diff --git a/ENTREGA_prueba.ipynb b/ENTREGA_prueba.ipynb index a5ddd664ab50214977835c3b5d52a4abff7f7623..677f482880116d647805a5e323c3500bed46f28d 100644 --- a/ENTREGA_prueba.ipynb +++ b/ENTREGA_prueba.ipynb @@ -1002,7 +1002,7 @@ }, { "cell_type": "code", - "execution_count": 83, + "execution_count": 84, "metadata": {}, "outputs": [ { @@ -1018,10 +1018,10 @@ { "data": { "text/plain": [ - "[<matplotlib.lines.Line2D at 0x7f6a37213be0>]" + "[<matplotlib.lines.Line2D at 0x7f6a3718b908>]" ] }, - "execution_count": 83, + "execution_count": 84, "metadata": {}, "output_type": "execute_result" }, diff --git a/Entrega.ipynb b/Entrega.ipynb index 1f6d2128262d89b9566bbeaf22762a6f53ac7c12..27e614059fb71c2f1cff629f0dce1378a59d020d 100644 --- a/Entrega.ipynb +++ b/Entrega.ipynb @@ -5,7 +5,7 @@ "metadata": {}, "source": [ "## Nombre: Jennifer Ortega \n", - "## Ejercicio para practicar numpy y optimización con scipy\n", + "# Ejercicio para practicar numpy y optimización con scipy\n", "### Resolución espacial" ] }, @@ -151,17 +151,18 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Ajuste a una gaussiana 1D\n", + "# Ajuste a una gaussiana 1D\n", "La fución gaussiana en una dimensión es de la forma.\n", "\n", "$$\n", "f(x)=A e^{-\\frac{1}{2}\\left(\\frac{x-x_0}{\\sigma}\\right)^{2}}+C\n", - "$$" + "$$\n", + "Para realizar el ajuste se evaluarán los datos y se determinaran los valores para A, X0, sigma y C, tal que minimicen el error por el método de mÃnimos cuadrados, los datos serám ajustados respecto a una función gausiana." ] }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 121, "metadata": {}, "outputs": [], "source": [ @@ -178,46 +179,73 @@ " np.pi = numero pi\n", " '''\n", " y =params[0]*(np.exp((-(x-params[2])**2)/(2*(params[1]**2)))) + params[3]\n", - " #y = (1/np.sqrt(2*np.pi*params[0]))*(np.exp((-(x-params[1])**2)/(2*(params[0]**2))))\n", - "\n", " return y\n", "def Error_gauss_1D(tpl,x,y):\n", " return func_gauss_1D(tpl,x)-y" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "- Seleccionaremos una lÃnea en X que representa las distintas posiciones a lo largo de la linea 1D" + ] + }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 65, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.cm as cm\n", + "\n", + "x = np.arange(0, estrella0.shape[0], 1) # definimos los valores para X\n", + "y = np.arange(0, estrella0.shape[1], 1) # definimos los valores para X\n", + "\n", + "lumx = estrella0[:,8] # Seleccionamos una lÃnea 1D en el array que define X.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "- Hacemos el ajuste con la gaussiana, los parámetros de inicialización se generan automáticamente del código, tomando en cuenta ciertas propiedades de la gaussiana. (***El ajuste depende de los parámetros inicianles introducidos***)\n", + "### Parámetros iniciales\n", + "\n", + "#### - X0 \n", + "X0 = (x_max+x_min)/2, ya que al ser una imagen de estrella, siempre la mayor luminosidad estará ubicada cercana al centro de la recta 1D en el eje X.\n", + "#### - sigma \n", + "\n", + "El sigma de una distribución de datos se calcula de la siguiente manera.\n", + "<img src=\"http://gestiondeproyectos-master.com/wp-content/uploads/2018/11/Desviacion-tipica.jpg\">\n", + "Por lo que para elegir un sigma próximo al que saldrá en el modelo, utilizaremos la ecuación anterior, tomando el eje X y el eje de la luminosidad como una probabilidad.\n", + "\n", + "### - C \n", + "Elegirmos el mÃnimo valor de la luminosidad, ya que el valor inicial donde f(0)=C, posiblemente estará cercano a ese punto.\n", + "### - A\n", + "Es la constante multiplicativa de la exponencial, al ser una escala de grises que va de (0,1) tomaremos como valor inicial 1, ya que en estos rangos comprenderan los resultados.\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 118, "metadata": {}, "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]\n", - "[0.24680433 0.32743363 0.42182891 0.52507375 0.6273353 0.69518191\n", - " 0.78367748 0.7885939 0.76007866 0.67649951 0.58210423 0.48180924\n", - " 0.38741396 0.30973451 0.20943953 0.16814159]\n", - "(16,)\n", - "0.20432637603887024\n", - "7.5\n", - "2.006836302515641\n", - "[0.69402816 3.94656979 6.81159127 0.08975757]\n" - ] - }, { "data": { "text/plain": [ - "[<matplotlib.lines.Line2D at 0x7fd1ca932a90>]" + "<matplotlib.legend.Legend at 0x7fd1a36517b8>" ] }, - "execution_count": 43, + "execution_count": 118, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAsRUlEQVR4nO3deVhV5f7+8feHGRRBBSdGZ0WcyVKzbDIsUxtOaYP2a+CU2fGUZZYnG2z0ZPN0aC4tM7+mNqmdzNLMAWcRURwQHFEUUUCm5/fHxg4iCOqGtYfP67q4YK+9NvtO43bxrLWeR4wxKKWUcn4eVgdQSillH1roSinlIrTQlVLKRWihK6WUi9BCV0opF+Fl1RuHhISY6Ohoq95eKaWc0qpVqw4aY0Ire86yQo+OjiYpKcmqt1dKKackIulVPadDLkop5SJqVOgiEi8iqSKSJiLjK3k+UkR+FZE1IrJeRK6xf1SllFJnUm2hi4gn8A4wEIgBhotITIXd/gXMMMZ0B4YB79o7qFJKqTOryRF6LyDNGLPdGFMITAeGVNjHAA3Kvg4C9tgvolJKqZqoyUnRMCCj3ONM4MIK+zwNLBCRB4F6wJV2SaeUUqrG7HVSdDjwqTEmHLgG+EJETvveIpIgIkkikpSVlWWnt1aqGinTIDEapnjYPqdMszqRUrWiJoW+G4go9zi8bFt5dwMzAIwxfwJ+QEjFb2SMSTTGxBlj4kJDK72MUin7SpkGCxIgNx0wts8LErTUlUuqSaGvBNqKSEsR8cF20nNuhX12AVcAiEhHbIWuh+Dq3NjziHrxBCjOO3VbcZ5tu1IuptoxdGNMsYiMBuYDnsDHxphkEXkWSDLGzAXGAh+IyEPYTpDeaXSidXUuTh5Rnyzhk0fUAB1vO/vvl7vr7LYr5cRqdKeoMeZH4McK2yaW+3oT0Ne+0ZRbOtMR9VkWujGGknrheB3POP3JwMjzCKmUY7Ls1n+lKnUeR9Q5+UWsyzjC2nIfFxffzEuBbxMgJ/7arwBfUluOo3OpwcND7JVcKctpoSvHEhhZdgKzku3lFJWUkrovlzUZR1i76whrMw6zLes4ACLQJrQ+V3RoQrfIBzlU0gH/jZMgN4Pjvi2Ykj+CT36Jos2G37nv0tYM6dYCb0+dBUM5P7FqqDsuLs7o5FzqNBXH0AHjFcDhvm/zp088azMOszbjCBt251BQVApASH0fukUEl300pEtEEA38vKt8i+KSUn7YsJf3Fm1j875cWgT5ce8lrRh2QST+Pp61/p+o1PkQkVXGmLhKn9NCVw4nZRrFvz2O5/FMsj2a8lrBnUzNuRgAHy8PYls0oFtEQ7pFBtM9Ipjwhv6InP3QiTGGRalZvLsojZU7D9Oong939olmZO9oggKq/gdBKStpoSunsij1AA9MW83xwhJahtQrd/QdTMfmDfDxsv/wyMqd2by3aBsLNx+gno8nt14Yyd0Xt6JZkF/lL0iZZjtRm7vLNhzU7/lzuwpHqbOkha6cxtRl6Tw1N5n2TQNJHNGT8IYBdfr+KXuP8p/ftvHd+r14inBDjzASLmlFq9D65XY6fVgIrwAYkKilrmqdFrpyeKWlhhd/SuGDxTu4vEMT3hrenXq+1p2z33Uojw8Wb+frpAyKSkq5JrY59/dvTWxYkO1mp0pP3EZBws66jqrcjBa6cmj5hSU89PVa5iXvY0TvKCYOisHLQa46yco9wSd/7OCLP9PJPVFMv7YhfH6kN0JlPzcCY0vrPKNyL2cqdL1sUVkqK/cE93yexPrMIzw5KIa7+kaf0wnO2hIa6Mu4+A7c1781U5el8/GSHez2CSHcs5KZLfRmJWUxxzgMUm5p6/5crn/3D1L3HeX923ty98UtHarMy2vg582o/m1Y8tjl7OgwgXzje+oOXgG2E6NKWUgLXVliadpBbnhvKQVFpcz4e2+u7tTM6kg14uftSb/BY/AZ+CFHvJpTaoQc7xZ6QlQ5BC10Vee+ScpgxMcraB7kx+wH+tAlPNjqSGfNs9PtBP1jN49Hr6XrnkQ+PNjb6khK6Ri6qjvGGF79eQtvLUzj4jYhvHt7jzPe0enoRIQXbujMsRPFPPdDCoF+XtxygY6jK+tooas6UVBUwriZ65m7bg+3xEXw3PWxLjF/iqeH8Not3cg9UczjszYQ6OfNNZ2bWx1LuSnn/4lSDi/7eCF3fLScuev2MC6+PS/d2NklyvwkHy8P3r+9Bz0iGzJm+hp+26JruyhruM5PlXJIOw4e54Z3/2BdZg5v39qdUf3bOOyVLOcjwMeLj+68gLZNAvn7F0kk7cy2OpJyQ1roqtas3JnN9e/+wdGCYr6690IGdWlhdaRaFeTvzWd39aJ5kD//79OVJO/JsTqScjNa6KpWzFm7m9s+WE6jAB++HdWHnlGNrI5UJ0IDfZl6z4XU9/Vi5Mcr2J51zOpIyo1ooSu7Msbw9sKtjJm+lm6Rwcwa1YeoxvWsjlWnwoL9+eLuCyk1cMdHK9hzJN/qSMpNaKEruyksLmXczPW8smAL13cP44u7exEc4GN1LEu0aVKfz+/qxdH8Im7/aDmHjp2o/kVKnSctdGUXOflF3PnJCr5ZlcmYK9ry6s1d8fVy79V/YsOC+OjOC9h9OJ8RH6/gaEGR1ZGUi9NCV+ft2Ilibn7/T1buzGbK37ry0FXtXPJKlnPRq2Uj3r+9J6n7crnn0yTyC0usjqRcmBa6Oi/GGP717Qa2Hsjlo5EXcGPPcKsjOZzLOjThtVu6sTI9m1HTVlFYrFPsqtpRo0IXkXgRSRWRNBEZX8nzr4nI2rKPLSJyxO5JlUP6ZlUms9fu4aEr23FJu1Cr4zis67q24IXrO/NrahYPz1hLSak16xAo11btrf8i4gm8A1wFZAIrRWSuMWbTyX2MMQ+V2/9BoHstZFUOZuv+XCbO2Uif1o0ZdVkbq+M4vOG9IsnJL+KlnzYT6OfNC9fH6tCUsquaHKH3AtKMMduNMYXAdGDIGfYfDnxlj3DKcRUUlTD6yzXU8/HivZ6b8fywJUzxsC3PljLN6ngO675LWzOqf2u+WrGLl+elWh1HuZiaTM4VBmSUe5wJXFjZjiISBbQEFlbxfAKQABAZqbPSObNnvttE6v5cfhyQQdDisf9bMDk33baAMuj84FV49Or2HC0o4v3fttHA34tR/fW3G2Uf9j4pOgyYaYyp9FS+MSbRGBNnjIkLDdXxVmf13bo9fLViF/f3b01M2kv/K/OTivNg8QRrwjkBEeHZwbEM7tqCyfNSmbqskgWnlToHNSn03UBEucfhZdsqMwwdbnFp6YeO8/isDfSIDObhq9pB7q7Kd6xquwLAw0OYcnNXLu/QhCfnbGTO2qp+pJSquZoU+kqgrYi0FBEfbKU9t+JOItIBaAj8ad+IylEUFpfy4Fdr8BB4c3h32xS4VS2MrAsmV8vb04N3b+vBBdGNGDtjHQs377c6knJy1Ra6MaYYGA3MB1KAGcaYZBF5VkQGl9t1GDDdGKPXY7mol+dtZn1mDv/+W1fCGwbYNvZ73rZAcnm6YHKN+Xl78tHIODo2b8D9U1ezYodOu6vOXY1WLDLG/Aj8WGHbxAqPn7ZfLOVo/rtpPx8t2cGdfaJPXdD55InPxRNswyyBkbYy1xOiNRbo581X/bZx7JfHaPJ/BygNjMDjkhf0z1CdNV2CTlVrz5F8Hpm5jk4tGvD4NR1O36HjbVo+5yNlGvV/G0V98kCAY7v0SiF1TvTWf3VGxSWljJm+hqLiUt6+tYfbT7hVKxZP0CuFlF3oEbo6ozd+2crKnYd5/ZZutAxxr3nN60wVVwSZ3F3ofaTqbOgRuqrSH2kHefvXNG6OC2do9zCr47iuKq4IyvZoWsdBlLPTQleVyso9wZjpa2kdWp+nB3eyOo5rq+RKoSLx45kjt/H9+j0WhVLOSAtdnaa01PDwjLXkFhTxzq09CPDRkbla1fE2GJAIgVGAQGAUHld/QHqT63ly9kaycnW1I1Uz+pOqTvP+79tYvPUgL1zfmfbNAq2O4x4qXCnkCUwJzeWaN5cw4dsN/OeOnjozo6qWHqGrU6xKz2bKgi0M6tKc4b0iqn+BqjVtmgTy6ID2LNi0n9k6NYCqAS109ZcjeYU8+OUawoL9efGGznpE6ADuurglcVENeWpOMvtyCqyOoxycFroCbEvJjZu5nqxjJ3j71u4E+nlbHUkBnh7Cv//WlcKSUsbPWo/OrKHORAtdAfDZ0p0s2LSfx+I70CU82Oo4qpyWIfUYH9+BRalZzEjKqP4Fym1poSs27s7hhR83c0WHJtx9cUur46hKjOgdTe9WjZn0fQq7j+RbHUc5KC10N3fsRDGjv1xN4/o+vPK3rjpu7qA8PITJN3XBGMNjM3XoRVVOC92NGWOY8O0GdmXn8caw7jSs52N1JHUGEY0CmHBtDEvSDjJ1uS4gok6nhe7GvknKZM7aPTx0ZTt6tWxkdRxVA8N7RdCvbQgv/pjCrkN51b9AuRUtdHeTMg0SozFTPOj7axyPRiYx6jJdpNhZiAgv39gFTxEembmO0lIdelH/o4XuTlKm2ebZzk1HMIR5HmBU0WQ8U7+0Opk6Cy2C/Zl4XQwrdmTzydKdVsdRDkQL3Z1UMu+26LzbTummnuFc0aEJk+dtZnvWMavjKAehhe5Oqph3u8rtymGJCC/e0Bk/b08e+WYdJTr0otBCdysmsIq5WaqYj1s5tiYN/Hh2SCdW7zrCB4u3Wx1HOQAtdDeyLGwsecb31I1eAbb5uJVTGty1BfGdmvHqgi1s2Z9rdRxlMS10N5F9vJBRqzrwge94TGAkJ+fdZkCiLkTsxESE566Ppb6fF2NnrKOopNTqSMpCWuhu4sUfU8gtKGbgzWORhHQYWwoJO7XMXUBIfV+eHxrLht05vLdom9VxlIVqVOgiEi8iqSKSJiLjq9jnZhHZJCLJIqLXwTmQ5dsP8c2qTO69pBXtmuqCFa5oYOfmDO7agjd/2Urynhyr4yiLVFvoIuIJvAMMBGKA4SISU2GftsDjQF9jTCfgn/aPqs5FYXEp/5q9kfCG/vzj8rZWx1G16JnBnWhYz4exM9ZRWKxDL+6oJkfovYA0Y8x2Y0whMB0YUmGfe4F3jDGHAYwxB+wbU52rD5dsZ+uBYzw7pBP+Pp5Wx1G1qGE9H168vjOb9+Xy1sKtVsdRFqhJoYcB5SdhzizbVl47oJ2I/CEiy0QkvrJvJCIJIpIkIklZWVnnlljVWEZ2Hm/+spX4Ts24vENTq+OoOnBlTFNu7BHOu4u2sS7jiNVxVB2z10lRL6At0B8YDnwgIsEVdzLGJBpj4owxcaGhoXZ6a1UZYwwT52zEU4SnBsdU/wLlMiZeF0NofV/GfrOOgqISq+OoOlSTQt8NlL8jJbxsW3mZwFxjTJExZgewBVvBK4vMT97Hr6lZPHRVO5oH+VsdR9WhIH9vXr6pC2kHjvHaz1usjqPqUE0KfSXQVkRaiogPMAyYW2Gf2diOzhGREGxDMHrrmkWOnSjm6bmbiGnegDv7RFsdR1ng0pIFrGl2L49t6kThe5G2idmUy6u20I0xxcBoYD6QAswwxiSLyLMiMrhst/nAIRHZBPwKPGqMOVRbodWZvfbzFvbnFvD89bF4eeqtBm6nbFbNhiV78RCDT14GZkGClrobEKuWsoqLizNJSUmWvLcr27g7h8FvL+HWCyN5bmhnq+MoKyRGQ2766dsDo2w3kymnJiKrjDFxlT2nh28upKTUMGH2RhrV8+HRqztYHUdZpYrZM43OqunytNBdyJcrdrEu4whPDoohyN/b6jjKKlXMnnnEq1kdB1F1TQvdRRzILWDyvM30bdOYwV1bWB1HWanf87ZZNMspFD+ezr6VDZk6LYAr00J3Ec//kMKJolImDYlFRKyOo6zU8TbbLJqBUZycVbP4yv/wh3c8/5qzUdchdWFeVgdQ52/J1oPMWbuHMVe0pVVofavjKEfQ8bZTZtIMACaUZPLQ1+v4OimD4b10URNXpEfoTq6gqIQn52wkunEA9/dvbXUc5cCGdgujV8tGvDxvM4ePF1odR9UCLXQn9/5v29hx8DiThsbi562Tb6mqiQiThsSSW1DM5PmbrY6jaoEWuhPbcfA47/66jcFdW9Cvrc6No6rXvlkg/69PNNNXZrBm12Gr4yg700J3UsYYnpy9EV9vD/41qKPVcZQT+edV7WgS6MvEOcmU6AlSl6KF7qTmrtvDkrSDjIvvQJNAP6vjKCdS39eLCdfGsGF3Dl+u0JuNXIkWuhPKyS9i0vcpdI0I5la9WkGdg+u6NKd3q8b8e95mDh07YXUcZSda6E7olfmpZB8/wfNDY/H00GvO1dkTESYN7UReYQkv/aQnSF2FFrqTWZtxhKnL07mzT0tiw4KsjqOcWJsmgdzdryXfrMpkVXq21XGUHWihO5HiklKemLWBpoF+PDygndVxlAv4x+VtaR7kx5Ozkyku0YWlnZ0WuhP57M90Nu09ylPXxVDfV2/yVeevnq8XTw6KYdPeo0xdVsmUu8qpaKE7upRpkBiNmeJB/J8X8Xj0KuJjddY8ZT8DY5vRr20IUxZsIStXT5A6My10R1a28gy56QiGMI8D3FvwErL5S6uTKRciIjwzuBMFxSW8+GOK1XHUedBCd2SLJ0Bx3imbPErybduVsqNWofVJuKQVs9bsZvl2XT3SWWmhO7KqVpjRlWdULRh9WVvCgv2ZOCeZIj1B6pS00B1ZFSvPVLldqfPg7+PJxOtiSN2fy2dLd1odR50DLXQHltVtInnG99SNXgG2FWmUqgUDYprSv30or/93K/uPFlgdR50lLXQHZYzhkY2xPJM/hpL6EZxceYYBiacsXKCUPZ08QVpYUsrzP+gJUmejFzM7qPnJ+/htSxYTB92H58UvWx1HuZGoxvW479LWvPnLVob1iqBP6xCrI6kaqtERuojEi0iqiKSJyPhKnr9TRLJEZG3Zxz32j+o+8gqLefa7TXRs3oARvaOsjqPc0Kj+rYlopCdInU21hS4insA7wEAgBhguIjGV7Pq1MaZb2ceHds7pVt78JY09OQVMGtIJL08dFVN1z8/bk6ev60TagWN8vGSH1XFUDdWkLXoBacaY7caYQmA6MKR2Y7mvtAO5fLh4Ozf1DCcuupHVcZQbu6JjU67s2IQ3ftnK3px8q+OoGqhJoYcBGeUeZ5Ztq+hGEVkvIjNFJKKybyQiCSKSJCJJWVlZ5xDXtRljmDgnmQAfT8YP7GB1HKV46rpOlJQanvteT5A6A3v9Pv8dEG2M6QL8DHxW2U7GmERjTJwxJi40VNfArOi79XtZuu0Qj8Z3IKS+b/UvUKqWRTQK4IHL2vDDhr0s3qoHYY6uJoW+Gyh/xB1etu0vxphDxpiTs/p8CPS0Tzz3kVtQxHPfb6JLeJCuQqQcSsIlrYhqHMBTc5I5UVxidRx1BjUp9JVAWxFpKSI+wDBgbvkdRKR5uYeDAf397Cy9/t+tZB07waQhugqRcix+3p6812Mzn5fejM8b3pAYbZs4Tjmcaq9DN8YUi8hoYD7gCXxsjEkWkWeBJGPMXOAfIjIYKAaygTtrMbPL2bzvKJ8u3cnwXpF0jQi2Oo5Sp0qZRszGR8CzbKK43HTbLKCgN7k5GDHGWPLGcXFxJikpyZL3diTGGG7+z59syzrOwrGXEhzgY3UkpU6VGG0r8YoCoyBhZ12ncXsissoYE1fZc3qRs8X+b/VuVu48zPj4DlrmyjHprJ9OQwvdQjl5Rbz4Ywo9IoO5qWe41XGUqlwVs3uWBlZ6dbKykBa6hab8nMrhvEImDY3FQ0+EKkfV73nbLJ/l5BlfZtd7wKJAqipa6BbZuDuHqcvSGdE7mk4tgqyOo1TVOt5mm+UzMIqTs35+1+RpHtnYiY27c6xOp8rRk6IWKC013PDeUjIP57PwkUtp4OdtdSSlzkpOXhFXvLqIsGB/Zo3qq5fa1iE9Kepgvk7KYG3GESZc20HLXDmloABv/nVtDOsyc/hyeSVXwChLaKHXsezjhbw8bzMXtmzE0G6VTYmjlHMY0q0FF7cJYfK8VA7o6kYOQQu9jk2et5ncgmImDY1FRH9NVc5LRJg0NJYTJaU8+/0mq+MotNDr1Opdh5m+MoO7+kbTrmmg1XGUOm8tQ+rxQP82fL9+L79t0cm7rKaFXkdKSg1Pzt5I0wa+jLmyndVxlLKb+/q3olVIPZ6cvZGCIp28y0pa6HVk6rJ0kvcc5clBMdT31aVclevw9fLkuetj2ZWdx9sL06yO49a00OtAVu4JXlmQysVtQri2c/PqX6CUk+nTOoQbuofxn9+3kXYg1+o4bksLvQ68+FMKBUUlPDOkk54IVS7riWs7EuDjxYRvN2LV/S3uTgu9lq3Ykc2s1btJuKQVrUPrWx1HqVoTUt+X8QM7sHxHNjNXZVodxy1podeiopJSnpy9kbBgf0Zf1tbqOErVulviIoiLasgLP6aQfbzQ6jhuRwu9Fn22dCep+3N56roY/H08rY6jVK3z8BCeuz6W3IJiXvpJFy6ra1ro9pYyDRKjMVM8GLisN49Hr+KqmKZWp1KqznRo1oC7+7VkRlImK3ZkWx3HrWih21PKNNvSXLnpCIYwjwPcW/ASsvlLq5MpVafGXNGWsGB/nvh2A4XFpVbHcRta6Pa0eAIU552yyaMk37ZdKTcS4OPFpKGdSDtwjA8Wb7c6jtvQQrcnXapLqb9c3qEpA2Ob8eYvW9l1KK/6F6jzpoVuT1Us1VXldqVc3MTrYvDyEJ6co9em1wUtdDva3vEJ8ozvqRu9AmxLeCnlhpoH+TN2QHt+25LFDxv2Wh3H5Wmh20lBUQn3LG/H5JKHKQ2M5ORSXQxItC3hpZSbGtE7itiwBjzz3SaOFhRZHcel1ajQRSReRFJFJE1Exp9hvxtFxIhIpcsjubIpC1LZfvA4V934MB4J6TC2FBJ2apkrt+fl6cHzQztz8NgJpsxPtTqOS6u20EXEE3gHGAjEAMNFJKaS/QKBMcBye4d0dKvSs/lwyQ5uuzCSvm1CrI6jlMPpGhHMiIui+HxZOusyjlgdx2XV5Ai9F5BmjNlujCkEpgNDKtlvEvAy4FZrURUUlfDoN+tpEeTP49d0tDqOUg5r7NXtCa3vyxPfbqC4RK9Nrw01KfQwIKPc48yybX8RkR5AhDHmhzN9IxFJEJEkEUnKynKN1U1emW8bavn3TV10nnOlzqCBnzdPXdeJ5D1H+fxPXVi6Npz3SVER8QBeBcZWt68xJtEYE2eMiQsNDT3ft7Zc0s5sPvpjB7dfFEkfHWpRqlrXdG7Gpe1CmbIglcOrPoHEaJjiYfucMs3qeE6vJoW+G4go9zi8bNtJgUAssEhEdgIXAXNd/cRofmEJj860DbWMH6hDLUrVhIgwaUgs8Z4LCVg0CnLTAWP7vCBBS/081aTQVwJtRaSliPgAw4C5J580xuQYY0KMMdHGmGhgGTDYGJNUK4kdxCsLUtmhQy1KnbXIxgE81XAavhVPtxXn6TQZ56naQjfGFAOjgflACjDDGJMsIs+KyODaDuiIVu7M5mMdalHqnAUWVXGTkU6TcV5qdGhpjPkR+LHCtolV7Nv//GM5rvzCEh79Zh1hwf48rkMtSp0TCYwsG26pQKfJOC96p+hZ+vf8VHYeymPyTV2op0MtSp2bfs/bpsUoT6fJOG9a6GdhxY5sPlm6gzsuiqJPax1qUeqcdbwNBiRSGhhJKcLe0iYcu/RdvbP6PGmh11B+YQnjZq4jvKE/4wd2sDqOUs6v4214JKSzefgRLj3yKQ+t76QzMp4nLfQa+muo5cauOtSilB3FtGjAuPj2/LxpP1+tyKj+BapKWug1cHKoZUTvKHq3bmx1HKVczl19W9KvbQjPfp9M2oFjVsdxWlro1Sg/1PJYvA61KFUbPDyEV/7WFX9vT8ZMX6PrkJ4jLfRqTJ6/WYdalKoDTRv48dKNXUjec5QpP+s0u+dCC/0MVuzI5tOlOxmpQy1K1YmrOzVjeK9IEn/fztK0g1bHcTpa6FXIKyzm0ZnriGgYwGN6VYtSdebJQR1pGVKPh2es40heodVxnIoWehUmz0slvewGogAfHWpRqq4E+Hjx5rDuHDp+gsdnbdBLGc+CFnollm8/xKdLd3Jnn2guaqVDLUrVtdiwIMYOaM9PG/fxTVKm1XGchhZ6BbahlvVENQ5gXHx7q+Mo5bYS+rWid6vGPP1dMjsOHrc6jlPQQq9g8rxUdmXnMflGHWpRykoeHsKrt3TF29ODf05fQ5EuW1ctLfRylpUbarlQh1qUslzzIH9euqEz6zJzeOO/W62O4/C00FOmQWI0ZooH0bNiuKvxUh1qUcqBDOzcnJvjwnlnURrLtx+yOo5Dc+9CT5lmW/YqNx3B0EwOMMH7NQK2fW11MqVUOU9d14moRgE89PVacvKLrI7jsNy70BdPsC17VY5nSb4ug6WUg6nn68Xrw7pzIPcEE77VSxmr4t6FXtVyV7oMllIOp1tEMA9d1Y7v1+/l2zW7q3+BG3LrQjeBEZU/octgKeWQ7ru0Nb2iGzFxTjK7DuVV/wI349aF/mPQg+QZ31M36jJYSjksz7JLGUXgn1+voVgvZTyF2xb6D+v38sCajswJeQoTGAkIBEbBgERdBkspBxbeMIDnr+/M6l1HeGth2v+eKLtijSkets8p06yKaBm3vHMmeU8Oj3yzjp5RDbnh9nGI1+NWR1JKnYXBXVuwaPMB3lq4lUvahdAz7yfbFWsnL3LITbc9Brc6QHO7I/RDx06Q8PkqggO8ee/2Hvh6eVodSSl1Dp4Z0omwhv6Mmb6W0t+fOO2KNYrz3O6KtRoVuojEi0iqiKSJyPhKnr9PRDaIyFoRWSIiMfaPev6KSkq5f9pqDh47wX/u6EmTQD+rIymlzlGgnzev39KdvTkFyLEq1iJ1syvWqi10EfEE3gEGAjHA8EoK+0tjTGdjTDdgMvCqvYPawzPfJbNiRzaTb+pCl/Bgq+Mopc5Tz6iGPHh5G3aXhFS+g5tdsVaTI/ReQJoxZrsxphCYDgwpv4Mx5mi5h/UAh7vqf9rydKYu28XfL23FkG5hVsdRStnJ6Mva8I3fKPL1irUaFXoYUP73mcyybacQkQdEZBu2I/R/VPaNRCRBRJJEJCkrK+tc8p6TFTuyeWpOMv3bhzLual19SClX4uXpwU23j+Op/DFkSVOMG1+xZreTosaYd4wxrYHHgH9VsU+iMSbOGBMXGhpqr7c+o91H8rl/6ioiGwXwxrDueHpInbyvUqruRDQKoPegB7ngwEe81S0VEna6XZlDzQp9N1D+lsrwsm1VmQ4MPY9MdpNfWELC50kUFpfywcg4gvy9rY6klKolQ7uFMbRbC179eQtz1+2xOo4lalLoK4G2ItJSRHyAYcDc8juISNtyD68FLJ+42BjDozPXsWnvUd4c3p3WofWtjqSUqkUiwks3dqFXdCPGzljL0rSDVkeqc9UWujGmGBgNzAdSgBnGmGQReVZEBpftNlpEkkVkLfAwMLK2AtfUu4u28f36vYy7ugOXdWhidRylVB3w8/bkgxFxtAqpT8IXq0jek2N1pDolVk1DGRcXZ5KSkmrle/+Ssp97Pk/iui4teGNYN0R03Fwpd7I3J58b311KUalh1v19iGgUYHUkuxGRVcaYuMqec7k7RdMO5DJm+lo6tWjAyzd20TJXyg01D/Lns7t6UVhcyoiPV3Do2AmrI9UJlyr0nLwi7v18FX7eHiTeEYe/j97Wr5S7ats0kI9GxrHnSD53fZZEXmGx1ZFqncsUekmp4cHpa8g8nMd7t/ekRbC/1ZGUUhaLi27EW8O7syHzCKOmrabIxafbdZlCf3neZn7fksWzQ2K5ILqR1XGUUg5iQKdmPDe0M4tSsxj/f669fJ1LTJ87a3Umib9vZ0TvKIb3cq+5G5RS1bv1wkgO5Bbw+n+30rSBL+PiXfOOcacv9HUZRxg/awMXtWrEk4MccpJHpZQDGHNFW/YfPcG7i7bRJNCXO/u2tDqS3Tl1oR84WkDCF0mE1vfl3dt64u3pMiNISik7ExEmDenEwWMneOb7TYQG+nFtl+ZWx7Irp23AE8Ul/H3qKo7mF/PBiDga1fOxOpJSysF5eXrw1vDu9IxsyENfr+XPbYesjmRXzlXoZWsGmike5L0dQcT+b3n15q7EtGhgdTKllJPw8/bkw5FxRDUOIOHzJFL2Hq3+RU7CeQo9ZZptjcDcdARDw5K9TAl6h4FeC61OppRyMsEBPnx2Vy/q+Xox8uMVZB7Oq/5FTsB5Cn3xhNPWDPQ2BW63ZqBSyj5aBPvz+d29KCgqYcTHKzh8vNDqSOfNeQq9qrUB3WzNQKWU/bRrGsiHIy8g83A+d322kvzCEqsjnRfnKfSq1gZ0szUDlVL21atlI94c1p11GUcY/eVqip34blLnKfR+z9vWCCzPDdcMVErZX3xsM54dEssvmw/wxLfOezep81yHfnI5qcUTbMMsgZG2MnfDZaaUUvZ3+0VRHMg9wZu/bKVpAz/GDmhvdaSz5jyFDrby1gJXStWSh65sy4GjBby1MI0mgb7c0Tva6khnxbkKXSmlapGI8NzQWA4eO8HEucmEBvoSH+s8d5M6zxi6UkrVAdvdpD3oHhHMP6avZfl257mbVAtdKaUq8Pfx5KORFxDR0J97Pk9iyVbnWHBaC10ppSrRsJ4Pn999IS2C/Bnx8XI+XLzd4a9+0UJXSqnKpEwjbEZH5pX2Z2WTe1j/33d5eMY6Cooc9+YjLXSllKqowtxRjUv3MSXoHUo2TeVv7//JniP5VieslBa6UkpVVMXcUS83+ZodB48z+O0lrNyZbVG4qtWo0EUkXkRSRSRNRMZX8vzDIrJJRNaLyC8iEmX/qEopVUeqmCPKv2A3sx/oQ6CfN7d+sIxpy9PrONiZVVvoIuIJvAMMBGKA4SJSca23NUCcMaYLMBOYbO+gSilVZ84wd1SbJoHMfqAvfduEMOHbjTw+awOFxY4x/0tNjtB7AWnGmO3GmEJgOjCk/A7GmF+NMSd/P1kGhNs3plJK1aFq5o4K8vfmo5EXcH//1ny1Yhe3frCMA7kFFgQ9VU0KPQzIKPc4s2xbVe4GfqrsCRFJEJEkEUnKysqqeUqllKpLHW+DAYkQGAWI7fOAxFOmHvH0EB6L78Dbt3Ynec9RBr/1B+szj1gWGex867+I3A7EAZdW9rwxJhFIBIiLi3PsCzqVUu6thnNHDerSgpYh9Uj4fBU3vf8nL93QmRt6WDNIUZMj9N1ARLnH4WXbTiEiVwITgMHGmBP2iaeUUo6vU4sg5o7uS4/IYB6esY5J32+yZF71mhT6SqCtiLQUER9gGDC3/A4i0h34D7YyP2D/mEop5dga1/fli7sv5M4+0Xy0ZAcjP6n7Ze2qLXRjTDEwGpgPpAAzjDHJIvKsiAwu2+3fQH3gGxFZKyJzq/h2Sinlsrw9PXh6cCcm39SFlTsOM/idJWzed7TO3l+smpsgLi7OJCUlWfLeSilV29bsOszfv1jFsRPFTPlbVwZ2ts80vCKyyhgTV9lzeqeoUkrVgu6RDfn+wYtp3yyQ+6et5pX5qZSW1u4BtC5woZRStaRJAz+mJ1zExNnJvP1rGg12zOAe+RCPYxm1soymFrpSStUiXy9PXrqxM4N8FtJzy/N4SNlFgLnptgnAwG6lrkMuSilVy0SEfvteJ0AqXNFdnGebCMxOtNCVUqouVDHhV5Xbz4EWulJK1YUzTPhlL1roSilVF6qZ8MsetNCVUqou1GDCr/OlV7kopVRdqeGEX+dKj9CVUspFaKErpZSL0EJXSikXoYWulFIuQgtdKaVchGXT54pIFpB+ji8PAQ7aMU5tcPSMjp4PNKM9OHo+cPyMjpYvyhgTWtkTlhX6+RCRpKrmA3YUjp7R0fOBZrQHR88Hjp/R0fOVp0MuSinlIrTQlVLKRThroSdaHaAGHD2jo+cDzWgPjp4PHD+jo+f7i1OOoSullDqdsx6hK6WUqkALXSmlXITTFbqIxItIqoikich4q/OUJyIRIvKriGwSkWQRGWN1pqqIiKeIrBGR763OUhkRCRaRmSKyWURSRKS31ZnKE5GHyv6ON4rIVyLi5wCZPhaRAyKysdy2RiLys4hsLfvc0AEz/rvs73m9iHwrIsGOlK/cc2NFxIhIiBXZasKpCl1EPIF3gIFADDBcRGKsTXWKYmCsMSYGuAh4wMHylTcGSLE6xBm8AcwzxnQAuuJAWUUkDPgHEGeMiQU8gWHWpgLgUyC+wrbxwC/GmLbAL2WPrfQpp2f8GYg1xnQBtgCP13Wocj7l9HyISAQwALDfenG1wKkKHegFpBljthtjCoHpwBCLM/3FGLPXGLO67OtcbCUUZm2q04lIOHAt8KHVWSojIkHAJcBHAMaYQmPMEUtDnc4L8BcRLyAA2GNxHowxvwPZFTYPAT4r+/ozYGhdZqqosozGmAXGmOKyh8uA8DoP9r8slf0ZArwGjAMc+ioSZyv0MCCj3ONMHLAwAUQkGugOLLc4SmVex/Y/Z6nFOarSEsgCPikbFvpQROpZHeokY8xu4BVsR2t7gRxjzAJrU1WpqTFmb9nX+4CmVoapgbuAn6wOUZ6IDAF2G2PWWZ2lOs5W6E5BROoD/wf80xhz1Oo85YnIIOCAMWaV1VnOwAvoAbxnjOkOHMf6oYK/lI1DD8H2D08LoJ6I3G5tquoZ2zXKDnuEKSITsA1bTrM6y0kiEgA8AUy0OktNOFuh7wYiyj0OL9vmMETEG1uZTzPGzLI6TyX6AoNFZCe2IavLRWSqtZFOkwlkGmNO/nYzE1vBO4orgR3GmCxjTBEwC+hjcaaq7BeR5gBlnw9YnKdSInInMAi4zTjWzTGtsf3Dva7sZyYcWC0izSxNVQVnK/SVQFsRaSkiPthORM21ONNfRESwjfumGGNetTpPZYwxjxtjwo0x0dj+/BYaYxzq6NIYsw/IEJH2ZZuuADZZGKmiXcBFIhJQ9nd+BQ500raCucDIsq9HAnMszFIpEYnHNgQ42BiTZ3We8owxG4wxTYwx0WU/M5lAj7L/Rx2OUxV62YmT0cB8bD9AM4wxydamOkVf4A5sR71ryz6usTqUk3oQmCYi64FuwAvWxvmfst8cZgKrgQ3Yfo4svz1cRL4C/gTai0imiNwNvARcJSJbsf1m8ZIDZnwbCAR+LvuZed/B8jkNvfVfKaVchFMdoSullKqaFrpSSrkILXSllHIRWuhKKeUitNCVUspFaKErpZSL0EJXSikX8f8BMNqaXIDKfToAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA+kElEQVR4nO3dd3hUZdrH8e+dnkDoofdeAgQIKCqKDVGRqq6ABRurCLKCnbVgWbGwvrtiQ3ERRRBRAV1XcUUQ1gIJhhJCJ6FLAIFACGn3+8dMcAgJCSGTM8ncn+uaazKnzPwmkLnnPOc5zyOqijHGGP8V4HQAY4wxzrJCYIwxfs4KgTHG+DkrBMYY4+esEBhjjJ+zQmCMMX7OCoHxaSLylog84XQOXyMijUXkqIgEOp3FlH9i1xEYXyAii4HOQF1VPVHKz90b+FBVG57Dc0QCE4HBQBRwAFgOvKyqv5RCTGMcY0cExnEi0hToBSjQ39k0pxORUGAR0BHoB1QB2gGzgasdjGZMqbBCYHzBrcDPwHTgNs8VIjJdRJ5z/zxCRJblW68i0tL98zUisk5E0kRkl4g8KCKVgP8A9d1NKUdFpL6IBIjIoyKyRUQOiMgcEalRSL5bgIbAQFVdq6o5qnpMVeeq6tMeWf4hIjtE5IiIxItIr4Leh/txbxHZ6fH4EXfmNBHZICKXu5f3EJE493P+JiJ/dy9v6n7vQe7Ht4tIknv/rSLy5/yvJSLjRWSfiOwRkds91lcVkRkikioiKSLyVxGxzwY/Yv/YxhfcCsx0364SkTolfJ5pwJ9VNRKIBhap6jFc39p3q2pl9203MAYYCFwC1Ad+B14v5HmvAL5xP9eZrABigBrAR8AnIhJWVGgRaQOMBrq7s18FJLtX/wP4h6pWAVoAcwp5mn38cbRyO/CqiHT1WF8XqAo0AO4EXheR6u51r7nXNcf1+7jV/RzGT1ghMI4SkYuAJsAcVY0HtgDDSvh0WUB7Eamiqr+r6sozbHsPMEFVd7rPSTwNXJ/3DTufWsBej8wxInLI/S19Q95yVf1QVQ+oaraqTgZCgTbFyJ3j3ra9iASrarKqbvF4Ty1FpJaqHlXVnwt6AlX9t6puUZclwEJczW14PM8zqpqlql8BR4E27pPNNwGPqWqaqiYDk3EdBRk/YYXAOO02YKGq7nc//oh8zUNnYQhwDZAiIktEpOcZtm0CfO7+QD8EJOH6QC7oaOQAUC/vgaomqGo1XCeOQ/OWu5uikkTksPs5q+IqImekqpuBv+AqRvtEZLaI1HevvhNoDawXkRUi0q+g5xCRq0XkZxE56H7ta/K99gFVzfZ4nA5Udm8TDKR4rEvBdeRg/IQVAuMYEQkHbgQuEZG9IrIXeADoLCKdC9jlGBDhsX9dz5WqukJVBwC1gXn80YxSUNe4HcDVqlrN4xamqrsK2PY7oI/7fENh76UX8LD7/VR3F4rDgBSUHVdTjWf2j1Q17+hIgRfdyzep6lD3e3oRmJs/h/tk9qfAK0Ad92t/5fHaZ7If19FCE49ljYGCfg+mgrJCYJw0ENe38Pa42tZjcPXGWYqrnTq/VUAHd9NMGK5v0ACISIiIDBeRqqqaBRwBct2rfwNqikhVj+d6C3heRJq4948SkQGF5JwB7MF1BBEtIoHu14/12CYSyAZSgSAReRJXe32eBOAaEanhLmB/8cjeRkQuc3+gZwDH87KLyM0iEqWqucAh9y65nCoE15FJKpAtIlcDfQp5L6dQ1RxcBfN5EYl0/z7GAR8WZ39TMVghME66DfiXqm5X1b15N2AKMDx/e72qbgSeAf4LbAKW5Xu+W4BkETmC6xzAcPd+64FZwFZ3U1B9XCdhFwALRSQNV6+l8woKqaoZwKXAOuDfuIrMBqA7riMAgG+Ar4GNuJpWMnAddeT5AFchS8bVfv+xx7pQYBKub+d7cX37f8y9ri+QKCJH3ZlvUtXj+fKlAffj+kD/Hdc5lgUFvZdCjMF1xLIV1+/0I+C9s9jflHN2QZnxaSIyA9isqs84ncWYisqOCIzPch8RtAG2OZ3FmIrMCoHxZXtxtYt/6nAOYyo0axoyxhg/Z0cExhjj5wq6itKn1apVS5s2bep0DGOMKVfi4+P3q2pUQevKXSFo2rQpcXFxTscwxphyRURSCltnTUPGGOPnvFoIRKSve0jdzSLyaAHrG4vI9yLyq4isFpFrvJnHGGPM6bxWCNyjGr6Oawjg9sBQEWmfb7O/4hp1sguuERDf8FYeY4wxBfPmEUEPXFeEblXVTFyzOeUfy0X5YzyWqsBuL+YxxhhTAG+eLG7AqWOt7OT0sVyexjXWyxigEq4JQIwxxpQhp08WDwWmuycVvwb4oKAp8kRkpHu6vrjU1NQyD2n8VNJMmNoUJge47pNmOp3IGK/wZiHYBTTyeNyQ08c4vxP3mPGq+hMQRgETeajqVFWNVdXYqKgCu8EaU7qSZsLCkZCWAqjrfuFIKwamQvJmIVgBtBKRZiISgutkcP6hcbcDeZN0t8NVCOwrvymZ0vwGv3QCZKefuiw73bXcmArGa+cIVDVbREbjGqc9EHhPVRNF5BkgTlUXAOOBd0TkAVwnjkeoDX5kSiLvG3zeh3feN3iAdsPP/vnStp/dcmPKMa9eWeyeJPurfMue9Ph5HXChNzMYP3Gmb/BnWQhUlZxKDQk6tuP0lZGNzyGkMb6p3A0xYUyBzuEb/OHjWazacYgEj9tF2TcyKXIKEXLi5HYZhLKh2cN0zFUCAoozHbAx5YMVAlMxRDZ2n9gtYLmHrJxcNuxN49cdh0jYfoiEHb+zJfUYACLQMqoyl7etTUzjMRzIaUv42mchbQfHQusz+fit/Ou7JrRc8wP3XNKCATH1CQ50uuOdMeeu3M1HEBsbqzbonDlN/nMEgAZF8PuFU/gppC8JO34nYcch1uw6TEaWa+73WpVDiGlUzX2rTqdGVakSFlzoS2Tn5PLvNXt4c/EW1u9No37VMO6+uDk3dW9MeEig19+iMedCROJVNbbAdVYITIWRNJPsJY8ReGwnBwPq8GrGCD48fBEAIUEBRNevQkyj6sQ0rkaXRtVoWD0ckbNv4lFVFm9I5Y3Fm1mR/Ds1KoUw4oKm3NazKVUjCi8kxjjJCoHxC4s37OO+mSs5lplDs1qVPL7tV6NdvSqEBJV+M86K5IO8uXgLi9bvo1JIIMPOa8ydFzWnbtWwgndImuk6gZ223dVs1ev5kvVqMuYsWSEwFd6HP6fw1IJE2tSJZOqt3WhYPaJMXz9pzxHeXrKFL1bvIVCEwV0bMPLi5jSPquyx0enNVwRFQJ+pVgyM11khMBVWbq7ywn+SeGfpNi5rW5vXhnahUqhzfSC2H0jnnaVb+ThuB1k5uVwTXY97e7cgukFV10VuBZ7QbgIjk8s6qvEzVghMhXQ8M4cHPk7g68S93NqzCU/2a0+Qj/TiSU07wb/+t40Pfkoh7UQ2vVrVYsahnggF/b0JjM8t84zGv5ypEFj3UVMupaad4K4ZcazeeYgn+rXnjgublujEr7dERYbycN+23NO7BR/+nMJ7y7axK6QWDQMLGEHFLlIzDvONr0/GnIVNv6Ux6I3/sWHvEd66uRt3XtTMp4qApyphwYzq3ZJlj1zGtrYTOK6hp24QFOE6YWyMg6wQmHLlx837Gfzmj2Rk5TLnzz25qkNdpyMVS1hwIL36jyXk6nc5FFSPXBUOB9e3E8XGJ1ghMOXGJ3E7uPW95dSrGsa8+y6gU8NqTkc6a4Edbqbq/bt4rGkCnXdP5d39PZ2OZIydIzC+T1X5+7cbeW3RZi5qWYs3bu56xiuAfZ2I8LfBHTl6Ipvn/p1EZFgQf+pu5wmMc6wQGJ+WkZXDw3NXs2DVbv4U24jnBkVXiPF9AgOEV/8UQ9qJbB77bA2RYcFc07Ge07GMnyr/f1Gmwjp4LJNbpv3CglW7ebhvGyYN6VghikCekKAA3rq5K10bV2fs7F9ZstHmZDLOqDh/VaZC2bb/GIPf+B+rdh5myrAujOrd0md7Bp2LiJAgpo3oTqvakfz5gzjikg86Hcn4ISsExuesSD7IoDf+x5GMbGbdfR79OtV3OpJXVQ0P5v07elCvaji3T19B4u7DTkcyfsYKgfEp8xN2MfydX6gREcLnoy6gW5MaTkcqE1GRoXx413lUDg3itveWszX1qNORjB+xQmB8gqoyZdEmxs5OIKZxNT4bdQFNalZyOlaZalAtnA/uPI9chVumLWf3oeNORzJ+wgqBcVxmdi4Pz13NKws3MqhLAz64swfVIkKcjuWIlrUrM+OOHhw5nsXN037hwNETRe9kzDmyQmAcdfh4FiP+tZxP4ncy9vJW/P3GzoQG+fdsX9ENqjJtRHd2/X6cW99bzpGMLKcjmQrOCoFxzNET2dz41k+sSD7I5Bs688CVrStkz6CS6NGsBm/d3I0Ne9O4a3ocxzNznI5kKjArBMYRqspfP1/Dpn1pTLutO0O6NXQ6ks+5tG1tXv1TDCtSDjJqZjyZ2TZUtfEOrxYCEekrIhtEZLOIPFrA+ldFJMF92ygih7yZx/iOT+J3Mi9hNw9c0ZqLW0c5HcdnXde5Pn8b1JHvN6Qybk4CObnla/4QUz54bYgJEQkEXgeuBHYCK0Rkgaquy9tGVR/w2H4M0MVbeYzv2PRbGk/OX8sFLWoy6tKWTsfxeUN7NObw8Swm/Wc9kWHB/G1QtDWhmVLlzSOCHsBmVd2qqpnAbGDAGbYfCszyYh7jAzKychj90a9UCgnizW7rCXy3GUwOcE3jmDTT6Xg+655LWjCqdwtmLd/Oi19vcDqOqWC8OehcA2CHx+OdwHkFbSgiTYBmwKJC1o8ERgI0bmyjNJZnE79Yx4bf0viqzw6qLh3/x0TuaSmuid3BxucvxENXteFIRhZvLdlClfAgRvW2oylTOnzlZPFNwFxVLbBrhKpOVdVYVY2NirL25PLqi1W7mbV8O/f2bkH7zZP+KAJ5stNh6QRnwpUDIsIz/aPp37k+L329gQ9/TnE6kqkgvFkIdgGNPB43dC8ryE1Ys1CFlnLgGI99toaujasx7srWkLa94A0LW24ACAgQJt/Ymcva1uaJ+WuZn1DYn5QxxefNQrACaCUizUQkBNeH/YL8G4lIW6A68JMXsxgHZWbnMmbWrwQI/HNoF9dQ0oVN2G4TuRcpODCAN4Z3pXvTGoyfs4pF639zOpIp57xWCFQ1GxgNfAMkAXNUNVFEnhGR/h6b3gTMVlXrF1dBvfj1elbvPMzLN3SmYfUI18Jez7smbvdkE7kXW1hwINNui6VdvSrc++FKlm+z4atNyXl1hjJV/Qr4Kt+yJ/M9ftqbGYyz/rvuN6Yt28aIC5qeOtF83gnhpRNczUGRjV1FwE4UF1tkWDCzem3h6HePUPvTfeRGNiLg4r/Z79CcNZuq0njN7kPHeXDuKjrUr8Jj17Q9fYN2w+1D61wkzaTyklFUJh0EOLrdel6ZEvGVXkOmgsnOyWXs7F/Jys5lyrCufj+QnFcsnWA9r0ypsCMC4xX/+G4TK5J/5//+FEOzWv41r0CZKaSHlaZtx647NmfDjghMqfvf5v1M+X4zN8Y2ZGCXBk7HqbgK6WF1MKBOGQcx5Z0VAlOqUtNOMHZ2Ai2iKvN0/w5Ox6nYCuh5lSVhTDw0nC9X73YolCmPrBCYUpObq4ybk0BaRhavD+tKRIi1PHpVu+HQZypENgEEIpsQcNU7pNQexBPz1pKaZrObmeKxv1RTat76YQtLN+3nb4M60qZupNNx/EO+nleBwOSoNK755zImfL6Gt2/pZiOVmiLZEYEpFfEpB5m8cCP9OtVjaI9GRe9gvKZl7Uge6tOGhet+Y54NQWGKwQqBOWeH0jMZ89GvNKgWzguDO9o3UB9wx0XNiG1SnafmJ7L3cIbTcYyPs0Jgzomq8vDc1aQePcGUYV2IDAt2OpIBAgOEl2/oTGZOLo9+thobwcWciRUCc07e/zGZhet+45G+benUsJrTcYyHZrUq8WjftizekMqcuB1F72D8lhUCU2Jrdx3mb1+t5/K2tbnzomZOxzEFuLVnU3o2r8mzXyax69Bxp+MYH2WFwJTI0RPZjP5oJTUrh/DKDZ3tvICPCggQXrq+E6rKI3OticgUzAqBOWuqyoTP17D9YDr/uKkL1SuFOB3JnEGjGhFMuLY9yzbv58NfbOIfczorBOasfRK3k/kJu3ngitb0aFbD6TimGIb2aESvVrV44askth9IL3oH41esEJjiSZoJU5uikwO48PtYHmocx6hLbfL08kJEeHFIJwJFeHDuKnJzrYnI/MEKgSla0kzXOPdpKQhKg8B9jMp6icANHzmdzJyF+tXCefK69izfdpB//ZjsdBzjQ6wQmKIVMO692Lj35dL13RpyedvavPT1eramHnU6jvERVghM0QoZ977Q5cZniQgvDO5IWHAgD36yihxrIjJYITDFoJGFjB1UyHj4xrfVrhLGMwM6sHL7Id5ZutXpOMYHWCEwRfq5wXjSNfTUhUERrvHwTbnUv3N9+naoy98XbmTjb2lOxzEOs0JgzujgsUxGxbflndBH0cjG5I17T5+pNkF6OSYiPDcomsphQYyfs4qsnFynIxkHWSEwZ/TCV0mkZWRz9Y3jkZEpMD4XRiZbEagAalUO5fmB0azZdZg3F29xOo5xkFcLgYj0FZENIrJZRB4tZJsbRWSdiCSKiPVH9CG/bD3AJ/E7ufvi5rSuYxPNVERXd6xH/871+ed3m0jcfdjpOMYhXisEIhIIvA5cDbQHhopI+3zbtAIeAy5U1Q7AX7yVx5ydzOxc/jpvLQ2rh3P/Za2cjmO8aGL/DlSvFML4OavIzLYmIn/kzSOCHsBmVd2qqpnAbGBAvm3uBl5X1d8BVHWfF/OYs/Dusq1s2neUZwZ0IDwk0Ok4xouqVwrhhUEdWb83jdcWbXI6jnGANwtBA8BzEPSd7mWeWgOtReR/IvKziPQt6IlEZKSIxIlIXGpqqpfimjw7Dqbzz+820bdDXS5rW8fpOKYMXNG+DkO6NuSNxVtYteOQ03FMGXP6ZHEQ0AroDQwF3hGRavk3UtWpqhqrqrFRUVFlm9DPqCpPzl9LoAhP9W9f9A6mwnjyuvZEVQ5l/CeryMjKcTqOKUPeLAS7AM8rkRq6l3naCSxQ1SxV3QZsxFUYjEO+SdzL9xtSeeDK1tSrGu50HFOGqoYH8+L1ndi87yivfrvR6TimDHmzEKwAWolIMxEJAW4CFuTbZh6uowFEpBaupiK71NEhR09k8/SCdbSvV4URFzR1Oo5xwCU5C/m17t08sq4DmW82dg04aCo8rxUCVc0GRgPfAEnAHFVNFJFnRKS/e7NvgAMisg74HnhIVQ94K5M5s1e/3chvaRk8PyiaoECnWw1NmXOPMls9Zw8BooSk70AXjrRi4AekvE1dFxsbq3FxcU7HqHDW7jpM/ynLGHZeY54b2NHpOMYJU5tCWsrpyyObuC4iNOWaiMSramxB6+xrnyEnV5kwby01KoXw0FVtnY5jnFLIaLJqo8xWeFYIDB8t386qHYd4ol97qoYHOx3HOKWQ0WQPBdUt4yCmrFkh8HP70jJ46ev1XNiyJv0713c6jnFSr+ddo8p6yJQwnj44jDU7bfiJiswKgZ97/t9JnMjK5dkB0YiI03GMk9oNd40qG9mEvFFms694m/8F9+Wv89faPMcVWJDTAYxzlm3az/yE3Yy9vBXNoyo7Hcf4gnbDTxlZNgKYkLOTBz5excdxOxjawyYjqojOWAhEpOuZ1qvqytKNY8pKRlYOT8xfS9OaEdzbu4XTcYwPGxjTgFnLd/Di1+vp26Eu1SuFOB3JlLKimoYmu2+vA78AU4F33D+/7t1oxpveWrKFbfuP8ezAaMKCbVA5UzgR4dkB0aRlZPPSN+udjmO84IyFQFUvVdVLgT1AV/d4P92ALpw+XIQpJ7btP8Yb32+hf+f69GplYzeZorWpG8ntFzRl9ood/Lr9d6fjmFJW3JPFbVR1Td4DVV0LtPNOJONNqsoT89YSGhzAX/vZP6Epvr9c2ZrakaE8OT+RHDtxXKEUtxCsFpF3RaS3+/YOsNqbwYx3LFi1m2Wb9/Nw37bUjgxzOo4pRyqHBjHh2vas2XWYj5bbRWYVSXELwe1AIjDWfVvnXmbKkcPHs3j2yyQ6N6rGMOv9YUrguk716Nm8Ji9/vZ4DR084HceUkmIVAlXNUNVXVXWQ+/aqqmZ4O5wpXa98s4GDx07w/MBoAgPsmgFz9kSEZwd2ID0zh0n/sRPHFUWxCoGItBKRue5J5rfm3bwdzpSehB2H+PCXFEZc0IzoBlWdjmPKsZa1I7mzVzM+id9JfMpBp+OYUlDcpqF/AW8C2cClwAzgQ2+FMqUrOyeXxz9bQ53IMMb1ae10HFMB3H9ZK+pVDeOJeYlk59iE9+VdcQtBuKp+h2vY6hRVfRq41nuxTGl6/6cU1u05wlPXtadyqF1Mbs5dpdAgnujXnnV7jvDhzwUMXW3KleJ+KpwQkQBgk4iMxnUNgY1J4MuSZsLSCWjadvrmRpHd9D76Rl/jdCpTgVwdXZderWoxeeFGru1Un6jIUKcjmRIq7hHBWFzDjtwPdANuAW7zVihzjtwzTZGWgqA0CNjH3RmTkPUfOZ3MVCAiwsT+HcjIzuGFr5KcjmPOQXF7Da1Q1aOqulNVb1fVwar6s7fDmRJaOgGy009ZFJBz3LXcmFLUPKoyIy9uzme/7uKXrTbLbHlV1KBzXwCFXkKoqv0LW2ccVNiMUjbTlPGC0Ze2Yt6vu3lyfiJf3n8RwTbfdblT1L/YK7gGndsGHMc14Nw7wFFgi3ejmRIrZKapQpcbcw7CQwJ58rr2bPgtjfd/THY6jimBogadW6KqS4ALVfVPqvqF+zYM6FU2Ec3ZSo15knTNd+IuKMI1A5UxXtCnfR16t4ni//67id+O2LWm5U1xj+EqiUjzvAci0gyo5J1I5lyoKg+ujWbi8bHkVG5E3kxT9Jl6yoQjxpSmvBPHmTm5PP9vO3Fc3hS3++gDwGL31cQCNAH+7LVUpsS+SdzLko2pPNnvHgIvetHpOMaPNKlZiXsuacE/v9vETT0acUGLWk5HMsVU3F5DXwOtcHUjvR/XsNTfFLWfiPQVkQ0isllEHi1g/QgRSRWRBPftrrN9A+YP6ZnZPPPFOtrVq8KtPZs4Hcf4oVG9W9CoRjhPzk8ky644LjfOWAhE5DL3/WBcVxK3cN+udS87076BuGYxuxpoDwwVkfYFbPqxqsa4b++W4D0Yt39+t5ndhzN4dkAHgqznhnFAWHAgT1/Xgc37jvLesm1OxzHFVFTT0CXAIuC6AtYp8NkZ9u0BbFbVrQAiMhsYgGsIa1PKNu9L492lW7m+W0Nim9ZwOo7xY5e3q8MV7Wrzj+820T+mPvWqhjsdyRShqF5DT7nvby/gdkcRz90A2OHxeKd7WX5DRGS1e3TTRgU9kYiMFJE4EYlLTU0t4mX9j6ry5PxEIkICefTqtk7HMYanrutATq7y3Jd24rg8KO4w1GNFpIq4vCsiK0WkTym8/hdAU1XtBHwLvF/QRqo61T1fcmxUlM2xm98Xq/fw45YDPNS3LbUq23gvxnmNakRw36Ut+feaPSzdZF/efF1xG5LvUNUjQB+gJq6xhiYVsc8uwPMbfkPyTXivqgdUNW+ao3dxjWNkzkJaRhbPfbmOTg2r2qxjxqeMvLg5TWpG8NT8RE5k5zgdx5xBcQtB3nRW1wAzVDXRY1lhVgCtRKSZiIQANwELTnlSkXoeD/sDdhx5lv7vv5tIPXqCZwfYrGPGt4QFB/Jm1/XMyL2RkH8Ew9SmrgERjc8p7nUE8SKyEGgGPCYikcAZ+4aparZ7yOpvgEDgPVVNFJFngDhVXQDcLyL9cU14cxAYUcL34ZfW7z3C9B+TGdqjMZ0bVXM6jjGnSppJ+7UPQqB7AMS0FNeouGAXN/oYUS10TLk/NnLNRRADbFXVQyJSE2igqqu9nO80sbGxGhcXV9Yv63NUlRvf/oktqcdYNP4SqkWEOB3JmFNNber68M8vsgmMTC7rNH5PROJVNbagdcU6IlDVXBFpCAwTEYAlqvpFKWY0Z+nTlbtYkfw7Lw3pZEXA+CYbBbfcKG6voUm4ripe577dLyJ/82YwU7jD6Vm88FUSXRtX4/puDZ2OY0zBChntNjeywF7ixkHFPVl8DXClqr6nqu8BfYF+3otlzmTytxv4PT2TZwdGE2AniI2v6vW8a9RbD+kayrxK9zkUyBTmbMYhqObxc9VSzmGKae2uw3z4cwq39mxKh/r2z2B8WLvhrlFvI5uQNwruF7Wf5sG1HVi767DT6YyH4vYaegH4VUS+x9Vt9GLgtEHkjHfl5ip/nbeWGpVCGdentdNxjClau+Gn9BDqm57Fy39fzITP1/DZqAuty7OPKO7oo7OA83GNLfQp0FNVP/ZmMHO6j+N2kLDjEBOubUuVsGCn4xhz1qpGBPPXa9uzaudhPvqlgB5FxhFn0zQUAOwHDgGtReRiryQyBTp4LJMXv17Pec1qMDCmoCGbjCkfBsTU56KWtXjp6w3ss9nMfEJxew29CPwPmAA85L496MVcJp+Xvl5PWkY2zw6Mxt2F15hySUR4dmA0J3JyeeZLG4zYFxT3HMFAXJPRnChqQ1P6Vm7/ndkrdnB3r2a0rhPpdBxjzlmzWpW4r3dLXv3vRm6ITeWS1jaYpJOK2zS0FbBGaQfk5CpPzFtLnSqhjL3CThCbiuOe3s1pXqsST8xbS0aWDUrnpOIWgnQgQUTeFpF/5t28Gcy4fPhzCom7j/BEv/ZUDi3uAZwxvi80KJDnBkWz/WA6UxZtdjqOXyvuJ8sC8o0carwvNe0EryzcwEUta3Ftx3pF72BMOXNBi1oM7tKAt3/YwsAu9WlZ25o+nVDcsYYKnDDGeNcL/0kiIyuHiQM62AliU2E9fm07vlu/jwmfr2X2yPPt/7oDipq8fo77fo17OslTbmUT0T8t33aQz1buYuTFzWkRVdnpOMZ4Ta3KoTx6dVt+2XaQufE7nY7jl4o6IhjrvrdxhcpQVk4uT8xbS4Nq4Yy+tJXTcYzxuj/FNuLT+J387askLm9XhxqVbETdslTU5PV73PcpqpoC/A6kedyMF7z/YzIbfkvjqevaEx4S6HQcY7wuIEB4blA0aRnZTPqPTVRY1op7QdmfRWQvsBqId99sdpjSlDQTpjZFJwdw9c89eaxpPFe2r+N0KmPKTNu6VbizVzPmxO1k+baDTsfxK8XtPvogEK2qTVW1mfvW3JvB/ErSTNcUfmkpCEqDgH3cnTEJWf+R08mMKVNjL29Fg2rhPP75GjKzzzgbrilFxS0EW3BdS2C8YekEyD711xuQc9y13Bg/EhESxLMDO7B531HeWbrV6Th+o7jXETwG/CgivwAnh5lQ1fu9ksrf2JR+xpx0Wds6XB1dl39+t4nrOtWncc2Ioncy56S4RwRvA4uAn/njHEG8t0L5nUKm9Ct0uTEV3JPXtScoQHhi/lpU1ek4FV5xC0Gwqo5T1X+p6vt5N68m8yNb2z1OuoaeujAowjXVnzF+qF7VcMb3acOSjan8e80ep+NUeMUtBP8RkZEiUk9EauTdvJrMT2Rk5XDXL615KWccuZGNyZvSjz5TT5nZyRh/c2vPJkQ3qMLEL9ZxJCPL6TgVWnELwVDc5wk4i+6jItJXRDaIyGYRKXRqSxEZIiIqIrHFzFNhTF64ga37j3HlkHEEjEyB8bkwMtmKgPF7QYEBPD+wI/uPnmDyNxucjlOhFXeqymYF3M7YfVREAoHXgauB9sBQEWlfwHaRuK5g/uXs45dv8SkHeXfZNoaf15gLW9ZyOo4xPqdzo2rcen4TZvycwqodh5yOU2EV94KyWwu6FbFbD2Czqm5V1UxgNjCggO2eBV4E/GrOuoysHB76ZDX1q4bz2DXtnI5jjM8af1UboiqH8vjna8jOsWsLvKG4TUPdPW69gKeB/kXs0wDY4fF4p3vZSSLSFWikqv8+0xO5z0/EiUhcampqMSP7tle+cTUJvXx9J5tnwJgzqBIWzFPXdSBx9xFm/GQT3ntDcYehHuP5WESq4fqGX2IiEgD8HRhRjNefCkwFiI2NLfd9yeKSDzLtf9u4+fzGXGBNQsYU6ZqOdbmkdRSTF25gUPhiqsdPdF1nE9nY1bvOzqmdk+IeEeR3DGhWxDa7gEYejxu6l+WJBKKBxSKSDJwPLKjoJ4yPZ+bw0FxXk9CjV1uTkDHFISI8OyCavoGLiFg8CtJSAHXdLxzpGqbFlFixjghE5Asg75t4AK6Tv3OK2G0F0EpEmuEqADcBw/JWquph4OTXYRFZDDyoqhV6MLtXFm5g2/5jfHTXedYkZMxZaFwzgqeqzyQ0K9/pxOx013AsdlRQYsX9JHrF4+dsIEVVzziDhKpmi8ho4BsgEHhPVRNF5BkgTlX9burLFckHec+ahIwpscisQi4us+FYzklxzxEsKcmTq+pXwFf5lj1ZyLa9S/Ia5cXxzBwe+mQVDaqF85g1CRlTIhLZ2N0slI8Nx3JOipqqMk1EjhRwSxORI2UVsiJ4+ZsNJB9I56XrO1HJmoSMKZlez7uGX/Fkw7GcszN+IqlqZFkFqciWbzvIv37cxi3nN+GCFtYkZEyJuc8D5C59HNJ28FtuFJGXvERlOz9wTkraa8gU0/HMHB6eu4qG1cN59Oq2TscxpvxrN5yAkSmsH3qISw5N54HVHWyE0nNkhcDLTjYJDelsTULGlKL29avwcN82fLvuN2Yt31H0DqZQVgi8KK9J6NaeTejZoqbTcYypcO64sBm9WtXimS8T2bzvqNNxyi0rBF7i2ST0SF9rEjLGGwIChFdu6Ex4cCBjZ/9q8xyXkBUCL3npm/XWJGRMGahTJYxJQzqRuPsIk7+14apLwgqBFyzfdpDpPyZzmzUJGVMmrupQl6E9GjP1h638uHm/03HKHSsEpSw9M5uH5q6iUfUIHrFeQsaUmSf6taNZrUqMm7OKQ+mZTscpV6wQlLKXvt5AivvCsYgQaxIypqxEhATxz5u6cODYCR77bI11KT0LVghK0S9bDzD9x2RGXNCU85tbk5AxZS26QVXG92nDf9bu5ZO4Mw6HZjxYISglriah1TSpGcHDfds4HccYvzWyV3N6Nq/J018ksm3/MafjlAtWCErJS19vYPvBdF4aYk1CxjgpIED4+586ExwYwF9m/0qWTW9ZJCsEpeBnjyah86xJyBjH1asazqTBHVm18zD/+O8mp+P4PCsEJZU0E6Y2RScH0PSz9txR80drEjLGh1zdsR43xjbk9cWb+WXrAafj+DQrBCWRNNM1PV5aCoJSV/YxIfhVIrZ87HQyY4yHp67rQJMaETzwcQKHj2c5HcdnWSEoiaUTXNPjeQjMOe5abozxGZVCg/i/m7qwL+0EEz63LqWFsUJQEoVNi2fT5Rnjc2IaVeOBK1vz5eo9fP7rLqfj+CQrBCWgkY0KXmHT5Rnjk+65pAU9mtbgyfmJbD+QXvQOfsYKQQl8VXUM6Rp66kKbLs8YnxXo7lIqAn/5+FeyrUvpKawQnKV/r97Dfb+2Y36tp9DIxoBAZBPoM/XkNHrGGN/TsHoEzw/qyMrth3ht0eY/Vrh7ADI5wHWfNNOpiI6xK5/OQuLuwzz4ySq6NanO4JsfRoIeczqSMeYs9O9cn8Xr9/Haok1c3LoW3dL/4+oBmNf5Iy3F9Rj86oudHREU04GjJxg5I55qEcG8eXNXQoMCnY5kjCmBiQM60KB6OGNnJ5D7w+On9QAkO93vegB6tRCISF8R2SAim0Xk0QLW3yMia0QkQUSWiUh7b+YpqaycXO6duZL9R0/w9i3dqB0Z5nQkY0wJRYYF839/6sKewxnI0ULmOvazHoBeKwQiEgi8DlwNtAeGFvBB/5GqdlTVGOAl4O/eynMuJn6RyPJtB3np+k50aljN6TjGmHPUrUl1xlzWkl05tQrewM96AHrziKAHsFlVt6pqJjAbGOC5gaoe8XhYCfC5qz1m/pLChz9v58+XNGdATAOn4xhjSsnoS1vySdgojlsPQK8WggaA53HXTveyU4jIfSKyBdcRwf0FPZGIjBSROBGJS01N9UrYgizfdpCn5ifSu00UD19ls40ZU5EEBQZw/c0P89TxsaRKHdSPewA6frJYVV9X1RbAI8BfC9lmqqrGqmpsVFRUmeTadeg4934YT+MaEfzjpi4EBkiZvK4xpuw0qhFBz35j6L5vGq/FbICRyX5XBMC7hWAX4HkJbkP3ssLMBgZ6MU+xHc/MYeSMODKzc3nntliqhgc7HckY4yUDYxowMKY+f/92IwtW7XY6jiO8WQhWAK1EpJmIhAA3AQs8NxCRVh4PrwUcHzhcVXlo7irW7TnCP4d2oUVUZacjGWO8SESYNKQTPZrWYPycBH7cvN/pSGXOa4VAVbOB0cA3QBIwR1UTReQZEenv3my0iCSKSAIwDrjNW3mK643FW/hy9R4evqotl7at7XQcY0wZCAsO5J1bY2leqzIjP4gncfdhpyOVKSlvw7LGxsZqXFycV577u6TfuGtGHNd1qs8/bopBxM4LGONP9hw+zpA3fiQrV/ns3gtoVCPC6UilRkTiVTW2oHWOnyz2FZv3pTF2dgId6lfhxSGdrAgY44fqVQ3n/Tt6kJmdy63vLefA0RNORyoTVgiAw+lZ3D0jnrDgAKbeEkt4iA0fYYy/alUnkmm3xbL70HHueD+O9MxspyN5nd8XgpxcZczsX9n5ezpv3tyN+tXCnY5kjHFYbNMavDa0C2t2HmLUzJVkVfBhq/2+ELz49Xp+2JjKMwOi6d60htNxjDE+ok+Hujw3sCOLN6Ty6KcVe5pLvx6G+rOVO5n6w1Zu7dmEoT38a2wRY0zRhp3XmH1pGfzffzdRp0ooD/etmCMM+G0hWLXjEI9+tobzm9fgiX4+OeipMcYHjL28Fb8dOcEbi7dQOzKUERc2czpSqfPLQrDvSAYjP4gjqnIobwzvRnCg37eQGWMKISI8O6AD+4+eYOKX64iKDOPaTvWcjlWq/O4T8ER2Dn/+MJ4jx7N559ZYalQKcTqSMcbHBQUG8NrQLnRrXJ0HPk7gpy0HnI5UqirEBWWZmZls2bKF9PT0QvYy5UlERAQtWrQgJMSKtPEth9IzueGtn9h7OIM59/SkXb0qTkcqtjNdUFYhCkFSUhLVqlWjTp06BAT43UFOhZKbm8vevXvZvXs3tWvXpnFjO4lvfMvuQ8cZ/MaP5Kry2agLaFi9fFx9XOGvLE5PT7ciUEEEBARQt25dAD799FO2b/evKQON76tfLZwZd/YgIyuHW99bzu/HMp2OdM4qzCenFYGKIyAgABEhJCSEDRs2OB3HmNO0rhPJu7d1Z+fvx7nj/RUcz8xxOtI5sU9P47MCAwM5ccI/xnox5U+PZjX4501dWLXjEKM/Wkl2Ob762ApBKZo3bx4iwvr16wHYvXs3119/fYmea/r06eze7Z+TZBhTXvSNrsszA6L5bv0+Hv+8/F59bIWgFM2aNYuLLrqIWbNmAVC/fn3mzp1boueyQmBM+XDz+U24//JWzInbyd+/3eh0nBKpcBeUTfwikXW7j5Tqc7avX4Wnrutwxm2OHj3KsmXL+P7777nuuuuYOHEiycnJ9OvXj7Vr1zJ9+nTi4uKYMmUKAP369ePBBx+kV69e3HnnncTFxSEi3HHHHTRq1Ii4uDiGDx9OeHg4P/30E+vWrWPcuHEcPXqUWrVqMX36dOrVq1gXtRhTXj1wRSv2HcngtUWbqR0Zyi09mzod6axUuELglPnz59O3b19at25NzZo1iY+Pp2bNmkXul5CQwK5du1i7di0Ahw4dolq1akyZMoVXXnmF2NhYsrKyGDNmDPPnzycqKoqPP/6YCRMm8N5773n7bRljikFEeG5gNPuPnuDJBYlERYbSN7r8fFGrcIWgqG/u3jJr1izGjh0LwE033cSsWbMYPXp0kfs1b96crVu3MmbMGK699lr69Olz2jYbNmxg7dq1XHnllQDk5OTY0YAxPsZ19XFXhr/7M/fPTuCDO0I4r3nRXwZ9QYUrBE44ePAgixYtYs2aNYgIOTk5iAj33XffyW2CgoLIzf2jV0FGRgYA1atXZ9WqVXzzzTe89dZbzJkz57Rv+qpKhw4d+Omnn8rmDRljSiQ8JJBpt3Xn+rd+5K4Zcbw5vBsXtarldKwi2cniUjB37lxuueUWUlJSSE5OZseOHTRr1owdO3ac3KZp06YkJCSQm5vLjh07WL58OQD79+8nNzeXIUOG8Nxzz7Fy5UoAIiMjSUtLA6BNmzakpqaeLARZWVkkJiaW8bs0xhRH9UohzLjzPOpXDefW937h3aVbfb43kR0RlIJZs2bxyCOPnLJsyJAhvPDCCyfnPr7wwgtp1qwZ7du3p127dnTt2hWAXbt2cfvtt588WnjhhRcAGDFiBPfcc8/Jk8Vz587l/vvv5/Dhw2RnZ/OXv/yFDh2caQYzxpxB0kwaLJ3A17nbOVi7DhP/O5xxu2/mhcEdCQv2zWlwK8RYQ/Hx8XTr1s2hRIWLj49n3LhxLFmyxOko5U58fDwrVqygYcOG9OvXz+k4xhRP0kxYOBKy/xgAM0vCGH/4PrbVGsjbtzg3HW6FH2vIF8XFxTF06NCTJ5CNMX5g6YRTigBAsGbwYu2P2bb/GP2nLGNF8kGHwhXOq4VARPqKyAYR2SwijxawfpyIrBOR1SLynYg08WaeshQbG8vGjRsZPHiw01GMMWUlreBBEsMzdjHvvguIDAtm2Ds/M/OXlDIOdmZeKwQiEgi8DlwNtAeGikj+OSF/BWJVtRMwF3jJW3mMMcbrIgsZNj2yMS1rRzLvvgu5sGUtJny+lsc+W0Nmtm+MT+TNI4IewGZV3aqqmcBsYIDnBqr6varmHUf9DDT0Yh5jjPGuXs9DUL75CYIiXMuBquHBTLutO/f2bsGs5dsZ9s7P7EvLcCDoqbxZCBoAOzwe73QvK8ydwH8KWiEiI0UkTkTiUlNTSzGiMcaUonbDoc9UiGwCiOu+z1TXcrfAAOGRvm2ZMqwLibuP0P+1/7F65yHHIoOPdB8VkZuBWOCSgtar6lRgKrh6DZVhNGOMOTvthp/ywV+Yfp3q06xWJUbOiOf6t35i0uCODO7qTKOIN48IdgGNPB43dC87hYhcAUwA+qtq2Qw+nzQTpjaFyQGu+6SZ5/yUgYGBxMTE0KFDBzp37szkyZNPuZK4IMnJyXz00Ufn/Npn46677mLdunVn3Oatt95ixowZJXr+5ORkoqOjS7SvMf6mQ/2qLBh9IV0bV2PcnFU8++U6R+Y18OYRwQqglYg0w1UAbgKGeW4gIl2At4G+qrrPi1n+kL+fb1qK6zEUq4oXJjw8nISEBAD27dvHsGHDOHLkCBMnTix0n7xCMGzYsEK3KU05OTm8++67RW53zz33lEEaYwxAzcqhfHDneTz/7ySmLdvG+r1HmDK0K9UrhZRZBq8dEahqNjAa+AZIAuaoaqKIPCMi/d2bvQxUBj4RkQQRWeCtPCcV0M+X7HTX8lJSu3Ztpk6dypQpU1BVkpOT6dWrF127dqVr1678+OOPADz66KMsXbqUmJgYXn31VTIyMrj99tvp2LEjXbp04fvvvwcgMTGRHj16EBMTQ6dOndi0adNprzlr1iw6duxIdHT0KVc5V65cmfHjx9O5c2d++uknevfuTd4FedOmTaN169b06NGDu+++++QgeU8//TSvvPIKAL179+aRRx6hR48etG7dmqVLlwIU+p485eTk8NBDD9G9e3c6derE22+/DcCePXu4+OKLiYmJITo6+uRzGuOvggMDeLp/B166vhMrtv1O/9eXsX5v6Q6nfyZePUegql8BX+Vb9qTHz1d48/ULVEg/30KXl1Dz5s3Jyclh37591K5dm2+//ZawsDA2bdrE0KFDiYuLY9KkSbzyyit8+eWXAEyePBkRYc2aNaxfv54+ffqwceNG3nrrLcaOHcvw4cPJzMwkJ+fU+VF3797NI488Qnx8PNWrV6dPnz7MmzePgQMHcuzYMc477zwmT5582j7PPvssK1euJDIykssuu4zOnTsX+F6ys7NZvnw5X331FRMnTuS///1voe/J07Rp06hatSorVqzgxIkTXHjhhfTp04fPPvuMq666igkTJpCTk0N6enqBr2uMv7kxthGtalfmzx/EM/iNH5l8Q2eu7uj9kYZ94mRxmYps7GoOKmi5l2RlZTF69GgSEhIIDAxk48aCZzFatmwZY8aMAaBt27Y0adKEjRs30rNnT55//nl27tzJ4MGDadWq1Sn7rVixgt69exMVFQXA8OHD+eGHHxg4cCCBgYEMGTLktNdavnw5l1xyCTVq1ADghhtuKDRX3kVx3bp1Izk5udjvaeHChaxevfrkLG2HDx9m06ZNdO/enTvuuIOsrCwGDhxITExMEb9BY/xHl8bV+XLMRfz5w3junbmS0Ze2ZNyVrQkIEK+9pv8NMVFEP9/SsnXrVgIDA6lduzavvvoqderUYdWqVcTFxZGZmXlWzzVs2DAWLFhAeHg411xzDYsWLSr2vmFhYQQGnttAV6GhoYDrhHh2djZAsd6TqvLaa6+RkJBAQkIC27Zto0+fPlx88cX88MMPNGjQgBEjRpT4xLQxFVXtKmHMHnk+f4ptxJTvN/Pu1OfIfbtJqXZw8eR/haAY/XzPVWpqKvfccw+jR49GRDh8+DD16tUjICCADz744GTTjudQ0wC9evVi5kzXP/DGjRvZvn07bdq0YevWrTRv3pz777+fAQMGsHr16lNer0ePHixZsoT9+/eTk5PDrFmzuOSSAnvintS9e3eWLFnC77//TnZ2Np9++ulZvcfC3pOnq666ijfffJOsrKyT7+nYsWOkpKRQp04d7r77bu66666TQ28bY/4QGhTIpCEd+eCCTdx89HkCjm4H9I8OLqVYDPyvaQiK3c/3bBw/fpyYmBiysrIICgrilltuYdy4cQCMGjWKIUOGMGPGDPr27UulSpUA6NSpE4GBgXTu3JkRI0YwatQo7r33Xjp27EhQUBDTp08nNDSUOXPm8MEHHxAcHEzdunV5/PHHT3ntevXqMWnSJC699FJUlWuvvZYBAwacltFTgwYNePzxx+nRowc1atSgbdu2VK1atdjvt7D35Omuu+4iOTmZrl27oqpERUUxb948Fi9ezMsvv0xwcDCVK1e2IwJjCiEi9Nr7fyD5etbndXAppc8xG4bajx09epTKlSuTnZ3NoEGDuOOOOxg0aJDTsQAbhtqYkyYHAAV9TguML/41BzYMtSnQ008/fbILZ7NmzRg4cKDTkYwx+Z1hILvS4p9NQwbg5LUCxhgf1uv50ya7Ke0OLhXmiKCo4RxM+WH/lsZ4KIMOLhXiiCAiIoK9e/dSt25dAgIqTG3zS7m5uezdu/dkT6O8OZ+N8Wte6ODiqUIUghYtWrB+/Xp2795tHxwVQFZWFtu3bycjI4Nq1ao5HceYCq9CFIKQkBA6dOjA4sWLWbNmjR0VVBC1atWiS5cuTscwpsKrEIUAXFe9XnrppXTq1IkTJ8pmNGvjPUFBQdSoUYOQkLIbgdEYf1VhCgFAQEDAyfF2jDHGFI+1oRhjjJ8rd1cWi0gqUMDwocVSC9hfinG8wdcz+no+sIylwdfzge9n9LV8TVS1wCaTclcIzoWIxBV2ibWv8PWMvp4PLGNp8PV84PsZfT2fJ2saMsYYP2eFwBhj/Jy/FYKpTgcoBl/P6Ov5wDKWBl/PB76f0dfzneRX5wiMMcaczt+OCIwxxuRjhcAYY/yc3xQCEekrIhtEZLOIPOp0Hk8i0khEvheRdSKSKCJjnc5UGBEJFJFfReRLp7MURESqichcEVkvIkki0tPpTJ5E5AH3v/FaEZklImE+kOk9EdknIms9ltUQkW9FZJP7vroPZnzZ/e+8WkQ+F5FqvpTPY914EVERqeVEtuLwi0IgIoHA68DVQHtgqIi0dzbVKbKB8araHjgfuM/H8nkaCyQ5HeIM/gF8raptgc74UFYRaQDcD8SqajQQCNzkbCoApgN98y17FPhOVVsB37kfO2k6p2f8FohW1U7ARuCxsg7lYTqn50NEGgF9gO1lHehs+EUhAHoAm1V1q6pmArOBM8/uXoZUdY+qrnT/nIbrw6uBs6lOJyINgWuBd53OUhARqQpcDEwDUNVMVT3kaKjTBQHhIhIERAC7Hc6Dqv4AHMy3eADwvvvn94GBZZkpv4IyqupCVc12P/wZaFjmwf7IUtDvEOBV4GEKnnTYZ/hLIWgA7PB4vBMf/KAFEJGmQBfgF4ejFOT/cP2n9tUpxJoBqcC/3M1X74pIJadD5VHVXcAruL4d7gEOq+pCZ1MVqo6q7nH/vBeo42SYYrgD+I/TITyJyABgl6qucjpLUfylEJQLIlIZ+BT4i6oecTqPJxHpB+xT1Xins5xBENAVeFNVuwDHcL5J4yR3O/sAXAWrPlBJRG52NlXR1NXH3Ge/0YrIBFzNqzOdzpJHRCKAx4Ennc5SHP5SCHYBjTweN3Qv8xkiEoyrCMxU1c+czlOAC4H+IpKMq2ntMhH50NlIp9kJ7FTVvKOpubgKg6+4AtimqqmqmgV8BlzgcKbC/CYi9QDc9/sczlMgERkB9AOGq29dFNUCV8Ff5f6baQisFJG6jqYqhL8UghVAKxFpJiIhuE7QLXA400niml9zGpCkqn93Ok9BVPUxVW2oqk1x/f4WqapPfZtV1b3ADhFp4150ObDOwUj5bQfOF5EI97/55fjQyex8FgC3uX++DZjvYJYCiUhfXE2V/VU13ek8nlR1jarWVtWm7r+ZnUBX9/9Rn+MXhcB9Qmk08A2uP7w5qprobKpTXAjcgutbdoL7do3TocqpMcBMEVkNxAB/czbOH9xHKnOBlcAaXH9/jg9DICKzgJ+ANiKyU0TuBCYBV4rIJlxHMpN8MOMUIBL41v0385aP5Ss3bIgJY4zxc35xRGCMMaZwVgiMMcbPWSEwxhg/Z4XAGGP8nBUCY4zxc1YIjCkBEfmquKNdukdsjReRiz2WLRSRG7wW0JizYN1HjSkDInIe8A7QDbgeuE1VTxut0hgn2BGBMWcgIjeLyHL3BUtvu4c0R0SS88aXL2wbT+6LyX4CnsZ1kdvoMnwbxpyRFQJjCiEi7YA/AReqagyQAww/2208PAb8BfhIVTd7J7UxZy/I6QDG+LDLcTXlrHANDUQ4pw++Vpxt8lwMHAaivRHWmJKyQmBM4QR4X1XPNPNVcbbBPS/CS8BluOZLuEZVvyq9qMaUnDUNGVO474DrRaQ2nJzHt0kJtgHXuPRzVHU9MAp41RfmKzYGrBAYUyhVXQf8FVjoHs30W6DeqZsUuQ0i0gEYBDzv3ulXXCPhPuL1N2FMMVj3UWPOkrtX0D6grnuCGWPKNTsiMObsJQLvWhEwFYUdERhjjJ+zIwJjjPFzVgiMMcbPWSEwxhg/Z4XAGGP8nBUCY4zxc/8PsEe977yciV8AAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] @@ -229,33 +257,339 @@ } ], "source": [ - "import matplotlib.cm as cm\n", + "import math\n", + "def std_prob(x,prob,x0):\n", + " '''Funcion que retorna la desviación estandar tomando en cuenta probabilidades'''\n", + " n= x.shape\n", + " suma = 0\n", + " for i in x:\n", + " suma= suma + ((x[i]-x0)**2)*prob[i]\n", + " sigma = math.sqrt(suma/n)\n", + " return sigma\n", "\n", - "x = np.arange(0, estrella0.shape[0], 1)\n", - "y = np.arange(0, estrella0.shape[1], 1)\n", - "print(x)\n", - "#print(y)\n", "\n", - "lumx = estrella0[:,8]\n", - "print(lumx)\n", - "print(x.shape)\n", - "print(np.std(lumx))\n", - "print((max(x)-min(x))/2)\n", + "prob = lumx # definimos a lumx como una probabilidad para calcular la desviación estandar aproximada.\n", "\n", - "prob=lumx*x\n", - "print(np.std(prob))\n", + "# definimos los parámetros de inicialización\n", + "A = 1\n", + "x0 = int(max(x)+min(x))/2\n", + "sigma = std_prob(x,prob,x0)\n", + "C = min(lumx)\n", "\n", - "p1 = [2,1,7.5,0.2]\n", + "p1 = [A,sigma , x0 , min(lumx)] # valores iniciales\n", "best,suss = leastsq(Error_gauss_1D, p1, args=(x,lumx))\n", - "print(best)\n", + "\n", + "# gráficamos los resultados para evaluar el módelo visualmente. \n", + "# best contiene los parametros que mejor ajustan una gausiana a los datos.\n", "\n", "lum_model = func_gauss_1D(best,x)\n", + "plt.xlabel('eje X')\n", + "plt.ylabel('luminosidad')\n", + "plt.title('Ajuste Gaussiano')\n", "plt.plot(x,lum_model)\n", "plt.plot(x,lumx,'o',color=\"darkorange\")\n", - "#plt.plot(x_prueba,lum_model_prueba,'--r')\n", + "plt.legend(('Ajuste', 'Datos originales'),loc='lower left', shadow=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Ajuste a una gaussiana 2D \n", + "Aquà se procederá a realizar el mismo proceso anterior pero ahora se lo hara en 2 dimensiones.\n", + "La función gausiana en dos dimensiones esta dada por:\n", + "\n", + "<img src=\"https://wikimedia.org/api/rest_v1/media/math/render/svg/0c3a59990abb6b35ad9e0e4c3edbe44462fc20c7\"> \n", + "\n", + "por lo que los valores a encontrarse seran A, X0, Y0, sigma_x, sigma_y y C, igualmente se utilizará, el método de mÃnimos cuadrados." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "- Guardamos en arrays cada una de los datos en 2 dimensiones con sus respectivos valores de luminosidad." + ] + }, + { + "cell_type": "code", + "execution_count": 153, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.78171091 0.79941003 0.81219272 0.8446411 0.89872173 0.18485742\n", + " 0.17895772 0.20747296 0.24680433 0.29301868 0.33333333 0.35299902\n", + " 0.35988201 0.36184857 0.30875123 0.2920354 0.26155359 0.22025565\n", + " 0.17502458 0.87807276 0.84955752 0.82202557 0.8013766 0.79646018\n", + " 0.77679449 0.77089479 0.78564405 0.80530973 0.83775811 0.89183874\n", + " 0.17797443 0.21238938 0.25860374 0.32743363 0.40117994 0.45919371\n", + " 0.50049164 0.51425762 0.52310718 0.43657817 0.40609636 0.36184857\n", + " 0.30481809 0.24582104 0.18190757 0.88298918 0.85447394 0.81022616\n", + " 0.79646018 0.7699115 0.77089479 0.79154376 0.8013766 0.84365782\n", + " 0.88495575 0.17699115 0.27728614 0.32743363 0.42182891 0.51819076\n", + " 0.59980334 0.64896755 0.67354966 0.67846608 0.59587021 0.5526057\n", + " 0.47295969 0.39429695 0.31366765 0.24090462 0.17207473 0.87905605\n", + " 0.81710914 0.80334317 0.7826942 0.80432645 0.81907571 0.83087512\n", + " 0.87118977 0.16420846 0.20648968 0.32743363 0.39823009 0.52507375\n", + " 0.66076696 0.76696165 0.83087512 0.85644051 0.86725664 0.78466077\n", + " 0.7079646 0.61651917 0.50245821 0.39429695 0.2979351 0.20845624\n", + " 0.15634218 0.83775811 0.81710914 0.78957719 0.81120944 0.83579154\n", + " 0.86430678 0.89872173 0.20452311 0.24778761 0.38151426 0.47295969\n", + " 0.6273353 0.78564405 0.90855457 0.97345133 0.98918387 0.98721731\n", + " 0.94100295 0.85545723 0.72763029 0.59685349 0.47492625 0.35889872\n", + " 0.24877089 0.179941 0.87217306 0.85152409 0.81710914 0.80530973\n", + " 0.83579154 0.87118977 0.15732547 0.22713864 0.27826942 0.43756146\n", + " 0.5339233 0.69518191 0.85250737 0.96951819 0.99115044 0.99311701\n", + " 0.99311701 0.99311701 0.94001967 0.8013766 0.65683382 0.52507375\n", + " 0.39429695 0.27531957 0.19764012 0.90265487 0.87512291 0.83579154\n", + " 0.8259587 0.84955752 0.87118977 0.89872173 0.23402163 0.31956735\n", + " 0.43067847 0.57620452 0.78367748 0.93706981 0.99115044 0.99311701\n", + " 0.99508358 0.99311701 0.99115044 0.98033432 0.89577188 0.75122911\n", + " 0.58702065 0.44051131 0.31563422 0.22517207 0.1612586 0.87512291\n", + " 0.84955752 0.81907571 0.84955752 0.87118977 0.14945919 0.2300885\n", + " 0.31268437 0.4473943 0.58505408 0.7885939 0.9439528 0.99311701\n", + " 0.99606686 0.99606686 0.99705015 0.99705015 0.98918387 0.91642085\n", + " 0.76302852 0.59193707 0.44444444 0.32153392 0.24582104 0.16224189\n", + " 0.87610619 0.86234022 0.81907571 0.84267453 0.86430678 0.89970501\n", + " 0.22320551 0.2920354 0.44149459 0.5712881 0.76007866 0.91445428\n", + " 0.98426745 0.99606686 0.99410029 0.99115044 0.99410029 0.98525074\n", + " 0.90757129 0.75122911 0.57718781 0.42379548 0.30678466 0.2359882\n", + " 0.88987217 0.85545723 0.84857424 0.81219272 0.83775811 0.8574238\n", + " 0.88692232 0.20255654 0.27138643 0.38544739 0.50835792 0.67649951\n", + " 0.83480826 0.94690265 0.98426745 0.99410029 0.99410029 0.9813176\n", + " 0.92920354 0.82104228 0.67453294 0.52704031 0.38348083 0.27040315\n", + " 0.20845624 0.89675516 0.85545723 0.84169125 0.79842675 0.82399213\n", + " 0.84365782 0.86627335 0.17895772 0.23697148 0.33726647 0.43559489\n", + " 0.58210423 0.71583088 0.83775811 0.91347099 0.9567355 0.96853491\n", + " 0.88593904 0.82104228 0.7020649 0.58013766 0.47394297 0.36873156\n", + " 0.26352016 0.19370698 0.16912488 0.87610619 0.84857424 0.77777778\n", + " 0.80334317 0.82989184 0.85250737 0.15142576 0.20255654 0.30481809\n", + " 0.38643068 0.48180924 0.57325467 0.6647001 0.74139626 0.77777778\n", + " 0.79056047 0.74926254 0.66764995 0.57227139 0.48869223 0.42477876\n", + " 0.35103245 0.2546706 0.18682399 0.88298918 0.83480826 0.81415929\n", + " 0.7640118 0.78957719 0.80924287 0.8387414 0.88593904 0.17502458\n", + " 0.25663717 0.3166175 0.38741396 0.43559489 0.49262537 0.55457227\n", + " 0.59292035 0.60078663 0.59095379 0.53294002 0.46017699 0.40609636\n", + " 0.36873156 0.29596853 0.21042281 0.89577188 0.83480826 0.80039331\n", + " 0.79351032 0.75712881 0.77581121 0.80235988 0.82497542 0.87217306\n", + " 0.1612586 0.179941 0.24680433 0.30973451 0.35791544 0.4100295\n", + " 0.47984267 0.52212389 0.53294002 0.48180924 0.43854474 0.38446411\n", + " 0.35004916 0.31170108 0.23992134 0.90560472 0.83382498 0.84857424\n", + " 0.82104228 0.83480826 0.78171091 0.78171091 0.78171091 0.80825959\n", + " 0.84955752 0.87708948 0.15437561 0.18092429 0.20943953 0.24385447\n", + " 0.27138643 0.30481809 0.32546706 0.33235005 0.28416912 0.27728614\n", + " 0.27138643 0.22910521 0.16814159 0.18289086 0.17010816 0.8633235\n", + " 0.81120944 0.80432645 0.79056047 0.76794494 0.76794494 0.76794494\n", + " 0.79449361 0.82890855 0.85644051 0.89577188 0.14749263 0.16814159\n", + " 0.19469027 0.22222222 0.23697148 0.25073746 0.25762045 0.25073746\n", + " 0.23893805 0.2359882 0.1927237 0.88987217 0.89085546 0.8820059\n", + " 0.82399213 0.81120944 0.80432645 0.79056047] [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n", + " 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2\n", + " 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3\n", + " 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4\n", + " 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5\n", + " 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6\n", + " 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7\n", + " 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8\n", + " 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9\n", + " 9 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10 10\n", + " 10 10 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 11 11 11 11 11 11\n", + " 11 11 11 11 11 11 11 11 11 11 11 11 12 12 12 12 12 12 12 12 12 12 12 12\n", + " 12 12 12 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 13\n", + " 13 13 13 13 13 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14\n", + " 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15\n", + " 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15] [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23\n", + " 24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22\n", + " 23 24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21\n", + " 22 23 24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20\n", + " 21 22 23 24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19\n", + " 20 21 22 23 24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18\n", + " 19 20 21 22 23 24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17\n", + " 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16\n", + " 17 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15\n", + " 16 17 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14\n", + " 15 16 17 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7 8 9 10 11 12 13\n", + " 14 15 16 17 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7 8 9 10 11 12\n", + " 13 14 15 16 17 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7 8 9 10 11\n", + " 12 13 14 15 16 17 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7 8 9 10\n", + " 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7 8 9\n", + " 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7 8\n", + " 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24]\n" + ] + } + ], + "source": [ + "x = np.arange(0, estrella0.shape[0], 1)\n", + "y = np.arange(0, estrella0.shape[1], 1)\n", + "\n", + "def lum_2D(estrella,x,y):\n", + " '''Funcion que extrae cada valor de la luminosidad con sus respectivos valores en X y Y,\n", + " y los retorna en forma de arrays.\n", + " '''\n", + " lum_list = []\n", + " x_list = []\n", + " y_list = []\n", + " for i in x:\n", + " for j in y:\n", + " lum = estrella[x[i],y[j]] \n", + " lum_list.append(lum)\n", + " x_list.append(x[i])\n", + " y_list.append(y[j])\n", + " return np.array(lum_list),np.array(x_list),np.array(y_list) \n", + "\n", + "lum, x, y = lum_2D(estrella0,x,y)\n", + "print(lum,x,y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "- Primero gráficaremos los datos en 3D, con los valores para X, Y y la luminosidad, para tener una vista preliminar.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 142, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAFkCAYAAADfd6v2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAD00UlEQVR4nOydd1hTZxuH75OEvTcIggMUF07cWu2w1bZ22GX3sHvvvXdrp7a1U7vVbmtbqx2uat0CKoKAKHuFEQhknu8PPOdLIIEEEkWb+7q8WsjJm/eE5Hee87zP+3sEURTx4MGDBw8nBopjPQEPHjx48OA6PKLuwYMHDycQHlH34MGDhxMIj6h78ODBwwmER9Q9ePDg4QTCI+oePHjwcALhEfX/MIIgLBIE4fFjPY+ehiAIiYIgNAqCoDzWc/HgwVkET536iY8gCGuB4UCsKIo6F489DfhCFMWEbowRBDwNnA9EATXAVuBVURS3uGCaHjz8Z/BE6ic4giD0AaYAIjD72M6mPYIg+AB/AcOAs4BgYBCwFJh5DKfmwcNxiUfUT3yuBP4FlgBXWT4gCMISQRCeO/L/VwuCsLHN46IgCMlH/n+WIAj7BEHQCIJQIgjCfYIgBAC/Ab2OpCsaBUHoJQiCQhCEhwRByBcEoUYQhOWCIITbmd8VQAJwriiKe0RRNImi2CSK4reiKD5lMZe3BEEoEgShQRCEHYIgTLF1Hkd+niYIQrHFzw8embNGEIQcQRBOOfL7sYIgbD8yZoUgCK8f+X2fI+euOvLzNYIgZB95foEgCDe2fS1BEO4VBKFSEIQyQRCusXg8RBCEzwRBqBIE4ZAgCI8JguD53nlwG54P14nPlcCXR/6dLghCTBfH+Ri4URTFIGAo8Jcoik20RtOloigGHvlXCtwOnAucBPQCaoF37Ix7KvD7kbE6YhswAggHvgK+EQTBt7NJC4IwELgNSD8y99OBwiMPvwW8JYpiMNAfWG5nmEr+fxdxDfCGIAijLB6PBUKAeOA64B1BEMKOPLbgyGP9aH0/rjwyhgcPbsEj6icwgiBMBpKA5aIo7gDygUu7OJwBGCwIQrAoirWiKO7s4NibgEdFUSw+ksN/CrhAinzbEAmUW8x5hCAIdUei5xzp96IofiGKYo0oikZRFF8DfICBDszbdOTYwYIgeImiWCiKYr7FOSULghApimKjKIr/2hpAFMVfRFHMF1tZB6ymNaWFxTjPiKJoEEXxV6ARGHhkofUS4GFRFDWiKBYCr9F6d+LBg1vwiPqJzVXAalEUq4/8/BVtUjBOMAeYBRwSBGGdIAgTOjg2CfjhiDjXAdm0iqutu4QaIE76QRTF3aIohtK6aOoj/f5IuidbEIT6I2OG0HpB6BBRFPOAu2i9sFQKgrBUEIReRx6+DhgA7BcEYZsgCGfZGkMQhJmCIPwrCIL6yGvPavPaNaIoGi1+1gKBR47xAg5ZPHaI1ojegwe34BH1ExRBEPyAi4CTBEEoFwShHLgbGC4IwnAbT2kC/C2eH2v5oCiK20RRPAeIBn7k/6kKW+VTRcBMURRDLf75iqJYYuPYP4EZR/Lz9s5lCvDAkfMJOyL69YBga+60pkMs5/6VKIrSXYsIvHzk9wdEUZx75JxeBr5tO48jC7nfAfOBmCOv/avFa3dENa1RfJLF7xIBW++DBw8uwSPqJy7n0hodD6Y1Fz2C1qqSDbTmdduSAQw5kv7wpTWyBUAQBG9BEC4TBCFEFEUD0ACYjzxcAUQIghBiMdYi4HlBEJKOPD9KEIRz7MzzM6CM1sh+qCAIyiOvP8bimCDACFQBKkEQnqA1vy2xG5glCEL4kYvRXRZzHygIwslHxLkFaJbmLgjC5YIgRImiaAbqjjzFjDXetN4xVAFGQRBmAjPsnIsVoiiaaL34PS8IQtCR9+Me4AtHnu/BQ1fwiPqJy1XAYlEUD4uiWC79AxYCl7XNb4uimAs8A/wBHAA2thnvCqBQEIQGWnPmlx153n7ga6DgSLqlF60LkCuA1YIgaGitvhlna5KiKLYA04F9wC+0XjBygHRaI3OA34FVQC6t6YsWWu8GJD6n9aJUSGu+e5nFYz7AS7RGzeW0RuUPH3nsDGCvIAiNR+Z8iSiKzW3mpwHuoFWca2ldk1hh61zscDutdxIFtL6nXwGfOPF8Dx6cwrP56D+MIAifAXmiKD5zrOfiwYMH1+CJ1P+jHInUBwIHj/VcPHjw4Do8ov7fpZzWPPJ3x3geHjx4cCGe9IsHDx48nEB4InUPHjx4OIHwiLoHDx48nEDY2rZtiSc348GDBw/WOLLx7JjhidQ9ePDg4QTCI+oePHjwcALhEXUPHjx4OIHwiLoHDx48nEB4RN2DBw8eTiA8ou7BgwcPJxAeUffgwYOHEwiPqHvw4MHDCYRH1D148ODhBMIj6h48ePBwAuERdQ8ePHg4gfCIugcPHjycQHhE3YMHDx5OIDyi7sGDBw8nEB5R9+DBg4cTCI+oe/DgwcMJhEfUPXjw4OEEwiPqHjx48HAC4RF1Dx48eDiB8Ii6Bw8ePJxAeETdgwcPHk4gPKLuwYMHDycQHlH34MGDhxMIj6h76BSTyURLSwtGoxFRFI/1dDx48NABqmM9AQ89F1EUMRqNGAwGWlpaUChaYwCVSiX/UyqVCIJwjGfqwYMHCaGTyMsTlv1HMZlM6HQ6WbD1ej0KhQJRFOV/EiqVCi8vL1QqFQqFwiPyHk50evQH3BOpe7BCFEVMJhNqtZpDhw6RlpaG2WyWHxcEwUq0peONRiMALS0tKJVKgoODPSLvwcMxwCPqHmREUcRgMGAymeRUS2e0Ffna2loAvLy85Mct0zUekffgwb14RN0DAGazGb1ejyiKslB3ZVFUEmylUglY5+Wlxz0i78GD+/CI+n8cSXSNRiOCIMgRendEvbN0jcFgaCfyXl5eKJVKj8h78NBNPKL+H0YURfR6PWazuZ34thV1VwmtIAhyFC/Noa3IS4uuHpH34MF5PKL+H8VkMmEwGKzSLZZYirrBYKChoYGgoKBOc+3ORvi2RF6v16PT6eSfRVEkODhYLp/0iLwHD/bxiPp/DHvplrZI4lxbW8u+ffsICAigsbERHx8fwsLCCA0NJSgoqMOLQVdoK/INDQ0UFxczYMAAeb6W6RqPyHvwYI1H1P9DmM1mDAaDzXSLLZqamsjNzWXEiBGoVCoEQaClpYXa2lqKi4tpbGzE19eXsLAwwsLCCAgIcPmcpXmqVCr5YqHX69Hr9QDtRN7Rqh0PHk5UPKL+H0CqJbfMW3ck6DqdjszMTMxmM+np6UCrkAqCgK+vL3FxccTFxSGKIs3NzdTW1nLo0CEaGxtRKpV4e3sTERGBv7+/S6NoW5U10tw8Iu/BQyseUT/BaZtu6Uxkq6urycnJoV+/fhQXF6NQKOTIvi2CIODv74+/vz/x8fGIokhRURF1dXUUFBSg1WoJDAyUI3k/Pz+XnpstkZdy8pYi33bh1YOHExmPqJ/A2Ko97+jYvLw86uvrGT16NCqViqKiIsDxyhcpkg8ODqZPnz6IokhjYyO1tbUcOHCAlpYWgoKCCA0NJSwsDF9fX5ecp+Xrty2fFEURnU4nL7wqFAqUSqWVrYEHDycSHlE/AbFMt3S0GCrR3NxMZmYmkZGRjBkzBkEQXOLIKAgCQUFBBAUFkZiYiNlslkV+//796PV6goOD5Uje29u7W69n6/Vtify2bdsYOnQoSqXSKlUjrRt48HA84xH1E4yOas9tUVFRQV5eHoMHDyYsLEz+fXc2H9l7nkKhIDg4mODgYJKSkjCbzTQ0NFBbW0tpaSlGo5GQkBC5ukayGnAVlu+HUqlEqVRiNptpaWmRj7GM4j0OlB6ORzyifgJhNBrR6XTyhp2OBMlkMpGTk0NLSwvp6entouTuliY6gkKhIDQ0lNDQUHlOksgfPnwYURTx8/NDr9djNBpRqVz3cZXen7aRvEfkPRzveET9BEBaDC0uLqa5uZn+/ft3eHxTUxOZmZn06tWLQYMG2V0EdXWk3hlKpVJOxUDrRaq8vJySkhJ2796NIAhyPj4kJMSqnt0VeETew4mAR9SPcyzTLY4s+pWUlHDo0CGGDh1KcHCw3eN6glipVCpCQ0NpaGhg8ODBGI1G6urqqKmpoaCgQI70JZF39aKnPZFvbm62SuN4RN5DT8Ij6scxbd0PpfJDe8fu27cPgLFjx7o0lWGJO9M2KpWKyMhIIiMjgdb69Lq6OiorK8nLy0OlUsmRfkeWBlI1kLNIIi+NK4m8RqOhsLCQlJQUT1coD8ccj6gfh9irPbcnqA0NDezZs4ekpCTi4+OP9nTdhre3N9HR0URHRwOtm6Zqa2spKysjJyenU0uD7mIp8lK7P8uqI/B0hfJw9PGI+nFGR1v920bqoihy+PBhSktLSUtLIzAw0O3zOxoLrPbw8fEhNjaW2NhYALuWBiaTyaVztNwH0DaSl7pCScd4RN6Du/GI+nFC263+tlILbZ0V9+zZg4+PD2PHjnX5ouLxgD1LA51Ox/bt2wkICJBz8q62NIDOW/95GoZ4cAceUT8OsGwz11GpYltnxf79+8tR69HiWEbqHWFpaVBaWsro0aNlke+upYGjOXpbIu/pCuXB1XhEvYfjzFZ/QRCoq6tDo9EwcuRI/P39j+JMjy8EQSAgIICAgAASEhK6ZWnQ3YVXy3GkhiEGg4H6+nri4uI8XaE8OIVH1HsojvqeS+h0Ovbv34/ZbGb8+PHHzNOkp0bqbbHlA99VSwNXna+ll3xLSwtVVVVERkZ6ukJ5cAqPqPdAnN3qLzkr9u7dm7q6umNqUuUOUT8WFwlnLA18fHxcLq6iKMrmY5a/s+wKZelAKfnWeETeg0fUexhSdO6ss+KYMWMwGo2o1eqjOFv301NEqiNLg8LCQlpaWjhw4IBcQtndfQC2Ujodtf6TPiteXl6erlD/cTyi3kNwNt1iy1nR1aV6XeF4Sb90F0tLg+joaAoLCwkPD5dFvruWBo7k6S1F3tMwxIOER9R7AM62mSsvLyc/P7+ds6JCofhPCGpPQ0qVREREEBERAdBtSwNnF18d7QplMpkIDAz0iPwJjEfUjyGO1J5bIjkr6nS6Y+as2Bk9YQ7HgrYC3F1LA0e9fDqbT9uuUDt37mT06NGApyvUiYpH1I8RoijS1NREUVERffv27TQqa2xsJCsrq1NnRXveLx7chyNRtbOWBl0tk7SHpZWEUqm02xXKI/LHPx5RPwZItefSwma/fv06PN5RZ8WekH75L0bqXRHgziwNpMqXxsZGAgICXCLwlvN0pPWf5EDp6Qp1fOER9aNI28VQlUrVYWTtrLOiOwXV84V2L20tDUpLS6murubQoUOysHfX0qCjlE5HXvLSxcBjM3x84BH1o4St2vOOrHK74qzojvSLsxcJT6TefQRBwNvbm+DgYPr27Ysoimi12m5bGjgzT0/DkOMXj6gfBaTF0La157bSJd1xVnS1oErjHesva0+/SLjjPWqbKnGFpUF3Fl87Evny8nICAwMJCQnxiHwPwCPqbqSz2vO2IqzX69mzZw++vr5dclZ0h8ugKIo0NDSQm5tLYGAg4eHhHdZdu+PC0tNxh6h3lirpiqVBdytq2s5BOuempib8/f09XaF6CB5RdxPO1p5LzorJycnExMQcpVl2zuHDh6moqCAlJQWdTkdNTQ35+fkOdxn6L+COOwlnLhSOWhr4+/u7Za5ms1mulmnbFcpS5D1doY4OHlF3MW1rzzsTdFEUyc/Pp7q6mlGjRjll+epOjEYjWq2WxsZGxowZg8lkIigoyKruWq1WU1paikajkRtQSBHbfw13pl+cxZ6lQUVFBfX19Wzfvl32rXGFpYGtOwB7DUNsdYVSKpUekXchHlF3IfbazNlDp9Oh1WoxmUykp6f3mGhXWqT19vZm4MCBKJVKTCaT1THe3t5ySZ5lA4qioiLq6+vZt2+fHMl3ZFt7IuDunHp3kSwNVCoVoiiSkpJCfX29yywNHEnr2BN5qWEIeFr/uQqPqLsIZ3zP4f/Oij4+PgwYMOAozbJjRFGkpKSEoqIi0tLSyM7Oduh5lg0oIiIiZMdItVrN/v37MRgMBAcHEx4eTmhoKF5eXm4+k6OLu9Ivrr7IS+KrUqlcamnQlVy9rYXXtl2hdDodISEhHpF3Eo+od5O2t5WOfAEOHDiARqNhzJgx7Nix4yjNtGOkmnhBEORF2rbVL46aTAHyQp6U45Uiw8OHDyOKohzFdyUy7Im4Y6HU1e+LPfE91pYGYFvks7KyZEsDaV+HpytU53hEvRs463uu1WrJysoiKiqK0aNH95gPpWRB0Lt3bxISEuTfW1aydKeqRaFQyKIArReQ2tpaqqurrRZdw8PDCQoK6jHvi6O4K/3i6kjd0Xk6a2ngyqoaCen7ZOldI3WEkh73iLxtPKLeRZxNt9hzVjzWlJaWUlhYyLBhwwgKCrJ6rCtC7shzVCoVUVFRREVFAf8XDWmLvJ+fn9VFoKfT03PqEl0V384sDVpaWigtLSU8PNxllgZtsRR4sC3ynq5QrXhE3Umc9T23dFYcO3Zsu3zysdrgYzKZ5Hy3PQuCo7U71FI0pEVXtVpNQUEBTU1NmEwmysvL5S5DPY3jSdRdMWZbS4MtW7agVCpdamkgedHYw5bI22oY8l/sCuURdSdwNt0ipTXi4+M7dVY8mnllrVZLZmYmcXFxJCYm2j0PQRBobGxk+/btJCUlyZFaR1heCAwGg9NGUJaLrgkJCWi1Wvbv349Op2Pfvn1WbeSkio5jzbGuU3dmTHekSRQKBfHx8cTHx7vU0sCZuXYk8vB/B8r/QleoY/+NOE4wGo0UFhYSEBBAWFhYp7XnJSUlHD582CFnRVeLui1BqK+vZ/369fLchw4dSkhISIfjCILAY08/T06NnvLcXZwyZRK33zSPf/75h69/WEli7wReefZJm+O8/9EnfP3dCsaNHs7zTz3eZfGVIq6kpCSSkpIwmUxWi64AoaGh8k7XY9lw25X0pPSLM7jK0sBkMnXrO9E2Hw/WDUPuvPNOlixZckIKu0fUO8Ey3dLS0oK3t3eHHwRnnRU7MvXqCvbSOQ8+/jSZlQbMVfks++Q9zGYzq1evZvDgwVaLo23Hyj9UhJg8jfrsvewo13HpNTfSoAzGbDRgClPx77//cvrpp1s9x2w2s/T7nxlw0UPs+OU92TPeFSiVSsLDwwkPDwda7wYsKzW8vLzkRdfAwEAEQUCr1aLX6+XNOK6mJ6dK3D1mZ/QUSwOwbhiye/dul4zdE/GIege03eqvVCo7FOCuOCu6WtRtmYQ1NzeTm1dAYOp09Lo6tFotjz79AmWmQLw1n7D80w8pLy9n27ZtTJo0iaSkJDZs2MBfa9dx3aUX8Omy7wnxFlE01aAXFSRNPo89372JItKfgQMHtnut5uZmTp4ygbUrFtAnLoJevXq57Pza4uXl1W7RVa1WU1RUhEajob6+ntfe/RCjGR656xZOnj6N0tJSamtrXbYQe7zUqbtjTHDuLsUZSwN3XoA86Zf/GPbazEk9Hm0dLzkrDh8+nICAAIdfy9WNLdrm6KuqqsjNzeXZR+/n2xW/MubCWQwYMIDSikrCJ5xE1b9FlJeXc9v9j2KIGczXP6zk5acf4/H576IP7k1h8SZW/fgNmzdvpqWlhbyCQn79Yy0P3jqPSy+5iJCQEOrr6wkJCSEvL4+7HnqC2voG5j/zKFdddgmHDx+mqKiI5ORkl50jgFqt5oefVtArLo4zTp/Bzp07+WPtBmacfBIjR46UF/GWL1+OIXIgvpEJfL70G7Zs3caKtVv48IvlfPDWqy674Bwv6ZeesAZhydG2NABOeBuLnvUX7gFIpVImk6nd1dxWpG7prDhu3Lgu7axzR/pFFEXy8vKor69nzJgx+Pj4MGnSJPm4px68h8+X/8CcKy4gMjISvdFMYHgc2pLMVptgBBRevhiNDQiCwJgxYxBFkcmTJ3P1lZcDre588265k8NllVxx4Tn4eCkxxA4lIDGANWs3Eh4awk8bdyG0NPD284+Tmpoqv35OTg61tbWkp6djMpnkfL+02aQzXnv7HbaVmzCrNxAY4M+zr7+D36Bp/P3My/zw1WL8/PwQBIEpU6awfMVvNGTnMu/+O/jgs68JHz2L+rwdrFy5kunTp3dbMI5lTbkzuCP94uq7FMnSQCpJ7N+/v0stDaD1btLf39+l8+5JeETdgs5qzxUKhRy9g2ucFd2RfmlubiYjI0MWSVtf5KlTpzB16hT556cfuIPVazdy7lOPMHz4cB688Qr+3rCRqy+/3e5rHThwgNImkaRZN7Hit8957fknWPrDL9Soa5n54lN8+e2P+CcNR1uSw969e6mpqWH48OEUFBRw79Ovgk8gF568D73ByE+b9iI213H3NRfR1NTEyJEjSUlJYcOGDfy7dRvR0dFW77FZFBEUShBa73S8lAr0TRq8VEp0Oh2vv/0OlTVq7r7lBpZ9+hFGoxFfX19E4JGnX2TY0MFcdNFF/PX3WtZv2sKEMSNITk6Wc7vBwcFs3ryZuro6Tj311A79a46XkkZ3Wg+4GpPJ5BZLA2gNRpy5mz7e8Ig6jteeK5WtgiGKIgUFBS5xVnS1qBsMBjIzMxk0aJC87dsRpk6dytSpU+WfZ82aSZ8+ScTFxQG2a9ZTUlKID1Jw6NdFXHnRufTr14/ln33Ejh07SE9PJyQkhNcWvk9U33A+W/4jLX6R9An+jnNnngbBMfhGJVFwuBilUoF3VCItVfDqgkX4JI9HufxHnnvkPl5e9BnGsL5UvDSfF556jI8Wf4a3lxe3zLuGn39dRUKvkUyZMoWYmBg2//svk257is2bN/N3dhm+kYm8/8lnvPjME3IUPmXyZF57/knGjh1LWVkZ7362nMAh08j/dgXffblYXnT9/vvv+fiHP1AFR7Iv5wBTJ03g7Q+WMHhAMg/ee6fVfgN32dkeD9Uv7hJ1exVh3bU0gFZRd6b5zPHGf17Unak9VygU6HQ6Oc/nCmdFV+XUpQtNU1MTo0aNcskiYGebjwICAvjonbdoamqSyzZ9fHzkCoYBAwbw/tuvUVxczNV3PkxM2jQK/v6cqVOnsm1XJhVVRdxw0014e3vzzgefEJnYn9VrywgIj0VTvKf1AioICCoVRpOJL5cuZ9W+CkSjgYjwf7jlxuvluQwcOFBetG1sbETQVKEztJA0baTN84LW7fBeSoHm2krCA/zx8vKSt8cXFhbiGxKJEBRFUUkpz7z6JopBp/HHjs1M27KFyZMn2xxTrVbz6NMvoK6r48kH72Hw4MFdeu+Pp5SOu0TdkXGdtTSQ9l44m3659tprWblyJdHR0ezZs6fd40LrG/sWMAvQAleLorjTqRdxEf9pUZeic0e3+ms0GsrKykhLS3MqCu4IV+TU9Xo9WVlZBAYGEhER4TIXREd2lCqVyg7r8AHi4+O5dPYM1v6zmvvuuJGAgACeeORBq2NefOYJAE4+aQo//vI7J915AxMmTODua9Rs+ncLt918L2vXb8CsrQeTkaAg+5HWyJEjeePpB6irq2P8+PF2j4uIiOC1Zx4lKyuLKVOutfr7T58+ncKiYqprarnh2pv54JNP+Wv3VlS6OvR6PVu3biUoKIjw8HB+/uVXVq/bxOzTTyEiLIR8rS/+vcfyxfLveeGprov68SDA7ky/dCVf3pmlwddff41SqcRoNDo196uvvprbbruNK6+80t4hM4GUI//GAe8d+e9R5z8p6s5u9ZecFdVqNdHR0S4TdOh++qWuro69e/eSkpJCdHQ0mZmZLksHdNX7xdbvrr3qCq696opOnz9y5EhGjvx/dH3aqaeQlNib+Ph4Lr7wAsJDW61YTznllA7HGTp0qEPzHTx4sM1o2tvbmxvnXSf//MA9d3JGZia9evUiLi4Os9ksX+Q/XfYDvU67jsXLlvLIHfOgJp/G2iJGzT3XoTnYwpNT797mI4m2lgZBQUEsWbKErKwsRowYwcCBA7n22muZOXNmh+NMnTqVwsLCjg45B/hMbP3C/CsIQqggCHGiKJZ1+ySc5D8n6s62mbN0Vhw0aBAlJSUunU9XRV0URQ4dOkR5eTkjR46Ubydd6ddytLxfHEWlUnX65XMXXl5eVpU5CoWCkJAQgoOD6ZeYQOWev4gJD6JPnz7cff2V6HQ60tLSqKurIzg42GnhO16qX9yZfnF1+aUgCAwaNIiJEycSGRnJ008/LVtQuIB4oMji5+Ijv/OIuruwV3veEW2dFTUajc069e7QFVE3GAzs2bMHHx8fxo4da3Uurqx772mi3hMRBIHHH7yH0tJSxo4dS0hICIMHD5YX8MrKysjKypJ3TVo6Gba0tFBQUECfPn3a5XiPFwF2l2+RqyJ1WzQ2Nsq7jQcNGuSW1ziW/CdEvaPac1tIDoZ6vd7KWdHVlSrSmM4Ip7RrtV+/fjYNtlxd9+6hc/z8/Bg5cqSVB463tzcRERG8vuBd/t2RwaxTTuLyuRdRWFgol9TNf+sdihuMJIR48+E7b7arqDkeFkql0kNX406fGjdVv5QAvS1+Tjjyu6NOz2iK6UbMZjM6nc5hQW9sbJQXwUaMGGH1RXOHqDsqwqIoUlRUxN69exk+fLhdx0RXRteujPqzsrK45qY7eOaFl111u9tjsCeW5eXlbNubx8BLHuHXP9YSHR1NeHg4iYmJREdHc6CwiPBx55JdcJgdO3aQkZHBwYMHOxyzO/wXFkodQavVtusd4AJWAFcKrYwH6o9FPh1O4Ejd2cVQS2dFWw0jwPaO0u7iyIVCMglTKBRyq7mOxnNlysRyLFEUWfL5l2Tsyebayy8mLS3N4XEWfvgp9TEj2bh/N9O3bmXKlCmdP+kIDQ0N5ObmkpKS0iP9Ouy93zExMaQmxZH93etMnzyezZs388wbixAQefHRe7nu8ov5bsWXXHbemWg0Gh58dj5Gk4lrLzyLgQMHyv40rhK342mh1N2RurMljXPnzmXt2rVUV1cjCEIx8CTgBSCK4iLgV1rLGfNoLWm8xrWzdpwTUtRFUaSyshI/P79OXRWhVTT37t0ri6a9BRp73i/doe0u1bY0NjaSmZnpsEmYK9MvbaP+7Oxsvlr5N0GDJvPC6wtYuuRDh8dKTe5DwZZtKFrqHDY7A6ioqOCJF19DGRDKOdMncNvNNzh1DkcLW58xlUrFW6++iFqtJioqijfefgef/uMw6ZvZlZHFvGuvliuCFn3wEf7JY1GoVGiaW1AqldTW1nLw4EFEUWTv3r0EBARw7rnnyvsAnOV4ydODeyP1pqYmpyP1r7/+2vLHdramR6pebu3ezFzDCSfq0mJocXEx8fHxnXbKqa+vZ+/evfTp06dTcyd35dTtjdlRqzl7uLP6JTQ0FKWphcaibIbGRnf43NLSUhYs+oiI8DBuu+l6br/lJiaN30lMTAxJSUkdPvfnlb+wafsuLj73LOrr6zH4RxIz5nS27lrb4fPUajWffvEVwcHBXHnZXJfV63dGR6kSlUolb4yZfeYZbH7qBVQqJaefdqnVcbPOmMGGLS9gNpk457ZH2L9/P3V1dYwcOZK169azZNW/GE1m8vILOOvMWfKuSX9/f/744w+qa9TMPvusDnPFx1P65TjMqfcYThhRb5tuUalUHQqwVBJYVlbmsLOiO6pBbKVLTCYT2dnZmEwmhzzZ247nqguPyWTi5dffYk9OHmeddhKnTp/OMw/eSU1NjbyjUqPRUFVVRd++fa2EbdHHS8jQ+KE/XMiQv/9m5syZjB07Vn5cquCJj4+XRQ+guLiYtz75iuBhp/D486/y2QcL6R+qQr39R+69reMo/aPFn/HHgTpMTQfoFRN11MofHf1MJCcn880Xn9h8LDExkS8/XgS0biabd9vdeCUMI+CLZZw142S8AkPxFhTExMWRkpKCWq2msLCQTZs28ekvG/AKjaGwqJiZp53Cdz//xpQJ6Zx+2mnt5umJ1D2iflxgq/a8o/y35Kzo5+fnlLOiO/K5bdMlTU1NZGZmEh8fT+/evZ1+TVdeeA4dOsTW/YcITz+fH39dxtyLLpI7tx84cAClUsmTL86n0ahg5pR07r3zNvm5vWKj0edmQHODbMZkyUvz32R9Vj6+xiY+eed12Q/dz88PLwU0VhwiJiQYf39/7r7tJoYPH95ujObmZj5e8jnNLS1cf82V+Pv7Y2opBkPzUe9l6srPhk6nQ9tiIDFpMDVbcjhr1kyatC2IZjMXXzAHPz8/uX1cRUUF3n47wcuXktIy7njgMQJHzWLjWx8wZNAgqwYo7sqpu8PO111VNeAR9R5N29pzy+oWe/lvtVpNdna2vAPzWGMZWZeXl1NQUMCQIUM6bTVnD1eKekBAAN76RjQ7f2Xq+HS5zhpaL4wbN25EbVARPmomv6z+Gl1LM5ER4QwdPIjrrr6KAf03EBISYtNON2t/LhHDZ1CT8ScffPwJu/flMvuMU7ni0rm89cKT7Nu3z8oq2BYrf/mFH7bkovQNwOfLr7nhumuIi/6F4OBgpk+f3uFzjUYjBw8epFevXt127HN1BBwUFMRl55/JgUNZ3HDnTURFRdldS5g2bRoVVdVU16i57JKLuOXuB6iurUSBmfz8fMrLy+V2f+4yHjuahl6uwCPqPZS26Za2XyqlUmkl6pLhVU1NTbedFV2JdPHJzs6mubmZ9PT0buWCXZF+kWwRTCYT77z+ktwj1BJvb28mTZrE2DV/k7llOf16x7E6uxp9Uz6zKiqIiIhg6NChdo3Fbr/+KhZ++CnjB/bhj3+2k3j6PBYv/YhzzjqTAQMGMGDAAIAOyx+Dg4IQWzSYjHqCg1Lw9fVlzpw5Dp3jE8++yNZ9BcQEefPhwje65a/tjrTGuLHp3HbrLZ0ep1QqufSSi+Wf33z5Of755x/S0i5jwIABVla1Wq2WXbt2depi6AzuzH27q9KpKwulxxPHpah35nsO1qLe0tJCVlYWoaGhjBkz5pg1J7aFwWCgoqKCPn36kJqa2u0PcncjdZ1OR2ZmplxPbTabSUpKwmg0trvz8fHxYf6LzwLw4ceLObg+C1+VQGCAPzExMXJbOUCO8qUt8+PGjmXypEmYTCauvfl2yresJCEmskNxFUWRP/74g9Kycs6ZfTannXYaKpUKnU7HaW3yx20xGAxs3bqV6OhoRFHk3+276HvOnRxa/QkVFRXd6qHqDlHvKnFxcVxwwQVA67x+/W0V+3PzuPiC8wgICGDw4MFy6ziNRoOvry/h4eHyoquz53E0mlm7Gp1O1+UKouOB40rULdMtndWeK5VK9Hq93M4tNTXVZm73WFJZWUlOTg7BwcEua8zcHVGvq6vjhx9+oK5Bw3nnzG43VlvxKikpQaFQEBcXxxWXzSU0NBh/X18iIiKsWpQZDAZqa2spLy8nNzeXFb+s4q9/tjBhzEheevZJ3nn9FXJychg4cGCH+dnt27fz8odLUYTFk1f4Ls8+8Uinxl4Sb7/7Pr9v3w/aWm66bA7zrriYJV8vZOr4dBITE7v0flm+Lz2R7Oxs3v7sO3wSh5H7yuvcePXlVi6GoijS3NxMbW0tBQUF8qYc6QLsyLqEu9Ik7n5Pj7cLkTMcN6LujO85tIpbRUUFSqVSbufmyrl0JzIzm83k5eXR0NDA0KFDKS4udtncOqt7t4W0W3Xfvn189t0vKJNGsv6hx1kw/0W7z1m/fj3Pvvk+AiLPP3w36enpXHgk9bFt2zarYy19yk0mE/c9/hzJFz7I5p8W8Ntvv5GSkkJiYmKH3YWgdfEMhRKToKC2rrbT85IsiRMTEyk4VIR/4jCaDu+lurqaG264wSpt0V16SqRuibe3N4LZiEHbgJ9/+/dWEAT8/f3x9/cnPj4eURTRaDRyRy+DwUBISAjh4eGEhobaTAu6c0HTHfSkuyp3cVyIuiPpFku0Wi35+fl4e3vbbefWVaScdVejk5aWFjIzM4mIiGD06NFotVq39Ch1FJPJJG+8GjZsGCICXj7+6I/cDdkba8fuTHz6jcVkaCEjaw/p6ekOvZ5SqeSUkyaxbtUihvaLZ8aMGeh0OjlVI4qiHCmGhIRQW1tLXl4eQ4YMYdy4cZwzeQcffr4MU3QMv/2+mpmnz7D7Ws+8+Cpbc0vwMzXyyN23svirb0hMS3LYltdReqpQJCcn89wDt5GXX8AZp8+goKDA6nHJU1xKRQiCQHBwMMHBwSQlJclNoNVqNYcPH5b/Npb9Qd2Rfjkadz498e/lKnq0qDu71R/+76yYmJhIU1OTy/940ge5K6JeU1PD/v37rVJBrt7Q5Iyoa7VaMjIySEhIoHfvVi+iZx+8g01bt3PujU93aDlw9qwz+PeZF1GpVO020rTl0KFDrPx1FcOHDWHy5Mk88fADlJWVERUVhZeXF76+voSEhNC3b1+MRiO1tbVUVlayfft2XnrzXZoVfmRl5/Lkow8RGxNN7KhT8Y+IZcuOXXZFvbKykh9X/op3bAoh3gIBAQEsems+ZrOZnTtd25Cmp4o6wLhx4xg3rrVXw1dff82Lb77L2JHDuOj8c7nlrvupqKzgsfvvtrnALDWBlha7DQYDdXV1VFdXk5+fj0qlQq/Xo9Vqu5SPt4c7Si8lJA+oE5keK+rOplvaOitqtVo0Go3L5yVVqzhToSKKIvn5+ajVakaPHm2VZnC1V4uj41VWVnLgwAGGDh1qVT45ZcoU2ZelvLzc7ljJycks++zjdr83Go3t3veHn3qeutAB/LhmEYv79CEhIcHu7l2VSkVUVBRRUVE0NzdDYCQRqVP4d/tKtm7dSkxMDKGaX2lR53LhEw/bPb8vly4ndOhJVJaVkhomkJqa2ul7InHgwAF+W/0H49NHW22YOp4RRZFvV66m9xk38OemH1BhJruoEt+UiTzx8lvMmDGj04oQLy8v+W8DrQuOGRkZVFRUcPDgQfz8/OS7LD8/vy6Lp7vNvE7kptPQQ0XdaDTarD23R2NjI1lZWVYbdtqWNLoKZyNrvV5PZmYmwcHBNitvXG2V29l4oiiSl5dHfX096enpHVYBOJvK0Wg03HrPA+QUHOam4lKuufLy1nEUCkA88q9jTCYTGo2GkJAQhgwZwoTBSfy7/Scevuc2xo4di0aj4ZXnnkStVtPc3ExeXp6cqhFFUU4n9I7vhe+mTBKDBOZdfYW8AGvrfMxmMzt27EClUjF8+HDue+wZTInprPzjDb7+aGGnC+yujtTdVU+e0jeRQ1tXEqgyMnXqVBZ88iUCIsHBwRiNRqfH9PHxwcvLS17g1mq1lJWVsXLlSiIjI4mNjZUra5xZ03K3RYBH1I8indWe2zrenrOiO8y3pHEdFWFpwWnAgAFydNOd8RyhIyGWFg6Dg4Ot1hpEUWTjxo3odDqmTZsmC6DlWI6IVl5eHhUtSnqdeg3f/fQdl11yEd7e3rzwxMP88tvvjLjwVqsdjrbmd+f9D7O/4DDnzJjGXbffyhMPP8C+ffsYMWIEgJzz7dOnj1yDXV1dzaZNm3hr0ScYzWaeefhezj/vXBLie+Hl5cWoUaPavUeWvP7WAhYt+xWdpoZ5c89HIQgYTUYc1WlXi7o7jLdEUeT6q6/A19eX3r17Ex4ezvLFi1j5+x/MPPWRLjcqlwRYWnR9bcF7FKh1hArNvP3qCzQ3N7Nv3z6MRqPVomtHVU4ei4Du0WNE3dk2c505K7orUnfEflcURQoLC6msrOx0o5OrRd1e+qWhoYGsrCybO2lXr17NC+9/BSofysoruOLyywBrUS8pKeGhJ5/DZDLx3OMP2TTlGjBgAL0C4J+lL+MfHM41N93Oorfmk5SUxC03de6uePjwYfLK1KScfy8/f/cKd93esemdSqUiMjKSyMhIdu3ahZA0ioDgSJZ+9xPe3t5ytyG9Xt9hpLh1ZwbeAyaiqD7En+s28Ml7C1jz59+Mu/x+h8pg3RGpu2M7v4+Pj5XdgmW+vTvjSnM1mUzk5BXQe+ZNFP/5GSaTiT59+tCnTx9MJhP19fXU1tZSWFiIIAhWi66W5+vOSL2xsfGEj9SPeS2SFJ3rdDqrq35H1NfXs3XrVqKiohg2bJjNq7470y8djWswGNi1axctLS2kp6d3unPV1SZhttIvxcXF7N27lxEjRti0RqipUUNgJMrQWCqqa2zObeVvqyjzTkAdnMxPK3+1+doBAQF89M5bxMXFMfLSB6jSK9tVXHREYmIiA+IjOfDda5wz035Vi0RTUxNVVVUAjBo1Cu/KbPT71zH3gnMZO3YsvXv3RqfTsW/fPrZt28aBAweoqalBFEUaGxtbc/bA3bdcj2L/H1CSxQ3XXEVycjI333i9HOE3NDRw4MCBo9ZRqic0nc7OzuaiK6/j+lvvori4mK1bt1JZWWnzWGmuKpWK26+/mqZ/l3PBzOnExcXJxyiVSsLDw+nfvz9jxowhLS2NoKAgKisr2bFjB7t37+bQoUNoNBqMRqNbI/UTXdSPaaQuiiI1NTWYzWaCg4MdSrdIzZY7c1Z0h01uZ+NKNr72Ws3ZwtVfXkshNpvNZGdnYzQaSU9Pt3vLO3v22RwqKaO5pYWrL7/U5lhDB6Wy7Oc16AUFw2ZfZ/f1lUolM06ayJ+/vMuAfknydn97FBQUkJGRwbhx4+jVqxcLXnsZjUZDcHBwh88rLy/n5rsfQNNs4OYrL2LO+eexbMkHGAwGedNTUFAQQUFBcqQopWq2b9/BnQ8/hZ+vD68+8xjjx48na8t6TCZTu/dIrVZz/e330GAQOH3iKO676/Z2c3FHpH60m07v2LGDp156jejISF59/im++uYH9AljKawp5c577kfjE4mvvo7F775JREQELS0tNu9+zjv3HM4795xO59N20bWlpYXa2lqKioqoq6tDEARKSkoICwvr1qJrWzzpFzci1Z7X1dVhMpk6NbCydFZs22zZFq6uKrEct62oS5t3SkpKGDFiRLd8RLqLNL/m5mYyMzOJjY0lMTGxwy9FYGAgD99/j83HpPdw0qRJfPBaDECnu19nnHoK9959Fz4+Ph2+rkaj4c6HnkAfMYCvvv+ZZZ9+hEKhaPdZsPV33LNnD9qAXkSNHMOadZuYc/55HV7klUolERERhISEsHDRh0Smn01jbRWrV69Br9cTGBgoV25YVicdOnQIDX7ETjqLzdu+szn28SLqHX1nvvjmR3yGzaSoKJt///2XQSn9WPfVj/h5KahrbiI6/QKqt/1KVVUVa/78iw8+W0pyn95ccfEcioqK0Ov19O/fv8vz8/X1JS4ujri4OKqqquRgLy8vj5aWFqudrt3Z4u8RdTfQdjHUy8ur0x2QPclZsW1OXcrtq1SqTlvNHQ0EQaC5uZmdO3cyePBgmwtgWq2WV998G3VtA/fdcbNco25rLEuSkpIcvoXvTNCh9ULdrDcSGptEw649Nncn2htj1KhRRH31DeUbl3L93c41nJmQPorc5T/h7+3FnHufon///jQ1NaFWq9m/f7/VTsqBAwcyok80mWs/444bbHcoO14WSjsac1L6KBZ99T0+gpmwsLNZ9OnXmI16Zs04heFpQ/nws6XMmjySAQMG8MgzL5M46yYObf6JdevW8cwbixAFJffdeAVnzOjYg8fRuUoLur1798ZsNss7Xffsaf2chIaGEhYW1umia1s86RcXY6v2vKPcd0f13ccKy5y6RqMhKyvLoa5JRwOpGkij0TBp0iS7i4N//PEHf+0rxzsslkUfLeGJRx6w2fbPHU1BLImIiOCh26/nj3WbGH7xeTzz4qtMSB/FrJlndPrc8PBwPv94EUaj0ek9A4MGDeLHr89DqVTKUV9gYCCBgYEkJibKi3pSI4pL5pzDLddfQ3h4OHl5efz86ypGj0hj6tSpXT73zuZ4tDsUXTDnPNLHjCIwMJCsrCx0/jEkjBpHVs4m7rz9VqaddJJ87BknT2HZyk+ICQtC29yCEJeKj18wmVl7XSLqbatfpLu3kJAQq1Ra20VXS8M4e3gidRciRedtt/orlUqbNbI91VlRSm8UFxdz+PBh0tLSesSHxGg0kpWVhUql6rQuODY2FjQV6Foaya5sZvqZ53Py5Ak8++SjVsLeVVGXnudItHnqKadw6imncO4lVyCknMS/H33BsKFDbN49NDQ0UF1dLXdZku70OkMURf755x9aWlpkj/aOFrClRT1L73i1Wk1xcTF3P/Q4xt5j+HH1Qj7u1Yvk5OQTIv0CyBVNo0ePpu/3P3Po32+59d72awjXX3cN551zNiEhIfz5559U/PwbLbUlzLn5fqC1eUlLS0uXyyQ785ORUmlSZZJkGFdRUUFubi4+Pj5yZU1gYKDVe9nU1GS1gHsi4nZR72yrv61IvSc7K0JrNYm/v7/TrebchXTH0LdvX0JCQsjJyenw+LFjx/L2Mw9RXl7O0/MXMPiyx1m3/BWqq6ut6undHalbEhIcTHl1CUpEm3dkNTU1rQuWejj3lElONaD+888/efHDZQgqHy4rKWVE2jCn5ubt7S07G0ZERFAtgBEzhYWFqNVqdDodNTU1hIeHu+Tz4K7qF0fHDAoKYtHbr9l9XBAEoqKiMJvNREZG8vG7b8uPFRcXc+t9D9PUrOe+W+d1GLnX1tai1WrbNSK39KNxBEvDOEB2njx8+LBcwhgaGopWq+1S+mXVqlXceeedmEwm5s2bx0MPPWT1uCAIicCnQCigBB4SRdF2idhR4KgoUke155aibjabyc3NpampySXOilJ5n6ui/KamJgoLCwkODmbYsGE9wkOirKyMgwcPyncMzc3NDgnx8OHDSUtLY83aDWz5dj5pA/vJkalGo+Gp51+mrKKSueef7bQBVlcuBq8+9yQbNmxg8OCLbG7UKigooEkZTOzk09m4dYVToq6urUUICEfpF0hVTefujh3xyrNPsGr1Hwy/6kHS09Mxm81s2bKFhoYGDh8+jEKhkFMBXW1C0dN6iTY1NfHy629Rra7l/jtukRfKbY2ZkZFBS2hfwoel8vtf69uJuhSFFxYWctsDj6EzwW1XX8y5s2dbHdOdtSk/Pz/8/Pzo1asXoijS1NREcXExd911F4cPH2bv3r3o9XqmT59ud1Og5VxuvfVW1qxZQ0JCAunp6Tz88MODRVHcZ3HYY8ByURTfEwRhMPAr0KfLJ9BN3J7TkKJzex9SlUqF0WhEq9WydetWfHx8GDVqlEusch3ZKOQoZWVlZGRk0Lt3b4fKL53FWRGUyhXLy8sZO3asnAJypupHEAReef4Zln+0gLfmvyR/kdauXcuO0mZqQgfx/cpV8rHuJDo6mjlz5jBo0CCbjw8dOpTU2ECq/v6Mq+de6NTYZ86axRlpCUxO8OGKuRd161wSEhKYd+3VsiulQqFApVLJ9ddDhw7F39+f0tJStm/fTlZWFiUlJWi1Wodfo6eJ+tq1a9l0sI4ir9589NmXHY45evRogpuKUW/5gfNmWQv6X3//zRnnXsw1N93Gtm3bMIb3JWzkGWzYvN1lc22LIAgEBgaSmprKqlWrmD59Oueccw779+/nwgsv7NTcbevWrSQnJ9OvXz+8vb255JJLANrWbIqAVIMbApS6ZPJd5JjnDpRKJc3NzezevZvBgwfLNcauGttW7bEzmM1m9u/fj06nIz09ndraWurr6102R3DezlcyUoqMjGzXLcme94u97f5SkwtL+vTpg1BXRHNDFX3GOGaE1dzcjLe3N0ql0i1pGz8/P9561b6/e0cEBATI9eV6vZ6KigqHn1tWVsbiz78ioVcsl186167YSO+rt7c3MTExxMTEIIoiWq1Wtg9uaWkhODhY9kOxtx5wrNMvbenVqxdCfRnNzfX0P2Oy/Htbn9nY2Fi+XvwBRqOxXRrtq+9W4DdkOlvWryAyJIgYUz1Vu37hkofvtTrOVqSek5ODIAid7nvojObmZiZOnMjQoUN54oknOj2+pKTEan3niM1FfJvDngJWC4JwOxAAnNqtSXaTYyrqJpOJnJwcdDodU6dO7VZvTlt01/9Fq9XKtd6DBg2S7zpcvanJmeha8pOxt95gS1Dr6uq4476HKSot48kH7mbatJPaPc+SYcOG8dEbL1JWVuZQ/nHFzyt568MlxEdH8XYHjTV6As6K2+sLF7GnMQDj7o3079un02bYlghCq+VvQEAACQkJmM1m2Z/cXps/cM82+e6MOXLkSBa+8Bh1dXVWvvn2xlSpVKhUKkRR5L0PPuafbTu55tILOGXKBB59fj4+A6eyPa+Mt568h7S0tHZ/DyldW1NTQ0hICOvWrePF9z4DUeSx269l2rRpXToPcFv1y1xgiSiKrwmCMAH4XBCEoaIoHp0tyG04ZqIuOSsmJCRQX1/vckGH7lkFSNa0Q4YMsbp7cIf9gCNOjaIocvjwYcrLyzv0k7F1gdi2bRvFej8iJl3M599836moA/Tv35/Y2FgOHDjQ6bHfrvyduGlXUrlnPXv27CEgIECeg0ajobq6ujX6P3LBaWxsbFeV0BEdXfByc3N54bW3iYwI44mH7u90J6qzBAX4YyhXg76525vKFApFh23+pH6h7qj06u6FYuDAgU6PWVBQwHer16P1CuGWex7mhy8/4YzpU8hpVKGsMxEUFGTzM2Aymfj08y/5ac16esdEMGJoKqpeg0AUyTmQ3y1R12q1Tol6fHy8fAEGpC5lJW0Ouw44A0AUxc2CIPgCkYBtXwU3c1RE3fIPZ8tZ0fJNcyVdyambzWYOHDhAY2OjTWtad0XqHY1pucEpPT29wy+SrQvE4MGD8W36hKp/f+C8S893eF6OplFmnXISH375FeHB/gwaNEj+e9bU1HDDHfdSrxM5e/p47rjlJp554WXWbt7OxNHDee6pxzoV9s4e/+SLpdRGDKWkopANGzZw5pln2j32jz//ZMv2XaQNHmhlbNUR99xxK0N+/73Vz2bkSIee4yhtqza0Wi1qtZqysjK0Wi1Go1Eurexu0HMs8vSRkZGYmtSU1dcQPmIm8xe8z5svP8vff/9N37596devn91xf/97I0mzbqR43TKuGjaU/fkrERQC55xtewOYozgbqaenp3PgwAEOHjxIfHw8S5cuBVjR5rDDwCnAEkEQBgG+QFW3JtoNjmqkLomTUqk8KuWA9qJqURTJycmRHf4kpFZzkZGRjBo1yuaX4GiLelNTE5mZmfTu3btD21oJW0IcHx/P0sXv09DQ4NAYtsYymUzo9Xqb5YaXXHQBM049mYCAAHx8fOS2dIWFhWiEQOKmzOSfrT9y7ZWNrN28ndRLHmbT8ldQq9XdLlkdPKA/O37+G8HYbNM5UuLQoUO8/O5ifPqNZePHn3P22Wc7NH5gYKBVV6C8vDyee/VNQoKDePT+u1nyxdes37SFx++/s9uOh1K/UF9fX+rr64mMjEStVlNSUoLZbLZq8+ds1G02m13+fetM1ENCQnj9hWe4/eGn8DPV0js+lpCQEM4999x2x+p0Op567kX25uRx9oxpnHfmDL78fiED+iYyYcIEpk+f7pI5d+bY2RaVSsXChQs5/fTTMZlMXHvttWRkZOwVBOEZYLsoiiuAe4EPBUG4m9ZF06vFY9iN/KiJumR2dTR3X9rLqb/3wUcsX7UeH1HPRwvm07t3b6qrq8nJyWHQoEFyaZ8tXFlRYzlPW2NWVlaSl5fH0KFDHU4r2IvGJB9yZ5BEXavVsn79erRaLTExMXL0aCkulu+Z9LwhQ4YwuFcw+/5czF03zyMwMJCJo4ezafkrpA8b2OH77ChXXHYpI9KGyR7r0PrFfff9DymvrOa2G68jISEBLy8vBNGMrqmeAO+uR71fLv+OmpCBlNRV8vnnn7NmxwG8Uqbzxnsfs7Sboi4h7SiVdlG2bfN34MABfHx85L+DI63kjmak3tTUxIYNG0hKSmLUqFEsWfgaxcXFTJgwweq4xsZGvvvhR4ICA+kVF8uOg1VEjp3D978u4+flXzD34gvx8/M75hsPZ82axaxZs6x+J4riExb/vw9wfLHFzRwVUZf6htpzVnR1PbmEvUh9y85MwkeeTm3Ov+Tn59PS0kJdXZ1DtfHuaL7RNg8uiiIHDhxAo9EwZsyYbhkYdQdBENDpdPz8888s+mwZJoUX8y6eTZ8+fWRxkfLAERER7fL8vr6+vPnKC1a/e+6px1Cr1YSHh7tEZARBIC0tzep369atY+W2XHyiknjng0948Zkn6NWrFy89dh+7MzJISpzY5dcbmjqAjUtXIJgMDB9+NX9t3knd/n8Y52CVkCPYEmDLNn/QWsWhVqs5ePAgTU1NBAUFySJv6/NyNBdfn3/lNbYVaVDUl7Fo/rOkpKSQkpLS7rgPP1nCr5klmLX13HTedPyMGqq2rmRY/z4olUqXe7T05F6yruSoiLq0pdfeh0oS36Ml6jdeNZcXXl/I4IRe8muOGTPGoT+4O9Ivlnlwqf1dSEiI3RTQ0UAURYqLi9Fqta0iEZVMSHwyW3dmcslFFxIVFYUoijQ3N1NTU0Nubi46nY7Q0FAMBgNGo9HmBVIQBLfvEo6IiEDQ1qGrgti+/1/gGzVqFIMGDXJo8Ver1aJSqdoJ5Pnnncug1IH4+fnRt29fBg8ezOrVq7n00o6bbzuDIwLs5+dHfHw88fHxiKKIRqNBrVazZ88ezGYzoaGh8t2UdHd5tES9tKKKgF7DaGpubYphz9VTFAFBAYJAcHAwi999k8rKStl6112c6MJ+VETd29u7wx6Ikvi6ugLGnqhPnDiRz1JTyc7O7rDVHEB1dTUVFRWkpqaiVCrdmlOvr69nz549nc7J3ZhMJvbu3YsgCAQFBTFq1Ch+WvUH5Xv/4PKH/m/RK7Uw8/f3l9306urqqKmpYc+ePXh7e8tRfEBAwFH7Mo0aNYpXHr2Lmpoam6Zbnc1j8+bNPPnym/j7+vDWy89a5eoFQWDw4MHyz7169WLIkCEuvZtyNqIUjoiirTZ/+fn5eHl5IYoi3t7eLo1W7Yn6Q3fdyoeffsWg0ybKbQhtcf21VxG0/FtCQ4I55ZRTUKlUhIeHs3XrVpfMry3uCBx7Ike9+sXmJI7sKnU1SqUSvV5v9TtRFDl48CBVVVWdOj9WVFRw9c130iL4cMbEETx4791uE/WKigpqa2sZOXLkMfVjb25uJiMjg169etGrVy927NhBeHg4n7y3AIPB0OHfUqFQEB4eTmBgIMnJySgUCmpqaigsLKSpqUneeOOKao7O6E6lyvcrf8N/yMk011Wybdu2Dhdg3UF3hdeyzR+0FgBkZ2dTVVVFSUkJgYGB8t+hOzu37Yl6amoqr734TKfPDwoK4vrr2lezuOvi/19waIQesKMUjl7rOanxckBAQKelgdBaMdHiFUzk8FPYnrFGHtOVC9smk4mamhq8vLyOuR+75Fs/ePBgAgICePWNt9iyfRcvPhVss065M3x8fOSLgyiK8sabI7W+hIWFERERYdMjRRRFvvh6Kf9u383E0Wntmkd3lc7+dps2bWLjvzsoKVvJgL6JjB59ucNjV1VVsWDRhwQGBHDrjfO6nBN2de7X19eXgIAAYmJiCA4OprGxEbVaLTeEllI1oaGhTn3+3NlL1B38F/qTwgku6pbj1tXVsXfvXpKTk4mJiXHo+cOHD2dsShx7d/3Evbc4biDlKFJU7OPjQ+/evY+ZoEudm8rKyuS7lw0bNvD79lzEyGG8/s4HvN+Ba19bbJVVCoJgVc0hbbwpLS2loaEBf39/IiIi5M5D+fn5fPb974SkncLHX37DZZdd5rLz7Ugw16zdSOzE8wisKeeKCUmddnmyZMkXX7O1QsSoLaX/qlVWpZDO4C4/dclUT2rzl5SUJHuTq9VqCgoK5BSIdMfV0XvljjJJd1YCeiJ1F+JI+sVdom40Gjl06BBlZWVOpzZ8fHx4+bmnHTpWqlgJCQlx6KIhlVAOGTJEboZ8LDCbzezbtw9RFBkzZox8YYmNjUXRXIvm8B76TXXtphuw3ngjOelZdh7Kz8+nsvQQOu9txEV0zZe7K5x1+ilsevYV/H28mTrF8SgdIDoyAsP2HNA3d2sx2BkfIGfGtHWhaOtNrtPpUKvVVra1ksi3TVV2103RFu6sUPFE6kcRd0XqoijK3ebT09PdGgl/+vmXLPl+FV6inkWvv2i3X6MoihQUFKBWq+USytraWpfm6UVR5Otly/ln6w58lQJefv7cfuO8dvsDWlpayMjIsNnHNCUlhUXzn+PPP//kuuuuk8d15AvnrKGX5KQndR6qr6/nkWdfITBlLA3ZG7jvsYcoKipyuCa7O4wePZoVyz5DqVQ6HYVeNvdiesfH4e/v362NSO6I1B392/n4+Mi9Qm1dbKU2f6GhoW5Jv7hzMfO/0MoOepCou3qhtKGhgX379uHr62tVreAutu3OImTYdBoO7ePAgQM2Rd1gMMg5/dGjR8sfXlcvvpaWlrLoqx8QE0Zx4M+lDDnlfN55/2Oef/px+RjJGKyjzVYDBgygurra5VUTnaFQKFColITHJBCsSSQyMhKFQkFBQQHNzc0EBwcTERFBWFiY08LryHl0dfFQpVJx8sknd+m5lvQU6922F9u2bf50Oh16vR4vLy+7Pi5dmae7gi9P+uUo4spIXfKWKSoqkn1IpJrr4ODgdp3qXcV1l1/M0y+/QWpsdLudc/D/7kT9+vVrbSdngatF3d/fH29M1FcW4qUQMahLiB70/0YXRUVFlJSUdGgM1hFGo5Fl33xLtbqWK+Ze3O6i0F3r3aCgIF56/EHWbdzEyZc/gsFgkGuyJafDmpoaDh06JFfcSE0pToQaZHdZ73Y3Am7b5k8KmoqLi2lsbMTf31+2MujK5wrck9KR8Ii6C3Ekp9629LArGI1G9u3bhyAIjB07FqPRiNls5suvl/LR0p/wU8GHb893yv/EHm2/eKNGjeKnZZ/bPLa0tJTCwkK7/UwFQXBp+ik8PJyFrzxLTk4Ofn7nYjKZOPnkk+X8eVFREWPHju3yF2/t2rV8snIDquAYNB98wmMP3eeyuUuMHDmSkSNHYjKZ2L17t/z7tk6Hlv1DNRqNXK4XERFxzHbidhd3RequHlMQBCIjIwkKCpLtJNRqtbwRTUrVOHNH5c6KGk/6xcV0FL25Iv0iWflaGl+JoojJZOLvf/4lcuxs1Lnb2b9/f7dF3dHmG1KDDb1e36GBmavKJLVaLU8++yK7svby0lOPMNuiRZhOp2Pbtm2s2/APv2zYhv+Hn/LRgtfa9Yd0BG9vbzAZMOma8PVtv4jZ0d+6sbGRxsbGdncrXcWyf6hk6yttfrJlguXqBWl3LHC7Q4DdvaPU0jte2ogmpWoOHTqEIAhWd1T25uLuSN2VTXh6KidE+kWKhCUrXwmpTv2qiy/gqZdfp3evOCuT/67iSLpEWoSMjo6WG2x0ZzxH2Lx5M9sP1yGknMSixV/w0ZgxwP/LOVNTU3lv8ZdEjZ2NOvtfcnJyuiTqU6ZM4cGWFtS1dZx9VnurW3vnWlZWxs13P0ijzsT1l57PxRd2reTPHpbletLOSksTLKle2x2L8q7kWC6UOkNHFwqpV2tYWOtF32AwoFarKS0tRaPR4OfnJ19wLSvS3B2pW3YxOlE5rkXdZDLJq/K2ImEpMps6dQp/Tpns0IdauoWMj4+3e3xnIixt4unM8dHR8Rylb9++KBsrqK8pZ9hZrValxcXFFBUVyeWc1156Ic+++ib9ExO6fIETBIEZM2Z0eIytCDY7O5uWwDiiRqXz54ZNLhf1tliaYEk+NWVlZWg0GrZu3Wq16aar9dY9rfWcPY51NyUvLy+rNn+SIVnbNn/uXij1pF9cSEe35F2xCZBazcXFxbUrx7P3+p1RW1vLdbfcSU2jjgtnncxtN99o8zh7IiyKIocOHaKioqJTCwJb42VnZ/Pc/LeIi47iqUcfdHpRp1+/fnz67husX7+e2bNnk52dLfdWlURr6tQprJk6xalxncXeez1y5Ehivv6W0g1LueGe2xwezxUpDsmnJjo6Gp1OR2pqqrzp5uDBg/KmG2d9ao4XUQfXb7/v6oXC0jOobZu/yspKOcBr2+avuzjb9eh45biM1CsqKmSfcVdWs+Tn51Mn+pJwysX8sX65XVG3NV+j0SibWFlaEOh0Op549gX25eRx3203ctJJtg2mRFFk0SefUR+ZRmlxLhs3buSMM85w+hzi4+NJSUkhKyuL6Ojodo2ps7OzKS4uZsqUKQ5fdLqCLSEOCwtjyQfvOBWNOStEZrOZ8vJyoqOj7UbfUq9Zy0oOadON5FMTFBQk73DtyKemrKyM3bt3M3DgQJcJxvFiEeuq6N9y8dvPzw+dToe/vz8VFRVWbf7CwsK6tU/hWFa/CILQKIriUXnx40rUzWYzubm5aLVaxo4d63JTqCFDhpASFcC+Xxdx983X2T1OoVCwYeNGXn/nQ/okJvDs4w9z8OBBmw1Adu/ezda8ciJGnM27n3xuU9SlSH3IwBQyftuAwqDtsolUfX09dXV1pKamtlsQzsvL49YHn0IMjGLKv9t45vFHuvQandHRXZkgCG67vRZFkSeefYFNu/cxoHcsC1572eHPSNtNNxqNhpqamg59aurr67nl3odRi/7syMrm3Tfnu+Q83LFQ6g7cldKx1eavtrZW3qcgeceHhYU5VeEk9cY90Tmq6Rd7OCLqzc3NZGZmEh0dzcCBAzv1pMjLy3PY40XCz8+PRW+/3mkkqVAo+OrbnwidcCG5WRv57rvvuPLKK212FkpKSsJXX0/Nzt+YOcn2dntJ1K+/7hrGjBpBeHi43MWnM6qrqykrK2PQoEFUVlZy6NAhwsLCbK7yV1VVIfoG4x8/kOLSzj3FjzcMBgMb/93OwLmPcuCHN6mqqupSly1LK9uOfGo0Gg1NBggbNpH8jF/ajSOKIi0tLU6XjrpjodRduPriYzKZ2gm1lKqR9ilI3vHOtvnraXXqgiCsBe4TRXG7IAiRtLbH6yMIwtXAuUAAkALMB7yBKwAdMEsURbW9cXtEpN5ZqVlVVRW5ubkMHjxYXk3viFdef5NV/+wi2Evk1uuucCqicCSSVCqVjBs1nC9XLMdLNHD22Q/YbRUXGxvL5x8slD3ZbSGJuiAITrkRVldXc9WNd9Ak+JCWGMk1V1xKenq67OXSlvT0dM47aTe5BYXcftetiKLIzytXUlRcysUXzrHq19odurv5qCs0NTXR2NjIeWedzg9fP8+ksaNtlk1KqY2DBw/yxPOvIJrNBAYG4OfnxyP33WXTx76tT41Wq6WmpgatVsvEtGR2713NrdddYVWO19TUxBnnXsjh0nIuPnsWr7z0nMPncrykX9xBZyWNHbX5y8vLkz38w8LC2q2NHGc59aHASFqbWOcBD4qiOFIQhDeAK4E37T2xR4i6PURRJC8vz+FWcxKbt+8mdtIcKraupLKy0uW3iaIoMnL4MIYPG8KwYcM6vdC0bXDdFsvOR85QVFREk+CL38DJ7N/zGyNGjJCd+GyJqkql4o5bb5Z/3rp1K68t/hZlZBIHi95m/gude2D3RCorK7nprvup1+qZN/c8Vv+0vLUnaQfC+M0PK1CHDqQo8x98IgMJD/Pj+x9XcOP19tNuYF2PnZiYSGpqKnv27CE0NJSdO3fi5eVFREQEGzZsoEirIuKU6/l25Ue8/OKzx3Tx9XjB2e+qrTZ/tbW1FBYWyiKuUqkICAjoUqS+atUq7rzzTkwmE/PmzeOhhx5qd4wgCBcBT9HadDpDFEVXtMH6WxRFDaARBKEe+PnI77OANPtPgx57j6fT6di+fTuCIDgl6AA3XDmXmvVfMLp/LCkpKS6tS66rq6OsrIzo6GimTp3q0J1DZ3R1U0xSUhJ9w30Q967igTtuloWg7Xi//76ax55+noyMDNsDmc0onBARrVbLhx8v5qPFn9LS0tLu8aMdqWdnZ9PkG03slItZs+4fvL29OxXFtKGD0RfuxEdXj1d9MabKfPokJTr92gqFAm9vb1JSUkhPTyc1NVVe+BMayqje9B0D+iZiNBrJz8+nvLy80zH/y6LeXUMvPz8/evXqxdChQ0lPTychIYG8vDwuvfRSiouLefTRR1mzZg3Nzc0OzeXWW2/lt99+Y9++fXz99dfs27fP6hhBEFKAh4FJoigOAe5yYrpG/q/BbasWdBb/b7b42UwnwXiPyKm3paamhv379zNw4MAupQTOnDWTM2fNBGDXrl0dinpDQwMNDQ2d7jKVPMdLS0uJj4936W1cV+rUy8rKOHjwIAtef7XdXCwj/7KyMl5c8BGBQ6ez7YnnWPXjcvlvkZ6ezgPzLqGopJQLzz/X4ddeuvwblv2zH8wm/H19uHTuJTQ3N2M0Gq02f7mSjRs3cvDQIc6cObNd7f+IESOI/WIZxWs/54E7bupwHEkwz5hxGsn9+qJSqWhoaABg2LBhTs+rrQD7+vrKPjVrhwwhIyOD1NRU3lqwkO/X/IO3QuTVpx7qsCeuq0X9WNk6dwVX1qlLayOzZs1i5syZTJo0iZNOOolffvmFl19+mTVr1nT4Pm/dupXk5GT69esHwCWXXMJPP/3U1iDweuAdURRrAURRrHRiioXAaGArcIFzZ2efHpN+kfxPCgsLqampcarOW9oebsvUv6NF2OLiYm64836a9CZuvGwOl15ysc3jTCaTfIVOT0+XF2i6S0NDA6tXryYuLs7hVXxRFMnNzaWpqcmu9YBlpOzj44OXErTqcsIDA9odJ138nMHb2xvRqIMjlQr5+fnc9dATtBiMPP3AnfIGE2hdvNy7dy+9e/fussf4wYMHeX/ZShQRfcjYs5/5Lz5r9XhISAhLPnjHIesGS5KTk7s0H0s6EuCkpCS5ikndsJyoUafRUHaQLVu2YDab7baVc0e60B219O7AnTYBSqWSs846i7POOsuh40tKSqx2oCYkJLBly5a2hw0AEAThH0AJPCWK4iobw/kLglBs8fPrtC6ALhcE4Qag/Up7F+lRor5z506Cg4MZM2aMwx9qs9nM/Y88wZZdWcw4aSKPP/yA1QdY6qRuC3mHY8oY/trwr01R12q1ZGRkkJCQQEJCglzj7IqUznMvv8aWYi1CbRE3X3Zepzs8DQYDmZmZBAcHM3LkyA53vEpfuvDwcN5+6WkyMjKYMuWGLn25236BL7pgDr6+PigEBWefdSbff/89+pghBIXHsPrvDVxxyf+DjhdffZ2New7iZ9byyTtvdEnY9Xo9glKF0jeAFn2NzWMEQXB5Fx5oFZmX5r/Bpm07ue6yizj/vHOtHrd8b35b9Tur125kzlmnM3nyZKvjLrvwPJ58cT4poaHMnTuX8PBwq7ZyJpOJ0NBQIiIiXF7SeDxtkDreWuTRqqEpwDQgAVgvCMIwURTrLA8SRdHeSVnmxx87cuwSYInFc/tY/L/VY7Y4au9eRx+Auro6GhsbiYuLY+DAgU79USsrK9mauZ/UuY/w+9qN6HQ6q8c7EuD09HTivbTUbFrOFRed1+7xqqoqdu3axeDBg+ndu7dVztrehcJkMvH+R5/w8BPPUFhY2OHc6xoa8AmNRvTypampqcNjCwoKeO+99/D39yclJaXD97PtwuugQYO45JJLuuTzYokkYN7e3lxw/vmcf965eHl5MW7cOHyr9tGYuZpZp023ulPI2JdD5MgZNAu+lJSUOP2agiCQkpLCLZfO5pS+fjxy753dPgdnxOjgwYP8vX0vUSdfw6IlX9qdY01NDa8tWkxJ0CCefuWtdq6jQ4YM4dsvFvPBwtYLm+RTk5SUxMiRIxkxYgShoaFUVlai0WjYu3cvxcXFaLXabp0vHHuLAGdwV6RuMBicvujHx8dTVFQk/1xcXGzrO1QMrBBF0SCK4kEgl1aRP2Yc00hd2lZfXl5ut7a6M6Kiohg5uD87l77E9Inj2i2odpR+CQ0N5bMP3wOsLzqiKJKfn09tbS3p6el4e3tTU1PDr7/+Rt++fUhOTrYr6ps3b+ar3zfhGz+QV996h3feeNXu3B+5904Wf/E1yekz6NfX/majoqIirr3lToSo/qzb8jLLPv0Is9lMTU0NsbGxCIJAeXk5a9euZciQIfj6+rrs9li6QBQWFlJUVISvr6/c/kwqGevTpw/ffP4JZrMZX19fCgoK5Offdt2VvPvJ50wdPqhdsxK9Xs83332P0Wjkogvm2K3nFgSB8845xyXn4yyxsbFE+CkpWbeM9BHtiw6ki4Svry/+3irqD+8nPDTYaQFRqVRylZRGo6F///7U1dXJ3ighISFERER0yafGXT1P3SHq7hq3K74v6enpHDhwgIMHDxIfH8/SpUv56quv2h72IzAXWHyk1nwAUND2oKPJMRN1g8HAnj178PHxYezYsfItqLMolUrefOVFamtrCQ8PdyqnDu3vIKQUR1BQkNVi1tMvvkpWrQLx2195/oFb5d1ubQkNDUXQN6GrLiEqtePNT3369OHpxx4GWrvYt0Uq6SwtLcWEktjBE6lY/xVqtZq7HniU4up6Zp8ymfvuvoN7H3mSUkUUiq++54VH77VbN98RLS0tPPfyfA4Vl/LgnbcwdGhrY42srCy8vb0ZN24cJpOJmpoaDh48yIYNG6hr0HD+ueeQnJwsrwtYRurTp09j+vRpNl/vp59/5pNf/0VQeWEwGJl37dVOz9ndBAYG8tE7b1BcXGwzBy+JekBAAO+89iKZmZlOpQ9tIYoiAQEBBAYGyt4o9fX18vvuTHNoOH6sfMF9kXpXdpOqVCoWLlzI6aefjslk4tprr2XIkCEIgvAMrRuFVgC/AzMEQdgHmID7RVG0nSM8ShyT6peGhgb27Nlj1QWoO/a7CoXCbq62bU5dEhtbH3JpXv3792+3G7WlpQWVXwwGZav5mL25Dh06lPmP30tZWRmnnHJKl84HrC8uU6dO5Z7aOlb8/heX3ngNu3btorRBT59ZN7L690Xcd/cdNGga8e87jKbKPGpqamhubm1+7ExUt2nTJv7JKScwaTgLPljMW688T1NTE3FxcSQlJaHX61EqlcTFxVFdXc33f22F8EQOLniPG6+5Qv47GAwGh+4UFAoFiEf+NkephK8rdzBBQUEMGjSo0+N69+7tMmtXy89nWxvbts2hpW3z4eHhNhfcj6f0C7h+lyp0fTfprFmzmDVrltXvRFF8wuL/ReCeI/96BEc1UpfayhUXFzN8+HCr2yGVSuWwqGs0Gurq6uSFy46wzKnn5+dz54OPIYoir7/wNAMHDpSPKykp4fDhw+3mJfH4g/fy5bJvSDnlPIYNG9ZhvfGYIz7mXaWxsZHMzEyri955557D2WedyQ233UVeaQ2aqhLyf3ideZdfAsBLTz3C0u9+Ysil5/H6ux/RLPhyxqatPP7IAw6/bu/evVE0VqLJ20bfsYPYsWMHfn5+NnPxRqMRQaFE6etHgK+RMWPGyGJTXl5OVVUVarW6w16is886C6PBiMFg4II553fx3XKenr4I2Rn2fGqkxiCSwEsOh8eLla870Wq1Vr7tJzJHTdSNRiNZWVkoFArGjh3b7hbL0e5H5eXlzLvtHjR6M1edP4trr76yw+OVSiUGgwGA39f8iT5uBAqVF7+sWs3AgQOtuhNZWtS2pXfv3jx0X+vFuL6+Xo7+m5ub+fTzLzGZzVx9xWXd9muWGjqkpaW1q/lWq9XkFZWTfO5d5HzzMr99+6WcZhkyZAjPHqmLblb4EzX2TLbtdq5KKiUlhXdffZa8vDxCQkIYOXIke/futXl3M2LECO648nwKDxVx4ZxrgP+LjV6vx9fXFx8fH7mXqNTf0jIX7+XlxcUXXSiPaTab7abReipdEUyz2cyrb7zNxi3bufLiOVw4p/0ivaPY86kpLy8nJycHf39/AgICXF6CeLyJ+n/FzAuOoqgrlUrZJN/e445E6vv370frG0nMmCn8/c/fDom6tOtxXPpovv3lJRBgwkX3yN2JYmJi2nUn+uPPv/h+5SrOPHUaZ545q92Y0lyXf/sdX6/fg6BQ4OO9nHnXXmN3Lt99/wPvLfmSCaNH8OSjD1ldQCwtEaTFWUt++vln/lj7D6lJcexb/hKXnHeWzbz54MGDGdU/lr2bl/PA7R1vxIHWxcrm5maCg4N5/qVX+eHX1aQPH8KCN+bLW+1tCYIgCDa7Hlli2UtUp9PJOWHp9SyjeLPZzIOPPsn2PTlMSR/O048/4hZhd0c7O2fnefjwYdZs3kXvU65h0eJ3uOD8c112rrZ8akpKSqivr2fbtm1WjUG6k7vu7s7Po41H1N2AQqHo0DXRUVEfPXo0fZZ+S8G6L3j03js6Pd4ypz569GiWL/5/tcuOHTtsdidqaWnh2flvEznxAl559yMmTZpoVZljWdLo6+ODaNAhCkKnVgbvLf6CmFOvY8O6peTn58vpH6PRKO/IHDVqVLsvS2VlJW+8/xlhY86iLvtH/v71B7uWsl5eXjxwz52IokhiYsfb3isrK7nxjnupqW/khssv5Pvf1jDwoofZ88tCGhoa5NI7Z4XQ1nMyMjIoLCzk1FNPJTQ0lIaGBqsoXqFQsDVrP4MueYj1Xz0v50B7crMIk8lEUVGRwxvRSkpKCAwMJCoqishAb4rXLWVU2lC33ZVIC7jSor5UUaNWqykoKMDLy0u+e3LWp9wdHYrcufP1v9L1CI5yTr0jgVCpVO1qzG0RFBTEJ4sWOhwhta1Tj4iIoLCwkKqqKru7VlUqFeGhQdQezCLI37fdMZaiPuf88/BSqTCLZmaffXaHcxk3eiT/rFtKuK8gW8I2NTWRkZGBl5eXXRdHPz8//LwUNBzOJiIspNPFT4VCIaecOiIzM5MGnyiiJs9i2Y8/k542hOzfFzFicLK8KOcKH5cDBw7w6MsLIKIv/+7M4PWXnm8XxVdXVzMwKY6dHz/GxNFpaLVafH19u72hqLq6mtraWpKTk10uns+99Cprt2UR6qvgq8Uf4Ofnh16vR6VStbswf/PdD7z/5bf4KQUWzn+eDxe8TlFRkUt2tXaGlCpRKpVyOSq0Bi+SwEt3T5LDYWc+9O5Iv7hzfeI4c2jsFj1mR6mz1S+O/PEbGhr4acUKvI8IppTX9/X17bDsTKVSsejN+ezYsYPhw4d3KOoqlYrzz3csJ/r0Yw+Rl5dHfHw8QUFBsqXw0KFD5dy1JKJLPvuCdZu3cdXF5zN9+jQWvfkKmZmZjBs3rtNzd1SIR4wYQcD7izm46mMevO0GLrhgDhUVFURHR8vvTVFREU1NTUycONHhL51er+fnlb8SGRnBeeee02qepPTGJzgMTePhdsf7+PgQHx/P+wvfoqGhAZPJJHehV6lU6PV6mpqanI4mCwsLufW+R9ELXlw2+zSuvuIyl0aDG/7dRtKZt5H/6weUlpaSf/Agr7y1iJioCBbMf9HqDnD95q2Ejz6LhsJM9u/fz+mnn96ubt9d2BNgX19fevXqRa9evaxaykkbbqQoPigoqN37frxV1DQ2Ntq0VT4ROW5F3RFenP8GGw82oKsooH///oiiaLM7kS1iYmLalTJJNDY22nQn7AyVSkVqaiqiKFJQUEBNTY2cP5eEWBAEioqKWPLdL0SPP5dn57/FtGknWfmIWGI2m/nq66Vk7t1Hv8QEzjjjDHx8fBwSr5aWFh6482YGDRokR2+W701GRgYvLPgIn+AIrjiQz5WXzXXoPH/6eSUrdhxEJYBCqeCC88/npkvOIievgMsuvsvu8wRBkNsTSoLY0tLCjh075GhS2oQTFhbW6e3/gQMHMAT3IrTvcLbtyuTqKy6TX8cVXHHx+Xz8+eukpQ4gKSmJl996l6gpc6nJ3cru3bs5+eST5WMvnTObp195g9ioqC43/O4qjlyMLVvKQeuFuba2luLiYjQaTTufGncIsDt9X5qamujbt69bxu5p9Kj0i6tFvVHbjFdgKM3V3mRlZTF37txuuwiuWLmS+e98jGA2sPyzAU53V5J6mfr4+DB69Gj5iyFF/1ITAHNLI3v//pHkEJ8Ov5D//PMP73+/huImBcJfW1mxZi3vv/kqubm5rFu/genTTmrXRclsNpOTk4NOp2PChAl2v0iHDx+G0Hh8ew9gz75s7n7gEUoqKnnk7tsYOdJ2FyeA1j+xAAKI5lZBmePg3UxbfH198fb2ZtiwYe024XSWEx4/fjwDfltD8d7VXH3v7R2+zrJvvuPn1X9y/qwZ7fxd7HHV5Zdx1swzqK2tRaVScfq0ybz32TKC/HwYMmSI1bETJkzgt+/HH5Oqnq4IsLe3t1zYIBnmST41RqMRLy8v/P39XSru7hZ1T079KONoSaMzPHDnrcx/ayGBYwZy9dVXd+iEWFhYSH5+PuPGjesw9/bzqj+JnnwxxbvWkZGRwYwZMxyej2QOlpiY2K7222rx1dcXRJGQiGjq6grRaDR2L0Z+fn5g0GHQGggODKG5RU99fT3PvrYQ35TxfL/yYe6/42bq6uqYMWMGSqWSjIwMwsLC2jWlbsv06dP58ZffMTTmMWJiOp/+uZvg/lP55MvlLOhA1M+dfRYq1W9ERkZy7jmzHX5/OkPahFNXV8fCD5egUim548brqKurs9pKL0XxQUFBLHz9lU7Hraur44PPlxF38pUs/GQJM0471an8q/Qezjn/PKadNBV/f3+blgfHqkyzuzYBkk+N5FVjNBo5cOAATU1NbN++HR8fH7lJd3dqwd2ZfvHk1I8Brk6/6HQ6ysvLue3GeajV6g4FvbKykhvuehBjYCxDfvmdBR0IwXmzZvDSgvfxw8SIESPsHieKIm8tfI+ff/+DC2bP4sLzzyUnJ4ehQ4fKKQZLLEVdEAQCAwMxhMegaC7r8IM+evRonr3nBtatW4emxcD5Z8/C29sbswi+ASFUVVby2OsfIviHkbUvh9Agf0JCQrjooos6FZnAwEDuvOUG+vbtS2VlJV98/yt1e2s486yTO3yen58fF845v0sGYi0tLTQ1NVFcXMygQYNs/t2+/fFnaoKTMTQ3sjszk6uuuMJmFC8tCvr5+cnnapmKMJvNHDhwgLCwMKLDQ6ja/SdxUREOWz63HQ/osr2w5XiuxtU2ASqVCn9/f8LDw4mJiUGr1bbuoeimT427I3WPqLuBjj5Yrky/1NbWsm/fPgYOHEh4eDjV1dUdHq9Wq9EL3oQlj6Rw75oOj501ayYnnTSVnTt32vV/kcb87tc/6HfO7Sz++mUGDUhmwoQJdsseLUXd29ubBa8+z/oNG5l4x5wObxsFQWDatGlMmzZN/l1NTQ23X3sp+YdLiL7sIr76ezcNJiWLP/2M4N4DCYyIoaGpmVtuvL7Dc5XGF0WR/v37s/id11Cr1Q5tme8Ka/78k+dfW0BJcQm9U4czLrU3Lz7zZLvjhg5OZfU/X4LZROqA1jultlvpW1paqKmpkYVGqs+2LD98c8G7/LZpF/6CgVefeYzq6moGDx7slBAdrQYU3RE8dy9qSo2h2/rUFBYWytYRjvjUuDNS94j6McAVkbpld6JRo0bJt8CdffEGDhzI3DOns21XBtff13nte0BAQKdfsJCQEPolxLD/p/foEx/L5MmTOxSLtusNycnJXS53EwSBkSNHcumll6LX6zlQ8CTLV/xOeEo6VdXVhPaJpK6+weGxRFFEFEWio6OJiorqNOoTRZFvvvuBusYmrrvi0k7r5SW+/3kVgUNPQV/9M36DT2J3pu0dsTNPnyF3LbK3+GXZgchsNlNXV0dNTQ25ubl8/PlSvLy9adI2Ez3hIqp2raGhoYGJEyc6NM+2dDcKzsvL4813PyQuJoq7brvZajxRFJn/xtv8suYvZp46nQfuudPp1zuaNgHd8anxROquoceIenfroU0mE3v37kWhUJCenu7Uh0MQBG6cdy03dvnV22MwGLj28kswm81MnDjRodpyV3RTgv+/l2azmdzcXM45axYZ+/PRh4ThW3eIk/sGcsO1Vzk8ltlsxmw2y2NK81QoFHLTEEt27drFjxt2E9RnKLUL3uPtV1906LXOOGUqb3/0BeGKFsj6lduvv9rusSkpjltWKxQKWUhWrV6DOiAJL/8gIsx7KFnzCQOT+9KrVy+HRUWr1eLt7Y1KpXKJYL6/+HMOeyWSsy+f0Rs2WN0BNjQ08OtfGxk49zFWffMKN153tdMW1cey/NAZnxp3R+ruarXY0+gx6ZfuIC1A9u7du9Neo0cDqcdqWlqaQ42p9Xo9CxZ9SHF5FQ/ecTPTpp1k91iNRsNbCxfRotdx16032ezhqlAoMBqNbN++nejoaIYMGcK7sbHs27ePSZMedrjv6+HDhyksLCQmJgaz2YzRaOSTTz/HaDBy5eVz5UUxk8kki7tCoWiNiPRNtKjLCe/veGPuc84+m8kTJxIQEOBUXtsZUvr3w/zb34i+/lx1/RWcftqpchS/c+dOvL29rSpq2vL7mjW8suB9IkNDWPjaSy4R9aSEeHZvzEBoaSA2NtYquAkKCiJtUDJ7fnyLtIH9u2Sp3FNqytv61BiNRtkALjc3F0EQ8PPzo7m52a63flfxGHodR0gGWPYWIN2FFMFafrBFUeTw4cOUl5c71WN19+7d7CmpJ2b0WbzzyedWol5aWsoPP/1M6oAUTjnlZFas+Jk/9leg8PYn7MuvuffO9qV6Wq2Wqqoq0tLS5A0XKSkpVtFtXV0d5eXlpKSk2IxOd+7cyX1PvUSzwcTsPXuYfdZZrF23nu825yCovPH1+56brp+H2WzGZDIhiiImkwmTyURKSgr3XX8ZZrOZU0891eH3FLq20GgwGDrdASkxevRonn8wgNjYWPn9kKJFaDVoa5uLlxb9lEolP/26hqiJF1GXv4tdu3aRlpbWqahrNBoefOIZDh4q4pF7bmNKm1Z3N11/LSPTthAZGUnfvn2tOtYrFApee/FZysrKiIuL65I4uyP94grvF5VKZeVTc/DgQbRaLTk5ORgMBpf51EDrRcgd7Q57IsftWUoGWPX19TYNsNyNZV05/L85tSAIpKenO/WBT0pKwltXR/XO3zlrsnWp4BPPvcxBcwSmVetISIgnKioSUVOFSelNbFT7BcvKykry8vIIDQ21u4Ouurqaq2+6g0azitMnjODh+9tbQe/fvx9zZDIhoVE065qJiorCZDLSVFeNoPRC15JAS0sLvr6+8rmazWaampooLS1l4sSJclS5Z88e3vnoU/ol9eau2252WIA7QxRFXpr/Br//tZ7Tpk/mkfvvdSjfn5CQYDcX7+fnJ/ejNZlM8qLfunXrWLT4S7TaJsyKfcRGRZCW1r4Tki127txJfp2ZsHFz+PTr75g4YQIfL/6Ug4eLueGaK+jbty+TJk0CWnPQbc9BpVJ1y6e9p0TqHSH1mI2MjCQ2NhaTyeQyn5qjtZjdU+hRom4r+rWFXq8nMzOTkJAQRo8e7dC2eVd/CC1z4C0tLezevZtevXpZ9TJ1lJiYGG688hJ+XvUH8XGx1NTUEBgY2LoztPUEEFv/j9NOO42AgAB0Oh0nnfT/iF7apapWqxk6dCiHDh2y+3qHDx+mSeFPzNhZbNnxo9VjUt582rRprFm/icaqcuZefz8RERHcdOON9ElKQqvVMmrUKPbt24fBYCA8PJzIyEhEUZTLNoOCguQofuGHSygLTOHA9kzS//mHKVOmWOXis7Ozyc/PZ/LkyU7li+vq6li9bhOplz7OH8tf4pbr6xxKdzn695HsgsPDw/n519/xGjgFX20TY8OamTXzDDQaDUCnAUVKSgo+2kqqt/7M6efMYOvWrXzz9zZ84wfx2oL3rGrp3dGl6HjxU7ccszOfmqCgIHlPgqNBwvFi59xdelROXSpr7OjDUl9fz549e0hJSemwpNCStlG1K5DcH6XySVtuj87w+Tc/Yu43iVc/+JIFHy4hPjaGDxe+wTOPPsB3P65g8Jx5squjFNVJmEwm9uzZg5eXF6NHj6alpQVRFDEYDKxc+QsKhcCZZ54p334OHTqUsQPiydi8jLtuvFYex3IhNDo6mo/eeavdOZ95prXdrpQXXb9+PRUVFYwZMwaNRoOPjw/e3t4oFAqS+yZSsGMvypY64uLi5Iuh0WikrKyMux57FnNYEqvXbuTt+S91+l61tLRw/6NPsic7l9Agfw58/zrDU5Pdmn4bO3oEv617FwUw57p7GTFiBHV1dRw+fBitVktdXZ1VXbwlvXr14rP3F1BbW0ufPn3IycmBlkZaqg4TnWJ9N3W89BN1h0tjRwvVbX1qpAVXR3xq/mv0qEhdKmu0d+UtLi6mqKio1YjKiS2/0riuzKkpFAqKi4uprq62Kp/sKuGhoRwqP0h9TSV9zrmBhqK97Nmzh2nTpnHHrTfbfZ50lxAfHy/fokvVL8u++ZYPfloPokiLTi83pPD29ubl5562GkfKiUtRnTPR7LZt23jpnU/wDQ4HhZLTTjmZjIwMoDVHft1VVzB+zF7i4uIYMGAAgBzFazQaTAofAmL6UFm83WrR1R779u0jp6KRxFk30bDpaz5/5wUrEzJ71NTUsHT5N0RHRrSzTuiMyZMnc49Gw+fLvmf9P5sZMWIEERER8gU0PDwctVpNbm4uer3eKhff1lclNTWV+U/cR2lpqdXdlvS+/L7mT5Z8/Q1XXjzH4RRPRxwP6RdnxpSsNKSLuMFgQK1Wyz41AQEBcm28j48Per2+S+nZVatWceedd2IymZg3bx4PPfSQzeMEQZgDfAuki6K43ekXcjE9TtRtWQWYzWa5MbWtrkmOjOvK3aqSo53ZbHa6fNIeD9x1Kzt37qRp4gCWr/yFXlERDB8+3OaxNTU1BAUFUVhYyP79+5k8ebLVXYLUwqy5uRmFjz+i2URLB7bGZrOZNWvWUFpWzuyzz3I4BWIymdi0aRP5+fn49RqIf3QiB4tK6Nu3r9yFp7q6mvLycry9vTEYDFRUVMi9UxUKBWlpacy7cBY7M/dyxX13yKWTkrDburj069ePUEUzJX99zjmnTnHIoA3gxflvsrNaxFixkaFDh8qNtR3ls+U/Ykyexm+b1zN9apa8o1gQBKsNOFI+uLq6mry8PHx9feVIUrr4Dx8+3Obft6CggK9/+YugwVM58Pyr/LTsc6fmaIvjJf3S1Tp1Ly8vK5+apqYmampq2LdvH99++y01NTWytXdnPQ8s53LrrbeyZs0aEhISSE9PZ/bs2e2cNQVBCALuBLY4PXE30aPSL7bEt7m5mYyMDOLi4khMTOzSh7Nt8+nuIHVL8vLyol+/ft0W9OrqapZ88RVKROacfx6JiYnMu+5avLy85LHLysoICAggODiYL776mg+++BZTcwPNplY7Aa1Wy6xZs+SFSWkN4dJLLqZF9zkKhYIL7fQAFUWRLVu28MJ7X9As+LBtx24WvDm/03nrdDre/+BDlv/yB4E+XgxITKClfj/XzPv/5i0vLy+rGuX6+nqqq6vlxhgRERFERUVx6SUXc9nc/2/dt0wDtbS0YDabMRgMcjON0NBQFr+3ALVaTUJCAqIoUltbS0hISId/j4qKcopySvA2NaPX6+0eJ4oiW7dulRe9pc9cct8ktuZuQWVolHvH2kqXtM0Ha7VaeeOTrSg+KyuLjz9fStqQVHr3iqWkMA+qaolQ2Z+jM7grqnZHRU13v0+SxUZgYCBJSUn069ePZcuWsW3bNsaPH098fDzXXHMNc+bM6XCcrVu3kpycTL9+/QC45JJL+Omnn2zZJT8LvAzc362Ju5AeF6lbirpU7z148GCHFsDs0bZRRlepq6tj7969pKamUllZ6ZILxZvvLGJTsZ7mqsP0ioslMTHRqhTyu+9/YMHir/FVCbz/5iv8/PtfhE6Yw96f3idm2FRqm7Q8Of8dlv7wC0veX0BoaKicfgkICOD2W2y3tLMUToPBQK26mqqGZmoOmdiwYQNTpkyxO2eNRsPevXvZX3CImIlzaCjOZdZprZGMPQRBsEpBWG7j12q1hIWFERkZKZtxKZVKsrOz+f7775kxYwaCIGAymWhubqa8vJyEhATi4+MRBIFXX3+LX//+h8HJSbzx8vN2b7W1OiPhqePRH9rZYSruxxUreOfrX0A0c9+1tZxx+ukAPPbgvezcuZPevXtbibotcSsoKODrZcsIDQ3nsrkX07t3b3r37m0zin/yxdcQk6ey99e1XDJjIihUBKVOpjnnL+rq6pzebNQWd+TpwfULj+64+ISEhDB58mS2b9/O119/LVted0ZJSYlVxVFCQgJbtlgH44IgjAJ6i6L4iyAIHlG3hUqlwmg0yjWr1dXVjBkzxuFbJnu4Iv0i5fNHjhyJv78/1dXVLhF1P19fzPo6MOpsCs2fGzYTPuZs6guzyMrKYuzwwSxb8SlDkuIwa/IoytrLyAtuoz7nX4qKiuTor6MyLktBFwSBiRMnktY/nsymIEID/ck5kGdX1KuqqsjPz2fYsGFcajTy5EtvEBocRHr6LQ6fsyQyltv4a2trZaHz8fHBy8uLW+55CFXfMWx6+Q2+/fxjlEol9z3yBLnFlQzrl8Arz7euC/yy5m8GXPIQOSvepbS01G6+vG9SAuriWvz9VB0uapeVVaAM743ZZKS0rFz+vY+PDxMmTOj0/A4dOsTlN95BaYsKP4zU1mt47KH7ANtRfExkOHvydkFdFYmJicSEhyCKzUTE93JJas8dUbU7FiPdsfgK1huP+vXrJ0ff3UEQBAXwOnB1twdzMT0u/aLX69m9ezd+fn4ddidyhu6IutlsZv/+/RgMBqt8vqu29d956030XfEzgjDapkf5pXNm88SLrxEV3tqgee4lF3PLzTfh4+ODQqHgp59X8s5HnzI+bQipqaks++ZbPl36Hf0T4xk7dmy797ytoEuPP/fkYzz5wit4qcycNWtmu3lIvjpVVVWMGjUKb29vJk+ezG/fj5Uja0doaGjgtnsepLCohHtvu4Fzzj5LNn2ShE6yQTYYTXj5h1BXoKG6uhpvb29yCksYMOdeMpa9hNFoxNfXl7NPP4Wfl7/KsIH9j9TT215sffLhB/jll1+IjT2nw53HF184h6Kyd1ApvTmvE+tgW5F6ZWUlol8YftF90eVsQOjgI+zv78+rLzzD5s2b5bu0px++l8ysLIanTWfz5s28t/hL4uNieP7JR7tU4ePO7feuxF3NrLvSdDo+Pl6urIHWoK6N62gQMBRYe+TvHwusEARh9rFeLBU6Kcx3edV+R31Ic3NzKS0tJTU1Vb69dQX5+fkEBAQ4PaZOpyMjI4OoqCj69Olj9eXt6ph6vZ41a9bg5+fH9OnT5THLy8tpamqif//+7Z5TXV3N/v37GTp0aIe34mazmamnzybp7NvY/+NCfljyrpWZljMVLsXFxRgMBvr27Ss31TCbzQwaNEi+oImi6HRktXHjRm58egHmXsPxzl3Nrn/+kr/IoihSWFhIXV0dw4YNY/v27fy86g8mjBlBv379qKurY9l3P7B1VxZzZs/ivrvukJ/X0NBAQECAlTcNYGVfAK3rEwaDwWGTsc44dOgQvr6+Vs1SjEYjb7+7iD/WbmD8qDTuvP22dmKcl5eHUqlstwlKrVajVqvp378/zc3N3PXAoxz2S6axOIdrTxvBeeedR0hIiFPit3PnToYPH+7SKHjbtm0u7+C0bds2q8YxrmLlypXs2bOH559/3uHnGI1GBgwYwJ9//kl8fDzp6el89dVXUvOTdl8cQRDWAvcda0GHY5B+sWfcVVZWJm+FdqWgQ9eiaqkefuDAgTa9Uroa/S/5/Au+WL0NjC1W2+jtpUyKi4spLi5mzJgxndoOKBQKRgwdxN4N3xDqqyQqKkpObYSFhcnz7exLs23bNh56/nVEBO6/6SqioyJZt+EfDpdWcO3lF7f6rD/4GEajifnPPSF3+TGZTBw6dIjY2Fi7PhtJSUnUH9qHt7YJhclEdXU10dHRmM1msrOzUSgUDB8+HIVCwfjx4xk/frz8XFEUGTZsGFVVVdTU1LB161Z5sTU4ONjqIiWVTEr/lc5duhh1htFoZN26dXh5ecmbpWyRnZ1NbW0ts2fPlstsVSoV99xxG/fccZvN5/zx55+8/N6nIIo8fe/NVu6Qlhdcf39/ggN82b9mOf4qkUF3zJVtMfz8/OSKms4+F+5Iv7gLd0TqWq3W6a5HKpWKhQsXcvrpp2Mymbj22msZMmQITzzxBM8+++xsURRXuHyiLuKY59SlKLClpYXk5OQu9f7sDGcFuKSkhMOHD8v5c1t0Nf1SW1ePKjgSo7aB+vp6+fdSxYqEZcs5Z8omX3vpOfbv309lZSU+Pj7c8+CjbMvKZsqY4Tz75GMOfWn27NuHIm4wSl8/flv9Bxedfw6/bNhB0KApPPvqm8yYNhl93HC8fP359fc/ZFF//uX5rN2+h+ggHz5+9y2bX6SEhASuvOQC/t60jfGTpxAZGYnRaCQzM5Pw8HCSkpLsCpBlB55+/fphMBioqanh8OHDaDQagoODiYyMtCqZlN5LURQxGo3yBU6v16NUKu3WxC//9js+/nk9GA080NzM6UcWSy05cOAALy78GEVYPNl5B3nm8Uc6fW8BsvZm4504HKNez779OURFRbHmz78ZP3ZMuwqvnINFjDzzSmr3rCUoKIiBAwciiqJcUSOlBsPCwoiIiLAZxbu6pPF423bfVdvdWbNmtetT/Mwzz/DMM8+0E3RRFKd1eYIu5pgm2nQ6Hdu3b8fX15cRI0bg7e3t8j6l4LioS9FiZWUl6enpHbq6dVXU5119JSf3C2b2mH6IosjatWvlhUNpPIPBIDsGOnvb7OPjw/DhwwkICKC6uprte3JIvfhB1m/ZSXNzs0NjnDFjBpHNhxEL/uW6qy6nf//+KMw6GktyiImKYlz6GMyHd9KSs4HJE8bKz9u4ZTsRo2fx765Mbr7zXpvNSQRB4Pmnn+CX5Z/x2ovPodfr+fHHHykpKaFXr152xUcURVb9/jufff4FDQ2tXvBeXl7ExsYydOhQuVxNo9Gwc+dOduzYQWFhIY2NjfKY2dnZBAUFER8fj1Kp5MefVvDcy/PJzc3FYDBYpW5qampRBUejCIogNy+Pn376idLSUqs5qdVqRJ9AfKP7Ulmtdui9BTj/nLOJajpIb7GcM2acxr2PPs3KXA0PPfMKdXV1Vu/BuFEjaMzZRGSASl4HEASBgIAAEhMTGTFiBKNGjSI0NJTKykq2b99OVlYWpaWlVqlOV4v68RL5A7KP+3+FY5Z+kbbXp6amygtk7mg+Da2i3tkdgF6vJyMjg/Dw8E57d0KrqBsMBqfnEhERwWMP38/b77zH29+vg+YGnqF1M4pkiJWRkUH//v2dbmrdlvDwcMYNH8S/X7/IqVPHt7tIZWZm8uyrbxITFdluEe7uW64nLS1NvrV/5+VnyMvLY9KkSYSEhPDNkvdlP2yJay69kKdefJWg1MkUE8Cq33/n8ssuazcvQRAIDw+noaGB33//nXc/+wZFUCTZB/J54J67bJ7L5s2befmjZQhB0RwqLuXxhx9oN6ZUzvnqW+9wqKiEaRPGsH7LTvolxnP+7DPp1asXSUlJKJVK9u/fz/tLf8a7zwgKXnubj999S/7smUwm5l58AXUNn6BSBvLbnxswxaQSuOwHln32kVyllJ6ezsxxGyivKuf2222XjtoiKSmJJe8vlF+rpKSYyv0F+CtM6HQ6qzuch++/mwvz8oiNjbW7SKpUKomMjJT9d6QoXmoSrdPp5Dp+V6Q3jpeFV4n/Un9SOAaiLi2GVVRUtLOndfXOT8txO4qqGxoayMrKYsCAAXadDW2N2Z251tU34BUYjlFsFXKFQkFzczO7d+9m2LBhXfLNlpAWREtKSnj6sYcxGo02W4kt/nI5hqSJZJfk8M8//zBz5kwKCgpoaGhg1KhRViWWAwYMkLf4AzYXbOdefBF+vr68/dl3UF1B/35ntjtGQiqNDA0NRREURUDSMAoO5bU77rdVq/hr47/0T4hFUKhQePug19u/mG7ZsoV8jYLQ0bNZvHQhQ+fcwfZNKzhLr0cQBLZt24aPjw/Nzc2YjTr0DWqCAgNb+7pabHwKDQ3lofvupqGhgT82biGsV3/qS1tFUnpfFAoFF805T95M1BUUCgU+vn4MnnErmi3L2zVzUCqVsucPtNb3azQau59TKYqXInmj0ci2bduscvFSpVFXS4XdVXroLpqampzOqR/PHHVR379/PyaTyaY9rT2bgO7S0eajsrIyDh486LSfjKPpF4PBwI8/rcBkMnH+eefKG2Nuvv5aFB8tISwsnlNPPZXCwkLq6+uZNGlSt+rypdxxWloa1dXV7N27F7PZLC8oWhoejUobTOb3v6Mw6+jbty979uzB29ubESNGdPn2+pzZZ9O/X198fHwYMGAABoOBDz9ZQml5BTfPu0YuFauoqGDUqFEA7MzcQ8GhA9x58zyrsSorK3n1vcWEjDiD3b+u5PrLLqayqobL515k9/UHDhyIl2Yx6p0VpPRNpGTrb4R4i4waNUo2gNNqtVRXVzPvorMpLCzktNPORq1Wy77dkmCZzWbCwsJ46I4b+P2v9Zx19y3yxbwzfxpHEQSBmadOZ+3WH0lNjCUmJsbue19TU8NNd91PraaZqy6azRWXzu10fJVKhUqlapeLl2w3pFx8cHCww+fjjtJDdy7m/pda2cExKGnUarV2r/ItLS3s3buX0aNHu/Q16+rqKCkpkRf0oFX8cnNzaWpqIi0tzWmzr5qaGqqqqkhNTe3wuGXLv+Gd7/5CUCq59oxxXHXlFVaPS742BoNBTiHc99hTmM0irz77hM0SR3tI1R5tyxWlBcXq6mo0Gg0hISFERkYSHh5OXl4efn5+VFZWEhsb2y3fblv8+eefPP/x93hHJpIWpGXeVZfR0tLCkCFDOo326uvrmXvtTegjkglvLmHZZx879MVXq9VW+fTk5GTi4uJsHmsymVCr1VRXV1NXV0dAQICcyrDcmSpF8dJ7LHHw4EHCw8P548+/2Z9fwGknTe5wgd0WoihSVlZGZGSkvKnNVh39pk2beOK9pUSmTUeVu4YvPnzXofHtlR9KC8c1NTU0NDTg7+8vV9R0FFg0NTVRWFho9X3qLtJiuXShdyU33XQT9957ryvH7tELCkc9Uu9oMdSdOXXLcSU/9tDQUEaOHOlWPxmD0Yig8gKFCn2bHLy00Upq6Jybm8uvv6+hPnQggkLFil9+4247ZXGW2NtQJCEtKMbGxsrd3qurqykoKECpVFJZWUlKSopd4esOoaGh0NKArrYMo68fCoWCYcOGIQgCO3bsYPFX3zBuVBqXXzq33bxDQkJY8MpzZGZmMmHCrQ7/nZqbmzGZTIwfP75Tdz6lsrX009fXl6XLlhMUFMg5s2dTWloq3+FERkbKkaxlFK/RaKirq6OqqooPv1tFg28cny+7h9HDh/Lhgtcd3igkCIJsStbZImTBro1kb1nHfbdca/cYR1GpVERFRREVFSUbYanV6k6j+J5k5uUI/7VI/ZiXNFrirvSLpQBrNBqysrJITk522I/dFo76yVxw/nm0tLRgNJm5bO4l8u81Gg2ZmZlyHl8yrho1fBjfrHwdgDEXtm9V1xZbgl5YWMi///7LmDFjSE5Objdvqdt7eHg4OTk5xMXFUVZWxuHDh2URCwkJccnt8OjRo3n23pvYvn07Z511ltWdx9Mvv4Fq8Kks/u43Jowb226uAP3793f4bkVqFNLY2MioUaNkkcjIyKCxsZHx48fbFY55N93K5iItol6Lt48Pd9x2m3yHU1RUZFUyGR4ejlarJTs7m2HDhlFcXIzCpKe2rJDgpCHUGlTk5eXJ9fYKhYLvv/+ejZs2c81VVzJs2DC759BRvnpXRhaqkFgMjQ1s3raDu3GdwFoaYUm5+NraWrl/qL+/v5yL94h6z+aYVL905bHuIAlweXk5BQUFpKWldfuP7GhO3dfXl3nXXmP1u4qKCvLz8xk+fLg8D2nz0fjx4/ny/TcRRbHttuR22NohajAYuP3+R2iJGsxn3/zEt59/bDMVUFRURHl5OWPGjJGjWanhRUlJiVz+FxUVJdd9d4WmpiaUSiWXXXZZu01c8bExHDi0F2+M3VoYhlZx27lzJ3v37mXatGmyQPz777888so74OXHlfkFXN0m/SVRXVuH0i8SE8iGT6Iokp2dTVxcHOPHj6ehoYGqqiry8vLQ6XRyqmrgwIG8+vi9LF/+Df/szGJo6lDZzc9kMrF582bufuZ1FJFJ/LH+Zrau/8PuhqGOzLdSByRjaNESPe1ySvau4JvvfuDdjz8jbUgqrzz3lM2USVdrym1F8TU1NezduxedrtWnqL6+vt2mr67izoqatovPJzo9KlJ3FwqFAo1GQ0lJCenp6S7pkdmVOnXLlnNt52G5+cgRf3BpQVSai4TZbKZFZ8A/LJrG4ox2dz7SWoJer7eKZqF9I+CGhgYrq9zIyEiioqIczhfX1tbK9ga2vlQvPfsEmzdvZsCAAd26azIajWRlZbHwg08obvFh6YpVfP7+AiIjIykrK4PgWLxDojhUXGp3jDdeeo57HnqMyMQw7runtWfr/DcX8GfmQYTGGt595WkGDBhAdXU1a/78S76DyM/Pl10m77vvXp4PC7O6AEre+4qAcLwjEtHX5KPX6/Hy8rK52NpR+mXy5MmcOn44eQf/5syzZvLFNz/Q5+zbyN7wDTk5OcTHx9Pc3GyVj3dFTXlbO9vKykoqKiooLS0lJyfHKorvaq9gd1bUNDc3d7uJzfHECS/qBoOBzMxMRLG1AsJVdwPOerRLLee8vb1t+ls4c5GwtyAKrZuPXnziQVasWsPpD95lFQFL4hccHMyAAQM6vWuSusv079+flpYWqqur5V2uUl9SyRWyLeXl5fKuXHtRaUhICGeccYbV70pLSzlw4ABjxoxxqBpJ8ufp3bs36roGQoedgXr3atRqNZGRkZx22mlk7Muhrr6O66607ySZlpbGH79abxQ8XFyKf/wgtEV75R26H3y0mK2lLazdt56oiHDOOOMMzGazbKebn5+Pj4+PvNjq5+fH6aefztxNW9iRkcW9Lz+DQqFg8+bN9O3bV76YSbtbOxJhHx8f3nvrNerr6wkPD0chLOTbH94iMiQQg8HA5TfegcEM91x/BbNmtr6v7oiAJZHv27evVRS/Z88eee+ClIt39PvmLjMvieOpBLO79Kj0i6tpbGwkMzOTvn37cvDgQZe+tjMe7bZaztkarzNR72xBVGLMmDGMGTOm3RwyMzNJTEzskreOr68vCQkJcmcftVpNRUUFOTk5BAQEyGkaLy8v2ZSrba17Z6jVaubdfi96/2gGrfiVBa+93OHxTU1NZGVlkZKSQkREBI/ccxsff7mc02dNJyUlBYDAwECeetR2G7LOuOuW61nwwSf0Hdvaf1aj0RAbF4tQUYwo/P/vr1Ao5AbV8P+SyezsbPR6PeHh4Tx4393yBfC2ex5gf2Uzfjo1Sxa9TVBQkDxWTU0Ny775jj59ErlwzhwEQUCtVhMUFIS3tzcqlUquiY+OisLLP4Rmo5GNGzdiikwhOLo3/2zdIYu6u3ueto3ipRReaWkp+/fvJzAwUBb5jqJ4d+XURVE87mwNukuPi9SlNER3P4hS3nrYsGEEBQVx8OBBF82wFUcja8kYrLPG1J1dcCRBlyIaZy5Q9fX1cnPs7jZcgP9XjEj51sbGRqqqqti9e7d8q5uamur0l7SmpoYWvIgcNIGCHT91eKx0TpapnbYGYN0lNTWVBfNfYt++fahUKlJSUkhKSsJ/2Tf4eHsxdOhQm5G1v78/iYmJJCYm2rwAZu3NRpV2JqW7fqO2tlZefKyrq+OjT7/gQEsQ4s4/iQgLI6+gkOUr1xAfFca7b75qlcbam3OA0MGT0FYeIiIighjjfuqyD3Dx4w/Kx7ij/ruj72fbFF5jY6McxYuiaFVR09aAzZ2R+vFka9BdepyoS2WNXf0Di6JIfn4+dXV1VouArsaeqOt0Ol59/W2Kysq44qLzUSqVTtctt8VyQdRZQa+oqKCwsJARI0a4Ja8omWz5+flRV1dHfHw8fn5+HDx4UM41R0VFERYW1unfNDk5mUtmTmPT9k3ccfetdo+rrKyUN4x155w620RkMpnIzMwkLCxMbrwRFBTEBeedw/W338On3/3KJWedyo3XX2f3NdpeAJuamuibEMea35bg56Ni8+bNREVFodfrKSgoICE+nrw8NaJoxsvLi9/XbqT36fMo2/QD2dnZjB49Wp7z1ZdexHPz36J/ZBhnn302EVHR7MzIsnpPjmWDaEsDtj59+rR22KqttYripQbR7ozU/2v0OFGXyhq7spgpbWAICAiQP/zuwt7YGzZs4I/MQhQRibzz4WI+//h9OQWh0+nQ6/VOrcRbCnpDQwNFRUWkpqZ2+v5Idgy1tbWMGjXKJYvD9pD6tvbp00f2q2nb0Ujaoi7lmm1VagiCwA3zruWGee0ekrHcjdqdc8rMzOSBJ57D19eHt15+jqSkJKvHJS+ghISEdvX7eXl5aBRB9Jp2Bn/9s6JDUbdESlUMGjyIYmUcxsYaBEEgNzeXhoYGoqKiuOziC0hYv4Ho6CimT59OSXkFH36+iOSkBAYNGiQHEiaTif79+/Pp+wtRKBQcPHiQ1z74Ar/ksWQ9/wpLl3wIuK/pdFeqoby8vOxG8S0tLQQEBBASEmK167m76HS6Tq2JTzR6XE69q54qkhFW37593bKJxlGio6PRVh5C2dzEmGmj5Q9/cXExN9/9AA1NzTx6963MOO3UTseyXBBtamri2lvupN7kxdiBvXnxmSftPs/Sm3zEiBFuva3VaDRyeqltaseyo5G0Rb2qqoqsrCzMZrMs8I58iaU7MK1Wy8iRI+WorquiteLX3/EeNB1tg5p169dz5RX/L3Vsbm4mMzOT/v372/TSHzp0KH1DVRxY8xF33dLBFcgO119zFcrPviAkuC8TJ06ktraWqVOnyrn4oUMGo1AoOHToEOfNPps5556Dn5+ffJ5SGu7AgQMUFRUxbty41np40YhOoybK7/8i5q6a8u62mGwbxR88eBC9Xk9xcTEajcYqiu/O3XZjY+N/yvcFemik7qyoV1VVkZub26kRlrstQ7VaLU1NTbz2VGtO07Kf5a5du2gKTiJ8SCorf/+zQ1G3tSBaVlZGnQ56TTmPHX8vsftcvV5PVlYWUVFR9O7d263nK/UUHT58eKfpJUujKelWXCqXbGxsJCQkhKioKMLDw9vdhktWCl5eXvJuVICPP/2MT7/+lkljR/PsE486FT2eNGk8f7+6EJVSYPSoc+XfNzY2yhcpyx2hmzZtYn9OLrNm/q+98wxsqnzb+JU2XXTvvVsKLR20ZcsWEARapoAKiggO/iIqCKKIypCl4EYEGbJLmQUEUWQXGS1t6WJ0p0m6V3bO+4H3OaZt0mYnYH6ftOOcJ6G5zvPc47qfg5eXF7Z8+7XaZXguLi54f8H/UFRUhIaGBsTFxcHc3LxVtZFAIKCraVpaWuDk5EQ3Ppmbm6OkpAQLln0Bqa07+l27geUffYhVSxciNy8fQ4e8isuXL+Of25kYOmiA1nequqqocXZ2breLz8rKAgA62arqLl6dUXZPOkYn6mT4tDK0rfvu6IlOHhbqNtF0Rk1NDXJzcxEVFSU3GRkfHw+73ftReyMP899X3CmqqMIlNDQUw3tH49qVfXj79Vlyf5dUg4SGhirtNqkusmEQdXZSFhYW8Pb2hre3N21dQJwbSUmgu7s7mEwm7t69C1dX11YhEoqisGtfCsInLUL66Z9RWlrabjRcRwwcOBAHuneHhYUFLd51dXXIy8tDdHR0q93dw4cP8cn672HmFYFrt9Zi63dfg8FgqB0DpigKhYWFEIlEiI6OliuQVlZW8PHxQX5+PioqKzFwwADk5ubi/J9/oUdUJGxsbCC2sIVDUDRKWZmwtLRE37590bt3b7BYLCxb/RUazeyRcvQotn63WasmZLruKJUXi6+pqaF38fb29rTIdxaCU2fq0ZPOExt+ITXX1tbWSs011KWol5aWory8vJ2VsCy+vr5I+e1XiESiDv/IFM0QNTc3x7IPP1D4ezU1NSgoKEBUVFSHMXtyfXXfByJIfD6/VRhEE2StC4B/SwKzsrLQ2NgIFxcX3MnIxC8792By0vOIjY0Fg8HA4P59cOnUT/B3dVAr5CYbWuFyuXj48CHi4uLa/RuKxWJQDAaYVjYQtrBVvs+NGzew7beD6J0Qg1deehF5eXlgMpmIjIzs8PNw8+ZNrPx+F+DoifsPi5GTV4A6x1Bc3n0QGz77CL3CvPDw0RVMnTGFdpk0MzODhYUFWKwKSAMSUVXdgvr6etTU1KCxsRH+/v50sl1dYdZ38tXCwgKenp7w9PQERVFobGxEdXU17t69C6DjXfx/zXYXMNBOXdGcUkA5UW9paUFmZiYCAgI6baVX5bqqQlEU7t27B6FQqNTIOUtLS4W7WjLEOS8vjw5DKHvMLC8vR0VFBXr27NlhrLO4uBjvLFoGvkCAtZ8tQ1xcnFLXJ0gkEuTk5MDGxqZVGETbELfAiooKREdHg81mY+13v6BL5BD8vfhjHNy5FW5ubvh02RKUlZXB09NToxBDeXk5WCyWwuRr165dsWjuS8i+l4+pkxbLuUJ7ampqwGKxEBERgZUbvoFFj1HYc/wc3J2dEB0d3W6QuTwEAgHAtATT2g48vgAtPB6sfZ3RzDCDl5cX1q1e2a5kskuXLnB3d0dM9wgUii3gFRCApqYmvPrWQvClDMx5YTwmT5wAqVQKsVhMnzhUEWlDer8wGAw4ODjAwcEBwcHBcnfxJBZvYWGhVvjlzJkzWLBgASQSCebMmYMlS1r3OTAYjPcAzAEgBsAFMJuiqGKVbqJDjDL80pH4kq7GHj16KO2CB6jeAdoZIpEIPB4Pnp6e6N69u0YCRxJfcXFxdBiisLCQbupxc3OTKzYUReH+/fvg8XjtWv7l8ffFi+C5d4e1gyuOnz6nkqiTahBvb2+5trDahNgLREdHw87ODubm5nCw6wKpoBGuzk5obGxEcXEx7U+ibL/A7r374GBvhxnTpoHJZNIVQvX19a1OHWKxGCvXbkBGdi7+9/osDB82DKOfew6j23S/KqK6uhqvvrkAzZQlhiVGIsDPB7kPbkPYWIvAwEClw0T9+/fH62UVKK+sxMwZ08DlcnHkxCk8s/BN+mQir2SyvLwcMyYn4fL1G+jRfSSam5shcvKHa3AMrt28g6RxY+kwnaOjY6vB3Mrs4g1ZJtkWRbv4srIyfPPNN7C0tIS9vb3S15dIJHj77bdx7tw5+Pn5oVevXhg/fjzt5fP/3AGQSFFUC4PBeBPAOgAvqLx4HWF0om5ubi53TBz5AHK5XCQmJqqcfVelA7QzSKeqlZWVUjsuRZD4+clTp5B9Lw9TJyYjJCSErhYhTT137tyBmZkZLfC2tra07YCtra3Su+ZeiYnYk3oSzaUUhi1+R+l1klh9WFiY3GoQbcJms1FcXNzKXsDFxQWb16xAZmYmBg58nfbG4fP54HK5rawL3N3d5Y5t+3nbDpy5x4G0pQ5uLi4YPXo0CgoK6IEisj+fk5ODS1kP4B6fhO+27sTwYcNUeg0lJSWoEzHg1ec53MxIwy/ffYWDBw+iV68XERsb2+Hvcjgc/LB1O5wdHTBvzmxMn/bvQBAPDw+FHuZ5eXn4468L6BnzOEY/ZswYJCcno6am5rFnfn0x2Bdz8MqCNzH/vcUobzGHE5qw+5cfYWlp2aq5DWhdw9/2vTRWl8a2u/i1a9fiq6++Qnp6OmJjY5GQkICFCxd2+G9w48YNhIWFISQkBAAwbdo0HDt2rJWoUxT1l8yvXAfwkkYL1zJGKept54kSAbOwsEBiYqJaf1DaCr+Qk0JMTAzy8/MhkUjA4/FQXl6OsLAwpWPV5EOUn5+Pr7bugXVwArJXrcNv234C0DpZFBISAoFAQFf58Pl8CIVC+Pr6IjQ0VOmHSvfu3XFo51aIxeIOu1tl6cyUS5uUlJSAy+WiZ8+e7U4m3bp1azeQxNraGv7+/vD396fDECwWi25sISWTFhYWj8fVifigJCKYm5sjOzsbNjY2cj1wfH190UXKA/fWaQyM6a7y60j/5xYqS4tQWrAG61Ysw/379zF58mSlktc/bduBqxViiHILEBr0B8aOHdvp74hEIrz30QqI/OKxJ2UVju3bQceRyS72eP/+qK+vR2VlJXLy78P72VdRfvkAKioqEBwcTHvFW1hY0OJOeiTIfxN/Gl3t1LXdfOTl5YWuXbsiKioKb775Jm7dutWpG2h5eXkrKw8/Pz+kp6d39CuvATitlQVrCaOPqZP4ub+/v0bHfk1FnaIoFBcXg8Ph0JU2ZmZmqK+vxxvvLkINn8KAmK5YteJjpa5FKlysrKzAoKQQtjTA2kpxFYmVlRX8/Pzg4OCA7OxsBAQEgMfj4fr167C0tMSjR4/QrVs39OjRo8N7K2txe+TYMfy8cx+6hQZi9ecrOuzcJB98deuJSfJVIBCgZ8+eaj+0ZcMQjY2NqKqqok85I4cPgYNdFzg7OcLV1RWOjo4ICAiQey03Nzf8+sOmdtOylOWPi1fR++WlYF0/gaamRnTt2pVOAneGu4szRNl3AX6jSuFFkUgEofBxEl5efoFM1XJycsJH772NPYeOYfLoYWhsbMT169fblUySfwN5E5+EQiH996stcdeVoVdzczP8/f1hbm6O3r17a/XaDAbjJQCJAAZr9cIaYnQ7ddmYenV1NfLy8hSWCaqCJjF1UicNoNVJwczMDOXl5ajhU/AdPA3pf2zr9FptPdCDgoLw5bL3cC83D6NGdjyRnsPh0BUapC6coih89OnnuJTHgrhmJ5b+bw7i4+PpaT7qvt713/wEj+GvIuPGMXA4nHYdlwQ2m4357y9BTV0DVnz4LgYOHKjyvXJycmBtbY0ePXpoJfkqewwnp5yqqirExcagpqYGZmZmsLW1lStK5N+F7PLV4YXksfhm609wcbDF6NGjlRZ0AHjt1VkIDvwT9vb26N+/v1K/U1NTgzkvTUV5JQdD533U7sFdX1+P27dvo1u3bvD29saEpCRMSEqiv9/WZdLS0pIuKSUPc3Nzc7oBzMbGBhYWFirH4jtCV6LO4/FUqn4hM3QJZWVlcosxGAzGswCWARhMUZRAC0vVGkYn6iSmXlRUBDab3WGZoCqoG1OXHTkXGBjYrszQz88PA2O74tr57Xjz1Y5Da4o80Hv16iV3hqTs75WUlKCqqgoJCQntfNi51bVwDo5GsxkFJycnUBSFnJwcSCQSuQOnO0IqlSIvLw+hgf6oyDoPV1vLDsXtn3/+QZ2NN5wjhiPlxBmVRJ3YInt4eGh9NqosVlZWcHFxQWlpKR0/J6EsUi3i5uaGrKwsLFu5Fm7Ozvh67Uqla/0bGxtx4cIF+Pv7Iy4uDiOeHQZPDzckJCSoXE5naWnZzo64IyoqKlBRUYGJEycqrNleuORjlPIsYNX8C/Zu+7Gd6Ld1meTxeKiqqkJeXh6dq3B1dUV1dTVdW0/CMG138WKxmA7TqCrSuhB1VatfevXqhcLCQjx69Ai+vr7Yv38/9u7d2+pnGAxGTwBbADxHURRHuyvWHIOFXzqC7KZ69eqltX9odcIvbUfOtYXsTr74tOOQi7KWufIgIgtAYWjig/+9gR+27UT4oJ4YMGAAmEwmAgIC6HFspGvTycmJNteSF78k3jkuLi74+fvNyMvLQ3BwcIfCFBsbC6sde1FTeR+z33pV4c+1hfjFyHqK6wpiZRAVFUULGklGNzc3o6qqCpmZmfh2y3Ywug5FBbcYV69eRZLMbrYjVq37CjdKm8CoL8fqJQsAAL1799a550hpaSmdg1AUj6YoCiWl5XB9Zjq414+goaGh0xCcjY1Nu1xFQUEBBAIBnJ2dUVFR0cq/R3ZuKxF42aQr+b4u7SoUoeooOyaTie+++w6jRo2CRCLB7NmzERUVheXLlyMxMRHjx48HgPUA7AAc+v/PcglFUeN18gLUwKh26jweD9nZ2WAymZ3GhlVFUVWNIuSNnGtLZ/a75eXlyM/PR3x8PGxtbVUWdKFQiMuXLyMwMBAhISEKf7dbt274Zv2adl9vO3CaDEkuLCxstUO1tLSUa8rVs2fPTtfo7++PAzu3gs/n0z7fHSGVStHc3KzQL0bbEEGSZ2Ug6wUeFBSEpNIybPplDyARQihMQG5ubqs4syKqamph4xaChnoO8vPzMW3aNJ25gxKIZ31n3j4MBgMff/AOdh88iucnj20XSrh+/Tq+3PQDQgL98cXyj9o9wM3MzFBVVQVnZ2d07dqVbgzLzs6mT4Kyg7llY/Gy4k7CWpqGaVRFnfmkY8aMwZgxY1p97fPPP6f/m6Kozo2bDIjRiDpps4+IiMCDBw+0fn1zc/PHzRydQKwHamtrOx1915Go19fXY87/3oegiyeCDqbi5+82qSToLS0teG/xUmQVFqNnZDg2rV+jUTes7BGb7FC5XC4yMzMhkUggEAjUHitHPF064+KlS1i+egNsbazw87df61zQZcsjlSmBnTRxAvr26Q0bGxs4OTm1m2ZEHoJtd+BL3/sfvv7+J7j2DMf06dN16ohJ/j5bWlralWIqYsiQIRgyZIjc723dtR/MqJG4W/APbt68icGD/835kRmtxEu+7UNQtvGnoaEB9vb2cHNzo9v32yZb2wq9opJJbdLS0vKfmk8KGEH4haIolJaWoqKiAgkJCbCyskJBQYHW76lMTF125Fx8fLxS1gOKRL22thbNIsC9Wx8UXT2o0lpra2uRk5ODu3mFiHrpU+Qc3YzKykqtNf3Ifjjt7e1RUFCAgIAAcDgcFBcX0x7oikbVqcsvu/bDOm4sBKx85OTkKN0NrA5lZWVgs9lyyyM7QnZNsnFmEqaRzVUQh0kzMzO8PuslhT4u2oLMl5VIJFpLKifERuHwuT9gKRXQtdnkXiSBrahstm3jD5lpW1JSQjt0uru7w9bWli6ZBFqHaSQSCUQiUTuh1xYmmwA9Q6pKKIpSqs1eEzqLqSszcq4tih4UFEXBx8cHMyc8h8vp1zB/0QKlP4AsFgulpaVITExE8piROHlgDRJiItUaQdcZZWVlqKysbDVMpG3bOdl9ubm5aeQXU1xcjMjwIJRc/gN2Vky1SgWVvdfDhw/R1NREux9qA3IaCQwMpHeopaWlqKqqgoWFBUJDQ3U6vYfsms3NzTXuYJblzblzMGTgALi5udGnNFKRZGtr20roO6LtTFuBQIDq6mo8fPgQzc3NCksmiYeTj49PK694be3im5qa/nM7dUYnk0F0MjZEIpGgqakJmZmZ8PLyQkBAQKs/0qtXrypdzqUsdXV1CuuO6+rqkJOT0+nIOUJubi7+ungZ4SFBiIyMpHd3yiZE2Ww2srKyEBcXR1eWkHKxpqYm9OjRg25jJ9l7bfqsyNoLREVFdZhka2xsBJfLRVVVFd2WL1vqpsy9SOdm9+7dUVlZSTdVaRuKopCXl4f6+np4enpq1O3bGcSznoxvS0lNxfmL1zBiUD+MGDFCpfdImXvl5OSgS5cuHeZWtHUvMpxcFdfLzq5ZV1eH6upq1NTUwMLCgg7TFBYWwtXVld5IycbgSdgGgNoVNQMHDsStW7e0vWE06tl4BtmpNzQ04M6dO0qLqDZQtFOvqKig467KjJzj8/lYsGQ5EJAIwZET+OXbjQCUF3Q+n4833l2EJhsvOO/ci33/P6GGHHWJAyHwb1epNlHFlEu23js0NJQudcvNzYVIJKKP14qmxstaGZDOTdLir23IvRoaGrD66x8goMww54XxmDFN+5Yc5F4ODg4ICgpCTU0N9h79Ha69x+O3w4cxZMgQeug0eY8cHR3VEmMiso6OjvRIPV0hlUrp8X2K+hLUQV7JJJfLxc2bN8FgMNClS5dWLpMdNT6JxWL6Z5QdqWeIqhtDYhBRt7a2Rnx8vE5mZiqibVKTdDE2NTWhV69eqrX3UxQsLK1AUf9vy6pCySKPx0NdEw8esb3AubQPjY2NKCws1ItRlqamXLKlbmKxGNXV1SgtLUVjY2O7IRcikYg+ien6dZF6d09PT7BYLIgc/eEcHI0rN25rXdTFYjEyMzNb1dZbW1vDztoC9SX34ObiRLfdSyQSVFdXo6KiArm5ue0SiZ0hkUiQmZlJDzzRJWQeq5ubm87vZWVlhZqaGoSEhMDHxwe1tbXgcDi0y2TbkYeKYvGdNT5RFPWfnFFqkPCLVCrtsLzw2rVr9IgubcHn85GTk4OEhAS6HtvOzo7O6qtCZmYmzv35N+KiIxEcHIzAwEC5HuiKOHr8ONLOXsCYZwfD28sT4eHhSpUDaoIuTblkh1yQ43VLSwtCQ0N1tjMnCAQCZGZmIjAwEJ6enqirq8P7Hy1HBYuNFUveQ58+fbR2L/JQ9Pf3b5fjKCsrQ2ZmJhITE+mSUFlkQ1nV1dW0QZurqysyMjIglUrxzDPPtIo1Z2RkwMfHR+fvIXl4eHh46PwBTE4DsiEXgmzfQHV1NSQSCW3S1vY0KG8XD7QWeIqiMGjQIGRkZGj7ZRh1+MUgok5RFIRCocLv//PPP4iNjdVqra9IJMKdO3fQo0cPWgQ0/bCw2WxUVFQgPDxc5VMHGQXXdsqOLtCnKRdp2HJ1dUVTUxMoiqJbzkmtvrZoaWmhm8N0HcYjdfyK5paqCrEuSE1Nxe4zV2FuzsS8SSMw8+WXaEEnDypdQk4e3t7eOn94dCTo8iAJ6aqqKrklk22vTQSeaJpUKsWwYcPoYRpaxKhF3Wjq1GXRxUALUqdOhF0VsyR5SCQSODo6oqmpCTk5OaAoik4idibSJSUl4HA4ao+CU4XKykqUlJS0srLVFdXV1SgsLGyVnxAKha1mbbq4uMDNzQ3Ozs4ancQaGhqQk5OjlwcVOeV069ZNa7X1VlZW8PX1ha29A+y8giAFA4+KinH9+nUIBAL4+vqq5BmjDmKxGH///Tf2HT4GiZTC8g/fUzo5+tdffyHl+BmMGj4Q45VwklRV0AH5XulcLrdVyaSbmxvs7OzkNj7t3LkTPB5PqXs9TRjlTp3siLQ5MLakpAT5+fkYOHCgRuKmKH4uFApx+vRpHDl1FonR3TFq1Kh2CTKpVEpXgkRGRuq8ppl0HUZHR+tsNiuhoqIC5eXlHZ6wpFIpamtrweVyUVtb2+kQEEWQh0dsbKzO8zLEYkBXD4/6+nps/n4LJFIJ5s2eheLiYgQEBNAPQwB0jFmbVVAikQgZGRnIyMjA/vQiWDm4oq+bGMs/UjzZSSgUQiAQwMrKCs9NnA7XfpNRdf0IUnb82GH4UCqVIjMzU6vxevL+VFVVobm5mc7pODg4wMrKCgcOHMDOnTuRlpami5OwaaeuKp1NP1IF4lkuFArRpUsXtQSdlF+S2DdxlGv7Afv2l11wiB+H1N/TMGrUKJSXlyM3NxeOjo/tXsvLy+Hk5ISIiAidl6URv5jY2Fi9PTw6m75EdlfyhoCYm5vTYZqOqpAqKytRWlqql1NObW0t8vPz5VoMaAtHR0cs/2gxfRqIjIykT5HBwcG0eD169Iiu9+7Iv4dw5vff8ctvBzCgdwLenf9Wq7+3pqYmnD59Gr169ULPnj2xP+0v8OvK0X3AeGRnZ+Pm7dsYOnhwqwoYFouFNxcuRn1TCz54+3W4OTui9uFd2NtYdPhg1YWgA4+Nz0i+QTanM2nSJEgkEjQ0NODIkSP/ucYjwEA7dQAdtuyTOZ2aJg9JBYazszNCQkJw7do1levfKYrCa2/+D0UNFGzFddj98/dyd0xisRhTXnoVTY4hsKwuxMGdW2l7V5LZNzMzg4ODAzw8PFTenSqLrClXW1dJbUPqwimKQrdu3TR6ePD5fFRVVYHL5UIgEODy1Ws4fykdY0YMxfw354LBYNBOlTExMTo/eZBB1LGxsToPWzU1NSErK6vT04Csf09tbS2sra3pB2FbG4SRSVPgNuhlVF5Jwc/rliMsLAzA4x3uq3PfRFm9CH7ONtj2w2aUlZWBx+PB19cX0157C/CNQZeqXBzZt4v++zl9+jS+OnwRTsEx8KzJwPIP38ft27cRExOjMBavK0HviJMnT2Lz5s2YNGkS/vrrL1RUVGDnzp3a9pIy7dTloenw6c4gI+dCQ0M1SjZRFIUHRaXwHPYKKi/uoxM2bWEymfj+q7VIT09Hz56v0juExsZGPHr0CHFxcXBwcEBzczM4HA69O1W1macjSDIvMDBQJx2oskgkklZNKpo+PKytreHn5wc/Pz80Nzfj/U9WwmvEHOxK2Yq46EjaWbAzAyttwGKxUFZWpnAQtTapr6/HvXv3EBMT0+musm29N6kUkTXXIjbLUd3CcffWadhbUHSnqEAgwK1bt1BUxkLXyYtRdOZnVFVV0YJfVVUFiYRCF1tHCMqFdEUX8Ph9t9+1D9XXCvH6u2/Aw8OjQ4tgQwj677//jo0bN+LUqVNwdXXFe++9Bx6Pp9NOdWPEYDt1oVCoUNQfPXoEa2treriuqhCv7JiYmFYCrGyn6h/n/8TJs+eRPHokBg58BmmnT+O3Q0cx/Jl+eO3VWUoLWGVlJYqLixETEyNXtMmMTS6XC5FIRLdqqxM7JbFffTgfktI+Hx8fnfi3UBSFef9biIdVLfCwAd59cw5dc9yRsZY6CIVCMBgMWryJnW1npwEOh4OrV68iKioK4eHhat1bNryj6UOd2CxXVVWhsbER1tbW4HK5iIuLg62tLb778WcUl5Tgg3f/h8vXruO3g0cwfFB/LH7v3VZ/a5cuXcLFa+kYP3oUoqOj291DKBR2+vAxhKCfP38en3/+OU6dOqW0D74GGPVO3ShFnWS3Va2ZlR05FxcX1y7mevXqVfTr169DwWxsbMS4abPglDgedf8co+c9qiKyFEXh0aNHqK+vVzpJST6UHA4Hzc3NdH2uMqZapDwyJiZG7djv9evXsWLtV/Dx9MTGNZ8rrLwgZYS6HkLN5/ORm5sLHo8Hb29vuuW/paWFti2QSCR0+EGdB2FmZiYWf7oKFkwmvl7zGczNzdHY2KiUMdeLs+eBzXQHs+oB9v7yvcolldXV1bh//77WwjsUReHKlSsAgP79+6OhoYHuGzj3x3kczyiDjZ0DJiUG4p2339T4foowhKBfvHgRy5YtQ1pams5PqP+PUYu60YZfVPE+B/71x2AwGAqHU5OwTkcia2FhAVtrKzSUFcDOxhqWlpYqD7W4d+8emEymSknKtt7nbU21SI6h7dqJKZemicPfDh2Bbc9xKHmUhfT0dLlHa1JGKDtsQleQf6vAwMBWp4EuXbogMDCQNtaSTSISd0llyyVPn/sTlhGDIWhpxKHDqUgaN1YpQacoCtW1tbCP7o16zgOVy+Y4HA6KiorQs2dPrSV7jx0/js17TgAUhYW1tRg/bhycnJzQ0tKCS5cvgylsBL+mBXU1digsLFTKuiAnJwd7Dx1BYs/oVuPvFGEIQb9y5QqWLl2KkydP6kvQjR6jrH4xNzcHn89X+udJV6G8kXNtr9vZnFIrKyt8v3ENbt26hV693lDpQycUCul2dU3+qM3MzOgyNmJpyuVy8ejRo1bhh9LSUvB4vA4n3xQUFOD27dsYMGBAh2sa0DsBW/cdhZX546RnW8hpIC4uTudlhCQ3EBIS0uFR2sLCAt7e3vD29m6VRCwoKICtrS39Hir6Nxw6sD/+WLUBQgEfPce8hcjISKUe4AwGA2uWL8Xew8cwcM6LKoWgSLxeVUvgzmBzqmDm6A0GKFRyuAAex9zv3r2L1+fMQXzPWxAKhRgyZAgaGhroyiyyYXBxcWm3nk/XbIDQvzeu7UxBdFQUampq8O3WHYjpHoGF77zdaoNhCEG/ceMGFi1ahOPHj+vUxvlJw2DhF+KhLI+qqirU1NSga9eunV6noaEBWVlZiIiI6DQccOfOHXTr1k2hKLUdCt3ZB/z+/fs4cjwNveJj0atXL5214cvS0tKCyspKpKSkoLmlBVOnTEFQUJDcOGdjYyOmzHodYs8o2NUWIHXvToW7UDIH1d7evl0ooby8HBUVFVrv8pWHNhp9ZIeAVFVV0YOk2zaGSSQSXLt2Dc7OzjqzApaFeLw/KioGm8vFC5Mnae1vpaamBpt/2AIGg4F3334DTCaz04oaWQ/06upquqzUzc0Ntra2mPPWO3gktIdZ1QPs+vFrvLtkOSShg1B77yI2fPgWPRnLEIJ++/ZtvP322zh69KjW3CRVwBR+URVzc3N6QHNHKDNyTpaOBmWQFmNVXN0+/HQleF6xOHH+O3wwbyaGDRum1YYpeTCZTPzxxx84djUblo4ekB5KxaTkcfQ4OdljtVAohFAshb2LJ1oq7nbo981gMNo588l6k5MadIqisO/AQVxKv4WZUyegX79+Wntt9fX1yM3NRY8ePTR6H2WHgAQHB9Mt+YWFheDz+XQFSVFREYKCgnTudwIAxcXFqK2tBY/Hw/f702Du6ody1o9Y/dknWrm+i4sLPvt4KYDHD/OsrCxER0d3+D629UAnZaXkfXp91ovIy8tDfPw0eHt7o2toEK7lX4OFsAmenp64evUqpFIpPRpRX4J+9+5dvPXWWzh8+LAhBN3oMWhMXRGdlTSqMnKus+tqMhTagmmB6sZ6iAQCxMTEaEXQGxsbYW5uLjfhSXaxLi4usLSxhbmVLaysrREXF0c7Aso2PLm7u2PZu2/g76vpSP50qUq13aSByczMDDExMfT7UlJSgl8OHIdLwhis+PIr/H7skMavGQBtJRAXF6f1unDSku/r6wuJRAIOh4Ps7GyYm5ujrq4OFhYWcvMV2oAkzZuamhATE4MbN24AFAVIJDA30/6ph+Q9lCmRbItsWalEIgGXy8XxtDM4/edFvDRlAubMegkjiosREhKCf27exKbdR8Hj8TB30ijMfvUVrb8Wedy7dw9z587FwYMH1a46etoxyp16Rx2lpD7ayspKqZFzsrQVdU0EnaIovPXay/jr74sYPeeTDr2uyfHU3d29w11heno6lq3eCAszM2z68jNERETQ36urq6N3sYmJieALhaiqrsPMF6fRr83DwwMeHh6gKAp1dXXgcDjoYmODSePGwMPDAyKRSGnL17t378LJyandoAkHBwdYm0lR/zATAT7qlZy2hVgMaDNxqAiRSISSkhL06NEDrq6udL6iqKgIFhYWdN+AtipSCgsLIRKJaO/6Pn36YNFrdWBVVmJicufJx86uLxKJ6PeMnHS00QFrbm6OBw8e4HphJaz9e+LoqXOIioqCjY0NWCwWsu/lQmDlDEtbd4jE2vVpUkR+fj5mz56NvXv3ys37mHiMUYq6op06GTlHdhOqIuuprmr8XBaxWIzs7Gz4+Phg+cfLOv3dn7Zuw+E/02EmbMKP61fSzR5tOffXRXSJHAp+Yx3Sb9ygRV2eKddLM2YovB+DwYCzszOcnZ3p+LKyDU+kBt3Pz09un4CzszN++notcnNztWJrW1RUhNra2k4tBhQhFArx+ep1yM4vxIJ5r2KoggHLgPx4PQk/hIWF0cMbZOeQkmYeVcslSbctg8FolYBlMBgYM1px046ytLS04N3FHyH/QRHefu1ljHx2OPLy8jSueb9+/To2fr8V3cJDMHXCeIBXBz6rAIGRfggODkZwcDB4PB5qamrwsOg4KAqIi+mB6upqjU3aOuL+/fuYNWsWdu3ape3u0KcOow2/tI2pqzpyTtF1iZCrK+h8Ph93796Fv7+/0s1R2XmFsO/aF03F2SguLlYo6mNGDsffK9bAytIC/ftNoX1ViOipEx6QjS+HhITQDU9kepFsw1NLSwuysrI69XcPCAhAQECAymuRhexihUKhRv40WVlZuJZfCre4sfhh226Foq6Mq6ONjQ392kjfQElJCRobG9vN2OwIUtba0dBmTcnNzcXDGgECx7yJXQd2IcDPVyuhq+9+2QWq61Bcy7uK55ub8c2qj1FRUYGBAwcCeHyKy8vLQ1RUFLaNGkWbtJFYvI2NTbshF5pSXFyMl19+Gdu3b0dcXJxWrvk080Ts1FUdOdfRdcViMcRisVpjrogwdOvWTSVb1DdefQlrN/2AboHeHSYW4+PjceLgbpiZmYHJZCI3NxeAdlvjra2t6elFRLgePXqEhoYGiMVihIWF6dzylYielZUVoqKiNBI9f39/2IibUXXrDIYnRsr9GXWMudr2DZByyQcPHsDGxoYuK20bLtLFjE95hIWFwYUpxKMzWzEgrjt69uyptoiSqpy4uDjERkbgTPrfsBQ1ISAgAD4+PnRlEAnLyYYR25q0keawrKwsSKVSWuDVOe2QtU2fPh1btmxBYmKiWq/vv4bBSholEkmHFS6k+7OgoADNzc0amziRkr3q6moEBwer/EfG4XDw6NEjREdH68yxj6BPUy7g8Wt7+PAhAgICUF9fj7q6ug4bnpSFz+dj1559kEoleHnGdNja2tLCQF6bNqiqqgKLxUL37t3brVXbxlyywsXlPq4HJ+WS1tbWyMrKgqurq8YnGWUoKyvD3bt3MXz4cLUFvaioCHMXLoHE0h7PD4jFO2+9gaysLHh5ebU6icoT9M4gmwYul4umpqZ2Iw87g8ViYfLkydi8eTMGDRqk1utrS2lpKWbOnAk2mw0Gg4G5c+diwYIFWLFiBbZu3Ur3RaxevRpjxoxRdBmjLmk0mKh3NtLuypUrsLGxUXvknCwkISoWi+kPI2nF9/DwgJOTk8LrE+uBmpoaREdH69zgiYR3AgIC9NIhRzpSY2Nj6dcm2/BUXV0NS0tLOg6vinjs3rMX23+/CYaZOWYMisLMl2Z0GK/XNqTRJy4uTmf/bsQal8Ph0MOTg4KClLJ30ATSjCbPDkMVLl68iM9/PgT70Hi4VGVi2/eb2v2MOoLeFmKPS2riraysWj0M28JmszFp0iRs2LABw4YNU+ue8mCxWGCxWIiPj0djYyMSEhJw9OhRHDx4EHZ2dvjggw+UuYxRi7pRhl9aWlrQ3NyM4OBgjUdsyVa4mJub0x2IEokENTU1qKioQF5eHhwdHeHh4QEXF5dWE1Ryc3PBYDD04g7YkSmXQCCgH0TagKIoehpR245U2frlsLCwVkdqMp7Ow8Oj05I5K0tLQCwAxTCDuRkDt2/f1nlzFoEYc/Xs2VNrpYry6vzJA6+8vBzdu3eHhYUFbe9gZ2dHn3a02j3KZtOJc02v27t3b/T76xIeFqdj/v/mtfu+NgQdeBymIcn78PBwtLS0oKqqCvfu3YNIJIKrqyu6dOkCDw8P1NbWYsqUKVizZo1WBR0A/fkHAHt7e3Tv3h3l5eVavYehMbqdek1NDXJzc+lBvJru0JVJiMqWANbU1MDW1haurq5gsVhwd3dHQECAzkMgHc0sra6uxrx3PkBVfRPemDkV06ZOUXidX3ftxp5DRzFsYD8sXfS+3HWTmLaFhQW6du2q0muT3ZnKa3iSRSwW48SJk2jhtcDfzw+xsbEajxHsDFIXrqwxl7IcO3kSm374Bd3CQ7FxzRd0CI5YVAQHB7eyNJAdv3b//n2w2Wz069cPfn5+GlWnkCEhujx9ELQl6J0hFotRXV2NQ4cO4aeffgKDwcDUqVOxdOlSnXoMFRUVYdCgQcjOzsZXX32FHTt2wMHBAYmJidi4cWNHuSWj3qnrduvZAfKEpLS0FAUFBUhISICFhYVCwy9loCgKYrEYFEXJnVLUdi3Ozs6IiIhA37594eXlhfv374PP59O7+Y7G72lKWVkZioqKEB8fL3f3e+/ePdQzneA95EWknftL4XXEYjF+3XMIAeMW4NyVW6ioqJD7MxkZGbC3t1drAhOZOBMXF4devXrB0dER5eXluH79Ou7duwcul0snuZlMJoYMGYzQkBAkJCToRdALCgrA5/MRExMjV9AFAoFacyt3H0iF78jXUVjFQ05ODoDHobI7d+4gLCysnUcNg8GAg4MDnJ2d8d223dhx6io2fvM9cnNzkZ6ejvv376O+vl6lv3HZen5NBP3ChQuYNW8+tm77VeH99SXowOO/E09PT7z00kvw8PDAvHnzwGQyMWLECLz5pm4cJZuamjBp0iRs2rQJDg4OePPNN/HgwQNkZGTA29sb77//vk7uqw+MIvxCuhdFIhF69eoFc3NzulJF1XihJg1FwOPSyQcPHiA+Ph729va0h0hmZiYYDAY8PDy0NtSCy+Xi/aWfoKWFhw2rP1P4WqOjo+Futhusv3ZhwRuvKryeubk5EuJ6IPPsdvi6ObYLc5BdZUBAAJycnLB1+w5IpRK8NH2aWmO/5DU8yVaIWFlZoa6uTiddom2RrahRdPq4f/8+Fnz4CYRiMb5cvgQJCQlKX3/YM/1w6PQeOHexQGhoKG1B3JlHDYfDQYuUCY/EESi9cRjx8fH0zrSsrAwNDQ1KJRDLy8txMCUFNzLv4bmhgzDr5ReVXntb1nz9PZz6T8W+tGN4dtiQdlU6+hR0QkNDA6ZOnYr33nsPU6dOBQB88cUXaG5u1vq9RCIRJk2ahBdffBETJ04EgFaDdF5//XWMVWKYtrFisPALGT5NBuC6urq2mqBz+/ZtdO/eXSXx1FTQKyoqUFZWhpiYGLkiRGq8ORwO7eVNYsuq3ksikWDtuvU4nVcLWyc3DAu0wOL33u3w54VCYafvh0gkwqNHjx6X+sn8bFNTE7Kzs9G1a1e4uLjgt737sO3MDTDMmJgxKApzZr+i0vo7goRAysvLYWlpCSaT2emEp5qaGvz9998IDQ1FTEyMSvcjXcaOjo4dlhHu2r0bv6WXwdreCb0dm/DxkkUqvaaysjK4uLiAoihkZWUpZUEslUrx9bff48adLMydOQ3D28SIKYqi52uSBGLbpHRpaSkqKirw4Yo18Hl2Nlh/78GBX76lJxqpylvvfoCCahGs+VX4bev3rR5KEomEdjzVl6A3NTVhypQpmDt3Ll58Uf2HlTJQFIVZs2bBxcUFmzZtor/OYrHoWPvXX3+N9PR07N+/X9FljDr8YtDmIzJyLiwsrN0fqKrDpzVt+X/w4AGam5uRkJCgcLfUtsab7Ep5PB5cXV3h4eEBBweHTu9NLHoju3fD+RuHIGqqRNfhkzr8HXNzc6UecCROLguxGJA1eLK0sAAlFgIMCaystBebJQ1TjY2N6N+/P22j3LbhqW2n5idfrEFeAxNmNQex/Zt1SptDicViZGZmwtPTs1MR6tunD/YdSUOLWIJRnyxW6XUxGAz4+/vTvQqdmWURzMzM8P6C/3V4XScnJzg5OSE8PJweUUeS0sQuOiEhAQG+3mBlnoeLnY1GseZ1K1fQYSNDC3pLSwumTZuGV155ReeCDjyuqtu9ezeio6PpRqbVq1dj3759yMjIAIPBQFBQELZs2aLztegKg9apX758GVFRUXI7/HJycuDn56dUHFaTDlGJRIKcnBzY2NggLCxMrYQoMdPicDhobGzscFgDaVUnVSAFBQUQCATo0aOHTpKxbDYbRUVF7eq0RSIRTpw8CYlUiqRx47TiuUJRFPLz8yGVShUOohaLxfSA6aamJvq9mv/+UjR6xoJ3/wa+/eJDREbKbySSRSgUIiMjA4GBgUrPoeXz+ZBIJGqFm+rq6pCXl6fRhClVePDgAaqqqmBtbY2WlhZYWFiAw+EgMTFR7V26Igwh6Hw+H9OmTcPkyZMxd+5cvdxTSxj1Tt1gog48jvEqIi8vjy4H6wiSEAWgcqWDQCDA3bt3tTprk7RNczgcuonHw8MDrq6uaGxspE25Opoary1KSkroeZuaJNZ+P3cOB46cxKihA/HClMlyf0YqlSI7OxtdunRRujWevFdcLhcZGRn48/I19OoZg1dmzux0vWSQRlhYWKd/I9qguroahYWFeskPAKAtj3v06EF7FpH3qra2Fra2tnRXa2fvFUVRyMjIaOe4STCEoAsEArz00ksYPXo03n77bZ1Xl2kZo16sQUW9ozmlhYWFdO24ImQ90NUZ1JyTk0PHmHUBaeLhcDiorKyEWCxGaGgovL29dVqORnxVBAIBoqKiNCrrEwqFGDVhGjwHzQDnyiHslxPLJSEQDw8PtT21SQkgh8NBdXU1LCws6KR024YnbQzSUAVtNfooAwkF8vl8hRYKFEWhqamJHgJChlu4u7vLPUGcOHkSX+9IASgplr01C8OHD6e/ZwhBFwqFmDVrFgYPHoyFCxc+aYIOGLmoG0X1izw6iqlrmhAlsXB5NeHahJS11dTUoEuXLggLC0N1dTXu3LlDJw89PDy0ZnwE/Dur1draWishHQsLC/h6uoOddx32Nhbt4sjqhEDkQd4rBwcHhQ1P7u7ukEgkuHfvnt5OO6QuXNvj5+RBURTu378PkUjUoScOg8GAvb097O3tERISAoFAAC6Xi/z8fAgEgna9Aw+LSsH0DINULEJRSSl9HUMIukgkwpw5c9C3b98nVdCNHoPu1DsaaVdSUkInp1otSMOEKOk0jI6O1vmui5RqAmgXYyY2rxwOBxRF0QKvSaxWJBLh7t27Gu2Y5VFbW4s7d+4gMjKylXUBKevT5WkH+Lfhqby8HA0NDfD29oaPj0+ng5M1pby8nLZQ0MUADVlIjT3JRzAYDPD5fFy4cAGenp706LjOIPkdLpeLhoYGOqG65dfdYDKZ+OiDd+Hm5mYQQReLxZg3bx66deuG5cuXP8mCbtQLN1pRLy8vh0gkajV8QpOEqFQqpZN43bt313nLv1gsRlZWltxBE20RCoW0wAuFQrqSRhXTMRJjDg4O1noSTR7E0kC2rI+iKJw7dw5V1dUYP26cVkf7EWOu6Oho2h+eiBaxd1DHj10RxPwtJiZGq9eVB/FeNzMza1Vjv3rdRvyRVQpGExebPl+C6Ohola8rz8PHxcUFeXl58PT01NvAZolEgvnz58PX1xerVq16kgUdMHJRN9rwCymFI2iSEBWJRMjKyoKzs3OnAqsNVDXlsrS0pMetkeqQoqIipU3HmpqakJWVJdczRhfU1NSgoKCgnZXt1atXsWbrfjDs3FBUWoGPFmunK48Yc8XHx8PCwgJ1dXWorKykm4c4HE6nlriqQGwGunfvrpX1dwRFUbh37x4sLS3bVV+xuVWwdg8AXyJETU2Nytdu6+HD4/HAZrNx48YNMJlM8Pl8NDY2ws7OTqefCalUioULF8Ld3R0rV6580gXd6DGoqHf0j8tkMmkR1yQhyuPxcPfuXQQFBWkU81UWsoNV1XOdwGQyW/l419TUgMVi0aZjpCKIPNiIwKozk1Id2Gw27W3fNhcgFAoBc0uYWXUBX6AdW4WSkhJUVVXRk5EaGxsxd8EiCGy94HswFb/+9B2cnJzoCU+y3b8kpKVsAxuJaQsEAtTV1eH5yS/CxckB3238Uid/O6QL1sbGBiEhIe3+the+PQ8/bP0VAQNjMWDAAKWvS4aDZ2Tn4pUZU+nyUEtLS9TU1CA8PBweHh6orq5GUVERmpqa4OTkRO/itXmKlUqlWLx4MWxsbLBu3Tqdn5BNGDj8IhaLFSZDa2trwWKxEBERoVHLf25uLiIjI3XuOwJ0bMqlKfJMxywtLfHPP//g7N9XERkRjkUL39Fp7Le0tBQcDkdhjFkikWD/wYOo5FRh1ovTNXJjJMPFm5ub6bI+4HFY7uW3F8G9TzKqruzHHycOy/274PP5tPEYcQHsKKRFauwBICIiAgsWL0OFQyTqS+5hQVJ/pdvGKYrC5u9/RNq5vzDx+VF4c+4cuT9HSkDJRCptkpOTg/8tXwe7rv1gy7qNfTt+pmPo8kIuskNAamtrtXbikUql+Pjjj8Hn8/HDDz88TYJu1EcNow2/mJmZQSgUQiwWw9zcXGVBZ7FYdNWCPuqKy8rKaJ9mXSRg284dLSgoAJfLxb4jaZCEDkRx+m0MSk9XaUenLLIC27NnT4UfTnNzc7w4fbpW7kfyH2RgM8HHxwevvTAeF65cx5sfvKPw78La2pqeZUu8VoqLi1s1PJHmMHkhkOeGDcSGH35FFysm4uLeUnrtNTU1OHrmT4SMfwf7jnyNl2dMa5dbINORHB0dOxxYri6Ojo4wlwjRwn6EABfnDgUdePxZc3FxoS0Q2p54SOWRKhsViqLw+eefo76+Hr/88ovWBF3RkIuamhq88MILKCoqQlBQEA4ePKjzCV7GilHu1IkvzL1799Dc3Ex7rCjTgk8EqKGhAdHR0XqpWrh//z54PB6ioqL0klQrKCiAWCxG9+7dsXrdRpzPeABpAxuL354DT09PlcMOnd0vNzcXZmZmark6qoqsMZe6Hb6dXb9tEw+xEA4NDW31s9XV1bC2tlZJzMRiMeb+byGKq5oQ7u2MHzdvbPUapFIpPflJl9ORcnJy8ODBAwwYMADFxcVqJ0VJEp/L5YLP58PFxYUul1Qk1BRFYc2aNSguLsaOHTu0+plQNORix44dcHFxwZIlS/Dll1+itrYWa9eu1dp922DUO3WDirq8kXZtK1ykUmmrFvyOEoekhtnS0lJln3B116+pxYA695Pt2hQKhbh9+zZ8fX3h7+9P+6xwuVyIxWKNTceys7Nhb2/fymxNG4jFYty8eRNubm70IG5izEUqhnSNWCzGnTt3YG5uDpFIBAsLC9pMS5PTHZ/PR1FREYKDg1vlHciO2d3dXaslp4robIeuzvVqamrA5XJRX18vd+QhRVHYuHEjcnJysGfPHp1vqpKSkjB//nzMnz8fFy5cgLe3N1gsFoYMGUKH03SASdQV0VbUO0uIksQhh8NBfX09nJyc4OHhAWdnZ3qup6enp14+MMSUy8vLSy91viKRCJmZmSrdTyQS0XFlVU3HSM27MkZZ6vDtDz/h6MU7YPAb8O2a5QgPD1famEsbkC5YLy8vWvBI7wDxhCcCr84DsS0SiQQZGRmt7icPkUgEiqI0DuFpW9DbQsolyXi6a9euoaWlBRKJBHl5eThw4IDOm7Vkh1wEBASgrq6OXpuzszP9/zrAJOqKIKKuTkMRSe6QtnKhUIjAwEAEBQXpPCFDmm70NZqNVPCEhIS0G8agLG1Nx2QfiG3fL1KSGRQUpLOa93cWLcUjc3+0lOdh0Ytj6EHU+qhQInbP/v7+CktOScMTl8sFj8ejww4dlZYqggwm8fHx6XA8Y0FBARYu/RQSqRQbvvgEPXr0UOk+BF0LujwePnyINWvW4O+//4aPjw+ee+45TJgwQemmKVVpamrC4MGDsWzZMkycOBFOTk6tRNzZ2Rm1tbU6uTeMXNQNXtKobocoSe5QFIXa2lp069YNDQ0NSE9Ph52dHTw8PODm5qb1GDepqNFXmzopkdS0gkd2oIVsXLmgoKCV6Rifz0dWVhYiIiJ0mmh667VZ2PDtT/AK86DDSbow5mKxWKitrUX37t3pcFVGRkanDywy4cnHx4cOO5DSUlUanpR5gBD+/PsiJP7xMLewwu/n/1JJ1Hk8Hu7du4egoCCNYujqQFEULly4gJqaGty/fx9CoRBnz57FpUuXdCLqioZcEE90FoullwY8Y8WgO/Xm5mba0EudksXS0lK6jZscV2WNoaqqqmBjY0MbQ2ka36usrERxcXE7G1tdQZwBdWn1Kms6xuFwIBAIEBQUBDs7Ozg5OenUSkHXxlwFBQV4+8PlkJhZYdaEkXhh8iSNnR3bDrWwtramNxBt3ysi6AEBAUqdQLKysvDBJyshpYAvly9WejITRVGPB19wWmDWxMaPX6+j8xT6YNeuXUhJScGJEye0kpzvCEVDLhYtWgRXV1c6UVpTU4N169bpahlGvVM3qKhv2LABe/fupY9qyrbvkwoQoVCIyMhIhbslUp7FZrNRVVUFS0tLWuBVESuKolBcXIyamhrExMToPPkD/NtFKfvA0iXkARIeHo5fd+7CgRPn4OrQBV+t+RwhISFaf4ipOmxCHU6fPo0NB/+EvW8E/HiFeGnKBK0/QIhlQVVVFd3wRDYQGRkZ7QZSd0ZjYyMoilJpCIZEIsGw5yfCeeCLqLp6CPu3fK03P5f9+/dj165dSEtL00vz2+XLlzFw4MBWQ8VXr16NPn36YOrUqSgpKUFgYCAOHjyoSz8ik6h3RF1dHU6cOIHU1FQ8evQII0aMQHJyMmJjYxUOWcjKyoKDg4PcLryOIB9ALpfbKhzRkUtiR6ZcuoBMDqqrq9OL7wjQ/gEyZeZrsIqfCNY/p7DghVHw9fWFVCptlTjUBFmbAV3u7BoaGvDRilUoZ1Vi4phnkZSUpNPp9MQtkc1mo66uDu7u7ggKClLJw0cdJBIJNn/zLf64nI7Rwwdj/pvz9NKKn5qaip9//hlpaWl6CUUaESZRV5bGxkakpaXh8OHDyM/Px7Bhw5CcnIzExESYmZnh4cOHqKioQFhYmFKeKh3B4/FogQdAC7zsjlQVUy5tQIydKIrSywME+LcNX/YEsv/gIfy0cx8CvD3x/dfrYG9v38p0TCAQ0KWSqgoWMeaKi4tT2nL40qVLOJJ2FqOGD8KoESNUen0kJ6HLE4EsAoGA3qFTFAUul9vpNCxNMERSFABOnDiBb775BmlpaXrxGzIyTKKuDjweD2fOnEFKSgru3r2L6OhoXL9+Hdu3b0fv3r21ei+BQEDHlCUSCTw8PODo6IjCwkKlTbk0hdRoOzg4aL0mXB6kaYoMY5A3ds/GxkbhaYlU0jQ1NSllOgb8eyKIi4tTutyNz+fj+SkvwqlXMmpvnsDhnVuUTuDqe/wcn89HRkZGuySzbKVWbW0t7Ozs6DZ8TUJ5RNC9vLw6rKrRNmfOnMG6deuQlpaml6lTRohJ1DVl3759+PTTT5GQkICsrCz0798fEyZMwIABA7Qe3xYKhSgtLUVxcTGsra3h5eUFDw8Pne7yhEIhMjMztTpWryOkUilyc3PBZDI1btJq2ztAKkNkTceAf08EsbGxKoWUxGIxXpj5GhrsAmBV8wAHd/2ilECTEI++xs+RqqjOnDLJ1CIShy8qKgKPx8PYsWNVKo81lKCfP38en3/+OU6dOqV2ee1TgEnUNeHPP//E+vXrsX//fjg6OkIoFOKvv/5CSkoKrl69ij59+iA5ORmDBg3SSkJR1pTL0tKyVfOOuiGHjtB3zbtEIsHdu3dpG2JtIs90zN3dHU1NTeDxeK2MuVSBxWLhn3/+QVxcnFKt9eqEeIDHO20Gg6HyJKpN336P3QdS0a9XPDatX6P0RqOgoADzFi2HqIs7ujlSmDt7plINT6SRiQwL0RcXL17EsmXLkJaWppfTqxFjEnVNIJYB8j4oYrEYFy9exKFDh+ia2OTkZAwdOlSt3Rkx5ZJXcSKRSFBVVQU2m43m5ma6O1OT6TukAkR20IQuISV2vr6+OhcDUlqam5sLHo9H7+A9PDx0Ws3DZrNRUlKiUogHAG7fvo0PP/sSlkxzbPryc4SHhyv1e01NTRjyXBKiZn6KktNbsf2rzxEcHKzU7/7zzz9Ysv5nWAdEw4f/CD98va7VJkJewxMRdDabje9+2QVPdzdsXPO5TidPAcCVK1ewePFipKWl6fVBYqSYRF0fSCQSXLlyBYcPH8aff/6JqKgoJCUlYcSIEZ0e11U15SLNKGT6jrOzM92dqazAkxOBritACGQykiZdqarQ1phLNjGtjte5MlRUVNAPZVXDcqvWbcD1mi4QNNVjRm9fvDJzZqe/Q4aTnDp7HpduZSHE1wM/btqg9E5fKpXi112/oeDBQ7w+66VWteVtfVYcHBzg6uqKsrIy+Pj4YO2m71Fq2xUNJbl4b9IgjBkzRqXXqwrp6elYuHAhTpw4oRcLjicAk6jrG6lUihs3biAlJQXnzp1DWFgYkpOTMWrUqHaxcU1NuUh3JpvNRn19PRwdHeluQ0WhhvLyclRUVOitBr2pqYke3KGPSoXOQjyk9I/D4WhsOkYgs2dVjdkT/vnnHyz9Yh0szM2x6cvPEBER0eHPy1bV2NraorKyEm5ubjrxOyFd0zk5OQAAe3t7pP9zE/tPnoe1OfD9hlVa92Qn3L59G2+//TaOHTumF5O1JwSTqBsSqVSKjIwMHDp0CGfOnIG/vz+SkpIwZswY8Hg8bNmyBbNnz9bKDoTElNlsNmpra1u135ubm9O2wE1NTejRo4deatBJBUiPHj30UtJHjMA6M66S/fm2pmPE2lVZgX/06BFttZyeno6CwvsYM/o5lU8kzc3NMDMz6/T0QMJm+po21TaGTvzO7969C1tbW4SFhcHd3V3rFT6ZmZmYN28eDh8+rHQ46j+CSdSNBYqikJ2djUOHDiE1NZU21n///fe1HpMk7fdsNhvV1dXo0qULxGIxbGxsaB8SXUMShvqyNSC+KuoacxHTMS6Xi4aGhg5Nx4DH7/GDBw/A5/MRGRmJBw8eYN6iT8HwCEdElxb8sGm9Nl5WK+rr65Gbm6u3sFlnSVFy6uFyufTQcnd3d6WcODvi3r17mD17Ng4ePIhu3bpp8hKeRoxa1J+a+VLKwGAwEB0djdGjR4PJZOK7776Di4sLJk2ahKSkJGzfvh0cDgedPOiUvpejoyO6du2KXr16QSgU0kKfmZkJFosFkUikhVcln4qKChQVFSE+Pl4vgs7j8XD79m2Ehoaq7bRIunyjoqLQp08feHp6gsvlIj09HdnZ2XQfAfCvVYRIJKLr7B/PSGXCoosdBEKBNl8egH/LFu3s7PDRipXY9N0P7eYBdAYpAVXmb0yZKhcrKyv4+fmhZ8+eSEhIgL29PUpLS3H9+nXk5uaiuroaUqlUpTXm5eVh9uzZ2Lt3r1YFffbs2fDw8GhlVLZixQr4+voiLi4OcXFxOHXqlNbu91/lP7VTBx6LwYIFC7B48WLaH4Ps+FJSUnD8+HFYWVlh3LhxSEpKgpeXl0Y7HlKD7ufnB29vbwBoVafMZDLpaUXaiK8Tn5ra2lq92Qw0Nzfj7t27OpsFK2s6Rky0RCIR7Ozs0K1bN/rfh6IonExLQ27BfUybPFGrk4Vk697f/2g5isz9wCvPw4o3pmHQoEFKXUMikeCDjz7Brax8DOufiE+XLVG6bJGiKNy8eRMNDQ0YPHhwp4lg2bmjpLyUhAI7ivvfv38fL730Enbv3o3Y2FilXpeyXLx4EXZ2dpg5cyays7MBPBZ1Ozs7fPDBB1q9l44x6p36f07UO4OIYmpqKo4cOQIAGDt2LJKTk+Hn56ey10xWVhbCw8MVdt61tLTQVSFmZma04Zg6u+u2o+70YTOgD2MuWUiOhEzIIrt7TacVdUR1dTXu379P172vXrcR5+8Wg9FchW9Xf4Lu3bsrdZ3Kykq88Po76DZlEe7t+QLnjh2Uu2Z5O/QrV67gk69+BmXZBdOf7YW5r81Wev2yDU/V1dVgMplyJzwVFRVh+vTp2LZtGxITE5W+vioUFRVh7NixJlHXISZR7wCKosBisXD48GGkpqaCz+dj7NixSEpK6rSVv76+Hvfu3VPJd53P59N2BRRF0XXdysRupVIpcnJyYG1trZfReoD+jLkIxErB2dkZgYGBAP59z7hcLqRSaatKGm1QVVWFBw8eoGfPnvRJSiAQ4NKlS/Dy8lLJ81wqlWLxsuW4kZGDEYP64eMli+SOZJQXcjl+/Di+TvkLFg4eeMbXHMuXLlb7NclOeKqvr8fvv/+OIUOG4LPPPsPPP/+Mvn37qn3tzpAn6jt27ICDgwMSExOxcePGJ2FgtEnUnwYoigKHw8GRI0eQmpqKuro6jBkzBklJSe1a7UmCMiYmRm2xa1v2R+q65YkVGeXn5uam02HGsnA4HBQVFSE2NlblDkx1IG3xHh4eCm1ltWU6RiCvMS4uTmulpySUJC+R2VEMncfj4dsft6C2vhHvvDGHDuVpSn19PbZu3Yrdu3cDAMaPH4+kpCQMGDBAJ6G7tqLOZrPh5uYGBoOBTz75BCwWC9u3b9f6fbWMSdSfRqqrq3H06FGkpqaisrISzz33HJKTk3Hq1ClQFIWFCxdqrWZZJBLRlq5CoZAWKzs7O3p2qWzMXtdUVFTQdfa6nkMJ/Duf1dfXV+nXKM90jLgkKiPw6namqouhWv8rKysxefJkbNiwAf3798eff/6JY8eOYcmSJUp3xqpCW1FX9ntGhknUn3bq6upw7NgxrF69GhRFYdy4cZg0aRJiYmK0HtcWi8Wt7ApEIhGCg4Ph7++vl5CLusZc6qLs+LmOUGQ6pmgcHYvFQnl5OeLi4vQyEMVQgs7lcjFx4kSsWbMGI0eO1Ms92wo3GUEHAF9//TXS09Oxf/9+vaxFA0yi/rQjFArx+uuvw8XFBZ9++ilOnz6N1NRUFBQU0J7wCQkJWhX4xsZGZGVlwdvbG01NTfRu1NPTUyM/GkWQxqnm5ma1jblUhVgbaDJ+ri1kHB1JGpKqEGKDq4nVgDoYStCrq6sxadIkfPrpp3j++ef1cs/p06fjwoULqKqqgqenJz777DNcuHABGRkZYDAYCAoKwpYtW/R24tQAk6g/7TQ0NCA1NRWvvPJKq6+3tLTg9OnTOHz4MLKysjB48GAkJyejT58+Gu1ya2trkZ+fT7eoA493oyTcQBp3PD094eTkpLEAUxSF/Px8eniHPk4EPB4PmZmZOh2A3dYGl9TA9+zZU6+NRT4+PnoVsrq6OkycOBFLlixBcnKy3u77FGESdWU4c+YMFixYAIlEgjlz5mDJkiX6urVe4PP5OHfuHA4dOoTbt29jwIABmDBhAvr376/SjlCZBCXxo+FwOKirq1Poca4MpKrGxsYGoaGhehF0UgravXt3ndS9y6O0tBRsNhuurq6oqqoCAJWqj1TFUILe0NCASZMm4d1338WUKVP0dt+nDJOod4ZEIkHXrl1x7tw5+Pn5oVevXti3bx8iIyP1cXu9IxQK8eeffyIlJQXXr19Hnz59kJSU1KknfFlZGdhsNmJiYpRO3rX1OLezs4OnpyftR9MRxJjLxcWFLiHUNfoePwegVbMWeejJVh+JRKJWyWlNH2yGEvSmpiZMmTIF8+bNw4wZM/R236cQk6h3xrVr17BixQr8/vvvAIA1a9YAAJYuXaqP2xsUsViMv//+GykpKbh06RLi4+ORlJSEYcOG0TtxqVTaKp6tbuimbWemjY0NPD095Y5VIxUn3t7eept9SXxVZMNKuubRo0dobGzsME/Q1nSMjO9TJ3dhKEFvaWnB1KlTMXPmzHZhQhMqY9SirvtMkBKUl5e3ckn08/NDenq6AVekP5hMJoYPH47hw4dDIpHg8uXLOHz4MFasWIEePXpg3LhxOHLkCOLj4/HOO+9otEskfjSOjo4ICwuj48nFxcWwtLSk7QooitLImEsd9N3IBAAPHjxAS0tLp4lfCwsLeHt7w9vbm/Y5Ly8vR25ubqemY7IYStB5PB5mzJiBadOmmQT9P4BRiLqJx5ibm2Pw4MEYPHgwpFIpLl26hLlz58LKygoSiQRHjhzByJEjtRKWYDAYsLe3h729PUJDQ9Hc3AwOh4Nbt26hpaUFvr6+euvsk+3a1Ecjk6y7Y48ePVR6UJqbm9Mt9rIDpQsKCmBvb08PlG57mjKUoAsEArz88stISkrC66+/rrf7mjAcRiHqvr6+KC0tpf+/rKxMb0d+Y6W5uRkrV67Eu+++i3nz5uHOnTs4dOgQNmzYgMDAQCQlJWH06NFaSySS0r7Kykr06NGDrj5hMBh0wlAX3ipsNhvFxcWt2vB1CUVRKCwshFgsRlRUlEYnHzMzM7i4uMDFxYUObXG5XDx69AjW1ta0J42ZmZlBBF0oFOKVV17BiBEj8NZbb+klya1t1q1bh+DgYFNSVwWMIqYuFovRtWtXnD9/Hr6+vujVqxf27t2LqKgofdzeKBEKhbhy5QqGDh3a6utSqZT2hD916hQ8PT2RlJSE559/XiNPeBLPbjtMg8/n0wlDqVQKd3d3eHp6aiVEQpp89NWZSkozASAiIkKnIkdOPlwuF83NzXB3d0dYWJhebJCBx3mA2bNno1evXvjwww+fSEEHgG+++QZSqRTvvvsubeBmBBj1m2kUog4Ap06dov/hZs+ejWXLlql9rdLSUsycORNsNhsMBgNz587FggULtLha44CiKOTm5iIlJQUnT56Ek5MTxo8fj3HjxtF+GsqgbDxbKBTShmOyY+jUCQdpOn5OVch7ZW5u3s6rR1eQkAuZwMTlciGRSDr08dEGYrEYc+fORWRkJD755JMnVtAB4LfffsOvv/6K8+fPG3opshj1G2o0oq5NWCwWWCwW4uPj0djYiISEBBw9evSpLZEE/h2effjwYRw/fhzW1ta0J7ynp6fCD7a6xlzEj4bD4YDP58PNzQ2enp5KlfwVFRWhrq5OJzYK8qAoCvfu3YOlpaXeHCwVxdCFQiFdSUPeN01Mx+Td9+2334a/vz9Wrlz5RAr65cuXUVRUhBkzZqC6uhqrVq3CmjVrYGNjA4qijOE1GXwBHfFUinpbkpKSMH/+fIwYMcLQS9ELxBP+8OHDOHLkCMzMzGhPeF9fX/pDUVRURPu4aBL+IH40HA4Hzc3NcHV1haenZzsnQmI10NLSQk8r0jVSqRT37t2DjY0NQkJCDCro8n6OvG9NTU1wdnaGh4eH2l3AJEzh7OyMtWvXavX9nT17Nk6ePAkPDw/at4WMgywqKkJQUBAOHjyocXK9uroamzZtwsWLF+Hj44P8/Hzk5eVhw4YNeOuttwDAGITdJOqGpKioCIMGDUJ2djYcHBwMvRy9Q1EUKioqaIEXCAQYO3Ys2Gw22Gw2tm7dqtXwB5kzyuFw0NjYCGdnZ9qPprCwEBKJRG8zWkn+wd7eXieOg/IQi8XIzMxUOSlKuoDZbLZSpmPyfn/RokWwsLDApk2btP7AlDe1aPHixXBxccGSJUvw5Zdfora2FmvXrtXaPZubm5GZmYnbt2/j8uXLePbZZzFnzhwABhd2k6gbiqamJgwePBjLli3DxIkTDb0cg0NRFNhsNmbPno28vDy4ubnh+eefR1JSEsLDw7X+ISHuiGw2GxwOB9bW1ggPD4eLi4vOd+lSqRRZWVlwdHREUFCQTu9FEIvFyMjIUMkiWB7yTMdIqaS8E5VUKsWyZcsgEAjwww8/6Oy9beuwGBERgQsXLsDb2xssFgtDhgyhE9Ga0DYhKhAIcO7cOWzfvh0DBgzA+++/r/E9NMSoRd0oShp1gUgkwqRJk/Diiy+aBF2G1atXIygoCCdOnEBtbS2OHj2Kjz76CBwOh/aE19ZOmpT8sVgs+Pv7w9nZGVwuF4WFhRr50XQGsTdwdXXV29AQbQk68LiHwMnJCU5OTq1Mx27fvg0LCwu6VNLKygpSqRSfffYZGhsbsXXrVr2EtAhsNpt+rV5eXmCz2Wpdp+2uu+3JxMrKim7Ou3LliqF36UbPU7lTpygKs2bNgouLCzZt2mTo5RgVV65cQf/+/dt9KGpra3HixAkcPnwYJSUlGDFiBCZMmIDo6Gi1hULRbrntTtTOzo62v9U0FKTMhCRto01B7wwejwcOh4NTp05h9+7d8Pf3B5PJREpKis6riNru1J2cnFBXV0d/39nZGbW1tSpdUyqV0n9fIpGow9yOUCiEhYUFGAyGoYXdqJ8oT6WoX758GQMHDmwlSKtXr8aYMWM0vrZEIkFiYiJ8fX1x8uRJja9njDQ0NCAtLQ2HDx9GYWEhhg8fjuTkZMTHxyst8ERc3d3dW1lAtIWiKDQ2NtL2tzY2NvROVFU/c5Kg9PLy0lvzmj4FXRaKorBq1SpcunQJtra2qK2txZgxY7BkyRKddeXqMvzyzTffIDs7G927d0dsbCyGDRumzaVrG6MW9acy/PLMM8+gk4eV2mzevBndu3dHQ0ODTq5vDDg4OGD69OmYPn06WlpacOrUKfzwww/IycnBkCFDkJycjN69eyvcGRKh8/Hx6XTwA4PBgIODAxwcHGi7AjabjVu3bsHS0pIW+M66TQ0hroYU9G+//Rb5+fn4888/YWFhgfr6evzxxx966coljB8/Hjt37sSSJUuwc+dOJCUlqXWd7777DidOnMDKlSvx2muvYfbs2cYu6kbNU7lT1xVlZWWYNWsWli1bhq+++uqp3akrgs/n4+zZszh06BDu3LmDZ555BsnJya084Zubm5GTk6MVM7CWlhaw2WxwuVyYm5vTdgVtd6IikQgZGRnw9/eHl5eXRvdUFkMK+pYtW3DhwgWkpKToTcTlTS1KTk7G1KlTUVJSgsDAQBw8eFCprubs7Gz06NEDwOMk6OrVq/HGG2/gyJEjOHPmDI4fPw6RSISamhq9GcqpiFHv1E2irgKTJ0/G0qVL0djYiA0bNvznRF0WoVCI8+fPIyUlBenp6ejbty8GDhyItWvXYteuXVpv9CKxZC6XC4qiaIFnMpm4c+eORjNMVcWQgr59+3acOnUKR44c0ZvlgLZ588038cknn9CnuHXr1uHnn39G165dcerUKQDAl19+CR8fH8ycOdOQS1WEUYu6/lLlTzik8SIhIcHQSzEKLC0tMXr0aGzbtg137tzBsGHDsGjRItjb2+Pbb7/FmTNnIBAItHY/GxsbBAYGIjExke5Ezc7OxqVLl9ClSxe9DdQggu7n56f3WZq7d+/G8ePHkZqa+sQKOgD8+OOPYLFYGDlyJEQiEZ5//nnExMTg2WefBQBs3boVhw4dMoVg1MS0U1eSpUuXYvfu3WAymeDz+WhoaMDEiRPx22+/GXppBuf+/fuYMmUKfvrpJyQmJuLy5ctISUnBX3/9hejoaCQnJ+PZZ5/Vqk+6QCBARkYGgoKCIBaLweFwIBQKabsCW1tbrVdHyAq6vsI8hH379uG3337DyZMn9TZARJvIq1Z5/vnn0aVLF2zfvh0XL17E0aNH8fDhQ5iZmeGnn35CaGioMZl4yWLUO3WTqKvBhQsX/vPhF1kqKipQVVWFmJiYVl+XSqW4fv06UlJS8Mcff6Br166YMGECRo4cqZEw8fl8ZGRkoGvXrq1iuG0nFGnTV8WQgn748GFs3boVaWlpsLe31+u9tc3ly5fR1NSEyMhIBAQEYNq0aRCLxdi5cydsbW3B5XJha2uLLl26GKugAyZRf/rQpqjX1dVhzpw5yM7OBoPBwPbt29GvXz8trNK4kEqluH37Ng4dOoTff/8dQUFBtCe8KvYNRNAjIiI69Blp66vi6uqq9gg6Qwr68ePH8e233yItLQ1OTk56vbe22bNnD7777jsMGjQI//zzDz777DMMHDgQ06ZNQ11dHQ4fPgxbW9tWtetGiknUTShm1qxZGDhwIObMmQOhUIiWlpYn/sPbGaQp6dChQzh9+jS8vLxoT/iOhJoM7ujWrZtK7xEZQcfhcNDQ0KCScZYhBf306dNYv349Tp06pZFXvjHAZrPx+uuv4+jRo9iyZQv279+P48eP00NeZs2ahby8vCdljKVJ1E3Ip76+HnFxcXj48OF/tu25rSe8s7Mzxo8fj7Fjx9I+5MDjUsm7d+8iMjJSo2lPbY2zHB0daeOstgJvSEH/448/sHLlSpw6dQpubm56vbcuqK6uxocffggPDw9cuXIFBw4cgJeXF44ePYqBAwfC1dUViYmJ2LBhA4YMGWLo5XaGUX9YTaJuQDIyMuhhBpmZmUhISMDmzZufyESYNiCe8CkpKTh+/DhsbGwwfvx4hIeH44svvsDRo0e16rRJURTq6urAZrNRW1sLe3t72o+GDN82hKD//fff+Pjjj+nJVk8Ln3/+Ofbu3YsdO3agb9++OHnyJBYtWoSUlBSEhoZi7NixSElJeRJOqiZRNyGfmzdvom/fvrhy5Qr69OmDBQsWwMHBAV988YWhl2ZwKIpCUVERvv/+e2zbtg3x8fG04ZiPj4/WTzZkxiibzUZ1dTUEAgG8vLwQFhamsl2BJly+fBkffvgh0tLSOu3GfdJ4+PAhtmzZgjt37iAxMRGpqan4+eefMWjQIADt3RmNGJOom5BPZWUl+vbti6KiIgDApUuX8OWXXyItLc2wCzMSMjMzMWvWLOzbtw/29va0J7xQKKSnOgUGBmpV4MViMe7cuQM3Nzc62So7RFqXs1TT09OxcOFCnDhxokO/nCeZ+vp6XLlyBTweDyEhIejZs+eTkBhti0nUTShm4MCB+OWXXxAREYEVK1agubkZ69evN/SyjIIzZ84gNDQU4eHh9NeIJ3xqaipSU1PR2NhIe8JrOqpOUQydWN9WVVWByWTS3azabNG/desW5s+fj2PHjunN/92E2phE3YRiMjIy6MqXkJAQ/PrrrxqPBPv666/xyy+/gMFgIDo6Gr/++usT3YHYEVwuF0ePHkVqaiq4XC7GjBmD8ePHq+wJr2xStKWlhbYrMDMzo3fwmry/mZmZmDdvHlJTUxEWFqb2dZQhKCgI9vb2MDc3B5PJxM2bN3V6v6cUk6ib0B/l5eV45pln6LmcU6dOxZgxY/DKK68Yemk6p7a2FsePH8fhw4dRVlZGe8L36NGjw+O9ulUufD4fHA4HHA6nlR+NKp2zOTk5eO2113Do0CFEREQo/XvqEhQUhJs3bz4VFTUGxKhF/am03v2vIxaLwePxYGFhgZaWlqcu4aYIZ2dnzJo1C7NmzUJDQwNOnjyJ9evX48GDB7QnfM+ePVsJvCZli9bW1ggICEBAQACEQiE4HA5yc3MhFovh7u4ODw+PDiuZ8vLy8Nprr2Hfvn16EXQT/w1MO/WnkM2bN2PZsmWwsbHByJEjsWfPHkMvyaA0NTXh9OnTSElJwb179zB06FAkJycjLCwM7777LtauXavVoRoikQhcLhdsNhsCgYAWeDs7OzokVFhYiJdffhm7d+9GbGys1u7dGcHBwXB2dgaDwcC8efMwd+5cvd37KcKod+omUX/KqK2txaRJk3DgwAE4OTlhypQpmDx5Ml566SVDL80o4PF4OHv2LPbu3Yu//voLQ4YMwWuvvYZ+/frppHRRLBajqqoKbDYb5eXlOHXqFIYOHYp169Zhx44denf9LC8vh6+vLzgcDkaMGIFvv/2WLik0oTRGLepPVB2Ric75448/EBwcTJffTZw4EVevXjX0sowGGxsbDB06FJWVldi0aRNeeeUVHDhwAP3798eCBQvw559/QiQSae1+TCYTXl5eiI2NxeDBgxEZGYmVK1eCz+fjt99+w+XLlyGVSrV2v84gJxIPDw9MmDABN27c0Nu9TegHk6g/ZQQEBOD69etoaWkBRVE4f/48unfvbuhlGRWnTp3C/PnzMWPGDIwZMwbbt2/HnTt3MHXqVJw8eRIDBgzAW2+9hd9//12rnvD19fXYs2cPtm3bhpycHIwcORI7duxAZmam1u7REc3NzWhsbKT/++zZs/QEIhNPD6bwy1PIp59+igMHDoDJZKJnz5745Zdf1BpGPHv2bHo4CBk2XFNTgxdeeAFFRUUICgrCwYMHNS7BNDbEYjHtCX/hwgXExMQgOTkZw4cPV9sTvrKyEpMnT8bGjRsxdOhQLa9YOR4+fIgJEyYAePwaZ8yYgWXLlhlkLU84Rh1+MYm6CYVcvHgRdnZ2mDlzJi3qixcvhouLC5YsWYIvv/wStbW1WLt2rYFXqjskEgntCX/+/HlEREQgOTlZJU94DoeDSZMmYc2aNRg5cqSOV2xCD5hE3YRiSDyVlNnJmxBjSIqKijB27Fha1CMiInDhwgV4e3uDxWJhyJAhyM/PN/Aq9YNUKsWtW7dw6NAhnD17FsHBwUhKSsJzzz2n0GisuroaEydOxGeffYYxY8boecUmdITxfEDlYBJ1I6SsrAx+fn6GXgaA9qLu5OSEuro6AI8fQM7OzvT//5eQSqW4e/cu7Qnv4+NDe8ITl8G6ujpMnDgRS5cuRVJSkmEXbEKbGLWomxKlBuLKlSt45513MG7cOBw/fpzesVdVVWHJkiV6rYhQFwaDYVSnCn1iZmaGuLg4rFq1Crdu3cLatWtRUVGBpKQkTJgwAT/99BMmTJiADz74wCToJvSKqaPUANy8eRNLly7Fpk2bYGZmhlWrVsHd3R39+vVDQ0NDu2HWUqkUFEUZhS2pp6cnWCwWHX7x8PAw9JIMDoPBQFRUFKKiorB8+XIUFhZi48aNGDJkCCZPnmzo5Zn4j2HaqesZsViMQ4cOgcvl4r333sOZM2fAYDCQm5sLAOjfvz9+//13AI/LzlpaWmBmZmYUgg4A48ePx86dOwEAO3fuNO1C28BgMNC1a1ds2bLlqU4gmzBeTKKuZyiKQn19Pb766ivs2bMHIpEIEokEDg4OKCkpgaurK4YOHQoWi4XNmzfjueeew3PPPUcLPYGEZ1JTU1FcXExfW5tMnz4d/fr1Q35+Pvz8/LBt2zYsWbIE586dQ3h4OP744w8sWbJE5evOnj0bHh4erWqkFy1ahG7duiEmJgYTJkz4T8bpTZjQBqZEqQGYOXMmRo0ahRdffLHV1z/77DOwWCysX78eH330EYqLi3H8+HGcPXsWaWlp2Lx5c7trLVmyBHZ2dli6dCnMzc1RUVFh9AZe8kolz549i2HDhoHJZOLDDz8EANNO14SxYtSJJNNO3QC88847WL9+PcaMGYP169fToZfjx4/jhRdeQHp6OqqqqsDlcjF48GBs3rwZRUVFcjsPX375ZaSmpsLc3ByPHj3C+PHjsXv3bkgkEn2/LKUZNGgQXFxcWn1t5MiRtPdK3759UVZWZoilmTDxxGNKlBqAxMREZGRkIC0tDenp6fDy8sL9+/fR3NyM/v374/bt22hsbMS1a9fA5XJx5MgR1NTU0ElJ2Vp2e3t7DBw4EEuXLkVubi4mTpyIl19+2ZAvT2O2b9+OF154wdDLMGHiicQk6gaAzGR8/vnn8fzzzwMAfv75Z/To0QNWVlZwdXWFRCJBSUkJAgIC2tmjEkGnKAoBAQG4du0aAGDVqlUYMWIE/b0nsdxw1apVYDKZ7UJTJkyYUA5T+MUAkO5REiIZNmwYDh06hA8++AAAEBISQjey9O7dG1u2bAGHw2l3nbq6OixatAjFxcVITEykBR3AEynoO3bswMmTJ7Fnz54ncv264syZM4iIiEBYWBi+/PJLQy/HhJFjSpQaAXV1daiurkZoaGi77125cgXA4zizubk5vQO/ffs2tmzZAjs7O/Tt2xf79u1DamrqEzOZvW2n6pkzZ/Dee+/h77//hru7u4FXZzxIJBJ07doV586dg5+fH3r16oV9+/YhMjLS0Ev7L2PUOw7j//T/B3Bycmon6GQXP2DAAAwYMICuU2cwGOBwOJgxYwYSEhLw0UcfYfTo0RAIBCgsLHwiBF1eqeT8+fPR2NiIESNGIC4uDm+88Yahl2kU3LhxA2FhYQgJCYGlpSWmTZuGY8eOGXpZJowYU0zdSCEiLi827uHhgWPHjrWaa1lbWws2m43w8HC9rlMd9u3b1+5rr732msbXlWcVTNi4cSM++OADcLncJ2rocnl5Ofz9/en/9/PzQ3p6ugFXZMLYMf5t3X8cRbHliIgIugFJKpVi6dKlKCws1OfSjI5XXnkFZ86caff10tJSnD17FgEBAQZYlQkT+sW0U3+CIaEWMzMzjBs3zsCrMTyDBg1CUVFRu68vXLgQ69ateyItDXx9fVFaWkr/f1lZmVaHZJt4+jDt1J8SngRXR0Nw7Ngx+Pr6IjY21tBLUYtevXqhsLAQjx49glAoxP79+zF+/HhDL8uEEWPaqT8lPAkJUn3T0tKC1atX4+zZs4ZeitowmUx89913GDVqFCQSCWbPno2oqChDL8uEEWMqaTTxVCFbKpmVlYXhw4ejS5cuAB6HLnx8fHDjxg14eXkZeKUmnmCMuqTRtFM38dQSHR3dqmkrKCgIN2/efKKqX0yYUBXTmd3EU4O8+ncTJv5rmMIvJkyYMKEaRh1+Me3UTZgwYeIpwiTqJkyYMPEU0Vmi1KiPGSZMmDBhojWmnboJEyZMPEWYRN2ECRMmniJMom7ChAkTTxEmUTdhwoSJpwiTqJswYcLEU4RJ1E2YMGHiKeL/AAYOF0EOh5FiAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 432x432 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from mpl_toolkits.mplot3d import Axes3D\n", + "\n", + "fig = plt.figure(figsize=(6, 6))\n", + "ax = fig.add_subplot(111, projection='3d')\n", + "ax.scatter(x, y,lum,\n", + " linewidths=1, alpha=.7,\n", + " edgecolor='k',\n", + " s = 5)\n", + "ax.set_xlabel('eje X')\n", + "ax.set_ylabel('eje Y')\n", + "ax.set_zlabel('Lum')\n", + "plt.title('Ajuste Gaussiano')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "- Definimos la función de Error y la función gaussiana." + ] + }, + { + "cell_type": "code", + "execution_count": 143, + "metadata": {}, + "outputs": [], + "source": [ + "def func_gauss_2D(params,x,y):\n", + " '''Función Gaussiana en 2D\n", + " params[0] = A\n", + " params[1] = sigmax\n", + " params[2] = x0\n", + " params[3] = C\n", + " params[4] = sigmay\n", + " params[5] = y0\n", + " np.pi = numero pi\n", + " '''\n", + " z = (params[0]*(np.exp(-(((x-params[2])**2)/(2*(params[1]**2)))+(((y-params[5])**2)/(2*(params[4]**2))))))+params[3]\n", + " return z\n", + "\n", + "\n", + "def Error_gauss_2D(tpl,x,y,z):\n", + " return func_gauss_2D(tpl,x,y)-z" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Realizamos el ajuste en 2D" + ] + }, + { + "cell_type": "code", + "execution_count": 158, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "5.050902399002348\n", + "6.059618584074751\n", + "[8.16830368e-03 3.37714538e+01 8.87615354e+00 5.46438999e-01\n", + " 4.43257406e+00 1.20640785e+01]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAFkCAYAAADfd6v2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAD5VklEQVR4nOyddVgc1/fGP7PC4g4BIpBAlBghIW1T96aSuru7+7fu7u6eepu6p00laRwLJBCCu8O6zO8PMvPbXVZhN5B03+fJ08LM3rk77L73zLnveY8giiIhhBBCCCHsGlCM9ARCCCGEEEIIHEKkHkIIIYSwCyFE6iGEEEIIuxBCpB5CCCGEsAshROohhBBCCLsQQqQeQgghhLALIUTq/2EIgvCSIAi3j/Q8RhsEQZggCEK/IAjKkZ5LCCH4CyGkU9/1IQjC78AcIE0URWOAx94XeE8UxXHDGCMGuBs4FkgBOoDVwKOiKP4bgGmGEMJ/BqFIfReHIAhZwF6ACBw1srMZDEEQNMBvwCzgCCAWmA58CBw2glMLIYSdEiFS3/VxJrAKeAs4y/6AIAhvCYJw3/b/P1sQhL+cjouCIORs///FgiBsEgShTxCEBkEQrhcEIQr4HsjYnq7oFwQhQxAEhSAINwuCsFUQhA5BED4WBCHRzfzOAMYBR4uiWCKKolUURa0oip+KoniX3VyeFgShThCEXkEQ1gmCsJer97H9530FQai3+/mm7XPuEwRhsyAIB2z/fYEgCGu3j9kiCMIT23+ftf29q7b/fI4gCGXbX18lCMJFztcSBOE6QRBaBUFoEgThHLvjcYIgvCMIQpsgCDWCINwmCELoexdC0BD6cO36OBN4f/u/QwRBGDPEcV4HLhJFMQaYCfwmiqKWgWi6URTF6O3/GoErgKOBfYAMoAt43s24BwI/bh/LE9YAc4FE4APgE0EQwr1NWhCEqcDlwILtcz8EqN5++GngaVEUY4Fs4GM3w7Ty/08R5wBPCoIwz+54GhAHjAXOA54XBCFh+7Fntx+bxMD9OHP7GCGEEBSESH0XhiAIewKZwMeiKK4DtgKnDnE4MzBDEIRYURS7RFFc7+Hci4H/iaJYvz2HfxdwvBT5OiEZaLab81xBELq3R8+bpd+LovieKIodoihaRFF8HNAAU32Yt3X7uTMEQVCLolgtiuJWu/eUIwhCsiiK/aIornI1gCiK34qiuFUcwB/ATwyktLAb5x5RFM2iKH4H9ANTt2+0ngzcIopinyiK1cDjDDydhBBCUBAi9V0bZwE/iaLYvv3nD3BKwfiB44DFQI0gCH8IgrC7h3MzgS+2k3M3UMYAubp6SugA0qUfRFHcKIpiPAObphrp99vTPWWCIPRsHzOOgQXBI0RRrASuZmBhaRUE4UNBEDK2Hz4PmAKUC4KwRhCEI1yNIQjCYYIgrBIEoXP7tRc7XbtDFEWL3c86IHr7OWqgxu5YDQMRfQghBAUhUt9FIQhCBHAisI8gCM2CIDQD1wBzBEGY4+IlWiDS7vVp9gdFUVwjiuISIBX4kv9PVbiST9UBh4miGG/3L1wUxQYX5/4KHLw9P+/uvewF3Lj9/SRsJ/0eQHA1dwbSIfZz/0AURempRQQe3v77ClEUT9n+nh4GPnWex/aN3M+Ax4Ax26/9nd21PaGdgSg+0+53EwBX9yGEEAKCEKnvujiageh4BgO56LkMqEr+ZCCv64xCIHd7+iOcgcgWAEEQwgRBOE0QhDhRFM1AL2DbfrgFSBIEIc5urJeA+wVByNz++hRBEJa4mec7QBMDkf1MQRCU268/3+6cGMACtAEqQRDuYCC/LWEjsFgQhMTti9HVdnOfKgjC/tvJ2QDopbkLgnC6IAgpoijagO7tL7HhiDAGnhjaAIsgCIcBB7t5Lw4QRdHKwOJ3vyAIMdvvx7XAe768PoQQhoIQqe+6OAt4UxTFWlEUm6V/wHPAac75bVEUtwD3AL8AFcBfTuOdAVQLgtDLQM78tO2vKweWAlXb0y0ZDGxAfgX8JAhCHwPqm4WuJimKogHYD9gEfMvAgrEZWMBAZA7wI/ADsIWB9IWBgacBCe8ysChVM5Dv/sjumAZ4iIGouZmBqPyW7ccOBUoFQejfPueTRVHUO82vD7iSAXLuYmBP4itX78UNrmDgSaKKgXv6AfCGH68PIQS/ECo++g9DEIR3gEpRFO8Z6bmEEEIIgUEoUv+PYnukPhXYNtJzCSGEEAKHEKn/d9HMQB75sxGeRwghhBBAhNIvIYQQQgi7EEKRegghhBDCLoQQqYcQQggh7EJwVbZtj1BuJoQQQgjBEb4Uno0YQpF6CCGEEMIuhBCphxBCCCHsQgiRegghhBDCLoQQqYcQQggh7EIIkXoIIYQQwi6EEKmHEEIIIexCCJF6CCGEEMIuhBCphxBCCCHsQgiRegghhBDCLoQQqYcQQggh7EIIkXoIIYQQwi6EEKmHEEIIIexCCJF6CCGEEMIuhBCphxBCCCHsQgiRegghhBDCLoQQqYcQQggh7EIIkXoIIYQQwi6EEKmHEEIIIexCCJF6CCGEEMIuhBCphxBCCCHsQgiRegghhBDCLoQQqYcQQggh7EIIkXoIIYQQwi6EEKmH4BVWqxWDwYDFYkEUxZGeTgghhOABqpGeQAijF6IoYrFYMJvNGAwGFIqBGEClUsn/lEolgiCM8ExDCCEECYKXyCsUlv1HYbVaMRqNMmGbTCYUCgWiKMr/JKhUKtRqNSqVCoVCESL5EHZ1jOoPeChSD8EBoihitVrp7OykpqaG2bNnY7PZ5OOCIDiQtnS+xWIBwGAwoFQqiY2NDZF8CCGMAEKkHoIMURQxm81YrVY51eINziTf1dUFgFqtlo/bp2tCJB9CCMFFiNRDAMBms2EymRBFUSbqoWyKSoStVCoBx7y8dDxE8iGEEDyESP0/Dol0LRYLgiDIEbo9qRsMBjo7O0lISJAjcHcQBMFrusZsNg8iebVajVKpDJF8CCEMEyFS/w9DFEVMJhM2m20Q+Uqk3tzczNatW0lISKCurg5RFImLiyMhIYH4+HhUKv8+QoIgyFG8NAdnkpc2XUMkH0II/iNE6v9RWK1WzGazQ7rFHqIo0tvbC8D8+fOBAcK1WCz09PTQ1dVFdXU1giAQHx8v//M3beOK5E0mE0ajUf5ZFEViY2Nl+WSI5EMIwT1Cksb/GJzTLa4Isr+/n8LCQkRRZNGiRXI07epcs9ksk3x3dzdWqxWNRkNWVpZMxMNBb28v9fX1TJkyRU4P2adrQiQfwghgVH/gQpH6fwg2mw2z2ewy3QIDhN/Q0EBtbS3Tpk1j27ZtXiNvtVpNcnIyycnJANTX19Pb20trayuVlZWoVCri4+NJSEggNjbWZ1WNBGmeKpVKnofJZMJkMgEMInl/xw8hhF0NIVL/D0DSktvnrZ0J3WKxUFpaikKhoKCgAJvN5kDmUprGG9RqNVFRUWRmZgJgNBrp7u6mubmZLVu2EBYWRkJCAgkJCURHR/tFwq6UNRAi+RBCsEeI1Hdx+JJu6enpobS0lKysLDIyMgBkkpQw1BSHRqNhzJgxjBkzBhhQ0nR1dVFfX09/fz8ajcaB5P25jiuSl3Ly9iTvvPEaQgi7MkKkvgvDlfbcHqIoUlNTQ3NzM3PmzCEqKko+JlkCgH+E7i1dEx4eTnp6Ounp6QDo9Xq6urqora2lv7+fyMhIOV1jPx9fr+0snxRFEaPRKG+8KhQKlEqlg61BCCHsSgiR+i4I+3SLvfbcHiaTieLiYiIjIykoKHB5zo5wZIyIiCAiIoKMjAxEUUSn09Hd3U11dTVarZawsDCsVis6nY6IiAi/FxhXJL9mzRpmzpyJUql0SNWoVKrQpmsIOz1CpL6LwZP2XEJnZydlZWVMnjyZ1NRUl+MMp6J0qIuBIAhERUURFRXF2LFjEUWR1tZW6urqqKysRK/XEx0dLadrIiIi/B7fPmWjVCqx2WwYDAb5HPsoPuRAGcLOiBCp70KwWCwYjUa5YMdVuqWyspKuri7y8/MJDw93O9ZwyDlQEASByMhIoqKimD59OqIo0t/fT1dXF1u2bMFoNBITEyOTvEaj8WtsV5F8iORD2NkRIvVdANJmaH19PXq9nuzs7EHnGAwGioqKSEhIYMGCBV7JaSQidXewz+3HxMQQExPDhAkTsNls9Pf3y08eJpOJ2NhYmeTDwsL8nnuI5EPY2REi9Z0c9ukWd5t+ra2tVFRUMG3aNJKSknwad7SQlad5KBQKYmNjiY2NBQY2hnt7e+nq6qKhoQGr1UpcXJy88erNt8bVtV2RvF6vd0jjhEg+hNGEEKnvxHB2P1QoFA5mWjabjc2bN6PT6ViwYIHfketQMJJpG4VCIdsVTJw4EavVKpO8vW+NyWTCarX6Xe0qkby0eEok39fXR3V1NZMnTw51hQphxBEi9Z0Q7rTn9oSq1WopLi4mLS2NadOm/SfJRalUyqkYQPataWlpoaioCECO4uPj44dF8lK7P3vVEYS6QoWw4xEi9Z0Mnkr9pUi9sbGR6upqcnNziYuL26HzGw0brO6gUqlISkoiPDycefPmYbPZ6O7uprOzU7ZEkAg+Li7OZ5K3rwNwjuSlrlDSOSGSDyHYCJH6TgLnUn9X+XObzUZbWxtGo5GCggK/bXF9RV9fH0VFRUyZMoWUlJSgXCOYkBYdlUrl4FtjNpvp7u6mvb2drVu3OkT6w/Gtsb+ufeu/UMOQEIKBEKnvBLBvM+dOe97b20t5eTkajYbZs2cHjRxEUeS6W26npl8gytTJO688T3R0tHx8NEfq9nB1f9RqNSkpKfJCZTKZ6Orqkn1r1Gq1TPIxMTEOEbkv99sVyYe6QoUQaIRIfZTDl1L/uro6GhoamDx5Mu3t7UElAlEUqaqpZ8x+Z9Dy1yd0d3c7kLrzuR0dHcTFxfmtPBkNCAsLc/CtMRqNdHV10djYSF9fn+xb428RlARPXaEkS+P09PRQV6gQ/EKI1Ecp3LWZs4fZbKakpASNRkNBQQFarTboUbJCoeD6Ky7ig0+/5LSjD2Xs2LEOx+0j9WdeeIllP/1BZnoyzz/xCJGRkUGdmz8YCjlqNBrS0tJIS0sD/t+3pqmpia6uLrkOQPKt8fca9g1DDAYDbW1tJCcnh7pCheAXQqQ+CuFLqX9XVxebNm0iOztbJpkdlfo49OCDOPTgg1wes5/Dj7+tYOIRl1L767vU1NQwffr0IV1vtKZzJN+a+Ph4tm7dSnZ2ttwRSqvVEhUVJW+8RkZG+kXAoijK5mP2v7PvCmXvQCn51oRIPoQQqY8ySNG5p3RLVVUV7e3tzJs3z+HR31mnPtI47ohDee/Tp5gxJZtJkya5Pa+oqIgnX3iN7KwJ3HjtlQ56+p2BpCQCjoyMJDIyUvat0el0dHV1UVVVhU6n88u3xlWe3lPrP+mzolarQ12h/uMIkfoogS/pFqPRSFFREXFxcSxYsGDQOaNhk9J+DuedcxannHSCV3fFZ155k960eawoXcd+a9awaNGiHTXdgMAdAUvmZOPGjXPwramoqMBgMDiQvLMPjy+br/YkH2oYEoKEEKmPAnhrMwfQ1tbGli1bmDp1qizBc4a9B/pogS959KnZE/l57WoUhm65SYcrmM1mfvzxRzQaDQcccMCoISlf7rk735quri7Ky8sH+db4qqixHx+8d4WyWq1ER0eHSH4XRojURxC+as8rKiro6+tj/vz5Hp0Igxmp22w2n4pxhjKHa664lL3XrSMtLU1ug+cKH3z4Me/8+C9YB9Qhixcv9us6wYS/aQ5735rMzEwH35rGxkYMBgNKpZLW1tYh+9bA4K5Q69evJz8/X55DqCvUrocQqY8QRFFEq9VSV1fHxIkTXZKCTqejuLiYlJQU8vPzfXocD3ROXVpUmpubHZpIx8fHB6y4SaVSsXDhQq/n9Wu1KCLjEM0G+rRaj+eaTCYMBoNs9hVM+BtVu4K9bw1Ae3s7zc3N9Pf3U19fj9VqHda9t7eSUCqVbrtChUh+50eI1EcAkvbcYrHQ2dnpchOxubmZrVu3kpubK3/RvSHQ6RebzcbatWtJTExk4cKFiKJId3e3rPCQyuoTEhKIi4uTJXbBelo4/ZSTMBrfJSwsjKOOOMLteW1tbVx67U109vRzzUVnc8ThwY3oA0HqzhAEgYiICPmzYbVa6enpoauri5qaGkRRlEk+Li7OJ5K3n6e7rlD2JC85UIa6Qu1cCJH6DoTzZqhKpRoUWVutVsrKyrBYLBQUFPj12B1IQm1vb0en0zF9+nQSExPlFFFSUpJs32s2m+nq6pKtfcPCwoiKisJsNgeF6OLi4rj2qsu9nldYWEivJpXUPRfzzU/Lg07qwYDz/VMqlSQmJpKYmAgMqKScfWvsSd5VqsyTPbMnL3lpLiGb4Z0DIVLfQXClPXeWIPb19VFSUsK4ceMYN27ckIpXhpt+kbojdXd3ExkZKZOIK6jValJTU+WWeAaDgebmZrRaLatXr5ZfL0n4dhQJzJkzh7h3ltL610eceen5Hs9dv349Py9fwUH77c28efOGdL1gLGDexhyKb40/8ww1DNl5ESL1HQBpM9RZey590URRpL6+nrq6OmbNmkVMTMyQrjPcSF2STMbHxzN//nxWrVrlFxGEh4eTkpKCVqtlxowZsk67srJSlvBJJO9P6zl/31NKSgofvPEyRqORqKgot+fpdDpuufcRwqftw2/3PsIX778xpKrXkSB1Z7jyrenu7qalpYWKigpUKhWxsbFYrVaPEbs7eCL55uZmoqOjZTuIEMmPLEKkHkR4055LkXVhYaG8Weivp7fzeENFR0cH5eXlDpJJaZHwV1onvcZep23fem7Tpk1YLBbi4uLkjT93aaahviepytITFAoFKqUCk74flVLhleh6e3sJCwsbkqbcXwyFeO0RFhbm8BRlNBppaWnBZDKxdu1a2bcmPj6emJiYIT0VSq/RarVERkaGukKNEoRIPUjwRXve3d2NVqtl0qRJpKenj8AsBwhp69atdHZ2DmpGbR/5D5e47CV8WVlZDht/tbW1AF5zwoFGeHg4Tz5wF3//s5JFl97lsRH3b8uX88BTLxEVEcZzjz7A+PHj5WPB2BgO9EKh0WhITk6mt7eXmTNnotfr6e7upr6+nv7+fsLDw4fsWyPJXRWK/18YXbX+C3WF2jEIkXqA4aw9d1fqX11dTUtLC5GRkSNG6CaTiaKiImJjY5k/f35AKlR9fY3zxp9zTlilUsm5+GAWVE2ZMoUpU6Z4Pe+7X34nYf4R9DZWsmHDBgdSh8DbGQQ7+pd8a9LT0xFFUTYnq6mpob+/n8jISJnkvfnWuHqqsN83kt6Pu65QSqUyRPIBRIjUAwh3bebsYTQaKS4uJjo6moKCAlatWjUCM4XOzk7Kyso8NrrYkbYDzjlhyea2tbXVwQExMTHRb3OsQGDJoQdyz2PPEhMZwfz5FzkccybgNWvWULm1ioMPOtDnRt/O2JF5ekEQfPatiY+PH7Tp7UuqyB3JSw1DINT6L1AIkXqA4M33HP4/bz2SHYNEUWTbtm20tbUNMgQLBAK1EEg2t7GxsQ4OiM4kk5iY6DFtEijstddeLMvPlw2z7GH/fquqqvjfQ89A8iT+WbOeZx9/eEjXk0zCAglf8/TufGu6u7sdNr2lSD5QG6/OXaGMRqOswQ+RvO8Ikfow4fxY6a7Uv7Kykp6enkF56x0Jk8lEcXExUVFRLg3BnOG8UeqryVSgo3tXkaSzb4q06TqUknpf4UkZI90Xg8GAqFChiUmkv79yyNfy1ZbB3zGHslDY+9aMHz8eURTp6+uT739PTw9bt24lKSnJb2WT/TWcSb64uFi2NJDqOkJdobwjROrDgC++53q9nqKiIpKTk5k/f/6IfRAl//XJkyfLighvsCfo0eAAKcGVOVZvby+dnZ3U19djs9kcSuqDvelqv9hNnz6dy844hk3lFZxy2bUeX1dYWMhjz73MpAnjuOWGax0W+2BE6oFK6QiC4OBbs27dOtLT0+nt7ZWVTZI5WXx8vIOVsj/XcHahlDpCScdDJO8aIVIfInxJt7S0tFBZWcmMGTNISEgYgVk6bsrm5eX5pcMO5kZpIOHsm2JfbVlVVTWoECfQcC6/P/qoozj6KO+ve/71d9CNLWBlxQbWrFnDXnvt5XLMQGG4MklP48bHx5OYmEhWVhY2m01WNkm+Nb7IVz3BnuDBNcmHukINIETqfsIX33Or1crmzZsxGAwsWLDAY6QyFC24rzCbzRQXFxMREUFBQcGQ8p6jITr3dw7O1ZbODaT1ej21tbUkJCQQHR097Hs/1L9f7pRsvvlnJUpjP+PGjfM4prRxPGbMmCHPV3qiDDScnyoUCoW8iAKD5Ku++NZIRXnu4IrkXTUM+S92hQqRuh/wJd3S399PcXExGRkZTJ8+3accdDDypz09PZSUlDi0u/MXoyFSD8QX0bmB9L///otKpaK2tpb+/n657VxiYuKQNo6H+n4vv+Qi9tx9I2PGjPFI6v39/Vx81fU0dfZy1IF7cdVllwzpesFI6fgCV741Esm7863xd66eSB7+34Hyv9AVKkTqPsJisVBdXS0TgKsPRENDAzU1NcycOdPnx3zJ/yVQpC6lW5qamvxOtzhjtETqgYZCoSAjI4OMjAzZAtm+I1FMTIxM8r7mg4dCEEqlUt4IdIY9qVdXV9Oqh8xDLuCX314fMqkHK/3iL1Qq1SBjOGffmtjYWGw227A2dz01DLnqqqt46623dkliD5G6F9inWwwGA2FhYYM+CBaLhU2bNgFQUFDgl9d1IPuKms1m9Ho9Wq2WgoKCYS8UoyFSDzYEQSA6Opro6GjGjx+PzWaTlR0lJSVyPjgxMdGtj3mw8t/SmDk5OUweE8Omr57hvDNO8vg6URRZu3Yt4eHhzJo1y+2YowmufGva2towm82sW7dOLkRLSEggJiZmSGlEcGwYsnHjxoC+h9GEEKl7gHOpv1KpHETAvb29lJSUkJmZydixY/2+RqBIXZqHRqNh2rRpAYn8dzaCDgQUCgVxcXHExcU52Bl0dna69ZAPlk2ARF7h4eE898QjmM1mr08On3/xJS9+9B1YTdx19QXsueeeLscMJAK9UISFhZGQkEBXVxczZ86U9xMaGxvp6+uTj0skP5Trh9Iv/zG4azMn9XiUzqmpqaGpqYk5c+Z4dAP0hOGSgiiK1NXV0dDQwJw5cygtLQ1YOue/EKl7gzs7A8lDXsrRRkVFBTRidx5LEASfUkFVNXWo0yZj0fdSW1fvcMxmswWsW1WwYZ92kQrRpL0hg8EgK2vsfWvi4+N92vgOdHew0Yad4y+8AyFJpaxW66DVXIrUTSYTJSUlREREsHDhwmFFP9JG6VBgsVgoLS1FqVTK6ZZdjVRHG1zZGWzdupWuri7ZQ95XzxRPGOoCcdpJx9Pw1HNExoez+LBDHY45p18aGxtZ/vsfzJk9i5kzZw55nsGA1Wp1G5iEh4eTnp7u4FvT3d0tb3x7+xvo9fph7TWNdoRI3Q7etOcKhYKenh7WrFnjVxGPJww1/dLX10dxcTFZWVlkZGQMezxX2FUj9UDOT6PRyBuraWlpDp4per3ewc7AXw/5oZB6RkYGTz3ygNsx7QOQ6/93Fx2RmQiffc27Lz09JOuKYG2+Wq1Wny0NpGpjaePblW+NpK6JiIhAq9X6/WRtMBjYe++9pZ4DpcCnoije6TSXs4FHgYbtv3pOFMXX/LpQABAidXzTnouiSFtbGz09PRQUFATMM8VfEhZFkYaGBurq6pg9ezbR0dEOxwNJqqO1onS0wf4eOXumSJuumzZtwmw2O2y6eirCCcampjMBa3V6wtOT0DYJcqpxuGMGCkNNIbr6G0jqpsrKSp599lk6OjrQ6XTU1NSQmZnp07gajYbffvtNSu/MBf4SBOF7URSdHfk+EkXRe8/FIOI/T+q+aM8NBgPFxcWo1WrS09MDaoLlT05dUtkIgsCCBQtc5keDRerBfI03BMNLJtBwNaZzOb19paV9EU5iYuIgD/kdYRPw4J238NlX37L7Zec6PO25wooVK9hYXMpRhx9GVlaW/PtgknogxnVWN7344ot88sknvPrqq1xyySU0NDRw+umnc8MNN/g0znaot/8blVHOf5rUpejcU6m/tCE2bdo0RFGko6MjoHPwNafe399PUVEREyZMGFSoYo9gpV8kw7Id0bzCeQ6jHb6mSpwrLSU7A+e+oomJiTskUp8xYwYzZszw+rra2lrufeoVwibOY9XdD/DBm6+4HTNQ8JRTHw5UKhVZWVnMmzePl19+GbPZTFtbm89z2l5X0Ao8L4rivy5OO04QhL2BLcA1oijWBWzyPuI/Seq+pFtsNhtbtmxBq9XKpf6dnZ0B3zn3hYSloiZf+pcGI1JvaGigqqoKQN6EkqovnYlnZyDhQGOo+W9XdgadnZ00NjbKDojJyclD6kbkbp5DIeCB14jYLJZBRLuzkToMtN+Tom61Wu31KUWCUqlk48aNCIIwDvhCEISZoiiW2J3yNbBUFEWjIAgXAW8D+wd4+l7xnyN1X9rM6XQ6ioqKGDNmDFOnTnUoXtiRpG61WikrK8Nqtfpc1BTo9Ed1dTUqlUp2mJQ65Ei+2rGxsXIz6WBZ3o52BOp+h4WFydI9k8lEVlYW/f39VFdXy0QkRfpDSQEONfofN24c9954BYXFpSw+9JRBY9qTutVq5ZNPP6etvYPTTjlRloIOZa7Bkl8OZaPUHqIodguCsBw4FCix+739Y/xrwCNDvsgw8J8hdXfac2c0NjZSXV1Nbm4ucXFxDsfsdeqBgjtSlzxkxo0bx7hx43z+MgaqGEav19PU1ERycjK5ubn09vai1WpJTk52aCYtWd7W1dUhiiIJCQlYLJZRU5K+oxCMVElERARxcXGDPOS3bNmC0WiU7W0TEhJ80rAP52+y2267sdtuu7kc0z6iXrFiBa8tW44yLo3ul1/j9ltuHNL1ghmp9/f3DxIYeENbWxtqtZr4+HgEQYgADgIcOqAIgpAuimLT9h+PAsoCMmE/8Z8gdU/acwkWi8VrVBzIfLX9mM4kLC0s/njISBiO7l1Ce3s7mzdvJikpidTUVJqamrjgiuvo1Ru5/JxTOGbJEnnuzpa3UuXfunXrUKvVcuFOINIHoxXBsAlwTpUIgmsP+a6uLhoaGrBarQ4e8jvKzsBZeqhWq8FmwWo2EBbmOVXoCcEMCuzTL76iqamJs846Swrq1gAfi6L4jSAI9wBrRVH8CrhSEISjAAvQCZwd2Jn7hl2e1H3xPZc03xMmTGDs2LFuP/jBIHV7ErZarZSXl2M2m/32kLEfb6iRuiiKciHN/Pnzqa+vRxRFSkpK0EdnkDwnj5+W/yWTujNUKhUpKSlUV1ezYMECDAaDXF4vfZEkkh9Kd5zRimCRuqcx7RfUiRMnYrVa6e7upqury8HOIDExkdjYWPmzG+wWeYsWLeIGrZa29g6WHHWkx9cajUY++/wLROD4Y49x+EwEM1LX6XR+15jMnj2bDRs2SD/KlVqiKN5h9/+3ALcEYo7DwS5L6r5qz6USe1eab2cEM6eu1WopKioiIyODCRMmDJkkhpp+kVrdxcTEkJ+f79AgeN68eSS98wEt/3zCRddc6nYMs9nMy6+9ycaiItLT0xk3bpyDG2J/f7/c8NpZs72zlK+7QrC8X/z5DCiVykHOh11dXbS0tLBlyxbCwsIwGAzodDo0Gk3AFiFnUhcEgUMOOcSn1372+Re8/sNqBAbe7+mn/n++PtiReqiidCeDKIq0trYSERHh0lURBj70JSUlhIWF+exoGKycekdHB3V1dcycOXNQHt9fDCX9Inmv5+TkyJ7j0liiKJKcnMz7b7yC0Wj0GGH/+eefLPunBHPUGJ59+TUevvcuh7Gk9EFmZuYgoyxJ7peYmOjgxLezpGx2dKTuDWq1mtTUVDkiNRgMbNy4kYaGBioqKoiMjJQ3uF2pmHzFcMhXhAFCZ/DCGGz1izcV2c6MXY7Upc3Q+vp6xo4d65KEpAo/fxtIBDr9YrPZaGpqwmAwsHDhwoCoR/xNv9TX11NXV8fcuXMHKQKcK0q9bcYlJCQg6nswGYykTvPsJdLa2kpHRwe5ubkIgiB3J5Kc+MLDw0lMTCQ6OnrUGzAFq3NVIMcMDw9HrVYzY8YMFAoFOp2Ozs5OWcUkWR342zh6OKR+/LHHyH/bE4471uO4ZrOZX375hcjISPbee+9h3Zuh5NR3JuwypO6cblGpVIPIQBRFtm3bRltb25AaSARSLijJJqOioobct9EVfF14rFYrmzZtQhRFt08qzqTuDXl5eTx8y5WsXLmSCy64wO151dXVXHL9/7AoIzj2gN245MLzHboTSSZNUhTf09NDWVmZHFkOpZFxMLGz2CfY7ytJpfSSh7yUGpMaR0s9RRMSEjymxoZD6hqNhjNOO9XlMedI/e33PmDpr+vBrON/Viv77z90+XeI1HcCuNKeO+e/jUajnDNesGDBkLupBAJSQ+rc3FxMJhM9PT0BGRd8W3h0Oh2FhYVe5ZL+kjpAfn4+NpvNY7RXXV2NNSqVuOx5FG4qcnldyaQpJSWFsrIyMjIy6OzspKGhwaHRsXN5/UhhZ0gTuSs+UigUsp2BvYe8ZGcADGo3JyFYenJnVU13Ty+q2CQsOvWwvy8hUh/FcNae26tb7PPfkkRv6tSpcvXeSMBVlWp7e3tA0wveSF2yPfAlf28/ViCj0YKCAvJ++Z3qrSu48Cr3rdlEUeT1t97hr1VruOnqy5gzZw4TJ04cVF6vVqvlfHwgGkn7i2ClX0YK7jzkpfstdSJKTEz02U3RXzjr388541RMb7xFdGQqhx122LDGDpH6KIVzusX5S6VUKrFYLGzevJm+vj7mz58/ojI6vV5PUVERKSkpDlWqgc7TuxtPFEUqKyvp6emRFxRvCJYzY2RkJA/fd5fX80pLS/n811Wos/J56KnnWbrdc8S5vF5qmiD5advb3YaHhwd8/s7Y1UjdGa485KUmFR0dHURERGAymYbtIe8M+3GSkpK49YbrAjJuaKN0FMIX7bnVaqW2tpZx48aRn58/ol+6trY2tmzZwowZM2QzJwmBbofmiohNJhOFhYXEx8f7dS8CUcg0HCQmJqK06OivKWFmTrrb88LDw4mPj6e3t5e5c+fKm67l5eWYTCY5dZCQkBCUVM2uTurOsO9EVFFRIW9m2/uXS/sfO2JR9RdGo3HU7csEEjsVqdunW9xpzwGam5upq6tjzJgxTJo0aQfP8v9hs9moqKigr6/PbXQcaOJ0JvXu7m5KS0uZMmXKkJog2I+1o8krIyODp+6/g7///ptTTjnF7Xlms5lLr7mB+i4D08Ym8szjD8uVl/b54ZqaGgRBwGg00tPTM6Qmxq6ws2yUBgOiKBIZGTnIzqCzs1NeVO03XX0VBAT7nu7KFhY7Dan74nsuVWSaTCZycnIwGo1Bm4s3cjMYDBQVFZGUlOQxOg5G+sVsNsuFVY2NjUNS+sDo2PybNGkSJpPJowFTd3c3Nc0dTDriUkq+eBKj0ShHiM75YaPRyLp16wZJJ4ebOhgN92ok4JxTd65HsPeQl/yB7O0MdvQm93/hqWqnIHVf0i2SAdbYsWMZP3487e3t6HS6gM9FImFPH0ZpY3batGlyhZ+38QIFQRCwWq0UFxejUChYsGDBkL84wcqp+zsHb0hOTubI/Rfx47fPcfrxSzw+8jc0NPDJ58s47JADOejAA2XppNR+LiYmxm/p5H+BKNzBm6TRnYe8dM/tPeSlJ6cd8Znblf9eo5rUfS31b2hooLa21sFvXKlUBrz6UxrXHalLm5Hd3d0+b8wGmtRNJhO1tbVMnjzZYzMNXzAaSN0XCILANVdezjVXeu8idteDj1GnGkvJy+8yaeJEcnJyiIyMlF0n+/r6/JZOhkjd91SGKw/5rq4umpqa2Lx5MxqNhvj4eERRDJoB2a7+txq1pO5LusVisVBaWopSqRxkgBUMnxb4f6mkc25we0NaEhISZO9xX8cLFHG2tLRQU1PDmDFjhk3oMHpIPZBzCFOrsRp0qFzoqxUKBXFxccTFxbmUTqpUKjmVMxLSyeEgWH/H4Xq02BedwYBKrL29HZPJxOrVq4mKinJoyjJc6HS6YXmp7wwYlaRusVhcas/t0dPTQ2lpKVlZWS47lwQrUncVWXd0dFBeXj4kHXwgNkqlDVmtVsvkyZPRarXDGs9+bqOB1AOJu/93I6++9jqHXni5Q69NZ2zZsoWb77yfME0Yj957B1OmTMFoNNLZ2SlLJ6OiokhMTJSfJAOFYNzz0d5LVEJERASpqal0dnYye/ZsuWm05CE/lPSYPYbbIGNnwKgidW/ac+mc6upqWlpamDt3rtsNwGCYb0njSiQsWdV2dnaSn58/JPnWcNMvRqORwsJCkpKSyMvLo729PSiNp3emqNQT0tLSOPKIw6Vek26x7NsfME9YgE7fz6+//cbZZ52FRqMhPT2d9PR0uUt9Z2cnfX19FBUVyakab6X13hCM/qTBShEFY7GQLAIEwbFptHN6zBcPeWfs6oVHMIpI3Zc2c5I9bFRUFAUFBR4/TMHOqZtMJoqKioiNjWX+/PlD/mAPh9QlYzL7J4RApnN2xUjdVyyYN4efnn4FBSJzzhlsJWtPONu2bZNVNr29vbJ00tnP3FcMtZeoJ+wskbqnMZ3TY+485CU7A1djSE9YuzJGnNR9bTMnpTh81VsHM/0iVdMNVfttj6EQpyiK1NTU0NLSwrx58xxyjYHUve+KpO7r+9l3n32YMnkyKpXKY0OFtrY27nn0aYToJPbPnyZXPUp+5s3NzWzZsoXw8HCZ5L1JJ3dEJ6VAIhibmb4ottx5yLe2tlJZWSnbRyQkJBATE4MgCENKvxgMBvbee2+MRiMWi4VNmzbdLYrinfbnCIKgAd4B8oEO4CRRFKv9ulCAMKKkLooiHR0d2Gw2YmNjXX44bDYbW7dupbu7268URzC6FImiSF9fH11dXYPIdKjw9wthsVhkH3hXxmSBJOJdkdTB93vuS5f5uro6jOoYxuUfysaSH+TfO/uZ63Q6urq6HKSTEsk754aDQerBSOkEC0ON/l15yEsBWF9fH++//z5qtRqbzebXPdZoNPz2229ER0djNpsJCws7VBCE70VRXGV32nlAlyiKOYIgnMxA/9KT/H4TAcCIkbqUwuju7sZqtbo0l5IKeBITE/1SlEDgy++l1I/NZmPy5MkBIXR/0d/fT1FRkdvNYQj8Yibdw9bWVrRaLUlJSQH19/BnDqMRM2fOZOa4BFo2fM1VF57j9rzIyEh0Oh2lmzaRk53N2LFj6ezspKSkBKvVKkeUkpwvGKS+s1RRBqpBRnh4uMMeSHh4OG+88QarVq1izpw55OXlccEFF7Dnnnt6HEdKtQFSRkHNQG8PeywB7tr+/58CzwmCIIgj8OHd4aTuvBmqVqvl1Is9JDfB6dOny9WAIwUpdz158mT6+vpGhGSamprYtm2bgxbfFYIRqZeXl6PT6YiPj3eINJOSktyWfgeKmEZ7dBkWFsaF55zJ7NmzvW7U3XHfw1QaohA/+orXnnyArKwssrKyBhXkSFXBfX19AZNOBmujdGdR6giCwJw5c1iwYAEzZszgmmuuYcOGDT6b/FmtVvLz86msrAT4WRTFf51OGQvUAYiiaBEEoQdIAtoD+DZ8wg4ldVfac+fct81mY/Pmzej1ep/dBIM53+rqalpbW+V0i1arDUqu3h2k+2EwGHxqRh1IUrdYLLS2tjJ+/Hhmz56NxWJxKNKR2vABDpuCoxkjWSjUr9WiSRiPvl2FwWCQf+9ckNPd3U1FRQV1dXX09fXJ0kmp9dxQ8F+M1F1BUr8olUrmz5/v8+uUSiUbN26ku7ubhISEAkEQZoqiWBKUSQ4TO4zUpejcudRfssgF5ObL6enpTJs2bUSjNLPZTHFxMREREQ6562Dk6t3BYDBQWFhIamqqz/cjUPPr6emhvLyc6OhosrOzHRYyexUCDN4UNBgMNDQ0kJSUNCJpqh0NXxeKO2++jo8++5LcvY5nypQpHs/99vsfUajUXHDOmcTExNDZ2Slrte0bdvtqkLWzkXowm06np7t3/PSG+Ph4gOXAoYA9qTcA44F6QRBUQBwDG6Y7HEEndW+l/lKk3tDQQE1NDbm5ucNuvjxcSI2YXfUw3VGkLql9/E0/BSJSl2wXpk6dSltbm9fz7TeoRFFk9erVckMQo9Eo67d91RLvbPCV1LOzs7n1Ru+e4H/99Re/FNcSk5GD6ZXXue/O24iOjmbChAmyQZZUBAX4JJ3cmTZfbTZb0J7Qh6J+aWtrQ61WEx8fj16vBziIgY1Qe3wFnAWsBI4HfhuJfDrsoEjdk/YckBUwvqQX/IEk7/N11Zekgs3NzW6dDZVKZdDcH6U5bNu2jfb29iEVNA2H1G02m+xyaTAYOP/yaxk7JplnnnjU58dhQRjoDzt27FiZhKR8cXV1NQqFgsTERJKSkkasS9FoHzM6OhoMfZi7m0l0so52NshyfkrSaDSylYH9hvaO1JMPFzsi/eIPmpqaOOuss7BarVJA97Moit8IgnAPsFYUxa+A14F3BUGoBDqBkwM9d18RdFKXonNX0W1vby/FxcWoVCpmz54d8GtLhUK+fPDMZjMlJSVoNBqPzobBitSlJ5ri4mIiIyOHXNA0VNWPVJmakpLC9OnTOfGsC1DNPIwNa3+gqKiIefPm+T2mNB9n61vnLkXS8R3VmSoYC0kgx8zLy+Py05YQExPDAQcc4PHcVf/+yytvf0D+7FyuvOwS2cpAalghldXvTKQezFTRUEh99uzZbNiwwf5X9wCIoniH9AtRFA3ACYGY43AxIs/CoihSW1tLY2MjM2fOZMuWLUG5jpTa8Rb9Sz4yEydO9JpvCwapKxQKenp62LRpE5MmTRqU8vEHQyk+khpp2FsFz50xjR9X/0KYsdujOZhWq2X9+vVkZ2fLMktPTwv2XXPsGypIXeylVMJoaSjtKwK9UOTl5TF16lSv5z35wmuEzV7Md3//xMEHlDNjxgzGjh0rN6yQyupbWlrkNKiUChvu/fVmQT1UjLZIfWfDDid1k8lEaWkpGo2GgoIC2f87GPDm/yI1kmhoaGDOnDk+5dqCQepms5lNmzYxe/bsYX/g/E2/SO/fuZjqpuuvZr/VqzEYDKSlpbl9z/+7+37KWvSodW28/dLTXv3jnedq31DBarXS1dXl0FA6Pj4eq9UasJzwzmCT60+kOiU7i/Wlf6KxGWWnQwmCIBAbG0tsbCzh4eEYDAZ507WqqsqhgbRUcRmseY6GcSFE6gGHpPfOyclx+AAGaz/Bk1WAVJmpUqkoKCjwOTIIpP2AzWajrKwMs9lMfn7+kLoTOcPX9IvNZmPTpk3YbDaX6SaVSsWcOXOoqKjwOE5VdS0J846iY/0PdHZ2kpSUNOS8vlKpdJD26fV62tra0Ov1rFmzRk4lJCYm+qz62Bnhz8Jz1/9uprCwkMzMTI8Lqk6n49GnnqOxpY3rr7iIvfbc06GBdH9/P5GRkX7Z3O6MOXWph+qujB1G6lu3bqWjoyNg5fW+wJ2nel9fH8XFxR4rM90hUJG6Xq+nsLCQ9PR09Hp9wL4cvqRfJKlkWloaEyZMcEsgvpDzzVdfymvvfcx+By8iJydHfp0zVq1axdsffsZu8+dy5mmn+kRaERERZGRk0N7ezty5c+VUQn19PeCb6mNnhD+kHh4ezsKFC72eV1JSQnmbnrT8Jbz6zofsteeeg1JhOp1ukHTSU2/RUKQ+OrFDSL2yshKbzTYsN8OhwDmqlrok1dXVDTnVEQhSl9rdzZgxg4SEBDo7O3eYCVdnZydlZWU+SSV9IfU99tiDPfbYY9DvnV93/xPPEjHnCN778kcW7bZQXgB8hbNDn7PqIyIiQo7id3ZtfDBSROPGjSNM30nb2u9Ysu/gRUAQBKKiooiKipJtbu17iwKDHBB3xkjdZDLtsA35kcIOIfWcnJyAkJbJZOKLL5cBcMzRS7xqWe1z6tvd1RAEwa90izOG01FJ8l/v6upyaHcXyDy9OzKQNqebm5t9lkoONY3i6nXjx2ZQuXUdGsEiy/HczdOXwiVnbbxer6ejo8MhykxKShqkjd8ZcurBmGNycjJPPXgXCoXCa+FTcXExt933MPFxcTx2/11MmjQJs9lMd3e3bN+h0WjQaDR+m2P5gp2pUGo0YoeQujfS8lVP/vGnn/HKV3+BAGaLhdNPPcXj+VKkLhlhTZgwYdht3obafEMyBIuOjiY/P9/hvQa72a7VaqW0tFRuRO3rFyaQlgMP3X07a9asYfLkyR5zv888/yJf/7aS5BgNrzz7hE/7DIIgEBkZSWRkpEOU6ayN31ly8cEqFEpKSvJoIyzhoy++RjFlX5ra6vnzzz859thjUavVpKSkyFbTer2e2tpaent7Wb16tUNHouFGwsGK1HeGBT0QGBXlfRL5eiMbi9mMoFLL/+/LuO3t7VRVVXk1wvIVQ4mqJclkdnb2IIUCBNYD3RlS7n7s2LGMHz/er9cGMlKPjY31qrkG+O2vVYw78Cwa//qM6upqZsyY4ff1nQt0TCaTnIvv7e3FarXS1NS0Q7Xx/mCkNeW75c9l1esfoBZEZsxwXUMTEREhE3hmZqa83yFJU+2riP0l6GCT765O7KOK1L1FUSedeAKm7T4xJ53oWef/5jvv8tIb75I/O5enH38kYBGav6ReX19PXV2dR8lksAqaJKuB3NxcybPCL4yEn/rpJxzDC68/z+wZUz2mCXp7e/nxxx8ZO3asy5y+PcLCwuQNQZ1Ox+bNmzGZTA4ElJSUNGq08cFqkuHrmEccvpg5s2cRERHhseeuzWbj2+9/4Juff2ev3Rdw83XXkJWV5dCRaNu2bQ5PSkORTgYKwfSUGU3YIaTu7Y+oUqlkUy9PiIiI4MLzzvV6Xnd3N8+89DoTj76a9b++TXNzs99Rqjv4SsBWq5VNmzYhiqLXHH4wPNC3bdtGW1ubQ+7eXziTuq9fxuEsBiccdwzHHbNE/vK5+1w8+tRzrKzth+5veCI62ueKZMnGIDMzU9bGd3d3O2jjJQKKiooaEQIaDX7qvnxfrFYrSz//minH38BvP73BaXV1ZGZmDupIZP+k1N/f73VTO1j3/L+gfIFRFqkHAo2NjWzbto3d5s+j+K9PSI0N99pyrqWlhba2NnJzc71+oHzJf+t0OgoLCxk3bhzjxo3zacxAkbrFYkGv16PX64etNhqpzke+zLlfqyUsOgGTtkMyWfIJzu/HmYAMBoOci7cvs9+R+fidpZ2dKIrMyZ3Glt/eIzU23G2+3v5JyV46WVFRgcFgIDY2Vs7HB/Me/xf6k8IuROpWq5Xy8nLMZjMLFy5kwYIFrFmzhqioKI9Kj9raWs6/8gZMinCOO3B3rrj04mHNQ1IHzJw502e3yUCRp7SYqFSqIeWiAzWvQC8Grsa64arLePuDD8na/QAKCgrcvra5uZmHn3yWiHANN1x9BRqNxiNhhoeHk5GRQUZGBqIo0tvbK0eZoijKBB9MbXywGk8HI/q/+bqr0el0jB071qNayWaz8fRzL7ByXSEXnHkyBx1wgLypLd3juro6RFGUi6LcNY8eKkKRegDhS/plOKQu+bBLm4HS9aZPn05LS4vH11ZVVWGOTCFhygLWFa0d8hxEUaSyspKenh6/m3sEIlJva2tjy5YtzJw5k9LS0mGNNZrg7rOTkZHBLddf6/X173/4CWX6GGzdOr797nuOPeZov67tSRsfHh4um2UFEsHwVAnG5qvVaiU6OtqnVM3WrVv57q91pO52NE+9+DoHbd80VygUxMfHy3s+JpOJdevWyc2jw8LC5CKz4abDQpH6DsRwIvXm5maqqqpc+rD7oikvKCgg7/uf2Vr+KxdffanHc00mE998881Aeme33eQviclkoqioiLi4OPLz8/3+4A2H1EVRpKqqis7OzoB3inKOuH1NC4ymhtVZE8ZhXfkdotXM+HGe1TcWiwWTyeRWRulKG9/Z2YnBYGD16tVy84qEhIRhWUgHK1Uyknn6lJQUohRW2tb/xJwp7gvPBEFAo9HIZmb26TAp0h6qq+dQvNR3RowaUvdlo9Qekve30WhkwYIFLnNxvmjKIyMjeeLh+3265lvvvsf7v66nv6uDadO+5/DDD5cdDqdMmeI1d+8OQyV1yao3IiJikPY9ELAnAU9++KMZxx5zNBPGj0Oj0TB79my0Wq3L99Ha2spl191MV08fN191MQd6kV/aa+ObmprIz8+XtfE1NTXDUnyMNAEHY8z4+Hhef/5Juc+upzFFUeTZF16mvqmZS88/m8zMTDkd5uzqGR8fL8tXvT3dhNIvOxD+Ruo6nY6ioiLS0tKYPn262y9AIDdgB66rR9BEI2j0aHV62T7YXUMNXzEUUpcKqtzZBY9kocVoitQFQWDBggVez1u/fj29EekkzTiEL7//xSupO8OTNl7qM5qUlORThLmzbJT6u1DYb0i7g9Vqpbi4mGX/lBCelsMzL73G4w/eC7h29XQuMrP3A3K+hyFSDyB8yambTCafxmppaaGystIn7fVwSvpd4ZwzT0e0vUtTk4KJWZn09va6bahRWVnJG+8uJXdqDqeecrLHe+Cv/bCUb3RXUCWRqr/E0N3dTU9Pj0uTL4vFQmdnZ0B8uEcj5syZQ+TbS2lfVcnZl3iWzfb19VFZWcnUqVPdLubOig+tVktHR4dPxTk7S+u5YEX/CQkJCIYejK3VjJmb5fZcpVLp0IBFWkgbGxvZvHmzLJ1MSEggMjLS7/RLXV0dZ555Ji0tLQiCwIUXXshVV13lcI4gCPsCy4Bt23/1uSiK9/jzngONHRape4refEm/SD0vtVqtz7njQEfqcXFxXHj+Ofzzzz+MGTOGCRMmuD333keepDU6h38+/YHcGdOZO3eu23N9tQmw34ydP3++23swFNuBuro6LrjyevRWgQtOXuJgwaDVaiksLCQ6OpqqqirUarUcddq3TJMwmiJ1Z7ibV3p6OkvffFn2jXEHk8nExVddT7tJRVZCGC8+/bjXawqCQHR0NNHR0Q7aeMnX3FkbvzMRcDA2X6dNm8ajt11La2sr++yzj8+vdSWd7OrqoqKigiuuuIK4uDimTp1KZ2enT31/VSoVjz/+OPPmzaOvr4/8/HwOOuggV8qyP0VRPMK/dxo87BTpF71eT1FREampqUydOtXnD/xQfVrcoaWlha1btxIdHe21O1FifBw1LY0IFoNXewJf0i9ms5mioiJiYmK8bsZKtgP+RNTl5eWYYseSnDOPFSvXyKRusVjYuHEjM2fOJDw8HEEQMBgMdHR0UFVVhV6vH7RBONpz7+7mFx4e7tXorKenh+bOXsYffC4V3700pH613rTxUqokJiYmYBvfO1ue3lMQ5AvsXSfHjRvHzz//zG233UZbWxtHH300ZrOZJ554gt13393tGOnp6XJqMyYmhunTp9PQ0BAQuXAwMepJXZLqSTa1/iBQRlk2m42Kigr6+/tZsGABRUVFXkn4rv/dxG+//UZW1qlkZ2d7PHfFX3+z9LNlHHXoQZx95umDvnyS/7uvre6GEikXFBSQ+dky6v79nGtuvhZRFKmursZoNLLPPvugVqsxmUxYrVa+/+FHtFotxxy9hIiICIcNQumpS8pfjnaC9xfJycmceMSB/PjbB1x4xskede96vZ7ff/+dtLQ08vLy3I7prI0vLS3FaDRSUlIipyOSkpKGpY3fmSL1YKT3NBoN0dHRLF68mKOOOoqenh6/PpvV1dVs2LDBnXf97oIgFAKNwPWiKI6opnhUpF9c2QRIRNrX1xdwqZ4/MBqNFBUVkZiYyLx58zw20rZHXFwcxxxzjNfxRVHkmZdeJ36Pk3jr0284cP99HXS/kmTTH//3oSxmcXFxvPnSc4iiiM1mo6ioCLVaTWRkJGFhYfJ4v/zyC899/CNCRAxd3b1ccdnFDhuERqOR0tJSmpqaqKmpITY2lqSkpGFVCwa7kMkfCILAReefx0XnnwcMkJA7cnjimedZXtYEfW08dfeNzJw506fx1Wo1aWlpxMXFYbFY6OrqoqWlxUEbL6W+/J17ILGzLBQS7Lse+VoYCAOihOOOO46nnnqK2NhY58PrgUxRFPsFQVgMfAlMDsyMh4ZRGakbDAaKiopISkoaku47UJDa702dOtXB2CjQufoJ4zKoLvuHRI1S3vwVRdFhD8EfQhyO66PRaGTjxo1yIdc///zjcNxmsyEKChSCEot18D6IRqMhKiqKtLQ0YmNj6e3tpaOjQ260kJiYSFJSks8yv2D87QM5pqdForWjk/DkCRjNBrq7u/0aU5qjSqWSLW/ttfGVlZUYDIaAaeOHgp0pUoehqV/MZjPHHXccp512Gscee+yg46Io9tr9/3eCILwgCEKyKIrt9ucJgtAviuIOkd6MOlKXugL50pknWBBFkZqaGlpaWly23wt0U4uH7rmD5cuXc8ghhxATEyMXM8XHx5OXl+dAQh9+/Amfff0DRxy8P2edcZrbMYcSkUqLmKdU10EHHURPbx99/VpOPvF4t9dvaWnhhtvuwmAwcvetN5Cfnz9I5hcdHS1vuI7Uk1gg4G6RuPayi3j5zXfI3G8eu+22m9vXi6LIDz/+RGNTE8csOcrtRqm9Nn7cuHEOvvGSNl5K1ewIN8SdLVLv7+/3i9RFUeS8885j+vTpXHut6+plQRDSgBZRFEVBEAoABdARkAkPETs0/eIOUh62oqKC7u7uYTkLDhdSQ+qwsDC3DSUC7aooVaKmpaXR29tLSUkJOTk5gwyStFotL7zxHuMOPo/Xl77FkYcf5nLhG8r86uvrqa+v99pDVqVScfJJJ3od79fly6mxJaKOi+bTL7/mhmuuHKRO6O/vp6OjQ84d20fxO4tFqqcNyMzMTB6463avY6xdu5bH3/gYRcI4qmqe59QTjvXp/fuijZfuabAQ6IXDarUGbYH3N1L/+++/effdd5k1a5a8cfvAAw9w+OGHXwwgiuJLwPHAJYIgWAA9cLLoY0QlCMLvDOTg1wqCkAysFUUxSxCEs4GjgSgGUjmPAWHAGYARWCyKYqe7cUdFpG42m9FqtaSmpjJ//vyAflB87aoE/1/Q460hdaD17xIJNzY2UlNT49Z7PTw8nPHpY2ha+yNpSfFuP6D+ROpSZa7ZbHarufcXgiAwOTsb249/YhAUzDr4DJfnSIUkUVFR6HQ6IiIiaGxspLe3VyYkfzfHvSHQKpBAjGez2UBQIChV2GzikMd0pY2XetJqtVoqKiqG3LhiRyGY6Rf7nLov2HPPPV1+j7aTufT/zwHPBWSCjpgJ5AHhQCVwkyiKeYIgPAmcCTzl7oUjTupSIweNRuN3M2JfIBGwN1JvamqSS5h9kSAGMqcuiiLd3d1YrVYWLFjgNjeqVCp58enHKC0tZcaMGW4jGonUv/hyGZ989T1HHrI/p7iIrk0mE4WFhSQlJXmszB0K8vPzefWJHMxmM5Mnu983Kioq4oa7H8ImCtxyxfnsv99+DsU6ZWVl9Pf3U1lZKTeyGG1R/HDvW0FBAVee3kZ9QyMnnXAcjY2NbsesqKjgky++Im/2TA479BCPc5K08RMmTGD16tUkJibK2niVSiWnvkbKN94Vgpl+2ckqSpeLotgH9AmC0AN8vf33xYDH5gEjRupSE+bOzk7y8/NZv359UK4j5evdEaXNZmPz5s0YDAYKCgp82mwKZPrFaDSyadMmWZvr7csVGxvrUVsrzU+r1fLkS2+Svv+ZvPj2exxy0IEOqRpJJjl58uQhe9a4g7SoZGVleT23qLgE0mcSERPPqjXr2X+//RwIafz48axbt464uDjZ1jg8PFwmJE+poh2BQChzBEHgqCP/v3aloaHB7efgjgcepT9lFstfe5+pUyYzadIkn6/hThuv1WodfONHcn8jmN2JfOmutoNhYSAHDwMRuT3sCyBsdj/b8MLbI5JTNxqNFBcXExsbO+xGDt7gKao2GAwUFhaSmprKtGnT/CpqCgSp9/T0UFJSwsSJE2lqagpYtCTJ4jJSk2gr/oPkuBiHCGUoMslgYf/99uW7X+5C32Hk2LNucXmOIAgkJydTWVlJV1cXu+++O/39/WzevBmz2exXP8zRmH7xZ8yoyEg6+7sRRN9zz64WHmdtfF9fn8P+huShsqOfjIJhOwyBlcUGENVAPrCagdx8QLDDI3Upx+fsauhP7tsfuJMfSmmfoahsApFTl3qX5uXloVKpaGhoGNZ49pC09C898zhFRUXk5ubKWvPKykrZs8Y+alm7di3vf/Ile+++gGOOXjLs6/v6JcrIyOCDN1/xet6///7L7U+8ApHxHLWtlisvu5jx48fLJfcdHR1s3boVjUYjbw4Ox2TNV+zoSs3777iFX379jenTDmfcuHFux7Barbzz/lIaGps4+/RTvFYgx8bGEhsby8SJE2VtvP2TkbM2PlgkGcycOoxo0+lIQRDq7X5+goEN0I8FQbgQ+DZQF9phpC75fre1tZGfnz+oHFsi32CQuj0BS/0729vbXc7DFwwnp26/MSn1LrVYLAHfeBVFkfj4ePbee2/g/216IyMj5SIqCaIocsvdDxI5dzEbXn+fggXzGTt2rMPxkYQoivT09EBELKq4MXR0dcnHnEvu9Xo9HR0dDjpuqfhpZ4kAPS0UY8aM4TQ7Xx53+Oeff3j/x38IS5lI9wuvcMpxvi/U9tp4QG4/Z39Ph9LI3BcEM6c+khBF0d2bss+P37b93LeAt+xem2X3/w7HXGGHkXpHR4essHD1R5O6HwU652VPwGazWSa24aR9FAoFZrPZ79dJ6Z4xY8aQmZkpf3EDLZF0Lj6S2txJvtSukJyUSEtDJRqlMOwIN5CGXtI92m+//dhaXUt7RycXnnu22/PDw8P56++VlFVUcuYpJ5KYmEhHRwfbtm1DpVIRGRmJxWIJaIS9I9MvviI6OhqMWoy9bcSNSR4WUbrSxre3t6PT6Vi/fn1AtfHBitTNZvMOL84aKeywd5mSkuJxdR9KowxfID0B+Ouf4glDIWGpsGfatGmDdMOBdjW0H09KM7nqmfrZ51/w6rsfsvfuBTz18H2sWrWKmTPPd5ARurLx7ejo4JvvvmNiZqb8JBBshIWFcelFF3g9r7CwkNc+/5GIzNk0PPEsrz3/lIOFQV1dHZ2dnQ6dihITE4f8hd/ROXVfkZeXx33XX0JLSwt77703tbW1bs+tq6vj7fc/ZGLmeE49+SSP15a08VFRUWi1WmbMmEFXV9cgbXxiYuKQnoKDFan/V7oewSiQNEoIdOm9/bhtbW10d3cHbGPQn5y6KIrU1dXR2NjotrAn0KQgLTrV1dW0tLS4LeZ69tW3GHvoRfz423ucdNzRLFky+BHdFanf98gTlPaqsS37hWeSkwe51o2k9W50dDQKixFDZzPxqY7SVI1GQ3JyMjabjZycHNnCoLa2Vu5UlJSU5JcR2WgldUCuYjUYDB7He+Tp56kSU/mjcDmTsyd5bOQtQSLfsLAwxowZw5gxYxy08VKK0Z9NbAhepO5vNenOjFFRUQrBIXWbzUZbWxuiKPosV/QFvubUrVYrmzZtAghYYY8vkGwOoqKi3Ka7AObPncW6Pz8lKUrt9ulFEAT0ej319fVkZGQQHh6O2WxGGRaHTeH66WokNc85OTk8fNu11NTUsN9++w06Li02giDw6edf8sNvf3LCksUcs+RIOjs7qa2tpb+/n5iYGFk2ORIyuEDeQ2/Rb1xMNKa6djDrfSY+V2M6a+OdfeN91cYH4/Ozk2nUh4VRE6lLOfVAQa/XU1hYKO/cBzKf5kv6Rbp+RkYG48eP32FEZzAYaGhoICEhgdzcXI/XfeDuO9i8eTOZmZluH01tNhtXXHcT29r6mZgazYtPPc6t11/NR59+Ts5Bx7ntN2kfqZeXl6NUKj0WIQUSeXl5Hq1uBUGgvb2dpV/9yLgDz+Hlt19myZGHO1RjShK/+voBwYKUUnBukzaSbQN9hbc53nTtVfz000+MG7fEq1f4P//8w9//rmX/vRd5rRFw3sQ2Go0jpo3X6XQ7RA01GjBqSD2QOXXJFGzGjBnodLohbWp6gjdSl2SbQ/GAHw4k3XtycjJxcXFeySYsLMxjE2AYWJy2VNeTc8w1bPniSfr6+sjIyOCaKy93+xr7637/4088/ur7CKLInddcyJ577unfmwoSYmNjGZMQQ/Pqr8nOHOeQnnKW+JnNZpqbm6mvr5cf46VUzc5A6t4i9ZiYGI477jiv47S3t3PXY88RPmURy+9/hMfvv8uveWg0GrnxhLRwdnZ2OmjjJSVYoPPqofRLELAj0i9SlWpXV5ecRzYajRgMhmGN6wx3c7V3dxyqXHKoaGhooLa2lry8PNrb2wOW046JieG4xQfyzddPc/zhB3v0oa6oqKCwsJDx48fL1aTlm7cQNn4mVpOBLZVbR5zUpfui0Wh48alHqays9Fp49tXX3/D8G+8yeWImjz94L6IoyoU6ZrMZQRDo7u4eVhOLYCJQJKlQKFAIYDHoUCmVwxrTfuHMysqStfGNjY2sXbvWQRsfEREx7IUzROojgOGSekdHBxUVFSQkJJCfny9/4AJtvgWuI3Wr1UpJSQkqlcpjHjvQkHq36vV62TcmkBuVCoWCSy+6gGuuvNzjE09vby9X33InljHTUTd/yqvPPQnACccezaYHH0OtVnPE4sN8uqZ99BtMP3XJHdMbln7+DeMPvYhtq75m8+bN5OfnExMTQ1ZWlpyHb25uZsuWLURERMh54x25qHtCoJ4mEhMTeeTOm1m7bj3zzr7RY0pTFEV++eUXurq7OeLww72mPlQqFcnJyYSHh7NgwYJB2nj7ZitDSaWG1C9BgrfuR0Pp9wjw8aef8vDTL5OanMCbLz7jQKiBNt+SxnSlAx8/frzHKr9Aw2w2U1hYSHx8vINvzFB19K7g6wJhNpsxWURiksfStW2dfM/HjRvHq88/5dO1tFotN99xD5srq7jhyos56IADhjP1gOHgfRfx0bdvkxIbOch0TqFQEBkZyZQpUxBFkebmZjo6OmhpacFiscjl9vHx8SMWxQcynTF79mxmz55NW1sb/f39bs/7888/eei1TyAyjoamFo/pOgn2i4+zNr63t1f2jRcEwe0ehzv469C4M2Onj9Tr6+v58LOvGH/QWfRtK2Tjxo0ceuihwx7XE+xJXcrf5+bmDrvKzp+ISrIJzs7OZsyYMQ7HAl38I7W4a2xsJCYmxqXkLykpiVuuupDf/lzJHpdf6FHp8/0PP/LLin844ajDHJpHFBcXs6XNQMo+p/P20s+CQupDuS8XnHcORx2xmPj4+EHRt/3frLi4mBvvehCbCA/87zrmzZtHV1cX7e3tVFZWyimFpKSkHWpENhLNLAwGA6g0qMJj0Ol9S3+6G1OhUBAfH098fDyTJk3CZDLJqZry8nKftPH9/f0BN64brdhpSV2SC4qiyHlnnMwjz75CYlzMINWD87j19fU0NjaSl5c3ZKmatKlbVVVFe3t7QJp6uNKDu0NrayuVlZVubYIDrRM3mUwUFxcTExNDV1cX/f398uOwvbJo//32Y//99pNb17lCW1sbT7z8NvHzDuOOBx/nu8+Wyq/Pzs4mwtRFy9+fcfyhwStq8jcVIQiCW8mn/d9s5b9rUGQtQK1S8+c/q5g/fz7JyclyK0QppbBlyxaMRiPx8fEkJSUF3d98R/vTAOy///40tbTR2dXFWaef6nEsq9XKv//+i0aj8Sm1MhRtvFarZeLEiT6/v7q6Os4880xaWloQBIELL7yQq666yuEcYeCmPg0sBnTA2aIoBsdu1g+MqvSLr6QupTukPpqzZ89m3332ISwsbBBR25N6fX0951x2LRZNHAfkTeG2W24Y0vuw2WxotVqMRmPAXCal6N/TWJJ/TmdnJ/Pnz3crAxtK42l3kDxjpk2bJj/qiqLoULhjL12LjIz0+HcODw8nXK2gt6GSxPg4BzJLSUnhnVeeo6Ojwyfb3urqar7/8WfmzZ3trsv7DsX+++7Ntz/fjc1m49BzBnc8sk8p9Pb2smXLFqxWK1VVVajVanmRDHTh1khE6iqVym27RWe88/5SPvjxb6z6Pi488QjmzJnj8zxcaeN7enro6OigqqoKQRD47rvv6Onp8amoyn7+jz/+OPPmzaOvr4/8/HwOOuggZ8nnYQx0JpoMLARe3P7fEcWoitR9kTRKznHOZe/uNkHsN0rr6+uxhMcTP30PyipWDWmeWq2WoqIiVCoV06dPH9IYruBNJim12dNoNA4bwa7g7P0iobe3l+dffg2FQuDSC8/32gyktbWVnp4eZs+eTXJyMiaTSR4/Li6OuLg4Jk2ahNFolL9Eer0epVJJTEyMy+rAmJgYnnn4XkpKSigouHRQBCkpIgBefu0NvvnpN+bMmMyCBQsGze+mO+6jP3k6X/z4NO+88MSw7R+GAvsoePLkyXz+wVsAHiNOrVbLxVddT2u/md1m5nDfnf/DYDDI91Cn07F58+aANZQWRTEopB6o2o/a+gbCxuSg72yio2N47T2VSqWcioGBvgGrV6/m119/5ddff+XTTz/l4IMP5qijjvL4+ZeklzDwmZ0+fToNDQ3OpL4EeGd7+7pVgiDEC4KQLopi07DexDAxavRX3tIvoihSUVFBbW0tCxYs8Cits4f9Rml+fj77zpmEpvofrrr4XI+v6+vr4/PPP2f16tXy71pbW9m4caNsZRtIeCJ1vV7PmjVrSE5OZvr06V6/oO4i5Q8++oQfN7XwfXETn3z6mdvXS06WNTU1JCcnO0jKXI2r0WjIyMhg1qxZzJ8/n9jYWNnsaePGjdTV1aHT6eTzJ06cyJFHHjloL8Ae3d3dfLjse1IOOJ+fV6yir69v8DwZaAMHvqebgu2nrlKpvJJdc3MzrX0mJhx4FqvWbgAGnmDGjh3LzJkziYyMJDU1ld7eXjZu3MiGDRuoqamhv79/SFG8u0bWw0Ego//zzjyNKepOdsuMZdGiRQEZU0JMTAyXXnopubm5LF26lCuvvJKampoB108fUV1dzYYNG1w9DY4F7HON9dt/N6LY4ekXd/CUfjGZTBQVFckSNH8+oPaLhVqt5s5bb/bpdQ88+gT/VPci9DTy3P3/Izw8nK6uLhYsWBCU6jd3pC4VMvmzEesu/RIfG4utvwsBG/HxrhdFm81GaWkpCoWC/Px8SktLHUrrvZGKpAaJjIxk7NixcgQqSdN8zSNHR0czcWwa9b8vZWyqa2/0h+66jW+//4l5x15KRESEV6LR6/VotVqP8/cXQyHZrKws9pw7lX++e57zTh/cZlAQBLmhtCiKlJaW0tvbS19fH1qt1kHe58u+0EikX/zBuHHjePLh++VN5WBAum/Tpk3zScYqob+/n+OOO46nnnpKfoIc7RhV6RdXpN7d3U1paemgphq+Yqj55e6ePjQJaRi1naxfv56FCxd6TXsMB64Is7a2lqamJr8LmdylX044/lgSEwYqTQ9woSwxmUxs3LiRjo4Onn/jXVKSEjnv9JMRRVFWwIii6HVTz/76UgQ6duxYbDbboIYWUi7eWQ2iUql47omHqaqqoru72+U1J02axBWXXcyTzzzHbQ89xYycLJ58+H6Xi25FRQXX3HoXOr2BK88/w+c2cL7A3yhYqVRy122uuzw5R9Vvv/cB73/1C2rRxPOP3kdubq68nyFtSEuKGnfWtyOxUToUBLNBxlC8X8xmM8cddxynnXYaxx57rKtTGoDxdj+P2/67EcWoIXVnUrN3N8zLy9vhvg03XXM5L73+NuqZmRx44IFufchhQJO7fmMRS4483KcNPlewj9RtNhtlZWVYrVbmz5/v9wfdXUStVCo5+OCDXb6mr6+PoqIipk6dyoeff4Viyr5UN25lw4YN5ObmyoRus9nkeSoUCrnLkq/v0T7faa8GMZlMsi+31EItMjKSmTNnsmbNGrdjiqLIVz/+yuTjb2Lzty9RX1/vkrBX/bsaS/psIiKi+evfdRx99NE+zdkbgpHOsb+fazcWEzdrf3qri6isrGTixInyfgYMLMSdnZ2y9W10dLS84SotbqM9Ug/mmBIkrxlfIYoi5513HtOnT+faa691d9pXwOWCIHzIwAZpz0jn02EUpV/sYbVa5RTAjnQ3tEdERARHHXaQW9mghJqaGm5/5DnUWXNZeed9fPj2a0O6nkTqRqNR7ptq30jD37H8eTqRJJJz5swhOjqa3fLzWPfep4RhZdKkvbFardhsNtRqtUPUbrVaaW5uJjo6mpiYmIEy8u1E78v17dUgVqvVoYWaVJnp7D3vDEEQWHLogSz77HFmTM5yW/y1+24L+fir7+js7Gb++Wf4fG+8Idg5+nNOPYH7H3+WaRlpDpp+CWFhYbIRmeSGqNVqaWxsxGazkZiYiNFoDLgufmeL1P019Pr777959913mTVrFnPnzgXggQceoLa2lksuueRiURRfAr5jQM5YyYCk8ZzAz9x/jJpIXYKkLtnR1ZkSPPXxtIeUYhj4AoqINhsw9C+3QqGgr6+PkpISpk6dKmubhwJ36RdniKJIdXW1rLWXIrsTjj+W+fl5REVFYTAYKC8vJyEhgeTkZLktnFKp5LMvvuTl9z4lSqPi+cceYMyYMVitVnkR8OeLr1QqZU23KIrodDo6OjrYtGkTWq2WrVu3kpSU5NJf5arLL+WcM0+XFxZXyMnJ4fAD9+ODr3/htfc/Za+99nJo2eeMqqoqfvt9BQXz5zF79my35wWb1PPz82VFjSd0dHRw/uXX0m9TccCCXG6+/lrMZrOcp5YWTCmKH25dRTBaTwYzUvdXrbPnnnu6DUwuvvjilwC2q14uC8gEA4hRRepS2fvMmTNHZFPCbDZTVFREbGzsoD6ezpAi6wkTJnDfTVdSWFzKkYd7jgC1Wi1vvvMegiBwzpmnO0QOEonNmzdv2B4VvkTKzhui9l8mQRDIzMyUF62MjAyHykiNRkNKSgo/Lf+T1N2Po3PLGioqKhg/frwcJWZnZ8sEL6VofP3CCoJAVFQUUVFRTJgwgdWrVxMbG0tzczObN28mKipKjuLDwsJkiaU3rC0sJbngCDrLVlJZWemW1G02G9feciemjDl8+s2DLH39hR3mtjnURaKuro5+IYIxCxezZv2XwIAwQFLRJCQkoNFo5IVSsjCwT3f5g2BF6sEQIYx0j90djVFB6jabjYqKCsxmM7vtttuwowhnSJGrpw+h1O7OVdm9K9jnwPfcc0+f3AeXfvQxn67cjCiKREV8ytlnnSlLNXU6HVOnTg2I6ZC3SN1oNLJx40bS0tLIzMx0OGafNxcEQf5nnwrR6XS0t7ezW95MXnv/VTLGpJKdnU13dzebN29m5syZxMTEyCkas9nMv//+K6eUlEqlX7l4QRDkRshSBWF7ezslJSWIouh1o1DCuaedwF0PP8nEMSleFRC9fX0orSCIeLyXgY7Uhyo/nDFjBgVTxlG06mMuv+Ash2NSnl4q0snMzKS6uhqz2Synu8LDw+Uo3pdUzc6WU4eRbd6yIzHiOXWj0UhRUZFszhOMP6q3as2mpia2bdvmV7u7obg/RoRHYDPqAZGIiAiHJ4O0tLSAfejsc+rffPsthcVlnHzCMWRnZztsiDqneFwRuitERkYyYcIELrzwQs4880x6enqoq6ujqqqKxMRE+vr60Gg0hIWFoVAoePbFl/nmn2IUhh6effBOuVzbYrHIEbw/BC+RU1ZWFmaz2WGj0FPHoj322IP3Xs3xau70+++/Y7AJ9Pz7DReedpzHvH6wN0p9RVhYGPffdZvLY86f/S+/+orn3voYjULk6YfuZsGCBej1ejo6Oti8ebNcai9F8a7y3DabLeD572Dm1P9LGNFIXWrGLBFMT08PVqs14O3DJLmkc05NekLQ6XR+t7sbivvjiSccR2REOIIgsN9++7JmzRq5EfbWrVsdFolt27bx4adfkDttMkcecYRfxCGlXyoqKnj0lfeImDifknsf4ulH7nfYELWHKIpYrVaZpHy9nkajoa+vD7VazT777INer6e9vZ3CwkJgwOirtLyC6Ox8tDVFtLS0MH36dDmKl/4r3Ut/FTVqtdrBB8S5Y5H0hOFP39HKbdXEZOcTq1SiDvP81ChZJlx69Q20tLdzxw1X+1Xm7mq8YMsP/1y1jvi5B9PXUEF5eTk5OTnypvX48ePlNnT26TZpoZRShjtTpG4ymYLeWWk0YURI3b6ZhH0z5kB2P7KHKw28yWSisLCQxMREB9taX+FLSztnqNVqjjnmaNra2igpKWHWrFny3oHzeHc98ChNkRP58e8PmZyT45clgRSpq9VqBJsVo7Ybq9VCTU2NS8+YoRK6pFKKiIhg9uzZCIJATEwMMTExcseg9vZ2jjpkf15/7yNmjMtg0qRJWCwWVCqV/AWWng76+/v58ccfSUpKYtGiRXKaxlc4dyyS5H5S39HY2FifKj6PPvIISsqewGazcezRngUNtbW1fP3112zpVRCXsw/vfPgZj48yUnce89TjjuL2Bx4jPSmR3XfffdD59l4+NpuNhoYGWUBgMBiIi4vDaDQGPFcdzKbT/xUvdRiB9IvkYRIWFjaomUQwbHKlce0Js7e3l+Li4iEXNMHQSF1Sm7S1tQ2qTHXe3IyIiMCs7UEQ/d88knLqWVlZPHzbdfz622/suegcl8VToijS39/PQ489SU1DEzdccTEzZ870eg0pbZaRkeF2w1GtVpOens6SJUs46qij6Onpob29nfXr18vEkZKSQmRkJCqVipdff5MfCutA28F9ERHMnz8fg8GAzWYbaHbtZ7cde7mfFFHX1NTQ19dHd3f3IBMyCampqTzz2ENex29sbOR/DzyOXhlFd0MV9Daz4IQjfJ6fK+yISD0/P59vP/3A63WsVis33HoHG8oqWZQ/i3vv+B+iKNLT0yNbZkjNpF3dR38RTFL/r3ipww4mdaPRyOrVq8nKynJZzBMsUrdPlUht3+bOnTus1XsoVsGlpaWoVCqXzo7Oi8S9t9/MDz/8yOTJR5Cdne1x7OLiYpav+IsD9t1bbjYtiqLcdOS0U0/1uCG6atUq/q5oIXrCbJ5/7W1efOpRj9fr6+uTq3ylQiJvEARB9sQGHOwDdDodCQkJNLe0oo5JwmzWYzAYsFgsbNq0iZycHARBGFaaRlLIpKamEhcXR1pamoMJWVxcnFx67yuxdHR0YFVHkjJjL9LCrTxy722Dmmj4i2BF6s73yZdrdHZ2sqGskmkn3shfS+9Hp9MRFRUlK2kWLFgwyMxtOB2KgpV+GUo16c6MHUrqYWFhzJ07120RgEqlClr6xWw2U1ZWhtFolNu+DQf+ROoGg4GNGzfKVsHuxrNfJFJSUjjjjNO9jq3Varn2f/egmLSQb366i68+ehe1Wo3FYmHt2rU+bYiOHz8eRX8bfZVrmbbXXI/Xk9QSw10Une0Durq6OH7JERg+/ITU6RmkpaWxceNGZs+eLRd/SVWtfX19vL/0I8LDNZxw3LFoNBq/N1slE7KMjAxsNpts17pt2zbZBleKPt1h5syZHLb7HMorN3LVTdcxefJkt+f29PSwcuVKJk+e7HGRDpaj4lAWiuTkZPbIm8nfH9zPQfvs4XAvpPHs76PVanXoUCRVEPu6pxGMzVfwv/BoZ8cOJXWp9NsdghWpi6LI5s2bycjI8Npk2Ff4SurSZvCMGTM8ap2H04JORERAwLY9fSO1Gttjjz1cbog6K1wmT57Mq08+SFtbG/PmzXN9DVFkw4YN3HrX/VhEuO9/N7iscBwKFAqFnEdftGgR1dXV1NXVERERwaZNm0hMTCQ5OVlWYiz96BM++3crollPTFQURx+9RI7iJW8af+0LJAMtwGcTMkEQOPWkE+Q0jyfcetd9VPQqUPa8y9svPElqaqrL80aTo6IgCNx3120yKXqaV0dHB9fcdBttnV3cc8t1LFiwYNCehidlEgSnoAlC6ZcRRaBJXRRFuru7aW5uZvz48X51PvEGX0i9vr6e+vp6h83g4YznClFRUTx+7+0D6Zfz7qS+vl5u8eWK0IuLi9myZQt77bWXQwSflZXl1rfGZrOxefNm/vnnH6xp04kdO5mPl30bMFK3n191dTXd3d3svvvusnNnZ2cnTU1N8vvq1/Zjs5rAZiVME0ZYWJgcxUuKGsBl4ZMvm3v+mJD5mi5pamkjdup+9JS00NPT45bUd1T6xVdIhWDesHLlSlqUycTm7cGHX3wj7xnZ72k4K5Oc6wtCpB4Y7HBS99b9KFANk+vq6rjwiuvo6e3l1msvD/jut6cFyGazya21fPWuGU63ojlz5jBr1ixKSkp4+vmXKKysI1JhZbfddpMXE8kg7ar/3QvJk/j+1xW88tyTXsc2m80UFxeTkJDA4sWL+W75/+huruCAi8/y+Lq+vj70er1b8nKGZGKmUCiYM2eO/OVWKpUOhUf9/f0cufgwjIbPUStVTJ82jd7eXtkiQLrXNpsNvV7PK2+8SVd3LxecfQYpKSky+fsKbyZkUpTvLRq+/YareHvppyw55hCPeXebzUZxcTGNjY2yAmi4CEb074wZM2agenspXa1VnH7uyYOOOyuTnOsLoqOjMZvNWCyWgMsPpb2A/wpGXaRuMPjWpNYTbDYb773/Pt1x2SRMzmD5XyuHpR12BXeRtSSVTEpKYvr06T5/mXz1a3EF+wrR4vIKJh19LSWfPkVDQwPZ2dlyukWn02FTqIlOzaSjxnvnJ71eT1FREVlZWXKV7Ydvvoxer/dYdbtt2zYuu/5WDBYbN156LocecojH61gsFrkAzZOJmSSZnDZtGrfdeitms1luqdfX10dsbCzJyckkJSWhUqn4448/+OrfLajjUlG+8wE3X381XV1dJCQkYDKZ/E7TwGATsvLycnp7e1m7dq2DCZlzVXReXt6g/rmu8M8///DEW5+hiYrhnIZGTjtlMEH6i2AUSDlj0qRJvPfKc+j1eo+OpjDw+Xjk6RdISojn5uuuGnj66u+nsLCQkpISbDabbGEQiILE0EbpCCIQ6ReDwUBhYSH58+bxyz+vouuoZLezTvQ4rsVikSVuvn74XRUfSdWaQ5FKDjX94lwhesaJx/LmB48yJSNV9m+RIrWcnBwuPe1Y1hYWc/QVF7Fq1SqmT5/u0jelu7ubv//+W1aFSLBvN+cOhYWFmJJyiM/I5pc//vFI6tLfy37h8BVqtdrh8V6STNbU1KBUKtHpdFi13SBC/PTplJWVERsbK6dVpH/S31GKiv0xIYuMjCQ6Oprk5GQHEzKr1TokYmpta0eITUUVn0Jjc6tf98MTgmk6JsF+X8IT3nxvKXXq8VTUNLB8+XKOPPJIYmJi0Gg0zJs3D4vFQldXF83NzWzZskVeLBMTE/3qKyChv79fbk33X8CoS78Mh9SlTcnp06eTmJjI/PnzMZvNsl+IK5hMJi675gbKt9VzyN67cdvNvjWjdt7YbG5upqqqymW1pq/j+UvqkmWuvRLlvHPO4qwzTmP16tXymPYFRccfdwxHLzmSMy+4lDZLOMlKPe++9qKDGqipqYn169fzzGvvYAmL5dDV67jh2qtczsEVFi5cyPufLqN7fRnH33q92/N6e3tZsWIFKSkpPqdp3MGVZHLMmDH09/fT0dFB7rTJhIeHy94z9mkaq9XKu+9/wJqNJZx50rHk5eX5LJm0L9iyNyGzJyZXJmTusP9++7Jl6zbUYRbOOs1zlN7Z2UlhYSG5ubnDvn/+YLjSw4mZE/jn+z8RTDqXTqwqlcoh5SYtlmVlZbIRWWJiIvHx8T7Nw5stxK6GXSJSt2+oYd8lSMqDtrW1uSXMxsZGttS1MuXYa/n+wwf4303X+xTVSHP11arXG/zJqUs9RDs6OlxeU5pbfX09ycnJg6IbvV5PY2s74w46j/qf30Cr1RIXF4coilRVVdHb20t8fDzWyCQSp+/JxtI//Xov6enpfPzuGy6tGSS0tbWxYsUKXnrnI2zqSE47cjPnnnWmX9fxhPDwcMaNG8eJJ55IYWEhaWlpmEwm1qxZg0ajkW1+IyIiqKys5L2vfyVu5n489NQLfPreGw5RvCeXSXdRqzMx+WpCFhkZyeUXX8CECRM8vj+bzcYV199ChxBHpP4tPnjj5SFFsUPBcKWHZ51+KjOnTyU2NpapU6d6PNd5sZR89yULg/DwcPleuhMjaLXaUE59pDAUmwCr1cqmTZsQBMHtpqQnn5Zx48Yxe/J41n/8EMcdeZhXQq+vr5c35SwWCxs3biQyMtKrVa83+JpTt9lslJSUoFKp3FaIWiwWZs+eLZOIzWaTqzelMv6LzzqFL75bxoVnnEhcXJx8H6VaArPZzO5TfmfDxm8oWDiPpqYmj4+wNpsNk8kkE4sgCG4Jva6ujpaWlgH1SMJ4YjNnsq6wFM+twP1HT08PmzZtIjc31yFlJLlMlpWVyU9bgklHb3UJ0zLS5EUyUP40/piQ+Zr/NpvNNLd1MGbvQ2j562O0Wu0OI/XhqlSk5jf28HUz1953Hxw3ro1Go0v5qb859XPPPZdvvvmG1NRUSkpKBh0XBGFfYBmwbfuvPhdF8R6fLxBkjEj6xR38jdT1ej2FhYUei3q8jatSqXjmsYd92iFf+tHHvPzeZ0SoBe655Tr6+vqYNm2a140hX+BL+kXaEE1PT5cjua1bt3Lfo0+RlBDPbTddR1RUlEsSsd9QjIuLY/999+GE445FqVTKm7tpaWnyfQwLC+Om667ipLMu5KeKHlbfcCsfvfO6yy9zT08Pl11zI/XNrVx98TkcfdRRLucvmYwZDAby8vLQ6XT8tPxP6ipXcP71V3p87/X19dTW1pKfn++TNbMUyc2dO3dQBCe5TEqRX2dnJzdfeRGbNm2ioKCAxsZGkpOTZZdJ+P/Cp7/++ot3PvqC3fLncPqpJw/pydKTCZnJZCIqKor4+HiPBTsajYYbrriIT7/6jkvOPMlrh6itW7diNBr92rx3h9Fk5uW8cS0VkVVVVWE2m/njjz/o6enxK1I/++yzufzyyznzTI9Pjn+Kojg8T4ggYVRF6v7k1Ds6OigvL/da1APeFwtftbjL//6XpIIjad+8lhUrVnDAAQcEhNDBO6m7s8x97e33aYqYyLaGBn799VeWLFky6Etrv6EoVU+2t7dTVVWFUqlEr9czefLkQZG4wWBAb7YQPzaHrnVlbiO0kpISWizhZBxwDh9/+Z1LUrdarZSUlBAVFcWsWbNkJctTjz7o9d40NTVx/pU3YI5IZI+py7n3jv95PL+hoYHGxkbmzZvnVR4nSSYPOuggDjzwQLRaLW1tbRQVFclPOMnJyfJm58NPv0jUvKNY+s13FMyfh06nIz09HZPJJI/nbxRvL/WrqalBp9NRW1sr99WUOk45P/kcevBBHHrwQV6vUVZWxrvLfgKlmktPO5pjlizxaW7uMFpb2SmVSgf5aXt7O//++y+FhYWcfvrp7Lfffhx66KEceuihHj8Xe++9N9XV1cOay0hiVJG6L+kXe4dH+/y5t3GHKhe0xxknHM3Ndz9IfEwUS5Zcjl6vd3tuX18fra2tTJo0yafIyBOpu9oQlTAleyL/fPUrgknvU09T++rJxMRENm/eTHp6Ok1NTdTW1sokFhcXR3JyMjdcei4///43x998rdv9gunTp6Porqfo0yc57+RjBh2XngTS09OH1KKwubkZc1g08VN3o6LKfX5f2hPo7+9n3rx5Q2rYLT3hSFrqjo4O6urqZMlkSlIC9RVrUNlMtLS0sMceA+XzzoVPQ/GKh4G/T1xcHBkZGbIJWUdHh6zoGYp5Vn1DAyRno4lJpGxzJYP/Qv5htJK6M5KTk7nmmmv4888/efXVV6mpqeGHH37goIO8L4Q+YHdBEAqBRuB6URRLAzFoIDCq0i++uMaVlJSgVqsHOTx6wlC8z51hs9mIj4/npScfJjc3F51Ox9atW12e29HRwbmXXkW3wcbRByzimiu9tzF0tVHqbUNUFEVOP/VkZkybQmxsLFOmTHE7/u+//84DTzxHdlYmj9x/l1xpa2/Fa7FY6OzspKGhgbKyMmJiYpiXl8dBBx7o0StHqVRiQSB11t789tcqrrz8Mod8ZnFxMTk5OXL/0TffeZeNxWWcf+YpHvt/Spg1axaHLZxFcflqLr/sApfnSAVfHR0d6PV6xo4dO6w+rzBYMtnb28s1l13EihUrSE1dKFcoS5G5vaKmpaWFx599AZVSydWXXSwrNbxF8fbVn5IJWVxcHJMmTRpknuWLCZkoihQsWEBzxy9otVs55YRrPL5nKWhKSUlx+/Q6mtIvvkCr1ZKUlERWVhb77LNPIIZcD2SKotgvCMJi4EvAvfHPDsaoitQ9QafTUVhYOKSG1MPVv0ta6rS0NCZMmCB/Md1F1tu2baNPiCR9r8X8uepLrvGcLgYGb5T6uiEKMH/+fK/jv/Xh5yTscRIVm/5i2bJlzJkzZ1A0q1KpSE1NJTU1VSYxe913cnKybJVrjwGFiIKI+GQsbeXy4tTV1UV5ebnc3g6gtLSU977+jdhpe3LfY8/w8TuveZ27SqXieg830WKxUFxcTHh4OI8++zL6mLEkvvcRS996NWBEIRHsmDFj2H333Zm2vZJ169atssuktNmpVCr55PMvKexUYbOY+Pb7HzjjtFMd7AvcEbynjdKhmJCJokh8fLxPVsIAjz75DD/9s56kKDWvPvuEy5qEYJF6sLoe6fV6n1r0+QpRFHvt/v87QRBeEAQhWRTF9oBdZBjYKUi9vb1d7n3pS4NhZwyH1Ht6eigpKWHatGkOm1GeUjozZ85k5rgESpa/zbWXuo4s7dHQ0EBERIQ8nqsNUQmiKLJy5Up6e3vZd999fZZQ7rlwHu8v+xLR0Ed29snMnDnTLXlISgopSszOzsZgMMh/B6PRKJtsxcfHk5iYyH23XMuf//zL4rPuQKVS0dzcTG1tLXl5eQ4psoaGBpprt2FQRFKQNXxttdFolBd7tVpNn95ESt482v7+OOAl5zU1NXR2dsqLYUxMjIM/THt7u+wPExEehrm9BkG0MW7sPoSFhSGKokOaxrnwSarh8DVd54sJmaTU8hV//buWcfufSeOfn1BbW+vSWz9Y6Zdg9icN5IIhCEIa0CKKoigIQgGgADoCdoFhYlSlX5zhnH4Y6hfUU8GTJzQ2NlJTU0NeXt6g6NRTSic8PJxnHnvYp2t8/MlnPP/OR0SoBC484ySvPURXrFjB7U++CmFRbKut48LzfBMCnnbySSQnxJObm+vRIvbDjz/hpbeXMiF9DM8/+YgcYUu6b0ll0NnZSUtLi1xYk5mZybx581Cr1Wzbto3u7m7mzZvnkLbR6XQ89sJrpM3dl97S37n1uU+8zruxsZGSkhLy8/MHKTyk1M7kyZPlY1eefxo//LqCC66+1OPnpa+vj7///pvs7GyP9wOQaxGMRqODL40EV/4wiYmJhKlUA81KMjPp7OyUUzD2ihqr1conn33BP2vWccqxR8kpKn+J050JWWVlJSaTiYaGBp+aSp910rG8+MZLzJ01w206T5qbKIqYTKaANIoPVoMMaSH1B6eccgq///477e3tjBs3jrvvvluWvl588cUAxwOXCIJgAfTAyWKg20ANA6MuUpfSEJKxUUREhMv0g79jwsAfeNOmTWg0Go+mSpJVr16vd+u9PtSyfmcs/3sVSfOPpHtbEZWVlaSlpbncEJW+6O3t7RCZiDo2heZW3572JL32vvvuK1dcusNn3/zAuIPOo2ndD5SVlVFQUDDoHFcmW21tbWzcuFF+1J02bdqgL6lCoUClVKIIjyRlTLpXuwGtVsvFV9+IPjqDlA8+4f03X5H/ltJ7sk/tAByzZIlP6o7b73mAkjYTip63eOv5J9yqmGw2m6zflxqQeENkZCSZmZmcddZZLhdAyZ9Go9FQV1fHax9+SXzewdz18JPcc8t1pKWlybp4T4VP7mC/yBiNRkpLSxFFUTYhk1JFcXFxg8Y97thjOPaYoz2+T6kT1aVXX0955TbOO/1ETh+mR00wc+rgXzC5dOlSj8dFUXwOeG6YUwoaRh2pq1Qq+vr62LRpE5mZmQGTDMJAF/Wn3/wEQbTw4C1Xu7SONZvNFBYWEh8f77F3aaBI/fQTjub2Bx4jNjqSnJzd3W6IWq1WLBYL+fn5HLa1mu7ePi44233/TIvFwjfffkt3dzeTc3J8sv8FOOKg/XnzozdJS4r3WO0niiItLS3Ex8cTExNDREQE3d3djB07loiICLZt2ybnmlNSUkhISCA8PJynHrybv/9ZyaLL7vaoXCouLubtDz6ivqWdnLwjaf7rIywWC2q1mtbWVrZt2+ZSg+4rGppbic7anb7+Drq6ulx+zqxWK0VFRSQkJLi1JfYG5wVQqiwtLi6W88hK0ULn1mLiNGFyukqK4qW//VC94m02G2q12uEpq6urS2524sqEzJdmFtXV1Wxt15F1xOV8suytYZN6MCP1/xpGHalLm16zZ8/2Gsn5i03llYRlzsHc301FReUgUu/v76eoqIjs7Gyv5lKBMkjafffdefKBu1CpVHR3d7sldLPZzLU3/Y/iim3sv8d8Hrj7do/jfvb5Fzzz8U9YrFYuP07FokWLfJrPWWecxpGHH0ZMTIzHfP0b77zLe59+S1JsJM8+9gC1tbUOplz2HY3a29tlAklOTua0U0/x+sh+y90Popi8N1bTX2i2/s5t11+BWq2Wq1GlVI8zfM1J33b9lbz+7ofkHXUAM2bMGHRckmGOHTuWqqoqmpubWbhw4bCrhl0VhV12zqmUlZWx555H09PTg1KpRK1WDyp8ampq4s133mdMajKnnnySfI43NY39nO0rMu19VfwxIbPZbGRmZpIaLlLz46sce8h+Q74n9mMGI1I3Go07rNJ2tGDU5NRFUWTr1q0YDAbmzp0bcEIHOPXEY9ny4GNERIdz2GGHOhyTtOCzZs0iJiaGrVu30traGpDWd+7gvCH6zz//OByXIrS33n2fVavXUVRZw5xTb+WXpfdx6w1mt6Rrs9nYtm0bojKMqOhITGb/rBd86Tv60/K/yNj/DJrWfM+3337L8ccfPyi1I3U0SkpKkgmkra1NjlIlcnH2PwGIjYmmtbOJMWlpPPnQvSQlJcn9TPPy8lxGdR9+/Akvv/U+BXlzuP/u2z3+3ebMmcMzbuyYJcvh7Oxslv+xghc++h5sFm66oMerjbA/kNoOjh8/nsMPP1y2L5BawUn3JyoqCoVCwYuvvcWaNjAXryVrwnj23Xdfr1G8J7IcqgmZ1WolLi6ON158hu7ubq+OpO3t7dzz0GOYTGZuu/Eal+o1q9X/Buu+oL+//z/l+wKjJFKXGjFI+cZg5daysrJ4+5XnHX4nFax0dnbKmu0tW7ZwyQ23Y9XEccQea7n+6isCPhdvG6LSvkJJSQkffPs7UTkL0HWtpfyjBzji4P3cErrJZKK4uJijlxxFTNwKBAFOPvF4t/PQ6/V89MknKJVKTjrhBJ+/WKccewSPPfcSCbHRHHXUUW5z9aIo0tDQQExMDHFxcURFRclRqkRg/f39xMXFkZKSIksCH3/gblasWMHMmSeSmJhIaWkparVarkaVUFdXx2tvv0/m+Aw+/PxrJhxxOWuXv09lZSXTpk3z6b3Yo7+/n5KSEtmSuKm5BVXiWKxmEy0tgbPClbo89fb2MnfuXJRKpYPayGg0ymoanU434GWiAFNfJ4JpoMGzu45P9oVP/kTAvpqQSUqVsLAwn9whv/3+e8q1EajCk/j4sy+59qrLB50TrEj9v9b1CEYBqUspj0mTJpGWlkZ5eXnQmk87uwZaLBZKSkrQaDQOm7H19fXYIpOJzpxJRVVlwOfS0tLC1q1bPW6ISgZHiYmJKCx6tI2VHLT/vtx9281uP6SSGiQmJoa7H3qcnt5e7r/9Zo+RyvtLP+KDP4oRLWbUKjUnn3SiT+8hPy+PR+/+H/PmzfOYSnn/w49446OviFQLvPzUI4wdOxYYiFLT09NJT0+XNddtbW2yJDA5OZklS5agUqnYuHEjSUlJZGZmDhr/0aefp8KSxJ8lfzN5XDoVv7xNaoxmSJWr3d3dlJeXM2vWLPmenXrSCTS3vkhYWCxHL3HtaSOhpqaGqqoqFi5c6LEXr+SBYzabmTVrlksy02g0g9Qsxy05kqgffiA5OZeMjAwH/bWzlfCqVavYWFTC7gsXEB4e7rDp6gs8mZB1dHTQ29uL1Wp122/UHtkTJyIu+xmzQsmUA09weU6wcur/ta5HMMLpF8mDXEp5QPCaTzuTul6vZ+PGjS6LmRYtWsS+K1dTXbeJK6+42OO43d3dbNy4kZkzZ3qtYJQkmp2dnW5teqVHacmje/z48Tz74J1s27aNPffc00HpYY/m5mbueeBhdEYzc6fn0BaWQfSMhXzy5TceO+4oFApEmw0RGwql9y+8vSlXQUGB1y/iH3+vJrngKLq2rKW8vFwmdec52GuupTREcXExfX19sne2q3x5YnwcxsoWMGq59MJLiY2NZcyYMV67xxuNRn744QeioqI44IADZC+cuXPnOuRgk5OTve5fwIA/zUXX3IwlKpW5P/3GYw/e6/I8qW2fSqVixowZPmvSJTXLnDlz0Ov1ssukyWRyqBlQKBS0tLRw9+PPI4ydzVc/PMDSN1+RI3qJ2P3t+GRvQrZ582aio6PR6XTU19fLwUdSUpJLE7I999yT51JSMJvN5Obmur0vwYjU/2u2uzCCkfqWLVvo6+sbRG7BJnUYaC5QVlZGbm6uy7SBRqPhzv/d7HVMm83GxVddT5sYTazpdZa+9arbTRn7CtF58+a5rCRUKpWUl5dTUVHBmsISjjn8UObNm8e0adM8phIaGhr49ttvKW83Ep01h1Xr/0XVr6e3ZTN7eukleurJJxIWpkapVLp1V4QBon3znXdpbm7mhGOPGZQGcYczTjyaex99mnEZ6V4rXxsaGlCr1aSmppKYmEhjYyOzZs3CZrNRX19Pb2/voJZ1N1xzJXm//EJGRobHloVarZaXX38Tq9XKReedw/tLP+LjP0vAqKWzs5NJkya53Xz1BR0dHZiV4cTlzGPblt9dniPJdGNjY8nKyhrypmtERATjx49n/PjxgySTkZGRAxvrFiui2ULi9pSmROr2HZ8sFguCIKBUKv0iVFEUiYmJkU3ITCYTnZ2dHk3IvPmmBytSD6VfdgBEUWTdunXExsa69CAfbvcjd5AqQGtrawc10xgqrFYrjS1tpO93GM0rPnDrae2pQhT+/5F57ty51NTU8NCzrxIxYz9+u/E2lr7xEunp6W6VHpWVlej1evbZZx8++X452upC9po/h/POPgODweBVEtrQ0MDf/65jTGqyxwrM95d+yLu/FaFSqcgpLPTJswUGHO9+2msvrwT28y+/8uCzr6JUwF3XX4FCoWDWrFnyF1Kyqe3t7aWtrY3q6mo5B3zQQQd5jcw/++JLvllfi6BSEf3hR/RptSgj49AZjTQ2NnLccccNi1Ryc3M57sA92FBSyEXXDPb6sVgsFBYWkpqaSlpaGuvXrycjI2PYbdZcSSYbGho49qC9qK6rZ8mp59HT0yOrWezTNJIH/h9//IFarWb33Xf3STLpHFWHhYUN8sjx14QsmJF6iNSDDEEQmD59utsvoVKpdGgTF8jrVlRUoFQqHZppVFZW8tvyP9h9twJmzZrl15jh4eFcc8m5fP7Nj1zsxtO6t7eX4uJipk6dSn19PTqdTo66nfPnkvdKXEw0ZlM/CfFxGI1GNmzYgEKhICUlRVZDuLKyffHRe2lpaaGgoMBtxKnX67nv4ceoqW/kpqsu5Z2ln1AbNoEtW6rZbcUKDj300EGv0Wq1NDc1ocKKGtBo/FsMfYlIV65eR9S0vejrbOG35cu54frrBy2Q9gZXOTk5GAwG2traHKwLUlJSXBbVxERHYdN3g0JJfOxcTjzuWNoff4qIcWO5+OKLhx0lCoLApRe5toSQ5JHjx48nLS2N+x56lOWFlYQZe3nj+ScC1j9TEAQ5cj///PMICwujs7NTdpmUIuikpCRZDvnJp5/zyhe/INosXK/TceCBBwI45OCd76U3Rc1QTMiCFamHSH0HISoqym1RgFKpxGAwBPR6kpJgzJgxDk0CLBYLV950G+a0OXz89T18/t7rfkkplUoliw891G0Fo/2G6Hff/8jzH3wJVjMP3nwlu+22m8OjcHNzM6mpqcTExPD0Q3ezfv16Fi06R25aYTQaaWtrY8uWLRgMBkwmE5vKN7O1pp7TTjiGvLw8cnJyPFbKwkC3+lVb24jJzOfFN95l9vQprPttDYKxzyW5SKZcl116CTNXrEAQBA5fvNjt+EajkbfefY9+rY7zzjrDawWrhOOWHM5ft9xJhELgzNse8/gU1d7ejtFolJuj2KchmpqaKC8vl5tBJycno1arWXLUUURFRmKz2dh///3ZvHkzF557FtnZ2YMWnW++/ZaNJWWccvwxZGdno9PpuOn2u9lSWcWNV13CAfvv79N7gv83g5s0aZIs/SspryAxd186S/+goaEhYKQudQCyL8qyb8YhGbTV1tbKksn6xkaUcenYLEY6u3t8KnzyJ6r21YQsWIZeIUnjDoInL5ZA59SlSFmqbHT+AlssVtQRURi2R83+wF1VqasN0S2VVYSNy8XU10VV1TYKCgrkCP32e+5nVdFmcsam8MJTjzFlypRBvhsazYCiIzY2VrYffufz74nK3Zc1t9zBx2+/JueZPSEzMxNlfxt9Ff8yY9/5XHDeOcyZlUtCQsKgvL2zKde8vDyWffMdK1euZO+993Y5/nfffceHvxehCI+Gt9/luqu8y0FFUUStVvP4/XeSm5vrkTDKy8u56ta7MVtFrr/4LBYfdhgwOA3R19dHe3u7/JSTnJzMokWLCAsLo7i4mOTkZJepsC1btvDE60sJn5hP+QOP8t7rL7Fx40bKWnQkLzqFN97/xGdS1+l0smzVvpHLVRedw9Mvv8m+s3M87gPAAFH39vZ69cqX5I95eXku1Uj2EbQkmezo6GC3BflsqfiY6LhI9lq0hxwxOxc+Wa1WDAYDmzdvpre3Vw5G/LUvcGdC1t3dzbZt2+QN30ARvFar9dgVbVfEiEsanRHInHpTU5NcTt7c3DyIgFUqFY/fdwff/fQL+xx/vceosr29nS+XfcWkiVnsv/1L7YrUrVYrpaWlgzZETz/lBLY98gRRSZEcdNCBMqFbrVb+/ncdU0++lcovn6a1tZWYmBhqa2uZMmWKQ467tbVVVmjo9XriosKx9LaSMWYMfX19VFdXo1arZXJzFe3m5OTw2tMP097ezty5c1EoFOy+++4O50jeN48//Tw9Wh03XnkJ8+fP55a77qczNodlP7/IG5mZLiWGkZGRiCYdNiDaS54bBkijtLSU8PBwj86REkpLS7EmTyY2dQJ/rVork7o97LsJSSmA9vZ2tmzZQmdnJwkJCURFRbkkJY1Gg2CzYuzrJnJ7tJudnU2kqYvWVV9w/CGuFzNn9PX1UVJSMsibBgaqiJ3vuSvU1tZy8TU3YbApOfv4xZx52qkuz2tpaZGN53ytM7CPoBctWiS7TK5Zs4awsDDZZtleMnnLHXfzb3kdkTYtS9+ci1qtHnLfVnA0IVu9ejVJSUl0dnaydetWwsPDZSvj4djm6vX6UKQ+0hhK82lnSLK7/v5+CgoKUKlUbl0VZ82a5VMu/f5HnqCwU4Ht619JSUlh1qxZg+x3PW2IZmZm8upzT2GxWOQN29TUVCIjIzlhyWI+Xno/++xRQGxsLOdeciWdZiV52ek89sC9iKJIbW0tzc3NcjSelJTEsw/fQ1lZGXvssQfJycnk5OSg1+tpa2sbID+rlaSkJP76ZyXrizZx+onHsGDBArk/pytIzSbWr19PVa9I3JS9eeH1d3lj/nwUggLRNnAP3ZGv1FVGp9Ox2EOaRhRFln74Ef+uXccZp5zk837Gnnvuyeff/kR32RZOuuMWj+dKkWBGRgaJiYnU1dUxe/ZsFAqFnMqKjIyU9yrCwsLIzMzkkduvp6y8nIO3v5cxY8bw7qvP097ezqRJk+Tx6+rqWPbNt8zOneHw5NLU1MSyZcs44IAD3EpQfUF5eTmmmAwSc+bx97/rXZJ6Y2MjjY2N5OXlDVm54+wyKUkmy8vL5b2KxMREVq5ZT9qB59G9Zhm9vb0kJCS4LHzy158GBj5Pzg2lOzo62Lx5M2az2aMJmSeE1C87CIFsPu0Ms9lMUVERsbGx5OXlydfyZ9ympiYEQSAtLU3+nclsRqGOxab4/0XHfqGQ0jzOvusweEP0kcef4udVGxgTG8Frzz/FFZdezCUXno9KpRqwGtZZGLf/yaz//iWsViubN29GFEXe++gzSqubyMlI4oWnHmPy5MmDbGMjIiJk0pbMyV567zNiZh3A9bffw2fvvem2U47FYqGoqIjExET22msv3v38W3pK/2SvvQZ07g/e/T+++e4HZp98udtFQaFQcMghh9DX18f69euZNm2ayx6yf/31F0+/t4zoCTN47+PPfWr0AQME+/4bL3v1eNFqtVxw+TU0dfax/25zOXDfvcnNzZX3TCTrAqlqsrCwUP79lClTBimzpNSFPW69+wFaIybwxY8v8fqECWRlZdHe3s71t9xOszmCZT//wTsvPeO1jN4dFi5cyMRl31G3bhnX3Ti4Y1FdXR1tbW2ybUJfXx8RERHDtrVwJZmsqKhg8f578euf77KoIJ+0tDSZXJ0LnyS5pBQlS8f9IWOpobQ0B28mZO4Q2igdBRhO+kWr1cqbUvaEDL6rav766y9uf/gZQOTh22+QrWdvu/FaPvr0cyYtPoG5c+cC/59+sd8Q1Wg0fPnlMixWC0cdeSRqtdqB0AVBYMXKNUw4+ALql39AXV0d06dPl7+ImZmZHLR7Hn8tf5uLzj6NwsJCubCjcNMWpp50E1s+e4Lu7m6Sk5Pp7OxErVa7jAjVajWTJk0iPiocc2cd49LT6OjooKKiYlCEKm3o2Ztyvfnc47S0tMjyxfHjx3OJk8LDarXy2FPPsK6wlEvOPZ399t0Xm83GZdfcSJNRTTx9vP/6yw5pgf7+fqqrqwlXCYhGHVFjvKdpnOEtTVNTU0NLv4WMA8/h+y+f4rqrrhikuHKumjSZTPImnlarJT4+nuTkZNm6wBuam5upq6ujV6cncfb+dG78ifb29iGTelxcHK8+/5TLY9XV1XR3d8sptA8+/IhX3v2IcWNSePHpx4b1hGAPhUJBe3s7CQkJ3HrLzVy9vTBMMgBzbsytUCjQ6XRccd1NVGyr46yTjuG0U04aVuGTLyZk0hycPxchUh8FGGr6RXqcnjVrlksFi1KpxGg0eh1nzbqNhGUXYLOYWbuhUCb19PR0rr7CUX8sCAINDQ0YjUZ5Q/STTz/j2Y9/BoWS/n4dZ5x+KuvWrePVd5Yyb9YMLjjvHM4+9XheevNZ5ufNHqRWUSgU3HLDteh0OjZs2IDVapXTNMcdcTCff/Qghx24L0lJSfzxxx/c8/jzhKmUPP3Q3fLmqsVioa6ujrFjx5KYmMgLjz9AWVkZu+22G4mJiXKE2tbWRmFhIVarFaPRSHVtLR98uowTjz6cRYsWyTlXTygrK+OnVcWkzF/Mky++zn777ovRaKS2sZmxB51Lw2/v0NvbKz9WSwqNY489lqysLOrqGzh88eC8uD3+/vtv/vl3LUcuPsRnP5ecnByyU2NY//HDXHreWV7L9ru7u4mJiXGwLnDuZiQtgtJexQN33sqyb75lzomXoFQqaWhoIC8vj1uvuZxX3lnKfgctYtq0aYiiyG+//YZer+fggw8elnGV5FWk0+nkVBLA59/8yLiDz6dlzXeUl5ezYMGCIV/D/lpS9evkyZM9Wgf09vbKksmGhgZqukxMPPJyvvjuLc4564xBhU9D9Yp3Z0LW1NTkYEKWmJhIWFgYOp3OrwXu3HPP5ZtvviE1NZWSkhKX90ShUDwDLAZ0wNmiKK73+QI7ADt9+kUyRmpra/PYHcnX5tNHHn4ov996FwqlwGEH3wMMEFFraytTpkyRP4BWq5Xq6mpEUeSQQw6Rf28wGhHUGlCq0Or12Gw2HnzyeazZe/HhD3+waPeFnHziCZx0wvFu74MkI/zmh1/4t3QrY2I1vPb8U1x1+aVcedkl8ut+/fMfomcdiLazhfXr1zNlyhREUeT6W2+nsKKe7PQEXnrmCSZOnCg3SQbHCDUmJoYtW7YQFRXFi+98TOzcw7jxzvv54oO3fDJXS0tLIwITbRt/ZrfpA4tKREQEV15wFh8v+5pzTzpGJnR7NY1Go2GvvfaSx3GnpGhra+OOR54lfPIe/HHbPXz9yfs+6d5bW1u58JwzyM3N9brR9uIrr/HRVz8waVw6Lzz1KBEREYPyzFKaxn6vIjk5mUsvulBuc5eXlydvPNtvhP7888888MpHEBZJQ3MLF51/ntf5u4LU6MJqtQ7aVD7qsAN544PXyUhN8lq96eu1pA1sV7JPcLQOsJdM9vf3E27qZsuyZzj5qENdNuaW0jSSrbQz0fsKdyZk33//PQ899BBRUVFUVFQwceJEn8Y9++yzufzyyznzzDNdHv/+++9hoMn0ZGAh8OL2/44ajLpI3Z/SaXulyfz58z3+0XxdLHJyclj28Xvyz21tbZx9yVVobSoOW5THTdddg9Fo5JtvvuGJF99AVIVhMJo48ojDUSqVnHDcsaz4809+//tP1kcaMZlMTBibTuG2ItRWo0wSgiBQVlZGeXk5e+21l0x8TU1N1NXVkZeXx+0PPMaExZdR+8vbNDY2ytGShKMXH8Kqux8kOiKcRYvOBgY2B9cXbWLKCTdR+eXTdHZ2yk56znno+vp6mpubmT9/PkajkaS4GIxd9aQkJcgRqhR9JScnu8zVJicn88bzT1BXV+ew2XnsMUdz7DFHy9etqanhgw8/pqi8khOOOozjjj1GPvbgI4/z/W9/cPTigwdJIBUKBQpBxGrSE67yngKRItn+/n63Fr3O+PqHX5l05OXULn+fqqoql/4kUnSYmZkpR6h1dXW0t7ejVqvJzs52uzD19/dDeDTKiDh6e/u9zsfd+yorK0OpVDrUWkg487RTWXLE4URFRXnMqZvNZu6+/2EKN5VzxYVnc/D2YiN7SIqkqKgoh41hT3CWTObn51NTU4PFYmHVqlWDUlnSfZL6J0g6dvBc+ORtDvZPEnvssQfHH3887733HjfeeCP5+fm89tprHj8Te++9N9XV1W6PL1u2DOCd7e3rVgmCEC8IQrooik0+TzTIGHWk7isMBgMbN26UC1C8YagbsNXV1eiU0aTOP4jVG76np6eHm2+7k+Ur/oSMWUycsxsvvP4Ojz3/CgV5c3jo3jupb+2i4IIH2Prnx2zevJl777iVlStXkp2dLReatLS0cNWtd2NNyuarH37ljZee5euvv+aDz75i3z0HOiCde9qJvPrOM+y+YJ5DpC1h3rx5fPvpB3IaSKfTERkZyYlLFvPJJw9xyH57yxHMk88+z1ff/8yRhx7INVdcxtatW9FqtfLxmJgYXnziIYqKiigouJrU1FRZ793W1kZNTY0cFVVVVfHtz79z4L6LOOSgg0hNTXVrwSpFl52dnfz012rG7n8mz77+FocecjBRUVF0dHTw05//Mu2U21j24YNcdN45DjnQpKQkHrnzZtau38CB+9/jcdFvaGjgzbffIXtiFieffLLPAcIxhx/M+58/w+Ss8WRnZ3s8VxRF+T60t7eTnp5OamqqXBavVqsHyQEPO+wwmlrb6OvXct7ZZ3gcv7u7mw0bNjBjxgx5b0Mi2cjISCZNmuT2ffnSlL20tJSV5TWkFhzHi6+/O4jU7f1pXH3mfEV0dLS8ONr3TK2qqpLvUVJSEhUVFSQnJ8vfYefCJykVOxRFTUpKCjabjbffflsOooarf29oaACos/tVPTAW+G+T+nC7BnV1dbFp0yamT5/uU0MHGDqpz549m/nZYyj591POOfUEVq5cSeHmbeSfex+/PXMdvaYWdDodc86+hzVfv8Bvv/3GvnsU8O1PbzAmfiDSUavV5ObmOmze6nQ6LCiJHjOBjoo/KS4u5qW3PkAz6xA+/vEP9tx9IaeefBKnnHSix/ulVqt5+PEn+fGvtSRHa3j9hae5/JKLuOziCx36eS774Tcmn3Azyz59lN3mzyM1NZWvvvuR5asLGZ8cxyvPPTlI6miv987Ozkav19PU1MQt9zxMdN5i/n70Wabk5Lg1p7K3Mpg3bx6piXG0bvyVjNT/z0snJCQwPXsC5V8+w7zZ011qivPy8jw6TUrXuuzaG+mKmcTy1V+xxx57uNTRu8KF55/LKSedQGRkpMcv/datW7n2ljuxWK1ceObJzJ49W37vCQkJsqTU3kExKSmJlJQULrnwAq+fe1EUufzam2ixRRFleIOlb76CRqOhuLiYuLi4IbfUs8e4ceOIsulp/fdr9p/vKCO12Wxy+z5f750vcCWZbGtrY+3atQiCQGRkpNvG3J684n0hePvNWXcOkbsadrpIvb6+nrq6Op97bkoYak9RjUbDI/ffQ1VVFV1dXcycOZMvvv2R8l/f4dAD9+X2m67n3aUf89OXT9NSX8MDL73HgmlZvP/i4yQmJmKz2Tj/0quoa+1i8b67c/01VyIIAhMnTmRh7iQ+/vJVJk8cR1RUFNMmZ1O4rRi11SDLIgVBwGQysWrVKsaOHesykvzjn9WMP/A86ld8SE1NzaB8a0xMDDMmT6Ts6+cZkxDD+PHjmTBhAr//vYqJR19L9Q+v0tDQ4DVKjYiIGOgbmzaGnr5WosLDaGtro7m5eVCTC0lOmZaWJlsbv/TUo5SXl5ObmyuTp1Kp5JnHHqKpqYmMjAwEQWDDhg288vYHzM2dxoXnn+vwXtatW8fPy1dwyAH7ykQvyVgVCiWR0bEY2wW/F3BfNtN+/nU5+rTZmMwW1m0sZokLewhnOWBHRweNjY2UlZUN8l5xhtlspqG5lTH7nk7LXx/T09NDY2MjKSkpAauKTE5O5q2XnqGpqckh9y71Y7WPmjs7O3n2pVcJU6u5/OILAqao0Wg0sjNmRkaGLFeUXCaldJ8kV3SXi/dW+CSKYsB7lG63jrb/Y4wDGgJ6kWFC8PKmg9K1VepG7g4rV65k4cKFg9pylZeXYzKZ5MIff2AwGCgtLSU/P9+v19nn7adNm4ZCoRj48jU0oFQqB3LmEyawevVqbnrwGSYddiFVXz7B798v44133uW1N9+l26JitzNvpvCdu4mJjiZvdi6P3Hc3x59xHsw8nN7iX3n8pouZOnUqK1euZNKkSQ4Ee99Dj7K8uAaFroNXnngAk8nEy2+9x7TsiZx/7tl88tnnvPjGu+TNzuXhe+9yuVnc1dXF8uXLZW17eHg4b7z9Dm8t/ZTd8ufywN13oFKpMBgMPPnsCzS3tnH1pRfKj+CdnZ1ER0cTFhZGU1MTq1atYu7cuUycONGhyYUksdTpdGg0Gn5evoLpU3M4ZskSn5/QTjjjPCyT9qR30588dcc1cq5eq9Wy5JSziZi+L8byP/jqo/9r77wDa7r///+4yU1kT5mSSAgxIrGKGq1dtRKjlNaoqg4+VlGqg1ZtrdFllqodMaNKqRo1aiSEBJEEGe692Xvc8fvD75xv9pDkJvQ+/iK59573Pbn3ed7nNZ6vX5FIJISEhNCwYUOys7PZf+gIPi1b0Kd3rzL/pqdPn0ZPT48ePXpU+Jb+ypUrTPt0IQaG9Vj+xZwSB5eXRsFQVmJiYjGDNoHjf/zBnoNB9Hm1C009G5dZgSSTycjNzS21Z6CiqFQq0UGy4GyBNd//xNFbT1Dl5/BOL1/GlNLRWhmEuwFbW9tiF6qCic7ExERxCIednV2xcsWSdvFQWOA1Gg2vvPIKwcHBlVpjdHQ0AwcOLLH6JSgoiIEDBx7nafVLR2CtRqPpUKkD1DB1MvwilUoL2cAKLne2trYlJokqwrOEX0rrEDUwMMDd3R2ZTCaaS3Xo0IHenVrzd9A6Jo4dhUqlYtuuAJqOnMfZHz8hbPdSNCoV7oP+x82/d3P06FEauzpx/d+D2Jkb06hRI8zMzOjcuXOx8rvIh48x8/Al48F1ZDIZG7btRG7hRcjJi7Rt7cPIN4YzYviwcqtpEpNTWDd/EdZmRmxYu4oJ48Yy7u23Cl0g//77b06GRGPk4MGPG39hxeKv2Ll7Dxt3BFDfyoz1a1bh5OTEkCFDxOcU9PQQxvTZ2dkxb8E3JFo24dj5PTRwcqJDhw4V+ts1dHEmOPom+sqsQo1cenp6GOjrk5eVjlSqT3Z2Nnfv3qVp06birX1FvGYCAg/w8/4/QaMhLT2dIf7+5T4nJycHjUbDrz+tFuuiS0Oj0bBh0xb++Oscbw4dJP5tCoayBOsCYeCI4E3Ut08fevboIQ5wKW0AemhoKDM+X4RKo8es98eUaJdQEQRLYCcnp2IXD7v61ihTQ0CVT33bioU5y6IsQYeypy0VLJkseKdT0i6+6L8rw6hRozhz5gwJCQm4uLiwcOFCcQP6wQcfCF3SkUAET0sa33n2M1Iz1MnwS0EBFkSiSZMmFZqHWJHXrAhldYjC/w3fzcjI4Pbt22g0GsaMGsHMqZPFnVeHNj5c/3MbXTu048fVK/h54xaOndyK/PEDFv+goGUjF35ZvRgHBwdMTU3ZuPkXtgccprmnO2tWLBHjzj27dODLZatxsq+Pl5cXTg52PIx6gCQ3Q+zWFMQyMTGRxMREsVKmYBnh95u34/jKKBJuniE8PJyuXbsWu+NxdHREkplATrwSt65Pm46OnDiNc48xyINPERYWRpcuXUo8Z0JjU5s2bZ52A7o0IDU5F41aiUwm49KlS+KUHmtr61J3yAs/m8ulS5fw8PAoJDTGxsZ8t2QB/1y8ROt3+nL16lUu/nuNC5f/5YOJE4rF4/Pz84mKisLV1bVQqC4lNQ2JqQ1o1KSkppX+Ifj/CGMCmzVrViHXSZlMxq4jJ3Dt/Q4/bP4Z/8GDit09FRxXV7BjUmjNb9CgQYmduAK3b99GbeeFma0jl64FP5OoK5VKbty4gYuLS4lOkSPfeAMHOzsMDAwKlZ+WhFwu5/Tp03h5eZWY/yhP0EuiaMmkcKcjuEwKZaVmZmbFYvFCgjQ7O7tCxxLYtWtXmb///2aExQ3z6xC1En7RaDTk5eWV+vuQkBAaN25MRkYGkZGR+Pj4VLkrTKPRcPHiRTp37lzuY4UOUV9f33JniApimpeXh0KhQKFQkJOTI3pGJycn4+rqKs6JPHPmDJ8sWIzvO18TeeQHtq5eTGRUFKt/3sLde/fp+N5iwg//hLEqE2/vliz96gumffI5ac4dSL53hfnjB9OhQwfOnTuHq6troeRPTEwMk6bNJgcD3uzfnba+PmzbsZvmzbx4b8J4jv9xglU/bsLN2ZF1q5aWWi0RGhpKXFwcXbt2xcTEhAOHDrF2wzYaONjxw3fLxedlZmZy+MgRrCwt8fHxIS4ujhYtWlCvXj2kUimJiYn8ceIkjRt50LFjR9RqNcnJySgUCpKTkzE1NcXOzg4zMzMOHDpMPUNDhg7xL9fDRLh4XL56ncPBsWiUeYzv3Zqxb79V6O/08dzPCH4Qi4uVMRt/WC3GaFNTU/l50xYkEgkfvvdumbHi+/fvc+rUKfz9/Yt1KZdGTk4OYydNJklpiIe1IRu+X12hOxRhxKKbmxt5eXkkJCQAiDHmgqPinjx5wuzPFpKWls7iL+eVmwTMy8vDwMBAfH5+fr54rNLuBirDxMnTicq3QCK/z9bvVxQK46jVakJCQgrF66uKcH4SEhLIzMwUczoWFhbUq1ePPXv2sG3bNoKCgmrC0KtqlR41TJ3dqUdHR5OTk1PqLM/KUpEvlVDjnJycXOJxBUEXpqkXfE1DQ8NCO6/ExERkMhlpaWnk5+dja2tLbGwsHh4eTBw7mh27l9C1U3tcXFyY/cUijNoMQu/heu7sW0lmahINBn1AeOQNzp8/T8d2Puw+egwjiZImTZpgampa4jCLiIgI8kwdsPHqwB+nTxASeof7uVbcPhtCo4anGDRwAK/17VPoy10SmZmZLP9+A2s3bOX7lYsZ4udHv//fCVlwZ//zpi0cvf6QvFQ54wfE0K5dO4a+9Q6GBlLWLv8GDw8PRo96U3y8sLsSfFcyMjJQKBR8/+PPnAqXo6d5mvwq+JyiCK34bdu25UFUNKrMW0jUKqyKdBGrVCquBt/Cc9gsooJ+IiEhQZyPamlpyScfF/dSKUpkZCQTJs/AwM6d0HuRfP/t8nKfA0/dBzeu+5aIiIhyw4UKhYJ1P23EwECfrp060LZtW/GiKYyKS0hIKGRdIDTbbN/0U4XWs3vvPn765Te8GnuwZsUS9PX1CQ4Oxt3dvUp3vwXJyMjAyL4R2QmRheYh1ISgw9PvW1GfdoVCwbBhw1CpVKSlpXHgwIH/nEMj1MGYulKpJCkpCQsLC9q1a1fl8seKUpplroCQlPn/bcLldsUKtdtqtVq8rRa66vwG9mfc26PFkEA7nxacuPw7Hg3sWbXoC86cPc/eP06RlRDHom8f4FDfhqVz/4enpyc2NjZER0fzyRdfI5Hoseyrz8TyMzs7O2Rh/xJx7W++nDWVpLRM7lx9ADkZonVCwTBAdnY29erVK/Zeg06extTnNbISn3Dp0iXc3d1LrDTKyc0lTyNBLZHi4uLCsROnMGzWndyMFM6dP19mnbNEIsHc3Bxzc3PcGjbEKDodZW4WsbGxXLp0SSwFtLS0FM/1o0ePSEhIoE2bNkilUka+MRxbayukUqlohywglUoZP3o4OwPW0Kfry9y7d49DR4PwHzSwXOsDeCq2N27cQGpqhZ33Kzz4N7Dc5xTE0tKyQkn5rdt3ciEml4xkBQ1dnOnRo0eh3xcVr5SUFBQKBRERERgZGYk18WUZW+3af4SGAyYTeWE/oaGhqNVqGjduXO6g9Mrw1fw57A44SOsJb4rWFzUl6EUpmNOZM2cOa9asYcyYMcyfP5+4uDi2bduGt7d3jR2/rlFrO/WSBmVkZWUREhKCmZmZWN6mDcqbIVpU0CtDenq66OluYWFBZmYmcrmcx48fi4MdJr//Hv37RuHk5ET9+k/j5r17dmfxqrWku7xMSuRNkpKSyMrK4rOvlxBx/z4a906oVPm8/e77+LTyYcGns9l/6CjWbfthk5+NYT0jJr8/iiYeJ7Cysirm3x144CDrNv1KAwc7vlu2iOMnTpCbm8+okW/wWo9XuLBsNfUMpLz0UskVDyqVim6dOpCXc5ZGHq3p06cPlpaWnFm2Gn09CS+1H1Lo8UqlkvDw8BJjxWNGv4mBNABDQwNGDH86KzQxMZHY2FjCwsKwsLAQm1A0Gg1BQUH07NkTc3PzEu9YBCaMG8uEcWOJiIhg0uwvkTq35FrIUjb/uLbYY8PDw9mwbQfezZrQr09vYmNjGTRoEIqkFC5ePcvk6R+V+XcW7CosLS0r3DsBYG5mQvqTaxhLweX/30mURmnWBaGhoaJ1gZ2dHebm5oW+O317dGXfsc3YW5qSkZGBj49PiXmiqtC0aVO++HSO+H9tCXpB/vjjD1atWsWxY8ewtbVl5syZZGdn18hEpbpMrcTU4WlMrOCxExMTCQ8Px9vbm6SkJIyMjKptzJfAP//8UyymXpGEaNH4eUV58uQJDx8+xMfHp+Sd7v+fsalQKMjPz6d+/frY29uLsdNjv//Oih83Y2lqzE/fLWfLrzs4F68h4cEtlClPyMvPx7JhS0wsbRnR3oXUtFSCzl1HKtGwdP7MMk2dRk14Hz3vAciDT9G9mQN/3n6CxKAeI7s24/2J75Keno6BgUGJgzaEaiQjIyOWrf6BxKRkFn8xlzZt2pCcnIxUKi0Wp17wzVLOhdzHTJLHuhXfsOy7dTyKieOzWVPp2LF06wyhfjovL49Hjx7x7aYdSO3c6eRmzorFX1fo7yCKegNvXFRxbPlpXbHHjHnvI1LrtyL5zj9MHjWA4cOHV8rC9tcdO9kacAwjPRXrVy+vkJAJTXRpaWlYWlry8ssvl/kZu337NhcuXuLVbl2L+bvk5+eTmJhIQkIC6enpWFpaipUienp6PHz4kEePHuHt7V3qRUej0fDThk1cvn6TSWPfLDUhXh61IeinTp3iq6++4tixY8/silkJdDH1shB8QWQyGe3bt6devXqkpqZW60i7oscTvjgFLXMrmhCt6DGioqJITU2lXbt2pYqDkZGR2KgifCmF2KmNjQ2dOnYksFMnTExMqFevHo3dG3Lq6u9YSNVMmzWZ5JQUth85TfbDWHZEXsHMwpIZ77yJr68vHh4eaDQatu/cxZkLlxk7Ygjdu3cHnoZdVLnZXNm+lOaN3HB1bQ+hsWjUSvT0nu5qSkseCiPaPD09uXDhAk/06mPeqgM79x+iTZs2pVZsXAsJxaHjCGSXD3HixAnuJqmwbNWPLTv2lSrqKpWKW7duYWVlhbu7O1KplHrmNkitnYmMvs2VK1fE8EPBJGJRPD09+XzqRG6H32XI4JKNmhzsbImKCkOZmUxGRgZ3796tVAfihcvXsG0/gOT7V7l79265YiaMcWvXrl2Z81gFMjMzmfnZV0jc2nPw2Jcc3P1roVCagYEBjo6OODo6otFoxBhzVFQU+vr6ZGVl4eXlVeZdxL1799h/4jy27V5n6eofOfIMol4bgn727FkWLFhAUFCQNgS9zlOr4Rchji2RSHjppZcKme5XxPu8sghljfr6+hVKiD6LoKvVau7cuYNUKsXX17fC4ZqCX0q1Wk1SUhIymUy0hLWzs2PYUH+aeDbCyMiIli1botFocHVx4c8//+SyHAydGvPP1WAGDhzI+o2buRN+l2vhUTh1Gc7kWZ/St1cPpn4wkbCwMBL06+PRqSktbJWMevNNjIyMycvPZ/jQwmETtVrNmh9+4mpwKGNG+PMkPh49PT2aNm1KixYtkG7bTar8AV0mlt2YMvndMfywaTtdfVrQo0cP9h87RXJIAgMGFzeUAsSOVCcnJzHB2bZtW97x68n9yGjenbkAFxeXQklEodbb2tqa7OxsQkJC8PT0xN7enh49ehSLVwtoNBpGDx+C55UrXLiSw64L99hz9BRb1pW+446JiRFL7gDGvTmMr5avxqOBc7m2tzKZjIiIiDJdRYvy9POowdCwHip12Z2SEokEKysrrKysyMrKIjg4GEdHR2JjY4mOjhYbegrmK+Cpz0498kgK+wdvj8rbBNSGoF+4cIF58+Zx9OjRClcnvejUWvglPT2dGzdu4OjoiJubW6EP15MnT8jMzCy3bb2yXL16lZYtW3Lv3j0MDAzEDtGCFIyfV1bQ8/LyuHnzJg4ODtX2oRYsTRUKBQkJCYV8vR8/fkx2djYGBgZM//Qr8tFjyrg3sLW2ZuHPu9CzbkDMpWNYebTiScQtWvQeSVN9OWPfHM7sr1ehMbJgZM/2vP9e6Vawd+7cYcoXy7Hy7UPc6W0Ym1sjsWuMt7WatSuXirH+giVsJb2HnzZs4u+L/zJ2xBAG9H+dhIQEkpOT8fT0LHaON2zazPa9BxjYtydNmzTm4LGT+L3em6FlNAkVTCImJSWx+seNPMk3xFyVxq4t60u981Cr1YSFhWFgYECTJk0YPeF9Mh3bknH/Emu+/LjEMXt/njrN4rUb0JfAigVzxaEpFSEyMpJZn35BQkoaH00Yw5sj3qjwc69fv87pv8/Tt1d3cXBJady+fZvExESkUine3t5iolwoRFAoFGJDj2DvYGBgQFxcHA8ePKBdu3ZletArlUoCDxwkOyeb4UOHYmxsrHVBv3LlCtOnT+fw4cNV7qqtJHU6/FJron7jxg0cHBxKjGMnJCSQlJQkDn2oLq5evUp+fj4NGjQoNyFaWUEXGlQ8PT2rtaqgKFlZWeKgYT09PVxdXbG3tyczM5OsrCzc3d0JDg5m5lcrwcyODm7mNG3kzrYDv6Nv6UhDo3wwMKRNi6a0bdOaTp06IZVKSUlJ4bddu7G1tmHEG8PE5FLggQN8+vVyTBzc8XGx4lFyNkYNW2OfEcHW9d9XaM0PHz5k/LRPcX5lJPGnfuHU0cBSz61cLuf14W/R/I1ZPPp9A6r8XNz6TiD+zA4O7dxSISdCtVpNzwFDsO78JnHn9vLZ/ybQqlUr7OzsCoXZhPCOpaWlWKlz584dftmxh1YtvBgzelSJ6/xm+SouJhiSkazgtUYmzJ37SYU+KzExMZw7d45Nh87QoMtQ0i7s5ODubeU+r7JcunSJT5asIUepYdLwfrz7zvgSH1fQAz0xMbHQhKHySgGPHDnCqp2/o1fPhCEdPOn6cketCvr169eZPHkyBw8erJKb5DNSp0W91sIv3t7epbbwVsfw6aKkpaWRkpJCs2bNStxVFkyIVrbCRWiG8fb2rvHRWUJTjxBWUCgUYqu5ra0tKSkp+Pr6smzeNGQyGT179sTExIT27dsTHR3Nqp+34tT9bQKP/8Y748cRERHBmbPnCb93n9BUA9Jl//DX33/z0fvv4eDgwKqft2Hfrh+qiAv8uGYzQceOExp+j7EfFa/zzsnJYW9AAACvv/Yad+7cERPQVsb6yK6dwMuzdOvY1NTUp01fLZry6HwADZ3syMnNJeH2eexsLMrcORZET0+PTz/+H9t27efdEYPo06eP+DfKyckRK0iio6NxdHTEyMgIhUKBnZ0dLVq0YMU3C8t8/WGDB3Bm9qdEPYgiKL4pTtt3MH7s22U+5+HDhyQnJ9OvXz8OHT/FoxNbGDmoT4XeT2W5f/8+OUb1sbR3IU6mKPVxRT3Qc3JyClkXCN2/gntiQTQaDUgkINEjNjZWq4J+8+ZNPvroI/bv318bgl7nqbWdulKpLDUZmpaWxsOHDys8Yb48hISosfFTj5WCu72qxM/h6e4rPj4eHx+fcofgVpWy7gaEhifhtrqoayI8jVOPfmcSqQY2WCmT2br+e4a9PQGNWzsenwvEtsXLRIXdxLWJN2ZZsXw6YzKfL/2Oeh7tsM6IYu+vW8o8P9u2b2fryeug0YDsHlInL4yzFezc8jM5OTk8ePCAVq1alSjOwlAOMzMztu7ci5WZMdP+N4W8vDxu3bpFy5YtS7wDunXrFpeu/EsbXx/OnP8Haysrxr41qtSGNZVKJToC6uvr8+TJE77/ZRdSAwMWzZ1erPSzNI4dO8aqfX9h5tyERqpHfLd0UYmPU6vV/LxhI5FR0cyYOoUGDRqQm5tLSkoK9vb2ZZ7PiIgIln73PXa2NsyfM7NCG4a0tDQuX77M8VN/k5OXx7yZU8sMjcHTc29ubl7o8ytYFygUClJSUsTuX1tbWwwNDcnPz2ff/v3cvXuf0W+OqJZpSxXhzp07TJgwgb1791Z4tGENoNupV5aqDJ8uSNEO0YiIiEKvW9UKF2FH07Zt2xqvhU1JSSEsLAxvb+8S48MFG56EmZtyuZyIiAhMTEywt7enfv36/LR6Bbdu3RLnW6rVGqQG9XBwdGLYy034JfI6ZvUdybwdzt/nLvB69y64uTjTs+dE8fzExMRw584dXnrpJbHaJSkpiStX/iUrMwcTYyMSkpNp2bsb8n8CSE1NpUGDBqWGpeLi4sT5nh9On80Tk8Zk3w/h9Xv3aNu2La+++mqJz0tLS+PjzxchcWvH2vXTsfftgTrzLg0c7UutX8/PzxdL+2xtbVm97nv03NqiRELAgcO4uLhgZ2dXbkVK165dOXHmPE9i/2XCx1NLfIxGo+HQoUNsP3oGE9eWLFm1lu+/XUa9evUq1Jq/6dcdxJs0IvLRI86cOcPAgQPLfHxqaqrozdOnT8XuAnbu3sOGHQHYmpuyYd0qMRxadNhzRkYGCQkJhISEAE+Tqk0aN6Zr585ai2ffvXuXCRMmsHPnztoU9DpPnRT1Zx1oURBhQIOhoaHYIVrQU70q8XOlUkloaChmZma0atWqxpukCppyVaT8TRjaYG1tLdqZyuVybty4gb6+Po0bN8bExAQjIyNWfDWfk3/9Tc/Rn9OmTRu6dunMvoBAMtq04mx0BuqcDGa0aIaDgwPnz58HYOman8g2dUJv7Y8s+nweHTt25KulK7mTYUxWbAgjRvjT7K3X2XswiLFD+5fYwSl4oAsJTh8fHwwNDbG1sSYq5jGSvKwSB4gXRK1Wo9ZoMDIyAYkEVXY6kvycUs9RScZcfgMH8PeFL1GpVYz7aK44m7O0Zh7h82JhYcHq5YtLXZtGoyE8PBx9fX0y0lKIuxdGUlYMmZmZFW5db9rYgytBZ9HLzyo3tJGSkkJ4eDi+vr6VmjMQ9OffOHd/G8XNvwgLC6Nr167FHlOw+9fDw0P0qCk4cUuoOqps6LKiREREMG7cOH799df/VHfos1Br4ZeCo6qKolQquXbtWplNKWVRWodoREQE5ubm2NvbP7Og5+TkcPPmTVxdXau9OaooQpdicnIyPj4+lWqGKY2yGp6ysrK4desWTZo0YU/AfgL+uYs6N5M5YwejSExiW9A5clMTyc/LRdqsO1Gnd+Ll1ZxVn8/gpy2/EmvoRu7jW3z3+Qx8fX3LXMfCxUs58W8Y2fLHmJibY2xszMoF82jUqBF//fUXbm5uZVaVaDQaTpw4wZV/ryKRGtKvdw+xo7N3797F/qZpaWncvHkTR0dH0Siue/fu2NjYiOWBBZ9TUjPP3sCDnD53Cb/+fZg5dUqpnxuhrFUY2ty552sYeLRHkhLL2i9nlntuCr7O9evXsbS0pEmTJqU+Ljk5mSNHjhAvT6Rfn54Vfn2Ag0eOsPqnLbg42hcyaysNoRnMzs4OFxcX0aRNqGYyNjYuNuSiqjx8+JA333yTzZs30759+2p5zSpSp8MvdVLUK+OoWJSyOkSjoqIwNDQUY5mV3WGnpaVx+/ZtmjVrVqYtanUgDAUBSiy9rA4E4ZLL5aSlpaFUKvH09MTZ2Znc3FwOHDyEqYkJAwcO4Jvlq/gnXkNuWgJt7SScvXwDfYcmmBjq8d7ALuTn53M3Mpo2Pq0YNsRfPLfJycloNJpCTS/h4eFM/N9MrDq9QeS5g9R3b049UzPe7tiQcWPLnuEpcPbsWb5ctw1MbXjdpwFzZk4v9bFC5+a2nXsJffCIhCdxuLTrRTOzPH5cs7LcY6nVaqKiohg9aSpuA6YQfWQtv/28Gg8Pj2J15iXN+Ny4+Rd+238ED1cnfvxuRYUTvhUhMTGRW7dusejbH6jn1Q3l/fMc2v1rhe7oBHJycjA0NCz3M7Z9x0527DvI4H69+OiD94v9XqPRkJWVJZbfqtVqUeCLWhdUlJiYGEaMGMHPP/9cqaEkNUydFvU6GX551nBGeR2ienp6yGQyTExMKj2aSy6XExUVha+vb7V+KUtCqVRy8+ZNbGxsaNiwYY2Fd4SGJz09PbKysmjUqBGpqalcvnwZc3NzevXsga2tLfr6+kwc9zYpa37EwsGWWdOmkJaWxo8bt2BlYc72fYfJt3bDkVQWffk5OTk5yGQyEhMTmfvVcvKV+Xw4diRvvPEG169f53+fLiIrT4Pmn730adeKiOhoTFTG9Oo5vtw1q9Vq9PT0nlo36xsirWdCTk7pNs4KhYLIyEicnJy491iG+8ApRK6ZgbG1A0kJxSfblISenh7u7u609W5G+LmdtGnphYGBgRhfFrpajYyMuHXrFra2toXuEN979x1GDB+KmZlZmbmXvLw8Fq/4lvD7kcz8aCIdOpQ9UEdILrdp0wapvj6q/NxnuvhX5AKQlJTEuk3bcev3HnuP/MaYt0YX+w5JJBJMTU0xNTUVh1wIA7kzMjJKTN6XRXx8PCNHjmTt2rXVJuiPHz9m7NixyGQyJBIJkyZNYtq0aSxYsICNGzeKHamLFy8WBmI8d9TaTr28kXYl+bSURsGEqK+vb6kdokqlUgw9CK349vb2WFlZlSqcgo1BUlISrVq1qhYb4LIQwjtubm5a6ZCLiYnhyZMnhc5bwYanxMREDA0NRbvXorfUcXFxvPXhTOp38CP5UgAHdm7lvSkzkKfnYK6nJNOxNQ9j4zCIvcn4kf5IJWoOXn+MmUNDWptnsHjBZyWGPwQ0Gg3frfuBw7+fRKoHeUo1E8eOYvTIEezeu5eExGTGvjWqxPb3+Ph4YmJi8PT0JDQ0lICDR7geGk5jV2cauLowZuTwMhNuGo2GO3fuYGNjg5OTE3l5ecTGxuLi4iKeK8EaVy6Xi8OTra2t2bxtByq1mpn/+7DCreuXLl3is7XbsGzWGeNHF/lt04+lPlawAGjdujWGhobcvn2bc/9cpHu3ruUmEe/du0dCQgIdOnSoUEhPpVJx/fp1vlm5mkxDGxwM8ti64YdKhQMFe1yhJr5evXqFLoZFkclkDBs2jJUrVxZz4KwK8fHxxMfH07ZtW9LT02nXrh0HDx5k7969mJmZMWvWrIq8jG6nXpOUlBAtSMEKF319fZycnHByckKlUpGUlERcXBzh4eFYWlpib2+PjY1NoQkqYWFhSCQSWrduXWNJIIH09HRCQ0Np3rx5hSbsVAWNRsODBw/IysqiTZs2hXZOBeuXPT09xVvqW7duodFoxDi8qakpzs7OfDRmBH9duMT0uTOJjY1FkaXCrc8EIvavQC/1HFkxT2jVbzR/nf+HxV/M41HcHjKyo3n3o/+JxytrjQePn6ZB/ymc+eETen7wNdv3/MLYt0bz9ujSrQkeP36MQqGgTZs2TJ4xm8gUFcY5iQT+trlCInvx4kWWffc9MYmp2FqY8ePKb2jcuHGxumjhghcbG0vz5s0xMDBg4+Yt/Hk3AWk9Y0w3beGTWTMrtBlwcXFBmpNCyp3zdHipdGGWyWRi4lx43ZYtW1bIq+bOnTv879OvwcgSv24hTJ38YZmPF2LoTk5ObNvwI2FhYU/tISqZ3yloj9ukSROysrJISEjgzp074rwBoUorOTmZN954gyVLllSroAPi9x+e+hs1b96c2Ng6NTe6ytRpUS9ovlUSQkLU2dm5xOqAsipcBNtbOzu7QiWA9+/fx9TUFFtbW+Lj47GzsytmY1ATJCQkEBERgY+PT40b+wuJPAMDgwpV75iYmNCwYUMaNmwo7kwLNjz16d2T4cOGIJFIyM/Pp11TV64cXsNHE8fjN2gg8xd8TfCtv/F7rSezFyxFIoEVC+YVsoE4e+4cP27ejk8LL+bMnIZUKuWrxcs49c81UhMVSE5tw9rEkNi/dtCnS+m34oKZWnp6Oq1bt0YikXA/MhqHHmN5cn5fhcabZWZm8tniVSRYNicp6Szmjh48ePCgRNuK3NxcQkJC8PDwEC8Wbdu05sS/Yajz0rCycBOrjoTPW2nVKS4uLmz5fhXx8fGlJjuFISEeHh5s3PILlhbmjHzjjQqLbFxcHJjbYeLsRUT0ozIfWzQpClRbGMTExAQ3Nzfc3NxQKpUkJiayb98+fv75ZyQSCSNGjKhwz8CzEh0dzY0bN+jYsSMXLlzg+++/59dff6V9+/asWrWqxvNmNUWthV/KG2l36dIlOnToUOruuDzLXI1GIyZiK7PD1mg0KBQKwsLC0NfXx9TUFHt7e+zs7CpsvlRZhBCIUNZXkwjxeltbW3G4xrNSVsOTMEgkOTmZu3fv0qpVK35cv4kz8RKUudkM97Wj40vt+XzRcmxtrJEpEshp9Ap3T+6mfRMnftnwE4NHjqXZ6M+4F/gd38yZgo+PDykpKbi4uJT4N9VoNOzYsYN/rlwlKyePJo0b8fG0Kfx97hy/7jlA95dfYuKE8WVexHJyckhPT+edD6eRYu5OzOXfGfR6HxYv+LxYDDknJ4fg4GCaNm2KtbU1+fn5GBoaotFo+Pfff1EqlaKdbtGqI6FcMiMjgz9PncanlXeJsz0LEhcXJwr+d2t/4PgdOarMZOaOG1ymr3zRNS//bi0xcU+Y9b8PSrXiEATdwsICV1fXGv9cwtOyzKFDhzJ06FDS09M5ceIEbdu25aefKjbhqTJkZGTw6quvMn/+fIYOHYpMJqN+/fpIJBI+//xz4uPj2bJlS2lPr9Phlzor6v/++y++vr4lfpiePHlCZGRkpWaIVpTk5GTR193c3JzMzEzxyyiRSESBr0wtcGloNBoiIiLIzs6mZcuWNd7AJOwqayJeL9ztCIZaxsbG1KtXj5SUFFq3bo2RkRFhYWHM+mwhUn0pq5d9zc9bfiVc40zGk2hssh5xLToR1Crc3BqyePp4Lv57jUPHT9GhtTfLFi0s8/yo1WpOnTrFglU/kW7pQVrEdRq18GXOW/0qLHgPHz5k8sfzyMrN573RQ5FIJHTo0IFGjRoVe6xgQdysWTNMTEz4aOoMwh485J1Rw5k4YXyZxxF2pgkJCcya/yUZNs3Qk4Wxc8Na0ZGyKLGxsTx58oTWrVujr6/Pt2u/5+j1h2iyU/l04hsVbjaqCIKgx8fH8+3PWzAyNGTt8kUlnofqIi0tjeHDhzN16lRGjBgh/rwydf0VJT8/n4EDB/Laa68xc+bMYr+Pjo5m4MCBhIaWmkiv06JeZ8MvJTUgVXSG6LMKelxcHDExMYWafApm84Xd1p07d1CpVIViy5U9lmA7bGxsrJUGpoyMDEJDQ2natGmlJvNUlKINT1FRUcTGxopJPDs7O9zd3Tmyb6f4t+nYzpd/fw1AqlHyxVfzCQg8yJ//XMVWmkdkVDQXLl/D77VezJg6udDOPCQkhGs3btCrRw8aNmyIXC5n6qy5pKalIUGDVE+COi8LMhSVGqp87do1cm2bYOXowY0791j+9ZclPi4jI0O0LrCwsGDmnHn8fuEGFnZO7Ag4WK6oS6VSHBwccHBwwNjEFI2VLelxGq5du4ZcLi+WlBbyA4KgA7z/7jvY2R7C0tycXr16lXm8jIwMQkJCaNKkSbkzSVUqFSEhIdjb23P495OYePchJzWBfy5eqjFRz8jIYOTIkXz44YeFBB2odkHXaDS8++67NG/evJCgx8fHi7H2AwcOPNcNTrW2U4enO8fSuHnzJo0aNRL9LgomRL28vMpMiD5Ly/+DBw/IzMzE29u7Qjvm/Px8cQefnZ2Nra0t9vb2WFhYlHtswaLX0dGxXF+O6kCwGGjVqlWNG44JDVNpaWniuSyp4Uno1IyOjhZDXELoy9zcnNeHvonr6x8Qc3o7v65bRmRkJCfPnKdH104sXbeBRGNXMsPPsXPTj5w8eZJjYUmY1XfGJesBvr7eONS3xcvLq0z/oPT0dM6dO4dMoaB3z55IJBKmfDyP9Kxsvpo7o8TJP0KvQsFz2XPAENI9XyP+752Mer0rK5aU3mlalLt377L/cBAd2ramd6+e4og6hUKBRqNBX18ftVpNmzZtSElJIS4ujubNm1cqUfnB1Jk8SFZhnJvIjs0/lVrOW1DQXVxcuHjxIp8v+RZDAylrln5VZgPUs5KVlcWIESMYM2YM77zzTrW/flHOnz9Pt27daNWqlaghixcvZteuXWKXrLu7O+vXry+rubBO79TrrKjfvn0bFxcXLC0tq5QQLY+CO+aSvL0r+hpCE096enqhYQ1FLz7asugVkMlkREdH4+vrW6mGlGdBo9Fw9+5d1Gp1qQ1TSqVSFK2MjIxSz9XkGbO5K8vASpLDmuWLGPvhDMx9+pJ87TA5eWqSrL3IfXCVFm72fDxlEkt/2IJG34ApY4aW6bsukJCQwNhJU7h5/yHWDi40tTclYMcvKJVKlEplieE1oRXfx8eHkJAQ1m3chm9LL+rb2rJ15z68mzVhzcqlZcafk5KSWLX2aanix1M/KvOu6cGDByQkJGBkZERcXBwrvt+Aup4lfTp6M/+TCpXeodFo6D1oKPavjkH2z35+Wb24xFxKUUEXSE9PRyqVVku4sSg5OTm8+eabDB8+nEmTJlX769cgdVrUazX8UtLwaQHBfremEqLw9KJy8+ZNnJ2dS41lVoSCZlpC27RcLufevXuiLYGtrS3p6ellmnJVN48ePUKhUNC2bdsar69Xq9WEhoZiYmJC48aNS704SqXSQhOeBCfAe/fuYWZmJp6rVUu+5s6dO3h4eGBgYIChVJ/MxHisLSx5a/hgPl/yLbZ2LjRr2hipVEqvl9vQrfPLxbxL0tLSSEtLo0GDBkgkEqKioth/6AgmhlIypRZYtB9Mxu3T5Fo9PT8GBgYlnivBulfID3z74yZo1psTV06zcu5HjHt7dIV2z1t//Y2Df1/FoJ4xrs6BfDBpYomPi4yMJDMzU5wIlp+fj9rEFkvv7pw+u59Br/cVh6WU9beVSCR8Mn0yv+4OZNTA3iWabxUUdMFFUgj91NTnNDc3lzFjxjB48GDee++9GjnGf5U6HVMXGhVK6hCFqg2FTk9P5/bt29UeY9bT08PW1hZbW1uxiUewelUqlTRu3FgrO+b79++Tm5tLmzZtary+XqlUiqJQGU/toucqPT0duVxOdHQ0BgYG2Nvbi/NZ1y3/mmvXrtG583hsbGyQSCQYGhri6urKx1+vQt/Bi5j4Q3Tr1o2QkBAyMzNxc3Nj0rTZxCek0P+Vl1j01UI+XbiYFOtmZD84j7u9LVn3TtGpdRNmTf9fqZ8hodFHKHP18PCgWZNG/BN6FkNlBk5OThUOh1y5doMsQxvyE2NITUkq9nshFJiTk1Mo1+Lj40OXlg25decP5s38Hx4eHigUCrFcUghpldTt3Ld3b/r2LnlsYEFBt7e3Z9qsuQTfDmfsiCHl5gaelby8PMaPH0+vXr2YPHlyjeeT/mvUSVEXBufm5ubSoUOHak+IKhQK0du7JmvCBTe/pKQkTExM8PT0JDExkRs3biCVSrGzs8Pe3r5afdjVajW3b9/GyMgIb2/vGv/C5OXlERwcTMOGDSuVlCyKcK4sLCxKbXgaMGCAWJnx2muvYW5uzu3btwEJEj19VGo1ly5d4tPlP4ChCS952BCbY0iuxyvsOHyY3j17YGAgRZmXg76ePou+/BQXF5cyz9GTJ094+PAh+/Yf4OAff2Fvb8/i+R/z+dzZBAcH4+rqWm4l0cWLFwkJvc3A1/vRtGkTopVy1HpWdCtyVyFUQ+Xn59OyZUuSk5M5c+YMnp6e+Pj48M2Czws93tzcnEaNGpGbm4tCoeDu3bvk5uaSk5PD2vVbQCJh+Vef4+npWeK6ioZc7t27R+hDGZ5DP2b3gTU1Iur5+flMnDiRTp06MWPGDJ2g1wC1GlPPz88vNv1ISIjm5uaK80sLLaiKCVGhkqBVq1Y1XntblilXdnY2CoUCuVyORqMRBb4qvjKCnW1ld8zPilDWV1MVNQJCw1NsbCxpaWk4OTnh7OwsDk4+/scJ7j94wDB/Py5fvsy6Q/9gaGlHW8tsTp05x+PENBwauLJo2gScnJw49dcZXunapVwX0GvXrhEaGkrjxo356IuV5Dh4o3xwienjhpXbiSkQExPDuCmz0XfxwS4rmh+/W07gwUM4OtjT77XXCln63rt3T8xHSCQSPpo2i/AMQ/STovhl3YoKJdVVKhXfrl7LkfBU0NPnZdtcPp4+FRsbm0J3EyXF0LOzs/lg6sc8lCXSv/vLZZqkPQtKpZL333+fZs2a8cUXXzzPgl6nF16nduoFE6JCHLEgVUmIqtVqMYmnrZDErVu3sLKywt3dvdhajY2NxY66vLw8caeVl5cnVtJUxtkuJydH7Gwsr2ytOhAsDYSyvprE0NAQAwMD1Go1L7/8MpmZmcTGxhIWFoaFhQXt2rahT+9e6Ovr06dPH0Juh5OcmsxHkybz8bQpbNr6K1aWFlhaWjL7qxVoNNChfTvg6XkzMDAgMzOT5d+tRSZXMH/2DBITE5n+6QIMbVxo4XgLKyN94p7cxVI/H/9BAyq8dmHToi+VolQqsbS05J1xYws9RvBe19PTEwUdICk1FROH1mQlx5CRkVGh4+nr69P9la78cW4VGiT0GDKOtLQ00aFUaA4LDw/HwcGhUC7J2NiYjT+sJjExsdr7GFQqFf/739Ow0XMu6HWeOrNTL5oQffLkCZmZmWJrdlUSovn5+dy6dQtra+sSBba6qYopl1AdIpfLK2w6JtRNa8MzBp5WcNy7dw8fH58ad6yE/zPmat26daFQnBCmE8y0jI2NxeRhSXdh6zdtZn+wHH0DQ3q7G9KqZXOWfvcjdrbW9Oraie8OXCBXYohlUhhzpn3ExgN/YuvTC+6eYsHcmTx+/Jhu3bqVG7LbvWcP69Zv4eWOL7F44RdcvHiRGzdD8RvYv5h3jGAaZmhoiKenJ7GxseTm5tK4cWPCw8PZvieA1i1biDYMpZGXl4dcLsfJyQl9fX3i4+PRaDSFBpRkZ2eL1VBSqRQnJyckEgmBh4NwdXbijeFDa2Szo1armT59OlZWVixfvrzGN1RaoE5fkWpV1IU5pSV1iApJUi8vryolRLOzs7l58ybu7u5VivlWFGEHWx2e62q1mqSkJORyOampqWIbvq2trfjFEAS2pvMDAjKZjIcPH+Lr61vjM1nhaQVPQkICvr6+ZfYPCBOeBC9viUQihrSEcrzHjx8z5/OvUKlULF34GctW/0CKU0eSIq7Rt1l9Vv96EMP6rhimPuKPwJ3sDTxIyO27TJk4tlwfEuF7lJSURNtufdCza4RhloI9G9eUOuxD8OARZudev36dOV+vRKOnz6z33qL/669X6Bzl5eXx0fRZPIhLoJOPF0u+KrlpSgi5ODg4YG9vT2JiIvMXfkN4lhma5Bg++2AU/fr1q1bRVavVzJkzB319fdasWfMiCDrUcVGv1fCLkOkvqUNU6CitiqALTTctWrQod6JLdVDdplx6enqF5kQWnDtqamqKoaEhqamptGnTRisC+/jxY+RyOW3btq2WKUxlIXQPZ2ZmVsghUyKRYGZmhpmZGR4eHuTk5JCQkEBYWJjotWJvb8/OXzaIn6PXe7/Kmo2/YWFiyFtvTSP64WP+vniF4cP8yc7OJuzeA9xdnfHx8Sm2tuDgYABat27NgwcP+PjTL1FrNEwaOwozexc0Hu3IurKv1PmdQgmomZmZ2KkZFh6OxNGLeqZWBN+6U2FRVygUPIhV4Ok/lQu7l6BUKov9fQoKuhBycXR0xKWBM1GRqSj1ng64uHLlSrl3PBVFrVbz2WefoVar+f77718UQa/z1OpOPTw8nJycnBI7RFNTU4mKiqJ58+bo6+tXWtDj4+N5/PgxPj4+NV5CCE8TYoLZUk0nYIWkmkKhQCqVUq9evRo1HSsosN7e3jX+5SzYxNS8efMqh8sErxW5XF6s4SklJQVjY2MiIyMxNDSkcePG6OnpMeOT+URIGpAVH8HsUX1xcHAg4FAQr3TpSH5ePnOWriM7K4dpY/2RGtYj6F4mIKGvhyFJySlcvHqDKe+Nw3/w4GLrEaYjWVpaEh8fz/mLVxjQrw82NjZ8uvAbsrJzWPTZJ6VWrZT0el989Q1//3OFkUMGMuXDwlOJShJ0gbS0NI4cPYqToyM9evQAKHbHI5RLVmajotFoWLhwIQqFgk2bNlWbr1FpQy6SkpIYOXIk0dHRuLu7s3fv3pp0WazTO/U62VEqmH3duXOHzMxM0WOlIi34ggClpaXRqlUrrewotWnKJQi6UqmkefPm4tQiuVwumo4VDTtU9XhhYWHo6enh5eVV4/kIISRRr169Z+7wLe/1hYan5ORkTE1NRQvhgta66zduZu/JS+jlZ7B60WfM/HQBxq1eI+3WSXybuHHwdgr6RqbYKEL4cfUK5i5aARpYPP/jMicWqdVqcaqViYkJffxGkCU1p75+Nuf+PF7hC2ZwcDBfr1iDk4M9ixfMx8LCokI7dKVSyXdrf+Dugyimvj+h2F1IUYQkvkKhICcnBxsbG+zs7LC0tCx1rRqNhiVLlvDw4UO2bt1ard+J0oZcbN26FRsbG+bOncvSpUtJTk5m2bJl1XbcIuhEvTRKmlNatMJFrVYXasEvK3GoUqnEpFPTpk1rXICqw2LgWY5XVtdmQZ8VpVJZZdOx0NBQcYq8Nt5fwYqhmkapVIrNO/n5+RgYGIhmWoaGhty4cQMbGxvc3d0ZMWYCyWYNkcrDWTBnOmM/mIpavx6De3Vj4efzCAoKws3NrcxpXSqVij///JO/L1yktU8rfFt503PIW5h3HEbmP7uJDL1a4c7fqbM/5bFxY9IfhzNrZK8SnShL2qFfunSJ+Wu2Ye7ZDitFCFt/Xlfh8yUMllEoFKSmpmJubi7meISLiUajYdWqVdy+fZsdO3bU+KbKz8+PKVOmMGXKFM6cOYOTkxPx8fF0796du3fv1tRh67So16mSxoLxc2EXULQFPykpifj4eMLDw7GyssLe3h5ra2vRJ9zBwUErNdraNuXKz88nJCSk3OMZGRnh6uqKq6sr+fn54hzLypqOCTXvDg4OWnl/Qleqto9X0CJC6B24ffs2KpVKFHiAtSsWc/78eXx9R9O0aVPOHDvIo0ePaNu2LZ9++TXB8dlIUg+xaXUDLCwsiIyMpEWLFiQmJvLh9Nkolfl89O44Dh47SYzUiUt7jvGlXX083ZxJS32Ep3f5Jl3C3ViLFi1o59uS2wdOoK/OLXF4R2khF0dHR/RzUkh/cIP2Pu6VOmdFB8ukpaWRkJDAw4cPuXjxIllZWahUKsLDw9mzZ0+NC3rBIRcymUw04HJ0dEQmk9XosesydWKn/iwNRWq1WkwcJiYmkpeXR8OGDXF3d6/xmK/QdKMtUy6hgqdRo0YVnndZlKKmYwUviEXPl1CS6e7urpWa9+rqSq0o+fn55XaDCg1PggunEHYo6Q7x7YkfkmbnS0bEFZbMep8Va38mRWNEEzsT6kklHL6biVqtpp1ZOp5eXlyNz0OT9IjVC2ZjaWnJzZs36dChQ5nvPSYmhvemzSZXUo9hvTvz0fvvcffuXSwtLYu5CRYV9Pj4eH4//gctmjejU6dOoi1yhw4dqi0HExkZyZIlS/j7779xdnamX79+DBkypNzBH89K0SEXVlZWpKSkiL+3trYmOTm5Ro6NbqdeOoKh17N0iOrp6WFjY4NGoyE5OZlmzZqRlpbG5cuXRWOo+vXrV3uMW6io0ZYpl1AiWdUKnpJMxwQjrYKmYzk5Ody6dQsvLy+tjPMSpgc1adKkRMO26ka4gJR3wTI0NMTZ2RlnZ2cx7CDcIVpYWIjzbPX19fl05v/YtH0X3gO74+zsTFJmLs493iDs+Hp6dGpH9qNL6OlLsenYknkfTyPo2DHcXPuJ8ezSJlDl5eURFhaGu7s7kZGR5JvYYdO0A9dC/kUikZQ4YLqkHfr8rxbzGHvUh/5gyxonPDw8itXLVwWNRsOZM2dISkoiIiKCvLw8Tpw4wblz52pE1PPz8xk2bBhvvfUWQ4cOBcDBwUH0RI+Pj9fKZqSuUquinp2dXWiSfGVjto8fP+bJkye0a9cOQ0NDnJycChlDRUVFYWxsLFaGVPV2UPABKThEoyYRnAF9fX2rtcmnNNMxwQTM3d29xn3X4f9siJs1a6aVpimh69bT07NSF5CiYYfU1FTRP8jIyAh7e3uWLvxcHGU39LVX+et8AP97bzyODvakZWSiAubPmcWJP0+xcfse2vm2omPHjoV2yhqNhitXrpCXl0fXrl2Z+/lCQh7KsdZX8tPq5fg2sCDyzkkmTSvZoqC0kEteXj5SCxNyJXrFcljVwfbt2zl48CBHjhzByMgIIyMjhg8fXu3HgdKHXAwePJht27Yxd+5ctm3bhp+fX40c/3mgVsMvK1euZOfOneKtmlDNUR5CBUheXh4tWrQodTcuNKTIZDISEhIwNDR8ptI/jUbDw4cPSUpKwsfHp8ZjhfB/XZTaKJGE/7uANGnShNTUVBISEsTdvZ2dXbVfxEoaNlGTZGdnExISUu0XkMzMTORyeaGGJ2EDERwcXGggNUD/YaOx6/kOMWf38N38qfx+8hTXbt5h8oS3iYiI4Mu1W9GTGjJzrB+HT/yFS78PiPlrO5tXfV3m7rqgoJuYmLBg8XLS0jP4fM5T06yAA4fxbdWSvn1Kdmt8Vnbv3s2vv/5KUFCQVprfShty0bFjR0aMGMGjR49o2LAhe/furUk/ojodfqlVUYen4YwjR44QGBhIVFQUffr0wd/fH19f31KHLNy6dQsLCwsaNWpUqd298AVUKBSFwhFlNe6UZcpVEwiTg1JSUvDx8anxEkko/QIiJA4VCgVqtVoUrKp+eYUuWF9f3xoZvlCUzMxMbt68WeM+NYJbokwmIyUlRRzhV9DDZ9mq7/jjwjXqmxoyc/Ik5n+7kfpt+5EbchRTAwkXEwyRGBrT3jSZkcOH8svOAF55+SVmzZha6me96A593759/HT8BkZW9rxkncPCz+bWyPsNDAxkw4YNBAUFaSUUWYfQiXpFSU9PJygoiP3793P37l169uyJv78/7du3R09Pj8jISOLi4vD09Kyy4VB2drYo8IAo8AV3pOWZclU3grGTRqPRygUE/q8Nv7w7EKFeWS6Xk5ubK5ZKVsZ0DJ52P0ZGRtK6dWutdMEKOQlt3REIpnQeHh7ieL6C07CsrKx4/Pgx9vb2ZGVlMe6DaeQYmNPJqwF9e7zCpGmz0Whg49oVtGjRgtOnT9O0adNSY9OCoF++cpUzl67i168XzZo2Yc7XK1HrG/LByEGMeGNYtb/PI0eOsHbtWoKCgrQSOqtj6ET9WcjOzub48eMEBARw8+ZNWrVqxaVLl9iyZUuZzR3PQm5uLnK5HLlcjkqlwt7eHktLS+7fv/9MplzPglCjbWFhoZWacKFpKicnh5YtW1bqAlK0Q7MipmNQujFXTVFw/Jw2jMeEpG/RJHPBSq3k5GTMzMzENvzExESx89nQ0JCMjAwkEgmmpqZMnDydqHxzJPIItn6/gqysLKKjo+nSpQtKpZJtv+0kNSWZYUP8+Wj2ZzToPYHYP3/h0M4tJCQkkJWVVSOe+sePH2f58uUEBQVpJbldB9GJelXZtWsXX375Je3atePWrVt07tyZIUOG0KVLl2qPb+fl5fH48WMePnyIkZERjo6O2Nvb1+guLy8vr1jNdE2iVqsJCwtDKpVWuUmrqOmYUBlS0HQMKm7MVV0IIR5h/FxNU9GYvUajISMjQ4zDF2x4KrrON8e/R7pdK7IfXGHB9Eks+u4nVBZOtG1gRn1bGw5df4ReXgafjB3ErsAjKJRG2Opl8dvmn2ss73Pq1Cm++uorjh079szltS8AOlGvCqdPn2bFihXs3r0bS0tL8vLy+OuvvwgICOCff/6hY8eO+Pv788orr1RLQlEw5RKGaAg2uNnZ2c8ccigLbde8C5ODBBvi6qSg6VhSUhKmpqbY2dmRkZFBdna2VnxjQPshnqysLEJCQp6p7LRg3qJgw5OpqSn3799nd8BBfFs1x93NjRmL1mDu9TImsf/i4mDHxUfpGKhymPfucDp27EhYWBjNmzevMfO6s2fPMn/+fIKCgrRy91qH0Yl6VRAsA0raeSiVSs6ePcu+ffvEmlh/f3969OjxTLuzsky5VCoVCQkJyGQyMjMzxe5MYfrOsyBUgGhj0AT8X9NNgwYNCvls1wRCaWlYWBjZ2dniDt7e3r5Gq3lkMhmPHj3SWoinOpOwQgewsIko2PAEsGnLVm7euUu3jm1p164dV/79F3Nzc/q//nqNXywvXLjAnDlzCAoKqvHPznOATtS1gUql4sKFC+zfv5/Tp0/TsmVL/Pz86NOnT7nx1MqacgnNKHK5nLS0NKytrcXuzIoKvHBHoK0KEKFGuypdqZWhqDFXwcR0dZuOCcTFxYkXZW2UnQrDSWqiEa2oz4qFhQW2trbExMSITVHa4vLly8yYMYMjR45oxYLjOUAn6tpGrVZz5coVAgICOHnyJJ6envj7+/Paa68Vi41X1ZRL6M6UyWTiIAuh27C03VNsbCxxcXFaq0HPyMgQB3doo1KhvBCPUPonl8urbDomIMye1VbMXptVNULX9NMh24gdwFX1O68I169fZ/LkyRw6dEgrJmvPCTpRr03UajXBwcHs27eP48eP4+rqip+fH/379yc7O5v169czYcKEatmBCDFlmUxGcnJyofZ7fX190RY4IyMDb29vrYiPUAHi7e2tlZI+wQjM0dGxQknfoiEHW1tb0dq1ogIfFRUlWi1rI2YvhM2qaxhKeahUKoKDg8WB24LfecG7Hjs7u2qv8AkJCeH9999n//79NGnSpFpf+zlHJ+p1BY1GQ2hoKPv27SMwMFA01v/444+rvftMaL+XyWQkJiZiYmKCUqnE2Ni4WgY/VAQhYejr66uVCpCqGnMJpmMKhYK0tLQyTcfg/yZn5eTk0KJFC60IempqKmFhYVoLmxUV9KIIdz0KhUIcWm5nZ1chJ86yuHPnDhMmTGDv3r0lesz8x9GJel3j4sWLfPjhh3zxxRfcvn2bo0ePYmFhgZ+fHwMHDsTOzq5aRVfw7ZZIJCiVSoyMjHBwcKB+/fo1lsyLi4sjNjZWawlDoaSvuoy5itZ2l3TXc+/ePdRqNc2aNdPKRVK466krgl4UoX9AaHgq76JYGuHh4YwfP56dO3fi7e1dlbdQiAkTJnD06FHs7e0JDQ0FYMGCBWzcuFHM8yxevJj+/ftX2zFrCJ2o1yU0Gg3Tpk1jzpw5om+3sOMLCAjg8OHD1KtXj0GDBuHn54ejo2OVBEOoQXdxcREtUgvWKUulUhwcHKptFJ3gU5OcnKw1mwGhAqSmZsEWNB1LTEzEyMiI/Px8zMzMtCbo2q57r6ygF0W4KCoUCrG8VLgolnWRj4iI4O2332b79u34+vpW5S0U4+zZs5iZmTF27NhCom5mZsasWbOq9Vg1jE7UnycEUQwMDOTAgQMADBw4EH9/f1xcXCrtNXPr1q0yd68FR9Hp6elVyUCrpFF3NY22jbmEHIkwIasmTccEEhMTiYiI0Frde1UFvSgFG54SExORSqUlNjxFR0czatQoNm/eTPv27at83JKIjo5m4MCBOlGvQXSiXgYajYb4+Hj2799PYGAgOTk5DBw4ED8/v3Jb+VNTU7lz506lyt1ycnJEuwKNRiPWdVfkVl+tVnP79m2MjIy0MloPtG/MJVgpWFtbix7kwjkTTMcKVtJUB8LkqDZt2milUqm6Bb0kCjY8paam8scff9C9e3cWLlzIhg0b6NSpU40cF0oW9a1bt2JhYUH79u1ZtWqVVnz8q4hO1F8ENBoNcrmcAwcOEBgYSEpKCv3798fPz69Yq72QoPTx8XlmsSta9ifUdZckVsIov/r16+Pm5vbM77EyyOVyoqOj8fX11druNSQkBHt7+1LH3VWX6ZiA8B5bt279wgh6UVJTU9m4cSPbt28HnvqS+/n50aVLlxoJ3RUVdZlMRv369ZFIJHz++efEx8ezZcuWaj9uNaMT9ReRxMREDh48SGBgIE+ePKFfv374+/tz7NgxNBoNM2bMqLYEZX5+vmjpmpeXJ4qVmZmZOLu0YMy+pomLixPr7LWRhBXeY4MGDSr8HksyHbOzs6twg5i2O1NrQ9Dh6eCX4cOHs3LlSjp37szp06c5dOgQc+fOrdbpSAJFRb2iv6tj6ET9RSclJYVDhw6xePFiNBoNgwYNYtiwYfj4+FR7XFupVBayK8jPz8fDwwNXV1ethFy0bcxV0fFzZVGa6Zgwjq4o8fHxYuWQNjpTa0vQFQoFQ4cOZcmSJfTt21crxywq3MIIOoDvvvuOy5cvs3v3bq2spQroRP1FJy8vj/feew8bGxu+/PJLfv/9dwIDA7l3757oCd+uXbtqFfj09HRu3bqFk5MTGRkZ4m7UwcGhSn40pSE0TmVmZmrNmOtZx8+VhTCOTkgaClUh9evXRyqVat1qoLYEPTExkWHDhvHll18yYMAArRxz1KhRnDlzhoSEBBwcHFi4cCFnzpwhODgYiUSCu7s769ev19odZxXQifqLTlpaGoGBgYwfP77Qz7Oysvj999/Zv38/t27d4tVXX8Xf35+OHTtWaZebnJzM3bt3adWqlRhjV6vVYrhBaNxxcHDAysqqygKs0Wi4e/euOLxDG3cEQt17TQ7ALmqDq1KpAGjTpo1W69CdnZ21KmQpKSkMHTqUuXPn4u/vr7XjvkDoRL0iHD9+nGnTpqFSqZg4cSJz59bMCK7aIicnh5MnT7Jv3z6uX79Oly5dGDJkCJ07d67UjrAiCUrBj0Yul5OSklKqx3lFEKpqjI2Nady4sVYEXSgFrUkb2aI8fvwYmUyGra0tCQkJAJWqPqostSXoaWlpDBs2jOnTp/PGG29o7bgvGDpRLw+VSkXTpk05efIkLi4uvPTSS+zatYsWLVpo4/BaJy8vj9OnTxMQEMClS5fo2LEjfn5+5XrCx8TEIJPJ8PHxqXDyrqjHuZmZGQ4ODmJnZlkIxlw2NjZiCWFNo+3xc0ChZi3holew+ig/P79QcrqqF7baEvSMjAzeeOMN3n//fUaPHq21476A6ES9PC5evMiCBQv4448/AFiyZAkA8+bN08bhaxWlUsnff/9NQEAA586do23btvj5+dGzZ09xJ65WqwvFs581dFO0M9PY2Fi0Kyh6tyBUnDg5OWllGhP8n69KwbBSTRMVFUV6enqZeYKSfM6f1Uu/tgQ9KyuLESNGMHbs2GJhQh2Vpk6Les1ngipAbGxsIZdEFxcXLl++XIsr0h5SqZRevXrRq1cvVCoV58+fZ//+/SxYsABvb28GDRrEgQMHaNu2LVOnlj5RviJIJBIsLS2xtLTE09NTjCc/fPgQQ0ND0a5Ao9FUyZjrWdB2IxPAgwcPxDmeZYWlDAwMcHJywsnJSfQ5j42NJSwsrFL+KrUl6NnZ2YwePZo333xTJ+j/AeqEqOt4ir6+Pq+++iqvvvoqarWac+fOMWnSJOrVq4dKpeLAgQP07du3WsISEokEc3NzzM3Nady4MZmZmcjlcq5du0ZWVhYNGjTQWmdfwa5NbTQyFXR3rOxgZn19fbHFvqDp2L179zA3NxcHShe9m6otQc/NzWXMmDH4+fnx3nvvae24OmqPOiHqDRo04PHjx+L/Y2JitHbLX1fJzMxk0aJFTJ8+nffff58bN26wb98+Vq5cScOGDfHz8+P111+vtkSiUNr35MkTvL29xeoTiUQiJgxrwltFJpPx8OFDrbXhazQa7t+/j1KppGXLllW689HT08PGxgYbGxsxtKVQKIiKisLIyEj0pNHT06sVQc/Ly2P8+PH06dOHjz76SCtJ7upm+fLleHh46JK6laBOxNSVSiVNmzbl1KlTNGjQgJdeeomdO3fSsmVLbRy+TpKXl8eFCxfo0aNHoZ+r1WrRE/7YsWM4ODjg5+fHgAEDquQJL8Sziw7TyMnJEROGarUaOzs7HBwcqiVEIjT5aKszVSjNBPDy8qpRkRPufBQKBZmZmdjZ2eHp6akVh0d4mgeYMGECL730Ep988slzKegAa9euRa1WM336dNHArQ5Qp09mnRB1gGPHjol/uAkTJjB//vxnfq3Hjx8zduxYZDIZEomESZMmMW3atGpcbd1Ao9EQFhZGQEAAR48excrKisGDBzNo0CDRT6MiVDSenZeXJxqOFRxD9yzhIG2PnxPOlb6+fjGvnppCCLkIXuEKhQKVSlWmj091oFQqmTRpEi1atODzzz9/bgUd4LfffuOXX37h1KlTtb2UgtTpE1pnRL06iY+PJz4+nrZt25Kenk67du04ePDgC1siCf83PHv//v0cPnwYIyMj0RPewcGh1C/2sxpzCX40crmcnJwc6tevj4ODQ4VK/qKjo0lJSakRG4WS0Gg03LlzB0NDQ605WJYWQ8/LyxMraYTzVhXTsZKOO3nyZFxdXVm0aNFzKejnz58nOjqa0aNHk5iYyDfffMOSJUswNjZGo9HUhfdU6wsoixdS1Ivi5+fHlClT6NOnT20vRSsInvD79+/nwIED6OnpiZ7wDRo0EL8U0dHRoo9LVcIfgh+NXC4nMzMTW1tbHBwcio1UE6wGsrKyaNmypVYEXa1Wc+fOHYyNjWnUqFGtCnpJjxPOW0ZGBtbW1tjb2z9zF7AQprC2tmbZsmXVen5LmlokjIOMjo7G3d2dvXv3Vjm5npiYyOrVqzl79izOzs7cvXuX8PBwVq5cyUcffQRQF4RdJ+q1SXR0NK+88gqhoaFYWFjU9nK0jkajIS4uThT43NxcBg4ciEwmQyaTsXHjxmoNfwhzRuVyOenp6VhbW4t+NPfv30elUmltRquQfzA3N68Rx8GSUCqVhISEVDopKnQBy2SyCpmOlfT82bNnY2BgwOrVq6v9glnS1KI5c+ZgY2PD3LlzWbp0KcnJySxbtqzajpmZmUlISAjXr1/n/Pnz9O7dm4kTJwK1Luw6Ua8tMjIyePXVV5k/fz5Dhw6t7eXUOhqNBplMxoQJEwgPD6d+/foMGDAAPz8/mjRpUu1fEsEdUSaTIZfLMTIyokmTJtjY2NT4Ll2tVnPr1i0sLS1xd3ev0WMJKJVKgoODK2URXBIlmY4JpZIl3VGp1Wrmz59Pbm4uP/74Y42d26IOi15eXpw5cwYnJyfi4+Pp3r27mIiuCkUTorm5uZw8eZItW7bQpUsXPv744yofo4rUaVGvEyWNNUF+fj7Dhg3jrbfe0gl6ARYvXoy7uztHjhwhOTmZgwcP8umnnyKXy0VP+OraSQslf/Hx8bi6umJtbY1CoeD+/ftV8qMpD8HewNbWVmtDQ6pL0OFpD4GVlRVWVlaFTMeuX7+OgYGBWCpZr1491Go1CxcuJD09nY0bN2olpCUgk8nE9+ro6IhMJnum1ym66y56Z1KvXj2xOe/ChQu1vUuv87yQO3WNRsO4ceOwsbFh9erVtb2cOsWFCxfo3LlzsS9FcnIyR44cYf/+/Tx69Ig+ffowZMgQWrVq9cxCUdpuuehO1MzMTLS/rWooqCITkqqb6hT08sjOzkYul3Ps2DG2b9+Oq6srUqmUgICAGq8iKrpTt7KyIiUlRfy9tbU1ycnJlXpNtVotfr7y8/PLzO3k5eVhYGCARCKpbWGv01eUF1LUz58/T7du3QoJ0uLFi+nfv3+VX1ulUtG+fXsaNGjA0aNHq/x6dZG0tDSCgoLYv38/9+/fp1evXvj7+9O2bdsKC7wgrnZ2doUsIIqi0WhIT08X7W+NjY3FnWhl/cyFBKWjo6PWmte0KegF0Wg0fPPNN5w7dw5TU1OSk5Pp378/c+fOrbGu3JoMv6xdu5bQ0FCaN2+Or68vPXv2rM6lVzd1WtRfyPBL165dKedi9cysWbOG5s2bk5aWViOvXxewsLBg1KhRjBo1iqysLI4dO8aPP/7I7du36d69O/7+/nTo0KHUnaEgdM7OzuUOfpBIJFhYWGBhYSHaFchkMq5du4ahoaEo8OV1m9aGuNamoK9bt467d+9y+vRpDAwMSE1N5c8//9RKV67A4MGD2bZtG3PnzmXbtm34+fk90+t8//33HDlyhEWLFvHuu+8yYcKEui7qdZoXcqdeU8TExDBu3Djmz5/Pt99++8Lu1EsjJyeHEydOsG/fPm7cuEHXrl3x9/cv5AmfmZnJ7du3q8UMLCsrC5lMhkKhQF9fX7QrKLoTzc/PJzg4GFdXVxwdHat0zIpSm4K+fv16zpw5Q0BAgNZEvKSpRf7+/owYMYJHjx7RsGFD9u7dW6Gu5tDQULy9vYGnSdDFixfzwQcfcODAAY4fP87hw4fJz88nKSlJa4ZylaRO79R1ol4Jhg8fzrx580hPT2flypX/OVEvSF5eHqdOnSIgIIDLly/TqVMnunXrxrJly/j111+rvdFLiCUrFAo0Go0o8FKplBs3blRphmllqU1B37JlC8eOHePAgQNasxyobj788EM+//xz8S5u+fLlbNiwgaZNm3Ls2DEAli5dirOzM2PHjq3NpZZGnRZ17aXKn3OExot27drV9lLqBIaGhrz++uts3ryZGzdu0LNnT2bPno25uTnr1q3j+PHj5ObmVtvxjI2NadiwIe3btxc7UUNDQzl37hwmJiZaG6ghCLqLi4vWZ2lu376dw4cPExgY+NwKOsBPP/1EfHw8ffv2JT8/nwEDBuDj40Pv3r0B2LhxI/v27dOFYJ4R3U69gsybN4/t27cjlUrJyckhLS2NoUOH8ttvv9X20mqdiIgI3njjDX7++Wfat2/P+fPnCQgI4K+//qJVq1b4+/vTu3fvavVJz83NJTg4GHd3d5RKJXK5nLy8PNGuwNTUtNqrIwoKurbCPAK7du3it99+4+jRo1obIFKdlFStMmDAAExMTNiyZQtnz57l4MGDREZGoqenx88//0zjxo3rkolXQer0Tl0n6s/AmTNn/vPhl4LExcWRkJCAj49PoZ+r1WouXbpEQEAAf/75J02bNmXIkCH07du3SsKUk5NDcHAwTZs2LRTDLTqhqDp9VWpT0Pfv38/GjRsJCgrC3Nxcq8eubs6fP09GRgYtWrTAzc2NN998E6VSybZt2zA1NUWhUGBqaoqJiUldFXTQifqLR3WKekpKChMnTiQ0NBSJRMKWLVt4+eWXq2GVdQu1Ws3169fZt28ff/zxB+7u7qInfGXsGwRB9/LyKtNnpKiviq2t7TOPoKtNQT98+DDr1q0jKCgIKysrrR67utmxYwfff/89r7zyCv/++y8LFy6kW7duvPnmm6SkpLB//35MTU0L1a7XUXSirqN0xo0bR7du3Zg4cSJ5eXlkZWU991/e8hCakvbt28fvv/+Oo6Oj6AlfllALgzuaNWtWqXMkjKCTy+WkpaVVyjirNgX9999/Z8WKFRw7dqxKXvl1AZlMxnvvvcfBgwdZv349u3fv5vDhw+KQl3HjxhEeHv68jLHUibqOkklNTaV169ZERkb+Z9uei3rCW1tbM3jwYAYOHCj6kMPTUsmbN2/SokWLKk17KmqcZWlpKRpnFRX42hT0P//8k0WLFnHs2DHq16+v1WPXBImJiXzyySfY29tz4cIF9uzZg6OjIwcPHqRbt27Y2trSvn17Vq5cSffu3Wt7ueVRp7+sOlGvRYKDg8VhBiEhIbRr1441a9Y8l4mw6kDwhA8ICODw4cMYGxszePBgmjRpwtdff83Bgwer1WlTo9GQkpKCTCYjOTkZc3Nz0Y9GGL5dG4L+999/89lnn4mTrV4UvvrqK3bu3MnWrVvp1KkTR48eZfbs2QQEBNC4cWMGDhxIQEDA83CnqhN1HSVz9epVOnXqxIULF+jYsSPTpk3DwsKCr7/+uraXVutoNBqio6P54Ycf2Lx5M23bthUNx5ydnav9zkaYMSqTyUhMTCQ3NxdHR0c8PT0rbVdQFc6fP88nn3xCUFBQud24zxuRkZGsX7+eGzdu0L59ewIDA9mwYQOvvPIKUNydsQ6jE3UdJfPkyRM6depEdHQ0AOfOnWPp0qUEBQXV7sLqCCEhIYwbN45du3Zhbm4uesLn5eWJU50aNmxYrQKvVCq5ceMG9evXF5OtBYdI1+Qs1cuXLzNjxgyOHDlSpl/O80xqaioXLlwgOzubRo0a0aZNm+chMVoUnajrKJ1u3bqxadMmvLy8WLBgAZmZmaxYsaK2l1UnOH78OI0bN6ZJkybizwRP+MDAQAIDA0lPTxc94as6qq60GLpgfZuQkIBUKhW7WauzRf/atWtMmTKFQ4cOac3/XcczoxN1HaUTHBwsVr40atSIX375pcojwb777js2bdqERCKhVatW/PLLL891B2JZKBQKDh48SGBgIAqFgv79+zN48OBKe8JXNCmalZUl2hXo6emJO/iqnN+QkBDef/99AgMD8fT0fObXqQju7u6Ym5ujr6+PVCrl6tWrNXq8FxSdqOvQHrGxsXTt2lWcyzlixAj69+/P+PHja3tpNU5ycjKHDx9m//79xMTEiJ7w3t7eZd7eP2uVS05ODnK5HLlcXsiPpjKds7dv3+bdd99l3759eHl5Vfh5z4q7uztXr159ISpqapE6LeovpPXufx2lUkl2djYGBgZkZWW9cAm30rC2tmbcuHGMGzeOtLQ0jh49yooVK3jw4IHoCd+mTZtCAl+VskUjIyPc3Nxwc3MjLy8PuVxOWFgYSqUSOzs77O3ty6xkCg8P591332XXrl1aEXQd/w10O/UXkDVr1jB//nyMjY3p27cvO3bsqO0l1SoZGRn8/vvvBAQEcOfOHXr06IG/vz+enp5Mnz6dZcuWVetQjfz8fBQKBTKZjNzcXFHgzczMxJDQ/fv3GTNmDNu3b8fX17fajl0eHh4eWFtbI5FIeP/995k0aZLWjv0CUad36jpRf8FITk5m2LBh7NmzBysrK9544w2GDx/O22+/XdtLqxNkZ2dz4sQJdu7cyV9//UX37t159913efnll2ukdFGpVJKQkIBMJiM2NpZjx47Ro0cPli9fztatW7Xu+hkbG0uDBg2Qy+X06dOHdevWiSWFOipMnRb156qOSEf5/Pnnn3h4eIjld0OHDuWff/6p7WXVGYyNjenRowdPnjxh9erVjB8/nj179tC5c2emTZvG6dOnyc/Pr7bjSaVSHB0d8fX15dVXX6VFixYsWrSInJwcfvvtN86fP49ara6245WHcEdib2/PkCFDuHLlitaOrUM76ET9BcPNzY1Lly6RlZWFRqPh1KlTNG/evLaXVac4duwYU6ZMYfTo0fTv358tW7Zw48YNRowYwdGjR+nSpQsfffQRf/zxR7V6wqemprJjxw42b97M7du36du3L1u3biUkJKTajlEWmZmZpKeni/8+ceKEOIFIx4uDLvzyAvLll1+yZ88epFIpbdq0YdOmTc80jHjChAnicBBh2HBSUhIjR44kOjoad3d39u7dW+USzLqGUqkUPeHPnDmDj48P/v7+9OrV65k94Z88ecLw4cNZtWoVPXr0qOYVV4zIyEiGDBkCPH2Po0ePZv78+bWyluecOh1+0Ym6jlI5e/YsZmZmjB07VhT1OXPmYGNjw9y5c1m6dCnJycksW7aslldac6hUKtET/tSpU3h5eeHv718pT3i5XM6wYcNYsmQJffv2reEV69ACOlHXUTpCPFUosytpQkxtEh0dzcCBA0VR9/Ly4syZMzg5OREfH0/37t25e/duLa9SO6jVaq5du8a+ffs4ceIEHh4e+Pn50a9fv1KNxhITExk6dCgLFy6kf//+Wl6xjhqi7nxBS0An6nWQmJgYXFxcansZQHFRt7KyIiUlBXh6AbK2thb//19CrVZz8+ZN0RPe2dlZ9IQXXAZTUlIYOnQo8+bNw8/Pr3YXrKM6qdOirkuU1hIXLlxg6tSpDBo0iMOHD4s79oSEBObOnavViohnRSKR1Km7Cm2ip6dH69at+eabb7h27RrLli0jLi4OPz8/hgwZws8//8yQIUOYNWuWTtB1aBVdR2ktcPXqVebNm8fq1avR09Pjm2++wc7Ojpdffpm0tLRiw6zVajUajaZO2JI6ODgQHx8vhl/s7e1re0m1jkQioWXLlrRs2ZIvvviC+/fvs2rVKrp3787w4cNre3k6/mPodupaRqlUsm/fPhQKBTNnzuT48eNIJBLCwsIA6Ny5M3/88QfwtOwsKysLPT29OiHoAIMHD2bbtm0AbNu2TbcLLYJEIqFp06asX7/+hU4g66i76ERdy2g0GlJTU/n222/ZsWMH+fn5qFQqLCwsePToEba2tvTo0YP4+HjWrFlDv3796Nevnyj0AkJ4JjAwkIcPH4qvXZ2MGjWKl19+mbt37+Li4sLmzZuZO3cuJ0+epEmTJvz555/MnTu30q87YcIE7O3tC9VIz549m2bNmuHj48OQIUP+k3F6HTqqA12itBYYO3Ysr732Gm+99Vahny9cuJD4+HhWrFjBp59+ysOHDzl8+DAnTpwgKCiINWvWFHutuXPnYmZmxrx589DX1ycuLq7OG3iVVCp54sQJevbsiVQq5ZNPPgHQ7XR11FXqdCJJt1OvBaZOncqKFSvo378/K1asEEMvhw8fZuTIkVy+fJmEhAQUCgWvvvoqa9asITo6usTOwzFjxhAYGIi+vj5RUVEMHjyY7du3o1KptP22Kswrr7yCjY1NoZ/17dtX9F7p1KkTMTExtbE0HTqee3SJ0lqgffv2BAcHExQUxOXLl3F0dCQiIoLMzEw6d+7M9evXSU9P5+LFiygUCg4cOEBSUpKYlCxYy25ubk63bt2YN28eYWFhDB06lDFjxtTm26syW7ZsYeTIkbW9DB06nkt0ol4LCDMZBwwYwIABAwDYsGED3t7e1KtXD1tbW1QqFY8ePcLNza2YPaog6BqNBjc3Ny5evAjAN998Q58+fcTfPY/lht988w1SqbRYaEqHDh0VQxd+qQWE7lEhRNKzZ0/27dvHrFmzAGjUqJHYyNKhQwfWr1+PXC4v9jopKSnMnj2bhw8f0r59e1HQgedS0Ldu3crRo0fZsWPHc7n+muL48eN4eXnh6enJ0qVLa3s5Ouo4ukRpHSAlJYXExEQaN25c7HcXLlwAnsaZ9fX1xR349evXWb9+PWZmZnTq1Ildu3YRGBj43ExmL9qpevz4cWbOnMnff/+NnZ1dLa+u7qBSqWjatCknT57ExcWFl156iV27dtGiRYvaXtp/mTq946j73/7/AFZWVsUEXdjFd+nShS5duoh16hKJBLlczujRo2nXrh2ffvopr7/+Orm5udy/f/+5EPSSSiWnTJlCeno6ffr0oXXr1nzwwQe1vcw6wZUrV/D09KRRo0YYGhry5ptvcujQodpelo46jC6mXkcRRLyk2Li9vT2HDh0qNNcyOTkZmUxGkyZNtLrOZ2HXrl3Ffvbuu+9W+XVLsgoWWLVqFbNmzUKhUDxXQ5djY2NxdXUV/+/i4sLly5drcUU66jp1f1v3H6e02LKXl5fYgKRWq5k3bx7379/X5tLqHOPHj+f48ePFfv748WNOnDiBm5tbLaxKhw7totupP8cIoRY9PT0GDRpUy6upfV555RWio6OL/XzGjBksX778ubQ0aNCgAY8fPxb/HxMTU61DsnW8eOh26i8Iz4OrY21w6NAhGjRogK+vb20v5Zl46aWXuH//PlFRUeTl5bF7924GDx5c28vSUYfR7dRfEJ6HBKm2ycrKYvHixZw4caK2l/LMSKVSvv/+e1577TVUKhUTJkygZcuWtb0sHXUYXUmjjheKgqWSt27dolevXpiYmABPQxfOzs5cuXIFR0fHWl6pjueYOl3SqNup63hhadWqVaGmLXd3d65evfpcVb/o0FFZdPfsOl4YSqp/16Hjv4Yu/KJDhw4dlaNOh190O3UdOnToeIHQiboOHTp0vECUlyit07cZOnTo0KGjMLqdug4dOnS8QOhEXYcOHTpeIHSirkOHDh0vEDpR16FDh44XCJ2o69ChQ8cLhE7UdejQoeMF4v8B5MRj5iVjXgYAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 432x432 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "prob = lum # definimos a lumx como una probabilidad para calcular la desviación estandar aproximada.\n", + "# definimos los parámetros de inicialización\n", + "A = 1\n", + "x0 = int(max(x)+min(x))/2\n", + "y0 = int(max(y)+min(y))/2\n", + "sigmax = std_prob(x,prob,x0)\n", + "sigmay = std_prob(y,prob,y0)\n", + "print(sigmax)\n", + "print(sigmay)\n", + "C = min(lum)\n", + "'''\n", + " params[0] = A\n", + " params[1] = sigmax\n", + " params[2] = x0\n", + " params[3] = C\n", + " params[4] = sigmay\n", + " params[5] = y0\n", + "'''\n", + "p1 = [1,sigmax,x0,C,sigmay,y0]\n", + "best,suss = leastsq(Error_gauss_2D, p1, args=(x_array,y_array,lum_array))\n", + "print(best)\n", + "\n", + "lum_model = func_gauss_2D([0.5, 5.37714538e+01,8.87615354e+00,5.46438999e-01,\n", + " 6.43257406e+00,1.20640785e+01],x,y)\n", + "\n", "\n", - "#plt.plot(x,ymodel - y_ruido,'--r')\n", - "#plt.axhline(y=0,color=\"gray\")" + "fig = plt.figure(figsize=(6, 6))\n", + "ax = fig.add_subplot(111, projection='3d')\n", + "ax.scatter(x, y,lum_model,\n", + " linewidths=1, alpha=.7,\n", + " edgecolor='k',\n", + " s = 5)\n", + "ax.set_xlabel('eje X')\n", + "ax.set_ylabel('eje Y')\n", + "ax.set_zlabel('Lum')\n", + "plt.title('Ajuste Gaussiano')\n", + "plt.show()\n" ] }, {