diff --git "a/Modelo de Calibraci\303\263n/Calibraci\303\263n_Torres.ipynb" "b/Modelo de Calibraci\303\263n/Calibraci\303\263n_Torres.ipynb"
new file mode 100644
index 0000000000000000000000000000000000000000..44822e919b8ef84d46e03ded8dc220c464491ff8
--- /dev/null
+++ "b/Modelo de Calibraci\303\263n/Calibraci\303\263n_Torres.ipynb"	
@@ -0,0 +1 @@
+{"cells":[{"cell_type":"markdown","source":"# Código Calibración Torres de Centelleo","metadata":{"tags":[],"cell_id":"bed83d8fef974bec95d4ce2e099cef62","is_collapsed":false,"formattedRanges":[],"deepnote_cell_type":"text-cell-h1"}},{"cell_type":"markdown","source":"","metadata":{"tags":[],"cell_id":"4ba3dcb6-e0d3-47cd-b8b5-6ab1d0f36e12","is_collapsed":false,"formattedRanges":[],"deepnote_cell_type":"text-cell-p"}},{"cell_type":"markdown","source":"El siguiente notebook es una calibración del threshold para las torres de centelleo del Grupo Halley","metadata":{"tags":[],"cell_id":"664a2da167bc4729b5b516ce4e76937b","is_collapsed":false,"formattedRanges":[],"deepnote_cell_type":"text-cell-p"}},{"cell_type":"code","source":"import math\nimport matplotlib\nimport csv, operator\nimport numpy as np\nimport pandas as pd\nimport scipy.stats as st\nimport matplotlib.pyplot as plt\nfrom datetime import datetime\nfrom pandas import DataFrame as df\n","metadata":{"tags":[],"cell_id":"25d672a1bbe54fe4b53c526b9756c4d6","source_hash":"bd0276a4","execution_start":1664917970338,"execution_millis":1773,"deepnote_to_be_reexecuted":false,"deepnote_cell_type":"code"},"outputs":[],"execution_count":1},{"cell_type":"code","source":"#cargar datos\ndef load_data(file):\n    data = np.loadtxt(file,usecols=0,skiprows=1,dtype=str,delimiter=\" \")\n    return data\n\n# Ajustar el formato de str como datetime\ndef time_date(df):\n    df[10] = df[11].str.cat(df[10], sep =\" \")\n    df = df.drop(11, axis=1)\n    df.columns = [x for x in range(0,15)]\n    time = pd.to_datetime(df[10], format=\"%d%m%y %H%M%S.%f\")\n    return df, time\n\ndef data_analysis(data):\n    fn = np.unique(data['HORA']) \n    frec = []\n    for i in fn:\n        frec.append(np.sum(data['HORA']==i))\n    frec = np.array(frec)\n    data2 = pd.DataFrame({'fecha': fn, 'frec': frec})\n    data2.describe().transpose()\n    mean = np.mean(frec)\n    std = np.std(frec)\n    return(mean,std)\n    print(\"Mean rate : %.2f +/- %.2f\" %(mean, std))\n","metadata":{"tags":[],"cell_id":"0c284dada42c441da3d173aec625122e","source_hash":"8d6e39b6","execution_start":1664917972159,"execution_millis":0,"deepnote_to_be_reexecuted":false,"deepnote_cell_type":"code"},"outputs":[],"execution_count":2},{"cell_type":"code","source":"lista=[]\n\n\ndata = pd.read_csv(\"/work/Cal-30-5min.dat\", delimiter=' ', sep = 's*', comment='S',\n                   names = ['T1', 'CH1a', 'CH1b', 'CH2a', 'CH2b', 'CH3a', 'CH3b', 'CH4a', 'CH4b', 'T2', 'hora', 'fecha', 'rec1', 'rec2', 'rec3', 'rec4'], \n                   parse_dates={'tiempo sin convertir': [10]})\n\ndata['HORA']= pd.to_datetime(data['tiempo sin convertir'],format='%H%M%S.%f')\ndata.head()\n\na = data_analysis(data)\nprint(a)\nlista.append(a)","metadata":{"tags":[],"cell_id":"d3c3abb0d5ae46868897ea7f45f2201b","source_hash":"1024bcff","execution_start":1664917972160,"execution_millis":115,"deepnote_to_be_reexecuted":false,"deepnote_cell_type":"code"},"outputs":[{"name":"stdout","text":"(125.93377483443709, 31.35159910666961)\n","output_type":"stream"}],"execution_count":3},{"cell_type":"code","source":"data = pd.read_csv(\"/work/Cal-35-5min.dat\", delimiter=' ', sep = 's*', comment='S',\n                   names = ['T1', 'CH1a', 'CH1b', 'CH2a', 'CH2b', 'CH3a', 'CH3b', 'CH4a', 'CH4b', 'T2', 'hora', 'fecha', 'rec1', 'rec2', 'rec3', 'rec4'], \n                   parse_dates={'tiempo sin convertir': [10]})\n\ndata['HORA']= pd.to_datetime(data['tiempo sin convertir'],format='%H%M%S.%f')\ndata.head()\n\nb = data_analysis(data)\nprint(b)\nlista.append(b)","metadata":{"tags":[],"cell_id":"49f6896d6c1744f58b17d58c32d16df5","source_hash":"73d6090a","execution_start":1664917972277,"execution_millis":126,"deepnote_to_be_reexecuted":false,"deepnote_cell_type":"code"},"outputs":[{"name":"stdout","text":"(101.62790697674419, 54.3443654095384)\n","output_type":"stream"}],"execution_count":4},{"cell_type":"code","source":"data = pd.read_csv(\"/work/Cal-40-5min.dat\", delimiter=' ', sep = 's*', comment='S',\n                   names = ['T1', 'CH1a', 'CH1b', 'CH2a', 'CH2b', 'CH3a', 'CH3b', 'CH4a', 'CH4b', 'T2', 'hora', 'fecha', 'rec1', 'rec2', 'rec3', 'rec4'], \n                   parse_dates={'tiempo sin convertir': [10]})\n\ndata['HORA']= pd.to_datetime(data['tiempo sin convertir'],format='%H%M%S.%f')\ndata.head()\n\nc = data_analysis(data)\nprint(c)\nlista.append(c)","metadata":{"tags":[],"cell_id":"3757b46c9eba4d03841f306b5e354bab","source_hash":"952d0e37","execution_start":1664917972406,"execution_millis":96,"deepnote_to_be_reexecuted":false,"deepnote_cell_type":"code"},"outputs":[{"name":"stdout","text":"(36.45333333333333, 35.315452079161545)\n","output_type":"stream"}],"execution_count":5},{"cell_type":"code","source":"data = pd.read_csv(\"/work/Cal-45-5min.dat\", delimiter=' ', sep = 's*', comment='S',\n                   names = ['T1', 'CH1a', 'CH1b', 'CH2a', 'CH2b', 'CH3a', 'CH3b', 'CH4a', 'CH4b', 'T2', 'hora', 'fecha', 'rec1', 'rec2', 'rec3', 'rec4'], \n                   parse_dates={'tiempo sin convertir': [10]})\n\ndata['HORA']= pd.to_datetime(data['tiempo sin convertir'],format='%H%M%S.%f')\ndata.head()\n\nc1 = data_analysis(data)\nprint(c1)\nlista.append(c1)","metadata":{"tags":[],"cell_id":"d33e6d096a1640e496b214e8c673dd4b","source_hash":"6e6e973f","execution_start":1664917972534,"execution_millis":49,"deepnote_to_be_reexecuted":false,"deepnote_cell_type":"code"},"outputs":[{"name":"stdout","text":"(15.70357142857143, 11.972050252354355)\n","output_type":"stream"}],"execution_count":6},{"cell_type":"code","source":"\ndata = pd.read_csv(\"/work/Cal-50-5min.dat\", delimiter=' ', sep = 's*', comment='S',\n                   names = ['T1', 'CH1a', 'CH1b', 'CH2a', 'CH2b', 'CH3a', 'CH3b', 'CH4a', 'CH4b', 'T2', 'hora', 'fecha', 'rec1', 'rec2', 'rec3', 'rec4'], \n                   parse_dates={'tiempo sin convertir': [10]})\n\ndata['HORA']= pd.to_datetime(data['tiempo sin convertir'],format='%H%M%S.%f')\ndata.head()\n\nd = data_analysis(data)\nprint(d)\nlista.append(d)","metadata":{"tags":[],"cell_id":"cda49a22cdfd4446b4b0e7eeb91053ed","source_hash":"cc61addd","execution_start":1664917972581,"execution_millis":48,"deepnote_to_be_reexecuted":false,"deepnote_cell_type":"code"},"outputs":[{"name":"stdout","text":"(11.305882352941177, 8.582504131232897)\n","output_type":"stream"}],"execution_count":7},{"cell_type":"code","source":"data = pd.read_csv(\"/work/Cal-70-5min.dat\", delimiter=' ', sep = 's*', comment='S',\n                   names = ['T1', 'CH1a', 'CH1b', 'CH2a', 'CH2b', 'CH3a', 'CH3b', 'CH4a', 'CH4b', 'T2', 'hora', 'fecha', 'rec1', 'rec2', 'rec3', 'rec4'], \n                   parse_dates={'tiempo sin convertir': [10]})\n\ndata['HORA']= pd.to_datetime(data['tiempo sin convertir'],format='%H%M%S.%f')\ndata.head()\n\ne = data_analysis(data)\nprint(e)\nlista.append(e)\n","metadata":{"tags":[],"cell_id":"16dcd5b249974ef58445c0617c073414","source_hash":"38d10305","execution_start":1664917972628,"execution_millis":47,"deepnote_to_be_reexecuted":false,"deepnote_cell_type":"code"},"outputs":[{"name":"stdout","text":"(9.704918032786885, 5.611300840663323)\n","output_type":"stream"}],"execution_count":8},{"cell_type":"code","source":"V90=load_data(\"/work/Cal-90-5min.dat\")\n\ndata = pd.read_csv(\"/work/Cal-90-5min.dat\", delimiter=' ', sep = 's*', comment='S',\n                   names = ['T1', 'CH1a', 'CH1b', 'CH2a', 'CH2b', 'CH3a', 'CH3b', 'CH4a', 'CH4b', 'T2', 'hora', 'fecha', 'rec1', 'rec2', 'rec3', 'rec4'], \n                   parse_dates={'tiempo sin convertir': [10]})\n\ndata['HORA']= pd.to_datetime(data['tiempo sin convertir'],format='%H%M%S.%f')\ndata.head()\n\nf = data_analysis(data)\nprint(f)\nlista.append(f)\n","metadata":{"tags":[],"cell_id":"5ac6c923f8a846628d90969b1946f0c9","source_hash":"faeda196","execution_start":1664917972672,"execution_millis":4,"deepnote_to_be_reexecuted":false,"deepnote_cell_type":"code"},"outputs":[{"name":"stdout","text":"(9.415094339622641, 4.435848655329308)\n","output_type":"stream"}],"execution_count":9},{"cell_type":"code","source":"data = pd.read_csv(\"/work/Cal-110-5min.dat\", delimiter=' ', sep = 's*', comment='S',\n                   names = ['T1', 'CH1a', 'CH1b', 'CH2a', 'CH2b', 'CH3a', 'CH3b', 'CH4a', 'CH4b', 'T2', 'hora', 'fecha', 'rec1', 'rec2', 'rec3', 'rec4'], \n                   parse_dates={'tiempo sin convertir': [10]})\n\ndata['HORA']= pd.to_datetime(data['tiempo sin convertir'],format='%H%M%S.%f')\ndata.head()\n\ng = data_analysis(data)\nprint(g)\nlista.append(g)","metadata":{"tags":[],"cell_id":"5dbe481acb3c46ba97a38cf3cc8bf0f0","source_hash":"5737d401","execution_start":1664917972673,"execution_millis":45,"deepnote_to_be_reexecuted":false,"deepnote_cell_type":"code"},"outputs":[{"name":"stdout","text":"(9.89655172413793, 4.301922806551915)\n","output_type":"stream"}],"execution_count":10},{"cell_type":"code","source":"data = pd.read_csv(\"/work/Cal-130-5min.dat\", delimiter=' ', sep = 's*', comment='S',\n                   names = ['T1', 'CH1a', 'CH1b', 'CH2a', 'CH2b', 'CH3a', 'CH3b', 'CH4a', 'CH4b', 'T2', 'hora', 'fecha', 'rec1', 'rec2', 'rec3', 'rec4'], \n                   parse_dates={'tiempo sin convertir': [10]})\n\ndata['HORA']= pd.to_datetime(data['tiempo sin convertir'],format='%H%M%S.%f')\ndata.head()\n\nh = data_analysis(data)\nprint(h)\nlista.append(h)","metadata":{"tags":[],"cell_id":"3aef8f69a7874e6d9dbb9e6fb86b087a","source_hash":"a46435f8","execution_start":1664917972716,"execution_millis":2,"deepnote_to_be_reexecuted":false,"deepnote_cell_type":"code"},"outputs":[{"name":"stdout","text":"(8.909090909090908, 4.294913385824624)\n","output_type":"stream"}],"execution_count":11},{"cell_type":"code","source":"df=pd.DataFrame(lista)\ndf['tr']=[30,35,40,45,50,70,90,110,130]\ndf.columns=['Conteos','std','tresh']\ndf.plot(x='tresh', y='Conteos', yerr='std')\nplt.grid()\nplt.ylabel('Flujo, $[Conteos/s]$')\nplt.xlim(30,130)\nplt. text(x=90 , y=115, s='4/10/2022:2-3:30 PM', size=8)\nplt. text(x=90 , y=109, s='Temperatura: 30,6 C ', size=8)\nplt. text(x=90 , y=103, s='Presión: 913 mBar', size=8)\nplt.xlabel('Threshold, $[mV]$')\nplt.title('Calibración Torre de Centelladores', size=14)\nplt.show() \n#4/10/2022\n#TEM=30.6\n#2-3:30 PM\n#913 MBAR\n","metadata":{"tags":[],"cell_id":"0c782d01275b4b9eb8f7b1d55262b22a","source_hash":"39e26bfe","execution_start":1664917972717,"execution_millis":471,"deepnote_to_be_reexecuted":false,"deepnote_cell_type":"code"},"outputs":[{"data":{"text/plain":"<Figure size 640x480 with 1 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAAAj8AAAHKCAYAAADsGyoAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAACAA0lEQVR4nO3dd1hT1xsH8G8SkrBBUBkKgoriQMBttU4UtW6t2qp1VTscdY+22mqH42fVVm2tbdXa1ta2rmpduOtCRHGLouAGXGwJgdzfH5grkR2CCeT7eR4fybnnnvvenGhe7j33HIkgCAKIiIiIzITU2AEQERERvUxMfoiIiMisMPkhIiIis8Lkh4iIiMwKkx8iIiIyK0x+iIiIyKww+SEiIiKzwuSHiIiIzAqTH6IyLjExETVq1ICfnx8SExONHQ4Rkclj8kNl3rBhwyCRSBATEyOWxcTEQCKRYNiwYTp127ZtC4lE8nID1NOnn34KiUSCgwcPFlhv2LBhUKlU2LlzJxwcHF5OcGYiv88RFY9EIkHbtm11yor6+dYX+44KwuSHXorw8HCMHDkSPj4+sLGxgZWVFWrUqIEhQ4YgJCTE2OGVWYsXL8b+/fuxY8cOVK1atVSOsXbtWkgkkiL/4ZdN8WVmZmLNmjXo2rUrXF1doVAo4ODggCZNmuDjjz/GzZs3X2o8ZemXBCJ9WBg7ACrfNBoNpkyZgiVLlsDCwgLt27dHjx49IJfLcePGDfz777/49ddfMXfuXMyaNctgx61SpQouX75cpq+EjB07FgMHDoSnp2ee2zMyMpCeno5///0XDRo0KLU4AgIC8Mknn+iUxcTE4Oeff4a/vz969eqVqz4V3c2bN9GzZ0+cPXsWLi4u6NixIzw8PJCamorTp09j/vz5WLRoES5cuICaNWsaO1yicoHJD5Wqjz/+GEuWLEFAQAD+/vtv1KhRQ2f706dPsXz5cjx69Migx5XL5fD19TVomy9bxYoVUbFixXy3KxQKfPjhh6UeR0BAQK6E5uDBg/j5558REBCATz/9tNRjKK+Sk5MRHByMyMhITJ06FZ999hmUSqVOnaioKEyaNAkpKSlGipKo/OFtLyo1UVFRWLhwIZydnbFr165ciQ8AWFlZYerUqZgzZ45YdvXqVUybNg0NGzaEs7MzLC0tUatWLcyYMaPIXwCF3e9PT0/HjBkz4OnpCUtLS9SpUwfLli2DIAg69bS3fNauXYtt27ahZcuWsLOzg5eXF4Dsqy/Lli1DcHAwPDw8oFQqUblyZfTp0wdnzpzJN76tW7eiU6dO4vl5eXlhyJAhuHDhglinoDER27ZtQ7t27eDg4AArKyv4+/tj8eLFyMzMzPd9iIqKQu/evVGhQgXY2NggKCgIZ8+eLdL7WRxHjx7Fa6+9BicnJ1haWsLX1xeffPIJ0tLSctXVjgW5e/cu3nrrLbi6ukIqleLgwYM4ePAgJBIJPv30Uxw7dgydOnWCo6Ojzu0YQRCwevVqtGzZEvb29rC2tkbjxo2xevXqYsWclZWFBQsWoGbNmrC0tETNmjUxb948aDSafPeJj4/HxIkTUbNmTSiVSlSsWBF9+/bV6cPCLFq0CJGRkRg8eDAWLlyYK/EBgJo1a+Kff/5B3bp1dcqjo6Px9ttvw9PTE0qlEm5ubhg2bFiet8i073NcXByGDh2KihUrwsrKCs2bN8/1+ZJIJDh06JD4c363M8+dO4eBAwfCzc0NCoUC1apVw7hx40r8i8zq1avRs2dPeHl5wdLSEk5OTggODsaBAwfyrK9P3124cAH9+/dH5cqVoVQq4e3tjQkTJuQZu5eXF7y8vJCQkICxY8fCw8MDFhYWWLt2rV7vxYEDB9ClSxe4u7tDqVTCxcUFr776KlatWlX8N4v0xis/VGrWrl2LrKwsvPPOO3BxcSmwbs7/9Ddt2oSffvoJ7dq1Q9u2baHRaHDixAksWLAAhw4dwuHDhyGXy0sUW//+/XHmzBn07dsXALBx40aMHz8eMTEx+Oqrr3LV/+uvv7Bnzx5069YN77//PpKSkgAAjx8/xoQJE/Dqq6+ia9euqFChAm7cuIF//vkHO3fuxOHDh9GkSROdtiZPnozFixfDyckJvXr1QuXKlXH79m3s3bsXjRo1Qv369QuMffHixZg8eTKcnJzw5ptvwsbGBv/88w8mT56M//77D5s2bco1XiMmJgbNmzdHvXr1MGLECFy/fh1bt25Fu3btcPny5UL7p6j++usvvPHGG1AqlRgwYAAqV66MPXv2YO7cudi9ezcOHjwIS0tLnX0ePXqEFi1awMnJCQMHDkR6ejrs7e3F9/jYsWP48ssv0a5dO4wePRq3bt0CkJ34DBo0CL///jt8fHzw5ptvQqFQICQkBCNHjsSlS5ewaNGiIsU9evRorF69Gt7e3hgzZgzS09OxePFiHDt2LM/6169fR9u2bXHnzh106tQJvXr1Qnx8PDZu3Ijdu3dj3759aNasWaHH1SZps2fPLrSuQqEQfw4NDUVwcDBSU1PRrVs3+Pj4ICYmBr/99ht27tyJ48ePo3r16jr7JyQkoFWrVnBwcMCQIUMQHx+PDRs2IDg4GOHh4eLn7pNPPsHatWtx8+ZNndudOa/+/fPPP+jfvz+kUil69uwJDw8PXLp0CcuXL8fu3bsRGhqKChUqFHpOeRkzZgz8/f0RFBSESpUq4e7du9iyZQuCgoKwadMm9OzZU6d+cfvuyJEjCA4ORkZGBvr16wcvLy8cP34cX3/9NbZv344TJ07kuuKqUqnQvn17pKSkoEePHrCwsBD/zRTnvfj333/RvXt3ODo6omfPnnBzc8ODBw9w9uxZ/PLLLxg9erRe7xnpQSAqJW3bthUACHv37i3Wfnfu3BFUKlWu8jlz5ggAhF9//VWnfOjQoQIAITo6WiyLjo4WAAhDhw7VqdumTRsBgFC7dm0hISFBLE9ISBBq164tSCQSISwsTCxfs2aNAECQSqVCSEhIrpjS09OFO3fu5Cq/cOGCYGtrKwQFBemUb9u2TQAg+Pn5CQ8fPtTZplarhdjYWPH1J598IgAQDhw4IJZFRUUJFhYWQuXKlYVbt27pxNGqVSsBgLBu3bpc7wMAYf78+TrH+/jjjwUAwrx583LFX5gDBw7ken8TExMFBwcHQalUCmfPnhXLs7KyhAEDBggAhLlz5+q0o41t+PDhQmZmZp7HACCsXr06VwyrVq0S983IyBDLVSqV0L17dwGAcOrUqSKfi7+/v5CSkiKW37lzR6hYsWKen6NXXnlFkMlkwq5du3TKIyMjBTs7O8HPz6/Q48bExAgAhKpVqxZaN6eMjAzBy8tLsLOzE06fPq2z7b///hNkMpnQrVs3nXLt+/j+++8LWVlZYvmPP/4oABDeeecdnfrafyd5efjwoWBvby9UqVJFiImJ0dn2+++/CwCEsWPH5jp+mzZtdMry+nwLgiDcuHEj1zHv3bsnuLu7Cz4+Pjrlxe27rKwsoUaNGgKAXH03depUAYAwYsQInfJq1aoJAITg4GAhLS2tRO9Fnz59BABCRERErnN88f8DKl1MfqjU+Pr6CgCEK1euGKS9R48eCQCEYcOG6ZTrk/y8mEAJgiD88ssvuf6z0iY/vXv3Lna83bt3FxQKhc4Xc5cuXQQAwv79+wvdP68vh7lz5woAhAULFuSqf/ToUQGA0L59e7FM+z54e3vrfOnl3NanT59in1teyc+6desEAMJ7772Xq/7NmzcFCwsLoXr16jrlAASFQiE8ePAg32M0bNgwzxgaNGgg2NjY5PpCEgRBOHfunABAmDx5cqHnMnz4cAGAsHHjxlzbPvvss1znefr06Ty/JLUmTZokABDOnz9f4HFPnDghABCaN29eaIw5bdq0Kc9EUqtPnz6CVCoVEhMTxTIAgo2NjZCcnKxTV61WCxYWFrne44KSn8WLF+dKsnNq2LChULFiRZ2y4iQ/+Rk3bpwAQCfJKG7fHT58WAAgdOnSJVf95ORkwcnJSbC0tNT55Uub/ORM6LWK+15ok5/IyMginTOVHt72IpMjCALWrFmDtWvX4sKFC0hMTNS5f3/v3r0SH+PVV1/NtyyvsTpNmzbNt62IiAgsXLgQR44cQWxsLNRqtc72hw8fws3NDQBw8uRJKJVKtGnTRq+4tbG9OGcKALRo0QKWlpaIiIjItS0gIABSqe4QP+2j8QkJCXrFUpzYPD09Ub16dVy9ehXJycmws7MTt3l7exc4sPvF24YAkJaWhvPnz8Pd3R0LFizItV3bB1euXCk0bu24p4I+EzmdOHECABAXF5fnYG/tMa9cuVLoLUx9aI8fGRmZ5/FjY2Oh0Whw9epVNG7cWCyvVasWbG1tdepqb98U5zOgPX5oaCiuX7+ea3t6ejoePnyIhw8fFtiv+blx4wbmzZuH/fv34+7du1CpVDrb7927h2rVqgEoft8V9Bm1tbVF48aNsWfPHkRGRsLPz0/cZmlpqfNaq7jvxcCBA7Fp0yY0b94cb775Jjp06IBXX31Vr/eJSobJD5UaV1dXXLlyBXfv3kXt2rWLvN/48eOxfPlyeHh4oEePHnBzcxPHBM2ZMyfXf4b6yGuMi7Ysr1mS8xsTc+zYMbRv3x4A0KlTJ/j4+MDW1hYSiQRbtmzB2bNndeJNTExElSpVciUiRaUdB5NXPBKJBC4uLrh7926ubfb29rnKLCyy//lnZWXpFUtxYgMANzc3XL16FUlJSTrJT2HjjfLa/uTJEwiCgLt37+oMln9RampqoXEnJiZCKpXm+QWU17EfP34MIHv8xr///qv3sV1dXQEgz/4qiPb4v/32W4H1Xjx+Xp8BIPtzUJzPgPb4K1asKPT4xf1Sj4qKQtOmTZGUlIR27dqhe/fusLe3FwfBHzp0KNe/p+L0XVE+oznraVWuXDnPeY+K+168/vrr2LJlCxYvXoyVK1dixYoVkEgkaNeuHb766itOE/ESMfmhUtOyZUscPHgQ+/btExOEwsTHx2PFihVo0KABjh8/Dmtra3FbbGxsgV90xREXF5dr/py4uDgAyHNuoPwmfPviiy+gUqnw33//oVWrVjrbTpw4ketpKkdHR/E3c30SIO0XWFxcnPjbr5YgCIiLi8v3S6605YwtL7GxsTr1tAqbTC+v7do2GjVqhFOnThU71pwcHByg0Wjw8OFDVKpUSWdbXueiPfayZcswduxYvY9brVo1VKlSBbdv38a1a9fg4+NTpP20x9+2bRu6deum9/H1pT3++fPnDX5la8mSJXjy5Al++eUXDB48WGfbu+++Kz6FpqVv3xnqM6rPe9GzZ0/07NkTycnJOHr0qPiAR+fOnXHlyhU4OjoWqR0qGT7qTqVm2LBhkMlkWLVqFR48eFBgXe1vczdu3IAgCAgKCtJJfADgv//+M1hsebWlLQsMDCxyO9evX4eTk1OuxCctLQ2nT5/OVb9p06ZQqVS5/hMvKm1seT3+HhoaivT0dKP99lhQbLdv38b169dRvXp1nas++rKzs0OdOnVw+fLlEt+28/f3B1DwZyIn7VNcx48fL9FxAWDkyJEAgM8//7zQuhkZGQY/fn5kMhmAvK8KlubxtbeOXnyiSxAEHD16NFf94vZdQZ/R1NRUnDp1ClZWVkW+Ul2S98LOzg6dO3fGqlWrMGzYMMTFxSE0NLTY7ZB+mPxQqalZsyamTZuGhw8fokuXLoiOjs5VR/tYqnbsgvZqxrFjx3TG+dy5cwczZ840WGyfffaZzu2txMREfP7555BIJBg6dGiR26lWrRqePHmCixcvimVZWVmYMmVKngnfmDFjAAAffPCBeMlcKzMzM9/fSLXefPNNWFhYYPHixTpjnzIyMjB9+nQAMNryEj179oSDgwPWrFmj834IgoDp06cjMzPToLGNHz8eaWlpGDVqVJ63mKKjo3XWe8vPkCFDAABz587Vaefu3bv4+uuvc9Vv2rQpmjVrht9//x0bNmzItV2j0RQ5uZ0yZQpq166NdevW4cMPP8zzlm50dDR69eqFS5cuAch+nz09PbF48WIcPnw4V321Wo0jR44U6fj5cXJyApCdtL5o+PDhsLOzw0cffaTTz1ppaWniWJji0v77fzH++fPn5zl/UnH7rmXLlqhRowZ27tyJvXv36mz7/PPP8ejRI7zxxhs60woUpLjvxeHDh/NMKOPj4wEg1zQQVHp424tK1eeff4709HQsWbIEtWvXRvv27VG/fn3I5XJER0dj7969ePTokfibr5ubG/r27YuNGzeicePG6NChA+Li4rB9+3Z06NAhz0GF+qhVqxbq16+vM8/PnTt3MGnSJJ1BooUZN24c9uzZg1atWqF///6wtLTEwYMHcffuXbRt2zbXb5hdu3bFlClTsGjRIvj4+KB3796oXLky7t69i3379mHKlCmYMGFCvserUaMGFixYgMmTJ6NBgwbo378/bGxssG3bNkRGRqJnz565bhe8LPb29vjhhx/wxhtvoFmzZhgwYAAqVaqEvXv3Ijw8HE2bNsXUqVMNdrx33nkHJ06cwM8//4yjR48iKCgI7u7uiIuLw5UrVxAaGor169eLE1Lmp127dhg+fDjWrFkDPz8/9O7dGyqVChs2bEDz5s2xffv2XPv8/vvvaNeuHQYOHIilS5eiYcOGsLKywq1bt3D8+HE8ePAA6enphZ6DnZ0ddu/ejZ49e2LevHlYs2YNOnXqhKpVqyItLQ1nzpzB0aNHYWFhIc5ZpFQq8ffff6NLly5o06YN2rdvDz8/P0gkEty8eRP//fcfnJ2dizTYOz/t27fH33//jb59+6JLly6wtLSEv78/unfvjkqVKuH333/H66+/Dn9/f3Tu3Bm+vr5QqVSIiYnBoUOH8Morr2DXrl3FPu67776LNWvWoG/fvujfvz+cnZ1x4sQJnD59Gq+99lquMVbF7TupVIq1a9ciODgYXbt2xeuvv45q1arh+PHjOHjwIGrUqIH58+cXOd7ivhfjx4/HvXv30KpVK3h5eUEikeDIkSM4efIkmjdvnusKMpUiYz5qRuYjLCxMGDFihFCzZk3ByspKUCqVgpeXl/Dmm2/mmj8nOTlZmDx5suDl5SUolUrBx8dH+Oyzz4SMjIw8H5nV51H3p0+fCtOmTRM8PDwEhUIh1K5dW/jmm28EjUajU1/7qPuaNWvyPbe///5baNiwoWBtbS1UrFhR6N+/v3D9+vU849LauHGj0K5dO3FeHC8vL2HIkCHChQsXxDoFPQq8detWoU2bNoKdnZ2gVCoFPz8/4auvvhLUarVOvfzeB6283s+iyOtRd63Dhw8LXbp0ERwdHQWFQiHUqlVLmDVrls48LEU5vvYYn3zySYGxbNiwQQgKChIqVKggyOVyoUqVKkLbtm2Fr776Ks9H6POSmZkpzJs3T6hevbqgUCiE6tWrC19++aUQFRWV73k+fvxY+Pjjj4X69esLVlZWgq2treDj4yO8+eabwqZNm4p0XK2MjAxh9erVQufOnQUXFxdBLpcLdnZ2QsOGDYUPP/xQZ04nrTt37ggffPCB4OPjIyiVSsHe3l6oU6eO8Pbbbwv79u3TqVvQ+1ytWjWhWrVqOmVqtVqYNm2a4OnpKVhYWOT5Hly5ckUYOXKkUK1aNUGhUAgVKlQQ/Pz8hPHjxwsnT54s9Pj5fb4PHDggtGzZUrCzsxMcHR2Frl27CuHh4fnW16fvzp07J/Tr10+oWLGiIJfLhWrVqgkffPBBnp+XvN6fFxX1vfjjjz+E/v37CzVq1BCsra0FBwcHwd/fX1iwYEGuaQiodEkE4YX5/ImIiIjKMY75ISIiIrPC5IeIiIjMCpMfIiIiMitMfoiIiMisMPkhIiIis8Lkh4iIiMwKJznMg0ajwb1792BnZ1foukNERERkGgRBQHJyMtzd3QtcP5HJTx7u3bsHDw8PY4dBREREerh9+zaqVq2a73YmP3nQLrx4+/Zto62QXVJqtRp79uxBp06dIJfLjR2O2WN/mA72helgX5iO8tIXSUlJ8PDwKHQBZSY/edDe6rK3ty/TyY+1tTXs7e3L9Ae5vGB/mA72helgX5iO8tYXhQ1Z4YBnIiIiMitMfoiIiMisMPkhIiIis8IxP0RERDlkZWVBrVYbO4yXSq1Ww8LCAunp6cjKyjJ2OPmSy+WQyWQlbsekkp/Dhw/jf//7H8LDw3H//n1s3rwZvXr10qlz+fJlTJ8+HYcOHUJmZibq1q2LjRs3wtPTEwCQnp6OyZMn448//oBKpUJwcDC+/fZbuLi4GOGMiIiorBAEAbGxsUhISDB2KC+dIAhwdXXF7du3TX5+O0dHR7i6upYoTpNKflJTU+Hv748RI0agT58+ubZfv34drVq1wsiRIzFnzhzY29vj4sWLsLS0FOtMnDgR//77L/766y84ODhg7Nix6NOnD44ePfoyT4WIiMoYbeJTuXJlWFtbm3wSYEgajQYpKSmwtbUtcHJAYxIEAWlpaYiPjwcAuLm56d2WSSU/Xbp0QZcuXfLd/tFHH6Fr165YuHChWFajRg3x58TERPz0009Yv3492rdvDwBYs2YN6tSpgxMnTqB58+alFzwREZVZWVlZYuLj7Oxs7HBeOo1Gg4yMDFhaWpps8gMAVlZWAID4+HhUrlxZ71tgJpX8FESj0eDff//FtGnTEBwcjDNnzsDb2xszZ84Ub42Fh4dDrVYjKChI3M/X1xeenp44fvx4vsmPSqWCSqUSXyclJQHIvgdaVu/7auMuq/GXN+wP08G+MB2m1BcqlQqCIMDS0hIajcbY4bx0giCIf5v6+VtaWkIQBDx9+hRKpVJnW1E/S2Um+YmPj0dKSgrmz5+Pzz//HAsWLMCuXbvQp08fHDhwAG3atEFsbCwUCgUcHR119nVxcUFsbGy+bc+bNw9z5szJVb5nzx5YW1sb+lReqpCQEGOHQDmwP0wH+8J0mEJfWFhYwNXVFampqSaRjBlLcnKysUMoVEZGBp4+fSqO/c0pLS2tSG2UmeRHm4n27NkTEydOBAAEBATg2LFjWLlyJdq0aaN32zNnzsSkSZPE19rpsTt16lSmZ3gOCQlBx44dy8VsnWUd+8N0sC9Mhyn1RXp6Om7fvg1bW1udcaTmQrsgaFlY0Ds9PR1WVlZo3bp1rr7S3rkpTJlJfipWrAgLCwvUrVtXp7xOnTo4cuQIAMDV1RUZGRlISEjQufoTFxcHV1fXfNtWKpW5Lp0B2Y/UGfsfZEmVh3MoT9gfpoN9YTpMoS+ysrIgkUgglUpNesxLadFeYNC+B6ZMKpVCIpHk+bkp6ufItM8wB4VCgSZNmiAyMlKn/OrVq6hWrRoAoFGjRpDL5di3b5+4PTIyErdu3UKLFi1earxEREQvS2xsLMaNG4fq1atDqVTCw8MD3bt31/k+LKm2bdtiwoQJBmvPmEzqyk9KSgqioqLE19HR0YiIiICTkxM8PT0xdepUDBgwAK1bt0a7du2wa9cubNu2DQcPHgQAODg4YOTIkZg0aRKcnJxgb2+PcePGoUWLFnzSi4iIyqWYmBi0bNkSjo6O+N///gc/Pz+o1Wrs3r0bY8aMwZUrV4wdoukRTMiBAwcEALn+DB06VKzz008/CTVr1hQsLS0Ff39/YcuWLTptPH36VHj//feFChUqCNbW1kLv3r2F+/fvFyuOxMREAYCQmJhoiNMyioyMDGHLli1CRkaGsUMhgf1hStgXpsOU+uLp06fCpUuXhKdPn4plGo1GSFWpjfJHo9EUOfYuXboIVapUEVJSUnJte/LkiSAIgnDz5k2hR48ego2NjWBnZye8/vrrQmxsrFhv9uzZQv369YW1a9cK1apVE+zt7YUBAwYISUlJgiAIwtChQ3N9N0dHRwuCIAjnz58XOnfuLNjY2AiVK1cWBg8eLDx48EBsOz09XRg3bpxQqVIlQalUCi1bthROnjwpbn/8+LHw5ptvChUrVhQsLS2FmjVrCqtXry5WX2kV9fvbpK78tG3bVnzcLj8jRozAiBEj8t1uaWmJFStWYMWKFSWOJy0jE2VzuDMREZXUU3UW6s7ebZRjX5obDGtF4V/Rjx8/xq5du/DFF1/AxsYm13ZHR0doNBr07NkTtra24hNSY8aMwYABA8Q7J0D2FaStW7di+/btePLkCfr374/58+fjiy++wNdff42rV6+ifv36mDt3LgCgUqVKSEhIQPv27fH2229jyZIlePr0KaZPn47+/ftj//79AIBp06Zh48aN+Pnnn1GtWjUsXLgQwcHBiIqKgpOTE2bNmoVLly5h586dqFixIqKiovD06VPDvJH5MKnkh4iIiIouKioKgiDA19c33zr79u3D+fPnER0dDQ8PDwDAunXrUK9ePYSFhaFJkyYAsgc9r1mzBg4ODgCAIUOGYN++ffjiiy/g4OAAhUIBa2trnQeIli9fjsDAQHz55Zdi2erVq+Hh4YGrV6+iSpUq+O6777B27VpxEuMffvgBISEh+OmnnzB16lTcunULgYGBaNy4MQDAy8vLoO9RXpj8GEFaRqb420RRs3siInq5rOQyXJobbLRjF0Vhd0uA7DUxPTw8xMQHAOrWrQtHR0dcvnxZTH48PT1hZ2cn1nFzcxOXksjP2bNnceDAAdja2ubadv36daSnp0OtVqNly5ZiuVwuR9OmTXH58mUAwHvvvYe+ffvi9OnT6NSpE3r16oVXXnml0PMqCX7rEhER5UEikZj8L6c+Pj6QSCQGGdRsYaF7rhKJpNDZnlNSUtC9e3csWLAg1zY3Nzdcv3690ON26dIFN2/exI4dOxASEoIOHTpgzJgxWLRoUfFOoBjKzKPuREREpMvJyQnBwcFYsWIFUlNTc21PSEhAnTp1cPv2bdy+fVssv3TpEhISEnLNnVcQhUKBrKwsnbKGDRvi4sWL8PLyQs2aNXX+2NjYoEaNGlAoFDqLi6vVaoSFhekcu1KlShg6dCh+/fVXLF26FKtWrSrO21BsTH6IiIjKsBUrViArKwtNmzbFxo0bce3aNVy+fBnffPMNWrRogaCgIPj5+WHQoEE4ffo0Tp48ibfeegtt2rQRx9kUhZeXF0JDQxETE4OHDx9Co9FgzJgxePz4Md544w2EhYXh+vXr2L17N4YPH46srCzY2Njgvffew9SpU7Fr1y5cunQJo0aNQlpaGkaOHAkAmD17NrZu3YqoqChcvHgR27dvR506dUrr7QLA5IeIiKhMq169Ok6fPo127dph8uTJqF+/Pjp27Ih9+/bhu+++g0QiwdatW1GhQgW0bt0aQUFBqF69OjZs2FCs40yZMgUymQx169ZFpUqVcOvWLbi7u+Po0aPIyspCp06d4OfnhwkTJsDR0VGcKXr+/Pno27cvhgwZgoYNGyIqKgq7d+9GhQoVAGRfUZo5cyYaNGiA1q1bQyaT4Y8//jD4+5STRCjKaCkzk5SUBAcHB9x/8AiuFZ0M3v7LGPCsVquxY8cOdO3a1ejTxhP7w5SwL0yHKfVFeno6oqOj4e3tbZZre2k0GiQlJcHe3t7kl7coqK+039+JiYkFrs1p2mdIREREZGBMfoiIiMisMPkhIiIis8Lkh4iIiMwKkx8iIqJn+AyQ6TNEHzH5ISIis6d92iwtLc3IkVBhtH1UkicETXvebiIiopdAJpPB0dFRXMvK2toaEonEyFG9PBqNBhkZGUhPTzfZR90FQUBaWhri4+Ph6OgImaxo65/lhckPERERIK5WXthinuWRIAh4+vQprKysTD7pc3R01FlZXh9MfoiIiJC9kKebmxsqV64MtVpt7HBeKrVajcOHD6N169ZGn3CyIHK5vERXfLSY/BAREeUgk8kM8gVblshkMmRmZsLS0tKkkx9DMc0be0RERESlhMkPERERmRUmP0RERGRWmPwQERGRWWHyQ0RERGaFyQ8RERGZFSY/REREZFaY/BAREZFZYfJDREREZoXJDxEREZkVJj9ERERkVpj8EBERkVlh8kNERERmhckPERERmRUmP0RERGRWTCr5OXz4MLp37w53d3dIJBJs2bIl37rvvvsuJBIJli5dqlP++PFjDBo0CPb29nB0dMTIkSORkpJSuoETERFRmWFSyU9qair8/f2xYsWKAutt3rwZJ06cgLu7e65tgwYNwsWLFxESEoLt27fj8OHDGD16dGmFTERERGWMhbEDyKlLly7o0qVLgXXu3r2LcePGYffu3Xjttdd0tl2+fBm7du1CWFgYGjduDABYtmwZunbtikWLFuWZLBEREZF5MankpzAajQZDhgzB1KlTUa9evVzbjx8/DkdHRzHxAYCgoCBIpVKEhoaid+/eebarUqmgUqnE10lJSQAAtVoNtVpt4LMA1OrMHD+roZYIpXAMtc7fZFzsD9PBvjAd7AvTUV76oqjxl6nkZ8GCBbCwsMD48ePz3B4bG4vKlSvrlFlYWMDJyQmxsbH5tjtv3jzMmTMnV/m+fftRwc66ZEHnQZUFaN/63bv3QCkz+CFEISEhpdc4FRv7w3SwL0wH+8J0lPW+SEtLK1K9MpP8hIeH4+uvv8bp06chkUgM2vbMmTMxadIk8XVSUhI8PDzQoUN7uFZ0MuixACAtIxPTTu4HAAQHd4K1wvDdoFarERISgo4dO0Iulxu8fSoe9ofpYF+YDvaF6SgvfaG9c1OYMpP8/Pfff4iPj4enp6dYlpWVhcmTJ2Pp0qWIiYmBq6sr4uPjdfbLzMzE48eP4erqmm/bSqUSSqUyV7lcLi+VD4FceJ68ZR+j9LqhtM6B9MP+MB3sC9PBvjAdZb0vihp7mUl+hgwZgqCgIJ2y4OBgDBkyBMOHDwcAtGjRAgkJCQgPD0ejRo0AAPv374dGo0GzZs1eesxERERkekwq+UlJSUFUVJT4Ojo6GhEREXBycoKnpyecnZ116svlcri6uqJ27doAgDp16qBz584YNWoUVq5cCbVajbFjx2LgwIF80ouIiIgAmNg8P6dOnUJgYCACAwMBAJMmTUJgYCBmz55d5DZ+++03+Pr6okOHDujatStatWqFVatWlVbIREREVMaY1JWftm3bQhCK/th3TExMrjInJyesX7/egFERERFReWJSV36IiIiIShuTHyIiIjIrTH6IiIjIrDD5ISIiIrPC5IeIiIjMCpMfIiIiMitMfoiIiMisMPkhIiIis8Lkh4iIiMwKkx8iIiIyK0x+iIiIyKww+SEiIiKzwuSHiIiIzAqTHyIiIjIrTH6IiIjIrDD5ISIiIrPC5IeIiIjMCpMfIiIiMitMfoiIiMisMPkhIiIis8Lkh4iIiMwKkx8iIiIyK0x+iIiIyKww+SnA3Sdpxg6BiIiIDIzJTwHWHb9p7BCIiIjIwJj8FGD7ufuIT0o3dhhERERkQEx+CqDOEvDjkWhjh0FEREQGxOSnEL+duInENLWxwyAiIiIDYfJTAJ/KNkjNyMLPx2OMHQoREREZCJOfAgx9xQsAsOZoNNIyMo0bDBERERkEk58CtPetjGrO1niSpsbvJ28bOxwiIiIyACY/BbCQSfFO6xoAgB8O34AqM8vIEREREVFJmVTyc/jwYXTv3h3u7u6QSCTYsmWLuE2tVmP69Onw8/ODjY0N3N3d8dZbb+HevXs6bTx+/BiDBg2Cvb09HB0dMXLkSKSkpOgdU99GVVDZTonYpHRsOXNX73aIiIjINJhU8pOamgp/f3+sWLEi17a0tDScPn0as2bNwunTp7Fp0yZERkaiR48eOvUGDRqEixcvIiQkBNu3b8fhw4cxevRovWNSWsgw6tXqAICVh24gSyPo3RYREREZn4WxA8ipS5cu6NKlS57bHBwcEBISolO2fPlyNG3aFLdu3YKnpycuX76MXbt2ISwsDI0bNwYALFu2DF27dsWiRYvg7u6uV1xvNvPE8gNRiH6Yip0X7qNbA/3aISIiIuMzqeSnuBITEyGRSODo6AgAOH78OBwdHcXEBwCCgoIglUoRGhqK3r1759mOSqWCSqUSXyclJQHIvtWmVquhkAJvNffAsgM3sGJ/FDr5VoREItE7brU6M8fPaqglhr+apFardf4m42J/mA72helgX5iO8tIXRY2/zCY/6enpmD59Ot544w3Y29sDAGJjY1G5cmWdehYWFnByckJsbGy+bc2bNw9z5szJVb5v335UsLMGALipAYVUhsuxyVi8fhfqVNA/YVFlAdq3fvfuPVDK9G6qUC9eLSPjYn+YDvaF6WBfmI6y3hdpaUVbkLxMJj9qtRr9+/eHIAj47rvvStzezJkzMWnSJPF1UlISPDw80KFDe7hWdBLLoxSRWH3sJk49dcbkQU31Pl5aRiamndwPAAgO7gRrheG7Qa1WIyQkBB07doRcLjd4+1Q87A/Twb4wHewL01Fe+kJ756YwZS750SY+N2/exP79+8WrPgDg6uqK+Ph4nfqZmZl4/PgxXF1d821TqVRCqVTmKpfL5TofgtFtauKX0Fs4dTMBEXeT0cTLKdc+RSEXnt8yyz5G6XXDi+dAxsX+MB3sC9PBvjAdZb0vihq7ST3tVRht4nPt2jXs3bsXzs7OOttbtGiBhIQEhIeHi2X79++HRqNBs2bNSnx8VwdL9GtUFQDw7YGoErdHRGQIa9asyTU9CACcOnVKfIikX79+4jQiCQkJOvVCQ0Ph7++PWrVqoX379rh7V3daj0WLFmHBggXYv38/mjZtirp166JevXqYNm0aNBqNWG/79u3w9fWFj48P+vTpI/4Wfv78ebRu3Rq+vr6oX78+RowYgadPnwLInp7ktddeQ+3atdGgQQP07dsXDx48yPM8Czt+TtHR0WjUqBECAgJQv359vP7663jy5EmedVesWAE/Pz+x7jfffCNu02g0GDduHGrUqIGaNWti+fLlebYBABKJBH5+fvD394efnx/++usvAMDBgwchkUjwwQcf6NQfOnQoJBIJIiIi8m2TSodJJT8pKSmIiIgQPwjR0dGIiIjArVu3oFar0a9fP5w6dQq//fYbsrKyEBsbi9jYWGRkZAAA6tSpg86dO2PUqFE4efIkjh49irFjx2LgwIF6P+n1onda14BUAhyIfIBL94p2eY2IqLTExMTghx9+QPPmzXNt27x5M3r16gUAePfdd/P8ktVoNBg0aBCWLl2Kq1evomvXrpgwYYJOnS1btqBXr16oUKEC/vjjD1y6dAnh4eE4duwY1q1bByD7/++RI0diy5YtuHbtGtzd3fHZZ58BACwtLbF8+XJcuXIFZ8+eRWpqKhYsWAAAkEql+PDDDxEZGYlz586hevXqmDp1ap7nWtDxX+Tu7o4jR44gIiICFy5cgLu7Oz799NM86w4ePBjnz59HREQEjh07hkWLFuHMmTMAgF9//RWXLl3C1atXcfLkSfzvf//DxYsX82wHAP777z+cPXsWa9aswdChQ/Hw4UMAgI+PD7Zt2yZ+XyUlJeHo0aOoUqVKvm1R6TGp5OfUqVMIDAxEYGAgAGDSpEkIDAzE7NmzcffuXfzzzz+4c+cOAgIC4ObmJv45duyY2MZvv/0GX19fdOjQAV27dkWrVq2watUqg8XoVdEGXf3cAADfHbpusHaJiIpLo9Hg7bffxrJly/K8df/PP/+gZ8+eALKffH3xgRAACA8Ph4WFBdq1awcAeOedd7Bt2zakp6cDAOLi4pCQkIDatWsjMDAQ1atnz3tmaWmJgIAAxMTEAAB27tyJwMBA+Pr6AgDef/99/P777wCyv/gbNGgAAJDJZGjSpIm4n6OjI1q2bCnG06xZM3Hbiwo6/ouUSiWsrKwAAFlZWUhNTc33KV0HBwfx59TUVJ0nhjZs2IBRo0ZBJpPByckJAwYMEM+rII0bN4atra0Yn7W1NTp06ICtW7cCAP744w/07dsXFhZlbvRJuWBSyU/btm0hCEKuP2vXroWXl1ee2wRBQNu2bcU2nJycsH79eiQnJyMxMRGrV6+Gra2tQeN8v21NAMC/5+4h5mGqQdsmIiqqxYsXo2XLlmjUqFGubdeuXYO9vX2B4x0B4NatW6hWrZr42s7ODvb29uLs+Vu3bs01mSyQ/XTt33//jW7duuXZjpeXF+7fv4/MTN1FoVNTU/Hjjz+KSVlOWVlZWL58uc62t99+G//880+hx89LRkYGAgICULFiRVy7dk3nqd6AgACdFQL+/vtv1KtXD15eXpgyZYr4S3he53Xr1q18j6m1d+9eqFQq+Pj4iGXDhw/H6tWrAWTfqhwxYkSh7VDpMKnkp6yo626PdrUrQSMA3x/m1R8ievkuXLiAjRs34uOPP85ze85bXiWxZcuWXHOkJSUloXv37pg2bZrOvGqFycjIwIABA9CpU6dcbQqCgPfffx8VKlTQGRvz448/5kq+inp8hUKBiIgIxMXFwdfXF99//724LSIiQmc4RL9+/XDx4kVERkbi119/RWRkZJHPK6dXX30VAQEB+OKLL7B161adq0qvvPIKbt26hd27d0Mmk6F27dp6HYNKjsmPnt5vl331Z2P4XcQmphs5GiIyN//99x9iYmLg4+MDLy8vnDhxAqNHjxan/9CO0ymMp6cnbt68Kb7WXjV3d3dHcnIyIiMjdRKM5ORkdO7cGT179tSZIuTFdmJiYuDm5ibe1lGr1RgwYADc3Nzw9ddf54pj/PjxuH37NjZs2ACpNP+vpvyOP378eAQEBCAgIADnz5/X2UehUGD48OH45ZdfCn0/vLy80KxZM2zfvj3f8/L09Mx3///++w8RERE4cOCAzl0JrbfeeguDBw/G8OHDC42FSg+THz018XJCUy8nZGRp8ON/N4wdDhGZmffeew/3799HTEwMYmJi0Lx5c6xatUosT0lJ0bnlkp9GjRpBrVbjwIEDAIDvv/8e3bt3h6WlJXbs2IEuXbqIY2VSUlLQuXNndO7cOdcVp86dO+P06dO4cuUKAODbb7/FwIEDAWRPOTJw4EA4OTlh1apVucbeTJw4EVFRUdi8eTMUCkW+sRZ0/G+++UZ8YMbPzw83b94UJ7zTaDT466+/xHFHL7p06ZL484MHD7B//36x7uuvv44ffvgBWVlZePz4MTZs2IABAwYU/KYWYPjw4Zg8eXKJ2qCSY/JTAu+1qwEAWH/yFp6kZhg5GiKibHmN03nttddQtWr2VB316tUTr0pIpVL8+uuv+OCDD1CrVi1s374dS5YsAZD71tnXX3+NkydPYtOmTeJVli+++AJA9lihH3/8Eb169ULNmjVx584dzJo1C0D2oOFNmzaJD7UEBARgzJgxAIDLly9jxYoViImJQbNmzRAQEKBzSyznmJ+Cjv+ic+fOoXnz5mjQoAEaNGiABw8e6DzCnnPMz9dff426desiICAAQUFBmDBhAjp27AgAGDJkiPj4fpMmTTBp0iT4+fkVv1OeqVy5MmbMmGHwsahUPBJBELhM+QuSkpLg4OCA+w8e6czw/CJBEPDaN0dw6X4SPujgg4kdaxWp/bSMTNSdvRsAcGlucKnN8Lxjxw507dq1TE9YVV6wP0yHOfRF586d8fnnnxdrPM6LMjIyUKtWLURFRZXaE0nm0BdlRXnpC+33d2Jios4kyC/ilZ8SkEgkeP/Z1Z+1x2KQqsosZA8iotK3a9euEiU+QPY4mZiYGD6KTeUSk58S6lLfDd4VbZD4VI3fTxb++CMREREZF5OfEpJJJXi3TfakWz/8dwOqzCwjR0REREQFYfJjAL0Dq8LV3hJxSSpsOn238B2IiIjIaJj8GIDCQopRrbOv/qw8dB2ZWXkvtEdEZCjap53q1q0LmUwmvi5Lj1DPnTtXXOvqZRo+fDgaNGiAgIAANGnSBPv27RO3xcfHo3PnzvDx8UH9+vVx+PDhfNs5f/482rZtizp16qBOnTrYtGlTvnVXrFiB+vXro06dOmjYsCHeeOONIs0UTaWDI9kM5I2mHli+/xpuPkrDjgux6OFvmIVUiYjyol2kNCYmBgEBASa3Mrh2tfWCJiz8/PPP8euvv5ZK2wVZsmQJHB0dAQBnzpxBhw4d8PDhQ0ilUsyYMQPNmzfHrl27EBYWht69eyM6OjrXE1BpaWno2bMn1q1bh1atWonzAOXlk08+wZ49e7Br1y5xuoF9+/YhNja2wAkTqfTwyo+BWCssMOwVbwDAtweiwBkEiMgYdu/ejVatWqFRo0Zo2rSpOHnhwYMHUb9+fbz33nto0KAB/Pz8cO7cOQwbNgx+fn5o1qwZ7t7Nvm2/du1atG/fHj169EDdunXRunVrnQVEFy1ahKZNm6Jhw4bo3LmzOAPyp59+ir59+yI4OBj169fH/fv3MWXKFDRp0gQBAQFo3bq1uGzEu+++CwD48MMP0bhxY8THx2PYsGFYunSpeJwpU6aIK7EXp+3CaBMfAEhMTNTZ9ueff4qxNWnSBO7u7jh06FCuNtavX4/mzZujVatWALIXbK1UqVKueqmpqVi4cCF++uknMfEBgA4dOqBp06ZFipcMj8mPAQ19pRpsFDJciU3Ggch4Y4dDRGbmxo0b+PTTT7Fjxw6Eh4dj/fr1ePPNN6FSqQAAV65cwdtvv41z586hV69eaN++PWbMmIHz58+jcePGOonH0aNHsWDBAly6dAndunXD6NGjAWR/6UdGRuL48eM4ffo0Bg0ahPfff1/c7/jx41i3bh0uXbqEKlWqYPr06QgLC0NERATef/99cd2ulStXAgC+/PJLnDp1Ks8V519U1LaB/BdE1ZoxYwZq1KiBPn36YOPGjZBKpXj06BHUarXOYrD5LWR66dIlKJVKdOvWDQEBAXjrrbfw4MGDXPUuXrwIhUKBunXrFnp+9PLwtpcBOVorMKh5Naw6fAPfHriO9r4uxg6JiMzIrl27EBUVhdatW4tlUqlU/PKuWbOmuAJ848aNUbNmTfj6+gIAmjZtis2bN4v7vfLKK6hTpw4AYPTo0fj444+RlZWFLVu2ICwsTGwnK0v3CdeuXbvCxeX5/30hISFYtmwZkpOTodFo8r01VBTFafvHH38ssK358+dj/vz52Lt3L6ZNm4ajR48WK5bMzEzs3bsXJ06cgLu7Oz788EO89957+Pvvv4t3UmQUvPJjYG+38oZCJsWpm09wMlr/f+RERMUlCAI6duwornEVERGBu3fvimt8WVpainVlMlmu15mZhU/UKggCZs6cKbZ//vx5nYVEcy7bcOvWLYwdOxa//vorLly4gD/++APp6fkvBG1hYaGTTL1YtyRt5ycoKAjJyck4f/48nJ2dYWFhgdjYWHF7fguZenp6ol27dqhSpQokEgkGDx6MEydO5KpXt25dZGRk6KwfRsbH5MfAKttbol/j7Pu6Kw5EGTkaIjInwcHB2Lt3L86dOyeWnTx5Uq+2jh8/Li5S+uOPP6Jdu3aQyWTo1asXVq5cKV5lUavVOHPmTJ5tJCYmQi6Xw83NDYIgYPny5Trb7ezsxMVHgewrU9p4Hz16hB07duQbX2Ft50etViMq6vn/zSdPnkR8fDyqV89+Yvf1118Xb8mFhYXh7t27aNOmDQBg5syZ4nH69++PsLAwJCUlAQB27NgBf3//XMeztbXFlClTMGrUKHFMFQAcOHBA776hkuNtr1LwTuvq+OPkLRy6+gAX7iaifhUHY4dERGagZs2aWL9+Pd555x2kpaUhIyMDgYGBWL9+fbHbeuWVVzB9+nRERUXB2dkZ69atAwAMGjQIjx49Qrt27QBk3/4ZMWIEAgMDc7Xh5+eHgQMHol69enB2dtZZJBUAJkyYgE8//RTLly9HSEgIRo8ejX79+qFOnTqoXr06mjdvnm98hbX99ttvo0ePHrkWeFWr1Rg6dCgSExNhYWEBGxsb/P3336hQoQIAYMGCBRgyZAh8fHygUCjw66+/ik96nT17Vrzd5+npiQ8//BCvvPIKpFIpqlSpglWrVuUZ69y5c1GxYkUEBwcjKysLEokEAQEBWLBgQb7nR6WLC5vmoagLmxbkgz/OYGvEPbzm54YVgxrqbOPCpuaH/WE62BeFW7t2LbZs2YItW7aU6nHKUl9kZWWhefPmCA0N1fsRe1NWlvqiIFzY1Mjea5u94OmOC/dx40GKkaMhIqKSkMlkCAsLK5eJjzliL5YSX1d7BNWpDEEAvj90w9jhEBEV2bBhw0r9qg+RMTH5KUXvta0JANh05g7uJz41cjREREQEMPkpVY2qVUAzbyeoswT8cDja2OEQEZXYkSNHsGvXLmOHQVQixRppW9Bsmfnp2LEjrKysir1feTGmXU2ERp/E7ydvYWz7mnCyURg7JCIqJ7y8vKBUKmFlZYWMjAyMGTMGY8aMMUjbK1euRHJyMqZOnSqW7d27F7///ju+/fbbErev0Wgwffp0bNy4EdOmTUOrVq3w3XffQaFQICUlBX379kV4eDgyMzORkJAg7hcdHY1+/fohKysLmZmZqFOnDlatWiU+raWvtm3b4ubNm3BwcIBarUa1atWwZs0anUkVqfwoVvLz4qOEhZFIJLh27Zo4f4I5etWnIupXsceFu0lYezQakzrVNnZIRFSObNiwAQEBAbh58yYaNGiAV199FQ0aNBC367sIqHZ9q5yCgoIQFBRUsoCf+emnn3DmzBl89dVX6NGjB8aMGYOvv/4aU6dOhVwux/Tp0+Hk5IS2bdvq7Ofu7o4jR46Iv1R/8MEH+PTTT/H111+XOKYlS5aI33PvvfceFi1ahP/973/FaiMrKwsymazEsVDpKvZtr9jYWGg0miL9sba2Lo2YyxSJRIIxz8b+rD0WgxRV4TOoEhEVV7Vq1VC7dm1cvXo1z0VA81vw9Nq1a2jZsiX8/f3h5+eHjz/+GED2QqITJkwAkP2FPnXqVNSvXx/169fHuHHjkJGRASB7cPQ777yDDh06oFatWujTp4+4rSBnz55F+/btIZfLIZFI0KVLF/zyyy8AAKVSifbt2+ssQKqlvdKljSs1NRUSiSTPY7Rt2xaTJ09G69at4enpiVmzZmHHjh1o1aoVvLy8sHjx4jz3y8zMREpKing1KTY2Fu3atUOjRo1Qr149jB07Vkwq165di3bt2qFv377w8/PjxIVlRLGSn6FDhxbrFtbgwYMLfM7eXATXc0X1SjZISs/EbyduGjscIiqHzp8/jytXroizDOdcBFSlUuW74Ony5cvRrVs3nD17FufPn8ekSZNytb1q1SqEhYUhPDwcERERuH79OpYsWSJuj4iIwLZt23D58mXExcVh48aNAIBTp06ha9euecbbqFEjbN++HWlpaVCr1fjzzz91Vo4vSEZGBgICAlCxYkVcu3YNc+bMybfuzZs3ceDAAZw9exbffPMNduzYgf/++w9Hjx7F7NmzdW6pTZw4EQEBAXBzc8PZs2fFW4iOjo7Ytm0bwsPDce7cOcTExODPP/8U9wsNDcWXX36J8+fPo0WLFkU6BzKuYiU/a9asgZ2dXZHrf/fdd6hYsWKxgypvpFIJ3m2TPe/Pj0eioVJnFbIHEVHRDBgwAAEBAXjnnXewevVqcR2vnIuA5lzwNCAgAP369RMXPG3dujV++OEHfPTRR9izZ0+eV1v27t2LYcOGQalUwsLCAqNGjUJISIi4vXfv3rC2toZMJkPTpk1x/fp1ANmLp+a3RMWwYcPQqVMnfPTRR+JVIwuLoo3EUCgUiIiIQFxcHHx9ffH999/nW7dfv36QyWSoUKECqlevjm7dukEikaBKlSqoVKmSTsK1ZMkSREREID4+Hr1798aIESMAPB+f5O/vj8DAQJw6dQoRERHifq+88gpq1+aQhrJE76e9RowYgbVr14qvb968iZ07dyIxMdEQcZU7vQKqwN3BEg+SVdgScc/Y4RBRObFhwwZERETg2LFj6Nevn1iecxHQghY87du3L44ePYratWuLV4EK8+JtJn0WSJVIJJg9ezaWLFmCw4cPo27duqhXr15RTlmkUCgwfPhw8XZZXvRZzFUikWDAgAHiU22LFy9GfHw8QkNDce7cObz55ps6i6jmfK+pbNA7+dmxYwd8fX0BAAkJCWjUqBF69eqFunXrIjIy0mABlhcKCylGtc4e+P3TET72TkQvT0ELnl67dg0uLi546623sHDhwjxXJg8KCsK6deuQkZGBzMxM/Pjjj+jUqVOJYkpPT8eTJ08AAA8fPsT8+fMxbdq0Qve7efOmuBiqRqPBX3/9pTPA21D27dsnXs158uQJXF1dYWlpidjYWPz1118GPx69XHovKpWYmIgqVaoAADZu3AhXV1fcvXsXM2fOxMyZM7Fp0yaDBVleDGziiWX7o3DnCSc8JKKXp6AFT//++2/8+uuvUCgU0Gg04ormOY0ePRrXr19Hw4bZ6xS2bdtWHAxdkFOnTmH27Nl53vpKTExEmzZtkJaWBmtra0yYMAHdu3cXtzdo0AAPHjxAUlISqlatinbt2uGXX37BuXPn8NFHHwHITn4aNmyIb775Rs93RtfEiRPx6aefQqPRoEKFCvj5558BZD9R1q9fP9SrVw/u7u4Ge+KNjEfvhU1r1aqFH3/8Ea1bt0bnzp0RFBSEKVOm4OrVq3j11VcRFxdn6FhfGkMsbJqf5fuvYdGeq+JrLmxqHtgfpoN9YTrYF6ajvPRFqS9sOmzYMIwfPx6zZs3Cvn37xLkRNBoNUlK4kGd+hrTwgo2Sc0AQEREZi97Jz8yZM/H666/j8OHDmD9/PmrWzJ7LJiwsDJ6ennq1efjwYXTv3h3u7u6QSCS5FtYTBAGzZ8+Gm5sbrKysEBQUhGvXrunUefz4MQYNGgR7e3s4Ojpi5MiRJpWMOVjJ0b+xh7HDICIiMlt6Jz8SiQQfffQRDh06hMmTJ4vlsbGxePPNN/VqMzU1Ff7+/lixYkWe2xcuXIhvvvkGK1euRGhoKGxsbBAcHKwz6n7QoEG4ePEiQkJCsH37dhw+fBijR4/WK57S0tTbsLfSiIiIqOiKPdhk9uzZ6NmzJxo1apTn9pzrwBRXly5d0KVLlzy3CYKApUuX4uOPP0bPnj0BAOvWrYOLiwu2bNmCgQMH4vLly9i1axfCwsLQuHFjAMCyZcvQtWtXLFq0CO7u7nrHZki1XJ4/FpmRqYE1l/siIiJ6aYqd/Ny5cwddunSBQqFA9+7d0aNHD3To0AEKRel+g0dHRyM2NlZnlL2DgwOaNWuG48ePY+DAgTh+/DgcHR3FxAfIfkRTKpUiNDQUvXv3zrNtlUoFlUolvk5KSgKQPQBMrVYb/FycrZ6P+bl6PwGBniVbkC8v2rhLI34qPvaH6WBfmA72hekoL31R1PiLnfysXr0aGo0GR48exbZt2zBhwgTcv38fHTt2RM+ePdGtWzc4ORn+tk5sbCwA5Fph18XFRdwWGxuLypUr62y3sLCAk5OTWCcv8+bNy3N69H379qOCneHXJ1NlAdq3ftO+E7jvotcDd0WScxZWMj72h+lgX5gO9oXpKOt9oZ0DqjB6PWMtlUrx6quv4tVXX8XChQtx+fJlbNu2Dd9//z1Gjx6Npk2bokePHnjjjTfEuYBM2cyZM3XWs0lKSoKHhwc6dGhv8EfdASAtIxPTTu4HAFi6eKNrV1+DH0OtViMkJAQdO3Ys048tlhfsD9PBvjAd7AvTUV76QnvnpjAGmWCmTp06qFOnDqZNm4b4+Hhs27YN//zzDwBgypQphjgEXF1dAQBxcXFwc3MTy+Pi4hAQECDWiY+P19kvMzMTjx8/FvfPi1KphFKpzFUul8tL5UMgF55PDR/1IK1UP2ildQ6kH/aH6WBfmA72heko631R1NgNvraXUqnEyJEjsXXrVoMlPgDg7e0NV1dX7Nu3TyxLSkpCaGiouIpuixYtkJCQgPDwcLHO/v37odFo0KxZM4PFYkjX4pONHQIREZFZ0fvKz44dO8RHyLVreyUnJ6NixYrYv3+/XivcpqSkICoqSnwdHR2NiIgIODk5wdPTExMmTMDnn38OHx8feHt7Y9asWXB3dxcnWKxTpw46d+6MUaNGYeXKlVCr1Rg7diwGDhxoMk96vSguSYWEtAw48pEvIiKil0LvKz95re2VlJSEAQMGYObMmXq1eerUKQQGBiIwMBAAMGnSJAQGBmL27NkAgGnTpmHcuHEYPXo0mjRpgpSUFOzatUtnld7ffvsNvr6+6NChA7p27YpWrVph1apV+p7mS3Ellld/iIiIXha9r/x4eHggOjoaHh4e+OuvvzBs2DAolUq8++67ePXVV/Vqs23btihoqTGJRIK5c+di7ty5+dZxcnLC+vXr9Tq+sUTGJqN5dWdjh0FERGQW9E5+tGt7de/eHfv27cPy5csBcG0vffDKDxER0cujd/Izc+ZMCIKAPXv2GGxtL3N1JbZoj+YRERFRyemd/GjX9vroo490ykuytpe5uhqbDI1GgFQqKbwyERERlYjeyU9mZiYWLFiA7du3Q6VSwc/PD4MHDy7R2l7mSC6TIDUjC3cTnsLDyfCzSRMREZEuvZ/2mjFjBr799lt06NABvXr1gkqlQrdu3TB8+PACBy2TruqVshc55bgfIiKil0PvKz/r16/HH3/8gdatW4tl0dHR6NatGxYtWlQurgBZKwwyAXaBarnYIjI2GVfuJ6FjXZfCdyAiIqIS0fvKT2pqKqpWrapT5u3tjWXLlpn8vDqmpFZlOwDAlThe+SEiInoZ9E5+WrVqhZ9//jlXube3N+7du1eioMxJLdfs216RvO1FRET0Uuh9X2fBggVo2bIlnjx5gnHjxsHHxwdqtRrLli1D3bp1DRljuVbLJfvKT/TDVKSrs2Aplxk5IiIiovJN7ys/9evXx8GDB3H8+HHUrl0blpaWsLa2xi+//IKlS5caMMTyrbKdEg5WcmRpBETFc3JIIiKi0laiEb2BgYEICwvDlStXcOnSJdjZ2aFZs2awt7c3VHzlnkQiQW1XO5yMfozI2GTUr+Jg7JCIiIjKNYM8zuTr6wtfX19DNGWW6miTHw56JiIiKnUlWtV99OjRqFmzJurUqYP79+8bMi6zUts1+0rZ5ftc5oKIiKi06Z38jBkzBufPn8fChQtx8+ZNPH36FAAwceJEcZFTKprartmDnvnEFxERUenTO/nZuXMnvv32W/Tp0wcy2fMnlIKDg/N8BJ7yp01+4pNVeJKaYeRoiIiIyje9kx9BEGBnZ5er3MfHB9euXStRUObGVmkBDycrAFzmgoiIqLTpnfx06dIFv/32W67y1NRUSCRcnby4artkj/u5EstxP0RERKVJ76e95s2bh8aNGwPIvgokkUiQnp6Ozz77DA0bNjRYgObC19UOey/HcdwPERFRKdM7+fH09MSxY8cwZswYpKWloWnTpkhOToa9vT127NhhyBjNgq/bszW+mPwQERGVKr2Tn1deeQW7du3C7t27cevWLZw9exZyuRzNmjVDhQoVDBmjWfB9Nuj5alwyNBoBUilvHRIREZUGvcf8nDhxAunp6QCyrwJ1794dnTt3hkwmw/Tp0w0WoLnwcraBwkKKtIws3H6SZuxwiIiIyq1iJz/9+vXD/PnzIZFIEB8fn2t7amoqFi1aZJDgzImFTIqalbJXeOetLyIiotJT7Ntenp6e2L59OwRBgL+/P5ydneHv7w9/f38EBAQgMjISbm5upRFruefrZodL95MQGZuM4Hquxg6HiIioXCp28rN48WIAgEKhwNGjR3Hv3j2cOXMGERER2Lx5MzQaDRYuXGjwQM2BdtwPH3cnIiIqPXoPeE5NTYWFhQUkEgl69uxpyJjMlnaNL972IiIiKj16D3iWy+WczNDAtFd+Yh6mIl2dZeRoiIiIyie9r/yEhYVhxowZePDgAWrWrImAgADxj6enpyFjNBuV7ZSoYC3HkzQ1ouJTUL+Kg7FDIiIiKnf0vvIzZMgQyGQyjB49Gt7e3jh06BCGDx8OLy8vODs7GzJGsyGRSMRFTi/f57gfIiKi0qD3lZ/bt2/j33//RY0aNXTKb968iYiIiJLGZbZ8Xe1x4sZjLnNBRERUSvROflq0aIG7d+/mSn6qVauGatWqlTgwc6Ud9xMZx+SHiIioNOh922vixImYO3cuHj9+bMh4zF5tV67xRUREVJr0vvLTvXt3SCQS1KpVCz179kSLFi0QGBgIPz8/KBQKQ8ZoVmq5ZCc/D5JVeJSigrOt0sgRERERlS96X/mJiorC33//jbFjx+Lx48f48ssv0aRJE9jZ2aFBgwaGjFGUlZWFWbNmwdvbG1ZWVqhRowY+++wzCIIg1hEEAbNnz4abmxusrKwQFBSEa9eulUo8pcFGaQFPJ2sA4LgfIiKiUqD3lZ/q1aujevXq6N27t1iWlJSEs2fP4ty5cwYJ7kULFizAd999h59//hn16tXDqVOnMHz4cDg4OGD8+PEAgIULF+Kbb77Bzz//DG9vb8yaNQvBwcG4dOkSLC0tSyUuQ/N1tcOtx2m4EpuMV2pWNHY4RERE5YreyU9e7O3t8eqrr+LVV181ZLOiY8eOoWfPnnjttdcAAF5eXvj9999x8uRJANlXfZYuXYqPP/5YnHV63bp1cHFxwZYtWzBw4MBSicvQfF3tsOdSHJe5ICIiKgV6Jz+ZmZlYsGABtm/fDpVKBT8/PwwePBgdO3Y0ZHw6XnnlFaxatQpXr15FrVq1cPbsWRw5ckRcbyw6OhqxsbEICgoS93FwcECzZs1w/PjxfJMflUoFlUolvk5Kyk461Go11Gq1wc9Drc7M8bMaaomgs71mpezbXlfuJ+l9fO1+pRE/FR/7w3SwL0wH+8J0lJe+KGr8eic/M2bMwO+//47hw4dDoVDg0qVL6NatG958802sXr26VJa+mDFjBpKSkuDr6wuZTIasrCx88cUXGDRoEAAgNjYWAODi4qKzn4uLi7gtL/PmzcOcOXNyle/ZswfW1tYGPINsqixA+9bv3r0HSpnu9rin2duv3E/E9n93QFqCtzIkJET/ncng2B+mg31hOtgXpqOs90VaWlqR6umd/Kxfvx5//PEHWrduLZZFR0ejW7duWLRoEaZOnapv0/n6888/8dtvv2H9+vWoV68eIiIiMGHCBLi7u2Po0KF6tztz5kxMmjRJfJ2UlAQPDw906tQJ9vb2hghdR1pGJqad3A8ACA7uBGuFbjdkZmnw1YX9UGVq4Ne8Lao5Fz8BU6vVCAkJQceOHSGXyw0SN+mP/WE62Bemg31hOspLX2jv3BSmRKu6V61aVafM29sby5YtwzvvvFMqyc/UqVMxY8YM8faVn58fbt68iXnz5mHo0KFwdXUFAMTFxcHNzU3cLy4uDgEBAfm2q1QqoVTmfqRcLpeXyodALjy/lJN9DN1ukMsBHxdbXLibhKiHaajpqv8aX6V1DqQf9ofpYF+YDvaF6SjrfVHU2PV+1L1Vq1b4+eefc5V7e3vj3r17+jZboLS0NEiluiHLZDJoNBrx2K6urti3b5+4PSkpCaGhoWjRokWpxFRaartkX3HiZIdERESGpfeVnwULFqBly5Z48uQJxo0bBx8fH6jVaixbtgx169Y1ZIyi7t2744svvoCnpyfq1auHM2fOYPHixRgxYgSA7IVBJ0yYgM8//xw+Pj7io+7u7u7o1atXqcRUWsRlLpj8EBERGZTeyU/9+vVx8OBBjB49GsuXL4dCoUBWVhYcHR2xZcsWA4b43LJlyzBr1iy8//77iI+Ph7u7O9555x3Mnj1brDNt2jSkpqZi9OjRSEhIQKtWrbBr164yM8ePlq8bkx8iIqLSUOzk59KlS/j9998xefJkBAYGIiwsDJGRkbh48SLs7OzQrFmzUhkkDAB2dnZYunQpli5dmm8diUSCuXPnYu7cuaUSw8uiXeMr+lEqnmZkwUohK2QPIiIiKopiJz/z5s1DSkoKHB0dxbLatWujdu3aSE9PR0xMTKklP+akkq0STjYKPE7NwLX4ZDSo6mjskIiIiMqFYg94PnHihLiUxIssLS0xatQozJs3r8SBmTuJRCKO++GgZyIiIsMpdvJz584d1KxZM9/t7777Lv75558SBUXZanPQMxERkcEVO/lxcnLC/fv3893etGlTREVFlSgoyvb8yg/X+CIiIjKUYic/rVu3xtq1a/NvUCpFenp6SWKiZ2q7Zo+d4pUfIiIiwyl28jNlyhT88MMPWLVqVZ7bjx8/jurVq5c4MAJqudhCIgEepmTgQbKq8B2IiIioUMVOfho1aoRvv/0W77//Pjp27IgtW7bg1q1bePz4MbZu3Yrp06fjzTffLI1YzY61wgLVnLLX9eLVHyIiIsPQa3mLUaNG4eDBg0hMTESfPn3g7e2NSpUqoXfv3vDz88PEiRMNHafZqs1xP0RERAal9wzPrVq1wsmTJ3HlyhWcPn0aaWlpqF+/Ppo3b27I+MxebVd77L4Yxys/REREBqJ38qPl6+sLX19fQ8RCeaijfdw9jskPERGRIRTrtte5c+fEFdSL4uLFi8jMzCx2UPRczrl+sjSCkaMhIiIq+4qV/AQGBuLRo0dFrt+iRQvcunWr2EHRc9WcbWApl0KVqcHNR6lF2ictIxM+s/bgg+MWSMtg8klERJRTsW57CYKAWbNmwdraukj1MzIy9AqKnpNJJfCpbIfzdxMRGZuM6pVsjR0SERFRmVas5Kd169aIjIwscv0WLVrAysqq2EGRLl/X7OTnSmwyuvi5GTscIiKiMq1Yyc/BgwdLKQwqCB93JyIiMhy95vmhl8uXy1wQEREZDJOfMkB75efm4zQOYCYiIiohJj9lQCU7JSraKiAIwNW4FGOHQ0REVKYx+Skjns/3w3E/REREJcHkp4yo7ZI97ucKx/0QERGVCJOfMsLX7flMz0RERKS/Ukl+pFIp2rdvj/Dw8NJo3iz5io+7J0MQuMwFERGRvkol+Vm9ejVat26NMWPGlEbzZsmnsh0kEuBxagYepKiMHQ4REVGZVeJV3fMybNgwAMCnn35aGs2bJSuFDF7ONoh+mIrI2GRUtrM0dkhERERlUomSn4SEBPz000+4fPkyAKBevXoYMWIEHBwcDBIc6fJ1tROTn1d9Khk7HCIiojJJ79tep06dQo0aNbBkyRI8fvwYjx8/xuLFi1GjRg2cPn3akDHSM9rH3S/f56BnIiIifel95WfixIno0aMHfvjhB1hYZDeTmZmJt99+GxMmTMDhw4cNFiRl0w56jozjXD9ERET60jv5OXXqlE7iAwAWFhaYNm0aGjdubJDgSFftZ2t8XYtLQZZGgEwqMXJEREREZY/et73s7e1x69atXOW3b9+GnZ1diYKivHk6WcNKLoMqU4OYR6nGDoeIiKhM0jv5GTBgAEaOHIkNGzbg9u3buH37Nv744w+8/fbbeOONNwwZIz0jk0pQy8UWAHCF436IiIj0ovdtr0WLFkEikeCtt95CZmb2SuNyuRzvvfce5s+fb7AASVdtVzucvZOIyNgkvNbAzdjhEBERlTl6Jz8KhQJff/015s2bh+vXrwMAatSoAWtra4MFR7lpx/1wjS8iIiL9lHiGZ2tra/j5+cHPz++lJD53797F4MGD4ezsDCsrK/j5+eHUqVPidkEQMHv2bLi5ucHKygpBQUG4du1aqcf1stTJscwFERERFV+xrvz06dMHa9euhb29Pfr06VNgXVtbW9SrVw/vvvuuwSY9fPLkCVq2bIl27dph586dqFSpEq5du4YKFSqIdRYuXIhvvvkGP//8M7y9vTFr1iwEBwfj0qVLsLQs+7Mia+f6ufU4DamqTNgoS2WSbiIionKrWN+cDg4OkEgk4s8FUalUWLlyJY4ePYp//vlH/whzWLBgATw8PLBmzRqxzNvbW/xZEAQsXboUH3/8MXr27AkAWLduHVxcXLBlyxYMHDjQIHEYk7OtEhVtlXiYosLVuGQEelYofCciIiISFSv5yZl05Pw5P5cuXUKTJk2KH1U+/vnnHwQHB+P111/HoUOHUKVKFbz//vsYNWoUACA6OhqxsbEICgoS93FwcECzZs1w/PjxfJMflUoFler5YqFJSdmTCKrVaqjVaoPFr6VWZ+b4WQ21pHirtNd2scXDFBUu3U1AfTfbQtrPLJVzoOLR9gH7wvjYF6aDfWE6yktfFDX+Ur1nUrt2bRw7dsxg7d24cQPfffcdJk2ahA8//BBhYWEYP348FAoFhg4ditjYWACAi4uLzn4uLi7itrzMmzcPc+bMyVW+Z8+eUhnHpMoCtG/97t17oJQVb395mhSAFLtDL8A2/lyB7e/fv7/Y7VPpCQkJMXYI9Az7wnSwL0xHWe+LtLS0ItXTO/mZO3dugdtnz54NmUwGf39/fQ+Ri0ajQePGjfHll18CAAIDA3HhwgWsXLkSQ4cO1bvdmTNnYtKkSeLrpKQkeHh4oFOnTrC3ty9x3C9Ky8jEtJP7AQDBwZ1grSheNzw9fRcHN1+EysoZXbvmvrKWs/327dvDwabsj3Uq69RqNUJCQtCxY0fI5XJjh2PW2Bemg31hOspLX2jv3BRG7+Rn8+bNOq/VajWio6NhYWGBGjVqYPbs2fo2nS83NzfUrVtXp6xOnTrYuHEjAMDV1RUAEBcXBze353PgxMXFISAgIN92lUollEplrnK5XF4qHwK58HxZiuxjFK8b6lXJHudzNS4FFhYW4jisvNu3KNMf5PKmtD5TVHzsC9PBvjAdZb0vihq73snPmTNncpUlJSVh2LBh6N27t77NFqhly5aIjIzUKbt69SqqVasGIHvws6urK/bt2ycmO0lJSQgNDcV7771XKjEZg4+LLaQS4EmaGg+SVahszys7RERERVXieX5ysre3x5w5czBr1ixDNiuaOHEiTpw4gS+//BJRUVFYv349Vq1ahTFjxgAAJBIJJkyYgM8//xz//PMPzp8/j7feegvu7u7o1atXqcRkDJZyGbwq2gAALnO+HyIiomIx+IDnxMREJCYmGrpZAECTJk2wefNmzJw5E3PnzoW3tzeWLl2KQYMGiXWmTZuG1NRUjB49GgkJCWjVqhV27dpVLub4ycnX1Q43HqQiMjYJbWpVMnY4REREZYbeyc8333yj81oQBNy/fx+//PILunTpUuLA8tOtWzd069Yt3+0SiQRz584tdEB2WVfbxR47zsdypmciIqJi0jv5WbJkic5rqVSKSpUqYejQoZg5c2aJA6OC+bplz/QcyeSHiIioWPROfqKjow0ZBxWT77NlLq7FpyAzSwMLmUGHbxEREZVb/MYsozwqWMNaIUNGpgYxj1KNHQ4REVGZUawrPzknAizM4sWLix0MFZ1UKoGPix3O3k7Aldhk1KxsZ+yQiIiIyoRiJT95ze2Tlxcn3aPSUcf1WfJzPxndGhg7GiIiorKhWMnPgQMHcOPGDXh5eUEq5R0zY6v9bNwPn/giIiIqumJnMD4+Pnj48KH4esCAAYiLizNoUFQ02uQnMq5oa5kQERGRHsmPIAg6r3fs2IHUVA64NQZf1+xFV28/fooUVaaRoyEiIiobeO+qDHOyUaCyXfaCrJzvh4iIqGiKnfxIJJJcA5o5wNl4xFtfTH6IiIiKpNiTHAqCgGHDhkGpzL7ikJ6ejnfffRc2NjY69TZt2mSYCKlAvq52+O/aQ0TGctwPERFRURQ7+Rk6dKjO68GDBxssGCo+7bgfPvFFRERUNMVOftasWVMacZCecj7uLggCb0ESEREVggOey7ialW0hk0qQ+FSNuCSVscMhIiIyeUx+yjhLuQxeztYAgCsc90NERFQoJj/lgK8bx/0QEREVFZOfcsDXhY+7ExERFRWTn3KAa3wREREVHZOfckD7uPv1+BSoszRGjoaIiMi0MfkpB6pWsIKNQoaMLA2iH3KdNSIiooIUe54fKjlrhQVi5r9msPakUglqudrhzK0EXIlNRtUKVgZrm4iIqLzhlZ9ywldc44uPuxMRERWEyU85oR33wye+iIiICsbkp5zQPvF1+T6THyIiooIw+SkntLe97iY8RUp6ppGjISIiMl1MfsoJR2sFXOyVAIBr8bz6Q0RElB8mP+WIdtzP1bgUI0dCRERkupj8lCPaW19X43jlh4iIKD9MfsqR2mLywys/RERE+WHyU45ok59rvPJDRESULyY/5UjNyraQSSVI4tNeRERE+WLyU44oLWSoXtHG2GEQERGZtDKd/MyfPx8SiQQTJkwQy9LT0zFmzBg4OzvD1tYWffv2RVxcnPGCfMm0t76IiIgob2U2+QkLC8P333+PBg0a6JRPnDgR27Ztw19//YVDhw7h3r176NOnj5GifPl8mfwQEREVqEwmPykpKRg0aBB++OEHVKhQQSxPTEzETz/9hMWLF6N9+/Zo1KgR1qxZg2PHjuHEiRNGjPjl0c71Q0RERHmzMHYA+hgzZgxee+01BAUF4fPPPxfLw8PDoVarERQUJJb5+vrC09MTx48fR/PmzfNsT6VSQaVSia+TkrJXRler1VCr1aV0FqWjRkUrnddqdWaZO4fySNsH7AvjY1+YDvaF6SgvfVHU+Mtc8vPHH3/g9OnTCAsLy7UtNjYWCoUCjo6OOuUuLi6IjY3Nt8158+Zhzpw5ucr37NkDa2vrEsf8MgkCoJTKoNJIAAD79++HUmbkoEgUEhJi7BDoGfaF6WBfmI6y3hdpaWlFqlemkp/bt2/jgw8+QEhICCwtLQ3W7syZMzFp0iTxdVJSEjw8PNCpUyfY25e920hr74Qi4k4iAKB9+/ZwsDHce0X6UavVCAkJQceOHSGXy40djlljX5gO9oXpKC99ob1zU5gylfyEh4cjPj4eDRs2FMuysrJw+PBhLF++HLt370ZGRgYSEhJ0rv7ExcXB1dU133aVSiWUSmWucrlcXiY/BLVc7cTkRy63KJPnUF6V1c9UecS+MB3sC9NR1vuiqLGXqeSnQ4cOOH/+vE7Z8OHD4evri+nTp8PDwwNyuRz79u1D3759AQCRkZG4desWWrRoYYyQjaKWC5/4IiIiyk+ZSn7s7OxQv359nTIbGxs4OzuL5SNHjsSkSZPg5OQEe3t7jBs3Di1atMh3sHN5VMvF1tghEBERmawylfwUxZIlSyCVStG3b1+oVCoEBwfj22+/NXZYL5VPjis/SelqONhYFVCbiIjIvJT55OfgwYM6ry0tLbFixQqsWLHCOAGZAAer5/c8o+JT4eFc9gZtExERlZYyOckhFd2JG4+NHQIREZFJYfJTzq07cRvxyenGDoOIiMhkMPkp556qs7Ak5JqxwyAiIjIZTH7MwIawW7gal2zsMIiIiEwCk59yroNvJWgEYN6Oy8YOhYiIyCQw+SnnPmhfAxZSCQ5EPsCRaw+NHQ4REZHRMfkp56o5W2Nw82oAgC92XEaWRjByRERERMbF5McMjO/gAztLC1y+n4RNp+8YOxwiIiKjYvJjBpxsFBjXviYAYNGeSDzNyDJyRERERMbD5MdMvNXCC1UrWCEuSYUf/7th7HCIiIiMhsmPmbCUyzCtsy8A4LtD1znxIRERmS0mP2akewM3+Hs4Ii0jC0v3cuJDIiIyT0x+zIhEIsFHXesAAP44yYkPiYjIPDH5MTNNvZ0QXM+FEx8SEZHZYvJjhmZ0qcOJD4mIyGwx+TFD3hVtOPEhERGZLSY/ZirnxIebz9w1djhEREQvDZMfM+Vko8DYds8mPtzNiQ+JiMh8MPkxY0Nf8UIVRyvEJqVz4kMiIjIbTH7MWPbEh7UBcOJDIiIyH0x+zFwPf3e9Jj5My8iE14x/4TXjX6RlZJZihERERIbF5MfMvTjx4TVOfEhEROUckx/Snfhw5xVjh0NERFSqmPwQAGB6Z19YSCXYfyUeR6M48SEREZVfTH4IAFC9ku3ziQ//5cSHRERUfjH5IZF24sNLnPiQiIjKMSY/JOLEh0REZA6Y/JCOnBMf/nSEEx8SEVH5w+SHdOhMfHjwOh4kq4wcERERkWEx+aFcujdwh39VB6RmZGHJ3qvGDoeIiMigmPxQLlKpBB+9VhcAJz4kIqLyh8kP5YkTHxIRUXlV5pKfefPmoUmTJrCzs0PlypXRq1cvREZG6tRJT0/HmDFj4OzsDFtbW/Tt2xdxcXFGirjs4sSHRERUHpW55OfQoUMYM2YMTpw4gZCQEKjVanTq1AmpqalinYkTJ2Lbtm3466+/cOjQIdy7dw99+vQxYtRl04sTH2o48SEREZUDFsYOoLh27dql83rt2rWoXLkywsPD0bp1ayQmJuKnn37C+vXr0b59ewDAmjVrUKdOHZw4cQLNmzc3Rthl1vgOPtgYfkec+LBvo6rGDomIiKhEylzy86LExEQAgJOTEwAgPDwcarUaQUFBYh1fX194enri+PHjeSY/KpUKKtXzR7qTkpIAAGq1Gmq1ujTDLxVqdabOzyU5BzuFBO+28cb/9lzDwt1X0NG3IqwUsheOoYZawqtCBdH2QVn8PJU37AvTwb4wHeWlL4oaf5lOfjQaDSZMmICWLVuifv36AIDY2FgoFAo4Ojrq1HVxcUFsbGye7cybNw9z5szJVb5nzx5YW1sbPO7SpsoCtF27f/9+KGUla89FAzgpZYhLUmHm2j3oVFXQOcbu3XtKfIy8qLKAaSezj7GwaWapHONlCwkJMXYI9Az7wnSwL0xHWe+LtLS0ItUr08nPmDFjcOHCBRw5cqRE7cycOROTJk0SXyclJcHDwwOdOnWCvb19ScN86dIyMjHt5H4AQPv27eFgY1niNqWe9zHpr/M4GKfAx2+2grVCJh4jOLgTrBWG/yjlPI/SOsbLolarERISgo4dO0Iulxs7HLPGvjAd7AvTUV76QnvnpjBl9ttk7Nix2L59Ow4fPoyqVZ+PQ3F1dUVGRgYSEhJ0rv7ExcXB1dU1z7aUSiWUSmWucrlcXiY/BHJB8vxnuYVBzqFXoAd+Pn4LZ+8kYvnBaHz0Wp0cx5BDLjf8R0n3PErnGC9bWf1MlUfsC9PBvjAdZb0vihp7mXvaSxAEjB07Fps3b8b+/fvh7e2ts71Ro0aQy+XYt2+fWBYZGYlbt26hRYsWLzvcckMqleDDrtkJzx9htxEVn2LkiIiIiPRT5n6VHjNmDNavX4+tW7fCzs5OHMfj4OAAKysrODg4YOTIkZg0aRKcnJxgb2+PcePGoUWLFnzSq4SaVXdGp7ou2HMpDov3cNkLIiIqm8pc8vPdd98BANq2batTvmbNGgwbNgwAsGTJEkilUvTt2xcqlQrBwcH49ttvX3Kk5dOMLr7YfyUeB68+MHYoREREeilzyY8gFP5ItaWlJVasWIEVK1a8hIjMi3biw7XHYowdChERkV7K3JgfMr7xHXxgqyxzeTMREREAJj+kBycbBd5pXV18vfdyHNRZGiNGREREVHRMfkgvg5t7ij+P/z0CLebtw+fbL+FqXLIRoyIiIioc712QXpTy59MtO9sq8DAlAz8eicaPR6Lh7+GI1xtVRXd/dzhYld35Iui5tIxM1J29GwBwaW5wmZ5wkoiI/4NRie2f3AZh0U/w56nb2H8lHmdvJ+Ds7QR8tv0SutR3xeuNPdCiujOkUknhjREREZUyJj9UYnKZFEF1XRBU1wUPU1TYcuYu/jx1G1fjUrAl4h62RNxDFUcrvN64Kvo2rAoPp7K3XhoREZUfTH7IoCraKvH2q9UxspU3zt1JxJ+nbuOfiHu4m/AUS/dew9K919CypjP6N/ZAcD1XWMrLwWqlRC8Rb0GaFvZH2cReolIhkUjg7+EIfw9HzOpWF7svxuLPU7dxNOqR+MfO0gI9/N3Rv7EHGlR1gETC22JERFT6mPxQqbOUy9AzoAp6BlTB7cdp2Hj6Dv46dQd3E57it9Bb+C30Fmq52KJ/Yw/0CqyCira5F5klIiIqSFpGJup/srtIdZn80Evl4WSNCUG1ML69D47feIS/Tt3GzguxuBqXgs//vYz5O6+gvW9l9G/sgabeFYwdLhERlUNMfsgopFIJWtasiJY1K2LOUzW2n7uHP0/dwdnbCdhzKQ57LsWhoq1CrH/65hM4WitgKZdCaSGDUi6FpVwGSwsZ5DIJb5kREVGRMfkho3OwkmNQs2oY1KwarsYl469Tt7Hp9F08TMkQ6wz+6WS++0sl2bfWspMhKZRyGZQWz5KjHEmS+POz7UrtdguZbt1nZcpniZbutuxjWMg4PygRUVnF5IdMSi0XO3z0Wl1M6+yLnRfuY/zvEQAATydrZGRqkJ6ZBZU6+2/tGrcaAUjLyEJaRtZLi9NCKhGTKEv5sytRLyRYOZMouVSCu7ekuL7/Oqwt5bC00K334tWsF9tRWsgg4zxJREQGweSHTJJcJkVQHRfx9a4Jr+o8QioIAjKyNEhXa6BSZyH9WUKUrv1ZnQVVpubZ6yykZ2rrPd/+PJF6Xk9VQDuqzOfrl2VqBKSoMpGiKs5ZSbHv3vUSvCeSZ8lU7qtUhSdRz8ueX9HKnajptGMh5cSUVC4IggBBALIEAVmaF3/O/jtLW0eTT52c+4r1BaSqnv/Sdf5uImyVFlDIsq8Oy2USyGVSyGVSWMgk2eVSCWRS3qo3NiY/VCZJJJJnX9Ay4CUtoaHRaBMu3QRKTMAKSKLSVGpcuXYdblU9kZGFZ4lXHu1k5ki61Bpk5FgwVp0lQJ2ViWRV5ks5XwBQWEjFW4la3ZcdgYVUCokkux+kEkAiAaSS7P/QJci+FZn9GjnKJJBKAQkkOvtKn23P3Za27Hmbkmfl0hxt5hWH9NkXi1Ssn/0zJAA0Aq7fkuLK3muQy2TAC3FoEz7pC23qlmX/nWvffOKRvLBdPJcivi/PzwtQZT7/sj1z6wnkMhk0ggDNsy9kjZD9Wc3SCNnlgoAsDXL8nKPOs7Ln9aFbR8jRTp7tv1Anz/bziie7PDNLg/gHUqyPDYMgSHTjEQRoNC+2j/zjeVamUyfHsV6GAd+fKFI9iQSQS7OTI4tnyVH2z8+SJakUcgsJLKTSZ4mURKwjz5lY5axnkZ1YvVhP8cIx5LKc9Z63LRGycDcViIpPgbWl4oVjZO+jkJWfX4iY/BAVkVQqgaVUptfEjGq1GjvU19C1a13I5UVP1rI0gk5CpHtFS5M7iRKvcukmX6ocCVZe7eQ8RmaOb4qMTA0yMjVA+vOE6/qD1GKfv+mRYu/daGMHUWKDfsx/LFzZIQWSnhg7CEgkgOxZ4iyV5vw5+0qNNiHN/vl5HQCIeZQGAHB3tERmloBMjQB1pgZqjQbqrOwELCdBADKyNMi+U//ybtcXzgILzx0rsIZUAjFx0iZvORM0C6nkhUQsj+RNKoXiWdKmm6zlk7w9S8Dk0uf18rq6lqnRFBi77pkSkcmSSSWwVljAWlF4XUPJzHp+K1CbICWkZaDvd8cBAGuGNYbSQib+1i/g2d/PbhtohOzbDNq/n29//reA7N/q89pX26aQYx+xLe2+OdsSt+vuq8kZD579rBGQpdHgxo1oVPPygkQiEbfnPIbmhXMp6BzyjTdXmTbeAs4hx/uiew7aYwCZGg1uP34KAPBwsoJcmv3beO4vZwlk2itGUkn2l7n0hToSCWTSF+pIkONn7Zc/ctTPp07OffONR3dfQZOFc+fOolFgIORyiwLaf5aMSF+IIUf7shfPLd/zwQvn//xqnj5yzvC8d1KbPGd41mgEqDUaZGYJUGdpnl3FzX6dkaVBpkYDdWZ2HXWmJjt5elYvMyv7CrC477PEKlPzvB2dtl48hkaDjEzhWX3dY4v7agRkZGqQmvYUUgtF9utn27RjK8VzEQBVpkZnGEBZxOSHiHRYyKSwlUlhq3z+30NaxvMrP82qO5fpKfzVajV27LiOrl19i3UVzlTk/LLdPaF1me8L+b0IdPVzLZN9UVRSqQRKqQxKE+6q7H8XO9C1azudvsjS6CZYLyZg+SVWGS8kWOosQSdhy07qspO7PJOynMcosF524pgdiwYJRRyHacJdQURERMYkk0og0/N2/8uWlpEJ3+mbi1SXk5UQERGRWWHyQ0RERGaFyQ8RERGZFSY/REREZFaY/BAREZFZ4dNeREREerJWWCBm/mvGDoOKickPEVEZwi9bopLjbS8iIiIq86wVFrgwJ7hIdXnlh4gKxasNRFSeMPkhvfDLkIiIyire9iIiIiKzwis/ZLJ4dYmIiEoDr/wQERGRWSm3yc+KFSvg5eUFS0tLNGvWDCdPnjR2SERERGQCymXys2HDBkyaNAmffPIJTp8+DX9/fwQHByM+Pt7YoREREZGRlcvkZ/HixRg1ahSGDx+OunXrYuXKlbC2tsbq1auNHdpLYa2wwLXPOuHrFpmwVnBYFxERUU7l7psxIyMD4eHhmDlzplgmlUoRFBSE48eP57mPSqWCSqUSXyclJQEA1Go11Gp16QZcSrRxl9X4yxv2h+lgX5gO9oXpKC99UdT4y13y8/DhQ2RlZcHFxUWn3MXFBVeuXMlzn3nz5mHOnDm5yvfs2QNra+tSifNlCQkJMXYIlAP7w3SwL0wH+8J0lPW+SEtLK1K9cpf86GPmzJmYNGmS+DopKQkeHh7o1KkT7O3tjRiZ/tRqNUJCQtCxY0fI5XJjh2P22B+mg31hOtgXpqO89IX2zk1hyl3yU7FiRchkMsTFxemUx8XFwdXVNc99lEollEplrnK5XF6mPwRA+TiH8oT9YTrYF6aDfWE6ynpfFDX2cjfgWaFQoFGjRti3b59YptFosG/fPrRo0cKIkREREZEpKHdXfgBg0qRJGDp0KBo3boymTZti6dKlSE1NxfDhw40dGhERERlZuUx+BgwYgAcPHmD27NmIjY1FQEAAdu3alWsQNBEREZmfcpn8AMDYsWMxduxYY4dBREREJqbcjfkhIiIiKgiTHyIiIjIrTH6IiIjIrDD5ISIiIrPC5IeIiIjMCpMfIiIiMivl9lH3khAEAUDR1wgxRWq1GmlpaUhKSirTU5WXF+wP08G+MB3sC9NRXvpC+72t/R7PD5OfPCQnJwMAPDw8jBwJERERFVdycjIcHBzy3S4RCkuPzJBGo8G9e/dgZ2cHiURi7HD0ol2Z/vbt22V2ZfryhP1hOtgXpoN9YTrKS18IgoDk5GS4u7tDKs1/ZA+v/ORBKpWiatWqxg7DIOzt7cv0B7m8YX+YDvaF6WBfmI7y0BcFXfHR4oBnIiIiMitMfoiIiMisMPkpp5RKJT755BMolUpjh0Jgf5gS9oXpYF+YDnPrCw54JiIiIrPCKz9ERERkVpj8EBERkVlh8kNERERmhckPERERmRUmP0RERGRWmPyUI/Pnz4dEIsGECRPEsvT0dIwZMwbOzs6wtbVF3759ERcXZ7wgy7m7d+9i8ODBcHZ2hpWVFfz8/HDq1ClxuyAImD17Ntzc3GBlZYWgoCBcu3bNiBGXT1lZWZg1axa8vb1hZWWFGjVq4LPPPtNZ7JB9UToOHz6M7t27w93dHRKJBFu2bNHZXpT3/fHjxxg0aBDs7e3h6OiIkSNHIiUl5SWeRflRUH+o1WpMnz4dfn5+sLGxgbu7O9566y3cu3dPp43y2B9MfsqJsLAwfP/992jQoIFO+cSJE7Ft2zb89ddfOHToEO7du4c+ffoYKcry7cmTJ2jZsiXkcjl27tyJS5cu4auvvkKFChXEOgsXLsQ333yDlStXIjQ0FDY2NggODkZ6eroRIy9/FixYgO+++w7Lly/H5cuXsWDBAixcuBDLli0T67AvSkdqair8/f2xYsWKPLcX5X0fNGgQLl68iJCQEGzfvh2HDx/G6NGjX9YplCsF9UdaWhpOnz6NWbNm4fTp09i0aRMiIyPRo0cPnXrlsj8EKvOSk5MFHx8fISQkRGjTpo3wwQcfCIIgCAkJCYJcLhf++usvse7ly5cFAMLx48eNFG35NX36dKFVq1b5btdoNIKrq6vwv//9TyxLSEgQlEql8Pvvv7+MEM3Ga6+9JowYMUKnrE+fPsKgQYMEQWBfvCwAhM2bN4uvi/K+X7p0SQAghIWFiXV27twpSCQS4e7duy8t9vLoxf7Iy8mTJwUAws2bNwVBKL/9wSs/5cCYMWPw2muvISgoSKc8PDwcarVap9zX1xeenp44fvz4yw6z3Pvnn3/QuHFjvP7666hcuTICAwPxww8/iNujo6MRGxur0x8ODg5o1qwZ+8PAXnnlFezbtw9Xr14FAJw9exZHjhxBly5dALAvjKUo7/vx48fh6OiIxo0bi3WCgoIglUoRGhr60mM2N4mJiZBIJHB0dARQfvuDq7qXcX/88QdOnz6NsLCwXNtiY2OhUCjED7GWi4sLYmNjX1KE5uPGjRv47rvvMGnSJHz44YcICwvD+PHjoVAoMHToUPE9d3Fx0dmP/WF4M2bMQFJSEnx9fSGTyZCVlYUvvvgCgwYNAgD2hZEU5X2PjY1F5cqVdbZbWFjAycmJfVPK0tPTMX36dLzxxhviyu7ltT+Y/JRht2/fxgcffICQkBBYWloaOxyzp9Fo0LhxY3z55ZcAgMDAQFy4cAErV67E0KFDjRydefnzzz/x22+/Yf369ahXrx4iIiIwYcIEuLu7sy+I8qBWq9G/f38IgoDvvvvO2OGUOt72KsPCw8MRHx+Phg0bwsLCAhYWFjh06BC++eYbWFhYwMXFBRkZGUhISNDZLy4uDq6ursYJuhxzc3ND3bp1dcrq1KmDW7duAYD4nr/4tB37w/CmTp2KGTNmYODAgfDz88OQIUMwceJEzJs3DwD7wliK8r67uroiPj5eZ3tmZiYeP37Mvikl2sTn5s2bCAkJEa/6AOW3P5j8lGEdOnTA+fPnERERIf5p3LgxBg0aJP4sl8uxb98+cZ/IyEjcunULLVq0MGLk5VPLli0RGRmpU3b16lVUq1YNAODt7Q1XV1ed/khKSkJoaCj7w8DS0tIgler+9yaTyaDRaACwL4ylKO97ixYtkJCQgPDwcLHO/v37odFo0KxZs5cec3mnTXyuXbuGvXv3wtnZWWd7ue0PY4+4JsPK+bSXIAjCu+++K3h6egr79+8XTp06JbRo0UJo0aKF8QIsx06ePClYWFgIX3zxhXDt2jXht99+E6ytrYVff/1VrDN//nzB0dFR2Lp1q3Du3DmhZ8+egre3t/D06VMjRl7+DB06VKhSpYqwfft2ITo6Wti0aZNQsWJFYdq0aWId9kXpSE5OFs6cOSOcOXNGACAsXrxYOHPmjPj0UFHe986dOwuBgYFCaGiocOTIEcHHx0d44403jHVKZVpB/ZGRkSH06NFDqFq1qhARESHcv39f/KNSqcQ2ymN/MPkpZ15Mfp4+fSq8//77QoUKFQRra2uhd+/ewv37940XYDm3bds2oX79+oJSqRR8fX2FVatW6WzXaDTCrFmzBBcXF0GpVAodOnQQIiMjjRRt+ZWUlCR88MEHgqenp2BpaSlUr15d+Oijj3T+Q2dflI4DBw4IAHL9GTp0qCAIRXvfHz16JLzxxhuCra2tYG9vLwwfPlxITk42wtmUfQX1R3R0dJ7bAAgHDhwQ2yiP/SERhBxTnhIRERGVcxzzQ0RERGaFyQ8RERGZFSY/REREZFaY/BAREZFZYfJDREREZoXJDxEREZkVJj9ERERkVpj8EBERkVlh8kNEemvbti0mTJhQZo9bWDv6HKdt27aQSCSQSCSIiIgoUXxFMWzYMPF4W7ZsKfXjEZUHTH6IKE/aL9T8/nz66afGDtFkjRo1Cvfv30f9+vVL1E69evXwySef5Llt3rx5cHZ2xpw5c3D//v0SHYfI3FgYOwAiMk05v1A3bNiA2bNn66xab2tri4MHDxa73YyMDCgUCkOEaLKsra3h6upa4nb8/Pxw4cKFXOX379/Hl19+ifnz56NatWolPg6RueGVHyLKk6urq/jHwcEBEolEp8zW1hYAoNFoMG3aNDg5OcHV1TXXFaG2bdti7NixmDBhAipWrIjg4GBoNBrMmzcP3t7esLKygr+/P/7++2+d/f7++2/4+fnBysoKzs7OCAoKQmpqqri9sOOqVCqMHz8elStXhqWlJVq1aoWwsLB8zzc1NRVvvfUWbG1t4ebmhq+++qpkb2AOMTExkEgk2LhxI1q3bg0rKys0adIEt27dwn///YfmzZvD2toaHTp0QEJCgrhfgwYN8kx+PvzwQ3h7e+Pdd981WIxE5oTJDxGVyM8//wwbGxuEhoZi4cKFmDt3LkJCQnLVUSgUOHr0KFauXIl58+Zh3bp1WLlyJS5evIiJEydi8ODBOHToEIDsKxtvvPEGRowYgcuXL+PgwYPo06cPcq7DXNhxp02bho0bN+Lnn3/G6dOnUbNmTQQHB+Px48d5nsfUqVNx6NAhbN26FXv27MHBgwdx+vRpg7xHZ8+eBQB89913+PLLL3Hs2DHExcVh8ODBmD9/PpYvX44DBw7g7NmzWLNmjbifn58frl+/jvT0dLEsPDwc69atwzfffAOZTGaQ+IjMjpFXlSeiMmDNmjWCg4NDrvI2bdoIrVq10ilr0qSJMH36dJ06gYGB4uv09HTB2tpaOHbsmM5+I0eOFN544w1BEAQhPDxcACDExMTkGU9hx01JSRHkcrnw22+/idszMjIEd3d3YeHChTrtfPDBB0JycrKgUCiEP//8U9z26NEjwcrKSvjggw/yjCE/2jZz+vTTTwUnJyfh4cOHYtngwYMFLy8vITU1VSzr3LmzMG3aNPF1TEyMAEA4c+aMWNaqVSvh9ddfz3VcAMLmzZuLFSuRueKYHyIqkQYNGui8dnNzQ3x8vE5Zo0aNxJ+joqKQlpaGjh076tTJyMhAYGAgAMDf3x8dOnSAn58fgoOD0alTJ/Tr1w8VKlQo0nGvX78OtVqNli1bitvlcjmaNm2Ky5cv5zqH69evIyMjA82aNRPLnJycULt27SK9B4U5e/YsevfuDWdnZ7Hs1q1bGDBgAKytrXXKevbsKb6uVq0aHBwccOHCBQQEBGDDhg0IDw/HlStXDBIXkbnibS8iKhG5XK7zWiKRQKPR6JTZ2NiIP6ekpAAA/v33X0RERIh/Ll26JI77kclkCAkJwc6dO1G3bl0sW7YMtWvXRnR0dLGOayoiIiJ0EisgOyFq3ry5+Do9PR2RkZHw9/fXqVe/fn1cuHAB6enpmD59OqZPnw5PT8+XEjdRecXkh4heqrp160KpVOLWrVuoWbOmzh8PDw+xnkQiQcuWLTFnzhycOXMGCoUCmzdvLtIxatSoIY4x0lKr1QgLC0PdunXzrC+XyxEaGiqWPXnyBFevXi3BmWZLSkpCTEyMeFULAKKjo5GYmKhTdv78eQiCAD8/P539tYOeFy1aBCB7LBMRlQxvexHRS2VnZ4cpU6Zg4sSJ0Gg0aNWqFRITE3H06FHY29tj6NChCA0Nxb59+9CpUydUrlwZoaGhePDgAerUqVOkY9jY2OC9997D1KlT4eTkBE9PTyxcuBBpaWkYOXJkrvq2trYYOXIkpk6dCmdnZ1SuXBkfffQRpNKS/3549uxZyGQynTl/IiIi4OTkpPOYekREBGrUqCE+Rafl5+eHv//+GwcPHsTatWthZWVV4piIzB2THyJ66T777DNUqlQJ8+bNw40bN+Do6IiGDRviww8/BADY29vj8OHDWLp0KZKSklCtWjV89dVX6NKlS5GPMX/+fGg0GgwZMgTJyclo3Lgxdu/erTNuKKf//e9/SElJQffu3WFnZ4fJkycjMTFRp87atWsxfPhwnafOCnP27FnUrl0blpaWOmU5r/poy1685QVkX/l58OAB2rVrh379+hX5uESUP4lQnH/FRERm7JNPPsGhQ4cKnNyxbdu2CAgIwNKlS19aXED2bcLNmzejV69eL/W4RGURx/wQERXRzp07sXDhwkLrffvtt7C1tcX58+dLPaZ33303160yIioYr/wQERnQ3bt38fTpUwCAp6dnqS/lER8fj6SkJADZj/vnfLKOiPLG5IeIiIjMCm97ERERkVlh8kNERERmhckPERERmRUmP0RERGRWmPwQERGRWWHyQ0RERGaFyQ8RERGZFSY/REREZFaY/BAREZFZYfJDREREZuX/hr63YaoqU/IAAAAASUVORK5CYII=\n"},"metadata":{"image/png":{"width":575,"height":458}},"output_type":"display_data"}],"execution_count":12},{"cell_type":"markdown","source":"<a style='text-decoration:none;line-height:16px;display:flex;color:#5B5B62;padding:10px;justify-content:end;' href='https://deepnote.com?utm_source=created-in-deepnote-cell&projectId=1bef85f0-110b-45cf-b76e-b6d11d01564c' target=\"_blank\">\n<img alt='Created in deepnote.com' style='display:inline;max-height:16px;margin:0px;margin-right:7.5px;' src='' > </img>\nCreated in <span style='font-weight:600;margin-left:4px;'>Deepnote</span></a>","metadata":{"tags":[],"created_in_deepnote_cell":true,"deepnote_cell_type":"markdown"}}],"nbformat":4,"nbformat_minor":0,"metadata":{"deepnote":{},"orig_nbformat":2,"deepnote_notebook_id":"3e173915db2a4beca684ff493d8d8f8c","deepnote_execution_queue":[]}}
\ No newline at end of file