diff --git a/Untitled.ipynb b/Untitled.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..26768e628b0cb88095412d232a9ff2e5a4b70409
--- /dev/null
+++ b/Untitled.ipynb
@@ -0,0 +1,469 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "id": "6a48eeee-a178-4cbb-9aa2-1653b9026e21",
+   "metadata": {},
+   "source": [
+    "grafica de primos hasta el 1000"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "id": "3f5faedb-41fa-4d68-ba05-9414218927e2",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import numpy as np\n",
+    "import matplotlib.pyplot as plt"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 16,
+   "id": "7655ceec-69a8-4ed6-9768-08bf522c5d83",
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "3 es primo\n",
+      "4 no es primo\n",
+      "5 es primo\n",
+      "6 no es primo\n",
+      "7 es primo\n",
+      "8 no es primo\n",
+      "9 no es primo\n",
+      "10 no es primo\n",
+      "11 es primo\n",
+      "12 no es primo\n",
+      "13 es primo\n",
+      "14 no es primo\n",
+      "15 no es primo\n",
+      "16 no es primo\n",
+      "17 es primo\n",
+      "18 no es primo\n",
+      "19 es primo\n",
+      "20 no es primo\n",
+      "21 no es primo\n",
+      "22 no es primo\n",
+      "23 es primo\n",
+      "24 no es primo\n",
+      "25 no es primo\n",
+      "26 no es primo\n",
+      "27 no es primo\n",
+      "28 no es primo\n",
+      "29 es primo\n",
+      "30 no es primo\n",
+      "31 es primo\n",
+      "32 no es primo\n",
+      "33 no es primo\n",
+      "34 no es primo\n",
+      "35 no es primo\n",
+      "36 no es primo\n",
+      "37 es primo\n",
+      "38 no es primo\n",
+      "39 no es primo\n",
+      "40 no es primo\n",
+      "41 es primo\n",
+      "42 no es primo\n",
+      "43 es primo\n",
+      "44 no es primo\n",
+      "45 no es primo\n",
+      "46 no es primo\n",
+      "47 es primo\n",
+      "48 no es primo\n",
+      "49 no es primo\n",
+      "50 no es primo\n",
+      "51 no es primo\n",
+      "52 no es primo\n",
+      "53 es primo\n",
+      "54 no es primo\n",
+      "55 no es primo\n",
+      "56 no es primo\n",
+      "57 no es primo\n",
+      "58 no es primo\n",
+      "59 es primo\n",
+      "60 no es primo\n",
+      "61 es primo\n",
+      "62 no es primo\n",
+      "63 no es primo\n",
+      "64 no es primo\n",
+      "65 no es primo\n",
+      "66 no es primo\n",
+      "67 es primo\n",
+      "68 no es primo\n",
+      "69 no es primo\n",
+      "70 no es primo\n",
+      "71 es primo\n",
+      "72 no es primo\n",
+      "73 es primo\n",
+      "74 no es primo\n",
+      "75 no es primo\n",
+      "76 no es primo\n",
+      "77 no es primo\n",
+      "78 no es primo\n",
+      "79 es primo\n",
+      "80 no es primo\n",
+      "81 no es primo\n",
+      "82 no es primo\n",
+      "83 es primo\n",
+      "84 no es primo\n",
+      "85 no es primo\n",
+      "86 no es primo\n",
+      "87 no es primo\n",
+      "88 no es primo\n",
+      "89 es primo\n",
+      "90 no es primo\n",
+      "91 no es primo\n",
+      "92 no es primo\n",
+      "93 no es primo\n",
+      "94 no es primo\n",
+      "95 no es primo\n",
+      "96 no es primo\n",
+      "97 es primo\n",
+      "98 no es primo\n",
+      "99 no es primo\n",
+      "100 no es primo\n",
+      "101 es primo\n",
+      "102 no es primo\n",
+      "103 es primo\n",
+      "104 no es primo\n",
+      "105 no es primo\n",
+      "106 no es primo\n",
+      "107 es primo\n",
+      "108 no es primo\n",
+      "109 es primo\n",
+      "110 no es primo\n",
+      "111 no es primo\n",
+      "112 no es primo\n",
+      "113 es primo\n",
+      "114 no es primo\n",
+      "115 no es primo\n",
+      "116 no es primo\n",
+      "117 no es primo\n",
+      "118 no es primo\n",
+      "119 no es primo\n",
+      "120 no es primo\n",
+      "121 no es primo\n",
+      "122 no es primo\n",
+      "123 no es primo\n",
+      "124 no es primo\n",
+      "125 no es primo\n",
+      "126 no es primo\n",
+      "127 es primo\n",
+      "128 no es primo\n",
+      "129 no es primo\n",
+      "130 no es primo\n",
+      "131 es primo\n",
+      "132 no es primo\n",
+      "133 no es primo\n",
+      "134 no es primo\n",
+      "135 no es primo\n",
+      "136 no es primo\n",
+      "137 es primo\n",
+      "138 no es primo\n",
+      "139 es primo\n",
+      "140 no es primo\n",
+      "141 no es primo\n",
+      "142 no es primo\n",
+      "143 no es primo\n",
+      "144 no es primo\n",
+      "145 no es primo\n",
+      "146 no es primo\n",
+      "147 no es primo\n",
+      "148 no es primo\n",
+      "149 es primo\n",
+      "150 no es primo\n"
+     ]
+    }
+   ],
+   "source": [
+    "N=150\n",
+    "num= np.arange(2,N+1)\n",
+    "num_prim=[num[0]]\n",
+    "\n",
+    "for i in np.arange(1,len(num)):\n",
+    "    for j in np.arange(0,i):\n",
+    "        cond=num[i]%num[j]\n",
+    "        if cond==0:\n",
+    "            print (num[i],\"no es primo\")\n",
+    "            break\n",
+    "    if cond !=0:\n",
+    "        print(num[i],\"es primo\")\n",
+    "        num_prim.append(num[i])"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 17,
+   "id": "6c485dc9-ac8a-4a64-8705-c1d8e1b4ac7a",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "[2,\n",
+       " 3,\n",
+       " 5,\n",
+       " 7,\n",
+       " 11,\n",
+       " 13,\n",
+       " 17,\n",
+       " 19,\n",
+       " 23,\n",
+       " 29,\n",
+       " 31,\n",
+       " 37,\n",
+       " 41,\n",
+       " 43,\n",
+       " 47,\n",
+       " 53,\n",
+       " 59,\n",
+       " 61,\n",
+       " 67,\n",
+       " 71,\n",
+       " 73,\n",
+       " 79,\n",
+       " 83,\n",
+       " 89,\n",
+       " 97,\n",
+       " 101,\n",
+       " 103,\n",
+       " 107,\n",
+       " 109,\n",
+       " 113,\n",
+       " 127,\n",
+       " 131,\n",
+       " 137,\n",
+       " 139,\n",
+       " 149]"
+      ]
+     },
+     "execution_count": 17,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "num_prim"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 19,
+   "id": "84c78578-d238-4092-a1b1-d397a030c47f",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "35"
+      ]
+     },
+     "execution_count": 19,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "len(num_prim)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 44,
+   "id": "18fd005b-9e5d-43f5-b16d-0fca7332193c",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def num_prim_func(N):\n",
+    "        num= np.arange(2,N+1)\n",
+    "        num_prim=[num[0]]\n",
+    "\n",
+    "        for i in np.arange(1,len(num)):\n",
+    "            for j in np.arange(0,i):\n",
+    "                cond=num[i]%num[j]\n",
+    "                if cond==0:\n",
+    "                   \n",
+    "                    break\n",
+    "            if cond !=0:\n",
+    "                #print(num[i], \"es primo\")\n",
+    "                #print(num[j], \"no es primo\")\n",
+    "                \n",
+    "               \n",
+    "                num_prim.append(num[i])\n",
+    "                \n",
+    "        return num_prim  \n",
+    "    \n",
+    "def counting_primes(N):\n",
+    "    num_prim= num_prim_func(N)\n",
+    "    return len(num_prim)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "9f9e616d-c830-4942-a429-a5fbea2d1242",
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 45,
+   "id": "e6b54d00-23ab-442b-9b75-cc874c8d0809",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "1229"
+      ]
+     },
+     "execution_count": 45,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "counting_primes(1e4)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 60,
+   "id": "0d8521cc-193f-4440-a77d-068cb661c021",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "nume=np.arange(2,1001)\n",
+    "y=[]\n",
+    "\n",
+    "for n in np.arange (0,len(nume)):\n",
+    "    y.append(counting_primes(num[n]))"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "65ad1293-5d8d-4ec9-afd2-105e50564242",
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 66,
+   "id": "0a8820d0-104e-4258-83ce-9d5336c8d149",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "[<matplotlib.lines.Line2D at 0x223a4f2bb50>]"
+      ]
+     },
+     "execution_count": 66,
+     "metadata": {},
+     "output_type": "execute_result"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEICAYAAACktLTqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAwjklEQVR4nO3deXxU1fnH8c+TScK+KEEkAgKKyKYgUXDDDaXQquBWV6xSEcX6o9W61VartY1drG2tuBS1qBGs+xK3uiGCUSJUloCsCcgWIEDYsj6/P86NjmEmmWTWTJ7365UXmXPvzH1ugC+Xc889R1QVY4wxySUl3gUYY4yJPAt3Y4xJQhbuxhiThCzcjTEmCVm4G2NMErJwN8aYJGThbhKeiNwhIv+qY/saERnZyM/+SER+GuK+p4rIusYcpzFEZJeI9I7V8UxySY13Acb4E5FTgWdUtVtNm6r+Pm4FxZGqto13Dabpsit3YxKMiNhFlwmbhbtpNBHpLiIviUixiGwVkYe89sNE5AOvbYuIPCsiHf3et0ZEbhaRr0Rkh4jMFJGWItIGeAvI9LokdolIpojcLSLP+L3/ChEp9D7/V7VqOk5E5orIdhHZICIPiUi63/YzRWSpd9yHAKnj/FqJyFMiUiIiS4Bja23PFJEXvfNfLSI31vFZT4nIIyLynoiUisjHInKo33YVkckishxY7td2uN/7HxaRt7yfy6cicrCIPOjVt1REhvh9Xj+vy2m7iCwWkXP8to0RkSVeHd+IyM3B6jZNl4W7aRQR8QFvAIVAT+AQYEbNZuAPQCbQD+gO3F3rIy4CfgD0Ao4CfqKqu4HRwHpVbet9ra913P7AVOAK7/M7Ad38dqkCfg5kAMcDZwDXe+/NAF4E7vS2rwROrOM07wIO875GAVf61ZECvA78zzv3M4ApIjKqjs+7DLjXO/YC4Nla28cCw4D+Qd5/kV/tZcBc4Evv9QvAA15taV5t7wIHAT8DnhWRvt7nTAOuVdV2wEDggzpqNk2UhbtprONw4fpLVd2tqvtUdTaAqq5Q1fdUtUxVi3Ghc0qt9/9dVder6jZcEA0O8bgXAG+o6ixVLQN+DVTXbFTVfFX9TFUrVXUN8KjfsccAS1T1BVWtAB4ENtZxrIuA+1R1m6quBf7ut+1YoLOq3qOq5aq6CngcuLiOz3vTr+5fAceLSHe/7X/wjrU3yPtf9s5vH/AysE9Vp6tqFTATqLlyHw60BbK92j7A/UN8ibe9AugvIu1VtURVv6yjZtNEWbibxuoOFKpqZe0NInKQiMzw/su/E3gGd3Xpzz9U9+DCKBSZwNqaF97V/la/Yx8hIm+IyEbv2L/3O3bt96r/6/qOhftfSo1Dcd1H22u+gDuALnV8nv+xdwHbvGPstz2ITX7f7w3wuuZnmAmsVdVqv+2FuP9hAJyP+4eu0OseOr6e45omyMLdNNZaoEeQm39/ABQ4SlXbA5dTR992LfVNU7oB9w8LACLSGtc1U2MqsBTo4x37Dr9j136v+L+u71hAD7/v1wKrVbWj31c7VR1Tx+f5H7stcCDg3+0UqSla1wPdva6jGj2AbwBU9QtVPRfXZfMK8HyEjmsSiIW7aazPceGXLSJtvBuiNf3X7YBdwHYROQT4ZQM+dxPQSUQ6BNn+AvAjETnJu1F6D9//c9wO2AnsEpEjgev8tr0JDBCR87x/lG4EDq6jlueB20XkABHphuu7rvE5sFNEbvVuvPpEZKCIHBv4owAY41f3vUCe190TaXnAbuAWEUkTN7z0bGCGiKSLyGUi0sHrmtqJu09hkoyFu2kUr5/3bOBwoAhYB/zY2/xb4BhgBy5QX2rA5y4FngNWed0dmbW2LwYmAzm4f1xKvGPXuBm4FCjF9YHP9HvvFuBCIBvXldMH+LSOcn6L685Yjbs5+XSA8x/sbd8C/AsI9o8SXs134bpjhuJusEacqpYD5+BuTm8BHgbGez9bcDej13jdVpNw/7MySUZssQ5jok9EngLWqeqd8a7FNA925W6MMUnIwt0YY5KQdcsYY0wSqvfKXUSeEJHNIrLIr22miCzwvtaIyAKvvaeI7PXb9kgUazfGGBNEKBMUPQU8BEyvaVDVmlERiMhfcKMiaqxU1cENKSIjI0N79uzZkLcYY0yzl5+fv0VVOwfaVm+4q+osEekZaJv3EMhFwOnhFNizZ0/mzZsXzkcYY0yzIyKFwbaFe0P1ZGCTqi73a+slIvO9x5pPrqOoiSIyT0TmFRcXh1mGMcYYf+GG+yW4B05qbAB6qOoQ4BdAjoi0D/RGVX1MVbNUNatz54D/qzDGGNNIjQ537/Ht8/j+E4BlqrrV+z4fN6XqEeEWaYwxpmHCuXIfCSxV1W8f/RaRzt4834hb+7EPsCq8Eo0xxjRUKEMhn8MtCtBXRNaJyARv08V8v0sGYATwlYj8DzfB0yRvvm5jjDExFMpomUuCtP8kQNuLuJVujDHGxJEtxGuMMXGQk1fEE7NXgQhXn9iLS4f1qP9NDWDhbowxMZSTV8T9bxewY+93i5jd8fJCgIgGvE0cZowxMZKTV8QdLy/8XrDXeGvRhogey67cjTEmBrJzC3j8k+CDB0cP7BrR41m4G2NMFOXkFXHP64vZV1kddJ9JI3pbn7sxxjQFgfrWa2vfMpUnrzqOoYceEPHjW7gbY0yEjZ+Wx6zlW+rd77bR/aIS7GDhbowxYZsyYz65CzdQrUpVNdS1BFIKkNmxJdef1ifiXTH+LNyNMSYMU2bM55UF60Pad0SfDKZPGBblihwLd2OMaaTs3IKQgr1/13bcO3ZQ1LpgArFwN8aYBgplBEyN348bFNXul2As3I0xpgHqu1ma5hPSfCkMzGzPrVG8YVofC3djjKlHfmEJd768kKUbS+u8WTppRG9uG9MvZnXVxcLdGGMCqAn0rzeVUlVXogNpKcKEk3olTLCDhbsxxnxPdm4B0+euYU9F/f3pENsRMA1h4W6MMZ7s3AIemRXa4nFd27fgocuGxq1PvT4W7sYY43n6s8J690n3ufnXE6kLJhALd2NMs5JfWEL2WwUs/mYHZVXVqEKKQF2jGn0CXTtE/6nSSLJwN8Y0GzXzqddWHeSGabcYTBMQLRbuxphmIb+wJGCwBzN2cCYPXjwkihVFV70rMYnIEyKyWUQW+bXdLSLfiMgC72uM37bbRWSFiCwTkVHRKtwYY0KVX1jChKe+CHn/Pp3bNOlgh9Cu3J8CHgKm12r/q6r+2b9BRPoDFwMDgEzgvyJyhKpWRaBWY4xpsPzCEi56ZE7AseoCiLg+dxGhVZqPS4/rkfA3S0NRb7ir6iwR6Rni550LzFDVMmC1iKwAjgPmNr5EY4xpmJy8Iv754XK27Cqn3LtpWluijk+PlHD63G8QkfHAPOAmVS0BDgE+89tnnddmjDExEcoUvMke7BBCn3sQU4HDgMHABuAvXrsE2DfgfWgRmSgi80RkXnFxcSPLMMaY74QyBe8hHVsmfbBDI8NdVTepapWqVgOP47pewF2pd/fbtRsQ8Cetqo+papaqZnXu3LkxZRhjzLdCfbp08ml9YlBN/DWqW0ZEuqrqBu/lOKBmJM1rQI6IPIC7odoH+DzsKo0xppbs3AKezStkX2U1lVUadLbGFEBSoFObdKaM7Nskx6w3Rr3hLiLPAacCGSKyDrgLOFVEBuO6XNYA1wKo6mIReR5YAlQCk22kjDEmUmoCfVdZVZ1T79ZIpCl4Y0000G3kGMvKytJ58+bFuwxjTAJryKRe0ASCvWIfFM2B1hnQ9ahGfYSI5KtqVqBtjb2haowxMfV8/rqQ903oYK/YB6Ub4ZM/w9PjYPYDUTmMTT9gjEl4U2bMZ9vu8qDbfQIpKUKfg9rGfCHqBlGFR0fAlmXudasD4PRfR+VQFu7GmIQWbHhj63Rf3NcpDdn6+TDjMqjcB3u2wuDLodtQ6HE8dDosKoe0cDfGJJz6lrg7vHMb/nvTqTGvq8HyHoNlb8L2tbBrExxzJaS2hFN+6a7ao8jC3RiTUPILSzh/6pw697n6pN4xqqYRKstg9l+hrBS+fBrSW0PHHjBgLJzxm5iVYeFujEkoj368ss7tk0b0Tsyx6jvWwZrZsHkJfPo3SG0FvnQ4++9wxFkxL8fC3RgTdzUTfW0uLaMiUD+MJyFHwez4BvaWwDt3wOqPXVurA+GmZZCaHreyLNyNMXGRk1fEA+8tY+uu8jofSEroJe5KN8LfjobqCvd68OUw4iYX7nEMdrBwN8bESM3TpXsqqqiqY71Sfwe2TuPL38S+S6NeX/wL3ryZb+dFHP1HaJ8JPU+GVh3jWdm3LNyNMVGVX1jC5Gfy2Vha1uD3XpTVvf6dYkUVXvwpFC+DHUXQsTscfQm06QzH/tSt+pFALNyNMVFR0+2yZVfwh48CEdwY9iuGH5oY/evbVrunSSv2wqIXIfMYOPQkGHwp9PtRvKsLysLdGBNx46flMWv5lpD3T/cJg7t3TKwHktZ86h4+WvURrHwfOnSDg/rDxc+6LpgEZ+FujImo7NyCOoO9Zt3SdF8KR3XrkFiBrgprP4fKvfCfq2DvNtd+xGi4dEZ8a2sgC3djTMTk5BXx2CfBZ24c3K0Dr9xwUgwrClF1FezdDqs+hBcnfNd+7sPQ72xIbxu30hrLwt0YE7YpM+bz+v/WB5wqAKBNIvWhB/LiBFj8svs+vS1c+rybJiBzCKQ0zclzLdyNMY2WX1jCNf/+gm17KgJu9wk8P+mExOl28bd7Czz1Q9i3w8370vs06DsGuvSHnifGu7qwWbgbYxqsZmKvgo2lde539tGZiRfsX78Dnz/uZmcsXgoDL4AW7eD4yZCRPOurWrgbYxpkyoz5AafgrW1EnwwevHhIDCoKgap78GjnN7DkNXfV3ukwGDAOznu8yXa91MXC3RgTsmBzq9fwCQw99IDEGQGzbweseN9dpefeDCmpID4YeZe7Uk9iFu7GmHqF0g0zok8G0ycMi2FVddizDXYXQ96jMG+aaxMf/CwfDugZ19JixcLdGBNQqDM1tmvh4/Yx/RNnUq/qaph6ApRucK+7D4dz/gEt20O7g+NbWwzVG+4i8gTwI2Czqg702v4EnA2UAyuBq1R1u4j0BAoAb4FAPlPVSdEo3BgTHdm5BTz56WrK6gh0cA8jXZtIU/CungU5F0NVGVRXwvE3wCHHQLfj3DwwzUwoV+5PAQ8B0/3a3gNuV9VKEbkfuB241du2UlUHR7JIY0x0ZecWMH3uGvZUhDhdIwkU7B/+AZa/46bfBTjhRkhr7frU01vHt7Y4qjfcVXWWd0Xu3/au38vPgAsiXJcxJspq+tGXbiytcz712tJ9wtUn9op/sH/2CGxaBAtfcHO9HDzIjVU//vr41pUgItHnfjUw0+91LxGZD+wE7lTVTwK9SUQmAhMBevRIkL46Y5qJ/MISLpw6h1Cv01NT4OD2CbBgxr6dsPA/ULnPrXzUsgO07QxjH4Yew+NXVwIKK9xF5FdAJfCs17QB6KGqW0VkKPCKiAxQ1Z2136uqjwGPAWRlZTXkwsEYE4b8whJufO7LeoM9oVZAKt0IW1fC0jfgs4ddm6TAla9D16PjW1uCanS4i8iVuButZ6iqAqhqGVDmfZ8vIiuBI4B5EajVGBOm7NwCHpkVfGIvSLB5YCr2QlU5TD/XPU0Kbtrdn7zpFp9u0fQm9IqVRoW7iPwAdwP1FFXd49feGdimqlUi0hvoA9T9J8kYE1VTZswnd+EGKqs06NV6isDEkxPkBmmN9Qvg8dNBq9zrYddB39FuioDWB8a1tKYglKGQzwGnAhkisg64Czc6pgXwnrilpWqGPI4A7hGRSqAKmKSq26JUuzGmHmMfms2CdTvq3e93YwfFv+ulxqw/Q/6/obwUUDjzXkhrBUdf7OaAMSEJZbTMJQGapwXZ90XgxXCLMsaEJyeviPvfLmDH3so69+vYOo1bRh0Z/2Cv2Adv3uQWx1gzG9p2gZ4nuREwNvqlUewJVWOSSEMWox47ODP+E3sVL3Prku74BhY8AxlHwIG9YOTdcNjp8a2tibNwNyZJhDK8sUVqCp3bpsd/BMy6fNi5zs39UvgpINChO0z8uFk/eBRJFu7GJIlHP14ZNNgFeOG6BFg0Y1cxlK6HaWd+d6M062r40V/jW1cSsnA3Jglk5xbw7pJNAbf179qOe8cOin+wb1sF/8j6LtQveBI694VOh8e3riRl4W5ME5VfWEL2WwV8tXZ7wEm+Wqf7eHrCsPiH+tx/wge/c5N5aRWM/hN07AFHjAI32s5EgYW7MU1Idm4Bz+YVsru8iup6nuu+84f94xfs1VXw0kTYXuRumrbrCkeOgQ49YNjE+NTUzFi4G9NEjJ+Wx6zlW0Lad9KI3vG5YbplBeQ94lZAWvQCdB0M3YbCsEnuSt3EjIW7MU1ATl5RyME+dnBm7J80LZwDmwug4HVY/TG07gSd+sDlL0GbTrGtxQAW7sY0CQ9/uLzO7T6BNi1SufS4HrEN9m2rYNdmeOYCqNjt2gacBxc+GbsaTEAW7sYksJy8Iu57cwm7y6u+1y5ASgp0apPOlJF9Y98FU7HPLTr9z2FuYi+A86dBz5OhTUZsazEBWbgbk4Dqe9L05lF9mXxanIYQ5j8Fr//fd6/H/NnN1HjoCTb6JYFYuBuTYPILSzh/6pyg20VgeO849GP/5yrYsMA9iNShOxz7Uzc745ArLNQTkIW7MQkkO7eAxz+pe5bs+2L5QFLJGjdGvWKvWyij23FwyFAYMA6O/GFsajCNYuFuTALIySvintcXs68y+MwwMX3SdPta+GomFM2FFe+7J0kzh8AFT0DH7tE/vgmbhbsxcZaTV8QdLy8Mur1r+xY8dNnQ2IT6piWwvRC+fBqWvena+pwFl/0n+sc2EWXhbkyc5OQV8cB7y9iyqzzoPiP6ZDB9wrDoF1O60XW9TDsTyne5tn5nwwVPQYov+sc3EWfhbkyMhbKQRlqKMOGkXrEZs77oJXjhqu9ej/4TdD/WPYTks4hoqux3zpgYCmWB6n4Ht+OtKSOiX8xLE+Hrt92Y9dadYORv3Vzq/cfa1XoSsHA3JkamzJjPKwvW17mPL0X43bhB0S3kzZvdVAFFc6HbsZA52D181O9H0T2uiSkLd2OiLDu3gGmzV1FRxxJJ6T5hcPeO3Dq6X3RunO5c76berdgL86ZBRl/oNQJG3+9GwpikY+FuTBTV1w0T9eGNG/4HG76CFe/BklehZQdofwhcOtOtVWqSVr3hLiJPAD8CNqvqQK/tQGAm0BNYA1ykqiXettuBCUAVcKOqvhOVyo1JYDXzrpeWVQXdJ6oLVO/cALs2wnOXQOkG19bzZPjJG9E5nkk4oVy5PwU8BEz3a7sNeF9Vs0XkNu/1rSLSH7gYGABkAv8VkSNUNfifcGOSSCgPI6X7hKtPjNJImOoqqCxzE3qV7XBto/7ghjW2PSjyxzMJq95wV9VZItKzVvO5wKne9/8GPgJu9dpnqGoZsFpEVgDHAXMjVK8xCaFmibvF3+ygrKoaVUAJukB1jUkjekdveGPBG/D8FaBeFaf9yk0V0GsE+NKic0yTsBrb595FVTcAqOoGEam5JDgE+Mxvv3Ve235EZCIwEaBHjzisGGNMI+UXlnDB1DnUs8rdfqK2iEbuLW6BjF2bXZ/68MnQoi0ce42NU2/GIv07H2hquIB/B1T1MeAxgKysrIb+PTEmpnLyivjnh8vZsquc8srqBgV7i9QURg88OPL96x9lw5blsOQV6NwPep0MfUbBkMsiexzTJDU23DeJSFfvqr0rsNlrXwf4zyrUDah7YK8xCSy/sIRfzFxA4bY9DX5vVKYO2L0V/pcD5bvhoz9A2y6QcQSMewQOHhjZY5kmrbHh/hpwJZDt/fqqX3uOiDyAu6HaB/g83CKNiYf8whIuemQOVSFcpqeI+0pP9TEws33kx6tvWw1bV8Lil2DBs64ttSVc9RZ0OixyxzFJI5ShkM/hbp5miMg64C5cqD8vIhOAIuBCAFVdLCLPA0uASmCyjZQxTdWjH6+sN9gFeOG6E6I3Tr18D+zbAU/9EHZ+49q6D4fxr0BKqt0oNUGFMlrmkiCbzgiy/33AfeEUZUw8ZecW8OSnqykLkuw+gRZpUbpC91exDx4c6NYqBTjlNjh8pLtST2sVnWOapGG30o3x1LduaYvUFO46e0D0F6Ne/h68egNUlcHeEjf6pcsAGHg+pLWM7rFN0rBwN81eKPOqA9EP9uXvuflftq6Ayr0w8AJo2R5OvR1SW0TvuCYpWbibZqfmAaSv1m4P2vVS29jBmdEL9s8fd2uVfv22W3z6oCOh//Vw/PXROZ5pFizcTbPSkBEwPoGuHVpy/Wl9ohPsX78DO9ZC7s3ga+FukJ56K5z4f5E/lml2LNxNsxLKCBiAwd068MoNJ0W+gMpy2Lrcdb08P961SQpcNwcyDo/88UyzZeFumo2cvCLeXbKpzn3apPu4Yvih0Zv/5d074fNH3feSAtd84KbgtUm9TIRZuJtmIb+whHteXxxwW8vUFI7q1iG6wxpfnwL5T7rvuw+H4ydD+0zIjNKUv6bZs3A3SS07t4Dpc9ewJ8gySL8fNyh6N0r3boeZl7tftyyDbsfBYafBgHFwUAwWvjbNmoW7SUo5eUXc9+YSdpfXvVhGVIJ991b44B4oKYQ1n0Dv0+DAnjDil9D16Mgfz5gALNxN0hk/LY9Zy7fUuc+IPhmRn6Vx/QJYMxvWfwmLXoQOPdzqR5e9YFPvmpizP3EmqWTnFoQU7BGdrXF7EWxbBbm/hC1fu7aDj4JJn0TuGMY0kIW7SRo5eUU8Pnt10O0HtUtnysi+keuK2bcTqsrhiR98N6nX6b+G4yZCWuvIHMOYRrJwN0khO7eAR2atCritf9d23Dt2UGRHwqyeBf8++7vXI25xk3plDoHU9Mgdx5hGsnA3TVbNNAILikoIMhiGS4f14PfjBkXuoMv/C6//H5TtdPOpn3mP+/WoH9ukXiahWLibJimUdUx9KcL5x3SLzAE//iOs/dwNaSwvhQFjoduxcMz4yHy+MRFm4W6alPrGrdeIWFfMvCfdpF5z/uEeOmrTGY67Fk64IbzPNSbKLNxNk1FXv7q/SSN6hzd9QFkprPivWwHpjSkgPkhvAz9+2p4oNU2GhbtJePmFJdz58kIKNpYG3ScFyAh3NExVhRvSOO8JyHvEaxSY/LlN6mWaHAt3k9BCuVqP2Lj1d3713aRemcfAuEehRVvXHWNME2PhbhLSlBnzef1/6+ucnjdiMzi+8Qv4cjpUV7hJvYZNhEOy4IBDw/tcY+Ko0eEuIn2BmX5NvYHfAB2Ba4Bir/0OVc1t7HFM85KdW8Djn6yqd871sPvV926H/1zp+tU3LXFzvvQ+xS1t16V/4z/XmATR6HBX1WXAYAAR8QHfAC8DVwF/VdU/R6JA03yc+ZePWF68u8590n3C1Sf2anyw794KH/3BjYBZ9ZGb++Ww0+HU2yBzcOM+05gEFKlumTOAlapaKCIR+kjTnEyZMb/eYA/ran3PNjeZ19rPYeHz0K4r9DgBrnjFJvUySSlSf6ovBp7ze32DiIwH5gE3qWpJ7TeIyERgIkCPHlFcUd4kvOzcAl5ZsD7gNp/A0EMPaPxCGjvWual3v5rh+tUBugyC62aHUbExiU9UQ1v9PegHiKQD64EBqrpJRLoAWwAF7gW6qurVdX1GVlaWzps3L6w6TNOTnVvAtNmrAk4dkJYiTDgpjO6XynKo2ANTT/huUq/uw+CSGdCiHfjSGl+4MQlCRPJVNSvQtkhcuY8GvlTVTQA1v3oHfhx4IwLHMEmiZj6YLwtLgt40bZ2WwpJ7Rzf+IBX74MFBsHuze33yTdDrFLf6UesDG/+5xjQhkQj3S/DrkhGRrqq6wXs5DlgUgWOYJDBlxvyg3S/+xh/fs3EH2FsC/z4Hdhe7YD/2GjjoSBh8GaS1atxnGtNEhRXuItIaOBO41q/5jyIyGNcts6bWNtMM5ReWMPmZfDaWltW5X6NHwpRugrdvc90vG7+CfmdD+24w8m6bqdE0W2GFu6ruATrVarsirIpMUgll9kZw65k2eNm7ojw3B8ymxbDsTXejtO8P4YKnbASMafbsb4CJqkc/Xhk02FNT4JgejRgJU7wMipfCf38L21YC4m6WTng3EiUbkxQs3E1UZOcW8GxeIaVlVftta3T3y94SN159+rlQ6t3WOes+m37XmAAs3E1E1TW8EcKY5KtiH/xtMOzb7l6fcRf0HQMZfRpbqjFJzcLdhKVm8Yx9ldWoUmffequ0lIYH+55t8OgINwKmcp8b1niw17dua5UaE5SFu2mUUEfA+Bs14ODQD7A0Fz590E3stWMtDLkCOvaAk35uDyAZEwILd9NgoY6AARAgPTWF0QMPDm00zIr3YekbsPJD1wXTdbCbfvfsv0GKL7zCjWlGLNxNg9U1AsZfg4Y3fpMP6xfAnL/Dzg3Qsj2ccisMvy6cUo1ptizcTYN9sWZrwPbUFEhP9TEws33owxu3F0HpRph5OezyZq4Y/UcYZs++GRMOC3dTp5q5YL5au52KaqU6wCV7o0bAVFVA+S54+AQo99ZGHfNnGDAOWneq+73GmHpZuJv91CxI/fWm0npXRGrUCJjdW+EfQ9zNUnDDGrtlufnV7clSYyLC/iaZ78kvLOH8qXNC3r9BI2C2r4XnLoE9W12wn/AzOKAnHPMTC3VjIsz+Rplv5ReWMOGpL0Lev0/nNqHdMN22Gj641y1tt2mh63ppfwiM/K2NgDEmSizcDQDjp+Uxa/mWOvcRwJcCrdNTufS4HvVPH7C9CL6aCYVz3HqlGX1h0IVw/r8iVrcxJjALd8OUGfODBrtPoGuHllx/Wh8uHRbicoi7imHdF25Zu6/fcm19x8Alz9X9PmNMxFi4G95ZvClge4NHwVSWwa7NkHszfP22a+t/LlzwJEhKBCo1xoTKwr0Zy8kr4v63C9hbsf/MjY0a3vjsBbB6lvt+4Plwwo1uYi/rVzcm5izcm6H8whJ+MXMBhdv27LfNlyLce+7A0LtgAKaPhfVfuhEw/c6BI0ZBn1HQtnPkijbGNIiFezNSM369YGNp0H1OP/Kg0IK9ugpeuc4NbyyaA4edDgf1h+MnQ/vMCFZtjGkMC/ck5/+EaVk9TyQJMOmUw+r+wMpymPUnN1PjVzPd0naHnwnnPgTtGjDm3RgTVRbuSSy/sISLHplT71OmAD07teYvFw0OPh9MZRkseRU2LnSTe6W3gwN7w5WvQesDI1u4MSZsFu5J7LNVW+sN9o6t07hl1JHBu2KqKmHzElj+DnzwO9fW6gD4xVJIaxnZgo0xERNWuIvIGqAUqAIqVTVLRA4EZgI9gTXARapaEl6ZpqFy8op4+MMVQbe3a+Hj9jH96+5fr6qEzx6G937tvamrW4S61QEW7MYkuEhcuZ+mqv5PwNwGvK+q2SJym/f61ggcx4SorqdN27cM8enSWX/67kq90+Fw1u8g4wi3GpIxJuFFo1vmXOBU7/t/Ax9h4R4zdQX7mf278Pj4rLo/4JMH3I3S7Wuh85Ew8AI47DQ3a6MxpskIN9wVeFdEFHhUVR8DuqjqBgBV3SAiBwV6o4hMBCYC9OhhV4ORUNc0AvWOhPn8cSj6DJa/C20yoM+ZkHU19D4lOsUaY6Iq3HA/UVXXewH+nogsDfWN3j8EjwFkZWWFsmqbqSXUYY79u7bj3rGDAo+E2fAVrHwfPsqGtNZuOOPo+924dWNMkxVWuKvqeu/XzSLyMnAcsElEunpX7V2BzRGo09QSyjDHFqkp5FwzPHCoby+C4q/hv3e7aXjFB5c/DT1PilrNxpjYaXS4i0gbIEVVS73vzwLuAV4DrgSyvV9fjUShxsnOLWD63DXsraiud5Hqu84esH+wV+x10wRMHwvbVrq2EbfAiF9Cano0SjbGxEE4V+5dgJdFpOZzclT1bRH5AnheRCYARcCF4ZdpILQ512tMGtF7/2GOVZXw9yFQusG9PnGKmwvm4EEW7MYkmUaHu6quAo4O0L4VOCOcosz+Qgn2lqkpHNWtA7eO7vf9K/ayUph2lgv1vSVw7DWQORgGnAfpraNbuDEmLuwJ1SYglGD//bhBgR9Ieu83sGa2e8q0/1g3Tv3U2y3UjUlyFu4JKieviH9+uJyNO/dRVR14n3SfcFC7FvuvkqQKn02FHevgs3+6OWD6nQ3nPQapLWJzAsaYuLJwT0A5eUXc8fLCoNsFeOG6E/a/WaoKy3LdQtTv3AG+FtA6Ay6ZAZ37RrVmY0xisXBPQG8t2hB0W9DhjaUb3SLUL1/rXqekwo1fQodu0SvUGJOwLNwTTHZuAXNWBO9fDzi8cd9ONwqmYg/40mHix9D2IPekqTGmWbJwTxDZuQVMm72KigD96wIc0rHl/n3rOzfAw8Nh33b3+oy73DwwXfrHomRjTAKzcE8AYx+azYJ1O4Juv6/2SJhtq+DFa2B3sQv24ddDh+4w7FpbjNoYA1i4x1VdV+s1RvTJ+C7Yqyrhv3fB2s/hm3nQd4z7GvV7cA+TGWMMYOEeFzl5Rdz35hJ2l1cF3SfdJ1x9Yi8373plOcx/GraudEMb2x4Mgy6E8/8Vw6qNMU2JhXuM1TfMEWDs4EwevHiIe7FxESx7Cz70W+Luhi+gZfsoV2qMacos3GNs5hdFQbd1bd+Chy4b6kbDlO2C7YXw6Mmg1dDqQDe0Ma2NzQNjjKmXhXsM1My7vqCoJGj/+veu1jctgUdOAvW6bc6fBt2Pc1ftxhgTAgv3KMsvLOGCqXOCTs97SMeW/P2SY9zVemUZPDkGti53wX7WfdDhEBgwLqY1G2OaPgv3KMrOLeDxT1YFDXYRvgv2j/8EKz9wo2COGA29TobjJ8e0XmNM8rBwj5L6xq4DXHtyb4YWvwJfr4E5/4D2mXD4SLhgGqS3iUmdxpjkZOEeBdm5BUGDPQXIaJfOXcNS+OEBefD6FLfEXXobuGg6HHJMTGs1xiQnC/cIqLlhuvibHZRVVQedondEnwymjz/ajYKZPhZK1wMCk/Mgo08sSzbGJDkL9zBl5xbwyKxV9e737WiYF66GRS+6xpG/haMuct0xxhgTQRbuYcjJK6o32NN9wnMTj2fotjfh3lFQVeb61YdeBX3OsjHrxpiosHBvpPzCEu55fXG9+z1wxBKGvvNHt4BGmww4+hIYcplbHckYY6Kk0eEuIt2B6cDBQDXwmKr+TUTuBq4Bir1d71DV3HALTSR1jV1PARAYkLaBe7p8wpDiz9yGbsfC0RfDwPNjWKkxprkK58q9ErhJVb8UkXZAvoi85237q6r+OfzyEtOjH68MGOxjB2fy4Pn94KsZsOhVWPMptDvYzbN+9I9jXqcxpvlqdLir6gZgg/d9qYgUAIdEqrBE9sWarfu1jeiTwYOntYDZf4WPs12jzdxojImTiPS5i0hPYAiQB5wI3CAi44F5uKv7kkgcJ55y8or454fLWb99335X7acd3pEnx7SCqce7hnZdYdKnNheMMSZuRDXYw/EhfoBIW+Bj4D5VfUlEugBbAAXuBbqq6tUB3jcRmAjQo0ePoYWFhWHVES35hSVMfiafjaVlAbe3SYPFnW6D7d5sjxc+BZnHwAGHxq5IY0yzJCL5qpoVaFtYV+4ikga8CDyrqi8BqOomv+2PA28Eeq+qPgY8BpCVlRXevzBRUt8Y9jtTn+b8FvNgezEMuQIOP8Mm+TLGJIRwRssIMA0oUNUH/Nq7ev3xAOOAReGVGHv1Xa2fmjKfy3wfcIrvK9IzjoTuY2Hk3dCibUzrNMaYYMK5cj8RuAJYKCILvLY7gEtEZDCuW2YNcG0Yx4i5/MISzp86J+C2LmzjYt+HnJf6KV1SS0nvMgh++BebD8YYk3DCGS0zGwi0KnOTHtP+6McrA7YPlFX8vNWbnFE9FyQFRv7OpuQ1xiQse0LVT35hCbNXbPleW0vK6C7FvNLyHlKry+GwM+CKl+JUoTHGhMbC3TN+Wh6zlm/Zr/0/rbIZpMtcJ9PYqdDvnNgXZ4wxDWThTuCFNSb7XuGGtFdppWXuYaQB46DvGLd8kjHGJLhmHe45eUXc/3YBO/ZWftvWhr38I+0fHJuyjF2tMmk1dBwMvw7aHhTHSo0xpmGaZbgHG+o4wZfL8JQlnO5bwNIWAznygt/BYafFqUpjjGm8Zhfu+YUlXDh1Dv6LJXViB+f45vDrtGco1VZs6TCII2/8EHxpcavTGGPC0ezC/dGPV34b7EI1/aWQa1Pf4BzfXCo1hcLzXmfg0cfGtUZjjAlXswr37NwC3l3iZkcQqhmb8il/TZ8KwBepQ0n98ZMM6WNzwhhjmr5mE+61l8R7If23DE1ZTom2Y8uohzj26JOhTac4VmiMMZGT9OGeX1jCnS8vpGBjKQDHyNfcn/Y4fVK+IbfqONKPv5aRJ4yNb5HGGBNhSR3utZfDu973KuN8s+kmxcysPJXNWb/kZ2NOimuNxhgTDUkb7jl5Rdz12iIU6Mx2LvJ9xE2p/6GYDkyrGs2KgT/nwbFD4l2mMcZERVKGe05eEXe8vBCAI6WI61Jf41zfHMo0javKbyHj8CymX2zBboxJXkkZ7g9/uBxQeshmXk7/Da2knNlVA/hZ6m/45dj+XDqsR7xLNMaYqEq6cB8/LY912/fxU18ud6Y9C8BtFT+lsMso5t94VpyrM8aY2EiqcJ8yYz6zlm/httQcJqW+wcrqrvyl8kLWdD6D3BtPjXd5xhgTM0kT7tm5BXyyoIAn0x5hWMpSyjSVX1VO4AsG8Px5R8e7PGOMiamkCPfs3ALe/GQuz6f/kcNSNvBZdT/+WPFjFvuO5PlrhjP00APiXaIxxsRUkw/3nLwi3vxkLv9Ou5/eKRvJqz6Si8vvBITfnz3Agt0Y0yylxLuAsJTvZt7c9/lr2lR6p2zknaosflz+G0CYNKK3jYoxxjRbTfrKveCrL3hg+xRIgZeqTuKWiokATBrRm9vG9ItvccYYE0dRC3cR+QHwN8AH/EtVsyN9jEcWwq7ym6gmhbzqflSSypn9u1iwG2OavaiEu4j4gH8CZwLrgC9E5DVVXRLJ4yzeBiuqh353XGDSKYdF8hDGGNMkRavP/ThghaquUtVyYAZwbqQP0qtz2++9zup5gN1ANcYYohfuhwBr/V6v89q+JSITRWSeiMwrLi5u1EEmnXIYqd4ZpKbAbaOtO8YYYyB6fe4SoE2/90L1MeAxgKysLA2wf72GHnoAM689gc9WbWV470521W6MMZ5ohfs6oLvf627A+mgcaOih1hVjjDG1Ratb5gugj4j0EpF04GLgtSgdyxhjTC1RuXJX1UoRuQF4BzcU8glVXRyNYxljjNlf1Ma5q2oukButzzfGGBNc055+wBhjTEAW7sYYk4Qs3I0xJgmJaqOGmEe2CJFioLCRb88AtkSwnKbAzrl5sHNuHsI550NVtXOgDQkR7uEQkXmqmhXvOmLJzrl5sHNuHqJ1ztYtY4wxScjC3RhjklAyhPtj8S4gDuycmwc75+YhKufc5PvcjTHG7C8ZrtyNMcbUYuFujDFJqMmGu4j8QESWicgKEbkt3vVEioh0F5EPRaRARBaLyP957QeKyHsistz79QC/99zu/RyWicio+FUfHhHxich8EXnDe53U5ywiHUXkBRFZ6v1+H98Mzvnn3p/rRSLynIi0TLZzFpEnRGSziCzya2vwOYrIUBFZ6G37u4gEWicjOFVtcl+4mSZXAr2BdOB/QP941xWhc+sKHON93w74GugP/BG4zWu/Dbjf+76/d/4tgF7ez8UX7/No5Ln/AsgB3vBeJ/U5A/8Gfup9nw50TOZzxq3Gthpo5b1+HvhJsp0zMAI4Bljk19bgcwQ+B47HLX70FjC6IXU01Sv3mKzRGg+qukFVv/S+LwUKcH8pzsWFAd6vY73vzwVmqGqZqq4GVuB+Pk2KiHQDfgj8y685ac9ZRNrjQmAagKqWq+p2kvicPalAKxFJBVrjFvFJqnNW1VnAtlrNDTpHEekKtFfVueqSfrrfe0LSVMO93jVak4GI9ASGAHlAF1XdAO4fAOAgb7dk+Vk8CNwCVPu1JfM59waKgSe9rqh/iUgbkvicVfUb4M9AEbAB2KGq75LE5+ynoed4iPd97faQNdVwr3eN1qZORNoCLwJTVHVnXbsGaGtSPwsR+RGwWVXzQ31LgLYmdc64K9hjgKmqOgTYjfvvejBN/py9fuZzcd0PmUAbEbm8rrcEaGtS5xyCYOcY9rk31XCP2Rqt8SAiabhgf1ZVX/KaN3n/VcP7dbPXngw/ixOBc0RkDa6L7XQReYbkPud1wDpVzfNev4AL+2Q+55HAalUtVtUK4CXgBJL7nGs09BzXed/Xbg9ZUw33pF2j1bsjPg0oUNUH/Da9BlzpfX8l8Kpf+8Ui0kJEegF9cDdimgxVvV1Vu6lqT9zv5QeqejnJfc4bgbUi0tdrOgNYQhKfM647ZriItPb+nJ+Bu6eUzOdco0Hn6HXdlIrIcO9nNd7vPaGJ953lMO5Ij8GNJFkJ/Cre9UTwvE7C/ffrK2CB9zUG6AS8Dyz3fj3Q7z2/8n4Oy2jgHfVE+wJO5bvRMkl9zsBgYJ73e/0KcEAzOOffAkuBRcDTuFEiSXXOwHO4ewoVuCvwCY05RyDL+zmtBB7Cm1Eg1C+bfsAYY5JQU+2WMcYYUwcLd2OMSUIW7sYYk4Qs3I0xJglZuBtjTBKycDfGmCRk4W6MMUno/wFZpfRCesKP5QAAAABJRU5ErkJggg==\n",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "plt.figure()\n",
+    "plt.plot (nume,y,\".\")\n",
+    "plt.title(\"cantidad de primos\")\n",
+    "plt.plot(nume,np.rint(nume/np.log(nume)))"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 64,
+   "id": "6d8e19f2-f0bb-47e1-92db-fa4a22c9f37f",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "f=np.rint(nume/np.log(nume))\n",
+    "error_p=np.abs(y-f)/y*100"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 65,
+   "id": "b8210c4d-b6f6-40d9-b666-b0dbf28d6e42",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "[<matplotlib.lines.Line2D at 0x223a4ecf670>]"
+      ]
+     },
+     "execution_count": 65,
+     "metadata": {},
+     "output_type": "execute_result"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAzuElEQVR4nO3dd3gc1bkG8PfbIq16sYplucm94go2tnEDDDgJDuTSAoQAjkNC6IFLSYAAgXBDCGlA6N0UU22MC8ZgwA1ZtmXLvchWtWXLKlbf3XP/mJnV7OzMFmlX0kjf73n8WJptZyTtu2e+OecMCSHAGGPMfCyd3QDGGGNtwwHOGGMmxQHOGGMmxQHOGGMmxQHOGGMmZevIF0tLSxMDBw7syJdkjDHT27JlywkhRLp2e4cG+MCBA5Gbm9uRL8kYY6ZHREf0tnMJhTHGTIoDnDHGTIoDnDHGTIoDnDHGTIoDnDHGTCpggBNRPyJaS0S7iaiAiG6Ttz9MRCVEtE3+Nz/yzWWMMaYIZhihE8BdQog8IkoAsIWIVsu3/V0I8VTkmscYY8xIwB64EKJMCJEnf10LYDeA7Eg3TE9VfTM+zy/rjJdmjLEuJ6QaOBENBDABwCZ50++IKJ+IXiGiFIPHLCKiXCLKraioaFdjb34nDze/k4eSqoZ2PQ9jjHUHQQc4EcUD+BDA7UKIGgDPARgMYDyAMgB/03ucEOIFIcRkIcTk9HSfmaAhKTklBXez092u52GMse4gqAAnIjuk8H5bCPERAAghjgkhXEIIN4AXAZwVuWYyxhjTCmYUCgF4GcBuIcTTqu1ZqrtdAmBn+JvHGGPMSDCjUKYDuBbADiLaJm+7H8BVRDQegABQCODXEWifF756J2OMtQoY4EKI7wCQzk3Lw9+c4Og1hjHGehqeickYYybFAc4YYyZlqgAXXARnjDEPUwU4Y4yxVqYMcOKzmIwxZs4A51IKY4yZLMC5580YY61MFeDc82aMsVamCnAF98QZY8ykAc4YY4wDnDHGTIsDnDHGTMpUAS54PULGGPMwVYAriNcjZIwxcwY498QZY8ykAf7mhiNobHF1djMYY6xTmTLAX/ruMP6+el9nN4MxxjqVqQJcPRPzVH1z5zWEMca6AFMFOGOMsVYc4IwxZlIc4IwxZlKmCvBAi1gVn6pHk5NHpzDGegZTBbi/5WQbW1yY8eRa3LMkv+MaxBhjnchUAa6mnY3Z1OIGAKzdc7wzmsMYYx3OvAGuKafw7EzGWE9j2gA3Qny1B8ZYD9HtApwxxnoKUwW4v5OYkbhe5oHjp/F5fln4n5gxxsLA1tkN6Mquf20ziiobcGbOuchIcHR2cxhjzIupeuD+ROIUZlFlAwCg2emOwLMzxlj7dJsAd8s1lEicw3RzfjPGuqCAAU5E/YhoLRHtJqICIrpN3p5KRKuJaL/8f0rkm2vMHYkiuMwVwedmjLG2CqYH7gRwlxBiJICpAG4molEA7gWwRggxFMAa+fvOE8GMdbk5wBljXU/AABdClAkh8uSvawHsBpANYAGA1+W7vQ7gpxFqY1CUjK2qb8G5f/saIoy95vOe/gaXPvt92J6PMcbCIaQaOBENBDABwCYAmUKIMkAKeQAZBo9ZRES5RJRbUVHRzuaqn9f7e3UJ5WBFHcLdac47WhXeJ2SMsXYKOsCJKB7AhwBuF0LUBPs4IcQLQojJQojJ6enpbWljcK/j+7phfX6bhWd4Msa6lqACnIjskML7bSHER/LmY0SUJd+eBaBTV5Fya7rc4e6BR/IkKWOMtUUwo1AIwMsAdgshnlbd9BmA6+SvrwPwafibFzxtvoZ7cSu3CH+vnjHG2iOYmZjTAVwLYAcRbZO33Q/gLwDeJ6IbARwFcFlEWhgkbWBHImvdArByJYUx1kUEDHAhxHcAjGLr3PA2p+20JZNIBLjLLWDlWjhjrIvoNjMxteUNo5r19qIqvLXxCBqaQ7/0GtfBGWNdSbdZzMqnB25wv9++nYeSqgZkJERj3ujeIb0GT+hhjHUlpuqB+zuJGGwPvKK2CQDQ4go9jHlKPWOsKzFVgHvzrkVro/WMh1fhvo+ML3DclnKIdqgiY4x1JhMHuDe9QF68uchnmzJaxV+ANzS7kF9c5bOdSyiMsa6k+9TAQ1zy1V8H/LHPd+HtTUd9tnMJhTHWlXSbHniwE3eUDPbXA99RUq27ndcFZ4x1JaYKcG3kfrOvAg9/VoBjNY0hj/t+c+MRPLliD5wu31Q2ei7ugTPGuhJTl1CeWL4be8prMSorESOyEkJ67NajVdh6tAoLxvfBiN6JQT2mu5zEXLGzDNF2K+YM111AkjFmEqYO8Cb5WpVuIdo881LvxKRROaY7nMSsqG3CTW/lAQD2//ki2K2mOghjjKmY6t2rncSufO8WbZ8lGcrDIllCKa9uxGfbSyPey69vdnq+5os1M2ZupgpwIwLCcPnYvKOn0OR0qe7rLZTg1wvX2sYWfLqtBKVVDUE/j54HP92JWxdvxdaiqnY9TyDq0G7Rqf8zxszDVAFuFLVSBuvfeumz6/HwZwWGz6kX/KGcxPwgtxi3vbsNT3yxx/A1gnGsphEAUFbdvg+CQJpUAd7MAc6YqZkqwNWIWiNbwP8FHApKWy8gpJ1y/+m2Emw5csprm2GA67xIQ4vUu29QlSbaIiUuCgDw9d4KbD5c2a7n8kcd2m1ZToAx1nWYNsC9COG3duxvAdhXvy/ElS9sCKqcoBfsTk8Itm+Z2bgo6Xzyki3FuPKFDTjd1L4PBLUmp8tTOmlqUQU418AZM7VuEeACxuUVvftqtbiEV+/a6Ln0euAuz+ye9vVmnW43eic6cOvcIXALoLEl9OVujQz/wwrM+utaANoeOAc4Y2bWPQK8HaNQ1M+h5x9Xjsfjl4wFoF8Dd8qh7mzn6BGnSyAtIQqZSQ4AUrh+tedYwMu41Tc7UVnXHPD5y6qlGnsz18AZ6zZMFeBGWSbaMQ5cYTRE8OxBvdAvNQaA/igUpVfe3jHizS43bBYL7BbpV/Lyt4dxw2u5WJZfZviYFpcbkx/7EhMfXY2v9hwL+Bq3vbvVa4VGfzXwT7eV4IfCyNXiGWPtZ+qJPErvVKD9l1BT9+DVvV6rhWAlqb6tF9LOMAW40yVgtxJs8kU3D52oAwAcl9cv19PQ4kK9fGUhpYftz6fbSr2+91dCue3dbQCAwr/8KODzMsY6hyl64LWNLfjT0gKU1+iH1Hs/FOH1DYWGj99eXI035NuNgv7uD7Zjp84iVlYLwSJfB/PZrw9iWb53CGp74CsLyvGHT3bgeK1xoO4tr8X/LsnHI0t3eWrdTrcbdqvFc81NJVz9nRpVn4Rscbrx/g9F2Hes1s8jjB9v5O4Ptvvsc1e25cgpLN9hfNTCWHdiigDferQKr35f6LWNAJDcM95TXovVu/yXEB5fvtvv7SsLjuHDvGKf7RYLISctDkMz4rHx0Ek89/VBr9ud8klMJcAfWboLb208iu8PnDB8rU+2leC93CK88v1h7C6Thjg2uwRsVotnarsziCF+6hq20y1wz4f5mPf3dQEfp/d4Ix9sKcazaw8GvF9X8bPn1uO3b+fhUMVpnDxtfPTCWHdgigAPx8WElTKI39eRQ1j9cjYLITPRgdV3zsKsYek+pRJPD1x+kKdH7SeA1T1f5fFOlxt2C/n2wP00u8XZ+hrqMD5yss7vMMQEh1Q5W5Zfhnc3Hw14otSMJzvn/u0bTH/yq26zABljekwR4OEQzNtY771uUSWo1UI+Aa4EtSf85e3NLrfhUED1iJWy6kYs2VKMFpdUQrHLNfAW+T7+PnbUwdqoGt89669fY+HrPxg+rl9KLGLsVizZUox7P9qB/GLv0pE20M063LCxxY1GZ/iGYzLW1ZgiwPXCl8j/RY613AEm+wCtvWj1aoRKjxiQyikuIbB273HPlHeXZhih0qYHPt6JEX9cgRKdNVLUgXjL4q34/QfbUXKqATYrwSaPQlF66eSnC65+nnpNj3vjoUqv9qn1SY7B9ofmYdktMwAAH+YV4/P8Ms8QQ+2QSDMveqX+YGOsuzFFgIdDMGPFG5pdWLP7mGd6POBderES4cjJelz/6g+4+W1pSdZAo1CO65x4NZqSb7daYJM/MJTauja/iyrrsWJnGRpbXF7BWq/T25/+l69w6+KtPtttFkKUzYJhmQlIdNjwxoYjuPmdPHy99zgA7/VSALMHuO/PRRp2yqUVZn7mGEYYhveaFOD+7/Px1hJ8vLXEa5vFol9CUVYNDDQOXO9DQ2/8tVtAHkZo8bqPtv99x3vbkHvkFJ65Yjz6psR4tmt74ABQUtWgewSgfChE2Sz49n/nYmdJNa5+aRPq5PVcmjShZ8YauEIb4C63wIwnv8LEASn4z88ndlKrGAsPU/TAg73epT/NLjcWvZnbruew6JQzPKNQVGPS1R78tAC3LN7qFaROg4trTsnp5RkHblR3VsaFn25yegVrXXPwtV71biTF2DGgV6z0mvJJUW1gh6sHXtPYgkeX7fJa3jec9HrV2hJKXbMTZdWN+Dy/DFuOVOKu97ejuqElIu1piw0HT+L3H2xHXRjXwmHdlzl64GHy9d6Kdj1effEaIYAPtxTj5GlpGrtLZwQLIK2EWFBag6mDUnH1lAEA9EeojO+XjJ9N6ov84irv+2g+NJQPsz98stNre0MoAa7p10fJO6YEd4Vm8lC4TmL+ffU+vPp9IYZkxOPSidmItlnD8ryK7cW+4/i1JzHVP6cnV+zF5sOVsFqAaYPTcP6oTMRFd+5b4pFlu7C7rAaXT+6Hs3JSg3rMP77cj2fW7IPdasFrvzwT04akRbiVrKswRw/caAp9xzbD64QmANz1wXbkykvRujQnMbWO17SGYovL7QlNhZLTnpOYcmi6ggzPulCWs9UcSNit3q/51Z7jXre7BXQv/qxW3dCCL3aU4ZSfdVmU3vBHecUY/ocV+HZ/aB+oJ0834YSfsd3aDx4AaNR8sNWrvq+Re97v5xbj9ve24dXvD6O8ujFiRwjBUH5+9SH8PneUVCEh2oZmpxv7jtViwb+/w6/eaN/RJjMHUwR4V6FXQlEEGuGybn8FXl9fCJdbwOkWiLZrAlz+X1tC0Y4IMfowq2/yHzrqDx/tXkTZvANcb18C1cFf/vYQfvN2Hv699oCfe0nPq6y/XniiDit2lmHDwZN+n1tx7tPfYOb/rTW8XQm9sdlJuO5s6Wjnw7wSPPf1Qc8FM9TBqP1ZPrVqH6Y+sQZX/HdjUO2JBOWcSb3OEZUQAp9uK/EpadU2OjEoPR6AVFrbXlyN1buOYdgDX+DCZ9Z16Albp8vdLa4daxYBA5yIXiGi40S0U7XtYSIqIaJt8r/5kWyk0d9f+1bgDp22B67mdOvXwBVbj1bhoc8KsK3oFFpcbjjs3uUDZbigMgqlyWBIn/pnceOMHMRGWZEca0d9i/8e24E/X4Rnrhjv9VoKu+bEqXoUSv9U7/q4kZpG6fWX7yjDne9tw6qCcp/7aH+PbgHc9FYernoxuMCsqm9BfbMLd76/Dbcu3uoTFMoJy+evnYSb5wxBXJQVH+YV48kVe/DMl/tw4Php1Da2/pz0TjCflZOKkqoGPL1qL65+aWPAI49wU3ZJL8BX7CzHbe9uw2X/3YAX1x3CDrlkdLrJiV5xUbBayOsopNnlxp7yWuTctxxDH1iOpdtL0eJyR2xy06m6Zox6cCVmP2X8IcvCK5iC32sA/g3gDc32vwshngp7i3R0lc9zvz1w4T2hR+3py8dhWGYCfvyv71BW3QinSyDGrl//VWqwngD3EyB//PEo3D9/JC58Zh0q/JQWbBYCEXlWVZw+uJfX7crkIc9FH5xuJDhsyPvj+Xj3hyL88ZOduO/jfEzol4JfzRyk+xpK2aGsuhEfbS1BSVUD5o3u7XUfbWCqZ4uOfXglhmcmYMlvphnuh+KjPGmk0Bl9k9A/NRbnjcyExUKe+naM3YrUuCjkP3wBXG6Ba17ehMWbi7B4cxGGZsR7nkdvBcrRfRKxu7QG//xKOpL47dt5SHDY8etZgzAsMyFg29pP6YH7fiCfkMsr24uqsF0eBfXgj0ehoLQGQzPiERtlxbEa37+DPkkOlFY34hZ5SOnY7CS8u2gqBID4IGv+x2sb8f4PRbh5zhDDuQnFpxrQ7HKjqLIBTpfbM6IqVH9aWgAhgIcvHt2mx/ckAX/CQoh1ALrcuqLaE3EdIZgeeItOgNutFs+Qv8/zy7Dh0Ek4NCUU5akzEx14Z+EU/OPK8dLzaU54ak8oWi2EBIcNVfXGIymUoZCTBqRi32MX4cqz+nvdTkSwW8lTJmlyuhFts8JutWBc3yQMTo/Dt/tP4KlVew1fo0kz2uPIyXqMeWglfq7qXWvzskY1+qO20YncI6fw9qYj+Hhrsc9hv94H42Of78aiN7dgvVyCUcbCx0ZJH45Webz73y4bh39eNQEAsP/4acM2A1L4N7S4kBxrByCts/NhXjGWbY/8gl7VDS04cVqpgeuXULQeWbYLgNS5iI+26S74Nr5/sufryQNSsKOkGmMfXokxD63E5/llKD5VH7DMctf72/HUqn3YUVKN/6w9oFv2qmls/X3WBSjp+fPq94V4bX1hmx9fVd+MWxZvxcvfHW7zc5hFe2rgvyOifLnEkmJ0JyJaRES5RJRbUdG2USBGf1ydfRJTEWWz+B0PbrMQkmLsyE6OwRc7pdKCdnib+gNp2pA0LBifDauF8OXuY3j4swLPhCC9C0c8c8UEPH/NJCQY9KbUrVbq3T77YLV4Zn82O92Ilu93Rt9krLlrNn45bSCanG5c+Mw6XP78Bp/x1drRHuU1jTjd5MT6gyexdHsp1h884fl9KbugN3zvgY934o73tqOo0nv8ut6U+KwkBywEXPvKJgy+fzn+b8VeEMHTdkW/1FhcPK6Pz+P1jlocdiucbgELEa46qx/W3TMHsVFWr8ldkaJeSfKtjUdw1Qsb8em21nkJem+DX52TAwAYk52E2CgrCk/WeW5T/lzVPebZw9MBtP4Obn4nDzOeXIv/rD2AmsYWw4tqKx0EtwD+unIvrnpxI37+4kZc98pmz4er+gP5dBuvEat+/7S11JN39BSWbi/Fo8t2YfwjqzD18TXYWx78Kp1m0tYAfw7AYADjAZQB+JvRHYUQLwghJgshJqenp7fx5cJjSEY89jx6YZsfb1RCibZa4HQJlFc36ga4VS5hrP39bDx9+TgA8B2tofPUM4akoby6Ea+tL/QMgdRbArZ/r1hcOKY35ozI0G1fEOt4wW6zeHr3TU6XTwgqo2b2lNdic2ElCkqrva4EpNebVdyyeCt+/uImn6GO/sZf7ztWi4H3fu4pFehNie8VH4W/XzEeN88eguFyecNutfhdfgAAHvvpGGQnxyApxu5zm1LaqqxrRoxd+kB02K0dMiX/tFyfH9c3CX2SYpBfXIXb3t2GX7yyGS99e0j3w3vWsAzsefRC3DAjB0MzEryOxJR7q2cTGw2TLKlqwOXPb8DZT3yFxhYXNh466fX7Uv6u1aWd9QdP4pt9FRh0/3KM+OMX+Mea/T77EqpadS/ez4dAbmEl/rS0AEWV9T63qX8GfVNiUF7TiF1lvkNMu4M2DXoVQnjWbiWiFwEsC1uL9F7PsB2hP5f25KGRyyf3xXkjM722GZX04uRD16lPrNG9XTlJGGWzYGBaHIDgeiiv33AWjtU0Ysrja9DkcqOitsnvaJBFMwchOyUGb2444lVfDqbcZLda0CyXa5qdbp+euvb7nz23AUTAsltmYHSfJJ/p93o+16zTrT7k1lopnwRd8J/vsWjmIAxR1a4VFiIsGJ8NAJg4IBmPLtuNcX2TArbjnKFpuGaqNEpl3J9WITnWjiMnpSBwRLX+fcRFS18rZZVIU35nT102DkMzE3D5fzdg8+FKrNtXgcITdegVH+XzmHiHzfM3/ezVE9HodCG/uBrXvrwJ0wan4Zt9FVAfOKoDPMpq8fw9nW5yYY/cS12+owx3vr8dV0/pj3F9kzGgV6zn/EW5zoVDEh021DQ6PY8HgI2HTsLlFhjVJzGkn4E6fGsbnUhw+H7IAsDz3xzCl7uP4dXvCzEmOxHj+yXjsZ+O9XmOBeOysbOkxuvkdXfSpgAnoiwhhPJuvATATn/3by/jceChJXgoVfOLx2VjxlDvCRFGS9IuPCcHiTF23LMkX/d2dellcHo8MhOjcdmkfl5D7ozapoxKefDTnfjjJ/5/zGOykzAmOwl2qwX/VPWGgumBR1kt2HjoJO77KB8FpTVI04SFXefTSwjgUEUdCkpq/F7Awoi6B64OEwBoVH0gvPTtISTq9JbVuzV3RCbmjsj0uY+eGFVIf/e/c2C1EEY9uFK6TfUBr9zPYbeEPcAbml34xSubUFnXjFvPHYoF47M9sy+VkI1VtbO+2QWbzhGL+j4WCyE2yoapg3ph32MX4XhtE85+Yg1+OT0Hn8hXY4qLUgW4rfVnrp75WSh/mL296Sje3nTU6/X0rvw0rl8yvt0vrX//uzlD8O+1B/DQZwUAgBeunYSy6kacNyoT2ckxPo/Vei+3yPP1svxS9E2JxdwRGT4dL3VPvabBiSVbinHn+cMx8dHVXkePKXFR8n26zmzbcAoY4ES0GMBsAGlEVAzgIQCziWg8pM5xIYBfR66JxiI5vNWi09u2GNTAMxIduHhcH8MAt6kelxRjx6b7z4PbLbwD3CBklYk9oezr/LG9ceRkHfaU1WLvsdqgPrhmDkvD13sr8N4PRXALoE+yw+t2o9r5J1tLsEYz8ccfpbcGeAd4tM07wNWH73OGZ+i+RqBSiZFYVYgpPbxv75kDm5Ww9WiV5zYl7GKirD4Tgtqr6FQ9fiiUxsPf9u42/PebQ54PQSXAbao/woZmp+cIcMaQNOw9VouK2ibD8zJE0jr2h56QLol385zBqGlweo4qAO9RQeojtnKDOjggTcLSUpcW7zh/GOaPzcJXe47hqVX7sOjNLQCA/cdrMXtYBvaU1+B3c4caPr/6g+Tx5XsAAIPT4zB7eAauOqu/50hM/bfzP5P64unV+7BHvjiK+mgwxm5FtM3Sph54bWML1u6t0D1/0lUEDHAhxFU6m1+OQFv8tUJ/awQDXK+3bdQDD3SxCL3hVBYLyUviSt8blTmUiT2hGNE7Ef+4cgI+3VaC297dBrtB+Ko9cekZAICf/Os77Cip9i2hGNSPQl1HZMXtM1FW3Yhfv7kFpVWtvblouxW1qjevejakdtKToo35rTuEs5883j1uqA23zB0Cp1vgorHSMEiHLbQSyr5jtXjg4x0AgL/87AwMTvct/2gvuFFxuskzAiXO06uW/jgSHTbPz+aG6Tl48CejcOB4LV5ffwQ5veKCatPdF4wAIA0HPHNgCib2T8Hiza29a3UPVa+XnZXkwIBesbolFPVniNVCGNUnESfrvE8QVzc4sVCeHXrN1AFIjvUtBynt6J8ai3cXTUVDiwsPf1aAbUVVePm7w7AQMG90byzdXopT9a3nX5QLlFSp9qF3ogPlNY04MycFCQ47lmwpxsZDJ3HR2CwsnJGDFpfwOhLTc+9HO/B5fhmOVTdi+c4y/GbWYIzvn4yEaHvAxyoaW1y4e0k+7p43HP3lNYfCydRroeiNTukVF4WTBtO5lTf8/fNH4LsDJ7Fun/GoGL2ejVEP3N/wQn+3L5o5CK9+X+h3sai2BLjizIGpuHB0b8waHvzJ44Xn5ODjrSW4ZEK213ajHrjSszlrYCp2llbrDn9T65Mcgz7JMbh5zmB8s6/Cc3I2Jsr7+dWjXNRrpswf2xv5xdUoPtXgd1y+P/5+X4kOO+6aN9xrW0yUFQWlNbh18VZccWY/TA+w1sjmw5We3vW5f/sGs4al49Zzh2LSgNbBWtqZs48uGI0lW4oxKD3e84GvnLPMSHSg5vhp1DW7EC/3oIdkJODRn44JbodVMhIc+OAmaax9/16x+HbfCVTWNSP3SOtIYb0Aj7ZZ8O6iswEAX+89jtfWF2JfeS1KqxuRnhDtc3/tydLTjd617eTYKHy56xgWvpGLEb0T8MVt5+BgRR0q61uQFGNHH7nc8uaNUwAAZ/35S9Q0OHHZ8xt8Xks5ilK3++op/XHLuVJPf+E5Odh46CR2ltTgk60lWL6jDPnF1bj9vKEYnB6PiQNSdMs7hfKFxZfmlyK/uNpzNJESKx1FG70n1L4/cAJLt5fidGMLXr3+rID3D5UpAjzYtVBG9E7Any8Zi589t97v8y2aORg/nzIAYx5aaXgfvbA2euPbAgS40e33XTQSM4em4+qXNhn2Ju16tZwg9UmOwfPXTgrpMQvGZ3tODHq1w6AHrtQi3/nVFDyybBfe2HAEdivpLpmrdv30HFw/PQerCsqx6M0tGJud5DV0sMErwKXXzkpy4NmrJ+Hk6SZMeuxLXDdtYEj79ocfjcSSLb4lgEDmDM9A8akGfLGzDDtLqzFvVG+kJ0TjhukDdcs42kk46/ZXwG4lRNusGJwRjzvPH+bTA588MBUXjsny2qbsd3p8NA7I49fjHeF7y149ZQCunjIAW45UYsmWYhyqqMOmw5We11KzeA1FzMDs4RkQQuDNjUdw6cS+eD/X++eqHdKq3l/l64JSqeSxp7wWy3eU4+Z3pDX2pw/xnmgGSL1so8sEKj3wpaqx+so4fgC4adZg3DRrMO58fxs2Har0rAz6zJet54kunZCNxBg77p8/0hPMysibUs2SzKfqW1Dd0IL0hGg0trhwz5J8ZCU5cMf5wyCE9zkW5Tna2tkIxBwBbrRdcwMRIUCWegQqe4RUQgnQS/bXi1Z6L2f0Tda9XVtqAYBBaXGY0N9w6H1E+OuBW0gqE911/nDMGZGBLYWnAqyJ0mre6N5Yf+9clNc0YvmO1un36p68cgJL+b9XfDQK//KjkPdh4TmDsPAc/Zmk/twwIwc3zMjxlJee/0a6yHNpVQOGZsTj0ol9vX4+2kksiQ47vtzdWsM/fKIO3+z1runrzYi8adZgRNssGJmViA2HpIkzkVgtcdKAVEwakAohBN7edBTVDS14du0B1DW7PH97en/6RIRfnD0QAPD9vXO9jpq07VTXoJUgVpff9qrGwOuVnOIddp9RS6vvmInMJAdO1DYhOdaOXXINHIDuSe9Eh92n5OewW9DY4sbqXcdQ2+TEa+sLkRRjx40zcjyjapTSllpNoxTgB46fxmfyB8eL3x6CWwDzRmXi3JEZGN470VOPNzp6by9TBLgeIv1RKMGe2Ap0t5BKKJonu2xSX2wtqvL0ZGx+etHDMhOw9HczMDLLeJq23eJ9gu/D30zznF3vKIYB3uT01JSTYu2YMzwDsXYrVhSU6/bk9PRJjkFafDRumTsEybFReHTZLq9aq9ITDXYIaKRoZ88qM/0sFmkm68T+KRjQKw71zU5E2yyeN2+M3eoVHEt1ZnVqx90D0uiOZ66cgPLqRuw7dhoCArOH64/1Dwci8gyvvGRCNvKOnkKM3YobX8/FtMH+y0baEkSv+CikxUfhxOlm9E2J8QzTBFoDXB3ISi938/3n6pZkEh02nyDNTolBbJQNiQ47tj04D4A0AWr9wROYOsi3F5+o04uPskoBftPswfjrSmmmcXVDC55evU93P7OSHCirbvScM1APWVRKXqt2HcOqXdJIa89J1/oW3eG57WWKADcqoehfhNj4eUKZfq93yGPUkdaWSB66eDRi7FYMvn+59LgAn75jA4xdtlkJ6tJyMCclw83u5yhCe5JxyqBe+PLOWVi3rwK/eGVzUM8fZbPgrnnD4XS58UFuEYpPtR62tgZ45y6eafQBcu+H+XAL6cjovvkjsaOkGgkOG5rkwIkN4oSXv45H7yQH/iZPAOsoyrkKQBqh0zvJEeAR3qJtVvzwwHkQAlhRUI5nvz6AIyfqUdvkxK3vbEW03eq1NHBpVQPioqzISNR/ndS4KM9QRYXeyehrpg7wfAhp6Y0pVzJEWbTN9zE2CNH6odM/NRZl1Y3YXlQFm8ViuLzxZZP64oMtxZ7RVJsLK7H+4ImwfwCbIsCN6AW7v5BWv0eibRacMzQNWUkOn/odoB+6RkGs3W6zeJdy/IVfMPSev6MNzUjAGX2TkB4f7TOkT6/3CADTBvfCf6+dBCEEbnorL6h226wWrLh9JgBg4L2fo39qLKLlN2qgslekKYGhLWkpIXDoRJ1nHW5l4TDAOPh7xUXhgR+NDHo53c7SzyDcAiGSyn/zx2Zh/tgsuN0Cz6zZj8q6Jry10Xt8+YHjp3XLHor7LhqJuSOkcxF/XbkX/VJjQh5GemZOKkb0ToCFCLvKaryWwFAHuDIQYsaQNLy1UDqJmlsonSeYNzoTmw5X4uGlu/y+llIHv3FGDiYOSEF+cZXuZLT2MkWAG0/Y0SuhBPecRIQ3b5yCZfmlBgHu+xijEoq2xq1Mnb94XB9U1jUj06BXESztCUSjE4qRlJ4Qjc9+NwOn6pox4dHVSI2LwulG6bJuRlfWsVktuGB0bzS2uDB9SK+Qx9NuuG8u4qNteO8HaXJHZ+y3mvKmTI2V3uDayUdq6uV3jXrgRMClE/vi0ol9w9/YLshiIdx5/jAA8AT4j87Iwhc7ynC8tglT/FyBqHeSw3Ny/bppA9vUKRrfL9nTOVhZUI7hmQl49usDeD+32Ov6sv1SY3GyrhlJqhOhkwemYvJAqX0f/XYaqutbcP1rPxi+lvLBYLUQxvdLxvh+ySG3NxjmCHCjUSjak5iQTlSE47n1Sih6a2cAgFVT41Z6isoKeO2l7bkGKslEUkpcFP5x5XgMyYjHFf/dKAe4/2B12K14e+HUkF8rK0l6U104pjeOVtbjwjG9AzwismI8J1GlAI+JsqK5QT/ALx7fBy+sO4T0hGjDMcNtnYjUnfx4bBYeXTAG9c1OpMX71r71BLsErj8XyEsd//mSsfj9BcOREhuFMwem4HSTCyOzErCtqArJBu/3iZoBBPkPz8O/1uzHsMwE3C1P5lOOyiJ18lJhigA3ope9/XvFYsXt52Dh67leddRQ6YXkRWOy8PFvY/CrN3K9TqhoD+3D/Uvr7J6nltITGpYZj7yjVRjWO7LrZPdNicUjC0If8xxuSikkOUY6gRwXZTWcyJSV5MDWP54Pu83iWQJBu6YKx7c0WiQ1LgqpHXxSXmG3WpCRIB0hK+Pj9x2rhcNuxeWT+wX1HIkOOx740SgAwLxRvQGSFkPLO3IKF0W402GKADcqoOhdUQWQZiKO6ZMUVIAbfZrrnsS0ECbIIw28AjzCn7Kd2eP258PfTIPLLbps+8Jt+pA0rD94AjOGpmFzYSWi7VZYyOhkOnlGCj2yYDR+PqU/CMD/PL8B0wb3wvqDJyM2NthMQj1i7gjDMhPw0E/adjEJpeySFGPHyjtmhrNZurpW1y5E/qbSBzv/ZfbwdDx+yVjM1SzF6i+UtKHfntmSwYj087cVEcEWxPKt3cX5ozKx6o5Z+PWsQRiTnYjHLxlreHSk/vNJcNhxplxDXXPXLPxLLq39bJLvhKmeYuogqZ6sN2TQLAZEYGp8qMzRAze6oIOfBA92yCAR4edT+mP9Qe8hSv4C/O4LhqNfaoznREyke6DtmY3Jwi/aZsWyW84BAJw3MhO5RyrhcguvozKjDzVlksqOh+d5rQzY0zx/zSQUn2oIeXhiV7LqjpkRXY8pGKZNBoJvaUX9njGaOWZEezjr7/B2THaSZ+1hIPLD2648qx/OGep/IgXrHP+5eiI23X8enr58PAalxeEMeUx/oD+JBIc94ie4urLk2CiMyQ68dntXFm2zdvrkMtMGOAC/11QL9bBe24sOpVcd6R749dNzPIv6sK5p5rB0fPX72XjmivEYlhmPC0d37ogZ1jOYIsD1DlMEjE9iAsDMoWkYlhn8wPlzhqZ5XbE8mF71owtGY9rgXshI7Jg63k/H98Eig6vCs65hUHo8Vt0xC72CHBLHWHuYIsDVHl0wGimxdgjh/6LGl03uh1V3zPLa5i+SL53YF6vvbL1/MGXna88eiHd+NdVwIku4PXPlBNw/f2SHvBZjrOszRYB7zcSUe8YCQmc1wvC9Jg/xYox1daYIcC0iknvgkTsF3FPGNjPGzMsU45jUPW1C6wiUSAzheWD+SBSUVgecHs4YY53NfAFOravBhRrgwVRFfsUnCRljJmGKAPcl9cGDKaE8f80k/FBYiZe/OxzWGrmedxZO8bqwKmOMRZIpAlwd0wTyBLHvaoS+CX3hmN5w2C2eq6dE0rQAF7tljLFwMl2hl0jufwcYRqjGI0oYY92RKQJcu+ZJaw08uAjnAGeMdUfmCHDV19IoFMJ3B074LONplNPKdn8XF2aMMbMxXaIp19irbQz+ZOHQzHicNTAVt8wdEsGWMcZYxzLFSUxtsfvBn4xCXZMT7+UWBfXwjAQH3r/p7Ag0jDHGOo/5euDySJNou+mazhhjYWWKFPReC0X6L0rnSih8qpIx1pOYI8B985t74IyxHs+0KdhRS7gyxlhXFTDAiegVIjpORDtV21KJaDUR7Zf/T4lkI72GEcpjAnmxKcZYTxdMCr4G4ELNtnsBrBFCDAWwRv6+QygllM6+Fh1jjHW2gAEuhFgHoFKzeQGA1+WvXwfw0/A2S9sG320xegHOMy4ZYz1IW+sQmUKIMgCQ/88wuiMRLSKiXCLKraioaNOLqUehKBl97sgMLJyR06bnY4yx7iDihWQhxAtCiMlCiMnp6entfj4lwHvFR+MPPx7FnW7GWI/V1gA/RkRZACD/fzx8TfIViSvvMMaY2bU1wD8DcJ389XUAPg1PcwLTrvnN4c4Y66mCGUa4GMAGAMOJqJiIbgTwFwDnE9F+AOfL30eM9zBC4/txNYUx1pMEXMxKCHGVwU3nhrkt/hrRYS/FGGNmYfrZMBZVt5tPaDLGehJTBLjeTEzF7y8Y3no/7qgzxnoQUwS4mraT/dvZQ/DqL8/slLYwxlhnMkWAB+xZy6nOJRTGWE9ikgD3nYmpxrnNGOuJTBHgatpx4EBrXZyDnDHWk5giwIOsoMCmc5UexhjrrsxxUWMVvRLKyKxEnDM0DYtmDur4BjHGWCcxRYDrXVJNLT0hGm/eOKXD2sMYY12BKWoOPLybMcZ8mSLA1XioIGOMSUwR4MJrIDgnOGOMASYJcMYYY75MF+BcQmGMMYkpAjzQKBTGGOuJTBHgatrVCBljrKcyRYALHkjIGGM+TBHgatz/ZowxiSkC3KsGzgnOGGMAzBLgnd0AxhjrgkwR4GrcA2eMMYkpAtx7GCEnOGOMASYJcMYYY75MEeBewwi5A84YYwBMEuBqnN+MMSYxRYAHvCo9Y4z1QKYIcDWeSs8YYxLzBXhnN4AxxroIUwS44BoKY4z5MEWAq3EFhTHGJO26Kj0RFQKoBeAC4BRCTA5Ho7R4Ig9jjPlqV4DL5gghToTheQx5XRGT85sxxgCYsITCGGNM0t4AFwBWEdEWIlqkdwciWkREuUSUW1FR0bYX4YmYjDHmo70BPl0IMRHARQBuJqKZ2jsIIV4QQkwWQkxOT09v58uBE5wxxmTtCnAhRKn8/3EAHwM4KxyN8nkdXhGcMcZ8tDnAiSiOiBKUrwHMA7AzXA1T41EojDHmqz2jUDIBfCxPbbcBeEcIsSIsrfKDR6EwxpikzQEuhDgEYFwY22L8Wh3xIowxZjKmG0bIHXDGGJOYI8BVRXBejZAxxiSmCHAuoTDGmC9TBLgad8AZY0xiigDnmZiMMebLFAGuxj1wxhiTmCLAeSYmY4z5MkeAe+U3d8EZYwwwSYCrcQmFMcYkpghwLqAwxpgvUwS4GnfAGWNMYooA9xpGyDUUxhgDYJYA5yIKY4z5MEWAq3H/mzHGJOYIcK8SSuc1gzHGuhJzBDhjjDEfpghwdQWcL6nGGGMScwS413rgndgQxhjrQkwR4IwxxnyZIsAFjyJkjDEfpghwNS6hMMaYxBQBzicxGWPMlzkCnEsojDHmwxQBrsYlFMYYk5giwNVroXCAM8aYxBQBzhhjzJcpAtz7qvTcBWeMMcAkAa7GJRTGGJOYLsAZY4xJTBHgXmuhdGI7GGOsKzFFgKtxCYUxxiTtCnAiupCI9hLRASK6N1yN0uJ5PIwx5qvNAU5EVgD/AXARgFEAriKiUeFqmJr3TEzugjPGGNC+HvhZAA4IIQ4JIZoBvAtgQXiaZYxLKIwxJmlPgGcDKFJ9Xyxv80JEi4gol4hyKyoq2vRCY7IT0TvRgaun9Ef/1Ni2tZYxxroZWzseq9cX9ilXCyFeAPACAEyePLlN5ewrzuyPK87s35aHMsZYt9WeHngxgH6q7/sCKG1fcxhjjAWrPQH+A4ChRJRDRFEArgTwWXiaxRhjLJA2l1CEEE4i+h2AlQCsAF4RQhSErWWMMcb8ak8NHEKI5QCWh6ktjDHGQmC6mZiMMcYkHOCMMWZSHOCMMWZSHOCMMWZSJDrwku9EVAHgSJB3TwNwIoLN6ap4v3uOnrjPAO93WwwQQqRrN3ZogIeCiHKFEJM7ux0djfe75+iJ+wzwfofzObmEwhhjJsUBzhhjJtWVA/yFzm5AJ+H97jl64j4DvN9h02Vr4Iwxxvzryj1wxhhjfnCAM8aYSXXJAO+oiyV3NCLqR0RriWg3ERUQ0W3y9lQiWk1E++X/U1SPuU/+Oewlogs6r/XtR0RWItpKRMvk77v1fhNRMhEtIaI98u/87O6+zwBARHfIf987iWgxETm6434T0StEdJyIdqq2hbyfRDSJiHbIt/2TKIQLRwohutQ/SEvTHgQwCEAUgO0ARnV2u8K0b1kAJspfJwDYB+mC0P8H4F55+70AnpS/HiXvfzSAHPnnYu3s/WjH/t8J4B0Ay+Tvu/V+A3gdwEL56ygAyT1gn7MBHAYQI3//PoBfdsf9BjATwEQAO1XbQt5PAJsBnA3pKmdfALgo2DZ0xR54p1wsuSMIIcqEEHny17UAdkP6g18A6c0O+f+fyl8vAPCuEKJJCHEYwAFIPx/TIaK+AH4E4CXV5m6730SUCOkN/jIACCGahRBV6Mb7rGIDEENENgCxkK7U1e32WwixDkClZnNI+0lEWQAShRAbhJTmb6geE1BXDPCgLpZsdkQ0EMAEAJsAZAohygAp5AFkyHfrTj+LZwDcA8Ct2tad93sQgAoAr8plo5eIKA7de58hhCgB8BSAowDKAFQLIVahm++3Sqj7mS1/rd0elK4Y4EFdLNnMiCgewIcAbhdC1Pi7q8420/0siOjHAI4LIbYE+xCdbWbbbxukw+vnhBATANRBOqQ20h32GXLNdwGkMkEfAHFEdI2/h+hsM91+B8FoP9u1/10xwLv1xZKJyA4pvN8WQnwkbz4mH0pB/v+4vL27/CymA7iYiAohlcTmEtFb6N77XQygWAixSf5+CaRA7877DADnATgshKgQQrQA+AjANHT//VaEup/F8tfa7UHpigHebS+WLJ9dfhnAbiHE06qbPgNwnfz1dQA+VW2/koiiiSgHwFBIJzxMRQhxnxCirxBiIKTf51dCiGvQjfdbCFEOoIiIhsubzgWwC914n2VHAUwlolj57/1cSOd6uvt+K0LaT7nMUktEU+Wf1y9Ujwmss8/kGpzdnQ9phMZBAA90dnvCuF8zIB0e5QPYJv+bD6AXgDUA9sv/p6oe84D8c9iLEM5Od9V/AGajdRRKt95vAOMB5Mq/708ApHT3fZb3408A9gDYCeBNSCMvut1+A1gMqc7fAqknfWNb9hPAZPlndRDAvyHPkA/mH0+lZ4wxk+qKJRTGGGNB4ABnjDGT4gBnjDGT4gBnjDGT4gBnjDGT4gBnjDGT4gBnjDGT+n/IJRzwjs7wMgAAAABJRU5ErkJggg==\n",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "plt.figure()\n",
+    "\n",
+    "plt.plot (nume[10:],error_p[10:])"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "55867cc5-f03d-4fef-b4cc-c345b7768b09",
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.8.8"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}