diff --git a/servilleta_extendida.ipynb b/servilleta_extendida.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..389c832fe865b5b19d8d5fc3e6f52dbea9ee61bd
--- /dev/null
+++ b/servilleta_extendida.ipynb
@@ -0,0 +1,1394 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "id": "wtRsnXhFDur6"
+   },
+   "source": [
+    "***EXPERIMENTO SERVILLETA CON FUERZA DE ROZAMIENTO (SERVILLETA LISA.***"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "metadata": {
+    "id": "raRMWxo7KE_-"
+   },
+   "outputs": [],
+   "source": [
+    "\n",
+    "import pandas as pd\n",
+    "import numpy as np \n",
+    "import matplotlib.pyplot as plt"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 27,
+   "metadata": {
+    "id": "Zvh6fwrF96Sc"
+   },
+   "outputs": [],
+   "source": [
+    "datos1=np.genfromtxt(\"datos servi extendida 1.txt\")\n",
+    "datos2=np.genfromtxt(\"datos servi extendida 2.txt\")\n",
+    "datos3=np.genfromtxt(\"datos servi extendida 3.txt\")\n",
+    "datos4=np.genfromtxt(\"datos servi extendida 4.txt\")\n",
+    "datos5=np.genfromtxt(\"datos servi extendida 5.txt\")\n",
+    "datos6=np.genfromtxt(\"datos servi extendida 6.txt\")\n",
+    "datos7=np.genfromtxt(\"datos servi extendida 7.txt\")\n",
+    "datos8=np.genfromtxt(\"datos servi extendida 8.txt\")\n",
+    "datos9=np.genfromtxt(\"datos servi extendida 9.txt\")\n",
+    "datos10=np.genfromtxt(\"datos servi extendida 10.txt\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 28,
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/"
+    },
+    "id": "3k5p459pDMQt",
+    "outputId": "a27e896e-6c6c-4276-b82b-2ccabe5b26a9"
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "[[0.      0.04386]\n",
+      " [0.04    0.05354]\n",
+      " [0.08    0.08819]\n",
+      " [0.12    0.105  ]\n",
+      " [0.16    0.128  ]\n",
+      " [0.2     0.148  ]\n",
+      " [0.24    0.179  ]\n",
+      " [0.28    0.202  ]\n",
+      " [0.32    0.241  ]\n",
+      " [0.36    0.271  ]\n",
+      " [0.4     0.302  ]\n",
+      " [0.44    0.332  ]\n",
+      " [0.48    0.362  ]\n",
+      " [0.52    0.387  ]\n",
+      " [0.561   0.402  ]\n",
+      " [0.601   0.425  ]\n",
+      " [0.641   0.453  ]\n",
+      " [0.681   0.486  ]\n",
+      " [0.721   0.527  ]\n",
+      " [0.761   0.566  ]\n",
+      " [0.801   0.601  ]\n",
+      " [0.841   0.622  ]\n",
+      " [0.881   0.626  ]\n",
+      " [0.921   0.638  ]\n",
+      " [0.961   0.655  ]\n",
+      " [1.001   0.685  ]\n",
+      " [1.041   0.725  ]\n",
+      " [1.081   0.774  ]\n",
+      " [1.121   0.828  ]\n",
+      " [1.161   0.889  ]\n",
+      " [1.201   0.936  ]\n",
+      " [1.241   0.964  ]\n",
+      " [1.281   0.979  ]\n",
+      " [1.321   0.991  ]\n",
+      " [1.361   0.994  ]\n",
+      " [1.401   1.005  ]\n",
+      " [1.441   1.021  ]]\n"
+     ]
+    }
+   ],
+   "source": [
+    "print(datos1)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 15,
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/"
+    },
+    "id": "zJFm15HbjwUZ",
+    "outputId": "91ff9691-fd01-41a5-9016-ee8dbccdca5d"
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "[[0.      0.01408]\n",
+      " [0.04    0.0224 ]\n",
+      " [0.08    0.02348]\n",
+      " [0.12    0.04094]\n",
+      " [0.16    0.06097]\n",
+      " [0.2     0.07753]\n",
+      " [0.24    0.102  ]\n",
+      " [0.28    0.132  ]\n",
+      " [0.32    0.159  ]\n",
+      " [0.36    0.191  ]\n",
+      " [0.4     0.217  ]\n",
+      " [0.44    0.242  ]\n",
+      " [0.48    0.275  ]\n",
+      " [0.52    0.296  ]\n",
+      " [0.56    0.314  ]\n",
+      " [0.601   0.358  ]\n",
+      " [0.641   0.371  ]\n",
+      " [0.681   0.395  ]\n",
+      " [0.721   0.431  ]\n",
+      " [0.761   0.48   ]\n",
+      " [0.801   0.578  ]\n",
+      " [0.841   0.62   ]\n",
+      " [0.881   0.686  ]\n",
+      " [0.921   0.739  ]\n",
+      " [0.961   0.781  ]\n",
+      " [1.001   0.831  ]\n",
+      " [1.041   0.84   ]\n",
+      " [1.081   0.856  ]\n",
+      " [1.121   0.872  ]\n",
+      " [1.161   0.911  ]\n",
+      " [1.201   0.955  ]\n",
+      " [1.241   1.001  ]\n",
+      " [1.281   1.057  ]\n",
+      " [1.321   1.124  ]\n",
+      " [1.361   1.15   ]\n",
+      " [1.401   1.167  ]\n",
+      " [1.441   1.173  ]]\n"
+     ]
+    }
+   ],
+   "source": [
+    "print(datos2)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 16,
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/"
+    },
+    "id": "47PBPa7ljw7x",
+    "outputId": "4a140d29-fe46-498c-9fa9-991e2049a4f1"
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "[[0.      0.02132]\n",
+      " [0.04    0.02402]\n",
+      " [0.08    0.04794]\n",
+      " [0.12    0.07765]\n",
+      " [0.16    0.102  ]\n",
+      " [0.2     0.127  ]\n",
+      " [0.24    0.152  ]\n",
+      " [0.28    0.172  ]\n",
+      " [0.32    0.177  ]\n",
+      " [0.36    0.202  ]\n",
+      " [0.4     0.245  ]\n",
+      " [0.44    0.276  ]\n",
+      " [0.48    0.314  ]\n",
+      " [0.521   0.343  ]\n",
+      " [0.561   0.38   ]\n",
+      " [0.601   0.418  ]\n",
+      " [0.641   0.431  ]\n",
+      " [0.681   0.442  ]\n",
+      " [0.721   0.447  ]\n",
+      " [0.761   0.478  ]\n",
+      " [0.801   0.523  ]\n",
+      " [0.841   0.557  ]\n",
+      " [0.881   0.612  ]\n",
+      " [0.921   0.648  ]\n",
+      " [0.961   0.693  ]\n",
+      " [1.001   0.755  ]\n",
+      " [1.041   0.832  ]\n",
+      " [1.081   0.877  ]\n",
+      " [1.121   0.927  ]\n",
+      " [1.161   0.973  ]\n",
+      " [1.201   1.006  ]\n",
+      " [1.241   1.029  ]\n",
+      " [1.281   1.057  ]\n",
+      " [1.321   1.054  ]\n",
+      " [1.361   1.082  ]\n",
+      " [1.401   1.113  ]\n",
+      " [1.441   1.122  ]]\n"
+     ]
+    }
+   ],
+   "source": [
+    "print(datos3)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 18,
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/"
+    },
+    "id": "ovLZ85Ezjytx",
+    "outputId": "c0c1a604-3626-48fe-f97e-efa184ca07b1"
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "[[ 0.000e+00 -2.527e-03]\n",
+      " [ 4.000e-02 -4.005e-03]\n",
+      " [ 8.000e-02 -6.829e-04]\n",
+      " [ 1.200e-01  1.399e-02]\n",
+      " [ 1.600e-01  3.424e-02]\n",
+      " [ 2.000e-01  5.185e-02]\n",
+      " [ 2.400e-01  8.084e-02]\n",
+      " [ 2.800e-01  9.654e-02]\n",
+      " [ 3.200e-01  1.240e-01]\n",
+      " [ 3.600e-01  1.510e-01]\n",
+      " [ 4.000e-01  1.810e-01]\n",
+      " [ 4.400e-01  2.080e-01]\n",
+      " [ 4.800e-01  2.360e-01]\n",
+      " [ 5.200e-01  2.330e-01]\n",
+      " [ 5.600e-01  2.490e-01]\n",
+      " [ 6.010e-01  3.210e-01]\n",
+      " [ 6.410e-01  4.450e-01]\n",
+      " [ 6.810e-01  5.170e-01]\n",
+      " [ 7.210e-01  5.850e-01]\n",
+      " [ 7.610e-01  6.340e-01]\n",
+      " [ 8.010e-01  6.400e-01]\n",
+      " [ 8.410e-01  6.310e-01]\n",
+      " [ 8.810e-01  6.340e-01]\n",
+      " [ 9.210e-01  6.540e-01]\n",
+      " [ 9.610e-01  6.890e-01]\n",
+      " [ 1.001e+00  7.290e-01]\n",
+      " [ 1.041e+00  7.670e-01]\n",
+      " [ 1.081e+00  8.240e-01]\n",
+      " [ 1.121e+00  8.610e-01]\n",
+      " [ 1.161e+00  8.870e-01]\n",
+      " [ 1.201e+00  9.070e-01]\n",
+      " [ 1.241e+00  9.300e-01]\n",
+      " [ 1.281e+00  9.470e-01]\n",
+      " [ 1.321e+00  9.670e-01]\n",
+      " [ 1.361e+00  1.011e+00]\n",
+      " [ 1.401e+00  1.042e+00]\n",
+      " [ 1.441e+00  1.056e+00]]\n"
+     ]
+    }
+   ],
+   "source": [
+    "print(datos4)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 20,
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/"
+    },
+    "id": "5Y_3dYqPjybh",
+    "outputId": "c6ef5edd-80d4-4379-f2d4-06a1b598c3b6"
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "[[0.      0.02048]\n",
+      " [0.04    0.02919]\n",
+      " [0.08    0.04365]\n",
+      " [0.12    0.07058]\n",
+      " [0.16    0.09657]\n",
+      " [0.2     0.09288]\n",
+      " [0.24    0.128  ]\n",
+      " [0.28    0.16   ]\n",
+      " [0.32    0.187  ]\n",
+      " [0.36    0.199  ]\n",
+      " [0.4     0.229  ]\n",
+      " [0.44    0.251  ]\n",
+      " [0.48    0.286  ]\n",
+      " [0.52    0.321  ]\n",
+      " [0.561   0.363  ]\n",
+      " [0.601   0.405  ]\n",
+      " [0.641   0.444  ]\n",
+      " [0.681   0.488  ]\n",
+      " [0.721   0.512  ]\n",
+      " [0.761   0.541  ]\n",
+      " [0.801   0.573  ]\n",
+      " [0.841   0.608  ]\n",
+      " [0.881   0.64   ]\n",
+      " [0.921   0.659  ]\n",
+      " [0.961   0.677  ]\n",
+      " [1.001   0.696  ]\n",
+      " [1.041   0.717  ]\n",
+      " [1.081   0.747  ]\n",
+      " [1.121   0.784  ]\n",
+      " [1.161   0.819  ]\n",
+      " [1.201   0.854  ]\n",
+      " [1.241   0.923  ]\n",
+      " [1.281   0.944  ]\n",
+      " [1.321   0.979  ]\n",
+      " [1.361   1.006  ]\n",
+      " [1.401   1.024  ]\n",
+      " [1.441   1.04   ]]\n"
+     ]
+    }
+   ],
+   "source": [
+    "print(datos5)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 21,
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/"
+    },
+    "id": "wlGmWHBJjyJh",
+    "outputId": "ca84024c-de05-4b83-f825-4587bad5e313"
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "[[0.      0.01954]\n",
+      " [0.04    0.01682]\n",
+      " [0.08    0.01893]\n",
+      " [0.12    0.04444]\n",
+      " [0.16    0.05556]\n",
+      " [0.2     0.08611]\n",
+      " [0.24    0.1    ]\n",
+      " [0.28    0.117  ]\n",
+      " [0.32    0.142  ]\n",
+      " [0.36    0.15   ]\n",
+      " [0.4     0.167  ]\n",
+      " [0.44    0.2    ]\n",
+      " [0.48    0.239  ]\n",
+      " [0.52    0.289  ]\n",
+      " [0.56    0.328  ]\n",
+      " [0.601   0.381  ]\n",
+      " [0.641   0.419  ]\n",
+      " [0.681   0.467  ]\n",
+      " [0.721   0.506  ]\n",
+      " [0.761   0.539  ]\n",
+      " [0.801   0.569  ]\n",
+      " [0.841   0.603  ]\n",
+      " [0.881   0.628  ]\n",
+      " [0.921   0.656  ]\n",
+      " [0.961   0.669  ]\n",
+      " [1.001   0.694  ]\n",
+      " [1.041   0.733  ]\n",
+      " [1.081   0.789  ]\n",
+      " [1.121   0.85   ]\n",
+      " [1.161   0.903  ]\n",
+      " [1.201   0.956  ]\n",
+      " [1.241   0.989  ]\n",
+      " [1.281   1.022  ]\n",
+      " [1.321   1.042  ]\n",
+      " [1.361   1.028  ]\n",
+      " [1.401   1.019  ]\n",
+      " [1.441   1.019  ]]\n"
+     ]
+    }
+   ],
+   "source": [
+    "print(datos6)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 29,
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/"
+    },
+    "id": "mVg_N-OZjxth",
+    "outputId": "ef3959ba-07f0-4f1e-d5bb-f235a1b56e16"
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "[[0.      0.02226]\n",
+      " [0.04    0.02522]\n",
+      " [0.08    0.06379]\n",
+      " [0.12    0.04883]\n",
+      " [0.16    0.06481]\n",
+      " [0.2     0.09463]\n",
+      " [0.24    0.126  ]\n",
+      " [0.28    0.159  ]\n",
+      " [0.32    0.183  ]\n",
+      " [0.36    0.213  ]\n",
+      " [0.4     0.25   ]\n",
+      " [0.44    0.291  ]\n",
+      " [0.48    0.323  ]\n",
+      " [0.52    0.363  ]\n",
+      " [0.56    0.401  ]\n",
+      " [0.601   0.428  ]\n",
+      " [0.641   0.449  ]\n",
+      " [0.681   0.463  ]\n",
+      " [0.721   0.479  ]\n",
+      " [0.761   0.482  ]\n",
+      " [0.801   0.495  ]\n",
+      " [0.841   0.522  ]\n",
+      " [0.881   0.554  ]\n",
+      " [0.921   0.616  ]\n",
+      " [0.961   0.678  ]\n",
+      " [1.001   0.762  ]\n",
+      " [1.041   0.829  ]\n",
+      " [1.081   0.888  ]\n",
+      " [1.121   0.939  ]\n",
+      " [1.161   0.969  ]\n",
+      " [1.201   1.023  ]\n",
+      " [1.241   1.047  ]\n",
+      " [1.281   1.066  ]\n",
+      " [1.321   1.098  ]\n",
+      " [1.361   1.122  ]\n",
+      " [1.401   1.141  ]\n",
+      " [1.441   1.146  ]]\n"
+     ]
+    }
+   ],
+   "source": [
+    "print(datos7)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 30,
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/"
+    },
+    "id": "LG9RK9RYj0Wh",
+    "outputId": "dc85f09e-c702-4d9e-dcbe-d41b8e466db2"
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "[[0.      0.03664]\n",
+      " [0.033   0.05981]\n",
+      " [0.067   0.08268]\n",
+      " [0.1     0.117  ]\n",
+      " [0.133   0.139  ]\n",
+      " [0.167   0.162  ]\n",
+      " [0.2     0.185  ]\n",
+      " [0.233   0.208  ]\n",
+      " [0.267   0.233  ]\n",
+      " [0.3     0.261  ]\n",
+      " [0.333   0.291  ]\n",
+      " [0.367   0.319  ]\n",
+      " [0.4     0.346  ]\n",
+      " [0.433   0.38   ]\n",
+      " [0.467   0.409  ]\n",
+      " [0.5     0.435  ]\n",
+      " [0.533   0.454  ]\n",
+      " [0.567   0.467  ]\n",
+      " [0.6     0.478  ]\n",
+      " [0.633   0.487  ]\n",
+      " [0.667   0.491  ]\n",
+      " [0.7     0.5    ]\n",
+      " [0.733   0.523  ]\n",
+      " [0.767   0.557  ]\n",
+      " [0.8     0.6    ]\n",
+      " [0.833   0.651  ]\n",
+      " [0.867   0.7    ]\n",
+      " [0.9     0.743  ]\n",
+      " [0.933   0.788  ]\n",
+      " [0.967   0.815  ]\n",
+      " [1.      0.862  ]\n",
+      " [1.033   0.879  ]\n",
+      " [1.067   0.899  ]\n",
+      " [1.1     0.922  ]\n",
+      " [1.133   0.938  ]\n",
+      " [1.167   0.957  ]\n",
+      " [1.2     0.963  ]]\n"
+     ]
+    }
+   ],
+   "source": [
+    "print(datos8)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 31,
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/"
+    },
+    "id": "-TGNWLydj0vB",
+    "outputId": "6f5a771d-120a-436a-ee38-aa3b30d209fb"
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "[[0.      0.07714]\n",
+      " [0.033   0.09663]\n",
+      " [0.067   0.122  ]\n",
+      " [0.1     0.149  ]\n",
+      " [0.133   0.17   ]\n",
+      " [0.167   0.191  ]\n",
+      " [0.2     0.212  ]\n",
+      " [0.233   0.235  ]\n",
+      " [0.267   0.271  ]\n",
+      " [0.3     0.298  ]\n",
+      " [0.333   0.344  ]\n",
+      " [0.367   0.377  ]\n",
+      " [0.4     0.407  ]\n",
+      " [0.433   0.43   ]\n",
+      " [0.467   0.452  ]\n",
+      " [0.5     0.472  ]\n",
+      " [0.533   0.498  ]\n",
+      " [0.567   0.528  ]\n",
+      " [0.6     0.561  ]\n",
+      " [0.633   0.597  ]\n",
+      " [0.667   0.633  ]\n",
+      " [0.7     0.666  ]\n",
+      " [0.733   0.695  ]\n",
+      " [0.767   0.705  ]\n",
+      " [0.8     0.718  ]\n",
+      " [0.833   0.721  ]\n",
+      " [0.867   0.731  ]\n",
+      " [0.9     0.744  ]\n",
+      " [0.933   0.777  ]\n",
+      " [0.966   0.813  ]\n",
+      " [1.      0.852  ]\n",
+      " [1.033   0.905  ]\n",
+      " [1.066   0.967  ]\n",
+      " [1.1     1.03   ]\n",
+      " [1.133   1.085  ]\n",
+      " [1.166   1.128  ]\n",
+      " [1.2     1.197  ]]\n"
+     ]
+    }
+   ],
+   "source": [
+    "print(datos9)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 32,
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/"
+    },
+    "id": "2iWS4GwFjxTE",
+    "outputId": "51d82612-ec58-46c8-f69c-66a003977b23"
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "[[0.      0.0566 ]\n",
+      " [0.033   0.07698]\n",
+      " [0.067   0.09283]\n",
+      " [0.1     0.106  ]\n",
+      " [0.133   0.127  ]\n",
+      " [0.167   0.145  ]\n",
+      " [0.2     0.165  ]\n",
+      " [0.233   0.192  ]\n",
+      " [0.267   0.222  ]\n",
+      " [0.3     0.254  ]\n",
+      " [0.333   0.29   ]\n",
+      " [0.367   0.315  ]\n",
+      " [0.4     0.344  ]\n",
+      " [0.433   0.376  ]\n",
+      " [0.467   0.398  ]\n",
+      " [0.5     0.405  ]\n",
+      " [0.533   0.442  ]\n",
+      " [0.567   0.455  ]\n",
+      " [0.6     0.455  ]\n",
+      " [0.633   0.469  ]\n",
+      " [0.667   0.516  ]\n",
+      " [0.7     0.53   ]\n",
+      " [0.733   0.562  ]\n",
+      " [0.767   0.623  ]\n",
+      " [0.8     0.695  ]\n",
+      " [0.833   0.749  ]\n",
+      " [0.867   0.788  ]\n",
+      " [0.9     0.804  ]\n",
+      " [0.933   0.822  ]\n",
+      " [0.967   0.845  ]\n",
+      " [1.      0.874  ]\n",
+      " [1.033   0.91   ]\n",
+      " [1.067   0.955  ]\n",
+      " [1.1     0.996  ]\n",
+      " [1.133   1.014  ]\n",
+      " [1.167   1.028  ]\n",
+      " [1.2     1.046  ]]\n"
+     ]
+    }
+   ],
+   "source": [
+    "print(datos10)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "id": "CS_s2LR5kGoZ"
+   },
+   "source": [
+    "Se realizara el promedio de todos los datos para optener una mejor presición en los datos y comparar dichas medidas con el modelo teórico estipulado."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 33,
+   "metadata": {
+    "id": "t4dmIsJ_gdb7"
+   },
+   "outputs": [],
+   "source": [
+    "datos_promedio=(datos1+datos2+datos3+datos4+datos5+datos6+datos7+datos8+datos9+datos10)/10"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 34,
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/"
+    },
+    "id": "t9roRLEZgsyk",
+    "outputId": "58c2854f-e30b-4b1b-9221-f17e68d7041c"
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "[[0.         0.0309393 ]\n",
+      " [0.0379     0.0400605 ]\n",
+      " [0.0761     0.05828071]\n",
+      " [0.114      0.077343  ]\n",
+      " [0.1519     0.097815  ]\n",
+      " [0.1901     0.1176    ]\n",
+      " [0.228      0.142984  ]\n",
+      " [0.2659     0.167354  ]\n",
+      " [0.3041     0.1939    ]\n",
+      " [0.342      0.219     ]\n",
+      " [0.3799     0.2516    ]\n",
+      " [0.4181     0.2811    ]\n",
+      " [0.456      0.3132    ]\n",
+      " [0.494      0.3418    ]\n",
+      " [0.5324     0.3696    ]\n",
+      " [0.5707     0.4048    ]\n",
+      " [0.6086     0.4406    ]\n",
+      " [0.6468     0.4708    ]\n",
+      " [0.6847     0.4981    ]\n",
+      " [0.7226     0.5273    ]\n",
+      " [0.7608     0.5619    ]\n",
+      " [0.7987     0.5859    ]\n",
+      " [0.8366     0.616     ]\n",
+      " [0.8748     0.6495    ]\n",
+      " [0.9127     0.6855    ]\n",
+      " [0.9506     0.7273    ]\n",
+      " [0.9888     0.7662    ]\n",
+      " [1.0267     0.8046    ]\n",
+      " [1.0646     0.8448    ]\n",
+      " [1.1027     0.8824    ]\n",
+      " [1.1407     0.9225    ]\n",
+      " [1.1786     0.9577    ]\n",
+      " [1.2167     0.9893    ]\n",
+      " [1.2547     1.0203    ]\n",
+      " [1.2926     1.043     ]\n",
+      " [1.3307     1.0624    ]\n",
+      " [1.3687     1.0783    ]]\n"
+     ]
+    }
+   ],
+   "source": [
+    "print(datos_promedio)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 35,
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/"
+    },
+    "id": "UIjtRtEok-3o",
+    "outputId": "204f0685-8950-405a-ae31-ae18defd289f"
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "37"
+      ]
+     },
+     "execution_count": 35,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "len(datos_promedio)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 36,
+   "metadata": {
+    "id": "X0EgXFeiD3qO"
+   },
+   "outputs": [],
+   "source": [
+    " t=datos_promedio[:,0]\n",
+    " y=datos_promedio[:,1]"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 37,
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/"
+    },
+    "id": "vuQKQbTcEaeN",
+    "outputId": "106bae8f-ad89-4c5d-a50d-d2f0595e4e61"
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "[0.     0.0379 0.0761 0.114  0.1519 0.1901 0.228  0.2659 0.3041 0.342\n",
+      " 0.3799 0.4181 0.456  0.494  0.5324 0.5707 0.6086 0.6468 0.6847 0.7226\n",
+      " 0.7608 0.7987 0.8366 0.8748 0.9127 0.9506 0.9888 1.0267 1.0646 1.1027\n",
+      " 1.1407 1.1786 1.2167 1.2547 1.2926 1.3307 1.3687]\n"
+     ]
+    }
+   ],
+   "source": [
+    "print(t)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 38,
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/"
+    },
+    "id": "XcjRKIfxNxgX",
+    "outputId": "a50919c1-ac60-4ad8-bbce-bc9f40bde170"
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "37"
+      ]
+     },
+     "execution_count": 38,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "len(t)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 39,
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/"
+    },
+    "id": "IrsTycR6EhJt",
+    "outputId": "e5925ea6-1e76-439d-95fe-d8831fc9fd51"
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "[0.0309393  0.0400605  0.05828071 0.077343   0.097815   0.1176\n",
+      " 0.142984   0.167354   0.1939     0.219      0.2516     0.2811\n",
+      " 0.3132     0.3418     0.3696     0.4048     0.4406     0.4708\n",
+      " 0.4981     0.5273     0.5619     0.5859     0.616      0.6495\n",
+      " 0.6855     0.7273     0.7662     0.8046     0.8448     0.8824\n",
+      " 0.9225     0.9577     0.9893     1.0203     1.043      1.0624\n",
+      " 1.0783    ]\n"
+     ]
+    }
+   ],
+   "source": [
+    "print(y)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 40,
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/"
+    },
+    "id": "rWYPI7x5N3SX",
+    "outputId": "a1c33aa8-800c-40df-e6ce-2b98b3ac4c29"
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "37"
+      ]
+     },
+     "execution_count": 40,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "len(y)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 41,
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/",
+     "height": 452
+    },
+    "id": "aCAgeiYyE1Xs",
+    "outputId": "91773417-57af-424a-c3e8-1e8af74965c1"
+   },
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGxCAYAAACwbLZkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAwQklEQVR4nO3de1yV1Z7H8e+Wqzcw0RDv1NG0Y3mBVCDyWImpWVYmZZNmdl4x1WHU7KTZ5OU00ThTp9MF7ZSXU5lDmllnhkq6mabjqIO9LDxd1AJHyMAJSA0vrPmDYdcWEJ7N3vvZl8/79dp/+Lge9mJFm6/rWeu3HMYYIwAAAJu0sbsDAAAgtBFGAACArQgjAADAVoQRAABgK8IIAACwFWEEAADYijACAABsRRgBAAC2IowAAABbEUaAVtixY4duuOEG9e7dW1FRUYqPj1dKSoruv/9+2/r0m9/8Rr/5zW9crjkcDi1atMj5548++kgOh0MfffSR5a9fVFSkRYsW6ZtvvmlVP73NX/p59tivXr1aDoejRf1q7L8lEIwII4Cb/uM//kOpqamqqqrS0qVLtWnTJv3pT39SWlqa8vLybOtXbm6ucnNzvfb1i4qKtHjxYtt/yTfHX/s5YcIEbd++XQkJCXZ3BfAb4XZ3AAhUS5cuVWJiot59912Fh//8v9Itt9yipUuXeux9jh8/rnbt2rW4/cUXX+yx94bnde3aVV27drW7G4BfYWYEcFNFRYW6dOniEkTqtWnT8H+tvLw8paSkqH379urQoYPGjh2rwsJClzZ33HGHOnTooL179yojI0MdO3bUVVddpVmzZql9+/aqqqpq8HUzMzMVHx+vU6dOSWrd1P6uXbt03XXXqXPnzoqOjtbQoUP12muvOf9+9erVuvnmmyVJo0ePlsPhkMPh0OrVqyVJBQUFuv7669WzZ09FR0frV7/6le6++26Vl5e36P2rqqo0d+5cJSYmKjIyUj169NCsWbN07NgxZ5usrCxFR0dr9+7dzmu1tbW66qqrFB8fr9LS0mb7KUnvvfeerrrqKsXExKhdu3ZKS0vT+++/79KfRYsWyeFw6PPPP9ett96q2NhYxcfH684771RlZWWDvv/2t79VXFycOnTooGuuuUZffvllg++xscc0xhgtXbpUffr0UXR0tIYNG6a33367wb0//fST7r//fg0ZMkSxsbHq3LmzUlJS9Oabb7ZofAF/RRgB3JSSkqIdO3YoOztbO3bscIaBxjz22GO69dZbdfHFF+u1117Tyy+/rOrqaqWnp6uoqMil7cmTJ3Xdddfpyiuv1JtvvqnFixfrzjvv1PHjx12CgST98MMPevPNN/V3f/d3ioiIaNX38+GHHyotLU0//PCDli9frjfffFNDhgxRZmam85f4hAkT9Nhjj0mSnnvuOW3fvl3bt2/XhAkTJEn79+9XSkqKli1bpk2bNumRRx7Rjh07dPnll59zfKS6GaBRo0bpL3/5i7Kzs/X222/rwQcf1OrVq3Xdddep/oDxp556SgMHDtSUKVP0ww8/SJIWL16sjz76SK+88ooSEhKa7ecrr7yijIwMxcTE6C9/+Ytee+01de7cWWPHjm0QSCTppptuUv/+/fX6669r3rx5evXVVzV79mzn3xtjNGnSJL388su6//779cYbb2jkyJEaN25ci8Z+8eLFevDBBzVmzBht3LhRf//3f6/f/va3+uKLL1za1dTU6OjRo5o7d642btyotWvX6vLLL9eNN96ol156qUXvBfglA8At5eXl5vLLLzeSjCQTERFhUlNTTU5Ojqmurna2Ky4uNuHh4eZ3v/udy/3V1dWmW7duZsqUKc5r06dPN5LMypUrG7zfsGHDTGpqqsu13NxcI8ns3bvXeW3UqFFm1KhRLu0kmYULFzr//OGHHxpJ5sMPP3ReGzBggBk6dKg5deqUy73XXnutSUhIMGfOnDHGGLNu3boG9zamtrbWnDp1ynz77bdGknnzzTfP2T4nJ8e0adPG7Ny50+X6+vXrjSSTn5/vvPbVV1+ZmJgYM2nSJPPee++ZNm3amIcfftjlvqb6eezYMdO5c2czceJEl+tnzpwxgwcPNsOHD3deW7hwoZFkli5d6tL2nnvuMdHR0aa2ttYYY8zbb79tJJk//elPLu3+6Z/+qcHYr1q1ykgyBw8eNMYY87//+78mOjra3HDDDS73fvLJJ0ZSg/+Wv3T69Glz6tQpM3PmTDN06NAm2wH+jpkRwE1xcXHasmWLdu7cqccff1zXX3+9vvzyS82fP1+XXHKJ89HEu+++q9OnT2vatGk6ffq08xUdHa1Ro0Y1uqPlpptuanBtxowZ2rZtm8u/lletWqXLLrtMgwYNatX38vXXX+tvf/ubbrvtNkly6ef48eNVWlra4F/pjTly5IiysrLUq1cvhYeHKyIiQn369JEk7du375z3/vu//7sGDRqkIUOGuLz/2LFjG+z8+dWvfqUXXnhBGzdu1LXXXqv09HSXHSvnsm3bNh09elTTp093eZ/a2lpdc8012rlzp8tjIUm67rrrXP586aWX6qefftKRI0ck1c0qSXKOX72pU6c225/t27frp59+anBvamqqc+x+ad26dUpLS1OHDh2cY7xixYpmxxfwZyxgBVopOTlZycnJkqRTp07pwQcf1B//+EctXbpUS5cu1XfffSdJuuyyyxq9/+z1Je3atVNMTEyDdrfddpvmzp2r1atXKycnR0VFRdq5c6dHds7U93Hu3LmaO3duo22aW/dRW1urjIwMHT58WP/4j/+oSy65RO3bt1dtba1GjhypEydONNuHr7/+usnHTWe//4QJExQfH6/vvvtOc+bMUVhY2Dm//i/fR5ImT57cZJujR4+qffv2zj/HxcW5/H1UVJQkOb+niooKhYeHN2jXrVu3ZvtTUVHRZNuzr23YsEFTpkzRzTffrAceeEDdunVTeHi4li1bppUrVzb7XoC/IowAHhQREaGFCxfqj3/8oz777DNJUpcuXSRJ69evb/RfumdzOByNXj/vvPN0/fXX66WXXtKjjz6qVatWKTo6Wrfeemur+13fx/nz5+vGG29stM1FF110zq/x2Wef6dNPP9Xq1as1ffp05/Wvv/66xX1o27Ztk79U6/tYLysrS9XV1fr1r3+t7Oxspaen67zzzmvR+0jSM888o5EjRzbaJj4+vkV9rhcXF6fTp0+roqLCJZCUlZW16N6m2paVlalv377OP7/yyitKTExUXl6ey89JTU2Npf4C/oYwAriptLS00VoR9dPl3bt3lySNHTtW4eHh2r9/f6OPX6yYMWOGXnvtNeXn5+uVV17RDTfcoE6dOrXqa0p1QaNfv3769NNPnQs/m3L2rEC9+l+O9X9f7/nnn29RH6699lo99thjiouLU2Ji4jnbvvjii3rllVe0cuVKjRo1SsOGDdOMGTO0cePGZvuZlpamTp06qaioSPfdd1+L+tac0aNHa+nSpVqzZo2ys7Od11999dVm7x05cqSio6O1Zs0al5+Pbdu26dtvv3UJIw6HQ5GRkS5BpKysjN00CHiEEcBNY8eOVc+ePTVx4kQNGDBAtbW12rNnj5544gl16NBB//AP/yBJ6tu3r5YsWaIFCxbowIEDuuaaa3Teeefpu+++03/913+pffv2Wrx4cYveMyMjQz179tQ999yjsrIyzZgxw2Pfz/PPP69x48Zp7NixuuOOO9SjRw8dPXpU+/bt03//939r3bp1kuRcn/LnP/9ZHTt2VHR0tBITEzVgwABdeOGFmjdvnowx6ty5s/7617+qoKCgRe8/a9Ysvf7667riiis0e/ZsXXrppaqtrVVxcbE2bdqk+++/XyNGjNDevXuVnZ2t6dOnO7//FStWaPLkyXrqqac0a9asc/YzLi5OzzzzjKZPn66jR49q8uTJOv/88/X999/r008/1ffff69ly5ZZGruMjAxdccUV+v3vf69jx44pOTlZn3zyiV5++eVm7z3vvPM0d+5cPfroo7rrrrt08803q6SkRIsWLWrwmObaa6/Vhg0bdM8992jy5MkqKSnRH/7wByUkJOirr76y1GfAr9i9ghYIVHl5eWbq1KmmX79+pkOHDiYiIsL07t3b3H777aaoqKhB+40bN5rRo0ebmJgYExUVZfr06WMmT55s3nvvPWeb6dOnm/bt25/zfR966CEjyfTq1cu5w+WX3N1NY4wxn376qZkyZYo5//zzTUREhOnWrZu58sorzfLly13aPfXUUyYxMdGEhYUZSWbVqlXGGGOKiorMmDFjTMeOHc15551nbr75ZlNcXNzg/Zvy448/mocffthcdNFFJjIy0sTGxppLLrnEzJ4925SVlZkff/zRDBgwwFx88cXm2LFjLvfee++9JiIiwuzYsaPZfhpjzObNm82ECRNM586dTUREhOnRo4eZMGGCWbdunbNN/W6a77//3uW9zt4RY4wxP/zwg7nzzjtNp06dTLt27cyYMWPM3/72t2Z30xhTt/MoJyfH9OrVy0RGRppLL73U/PWvf230v+Xjjz9u+vbta6KioszAgQPNCy+84OwnEKgcxvz/5n0AAAAbsLUXAADYijACAABsRRgBAAC2IowAAABbEUYAAICtCCMAAMBWAVH0rLa2VocPH1bHjh2bLJUNAAD8izFG1dXV6t69e4NzuH4pIMLI4cOH1atXL7u7AQAA3FBSUqKePXs2+fcBEUY6duwoqe6baew0UwAA4H+qqqrUq1cv5+/xpgREGKl/NBMTE0MYAQAgwDS3xIIFrAAAwFaEEQAAYCvCCAAAsBVhBAAA2IowAgAAbEUYAQAAtiKMAAAAWxFGAACArQgjAADAVoQRAABgK8IIAAAhrLTyhLbtL1dp5Qnb+hAQZ9MAAADPy9tZrPkb9qrWSG0cUs6Nlyjzst4+7wczIwAAhKDSyhPOICJJtUZ6aMNntsyQEEYAAAhBB8uPOYNIvTPG6Jvy4z7vC2EEAIAQlNilvdo4XK+FORzq26Wdz/tCGAEAIAQlxLZVzo2XKMxRl0jCHA49duMgJcS29XlfWMAKAEAQKa08oYPlx5TYpX2zwSLzst66on9XfVN+XH27tLMliEiEEQAAgoY7u2MSYtvaFkLq8ZgGAIAg4E+7Y6wijAAAEAT8aXeMVYQRAACCgD/tjrGKMAIAQBDwp90xVrGAFQAAP2VlZ4zkP7tjrCKMAADgh9w9N8YfdsdYxWMaAAD8TCDvjHEHYQQAAD8TyDtj3EEYAQDAzwTyzhh3EEYAAPAzgbwzxh0sYAUAwA8F6s4YdxBGAADwEatbdQNxZ4w7CCMAAPiAu1t1QwFrRgAA8LJQ26prFWEEAAAvC7WtulYRRgAA8LJQ26prFWEEAAAvC7WtulZZDiMff/yxJk6cqO7du8vhcGjjxo3N3rN582YlJSUpOjpaF1xwgZYvX+5OXwEACFiZl/XW1nmjtfa3I7V13mgWr/6C5TBy7NgxDR48WM8++2yL2h88eFDjx49Xenq6CgsL9dBDDyk7O1uvv/665c4CABDIEmLbKuXCOGZEzmJ5a++4ceM0bty4Frdfvny5evfuraeeekqSNHDgQO3atUv/+q//qptuusnq2wMAgCDj9TUj27dvV0ZGhsu1sWPHateuXTp16lSj99TU1KiqqsrlBQAAgpPXw0hZWZni4+NdrsXHx+v06dMqLy9v9J6cnBzFxsY6X7169fJ2NwEAsKS08oS27S+nVogH+GQ3jcPhup/JGNPo9Xrz589XZWWl81VSUuL1PgIA0FJ5O4uV9vgHmvrCDqU9/oHydhbb3aWA5vVy8N26dVNZWZnLtSNHjig8PFxxcXGN3hMVFaWoqChvdw0AAMuaqqZ6Rf+uLEx1k9dnRlJSUlRQUOBybdOmTUpOTlZERIS33x4AAI+imqrnWQ4jP/74o/bs2aM9e/ZIqtu6u2fPHhUX101RzZ8/X9OmTXO2z8rK0rfffqs5c+Zo3759WrlypVasWKG5c+d65jsAAMCHqKbqeZbDyK5duzR06FANHTpUkjRnzhwNHTpUjzzyiCSptLTUGUwkKTExUfn5+froo480ZMgQ/eEPf9DTTz/Ntl4AQECimqrnOUz9alI/VlVVpdjYWFVWViomJsbu7gAAoNLKE/qm/Lj6dmlHEGlCS39/e30BKwAAwSghti0hxEM4KA8AANiKMAIAAGxFGAEAQFRUtRNrRgAAIS9vZ7GzkFkbh5Rz4yXKvKy33d0KGcyMAABCWlMVVZkh8R3CCAAgpFFR1X6EEQBASKOiqv0IIwCAkEZFVfuxgBUAEPIyL+utK/p3paKqTQgjAACIiqp24jENAACwFWEEAADYijACAABsRRgBAAQdSrsHFhawAgCCCqXdAw8zIwCAoEFp98BEGAEABA1KuwcmwggAIGhQ2j0wEUYAAEGD0u6BiQWsAICgQmn3wEMYAQAEHUq7BxYe0wAAAFsRRgAAgK0IIwAAwFaEEQAAYCvCCAAAsBVhBADg9zj4LrixtRcA4Nc4+C74MTMCAPBbHHwXGggjAAC/xcF3oYEwAgDwWxx8FxoIIwAAv8XBd6GBBawAAL/GwXfBjzACAPB7HHwX3HhMAwAAbEUYAQAAtiKMAAAAWxFGAACArQgjAACf4pwZnI3dNAAAn+GcGTSGmREAgE9wzgyaQhgBAPgE58ygKYQRAIBPcM4MmkIYAQD4BOfMoCksYAUA+AznzKAxhBEAgE9xzgzOxmMaAABgK8IIAACwFWEEAADYijACAABsRRgBAAC2IowAAFqFg+/QWm6FkdzcXCUmJio6OlpJSUnasmXLOduvWbNGgwcPVrt27ZSQkKAZM2aooqLCrQ4DAPxH3s5ipT3+gaa+sENpj3+gvJ3FdncJAchyGMnLy9OsWbO0YMECFRYWKj09XePGjVNxceM/gFu3btW0adM0c+ZMff7551q3bp127typu+66q9WdBwDYh4Pv4CmWw8iTTz6pmTNn6q677tLAgQP11FNPqVevXlq2bFmj7f/zP/9Tffv2VXZ2thITE3X55Zfr7rvv1q5du1rdeQCAfTj4Dp5iKYycPHlSu3fvVkZGhsv1jIwMbdu2rdF7UlNTdejQIeXn58sYo++++07r16/XhAkTmnyfmpoaVVVVubwAAP6Fg+/gKZbCSHl5uc6cOaP4+HiX6/Hx8SorK2v0ntTUVK1Zs0aZmZmKjIxUt27d1KlTJz3zzDNNvk9OTo5iY2Odr169elnpJgDABzj4Dp7i1gJWh8M1ChtjGlyrV1RUpOzsbD3yyCPavXu33nnnHR08eFBZWVlNfv358+ersrLS+SopKXGnmwAAL8u8rLe2zhuttb8dqa3zRivzst52dwkByNJBeV26dFFYWFiDWZAjR440mC2pl5OTo7S0ND3wwAOSpEsvvVTt27dXenq6Hn30USUkJDS4JyoqSlFRUVa6BgCwCQffobUszYxERkYqKSlJBQUFLtcLCgqUmpra6D3Hjx9XmzaubxMWFiapbkYFAACENsuPaebMmaMXX3xRK1eu1L59+zR79mwVFxc7H7vMnz9f06ZNc7afOHGiNmzYoGXLlunAgQP65JNPlJ2dreHDh6t79+6e+04AAEBAsvSYRpIyMzNVUVGhJUuWqLS0VIMGDVJ+fr769OkjSSotLXWpOXLHHXeourpazz77rO6//3516tRJV155pf75n//Zc98FAAAIWA4TAM9KqqqqFBsbq8rKSsXExNjdHQAA0AIt/f3N2TQAAMBWhBEAgBOH3sEOlteMAACCU97OYudZM20cUs6Nl1A3BD7BzAgAgEPvYCvCCACAQ+9gK8IIAIBD72ArwggAgEPvYCsWsAIAJNUdendF/676pvy4+nZpRxCBzxBGAABOHHoHO/CYBgAA2IowAgAAbEUYAQAAtiKMAAAAWxFGACCIcdYMAgG7aQAgSHHWDAIFMyMAEIQ4awaBhDACAEGIs2YQSAgjABCEOGsGgYQwAgBBiLNmEEhYwAoAQYqzZhAoCCMAEMQ4awaBgMc0AADAVoQRAABgK8IIAACwFWEEAADYijACAABsRRgBgADBoXcIVmztBYAAwKF3CGbMjACAn+PQOwQ7wggA+DkOvUOwI4wAgJ/j0DsEO8IIAPg5Dr1DsGMBKwAEAA69QzAjjABAgODQOwQrHtMAAABbEUYAAICtCCMAAMBWhBEAAGArwggA2ISzZoA67KYBABtw1gzwM2ZGAMDHOGsGcEUYAQAf46wZwBVhBAB8jLNmAFeEEQDwMc6aAVyxgBUAbMBZM8DPCCMAYBPOmgHq8JgGAADYijACAABsRRgBAAC2IowAgAdQ2h1wHwtYAaCVKO0OtA4zIwDQCpR2B1qPMAIArUBpd6D13Aojubm5SkxMVHR0tJKSkrRly5Zztq+pqdGCBQvUp08fRUVF6cILL9TKlSvd6jAA+BNKuwOtZzmM5OXladasWVqwYIEKCwuVnp6ucePGqbi4uMl7pkyZovfff18rVqzQF198obVr12rAgAGt6jgA+ANKuwOt5zDGmOab/WzEiBEaNmyYli1b5rw2cOBATZo0STk5OQ3av/POO7rlllt04MABde7c2a1OVlVVKTY2VpWVlYqJiXHrawCAN5VWnqC0O3CWlv7+tjQzcvLkSe3evVsZGRku1zMyMrRt27ZG73nrrbeUnJyspUuXqkePHurfv7/mzp2rEyeaXtxVU1OjqqoqlxcA+LOE2LZKuTCOIAK4wdLW3vLycp05c0bx8fEu1+Pj41VWVtboPQcOHNDWrVsVHR2tN954Q+Xl5brnnnt09OjRJteN5OTkaPHixVa6BgAAApRbC1gdDtfVWsaYBtfq1dbWyuFwaM2aNRo+fLjGjx+vJ598UqtXr25ydmT+/PmqrKx0vkpKStzpJgC4jSJmgO9Ymhnp0qWLwsLCGsyCHDlypMFsSb2EhAT16NFDsbGxzmsDBw6UMUaHDh1Sv379GtwTFRWlqKgoK10DAI+hiBngW5ZmRiIjI5WUlKSCggKX6wUFBUpNTW30nrS0NB0+fFg//vij89qXX36pNm3aqGfPnm50GQC8hyJmgO9ZfkwzZ84cvfjii1q5cqX27dun2bNnq7i4WFlZWZLqHrFMmzbN2X7q1KmKi4vTjBkzVFRUpI8//lgPPPCA7rzzTrVty0IvAP6FImaA71k+myYzM1MVFRVasmSJSktLNWjQIOXn56tPnz6SpNLSUpeaIx06dFBBQYF+97vfKTk5WXFxcZoyZYoeffRRz30XAOAh9UXMfhlIKGIGeJflOiN2oM4IAF/K21mshzZ8pjPGOIuYsWYEsK6lv785tRcAzpJ5WW9d0b8rRcwAHyGMAEAjEmLbEkIAH+HUXgBBj5ohgH9jZgRAUKNmCOD/mBkBELSoGQIEBsIIgKBFzRAgMBBGAASt+pohv0TNEMD/EEYABK2E2LbKufEShf3/QZ71NUPYJQP4FxawAghq1AwB/B9hBEDQo2YI4N94TAMAAGxFGAEAALYijAAAAFsRRgAEFEq7A8GHBawAAgal3YHgxMwIgIBAaXcgeBFGAAQESrsDwYswAiAgUNodCF6EEQABgdLuQPBiASuAgEFpdyA4EUYABBRKuwPBh8c0AADAVoQRAABgK8IIAFtRURUAa0YA2IaKqgAkZkYA2ISKqgDqEUYA2IKKqgDqEUYA2IKKqgDqEUYA2IKKqgDqsYAVgG2oqApAIowAsBkVVQHwmAaAx1AzBIA7mBkB4BHUDAHgLmZGALQaNUMAtAZhBECrUTMEQGsQRgC0GjVDALQGYQRAq1EzBEBrsIAVgEdQMwSAuwgjADyGmiEA3MFjGgAAYCvCCAAAsBVhBECTqKgKwBdYMwKgUVRUBeArzIwAaICKqgB8iTACoAEqqgLwJcIIgAaoqArAlwgjABqgoioAX2IBK4BGUVEVgK8QRgA0iYqqAHyBxzQAAMBWhBEAAGArwggAALAVYQQAANjKrTCSm5urxMRERUdHKykpSVu2bGnRfZ988onCw8M1ZMgQd94WQCtwzgwAf2U5jOTl5WnWrFlasGCBCgsLlZ6ernHjxqm4uPic91VWVmratGm66qqr3O4sAPfk7SxW2uMfaOoLO5T2+AfK23nu/18BwJccxhjTfLOfjRgxQsOGDdOyZcuc1wYOHKhJkyYpJyenyftuueUW9evXT2FhYdq4caP27NnT4vesqqpSbGysKisrFRMTY6W7QMgrrTyhtMc/cCnvHuZwaOu80WzbBeBVLf39bWlm5OTJk9q9e7cyMjJcrmdkZGjbtm1N3rdq1Srt379fCxcubNH71NTUqKqqyuUFwD2cMwPA31kKI+Xl5Tpz5ozi4+NdrsfHx6usrKzRe7766ivNmzdPa9asUXh4y2qs5eTkKDY21vnq1auXlW4C+AXOmQHg79xawOpwuH6yGWMaXJOkM2fOaOrUqVq8eLH69+/f4q8/f/58VVZWOl8lJSXudBOAOGcGgP+zVA6+S5cuCgsLazALcuTIkQazJZJUXV2tXbt2qbCwUPfdd58kqba2VsYYhYeHa9OmTbryyisb3BcVFaWoqCgrXQNwDpwzA8CfWQojkZGRSkpKUkFBgW644Qbn9YKCAl1//fUN2sfExGjv3r0u13Jzc/XBBx9o/fr1SkxMdLPbAKzinBkA/sryQXlz5szR7bffruTkZKWkpOjPf/6ziouLlZWVJanuEcv//M//6KWXXlKbNm00aNAgl/vPP/98RUdHN7gOAABCk+UwkpmZqYqKCi1ZskSlpaUaNGiQ8vPz1adPH0lSaWlpszVHAAAA6lmuM2IH6owAABB4vFJnBID/oLw7gGBh+TENAPvl7SzW/A17VWukNg4p58ZLlHlZb7u7BQBuYWYECDCllSecQUSSao300IbPmCEBELAII0CAobw7gGBDGAECDOXdAQQbwggQYCjvDiDYsIAVCECUdwcQTAgjQICivDuAYMFjGgAAYCvCCOAHKGAGIJTxmAawGQXMAIQ6ZkYAG1HADAAII4CtKGAGAIQRwFYUMAMAwghgKwqYAQALWAHbUcAMQKgjjAB+gAJmAEIZj2kAAICtCCOAF1DEDABajsc0gIdRxAwArGFmBPAgipgBgHWEEcCDKGIGANYRRgAPoogZAFhHGAE8iCJmAGAdC1gBD6OIGQBYQxgBvIAiZgDQcjymAQAAtiKMAAAAWxFGgGZQTRUAvIs1I8A5UE0VALyPmRGgCVRTBQDfIIwATaCaKgD4BmEEaALVVAHANwgjQBOopgoAvsECVuAcqKYKAN5HGAGaQTVVAPAuHtMAAABbEUYAAICtCCMIOVRUBQD/wpoRhBQqqgKA/2FmBCGDiqoA4J8IIwgZVFQFAP9EGEHIoKIqAPgnwghCBhVVAcA/sYAVIYWKqgDgfwgjCDlUVAUA/8JjGgAAYCvCCAAAsBVhBAGNaqoAEPhYM4KARTVVAAgOzIwgIFFNFQCCB2EEAYlqqgAQPAgjCEhUUwWA4OFWGMnNzVViYqKio6OVlJSkLVu2NNl2w4YNGjNmjLp27aqYmBilpKTo3XffdbvDgEQ1VQAIJpYXsObl5WnWrFnKzc1VWlqann/+eY0bN05FRUXq3bvh4sGPP/5YY8aM0WOPPaZOnTpp1apVmjhxonbs2KGhQ4d65JtAaKKaKgAEB4cxxjTf7GcjRozQsGHDtGzZMue1gQMHatKkScrJyWnR1/j1r3+tzMxMPfLIIy1qX1VVpdjYWFVWViomJsZKdwEAgE1a+vvb0mOakydPavfu3crIyHC5npGRoW3btrXoa9TW1qq6ulqdO3dusk1NTY2qqqpcXggN1A0BgNBj6TFNeXm5zpw5o/j4eJfr8fHxKisra9HXeOKJJ3Ts2DFNmTKlyTY5OTlavHixla4hCFA3BABCk1sLWB0O120MxpgG1xqzdu1aLVq0SHl5eTr//PObbDd//nxVVlY6XyUlJe50EwGEuiEAELoszYx06dJFYWFhDWZBjhw50mC25Gx5eXmaOXOm1q1bp6uvvvqcbaOiohQVFWWlawhw56obwsJUAAhulmZGIiMjlZSUpIKCApfrBQUFSk1NbfK+tWvX6o477tCrr76qCRMmuNdTBDXqhgBA6LL8mGbOnDl68cUXtXLlSu3bt0+zZ89WcXGxsrKyJNU9Ypk2bZqz/dq1azVt2jQ98cQTGjlypMrKylRWVqbKykrPfRcIeNQNAYDQZbnOSGZmpioqKrRkyRKVlpZq0KBBys/PV58+fSRJpaWlKi4udrZ//vnndfr0ad1777269957ndenT5+u1atXt/47QNCgbggAhCbLdUbsQJ0RAAACj1fqjAAAAHgaYQReQwEzAEBLWF4zArQEBcwAAC3FzAg8jgJmAAArCCPwuHMVMAMA4GyEEXgcBcwAAFYQRuBxFDADAFjBAlZ4BQXMAAAtRRiB1yTEtiWEAACaxWMatBh1QwAA3sDMCFqEuiEAAG9hZgTNom4IAMCbCCNoFnVDAADeRBhBs6gbAgDwJsIImkXdEACAN7GAFS1C3RAAgLcQRtBi1A0BAHgDj2lCFDVDAAD+gpmREETNEACAP2FmJMRQMwQA4G8IIyGGmiEAAH9DGAkx1AwBAPgbwkiIoWYIAMDfsIA1CJRWntDB8mNK7NK+RaGCmiEAAH9CGAlw7u6MoWYIAMBf8JgmgLEzBgAQDAgjAYydMQCAYEAYCWDsjAEABAPCSABjZwwAIBiwgDXAsTMGABDoCCN+yOpWXXbGAAACGWHEz3CIHQAg1LBmxI+wVRcAEIoII36ErboAgFBEGPEjbNUFAIQiwogfYasuACAUsYDVyzjEDgCAcyOMeBGH2AEA0Dwe03gJO2MAAGgZwoiXsDMGAICWIYx4CTtjAABoGcKIl7AzBgCAlmEBq0VWdsewMwYAgOYRRixwZ3cMO2MAADi3kH5MU1p5Qtv2l7dohwu7YwAA8I6QnRmxOstxrt0xzHwAAOC+kJwZcWeWg90xAAB4R0iGEXdqgLA7BgAA7wjJxzT1sxy/DCQtmeVgdwwAAJ4XkjMjrZnlSIhtq5QL4wgiAAB4SEjOjEjMcgAA4C9CNoxI1AABAMAfhORjGgAA4D8IIwAAwFZuhZHc3FwlJiYqOjpaSUlJ2rJlyznbb968WUlJSYqOjtYFF1yg5cuXu9VZAAAQfCyHkby8PM2aNUsLFixQYWGh0tPTNW7cOBUXFzfa/uDBgxo/frzS09NVWFiohx56SNnZ2Xr99ddb3XkAABD4HMYY03yzn40YMULDhg3TsmXLnNcGDhyoSZMmKScnp0H7Bx98UG+99Zb27dvnvJaVlaVPP/1U27dvb/Q9ampqVFNT4/xzVVWVevXqpcrKSsXExFjpLgAAsElVVZViY2Ob/f1taWbk5MmT2r17tzIyMlyuZ2RkaNu2bY3es3379gbtx44dq127dunUqVON3pOTk6PY2Fjnq1evXla6CQAAAoilMFJeXq4zZ84oPj7e5Xp8fLzKysoavaesrKzR9qdPn1Z5eXmj98yfP1+VlZXOV0lJiZVuAgCAAOJWnRGHw/XEOGNMg2vNtW/ser2oqChFRUW50zUAABBgLM2MdOnSRWFhYQ1mQY4cOdJg9qNet27dGm0fHh6uuLg4i90FAADBxlIYiYyMVFJSkgoKClyuFxQUKDU1tdF7UlJSGrTftGmTkpOTFRERYbG7AAAg2Fje2jtnzhy9+OKLWrlypfbt26fZs2eruLhYWVlZkurWe0ybNs3ZPisrS99++63mzJmjffv2aeXKlVqxYoXmzp3rue8CAAAELMtrRjIzM1VRUaElS5aotLRUgwYNUn5+vvr06SNJKi0tdak5kpiYqPz8fM2ePVvPPfecunfvrqefflo33XRTi9+zfo1JVVWV1e4CAACb1P/ebq6KiOU6I3Y4dOgQ23sBAAhQJSUl6tmzZ5N/HxBhpLa2VocPH1bHjh3PuWvHqvpiaiUlJSFdTI1xqMM41GEc6jAOdRiHOoxDHavjYIxRdXW1unfvrjZtml4Z4tbWXl9r06bNORNVa8XExIT0D1c9xqEO41CHcajDONRhHOowDnWsjENsbGyzbTi1FwAA2IowAgAAbBXSYSQqKkoLFy4M+WqvjEMdxqEO41CHcajDONRhHOp4axwCYgErAAAIXiE9MwIAAOxHGAEAALYijAAAAFsRRgAAgK0IIwAAwFZBH0Zyc3OVmJio6OhoJSUlacuWLedsv3nzZiUlJSk6OloXXHCBli9f7qOeepeVcdiwYYPGjBmjrl27KiYmRikpKXr33Xd92FvvsfrzUO+TTz5ReHi4hgwZ4t0O+ojVcaipqdGCBQvUp08fRUVF6cILL9TKlSt91FvvsToOa9as0eDBg9WuXTslJCRoxowZqqio8FFvPe/jjz/WxIkT1b17dzkcDm3cuLHZe4LxM9LqOATrZ6Q7Pw/1WvsZGdRhJC8vT7NmzdKCBQtUWFio9PR0jRs3zuVU4V86ePCgxo8fr/T0dBUWFuqhhx5Sdna2Xn/9dR/33LOsjsPHH3+sMWPGKD8/X7t379bo0aM1ceJEFRYW+rjnnmV1HOpVVlZq2rRpuuqqq3zUU+9yZxymTJmi999/XytWrNAXX3yhtWvXasCAAT7stedZHYetW7dq2rRpmjlzpj7//HOtW7dOO3fu1F133eXjnnvOsWPHNHjwYD377LMtah+sn5FWxyFYPyOtjkM9j3xGmiA2fPhwk5WV5XJtwIABZt68eY22//3vf28GDBjgcu3uu+82I0eO9FoffcHqODTm4osvNosXL/Z013zK3XHIzMw0Dz/8sFm4cKEZPHiwF3voG1bH4e233zaxsbGmoqLCF93zGavj8C//8i/mggsucLn29NNPm549e3qtj74kybzxxhvnbBOsn5G/1JJxaEwwfEb+kpVx8MRnZNDOjJw8eVK7d+9WRkaGy/WMjAxt27at0Xu2b9/eoP3YsWO1a9cunTp1ymt99SZ3xuFstbW1qq6uVufOnb3RRZ9wdxxWrVql/fv3a+HChd7uok+4Mw5vvfWWkpOTtXTpUvXo0UP9+/fX3LlzdeLECV902SvcGYfU1FQdOnRI+fn5Msbou+++0/r16zVhwgRfdNkvBONnpCcEw2ekuzz1GRkQp/a6o7y8XGfOnFF8fLzL9fj4eJWVlTV6T1lZWaPtT58+rfLyciUkJHitv97izjic7YknntCxY8c0ZcoUb3TRJ9wZh6+++krz5s3Tli1bFB4eHP+ruDMOBw4c0NatWxUdHa033nhD5eXluueee3T06NGAXTfizjikpqZqzZo1yszM1E8//aTTp0/ruuuu0zPPPOOLLvuFYPyM9IRg+Ix0hyc/I4N2ZqSew+Fw+bMxpsG15to3dj3QWB2HemvXrtWiRYuUl5en888/31vd85mWjsOZM2c0depULV68WP379/dV93zGys9DbW2tHA6H1qxZo+HDh2v8+PF68skntXr16oCeHZGsjUNRUZGys7P1yCOPaPfu3XrnnXd08OBBZWVl+aKrfiNYPyPdFWyfkS3l6c/I4PjnXiO6dOmisLCwBv/KOXLkSINkX69bt26Ntg8PD1dcXJzX+upN7oxDvby8PM2cOVPr1q3T1Vdf7c1uep3VcaiurtauXbtUWFio++67T1LdL2VjjMLDw7Vp0yZdeeWVPum7J7nz85CQkKAePXooNjbWeW3gwIEyxujQoUPq16+fV/vsDe6MQ05OjtLS0vTAAw9Iki699FK1b99e6enpevTRR0NiViAYPyNbI5g+I63y9Gdk0M6MREZGKikpSQUFBS7XCwoKlJqa2ug9KSkpDdpv2rRJycnJioiI8FpfvcmdcZDq0v4dd9yhV199NSieiVsdh5iYGO3du1d79uxxvrKysnTRRRdpz549GjFihK+67lHu/DykpaXp8OHD+vHHH53XvvzyS7Vp00Y9e/b0an+9xZ1xOH78uNq0cf3IDAsLk/Tz7ECwC8bPSHcF22ekVR7/jHRr2WuA+Ld/+zcTERFhVqxYYYqKisysWbNM+/btzTfffGOMMWbevHnm9ttvd7Y/cOCAadeunZk9e7YpKioyK1asMBEREWb9+vV2fQseYXUcXn31VRMeHm6ee+45U1pa6nz98MMPdn0LHmF1HM4WLLtprI5DdXW16dmzp5k8ebL5/PPPzebNm02/fv3MXXfdZde34BFWx2HVqlUmPDzc5Obmmv3795utW7ea5ORkM3z4cLu+hVarrq42hYWFprCw0EgyTz75pCksLDTffvutMSZ0PiOtjkOwfkZaHYezteYzMqjDiDHGPPfcc6ZPnz4mMjLSDBs2zGzevNn5d9OnTzejRo1yaf/RRx+ZoUOHmsjISNO3b1+zbNkyH/fYO6yMw6hRo4ykBq/p06f7vuMeZvXn4ZeCJYwYY30c9u3bZ66++mrTtm1b07NnTzNnzhxz/PhxH/fa86yOw9NPP20uvvhi07ZtW5OQkGBuu+02c+jQIR/32nM+/PDDc/6/HiqfkVbHIVg/I935efil1nxGOowJkflFAADgl4J2zQgAAAgMhBEAAGArwggAALAVYQQAANiKMAIAAGxFGAEAALYijAAAAFsRRgAAgK0IIwAAwFaEEQAAYCvCCAAAsNX/Aeg5DgaPdM+yAAAAAElFTkSuQmCC\n",
+      "text/plain": [
+       "<Figure size 640x480 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "plt.figure()\n",
+    "plt.plot(t,y,'.')\n",
+    "plt.title(\"Servilleta extendida\")\n",
+    "plt.savefig('graphic_servilletaext.pdf', bbox_inches = 'tight')"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 42,
+   "metadata": {
+    "id": "c1FEh7cKFJgW"
+   },
+   "outputs": [],
+   "source": [
+    "y = np.log(np.abs(y[1:]))\n",
+    "x = np.log(t[1:])"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 43,
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/",
+     "height": 474
+    },
+    "id": "qR-Nx0YhFPi-",
+    "outputId": "c6209b4a-379d-4421-b90f-8fdeee8d4026"
+   },
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHHCAYAAAC1G/yyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABDH0lEQVR4nO3deXxU9b3/8fckJJMQyCAMZJGQxCjGlgARWQK3QPSCQUAEpVj8IVilIHq9iFaWXgE3Aoj2PsSCliLYSittDbUKWmhZqiVKaAmromBCwCRCWCYsMRHy/f1BM3eGLGSfJa/n4zGPOme+Z+bzzUk6b77f7znHYowxAgAAgCQpwNMFAAAAeBPCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEYAmcffddyspKUkOh8PTpQBAnRCO0GKsXr1aFotFO3furLZNbm6uLBaLVq9e3XyF1aCi5tzcXOe2SZMmKS4uzmM11aaG//3f/9WOHTv0wQcfyGazNV9hzWzr1q2yWCzaunWrc9v8+fNlsVjc2g0ePFiDBw+u12csW7bMa34fa+INdVb1s4+Li9OkSZOuum9VxxItVytPFwB4k6ioKGVmZiohIcHTpVTr6aef1n//9397bQ2ffPKJXnjhBW3ZskWdO3du5sqa180336zMzEx973vfa7LPWLZsmex2e62+4D3JW+tct26dwsPDPV0GfAzhCHBhtVrVr18/T5dRI28IbjXV0K9fP504caIZq2k8ly5d0sWLF2W1WmvVPjw83Ot/X1q65ORkT5cAH8S0GuCiqmm1iqH6/fv360c/+pFsNpsiIiL04x//uNJ6GmOMli1bpp49eyo0NFTXXHON7rnnHn311Vdu7TZt2qRRo0apc+fOCgkJ0fXXX68pU6aoqKjoqjVeOaVVUV9VD9d/xT/zzDPq27ev2rdvr/DwcN18881auXKlqrr39G9/+1ulpKSoTZs2atOmjXr27KmVK1dWW4Mkffvtt5o9e7bi4+MVHBysa6+9Vo888ojOnDnj1i4uLk4jRozQhx9+qJtvvlmhoaFKTEzUG2+8cdW+S9Ly5cvVo0cPtWnTRm3btlViYqLmzJnj1qawsFBTpkxR586dFRwcrPj4eD3zzDO6ePGis03FsV68eLGef/55xcfHy2q16ve//72Cg4P19NNPV/rszz//XBaLRa+88oqkhk3FlJWV6fnnn1diYqKsVqs6duyoBx54wC1YxsXFaf/+/dq2bZvzmFb83L/99ls98cQT6tmzp2w2m9q3b6+UlBS9++67ta7hr3/9q2677TaFh4erdevWGjBggP72t785X//yyy8VHh6usWPHuu23efNmBQYGOn9GNdUpScXFxXryySfdfjemT5+u8+fPu72vxWLRo48+qt/85je66aab1Lp1a/Xo0UPvv/9+pdrXr1+vnj17ymq1Kj4+XkuWLKmyj1VNq33++edKS0tT69atZbfbNXXqVJ09e7bSvg35O4VvY+QIqKW7775b48aN04MPPqi9e/dq9uzZkuT2pT5lyhStXr1ajz32mBYtWqRTp07p2WefVf/+/bV7925FRERIkg4fPqyUlBQ99NBDstlsys3N1csvv6z/+I//0N69exUUFFTruh566CGlpaW5bcvIyNCLL76o73//+85tubm5mjJlirp06SLp8vTXf/3Xf+nrr7/W3Llzne3mzp2r5557TmPGjNETTzwhm82mffv26ciRI9XWYIzRXXfdpb/97W+aPXu2fvCDH2jPnj2aN2+eMjMzlZmZ6TYas3v3bj3xxBOaNWuWIiIi9Ktf/UoPPvigrr/+eg0cOLDaz3n77bc1bdo0/dd//ZeWLFmigIAAHTp0SAcOHHC2KSwsVJ8+fRQQEKC5c+cqISFBmZmZev7555Wbm6tVq1a5vecrr7yirl27asmSJQoPD9cNN9ygESNG6M0339QzzzyjgID/+zfkqlWrFBwcrPvuu6/aGmujvLxco0aN0kcffaSnnnpK/fv315EjRzRv3jwNHjxYO3fuVGhoqNatW6d77rlHNptNy5YtkyTnz7G0tFSnTp3Sk08+qWuvvVZlZWX661//qjFjxmjVqlW6//77a6zhrbfe0v33369Ro0bpzTffVFBQkF5//XXdfvvt+stf/qLbbrtNN9xwg1asWKF7771Xr7zyih577DEVFhZq/Pjx+sEPfqD58+dLUo11XrhwQYMGDdKxY8c0Z84cde/eXfv379fcuXO1d+9e/fWvf3VbJ7R+/XplZWXp2WefVZs2bbR48WKNHj1aBw8e1HXXXSdJ+tvf/qZRo0YpJSVFb7/9ti5duqTFixfrm2++uerP/ptvvtGgQYMUFBSkZcuWKSIiQmvWrNGjjz5aqW1j/p3CxxighVi1apWRZLKysqptk5OTYySZVatWObfNmzfPSDKLFy92aztt2jQTEhJiysvLjTHGZGZmGknmpZdecmt39OhRExoaap566qkqP7O8vNx899135siRI0aSeffddyvVnJOT49w2ceJEExsbW20fPvroIxMSEmLuu+8+Z21XunTpkvnuu+/Ms88+azp06OBs99VXX5nAwEBz3333Vfv+VdXw4YcfVvkzWrt2rZFkfvnLXzq3xcbGmpCQEHPkyBHntpKSEtO+fXszZcqUGj/30UcfNe3atauxzZQpU0ybNm3c3t8YY5YsWWIkmf379xtj/u9YJyQkmLKyMre2f/7zn40ks3HjRue2ixcvmujoaHP33Xc7t23ZssVIMlu2bHFuq/h9cTVo0CAzaNAg5/Pf/e53RpJ555133NplZWUZSWbZsmXObd///vfd9q3OxYsXzXfffWcefPBBk5ycXGPb8+fPm/bt25uRI0e6bb906ZLp0aOH6dOnj9v2hx9+2AQHB5vMzExz6623mk6dOpn8/Hy3NtXVmZ6ebgICAir93f3xj380ksyGDRuc2ySZiIgIU1xc7NxWWFhoAgICTHp6unNb3759TXR0tCkpKXFuKy4uNu3bt6/0s4+NjTUTJ050Pp85c6axWCwmOzvbrd2QIUMqHUtXNf2dwv8wrQbU0p133un2vHv37vr22291/PhxSdL7778vi8Wi//f//p8uXrzofERGRqpHjx5uUy/Hjx/X1KlTFRMTo1atWikoKEixsbGSpM8++6zeNX722We688471b9/f73xxhtu/yLfvHmz/vM//1M2m02BgYEKCgrS3LlzdfLkSWcfNm3apEuXLumRRx6p0+du3rxZkipNX4wdO1ZhYWFuUzWS1LNnT+cIliSFhISoa9euNY5OSVKfPn105swZ/ehHP9K7775b5fTG+++/r9TUVEVHR7sdh2HDhkmStm3b5tb+zjvvrDQCMGzYMEVGRrqNMv3lL39Rfn6+fvzjH9dYY228//77ateunUaOHOlWY8+ePRUZGVnrabo//OEPGjBggNq0aeP8PVq5cuVVf4e2b9+uU6dOaeLEiW6fX15errS0NGVlZblNef385z/X97//faWmpmrr1q166623FBUVVeu+duvWTT179nT7rNtvv73KKcnU1FS1bdvW+TwiIkKdOnVy/m6cP39eWVlZGjNmjEJCQpzt2rZtq5EjR161ni1btuj73/++evTo4bZ9/Pjxldo21d8pvB/TakAtdejQwe15xbRBSUmJpMvD9cYY59TZlSqmBMrLyzV06FDl5+fr6aefVlJSksLCwlReXq5+/fo536+u8vPzlZaWps6dOysjI0PBwcHO13bs2KGhQ4dq8ODBWrFihXMtzp/+9Ce98MILzs+sWO9S17PMTp48qVatWqljx45u2y0WiyIjI3Xy5Em37Vf+LKXLP8+r9X3ChAm6ePGiVqxYobvvvlvl5eXq3bu3nn/+eQ0ZMkTS5ePw3nvvVTvlcWWgqupLvlWrVpowYYKWLl2qM2fOqF27dlq9erWioqJ0++2311hjbXzzzTc6c+aM2zGqqcaqZGRk6Ic//KHGjh2rn/70p4qMjFSrVq20fPnyq67fqph+uueee6ptc+rUKYWFhUm6fGzGjx+vn/70p7r55pudP+va+Oabb3To0KFaH4+r/W6cPn1a5eXlioyMrNSuqm1XOnnypOLj46+6b1P9ncI3EI6ARmK322WxWPTRRx9VebZTxbZ9+/Zp9+7dWr16tSZOnOh8/dChQ/X+7OLiYt1xxx0qLy/Xhg0bKl1b6O2331ZQUJDef/99t39t/+lPf3JrVxFujh07ppiYmFp/focOHXTx4kWdOHHCLSAZY1RYWKjevXvXo1dVe+CBB/TAAw/o/Pnz+vvf/6558+ZpxIgR+uKLLxQbGyu73a7u3bvrhRdeqHL/6Ohot+dXXhfH9XNefPFFvf322xo3bpz+/Oc/a/r06QoMDGxwH+x2uzp06KAPP/ywytddR06q89Zbbyk+Pl5r165160NpaWmtPl+Sli5dWu3Zdq4hf9++fZo7d6569+6trKwsvfzyy5oxY8ZVP6fis0JDQ6sNbBW11NY111wji8WiwsLCSq9Vte1KHTp0qNW+TfF3Ct9BOAIayYgRI7Rw4UJ9/fXX+uEPf1htu4ovsisD1Ouvv16vzy0rK9Po0aOVm5urjz/+uMpRH4vFolatWrl9sZeUlOg3v/mNW7uhQ4cqMDBQy5cvV0pKSq1ruO2227R48WK99dZbevzxx53b33nnHZ0/f1633XZbPXpWs7CwMA0bNkxlZWW66667tH//fsXGxmrEiBHasGGDEhISdM0119T7/W+66Sb17dtXq1at0qVLl1RaWqoHHnigUWofMWKEcyFx3759a2xb3YiaxWJRcHCwWzAqLCys1dlqAwYMULt27XTgwIEqFyK7On/+vMaOHau4uDht2bJFs2bN0qxZszRgwAC32qurc8SIEVqwYIE6dOhQ5YhNXYWFhalPnz7Okw4qwv7Zs2f13nvvXXX/1NRULV68WLt373abWvvtb3/r1q6x/07hWwhHaHE2b97sdsXpCnfccUeD3nfAgAH6yU9+ogceeEA7d+7UwIEDFRYWpoKCAn388cdKSkrSww8/rMTERCUkJGjWrFkyxqh9+/Z67733tGnTpnp97uOPP67NmzdrwYIFOnfunD755BPnax07dlRCQoKGDx+ul19+WePHj9dPfvITnTx5UkuWLKn0f/xxcXGaM2eOnnvuOZWUlDgvXXDgwAEVFRXpmWeeqbKGIUOG6Pbbb9fMmTNVXFysAQMGOM9WS05O1oQJE+rVtytNnjxZoaGhGjBggKKiolRYWKj09HTZbDbn6NSzzz6rTZs2qX///nrsscd044036ttvv1Vubq42bNig1157rdbThj/+8Y81ZcoU5efnq3///rrxxhsbpR/33nuv1qxZozvuuEP//d//rT59+igoKEjHjh3Tli1bNGrUKI0ePVqSlJSUpLfffltr167Vddddp5CQECUlJWnEiBHKyMjQtGnTdM899+jo0aN67rnnFBUVpS+//LLGz2/Tpo2WLl2qiRMn6tSpU7rnnnvUqVMnnThxQrt379aJEye0fPlySdLUqVOVl5enHTt2KCwsTC+99JIyMzN17733ateuXWrXrl2NdU6fPl3vvPOOBg4cqMcff1zdu3dXeXm58vLytHHjRj3xxBNXDYhXeu6555SWlqYhQ4boiSee0KVLl7Ro0SKFhYXp1KlTNe47ffp0vfHGGxo+fLief/5559lqn3/+uVu7xv47hY/x7HpwoPlUnPlV3SMnJ6fGs9VOnDhR5fu5nklmjDFvvPGG6du3rwkLCzOhoaEmISHB3H///Wbnzp3ONgcOHDBDhgwxbdu2Nddcc40ZO3asycvLM5LMvHnzavyMK88UGzRoULV9cj1L54033jA33nijsVqt5rrrrjPp6elm5cqVVfbh17/+tendu7cJCQkxbdq0McnJyW4/k6rOmCspKTEzZ840sbGxJigoyERFRZmHH37YnD592q1dbGysGT58+JWHp9IZXVV58803TWpqqomIiDDBwcEmOjra/PCHPzR79uxxa3fixAnz2GOPmfj4eBMUFGTat29vevXqZX72s5+Zc+fOGWP+72y1F198sdrPczgcJjQ01EgyK1asqPR6fc9WM8aY7777zixZssT06NHD+XNOTEw0U6ZMMV9++aWzXW5urhk6dKhp27atkeT2c1+4cKGJi4szVqvV3HTTTWbFihVVfn51tm3bZoYPH27at29vgoKCzLXXXmuGDx9u/vCHPxhjjFmxYkWlvwdjjDl06JAJDw83d911V63qPHfunPmf//kfc+ONN5rg4GBjs9lMUlKSefzxx01hYaGznSTzyCOPVKrzyjPOjLl8RmH37t1NcHCw6dKli1m4cGGVfa9q34q/v5CQENO+fXvz4IMPmnfffbfSsazt3yn8j8WYKq4ABwAA0EJxKj8AAIALwhEAAIALwhEAAIALwhEAAIALwhEAAIALwhEAAIALLgJZR+Xl5crPz1fbtm2rve0AAADwLsYYnT17VtHR0QoIqHlsiHBUR/n5+XW65xQAAPAeR48evepV8glHdVRxQ8ijR48qPDzcw9UAAIDaKC4uVkxMTK1u7Ew4qqOKqbTw8HDCEQAAPqY2S2JYkA0AAOCCcAQAAOCCcAQAAOCCcAQAAOCCcAQAAOCCcAQAAOCCcAQAAOCCcAQAAOCCcAQAAOCCcAQAAOCCcAQAAOCCcAQAALxCgaNE2w8XqcBR4tE6uPEsAADwmAJHiXKKzmvv1w4t+uBzlRspwCKlj0nSuN5dPFIT4QgAAHjE2qw8zc7Yq3Ljvr3cSHMy9mlg146KsoU2e12EIwAA0GwqRorCggOrDEYVLhmj3KILhCMAAOC/XEeKLJKqyUWSpECLRXH21s1VmhsWZAMAgCZX4ChxGym6WjBaMKabR0aNJD8IR8uWLVN8fLxCQkLUq1cvffTRRzW237Ztm3r16qWQkBBdd911eu2115qpUgAAWqYCR4ne35Nf5RRagOXy/wZaLJo9LFG/m9xPH89K9dhibMnHp9XWrl2r6dOna9myZRowYIBef/11DRs2TAcOHFCXLpV/qDk5Obrjjjs0efJkvfXWW/rHP/6hadOmqWPHjrr77rs90AMAAPxbdYuupcuBKGNaii6UlSvO3tpjI0VXshhjahrZ8mp9+/bVzTffrOXLlzu33XTTTbrrrruUnp5eqf3MmTP15z//WZ999plz29SpU7V7925lZmbW6jOLi4tls9nkcDgUHh7e8E4AAOCnChwlGrBwc7XBaMGYbs02QlSX72+fHTkqKyvTP//5T82aNctt+9ChQ7V9+/Yq98nMzNTQoUPdtt1+++1auXKlvvvuOwUFBTVZvQAAtBQVZ6SdOl9WZTB6evhNuqN7lNeMFF3JZ8NRUVGRLl26pIiICLftERERKiwsrHKfwsLCKttfvHhRRUVFioqKqrRPaWmpSktLnc+Li4sboXoAAPzTlWekXXlWWqDF4tXBSPKDBdkWi8XtuTGm0rarta9qe4X09HTZbDbnIyYmpoEVAwDgn6o7I8110bUnz0KrLZ8dObLb7QoMDKw0SnT8+PFKo0MVIiMjq2zfqlUrdejQocp9Zs+erRkzZjifFxcXE5AAAHBR0zSakbT03mR1aGP1qkXXNfHZcBQcHKxevXpp06ZNGj16tHP7pk2bNGrUqCr3SUlJ0Xvvvee2bePGjbrllluqXW9ktVpltVobr3AAAPxIbabResVd4xOhqIJPT6vNmDFDv/rVr/TGG2/os88+0+OPP668vDxNnTpV0uVRn/vvv9/ZfurUqTpy5IhmzJihzz77TG+88YZWrlypJ5980lNdAADAZ/nLNNqVfHbkSJLGjRunkydP6tlnn1VBQYG6deumDRs2KDY2VpJUUFCgvLw8Z/v4+Hht2LBBjz/+uH7xi18oOjpar7zyCtc4AgCgHnKKzvvFNNqVfPo6R57AdY4AAC2d681jRy/b7haQAi0WfTwr1etCUYu4zhEAAGh+rmuMAizS6ORr9add+bpkjM9Oo12JcAQAAGrlyjVG5Ub60658r7wFSEMQjgAAQK1UtcbokjG6UFaulISqL4njiwhHAACgWhXri+LtYYq3hynAokprjOLsrT1XYBMgHAEAgCpdub4ofUyS0sckaU7GPr9aY3QlzlarI85WAwC0BAWOEg1YuLnKM9EkKbfogk+tMeJsNQAA0CDVrS/KLbqglIQOPhOK6sOnr5ANAACaRsX6Ilf+uL6oKoQjAADgVOAo0fbDRZIurzEKtFxOSP66vqgqTKsBAABJVS/A/nhWqs+tL2ooRo4AAECVF3ick7FPkvx+jdGVCEcAAKDGBdgtDeEIAAC06AXYVyIcAQDQQlUsvi5wlCjKFtpiF2BfiQXZAAC0QFUtvh7Xu4sGdu3Y4hZgX4lwBABAC1Pd4uuBXTsqyhbaYkNRBabVAABoYVh8XTPCEQAALQyLr2tGOAIAoIXg6te1w5ojAABaAK5+XXuMHAEA4Oe4+nXdEI4AAPBzLMCuG8IRAAB+jgXYdUM4AgDAD3H16/pjQTYAAH6Gq183DOEIAAA/wtWvG45pNQAA/AiLrxuOcAQAgB9h8XXDEY4AAPAjLL5uONYcAQDg4wocJcopOq94e5iibKEsvm4gwhEAAD6sujPTWHxdf0yrAQDgo6o7M63AUeLZwnwc4QgAAB/FmWlNg3AEAICP4sy0pkE4AgDAR3FmWtNgQTYAAD7iyrPSJHFmWhMgHAEA4AOqOytNEmemNTKm1QAA8HKclda8CEcAAHg5zkprXoQjAAC8HGelNS+fDUenT5/WhAkTZLPZZLPZNGHCBJ05c6bGfSZNmiSLxeL26NevX/MUDABAHRQ4SrT9cJEKHCWcldbMfHZB9vjx43Xs2DF9+OGHkqSf/OQnmjBhgt57770a90tLS9OqVaucz4ODg5u0TgAA6qq6xdecldY8fDIcffbZZ/rwww/1ySefqG/fvpKkFStWKCUlRQcPHtSNN95Y7b5Wq1WRkZHNVSoAAHVS3eLrgV07clZaM/HJabXMzEzZbDZnMJKkfv36yWazafv27TXuu3XrVnXq1Eldu3bV5MmTdfz48aYuFwCAWmPxtef55MhRYWGhOnXqVGl7p06dVFhYWO1+w4YN09ixYxUbG6ucnBw9/fTTuvXWW/XPf/5TVqu1yn1KS0tVWlrqfF5cXNzwDgAAUI2KxdeuAYnF183Lq0aO5s+fX2nB9JWPnTt3SpIsFkul/Y0xVW6vMG7cOA0fPlzdunXTyJEj9cEHH+iLL77Q+vXrq90nPT3duejbZrMpJiam4R0FAODfXBdeS9wSxBt41cjRo48+qnvvvbfGNnFxcdqzZ4+++eabSq+dOHFCERERtf68qKgoxcbG6ssvv6y2zezZszVjxgzn8+LiYgISAKBRVLfwmsXXnuVV4chut8tut1+1XUpKihwOh3bs2KE+ffpIkj799FM5HA7179+/1p938uRJHT16VFFRUdW2sVqt1U65AQBQX7VZeE0o8gyvmlarrZtuuklpaWmaPHmyPvnkE33yySeaPHmyRowY4XamWmJiotatWydJOnfunJ588kllZmYqNzdXW7du1ciRI2W32zV69GhPdQUA0EKx8Np7+WQ4kqQ1a9YoKSlJQ4cO1dChQ9W9e3f95je/cWtz8OBBORwOSVJgYKD27t2rUaNGqWvXrpo4caK6du2qzMxMtW3b1hNdAAC0IFeuLeKq197LYowxV2+GCsXFxbLZbHI4HAoPD/d0OQAAH1Dd2qK1WXmak7FPl4xxLrwe17uLp8v1S3X5/vaqNUcAAPibmtYWsfDaOxGOAABoQjWtLWLhtXfy2TVHAAD4AtYW+R7CEQAATYiLOvoeptUAAGhirC3yLYQjAAAaSYGjRDlF5xVvD6sUgFhb5DsIRwAANILqTteH72HNEQAADVTd6foVF3yEbyEcAQDQQNwKxL8QjgAAaCBO1/cvhCMAABqI0/X9CwuyAQCog+rOSON0ff9BOAIAoJaudkYap+v7B6bVAACoBc5IazkIRwAA1AJnpLUchCMAAGqBM9JaDsIRAABXKHCUaPvhIrcpM85IazlYkA0AgIuaFl1zRlrLwMgRAAD/VptF11G2UKUkdCAY+THCEQAA/8aia0iEIwAAnFh0DYlwBACAE4uuIbEgGwAANyy6BuEIANAiVXePNInbgLR0hCMAQItztXukoWVjzREAoEXhHmm4GsIRAKBF4XR9XA3hCADQonC6Pq6GcAQAaFE4XR9Xw4JsAECLw+n6qAnhCADQInG6PqrDtBoAAIALwhEAwC8VOEq0/XARp+ijzphWAwD4HS7yiIZg5AgA4Fe4yCMainAEAPArXOQRDUU4AgD4FS7yiIYiHAEA/AoXeURDsSAbAOB3uMgjGoJwBADwS1zkEfXls9NqL7zwgvr376/WrVurXbt2tdrHGKP58+crOjpaoaGhGjx4sPbv39+0hQIAAJ/is+GorKxMY8eO1cMPP1zrfRYvXqyXX35Zr776qrKyshQZGakhQ4bo7NmzTVgpAKCxcYFHNCWLMcZcvZn3Wr16taZPn64zZ87U2M4Yo+joaE2fPl0zZ86UJJWWlioiIkKLFi3SlClTavV5xcXFstlscjgcCg8Pb2j5AIA64gKPqI+6fH/77MhRXeXk5KiwsFBDhw51brNarRo0aJC2b9/uwcoAALXFBR7RHFrMguzCwkJJUkREhNv2iIgIHTlypNr9SktLVVpa6nxeXFzcNAUCAK6qpgs8svgajcWrRo7mz58vi8VS42Pnzp0N+gyLxf3KYMaYSttcpaeny2azOR8xMTEN+nwAQP1xgUc0B68aOXr00Ud177331tgmLi6uXu8dGRkp6fIIUlRUlHP78ePHK40muZo9e7ZmzJjhfF5cXExAAgAPqbjA45yMfbpkDBd4RJPwqnBkt9tlt9ub5L3j4+MVGRmpTZs2KTk5WdLlM962bdumRYsWVbuf1WqV1WptkpoAAHXHBR7R1LxqWq0u8vLylJ2drby8PF26dEnZ2dnKzs7WuXPnnG0SExO1bt06SZen06ZPn64FCxZo3bp12rdvnyZNmqTWrVtr/PjxnuoGAKAeomyhSknoQDBCk/CqkaO6mDt3rt58803n84rRoC1btmjw4MGSpIMHD8rhcDjbPPXUUyopKdG0adN0+vRp9e3bVxs3blTbtm2btXYAQNUKHCXKKTqveHsYwQce4/PXOWpuXOcIAJoG1y9CU+I6RwAAn8L1i+BNCEcAAI+r6fpFQHMjHAEAPI7rF8GbEI4AAB5Xcf2iwH9flJfrF8GTfPZsNQCAf+H6RfAWhCMAgNeIsoUSiuBxTKsBAAC4IBwBAJpcgaNE2w8XcWo+fALTagCAJsXFHeFrGDkCADQZLu4IX0Q4AgA0GS7uCF9EOAIANBku7ghfRDgCADQZLu4IX8SCbABAk+LijvA1hCMAQJPj4o7wJUyrAQAAuCAcAQAAuCAcAQAAuCAcAQDqhVuCwF+xIBsAUGfcEgT+jJEjAECdcEsQ+DvCEQCgTrglCPwd4QgAUCfcEgT+jnAEAKgTbgkCf8eCbABAnXFLEPgzwhEAoF64JQj8FdNqAAAALghHAAAALghHAAAALghHAABJ3A4EqMCCbAAAtwMBXDByBAAtHLcDAdwRjgCgheN2IIA7whEAtHDcDgRwRzgCgBaO24EA7liQDQDgdiCAC8IRAEAStwMBKjQoHH333XcqLCzUhQsX1LFjR7Vv376x6gIAAPCIOq85OnfunF5//XUNHjxYNptNcXFx+t73vqeOHTsqNjZWkydPVlZWVlPUCgAA0OTqFI5+/vOfKy4uTitWrNCtt96qjIwMZWdn6+DBg8rMzNS8efN08eJFDRkyRGlpafryyy+bqm4AAIAmYTHGmKs3u2zs2LGaO3eukpKSamxXWlqqlStXKjg4WA899FCDi6zKCy+8oPXr1ys7O1vBwcE6c+bMVfeZNGmS3nzzTbdtffv21SeffFLrzy0uLpbNZpPD4VB4eHhdywYAAB5Ql+/vOq05+sMf/uD876NHjyomJqbKdlarVdOmTavLW9dZWVmZxo4dq5SUFK1cubLW+6WlpWnVqlXO58HBwU1RHgAA8FH1XpCdmJioGTNmaNasWQoLC2vMmmrlmWeekSStXr26TvtZrVZFRkY2QUUAAMAf1PsikJs2bdLGjRt1ww03uI3EeLutW7eqU6dO6tq1qyZPnqzjx497uiQAAOBF6h2O+vfvr08//VQLFy7U3LlzlZycrK1btzZiaY1v2LBhWrNmjTZv3qyXXnpJWVlZuvXWW1VaWlrtPqWlpSouLnZ7AIC3K3CUaPvhIm4eC9RDg28fcv/99+uLL77QyJEjNXz4cI0ePVqHDh2q13vNnz9fFoulxsfOnTvrXeu4ceM0fPhwdevWTSNHjtQHH3ygL774QuvXr692n/T0dNlsNuejunVWAOAt1mblacDCzRq/4lMNWLhZa7PyPF0S4FMa5QrZxhgNHTpUZ8+e1SuvvKIPPvhAjzzyiObPn6+2bdvW+n0effRR3XvvvTW2iYuLa2C1/ycqKkqxsbE1XnJg9uzZmjFjhvN5cXExAQmA1ypwlGh2xl6V//s85HIjzcnYp4FdO3L1a6CW6h2OXnvtNWVlZSkrK0ufffaZAgMD1b17dz3yyCPq2bOn1qxZo+9973tat26dbrnlllq9p91ul91ur29JdXby5EkdPXpUUVFR1baxWq2yWq3NVhMANERO0XlnMKpwyRjlFl0gHAG1VO9ptRdeeEHFxcWaOHGitm7dKofDoR07duiVV17Rj3/8Y/3tb3/Tww8/rEmTJjViuf8nLy9P2dnZysvL06VLl5Sdna3s7GydO3fO2SYxMVHr1q2TdPnK3k8++aQyMzOVm5urrVu3auTIkbLb7Ro9enST1AgAzS3eHqYAi/u2QItFcfbWnikI8EH1Hjk6evToVds8+OCDevrpp+v7ETWaO3eu2wUdk5OTJUlbtmzR4MGDJUkHDx6Uw+GQJAUGBmrv3r369a9/rTNnzigqKkqpqalau3Ztnab+AMCbRdlClT4mSXMy9umSMQq0WLRgTDdGjYA6qNMVsuvKGKO///3vGjRoUFN9RLPjCtkAfEGBo0S5RRcUZ29NMALUhFfIzsvLU5cuXWrdPj8/36+CEQD4iihbKKEIqKc6rTnq3bu3Jk+erB07dlTbxuFwaMWKFerWrZsyMjIaXCAAAEBzqtPI0WeffaYFCxYoLS1NQUFBuuWWWxQdHa2QkBCdPn1aBw4c0P79+3XLLbfoxRdf1LBhw5qqbgAAgCZRrzVH3377rTZs2KCPPvpIubm5Kikpkd1uV3Jysm6//XZ169atKWr1Cqw5AgDA99Tl+7tJF2T7I8IRAAC+py7f3w2+fQgAoGlwfzTAM+p9naOsrCzNmjVLJ06c0PXXX6+ePXs6H3U5ow0AUNnarDznbUACLFL6mCSN683/twLNod4jRxMmTFBgYKCmTp2q6667Ttu2bdMDDzyguLg4dejQoTFrBIAWpbr7ozGCBDSPBl0he/369UpISHDbfuTIEWVnZze0LgBosbg/GuBZ9Q5HKSkpOnbsWKVwFBsbq9jY2AYXBgAtVcX90VwDEvdHA5pPvafVZsyYoeeee06nTp1qzHoAoMWruD9aoOXyHWS5PxrQvOp9Kn9AQIAsFovatWunkSNHKiUlRcnJyerRo4esVmtj1+k1OJUfQHPh/mhA42mye6u5+vLLL7V7925lZ2drz549WrhwoY4cOaJWrVopMTFRe/bsqe9bAwDE/dEAT6lTOBo1apTbKftjxozRmDFjnK8XFxc7wxIAAIAvqlM4uuGGG/SPf/xDy5Yt08mTJxUeHq4ePXo4w1JycrJSUlI0cODApqoXAACgSdV7zdGxY8eUnZ3t9sjJyVGrVq100003+e3p/Kw5AgDA9zTLmqPOnTurc+fOGjFihHPbuXPntGvXLqbVAACAz+LGs3XEyBEAAL6HG88CAADUE+EIAADABeEIAJpAgaNE2w8XcbNYwAfVe0E2AKBqa7PyNDtjr8qNFGCR0sckaVzvLp4uC0AtMXIEAI2owFHiDEbS5ZvHzsnYxwgS4EMIRwDQiHKKzjuDUYVLxii36IJnCgJQZ4QjAGhE8fYwBVjctwVaLIqzt/ZMQQDqjHAEAI0oyhaq9DFJCrRcTkiBFosWjOnGDWQBH8KCbABoZON6d9HArh2VW3RBcfbWBCPAxxCOAKAJRNlCCUWAj2JaDQAAwAXhCAAAwAXhCAAAwAXhCAAAwAXhCAAAwAXhCAAAwAXhCAAAwAXhCAAAwAXhCAD+rcBRou2Hi1TgKPF0KQA8iCtkA4CktVl5mp2xV+VGCrBI6WOSNK53F0+XBcADGDkC0OIVOEqcwUiSyo00J2MfI0hAC0U4AtDi5RSddwajCpeMUW7RBc8UBMCjfDIc5ebm6sEHH1R8fLxCQ0OVkJCgefPmqaysrMb9jDGaP3++oqOjFRoaqsGDB2v//v3NVDUAbxVvD1OAxX1boMWiOHtrzxQEwKN8Mhx9/vnnKi8v1+uvv679+/fr5z//uV577TXNmTOnxv0WL16sl19+Wa+++qqysrIUGRmpIUOG6OzZs81UOQBvFGULVfqYJAVaLiekQItFC8Z0U5Qt1MOVAfAEizHGXL2Z93vxxRe1fPlyffXVV1W+boxRdHS0pk+frpkzZ0qSSktLFRERoUWLFmnKlCm1+pzi4mLZbDY5HA6Fh4c3Wv0APK/AUaLcoguKs7cmGAF+pi7f3z45clQVh8Oh9u3bV/t6Tk6OCgsLNXToUOc2q9WqQYMGafv27c1RIgAvF2ULVUpCB4IR0ML5xan8hw8f1tKlS/XSSy9V26awsFCSFBER4bY9IiJCR44cqXa/0tJSlZaWOp8XFxc3sFoAAODNvGrkaP78+bJYLDU+du7c6bZPfn6+0tLSNHbsWD300ENX/QyLxX3VpTGm0jZX6enpstlszkdMTEz9OgcAAHyCV605KioqUlFRUY1t4uLiFBISIulyMEpNTVXfvn21evVqBQRUn/W++uorJSQk6F//+peSk5Od20eNGqV27drpzTffrHK/qkaOYmJiWHMEAIAPqcuaI6+aVrPb7bLb7bVq+/XXXys1NVW9evXSqlWragxGkhQfH6/IyEht2rTJGY7Kysq0bds2LVq0qNr9rFarrFZr7TsBAAB8mldNq9VWfn6+Bg8erJiYGC1ZskQnTpxQYWGhc11RhcTERK1bt07S5em06dOna8GCBVq3bp327dunSZMmqXXr1ho/frwnugEAALyQV40c1dbGjRt16NAhHTp0SJ07d3Z7zXWW8ODBg3I4HM7nTz31lEpKSjRt2jSdPn1affv21caNG9W2bdtmqx0AAHg3r1pz5Au4zhEAAL6nRV7nCAAAoDEQjgAAAFwQjgAAAFwQjgAAAFwQjgAAAFwQjgD4lAJHibYfLlKBo8TTpQDwUz55nSMALdParDzNztirciMFWKT0MUka17uLp8sC4GcYOQLgEwocJc5gJEnlRpqTsY8RJACNjnAEwCfkFJ13BqMKl4xRbtEFzxQEwG8RjgD4hHh7mAIs7tsCLRbF2Vt7piAAfotwBMAnRNlClT4mSYGWywkp0GLRgjHdFGUL9XBlAPwNC7IB+IxxvbtoYNeOyi26oDh7a4IRgCZBOALgU6JsoYQiAE2KaTUAAAAXhCMAAAAXhCMAAAAXhCMAAAAXhCMAAAAXhCMAAAAXhCMAAAAXhCMAAAAXhCMAAAAXhCMAAAAXhCMAAAAXhCMADVLgKNH2w0UqcJR4uhQAaBTceBZAva3NytPsjL0qN1KARUofk6Rxvbt4uiwAaBBGjgDUS4GjxBmMJKncSHMy9jGCBMDnEY4A1EtO0XlnMKpwyRjlFl3wTEEA0EgIRwDqJd4epgCL+7ZAi0Vx9taeKQgAGgnhCEC9RNlClT4mSYGWywkp0GLRgjHdFGUL9XBlANAwLMgGUG/jenfRwK4dlVt0QXH21gQjAH6BcASgQaJsoYQiAH6FaTUAAAAXhCMAAAAXhCMAAAAXhCMAAAAXhCMAAAAXhCMAAAAXhCMAAAAXhCMAAAAXPhmOcnNz9eCDDyo+Pl6hoaFKSEjQvHnzVFZWVuN+kyZNksVicXv069evmaoGAAC+wCevkP3555+rvLxcr7/+uq6//nrt27dPkydP1vnz57VkyZIa901LS9OqVaucz4ODg5u6XAAA4EN8MhylpaUpLS3N+fy6667TwYMHtXz58quGI6vVqsjIyKYuEQAA+CifnFarisPhUPv27a/abuvWrerUqZO6du2qyZMn6/jx481QHQAA8BU+OXJ0pcOHD2vp0qV66aWXamw3bNgwjR07VrGxscrJydHTTz+tW2+9Vf/85z9ltVqr3Ke0tFSlpaXO58XFxY1aOwAA8C5eNXI0f/78Sgumr3zs3LnTbZ/8/HylpaVp7Nixeuihh2p8/3Hjxmn48OHq1q2bRo4cqQ8++EBffPGF1q9fX+0+6enpstlszkdMTEyj9BUAAHgnizHGeLqICkVFRSoqKqqxTVxcnEJCQiRdDkapqanq27evVq9erYCAume9G264QQ899JBmzpxZ5etVjRzFxMTI4XAoPDy8zp8HAACaX3FxsWw2W62+v71qWs1ut8tut9eq7ddff63U1FT16tVLq1atqlcwOnnypI4ePaqoqKhq21it1mqn3AAAgP/xqmm12srPz9fgwYMVExOjJUuW6MSJEyosLFRhYaFbu8TERK1bt06SdO7cOT355JPKzMxUbm6utm7dqpEjR8put2v06NGe6AZQLwWOEm0/XKQCR4mnSwEAv+RVI0e1tXHjRh06dEiHDh1S586d3V5znSU8ePCgHA6HJCkwMFB79+7Vr3/9a505c0ZRUVFKTU3V2rVr1bZt22atH6ivtVl5mp2xV+VGCrBI6WOSNK53F0+XBQB+xavWHPmCusxZAo2pwFGiAQs3q9zlLzbQYtHHs1IVZQv1XGEA4APq8v3tk9NqQEuUU3TeLRhJ0iVjlFt0wTMFAYCfIhwBPiLeHqYAi/u2QItFcfbWnikIAPwU4QjwEVG2UKWPSVKg5XJCCrRYtGBMN6bUAKCR+eSCbKClGte7iwZ27ajcoguKs7cmGAFAEyAcAT4myhZKKAKAJsS0GgAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEQAAgAvCEVqEAkeJth8uUoGjxNOlAAC8XCtPFwA0tbVZeZqdsVflRgqwSOljkjSudxdPlwUA8FKMHMGvFThKnMFIksqNNCdjHyNIAIBqEY7g13KKzjuDUYVLxii36IJnCgIAeD3CEfxavD1MARb3bYEWi+LsrT1TEADA6xGO4NeibKFKH5OkQMvlhBRosWjBmG6KsoV6uDIAgLdiQTb83rjeXTSwa0flFl1QnL01wQgAUCPCEVqEKFsooQgAUCtMqwEAALggHAEAALggHAEAALggHAEAALggHAEAALggHAEAALjw2XB05513qkuXLgoJCVFUVJQmTJig/Pz8Gvcxxmj+/PmKjo5WaGioBg8erP379zdTxQAAwBf4bDhKTU3V73//ex08eFDvvPOODh8+rHvuuafGfRYvXqyXX35Zr776qrKyshQZGakhQ4bo7NmzzVQ1AADwdhZjjLl6M+/35z//WXfddZdKS0sVFBRU6XVjjKKjozV9+nTNnDlTklRaWqqIiAgtWrRIU6ZMqdXnFBcXy2azyeFwKDw8vFH7AAAAmkZdvr99duTI1alTp7RmzRr179+/ymAkSTk5OSosLNTQoUOd26xWqwYNGqTt27c3V6kAAMDL+XQ4mjlzpsLCwtShQwfl5eXp3XffrbZtYWGhJCkiIsJte0REhPO1qpSWlqq4uNjtAQAA/JdXhaP58+fLYrHU+Ni5c6ez/U9/+lPt2rVLGzduVGBgoO6//35dbZbQ8u+7s1cwxlTa5io9PV02m835iImJaVgnAQCAV/OqNUdFRUUqKiqqsU1cXJxCQkIqbT927JhiYmK0fft2paSkVHr9q6++UkJCgv71r38pOTnZuX3UqFFq166d3nzzzSo/r7S0VKWlpc7nxcXFiomJYc0RAAA+pC5rjlo1U021YrfbZbfb67VvRcZzDTKu4uPjFRkZqU2bNjnDUVlZmbZt26ZFixZV+75Wq1VWq7VeNQEAAN/jVdNqtbVjxw69+uqrys7O1pEjR7RlyxaNHz9eCQkJbqNGiYmJWrdunaTL02nTp0/XggULtG7dOu3bt0+TJk1S69atNX78eE91BQAAeBmvGjmqrdDQUGVkZGjevHk6f/68oqKilJaWprffftttlOfgwYNyOBzO50899ZRKSko0bdo0nT59Wn379tXGjRvVtm1bT3QDAAB4Ia9ac+QLuM4RAAC+p8Vd5wgAAKCxEI4AAABcEI4AAABcEI4AAABcEI4AAABcEI4AAABcEI4AAABcEI4AAABcEI4AAABcEI4AAABcEI4AAABcEI4AAABcEI4AAABcEI68SIGjRNsPF6nAUeLpUgAAaLFaeboAXLY2K0+zM/aq3EgBFil9TJLG9e7i6bIAAGhxGDnyAgWOEmcwkqRyI83J2McIEgAAHkA48gI5ReedwajCJWOUW3TBMwUBANCCEY68QLw9TAEW922BFovi7K09UxAAAC0Y4cgLRNlClT4mSYGWywkp0GLRgjHdFGUL9XBlAAC0PCzI9hLjenfRwK4dlVt0QXH21gQjAAA8hHDkRaJsoYQiAAA8jGk1AAAAF4QjAAAAF4QjAAAAF4QjAAAAF4QjAAAAF4QjAAAAF4QjAAAAF4QjAAAAF4QjAAAAF4QjAAAAF4QjAAAAF9xbrY6MMZKk4uJiD1cCAABqq+J7u+J7vCaEozo6e/asJCkmJsbDlQAAgLo6e/asbDZbjW0spjYRCk7l5eXKz89X27ZtZbFYPF1OkyguLlZMTIyOHj2q8PBwT5fTrOh7y+t7S+23RN/pe8vquzFGZ8+eVXR0tAICal5VxMhRHQUEBKhz586eLqNZhIeHt6g/HFf0veX1vaX2W6Lv9L3luNqIUQUWZAMAALggHAEAALggHKESq9WqefPmyWq1erqUZkffW17fW2q/JfpO31te32uLBdkAAAAuGDkCAABwQTgCAABwQTgCAABwQTgCAABwQTiC7rzzTnXp0kUhISGKiorShAkTlJ+fX+M+xhjNnz9f0dHRCg0N1eDBg7V///5mqrhx5Obm6sEHH1R8fLxCQ0OVkJCgefPmqaysrMb9Jk2aJIvF4vbo169fM1XdOOrbd3847pL0wgsvqH///mrdurXatWtXq3384bhL9eu7vxz306dPa8KECbLZbLLZbJowYYLOnDlT4z6+etyXLVum+Ph4hYSEqFevXvroo49qbL9t2zb16tVLISEhuu666/Taa681U6XeiXAEpaam6ve//70OHjyod955R4cPH9Y999xT4z6LFy/Wyy+/rFdffVVZWVmKjIzUkCFDnPee8wWff/65ysvL9frrr2v//v36+c9/rtdee01z5sy56r5paWkqKChwPjZs2NAMFTee+vbdH467JJWVlWns2LF6+OGH67Sfrx93qX5995fjPn78eGVnZ+vDDz/Uhx9+qOzsbE2YMOGq+/nacV+7dq2mT5+un/3sZ9q1a5d+8IMfaNiwYcrLy6uyfU5Oju644w794Ac/0K5duzRnzhw99thjeuedd5q5ci9igCu8++67xmKxmLKysipfLy8vN5GRkWbhwoXObd9++62x2Wzmtddea64ym8TixYtNfHx8jW0mTpxoRo0a1TwFNaOr9d0fj/uqVauMzWarVVt/O+617bu/HPcDBw4YSeaTTz5xbsvMzDSSzOeff17tfr543Pv06WOmTp3qti0xMdHMmjWryvZPPfWUSUxMdNs2ZcoU069fvyar0dsxcgQ3p06d0po1a9S/f38FBQVV2SYnJ0eFhYUaOnSoc5vVatWgQYO0ffv25iq1STgcDrVv3/6q7bZu3apOnTqpa9eumjx5so4fP94M1TWtq/Xdn497bfnjcb8afznumZmZstls6tu3r3Nbv379ZLPZrtoPXzruZWVl+uc//+l2vCRp6NCh1fYzMzOzUvvbb79dO3fu1HfffddktXozwhEkSTNnzlRYWJg6dOigvLw8vfvuu9W2LSwslCRFRES4bY+IiHC+5osOHz6spUuXaurUqTW2GzZsmNasWaPNmzfrpZdeUlZWlm699VaVlpY2U6WNrzZ999fjXlv+eNxrw1+Oe2FhoTp16lRpe6dOnWrsh68d96KiIl26dKlOx6uwsLDK9hcvXlRRUVGT1erNCEd+av78+ZUWEV752Llzp7P9T3/6U+3atUsbN25UYGCg7r//fpmrXDzdYrG4PTfGVNrmCXXtuyTl5+crLS1NY8eO1UMPPVTj+48bN07Dhw9Xt27dNHLkSH3wwQf64osvtH79+qbsVq00dd8l/zrudeFvx72u/OG4V1Xv1frhzce9JnU9XlW1r2p7S9HK0wWgaTz66KO69957a2wTFxfn/G+73S673a6uXbvqpptuUkxMjD755BOlpKRU2i8yMlLS5X9tREVFObcfP3680r8+PKGufc/Pz1dqaqpSUlL0y1/+ss6fFxUVpdjYWH355Zd13rexNWXf/e24N5QvH/e68JfjvmfPHn3zzTeVXjtx4kSd+uFNx70qdrtdgYGBlUaJajpekZGRVbZv1aqVOnTo0GS1ejPCkZ+qCDv1UfEvhuqGjePj4xUZGalNmzYpOTlZ0uV57m3btmnRokX1K7gR1aXvX3/9tVJTU9WrVy+tWrVKAQF1H0w9efKkjh496vbF4SlN2Xd/Ou6NwVePe135y3FPSUmRw+HQjh071KdPH0nSp59+KofDof79+9f687zpuFclODhYvXr10qZNmzR69Gjn9k2bNmnUqFFV7pOSkqL33nvPbdvGjRt1yy23VLv21O95bi04vMGnn35qli5danbt2mVyc3PN5s2bzX/8x3+YhIQE8+233zrb3XjjjSYjI8P5fOHChcZms5mMjAyzd+9e86Mf/chERUWZ4uJiT3SjXr7++mtz/fXXm1tvvdUcO3bMFBQUOB+uXPt+9uxZ88QTT5jt27ebnJwcs2XLFpOSkmKuvfZav++7Mf5x3I0x5siRI2bXrl3mmWeeMW3atDG7du0yu3btMmfPnnW28cfjbkzd+26M/xz3tLQ00717d5OZmWkyMzNNUlKSGTFihFsbfzjub7/9tgkKCjIrV640Bw4cMNOnTzdhYWEmNzfXGGPMrFmzzIQJE5ztv/rqK9O6dWvz+OOPmwMHDpiVK1eaoKAg88c//tFTXfA4wlELt2fPHpOammrat29vrFariYuLM1OnTjXHjh1zayfJrFq1yvm8vLzczJs3z0RGRhqr1WoGDhxo9u7d28zVN8yqVauMpCofrlz7fuHCBTN06FDTsWNHExQUZLp06WImTpxo8vLyPNCD+qtP343xj+NuzOXTs6vq+5YtW5xt/PG4G1P3vhvjP8f95MmT5r777jNt27Y1bdu2Nffdd585ffq0Wxt/Oe6/+MUvTGxsrAkODjY333yz2bZtm/O1iRMnmkGDBrm137p1q0lOTjbBwcEmLi7OLF++vJkr9i4WY66y6hYAAKAF4Ww1AAAAF4QjAAAAF4QjAAAAF4QjAAAAF4QjAAAAF4QjAAAAF4QjAAAAF4QjAAAAF4QjAAAAF4QjAH7tiSee0MiRI2vd/uTJk+rUqZNyc3NrbHfPPffo5ZdfbmB1ALwR4QiAX8vOzlbPnj1r3T49PV0jR45UXFyc2/bp06frrrvucj6fO3euXnjhBRUXFzdOoQC8BuEIgF/bvXt3rcNRSUmJVq5cqYceeqjSa1lZWerTp4/zeffu3RUXF6c1a9Y0VqkAvAThCIDfOnr0qE6ePKmePXvq0KFDslgsWr9+vW677Ta1bt1aN954oz799FNn+w8++ECtWrVSSkqKc9t3332n4OBgbd++XT/72c9ksVjUt29fSdKdd96p3/3ud83eLwBNi3AEwG9lZ2erbdu2uu6667R7925ZLBa99NJL+p//+R/t3r1bXbp00axZs5zt//73v+uWW25xe4/AwEB9/PHHzvcrKCjQX/7yF0lSnz59tGPHDpWWljZfpwA0uVaeLgAAmkp2drZ69Oghi8Wi3bt3y2azae3aterYsaMk6a677tLy5cud7XNzcxUdHe32HgEBAcrPz1eHDh3Uo0cPt9euvfZalZaWqrCwULGxsU3fIQDNgpEjAH7LdTH27t27NXLkSGcwkqSvvvpK119/vfN5SUmJQkJCKr3Prl27KgUjSQoNDZUkXbhwoZErB+BJhCMAfuvKcOS6lki6HHpcF2vb7XadPn26yvepKhydOnVKktwCFwDfRzgC4JfOnj2rnJwc9ezZUw6HQ0eOHFFycrJbmytP809OTtaBAwcqvdfevXvVvXv3Stv37dunzp07y263N3r9ADyHcATAL2VnZyswMFDdunXT7t27FRgY6Db6c+TIEZ0+fdotHN1+++3av39/pdGj8vJy7dmzR/n5+XI4HM7tH330kYYOHdrkfQHQvAhHAPzS7t27lZiYKKvV6vzvijVC0uUptXbt2rld7DEpKUm33HKLfv/737u91/PPP6+1a9fq2muv1bPPPitJ+vbbb7Vu3TpNnjy5WfoDoPlYjDHG00UAgLfYsGGDnnzySe3bt08BAdX/+/EXv/iF3n33XW3cuLEZqwPQHDiVHwBc3HHHHfryyy/19ddfKyYmptp2QUFBWrp0aTNWBqC5MHIEAADggjVHAAAALghHAAAALghHAAAALghHAAAALghHAAAALghHAAAALghHAAAALghHAAAALghHAAAALghHAAAALv4/u5x1w6E5az0AAAAASUVORK5CYII=\n",
+      "text/plain": [
+       "<Figure size 640x480 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "plt.figure()\n",
+    "plt.plot(x,y,'.')\n",
+    "plt.xlabel(r'$ln(t)$')\n",
+    "plt.ylabel(r'$ln(y)$')\n",
+    "plt.title(\"Linealización servilleta extendida\")\n",
+    "plt.savefig('linealization_servilletaext.pdf', bbox_inches = 'tight')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "id": "sJ9O5cwzLp8l"
+   },
+   "source": [
+    "Cálculo del error y gráfica"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "id": "HeNISxEJMC9N"
+   },
+   "source": [
+    "Se dividiran los datos en instantes y tiempos respectivos para sacar el error correspondiente al experimento."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 44,
+   "metadata": {
+    "id": "RboN6cxaLpR2"
+   },
+   "outputs": [],
+   "source": [
+    "a1=datos1[:,0]\n",
+    "a2=datos2[:,0]\n",
+    "a3=datos3[:,0]\n",
+    "a4=datos4[:,0]\n",
+    "a5=datos5[:,0]\n",
+    "a6=datos6[:,0]\n",
+    "a7=datos7[:,0]\n",
+    "a8=datos8[:,0]\n",
+    "a9=datos9[:,0]\n",
+    "a10=datos10[:,0]\n",
+    "\n",
+    "b1=datos1[:,1]\n",
+    "b2=datos2[:,1]\n",
+    "b3=datos3[:,1]\n",
+    "b4=datos4[:,1]\n",
+    "b5=datos5[:,1]\n",
+    "b6=datos6[:,1]\n",
+    "b7=datos7[:,1]\n",
+    "b8=datos8[:,1]\n",
+    "b9=datos9[:,1]\n",
+    "b10=datos10[:,1]"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 45,
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/"
+    },
+    "id": "I8H8-RmJL-cA",
+    "outputId": "fb6c6f7d-e1c7-4592-e298-80c16cab80fb"
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "[[ 4.386e-02  5.354e-02  8.819e-02  1.050e-01  1.280e-01  1.480e-01\n",
+      "   1.790e-01  2.020e-01  2.410e-01  2.710e-01  3.020e-01  3.320e-01\n",
+      "   3.620e-01  3.870e-01  4.020e-01  4.250e-01  4.530e-01  4.860e-01\n",
+      "   5.270e-01  5.660e-01  6.010e-01  6.220e-01  6.260e-01  6.380e-01\n",
+      "   6.550e-01  6.850e-01  7.250e-01  7.740e-01  8.280e-01  8.890e-01\n",
+      "   9.360e-01  9.640e-01  9.790e-01  9.910e-01  9.940e-01  1.005e+00\n",
+      "   1.021e+00]\n",
+      " [ 1.408e-02  2.240e-02  2.348e-02  4.094e-02  6.097e-02  7.753e-02\n",
+      "   1.020e-01  1.320e-01  1.590e-01  1.910e-01  2.170e-01  2.420e-01\n",
+      "   2.750e-01  2.960e-01  3.140e-01  3.580e-01  3.710e-01  3.950e-01\n",
+      "   4.310e-01  4.800e-01  5.780e-01  6.200e-01  6.860e-01  7.390e-01\n",
+      "   7.810e-01  8.310e-01  8.400e-01  8.560e-01  8.720e-01  9.110e-01\n",
+      "   9.550e-01  1.001e+00  1.057e+00  1.124e+00  1.150e+00  1.167e+00\n",
+      "   1.173e+00]\n",
+      " [ 2.132e-02  2.402e-02  4.794e-02  7.765e-02  1.020e-01  1.270e-01\n",
+      "   1.520e-01  1.720e-01  1.770e-01  2.020e-01  2.450e-01  2.760e-01\n",
+      "   3.140e-01  3.430e-01  3.800e-01  4.180e-01  4.310e-01  4.420e-01\n",
+      "   4.470e-01  4.780e-01  5.230e-01  5.570e-01  6.120e-01  6.480e-01\n",
+      "   6.930e-01  7.550e-01  8.320e-01  8.770e-01  9.270e-01  9.730e-01\n",
+      "   1.006e+00  1.029e+00  1.057e+00  1.054e+00  1.082e+00  1.113e+00\n",
+      "   1.122e+00]\n",
+      " [-2.527e-03 -4.005e-03 -6.829e-04  1.399e-02  3.424e-02  5.185e-02\n",
+      "   8.084e-02  9.654e-02  1.240e-01  1.510e-01  1.810e-01  2.080e-01\n",
+      "   2.360e-01  2.330e-01  2.490e-01  3.210e-01  4.450e-01  5.170e-01\n",
+      "   5.850e-01  6.340e-01  6.400e-01  6.310e-01  6.340e-01  6.540e-01\n",
+      "   6.890e-01  7.290e-01  7.670e-01  8.240e-01  8.610e-01  8.870e-01\n",
+      "   9.070e-01  9.300e-01  9.470e-01  9.670e-01  1.011e+00  1.042e+00\n",
+      "   1.056e+00]\n",
+      " [ 2.048e-02  2.919e-02  4.365e-02  7.058e-02  9.657e-02  9.288e-02\n",
+      "   1.280e-01  1.600e-01  1.870e-01  1.990e-01  2.290e-01  2.510e-01\n",
+      "   2.860e-01  3.210e-01  3.630e-01  4.050e-01  4.440e-01  4.880e-01\n",
+      "   5.120e-01  5.410e-01  5.730e-01  6.080e-01  6.400e-01  6.590e-01\n",
+      "   6.770e-01  6.960e-01  7.170e-01  7.470e-01  7.840e-01  8.190e-01\n",
+      "   8.540e-01  9.230e-01  9.440e-01  9.790e-01  1.006e+00  1.024e+00\n",
+      "   1.040e+00]\n",
+      " [ 1.954e-02  1.682e-02  1.893e-02  4.444e-02  5.556e-02  8.611e-02\n",
+      "   1.000e-01  1.170e-01  1.420e-01  1.500e-01  1.670e-01  2.000e-01\n",
+      "   2.390e-01  2.890e-01  3.280e-01  3.810e-01  4.190e-01  4.670e-01\n",
+      "   5.060e-01  5.390e-01  5.690e-01  6.030e-01  6.280e-01  6.560e-01\n",
+      "   6.690e-01  6.940e-01  7.330e-01  7.890e-01  8.500e-01  9.030e-01\n",
+      "   9.560e-01  9.890e-01  1.022e+00  1.042e+00  1.028e+00  1.019e+00\n",
+      "   1.019e+00]\n",
+      " [ 2.226e-02  2.522e-02  6.379e-02  4.883e-02  6.481e-02  9.463e-02\n",
+      "   1.260e-01  1.590e-01  1.830e-01  2.130e-01  2.500e-01  2.910e-01\n",
+      "   3.230e-01  3.630e-01  4.010e-01  4.280e-01  4.490e-01  4.630e-01\n",
+      "   4.790e-01  4.820e-01  4.950e-01  5.220e-01  5.540e-01  6.160e-01\n",
+      "   6.780e-01  7.620e-01  8.290e-01  8.880e-01  9.390e-01  9.690e-01\n",
+      "   1.023e+00  1.047e+00  1.066e+00  1.098e+00  1.122e+00  1.141e+00\n",
+      "   1.146e+00]\n",
+      " [ 3.664e-02  5.981e-02  8.268e-02  1.170e-01  1.390e-01  1.620e-01\n",
+      "   1.850e-01  2.080e-01  2.330e-01  2.610e-01  2.910e-01  3.190e-01\n",
+      "   3.460e-01  3.800e-01  4.090e-01  4.350e-01  4.540e-01  4.670e-01\n",
+      "   4.780e-01  4.870e-01  4.910e-01  5.000e-01  5.230e-01  5.570e-01\n",
+      "   6.000e-01  6.510e-01  7.000e-01  7.430e-01  7.880e-01  8.150e-01\n",
+      "   8.620e-01  8.790e-01  8.990e-01  9.220e-01  9.380e-01  9.570e-01\n",
+      "   9.630e-01]\n",
+      " [ 7.714e-02  9.663e-02  1.220e-01  1.490e-01  1.700e-01  1.910e-01\n",
+      "   2.120e-01  2.350e-01  2.710e-01  2.980e-01  3.440e-01  3.770e-01\n",
+      "   4.070e-01  4.300e-01  4.520e-01  4.720e-01  4.980e-01  5.280e-01\n",
+      "   5.610e-01  5.970e-01  6.330e-01  6.660e-01  6.950e-01  7.050e-01\n",
+      "   7.180e-01  7.210e-01  7.310e-01  7.440e-01  7.770e-01  8.130e-01\n",
+      "   8.520e-01  9.050e-01  9.670e-01  1.030e+00  1.085e+00  1.128e+00\n",
+      "   1.197e+00]\n",
+      " [ 5.660e-02  7.698e-02  9.283e-02  1.060e-01  1.270e-01  1.450e-01\n",
+      "   1.650e-01  1.920e-01  2.220e-01  2.540e-01  2.900e-01  3.150e-01\n",
+      "   3.440e-01  3.760e-01  3.980e-01  4.050e-01  4.420e-01  4.550e-01\n",
+      "   4.550e-01  4.690e-01  5.160e-01  5.300e-01  5.620e-01  6.230e-01\n",
+      "   6.950e-01  7.490e-01  7.880e-01  8.040e-01  8.220e-01  8.450e-01\n",
+      "   8.740e-01  9.100e-01  9.550e-01  9.960e-01  1.014e+00  1.028e+00\n",
+      "   1.046e+00]]\n"
+     ]
+    }
+   ],
+   "source": [
+    "Alturas=np.array([b1,b2,b3,b4,b5,b6,b7,b8,b9,b10])\n",
+    "print(Alturas)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 46,
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/"
+    },
+    "id": "7CrQFq8NMBRt",
+    "outputId": "9ee5b968-ec66-487a-f0d5-d86be7f72d3b"
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "[[0.    0.04  0.08  0.12  0.16  0.2   0.24  0.28  0.32  0.36  0.4   0.44\n",
+      "  0.48  0.52  0.561 0.601 0.641 0.681 0.721 0.761 0.801 0.841 0.881 0.921\n",
+      "  0.961 1.001 1.041 1.081 1.121 1.161 1.201 1.241 1.281 1.321 1.361 1.401\n",
+      "  1.441]\n",
+      " [0.    0.04  0.08  0.12  0.16  0.2   0.24  0.28  0.32  0.36  0.4   0.44\n",
+      "  0.48  0.52  0.56  0.601 0.641 0.681 0.721 0.761 0.801 0.841 0.881 0.921\n",
+      "  0.961 1.001 1.041 1.081 1.121 1.161 1.201 1.241 1.281 1.321 1.361 1.401\n",
+      "  1.441]\n",
+      " [0.    0.04  0.08  0.12  0.16  0.2   0.24  0.28  0.32  0.36  0.4   0.44\n",
+      "  0.48  0.521 0.561 0.601 0.641 0.681 0.721 0.761 0.801 0.841 0.881 0.921\n",
+      "  0.961 1.001 1.041 1.081 1.121 1.161 1.201 1.241 1.281 1.321 1.361 1.401\n",
+      "  1.441]\n",
+      " [0.    0.04  0.08  0.12  0.16  0.2   0.24  0.28  0.32  0.36  0.4   0.44\n",
+      "  0.48  0.52  0.56  0.601 0.641 0.681 0.721 0.761 0.801 0.841 0.881 0.921\n",
+      "  0.961 1.001 1.041 1.081 1.121 1.161 1.201 1.241 1.281 1.321 1.361 1.401\n",
+      "  1.441]\n",
+      " [0.    0.04  0.08  0.12  0.16  0.2   0.24  0.28  0.32  0.36  0.4   0.44\n",
+      "  0.48  0.52  0.561 0.601 0.641 0.681 0.721 0.761 0.801 0.841 0.881 0.921\n",
+      "  0.961 1.001 1.041 1.081 1.121 1.161 1.201 1.241 1.281 1.321 1.361 1.401\n",
+      "  1.441]\n",
+      " [0.    0.04  0.08  0.12  0.16  0.2   0.24  0.28  0.32  0.36  0.4   0.44\n",
+      "  0.48  0.52  0.56  0.601 0.641 0.681 0.721 0.761 0.801 0.841 0.881 0.921\n",
+      "  0.961 1.001 1.041 1.081 1.121 1.161 1.201 1.241 1.281 1.321 1.361 1.401\n",
+      "  1.441]\n",
+      " [0.    0.04  0.08  0.12  0.16  0.2   0.24  0.28  0.32  0.36  0.4   0.44\n",
+      "  0.48  0.52  0.56  0.601 0.641 0.681 0.721 0.761 0.801 0.841 0.881 0.921\n",
+      "  0.961 1.001 1.041 1.081 1.121 1.161 1.201 1.241 1.281 1.321 1.361 1.401\n",
+      "  1.441]\n",
+      " [0.    0.033 0.067 0.1   0.133 0.167 0.2   0.233 0.267 0.3   0.333 0.367\n",
+      "  0.4   0.433 0.467 0.5   0.533 0.567 0.6   0.633 0.667 0.7   0.733 0.767\n",
+      "  0.8   0.833 0.867 0.9   0.933 0.967 1.    1.033 1.067 1.1   1.133 1.167\n",
+      "  1.2  ]\n",
+      " [0.    0.033 0.067 0.1   0.133 0.167 0.2   0.233 0.267 0.3   0.333 0.367\n",
+      "  0.4   0.433 0.467 0.5   0.533 0.567 0.6   0.633 0.667 0.7   0.733 0.767\n",
+      "  0.8   0.833 0.867 0.9   0.933 0.966 1.    1.033 1.066 1.1   1.133 1.166\n",
+      "  1.2  ]\n",
+      " [0.    0.033 0.067 0.1   0.133 0.167 0.2   0.233 0.267 0.3   0.333 0.367\n",
+      "  0.4   0.433 0.467 0.5   0.533 0.567 0.6   0.633 0.667 0.7   0.733 0.767\n",
+      "  0.8   0.833 0.867 0.9   0.933 0.967 1.    1.033 1.067 1.1   1.133 1.167\n",
+      "  1.2  ]]\n"
+     ]
+    }
+   ],
+   "source": [
+    "tiempo=np.array([a1,a2,a3,a4,a5,a6,a7,a8,a9,a10])\n",
+    "print(tiempo)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 47,
+   "metadata": {
+    "id": "W7wdXZRuMNY2"
+   },
+   "outputs": [],
+   "source": [
+    "tiempo_prom=tiempo.mean(axis=0)\n",
+    "tiempo_error=tiempo.std(axis=0)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 48,
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/"
+    },
+    "id": "uZXhJlInMP4P",
+    "outputId": "fa7486f5-cf3f-48fa-d372-5ecd5e07426e"
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "37"
+      ]
+     },
+     "execution_count": 48,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "len(tiempo_prom)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 49,
+   "metadata": {
+    "id": "qqv159BYMbRT"
+   },
+   "outputs": [],
+   "source": [
+    "y_prom=Alturas.mean(axis=0)\n",
+    "y_error=Alturas.std(axis=0)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 50,
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/"
+    },
+    "id": "Ag-zM9cxMe3O",
+    "outputId": "ca3a33e4-8466-415a-ed14-bb47f7e09c30"
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "37"
+      ]
+     },
+     "execution_count": 50,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "len(y_prom)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "id": "pqtD9FdmMhMl"
+   },
+   "source": [
+    "Gráfica del error:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 111,
+   "metadata": {
+    "colab": {
+     "base_uri": "https://localhost:8080/",
+     "height": 470
+    },
+    "id": "CUOF0CZUMgln",
+    "outputId": "0c84b974-2bb2-4b6c-a58d-975607c25e0e"
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "<function matplotlib.pyplot.show(close=None, block=None)>"
+      ]
+     },
+     "execution_count": 111,
+     "metadata": {},
+     "output_type": "execute_result"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGxCAYAAACwbLZkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA+a0lEQVR4nO3deXhU9b3H8U8gJMOWaFhCgABRQEAqQhCBSFGEsIlLVbh1YdVrREshYg1i2WpNpbeUuiTQCkkRpAgq0ksE4gYoXAUEK4bWDQ1qAgWuSSSSkOTcP3JnzGRmkjmTmUxm5v16nnke5uScM7+TZebLb/mcMMMwDAEAAPhJM383AAAAhDaKEQAA4FcUIwAAwK8oRgAAgF9RjAAAAL+iGAEAAH5FMQIAAPyKYgQAAPgVxQgAAPArihEEvezsbIWFhbl8vP322/5uYkC49tprde2119ptCwsL05IlS2zP3377bY+/p3l5eVqyZIm+/PLLBrXT15pKO2t/762/5+60y9nPEvCncH83AGgsWVlZ6tOnj8P2fv36+aE1gScjI8On58/Ly9PSpUt17bXXqkePHj59rYZoqu2cOHGi9u/fr7i4OH83BTCNYgQho3///ho8eLCpYwzD0Pnz59WyZUuHr/3www+yWCwKCwvzuE2lpaVq1aqVx8c3hNnXpmhr2jp06KAOHTr4uxmARximAWoICwvTgw8+qFWrVqlv376KjIzUX//6V1sX+K5duzRz5kx16NBBrVq1UllZmaqqqrR8+XL16dNHkZGR6tixo6ZOnaqvv/7a7tzXXnut+vfvrz179mj48OFq1aqVZs6c6bItX3zxhf7jP/5DnTt3VmRkpGJjY3X99dfryJEjdvtt2rRJw4YNU+vWrdWmTRuNHTtWhw8ftttn+vTpatOmjT766CMlJyerbdu2uv766zV37ly1bt1axcXFDq8/ZcoUxcbG6sKFC7b2e9q1f/DgQd14442KiYmRxWLRwIED9eKLL9q+np2drdtvv12SdN1119mG0LKzsyVJubm5uummm9S1a1dZLBb17NlT9913n06fPu3W6xcXF2v+/PlKSEhQRESEunTporlz5+rcuXO2fVJSUmSxWHTo0CHbtqqqKl1//fWKjY1VQUFBve2UpNdff13XX3+9oqKi1KpVKyUlJemNN96wa8+SJUsUFhamjz/+WD//+c8VHR2t2NhYzZw5U0VFRQ5tv/fee9WuXTu1adNG48aN0yeffOJwjc6GaQzD0PLly9W9e3dZLBYNGjRIr732msOx58+f10MPPaQrr7xS0dHRiomJ0bBhw/Tqq6+69f0FGopiBCGjsrJSFRUVdo/KykqH/bZu3arMzEwtWrRIO3fu1IgRI2xfmzlzplq0aKHnn39eW7ZsUYsWLXT//ffrkUce0ZgxY7Rt2zb95je/0Y4dOzR8+HCHD8uCggLddddduuOOO5STk6PZs2e7bO+ECRN06NAhLV++XLm5ucrMzNTAgQP13Xff2fZ54okn9POf/1z9+vXTiy++qOeff14lJSUaMWKE8vLy7M5XXl6uG2+8UaNGjdKrr76qpUuXaubMmSotLbUrDCTpu+++06uvvqq77rpLLVq0MPNtdvDWW28pKSlJ3333nVatWqVXX31VV155paZMmWL7EJ84caKeeOIJSdKzzz6r/fv3a//+/Zo4caIk6fPPP9ewYcOUmZmpXbt2adGiRXrvvfd0zTXX2IolV0pLSzVy5Ej99a9/1Zw5c/Taa6/pkUceUXZ2tm688UZZb1y+cuVK9e3bV5MnT7Z9j5cuXaq3335b69evV1xcXL3tXL9+vZKTkxUVFaW//vWvevHFFxUTE6OxY8c6FCSSdOutt6p379566aWXlJaWphdeeEHz5s2zfd0wDN188816/vnn9dBDD+mVV17R0KFDNX78eLe+90uXLrX9bm7dulX333+/7r33Xv3rX/+y26+srExnz57V/PnztXXrVm3cuFHXXHONfvazn2ndunVuvRbQIAYQ5LKysgxJTh/Nmze321eSER0dbZw9e9bpOaZOnWq3/dixY4YkY/bs2Xbb33vvPUOS8eijj9q2jRw50pBkvPHGG/W2+fTp04YkY+XKlS73yc/PN8LDw41f/OIXdttLSkqMTp06GZMnT7ZtmzZtmiHJWLt2rcN5Bg0aZAwfPtxuW0ZGhiHJ+Oijj+zaP3LkSLv9JBmLFy+2PX/rrbcMScZbb71l29anTx9j4MCBxoULF+yOveGGG4y4uDijsrLSMAzD2Lx5s8OxzlRVVRkXLlwwvvrqK0OS8eqrr9a5f3p6utGsWTPjwIEDdtu3bNliSDJycnJs2z799FMjKirKuPnmm43XX3/daNasmfHYY4/ZHeeqnefOnTNiYmKMSZMm2W2vrKw0BgwYYAwZMsS2bfHixYYkY/ny5Xb7zp4927BYLEZVVZVhGIbx2muvGZKMP/3pT3b7/fa3v3X43lt/R48fP24YhmH87//+r2GxWIxbbrnF7th3333XkOTws6ypoqLCuHDhgjFr1ixj4MCBLvcDvIWeEYSMdevW6cCBA3aP9957z2G/UaNG6eKLL3Z6jltvvdXu+VtvvSWpehikpiFDhqhv374O/xu++OKLNWrUqHrbGhMTo0svvVS///3vtWLFCh0+fFhVVVV2++zcuVMVFRWaOnWqXW+PxWLRyJEjna5oqd1+SZoxY4b27dtn97/lrKwsXXXVVerfv3+9ba3LZ599pn/+85+68847JcmunRMmTFBBQYHD/9KdOXXqlFJSUhQfH6/w8HC1aNFC3bt3lyQdO3aszmP/+7//W/3799eVV15p9/pjx451WPnTs2dP/eUvf9HWrVt1ww03aMSIEXYrVuqyb98+nT17VtOmTbN7naqqKo0bN04HDhywGxaSpBtvvNHu+RVXXKHz58/r1KlTkn78/bJ+/6zuuOOOetuzf/9+nT9/3uHY4cOH2753NW3evFlJSUlq06aN7Xu8Zs2aer+/gDcwgRUho2/fvm5NYK1rNULtr505c8blMZ07d9ZXX33l9rlrCgsL0xtvvKFly5Zp+fLleuihhxQTE6M777xTv/3tb9W2bVudPHlSknTVVVc5PUezZvb/12jVqpWioqIc9rvzzjs1f/58ZWdnKz09XXl5eTpw4IBXVs9Y2zh//nzNnz/f6T71zfuoqqpScnKyvv32W/3617/WT37yE7Vu3VpVVVUaOnSofvjhh3rb8Nlnn7kcbqr9+hMnTlRsbKxOnjyp1NRUNW/evM7z13wdSbrttttc7nP27Fm1bt3a9rxdu3Z2X4+MjJQk2zWdOXNG4eHhDvt16tSp3vZYfzed7Vt728svv6zJkyfr9ttv18MPP6xOnTopPDxcmZmZWrt2bb2vBTQUxQhQS12rY2p/zfohUVBQoK5du9p97dtvv1X79u3dPndt3bt315o1ayRJn3zyiV588UUtWbJE5eXlWrVqle3cW7Zscfo/3frabnXxxRfrpptu0rp16/T4448rKytLFotFP//5z91uqyvWNi5YsEA/+9nPnO5z2WWX1XmOo0eP6sMPP1R2dramTZtm2/7ZZ5+53YaWLVu6/FCt/TNKSUlRSUmJLr/8cs2ZM0cjRoxw2VPm7DxPP/20hg4d6nSf2NhYt9ps1a5dO1VUVOjMmTN2BUlhYaFbx7rat7Cw0G5Z8vr165WQkKBNmzbZ/Z6UlZWZai/gKYoRoAGsQy7r16+366E4cOCAjh07poULF3rldXr37q3HHntML730kj744ANJ0tixYxUeHq7PP//c6fCLGTNmzNCLL76onJwcrV+/XrfccosuuuiiBrf7sssuU69evfThhx/aJn66UrtXwMr64Wj9utXq1avdasMNN9ygJ554Qu3atVNCQkKd+z733HNav3691q5dq5EjR2rQoEGaMWOGtm7dWm87k5KSdNFFFykvL08PPvigW22rz3XXXafly5drw4YNmjNnjm37Cy+8UO+xQ4cOlcVi0YYNG+x+P/bt26evvvrKrhgJCwtTRESEXSFSWFjIaho0GooRhIyjR4+qoqLCYfull17qcT7DZZddpv/8z//U008/rWbNmmn8+PH68ssv9etf/1rx8fF2KyPM+Mc//qEHH3xQt99+u3r16qWIiAi9+eab+sc//qG0tDRJUo8ePbRs2TItXLhQX3zxhcaNG6eLL75YJ0+e1Pvvv6/WrVtr6dKlbr1ecnKyunbtqtmzZ6uwsFAzZszwqN3OrF69WuPHj9fYsWM1ffp0denSRWfPntWxY8f0wQcfaPPmzZJkm5/y5z//WW3btpXFYlFCQoL69OmjSy+9VGlpaTIMQzExMfr73/+u3Nxct15/7ty5eumll/TTn/5U8+bN0xVXXKGqqirl5+dr165deuihh3T11Vfro48+0pw5czRt2jTb9a9Zs0a33XabVq5cqblz59bZznbt2unpp5/WtGnTdPbsWd12223q2LGj/v3vf+vDDz/Uv//9b2VmZpr63iUnJ+unP/2pfvWrX+ncuXMaPHiw3n33XT3//PP1HnvxxRdr/vz5evzxx3XPPffo9ttv14kTJ7RkyRKHYZobbrhBL7/8smbPnq3bbrtNJ06c0G9+8xvFxcXp008/NdVmwCP+nkEL+Fpdq2kkGX/5y19s+0oyHnjgAZfnqL0iwzCqV0s8+eSTRu/evY0WLVoY7du3N+666y7jxIkTdvuNHDnSuPzyy91q88mTJ43p06cbffr0MVq3bm20adPGuOKKK4w//vGPRkVFhd2+W7duNa677jojKirKiIyMNLp3727cdtttxuuvv27bZ9q0aUbr1q3rfM1HH33UkGTEx8fbVrjUbr8nq2kMwzA+/PBDY/LkyUbHjh2NFi1aGJ06dTJGjRplrFq1ym6/lStXGgkJCUbz5s0NSUZWVpZhGIaRl5dnjBkzxmjbtq1x8cUXG7fffruRn5/v8PqufP/998Zjjz1mXHbZZUZERIQRHR1t/OQnPzHmzZtnFBYWGt9//73Rp08fo1+/fsa5c+fsjn3ggQeMFi1aGO+991697TQMw9i9e7cxceJEIyYmxmjRooXRpUsXY+LEicbmzZtt+1hX0/z73/+2e63aK2IMwzC+++47Y+bMmcZFF11ktGrVyhgzZozxz3/+s97VNIZRvfIoPT3diI+PNyIiIowrrrjC+Pvf/+70Z/m73/3O6NGjhxEZGWn07dvX+Mtf/mJrJ+BrYYbx/4vsAQAA/IClvQAAwK8oRgAAgF9RjAAAAL+iGAEAAH5FMQIAAPzKdDGyZ88eTZo0SZ07d1ZYWJhdGJAzL7/8ssaMGaMOHTooKipKw4YN086dOz1tLwAACDKmQ8/OnTunAQMGaMaMGW6lPu7Zs0djxozRE088oYsuukhZWVmaNGmS3nvvPQ0cONCt16yqqtK3336rtm3bmorTBgAA/mMYhkpKStS5c2eH+2XV1KCckbCwML3yyiu6+eabTR13+eWXa8qUKVq0aJFb+3/99deKj4/3oIUAAMDfTpw44XD/rpoaPQ6+qqpKJSUliomJcblPWVmZ3Q2arPXSiRMnnN51FAAAND3FxcWKj49X27Zt69yv0YuRP/zhDzp37pwmT57scp/09HSn99SIioqiGAEAIMDUN8WiUVfTbNy4UUuWLNGmTZvUsWNHl/stWLBARUVFtseJEycasZUAAKAxNVrPyKZNmzRr1ixt3rxZo0ePrnPfyMhIh9uFAwCA4NQoPSMbN27U9OnT9cILL2jixImN8ZIAACBAmO4Z+f777/XZZ5/Znh8/flxHjhxRTEyMunXrpgULFuibb77RunXrJFUXIlOnTtWf/vQnDR06VIWFhZKkli1bKjo62kuXAQAAApXpnpGDBw9q4MCBtoyQ1NRUDRw40LZMt6CgQPn5+bb9V69erYqKCj3wwAOKi4uzPX75y1966RIAAEAga1DOSGMpLi5WdHS0ioqKWE0DAECAcPfzm3vTAAAAv6IYAQAAfkUxAgAA/IpiBAAA+BXFCAAA8CuKEQAA4FcUIwAAwK8oRgAA8IPS8gr1SNuuHmnbVVpe4e/m+BXFCAAA8CuKEQAA4FcUIwAAwK8oRgAAgF9RjAAAAL+iGAEAAH5FMQIAgBewVNdzFCMAAMCvKEYAAIBfUYwAAAC/ohgBAAB+RTECAAD8imIEAAD4FcUIAABOsFS38VCMAAAAv6IYAQAAfkUxAgCAH1RWGbZ/v3/8rN3zUEMxAgBAI9txtECjV+y2PZ+edUDXPPmmdhwt8GOr/IdiBACARrTjaIHuX/+BThaX2W0vLDqv+9d/EJIFSbi/GwAAgD/Ut0Km5tfdWU3jzv6VVYYWb/tYzgZkDElhkpZsy1NSz/Zq3iys3tf0llYR/i0HwgzDaPKDVMXFxYqOjlZRUZGioqL83RwAQBDokbbd301oMr783USfnNfdz296RgAAIaO0vEL9Fu30dzNQC8UIACAkHXzs+jqHJ0rLKzT48Tfc2jc376R+u/2YTpX8OA8kNipSj07oqzH9Ym3b3j9+VtOzDtTbtuwZV2lIQow7lxEUKEYAACGpVUS423Ml6tp3x9ECzf3bEYd5IKeKyzT3b0eUedcgjesfJ0ka0auD4qItKiw673TeSJikTtEWjejVoVHnjPgbxQgAIGh4c1Kqryakpo3vo7l/O+Kwv7X0SBvfR2UVlXW2rT7+npBqFhNYAQBBg0mp1Xw1IdUsdz+/yRkBAAB+FVj9OAAA1CFv2dg6v+7upNTGmJBqZoJssAvdKwcABB0zH+iuJqX6Y0Kqmcm0wSh0rxwAEDDcSUA1ex5n52zMCanuTqYNhSKFCawAgCYvlCemNpXJqJ5gAisAAAgIwd/3AwAIeK4mppqdBFrf/o05IZUJrD8K3SsHAAQMdz6o3ZkEWln148yEo98UO0ws9deE1FCfwMowDQAgJOw4WqDRK3bbnk/POqBrnnxTO44W2LY1bxamxZP6SfpxAqqV9fniSf1CKqq9MVCMAACC3o6jBbp//Qc6WVxmt72w6LzuX/+BXUEyrn+cMu8apI5RkXb7doq22C3rhfeEbp8QAMCvvLFc11f3j/lp7w7a9mCSrn7iTUnSqrsG2b7u6nVYqus5lvYCAPwiVJfrWpfqlpZXqN+inZKqJ+gGY5HC0l4AABAQgq8MAwAEhPruI+MOd5bHerpcl6W6jcd0z8iePXs0adIkde7cWWFhYdq6dWu9x+zevVuJiYmyWCy65JJLtGrVKk/aCgAIItblrLUfktRv0U7bEIar/Wovh3X1detyXVfrX8Ikxf3/cl2z5/ZkfzgyXYycO3dOAwYM0DPPPOPW/sePH9eECRM0YsQIHT58WI8++qjmzJmjl156yXRjAQAwi+W6TZ/pEm38+PEaP3682/uvWrVK3bp108qVKyVJffv21cGDB/Vf//VfuvXWW82+PAAANjVDzN4/ftZlGJl1ue7ibR/bLe/tFG3R4kn9/LJct1VEeEDfd8abfN5ftH//fiUnJ9ttGzt2rNasWaMLFy6oRYsWDseUlZWprOzHX5bi4mJfNxMAEGB2HC3Q4m0f255PzzqguDqKi3H945TUs71+smSXpOo5IvUlqaJx+Hw1TWFhoWJjY+22xcbGqqKiQqdPn3Z6THp6uqKjo22P+Ph4XzcTABBAzISY1VSz8BiSEEMh0kQ0ykyasDD7H7Y12qT2dqsFCxYoNTXV9ry4uJiCBAACQGMEmXkSYubuuc3uW3vSKsMunvF5MdKpUycVFhbabTt16pTCw8PVrl07p8dERkYqMjLS6dcAAE2XdQWMt1iXypphSCosPm8bjvHGuV3tS/HhHT4fphk2bJhyc3Pttu3atUuDBw92Ol8EAACEFtM9I99//70+++wz2/Pjx4/ryJEjiomJUbdu3bRgwQJ98803WrdunSQpJSVFzzzzjFJTU3Xvvfdq//79WrNmjTZu3Oi9qwAANAmNEWTmaYiZO+f2dF80jOnv7MGDB3XdddfZnlvndkybNk3Z2dkqKChQfn6+7esJCQnKycnRvHnz9Oyzz6pz58566qmnWNYLAEHI2Qd2Q+7B4iwozBpiVlh03um8kTBVL9mtb6VMfSFkzAFpPKaLkWuvvVZ13VsvOzvbYdvIkSP1wQcfmH0pAAAcWEPM7l//gcIku4KEELPAxI3yAABNSu0gs5rPrawhZh2j7Bc7dIq2KPOuQX4JMYPnGAADADQZZoLMCDELHvSMAACaBE+CzAgxCw70jAAA6tWQMDN3wsM8DTIzE2Lmzv6smPGPMKOu2ahNRHFxsaKjo1VUVKSoqCh/NwcAQk6PtO3+bkKjYPWMd7n7+c0wDQAA8Cv6owAA9WpImJk74WGeBpkRTBYc+KkBAOrlrQ95V0Fj3ggyqy/EDE0XwzQAAL+zBplJPwaXWRFkFvwoRgAATQJBZqGL/iwAQJNBkFloomcEAGBaaXmFeqRtV4+07fXme7gT714TQWahh54RAIDPmIl39wR31g0O9IwAAHzCk3h3hCZ6RgAgRPky4t3TeHd3zu0ulvkGDuLgASBEBXvEO8M3/kccPAAACAj0YQFAiPJlxLun8e7unBvBh58wAIQoX0a8eyPe3dW5EXwYpgEAeB3x7jCDYgQA4BPEu8Nd9H0BAHzGk3h3gsxCDz0jAADTzES8E++O+lCMAABM3Wtmx9ECjV6x2/Z8etYBXfPkmySqwmMUIwAAtxHxDl9gzggABBFP49PdiWD3NOKdeHfUhzh4AAgiwRzxzqTWwEMcPAAACAj0eQFAEPE04t2dCHZPI96Jd0d9+I0AgCDijQ96VxHs3oh4J94dzjBMAwBwCxHv8BWKEQCA24h4hy/QVwYAMMWTiHegLhQjAADTzES8c68Z1IdhGgCAqXvNAN5GMQIAQYh7zSCQUIwAQAjjXjNoCpgzAgABwOw9XXx5rxl3z18XskZQE/emAYAAEGz3nGFCa2jg3jQAACAg0E8GAAHA7D1nfHmvGXfPD7iL3x4ACAAN+bD35b1m6jo/4C6GaQAgRHGvGTQVFCMAEMK41wyaAvrVACDEeXKvGSLe4U30jABAEDIb727mXjOAt1GMAECQId4dgYZiBAAChDv3myHeHYHIo2IkIyNDCQkJslgsSkxM1N69e+vcf8OGDRowYIBatWqluLg4zZgxQ2fOnPGowQAQLErLK0w/6jq25PyFOuPdpep495LzF0yf2912AZ4wHQe/adMm3X333crIyFBSUpJWr16t5557Tnl5eerWrZvD/u+8845GjhypP/7xj5o0aZK++eYbpaSkqFevXnrllVfcek3i4AEEo2CKeGcyK5zxWRz8ihUrNGvWLN1zzz3q27evVq5cqfj4eGVmZjrd/3/+53/Uo0cPzZkzRwkJCbrmmmt033336eDBg2ZfGgAABCFTS3vLy8t16NAhpaWl2W1PTk7Wvn37nB4zfPhwLVy4UDk5ORo/frxOnTqlLVu2aOJE11V0WVmZysp+HO8sLi4200wACAjejngn3h2BytRv2+nTp1VZWanY2Fi77bGxsSosLHR6zPDhw7VhwwZNmTJF58+fV0VFhW688UY9/fTTLl8nPT1dS5cuNdM0AAg43o54J94dgcqjCaxhYfa/xIZhOGyzysvL05w5c7Ro0SIdOnRIO3bs0PHjx5WSkuLy/AsWLFBRUZHtceLECU+aCQAhhXh3BCpTpW/79u3VvHlzh16QU6dOOfSWWKWnpyspKUkPP/ywJOmKK65Q69atNWLECD3++OOKi3OMGo6MjFRkZKTDdgBA3azx7ou3fWy3vLdTtEWLJ/VzGe9Ooir8yVTPSEREhBITE5Wbm2u3PTc3V8OHD3d6TGlpqZo1s3+Z5s2bS6ruUQEAeNe4/nF6PXWk7Xn2jKv0ziOjuM8MmizTwzSpqal67rnntHbtWh07dkzz5s1Tfn6+bdhlwYIFmjp1qm3/SZMm6eWXX1ZmZqa++OILvfvuu5ozZ46GDBmizp07e+9KAAA2xLsjkJieoTRlyhSdOXNGy5YtU0FBgfr376+cnBx1795dklRQUKD8/Hzb/tOnT1dJSYmeeeYZPfTQQ7rooos0atQoPfnkk967CgAIAbXvN1PfRFQgUJgOPfMHQs8AhLodRwsc5oHE1TEPpLS8Qv0W7ZRUvYSY1THwB5+FngEAvMOde81I3G8GwY9SGQC8zN17tdS+H4wzlVVGnfebCVP1/WaSera3G7Jx59yu0IuCxsYwDQB4WaDfc4YlvvAWhmkAAEBAoC8OALzM3XvOuHM/GE/vN8O9ZhBI+O0EAC/z5IPf1f1gvHG/Ge41g6aOYRoAaMK43wxCAcUIADRx1vvNdIyyv2dXp2iLMu8a5DRnxHqvmS9/N5FeETR5/IYCQAAY1z9OST3b6ydLdkmqniNCAiuCBT0jAOAntePdaz53hvvNIFhRjACAH+w4WqDRK3bbnk/POqBrnnyTNFWEJIoRAGhkxLsD9pgzAgBuMBup7oqn8e6122CmPUxgRVNHHDwAuCGQI96Jd4e/EAcPAAACAn13AOAGb0W8exrv7s65gUDFbzIAuMFbEe/eiHd3dW4gUDFMAwCNqCHx7qSqIlhRjABAI/Mk3h0IZpTWAOAHxLsDP6JnBAD8hHh3oBrFCAB4kdn7zQCgGAEAr+F+M4BnKEYAoA6l5RXqkbZdPdK21xnBzv1mAM8xgRVAyHLn/i7u3A/G0/vNeHKvGZb0IhhxbxoAISsQ7zfDfWYQSLg3DQAACAj09wEIWe7cb8ad+8F4er8Z7jUDVOM3H0DIMvvh7+p+MJ7eb8Ya7w6EOoZpAKCBGnK/GQAUIwDgFdxvBvAcwzQAQkppeYX6LdopqXrOiDfnaXC/GcAz9IwAQB3MxrtzvxnAPIoRAHCBeHegcVCMAIATxLsDjYc5IwCCTl3R6r6Md3f3/DWRLQIQBw8gCAVSzDs5IwhmxMEDAICAQP8ggKBTV8y7L+Pd3T0/AHv8lQAIOu4WAN6Od7eek6EXwByGaQAEvNLyCvVI264eadvdmjRaH+LdgcZFMQIAThDvDjQehmkAhJTaiap1xbUT7w40DnpGAIQMTxJViXcHfI9iBEBIIFEVaLoYpgEQEBqSqtpYiaos4wU8QwIrgIAQCKmqLOkF7JHACgAAAoJHfYoZGRn6/e9/r4KCAl1++eVauXKlRowY4XL/srIyLVu2TOvXr1dhYaG6du2qhQsXaubMmR43HEDwKi2vUL9FOyVVp6m2ighvUKoqiapA02b6r2rTpk2aO3euMjIylJSUpNWrV2v8+PHKy8tTt27dnB4zefJknTx5UmvWrFHPnj116tQpVVQ0PJgIQOhoSKpqQxJV6zs3gIYzPUyzYsUKzZo1S/fcc4/69u2rlStXKj4+XpmZmU7337Fjh3bv3q2cnByNHj1aPXr00JAhQzR8+PAGNx4A3EGiKtC0mSpGysvLdejQISUnJ9ttT05O1r59+5wes23bNg0ePFjLly9Xly5d1Lt3b82fP18//PCDy9cpKytTcXGx3QMAXKkdZFbzuZWniarWe818+buJ9IoAPmLqL+v06dOqrKxUbGys3fbY2FgVFhY6PeaLL77QO++8I4vFoldeeUWnT5/W7NmzdfbsWa1du9bpMenp6Vq6dKmZpgEIUTuOFmjxto9tz6dnHVBctEWLJ/VzKDBIVAWaJo9W04SF2f/hGobhsM2qqqpKYWFh2rBhg4YMGaIJEyZoxYoVys7Odtk7smDBAhUVFdkeJ06c8KSZAIKcJ0FmJKoCTY+pnpH27durefPmDr0gp06dcugtsYqLi1OXLl0UHR1t29a3b18ZhqGvv/5avXr1cjgmMjJSkZGRDtsBBBdXIWLuBI15GmRGiBnQ9Jj6S4uIiFBiYqJyc3N1yy232Lbn5ubqpptucnpMUlKSNm/erO+//15t2rSRJH3yySdq1qyZunbt2oCmAwh01uW7dbEuqzXLkFRYfN42JOPJuQkxAxqH6WGa1NRUPffcc1q7dq2OHTumefPmKT8/XykpKZKqh1imTp1q2/+OO+5Qu3btNGPGDOXl5WnPnj16+OGHNXPmTLVs2dJ7VwIAAAKS6T7IKVOm6MyZM1q2bJkKCgrUv39/5eTkqHv37pKkgoIC5efn2/Zv06aNcnNz9Ytf/EKDBw9Wu3btNHnyZD3++OPeuwoATZ6ZIDN3gsY8DTIjxAxoejz6K5w9e7Zmz57t9GvZ2dkO2/r06aPc3FxPXgpAEHNVCNRcmnv0m2KnK168EWRGiBnQNHBvGgBNyo6jBRq9Yrft+fSsA7rmyTcdVsYQZAYED4oRAE2G2aW6ngaZAWha6J8E4HXOlszWt6TW06W6P+3dQdseTNLVT7wpSVp11yDbPjVfh+EYoOkKMwzD2d9+k1JcXKzo6GgVFRUpKirK380BUI8eadv93QQHLNMFGp+7n98M0wAAAL+i3xKA1zlbslvfklpPl+q6c24ATRt/sQC8rr5iwNmSWm8s1XV1bgBNG8M0AJoEluoCoYtiBECTwVJdIDTRlwnAI87i3etSM1X1/eNnXQ63jOsfp6Se7W03uMuecVW9QzMAAhs9IwB8zt1UVauahceQhBgKESDIUYwA8CmzqaoAQg/DNADcUjs1tb5EVcnzVFV3zl1zWKhVRDihZkAAI4EVgFuaWqoqxQfQ9JHACgAAAgLDNADcUjtV1Z3UU09TVUlUBUILf+EA3FJXQeAq9dQbqaokqgLBj2EaAD5DqioAd1CMAPBI7RCzms9rIlUVQH1YTQPAtB1HC7R428d22SFx0RYtntTPZXFRcv4CqapAiGE1DQDTSssr1CNtu3qkbXeZ7+FpiBmpqgBcYVYYEMLMBpl5GmJW37mZoAqENoZpgBDWVILMCDADghPDNAAAICDQNwqEMLNBZp6GmLlzbgChi3cDIISZDTLzRoiZq3MDCF0M0wCwqS87hBAzAL5AMQJAUvWS3dErdtueT886oGuefNNhqS4hZgC8jWIEgOnskHH94/R66kjb8+wZV+mdR0ZRiADwCIO2QBByFVjmjKfZIWUVlbZ/9+8SZXvOXBAAZpEzAgQhf+aHkBkCwIqcEQAAEBDoTwWCkDU/xJ1sD0+zQ8gNAeAtvHsAQchZYeAq28Mb2SHkhgBoCIZpgCBWX26IRHYIAP+jGAGClLu5IRLZIQD8i9U0QBCy5obU/uO29m24KjBKzl/QT5bsklQ9R6S+WHcAqIu7n98M8gIBwt3sEE9zQyTn2SHMBQHga/SMAAHCX9kh5IYA8BQ5IwAAICDQ/woEiLxlY32aGyKRHQLAP3inAQJE7cLAF7khrSLCGZYB0OgYpgGCDLkhAAINxQgQhMgNARBIGKYB/Ky0vEL9Fu2UVD0vxFvzNMb1j1NSz/bkhgBo8ugZAQKIO/HuNdUsPIYkxFCIAGiSKEaAAGEm3h0AAgnFCBAArPHuJ4vL7LYXFp3X/es/oCABENA8KkYyMjKUkJAgi8WixMRE7d27163j3n33XYWHh+vKK6/05GWBoFNaXmEX8259XvNRcv5CnfHuUnW8e8n5Cw7HStXzUPKWjfX9xQCAh0zHwW/atEl33323MjIylJSUpNWrV+u5555TXl6eunXr5vK4oqIiDRo0SD179tTJkyd15MgRt1+TOHgEq8aOeCdDBEBj8lkc/IoVKzRr1izdc8896tu3r1auXKn4+HhlZmbWedx9992nO+64Q8OGDav3NcrKylRcXGz3AAAAwcnUGsLy8nIdOnRIaWlpdtuTk5O1b98+l8dlZWXp888/1/r16/X444/X+zrp6elaunSpmaYBAcmdiPeGxLsDQCAwVYycPn1alZWVio2NtdseGxurwsJCp8d8+umnSktL0969exUe7t7LLViwQKmpqbbnxcXFio+PN9NUwG/M5Ia4E/HekHh3AAgEHk1gDQuzf8MzDMNhmyRVVlbqjjvu0NKlS9W7d2+3zx8ZGamoqCi7BxCqiHcHEOxMFSPt27dX8+bNHXpBTp065dBbIkklJSU6ePCgHnzwQYWHhys8PFzLli3Thx9+qPDwcL355psNaz0QIoh3BxDMTA3TREREKDExUbm5ubrlllts23Nzc3XTTTc57B8VFaWPPvrIbltGRobefPNNbdmyRQkJCR42GwgetVNVXQ23EO8OIFiZvglGamqq7r77bg0ePFjDhg3Tn//8Z+Xn5yslJUVS9XyPb775RuvWrVOzZs3Uv39/u+M7duwoi8XisB0IRTuOFmjxto9tz6dnHVBctEWLJ/Vz2ttBvDuAYGS6GJkyZYrOnDmjZcuWqaCgQP3791dOTo66d+8uSSooKFB+fr7XGwoEG2uqau1JqdZUVYZfAIQK06Fn/kDoGQJJzdU0zpbqStVDM6NX7HaId7cKkxQbZVFu6k/tej9qLwNu38bi/QsAAC9x9/ObYgTwsprFiK+RqAqgKfNZAisAAIA3mZ4zAsB9roZpPE1VrT1MAwDBgGIEqIeZRNXanCWqSp6nqraKCGdoBkDQYZgG8ANSVQHgRxQjgJfVDjGr+bwmUlUBoBrDNIAXmQ0xI1UVAOgZAbzGGmJWOzvEGmK242iB0+NIVQUQ6ugZAUwoLa9wur2yytDibR87nYxqqHoeyJJteUrq2d6h2HB1TgAIFRQjgAnWZbVmGZIKi8/bhmMAAD9imAYAAPgVPSOACd4OMZPsg8wAIBRRjCAkeRpk5u0QMwAAwzRAvdzJDSHEDAA8RzEC1GHH0QKNXrHb9nx61gFd8+SbTpfpEmIGAJ6hGAFc8CQ3ZFz/OL2eOtL2PHvGVXrnkVEUIgBQB+aMIOQ5y/loSG5IWUWl7d+EmAFA/ShGEPI8WclCbggAeA/FCOBnrSLC9eXvJvq7GQDgNxQjCHnOskPIDQGAxkMxgpDnLDuE3BAAaDyspkFQKC2vUI+07eqRtt0rN54jNwQAGg/FCEKSO0Fm5IYAQONgmAYhZ8fRAi3e9rHt+fSsA4qLtmjxpH4OBca4/nFK6tnetmome8ZVDM0AgJfRM4KQ4kmQWc3Cg9wQAPA+ekYQlLwZZOaNOSgAANcoRhCUrHfkNcNbQWbkhgCAOQzTAAAAv6JnBEEpb9lYh22eBpkRYgYAvkUxgqBUO8RMIsgMAJoqhmkQMggyA4CmiWIEQcGdEDOJIDMAaIoYpkGTVVpeYVsVk7dsrNOhF8lciJlEkBkANDUUIwho1hCz2v0g1hAzV70dZoLMWKoLAL5FMYKAUTt8zNMQMwBA00IxgoBhNsisrhAzZ0t/AQD+wQRWAADgV/SMIGDU7s3wNMQMANC0UIwgYNReTdOQEDNufgcATQfDNAhYhJgBQHCgGEGjKS2vUI+07eqRtt1rPROEmAFA4GOYBk1W7VRVV8FkhJgBQGCjZwRN0o6jBRq9Yrft+fSsA7rmyTe142iB0/3NhJgBAJoWekbQ5HiaqmoGqaoA0HRQjMCvvJGq6uqeNQCAwMC7OPzKG6mq9HAAQGBjzggAAPArj4qRjIwMJSQkyGKxKDExUXv37nW578svv6wxY8aoQ4cOioqK0rBhw7Rzp7n/DSN45S0ba/fInnGVW8dlz7jKdgwAILCZLkY2bdqkuXPnauHChTp8+LBGjBih8ePHKz8/3+n+e/bs0ZgxY5STk6NDhw7puuuu06RJk3T48OEGNx6BpfZS3coqQ60iwu0e1lRVV2thwiTF/X+qqvUYAEBgCzMMw9lcQZeuvvpqDRo0SJmZmbZtffv21c0336z09HS3znH55ZdrypQpWrRokVv7FxcXKzo6WkVFRYqKijLTXPhQaXmFbc5H3rKxdRYGO44WaPG2j3WyuMy2LS7aosWT+jmsjLGuppFkN5HVWqA4W01jpi0AgMbh7ue3qZ6R8vJyHTp0SMnJyXbbk5OTtW/fPrfOUVVVpZKSEsXEuL5xWVlZmYqLi+0eCFzW4qJmISL9uFS3dnYIqaoAEFpMFSOnT59WZWWlYmNj7bbHxsaqsLDQrXP84Q9/0Llz5zR58mSX+6Snpys6Otr2iI+PN9NMNAGl5RUqLa9QyfkLdS7VlaqX6pacv2A7RqouSF5PHWnbN3vGVXrnkVEUIgAQhDzqyw4Lsx/RNwzDYZszGzdu1JIlS/Tqq6+qY8eOLvdbsGCBUlNTbc+Li4spSAKMu0t261qqayZVlRAzAAhcpoqR9u3bq3nz5g69IKdOnXLoLalt06ZNmjVrljZv3qzRo0fXuW9kZKQiIyPr3AcAAAQHU8VIRESEEhMTlZubq1tuucW2PTc3VzfddJPL4zZu3KiZM2dq48aNmjiR/72GAuuS2/ePn9X0rAP17p894yoNSXA9jwgAELxMD9Okpqbq7rvv1uDBgzVs2DD9+c9/Vn5+vlJSUiRVD7F88803WrdunaTqQmTq1Kn605/+pKFDh9p6VVq2bKno6GgvXgqaEutqFutS3cKi807njYSpemIqd9kFgNBlOmdkypQpWrlypZYtW6Yrr7xSe/bsUU5Ojrp37y5JKigosMscWb16tSoqKvTAAw8oLi7O9vjlL3/pvauA15SWV6hH2nb1SNvucN+Y2pzlhtTWvFmYFk/qJ0kO2SHW54sn9aMQAYAQZjpnxB/IGWk87uZ1mMkN8WR/M20BADRNPskZASTzuSESS3UBAK5RjMBtnuSG1GRmqS4AIHTQ7w23uZMdUjs3pCHZH2SHAEBooGcEAAD4FT0jcFvesrHkhgAAvI6ekSBnZqmuVPdy3VYR4bbcEFezPcJUvUpmRK8OrH4BALiFYgQ2O44WaPSK3bbn07MO6Jon37RbHUNuCADA2yhGIMncct1x/eOUedcgdYyyv39Qp2iLMu8axHJdAIAp9KOHuNLyClVWGXUu1w1T9XLdMf062Xo8xvWPU1LP9rZVM9kzrqo30p3VMQAAZyhGQpyZ5brvHz+rYZe2s20nNwQA4A0M08Btp0rO+7sJAIAgRDESgMyukKlL3rKxyp5xlVv7dmxradBrAQDgDMVIiDOzXJfcEACAL1CMBLm6ckOsWK4LAPAnipEg5k5uiBXLdQEA/sJqmiBlzQ2p3Q9izQ1xVmCYXa7LUl0AgDfQMxKE6ssNkapzQ1wN2VixXBcA0BgoRoLQ+8fPOiSp1lQzNwQAAH+jGGkCvHkzO8n9PBByQwAATQHFSIBxZ1Kqu3kg5IYAAJoCipEA4u7N7IYkxJAbAgAIGBQjAcKdSalL/149KZXcEABAIKEYCRDuTEotKPpxUqqnuSHW5bpf/m6iWkWw8hsA4Ht82gQITyalms0NAQDAH+gZ8REzK2TciWz3dFIquSEAgKaOYsTP3I1sZ1IqACBYUYz4kburYyRuZgcACF4UI35SWWVo6d/z3FodY8XN7AAAwYgJrH7y/vGzKihyPSm15uqYYZe2s21nUioAINjQM+InDYlsZ1IqACCY0DPiI7VXyNTuvWisyHZrbggAAE0VPSM+4M4KGVbHAABQjWLETe7mhri7QobVMQAAVKMY8SKzK2RYHQMAAHNGvMqTFTKsjgEAhDqKETfVNyFV8nyFjNnVMUxKBQAEE4Zp3OBuZHtjrZABACCYhGwx4u0JqRIrZAAA8ETIFiPu3CnX7IRUVsgAAGBeSBYj7g67mJmQasUKGQAAzAm5YsTMsIunE1LH9Y/T66kjbc+zZ1yldx4ZRSECAIATIbWapr5hlzBVD7uM6ddJzZuFNWhCqpkVMqyOAQCEspDqGTE77MKEVAAAfC+kihGzwy5MSAUAwPdCqhjxZNiFCakAAPhWSM0ZsQ67FBaddzpvJEzVRUbtYRci2wEA8J2Q6hlpyLCLp5HtX/5uolpFhFTNBwCAKSFVjEgMuwAA0NR4VIxkZGQoISFBFotFiYmJ2rt3b5377969W4mJibJYLLrkkku0atUqjxrrLeSAAADQdJgeP9i0aZPmzp2rjIwMJSUlafXq1Ro/frzy8vLUrVs3h/2PHz+uCRMm6N5779X69ev17rvvavbs2erQoYNuvfVWr1yEJ9paWpjK9iALBAAA3wgzDMPZXE6Xrr76ag0aNEiZmZm2bX379tXNN9+s9PR0h/0feeQRbdu2TceOHbNtS0lJ0Ycffqj9+/e79ZrFxcWKjo5WUVGRoqKizDQXAAD4ibuf36aGacrLy3Xo0CElJyfbbU9OTta+ffucHrN//36H/ceOHauDBw/qwoULTo8pKytTcXGx3QMAAAQnU8XI6dOnVVlZqdjYWLvtsbGxKiwsdHpMYWGh0/0rKip0+vRpp8ekp6crOjra9oiPjzfTTAAAEEA8msAaFma/rNUwDIdt9e3vbLvVggULVFRUZHucOHHCk2YCAIAAYGoCa/v27dW8eXOHXpBTp0459H5YderUyen+4eHhateundNjIiMjFRkZ6fRrAAAguJjqGYmIiFBiYqJyc3Pttufm5mr48OFOjxk2bJjD/rt27dLgwYPVokULk80FAADBxvQwTWpqqp577jmtXbtWx44d07x585Sfn6+UlBRJ1UMsU6dOte2fkpKir776SqmpqTp27JjWrl2rNWvWaP78+d67CgAAELBM54xMmTJFZ86c0bJly1RQUKD+/fsrJydH3bt3lyQVFBQoPz/ftn9CQoJycnI0b948Pfvss+rcubOeeuopv2aMAACApsN0zog/kDMCAEDg8UnOCAAAgLdRjAAAAL+iGAEAAH5FMQIAAPyKYgQAAPgVxQgAAPAr0zkj/mBdfczdewEACBzWz+36UkQCohgpKSmRJO7eCwBAACopKVF0dLTLrwdE6FlVVZW+/fZbtW3bts67A5tVXFys+Ph4nThxImTC1LhmrjlYcc1cc7AK5Gs2DEMlJSXq3LmzmjVzPTMkIHpGmjVrpq5du/rs/FFRUQH3A24orjk0cM2hgWsODYF6zXX1iFgxgRUAAPgVxQgAAPCrkC5GIiMjtXjxYkVGRvq7KY2Gaw4NXHNo4JpDQyhcc0BMYAUAAMErpHtGAACA/1GMAAAAv6IYAQAAfkUxAgAA/IpiBAAA+FXQFyMZGRlKSEiQxWJRYmKi9u7dW+f+u3fvVmJioiwWiy655BKtWrWqkVrqPWau+eWXX9aYMWPUoUMHRUVFadiwYdq5c2cjttY7zP6crd59912Fh4fryiuv9G0DfcDsNZeVlWnhwoXq3r27IiMjdemll2rt2rWN1FrvMHvNGzZs0IABA9SqVSvFxcVpxowZOnPmTCO1tuH27NmjSZMmqXPnzgoLC9PWrVvrPSbQ38PMXnMwvId58nO2CuT3sJqCuhjZtGmT5s6dq4ULF+rw4cMaMWKExo8fr/z8fKf7Hz9+XBMmTNCIESN0+PBhPfroo5ozZ45eeumlRm6558xe8549ezRmzBjl5OTo0KFDuu666zRp0iQdPny4kVvuObPXbFVUVKSpU6fq+uuvb6SWeo8n1zx58mS98cYbWrNmjf71r39p48aN6tOnTyO2umHMXvM777yjqVOnatasWfr444+1efNmHThwQPfcc08jt9xz586d04ABA/TMM8+4tX8wvIeZveZgeA8ze81Wgfwe5sAIYkOGDDFSUlLstvXp08dIS0tzuv+vfvUro0+fPnbb7rvvPmPo0KE+a6O3mb1mZ/r162csXbrU203zGU+vecqUKcZjjz1mLF682BgwYIAPW+h9Zq/5tddeM6Kjo40zZ840RvN8wuw1//73vzcuueQSu21PPfWU0bVrV5+10ZckGa+88kqd+wTDe1hN7lyzM4H2HlaTmWsO5Pew2oK2Z6S8vFyHDh1ScnKy3fbk5GTt27fP6TH79+932H/s2LE6ePCgLly44LO2eosn11xbVVWVSkpKFBMT44smep2n15yVlaXPP/9cixcv9nUTvc6Ta962bZsGDx6s5cuXq0uXLurdu7fmz5+vH374oTGa3GCeXPPw4cP19ddfKycnR4Zh6OTJk9qyZYsmTpzYGE32i0B/D/OGQHsP81Qgv4c5ExB37fXE6dOnVVlZqdjYWLvtsbGxKiwsdHpMYWGh0/0rKip0+vRpxcXF+ay93uDJNdf2hz/8QefOndPkyZN90USv8+SaP/30U6WlpWnv3r0KDw+8PwFPrvmLL77QO++8I4vFoldeeUWnT5/W7Nmzdfbs2YCYN+LJNQ8fPlwbNmzQlClTdP78eVVUVOjGG2/U008/3RhN9otAfw/zhkB7D/NEoL+HORO0PSNWYWFhds8Nw3DYVt/+zrY3ZWav2Wrjxo1asmSJNm3apI4dO/qqeT7h7jVXVlbqjjvu0NKlS9W7d+/Gap5PmPk5V1VVKSwsTBs2bNCQIUM0YcIErVixQtnZ2QHTOyKZu+a8vDzNmTNHixYt0qFDh7Rjxw4dP35cKSkpjdFUvwmG9zBPBfJ7mLuC6T2spuAoqZxo3769mjdv7vC/plOnTjn8z8GqU6dOTvcPDw9Xu3btfNZWb/Hkmq02bdqkWbNmafPmzRo9erQvm+lVZq+5pKREBw8e1OHDh/Xggw9Kqv6gNgxD4eHh2rVrl0aNGtUobfeUJz/nuLg4denSRdHR0bZtffv2lWEY+vrrr9WrVy+ftrmhPLnm9PR0JSUl6eGHH5YkXXHFFWrdurVGjBihxx9/PCh7CQL9PawhAvU9zKxgeA9zJmh7RiIiIpSYmKjc3Fy77bm5uRo+fLjTY4YNG+aw/65duzR48GC1aNHCZ231Fk+uWar+38T06dP1wgsvBNx4utlrjoqK0kcffaQjR47YHikpKbrssst05MgRXX311Y3VdI958nNOSkrSt99+q++//9627ZNPPlGzZs3UtWtXn7bXGzy55tLSUjVrZv8W17x5c0k/9hYEm0B/D/NUIL+HmRUM72FO+WfebOP429/+ZrRo0cJYs2aNkZeXZ8ydO9do3bq18eWXXxqGYRhpaWnG3Xffbdv/iy++MFq1amXMmzfPyMvLM9asWWO0aNHC2LJli78uwTSz1/zCCy8Y4eHhxrPPPmsUFBTYHt99952/LsE0s9dcWyDORDd7zSUlJUbXrl2N2267zfj444+N3bt3G7169TLuuecef12CaWavOSsrywgPDzcyMjKMzz//3HjnnXeMwYMHG0OGDPHXJZhWUlJiHD582Dh8+LAhyVixYoVx+PBh46uvvjIMIzjfw8xeczC8h5m95toC8T2stqAuRgzDMJ599lmje/fuRkREhDFo0CBj9+7dtq9NmzbNGDlypN3+b7/9tjFw4EAjIiLC6NGjh5GZmdnILW44M9c8cuRIQ5LDY9q0aY3f8AYw+3OuKVD/kM1e87Fjx4zRo0cbLVu2NLp27WqkpqYapaWljdzqhjF7zU899ZTRr18/o2XLlkZcXJxx5513Gl9//XUjt9pzb731Vp1/n8H4Hmb2moPhPcyTn3NNgfoeVlOYYQRpfyUAAAgIQTtnBAAABAaKEQAA4FcUIwAAwK8oRgAAgF9RjAAAAL+iGAEAAH5FMQIAAPyKYgQAAPgVxQgAAPArihEAAOBXFCMAAMCv/g/cXZuqtrSxmwAAAABJRU5ErkJggg==\n",
+      "text/plain": [
+       "<Figure size 640x480 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "plt.figure()\n",
+    "plt.errorbar(tiempo_prom, y_prom, y_error, tiempo_error,fmt=\"o\")\n",
+    "plt.title(\"Error servilleta extendida\")\n",
+    "plt.savefig('Error_servilletaext.pdf', bbox_inches = 'tight')\n",
+    "plt.show"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "id": "PpKui_ncPp5G"
+   },
+   "source": [
+    "Cálculo Constante de fricción del aire."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 84,
+   "metadata": {
+    "id": "aSQbYYXbPn6E"
+   },
+   "outputs": [],
+   "source": [
+    "g=9.8 # hay que poner con el valor que nos da aquí\n",
+    "b=2\n",
+    "y0=0\n",
+    "v0=0\n",
+    "dt=0.01\n",
+    "t0=0\n",
+    "#instante1\n",
+    "v1=g*dt+v0\n",
+    "y1=g*(dt**2)/2+v0*dt+y0\n",
+    "#instante2\n",
+    "a11=g-b*v1\n",
+    "v2=v1+a11*dt\n",
+    "y2=(a11*dt**2)/2+v1*dt + y1\n",
+    "#instante 3\n",
+    "a21=g-b*v2\n",
+    "v3=v1+a21*dt\n",
+    "y3=(a21*dt**2)/2+v2*dt + y2"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 128,
+   "metadata": {
+    "id": "act3P7KuQD8d"
+   },
+   "outputs": [],
+   "source": [
+    "t0=0\n",
+    "t1=1.0\n",
+    "dt=0.1\n",
+    "b=3.5\n",
+    "g=10\n",
+    "#condiciones iniciales\n",
+    "v0=0\n",
+    "y0=0\n",
+    "\n",
+    "tiempo= np.arange(t0,t1,dt)\n",
+    "y=[y0]\n",
+    "vy=[v0]\n",
+    "\n",
+    "for i in np.arange(1,len(tiempo)):\n",
+    "  ai=g-b*vy[i-1]\n",
+    "  vi=ai*dt+vy[i-1]\n",
+    "  yi=(ai*dt**2)/2+vy[i-1]+y[i-1]\n",
+    "  y.append(yi)\n",
+    "  vy.append(vi)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "id": "4a_lVruPF45z"
+   },
+   "source": [
+    "Gráfica Modelado"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 129,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGdCAYAAAAxCSikAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABCsElEQVR4nO3deVxU5eIG8GeGZUCEQUR2RHDHBZFVLZdyL9M0Nfe9vLa4XG9paer9VWTbLVOzXHOnci3N1MpdEVRcUVFREEEEhQGBAWbe3x8kRQI6OMOZ5fl+PvO5d9457/DM5wjzdObMe2RCCAEiIiIiIyaXOgARERHRo7CwEBERkdFjYSEiIiKjx8JCRERERo+FhYiIiIweCwsREREZPRYWIiIiMnosLERERGT0rKUOoC9arRa3bt2Co6MjZDKZ1HGIiIjoMQghkJubCy8vL8jllR9HMZvCcuvWLfj6+kodg4iIiKohJSUFPj4+lT5uNoXF0dERQOkLdnJykjgNERERPQ6VSgVfX9+y9/HKmE1hefAxkJOTEwsLERGRiXnU6Rw86ZaIiIiMHgsLERERGT0WFiIiIjJ6LCxERERk9FhYiIiIyOixsBAREZHRY2EhIiIio8fCQkREREaPhYWIiIiMHgsLERERGT0WFiIiIjJ6LCxERERk9FhYiIiIqErbT9/C1Oh4FGu0kmUwm6s1ExERkf7tOpeOqdHx0GgFwhq4YGhEfUly8AgLERERVeiPSxl4Y8NJaLQC/YO98XKYr2RZWFiIiIjoIUeuZGLimhMo1gg818oTH7/UGnK5TLI8OheWAwcOoE+fPvDy8oJMJsPWrVvLPS6TySq8ffLJJ5U+56pVqyqcU1hYqPMLIiIioicTd/0uxq+Og7pEi67N3fHFy21gbSXtMQ6df/r9+/cRFBSEhQsXVvh4WlpauduKFSsgk8kwYMCAKp/Xycnpobl2dna6xiMiIqIncOZmNsasjEV+kQZPN3bFwqHBsJG4rADVOOm2V69e6NWrV6WPe3h4lLu/bds2dOnSBQEBAVU+r0wme2guERER1ZyENBVGLD+OXHUJIvxd8O2IUNjZWEkdC4CBz2G5ffs2duzYgXHjxj1y27y8PPj5+cHHxwfPP/88Tp06VeX2arUaKpWq3I2IiIiq50pGHoYvi0FOQTGC6ztj+egw2NsaR1kBDFxYvvvuOzg6OqJ///5VbtesWTOsWrUK27dvx4YNG2BnZ4cOHTogMTGx0jlRUVFQKpVlN19f6c5cJiIiMmU3su5j2LJjyLpfhBZeTlg1Jhy1Fca18olMCCGqPVkmw5YtW9CvX78KH2/WrBm6deuGr776Sqfn1Wq1aNu2LTp27IgFCxZUuI1arYZarS67r1Kp4Ovri5ycHDg5Oen084iIiCxVanYBBi05itTsAjR1d8SGVyLh4mBbYz9fpVJBqVQ+8v3bYPXp4MGDuHTpEqKjo3WeK5fLERYWVuURFoVCAYVC8SQRiYiILNptVSGGLj2G1OwCBLg6YM348BotK7ow2EdCy5cvR0hICIKCgnSeK4RAfHw8PD09DZCMiIiIsvLUGLYsBjey8uHrYo91EyLg5mi8387V+QhLXl4erly5UnY/KSkJ8fHxcHFxQf36pcv1qlQq/PDDD/jss88qfI6RI0fC29sbUVFRAIB58+YhMjISjRs3hkqlwoIFCxAfH49FixZV5zURERFRFbLzizB8+XFcyciDp9IO68dHwlNpL3WsKulcWOLi4tClS5ey+9OmTQMAjBo1CqtWrQIAbNy4EUIIDBkypMLnSE5Ohlz+18Gd7OxsvPLKK0hPT4dSqURwcDAOHDiA8PBwXeMRERFRFXILizFqxXEkpKngWluBdeMj4OtSS+pYj/REJ90ak8c9aYeIiMhS5ReVYNSK44i9fg91atlg4yvt0NTDUdJMj/v+Lf3SdURERGRwhcUaTFgdh9jr9+BoZ4014yIkLyu6YGEhIiIyc0UlWvxr7QkcvpIFB1srfDc2HC29lVLH0gkLCxERkRkr0Wjx5oZT+OPSHdjZyLF8dBja1q8jdSydsbAQERGZKY1W4N8/nMau8+mwtZLj2xGhiAyoK3WsamFhISIiMkNarcA7m89iW/wtWMtlWDysLTo2qSd1rGpjYSEiIjIzQgjM++k8ouNSIJcBX74cjK6B7lLHeiIsLERERGZECIGPfrmI747egEwGfDowCM+1Nv2V41lYiIiIzMgXexPxzYFrAIAP+rVC/7Y+EifSDxYWIiIiM/H1vqv48rfSCwe/93wghkbUlziR/rCwEBERmYGVh5Mwf9dFAMBbPZti7FP+EifSLxYWIiIiE7fheDLm/XQBAPDmM40wqXMjiRPpHwsLERGRCdty6ibe2XIWAPBKxwBM7dZE4kSGwcJCRERkonaeTcO/vz8NIYARkX6Y2asZZDKZ1LEMgoWFiIjIBP2WcBtvbjgFrQAGhvhg3gstzLasACwsREREJudg4h38a+1JlGgFXgjywkcDWkMuN9+yArCwEBERmZSYa1mYsDoORRoterRwx2eDgmBl5mUFYGEhIiIyGaeS72HsqlgUFmvRuWk9LBgSDBsry3grt4xXSUREZOLOpeZg1IrjuF+kQfuGdbFkeAgU1lZSx6oxLCxERERG7vLtXIxYHgNVYQlC/epg6chQ2NlYTlkBWFiIiIiM2rU7eRi6NAb38ovR2keJFWPC4KCwljpWjWNhISIiMlIpd/MxbFkMMvPUaObhiNVjw+FkZyN1LEmwsBARERmhtJwCDF12DGk5hWhYzwFrx0fAuZat1LEkw8JCRERkZO7kqjFsaQxS7hbAr24trJ8QCdfaCqljSYqFhYiIyIjcu1+E4cticC3zPryd7bFufATcneykjiU5FhYiIiIjkVNQjBErYnDpdi7cHBVYNz4CPnVqSR3LKLCwEBERGYE8dQlGrzyOc6kq1HWwxfoJEWjg6iB1LKPBwkJERCSxgiINxn8Xi1PJ2XCys8aacRFo5OYodSyjwsJCREQkIXWJBq+sicOxa3dRW1FaVgK9nKSOZXRYWIiIiCRSrNHitXWncDAxE/Y2Vlg5JgxBvs5SxzJKLCxEREQS0GgFpkTHY2/Cbdhay7FsVCjCGrhIHctosbAQERHVMK1W4K0fz2DHmTTYWMnwzfAQdGjkKnUso8bCQkREVIOEEJi97Rw2nbwJK7kMXw0JRpdmblLHMnosLERERDVECIH/+zkB62KSIZMBnw8KQs+WnlLHMgksLERERDXks92XseJwEgBgfv/W6NvGW+JEpoOFhYiIqAYs/D0RC/+4AgD4b98WGBTmK3Ei08LCQkREZGDLDl7Dp7svAwDe6d0MI9s1kDaQCdK5sBw4cAB9+vSBl5cXZDIZtm7dWu7x0aNHQyaTlbtFRkY+8nk3bdqEwMBAKBQKBAYGYsuWLbpGIyIiMjprjt3A+zsSAABTuzbBKx0bSpzINOlcWO7fv4+goCAsXLiw0m169uyJtLS0stvOnTurfM6jR49i8ODBGDFiBE6fPo0RI0Zg0KBBiImJ0TUeERGR0fghLgWzt54DAPyrc0O8+WwjiROZLpkQQlR7skyGLVu2oF+/fmVjo0ePRnZ29kNHXqoyePBgqFQq/PLLL2VjPXv2RJ06dbBhw4bHeg6VSgWlUomcnBw4OXFJYyIiktbWU6mY+n08hABGt2+AOX0CIZPJpI5ldB73/dsg57Ds27cPbm5uaNKkCSZMmICMjIwqtz969Ci6d+9ebqxHjx44cuRIpXPUajVUKlW5GxERkTH4+cwtTPuzrAwJr8+yogd6Lyy9evXCunXr8Pvvv+Ozzz5DbGwsnnnmGajV6krnpKenw93dvdyYu7s70tPTK50TFRUFpVJZdvP15dnWREQkvV3n0jB5Yzy0AhgY4oMP+rVkWdEDa30/4eDBg8v+f8uWLREaGgo/Pz/s2LED/fv3r3TeP3emEKLKHTxz5kxMmzat7L5KpWJpISIiSe29cBuvrz8FjVagf7A3PhrQGnI5y4o+6L2w/JOnpyf8/PyQmJhY6TYeHh4PHU3JyMh46KjL3ykUCigUCr3lJCIiehJ/XMrApHUnUaIV6BPkhU8GBsGKZUVvDL4OS1ZWFlJSUuDpWfnSw+3atcOePXvKje3evRvt27c3dDwiIqInduDyHby65gSKNFr0aumB/w1iWdE3nY+w5OXl4cqVK2X3k5KSEB8fDxcXF7i4uGDu3LkYMGAAPD09cf36dbzzzjtwdXXFiy++WDZn5MiR8Pb2RlRUFABg8uTJ6NixI+bPn4++ffti27Zt2Lt3Lw4dOqSHl0hERGQ4R65kYsLqOBSVaNEt0B0LhgTD2orrsuqbzoUlLi4OXbp0Kbv/4DySUaNG4euvv8bZs2exevVqZGdnw9PTE126dEF0dDQcHR3L5iQnJ0Mu/2tntm/fHhs3bsSsWbMwe/ZsNGzYENHR0YiIiHiS10ZERGRQMdeyMO67OKhLtHimmRsWDg2GDcuKQTzROizGhOuwEBFRTTpx4y5GLD+O/CINOjaph29HhMDOxkrqWCZH0nVYiIiIzFl8SjZGrYhFfpEGHRrVZVmpASwsREREOjh7MwcjlscgT12CCH8XLBsZxrJSA1hYiIiIHtP5WzkYvjwGuYUlCGtQBytGh8HelmWlJrCwEBERPYZL6bkYviwGOQXFCK7vjJVjwuGgMPhyZvQnFhYiIqJHuJKRi2HLjuFefjFa+yjx3dhw1GZZqVEsLERERFW4eicPQ5bGIDOvCC28nLBmbASc7GykjmVxWFiIiIgqcT3zPoYuPYY7uWo083DE2nERUNZiWZECCwsREVEFUu7mY+jSY7itUqOxW22sGx+BOg62UseyWCwsRERE/5CaXYAhS4/hVk4hAuo5YN2ECNStzQvuSomFhYiI6G/Scgow5NtjuHmvAP6uDtgwIRJujnZSx7J4LCxERER/ylAVYujSGCTfzUd9l1pYPyEC7k4sK8aAhYWIiAjAnVw1hiw9hqTM+/B2tsf6CRHwVNpLHYv+xMJCREQWLytPjWHLjuHqnfvwVNphw4RI+NSpJXUs+hsWFiIismj37hdh2LIYXL6dBzdHBTZMiET9uiwrxoaFhYiILFZOfjFGrIjBxfRcuNZWYMMrkWjg6iB1LKoACwsREVkkVWExRq6IwblUFeo62GLDhAg0rFdb6lhUCRYWIiKyOHnqEoxecRynb+agTi0brJsQgcbujlLHoiqwsBARkUXJLyrB2JWxOJmcDaW9DdaOj0AzDyepY9EjsLAQEZHFKCjSYOyqWBy/fheOdtZYMy4cLbyUUseix8DCQkREFqGwWIMJq+Nw7Npd1FZYY/XYcLT2cZY6Fj0mFhYiIjJ76hINXl1zAoeuZKKWrRVWjQlDcP06UsciHbCwEBGRWSsq0WLS2pPYf/kO7GzkWDE6DKENXKSORTpiYSEiIrNVrNHijQ0n8dvFDCis5VgxKgyRAXWljkXVwMJCRERmqUSjxZSN8fj1/G3YWsmxdGQo2jdylToWVRMLCxERmR2NVuDfP5zGjrNpsLGS4ZsRIejYpJ7UsegJsLAQEZFZ0WoF/vPjaWyLvwVruQyLh4WgSzM3qWPRE2JhISIis6HVCszcfBabT6bCSi7DV0OC0S3QXepYpAcsLEREZBaEEJi97Ryi41IglwFfDG6DXq08pY5FesLCQkREJk8IgXk/XcC6mGTIZMBng4LQJ8hL6likRywsRERk0oQQ+GBHAlYduQ6ZDPh4QGu8GOwjdSzSMxYWIiIyWUIIzN91CcsOJQEAPnyxFQaG+kqcigyBhYWIiEzW53suY8n+qwCA/+vbAkPC60uciAyFhYWIiEzSgt8S8dXvVwAAc/oEYkS7BtIGIoNiYSEiIpOzeN8VfL7nMgDg3d7NMaaDv8SJyNBYWIiIyKQsPXANH++6BAB4q2dTTOgYIHEiqgksLEREZDJWHk7CBzsTAABTuzbBpM6NJE5ENUXnwnLgwAH06dMHXl5ekMlk2Lp1a9ljxcXFePvtt9GqVSs4ODjAy8sLI0eOxK1bt6p8zlWrVkEmkz10Kyws1PkFERGReVpz7Abm/XQBAPDGM40wuWtjiRNRTdK5sNy/fx9BQUFYuHDhQ4/l5+fj5MmTmD17Nk6ePInNmzfj8uXLeOGFFx75vE5OTkhLSyt3s7Oz0zUeERGZoQ3HkzF76zkAwMRODTGtWxOJE1FNs9Z1Qq9evdCrV68KH1MqldizZ0+5sa+++grh4eFITk5G/fqVf91MJpPBw8ND1zhERGTmfohLwTtbzgIAxj3lj7d7NoVMJpM4FdU0g5/DkpOTA5lMBmdn5yq3y8vLg5+fH3x8fPD888/j1KlTVW6vVquhUqnK3YiIyLxsPZWKtzadgRDA6PYNMOu55iwrFsqghaWwsBAzZszA0KFD4eTkVOl2zZo1w6pVq7B9+3Zs2LABdnZ26NChAxITEyudExUVBaVSWXbz9eXKhkRE5uSn07cw7ft4CAEMi6iPOX0CWVYsmEwIIao9WSbDli1b0K9fv4ceKy4uxsCBA5GcnIx9+/ZVWVj+SavVom3btujYsSMWLFhQ4TZqtRpqtbrsvkqlgq+vL3JycnT6WUREZHx2nUvDa+tPQaMVGBzqi6j+rSCXs6yYI5VKBaVS+cj3b53PYXkcxcXFGDRoEJKSkvD777/rXCDkcjnCwsKqPMKiUCigUCieNCoRERmZXefS8PqfZaV/W2+WFQJggI+EHpSVxMRE7N27F3Xr1tX5OYQQiI+Ph6enp77jERGREfvlbGlZKdEK9G3jhU9eCmJZIQDVOMKSl5eHK1eulN1PSkpCfHw8XFxc4OXlhZdeegknT57Ezz//DI1Gg/T0dACAi4sLbG1tAQAjR46Et7c3oqKiAADz5s1DZGQkGjduDJVKhQULFiA+Ph6LFi3Sx2skIiITsONMGt7cWHpk5cVgb3w6MAhWLCv0J50LS1xcHLp06VJ2f9q0aQCAUaNGYe7cudi+fTsAoE2bNuXm/fHHH+jcuTMAIDk5GXL5Xwd3srOz8corryA9PR1KpRLBwcE4cOAAwsPDdY1HREQm6OcztzB5Y3zpx0DB3viEZYX+4YlOujUmj3vSDhERGZefTt/ClOjSsjKgrQ8+fqk1y4oFkfSkWyIiosexLT4VU6PjoRXAwBAffDSAZYUqxsJCRESS+HtZGRTqg4/6t+YJtlQpXq2ZiIhq3NZTf5WVl8N8WVbokVhYiIioRm0+eRPTvi8tK0PCffHhi1xnhR6NHwkREVGN+fHETfznx9MQAhgSXh8f9GvJskKPhUdYiIioRvwQl1JWVoZFsKyQbniEhYiIDO77uBS8/edVl0dE+uG/fVvwQoakExYWIiIyqOjYZMzYfBZCACPb+WHeCywrpDsWFiIiMpiNx0vLCgCMbt8Ac/oEsqxQtbCwEBGRQayPScY7W0rLypgODfDe8ywrVH0sLEREpHfrYm7g3S3nAABjO/hj9vPNWVboibCwEBGRXq05dgOzt5aWlXFP+WPWcywr9ORYWIiISG9WH72O97adBwBMeNof7/RmWSH9YGEhIiK9+O7IdczZXlpWXu0YgBm9mrGskN6wsBAR0RNbeTgJ8366AAB4tVMAZvRkWSH9YmEhIqInsuJQEv77c2lZ+VfnhnirR1OWFdI7FhYiIqq2ZQev4f0dCQCA17o0xPTuLCtkGCwsRERULX8vK2880wjTujVhWSGDYWEhIiKdfXvgKj7ceREA8OYzjTCVZYUMjIWFiIh0smT/VXz0S2lZmfxsY0zt1kTiRGQJWFiIiOixfb3vKubvKi0rU7o2xpSuLCtUM1hYiIjosSz64wo++fUSAGBq1yaY3LWxxInIkrCwEBHRIy38PRGf7r4MAPh3tyZ441mWFapZLCxERFSlr35LxGd7SsvKf3o0xWtdGkmciCwRCwsREVXqy72J+N/e0rLyVs+mmNSZZYWkwcJCREQV+t+ey/jyt0QAwNs9m+FfnRtKnIgsGQsLERGVI4TA//YmYsGfZWVmr2Z4tRPLCkmLhYWIiMoIIfC/PZex4PcrAIB3ezfHhI4BEqciYmEhIqI/CSHw2e7LWPhHaVmZ9VxzjH+aZYWMAwsLERFBCIFPfr2ExfuuAgBmPx+IcU/5S5yK6C8sLEREFk4IgY9/vYSv/ywrc/oEYkwHlhUyLiwsREQWTAiBj3ZdxDf7rwEA5vYJxGiWFTJCLCxERBZKCIGoXy7i2wOlZeW/fVtgZLsG0oYiqgQLCxGRBRJC4MOdCVh6MAkA8H99W2AEywoZMRYWIiILI4TA+zsSsPxQaVl5v19LDI/0kzgVUdVYWIiILIgQAv/9+QJWHr4OAPjgxZYYFsGyQsZPruuEAwcOoE+fPvDy8oJMJsPWrVvLPS6EwNy5c+Hl5QV7e3t07twZ58+ff+Tzbtq0CYGBgVAoFAgMDMSWLVt0jUZERFUQQmDeT3+Vlaj+rVhWyGToXFju37+PoKAgLFy4sMLHP/74Y3z++edYuHAhYmNj4eHhgW7duiE3N7fS5zx69CgGDx6MESNG4PTp0xgxYgQGDRqEmJgYXeMREVEFhBCYu/08Vh25DgD4qH8rDAmvL20oIh3IhBCi2pNlMmzZsgX9+vUDUPoL4eXlhSlTpuDtt98GAKjVari7u2P+/Pl49dVXK3yewYMHQ6VS4Zdffikb69mzJ+rUqYMNGzY8VhaVSgWlUomcnBw4OTlV9yUREZkdIQTe23Yea47dgEwGzO/fGoPCfKWORQTg8d+/dT7CUpWkpCSkp6eje/fuZWMKhQKdOnXCkSNHKp139OjRcnMAoEePHlXOUavVUKlU5W5ERFSeViswe9u5v8rKAJYVMk16LSzp6ekAAHd393Lj7u7uZY9VNk/XOVFRUVAqlWU3X1/+AhIR/d2DsrL2WDJkMuCTl4IwKJR/K8k06bWwPCCTycrdF0I8NPakc2bOnImcnJyyW0pKSvUDExGZGa1W4N2t57AuprSsfPpSEF4K8ZE6FlG16fVrzR4eHgBKj5h4enqWjWdkZDx0BOWf8/55NOVRcxQKBRQKxRMmJiIyP1qtwDtbzmJjbArkMuCzQUF4MZhlhUybXo+w+Pv7w8PDA3v27CkbKyoqwv79+9G+fftK57Vr167cHADYvXt3lXOIiOhhWq3AzM1/lZXPB7VhWSGzoPMRlry8PFy5cqXsflJSEuLj4+Hi4oL69etjypQp+PDDD9G4cWM0btwYH374IWrVqoWhQ4eWzRk5ciS8vb0RFRUFAJg8eTI6duyI+fPno2/fvti2bRv27t2LQ4cO6eElEhFZBo1WYObmM/g+7ibkMuB/g9ugbxtvqWMR6YXOhSUuLg5dunQpuz9t2jQAwKhRo7Bq1Sq89dZbKCgowKRJk3Dv3j1ERERg9+7dcHR0LJuTnJwMufyvgzvt27fHxo0bMWvWLMyePRsNGzZEdHQ0IiIinuS1ERFZjGKNFv/+/jS2n74FuQz44uVgvBDkJXUsIr15onVYjAnXYSEiS1VYrMEbG05hz4XbsJbL8OXLwXiuteejJxIZgcd9/+a1hIiITFh+UQleWX0Ch65kwtZajiXD2+KZZpV/YYHIVLGwEBGZKFVhMcaujEXcjXuoZWuFZaNC0b6hq9SxiAyChYWIyATdvV+EUSuO42xqDpzsrLFqbDja1q8jdSwig2FhISIyMRmqQgxbFoPEjDzUdbDF6nHhaOGllDoWkUGxsBARmZCb9/IxbFkMbmTlw91JgXXjI9HIrbbUsYgMjoWFiMhEXLuTh+HLYnArpxC+LvZYNy4S9evWkjoWUY1gYSEiMgEX01UYvuw4MvPUaFjPAevGR8JDaSd1LKIaw8JCRGTkTqdkY+SK48gpKEagpxNWjwuHa21eS40sCwsLEZERi7mWhXHfxSFPXYLg+s5YNTocylo2UsciqnEsLERERmr/5Tt4dU0cCou1aBdQF8tGhcJBwT/bZJn4L5+IyAjtOpeONzacRLFG4Jlmblg8rC3sbKykjkUkGRYWIiIjs+XUTUz/4Qw0WoHnWnnif4PbwNZa/uiJRGaMhYWIyIisi7mBWVvPQQjgpRAfzB/QGlZymdSxiCTHwkJEZCSWHriGD3YmAABGtfPDnD4tIGdZIQLAwkJEJDkhBL7Ym4gvf0sEAPyrc0O81aMpZDKWFaIHWFiIiCQkhMAHOxKw7FASAOA/PZritS6NJE5FZHxYWIiIJKLVCszadg7rY5IBAHP6BGJMB3+JUxEZJxYWIiIJlGi0+M+PZ7DlVCpkMmB+/9YYFOYrdSwio8XCQkRUw9QlGry54RR+PX8b1nIZ/je4DfoEeUkdi8iosbAQEdWggiINXlkTh4OJmbC1lmPx0LboGugudSwio8fCQkRUQ3ILizFuVRyOX78LexsrLBsVig6NXKWORWQSWFiIiGrAvftFGL3yOE7fzIGjnTVWjQlDiJ+L1LGITAYLCxGRgWXkFmLEsuO4dDsXdWrZYM24CLT0Vkodi8iksLAQERlQanYBhi+LQVLmfbg5KrBufAQauztKHYvI5LCwEBEZyPXM+xi2LAap2QXwdrbH+gkR8KvrIHUsIpPEwkJEZACX0nMxfHkM7uSqEeDqgLXjI+DlbC91LCKTxcJCRKRnZ2/mYMSKGGTnF6OZhyPWjItAPUeF1LGITBoLCxGRHsVev4uxK2ORqy5BkK8zvhsTBudatlLHIjJ5LCxERHpyMPEOJqyOQ2GxFhH+Llg+Ogy1FfwzS6QP/E0iItKD3efT8fr6UyjSaNG5aT18PSwE9rZWUsciMhssLERET2hbfCqmfX8aGq1Ar5Ye+PLlYNhay6WORWRWWFiIiJ7AhuPJeGfLWQgB9G/rjY8HtIa1FcsKkb6xsBARVdPyQ0n4v58vAACGR9bHf19oCblcJnEqIvPEwkJEpCMhBL76/Qo+33MZAPBqpwDM6NkMMhnLCpGhsLAQEelACIGPfrmIbw5cAwD8u1sTvP5MI5YVIgNjYSEiekxarcB7289h7bFkAMDs5wMx7il/iVMRWQa9nxnWoEEDyGSyh26vvfZahdvv27evwu0vXryo72hERNVWotFi+o+nsfZYMmQy4KP+rVhWiGqQ3o+wxMbGQqPRlN0/d+4cunXrhoEDB1Y579KlS3Byciq7X69ePX1HIyKqlqISLSZvPIVfzqXDSi7D54OC0LeNt9SxiCyK3gvLP4vGRx99hIYNG6JTp05VznNzc4Ozs7O+4xARPZHCYg0mrj2BfZfuwNZKjoVDg9G9hYfUsYgsjkEXCygqKsLatWsxduzYR56QFhwcDE9PTzz77LP4448/HvncarUaKpWq3I2ISJ/y1CUYteI49l26A3sbKywfHcqyQiQRgxaWrVu3Ijs7G6NHj650G09PT3z77bfYtGkTNm/ejKZNm+LZZ5/FgQMHqnzuqKgoKJXKspuvr6+e0xORJcvOL8KwZTGISboLR4U1Vo8Lx9ON+VE1kVRkQghhqCfv0aMHbG1t8dNPP+k0r0+fPpDJZNi+fXul26jVaqjV6rL7KpUKvr6+yMnJKXcuDBGRru7kqjFieQwupueiTi0brB4bgVY+SqljEZkllUoFpVL5yPdvg32t+caNG9i7dy82b96s89zIyEisXbu2ym0UCgUUCkV14xERVSgtpwDDlsbgWuZ91HNUYN34CDRxd5Q6FpHFM1hhWblyJdzc3PDcc8/pPPfUqVPw9PQ0QCoiosrdyLqPYcticPNeAbyd7bFufAQauDpIHYuIYKDCotVqsXLlSowaNQrW1uV/xMyZM5GamorVq1cDAL744gs0aNAALVq0KDtJd9OmTdi0aZMhohERVSjxdi6GLYtBRq4a/q4OWDs+At7O9lLHIqI/GaSw7N27F8nJyRg7duxDj6WlpSE5ObnsflFREaZPn47U1FTY29ujRYsW2LFjB3r37m2IaERED4lPycbYVbG4e78ITd0dsWZ8ONwc7aSORUR/Y9CTbmvS4560Q0T0d78l3MZr60+isFiL1j5KfDcmHHUcbKWORWQxJD/plojI2K2LuYHZW89BK4BOTeph8bC2cFDwzyKRMeJvJhFZHCEEPtt9GQv/uAIAGBTqgw9ebAUbK4MuTUVET4CFhYgsSrFGixmbzmLTyZsAgCldG2Pys40fuRo3EUmLhYWILEZuYTEmrTuJg4mZsJLL8OGLLTE4rL7UsYjoMbCwEJFFuK0qxJiVsbiQpkItWyssGtYWXZq6SR2LiB4TCwsRmb0rGbkYtSIWqdkFcK1tixWjw9Dax1nqWESkAxYWIjJrx5PuYsLqOOQUFMPf1QHfjQlH/bq1pI5FRDpiYSEis7XzbBqmRMejqESLtvWdsWxUGFy4xgqRSWJhISKztPxQEt7fcQFCAN0D3bFgSDDsbKykjkVE1cTCQkRmRasV+HBnApYdSgIAjGznhzl9WsBKzq8tE5kyFhYiMhuFxRr8+4fT2HEmDQAwo1czvNoxgGusEJkBFhYiMgs5+cWYsCYOx5PuwsZKhk8HBqFvG2+pYxGRnrCwEJHJS80uwKgVx3ElIw+OCmt8MyIE7Ru5Sh2LiPSIhYWITNqFWyqMXnkcGblqeDjZYeWYMDT35BXbicwNCwsRmaxDiZmYuPYE8tQlaOJeG6vGhMPL2V7qWERkACwsRGSSNp+8ibd+PIMSrUBkgAu+GREKpb2N1LGIyEBYWIjIpAghsHjfVXzy6yUAQJ8gL3w6sDUU1lxjhcicsbAQkcko0WgxZ/t5rItJBgC82jEAb/dsBjnXWCEyeywsRGQSCoo0eGPDSexNyIBMBsx5PhCjO/hLHYuIaggLCxEZvaw8NcZ9F4f4lGworOX48uU26NnSU+pYRFSDWFiIyKjdyLqPUSuO43pWPpxr2WDZyFCENnCROhYR1TAWFiIyWvEp2Ri3KhZZ94vgU8ceq8aEo5FbbaljEZEEWFiIyCj9lnAbr68/hYJiDVp6O2HF6DC4OdpJHYuIJMLCQkRGZ31MMmZtPQutADo2qYfFw9qitoJ/rogsGf8CEJHREELg8z2X8dXvVwAAA0N88GH/VrCxkkucjIikxsJCREahWKPFjE1nsenkTQDA5GcbY0rXxpDJuMYKEbGwEJERyFOX4F9rT+BgYias5DJ80K8lXg6vL3UsIjIiLCxEJKkMVSFGr4zFhTQV7G2ssHhYW3Rp5iZ1LCIyMiwsRCSZKxm5GLUiFqnZBXCtbYsVo8PQ2sdZ6lhEZIRYWIhIErHX72L8d3HIKSiGv6sDvhsTjvp1a0kdi4iMFAsLEdW4nWfTMCU6HkUlWgTXd8byUWFwcbCVOhYRGTEWFiKqUcsPJeH9HRcgBNA90B1fvhwMe1srqWMRkZFjYSGiGqHVCny4MwHLDiUBAEZE+mHuCy1gJefXlono0VhYiMjgCos1+PcPp7HjTBoA4O2ezTCxUwDXWCGix8bCQkQGlZNfjAlr4nA86S5srGT45KUg9Av2ljoWEZkYFhYiMpjU7AKMXnEciRl5cFRYY8mIEHRo5Cp1LCIyQXq/QMfcuXMhk8nK3Tw8PKqcs3//foSEhMDOzg4BAQFYsmSJvmMRUQ27cEuF/osPIzEjDx5Odvh+YjuWFSKqNoMcYWnRogX27t1bdt/KqvJvACQlJaF3796YMGEC1q5di8OHD2PSpEmoV68eBgwYYIh4RGRghxIzMXHtCeSpS9DEvTZWjQmHl7O91LGIyIQZpLBYW1s/8qjKA0uWLEH9+vXxxRdfAACaN2+OuLg4fPrppywsRCZo88mbeOvHMyjRCkT4u+DbkaFQ2ttIHYuITJxBrtmemJgILy8v+Pv74+WXX8a1a9cq3fbo0aPo3r17ubEePXogLi4OxcXFlc5Tq9VQqVTlbkQkHSEEFv1xBdO+P40SrUCfIC+sHhfOskJEeqH3whIREYHVq1fj119/xdKlS5Geno727dsjKyurwu3T09Ph7u5ebszd3R0lJSXIzMys9OdERUVBqVSW3Xx9ffX6Oojo8Wm0ArO3ncMnv14CALzSMQBfDm4DhTUXhCMi/dB7YenVqxcGDBiAVq1aoWvXrtixYwcA4Lvvvqt0zj/XYhBCVDj+dzNnzkROTk7ZLSUlRQ/piUhXBUUavLrmBNYeS4ZMBszpE4h3ejeHnAvCEZEeGfxrzQ4ODmjVqhUSExMrfNzDwwPp6enlxjIyMmBtbY26detW+rwKhQIKhUKvWYlIN3dy1ZiwOg7xKdmwtZbjy8Ft0KuVp9SxiMgMGeQclr9Tq9VISEiAp2fFf8TatWuHPXv2lBvbvXs3QkNDYWPDz76JjNWJG3fx/FcHEZ+SDaW9DdaPj2BZISKD0XthmT59Ovbv34+kpCTExMTgpZdegkqlwqhRowCUfpQzcuTIsu0nTpyIGzduYNq0aUhISMCKFSuwfPlyTJ8+Xd/RiEgPhBBYffQ6Xv72GG6r1GjkVhubJ7VHaAMXqaMRkRnT+0dCN2/exJAhQ5CZmYl69eohMjISx44dg5+fHwAgLS0NycnJZdv7+/tj586dmDp1KhYtWgQvLy8sWLCAX2kmMkIFRRq8s+UstpxKBQA818oT819qjdoKLppNRIYlEw/OcDVxKpUKSqUSOTk5cHJykjoOkdm5kXUfE9eeREKaClZyGWb0bIbxT/vzAoZE9EQe9/2b/1lERI/0+8XbmLIxHqrCErjWtsVXQ9qiXcPKT4onItI3FhYiqpRWK/Dlb4n48rfSb/kF13fG4mFt4ankMvtEVLNYWIioQtn5RZgSHY99l+4AAEZE+mHW8825GBwRSYKFhYgecv5WDiauPYGUuwVQWMvx4YutMCDER+pYRGTBWFiIqJxNJ27inS1noS7RwtfFHkuGh6CFl1LqWERk4VhYiAgAUFSixf/9fAFrjt0AAHRpWg9fDA6GshYXcCQi6bGwEBHScgowad1JnErOBgBMfrYxJj/bmNcDIiKjwcJCZOGOXs3CGxtOIjOvCE521vji5TZ4ppn7oycSEdUgFhYiCyWEwLKDSfho10VotALNPZ2wZHhb+NV1kDoaEdFDWFiILFCeugRv/3gGO86mAQD6B3vjgxdbwd6WX1kmIuPEwkJkYa5k5GHi2hO4kpEHGysZ3ns+EMMj/bjEPhEZNRYWIguy61wapv9wBnnqErg7KbB4WAhC/OpIHYuI6JFYWIgsQIlGi093X8aS/VcBAOH+Llg4NBhujnYSJyMiejwsLERmLitPjTc2nMKRq1kAgPFP+ePtXs1gYyWXOBkR0eNjYSEyY/Ep2fjX2hNIyylELVsrfPxSazzf2kvqWEREOmNhITJDQghsOJ6CudvPo0ijRYCrA74ZEYLG7o5SRyMiqhYWFiIzU1isweyt5/DDiZsAgB4t3PHpwCA42nGJfSIyXSwsRGYk5W4+/rXuBM6lqiCXAf/p0QwTOwXwK8tEZPJYWIjMxP7LdzB54ylk5xfDxcEWC14OxlONXaWORUSkFywsRCZOqxVY9McVfL73MoQAgnyUWDw8BN7O9lJHIyLSGxYWIhOWU1CMf38fj70JGQCAIeH1MadPIOxsuMQ+EZkXFhYiE3UxXYWJa07gelY+bK3leL9vSwwK85U6FhGRQbCwEJmgbfGpmLHpLAqKNfB2tsfXw9uitY+z1LGIiAyGhYXIhBRrtPhgRwJWHbkOAHi6sSu+fDkYLg620gYjIjIwFhYiE5GhKsRr608i9vo9AMDrXRpharcmsJLzK8tEZP5YWIhMQOz1u5i07iTu5KrhqLDG54PboFugu9SxiIhqDAsLkRETQmDVkev4YEcCSrQCTd0dsWRECPxdHaSORkRUo1hYiIxUflEJZm4+i23xtwAAfYK8MH9AK9Sy5a8tEVke/uUjMkJJmfcxcc0JXLqdC2u5DO/0bo4xHRpwiX0islgsLERGZu+F25gaHY9cdQnqOSqwaGhbhPu7SB2LiEhSLCxERkKjFfhi72V89fsVAECoXx0sHtYWbk52EicjIpIeCwuREbh3vwhvbjyFg4mZAIDR7Rvg3eeaw8ZKLnEyIiLjwMJCJLGzN3Mwce0JpGYXwM5Gjo/6t0a/YG+pYxERGRUWFiIJfR+bglnbzqGoRAu/urWwZHgImns6SR2LiMjosLAQSaCwWIN5P13AhuPJAICuzd3w2aA2UNrbSJyMiMg4sbAQ1bDDVzLx7pazuJ6VD5kM+He3JpjUuRHkXGKfiKhSej+jLyoqCmFhYXB0dISbmxv69euHS5cuVTln3759kMlkD90uXryo73hEksnKU2NadDyGLYvB9ax8uDspsGpMOF5/pjHLChHRI+j9CMv+/fvx2muvISwsDCUlJXj33XfRvXt3XLhwAQ4OVS8nfunSJTg5/fX5fb169fQdj6jGCSHww4mb+HBnArLziyGTASMj/TC9R1M42vEjICKix6H3wrJr165y91euXAk3NzecOHECHTt2rHKum5sbnJ2d9R2JSDJX7+Thnc1nEZN0FwDQ3NMJUf1boY2vs7TBiIhMjMHPYcnJyQEAuLg8eqXO4OBgFBYWIjAwELNmzUKXLl0q3VatVkOtVpfdV6lUTx6WSE/UJRp8ve8qFv9xFUUaLexs5JjatQnGPuXPtVWIiKrBoIVFCIFp06bhqaeeQsuWLSvdztPTE99++y1CQkKgVquxZs0aPPvss9i3b1+lR2WioqIwb948Q0UnqrZj17LwzpazuHbnPgCgc9N6+L++LeHrUkviZEREpksmhBCGevLXXnsNO3bswKFDh+Dj46PT3D59+kAmk2H79u0VPl7RERZfX1/k5OSUOw+GqKZk5xfhw50J+D7uJgDAtbYCc18IxHOtPHnRQiKiSqhUKiiVyke+fxvsCMsbb7yB7du348CBAzqXFQCIjIzE2rVrK31coVBAoVA8SUQivRBCYGt8Kt7/OQFZ94sAAEMj6uPtns24rgoRkZ7ovbAIIfDGG29gy5Yt2LdvH/z9/av1PKdOnYKnp6ee0xHp1/XM+5i19RwOXSm9BlAT99qI6t8KIX68ujIRkT7pvbC89tprWL9+PbZt2wZHR0ekp6cDAJRKJezt7QEAM2fORGpqKlavXg0A+OKLL9CgQQO0aNECRUVFWLt2LTZt2oRNmzbpOx6RXhSVaLH04DUs+C0R6hItFNZyvPlsY0x4OgC21jyplohI3/ReWL7++msAQOfOncuNr1y5EqNHjwYApKWlITk5ueyxoqIiTJ8+HampqbC3t0eLFi2wY8cO9O7dW9/xiJ5Y3PW7eGfLWVy+nQcAeKqRK97v1xINXKteZ4iIiKrPoCfd1qTHPWmHqLpyCooxf9dFrI8pLdsuDraY/Xxz9GvjzZNqiYiqSfKTbonMhRACP59Jw7yfLiAzr/SbaYNCfTCzV3PUcbCVOB0RkWVgYSGqQsrdfMzedg77Lt0BAATUc8CHL7ZCZEBdiZMREVkWFhaiChRrtFhxKAn/23sZhcVa2FrJMalLQ/yrc0MorK2kjkdEZHFYWIj+IT4lGzM3n0VCWunlHiL8XfDBi63QyK22xMmIiCwXCwvRn3ILi/Hpr5ew+tgNCAE417LBO72bY2CID0+qJSKSGAsLWTwhBH49n44528/jtqr0pNr+wd5497nmqFubqykTERkDFhayaLeyC/DetvPYm3AbAOBXtxY+6NcKTzV2lTgZERH9HQsLWSSNVmDVkev4bPcl5BdpYC2XYWKnhnj9mUaws+FJtURExoaFhSzOudQczNx8FmdTcwAAIX51ENW/FZq4O0qcjIiIKsPCQhbjvroEn++5jJWHk6AVgKOdNWb2ao6Xw3whl/OkWiIiY8bCQhZh74XbeG/bOdzKKQQA9Anywuznm8PN0U7iZERE9DhYWMis3VYVYu728/jlXOlVw33q2OP/+rVEl6ZuEicjIiJdsLCQWdJoBdbF3MDHuy4hT10CK7kM45/2x+RnG6OWLf/ZExGZGv7lJrOTkKbCzM1nEZ+SDQAI8nVG1IutEOjFq3gTEZkqFhYyGwVFGnzx22UsO5gEjVagtsIa/+nRFMMj/WDFk2qJiEwaCwuZhX2XMjBr6zncvFcAAOjZwgNzX2gBDyVPqiUiMgcsLGTSMnIL8X8/J+Cn07cAAJ5KO/y3b0t0C3SXOBkREekTCwuZJK1WYGNsCj76JQGqwhLIZcDo9v6Y1r0Jaiv4z5qIyNzwLzuZnMu3c/HO5rOIu3EPANDS2wlRL7ZGKx+lxMmIiMhQWFjIJAghEJN0F9/HpuCnM7dQrBGoZWuFad2aYHT7BrC2kksdkYiIDIiFhYzabVUhfjxxEz/EpeB6Vn7ZeNfmbpjXtyW8ne0lTEdERDWFhYWMTrFGiz8uZuD7uBT8cekONFoBAHCwtUKfIC8MCvNFsK8zZDJ+VZmIyFKwsJDRuHYnD9/H3cSmkzdxJ1ddNh7qVweDwnzxXCtPOPCEWiIii8S//iSpgiINdp5NQ3RsCo5fv1s27lrbFv3b+mBQqC8audWWMCERERkDFhaqcUIInLmZg+i4FPwUfwu56hIAgFwGdGpSD4PD6uPZ5m6w4Ym0RET0JxYWqjH37hdha3wqomNTcDE9t2y8vkstDAr1wYAQH3gqeRItERE9jIWFDEqrFThyNQsbY5Ox+/xtFGm0AABbazl6tfTA4DBfRPrXhZzX+iEioiqwsJBB3MouwA9xN/HDiZSy6/sAQKCnE14O90XfIG8oa9lImJCIiEwJCwvpTVGJFnsTbiM6NgUHEu9AlH4bGY521ujXxhuDw3zR0pur0RIRke5YWOiJXb6di+jYFGw5lYq794vKxiMDXDA4zBe9WnrCzsZKwoRERGTqWFioWvLUJfj59C1Ex6XgVHJ22bibowIDQ30wMMQXDVwdpAtIRERmhYWFHpsQAieT7yE6NgU/n0lDfpEGAGAtl+GZZm4YHOaLTk3q8bo+RESkdyws9EiZeWpsOZmK6LgUXMnIKxsPcHXAoDBf9G/rDTdHOwkTEhGRuWNhoQpptAIHLt9BdGwK9ibcRsmf1/Oxt7HCc609MTjMF6F+dXg9HyIiqhEsLFROyt18fB+Xgh9P3ERaTmHZeJCvMwaH+qJPkCcc7fh1ZCIiqlksLITCYg1+PZ+O6NgUHLmaVTbuXMsGLwaXfh25mYeThAmJiMjSGezsyMWLF8Pf3x92dnYICQnBwYMHq9x+//79CAkJgZ2dHQICArBkyRJDRaM/Xbilwpxt5xDx4W+YvDEeR65mQSYDnm7sioVDgxHzzrOY06cFywoREUnOIEdYoqOjMWXKFCxevBgdOnTAN998g169euHChQuoX7/+Q9snJSWhd+/emDBhAtauXYvDhw9j0qRJqFevHgYMGGCIiBYrp6AY20/fwvexKTibmlM27u1sj5dCfDAw1Ac+dWpJmJCIiOhhMiEerEeqPxEREWjbti2+/vrrsrHmzZujX79+iIqKemj7t99+G9u3b0dCQkLZ2MSJE3H69GkcPXr0sX6mSqWCUqlETk4OnJxM54iAEALFGgGNVqBYq0WJRqBEo0WxVkCj+WusWKNFiVZAo9WiWCNKx/58rGzsb49VNJaUmYdfzqVDXVJ6PR8bKxm6B5Zez6dDI1dY8Xo+RERUwx73/VvvR1iKiopw4sQJzJgxo9x49+7dceTIkQrnHD16FN27dy831qNHDyxfvhzFxcWwsXn4JE+1Wg21Wl12X6VS6SH9w5YfSkLK3fzSwvBnSdBoRbkSUaz529jfCoZGK8oeL/mzPJT8Y65Gq/e++EhN3GtjcFh9vBjsDRcH2xr/+URERLrSe2HJzMyERqOBu7t7uXF3d3ekp6dXOCc9Pb3C7UtKSpCZmQlPT8+H5kRFRWHevHn6C16Jn8/cKreSa02QywBrKzms5TJYy2WwsZLD2koGa/mD/y0/ZmMlg9WDMbkM1lYPxuSwkctKt7OSw1FhjZ4tPdDG15lfRyYiIpNisG8J/fMNUQhR5ZtkRdtXNP7AzJkzMW3atLL7KpUKvr6+1Y1bqQFtfdChoSusrf4qBFZ/Kww2f5aIvxeGB49VNGYtf1AqyheMsjG5HHJ+NENERFSO3guLq6srrKysHjqakpGR8dBRlAc8PDwq3N7a2hp169atcI5CoYBCodBP6CoMj/Qz+M8gIiKiqun9a822trYICQnBnj17yo3v2bMH7du3r3BOu3btHtp+9+7dCA0NrfD8FSIiIrIsBlmHZdq0aVi2bBlWrFiBhIQETJ06FcnJyZg4cSKA0o9zRo4cWbb9xIkTcePGDUybNg0JCQlYsWIFli9fjunTpxsiHhEREZkYg5zDMnjwYGRlZeG///0v0tLS0LJlS+zcuRN+fqUfr6SlpSE5Oblse39/f+zcuRNTp07FokWL4OXlhQULFnANFiIiIgJgoHVYpGCq67AQERFZssd9/zbY0vxERERE+sLCQkREREaPhYWIiIiMHgsLERERGT0WFiIiIjJ6LCxERERk9FhYiIiIyOixsBAREZHRY2EhIiIio2eQpfml8GDBXpVKJXESIiIielwP3rcftfC+2RSW3NxcAICvr6/ESYiIiEhXubm5UCqVlT5uNtcS0mq1uHXrFhwdHSGTyfT2vCqVCr6+vkhJSeE1iowA94fx4T4xLtwfxoX749GEEMjNzYWXlxfk8srPVDGbIyxyuRw+Pj4Ge34nJyf+YzMi3B/Gh/vEuHB/GBfuj6pVdWTlAZ50S0REREaPhYWIiIiMHgvLIygUCsyZMwcKhULqKATuD2PEfWJcuD+MC/eH/pjNSbdERERkvniEhYiIiIweCwsREREZPRYWIiIiMnosLERERGT0WFgALF68GP7+/rCzs0NISAgOHjxY5fb79+9HSEgI7OzsEBAQgCVLltRQUsugy/7YvHkzunXrhnr16sHJyQnt2rXDr7/+WoNpzZ+uvx8PHD58GNbW1mjTpo1hA1ogXfeJWq3Gu+++Cz8/PygUCjRs2BArVqyoobTmT9f9sW7dOgQFBaFWrVrw9PTEmDFjkJWVVUNpTZiwcBs3bhQ2NjZi6dKl4sKFC2Ly5MnCwcFB3Lhxo8Ltr127JmrVqiUmT54sLly4IJYuXSpsbGzEjz/+WMPJzZOu+2Py5Mli/vz54vjx4+Ly5cti5syZwsbGRpw8ebKGk5snXffHA9nZ2SIgIEB0795dBAUF1UxYC1GdffLCCy+IiIgIsWfPHpGUlCRiYmLE4cOHazC1+dJ1fxw8eFDI5XLx5ZdfimvXromDBw+KFi1aiH79+tVwctNj8YUlPDxcTJw4sdxYs2bNxIwZMyrc/q233hLNmjUrN/bqq6+KyMhIg2W0JLruj4oEBgaKefPm6TuaRaru/hg8eLCYNWuWmDNnDguLnum6T3755RehVCpFVlZWTcSzOLruj08++UQEBASUG1uwYIHw8fExWEZzYdEfCRUVFeHEiRPo3r17ufHu3bvjyJEjFc45evToQ9v36NEDcXFxKC4uNlhWS1Cd/fFPWq0Wubm5cHFxMUREi1Ld/bFy5UpcvXoVc+bMMXREi1OdfbJ9+3aEhobi448/hre3N5o0aYLp06ejoKCgJiKbtersj/bt2+PmzZvYuXMnhBC4ffs2fvzxRzz33HM1Edmkmc3FD6sjMzMTGo0G7u7u5cbd3d2Rnp5e4Zz09PQKty8pKUFmZiY8PT0NltfcVWd//NNnn32G+/fvY9CgQYaIaFGqsz8SExMxY8YMHDx4ENbWFv3nxSCqs0+uXbuGQ4cOwc7ODlu2bEFmZiYmTZqEu3fv8jyWJ1Sd/dG+fXusW7cOgwcPRmFhIUpKSvDCCy/gq6++qonIJs2ij7A8IJPJyt0XQjw09qjtKxqn6tF1fzywYcMGzJ07F9HR0XBzczNUPIvzuPtDo9Fg6NChmDdvHpo0aVJT8SySLr8jWq0WMpkM69atQ3h4OHr37o3PP/8cq1at4lEWPdFlf1y4cAFvvvkm3nvvPZw4cQK7du1CUlISJk6cWBNRTZpF/yeQq6srrKysHmrCGRkZDzXmBzw8PCrc3traGnXr1jVYVktQnf3xQHR0NMaNG4cffvgBXbt2NWRMi6Hr/sjNzUVcXBxOnTqF119/HUDpm6UQAtbW1ti9ezeeeeaZGslurqrzO+Lp6Qlvb28olcqysebNm0MIgZs3b6Jx48YGzWzOqrM/oqKi0KFDB/znP/8BALRu3RoODg54+umn8f777/MofRUs+giLra0tQkJCsGfPnnLje/bsQfv27Suc065du4e23717N0JDQ2FjY2OwrJagOvsDKD2yMnr0aKxfv56fA+uRrvvDyckJZ8+eRXx8fNlt4sSJaNq0KeLj4xEREVFT0c1WdX5HOnTogFu3biEvL69s7PLly5DL5fDx8TFoXnNXnf2Rn58Pubz8W6+VlRWAv47WUyWkOtvXWDz4Stry5cvFhQsXxJQpU4SDg4O4fv26EEKIGTNmiBEjRpRt/+BrzVOnThUXLlwQy5cv59ea9UjX/bF+/XphbW0tFi1aJNLS0spu2dnZUr0Es6Lr/vgnfktI/3TdJ7m5ucLHx0e89NJL4vz582L//v2icePGYvz48VK9BLOi6/5YuXKlsLa2FosXLxZXr14Vhw4dEqGhoSI8PFyql2AyLL6wCCHEokWLhJ+fn7C1tRVt27YV+/fvL3ts1KhRolOnTuW237dvnwgODha2traiQYMG4uuvv67hxOZNl/3RqVMnAeCh26hRo2o+uJnS9ffj71hYDEPXfZKQkCC6du0q7O3thY+Pj5g2bZrIz8+v4dTmS9f9sWDBAhEYGCjs7e2Fp6enGDZsmLh582YNpzY9MiF4DIqIiIiMm0Wfw0JERESmgYWFiIiIjB4LCxERERk9FhYiIiIyeiwsREREZPRYWIiIiMjosbAQERGR0WNhISIiIqPHwkJERERGj4WFiIiIjB4LCxERERk9FhYiIiIyev8PVehpZkUvQTYAAAAASUVORK5CYII=\n",
+      "text/plain": [
+       "<Figure size 640x480 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "plt.figure()\n",
+    "plt.plot(tiempo,y)\n",
+    "plt.savefig('Modeladoservilletaextendida.pdf', bbox_inches = 'tight')\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "colab": {
+   "provenance": []
+  },
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.10.9"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}