQBfYoYu+Jg7e0m0ruvXrwwAwP7MOQY0T6JN04QQQgiSKAAAubdMQkpJ9Hw+F0URQthK13y4VBQ/g0cAAHiJbUn/M9ykNYS/N4dmznUOfBX/UQDfxl7wOcswAQCwKAEUAIBFCaAAACxKAAVWyn7xAHv13gC6lcnvAAAsZs4AGlehj6Ezfn04HDa0BhMAAAv431wXaprmdDoVRVFVVVEU8evz+VzX9eFw+Kp1B8b6DX+GS4hagwYA+E6zBdC441EMmrHkeT6f456ch8OhaZoYTL/BMFmGIG4CAPxrzi74sizjFzGAxsQZ/3djvfAhFDY9AgB4j9kCaFVVbdvGr0+n02gY3ZgQuuLn0zcBALA3s3XBV1V1Op1S0EyFz8PhUGwugHbdfxXQEIpsAKvxnQAAL5ozgB6Pxzj3qCzLOCQ0ps/z+TzXqywnhs4YLbMManwnAMCLZl6Gqeu6ruvSiM/z+dx13cbKn5lQ/Pn9yqhQAIB5vGsh+g0P/ezJF5CSQQEAXjZzAK2qKoQQl6AviiKEEPvit63r/ouhMigAwGvmDKAhhLZtj8djmgJflmU+M2n9wqWi+Mm/Cb8nffYmAQA2bbYAGiudceujlDibpjkej2l5pvXrbvn3PENCAQCeNVsAvTboMwbTjS1EP8GQUACA18y2DNMX6a3QlGbKr0MIfy0LxdpYQBeA3Jx7wY/u+R4roBsaBnqv38Xqu+KnKPzWhCkW0AUgN+dC9GVZHg6HNAOpruumaeK0pLleZV3ShkmXuyUBADBhzi74pmnquo6bIRVFEb84Ho97WInpGhkUAOBBM68DmjZDinsgdV235/RZFIXdkgAAHvSunZB2OOhzgqnxAAB3e7ULvqqqqqricM+JYud+lmG6pjc1Xnc8AMAVrwbQfJH5DS04/y6GhAIA3PJqAE2bA1VV1YlcxWUGLQoxFACgZ86tOL9r3OcEQ0IBAK6bcxKSLvj/dF2RbxwPAMCvOSugxbdNfr/pN4N2xY8YCgAQzbYQfdM0ZVm2bRtCSJsh5UfneqGNSUNCCzOTYIr94gG+x5wBNHXBb7cvPtyqUz4z0arrQvjbFT/xBeIjT9wb7Jv94gG+x5xd8N11c73Ku028hVffiJlJAABFUcwYQCcWoq+q6nu74HNmJgEAzBtAT6fT6OPb7ZF/izyDiqEAwPeZYQxoPm7y2hjKL58d3x/HZmYSAPDFZgig5/O5KIq6rtu2jV/3fHn6HGfveADgW80QQGO+rOu6aRpZ8zH27QQAvs9syzBVVfWd6fPVZWJ0xwMAX2bOrThjBTSMmfFVdsjseADgm8y5EP3hcCiKYrgNEnfRHQ8AfIfZAmhcBHRDa86vke54AOALzNkF/+7aZ13XcaTpcMX7Yad/75yJ565Lrzv+skd+bLNsAICNmS2AVlX11gXnQwhpofvT6RRCSLsr3dxmqaqq0+nUtm3btqfTaQOTpezbyfeIf2jZlwHgm8y5F3z639nFyHg+n5umaZomdvTHIafJ+XzON21PdxIXKD0ej/Hx4/HYtu0GtgY1M4ndG4ZOMRTgO4S5Rm3GveCvFUFffJUQQlmWeWqs6/p0OsXL5l+PPrd3A8OrpcfXOIY132iq+NNb9WmsU/6nKP70Hnp1rSiYVy9l5vsyZA+G8NdHF9iNlcaMD5ltElL0pmGgZVn2aqt5fOz1xQ972Ht3VZbllranz2YmdcVPUfxzebD/6zkEcZMVG42e+dfZPLyuKHof+LHrCakA2zPnQvTv69ceXnmYIPPVRnsFzl4kffdw1fl9Yt/OJX+vyxDfIk+f1z7GgxhqOQiA/ZlzFvwymqaJWTPtOx/TZBrlGQucsWL6aCYeXUX/IfO+2QuGhLJp6XObj2++5p5zANisVwNoPhu9+B0Jmp9Q1/WMsayqqjj36Hw+p7pmnH6UXrdpmrIs45T5Rye8dy+b652OCmlwp7kabNQT/434qAPszswV0KZp0mJJs185hJDms+fJcpgy4yPXyp8bmAI/wQpNbNFTn9UwmE4HwD7MPAnpTeI+n6NT1yekYLrtxDn0iSGhEL00YPfpz6rPOcC+bGMMaOx2H82RsTI6MUd+OOe9bds9bFhvSChb8cpHVO4E2KMNVEBTmhyuch832IwjPuNOm0W28nw653A4pEn66Zwlbv3d0gpN8X/9qmaF8rlHL17HJxxgLzYQQJPh6NI01T2EkG+MdDweU8Ssqup8Ph8OhzQXKp/AtHnZKqHL/4a2fBL3euWTmf+hJYMC7MIGAmhVVTdnl3ddF3fpTHXQ4RWuLVO/eb0hoeZtsB5zjQ/J/9ACYPtmCKCxHzx+HUNe3sG92ASg0ejZO2GZO/mM39/QXfFThB+FIlZkxk+jIijALswQQNu27c3yedNKTNzw0e546Hu5ZnkxwEMRFGBHXg2gaTsiVqHrQvjbFT9FYWYS6zD7J9AfVwDb92oA3Xm/9kYphfJx76hWKoIC7MU21gHlYflW2n5n8ylv+uPHRxpg4wTQXcszqN/ZLOZ9HzblfIBdEED3zt7xfMpbw6IPM8CWCaBfoNcd7zc3b/XuD5giKMD2CaAXwi2fvsEX9Eqhm34vY0L4++lbICMmAnDdBnZCWtLNLZe2Ld8zqTBBnjdY8g8bH2CAzVIB/T565Hm3d+dCuRNg4wTQb2VyErPzQQLgPrrg12tsUOPP8Ff8xXaFD8l75G2bxFyW/BSFUBR/lns5AGYigK7XMFmG8ELcvP4yRoWyPXZFAtgyXfDYNok5fOiT0xU/H3ldAF6hAsqvVFL6N0no2eRxb66gX45L+RPT53CwyvwdBQDMSgDdm5d+9Wbdml3xUxR+i3Ofpcqf/Y93+Bl5EIDVE0Apiosa0p8idWuGUBRFyEqhs/ymf/vkKj7lUwOIjV0G2BoBlKIYSXv/XJRCZ/3tvtDkKhbzwXHDpiIBbJNJSIwLxR8zk3jAZ2uQPqIAm6ICyqTezCQdnV/mnvESn/1MhN+pSABsiADKLRYK/WK3xxHU5jMAABwbSURBVEsoPQLwOF3w3MH28d9hrN55nzX8WeJjCbAdKqDc66KvM4RQ/DF7/dutJPOZigSwNQIo9+q6f/5dGTSEoii64icUf27GzRD+iqQ7t4byJwCbogv+Qrjl0ze4Dr+Boyt+VJ5YEZ9GgI1QAb3QqeXcycwkVpX29MIDbIoKKM/quv82STIz6Wv52wOAxwmgvCbPHzLo9/CzBuAFAigv6y3SxPdYYfnTJxBgCwRQZmKh0O+xzp/vCtMwAFcIoMxHd/xXEfgAeJYAyqzsmcTHDT51z+/wBMB7WIaJN8jWxOmKn3+Xr5/VWKSwLdMS/tsNa4UsxgSwEQIo7xHroDENvLxQ6HA7pWGyDEHcXJD+dwBeoAued9IdvzNb+SFu5T4BvpUAynv9t1h9IYbuxZrLn2u+NwB+CaDfaOk5GfnMpEIMBYBvJ4BuybbHOIqhW+fnBcBMBFCWJYZu3MWYijXzuQJYMQGUT7iMoate2YdoQ3nOMFCA1RNAL4RbPn2D+2LV+s25L9stOch42+NSAL6VdUAvdGony8sXD395xVD4j48TwFqpgDJu0cJSrxTK2mzuhyJ3AqybAMpq6I5fOakOgJkIoKxJb4I8a7DpH8Smbx5gv4wBZWV6m8gXCm/zCOFvb1jF2FShn2Fg+7f1u/T/NzLpJx9bDMDKCKCs0uXMpK4oimIjuWc7hlEyhLF8GSySBcDMBFDmdG9R7Z4qWl4KLVRDP0QREYA3EEB53jBH3ltUe+Q1/r1Kdrnnr7agYZf3hm2kzceFUGxl9yaAr2ESEhsQij/myPOwTedmgF0TQNkOc+QXppEBeA8BlE2xZP3ytl9H7ArzqADWRQBlg57tjl9yj/LN20e+3356BtglAZRt0h2/DAEOgDcwC57Nulyy3lqhc5LpAXgnAZSNu1yy/t9HmMU2W7I30KL7fTRcLsa0n0WyADZIAGX7LFk/r42XPwfJ8p/4jiROgPUQQC+EW796O7FmEYPZQre3UwrFn677Z4tL1q+U1gPgbQTQC/LlSvTD5R3bKf17wuXA0P8e4U4bL38CsAlmwbNHL8yRt1RTUew0tcvWAKuhArp/Y4nqdo/25vVKobtMVHPb64Ltofiz17cGsFEC6P4Nk+U9Pdo7kebI/5u4/0yeTVEUOy1/ArAmuuDZuyxOdcWPftirvqFlvuE9AmyBAMoXyHeQLx7ewPO77LX8udf3BbBNuuD5Gl0Xwt//xgKaI597IZF/6SBjAF4ggPJlrFp/XSj+PNEQXz3IGICn6ILnKw075b/ZV739r3qzAGslgPLF8hhqYOjuy8C7f4MA27GlAFrXdVVVVVXVdT3vUb7aZSn06xaM/PLYDcAnbGYMaNylvSzLoihOp9PpdDqfz1VVxaNVVbVtG79u27ZpmqZp0nOnj8L+BoY+PDFoy2/2YTYmAPi0bVRAY9A8n88xO8Yd2w+HQzxa13Xbtsfjseu6ruuOx2NMmfcchf/saGBo1/3T+7+i+DPy4Jbf4zPkToB1CN0W/kUOIZRlmafGuq5Pp1O8+Vgczd9Ifv700d6rbKI1XhfC38UmKc/yWnPd8D3X+fecPJk99alYspHvMXI/6T3O/bFf9Xvffnkb2KjviRn32EYXfFmWvbGbvfgYu+bzb1Of+82jvNWqgsgD0h6exV09thteC/M7/zXUCw/wUdsIoMNqZS9BpsGgo3pH8yGhcFU+MPRWXtneWpjf1vme5H9aAPAh2xgDmmuaJvaqn8/nYiybFlnifHSsZ3jZa2+O9dnCOk1j9dcbT/j3C1XAXw+3IQAv2EYFNEnFyzQF/qHa500GZ+zJbN3iD3bHb8Zu3shz9vSjBNiazQTQpmnitPfj8XhzLc/pwqcp8F9izm7xXnd8seX0ttY67nL0wgN82jYCaEyfo1PX0wnTT3/DTfF9eqXQYoMxVOc7ACuwjTGgsfZ5LUcOZ7XHhT8njvbmxcO9hmuFbrGWJn1GW/zZAezCBiqg+ZLyvUPxkbquD4dDVVXxzDjuM508fRSeMdw56W2Rbs41NeWtRC88wEdtIIAmp9Op90jMkVVVnc/nw+GQJqHHCfLR6NFHJyfBiE0NDP1vj/sV3+SbrHo9LICvtIEAWlXVzcnp8Zy8xnn/UXjJJgaGGvp5jbnwAJ+wgQB6v3mXZGI93lfBmmeppmGPfFEUxZ+X724m0ucovfAAn7OrAAqPetdSTbHLO/x8PvP93k8o/nz6VgDgX9uYBQ+bsapp8mqf91AHBVicAPqNzMl4u64LeRf8R2Ko9HmTlgH4EF3w8DbjY0MXyT3SJwArpgIKb9brlC9+C6JvqonmV5Y+76QXHmBZAigsIsbQ0SQ6o/xqn0ufWxrjIaMDfIIueFhWSjyzd80rfAKwESqgF8Itn75BVmFs9dDHTXTNP/hJ64of6fNF/+0UBcD7qYBeuLnlEsxsWBC9/LYrivH1REdDqg/wE6xID7A4ARTWobd6aM/NhCR6ArAduuBhfdKMpd56oldOmzrnv3O3MzHoU9RBAZaiAgqrp7r5bnrhAZalAgoAwKIEUHgLXd6bpA4KsAhd8LAxY4tA/QyDkwQ8YXQhrW5wSBsCvIkAChszTEUhiEqPGW3DovgZPQTA7HTB80VkC27TCw/wfgIofMw8OyoxF6sNACxFAAUAYFHGgMKKmGC0CiGohgK8lQAKK2KC0YdZkR5gEbrgAQBYlAAKMKAOCvBOAihc0N/97Yz+BHg/Y0AvhFtlj84vJwCA16iAXuhu+fQNAksZ/Dlq3VaAuQigAJf8qQnwZgIoAACLEkABrjAXHuA9TEKCG+xO9I2sSA/wTgIo3GB3IgCYly54gOvUQQHeQAAFGGMuPMDbCKAAkxRBAeYmgAJcoQgK8B4CKAAAixJAAW7RCw8wKwEUNs+aUK+72oZ64QHewDqgsBAL2gNAJIDCQixov20hFMWfT98EwE4IoBfCrZFenf44+Da25QSYmzGgF7pbPn2DwMd0xc/0CWOjLAAYIYDCqumjXwV/fALMSgAFAGBRAijA3QwGBZiDAApwB73wAPMRQAEeoQgK8DLLMAGMGJ3S3g0OmSUG8AQBFGDE6MYBRfEzegiAh+iCB3iQXniA1wigAHczFQlgDgIowOMUQQFeIIDCwwwB/GqKoAAvE0ABnqIICvAsARTgQYqgAK8RQAGepQgK8BQBFOBxiqAAL7AQ/YVwq57R+a0D5EIQRgEeJYBekC+Be3WdLniA5+iCB3iNGArwIAEU4Fnv6TMJ4e87Lvu0td0PsAMCKHyMBe33QxEU4BHGgAI8KYS/RfGnK35+v/4ZBlF/ZgAMCaAAT/o3XIafoii64icUf27GzRD+iqQAuuABXmP1DIAHCaAA84h98QDcJIACvCwVQc1GArjD9gJoVVVN0/QeDAN1Xecn1HVdVVVVVb3HAeahIx7gbhubhNQ0Tdu2wwenn1VVVXpW27ZN09x8CsCTFtmc02QmYNM2UwFtmqau68PhcO2E8/ncZVKls67rtm2Px2N8/Hg8xgy6zG0Du3F7hnvxZ5k7Adi6zQTQw+FwOp1GD8U0WVXV6NH4rDyP5t8CzM9IUIBJmwmgsX55Pp+Hh1I581rfelmWvW+H/fgAMzAbCeAOGxsDOiFk/9yXZZkn0V5xNB8SCjCzrpM+AaZtpgI6IabJNMozFjhjJ/ujYz2Hs+kf9Yb3B2yTfxAArthDAI3Tj9KwzqZpyrKMQz+vDQy9pnvZ3G8O2CAd8QCT9hBAhykzPnKt/GkKPPB2MijAdXsIoNekYCpxAh8ggwJcsfkA2jTNcN+jPHEO57y3bdubFw/wFqsflhPC30/fAvCNNh9Aq6qKIz5T6Ewrz6dvi6waGr+wDiiwKEVQgMwelmGKRdB8k6Tj8ZgiZlVV5/P5cDikKern8/nRyUkAT0qrMi2yRSfAJmwsgFZVNTrTvOu6uAp9VVWjc5LiCcXj8+IBXpVn0MF2nWOd4D/DguliO7+v7X6AXQpWDkpC0BrA80L4OxXLUoi79e/Mjevcfc49lnwt+HJiRm7zY0ABtiGfFG9IKPDdNtYFD7BawzLhoDv7T1f8pGPhtztefRH4NgIowLuMRdKi6/6JFdCu+DEtCfhOuuABFqc7HvhuAijAJ+S1Txl0bhbYh5UTQAE+pOts1wl8J2NAAT7qYpXQ8UWarM0J7IwACvBpKYMW44vVX53MBLBNuuAvhFs+fYPATmXd8f8t1QSwUyqgF2xRAHzSHd3xADugAgqwJmbHA19AAAVYl1D8sVAosG8CKMAq9UqhYiiwIwIowFrlC4UWYiiwHyYhAaxbzKAX6zQVw6Wa7mE9UWAlBFCALbiMoV3xU4SfR6fJW08UWAld8ADboVMe2AUBFGBrui7kXfAxhkqiwHYIoADb1KuGFgqiwGYIoADr8tigzBhD39kvv9dBomNTsoCFmIQEsAvjk+Xt5wmskQoowI58qF/+nmqiiiOQqIACLGeh7ux8J8/8C9VQYB0EUID9+o5+eQvsw+YIoBfCrY6qbl//agNfoRdDL75+ZkeltbHAPmyOMaAXuls+fYMAzxrOl/93RyUrNwFLE0ABvsy1lZs2kkRNZoIdEEABtmee/uXejkpFlkQ3EkaBjTIGFOC7DafM9741+giYmwAKQFEURb9Tvve1GArMRwAFYMBKosA7CaAAXPcdK4kCCzMJCYBbPrTDJ7BXAijAPs2/XNG19ZtYE8tUsQkCKAAPGsRQC9oDDzEGFOB7vbSe6NQOnwaJAlNUQAF4QdeNLGhfbGx3JWBhKqAAzGHdy4iOjYz8GcbjebaYAm4RQAGY29gyol1RFMXH4t0wWYYgbsLHCKAAPObOamJRFEXxpyiKrvhJz/zvIvGQCAhfSQAF4DGPVxP/+fek/CIxlYafeMVZbxBYO5OQLoRbPn2DAFsVij8jK4n+e8yMJfguKqAXOn+FAyxg3TOWgHcTQAH4qLEZSxePP3NJQ0th1QRQANah60L4O5yxNFhk1PJJsHkCKABrMthg6b9IWsSQKm6+JIS/GpCPE0ABWJ9hv/zvt11RFOHHOFHYNLPgAVixNHG+lzjNmv+0seVg4V4CKAAbMdx3XgyFbdIFD8DW9MaJpi/0y8NGCKAAbNNgutLF18IorJgACrAHd+7PvsPpz9enK/VP2KN7fu47/KGzfQIowB48vj/77nzl7kp+7myUAArA7rxhdyVgRmbBA7BfvfWb4qx5c+fh0wRQAPZuuIxo3GBJGIUP0QUPwHe4Nki0+JYZS7AeKqAXwi2fvkEA5jC9wZKy6AbZmWlbVEAvdP72BXjcPdOu1zs1+7sXcoKPEEAB+IzVrV360YWcQvi73owOcxNAAfiMVa9haSEneCcBFADGhfC3s+88vIEACgC3bHbf+dWNc4CiKARQALblk1Fpg9OVVj3OgS8mgALAg6anKw3P2T6VVOYlgALACzZYFn2CSirzEkABYA7fVxaFpwmgADC3m2XRQhjlq21vK86qqpqmGT5e13VVVVVV1XX96FEAeItre34Wtv3kq22sAto0Tdu2w8erqkqPt23bNE0eUqePAuyS8Xmrc62PviiKELqiKMLP62VRP3c2YTMV0KZp6ro+HA7DQ3Vdt217PB67ruu67ng8xpR5z1EA+IBrlVEFUb5D6DYyBiVk/0Gez+eqqnqH8jcSQijLMqbM6aO9l9hKawDs0tr2Q1/yfkL42xU/Fw+951fSXG9q6ca59Vrr//CIGbnNVEBj/fJ8Po8eLcuy923eUz99FABWoVcQNUKU/dpMAJ2WF0RvHp0+GQA+6Vq/vDDKjmxsEtLQ6GjONOvo0bGe4eX/tlXXAZjBd6xv/zQ7M23d5gPoQ7XPm8RHAGb30vBE69uPsTPT1m0+gI6aLnyaAg/AXJ4Ll08W8JYqi65tQg/7s5MAKnEC7MBnQ8+SvbqvFvCURdm4PQTQ4az2uPDnxNHevHgA2Gqv7opHi26xkrrFe96iPcyCj7trpuGe8Yu05eb0UQDYienF7U2iZ032UAGtqup8Ph8OhzSHPV8udPSolZgA2JwHinPXy6L/7vlZ6KPnkzYWQKuqGp2oHh+PYz2H4XL6KADs1uQG9OOnwfttLIBOm3dJJgDYlXvC6N1J1EBJXrGrAAoA3GVyHv2/3fTKoryNAAoA323F8+jZqz3MggcAZvA7iT4Ufy4eN4+euamAAgADyqK8kwAKAFy3+K5LS25JNZf77vnP4JzvJYACAPdZpCy6xS2p7rnnEEJRrPpdLEkABQAeZDN6XiOAXgi3hlePLoMPAMkWe5BfcnPXpdX86rTP+3oIoBfkSwBetMUe5Hl8tCz6FS28IwIoANxrl9XNt7yprotX7oqf3ouNnsm3EUAB4F7vq25+MLO+t2Q7sf/n6IPy6HcQQAGAGdxRSf1T9PLuMJIuO41plyXtTRBAAWDcZ2PH5rLRM5XUXsS8trrT21bQ/N4Bu58mgALAGn1JNrqYmX6lv74rforwM3IOmyWAAgDrYy/QXfu/T98AAMB1XReKP0XXjfTXp/9ja1RAAYCNUBbdCwEUANgae4FunC54AGDLYu/8MG7mffSzdtOPLVDAY1RAAYBdmF70Pu1NP3o+yxJAAYDdmV5hdPigMLosXfAAwKrNsPpp113Mpp/or5/J/lZsnZcKKACwQ7e2kvp3d6Wu+8ei98sTQAGAHXpgKymrOy1OF/yFcMunbxCA7dEbuxkWvV+KCuiFzp84AEAxVRa9mE0vOTxFAAWA5+2yurnLN/W8W6s7XT2Z6wRQAOAtxkZhTk8MuvrExdx46a4riiKEv/+eNp1HhdHrBFAAYCEPTAzahOnVRuO3YugYARQAtmHDQe1LTHfWkxFAAQDmpvA5yTJMAAAsSgUUAOCq9U+c2iIBFADgqr1NnFoHXfAAACxKAAUAYFECKAAAixJAAQBYlAAKAHwFM4fWQwAFAGBRlmG6EG5tnNXZ2AAA4DUC6AX5EgDg3XTBAwCwKAEUAPgYE4O+kwAKAMCiBFAAABYlgAIAsCgBFACARQULDyUhaA0A4C3EjJwKKAAAixJAAQBYlAAKAMCiBFAAABYlgAIAsCgBlKWFED59C/unkZehnRegkRegkVmeAAoAwKIEUAAAFvW/T9/AutzshrCELADAiwTQC/IlAMC76YIHAGBRAuj85ppOuNfrzGJtb2pt15nL2t7X2q4zi7W9qbVdZy5re19ru84s1vam1nYdcgIoAACLEkABAFiUAAoAwKIEUAAAFiWAAgCwKAEUAIBFBUuvJ9ZZAADeR+hKBFAAABalCx4AgEUJoAAALEoABQBgUQIoAACL+qIAWlVV0zTDx+u6rqqqqqq6rh89ytC1dp4+qp0f4sO8DO28gOl/MeIJw5bUyA8ZbeQw0GtMjfyoax/mpmn8izGi+w7n87koivP53Hu8LMu8NcqyvP8oQ9faefqodn7ItWZMrZfaMz9HIz9qtJ3jg712zk/Qzg+Z/hej+23P4/E4fFAj32n6k5zL21kjP+rah/l4PKY29C9Gbv8B9Hw+px9/75MRH0//ycVv0znTR+mZaOfpo9r5fhPNGP8Vyx/M/6XTyA+ZaOfe74/4K6fXsNr5HtP/YqRzhsFII99vopGno79GfsjNdk4tGb9NKfPL23n/ATT/22L6d0l8JH0ypo/SM9HO00e18/2mm7HXaPHfsvyJ0+eTTLdzrxrnH43nTP+Lkc4ZVkA18v0mGjn/9+HaE3uPaORrJto5foDzR47HY/o8f3k7738MaHyfo90NRVYST9+2bXvnUXLT7fzKT4FkohnLsqyqauK5Gvl+E+18Pp+H7Zw/op3vNP1vQvHbqqMj6jTynSYaOTVs0zQa+UUT7dy2ba8l67rOx3p+czvvP4BOm/6d3Ts6fTJP086va5qmN4D9dDrl32rkWcS5AsXvr+34dd6Y2nkWdV23bdtd2ahPI88lhHA4HA6HQwhhulU18tPi7KKqqmIj9+L+N7fz9wbQ0b/50s9+elYmc9HO79A0TQihKIr4F7lGfof4a7tt2+PxOFGr4wlN05xOp+m6HS+KZbbUFxwLb/GPWI08l9iSp9MplgOOx2PbtofDIT6unf/36Rv4mIdqn7yJdp5dVVXxV0vqLNbI79B1XSyCxl8tscLx6ZvaicPhcG1IiUaeS28wSSznn04nn+R3SLX8uq5j1bnrOu38vRXQUdN/kfh7ZRna+Tmx8Blrcjf/ddPIr4s9a2VZ9kY75LTzo2IRLrZtGi0XR5hca0yN/IRrQ5k18oxik/ZGeab58qO+qp2/twIaSZxroJ1f1zRNrBv5/fE+MQb1SkSp5JzOWf7G9qeX6du2bdvWEKkFaORlpBHk39zOX10BHU43i9WjiaO9P2V4nXaexeFwKK7/W6aRZxGzZq+R82+18+vquu6t1VL8DlVM9SSN/KLYW9KbtuiT/A7Dlozt7MNcfHkATX098dv4Rfpvcvooc9HOr0u/OeqB9HihkWdyOp3yBs//atXOC9DIr6uqKg4d8Ul+t15LaucLcy0ounLXdn3oTbSc3qzse/YneNpzW3Fq54cMm3FiMcVr52jkm6a3PE16q0Zr54fc3IqzG1v8XyM/5M5PskZ+0c2tOP2L0RO6KwutfZW8JP7oUeainRegkWeR6kb+0fggjfy6tJytT/K7iRlDAigAAIv66jGgAAAsTwAFAGBRAigAAIsSQAGArxPnYH36Lr6XAAoA7FD4lS+uGdfhj3uyHw6H4QnTRpfxj+JW73FhgfTSM7yNnTILHgDYoRBCWZb59rl1XceNXo/HY9oMMz1yZwyNsXIYn/LH4/bIo6cRCaAAwA7FAJr3s1/LjnGj3TsTUTz5fD73Vu7svdxD1/xCuuABgM2o67o3dvPOymU8bXTruHiod520Sn/v8fjt6D180UaaL1MBBQA2o1fFvFbULAYlyYkzh2L9Mn8kf+LwUsN6pwroNBVQAGAzYqSL3d8TRc1RZVnec1pd17GTPe5aHq+fd7jHHd7zImjbtndenEgABQC25Hg8tm0bZxSl6UT36J2ZT1cPIaSjp9OpLMv0bVVV8RXTE3sd7vrfn6ALHgDYmNRFPhFjhl3wvTlJeWSMc+Hj1eKZeVptmqbXn573wo/2tuuCn/a/T98AAMBjYrx7tNe7N6xzGECL3471tm17Jxe/05Li18fj8XQ6xUfato2d8txPFzwAsCVx8c6yLNu2vX83o5hWb54fI+bxeOwG8ppo6naPX9w/DIBIAAUAtuRwOKTO9Lje+z0mzh/Gx15OjaNFe+fkCVgAfZQACgBsRtrBqLicEX+P2FGe76UZt9bs9banSU7x2zgpftjJHk/Q//6kYYUZAGCF4opIef94DH9pyaRcURRlWY5eIRfPidfpXbZ3zuhLXHv12OP/0Lv7KmbBAwA7NJz2nrun6/yV7nWz4KeZBQ8AfJ17YqWRne9jDCgAsE9xKOf9M+Vn0TRNHDa65ItujgAKAOxQHIUZV+tc8nXjKlHF3Tt/fidjQAEAWJQKKAAAixJAAQBYlAAKAMCiBFAAABYlgAIAsCgBFACARQmgAAAsSgAFAGBRAigAAIsSQAEAWJQACgDAogRQAAAWJYACALAoARQAgEUJoAAALOr/ATS91A4O1e6MAAAAAElFTkSuQmCC\n", "text/plain": [ "<IPython.core.display.Image object>" ] @@ -163,1335 +334,101 @@ } ], "source": [ + "c1.cd()\n", + "#stack = ROOT.THStack('stack','stack')\n", + "#histoBkg.SetFillColor(2)\n", + "#histoSig.SetFillColor(4)\n", + "#stack.Add(histoBkg)\n", + "#stack.Add(histoSig)\n", "pseudoData = ROOT.TH1D('pseudoData',\"pseudoData\",nbins, minVal,maxVal)\n", - "stack = ROOT.THStack('stack','stack')\n", - "histoBkg.SetFillColor(2)\n", - "histoSig.SetFillColor(4)\n", - "stack.Add(histoBkg)\n", - "stack.Add(histoSig)\n", + "pseudoData.GetXaxis().SetTitle('x [GeV]')\n", + "pseudoData.GetYaxis().SetTitle('Entries / {} GeV'.format((maxVal-minVal)/nbins))\n", "pseudoData.Add(histoBkg)\n", "pseudoData.Add(histoSig)\n", - "pseudoData.Draw()\n", + "pseudoData.Draw('e')\n", + "fullModel.SetParameters(nEntries*fSig,nEntries*(1-fSig),100.000000,125.000000,2.400000 ,50)\n", + "for i in range(6):\n", + " fullModel.ReleaseParameter(i)\n", + "fullModel.FixParameter(2,100)\n", "pseudoData.Fit('fullModel')\n", "#stack.Draw('same')\n", "c1.Draw()" ] }, + { + "cell_type": "markdown", + "id": "corporate-folks", + "metadata": {}, + "source": [ + "## ¿Qué estamos haciendo realmente?\n", + "En la parte anterior hemos obtenido una esimación de los parámetros y sus errores a través de una minimización del $\\chi^{2}$ (en realidad no hemos sido nosotros, ROOT lo ha hecho utilizando un software que se llama MINUIT, y cuyo contenido sale un poco de la lÃnea del curso..).\n", + "\n", + "<h1><center>$\\chi^{2} = \\sum \\frac{(x_{data}-x_{model})^{2}}{\\sigma_{data}^{2}}$</center></h1>\n", + "\n", + "Grosso modo: en el hiperespacio de parámetros libres (en nuestro caso, 5) ha generado una hipersuperficie de $\\chi^{2}$. Lógicamente, cada conjunto de parámetros tiene un $\\chi^{2}$\n", + "calculado el gradiente de la superficie en cada punto, y apuntado al punto en el cual es mÃnimo. \n", + "Para \"verlo\" mejor, vamos a hacer una simplificación: vamos a fijarnos exclusivamente en dos parámetros (la masa y la anchura de la señal) y vamos a ver qué cara tiene dicha superficie en ese subespacio de dos parámetros. " + ] + }, + { + "cell_type": "raw", + "id": "aggregate-salad", + "metadata": {}, + "source": [ + "Primero creamos un histograma bidimensional" + ] + }, { "cell_type": "code", - "execution_count": 7, - "id": "cardiovascular-trauma", + "execution_count": 10, + "id": "proof-mapping", "metadata": {}, "outputs": [], "source": [ "stepMass = 0.5\n", - "binMass = int((maxVal-minVal)/stepMass)+1\n", - "chi2Plot = ROOT.TH1D('chi2Plot','chi2Plot',binMass,minVal-0.5,maxVal-0.5)" + "stepWidth = 0.25\n", + "binMass = int((maxVal-minVal)/stepMass)\n", + "binWidth = int(10./stepWidth)\n", + "chi2dPlot = ROOT.TH2D('chi2dPlot','chi2dPlot',binMass,minVal-stepMass/2.0,maxVal-stepMass/2.0,binWidth,0.5,10.5)" + ] + }, + { + "cell_type": "markdown", + "id": "formed-particular", + "metadata": {}, + "source": [ + "Luego realizamos ajustes fijando tanto la masa como la anchura, de forma que nos permitan obtener el $\\chi^{2}$ en función de dichos parámetros. Sin fijarlos, obtendrÃamos siempre el valor que más se ajuste a los datos (en el mÃnimo!). " ] }, { "cell_type": "code", - "execution_count": 8, - "id": "automotive-wednesday", + "execution_count": 11, + "id": "liquid-rwanda", + "metadata": {}, + "outputs": [], + "source": [ + "#this is for the chi2 on the mass and width\n", + "chi2dPlot.Clear()\n", + "for masses in np.linspace(minVal, maxVal, num=binMass+1):\n", + " #print('Filling: mass and bin {} , {} '.format(masses,chi2dPlot.GetXaxis().FindBin(masses)))\n", + " for widths in np.linspace(0.25, 10.5, num=binWidth+1):\n", + " #print('Filling: mass and bin {} , {} '.format(widths,chi2dPlot.GetYaxis().FindBin(widths)))\n", + " fullModel.SetParameters(nEntries*fSig,nEntries*(1-fSig),100.000000,125.000000,2.400000 ,50)\n", + " fullModel.FixParameter(3,masses)\n", + " fullModel.FixParameter(4,widths)\n", + " pseudoData.Fit('fullModel','Q')\n", + " chi2dPlot.SetBinContent(chi2dPlot.FindBin(masses,widths),fullModel.GetChisquare())" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "patient-organ", "metadata": {}, "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " FCN=1028.97 FROM MIGRAD STATUS=CONVERGED 193 CALLS 194 TOTAL\n", - " EDM=1.86878e-07 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 2.3 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -3.19704e-01 2.55492e-02 -7.80802e-05 -2.79205e-02\n", - " 2 nbkg 2.74718e+04 2.03248e+02 -1.57884e-01 5.95484e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 9.95000e+01 fixed \n", - " 5 sigma 1.16572e+01 2.50996e-01 9.49299e-04 8.79055e-04\n", - " 6 tau 3.58743e+01 7.15744e-01 -1.42617e-03 1.49369e-03\n", - " FCN=1024.56 FROM MIGRAD STATUS=CONVERGED 218 CALLS 219 TOTAL\n", - " EDM=6.3898e-10 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 2.2 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -3.01039e-01 2.34870e-02 2.17404e-05 -3.14118e-03\n", - " 2 nbkg 2.77659e+04 2.17006e+02 -7.33594e-02 1.72758e-07\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.00000e+02 fixed \n", - " 5 sigma 1.13593e+01 2.44851e-01 -1.35239e-04 7.82793e-05\n", - " 6 tau 3.59670e+01 7.04732e-01 5.83354e-04 9.89144e-05\n", - " FCN=1020.16 FROM MIGRAD STATUS=CONVERGED 247 CALLS 248 TOTAL\n", - " EDM=1.88898e-07 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -2.83248e-01 2.14591e-02 8.55884e-05 -8.35733e-02\n", - " 2 nbkg 2.80430e+04 2.28409e+02 1.35684e+00 3.72933e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.00500e+02 fixed \n", - " 5 sigma 1.10576e+01 2.38073e-01 2.48765e-03 -3.12848e-03\n", - " 6 tau 3.60692e+01 6.89222e-01 2.11455e-03 2.71390e-03\n", - " FCN=1015.83 FROM MIGRAD STATUS=CONVERGED 232 CALLS 233 TOTAL\n", - " EDM=6.56926e-10 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 2.1 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -2.66249e-01 1.98006e-02 1.16224e-05 -3.08020e-03\n", - " 2 nbkg 2.83016e+04 2.40241e+02 -9.36473e-02 3.43742e-07\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.01000e+02 fixed \n", - " 5 sigma 1.07521e+01 2.33179e-01 -2.17303e-04 1.45833e-04\n", - " 6 tau 3.61834e+01 6.82720e-01 2.48470e-04 1.67568e-04\n", - " FCN=1011.69 FROM MIGRAD STATUS=CONVERGED 224 CALLS 225 TOTAL\n", - " EDM=4.27177e-07 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 2.8 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -2.49985e-01 1.80835e-02 3.42238e-05 -1.01967e-01\n", - " 2 nbkg 2.85403e+04 2.48348e+02 2.35747e-01 5.01219e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.01500e+02 fixed \n", - " 5 sigma 1.04431e+01 2.28761e-01 -5.89072e-04 1.83002e-03\n", - " 6 tau 3.63121e+01 6.63297e-01 -6.64663e-04 3.00727e-03\n", - " FCN=1007.85 FROM MIGRAD STATUS=CONVERGED 216 CALLS 217 TOTAL\n", - " EDM=1.14814e-08 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 2.6 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -2.34363e-01 1.63567e-02 1.86942e-05 -2.90828e-03\n", - " 2 nbkg 2.87567e+04 2.55768e+02 -1.98316e-01 -3.97557e-08\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.02000e+02 fixed \n", - " 5 sigma 1.01307e+01 2.18785e-01 9.50638e-06 8.57813e-04\n", - " 6 tau 3.64596e+01 6.45466e-01 5.76865e-04 5.10660e-05\n", - " FCN=1004.48 FROM MIGRAD STATUS=CONVERGED 211 CALLS 212 TOTAL\n", - " EDM=5.5698e-08 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 3.0 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -2.19353e-01 1.48014e-02 -5.98081e-06 1.85231e-02\n", - " 2 nbkg 2.89484e+04 2.47793e+02 4.29907e-02 3.83968e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.02500e+02 fixed \n", - " 5 sigma 9.81556e+00 2.03829e-01 -1.76438e-04 -3.16383e-04\n", - " 6 tau 3.66291e+01 6.33604e-01 1.99461e-05 9.57872e-04\n", - " FCN=1001.8 FROM MIGRAD STATUS=CONVERGED 231 CALLS 232 TOTAL\n", - " EDM=3.29444e-07 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -2.04901e-01 1.37010e-02 7.21333e-05 -1.39697e-01\n", - " 2 nbkg 2.91122e+04 2.66750e+02 1.39572e+00 5.57429e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.03000e+02 fixed \n", - " 5 sigma 9.49863e+00 2.11238e-01 2.21926e-03 -3.54998e-03\n", - " 6 tau 3.68257e+01 6.17600e-01 2.18910e-03 4.77928e-03\n", - " FCN=1000.08 FROM MIGRAD STATUS=CONVERGED 207 CALLS 208 TOTAL\n", - " EDM=6.83851e-10 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 2.4 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -1.90959e-01 1.25383e-02 -1.25733e-06 8.07716e-03\n", - " 2 nbkg 2.92445e+04 2.69750e+02 -1.36688e-01 1.76795e-07\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.03500e+02 fixed \n", - " 5 sigma 9.18111e+00 2.07755e-01 8.34067e-06 1.84618e-04\n", - " 6 tau 3.70551e+01 6.04972e-01 1.88464e-04 -7.44602e-05\n", - " FCN=999.668 FROM MIGRAD STATUS=CONVERGED 214 CALLS 215 TOTAL\n", - " EDM=1.48259e-07 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 2.4 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -1.77490e-01 1.12741e-02 -2.45711e-05 1.64724e-01\n", - " 2 nbkg 2.93411e+04 2.71135e+02 5.38728e-01 2.47921e-07\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.04000e+02 fixed \n", - " 5 sigma 8.86458e+00 2.02882e-01 5.67890e-04 3.21640e-03\n", - " 6 tau 3.73239e+01 5.92460e-01 -1.15477e-03 -2.30382e-03\n", - " FCN=1000.94 FROM MIGRAD STATUS=CONVERGED 216 CALLS 217 TOTAL\n", - " EDM=7.16886e-09 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -1.64472e-01 1.04711e-02 6.34382e-05 2.73694e-02\n", - " 2 nbkg 2.93977e+04 2.70824e+02 1.40874e+00 -4.26296e-07\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.04500e+02 fixed \n", - " 5 sigma 8.55129e+00 2.00415e-01 2.14355e-03 6.50300e-04\n", - " 6 tau 3.76392e+01 5.80570e-01 2.28607e-03 -5.03185e-04\n", - " FCN=1004.33 FROM MIGRAD STATUS=CONVERGED 189 CALLS 190 TOTAL\n", - " EDM=1.67601e-08 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -1.51881e-01 9.58848e-03 6.07806e-05 -3.59387e-04\n", - " 2 nbkg 2.94101e+04 2.68685e+02 1.41175e+00 3.53897e-07\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.05000e+02 fixed \n", - " 5 sigma 8.24394e+00 1.97875e-01 2.14147e-03 1.02338e-03\n", - " 6 tau 3.80083e+01 5.69854e-01 2.33420e-03 2.94081e-04\n", - " FCN=1010.28 FROM MIGRAD STATUS=CONVERGED 190 CALLS 191 TOTAL\n", - " EDM=3.12341e-08 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -1.39705e-01 8.79299e-03 5.83456e-05 1.38403e-02\n", - " 2 nbkg 2.93750e+04 2.64858e+02 1.41429e+00 2.55246e-07\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.05500e+02 fixed \n", - " 5 sigma 7.94547e+00 1.95883e-01 2.15370e-03 -5.28962e-04\n", - " 6 tau 3.84381e+01 5.60160e-01 2.39296e-03 2.12553e-04\n", - " FCN=1019.17 FROM MIGRAD STATUS=CONVERGED 191 CALLS 192 TOTAL\n", - " EDM=2.59296e-09 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -1.27943e-01 8.07874e-03 5.61776e-05 1.35218e-02\n", - " 2 nbkg 2.92910e+04 2.59482e+02 1.41649e+00 5.20360e-08\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.06000e+02 fixed \n", - " 5 sigma 7.65883e+00 1.94455e-01 2.18159e-03 4.91536e-04\n", - " 6 tau 3.89338e+01 5.51591e-01 2.46399e-03 -5.34846e-05\n", - " FCN=1031.22 FROM MIGRAD STATUS=CONVERGED 184 CALLS 185 TOTAL\n", - " EDM=1.30738e-07 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -1.16592e-01 7.43903e-03 5.42954e-05 5.57794e-03\n", - " 2 nbkg 2.91589e+04 2.52770e+02 1.41848e+00 -2.34129e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.06500e+02 fixed \n", - " 5 sigma 7.38610e+00 1.93640e-01 2.22612e-03 1.80501e-03\n", - " 6 tau 3.94975e+01 5.44197e-01 2.54862e-03 -1.35362e-03\n", - " FCN=1046.45 FROM MIGRAD STATUS=CONVERGED 182 CALLS 183 TOTAL\n", - " EDM=5.64077e-07 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -1.05650e-01 6.86625e-03 5.26920e-05 2.91627e-03\n", - " 2 nbkg 2.89827e+04 2.45006e+02 1.42044e+00 1.69964e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.07000e+02 fixed \n", - " 5 sigma 7.12775e+00 1.93557e-01 2.28795e-03 -1.02570e-03\n", - " 6 tau 4.01278e+01 5.37965e-01 2.64715e-03 2.47882e-03\n", - " FCN=1064.59 FROM MIGRAD STATUS=CONVERGED 181 CALLS 182 TOTAL\n", - " EDM=1.11983e-06 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -9.51420e-02 6.35161e-03 5.13287e-05 9.19994e-02\n", - " 2 nbkg 2.87702e+04 2.36500e+02 1.42228e+00 1.61561e-05\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.07500e+02 fixed \n", - " 5 sigma 6.88283e+00 1.94374e-01 2.36673e-03 3.61051e-03\n", - " 6 tau 4.08169e+01 5.32692e-01 2.75990e-03 6.42460e-03\n", - " FCN=1085.09 FROM MIGRAD STATUS=CONVERGED 158 CALLS 159 TOTAL\n", - " EDM=7.72498e-07 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 2.9 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -8.50822e-02 5.48885e-03 6.90014e-05 9.58389e-02\n", - " 2 nbkg 2.85302e+04 2.25790e+02 -4.31919e+00 -5.95663e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.08000e+02 fixed \n", - " 5 sigma 6.64794e+00 1.94810e-01 -1.68167e-03 -2.58252e-03\n", - " 6 tau 4.15543e+01 5.18765e-01 8.97383e-03 -7.44442e-04\n", - " FCN=1107.2 FROM MIGRAD STATUS=CONVERGED 193 CALLS 194 TOTAL\n", - " EDM=9.06972e-08 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -7.55267e-02 5.45819e-03 4.90829e-05 -7.05195e-02\n", - " 2 nbkg 2.82741e+04 2.18448e+02 1.42568e+00 2.43132e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.08500e+02 fixed \n", - " 5 sigma 6.41888e+00 1.99590e-01 2.57925e-03 -2.03189e-03\n", - " 6 tau 4.23233e+01 5.23825e-01 3.02161e-03 1.07253e-03\n", - " FCN=1130.07 FROM MIGRAD STATUS=CONVERGED 177 CALLS 178 TOTAL\n", - " EDM=1.64496e-09 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 3.1 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -6.65197e-02 5.06411e-03 -4.17913e-06 -1.82505e-02\n", - " 2 nbkg 2.80119e+04 2.09364e+02 2.70070e-01 5.65423e-07\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.09000e+02 fixed \n", - " 5 sigma 6.19013e+00 2.04229e-01 3.59781e-05 -2.34216e-05\n", - " 6 tau 4.31069e+01 5.18992e-01 -5.98682e-04 3.75522e-04\n", - " FCN=1152.84 FROM MIGRAD STATUS=CONVERGED 185 CALLS 186 TOTAL\n", - " EDM=6.54835e-08 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -5.81304e-02 4.68550e-03 4.69452e-05 -2.53306e-02\n", - " 2 nbkg 2.77532e+04 2.00606e+02 1.42828e+00 3.18417e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.09500e+02 fixed \n", - " 5 sigma 5.95624e+00 2.10806e-01 2.86217e-03 -1.11620e-03\n", - " 6 tau 4.38858e+01 5.14544e-01 3.31140e-03 1.01024e-03\n", - " FCN=1174.76 FROM MIGRAD STATUS=CONVERGED 160 CALLS 161 TOTAL\n", - " EDM=1.355e-07 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 2.3 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -5.04212e-02 4.32631e-03 4.40838e-05 -1.78882e-01\n", - " 2 nbkg 2.75057e+04 1.93833e+02 7.82370e-01 3.50901e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.10000e+02 fixed \n", - " 5 sigma 5.71218e+00 2.15480e-01 -9.55364e-04 -6.94023e-04\n", - " 6 tau 4.46417e+01 5.08634e-01 -2.45024e-03 2.89657e-03\n", - " FCN=1195.23 FROM MIGRAD STATUS=CONVERGED 159 CALLS 160 TOTAL\n", - " EDM=1.08847e-07 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 2.6 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -4.34429e-02 3.98774e-03 1.82411e-05 1.91608e-01\n", - " 2 nbkg 2.72755e+04 1.84273e+02 7.13106e-01 -2.01345e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.10500e+02 fixed \n", - " 5 sigma 5.45345e+00 2.27542e-01 -3.93980e-04 7.73562e-04\n", - " 6 tau 4.53575e+01 5.02335e-01 -3.08948e-03 -2.09701e-03\n", - " FCN=1213.84 FROM MIGRAD STATUS=CONVERGED 156 CALLS 157 TOTAL\n", - " EDM=6.36923e-09 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 3.1 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -3.72316e-02 3.64695e-03 -1.36873e-06 -3.79386e-02\n", - " 2 nbkg 2.70666e+04 1.76887e+02 2.47279e-01 6.31319e-07\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.11000e+02 fixed \n", - " 5 sigma 5.17682e+00 2.38576e-01 6.83677e-04 -5.06551e-04\n", - " 6 tau 4.60198e+01 4.93931e-01 -1.08255e-03 4.44329e-04\n", - " FCN=1230.35 FROM MIGRAD STATUS=CONVERGED 147 CALLS 148 TOTAL\n", - " EDM=1.93304e-08 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 4.3 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -3.17990e-02 3.32733e-03 9.60821e-06 -1.52604e-02\n", - " 2 nbkg 2.68816e+04 1.69585e+02 -6.36999e-01 1.85735e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.11500e+02 fixed \n", - " 5 sigma 4.88092e+00 2.51076e-01 -7.25889e-04 -9.55560e-04\n", - " 6 tau 4.66171e+01 4.85237e-01 1.71388e-03 4.08108e-04\n", - " FCN=1244.71 FROM MIGRAD STATUS=CONVERGED 147 CALLS 148 TOTAL\n", - " EDM=3.80883e-08 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 2.0 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -2.71345e-02 3.02848e-03 -6.46665e-06 2.72353e-02\n", - " 2 nbkg 2.67220e+04 1.63244e+02 8.71857e-01 1.49832e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.12000e+02 fixed \n", - " 5 sigma 4.56738e+00 2.63016e-01 1.68349e-03 1.23332e-03\n", - " 6 tau 4.71420e+01 4.76250e-01 -2.12332e-03 1.35945e-04\n", - " FCN=1257.01 FROM MIGRAD STATUS=CONVERGED 138 CALLS 139 TOTAL\n", - " EDM=9.5565e-09 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 1.4 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -2.31962e-02 2.70354e-03 6.29194e-06 -2.66782e-02\n", - " 2 nbkg 2.65875e+04 1.58102e+02 -6.59562e-01 4.95762e-08\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.12500e+02 fixed \n", - " 5 sigma 4.24104e+00 2.72785e-01 -5.68302e-04 -7.13602e-04\n", - " 6 tau 4.75918e+01 4.68130e-01 1.50221e-03 1.60036e-04\n", - " FCN=1267.49 FROM MIGRAD STATUS=CONVERGED 161 CALLS 162 TOTAL\n", - " EDM=5.41071e-09 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -1.99108e-02 2.48724e-03 3.46279e-05 3.87612e-02\n", - " 2 nbkg 2.64767e+04 1.53526e+02 1.42948e+00 -3.47945e-07\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.13000e+02 fixed \n", - " 5 sigma 3.90981e+00 2.80410e-01 4.23938e-03 3.72475e-04\n", - " 6 tau 4.79687e+01 4.60054e-01 4.15215e-03 -1.54566e-04\n", - " FCN=1276.46 FROM MIGRAD STATUS=CONVERGED 165 CALLS 166 TOTAL\n", - " EDM=8.19912e-09 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -1.71748e-02 2.26406e-03 3.24883e-05 1.79383e-02\n", - " 2 nbkg 2.63865e+04 1.49915e+02 1.42970e+00 4.96934e-07\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.13500e+02 fixed \n", - " 5 sigma 3.58128e+00 2.85350e-01 4.36369e-03 8.73241e-05\n", - " 6 tau 4.82807e+01 4.53832e-01 4.22280e-03 -1.43613e-04\n", - " FCN=1284.28 FROM MIGRAD STATUS=CONVERGED 140 CALLS 141 TOTAL\n", - " EDM=1.94065e-08 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 2.4 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -1.48728e-02 2.07040e-03 6.38004e-06 -1.43517e-01\n", - " 2 nbkg 2.63129e+04 1.47805e+02 -3.25892e-01 2.95215e-07\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.14000e+02 fixed \n", - " 5 sigma 3.26091e+00 2.88983e-01 -2.08429e-03 -5.93239e-04\n", - " 6 tau 4.85391e+01 4.51750e-01 1.00955e-04 1.20305e-04\n", - " FCN=1291.31 FROM MIGRAD STATUS=CONVERGED 151 CALLS 152 TOTAL\n", - " EDM=1.7496e-08 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 0.7 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -1.28907e-02 1.89498e-03 -2.16806e-06 -6.24247e-02\n", - " 2 nbkg 2.62518e+04 1.44844e+02 -1.91651e-01 1.82835e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.14500e+02 fixed \n", - " 5 sigma 2.94925e+00 2.85244e-01 4.97165e-04 -6.45164e-04\n", - " 6 tau 4.87558e+01 4.43375e-01 9.05374e-04 8.18231e-04\n", - " FCN=1297.8 FROM MIGRAD STATUS=CONVERGED 166 CALLS 167 TOTAL\n", - " EDM=1.91122e-09 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 0.6 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -1.11158e-02 1.72091e-03 -1.51237e-06 6.37862e-03\n", - " 2 nbkg 2.61999e+04 1.42819e+02 -3.67446e-02 -1.70249e-08\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.15000e+02 fixed \n", - " 5 sigma 2.63591e+00 2.88290e-01 7.32335e-06 2.53986e-04\n", - " 6 tau 4.89421e+01 4.40529e-01 1.49509e-04 -1.19249e-04\n", - " FCN=1303.89 FROM MIGRAD STATUS=CONVERGED 162 CALLS 163 TOTAL\n", - " EDM=1.99727e-08 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 0.8 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -9.43488e-03 1.53830e-03 -1.44311e-06 -1.11777e-01\n", - " 2 nbkg 2.61540e+04 1.40623e+02 -3.02201e-02 5.19855e-07\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.15500e+02 fixed \n", - " 5 sigma 2.29488e+00 3.06010e-01 -3.24153e-04 -8.87382e-04\n", - " 6 tau 4.91082e+01 4.35551e-01 -2.69664e-04 -6.38891e-05\n", - " FCN=1110.48 FROM MIGRAD STATUS=CONVERGED 254 CALLS 255 TOTAL\n", - " EDM=1.95342e-09 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 1.70305e-01 1.58125e-02 1.19285e-04 3.15161e-03\n", - " 2 nbkg 2.56364e+04 2.40174e+02 1.29465e+00 -5.05491e-07\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.16000e+02 fixed \n", - " 5 sigma 1.62595e+01 8.38046e-01 6.11299e-03 -3.52913e-05\n", - " 6 tau 5.55327e+01 9.24336e-01 5.90195e-03 -1.18033e-04\n", - " FCN=1106.37 FROM MIGRAD STATUS=CONVERGED 213 CALLS 214 TOTAL\n", - " EDM=5.63469e-08 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 2.8 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 1.58344e-01 1.49165e-02 2.42075e-05 -1.25100e-03\n", - " 2 nbkg 2.55560e+04 2.26387e+02 1.42395e-01 2.25251e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.16500e+02 fixed \n", - " 5 sigma 1.56321e+01 8.23696e-01 1.43256e-03 -2.14431e-04\n", - " 6 tau 5.52297e+01 8.80663e-01 5.18249e-04 -9.54481e-05\n", - " FCN=1101.62 FROM MIGRAD STATUS=CONVERGED 212 CALLS 213 TOTAL\n", - " EDM=1.17555e-07 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 2.4 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 1.46499e-01 1.40053e-02 -5.74164e-05 1.28361e-02\n", - " 2 nbkg 2.54877e+04 2.12832e+02 -7.98754e-01 2.87030e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.17000e+02 fixed \n", - " 5 sigma 1.49652e+01 8.05031e-01 -2.14983e-03 -9.05947e-04\n", - " 6 tau 5.49235e+01 8.52797e-01 -1.21245e-03 -3.95860e-04\n", - " FCN=1096.04 FROM MIGRAD STATUS=CONVERGED 228 CALLS 229 TOTAL\n", - " EDM=4.54199e-07 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 1.34722e-01 1.29435e-02 1.07694e-04 -8.38669e-02\n", - " 2 nbkg 2.54321e+04 1.85207e+02 1.27587e+00 -5.64094e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.17500e+02 fixed \n", - " 5 sigma 1.42487e+01 7.68512e-01 6.31361e-03 1.52816e-03\n", - " 6 tau 5.46104e+01 7.53298e-01 5.55461e-03 -8.11893e-04\n", - " FCN=1089.36 FROM MIGRAD STATUS=CONVERGED 197 CALLS 198 TOTAL\n", - " EDM=4.05332e-07 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 4.1 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 1.22941e-01 1.20580e-02 -1.35215e-05 -4.22335e-02\n", - " 2 nbkg 2.53905e+04 1.69150e+02 -2.03106e+00 1.52752e-05\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.18000e+02 fixed \n", - " 5 sigma 1.34668e+01 7.50262e-01 -8.21043e-03 -6.24522e-04\n", - " 6 tau 5.42848e+01 7.05514e-01 8.33684e-03 3.13874e-03\n", - " FCN=1081.16 FROM MIGRAD STATUS=CONVERGED 201 CALLS 202 TOTAL\n", - " EDM=6.17398e-08 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 4.1 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 1.10997e-01 1.09513e-02 -1.14576e-05 -2.33813e-02\n", - " 2 nbkg 2.53650e+04 1.57610e+02 -4.64595e-01 4.71178e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.18500e+02 fixed \n", - " 5 sigma 1.25938e+01 7.27803e-01 -1.19757e-03 -1.59925e-04\n", - " 6 tau 5.39372e+01 6.63478e-01 1.28628e-03 1.40658e-03\n", - " FCN=1070.71 FROM MIGRAD STATUS=CONVERGED 186 CALLS 187 TOTAL\n", - " EDM=3.84475e-09 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 4.4 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 9.86509e-02 9.93990e-03 -1.33930e-05 -1.69163e-02\n", - " 2 nbkg 2.53599e+04 1.47604e+02 -1.23328e-02 9.40296e-07\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.19000e+02 fixed \n", - " 5 sigma 1.15858e+01 7.12037e-01 -7.89553e-04 8.98299e-05\n", - " 6 tau 5.35503e+01 6.32345e-01 -2.90953e-04 2.58157e-04\n", - " FCN=1056.65 FROM MIGRAD STATUS=CONVERGED 173 CALLS 174 TOTAL\n", - " EDM=1.04357e-08 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 2.8 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 8.55189e-02 8.29511e-03 3.05269e-06 7.33509e-03\n", - " 2 nbkg 2.53846e+04 1.39339e+02 4.61217e-02 -2.10065e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.19500e+02 fixed \n", - " 5 sigma 1.03656e+01 6.11580e-01 1.47152e-04 -1.06722e-04\n", - " 6 tau 5.30913e+01 6.02876e-01 5.68473e-04 -5.33186e-04\n", - " FCN=1036.14 FROM MIGRAD STATUS=CONVERGED 163 CALLS 164 TOTAL\n", - " EDM=8.86202e-09 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 2.1 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 7.16288e-02 7.15479e-03 3.43313e-05 -4.16837e-02\n", - " 2 nbkg 2.54570e+04 1.41713e+02 -4.76298e-01 -9.57214e-07\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.20000e+02 fixed \n", - " 5 sigma 8.85232e+00 6.35356e-01 3.01959e-03 3.47484e-04\n", - " 6 tau 5.25140e+01 5.81961e-01 2.51507e-03 -1.66435e-04\n", - " FCN=1004.26 FROM MIGRAD STATUS=CONVERGED 161 CALLS 162 TOTAL\n", - " EDM=7.93819e-08 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 0.8 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 6.00209e-02 5.63866e-03 9.25626e-06 7.12461e-02\n", - " 2 nbkg 2.55737e+04 1.42809e+02 2.56519e-01 -6.16768e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.20500e+02 fixed \n", - " 5 sigma 7.27864e+00 5.44165e-01 -4.87210e-04 -2.79994e-04\n", - " 6 tau 5.18931e+01 5.53736e-01 -5.82073e-04 -1.45116e-03\n", - " FCN=957.092 FROM MIGRAD STATUS=CONVERGED 172 CALLS 173 TOTAL\n", - " EDM=6.65624e-09 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 0.5 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 5.34925e-02 3.81279e-03 3.51354e-06 3.27481e-02\n", - " 2 nbkg 2.56848e+04 1.41459e+02 -3.12696e-01 -1.52694e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.21000e+02 fixed \n", - " 5 sigma 6.05787e+00 3.50128e-01 -3.14644e-04 -2.04172e-04\n", - " 6 tau 5.14155e+01 5.26064e-01 5.38145e-04 -4.94340e-04\n", - " FCN=893.215 FROM MIGRAD STATUS=CONVERGED 167 CALLS 168 TOTAL\n", - " EDM=5.24292e-10 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 1.4 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 5.02421e-02 3.09922e-03 1.47366e-05 -1.07509e-02\n", - " 2 nbkg 2.57776e+04 1.39579e+02 -3.49244e-01 4.42704e-07\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.21500e+02 fixed \n", - " 5 sigma 5.14030e+00 2.67624e-01 3.08136e-04 6.70236e-05\n", - " 6 tau 5.10682e+01 5.04964e-01 2.41197e-03 9.29746e-05\n", - " FCN=811.869 FROM MIGRAD STATUS=CONVERGED 174 CALLS 175 TOTAL\n", - " EDM=9.62213e-10 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 0.6 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 4.86769e-02 2.66700e-03 -2.26435e-06 -9.09281e-03\n", - " 2 nbkg 2.58613e+04 1.40356e+02 5.29184e-02 -4.52095e-07\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.22000e+02 fixed \n", - " 5 sigma 4.41237e+00 2.11187e-01 -1.77496e-04 -1.22747e-04\n", - " 6 tau 5.07897e+01 4.96994e-01 -1.04801e-04 -5.81791e-05\n", - " FCN=713.755 FROM MIGRAD STATUS=CONVERGED 200 CALLS 201 TOTAL\n", - " EDM=6.59459e-10 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 0.5 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 4.81187e-02 2.38065e-03 2.36736e-06 -1.17344e-02\n", - " 2 nbkg 2.59421e+04 1.38115e+02 2.35928e-01 2.24500e-08\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.22500e+02 fixed \n", - " 5 sigma 3.83148e+00 1.72158e-01 4.54361e-05 2.44054e-04\n", - " 6 tau 5.05469e+01 4.86176e-01 -1.64447e-03 -6.66525e-05\n", - " FCN=602.864 FROM MIGRAD STATUS=CONVERGED 217 CALLS 218 TOTAL\n", - " EDM=3.90108e-09 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 1.1 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 4.81697e-02 2.17292e-03 -1.04853e-06 -4.22960e-02\n", - " 2 nbkg 2.60224e+04 1.39838e+02 -7.83792e-02 3.62649e-07\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.23000e+02 fixed \n", - " 5 sigma 3.37428e+00 1.41436e-01 -1.54760e-04 -2.37508e-04\n", - " 6 tau 5.03228e+01 4.83261e-01 5.95365e-04 6.13116e-05\n", - " FCN=487.366 FROM MIGRAD STATUS=CONVERGED 228 CALLS 229 TOTAL\n", - " EDM=5.30002e-07 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 3.2 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 4.84408e-02 2.00137e-03 -1.07553e-06 -4.31350e-01\n", - " 2 nbkg 2.61024e+04 1.40717e+02 -3.96014e-01 -6.58908e-07\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.23500e+02 fixed \n", - " 5 sigma 3.01342e+00 1.20643e-01 5.60480e-04 6.78973e-03\n", - " 6 tau 5.01078e+01 4.75424e-01 1.93545e-03 -2.39597e-03\n", - " FCN=379.841 FROM MIGRAD STATUS=CONVERGED 223 CALLS 224 TOTAL\n", - " EDM=1.98987e-10 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 3.0 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 4.85833e-02 1.88505e-03 -2.49130e-07 -1.64422e-02\n", - " 2 nbkg 2.61791e+04 1.39989e+02 -1.27537e-01 3.59989e-08\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.24000e+02 fixed \n", - " 5 sigma 2.72813e+00 1.06347e-01 -3.37722e-05 9.64629e-05\n", - " 6 tau 4.99002e+01 4.73230e-01 5.21627e-04 9.06194e-06\n", - " FCN=297.149 FROM MIGRAD STATUS=CONVERGED 248 CALLS 249 TOTAL\n", - " EDM=1.04749e-07 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 1.6 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 4.83647e-02 1.79539e-03 6.07338e-06 -6.01522e-03\n", - " 2 nbkg 2.62481e+04 1.40094e+02 -8.33052e-01 -4.79952e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.24500e+02 fixed \n", - " 5 sigma 2.51446e+00 9.67169e-02 4.05911e-04 -5.02164e-03\n", - " 6 tau 4.97009e+01 4.68983e-01 1.54036e-03 -1.27402e-03\n", - " FCN=257.968 FROM MIGRAD STATUS=CONVERGED 236 CALLS 237 TOTAL\n", - " EDM=1.52051e-08 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 2.0 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 4.76626e-02 1.77372e-03 -6.56082e-07 -1.30750e-01\n", - " 2 nbkg 2.63042e+04 1.41065e+02 -1.73058e-01 1.22497e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.25000e+02 fixed \n", - " 5 sigma 2.37940e+00 9.23179e-02 -2.25452e-04 9.30619e-04\n", - " 6 tau 4.95125e+01 4.65142e-01 1.65695e-03 4.89139e-04\n", - " FCN=276.142 FROM MIGRAD STATUS=CONVERGED 245 CALLS 246 TOTAL\n", - " EDM=2.47017e-09 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 4.64199e-02 1.71272e-03 1.14582e-05 2.93319e-03\n", - " 2 nbkg 2.63435e+04 1.40705e+02 6.61650e-01 7.46797e-07\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.25500e+02 fixed \n", - " 5 sigma 2.33075e+00 9.31025e-02 6.24331e-04 1.85749e-04\n", - " 6 tau 4.93358e+01 4.62139e-01 2.16889e-03 2.48092e-04\n", - " FCN=352.819 FROM MIGRAD STATUS=CONVERGED 301 CALLS 302 TOTAL\n", - " EDM=4.55186e-07 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 2.1 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 4.46940e-02 1.71317e-03 2.89995e-05 -4.99117e-01\n", - " 2 nbkg 2.63657e+04 1.40528e+02 5.90112e-01 -1.17623e-05\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.26000e+02 fixed \n", - " 5 sigma 2.37764e+00 9.99227e-02 1.80960e-03 8.17704e-03\n", - " 6 tau 4.91703e+01 4.60293e-01 -3.29730e-03 -1.89399e-03\n", - " FCN=473.69 FROM MIGRAD STATUS=CONVERGED 284 CALLS 285 TOTAL\n", - " EDM=1.16766e-09 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 1.9 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 4.27404e-02 1.76745e-03 -2.97940e-06 2.41067e-02\n", - " 2 nbkg 2.63756e+04 1.41409e+02 1.59329e-01 5.33981e-07\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.26500e+02 fixed \n", - " 5 sigma 2.53866e+00 1.15535e-01 -9.37918e-05 -4.78587e-04\n", - " 6 tau 4.90120e+01 4.56166e-01 -2.87368e-04 1.49039e-04\n", - " FCN=614.047 FROM MIGRAD STATUS=CONVERGED 347 CALLS 348 TOTAL\n", - " EDM=6.40376e-09 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 2.5 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 4.10227e-02 1.87021e-03 3.75168e-06 -5.53552e-02\n", - " 2 nbkg 2.63813e+04 1.41935e+02 -1.84618e-02 6.25149e-07\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.27000e+02 fixed \n", - " 5 sigma 2.85182e+00 1.41368e-01 -6.79011e-04 8.54306e-04\n", - " 6 tau 4.88515e+01 4.56406e-01 2.32271e-03 3.84610e-04\n", - " FCN=748.464 FROM MIGRAD STATUS=CONVERGED 310 CALLS 311 TOTAL\n", - " EDM=3.63325e-09 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 1.8 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 4.00043e-02 2.02681e-03 2.04376e-06 4.72214e-02\n", - " 2 nbkg 2.63925e+04 1.41904e+02 1.30167e-01 -6.29045e-07\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.27500e+02 fixed \n", - " 5 sigma 3.36053e+00 1.77894e-01 -2.86697e-05 -5.22673e-04\n", - " 6 tau 4.86758e+01 4.53404e-01 -4.64359e-04 -2.89486e-04\n", - " FCN=861.04 FROM MIGRAD STATUS=CONVERGED 205 CALLS 206 TOTAL\n", - " EDM=9.31221e-07 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 3.95954e-02 2.21836e-03 2.54112e-05 -1.80082e-01\n", - " 2 nbkg 2.64126e+04 1.42866e+02 1.17325e+00 -1.05673e-05\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.28000e+02 fixed \n", - " 5 sigma 4.03152e+00 2.20103e-01 2.51835e-03 5.35878e-03\n", - " 6 tau 4.84874e+01 4.53445e-01 3.71291e-03 -3.31974e-03\n", - " FCN=949.212 FROM MIGRAD STATUS=CONVERGED 163 CALLS 164 TOTAL\n", - " EDM=9.2281e-08 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 1.2 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 3.94969e-02 2.47706e-03 -2.33594e-06 1.07176e-01\n", - " 2 nbkg 2.64399e+04 1.47282e+02 -1.10813e-01 -5.87585e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.28500e+02 fixed \n", - " 5 sigma 4.78664e+00 2.69005e-01 5.47698e-04 2.28738e-04\n", - " 6 tau 4.82960e+01 4.60915e-01 -2.39706e-03 -1.37926e-03\n", - " FCN=1016.84 FROM MIGRAD STATUS=CONVERGED 159 CALLS 160 TOTAL\n", - " EDM=2.25754e-07 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 2.1 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 3.97411e-02 2.70581e-03 8.40847e-06 4.21335e-02\n", - " 2 nbkg 2.64748e+04 1.46537e+02 7.75209e-01 -2.85594e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.29000e+02 fixed \n", - " 5 sigma 5.60439e+00 3.29320e-01 -1.95023e-03 -1.37251e-03\n", - " 6 tau 4.80965e+01 4.57145e-01 -5.95518e-04 8.20377e-04\n", - " FCN=1068.62 FROM MIGRAD STATUS=CONVERGED 171 CALLS 172 TOTAL\n", - " EDM=2.92305e-09 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 1.7 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 4.03848e-02 3.11511e-03 -4.08843e-06 -1.58038e-02\n", - " 2 nbkg 2.65183e+04 1.49643e+02 3.25454e-03 -6.14016e-07\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.29500e+02 fixed \n", - " 5 sigma 6.47416e+00 4.03468e-01 -4.15669e-04 6.92177e-06\n", - " 6 tau 4.78803e+01 4.66013e-01 2.81679e-04 -3.04412e-05\n", - " FCN=1108.69 FROM MIGRAD STATUS=CONVERGED 160 CALLS 161 TOTAL\n", - " EDM=8.5911e-08 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 1.4 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 4.14450e-02 3.56997e-03 -4.20846e-06 7.46686e-02\n", - " 2 nbkg 2.65713e+04 1.52188e+02 -1.29076e-02 -5.63652e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.30000e+02 fixed \n", - " 5 sigma 7.37946e+00 4.89694e-01 -1.05494e-03 -7.90946e-04\n", - " 6 tau 4.76403e+01 4.75675e-01 3.35353e-04 -1.46510e-03\n", - " FCN=1140.23 FROM MIGRAD STATUS=CONVERGED 146 CALLS 147 TOTAL\n", - " EDM=8.31019e-08 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 1.5 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 4.30671e-02 4.36342e-03 1.25454e-05 1.62409e-01\n", - " 2 nbkg 2.66373e+04 1.57485e+02 -1.00348e-01 2.41487e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.30500e+02 fixed \n", - " 5 sigma 8.32697e+00 6.23800e-01 -1.28728e-03 -1.02165e-03\n", - " 6 tau 4.73623e+01 4.98478e-01 1.55236e-03 1.19880e-03\n", - " FCN=1165.43 FROM MIGRAD STATUS=CONVERGED 148 CALLS 149 TOTAL\n", - " EDM=2.52045e-07 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 1.8 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 4.56207e-02 4.82902e-03 1.00777e-05 -2.00047e-01\n", - " 2 nbkg 2.67235e+04 1.63378e+02 8.56867e-01 7.65574e-07\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.31000e+02 fixed \n", - " 5 sigma 9.35585e+00 7.08655e-01 7.42979e-03 -2.28989e-04\n", - " 6 tau 4.70197e+01 5.21765e-01 -5.18795e-03 -3.94073e-04\n", - " FCN=1185.75 FROM MIGRAD STATUS=CONVERGED 159 CALLS 160 TOTAL\n", - " EDM=3.4859e-07 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 5.1 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 4.98096e-02 7.02398e-03 4.53216e-05 -4.57673e-02\n", - " 2 nbkg 2.68439e+04 1.87343e+02 6.07734e-01 -5.40719e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.31500e+02 fixed \n", - " 5 sigma 1.05346e+01 9.43012e-01 3.67914e-03 1.44306e-03\n", - " 6 tau 4.65688e+01 6.12270e-01 -2.32034e-03 2.45036e-04\n", - " FCN=1202.18 FROM MIGRAD STATUS=CONVERGED 194 CALLS 195 TOTAL\n", - " EDM=6.00335e-08 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 5.67397e-02 1.01442e-02 6.28211e-05 -1.28467e-02\n", - " 2 nbkg 2.70219e+04 2.37435e+02 1.42044e+00 3.73518e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.32000e+02 fixed \n", - " 5 sigma 1.19380e+01 1.23753e+00 9.34269e-03 -4.53025e-05\n", - " 6 tau 4.59466e+01 7.64334e-01 4.10728e-03 7.36968e-04\n", - " FCN=1215.54 FROM MIGRAD STATUS=CONVERGED 203 CALLS 204 TOTAL\n", - " EDM=1.28835e-06 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 6.74147e-02 1.49344e-02 7.02979e-05 3.29412e-01\n", - " 2 nbkg 2.72812e+04 3.24594e+02 1.44217e+00 5.66287e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.32500e+02 fixed \n", - " 5 sigma 1.35577e+01 1.55711e+00 9.78008e-03 -1.14002e-03\n", - " 6 tau 4.51127e+01 9.95087e-01 4.05530e-03 4.52764e-03\n", - " FCN=1226.76 FROM MIGRAD STATUS=CONVERGED 208 CALLS 209 TOTAL\n", - " EDM=6.84307e-09 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 4.9 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 8.04879e-02 1.99823e-02 -2.19050e-05 1.70780e-02\n", - " 2 nbkg 2.76029e+04 4.32843e+02 -4.80286e-01 -3.90171e-07\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.33000e+02 fixed \n", - " 5 sigma 1.51418e+01 1.75897e+00 -1.67487e-03 -2.85913e-05\n", - " 6 tau 4.41689e+01 1.23368e+00 1.39069e-03 1.92870e-04\n", - " FCN=1236.78 FROM MIGRAD STATUS=CONVERGED 245 CALLS 246 TOTAL\n", - " EDM=8.28132e-09 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 9.23228e-02 2.27132e-02 8.05264e-05 -2.38764e-02\n", - " 2 nbkg 2.79157e+04 5.07227e+02 1.48859e+00 -1.59812e-07\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.33500e+02 fixed \n", - " 5 sigma 1.63989e+01 1.74813e+00 9.87482e-03 1.36010e-04\n", - " 6 tau 4.33253e+01 1.35776e+00 3.93310e-03 -3.33879e-04\n", - " FCN=1246.25 FROM MIGRAD STATUS=CONVERGED 237 CALLS 238 TOTAL\n", - " EDM=3.90354e-07 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 1.00894e-01 2.38356e-02 8.23899e-05 4.88372e-03\n", - " 2 nbkg 2.81707e+04 5.50979e+02 1.50805e+00 8.51007e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.34000e+02 fixed \n", - " 5 sigma 1.72959e+01 1.67667e+00 9.81842e-03 -8.16256e-04\n", - " 6 tau 4.26844e+01 1.41380e+00 3.88741e-03 2.27194e-03\n", - " FCN=1255.51 FROM MIGRAD STATUS=CONVERGED 222 CALLS 223 TOTAL\n", - " EDM=1.57462e-09 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 3.8 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 1.06201e-01 2.41816e-02 9.26145e-06 -7.36217e-03\n", - " 2 nbkg 2.83584e+04 5.76560e+02 3.84932e-01 -1.88317e-07\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.34500e+02 fixed \n", - " 5 sigma 1.79315e+01 1.61125e+00 4.93994e-04 1.14551e-04\n", - " 6 tau 4.22429e+01 1.43986e+00 -9.27133e-04 -6.82170e-05\n", - " FCN=1264.72 FROM MIGRAD STATUS=CONVERGED 214 CALLS 215 TOTAL\n", - " EDM=1.71414e-07 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 2.1 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 1.08836e-01 1.98066e-02 -4.67246e-05 4.11209e-02\n", - " 2 nbkg 2.84850e+04 4.82049e+02 -3.75753e-01 8.09992e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.35000e+02 fixed \n", - " 5 sigma 1.83984e+01 1.27566e+00 -4.47390e-03 -3.06672e-04\n", - " 6 tau 4.19708e+01 1.26789e+00 1.22511e-03 3.15434e-03\n", - " FCN=1273.91 FROM MIGRAD STATUS=CONVERGED 250 CALLS 251 TOTAL\n", - " EDM=1.19129e-07 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 1.09309e-01 2.32383e-02 8.32181e-05 1.99661e-02\n", - " 2 nbkg 2.85569e+04 5.83091e+02 1.54570e+00 -1.71000e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.35500e+02 fixed \n", - " 5 sigma 1.87573e+01 1.48425e+00 1.01031e-02 -3.46159e-04\n", - " 6 tau 4.18449e+01 1.42067e+00 3.83082e-03 -8.36299e-04\n", - " FCN=1283.05 FROM MIGRAD STATUS=CONVERGED 250 CALLS 251 TOTAL\n", - " EDM=1.61847e-08 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 1.08052e-01 2.27606e-02 8.31636e-05 1.48217e-02\n", - " 2 nbkg 2.85807e+04 5.82106e+02 1.55262e+00 -3.56388e-08\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.36000e+02 fixed \n", - " 5 sigma 1.90523e+01 1.45963e+00 1.03911e-02 2.46798e-05\n", - " 6 tau 4.18467e+01 1.41311e+00 3.83465e-03 1.43210e-04\n", - " FCN=1292.07 FROM MIGRAD STATUS=CONVERGED 273 CALLS 274 TOTAL\n", - " EDM=4.75513e-07 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 1.05347e-01 2.23261e-02 8.32067e-05 6.40703e-02\n", - " 2 nbkg 2.85607e+04 5.79849e+02 1.55714e+00 -3.52391e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.36500e+02 fixed \n", - " 5 sigma 1.93108e+01 1.45605e+00 1.08033e-02 -6.96455e-04\n", - " 6 tau 4.19643e+01 1.40829e+00 3.84847e-03 -1.33738e-03\n", - " FCN=1300.87 FROM MIGRAD STATUS=CONVERGED 283 CALLS 284 TOTAL\n", - " EDM=1.94791e-08 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 1.01376e-01 2.19719e-02 8.33858e-05 -2.29818e-02\n", - " 2 nbkg 2.84998e+04 5.77468e+02 1.55906e+00 7.92051e-07\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.37000e+02 fixed \n", - " 5 sigma 1.95544e+01 1.47432e+00 1.13691e-02 1.96314e-04\n", - " 6 tau 4.21917e+01 1.40798e+00 3.87301e-03 1.14216e-04\n", - " FCN=1309.33 FROM MIGRAD STATUS=CONVERGED 309 CALLS 310 TOTAL\n", - " EDM=5.36088e-07 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 9.62726e-02 2.17221e-02 8.37818e-05 -1.30750e-01\n", - " 2 nbkg 2.84003e+04 5.75775e+02 1.55887e+00 1.01163e-05\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.37500e+02 fixed \n", - " 5 sigma 1.97981e+01 1.51607e+00 1.21034e-02 -1.20003e-04\n", - " 6 tau 4.25233e+01 1.41357e+00 3.90683e-03 2.09084e-03\n", - " FCN=1317.3 FROM MIGRAD STATUS=CONVERGED 327 CALLS 328 TOTAL\n", - " EDM=1.86643e-08 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 9.00998e-02 2.15848e-02 8.44305e-05 -1.82168e-02\n", - " 2 nbkg 2.82633e+04 5.75117e+02 1.55598e+00 1.96066e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.38000e+02 fixed \n", - " 5 sigma 2.00554e+01 1.58452e+00 1.31203e-02 8.14721e-07\n", - " 6 tau 4.29577e+01 1.42569e+00 3.95167e-03 5.38613e-04\n", - " FCN=1324.64 FROM MIGRAD STATUS=CONVERGED 260 CALLS 261 TOTAL\n", - " EDM=3.53387e-08 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 2.3 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 8.28654e-02 2.15758e-02 -4.59260e-05 -8.08377e-03\n", - " 2 nbkg 2.80897e+04 5.76654e+02 -1.88660e+00 -2.34249e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.38500e+02 fixed \n", - " 5 sigma 2.03368e+01 1.67226e+00 -8.48464e-04 3.28614e-04\n", - " 6 tau 4.34945e+01 1.44820e+00 4.52166e-03 -7.55933e-04\n", - " FCN=1331.22 FROM MIGRAD STATUS=CONVERGED 271 CALLS 272 TOTAL\n", - " EDM=2.25869e-07 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 1.8 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 7.45430e-02 2.15992e-02 -4.81302e-05 6.44553e-02\n", - " 2 nbkg 2.78796e+04 5.77818e+02 -2.60379e+00 7.11018e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.39000e+02 fixed \n", - " 5 sigma 2.06521e+01 1.80982e+00 -6.60500e-03 -3.47728e-04\n", - " 6 tau 4.41343e+01 1.48329e+00 5.52010e-03 3.21646e-03\n", - " FCN=1336.89 FROM MIGRAD STATUS=CONVERGED 269 CALLS 270 TOTAL\n", - " EDM=1.31807e-08 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 6.50308e-02 2.19612e-02 8.80299e-05 1.85510e-02\n", - " 2 nbkg 2.76323e+04 5.82995e+02 1.53263e+00 -5.93744e-07\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.39500e+02 fixed \n", - " 5 sigma 2.10082e+01 2.03528e+00 1.90004e-02 3.14791e-05\n", - " 6 tau 4.48799e+01 1.51144e+00 4.14750e-03 2.00162e-05\n", - " FCN=1341.56 FROM MIGRAD STATUS=CONVERGED 299 CALLS 300 TOTAL\n", - " EDM=3.25808e-08 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 5.42131e-02 2.23794e-02 8.98461e-05 -1.15902e-02\n", - " 2 nbkg 2.73474e+04 5.89609e+02 1.51946e+00 2.13472e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.40000e+02 fixed \n", - " 5 sigma 2.14137e+01 2.33534e+00 2.30930e-02 -1.25576e-04\n", - " 6 tau 4.57327e+01 1.55957e+00 4.23496e-03 5.28167e-04\n", - " FCN=1345.13 FROM MIGRAD STATUS=CONVERGED 207 CALLS 208 TOTAL\n", - " EDM=6.58583e-08 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 2.9 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 4.18988e-02 2.30475e-02 5.77273e-06 2.82682e-02\n", - " 2 nbkg 2.70235e+04 5.97162e+02 -6.72039e-02 -3.43718e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.40500e+02 fixed \n", - " 5 sigma 2.18749e+01 2.86058e+00 5.40679e-03 8.44177e-05\n", - " 6 tau 4.66961e+01 1.61335e+00 -3.10515e-04 -6.18273e-04\n", - " FCN=1347.57 FROM MIGRAD STATUS=CONVERGED 262 CALLS 263 TOTAL\n", - " EDM=1.10712e-06 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig 2.78576e-02 2.37309e-02 9.43689e-05 -1.67263e-01\n", - " 2 nbkg 2.66595e+04 6.09809e+02 1.48480e+00 1.73432e-05\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.41000e+02 fixed \n", - " 5 sigma 2.23958e+01 3.66308e+00 4.37935e-02 -1.14335e-04\n", - " 6 tau 4.77709e+01 1.69152e+00 4.44295e-03 3.83180e-03\n", - " FCN=1298.07 FROM MIGRAD STATUS=CONVERGED 408 CALLS 409 TOTAL\n", - " EDM=8.17386e-10 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -2.00517e-02 3.51030e-03 3.70097e-05 -6.73652e-03\n", - " 2 nbkg 2.52604e+04 1.79697e+02 1.38036e+00 1.71137e-07\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.41500e+02 fixed \n", - " 5 sigma 6.93969e+00 5.65143e-01 8.15601e-03 5.28794e-05\n", - " 6 tau 5.27604e+01 7.04577e-01 4.91742e-03 1.13527e-05\n", - " FCN=1290.45 FROM MIGRAD STATUS=CONVERGED 384 CALLS 385 TOTAL\n", - " EDM=7.30664e-08 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -2.38077e-02 4.01433e-03 3.87353e-05 -5.62986e-02\n", - " 2 nbkg 2.51144e+04 1.91035e+02 1.36829e+00 -3.16514e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.42000e+02 fixed \n", - " 5 sigma 7.42869e+00 5.62205e-01 7.86526e-03 -5.69229e-04\n", - " 6 tau 5.33990e+01 7.71934e-01 4.98537e-03 -5.68362e-04\n", - " FCN=1281.24 FROM MIGRAD STATUS=CONVERGED 334 CALLS 335 TOTAL\n", - " EDM=1.06839e-08 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 2.2 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -2.84086e-02 4.60599e-03 7.89559e-07 9.83200e-03\n", - " 2 nbkg 2.49380e+04 2.05347e+02 6.51775e-03 1.99825e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.42500e+02 fixed \n", - " 5 sigma 7.90571e+00 5.54505e-01 -1.29033e-03 -8.27380e-05\n", - " 6 tau 5.41800e+01 8.59022e-01 1.01422e-04 4.10035e-04\n", - " FCN=1270.43 FROM MIGRAD STATUS=CONVERGED 303 CALLS 304 TOTAL\n", - " EDM=8.05522e-08 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -3.38923e-02 5.23618e-03 4.20541e-05 1.30879e-02\n", - " 2 nbkg 2.47312e+04 2.18461e+02 1.33683e+00 -1.79018e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.43000e+02 fixed \n", - " 5 sigma 8.35838e+00 5.39476e-01 7.10267e-03 -4.03699e-04\n", - " 6 tau 5.51101e+01 9.40110e-01 5.16909e-03 1.26538e-04\n", - " FCN=1258.06 FROM MIGRAD STATUS=CONVERGED 322 CALLS 323 TOTAL\n", - " EDM=9.41258e-10 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -4.02566e-02 5.93901e-03 4.35957e-05 6.30729e-03\n", - " 2 nbkg 2.44956e+04 2.33752e+02 1.31756e+00 -3.38361e-07\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.43500e+02 fixed \n", - " 5 sigma 8.78013e+00 5.24509e-01 6.69975e-03 8.30450e-05\n", - " 6 tau 5.61896e+01 1.03938e+00 5.28710e-03 -6.82946e-05\n", - " FCN=1244.28 FROM MIGRAD STATUS=CONVERGED 282 CALLS 283 TOTAL\n", - " EDM=3.20093e-09 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 1.7 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -4.74770e-02 6.79441e-03 3.96690e-06 -3.32622e-02\n", - " 2 nbkg 2.42337e+04 2.51412e+02 1.44057e-01 8.30788e-08\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.44000e+02 fixed \n", - " 5 sigma 9.16945e+00 5.12915e-01 -7.55533e-04 -2.02288e-04\n", - " 6 tau 5.74159e+01 1.16139e+00 -5.15494e-04 -1.55978e-04\n", - " FCN=1229.33 FROM MIGRAD STATUS=CONVERGED 250 CALLS 251 TOTAL\n", - " EDM=5.6767e-09 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 2.6 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -5.55068e-02 7.54567e-03 -6.79165e-06 1.38276e-02\n", - " 2 nbkg 2.39489e+04 2.69674e+02 -2.60146e-01 9.33896e-07\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.44500e+02 fixed \n", - " 5 sigma 9.52839e+00 4.99026e-01 4.53348e-04 7.60673e-05\n", - " 6 tau 5.87823e+01 1.27474e+00 1.48624e-03 1.55596e-04\n", - " FCN=1213.52 FROM MIGRAD STATUS=CONVERGED 234 CALLS 235 TOTAL\n", - " EDM=1.01595e-08 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 4.7 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -6.42875e-02 8.44366e-03 8.79409e-06 4.32364e-02\n", - " 2 nbkg 2.36450e+04 2.84354e+02 1.29009e+00 1.00972e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.45000e+02 fixed \n", - " 5 sigma 9.86115e+00 4.85239e-01 1.95586e-03 4.88592e-04\n", - " 6 tau 6.02790e+01 1.40564e+00 -8.83296e-03 3.08200e-04\n", - " FCN=1197.23 FROM MIGRAD STATUS=CONVERGED 225 CALLS 226 TOTAL\n", - " EDM=5.12129e-07 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -7.37520e-02 9.37033e-03 4.90668e-05 -2.13995e-01\n", - " 2 nbkg 2.33262e+04 3.01147e+02 1.22366e+00 -8.53543e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.45500e+02 fixed \n", - " 5 sigma 1.01731e+01 4.77780e-01 5.29034e-03 -9.30975e-04\n", - " 6 tau 6.18925e+01 1.54435e+00 5.93674e-03 -2.74436e-03\n", - " FCN=1180.89 FROM MIGRAD STATUS=CONVERGED 211 CALLS 212 TOTAL\n", - " EDM=1.39782e-07 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 2.6 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -8.38266e-02 1.04301e-02 -7.13308e-06 1.62820e-01\n", - " 2 nbkg 2.29970e+04 3.20319e+02 2.37376e-01 5.76585e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.46000e+02 fixed \n", - " 5 sigma 1.04704e+01 4.76083e-01 1.23316e-03 1.52943e-03\n", - " 6 tau 6.36065e+01 1.69786e+00 -1.21464e-03 1.83673e-03\n", - " FCN=1164.95 FROM MIGRAD STATUS=CONVERGED 223 CALLS 224 TOTAL\n", - " EDM=9.35879e-09 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -9.44447e-02 1.15967e-02 5.16934e-05 -1.39311e-02\n", - " 2 nbkg 2.26614e+04 3.39753e+02 1.17248e+00 -1.52568e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.46500e+02 fixed \n", - " 5 sigma 1.07596e+01 4.71505e-01 4.76754e-03 -8.93236e-05\n", - " 6 tau 6.53993e+01 1.87836e+00 6.36275e-03 -3.28023e-04\n", - " FCN=1149.87 FROM MIGRAD STATUS=CONVERGED 204 CALLS 205 TOTAL\n", - " EDM=2.22969e-07 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -1.05543e-01 1.29033e-02 5.30493e-05 1.41687e-02\n", - " 2 nbkg 2.23234e+04 3.61223e+02 1.14749e+00 -6.20499e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.47000e+02 fixed \n", - " 5 sigma 1.10474e+01 4.73760e-01 4.55399e-03 -1.67616e-03\n", - " 6 tau 6.72475e+01 2.07124e+00 6.59539e-03 -7.69793e-04\n", - " FCN=1136.05 FROM MIGRAD STATUS=CONVERGED 234 CALLS 235 TOTAL\n", - " EDM=1.19142e-08 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -1.17080e-01 1.43788e-02 5.45116e-05 4.19814e-02\n", - " 2 nbkg 2.19864e+04 3.84722e+02 1.12318e+00 3.55721e-07\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.47500e+02 fixed \n", - " 5 sigma 1.13409e+01 4.79906e-01 4.37308e-03 3.69115e-04\n", - " 6 tau 6.91242e+01 2.28369e+00 6.84198e-03 2.59185e-04\n", - " FCN=1123.83 FROM MIGRAD STATUS=CONVERGED 212 CALLS 213 TOTAL\n", - " EDM=8.86279e-07 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -1.29026e-01 1.60596e-02 5.60200e-05 1.52370e-01\n", - " 2 nbkg 2.16534e+04 4.10736e+02 1.10036e+00 2.13473e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.48000e+02 fixed \n", - " 5 sigma 1.16464e+01 4.90103e-01 4.22352e-03 3.18832e-03\n", - " 6 tau 7.10004e+01 2.51717e+00 7.09099e-03 4.94458e-04\n", - " FCN=1113.46 FROM MIGRAD STATUS=CONVERGED 222 CALLS 223 TOTAL\n", - " EDM=9.9717e-08 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -1.41423e-01 1.79981e-02 5.77062e-05 8.39855e-03\n", - " 2 nbkg 2.13252e+04 4.39949e+02 1.07846e+00 2.95303e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.48500e+02 fixed \n", - " 5 sigma 1.19701e+01 5.04540e-01 4.09991e-03 -3.99110e-04\n", - " 6 tau 7.28546e+01 2.77429e+00 7.35222e-03 6.12350e-04\n", - " FCN=1105.05 FROM MIGRAD STATUS=CONVERGED 222 CALLS 223 TOTAL\n", - " EDM=8.7641e-10 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 2.4 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -1.54307e-01 2.03617e-02 1.53392e-05 -1.20487e-03\n", - " 2 nbkg 2.10032e+04 4.74885e+02 3.38111e-01 -3.10939e-07\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.49000e+02 fixed \n", - " 5 sigma 1.23179e+01 5.27174e-01 -3.44488e-04 -8.67142e-05\n", - " 6 tau 7.46610e+01 3.07096e+00 -2.35806e-03 -6.21661e-05\n", - " FCN=1098.62 FROM MIGRAD STATUS=CONVERGED 256 CALLS 257 TOTAL\n", - " EDM=6.92046e-08 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -1.67803e-01 2.28869e-02 6.15152e-05 9.32334e-02\n", - " 2 nbkg 2.06860e+04 5.10638e+02 1.03887e+00 -3.25449e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.49500e+02 fixed \n", - " 5 sigma 1.26940e+01 5.46706e-01 3.93483e-03 6.70728e-04\n", - " 6 tau 7.64086e+01 3.36753e+00 7.87705e-03 3.59200e-05\n", - " FCN=1094.07 FROM MIGRAD STATUS=CONVERGED 273 CALLS 274 TOTAL\n", - " EDM=8.22528e-08 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 2.6 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -1.82091e-01 2.64646e-02 3.76951e-05 4.87572e-02\n", - " 2 nbkg 2.03714e+04 5.63785e+02 7.62302e-01 1.10616e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.50000e+02 fixed \n", - " 5 sigma 1.31019e+01 5.79282e-01 -1.13041e-03 1.00799e-03\n", - " 6 tau 7.80953e+01 3.77832e+00 -2.78667e-03 5.17314e-04\n", - " FCN=1091.22 FROM MIGRAD STATUS=CONVERGED 283 CALLS 284 TOTAL\n", - " EDM=2.32117e-07 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -1.97377e-01 2.97342e-02 6.59360e-05 1.12169e-01\n", - " 2 nbkg 2.00565e+04 6.03938e+02 1.00411e+00 1.86671e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.50500e+02 fixed \n", - " 5 sigma 1.35433e+01 6.07716e-01 3.85890e-03 2.32194e-03\n", - " 6 tau 7.97253e+01 4.09555e+00 8.38824e-03 7.48361e-04\n", - " FCN=1089.82 FROM MIGRAD STATUS=CONVERGED 292 CALLS 293 TOTAL\n", - " EDM=2.32843e-09 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -2.13991e-01 3.42223e-02 6.84453e-05 1.37065e-02\n", - " 2 nbkg 1.97363e+04 6.62010e+02 9.87342e-01 -7.00938e-07\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.51000e+02 fixed \n", - " 5 sigma 1.40195e+01 6.45880e-01 3.84513e-03 1.80453e-04\n", - " 6 tau 8.13221e+01 4.52764e+00 8.65080e-03 -2.08037e-05\n", - " FCN=1089.62 FROM MIGRAD STATUS=CONVERGED 295 CALLS 296 TOTAL\n", - " EDM=1.22089e-08 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -2.32280e-01 3.96783e-02 7.11219e-05 -4.66984e-03\n", - " 2 nbkg 1.94059e+04 7.29755e+02 9.70699e-01 -2.17751e-07\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.51500e+02 fixed \n", - " 5 sigma 1.45304e+01 6.89568e-01 3.84458e-03 7.62849e-06\n", - " 6 tau 8.29108e+01 5.01967e+00 8.91621e-03 -4.03655e-05\n", - " FCN=1090.37 FROM MIGRAD STATUS=CONVERGED 276 CALLS 277 TOTAL\n", - " EDM=4.03405e-08 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -2.52694e-01 4.63801e-02 7.39734e-05 4.11823e-02\n", - " 2 nbkg 1.90596e+04 8.09160e+02 9.53656e-01 -5.78062e-07\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.52000e+02 fixed \n", - " 5 sigma 1.50753e+01 7.39224e-01 3.85294e-03 7.95272e-04\n", - " 6 tau 8.45266e+01 5.58713e+00 9.19155e-03 1.39285e-04\n", - " FCN=1091.83 FROM MIGRAD STATUS=CONVERGED 296 CALLS 297 TOTAL\n", - " EDM=1.1875e-07 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -2.75834e-01 5.47337e-02 7.69484e-05 2.28580e-02\n", - " 2 nbkg 1.86904e+04 9.03071e+02 9.36053e-01 2.22957e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.52500e+02 fixed \n", - " 5 sigma 1.56544e+01 7.95580e-01 3.86717e-03 1.17395e-03\n", - " 6 tau 8.62151e+01 6.25311e+00 9.47812e-03 3.41008e-04\n", - " FCN=1093.82 FROM MIGRAD STATUS=CONVERGED 286 CALLS 287 TOTAL\n", - " EDM=7.99626e-07 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -3.02519e-01 6.53202e-02 8.01600e-05 -1.09092e-02\n", - " 2 nbkg 1.82895e+04 1.01511e+03 9.16805e-01 -3.56333e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.53000e+02 fixed \n", - " 5 sigma 1.62681e+01 8.59440e-01 3.88289e-03 -2.37714e-03\n", - " 6 tau 8.80354e+01 7.04915e+00 9.79471e-03 -2.50590e-04\n", - " FCN=1096.15 FROM MIGRAD STATUS=CONVERGED 405 CALLS 406 TOTAL\n", - " EDM=3.89978e-07 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -3.33699e-01 7.89595e-02 8.35907e-05 -7.98272e-02\n", - " 2 nbkg 1.78492e+04 1.14994e+03 8.95452e-01 -1.80770e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.53500e+02 fixed \n", - " 5 sigma 1.69171e+01 9.31779e-01 3.89499e-03 -2.97987e-03\n", - " 6 tau 9.00394e+01 8.01585e+00 1.01549e-02 -8.19085e-04\n", - " FCN=1098.7 FROM MIGRAD STATUS=CONVERGED 366 CALLS 367 TOTAL\n", - " EDM=1.97018e-07 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -3.71087e-01 9.70534e-02 8.72388e-05 -5.67410e-02\n", - " 2 nbkg 1.73543e+04 1.31521e+03 8.71842e-01 7.58190e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.54000e+02 fixed \n", - " 5 sigma 1.76057e+01 1.01394e+00 3.90320e-03 7.62181e-04\n", - " 6 tau 9.23341e+01 9.22615e+00 1.05590e-02 3.83039e-04\n", - " FCN=1101.37 FROM MIGRAD STATUS=CONVERGED 395 CALLS 396 TOTAL\n", - " EDM=9.90672e-08 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 4.8 per cent\n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -4.17044e-01 1.29502e-01 3.78640e-04 -4.43462e-02\n", - " 2 nbkg 1.67876e+04 1.62117e+03 4.54646e+00 6.55170e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.54500e+02 fixed \n", - " 5 sigma 1.83381e+01 1.16695e+00 -3.64788e-03 -2.77695e-04\n", - " 6 tau 9.50433e+01 1.14212e+01 -3.10098e-02 4.30179e-04\n", - " FCN=1104.06 FROM MIGRAD STATUS=CONVERGED 458 CALLS 459 TOTAL\n", - " EDM=1.91203e-07 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -4.75610e-01 1.57132e-01 9.58638e-05 -2.74800e-02\n", - " 2 nbkg 1.61222e+04 1.78283e+03 8.11710e-01 -1.88208e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.55000e+02 fixed \n", - " 5 sigma 1.91240e+01 1.21415e+00 3.87336e-03 -1.10723e-03\n", - " 6 tau 9.83689e+01 1.28565e+01 1.16671e-02 -4.78018e-04\n", - " FCN=1106.72 FROM MIGRAD STATUS=CONVERGED 511 CALLS 512 TOTAL\n", - " EDM=4.89789e-07 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -5.53740e-01 2.10010e-01 1.01381e-04 1.50135e-01\n", - " 2 nbkg 1.53176e+04 2.12016e+03 7.71596e-01 -2.00327e-05\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.55500e+02 fixed \n", - " 5 sigma 1.99757e+01 1.33213e+00 3.82353e-03 4.83013e-04\n", - " 6 tau 1.02637e+02 1.57202e+01 1.24839e-02 -7.46413e-04\n", - " FCN=1109.29 FROM MIGRAD STATUS=CONVERGED 519 CALLS 520 TOTAL\n", - " EDM=2.01618e-06 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -6.65070e-01 2.96914e-01 1.08215e-04 1.64170e-01\n", - " 2 nbkg 1.43061e+04 2.57910e+03 7.22479e-01 -1.72019e-05\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.56000e+02 fixed \n", - " 5 sigma 2.09127e+01 1.46415e+00 3.74350e-03 1.65972e-03\n", - " 6 tau 1.08440e+02 2.00096e+01 1.35804e-02 3.81818e-05\n", - " FCN=1111.7 FROM MIGRAD STATUS=CONVERGED 608 CALLS 609 TOTAL\n", - " EDM=5.92684e-07 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -8.38640e-01 4.52209e-01 1.18133e-04 1.46130e-01\n", - " 2 nbkg 1.29774e+04 3.19107e+03 6.56042e-01 -2.40498e-05\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.56500e+02 fixed \n", - " 5 sigma 2.19608e+01 1.58940e+00 3.60952e-03 9.20808e-04\n", - " 6 tau 1.16886e+02 2.66866e+01 1.53001e-02 -4.52598e-04\n", - " FCN=1113.91 FROM MIGRAD STATUS=CONVERGED 741 CALLS 742 TOTAL\n", - " EDM=5.39811e-07 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -1.13158e+00 7.55676e-01 1.33803e-04 8.80595e-02\n", - " 2 nbkg 1.12274e+04 3.94730e+03 5.67736e-01 -2.58665e-05\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.57000e+02 fixed \n", - " 5 sigma 2.31136e+01 1.66264e+00 3.42182e-03 -2.09110e-03\n", - " 6 tau 1.29542e+02 3.72218e+01 1.80707e-02 -8.72076e-04\n", - " FCN=1115.85 FROM MIGRAD STATUS=CONVERGED 1060 CALLS 1061 TOTAL\n", - " EDM=1.77341e-06 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -1.64515e+00 1.37845e+00 1.59978e-04 1.14047e-01\n", - " 2 nbkg 9.09005e+03 4.68063e+03 4.60415e-01 -3.15749e-05\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.57500e+02 fixed \n", - " 5 sigma 2.42928e+01 1.62013e+00 3.21264e-03 4.94944e-03\n", - " 6 tau 1.47582e+02 5.23832e+01 2.23397e-02 1.54666e-05\n", - " FCN=1117.52 FROM MIGRAD STATUS=CONVERGED 1340 CALLS 1341 TOTAL\n", - " EDM=2.69961e-07 STRATEGY= 1 ERROR MATRIX ACCURATE \n", - " EXT PARAMETER STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -2.57416e+00 3.25161e+00 2.06779e-04 2.07039e-02\n", - " 2 nbkg 6.76892e+03 6.08751e+03 3.43163e-01 -9.58379e-06\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.58000e+02 fixed \n", - " 5 sigma 2.53951e+01 1.67838e+00 3.01661e-03 2.15297e-03\n", - " 6 tau 1.70873e+02 8.38570e+01 2.85378e-02 6.11862e-05\n", - " FCN=1118.93 FROM MIGRAD STATUS=CALL LIMIT 1788 CALLS 1789 TOTAL\n", - " EDM=0.000329976 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 15.1 per cent\n", - " EXT PARAMETER APPROXIMATE STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -4.33709e+00 2.28002e+00 -1.41586e-02 1.51325e-01\n", - " 2 nbkg 4.56358e+03 1.95316e+03 -1.21600e+01 -2.37876e-04\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.58500e+02 fixed \n", - " 5 sigma 2.63503e+01 6.26153e-01 -3.60651e-03 -6.99858e-02\n", - " 6 tau 1.96941e+02 3.70277e+01 2.84246e-01 -3.55556e-03\n", - " FCN=1120.25 FROM MIGRAD STATUS=CALL LIMIT 1782 CALLS 1783 TOTAL\n", - " EDM=0.00220759 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 51.4 per cent\n", - " EXT PARAMETER APPROXIMATE STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -5.85165e+00 1.04423e+00 7.60690e-03 7.51517e-01\n", - " 2 nbkg 3.57243e+03 5.31497e+02 4.58351e+00 -1.41630e-03\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.59000e+02 fixed \n", - " 5 sigma 2.70251e+01 6.44829e-01 -9.13562e-04 1.53581e-02\n", - " 6 tau 2.04469e+02 1.20368e+01 -1.01083e-01 -6.77540e-03\n", - " FCN=1121.73 FROM MIGRAD STATUS=CALL LIMIT 1782 CALLS 1783 TOTAL\n", - " EDM=0.0160744 STRATEGY= 1 ERROR MATRIX UNCERTAINTY 44.0 per cent\n", - " EXT PARAMETER APPROXIMATE STEP FIRST \n", - " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", - " 1 fsig -6.80450e+00 9.09640e-01 7.08411e-04 -4.26129e-01\n", - " 2 nbkg 3.14826e+03 3.60763e+02 4.72978e-01 1.24895e-03\n", - " 3 delta 1.00000e+02 fixed \n", - " 4 mass 1.59500e+02 fixed \n", - " 5 sigma 2.75801e+01 6.48097e-01 -7.70609e-03 -6.07791e-02\n", - " 6 tau 2.02025e+02 1.12427e+01 1.11571e-01 -6.76853e-03\n" - ] - }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4AAAAI8CAIAAAAvKVK6AAAABmJLR0QAAAAAAAD5Q7t/AAAgAElEQVR4nO3da3KrSKIuULKjxtVA9FzqjqIbOLO4eyx9AqiJcX/k3VkYJCzrkQK0VlRU2CRCKLdsfc5nmKapAACAXP7x7hsAAOCzCKAAAGQlgAIAkJUACgBAVgIoAABZCaAAAGQlgAIAkJUACgBAVn+8+wYAXmsYhqqqbjmtKIpbzrz22LVrV3vkuQBOINgJCTixqqrGcez7/tu0F0IoimL9K3H4LV4tuvjYa5qmadt2ff4tdwVwSrrgAa6qqqqu667rxnEcx7Hrurquf5oau67bTqg/0rZtVVXX2lwBDkEABSiKomiapmma+ZHYehqL+r7v+74sy6IoxnG8mEH7vp9W0jUXjaB3i2n4KZcCeBcBFKAoiqJt23lGHIYh5ry+72OjY2x37Pu+KIpxHG9sg2zbNsbWrutecdsAR2QSEnB4MTheHJ1595kpXy7OrKqqLMsYQG/si08tqbdYjDfdOM34UeC4tIACB9a2bQih67o4OjOEcC2Wrc9cTwyaj9SMKXDRKT/39FGYwzCEEOKQ03ST82eJLyF+HceVPqtbHyAzARQ4qqqqYr92WZZN02wM0IypLp6WMmXXdRshsm3bpmme0sp4S1QdhqGu6/h1vM/4dV3XKWXGxtd0TlmWGkGBo1oPmQfYvzgWs/g69Wd9MCW2pmnmD18fvPFX4sXnXR9JUpQsy3Lj/PU585tf3/nF5wI4Ci2gwCHF9sJFI2VqI1w3Oi56q2Mu/Gk3emqnvNj6GDvNF9Lco+3W1ovnpG91tQMnI4ACB7ZOZnGi+iIdbgzlvF1cE7QoirIsf5RcY7vmxgkb403vC8oAO2cWPHA2Tx8Z2bZtashcb2uUXBwz+uDNxHGuFv4ETkYABY7npy2Cd6fAxdyg7ee9ZXWni2K+NKMI+By64AEum6fPvu9f3Q+unx34HFpAgePZXqE9JrnHJ+7cN+LzDnFl+4tF8anTdHiAc9ACChzYOmXG8ZqPR8Z45Qzps/idpy/u1RkP6p0HTkYABQ4pTg9fZ83YlPh482dKfsMVD15/Lt3t4ravHQc4Ol3wwCGlmel1XadVOdPGSM9qMoy7Yl4sem7jaNM08bnSJu/DMMQwvVieKfbXt23btq2WUeCgBFDgqKZpqqpq/C0ezNNp/nQxTdZ1PX8txaVVn9JLrut6Y00ogD0L28sjA+zcvEP87oWQ9iO9nI3Xcss5AHsmgAIAkJVJSAAAZCWAAgCQlQAKAEBWAigAAFkJoAAAZCWAAgCQlQAKAEBWdkICAL4RQnj3LbBfdywqL4ACAN+zcw0X3ffHiS54AACyEkABAMhKAAUAICsBFAA4vxDCMAzXSquqWo9lHIahbdv1o9q2DStVVc3PHIZh+xk/nAAKAHyE2+NgjI91XXddV9d1CKFt2/Vp5W9FUYzjWNf1xdNuUVXV3Y89IgEUAPh0wzDMp/nXdV0URd/30zT1fV+WZdd1i4DY9/3w2zRN8eFd1913A+M4flRzqQAKAHyW7agXg2bf91VVFUWR+ta/DZdN03x7cSIBFAA4icXozHWndhzrGXvVY76cH49fxwQ5L/2RawH02r3F7v6iKMZx/JxhowIoAHAGbdt2XVeWZd/3fd8XRdF13TzPdV03jmMsLctyHMeLwy6HYYgP/6nYRHoxuS7ubd6nX1VVfLpYenfwPZZgYwMAYFsIBwgMsR1xfp8hhLIsYwbdLq2qahzHa68xljZNEyNjSpPzsBjTZ7rgMAx1XadAefHZ50fmN3Ms9703bMUJABxejG5xFGayaMhclN542TghKaXPZBzHcRznR64lyGv3Vtf1MAwf0uS5IIACAId3ceDmg9kuNnwWswlJc7d3l28MKv3YAGoMKADAF3FiUOx2n6bpMzPiSwmgAMDhXWtfvG9199jtPk3TUxaH38ivHxttBVAA4PBiklvkxbiV0X2Xum8i/MYFF/eWpsA/61mOxRhQAOAM0spK82x3x8SjOO7z2gpNj9xbWtM+ji6Ne3h+JgEUADiDOKGn67rU6lmW5d196IsZ7g+K9xaXmo9HFlPmY0INIXzIUqC7W9arqqq2bbdHS8Rz5gfbtk1/UqzfatulAMC2Q6wDmjy4ldFLbc+Iv3vQ6hvd+d6Y9iSOt+j7/toJsbE6TklbHEzKsry9dO6h6geAU3vsE57Tuu+9sZcu+Jj6t0cKD8Owbg9v23a9OUFaVWu7dG0SQwFgJXUcw1PspUV9/s6+Nvoh7lI1D5TFY/tura+/k9oAgF3xEck1x96KM9562vBqLUbSuDDsomjdyT5vKN0uBQBuoRGUJ9pLAN0We9Kv5ev1vlvziLldCgDcQgsoF933l8kBAmgcG3pxPdi7l+O65vE/7/x8AgBsO0AAreu6LMuLo0KfvsKC+AgA8Gp7D6BpM4P5slhxlay4IOj6IdvNok9vNAUA4Ef2HkCjxfJM4zjG/azitxInALzXxhi2+do1jz/LtaVsuChtTLoQl78sfu/v89OHP25fqyrEWfDbm1CFEOZv5Tip6NpCS9ul6yvvqjYAYCe+/YiMAfTi5ubbGxzOfbsbogD6I+sUND8+P3IxesXV07+NRh+xE9I0TcXXnZDiQ9L+RvGtn66wXbq+8kN3DwAn9e1HZLG51+Dtz7LY7JC7NU1zMenF4+kf69ppafL3t090X3z6x48T685UVdX3/TiOIYQQwjiO8xS/XQoAvMWPWjG/PdlgvLmqqkII13aXjMdTnbRtGzNo6ltu2zaEcG1d9mfZVwCtqmqapu2AOE3TYjhCfFTf97Fpc73w50YpAJBHCCGOKYz5JrYNxaJ4sCiKruviF3Hrmbh7dl3X8aM/hLD4HI8XiVdbFMUrXCs9sZgpU9Pm2qJoHZy2H/4cd7SanpXaAICLvv2ILG7ogk/ZI7YKXewLLssyNhilQXQxMMWDi2eJV4ul667keWm8zuODBI7lYtJbD0SMVbce/BAr7ZZnuePeTLv5m0lIAHDRjZOQLkoPjOdMX2cGL05I84zT7tzTzfOM46SZONZuPa057el940s+gXWFr12s5+jaHKb1s9wRn46xDBMAsH8XZ8FvnFCW5fb+2BsdweM4Lq4WA2jbtvMBjunrj4qeN4o1VhTFxf0mX0oABQCe4BULJG0P3JwvCr5+YEy3sdG0+u25t3dcqeHzXctaCaAAwFGtJ9Ckr+Na623bxv1ruq6zhmiU1gF949JAAigAcEhlWW7v0xMHg6avx3GM0+pff2v7FRP5E7enus++lmECALjFevxoXHcp5qq0rlPy3ry1H7El+O21oQUUAHiCcRyvxZrb487tXeRt28YFPufT3tNzVVXVdV3a2zOVfnjzZ6zei2Nnb98x9SkE0C82VpGIrNMEsE8h/FofnKY/89/JJ7u2+87tATROG7rl0zZudljX9XzPnjSbO01Culj6sVK+Xy8+kHlwgpUv/2YdUICjuCVuhvBLAH2WbB+RaebQTx9ybZL7dimPu++9IXL9TQAF2Kf7WjcF0CfyEck1FqIH4LRESTgTARSAfbnY3gmciQAKwO5o74RzE0ABeCftnfCBBFAA3kx7J3waARSAfLR3AoUACkBm2jsBe8ED8Coh/Fr89+474iXixusbuwnG0rfvP/4J4sL714ratr3lhJfd3d+0gALwQto7P0GKLBe3c5Q7c4q1vQiRwzCkLUnjdqllWc7PWZ/w6n0HtIACAM9xMWte2yCep2vbdr3Je1EUMVz2fT9N0zRNZVmO4zj/x5qf0DRNURQb7dlPIYAC8Bw63D9cjDXXiq49arvD95bu4DxdxjsXBzlczPqxfpqmSY3T8Ug6eXFC27Yxg760YgVQAJ5mmv5c/PfuOyKfi52/8eC6ZXQYhpiZ6roOISw67helIYT5Zauqqqpqcc6Hx9Dmt2snrIdGJOt/o3jyS6vUGFB41MVmHp+7wKdJ7Wfz4NJ13br5M4047Pu++N1xHDNlPCGWxja5YRi6rqvrej4qcRzHuq43Tvg0KT6uG0GrqlrUTGryjN+u260F0Ny+HfHwyW9uNizipp5HPsEh3ufrm/TH4Us1TXMxAC2OxHyZPlLj1KUUg2Lu6fs+PjD+v+u6xQynpmli6rp2AmuxfsZxLMvy28lh1wZUPIUA+oV8ybcO8aELeew8zK1vz8/vq1VVNQ+CqW933Za26Cxu27au67Zt27Zdt9hdZHL9HV6aKX9EAIUf2/mHLryC6MYtFr3w1/rfi98NlhuXGn7bT2Y6gZjs4xCIEMIb290EUNjiQxeSc/zppVP+1Ra98Nf6xMuyXBTFqUXF1zUpy7KMbaXWcnqiqqriP1Nsq762fMHG2gWPE0DhGz6c4DR0ymcQe+FT//i1jvKqqq4VxeNpDGhRFHGa0XPv83O0bdt13R2NnS8dUGsZJvibVQwh8bPAfVIr5sX+92I2Z2h+MG7mGTvlY2vcPP18+BJLT7HeG6mYDZkovv6pMJ/d9SICKHxhFUNIPuRnQdR+uqZp1iFycUIsjTEoNtGl82NsTYEplXKfmCbrup5XaZwIH7+dLyNQzNqbXxpAdcHzuXzSANZQe4XYC19c73+Px+Pinelg6iOOM+LnRX3fxyNp6SV+JFVgOrLYC36aprik//zIS2/pnROg9ua908HIL4RfL2rUed2V4UXspxD54b3mRR+RcZ57mn60URS/lT4fsVHbN55w0X3vDZHrbwLopxFAIfGmjQTxa3xEcs197w1d8HwKPWvAt0yThzwEUD6IZgyIhCrgvQRQgE/k7zHgjQRQANhi8yR4OgGUc9LDCIkfh0cYFQqvIIByWpooIPHjAOyKAPpFCGH7BItQAAA8SAD9Qr4Ejk4HMe+y2DOzLMu2bX+6nWMIoe/7i49a78lZlmX12x03fAht2y6W399Yjf+Whfo3lvS/byH6+1hX9m9W2T2uva0dbU1v3sjb79X29gsnj28/Iquqivu/x33eh2GI387TZNu2MeJcu8gwDBv7baYAmjYxj08Rn/SUmyTFClnU/EZv7S0xJj58ceb6j4eNf6b1BS1Ez+c6/W9/YCdMS1qLcXOdWuL24imdpFT6iEX7aIxoXdedrx00vrT18b7v1wfruk65fMPF8BrTZ2qxjn9LrFten0sABTgw0Yc9iEll3WbWNE3XdbFXd+Ph356woaqqaZoWSfcpV36j9WCDufUrike+bbO8Fijjc6WHD8MQQui67qUB9B+vuzQAGUzTn4v/3n1HfKh1AGrbNjVYhhBi82cIYd4pH7NjCOHbecAbYuPf/AYWV05F8fjiVquqeuTZn66qqqZpmqa5pVEztitfbBZdnNZ1XRwgsThe/B44kUzT9OpBiQIoxxPCr8V/774jgI8Wm8rquo6jPOdFKWv2fR/jVN/38fzUztf3fcxPF3ucb7FoFKyqKvYpz68cbyyeuWjbe3xgwHNVVRV7wG9pvo2d79+eGU9bN2rOq2V7hO5z6YLnkLTxALvy4bslxRa77rfi9/z0edxJCSl9Ec9MLW2xJ/3uG5j39S8GpMYrx3CcTkiPvdgEeBTXBj8sbPTRx4OL8aY/moR0Hy2gAIeh+X+fjIIoiqJt22maUjPnOI5d18XYd/H8i7HvKSnwYiZrmmY+ZX5+QmqOffyp84sNvdvntG37bR997J2PDcZlWcZJSM+80RUBFOBIZB32rKqqYRjiCMKY82LD5PrMec/v/OH3Pe+iHzl+PTefZ7NIqLG59L7nfa9bonMa+rldt3Edq1hXsWY2ZkE9xe4CaHrlC6lerq0NdncpAPCI9dDP4vcMpCJL4+LF5DAPoHFOzzyErSPp4cSX8O0KA8Xv1QDmK1Wlr+f/TxaNxK+wrzGg11YIi4NC4h8ocXzJfBmw6vfit0VRjOO4GEK7XQqwW3rYOYrYzLn+eN3IRqlV8iniB33KUvHjfuP8tD5UjJ53t7y+0Y+Grq7D1fvbfad96Ps+VWLf9/OiNGkuHZnfeXxU0zTzb9PJ26UL+6kN5ori/67/e/dNfWP/d8gheCMd1xF/cW3b/ohcf1JHsQU0fQrH0+bXLMtyfZ10/sK1D/HFsy+eND3X4iUUvxu2rj3dHsSXfLFoUZm3u1YV2+dsX/Ce27jjMa8wz8SL99a6Xub/Htv1eEstz4seeAW8yhF/ax/xntkhb6QzOfq/5vZHZJrgEieyTF/bldJpi8wUv42LJaVvvw2gZVmmNTKvPWRx8GLQTI+9tQreYSOAbtz8ovXt2wfO6ydNI7s9lx87gEbxHbxuAV3UwiKAXvz76ZbShZ2/Cz/WEX9rH/Ge2SFvpDM5+r/mtx+RFydZLz6C0znp+KIX+GLjZXKxuznl14XFlddtTynOfv/i32c7gF67+Z8G0GlVXT9qFb4vPt2zf/zrxGWoFtu8rsUhofHOQwhx6lYqjQvb3lK6vuyuaoMohF+Hm+d7xHtmh7yRzuTo/5o3fkQuprxcPGFRuj7yLK+78lldXJrgW/fFp31NQvpWWig1/pH09OlEj+/EJcIC9zHliBO4OKV6ccJ66aUXBUTR86dyVteRAmiaz56aSJ9eU+Ij8EaHbiHjWx++WxLMHSOApobPRX/6tZPvLuXtNAIBp7TOmof7dfd4JyEkBwigMX1ubEsqcZ6MJgGAvdFD+DhTTeZ2txPSWmz7vJYj446l8yPztVW3SwEAyG/vLaApd6573tMWqHVdpw0846jQdPJ2KcC7HK77FeCJ9h5Ak/WGXWn7rL7v67pOY1MWu3RulAK8kdEmmJbExzrPcITtxatuWdrK4Iw9OPpSedE5XgUv5U3CmnfFuYkZc4dpAf3WdrjU6rlbOiIB4NOcJ4ByXP7iB4CPcoBZ8AAAnIkWUICXM9QEYE4ABcjBUBNuYV48H0IABYBdOMF2nXAjY0ABAMhKCyhZ+WseABBAv0gbJl1jCdnHGc8EcDujQjklAfQL+RKA/TAqlLMyBhQAgKwEUAAAstIFD/BkOkkBtgmgAM9nmgivY1oSJyCAAsBhmJbEOQigvJBfiwDAmgDKa+kYAgAWBFAAODajQjkcARQADsyo0PxurGF/BmwQQAEA/r9nhUt/BmwTQAHgbHTK3+hiTFRXGQig8BJ++wPvolP+GnFzPwRQnsYvuOTib/9F/fiVdxre+bATt/ww+t27EwIoz+QH+5pFzYgsJ+Odz/6d729gzZmHJoDCe+ijB7I5wd/A4ubJCKBfhBC2T5imKc+dcG5GaAHvtfO/gcXN0xNAv5AveaOdfx4Ap3HLOPWLp72IuPmBBFDYBW2iwBu9LpJas52LBFDYL22iwLvcGEnvuxQIoNxJ+9yraRMFdkWO5IkEUO7nlxEAcAcBFI5EpzwAJyCAwmHolAfgHP7x7hsAAOCzaAGFY9MpD8DhCKBwYDrl30IlAzxIAOUmPnFhTjMzwCMEUG7lExcAeAqTkAAAyEoLKJyNaUkA7JwACqdiWhIA+yeAfhFC2D5hmqY8dwIAcFYC6BfyZaTNDAB4HQGUy4waBABexCx4AACy0gIK52dePAC7IoDCyZkXD8DeCKCIIwBAVgLoFx/bU/khLxMA2AMB9ItFDgvh18dGUgCAFxFAt1wcPCeSAgA8YncBtKqqtm2rqlocb9t2GIZ0whNLf+QE8zkOd8PwXn5kAJ5uXwF0GIZxHNfHq6pKx8dxHIYhBsrHS5/icG2iO7892Bs/MgDPtZeF6IdhaNu2rut1Udu24zg2TTNN0zRNTdPEHPl46VNM05+L/4rfPfXz/574jAAAhxZ2svt5CCF93ff9vAs+Fs3vM4RQlmXMkY+Uru/hRbVxMYDmaVN541OzWyH88h64neoC7rD+1fG6mHFEe+mCj/8kwzBcbAQty3Lx7byn/pHSPLJNZhI3AYD920sA3baek7RROh/0+W3pu9wSSe8LjuImtzjcwGUAzmTvAfRiX3kKkS+YThS+P2nT3a3rtyxBCk9xgsUcADi0vQfQH7V9Pm4/gzM0RwEAZ7WXWfA/st3w+UgpAACvdowAKnECAJzGAQLoet56XNpzozTNfN8uBQAgvwME0Lh5ZhruGb9IO2o+UgoAQH57n4RUFEVVVX3f13Wdpqj3fb9dOk+cG6UAAOR3pEX542jOa/HxkdLIFgV8LJv9bFA5wB3shLTtAC2gySNLMmn1BADYiQOMAQUA4EwEUAAAshJAAQDISgAFACArARQAgKyONAseeJ0Qfi2OWHsIgBcRQIELWXOdRwHgWQTQL9KGSddYQhbOTfIGyEAA/UK+BIw9AHg1k5AAAMhKAAUAICsBFACArARQAACyEkABAMhKAAUAICsBFACArARQAACyEkABAMhKAAUAICsBFACArARQAACyEkABAMhKAAUAIKs/3n0D+xJC2D5hmqY8dwIAcFYC6BfyJQDAqwmgwGUh/FocmaY/33InAJyMAApcsM6a6zwKAPcxCQkAgKwEUAAAshJAAQDISgAFACArARQAgKwEUAAAshJAAQDISgAFACArARQAgKzshAR8Lts7AbyFAAp8NBvcA+SnCx4AgKy0gH4RQtg+YZqmPHcCAHBWAugX8iUAwKvpggcAICsBFACArARQAACyEkABAMhKAAUAICsBFACArARQAACyEkABAMhKAAUAIKsjBdC2bauqqqqqbdvnlgIAkE04yuaTcZf2siyLohjHsfi6bWZVVfFgVJblMAw3ls6f4ii1AfmF8Gua/nz3XTzZKV8UsAfrXy9ixtwxWkCrqiqKou/7YRiGYej7viiK1JbZtu04jk3TTNM0TVPTNOM4poi5XQrcLoRfi//efUcAHNIxwnhs/pzfagghNWQ+Urp4lkPUBuzECZoPT/ASgH3SArrtGC2gsed9ITaLXjyhLMtFn/tGKQAAOR0jgMbe9hBC27Zt28ZGzfl0onkYXVuUbp8MAMBL/fHuG7hJVVWx2bLrunikaZr4xcXRnGnW0U/HesZo+wit6wAA247RAhoD5XwiUdd1sQX0R22f35oedv+LBAD4DAcIoMMwxPQ5n/ZelmVqDb34kO0LPvP+AAD4iQME0OjiOM4UJSVOAICjOEAAXWTNKH4bi9az2mOLafz6YunFafUAAGRwgABaFEXscF+sPJ9C5GIwaPxifvJGKQAAmR1mTdTt7TSHYajrOn3b9/28y367NLFCLPzICVZxP8FLAPbJQvTbjrEMU/G7z33e8z5XVdU0TfeVAgCQ02ECaPTIokuiJwDAHhxjDCgAAKchgAIAkJUACgBAVgIoAABZCaAAAGQlgAIAkJUACgBAVgdbB/TVQgjbJ9jDAI4rhF/vvgUAikIAXZAv4dxsvAmwB7rgAQDISgAFACArARQAgKwEUAAAshJAAQDISgAFACArARQAgKwEUAAAshJAAQDIyk5IwP3Wm1vaagiAbwmgwJ3WWdNm6wDcQhc8AABZCaAAAGQlgAIAkJUxoF+EELZPmKYpz50AAJyVAPqFfAkA8Gq64AEAyEoABQAgKwEUAICsBFAAALISQAEAyEoABQAgKwEUAICsBFAAALISQAEAyEoABQAgKwEUAICsBFAAALISQAEAyEoABQAgqz/efQP7EkLYPmGapjx3AgBwVgLoF/IlAMCr6YIHACArARQAgKwEUAAAshJAAQDISgAFACArARQAgKwEUAAAshJAAQDI6kgBdBiGqqqqqmrbdl3atu3dpQAAZBOOsvdP27Zd1xVFUZblOI7F112LqqqKB6OyLIdhuLE0CeEwtQH7FMKvafrz3Xdx1c5vDziT9S8cMWPuGC2gwzB0Xdc0zTRNwzD0fV8URVVVsbRt23EcY+k0TU3TjOOYIuZ2KXBWIfxa/PfuOwLg/ztGGI9NmPNbjT3p8f8hhOJrg2gIITVzbpfO+dMEHrSrJsZd3QzwabSAbvvj3Tdwk3Ecy7KcH1kM5VyUpm76W0oBAMjpGF3wRVHE+UNVVYUQqqpatF+m7vhrj739ZOARer0B+NYBAmjMml3XxUlIcRBnXdfx+MXRnCli/nSsZ3jYAy8UDm+a/pz/9+7bAWCnjtEFH6WRE23bhhDqup6m6Udtn7c/BQAAL3KAFtAYIhfjOJum2XjIdsOnKfAAAG90gAAabbdlSpwAAEdxjABalmUcAJrMM+V6Vntc+HOjdNGeCgBANscIoHHRpfXK8xdL4xdpnabtUgAAMjvGJKSqqpqm6bouTTMvyzKFyKqq+r6v6zqVxq2SNkqtxAQA8C4HW5Q/9rxfi4+PlBa2KIBne+9eRHZCAt7ITkjbjtECmjyy6JJWTwCAPTjGGFAAAE5DAAUAICsBFACArARQAACyEkABAMhKAAUAICsBFACArA62Duirpd2SrrGELADAgwTQL+RLAIBX0wUPAEBWAigAAFkJoAAAZCWAAgCQlQAKAEBWAigAAFkJoAAAZCWAAgCQlQAKAEBWAigAAFkJoAAAZCWAAgCQlQAKAEBWAigAAFkJoAAAZPXHu29gX0II2ydM05TnTgAAzkoA/UK+BAB4NV3wAABkJYACAJCVLnjghUL4tTgyTX++5U4A2A8BFHiVddZc51EAPpAueAAAshJAAQDIShc8cAY69wEORAAFTsL0JoCj0AUPAEBWAigAAFkJoAAAZCWAAgCQlQAKAEBWAigAAFlZhumLEML2CdM05bkTAICzEkC/kC8BAF5NFzwAAFkJoAAAZCWAAgCQlQAKAEBWAigAAFkJoAAAZCWAAgCQlQAKAEBWhwygVVUNw7A42LZtVVVVVbVtu37IdikAANkcbyekqqrGcRyGoaqqxcH4dSydJ9TtUgAAcjpYC+gwDClKJm3bjuPYNM00TdM0NU0TU+YtpQAAZBaOtft5CKEsyxgoU2d6CKH4uo17PC2mzO3SxcWPVRtwOCH8mqY/j3VlgDusfymJGXNHagG9FhyLoijLcvHtvKF0uxQAgJwOE0Bje+e1rvP5eNBvS7dPBgDgpY4RQIdh6Lqu7/uLReuDKWL+dKxneNhPXxoAwIOqHwcAAAqHSURBVKc5xiz4uq7LsrzYcvmjts9vGZwBAPBqBwigsfN9sYTnMAxpac/1Q7YbPk2BBwB4owME0Kjruvm34ziO43hjV7vECQCwHwcYA9q27fRVURRxXc8YQNez2uM6TfHri6WLefEAAGRzgAD6rdRHH7+NX6T++u1SAAAyO0wX/Iaqqvq+r+s6TUKfz5e/WGolJniXEH4tjlhAHuDTHDKArueqV1U1TVMc67kOl9ulQDbrrLnOowCc3iED6DXPXZIJAIBXOMMYUAAADkQABQAgKwEUAICsBFAAALISQAEAyEoABQAgq1MtwwR8CKuHAhyaAPpF2i3pmvUa+MBb2D8J4LgE0C/kSwCAVzMGFACArARQAACyEkABAMhKAAUAICsBFACArARQAACyEkABAMhKAAUAICsBFACArARQAACyEkABAMhKAAUAICsBFACArARQAACy+uPdN7AvIYTtE6ZpynMnAABnJYB+IV9CfiH8WhyZpj/fcicA5CGAAu+0zprrPArAyRgDCgBAVgIoAABZCaAAAGQlgAIAkJUACgBAVmbBA3tnXjzAyQigwAFYGRTgTHTBAwCQlQAKAEBWAigAAFkJoAAAZGUSErA7pr0DnJsACuyLCe8ApyeAfhFC2D5hmqY8dwIAcFYC6BfyJQDAq5mEBABAVgIoAABZCaAAAGQlgAIAkJUACgBAVgIoAABZCaAAAGQlgAIAkJUACgBAVkcKoG3bVlVVVVXbts8tBQAgm3CUzSfjLu1lWRZFMY5jURR931dVFUurqooHo7Ish2FI326Xzp/iKLUBAOxZCL+m6c+vR8SMvx2jBTQGzb7vh2EYhiH++9V1HUvbth3HsWmaaZqmaWqaZhzHFDG3SwEAyOwYYTyEsGi2bNu267p487FxdP5C5udvly6e5RC1AQDsnBbQbcdoAS3LcjF2cxEfY9f8/NtFn/tGKQAAOf3x7hu4ybq1cpEg02DQixaliyGhAADkdIwW0LlhGGKvet/3xaVsWswS50/HeoaHPfbiAADO7xgtoElqvExT4H/U9vktgzMAAF7tMC2gseEzzWffTpbbDZ+mwAMAvNExWkCHYajr+tr6nYXECQBwHMdoAY1Lfl7LketZ7bGhdKN0MS8eAIBsDtACOl9SflEUj7RtW9d1VVXxzNg7n07eLgUAILMDrIka+98vFqWbX5wz36Xz29LECrEAwFNYiH7bqepi3sb509LCOwMAeBIBdJu6+Jt3BgDwFALotmNMQgIA4DQEUAAAshJAAQDISgAFACArARQAgKwEUAAAshJAAQDI6gBbceYUQtg+wQpeAAAPEkC/kC8BAF5NFzwAAFkJoAAAZCWAAgCQlQAKAEBWAigAAFkJoAAAZCWAAgCQlQAKAEBWAigAAFkJoAAAZCWAAgCQlQAKAEBWAigAAFkJoAAAZPXHu29gX0II2ydM05TnTgAAzkoA/UK+BAB4NV3wAABkJYACAJCVAAoAQFYCKAAAWQmgAABkJYACAJCVAAoAQFYCKAAAWQmgAABkJYACAJCVAAoAQFYCKAAAWQmgAABkJYACAJDVH+++gX0JIWyfME1TnjsBADgrAfQL+RIA4NV0wQMAkJUAuuXbHnmeQj1noJIzUMl5qOcMVDKvJoACAJCVAAoAQFYCKAAAWQmgAABkJYACAJCVAJrDs6YTnvU6T7G3F7W36zzL3l7X3q7zFHt7UXu7zrPs7XXt7TpPsbcXtbfrfLIPCqD/+c9/yrIsy/I///nPu+8FAOBzfcpOSGVZ/vXXX/Hrv/76axzHcRzfe0sAAJ/pI1pA//Of//z111///ve/p2mapunf//73X3/99b//+7/vvi8AgE8UPmH38zhWY/5KQwj//Oc/F42gISxrY33k7htwnVdfZ1c34zqfeZ1d3YzruM7bL/Lh1wnh1zT9+YpnP4ePaAEtiuKf//zn4tvUIw8AQE6fEkDLsnz3LQAAUBSfMAnp4ljP+ZykufXCCntbssF1Xn0R13Gdt1/EdVxnD9fZ1c0c9Doh/J+nPNcpnT+A/utf/7rxTCMzAAAy+JQu+AVrMAEAvMunBFCJEwBgJz4igK7nvMdlQd91PwAAn+wjAmjcezNNhI9f/M///M877wkA4FN9RAD917/+FXc/CiGEEP7666///ve/RVFUVTUMw/r8tm2rqqqqqm3bn5aydq2et0vV8494M2egkvPY/o0RT1hXpnr+kYuVHFYWlamSeabpk/z3v//973//G7/u+74oir7vF+csVgwty/L2Utau1fN2qXr+kWvVmGov1ef8HJX8IxcrOR5cVPL8BJX8U9u/MabfVdo0zfqger7R9pt5bl7PKpnn+qwAGvV93zTN+vN4mqZ4PP3IxW/TOdulLGzU83aper7dRjXGT4v5wXk8Usm326jkReKMH+GLWlXJN9r+jZHOWQcj9Xy7jUrejv4qmaf7xAA6/xtu++MkHkl/522XsrBRz9ul6vl229W4qLT4mTF/4Pb5RNuVvGiK8xvjbtu/MdI56xZQ9Xy7jUqe/3649sDFEZXMIz5iDOhCfOUXuxuK1aadZVnOl3DaLmVuu54f+Vcg2ajGsiyrqtp4rEq+0UYl932/ruT5EZV8u+3fCcXvir04PFQ932ijklPFDsOgksngEwPotu3P7EXp9sncTT0/bhiGxUSBruvm36rkx8UJGcXvz+z49bwmVfKztG07juN0Zb869fwsIYS6ruu6DiFs16pK5kEC6N8u/s2Xfsa2Z2XyLOr5FYZhiNsWx5YPlfx08TN7HMemaTYa6rjPMAxd12232/Gg2JyZxjbEBs74R6xK5hXOvxf87X7U9smLqOenq6oqfrSk/mKV/HTTNMVG0NjMHFerefdNnUdd19eGlKjnZ1mMJ4kt+l3XeTPzIlpAv7H9l5+/C/NQz/eJDZ+xWW6apu1PEZX8oLg4YlmWi6EOcyr5DrERLlZvVPweYXKtPtXzHa6NZlbJvIgW0CWJcw/U8+OGYYjtRj4/XiRmoEX7UGpvTufkv7FTWsT6cRzHcTREKgOVzItoAf1iPa0vth5tlC4mBvI49fwUdV0X1z8zVPLjYtZc1PD8W5X8FG3bLlZvKX4PVYzZSD0/LvaWLKYtejPzUgLoF6mvJ34bv0g/k9ulPIt6flz65GhX0vFCJT9D13Xz2p7/yaqS81DPj6uqKo4e8WYmn+cuK3og13Z9WEy03N6szD4Q37pvK071/CPratxYTPHaOSp52/Z+p8liaW6V/FPfbsU5XVr/Xz3/yI1vZpXMS4XpyrJqHy7+FXht0sZ2Kc+injNQyY9LjUZ+Y7yXen5cWtHWm5lXE0ABAMjKGFAAALISQAEAyEoABQAgKwEUAICsBFAAALISQAEAyEoABQAgKwEUAICsBFAAALISQAEAyEoABQAgKwEUAICsBFAAALISQAEAyEoABQAgKwEUAICsBFAAALISQAEAyEoABQAgKwEUAICsBFAAALISQAEAyEoABQAgKwEUAICsBFAAALISQAEAyEoABQAgKwEUAICsBFAAALISQAEAyEoABQAgKwEUAICsBFAAALISQAEAyEoABQAgKwEUAICsBFAAALL6f+mooa7BDNgNAAAAAElFTkSuQmCC\n", - "text/plain": [ - "<IPython.core.display.Image object>" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Warning in <Fit>: Abnormal termination of minimization.\n", - "Warning in <Fit>: Abnormal termination of minimization.\n", - "Warning in <Fit>: Abnormal termination of minimization.\n" - ] - } - ], - "source": [ - "#this is for the chi2 on the mass\n", - "for masses in np.linspace(minVal-0.5, maxVal-0.5, num=binMass):\n", - " fullModel.SetParameters(0.05,26000.00,100.000000,125.000000,2.400000 ,10)\n", - " fullModel.FixParameter(3,masses)\n", - " pseudoData.Fit('fullModel','Q')\n", - " chi2Plot.Fill(masses,fullModel.GetChisquare())\n", - "chi2Plot.Draw('histo')\n", - " #chi2Plot.SetAxisRange(0.0,00.0,\"Y\")\n", - "c1.Draw()" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "id": "proof-mapping", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "121 41\n" - ] - } - ], - "source": [ - "stepMass = 0.5\n", - "stepWidth = 0.25\n", - "binMass = int((maxVal-minVal)/stepMass)+1\n", - "binWidth = int(10./stepWidth)+1\n", - "print(binMass,binWidth)\n", - "chi2dPlot = ROOT.TH2D('chi2dPlot','chi2dPlot',binMass,minVal-0.5,maxVal-0.5,binWidth,0.5,10.5)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "id": "liquid-rwanda", - "metadata": {}, - "outputs": [], - "source": [ - "#this is for the chi2 on the mass and width\n", - "for masses in np.linspace(minVal-0.5, maxVal-0.5, num=binMass):\n", - " for widths in np.linspace(0.5, 10.5, num=binWidth):\n", - " fullModel.SetParameters(0.050000,26000.000000,100.000000,125.000000,2.400000 ,10)\n", - " fullModel.FixParameter(3,masses)\n", - " fullModel.FixParameter(4,widths)\n", - " pseudoData.Fit('fullModel','Q')\n", - " chi2dPlot.Fill(masses,widths,fullModel.GetChisquare())" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "id": "patient-organ", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4AAAAI8CAIAAAAvKVK6AAAABmJLR0QAAAAAAAD5Q7t/AAAgAElEQVR4nO3dTcosV54f4BOme1gGNT2X0QZKUAuISBBIG/CgemroxnNDGdyQEUOB54U98AZqAxI0RMQCClQbEGheoIGGbggPjhWVX3Eyb7yZJzLzPA+XS7558iMybty8v3u+/tU0TQEAAHL5D1sfAAAAZRFAAQDISgAFACArARQAgKwEUAAAshJAAQDISgAFACArARQAgKz+busDALibYRiaprnlYSGEWx75SW998prxnnNL7/uIowJ4TpVKSMB7aJpmHMe+769muKqqQgjn337Dr+KrRTe+e3zNw3eP9yzZ7/dt295yVADvRwAF3sQHA2h8+skj67pe6si8+Jq3B9Do8Bg+EkDjm954qACbMwcUKM5+v9/v94f3zOlzv9/3fd/3fV3XIYRxHD84Jt73/XQmvngI4aQTdLVxHMdxFECBV2EOKFCck9g3DENMn4f9l3EsfrfbxWB39wmjsb+z67p7ZVCAFyKAAq8kxrVbZmfe/si54/DkkU3T1HW9FEBjQv2keaKH9vt913U3PvhkZuqKtwN4LudjQwBP6GTQPIRQ1/XhA+K4dt/354/c7/eHjzz59otPPHnMYdPFNzrU9/184+RdLg7BH36cpaOK5lc+ebv0wVx8R4DnoQcUeAHzHM26rpumiYPmcYLmycTH3W43PyyEEHsZu65L9B22bXv7IPu8tOjwSOKbfpJb5mu2bTv3ku73+3mqwG63m2cLxN/nk/OphwGwja0TMMAVF/sXz++c49fF/s7DO2/89jt/i7nb8uKRhJt7QOfXSR9VvGep//X8kfo+gVchgALP7mKsnM6Gzi8ms+nXtHcY424JoHOsPH/i+ZFcDKaf2gVwcs/5GH3iMARQ4LXYhgl4DeerxYdhON/183wC6ApN08xD+fNY+Xzj/EhWrGSPuTbxgPh2Fz9OjNo2XQJelzmgwAu7+5Lwk2mXH98jab/fnx/kLYcdp3VefOTFPfMBXogACjy1T+3nWx1J466f8fbFAkjrehwfsXFS0zRd18mgwOsyBA9wlD77vr+YNZ9nA854eNa8A69LAAWeWiL2DcPQtu1dKgnNMz6naVp6x8wBNDHR0+xP4NUJoMBruLj0p+u6j6ex+MoXh91vP5IPHsO5w31MTySmhwK8BAEUeHZxJfh51ow57OPhL4a8uKv8RekjGYbh9qKat5s/18kHnHOnIvLAC9t2FyiAW8xfWXVd7/f7eXOiw00651KcJ8+9ug/o1e/J8+fOR3IyEfP2UpxLn/H8yM8/dVjYbL+ua1uBAi/BKnjgBUzTFPceiuKdtw+aP/pI4rqlu/eDxj7OuOD9cM37+e6ndV3HxxxW6QR4WtV0W7kOgM0dDog/YnujdUeSYSh8frt0RftsxwPwQQIoAABZWYQEAEBWAigAAFkJoAAAZCWAAgCQlQAKAEBWAigAAFkJoAAAZCWAAgCQlQAKAEBWAigAAFkJoAAAZCWAAgCQlQAKAEBWAigAAFkJoAAAZCWAAgCQlQAKAEBWAigAAFkJoAAAZCWAAgCQlQAKAEBW7xZAm6YZhuH8/rZtm6ZpmqZt29zHBADAgb/b+gDuaRiGcRzP72+aZr5/HMdhGC6GVAAAMniTHtBhGNq23e12501t247juN/vp2mapmm/38cMmv0YAQAIIYRqmqatj+EOqqqab/d93zTNSdPhx6yqqq5rGRQAYBNv0gMaezf7vr/YWtf1yY8XR+oBAMjgTQJo2mGHKAAA23qrRUjnLo6zH65JOnQ4jr/awyc0/PbeL/jNvV9w3RHe+zB++uzOLxhC+P7+L8mRr+/9gp//fO9X/G7Vs/5y56NYeRir3f34uYu7/3OQ8CT/UmR2709d/cPBhMB7RI6Vh3E8L3Erbx5AP7Xvc/s/EACAd1fEEPwJy48AADZURACVOAEAnsf7B9DzNe9xW9CtjgcAoHDvH0Bj7c15Mmi8oSAnAMBW3nwRUgihaZq+73e73bzIfWm7UAAAMnirANo0zcWdBeL9cSaoPUEBALb1VgE0TfQEAHgG7z8HFACAp1JQD+gtrtYlsFM9AMAHCaBHXiBfJmriratslqjpd/faa0/veYpt/rD1AURfbn0AAJvJXPO2MIbgAQDISgAFACArARQAgKwEUAAAshJAAQDISgAFACArARQAgKwEUAAAsrIR/RGVkAAAHk0APSJfAgA8miF4AACy0gMKm3mSgu8JiSN8RJn475ebvn7A23HkL1sfAEVJXG+/zXcUW9rwYz7HX3Y9oAAAZCWAAgCQlQAKAEBWAigAAFkJoAAAZGUV/BEb0QMAPJoAekS+BAB4NEPwAABkJYACAJCVAAoAQFYCKAAAWVmE9EaepLTuusP4brnpm/XH8gyev+D7OpnLxK/z02eLTZ//nPE4ADimBxQAgKwEUAAAshJAAQDIyhzQIyohAQA8mgB6RL4EAHg0Q/AAAGRVUABt27ZpmqZp2rbd+lgAAMpVRAAdhqGqqq7rQgjjOHZd1zTN1gcFAFCoIgLobrcLIUzTNAzDNE1934/jqB8UAGATpSxC2u/38+3Y/TkMw1YHAwAUbcMif4mChRm9fw9oDJonY+51XY/juMnxAAAU7v17QOf+zsMMKn3e5H3rs/NQjygT//1y09drXxOArbx/D2jUdd085p6Y/Vl9+BcAAGnv3wMaQuj7frfbxaVI0dIQvI3oAQAerYgA2jTNNE1zx2fcEHTLAwIAKFgRATQ6HHk3BxQAYCtFzAGtquq8y/NwYyYAALIpIoDGGZ+xBzRWRQrJpUgAADxOEQF0GIa6rruuq6oqLkXq+37rgwIAKFQpc0CHXzVNYwUSAMCGiugBjZqmsf4dAOCipmkuFiqP8SnmqHu1ltIDCgDAkmEYLu4RFFfO1HUdQui6ruu6vu/n7rymaeZnjeMYR5vn5yZaC+oBvcXbFjr6y/Iv7uGH5V8AfAL/YGU3DEPbtof1emYxaPZ9H7PjNE0hhPmRbduO47jf76dpmqZpv9/HlHlLaxVfixBCVVUlnovfrnrWulrwGd/rp8/WPCtRcDxN0LzR6lrwCetqwX/+86qnfbfqWXf/h3PdYaT51/3lrPtGXWfdd/7d5fzID1D9U/hb6Prvm3VqVd+Gk+wX+zijw97N2FTX9WGnZtu2XdfFV4hPPHy1w8enW/WAAgCUK/ZQXtwgqK7r9OKZODR/+OPhOH6i1RxQAAAuOF+T1HXd4Y8n8fRw0me6VQAFAHgN1bebvfUwDIebqV9cL387ARQA4DVMf/joK6yLsHPn5TxJ9IP7WpoDCgDAZbGG+byePZ07092ih616QAEAuCAOu58shD95QPrpS016QAEAuCBO+lzKkSdr3kMI4zjOK9/TrXpAAQA4dbil/ElTvCduXz8X8Iyj8/OD060C6JGr28KWuFM9AHBfL7Wp/snWS+HXHNk0Td/3u91u3sr+pEpnolUAPSJfAgAFaprmpELS+T1Lzzrs47yxVQBllUQlwCep2PbiVhcFzWZdAcx0zdJHFOrkbxTbfEUv1U9GsdJL4y+2WoQEAEBWAigAAFkJoAAAZCWAAgCQlQAKAEBWAigAAFnZhumIjegBAB5NAD0iXwIAPJoheAAAshJAAQDISgAFACArc0CLlygPffcaxOveS935p5SoVr+uTDynElc+lCnnP1g8mB5QAACyEkABAMhKAAUAICsBFACArCxCOqISEgDAowmgR+RLAIBHMwQPAEBWAigAAFkVNATftu0wDCGEpmnatt34aACAYhVfSKWUHtCqqrqui7e7rquqq8uNAAB4iCICaNM0IYS+74dhGIah7/sQgk5QAIBNFDEEP45j+DWGzjficDxsKFFOvUw/LDd9udykKj083HfLTU8ylJwoE89TKqIHtK7r8zvnPAoAQE5FBNA42l5VVdu2bdvGCaCG4AEANlHEEHzTNHVdj+M4r0Pa7/cXH/nxpUm2sgcASCuiB7RpmnEc9/v9NE3TNO33+67rLvaATh/+BQBA2vsH0GEYYvqcE2fbtnVdz72hAADk9P4BNDpZcmQhPADAVt4/gF7MmnNJpPzHAwBQuPcPoCGEOOB+OAQ/juPFvZkAAHi0IlbBD8PQNE3XdfO8z7qujb8DAGyiiAAafh1zN/IOALC5UgJoJHrm8PwV297Xj+E3933BL8IvK56lNiYAaWUF0KuubkRvp08AgA8SQI/IlwAAj1bEKngAAJ6HAAoAQFYCKAAAWQmgAABkJYACAJCVAAoAQFa2YQIAyOqnz7Y+gq3pAQUAICs9oEdUQgIAeDQB9Mj024WGv2Q9jGeR+NRLJ+pp3uvznxebMg98JAqjr3P3gu/r3uvuZeJD3krxicsgcfG8gDK/rNjQd8tN3+Q7Cl6OIXgAALISQAEAyEoABQAgKwEUAICsBFAAALISQAEAyEoABQAgK/uAHqmubaFnI3oAgA8SQI/YiB4A4NEMwQMAkJUACgBAVobg4VY/ZHyvnAXf17l7mfi0xMn/8u5vBsCD6QEFACArARQAgKwEUAAAshJAAQDISgAFACArq+CPqIQEAPBoAugRlZAAAB5NAAUAyOr7rQ9gc+aAAgCQlQAKAEBWRQTQasEwDFsfGgDAU2ia5mI0atu2aZqmadq2vVerOaC3WVqcFEpdn5T41Ilz9d1y0zerDuPuL5jXAwq+3/1jJ07xosxl4l/bmhMML2Ld5f0K395vaRiGcRzP72+aZr5/HMdhGA5D6urWInpApzN1Xdd13TTN1ocGALClYRjatt3tdudNbduO47jf72N82u/3MUd+vLWapuK2tmzbtuu68w9eVdXiNkwJZfaAJqw4hyH5X957v+BPny02pZcl/rDqQBKv+a49oAnpHtCvV73ml/d+wc9/Xm5bdz4S3xJ37wH1jfRm1n0BvrT37QGtvg1z9vjfodrqMP6lCicRqKr+djB93x92z8Wmw8dXVVXXdcyRH2ktogf0RNd1+/1+66MAANhe7KHs+/5ia13XJz8ejtSvbi1uDmjM9RfnyYYbKiFdVVx/MgDwvtLzFU9aDyd9plvLCqBxgu1Sxg+JSkgJBrwAgCz+JePQ/cUV8XOI/OBWQmUF0Njxae0RAPCK/teHR1pvj7Cf1Pf5qcqaAxpXY219FAAALynd8Xl7a0EBNHZ/Ls3+BADgxL0S54mCAmjXdSersQAAWHKyqj0cDyZfbJ2zVrq1oAAazP4EALjZyeKZk62EPtJayiIky494Izm3aU681/2LSCY27V+3pXxWOTfEsPkGb0wBz2fSNE3f97vdbt6s/nAroYuth4kz0VpQADX7EwDgoqZpLlbHjPfH2ZznHXmrW0sJoDe6uhH9mo1CAQBe2Ue2ZLrYKoAekS8BAB6trEVIAABsTgAFACArARQAgKwEUAAAsrIICQAgqx+2PoDN6QEFACArARQAgKwEUAAAsjIH9MiaSkiJvevVa76LxGl8msIBiSLma929sPHdr9Q1ZeJ/DL9JvOIX4ZdVRwIUb10F+TT15R9JAD2iEhIAwKMZggcAICsBFACArARQAACyEkABAMhKAAUAICsBFACArARQAACysg/okTUb0QMA8CkE0CPyJQDAoxmCBwAgKz2gx5YKvz6iyOy7Wle6PXGGX7wab7r6+b2t68Nf96zEn/SaMvGP8P1y09f5jgI+YN03Knfhn/5H0gMKAEBWAigAAFkJoAAAZCWAAgCQlQAKAEBWAigAAFnZhulI9e2VB9ipHgD4oMQmcYUQQI9Mf1hosBkYAMCdGIIHACArARQAgKwKGoIfhqFt2xBC0zTxxsMlJowmqqtRkHVlRp9kJnLW63vdfKkv73wUANxHKT2gbdvudrtxHEMIXddVVbX1EQEAFKqIADoMQ9d1+/1+mqZhGPq+DyE0TbP1cQEAlKiIIfg44D4PuzdNs9/vNzweAICSFRFAx3Gs6/rwnkxzQAEAOFPEEHz4deFR0zRVVTVNMwzD1kcEAFCo9+8BjVmz67oQQl3X+/2+67rdbtf3/fk00KuVkK5SKgkAIO39A+hsmqZ4o23bqqp2u918z98eoxISAMCDvf8QfOzmPJkDahESAMBW3j+ARjZdAgB4EkUE0Lqu4xzQmUVIAABbKSKAzhU45x/HcTQKDwCwiSIWIcWd5w8rcNZ1bSvQN7e8buzzRAH2zx5wJCut209hXXH5dRJL81ZuBvHj8mt+EX5Z95pPYd0qxr/c+Sh4N+uuEFu18ByK6AENIbRtO01T3/d938eCnFsfEQBAoYroAZ1ZigQAsLmyAuhVVzeit888AMAHCaBHbEQPAPBopcwBBQDgSQigAABkZQgeACCrH8Nvtnvzp9jVTg8oAABZCaAAAGQlgAIAkJUACgBAVhYh3SZRYdsWobdLVC5et8P/vV/w62TrD2te8hHWFXy/+yn2twJekAryPAcB9Mj1SkhLO9UDAHAbAfSIfAkA8GjmgAIAkJUACgBAVgIoAABZCaAAAGQlgAIAkJUACgBAVgIoAABZCaAAAGRlI/ojKiEBADyaAHokX75M1NVdV6j3jSXqiq8riv7O7l6w+W2v1M9/Xm5LXHKv/aFhrbtf+YrLF88QPABA0dq2bZqmaZq2be/bukQPKABAuaqqCiHUdR1C6Lqu67ppmubWpmnGcYy3x3EchmEYhhtbE/SAAgAUqmmaEELf9zE79n0fQpj7Mtu2Hcdxv99P0zRN036/jynzlta06jDkFq6qqjVzQBPTxdYpc5LZuvlAiTmgiRdcftZPn6XeLbFE7fvlph/Db9YcyroPkHVeVeJKXT2JcvGJX4Rflpq+Xn65L5eb/jnnHNB13xJlfhVQiCLngFZ/CXPoqsJ/3O44fjnMfrH78+Seuq5jjvxIa5oeUACAQsWR9xOxW/TiA+q6nsfcr7YmmAMKAJDZhtu4/Onwh7Ztd7tdVVX7/T6E0HVdOBiCD8dh9NxJ6+GU0DQBFADgRVR/uv6YT9E0Tey2jNEzhBCTaAjh4kj6HDFvnOu5RAA9YiN6AOB5Tf/5o69wHGFjoNzv97HXs23buRP0k/o+P5UAekS+BAAKMQzDYfoMIbRtOwxD13VLm3qmOz5v7xa1CAkAoFzn8zjDQZS8V+I8oQeU55DYceZpdutI7OmT2IYpKeNeS/+26i/7V/9+58NY787Tnu7PXktwO7U9n8OcNQ8zaMyU8Z7zVe2xxzTevth6cVn9uVJ6QKszn1QwCgDg/dR1fTjgHveWn0NkvH+Op/HG4YMTrWlF9IB+cKEWAMBbit2fsQJnvOdwJ/mmafq+j/s0xXtiqaRE642Lk4oIoJGaTwAAJ2LcPBx5P9Q0zTRN61oTigigekABABI+sunSii2ZipgDeriSSxgFANhWET2g0TxBIRzPbwAAIKciAmjcI2DeZzVu+t+27flCrauVkK6a7AQBAJBURAA9WZM1L/g6D6BrKiGt2/wPAKBURcwBvbhoK1icBACwhSIC6JIVi7YAAPig9w+gwzCc1z3S9wkAsJX3nwMauzm7rmuaZi4SdVjJ9OmklzGpHE3CuoLv614wVSb+WXy99QEAmaz+x9HS4Y28fwANIUzTVFXVbreb75lXxAMAkFkRATSEEOtExfXvpn4CAGyolAAaQhA9AQCeQUEB9BZXN6Jfs1EoAAAHBNAj8iUA8Hgbrn7603Zv/Tfvvw0TAABPRQAFACArARQAgKwEUAAAshJAAQDISgAFACAr2zDxyr679wv+/t4v+AjrCr7/cO/DSHx7fJXYXuTuf2avYHWVauDR7v7XU3H52+gBBQAgKz2gR1RCAgB4NAH0iHwJAPBohuABAMhKAAUAICsBFACArARQAACyEkABAMhKAAUAICsBFACArARQAACyshH9EZWQnlGiUO+9S+5+/nOy+bM7v13Sqs+WKPj+/aqj+HrVe32VeMVvku+naDrw4nyN3UYAPSJfAgA8miF4AACyEkABAMjKEDwAQGbpCfEP9a/bvfXf6AEFACArARQAgKwEUAAAshJAAQDIyiKkIzaiBwB4NAH0iHwJAPBoAuhtvtv6AGaJAo3Kf20nUbHyj/mOYm29zXUvmPjM/7b8xZKq0vk0En+VnuerAOCVmQMKAEBWAigAAFmVGECbphmGYeujAAAoVHEBtGmacRwFUACArZQVQIdhGMdx66MAAChaWQF0t9vVdb31UQAAFK2gAFpVVV3XBt8BALZVyj6gbduGEK6mz6uVkK6aEvt0AgBQSAAdhqHrur7vrz5ysRKS3acBAO6kiCH4OPWzaZqtDwQAgAJ6QOPge9M08UY0DEPbtk3TSKUAAJm9fwCNuq47/HEcx3EcL6RPQ+1vY90f5TepxkTx8x9WvdtK694s5yF+mfG9Vr/b3f+yJyrIA3Ds/Yfg27adjoUQ9vv9NE26PwEA8nv/AAoAwFMRQAEAyKqUOaCH4ig8AMBGSt82XA8oAABZldgDmlBdW8eq0BEAwAcJoEfkSwCARzMEDwBAVgIoAABZCaAAAGQlgAIAkJVFSLyyxK4F69aTpeuD/37Va+a0quD77/662PTnf7z3YXyV/oNJtP5pxYF8/vOKJwHwcHpAAQDISgAFACArQ/BHbEQPAJRmGIa2bUMITdPEG4fath2GYV3rEgH0iHwJABSlbduu60IIdV13Xdd13TRNc2vTNOM4xtvjOA7DEOPmLa0JhuABAAo1DEPXdfv9fpqmYRj6vg8hNE0TW9u2Hccxtk7TtN/vY8q8pTWtOgy5hauq6rV7QK/NHyhL4o/ym1XPCuGn5VXw3y4/64/hN8uNf1jT9D+XBy4Sx7Fs5Sr4L5ebvl5u+m//njyWxQ/wRfjXpabESfznxCr4xI4Hib9K654FEEIVwhy6qpD+Mnzocfz9eQfn4T1xGD3+XlVVODjseE9d1zFlplvTDMEDABRqHMe6rg/vOZnHedJa1/U85n61NcEQPABAueLioaZpqqpqmuak/3Iejl967u0PPiSAAgC8iOrvP/rrQMyaceFRCCFO4tztdvH+iyPpc8S8ca7nEkPwAAAvYvq/H32F4wz6/1/113mcbdtWVbXb7aZp+qS+z0+lBxQAoEQxRJ7M49zv94mnpDs+b+8W1QP6RhIruK3PfbDEivAnkVjqvu5Zf04UfE+sgn8JiaXuAG8n3Zd5r8R5QgA9ohISAFCOuPn84cr3w0x5vqo9bvyZaD3pT11iCP7I9NsrvwAA3sZcgXP+8TBinrTGG3NaTbem6QEFAMjr354lgDVNs9/vu66Lu8qHEOq6nkNk0zR93+92u7k1lkpKtN64OOlZPj8AAPm1bdu2bRx5P4+PTdPEKp0rWhMEUACA0n1k06UVWzKZAwoAQFYCKAAAWQmgAABkJYACAJCVRUhHbEQPAPBoAugR+fJ9rKs+mrwAPv95ue2zxZYvwi9LTT/ecEQZPFMN14xvuO6tVLUFuAdD8AAAZCWAAgCQVUEBtG3bpmmaprmxSikAAI9QRAAdhqGqqq7r4o+HBU8BAMisiAC62+1CCLFW6TAMfd+HEPSDAgBsoogAGkLY7/fz7VixdBiGrQ4GAKBkRWzD1Pd9DJ2Hzu8BACCDInpA56wZh+DjBFBD8AAAmyiiB3QWJ4OG4xH5Q1crIV1lK3sAgLSyAui8DimuiD/vBBUfAQAerYgh+ENxH9C6ruddmQAAyOn9e0CHYWjb9mTNe9M04zhudEQ8sfQcjG8WW75eftK369/vntZ17qee9dfFlj9/v/ys/7bqOJISJz98d/+3A+DjiugBHcfxZLTdHkwAAFt5/wAal8B3XTeHzrZtx3FcWocEAMBDvf8QfAhhmqaqquYl8CGEuq5twwQAbOOHrQ9ga0UE0PDr+vd42xb0AAAbKiWABrkTAOA5vP8cUAAAnkpBPaC3uFoJyU71AAAfJIAekS8BAB7NEDwAAFkJoAAAZCWAAgCQlTmgcLNEYfHfL7YkKpX/MfVmiQVxv0s9702lCr4D8Gr0gAIAkJUACgBAVgIoAABZmQN6xEb0AACPJoAekS8BAB7NEDwAAFkJoAAAZCWAAgCQlQAKAEBWAigAAFlZBX/s2jZMvIPVf8rLmyR8/vNi05efJV4xUdzzD8uvmHjB55C3bmbi5Kf+rBPn3vcAwIPpAQUAICsBFACArAzBH6muPWDKcRQAwFv7fusD2JoAekS+BAB4NEPwAABkJYACAJCVAAoAQFYCKAAAWQmgAABkJYACAJCVAAoAQFb2AYWbJUqEf7Pm9b4Ivyw1/ZgqVf67xZblMvF/+bfFpuUS9yl//sdVT7tSZ33xUy9/MgBejwB6RCUkAIBHE0CPyJcAAI9mDigAAFkJoAAAZFVQAG3btmmapmnatt36WAAAylVKAK2qquu6eLvruqqqhmHY9IgAAApVxCKkpmlCCH3fxxshhKqqdrvdNFl0BACQWxE9oOM41nU9p88Qwn6/3+5wAACKVkQArev6ZN6n8XcAgK0UMQR/HjfHcbz4yKsb0V9lUB8AIK2IHtBDwzBUVRVC6Pv+vHX68C8AANKK6AGdNU0T+z4PFyTBHSxXbv/694tNPyy/3h8TNdO/+vflV1z8G/3nxJv9dblpnVTh9kSN+/BF+GXN26Veclm6KD0Aj1RKD2js+BzHcb/fT9MkfQIAbKWIHtBhGHa7XV3X1h4BANtLjEqVoYge0N1uF6x8BwB4Du/fAzrnzvMKnGpyAgDk9/4BdDaX4pwJoAAAs6Zp2rY9WSrTtm3szoutJ09Jty55/wDaNI2SmwAAaXGzoGEYDgPovINQCCG2Hs5pTLcmFDEHFACAhGEYzsv0tG077yA0TdN+v48p85bWNAH0SHXtFwDA+4n7BZ3cGacvzgPr8cb8Y7o17f2H4D+JoXoAoDRVVcXdKmO1yEMnqbSu68OO0nRrgh5QAIByxT7LpaHzdO2ek9bbC/3oAQUAeBF/vfN8wGEYuq7r+/5i0/md86qjD26vLoDCgQfUB//8m600GeQAAAjSSURBVMWmLz9bbPoi/Gmp6cfw2+VX/B/LTYstqTLxCYmC74lq9clT/PWqppR1ZeIBntY/fni24HGEjVM/L/ZcflLf56cSQAEAShQH30/27xyGIW4FejFipjs+b+8WFUABAMp1UqlnHMdxHOf0ea/EecIiJACAErVtOx0LIcR9PWMAPV/VHjf+jLcvtp7v5XSRAAoAwAXzGH38Md442fhzqTXNEPyRq0vLbBQKABSiaZq+73e73bw/6OF6+YutNy5OEkCPyJcAQLHiKPyhpmmmaYpzPc/DZbo1QQAFACDl7lsymQMKAEBWAigAAFkJoAAAZGUOKDzYcjXIr3+/2JSojvnHRDXLr/68/LzfLbZ8u/ykhD8k2hL1NlPFMRPVPT//edW7AfCU9IACAJCVHlAAgKx+99fN3joxUpaTHlAAALLSA3pEJSQAgEcTQI/IlwAAj2YIHgCArARQAACyEkABAMhKAAUAICsBFACArARQAACysg0T3OzeNcc//2ax6cvPFpu+CH9aavox8WZfLddu/+q3iectS5yOxeryX4RfEq/4daItUUM+0aRMPMBT0gMKAEBWekCPqIQEAPBoAugR+RIA4NEMwQMAkJUACgBAVuUG0KZphmHY+igAAIpTaAAdhmEcx62PAgCgRMUtQhqGYRiGruu2PhAAgEIVF0B3u93WhwAAULTihuCnaZqmqe/7rQ8EAKBQxfWApl3diP4qO4kCAKQJoEfER+4vUal8uQb7Py+XiQ/LZeK/TZWJTxzHcpn4lMU664lq9el3+vznFe8G8HqWv/4f7s/bvfWh4obgAQDYlgAKAEBWAigAAFkJoAAAZCWAAgCQlQAKAEBWhW7D1DTNNNlzCQBgA3pAAQDIqtAe0CVXKyHpNQUA+CA9oEema79e2scLjb4f5+RU9a9bH8HTcZGccEJOOCHnnJMTTsg5ARQAgKwqa3FmVVW997moXr8T9+5ynJNExd9EwfdVz/ppuUz898uv98PB7T9W4b9++IwkCr6nqr2HkKpX/+1y04PLxPuLc8IJOeGEnHNOTsQTUoUwh67/sl2n6P95juynBxQAgKwEUAAAshJAAQDISgA9tW5WRs5nfeSJOd/rJc7kOisPctVUxeqfVr1ZCP8p40n549r3qv5h1bPWnck1T1rvJa5/3yR3edZqL/HRXCR3eRbnBFAAALKyEf2R6uD3i7ZfNgYA8OIE0COTzSMAAB7MEDwAAFkJoAAAZCWAAgCQ1VOUY3oSVWV3BQDgUZ4hdFXVU2S/pzgIAADKYQgeAICsBFAAALISQAEAyEoABQAgKwH0fTRNMwzDJ7VWZ9q2feQx5rZ0Ttq2bZqmaZqLnzfd+tJWnBAXiYskKvYiSX+1xgecf943vkLCqnNS4EVy9SO/90Vy3cRb6Ps+hND3/Se1nl8P+/3+wUeaT/pT13Vd13W8ffiY+c75YRkP+bHWnZACL5J458k5OXxAaRfJ1RPyxhdJ+qt1+vViOPm8b3yFTGvPSWkXyfy3Zukjv/dFcgsB9OX1fb/f789zw9XWq18iryvxqePf+fOAFW/HZ83fEfHHNzhFq09ImRfJScCKJ+HkqijqIkmfkHe9SNJfrfNjzoPFu14h0wfOSYEXSfojv/FFcjsB9OUd/hcq3cd50hqv+GzHmVPiU5//R/PwPJz8Q3vx8a9o9Qkp9iI577yZz1KZF0nihLzrRZL+ap0fc97b965XyPSBc1LgRZL+yG98kdzOHNCXF/8gL/b2p1vnCSvDMKRn87ycxKeu67ppmsRzz4dFxnG87+Hlt/qElHmR9H1/fk4O7yntIkmfkHe9SNJfreHXM3DxI7/lFRI+cE4KvEiufuR3vUhu93dbHwAbOyxAWtf1O301XHT+AbuuO/zx5B/apmne+0vh6gkJ5V0kJ9Eqrg84vDBKu0iunpBQ3kXStu04jtNCKcHSrpAofU5CeRdJSH7kMi+SQ3pAyxWv9cM5KOM4pnsH38wwDPHbIf7/tYRvw7STExKKv0h2u91utxvHcb/fJ7q7ynF+QkKRF8kwDF3Xpfu9SpM4J6HIi+TkI8cOzvift2IvkhN6QMt1MqzWtu0wDOX8D2z+7+Z8Ht772/Cq8xMSir9IpmmKw2exVzjumbL1QW3p/ISEIi+S3W63NHel2CskcU5CkRfJyUcehqFpmq7rfI3M9ICWa2lS19v/5yz288VenGma0t8Fb382QvKEFHuRzOIWfXVdn89MmJVzNsKlE1LaRTLPQGh/FUIYhiGGqotPeddTMbt6Tkq7SMKnf+Q3PhVL9IBy6r3/czYMQ/yfum+B6OoJueiNL5L4r+ZJL8XJ9KyiLpJbTshFb3yRhLOp0uM4Ho4pF3WFzNLn5KL3vkguKvwiOaQHtFCx0+uk+kIJfx92u11Y/qTn6xDHcTxZq/hmEiekzIskRquTj3n4Y2kXSfqEFHiRtG17sptM+HWqX8wWpV0h4do5KfAiufqRC7xIzukBLVTTNHEQLdYBC78uYJz31H1L89//i3Xz4u+73a75tajafGZyHWBu6RNS5kUSJT51aRdJtHRCSr5IlpR5hSQUeJFc/cgukhDecWPYMqWLLqRrMM7epjBadP6pE9vXLT3mnUpTrDshpV0k0cmnPtkguqiLJEqfkDe+SG4p4XP+kd/4CpnWnpMCL5L0R37vi+QW1bS8ZRcliGta5/+lES1NnC9TmRfJ3D289KlLu0jSJ6TMiySttCvkqgIvkqsfueSLRAAFACAri5AAAMhKAAUAICsBFACArARQAACyEkABAMhKAAUAICsBFACArARQAACyEkABAMhKAAUAICsBFACArARQAACyEkABAMhKAAUAICsBFACArARQAACyEkABAMhKAAUAICsBFACArARQAACyEkABAMhKAAUAICsBFACArARQAACyEkABAMhKAAUAICsBFACArARQAACyEkABAMhKAAUAICsBFACArARQAACyEkABAMhKAAUAICsBFACArARQAACyEkABAMjq/wGAN4oxfCMnkQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4AAAAI8CAIAAAAvKVK6AAAABmJLR0QAAAAAAAD5Q7t/AAAgAElEQVR4nO3dv47s2J0neHJ33DZq0G6jGtoHqAI0RntkLGpQeoAuo/sBejD+AjK2AZLGGgLGb+xaktNOvYCEFZak1VYBpRcotIAyBZQhtwGucXQ5TEbwRCQzeIIR/HxwUcgbjAieYDEzv/f8++XDMGQAAJDK//LoBgAAcCwCKAAASQmgAAAkJYACAJCUAAoAQFICKAAASQmgAAAkJYACAJCUAAoAQFICKAAASQmgAAAkJYACAJCUAAoAQFICKAAASQmgAAAkJYACAJCUAAoAQFICKAAASQmgAAAkJYACAJCUAAoAQFICKAAASQmgAAAkJYACAJCUAAoAQFICKAAASQmgAAAkJYACAJCUAAoAQFICKAAASQmgAAAkJYACAJCUAAoAQFICKAAASQmgAAAkJYACAJCUAAoAQFICKAAASQmgAAAkJYACAJCUAAoAQFICKAAASQmgAAAkJYACAJCUAAoAQFICKAAASQmgAAAkJYACAJCUAAoAQFICKAAASQmgAAAkJYACAJCUAAoAQFICKAAASQmgAAAkJYACAJDUf3p0A3Ykz/Ph0W3Yyhf3fsNf3PsN17Xw7s2I+uNn6c71u3SnWunrtKf7/KeEJ/vtqlf94c6tWNmMiLu3kHfxc/jDUv4Qjlv3Eyn/z9kwfAoaeX7H9ryvGdmkGY+jBxQAgBT+5m/+Js/zPM8F0Dfya38AAFjhm2+++fHHH//+7/9+GAZD8G88vksaAOAV/fjjj3/3d3/37bffZobgAQBI48cffwxfvFoALcuy67rzx+u6LsuyLMu6rlO3CQBgx+Ix6SNHp/7t3/7txx9/zPP8m2++eakh+K7r+r4/f7wsy/Hxvu+7rrsYUgEAjibP8yzLiqLIsqxpmqZp2rYtyzIcjYeo90asYRi++eabb7/99kV6QLuuq+v6dDqdH6rruu/7qqqGYRiGoaqqcIGStxEAYF9C0GzbNmTHsEPTGKjiIWpdxApzQPM97AX1cflkP61pbB8PTT9mnudFUZxfIPuAvsPx9p/L7AP6ln1A5+wDSpyfwx9mH9C7yK+Forqum6YJz4mHqNsj1rkX6QEN0btt24tHQ6/y9K8XR+oBAA6lKIrZ3M1ZfIyHqNUR66XmgC6ZdogCABCc91bOEmQ8RM2OTqeExm0VQPN39i3f2GH7XhffM3J1Pt4hvtNB/MjQ291HhVKKjFGuGhVKPL6z/3H2iEjjtxidj/yvSTo6D89u9z/z9zPOvk+bjtx3XRdmf4Yh5XiI+mBs27AHdNYrG9H3/UZj4u/t+9xpfAQAuEdQWYqwY7Ic19K8q+/zvTYMoGFfqBuf2TTNdi2ZsQQeACAYOz6rqrq6l2c8RN0esbYKoFVV3R6Nt56jKXECAJwL6TMyE/JeiXNmF4uQwgb6G735+YKssGfVRqcDAHgWoe9zKUfGQ9TFozfOwNxqG6amafI8z/P84aUvQwOmG/qPDwIAHNZ0S/mZ8fFsOUR9JGJt1QPatm3YHz/UdCqK4lF12MuybNv2dDqNC/OXtgsFADig86U4Y7iMhKiLR28c0968ElIokjn20Ib9Th+yMWeI+ZFTv3IlpIidlL7YR40Q2zDdxdMXSVIJiS3s46fcXpqx7Cm2YXqlSkg3ioeoqxHrQjOSleLcTxJdIoC+gwB6DwLoXQigtxJAH2sfP+X20oxlAujW1gXQu0tXirMsy1Dkvm3bMGt1LHUPAMBxpF4FX9d113W7LcV+9d8jj/8nAwDAk0sUQGe5c4fj74F8CQCwtW0D6P7nfbLSvYuwv7BXnegZcdAy8ZGpdSZfwhPa9gfI3Sfj3m4fP5G2CqBjRdEsyx64BxMAAHuzVQAN6fOWoqIAABzKhhvRG2oHAODcVtswXUyfXdetLloPAMBrSLEPaNd1ZVnmeX46ncLen3me6x8FADimFAH0dDr1fV9VVVEU4ZGqqvq+l0EBAA5o831AwyKkUPRp3JIpPNg0Tegc3boNt7MRPQDA1jbvAe26buz4nNrn6vjh2h8AAD5o8wA63RAUAABSBNDsUn9neHxX4+8AACSw+RzQsiyLogjTPcMjdV03TZNlWVVVW58dAIC92TyAZp8qwofQmWVZ+MJO9bwRKU37wIK53FukTHy2TaV4SGeLH1a/2OA99y1Sgf2PnyVsBxtLsQ1TlmV1XQ9vSZ8AAMeUKIACAECwbQANg+/h6/ySTc8OAMAObRhAy7I8nU7j1M9g3BO0KIq2bbc7OwAA+7RVAA1Fj4qiCDWQgqqquq4bhiGU4tzo1B+RX/sDAMAHbbUKvmmaoijGrZdm6rruuu50Ok3j6R7sqzUAAK9okx7QkDvjxTbD0aWECgDAq0q3Cr6qqunWS7ZhAgA4phQb0QfxDlEAAA5ikwAaeje7rot0c4Y8qh8UADicB9a4ipQeTGirIfhZ/feZrutm2zMBAHAQWw3B13V9Op1Op1NVVbPB97D+Pcsy+4Duwt2LsP92+dDxihon9n3Cc325wXtGKsWvKxMfqRwdqTcdu1Ejtze8sNf96R37UcCWtuoBLcsy5MumaULRo7Isy7LM83xMn8bfAQAOaNtKSGHP+fDXvu/D1vRVVQ3DsM/0aSN6AICtbb4Kvq7rJ1r/biN6AICtbTgEf/uTu657opAKAMBHbBVA+76/vcpRmkXxdV2HeajCLgDAA204BB8WG+3BuO6+KIowFbXrOlVAAQAeYqsAWhTFRu+8Qkifw/CXGZ4hjz7X5FQAgJexVQDdW//iuBg/mxRqelRjAACObMNtmHYiBM3ZoqgwFv+Q9gAAHNzrB9CL/Z3SJwDAo2y+D+hONE0TlsBnWRaZ+vnxrebtJHpMkRqS66QsqrnOuhauLuB59yqdwHGot7lDhwigbduGwvTjI0tD8OIjAMDWDhFAQ1HQseMzbAj6yAYBABzYIQJoMB15NwcUAOBRtlqElN9mo7OfN+a8y3O6MRMAAMkcYiP6MOMz7Dw/VkWyCz0AwEMcYiP6ruvKsmyaZqw437btY5sEAHBYj5wDGhYDpVkP1H2S7IwAAFyUKICej3d3Xdf3fcosKHoCAOxBigC6tNioKAqJEADgaDYPoKHvs23bsizzPK+qKjxycWX6w11dlm+negDgo754dAMebfNa8GE1UsiaVVWNi5Path2XBO3HcO0PAAAflGIIftySKSxFH7/OPq1PT9AG1vjD8qHD/9ONdeIV5FdXigfeeNEf0c9R0v23j27AB5RlebFaZNjFcnzCu44u2bwHtCzLsezQGDq3PikAALcLq8PPH8/zfOw9bJpmtrAn9C32fd/3fdM0t/cqbh5AxxmfY+48nU5jvtb9CQDwQF3X1XUdyvTMhJzWtm3YyzJsoz52c9Z13fd9VVXDMAzDUFVV3/c39jNuHkCzLGvbdhyFD00PYVkxTACAxzqdTkvLckKf6NhdOBvKDq+a5tHs5kqTKeaAlmU5trUsy2EYTP0EANiDYRiyLBtrlU+FYuaR185Kr199/ihFD+g56RMAYOfGiZR1Xdd1HSaATgfZZ4nu9oCXoge0ruulrt0QugEAuCr/x6SnK8sydGqOQW6cP/nBNeWbB9Cu60KjZ520+2QjegBgt4Z//eg7vCvChr2MxipCoUsxLEj64Gh2okpIz9LT+RytBADY3jR9Zp+2/IzM8ry9WzTFHNCn6PsEAGA0LWY5mi2EXz0Qn3QjegAAnsLF+kHTVHq+5r3v+xu7HVNsRF8UhWXvAADPpSiKpmlmO8+PETM8PtsldC/7gIak3Pf9rHZTsLu5oUv1cyNV0bldpELuL9K1Yj/ihdHv63erXvX1nVuxichHi7T/j58tHnqOetM8yhZl1g/5A5CnEBYbNU0zroIvimK6uXvbtqfTacx4bdve2OeYYhumzDRQAIAdC6WCzh8PcfPifNBsUmDo4tGIzQPotAwSAABPJx4uV8y0fEwlJAAADivFIqQ86sbJqgAAvIZEQ/Bhlf44E3T61zCzdSerkfJri4120UoAgGeWIoDOttEfH88+zWnN83wnU0UHq+ABADaWYgg+u7Qp1LSUU1VVNqsHADiIzQNovF9zD72eAACklGgIPmxkOn18unt+13U2CgUAjuLw1QcSDcGfTqcwy7Prurquw676IXSGhKpWJwDAQaSohDQMQ0iZp9NpfHBclnRxiRIAAK8qUSnOaR2n7O2O+TvZgIn3iWwLcPdCySnP9QzWVXVPea7VFeS/Xz705dr3vLPIqNlv07UCeDDf7x+WKIAGxtkBANhqDmjY2jPLsq7rImWQNjr7avkfFv5kf/kDAMAHbdUDWhTF2N/5RCvcbUQPALC1rQLodLqnzT4BABhtvg3TubAZU/rzhu2fyrK04h4A4IFSBNC6rvM8D6GzruvT6XQ6nfI8TxkE8zxvmiZ83TTNDqefAgAcRIpSnCH5hSmh4eu2bYuiGBPh1sKp27YNna9t22aXytMDAJBAokpIYbPP0Anatu04Dp5mLL7v+2yyCdS4PD/BqQEAmEkxBD+ugg+ZL+S/lCnw4jJ8m5ICADzE5gE0FOEMX4/137O3YXRrobc1zDoNE1IzQ/AAAA+yeSWksizDop8QPUPirOt6OjE0QRuKouj7fpx1WlXVxWfmH97vU13RvYjUSYtUU9xApLzkq4oU8HzlKp0A3CxFD2hIe33fF0UR+h3HpUhbn31sQ9/3VVUNwzAMQ1VVTdNc7AEdvnj/n+zNHwAA4hJtwxSS3zjjM/w1Tfdn13UhfY6Js67rlGvwAQCYesBG9A8xC7sWwgMAPMrrB9CLWTPlEigAAKZeP4BmWRYG3KdD8GFC6kMbBQBwUJuvgt+DruvCYvxx3mdRFMbfAQAe4hABNPs05m7kHQDg4ZIG0IfnP9ETAODhEgXQaT2kYRjCvvQGwQGAA/rjZ49uwaOlCKCh9GVVVWFLzizLQl2isiz3lkGvVkIavkjSDgCA17V5AA1rz9u2LcsyLD/PsqzrurEa567IlwAAW9s8gC7N+wwBNKxP37oN8HQi5dTX+SH7q/u+4c+yP694Vfxzra4Uv+J0dz8XvLLfLh/6RbpWpBb51HzYIfYBBQBgPzYPoGEI/nyuZ+j41P0JAHA0mw/Bl2VZFMXpdBorD42zP6uq2vrsAADsTYpV8LMlR+GLsCwpwdkBANiVRHNA67oe3pI+AQCOySIkAACSSjcEP1ZCmhqGIUEDbmcjegCAraXYB/R0OmVZNi5C2jP5EgBga4kqIe2tpxMAgEdJMQf0Kfo+AQBIY/MAWpblxdmfAAAcU4oh+KZpyrI8L4a0R0s1bSMFYSPTRq8taXpNkU8duVbHLDR8b3cv+H73c8UryCvdfgfH/LFzd9YDHIeC7w+yVQDN83z6177vZ48E5oYCABzNVgHUvE8AAC7aKoA+x4A7AADJpdgHNGxEf36oLMu6rndVkzP/1ZUn2CgUAOCDUgTQpmnOA2jXdTtcHT/8cuGAScoAAHeyYQCdrjq6uAIpy7JddX8CAJDAhgG0bdssy0IV+PD1jPQJALATS3Mjx7mU4Qmzo3Vdh5U/F48u2TCAhg8QmiVrAgAEkW2PH2VpbmTY0D3LsqIomqZpmma6h+a03lDf92Hlzy2nS1EJ6fY4DABASqGD83Q6XTzUNE1VVcMwdF0XBrTHXsUwyh2ODsNQVVXIoLecNEUteAAA9ul0OoU+znOhD3HsSSzLsqqqMYCGV41HZ0+O23wVPAAAuxWG1LuuO+8E7ft+Vlpoli9nR4uiuHGPIwGUZ7au7vxad5+ys+4NUxZ8v7t44+OV4pd8v3zoyxVvBxv5xaMbcGT2UvyAMJcyzBAtimK2Smm2yGc6JTROAAUAeA7/7fK2lpsIsznHFUhVVTVNczqd2rYty/KDNS+3CqBjyyKVkHZIJSQAYLf+7+H6c+JWRNhx2Xtd13men06nYRg+uMHRVouQ+r4PoTOsn9roLHc3/HLhzxd/+QMAcAQhYs5meVZVFXnJ7d2iWwXQsFlUnuchfeYLNjo7AAAbGYPm6oH4rYbgx51II5WQAADYrfNV7WPRo4tHz1fNLzlEJaSlrtYwizZtWwAAnkPYoH5c2DPuPH/x6Bj8bnnnzVfBl2U5hrxp+wAA2LOw83yYVBkeCTsxjUfbtj2dTuPR27v2Em3DdL4vVFVVyZbGT4uWju3JRGEAgCzLsqwsy/O8lGVZXddhNDu7FJzCq1b0MKYIoCEXF0URekPD9NBZ+aaUQgfyxasMAMBMPFyu6NHbPICGiDntkh2nCDRN85AA2jRNfBMBAAC2s3kAXeqVDQE0/fqk+AzZqxvRX/Vmr9DIvqGRGpKwvt7mTor93b/sXaRs6df3PtcfP1s89PlP9z4ZPLt13+7rflY9RUVNv99vc6xSnKGSaWRPqOGX73/Tp/h+AADYja02oh+FHsfzfUofsgwodHxaewQA8EAp5oCG0vVhEVJ4MKxASj8Rc7p5FQAAD5FiCH4YhhBDpzsxpdyGKQine8iyJwAARpsPwQd1XQ/DMAxD27bhi/RBsGmaG8tDAQCwnUQBdPTY+ZdmfwIAPFzqAPoolh8BAOzEUbZhCoWkHt0KAIDs+0c34OGO0gMKAMBOHKUH9EZXKyGt2akeAIAJAfQN+RIAYGspAmjXdXVdTzcBHQ3DkKAB7EWkQu4Xy4cixU53Uvmcucj/mFjt2h+yv1o69LPszx9oD7Azz17FWsH3D9s8gHZddzqdsiyzBycAAFmaUpyZnk4AAD5JsQpe3ycAAKPNA2hZlhdnfwIAcEybB9AwBG8TeAAAgq0CaD6RZVnTNPklG50dAIDd2moR0pPO+7QRPQDA1rYKoF3XbfTOm5IvAQC2tvkc0LAL/cVDZVk+aU4FAGC1FAG0aZqLj1sdDwBwQBtuRD9dY7S03qgsy+0aAADADm0YQNu2zbIsVIEPX8/sMX0uVSSPVH1dV/U6Uvpchdkn9H3Ss0XuuYjIPXd3675hspT1oX+3fOjrZI3gsVJ+TwBvbRhAQ76s67rruj1mTQAAHmHzWvBlWUqfAACMtgqgN24yPwzDRg0AAGCftgqgVVWNX48L3sfd6cNfp8/ZifwfrzzBRqEAAB+0VQCd7v2Z53lVVbPdQMuybJpmbzXih39dOGBhEADAnWy+D2iImOdBM2xBbyN6AICj2XwRkogJADAV2QnuIDbvAQ1L4M9j6N4G3wEASCPREPzpdAobgmZZFrYFbZqmKAo7NAEAHM3mQ/BZlrVtezqdmqaZFoUvisLoPADAAaUIoGVZDsPQdV1InLam51AiE31+yP5q+eD+621G3L/UbORa/S7784o3/HJdO4DjsAHOllIE0EDuBAAg2y6AhrgZ5n1G1hsZhQcAOJqtAmiodXT+9c6phAQAsLWtAuhY5D1MAN3oLHenEhIAwNY234YpDMEbagcAIEgRQJumOZ1OeZ6HWaFbnzHSknFm6qPaAABAio3oh2Goqqooir7vm6bJ8zzP88TdonVdn06nMBs1tCHZqQEAmNo8gAYhbg7DEMJolmWhWzTN2UMvbFVVYTvStm2zTzVCAQBILN0+oNmnGJp+UXwYcx9H3suyDCEYAID0Ng+gYRHSNHQWRVHXdcoOyL7vi6KYPmIaKADAo6RYhBTSZxgBD4Pg6Ye/w9qjsizDWiir8gEAHiXfepPOWQ9oURTlJ5ued9qAcbJpOHvTNFmWtW07a8NdVibdulP9b9ee4IA7kkbqit+9Xnr0Df+fzxYPfb/8qg1qwa8r+L7uYq2zxf29+J4/W64F//Xy20VqwUde9flPy8ciH3rNx4o64M+BLaz7Tlot5bdgROJPvX8Jv5vyX/3PXdL/t+xhi6F/yLM9bNC++RD8tLsxzAFtmiZEwKIoUvZEjpe7rus8z0+n0/n/ABvRAwBsLdEq+CAE0HEBUJrVSKGbczYH1CIkAICpq3MUL26mHqY4vnef9USr4M+XIlVVlXImqE2XAACWXN2nqCzLvu9ngSo8GL7u+77ruhsHt1NsRB/Gu8NS9HEpUsqF8EVRhEH/kUVIAADZp17C+O7sF+Np6Fsco11VVSGD3nLSFHNAw38f2AcZLuvYsTxer0e1BwBgJ24pDHQ6nUJJy+mDoXdvHHmv67ppmhtLXaYIoA8f/g47z08rcIa9SB/aKACAxwtrsqe7Bs2EINd13fl+QbM1NuchdUnSSkgPVNf1GMkfHogBgCOLbsO3tcWt6y4K48ZLOzdFpoTGHSWABqInAPDE8vfFxw8Ku2e2bXvx0Efe+VgBFADgiQ0f7jp9T4QNUz8v9t99sFNPAH0j/8crT7i10BEAwDMLq2VmG3yGJfNLK3xu7xYVQN9QCQkAYDTbyLLv++luoKsH4gXQ20SK58qmDxSpo71B2eVIifBILfi01n3sdcWhI7d+pBmry8QDrOU39SphAff0kTzPq6oaHzxf8x42fb/lzZOW4gQA4DWMY/Thr+GLG7e51AMKAMC7lWXZtu3pdBr3B23b9sbFSQIoAMDRlWW5tNnn6PwJ4VUr9lkXQAEAWG/FlkzmgAIAkJQACgBAUobg37i+Ef3SRqEAANxGAH1DvgQA2JoheAAAkhJAAQBISgAFACApc0Cfjar0RxH5P52y4Pu6N3Qvwl6t++68+8+PdZ7iR8tvH92AJ6EHFACApARQAACSEkABAEjKHNA3bEQPALA1AfQN+RIAYGsCKABAYuv2M7mLbx936v/JHFAAAJISQAEASEoABQAgKQEUAICkLEJ6kMjkY1W8ZiK113ZSHW69u09CX74iv7/3N/tX/7GmGeul+8b4/KdVrbh7kcCnqDrI7SI3zwOXo9zI3TjjN/WH6QEFACApARQAgKQMwb+hEhIAwNYE0DfkSwCArRmCBwAgqaME0PxMXdePbhQAwBEdIoB2XffoJgAA8BcHmgM6DMOjmwAAgB5QAADSOlYA7bpOGAUAeKwDDcHneT5+XRSFJAoA8BCHCKB932dZVlVVWPlelmXf93Vdny+Ev7oR/VXDLz/6DutF6m8r4/tS7l3w/ft1zVg+V6xM/GqRatnfbnC6u1I2Gp6R79wtHSKAtm1bluX4167ryrJsmuY8gK7ZiF62AwB4j0PMAZ2mz+kjRuEBANI7RABdch5MAQDY2usH0K7rzuse6fsEAHiU158DGro5m6YpyzJ8Xdd13/dVVT22YQDAUUUWDm9tFws3Xz+AZlk2DEOe56fTaXxkXBEPAEBihwigWZYNwxB2oR/7QQEAeIijBNAsy0RPAIA9OFAAvcXVjejXbBQKAMCEAPqGfAkAsLXX34YJAIBd0QPKi1pXwzdSbzy1ezdlZcH3dW8YKRMf33kkXenlr5OdCa6K3Pg7+qEE96QHFACApARQAACSEkABAEhKAAUAICkBFACApARQAACSsg3TGyohAQBsTQB9Q74EANiaIXgAALKyLLuuO3+8ruuyLMuyrOv6vUeX6AEFADi6ruv6vj9/PM/zLMuKosiyrGmapmnati3LMhwty3J8Vd/3XdddjLDn9IACABxX13V1XZ9Op/NDIWi2bRuS5TAMWZaNz6zruu/7qqqGYRiGoaqqkEFvOWke3ossy/I8X5wD+oekLYm5e63s/Xy0+4qUHI/UVo4WKv/jPywe+tXyq363fOiH7Jvlg79cPrTcyv+xPKYRacc6kWLqXy4f+uo/om8auR0Xr/HPsm+XDkXaGLm+n/+0fCzyDRhp+7pX8UDRHwVJqQW/tbv/Vl2W/yEbQ1ee/V/pTjxvxz/Psl/o4wymvZvhUFEU00xZ13XTNOEdwgun73b+/CV6QAEAjiv0X7Zte36oKIppHr34hNlfL47jnzMHFACAC877Mpummf51Fk+nU0LjBFAAgCeR//Ojztx1XZj9GfpKb5zruUQAfeP6RvSRiWMAADdZO713+PC84Py/rHjR2LU5ThKND81fJYC+8QSLkAAAUhk7PququrrT5+3dogIoAAAXhPQZWdi+eiDeKngAAC4IfZ9LKfN8zXvf97N18Uv0gAIAMDfmzvOR9/BI2L5+LOAZZoXeWJBTAAUAYNFs66XsU8osy7Jt29PpNG5lP9vHPkIABQA4urIsZxWSzh9ZetW0B/RGAuhbVruzSqT25N1LYGa/v/e37fd3fr+YrxKeawt+RJBYpFCkKp23S1hv85hWbMlkERIAAEkJoAAAJGUI/o38V1eeoBISAMAHCaBvyJcAAFszBA8AQFICKAAASR0xgI5b9gMAkN7hAmhZln3fC6AAAI9yrADadV3f949uBQDAoR0rgJ5Op6IoHt0KAIBDO1AAzfO8KAqD7wAAj3WUfUDrus6y7Gr6vLoR/VXPt5PoF8uHlL1+6/Oflo99lq4ZMZHC83cv+B55w6+XD8UL2d+7UvyX6162rmy0YtOvJPLTL/IzMzFl4qf28w3oV+dtDhFAu65rmqZt26vPfL74CADwbA4xBB+mfpZl+eiGAABwgB7QMPhelmX4Iui6rq7rsiylUgCAxF4/gAZN00z/2vd93/fSJwDwCPuZTfwYrz8EX9f18FaWZVVVDcMggAIApPf6ARQAgF0RQAEASOooc0Cnwig8AAAPccQAGnF1I3obhQIAfJAA+oZ8CQCwNXNAAQBISg/o/uynoO1TW1eNd0f7si035d5V3X/+pzWv+u6vl49FStKvrM5+f5//lPBkakO/EmXiH2g/vx99U3+YHlAAAJISQAEASEoABQAgKQEUAICkBFAAAJISQAEASMo2TG+ohAQAsDUB9A35EgBga4bgAQBISgAFACApARQAgKTMAb3NfurPphSpa/yqZXDjn2v/NZSXy8RHCr6v+/8cecPvll8Fryz+A2Q/leJhB/SAAgCQlAAKAEBShuABANL6/dED2NE//8z1jehN4gEA+BgB9I3FjeiPuQgJAGAD5oACAJCUAAoAQFICKAAASQmgAAAkJYACAJCUVfBvWe1OxPLt8fU/LB66trXXrj1FNdavV0DaDo8AABOQSURBVB2KiXy2yI+I/VwR9ilyh6Tc4C9yD++/2nBivqm3pAcUAICkBFAAAJIyBP9Gfq2/XSUkAIAPEkDfkC8BgGMqy7Ku67IsZ4/Xdd113fiEdx1dIoACABxd13V9358/Xpbl+Hjf913Xhbh5y9GIA80BDaH+XfEcAOC1dV1X1/XpdDo/VNd13/dVVQ3DMAxDVVUhZd5yNC4fhuF+H2Gnuq4Ll7UoiizLQlQ//+B5nhuCv9VTb04R+b8c34Vk+YV/XN6G6X9ffr8fsm+WD/7r4pH/sTxwsbzn08//tHho3V0fuQW++2r52C+jb/rVd8vHFj/bf8++XXG2z39acSrbMLGNnfzq2f82TIm3Srz3N3U+yR757+/85u/wX+fZL8/z8eu2badD8OHQ9Pl5nhdFEVJm/GjcIXpAQ/ochiH0DLdtm2WZflAAgNB/GdLRudB5N/3rdKQ+fjTiEAE0y7KqqsavQ7S/sYsYAOCwztckRY7Gnzx1iEVIs/7k4PZrBACwC/81v/6cO7nYVTeuOvpgR94hAuiYNcPFCiPyhuABgCfz/3546c7NEfZdfZ/vdYgAOhpXeE1H5KeubkR/1VGWMT1FjfB9iJQj/5d0rdjLIocPuPfqg8SrGSBiJ2Xid+LJVxq9vHjH5+3doscKoOM6pKZpskudoEeJjwAAN7hX4pw5yiKkUdgHtCiKkEEBALjofFV72PgzcnS2Ln7J6/eAhu1VZwl9unE/AEBS3z+6AbcJG9SXZTkW28wmA8jxo3GH6AHt+352OezBBAAQV5Zl27Z93+d5nud53/fT7UIvHr1xcdLr94CGC9E0TajDmU0qRz22YQAAO1GW5cXqmOHxaR/n7UcjXj+AZlk2DEOe59Mip0VR2IYJAOAWd9+S6RABNPu0/j18bQt6AIAHOkoAzeROAIB9OFAAvcXVjehtFAoA8EEC6BvyJQDA1g6xDRMAAPuhB5TjWV359/4d5JGax5FW/vzu7diNNUWgv1w+9PlPyVoB20hZJj5y5//i3udKTMH3/dEDCgBAUgIoAABJCaAAACQlgAIAkJQACgBAUgIoAABJ2YbpDZWQAAC2JoC+IV8CAGzNEDwAAEkJoAAAJGUI/q1k1bpeeKw/8tGevRjacvs/X65T9+Vn925GpPTkspT1/Lbws+zPd37HdXfjs9/DvJJn/67m2PSAAgCQlAAKAEBShuABANL63aMb8Gh6QAEASEoP6Bv5tScMKVoBAPDKBNA35EsAgK0ZggcAICkBFACApARQAACSEkABAEhKAAUAICmr4B9EDV+i9c1/yH67+LKvlm+RL5e/o39/Y6M29tV/RA8vfmN8vfyayKHIVQReSuS3KrukBxQAgKQEUAAAkjIE/4ZKSAAAWxNA35AvAQC2ZggeAICkBFAAAJI6UACt67osy7Is67p+dFsAAI7rKAE0z/OmacLXTdPked513UNbBABwUIdYhFSWZZZlbduGL7Isy/P8dDoNg0VHAACpHaIHtO/7oijG9JllWVVVj2sOAMChHSKAFkUxm/dp/B0A4FEOMQR/Hjf7vr/4zKsb0V91h0H9eEFbleL3abnm+Nf/sHjo++X3+5fYfbB86OufLx35LnKyPy0fWvbdXy8fi1Vnj9/fa2q3f/7TihdFT6WoNM8ucg/7JcI+HKIHdKrrujzPsyxr2/b86PDhPwAAxB2iB3RUlmXo+5wuSAIASCoyKnUMR+kBDR2ffd9XVTUMg/QJAPAoh+gB7brudDoVRWHtEQDAwx2iB/R0OmVWvgMA7MPr94COufO8AqeanAAA6b1+AB2NpThHAigAQHqvH0DLslRyEwBgP14/gL7L1Y3oJVkAgA8SQN+QLwGAo6nrOqyZKcvy4pqZyNF1BFAAgOMKFSKLosiyrGmapmmmcxfHIj5ZlvV933XdXbYVEkCfjQq/m1pdBHzVxf9y+dDPsm+XDv0QOdn/EWnH4jf7d79aflFEpPWRQ9Fq7z/L/rzmLSNUdQeICqV5xgqRYev0uq5DT2dd16GIz/jXpmm6rvt4QZ9D7AMKAMC50Ls5Bsoxhoa/hh2ExmH3MYZ+/LwCKADAQYWR95lpB+fsCUVRjCPyHyGAAgAcVOjOzPM8DLuH+aDTPs6Pj7ZfZA4oAMCT+NPVHSPfpyzL0Kk51uupqip8cXGx0XRN0kcIoAAAT+KvP7xj5NsIGwLlbJlR+GKjvs/AEDwAwBF1XTdNn1mW1XVdFMV59fLpS+5yagH0jfzaHwCAVzLr6ZwthL9X4pwRQN8Yrv0BAHgNs6wZjEWPsktr3kOP6cdPLYACABxUGHCfDsH3fT9uvRQen+0Sepd9QC1CAgA4qFDWKFTgDI8URTH2iZZl2bbt6XQK2zNlWda27V3OK4DCtj7/afHQ158tHvp++Q3/JVtVOvPL/3P50Jr3y75ePvTVd8vHYsUxI28ZORSr7hkr/Ak8zrrvTcV1txHi5nTkfaosy2EYlo6uJoACABxdPFzefUsmARQAIKmf/+lhp44MUaVkERIAAEkJoAAAJGUI/o2rW83bChQA4IME0DfkSwCArRmCBwAgKQEUAICkBFAAAJISQAEASEoABQAgKavgX0ikSO4X935DZlZdq89/sXjol8tl4r/M/rx06FfZPy8d+uGr5ZNlP18+tOyr/1g+tlit/mfZt5G3jBSl//yn5WPrblS3N8d0998UEesKvnMMekABAEhKD+gbNqIHANiaAPqGfAkAsDVD8AAAJCWAAgCQlAAKAEBSxw2gZVl2XffoVgAAHM5BA2jXdX3fP7oVAABHdLhV8F3XdV3XNM2jGwIAcFCHC6Cn0+nRTQAAOLTDDcEPwzAMQ9u2j24IAMBBHa4HNO5qJaSrnm8rexWxH2i5UPLnyy/6p0hR9+UK8v8tW+77/yry77FILefFWydS8P2Xy2+XZdk/RQq+Rxqypo3Ae6Ss6n6Mb9svHnfq7x536ikB9I3ni48AAM/mcEPwAAA8lgAKAEBSAigAAEkJoAAAJCWAAgCQlAAKAEBSB92GqSzLYbDnEgDAAxw0gC65uhG90AoA8EGG4N8Yrv15Afkxikzc7uPlr15N/l8e3YIdcXvMuCAzLsiMXzFTbo8IARQAgKQMwR/DH6J/5UY7uW6/WjzyT8tF3b//7M9Lh/7lwjv+5ZH/vlzV/XeLp8r+v+VDVyx/NOD57ORnJrukBxQAgKQEUAAAkhJAAQBISgBdtG7x2v5ftc7qc7kgb161ao7juldlWZb/55UvXOGHVVfkb1e9auVlXPOi9fZ/5z/B98uTnC7ZuZK+Ku30zSe4IKteRYQACgBAUgIoAABJ2YbpjTz61+xV9qIHAHggAfSNab7MxU0AgA0YggcAICkBFACApPJhMM78F3lumwUAYCt7CF15vovst4tGAABwHIbgAQBISgAFACApARQAgKQEUAAAkhJAX01Zll3Xvetofqau6y3bmNTSBanruizLsiwvftj40ae24oK88B3i9phxe8zEf6KGJ5x/3gPeIdMnzD71C98h636lvvDt8T4DL6Rt2yzL2rZ919Hzu6Kqqo1bmkj8IxdFURRF+Hr6nPHB8WkJm7ytdRfkVe+Qi1cjPDi7GtMnHO32uHpBXvX2GK79RB0+3Qyzz3u0O2Tq4gV51Tsk/v2y9Hlf+PZ4LwH0RbRtW1XVeXS4evTqD5QnFfnI4fv/PGCFr8Orxp8X4a8vcH1WX5CXvEMiV2MWsMLHn90Ph7o94hfkJW+P4dpP1PE55/HigHfI9DnnF+Ql75DVv1Jf9fZYRwB9EdN/UcX7OGdHwzdAsnYmE/nI5//onF6E2a/bi89/RqsvyEveIfGrcd5/M16fY94ekQvykrfHcO0n6vic8w6/A94h0+ecX5CXvENW/0p91dtjHXNAX0T433mx8z9+dJy/0nVdfGbPc4l85KIoyrKMvPZ8iKTv+/s2L73VF+Ql75DI1Wjb9vxqTB852u0RvyAveXtk136iZp+uwMWPfLQ7JFi6IC95h3zkV+pL3h7r/KdHN4BdmJYhLYriZX5MXHT+6Zqmmf519uu2LMvX/gFx9YJkR7pDZtEqrBKY3hJHuz2uXpDsSLdHUNd13/fDQh3Bo90h2bULkh3vDol83gPeHkv0gB5duPWnU1L6vo93EL6SruvCT4rwb9mX/7F41eyCZAe+Q06n0+l06vu+qqpId9dxnF+Q7JC3R9d1TdPEe78OJXJBsuPdIbPPGzo4wz/bjnl7ROgBPbrZ+Fpd113XHeQfZOM/PceL8MI/Fm9xfkGyA98hwzCEQbTQHxx2Tnl0ox7p/IJkh7w9TqfT0qyVY94hkQuSHe8OmX3eruvKsmyaxg+Qc3pAj25pdtdr/1st9POFvpxhGOI/F177UgSRC3LMOyQIG/UVRXE+J2F0hOswOr8gR7s9xhkI9SdZlnVdF3LVxZe86qUIrl6Qo90h7/28r3odbqEHlMte+N9qXdeFf7L7iRBcvSAXveQdEn5xzvoqZpO0DnV73HJBLnrJ22M0+wdJ3/fTYeVD3SFB/IJc9Np3yLkj3x5L9IAeWuj3mhVjePlvj9PplC1/zPM1iX3fz9YtvpjIBTnaHRKi1ewDTv96tNsjfkGOdntkWVbX9WwrmezThL+QMI52h8QvyNHukKuf92i3R5we0EMryzKMpoWyYNmnxYzjFruvZ/xZcLF6Xvjv6XQqPxVYGy9LqgamFr8gB7xDsiyLfN6j3R7B0gU55u0Rd8w7ZMnR7pCrn9ft8caVfUJ5KvEaDPEyjKPXKJIWnH/kyD52S895pTIV6y7Iq94hN35HzLaJPtTtEcQvyKveHsNtVXzOP/IB75Cp8wvyqnfIul+pL3x7vFc+LG/cxXGExa3jP9rIPnUNuiDB0e6QsWN46fMe7faIX5Cj3R63ONodEne0O+Tq53V7ZFkmgAIAkJRFSAAAJCWAAgCQlAAKAEBStmECAF7Z1WWFpKcHFACeTFmWeZ7fEqfCM9O054FnCYdm1yTsDJ/n+emT843iI8LLl3Z+CG9V13X+yXs/zsEJoADwTLquC9ubRwqYJW9UtoeKPm3bTit1hTJvVVW1n4wbxd/ybuFpFwvPjoVL6roOb3uX9h+KIXgAeCYhY+2qgs4eCmwWRTFNliF9tm076xMdC8zeEkOrqmqa5vzJ0xKahvXX0QMKwNGFncOzTxVox2w3bic+C1hd14VnTp988WjkhVdD28VTTJt6/g7h/S8ejZx3/JhXQ+1S+8dWzU4X3nBsVXZ2qS+2J3JtbxReWFXVeToMp1v6/zI743gxz99B7vyoR5diAoAHK4oidGhNx1Jnj4xVE8dqitMnj281Fv4ej47FGCOHzi39vp4WUj9/+fnR80+Uva0AeT58vNSkSPvDI0uNnx4tPrn4PvFrOzvLVHjPWQOWPsj5ayNX4PyktzzCVa4XAEcXAsQsTs0S1ZhvZmljVhN8+szhbRKKHLrYnlnkHV8bguDSZwlPnr3V7Lyzt1o60Uyk/bOIOX3PMbZG2nPxfcb2LMXcqfMAuvQpZkLzZgl4+trZJbr45gLoCobgASDLJiOt4wDu0tPGjrrs01Ds0nj6MOnVu/1QmGI4DvKWZVkUxcXVMDeaNm/6Vk3TzE5UVdWNJ1pqf1ggNb7nxWH0WXvGry9e27uYLlefLloPV2Bs5PkVmI3CG3+/F4uQAOCCpZAxTZxd1zVNMz0a4l2e5yGEBVcPXT17WDqz+rPEzeaYZp9mhc6edkv7L+az29Pz+MIwVXR2bT9i2qTzt41fgWn7L84KZY0H98ACwKPFR9WHt6Ou0y66oihmY7jD24mYs/eJHIqcffbgiiH4ix92qf91qWHh1NMOy/PB8YuNPx+gXzoav7a3D8HHx8SnR2+5AtOZANmlwX1D8CsYggeAdzidTmMEma7vHtV1HY6G4BL2A7p6aHRxTH+Lkd/wbhcXQi2dKCyuH9sftii6Y5PGvZOWru2N4vMiZt2xV6/A+G473ADreQmgAHCr8wgy240oz/PxkbIsQ1AL2WXp0MUTzYaJt9toc3aicrna0LSM0Nj+mZDVZhHtxvH38Bkv7p30XqEBp9Pp4h5Ps0dmVyDMFp09J4zCh9eaAHoXAigAvM90Scq0FzNEkzH3jH1443TJi4fO3z8MPU/X8YSVPbe38MbAevFE59sSjcYuz0j7wyKeaVS9sc2zbsvuYyWdxj7m2a6uYdXR7GnTKzB7wvh49nb/eT7q3mP6APBk3jUHdBZBxo7AMJJ7HhPPNyQ6P3Ru9uTzOaaRjxNeEhp8ddPK2Ykiuxedd3kuzc6cXqJx18+Lz5w9cv6ppztk3T4HdKnB4ZrPpsneeAUi/8vMAV0hH5Zn4AIA56Yj6eMj066+MOa+tE586dDSiVaM+b73hbc//8b2T98wLOG/PW/MGnNL2+KTPs//f617TuTs7/qAZFkmgAIAd5PneVEU0ywYdm7adO1OPIBuTQBd4X+1mAsAuKPf/OY3Xdf9+7//+zhHduto+Otf/3pc6vS3f/u3m55rquu6X//617/5zW8yq+PfyUb0AMDdhBw2biM/6w3dVDhjylXq04+Z7KSvwRA8AABJ2YYJAICkBFAAAJISQAEASEoABQAgKQEUAICkBFAAAJISQAEASEoABQAgKQEUAICkBFAAAJISQAEASEoABQAgKQEUAICkBFAAAJISQAEASOr/B3BuIu5yoWIWAAAAAElFTkSuQmCC\n", "text/plain": [ "<IPython.core.display.Image object>" ] @@ -1504,6 +441,9 @@ "#remove borders..\n", "chi2dPlot.SetAxisRange(0.5,10,\"y\")\n", "chi2dPlot.SetAxisRange(111,150,\"x\")\n", + "chi2dPlot.GetXaxis().SetTitle('mass of the signal [GeV]')\n", + "chi2dPlot.GetYaxis().SetTitle('width of the signal [GeV]')\n", + "chi2dPlot.GetZaxis().SetTitle('#chi^{2}')\n", "chi2dPlot.Draw('colz')\n", "ROOT.gStyle.SetOptStat(000000)\n", "c1.Draw()" @@ -1511,13 +451,11 @@ }, { "cell_type": "code", - "execution_count": 12, - "id": "warming-firewall", + "execution_count": null, + "id": "minute-blackberry", "metadata": {}, "outputs": [], - "source": [ - "#now, different injected signals: explore sensitivities (this should be enough...)\n" - ] + "source": [] } ], "metadata": {