diff --git a/EscaramujoUserManual.pdf b/EscaramujoUserManual.pdf new file mode 100644 index 0000000000000000000000000000000000000000..8f88b55e51c3fcb86557fb6553ba0df69bb527a0 Binary files /dev/null and b/EscaramujoUserManual.pdf differ diff --git a/Extensive_Air_Showers.ipynb b/Extensive_Air_Showers.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..5a73aeeab12e7ecbed6e3bca5a7c9a6312771518 --- /dev/null +++ b/Extensive_Air_Showers.ipynb @@ -0,0 +1,356 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Lluvias aéreas extensas" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<img src=\"Montaje_EAS-min.png\" style=\"width: 500px;\"/>\n", + "\n", + "Este notebook describe el procediminto para la toma de datos, control de parámetros y descarga de datos para su posterior análisis.\n", + "\n", + "El acceso al laboratorio se hace por SSH desde un terminal. Primero debemos ingresar al servidor central Obatala mediante el comando:\n", + "\n", + "**`ssh lacongalab@200.16.117.76`**\n", + "\n", + "pass: HMcvmA4ee3\n", + "\n", + "Luego para ingresar al sistema de adquisición del detector de centelleo usaremos:\n", + "\n", + "**`ssh root@10.1.28.86`**\n", + "\n", + "pass: laconga2021\n", + "\n", + "Allà accedemos a la carpeta de la práctica:\n", + "\n", + "**`cd /home/pi/LACoNGA`**\n", + "\n", + "## Configuración del detector\n", + "\n", + "La configuración de los parámetros de adquisición asà como la toma de datos se hacen mediante la interfaz **minicom**. Para configurar los parámetros (umbral de discriminación, ventanas de coincidencias y número de coincidencias) se emplean los comandos descritos en el archivo (Escaramujo_User_Guide). \n", + "\n", + "Para configurar los parámetros de adquisición entramos a la intefaz ejecutando:\n", + "\n", + "**`minicom`**\n", + "\n", + "Un vez dentro configuramos por ejemplo el umbral de adquisición tecleando el comando:\n", + "\n", + "**`TL 4 30`**\n", + "\n", + "Esto estalece un umbral de discriminación de 30 mV en los 4 canales de adquisición. Para salir de la interfaz tecleamos.\n", + "\n", + "**`Ctrl+A x`** y enter\n", + "\n", + "Cuando configuremos los parámetros de adquisición procedemos a tomar los datos. Para ello ejecutamos:\n", + "\n", + "**`minicom -C File_name.dat`**\n", + "\n", + "y dentro de la interfaz ejecutamos\n", + "\n", + "**`CE`** -- habilita el contador de eventos\n", + "\n", + "Los datos mostrados en pantalla serán almacenados en el archivo **File_name.dat**. Para terminar la adquisición ejecutamos:\n", + "\n", + "**`CD`** -- deshabilita el contador de eventos\n", + "\n", + "Una vez más salimos del minicom con **`Ctrl+A x`** y enter. Este procedimiento se ejecuta siempre que se quiera adquirir cambiando los parámetros de adquisición.\n", + "\n", + "## Calibración del detector\n", + "\n", + "Primero el estudiante debe calibrar el umbral de detección. Para ello el estudiante debe tomar 5 minutos de datos cambiando el umbral de discriminación de 50 a 300 mV con paso de 25 mV. Luego se determina el umbral óptimo mediante la gráfica de flujo (conteos/s o conteos/min) vs umbral y estimando el flujo esperado en los 3 paneles centelladores de (25 cm x 25 cm) a 990 m s.n.m.\n", + "\n", + "**NOTA :** Tener cuidado con el nombre del archivo, use uno inconfundible ;).\n", + "\n", + "## Medición de la tasa de EAS\n", + "\n", + "Para la medición de lluvias aréreas extensas configurar el detector en coincidencia 2-Fold y establecer la ventana de coincidencia (ver Escaramujo User Guide).\n", + "\n", + "## Descarga de los archivos\n", + "\n", + "Ahora debemos copiar los datos a nuestro PC. Para ello primero lo copiamos al servidor **Obatala** y luego a nuestro PC. Ejecutamos:\n", + "\n", + "**`scp File_name.dat lacongalab@200.16.117.76:/home/lacongalab`**\n", + "\n", + "pass: HMcvmA4ee3\n", + "\n", + "Y ahora desde nuestra carpeta local (en nuestro PC) desde otro terminal ejecutamos:\n", + "\n", + "**`scp lacongalab@200.16.117.76:/home/lacongalab/File_name.dat .`**\n", + "\n", + "pass: HMcvmA4ee3\n", + "\n", + "En este puto ya tenemos los datos en nuestro PC y podemos procesarlos :) :) :)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Procesamiento" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import matplotlib\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import math\n", + "import csv, operator\n", + "import scipy.stats as st\n", + "from numpy import random\n", + "import pandas as pd\n", + "from datetime import datetime\n", + "from pandas import DataFrame as df\n", + "\n", + "matplotlib.pyplot.savefig\n", + "\n", + "%matplotlib inline " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "def data_analysis(data):\n", + " \n", + " fn = np.unique(data['FECHA_HORA'])\n", + " \n", + " frec = []\n", + "\n", + " for i in fn:\n", + " frec.append(np.sum(data['FECHA_HORA']==i))\n", + "\n", + " frec = np.array(frec)\n", + " \n", + " data2 = pd.DataFrame({'fecha': fn, 'frec': frec})\n", + " \n", + " data2.describe().transpose()\n", + " \n", + " mean = np.mean(frec)\n", + " std = np.std(frec)\n", + " \n", + " print \"Mean rate : %.2f +/- %.2f\" %(mean, std)\n", + " \n", + "# plt.figure(figsize=(8,5))\n", + "# plt.xlabel('\\n' + r'Time [HH:mm:ss]', linespacing=1, fontsize = 18)\n", + "# plt.ylabel('\\n' + r'Flux [counts/s]', linespacing=1, fontsize = 18)\n", + "# plt.plot(fn, frec)\n", + "# plt.show()\n", + " \n", + " return mean, std" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "500\n", + "Mean rate : 74.90 +/- 18.03\n", + "1000\n", + "Mean rate : 23.41 +/- 8.87\n", + "1500\n", + "Mean rate : 10.31 +/- 5.36\n", + "2000\n", + "Mean rate : 6.07 +/- 3.55\n", + "2500\n", + "Mean rate : 4.37 +/- 2.64\n", + "3000\n", + "Mean rate : 3.60 +/- 2.03\n" + ] + } + ], + "source": [ + "rate = []\n", + "error = []\n", + "threshold = []\n", + "\n", + "for i in range(500,3500,500):\n", + " \n", + " print i\n", + " \n", + " data = pd.read_csv('Data/Flujo_Th_' + str(i) + '.dat', delimiter=' ', sep = 's*', comment='S',\n", + " names = ['T1', 'CH1a', 'CH1b', 'CH2a', 'CH2b', 'CH3a', 'CH3b', 'CH4a', 'CH4b', 'T2', 'hora', 'fecha', 'rec1', 'rec2', 'rec3', 'rec4'], \n", + " parse_dates={'FECHA_HORA': [11,10]}, date_parser= lambda x, y: pd.datetime.strptime(x + ' '+ y , '%d%m%y %H%M%S.%f'))\n", + "\n", + " mean, std = data_analysis(data)\n", + " \n", + " rate.append(mean)\n", + " error.append(std)\n", + " threshold.append(i)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgsAAAFaCAYAAACQZR4BAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzt3Xl8VPXZ///XlT2BhLCEEBBIAgiI\nClTEhdWlVbuovWstWtci2Nb2rrXtXdv6u6v9dd+svdtaQVzrUrV16aZFBQELKiCuoEAgCLJD2CEh\nub5/nBOIMQlJSObMTN7Px2MeM3PmzJlrTqfmzed8znXM3RERERFpTErUBYiIiEh8U1gQERGRJiks\niIiISJMUFkRERKRJCgsiIiLSJIUFERERaZLCgoiIiDRJYUFERESapLAgIiIiTUqLuoB40qNHDy8u\nLo66DBERkZhYtGjRFncvONJ6Cgt1FBcXs3DhwqjLEBERiQkzK2/OejoMISIiIk1SWBAREZEmKSyI\niIhIkxQWREREpEkKCyIiItIkhQURERFpksKCiIiINElhQURERJqksCAiIiJNUlhoJ2+u28ETr66L\nugwREZGjprDQTqbPLeN7j7/Bjn1VUZciIiJyVBQW2smUcaXsqazmoZfXRF2KiIjIUVFYaCfH9+nC\nmIHdufvFVVQerIm6HBERkVZTWGhHU8aVsnHnAZ567f2oSxEREWk1hYV2NOHYAgYX5jJ9ThnuHnU5\nIiIiraKw0I7MjCnjS3ln4y5eeHdz1OWIiIi0isJCOzt/eG8K8zKZPrcs6lJERERaRWGhnWWkpXD1\nmBJeXLGVN9ftiLocERGRFlNYiIFLRvejU0aqRhdERCQhKSzEQJfsdC4Z3Y+/v76edRX7oi5HRESk\nRRQWYuTqsSUA3DVvVcSViIiItIzCQoz0yc/mUycW8fDLa9QCWkREEorCQgxNGR+0gH7wJbWAFhGR\nxKGwEEPDendh7MAeagEtIiIJJeHDgpkNNrMldW47zex6M+tmZjPNbHl43zXqWiEYXdi06wBPLtHl\nq0VEJDEkfFhw93fcfYS7jwBOAvYCjwM3As+5+yDgufB55MYP6sGQXrlMn6sW0CIikhgSPizUcxaw\n0t3LgQuAe8Pl9wIXRlZVHWbGlHGlvLtxN7PVAlpERBJAsoWFScBD4eNCd18fPt4AFDb0BjObamYL\nzWzh5s2x+eP9qeG96ZWXxfQ5atIkIiLxL2nCgpllAOcDj9Z/zYPx/gbH/N19mruPcvdRBQUF7Vxl\nIGgBXcx/VqoFtIiIxL+kCQvAecBid98YPt9oZkUA4f2myCprwCWn9KNzZhrTNLogIiJxLpnCwiUc\nPgQB8BRwZfj4SuDJmFfUhLysdC4Z3Zd/vLGetdv3Rl2OiIhIo5IiLJhZJ+CjwF/rLP4p8FEzWw6c\nHT6PK1ePKcGAu+atjroUERGRRiVFWHD3Pe7e3d131Fm21d3PcvdB7n62u2+LssaG9M7P5pMnFvHw\nK2vYsVctoEVEJD4lRVhIZFPGl7K3spoHXi6PuhQREZEGKSxErLYF9D0vrubAweqoyxEREfkQhYU4\nMDVsAf3UkvejLkVERORDFBbiwDi1gBYRkTimsBAHzIyp49UCWkRE4pPCQpz45IlBC+hpL6hJk4iI\nxBeFhTiRkZbCF8YWM79sK2+sVQtoERGJHwoLcWTS6LAF9FyNLoiISPxQWIgjtS2g//nGet7bphbQ\nIiISHxQW4syhFtAvroq6FBEREUBhIe70zs/mU8N78+dX3lMLaBERiQsKC3Foyji1gBYRkfihsBCH\njuudx7hBPbhbLaBFRCQOKCzEqanjS9m86wBPqgW0iIhETGEhTo0d2IOhRXlMn1NGTY1aQIuISHQU\nFuJU0AK6hOWbdvOCWkCLiEiEFBbiWG0L6DvmrIy6FBER6cAUFuJYemrQAnpB2TZeX1sRdTkiItJB\nKSzEuUtG9yM3M43pc9WkSUREoqGwEOdys9K55JR+agEtIiKRUVhIAFePKVYLaBERiYzCQgIo6pLN\n+WoBLSIiEVFYSBBTxgctoP/0klpAi4hIbCksJIihRUEL6Hv+oxbQIiISWwoLCeTa8QOCFtCvqgW0\niIjEjsJCAhkzsDtDi/KYNlctoEVEJHaSIiyYWb6ZPWZmy8xsqZmdZmbdzGymmS0P77tGXefRqm0B\nvWLTbma/uynqckREpINIirAA3AY87e5DgOHAUuBG4Dl3HwQ8Fz5PeJ88sTdFXbKYNqcs6lJERKSD\nSPiwYGZdgPHADAB3r3T3CuAC4N5wtXuBC6OpsG2lp6bwhTElagEtIiIxk/BhASgBNgN3m9mrZnan\nmXUCCt19fbjOBqCwoTeb2VQzW2hmCzdvToyrO04a3ZfczDSNLoiISEwkQ1hIAz4C3O7uI4E91Dvk\n4O4ONDgj0N2nufsodx9VUFDQ7sW2hdysdC5VC2gREYmRZAgLa4G17v5S+PwxgvCw0cyKAML7pJoR\nePWYElLMmDFPLaBFRKR9JXxYcPcNwHtmNjhcdBbwNvAUcGW47ErgyQjKaze9umRx/oigBXTF3sqo\nyxERkSSW8GEh9FXgATN7HRgB/Bj4KfBRM1sOnB0+TypTxpWyr6qaB15aE3UpIiKSxNKiLqAtuPsS\nYFQDL50V61piaWhRHuOPLeDuF1dzzbgSMtNSoy5JRESSULKMLHRYU8eVsmX3AZ54dV3UpYiISJJS\nWEhwYwZ257iiPKbPXaUW0CIi0i7a/TCEmfU7yk1scHfN4GtE0AK6lOv/vIRZ72zirKENtpMQERFp\ntVjMWVhNIz0OmumjwPNtU0py+sSJRfz86WVMm1OmsCAiIm0uVhMcnwBeb+F7OgHfaIdakk56agpf\nGFvCD/+xlNfeq2B43/yoSxIRkSQSq7DwF3d/sCVvMLPuwDfbqZ6kM2l0P257bjnT5pbx+0s/EnU5\nIiKSRGIxwfEO4N1WvG9f+N61bVtOcuqcmcalp/TjX2+sZ81WtYAWEZG20+5hwd2/5O4LW/G+veF7\nWxM0OqSrTy8hNcW460W1gBYRkbajUyeTSK8uWZw/vI9aQIuISJuKeVgws+5mNrTeshIz+z8ze8DM\nzol1TclkyvgS9lVV86cF5VGXIiIiSSKKkYXbgHtrn5hZZ2AucB1wCfAPMxsfQV1JYUivPCYcW8A9\n/ylnf1V11OWIiEgSiCIsnAb8s87zzwG9gY+H90uB/4mgrqQxdbxaQIuISNuJIiwUAu/VeX4esNDd\nnw4vN30PMDKCupLG6QO6M6x3HtPnlqkFtIiIHLUowkIVkF3n+QTghTrPK4DuMa0oydS2gF65eQ/P\nL9sUdTkiIpLgoggL7wKfscD5QDfguTqv9wW2RVBXUvn4CUX0yc9m2tyyqEsREZEEF0VY+D3BaMJ2\n4DGgjA+GhXHAGxHUlVTSU1O4ekwxL6/axpL3KqIuR0REEljMw4K73wdcSRAQ/gSc5+5VcKjFcz7w\nSKzrSkaTRvcjNyuN6XM0uiAiIq0Xk2tDmFlnd99d+9zd7wfur7+eu28FTopFTR1B58w0Pn9Kf6bN\nWcmarXvp1z0n6pJERCQBxWpkYYuZ/c3MJptZQYw+U4CrxxSTmmLMmKfRBRERaZ1YhYWbgK4EF4Z6\n38zmmtnXzaw0Rp/fYRXmZXHBiD48snAt2/eoBbSIiLRcTMKCu//S3ccCfYCvALuBnwDLzew1M7vZ\nzEbEopaOaMq4UrWAFhGRVovpBEd33+jud7j7eUABcBmwDLgBWGRmZWb2azMbZ2YWy9qS2eBeuUwc\nXMC981erBbSIiLRYZFeddPdd7v6Qu38O6AFcAMwCPk/QpGmjmU2Kqr5kM3VcKVt2V/K4WkCLiEgL\nxcUlqt290t3/7u6TgSJgIsFplZ0jLSyJnDagO8f3UQtoERFpubgICwBm1sPMBrl7jbvPcfcb3P3O\nqOtKFmbGlHGllKkFtIiItFDMw4KZXWFm0+ot+wmwEVhmZi+aWW4Lt7nazN4wsyVmtjBc1s3MZprZ\n8vC+a9t9i8R0qAW0mjSJiEgLRDGycC11mkGZ2Sjg28BcYDowmmDCY0ud4e4j3H1U+PxG4Dl3H0TQ\nLfLGo6o6CaSnpvCFsSW8vHobr67ZHnU5IiKSIKIICwOB1+s8/yzBhaM+5u5fBO4ELm6Dz7kAuDd8\nfC9wYRtsM+F97uS+QQtoXWBKRESaKYqw0AXYUef5WcCz7l7bMWgh0K+F23Tg32a2yMymhssK3X19\n+HgDUNjagpNJ58w0Lju1P0+/uYHyrXuiLkdERBJAFGFhAzAIIGz9PILgEEStzkBLmwGMdfePAOcB\n15nZ+LovursTBIoPMbOpZrbQzBZu3ry5hR+bmK46vbYF9KqoSxERkQQQRVh4nuAP+jeBewj+iP+j\nzuuDgRY1A3D3deH9JuBxgnkPG82sCCC8b/AUAHef5u6j3H1UQUHHuGxFYV4WF47owyML31MLaBER\nOaIowsL/AuuBnxOMBPzE3VcDmFka8BmCpkzNYmadas+eMLNOwMeAN4GnCC6FTXj/ZBvVnxSmjC9l\nf1WNWkCLiMgRxeQS1XW5+1ozGwYcB+xw9zV1Xs4BpgJLWrDJQuDxsDt0GvCguz9tZq8Aj5jZZKCc\ntpk0mTSOLTzcAnrK+FKy0lOjLklEROJUJH0WgL7u/ka9oIC77wReAyY0d3vuXubuw8PbMHf/Ubh8\nq7uf5e6D3P1sd9/Wpl8kCUwdrxbQIiJyZFEchrgbOL2J108J15F2dlqpWkCLiMiRRREWjnQ1yXSg\nJhaFdHRmxtTxAyjbvIfn1AJaREQaEdW1IRo7jTEf+ATBBEiJgY8f3ytsAb0y6lJERCROxSQsmNn3\nzazazKoJgsKfap/XvQFbCSYiPhyLugTSUlOYPLaEV1ZvZ7FaQIuISANidTbEEuA+gkMQVxA0Yarf\nb9iB3cAC4KEY1SUELaB/8+y7TJ9Txu2XnRR1OSIiEmdiEhbc/UnCPgdm1h/4obs/F4vPliPrFLaA\nvv2FlZRv3UP/7p2iLklEROJIzOcsuPsZCgrx56rTi0lTC2gREWlAzJsy1TKzHKAY6E4DZ0i4+5xY\n19SR9azTAvr6s4+lW6eMqEsSEZE4EUVTpk5m9kdgO/AGMBuYVedW+1xiTC2gRUSkIVGMLPwGmAz8\nk+CiUlsjqEEacGxhLmcMLuDe/6xmqlpAi4hIKIqw8GngIXf/fASfLUcwdfwALpm+gL8uXselp/SL\nuhwREYkDUTRlyiI41CBx6NTSbpzQpwt3qgW0iIiEoggLC4FBEXyuNEPQArqUsi17eHbpxqjLERGR\nOBBFWLgRuNrMRkXw2dIM5x3fi2O6ZjNtTv2+WSIi0hFFMWdhKrAWWGBm8wk6OVbXW8fdfXLMKxPg\ncAvoW/72NovKt3NS/65RlyQiIhGKIixcVefxmPBWnxOcMSERuXhUX26d+S53zi3jpP5qAS0i0pFF\n0cExpRk3nbMXsdoW0E+/tYHVW/ZEXY6IiEQoqktUSwK46vRi0lNS1AJaRKSDU1iQRvXMy+LCkb15\ndNF7bNtTGXU5IiISkZjPWTCz55uxmrv7We1ejBzRlHGlPLJwLffPL+drZ+uMVxGRjiiKCY6lBBMY\n69dRRDDSsQXQQfI4MagwlzOH9OS++au5doJaQIuIdERRTHAsdveSere+QCfge0AFcHqs65LGTR1f\nytY9lfxl8dqoSxERkQjEzZwFdz/g7j8BXgJ+HXU9ctgpJd048Zgu3Dl3lVpAi4h0QHETFuqYB5wT\ndRFyWG0L6FVb9jBTLaBFRDqceAwLJUBG1EXIB507LGgBPV0toEVEOpwozoZo7LrH3YCzgf9GV6WM\nO2oBLSLScUUxsrAaWNXAbRHwc6CcIDC0iJmlmtmrZvb38HmJmb1kZivM7M9mptGKo3TxqL50yU7X\n6IKISAcTxamTP+DDp046sA14F3jW3Wtasd2vAUuBvPD5z4Bb3f1hM/sjwbUmbm9dyQK1LaD78YfZ\nK1m1ZQ8lPTpFXZKIiMRAzMOCu9/c1ts0s2OATwA/Am4wMwPOBC4NV7kXuBmFhaN25enFTJ+zihnz\nyvjhhSdEXY6IiMRAPE5wbI3fAP8D1I5IdAcq3P1g+Hwt0KehN5rZVDNbaGYLN2/e3P6VJrieuVl8\nemQfHl24lq27D0RdjoiIxEAkYcHMOpnZLWb2upntDm+vm9nNZtaisW0z+ySwyd0XtaYWd5/m7qPc\nfVRBQUFrNtHhTBlfwoGDNdy/oDzqUkREJAZiHhbMrBvwMvD/AYXAq+GtEPhf4OVwneYaA5xvZquB\nhwkOP9wG5JtZ7WGWY4B1bfIFhIE9czlrSE/um1/O/qrqqMsREZF2FsXIwg+AIcBXgN7uPs7dxwG9\ngeuAwQTzC5rF3b/j7se4ezEwCXje3T8PzAIuCle7Eniyzb6BMGV8Kdv2VPLYIrWAFhFJdlGEhfOB\nO939D+5+6J+l7l7t7rcDdwEXtsHnfJtgsuMKgjkMM9pgmxI6paQbw4/pwox5q6hWC2gRkaQWRVio\nPfTQmMXhOi3m7rPd/ZPh4zJ3H+3uA939s+6u2XhtyMyYUtsC+m21gBYRSWZRhIWNwMgmXh8ZriNx\n7txhvejbLZvpc9WkSUQkmUURFv4GTDaza83s0OebWYqZTQW+ADwVQV3SQmmpKUweU8Ki8u0sKt8W\ndTkiItJOoggL/wuUAX8A3jezF8zsBeB9gqZJZcD3I6hLWuHik4MW0NPUAlpEJGnFPCy4+1ZgFPBT\nYCtwcnjbAvwEODlcRxJATkYal5/an3+/vZFVW/ZEXY6IiLSDSJoyuftOd/+euw9z95zwdry73+Tu\nO6OoSVrvytOLSU9J4U7NXRARSUrJ0u5ZIlSQm8l/faQPjy1SC2gRkWQURQfHW8zszSZef93Mbopl\nTXL0rhkXtIC+b75aQIuIJJsoRhY+Dcxs4vWZHO68KAliYM9czh7ak/sXlLOvUi2gRUSSSRRhoQRY\n1sTr74TrSIKZMi5sAb1YLaBFRJJJVHMW8pt4rSuQGqtCpO2MLunG8L75zJhbphbQIiJJJIqw8BZw\nQUMvmJkRXDuiqZEHiVNmxtRxpazeupeZb2+IuhwREWkjUYSFGcCpZnaPmRXULgwf3wWcii76lLDO\nPT5oAa0mTSIiySOKpkzTgQeBK4ANZrbWzNYCGwguJf1IePVJSUCpKcY1Y0tZvKZCLaBFRJJEVE2Z\nLgMmAX8HdoS3p4CL3f2SKGqStvPZUceQn5POHS9odEFEJBmkRfXB7v4I8EhUny/tp7YF9O9mraBs\n825KCzpHXZKIiBwFdXCUdnHFacWkp6Zw57xVUZciIiJHqd3Dgpldamb9W/G+jPC9PdujLmlfBbmZ\nfOYjffjLorVsUQtoEZGEFouRhfuBMa14X2743uPbthyJlcljS9UCWkQkCcRizoIBQ8xsfAvf1yV8\nrySogT07c/bQQu6fv5ovTRhAdoZ6bYmIJKJYTXD8XnhrCQPUBjDBTR1fysV3bOSxxWu5/NQWH40S\nEZE4EIuwcPVRvv+tNqlCInFycVdG9M3nzrllXDq6H6kpGiwSEUk07R4W3P3e9v4MiV9mxtTxpXz5\ngcXMfHsD5x5fFHVJIiLSQjp1UtrdOcN60a9bDnfMKcNdR5ZERBKNwoK0u9QU45pxJby6poJF5duj\nLkdERFpIYUFi4qKTwhbQusCUiEjCUViQmMjJSOOKU/vz7NKNrNy8O+pyRESkBRI+LJhZlpm9bGav\nmdlbZnZLuLzEzF4ysxVm9mczy4i61o7u8toW0HPVAlpEJJEkfFgADgBnuvtwYARwrpmdCvwMuNXd\nBwLbgckR1ijUtoA+hr8sVgtoEZFEEvOwYGZnNmOdrzd3ex6oHddOD28OnAk8Fi6/F7iwhaVKO7hm\nXAlV1WoBLSKSSKIYWZhpZj80sw99tpn1MLN/Ar9syQbNLNXMlgCbgJnASqDC3Q+Gq6wF+jTy3qlm\nttDMFm7evLlFX0RabkDB4RbQ+yqroy5HRESaIYqw8DDwXWCOmfWtXWhmZwOvA2cB327JBt292t1H\nAMcAo4EhLXjvNHcf5e6jCgoKWvKx0kpTx5eyfW8Vjy16L+pSRESkGWIeFtz988A1BPMLXjOzSWb2\nM+AZYC8w1t1bNLJQZ9sVwCzgNCDfzGo7VB4DrDvq4qVNjOoftoCet4rqGjVpEhGJd5FMcHT3u4CT\nCP6APwB8E3gIGOnur7RkW2ZWYGb54eNs4KPAUoLQcFG42pXAk21TvRwtM+Pa8aWUb93Lv9/aEHU5\nIiJyBFGeDTGMYB5BDcEVJnsAma3YThEwy8xeB14BZrr73wkOZdxgZiuA7sCMNqla2sTHhvWif3e1\ngBYRSQRRnA2RaWa3A48CZQSh4ZvARILDEme1ZHvu/rq7j3T3E939eHf/Qbi8zN1Hu/tAd/+su+tc\nvTiSmmJcM7aEJe9VsFAtoEVE4loUIwsLgWuB3wGnu/u77v5rYAzBnIVnzOzHEdQlMXbRSX3pmpPO\nNLWAFhGJa1GEhSLgfHf/mrtX1i5090UEkx4fooVnQ0hiys5I5fLTitUCWkQkzkURFoaHcwo+xN33\nuPvlwFWxLUmicsVp/clQC2gRkbgWxamTRzyF0d3vj0UtEr0enTP5zElBC+jNuzStREQkHkUxwbFf\nc26xrkuiM3ls0AL6/vmroy5FREQakHbkVdrcaoJrNxxJajvXIXGitgX0fQvK+eLEAeRkRPGzFBGR\nxkTxX+Uf8OGwkAYMAC4A3gD+FeuiJFrXji9l5tsbeWzRWq44rTjqckREpI6YhwV3v7mx18ysFJhP\ncHqldCAn9e/KyH753Dl3FZ8/pT+pKRZ1SSIiEoqyg+OHuHsZcAdwS9S1SGzVtoBes20vz6gFtIhI\nXImrsBBaBxwXdRESex89rhfFagEtIhJ34jEsXAio/28HlJpiTB5XymvvVfDKav0ERETiRcznLJjZ\n/zbyUjfgTOB44Oexq0jiyUUfOYZbZ77LtDlljC7pFnU5IiJCNGdD3NzEaxuAm4CfxaYUiTfZGalc\nfmp/bntuOSs27WZgz85RlyQi0uFFcRiipIFbMZDn7r3d/cfuXh1BXRInLj+tP5lpKcyYpwtMiYjE\ngyjaPZc3cFvj7rqSkAB1W0CvUwtoEZE4EI8THEW4JmwBfd/81VGXIiLS4bX7nAUzu6sVb3N3n9zm\nxUjCKC3ozEeHFnL3i6vp2zWHz5x0jBo1iYhExNr7fHYzq2nF29zdY35tiFGjRvnChWoeGS/WbN3L\n1/78Kq+uqWBIr1xu+sRxjB3UI+qyRESShpktcvdRR1qv3Q9DuHtKK266iJTQr3sOf/3S6fzfJSPZ\nfeAgl814iS/c8worNu2KujQRkQ5FcxYkrpkZnxrem2dvmMB3zhvCK6u2cc5v5nLTE2+wZbcmP4qI\nxEJMwoKZjTYzddiRVstKT+XaCQOY/a2JfP6Ufjz08ntM/MVs/jB7BfurdKatiEh7itXIwnzg3Non\nZtbZzB40M10DQlqke+dMfnDB8Txz/XhOLe3Gz59+h7N+9QJPLllHTY2uJyEi0h5iFRbqT2PPBCYB\nvWL0+ZJkBvbszJ1XnsyDU04hPyedrz28hE//4UVeWb0t6tJERJKO5ixIQjt9QA/+9pWx/PKzw9mw\ncz+f/eN8vnj/IlZv2RN1aSIiSSOKa0OItKmUFOOik47h4yf0YvqcVdwxZyXPLdvIFacV89UzB5Kf\nkxF1iSIiCS3hRxbMrK+ZzTKzt83sLTP7Wri8m5nNNLPl4X3XqGuV9pWTkcbXzh7E7G9O5L9GHsNd\nL65iwi9mM2PeKioPtqbdh4iIQAyaMsGhxkwPAovDRTnALcA0YHkDb3F3v7WZ2y4Citx9sZnlAouA\nC4GrgG3u/lMzuxHo6u7fbmpbasqUXJau38mP/7mUucu3UNw9hxvPG8I5w3phpk6QIiLQ/KZMsQwL\nLdHqDo5m9iTwu/A20d3Xh4FitrsPbuq9CgvJx92Z/e5mfvyPpSzftJvRxd343ieGMrxvftSliYhE\nrrlhIVZzFs6IxYeYWTEwEngJKHT39eFLG4DCWNQg8cXMOGNwT8YN7MGfF77HrTPf5YLfv8iFI3rz\nrXOH0Cc/O+oSRUTiXkxGFmLBzDoDLwA/cve/mlmFu+fXeX27u39o3oKZTQWmAvTr1++k8vLymNUs\nsbdrfxW3z17JjHmrAJg8toQvTRxAblZ6xJWJiMReXB2GaG9mlg78HXjG3X8dLnsHHYaQRqyr2Mcv\nnl7GE0vep0fnDK4/+1gmndyXtNSEn/MrItJscXMhqfZmwWy1GcDS2qAQegq4Mnx8JfBkrGuT+NUn\nP5vfTBrJk9eNobRHZ2564k3Ou20us5ZtIhkCtIhIW0r4kQUzGwvMBd4AaidSfpdg3sIjQD+gHLjY\n3Zts76eRhY7J3XnmrY389F9LWb11L2MH9uB7nxjK0KK8qEsTEWlXHeowRFtRWOjYKg/W8KcF5dz2\n3HJ27q/i4pP68o2PHUvPvKyoSxMRaRcKC62gsCAAO/ZW8X/PL+fe+atJT03h2vEDmDK+hJwMNTwV\nkeTSYeYsiLS1Ljnp3PTJ43j2hglMOLaAW599lzN+OZtHF76nK1uKSIeksCDSiP7dO3H7ZSfx6BdP\no1eXbL712Ot88v/m8Z8VW6IuTUQkphQWRI7g5OJuPP6l07lt0gh27Kvi0jtf4pp7X2HFpt1RlyYi\nEhMKCyLNkJJiXDCiD899YwL/c+5gFpRt45zfzOF/n3yTrbsPRF2eiEi7UlgQaYGs9FS+PHEgs781\nkUtG9+WBl9Yw8Rez+eMLK9lfVR11eSIi7UJhQaQVenTO5IcXnsAz14/j5JJu/PRfyzj71y/w1Gvv\nq6mTiCQdhQWRozCwZy53XXUyD1xzCrlZ6fz3Q6/yX7f/h0XlTfb/EhFJKAoLIm1gzMAe/P2rY/n5\nRSeybvs+PnP7fK57YDFrtu6NujQRkaOmpkx1qCmTtIW9lQeZNqeMO14oo7rGufL0/nzljEF0ydGV\nLUUkvqgpk0hEcjLSuP7sY5n9rYlcMKI3d85bxYRfzuLuF1dRVV1z5A2IiMQZhQWRdlKYl8UvPjuc\nv391LMN653HL397mY7fO4ZntGg6wAAAViklEQVS3NmgSpIgkFIUFkXY2rHcX/jT5FO66ahSpKca1\n9y9i0rQFvLF2R9SliYg0i8KCSAyYGWcOKeTpr43j/7/weJZv2s2nfjePG/68hPcr9kVdnohIkzTB\nsQ5NcJRY2bm/ij/MWsldL67CgCnjSvnixAF0ztSVLUUkdjTBUSSO5WWlc+N5Q3juhgmcM6wXv5u1\ngom/mM2DL63hoCZBikicUVgQiVDfbjn89pKRPP7l0ynunsN3H3+DT/x2Hi+8uznq0kREDlFYEIkD\nI/t15dEvnsbtn/8I+w9Wc+VdL3PFXS/zzoZdUZcmIqKwIBIvzIzzTiji318fz02fGMqSNds577Y5\nfOevr7Np1/6oyxORDkwTHOvQBEeJJ9v3VPLb55dz//xyMtNS+OKEAVwzrpTsjNSoSxORJKEJjiIJ\nrmunDL7/qWHMvGECYwf14Fcz3+XMX83mL4vWUlOjkC8isaOwIBLnSnp04o7LR/HnqadSkJvJNx59\njfN/P4/5K7dGXZqIdBAKCyIJ4pTS7jzx5TH85nMj2La7kkumL2DKfQsp27w76tJEJMkpLIgkkJQU\n48KRfXj+mxP51jmDmb9yKx+7dQ43P/UW2/ZURl2eiCQphQWRBJSVnsp1Zwxk1jcn8rmT+3Lf/NVM\n+MUsps1ZyYGD1VGXJyJJRmFBJIEV5Gbyo0+fwNPXj+ek/l358T+XcfavX+Afr6/XlS1FpM0kfFgw\ns7vMbJOZvVlnWTczm2lmy8P7rlHWKNLeji3M5Z6rR3P/5NF0ykjjugcXc9Ef57N4zfaoSxORJJDw\nfRbMbDywG7jP3Y8Pl/0c2ObuPzWzG4Gu7v7tI21LfRYkGVTXOI8teo9f/vtdNu86wLnDejHu2B4M\nLcpjcGEunXSxKhEJNbfPQsKHBQAzKwb+XicsvANMdPf1ZlYEzHb3wUfajsKCJJM9Bw5yx5wy7nlx\nFTv3Hzy0vH/3HIb2ymNIUS5DeuVxXFEex3TNJiXFIqxWRKLQ0cNChbvnh48N2F77vIH3TgWmAvTr\n1++k8vLymNQsEivuztrt+1i2YRdL1+9k2YadLFu/i1Vb91D7f/9OGakMKcpjSK9chhTlcVxRLscW\n5pKblR5t8SLSrhQW6oQDM9vu7kect6CRBelI9lYe5N2Nu1m2fidL1+9k6YZdLFu/8wOjEH27ZYej\nEHkM7ZXL0KI8+nXL0SiESJJoblhI1oOXG82sqM5hiE1RFyQSb3Iy0hjRN58RfQ8Purk77+/Yz7L1\nOw+NRCxdv5Nnl26ktsN0dnoqg8PgMDQ8lDGkKJc8jUKIJK1kDQtPAVcCPw3vn4y2HJHEYGb0yc+m\nT342Zw0tPLR8f1U1yzfuDkcggsMY/3pzPQ+9vObQOn3ysxlaFISI2gBR3L0TqRqFEEl4CR8WzOwh\nYCLQw8zWAt8nCAmPmNlkoBy4OLoKRRJfVnoqJxzThROO6XJombuzcecBlm4IRh+Wrd/Fsg07mfXO\nZqrDYYis9BQGFwajD0OLcsPDGXl0ydEohEgiSYo5C21FcxZEjt7+qmpWbNr9gQmVS9fv+kA76t5d\nsg5NqKw9nFHcvRNpqQnf+kUkoXT0OQsiEpGs9FSO79OF4/t8cBRi864DhyZRLg3nRMx5dzMHw1GI\njLQUji3sfHhCZVEuQ3vl0bVTRlRfRURCCgsi0u7MjJ55WfTMy2LCsQWHllcerAlHIQ5PqJz1zmYe\nXbT20DqFeZmH5kHUTqgsLehEukYhRGJGYUFEIpORlsJxvfM4rnfeB5Zv3nXgUD+IpeFhjBdXlFFV\nHY5CpKYwsGdnhhTlclydING9c2YUX0Mk6SksiEjcKcjNpCC3gHGDDo9CVFXXULZ5zwfOyJi3fAt/\nXbzuA+8b0isMEOEoxICCzmSkaRRC5GgoLIhIQkhPTWFwr1wG98rlQvocWr519wHe2bCLt8N5EMs2\n7OTu/6ym8mBN+D5jQEHnD/WF6JmbFdVXEUk4CgsiktC6d87k9IGZnD6wx6FlB6trWLVlzwcmVC4o\n28rjrx4ehejROSMIDuEZGUOKchnYszOZaalRfA2RuKawICJJJy01hUGFuQwqzOX84b0PLa/YW8nS\nsB9E7XyI+xeUcyAchUhLCUYhag9h1DaZ6pmbSXCZGZGOSWFBRDqM/JwMThvQndMGdD+0rLrGWb11\nzwcaSy1cvZ0nl7xf533p9MzNJD8ng/zsdLrmZJDfKZ387Ay65qQHy3OC5V1z0umSk64RCkkqCgsi\n0qGlhqMJAwo688kTDy/fsa+Kd8LTOd/ZuIutuw9QsbeK8q17eW1tBdv3Vh2aF9GQnIxU8rODINE1\nDBa1gSI/DBhB0Kh9nEFeVpoaU0lcUlgQEWlAl+x0Rpd0Y3RJtwZfd3f2VVVTsbeK7XsrqdhbVedx\nZfi4ih37Ktm+t4qlO3ayY28VFfuqDrXDbkheVlqdIFEvYGSn07VTxodGOHIz03SYRNqVwoKISCuY\nGTkZaeRkpNE7P7vZ76upcXYdOMiOMFhs31vJjn1VbN9TScW+qnrho5JVW/ZQsbfyA5cOry81xcjP\nDg5/HDoUEh4i6dopgy7ZHzxEUhs+stNTFTKkWRQWRERiKCXF6JKdTpfsdPp1z2n2+w5W17BjX1UY\nKA6PXBx+HAaMfZW8X7Gft9/fScW+KvZWVje6zYy0lGAEoxmHSPJrn2dnqG9FB6SwICKSANJSU+je\nObPFXSr3V1UHIaPeiMX2MFhU7AmX76uibMvuQwGktltmQzplpH74EMmhx+Ehkk7pHzhckpedrsuV\nJzCFBRGRJJaVnkpWeiqFec1vQuXu7K2spqL28EgYLLbvraIiPFxSN3i8X7Hv0IhHY9MxzCArLZWs\n9BQy01LJTE8hq9595qH7FLLSUz9wn1nnvfXvG9pW7X1GagopCilHTWFBREQ+wMzolJlGp8w0+rR0\nPsb+g4eCxfa9lXXmZlSxv6qa/VXVHKiqYf/B4P7AwWr2V9Ww58BBtu6uPPT8wMHgtQNVNVRWN37W\nSXNkpDUWQD687NBr6alkhfcNPW/OtpLpzBaFBRERaRMpKUaXcBJl/+5HXr+5amr8UHjYHwaMAwdr\nguBRe18ngBwOIvXWOVjDgdr7Otvatf9gg9veX3V0ISUtxVoYPOqNmDQQQHrnZzO8b34b7dkWfJeY\nf6KIiEgLpKQY2RmpZGfEttGVu1NZXfOBQPKBkY+qBkJLvSCyv4H37A/vd+yrOhxe6m3jYCPHc84Z\nVsgdl4+K6X4AhQUREZEGmVn4L/xU8rLSY/rZB6sbHhnJTo+mM6jCgoiISJxJSw3mPHTKjI8/08kz\n+0JERETahcKCiIiINElhQURERJqksCAiIiJNUlgQERGRJiksiIiISJMUFkRERKRJSR0WzOxcM3vH\nzFaY2Y1R1yMiIpKIkjYsmFkq8HvgPOA44BIzOy7aqkRERBJP0oYFYDSwwt3L3L0SeBi4IOKaRERE\nEk589JFsH32A9+o8XwucUn8lM5sKTA2f7jazd9qwhh7AljbcXkekfXj0tA/bhvbj0dM+PHptvQ/7\nN2elZA4LzeLu04Bp7bFtM1vo7rG/PFgS0T48etqHbUP78ehpHx69qPZhMh+GWAf0rfP8mHCZiIiI\ntEAyh4VXgEFmVmJmGcAk4KmIaxIREUk4SXsYwt0PmtlXgGeAVOAud38rxmW0y+GNDkb78OhpH7YN\n7cejp3149CLZh+buUXyuiIiIJIhkPgwhIiIibUBhQURERJqksNCGzGy1mb1hZkvMbGG4rJuZzTSz\n5eF916jrjCdmdpeZbTKzN+ssa3CfWeC3Yfvu183sI9FVHj8a2Yc3m9m68Le4xMw+Xue174T78B0z\nOyeaquOLmfU1s1lm9raZvWVmXwuX67fYTE3sQ/0Wm8nMsszsZTN7LdyHt4TLS8zspXBf/TmctI+Z\nZYbPV4SvF7dXbQoLbe8Mdx9R5zzYG4Hn3H0Q8Fz4XA67Bzi33rLG9tl5wKDwNhW4PUY1xrt7+PA+\nBLg1/C2OcPd/AoQtzycBw8L3/CFsjd7RHQS+4e7HAacC14X7Sr/F5mtsH4J+i811ADjT3YcDI4Bz\nzexU4GcE+3AgsB2YHK4/GdgeLr81XK9dKCy0vwuAe8PH9wIXRlhL3HH3OcC2eosb22cXAPd5YAGQ\nb2ZFsak0fjWyDxtzAfCwux9w91XACoLW6B2au69398Xh413AUoIusPotNlMT+7Ax+i3WE/6edodP\n08ObA2cCj4XL6/8Oa3+fjwFnmZm1R20KC23LgX+b2aKwjTRAobuvDx9vAAqjKS2hNLbPGmrh3dR/\njDq6r4RD5HfVOfylfXgE4VDuSOAl9FtslXr7EPRbbDYzSzWzJcAmYCawEqhw94PhKnX306F9GL6+\nA+jeHnUpLLStse7+EYIhyuvMbHzdFz04T1XnqraA9lmr3Q4MIBjKXA/8KtpyEoOZdQb+Alzv7jvr\nvqbfYvM0sA/1W2wBd6929xEEXYdHA0MiLglQWGhT7r4uvN8EPE7wP/TG2uHJ8H5TdBUmjMb2mVp4\nN5O7bwz/o1MDTOfw8K72YSPMLJ3gj9wD7v7XcLF+iy3Q0D7Ub7F13L0CmAWcRnCYq7aJYt39dGgf\nhq93Aba2Rz0KC23EzDqZWW7tY+BjwJsELaavDFe7EngymgoTSmP77CnginAm+qnAjjpDxFJHvePn\nnyb4LUKwDyeFs6hLCCbovRzr+uJNeJx3BrDU3X9d5yX9FpupsX2o32LzmVmBmeWHj7OBjxLM/ZgF\nXBSuVv93WPv7vAh43tup06I6OLYRMyslGE2AoI32g+7+IzPrDjwC9APKgYvdvbmT0ZKemT0ETCS4\n7OpG4PvAEzSwz8L/GP2OYOb0XuBqd18YRd3xpJF9OJFg2NeB1cC1tX/MzOx7wBcIZq9f7+7/innR\nccbMxgJzgTeAmnDxdwmOueu32AxN7MNL0G+xWczsRIIJi6kE/5h/xN1/EP59eRjoBrwKXObuB8ws\nC7ifYH7INmCSu5e1S20KCyIiItIUHYYQERGRJiksiIiISJMUFkRERKRJCgsiIiLSJIUFERERaZLC\ngoiIiDRJYUFERESapLAgIiIiTVJYEBERkSYpLIiIiEiTFBZERESkSQoLIiIi0iSFBREREWmSwoKI\niIg0SWFBREREmqSwICIiIk1SWBAREZEmKSyIiIhIkxQWREREpEkKCyIiItIkhQURERFpksKCiIiI\nNElhQURERJqksCAS58xsopm5mV0VdS0NMbPVZja7HbZ7Vfi9J7ZlHXW2W3u77GhrPVpmdmq9mm6O\nuiaRuhQWRGKs3h+FI92Ko643if0YuBx4sa02aGbdzGy/mS05wnpnhP/7TgsXrQhr+Xpb1SLSltKi\nLkCkA7q83vNxwFRgGjC33mubgeIY1NQRzXT32W25QXffZmZPAJ8zs5Hu/mojq14d3t8Vvm8L8Kcw\nHN7aljWJtAWFBZEYc/c/1X1uZmkEYWF+/dfC14/6M80s1913HfWGpDlmAJ8jCAQfCgtmlgt8Bnjb\n3RfEuDaRVtFhCJEEYmZXm9lbZnbAzMrN7H8aWGe1mc02s5Fm9oyZ7QBer/N6ppl9N9zOfjOrMLO/\nmdnIettJMbPrzex1M9tlZjvN7B0zm2Fm6Q187hAz+0e47g4ze8zMejWwXrGZ3W9mG8PvsdLMfmxm\nOc3cB33N7JHwM3aGtQ9o1g488rYPzQ8xsy+H33e/mb1hZp8M1znBzJ4OP3urmf223v54DigHLjWz\njAY+ZhKQQziqIJIINLIgkji+CBQS/Mu1ArgM+JmZrXX3B+ut2w94HngU+AvQGSD8o/Y0cDpwP/A7\noAswBXjRzMa7+8JwG98DfgD8DfgjUA2UAOcDmUBVnc/rA8wGHge+BQwHrgXygI/VrmRm/YGXw8/8\nA7AcmAh8BxhjZme5+8HGdoCZ5QNzgL5hTW8DE4BZQHbju67FrgO6AncC+4H/Bh43s88C04GHgCfC\n7/ZVYBPwQwB3rzGze4DvAxcQ/G9Q19UE++7+NqxXpH25u2666RbhDbgKcOCqRl6fGL7+PtClzvIc\ngjkN8+utvzpc/5oGtvX18LVz6i3PA9YAs+ssW0wwVH6k+ms/7+J6y38fLh9cZ9kD4bKP11v3F+Hy\nyQ3sl4l1lv04XHZ1vff/Jlw+uxn1fmi7DezrdfX29Ynh8hrgv+q9ZxGwvt6y/uG6/6y3fHC4nb82\nUltx+PrNUf8uddOt7k2HIUQSx93uvqP2ibvvBRYAgxpYdxtwdwPLLwOWAYvMrEftDcgAZgJjzaz2\nX+g7gD5mNrYZtb3v7o/UW/Z8eD8IgsMaBKMSr7r7P+ut+xOCP66fPsLnXAhsBO6rt/xnzaixJe6p\nt69fB3YSfM+/1lt3HtDLzDrXWb8ceBb4mJn1rrNu7cTGGW1cr0i7UlgQSRxlDSzbCnRvYPlKd69u\nYPlQYAjBiET92xeAVKBHuO53CYbg55rZOjN7wMwaOw7fWG3Uqa+A4HDIW/VXdPdtwHqgtIHt1FUK\nLK//3dx9PcGhmbbS0PfZDqxqZDl8+H+HGQT780oAM0sFriAYIXq6bcoUiQ3NWRBJHA398W/M3kaW\nG/AGcEMT790M4O7zw4mD5wBnhLdLgZvMbGz4B745tR396Ryx19j3acn3fIJghOcqgpGTc4Ei4CeN\nBDmRuKWwINKxLCf4F/7z7l5zpJXdfTfBBMm/AJjZlwnmIkwmmGfQEpuBXcCw+i+YWVeCP6RNNjMi\n+Bf/IDNLrfsH18yKgPwW1tOu3P2AmT0AfNXMxnD4EERDh4dE4poOQ4h0LPcBvWhkZMHMCus87tHA\nKovD+24t/eAwnPwNGGlm59Z7+UaC/x49foTNPElwRsgV9ZZ/u6X1xEjt3IRvAZ8C5rj78gjrEWkV\njSyIdCy3AR8FfmFmZxJMQtxJcKrlWQRzFM4I111qZguAlwiOsxcRNI+qBB5u5ed/N/z8J8zsDwRt\njscTNDGaA9x7hPf/nOBQyHQzO4lg/sNE4DRgSytrajfu/pqZLSI4hRLUW0ESlMKCSAfi7lVm9gng\nywRtp28JX3qfoP9B3T/WvwI+TtBjoAtBL4EFBMfcX2vl55eb2SkE/RsuIzh0sJbgmP4PvYkeC+H7\nt5vZOODXHB5deIEg4DzXmppiYAZwEsEhmPo9F0QSgrl71DWIiMSMBVfvvJvgNMwXgV3ufiDimtII\nglNfgkM9t7j7zVHWJFKX5iyISEf1BMGky89GXQgwiqCWxUdaUSQKGlkQkQ4lPHOi7hkZb7r7hqjq\nATCzPGB0nUVl7t5QrweRSCgsiIiISJN0GEJERESapLAgIiIiTVJYEBERkSYpLIiIiEiTFBZERESk\nSQoLIiIi0qT/B9jMjl29voc+AAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 800x500 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(8,5))\n", + "plt.plot(np.array(threshold)/10.0, rate)\n", + "plt.xlabel('\\n' + r'Threshold [mV]', linespacing=1, fontsize = 18)\n", + "plt.ylabel('\\n' + r'Flux [counts/s]', linespacing=1, fontsize = 18)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Estudiantes" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "50\n", + "Data/calibration_50mV.dat\n", + "Mean rate : 70.96 +/- 17.01\n", + "75\n", + "Data/calibration_75mV.dat\n", + "Mean rate : 38.09 +/- 11.91\n", + "100\n", + "Data/calibration_100mV.dat\n", + "Mean rate : 21.70 +/- 8.84\n", + "125\n", + "Data/calibration_125mV.dat\n", + "Mean rate : 14.51 +/- 6.48\n", + "150\n", + "Data/calibration_150mV.dat\n", + "Mean rate : 14.33 +/- 6.73\n", + "175\n", + "Data/calibration_175mV.dat\n", + "Mean rate : 7.00 +/- 3.91\n", + "200\n", + "Data/calibration_200mV.dat\n", + "Mean rate : 5.46 +/- 3.08\n", + "225\n", + "Data/calibration_225mV.dat\n", + "Mean rate : 4.88 +/- 2.72\n", + "250\n", + "Data/calibration_250mV.dat\n", + "Mean rate : 4.38 +/- 2.66\n", + "275\n", + "Data/calibration_275mV.dat\n", + "Mean rate : 3.98 +/- 2.16\n", + "300\n", + "Data/calibration_300mV.dat\n", + "Mean rate : 3.28 +/- 1.76\n" + ] + } + ], + "source": [ + "rate = []\n", + "error = []\n", + "threshold = []\n", + "\n", + "for i in range(50,325,25):\n", + " \n", + " print i\n", + " file_name = 'Data/calibration_' + str(i) + 'mV.dat'\n", + " print file_name\n", + " \n", + " data = pd.read_csv(file_name, delimiter=' ', sep = 's*', comment='S',\n", + " names = ['T1', 'CH1a', 'CH1b', 'CH2a', 'CH2b', 'CH3a', 'CH3b', 'CH4a', 'CH4b', 'T2', 'hora', 'fecha', 'rec1', 'rec2', 'rec3', 'rec4'], \n", + " parse_dates={'FECHA_HORA': [11,10]}, date_parser= lambda x, y: pd.datetime.strptime(x + ' '+ y , '%d%m%y %H%M%S.%f'))\n", + "\n", + " mean, std = data_analysis(data)\n", + " \n", + " rate.append(mean)\n", + " error.append(std)\n", + " threshold.append(i)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgsAAAFaCAYAAACQZR4BAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzt3Xl8FPX9x/HXJ5s7EM4AQUUQKAgS\nsKaeiLeopGpba21rq62ttrWX1lpbe1h/PW2r9rT1qvbSKvUEqyIeqLVaUAkiIoqg3JGbhJDr8/tj\nJhhCsiRhs7O7eT8fj33szndmdj8Z9kHeme93vmPujoiIiEh7sqIuQERERFKbwoKIiIjEpbAgIiIi\ncSksiIiISFwKCyIiIhKXwoKIiIjEpbAgIiIicSksiIiISFwKCyIiIhJXdtQFpJKBAwf68OHDoy5D\nREQkKebNm/euu5fsaTuFhRaGDx/O3Llzoy5DREQkKcxseUe2UzeEiIiIxKWwICIiInEpLIiIiEhc\nCgsiIiISl8KCiIiIxKWwICIiInEpLIiIiEhcCgsiIiISl8KCiIiIxKWw0E1efHsj9720MuoyRERE\n9prCQjf523+X8/37X6GuoSnqUkRERPZK2ocFMxtjZi+3eGwxs6+bWX8zm2VmS8Lnfsmsq6KslC21\nDTzzRlUyP1ZERCTh0j4suPtid5/k7pOAQ4Aa4F7gCmC2u48GZofLSTN5VAnF+dnMmL86mR8rIiKS\ncGkfFlo5AXjT3ZcDZwC3h+23A2cms5Dc7Cymjh/Co6+upba+MZkfLSIiklCZFhbOAe4IXw929+Y/\n69cAg9vawcwuNLO5Zja3qiqxXQYVE4eybUcDc15XV4SIiKSvjAkLZpYLnA7c3Xqduzvgbe3n7je6\ne7m7l5eUlCS0piNHDqBfYQ4zKtUVISIi6StjwgJwKvCiu68Nl9eaWSlA+Lwu2QXlxLI45aAhPLZI\nXREiIpK+MiksfJz3uiAAHgDOC1+fB9yf9IqAirKh1NQ18sRrSc8qIiIiCZERYcHMioCTgHtaNP8M\nOMnMlgAnhstJd9iI/gwoylVXhIiIpK3sqAtIBHevBga0altPcHVEpLJjWZw6YQjT562gpq6BwtyM\nOOQiItKDZMSZhVRXUTaU2vomZi9SV4SIiKQfhYUk+MDw/pT0zmOmuiJERCQNKSwkQSzLmDahlCcW\nr2PbjoaoyxEREekUhYUkmVZWyo6GJmYvWrvnjUVERFKIwkKSHDKsH0OK83lQ94oQEZE0o7CQJFlZ\nxmkTSpnzehWbt9dHXY6IiEiHKSwkUcXEUuoam3jsVXVFiIhI+lBYSKKD9+vLPn0LmFG5KupSRERE\nOkxhIYnMjGllpTy95F0216grQkRE0oPCQpJVlJXS0OQ8snBN1KWIiIh0iMJCkk3Ypw/D+hfyoLoi\nREQkTSgsJFlzV8R/3lzPhuq6qMsRERHZI4WFCFSUldLY5Dz8iroiREQk9SksRGBcaTEjBhYxc4G6\nIkREJPUpLETAzKgoK+W5N9dTtXVH1OWIiIjEpbAQkWllpTQ5PKyrIkREJMUpLERkzODejBrUixnz\n1RUhIiKpTWEhIs1dES8s28DaLbVRlyMiItIuhYUIVZSV4g7/XqA7UYqISOpSWIjQqEG9GTukNzMq\nFRZERCR1KSxEbNqEUuYu38jqzdujLkVERKRNCgsRq5g4FICZOrsgIiIpSmEhYiMGFjF+aLG6IkRE\nJGUpLKSAaWWlvPzOJt7ZUBN1KSIiIrtRWEgBFROCroiHdFWEiIikIIWFFDBsQCFl+/ZhpsKCiIik\nIIWFFFFRVkrlis0sX18ddSkiIiK7yIiwYGZ9zWy6mb1mZovM7Agz629ms8xsSfjcL+o64zltQimA\nzi6IiEjKyYiwAPwaeNjdxwITgUXAFcBsdx8NzA6XU9a+/Qo5eFhfZsxXWBARkdSS9mHBzPoAU4Bb\nANy9zt03AWcAt4eb3Q6cGU2FHVdRNpRXV29hadW2qEsRERHZKe3DAjACqAL+bGYvmdnNZlYEDHb3\n5j/T1wCD29rZzC40s7lmNreqqipJJbfttAlDAE3QJCIiqSUTwkI28H7gBnc/GKimVZeDuzvgbe3s\n7je6e7m7l5eUlHR7sfGU9ingA8P7aYImERFJKZkQFlYAK9z9+XB5OkF4WGtmpQDh87qI6uuUaRNK\nWbx2K0vWbo26FBERESADwoK7rwHeMbMxYdMJwKvAA8B5Ydt5wP0RlNdpp00oxQydXRARkZSR9mEh\n9BXg72ZWCUwCfgL8DDjJzJYAJ4bLKW9QcT6HjejPjMpVBL0nIiIi0cqOuoBEcPeXgfI2Vp2Q7FoS\nYVrZUL533yssXruVsUOKoy5HRER6uEw5s5BRTj1oCFmG5lwQEZGUoLCQggb2yuOIkQOYuWC1uiJE\nRCRyCgspqqJsKG+9W83CVVuiLkVERHo4hYUUdcr4IcSyTFdFiIhI5BQWUlS/olyOGjWQmQt0VYSI\niERLYSGFVZSV8s6G7VSu2Bx1KSIi0oMpLKSwqeOGkBMz3bZaREQipbCQwvoU5nD06BJmVuqqCBER\niY7CQoqrKCtl5abtvPTOpqhLERGRHkphIcWdOG4wubEsTdAkIiKRUVhIccX5ORwzpoSHFqymqUld\nESIiknwKC2mgoqyUNVtqmff2xqhLERGRHkhhIQ2ccOBg8rKzmDF/VdSliIhID6SwkAZ65WVz3JhB\nPPTKGhrVFSEiIknW7beoNrNhe/kWa9y9LiHFpLGKiaU8vHANL7y1gSNGDoi6HBER6UG6PSwAy4C9\n+XP4JODxxJSSvo4fO4iCnBgzKlcpLIiISFIlIywA3AdUdnKfIuAb3VBLWirMzeb4Awfx8Ctr+OHp\n48mOqQdJRESSI1lh4V/u/o/O7GBmA4DLuqmetPTBslJmVq7mv0s3MHn0wKjLERGRHiIZf57+CXi9\nC/ttD/ddkdhy0texYwZRlBtj5gJdFSEiIsnT7WHB3b/o7nO7sF9NuG9XgkZGys+JceK4wfz7lTXU\nNzZFXY6IiPQQ6vhOMxVlQ9lUU89/3lwfdSkiItJDJD0smNkAMzuwVdsIM/utmf3dzKYmu6Z0MuV9\nA+mdl60JmkREJGmiOLPwa+D25gUz6wU8DVwMfByYaWZTIqgrLeRlxzhp/GAeWbiGugZ1RYiISPeL\nIiwcATzUYvljwFDgtPB5EXB5BHWljYqyUrbUNvDMG1VRlyIiIj1AFGFhMPBOi+VTgbnu/rC7rwFu\nAw6OoK60MXlUCX0KcnTbahERSYoowkI9UNBi+RjgqRbLmwBNURhHbnYWU8cPZtara6mtb4y6HBER\nyXBRhIXXgY9Y4HSgPzC7xfr9gA0R1JVWppUNZeuOBua8rq4IERHpXlGEhd8TnE3YCEwHlrJrWDga\nWBBBXWnlyJED6FeYw4xKdUWIiEj3StZ0zzu5+1/MzIEzgc3AT9y9HnZO8dwX+ENn3tPMlgFbgUag\nwd3Lzaw/8E9gOMHNrM52940J+jEilxPL4pSDhnD/y6uorW8kPycWdUkiIpKhknJmIbw8cid3/6u7\nf8TdP+vub7RoX+/uh7j7LV34mOPcfZK7l4fLVwCz3X00wZmLK7r8A6SoirKh1NQ18sRr66IuRURE\nMliyuiHeNbMHzewCMytJ0meewXvzOdxOcCYjoxw2oj8DinKZsUBdESIi0n2SFRa+C/QjuDHUKjN7\n2swuMbMDEvT+DjxqZvPM7MKwbbC7N/8WXUNwyeZuzOxCM5trZnOrqtJrsGB2LItTJwzh8UXrqKlr\niLocERHJUEkJC+7+S3efDOwDfBnYBvwUWGJm883sKjObtBcfMdnd308wZ8PFrWeAdHcnCBRt1Xaj\nu5e7e3lJSbJOeiRORdlQttc38ri6IkREpJsk9WoId1/r7n9y91OBEuBc4DXgUmCemS01s2vN7Ggz\ns06878rweR1wL3AosNbMSgHC54z8bfqB4f0p6Z2nCZpERKTbRHbXSXff6u53uPvHgIEEYwyeAD5J\nMEnTWjM7Z0/vY2ZFZta7+TVwMvAK8ABwXrjZecD9if8pohfLMqZNKOWJxevYtkNdESIikngpcYtq\nd69z9xnufgFQChwL/A3oFXfHwGDgGTObD7wAzHT3h4GfASeZ2RLgxHA5I00rK2VHQxOzF62NuhQR\nEclASZ9noT1mNhDo5+5LgDnhY4/cfSkwsY329cAJCS0yRR0yrB9DivN5cP5qzpi0T9TliIhIhkn6\nmQUz+7SZ3diq7afAWuA1M3u2uVtBOiYry5hWVsqc16vYUlsfdTkiIpJhouiGuIgWZzTMrBz4FvA0\ncBPB4MRLI6grrU0rK6WusYlZC9UVISIiiRVFWBgFVLZY/ijBjaNOdvcvADcDZ0dQV1o7eL++7NO3\ngBmVq6IuRUREMkwUYaEPwT0hmp0APObudeHyXGBY0qtKc2ZBV8TTS95lc426IkREJHGiCAtrgNEA\n4dTPkwi6IJr1IrghlHRSRVkpDU3OIwvXRF2KiIhkkCjCwuMEsyxeBtxGMLPizBbrxwArI6gr7U3Y\npw/D+hfqXhEiIpJQUYSF7wOrgWsIpmf+qbsvAzCzbOAjBJMySSc1d0U8+8a7bKiu2/MOIiIiHZD0\nsODuK4DxBHMjDHf377dYXQhcCPw82XVlioqyUhqbnIdfUVeEiIgkRiTzLAD7ufsCd3+75Tp33wLM\nB45Jdl2ZYlxpMSMGFjFzga6KEBGRxIiiG+LPwJFx1h8WbiNdYGZUlJXy3Jvrqdq6I+pyREQkA0QR\nFvZ0N8kcoCkZhWSqirKhNDk8rKsiREQkAaK6kZS31WhmfYFpBAMgpYveN7gXowb1YsZ8dUWIiMje\nS0pYMLMfmFmjmTUSBIW/NS+3fADrCWZvvDMZdWWq5q6IF5ZtYN2W2qjLERGRNJesu06+DPyFoAvi\n0wSTMC1ttY0D24D/Anckqa6MVVFWyvWPLeGhBas5/6gRUZcjIiJpLClhwd3vB+4HMLP9gR+5++xk\nfHZPNWpQb8YO6c2MSoUFERHZO1HMs3CcgkJyTJtQytzlG1m9eXvUpYiISBqLaoAjZlZoZuPM7Ggz\nm9L6EVVdmaRi4lAAZlZqvKiIiHRdssYs7GRmRcCvgM+08/lGMH4hlsy6MtGIgUWMH1rMzAWr+dzR\nB0RdjoiIpKmkhwXgeuAC4CGCm0qtj6CGHmNaWSnXPLyYFRtr2LdfYdTliIhIGooiLHwIuMPdPxnB\nZ/c4FROGcs3Di5lZuZqLjhkZdTkiIpKGohizkA88GcHn9kjDBhRStm8fZuq21SIi0kVRhIW5wOgI\nPrfHqigrpXLFZpavr466FBERSUNRhIUrgM+YWXkEn90jnTahFEBnF0REpEuiGLNwIbAC+K+ZPUcw\nk2Njq23c3S9IemUZat9+hRw8rC8z5q/mS8eOirocERFJM1GEhfNbvD4qfLTmBFdMSIJUlA3l/2a8\nytKqbRxQ0ivqckREJI1EMYNjVgcemmMhwU6bMATQBE0iItJ5kc3gKMlV2qeADwzvxwyFBRER6aSM\nCQtmFjOzl8xsRrg8wsyeN7M3zOyfZpYbdY1RqygbyuK1W1mydmvUpYiISBpJelgws8c78OjKjaa+\nBixqsfxz4Dp3HwVsRGMgOPWgIZihswsiItIpUZxZOAAY0eoxGpgCHAscFG7TYWa2LzANuDlcNuB4\nYHq4ye3AmXtfenobVJzPYSP6M3PBatw96nJERCRNRDHAcbi7j2j12A8oAq4ENgFHdvJtrwcuB5rC\n5QHAJndvCJdXAPu0taOZXWhmc81sblVVVad/nnQzrWwob6zbxmJ1RYiISAelzJgFd9/h7j8Fngeu\n7eh+ZlYBrHP3eV383Bvdvdzdy0tKSrryFmnl1IOGkGUwY766IkREpGNSJiy08AwwtRPbHwWcbmbL\ngDsJuh9+DfQ1s+Z5JPYFViayyHQ1sFceR4wcoK4IERHpsFQMCyOADl+54O7fdvd93X04cA7weHhH\nyyeAs8LNzgPuT3Sh6aqibChvvVvNwlVboi5FRETSQBRXQwxr5zHJzC4DvgrMScBHfQu41MzeIBjD\ncEsC3jMjnDJ+CLEs070iRESkQ6KY7nkZwXTObTFgMUFg6DR3f5Lw9tfuvhQ4tCvvk+n6FeVy1KiB\nzKhcxeVTxxBcPCIiItK2KMLC1eweFhzYALwOPObuTbvtJQlVUVbK5dMrqVyxmYn79Y26HBERSWFJ\nDwvuflWyP1N2N3XcEH6Qs5BrZ73ObZ/5gM4uiIhIu1JxgKMkQZ/CHK44dSxPvV7FP//3TtTliIhI\nCoskLJhZkZn90MwqzWxb+Kg0s6vMrCiKmnqiTx2+P0eOHMD/zXiVdzbURF2OiIikqCiuhugPvAB8\nDxgMvBQ+BgPfB14It5FulpVlXHNWGWbG5dMraWrSvAsiIrK7KM4sXA2MBb4MDHX3o939aGAocDEw\nBrgqgrp6pH37FfK9igN5bul6/vLcsqjLERGRFBRFWDgduNnd/+Dujc2N7t7o7jcAt6KbPiXV2eX7\ncdyYEn728GssrdoWdTkiIpJioggLzV0P7Xkx3EaSxMz42UfKyMuOcdnd82lUd4SIiLQQRVhYCxwc\nZ/3B4TaSRIOL87n6jPG8+PYmbnp6adTliIhICokiLDwIXGBmF5nZzs83sywzuxD4LPBABHX1eKdP\nHMop44dw7aOv87puYS0iIqEowsL3gaXAH4BVZvaUmT0FrAJuCNf9IIK6ejwz40cfOoje+dlcetfL\n1DdqIk0REYkgLLj7eqAc+BmwHvhA+HgX+CnwgXAbicDAXnn8+EMH8crKLfz+iTeiLkdERFJAFPeG\nwN23AFeGD0kxpxxUypmThvK7x9/gxAMHc9A+faIuSUREIqTpnqVNPzz9IAb0yuXSu15mR0PjnncQ\nEZGMFcUMjj80s1firK80s+8msybZXZ/CHH72kTJeX7uN6x9bEnU5IiISoSjOLHwImBVn/SzgrCTV\nInEcN2YQ53xgP/701JvMW74x6nJERCQiUYSFEcBrcdYvDreRFHDltAMp7VPAZXfPZ3uduiNERHqi\nqMYs9I2zrh8QS1YhEl/v/Bx+cVYZb71bzTWPxMt4IiKSqaIICwuBM9paYWZGcO8I/VZKIUeOGsj5\nRw7nz88u47k3dVWriEhPE0VYuAU43MxuM7OS5sbw9a3A4eE2kkIuP2UMwwcU8s3p89m2oyHqckRE\nJImimJTpJuAfwKeBNWa2wsxWAGuA84C7wrtPSgopzM3mV2dPZNWm7fx45qKoyxERkSSKZMyCu58L\nnAPMADaHjweAs93941HUJHt2yP79+fzRB3DHC2/z5OJ1UZcjIiJJYu66HXGz8vJynzt3btRlpLTa\n+kY++Ntn2FrbwCNfn0KfwpyoSxIRkS4ys3nuXr6n7TSDo3RKfk6Ma8+eRNW2HfzwwYVRlyMiIknQ\n7WHBzD5hZvt3Yb/ccN9B3VGXdN2Efftw8XGjuOellTyycE3U5YiISDdLxpmFvwJHdWG/3uG+ByW2\nHEmELx83ivFDi7ny3gWs37Yj6nJERKQbJeOukwaMNbMpndyvT7ivpKDc7Cx+dfZEPvjbZ/je/a/w\n+0+8n2CaDBERyTTJukV1V25HbYBGX6awsUOKueSk93HNw4t5sHI1p08cGnVJIiLSDZIRFj6zl/vH\nHUVnZvnAHCCP4OeZ7u4/MLMRwJ3AAGAe8Cl3r9vLWqSVC48+gEcXruV7973C4SP6M6g4P+qSREQk\nwdL+0slwiugid99mZjnAM8DXgEuBe9z9TjP7IzB/T5M96dLJrnmzahun/fppJo8ayM3nlas7QkQk\nTfSYSyc9sC1czAkfDhwPTA/bbwfOjKC8HmFkSS++dcpYZr+2jrvnrYi6HBERSbC0DwsAZhYzs5eB\ndcAs4E1gk7s338RgBbBPO/teaGZzzWxuVVVVcgrOQOcfOZzDRvTn6gdfZeWm7VGXIyIiCZQRYcHd\nG919ErAvcCgwthP73uju5e5eXlJSsucdpE1ZWcYvPzqRJne+Nb2Spqb07t4SEZH3ZERYaObum4An\ngCOAvmbWPIBzX2BlZIX1EPv1L+TKaQfyzBvv8vfnl0ddjoiIJEjahwUzKzGzvuHrAuAkYBFBaDgr\n3Ow84P5oKuxZPnHoMI4ePZCfPPQay9dXR12OiIgkQNqHBaAUeMLMKoH/AbPcfQbwLeBSM3uD4PLJ\nWyKssccwM645q4zsmHHZ3fNpVHeEiEjaS3pYMLPjO7DNJR19P3evdPeD3b3M3Q9y96vD9qXufqi7\nj3L3j7q75iROktI+BVz1wfH8b9lGbn3mrajLERGRvRTFmYVZZvYjM9vts81soJk9BPwygrokgT78\n/n04adxgfvHoYt5YtzXqckREZC9EERbuBL4DzDGz/ZobzexEoBI4gaALQdKYmfGTD02gKDfGN+6a\nT0NjU9QliYhIFyU9LLj7J4HPAZOA+WZ2jpn9HHgEqAEmu7vOLGSAkt55/OjMCcxfsZk/PvVm1OWI\niEgXRTLA0d1vBQ4huJzx78BlwB3Awe7+vyhqku4xrayUD04cyq9nL2Hhqs1RlyMiIl0Q5dUQ4wlm\nVWwiuMPkQIKbQUmGufr08fQtzOUbd82nrkHdESIi6SaKqyHyzOwG4G5gKUFouAw4lqBb4oRk1yTd\nq19RLj/90AReW7OV38xeEnU5IiLSSVGcWZgLXAT8DjjS3V9392uBowjGLDxiZj+JoC7pRieOG8xZ\nh+zLH558g5ff2RR1OSIi0glRhIVS4HR3/5q71zU3uvs8gkGPd6CrITLS9z84jiHF+XzjrpeprW+M\nuhwREemgKMLCxHCGxd24e7W7fwo4P7klSTIU5+dwzVkTebOqml8+sjjqckREpIOiuHRyjzd0cve/\nJqMWSb7Jowdy7uHDuOXZt3jhrQ1RlyMiIh0QxQDHYR15JLsuSZ5vn3og+/Ur5LK751O9oyHqckRE\nZA+i6IZYBrzVgYdkqKK8bH750Ym8s7GGn/57UdTliIjIHmRH8JlXA61vRZgNjATOABYA/052UZJc\nh47ozwVHjeDmZ95i6vghHD26JOqSRESkHUkPC+5+VXvrzOwA4DmCyyslw102dQxPLF7H5dMreeSS\nKRTn50RdkoiItCHKGRx34+5LgT8BP4y6Ful++TkxfnX2JNZuqeXqB1+NuhwREWlHSoWF0EpgXNRF\nSHJM2q8vXzp2FNPnreCxV9dGXY6IiLQhFcPCmcDGqIuQ5PnqCaMZO6Q3V9yzgI3VdXveQUREkirp\nYxbM7PvtrOoPHA8cBFyTvIokarnZWVx79iTO+P0zfP+Bhfz24wdHXZKIiLQQxdUQV8VZtwb4LvDz\n5JQiqWLc0GK+evxofjXrdaaOH0xF2dCoSxIRkVAUYWFEG20ObHD3bckuRlLHF48dyWOL1vK9+17h\nsBEDKOmtO5aLiKSCKKZ7Xt7G420FBcmOZfGrsydSXdfIt+9ZgHvr6ThERCQKqTjAUXqwUYN6882T\nx/DYorXc8+IebyMiIiJJ0O3dEGZ2axd2c3e/IOHFSFr47OQRPPrqGq56cCFHjhpAaZ+CqEsSEenR\nrLtP9ZpZUxd2c3ePJbyYPSgvL/e5czV5ZCpYvr6aU65/mvfv35cbP1VOUV4Uw2tERDKbmc1z9/I9\nbdft3RDuntWFR9KDgqSW/QcUcdXp4/jPm+s5+bo5PPV6VdQliYj0WBqzICnrYx8Yxt0XHUF+Thbn\n3foCl971siZtEhGJQFLCgpkdamb9k/FZklnKh/dn5leP5svHjeKBl1dx0nVPMbNyta6UEBFJomSd\nWXgOOKV5wcx6mdk/zGyv7wFhZvuZ2RNm9qqZLTSzr4Xt/c1slpktCZ/77e1nSTTyc2JcNnUMD3x5\nMqV9Crj4Hy9y0V/nsXZLbdSliYj0CMkKC9ZqOQ84BxiSgPduAL7h7uOAw4GLwxByBTDb3UcDs8Nl\nSWPjhhZz75eO5NunjuWp16s48dqnuPOFt3WWQUSkm6X9mAV3X+3uL4avtwKLgH2AM4Dbw81uJ7hB\nlaS57FgWFx0zkoe/PoVxpcVccc8CPnnz8yxfXx11aSIiGSvtw0JLZjYcOBh4Hhjs7qvDVWuAwe3s\nc6GZzTWzuVVVGnGfLkYMLOKOzx/OTz40gQUrNjP1+jncNGcpjU06yyAikmgZExbMrBfwL+Dr7r6l\n5ToPzlO3+VvE3W9093J3Ly8pKUlCpZIoWVnGJw4bxqOXTmHyqIH8+KFFfPgPz/Lami173llERDos\nmTPdnGZmzWMUCgl+eX/UzCa1sa27+3UdfWMzyyEICn9393vC5rVmVuruq82sFFi3N8VL6irtU8BN\nny5nRuVqrnpgIRW/eYYvHTeKi48bSV62puwQEdlb3T6DI3RpFscOz+BoZkYwJmGDu3+9RfsvgPXu\n/jMzuwLo7+6Xx3svzeCY/jZU1/F/M17l3pdWMmpQL37+kTIO2V8XwoiItKWjMzgmKywc09l93P2p\nDr73ZOBpYAHQHEq+QzBu4S5gGLAcONvdN8R7L4WFzPHE4nVcec8CVm+p5fwjh3PZyWM0ZbSISCsp\nFRbShcJCZtm2o4FrHn6Nvzy3nH36FvDTD09gyvs0LkVEpFnK3BtCJCq98rK5+oyDuPsLR5CXk8Wn\nb32By+6ez6YaTRktItIZCguS8T4wvD8PffVoLj5uJPe+tJITr53Dvxes3vOOIiICKCxID5GfE+Ob\nU8fywJePYnBxHl/8+4tc9Ne5rNOU0SIie6SwID3K+KF9uP/io/jWKWN5cnEwZfRd/3tHU0aLiMSh\nsCA9TnYsiy8eO5J/f+1oxpYWc/m/Kjn3lud5e31N1KWJiKQkhQXpsQ4o6cWdnz+cH515EPPfCaaM\nvvlpTRktItKawoL0aFlZxrmH78+sS6dwxMgB/GjmIj58w39YvGZr1KWJiKQMhQURgimjbzmvnF+f\nM4l3NtRQ8dunuW7W69Q1dHbyURGRzKOwIBIyM86YtA+PXXoM0yaU8uvZS6j47dO89PbGqEsTEYmU\nwoJIK/2Lcrn+nIO59fxyttY28OEb/sP/zXiVmrqGqEsTEYmEwoJIO44fO5hHL5nCJw8bxi3PvMXU\n6+fwzJJ3oy5LRCTpFBZE4uiBT9WgAAAV+0lEQVSdn8OPzpzAPy88nOysLM695Xkunz6fzTX1UZcm\nIpI0CgsiHXDYAQP499eO5ovHjuRfL67kxOue4uFXNGW0iPQMuutkC7rrpHTEKys3c/n0Sl5dvYVT\nDxrC2eX7kR0zYllGdlZW+Bwux5pfZ73XltVi25jt0m5mUf94ItKD6BbVXaCwIB1V39jETU8v5frH\nliT08sosY9fAEds1XLwXStoJILHd24vzc/jCsSMZMbAoYXWKSGZQWOgChQXprHVbalm5aTuNTU5D\nk7d4bqKh0Xdpr29sanu7JqexsZ325uXGdtrb+Lz6VsurNm2nocm57OQxfHbyCGJZOnshIoGOhoXs\nZBQjkqkGFeczqDg/6jLiWrullivvXcCPH1rEQ6+s5hdnlTFqUO+oyxKRNKIBjiIZbnBxPjd9upzr\nPzaJt96t5rTfPMMfnnyDhkbNTikiHaOwINIDmBlnHrwPj14yhePHDOKahxfrHhgi0mEKCyI9yKDe\n+dxw7vv53ScOZsXG7VT89ml+M3sJ9TrLICJxKCyI9DBmRkXZUGZdMoWp44dw7azXOeN3z7Jw1eao\nSxORFKWwINJDDeiVx+8+8X7+eO4hrNu6gzN+9yzXPrpYd9oUkd0oLIj0cKccNITHLp3C6ROH8pvH\n3+CDv32GyhWboi5LRFKIwoKI0Lcwl2s/Nolbzitn0/Y6zvz9s/zs369RW98YdWkikgIUFkRkpxMO\nHMyjlxzDWYfsyx+fepNpv3maecs3Rl2WiERMYUFEdtGnIIdrzprI7Z89lO11jZz1x//woxmvsr1O\nZxlEeiqFBRFp0zHvK+GRS6bw8UOHcfMzb3Hqr+fwwlsboi5LRCKgsCAi7eqdn8NPPjSBf3zuMBqa\nnI/d+BxXPbCQmrqGqEsTkSRK+7BgZrea2Toze6VFW38zm2VmS8LnflHWKJLujhw1kEe+PoXzjhjO\nbf9ZxtTr5/CfN9+NuiwRSZK0DwvAbcAprdquAGa7+2hgdrgsInuhKC+bq04fz10XHUHMjE/c9DxX\n3ruAbTt0lkEk06V9WHD3OUDrjtQzgNvD17cDZya1KJEMduiI/vz7a1P43OQR/OOFt5l63RzmvF4V\ndVki0o3SPiy0Y7C7rw5frwEGt7ehmV1oZnPNbG5Vlf7DE+mIgtwY360Yx/QvHEl+ThafvvUFvjW9\nki219VGXJiLdIFPDwk7u7oDHWX+ju5e7e3lJSUkSKxNJf4fs34+ZXz2aLxwzkrvnvcPJ187hidfW\nRV2WiCRYpoaFtWZWChA+638vkW6SnxPjilPHcu+XjqK4IJvP3PY/Lr3rZTbV1EVdmogkSKaGhQeA\n88LX5wH3R1iLSI8wcb++PPiVyXzl+FHc//IqTrpuDo8uXBN1WSKSAGkfFszsDuA5YIyZrTCzC4Cf\nASeZ2RLgxHBZRLpZXnaMb5w8hvsvPoqBvfK48K/z+ModL7GhWmcZRNKZBV36AlBeXu5z586NugyR\njFDf2MQNT77Jbx9fQnF+DlefcRDTykqjLktEWjCzee5evqft0v7MgoikppxYFl89YTQPfmUyQ/sW\ncPE/XuSLf5tH1dYdUZcmIp2ksCAi3WrskGLu/dKRXH7KGGYvWsfJ1z3F/S+vRGc1RdKHwoKIdLvs\nWBZfOnYUD31tMsMHFvG1O1/m83+Zx7ottVGXJiIdoLAgIkkzalBvpn/hSK487UCeXlLFidc+xfR5\nK3SWQSTFaYBjCxrgKJI8S6u28a1/VfK/ZRsZWVLEqEG92H9AEfsPKGT//sHz0L4FxLIs6lJFMlZH\nBzhmJ6MYEZHWDijpxT8vPIJ/vPA2Ty5ex5tV1TyxuIq6hqad2+TEjH37FYYBopBhA4oYPiBY3rdf\nIfk5sQh/ApGeQ2FBRCKTlWWce/j+nHv4/gA0NTlrt9ay7N0a3t5QzbL1Nby9voblG6qZt2wjW1vc\n4dIMSovzGTagkOEDihjW4ozE/gMK6Z2fE9WPJZJxFBZEJGVkZRmlfQoo7VPAESMH7LLO3dlYU8+y\n9dVBgFhfw/L11SzfUMNji9bx7rZdL8kcUJQbBojC97o3wucBRbmYqXtDpKMUFkQkLZgZ/Yty6V+U\ny/uH9dtt/bYdDWGICAJEc5j437KN3D9/FS2HZxXlxnYGh+YzE/v3L2T/gUUMKc7XOAmRVhQWRCQj\n9MrLZtzQYsYNLd5t3Y6GRlZs3M7b62tYtr6a5etreHtDDYvXbmX2onXUNb43TiI3lsW+/QuCro3+\nhTu7NfoU5NI7P5uivGx65WZTlBcjO6YLyqRnUFgQkYyXlx1jZEkvRpb02m1dY5OzevP2cGxEzS7d\nHM8vXU91XWO775ufk0WvvBx65cXolZ9NUW42vfKyg9d52fTOC55bvu6Vnx1sn5dDUV6MXmF7joKH\npDCFBRHp0WJZwRUX+/Yr5MhW69yd9dV1vL2hhi3b66ne0ci2HfVs29FI9Y4GtjU/ahuo3tHA1h0N\nrNlSS3XVe+tq65va/NzW8rKzdp65KMptDhXZO8NE7zCMFOXF3jvD0WJ9r7xsCnNjFOVlk5edpTEZ\nklAKCyIi7TAzBvbKY2CvvC6/R0NjUxAy6oJQ0Rwiqne8t7xL8GixvG5rLW+928jWMIxsr2//LMeu\ndUNRbjYFuTGKcmMU5GaHzzGKcoNQUZgXo7D5dW7wuigvRkFO8Nzc1vK5ICdGlsZz9EgKCyIi3Sg7\nlkWfwiz6FO79pZwNjU1U17V9VmNbGCaqdzSyva6B6rpGauoaqalr2Pm8tbaBdVt2UF3XwPa6Rqrr\nOn7mo1lBTiwIFWHw2CWA5MYozMumMCd8bhVW8nNj5GfHyM/JIj8nFj6yKAhf64xI6lJYEBFJE9mx\nLPoUZNGnIHFzSDQ2Odvrw1CxY/eAUVPXGASPHQ2t1u36+t1tO3YJKzX1jXRlguC87CBIFOS8Fyry\ncmLkZ2dR0GbYaLGc3U57q1CSnx0jLydL4aQTFBZERHqwWJbtHPtA78S9r7tTW9+0y1mM7XWN1NY3\nUdvQyI76RrbXh8u7PDe+t9wQvN4erttYXbezPXivRmobmnaZ9bMzzNglfBTkxOhdkENxfjbFBTkU\n5+fQpyCH4oJsivNzwrb31jW394SZRBUWREQk4cyMgnCcRHdranJ2NDSF4WP3sFHbRijZXh8EltqG\n90JKdV0wPmTL9npWbtrOlu3B65aX1rYlNztrl/DQHCqCoJHT5rqW7XnZqR82FBZERCStZWV1bzCp\nrW9kS219EB5q69myvZ7N2+vZEgaLttat2FDDltrgdX1j/P6YvOysNkJE24FjWP9Cyvbt2y0/ZzwK\nCyIiInE0j3sY1IVumubumOYg0TpYtAwcm7cH6zbW1LF8ffXOdQ1N74WNqeMH86dP7fEmkQmnsCAi\nItJNWnbHDC7O7/T+7sEA1OaAEdXkXQoLIiIiKcrMwnkushnSp/NhI1E0v6iIiIjEpbAgIiIicSks\niIiISFwKCyIiIhKXwoKIiIjEpbAgIiIicWV0WDCzU8xssZm9YWZXRF2PiIhIOsrYsGBmMeD3wKnA\nOODjZjYu2qpERETST8aGBeBQ4A13X+rudcCdwBkR1yQiIpJ2Mjks7AO802J5Rdi2CzO70Mzmmtnc\nqqqqpBUnIiKSLnr8dM/ufiNwI4CZVZnZ8gS+/UDg3QS+X0+kY7j3dAwTQ8dx7+kY7r1EH8P9O7JR\nJoeFlcB+LZb3Ddva5e4liSzAzOa6e/JvD5ZBdAz3no5hYug47j0dw70X1THM5G6I/wGjzWyEmeUC\n5wAPRFyTiIhI2snYMwvu3mBmXwYeAWLAre6+MOKyRERE0k7GhgUAd38IeCjCEm6M8LMzhY7h3tMx\nTAwdx72nY7j3IjmG5u5RfK6IiIikiUwesyAiIiIJoLAgIiIicSksJJCZLTOzBWb2spnNDdv6m9ks\nM1sSPveLus5UYma3mtk6M3ulRVubx8wCvwnv9VFpZu+PrvLU0c4xvMrMVobfxZfN7LQW674dHsPF\nZjY1mqpTi5ntZ2ZPmNmrZrbQzL4Wtuu72EFxjqG+ix1kZvlm9oKZzQ+P4Q/D9hFm9nx4rP4ZXuGH\nmeWFy2+E64d3V20KC4l3nLtPanEd7BXAbHcfDcwOl+U9twGntGpr75idCowOHxcCNySpxlR3G7sf\nQ4Drwu/ipHCwL+H9Uc4Bxof7/CG8j0pP1wB8w93HAYcDF4fHSt/FjmvvGIK+ix21Azje3ScCk4BT\nzOxw4OcEx3AUsBG4INz+AmBj2H5duF23UFjofmcAt4evbwfOjLCWlOPuc4ANrZrbO2ZnAH/xwH+B\nvmZWmpxKU1c7x7A9ZwB3uvsOd38LeIPgPio9mruvdvcXw9dbgUUE08Pru9hBcY5he/RdbCX8Pm0L\nF3PChwPHA9PD9tbfw+bv53TgBDOz7qhNYSGxHHjUzOaZ2YVh22B3Xx2+XgMMjqa0tNLeMevQ/T5k\npy+Hp8hvbdH9pWO4B+Gp3IOB59F3sUtaHUPQd7HDzCxmZi8D64BZwJvAJndvCDdpeZx2HsNw/WZg\nQHfUpbCQWJPd/f0EpygvNrMpLVd6cJ2qrlXtBB2zLrsBGElwKnM18Ktoy0kPZtYL+BfwdXff0nKd\nvosd08Yx1HexE9y90d0nEdyi4FBgbMQlAQoLCeXuK8PndcC9BP/Qa5tPT4bP66KrMG20d8w6fb+P\nnsrd14b/6TQBN/He6V0dw3aYWQ7BL7m/u/s9YbO+i53Q1jHUd7Fr3H0T8ARwBEE3V/Mkii2P085j\nGK7vA6zvjnoUFhLEzIrMrHfza+Bk4BWC+1GcF252HnB/NBWmlfaO2QPAp8OR6IcDm1ucIpYWWvWf\nf4jguwjBMTwnHEU9gmCA3gvJri/VhP28twCL3P3aFqv0Xeyg9o6hvosdZ2YlZtY3fF0AnEQw9uMJ\n4Kxws9bfw+bv51nA495NMy1qBscEMbMDCM4mQDCN9j/c/cdmNgC4CxgGLAfOdveODkbLeGZ2B3As\nwW1X1wI/AO6jjWMW/mf0O4KR0zXAZ9x9bhR1p5J2juGxBKd9HVgGXNT8y8zMrgQ+SzB6/evu/u+k\nF51izGwy8DSwAGgKm79D0Oeu72IHxDmGH0ffxQ4xszKCAYsxgj/m73L3q8PfL3cC/YGXgHPdfYeZ\n5QN/JRgfsgE4x92XdkttCgsiIiISj7ohREREJC6FBREREYlLYUFERETiUlgQERGRuBQWREREJC6F\nBREREYlLYUFERETiUlgQERGRuBQWREREJC6FBREREYlLYUFERETiUlgQERGRuBQWREREJC6FBRER\nEYlLYUFERETiUlgQERGRuBQWREREJC6FBREREYlLYUFERETiUlgQERGRuBQWREREJC6FBREREYlL\nYUFERETiUlgQSXFmdqyZuZmdH3UtbTGzZWb2ZDe87/nhz31sIuto8b7Nj3P3tta9ZWaHt6rpqqhr\nEmlJYUEkyVr9UtjTY3jU9WawnwCfAp5N1BuaWX8zqzWzl/ew3XHhv++NYdMbYS2XJKoWkUTKjroA\nkR7oU62WjwYuBG4Enm61rgoYnoSaeqJZ7v5kIt/Q3TeY2X3Ax8zsYHd/qZ1NPxM+3xru9y7wtzAc\nXpfImkQSQWFBJMnc/W8tl80smyAsPNd6Xbh+rz/TzHq7+9a9fiPpiFuAjxEEgt3Cgpn1Bj4CvOru\n/01ybSJdom4IkTRiZp8xs4VmtsPMlpvZ5W1ss8zMnjSzg83sETPbDFS2WJ9nZt8J36fWzDaZ2YNm\ndnCr98kys6+bWaWZbTWzLWa22MxuMbOcNj53rJnNDLfdbGbTzWxIG9sNN7O/mtna8Od408x+YmaF\nHTwG+5nZXeFnbAlrH9mhA7jn9945PsTMvhT+vLVmtsDMKsJtJpjZw+Fnrzez37Q6HrOB5cAnzCy3\njY85BygkPKsgkg50ZkEkfXwBGEzwl+sm4Fzg52a2wt3/0WrbYcDjwN3Av4BeAOEvtYeBI4G/Ar8D\n+gCfB541synuPjd8jyuBq4EHgT8CjcAI4HQgD6hv8Xn7AE8C9wLfBCYCFwHFwMnNG5nZ/sAL4Wf+\nAVgCHAt8GzjKzE5w94b2DoCZ9QXmAPuFNb0KHAM8ARS0f+g67WKgH3AzUAt8FbjXzD4K3ATcAdwX\n/mxfAdYBPwJw9yYzuw34AXAGwb9BS58hOHZ/TWC9It3L3fXQQ48IH8D5gAPnt7P+2HD9KqBPi/ZC\ngjENz7Xaflm4/efaeK9LwnVTW7UXA28DT7Zoe5HgVPme6m/+vLNbtf8+bB/Tou3vYdtprbb9Rdh+\nQRvH5dgWbT8J2z7Tav/rw/YnO1Dvbu/bxrFe2epYl4XtTcCHW+0zD1jdqm3/cNuHWrWPCd/nnnZq\nGx6uvyrq76UeerR8qBtCJH382d03Ny+4ew3wX2B0G9tuAP7cRvu5wGvAPDMb2PwAcoFZwGQza/4L\nfTOwj5lN7kBtq9z9rlZtj4fPoyHo1iA4K/GSuz/UatufEvxy/dAePudMYC3wl1btP+9AjZ1xW6tj\nXQlsIfg572m17TPAEDPr1WL75cBjwMlmNrTFts0DG29JcL0i3UphQSR9LG2jbT0woI32N929sY32\nA4GxBGckWj8+C8SAgeG23yE4Bf+0ma00s7+bWXv98O3VRov6Sgi6Qxa23tDdNwCrgQPaeJ+WDgCW\ntP7Z3H01QddMorT182wE3mqnHXb/d7iF4HieB2BmMeDTBGeIHk5MmSLJoTELIumjrV/+7alpp92A\nBcClcfatAnD358KBg1OB48LHJ4Dvmtnk8Bd8R2rb+8s5kq+9n6czP+d9BGd4zic4c3IKUAr8tJ0g\nJ5KyFBZEepYlBH/hP+7uTXva2N23EQyQ/BeAmX2JYCzCBQTjDDqjCtgKjG+9wsz6EfwijTuZEcFf\n/KPNLNbyF66ZlQJ9O1lPt3L3HWb2d+ArZnYU73VBtNU9JJLS1A0h0rP8BRhCO2cWzGxwi9cD29jk\nxfC5f2c/OAwnDwIHm9kprVZfQfD/0b17eJv7Ca4I+XSr9m91tp4kaR6b8E3gg8Acd18SYT0iXaIz\nCyI9y6+Bk4BfmNnxBIMQtxBcankCwRiF48JtF5nZf4HnCfrZSwkmj6oD7uzi538n/Pz7zOwPBNMc\nTyGYxGgOcPse9r+GoCvkJjM7hGD8w7HAEcC7Xayp27j7fDObR3AJJWhuBUlTCgsiPYi715vZNOBL\nBNNO/zBctYpg/oOWv6x/BZxGMMdAH4K5BP5L0Oc+v4ufv9zMDiOYv+Fcgq6DFQR9+j/yOHMshPtv\nNLOjgWt57+zCUwQBZ3ZXakqCW4BDCLpgWs+5IJIWzN2jrkFEJGksuHvnnwkuw3wW2OruOyKuKZsg\nOO1H0NXzQ3e/KsqaRFrSmAUR6anuIxh0+dGoCwHKCWp5cU8bikRBZxZEpEcJr5xoeUXGK+6+Jqp6\nAMysGDi0RdNSd29rrgeRSCgsiIiISFzqhhAREZG4FBZEREQkLoUFERERiUthQUREROJSWBAREZG4\nFBZEREQkrv8Hj5YFNTY+no4AAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 800x500 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(8,5))\n", + "plt.plot(np.array(threshold), rate)\n", + "plt.xlabel('\\n' + r'Threshold [mV]', linespacing=1, fontsize = 18)\n", + "plt.ylabel('\\n' + r'Flux [counts/s]', linespacing=1, fontsize = 18)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.9" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/proyecto-EAS-19-04-2021.ipynb b/proyecto-EAS-19-04-2021.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..5d2af1d5c5ae00206ac928c9d3706b97354e6d11 --- /dev/null +++ b/proyecto-EAS-19-04-2021.ipynb @@ -0,0 +1,4868 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Lluvias aéreas extensas" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<img src=\"Montaje_EAS-min.png\" style=\"width: 500px;\"/>\n", + "\n", + "Este notebook describe el procediminto para la toma de datos, control de parámetros y descarga de datos para su posterior análisis.\n", + "\n", + "El acceso al laboratorio se hace por SSH desde un terminal. Primero debemos ingresar al servidor central Obatala mediante el comando:\n", + "\n", + "**`ssh lacongalab@200.16.117.76`**\n", + "\n", + "pass: HMcvmA4ee3\n", + "\n", + "Luego para ingresar al sistema de adquisición del detector de centelleo usaremos:\n", + "\n", + "**`ssh pi@10.1.28.86`**\n", + "\n", + "pass: laconga2021\n", + "\n", + "Allà accedemos a la carpeta de la práctica:\n", + "\n", + "**`cd /home/pi/LACoNGA`**\n", + "\n", + "## Configuración del detector\n", + "\n", + "La configuración de los parámetros de adquisición asà como la toma de datos se hacen mediante la interfaz **minicom**. Para configurar los parámetros (umbral de discriminación, ventanas de coincidencias y número de coincidencias) se emplean los comandos descritos en el archivo (Escaramujo_User_Guide). \n", + "\n", + "Para configurar los parámetros de adquisición entramos a la intefaz ejecutando:\n", + "\n", + "**`minicom`**\n", + "\n", + "Un vez dentro configuramos por ejemplo el umbral de adquisición tecleando el comando:\n", + "\n", + "**`TL 4 30`**\n", + "\n", + "Esto estalece un umbral de discriminación de 30 mV en los 4 canales de adquisición. Para salir de la interfaz tecleamos.\n", + "\n", + "**`Ctrl+A x`** y enter\n", + "\n", + "Cuando configuremos los parámetros de adquisición procedemos a tomar los datos. Para ello ejecutamos:\n", + "\n", + "**`minicom -C File_name.dat`**\n", + "\n", + "y dentro de la interfaz ejecutamos\n", + "\n", + "**`CE`** -- habilita el contador de eventos\n", + "\n", + "Los datos mostrados en pantalla serán almacenados en el archivo **File_name.dat**. Para terminar la adquisición ejecutamos:\n", + "\n", + "**`CD`** -- deshabilita el contador de eventos\n", + "\n", + "Una vez más salimos del minicom con **`Ctrl+A x`** y enter. Este procedimiento se ejecuta siempre que se quiera adquirir cambiando los parámetros de adquisición.\n", + "\n", + "## Calibración del detector\n", + "\n", + "Primero el estudiante debe calibrar el umbral de detección. Para ello el estudiante debe tomar 5 minutos de datos cambiando el umbral de discriminación de 50 a 300 mV con paso de 25 mV. Luego se determina el umbral óptimo mediante la gráfica de flujo (conteos/s o conteos/min) vs umbral y estimando el flujo esperado en los 3 paneles centelladores de (25 cm x 25 cm) a 990 m s.n.m.\n", + "\n", + "**NOTA :** Tener cuidado con el nombre del archivo, use uno inconfundible ;).\n", + "\n", + "## Medición de la tasa de EAS\n", + "\n", + "Para la medición de lluvias aréreas extensas configurar el detector en coincidencia 2-Fold y establecer la ventana de coincidencia (ver Escaramujo User Guide). Se recomienda adquirir 3 o 4 horas de datos para obtener una buena estadÃstica.\n", + "\n", + "## Descarga de los archivos\n", + "\n", + "Ahora debemos copiar los datos a nuestro PC. Para ello primero lo copiamos al servidor **Obatala** y luego a nuestro PC. Ejecutamos:\n", + "\n", + "**`scp File_name.dat lacongalab@200.16.117.76:/home/lacongalab`**\n", + "\n", + "pass: HMcvmA4ee3\n", + "\n", + "Y ahora desde nuestra carpeta local (en nuestro PC) desde otro terminal ejecutamos:\n", + "\n", + "**`scp lacongalab@200.16.117.76:/home/lacongalab/File_name.dat .`**\n", + "\n", + "pass: HMcvmA4ee3\n", + "\n", + "En este puto ya tenemos los datos en nuestro PC y podemos procesarlos :) :) :)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Procesamiento" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Para el procesamiento de los datos se recomienda entender la estructura de los datos (ver Escaramujo User Guide)." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import math\n", + "import matplotlib\n", + "import csv, operator\n", + "import numpy as np\n", + "import pandas as pd\n", + "import scipy.stats as st\n", + "import matplotlib.pyplot as plt\n", + "from numpy import random\n", + "from scipy import interpolate\n", + "from datetime import datetime\n", + "from pandas import DataFrame as df\n", + "\n", + "matplotlib.pyplot.savefig\n", + "\n", + "%matplotlib inline " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Cargar datos ..." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "def load_data(file):\n", + " data = np.loadtxt(file,usecols=0,skiprows=1,dtype=str,delimiter=\" \")\n", + " return data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Funciones" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# Extraer el tiempo del conjunto de datos\n", + "def time_list(data):\n", + " times=[]\n", + " for i in data:\n", + " a=str(i)\n", + " b=a.split(' ')\n", + " if len(b)==16:\n", + " t=b[10]\n", + " times.append(t)\n", + " time_list = pd.to_datetime(times, format=\"%H%M%S.%f\").time\n", + " return time_list\n", + "\n", + "# Crear dataframe del conjunto de datos\n", + "def create_df(data):\n", + " array = []\n", + " for i in data:\n", + " new_i = i.split(sep=' ')\n", + " array_i = np.array(new_i)\n", + " array.append(array_i)\n", + " df = pd.DataFrame(array)\n", + " df = df.mask(df.eq('None')).dropna()\n", + " # Corregir fecha de la data\n", + " df[11] = np.where((df[11] == '240801'),'090421', df[11])\n", + " df[11] = np.where((df[11] == '250801'),'100421', df[11])\n", + " return df\n", + "\n", + "# Ajustar el formato de str como datetime\n", + "def time_date(df):\n", + " df[10] = df[11].str.cat(df[10], sep =\" \")\n", + " df = df.drop(11, axis=1)\n", + " df.columns = [x for x in range(0,15)]\n", + " time = pd.to_datetime(df[10], format=\"%d%m%y %H%M%S.%f\")\n", + " return df, time\n", + "\n", + "# Funciones para plots\n", + "\n", + "def plot_altitude(altitude, muons):\n", + " plt.figure(figsize =(10,5))\n", + " plt.plot(altitude,muons,'ob',markersize = 4, label= 'Data')\n", + " plt.xlabel(\"Altitude $[m]$\", fontsize=15)\n", + " plt.ylabel(\"Muons $cmÌ£^{-2}s^{-1}$\", fontsize=15)\n", + " plt.legend()\n", + " plt.grid()\n", + " return \n", + "\n", + "def plot_voltage_flux(voltage, flux, fit_voltage, fit_flux):\n", + " plt.figure(figsize=(10,5))\n", + " plt.plot(fit_voltage, fit_flux, \"r-\",label='Fit')\n", + " plt.plot(voltage, flux, \"ob\", markersize = 6, label= 'Data')\n", + " plt.xlabel(\"Voltage $[mV]$\", fontsize=15)\n", + " plt.ylabel(\"Flux [muons per second]\", fontsize=15)\n", + " plt.title(\"Flux vs Voltage\", fontsize=20)\n", + " plt.legend()\n", + " plt.grid()\n", + " return\n", + "\n", + "def plot_date(events,counts, mean, std, title):\n", + " dates = matplotlib.dates.date2num(events)\n", + " plt.figure(figsize=(20,10))\n", + " plt.plot_date(dates, counts, 'ob', fillstyle=\"none\", label=\"Data\")\n", + " plt.plot([], [], ' ', label=f\"Mean {round(mean,2)}\")\n", + " plt.plot([], [], ' ', label=f\"\\u03C3 {round(std,2)}\")\n", + " plt.xlabel(\"Tiempo [dd hh:mm]\", fontsize=15)\n", + " plt.ylabel(\"#eventos\", fontsize=15)\n", + " plt.title(title, fontsize=20)\n", + " plt.legend(fontsize=15)\n", + " plt.show\n", + " return\n", + "\n", + "# Hallar los eventos\n", + "def events_counts(time):\n", + " events, counts = np.unique(time, return_counts=True)\n", + " mean = np.mean(counts)\n", + " std = np.std(counts)\n", + " return events, counts, mean, std" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Estimación de muones" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Antes de hacer la calibración del detector, es necesario estimar el flujo esperado en los 3 paneles centelladores de (25 cm x 25 cm) a 990 m s.n.m. En principio, se espera un flujo de 1 muon por cm² por segundo a 0msnm. Para conocer el valor tabulado correspondiente a 990 msnm, se estudiará la dependecia del número de muones respecto a la altura, usando datos experimentales de *Report No. 094 - Exposure of the Population in the United States and Canada from Natural Background Radiation*." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "muon_data = pd.read_csv(\"muon_data.csv\", sep=\" \")\n", + "muon_data[\"altitude\"] = muon_data[\"altitude\"]*1000\n", + "muon_data = muon_data.sort_index(ascending=False, ignore_index=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>altitude</th>\n", + " <th>muons</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>0.0</td>\n", + " <td>0.0190</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>710.0</td>\n", + " <td>0.0215</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>1150.0</td>\n", + " <td>0.0234</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>1620.0</td>\n", + " <td>0.0256</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>2100.0</td>\n", + " <td>0.0281</td>\n", + " </tr>\n", + " <tr>\n", + " <th>5</th>\n", + " <td>2620.0</td>\n", + " <td>0.0310</td>\n", + " </tr>\n", + " <tr>\n", + " <th>6</th>\n", + " <td>3170.0</td>\n", + " <td>0.0344</td>\n", + " </tr>\n", + " <tr>\n", + " <th>7</th>\n", + " <td>3750.0</td>\n", + " <td>0.0384</td>\n", + " </tr>\n", + " <tr>\n", + " <th>8</th>\n", + " <td>4350.0</td>\n", + " <td>0.0431</td>\n", + " </tr>\n", + " <tr>\n", + " <th>9</th>\n", + " <td>5020.0</td>\n", + " <td>0.0492</td>\n", + " </tr>\n", + " <tr>\n", + " <th>10</th>\n", + " <td>5730.0</td>\n", + " <td>0.0556</td>\n", + " </tr>\n", + " <tr>\n", + " <th>11</th>\n", + " <td>6500.0</td>\n", + " <td>0.0631</td>\n", + " </tr>\n", + " <tr>\n", + " <th>12</th>\n", + " <td>7330.0</td>\n", + " <td>0.0716</td>\n", + " </tr>\n", + " <tr>\n", + " <th>13</th>\n", + " <td>8260.0</td>\n", + " <td>0.0833</td>\n", + " </tr>\n", + " <tr>\n", + " <th>14</th>\n", + " <td>9310.0</td>\n", + " <td>0.0934</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15</th>\n", + " <td>10500.0</td>\n", + " <td>0.1030</td>\n", + " </tr>\n", + " <tr>\n", + " <th>16</th>\n", + " <td>11900.0</td>\n", + " <td>0.1110</td>\n", + " </tr>\n", + " <tr>\n", + " <th>17</th>\n", + " <td>13700.0</td>\n", + " <td>0.1130</td>\n", + " </tr>\n", + " <tr>\n", + " <th>18</th>\n", + " <td>16300.0</td>\n", + " <td>0.1010</td>\n", + " </tr>\n", + " <tr>\n", + " <th>19</th>\n", + " <td>20800.0</td>\n", + " <td>0.0664</td>\n", + " </tr>\n", + " <tr>\n", + " <th>20</th>\n", + " <td>26700.0</td>\n", + " <td>0.0211</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + " altitude muons\n", + "0 0.0 0.0190\n", + "1 710.0 0.0215\n", + "2 1150.0 0.0234\n", + "3 1620.0 0.0256\n", + "4 2100.0 0.0281\n", + "5 2620.0 0.0310\n", + "6 3170.0 0.0344\n", + "7 3750.0 0.0384\n", + "8 4350.0 0.0431\n", + "9 5020.0 0.0492\n", + "10 5730.0 0.0556\n", + "11 6500.0 0.0631\n", + "12 7330.0 0.0716\n", + "13 8260.0 0.0833\n", + "14 9310.0 0.0934\n", + "15 10500.0 0.1030\n", + "16 11900.0 0.1110\n", + "17 13700.0 0.1130\n", + "18 16300.0 0.1010\n", + "19 20800.0 0.0664\n", + "20 26700.0 0.0211" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "muon_data" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "altitude = muon_data[\"altitude\"] \n", + "muons = muon_data[\"muons\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnEAAAFECAYAAABI0mi7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAlDUlEQVR4nO3de5hdZX3o8e9vZgJR5AiipErQkIJJiVxNvZxWjdJirCeNVZBgH8Xb4VikaqntQe1DAT0WPCpHK9qmRytiPYActRlFMQXH6xGBlttIBsKIEFDBAErASJL5nT/WGhl29kxm7+w9a6+Z7+d51rNu71rrt9/Zmfxmvet9V2QmkiRJqpe+qgOQJElS60ziJEmSasgkTpIkqYZM4iRJkmrIJE6SJKmGTOIkSZJqaKDqAGbak5/85Fy0aFHXr/PQQw+x1157df062pl1Xx3rvjrWfXWs++rMhbq/9tprf56ZT2m2b84lcYsWLeKaa67p+nWGhoZYsWJF16+jnVn31bHuq2PdV8e6r85cqPuI+PFk+2xOlSRJqiGTOEmSpBoyiZMkSaqhOfdMnCRJqo9t27axadMmtm7dutO+Jz7xidx8880VRNV58+fPZ+HChcybN2/ax5jESZKknrVp0yb23ntvFi1aREQ8Zt+DDz7I3nvvXVFknZOZbN68mU2bNnHQQQdN+zibUyVJUs/aunUr++23304J3GwSEey3335N7zZOxSROkiT1tNmcwI1r5zOaxEmSJE2hv7+fI488kmXLlnHEEUfwoQ99iLGxsSmPuf322/nc5z7X1bhM4iSpS0ZHYdkyGBgo5qOjVUckqR2Pe9zjuO666xgeHmb9+vV89atf5ayzzpryGJM4SaqxVatgwwbYsaOYr1pVdUTS7NftP572339/1q5dy8c+9jEyk9tvv50XvOAFHH300Rx99NF873vfA+D000/n29/+NkceeSTnnXfepOV2h71TJalLRkZgvMVlbKxYl9Rd4388jY09+sfT8HBnr7F48WJ27NjBPffcw/7778/69euZP38+t956KyeeeCLXXHMN55xzDh/84Af58pe/DMDDDz/ctNzuMImTpC5ZsuTR/0z6+op1Sd010388bdu2jVNPPZXrrruO/v5+brnllt0q1wqTOEnqksHB4i7AyEiRwA0OVh2RNPvNxB9Po6Oj9Pf3s//++3PWWWexYMECrr/+esbGxpg/f37TY84777xplWuFz8RJmnV6pUPB4sVFM8727cV88eJq4pDmksFBWLoU+vuLeaf/eLr33nt5y1vewqmnnkpE8Itf/IKnPvWp9PX1ceGFF7Jjxw4A9t57bx588MHfHDdZud3hnThJs85MPBMjqTeN//HUSb/61a848sgj2bZtGwMDA7z2ta/ltNNOA+CUU07hVa96FZ/5zGdYuXIle+21FwCHH344/f39HHHEEbz+9a+ftNzuMImTNOvYoUBSJ0111+yQQw7hhhtu+M36ueeeC8C8efO48sorH1O2WbndYXOqpFlnyZLiWRiwQ4Gk2cskTtKs0+1nYiSpF9icKmnW6cYzMZLUa7wTJ0mSelpmVh1C17XzGU3iJElSz5o/fz6bN2+e1YlcZrJ58+aWx46zOVWSJPWshQsXsmnTJu69996d9m3durUjg+b2gvnz57Nw4cKWjjGJkyRJPWvevHkcdNBBTfcNDQ1x1FFHzXBEvcPmVEmSpBoyiZMkSaohkzhJkqQaMomTJEmqIZM4SZKkGjKJkyRJqiGTOEmSpBoyiZMkSaohkzhJkqQaMomTJEmqIZM4SZKkGjKJkzQjRkdh2TIYGCjmo6NVRyRJ9WYSJ2lGrFoFGzbAjh3FfNWqqiOSpHoziZM0I0ZGYGysWB4bK9YlSe0ziZM0I5Ysgb7yN05fX7EuSWqfSZykGTE4CEuXQn9/MR8crDoiSao3kzhJM2LxYhgehu3bi/nixVVHpOmwQ4rUu0ziJEmTskOK1Lt6IomLiJURMRIRGyPi9Cb7XxgR/x4R2yPiuIZ9J0XEreV00sxFLUmznx1SpN5VeRIXEf3A+cDLgEOBEyPi0IZidwCvBz7XcOyTgL8Fngs8B/jbiNi32zFL0lxhhxSpd1WexFEkXxszczQzHwEuAlZPLJCZt2fmDcBYw7EvBdZn5n2ZeT+wHlg5E0FL0lxghxSpdw1UHQBwAHDnhPVNFHfW2j32gMZCEXEycDLAggULGBoaaivQVmzZsmVGrqOdWffVse6r0826P//8R5fvuKOY9Ci/99WZ63XfC0lc12XmWmAtwPLly3PFihVdv+bQ0BAzcR3tzLqvjnVfHeu+OtZ9deZ63fdCc+pdwIET1heW27p9rCRJUm31QhJ3NXBIRBwUEXsAa4B10zz2cuDYiNi37NBwbLlNkiRpVqs8icvM7cCpFMnXzcAlmTkcEWdHxB8DRMTvRsQm4HjgHyNiuDz2PuC9FIng1cDZ5TZJkqRZrSeeicvMy4DLGradMWH5aoqm0mbHfgr4VFcDlCRJ6jGV34mTJElS60ziJEmSasgkTpIkqYZM4iRJkmrIJE6SJKmGTOIkSZJqyCROkiSphkziJEmSasgkTpIkqYZM4iQ9xugoLFsGAwPFfHS06ogkSc2YxEl6jFWrYMMG2LGjmK9aVXVEkqRmTOIkPcbICIyNFctjY8W6JKn3mMRJeowlS6Cv/M3Q11esS5J6j0mcpMcYHISlS6G/v5gPDlYdkSSpmYGqA5DUWxYvhuHhqqOQJO2Kd+IkSZJqyCROkiSphkziJEmSasgkTpIkqYZM4iRJkmrIJE6SJKmGTOIkSZJqyCROkiSphkziJEmSasgkTpIkqYZM4iRJkmrIJE6SJKmG2k7iImJtJwORJEnS9O3OnbiVHYtCkiRJLRmYamdE7JhsF5CdD0eSJEnTsas7cT8Bfisz+xumPuDuGYhPkiRJTewqiVsHLJlk39c6HIskSZKmacrm1Mw8ZYp9/7Xz4UiSJGk6HGJEkiSphlpK4iLiwm4FIkmSpOlr9U7cS7sShSRJklpic6pUc6OjsGwZDAwU89HRqiOSJM0Ekzip5latgg0bYMeOYr5qVdURSZJmgkmcVHMjIzA2ViyPjRXrkqTZzyROqrklS6Cv/Jfc11esS5Jmv1aTuDu7EoWktg0OwtKl0N9fzAcHq45IkjQTphzst1FmPrtbgUhqz+LFMDxcdRSSpJlmc6okSVINtZzERcQxEfGiTgYRESsjYiQiNkbE6U327xkRF5f7r4qIReX2eRFxQUTcGBE3R8S7OhmXJElSr2rnTtw5TBj0NyIOjYjvlcnVa1s9WUT0A+cDLwMOBU6MiEMbir0JuD8zDwbOA84ttx8P7JmZhwHPBv7beIInSZI0m7WTxD0T+M6E9Q8DC4BrgX+KiP/S4vmeA2zMzNHMfAS4CFjdUGY1cEG5fClwTEQEkMBeETEAPA54BPhli9eXJEmqnZY6NpTGgIcBImIB8AfAysz8t4j4KfAu4MstnO8AHtvrdRPw3MnKZOb2iPgFsB9FQrca+AnweOAvMvO+lj+RJElSzbSTxN0E/D4wBKwBHgCuKPd9CzitE4FN03OAHcDTgH2Bb0fEv2XmY148FBEnAycDLFiwgKGhoa4HtmXLlhm5jnZm3VfHuq+OdV8d6746c73u20ni/gfwxYg4guLZuE9nZpb79qO4U9eKu4ADJ6wvLLc1K7OpbDp9IrAZeA3wtczcBtwTEd8FlgOPSeIycy2wFmD58uW5YsWKFkNs3dDQEDNxHe3Muq+OdV8d67461n115nrdt/xMXGZ+jaITwv3APwPvmbB7BXBLi6e8GjgkIg6KiD0o7u6tayizDjipXD4OuLJMHO8AXgIQEXsBzwM2tHh9SZKk2mnnThyZOUTRnNpoHnBxi+faHhGnApcD/cCnMnM4Is4GrsnMdcAngQsjYiNwH0WiB0Wv1n+OiGEggH/OzBva+EiSJEm10lYSN5nMfEubx10GXNaw7YwJy1sphhNpPG5Ls+2SJEmz3S6bUyPiTyLibRGxpGH7qd0LS5IkSVOZMomLiHOAtwMHA+sj4h0Tdr+xi3FJkiRpCrtqTn05cFT53NpZwOcj4oDM/CuKZ9AkSZJUgV01p/Zl5naAzNwMrAQWRcQnp3GsJEmSumRXidhPIuLo8ZXytVgnULzu6lndDEySJEmT21US93rg7okbMnMsM98MvKBbQUmSJGlqUz4Tl5mbptj3vc6HI0mSpOlo6bm2iLiwW4FIkiRp+lrtnPDSrkQhSZKkltjDVJIkqYZM4iRJkmrIJE6SJKmGTOIkSZJqqNUk7s6uRCFJkqSWtJTEZeazuxWIJEmSps/mVKkio6OwbBkMDBTz0dGqI5Ik1cmUb2xoJiL2BN4ALAHuA24CbsjM2zocmzSrrVoFGzbA2FgxX7UKhoerjkqSVBctJ3HA54BXUCRvewGLgIiIh4Bh4PrMfEtEPD4zH+5UoNJsMzJSJHBQzEdGqo1HklQv7TSnHgv8eWYekZkHA3sDzwdOA64GlkREP/BgRBzduVCl2WXJEugr/wX29RXrkiRNVzt34u4AfjS+kpm/An5QTr8REW+cWE7SYw0OFk2oIyNFAjc4WHVEkqQ6aSeJOwc4BfjqVIUy84K2IpLmiMWLfQZOktS+lptTM/NC4PaIWB8RL4mIeV2IS5IkSVNop3fqXwJvLVePAbZFxAbg+nK6ITPXdy5ESZIkNWqnOfU9wGeBv6HonXo4cEQ5fztwANDfqQAlSZK0s3aSuG3ApzPzjnL9ZuDi8Z0RsU8H4pIkSdIU2hli5LMUzahNZeYDbUcjSZKkaWknibsDODEi3lqOBydJkqQZ1k5z6vsonoX7e+DsiPgOcB1lxwZfvyVJktR97dyJ+0/AIcArgY8AjwAnAJcAt0bELzsXniRJs8/oKCxbBgMDxXx0tOqIVEct34nLzARuK6cvjW+PiPnAs8pJkiRNYtUq2LCheG/yhg3FuoN/q1XtjBN3ITAvM9dM3J6ZW4FrykmSJE1iZKRI4KCYj4xUG4/qqZ3m1GOY5JVbEfF3EfHq3QtJkqTZbckS6Cv/B+7rK9alVrWTxO0L3DnJvk3A6e2HI0nS7Dc4CEuXQn9/MR8crDoi1VE7vVNvAY4Crmyy74cUnR4kSdIkFi/2GTjtvnbuxH0aeHdEPLPJvqcBD+9WRJIkSdqldu7EfQR4IXBNRPw9RQ/VnwJLgbOAb3UsOkmSJDXV8p24zByjGCPuLODNwPeB24HLgV8B7+xgfJIkSWqineZUsvAh4LeAo4GXl/MjM/PHHYxP6lkO1ilJqlI7zam/UQ78e305SXOKg3VKkqrU1p04SQ7WKUmqlkmc1CYH65QkVckkTmqTg3VKkqq0W8/ETRQR+2TmA506n9TrHKxTklSllu/ERcSfRcRfT1g/MiI2AZsj4tqIWNjRCCVJkrSTdppT/xz45YT1jwJ3A39anu+cVk8YESsjYiQiNkbETu9ejYg9I+Licv9VEbFowr7DI+L/RcRwRNwYEfNb/kSSJEk1005z6tOBEYCIeArwe8AxmTkUEY8AH2vlZBHRD5wP/CGwCbg6ItZl5g8nFHsTcH9mHhwRa4BzgRMiYgD4LPDazLw+IvYDtrXxmSRJkmqlnTtxvwb2KJdfTPGu1G+X6/cB+7R4vucAGzNzNDMfAS4CVjeUWQ1cUC5fChwTEQEcC9yQmdcDZObmzNzR4vUlSZJqp507cT8A3lo+B/c24GsTEqfFFE2rrTgAuHPC+ibguZOVycztEfELYD/gmUBGxOXAU4CLMvMDjReIiJOBkwEWLFjA0NBQiyG2bsuWLTNyHe3Muq+OdV8d67461n115nrdt5PE/SUwCNxIkVi9ccK+E4DvdiCu6RoAfh/4XYo7gldExLWZecXEQpm5FlgLsHz58lyxYkXXAxsaGmImrqOdWffVse6rY91Xx7qvzlyv+5aTuPJZtd8unz+7r3z11rh3Aj9t8ZR3AQdOWF9YbmtWZlP5HNwTgc0Ud+2+lZk/B4iIyyje4XoFkiRJs1jbg/2Wz59lw7YbM/PeFk91NXBIRBwUEXsAa4B1DWXWASeVy8cBV5bXvhw4LCIeXyZ3LwJ+iCRJ0izX9mC/EfFMirtmOw3pkZmXTfc85TNup1IkZP3ApzJzOCLOBq7JzHXAJ4ELI2IjReeJNeWx90fEhykSwQQuy8yvtPuZJEmS6qLlJC4iDqXoQboMiCZFkiIZm7Yy6busYdsZE5a3AsdPcuxnKYYZkSRJmjPauRP3j8CewCspmi4f6WhEkiRJ2qV2krijgDWZ+eVOByNJkqTpaadjw200eQ5OkiRJM6edJO4vgXdHxOJOByNJkqTpaSeJ+zuKNyhsiIhbIuIHjVOHY5S6anQUli2DgYFiPjpadUSSJO1aO8/E3VRO0qywahVs2ABjY8V81SoYHq46KkmSptbOGxve0I1ApKqMjBQJHBTzkZFq45EkaTp2Z7DfpwHPB55E8Qqs72fm3Z0KTJopS5Y8eieur69YlySp17X8TFxE9EfEx4EfA5+nGDfuUuDHEXF+RLT9Ki+pCoODsHQp9PcX88HBqiOSJGnX2rkTdxbwRuDdwMXAz4AFwAnA2RR35c6Y9Gipxyxe7DNwkqT6aSeJex3wN5n5wQnb7gD+Z0Qk8DZM4iRJkrqqnabP/YEbJtl3Q7lfkiRJXdROEncLsGaSfWsA+/ZJkiR1WTvNqe8DLoqIp1N0aPgZxd2344EXM3mCJ0mSpA5pZ5y4SyLiAYoODh8B5gHbgGuBlZm5vqMRSpIkaSdtjROXmV8Hvl4OJ/Jk4OeZOdbRyCRJkjSptgf7BSgTt3s6FIskSZKmqeUkLiIO3VWZzPxhe+FIkiRpOtq5E3cTkLso09/GeSVJkjRN7SRxL26ybV/gpeX0tt2KSJIkSbvUTu/Ub06y60sR8T7g1cCXdysqSZIkTanTL6v/BrC6w+eUpmV0FJYtg2OOeRHLlhXrkiTNVp1O4l4OPNDhc0rTsmoVbNgAY2PBhg3FuiRJs1U7vVMvabJ5D2ApcAjw7t0NSmrHyAiMlaMVjo0V65IkzVbtdGzYn517p24Fvg2clpmX7XZUUhuWLBm/Ewd9fcW6JEmzVTsdG1Z0IQ5ptw0OjjepJkuXBoODVUckSVL3TCuJi4gzWjlpZp7dXjhS+xYvhuFhGBr6JitWrKg6HEmSumq6d+LOBH4FPATELsomYBInSZLURdNN4m4DngFcC1wEfCEzH+xaVJIkSZrStIYYycxDgP8MDAPvBX4WEV+IiOMj4nHdDFCSJEk7m/Y4cZl5TWa+MzOfDqwEfgp8DLgnIv4lIl7YrSAlSZL0WG0N9puZ38rMU4ADgX8ATgDe0cG4JEmSNIV2xokjIn4PWAMcB+wNXAp8ooNxSZIkaQrTTuIi4miKxO0EYAHwNeAvgHWZ+XB3wpMkSVIz0x0nbgQ4CLgS+FuK3qm/7GZgkiRJmtx078QdQvFqrWcDRwMfiJh8uLjM3H/3Q5MkSdJkppvEndXVKCRJktSSaSVxmWkSpxk1Olq8B3VkpHiR/eBg8VotSZJUaGuIEanbihfZw44dxXzVqqojkiSpt5jEqSeNjMDYWLE8NlasS5KkR5nEqSctWQJ95bezr69YlyRJjzKJU08aHISlS6G/v5gPDlYdkSRJvaWtNzZI3bZ4MQwPVx2FJEm9qyfuxEXEyogYiYiNEXF6k/17RsTF5f6rImJRw/6nR8SWiHjnjAUtSZJUocqTuIjoB84HXgYcCpwYEYc2FHsTcH9mHgycB5zbsP/DwFe7HaskSVKvqDyJA54DbMzM0cx8BLgIWN1QZjVwQbl8KXBMlK+MiIhXAD8CbHyTJElzRi8kcQcAd05Y31Rua1omM7cDvwD2i4gnAP8d3yghSZLmmLp3bDgTOC8zt0z1LteIOBk4GWDBggUMDQ11PbAtW7bMyHW0M+u+OtZ9daz76lj31Znrdd8LSdxdwIET1heW25qV2RQRA8ATgc3Ac4HjIuIDwD7AWERszcyPTTw4M9cCawGWL1+eK1as6MLHeKyhoSFm4jramXVfHeu+OtZ9daz76sz1uu+F5tSrgUMi4qCI2ANYA6xrKLMOOKlcPg64MgsvyMxFmbkI+F/A+xsTOPWO0VFYtgwGBor56GjVEUmSVF+VJ3HlM26nApcDNwOXZOZwRJwdEX9cFvskxTNwG4HTgJ2GIVHv832okiR1Ti80p5KZlwGXNWw7Y8LyVuD4XZzjzK4Ep47xfaiSJHVO5XfiNHf4PlRJkjrHJE4zxvehSpLUOT3RnKq5wfehSpLUOd6JkyRJqiGTOEmSpBoyiZMkSaohkzhJkqQaMomTJEmqIZM47RZfpSVJUjVM4rRbfJWWJEnVMInTbvFVWpIkVcMkTrvFV2lJklQNkzjtFl+lJUlSNXztlnaLr9KSJKka3omTJEmqIZM4SZKkGjKJU1OO/yZJUm8ziVNTjv8mSVJvM4lTU47/JklSbzOJU1OO/yZJUm8ziVNTjv8mSVJvc5w4NeX4b5Ik9TbvxEmSJNWQSZwkSVINmcTNMY7/JknS7GASN8c4/pskSbODSdwc4/hvkiTNDiZxc4zjv0mSNDuYxM0xjv8mSdLs4Dhxc4zjv0mSNDt4J06SJKmGTOJmEYcPkSRp7jCJm0UcPkSSpLnDJG4WcfgQSZLmDpO4WcThQyRJmjtM4mYRhw+RJGnuMImriel0WhgfPmT79mK+ePHMxylJkmaGSVxN2GlBkiRNZBJXE3ZakCRJE5nE1YSdFiRJ0kQmcTVhpwVJkjSRSVwPsNOCJElqlUlcD7DTgiRJapVJXA+w04IkSfXRK+8q74kkLiJWRsRIRGyMiNOb7N8zIi4u918VEYvK7X8YEddGxI3l/CUzHnwH2GlBkqT66JUWtMqTuIjoB84HXgYcCpwYEYc2FHsTcH9mHgycB5xbbv85sCozDwNOAi6cmag7y04LkiTVR6+0oFWexAHPATZm5mhmPgJcBKxuKLMauKBcvhQ4JiIiM/8jM+8utw8Dj4uIPWck6g6y04IkSfXRKy1okZnVXHk8gIjjgJWZ+eZy/bXAczPz1AllbirLbCrXbyvL/LzhPG/JzD9oco2TgZMBFixY8OyLLrqomx8JgC1btvCEJzyh69fRzqz76lj31bHuq2PdV6equr/77vm8+92Hceedj+fAAx/m/e+/kac9bWtXrvXiF7/42sxc3mzfQFeuOMMiYhlFE+uxzfZn5lpgLcDy5ctzxYoVXYtldHS8rTxZujQYHPTO2kwbGhqimz9jTc66r451Xx3rvjpV1v1rXjO+tBfwvEpi6IXm1LuAAyesLyy3NS0TEQPAE4HN5fpC4IvA6zLztq5HuwvjDzuOjYXDhUiSpK7phSTuauCQiDgoIvYA1gDrGsqso+i4AHAccGVmZkTsA3wFOD0zvztTAU+lVx52lCRJs1vlSVxmbgdOBS4HbgYuyczhiDg7Iv64LPZJYL+I2AicBowPQ3IqcDBwRkRcV077z/BHeIxeedhRkiTNbj3xTFxmXgZc1rDtjAnLW4Hjmxz3PuB9XQ+wBYODOz8TJ0mS1GmV34mbbcaHC7niim86XIgkSeoakzhJkqQaMomTJEmqIZM4SZKkGjKJkyRJqiGTOEmSpBoyiZMkSaohkzhJkqQaMomTJEmqocjMqmOYURFxL/DjGbjUk4Gfz8B1tDPrvjrWfXWs++pY99WZC3X/jMx8SrMdcy6JmykRcU1mLq86jrnIuq+OdV8d67461n115nrd25wqSZJUQyZxkiRJNWQS1z1rqw5gDrPuq2PdV8e6r451X505Xfc+EydJklRD3omTJEmqIZM4SZKkGjKJ67CIWBkRIxGxMSJOrzqe2SIibo+IGyPiuoi4ptz2pIhYHxG3lvN9y+0RER8tfwY3RMTRE85zUln+1og4qarP08si4lMRcU9E3DRhW8fqOiKeXf4sN5bHxsx+wt41Sd2fGRF3ld/96yLijybse1dZjyMR8dIJ25v+HoqIgyLiqnL7xRGxx8x9ut4WEQdGxDci4ocRMRwRby+3+93vsinq3u/+rmSmU4cmoB+4DVgM7AFcDxxadVyzYQJuB57csO0DwOnl8unAueXyHwFfBQJ4HnBVuf1JwGg537dc3rfqz9ZrE/BC4Gjgpm7UNfCDsmyUx76s6s/cK9MkdX8m8M4mZQ8tf8fsCRxU/u7pn+r3EHAJsKZc/gfgz6r+zL0yAU8Fji6X9wZuKevY7351de93fxeTd+I66znAxswczcxHgIuA1RXHNJutBi4oly8AXjFh+2ey8H1gn4h4KvBSYH1m3peZ9wPrgZUzHHPPy8xvAfc1bO5IXZf7/lNmfj+L36afmXCuOW+Sup/MauCizPx1Zv4I2EjxO6jp76Hyrs9LgEvL4yf+HOe8zPxJZv57ufwgcDNwAH73u26Kup+M3/2SSVxnHQDcOWF9E1N/ETV9CXw9Iq6NiJPLbQsy8yfl8k+BBeXyZD8Hfz7t61RdH1AuN27X1E4tm+w+Nd6cR+t1vx/wQGZub9iuBhGxCDgKuAq/+zOqoe7B7/6UTOJUF7+fmUcDLwPeGhEvnLiz/MvW8XJmgHU94z4B/DZwJPAT4EOVRjPLRcQTgP8LvCMzfzlxn9/97mpS9373d8EkrrPuAg6csL6w3KbdlJl3lfN7gC9S3Db/WdlEQTm/pyw+2c/Bn0/7OlXXd5XLjds1icz8WWbuyMwx4J8ovvvQet1vpmjyG2jYrlJEzKNIIv4lM79Qbva7PwOa1b3f/V0zieusq4FDyl4wewBrgHUVx1R7EbFXROw9vgwcC9xEUbfjPb9OAv61XF4HvK7sPfY84Bdlc8jlwLERsW95W/7Ycpt2rSN1Xe77ZUQ8r3xO5XUTzqUmxhOI0p9QfPehqPs1EbFnRBwEHELx4HzT30PlXaRvAMeVx0/8Oc555ffxk8DNmfnhCbv87nfZZHXvd38aqu5ZMdsmih5Lt1D0kHlP1fHMhomip9H15TQ8Xq8UzzlcAdwK/BvwpHJ7AOeXP4MbgeUTzvVGiodgNwJvqPqz9eIE/B+KpottFM+OvKmTdQ0sp/hlfBvwMco3xzhNWvcXlnV7A8V/Xk+dUP49ZT2OMKGn42S/h8p/Sz8ofyafB/as+jP3ygT8PkVT6Q3AdeX0R373K617v/u7mHztliRJUg3ZnCpJklRDJnGSJEk1ZBInSZJUQyZxkiRJNWQSJ0mSVEMmcZIkSTVkEiepFiLiRxGREXFwk32fjohrJqy/OiJe32653YjxWWWMKzpwrqHyXBkR7+jA+c6ccL5Ld32EpF5nEiep50XE84FF5eqJ0zjk1cDrm2x/b8P2ycr1im8Azwcu6sC5/nd5rv/owLkk9QCTOEl1cCLwEHAV00vimsrM2zLzpl2X7Bn3Zeb3M/Onu3uizNyUmd8HfrnLwpJqwSROUk+LiH6KO2brgE8BvxMRR0xR/tPAq4AXTWg+PHN833hz6i7KDTU2OUbEirLMsyZsOyUi7oyIhyJiEJj4rseJx74gIr4ZEQ9HxOaI+Kfx9wG3UR99EbElIt4RER+OiHsi4v6I+Kty/2sj4odlmS9ExOPauY6k3jdQdQCStAsvBhZQNCl+h+KdkydSvEu3mfcCTwf2AU4pt23ajXJNRcRqindn/gPwJeBFFElmY7nfo3jn5pcoXsC9H3AOsC+PvpC7FYuBvYB3ULxr9TUUTcIfiIhnAAcBf1XOPwq8Afh4G9eR1ONM4iT1uhOBB4CvZeYjEfF1YE1EvCubvPw5M2+LiPuAvrL5sKnplpvCe8qY/qxcvzwingK8uaHcOcD3MvOE8Q0RcRdwRUQ8q43m3cPK+Ycz86Pl+W4F/hT4HeAPxuslIk4GlrR4fkk1YXOqpJ4VEXsArwS+mJmPlJsvAp5B8ZB+VXENAEcD/9qw6wsN5R5PEeclETEwPlHcUdwGPLuNyx9OkdR+YsK2vcr5OQ2J7V7AfW1cQ1INmMRJ6mUvo2juvCwi9omIfYAh4NfsRgeHDngy0A/c07C9cX3fstzHKZK28enXwDzgwDaufRjwnczcNmHb4cB24FvjG8oEchFQp44cklpgc6qkXjaeqH2+yb7jI+IdmbmjC9fdCuzRsG3fCcs/B3YA+zeUaVx/AEjgTOCyJte5u43YDgMuadh2BLAhM3/dUK4PuKGNa0iqAZM4ST0pIvYCVlE8vL+2YfdRwIeBlwDrmxz+CDB/GpeZrNwm4IUN244dX8jM7RHxH8Bqio4N41458YDMfCgivg8sycyzpxHPlMqepgezc6eOwyfZ9hBw2+5eV1JvMomT1KtWA48HPpKZV03cERHfpehYcCLNk7gNwOqIeAVFQnZ3Zja76zVZuS8Cb4qI84CvUPSQXdlw7PuBL0TEJ8ryL2pSBuCvKToxjAGXAg9S9Ip9OfCezLxlqkposIzi7lqzhO2jTbYNZ+ZYC+eXVCM+EyepV50I3NqYwAGUz4NdArwyIvZscuzHga9TDPlxNXDyJNdoWi4zvwK8m2IIkC9SdKR4e0MMXwT+nOJu4Zco7g6+qUms36G4q/cU4EJgkCKxuxP42SRxTeYwGu6uRcS+wEJ2bjY9vMk2SbNINOmhL0mqWEQMAZuBE4AdzYZTafF8fRR/uF8B3JuZ7YxRJ6mHeCdOknrXKyl6s759VwWn4YzyXI3P+kmqKe/ESVIPioglwPirue7IzMbhS1o939OAp5Wr92Xm6O6cT1L1TOIkSZJqyOZUSZKkGjKJkyRJqiGTOEmSpBoyiZMkSaohkzhJkqQaMomTJEmqIZM4SZKkGvr/QkOpyD9bMtQAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 720x360 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_altitude(altitude, muons)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "fit = interpolate.interp1d(altitude, muons)\n", + "fit_altitude = np.arange(0, 26800, 100)\n", + "fit_muons = fit(fit_altitude)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "<matplotlib.legend.Legend at 0x7f87a982feb8>" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnEAAAFECAYAAABI0mi7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABGGElEQVR4nO3deZzVY//H8ddnpn0nioSKlKKi5Oa2hErSiBZKKFu3JQohspRkV7Ys2fckWylSGHITxa00bTKS8FNKu5Zprt8f1+m+xzTVzJlz5jpnzvv5eJzHnPP9fs857/nOafrM9b0Wc84hIiIiIsklLXQAERERESk6FXEiIiIiSUhFnIiIiEgSUhEnIiIikoRUxImIiIgkIRVxIiIiIkmoTOgAJW2PPfZw9erVi/v7rF+/nsqVK8f9fWR7Ovfh6NyHo3Mfjs59OKlw7r/++us/nHN7FrQv5Yq4evXqMXPmzLi/T2ZmJm3atIn7+8j2dO7D0bkPR+c+HJ37cFLh3JvZTzvap8upIiIiIklIRZyIiIhIElIRJyIiIpKEUq5PnIiIiCSPLVu2sHTpUjZu3LjdvurVqzNv3rwAqWKvQoUK1K1bl7Jlyxb6OSriREREJGEtXbqUqlWrUq9ePczsb/vWrl1L1apVAyWLHeccK1asYOnSpdSvX7/Qz9PlVBEREUlYGzdupGbNmtsVcKWJmVGzZs0CWxt3RkWciIiIJLTSXMBtE833qCJOREREZCfS09Np0aIFTZs2pXnz5tx///3k5ubu9DmLFy/mlVdeiWsuFXEiInGSnQ1Nm0KZMv5rdnboRCISjYoVK/Ltt9+SlZXFlClTeO+99xg6dOhOn6MiTkQkmTgHS5fChx/CqFF8fsSVjJx7Mk9t7cPqeb+SkRE6oEjpF+8/nmrVqsXo0aN55JFHcM6xePFijj32WA4//HAOP/xwPv/8cwAGDRrEtGnTaNGiBSNHjtzhccWh0akiIkW1YQMsXAgLFsD8+f7rttv69f89rDNVWMhBHMcnnO7eZtC8eyD3IkjT388i8ZKR4f9Z5ub6rxkZkJUV2/do0KABW7duZdmyZdSqVYspU6ZQoUIFvv/+e3r27MnMmTO56667uO+++3j33XcB2LBhQ4HHFYeKOBGRgjgHv/zy9yJt2/0lS/53nBnstx80bgzHHOO/NmoEjRrxj3Z1mL/AaJD7PaPpy+PuX3DCyzB6tD9GRGJuwQJfwIH/umBBfN9vy5Yt9OvXj2+//Zb09HQWLlxYrOOKQkWciKS2ba1q+Yu1hQv/1qpGlSq+8Dr22P8WaTRuDA0bQsWKBb70hHd9K8CCBQ3pd9BHZJ73DHvePRCaN4ebb4Zrr4Vy5UroGxVJDY0a/a8lLi0tPn8vZWdnk56eTq1atRg6dCi1a9dm1qxZ5ObmUqFChQKfM3LkyEIdVxQq4kSk1MnO3lY8+V/gE8Y7GpRbun2LWkGtavvv75903HF/L9b23tvvL4IGDfJexjHgQuhzKlx5Jdx0E4wZA089BUceGatvXSTlTZiQ79//hNi+/vLly7nkkkvo168fZsbq1aupW7cuaWlpPP/882zduhWAqlWrsnbt2v8+b0fHFYeKOBEpdTI6OY6a/yw3uSk0mruAvRouBJenVa1q1f+1quW5/LmzVrWY2WsvGDvW/89y2WVw1FFwxRVw++0+l4gUy9//eIqNv/76ixYtWrBlyxbKlCnDueeey9VXXw3AZZddRteuXXnhhRfo0KEDlStXBqBZs2akp6fTvHlz+vTps8PjikNFnIiULuvWcev8CznTjeUn9mMuTZjGcfR/tNH/CrYoWtViLiMDjj8ebrwRHn4Y3noLHnsMTj01bC4R2c7OWs0aNmzI7Nmz//v47rvvBqBs2bJ89NFHfzu2oOOKQ0OkRKT0+P57OOoourpxXG93U4/FdEp7j9EHPwCXXgonnAB16oQv4LapVg0eeQQ++8y3wnXqBD17wrJloZOJSBJQEScipcO778IRR8Bvv7Hshcm8e/B1pKcbjRvHvk9MzB19NHzzDQwdCm+8AQcfDM8950fIiojsgIo4EUluubkwZIi/PHnAATBzJnuf25asLMjJ8X1jGjQIHbIQypeHW26Bb7/1l33PPx/atYMffgidTEQSlIo4EUleq1bBaaf5Fqzevf1lyXr1QqcqniZNYNo0ePRR+OorOPRQuOceX5GKiOShIk5EktOcOdCqFUyeDKNGwbPPxn9kaUlJS/N9+ObOhfbt4frroXVrf8lVRCRCRZyIJJ/XXvNzq61fD5mZfqqORBmsEEt16/pRq+PGwW+/+T5/117rJygWkZSnIk5EkkdODgwcCD16wGGH+Zapf/4zdKr4MoOuXX2r3IUXwn33wSGHwJQpoZOJpIz09HRatGjx39vixYs5+uijAVi8eDGvvPJKkFwq4kQkOSxf7i8t3n8/9OsHH33k53tLFbvt5tdczcyEMmX8uejTB1asCJ1MpNSrWLEi33777X9v9erV4/PPPwdUxImI7NyMGdCyJXzxhZ964+GHU3fN0eOPh9mz/STBL7/spyN55RVNRyJSwqpUqQLAoEGDmDZtGi1atGDkyJElmkErNohIYnvmGd/nba+94N//hsMPD50ovAoVYPhwOOssuPhi6NWLQ4880vcV3H//0OlE4mfAAD8NT0TFrVshPb14r9miBTzwwE4P2bbsFkD9+vV56623/rvvrrvu4r777uPdd98tXo4oqCVORBLTpk1wySW+H9ixx8LMmSrg8mvWDD7/HB54gBqzZkHTpvDggxCDhbVF5H/yXk7NW8CFppY4EUk8v/wC3brB9Ol+eo3hw4v/13ZplZ4O/fvzVe3aHPXCC76l4pVX4MknfZEnUprkazH7a+1aqlatGiZLAlBLnIgklk8/9S1uc+b4qTXuuksFXCFs2msvmDjRF3A//uj7EA4eDBs3ho4mUqpVrVqVtWvXBnlvFXEikhicg4cegpNOgho14Msv/dQaUnhm0LMnzJsHvXrBHXf41rhPPgmdTKTUatasGenp6TRv3rzEBzaoiBOR8DZsgHPPhf79oWNHv9xUkyahUyWvmjX9KN4PPvBz67Vp4wdA/Pln6GQiSWndunU73Fa2bFk++ugjZs2axVVXXVWiuVTEiUhY2dlw9NH+MuCwYX6FgurVQ6cqHdq185elr73Wj/Jt0sRfotZ0JCKlgoo4EQnn/ff9+qc//eT7c910k183VGKnUiW45x7furn33tC9O5xxhh88IiJJTb8tRaTk5eb6/lodO8K++/rpQ045JXSq0q1lS1/I3XMPTJ7sJwl+7DH/sxCRpKQiTkRKRHa2n8Zst/Q1TK3R1Y+c7NnTz3N2wAGh46WGMmX8pdU5c6B1az+J8nHH+YEQIgnMpUAXgGi+RxVxIlIiMjJgy7xFfJHbmjZrJ3Bn7QfgpZegcuXQ0VLPAQfAlCnw7LMwd66fsX7oUD/BskiCqVChAitWrCjVhZxzjhUrVlChQoUiPU+T/YpIiVg1///4zLWjKms5iQ/59x/Hc4OFTpXCzKBPH39Je8AAGDIExo71kwQffXTgcCL/U7duXZYuXcry5cu327dx48YiFz6JqkKFCtStW7dIz1ERJyLxt2YNU8udwp4bl9OGTP6T1orGjUKHEgBq1fIjg885xy9zdswx/jLrHXdAtWqh04lQtmxZ6tevX+C+zMxMDjvssBJOlDh0OVVE4mvzZujShcY5c7hmv3F8m96Kxo1hwoTQweRvOnaErCy44gp49FE/Hcn48aFTichOqIgTkfjJzfWX7D78EHv6aZ74qQM5Ob5WaNAgdDjZTtWq8OCD8MUXsNtu0Lkz6049k+Mb/R9lyviBKdnZoUOKyDYq4kQkfq67Dl59Fe68E847L3QaKawjj4Svv4bbb6fse+N5e+HB9N76NPPnOTIyQocTkW0Soogzsw5mtsDMFpnZoAL2H2dm35hZjpl1y7evt5l9H7n1LrnUIrJTI0bA/ff7y3PXXx86jRRVuXIweDCH2Sxm04ynuYih7mYWLAgdTES2CT6wwczSgVFAO2ApMMPMxjvn5uY5bAnQBxiY77m7A7cCrQAHfB15rhYIFAnp1VfhmmugWzcYOdKPhJSkZI0bcdK8j3nM/YubGE6FmtWBa0PHEhESoyWuNbDIOZftnNsMjAE65z3AObfYOTcbyD+1+MnAFOfcykjhNgXoUBKhRWQHPvwQeveG44+HF1+E9PTQiaQYJkyARgencXna40yqdhYDl10HTzwROpaIkAAtccA+wM95Hi8FjizGc/fJf5CZ9QX6AtSuXZvMzMyoghbFunXrSuR9ZHs69+GkzZ5Nzg03sLFuXb4dOJCc6dNDR0oZ8fzcjxrlv9qWC1lx82J2v/RS5i1dyrKTTorL+yUb/c4JJ9XPfSIUcXHnnBsNjAZo1aqVa9OmTdzfMzMzk5J4H9mezn0gP/7Ipq5dKVOzJlWmTeOYfbb7e0riqMQ+98ccA6ecQpO77qLJkUdCp07xf88Ep9854aT6uU+Ey6m/APvmeVw3si3ezxWRWPnjD+jQgbQtW+D990EFXOlVsaKfP+6ww3yfx48/Dp1IJGUlQhE3A2hoZvXNrBzQAyjsDJOTgfZmtpuZ7Qa0j2wTkZKyfr1vjVmyhO+GD/eTxErpVq0avPceHHggnHYafPll6EQiKSl4EeecywH64YuvecBY51yWmd1mZqcBmNkRZrYU6A48YWZZkeeuBIbhC8EZwG2RbSJSEnJyoEcPmDEDXn2VNYceGjqRlJSaNeGDD/yyXaecAt99FzqRSMpJiD5xzrlJwKR8227Jc38G/lJpQc99BngmrgFFZHvO+bU2330XHnsMTj8dUriDcUqqUwemTvX95Nq1g88+861zIlIigrfEiUiSuvVWePppuPlmX8xJaqpfH6ZM8a2ybdvCzz/v+jkiEhMq4kSk6J54AoYNgwsugKFDQ6eR0Jo0gcmT4c8/fYvc8uWhE4mkBBVxIlI077wDl10GHTv6Yk6rMQhAy5b+0vqSJXDyybBqVehEIqWeijgRKbwvvvADGVq1grFjoUxCdKuVRHHssfDmmzBnjh+xvH596EQipZqKOBEpnPnz/X/Mdev6FpfKlUMnkkTUoQO8/LIv+Lt0gU2bQicSKbVUxInIrv32m//PuUwZ3/dpzz1DJ5JE1r07PPmkn4Lk7LP9oAcRiTkVcSKyc2vW+HnA/vgDJk2CBg1CJ5JkcMEFMHKkv7x60UWQmxs6kUipow4tIrJjmzf7S2JZWTBhgu+8LlJYAwbA6tUwZIhf5eHBBzUQRiSGVMSJSMFyc31ryocfwnPP+cupIkV1yy2+kBs5EmrUgNtuC51IpNRQEScif5OdDRkZcP68QQx0L7Ny4B3s3rt36FiSrMzg/vv9Zflhw6B6dbjmmtCpREoF9YkTkb/JyIB28x5koLuXR7mMYycOCh1Jkp2Zn1PwzDNh4EA/6EFEik0tcSLyNwfMn8gIdxVvcgZX8BC2UH2YJAbS0+HFF2HtWvjXv6BqVT/noIhETS1xIvI/S5bwgp3HLJrTi5chLZ1GjUKHklKjXDkYNw6OOQbOPRcmTgydSCSpqYgTEW/LFujRg2oVt3DjAWPZkl6Rxo39oFSRmKlUyU8W3bw5dOsGmZmhE4kkLRVxIuLdeCN88QVpTz3Je4sakpPjZxbRtHASc9Wqwfvv+w9XRgbMmBE6kUhSUhEnIr657b774NJL4ayzQqeRVLDHHjBlil/9o0MHv96qiBSJijiRVLdkCfTuDYcdBiNGhE4jqaROHZg6FSpUgHbt4IcfQicSSSoq4kRS2ebNvuUtJwfGjvX/mYqUpAYNfIvcli3Qti0sXRo6kUjSUBEnkspuvBGmT4enn4YDDwydRlJVkya+j9yKFb5Fbvny0IlEkoKKOJFUNX68n0n/8suhe/fQaSTVtWrlR60uXuz7yK1eHTqRSMJTESeSihYv9v3gDj/cD2gQSQTHHQdvvAGzZ0OnTrBhQ+hEIglNRZxIqtm82c+Un5urfnCSeDp2hJdfhs8/h65d/edVRAqkIk4k1QwaBF9+6fvBHXBA6DQi2zvzTBg92veT69XLD7wRke1o7VSRVPLOOzByJPTr52fLF0lUF14Ia9bA1Vf7dVafegrS1O4gkpeKOJFUsXgx9OkDLVuqH5wkh6uuglWr4Lbb/CoPI0eCWehUIglDRZxIKtg2H9y2fnDly4dOJFI4Q4b4kaoPPgg1avjHIgKoiBNJDddfD199BePGaTFUSS5mfiWRNWtg6FCoXt230IlI9EWcmY12zvWNZRgRiYO33oIHHoArr/Sj/USSTVoaPPkkrF3r+8hVq+b7zImkuOK0xHWIWQoRiY8ff4Tzz/cTqd5zT+g0ItFLT/dTj6xbBxdf7Ac7nHlm6FQiQe20iDOzrTvaBbjYxxGRmNnWDw7UD05Kh3Ll/GTAJ5/spx6pUsXPKyeSonY1Xvs3YC/nXHq+WxrwawnkE5FoXXstzJgBzz4L9euHTiMSG5Uq+eW5mjXz3QM++SR0IpFgdlXEjQca7WDf+zHOIiKx8uab8NBD0L8/nHFG6DQisVW9up8IuF49yMiAmTNDJxIJYqdFnHPuMufcZzvYd3F8IolIsWRnwwUXwBFHqB+clF577glTp0LNmtChA8ydGzqRSInT9NcipcmmTb6ztxm89prvQyRSWu2zjy/kypWDtm39HzAiKaRIRZyZvRivICISA9deC19/rX5wkjoOOACmTPF/wLRtC7/8EjqRSIkpakvcyXFJISLFN24cPPwwDBgAp58eOo1IyWna1PeRW74c2rWDP/4InUikROhyqkiSy86Gdg0Xs7r7hcyu0Jrsf90dOpJIyTviCJgwwc+N2KGDX6pLpJRTESeS5DI6OQYuuoQ0cjl902tkdFU/OElRbdr4FulZs/yo1Q0bQicSiSsVcSJJ7rD5r3IykxnMcH509ViwIHQikYBOPRVeegk++wy6dfOTXouUUiriRJLZypU8mDaAL2nNKC4nLQ0a7WhmR5FUcdZZ8MQT8N57cM45sHVHiw+JJLeirp36c1xSiEh0hg5ld7eCexp8gP2UTqNGvluQSMq7+GJYswYGDoRq1eDJJ/3UOyKlSJGKOOdcy3gFEZEimjcPRo3CLr6YNx5vETqNSOK55ho/wGHYMF/I3X+/CjkpVYraEiciicA5uOoqvwD4sGGh04gkrqFDYdUqGDnSL9d1662hE4nETJH7xJnZSWZ2fCxDmFkHM1tgZovMbFAB+8ub2WuR/V+aWb3I9rJm9ryZfWdm88zshljmEklYkybB5Mn+P6Q99wydRiRxmcEDD0CfPjBkiL8vUkpEM7DhLvJM+mtmTczs80hxdW5RX8zM0oFRwClAE6CnmTXJd9iFwJ/OuQOBkcC2ibC6A+Wdc4cCLYF/bSvwREqtzZvh6qvhoIPg8stDpxFJfGlpvk9c166+BfuZZ0InEomJaIq4g4DP8jweAdQGvgaeNLNORXy91sAi51y2c24zMAbonO+YzsDzkfvjgJPMzAAHVDazMkBFYDOwpojvL5JcRo2ChQthxAitjSpSWGXKwMsvQ/v2ftDD66+HTiRSbNEUcbnABgAzqw20Bf7lnLsMuAMo6iXNffj7qNelkW0FHuOcywFWAzXxBd164DdgCXCfc25lEd9fJHksX+77+Jx8MnTsGDqNSHIpXx7efBOOOgp69fJLdYkksWgGNswBjgEygR7AKuDDyL5PgatjEayQWgNbgTrAbsA0M5vqnMvOe5CZ9QX6AtSuXZvMzMy4B1u3bl2JvI9srzSf+4YjR1Jn7Vpm9OjBhk8+CR1nO6X53Cc6nfvCSx80iBZXX02l009n9j33sLpZs2K9ns59OKl+7qMp4oYDb5lZc3zfuOeccy6yrya+pa4ofgH2zfO4bmRbQccsjVw6rQ6sAM4G3nfObQGWmdm/gVbA34o459xoYDRAq1atXJs2bYoYsegyMzMpifeR7ZXacz97Nrz7Llx+Oa379AmdpkCl9twnAZ37ImrdGo47jsNuugk+/hhaRj+Dls59OKl+7ot8OdU59z5+EMKfwLPA4Dy72wALi/iSM4CGZlbfzMrhW/fG5ztmPNA7cr8b8FGkcFwCnAhgZpWBfwDzi/j+Iolv25QiNWr4EXYiUjy1asHUqbD77r57wty5oROJFFlUy2455zKdc32dc/2dc2vz7CoLvFbE18oB+gGTgXnAWOdclpndZmanRQ57GqhpZovwl2u3TUMyCqhiZln4YvBZ59zsaL4nkYT2zjvw0Ue+P9zuu4dOI1I61K3rC7myZaFdO/jxx9CJRIokppP9OucuifJ5k4BJ+bbdkuf+Rvx0Ivmft66g7SKlyqZNfumgpk3hkqj+iYnIjhx4IHzwARx/PLRtC9OmQZ06oVOJFMouW+LM7Awzu9LMGuXb3i9+sUTkvx58EH74wc84X0aLrIjE3KGH+pGqy5b5KUhWrAidSKRQdlrEmdldQH/gQGCKmQ3Is/uCOOYSEYDff4fbb4eMDH+5R0Tio3VrGD8eFi2CDh1gjaYclcS3q5a4U4G2zrkrgcOA08zs3sg+rSIsEm+DB8PGjX7hbhGJrxNO8JMAf/ut/8Ppr79CJxLZqV0VcWmRgQc451YAHYB6ZvZ0IZ4rIsXxn//45YGuvBIaNgydRiQ1ZGTACy/4vnHduvll7kQS1K4Ksd/M7PBtDyLLYp2FX+7qkHgGE0lpzkH//rDHHnDzzaHTiKSWnj3h8cdh0iQ47zzYujV0IpEC7aqXdB8gJ+8G51wucJGZaQVhkXgZN863BDzxBFSvHjqNSOrp2xdWr4brroOqVWH0aDD1IpLEstMizjm3dCf7Po99HBHhr7/8lCLNm8OFF4ZOI5K6rr3WF3LDh/s/pu69V4WcJJQizVdgZi86586NVxgRwQ9iWLIEnn8e0tNDpxFJbcOG+ULu/vt9IafuDZJAijrp1MlxSSEi3i+/wJ13QteukMLrAYokDDM/V+OaNXDLLVCtmu+vKpIANHOoSCK54Qbfifree3d9rIiUjLQ0ePppWLsWBgzwhdz554dOJaJpQkQSxldfwYsvwtVXQ/36odOISF5lysCrr/pJty+6CN54I3QiERVxIgkhNxf69YO99/atcSKSeMqXh7fegn/8w09DMnly6ESS4lTEiSSC556DGTPgnnv8dAYikpgqV4aJE6FpUzjjDPjss9CJJIUVtYj7OS4pRFLZqlUwaBD885/Qq1foNCKyKzVq+Fa4ffeFU0+lysKFoRNJiipSEeecaxmvICIp69ZbYcUKeOQRzUElkixq1YKpU6FGDZpddx3Mmxc6kaQgXU4VCSQ7G04/4DtyHhrFmOr/Irtai9CRRKQo9t3XF3JpaX7Aw+LFoRNJiilyEWdm5c3sEjMbaWY3m9kZZnZAPMKJlGYZnRwDsq9gNdW5YtUwMjJCJxKRImvYkFn33gvr10PbtvDbb6ETSQqJZp64V4DTgTlAZaAeYGa2HsgCZjnnLjGzSs65DbEKKlLa/GP+c7ThEy7hMf5wNflzQehEIhKN9QccAO+954u49u3hk09g991Dx5IUEM3l1PbAFc655s65A4GqwFHA1cAMoJGZpQNrzezw2EUVKUV++IGH7Eo+pg1PcjFpadCoUehQIhK1f/wDxo+H77+HU07xEwOLxFk0LXFLgB+3PXDO/QV8Fbn9l5ldkPc4EYnIyYFzzqFC5XSG7/U8lp1Oo0YwYULoYCJSLCeeCGPHQpcucNppMGkSVKwYOpWUYtG0xN0FXLarg5xzzzvn/ozi9UVKt+HDYfp00kc/ztSF+5GTA1lZ0KBB6GAiUmynnQbPP+8vqZ55JmzZEjqRlGJFLuKccy8Ci81sipmdaGZl45BLpHSaPh2GDYNzzoEePUKnEZF46NULHn0U3n0XzjvPr4csEgdFvpxqZtcAl0cengRsMbP5wKzIbbZzbkrsIoqUEmvX+l/udev6OeFEpPS65BJYvdpP5F2tGjz+uOaBlJiLpk/cYOAl4Cb86NRmQPPI1/7APkB6rAKKlBoDBvh5pDIzoXr1wGFEJO6uv94Xcnfe6f/N3323CjmJqWiKuC3Ac865JZHH84DXtu00sxoxyCVSurz5JjzzDNx4Ixx7bOg0IlJShg+HNWvg3nt9ITd4cOhEUopEU8S9hL+M+lFBO51zq4oTSKTU+eUXuPhiaNnSL7ElIqnDDB56yBdyN93kL61ecUXoVFJKRDvFSH8z+xV43DmnHpsiO5KbC+efDxs3wssvQ7lyoROJSElLS/Mt8WvXwpVX+kKud+/QqaQUiGaKkdvxqzQ8DCwzs3fMbKiZddHyWyL5PPQQTJkCI0ZoNl+RVFamDLz6Kpx0Elxwge9iIVJM0RRx1YCGQBfgQWAzcBYwFvjezNbELp5IEvvuOz8yLSMD+vYNnUZEQqtQAd5+G448EtejBxfv/wFlykDTppCdHTqcJKMiX051zjngh8jt7W3bzawCcEjkJpLaNm7004lUrw5PPaURaSLiVakCEyeyYO8TeGDJGczlA6bP/ycZGX7Sb5GiKHJLnJm9aGZj8m93zm10zs10zj0Xk2QiyezGG31L3LPPQq1aodOISCLZbTdO3DKZpdRlIqfSLPc/LFgQOpQko2gup54EvFfQDjO708zOLF4kkSQ3ZQqMHAmXXQYdO4ZOIyIJaLfGtTnZprCGakzmZDrUmx86kiShaIq43YCfd7BvKTAo+jgiSW7FCujTBxo39vNCiYgUYMIEqHzwfpycNpW0dOPt9e3gp59Cx5IkE00RtxA4bAf75uIHPYikHufgX/+C5cv9dCKVKoVOJCIJqkED3wdu3taD2OPrDyizcR20bQv/93+ho0kSiaaIew640cwOKmBfHWBDsRKJJKvnnoM33vAL3B9+eOg0IpIsmjeHSZPgt9+gXTtYuTJ0IkkS0RRxDwKfAjPNbLiZHWFm+5pZO2BoZJ9IavnhBz+J5/HHw8CBodOISLI56ig//cjChb4v7dq1oRNJEihyEeecy8XPETcUuAiYDiwGJgN/AfofTFLL5s1w9tmQng4vvOC/iogUVdu2MHYszJwJp5/upyoS2YloWuJw3v3AXsDhwKmRry2cc+qZKSkhO9tP0nl/hcHw1Vf8Pvwp2G+/0LFEJJl17uy7Znz0EZx5JmzZEjqRJLCoirhtIsXcLOfc+865b7WOqqSSjAyoN+89rnH38TiXcOKj3UJHEpHS4JxzYNQoP4S1Tx+/BrNIAYq8YoOIeGvm/8pz7jxmcyhXMYItmqxTRGLlsstg9Wo/cXi1avDoo1r5RbajIk4kGlu3Mq7COVTasIGzeI3NaRVprPXtRSSWbrjBF3J33+2X8LvrrtCJJMGoiBOJxh13cOSGjxlc5xm+//1gGjfyVz5ERGLqzjthzZr/FXI33BA6kSSQmBVxZlbDObcqVq8nkrCmTYMhQ+Dssxn+Uh+G6wqHiMSLGTzyiC/ktl1avfzy0KkkQRR5YIOZXWpm1+V53MLMlgIrzOxrM6sb04QiiWTFCj+dSIMG8Pjj6qMiIvGXlgbPPutHrvbrBy++GDqRJIhoRqdeAazJ8/gh4FegV+T1inzR3sw6mNkCM1tkZtutvWpm5c3stcj+L82sXp59zczsCzPLMrPvzKxCkb8jkcJwDs4/H37/HcaMgapVQycSkVRRtqz/vXPiif730FtvhU4kCSCaIm4/YAGAme0J/BO4zjk3BhgGnFiUFzOzdGAUcArQBOhpZk3yHXYh8Kdz7kBgJHB35LllgJeAS5xzTYE2gCbVkfh46CHf8e3ee6Fly9BpRCTVVKgA77wDrVpBjx4wZUroRBJYNEXcJqBc5P4J+LVSp0UerwRqFPH1WgOLnHPZzrnNwBigc75jOgPPR+6PA04yMwPaA7Odc7MAnHMrNFedxMXXX8O11/rJ4a68MnQaEUlVVar4dVYbNfKrOnzxRehEEpA554r2BLP38K1dNwBPAL8557pH9l0A3BhpMSvs63UDOjjnLoo8Phc40jnXL88xcyLHLI08/gE4EjgHaAnUAvYExjjn7ingPfoCfQFq167dcsyYMUX6nqOxbt06qlSpEvf3ke3F+tynb9hAy759Sdu8mZlPPklO9eoxe+3SRp/7cHTuwwlx7sutXEmLK6+k7OrVfDtyJOsPLPR/u6VKKnzuTzjhhK+dc60K2hfN6NRrgAnAd8DPwAV59p0F/DuK14xWGeAY4Ah8i+CHZva1c+7DvAc550YDowFatWrl2rRpE/dgmZmZlMT7yPZieu6d87On//YbZGZyzLHHxuZ1Syl97sPRuQ8n2Llv2RKOPZYjBg/2o+YPOqjkMwSW6p/7Il9Odc7Ndc4dgG/5quecW5hn98DIrSh+AfbN87huZFuBx0T6wVUHVgBLgU+dc3845zYAk/BruIrExnPPwSuv+ClFVMCJSCLZf3/fL845aNsWliwJnUhKWNRrp0b6n7l8275zzi0v4kvNABqaWX0zKwf0AMbnO2Y80DtyvxvwUeS9JwOHmlmlSHF3PDC3qN+LSIHmzfPD+U880c/PJCKSaBo1gg8+8PPItW3rR89Lyoh6sl8zOwjfarbdlB7OuUmFfR3nXI6Z9cMXZOnAM865LDO7DZjpnBsPPA28aGaL8IMnekSe+6eZjcAXgg6Y5JybGO33JPJff/0FZ50FlSv7OZnS00MnEhEpWIsWfrBDu3bQvj1kZsJuu4VOJSWgyEVcZPqPMUBToKCZTh2+GCu0SNE3Kd+2W/Lc3wh038FzX8JPMyISO1dfDd99B++9B3XqhE4jIrJzRx8Nb78NnTpBx47+Mmsp7/Av0V1OfQIoD3QBGgH1890axCydSAjjxvnVGK69Fjp0CJ1GRKRw2rXzEwLPmOGnH9m4MXQiibNoLqceBvRwzr0b6zAiwS1cCBdeCK1bw+23h04jIlI0Z5wBzzwDvXv7CYFff92v9iClUjQtcT9QQD84kaS3dq3/BViunP/FV67crp8jIpJozjsPHnnEr+5wwQWQmxs6kcRJtPPE3WNm3zjnsmMdSCQI5/wvu/nzfV+S/fYLnUhEJHqXXw6rV8PgwX6d51GjwArqxi7JLJoi7k5gH2C+mS0GVuU/wDnXunixREpOdja8ddS9XLNsHPfWupeu9U5Ux04RSX433ACrVvn1nqtXhzvvDJ1IYiyaIm5O5CZSKgw/YSqjl93Aa5zJoOXX8FwGZGWFTiUiUkxmcPfdfg65u+7yhdygQaFTSQwVuYhzzp0fjyAiQSxezN1LejCXJlzI0+Q6Y8GC0KFERGLEzF9KXbvWt8xVrw6XXho6lcRIcSb7rQMcBeyOXwJrunPu11gFE4m7v/6Crl0pl5ZDN/cm610V0tL8BOgiIqVGerpfQnDtWt9XrmpVvya0JL0ij041s3QzexT4CXgdP2/cOOAnMxtlZlEv5SVSYpzzf41+8w0bnniJMgc3JD0dGjeGCRNChxMRibGyZWHsWGjTBvr08SNXJelFU3ANBS4AbgTqARUjX2+MbB8Sm2gicfTYY/D88zBkCHtd1ImsLMjJ8X3hGmhUg4iURhUq+OKtZUs480z48MPQiaSYoinizgNucs7d65xb4pzbFPl6L3Az0CemCUVi7d//hv79/fI0N98cOo2ISMmpWtUvJ3jQQdC5M3zxRehEUgzRFHG1gNk72Dc7sl8kMf36K3TrBvXq+YXt03T1X0RSzO67wwcfwF57+XVWZ80KnUiiFM3/YAuBHjvY1wPQ2D5JTJs3Q/fuvnPvW29BjRqhE4mIhLH33jB1KlSpAu3bw/ffh04kUYhmdOrtwBgz2w8/oOF3fOtbd+AEdlzgiYR11VXw+efw2mtwyCGh04iIhFWvnl+h5rjjoG1bmDZNq9UkmSK3xDnnxgIdgMrAg8AbwENAJaCDc+71mCYUiYXnnoNHH4WBA32HXhER8UPyJ0/2S3S1awe//x46kRRBVB2CnHMfOOeOwo9M3Quo6Jw72jk3JabpRGLh66/hkkvgxBO17IyISH6HHQYTJ8LPP8PJJ8Off4ZOJIVUrF7dzrlc59wy51xurAKJxNQff0CXLlC7NowZA2Wint9aRKT0+uc/fV/huXPh1FNh3brQiaQQivw/mpk12dUxzrm50cURiaGcHOjRw18e+Owz2HPP0IlERBLXySfDq6/6LidnnOFnPq9QIXQq2YlomiXmAG4Xx6RH8boisTV4sJ/M8plnoFWr0GlERBJf167+d2afPtCzJ7z+uq5gJLBofjInFLBtN+DkyO3KYiUSiYXXX4d77vFLa51/fug0IiLJo3dvWLMGrrwSLrjADwzTnJoJqchFnHPukx3setvMbgfOBN4tViqRYqj0449wxRVw1FHwwAOh44iIJJ8rrvAjVm++GapVg4cfBrPQqSSfWLeRfgy8GePXFCmU7Gw4u+MqXlhwJ3+kV2H9/ePYv1y50LFERJLT4MG+kLvvPqheHYYPD51I8ol1EXcqsCrGrylSKKd1yuXOBedRnx85KfdjVlxUh6ys0KlERJKUme+Wsno13HGHL+Suuy50KskjmtGpYwvYXA5oDDQEbixuKJFodJt/OxlMoB8PM80dQ7oWgBMRKR4zeOwx30fu+uv9pdVLLgmdSiKiaYmrxfajUzcC04CrnXOTip1KpKgmTuQWN4QXOZdRXE5aGjRqFDqUiEgpkJ4OL77o54677DJfyJ19duhUQnQDG9rEIYdI9BYtgl692NKkOSNznyBtoV9JZsKE0MFEREqJsmX9qP+OHeG886BqVcjICJ0q5RWqiDOzW4ryos6526KLI1JE69f7SSnT0yk/8S2+qVeRzMxM2rRpEzqZiEjpUrEijB8PJ50E3bvDpEl+OUMJprAtcUOAv4D1wK7GGDtARZzEn3Nw4YV+mZj334d69UInEhEp3apWhffeg+OPh9NO8xOqH3lk6FQpq7Cz9/0AlAW+BgYCDZxze+7gVituaUXyGjkSXnvND3tv1y50GhGR1FCzJkyZ4tekPuUUmD07dKKUVagizjnXEDgayAKGAb+b2Ztm1t3MKsYzoEiBPv7YD3Xv2tWPmBIRkZKz994wdSpUqgTt28P334dOlJIKvY6Gc26mc26gc24/oAPwf8AjwDIze9nMjotXSJG/WbLEL9B80EHw7LOaRVxEJIT69X2L3Nat0LYt/Pxz6EQpJ6rF0JxznzrnLgP2BR4HzgIGxDCXSME2bvStb5s2wVtv+f4ZIiISxsEHw+TJsGqV79aybFnoRCklqiLOzP5pZg8DPwGXAuOAB2MZTGQ7zsHll8PMmX7OIk0EJyIS3uGHw8SJ/irJySf7gk5KRKGLODM73MzuMbOfgA/xrXBXAbWccz2cc5/EK6QIAKNHwzPPwE03QefOodOIiMg2xxwDb74JWVlw6ql++ieJu0IVcWa2AJgONANuxRdupzvnxjjnNsQzoAgAX3wBV1wBHTrAkCGh04iISH4dOsArr8D06X7+zk2bQicq9QrbEtcQyAFaAvcAi8xs2Y5ucUsrqWnpUv8LYd994eWX/RIwIiKSeLp1g6ee8gMeevaEnJzQiUq1wk72OzSuKUR2ZMMGf+l0wwb46CPYfffQiUREZGfOPx/WrIEBA+Cii3w3mLSouuDLLhSqiHPOqYiTEpWdDRmdHLfMv4Du7j/8/tQE9m7SJHQsEREpjP79YfVquPVWqFYNHnxQ00HFQWFb4kRKVEYGnDH/Ds5yr3G93c27I04l68LQqUREpNBuvtkXciNGQPXqMGxY6ESljoo4SUjN5r3G7e4mXuQc7nHXkr4gdCIRESkSM7jvPn9p9fbbfSE3cGDoVKWKijhJPJMn84I7l084jr6MJi3NNCWciEgyMoPHH/eF3LXX+kurffuGTlVqqIiTxPLFF9ClC7lNmnLd1vFsWVSRxo1gwoTQwUREJCrp6X6C9rVr4ZJL/Eo7PXuGTlUqqIiTxDFnjp8ksk4dyn/0Pl/Wrh46kYiIxEK5cjBuHJxyCpx3ni/kOnUKnSrpJcSYXzPrYGYLzGyRmQ0qYH95M3stsv9LM6uXb/9+ZrbOzHSxPVn9+CO0bw8VK/r5hWrXDp1IRERiqVIlf1mlRQvo3h0yM0MnSnrBizgzSwdGAacATYCeZpZ/LokLgT+dcwcCI4G78+0fAbwX76wSJ7//7hdO3rjRL6Rcr17oRCIiEg/VqsH770ODBn4agq++Cp0oqQUv4oDWwCLnXLZzbjMwBsi/MGZn4PnI/XHASWZ+whkzOx34EcgqmbgSU6tW+QWTf/vNL6B8yCGhE4mISDzVrOmvuNSq5ZfqmjMndKKklQhF3D7Az3keL41sK/AY51wOsBqoaWZVgOvRihLJ6a+/4LTTYO5cv3DyUUeFTiQiIiWhTh2YOtV3oWnXDhYtCp0oKSX7wIYhwEjn3DrbyUzQZtYX6AtQu3ZtMkvgOvy6detK5H2SleXk0PSWW6g5fTpzb7qJ5eXLx6x/hM59ODr34ejch6NzH71Kw4dzWP/+bD3mGP7z8MNs2nPPIj0/1c99IhRxvwD75nlcN7KtoGOWmlkZoDqwAjgS6GZm9wA1gFwz2+iceyTvk51zo4HRAK1atXJt2rSJw7fxd5mZmZTE+ySl3Fzo3dtPJ/LoozS99NKYvrzOfTg69+Ho3Iejc19Mhx5K2RNO4KhbboFPP4UiFHKpfu4T4XLqDKChmdU3s3JAD2B8vmPGA70j97sBHznvWOdcPedcPeAB4I78BZwkjuxsaNrE8UiZ/vDSS6y8ahjEuIATEZEk07IlvPsuLF7s+0ivXh06UdIIXsRF+rj1AyYD84CxzrksM7vNzE6LHPY0vg/cIuBqYLtpSCTxndYplyvnXUo/9wgjuJpj3x8cOpKIiCSC447zfaPnzPHzx23YEDpRUkiEy6k45yYBk/JtuyXP/Y1A9128xpC4hJPY2LqVa+dfSG+e504GcSN3kL5wx/0YRUQkxZxyCrz8MvToAV26wDvvQPnyoVMltOAtcZICtmyBXr3o7Z7nVhvKjdyh9VBFRGR73bvDk0/6OUN79YKcnNCJEpqKOImvTZvgzDPhtddYcd3djDv4FtLTjcaNtR6qiIgU4IILYMQIeOMNuPhiPxhOCpQQl1OllPrrL+jaFd57Dx56iJpXXEFW/rU2RERE8rvqKj/AYehQv8rDAw/ATqYSS1Uq4iQ+1q/3E/l+/DGMHu3/mhIRESmsW2/1hdwDD0CNGr6gk79RESext2YNnHoqfP45PP88nHtu6EQiIpJszPxl1TVr4LbboHp1uPrq0KkSioo4ia0///Rr4X3zDbz6qu8PJyIiEg0zfzVn7Vq45hp/afWii0KnShgq4iR2li+H9u39WqjjxkHnzqETiYhIsktPh5de8oVc375QtSqcdVboVAlBo1MlNv7v/6BNG5g/H8aPVwEnIiKxU66cH616zDFwzjkwcWLoRAlBRZwUS3Y2tG/4Iwv2Pp4N837i16cm+WVTREREYqlSJT83VbNm0K0bfPJJ6ETBqYiTYrnxpC95adGR1GIZJzOZdnecEDqSiIiUVtWr+4mA69eHjAyqLlgQOlFQKuIkem+8wbOL27CWqhzFF3zm/kmK/3sSEZF422MPmDIF9tiDZtddB1lZoRMFoyJOis45uO8+6N6d+RUP42ibzgIak5aGltISEZH422cfmDqV3LJloV0737cnBamIk6LJyYFLL4Vrr4Vu3agx80P2OHhP0tPRUloiIlJyGjRg1r33+uUdTzoJfvkldKISpyJOCm/NGsjIgCeegBtugDFjqN+kIllZvrbLyoIGDUKHFBGRVLGhfn14/31YscK3yC1fHjpSiVIRJ4Xz889+aPeUKfDkk3DHHZCmj4+IiAR2xBH+MtCPP/rJ5levDp2oxOh/Ydm1b76BI4+En37yi9lrtmwREUkkxx/v55GbPdtfMdqwIXSiEqEiTgqUnQ1Nm8Lp6ePZ0Oo4tlhZ+Pe/fXO1iIhIounY0a/s8Nln0LUrbN4cOlHcqYiTAnXutJWec2/m7dzOZLmDaVvlSzjkkNCxREREduyss/xaq++/71d22Lo1dKK40tqpsr2VK7lv3tmczGSe5gIuZxQ5P1QInUpERGTXLrrID8S75hq/zuqTT5baPtwq4uTv/vMf6NKFE+xX/sVoRruLSEszGmv+NxERSRZXXw2rVsGwYVCtGowYAWahU8Vc6SxNJTrPPw9HHw05OSx/YxqfHXwx6emm+d9ERCT5DB0KV14JDzzg75dCaokT3/lzwAB47DE48UQYM4Z99tyTrDNCBxMREYmSGYwc6S+tDh3q11296qrQqWJKRVyq++UX6NYNpk+H666D4cOhjD4WIiJSCqSl+T5xa9f6S6zVq8MFF4ROFTP63zqVZWb6kTwbNsC4cX5ItoiISGlSpgy8/DKsWwcXX+wHO3TvHjpVTKhPXIrJzoZDm2zl5rTh5JzQls1VdoOvvlIBJyIipVf58vDmm77fd69efuL6UkBFXIq5oMOvPDivHcPcTbzOmRxT9is4+ODQsUREROKrUiV4910/52mXLvDpp6ETFZuKuFQycSKvf9+cI/mS83mGs3mZbxZVC51KRESkZFSvDpMnQ7160KkTzJwZOlGxqIhLBZs2+RE5nTqxovw+HGFf8xznk5ZmNNL8byIikkr23BOmTIHdd4cOHWDu3NCJoqYirrRbuND3AXjgAbjiCsr/Zzp2cGPS09H8byIikprq1oWpU6FsWb8m+I8/hk4UFRVxpdkLL8Dhh8PixfD22/DQQ9Q/uAJZWZCTA1lZ0KBB6JAiIiIBHHigb5HbuBHatoVffw2dqMhUxJVGa9fCeedB797QsiXMmgWdO4dOJSIiklgOOcSPVF22zLfI/fFH6ERFoiKuFMnOhvPrfUx2teZsffFlVvYfAh995JuNRUREZHutW/u+RT/84PvIrVkTOlGhqYgrLdat48tWl/PsTyeylXROsE84dsqtkJ4eOpmIiEhia9PGT3o/axZkZPhJ8JOAirjSIDMTmjXjrD8fYyQDaM4sprljWLAgdDAREZEk0akTvPgiTJvml6PcvDl0ol1SEZfM1q2Dfv3ghBMgPZ3e+3/CwLSR/EUl0tLQ9CEiIiJF0aMHPP647yd37rmwdWvoRDulIi5ZvfceNG0Kjz4KAwbArFkM/ehYGjdG04eIiIhEq29fuPdeGDsWLrkEnAudaIfKhA4ghZOd7S/Tr5y/jCerXEWnNa9Akybw2Wd+Hjj8dCFZWYGDioiIJLuBA2H1arj9dqhWDe67D8xCp9qOirgkkdHJccT8F7nfXUXVNWt5ZM+h9Pvmer+or4iIiMTWbbf5Qm7ECL9c1y23hE60HRVxyWDBAh6YdwXtmMK/OZqLeZKFK5vQT/WbiIhIfJj51Y7WrIFbb/WFXP/+oVP9jfrEJbJ162DQIDj0UP6R9iX97BGOZRoL0ppo0IKIiEi8paXBU09Bly6+//kzz4RO9Dcq4hKRc/Daa350wt13Q69erPxiIR8ffDlp6WkatCAiIlJSypSBV16B9u3h4ovh9ddDJ/ovFXEJIDvbDzQtUwY6HzCHv4460Q9zrl0bPv8cnn2W/VvX1pqnIiIiIZQvD2++CUcdBb16wfvvh04EqIhLCBkZ8Ou81dy79SreyG7B5hmz4LHH4Kuv/AdGREREwqpcGd5917e6dOniJwUOTEVcaCtX0mPerWS7evTnQZ7iIg5ioZ+bRktmiYiIJI4aNWDyZDbvvR/r2pxK6/SvadrUX1ELISGKODPrYGYLzGyRmQ0qYH95M3stsv9LM6sX2d7OzL42s+8iX08s8fDRWr4cbrgB6tXjZncbn9CGlnzN5WmPs0fjPUKnExERkYLUqkWH9Kn8kbs7r+aeyaJ5W8jICBMl+BQjZpYOjALaAUuBGWY23jk3N89hFwJ/OucONLMewN3AWcAfQIZz7lczOwSYDOxTst9BEf32m5808PHH4a+/oHt3lvYezOBrm7FgATRupEELIiIiiezT7Lq0ZSrVWc1mVzbYWuXBizigNbDIOZcNYGZjgM5A3iKuMzAkcn8c8IiZmXPuP3mOyQIqmll559ym+Mcuop9/9iNNn3rKj044+2y48UZo3Ji6QFbH0AFFRESkMBo1gvnzDyQ3l6BrlZsLvCaYmXUDOjjnLoo8Phc40jnXL88xcyLHLI08/iFyzB/5XucS51zbAt6jL9AXoHbt2i3HjBkTz28JgHXr1lGlShUq/Por+73yCntNngzO8X8dOrCkZ0827pPYDYbJbNu5l5Kncx+Ozn04OvfhhDr3v/5agRtvPJSff67Evvtu4I47vqNOnY1xea8TTjjha+dcq4L2JUJLXLGZWVP8Jdb2Be13zo0GRgO0atXKtWnTJm5Ztq1xmjtvPndVu5Pj172MlSnjF9S9/nrq7LcfdeL27gKQmZlJPH/GsmM69+Ho3Iejcx9OyHN/9tnb7lUG/hEkQyIUcb8A++Z5XDeyraBjlppZGaA6sALAzOoCbwHnOed+iH/cnevRcQ03L/gXZ/IaG1dX4IXdr6T3dwOhjko3ERERiZ1EGJ06A2hoZvXNrBzQAxif75jxQO/I/W7AR845Z2Y1gInAIOfcv0sq8M58831V9mEp93Ad9VjMhatHqIATERGRmAveEuecyzGzfviRpenAM865LDO7DZjpnBsPPA28aGaLgJX4Qg+gH3AgcIuZ3RLZ1t45t6xkv4v/adTYaDPvU3KdkZbmR5uKiIiIxFrwIg7AOTcJmJRv2y157m8EuhfwvNuB2+MesAgmTICMDGP+fEfjxqbpQkRERCQuEuFyaqnSoIFf2/TDDz/RGqciIiISNyriRERERJKQijgRERGRJKQiTkRERCQJqYgTERERSUIq4kRERESSkIo4ERERkSSkIk5EREQkCamIExEREUlC5pwLnaFEmdly4KcSeKs9gD9K4H1kezr34ejch6NzH47OfTipcO73d87tWdCOlCviSoqZzXTOtQqdIxXp3Iejcx+Ozn04OvfhpPq51+VUERERkSSkIk5EREQkCamIi5/RoQOkMJ37cHTuw9G5D0fnPpyUPvfqEyciIiKShNQSJyIiIpKEVMSJiIiIJCEVcTFmZh3MbIGZLTKzQaHzlBZmttjMvjOzb81sZmTb7mY2xcy+j3zdLbLdzOyhyM9gtpkdnud1ekeO/97Meof6fhKZmT1jZsvMbE6ebTE712bWMvKzXBR5rpXsd5i4dnDuh5jZL5HP/rdm1jHPvhsi53GBmZ2cZ3uBv4fMrL6ZfRnZ/pqZlSu57y6xmdm+Zvaxmc01sywz6x/Zrs9+nO3k3OuzvyvOOd1idAPSgR+ABkA5YBbQJHSu0nADFgN75Nt2DzAocn8QcHfkfkfgPcCAfwBfRrbvDmRHvu4Wub9b6O8t0W7AccDhwJx4nGvgq8ixFnnuKaG/50S57eDcDwEGFnBsk8jvmPJA/cjvnvSd/R4CxgI9IvcfBy4N/T0nyg3YGzg8cr8qsDByjvXZD3fu9dnfxU0tcbHVGljknMt2zm0GxgCdA2cqzToDz0fuPw+cnmf7C86bDtQws72Bk4EpzrmVzrk/gSlAhxLOnPCcc58CK/Ntjsm5juyr5pyb7vxv0xfyvFbK28G535HOwBjn3Cbn3I/AIvzvoAJ/D0VafU4ExkWen/fnmPKcc785576J3F8LzAP2QZ/9uNvJud8RffYjVMTF1j7Az3keL2XnH0QpPAd8YGZfm1nfyLbazrnfIvf/D6gdub+jn4N+PtGL1bneJ3I//3bZuX6RS3bPbLucR9HPfU1glXMuJ992ycfM6gGHAV+iz36JynfuQZ/9nVIRJ8niGOfc4cApwOVmdlzenZG/bDVfTgnQuS5xjwEHAC2A34D7g6Yp5cysCvAGMMA5tybvPn3246uAc6/P/i6oiIutX4B98zyuG9kmxeSc+yXydRnwFr7Z/PfIJQoiX5dFDt/Rz0E/n+jF6lz/Ermff7vsgHPud+fcVudcLvAk/rMPRT/3K/CX/Mrk2y4RZlYWX0S87Jx7M7JZn/0SUNC512d/11TExdYMoGFkFEw5oAcwPnCmpGdmlc2s6rb7QHtgDv7cbhv51Rt4J3J/PHBeZPTYP4DVkcshk4H2ZrZbpFm+fWSb7FpMznVk3xoz+0ekn8p5eV5LCrCtgIg4A//ZB3/ue5hZeTOrDzTEd5wv8PdQpBXpY6Bb5Pl5f44pL/J5fBqY55wbkWeXPvtxtqNzr89+IYQeWVHabvgRSwvxI2QGh85TGm74kUazIresbecV38/hQ+B7YCqwe2S7AaMiP4PvgFZ5XusCfCfYRcD5ob+3RLwBr+IvXWzB9x25MJbnGmiF/2X8A/AIkZVjdNvhuX8xcm5n4//z2jvP8YMj53EBeUY67uj3UOTf0leRn8nrQPnQ33Oi3IBj8JdKZwPfRm4d9dkPeu712d/FTctuiYiIiCQhXU4VERERSUIq4kRERESSkIo4ERERkSSkIk5EREQkCamIExEREUlCKuJEREREkpCKOBFJCmb2o5k5MzuwgH3PmdnMPI/PNLM+0R5XjIyHRDK2icFrZUZey5nZgBi83pA8rzdu188QkUSnIk5EEp6ZHQXUizzsWYinnAn0KWD7sHzbd3RcovgYOAoYE4PXeiryWv+JwWuJSAJQESciyaAnsB74ksIVcQVyzv3gnJuz6yMTxkrn3HTn3P8V94Wcc0udc9OBNbs8WESSgoo4EUloZpaObzEbDzwDHGxmzXdy/HNAV+D4PJcPh2zbt+1y6i6Oy8x/ydHM2kSOOSTPtsvM7GczW29mE4C8az3mfe6xZvaJmW0wsxVm9uS29YCjOB9pZrbOzAaY2QgzW2Zmf5rZtZH955rZ3Mgxb5pZxWjeR0QSX5nQAUREduEEoDb+kuJn+DUne+LX0i3IMGA/oAZwWWTb0mIcVyAz64xfO/Nx4G3geHyRmf+4f+LX3HwbvwB3TeAuYDf+tyB3UTQAKgMD8Gutno2/JHyPme0P1AeujXx9CDgfeDSK9xGRBKciTkQSXU9gFfC+c26zmX0A9DCzG1wBiz87534ws5VAWuTyYYEKe9xODI5kujTyeLKZ7QlclO+4u4DPnXNnbdtgZr8AH5rZIVFc3j008nWEc+6hyOt9D/QCDgbabjsvZtYXaFTE1xeRJKHLqSKSsMysHNAFeMs5tzmyeQywP76TfqhcZYDDgXfy7Xoz33GV8DnHmlmZbTd8i+IWoGUUb98MX9Q+lmdb5cjXu/IVtpWBlVG8h4gkARVxIpLITsFf7pxkZjXMrAaQCWyiGAMcYmAPIB1Ylm97/se7RY57FF+0bbttAsoC+0bx3ocCnznntuTZ1gzIAT7dtiFSQNYDkmkgh4gUgS6nikgi21aovV7Avu5mNsA5tzUO77sRKJdv22557v8BbAVq5Tsm/+NVgAOGAJMKeJ9fo8h2KDA237bmwHzn3KZ8x6UBs6N4DxFJAiriRCQhmVllIAPfeX90vt2HASOAE4EpBTx9M1ChEG+zo+OWAsfl29Z+2x3nXI6Z/QfojB/YsE2XvE9wzq03s+lAI+fcbYXIs1ORkaYHsv2gjmY72LYe+KG47ysiiUlFnIgkqs5AJeBB59yXeXeY2b/xAwt6UnARNx/obGan4wuyX51zBbV67ei4t4ALzWwkMBE/QrZDvufeAbxpZo9Fjj++gGMArsMPYsgFxgFr8aNiTwUGO+cW7uwk5NMU37pWUMH2UAHbspxzuUV4fRFJIuoTJyKJqifwff4CDiDSH2ws0MXMyhfw3EeBD/BTfswA+u7gPQo8zjk3EbgRPwXIW/iBFP3zZXgLuALfWvg2vnXwwgKyfoZv1dsTeBGYgC/sfgZ+30GuHTmUfK1rZrYbUJftL5s2K2CbiJQiVsAIfRERCczMMoEVwFnA1oKmUyni66Xh/3D/EFjunItmjjoRSSBqiRMRSVxd8KNZ++/qwEK4JfJa+fv6iUiSUkuciEgCMrNGwLaluZY45/JPX1LU16sD1Ik8XOmcyy7O64lIeCriRERERJKQLqeKiIiIJCEVcSIiIiJJSEWciIiISBJSESciIiKShFTEiYiIiCQhFXEiIiIiSUhFnIiIiEgS+n8bX65lNbtDQQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 720x360 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_altitude(altitude, muons)\n", + "plt.plot(fit_altitude, fit_muons,'r-',label='Fit')\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Se puede confirmar el valor tabulado considerando que:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Altitude: 0.0 msnm (sea level)\n", + "Muon flux at sea level: 1 muon per cm² per min\n" + ] + } + ], + "source": [ + "print(f\"Altitude: {altitude[0]} msnm (sea level)\")\n", + "print(f\"Muon flux at sea level: {round(muons[0]*60)} muon per cm² per min\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Para 990msnm se espera el siguiente número de muones:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Estimated muons per cm² per min at 990 msnm: 1.4 muons\n" + ] + } + ], + "source": [ + "muon_990 = round(fit(990)*60, 1)\n", + "print(f\"Estimated muons per cm² per min at 990 msnm: {muon_990} muons\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Considerando la ecuación y el flujo de muones tabulado a nivel del mar:\n", + "$$\\Phi= \\frac{\\# events}{(area)(time)}$$\n", + "$$\\Phi_{\\mu}= \\frac{1 muon}{(1 cm^{2})(1 min)}$$\n", + "y el área total para los tres paneles:\n", + "$$ A = (25*25)cm² * 3 $$\n", + "el número de muones esperados:\n", + "$$ N\\mu= \\Phi_{\\mu}*A*t$$\n", + "Cálculo de área total:" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Total area: 1875 cm²\n" + ] + } + ], + "source": [ + "area = 25*25*3\n", + "print(f\"Total area: {area} cm²\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Cálculo de muones estimados para el área total, dada por los tres paneles del experimento, en minutos y segundos:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Expected muons per minute for the total area at 990 msnm: 2625.0 muons\n" + ] + } + ], + "source": [ + "muons_min = area*muon_990\n", + "print(f\"Expected muons per minute for the total area at 990 msnm: {muons_min} muons\")" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Expected muons per second for the total area at 990 msnm: 43.75 muons\n" + ] + } + ], + "source": [ + "muons_sec = muons_min/60\n", + "print(f\"Expected muons per second for the total area at 990 msnm: {muons_sec} muons\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Calibración" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "flux=np.zeros(11)\n", + "flux" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Voltaje umbral de 50 mV" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "V50=load_data(\"calibrationData/calibration_50mV.dat\")" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "time_V50 = time_list(V50)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([datetime.time(15, 21, 16, 6000), datetime.time(15, 21, 16, 6000),\n", + " datetime.time(15, 21, 16, 6000), ..., datetime.time(15, 26, 49),\n", + " datetime.time(15, 26, 49), datetime.time(15, 26, 49)], dtype=object)" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "time_V50" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Flujo para 50mV: 70.97604790419162\n" + ] + } + ], + "source": [ + "events_V50, counts_V50, flux_V50, std_V50 = events_counts(time_V50)\n", + "flux[0] = flux_V50\n", + "print(f\"Flujo para 50mV: {flux[0]}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Voltaje umbral de 75 mV" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "V75=load_data(\"calibrationData/calibration_75mV.dat\")" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "time_V75 = time_list(V75)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([datetime.time(15, 34, 47, 3000), datetime.time(15, 34, 47, 3000),\n", + " datetime.time(15, 34, 47, 3000), ...,\n", + " datetime.time(15, 39, 48, 13000), datetime.time(15, 39, 48, 13000),\n", + " datetime.time(15, 39, 48, 13000)], dtype=object)" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "time_V75" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Flujo para 75mV: 38.09933774834437\n" + ] + } + ], + "source": [ + "events_V75, counts_V75, flux_V75, std_V75 = events_counts(time_V75)\n", + "flux[1] = flux_V75\n", + "print(f\"Flujo para 75mV: {flux[1]}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Voltaje umbral de 100 mV" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "V100=load_data(\"calibrationData/calibration_100mV.dat\")" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "time_V100 = time_list(V100)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([datetime.time(15, 41, 45, 6000), datetime.time(15, 41, 45, 6000),\n", + " datetime.time(15, 41, 46, 14000), ..., datetime.time(15, 46, 56),\n", + " datetime.time(15, 46, 56), datetime.time(15, 46, 56)], dtype=object)" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "time_V100" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Flujo para 100mV: 21.708333333333332\n" + ] + } + ], + "source": [ + "events_V100, counts_V100, flux_V100, std_V100 = events_counts(time_V100)\n", + "flux[2] = flux_V100\n", + "print(f\"Flujo para 100mV: {flux[2]}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Voltaje umbral de 125 mV" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "V125=load_data(\"calibrationData/calibration_125mV.dat\")" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "time_V125 = time_list(V125)" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([datetime.time(15, 49, 4, 1000), datetime.time(15, 49, 4, 1000),\n", + " datetime.time(15, 49, 5, 9000), ...,\n", + " datetime.time(15, 53, 28, 2000), datetime.time(15, 53, 28, 2000),\n", + " datetime.time(15, 53, 28, 2000)], dtype=object)" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "time_V125" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Flujo para 125mV: 14.513307984790874\n" + ] + } + ], + "source": [ + "events_V125, counts_V125, flux_V125, std_V125 = events_counts(time_V125)\n", + "flux[3] = flux_V125\n", + "print(f\"Flujo para 125mV: {flux[3]}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Voltaje umbral de 150 mV" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "V150=load_data(\"calibrationData/calibration_150mV.dat\")" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "time_V150 = time_list(V150)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([datetime.time(15, 55, 58, 3000), datetime.time(15, 55, 58, 3000),\n", + " datetime.time(15, 55, 58, 3000), ...,\n", + " datetime.time(16, 0, 21, 13000), datetime.time(16, 0, 21, 13000),\n", + " datetime.time(16, 0, 21, 13000)], dtype=object)" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "time_V150" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Flujo para 150mV: 14.338403041825096\n" + ] + } + ], + "source": [ + "events_V150, counts_V150, flux_V150, std_V150 = events_counts(time_V150)\n", + "flux[4] = flux_V150\n", + "print(f\"Flujo para 150mV: {flux[4]}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Voltaje umbral de 175 mV" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "V175=load_data(\"calibrationData/calibration_175mV.dat\")" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "time_V175 = time_list(V175)" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([datetime.time(16, 1, 44, 6000), datetime.time(16, 1, 44, 6000),\n", + " datetime.time(16, 1, 44, 6000), ...,\n", + " datetime.time(16, 6, 34, 8000), datetime.time(16, 6, 34, 8000),\n", + " datetime.time(16, 6, 34, 8000)], dtype=object)" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "time_V175" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Flujo para 175mV: 7.003703703703704\n" + ] + } + ], + "source": [ + "events_V175, counts_V175, flux_V175, std_V175 = events_counts(time_V175)\n", + "flux[5] = flux_V175\n", + "print(f\"Flujo para 175mV: {flux[5]}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Voltaje umbral de 200 mV" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "V200=load_data(\"calibrationData/calibration_200mV.dat\")" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "time_V200 = time_list(V200)" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([datetime.time(16, 7, 41), datetime.time(16, 7, 41),\n", + " datetime.time(16, 7, 41), ..., datetime.time(16, 12, 44, 10000),\n", + " datetime.time(16, 12, 45, 2000), datetime.time(16, 12, 45, 2000)],\n", + " dtype=object)" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "time_V200" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Flujo para 200mV: 5.467153284671533\n" + ] + } + ], + "source": [ + "events_V200, counts_V200, flux_V200, std_V200 = events_counts(time_V200)\n", + "flux[6] = flux_V200\n", + "print(f\"Flujo para 200mV: {flux[6]}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Voltaje umbral de 225 mV" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "V225=load_data(\"calibrationData/calibration_225mV.dat\")" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "time_V225 = time_list(V225)" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([datetime.time(16, 13, 58, 11000), datetime.time(16, 13, 58, 11000),\n", + " datetime.time(16, 13, 58, 11000), ...,\n", + " datetime.time(16, 19, 2, 13000), datetime.time(16, 19, 2, 13000),\n", + " datetime.time(16, 19, 2, 13000)], dtype=object)" + ] + }, + "execution_count": 46, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "time_V225" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Flujo para 225mV: 4.888888888888889\n" + ] + } + ], + "source": [ + "events_V225, counts_V225, flux_V225, std_V225 = events_counts(time_V225)\n", + "flux[7] = flux_V225\n", + "print(f\"Flujo para 225mV: {flux[7]}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Voltaje umbral de 250 mV" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "V250=load_data(\"calibrationData/calibration_250mV.dat\")" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "time_V250 = time_list(V250)" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([datetime.time(16, 20, 14, 13000), datetime.time(16, 20, 14, 13000),\n", + " datetime.time(16, 20, 15, 5000), datetime.time(16, 20, 15, 5000),\n", + " datetime.time(16, 20, 19, 5000), datetime.time(16, 20, 19, 5000),\n", + " datetime.time(16, 20, 19, 5000), datetime.time(16, 20, 19, 5000),\n", + " datetime.time(16, 20, 20, 13000), datetime.time(16, 20, 20, 13000),\n", + " datetime.time(16, 20, 20, 13000), datetime.time(16, 20, 20, 13000),\n", + " datetime.time(16, 20, 21, 5000), datetime.time(16, 20, 21, 5000),\n", + " datetime.time(16, 20, 21, 5000), datetime.time(16, 20, 21, 5000),\n", + " datetime.time(16, 20, 21, 5000), datetime.time(16, 20, 21, 5000),\n", + " datetime.time(16, 20, 21, 5000), datetime.time(16, 20, 21, 5000),\n", + " datetime.time(16, 20, 22, 13000), datetime.time(16, 20, 22, 13000),\n", + " datetime.time(16, 20, 22, 13000), datetime.time(16, 20, 22, 13000),\n", + " datetime.time(16, 20, 23, 5000), datetime.time(16, 20, 23, 5000),\n", + " datetime.time(16, 20, 24, 13000), datetime.time(16, 20, 24, 13000),\n", + " datetime.time(16, 20, 24, 13000), datetime.time(16, 20, 24, 13000),\n", + " datetime.time(16, 20, 24, 13000), datetime.time(16, 20, 24, 13000),\n", + " datetime.time(16, 20, 24, 13000), datetime.time(16, 20, 24, 13000),\n", + " datetime.time(16, 20, 24, 13000), datetime.time(16, 20, 26, 13000),\n", + " datetime.time(16, 20, 26, 13000), datetime.time(16, 20, 27, 5000),\n", + " datetime.time(16, 20, 27, 5000), datetime.time(16, 20, 28, 13000),\n", + " datetime.time(16, 20, 28, 13000), datetime.time(16, 20, 30, 13000),\n", + " datetime.time(16, 20, 30, 13000), datetime.time(16, 20, 31, 5000),\n", + " datetime.time(16, 20, 31, 5000), datetime.time(16, 20, 31, 5000),\n", + " datetime.time(16, 20, 31, 5000), datetime.time(16, 20, 31, 5000),\n", + " datetime.time(16, 20, 31, 5000), datetime.time(16, 20, 31, 5000),\n", + " datetime.time(16, 20, 31, 5000), datetime.time(16, 20, 34, 13000),\n", + " datetime.time(16, 20, 34, 13000), datetime.time(16, 20, 34, 13000),\n", + " datetime.time(16, 20, 34, 13000), datetime.time(16, 20, 34, 13000),\n", + " datetime.time(16, 20, 34, 13000), datetime.time(16, 20, 34, 13000),\n", + " datetime.time(16, 20, 35, 5000), datetime.time(16, 20, 35, 5000),\n", + " datetime.time(16, 20, 37, 5000), datetime.time(16, 20, 37, 5000),\n", + " datetime.time(16, 20, 37, 5000), datetime.time(16, 20, 37, 5000),\n", + " datetime.time(16, 20, 37, 5000), datetime.time(16, 20, 37, 5000),\n", + " datetime.time(16, 20, 37, 5000), datetime.time(16, 20, 37, 5000),\n", + " datetime.time(16, 20, 37, 5000), datetime.time(16, 20, 37, 5000),\n", + " datetime.time(16, 20, 37, 5000), datetime.time(16, 20, 38, 13000),\n", + " datetime.time(16, 20, 38, 13000), datetime.time(16, 20, 39, 5000),\n", + " datetime.time(16, 20, 39, 5000), datetime.time(16, 20, 39, 5000),\n", + " datetime.time(16, 20, 39, 5000), datetime.time(16, 20, 39, 5000),\n", + " datetime.time(16, 20, 40, 13000), datetime.time(16, 20, 40, 13000),\n", + " datetime.time(16, 20, 40, 13000), datetime.time(16, 20, 40, 13000),\n", + " datetime.time(16, 20, 40, 13000), datetime.time(16, 20, 42, 13000),\n", + " datetime.time(16, 20, 42, 13000), datetime.time(16, 20, 43, 5000),\n", + " datetime.time(16, 20, 43, 5000), datetime.time(16, 20, 44, 13000),\n", + " datetime.time(16, 20, 44, 13000), datetime.time(16, 20, 45, 5000),\n", + " datetime.time(16, 20, 45, 5000), datetime.time(16, 20, 45, 5000),\n", + " datetime.time(16, 20, 45, 5000), datetime.time(16, 20, 45, 5000),\n", + " datetime.time(16, 20, 45, 5000), datetime.time(16, 20, 46, 13000),\n", + " datetime.time(16, 20, 46, 13000), datetime.time(16, 20, 46, 13000),\n", + " datetime.time(16, 20, 48, 13000), datetime.time(16, 20, 48, 13000),\n", + " datetime.time(16, 20, 48, 13000), datetime.time(16, 20, 48, 13000),\n", + " datetime.time(16, 20, 49, 5000), datetime.time(16, 20, 49, 5000),\n", + " datetime.time(16, 20, 51, 5000), datetime.time(16, 20, 51, 5000),\n", + " datetime.time(16, 20, 52, 13000), datetime.time(16, 20, 52, 13000),\n", + " datetime.time(16, 20, 52, 13000), datetime.time(16, 20, 52, 13000),\n", + " datetime.time(16, 20, 52, 13000), datetime.time(16, 20, 52, 13000),\n", + " datetime.time(16, 20, 52, 13000), datetime.time(16, 20, 52, 13000),\n", + " datetime.time(16, 20, 52, 13000), datetime.time(16, 20, 54, 13000),\n", + " datetime.time(16, 20, 54, 13000), datetime.time(16, 20, 54, 13000),\n", + " datetime.time(16, 20, 54, 13000), datetime.time(16, 20, 54, 13000),\n", + " datetime.time(16, 20, 54, 13000), datetime.time(16, 20, 55, 5000),\n", + " datetime.time(16, 20, 55, 5000), datetime.time(16, 20, 56, 13000),\n", + " datetime.time(16, 20, 56, 13000), datetime.time(16, 20, 56, 13000),\n", + " datetime.time(16, 20, 56, 13000), datetime.time(16, 20, 56, 13000),\n", + " datetime.time(16, 20, 56, 13000), datetime.time(16, 20, 56, 13000),\n", + " datetime.time(16, 20, 56, 13000), datetime.time(16, 20, 57, 5000),\n", + " datetime.time(16, 20, 57, 5000), datetime.time(16, 20, 57, 5000),\n", + " datetime.time(16, 20, 57, 5000), datetime.time(16, 20, 57, 5000),\n", + " datetime.time(16, 20, 58, 13000), datetime.time(16, 20, 58, 13000),\n", + " datetime.time(16, 20, 58, 13000), datetime.time(16, 20, 58, 13000),\n", + " datetime.time(16, 21, 1, 5000), datetime.time(16, 21, 1, 5000),\n", + " datetime.time(16, 21, 2, 13000), datetime.time(16, 21, 2, 13000),\n", + " datetime.time(16, 21, 5, 5000), datetime.time(16, 21, 5, 5000),\n", + " datetime.time(16, 21, 5, 5000), datetime.time(16, 21, 5, 5000),\n", + " datetime.time(16, 21, 5, 5000), datetime.time(16, 21, 5, 5000),\n", + " datetime.time(16, 21, 6, 13000), datetime.time(16, 21, 6, 13000),\n", + " datetime.time(16, 21, 6, 13000), datetime.time(16, 21, 6, 13000),\n", + " datetime.time(16, 21, 9, 5000), datetime.time(16, 21, 9, 5000),\n", + " datetime.time(16, 21, 9, 5000), datetime.time(16, 21, 9, 5000),\n", + " datetime.time(16, 21, 9, 5000), datetime.time(16, 21, 10, 13000),\n", + " datetime.time(16, 21, 10, 13000), datetime.time(16, 21, 11, 5000),\n", + " datetime.time(16, 21, 11, 5000), datetime.time(16, 21, 11, 5000),\n", + " datetime.time(16, 21, 11, 5000), datetime.time(16, 21, 12, 13000),\n", + " datetime.time(16, 21, 12, 13000), datetime.time(16, 21, 13, 5000),\n", + " datetime.time(16, 21, 13, 5000), datetime.time(16, 21, 13, 5000),\n", + " datetime.time(16, 21, 13, 5000), datetime.time(16, 21, 13, 5000),\n", + " datetime.time(16, 21, 13, 5000), datetime.time(16, 21, 13, 5000),\n", + " datetime.time(16, 21, 13, 5000), datetime.time(16, 21, 13, 5000),\n", + " datetime.time(16, 21, 13, 5000), datetime.time(16, 21, 13, 5000),\n", + " datetime.time(16, 21, 14, 13000), datetime.time(16, 21, 14, 13000),\n", + " datetime.time(16, 21, 14, 13000), datetime.time(16, 21, 14, 13000),\n", + " datetime.time(16, 21, 14, 13000), datetime.time(16, 21, 14, 13000),\n", + " datetime.time(16, 21, 14, 13000), datetime.time(16, 21, 14, 13000),\n", + " datetime.time(16, 21, 14, 13000), datetime.time(16, 21, 14, 13000),\n", + " datetime.time(16, 21, 15, 5000), datetime.time(16, 21, 15, 5000),\n", + " datetime.time(16, 21, 15, 5000), datetime.time(16, 21, 15, 5000),\n", + " datetime.time(16, 21, 16, 13000), datetime.time(16, 21, 16, 13000),\n", + " datetime.time(16, 21, 17, 5000), datetime.time(16, 21, 17, 5000),\n", + " datetime.time(16, 21, 17, 5000), datetime.time(16, 21, 17, 5000),\n", + " datetime.time(16, 21, 18, 13000), datetime.time(16, 21, 18, 13000),\n", + " datetime.time(16, 21, 18, 13000), datetime.time(16, 21, 18, 13000),\n", + " datetime.time(16, 21, 18, 13000), datetime.time(16, 21, 18, 13000),\n", + " datetime.time(16, 21, 18, 13000), datetime.time(16, 21, 18, 13000),\n", + " datetime.time(16, 21, 18, 13000), datetime.time(16, 21, 19, 5000),\n", + " datetime.time(16, 21, 19, 5000), datetime.time(16, 21, 19, 5000),\n", + " datetime.time(16, 21, 19, 5000), datetime.time(16, 21, 22, 13000),\n", + " datetime.time(16, 21, 22, 13000), datetime.time(16, 21, 22, 13000),\n", + " datetime.time(16, 21, 22, 13000), datetime.time(16, 21, 22, 13000),\n", + " datetime.time(16, 21, 23, 5000), datetime.time(16, 21, 23, 5000),\n", + " datetime.time(16, 21, 23, 5000), datetime.time(16, 21, 23, 5000),\n", + " datetime.time(16, 21, 23, 5000), datetime.time(16, 21, 24, 13000),\n", + " datetime.time(16, 21, 24, 13000), datetime.time(16, 21, 24, 13000),\n", + " datetime.time(16, 21, 24, 13000), datetime.time(16, 21, 24, 13000),\n", + " datetime.time(16, 21, 26, 13000), datetime.time(16, 21, 26, 13000),\n", + " datetime.time(16, 21, 27, 6000), datetime.time(16, 21, 27, 6000),\n", + " datetime.time(16, 21, 27, 6000), datetime.time(16, 21, 27, 6000),\n", + " datetime.time(16, 21, 27, 6000), datetime.time(16, 21, 27, 6000),\n", + " datetime.time(16, 21, 29, 6000), datetime.time(16, 21, 29, 6000),\n", + " datetime.time(16, 21, 30, 14000), datetime.time(16, 21, 30, 14000),\n", + " datetime.time(16, 21, 31, 6000), datetime.time(16, 21, 31, 6000),\n", + " datetime.time(16, 21, 32, 14000), datetime.time(16, 21, 32, 14000),\n", + " datetime.time(16, 21, 32, 14000), datetime.time(16, 21, 32, 14000),\n", + " datetime.time(16, 21, 32, 14000), datetime.time(16, 21, 32, 14000),\n", + " datetime.time(16, 21, 32, 14000), datetime.time(16, 21, 33, 6000),\n", + " datetime.time(16, 21, 33, 6000), datetime.time(16, 21, 35, 6000),\n", + " datetime.time(16, 21, 35, 6000), datetime.time(16, 21, 35, 6000),\n", + " datetime.time(16, 21, 35, 6000), datetime.time(16, 21, 35, 6000),\n", + " datetime.time(16, 21, 35, 6000), datetime.time(16, 21, 35, 6000),\n", + " datetime.time(16, 21, 36, 14000), datetime.time(16, 21, 36, 14000),\n", + " datetime.time(16, 21, 36, 14000), datetime.time(16, 21, 36, 14000),\n", + " datetime.time(16, 21, 36, 14000), datetime.time(16, 21, 36, 14000),\n", + " datetime.time(16, 21, 37, 6000), datetime.time(16, 21, 37, 6000),\n", + " datetime.time(16, 21, 37, 6000), datetime.time(16, 21, 38, 14000),\n", + " datetime.time(16, 21, 38, 14000), datetime.time(16, 21, 38, 14000),\n", + " datetime.time(16, 21, 38, 14000), datetime.time(16, 21, 38, 14000),\n", + " datetime.time(16, 21, 38, 14000), datetime.time(16, 21, 38, 14000),\n", + " datetime.time(16, 21, 40, 14000), datetime.time(16, 21, 40, 14000),\n", + " datetime.time(16, 21, 41, 6000), datetime.time(16, 21, 41, 6000),\n", + " datetime.time(16, 21, 41, 6000), datetime.time(16, 21, 41, 6000),\n", + " datetime.time(16, 21, 41, 6000), datetime.time(16, 21, 41, 6000),\n", + " datetime.time(16, 21, 41, 6000), datetime.time(16, 21, 41, 6000),\n", + " datetime.time(16, 21, 41, 6000), datetime.time(16, 21, 41, 6000),\n", + " datetime.time(16, 21, 42, 14000), datetime.time(16, 21, 42, 14000),\n", + " datetime.time(16, 21, 42, 14000), datetime.time(16, 21, 42, 14000),\n", + " datetime.time(16, 21, 43, 6000), datetime.time(16, 21, 43, 6000),\n", + " datetime.time(16, 21, 43, 6000), datetime.time(16, 21, 44, 14000),\n", + " datetime.time(16, 21, 44, 14000), datetime.time(16, 21, 44, 14000),\n", + " datetime.time(16, 21, 44, 14000), datetime.time(16, 21, 44, 14000),\n", + " datetime.time(16, 21, 45, 6000), datetime.time(16, 21, 45, 6000),\n", + " datetime.time(16, 21, 47, 6000), datetime.time(16, 21, 47, 6000),\n", + " datetime.time(16, 21, 47, 6000), datetime.time(16, 21, 47, 6000),\n", + " datetime.time(16, 21, 47, 6000), datetime.time(16, 21, 47, 6000),\n", + " datetime.time(16, 21, 47, 6000), datetime.time(16, 21, 47, 6000),\n", + " datetime.time(16, 21, 47, 6000), datetime.time(16, 21, 49, 6000),\n", + " datetime.time(16, 21, 49, 6000), datetime.time(16, 21, 49, 6000),\n", + " datetime.time(16, 21, 49, 6000), datetime.time(16, 21, 49, 6000),\n", + " datetime.time(16, 21, 50, 14000), datetime.time(16, 21, 50, 14000),\n", + " datetime.time(16, 21, 51, 6000), datetime.time(16, 21, 51, 6000),\n", + " datetime.time(16, 21, 51, 6000), datetime.time(16, 21, 52, 14000),\n", + " datetime.time(16, 21, 52, 14000), datetime.time(16, 21, 53, 6000),\n", + " datetime.time(16, 21, 53, 6000), datetime.time(16, 21, 54, 14000),\n", + " datetime.time(16, 21, 54, 14000), datetime.time(16, 21, 54, 14000),\n", + " datetime.time(16, 21, 54, 14000), datetime.time(16, 21, 58, 14000),\n", + " datetime.time(16, 21, 58, 14000), datetime.time(16, 21, 58, 14000),\n", + " datetime.time(16, 21, 58, 14000), datetime.time(16, 21, 58, 14000),\n", + " datetime.time(16, 21, 58, 14000), datetime.time(16, 21, 58, 14000),\n", + " datetime.time(16, 21, 58, 14000), datetime.time(16, 21, 58, 14000),\n", + " datetime.time(16, 21, 58, 14000), datetime.time(16, 21, 58, 14000),\n", + " datetime.time(16, 21, 58, 14000), datetime.time(16, 21, 58, 14000),\n", + " datetime.time(16, 21, 58, 14000), datetime.time(16, 21, 59, 6000),\n", + " datetime.time(16, 21, 59, 6000), datetime.time(16, 21, 59, 6000),\n", + " datetime.time(16, 21, 59, 6000), datetime.time(16, 21, 59, 6000),\n", + " datetime.time(16, 21, 59, 6000), datetime.time(16, 21, 59, 6000),\n", + " datetime.time(16, 22, 0, 14000), datetime.time(16, 22, 0, 14000),\n", + " datetime.time(16, 22, 0, 14000), datetime.time(16, 22, 0, 14000),\n", + " datetime.time(16, 22, 1, 6000), datetime.time(16, 22, 1, 6000),\n", + " datetime.time(16, 22, 2, 14000), datetime.time(16, 22, 2, 14000),\n", + " datetime.time(16, 22, 3, 6000), datetime.time(16, 22, 3, 6000),\n", + " datetime.time(16, 22, 3, 6000), datetime.time(16, 22, 3, 6000),\n", + " datetime.time(16, 22, 4, 14000), datetime.time(16, 22, 4, 14000),\n", + " datetime.time(16, 22, 5, 6000), datetime.time(16, 22, 5, 6000),\n", + " datetime.time(16, 22, 6, 14000), datetime.time(16, 22, 6, 14000),\n", + " datetime.time(16, 22, 6, 14000), datetime.time(16, 22, 6, 14000),\n", + " datetime.time(16, 22, 7, 6000), datetime.time(16, 22, 7, 6000),\n", + " datetime.time(16, 22, 8, 14000), datetime.time(16, 22, 8, 14000),\n", + " datetime.time(16, 22, 8, 14000), datetime.time(16, 22, 8, 14000),\n", + " datetime.time(16, 22, 9, 6000), datetime.time(16, 22, 9, 6000),\n", + " datetime.time(16, 22, 11, 6000), datetime.time(16, 22, 11, 6000),\n", + " datetime.time(16, 22, 11, 6000), datetime.time(16, 22, 11, 6000),\n", + " datetime.time(16, 22, 12, 14000), datetime.time(16, 22, 12, 14000),\n", + " datetime.time(16, 22, 12, 14000), datetime.time(16, 22, 12, 14000),\n", + " datetime.time(16, 22, 13, 6000), datetime.time(16, 22, 13, 6000),\n", + " datetime.time(16, 22, 14, 14000), datetime.time(16, 22, 14, 14000),\n", + " datetime.time(16, 22, 14, 14000), datetime.time(16, 22, 14, 14000),\n", + " datetime.time(16, 22, 14, 14000), datetime.time(16, 22, 14, 14000),\n", + " datetime.time(16, 22, 14, 14000), datetime.time(16, 22, 14, 14000),\n", + " datetime.time(16, 22, 15, 6000), datetime.time(16, 22, 15, 6000),\n", + " datetime.time(16, 22, 16, 14000), datetime.time(16, 22, 16, 14000),\n", + " datetime.time(16, 22, 16, 14000), datetime.time(16, 22, 17, 6000),\n", + " datetime.time(16, 22, 17, 6000), datetime.time(16, 22, 17, 6000),\n", + " datetime.time(16, 22, 17, 6000), datetime.time(16, 22, 17, 6000),\n", + " datetime.time(16, 22, 17, 6000), datetime.time(16, 22, 17, 6000),\n", + " datetime.time(16, 22, 18, 14000), datetime.time(16, 22, 18, 14000),\n", + " datetime.time(16, 22, 19, 6000), datetime.time(16, 22, 19, 6000),\n", + " datetime.time(16, 22, 20, 14000), datetime.time(16, 22, 20, 14000),\n", + " datetime.time(16, 22, 20, 14000), datetime.time(16, 22, 20, 14000),\n", + " datetime.time(16, 22, 21, 6000), datetime.time(16, 22, 21, 6000),\n", + " datetime.time(16, 22, 21, 6000), datetime.time(16, 22, 21, 6000),\n", + " datetime.time(16, 22, 21, 6000), datetime.time(16, 22, 21, 6000),\n", + " datetime.time(16, 22, 21, 6000), datetime.time(16, 22, 21, 6000),\n", + " datetime.time(16, 22, 21, 6000), datetime.time(16, 22, 22, 14000),\n", + " datetime.time(16, 22, 22, 14000), datetime.time(16, 22, 22, 14000),\n", + " datetime.time(16, 22, 22, 14000), datetime.time(16, 22, 22, 14000),\n", + " datetime.time(16, 22, 22, 14000), datetime.time(16, 22, 22, 14000),\n", + " datetime.time(16, 22, 22, 14000), datetime.time(16, 22, 23, 6000),\n", + " datetime.time(16, 22, 23, 6000), datetime.time(16, 22, 26, 14000),\n", + " datetime.time(16, 22, 26, 14000), datetime.time(16, 22, 28, 14000),\n", + " datetime.time(16, 22, 28, 14000), datetime.time(16, 22, 28, 14000),\n", + " datetime.time(16, 22, 28, 14000), datetime.time(16, 22, 28, 14000),\n", + " datetime.time(16, 22, 28, 14000), datetime.time(16, 22, 29, 6000),\n", + " datetime.time(16, 22, 29, 6000), datetime.time(16, 22, 29, 6000),\n", + " datetime.time(16, 22, 29, 6000), datetime.time(16, 22, 30, 14000),\n", + " datetime.time(16, 22, 30, 14000), datetime.time(16, 22, 30, 14000),\n", + " datetime.time(16, 22, 30, 14000), datetime.time(16, 22, 30, 14000),\n", + " datetime.time(16, 22, 30, 14000), datetime.time(16, 22, 30, 14000),\n", + " datetime.time(16, 22, 31, 6000), datetime.time(16, 22, 31, 6000),\n", + " datetime.time(16, 22, 31, 6000), datetime.time(16, 22, 31, 6000),\n", + " datetime.time(16, 22, 31, 6000), datetime.time(16, 22, 31, 6000),\n", + " datetime.time(16, 22, 32, 14000), datetime.time(16, 22, 32, 14000),\n", + " datetime.time(16, 22, 33, 6000), datetime.time(16, 22, 33, 6000),\n", + " datetime.time(16, 22, 33, 6000), datetime.time(16, 22, 33, 6000),\n", + " datetime.time(16, 22, 33, 6000), datetime.time(16, 22, 33, 6000),\n", + " datetime.time(16, 22, 33, 6000), datetime.time(16, 22, 33, 6000),\n", + " datetime.time(16, 22, 33, 6000), datetime.time(16, 22, 34, 14000),\n", + " datetime.time(16, 22, 34, 14000), datetime.time(16, 22, 35, 6000),\n", + " datetime.time(16, 22, 35, 6000), datetime.time(16, 22, 35, 6000),\n", + " datetime.time(16, 22, 35, 6000), datetime.time(16, 22, 36, 14000),\n", + " datetime.time(16, 22, 36, 14000), datetime.time(16, 22, 37, 6000),\n", + " datetime.time(16, 22, 37, 6000), datetime.time(16, 22, 37, 6000),\n", + " datetime.time(16, 22, 37, 6000), datetime.time(16, 22, 38, 14000),\n", + " datetime.time(16, 22, 38, 14000), datetime.time(16, 22, 38, 14000),\n", + " datetime.time(16, 22, 38, 14000), datetime.time(16, 22, 38, 14000),\n", + " datetime.time(16, 22, 38, 14000), datetime.time(16, 22, 38, 14000),\n", + " datetime.time(16, 22, 38, 14000), datetime.time(16, 22, 38, 14000),\n", + " datetime.time(16, 22, 38, 14000), datetime.time(16, 22, 39, 6000),\n", + " datetime.time(16, 22, 39, 6000), datetime.time(16, 22, 40, 14000),\n", + " datetime.time(16, 22, 40, 14000), datetime.time(16, 22, 40, 14000),\n", + " datetime.time(16, 22, 40, 14000), datetime.time(16, 22, 40, 14000),\n", + " datetime.time(16, 22, 41, 6000), datetime.time(16, 22, 41, 6000),\n", + " datetime.time(16, 22, 41, 6000), datetime.time(16, 22, 41, 6000),\n", + " datetime.time(16, 22, 42, 14000), datetime.time(16, 22, 42, 14000),\n", + " datetime.time(16, 22, 43, 6000), datetime.time(16, 22, 43, 6000),\n", + " datetime.time(16, 22, 44, 14000), datetime.time(16, 22, 44, 14000),\n", + " datetime.time(16, 22, 44, 14000), datetime.time(16, 22, 44, 14000),\n", + " datetime.time(16, 22, 44, 14000), datetime.time(16, 22, 44, 14000),\n", + " datetime.time(16, 22, 45, 6000), datetime.time(16, 22, 45, 6000),\n", + " datetime.time(16, 22, 45, 6000), datetime.time(16, 22, 45, 6000),\n", + " datetime.time(16, 22, 46, 14000), datetime.time(16, 22, 46, 14000),\n", + " datetime.time(16, 22, 46, 14000), datetime.time(16, 22, 46, 14000),\n", + " datetime.time(16, 22, 46, 14000), datetime.time(16, 22, 46, 14000),\n", + " datetime.time(16, 22, 46, 14000), datetime.time(16, 22, 47, 6000),\n", + " datetime.time(16, 22, 47, 6000), datetime.time(16, 22, 47, 6000),\n", + " datetime.time(16, 22, 47, 6000), datetime.time(16, 22, 48, 14000),\n", + " datetime.time(16, 22, 48, 14000), datetime.time(16, 22, 48, 14000),\n", + " datetime.time(16, 22, 48, 14000), datetime.time(16, 22, 48, 14000),\n", + " datetime.time(16, 22, 49, 6000), datetime.time(16, 22, 49, 6000),\n", + " datetime.time(16, 22, 49, 6000), datetime.time(16, 22, 49, 6000),\n", + " datetime.time(16, 22, 49, 6000), datetime.time(16, 22, 49, 6000),\n", + " datetime.time(16, 22, 49, 6000), datetime.time(16, 22, 50, 14000),\n", + " datetime.time(16, 22, 50, 14000), datetime.time(16, 22, 50, 14000),\n", + " datetime.time(16, 22, 50, 14000), datetime.time(16, 22, 51, 6000),\n", + " datetime.time(16, 22, 51, 6000), datetime.time(16, 22, 51, 6000),\n", + " datetime.time(16, 22, 51, 6000), datetime.time(16, 22, 53, 6000),\n", + " datetime.time(16, 22, 53, 6000), datetime.time(16, 22, 54, 14000),\n", + " datetime.time(16, 22, 54, 14000), datetime.time(16, 22, 54, 14000),\n", + " datetime.time(16, 22, 54, 14000), datetime.time(16, 22, 54, 14000),\n", + " datetime.time(16, 22, 54, 14000), datetime.time(16, 22, 55, 6000),\n", + " datetime.time(16, 22, 55, 6000), datetime.time(16, 22, 55, 6000),\n", + " datetime.time(16, 22, 55, 6000), datetime.time(16, 22, 55, 6000),\n", + " datetime.time(16, 22, 55, 6000), datetime.time(16, 22, 55, 6000),\n", + " datetime.time(16, 22, 55, 6000), datetime.time(16, 22, 56, 14000),\n", + " datetime.time(16, 22, 56, 14000), datetime.time(16, 22, 56, 14000),\n", + " datetime.time(16, 22, 56, 14000), datetime.time(16, 22, 56, 14000),\n", + " datetime.time(16, 22, 56, 14000), datetime.time(16, 22, 56, 14000),\n", + " datetime.time(16, 22, 56, 14000), datetime.time(16, 22, 56, 14000),\n", + " datetime.time(16, 22, 57, 6000), datetime.time(16, 22, 57, 6000),\n", + " datetime.time(16, 22, 57, 6000), datetime.time(16, 22, 57, 6000),\n", + " datetime.time(16, 22, 57, 6000), datetime.time(16, 23, 0, 14000),\n", + " datetime.time(16, 23, 0, 14000), datetime.time(16, 23, 1, 6000),\n", + " datetime.time(16, 23, 1, 6000), datetime.time(16, 23, 1, 6000),\n", + " datetime.time(16, 23, 3, 6000), datetime.time(16, 23, 3, 6000),\n", + " datetime.time(16, 23, 4, 14000), datetime.time(16, 23, 4, 14000),\n", + " datetime.time(16, 23, 5, 6000), datetime.time(16, 23, 5, 6000),\n", + " datetime.time(16, 23, 5, 6000), datetime.time(16, 23, 5, 6000),\n", + " datetime.time(16, 23, 5, 6000), datetime.time(16, 23, 5, 6000),\n", + " datetime.time(16, 23, 5, 6000), datetime.time(16, 23, 6, 14000),\n", + " datetime.time(16, 23, 6, 14000), datetime.time(16, 23, 8, 14000),\n", + " datetime.time(16, 23, 8, 14000), datetime.time(16, 23, 8, 14000),\n", + " datetime.time(16, 23, 9, 6000), datetime.time(16, 23, 9, 6000),\n", + " datetime.time(16, 23, 9, 6000), datetime.time(16, 23, 11, 6000),\n", + " datetime.time(16, 23, 11, 6000), datetime.time(16, 23, 11, 6000),\n", + " datetime.time(16, 23, 13, 6000), datetime.time(16, 23, 13, 6000),\n", + " datetime.time(16, 23, 13, 6000), datetime.time(16, 23, 13, 6000),\n", + " datetime.time(16, 23, 14, 14000), datetime.time(16, 23, 14, 14000),\n", + " datetime.time(16, 23, 15, 6000), datetime.time(16, 23, 15, 6000),\n", + " datetime.time(16, 23, 16, 14000), datetime.time(16, 23, 16, 14000),\n", + " datetime.time(16, 23, 17, 6000), datetime.time(16, 23, 17, 6000),\n", + " datetime.time(16, 23, 17, 6000), datetime.time(16, 23, 17, 6000),\n", + " datetime.time(16, 23, 17, 6000), datetime.time(16, 23, 18, 14000),\n", + " datetime.time(16, 23, 18, 14000), datetime.time(16, 23, 19, 6000),\n", + " datetime.time(16, 23, 19, 6000), datetime.time(16, 23, 19, 6000),\n", + " datetime.time(16, 23, 19, 6000), datetime.time(16, 23, 19, 6000),\n", + " datetime.time(16, 23, 19, 6000), datetime.time(16, 23, 19, 6000),\n", + " datetime.time(16, 23, 19, 6000), datetime.time(16, 23, 19, 6000),\n", + " datetime.time(16, 23, 19, 6000), datetime.time(16, 23, 19, 6000),\n", + " datetime.time(16, 23, 19, 6000), datetime.time(16, 23, 19, 6000),\n", + " datetime.time(16, 23, 19, 6000), datetime.time(16, 23, 19, 6000),\n", + " datetime.time(16, 23, 19, 6000), datetime.time(16, 23, 19, 6000),\n", + " datetime.time(16, 23, 19, 6000), datetime.time(16, 23, 19, 6000),\n", + " datetime.time(16, 23, 19, 6000), datetime.time(16, 23, 21, 6000),\n", + " datetime.time(16, 23, 21, 6000), datetime.time(16, 23, 21, 6000),\n", + " datetime.time(16, 23, 21, 6000), datetime.time(16, 23, 21, 6000),\n", + " datetime.time(16, 23, 24, 14000), datetime.time(16, 23, 24, 14000),\n", + " datetime.time(16, 23, 25, 6000), datetime.time(16, 23, 25, 6000),\n", + " datetime.time(16, 23, 25, 6000), datetime.time(16, 23, 25, 6000),\n", + " datetime.time(16, 23, 26, 14000), datetime.time(16, 23, 26, 14000),\n", + " datetime.time(16, 23, 26, 14000), datetime.time(16, 23, 26, 14000),\n", + " datetime.time(16, 23, 27, 6000), datetime.time(16, 23, 27, 6000),\n", + " datetime.time(16, 23, 28, 14000), datetime.time(16, 23, 28, 14000),\n", + " datetime.time(16, 23, 28, 14000), datetime.time(16, 23, 28, 14000),\n", + " datetime.time(16, 23, 28, 14000), datetime.time(16, 23, 28, 14000),\n", + " datetime.time(16, 23, 28, 14000), datetime.time(16, 23, 29, 6000),\n", + " datetime.time(16, 23, 29, 6000), datetime.time(16, 23, 29, 6000),\n", + " datetime.time(16, 23, 29, 6000), datetime.time(16, 23, 29, 6000),\n", + " datetime.time(16, 23, 29, 6000), datetime.time(16, 23, 29, 6000),\n", + " datetime.time(16, 23, 29, 6000), datetime.time(16, 23, 29, 6000),\n", + " datetime.time(16, 23, 29, 6000), datetime.time(16, 23, 30, 14000),\n", + " datetime.time(16, 23, 30, 14000), datetime.time(16, 23, 30, 14000),\n", + " datetime.time(16, 23, 30, 14000), datetime.time(16, 23, 30, 14000),\n", + " datetime.time(16, 23, 30, 14000), datetime.time(16, 23, 31, 6000),\n", + " datetime.time(16, 23, 31, 6000), datetime.time(16, 23, 31, 6000),\n", + " datetime.time(16, 23, 31, 6000), datetime.time(16, 23, 32, 14000),\n", + " datetime.time(16, 23, 32, 14000), datetime.time(16, 23, 32, 14000),\n", + " datetime.time(16, 23, 32, 14000), datetime.time(16, 23, 32, 14000),\n", + " datetime.time(16, 23, 32, 14000), datetime.time(16, 23, 33, 6000),\n", + " datetime.time(16, 23, 33, 6000), datetime.time(16, 23, 33, 6000),\n", + " datetime.time(16, 23, 33, 6000), datetime.time(16, 23, 33, 6000),\n", + " datetime.time(16, 23, 33, 6000), datetime.time(16, 23, 33, 6000),\n", + " datetime.time(16, 23, 33, 6000), datetime.time(16, 23, 33, 6000),\n", + " datetime.time(16, 23, 35, 6000), datetime.time(16, 23, 35, 6000),\n", + " datetime.time(16, 23, 37, 6000), datetime.time(16, 23, 37, 6000),\n", + " datetime.time(16, 23, 37, 6000), datetime.time(16, 23, 37, 6000),\n", + " datetime.time(16, 23, 38, 14000), datetime.time(16, 23, 38, 14000),\n", + " datetime.time(16, 23, 38, 14000), datetime.time(16, 23, 38, 14000),\n", + " datetime.time(16, 23, 38, 14000), datetime.time(16, 23, 38, 14000),\n", + " datetime.time(16, 23, 38, 14000), datetime.time(16, 23, 39, 6000),\n", + " datetime.time(16, 23, 39, 6000), datetime.time(16, 23, 40, 14000),\n", + " datetime.time(16, 23, 40, 14000), datetime.time(16, 23, 41, 6000),\n", + " datetime.time(16, 23, 41, 6000), datetime.time(16, 23, 42, 14000),\n", + " datetime.time(16, 23, 42, 14000), datetime.time(16, 23, 43, 6000),\n", + " datetime.time(16, 23, 43, 6000), datetime.time(16, 23, 43, 6000),\n", + " datetime.time(16, 23, 43, 6000), datetime.time(16, 23, 44, 14000),\n", + " datetime.time(16, 23, 44, 14000), datetime.time(16, 23, 45, 6000),\n", + " datetime.time(16, 23, 45, 6000), datetime.time(16, 23, 45, 6000),\n", + " datetime.time(16, 23, 45, 6000), datetime.time(16, 23, 45, 6000),\n", + " datetime.time(16, 23, 45, 6000), datetime.time(16, 23, 45, 6000),\n", + " datetime.time(16, 23, 45, 6000), datetime.time(16, 23, 45, 6000),\n", + " datetime.time(16, 23, 46, 14000), datetime.time(16, 23, 46, 14000),\n", + " datetime.time(16, 23, 46, 14000), datetime.time(16, 23, 46, 14000),\n", + " datetime.time(16, 23, 46, 14000), datetime.time(16, 23, 46, 14000),\n", + " datetime.time(16, 23, 47, 6000), datetime.time(16, 23, 47, 6000),\n", + " datetime.time(16, 23, 47, 6000), datetime.time(16, 23, 47, 6000),\n", + " datetime.time(16, 23, 47, 6000), datetime.time(16, 23, 47, 6000),\n", + " datetime.time(16, 23, 50, 14000), datetime.time(16, 23, 50, 14000),\n", + " datetime.time(16, 23, 51, 6000), datetime.time(16, 23, 51, 6000),\n", + " datetime.time(16, 23, 51, 6000), datetime.time(16, 23, 51, 6000),\n", + " datetime.time(16, 23, 51, 6000), datetime.time(16, 23, 51, 6000),\n", + " datetime.time(16, 23, 51, 6000), datetime.time(16, 23, 52, 14000),\n", + " datetime.time(16, 23, 52, 14000), datetime.time(16, 23, 53, 6000),\n", + " datetime.time(16, 23, 53, 6000), datetime.time(16, 23, 53, 6000),\n", + " datetime.time(16, 23, 53, 6000), datetime.time(16, 23, 55, 6000),\n", + " datetime.time(16, 23, 55, 6000), datetime.time(16, 23, 55, 6000),\n", + " datetime.time(16, 23, 55, 6000), datetime.time(16, 23, 56, 14000),\n", + " datetime.time(16, 23, 56, 14000), datetime.time(16, 23, 57, 6000),\n", + " datetime.time(16, 23, 57, 6000), datetime.time(16, 23, 57, 6000),\n", + " datetime.time(16, 23, 57, 6000), datetime.time(16, 23, 58, 14000),\n", + " datetime.time(16, 23, 58, 14000), datetime.time(16, 23, 58, 14000),\n", + " datetime.time(16, 23, 59, 7000), datetime.time(16, 23, 59, 7000),\n", + " datetime.time(16, 24, 0, 15000), datetime.time(16, 24, 0, 15000),\n", + " datetime.time(16, 24, 0, 15000), datetime.time(16, 24, 0, 15000),\n", + " datetime.time(16, 24, 0, 15000), datetime.time(16, 24, 0, 15000),\n", + " datetime.time(16, 24, 1, 7000), datetime.time(16, 24, 1, 7000),\n", + " datetime.time(16, 24, 1, 7000), datetime.time(16, 24, 1, 7000),\n", + " datetime.time(16, 24, 1, 7000), datetime.time(16, 24, 1, 7000),\n", + " datetime.time(16, 24, 3, 7000), datetime.time(16, 24, 3, 7000),\n", + " datetime.time(16, 24, 3, 7000), datetime.time(16, 24, 3, 7000),\n", + " datetime.time(16, 24, 4, 15000), datetime.time(16, 24, 4, 15000),\n", + " datetime.time(16, 24, 4, 15000), datetime.time(16, 24, 4, 15000),\n", + " datetime.time(16, 24, 4, 15000), datetime.time(16, 24, 5, 7000),\n", + " datetime.time(16, 24, 5, 7000), datetime.time(16, 24, 6, 15000),\n", + " datetime.time(16, 24, 6, 15000), datetime.time(16, 24, 6, 15000),\n", + " datetime.time(16, 24, 6, 15000), datetime.time(16, 24, 6, 15000),\n", + " datetime.time(16, 24, 6, 15000), datetime.time(16, 24, 6, 15000),\n", + " datetime.time(16, 24, 6, 15000), datetime.time(16, 24, 7, 7000),\n", + " datetime.time(16, 24, 7, 7000), datetime.time(16, 24, 7, 7000),\n", + " datetime.time(16, 24, 11, 7000), datetime.time(16, 24, 11, 7000),\n", + " datetime.time(16, 24, 13, 7000), datetime.time(16, 24, 13, 7000),\n", + " datetime.time(16, 24, 15, 7000), datetime.time(16, 24, 15, 7000),\n", + " datetime.time(16, 24, 15, 7000), datetime.time(16, 24, 15, 7000),\n", + " datetime.time(16, 24, 15, 7000), datetime.time(16, 24, 15, 7000),\n", + " datetime.time(16, 24, 16, 15000), datetime.time(16, 24, 16, 15000),\n", + " datetime.time(16, 24, 16, 15000), datetime.time(16, 24, 16, 15000),\n", + " datetime.time(16, 24, 18, 15000), datetime.time(16, 24, 18, 15000),\n", + " datetime.time(16, 24, 18, 15000), datetime.time(16, 24, 18, 15000),\n", + " datetime.time(16, 24, 18, 15000), datetime.time(16, 24, 18, 15000),\n", + " datetime.time(16, 24, 19, 7000), datetime.time(16, 24, 19, 7000),\n", + " datetime.time(16, 24, 19, 7000), datetime.time(16, 24, 19, 7000),\n", + " datetime.time(16, 24, 19, 7000), datetime.time(16, 24, 19, 7000),\n", + " datetime.time(16, 24, 19, 7000), datetime.time(16, 24, 19, 7000),\n", + " datetime.time(16, 24, 19, 7000), datetime.time(16, 24, 19, 7000),\n", + " datetime.time(16, 24, 20, 15000), datetime.time(16, 24, 20, 15000),\n", + " datetime.time(16, 24, 20, 15000), datetime.time(16, 24, 20, 15000),\n", + " datetime.time(16, 24, 20, 15000), datetime.time(16, 24, 22, 15000),\n", + " datetime.time(16, 24, 22, 15000), datetime.time(16, 24, 22, 15000),\n", + " datetime.time(16, 24, 22, 15000), datetime.time(16, 24, 22, 15000),\n", + " datetime.time(16, 24, 22, 15000), datetime.time(16, 24, 22, 15000),\n", + " datetime.time(16, 24, 22, 15000), datetime.time(16, 24, 22, 15000),\n", + " datetime.time(16, 24, 22, 15000), datetime.time(16, 24, 23, 7000),\n", + " datetime.time(16, 24, 23, 7000), datetime.time(16, 24, 25, 7000),\n", + " datetime.time(16, 24, 25, 7000), datetime.time(16, 24, 26, 15000),\n", + " datetime.time(16, 24, 26, 15000), datetime.time(16, 24, 26, 15000),\n", + " datetime.time(16, 24, 27, 7000), datetime.time(16, 24, 27, 7000),\n", + " datetime.time(16, 24, 27, 7000), datetime.time(16, 24, 27, 7000),\n", + " datetime.time(16, 24, 28, 15000), datetime.time(16, 24, 28, 15000),\n", + " datetime.time(16, 24, 29, 7000), datetime.time(16, 24, 29, 7000),\n", + " datetime.time(16, 24, 29, 7000), datetime.time(16, 24, 29, 7000),\n", + " datetime.time(16, 24, 29, 7000), datetime.time(16, 24, 29, 7000),\n", + " datetime.time(16, 24, 31, 7000), datetime.time(16, 24, 31, 7000),\n", + " datetime.time(16, 24, 31, 7000), datetime.time(16, 24, 31, 7000),\n", + " datetime.time(16, 24, 31, 7000), datetime.time(16, 24, 31, 7000),\n", + " datetime.time(16, 24, 32, 15000), datetime.time(16, 24, 32, 15000),\n", + " datetime.time(16, 24, 33, 7000), datetime.time(16, 24, 33, 7000),\n", + " datetime.time(16, 24, 33, 7000), datetime.time(16, 24, 33, 7000),\n", + " datetime.time(16, 24, 33, 7000), datetime.time(16, 24, 33, 7000),\n", + " datetime.time(16, 24, 34, 15000), datetime.time(16, 24, 34, 15000),\n", + " datetime.time(16, 24, 34, 15000), datetime.time(16, 24, 34, 15000),\n", + " datetime.time(16, 24, 34, 15000), datetime.time(16, 24, 34, 15000),\n", + " datetime.time(16, 24, 34, 15000), datetime.time(16, 24, 34, 15000),\n", + " datetime.time(16, 24, 35, 7000), datetime.time(16, 24, 35, 7000),\n", + " datetime.time(16, 24, 35, 7000), datetime.time(16, 24, 36, 15000),\n", + " datetime.time(16, 24, 36, 15000), datetime.time(16, 24, 36, 15000),\n", + " datetime.time(16, 24, 36, 15000), datetime.time(16, 24, 36, 15000),\n", + " datetime.time(16, 24, 36, 15000), datetime.time(16, 24, 36, 15000),\n", + " datetime.time(16, 24, 37, 7000), datetime.time(16, 24, 37, 7000),\n", + " datetime.time(16, 24, 41, 7000), datetime.time(16, 24, 41, 7000),\n", + " datetime.time(16, 24, 41, 7000), datetime.time(16, 24, 41, 7000),\n", + " datetime.time(16, 24, 41, 7000), datetime.time(16, 24, 42, 15000),\n", + " datetime.time(16, 24, 42, 15000), datetime.time(16, 24, 42, 15000),\n", + " datetime.time(16, 24, 42, 15000), datetime.time(16, 24, 42, 15000),\n", + " datetime.time(16, 24, 43, 7000), datetime.time(16, 24, 43, 7000),\n", + " datetime.time(16, 24, 44, 15000), datetime.time(16, 24, 44, 15000),\n", + " datetime.time(16, 24, 44, 15000), datetime.time(16, 24, 44, 15000),\n", + " datetime.time(16, 24, 45, 7000), datetime.time(16, 24, 45, 7000),\n", + " datetime.time(16, 24, 47, 7000), datetime.time(16, 24, 47, 7000),\n", + " datetime.time(16, 24, 48, 15000), datetime.time(16, 24, 48, 15000),\n", + " datetime.time(16, 24, 48, 15000), datetime.time(16, 24, 48, 15000),\n", + " datetime.time(16, 24, 49, 7000), datetime.time(16, 24, 49, 7000),\n", + " datetime.time(16, 24, 49, 7000), datetime.time(16, 24, 49, 7000),\n", + " datetime.time(16, 24, 51, 7000), datetime.time(16, 24, 51, 7000),\n", + " datetime.time(16, 24, 51, 7000), datetime.time(16, 24, 51, 7000),\n", + " datetime.time(16, 24, 51, 7000), datetime.time(16, 24, 51, 7000),\n", + " datetime.time(16, 24, 51, 7000), datetime.time(16, 24, 52, 15000),\n", + " datetime.time(16, 24, 52, 15000), datetime.time(16, 24, 52, 15000),\n", + " datetime.time(16, 24, 52, 15000), datetime.time(16, 24, 54, 15000),\n", + " datetime.time(16, 24, 54, 15000), datetime.time(16, 24, 54, 15000),\n", + " datetime.time(16, 24, 54, 15000), datetime.time(16, 24, 54, 15000),\n", + " datetime.time(16, 24, 54, 15000), datetime.time(16, 24, 55, 7000),\n", + " datetime.time(16, 24, 55, 7000), datetime.time(16, 24, 55, 7000),\n", + " datetime.time(16, 24, 55, 7000), datetime.time(16, 24, 55, 7000),\n", + " datetime.time(16, 24, 56, 15000), datetime.time(16, 24, 56, 15000),\n", + " datetime.time(16, 24, 56, 15000), datetime.time(16, 24, 56, 15000),\n", + " datetime.time(16, 24, 58, 15000), datetime.time(16, 24, 58, 15000),\n", + " datetime.time(16, 25, 1, 7000), datetime.time(16, 25, 1, 7000),\n", + " datetime.time(16, 25, 1, 7000), datetime.time(16, 25, 1, 7000),\n", + " datetime.time(16, 25, 1, 7000), datetime.time(16, 25, 1, 7000),\n", + " datetime.time(16, 25, 3, 7000), datetime.time(16, 25, 3, 7000),\n", + " datetime.time(16, 25, 3, 7000), datetime.time(16, 25, 4, 15000),\n", + " datetime.time(16, 25, 4, 15000), datetime.time(16, 25, 4, 15000),\n", + " datetime.time(16, 25, 4, 15000), datetime.time(16, 25, 4, 15000)],\n", + " dtype=object)" + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "time_V250" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Flujo para 250mV: 4.385650224215246\n" + ] + } + ], + "source": [ + "events_V250, counts_V250, flux_V250, std_V250 = events_counts(time_V250)\n", + "flux[8] = flux_V250\n", + "print(f\"Flujo para 250mV: {flux[8]}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Voltaje umbral de 275 mV" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "V275=load_data(\"calibrationData/calibration_275mV.dat\")" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "time_V275 = time_list(V275)" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([datetime.time(16, 26, 54), datetime.time(16, 26, 54),\n", + " datetime.time(16, 26, 55, 8000), datetime.time(16, 26, 55, 8000),\n", + " datetime.time(16, 26, 55, 8000), datetime.time(16, 26, 55, 8000),\n", + " datetime.time(16, 26, 55, 8000), datetime.time(16, 26, 56),\n", + " datetime.time(16, 26, 56), datetime.time(16, 26, 58),\n", + " datetime.time(16, 26, 58), datetime.time(16, 26, 58),\n", + " datetime.time(16, 26, 58), datetime.time(16, 27),\n", + " datetime.time(16, 27), datetime.time(16, 27, 1, 8000),\n", + " datetime.time(16, 27, 1, 8000), datetime.time(16, 27, 1, 8000),\n", + " datetime.time(16, 27, 1, 8000), datetime.time(16, 27, 3, 8000),\n", + " datetime.time(16, 27, 3, 8000), datetime.time(16, 27, 3, 8000),\n", + " datetime.time(16, 27, 3, 8000), datetime.time(16, 27, 5, 8000),\n", + " datetime.time(16, 27, 5, 8000), datetime.time(16, 27, 5, 8000),\n", + " datetime.time(16, 27, 5, 8000), datetime.time(16, 27, 6),\n", + " datetime.time(16, 27, 6), datetime.time(16, 27, 6),\n", + " datetime.time(16, 27, 7, 8000), datetime.time(16, 27, 7, 8000),\n", + " datetime.time(16, 27, 9, 8000), datetime.time(16, 27, 9, 8000),\n", + " datetime.time(16, 27, 11, 8000), datetime.time(16, 27, 11, 8000),\n", + " datetime.time(16, 27, 12), datetime.time(16, 27, 12),\n", + " datetime.time(16, 27, 12), datetime.time(16, 27, 14),\n", + " datetime.time(16, 27, 14), datetime.time(16, 27, 15, 8000),\n", + " datetime.time(16, 27, 15, 8000), datetime.time(16, 27, 16),\n", + " datetime.time(16, 27, 16), datetime.time(16, 27, 17, 8000),\n", + " datetime.time(16, 27, 17, 8000), datetime.time(16, 27, 17, 8000),\n", + " datetime.time(16, 27, 17, 8000), datetime.time(16, 27, 17, 8000),\n", + " datetime.time(16, 27, 17, 8000), datetime.time(16, 27, 18),\n", + " datetime.time(16, 27, 18), datetime.time(16, 27, 19, 8000),\n", + " datetime.time(16, 27, 19, 8000), datetime.time(16, 27, 19, 8000),\n", + " datetime.time(16, 27, 19, 8000), datetime.time(16, 27, 20),\n", + " datetime.time(16, 27, 20), datetime.time(16, 27, 20),\n", + " datetime.time(16, 27, 20), datetime.time(16, 27, 20),\n", + " datetime.time(16, 27, 21, 8000), datetime.time(16, 27, 21, 8000),\n", + " datetime.time(16, 27, 21, 8000), datetime.time(16, 27, 21, 8000),\n", + " datetime.time(16, 27, 23, 8000), datetime.time(16, 27, 23, 8000),\n", + " datetime.time(16, 27, 23, 8000), datetime.time(16, 27, 23, 8000),\n", + " datetime.time(16, 27, 25, 8000), datetime.time(16, 27, 25, 8000),\n", + " datetime.time(16, 27, 26), datetime.time(16, 27, 26),\n", + " datetime.time(16, 27, 26), datetime.time(16, 27, 26),\n", + " datetime.time(16, 27, 26), datetime.time(16, 27, 26),\n", + " datetime.time(16, 27, 29, 8000), datetime.time(16, 27, 29, 8000),\n", + " datetime.time(16, 27, 29, 8000), datetime.time(16, 27, 29, 8000),\n", + " datetime.time(16, 27, 34), datetime.time(16, 27, 34),\n", + " datetime.time(16, 27, 34), datetime.time(16, 27, 34),\n", + " datetime.time(16, 27, 35, 8000), datetime.time(16, 27, 35, 8000),\n", + " datetime.time(16, 27, 36), datetime.time(16, 27, 36),\n", + " datetime.time(16, 27, 36), datetime.time(16, 27, 36),\n", + " datetime.time(16, 27, 36), datetime.time(16, 27, 36),\n", + " datetime.time(16, 27, 36), datetime.time(16, 27, 37, 8000),\n", + " datetime.time(16, 27, 37, 8000), datetime.time(16, 27, 37, 8000),\n", + " datetime.time(16, 27, 38), datetime.time(16, 27, 38),\n", + " datetime.time(16, 27, 38), datetime.time(16, 27, 38),\n", + " datetime.time(16, 27, 39, 8000), datetime.time(16, 27, 39, 8000),\n", + " datetime.time(16, 27, 39, 8000), datetime.time(16, 27, 39, 8000),\n", + " datetime.time(16, 27, 39, 8000), datetime.time(16, 27, 39, 8000),\n", + " datetime.time(16, 27, 39, 8000), datetime.time(16, 27, 40),\n", + " datetime.time(16, 27, 40), datetime.time(16, 27, 40),\n", + " datetime.time(16, 27, 40), datetime.time(16, 27, 41, 8000),\n", + " datetime.time(16, 27, 41, 8000), datetime.time(16, 27, 41, 8000),\n", + " datetime.time(16, 27, 41, 8000), datetime.time(16, 27, 42),\n", + " datetime.time(16, 27, 42), datetime.time(16, 27, 42),\n", + " datetime.time(16, 27, 42), datetime.time(16, 27, 42),\n", + " datetime.time(16, 27, 42), datetime.time(16, 27, 42),\n", + " datetime.time(16, 27, 43, 8000), datetime.time(16, 27, 43, 8000),\n", + " datetime.time(16, 27, 44), datetime.time(16, 27, 44),\n", + " datetime.time(16, 27, 47, 8000), datetime.time(16, 27, 47, 8000),\n", + " datetime.time(16, 27, 48), datetime.time(16, 27, 48),\n", + " datetime.time(16, 27, 50), datetime.time(16, 27, 50),\n", + " datetime.time(16, 27, 52), datetime.time(16, 27, 52),\n", + " datetime.time(16, 27, 52), datetime.time(16, 27, 53, 8000),\n", + " datetime.time(16, 27, 53, 8000), datetime.time(16, 27, 53, 8000),\n", + " datetime.time(16, 27, 53, 8000), datetime.time(16, 27, 54),\n", + " datetime.time(16, 27, 54), datetime.time(16, 27, 54),\n", + " datetime.time(16, 27, 54), datetime.time(16, 27, 54),\n", + " datetime.time(16, 27, 54), datetime.time(16, 27, 54),\n", + " datetime.time(16, 27, 54), datetime.time(16, 27, 54),\n", + " datetime.time(16, 27, 57, 8000), datetime.time(16, 27, 57, 8000),\n", + " datetime.time(16, 27, 59, 8000), datetime.time(16, 27, 59, 8000),\n", + " datetime.time(16, 28), datetime.time(16, 28),\n", + " datetime.time(16, 28, 1, 8000), datetime.time(16, 28, 1, 8000),\n", + " datetime.time(16, 28, 2), datetime.time(16, 28, 2),\n", + " datetime.time(16, 28, 5, 8000), datetime.time(16, 28, 5, 8000),\n", + " datetime.time(16, 28, 6), datetime.time(16, 28, 6),\n", + " datetime.time(16, 28, 6), datetime.time(16, 28, 6),\n", + " datetime.time(16, 28, 6), datetime.time(16, 28, 6),\n", + " datetime.time(16, 28, 7, 8000), datetime.time(16, 28, 7, 8000),\n", + " datetime.time(16, 28, 8), datetime.time(16, 28, 8),\n", + " datetime.time(16, 28, 9, 8000), datetime.time(16, 28, 9, 8000),\n", + " datetime.time(16, 28, 9, 8000), datetime.time(16, 28, 11, 8000),\n", + " datetime.time(16, 28, 11, 8000), datetime.time(16, 28, 12),\n", + " datetime.time(16, 28, 12), datetime.time(16, 28, 12),\n", + " datetime.time(16, 28, 12), datetime.time(16, 28, 13, 8000),\n", + " datetime.time(16, 28, 13, 8000), datetime.time(16, 28, 14),\n", + " datetime.time(16, 28, 14), datetime.time(16, 28, 14),\n", + " datetime.time(16, 28, 15, 8000), datetime.time(16, 28, 15, 8000),\n", + " datetime.time(16, 28, 16), datetime.time(16, 28, 16),\n", + " datetime.time(16, 28, 17, 8000), datetime.time(16, 28, 17, 8000),\n", + " datetime.time(16, 28, 17, 8000), datetime.time(16, 28, 17, 8000),\n", + " datetime.time(16, 28, 17, 8000), datetime.time(16, 28, 18),\n", + " datetime.time(16, 28, 18), datetime.time(16, 28, 18),\n", + " datetime.time(16, 28, 18), datetime.time(16, 28, 18),\n", + " datetime.time(16, 28, 20), datetime.time(16, 28, 20),\n", + " datetime.time(16, 28, 20), datetime.time(16, 28, 20),\n", + " datetime.time(16, 28, 20), datetime.time(16, 28, 20),\n", + " datetime.time(16, 28, 20), datetime.time(16, 28, 20),\n", + " datetime.time(16, 28, 20), datetime.time(16, 28, 20),\n", + " datetime.time(16, 28, 23, 8000), datetime.time(16, 28, 23, 8000),\n", + " datetime.time(16, 28, 23, 8000), datetime.time(16, 28, 23, 8000),\n", + " datetime.time(16, 28, 23, 8000), datetime.time(16, 28, 23, 8000),\n", + " datetime.time(16, 28, 24), datetime.time(16, 28, 24),\n", + " datetime.time(16, 28, 24), datetime.time(16, 28, 25, 8000),\n", + " datetime.time(16, 28, 25, 8000), datetime.time(16, 28, 28),\n", + " datetime.time(16, 28, 28), datetime.time(16, 28, 28),\n", + " datetime.time(16, 28, 28), datetime.time(16, 28, 29, 8000),\n", + " datetime.time(16, 28, 29, 8000), datetime.time(16, 28, 31, 8000),\n", + " datetime.time(16, 28, 31, 8000), datetime.time(16, 28, 31, 8000),\n", + " datetime.time(16, 28, 32), datetime.time(16, 28, 32),\n", + " datetime.time(16, 28, 32), datetime.time(16, 28, 32),\n", + " datetime.time(16, 28, 32), datetime.time(16, 28, 35, 8000),\n", + " datetime.time(16, 28, 35, 8000), datetime.time(16, 28, 35, 8000),\n", + " datetime.time(16, 28, 38), datetime.time(16, 28, 38),\n", + " datetime.time(16, 28, 38), datetime.time(16, 28, 39, 8000),\n", + " datetime.time(16, 28, 39, 8000), datetime.time(16, 28, 40),\n", + " datetime.time(16, 28, 40), datetime.time(16, 28, 40),\n", + " datetime.time(16, 28, 40), datetime.time(16, 28, 40),\n", + " datetime.time(16, 28, 41, 8000), datetime.time(16, 28, 41, 8000),\n", + " datetime.time(16, 28, 41, 8000), datetime.time(16, 28, 41, 8000),\n", + " datetime.time(16, 28, 41, 8000), datetime.time(16, 28, 44),\n", + " datetime.time(16, 28, 44), datetime.time(16, 28, 44),\n", + " datetime.time(16, 28, 44), datetime.time(16, 28, 44),\n", + " datetime.time(16, 28, 46), datetime.time(16, 28, 46),\n", + " datetime.time(16, 28, 46), datetime.time(16, 28, 46),\n", + " datetime.time(16, 28, 47, 8000), datetime.time(16, 28, 47, 8000),\n", + " datetime.time(16, 28, 47, 8000), datetime.time(16, 28, 47, 8000),\n", + " datetime.time(16, 28, 49, 8000), datetime.time(16, 28, 49, 8000),\n", + " datetime.time(16, 28, 50), datetime.time(16, 28, 50),\n", + " datetime.time(16, 28, 50), datetime.time(16, 28, 50),\n", + " datetime.time(16, 28, 51, 8000), datetime.time(16, 28, 51, 8000),\n", + " datetime.time(16, 28, 51, 8000), datetime.time(16, 28, 53, 8000),\n", + " datetime.time(16, 28, 53, 8000), datetime.time(16, 28, 53, 8000),\n", + " datetime.time(16, 28, 54), datetime.time(16, 28, 54),\n", + " datetime.time(16, 28, 56), datetime.time(16, 28, 56),\n", + " datetime.time(16, 28, 56), datetime.time(16, 28, 56),\n", + " datetime.time(16, 28, 56), datetime.time(16, 28, 56),\n", + " datetime.time(16, 28, 56), datetime.time(16, 28, 57, 8000),\n", + " datetime.time(16, 28, 57, 8000), datetime.time(16, 28, 58),\n", + " datetime.time(16, 28, 58), datetime.time(16, 28, 59, 8000),\n", + " datetime.time(16, 28, 59, 8000), datetime.time(16, 29),\n", + " datetime.time(16, 29), datetime.time(16, 29),\n", + " datetime.time(16, 29), datetime.time(16, 29),\n", + " datetime.time(16, 29), datetime.time(16, 29, 1, 8000),\n", + " datetime.time(16, 29, 1, 8000), datetime.time(16, 29, 2),\n", + " datetime.time(16, 29, 2), datetime.time(16, 29, 4, 1000),\n", + " datetime.time(16, 29, 4, 1000), datetime.time(16, 29, 5, 9000),\n", + " datetime.time(16, 29, 5, 9000), datetime.time(16, 29, 5, 9000),\n", + " datetime.time(16, 29, 5, 9000), datetime.time(16, 29, 5, 9000),\n", + " datetime.time(16, 29, 5, 9000), datetime.time(16, 29, 7, 9000),\n", + " datetime.time(16, 29, 7, 9000), datetime.time(16, 29, 7, 9000),\n", + " datetime.time(16, 29, 7, 9000), datetime.time(16, 29, 8, 1000),\n", + " datetime.time(16, 29, 8, 1000), datetime.time(16, 29, 8, 1000),\n", + " datetime.time(16, 29, 8, 1000), datetime.time(16, 29, 10, 1000),\n", + " datetime.time(16, 29, 10, 1000), datetime.time(16, 29, 11, 9000),\n", + " datetime.time(16, 29, 11, 9000), datetime.time(16, 29, 11, 9000),\n", + " datetime.time(16, 29, 11, 9000), datetime.time(16, 29, 11, 9000),\n", + " datetime.time(16, 29, 12, 1000), datetime.time(16, 29, 12, 1000),\n", + " datetime.time(16, 29, 12, 1000), datetime.time(16, 29, 12, 1000),\n", + " datetime.time(16, 29, 12, 1000), datetime.time(16, 29, 12, 1000),\n", + " datetime.time(16, 29, 12, 1000), datetime.time(16, 29, 14, 1000),\n", + " datetime.time(16, 29, 14, 1000), datetime.time(16, 29, 15, 9000),\n", + " datetime.time(16, 29, 15, 9000), datetime.time(16, 29, 16, 1000),\n", + " datetime.time(16, 29, 16, 1000), datetime.time(16, 29, 17, 9000),\n", + " datetime.time(16, 29, 17, 9000), datetime.time(16, 29, 17, 9000),\n", + " datetime.time(16, 29, 17, 9000), datetime.time(16, 29, 18, 1000),\n", + " datetime.time(16, 29, 18, 1000), datetime.time(16, 29, 18, 1000),\n", + " datetime.time(16, 29, 19, 9000), datetime.time(16, 29, 19, 9000),\n", + " datetime.time(16, 29, 19, 9000), datetime.time(16, 29, 19, 9000),\n", + " datetime.time(16, 29, 19, 9000), datetime.time(16, 29, 19, 9000),\n", + " datetime.time(16, 29, 21, 9000), datetime.time(16, 29, 21, 9000),\n", + " datetime.time(16, 29, 21, 9000), datetime.time(16, 29, 21, 9000),\n", + " datetime.time(16, 29, 21, 9000), datetime.time(16, 29, 21, 9000),\n", + " datetime.time(16, 29, 21, 9000), datetime.time(16, 29, 22, 1000),\n", + " datetime.time(16, 29, 22, 1000), datetime.time(16, 29, 23, 9000),\n", + " datetime.time(16, 29, 23, 9000), datetime.time(16, 29, 23, 9000),\n", + " datetime.time(16, 29, 23, 9000), datetime.time(16, 29, 27, 9000),\n", + " datetime.time(16, 29, 27, 9000), datetime.time(16, 29, 28, 1000),\n", + " datetime.time(16, 29, 28, 1000), datetime.time(16, 29, 29, 9000),\n", + " datetime.time(16, 29, 29, 9000), datetime.time(16, 29, 30, 1000),\n", + " datetime.time(16, 29, 30, 1000), datetime.time(16, 29, 31, 9000),\n", + " datetime.time(16, 29, 31, 9000), datetime.time(16, 29, 31, 9000),\n", + " datetime.time(16, 29, 31, 9000), datetime.time(16, 29, 31, 9000),\n", + " datetime.time(16, 29, 31, 9000), datetime.time(16, 29, 31, 9000),\n", + " datetime.time(16, 29, 31, 9000), datetime.time(16, 29, 32, 1000),\n", + " datetime.time(16, 29, 32, 1000), datetime.time(16, 29, 32, 1000),\n", + " datetime.time(16, 29, 32, 1000), datetime.time(16, 29, 33, 9000),\n", + " datetime.time(16, 29, 33, 9000), datetime.time(16, 29, 33, 9000),\n", + " datetime.time(16, 29, 34, 1000), datetime.time(16, 29, 34, 1000),\n", + " datetime.time(16, 29, 34, 1000), datetime.time(16, 29, 34, 1000),\n", + " datetime.time(16, 29, 35, 9000), datetime.time(16, 29, 35, 9000),\n", + " datetime.time(16, 29, 37, 9000), datetime.time(16, 29, 37, 9000),\n", + " datetime.time(16, 29, 37, 9000), datetime.time(16, 29, 39, 9000),\n", + " datetime.time(16, 29, 39, 9000), datetime.time(16, 29, 39, 9000),\n", + " datetime.time(16, 29, 42, 1000), datetime.time(16, 29, 42, 1000),\n", + " datetime.time(16, 29, 44, 1000), datetime.time(16, 29, 44, 1000),\n", + " datetime.time(16, 29, 44, 1000), datetime.time(16, 29, 44, 1000),\n", + " datetime.time(16, 29, 44, 1000), datetime.time(16, 29, 45, 9000),\n", + " datetime.time(16, 29, 45, 9000), datetime.time(16, 29, 46, 1000),\n", + " datetime.time(16, 29, 46, 1000), datetime.time(16, 29, 48, 1000),\n", + " datetime.time(16, 29, 48, 1000), datetime.time(16, 29, 48, 1000),\n", + " datetime.time(16, 29, 48, 1000), datetime.time(16, 29, 49, 9000),\n", + " datetime.time(16, 29, 49, 9000), datetime.time(16, 29, 49, 9000),\n", + " datetime.time(16, 29, 49, 9000), datetime.time(16, 29, 49, 9000),\n", + " datetime.time(16, 29, 49, 9000), datetime.time(16, 29, 49, 9000),\n", + " datetime.time(16, 29, 49, 9000), datetime.time(16, 29, 49, 9000),\n", + " datetime.time(16, 29, 50, 1000), datetime.time(16, 29, 50, 1000),\n", + " datetime.time(16, 29, 50, 1000), datetime.time(16, 29, 50, 1000),\n", + " datetime.time(16, 29, 52, 1000), datetime.time(16, 29, 52, 1000),\n", + " datetime.time(16, 29, 52, 1000), datetime.time(16, 29, 52, 1000),\n", + " datetime.time(16, 29, 52, 1000), datetime.time(16, 29, 52, 1000),\n", + " datetime.time(16, 29, 52, 1000), datetime.time(16, 29, 53, 9000),\n", + " datetime.time(16, 29, 53, 9000), datetime.time(16, 29, 53, 9000),\n", + " datetime.time(16, 29, 53, 9000), datetime.time(16, 29, 53, 9000),\n", + " datetime.time(16, 29, 53, 9000), datetime.time(16, 29, 54, 1000),\n", + " datetime.time(16, 29, 54, 1000), datetime.time(16, 29, 55, 9000),\n", + " datetime.time(16, 29, 55, 9000), datetime.time(16, 29, 55, 9000),\n", + " datetime.time(16, 29, 55, 9000), datetime.time(16, 29, 55, 9000),\n", + " datetime.time(16, 29, 57, 9000), datetime.time(16, 29, 57, 9000),\n", + " datetime.time(16, 29, 57, 9000), datetime.time(16, 29, 58, 1000),\n", + " datetime.time(16, 29, 58, 1000), datetime.time(16, 29, 58, 1000),\n", + " datetime.time(16, 29, 58, 1000), datetime.time(16, 29, 58, 1000),\n", + " datetime.time(16, 29, 58, 1000), datetime.time(16, 29, 58, 1000),\n", + " datetime.time(16, 29, 59, 9000), datetime.time(16, 29, 59, 9000),\n", + " datetime.time(16, 29, 59, 9000), datetime.time(16, 29, 59, 9000),\n", + " datetime.time(16, 30, 0, 1000), datetime.time(16, 30, 0, 1000),\n", + " datetime.time(16, 30, 0, 1000), datetime.time(16, 30, 1, 9000),\n", + " datetime.time(16, 30, 1, 9000), datetime.time(16, 30, 2, 1000),\n", + " datetime.time(16, 30, 2, 1000), datetime.time(16, 30, 2, 1000),\n", + " datetime.time(16, 30, 2, 1000), datetime.time(16, 30, 3, 9000),\n", + " datetime.time(16, 30, 3, 9000), datetime.time(16, 30, 3, 9000),\n", + " datetime.time(16, 30, 3, 9000), datetime.time(16, 30, 5, 9000),\n", + " datetime.time(16, 30, 5, 9000), datetime.time(16, 30, 6, 1000),\n", + " datetime.time(16, 30, 6, 1000), datetime.time(16, 30, 6, 1000),\n", + " datetime.time(16, 30, 6, 1000), datetime.time(16, 30, 6, 1000),\n", + " datetime.time(16, 30, 6, 1000), datetime.time(16, 30, 6, 1000),\n", + " datetime.time(16, 30, 6, 1000), datetime.time(16, 30, 6, 1000),\n", + " datetime.time(16, 30, 6, 1000), datetime.time(16, 30, 7, 9000),\n", + " datetime.time(16, 30, 7, 9000), datetime.time(16, 30, 7, 9000),\n", + " datetime.time(16, 30, 7, 9000), datetime.time(16, 30, 7, 9000),\n", + " datetime.time(16, 30, 7, 9000), datetime.time(16, 30, 7, 9000),\n", + " datetime.time(16, 30, 7, 9000), datetime.time(16, 30, 7, 9000),\n", + " datetime.time(16, 30, 9, 9000), datetime.time(16, 30, 9, 9000),\n", + " datetime.time(16, 30, 10, 1000), datetime.time(16, 30, 10, 1000),\n", + " datetime.time(16, 30, 10, 1000), datetime.time(16, 30, 10, 1000),\n", + " datetime.time(16, 30, 10, 1000), datetime.time(16, 30, 10, 1000),\n", + " datetime.time(16, 30, 11, 9000), datetime.time(16, 30, 11, 9000),\n", + " datetime.time(16, 30, 11, 9000), datetime.time(16, 30, 12, 1000),\n", + " datetime.time(16, 30, 12, 1000), datetime.time(16, 30, 12, 1000),\n", + " datetime.time(16, 30, 12, 1000), datetime.time(16, 30, 12, 1000),\n", + " datetime.time(16, 30, 12, 1000), datetime.time(16, 30, 13, 9000),\n", + " datetime.time(16, 30, 13, 9000), datetime.time(16, 30, 13, 9000),\n", + " datetime.time(16, 30, 14, 1000), datetime.time(16, 30, 14, 1000),\n", + " datetime.time(16, 30, 14, 1000), datetime.time(16, 30, 14, 1000),\n", + " datetime.time(16, 30, 15, 9000), datetime.time(16, 30, 15, 9000),\n", + " datetime.time(16, 30, 15, 9000), datetime.time(16, 30, 17, 9000),\n", + " datetime.time(16, 30, 17, 9000), datetime.time(16, 30, 17, 9000),\n", + " datetime.time(16, 30, 17, 9000), datetime.time(16, 30, 17, 9000),\n", + " datetime.time(16, 30, 17, 9000), datetime.time(16, 30, 17, 9000),\n", + " datetime.time(16, 30, 17, 9000), datetime.time(16, 30, 17, 9000),\n", + " datetime.time(16, 30, 17, 9000), datetime.time(16, 30, 19, 9000),\n", + " datetime.time(16, 30, 19, 9000), datetime.time(16, 30, 19, 9000),\n", + " datetime.time(16, 30, 19, 9000), datetime.time(16, 30, 19, 9000),\n", + " datetime.time(16, 30, 19, 9000), datetime.time(16, 30, 21, 9000),\n", + " datetime.time(16, 30, 21, 9000), datetime.time(16, 30, 21, 9000),\n", + " datetime.time(16, 30, 21, 9000), datetime.time(16, 30, 23, 9000),\n", + " datetime.time(16, 30, 23, 9000), datetime.time(16, 30, 23, 9000),\n", + " datetime.time(16, 30, 23, 9000), datetime.time(16, 30, 24, 1000),\n", + " datetime.time(16, 30, 24, 1000), datetime.time(16, 30, 25, 9000),\n", + " datetime.time(16, 30, 25, 9000), datetime.time(16, 30, 25, 9000),\n", + " datetime.time(16, 30, 25, 9000), datetime.time(16, 30, 25, 9000),\n", + " datetime.time(16, 30, 25, 9000), datetime.time(16, 30, 26, 1000),\n", + " datetime.time(16, 30, 26, 1000), datetime.time(16, 30, 26, 1000),\n", + " datetime.time(16, 30, 26, 1000), datetime.time(16, 30, 29, 9000),\n", + " datetime.time(16, 30, 29, 9000), datetime.time(16, 30, 29, 9000),\n", + " datetime.time(16, 30, 29, 9000), datetime.time(16, 30, 29, 9000),\n", + " datetime.time(16, 30, 30, 1000), datetime.time(16, 30, 30, 1000),\n", + " datetime.time(16, 30, 30, 1000), datetime.time(16, 30, 31, 9000),\n", + " datetime.time(16, 30, 31, 9000), datetime.time(16, 30, 31, 9000),\n", + " datetime.time(16, 30, 31, 9000), datetime.time(16, 30, 31, 9000),\n", + " datetime.time(16, 30, 32, 1000), datetime.time(16, 30, 32, 1000),\n", + " datetime.time(16, 30, 32, 1000), datetime.time(16, 30, 33, 9000),\n", + " datetime.time(16, 30, 33, 9000), datetime.time(16, 30, 33, 9000),\n", + " datetime.time(16, 30, 33, 9000), datetime.time(16, 30, 34, 1000),\n", + " datetime.time(16, 30, 34, 1000), datetime.time(16, 30, 34, 1000),\n", + " datetime.time(16, 30, 34, 1000), datetime.time(16, 30, 34, 1000),\n", + " datetime.time(16, 30, 34, 1000), datetime.time(16, 30, 34, 1000),\n", + " datetime.time(16, 30, 34, 1000), datetime.time(16, 30, 34, 1000),\n", + " datetime.time(16, 30, 34, 1000), datetime.time(16, 30, 35, 9000),\n", + " datetime.time(16, 30, 35, 9000), datetime.time(16, 30, 35, 9000),\n", + " datetime.time(16, 30, 35, 9000), datetime.time(16, 30, 35, 9000),\n", + " datetime.time(16, 30, 37, 9000), datetime.time(16, 30, 37, 9000),\n", + " datetime.time(16, 30, 37, 9000), datetime.time(16, 30, 37, 9000),\n", + " datetime.time(16, 30, 37, 9000), datetime.time(16, 30, 37, 9000),\n", + " datetime.time(16, 30, 37, 9000), datetime.time(16, 30, 37, 9000),\n", + " datetime.time(16, 30, 37, 9000), datetime.time(16, 30, 37, 9000),\n", + " datetime.time(16, 30, 38, 1000), datetime.time(16, 30, 38, 1000),\n", + " datetime.time(16, 30, 38, 1000), datetime.time(16, 30, 38, 1000),\n", + " datetime.time(16, 30, 39, 9000), datetime.time(16, 30, 39, 9000),\n", + " datetime.time(16, 30, 39, 9000), datetime.time(16, 30, 39, 9000),\n", + " datetime.time(16, 30, 39, 9000), datetime.time(16, 30, 40, 1000),\n", + " datetime.time(16, 30, 40, 1000), datetime.time(16, 30, 41, 9000),\n", + " datetime.time(16, 30, 41, 9000), datetime.time(16, 30, 42, 1000),\n", + " datetime.time(16, 30, 42, 1000), datetime.time(16, 30, 42, 1000),\n", + " datetime.time(16, 30, 42, 1000), datetime.time(16, 30, 42, 1000),\n", + " datetime.time(16, 30, 42, 1000), datetime.time(16, 30, 42, 1000),\n", + " datetime.time(16, 30, 43, 9000), datetime.time(16, 30, 43, 9000),\n", + " datetime.time(16, 30, 44, 1000), datetime.time(16, 30, 44, 1000),\n", + " datetime.time(16, 30, 44, 1000), datetime.time(16, 30, 44, 1000),\n", + " datetime.time(16, 30, 45, 9000), datetime.time(16, 30, 45, 9000),\n", + " datetime.time(16, 30, 45, 9000), datetime.time(16, 30, 45, 9000),\n", + " datetime.time(16, 30, 45, 9000), datetime.time(16, 30, 45, 9000),\n", + " datetime.time(16, 30, 45, 9000), datetime.time(16, 30, 45, 9000),\n", + " datetime.time(16, 30, 46, 1000), datetime.time(16, 30, 46, 1000),\n", + " datetime.time(16, 30, 46, 1000), datetime.time(16, 30, 46, 1000),\n", + " datetime.time(16, 30, 46, 1000), datetime.time(16, 30, 46, 1000),\n", + " datetime.time(16, 30, 46, 1000), datetime.time(16, 30, 48, 1000),\n", + " datetime.time(16, 30, 48, 1000), datetime.time(16, 30, 48, 1000),\n", + " datetime.time(16, 30, 48, 1000), datetime.time(16, 30, 48, 1000),\n", + " datetime.time(16, 30, 48, 1000), datetime.time(16, 30, 48, 1000),\n", + " datetime.time(16, 30, 48, 1000), datetime.time(16, 30, 49, 9000),\n", + " datetime.time(16, 30, 49, 9000), datetime.time(16, 30, 50, 1000),\n", + " datetime.time(16, 30, 50, 1000), datetime.time(16, 30, 50, 1000),\n", + " datetime.time(16, 30, 50, 1000), datetime.time(16, 30, 51, 9000),\n", + " datetime.time(16, 30, 51, 9000), datetime.time(16, 30, 53, 9000),\n", + " datetime.time(16, 30, 53, 9000), datetime.time(16, 30, 53, 9000),\n", + " datetime.time(16, 30, 53, 9000), datetime.time(16, 30, 53, 9000),\n", + " datetime.time(16, 30, 55, 9000), datetime.time(16, 30, 55, 9000),\n", + " datetime.time(16, 30, 55, 9000), datetime.time(16, 30, 55, 9000),\n", + " datetime.time(16, 30, 55, 9000), datetime.time(16, 30, 55, 9000),\n", + " datetime.time(16, 30, 55, 9000), datetime.time(16, 30, 55, 9000),\n", + " datetime.time(16, 30, 55, 9000), datetime.time(16, 30, 55, 9000),\n", + " datetime.time(16, 30, 56, 1000), datetime.time(16, 30, 56, 1000),\n", + " datetime.time(16, 30, 56, 1000), datetime.time(16, 30, 56, 1000),\n", + " datetime.time(16, 30, 56, 1000), datetime.time(16, 30, 56, 1000),\n", + " datetime.time(16, 30, 57, 9000), datetime.time(16, 30, 57, 9000),\n", + " datetime.time(16, 30, 57, 9000), datetime.time(16, 30, 57, 9000),\n", + " datetime.time(16, 30, 58, 1000), datetime.time(16, 30, 58, 1000),\n", + " datetime.time(16, 30, 58, 1000), datetime.time(16, 30, 58, 1000),\n", + " datetime.time(16, 30, 59, 9000), datetime.time(16, 30, 59, 9000),\n", + " datetime.time(16, 30, 59, 9000), datetime.time(16, 30, 59, 9000),\n", + " datetime.time(16, 30, 59, 9000), datetime.time(16, 30, 59, 9000),\n", + " datetime.time(16, 30, 59, 9000), datetime.time(16, 30, 59, 9000),\n", + " datetime.time(16, 31, 0, 1000), datetime.time(16, 31, 0, 1000),\n", + " datetime.time(16, 31, 1, 9000), datetime.time(16, 31, 1, 9000),\n", + " datetime.time(16, 31, 1, 9000), datetime.time(16, 31, 1, 9000),\n", + " datetime.time(16, 31, 1, 9000), datetime.time(16, 31, 1, 9000),\n", + " datetime.time(16, 31, 1, 9000), datetime.time(16, 31, 2, 1000),\n", + " datetime.time(16, 31, 2, 1000), datetime.time(16, 31, 4, 1000),\n", + " datetime.time(16, 31, 4, 1000), datetime.time(16, 31, 4, 1000),\n", + " datetime.time(16, 31, 4, 1000), datetime.time(16, 31, 4, 1000),\n", + " datetime.time(16, 31, 4, 1000), datetime.time(16, 31, 4, 1000),\n", + " datetime.time(16, 31, 4, 1000), datetime.time(16, 31, 6, 1000),\n", + " datetime.time(16, 31, 6, 1000), datetime.time(16, 31, 6, 1000),\n", + " datetime.time(16, 31, 6, 1000), datetime.time(16, 31, 6, 1000),\n", + " datetime.time(16, 31, 6, 1000), datetime.time(16, 31, 6, 1000),\n", + " datetime.time(16, 31, 6, 1000), datetime.time(16, 31, 8, 1000),\n", + " datetime.time(16, 31, 8, 1000), datetime.time(16, 31, 10, 1000),\n", + " datetime.time(16, 31, 10, 1000), datetime.time(16, 31, 10, 1000),\n", + " datetime.time(16, 31, 10, 1000), datetime.time(16, 31, 11, 9000),\n", + " datetime.time(16, 31, 11, 9000), datetime.time(16, 31, 11, 9000),\n", + " datetime.time(16, 31, 11, 9000), datetime.time(16, 31, 11, 9000),\n", + " datetime.time(16, 31, 11, 9000), datetime.time(16, 31, 11, 9000),\n", + " datetime.time(16, 31, 12, 1000), datetime.time(16, 31, 12, 1000),\n", + " datetime.time(16, 31, 12, 1000), datetime.time(16, 31, 12, 1000),\n", + " datetime.time(16, 31, 12, 1000), datetime.time(16, 31, 12, 1000),\n", + " datetime.time(16, 31, 14, 1000), datetime.time(16, 31, 14, 1000),\n", + " datetime.time(16, 31, 15, 9000), datetime.time(16, 31, 15, 9000),\n", + " datetime.time(16, 31, 15, 9000), datetime.time(16, 31, 18, 1000),\n", + " datetime.time(16, 31, 18, 1000), datetime.time(16, 31, 18, 1000),\n", + " datetime.time(16, 31, 19, 9000), datetime.time(16, 31, 19, 9000),\n", + " datetime.time(16, 31, 20, 1000), datetime.time(16, 31, 20, 1000),\n", + " datetime.time(16, 31, 21, 9000), datetime.time(16, 31, 21, 9000),\n", + " datetime.time(16, 31, 21, 9000), datetime.time(16, 31, 21, 9000),\n", + " datetime.time(16, 31, 22, 1000), datetime.time(16, 31, 22, 1000),\n", + " datetime.time(16, 31, 23, 9000), datetime.time(16, 31, 23, 9000),\n", + " datetime.time(16, 31, 23, 9000), datetime.time(16, 31, 23, 9000),\n", + " datetime.time(16, 31, 23, 9000), datetime.time(16, 31, 24, 1000),\n", + " datetime.time(16, 31, 24, 1000), datetime.time(16, 31, 24, 1000),\n", + " datetime.time(16, 31, 24, 1000), datetime.time(16, 31, 24, 1000),\n", + " datetime.time(16, 31, 24, 1000), datetime.time(16, 31, 25, 9000),\n", + " datetime.time(16, 31, 25, 9000), datetime.time(16, 31, 25, 9000),\n", + " datetime.time(16, 31, 25, 9000), datetime.time(16, 31, 25, 9000),\n", + " datetime.time(16, 31, 25, 9000), datetime.time(16, 31, 26, 1000),\n", + " datetime.time(16, 31, 26, 1000), datetime.time(16, 31, 27, 9000),\n", + " datetime.time(16, 31, 27, 9000), datetime.time(16, 31, 28, 1000),\n", + " datetime.time(16, 31, 28, 1000), datetime.time(16, 31, 29, 9000),\n", + " datetime.time(16, 31, 29, 9000), datetime.time(16, 31, 29, 9000),\n", + " datetime.time(16, 31, 29, 9000), datetime.time(16, 31, 30, 1000),\n", + " datetime.time(16, 31, 30, 1000), datetime.time(16, 31, 31, 9000),\n", + " datetime.time(16, 31, 31, 9000), datetime.time(16, 31, 31, 9000),\n", + " datetime.time(16, 31, 31, 9000), datetime.time(16, 31, 31, 9000),\n", + " datetime.time(16, 31, 31, 9000), datetime.time(16, 31, 32, 1000),\n", + " datetime.time(16, 31, 32, 1000), datetime.time(16, 31, 32, 1000),\n", + " datetime.time(16, 31, 32, 1000), datetime.time(16, 31, 34, 1000),\n", + " datetime.time(16, 31, 34, 1000), datetime.time(16, 31, 36, 2000),\n", + " datetime.time(16, 31, 36, 2000), datetime.time(16, 31, 36, 2000),\n", + " datetime.time(16, 31, 37, 10000), datetime.time(16, 31, 37, 10000),\n", + " datetime.time(16, 31, 37, 10000), datetime.time(16, 31, 37, 10000),\n", + " datetime.time(16, 31, 37, 10000), datetime.time(16, 31, 38, 2000),\n", + " datetime.time(16, 31, 38, 2000), datetime.time(16, 31, 38, 2000),\n", + " datetime.time(16, 31, 38, 2000), datetime.time(16, 31, 38, 2000),\n", + " datetime.time(16, 31, 38, 2000), datetime.time(16, 31, 38, 2000),\n", + " datetime.time(16, 31, 38, 2000), datetime.time(16, 31, 38, 2000),\n", + " datetime.time(16, 31, 38, 2000), datetime.time(16, 31, 39, 10000),\n", + " datetime.time(16, 31, 39, 10000), datetime.time(16, 31, 40, 2000),\n", + " datetime.time(16, 31, 40, 2000), datetime.time(16, 31, 41, 10000),\n", + " datetime.time(16, 31, 41, 10000), datetime.time(16, 31, 41, 10000),\n", + " datetime.time(16, 31, 42, 2000), datetime.time(16, 31, 42, 2000),\n", + " datetime.time(16, 31, 42, 2000), datetime.time(16, 31, 42, 2000),\n", + " datetime.time(16, 31, 42, 2000), datetime.time(16, 31, 42, 2000),\n", + " datetime.time(16, 31, 44, 2000), datetime.time(16, 31, 44, 2000),\n", + " datetime.time(16, 31, 44, 2000), datetime.time(16, 31, 44, 2000),\n", + " datetime.time(16, 31, 44, 2000), datetime.time(16, 31, 44, 2000),\n", + " datetime.time(16, 31, 44, 2000), datetime.time(16, 31, 44, 2000),\n", + " datetime.time(16, 31, 44, 2000), datetime.time(16, 31, 44, 2000),\n", + " datetime.time(16, 31, 45, 10000), datetime.time(16, 31, 45, 10000),\n", + " datetime.time(16, 31, 45, 10000), datetime.time(16, 31, 46, 2000),\n", + " datetime.time(16, 31, 46, 2000), datetime.time(16, 31, 48, 2000),\n", + " datetime.time(16, 31, 48, 2000), datetime.time(16, 31, 48, 2000),\n", + " datetime.time(16, 31, 48, 2000), datetime.time(16, 31, 48, 2000),\n", + " datetime.time(16, 31, 48, 2000), datetime.time(16, 31, 48, 2000),\n", + " datetime.time(16, 31, 50, 2000), datetime.time(16, 31, 50, 2000),\n", + " datetime.time(16, 31, 50, 2000), datetime.time(16, 31, 50, 2000),\n", + " datetime.time(16, 31, 52, 2000), datetime.time(16, 31, 52, 2000),\n", + " datetime.time(16, 31, 52, 2000), datetime.time(16, 31, 52, 2000),\n", + " datetime.time(16, 31, 54, 2000), datetime.time(16, 31, 54, 2000),\n", + " datetime.time(16, 31, 54, 2000), datetime.time(16, 31, 54, 2000),\n", + " datetime.time(16, 31, 54, 2000), datetime.time(16, 31, 54, 2000),\n", + " datetime.time(16, 31, 54, 2000), datetime.time(16, 31, 55, 10000),\n", + " datetime.time(16, 31, 55, 10000), datetime.time(16, 31, 55, 10000),\n", + " datetime.time(16, 31, 56, 2000), datetime.time(16, 31, 56, 2000),\n", + " datetime.time(16, 31, 56, 2000)], dtype=object)" + ] + }, + "execution_count": 54, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "time_V275" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Flujo para 275mV: 3.9863636363636363\n" + ] + } + ], + "source": [ + "events_V275, counts_V275, flux_V275, std_V275 = events_counts(time_V275)\n", + "flux[9] = flux_V275\n", + "print(f\"Flujo para 275mV: {flux[9]}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Voltaje umbral de 300 mV" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "V300=load_data(\"calibrationData/calibration_300mV.dat\")" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "time_V300 = time_list(V300)" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([datetime.time(16, 32, 54, 2000), datetime.time(16, 32, 54, 2000),\n", + " datetime.time(16, 32, 54, 2000), datetime.time(16, 32, 55, 10000),\n", + " datetime.time(16, 32, 55, 10000), datetime.time(16, 32, 55, 10000),\n", + " datetime.time(16, 32, 55, 10000), datetime.time(16, 32, 56, 2000),\n", + " datetime.time(16, 32, 56, 2000), datetime.time(16, 32, 56, 2000),\n", + " datetime.time(16, 32, 56, 2000), datetime.time(16, 32, 58, 2000),\n", + " datetime.time(16, 32, 58, 2000), datetime.time(16, 33, 1, 10000),\n", + " datetime.time(16, 33, 1, 10000), datetime.time(16, 33, 2, 2000),\n", + " datetime.time(16, 33, 2, 2000), datetime.time(16, 33, 2, 2000),\n", + " datetime.time(16, 33, 2, 2000), datetime.time(16, 33, 2, 2000),\n", + " datetime.time(16, 33, 5, 10000), datetime.time(16, 33, 5, 10000),\n", + " datetime.time(16, 33, 5, 10000), datetime.time(16, 33, 5, 10000),\n", + " datetime.time(16, 33, 6, 2000), datetime.time(16, 33, 6, 2000),\n", + " datetime.time(16, 33, 6, 2000), datetime.time(16, 33, 9, 10000),\n", + " datetime.time(16, 33, 9, 10000), datetime.time(16, 33, 9, 10000),\n", + " datetime.time(16, 33, 9, 10000), datetime.time(16, 33, 9, 10000),\n", + " datetime.time(16, 33, 9, 10000), datetime.time(16, 33, 9, 10000),\n", + " datetime.time(16, 33, 12, 2000), datetime.time(16, 33, 12, 2000),\n", + " datetime.time(16, 33, 12, 2000), datetime.time(16, 33, 12, 2000),\n", + " datetime.time(16, 33, 13, 10000), datetime.time(16, 33, 13, 10000),\n", + " datetime.time(16, 33, 13, 10000), datetime.time(16, 33, 13, 10000),\n", + " datetime.time(16, 33, 13, 10000), datetime.time(16, 33, 13, 10000),\n", + " datetime.time(16, 33, 14, 2000), datetime.time(16, 33, 14, 2000),\n", + " datetime.time(16, 33, 15, 10000), datetime.time(16, 33, 15, 10000),\n", + " datetime.time(16, 33, 15, 10000), datetime.time(16, 33, 15, 10000),\n", + " datetime.time(16, 33, 16, 2000), datetime.time(16, 33, 16, 2000),\n", + " datetime.time(16, 33, 17, 10000), datetime.time(16, 33, 17, 10000),\n", + " datetime.time(16, 33, 17, 10000), datetime.time(16, 33, 17, 10000),\n", + " datetime.time(16, 33, 17, 10000), datetime.time(16, 33, 17, 10000),\n", + " datetime.time(16, 33, 19, 10000), datetime.time(16, 33, 19, 10000),\n", + " datetime.time(16, 33, 22, 2000), datetime.time(16, 33, 22, 2000),\n", + " datetime.time(16, 33, 24, 2000), datetime.time(16, 33, 24, 2000),\n", + " datetime.time(16, 33, 24, 2000), datetime.time(16, 33, 24, 2000),\n", + " datetime.time(16, 33, 27, 10000), datetime.time(16, 33, 27, 10000),\n", + " datetime.time(16, 33, 29, 10000), datetime.time(16, 33, 29, 10000),\n", + " datetime.time(16, 33, 29, 10000), datetime.time(16, 33, 29, 10000),\n", + " datetime.time(16, 33, 30, 2000), datetime.time(16, 33, 30, 2000),\n", + " datetime.time(16, 33, 31, 10000), datetime.time(16, 33, 31, 10000),\n", + " datetime.time(16, 33, 32, 2000), datetime.time(16, 33, 32, 2000),\n", + " datetime.time(16, 33, 33, 10000), datetime.time(16, 33, 33, 10000),\n", + " datetime.time(16, 33, 33, 10000), datetime.time(16, 33, 33, 10000),\n", + " datetime.time(16, 33, 35, 10000), datetime.time(16, 33, 35, 10000),\n", + " datetime.time(16, 33, 36, 2000), datetime.time(16, 33, 36, 2000),\n", + " datetime.time(16, 33, 37, 10000), datetime.time(16, 33, 37, 10000),\n", + " datetime.time(16, 33, 38, 2000), datetime.time(16, 33, 38, 2000),\n", + " datetime.time(16, 33, 39, 10000), datetime.time(16, 33, 39, 10000),\n", + " datetime.time(16, 33, 39, 10000), datetime.time(16, 33, 39, 10000),\n", + " datetime.time(16, 33, 39, 10000), datetime.time(16, 33, 39, 10000),\n", + " datetime.time(16, 33, 41, 10000), datetime.time(16, 33, 41, 10000),\n", + " datetime.time(16, 33, 44, 2000), datetime.time(16, 33, 44, 2000),\n", + " datetime.time(16, 33, 45, 10000), datetime.time(16, 33, 45, 10000),\n", + " datetime.time(16, 33, 47, 10000), datetime.time(16, 33, 47, 10000),\n", + " datetime.time(16, 33, 47, 10000), datetime.time(16, 33, 47, 10000),\n", + " datetime.time(16, 33, 48, 2000), datetime.time(16, 33, 48, 2000),\n", + " datetime.time(16, 33, 48, 2000), datetime.time(16, 33, 48, 2000),\n", + " datetime.time(16, 33, 48, 2000), datetime.time(16, 33, 48, 2000),\n", + " datetime.time(16, 33, 49, 10000), datetime.time(16, 33, 49, 10000),\n", + " datetime.time(16, 33, 50, 2000), datetime.time(16, 33, 50, 2000),\n", + " datetime.time(16, 33, 53, 10000), datetime.time(16, 33, 53, 10000),\n", + " datetime.time(16, 33, 54, 2000), datetime.time(16, 33, 54, 2000),\n", + " datetime.time(16, 33, 54, 2000), datetime.time(16, 33, 54, 2000),\n", + " datetime.time(16, 33, 55, 10000), datetime.time(16, 33, 55, 10000),\n", + " datetime.time(16, 33, 58, 2000), datetime.time(16, 33, 58, 2000),\n", + " datetime.time(16, 34, 2, 2000), datetime.time(16, 34, 2, 2000),\n", + " datetime.time(16, 34, 3, 10000), datetime.time(16, 34, 3, 10000),\n", + " datetime.time(16, 34, 4, 2000), datetime.time(16, 34, 4, 2000),\n", + " datetime.time(16, 34, 7, 11000), datetime.time(16, 34, 7, 11000),\n", + " datetime.time(16, 34, 8, 3000), datetime.time(16, 34, 8, 3000),\n", + " datetime.time(16, 34, 10, 3000), datetime.time(16, 34, 10, 3000),\n", + " datetime.time(16, 34, 10, 3000), datetime.time(16, 34, 10, 3000),\n", + " datetime.time(16, 34, 10, 3000), datetime.time(16, 34, 10, 3000),\n", + " datetime.time(16, 34, 10, 3000), datetime.time(16, 34, 10, 3000),\n", + " datetime.time(16, 34, 14, 3000), datetime.time(16, 34, 14, 3000),\n", + " datetime.time(16, 34, 17, 11000), datetime.time(16, 34, 17, 11000),\n", + " datetime.time(16, 34, 19, 11000), datetime.time(16, 34, 19, 11000),\n", + " datetime.time(16, 34, 19, 11000), datetime.time(16, 34, 20, 3000),\n", + " datetime.time(16, 34, 20, 3000), datetime.time(16, 34, 22, 3000),\n", + " datetime.time(16, 34, 22, 3000), datetime.time(16, 34, 22, 3000),\n", + " datetime.time(16, 34, 22, 3000), datetime.time(16, 34, 24, 3000),\n", + " datetime.time(16, 34, 24, 3000), datetime.time(16, 34, 24, 3000),\n", + " datetime.time(16, 34, 24, 3000), datetime.time(16, 34, 25, 11000),\n", + " datetime.time(16, 34, 25, 11000), datetime.time(16, 34, 27, 11000),\n", + " datetime.time(16, 34, 27, 11000), datetime.time(16, 34, 28, 3000),\n", + " datetime.time(16, 34, 28, 3000), datetime.time(16, 34, 29, 11000),\n", + " datetime.time(16, 34, 29, 11000), datetime.time(16, 34, 29, 11000),\n", + " datetime.time(16, 34, 30, 3000), datetime.time(16, 34, 30, 3000),\n", + " datetime.time(16, 34, 30, 3000), datetime.time(16, 34, 30, 3000),\n", + " datetime.time(16, 34, 30, 3000), datetime.time(16, 34, 31, 11000),\n", + " datetime.time(16, 34, 31, 11000), datetime.time(16, 34, 31, 11000),\n", + " datetime.time(16, 34, 31, 11000), datetime.time(16, 34, 31, 11000),\n", + " datetime.time(16, 34, 31, 11000), datetime.time(16, 34, 34, 3000),\n", + " datetime.time(16, 34, 34, 3000), datetime.time(16, 34, 34, 3000),\n", + " datetime.time(16, 34, 34, 3000), datetime.time(16, 34, 34, 3000),\n", + " datetime.time(16, 34, 34, 3000), datetime.time(16, 34, 34, 3000),\n", + " datetime.time(16, 34, 35, 11000), datetime.time(16, 34, 35, 11000),\n", + " datetime.time(16, 34, 37, 11000), datetime.time(16, 34, 37, 11000),\n", + " datetime.time(16, 34, 38, 3000), datetime.time(16, 34, 38, 3000),\n", + " datetime.time(16, 34, 38, 3000), datetime.time(16, 34, 38, 3000),\n", + " datetime.time(16, 34, 39, 11000), datetime.time(16, 34, 39, 11000),\n", + " datetime.time(16, 34, 40, 3000), datetime.time(16, 34, 40, 3000),\n", + " datetime.time(16, 34, 40, 3000), datetime.time(16, 34, 40, 3000),\n", + " datetime.time(16, 34, 42, 3000), datetime.time(16, 34, 42, 3000),\n", + " datetime.time(16, 34, 42, 3000), datetime.time(16, 34, 42, 3000),\n", + " datetime.time(16, 34, 43, 11000), datetime.time(16, 34, 43, 11000),\n", + " datetime.time(16, 34, 43, 11000), datetime.time(16, 34, 43, 11000),\n", + " datetime.time(16, 34, 45, 11000), datetime.time(16, 34, 45, 11000),\n", + " datetime.time(16, 34, 46, 3000), datetime.time(16, 34, 46, 3000),\n", + " datetime.time(16, 34, 46, 3000), datetime.time(16, 34, 46, 3000),\n", + " datetime.time(16, 34, 46, 3000), datetime.time(16, 34, 46, 3000),\n", + " datetime.time(16, 34, 46, 3000), datetime.time(16, 34, 48, 3000),\n", + " datetime.time(16, 34, 48, 3000), datetime.time(16, 34, 48, 3000),\n", + " datetime.time(16, 34, 51, 11000), datetime.time(16, 34, 51, 11000),\n", + " datetime.time(16, 34, 56, 3000), datetime.time(16, 34, 56, 3000),\n", + " datetime.time(16, 34, 59, 11000), datetime.time(16, 34, 59, 11000),\n", + " datetime.time(16, 35, 1, 11000), datetime.time(16, 35, 1, 11000),\n", + " datetime.time(16, 35, 3, 11000), datetime.time(16, 35, 3, 11000),\n", + " datetime.time(16, 35, 3, 11000), datetime.time(16, 35, 3, 11000),\n", + " datetime.time(16, 35, 4, 3000), datetime.time(16, 35, 4, 3000),\n", + " datetime.time(16, 35, 4, 3000), datetime.time(16, 35, 5, 11000),\n", + " datetime.time(16, 35, 5, 11000), datetime.time(16, 35, 6, 3000),\n", + " datetime.time(16, 35, 6, 3000), datetime.time(16, 35, 7, 11000),\n", + " datetime.time(16, 35, 7, 11000), datetime.time(16, 35, 8, 3000),\n", + " datetime.time(16, 35, 8, 3000), datetime.time(16, 35, 10, 3000),\n", + " datetime.time(16, 35, 10, 3000), datetime.time(16, 35, 11, 11000),\n", + " datetime.time(16, 35, 11, 11000), datetime.time(16, 35, 11, 11000),\n", + " datetime.time(16, 35, 11, 11000), datetime.time(16, 35, 12, 3000),\n", + " datetime.time(16, 35, 12, 3000), datetime.time(16, 35, 12, 3000),\n", + " datetime.time(16, 35, 12, 3000), datetime.time(16, 35, 12, 3000),\n", + " datetime.time(16, 35, 14, 3000), datetime.time(16, 35, 14, 3000),\n", + " datetime.time(16, 35, 15, 11000), datetime.time(16, 35, 15, 11000),\n", + " datetime.time(16, 35, 15, 11000), datetime.time(16, 35, 15, 11000),\n", + " datetime.time(16, 35, 15, 11000), datetime.time(16, 35, 15, 11000),\n", + " datetime.time(16, 35, 15, 11000), datetime.time(16, 35, 15, 11000),\n", + " datetime.time(16, 35, 15, 11000), datetime.time(16, 35, 15, 11000),\n", + " datetime.time(16, 35, 15, 11000), datetime.time(16, 35, 17, 11000),\n", + " datetime.time(16, 35, 17, 11000), datetime.time(16, 35, 17, 11000),\n", + " datetime.time(16, 35, 17, 11000), datetime.time(16, 35, 19, 11000),\n", + " datetime.time(16, 35, 19, 11000), datetime.time(16, 35, 20, 3000),\n", + " datetime.time(16, 35, 20, 3000), datetime.time(16, 35, 22, 3000),\n", + " datetime.time(16, 35, 22, 3000), datetime.time(16, 35, 22, 3000),\n", + " datetime.time(16, 35, 23, 11000), datetime.time(16, 35, 23, 11000),\n", + " datetime.time(16, 35, 23, 11000), datetime.time(16, 35, 23, 11000),\n", + " datetime.time(16, 35, 25, 11000), datetime.time(16, 35, 25, 11000),\n", + " datetime.time(16, 35, 25, 11000), datetime.time(16, 35, 25, 11000),\n", + " datetime.time(16, 35, 27, 11000), datetime.time(16, 35, 27, 11000),\n", + " datetime.time(16, 35, 27, 11000), datetime.time(16, 35, 27, 11000),\n", + " datetime.time(16, 35, 29, 11000), datetime.time(16, 35, 29, 11000),\n", + " datetime.time(16, 35, 29, 11000), datetime.time(16, 35, 29, 11000),\n", + " datetime.time(16, 35, 29, 11000), datetime.time(16, 35, 30, 3000),\n", + " datetime.time(16, 35, 30, 3000), datetime.time(16, 35, 31, 11000),\n", + " datetime.time(16, 35, 31, 11000), datetime.time(16, 35, 31, 11000),\n", + " datetime.time(16, 35, 31, 11000), datetime.time(16, 35, 33, 11000),\n", + " datetime.time(16, 35, 33, 11000), datetime.time(16, 35, 33, 11000),\n", + " datetime.time(16, 35, 34, 3000), datetime.time(16, 35, 34, 3000),\n", + " datetime.time(16, 35, 35, 11000), datetime.time(16, 35, 35, 11000),\n", + " datetime.time(16, 35, 37, 11000), datetime.time(16, 35, 37, 11000),\n", + " datetime.time(16, 35, 38, 3000), datetime.time(16, 35, 38, 3000),\n", + " datetime.time(16, 35, 39, 11000), datetime.time(16, 35, 39, 11000),\n", + " datetime.time(16, 35, 39, 11000), datetime.time(16, 35, 39, 11000),\n", + " datetime.time(16, 35, 39, 11000), datetime.time(16, 35, 39, 11000),\n", + " datetime.time(16, 35, 39, 11000), datetime.time(16, 35, 39, 11000),\n", + " datetime.time(16, 35, 39, 11000), datetime.time(16, 35, 40, 3000),\n", + " datetime.time(16, 35, 40, 3000), datetime.time(16, 35, 41, 11000),\n", + " datetime.time(16, 35, 41, 11000), datetime.time(16, 35, 41, 11000),\n", + " datetime.time(16, 35, 41, 11000), datetime.time(16, 35, 41, 11000),\n", + " datetime.time(16, 35, 41, 11000), datetime.time(16, 35, 41, 11000),\n", + " datetime.time(16, 35, 41, 11000), datetime.time(16, 35, 42, 3000),\n", + " datetime.time(16, 35, 42, 3000), datetime.time(16, 35, 42, 3000),\n", + " datetime.time(16, 35, 43, 11000), datetime.time(16, 35, 43, 11000),\n", + " datetime.time(16, 35, 43, 11000), datetime.time(16, 35, 44, 3000),\n", + " datetime.time(16, 35, 44, 3000), datetime.time(16, 35, 44, 3000),\n", + " datetime.time(16, 35, 44, 3000), datetime.time(16, 35, 46, 3000),\n", + " datetime.time(16, 35, 46, 3000), datetime.time(16, 35, 49, 11000),\n", + " datetime.time(16, 35, 49, 11000), datetime.time(16, 35, 50, 3000),\n", + " datetime.time(16, 35, 50, 3000), datetime.time(16, 35, 50, 3000),\n", + " datetime.time(16, 35, 50, 3000), datetime.time(16, 35, 53, 11000),\n", + " datetime.time(16, 35, 53, 11000), datetime.time(16, 35, 53, 11000),\n", + " datetime.time(16, 35, 53, 11000), datetime.time(16, 35, 53, 11000),\n", + " datetime.time(16, 35, 54, 3000), datetime.time(16, 35, 54, 3000),\n", + " datetime.time(16, 35, 54, 3000), datetime.time(16, 35, 54, 3000),\n", + " datetime.time(16, 35, 54, 3000), datetime.time(16, 35, 55, 11000),\n", + " datetime.time(16, 35, 55, 11000), datetime.time(16, 35, 57, 11000),\n", + " datetime.time(16, 35, 57, 11000), datetime.time(16, 36, 2, 3000),\n", + " datetime.time(16, 36, 2, 3000), datetime.time(16, 36, 2, 3000),\n", + " datetime.time(16, 36, 2, 3000), datetime.time(16, 36, 4, 3000),\n", + " datetime.time(16, 36, 4, 3000), datetime.time(16, 36, 6, 3000),\n", + " datetime.time(16, 36, 6, 3000), datetime.time(16, 36, 7, 11000),\n", + " datetime.time(16, 36, 7, 11000), datetime.time(16, 36, 7, 11000),\n", + " datetime.time(16, 36, 7, 11000), datetime.time(16, 36, 8, 3000),\n", + " datetime.time(16, 36, 8, 3000), datetime.time(16, 36, 9, 11000),\n", + " datetime.time(16, 36, 9, 11000), datetime.time(16, 36, 9, 11000),\n", + " datetime.time(16, 36, 9, 11000), datetime.time(16, 36, 11, 11000),\n", + " datetime.time(16, 36, 11, 11000), datetime.time(16, 36, 13, 11000),\n", + " datetime.time(16, 36, 13, 11000), datetime.time(16, 36, 15, 11000),\n", + " datetime.time(16, 36, 15, 11000), datetime.time(16, 36, 15, 11000),\n", + " datetime.time(16, 36, 15, 11000), datetime.time(16, 36, 15, 11000),\n", + " datetime.time(16, 36, 15, 11000), datetime.time(16, 36, 15, 11000),\n", + " datetime.time(16, 36, 16, 3000), datetime.time(16, 36, 16, 3000),\n", + " datetime.time(16, 36, 16, 3000), datetime.time(16, 36, 18, 3000),\n", + " datetime.time(16, 36, 18, 3000), datetime.time(16, 36, 18, 3000),\n", + " datetime.time(16, 36, 18, 3000), datetime.time(16, 36, 18, 3000),\n", + " datetime.time(16, 36, 19, 11000), datetime.time(16, 36, 19, 11000),\n", + " datetime.time(16, 36, 20, 3000), datetime.time(16, 36, 20, 3000),\n", + " datetime.time(16, 36, 20, 3000), datetime.time(16, 36, 20, 3000),\n", + " datetime.time(16, 36, 20, 3000), datetime.time(16, 36, 20, 3000),\n", + " datetime.time(16, 36, 20, 3000), datetime.time(16, 36, 20, 3000),\n", + " datetime.time(16, 36, 21, 11000), datetime.time(16, 36, 21, 11000),\n", + " datetime.time(16, 36, 22, 3000), datetime.time(16, 36, 22, 3000),\n", + " datetime.time(16, 36, 22, 3000), datetime.time(16, 36, 22, 3000),\n", + " datetime.time(16, 36, 23, 11000), datetime.time(16, 36, 23, 11000),\n", + " datetime.time(16, 36, 23, 11000), datetime.time(16, 36, 23, 11000),\n", + " datetime.time(16, 36, 23, 11000), datetime.time(16, 36, 26, 3000),\n", + " datetime.time(16, 36, 26, 3000), datetime.time(16, 36, 28, 3000),\n", + " datetime.time(16, 36, 28, 3000), datetime.time(16, 36, 28, 3000),\n", + " datetime.time(16, 36, 28, 3000), datetime.time(16, 36, 28, 3000),\n", + " datetime.time(16, 36, 29, 11000), datetime.time(16, 36, 29, 11000),\n", + " datetime.time(16, 36, 29, 11000), datetime.time(16, 36, 29, 11000),\n", + " datetime.time(16, 36, 31, 11000), datetime.time(16, 36, 31, 11000),\n", + " datetime.time(16, 36, 31, 11000), datetime.time(16, 36, 31, 11000),\n", + " datetime.time(16, 36, 31, 11000), datetime.time(16, 36, 31, 11000),\n", + " datetime.time(16, 36, 31, 11000), datetime.time(16, 36, 31, 11000),\n", + " datetime.time(16, 36, 31, 11000), datetime.time(16, 36, 31, 11000),\n", + " datetime.time(16, 36, 33, 11000), datetime.time(16, 36, 33, 11000),\n", + " datetime.time(16, 36, 35, 11000), datetime.time(16, 36, 35, 11000),\n", + " datetime.time(16, 36, 35, 11000), datetime.time(16, 36, 36, 3000),\n", + " datetime.time(16, 36, 36, 3000), datetime.time(16, 36, 37, 11000),\n", + " datetime.time(16, 36, 37, 11000), datetime.time(16, 36, 37, 11000),\n", + " datetime.time(16, 36, 37, 11000), datetime.time(16, 36, 41, 12000),\n", + " datetime.time(16, 36, 41, 12000), datetime.time(16, 36, 42, 4000),\n", + " datetime.time(16, 36, 42, 4000), datetime.time(16, 36, 42, 4000),\n", + " datetime.time(16, 36, 42, 4000), datetime.time(16, 36, 43, 12000),\n", + " datetime.time(16, 36, 43, 12000), datetime.time(16, 36, 44, 4000),\n", + " datetime.time(16, 36, 44, 4000), datetime.time(16, 36, 45, 12000),\n", + " datetime.time(16, 36, 45, 12000), datetime.time(16, 36, 45, 12000),\n", + " datetime.time(16, 36, 45, 12000), datetime.time(16, 36, 46, 4000),\n", + " datetime.time(16, 36, 46, 4000), datetime.time(16, 36, 46, 4000),\n", + " datetime.time(16, 36, 46, 4000), datetime.time(16, 36, 46, 4000),\n", + " datetime.time(16, 36, 47, 12000), datetime.time(16, 36, 47, 12000),\n", + " datetime.time(16, 36, 52, 4000), datetime.time(16, 36, 52, 4000),\n", + " datetime.time(16, 36, 54, 4000), datetime.time(16, 36, 54, 4000),\n", + " datetime.time(16, 36, 54, 4000), datetime.time(16, 36, 54, 4000),\n", + " datetime.time(16, 36, 58, 4000), datetime.time(16, 36, 58, 4000),\n", + " datetime.time(16, 36, 59, 12000), datetime.time(16, 36, 59, 12000),\n", + " datetime.time(16, 37, 0, 4000), datetime.time(16, 37, 0, 4000),\n", + " datetime.time(16, 37, 2, 4000), datetime.time(16, 37, 2, 4000),\n", + " datetime.time(16, 37, 4, 4000), datetime.time(16, 37, 4, 4000),\n", + " datetime.time(16, 37, 4, 4000), datetime.time(16, 37, 4, 4000),\n", + " datetime.time(16, 37, 4, 4000), datetime.time(16, 37, 4, 4000),\n", + " datetime.time(16, 37, 4, 4000), datetime.time(16, 37, 4, 4000),\n", + " datetime.time(16, 37, 4, 4000), datetime.time(16, 37, 6, 4000),\n", + " datetime.time(16, 37, 6, 4000), datetime.time(16, 37, 6, 4000),\n", + " datetime.time(16, 37, 6, 4000), datetime.time(16, 37, 6, 4000),\n", + " datetime.time(16, 37, 7, 12000), datetime.time(16, 37, 7, 12000),\n", + " datetime.time(16, 37, 9, 12000), datetime.time(16, 37, 9, 12000),\n", + " datetime.time(16, 37, 10, 4000), datetime.time(16, 37, 10, 4000),\n", + " datetime.time(16, 37, 11, 12000), datetime.time(16, 37, 11, 12000),\n", + " datetime.time(16, 37, 11, 12000), datetime.time(16, 37, 14, 4000),\n", + " datetime.time(16, 37, 14, 4000), datetime.time(16, 37, 14, 4000),\n", + " datetime.time(16, 37, 15, 12000), datetime.time(16, 37, 15, 12000),\n", + " datetime.time(16, 37, 15, 12000), datetime.time(16, 37, 15, 12000),\n", + " datetime.time(16, 37, 16, 4000), datetime.time(16, 37, 16, 4000),\n", + " datetime.time(16, 37, 16, 4000), datetime.time(16, 37, 16, 4000),\n", + " datetime.time(16, 37, 16, 4000), datetime.time(16, 37, 16, 4000),\n", + " datetime.time(16, 37, 16, 4000), datetime.time(16, 37, 17, 12000),\n", + " datetime.time(16, 37, 17, 12000), datetime.time(16, 37, 17, 12000),\n", + " datetime.time(16, 37, 19, 12000), datetime.time(16, 37, 19, 12000),\n", + " datetime.time(16, 37, 22, 4000), datetime.time(16, 37, 22, 4000),\n", + " datetime.time(16, 37, 22, 4000), datetime.time(16, 37, 22, 4000),\n", + " datetime.time(16, 37, 24, 4000), datetime.time(16, 37, 24, 4000),\n", + " datetime.time(16, 37, 24, 4000), datetime.time(16, 37, 24, 4000),\n", + " datetime.time(16, 37, 24, 4000), datetime.time(16, 37, 26, 4000),\n", + " datetime.time(16, 37, 26, 4000), datetime.time(16, 37, 27, 12000),\n", + " datetime.time(16, 37, 27, 12000), datetime.time(16, 37, 27, 12000),\n", + " datetime.time(16, 37, 27, 12000), datetime.time(16, 37, 28, 4000),\n", + " datetime.time(16, 37, 28, 4000), datetime.time(16, 37, 30, 4000),\n", + " datetime.time(16, 37, 30, 4000), datetime.time(16, 37, 31, 12000),\n", + " datetime.time(16, 37, 31, 12000), datetime.time(16, 37, 32, 4000),\n", + " datetime.time(16, 37, 32, 4000), datetime.time(16, 37, 32, 4000),\n", + " datetime.time(16, 37, 39, 12000), datetime.time(16, 37, 39, 12000),\n", + " datetime.time(16, 37, 42, 4000), datetime.time(16, 37, 42, 4000),\n", + " datetime.time(16, 37, 43, 12000), datetime.time(16, 37, 43, 12000),\n", + " datetime.time(16, 37, 43, 12000), datetime.time(16, 37, 43, 12000),\n", + " datetime.time(16, 37, 44, 4000), datetime.time(16, 37, 44, 4000),\n", + " datetime.time(16, 37, 44, 4000), datetime.time(16, 37, 44, 4000),\n", + " datetime.time(16, 37, 44, 4000), datetime.time(16, 37, 44, 4000),\n", + " datetime.time(16, 37, 48, 4000), datetime.time(16, 37, 48, 4000),\n", + " datetime.time(16, 37, 48, 4000), datetime.time(16, 37, 48, 4000),\n", + " datetime.time(16, 37, 49, 12000), datetime.time(16, 37, 49, 12000),\n", + " datetime.time(16, 37, 52, 4000), datetime.time(16, 37, 52, 4000),\n", + " datetime.time(16, 37, 53, 12000), datetime.time(16, 37, 53, 12000),\n", + " datetime.time(16, 37, 55, 12000), datetime.time(16, 37, 55, 12000),\n", + " datetime.time(16, 37, 55, 12000), datetime.time(16, 37, 55, 12000),\n", + " datetime.time(16, 37, 57, 12000), datetime.time(16, 37, 57, 12000),\n", + " datetime.time(16, 37, 57, 12000), datetime.time(16, 37, 59, 12000),\n", + " datetime.time(16, 37, 59, 12000)], dtype=object)" + ] + }, + "execution_count": 58, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "time_V300" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Flujo para 300mV: 3.2905027932960893\n" + ] + } + ], + "source": [ + "events_V300, counts_V300, flux_V300, std_V300 = events_counts(time_V300)\n", + "flux[10] = flux_V300\n", + "print(f\"Flujo para 300mV: {flux[10]}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([70.9760479 , 38.09933775, 21.70833333, 14.51330798, 14.33840304,\n", + " 7.0037037 , 5.46715328, 4.88888889, 4.38565022, 3.98636364,\n", + " 3.29050279])" + ] + }, + "execution_count": 60, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "flux" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "voltage = np.arange(50,325,25)" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "fit = interpolate.interp1d(voltage, flux)\n", + "fit_voltage = np.arange(50, 305, 5)\n", + "fit_flux = fit(fit_voltage)" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmMAAAFbCAYAAACZCYkgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABFfUlEQVR4nO3deZgU1dXH8e9h2BdRAScowoAS3KIouEUTB0WjxgV3yMTgilEwyWtiRNG4hWiMhhiVKG6gQXGP+0JUXOIWUFxRAR0QooIICg6gwHn/uDXQND1QPdM91dPz+zxPPd11q7rq9Nx0ON57615zd0REREQkGU2SDkBERESkMVMyJiIiIpIgJWMiIiIiCVIyJiIiIpIgJWMiIiIiCVIyJiIiIpIgJWMisg4zG2tmbmZlScdSrMysLPobj006FhFJlpIxkUYi+od/fdsJScdYCMysvZl9Y2ZLzWyTDZy7pZmtNLN5ZtY8R/dXIizSyDRNOgARqXcX11A+tT6DKFTu/pWZ3QMMBo4H/r6e008i/EftOHf/tj7iE5Hio2RMpJFx94uSjqEBGENIxk6hhmTMzJoAJ6acLyJSK+qmFJFYzKw86j67qIbjlWZWmbK/SVS23Mz6pJ3bxMyeja53/Abuu0d03gPrOWdadJ9No30zs8Fm9pKZzTezZWb2iZk9aWbHbei7uvtLwLvAD8xs9xpOOwDoBkxy9+nRfVuY2XAze9vMqszsazN7wcyO3dA9o887IQkE+DilC7ky5Zw+Zna1mb1pZl9G3226mV1VU7dq1PX6NzObE53/vpmdZWY9ahq3ZmatzexcM5saddsuMbOXzWxQnO8iIvGpZUxE8sLdF0b/cD8P3GVmO7v74ujwhUA5MNbdb9/AdV4xsw+Ag82sg7svSD1uZrsB2wD3ufuXUfFI4FzgY+Bu4CugM7ArcAxwV4yvcCPwN0Lr2KsZjp+Sch7RmLEngX2A94HrgNbA0dH37+3u523gnhcDA4CdgKuBRVH5opRzTgWOAJ4D/k34j+o+wFnAQWa2e8rfGTNrCTwD7AK8AYwH2gMjgB9lCsLMNo4+szPwOnBLdJ+fAHeY2fbufv4GvouIxOXu2rRpawQb4NF2UYbthLRzx0bnlqWUlVd/vobrVwKVGcp/H33uzmi/H7ASeA9oHTP2c6NrDMtw7Lro2KEpZQuAOZmuD3SMec9NgKXAYqBt2rHNgG+BL4AWaTE+BjRNO7cyOvbDlPKyqGzshv72ace7ASUZyk+OPndOWvkF1X9/wFLKtwTmbyCG36eVtwSeAFYBvZP+37Q2bcWyqZtSpPG5MMN2Qh7v9xfCP+ADzexcQsvMcuA4d6+KeY3bCQnA4NTCqDVqIDAPeDztM98Rkr61uPsXcW7o7guBe4G20T1SDQaaAbe5+/Ko7CRCAnOWu69Iuc484NJo9xTqyN1nufs634vQevU1ofUqPdZVwLnu7inX+YTQ8rcWM+sA/ByY7O5XpN17GXAOYMDP6vA1RCSFuilFGhl3t3q+n5vZLwhPa/4pKj7N3d/O4hpzzOxpYH8z287d34sOHQpsCoxKTYAICd+ZwHtmdjehS+9ld/8qy/DHEBKTU4GbUsrTuyjbAVsDc939/QzXeSZ63TnL+6/DzJoBpxESxO0IXY6p/2G9Rcq5GwFbAZ+4e2WGy72YoWxXoASoaXxgs+h122xjF5HMlIyJSN65+3wze56QQCwgtHRlayywP6Gl55yorLqlbFzauf8HfER42nF4tK0ws8eA37r7jJhxv2Bm7wO7mdkP3P1tM/sx8H3gRXefFp3aPnr9tIZLVZdvHOe+G3AXYczYR8CDwGeElkaA3wAtUs7dKHr9vIZrZSrvEL3uGm01aRsjVhGJQd2UIhLXqui1pv+I27imD5rZQEIi9gXhH/v1zd1VkwcI3XA/N7MSM9sMOAh4093fTD3R3Ve6+9/cfSegFDgq+vxhwBNm1oL4boxeT017TZ3OorrF7Xs1XKNz2nm1YmZ9CYnYv4Fe7n6iu5/rYbqSS4D0iWe/jl5La7hkpvLqGEe5u61n61eX7yIiaygZE5G4FkavW6YfMLOtWdM6lOnYGMJg8Z0JT1eeEiVosbn7UsKTkZsD/QljlpqybqtY+ufmufv97n4sobtwK2CHLG49jtDy9HMz+x4hsVsI3JNyj8XATGALM+uZ4RrVicvrMe5XPR6sJMOxraPXh9K6ZQF2A1qlFrj714QWtC1qmNF/7wxlrxES74xPWopI7ikZE5G43ie0tBwetUoBYGatqHli1ObABEKX1mB3n0NIohYAN5jZVlnGMDZ6/UW0rSCMD0u9Zwsz2ytDLM0I48sA4j44gIepNB4gPF15NyHh+Wc0mD3VLYSB7X8xs9WJlJl1JDzRWH3OhlRP3dE1w7HK6LU8tTCqj+tquN5thP+vv8zMLOUzWxK6NdcSPXAwHuhrZhekfpeUz25lZt3X+y1EJDaNGRORWNz9OzO7mpBYvBFNwtqUMI7rf9GW7grCHFh/dffHo+vMtbAO5sOE+bd+6DGXEnL3/5jZDMJcYc2Ah6PkIVUr4MXovCnALMKUDPsTBp0/lDLWK64xhG7WH6Xsp7uS0G16OPBmND6tdRTrZsAV7p5pwHy6p4GzgRvN7D7C1BqL3P1a4L/Af4AjzewlwgD80ui+H1BzHQyI4u9lZk8RWjGPJbRSDmBNF3S1YUBPQtfn8Wb2ImF82eaEv+GuwCDCPG4iUldJz62hTZu2+tmI5hmLee5YMsx1RWj5GU7okvsWmE34x741afOMEZ50dEIC0SzDPf4aHb86y+9xfvV3AY7KcLwZYW6zx6P4lhG6SF8Bfgk0r+Xf78Poni+t55yWwHnAO6yZo+xFYFCGc8vIMMdXdOwsYBqhe9TT/q6bAqOjv/eyqC7+lKkOUj6zMaH18n/RNd8Hfkvo2nTgbxk+05yQlL1EGEe2PPp7Pk1oUeuQ9P+mtWkrls3cV087IyIijYiZnUpo5fulu9+QdDwijZWSMRGRImdmm7v7/9LKuhJa7ToD3dKPi0j90ZgxEZHid1/0AMMUwjqXZcAhhK7Nc5WIiSRLLWMiIkXOzM4AjicMym8PLCEsGn6tu9+fZGwiomRMREREJFGaZ0xEREQkQQ12zFjHjh29rKwsr/f45ptvaNOmTV7vIdlTvRQe1UlhUr0UHtVJ4amvOpkyZcoX7t4p07EGm4yVlZUxefLkvN5j0qRJlJeX5/Uekj3VS+FRnRQm1UvhUZ0UnvqqEzObVdMxdVOKiIiIJEjJmIiIiEiClIyJiIiIJKjBjhkTERGRhuG7775jzpw5LFu2LOlQ1tG+fXumTZuWs+u1bNmSLl260KxZs9ifUTImIiIieTVnzhzatWtHWVkZZpZ0OGtZvHgx7dq1y8m13J0FCxYwZ84cunfvHvtz6qYUERGRvFq2bBkdOnQouEQs18yMDh06ZN0CqGRMRERE8q7YE7FqtfmeSsYyGD8eyspg3333oaws7IuIiEjDVVJSQu/evVdvlZWV/PCHPwSgsrKSO+64I7HYNGYszfjxMGQIVFUBGLNmhX2AiookIxMREZHaatWqFVOnTl2r7KWXXmLx4sWrk7Gf/exnicSmlrE0I0ZUJ2JrVFWFchERESkebdu2BWD48OG88MIL9O7dm1GjRtV7HPXaMmZmvYC7Uop6AH8AbovKy4BK4Fh3X1ifsVWbPTu7chERESl8S5cupXfv3gB0796dBx54YPWxyy+/nCuvvJJHHnkkkdjqNRlz9w+A3gBmVgLMBR4AhgNPu/vlZjY82j+nPmOr1rUrzMqwelTXrvUfi4iISNH5zW8grbuwznr3hr/9bb2nZOqmLBRJdlPuB8x091nA4cC4qHwcMCCpoEaOhNat1y5r3doZOTKZeERERKS4JTmAfyBwZ/S+1N0/jd5/BpQmE9KaQfojRsDsWU5XZjHylM+pqNg9qZBERESKxwZasJLQrl07Fi9enNj9zd3r/6ZmzYH/Adu7++dmtsjdN045vtDdN8nwuSHAEIDS0tI+EyZMyGucS776iv1OP53lnTox9eqr83oviW/JkiWrB11KYVCdFCbVS+FprHXSvn17tt5660Rj6Ny5M59++uk6ZXPmzGHVqlUcccQRfPnll/zsZz9j2LBhdbrXjBkz+Oqrr9Yq69ev3xR375vp/KSSscOBoe5+QLT/AVDu7p+aWWdgkrv3Wt81+vbt65MnT85rnJMmTaJ88mQ4+2x4803Ycce83k/imTRpEuXl5UmHISlUJ4VJ9VJ4GmudTJs2jW233TbpMDLK5XJI1TJ9XzOrMRlLaszYINZ0UQI8BAyO3g8GHqz3iGpy0knQqhVcd13SkYiIiEgRqvdkzMzaAPsD96cUXw7sb2bTgf7RfmHYdNMwkOyf/4SFicy2ISIiIkWs3pMxd//G3Tu4+1cpZQvcfT937+nu/d39y/qOa72GDg0zv44dm3QkIiIiUmQ0A38cvXvD3nuHrspVq5KORkRERIqIkrG4hg2DmTPhiSeSjkRERESKiJKxuI48Ejp3hmuvTToSERERKSJKxuJq1gx++Ut4/HGYMSPpaERERCQLJSUl9O7dm+23356ddtqJq666ilUbGHpUWVnJHXfckffYlIxlY8iQkJSNHp10JCIiIpKF6rUp3333XSZOnMjjjz/OxRdfvN7PKBkrRN/7Hhx9NNxyCyxZknQ0IiIiRWn8eCgrgyZNwuv48bm9/mabbcaYMWO49tprcXcqKyv50Y9+xC677MIuu+zCSy+9BMDw4cN54YUX6N27N6NGjarxvLpKcm3KhmnYMLjzzvC/jNNOSzoaERGRojJ+fOiIqqoK+7NmhX1Ys350LvTo0YOVK1cyf/58OnfuzMSJE2nZsiXTp09n0KBBTJ48mcsvv5wrr7ySRx55BICqqqqM59WVkrFs7bkn7LJLGMg/ZAiYJR2RiIhI0RgxYk0iVq2qKpTnMhlL9d133zFs2DCmTp1KSUkJH374YZ3Oy5aSsWyZhdaxk06C55+HffZJOiIREZGiMXt2duW19dFHH1FSUkKnTp3461//SmlpKW+++SarVq2iZcuWGT8zatSoWOdlS2PGamPgwLBMkqa5EBERyamuXbMrr4358+fzy1/+kmHDhmFmfPXVV3Tu3JkmTZpw++23s3LlSgDatWvH4sWLV3+upvPqSslYbbRqBaecAg88AJ98knQ0IiIiRWPkSGjdeu2y1q1DeV0sXbp09dQW/fv354ADDuDCCy8E4IwzzmDcuHHstNNOvP/++7Rp0waAHXfckZKSEnbaaSdGjRpV43l1pW7K2jr9dLjySrjhBvjjH5OORkREpChUjwsbMSJ0TXbtGhKxuo4XW18rVs+ePXnrrbdW7//5z38GoFmzZjzzzDNrnZvpvLpSy1htlZXBoYfCmDGwfHnS0YiIiBSNigqorAzLQVdW5m/gfqFQMlYXw4bB/Plwzz1JRyIiIiINlJKxuthvP+jVSwP5RUREpNaUjNVF9TQXr74K//1v0tGIiIgULHdPOoR6UZvvqWSsrgYPhnbt1DomIiJSg5YtW7JgwYKiT8jcnQULFmQ9/5iepqyrdu1CQjZmTHi6slOnpCMSEREpKF26dGHOnDnMnz8/6VDWsWzZspxN3goh8ezSpUtWn1EylgtDh4aWsZtugnPPTToaERGRgtKsWTO6d++edBgZTZo0iZ133jnRGNRNmQvbbAP9+8M//gErViQdjYiIiDQgSsZyZdiwMBv/Qw8lHYmIiIg0IErGcuWQQ6BbNw3kFxERkawoGcuVkhI44wx49ll4992koxEREZEGQslYLp18MrRsCdddl3QkIiIi0kDU+DSlmc2rxfUc6O/ub9c+pAasQwcYNAhuuw0uuwzat086IhERESlw65vaoiNwMzAn5rVKgBFAs7oG1aANGwa33gpjx8Kvf510NCIiIlLgNjTP2I3u/lqcC5lZCXB+3UNq4HbZBfbcM3RVnnkmNFFPsIiIiNRsfZlCP+C9uBdy95XRZz6oa1AN3plnwvTpMHFi0pGIiIhIgasxGXP359x9STYXiz7zzfrOMbONzexeM3vfzKaZ2Z5mtqmZTTSz6dHrJtnct+AcdRSUlsI11yQdiYiIiBS4JPrQrgaecPdtgJ2AacBw4Gl37wk8He03XM2bw2mnwWOPwcyZSUcjIiIiBazGZMzMPjazj+JucW5mZu2BHxMeDMDdv3X3RcDhwLjotHHAgLp8qYJw2mlh7rF//CPpSERERKSAmbtnPmB2JWGqimoDgdbARGAesBmwP/ANMMHdf7/Bm5n1BsYQxqLtBEwBfg3MdfeNo3MMWFi9n/b5IcAQgNLS0j4TJkyI8RVrb8mSJbRt27bWn9/u4ovZZPJkXr7nHlblcEX4xq6u9SK5pzopTKqXwqM6KTz1VSf9+vWb4u59Mx2r8WlKd/9d9XszOw+YCfw0dUyYmbUFHgG+jhlLU2AX4Ex3f9XMriatS9Ld3cwyZojuPoaQzNG3b18vLy+PedvamTRpEnW6R9Om8KMf8eM5c+CUU3IWV2NX53qRnFOdFCbVS+FRnRSeQqiTuGPGhgJ/SR+cHw3wvzI6HsccYI67vxrt30tIzj43s84A0WttJpwtPHvtBTvtFAby19ACKSIiIo1b3GRsI6C0hmPfA2K177n7Z8AnZtYrKtqP0GX5EDA4KhsMPBgzrsJmFiaBfestePHFpKMRERGRAhQ3GXsY+IuZHW1mzQHMrLmZHQP8OToe15nAeDN7C+gN/Am4HNjfzKYD/aP94vCzn8HGG8O11yYdiYiIiBSgDc3AX+10YCxwN+BmthhoBxihVev0uDd096lApgFs+8W9RoPSunVYQPzqq2HuXNhii6QjEhERkQISq2XM3b9y9yOAHYCTgMui1x3cfYC7f5XHGBu+M86AlSvhhhuSjkREREQKTNyWMQDc/T2yWCJJIj16wE9/GpKxESOgRYukIxIREZECkVUyZmbfB7oA60ya5e6P5SqoojRsGBx4INx7L1RUJB2NiIiIFIhYyZiZbQdMALYnjBNL50BJDuMqPvvvDz17wnXXKRkTERGR1eI+TXkD0AI4EugFdE/beuQlumLSpAkMHQovvwxTpiQdjYiIiBSIuMnYzsBv3f1Bd5/u7rPSt3wGWTROOAHatNE0FyIiIrJa3GRsJhnGiUmW2reHX/wC7rwTvvgi6WhERESkAMRNxn4LnGdm6o6sq6FDYflyuPnmpCMRERGRAhA3GbsM2AJ438w+NLPX0rc8xlhctt8e+vWD0aPD3GMiIiLSqMWd2uKdaJNcGDYMjjoKHnkEDj886WhEREQkQbGSMXc/Md+BNCqHHQZbbgnXXKNkTEREpJGL2025mpl1MLOeZtYhHwE1Ck2bwumnw9NPw7RpSUcjIiIiCYqdjJnZcWY2DZgHvA/MM7NpZnZM3qIrZqecAs2bh0lgRUREpNGKlYyZ2SDgTuAj4ETg4Oj1I2CCmQ3MW4TFqlMnGDgQxo2Dr79OOhoRERFJSNyWsRHAGHf/qbvf5u5PRq8/BW4Ezs9fiEVs2DBYsgRuuy3pSERERCQhcZOxrYH7ajh2X3RcsrXrrrDbbmFG/lWrko5GREREEhA3Gfsc6FvDsb7RcamNM8+EDz4Ig/lFRESk0YmbjN0KXGRm55vZNma2iZn1MrPzgQuBW/IXYpE75pgwfkzrVYqIiDRKcSd9vQRoBgwHLk4pXwpcGR2X2mjRAoYMgT/9CSoroaws6YhERESkHsVqGXP3Ve4+AtgSKAcGRa9buvv57u55i7AxOO00aNIE/vGPpCMRERGRepbVpK/uvtDdX3D3u6PXhfkKrFHZcksYMABuugmWLk06GhEREalHcecZG2lmN9Rw7HozuzS3YTVCZ54JX34Jd96ZdCQiIiJSj+K2jA0CXqjh2AvAz3ITTiP24x/DDjuE9SrV6ysiItJoxE3GNgfm1nDsf9FxqQuzMAns1Knw8stJRyMiIiL1JG4y9hmwSw3HdgHm5yacRq6iAtq31zQXIiIijUjcZOxu4A9m9tPUQjM7GLgAmJDrwBqltm3hxBPhnnvg00+TjkZERETqQdxk7A/Aq8DDZjbfzN4ys/nAw8DLhIRMcuGMM2DFChgzJulIREREpB7EnWdsmbsfABwE3ExIzG4GDnT3g9x9edwbmlmlmb1tZlPNbHJUtqmZTTSz6dHrJrX4LsWhZ0846CC4/nr49tukoxEREZE8y3aesSfdfbi7nxq9Tqzlffu5e293r17vcjjwtLv3BJ6O9huvYcPgs8/ggQeSjkRERETyLHYyZmYtzOx0M7vZzJ40s55R+XFmtm0d4zgcGBe9HwcMqOP1GrYDD4QePTSQX0REpBGIO+nr94EPgcuAMqA/0C46/CPg3Czu6cBTZjbFzIZEZaXuXj1i/TOgNIvrFZ8mTWDoUHjxxTDVhYiIiBQti7OspJk9AbQBDgWWAN8Cfd39dTM7Bvizu/eIdUOzLdx9rpltBkwEzgQecveNU85Z6O7rjBuLkrchAKWlpX0mTMjvQ5xLliyhbdu2eb1HTZouXsyexx7LvH335YOzz04khkKVZL1IZqqTwqR6KTyqk8JTX3XSr1+/KSnDs9bSNOY1fgQc4+6LzKwk7djnQOe4wbj73Oh1npk9AOwGfG5mnd39UzPrDMyr4bNjgDEAffv29fLy8ri3rZVJkyaR73us1y9+QefbbqPz7bfDppsmF0eBSbxeZB2qk8Kkeik8qpPCUwh1EnfM2DKgVQ3HtgAWxbmImbUxs3bV74EDgHeAh4DB0WmDgQdjxlXchg6FZcvglluSjkRERETyJG4yNhE4z8zap5S5mbUgdDM+FvM6pcCLZvYm8BrwqLs/AVwO7G9m0wnj0S6Peb3ituOOYc3K0aNh5cqkoxEREZE8iNtNeTbwH2AGITFzwkSw2wPNgSPjXMTdPwJ2ylC+ANgvZiyNy7BhcOyx8PjjcMghSUcjIiIiORZ30tdPCEnU9YSnKWcSxondA/Rx98/yFWCjN2AAbLEFXHNN0pGIiIhIHsSeZ8zdF7r7Be7+Q3f/vrvv4e4jolYtyZdmzeCXv4SnnoIPPkg6GhEREcmxuPOMNY3Gh6WWHWBmvzGzXfITmqx26qkhKRs9OulIREREJMfitozdBfyjesfMfgU8QZgE9hUz02CmfCotDePGxo6FxYuTjkZERERyKG4ytgdrPzF5NnCVu7cCbgJG5DowSTNsGHz9Nfzzn0lHIiIiIjkUNxnrQFimCDP7AbA5YTA/hEH82+U+NFnL7rtDnz5hvcoYqyaIiIhIwxA3Gfuc8BQlwIHALHefGe23AlblOC5JZwZnngnvvQfPPpt0NCIiIpIjcZOxe4A/m9lfgHOA21KO7QxMz3VgksFxx0GHDqF1TERERIpC3GRsOHADsA1hIP+fUo71IQzwl3xr2TI8WfnggzB7dtLRiIiISA7EnfR1hbtf4u6HRnONfZty7Eh3vyp/IcpafvnL8Hr99es/T0RERBqE2JO+SoHo1g0OOwxuvDEsIi4iIiINmpKxhujMM+GLL+Au9Q6LiIg0dErGGqJ+/WDbbcN6lZrmQkREpEFTMtYQmYVJYKdMgddeSzoaERERqYMNJmNm1tLMbjSzPeojIInp+OOhXbvQOiYiIiIN1gaTMXdfBgwEWuY/HImtXTs44QS45x74/POkoxEREZFaittN+QzQL5+BSC0MHQrffhuerBQREZEGqWnM864DbjKzNoQFwz8H1ho57u7v5Tg22ZBeveCAA8KcY+ecA82aJR2RiIiIZCluy9gTQBfgLODfwFvA29H2TvQqSRg2DObODbPyi4iISIMTt2VMXZSF6uCDoawsrFd59NFJRyMiIiJZipWMuftz+Q5EaqmkBM44A37/e3jrLdhxx6QjEhERkSxkNc+YmR1kZheY2Rgz6xqV/djMNs9PeBLLySeHRcSvuy7pSERERCRLsZIxMys1s1eBh4HBwMlAx+jwicAF+QlPYtl0U6iogH/+ExYuTDoaERERyULclrFrgLbANtFmKcf+DeyX47gkW0OHQlUVjB2bdCQiIiKShbjJ2IHA+e4+g7QpLYA5wBY5jUqyt/POsNdeoaty1aqkoxEREZGYshkztqKG8o7A0hzEInV15pkwcyY88UTSkYiIiEhMcZOxF4BfmVlJSll1C9lJhBn6JWlHHAGdO4dpLkRERKRBiJuMnQPsSpjg9VJCInaqmT0H7Amcn5/wJCvNm8Npp8Hjj8OMGUlHIyIiIjHESsbc/R2gDzAZOAFYCRxJGC+2u7t/mM1NzazEzN4ws0ei/e5m9qqZzTCzu8yseTbXkxRDhkDTpjB6dNKRiIiISAyxx4y5+0x3P97dN3f35u7+PXevcPfptbjvr4FpKft/Bka5+9bAQsLUGVIbnTvDMcfALbfAN98kHY2IiIhsQFaTvgKYWRcz29XMavUEpZl1AX4K3BTtG7AvcG90yjhgQG2uLZFhw+Crr8K8YyIiIlLQzD19pooaTjQ7HTgP2Jwwz5gDnwJ/cvfYfWJmdi9wGdAO+B2h2/OVqFUMM9sSeNzdd8jw2SHAEIDS0tI+EyZMiHvbWlmyZAlt27bN6z3ywp0+p52GrVjB5JtvBrMNf6YBabD1UsRUJ4VJ9VJ4VCeFp77qpF+/flPcvW+mY7HWpjSzPwAXAjcD9wPzgM2Ao4C/m1lHd78kxnUOAea5+xQzK48X/hruPgYYA9C3b18vL8/6ElmZNGkS+b5H3gwfDiefTHmTJrDPPklHk1MNul6KlOqkMKleCo/qpPAUQp3E7aYcSmgBG+LuT7j769HrqcDl0fE49gIOM7NKYAKhe/JqYGMzq04MuwBzY38DyWzQoLBMkqa5EBERKWhxk7FWwPM1HHsOaBnnIu5+rrt3cfcyYCDwjLtXAM8CR0enDQYejBmX1KRVKzjlFHjgAZgzJ+loREREpAZxk7F/EaayyOQo4JE6xnEOcJaZzQA6ELpDpa5OP53xK4+jbPs2NGkCZWUwfnzSQYmIiEiqWGPGgMeBK8ysjJCYVY8ZOwLYHvi9mR1cfbK7P7ahC7r7JGBS9P4jYLf4YUsc4/9TxpCSm6n6OjRczpoVpiEDqKhIMDARERFZLW4yVt2esgXwk/Uch/CUZUmGc6SejRgBVSvX7kGuqgrlSsZEREQKQ9xkrHteo5C8mD07u3IRERGpf7GSMXefle9AJPe6dg1dk5nKRUREpDBkPQO/NBwjR0Lr1muXtS5ZxshLVyUTkIiIiKxDyVgRq6iAMWOgW7cwCX+3Tb5mzMqTqJh6dtKhiYiISETJWJGrqIDKSli1Ciq/3IiKYR3gr38NWZqIiIgkLu4AfikWo0bBzJlwxhnQowf07590RCIiIo2aWsYam6ZNYcIE2HZbOPpomDYt6YhEREQatVjJmJkdZWYnp+x3N7OXzGyRmd1nZhvnLULJvY02gkcegRYt4JBD4Isvko5IRESk0YrbMnY+sFHK/jVAR8Ii4bsAI3Mcl+Rbt27w4IMwdy4ccQQsX550RCIiIo1S3GSsB/A2gJm1Bw4A/s/dLwdGAIfmJzzJqz32gHHj4MUXw6Li7klHJCIi0uhkM4C/+l/qfYCVwL+j/TlAp1wGJfXouONg+nS44ALo1QvOPz/piERERBqVuC1jbwIVZtYGOAV41t2r+7W6EhYOl4ZqxAg4/viQkN11V9LRiIiINCpxW8bOAx4GBgNLgP1Tjg0AXs1tWFKvzODGG+Hjj+GEE6CsDHbfPemoREREGoVYLWPu/iKhBWw3oJu7v5Zy+BbCAH9pyFq0gAcegM03h8MOy7yopYiIiORc7HnG3H2xu09x90Vp5Y+5+4c5j0zqX8eO8Oij4cnKQw6Br79OOiIREZGiF3sAv5ltDhwCdAFaph12dz8nl4FJQrbZBu69Fw48EAYOhIceChPFioiISF7E+lfWzI4A7gRKCIP1v007xQElY8Wif38YPRpOOw3OOgv+/vekIxIRESlacZs8/gQ8BZzg7l/mMR4pFEOGwAcfhEXFe/WCoUOTjkhERKQoxU3GtgTOVCLWyFxxBcyYAb/6FWy1Vei6FBERkZyKO4D/JaBXPgORAlRSAuPHw447wrHHwjvvJB2RiIhI0YmbjJ0FDDGzwWa2uZm1Tt/yGaQkqG1bePjh8HrIIfD550lHJCIiUlTiJmNvAT8AbgU+ARZn2KRYdekSnqqcNw8GDIClS5OOSEREpGjEHTN2EmvWppTGqG9f+Oc/4aij4KST4I47wsz9IiIiUiexkjF3H5vnOKQhOPJIuOwyOPdc+P734eKLk45IRESkwctqNs9o4tc9gU2BL4GX3f1/+QhMCtQ558CHH8Ill4SErKIi6YhEREQatLiTvpYA1wCnEiZ+rbbSzMYQpr1YlYf4pNCYwfXXw0cfhe7KsjLYa6+koxIREWmw4g7gv5gwbuw8oAxoFb2eF5VfFOciZtbSzF4zszfN7F0zuzgq725mr5rZDDO7y8yaZ/c1pF41bw733w/duoUB/R99lHREIiIiDVbcZOwXwPnu/hd3n+3uy6PXvwAXACfEvM5yYF933wnoDRxoZnsAfwZGufvWwELg5Gy+hCRg003DouIrV4YpLxYtSjoiERGRBiluMrYZYXqLTN6Kjm+QB0ui3WbR5sC+wL1R+ThgQMy4JEk9e4YWshkzwqSw332XdEQiIiINTtxk7ENgYA3HBgIfxL2hmZWY2VTCguMTgZnAIndfEZ0yB9gi7vUkYeXlcMMNMHFiWDbJNQOKiIhINuI+TflHYIKZdSW0YH1OaA07BuhHzYnaOtx9JdDbzDYGHgC2iftZMxsCDAEoLS1l0qRJcT9aK0uWLMn7PYpC9+70GDSIrtdfz4ySEuYcfXReb6d6KTyqk8Kkeik8qpPCUwh1EneesbvNbBFhIP/VhO7F74ApwIHuPjHbG7v7IjN7ljBVxsZm1jRqHesCzK3hM2OAMQB9+/b18vLybG+blUmTJpHvexSNH/8Yli9n69Gj2fonP4FDD83brVQvhUd1UphUL4VHdVJ4CqFO4nZT4u5PufuehCcpvwe0cvcfZpOImVmnqEUMM2sF7A9MA54FqptTBgMPxr2mFIgmTeD222GXXWDQIJg6NemIREREGoTYyVg1d1/l7vNqOa9YZ+BZM3sL+C8w0d0fAc4BzjKzGUAH4OZaXFuS1rp1WMNyk01Cy9innyYdkYiISMGLO+nr3Rs6x92PjXHOW8DOGco/AnaLE4sUuM03h4cfhr33hsMOg+eeC0maiIiIZBS3ZaxThu37wGHAXkDHvEQnDVPv3nDnnTBlChx/PKzS4gwiIiI1iZWMuXu/DFtvoCfwKTAqn0FKA3TooXDllWEeshEjko5GRESkYGU9ZiyVu38CXAZckZtwpKj83//BkCFw+eVw661JRyMiIlKQ6pSMRVYSpqMQWZsZXHst9O8Pp50Wxo+JiIjIWuIO4N8uQ3FzYFvgUsKTkSLratYM7rkH9twTjjwSXnklLKMkIiIiQPwZ+N8hrCGZzoDJwCk5i0iKz8YbwyOPwO67w09/GhKyTTdNOioREZGCEDcZ65ehbBkwx90zzpYvspattoJ//Qv22w+OOgqefBKaN086KhERkcTFXQ5Jg32k7vbeG26+OUx3cfrpcNNNYVyZiIhIIxa3ZQwAM2sJbA60TD/m7u/lKigpYj//OXz4IVx6KfTqBb//fdIRiYiIJCruAP4uhAW6f5LpMGE8WUkO45JidvHFISEbPjwM5j/iiKQjEhERSUzclrHbgR7AMGAG8G3eIpLiZxbmHZs1Cyoq4IUXoE+fpKMSERFJRNxkrC9Q4e4P5TMYaURatQoD+nffPczW/9pr0EXT1YmISOMTd9LX9wCt9iy5VVoaprxYsiQkZEuWJB2RiIhIvYubjJ0JnGNme+UzGGmEdtgB7roL3nordFmuXJl0RCIiIvUqbjI2FXgNeN7MlprZvPQtfyFK0TvoILj6anjoITjnnKSjERERqVdxx4zdBBwD3IsG8Es+DBsGH3wAV10Vprw49dSkIxIREakXcZOxI4D/c/fr8xmMNHKjRsHMmXDGGdCjR5itX0REpMjF7aacD8zOZyAiNG0KEybANtuEJZPefz/piERERPIubjJ2CfA7M2ubz2BE2Gij8IRlixZhUfEvvkg6IhERkbyK2035U6AnMNvMJgOL0o67ux+Xy8CkEevWDR58EMrLw+z8//53SM5ERESKUNyWsY6EgftvAs2ATmnbZnmJThqvPfaAcePgxRfDYH73pCMSERHJi1gtY+7eL9+BiKzjuOPCGpZ/+EN4wnLEiKQjEhERybm4LWMiyTj/fPj5z+H88xl/5suUlcG+++5DWRmMH590cCIiInVXYzJmZr8ys6y6H6PPdKx7WCIRM7jpJsb3vJAh1+7IrFngbsyaBUOGKCETEZGGb30tY6OAbnEvZGYl0We61jUokbW0aMGIpRdQRZu1iquq1HMpIiIN3/rGjBlwmZl9GfNaloN4RDKaPbckc7lmvxMRkQZufcnY80AJ4WnJuJ4HFtcpIpEMunaFWbMylLeaDzO+gq23rv+gREREcqDGZMzdy+sxDpH1GjkyjBGrqlpT1rrpt4z87mzY5p9w4olwwQUhaxMREWlA6vVpSjPb0syeNbP3zOxdM/t1VL6pmU00s+nR6yb1GZcUvooKGDMmzAdr5nTrBmPGNqdi9uVhLcvbboOePeHXv4bPPks6XBERkdjqe2qLFcBv3X07YA9gqJltBwwHnnb3nsDT0b7IWioqoLISnnnmOSorwz7f+x78/e8wfTr84hdw3XWw1VYwfDgsWJBwxCIiIhtWr8mYu3/q7q9H7xcD04AtgMOBcdFp44AB9RmXFIGuXeHGG8Pi4kccAVdcAT16wMUXw9dfJx2diIhIjcwTWmbGzMoIA/53AGa7+8ZRuQELq/fTPjMEGAJQWlraZ8KECXmNccmSJbRtq7XRC02cemn98cd0v/VWOr3wAt9ttBGzBw5k7oABrGrVqp6ibFz0WylMqpfCozopPPVVJ/369Zvi7n0zHUskGTOztsBzwEh3v9/MFqUmX2a20N3XO26sb9++Pnny5LzGOWnSJMrLy/N6D8leVvUyZUoY2P/441BaGiYmGzJEC4/nmH4rhUn1UnhUJ4WnvurEzGpMxmJ1U5pZ/w0cH5pFMM2A+4Dx7n5/VPy5mXWOjncG5sW9nsh69ekDjz0GL7wA22wDv/pVGOh/003w3XdJRyciIhJ7zNhTZnatma3Vx2NmXc3saeCqOBeJuiBvBqa5+19TDj0EDI7eDwYejBmXSDx77w3PPgsTJ0LnznDqqbDddnDHHbByZdLRiYhIIxY3GTsm2t4ysx8CmNkpwNtAR2D3mNfZCzge2NfMpkbbwcDlwP5mNh3oH+2L5JYZ9O8Pr7wCDz0ErVuHRzJ32gnuvx8SGj8pIiKNW6xkzN3vA35ASL6eM7M3gNHANUBfd38z5nVedHdz9x3dvXe0PebuC9x9P3fv6e793T3uEkwi2TODQw+FN96ACRNgxQo46ijYdVd44gklZSIiUq9iT23h7vOA+wlzhe0EvAfc6O4aeCMNU5MmcNxx8M47MHZsmJfsoIPgxz+G555LOjoREWkk4g7g72hm9wG3An8H+hCSsrei7kqRhqtpUxg8GD74AEaPho8+gvJy2H9/ePXVpKMTEZEiF7dl7D1CN+U+7n6Ou79BGCd2FXCdmT2WrwBF6k3z5nD66TBjBlx1FUydCnvsAYcdBm/G6okXERHJWtxk7G6gt7u/VF3g7ivd/RLCskZb5CM4kUS0agVnnRVayP74R3j+eejdO3Rpvv9+0tGJiEiRiTuAf5i7V9Vw7A0g4yRmIg1au3ZhktiPPw6vjz4K228PJ54YykRERHIg7pix1uvbgGZ5jlMkOZtsElrIPv4YfvMbuPNO+P73Q5fm3LlJRyciIg1c3G7KJcDiDWwixa1TpzCWbObMMGnszTfDVluFLs15WjRCRERqJ24ydlKG7bfAU8Ac4LS8RCdSiLbYIjx1+cEHMGgQXH019OgRujIXLkw6OhERaWDijhkb6+7j0ra/uftBwGPA9vkNU6QAde8Ot94K770HhxwCf/pTKPvjH2GxGotFRCSe2JO+rsd9wC9ycB2RhqlXrzCT/5tvwj77wAUXhJayq66CpUuTjk5ERApcLpKxXYHlObiOSMO2447w4INhotidd4bf/S6MKRs9Gr79NunoRESkQMV9mvKKDNvfzOxJ4FLgjvyGKdKA7LYbPPUUTJoUWsiGDg2tZ2PHwooVjB8PZWVhNaayMhg/PtlwRUQkWXFbxo7JsP0k+vyvgOF5iU6kIdtnH3jhBXj8cejQAU48kfFbnsOQk1Ywa1ZYj3zWLBgypOEmZNWJ5b777qPEUkSklprGOcndu+c7EJGiZAYHHgg/+Qn861+MOG53qr5b+2dXVQUjfruMiu6vh3UyS0rWbOn7NZWlljdpEu6bZ+PHh0SyqgrAVieWABUVeb+9iEjRiJWMiUgdmcERRzB7hWc8PPvz5rDXXrm7X5MmG07sst1PKx/x5A1ULd1srdtWVYUZPpSMiYjEV2MyZmZnZHEdd/d/5CAekaLWtWtoQVqnfLPlcNsTsHLlmm3FirX3M5Wl7md7fjbX+/bbdcpmL+2Y8TvOnu1A/lvmRESKxfpaxq7N4joOKBkT2YCRI1O79oLWrWHkX1uFrswGpGsZmRNLmwOjH4ZTToHmzes9LhGRhqbGAfzu3iSLraQ+gxZpqCoqYMwY6NYt9Fx26xb2G2K33siRIZFM1brFSkZufUt4gnTbbeGf/wwtaSIiUqNczDMmIlmoqIDKSli1Krw2xEQM0hNLD4nlzSVUvP8HePRRaNcOjj8eeveGhx8Oj4+KiMg6akzGzOwpM+uVVravmbXJf1gi0hBUJ5bPPPPcmsTSDA4+GF5/He68E5Ytg8MOCw8oPPdcwhGLiBSe9bWM9QfaV++YWQkwEehV4ydERKo1aQIDB4a1O2+4IQwwKy8PU328/nrS0YmIFIxsuyn1iJSIZKdZs/DUwowZ8Je/wH//C336wLHHwgcfJB2diEjiNGZMROpHq1Zhvc6PPgqLqT/2GGy/fXjq8pNPko5ORCQxG0rGMo241ShcEam99u3hkktCUjZ0KNx+O/TsCb/9LXzxRdLRiYjUuw0lY0+a2Twzmwd8GpU9XV2WuuU5ThEpNpttBldfDR9+CIMGwd/+FhZWv/hiWLw46ehEROrN+iZ9vbjeohCRxqtbN7j1Vjj77NB9edFFcO21cN55cPrp0LJl0hGKiORVjcmYuysZE5H6s912cN99YYD/eefBWWfBqFFw4YUweHBYE1NEpAjV6wB+M7sl6tZ8J6VsUzObaGbTo9dN6jMmESkwu+4KEyfCv/8NnTuHAf477AD33quJY0WkKNX305RjgQPTyoYDT7t7T+DpaF9EGrv99oNXXoH77w9zlh1zTEjUnnpKSZmIFJV6Tcbc/Xngy7Tiw4Fx0ftxwID6jElECpgZHHEEvP02jB0L8+eHBdX33TckaiIiRaAQ5hkrdffqJzU/A0qTDEZEClBJSRg39uGH4QnMd9+FPfeEAQPgnXc2+HERkUJmXs/N/WZWBjzi7jtE+4vcfeOU4wvdPeO4MTMbAgwBKC0t7TNhwoS8xrpkyRLatm2b13tI9lQvhae+66Rk6VK63HsvW951FyVVVXzevz+VJ57Iss6d6y2GhkC/lcKjOik89VUn/fr1m+LufTMdK4Rk7AOg3N0/NbPOwCR33+D6l3379vXJkyfnNdZJkyZRXl6e13tI9lQvhSexOlmwAP78Z7jmGli5Miy7dP758L3v1X8sBUi/lcKjOik89VUnZlZjMlYI3ZQPAYOj94OBBxOMRUQakg4d4IorwrqXJ50E118PW20VpsZYtCjp6EREYqnvqS3uBF4GepnZHDM7Gbgc2N/MpgP9o30Rkfi22CIkYtOmwWGHwWWXQffucPnlUFWVdHQiIutV309TDnL3zu7ezN27uPvN7r7A3fdz957u3t/d05+2FBGJp2dPuPNOeOMN+OEP4dxzQ0vZ6NHw7bdJRyciklEhdFOKiORW797w6KPw/POw9dZhQfJtt4Xx42HVqqSjExFZi5IxESleP/pRSMgefRTatYOf/zwkag8/rIljRaRgKBkTkeJmBgcfDK+/DnfcEcaQHXYY7L03PPdc0tGJiCgZE5FGokkTGDQoDPK//nqorITycjjwQHj9dcaPh7KycFpZWejRFBGpD0rGRKRxadYMTjstTIdxxRXw2muM73MlQwYvY9as0Hs5a1aYskwJmYjUByVjItI4tWoFZ58NH3/MiPbXUbWy5VqHq6pgxLCvQtfmCy/Axx/D8uUJBSsixaxp0gGIiCSqfXtmf5350OxF7aCiYu3CzTaDLbeELl3Clvq+emvRIv9xi0jRUDImIo1e166ha3Kd8i2BJ9+DTz6BOXPWbJ98AjNnhgcAMs3036nTuolaetLWsuW6nxORRknJmIg0eiNHhjFiqZP1t24NIy9rEuYn23bbmj+8ZMm6iVr1+48/DlNrZErYOnasOVnbcsuwqkCrVrX6PuPHw4gRMHv2PnTtGr5fegOfiBQOJWMi0uhVJyohgSG7BKZtW9hmm7DV5JtvYO7ctRO16vezZ8NLL4VFz9N16LBui1r6fuvWa31k/PjUxNJWP4yQ+j1FpLAoGRMRISQqeUtW2rSB738/bDWpqgoJW3rrWvX+K6/AF1+s+7lNN10rURsx4XKqqjZe59Ijhq+k4rCqkLyVlOT2+4lInSgZExEpBK1bh7U1e/as+ZylS9ckbOlJ2yefwH//y+yvRmf86Ow5BhttFHZatgz3a9MmbNm8j3M8R8nemu7WLFsrRRoYJWMiIg1Fq1Zhrc2tt67xlK5dVzHrkwzlmyyB8/4Sukyrt6qqtd8vWBAyn/TybLVoUbeErk0bxr/cnSGjtqVqWUjsZs2CIac6rFhBxS+ahpUVGhCN45P1UTImIlJERl7WJPPDCNdsBBW/y/6C7qFFLjV5S0/W4r5fuDC04qVfK8M6oSP4mCrWbmGrWmqMOGEuFSf2CIlp69bhtXpL3c/0Pu756ft1bOnTOD7ZECVjIiJFZO2HEZyuXa1urTBmITFJe1AgZ9xh2bJ1ErfZu3WDDGu5z6Zb+HJLl4Zzly5d9/2iRWvvVx9fubJ2MTZrVvtErlUrRlxyElVV7da6ZFUVjPjdcip2/DC0JLZoEbqPq9+3aBHW5ipA6j7OPSVjIiJFpvphhEmTnqO8vDzpcNbPbE3i0rHj6uIa537rZnDppbW713ffrZu41XX/66/hs88yH4vM5syM4cz+rBnsuGPN8TZrtnaSlpqsra8sm+NxPtu8+epu4bVb+VArX44oGRMRkYJT49xvI+tw0WbNwlb9IEM+uYfls6qq6LrjKmbNXbeVq2unZfCPe0PL4PLlYat+n6ks0/EFC9Ycy3TuqlW5+T5RojZiyTtUrdpyrUNVVTBiyHwqnj0X2rUL0720a7f2VlNZgk/2FtI4PiVjIiJScOo091shMAstSy1bMvLPNSSWo1rDUUflN44VK7JL7jZw3uyru2S8zeyqDvD447B4cZgIOcM4wIxatYqfuG2oLIvkrtDG8SkZExGRgpTXud/qUc7H8WWjadOwtWmTk8t1/VdN3cdNoHJu2Fm1KmQ5ixevSc6q38cpmzcvLDeWWh5X69aZE7e05G3ENb+lqqr9Wh+tqgp1pGRMRESkCDWocXzrEav7uEmTkPi0bQudO9f9punJXU3JXKbyJUvg889hxoy1ymZzUcZbzZ5d93BrQ8mYiIiIxJJI93EekruuZWSej69r3S9fG4X53KyIiIgUpIoKqKwMDVaVlQ2wK7lJE0Ze1mSd2Vrq/IBIXUJK5rYiIiIiyaiogDFjoFs3MHO6dQv7SSWWSsZERESk0alu4XvmmecSb+FTMiYiIiKSICVjIiIiIglSMiYiIiKSICVjIiIiIgkqmGTMzA40sw/MbIaZDU86HhEREZH6UBDJmJmVANcBBwHbAYPMbLtkoxIRERHJv4JIxoDdgBnu/pG7fwtMAA5POCYRERGRvDOPu7J6PoMwOxo40N1PifaPB3Z392Fp5w0BhgCUlpb2mTBhQl7jWrJkCW3bts3rPSR7qpfCozopTKqXwqM6KTz1VSf9+vWb4u59Mx1rUGtTuvsYYAyAmc3v169fhrXjc6oj8EWe7yHZU70UHtVJYVK9FB7VSeGprzrpVtOBQknG5gJbpux3icpq5O6d8hoRYGaTa8piJTmql8KjOilMqpfCozopPIVQJ4UyZuy/QE8z625mzYGBwEMJxyQiIiKSdwXRMubuK8xsGPAkUALc4u7vJhyWiIiISN4VRDIG4O6PAY8lHUeaMUkHIBmpXgqP6qQwqV4Kj+qk8CReJwXxNKWIiIhIY1UoY8ZEREREGiUlYynMrNLM3jazqWY2OSrb1Mwmmtn06HWTpOMsZmZ2i5nNM7N3Usoy1oEFf4+W0HrLzHZJLvLiVkO9XGRmc6Pfy1QzOzjl2LlRvXxgZj9JJuriZmZbmtmzZvaemb1rZr+OyvV7Sch66kS/lQSZWUsze83M3ozq5eKovLuZvRr9/e+KHiDEzFpE+zOi42X5jlHJ2Lr6uXvvlMdchwNPu3tP4OloX/JnLHBgWllNdXAQ0DPahgD/qKcYG6OxrFsvAKOi30vvaNwn0VJmA4Hto8+MjpY8k9xaAfzW3bcD9gCGRn97/V6SU1OdgH4rSVoO7OvuOwG9gQPNbA/gz4R62RpYCJwcnX8ysDAqHxWdl1dKxjbscGBc9H4cMCC5UIqfuz8PfJlWXFMdHA7c5sErwMZm1rleAm1kaqiXmhwOTHD35e7+MTCDsOSZ5JC7f+rur0fvFwPTgC3Q7yUx66mTmui3Ug+i/80viXabRZsD+wL3RuXpv5Xq39C9wH5mZvmMUcnY2hx4ysymREsvAZS6+6fR+8+A0mRCa9RqqoMtgE9SzpvD+v+PT3JvWNTldUtKF77qpZ5F3Sg7A6+i30tBSKsT0G8lUWZWYmZTgXnARGAmsMjdV0SnpP7tV9dLdPwroEM+41Mytra93X0XQnP+UDP7cepBD4+e6vHTBKkOCso/gK0Izf6fAlclGk0jZWZtgfuA37j716nH9HtJRoY60W8lYe6+0t17E1b42Q3YJtmI1qZkLIW7z41e5wEPECrs8+qm/Oh1XnIRNlo11UHWy2hJ7rj759H/wa0CbmRN94rqpZ6YWTPCP/rj3f3+qFi/lwRlqhP9VgqHuy8CngX2JHTVV8+3mvq3X10v0fH2wIJ8xqVkLGJmbcysXfV74ADgHcKyTIOj0wYDDyYTYaNWUx08BPwiekpsD+CrlO4ZybO08UZHEH4vEOplYPREUnfCgPHX6ju+YheNYbkZmObuf005pN9LQmqqE/1WkmVmncxs4+h9K2B/wni+Z4Gjo9PSfyvVv6GjgWc8z5OyatLXiJn1ILSGQViZ4A53H2lmHYC7ga7ALOBYd487kFmyZGZ3AuVAR+Bz4ELgX2Sog+j/+K4lPIVUBZzo7pMTCLvo1VAv5YRuFwcqgdOq/3E3sxHASYSny37j7o/Xd8zFzsz2Bl4A3gZWRcXnEcYo6feSgPXUySD0W0mMme1IGJBfQmiEutvdL4n+3Z8AbAq8Afzc3ZebWUvgdsKYvy+Bge7+UV5jVDImIiIikhx1U4qIiIgkSMmYiIiISIKUjImIiIgkSMmYiIiISIKUjImIiIgkSMmYiIiISIKUjImIiIgkSMmYiOSMmT1sZm+v5/i1ZrbIzFrEvN5YM5ucsn+smZ2Qg1BzzswmmZlH229ycL1nzezh9Rx/xsymm9kfU+57b13vKyL1T8mYiOTSncAOZrZd+gEzKyEsLXK/uy+v5fWPBU6ofXh5V73m3YQcXGsaNSxmbGb9gH7AH4Dro3u+kYN7ikgClIyJSC49SFhqZ1CGY/2AUkLCVqy+dPdX3P2zHFxrGtDdzJpnOHYp8CYwwd3nuPsrwNc5uKeIJEDJmIjkjLt/AzwMHJfh8EBgHvBMdUHU7fi2mS03s0/MbKSZNc10bTMbCxwF7JPSLXdRdGxPM3vIzD41s2/MbKqZVWS4xrDoPt+Y2b/MbL/oOuVp5/3IzJ4zsyozW2BmN5pZu9r8TcysiZktMbPfmNlfzWyemS00s7Oj48eb2XvROfdHCxlDSMZKgK3TrncgsBcwIt+LF4tI/VAyJiK5difQ08z6VBeYWTPgSMICvSujsgOAu4DXgcOBa4DfERazzuRSQjfgG4RuuT2Bm6Jj3YD/ACcDhwL3Abea2eoWOjM7IrrHQ8ARwFvAzek3MbO9gH8DnxG6VX8DHAzcmtVfYY0eQJvoOsuBnwGPAleY2bWEJPVsYDgwADgx+ty06LVX2vUuBf7j7o/WMh4RKTAZ/wtURKQOHgcWEZKMKVHZT4BNWLuL8hJgkrsPjvafMDOAy8zsj+4+J/Wi7j7TzL4EmkTdcqnHVo/RsnCR54EuwKkp9zwPeMzdh0b7T5lZR+D0tPgvB15y99Wte2Y2F3jazHZw93fi/RlW+0H0+ld3/3t0velABbAt0L+6hcvMhhAlX+4+18y+JmXcmJkdDvQFfpxlDCJSwNQyJiI55e7fAvcDx0aJEYRuy1nAy7B6MP8uwD1pH7+L8P9Le2ZzTzPbxMz+bmazgO+ibQjw/eh4U2BnQqtYqofSrtM6uvfdZta0egNejK7Zh+ztSEhO/5FS1iZ6vTytq7EN8GXK/vtEyVn0t7wEeNzdX6hFHCJSoJSMiUg+3Al0BfY0s5aEbsgJKYlHR6AZ8Hna56r3N83yfmMJCd9fgAOAXYFbgJYp9ysB5qd9Ln1/k+i80axJ6r4jdC82A7bMMi4ILWMvuvt3KWU7AisILXjA6kSwDEhteUt9ovKY6FojahGDiBQwdVOKSD48S0isBgKdgXas3UX5BSHJ2Sztc6XR65fEFCV7hwBD3f36lPLU/9j8AlgJdEr7ePr+IsCBi4DHMtzuf3HjSvED4O60sp2A99Om+PgB4T+Q30opmwYcHrUkXkQYc6cpLESKjJIxEck5d19pZncTWnO2AKa5+5tpx6dEx1O7744FVhF1Z2bwLWtau6q1ICQxqxOb6MnHwwiJFe6+wszeILTQ3ZDy2cPS4v7GzF4Bern7JTG/bo2iJyO3JkxDkWrHGsq+AWamlE0DNgbOAnpG8YtIkVEyJiL5cidwJuHJxQszHL8QeNLMbiVMkvoDwpOCN6YP3k/xPqGlaAAwB/ifu//PzP4L/CEa8L6K8GTiV8BGKZ+9DLgveoLxIcL0ED+Njq1KOe/3hMH6q4B7gcWELtefEqaT+DD+n4DtCYlipsTr7xnK3nX31Fiqn6i8BLjV3adncW8RaSA0ZkxE8sLdXwYqASPDRK/u/hShG7MvYW6y3wBXAcPWc9nRwFOE8WD/JQzShzBdxEfAbcDVhKktbku73/3ArwjTR/yLMK7sd9Hhr1POe5HwtGIn4PYott8Dn7DuGLcN+QFprV1mtgnhSc+30s7dMUPZR4TWQAgJmYgUIdOcgSLSWJnZ+YQB8Zu6+9I6XmsSsIDwIMHK+pqQNRob1wR4Gpjv7kfXx31FJHfUMiYijYKZdYpmwD80mnn/IkIidnNdE7EURxIeTPh1jq4Xxx+ie2ruMZEGSi1jItIomFl7QnfpbkB74FPgDuCCtGknanv9XoSnRgFmu/u8ul4z5n03BzaPdr9094/q474ikjtKxkREREQSpG5KERERkQQpGRMRERFJkJIxERERkQQpGRMRERFJkJIxERERkQQpGRMRERFJkJIxERERkQQpGRMRERFJ0P8D30WWI9/si5oAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 720x360 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_voltage_flux(voltage, flux, fit_voltage, fit_flux)" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(43.35961137)" + ] + }, + "execution_count": 64, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fit(71)" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "<matplotlib.legend.Legend at 0x7f87a9556be0>" + ] + }, + "execution_count": 65, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmMAAAFbCAYAAACZCYkgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABQRklEQVR4nO3dd3hVVfb/8fciBEgAQUAiihBUBhEFBOwNFPvYGxgVdRRHwRl/zjgWdBQdxjI69oYNxCj2OjYGQfGrjoIFCxaQrgKilBhqsn5/nJN4E27CCcnNuUk+r+c5z83Zp61kE1jsvc/e5u6IiIiISDwaxR2AiIiISEOmZExEREQkRkrGRERERGKkZExEREQkRkrGRERERGKkZExEREQkRkrGRGQDZjbGzNzMcuOOpb4ys9zwZzwm7lhEJF5KxkQaiPAf/sq2M+KOMR2YWSsz+9XMVpnZ5hs5dxszKzKzxWbWpIaer0RYpIFpHHcAIlLrRlZQ/kltBpGu3H25mT0FDAFOA26v5PSzCP5TO9bd19ZGfCJS/ygZE2lg3P3quGOoA0YTJGNnU0EyZmaNgDMTzhcR2STqphSRSMysf9h9dnUFx+eY2ZyE/c3DsjVm1rfcuY3MbFJ4v9M28tw9wvOeq+ScGeFz2oT7ZmZDzOxdM1tiZqvNbL6ZvW5mJ2/se3X3d4EvgJ3NbPcKTjsY6AxMdvdvw+c2NbNLzewzMys0sxVmNsXMTtrYM8PrnSAJBJid0IU8J+GcvmZ2m5l9amY/h9/bt2Z2c0XdqmHX661mtiA8/yszu8jMtq1o3JqZZZvZZWb2SdhtW2Bm75nZ4Cjfi4hEp5YxEUkJd/8l/If7beAJM9vF3VeGh68C+gNj3H3cRu7zvpl9DRxuZm3dfWnicTPbDdgBeMbdfw6LRwGXAbOBJ4HlQAdgV+BE4IkI38L9wK0ErWP/S3L87ITzCMeMvQ7sD3wF3AVkAyeE339vd798I88cCRwD9AJuA5aF5csSzjkHOBZ4C/gvwX+q+wIXAYeZ2e4JP2fMrBnwJtAH+BjIB1oBI4B9kwVhZq3Da3YBPgIeCp9zCPCYmfVw9ys28r2ISFTurk2btgawAR5uVyfZzih37pjw3NyEsv4l11dw/znAnCTlfwuvezzcHwAUAV8C2RFjvyy8x/Akx+4Kjx2ZULYUWJDs/kC7iM/cHFgFrARalDvWHlgL/AQ0LRfjK0DjcufOCY/tlVCeG5aN2djPvtzxzkBGkvI/hNddUq78ypKfP2AJ5dsASzYSw9/KlTcDXgOKgd5x/5nWpq2+bOqmFGl4rkqynZHC5/2L4B/wQWZ2GUHLzBrgZHcvjHiPcQQJwJDEwrA1ahCwGHi13DXrCJK+Mtz9pygPdPdfgKeBFuEzEg0BMoFH3H1NWHYWQQJzkbuvT7jPYuDacPdsqsnd57r7Bt8XQevVCoLWq/KxFgOXubsn3Gc+QctfGWbWFjgVmOruN5Z79mrgEsCAU6rxbYhIAnVTijQw7m61/Dw3s9MJ3tb8Z1h8rrt/VoV7LDCzicBBZraju38ZHjoSaAPckpgAESR8FwBfmtmTBF1677n78iqGP5ogMTkHeCChvHwXZUtge2Chu3+V5D5vhp+7VPH5GzCzTOBcggRxR4Iux8T/WG+dcO5mwHbAfHefk+R27yQp2xXIACoaH5gZfnavauwikpySMRFJOXdfYmZvEyQQSwlauqpqDHAQQUvPJWFZSUvZ2HLn/j/gO4K3HS8Nt/Vm9grwF3efGTHuKWb2FbCbme3s7p+Z2X7A74B33H1GeGqr8POHCm5VUt46ynM34gmCMWPfAS8APxK0NAJcCDRNOHez8HNRBfdKVt42/Nw13CrSIkKsIhKBuilFJKri8LOi/8S1ruhCMxtEkIj9RPCPfWVzd1XkOYJuuFPNLMPM2gOHAZ+6+6eJJ7p7kbvf6u69gBzg+PD6o4DXzKwp0d0ffp5T7jNxOouSFrctK7hHh3LnbRIz60eQiP0X6ObuZ7r7ZR5MV3INUH7i2RXhZ04Ft0xWXhLjLe5ulWwDqvO9iMhvlIyJSFS/hJ/blD9gZtvzW+tQsmOjCQaL70LwduXZYYIWmbuvIngzcitgIMGYpcZs2CpW/rrF7v6su59E0F24HbBTFR49lqDl6VQz25IgsfsFeCrhGSuBWcDWZtY1yT1KEpePIjyvZDxYRpJj24efL5brlgXYDchKLHD3FQQtaFtXMKP/PknKPiBIvJO+aSkiNU/JmIhE9RVBS8vRYasUAGaWRcUTozYBxhN0aQ1x9wUESdRS4D4z266KMYwJP08Pt/UE48MSn9nUzPZOEksmwfgygKgvDuDBVBrPEbxd+SRBwvNoOJg90UMEA9v/ZWaliZSZtSN4o7HknI0pmbqjU5Jjc8LP/omFYX3cVcH9HiH4u/46M7OEa7Yh6NYsI3zhIB/oZ2ZXJn4vCdduZ2ZdKv0uRCQyjRkTkUjcfZ2Z3UaQWHwcTsLamGAc1/fhVt6NBHNg/dvdXw3vs9CCdTBfIph/ay+PuJSQu/+fmc0kmCssE3gpTB4SZQHvhOdNA+YSTMlwEMGg8xcTxnpFNZqgm3XfhP3ybiLoNj0a+DQcn5YdxtoeuNHdkw2YL28icDFwv5k9QzC1xjJ3vxP4EPg/4Dgze5dgAH5O+NyvqbgOjgnj72ZmbxC0Yp5E0Ep5DL91QZcYDnQl6Po8zczeIRhfthXBz3BXYDDBPG4iUl1xz62hTZu22tkI5xmLeO4Yksx1RdDycylBl9xaYB7BP/bZlJtnjOBNRydIIDKTPOPf4fHbqvh9XFHyvQDHJzmeSTC32athfKsJukjfB/4INNnEn9834TPfreScZsDlwOf8NkfZO8DgJOfmkmSOr/DYRcAMgu5RL/dzbQPcHf68V4d18c9kdZBwTWuC1svvw3t+BfyFoGvTgVuTXNOEICl7l2Ac2Zrw5zmRoEWtbdx/prVpqy+buZdOOyMiIg2ImZ1D0Mr3R3e/L+54RBoqJWMiIvWcmW3l7t+XK+tE0GrXAehc/riI1B6NGRMRqf+eCV9gmEawzmUu8HuCrs3LlIiJxEstYyIi9ZyZnQ+cRjAovxVQQLBo+J3u/mycsYmIkjERERGRWGmeMREREZEY1dkxY+3atfPc3NyUPuPXX3+lefPmKX2GVJ3qJf2oTtKT6iX9qE7ST23VybRp035y9y2SHauzyVhubi5Tp05N6TMmT55M//79U/oMqTrVS/pRnaQn1Uv6UZ2kn9qqEzObW9ExdVOKiIiIxEjJmIiIiEiMlIyJiIiIxKjOjhkTERFJJ+vWrWPBggWsXr26wnNatWrFjBlVXadeUqmm66RZs2Z07NiRzMzMyNcoGRMREakBCxYsoGXLluTm5mJmSc9ZuXIlLVu2rOXIpDI1WSfuztKlS1mwYAFdunSJfJ26KUVERGrA6tWradu2bYWJmNR/Zkbbtm0rbR1NRsmYiIhIDVEiJpvyZ0DJWBL5+ZCbCwccsD+5ucG+iIhIusvIyKB3796l25w5c9hrr70AmDNnDo899ljMEUoyGjNWTn4+DB0KhYUAxty5wT5AXl6ckYmIiFQuKyuLTz75pEzZu+++C/yWjJ1yyikxRCaVUctYOSNGlCRivyksDMpFRETqmhYtWgBw6aWXMmXKFHr37s0tt9wSc1SSqFZbxsysG/BEQtG2wN+BR8LyXGAOcJK7/1KbsZWYN69q5SIiIuli1apV9O7dG4AuXbrw3HPPlR67/vrruemmm3j55Zdjik4qUqvJmLt/DfQGMLMMYCHwHHApMNHdrzezS8P9S2ozthKdOsHcJKtHdepU+7GIiEgddeGFUK67ECCrqAgyMjbtnr17w623VnpKsm5KSX9xdlMeCMxy97nA0cDYsHwscExcQY0aBdnZZcuys51Ro+KJR0REROq3OAfwDwIeD7/Ocfcfwq9/BHLiCem3QfojRsC8uU4n5jLq7EXk5e0eV0giIlLXVNCCtSrGSV9btmzJypUrY3m2VM7cvfYfatYE+B7o4e6LzGyZu7dOOP6Lu2+e5LqhwFCAnJycvuPHj09pnAXLl3PgeeexZost+OS221L6LImuoKCgdECqpAfVSXpSvdSuVq1asf3221d6TlFRERmb2k0ZQYcOHfjhhx+Slq1bt45jjz2Wn3/+mVNOOYXhw4enLI66JBV1MnPmTJYvX16mbMCAAdPcvV+y8+NKxo4Ghrn7weH+10B/d//BzDoAk929W2X36Nevn0+dOjWlcU6ePJn+U6fCxRfDp59Cz54pfZ5EM3nyZPr37x93GJJAdZKeVC+1a8aMGXTv3r3Sc7QcUvpJRZ0k+7NgZhUmY3GNGRvMb12UAC8CQ8KvhwAv1HpEFTnrLMjKgrvuijsSERERqYdqPRkzs+bAQcCzCcXXAweZ2bfAwHA/PbRpEwwke/RR+CWW2TZERESkHqv1ZMzdf3X3tu6+PKFsqbsf6O5d3X2gu/9c23FVatiwYObXMWPijkRERETqGc3AH0Xv3rDPPkFXZXFx3NGIiIhIPaJkLKrhw2HWLHjttbgjERERkXpEyVhUxx0HHTrAnXfGHYmIiIjUI0rGosrMhD/+EV59FWbOjDsaERGRDWRkZNC7d2969OhBr169uPnmmyneyPCaOXPm8Nhjj9VShJKMkrGqGDo0SMruvjvuSERERDZQsjblF198wYQJE3j11VcZOXJkpdcoGYufkrGq2HJLOOEEeOghKCiIOxoREanD8vMhNxcaNQo+8/Nr9v7t27dn9OjR3Hnnnbg7c+bMYd9996VPnz706dOHd999F4BLL72UKVOm0Lt3b2655ZYKz5PUiXNtyrpp+HB4/PHgt+bcc+OORkRE6qD8/KCzpbAw2J87N9iH39ZIrgnbbrstRUVFLF68mPbt2zNhwgSaNWvGt99+y+DBg5k6dSrXX389N910Ey+//DIAhYWFSc+T1FEyVlV77gl9+gQD+YcOBbO4IxIRkTpmxIjfErEShYVBeU0mY4nWrVvH8OHD+eSTT8jIyOCbb76p1nlSc5SMVZVZ0Dp21lnw9tuw//5xRyQiInXMvHlVK99U3333HRkZGbRv356RI0eSk5PDp59+SnFxMc2aNUt6zS233BLpPKk5GjO2KQYNCpZJ0jQXIiKyCTp1qlr5pliyZAl//OMfGT58OGbG8uXL6dChA40aNWLcuHEUFRUB0LJlS1auXFl6XUXnSeooGdsUWVlw9tnw3HMwf37c0YiISB0zahRkZ5cty84Oyqtj1apVpVNbDBw4kIMPPpirrroKgPPPP5+xY8fSq1cvvvrqK5o3bw5Az549ycjIoFevXtxyyy0Vniepo27KTXXeeXDTTXDfffCPf8QdjYiI1CEl48JGjAi6Jjt1ChKx6o4Xq6wVq2vXrkyfPr10/4YbbgAgMzOTN998s8y5yc6T1FHL2KbKzYUjj4TRo2HNmrijERGROiYvD+bMCZY8njMndQP3Jf0pGauO4cNhyRJ46qm4IxEREZE6SslYdRx4IHTrpoH8IiIissmUjFVHyTQX//sffPhh3NGIiIhIHaRkrLqGDIGWLdU6JiIiIptEyVh1tWwZJGTjxwfjx0RERESqQMlYTRg2DNauhQceiDsSERFpwH788UcGDRrEdtttR9++fTn88MM3upxRixYtAPj+++854YQTABgzZgzDhw+vViy33norhQlrPh1++OEsW7asWvd866232HPPPcuUrV+/npycHL7//vuk1yR+L88//zxffvlltWJIBSVjNWGHHWDgQLjnHli/Pu5oRESkAXJ3jj32WPr378+sWbOYNm0a1113HYsWLYp0/VZbbcXTTz9dpecVFxdXeLx8MvbKK6/QunXryPdPZt9992XBggXMnTu3tOy///0vPXr0YKutttro9UrG6rvhw4PZ+F98Me5IRESkDsj/LJ/cW3NpNLIRubfmkv9ZfrXuN2nSJDIzM/njH/9YWtarVy/23XdfCgoKOPDAA+nTpw8777wzL7zwwgbXz5kzh5122ql0f/78+fTv35+uXbsycuTI0nO6devG6aefzk477cT8+fM577zz6NevHz169Cid7f/222/n+++/Z8CAAQwYMACA3NxcfvrpJwD+/e9/s9NOO7HTTjtx6623lt67e/funHPOOfTo0YODDz6YVatWlYmxUaNGnHTSSYwfP760bPz48QwePJiff/6ZY445hp49e7LHHnuUmbgW4N133+XFF1/k4osvpnfv3syaNYv777+f/fffn169enH88ceXJo+zZs1ijz32YOedd+aKK64obT0E+Ne//sWuu+5Kz549S7/fanP3Orn17dvXU23SpEnRT16/3r1zZ/cBA1IVjoSqVC9SK1Qn6Un1Uru+/PLLjZ6zYsUKd3d/dPqjnj0q27ma0i17VLY/Ov3RTX7+bbfd5hdeeGHSY+vWrfPly5e7u/uSJUt8u+228+LiYnd3b968ubu7z54923v06OHu7g8//LBvueWW/tNPP3lhYaH36NHDP/zwQ589e7abmb/33nul9166dKm7u69fv973339///TTT93dvXPnzr5kyZLS80r2p06d6jvttJMXFBT4ypUrfccdd/SPPvrIZ8+e7RkZGf7xxx+7u/uJJ57o48aN2+B7+fDDD713797u7r569WrfYostfOnSpT58+HC/+uqr3d194sSJ3qtXr9LvZdiwYe7uPmTIEH/qqadK7/XTTz+V1smIESP89ttvd3f3I444wh977DF3d7/nnntKf0avv/66n3POOV5cXOxFRUV+xBFH+FtvvbVBjMn+LABTvYKcRi1jNSUjA84/HyZNgi++iDsaERFJYyMmjqBwXWGZssJ1hYyYOCIlz3N3Lr/8cnr27MnAgQNZuHDhRrsvDzroINq2bUtWVhbHHXcc77zzDgCdO3dmjz32KD3vySefpE+fPuyyyy588cUXG+0GfOeddzj22GNp3rw5LVq04LjjjmPKlCkAdOnShd69ewPQt29f5syZs8H1/fr1o6CggK+//ppXX32V3XffnTZt2vDOO+9w2mmnAXDAAQewdOlSVqxYUWksn3/+OYcccgg777wz+fn5fBH++/3ee+9x4oknAnDKKaeUnv/GG2/wxhtvsMsuu9CnTx+++uorvv3220qfEYXWpqxJf/gDXHUV3HUX3H133NGIiEiamrd8XpXKo+jRo0eFY77y8/NZsmQJ06ZNIzMzk9zcXFavXl3p/cws6X7iwuGzZ8/mpptu4sMPP2TzzTfnjDPO2Oh9K9O0adPSrzMyMjbopiwxePBgxo8fz4wZMxg8ePAmP++MM84gPz+fvfbaizFjxjB58uRKz3d3LrvsMs4999xNfmYyFbaMmdniTdgWmdnONRphXdK2LQweDI88AsuXxx2NiIikqU6tOlWpPIoDDjiANWvWMHr06NKy6dOnM2XKFJYvX0779u3JzMxk0qRJZQbAV2TChAn8/PPPrFq1iueff5699957g3NWrFhB8+bNadWqFYsWLeLVV18tPdayZUtWrly5wTX77rsvzz//PIWFhfz6668899xz7LvvvlX6XgcPHsyjjz7Km2++ydFHH1163/z8YNzd5MmTadeuHZtttlmZ68rHtHLlSrbcckvWrVtXei3AHnvswTPPPANQZnzaIYccwkMPPURBQQEACxcuZPHixVWKPZnKWsbaAQ8CCyLeKwMYAWRWN6g6bfhwePhhGDMG/vznuKMREZE0NOrAUQx9aWiZrsrszGxGHThqk+9pZjz33HNceOGF3HDDDTRr1ozc3FxuvfVW8vLyOPLII9l5553p168fO+yww0bvt9tuu3H88cezYMECTj31VPr167dBt2GvXr3YZZdd2GGHHdhmm23KJGxDhw7l0EMPZauttmLSpEml5X369OGMM85gt912A+Dss89ml112SdolWZHu3bvTvHlz+vbtW9pSd/XVV3PWWWfRs2dPsrOzGTt27AbXDRo0iHPOOYfbb7+dp59+mmuvvZYDDjiA9u3bs/vuu5cmarfeeiunnnoqo0aN4tBDD6VVq1YAHHzwwcyYMaN0eo0WLVrw6KOP0r59+8ixJ2PBmLIkB8yKgT3c/YNINzLLANYB/dz9o2pFFUG/fv186tSpKX3G5MmT6d+/f9Uv3Gsv+Okn+OoraKRheTVtk+tFUkZ1kp5UL7VrxowZdO/evdJzVq5cScuWLYHgbcoRE0cwb/k8OrXqxKgDR5G3c15thCoJEuukRGFhIVlZWZgZ48eP5/HHH0/6BmpFkv1ZMLNp7t4v2fmVtYwNACJPxuHuRWY2APg66jX11gUXwCmnwIQJcMghcUcjIiJpKG/nPCVfaWratGkMHz4cd6d169Y89NBDKX1ehcmYu79V1ZtFucbMWgMPADsBDpxFkMA9AeQCc4CT3P2Xqj4/bRx/POTkwB13KBkTERGpY/bdd18+/fTTWnteHH1otwGvufsOQC9gBnApMNHduwITw/26q0kTOPdceOUVmDUr7mhEREQkjVX2NuVsM/su6hblYWbWCtiP4MUA3H2tuy8DjgZKRtqNBY6pzjeVFs49N5h77J574o5ERERqSUXjsKXh2JQ/A5UN4L+JoBuxxCAgG5gALAbaAwcBvwLj3f1vG32YWW9gNMFYtF7ANODPwEJ3bx2eY8AvJfvlrh8KDAXIycnpm/i6aSoUFBSUWQKhqnYcOZLNp07lvaeeorhZsxqMrGGrbr1IzVOdpCfVS+1q0aIFOTk5tGrVaoM5ukoUFRWRkZFRy5FJZWqyTtyd5cuXs2jRotLpL0oMGDCg6gP43f2vJV+b2eXALOAId/81obwF8DJQ+RS3ZZ/XB7jA3f9nZrdRrkvS3d3MkmaI7j6aIJmjX79+nuq3hKr9JlLjxrDvvuy3YAGcfXaNxdXQ6Q2x9KM6SU+ql9q1bt06FixYwMKFCys8Z/Xq1TTTf87TSk3XSbNmzejVqxeZmdFn+oo6A/8wYGhiIgbg7gVhC9r9wD8i3GcBsMDd/xfuP02QjC0ysw7u/oOZdSBoeav79t4bevUKBvL/4Q9Qwf+URESk7svMzKRLly6VnjN58mR22WWXWopIokiHOok6gH8zIKeCY1sCkdrB3f1HYL6ZdQuLDiTosnwRGBKWDQGiT+aRzsyCSWCnT4dwTS8RERGRRFGTsZeAf5nZCWbWBMDMmpjZicAN4fGoLgDyzWw60Bv4J3A9cJCZfQsMDPfrh1NOgdat4c47445ERERE0lDUbsrzgDHAk4Cb2UqgJWAErVrnRX2gu38CJBvAdmDUe9Qp2dlBF+Vtt8HChbD11nFHJCIiImkkUsuYuy9392MJJmo9C7gu/NzJ3Y9xd62KXZnzz4eiIrjvvrgjERERkTQTtWUMAHf/kioskSShbbeFI44IkrERI6Bp07gjEhERkTRRpWTMzH4HdAQ2eAfU3V+pqaDqpeHD4dBD4emnIU9rkYmIiEggUjJmZjsC44EeBOPEynNAs9hV5qCDoGtXuOsuJWMiIiJSKurblPcBTYHjgG5Al3LbtimJrj5p1AiGDYP33oNp0+KORkRERNJE1GRsF+Av7v6Cu3/r7nPLb6kMst444wxo3lzTXIiIiEipqMnYLJKME5MqatUKTj8dHn8cfvop7mhEREQkDURNxv4CXG5m6o6srmHDYM0aePDBuCMRERGRNBA1GbsO2Br4ysy+MbMPym8pjLF+6dEDBgyAu+8O5h4TERGRBi3q1Bafh5vUhOHD4fjj4eWX4eij445GREREYhQpGXP3M1MdSINy1FGwzTZwxx1KxkRERBq4qN2UpcysrZl1NbO2qQioQWjcGM47DyZOhBkz4o5GREREYhQ5GTOzk81sBrAY+ApYbGYzzOzElEVXn519NjRpEkwCKyIiIg1WpGTMzAYDjwPfAWcCh4ef3wHjzWxQyiKsr7bYAgYNgrFjYcWKuKMRERGRmERtGRsBjHb3I9z9EXd/Pfw8ArgfuCJ1IdZjw4dDQQE88kjckYiIiEhMoiZj2wPPVHDsmfC4VNWuu8JuuwUz8hcXxx2NiIiIxCBqMrYI6FfBsX7hcdkUF1wAX38dDOYXERGRBidqMvYwcLWZXWFmO5jZ5mbWzcyuAK4CHkpdiPXciScG48e0XqWIiEiDFHXS12uATOBSYGRC+SrgpvC4bIqmTWHoUPjnP2HOHMjNjTsiERERqUWRWsbcvdjdRwDbAP2BweHnNu5+hbt7yiJsCM49Fxo1gnvuiTsSERERqWVVmvTV3X9x9ynu/mT4+UuqAmtQttkGjjkGHngAVq2KOxoRERGpRVHnGRtlZvdVcOxeM7u2ZsNqgC64AH7+GR5/PO5IREREpBZFbRkbDEyp4NgU4JSaCacB228/2GmnYL1K9fqKiIg0GFGTsa2AhRUc+z48LtVhFkwC+8kn8N57cUcjIiIitSRqMvYj0KeCY32AJTUTTgOXlwetWmmaCxERkQYkajL2JPB3MzsisdDMDgeuBMbXdGANUosWcOaZ8NRT8MMPcUcjIiIitSBqMvZ34H/AS2a2xMymm9kS4CXgPYKETGrC+efD+vUwenTckYiIiEgtiDrP2Gp3Pxg4DHiQIDF7EDjU3Q9z9zVRH2hmc8zsMzP7xMymhmVtzGyCmX0bfm6+Cd9L/dC1Kxx2GNx7L6xdG3c0IiIikmJVnWfsdXe/1N3PCT8nbOJzB7h7b3cvWe/yUmCiu3cFJob7Ddfw4fDjj/Dcc3FHIiIiIikWORkzs6Zmdp6ZPWhmr5tZ17D8ZDPrXs04jgbGhl+PBY6p5v3qtkMPhW231UB+ERGRBiDqpK+/A74BrgNygYFAy/DwvsBlVXimA2+Y2TQzGxqW5bh7yYj1H4GcKtyv/mnUCIYNg3feCaa6EBERkXrLoiwraWavAc2BI4ECYC3Qz90/MrMTgRvcfdtIDzTb2t0Xmll7YAJwAfCiu7dOOOcXd99g3FiYvA0FyMnJ6Tt+fGpf4iwoKKBFixYpfUZFGq9cyZ4nncTiAw7g64svjiWGdBVnvUhyqpP0pHpJP6qT9FNbdTJgwIBpCcOzymgc8R77Aie6+zIzyyh3bBHQIWow7r4w/FxsZs8BuwGLzKyDu/9gZh2AxRVcOxoYDdCvXz/v379/1MduksmTJ5PqZ1Tq9NPp8MgjdBg3Dtq0iS+ONBN7vcgGVCfpSfWSflQn6Scd6iTqmLHVQFYFx7YGlkW5iZk1N7OWJV8DBwOfAy8CQ8LThgAvRIyrfhs2DFavhoceijsSERERSZGoydgE4HIza5VQ5mbWlKCb8ZWI98kB3jGzT4EPgP+4+2vA9cBBZvYtwXi06yPer37r2TNYs/Luu6GoKO5oREREJAWidlNeDPwfMJMgMXOCiWB7AE2A46LcxN2/A3olKV8KHBgxloZl+HA46SR49VX4/e+rdasVK1awZMkSfv31V6KMFYyLmZGVlcUWW2xB69at4w5HREQkpSIlY+4+38x6ARcRJE2zCMaJPQX8O0ymJBWOOQa23hruuKNaydgvv/zC/Pnz2WqrrejYsSONGlVpirla5e4UFBQwf/581q9fT7t27eIOSUREJGWitozh7r8QLHukpY9qU2Ym/PGPcOWV8PXX0K3bJt3mhx9+IDc3l80226yGA0yNNm3a0KxZM2bOnEnbtm0xs7hDEhERSYmo84w1DseHJZYdbGYXmlmf1IQmpc45J0jK7r57ky5fv349a9asoWXLlhs/OY1kZ2djZqxZE3m1LRERkTonal/VE8A9JTtm9ifgNYJJYN83s+oNZpLK5eQE48bGjIGVK6t8eVFREY0bN66TrUsZGRkU6eUFERGpx6ImY3tQ9o3Ji4Gb3T0LeAAYUdOBSTnDh8OKFfDoozV2yxYtWpTZMjIyuOCCCwBYu3YtJ5xwArm5uZgZkydPrrHn7rDDDjyUZLqO2267jX79ys6HVxcTSBERkaqImoy1JVimCDPbGdgKuDc89hSwY82HJmXsvjv07RusV1lDb0IWFBSUbj/++CNZWVmceOKJpcf32WcfHn30UbbccssaeV6JIUOG8Mgjj2xQPm7cOIYMGZLkChERkforajK2iGBNSoBDgbnuPivczwKKazguKc8MLrgAvvwSJk2q8ds/88wztG/fnn333ReAJk2acOGFF7LPPvuQkVF+0YUN9e/fnyuuuIK99tqLFi1acOSRR7J06VLy8vLYbLPN2HXXXZkzZw4Ap512Gu+88w5z584tvf7LL79k+vTpDB48uMa/NxERkXQWNRl7CrjBzP4FXAIkNmvsAnxb04FJEiefDG3bBq1jNWzs2LGcfvrp1eoWHD9+POPGjWPhwoXMmjWLPffckzPPPJOff/6Z7t27M3LkSAA6duzIgAEDGDduXOm148aN4/DDD9c0FiIi0uBETcYuBe4DdiAYyP/PhGN9CQb4S6o1axa8WfnCCzBvXo3ddu7cubz11lvV7iI888wz2W677WjVqhWHHXYY2223HQMHDqRx48aceOKJfPzxx6XnDhkypDQZKy4uJj8/X12UIiLSIEVKxtx9vbtf4+5HuvuV7r424dhx7n5z6kKUMv74x+Dz3nsrP68Kxo0bxz777EOXLl2qdZ+cnJzSr7OysjbYLygoKN0/7rjj+OGHH3j//feZPHkyhYWFHHHEEdV6voiISF2UvtOwS3KdO8NRR8H99weLiNeARx55pNZbpbKzsznhhBN45JFHGDduHIMGDaJJkya1GoOIiEg6iDwDv6SRCy6A55+HJ56AaiZR7777LgsXLizzFmWJNWvWlK5huXbtWlavXk3Tpk1rbLqJIUOGcNxxx7Fu3TomTpxYI/cUERGpa9QyVhcNGADduwfrVVZzmouxY8dy3HHHJZ2dv1u3bmRlZbFw4UIOOeQQsrKyyrwBWV377bcfrVq1omPHjuy66641dl8REZG6RC1jdZFZMAnssGHwwQfBHGSb6L777qvwWMlUFFGUnxT2H//4R5n9gQMHMnPmzDJlZsZ3330X+RkiIiL10UZbxsysmZndb2Z71EZAEtFpp0HLlkHrmIiIiNRZG03G3H01MAholvpwJLKWLeGMM+Cpp2DRorijERERkU0UdczYm8CAVAYim2DYMPK7rSX33m40GtmI3Ftzyf8sf4PTzIzi4rq5SEJxcbHWpxQRkXot6pixu4AHzKw5wYLhi4AyI8fd/csajk02In/tVIYe04hClgMwd/lchr40FIC8nfNKz8vMzASCtyObNm1a+4FuovXr17N27do6FbOIiEhVRW0Zew3oCFwE/BeYDnwWbp+Hn1LLRkwcQWFG2RavwnWFjJg4okyZmdGmTRvmz59PUVFRbYa4yYqLi5k/fz6tW7eOtDamiIhIXRW1ZUxdlGlo3vLkSyIlK996662ZN28e06dPJzs7m0aN0ndWk+LiYlatWkXLli2rvSqAiIhIuouUjLn7W6kORKquU6tOzF2+4bxfnVp12qCsUaNG5Obm0rFjR1atWpXWY8jMjKysrNLuVRERkfqsSvOMmdlhQD9gG+Af7j7PzPYDZrr796kIUCo26sBRDH1pKIXrCkvLsjOzGXXgqAqvady4cdIJXkVERCQekfqqzCzHzP4HvAQMAf4AtAsPnwlcmZrwpDJ5O+cx+sjRdG7VGXPovNwYfcAtZQbvi4iISHqL2jJ2B9AC2AGYA6xNOPZf4KqaDUuiyts5L0i+Pv4Y+vSBbX4FTc8rIiJSZ0QdxX0ocIW7z6TclBbAAmDrGo1Kqm6XXWDvveGuuyCNx4OJiIhIWVV5pW59BeXtgFU1EItU1wUXwKxZ8NprcUciIiIiEUVNxqYAfzKzxAmfSlrIziKYoV/iduyx0KED3Hln3JGIiIhIRFGTsUuAXQkmeL2WIBE7x8zeAvYErkhNeFIlTZrAuefCq6/CzJlxRyMiIiIRRErG3P1zoC8wFTgDKAKOIxgvtru7f1OVh5pZhpl9bGYvh/tdzOx/ZjbTzJ4wsyZVuZ8kGDoUGjeGu++OOxIRERGJIPKYMXef5e6nuftW7t7E3bd09zx3/3YTnvtnYEbC/g3ALe6+PfALwdQZsik6dIATT4SHHoJff407GhEREdmIKq+JY2YdzWxXM9ukNyjNrCNwBPBAuG/AAcDT4SljgWM25d4SGj4cli+HRx+NOxIRERHZCHMvP1NFBSeanQdcDmwFGMG4sR+Af7p75D4xM3sauA5oCfyVoNvz/bBVDDPbBnjV3XdKcu1QYChATk5O3/Hjx0d97CYpKCigRYsWKX1GSrjT99xzsfXrmfrgg2AWd0Q1qs7WSz2mOklPqpf0ozpJP7VVJwMGDJjm7v2SHYs06auZ/Z1gYtcHgWeBxUB74HjgdjNr5+7XRLjP74HF7j7NzPpHC/837j4aGA3Qr18/79+/yreoksmTJ5PqZ6TMpZfCH/5A/0aNYP/9446mRtXpeqmnVCfpSfWSflQn6Scd6iRqN+Uwghawoe7+mrt/FH6eA1wfHo9ib+AoM5sDjCfonrwNaG1mJYlhR2Bh5O9Akhs8GNq00TQXIiIiaS5qMpYFvF3BsbeAZlFu4u6XuXtHd88FBgFvunseMAk4ITxtCPBCxLikIllZcPbZ8NxzsGBB3NGIiIhIBaImY88TTGWRzPHAy9WM4xLgIjObCbQl6A6V6jrvPPKLTia3R3MaNYLcXMjPjzsoERERSRR1ofBXgRvNLJcgMSsZM3Ys0AP4m5kdXnKyu7+ysRu6+2Rgcvj1d8Bu0cOWKPL/L5ehGQ9SuCJouJw7N5iGDCAvL8bAREREpFTUZKykPWVr4JBKjkPwlmVGknOklo0YAYVFZXuQCwuDciVjIiIi6SFqMtYlpVFISsybV7VyERERqX2RkjF3n5vqQKTmdeoUdE0mKxcREZH0UOUZ+KXuGDUKsrPLlmVnrGbUtcXxBCQiIiIbUDJWj+XlwejR0LlzMAl/581XMLroLPI+uTju0ERERCSkZKyey8uDOXOguBjm/LwZecPbwr//HWRpIiIiEruoA/ilvrjlFpg1C84/H7bdFgYOjDsiERGRBk0tYw1N48Ywfjx07w4nnAAzZsQdkYiISIMWKRkzs+PN7A8J+13M7F0zW2Zmz5hZ65RFKDVvs83g5ZehaVP4/e/hp5/ijkhERKTBitoydgWwWcL+HUA7gkXC+wCjajguSbXOneGFF2DhQjj2WFizJu6IREREGqSoydi2wGcAZtYKOBj4f+5+PTACODI14UlK7bEHjB0L77wTLCruHndEIiIiDU5VBvCX/Eu9P1AE/DfcXwBsUZNBSS06+WT49lu48kro1g2uuCLuiERERBqUqC1jnwJ5ZtYcOBuY5O4l/VqdCBYOl7pqxAg47bQgIXviibijERERaVCitoxdDrwEDAEKgIMSjh0D/K9mw5JaZQb33w+zZ8MZZ0BuLuy+e9xRiYiINAiRWsbc/R2CFrDdgM7u/kHC4YcIBvhLXda0KTz3HGy1FRx1VPJFLUVERKTGRZ5nzN1Xuvs0d19WrvwVd/+mxiOT2teuHfznP8Gblb//PaxYEXdEIiIi9V7kAfxmthXwe6Aj0KzcYXf3S2oyMInJDjvA00/DoYfCoEHw4ovBRLEiIiKSEpH+lTWzY4HHgQyCwfpry53igJKx+mLgQLj7bjj3XLjoIrj99rgjEhERqbeiNnn8E3gDOMPdf05hPJIuhg6Fr78OFhXv1g2GDYs7IhERkXopajK2DXCBErEG5sYbYeZM+NOfYLvtgq5LERERqVFRB/C/C3RLZSCShjIyID8fevaEk06Czz+POyIREZF6J2oydhEw1MyGmNlWZpZdfktlkBKjFi3gpZeCz9//HhYtijsiERGReiVqMjYd2Bl4GJgPrEyySX3VsWPwVuXixXDMMbBqVdwRiYiI1BtRx4ydxW9rU0pD1K8fPPooHH88nHUWPPZYMHO/iIiIVEukZMzdx6Q4DqkLjjsOrrsOLrsMfvc7GDky7ohERETqvCrN5hlO/Lon0Ab4GXjP3b9PRWCSpi65BL75Bq65JkjI8vLijkhERKROizrpawZwB3AOwcSvJYrMbDTBtBfFKYhP0o0Z3HsvfPdd0F2Zmwt77x13VCIiInVW1AH8IwnGjV0O5AJZ4eflYfnVUW5iZs3M7AMz+9TMvjCzkWF5FzP7n5nNNLMnzKxJ1b4NqVVNmsCzz0LnzsGA/u++izsiERGROitqMnY6cIW7/8vd57n7mvDzX8CVwBkR77MGOMDdewG9gUPNbA/gBuAWd98e+AX4Q1W+CYlBmzbBouJFRcGUF8uWxR2RiIhInRQ1GWtPML1FMtPD4xvlgYJwNzPcHDgAeDosHwscEzEuiVPXrkEL2cyZwaSw69bFHZGIiEidEzUZ+wYYVMGxQcDXUR9oZhlm9gnBguMTgFnAMndfH56yANg66v0kZv37w333wYQJwbJJrhlQREREqiLq25T/AMabWSeCFqxFBK1hJwIDqDhR24C7FwG9zaw18BywQ9RrzWwoMBQgJyeHyZMnR710kxQUFKT8GfVCly5sO3gwne69l5kZGSw44YSUPk71kn5UJ+lJ9ZJ+VCfpJx3qJOo8Y0+a2TKCgfy3EXQvrgOmAYe6+4SqPtjdl5nZJIKpMlqbWeOwdawjsLCCa0YDowH69evn/fv3r+pjq2Ty5Mmk+hn1xn77wZo1bH/33Wx/yCFw5JEpe5TqJf2oTtKT6iX9qE7STzrUSdRuStz9DXffk+BNyi2BLHffqyqJmJltEbaIYWZZwEHADGASUNKcMgR4Ieo9JU00agTjxkGfPjB4MHzySdwRiYiI1AmRk7ES7l7s7os3cV6xDsAkM5sOfAhMcPeXgUuAi8xsJtAWeHAT7i1xy84O1rDcfPOgZeyHH+KOSEREJO1FnfT1yY2d4+4nRThnOrBLkvLvgN2ixCJpbqut4KWXYJ994Kij4K23giRNREREkoraMrZFku13wFHA3kC7lEQndVPv3vD44zBtGpx2GhRrcQYREZGKRErG3H1Akq030BX4AbgllUFKHXTkkXDTTcE8ZCNGxB2NiIhI2qrymLFE7j4fuA64sWbCkXrl//0/GDoUrr8eHn447mhERETSUrWSsVARwXQUImWZwZ13wsCBcO65wfgxERERKSPqAP4dkxQ3AboD1xK8GSmyocxMeOop2HNPOO44eP/9YBklERERAaLPwP85wRqS5RkwFTi7xiKS+qd1a3j5Zdh9dzjiiCAha9Mm7qhERETSQtRkbECSstXAAndPOlu+SBnbbQfPPw8HHgjHHw+vvw5NmsQdlYiISOyiLoekwT5SffvsAw8+GEx3cd558MADwbgyERGRBixqyxgAZtYM2ApoVv6Yu39ZU0FJPXbqqfDNN3DttdCtG/ztb3FHJCIiEquoA/g7EizQfUiywwTjyTJqMC6pz0aODBKySy8NBvMfe2zcEYmIiMQmasvYOGBbYDgwE1ibsoik/jML5h2bOxfy8mDKFOjbN+6oREREYhE1GesH5Ln7i6kMRhqQrKxgQP/uuwez9X/wAXTUdHUiItLwRJ309UtAqz1LzcrJCaa8KCgIErKCgrgjEhERqXVRk7ELgEvMbO9UBiMN0E47wRNPwPTpQZdlUVHcEYmIiNSqqMnYJ8AHwNtmtsrMFpffUhei1HuHHQa33QYvvgiXXBJ3NCIiIrUq6pixB4ATgafRAH5JheHD4euv4eabgykvzjkn7ohERERqRdRk7Fjg/7n7vakMRhq4W26BWbPg/PNh222D2fpFRETquajdlEuAeakMRITGjWH8eNhhh2DJpK++ijsiERGRlIuajF0D/NXMWqQyGBE22yx4w7Jp02BR8Z9+ijsiERGRlIraTXkE0BWYZ2ZTgWXljru7n1yTgUkD1rkzvPAC9O8fzM7/3/8GyZmIiEg9FLVlrB3BwP1PgUxgi3Jb+5REJw3XHnvA2LHwzjvBYH73uCMSERFJiUgtY+4+INWBiGzg5JODNSz//vfgDcsRI+KOSEREpMZFbRkTiccVV8Cpp8IVV5B/wXvk5sIBB+xPbi7k58cdnIiISPVVmIyZ2Z/MrErdj+E17aoflkjIDB54gPyuVzH0zp7MnQvuxty5MHSoEjIREan7KmsZuwXoHPVGZpYRXtOpukGJlNG0KSNWXUkhzcsUFxaq51JEROq+ysaMGXCdmf0c8V5WA/GIJDVvYUbycs1+JyIidVxlydjbQAbB25JRvQ2srFZEIkl06gRz5yYpz1oCM5fD9tvXflAiIiI1oMJkzN3712IcIpUaNSoYI1ZY+FtZduO1jFp3MezwKJx5Jlx5ZZC1iYiI1CG1+jalmW1jZpPM7Esz+8LM/hyWtzGzCWb2bfi5eW3GJekvLw9Gjw7mgzVzOneG0WOakDfv+mAty0cega5d4c9/hh9/jDtcERGRyGp7aov1wF/cfUdgD2CYme0IXApMdPeuwMRwX6SMvDyYMwfefPMt5swJ9tlyS7j9dvj2Wzj9dLjrLthuO7j0Uli6NOaIRURENq5WkzF3/8HdPwq/XgnMALYGjgbGhqeNBY6pzbikHujUCe6/P1hc/Nhj4cYbYdttYeRIWLEi7uhEREQqZB7TMjNmlksw4H8nYJ67tw7LDfilZL/cNUOBoQA5OTl9x48fn9IYCwoKaNFCa6Onmyj1kj17Nl0efpgtpkxh3WabMW/QIBYecwzFWVm1FGXDot+V9KR6ST+qk/RTW3UyYMCAae7eL9mxWJIxM2sBvAWMcvdnzWxZYvJlZr+4e6Xjxvr16+dTp05NaZyTJ0+mf//+KX2GVF2V6mXatGBg/6uvQk5OMDHZ0KFaeLyG6XclPale0o/qJP3UVp2YWYXJWKRuSjMbuJHjw6oQTCbwDJDv7s+GxYvMrEN4vAOwOOr9RCrVty+88gpMmQI77AB/+lMw0P+BB2DdurijExERiTxm7A0zu9PMyvTxmFknM5sI3BzlJmEX5IPADHf/d8KhF4Eh4ddDgBcixiUSzT77wKRJMGECdOgA55wDO+4Ijz0GRUVxRyciIg1Y1GTsxHCbbmZ7AZjZ2cBnQDtg94j32Rs4DTjAzD4Jt8OB64GDzOxbYGC4L1KzzGDgQHj/fXjxRcjODl7J7NULnn0WYho/KSIiDVukZMzdnwF2Jki+3jKzj4G7gTuAfu7+acT7vOPu5u493b13uL3i7kvd/UB37+ruA9096hJMIlVnBkceCR9/DOPHw/r1cPzxsOuu8NprSspERKRWRZ7awt0XA88SzBXWC/gSuN/dNfBG6qZGjeDkk+Hzz2HMmGBessMOg/32g7feijs6ERFpIKIO4G9nZs8ADwO3A30JkrLpYXelSN3VuDEMGQJffw133w3ffQf9+8NBB8H//hd3dCIiUs9FbRn7kqCbcn93v8TdPyYYJ3YzcJeZvZKqAEVqTZMmcN55MHMm3HwzfPIJ7LEHHHUUfBqpJ15ERKTKoiZjTwK93f3dkgJ3L3L3awiWNdo6FcGJxCIrCy66KGgh+8c/4O23oXfvoEvzq6/ijk5EROqZqAP4h7t7YQXHPgaSTmImUqe1bBlMEjt7dvD5n/9Ajx5w5plBmYiISA2IOmYsu7INyExxnCLx2XzzoIVs9my48EJ4/HH43e+CLs2FC+OOTkRE6rio3ZQFwMqNbCL12xZbBGPJZs0KJo198EHYbrugS3OxFo0QEZFNEzUZOyvJ9hfgDWABcG5KohNJR1tvHbx1+fXXMHgw3HYbbLtt0JX5yy9xRyciInVM1DFjY9x9bLntVnc/DHgF6JHaMEXSUJcu8PDD8OWX8Pvfwz//GZT94x+wUo3FIiISTeRJXyvxDHB6DdxHpG7q1i2Yyf/TT2H//eHKK4OWsptvhlWr4o5ORETSXE0kY7sCa2rgPiJ1W8+e8MILwUSxu+wCf/1rMKbs7rth7dq4oxMRkTQV9W3KG5Nst5rZ68C1wGOpDVOkDtltN3jjDZg8OWghGzYsaD0bMwbWryc/H3Jzg9WYcnMhPz/ecEVEJF5RW8ZOTLIdEl7/J+DSlEQnUpftvz9MmQKvvgpt28KZZ5K/zSUMPWs9c+cG65HPnQtDh9bdhKwksTzggP2VWIqIbKLGUU5y9y6pDkSkXjKDQw+FQw6B559nxMm7U7iu7K9dYSGM+Mtq8rp8FKyTmZHx21Z+v6KyxPJGjYLnplh+fpBIFhYCWGliCZCXl/LHi4jUG5GSMRGpJjM49ljmrfekh+ctagJ7711zz2vUaOOJXVX3y5WPeP0+Cle1L/PYwsJghg8lYyIi0VWYjJnZ+VW4j7v7PTUQj0i91qlT0IK0QXn7NfDIa1BU9Nu2fn3Z/WRliftVPb8q91u7doOyeavaJf0e581zIPUtcyIi9UVlLWN3VuE+DigZE9mIUaMSu/YC2dkw6t9ZQVdmHdIpl+SJpS2Au1+Cs8+GJk1qPS4RkbqmwgH87t6oCltGbQYtUlfl5cHo0dC5c9Bz2blzsF8Xu/VGjQoSyUTZTYsYtf1DwRuk3bvDo48GLWkiIlKhmphnTESqIC8P5syB4uLgsy4mYlA+sfQgsXwwg7yv/g7/+Q+0bAmnnQa9e8NLLwWvj4qIyAYqTMbM7A0z61au7AAza576sESkLihJLN98863fEkszOPxw+OgjePxxWL0ajjoqeEHhrbdijlhEJP1U1jI2EGhVsmNmGcAEoFuFV4iIlGjUCAYNCtbuvO++YIBZ//7BVB8ffRR3dCIiaaOq3ZR6RUpEqiYzM3hrYeZM+Ne/4MMPoW9fOOkk+PrruKMTEYmdxoyJSO3IygrW6/zuu2Ax9VdegR49grcu58+POzoRkdhsLBlLNuJWo3BFZNO1agXXXBMkZcOGwbhx0LUr/OUv8NNPcUcnIlLrNpaMvW5mi81sMfBDWDaxpCxxS3GcIlLftG8Pt90G33wDgwfDrbcGC6uPHAkrV8YdnYhIrals0teRtRaFiDRcnTvDww/DxRcH3ZdXXw133gmXXw7nnQfNmsUdoYhISlWYjLm7kjERqT077gjPPBMM8L/8crjoIrjlFrjqKhgyJFgTU0SkHqrVAfxm9lDYrfl5QlkbM5tgZt+Gn5vXZkwikmZ23RUmTID//hc6dAgG+O+0Ezz9tCaOFZF6qbbfphwDHFqu7FJgort3BSaG+yLS0B14ILz/Pjz7bDBn2YknBonaG28oKROReqVWkzF3fxv4uVzx0cDY8OuxwDG1GZOIpDEzOPZY+OwzGDMGliwJFlQ/4IAgURMRqQfSYZ6xHHcveVPzRyAnzmBEJA1lZATjxr75JngD84svYM894Zhj4PPPN3q5iEg6M6/l5n4zywVedvedwv1l7t464fgv7p503JiZDQWGAuTk5PQdP358SmMtKCigRYsWKX2GVJ3qJf3Udp1krFpFx6efZpsnniCjsJBFAwcy58wzWd2hQ63FUBfodyX9qE7ST23VyYABA6a5e79kx9IhGfsa6O/uP5hZB2Cyu290/ct+/fr51KlTUxrr5MmT6d+/f0qfIVWnekk/sdXJ0qVwww1wxx1QVBQsu3TFFbDllrUfSxrS70r6UZ2kn9qqEzOrMBlLh27KF4Eh4ddDgBdijEVE6pK2beHGG4N1L886C+69F7bbLpgaY9myuKMTEYmktqe2eBx4D+hmZgvM7A/A9cBBZvYtMDDcFxGJbuutg0Rsxgw46ii47jro0gWuvx4KC+OOTkSkUrX9NuVgd+/g7pnu3tHdH3T3pe5+oLt3dfeB7l7+bUsRkWi6doXHH4ePP4a99oLLLgtayu6+G9aujTs6EZGk0qGbUkSkZvXuDf/5D7z9Nmy/fbAgeffukJ8PxcVxRyciUoaSMRGpv/bdN0jI/vMfaNkSTj01SNReekkTx4pI2lAyJiL1mxkcfjh89BE89lgwhuyoo2CffeCtt+KOTkREyZiINBCNGsHgwcEg/3vvhTlzoH9/OPRQ+Ogj8vMhNzc4LTc36NEUEakNSsZEpGHJzIRzzw2mw7jxRvjgA/L73sTQIauZOzfovZw7N5iyTAmZiNQGJWMi0jBlZcHFF8Ps2YxodReFRc3KHC4shBHDlwddm1OmwOzZsGZNTMGKSH3WOO4ARERi1aoV81YkPzRvWUvIyytb2L49bLMNdOwYbIlfl2xNm6Y+bhGpN5SMiUiD16lT0DW5Qfk2wOtfwvz5sGDBb9v8+TBrVvACQLKZ/rfYYsNErXzS1qzZhteJSIOkZExEGrxRo4IxYomT9Wdnw6jrGgXzk3XvXvHFBQUbJmolX8+eHUytkSxha9eu4mRtm22CVQWysjbp+8nPhxEjYN68/enUKfj+yjfwiUj6UDImIg1eSaISJDBULYFp0QJ22CHYKvLrr7BwYdlEreTrefPg3XeDRc/La9t2wxa18vvZ2WUuyc9PTCyt9GWExO9TRNKLkjEREYJEJWXJSvPm8LvfBVtFCguDhK1861rJ/vvvw08/bXhdmzZlErUR46+nsLD1BrcecWkReUcVBslbRkbNfn8iUi1KxkRE0kF2drC2ZteuFZ+zatVvCVv5pG3+fPjwQ+YtvzvppfMWGGy2WbDTrFnwvObNg60qX0c5XkPJ3m/drVVsrRSpY5SMiYjUFVlZwVqb229f4SmdOhUzd36S8s0L4PJ/BV2mJVthYdmvly4NMp/y5VXVtGn1Errmzcl/rwtDb+lO4eogsZs7F4ae47B+PXmnNw5WVqhDNI5PKqNkTESkHhl1XaPkLyPcsRnk/bXqN3QPWuQSk7fyyVrUr3/5JWjFK3+vJOuEjmA2hZRtYStcZYw4YyF5Z24bJKbZ2cFnyZa4n+zrqOeX369mS5/G8cnGKBkTEalHyr6M4HTqZNVrhTELEpNyLwrUGHdYvXqDxG3ebp0hyVru8+gcfHOrVgXnrlq14dfLlpXdLzleVLRpMWZmbnoil5XFiGvOorCwZZlbFhbCiL+uIa/nN0FLYtOmQfdxyddNmwZrc6UhdR/XPCVjIiL1TMnLCJMnv0X//v3jDqdyZr8lLu3alRZXOPdbZ4Nrr920Z61bt2HiVt39FSvgxx+THwvN44Kk4cz7MRN69qw43szMsklaYrJWWVlVjke5tkmT0m7hsq18qJWvhigZExGRtFPh3G+jqnHTzMxgK3mRIZXcg+WzCgvp1LOYuQs3bOXqtMVquOfpoGVwzZpgK/k6WVmy40uX/nYs2bnFxTXz/YSJ2oiCzyks3qbMocJCGDF0CXmTLoOWLYPpXlq2LLtVVBbjm73pNI5PyZiIiKSdas39lg7MgpalZs0YdUMFieUt2XD88amNY/36qiV3Gzlv3m0dkz5mXmFbePVVWLkymAg5yTjApLKyoiduGyurQnKXbuP4lIyJiEhaSuncb7WoxsfxVUXjxsHWvHmN3K7T8xV1HzeCOQuDneLiIMtZufK35Kzk6yhlixcHy40llkeVnZ08cSuXvI244y8UFrYqc2lhYVBHSsZERETqoTo1jq8SkbqPGzUKEp8WLaBDh+o/tHxyV1Eyl6y8oAAWLYKZM8uUzePqpI+aN6/64W4KJWMiIiISSSzdxylI7jrlknw+vk7Vv/2mSM/3ZkVERCQt5eXBnDlBg9WcOXWwK7lRI0Zd12iD2Vqq/YJIdUKK57EiIiIi8cjLg9GjoXNnMHM6dw7240oslYyJiIhIg1PSwvfmm2/F3sKnZExEREQkRkrGRERERGKkZExEREQkRkrGRERERGKUNsmYmR1qZl+b2UwzuzTueERERERqQ1okY2aWAdwFHAbsCAw2sx3jjUpEREQk9dIiGQN2A2a6+3fuvhYYDxwdc0wiIiIiKWcedWX1VAZhdgJwqLufHe6fBuzu7sPLnTcUGAqQk5PTd/z48SmNq6CggBYtWqT0GVJ1qpf0ozpJT6qX9KM6ST+1VScDBgyY5u79kh2rU2tTuvtoYDSAmS0ZMGBAkrXja1Q74KcUP0OqTvWSflQn6Un1kn5UJ+mntuqkc0UH0iUZWwhsk7DfMSyrkLtvkdKIADObWlEWK/FRvaQf1Ul6Ur2kH9VJ+kmHOkmXMWMfAl3NrIuZNQEGAS/GHJOIiIhIyqVFy5i7rzez4cDrQAbwkLt/EXNYIiIiIimXFskYgLu/ArwSdxzljI47AElK9ZJ+VCfpSfWSflQn6Sf2OkmLtylFREREGqp0GTMmIiIi0iApGUtgZnPM7DMz+8TMpoZlbcxsgpl9G35uHnec9ZmZPWRmi83s84SypHVggdvDJbSmm1mf+CKv3yqol6vNbGH4+/KJmR2ecOyysF6+NrND4om6fjOzbcxskpl9aWZfmNmfw3L9vsSkkjrR70qMzKyZmX1gZp+G9TIyLO9iZv8Lf/5PhC8QYmZNw/2Z4fHcVMeoZGxDA9y9d8JrrpcCE929KzAx3JfUGQMcWq6sojo4DOgabkOBe2opxoZoDBvWC8At4e9L73DcJ+FSZoOAHuE1d4dLnknNWg/8xd13BPYAhoU/e/2+xKeiOgH9rsRpDXCAu/cCegOHmtkewA0E9bI98Avwh/D8PwC/hOW3hOellJKxjTsaGBt+PRY4Jr5Q6j93fxv4uVxxRXVwNPCIB94HWptZh1oJtIGpoF4qcjQw3t3XuPtsYCbBkmdSg9z9B3f/KPx6JTAD2Br9vsSmkjqpiH5XakH4Z74g3M0MNwcOAJ4Oy8v/rpT8Dj0NHGhmlsoYlYyV5cAbZjYtXHoJIMfdfwi//hHIiSe0Bq2iOtgamJ9w3gIq/4tPat7wsMvroYQufNVLLQu7UXYB/od+X9JCuToB/a7EyswyzOwTYDEwAZgFLHP39eEpiT/70noJjy8H2qYyPiVjZe3j7n0ImvOHmdl+iQc9ePVUr5/GSHWQVu4BtiNo9v8BuDnWaBooM2sBPANc6O4rEo/p9yUeSepEvysxc/cid+9NsMLPbsAO8UZUlpKxBO6+MPxcDDxHUGGLSpryw8/F8UXYYFVUB1VeRktqjrsvCv+CKwbu57fuFdVLLTGzTIJ/9PPd/dmwWL8vMUpWJ/pdSR/uvgyYBOxJ0FVfMt9q4s++tF7C462ApamMS8lYyMyam1nLkq+Bg4HPCZZlGhKeNgR4IZ4IG7SK6uBF4PTwLbE9gOUJ3TOSYuXGGx1L8PsCQb0MCt9I6kIwYPyD2o6vvgvHsDwIzHD3fycc0u9LTCqqE/2uxMvMtjCz1uHXWcBBBOP5JgEnhKeV/10p+R06AXjTUzwpqyZ9DZnZtgStYRCsTPCYu48ys7bAk0AnYC5wkrtHHcgsVWRmjwP9gXbAIuAq4HmS1EH4F9+dBG8hFQJnuvvUGMKu9yqol/4E3S4OzAHOLfnH3cxGAGcRvF12obu/Wtsx13dmtg8wBfgMKA6LLycYo6TflxhUUieD0e9KbMysJ8GA/AyCRqgn3f2a8N/98UAb4GPgVHdfY2bNgHEEY/5+Bga5+3cpjVHJmIiIiEh81E0pIiIiEiMlYyIiIiIxUjImIiIiEiMlYyIiIiIxUjImIiIiEiMlYyIiIiIxUjImIiIiEiMlYyJSY8zsJTP7rJLjd5rZMjNrGvF+Y8xsasL+SWZ2Rg2EWuPMbLKZebhdWAP3m2RmL1Vy/E0z+9bM/pHw3Ker+1wRqX1KxkSkJj0O7GRmO5Y/YGYZBEuLPOvuazbx/icBZ2x6eClXsubd+Bq41wwqWMzYzAYAA4C/A/eGz/y4Bp4pIjFQMiYiNekFgqV2Bic5NgDIIUjY6quf3f19d/+xBu41A+hiZk2SHLsW+BQY7+4L3P19YEUNPFNEYqBkTERqjLv/CrwEnJzk8CBgMfBmSUHY7fiZma0xs/lmNsrMGie7t5mNAY4H9k/olrs6PLanmb1oZj+Y2a9m9omZ5SW5x/DwOb+a2fNmdmB4n/7lztvXzN4ys0IzW2pm95tZy035mZhZIzMrMLMLzezfZrbYzH4xs4vD46eZ2ZfhOc+GCxlDkIxlANuXu9+hwN7AiFQvXiwitUPJmIjUtMeBrmbWt6TAzDKB4wgW6C0Kyw4GngA+Ao4G7gD+SrCYdTLXEnQDfkzQLbcn8EB4rDPwf8AfgCOBZ4CHzay0hc7Mjg2f8SJwLDAdeLD8Q8xsb+C/wI8E3aoXAocDD1fpp/CbbYHm4X3WAKcA/wFuNLM7CZLUi4FLgWOAM8PrZoSf3crd71rg/9z9P5sYj4ikmaT/AxURqYZXgWUESca0sOwQYHPKdlFeA0x29yHh/mtmBnCdmf3D3Rck3tTdZ5nZz0CjsFsu8VjpGC0LbvI20BE4J+GZlwOvuPuwcP8NM2sHnFcu/uuBd929tHXPzBYCE81sJ3f/PNqPodTO4ee/3f328H7fAnlAd2BgSQuXmQ0lTL7cfaGZrSBh3JiZHQ30A/arYgwiksbUMiYiNcrd1wLPAieFiREE3ZZzgfegdDB/H+Cpcpc/QfD30p5VeaaZbW5mt5vZXGBduA0FfhcebwzsQtAqlujFcvfJDp/9pJk1LtmAd8J79qXqehIkp/cklDUPP68v19XYHPg5Yf8rwuQs/FleA7zq7lM2IQ4RSVNKxkQkFR4HOgF7mlkzgm7I8QmJRzsgE1hU7rqS/TZVfN4YgoTvX8DBwK7AQ0CzhOdlAEvKXVd+f/PwvLv5LalbR9C9mAlsU8W4IGgZe8fd1yWU9QTWE7TgAaWJYC6Q2PKW+EblieG9RmxCDCKSxtRNKSKpMIkgsRoEdABaUraL8ieCJKd9uetyws+fiShM9n4PDHP3exPKE/+z+RNQBGxR7vLy+8sAB64GXknyuO+jxpVgZ+DJcmW9gK/KTfGxM8F/kKcnlM0Ajg5bEq8mGHOnKSxE6hklYyJS49y9yMyeJGjN2RqY4e6fljs+LTye2H13ElBM2J2ZxFp+a+0q0ZQgiSlNbMI3H48iSKxw9/Vm9jFBC919CdceVS7uX83sfaCbu18T8dutUPhm5PYE01Ak6llB2a/ArISyGUBr4CKgaxi/iNQzSsZEJFUeBy4geHPxqiTHrwJeN7OHCSZJ3ZngTcH7yw/eT/AVQUvRMcAC4Ht3/97MPgT+Hg54LyZ4M3E5sFnCtdcBz4RvML5IMD3EEeGx4oTz/kYwWL8YeBpYSdDlegTBdBLfRP8R0IMgUUyWeN2epOwLd0+MpeSNymuAh9392yo8W0TqCI0ZE5GUcPf3gDmAkWSiV3d/g6Absx/B3GQXAjcDwyu57d3AGwTjwT4kGKQPwXQR3wGPALcRTG3xSLnnPQv8iWD6iOcJxpX9NTy8IuG8dwjeVtwCGBfG9jdgPhuOcduYnSnX2mVmmxO86Tm93Lk9k5R9R9AaCEFCJiL1kGnOQBFpqMzsCoIB8W3cfVU17zUZWErwIkFRbU3IGo6NawRMBJa4+wm18VwRqTlqGRORBsHMtghnwD8ynHn/aoJE7MHqJmIJjiN4MeHPNXS/KP4ePlNzj4nUUWoZE5EGwcxaEXSX7ga0An4AHgOuLDftxKbevxvBW6MA89x9cXXvGfG5WwFbhbs/u/t3tfFcEak5SsZEREREYqRuShEREZEYKRkTERERiZGSMREREZEYKRkTERERiZGSMREREZEYKRkTERERiZGSMREREZEYKRkTERERidH/B7Pd6U+oqhORAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 720x360 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_voltage_flux(voltage, flux, fit_voltage, fit_flux)\n", + "plt.plot(71, fit(71), \"o\", c=\"g\", markersize = 6, label= 'Calibration Voltage')\n", + "plt.annotate(\"71 mV\", (77, 45), fontsize=12, bbox=dict(boxstyle=\"round\", fc='w', ec='0.8'))\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Tasa de lluvias aéreas extensas ..." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "#### Data 1 " + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "data_1 = load_data(\"Data/EAS_data_1.dat\")" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "EAS_1 = create_df(data_1)" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>0</th>\n", + " <th>1</th>\n", + " <th>2</th>\n", + " <th>3</th>\n", + " <th>4</th>\n", + " <th>5</th>\n", + " <th>6</th>\n", + " <th>7</th>\n", + " <th>8</th>\n", + " <th>9</th>\n", + " <th>10</th>\n", + " <th>11</th>\n", + " <th>12</th>\n", + " <th>13</th>\n", + " <th>14</th>\n", + " <th>15</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>2041B05A</td>\n", + " <td>80</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>2A</td>\n", + " <td>00</td>\n", + " <td>2E</td>\n", + " <td>00</td>\n", + " <td>2022BD66</td>\n", + " <td>231158.000</td>\n", + " <td>090421</td>\n", + " <td>A</td>\n", + " <td>11</td>\n", + " <td>0</td>\n", + " <td>+0074</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>2041B061</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>26</td>\n", + " <td>2022BD66</td>\n", + " <td>231158.000</td>\n", + " <td>090421</td>\n", + " <td>A</td>\n", + " <td>11</td>\n", + " <td>0</td>\n", + " <td>+0074</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>2041B065</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>30</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>2022BD66</td>\n", + " <td>231158.000</td>\n", + " <td>090421</td>\n", + " <td>A</td>\n", + " <td>11</td>\n", + " <td>0</td>\n", + " <td>+0074</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>2E51E182</td>\n", + " <td>80</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>36</td>\n", + " <td>00</td>\n", + " <td>31</td>\n", + " <td>00</td>\n", + " <td>2D8BF7A6</td>\n", + " <td>231207.008</td>\n", + " <td>090421</td>\n", + " <td>A</td>\n", + " <td>10</td>\n", + " <td>0</td>\n", + " <td>+0066</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>2E51E185</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>34</td>\n", + " <td>31</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>2D8BF7A6</td>\n", + " <td>231207.008</td>\n", + " <td>090421</td>\n", + " <td>A</td>\n", + " <td>10</td>\n", + " <td>0</td>\n", + " <td>+0066</td>\n", + " </tr>\n", + " <tr>\n", + " <th>...</th>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2199</th>\n", + " <td>F3559FF6</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>3D</td>\n", + " <td>3A</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>F247F3A6</td>\n", + " <td>001135.015</td>\n", + " <td>100421</td>\n", + " <td>A</td>\n", + " <td>08</td>\n", + " <td>0</td>\n", + " <td>+0058</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2200</th>\n", + " <td>F3559FF7</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>20</td>\n", + " <td>24</td>\n", + " <td>21</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>F247F3A6</td>\n", + " <td>001135.015</td>\n", + " <td>100421</td>\n", + " <td>A</td>\n", + " <td>08</td>\n", + " <td>0</td>\n", + " <td>+0058</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2201</th>\n", + " <td>F3559FF7</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>2C</td>\n", + " <td>29</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>F247F3A6</td>\n", + " <td>001135.015</td>\n", + " <td>100421</td>\n", + " <td>A</td>\n", + " <td>08</td>\n", + " <td>0</td>\n", + " <td>+0058</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2202</th>\n", + " <td>F3559FF7</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>34</td>\n", + " <td>31</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>F247F3A6</td>\n", + " <td>001135.015</td>\n", + " <td>100421</td>\n", + " <td>A</td>\n", + " <td>08</td>\n", + " <td>0</td>\n", + " <td>+0058</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2203</th>\n", + " <td>F3559FF7</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>38</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>F247F3A6</td>\n", + " <td>001135.015</td>\n", + " <td>100421</td>\n", + " <td>A</td>\n", + " <td>08</td>\n", + " <td>0</td>\n", + " <td>+0058</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "<p>2192 rows × 16 columns</p>\n", + "</div>" + ], + "text/plain": [ + " 0 1 2 3 4 5 6 7 8 9 10 11 \\\n", + "0 2041B05A 80 00 00 00 2A 00 2E 00 2022BD66 231158.000 090421 \n", + "1 2041B061 00 00 00 00 00 00 00 26 2022BD66 231158.000 090421 \n", + "2 2041B065 00 00 00 00 00 30 00 00 2022BD66 231158.000 090421 \n", + "3 2E51E182 80 00 00 00 36 00 31 00 2D8BF7A6 231207.008 090421 \n", + "4 2E51E185 00 00 00 00 34 31 00 00 2D8BF7A6 231207.008 090421 \n", + "... ... .. .. .. .. .. .. .. .. ... ... ... \n", + "2199 F3559FF6 00 00 3D 3A 00 00 00 00 F247F3A6 001135.015 100421 \n", + "2200 F3559FF7 00 00 00 20 24 21 00 00 F247F3A6 001135.015 100421 \n", + "2201 F3559FF7 00 00 00 00 2C 29 00 00 F247F3A6 001135.015 100421 \n", + "2202 F3559FF7 00 00 00 00 34 31 00 00 F247F3A6 001135.015 100421 \n", + "2203 F3559FF7 00 00 00 00 00 38 00 00 F247F3A6 001135.015 100421 \n", + "\n", + " 12 13 14 15 \n", + "0 A 11 0 +0074 \n", + "1 A 11 0 +0074 \n", + "2 A 11 0 +0074 \n", + "3 A 10 0 +0066 \n", + "4 A 10 0 +0066 \n", + "... .. .. .. ... \n", + "2199 A 08 0 +0058 \n", + "2200 A 08 0 +0058 \n", + "2201 A 08 0 +0058 \n", + "2202 A 08 0 +0058 \n", + "2203 A 08 0 +0058 \n", + "\n", + "[2192 rows x 16 columns]" + ] + }, + "execution_count": 68, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "EAS_1" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "EAS_1, time_1 = time_date(EAS_1)" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>0</th>\n", + " <th>1</th>\n", + " <th>2</th>\n", + " <th>3</th>\n", + " <th>4</th>\n", + " <th>5</th>\n", + " <th>6</th>\n", + " <th>7</th>\n", + " <th>8</th>\n", + " <th>9</th>\n", + " <th>10</th>\n", + " <th>11</th>\n", + " <th>12</th>\n", + " <th>13</th>\n", + " <th>14</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>2041B05A</td>\n", + " <td>80</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>2A</td>\n", + " <td>00</td>\n", + " <td>2E</td>\n", + " <td>00</td>\n", + " <td>2022BD66</td>\n", + " <td>090421 231158.000</td>\n", + " <td>A</td>\n", + " <td>11</td>\n", + " <td>0</td>\n", + " <td>+0074</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>2041B061</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>26</td>\n", + " <td>2022BD66</td>\n", + " <td>090421 231158.000</td>\n", + " <td>A</td>\n", + " <td>11</td>\n", + " <td>0</td>\n", + " <td>+0074</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>2041B065</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>30</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>2022BD66</td>\n", + " <td>090421 231158.000</td>\n", + " <td>A</td>\n", + " <td>11</td>\n", + " <td>0</td>\n", + " <td>+0074</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>2E51E182</td>\n", + " <td>80</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>36</td>\n", + " <td>00</td>\n", + " <td>31</td>\n", + " <td>00</td>\n", + " <td>2D8BF7A6</td>\n", + " <td>090421 231207.008</td>\n", + " <td>A</td>\n", + " <td>10</td>\n", + " <td>0</td>\n", + " <td>+0066</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>2E51E185</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>34</td>\n", + " <td>31</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>2D8BF7A6</td>\n", + " <td>090421 231207.008</td>\n", + " <td>A</td>\n", + " <td>10</td>\n", + " <td>0</td>\n", + " <td>+0066</td>\n", + " </tr>\n", + " <tr>\n", + " <th>...</th>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2199</th>\n", + " <td>F3559FF6</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>3D</td>\n", + " <td>3A</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>F247F3A6</td>\n", + " <td>100421 001135.015</td>\n", + " <td>A</td>\n", + " <td>08</td>\n", + " <td>0</td>\n", + " <td>+0058</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2200</th>\n", + " <td>F3559FF7</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>20</td>\n", + " <td>24</td>\n", + " <td>21</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>F247F3A6</td>\n", + " <td>100421 001135.015</td>\n", + " <td>A</td>\n", + " <td>08</td>\n", + " <td>0</td>\n", + " <td>+0058</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2201</th>\n", + " <td>F3559FF7</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>2C</td>\n", + " <td>29</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>F247F3A6</td>\n", + " <td>100421 001135.015</td>\n", + " <td>A</td>\n", + " <td>08</td>\n", + " <td>0</td>\n", + " <td>+0058</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2202</th>\n", + " <td>F3559FF7</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>34</td>\n", + " <td>31</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>F247F3A6</td>\n", + " <td>100421 001135.015</td>\n", + " <td>A</td>\n", + " <td>08</td>\n", + " <td>0</td>\n", + " <td>+0058</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2203</th>\n", + " <td>F3559FF7</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>38</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>F247F3A6</td>\n", + " <td>100421 001135.015</td>\n", + " <td>A</td>\n", + " <td>08</td>\n", + " <td>0</td>\n", + " <td>+0058</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "<p>2192 rows × 15 columns</p>\n", + "</div>" + ], + "text/plain": [ + " 0 1 2 3 4 5 6 7 8 9 10 \\\n", + "0 2041B05A 80 00 00 00 2A 00 2E 00 2022BD66 090421 231158.000 \n", + "1 2041B061 00 00 00 00 00 00 00 26 2022BD66 090421 231158.000 \n", + "2 2041B065 00 00 00 00 00 30 00 00 2022BD66 090421 231158.000 \n", + "3 2E51E182 80 00 00 00 36 00 31 00 2D8BF7A6 090421 231207.008 \n", + "4 2E51E185 00 00 00 00 34 31 00 00 2D8BF7A6 090421 231207.008 \n", + "... ... .. .. .. .. .. .. .. .. ... ... \n", + "2199 F3559FF6 00 00 3D 3A 00 00 00 00 F247F3A6 100421 001135.015 \n", + "2200 F3559FF7 00 00 00 20 24 21 00 00 F247F3A6 100421 001135.015 \n", + "2201 F3559FF7 00 00 00 00 2C 29 00 00 F247F3A6 100421 001135.015 \n", + "2202 F3559FF7 00 00 00 00 34 31 00 00 F247F3A6 100421 001135.015 \n", + "2203 F3559FF7 00 00 00 00 00 38 00 00 F247F3A6 100421 001135.015 \n", + "\n", + " 11 12 13 14 \n", + "0 A 11 0 +0074 \n", + "1 A 11 0 +0074 \n", + "2 A 11 0 +0074 \n", + "3 A 10 0 +0066 \n", + "4 A 10 0 +0066 \n", + "... .. .. .. ... \n", + "2199 A 08 0 +0058 \n", + "2200 A 08 0 +0058 \n", + "2201 A 08 0 +0058 \n", + "2202 A 08 0 +0058 \n", + "2203 A 08 0 +0058 \n", + "\n", + "[2192 rows x 15 columns]" + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "EAS_1" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "events_1, counts_1, mean_1, std_1 = events_counts(time_1)" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJoAAAJnCAYAAADftTl7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAB1yklEQVR4nO3deZwcVbn/8e+TyWQCAROWsEhWZHFIXCADgkZWgYjsbuSCouReBU28XPUKMvwAveaqKAKiVxRBlkuGVUABESRBHFlkwkUEI5uCgkAQZAuEbM/vj1Odqen0Vt3VXd09n/fr1a/uruWcp06dqu55puq0ubsAAAAAAACAWo3IOgAAAAAAAAC0BxJNAAAAAAAASAWJJgAAAAAAAKSCRBMAAAAAAABSQaIJAAAAAAAAqSDRBAAAAAAAgFSQaAIAAJkys0+YmZvZJ7KOBQAAALUh0QQAQEyU8Cj32DPrOEsxs9NaIc5GM7MJZnaBmf3dzN4ws8fN7Cwz26jI8qPM7Etm9nsze83MXjazfjP7SAV1fd/MVpvZZrFp65nZV8zsITNbbmZLzewKM+uuMP7dozLdzL5WZtkPR8t9MHr/HjM73czuMbPnou3/i5n92My2KVLGLmb2dTP7hZk9E5X3ZCWx1pOZ7WtmZ5jZrWb2fBRXfwXr7RC199Ko/R+K9sd6ZdYb0pax6Ueb2e/M7FUze8nMbjOzAyvchk3N7OlKYjezzaP9fk70flszO8HMFprZ38xshZk9a2bXmdleRcqYYGa9ZnalmT1qZmuiugvuewAAajEy6wAAAGhSXykx7/FGBYF0mNlbJN0haTNJ10n6k6RdJP27pFlm9h53fz62/ChJv5S0p8L+/onCP+gOkHS5mU1391OK1GWSDpXU7+5Lo2ldkm6R9B5JA5LOljRR0oclfcDM9nb3u0vEv6GkiyS9JmmDCjb5MEmvS/pF9P5qSeOjNrhU0ipJu0maI+kIM9vX3e/MK+NfFNpnpaQ/Stq8gnob4bOSDpG0XNKjkjYut4KZvUvSQkmdkq6S9DdJe0s6RdI+ZraPu79RZPX8tpSZfVvSFyQ9Kek8SaMkHSHp52Y2z92/VyakH6qy/SiFbR0h6afR+/+S9FGFfXKjpBckbS/pYEkHm9m/u/t388rokfQ1SS7pL5JekjSuwvoBAEiERBMAAAW4+2lZx4BU/Y9Ckulz7n5ObqKZfUfSf0iaL+nY2PKfVUgy3SlpX3dfFi2/gaTbJJ1sZj9z94ECde0i6c2SvhWb9nmFJNNVkj7q7mui8i6XdK2kC8zsbbnpBZwtaaykr0exFhUlyT4g6WZ3fy2afKakS9z973nLnhSV9yNJb8sr6kKF5NaD7r7CzLxUvQ30TUm9CsnCiQqJk6LMrEMhUbi+pEPc/WfR9BGSrpD0QYU+8I0C667Tlmb2boUk02OSdnb3f0bTvyVpsaRvm9n17v54kXg+LulwSZ9R6JflHCbpeUm3R+9vkvRNd/+/vHL3UEhmfsvMrnT3p2OzByTtLun37v6ymd0maY8K6gYAIDFunQMAoEpmdm50+8khRea/K5p/Vd709c3sy2Z2n5kti269udPMZhcoY8+ojNPM7J1mdoOZvWjhVq5fR3/0xpd/XNKp0dtFFrvlL2+5LS3c3vV4dOvNc2b2UzObUSCGUWb2OTO718z+GdX9eHSrzvsStNc20a07/4y2+w4z+0CZdSaY2ffM7M8Wbvd63sx+ZmY7J6j3LZL2U7gy6ft5s0+VtEzSx8xsTGz6YdHz/FySSZLc/VWFK0NMIVFQSG7da6P6TYNJrC/Fk0nufp2k30jaQUX+8I/61yclfU7S3wstk2dvSW+SdE2snm/mJ5ki31S4Wme6mW0Sn+Hu97n7/7n7igrqLMnMZpjZ2RZuQ3zBwq1rj1i4Ba7grYvFuPud7v6gu6+ucJU9JHVLuj2XZIrKWSPpS9HbY6P9lG+dttTgvpyfSzJF5T2u0L+6FPbXOsxskqTvSjpfsSukijGzN0Ux/Dy3ve5+YX6SKZr+a4Uk6ChJ786b96S7/8bdXy5XJwAAtSLRBABA9S6Knj9eZP7R0fOFuQlmNk5Sv6T/lrRa0gVROeMlLbDiY+/0KNz2NFrSjyVdL2mmpFvNbPvYcmdJ+nUsvq/EHrkYpipc4fAZhasyzlC4TewDku6wdceZuVDhippOSRcr/KF8u8IVMLOKxDuEmW0r6S5JH1K4SuhshduOrlW4uqPQOjtJui+K8yFJ50j6ucKVGf1mdkAldUvKjVtzc/4VQ+7+iqTfKlztsmts1hbR858LlJebtk+R+g6T9H+xK1reImmSpIfdvdDVN7mEw975MyyM8XSepGvd/X+L1JfvcIVb435ewbIeLSuF/lgv/6Zwa9lDClcX/UDS0wpXev02ujWwXnLtelP+DHf/s6SHJU2WtHWBdQu1ZdHyVHpfmsKx9JLCdlfiQIXE0TXlFoysjJ5XlVwKAIA64tY5AAAKMLPTisxa7u7fkMKVFWb2sKQDzWxjd38htn6Xwh/WSzX0D9KzJO0o6QR3Pz22/GiFpMtJZnaVu9+XV+8HJH3S3S+MrfNpSecqjKPzmSims6Jk1h6SLnT32wpsw7kKt3ad7O5rb8Mys/9RSCBdZGaT3f1VMxsbbcdiSe/Kv4ok/yqYEr4vaRNJx7v72bH1D4m2ewgzG6lwW9MGkvaKrtbIzXuzpHsknW9mU0qMrZOTS8Q9XGT+IwpXPG0n6dZo2j8kbStpqqQlecvnEhKTzGw9d389Ftu0qJz/l7B+RevlO0/hH4PHFpi3juh2sEMk/TreH0v4sKQNJd3l7i9WUkeVvi7pswX6zxyFxOlnFK6uqodK2n+76PFYLLZ12jK66m0rSa/m3ZoWL0sqvC+PV7gdc7/o9rWyY0spJC2XSbq53IJmNlkh+fmaBm+zAwCg4biiCQCAwk4t8jgxb7mLFK44yL/t7SBJG0m61N1XSWuTMkdJGognmSTJ3ZdLOkHhlqx/KRDPb+NJpsgFClcu7FLpRpnZBIWkyl8l5cdwh6Q+hcGVc1cZeRTTG5LWGT8oPoB2mTr3VRhLZ8ggydGtY78usNoHFK4EOieeZIrW+XsU+xYqflVR3Njo+aUi83PTx8Wm3RA991rsV8miRMNJseXi60iDt83Fr0Cppn6Z2TEKAzx/xt2fLbJuvncrjEVV9gqY6Mq2cxT6UKVX2FTF3Z8ocqvbBZJelrR/Hauvqv1VuC2r3Zc7KFzFeK67/6p0uGvXGa1wxeAvovNDqWW7FAZ575J0WvyWPgAAGo0rmgAAKMDdC43XUsjFCr8CdbSGjv+zzm1zknaW1CHJi1wx1Rk9F/q5+3UGnXb3lWb2rEJCq1I7Rs+/cfeVBeYvVEiG7Sjp4ujKi58rJM7uM7OrFcYUujs20HSldfYXSTbcpnXHJ9otep5cpK22jZ67FX55K21nK1zt825JD5rZjQoJtw8oJN9eUkg65CffDpP0iLs/WEvlZjZF4eq3K939igSrHhbFd22Z8jdTuM1rvMKVRvm/OJcqM+uU9GmFq+N2UGi7+D88t6pn/VWqqC3Libb9EoVbBb9UZvG4fRWu6CuZNLQw2PklCoPNXy7p29VFCgBAOkg0AQBQA3d/0sxulbSvmXW7+5Loj/hZku5z9/tji+duM9s5ehRT6GfPXyyy7CqF5FWlcldkFLrtJz59XGzaRxWutvoXDY71tNzCIOdfrOBqm1ydxZZ7psC0XFt9uEzZlfxEfO4qk7FF5uemv5ibEN02OFPh6qUPKYwx9IpCUuvLCr94tkrhp+Ulrb11aSflXSlWTf0KV/q8ruIDjhdzmKR73P2pYgtE/XOhwi1l/+7ulfzyWa0uj2L7s6TrFPZ57pbH4xWuxKmXatpfKtyW1ZT1ZYVk617RYPKVOlzSCg1eXbeOKMn0vwrHyRWSjnL3Zvl1QADAMMWtcwAA1C43KHjuKqYjFf6Zc1Hecrk/Us90dyvx2Ev1k4thiyLzt8xbTu7+uruf5u7bKQxqfZTCgOZHSbpq3SKK1rl5kfmFYsmtc0iZtvpKgXXzPRQ9Fxo3Rxq8OmrIGD7u/qq7n+Tu27l7l7tv6u4fV0iKbKDwU/Hxq8Jyt839NIX6d1K4beu5vF8O/Ek0vzeadm1uBTN7p8KYUvn1K7bMlgpXkO2gcCXTd4stmxYz61Fom19J2t7dP+nuX3b30yR9VeHW03pK3P7F2jL6BcKnJG0QtWXZshT2pUm6LW9f5gaGf0807cVY/R0KVxEudPeCt+lFV0r1KVwltkDSv+Ru0wUAIEtc0QQAQO1+qjDOzFFmdpJCwmmVwh9/cb9TuNXqvXWOJ3d7WqErnXI/iz7TzEYW+MM0l+S6t1DB7v43SZeaWZ/CH/AzzWyTMmM1xevsKHD73J4F1rkren6vpJ8VmJ/Eouh5PzMbEf/luejXzt6jMIDyXYVWLiD3K4P5+/cwSX9X2M9xjymMibWdmU0t8Mtz74+eF8amXazwS3j5tlX41b37FAZoj//MfaHxodaKxspaKGkbSce6+48KLVcH20TPPyvQ33aRtJ7qa6GkXoWrDL8en2FmWyskoJ7Q0F8YLNWWCyV9LCrvJ3nzCu3LWxQGl8+3gcLVgs8q/Ipk/FbU3RWu6iu2L0cpXMF0iEJf+WT+LyoCAJAVrmgCAKBG0a+OXaEwzsx/SHqHpBvdfWnecksVBuztMbP/F121MISZvSUapLkWuaTPpAKxPqnwh+8UhVuW4nW/S+H2uH8q+gPXzMab2dsK1DFG4Q/lVQq39xQVq3OqpLl5dR6idcdnksLtVY9J+qyZHVCoXDPbzcwKJWPy639M4Ve7pkj6bN7sr0Tbckl0tUq8/DcVqHNfhdsIH5P0w9j08QoJq2vzb12K3p8bvT09+jWz3HqHKCTT/qjYoOju/jl3/9f8hwYTGzdE0+Ljgh0m6Y/uvs6vq0W39d2uMMD6MQ1MMknS49Hznnkxbaah45rVy68VfjlwdzM7OFb/CA3+0t25efutaFtqcF/2mtna8dGicbU+q3BL4NoElLt/v8i+zP2wwKPRtM/l1b9G4TgYIhr4+xqFJNP5IskEAGgyXNEEAEABRQagzrnW3e/Lm3aRpH/V4BUT+bfN5cxVuCrlq5I+Zmb9Clc0vFlhYOudFX7BLv+qlyQWKfyR+nUzm66QOJK7fy2af6yk30r6lpntpzDQ+ESFcV7WKPzh+kq07FaS/s/M/iDpfkl/k/QmSQcq3PL23diypXxW0p2Szorq/L3ClS6HScoNNr5WNND54ZJ+KekGM7tD4Sqe16JYd5a0tcKtfpUMSv4ZSXdI+q6Z7aOQeHiXwhVcDytc8ZLvT2Z2v8J4TMsVboF6n8L4QofkJaYOUbiCrNjAzd9RaLMPSbo7GtdrkkKbv6aQ/Kk6WWBm20h6m6T5RRa5TSHRtljSlCL9+0J3fzxW5lu17q8sbmRmF8bef9HdC12tE3ePQn87PNqP/Qq3Ub5f4aq4v5dZf4ho7Kx/jd7mxujaNh6Xu38i9nq1mX1S4Sqjq6Kxxf6q8IuFPVFsZ8bKL9mW7n6HmX1H4Zf67o/KG6VwddLGkubF2zEpMzNJh0q6s8j4Z+dKOkDhKqmnJJ0SVhniNne/La/cC2Nv3xo9f9PMcsfvj929v9q4AQBYy9158ODBgwcPHtFD4Vemyj0+UWTdR6L5z0saVaKOUQoJpzsUxiJ6Q+EP31sVrjLaJLbsnlGZpxUp63FJjxeYfpRCYub1XNx587eS9AOFW4ZWKPzReq2knfOWGyfpFIU/0p+KYn1aIXExW5IlaNttFMZ0elHSMoXE0wckfaJYuyqMU/QNSQ8oJGRejdr5qmgbRyaof6LClSZPR9v8hMIvu21UZPlvSfqDwm2RrysknL4haeMCy96gMDB40XgUboX7ahT/G5Kek3SlpB0SbEOurb6WN/0/o+k71dCv98xbZ88K1plSYdwbS/qfqL8uV7gi7L+jNinYhytog6KPIuvtELX3P6L2f1jhirb1krRlXhz3RH35FYUrpw5MsB1Tonr686bvHE3/fJH1bqtgv6xzvqhgnYLnNR48ePDgwSPpw9z5YQoAAIBqReM8PSfpcnc/utzydYrhDklvdvcpWdTfTrJuSzP7b4Vfqtva1x3PCwCApscYTQAAALU5QOGX6IrdNldX0a+f7apwRRpq0CRteZjCLxqSZAIAtCSuaAIAAAAAAEAquKIJAAAAAAAAqSDRBAAAAAAAgFSQaAIAAAAAAEAqRmYdQL1tuummPmXKlKzDAAAAAAAAaBuLFy/+h7uPz5/e9ommKVOmaGBgIOswAAAAAAAA2oaZPVFoOrfOAQAAAAAAIBUkmgAAAAAAAJAKEk0AAAAAAABIBYkmAAAAAAAApIJEEwAAAAAAAFJBogkAAAAAAACpGJl1AAAAAAAAIHsvv/yyli5dqpUrV2YdCjLU2dmpzTbbTG9605uqWp9EEwAAAAAAw9zLL7+sZ599VltttZXWW289mVnWISED7q7XX39dTz31lCRVlWzi1jkAAAAAAIa5pUuXaqutttL6669PkmkYMzOtv/762mqrrbR06dKqyiDRBAAAAADAMLdy5Uqtt956WYeBJrHeeutVfQsliSYAAAAAAMCVTFirlr5AogkAAAAAAACpINEEAAAAAABa3mmnnSYzk5lpxIgR2mijjbTzzjurt7dXzzzzTOLyTj/9dN12223pB9rmSDQBAAAAAIC2MHbsWN1555264447dNlll+nwww/XJZdcore97W1avHhxorJINFVnZNYBAAAAAAAApGHkyJHadddd177ff//9ddxxx2n33XfXEUccoT/96U/q6OjIMML2xxVNAAAAAAAgNX190vTpUkdHeO7ryzaecePG6fTTT9ejjz6qW265RZJ04okn6m1ve5s22GADTZgwQUceeeSQ2+umTJmi559/Xl/5ylfW3o6Xu7rpjDPO0M4776yxY8dq880310EHHaRHH300i01rSiSaAAAAAABAKvr6pN5e6ZxzpOXLw3Nvb/bJpj333FMjR47UXXfdJUlaunSpTjrpJN1www0666yz9Oc//1l777231qxZI0m65pprNHbsWM2ZM0d33nmn7rzzTu20006SpCeffFJz587Vddddp/POO0+rV6/Wu9/9br300kuZbV8z4dY5AAAAAACQivnzpfPPl/baK7zfa6/wft48afbs7OIaPXq0Nt10Uz377LOSpAsuuGDtvNWrV2u33XbThAkT1N/fr91331077rijRo4cqQkTJgy5FU+SzjzzzCHr7rvvvtpss8103XXX6eMf/3hjNqiJcUUTAAAAAABIxZIl0syZQ6fNnBmmZ83d177+xS9+oXe/+90aO3bs2oSSJD388MNly7nrrru07777apNNNtHIkSO1/vrr69VXX61o3eGgoYkmM5toZovM7I9m9qCZ/Xs0fWMzu8XMHomeNyqy/tHRMo+Y2dGNjB0AAAAAAJTW3S319w+d1t8fpmdp+fLlev7557X55pvrnnvu0cEHH6wJEybokksu0Z133rn2lrrly5eXLOevf/2r9ttvP7m7fvjDH+q3v/2t7rnnHm222WZl1x0uGn3r3CpJX3D3e81sQ0mLzewWSZ+QdKu7f8PMTpR0oqQT4iua2caSTpXUI8mjdX/m7v9s6BYAAAAAQBvr6wu3Py1ZEpIDvb3Z3vKE1tLbK82ZE26XmzkzJJnmzAl9KkuLFi3SqlWrtNtuu+maa67R+PHjdfnll8vMJElPPPFEReXcdNNNeu2113TddddpzJgxkqRVq1bphRdeqFvsraahiSZ3f1rS09HrV8xsiaStJB0iac9osYsk3aa8RJOk/SXd4u4vSFKUoJolKeMhxQAAAACgPeQGcs5PEkgkm1CZXD+ZN28wWTl/frb958UXX9QJJ5ygbbbZRu973/t00003qbOzc22SSZIuvfTSddYbNWrUOlcpvf766xoxYoRGjhxMp1xxxRVatWpV/TagxWQ2GLiZTZG0o6S7JW0eJaEk6RlJmxdYZStJf4u9fzKaBgAAAABIQbMO5IzWMnt2dv1l1apVa2+De+WVV7R48WL94Ac/0GuvvaabbrpJHR0d2nfffXXWWWfp+OOP10EHHaQ77rhD//u//7tOWW9961t1ww03aNasWdpggw20/fbba++999bq1av1yU9+UnPmzNGDDz6ob3/72xo3blyDt7R5ZTIYuJltIOlqSce7+8vxeR5G5/KCK1Ze/qfMbMDMBp577rlaigIAAACAYaOZB3IGKvHSSy9pt91207vf/W59+MMf1lVXXaWjjjpKf/jDHzRjxgxJ0gEHHKBvfvObuvrqq3XwwQfr17/+ta6//vp1yvrWt76lMWPG6AMf+IB23nlnLV68WG9729t04YUX6u6779aBBx6oBQsW6Morr9TYsWMbvalNy+KjrjekQrNOSddL+qW7fyea9pCkPd39aTPbUtJt7r593nqzo2U+Hb3/YbRcyVvnenp6fGBgoB6bAgAAAABtZfp06ZxzBq9okqRFi8IVTQ88kF1cqL8lS5aoO+sRu9FUyvUJM1vs7j350xv9q3Mm6XxJS3JJpsjPJOV+Re5oSdcVWP2XkvYzs42iX6XbL5oGAAAAAEhBbiDnRYuklSvD85w5YToAVKLRYzS9R9LHJP3BzO6Lpp0k6RuSrjCzOZKekPQRSTKzHknHuvu/uvsLZvZfku6J1vtqbmBwAAAAAEDtmnEgZwCtpdG/OtcvyYrM3qfA8gOS/jX2/gJJF9QnOgAAAABAlgM5A2h9mQwGDgAAAAAAgPZDogkAAAAAAACpINEEAAAAAACAVJBoAgAAAAAAQCpINAEAAAAAACAVJJoAAAAAAACQChJNAAAAAACg5Z122mkyM2277bYF52+77bYyM5122mmNDayMXNz5j5tuuqmi9X/0ox9p+vTpGj16tDbffHN99KMfHTL/2GOP1Vvf+lZtsMEG2mijjbT77rvrV7/6VT02RZI0sm4lAwAAAAAANNDo0aP1l7/8RQMDA+rp6Vk7/Z577tHjjz+u0aNHZxhdcWPHjl0nsdTd3V12vZNPPlnf+973dPLJJ2vnnXfWs88+q1//+tdDlnn99dc1d+5cbb/99lqxYoXOP/98vf/979dvfvMb7brrrqluh0SiCQAAAAAAtIkxY8Zop5120mWXXTYk0XTZZZdp77331uLFizOMrriRI0cmTvo8+OCD+vrXv66bbrpJ++6779rpH/nIR4Ysd9FFFw15P2vWLE2dOlULFiyoS6KJW+cAAAAAAEDbOOKII3TFFVfI3SVJ7q4rrrhCRxxxRMHlf/Ob32iPPfbQ+uuvr0022UT/9m//pldeeWXt/KefflrHHHOMtt56a6233nrabrvtdPLJJ2vFihVrl3n88cdlZrriiiv06U9/WmPHjtWECRN06qmnas2aNXXZzosuukjbbLPNkCRTJTo6OjRu3Lgh8aeJRBMAAAAAAGgbhx9+uJ599ln19/dLComk5557Tocffvg6y/72t7/V+973Pm2xxRa66qqrdNZZZ+nGG2/UJz/5ybXL/OMf/9DGG2+s73znO7rpppv0n//5n/rJT36iefPmrVPel770JW2wwQa66qqrdNRRR+mrX/2qrrrqqrIxv/jii9p0003V2dmpHXfcUT/96U/LrnP33Xdr+vTpOu2007Tpppuqq6tL73vf+7RkyZJ1lnV3rVq1Ss8//7zOPPNMPfLIIzrmmGPK1lENbp0DAAAAAABtY9y4cZo1a5Yuu+wyvfe979Vll12mWbNmaezYsesse+KJJ+rd7363Lr/88rXTttpqK+2zzz564IEHNH36dL3tbW/Tt7/97bXz3/Oe92jMmDE65phjdM4552jUqFFr5+2+++4644wzJEn77ruvbrrpJv30pz9d53a2uG222Uann366dtxxR73yyiv64Q9/qA9+8IO6+uqrCybHcp555hnde++9WrJkic477zyNHDlSJ598smbNmqWHHnpoyHhUl19+uWbPni0p3F54+eWXa5dddqmgNZPjiiYAAAAAANBWjjjiCF111VV64403dNVVVxW8be61117TnXfeqY985CNatWrV2sfMmTPV2dm5djwnd9dZZ52lHXbYQeutt546Ozt15JFH6o033tBf//rXIWXut99+Q97vsMMOevLJJ0vGetRRR+nzn/+89tprLx188MG6/vrrteuuu+qrX/1qyfXcXcuWLdPVV1+tww47TAcddJCuueYaPfXUU7r00kuHLLv//vvrnnvu0S9+8QsddthhOuKII3TbbbeVLL9aJJoAAAAAAEBbOfjgg/Xqq6+qt7dXy5Yt00EHHbTOMv/85z+1evVqfeYzn1FnZ+faR1dXl1auXKm//e1vkqSzzjpLX/ziF3XYYYfpuuuu0+9+9zt9//vflyQtX758SJnjxo0b8n7UqFHrLFOOmenwww/X/fffr9WrVxddbqONNtLmm28+5Nfptt56a02ZMkV//OMf11m2p6dHs2bN0iWXXKLddttNp5xySqK4KsWtcwAAAAAAoK2MGTNGBx54oM4880x9+MMf1pgxY9ZZZty4cTIznXbaaTrggAPWmf/mN79ZknTllVfqQx/6kObPn792Xn4iJ21mJjMruUx3d7eeeOKJdaa7u0aMKH1d0Y477qjLLrusphiLIdEEAAAAAADaznHHHac33nhDxx57bMH5Y8aM0a677qqHHnqo5NU9r7/+urq6uoZMy781LU3urquvvlrveMc71NHRUXS5Aw88UBdddJH++Mc/aocddpAkPfbYY3riiSf0jne8o2T5d955p6ZOnZp67BKJJgAAAAAA0Ib23HNP7bnnniWXOf3007XPPvtoxIgR+tCHPqQNN9xQf/3rX3XDDTdo/vz52m677bTvvvvqu9/9rt71rnfpLW95iy699FI9+uijqcW5xx576IMf/KDe+ta3atmyZTrvvPN0991369prrx2y3MiRI3XKKaesTYoddthh2mmnnXT44Yfra1/7mjo6OnTKKadou+2200c/+lFJ4Rf3vvOd7+iwww7TpEmT9Pzzz+uiiy7SXXfdpZ///OepbcOQOOtSKgAAAAAAQJObOXOmbr/9dp166qn62Mc+ptWrV2vy5MmaNWuWNt98c0nSKaecoueee04nn3yyJOnwww/Xd7/73YLjPlVjm2220VlnnaWnn35aI0aM0E477aQbbrhB73//+4cst3r1aq1Zs2bt+46ODt144406/vjjNWfOHK1Zs0bve9/7dPbZZ6uzs1OSNHHiRHV0dOikk07Sc889p/Hjx+ud73yn+vv7tdtuu6USfz5z97oU3Cx6enp8YGAg6zAAAAAAAGhaS5YsGTKoNFCuT5jZYnfvyZ/Or84BAAAAAAAgFSSaAAAAAAAAkAoSTQAAAAAAAEgFiSYAAAAAAACkgkQTAAAAAAAAUkGiCQAAAAAAAKkg0QQAAAAAAIBUkGgCAAAAAABAKkg0AQAAAAAAIBUkmgAAAAAAAJAKEk0AAAAAAGDYeuihh/TZz35W3d3dWn/99bX11lvr3//93/Xiiy8mKue6666Tmamnp6c+gbaIkVkHAAAAAAAAkJVbbrlFv/3tb3Xcccfp7W9/u/785z/r5JNP1p133qm77rpLI0aUv0Zn+fLl+o//+A9tvvnmDYi4uZFoAgAAAAAAw9bs2bP12c9+VmYmSdpzzz01YcIE7b///vrNb36jPfbYo2wZ3/rWt7TVVlvpLW95ix544IF6h9zUuHUOAAAAAAC0PHfX17/+dW299dbq7OyUmQ15PP744wXX22STTdYmmXJ23HFHSdLf//73svX+9a9/1emnn66zzz675m1oBySaAAAAAABAy7vooot00kknae+999b111+vM888U+uvv76mTp2q3t5ejRs3ruKy7rzzTknSdtttV3bZL3zhC/rIRz6inXbaqdrQ2wq3zgEAAAAAgJZ3+umna5999tGPf/xjSdL+++8vM9MJJ5ygz33ucxUnml577TWdcMIJ2mOPPTRjxoySyy5cuFA333yzHn744VrDbxtc0QQAAAAAAFraypUr9dBDD+mDH/zgkOmHH3643njjDd19990VlePumjNnjpYuXaoLLrig5LKrVq3S5z73OfX29jIIeAxXNAEAAAAAgJb2wgsvaM2aNdpss82GTM+9X7p0aUXlnHDCCbrmmmt0yy23aOutty657HnnnaeXXnpJn/jEJ/Tiiy9KklasWKHVq1frxRdf1JgxY9TZ2Zl8Y1ociSYAAAAAANDSxo8fr1GjRumZZ54ZMv3pp5+WJG211VZlyzjzzDP17W9/W5dddpne+973ll3+oYce0pNPPlnwaqaNNtpIl1xyiY466qgKt6B9kGgCAAAAAAAtbcSIEXrXu96lK6+8Up/97GfXTr/sssvU1dW19lfkirn00kv1hS98Qd/5znf0kY98pKI6586dq0MPPXTItG984xv6y1/+oh/+8Ifq7u5OvB3tgEQTAAAAAABoeV/5yle0zz776Oijj9a//Mu/6P7779epp56quXPnlhxD6de//rU++clPar/99tOuu+6qu+66a+28CRMmaMKECZKkiy++WMccc4wee+wxTZ48Wdtss4222WabIWVdeOGF+sc//qE999yzLtvYChgMHAAAAAAAtLy99tpLV155pe69914ddNBBOvvss/XFL35R3/zmN0uut2jRIq1cuVK//OUvtdtuuw155H7BTpLWrFmj1atXy93rvSktzdq9gXp6enxgYCDrMAAAAAAAaFpLliwZtrd6obByfcLMFrt7T/50rmgCAAAAAABAKkg0AQAAAAAAIBUkmgAAAAAAAJAKEk0AAAAAAABIBYkmAAAAAAAApIJEEwAAAAAAULv/Kj0qV0tfINEEAAAAAMAw19nZqddffz3rMNAkXn/9dXV2dla1LokmAAAAAACGuc0220xPPfWUXnvtNa5sGsbcXa+99pqeeuopbbbZZlWVMTLlmAAAAAAAQIt505veJEn6+9//rpUrV2YcDbLU2dmpzTfffG2fSIpEEwAAAAAA0Jve9KaqkwtADrfOAQAAAAAAIBUkmgAAAAAAAJAKEk0AAAAAAABIBYkmAAAAAAAApKKhg4Gb2QWSDpS01N2nR9Mul7R9tMg4SS+6+zsLrPu4pFckrZa0yt17GhAyAAAAAAAAKtToX527UNL3JF2cm+DuH829NrMzJL1UYv293P0fdYsOAAAAAAAAVWtoosndbzezKYXmmZlJ+oikvRsZEwAAAAAAANLRTGM0vVfSs+7+SJH5LulmM1tsZp9qYFwAAAAAAACoQKNvnStltqS+EvNnuvtTZraZpFvM7E/ufnuhBaNE1KckadKkSelHCgAAAAAAgHU0xRVNZjZS0uGSLi+2jLs/FT0vlXSNpF1KLPsjd+9x957x48enHS4AAAAAAAAKaIpEk6T3SfqTuz9ZaKaZjTGzDXOvJe0n6YEGxgcAAAAAAIAyGppoMrM+SXdK2t7MnjSzOdGsI5R325yZvdnMbozebi6p38x+L+l3km5w95saFTcAAAAAAADKa/Svzs0uMv0TBab9XdIB0es/S3pHXYMDAAAAAABATZrl1jkAAAAAAAC0OBJNAAAAAAAASAWJJgAAAAAAAKSCRBMAAAAAAABSQaIJAAAAAAAAqSDRBAAAAAAAgFSQaAIAAAAAAEAqSDQBAAAAAAAgFSSaAAAAAAAAkAoSTQAAAAAAAEgFiSYAAAAAAACkgkQTAAAAAAAAUkGiCQAAAAAAAKkg0QQAAAAAAIBUkGgCAAAAAABAKkg0AQAAAAAAIBUkmgAAAAAAAJAKEk0AAAAAAABIBYkmAAAAAAAApIJEEwAAAAAAAFJBogkAAAAAAACpINEEAAAAAACAVJBoAgAAAAAAQCpINAEAAAAAACAVJJoAAAAAAACQChJNAAAAAAAASAWJJgAAAAAAAKSCRBMAAAAAAABSQaIJAAAAAAAAqSDRBAAAAAAAgFSQaAIAAAAAAEAqSDQBAAAAAAAgFSSaAAAAAAAAkAoSTQAAAAAAAEgFiSYAAAAAAACkgkQTAAAAAAAAUkGiCQAAAAAAAKkg0QQAAAAAAIBUkGgCAAAAAABAKkg0AQAAAAAAIBUkmgAAAAAAAJAKEk0AAAAAAABIBYkmAAAAAAAApIJEEwAAAAAAAFJBogkAAAAAAACpINEEAAAAAACAVJBoAgAAAAAAQCpINAEAAAAAACAVJJoAAAAAAACQChJNAAAAAAAASAWJJgAAAAAAAKSCRBMAAAAAAABSQaIJAAAAAAAAqSDRBAAAAAAAgFSQaAIAAAAAAEAqSDQBAAAAAAAgFQ1NNJnZBWa21MweiE07zcyeMrP7oscBRdadZWYPmdmjZnZi46IGAAAAAABAJRp9RdOFkmYVmH6mu78zetyYP9PMOiR9X9L7Je0gabaZ7VDXSAEAAIBhrK9Pmj5d6ugIz319WUcEAGgFIxtZmbvfbmZTqlh1F0mPuvufJcnMLpN0iKQ/phgeAAAAAIWkUm+vdP750syZUn+/NGdOmDd7draxAQCaW7OM0TTXzO6Pbq3bqMD8rST9Lfb+yWgaAAAAgJTNnx+STHvtJXV2hufzzw/TAQAopRkSTT+Q9BZJ75T0tKQzai3QzD5lZgNmNvDcc8/VWhwAAAAwrCxZEq5kips5M0wHAKCUzBNN7v6su6929zWSzlO4TS7fU5Imxt5PiKYVK/NH7t7j7j3jx49PN2AAAACgzXV3h9vl4vr7w3QAAErJPNFkZlvG3h4m6YECi90jaVszm2pmoyQdIelnjYgPAAAAGG56e8OYTIsWSStXhuc5c8J0AABKaehg4GbWJ2lPSZua2ZOSTpW0p5m9U5JLelzSp6Nl3yzpx+5+gLuvMrO5kn4pqUPSBe7+YCNjBwAAAIaL3IDf8+aF2+W6u8P4TAwEDgAox9w96xjqqqenxwcGBrIOAwAAAAAAoG2Y2WJ378mfnvmtcwAAAAAAAGgPJJoAAAAAAACQChJNAAAAAAAASAWJJgAAAAAAAKSCRBMAAAAAAABSQaIJAAAAAAAAqSDRBAAAAAAAgFSQaAIAAAAAAEAqSDQBAAAAAAAgFSSaAAAAAAAAkAoSTQAAAAAAAEgFiSYAAAAAAACkgkQTAAAAAAAAUkGiCQAAAAAAAKkg0QQAAAAAAIBUkGgCAAAAAABAKkg0AQAAAAAAIBUkmgAAAAAAAJAKEk0AAABtpq9Pmj5dGjFCGj06PE+fHqYDAADUE4kmAACANtLXJ/X2SoceKk2ZIv33f0uTJ4f3vb0kmwAAQH2RaAIAAGgj8+dL558vXXtteP7856ULLhh8P39+1hECAIB2Zu6edQx11dPT4wMDA1mHAQAA0BAdHdLy5eGWueXLpc5OaeXKwfejR0urV2cdJQAAaHVmttjde/Knc0UTAABAG+nulvr7B5+loe+7u7ONDwAAtDcSTQAAAG2kt1eaMyeMyTRnjvSd70jHHDP4vrc36wgBAEA7G5l1AAAAAEjP7Nnhef586fHHpZNOklasCGM0zZ8/OB8AAKAeSDQBAAC0mdmzSSgBAIBscOscAAAAAAAAUkGiCQAAAAAAAKkg0QQAAAAAAIBUkGgCAAAAAABAKkg0AQAAAAAAIBUkmgAAAAAAAJAKEk0AAAAAAABIBYkmAAAAAAAApIJEEwAAAAAAAFJBogkAAAAAAACpINEEAAAAAACAVJBoAgAAAAAAQCpINAEAAAAAACAVJJoAAAAAAACQChJNAAAAAAAASAWJJgAAAAAAAKSCRBMAAAAAAABSQaIJAAAAAAAAqSDRBLSAvj5p+nSpoyM89/VlHREA1AfnOwAAgNY2MusAAJTW1yf19krnny/NnCn190tz5oR5s2dnGxsApInzHQAAQOszd886hrrq6enxgYGBrMMAqjZ9unTOOdJeew1OW7RImjdPeuCB7OICgLRxvgMAAGgdZrbY3XvWmU6iCWhuHR3S8uVSZ+fgtJUrpdGjpdWrs4sLANLG+Q4AAKB1FEs0MUYT0OS6u8PtI3H9/WE6ALQTzncAAACtj0QT0OR6e8MYJYsWhf/sL1oU3vf2Zh0ZAKSL8x0AAEDrYzBwoMnlBsCdN09asiT8Z3/+fAbGBdB+ON8BAAC0PsZoAgAAAAAAQCKM0QQAAAAAAIC6ItEEAAAAAACAVJBoAgAAAAAAQCpINAEAAAAAACAVDU00mdkFZrbUzB6ITfuWmf3JzO43s2vMbFyRdR83sz+Y2X1mxujeAAAAAAAATabRVzRdKGlW3rRbJE1397dLeljSl0usv5e7v7PQqOYAAAAAAADIVkMTTe5+u6QX8qbd7O6rord3SZrQyJgAAAAAAACQjmYbo+kYSb8oMs8l3Wxmi83sUw2MCQAAAAAAABUYmXUAOWbWK2mVpEuLLDLT3Z8ys80k3WJmf4qukCpU1qckfUqSJk2aVJd4AQAAAAAAMFRTXNFkZp+QdKCkI93dCy3j7k9Fz0slXSNpl2LlufuP3L3H3XvGjx9fh4gBAAAAAACQL/NEk5nNkvQlSQe7+2tFlhljZhvmXkvaT9IDhZYFAAAAAABANhqaaDKzPkl3StrezJ40szmSvidpQ4Xb4e4zs3OjZd9sZjdGq24uqd/Mfi/pd5JucPebGhk7AAAAAAAASmvoGE3uPrvA5POLLPt3SQdEr/8s6R11DA0AAAAAAAA1yvzWOQAAAAAAALQHEk0AAAAAAABIBYkmAAAAAAAApIJEEwAAAAAAAFJBogkAAAAAAACpINEEABnr65OmT5c6OsJzX1/WESEJ9h+QPY5DtKpCfbfd+nO7bQ/S0ah+Qf/LxsisAwCA4ayvT+rtlc4/X5o5U+rvl+bMCfNmz842NpTH/gOyx3GIVlWo7370o2He5Ze3R3/m+EQhjeoX9L/smLtnHUNd9fT0+MDAQNZhAEBB06dL55wj7bXX4LRFi6R586QHHsguLlSG/Qdkj+MQrapQ3506NTz/5S+D01q5P3N8opBG9Qv6X/2Z2WJ371lnOokmAMhOR4e0fLnU2Tk4beVKafRoafXq7OJCZdh/QPY4DtGqCvXdjg7JXVqzZnBaK/dnjk8U0qh+Qf+rv2KJJsZoAoAMdXeHy3jj+vvDdDQ/9h+QPY5DtKpCfXfSJGny5KHTWrk/c3yikEb1C/pfdkg0AUCGenvDveKLFoX/sCxaFN739mYdGSrB/gOyx3GIVlWo7y5bFh7t0p85PlFIo/oF/S87DAYOABnKDUQ4b560ZEn4D8v8+QxQ2CrYf0D2OA7Rqgr13bPPXndaK/dnjk8U0qh+Qf/LDmM0AQAAAAAAIBHGaAIAAAAAAEBdVZxoMrNuM9s19n49M/tvM7vWzObVJzwAAAAAAAC0iiRXNP2PpINi778l6d8ljZb0TTP7zzQDAwAAAAAAQGtJkmiaLulOSTKzTkkfk3S8u8+SdJKkY9IPDwAAAAAAAK0iSaJpjKSXo9e7Ru9/Gr2/V9LkFOMCAAAAAABAi0mSaPqLQoJJkg6T9H/u/nz0flNJr6QZGAAAAAAAAFrLyATLfkfSD8zsw5J2lPTJ2Lw9Jd2fYlwAAAAAAABoMRUnmtz9fDN7RNLOkk5091tjs1+QdFbKsQEAAAAAAKCFJLmiSe5+u6TbC0w/La2AAAAAAAAA0JoSJZrMbJykT0uaKWljhSuZfiPpR+7+YtrBAQAAAAAAoHVUPBi4mb1F0gOSvqrwi3N/jZ6/Kun+aD4AAAAAAACGqSRXNJ0p6Z+S3uXuT+UmmtlWkm5UGCz8kHTDAwAAAAAAQKuo+IomhV+WOyWeZJKk6P1XJe2VYlwAAAAAAABoMUkSTS6po0Q5Xns4AAAAAAAAaFVJEk2LJP2XmU2OT4zef1XSrWkGBgAAAAAAgNaSZIym4yUtlPSImd0r6VlJm0maIelvkj6fenQAAAAAAABoGRVf0eTuj0t6q6TPSXpQUqekP0qaK6k7mg8AAAAAAIBhKskVTXL3FZLOjR4AAAAAAADAWhVf0WRmq81slyLzZpjZ6vTCQrPr65OmT5c6OsJzX1/WEQHthWMMAAAAaA58N08myRVNVmJep6RVNcaCFtHXJ/X2SuefL82cKfX3S3PmhHmzZ2cbG9AOOMYAAACA5sB38+TM3YvPNJskaUr09jZJx0lakrfYaElHS5rh7m9NP8Ta9PT0+MDAQNZhtJXp06VzzpH22mtw2qJF0rx50gMPZBcX0C44xgAAAIDmwHfz4sxssbv3rDO9TKLpVEmnSsotVOyqptcl/au7N90FZCSa0tfRIS1fLnV2Dk5buVIaPVpazQ2UQM04xgAAAIDmwHfz4oolmsqN0fQ/kt4m6R0KSaYjo/fxx/aSNm7GJBPqo7s7XC4Y198fpgOoHccYAAAA0Bz4bp5cyUSTuz/n7g+6+wOSpkq6Onoffzzi7m80Jlw0g97ecE/qokUhk7toUXjf25t1ZEB74BgDAAAAmgPfzZOreDBwd39CksysS9JWCmMz5S/zx/RCQ7PKDXg2b560ZEnI5M6fz0BoQFo4xgAAAIDmwHfz5EqO0TRkQbM3S/qRpPcXmi3J3b0jxdhSwRhNAAAAAAAA6So2RlPFVzRJ+rGknSR9XtIfJa1IKTYAAAAAAAC0gSSJpvdI+jd3v6JewQAAAAAAAKB1lfvVubilkl6vVyAAAAAAAABobUkSTadIOsHM3lSvYAAAAAAAANC6ktw6d7ikSZKeMLN7JL2YN9/d/aNpBQYAAAAAAIDWkiTRtKmkx6LXnZLGpx8OAAAAAAAAWlXFiSZ336uegQAAAAAAAKC1JRmjaS0L3mxmSa6IAgAAAAAAQBtLlGgyswPM7G5JyyX9TdLbo+nnmdlRdYgPAAAAAAAALaLiRJOZfVzSzyT9SdKnJFls9sOS5qQbGgAAAAAAAFpJkiuaeiV9y92PlvS/efMelLRDalEBAAAAAACg5SRJNE2WdEuRecslvan2cAAAAAAAANCqkiSa/iZpxyLzeiQ9Wns4AAAAAAAAaFVJEk3nSzo1GvR7vWiamdk+kr4k6by0gwMAAAAAAEDrGJlg2W9KmijpIkmro2l3SOqQ9EN3/27KsQEAAAAAAKCFVJxocneX9FkzO1PS3pI2lfSCpIXu/nCd4gMAAAAAAECLqDjRZGZj3H2Zuz8qxmMCAAAAAABAniRjNC01s8vN7DAz66q2QjO7wMyWmtkDsWkbm9ktZvZI9LxRkXWPjpZ5xMyOrjYGAAAAAAAApC9JoulLkraQdJVC0ukSM/uAmSUZ50mSLpQ0K2/aiZJudfdtJd0avR/CzDaWdKqkd0naRWFg8oIJKVSvr0+aPl3q6AjPfX1ZR5Sedt62SrVyG7Ry7Kge+x1paqX+1EqxNgpt0jqK7Sv2IYCslTsPcZ5Kibsnekh6s6TjFQYCXyPpeYVfpNs3QRlTJD0Qe/+QpC2j11tKeqjAOrMVBh3Pvf+hpNnl6poxY4ajMgsWuE+d6r5wofuKFeF56tQwvdW187ZVqpXboJVjR/XY70hTK/WnVoq1UWiT1lFsX82dyz4EkK1ynyV81iQnacAL5XwKTaz0IWmSpC9KekrSqgTr5SeaXoy9tvj72PQvSjo59v7/SfpiubpINFVu2rRwMMUtXBimt7p23rZKtXIbtHLsqB77HWlqpf7USrE2Cm3SOortq64u9iGAbJX7LOGzJrliiSYL85Izs20kfTR6TJf0N3efXOG6UyRd7+7To/cvuvu42Px/uvtGeet8UdJod/9a9P7/SXrd3b9doPxPSfqUJE2aNGnGE088kXwDh6GODmn5cqmzc3DaypXS6NHS6tXZxZWGdt62SrVyG7Ry7Kge+x1paqX+1EqxNgpt0jqK7atRo6QVK9iHALJT7rOEz5rkzGyxu/fkT08yRpPMbLKZfcnMFivc7jZX0m2S3ltpkqmIZ81sy6iOLSUtLbDMU5Imxt5PiKatw91/5O497t4zfvz4GsIaXrq7pf7+odP6+8P0VtfO21apVm6DVo4d1WO/I02t1J9aKdZGoU1aR7F91dXFPgSQrXKfJXzWpKjQZU6FHpJ+J2m1pOcUxkfaS9KIStfPK2uKht469y1JJ0avT5R0eoF1Npb0F0kbRY+/SNq4XF3cOle5dr4ntZ23rVKt3AatHDuqx35HmlqpP7VSrI1Cm7QOxmgC0KwYoyl9qnWMJkk/Ufi1uI5K1ylSTp+kpyWtlPSkpDmSNlH4tblHJP0ql0CS1CPpx7F1j5H0aPT4ZCX1kWhKZsGCcA/qiBHhuZ0Oqnbetkq1chu0cuyoHvsdaWql/tRKsTYKbdI6iu0r9iGArJU7D3GeSqZYoqnqMZpaRU9Pjw8MDGQdBgAAAAAAQNtIa4ymt5vZ5Wb2mJm9YWY7RdPnm9n70woWAAAAAAAArafiRFOUSFosaQtJF0uKjcWuNyTNSzc0AAAAAAAAtJIkVzR9XdKF7r6HpPl58+6T9M6UYgIAAAAAAEALSpJoequky6PX+QM7vazwq3AAAAAAAAAYppIkmpZK2rrIvGmS/lp7OAAAAAAAAGhVSRJNl0n6qpnNjE1zM9tO0gmSLk01MgAAAAAAALSUkQmW/X+SdpB0u6Sno2nXKQwOfrOk/043NAAAAAAAALSSihNN7v6GpAPNbB9J+0jaVNILkm5191vqFB8AAAAAAABaRJIrmmRmH5f0M3e/tU7xAAAAAAAAoEUlGaNJkn4iaZIkWXCKmW2RflgAAAAAAABoNSWvaDKzX0i6T9Lvo4dJ8mj2CEmnSrpe0jP1CxEAAAAAAACtoNytczdJ2lHSAZK6FZJM3zOzRZLu0dDEEwAAAAAAAIaxkokmdz8799rMuiS9LuleSdtL+phCkukSM7tJ0q/c/aY6xgoAAAAAAIAmVnKMJjP7nJm918w2jH51TpJ+4u6zFZJNJqlP0gaSvlffUAEAAAAAANDMyt06d6CkXkmbmtkTClcwHWFm60n6Q7TML9z93jrGCAAAAAAAgBZQ8oomd9/P3TeXtJWkzyhcwfQ+hbGbXlBIPB1nZvtEt9YBAAAAAABgmCqZaMpx92di4y/9q7tvJKlHIfE0UdKFkv5ZlwgBAAAAAADQEipKNBWxJHo+yd0nSpqRQjwAAAAAAABoUYkSTe4+wt3vz72V9ISkN6J5S4quCABV6uuTpk+XOjrCc19f1hGBfQI0Vrscc620Ha0Ua6tqVBuzL9Fo9Ln6oW1bR7nBwIty9zWSpqYYCwAM0dcn9fZK558vzZwp9fdLc+aEebNnZxvbcMU+ARqrXY65VtqOVoq1VTWqjdmXaDT6XP3Qtq3F3D3rGOqqp6fHBwYGsg4DQBWmT5fOOUfaa6/BaYsWSfPmSQ88kF1cwxn7BGisdjnmWmk7WinWVtWoNmZfotHoc/VD2zYnM1vs7j3rTCfRBKBZdXRIy5dLnZ2D01aulEaPllavzi6u4Yx9AjRWuxxzrbQdrRRrq2pUG7Mv0Wj0ufqhbZtTsURTLYOBA0BddXeHy2Lj+vvDdGSDfQI0Vrscc620Ha0Ua6tqVBuzL9Fo9Ln6oW1bC4kmAE2rtzfce71oUfiPxaJF4X1vb9aRDV/sE6Cx2uWYa6XtaKVYW1Wj2ph9iUajz9UPbdtaqh4MHADqLTew37x50pIl4T8W8+cz4F+W2CdAY7XLMddK29FKsbaqRrUx+xKNRp+rH9q2tTBGEwAAAAAAABJhjCYAAAAAAADUFYkmAAAAAAAApIJEEwAAAAAAAFJBogkAAAAAAACpINEEAAAAAACAVJBoAgAAAAAAQCpINAEAAAAAACAVJJoAAAAAAACQChJNAAAAAAAASAWJJgAAAAAAAKSCRBMAAAAAAABSQaIJAAAAAAAAqSDRBAAAAAAAgFSQaAIAAAAAAEAqSDQBAAAAAAAgFSSaAAAAAAAAkAoSTQAAAAAAAEgFiSYAAAAAAACkgkQTUIG+Pmn6dKmjIzz39WUdUfOirVpLvfdX0vKz7j/V1p913MNJM7d1udiKza9lm/LXnTeveFm5ZUeMkDo7JbPwmDixudqxGSTZJ83cJ5Nqp21Jop7b3UplD9f9n6ZG75NK6muH/doO2zDsuHtbP2bMmOFALRYscJ861X3hQvcVK8Lz1KlhOoairVpLvfdX0vKz7j/V1p913MNJM7d1udiKzZ87t/ptyi+zt9d95MjwnF9WbtneXvfx49033th9883dTzzRfYstwrRmaMdmkKSfNXOfTKqdtiWJem53K5U9XPd/mhq9Tyqprx32aztsQzuTNOAF8jCZJ4Lq/SDRhFpNmxZOaHELF4bpGIq2ai313l9Jy8+6/1Rbf9ZxDyfN3NblYis2v6ur+m3KL3PaNPczzhi6bq6s3LLTprlPmRJe594vXBimNUM7NoMk/ayZ+2RS7bQtSdRzu1up7OG6/9PU6H1SSX3tsF/bYRvaWbFEk4V57aunp8cHBgayDgMtrKNDWr483GaQs3KlNHq0tHp1dnE1I9qqtdR7fyUtP+v+U239Wcc9nDRzW5eLrdj8UaOkFSuq26b8Mjs6pFdekTbccHDdXFlSWDb+Wgrvly+XurrCbXRZt2MzSNLPmrlPJtVO25JEPbe7lcoervs/TY3eJ5XU1w77tR22oZ2Z2WJ378mfzhhNQBnd3VJ//9Bp/f1hOoairVpLvfdX0vKz7j/V1p913MNJM7d1udiKze/qqn6b8svs7pbOPXfourmycst2d0uTJoXXuff9/dLkyc3Rjs0gST9r5j6ZVDttSxL13O5WKnu47v80NXqfVFJfO+zXdtiGYanQZU7t9ODWOdSK+4IrR1u1FsZoSqf+rOMeTpq5rRmjqX0wRlPrb0sSrTSOUj3LHq77P02M0VQf7bAN7UyM0QRUb8GCcB/wiBHhmRNbcbRVa6n3/kpaftb9p9r6s457OGnmti4XW7H5tWxT/rpz5xYvK7esWUhISeExYUJztWMzSLJPmrlPJtVO25JEPbe7lcoervs/TY3eJ5XU1w77tR22oV0VSzQxRhMAAAAAAAASYYwmAAAAAAAA1BWJJgAAAAAAAKSCRBMAAAAAAABSQaIJAAAAAAAAqWiKRJOZbW9m98UeL5vZ8XnL7GlmL8WWOSWjcAEAAAAAAFDAyKwDkCR3f0jSOyXJzDokPSXpmgKL/sbdD2xgaAAAAAAAAKhQU1zRlGcfSY+5+xNZBwIAAAAAAIDKNWOi6QhJfUXm7WZmvzezX5jZtEYGBQAAAAAAgNKaKtFkZqMkHSzpygKz75U02d3fIekcSdeWKOdTZjZgZgPPPfdcXWIFAAAAAADAUE2VaJL0fkn3uvuz+TPc/WV3fzV6faOkTjPbtFAh7v4jd+9x957x48fXN2IAAAAAAABIar5E02wVuW3OzLYwM4te76IQ+/MNjA0AAAAAAAAlNMWvzkmSmY2RtK+kT8emHStJ7n6upA9JOs7MVkl6XdIR7u5ZxAoAAAAAAIB1NU2iyd2XSdokb9q5sdffk/S9RscFAAAAAACAyjTbrXMAAAAAAABoUSSaAAAAAAAAkAoSTQAAAAAAAEgFiSYAAAAAAACkgkQTAAAAAAAAUkGiaRjo65OmT5c6OsJzX19j169FX580caJkFh4TJ9a//iy3t5liaBeNbMtm3m+Njq3R551mbvtGKdUGw+E4qKTeVuknzRxnM8dWT5Vudy3t04i2HS77L6u2HA7tW69jIc1jZ9688DxihDR6dHgu9rlYaplWld8e++8fttEsPM+bl10s+cfJxInhUct+aJbvP5Votnjqyt3b+jFjxgwfzhYscJ861X3hQvcVK8Lz1KlheiPWr8WCBe7jx7tvuaX7zTeHxxZbhGn1qj/L7W2mGNpFI9uymfdbo2Nr9Hmnmdu+UUq1wXA4Diqpt1X6STPH2cyx1VOl211L+zSibYfL/suqLcePD492bt96HQtpHju9ve4jR7ofemiYfsYZ7lOmhOn5n4u5aYWWaVX57XHooe6S+5FHui9bFrZ15Ej3uXMbH0v+cXLxxeHvvLFjw7Rq9kOzfP+pRLPFkxZJA14gD5N5Iqjej+GeaJo2LXTiuIULw/RGrF+LadPCySZe/8KFYVq96s9ye5sphnbRyLZs5v3W6Ngafd5p5rZvlFJtMByOg0rqbZV+0sxxNnNs9VTpdtfSPo1o2+Gy/7JqyylTwqOe9WatXsdCmsfOtGkhYdHVNTg9V1b+52J83fxlWlV+e3R1uR933NBtyrVPo2NxH3qc5ObHpyXdD83y/acSzRZPWoolmizMa189PT0+MDCQdRiZ6eiQli+XOjsHp61cGS5NXL26/uvXoqMjPMfrX7lS6uoKl37Wo/4st7eZYmgXjWzLZt5vjY6t0eedZm77RinVBlL7HweV1Nsq/aSZ42zm2Oqp0u2upX0a0bbDZf9l1ZYdHZK7tGZN/erNWr2OhTSPnY4O6ZVXpDFjpBUrwvRcWcuXD/1czE0rtEyr7rP89jCTXnxR2njjwW167bXQPvVOA5Q7TnLzR48enJZ0PzTL959KtOs52MwWu3tP/nTGaGpz3d1Sf//Qaf39YXoj1q9Fd7c0adLQ+vv7pcmT61d/ltvbTDG0i0a2ZTPvt0bH1ujzTjO3faOUaoPhcBxUUm+r9JNmjrOZY6unSre7lvZpRNsOl/2XVVtOmhS+o9az3qzV61hI89jp7pbOPTf8Yzo3PVdW/udifN38ZVpVfnt0dUlf/vLQbcq1T6NjkYYeJ7n58WlJ90OzfP+pRLPFU3eFLnNqp8dwv3WOMZqS15n1vbPNEEO7GA5j0zRjbIzR1HjNMkYBYzTVrpnjbObY6okxmloLYzTVD2M0NT/GaGKMpkYTYzQNXwsWhHs/R4wIz0k7c63r12LBAvcJE0JPlcLrRvzBktX2NlMM7aKRbdnM+63RsTX6vNPMbd8opdpgOBwHldTbKv2kmeNs5tjqqdLtrqV9GtG2w2X/ZdWWw6F963UspHnszJ0bns3CWERmxT8XSy3TqvLbY7/9wjZK4bkRSaZiseQfJxMmhEct+6FZvv9UotniSUOxRBNjNAEAAAAAACARxmgCAAAAAABAXZFoAgAAAAAAQCpINAEAAAAAACAVJJoAAAAAAACQChJNAAAAAAAASAWJJgAAAAAAAKSCRBMAAAAAAABSQaIJAAAAAAAAqSDRBAAAAAAAgFSQaAIAAAAAAEAqSDQBAAAAAAAgFSSaAAAAAAAAkAoSTQAAAAAAAEgFiSYAAAAAAACkgkQTAAAAAAAAUkGiCQAAAAAAAKkg0QQAAAAAAIBUkGgCAAAAAABAKkg0tbC+Pmn6dGnECGn06PA8cWJ4dHSEeX19WUc5GGehmJLOy99ms8Ftr2V7S8VRq/yy580rXVc9YykVX7wfJdlPacZQaF+XqzNJbI1u26TSii9pn2tUXPUqr57K9c16n3Nbqa3SlKQPp9lGjSqrWfZrGnHUa1uKlVtNfY08h7XCfq9Vo/c5Bg3nNkryvXDixPA3gll4Xa92aobzUbPWleS7Zzv163balpq5e1s/ZsyY4e1owQL3qVPde3vD8xlnuG+6qfu4ce5bbOF+8cXuCxeGeQsWZB/nwoXuK1YMjSnpvPHjwyO3zUce6T5yZHieMmVwetLtLRVH2tvf2xti7u0tXFc9YykVX7wf5bdlvWMqta/L1Zkktka3bVJpxZe0zzUqrnqVV0/l+ubFF7tvuWX9zrmt1FZpStKH02yjRpXVLPs1jTjqtS3Fyp07N3l9jTyHtcJ+r1Wj93mrtU89Dec2qnTbFywIn9Fbbul+883hscUWYVra7VTN/mjkPsyyriTfPdupX7fTtiQhacAL5GEyTwTV+9GuiaZp00LnzT27hwTBlCmD092Hvs4yzrhcTEnn5bYvvu1nnLFuWyTd3lJx1Cq/7HjMheqqZyyl4ovXm9+W9Y6p1L4uV2eS2BrdtkmlFV/SPteouOpVXj2V65u5+fU657ZSW6UpSR9Os40aVVaz7Nc04qjXthQrt6sreX2NPIe1wn6vVaP3eau1Tz0N5zaqdNunTRv8Wyi+XO7vhyxiqnWdRsaXVl1Jvnu2U79up21JoliiycK89tXT0+MDAwNZh5G6jg5p+fJwq9Py5VJnZ5jmLr3xRpi+erW0cuXg6yzj7OwcnJaLSUo2L7d9ZoPb/sor0oYbDm2LpNtbKsZa2y2/7I6OwZhzZcfrqmcspeKL96NcfbnpUn1jKrTNuX29Zk3pOpO0V6PbNqm04kva5xoVV73Kq6dyfTM3X6rPObeV2ipNSfqwlF4bpdne1X72NXK/prG99eqjxcodNUpasSJZfY08h0nNv99r1eh93mrtU0/DuY0q3faOjvAcX3blSqmrK/z9kGY7VbM/GrkPs6wryXfPdurX7bQtSZjZYnfvyZ/OGE0tqrtb6u8ffJakSZOkyZMHp0tDX2cZZ1wupqTzctsX3/Zzz123LZJub6k4apVfdjzmQnXVM5ZS8cXrzW/LesdUal+XqzNJbI1u26TSii9pn2tUXPUqr57K9c3c/Hqdc1uprdKUpA+n2UaNKqtZ9msacdRrW4qV29WVvL5GnsNaYb/XqtH7vNXap56GcxtVuu3d3eFzOr5sf//g3w9ZxFTrOo2ML626knz3bKd+3U7bkopClzm106Ndb51jjCbGaEoDYzQ1z33TjNFUXXn1xBhN2WCMpsZgjKZ0Y2OMpuYst50M5zZijKbGxJdWXYzR1PrbkoQYo6n9LFgQ7vk0C+MWmLlPmBAeI0aEec3QsXNxFoop6bz8bZYGt72W7S0VR63yy547t3Rd9YylVHzxfpRkP6UZQ6F9Xa7OJLE1um2TSiu+pH2uUXHVq7x6Ktc3633ObaW2SlOSPpxmGzWqrGbZr2nEUa9tKVZuNfU18hzWCvu9Vo3e5xg0nNsoyffCCRPC3whSeF2vdmqG81Gz1pXku2c79et22pZKFUs0MUYTAAAAAAAAEmGMJgAAAAAAANQViSYAAAAAAACkgkQTAAAAAAAAUkGiCQAAAAAAAKkg0QQAAAAAAIBUkGgCAAAAAABAKkg0AQAAAAAAIBUkmgAAAAAAAJAKEk0AAAAAAABIBYkmAAAAAAAApIJEEwAAAAAAAFJBogkAAAAAAACpINEEAAAAAACAVJBoAgAAAAAAQCpINAEAAAAAACAVJJoAAAAAAACQChJNAAAAAAAASEVTJZrM7HEz+4OZ3WdmAwXmm5l918weNbP7zWynLOIEAAAAAADAupoq0RTZy93f6e49Bea9X9K20eNTkn7Q0MiaXF+fNH261NERnvv60ilz4kTJLDwmTqy+3Hh8EyeGR/7rWuOupA1yy4wYIY0eHZ5rqbeadq/Hvsqijvx6yu3LRsVUSaxZ1F9PjdzftZ4TCsWaNP78OGo9P9Ui6TmlWBuWaoNK51VyPk3jHFjN/qpm29KQ5HOhWc7JacVTbTn5682bV1sb1nLeaLbzdjVtU2s9ueO61DFbaz9Pa7uyON6a4RxSa7mFzt31qHfevNCHzMLzvHmVx5nW9+Yk0vi+0K7q9XdfJWVWe05PI+ZyZSTZhlpioR9WwN2b5iHpcUmblpj/Q0mzY+8fkrRlqTJnzJjhw8GCBe5Tp7ovXOi+YkV4njo1TK+lzPHj3bfc0v3mm8Njiy3CtKTlxuO7+OJQ5hZbuB933ODriy+uLe5K2iC3TG9veD7jDPcpUwbf17JdlbZ7PfZVFnXk1xPfr4X2ZaNiqiTWLOqvp0bu71rPCYViHT8+PCqNPxfHuHGh/tNPd998c/exY6s7P9Ui6TmlWBtuuGHxNii1f5Mcg9XEW2qbk+yvSuKvR99N8rnQLOfktOKptpz89Xp73UeODM/VtGEt541mO29X0za11pM7rnPnt0LHbK39PK3tyuJ4a4ZzSK3lFjp3J/1crMTcuWG/nnGG+7Jl4XnkyDC9XJxpfW9OIo3vC+2qXn/3VVJmtef0NGIuV0aSbagllmb7bMqapAEvlLspNDGrh6S/SLpX0mJJnyow/3pJM2Pvb5XUU6rM4ZJomjYtdPK4hQvD9FrKnDJlaLkLF4ZpScuNx5d7vXChe1fX4OtcmdXGXUkb5JaJLxt/X8t2FaszjXWSakQd+fXE92uhfdmomCqJNYv666mR+7vWc0KhWKdMCY+4UvHn4ojHkoujmvNTLZKeU4q1YWdn8TYotX+THIPVxFtqmwvFk3T5evfdJJ8L9YohaR1pxVNtOfnrTZsW/riMr5ekDWs5bzTbebuatqm1ntzr+Hky/5ittZ+ntV1ZHG/NcA6ptdxC5+6kn4uV6OoK+zXujDPC9HJxpvW9OYk0vi+0q3r93VdJmdWe09OIuVwZSbahllia7bMpa8USTRbmNQcz28rdnzKzzSTdImmeu98em3+9pG+4e3/0/lZJJ7j7QF45n1K4tU6TJk2a8cQTTzRsG7LS0SEtXy51dg5OW7kyXOK6enX1ZUpDy125UurqCpdJJik3Hl/utSSNGiWtWBFe52KtNu5K2iC3zOjRg8vmlslNr3a7itWZxjpJNaKO/Hri+7XQvmxUTJXEmkX99dTI/S3Vdk4oFGtHh+QurVlTWfy5OOKx5OKQkp+fapH0nFKsDUeNCnEXaoP85YvNK3cMVhNvqW2utL+VWr7UtqWxD5N8LjTLOTmteKotJ3+9jg7plVekDTccXC9JG+ZUc95otvN2NW1Taz3xYzZ3nsw/ZqXa+nn++tVuVxbHW737SL3KL/f9KennYiXMpGXLpPXXH5z22mvSmDGhrlJxpvW9OYk0vi+0q3r93VdJmdV+F0wj5nJlJNmGWmJpts+mrJnZYi8w7FFTjdHk7k9Fz0slXSNpl7xFnpI0MfZ+QjQtv5wfuXuPu/eMHz++XuE2le5uqb9/6LT+/jC9ljInTRpabn+/NHly8nLj8eVe9/eHk1Luda7MauOupA1yy8SXjb+vZbuK1ZnGOkk1oo78euL7tdC+bFRMlcSaRf311Mj9Xes5oVCskyaFMuJKxZ+LIx5LLo5qzk+1SHpOKdaGnZ3F26DU/k1yDFYTb6ltLhRP0uXr3XeTfC7UK4akdaQVT7Xl5K/X3S2de+7Q9ZK0YS3njWY7b1fTNrXWk3sdP0/mH7O19vO0tiuL460ZziG1llvo3J30c7ESXV1hv8ade+7gP2lKxZnW9+Yk0vi+0K7q9XdfJWVWe05PI+ZyZSTZhlpiabbPpqZV6DKnLB6SxkjaMPb6Dkmz8pb5gKRfSDJJu0r6Xblyh8utc4zRxBhNja4jvx7GaMoOYzQxRlMlx2A18Zba5iT7izGaGKOJMZqqq4cxmmqvsxaM0cQYTc2IMZoYo6mZqNnHaJK0taTfR48HJfVG04+VdGz02iR9X9Jjkv6gMuMz+TBKNLmHzj1tmvuIEeE5jc6+YIH7hAmhp0jhdS1fBnLxTZgQHvmva427kjbILWMW7ks3q63eatq9Hvsqizry6ym3LxsVUyWxZlF/PTVyf9d6TigUa9L48+Oo9fxUi6TnlGJtWKoNKp1Xyfk0jXNgNfurmm1LQ5LPhWY5J6cVT7Xl5K83d25tbVjLeaPZztvVtE2t9eSO61LHbK39PK3tyuJ4a4ZzSK3lFjp316PeuXNDH5LCc6kkU36caX1vTiKN7wvtql5/91VSZrXn9DRiLldGkm2oJRb64aBiiaamGqOpHnp6enxgYKD8ggAAAAAAAKhIS4zRBAAAAAAAgNZFogkAAAAAAACpINEEAAAAAACAVJBoAgAAAAAAQCpINAEAAAAAACAVJJoAAAAAAACQChJNAAAAAAAASAWJJgAAAAAAAKSCRBMAAAAAAABSQaIJAAAAAAAAqSDRBAAAAAAAgFSQaAIAAAAAAEAqSDQBAAAAAAAgFSSaAAAAAAAAkAoSTQAAAAAAAEgFiSYAAAAAAACkgkQTAAAAAAAAUkGiCQAAAAAAAKkg0dRC+vqkiRMls/CYODFMK7X89OlSR0d4LrVsNevWUn41qq0vt96IEdLo0eG5Hu1RS4zVaKZ9FK9n4sTwqKW9W1Gxto5P32QTqbMzHL+jR0v77196/5Tqu40+/ppB/jbPm5fuOS7N8iupL27evLCPc31j3rzq66oklko/S2o976bdP8uVW2of5h9/8Tau9+dlM0v6WVKqHZOUWS6e/PNe/vFY6fFZ7jtAqVjT2relPh+SfK9Luk49+mYaZVZy/k3zOEpadiOO6Xr3rSzKSNqXq1XLd/JKvqs1qo+0+mdHXBZ/b5Q7X8+bN7RPbrJJeN+Iz/l22rc1cfe2fsyYMcPbwYIF7uPHu2+5pfvNN4fHFluEaQsWFF5+6lT3hQvdV6wIz1OnFl62mnVrKb8a1daXW6+3NzyfcYb7lCmD79Nqj1pirEYz7aN4PRdfHPro2LGhb1bT3q2oWFvPnTs4/bjj3Ds63DfayP2CC9yPPNJdcj/00ML7p1TfHT8+PBp1/DWD/Dbu7XUfOTI8p3GOy2/TWsqvpL54WXPnhrrOOMN92bLwPHJkmJ62JJ8ltZ530+6f5cot1Ufyj794G9f787KZJf0sKdWOScosF0/+ee/QQ4cej5Uen+W+A8TP0fnlpLVvS30+JPlelyur3sdvNduSpMxKzr9pHkdJY27EMV3vvlXr/qimjKR9uVq1fCcv1s9KnQdqiSGN7WgFWfy9Ue583dvrPmKE+7hxoT9++cvhs2vs2PC3Sj0/59tp31ZK0oAXyMNkngiq96NdEk3TpoUvRwsXDk5buDBMmzat8PLxZXPLF1q2mnVrKb8a1daXWy++fvx9Wu1RS4zVaKZ9FK8n93rKlPCI11nP/pG1Ym3d1TU4vasr/JGTa4dp08IfbV1dQ9fJtVGpvhtv30LrtqP8Np42LbRnfJtrOabz27SW8iupL15Wrm/EnXHG0L6RliSfJbWed5OuV065ckv1kfzjz32wjev9ednMkn6WlGrHJGWWiyf/vJerN76vKzk+y30HiJ+j88tJa9+W+nxI8r0uV1a9j99qtiVJmZWcf6spN0l9pcpuxDFd775V6/6opoykfblatXwnL9bPSp0HaomhlFb/7IjL4u+N/HoKff5vscXg/s59ZsT7ZL0+59tp31aqWKLJwrz21dPT4wMDA1mHUbOOjvC8fHm4ZF2SVq6UurrC5YCrV6+7fHzZ3PKjR6+7bKG6yq1bS/nVqLa+3HqjRw+un1svNz2N9qglxmo00z6K1xNvb3dpzZrk7d2KirX1qFHSihWDt5ksWxZejx4dlnnhBWncuNBWuXVybVSq70qD7Ruvr13bV1q3jTs6pFdekTbccHCbaznHdXQMbdNayq+kvnhZub6x/vqD8197TRozZrBvpCXJZ0mt5920zz3lyi3VR9asGXr8rV492MYjRtT387KZJf0syT+Pxdsx11fT+P6Rf94bNSrUmzseKz0+y30HiJ+j82OV0tm3pT4f8vteqe91ubLy40r7+K1mW5KUWcn5N41Yq425Ecd0WnXUa39UU4aUrC9Xq5bv5MX6WanzQL36SKt/dsRl8fdGfj3Sup//0uD+zn1mbLDBYJ+s1+d8O+3bSpnZYnfvyZ/OGE0tortbmjRJ6u8fnNbfL02eHOYVWj6+bG75QstWs24t5Vej2vpy68XXj79Pqz1qibEazbSP4vXkXk+aFPpmvM569o+sFWvrrq7B6V1d0rnnDrZDd7f05S+H6fF1cm1Uqu/G27fQuu0ov427u0N7xre5lmM6v01rKb+S+uJl5fpG3LnnDu0baUnyWVLreTfpeuWUK7dUH8k//qTBNq7352UzS/pZUqodk5RZLp78816u3vi+ruT4LPcdIH6Ozi8nrX1b6vMhyfe6XFn1Pn6r2ZYkZVZy/q2m3CT1lSq7Ecd0vftWrfujmjKS9uVq1fKdvFg/K3UeqCWGUlr9syMui7838usp9Pm/2WaD+zv3mRHvk/X6nG+nfVuzQpc5tdOjXW6dY4wmxmhKWhdjNDUOYzTVH2M0pYMxmhijKY4xmhijKY1tYYym+sZUz3IYo4kxmmrFGE21Ld8OxBhNrW/BAvcJE8Jek8LrUp12wYJwP+iIEeE56Qmw3Lq1lF+NauvLrWcW7sM2q0971BJjNZppH8XrmTAhPGpp71ZUrK3j0zfeOPxxJIW22W+/0vunVN9t9PHXDPK3ee7cdM9xaZZfSX1xc+eGfZzrG/VIMsVjqfSzpNbzbtr9s1y5pfZh/vGXnxyp5+dlM0v6WVKqHZOUWS6e/PNe/vFY6fFZ7jtAqVjT2relPh+SfK9Luk49+mYaZVZy/k07sZOk7EYc0/XuW1mUkbQvV6uW7+SVfFdrVB9p9c+OuCz+3ih3vp47d2if3Hjj8L4Rn/PttG8rUSzRxBhNAAAAAAAASIQxmgAAAAAAAFBXJJoAAAAAAACQChJNAAAAAAAASAWJJgAAAAAAAKSCRBMAAAAAAABSQaIJAAAAAAAAqSDRBAAAAAAAgFSQaAIAAAAAAEAqSDQBAAAAAAAgFSSaAAAAAAAAkAoSTQAAAAAAAEgFiSYAAAAAAACkgkQTAAAAAAAAUkGiCQAAAAAAAKkg0QQAAAAAAIBUkGgCAAAAAABAKkg0AQAAAAAAIBUkmgAAAAAAAJAKEk1Nrq9Pmj5d6ugIz319WUdUOKY042zGbS6nmpjnzZNGj5bMwvP++zf/djfzvql3bI3a9ng9EyeGR1p11roNabdBteW1+vkmv85580rv86QxNsNxWmkMlSxX7Jgod3w0W3+vp2Y5NhttuMaZVnlJymmVtq6nWr7/NsNnTTPFVk65mBodc19f+LwxC4+JE5N9XjWyXUu1TZb7OunnfRZ9Mev62467t/VjxowZ3qoWLHCfOtV94UL3FSvC89SpYXozxTR+fHikEWczbnM51cQ8d677yJHuZ5zhvmyZ+5FHukvuhx7avNvdzPum3rE1atvj9Vx8sfuWW7pvsUV4XWudtW5D2m1QbXlpxpFFn86vs7c3nAt6ewvv86Tn12Y4TiuNoZLlih0Txx1X+vhotv5eT81ybDbacI0zrfKSlNMqbV1PtXz/bYbPmmaKrZxyMTU65gULwn7eckv3m28Ojy22CNMq+bxK4ztckliLtU2W+zrp530WfTHr+luZpAEvkIfJPBFU70crJ5qmTQudPG7hwjA9K4VimjIlPOKqjbMZt7mcamLu6gpJpngZxx0XpldaRqM1876pd2yN2vZ4PbnX8XpqqbPWbUi7DaotL804sujT+XVOmxbOBdOmFd7nSc+vzXCcVhpDJcsVOya6ukofH83W3+upWY7NRhuucaZVXpJyWqWt66mW77/N8FnTTLGVUy6mRsc8bVrYz/E6Fy4M0yr5vErjO1ySWIu1TZb7OunnfaPja4b6W1mxRJOFee2rp6fHBwYGsg6jKh0d0vLlUmfn4LSVK8NtVqtXN09MHR2Su7RmzeC0auNsxm0up5qYzaRly6T11x8s44UXpHHjQltWUkajNfO+qXdsjdr2eD2519JgPbXUWes2pN0G1ZaXZhxZ9On8Ojs6pFdekTbcMLzP3+dJz6/NcJxWGkMlyxU7JkaNklasCK8LHR/N1t/rqVmOzUYbrnGmVV6Sclqlreuplu+/zfBZ00yxlVMupkbH3NERnuN1rlwpdXWF7/PlPq/S+A6XJNZibZO/DfF59d7XST/vGx1fM9Tfysxssbv35E9njKYm1t0t9fcPndbfH6ZnpVBMkyZJkycPnVZtnM24zeVUE3NXl3TuuUPL+PKXw/RKy2i0Zt439Y6tUdseryf3Ol5PLXXWug1pt0G15aUZRxZ9Or/O7u5wLujuLrzPk55fm+E4rTSGSpYrdkx0dZU+Ppqtv9dTsxybjTZc40yrvCTltEpb11Mt33+b4bOmmWIrp1xMjY65uzvs63id/f1h31fyeZXGd7gksRZrmyz3ddLP+0bH1wz1t6VClzm106OVb51rxntFGaNpXYzRlHVkjNHUiG1olnFGGKOJMZoYo2moZjk2G224xskYTdlgjKbGYYym2mJljKb6xYjCxBhNrWnBgnBv6IgR4bkZOnuhmNKMsxm3uZxqYp47N4wzIoXn/fZr/u1u5n1T79gate3xeiZMCI+06qx1G9Jug2rLa/XzTX6dc+eW3udJY2yG47TSGCpZrtgxUe74aLb+Xk/Ncmw22nCNM63ykpTTKm1dT7V8/22Gz5pmiq2ccjE1OuYFC8LnTbhZMrxO8nnVyHYt1TZZ7uukn/dZ9MWs629VxRJNjNEEAAAAAACARBijCQAAAAAAAHVFogkAAAAAAACpINEEAAAAAACAVJBoAgAAAAAAQCqaItFkZhPNbJGZ/dHMHjSzfy+wzJ5m9pKZ3Rc9TskiVgAAAAAAABQ2MusAIqskfcHd7zWzDSUtNrNb3P2Pecv9xt0PzCA+AAAAAAAAlNEUVzS5+9Pufm/0+hVJSyRtlW1UAAAAAAAASKIpEk1xZjZF0o6S7i4wezcz+72Z/cLMpjU2MgAAAAAAAJTSLLfOSZLMbANJV0s63t1fzpt9r6TJ7v6qmR0g6VpJ2xYp51OSPiVJkyZNql/AAAAAAAAAWKtprmgys06FJNOl7v7T/Pnu/rK7vxq9vlFSp5ltWqgsd/+Ru/e4e8/48ePrGjcAAAAAAACCpkg0mZlJOl/SEnf/TpFltoiWk5ntohD7842LEgAAAAAAAKU0y61z75H0MUl/MLP7omknSZokSe5+rqQPSTrOzFZJel3SEe7uGcQKAAAAAACAApoi0eTu/ZKszDLfk/S9xkQEAAAAAACApJri1jkAAAAAAAC0PhJNAAAAAAAASAWJJgAAAAAAAKSCRBMAAAAAAABSQaIJAAAAAAAAqSDRBABl9PVJ06dLHR3hua8v64iA5NqpH7fTtgx37EsAaG6cp1GNkVkHAADNrK9P6u2Vzj9fmjlT6u+X5swJ82bPzjY2oFLt1I/baVuGO/YlADQ3ztOolrl71jHUVU9Pjw8MDGQdBoAWNX26dM450l57DU5btEiaN0964IHs4gKSaKd+3E7bMtyxLwGguXGeRjlmttjde9aZTqIJAIrr6JCWL5c6OwenrVwpjR4trV6dXVxAEu3Uj9tpW4Y79iUANDfO0yinWKKJMZoAoITu7nCZcFx/f5gOtIp26sfttC3DHfsSAJob52lUi0QTAJTQ2xvuRV+0KPwHZ9Gi8L63N+vIgMq1Uz9up20Z7tiXANDcOE+jWgwGDgAl5AY6nDdPWrIk/Adn/nwGQERraad+3E7bMtyxLwGguXGeRrUYowkAAAAAAACJMEYTAAAAAAAA6opEEwAAAAAAAFJBogkAAAAAAACpINEEAAAAAACAVJBoAgAAAAAAQCpINAEAAAAAACAVJJoAAAAAAACQChJNAAAAAAAASAWJJgAAAAAAAKSCRBMAAAAAAABSQaIJAAAAAAAAqSDRBAAAAAAAgFSQaAIAAAAAAEAqSDQBAAAAAAAgFSSaAAAAAAAAkAoSTQAAAAAAAEgFiSYAAAAAAACkgkQTAAAAAAAAUkGiCcBafX3S9OlSR0d47uvLOiIAAAAAQCsZmXUAAJpDX5/U2yudf740c6bU3y/NmRPmzZ6dbWwAAAAAgNbAFU0AJEnz54ck0157SZ2d4fn888N0AAAAAAAqQaIJgCRpyZJwJVPczJlhOgAAAAAAlSDRBECS1N0dbpeL6+8P0wEAAAAAqASJJgCSwvhMc+ZIixZJK1eG5zlzwnQAAAAAACrBYOAAJA0O+D1vXrhdrrs7jM/EQOAAAAAAgEqRaAKw1uzZJJYAAAAAANXj1jkAAAAAAACkgkQTAAAAAAAAUkGiCQAAAAAAAKkg0QQAAAAAAIBUkGgCAAAAAABAKkg0AQAAAAAAIBUkmgAAAAAAAJAKEk0AAAAAAABIBYkmAAAAAAAApIJEEwAAAAAAAFJBogkAAAAAAACpINEEAAAAAACAVJBoAgAAAAAAQCpINAEAAAAAACAVJJoAAAAAAACQChJNAAAAAAAASAWJJgAAAAAAAKSCRBMAAAAAAABSQaIJAAAAAAAAqSDRBAAAAAAAgFSYu2cdQ12Z2XOSnqixmE0l/SOFcIB6op+iFdBP0Qrop2gV9FW0AvopWgH9tDqT3X18/sS2TzSlwcwG3L0n6ziAUuinaAX0U7QC+ilaBX0VrYB+ilZAP00Xt84BAAAAAAAgFSSaAAAAAAAAkAoSTZX5UdYBABWgn6IV0E/RCuinaBX0VbQC+ilaAf00RYzRBAAAAAAAgFRwRRMAAAAAAABS0XaJJjObZWYPmdmjZnZibPreZnavmT1gZheZ2cgC6+5rZovN7A/R896xeTeZ2e/N7EEzO9fMOgqs/1Yzu9PM3jCzL1YSF4anjPvpkWZ2f7T+HWb2jnJxYXjKuJ8eEvXT+8xswMxmxuYdbWaPRI+j67HtaB1Z9tPYsjub2Soz+1BsGv0Ua2V8Pt3TzF6Kzqf3mdkp5eLC8GVmF5jZUjN7IG/6xmZ2S3ROu8XMNiqy/pej/vSQme0fm162r5lZl5ldHi1zt5lNKVcuhqeM++nu0Xl7yOd+NI/P/hx3b5uHpA5Jj0naWtIoSb+XtINCQu1vkraLlvuqpDkF1t9R0puj19MlPRWb96bo2SRdLemIAutvJmlnSfMlfbFcXFm3F49sHk3QT98taaPo9fsl3V0qrqzbi0c2jybopxto8Pbut0v6U/R6Y0l/jp43il5vlHV78cjmkXU/jcWwUNKNkj4UTaOf8sjvI1meT/eUdH2lcWXdXjyyfUjaXdJOkh7Im366pBOj1ydK+maBdXeI+lGXpKlR/+qotK9J+oykc6PXR0i6vFS5WbcVj+weGffTKQrfTS/Ofe5H0/nsjz3a7YqmXSQ96u5/dvcVki6TdIikTSStcPeHo+VukfTB/JXd/f/c/e/R2wclrWdmXdG8l6PpIxU63jqDW7n7Une/R9LKCuPC8JR1P73D3f8Zvb1L0oQycWF4yrqfvurRp7akMbFl9pd0i7u/EPXjWyTNqm1T0cIy7aeReQp/4C+NTaOfIq4Z+mmSuDCMufvtkl4oMOsQSRdFry+SdGiRZS5z9zfc/S+SHlXoZ5X2tXgdV0nax8ysRLkYprLsp+7+uLvfL2lN3iw++2PaLdG0lcJ/hnKejKb9Q9JIM+uJpn9I0sQyZX1Q0r3u/kZugpn9UuGL5CsKJz+Z2bFmdmyVcWF4aqZ+OkfSL8rEheEp835qZoeZ2Z8k3SDpmDJxYXjKtJ+a2VaSDpP0gwrjwvCU+flU0m7RLXa/MLNpZeICCtnc3Z+OXj8jafMCyxTrU0X7mpl91cwOzl/f3VdJekkhIUtfRaUa0U+LoZ/GrHMfeDtydzezIySdGf0H6GZJq4stH30Af1PSfnnl7G9moyVdKmlvhYzlufWLHMNJo/upme2lkGiamT8PKKaR/dTdr5F0jZntLum/JL0v1Y1B22pgPz1L0gnuvib80x2oXAP76b2SJrv7q2Z2gKRrJW2b6sZgWIn6bio/Xe7up5RfCkiOfpqtdrui6SkN/U/QhGia3P1Od3+vu+8i6XZJDxdYX2Y2QdI1kj7u7o/lz3f35ZKuU7JLi4vGhWEp835qZm+X9GNJh7j78+XiwrCUeT+NLXe7pK3NbNNScWFYyrqf9ki6zMweV7ga5X/M7NBScWFYyrSfuvvL7v5q9PpGSZ2cT1GFZ81sS0mKnpcWWKZYn6q0r61dzsLA+GMlPZ9gfaAR/bQY+mlMuyWa7pG0rZlNNbNRCoPI/UySzGyz6LlL0gmSCl3hMU7hFo0T3f23sekbxDrsSEkfkPSnNOLCsJRpPzWzSZJ+KuljsXEhSsaFYSnrfrpNNC6DzGwnhQEbn5f0S0n7mdlGFn5JZL9oGoanTPupu0919ynuPkXhlqXPuPu1op9iqKzPp1vEzqe7KHz/f75UXEABP5OU+xWtoxUSm4WWOcLCr8dNVbhy7neqvK/F6/iQpIXReI3FygXyNaKfFsNnf5w3wYjkaT4kHaDw36DHJPXGpn9L0hJJD0k6vsi6J0taJum+2GMzhXs775F0v6QHJJ0jaWS0zrGSjo1eb6FwL+bLkl6MXr+pVFw8hucj4376Y0n/jK07UC4uHsPzkXE/PUFh0Nv7JN0paWas7GMUBm58VNIns24nHtk+suyneWVdqKG/PkM/5RHvH1meT+dG59PfK/wIyLvLxcVj+D4k9Ul6WuHHjZ5U9EuICmMl3SrpEUm/krRxkfV7o/70kKT3x6YXOwa+Kung6PVoSVdG583fSdq6XLk8hucj4366c1TnMoWk/YOx5fjsjx65n44GAAAAAAAAatJut84BAAAAAAAgIySaAAAAAAAAkAoSTQAAAAAAAEgFiSYAAAAAAACkgkQTAAAAAAAAUkGiCQAA1JWZeQWPPc3scTP7dtbxpiHanty2vVjB8gNmdmGZZabn2qqCeqeXKetCMxsoF1eziOLNtWdb9BEAANrVyKwDAAAAbW+32Ov1JC2U9DVJN8Sm/1HSYZKeb2BcjXCkpIezDqIN/JekcyVdk3UgAACgNBJNAACgrtz9rtxrM9sgevlYfHrk/xoXVcPc7+4PZB1Eq3P3xyQ9ZmZvZB0LAAAojVvnAABAUyh065yZvdfMfm1mr5nZ82Z2npltGJv/ieh2qp3M7LZoufui92PM7Cdm9pKZ/dnMZueVfZuZXWVmn4rqft3MbjCzrfKW29TMLorqfy1ar6eG7ZxuZr81s+VmtsTMDi6y3GfM7G9mtszMfi5pywTVbGpmV5rZq9G2f6ZIHfua2f1RHf1mNq2C+N3M/sPMzoja5B9m9sVo3tFRfS+a2QVmNjq2XtX7CgAAtA4STQAAoCmZ2Xsk/UrSM5I+JOl4SQdI+kmBxS+S1Cfpg5JM0lWSzpf092jduyVdbGYT8tbbTdI8SZ+XNEfS2yVdm7fMtZL2l/RFSR9V+P60yMy2qWKb1pP0S0kbSPoXhVsIz5I0KW+5QyR9X9L1kg6X9AdJFySo6jxJv1e4HfE2Sd83s13ylpkk6VuS5kuaLWkzSZebmcXiuNDMHi9Q/heibZgtaYGkb5nZ6ZI+Ielzkk5SuG3w+ALrVruvAABAC+DWOQAA0Ky+IekOd/9oboKZPSXpVjObnndL2rfd/aJoGVMY/+k2d++Npv1OIYlxkKQfxNbbTNJu7v7XaLknJPWb2Sx3v8nMZkl6j6Q93f3X0TILJT0u6T8lfTrhNn0yqvNd7v5kVN7jkvrzluuVdJO7Hxe9/6WZjZf0rxXW0+fuX4vKv01huw+X9LvYMhtLeo+7PxItN0JhDKTtJf0pWma1pFUFyn/E3T8drfcrSR+W9G+SJrv7y9H0PRUSXd/IW7fafQUAAFoAVzQBAICmY2brK1xtdIWZjcw9FBIyKyXNyFvl1tjrR6PnhbkJ7v6SpOckDbktTtK9uSRTtNxvJS2VlLv6ZxdJS3NJpmiZZQpXGs2sYtN2kbQ4l2TKq1OSFG3nTpKuy1v3pwnquTlW/kpJj0jKv0Lo8VySKfLH6Hntcu4+x90LXbl1a2yZNZL+orBdL8eWeVTrtveQdZVsXwEAgBZAogkAADSjjSR1SPofhcRS7vGGpE5JE/OWfzH2ekWBabnpo/OmLdW6lmpwPKQtiyzzrMIVQUltUaLOnE0Vtj1/uULrFfNi3vtC215oGRVYrtLyK6kzf90k+woAALQAbp0DAADN6EVJLuk0STcWmP/3lOrZrMi0p6PXTxdZZnNJL1RR3zOS3lomjn8o3LKWX2+hOAAAAJoKVzQBAICmE92edpek7d19oMAjrUTTTma2diDuaADyzTQ4ltHdkjYzs91jy6wv6QNad1ylStwjaUZ8oOtYnZIkd18l6f8kHZK37uFV1AcAANBQXNEEAACa1ZcUBv5eo/DLZK8o/FLaByT1uvvDKdTxnKQbzOxUhVu1vqkwbtNNkuTuvzSzOxR+je1ESc8r/Prcegq/2JbUTySdHNV5WlTOfylcxRT335J+amY/UBigew9Js6qoryZmdr6kPYqM0wQAALAOrmgCAABNyd37Je0uabykSyT9XCH59DeFMZLScIek70s6S9L5kh6QdGjeModKuiVa5kpJJmlvd39UCbn7a5L2l7RM0mWSTpX0BUlP5C13jaR5Cr+8dq2kHSXNSVpfCjrEPyYBAEAC5u5ZxwAAANBwZnabpH+4+4fqUPaekhZJeqekB9x9ddp1DCdmNkLhH6SPSrrK3b+YcUgAAKAIrmgCAACon/sUbrdDbS5Q+NXByVkHAgAASuNSaAAAgPQtlrRz9HpVloG0idMkfS96/UyGcQAAgDK4dQ4AAAAAAACp4NY5AAAAAAAApIJEEwAAAAAAAFJBogkAAAAAAACpINEEAAAAAACAVJBoAgAAAAAAQCpINAEAAAAAACAV/x9RIxrZLStxNwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 1440x720 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_date(events_1, counts_1, mean_1, std_1, \"Eventos de 09/04/21 a 10/04/21\")" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean: 5.63\n", + "Standard deviation: 2.4\n", + "Rate: 2192 events per hour\n" + ] + } + ], + "source": [ + "print(f\"Mean: {round(mean_1,2)}\")\n", + "print(f\"Standard deviation: {round(std_1,2)}\")\n", + "print(f\"Rate: {sum(counts_1)} events per hour\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Data 2" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "data_2 = load_data(\"Data/EAS_data_2.dat\")" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "EAS_2 = create_df(data_2) " + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>0</th>\n", + " <th>1</th>\n", + " <th>2</th>\n", + " <th>3</th>\n", + " <th>4</th>\n", + " <th>5</th>\n", + " <th>6</th>\n", + " <th>7</th>\n", + " <th>8</th>\n", + " <th>9</th>\n", + " <th>10</th>\n", + " <th>11</th>\n", + " <th>12</th>\n", + " <th>13</th>\n", + " <th>14</th>\n", + " <th>15</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>E7552E76</td>\n", + " <td>80</td>\n", + " <td>00</td>\n", + " <td>2A</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>2C</td>\n", + " <td>00</td>\n", + " <td>E6FAC526</td>\n", + " <td>004549.013</td>\n", + " <td>100421</td>\n", + " <td>A</td>\n", + " <td>08</td>\n", + " <td>0</td>\n", + " <td>+0055</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>E7552E76</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>30</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>E6FAC526</td>\n", + " <td>004549.013</td>\n", + " <td>100421</td>\n", + " <td>A</td>\n", + " <td>08</td>\n", + " <td>0</td>\n", + " <td>+0055</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>E7552E7A</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>35</td>\n", + " <td>31</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>E6FAC526</td>\n", + " <td>004549.013</td>\n", + " <td>100421</td>\n", + " <td>A</td>\n", + " <td>08</td>\n", + " <td>0</td>\n", + " <td>+0055</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>E7552E7A</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>38</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>E6FAC526</td>\n", + " <td>004549.013</td>\n", + " <td>100421</td>\n", + " <td>A</td>\n", + " <td>08</td>\n", + " <td>0</td>\n", + " <td>+0055</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>E7552E7C</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>2D</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>E6FAC526</td>\n", + " <td>004549.013</td>\n", + " <td>100421</td>\n", + " <td>A</td>\n", + " <td>08</td>\n", + " <td>0</td>\n", + " <td>+0055</td>\n", + " </tr>\n", + " <tr>\n", + " <th>...</th>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3223</th>\n", + " <td>DF830814</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>28</td>\n", + " <td>DE65B726</td>\n", + " <td>021429.000</td>\n", + " <td>100421</td>\n", + " <td>A</td>\n", + " <td>07</td>\n", + " <td>0</td>\n", + " <td>+0034</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3224</th>\n", + " <td>F1C8B587</td>\n", + " <td>80</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>3B</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>F1C4D266</td>\n", + " <td>021442.008</td>\n", + " <td>100421</td>\n", + " <td>A</td>\n", + " <td>06</td>\n", + " <td>0</td>\n", + " <td>+0058</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3225</th>\n", + " <td>F1C8B588</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>21</td>\n", + " <td>00</td>\n", + " <td>F1C4D266</td>\n", + " <td>021442.008</td>\n", + " <td>100421</td>\n", + " <td>A</td>\n", + " <td>06</td>\n", + " <td>0</td>\n", + " <td>+0058</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3226</th>\n", + " <td>F1C8B589</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>2F</td>\n", + " <td>F1C4D266</td>\n", + " <td>021442.008</td>\n", + " <td>100421</td>\n", + " <td>A</td>\n", + " <td>06</td>\n", + " <td>0</td>\n", + " <td>+0058</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3227</th>\n", + " <td>F1C8B58A</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>3E</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>F1C4D266</td>\n", + " <td>021442.008</td>\n", + " <td>100421</td>\n", + " <td>A</td>\n", + " <td>06</td>\n", + " <td>0</td>\n", + " <td>+0058</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "<p>3211 rows × 16 columns</p>\n", + "</div>" + ], + "text/plain": [ + " 0 1 2 3 4 5 6 7 8 9 10 11 \\\n", + "0 E7552E76 80 00 2A 00 00 00 2C 00 E6FAC526 004549.013 100421 \n", + "1 E7552E76 00 00 00 00 30 00 00 00 E6FAC526 004549.013 100421 \n", + "2 E7552E7A 00 00 35 31 00 00 00 00 E6FAC526 004549.013 100421 \n", + "3 E7552E7A 00 00 00 38 00 00 00 00 E6FAC526 004549.013 100421 \n", + "4 E7552E7C 00 00 00 00 00 2D 00 00 E6FAC526 004549.013 100421 \n", + "... ... .. .. .. .. .. .. .. .. ... ... ... \n", + "3223 DF830814 00 00 00 00 00 00 00 28 DE65B726 021429.000 100421 \n", + "3224 F1C8B587 80 00 00 00 3B 00 00 00 F1C4D266 021442.008 100421 \n", + "3225 F1C8B588 00 00 00 00 00 00 21 00 F1C4D266 021442.008 100421 \n", + "3226 F1C8B589 00 00 00 00 00 00 00 2F F1C4D266 021442.008 100421 \n", + "3227 F1C8B58A 00 00 00 00 00 3E 00 00 F1C4D266 021442.008 100421 \n", + "\n", + " 12 13 14 15 \n", + "0 A 08 0 +0055 \n", + "1 A 08 0 +0055 \n", + "2 A 08 0 +0055 \n", + "3 A 08 0 +0055 \n", + "4 A 08 0 +0055 \n", + "... .. .. .. ... \n", + "3223 A 07 0 +0034 \n", + "3224 A 06 0 +0058 \n", + "3225 A 06 0 +0058 \n", + "3226 A 06 0 +0058 \n", + "3227 A 06 0 +0058 \n", + "\n", + "[3211 rows x 16 columns]" + ] + }, + "execution_count": 76, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "EAS_2" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "EAS_2, time_2 = time_date(EAS_2)" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>0</th>\n", + " <th>1</th>\n", + " <th>2</th>\n", + " <th>3</th>\n", + " <th>4</th>\n", + " <th>5</th>\n", + " <th>6</th>\n", + " <th>7</th>\n", + " <th>8</th>\n", + " <th>9</th>\n", + " <th>10</th>\n", + " <th>11</th>\n", + " <th>12</th>\n", + " <th>13</th>\n", + " <th>14</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>E7552E76</td>\n", + " <td>80</td>\n", + " <td>00</td>\n", + " <td>2A</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>2C</td>\n", + " <td>00</td>\n", + " <td>E6FAC526</td>\n", + " <td>100421 004549.013</td>\n", + " <td>A</td>\n", + " <td>08</td>\n", + " <td>0</td>\n", + " <td>+0055</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>E7552E76</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>30</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>E6FAC526</td>\n", + " <td>100421 004549.013</td>\n", + " <td>A</td>\n", + " <td>08</td>\n", + " <td>0</td>\n", + " <td>+0055</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>E7552E7A</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>35</td>\n", + " <td>31</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>E6FAC526</td>\n", + " <td>100421 004549.013</td>\n", + " <td>A</td>\n", + " <td>08</td>\n", + " <td>0</td>\n", + " <td>+0055</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>E7552E7A</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>38</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>E6FAC526</td>\n", + " <td>100421 004549.013</td>\n", + " <td>A</td>\n", + " <td>08</td>\n", + " <td>0</td>\n", + " <td>+0055</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>E7552E7C</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>2D</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>E6FAC526</td>\n", + " <td>100421 004549.013</td>\n", + " <td>A</td>\n", + " <td>08</td>\n", + " <td>0</td>\n", + " <td>+0055</td>\n", + " </tr>\n", + " <tr>\n", + " <th>...</th>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3223</th>\n", + " <td>DF830814</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>28</td>\n", + " <td>DE65B726</td>\n", + " <td>100421 021429.000</td>\n", + " <td>A</td>\n", + " <td>07</td>\n", + " <td>0</td>\n", + " <td>+0034</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3224</th>\n", + " <td>F1C8B587</td>\n", + " <td>80</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>3B</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>F1C4D266</td>\n", + " <td>100421 021442.008</td>\n", + " <td>A</td>\n", + " <td>06</td>\n", + " <td>0</td>\n", + " <td>+0058</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3225</th>\n", + " <td>F1C8B588</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>21</td>\n", + " <td>00</td>\n", + " <td>F1C4D266</td>\n", + " <td>100421 021442.008</td>\n", + " <td>A</td>\n", + " <td>06</td>\n", + " <td>0</td>\n", + " <td>+0058</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3226</th>\n", + " <td>F1C8B589</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>2F</td>\n", + " <td>F1C4D266</td>\n", + " <td>100421 021442.008</td>\n", + " <td>A</td>\n", + " <td>06</td>\n", + " <td>0</td>\n", + " <td>+0058</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3227</th>\n", + " <td>F1C8B58A</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>3E</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>F1C4D266</td>\n", + " <td>100421 021442.008</td>\n", + " <td>A</td>\n", + " <td>06</td>\n", + " <td>0</td>\n", + " <td>+0058</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "<p>3211 rows × 15 columns</p>\n", + "</div>" + ], + "text/plain": [ + " 0 1 2 3 4 5 6 7 8 9 10 \\\n", + "0 E7552E76 80 00 2A 00 00 00 2C 00 E6FAC526 100421 004549.013 \n", + "1 E7552E76 00 00 00 00 30 00 00 00 E6FAC526 100421 004549.013 \n", + "2 E7552E7A 00 00 35 31 00 00 00 00 E6FAC526 100421 004549.013 \n", + "3 E7552E7A 00 00 00 38 00 00 00 00 E6FAC526 100421 004549.013 \n", + "4 E7552E7C 00 00 00 00 00 2D 00 00 E6FAC526 100421 004549.013 \n", + "... ... .. .. .. .. .. .. .. .. ... ... \n", + "3223 DF830814 00 00 00 00 00 00 00 28 DE65B726 100421 021429.000 \n", + "3224 F1C8B587 80 00 00 00 3B 00 00 00 F1C4D266 100421 021442.008 \n", + "3225 F1C8B588 00 00 00 00 00 00 21 00 F1C4D266 100421 021442.008 \n", + "3226 F1C8B589 00 00 00 00 00 00 00 2F F1C4D266 100421 021442.008 \n", + "3227 F1C8B58A 00 00 00 00 00 3E 00 00 F1C4D266 100421 021442.008 \n", + "\n", + " 11 12 13 14 \n", + "0 A 08 0 +0055 \n", + "1 A 08 0 +0055 \n", + "2 A 08 0 +0055 \n", + "3 A 08 0 +0055 \n", + "4 A 08 0 +0055 \n", + "... .. .. .. ... \n", + "3223 A 07 0 +0034 \n", + "3224 A 06 0 +0058 \n", + "3225 A 06 0 +0058 \n", + "3226 A 06 0 +0058 \n", + "3227 A 06 0 +0058 \n", + "\n", + "[3211 rows x 15 columns]" + ] + }, + "execution_count": 78, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "EAS_2" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "events_2, counts_2, mean_2, std_2 = events_counts(time_2)" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJoAAAJnCAYAAADftTl7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAB8KElEQVR4nO3deZxcVZn/8e+T7k6HhJAQsiFZcW0SVEijoFEBAREVAdEhg45LHBQn+Y0zOgPajqAjMw4aZURHRgURh3RQFnFkEcYEnZZFOg4iiiggIIgEQWQN6STP749Tlb5dqeVW1bm19ef9etWrqm7de85zzrlbP7n3xtxdAAAAAAAAQL0mNDsAAAAAAAAAdAYSTQAAAAAAAIiCRBMAAAAAAACiINEEAAAAAACAKEg0AQAAAAAAIAoSTQAAAAAAAIiCRBMAAEADmNm7zMzN7F3NjgUAACArJJoAABiHcgmPSq+Dmx1nOWZ2ejvE2UhmdryZnW1m/2tmj+f6579SLPcKM7vSzB41s2fM7FYz+6CZdVVY7h9ydSxLTOsys7/LlfFMrswrzewVKdvwAjN7Kk3sZnZAbr4P5b6/NLde/NjMHjSzLWb2gJkNmtn+JcroM7NPmNnlZnZfYv3vThMvAAAYiwMoAADj2yfK/HZPo4JANB+T9BJJT0q6X9KLKi1gZm+WdImkzZIukvSopDdJ+rykV0p6a5nFj5V0r7tvzJVlktZJOl7SHZK+KGmGpL+Q9CMze4u7X14mlm5J35S0vVLcifol6dLc+zmSXi5pY27ak5JeKukESceb2V+4+6UFZbxO0sclbZP0G4V+mJSyfgAAUIBEEwAA45i7n97sGBDV3ykkmO6U9BpJG8rNbGa7SfqqQpLlYHcfzk3/J0nrFZIzJ7j7uiLL7inpQElfSEw+QSHJdL2k17r75ty850gakvRVM1vv7k+UCOmjComhf5D07ynae6ykn7n7b3PfL5T0dne/syDWEyX9l6SvmNn33H1L4uerJN0g6VZ3f8bM7pG0MEXdAACgCG6dAwAAZZnZOblbid5c4veX536/uGD6ZDP7iJndkrsV6kkzu8HMVhQp4+BcGafnbn+6wsweM7OnzeyHhbdd5ZIBp+W+bkje8lcw355m9iUzuyd3G9XDZnZp8lavxLwTzez/mdlPzexPubrvyd1SdVgV/fU8M/t2roynzOx6M3tDhWXmmdkXzexuM3vWzB4xs++a2QFp65Ukd9/g7r9xd688t6SQFJolaV0+yZQrZ7PC1VGSdHKJZd8sySRdlpiWn/dj+SRTrrybFa6WmpWrcydm1i/pnyT9s6RbKwVuZi9SuGJrR/3ufnZhkik3/UKFq5X2kLRvwW93uPtN7v5MpToBAEBlJJoAAEAl38i9/1WJ39+Zez8/P8HMpitcwfIvClfLnJcrZ5aktWb2qRJl9StcDTNJ0tckfU/Sckk/MLMXJuY7S9IPE/F9IvHKx7BY0rCkD0i6S9IaSd+X9AZJ15vZGwvqPl/hKpoeSRcoXKnzI4XExJEl4h3DzJ4v6UaFZMoNufLul/QdSceVWGZ/Sbfk4rxD0tmS/lvSqyUNmdlRaequ0aG596uL/PYjSU9LeoWZ9Rb5/ThJDyuMs8xskqRX5Jb53yLzX1VQ5w5mtovCLXO3SPp0ytjz/XlZ2blGjeTet6acHwAA1IBb5wAAGMfM7PQSP212909LkrvfYGa/lvRGM5vh7o8mlu9VuF1qk8YmK86StJ+kU9z9zMT8kxSSLh81s4vd/ZaCet8g6d3ufn5imfcpPHvnbxWSMXL3s3LJrNdIOt/dryvShnMkPUfh6pozEuX9h0IS5RtmttDdnzSzabl2bJT0cnffVtBPe5Top0JfUrhq5oPuvuPWr9zVYN8pnDn3TKJvSdpV0iHu/sPEb8+RdLOkc81skbs/mzKGauSTd78u/MHdt5rZbyUtkbS3pNsTsU2XdLCkCxJ99VxJXZLudvdiyZzf5N5fUOS3T0taLGn/XL1pYj9W0l3unubqpwMl7SPpAUm3pSkcAADUhiuaAAAY304r8Tq1YL5vSJooqfC2tzdJ2l3ShfnkQi4p83ZJw8kkk7TjlqxTFG65+ssi8fw4mWTKOU/hKpSXpW2Umc2TdISk+yQVxnC9pEGFh1Tnr4rxXEzPqsiDqN39kZR1Hi7ptwoPwU4uf7lGr8BKeoNCgubsZJIpt8zvc7HPlfTaSvXXaFru/c8lfs9Pn14w/Y0KV34lryaqqSwze62k1ZI+7u6/LB/ujmXmK1z9VvFqJjOboXCFmiT9XWESEQAAxMUVTQAAjGPunurSEYU/1P9Z4Ta5LyWm73TbnKQDFK5s8RJXTPXk3vuK/DZcOMHdR8zsIYWEVlr75d7/191Hivy+XiEZtp/CVTmPm9l/KyTObjGzSxRu/7rJ3Z+uss6hEsmM6xSuwEo6KPe+sERfPT/33ifpypRxNMKxkp6Q9D/1FJK7Mup8STcp3NqY1jG597KJJjObIulyhX48092/XXWQAACgKiSaAABARe5+v5n9QNLhZtbn7reb2WyFZxfdUnD7Uv42swNyr1J2LTLtsRLzblVIXqWVv7rmwRK/56dPT0z7C4Wrrf5So8962px7yPmH3f2hlHWWmu8PRabl++qtFcou1lcx5K8ymlbi9/z0x/ITcs9TOlLS9wpu56u6LEmfU+iDw6q80ug4hf68sdQMuSTTFQrP+Pqcu59SRfkAAKBG3DoHAADSyj8UPH8V04kK/2j1jYL58gmHz7u7lXkdkmGs+Rjmlvh9z4L55O7PuPvp7v4CSQsUrngayr1fvHMRJeucU+L3YrHkl3lzhb76RJFlY7gj977Tc5Nyz49arJDkuzvx0+skTZZ0acEidyk8+H3v3LKF8ldnJZ8Htb+kXST9quB/DtyQ+/3E3LRbEnHNlPQqSd9x951uc8zNM1Xh4eOvUbiS6UPF5gMAAPGRaAIAAGldKulxSW83swkKCaetktYWzPcTheccvSrjePJXwBS70un/cu/LSyQ98kmunxYr2N1/5+4XKiRV7syVU+mB4Mk6i8V0cJFp+Stysu6rUtbn3ov9r3qvVkgoXV9w5dKxCs+yGnMrX+75W9fnlinWntcX1CmFdercIq982XflvieTWm9SGPOit83lHux+TS6GM7iSCQCAxiLRBAAAUnH3ZxT+h7S9JP2dpJdIutLdNxXMt0nShZL6zeyfiiVdzOy5Zra4zpDyD+heUCTW+yVdK2mRpA8W1P1yhdvj/qRcssLMZpnZvkXqmKJw29pWSVvKBZOoc7GkVQV1vlk7P59JCs8PukvS35jZUcXKNbODzGxyubrrcLGkP0o6wcz6E3VOkvSp3NcvJ6Z3KzwI/Afu/kSR8vLzfipXRn65AxRuTXxY0iX56e7+SXd/b+FL0mdys9yYm/bJRB3HKtx+t0EFzGx3hedGHSjpNHf/WJpOAAAA8fCMJgAAxrESD6DO+46731Iw7RuS3ivpXxPfi1mlcKvUJyW9w8yGFJ5d9ByFB1sfoPA/2P22psCDDQpXTv2rmS1VSBzJ3fMJkvdL+rGkz5jZEQoPGp+v8Dyk7ZLenUiW7CXp/8zs55JulfQ7SbspJFXmSvpCicRKob+RdIOks3J1/kzS8xSSI/mHje+Qe9D5cZK+L+kKM7te0i2Sns7FeoCkvRVu9av4UHIzO0ajD8rO36p3kJmdn/v8R3f/cKL+x83srxUSTteZ2TpJj0o6WtILc9MvSlRxsML/1lfqIdzrFJ6fdLxCf/63wjOY/kLhKqS/dvfHK7WjTPt2Vfif/S4p8ZD3SxX+N7q7JE0osX6PWa9zt+J9NvH7zNz7ubnb+CTp0+7+q1rjBgBgPCHRBADA+HZamd/uUUh67ODuQ2Z2p0Ly5FFJ3yu2YC6B8RpJJylcPfQWSZMUkk2/Ubgi6tp6As89kPydkj4s6QO58qXclTjufnfuKp2PSTpKIUnyuKSrFW6purmgrafl5jlEIdnwqMIzjE5VSKCkiek3ZnagpE9LOixX3q0KyZ9ZKkg05Za51cxeIunvFRJb71ZIhD2ocDveaQpXHaXxUo0+Qytv79xLku5V6K9k/d/JjdWARsfpzlw8X3B3T8x+bC62y4tV7u5uZisUbqF7j6TVkjZL+pGkT7n79SnbUcrrc/EVPh8qL3+V3HNVet2+R2PX6121c59J0l8lPp8viUQTAAAp2NhzBwAAAGBnZmaS7pd0p7sXuw2wETGsVUjazXT3ild4AQCAxuMZTQAAAEjjZQq3Ppa6bS5TZjZR0hskXUOSCQCA1sUVTQAAAAAAAIiCK5oAAAAAAAAQBYkmAAAAAAAAREGiCQAAAAAAAFF0NzuArM2cOdMXLVrU7DAAAAAAAAA6xsaNG//o7rMKp3d8omnRokUaHh5udhgAAAAAAAAdw8zuLTadW+cAAAAAAAAQBYkmAAAAAAAAREGiCQAAAAAAAFGQaAIAAAAAAEAUJJoAAAAAAAAQBYkmAAAAAAAARNHd7AAAAAAAAEB7ePzxx7Vp0yaNjIw0OxRkpKenR7Nnz9Zuu+1W0/IkmgAAAAAAQEWPP/64HnroIe21117aZZddZGbNDgmRubueeeYZPfDAA5JUU7KJW+cAAAAAAEBFmzZt0l577aXJkyeTZOpQZqbJkydrr7320qZNm2oqg0QTAAAAAACoaGRkRLvsskuzw0AD7LLLLjXfHkmiCQAAAAAApMKVTONDPeNMogkAAAAAAABRkGgCAAAAAADjxumnny4zk5lpwoQJ2n333XXAAQdoYGBAf/jDH6ou78wzz9R1110XP9A2RaIJAAAAAACMK9OmTdMNN9yg66+/XuvWrdNxxx2nb37zm9p33321cePGqsoi0TRWd7MDAAAAAAAAaKTu7m4deOCBO76/7nWv08knn6xXv/rVOuGEE/SrX/1KXV1dTYywfXFFEwAAAAAAaKjBQWnpUqmrK7wPDjY7Imn69Ok688wzdeedd+raa6+VJJ166qnad999teuuu2revHk68cQTx9xet2jRIj3yyCP6xCc+seN2vPzVTWvWrNEBBxygadOmac6cOXrTm96kO++8sxlNaygSTQAAAAAAoGEGB6WBAenss6XNm8P7wEBrJJsOPvhgdXd368Ybb5Qkbdq0SR/96Ed1xRVX6KyzztLdd9+tQw89VNu3b5ckXXbZZZo2bZpWrlypG264QTfccIP2339/SdL999+vVatW6fLLL9dXv/pVbdu2Ta94xSv05z//uWntawRunQMAAAAAAA1zxhnSuedKhxwSvh9ySPi+erW0YkVzY5s0aZJmzpyphx56SJJ03nnn7fht27ZtOuiggzRv3jwNDQ3p1a9+tfbbbz91d3dr3rx5Y27Fk6TPf/7zY5Y9/PDDNXv2bF1++eX6q7/6q8Y0qAm4ogkAAAAAADTM7bdLy5ePnbZ8eZjeCtx9x+errrpKr3jFKzRt2rQdCSVJ+vWvf12xnBtvvFGHH3649thjD3V3d2vy5Ml68sknUy3bzkg0AQAAAACAhunrk4aGxk4bGgrTm23z5s165JFHNGfOHN188806+uijNW/ePH3zm9/UDTfcsOOWus2bN5ct57777tMRRxwhd9d//ud/6sc//rFuvvlmzZ49u+Ky7Y5b5wAAQMcaHAyX599+ezh5HRho/iX5AACMdwMD0sqV4Xa55ctDkmnlynDMbrYNGzZo69atOuigg3TZZZdp1qxZuuiii2RmkqR77703VTlXX321nn76aV1++eWaMmWKJGnr1q169NFHM4u9VZBoAgAAHSn/oNHCk1iJZBMAAM2UPw6vXj36j0FnnNH84/Njjz2mU045Rc973vN02GGH6eqrr1ZPT8+OJJMkXXjhhTstN3HixJ2uUnrmmWc0YcIEdXePpl2+9a1vaevWrdk1oEWQaAIAAB2plR80CgDAeLdiRXOPx1u3bt1xG9wTTzyhjRs36stf/rKefvppXX311erq6tLhhx+us846Sx/84Af1pje9Sddff73+67/+a6eyXvSiF+mKK67QkUceqV133VUvfOELdeihh2rbtm1697vfrZUrV+oXv/iFPvvZz2r69OkNbmnj8YwmAADQkVr9QaMAAKB5/vznP+uggw7SK17xCr31rW/VxRdfrLe//e36+c9/rmXLlkmSjjrqKP3bv/2bLrnkEh199NH64Q9/qO9973s7lfWZz3xGU6ZM0Rve8AYdcMAB2rhxo/bdd1+df/75uummm/TGN75Ra9eu1be//W1Nmzat0U1tOEs+Tb0T9ff3+/DwcLPDAAAADbZ0qXT22aNXNEnShg3hiqbbbmteXAAAtKvbb79dfa3wxG40RKXxNrON7t5fOJ0rmgAAQEfKP2h0wwZpZCS8r1wZpgMAACAbPKMJAAB0pFZ90CgAAEAnI9EEAAA6VrMfNAoAADDecOscAAAAAAAAoiDRBAAAAAAAgChINAEAAAAAACAKEk0AAAAAAACIgkQTAAAAAAAAoiDRBAAAAAAAgChINAEAAAAAgHHh9NNPl5np+c9/ftHfn//858vMdPrppzc2sArycRe+rr766rLLvetd7yq6nJlpcHAwk1i7MykVAAAAAACgBU2aNEm//e1vNTw8rP7+/h3Tb775Zt1zzz2aNGlSE6Mrbdq0aTsllvr6+sou80//9E96//vfP2bal7/8Za1du1aHH3549BglEk0AAAAAAGAcmTJlivbff3+tW7duTKJp3bp1OvTQQ7Vx48YmRldad3e3DjzwwKqWee5zn6vnPve5Y6atXLlShx12mGbOnBkzvB24dQ4AAAAAAIwrJ5xwgr71rW/J3SVJ7q5vfetbOuGEE4rO/7//+796zWteo8mTJ2uPPfbQX//1X+uJJ57Y8fuDDz6o97znPdp77721yy676AUveIE+9rGPacuWLTvmueeee2Rm+ta3vqX3ve99mjZtmubNm6fTTjtN27dvz7bBObfeeqt++ctfasWKFZnVQaIJAAAAAACMK8cdd5weeughDQ0NSQqJpIcffljHHXfcTvP++Mc/1mGHHaa5c+fq4osv1llnnaUrr7xS7373u3fM88c//lEzZszQ5z73OV199dX6h3/4B33961/X6tWrdyrvH//xH7Xrrrvq4osv1tvf/nZ98pOf1MUXX1wx5scee0wzZ85UT0+P9ttvP1166aVVt3vdunWaNGmSjjnmmKqXTYtb5wAAAAAAwLgyffp0HXnkkVq3bp1e9apXad26dTryyCM1bdq0neY99dRT9YpXvEIXXXTRjml77bWXXvva1+q2227T0qVLte++++qzn/3sjt9f+cpXasqUKXrPe96js88+WxMnTtzx26tf/WqtWbNGknT44Yfr6quv1qWXXqq3ve1tJeN93vOepzPPPFP77befnnjiCf3nf/6n3vKWt+iSSy4pmhwr5aKLLtJRRx2l3XbbLfUy1eKKJgAAAAAAMO6ccMIJuvjii/Xss8/q4osvLnrb3NNPP60bbrhBb3vb27R169Ydr+XLl6unp2fH85zcXWeddZb22Wcf7bLLLurp6dGJJ56oZ599Vvfdd9+YMo844ogx3/fZZx/df//9ZWN9+9vfrr//+7/XIYccoqOPPlrf+973dOCBB+qTn/xk6vbedNNNuvvuuzO9bU4i0QQAAAAAAMaho48+Wk8++aQGBgb01FNP6U1vetNO8/zpT3/Stm3b9IEPfEA9PT07Xr29vRoZGdHvfvc7SdJZZ52lD3/4wzr22GN1+eWX6yc/+Ym+9KUvSZI2b948pszp06eP+T5x4sSd5qnEzHTcccfp1ltv1bZt21Its27dOk2dOlVveMMbqqqrWtw6BwAAAAAAxp0pU6bojW98oz7/+c/rrW99q6ZMmbLTPNOnT5eZ6fTTT9dRRx210+/Pec5zJEnf/va3dfzxx+uMM87Y8dsvf/nL7IJXSDaZWap5t2/frm9961s65phjtMsuu2QaF4kmAAAAAAAwLp188sl69tln9f73v7/o71OmTNGBBx6oO+64Qx//+MdLlvPMM8+ot7d3zLQLL7wwaqxJ7q5LLrlEL3nJS9TV1VVx/h/96Ef6/e9/n/ltc1KDE01mNl/SBZLmSHJJX3H3fzezGZIukrRI0j2S3ubufyqy/DslfSz39VPu/o1GxA0AAAAAADrPwQcfrIMPPrjsPGeeeaZe+9rXasKECTr++OM1depU3Xfffbriiit0xhln6AUveIEOP/xwfeELX9DLX/5yPfe5z9WFF16oO++8M1qcr3nNa/SWt7xFL3rRi/TUU0/pq1/9qm666SZ95zvfGTNfd3e3Pv7xj++UFFu3bp1mzpypww8/PFpMpTT6iqatkj7k7j81s6mSNprZtZLeJekH7v5pMztV0qmSTkkumEtGnSapXyFJtdHMvlssIQUAAAAAABDD8uXL9aMf/UinnXaa3vGOd2jbtm1auHChjjzySM2ZM0eS9PGPf1wPP/ywPvaxcG3Mcccdpy984QtFn/tUi+c973k666yz9OCDD2rChAnaf//9dcUVV+j1r3/9mPm2bdum7du3j5m2detWXXLJJXrLW96i7u7s00Dm7plXUrJys8slfTH3OtjdHzSzPSVd5+4vLJh3RW6e9+W+/2duvsFydfT39/vw8HA2DQAAAAAAYJy4/fbb1dfX1+ww0CCVxtvMNrp7f+H0pv2vc2a2SNJ+km6SNMfdH8z99AeFW+sK7SXpd4nv9+emAQAAAAAAoAU0JdFkZrtKukTSB9398eRvHi6xqusyKzM7ycyGzWz44YcfrqcoAAAAAAAApNTwRJOZ9SgkmS5090tzkx/K3TKn3PumIos+IGl+4vu83LSduPtX3L3f3ftnzZoVL3gAAAAAAACU1NBEk5mZpHMl3e7un0v89F1J78x9fqeky4ss/n1JR5jZ7ma2u6QjctMAAAAAAADQAhp9RdMrJb1D0qFmdkvudZSkT0s63Mx+I+mw3HeZWb+ZfU2S3P1RSf8s6ebc65O5aQAAAAAAAGgB2f+/dgnuPiTJSvz82iLzD0t6b+L7eZLOyyY6AAAAAAAA1KNp/+scAAAAAAAAOguJJgAAAAAAAERBogkAAAAAAABRkGgCAAAAAABAFCSaAAAAAAAAyrjjjjv0N3/zN+rr69PkyZO1995762//9m/12GOPVVz2tNNO07777qvddttNU6dOVX9/vy666KKd5hseHtYRRxyhGTNmaMaMGTrssMN00003ZdCabDX0f50DAAAAAABoN9dee61+/OMf6+STT9aLX/xi3X333frYxz6mG264QTfeeKMmTCh9Hc/jjz+ud73rXdpnn33U1dWliy++WCeccIK6urp0/PHHS5J+97vf6bDDDtP++++vb37zm5Kkz3zmMzr88MP185//XAsXLmxIO2Mwd292DJnq7+/34eHhZocBAAAAAEBbu/3229XX19fsMJrikUce0YwZM2RmO6Zdc801et3rXqfrrrtOr3nNa6oq75WvfKX22GMPffe735UknXPOOfqbv/kbPfroo5o2bZok6U9/+pNmzpypL37xizr55JPjNSalSuNtZhvdvb9wOrfOAQAAAACAccHd9a//+q/ae++91dPTIzMb87rnnnuKLrfHHnuMSTJJ0n777SdJ+v3vf191HHvssYe2bNmy4/vIyIi6u7s1ZcqUHdN23XVXdXd3q90uECLRBAAAAAAAxoVvfOMb+uhHP6pDDz1U3/ve9/T5z39ekydP1uLFizUwMKDp06enLuuGG26QJL3gBS9INf/WrVv12GOP6cILL9Q111yj97///Tt+e8tb3qLJkyfrQx/6kDZt2qRNmzbp7/7u77T77rvrrW99a1VtbDZunQMAAAAAABV1wq1z++yzj57znOfof/7nf3ZM+/d//3edcsopuu+++zR79uxU5Tz99NNatmyZ5syZo+uuu67i/DfeeKMOOuggSVJ3d7e++MUv6n3ve9+YeW655Ra98Y1v1AMPPCBJ2nPPPXXVVVfpJS95ScrWxcWtcwAAAAAAACWMjIzojjvu0Fve8pYx04877jg9++yzqf+HN3fXypUrtWnTJp133nmpltl33311880369prr9WqVau0atUqDQ4O7vj9wQcf1Fvf+lYtW7ZMV111la666iotW7ZMb3jDG3Tfffelb2QL4H+dAwAAAAAAHe/RRx/V9u3bd7pqKf9906ZNqco55ZRTdNlll+naa6/V3nvvnWqZKVOmqL8/XPxz2GGH6c9//rNOOeUUrVixQlL4H+ZGRkZ08cUXq6enR5J06KGH6vnPf74++9nP6gtf+EKqeloBVzQBAAAAAICON2vWLE2cOFF/+MMfxkx/8MEHJUl77bVXxTI+//nP67Of/awuuOACvepVr6o5lv3331+/+93vtHXrVknSr371Ky1ZsmRHkkmSJk6cqCVLluiuu+6quZ5mINEEAAAAAAA63oQJE/Tyl79c3/72t8dMX7dunXp7e3f8L3KlXHjhhfrQhz6kz33uc3rb295WVyw//vGPNW/ePHV3hxvNFi5cqNtuu23M/0T37LPP6rbbbtOiRYvqqqvRuHUOAAAAAACMC5/4xCf02te+Vu985zv1l3/5l7r11lt12mmnadWqVZozZ07J5X74wx/q3e9+t4444ggdeOCBuvHGG3f8Nm/ePM2bN0+SdMEFF+g973mP7rrrLi1cuFD33nuv3vOe9+iEE07Qc5/7XD355JO67LLLtG7dOn35y1/eUcZ73/tefe1rX9Oxxx6rD3zgA3J3felLX9KDDz6ok046KbsOyQCJJgAAAAAAMC4ccsgh+va3v63TTz9dg4ODmj17tj784Q/rE5/4RNnlNmzYoJGREX3/+9/X97///TG/nXbaaTr99NMlSdu3b9e2bdvk7pKk6dOn6znPeY7+5V/+RQ8++KCmT5+uffbZR1dccYWOOuqoHWUsW7ZMV199tT7xiU/oHe94h6TwAPFrr722af/rXK0s3/hO1d/f78PDw80OAwAAAACAtlbpv7tHZ6k03ma20d37C6fzjCYAAAAAAABEQaIJAAAAAAAAUZBoAgAAAAAAQBQkmgAAAAAAABAFiSYAAAAAAABEQaIJAAAAAACk0un/cz2CesaZRBMAAAAAAKiop6dHzzzzTLPDQAM888wz6unpqWlZEk0AAAAAAKCi2bNn64EHHtDTTz/NlU0dyt319NNP64EHHtDs2bNrKqM7ckwAAAAAAKAD7bbbbpKk3//+9xoZGWlyNMhKT0+P5syZs2O8q0WiCQAAAAAApLLbbrvVnIDA+MCtcwAAAAAAAIiCRBMAAAAAAACiINEEAAAAAACAKEg0AQAAAAAAIAoSTQAAAAAAAIiCRBMAAAAAAACiINEEAAAAAACAKEg0AQAAAAAAIAoSTQAAAAAAAIiCRBMAAAAAAACiINEEAAAAAACAKEg0AQAAAAAAIAoSTQAAAAAAAIiCRBMAAAAAAACiINEEAAAAAACAKEg0AQAAAAAAIAoSTQAAAAAAAIiCRBMAAAAAAACiINEEAAAAAACAKEg0AQAAAAAAIAoSTQAAAAAAAIiCRBMAAAAAAACiINEEAAAAAACAKEg0AQAAAAAAIAoSTQAAAAAAAIiiu5GVmdl5kt4oaZO7L81Nu0jSC3OzTJf0mLu/tMiy90h6QtI2SVvdvb8BIQMAAAAAACClhiaaJJ0v6YuSLshPcPe/yH82szWS/lxm+UPc/Y+ZRQcAAAAAAICaNTTR5O4/MrNFxX4zM5P0NkmHNjImAAAAAAAAxNFKz2h6laSH3P03JX53SdeY2UYzO6mBcQEAAAAAACCFRt86V84KSYNlfl/u7g+Y2WxJ15rZr9z9R8VmzCWiTpKkBQsWxI8UAAAAAAAAO2mJK5rMrFvScZIuKjWPuz+Qe98k6TJJLysz71fcvd/d+2fNmhU7XAAAAAAAABTREokmSYdJ+pW731/sRzObYmZT858lHSHptgbGBwAAAAAAgAoammgys0FJN0h6oZndb2Yrcz+doILb5szsOWZ2Ze7rHElDZvYzST+RdIW7X92ouAEAAAAAAFBZo//XuRUlpr+ryLTfSzoq9/luSS/JNDgAAAAAAADUpVVunQMAAAAAAECbI9EEAAAAAACAKEg0AQAAAAAAIAoSTQAAAAAAAIiCRBMAAAAAAACiINEEAAA6wuCgtHSp1NUV3gcHmx0RALQG9o8AGqm72QEAAADUa3BQGhiQzj1XWr5cGhqSVq4Mv61Y0dzYAKCZ2D8CaDRz92bHkKn+/n4fHh5udhgAACBDS5dKZ58tHXLI6LQNG6TVq6XbbmteXADQbOwfAWTFzDa6e/9O00k0AQCAdtfVJW3eLPX0jE4bGZEmTZK2bWteXADQbOwfAWSlVKKJZzQBAIC219cXbgdJGhoK0wFgPGP/CKDRSDQBAIC2NzAQnjmyYUP4l/oNG8L3gYFmRwYAzcX+EUCj8TBwAADQ9vIPtF29Wrr99vAv9WecwYNuAYD9I4BG4xlNAAAAAAAAqArPaAIAAAAAAECmSDQBAAAAAAAgChJNAAAAAAAAiIJEEwAAAAAAAKIg0QQAAAAAAIAoSDQBAAAAAAAgChJNAAAAAAAAiIJEEwAAAAAAAKIg0QQAAAAAAIAoSDQBAAAAAAAgChJNAAAAAAAAiIJEEwAAAAAAAKIg0QQAAAAAAIAoSDQBAAAAAAAgChJNAAAAAAAAiIJEEwAAAAAAAKIg0QQAAABEMDgoLV0qdXWF98HBZkcEAEDjdTc7AAAAAKDdDQ5KAwPSuedKy5dLQ0PSypXhtxUrmhsbAACNxBVNAAAAQJ3OOCMkmQ45ROrpCe/nnhumAwAwnpBoAgAAAOp0++3hSqak5cvDdAAAxhMSTQAAAECd+vrC7XJJQ0NhOgAA4wmJJgAAAKBOAwPhmUwbNkgjI+F95cowHQCA8YSHgQMAAAB1yj/we/XqcLtcX194PhMPAgcAjDckmgAAAIAIVqwgsQQAALfOAQAAAAAAIAoSTQAAAAAAAIiCRBMAAAAAAACiINEEAAAAAACAKEg0AQAAAAAAIAoSTQAAAAAAAIiCRBMAAAAAAACiINEEAAAAAACAKEg0AQAAAAAAIAoSTQAAAAAAAIiCRBMAAAAAAACiINEEAAAAAACAKEg0AQAAAAAAIAoSTQAAAAAAAIiCRBMAAAAAAACiINEEAAAAAACAKBqaaDKz88xsk5ndlph2upk9YGa35F5HlVj2SDO7w8zuNLNTGxc1AAAAAAAA0mj0FU3nSzqyyPTPu/tLc68rC380sy5JX5L0ekn7SFphZvtkGikAAAAAAACq0tBEk7v/SNKjNSz6Mkl3uvvd7r5F0jpJb44aHAAAAAAAAOrSKs9oWmVmt+Zurdu9yO97Sfpd4vv9uWkAAAAAAABoEa2QaPqypOdKeqmkByWtqbdAMzvJzIbNbPjhhx+utzgAAAAAAACk0PREk7s/5O7b3H27pK8q3CZX6AFJ8xPf5+WmlSrzK+7e7+79s2bNihswAAAAAAAAimp6osnM9kx8PVbSbUVmu1nS881ssZlNlHSCpO82Ij4AAAAAAACk093IysxsUNLBkmaa2f2STpN0sJm9VJJLukfS+3LzPkfS19z9KHffamarJH1fUpek89z9F42MHQAAAAAAAOWZuzc7hkz19/f78PBws8MAAAAAAADoGGa20d37C6c3/dY5AAAAAAAAdAYSTQAAAAAAAIiCRBMAAAAAAACiINEEAAAAAACAKEg0AQAAAAAAIAoSTQAAAAAAAIiCRBMAAAAAAACiINEEAAAAAACAKEg0AQAAAAAAIAoSTQAAAAAAAIiCRBMAAAAAAACiINEEAAAAAACAKEg0AQAAAAAAIAoSTQAAAAAAAIiCRBMAAAAAAACiINEEAAAAAACAKEg0AQAAAAAAIAoSTdhhcFBaulTq6grvg4PNjggAAKA1cJ6EtFhXkLXxuo6N13a3o+5mB4DWMDgoDQxI554rLV8uDQ1JK1eG31asaG5sAAAAzcR5EtJiXUHWxus6Nl7b3a7M3ZsdQ6b6+/t9eHi42WG0vKVLpbPPlg45ZHTahg3S6tXSbbc1Ly4AAIBm4zwJabGuIGvjdR0br+1udWa20d37d5pOoglSuPxw82app2d02siINGmStG1b8+ICAABoNs6TkBbrCrI2Xtex8druVlcq0cQzmiBJ6usLlx8mDQ2F6QAAAOMZ50lIi3UFWRuv69h4bXe7ItEESeF+15Urw+WHIyPhfeXKMB0AAGA84zwJabGuIGvjdR0br+1uVzwMHJJGH6C2erV0++0hM3zGGTxYDQAAgPMkpMW6gqyN13VsvLa7XfGMJgAAAAAAAFSFZzQBAAAAAAAgUySaAAAAAAAAEAWJJgAAAAAAAERBogkAAAAAAABRkGgCAAAAAABAFCSaAAAAAAAAEAWJJgAAAAAAAERBogkAAAAAAABRkGgCAAAAAABAFCSaAAAAAAAAEAWJJgAAAAAAAERBogkAAAAAAABRkGgCAAAAAABAFCSaAAAAAAAAEAWJJgAAAAAAAERBogkAAAAAAABRkGgCAAAAAABAFCSaAAAAAAAAajA4KC1dKnV1hffBwWZH1HzdzQ4AAAAAAACg3QwOSgMD0rnnSsuXS0ND0sqV4bcVK5obWzNxRRMAAAAAAECVzjgjJJkOOUTq6Qnv554bpo9nJJoAAAAAAACqdPvt4UqmpOXLw/TxjEQTAAAAAABAlfr6wu1ySUNDYfp4RqIJAAAAAACgSgMD4ZlMGzZIIyPhfeXKMH0842HgAAAAAAAAVco/8Hv16nC7XF9feD7TeH4QuESiCQAAAAAAoCYrVpBYKsStcwAAAAAAAIiCRBMAAAAAAACiINEEAAAAAACAKBqaaDKz88xsk5ndlpj2GTP7lZndamaXmdn0EsveY2Y/N7NbzGy4YUEDAAAAAAAglUZf0XS+pCMLpl0raam7v1jSryV9pMzyh7j7S929P6P4AAAAAAAAUKOGJprc/UeSHi2Ydo27b819vVHSvEbGBAAAAAAAgDha7RlN75F0VYnfXNI1ZrbRzE5qYEwAAAAAAABIobvZAeSZ2YCkrZIuLDHLcnd/wMxmS7rWzH6Vu0KqWFknSTpJkhYsWJBJvAAAAAAAABirJa5oMrN3SXqjpBPd3YvN4+4P5N43SbpM0stKlefuX3H3fnfvnzVrVgYRAwAAAAAAoFDTE01mdqSkf5R0tLs/XWKeKWY2Nf9Z0hGSbis2LwAAAAAAAJqjoYkmMxuUdIOkF5rZ/Wa2UtIXJU1VuB3uFjM7Jzfvc8zsytyicyQNmdnPJP1E0hXufnUjYwcAAAAAAEB5qZ/RZGZ9kqa5+42577tI+idJ+0j6gbufXakMd19RZPK5Jeb9vaSjcp/vlvSStLECAAAAAACg8aq5ouk/JL0p8f0zkv5W0iRJ/2Zm/xAzMAAAAAAAALSXahJNSxVue5OZ9Uh6h6QPuvuRkj4q6T3xwwMAAAAAAEC7qCbRNEXS47nPB+a+X5r7/lNJCyPGBQAAAAAAgDZTTaLptwoJJkk6VtL/ufsjue8zJT0RMzAAAAAAAAC0l2oSTZ+T9Ckzu1nS/5P0hcRvB0u6NWJcqMHgoLR0qdTVFd4HB5sdUTrtGjdaH+sW8lgXRsXoC/qzPvQfAADoZKn/1zl3P9fMfiPpAEmnuvsPEj8/KumsyLGhCoOD0sCAdO650vLl0tCQtHJl+G1Fsf/rr0W0a9xofaxbyGNdGBWjL+jP+tB/AACg05m7NzuGTPX39/vw8HCzw8jc0qXS2WdLhxwyOm3DBmn1aum225oXVyXtGjdaH+sW8lgXRsXoC/qzPvQfAADoFGa20d37d5peTaLJzKZLep+k5ZJmKFzJ9L+SvuLuj0WJNLLxkmjq6pI2b5Z6ekanjYxIkyZJ27Y1L65K2jVutD7WLeSxLoyK0Rf0Z33oPwAA0ClKJZpSP6PJzJ4r6TZJn1T4H+fuy71/UtKtud/RJH194fL7pKGhML2VtWvcaH2sW8hjXRgVoy/oz/rQfwAAoNNV8zDwz0v6k6S93f1Qd1/h7odKem5u+ueyCBDpDAyEZzxs2BD+ZXTDhvB9YKDZkZXXrnGj9bFuIY91YVSMvqA/60P/AQCATpf6YeAK/7PcO939geREd3/AzD4p6esxA0N18g8QXb1auv328C+jZ5zR+g8Wbde40fpYt5DHujAqRl/Qn/Wh/wAAQKdL/YwmM/uzpJXufnGR394q6WvuPi1yfHUbL89oAgAAAAAAaJS6n9EkaYOkfzazhQUFL1R4TtMP6gsRAAAAAAAA7ayaW+c+KGm9pN+Y2U8lPSRptqRlkn4n6e+jRwcAAAAAAIC2kfqKJne/R9KLJP0/Sb+Q1CPpl5JWSerL/Q4AAAAAAIBxqpormuTuWySdk3sBAAAAAAAAO6S+osnMtpnZy0r8tszMtsULCwAAAAAAAO2mmoeBW5nfeiRtrTMWAAAAAAAAtLGyt86Z2QJJixKT9jOzSQWzTZL0Tkm/jRsaAAAAAAAA2kmlZzS9W9Jpkjz3+nKJ+Z6R9N6IcQEAAAAAAKDNVEo0/YekixVum7tV0om596Qtku5z92fjhwcAAAAAAIB2UTbR5O4PS3pYksxssaQHc//zHAAAAAAAADBGpSuadnD3eyXJzHol7aXwbKbCeX4ZLzQAAAAAAAC0k9SJJjN7jqSvSHp9sZ8VnuHUFSkuAAAAAAAAtJnUiSZJX5O0v6S/l/RLhWczAQAAAAAAAJKqSzS9UtJfu/u3sgoGAAAAAAAA7WtCFfNukvRMVoEAAAAAAACgvVWTaPq4pFPMbLesggEAAAAAAED7qubWueMkLZB0r5ndLOmxgt/d3f8iVmAAAAAAAABoL9Vc0TRT0l2SbpHUI2lWwWt27OBQncFBaelSqasrvA8ONjuiuFq9fa0eHwBUi/0a0HnYroHOwjaNVpT6iiZ3PyTLQFCfwUFpYEA691xp+XJpaEhauTL8tmJFc2OLodXb1+rxAUC12K8BnYftGugsbNNoVebu1S9kZpL2lLTJ3bdGjyqi/v5+Hx4ebnYYmVu6VDr7bOmQRDpwwwZp9WrpttuaF1csrd6+Vo8PAKrFfg3oPGzXQGdhm0azmdlGd+/faXo1iSYzO0rSaZJeqnA11AHu/lMz+6qkH7r7f0WKN5rxkmjq6pI2b5Z6ekanjYxIkyZJ27Y1L65YWr19rR4fAFSL/RrQediugc7CNo1mK5VoSv2MJjP7K0nflfQrSSdJssTPv5a0st4gUbu+vnCpZNLQUJjeCVq9fa0eHwBUi/0a0HnYroHOwjaNVlXNw8AHJH3G3d8pqfDKpV9I2idaVKjawEC4H3fDhpDF3rAhfB8YaHZkcbR6+1o9PgCoFvs1oPOwXQOdhW0arSr1w8AlLZR0bYnfNkvarf5wUKv8w95Wr5Zuvz1ksc84o3MeAtfq7Wv1+ACgWuzXgM7Ddg10FrZptKrUz2gys99IOsfd15hZl6QRSf25ZzT9o6R3uPu+GcZak/HyjCYAAAAAAIBGqfsZTZLOlXSamb1d0i6j5dprJf2jpK/WHyYAAAAAAADaVTW3zv2bpPmSviEp/wz76yV1SfpPd/9C5NgAAAAAAADQRlInmjzcY/c3ZvZ5SYdKminpUUnr3f3XGcUHAAAAAACANpE60WRmU9z9KXe/U9KdGcYEAAAAAACANlTNM5o2mdlFZnasmfVmFhEAAAAAAADaUjWJpn+UNFfSxQpJp2+a2RvMrJrnPAEAAAAAAKBDpU40ufuX3P01Cg8EP03ScyX9t6SHzOxcMzs8oxgBAAAAAADQBqq5okmS5O6/d/ez3P0VkhZJ+ldJR0q6KnJsAAAAAAAAaCM13/ZmZs+T9Be5156SfhcrKAAAAAAAALSfqq5oMrOFZvaPZrZR0h2SVkm6TtKr3H1hBvEBAAAAAACgTaS+osnMfiJpmaRHJV0q6cOSfuju2zOKDQAAAAAAAG2kmlvnfiHp45KudfdtGcUDAAAAAACANpU60eTu784yEAAAAAAAALS3ap/R9GIzu8jM7jKzZ81s/9z0M8zs9dmECAAAAAAAgHaQOtGUSyRtlDRX0gWSehI/PytpddzQAAAAAAAA0E6quaLpXyWd7+6vkXRGwW+3SHpppJgAAAAAAADQhqpJNL1I0kW5z17w2+OSZqQpxMzOM7NNZnZbYtoMM7vWzH6Te9+9xLLvzM3zGzN7ZxWxAwAAAAAAIGPVJJo2Sdq7xG9LJN2XspzzJR1ZMO1UST9w9+dL+kHu+xhmNkPSaZJeLullkk4rlZACmmVwUFq6VOrqCu+Dg82OqDFard1p4knOM39+eLVK/Bifst6OWm07BQC0D44hnYOxRCOk/l/nJK2T9Ekz+6WkG3LT3MxeIOkUSeemKcTdf2Rmiwomv1nSwbnP35B0Xa7MpNdJutbdH5UkM7tWIWHFpoGWMDgoDQxI554rLV8uDQ1JK1eG31asaG5sWWq1dqeJJznP/fdLp5wiuUvnny/Nmzc+xg2tJevtqNW2UwBA++AY0jkYSzSKuRfeBVdiRrNeSZdIOkrSg5L2lHS/wsPBr5F0rLuPpCxrkaTvufvS3PfH3H167rNJ+lP+e2KZD0ua5O6fyn3/J0nPuPtny9XV39/vw8PDqdoI1GPpUunss6VDDhmdtmGDtHq1dNttpZdrd63W7jTxJOfJf5ZG5xkP44bWkvV21GrbKQCgfXAM6RyMJWIzs43u3r/T9LSJpkRBr5X0WkkzJT2qcMvbtVWWsUglEk25739y990LlkmdaDKzkySdJEkLFixYdu+991YTHlCTri5p82apJ/H/MY6MSJMmSdu2NS+urLVau9PEk5wn/1kanWc8jBtaS9bbUattpwCA9sExpHMwloitVKKpmmc0ycz+StJGd/+ou5/k7qdWm2Qq4SEz2zNXx54Kz4Mq9ICk+Ynv83LTduLuX3H3fnfvnzVrVoTwgMr6+sLlp0lDQ2F6J2u1dqeJJzlP/nNynvEwbmgtWW9HrbadAgDaB8eQzsFYolGqSjRJ+rqkBVK4xc3MPm5mcyPE8V1J+f9F7p2SLi8yz/clHWFmu+ceAn5EbhrQEgYGwj3OGzaEfxnYsCF8HxhodmTZarV2p4knOc8pp0gnnij95V+Gz82OH+NT1ttRq22nAID2wTGkczCWaJSyDwM3s6sk3SLpZ7mXScrfazdB4X+B+56kP6St0MwGFR78PdPM7s+V8WlJ3zKzlZLulfS23Lz9kt7v7u9190fN7J8l3Zwr6pP5B4MDrSD/AL3Vq6Xbbw//MnDGGZ3/YL1Wa3eaeArnec5zwvd3vav58WN8yno7arXtFADQPjiGdA7GEo1S9hlNZva3kvbLvfokdUkakrRBIeHz35KWufv/ZR9qbXgYOAAAAAAAQFylntFU9oomd//3RAG9kp6R9FNJL5T0DoWrm75pZldL+h93vzpq1AAAAAAAAGgbZZ/RZGb/z8xeZWZT3f3Z3OSvu/sKhWSTSRqUtKukL2YbKgAAAAAAAFpZ2SuaJL1R0oDC85TuVbiC6QQz20XSz3PzXOXuP80wRgAAAAAAALSBslc0ufsR7j5H0l6SPqBwBdNhkq6W9KhC4ulkM3tt7tY6AAAAAAAAjFNlE0157v6HxPOX3uvuu0vqV0g8zZd0vqQ/ZRIhAAAAAAAA2kKqRFMJt+feP+ru8yUtixAPAAAAAAAA2lSlZzSN4e7JxJRLulfSs7nfbi+6EAAAAAAAAMaFqhJNSe6+XdLiiLEAAAAAAACgjdVz6xwAAAAAAACwA4kmAAAAAAAAREGiCQAAAAAAAFGQaAIAAAAAAEAUJJoAAAAAAAAQBYkmAAAAAAAAREGiCQAAAAAAAFGQaAIAAAAAAEAUJJra1OCgtHSp1NUV3gcHmx1Rduppazv3UzvE3g4xtppG9VnW9TD2SKNZ68ngoDR/vmQWXvPnd+46Ol6PkY3U6f3UKu2LHUertKuVpNk30m9oZayfbcTdO/q1bNky7zRr17ovXuy+fr37li3hffHiML3T1NPWdu6ndoi9HWJsNY3qs6zrYeyRRrPWk7Vr3WfNct9zT/drrgmvuXPDtE5bR8frMbKROr2fWqV9seNolXa1kjT7RvoNrYz1szVJGvYieZimJ4KyfnViomnJkrBhJa1fH6Z3mnra2s791A6xt0OMraZRfZZ1PYw90mjWerJkifuiRWPrXr8+TOu0dXS8HiMbqdP7qVXaFzuOVmlXK0mzb6Tf0MpYP1tTqUSThd86V39/vw8PDzc7jKi6uqTNm6WentFpIyPSpEnStm3NiysL9bS1nfupHWJvhxhbTaP6LOt6GHuk0az1pKsrvCfrHhmRenvDrSKdtI6O12NkI3V6P7VK+2LH0SrtaiVp9o30G1oZ62drMrON7t5fOJ1nNLWhvj5paGjstKGhML3T1NPWdu6ndoi9HWJsNY3qs6zrYeyRRrPWk74+acGCsXUPDUkLF3beOjpej5GN1On91Crtix1Hq7SrlaTZN9JvaGWsn22m2GVOnfTqxFvnxtP9qeP1+RPtEHs7xNhqeEYTxhOe0ZS98XqMbKRO76dWaR/PaMoez2hCu2P9bE3iGU2dZe3acD/qhAnhvZM3sHra2s791A6xt0OMraZRfZZ1PYw90mjWerJ2rfu8eeEsRwqfO3UdHa/HyEbq9H5qlfbFjqNV2tVK0uwb6Te0MtbP1lMq0cQzmgAAAAAAAFAVntEEAAAAAACATJFoAgAAAAAAQBQkmgAAAAAAABAFiSYAAAAAAABEQaIJAAAAAAAAUZBoAgAAAAAAQBQkmgAAAAAAABAFiSYAAAAAAABEQaIJAAAAAAAAUZBoAgAAAAAAQBQkmgAAAAAAABAFiSYAAAAAAABEQaIJAAAAAAAAUZBoAgAAAAAAQBQkmgAAAAAAABAFiSYAAAAAAABEQaIJAAAAAAAAUZBoGscGB6WlS6WurvA+OJhdXatXS5MmSWbhffXqxsfQKJ3YplrV2hft3oftHn+txmu7i4ndF6tXSz09YR9qJu26qzR/fih//vzRz+XqqjamRo1nPfVkHWPs8qspL4u2tfs2Wi7+dm9bUqy2ZNUnheWuXl1fPWnjbLUxbrV40Djj9fy2Wdq139o17mjcvaNfy5Ytc+xs7Vr3xYvd169337IlvC9eHKbHtmqVe3e3+5o17k89Fd67u92POKJxMTRKI/u11dXaF+3eh+0ef63Ga7uLid0Xq1a5T5jgPmOG+5VXuq9Y4S65T57sfvLJ7nvu6T53rvsFF5Suq9qYGjWe9dSTdYyxy6+mvCza1u7baLn4271tSbHaklWfFJY7MBDO6QYGaqsnbZytNsatFg8aZ7ye3zZLu/Zbu8ZdC0nDXiQP0/REUNYvEk3FLVkSVvik9evD9Nh6e0NyKWnNGnezxsXQKI3s11ZXa1+0ex+2e/y1Gq/tLiZ2X/T2hkRSvswlS0KCqacn/LZ+/djyi9VVbUyNGs966sk6xtjlV1NeFm1r9220XPzt3rakWG3Jqk8Ky12yJJzTJcutpp60cbbaGLdaPGic8Xp+2yzt2m/tGnctSiWaLPzWufr7+314eLjZYbScri5p8+ZwK0beyEi4rW3btrh1mUlPPSVNnjw67emnpSlTpC1bGhNDozSyX1tdrX3R7n3Y7vHXary2u5jYfWEmTZgwWmZXl/Too9L06eH3LVvCe778YnVVG1OjxrOeerKOMXb51ZSXRdvafRstF7/U3m1LijVOWY13YbldXdITT0hTp46WW009aeNstfW31eJB44zX89tmadd+a9e4a2FmG929v3A6z2gap/r6pKGhsdOGhsL02Hp7pXPOGTvtnHPCH0+NiqFRGtmvra7Wvmj3Pmz3+Gs1XttdTOy+6O2VZs8eLbOvT/rIR8LJS29vmJ4sv1hd1cbUqPGsp56sY4xdfjXlZdG2dt9Gy8Xf7m1LitWWrPqksNy+vnBOlyy3mnrSxtlqY9xq8aBxxuv5bbO0a7+1a9xRFbvMqZNe3DpXHM9oysZ4uh+3kvF6D3u7x1+r8druYnhGU3o8o4lnNKXFM5qaU06lcnlGU2vEg8YZr+e3zdKu/daucddCPKMJhdauDfeJTpgQ3rNc8VetCs8SkcL7qlWNj6FROrFNtaq1L9q9D9s9/lqN13YXE7sv8gl7KbymTHGfNy+UP2/e6OdydVUbU6PGs556so4xdvnVlJdF29p9Gy0Xf7u3LSlWW7Lqk8JyV62qr560cbbaGLdaPGic8Xp+2yzt2m/tGne1SiWaeEYTAAAAAAAAqsIzmgAAAAAAAJApEk0AAAAAAACIgkQTAAAAAAAAomiJRJOZvdDMbkm8HjezDxbMc7CZ/Tkxz8ebFC4AAAAAAACK6G52AJLk7ndIeqkkmVmXpAckXVZk1v919zc2MDQAAAAAAACk1BJXNBV4raS73P3eZgcCAAAAAACA9Fox0XSCpMESvx1kZj8zs6vMbEkjgwIAAAAAAEB5LZVoMrOJko6W9O0iP/9U0kJ3f4mksyV9p0w5J5nZsJkNP/zww5nECgAAAAAAgLFaKtEk6fWSfuruDxX+4O6Pu/uTuc9XSuoxs5nFCnH3r7h7v7v3z5o1K9uIAQAAAAAAIKn1Ek0rVOK2OTOba2aW+/wyhdgfaWBsAAAAAAAAKKMl/tc5STKzKZIOl/S+xLT3S5K7nyPpeEknm9lWSc9IOsHdvRmxAgAAAAAAYGctk2hy96ck7VEw7ZzE5y9K+mKj4wIAAAAAAEA6rXbrHAAAAAAAANoUiSYAAAAAAABEQaIJAAAAAAAAUZBoAgAAAAAAQBQkmgAAAAAAABAFiaYWt3q1NGmSZBbeV6+OX8fgoLR0qdTVFd4HB+PXUUv9zYqrXL2xYsqibWn7cfXq0e/z54dXPX3f7PWnXu0YfzvGXE7M9qQtq575GtX/+XomTBh7HMi/T5gQp43lliu1j0izbD37jqz2tcn9X8w6G3FsaMaxMk3Zrb4/ir1PqEbyHC75mj8/u31JOxy/s6435pg3qj+rXTaLuGLF0Kj9bj1afTsZHAz7icJ9Rr1lJs8pKp1DtJpat9e062Mr/43Xtty9o1/Lli3zdrVqlXt3t/uaNe5PPRXeu7vD9FjWrnVfvNh9/Xr3LVvC++LFYXojlKp/1armxFWuP2L1VRZ9nrYfBwbCOjQw4H7BBe577uk+d274XEvfN3v9qVc7xt+OMZcTsz1py6pnvlmzwivr/s/XPTAQ3k88MWy7r3xleD/xRPdFi0Z/r7WNpepdv770PqJUGdXU2Yx9bXL/F7PORhwbmnGsTNOuVt8fxd4nVCN/Dnfiie4zZ7pPneo+YYL70UeHbWrq1Pj7kljbYJayrjfmmDeqP6tdNou4YsVQ7rwzq319tVp9O1m7Nuwb9tzT/Zprwmvu3DCt1noLzynWrCl/DtFqat1eC8/ZSq2PsY6lrX5MzIqkYS+Sh2l6IijrVzsnmnp7w44gac2aMD2WJUvCRpC0fn2Y3gil6u/tbU5c5fojVl9l0edp+3HJkrAOJduTrLvavm/2+lOvdoy/HWMuJ2Z70pZVz3yLFoVXjHjLydedfM/v//PbcOHvlWJPE2dyuVL7iFJlVFNnM/a1yf1fzDobcWxoxrEyTbtafX8Ue59QjeS2umhRKC+/Da9f797TE39fEmsbzFLW9cYc80b1Z7XLZhFXrBjKnXcWltsO62AzYkzuM5J1LlpUe72F5wz5MkudQ7SaWrfXwnO2UutjrGNpqx8Ts1Iq0WTht87V39/vw8PDzQ6jJmbSU09JkyePTnv6aWnKFCnWsHV1SZs3Sz09o9NGRsIlldu2xamjlvonTpS2bGl8XOX6Q4rTV1n0edp+7OqSnnhCmjp1tD3SaN3V9n2z1596tWP87RhzOTHbk7aseubr6gr73+3b6483TVsmTRp9f+KJsP9/6qmwDRf+XksbS9Xb0zP6WRq7jyhVRjV1NmNfm9z/5cuJUWesdbiWPsnyWJmmXa2+P4q9T6hG/hwuebwdGQnb8JYtYezM4u5LYm2DzTrPilFvzDFvVH9Wu2wWccWKodx5Z8z9bj1afTvp6grvyXpHRqTe3rDPqKXewnOKnp7RdhQ7h2g1tW6vhedspdbHWMfSVj8mZsXMNrp7f+F0ntHUwnp7pXPOGTvtnHPC9Fj6+qShobHThobC9EYoVX9vb3PiKtcfsfoqiz5P2499fWEdSrYnWXe1fd/s9ade7Rh/O8ZcTsz2pC2rnvkWLJAWLowTbzn5upPv+f1/fhsu/L1S7GniTC5Xah9Rqoxq6mzGvja5/4tZZyOODc04VqZpV6vvj2LvE6qR3FYXLAjl5bfhoaHwh0jsfUmsbTBLWdcbc8wb1Z/VLptFXLFiKHfeWVhuO6yDzYgxuc9I1rlwYe31Fp4z5MssdQ7RamrdXgvP2Uqtj7GOpa1+TGy4Ypc5ddKrnW+d4xlNjY+LZzTxjKZWj78dYy6HZzSVbwvPaIq3r+UZTfHiid32rPCMptY7fvOMpvqX5RlN9Wn17YRnNO2MZzS1NvGMpva0alW4b1QK7zGTTHlr14Z7RydMCO+N3hhK1d+suMrVGyumLNqWth9XrRr9Pm9eeNXT981ef+rVjvG3Y8zlxGxP2rLqma9R/Z+vx2zscSD/bhanjeWWK7WPSLNsPfuOrPa1yf1fzDobcWxoxrEyTdmtvj+KvU+oRvIcLvmaNy+7fUk7HL+zrjfmmDeqP6tdNou4YsXQqP1uPVp9O1m7NuwnCvcZ9ZaZPKeodA7RamrdXtOuj638N16rK5Vo4hlNAAAAAAAAqArPaAIAAAAAAECmSDQBAAAAAAAgChJNAAAAAAAAiIJEEwAAAAAAAKIg0QQAAAAAAIAoSDQBAAAAAAAgChJNAAAAAAAAiIJEEwAAAAAAAKIg0QQAAAAAAIAoSDQBAAAAAAAgChJNAAAAAAAAiIJEEwAAAAAAAKIg0QQAAAAAAIAoSDQBAAAAAAAgChJNAAAAAAAAiIJEEwAAAAAAAKIg0QQAAAAAAIAoSDS1scFBaelSqasrvA8O1jZPNXVNmCBNmhTe8+XFrqOrS5o/P7zSljk4GOY3C6/588svUyzmUu1I275a5qu2nVmVUc+4ZanWGCstF7Ptlcai0npVbJuqpj2l1uXC7WH16nTbSC3rVq393W7rYKn+qGZfnGa8W1lhW1evbq8xbLeYJ0yQenrSH9uyjCXN9h1rn1FrudXGvcceo33b0xPWjVj1p9GIfWA1dTSizYV1ZXleWanuVh7PRq4b+TEwK398qnSunUXMWZ/P1bJ8tcsUzv+6143t7+R+J3asaZerpx9rPcY24+/YmH83FZ5X9/SMbjv5Pki7bXUsd+/o17Jly7wTrV3rvnix+/r17lu2hPfFi8P0auappq6BgfC+Zo37okXh+6xZ4RWrjvXr3S+4wH3PPd3nzg2fK5W5dm2IYc893a+5Jrzmzg3Tii1TrF9KtWPVqnR9mLav62lnVmXUM25ZqjXGSsvFbHulsai0XhXbpqrZjkuty1Onjt0epk1zN3OfPr38NlLLulVrf6fdtpopTX+kaUe5fWirtbmcwrEcGHDv7g7v7TCG7RZz/hg7Y4b7nDnup55a/tiWZSxptu9Y+4xay6027qlT3bu63M880/3KK9133919woSwTcc4ztbbtzFUU0cj2lxYV5bnlZXqjl1+VucWWa8b+TE48cSwbzzxxOLHp0rn2lnEnPX5XC3LV7tM4fzHHOMuhX5+6qmw7nd3h/1O7FjTLldPP9Z6jG3G37Ex/24aGAjHi+nT3T/ykVDe7ru7z5wZxri7O7yn2bY6gaRhL5KHaXoiKOtXpyaaliwJK3vS+vVhejXzVFNXsrz890WLwitWHcnPyXLKlZmPI9nW9evDtGLLFOuXUu3o7U3Xh2n7up52ZlVGuXibqdYYKy0Xs+2VxqLSelVsm6pmOy61Lvf0jJ2+aFH4gyoZS7FtpJZ1q9b+TrttNVOa/kjTjnL70FZrczmFY7lkSThJTsbfau1p55iTx7bk+lLq2JZlLEmltu9Y+4xay6027p6esC4kf58zJ2zTMY6zlTTiOFxNHY1oc2FdWZ5XVqo7dvlZnVvUW1alOpLv+X1jseNTpXPtLGLO+nyuluWrXaZw/t5e95NPHjv/mjVheuxY0y5XTz/WeozNOq5SdcX6u2nJkpBcyq//+TIXLQpjmR/TNNtWJyiVaLLwW+fq7+/34eHhZocRXVeXtHlzuEwvb2QkXJa3bVv6eaqpa9Kk0fLy5UiSu7R9e5w6enpGP0uj5ZQrs6srvCfbOjIi9faGSxULlynWL11dxdsxcaK0ZUvlPkzb1/W0M6syysXbTLXGWGm5mG2vNBaV1qti21R+W0uzHUvF1+Xt28eut/lpZqOxFNtGalm3au3vtNtWM6XpjzTtKLcPLRzvVlY4ll1d0hNPSFOnjsbfymOY/94uMSe3cWl0fSl1bMsyljTbd6x9RuE8tRzn0sS9fbv01FPS5Mmjv0+cGD5PmFD/cbaSRhyHq6kjxrlFtXFleV5Zqe7Y/Z7VuUXMGIvVkTwO5feNhdPz24xU+ly78LcYMWd9PlfL8tUuUzi/mfTYY9KMGaPzP/20NGVKWO9jxpp2uXr6sdZjbDP+jo35d1N+e3APY5ovs7c3THvqqTCm+XP9cttWJzCzje7eXzidZzS1qb4+aWho7LShoTC9mnmqqStZXv77ggXSwoXx6kh+TpZTrsx8HMm2Dg2FuIotU6xfSrWjtzddH6bt63ramVUZ5eJtplpjrLRczLZXGotK61Wxbaqa7bjUutzTM3b6ggXhoJiMpdg2Usu6VWt/p922milNf6RpR7l9aKu1uZzCsezrk845Z2z8rdaedo45eWxLri+ljm1ZxpJUavuOtc+otdxq4+7pCetC8vc5c8I2HeM4W0kjjsPV1NGINhfWleV5ZaW6Y5ef1blFvWVVqiP5nt83Fjs+VTrXziLmrM/nalm+2mUK5+/tlT7ykbHzn3NOmB471rTL1dOPtR5js46rVF2x/m7q65Nmzx5d//NlLlwYxjI/pmm2rY5W7DKnTnp16q1zPKNp7LI8o4lnNKVdjmc08YymtHhG01jt/LyjdoyZZzTVfpzjGU3V18EzmlqnXJ7RNDbGrM7neEZTfWUXW5ZnNPGMpuSr6YmgrF+dmmhyDyvokiVhRV+ypPSJQ6V5qqnLLNxzajZaXuw6JkxwnzcvvNKWuXZtmD9csBg+VzpQFMZcqh1p21fLfNW2M6sy6hm3LNUaY6XlYra90lhUWq+KbVPVtKfUuly4PaxalW4bqWXdqrW/220dLNUf1eyL04x3Kyts66pV7TWG7RazWThBTXtsyzKWNNt3rH1GreVWG/eMGaN9W/jHXozjbL0xNrqORrS5sK4szysr1d3K49nIdSM/BlL541Olc+0sYs76fK6W5atdpnD+I44Y29+Vkkz1xJp2uXr6sdZjbDP+jo35d1PheXV39+i2k++DtNtWuyuVaLLwW+fq1Gc0AQAAAAAANAvPaAIAAAAAAECmSDQBAAAAAAAgChJNAAAAAAAAiIJEEwAAAAAAAKIg0QQAAAAAAIAoSDQBAAAAAAAgChJNAAAAAAAAiIJEEwAAAAAAAKIg0QQAAAAAAIAoSDQBAAAAAAAgChJNAAAAAAAAiIJEEwAAAAAAAKIg0QQAAAAAAIAoSDQBAAAAAAAgChJNAAAAAAAAiKKlEk1mdo+Z/dzMbjGz4SK/m5l9wczuNLNbzWz/ZsQJAAAAAACAnbVUoinnEHd/qbv3F/nt9ZKen3udJOnLDY2shQwOSkuXSl1d4X1wsPz0pNWrpUmTJDOpp0faY4+x86cpI0b88+eHGMzC5yzqqSWuZNtXr669n9PWM39+eFUqq1id5eKoFGOaNlTTzrR9V2v5afuk2G/5Pp4wIaz7Eyakq69wPd1jj3RjlaVGbJ+tWHcMtcZfT7vr2UZr1Yx2xpR2/1hPvKtXh+NfctvOYv+Z3H/09NS+78n6GFlNe4uNSS37/yxjbMT626gxSrM9pN1mXve6sA6ahfcXvzj743TatmW5r0o7f6kxjdEH+TJqOQ+JcR5aSxsqxZzFulGqzOTfLpMmhe+VYoi5fqXZx1WaJ/+9sD+z2F9W07Zay6hmXW7kulJvWdWed1S7zo4r7t4yL0n3SJpZ5vf/lLQi8f0OSXuWK3PZsmXeadaudV+82H39evctW8L74sXuq1YVn7527eiyq1a5d3e7r1nj/vWvu8+Y4T5hgvvJJ4f5Z80Kr3JlxIh/1iz3Pfd0v+aa8Jo7N0yLWU8tcSX7b2Ag9NXAQPX9nLaeCy4I/TB3bvhcqqxiY15urEqtI/lyK/2edp5q+67W8tOMV6n25/t42rTQX2vWuC9aFGIrV1/hevqRj7h3dYVyyo1Vlurts3atO4Za46+n3WnX0Zj92Yx2xpR2/1hPvKtWhePejBnuV17pfuaZ4ftuu8Xdf+b3Hx/5SGjD7ru7z5xZ/b4n62NkNe0tNiaFx6I0+/8sY2zE+tuoMUqzPSTPScptM0cc4S6F873HHnM/7LDwvb8/u+N02rZlua9KO3+pMZ06tf7z4nwM+W2/mvOQWs/36+mzNDHXey5cTZxHHDH6t8tTT4X37u4wPfYxNs35drF9XKV58t+POWZsfx5zTPz9ZbX9m/W6nMV+JGaZ9Zx3lPpbrNQ6u2pV7W1uZZKGvVjuptjEZr0k/VbSTyVtlHRSkd+/J2l54vsPJPWXK7MTE01LloQVOWn9evfe3uLTlywZ/d7bG1b2ZDlr1oTp7mFnsWhR+TJixL9o0dhY168P02LWU0tcyZiWLAl9k4wpbT+nrSf/Obl8sbKKjXm5sSq1juTLrfR72nlKzVuq72otv5hyyxfr42R/5ecrV1/heppvU3I9jb1tVFJvn7Vr3THUGn897U67jlZbbhbxtsr4pt0/1hNvb284iUwuv2aNe09P3P1nfv+RbEd+/1HNvidfflbHyGraW2xMCo9Fafb/WcYYq85K8TRijNJsD8lzknLbjFlIMiXLPvroMD3ZhpjH6bRtq6bsapdLO3+pMe3pqf+8OLnN58tPex5S6/l+mnLKtaFSzPWeC1cTp9no3y55a9aE6bGPsWnOt4vt4yrNk/+e7Ld8P8beX5YSY3uuZV3OYj8Ss8x6zjtK/S1Wap3N/73daUolmiz81hrMbC93f8DMZku6VtJqd/9R4vfvSfq0uw/lvv9A0inuPlxQzkkKt9ZpwYIFy+69996GtaERurqkzZvDZfh5IyPSxInSli07T580Sdq2LXw3k556Spo8ebSckRFpyhTJPUxzl7ZvL11GjPilsW0YGZF6e0N8seqpJa5kTF1d0hNPSFOnjsaUtp/T1pP/LI0uX6ysYmNebqyk4utIvtxS61Cy3jTzVNt3tZZfqR/LtT8/36RJo/2Vny8/vVh9hetpvk277jq6nsbeNiqpt8/ate4Yao2/nnanXUerLbfWOrNqZ0xp949S7fHmbxtKLv/00+E4OGFC5bLT7j/z5eT3NdLoca6afU++/KyOkZXaU2lMCo9Fafb/WcZY7PfYGjVGabaH5DlJuW1m+3bpscekadNGy37oIWnWrDB++TbEPE6nbVs1ZVe7XNr5S43pxIlhTOs5L06eh+TLT3seUuv5fi19UE3M9Z4Ll6uzWHvzf7vk5ffZpWKQ4q1fafZxlebJf0/GnGxbzP1lNW1rxLqcxX4kZpn1nHeU+lus3DrbQqmXaMxsoxd57FFLPaPJ3R/IvW+SdJmklxXM8oCk+Ynv83LTCsv5irv3u3v/rFmzsgq3afr6pKGhsdOGhsIJTrHpfX2j33t7pXPOGVvOOeeE6ZK0YIG0cGH5MmLEv2DB2FiHhkK9MeupJa5kTH19oW+SMaXt57T15D8nly9WVrExLzdWpdaRfLmVfk87T6l5S/VdreUXU275Yn2c7K/8fOXqK1xP821Krqext41K6u2zdq07hlrjr6fdadfRasvNIt5WGd+0+8d64u3tlWbPHrv8OeeEk8eY+8/8/iPZjvz+o5p9T778rI6R1bS32JgUHovS7P+zjDFWnZXiacQYpdkekuck5bYZM+kjHxlb9sqVYXqyDTGP02nbVk3Z1S6Xdv5SY9rTU/95cXKbz5ef9jyk1vP9NOWUa0OlmOs9F64mTrPRv13yzjknTI99jE1zvl1sH1dpnvz3ZL/l+zH2/rKUGNtzLetyFvuRmGXWc95R6m+xUuts/u/tcaPYZU7NeEmaImlq4vP1ko4smOcNkq6SZJIOlPSTSuV24q1zPKMpGzyjiWc0FZbPM5pao+4YeEZTdu2MiWc08YymemPkGU08o6mW+XlGU3Ux84wmntHEM5p4RlOeWv0ZTZL2lvSz3OsXkgZy098v6f25zybpS5LukvRzVXg+k3doosk9rOxLloST4yVLxp5sFZuetGpVuEdUCit9PtmUnz9NGTHinzcvxCCFz63wB2th21etqr2f09Yzb154VSqrWJ3l4qgUY5o2VNPOtH1Xa/lp+6TYb/k+Ngvrvlm6+grX0xkz0o1VlhqxfbZi3THUGn897a5nG61VM9oZU9r9Yz3x5v/RJbltZ7H/TO4/urtr3/dkfYyspr3FxqSW/X+WMTZi/W3UGKXZHtJuM0ccEdZBKbzvu2/2x+m0bctyX5V2/lJjGqMP8mXUch4S4zy0ljZUijmLdaNUmcm/XXp7R/9gz+IYm+Z8u9g+rtI8+e+F/ZnF/rKattVaRjXrciPXlXrLqva8o9p1thOVSjS11DOastDf3+/Dw8OVZwQAAAAAAEAqbfGMJgAAAAAAALQvEk0AAAAAAACIgkQTAAAAAAAAoiDRBAAAAAAAgChINAEAAAAAACAKEk0AAAAAAACIgkQTAAAAAAAAoiDRBAAAAAAAgChINAEAAAAAACAKEk0AAAAAAACIgkQTAAAAAAAAoiDRBAAAAAAAgChINAEAAAAAACAKEk0AAAAAAACIgkQTAAAAAAAAoiDRBAAAAAAAgChINAEAAAAAACAKEk3jxOCgtHSpNGGCNGlSeF+6NExPu2xX1+gyxaYVzjt/fngVzlNt3PPnS2bhNX9+6XLS1F1snlJ9UqqNaeOuZtm086eZL02fZdm2asquJ456leunNOvJ6tW1b1Ol4qlnHSjVnlr6uNQ2v8ceo+X39IQ+KLZMNdt+2uXS7IfyYxJjO6pG2u0y2X9m6deZrLeTcn1bbP1evTpMMwvvq1dnF2PaMa5mXai1zHrXp0rH4XLlpDnmFtsuiu2/0myfMcczbbvzv+fXq/x7qe2k2n1hpWVj9X+sPmzEOUgW2229fdLI84J6z2dKrUdpzi0K16Nyx9cs2pa1ao/PtWxjtcYS8zyt1vEu1zdpzmVqbVOxumP8zVDvtpQm1hhllqon7d+a9cYcM+624O4d/Vq2bJmPd2vXui9e7D4wEN7XrHFftGj0+9q1lZddv959y5bwPmtWeCWnLV7svmrV6LwXXOC+557uc+eGz/l5ytVVrO5Zs0I511wTXnPnhmmF5STjLFV3sfimTQvlFfZJct5kG9PEX6zPyi2bdv4086Xps2rjqyaGasquJ456leunNOvJMce4d3eH92q3qVLx1LMOrFpVvD1TpxbfVmvZ5idNcu/qcj/zTPcrr3TffXf3CRNC3Wm2v0rrQLnl0uyHBgbCmAwM1L8dxR67tWvDWHR1ua9YEdq4667uZqPrUL37h1qV69tix4ypU8O4r1nj/tRT4X3CBPfddosfY2Fspca4cH9dbl2otcx616dKx+Fy9ZXb7sttF8X2XzNnuk+fXn77jLnOpW13/vuJJ4bxeOUrw/uJJxbft1a7L6x0DCx1XlNt/1daJm0fZnmcjlFHLXWn3Vc26ryg3vOZUuvR1KmVzy0K16P88aHY8TWLtmUt7X42zfZcbzti9UXM8S7XN2nOZWptU7FxmTAhHBPq+Zsh5t8GWZZZqp60f2umKauV9nGNJGnYi+Rhmp4IyvpFosl9yZKwIuff3cd+X7Kk8rJJixaFV9L69e69vaPz5pdLll+prmJ1L1o0tv7168O0wnKScZaqu1h8ybYk+yQ5b7LuNPEX67Nyy6adP818afqs2viqiaGasuuJo17l+inNetLbG/5gSs6bdpsqFU8960Bvb/H29PQU31Zr2eal0OZkOXPmhLrTbH+V1oFyy6XZDy1ZEuJL1lPrdlSNtNtlT89ofPl25vsvxv6hVuX6ttgxo6cnxJ00d26YHjvGwthKjXHh/rrculBrmaXaVO22W+o4XK6+ctt9ue2i2P4r/7nc9hlznUvb7uR8+X1rcnsp3LdWuy+sdAwsdV5Tbf9XWiZtH2Z5nI5RRy11p91XNuq8oN7zmVLrUU9P5XOL5G+9vaPHh+T0/PEhi7ZlLe1+Ns32XG87YvVFzPEu1zdpzmVqbVOxcZk7d+y+L83+stp4aok3izJL1ZP2b800ZbXSPq6RSiWaLPzWufr7+314eLjZYTRVV5e0eXO4BH3z5nBJ7sjI6PdJk6Rt28ov29Mzdpq7tH376LSREWniRGnLljBvfjlptPx8naXqKla3NLb+kRGptzdc2pgsJxlnqbqLxTdp0mhbkn2SnDfZxjTxF+uzcsumnT/NfGn6rNr4qom1mrLriaNe5frJvfJ6MnGi9NRT0pQpo/Om3aZKxVPPOjBxYri9pLA9EyeGcS/cVmvZ5rdvD22ePHls+dLYuqvZ9tNst5MmhWmV9kNdXdITT0hTp47WU+t2VI2022W+/6ZOHW1nvv+2bKl//1Crcvt4s52PGfn+Tp465NuXnBYjxsLYSo1x4f663Log1VZmqTZVu+2WOg6Xq68w5nIxJreLYvuv/O/PPlt6+4y5zqVtd3Lf+cQTYd+a3F4K963V7gsrHQNLnddU2/+Vlknbh1kep2PUUUvdUrp9ZaPOC+o9nyl3rEyuF8XOLZLl5Y8DpY6vtfyZ1szzq2L1Vzo+l9ueaz0XLxVLLWWUKqfW8S53vEpzLlNrm4qNizR231fL3wwx/zYo19/1llmqHind35ppymqlfVwjmdlGd+8vnM4zmsaBvj5paGj0XRr7va+v8rJJCxZICxeOnTY0FDbK/Lz55ZLlV6qrWN0LFoytf2go1F1YTjLOUnUXiy/ZlmSfJOdN1p0m/mJ9Vm7ZtPOnmS9Nn1UbXzUxVFN2PXHUq1w/pVlPenulc84ZO2/abapUPPWsA729xdvT01N8W61lm5dCm5PlzJkT6k6z/VVaB8otl2Y/1NcX4kvWU+t2VI2022VPz2h8+Xbm+y/G/qFW5fq22DGjpyfEnTR79tiTplgxFsZWaowL99fl1oVayyzVpmq33VLH4XL1ldvuy20XxfZf+c/lts+Y61zadifny+9bk9tL4b612n1hpWNgqfOaavu/0jJp+zDL43SMOmqpO+2+slHnBfWez5Raj3p6Kp9bJH/r7R09PiSn548PWbQta2n3s2m253rbEasvYo53ub5Jcy5Ta5uKjcvs2WP3fWn2l9XGU0u8WZRZqp60f2umKauV9nEtodhlTp304tY5ntFULj6e0RS3bTyjKd69/9WsAzyjiWc01YpnNPGMpiyfIcEzmnhGUzV9wjOaeEYTz2jiGU1ZlVmqHp7RVD/xjKbxbe3acP+nWbg/2Cx8T3vSsmRJ2Bnllyk2rXDeefPCq3CeauOeNy+sqVL4XO4Pskp1F5unVJ+UamPauKtZNu38aeZL02dZtq2asuuJo17l+inNerJqVe3bVKl46lkHSrWnlj4utc3PmDFafnf32JPgWrf9tMul2Q/lxyTGdlSNtNtlsv+k9OtM1ttJub4ttn6vWhWmSeE9n2zMIsa0Y1zNulBrmfWuT5WOw+XKSXPMLbZdFNt/pdk+Y45n2nbnf8+vV/n3UttJtfvCSsvG6v9YfdiIc5Asttt6+6SR5wX1ns+UWo/SnFsUrkfljq9ZtC1r1R6fa9nGao0l5nlareNdrm/SnMvU2qZidcf4m6HebSlNrDHKLFVP2r816405ZtytpFSiycJvnYtnNAEAAAAAAMTFM5oAAAAAAACQKRJNAAAAAAAAiIJEEwAAAAAAAKIg0QQAAAAAAIAoSDQBAAAAAAAgChJNAAAAAAAAiIJEEwAAAAAAAKIg0QQAAAAAAIAoSDQBAAAAAAAgChJNAAAAAAAAiIJEEwAAAAAAAKIg0QQAAAAAAIAoSDQBAAAAAAAgChJNAAAAAAAAiIJEEwAAAAAAAKIg0QQAAAAAAIAoSDQBAAAAAAAgChJNKGlwUFq6VOrqCu+Dg82OCK1gcFCaP18yC6/586tfN9KsW5XmSVvGHnuMxtrTI61eXV2stRov20+xdo6XtkvZtLWd+y/G+pBV+2stt3C51asbOz61xF1PH2a5/rXzup3Uyu0oFVty+vz54dWK8VejlcehnFY8bsSKqZpyYvZDM+LPUozz5ErztkKfZbUtJP9OqfVvFUTg7h39WrZsmaN6a9e6L17svn69+5Yt4X3x4jAd49fate6zZrnvuaf7NdeE19y5YVradSPNulVpnrRlTJ3q3tXlfuaZ7lde6b777u4TJrivWhWvT2ptYyco1s5Zs8Kr09vuns04t/O6E2N9yKr9tZZbuNzAgHt3d3hvxPjUEnc9fZjl+tfO63ZSK7ejVGyrVo1Ov+CCcAyfOzd8bqX4q9HK41BOKx43YsVUTTkx+6EZ8WcpxnlypfJinau12vEm/3fK9OlhH3fmme5z5rhPm1bd3yqojqRhL5KHaXoiKOsXiabaLFkSNvik9evDdIxfS5a4L1o0dt1Yvz5MS7tupFm3Ks2TtoyeHvc1a8bOM2eOe29vulhrNV62n2LtXLQovJI6se3u2YxzO687MdaHrNpfa7mFyy1ZEvYpyeWyHJ9a4q6nD7Nc/9p53U5q5XaUiq23d3R6fp5kzK0SfzVaeRzKacXjRqyYqiknZj80I/4sxThPrlRerHO1Vjve5P9OSf6tkv87pZq/VVCdUokmC791rv7+fh8eHm52GG2nq0vavDncapQ3MiJNmiRt29a8uNBcXV3hPblujIxIvb3h0tQ060aadavSPGnL2L5deuopafLk0XkmTgyfs9z1jZftp1g7u7pC327fPjqtE9suZTPO7bzuxFgfsmp/reUWLtfVJT3xhDR16uhyWY5PLXHX04dZrn/tvG4ntXI7SsU2caK0ZUuYnp9HGo25VeKvRiuPQzmteNyIFVM15cTsh2bEn6UY58mVyot1rtZqx5v83ynSaNn5v1Ok9H+roDpmttHd+wun84wmFNXXJw0NjZ02NBSmY/zq65MWLBi7bgwNSQsXpl830qxbleZJW0ZPj3TOOWPnmTNn9ICTlfGy/RRr54IFYX1I6sS2S9mMczuvOzHWh6zaX2u5hcv19YV9SnK5LMenlrjr6cMs1792XreTWrkdpWLr7R2dnp8nGXOrxF+NVh6HclrxuBErpmrKidkPzYg/SzHOkyuVF+tcrdWON/m/U5J/q+T/TqnmbxVEUuwyp056cetcbVrlPmW0Fp7RFK+NnYBnNLXeszaaiWc0xcczmlpPK7eDZzS1fjta8bjBM5rix1QPntFUXQyFZfKMpsYTz2hCtdauDfeyTpgQ3tk44R7Wg3nzwt5DCp9rOTBVWrcqzZO2jBkzRmPt7s4+yVRNfJ2gWDvHS9vds2lrO/dfjPUhq/bXWm7hcqtWNXZ8aom7nj7Mcv1r53U7qZXbUSq25PR588KrFeOvRiuPQzmteNyIFVM15cTsh2bEn6UY58mV5m2FPstqW0j+nVLr3ypIr1SiiWc0AQAAAAAAoCo8owkAAAAAAACZItEEAAAAAACAKEg0AQAAAAAAIIqWSDSZ2Xwz22BmvzSzX5jZ3xaZ52Az+7OZ3ZJ7fbwZsQIAAAAAAKC47mYHkLNV0ofc/admNlXSRjO71t1/WTDf/7r7G5sQHwAAAAAAACpoiSua3P1Bd/9p7vMTkm6XtFdzowIAAAAAAEA1WiLRlGRmiyTtJ+mmIj8fZGY/M7OrzGxJYyMDAAAAAABAOa1y65wkycx2lXSJpA+6++MFP/9U0kJ3f9LMjpL0HUnPL1HOSZJOkqQFCxZkFzAAAAAAAAB2aJkrmsysRyHJdKG7X1r4u7s/7u5P5j5fKanHzGYWK8vdv+Lu/e7eP2vWrEzjBgAAAAAAQNASiSYzM0nnSrrd3T9XYp65uflkZi9TiP2RxkUJAAAAAACAclrl1rlXSnqHpJ+b2S25aR+VtECS3P0cScdLOtnMtkp6RtIJ7u5NiBUAAAAAAABFtESiyd2HJFmFeb4o6YuNiQgAAAAAAADVaolb5wAAAAAAAND+SDQBAAAAAAAgChJNAAAAAAAAiIJEEwAAAAAAAKIg0YRoBgelpUulrq7wPjjY2OVr1ax6q9XoOGPV1y79W6hd4wZayXjbjsZbeztBmjHLYlxZV4DWVM+2WWxZtvXmYwyaxN07+rVs2TJH9taudV+82H39evctW8L74sVheiOWb1bcjdLoOGPV1y79W6hd4wZayXjbjsZbeztBmjHLYlxZV4DWVM+2WWzZWbPCi229edjfZk/SsBfJwzQ9EZT1i0RTYyxZEjbcpPXrw/RGLF+rZtVbrUbHGau+dunfQu0aN9BKxtt2NN7a2wnSjFkW48q6ArSmerbNYssuWhRetZSHONjfZq9UosnCb52rv7/fh4eHmx1Gx+vqkjZvlnp6RqeNjEiTJknbtmW/fK2aVW+1Gh1nrPrapX8LtWvcQCsZb9vReGtvJ0gzZlmMK+sK0Jrq2TaLLdvVJblL27dXXx7iYH+bPTPb6O79hdN5RhOi6OuThobGThsaCtMbsXytmlVvtRodZ6z62qV/C7Vr3EArGW/b0XhrbydIM2ZZjCvrCtCa6tk2iy27YIG0cGFt5SEO9rdNVOwyp056cetcY/CMpmzxjKbGate4gVYy3raj8dbeTsAzmgAk8YymzsP+NnviGU3I2tq14X7XCRPCey1JiXqWr1Wz6q1Wo+OMVV+79G+hdo0baCXjbTsab+3tBGnGLItxZV0BWlM922axZdnWm48xyFapRBPPaAIAAAAAAEBVeEYTAAAAAAAAMkWiCQAAAAAAAFGQaAIAAAAAAEAUJJoAAAAAAAAQBYkmAAAAAAAAREGiCQAAAAAAAFGQaAIAAAAAAEAUJJoAAAAAAAAQBYkmAAAAAAAAREGiCQAAAAAAAFGQaAIAAAAAAEAUJJoAAAAAAAAQBYkmAAAAAAAAREGiCQAAAAAAAFGQaAIAAAAAAEAUJJoAAAAAAAAQBYkmAAAAAAAAREGiCQDqNDgoLV0qdXWF98HBZkcEAABaHecPADpVd7MDAIB2NjgoDQxI554rLV8uDQ1JK1eG31asaG5sAACgNXH+AKCTmbs3O4ZM9ff3+/DwcLPDANChli6Vzj5bOuSQ0WkbNkirV0u33da8uAAAQOvi/AFAJzCzje7ev9N0Ek0AULuuLmnzZqmnZ3TayIg0aZK0bVvz4gIAAK2L8wcAnaBUoolnNAFAHfr6wuXuSUNDYToAAEAxnD8A6GQkmgCgDgMD4ZkKGzaEf4ncsCF8HxhodmQAAKBVcf4AoJPxMHAAqEP+gZ2rV0u33x7+JfKMM3iQJwAAKI3zBwCdjGc0AQAAAAAAoCo8owkAAAAAAACZItEEAAAAAACAKEg0AQAAAAAAIAoSTQAAAAAAAIiCRBMAAAAAAACiINEEAAAAAACAKEg0AQAAAAAAIAoSTQAAAAAAAIiCRBMAAAAAAACiINEEAAAAAACAKEg0AQAAAAAAIAoSTQAAAAAAAIiCRBMAAAAAAACiINEEAAAAAACAKEg0AQAAAAAAIAoSTQAAAAAAAIiiZRJNZnakmd1hZnea2alFfu81s4tyv99kZouaECYAAAAAAABKaIlEk5l1SfqSpNdL2kfSCjPbp2C2lZL+5O7Pk/R5Sf/W2CgBAAAAAABQTkskmiS9TNKd7n63u2+RtE7SmwvmebOkb+Q+XyzptWZmDYwRAAAAAAAAZbRKomkvSb9LfL8/N63oPO6+VdKfJe3RkOgAAAAAAABQUXezA8iCmZ0k6aTc1yfN7I5mxgNJ0kxJf2x2EKgb49gZGMfOwDh2DsayMzCOnYFx7AyMY2dgHFvfwmITWyXR9ICk+Ynv83LTis1zv5l1S5om6ZFihbn7VyR9JYM4USMzG3b3/mbHgfowjp2BcewMjGPnYCw7A+PYGRjHzsA4dgbGsX21yq1zN0t6vpktNrOJkk6Q9N2Ceb4r6Z25z8dLWu/u3sAYAQAAAAAAUEZLXNHk7lvNbJWk70vqknSeu//CzD4padjdvyvpXEnfNLM7JT2qkIwCAAAAAABAi2iJRJMkufuVkq4smPbxxOfNkt7a6LgQDbcydgbGsTMwjp2BcewcjGVnYBw7A+PYGRjHzsA4tinj7jMAAAAAAADE0CrPaAIAAAAAAECbI9GEnZjZeWa2ycxuK5g+w8yuNbPf5N53L7H8R8zsTjO7w8xel5h+ZG7anWZ2aoll32VmD5vZLbnXexO/vTNX92/M7J3FlseoDMexaLkFy5qZfSG3/K1mtn/iN8axCk0exxeZ2Q1m9qyZfbjgt4rbM0Y1eRxPzG2HPzez683sJYnfGMcqNXks35wby1vMbNjMlid+Y99ahWaOY2LeA8xsq5kdn5jGOFahydvjwWb2Zxs9Z/144jf2rVXIYhzNbL6ZbTCzX5rZL8zsb0ssa8Y5axRNHkfOWVuNu/PiNeYl6dWS9pd0W8H0MyWdmvt8qqR/K7LsPpJ+JqlX0mJJdyk84L0r93lvSRNz8+xTZPl3SfpikekzJN2de98993n3ZvdVK7+yGMdy5RYsf5SkqySZpAMl3cQ4tuU4zpZ0gKQzJH04MT3V9syrZcbxFfntTNLrE9sj49h+Y7mrRh978GJJv8p9Zt/aRuOYm69L0nqF55Mezzi23zhKOljS90qMLfvWJo+jpD0l7Z+bZ6qkXxcbB3HO2injyDlri724ogk7cfcfKfzPfoXeLOkbuc/fkHRMiXnWufuz7v5bSXdKelnudae73+3uWySty82b1uskXevuj7r7nyRdK+nIKpYfdzIax3LlFi5/gQc3SppuZnuKcaxaM8fR3Te5+82SRgp+qnd7HneaPI7X57Y3SbpR0rzcZ8axBk0eyyfdPf9wzSmS8p/Zt1apycdISVot6RJJmxLTGMcqtcA4FsO+tUpZjKO7P+juP82V/4Sk2yXtVWJ5zlkjaOY4cs7aekg0oRpz3P3B3Oc/SJpTZJ69JP0u8f3+3LRS02VmnzSzoxO/vSV36erFZja/QrmoXj3jWJKZvd/M3l9hecYxnkaMYymMYzyNHseVCv9yW1O5KKshY2lmx5rZryRdIek9tZaLkjIfRzPbS9Kxkr5cb7koqVH71oPM7GdmdpWZLam1XJQUZRzNbJGk/STdlPvOOWtjNWIcS2Ecm6S72QGgPbm7m1mU/7LQ3T+e+Prfkgbd/Vkze59C1vvQGPVgZ5HH8ZwY5aB6jGNnyHoczewQhUTT8p2XQExZjqW7XybpMjN7taR/lnRYjHqwswzH8SxJp7j7djOLUTzKyHAcfyppobs/aWZHSfqOpOfHqAc7q3UczWxXhasHP+juj+fK4lynSRjH8YMrmlCNh3KXkir3vqnIPA9Imp/4Pi83rdT0Mdz9EXd/Nvf1a5KWVSgX1atnHNOqaz1AKo0Yx1IYx3gaMo5m9mKFfeqb3f2RWOVijIZuk7lbFPY2s5kxy0VDxrFf0jozu0fS8ZL+w8yOiVAuRmU+ju7+uLs/mft8paQetsfo6hpHM+tRSE5c6O6XlqiDc9bsNWIcS2Ecm4REE6rxXUn5/3HhnZIuLzHPCWbWa2aLFf5l5yeSbpb0fDNbbGYTJZ2Qm3eM/E4o52iF+3Al6fuSjjCz3XP/U8ERuWmoXj3jWE0df5X7nzwOlPTn3CWzjGM8jRjHUlJtz0gl83E0swWSLpX0Dnf/deInxjGuRozl8yx3CYyF/xmpV9IjYt8aU+bj6O6L3X2Ruy+SdLGkD7j7d8Q4xtSI7XFuYnt8mcLfVY+IfWtMNY9jbmzOlXS7u3+uQh2cs2arEeNYCttjs3gLPJGcV2u9JA1KelDhYWr3S1qZm76HpB9I+o2k/5E0o8TyAwpP979D0usT049S+J8C7pI0kJj+SUlH5z7/q6RfKPyPABskvSgx33sUHgx3p6R3N7ufWv2V4TiWKvf9kt6f+2ySvpRb/ueS+hnHthzHubnfHpf0WO7zbrnfim7PvFpyHL8m6U+Sbsm9hhPLM47tNZanKBwjb5F0g6TlieXZt7bJOBaUc75y/+sc49he4yhplUbPWW+U9IrE8uxbmzyOCreJu6RbNXr8O6rIOHLO2hnjyDlri73y/0UuAAAAAAAAUBdunQMAAAAAAEAUJJoAAAAAAAAQBYkmAAAAAAAAREGiCQAAAAAAAFGQaAIAAAAAAEAUJJoAAECmzMxTvA42s3vM7LPNjjeGXHvybXssxfzDZnZ+hXmW5vsqRb1LK5R1vpkNV4qrVeTizfdnR6wjAAB0qu5mBwAAADreQYnPu0haL+lTkq5ITP+lpGMlPdLAuBrhREm/bnYQHeCfJZ0j6bJmBwIAAMoj0QQAADLl7jfmP5vZrrmPdyWn5/xf46JqmFvd/bZmB9Hu3P0uSXeZ2bPNjgUAAJTHrXMAAKAlFLt1zsxeZWY/NLOnzewRM/uqmU1N/P6u3O1U+5vZdbn5bsl9n2JmXzezP5vZ3Wa2oqDs68zsYjM7KVf3M2Z2hZntVTDfTDP7Rq7+p3PL9dfRzqVm9mMz22xmt5vZ0SXm+4CZ/c7MnjKz/5a0ZxXVzDSzb5vZk7m2f6BEHYeb2a25OobMbEmK+N3M/s7M1uT65I9m9uHcb+/M1feYmZ1nZpMSy9U8VgAAoH2QaAIAAC3JzF4p6X8k/UHS8ZI+KOkoSV8vMvs3JA1Keoskk3SxpHMl/T637E2SLjCzeQXLHSRptaS/l7RS0oslfadgnu9Iep2kD0v6C4Xzpw1m9rwa2rSLpO9L2lXSXyrcQniWpAUF871Z0pckfU/ScZJ+Lum8Kqr6qqSfKdyOeJ2kL5nZywrmWSDpM5LOkLRC0mxJF5mZJeI438zuKVL+h3JtWCFpraTPmNmZkt4l6f9J+qjCbYMfLLJsrWMFAADaALfOAQCAVvVpSde7+1/kJ5jZA5J+YGZLC25J+6y7fyM3jyk8/+k6dx/ITfuJQhLjTZK+nFhutqSD3P2+3Hz3ShoysyPd/WozO1LSKyUd7O4/zM2zXtI9kv5B0vuqbNO7c3W+3N3vz5V3j6ShgvkGJF3t7ifnvn/fzGZJem/Kegbd/VO58q9TaPdxkn6SmGeGpFe6+29y801QeAbSCyX9KjfPNklbi5T/G3d/X265/5H0Vkl/LWmhuz+em36wQqLr0wXL1jpWAACgDXBFEwAAaDlmNlnhaqNvmVl3/qWQkBmRtKxgkR8kPt+Ze1+fn+Duf5b0sKQxt8VJ+mk+yZSb78eSNknKX/3zMkmb8kmm3DxPKVxptLyGpr1M0sZ8kqmgTklSrp37S7q8YNlLq6jnmkT5I5J+I6nwCqF78kmmnF/m3nfM5+4r3b3YlVs/SMyzXdJvFdr1eGKeO7Vzf49ZVtWNFQAAaAMkmgAAQCvaXVKXpP9QSCzlX89K6pE0v2D+xxKftxSZlp8+qWDaJu1sk0afh7RniXkeUrgiqFpzy9SZN1Oh7YXzFVuulMcKvhdre7F5VGS+tOWnqbNw2WrGCgAAtAFunQMAAK3oMUku6XRJVxb5/feR6pldYtqDuc8PlphnjqRHa6jvD5JeVCGOPyrcslZYb7E4AAAAWgpXNAEAgJaTuz3tRkkvdPfhIq9Yiab9zWzHg7hzDyCfrdFnGd0kabaZvToxz2RJb9DOz1VK42ZJy5IPuk7UKUly962S/k/SmwuWPa6G+gAAABqKK5oAAECr+keFB39vV/ifyZ5Q+J/S3iBpwN1/HaGOhyVdYWanKdyq9W8Kz226WpLc/ftmdr3C/8Z2qqRHFP73uV0U/se2an1d0sdydZ6eK+efFa5iSvoXSZea2ZcVHtD9GklH1lBfXczsXEmvKfGcJgAAgJ1wRRMAAGhJ7j4k6dWSZkn6pqT/Vkg+/U7hGUkxXC/pS5LOknSupNskHVMwzzGSrs3N821JJulQd79TVXL3pyW9TtJTktZJOk3ShyTdWzDfZZJWK/zPa9+RtJ+kldXWF0GX+IdJAABQBXP3ZscAAADQcGZ2naQ/uvvxGZR9sKQNkl4q6TZ33xa7jvHEzCYo/APpnZIudvcPNzkkAABQAlc0AQAAZOcWhdvtUJ/zFP7XwYXNDgQAAJTHpdAAAADxbZR0QO7z1mYG0iFOl/TF3Oc/NDEOAABQAbfOAQAAAAAAIApunQMAAAAAAEAUJJoAAAAAAAAQBYkmAAAAAAAAREGiCQAAAAAAAFGQaAIAAAAAAEAUJJoAAAAAAAAQxf8HJ9qfpmwmdTIAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 1440x720 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_date(events_2, counts_2, mean_2, std_2, \"Eventos de 10/04/21\")" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean: 5.7\n", + "Standard deviation: 2.38\n", + "Rate: 2140.6666666666665 events per hour\n" + ] + } + ], + "source": [ + "print(f\"Mean: {round(mean_2,2)}\")\n", + "print(f\"Standard deviation: {round(std_2,2)}\")\n", + "print(f\"Rate: {sum(counts_2)/1.5} events per hour\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Data 3" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "data_3 = load_data(\"Data/EAS_data_3.dat\")" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "EAS_3 = create_df(data_3) " + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>0</th>\n", + " <th>1</th>\n", + " <th>2</th>\n", + " <th>3</th>\n", + " <th>4</th>\n", + " <th>5</th>\n", + " <th>6</th>\n", + " <th>7</th>\n", + " <th>8</th>\n", + " <th>9</th>\n", + " <th>10</th>\n", + " <th>11</th>\n", + " <th>12</th>\n", + " <th>13</th>\n", + " <th>14</th>\n", + " <th>15</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>5C470C80</td>\n", + " <td>80</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>2C</td>\n", + " <td>00</td>\n", + " <td>5B585726</td>\n", + " <td>040733.013</td>\n", + " <td>100421</td>\n", + " <td>A</td>\n", + " <td>10</td>\n", + " <td>0</td>\n", + " <td>-0009</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>5C470C80</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>30</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>5B585726</td>\n", + " <td>040733.013</td>\n", + " <td>100421</td>\n", + " <td>A</td>\n", + " <td>10</td>\n", + " <td>0</td>\n", + " <td>-0009</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>5C470C81</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>39</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>5B585726</td>\n", + " <td>040733.013</td>\n", + " <td>100421</td>\n", + " <td>A</td>\n", + " <td>10</td>\n", + " <td>0</td>\n", + " <td>-0009</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>5C470C83</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>2E</td>\n", + " <td>5B585726</td>\n", + " <td>040733.013</td>\n", + " <td>100421</td>\n", + " <td>A</td>\n", + " <td>10</td>\n", + " <td>0</td>\n", + " <td>-0009</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>6E5FFE22</td>\n", + " <td>80</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>25</td>\n", + " <td>00</td>\n", + " <td>23</td>\n", + " <td>00</td>\n", + " <td>6D39FA26</td>\n", + " <td>040745.013</td>\n", + " <td>100421</td>\n", + " <td>A</td>\n", + " <td>09</td>\n", + " <td>0</td>\n", + " <td>+0055</td>\n", + " </tr>\n", + " <tr>\n", + " <th>...</th>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2340</th>\n", + " <td>1E2CDB74</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>30</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>1D1962A6</td>\n", + " <td>050659.004</td>\n", + " <td>100421</td>\n", + " <td>A</td>\n", + " <td>09</td>\n", + " <td>0</td>\n", + " <td>+0062</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2341</th>\n", + " <td>1EFFF90D</td>\n", + " <td>80</td>\n", + " <td>00</td>\n", + " <td>3E</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>1E96DAE6</td>\n", + " <td>050700.012</td>\n", + " <td>100421</td>\n", + " <td>A</td>\n", + " <td>09</td>\n", + " <td>0</td>\n", + " <td>+0054</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2342</th>\n", + " <td>1EFFF90E</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>20</td>\n", + " <td>00</td>\n", + " <td>1E96DAE6</td>\n", + " <td>050700.012</td>\n", + " <td>100421</td>\n", + " <td>A</td>\n", + " <td>09</td>\n", + " <td>0</td>\n", + " <td>+0054</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2343</th>\n", + " <td>1EFFF912</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>3A</td>\n", + " <td>1E96DAE6</td>\n", + " <td>050700.012</td>\n", + " <td>100421</td>\n", + " <td>A</td>\n", + " <td>09</td>\n", + " <td>0</td>\n", + " <td>+0054</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2344</th>\n", + " <td>1EFFF914</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>31</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>1E96DAE6</td>\n", + " <td>050700.012</td>\n", + " <td>100421</td>\n", + " <td>A</td>\n", + " <td>09</td>\n", + " <td>0</td>\n", + " <td>+0054</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "<p>2333 rows × 16 columns</p>\n", + "</div>" + ], + "text/plain": [ + " 0 1 2 3 4 5 6 7 8 9 10 11 \\\n", + "0 5C470C80 80 00 00 00 00 00 2C 00 5B585726 040733.013 100421 \n", + "1 5C470C80 00 00 00 00 30 00 00 00 5B585726 040733.013 100421 \n", + "2 5C470C81 00 00 00 00 00 39 00 00 5B585726 040733.013 100421 \n", + "3 5C470C83 00 00 00 00 00 00 00 2E 5B585726 040733.013 100421 \n", + "4 6E5FFE22 80 00 00 00 25 00 23 00 6D39FA26 040745.013 100421 \n", + "... ... .. .. .. .. .. .. .. .. ... ... ... \n", + "2340 1E2CDB74 00 00 00 00 00 30 00 00 1D1962A6 050659.004 100421 \n", + "2341 1EFFF90D 80 00 3E 00 00 00 00 00 1E96DAE6 050700.012 100421 \n", + "2342 1EFFF90E 00 00 00 00 00 00 20 00 1E96DAE6 050700.012 100421 \n", + "2343 1EFFF912 00 00 00 00 00 00 00 3A 1E96DAE6 050700.012 100421 \n", + "2344 1EFFF914 00 00 00 31 00 00 00 00 1E96DAE6 050700.012 100421 \n", + "\n", + " 12 13 14 15 \n", + "0 A 10 0 -0009 \n", + "1 A 10 0 -0009 \n", + "2 A 10 0 -0009 \n", + "3 A 10 0 -0009 \n", + "4 A 09 0 +0055 \n", + "... .. .. .. ... \n", + "2340 A 09 0 +0062 \n", + "2341 A 09 0 +0054 \n", + "2342 A 09 0 +0054 \n", + "2343 A 09 0 +0054 \n", + "2344 A 09 0 +0054 \n", + "\n", + "[2333 rows x 16 columns]" + ] + }, + "execution_count": 84, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "EAS_3" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "EAS_3, time_3 = time_date(EAS_3)" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>0</th>\n", + " <th>1</th>\n", + " <th>2</th>\n", + " <th>3</th>\n", + " <th>4</th>\n", + " <th>5</th>\n", + " <th>6</th>\n", + " <th>7</th>\n", + " <th>8</th>\n", + " <th>9</th>\n", + " <th>10</th>\n", + " <th>11</th>\n", + " <th>12</th>\n", + " <th>13</th>\n", + " <th>14</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>5C470C80</td>\n", + " <td>80</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>2C</td>\n", + " <td>00</td>\n", + " <td>5B585726</td>\n", + " <td>100421 040733.013</td>\n", + " <td>A</td>\n", + " <td>10</td>\n", + " <td>0</td>\n", + " <td>-0009</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>5C470C80</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>30</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>5B585726</td>\n", + " <td>100421 040733.013</td>\n", + " <td>A</td>\n", + " <td>10</td>\n", + " <td>0</td>\n", + " <td>-0009</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>5C470C81</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>39</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>5B585726</td>\n", + " <td>100421 040733.013</td>\n", + " <td>A</td>\n", + " <td>10</td>\n", + " <td>0</td>\n", + " <td>-0009</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>5C470C83</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>2E</td>\n", + " <td>5B585726</td>\n", + " <td>100421 040733.013</td>\n", + " <td>A</td>\n", + " <td>10</td>\n", + " <td>0</td>\n", + " <td>-0009</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>6E5FFE22</td>\n", + " <td>80</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>25</td>\n", + " <td>00</td>\n", + " <td>23</td>\n", + " <td>00</td>\n", + " <td>6D39FA26</td>\n", + " <td>100421 040745.013</td>\n", + " <td>A</td>\n", + " <td>09</td>\n", + " <td>0</td>\n", + " <td>+0055</td>\n", + " </tr>\n", + " <tr>\n", + " <th>...</th>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2340</th>\n", + " <td>1E2CDB74</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>30</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>1D1962A6</td>\n", + " <td>100421 050659.004</td>\n", + " <td>A</td>\n", + " <td>09</td>\n", + " <td>0</td>\n", + " <td>+0062</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2341</th>\n", + " <td>1EFFF90D</td>\n", + " <td>80</td>\n", + " <td>00</td>\n", + " <td>3E</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>1E96DAE6</td>\n", + " <td>100421 050700.012</td>\n", + " <td>A</td>\n", + " <td>09</td>\n", + " <td>0</td>\n", + " <td>+0054</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2342</th>\n", + " <td>1EFFF90E</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>20</td>\n", + " <td>00</td>\n", + " <td>1E96DAE6</td>\n", + " <td>100421 050700.012</td>\n", + " <td>A</td>\n", + " <td>09</td>\n", + " <td>0</td>\n", + " <td>+0054</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2343</th>\n", + " <td>1EFFF912</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>3A</td>\n", + " <td>1E96DAE6</td>\n", + " <td>100421 050700.012</td>\n", + " <td>A</td>\n", + " <td>09</td>\n", + " <td>0</td>\n", + " <td>+0054</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2344</th>\n", + " <td>1EFFF914</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>31</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>00</td>\n", + " <td>1E96DAE6</td>\n", + " <td>100421 050700.012</td>\n", + " <td>A</td>\n", + " <td>09</td>\n", + " <td>0</td>\n", + " <td>+0054</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "<p>2333 rows × 15 columns</p>\n", + "</div>" + ], + "text/plain": [ + " 0 1 2 3 4 5 6 7 8 9 10 \\\n", + "0 5C470C80 80 00 00 00 00 00 2C 00 5B585726 100421 040733.013 \n", + "1 5C470C80 00 00 00 00 30 00 00 00 5B585726 100421 040733.013 \n", + "2 5C470C81 00 00 00 00 00 39 00 00 5B585726 100421 040733.013 \n", + "3 5C470C83 00 00 00 00 00 00 00 2E 5B585726 100421 040733.013 \n", + "4 6E5FFE22 80 00 00 00 25 00 23 00 6D39FA26 100421 040745.013 \n", + "... ... .. .. .. .. .. .. .. .. ... ... \n", + "2340 1E2CDB74 00 00 00 00 00 30 00 00 1D1962A6 100421 050659.004 \n", + "2341 1EFFF90D 80 00 3E 00 00 00 00 00 1E96DAE6 100421 050700.012 \n", + "2342 1EFFF90E 00 00 00 00 00 00 20 00 1E96DAE6 100421 050700.012 \n", + "2343 1EFFF912 00 00 00 00 00 00 00 3A 1E96DAE6 100421 050700.012 \n", + "2344 1EFFF914 00 00 00 31 00 00 00 00 1E96DAE6 100421 050700.012 \n", + "\n", + " 11 12 13 14 \n", + "0 A 10 0 -0009 \n", + "1 A 10 0 -0009 \n", + "2 A 10 0 -0009 \n", + "3 A 10 0 -0009 \n", + "4 A 09 0 +0055 \n", + "... .. .. .. ... \n", + "2340 A 09 0 +0062 \n", + "2341 A 09 0 +0054 \n", + "2342 A 09 0 +0054 \n", + "2343 A 09 0 +0054 \n", + "2344 A 09 0 +0054 \n", + "\n", + "[2333 rows x 15 columns]" + ] + }, + "execution_count": 86, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "EAS_3" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "events_3, counts_3, mean_3, std_3 = events_counts(time_3)" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJoAAAJnCAYAAADftTl7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABx9UlEQVR4nO3deZwcVbn/8e+TmcmEBCRAEgJkRVFDggoZFBCUXURERVTicl2iKJpRXO4FHS5BrlwVDSDgT1zgIl4ybIoom3BJUIdNJooQjcgiq0gQRJAQMgnP74+qztR0eqvu093VPZ/369Wv7q7l1HNOnarqeVJ1Yu4uAAAAAAAAoFZjmh0AAAAAAAAA2gOJJgAAAAAAAARBogkAAAAAAABBkGgCAAAAAABAECSaAAAAAAAAEASJJgAAAAAAAARBogkAAKABzOxDZuZm9qFmxwIAAFAvJJoAABiF4oRHude+zY6zFDM7qRXibCQzO9LMzjKzX5vZM3H7/G8F6+1lZleb2VNm9ryZ3Wlmx5pZR5n1/j3exvzEtA4z+2xcxvNxmVeb2V4V1uHlZvZcJbGb2e7xcp+Pv78m7hc3mdljZrbOzB41s34z261IGXPM7MtmdoWZPZTo/52VxAsAAEbiAgoAwOj25RLzHmhUEAjmBEmvlvQvSY9IemW5FczsbZJ+LGmtpIslPSXprZJOl/R6Se8qsfo7JD3o7iviskzSRZKOlHS3pLMlbS3pPZJ+ZWbvdPcrSsTSKelHkl4sF3di+5L0k/j9HEmvk7QinvYvSa+RdJSkI83sPe7+k7wy3iTpREkbJN2jqB3GVbh9AACQh0QTAACjmLuf1OwYENRnFSWY7pX0RknLSy1sZi+R9H1FSZZ93X0wnv6fkpYpSs4c5e4XFVh3O0l7SDozMfkoRUmmmyUd4O5r42XPkTQg6ftmtszdny0S0pcUJYb+XdK3KqjvOyT93t3/En+/UNL73f3evFjfJ+l/JX3PzK5093WJ2ddIukXSne7+vJk9IGlmBdsGAAAF8OgcAAAoyczOiR8leluR+a+L51+WN328mX3RzO6IH4X6l5ndYmYLCpSxb1zGSfHjT1eZ2dNmtsbMfpn/2FWcDFgcf12efOQvb7ntzOzbZvZA/BjVE2b2k+SjXollx5rZp83st2b2j3jbD8SPVB2Yor1eZmaXxmU8Z2Y3m9lbyqwzzczONrP7zewFM3vSzH5mZrtXul1Jcvfl7n6Pu3v5pSVFSaHJki7KJZnictYqujtKko4psu7bJJmkyxPTcsuekEsyxeXdruhuqcnxNjdhZj2S/lPSf0m6s1zgZvZKRXdsbdy+u5+Vn2SKp1+o6G6lbSTtkjfvbne/zd2fL7dNAABQHokmAABQzg/j938rMv+D8fv5uQlmNlHRHSz/rehumfPiciZLWmpmXylSVo+iu2HGSfqBpCsl7S3pBjN7RWK5MyT9MhHflxOvXAyzJQ1K+qSk+yQtkfQLSW+RdLOZHZa37fMV3UXTJekCRXfq/EpRYuKQIvGOYGY7SbpVUTLllri8RyT9VNIRRdbZTdIdcZx3SzpL0s8lvUHSgJkdWsm2q7R//H5tgXm/krRG0l5m1l1g/hGSnlC0n2Vm4yTtFa/z6wLLX5O3zY3MbDNFj8zdIelrFcaea8/LSy41bCh+X1/h8gAAoAo8OgcAwChmZicVmbXW3b8mSe5+i5n9WdJhZra1uz+VWL9b0eNSqzUyWXGGpF0lHefupyaWH6co6fIlM7vM3e/I2+5bJH3Y3c9PrPNxRWPvfEZRMkbufkaczHqjpPPd/cYCdThH0vaK7q45JVHe/1OURPmhmc1093+Z2ZZxPVZIep27b8hrp22KtFO+byu6a+ZYd9/46Fd8N9hP8xeOxyS6RNLmkvZz918m5m0v6XZJ55rZLHd/ocIY0sgl7/6cP8Pd15vZXyTNlbSjpFWJ2CZK2lfSBYm2eqmkDkn3u3uhZM498fvLC8z7mqTZknaLt1tJ7O+QdJ+7V3L30x6Sdpb0qKSVlRQOAACqwx1NAACMbouLvI7PW+6HksZKyn/s7a2StpJ0YS65ECdl3i9pMJlkkjY+knWcokeu3lsgnpuSSabYeYruQnltpZUys2mSDpb0kKT8GG6W1K9okOrcXTEex/SCCgxE7e5PVrjNgyT9RdEg2Mn1r9DwHVhJb1GUoDkrmWSK1/lrHPtUSQeU236Vtozf/1lkfm76xLzphym68yt5N1FVZZnZAZJ6JZ3o7n8sHe7GdaYruvut7N1MZra1ojvUJOmz+UlEAAAQFnc0AQAwirl7RbeOKPpD/b8UPSb37cT0TR6bk7S7ojtbvMgdU13x+5wC8wbzJ7j7kJk9riihVald4/dfu/tQgfnLFCXDdlV0V84zZvZzRYmzO8zsx4oe/7rN3dek3OZAkWTGjYruwEraM36fWaStdorf50i6usI4GuEdkp6V9H+1FBLfGXW+pNsUPdpYqbfH7yUTTWY2QdIVitrxVHe/NHWQAAAgFRJNAACgLHd/xMxukHSQmc1x91VmNkXR2EV35D2+lHvMbPf4VczmBaY9XWTZ9YqSV5XK3V3zWJH5uekTE9Peo+huq/dqeKyntfEg519w98cr3Gax5f5WYFqurd5VpuxCbRVC7i6jLYvMz01/OjchHk/pEElX5j3Ol7osSacpaoMDU95pdISi9ry12AJxkukqRWN8nebux6UoHwAAVIlH5wAAQKVyg4Ln7mJ6n6J/tPph3nK5hMPp7m4lXvvVMdZcDFOLzN8ubzm5+/PufpK7v1zSDEV3PA3E75dtWkTRbW5bZH6hWHLrvK1MW325wLoh3B2/bzJuUjx+1GxFSb77E7PeJGm8pJ/krXKfooHfd4zXzZe7Oys5HtRukjaT9Ke8/zlweTz/ffG0OxJxTZK0j6SfuvsmjznGy2yhaPDxNyq6k+nzhZYDAADhkWgCAACV+omkZyS938zGKEo4rZe0NG+53yga52ifOseTuwOm0J1Ov4vf9y6S9MgluX5bqGB3f9jdL1SUVLk3LqfcgODJbRaKad8C03J35NS7rYpZFr8X+l/13qAooXRz3p1L71A0ltWIR/ni8bdujtcpVJ83521TivrUuQVeubLvi78nk1pvVbTPCz42Fw/sfl0cwyncyQQAQGORaAIAABVx9+cV/Q9pO0j6rKRXS7ra3VfnLbda0oWSeszsPwslXczspWY2u8aQcgN0zygQ6yOSrpc0S9Kxedt+naLH4/6hOFlhZpPNbJcC25ig6LG19ZLWlQomsc3ZkhblbfNt2nR8JikaP+g+SZ8ys0MLlWtme5rZ+FLbrsFlkv4u6Sgz60lsc5ykr8Rfv5OY3qloIPAb3P3ZAuXllv1KXEZuvd0VPZr4hKQf56a7+8nu/tH8l6RvxIvcGk87ObGNdyh6/G658pjZVorGjdpD0mJ3P6GSRgAAAOEwRhMAAKNYkQGoc37q7nfkTfuhpI9K+mrieyGLFD0qdbKkD5jZgKKxi7ZXNLD17or+B7u/VBV4ZLmiO6e+ambzFCWO5O65BMknJN0k6RtmdrCigcanKxoP6UVJH04kS3aQ9Dszu0vSnZIelvQSRUmVqZLOLJJYyfcpSbdIOiPe5u8lvUxRciQ32PhG8UDnR0j6haSrzOxmSXdIWhPHurukHRU96ld2UHIze7uGB8rOPaq3p5mdH3/+u7t/IbH9Z8zsY4oSTjea2UWSnpJ0uKRXxNMvTmxiX0X/W1+xQbgvUjR+0pGK2vPnisZgeo+iu5A+5u7PlKtHifptruh/9vtxkUHef6Lof6O7T9KYIv17RL+OH8X7ZmL+pPj93PgxPkn6mrv/qdq4AQAYTUg0AQAwui0uMe8BRUmPjdx9wMzuVZQ8eUrSlYVWjBMYb5R0tKK7h94paZyiZNM9iu6Iur6WwOMByT8o6QuSPhmXL8V34rj7/fFdOidIOlRRkuQZSdcqeqTq9ry6Lo6X2U9RsuEpRWMYHa8ogVJJTPeY2R6SvibpwLi8OxUlfyYrL9EUr3Onmb1a0ucUJbY+rCgR9piix/EWK7rrqBKv0fAYWjk7xi9JelBReyW3/9N4X/VpeD/dG8dzprt7YvF3xLFdUWjj7u5mtkDRI3QfkdQraa2kX0n6irvfXGE9inlzHF/++FA5ubvkXqriffsBjezXm2vTNpOkf0t8Pl8SiSYAACpgI387AAAAAJsyM5P0iKR73b3QY4CNiGGpoqTdJHcve4cXAABoPMZoAgAAQCVeq+jRx2KPzdWVmY2V9BZJ15FkAgAgu7ijCQAAAAAAAEFwRxMAAAAAAACCINEEAAAAAACAIEg0AQAAAAAAIIjOZgdQb5MmTfJZs2Y1OwwAAAAAAIC2sWLFir+7++T86W2faJo1a5YGBwebHQYAAAAAAEDbMLMHC03n0TkAAAAAAAAEQaIJAAAAAAAAQZBoAgAAAAAAQBAkmgAAAAAAABAEiSYAAAAAAAAEQaIJAAAAAAAAQXQ2OwAAAAAAANB8zzzzjFavXq2hoaFmh4Im6urq0pQpU/SSl7ykqvVJNAEAAAAAMMo988wzevzxx7XDDjtos802k5k1OyQ0gbvr+eef16OPPipJVSWbeHQOAAAAAIBRbvXq1dphhx00fvx4kkyjmJlp/Pjx2mGHHbR69eqqyiDRBAAAAADAKDc0NKTNNtus2WEgIzbbbLOqH6Ek0QQAAAAAALiTCRvV0hdINAEAAAAAACAIEk0AAAAAAKDlnXTSSTIzmZnGjBmjrbbaSrvvvrv6+vr0t7/9LXV5p556qm688cbwgbY5Ek0AAAAAAKAtbLnllrrlllt0880366KLLtIRRxyhH/3oR9pll120YsWKVGWRaKpOZ7MDAAAAAAAACKGzs1N77LHHxu9vetObdMwxx+gNb3iDjjrqKP3pT39SR0dHEyNsf9zRBAAAAAAAgunvl+bNkzo6ovf+/ubGM3HiRJ166qm69957df3110uSjj/+eO2yyy7afPPNNW3aNL3vfe8b8XjdrFmz9OSTT+rLX/7yxsfxcnc3LVmyRLvvvru23HJLbbvttnrrW9+qe++9txlVyyQSTQAAAAAAIIj+fqmvTzrrLGnt2ui9r6/5yaZ9991XnZ2duvXWWyVJq1ev1pe+9CVdddVVOuOMM3T//fdr//3314svvihJuvzyy7Xllltq4cKFuuWWW3TLLbdot912kyQ98sgjWrRoka644gp9//vf14YNG7TXXnvpn//8Z9PqlyU8OgcAAAAAAII45RTp3HOl/faLvu+3X/S9t1dasKB5cY0bN06TJk3S448/Lkk677zzNs7bsGGD9txzT02bNk0DAwN6wxveoF133VWdnZ2aNm3aiEfxJOn0008fse5BBx2kKVOm6IorrtC//du/NaZCGcYdTQAAAAAAIIhVq6S99x45be+9o+nN5u4bP19zzTXaa6+9tOWWW25MKEnSn//857Ll3HrrrTrooIO0zTbbqLOzU+PHj9e//vWvitYdDRqaaDKz6Wa23Mz+aGZ/MLPPxNO3NrPrzeye+H2rIut/MF7mHjP7YCNjBwAAAAAApc2ZIw0MjJw2MBBNb6a1a9fqySef1Lbbbqvbb79dhx9+uKZNm6Yf/ehHuuWWWzY+Urd27dqS5Tz00EM6+OCD5e767ne/q5tuukm33367pkyZUnbd0aLRj86tl/R5d/+tmW0haYWZXS/pQ5JucPevmdnxko6XdFxyRTPbWtJiST2SPF73Z+7+j4bWAAAAAAAq0N8fPUa0alX0R3ZfX3MfHQIaoa9PWrgwelxu772jJNPChdGx0EzLly/X+vXrteeee+ryyy/X5MmTdfHFF8vMJEkPPvhgReVce+21WrNmja644gpNmDBBkrR+/Xo99dRTdYu91TQ00eTuj0l6LP78rJmtkrSDpLdJ2jde7IeSblReoknSmyRd7+5PSVKcoDpEUpOHFAMAAACAkXIDIuf/sS2RbEJ7y/Xv3t7hJOsppzS33z/99NM67rjj9LKXvUwHHnigrr32WnV1dW1MMknShRdeuMl6Y8eO3eQupeeff15jxoxRZ+dwOuWSSy7R+vXr61eBFtO0wcDNbJakXSXdJmnbOAklSX+TtG2BVXaQ9HDi+yPxNAAAAADIlKwOiAw0woIFzevn69ev3/gY3LPPPqsVK1boO9/5jtasWaNrr71WHR0dOuigg3TGGWfo2GOP1Vvf+lbdfPPN+t///d9NynrlK1+pq666Socccog233xzveIVr9D++++vDRs26MMf/rAWLlyoP/zhD/rmN7+piRMnNrim2dWUwcDNbHNJP5Z0rLs/k5zn0ehcXnDFyss/2swGzWzwiSeeqKUoAAAAAEgtywMiA+3sn//8p/bcc0/ttddeete73qXLLrtM73//+3XXXXdp/vz5kqRDDz1UX//61/XjH/9Yhx9+uH75y1/qyiuv3KSsb3zjG5owYYLe8pa3aPfdd9eKFSu0yy676Pzzz9dtt92mww47TEuXLtWll16qLbfcstFVzSxLjrrekA2adUm6UtIv3P20eNrdkvZ198fMbDtJN7r7K/LWWxAv8/H4+3fj5Uo+OtfT0+ODg4P1qAoAAAAAFDRvnnTWWcN3NEnS8uXRHU0rVzYvLqCYVatWaU6zR+xGppTrE2a2wt178qc3+n+dM0nnSlqVSzLFfiYp97/IfVDSFQVW/4Wkg81sq/h/pTs4ngYAAAAAmZIbEHn5cmloKHpfuDCaDgDtrNFjNL1e0gck3WVmd8TTviTpa5IuMbOFkh6U9G5JMrMeSZ9w94+6+1Nm9l+Sbo/XOzk3MDgAAAAAZEkWB0QGgEZo9P86NyDJisw+oMDyg5I+mvh+nqTz6hMdAAAAAITTzAGRAaBZmjIYOAAAAAAAANoPiSYAAAAAAAAEQaIJAAAAAAAAQZBoAgAAAAAAQBAkmgAAAAAAABAEiSYAAAAAAAAEQaIJAAAAAAC0vJNOOklmpp122qng/J122klmppNOOqmxgZWRizv/de2115Zc78Ybbyy43vHHHz9iuRdeeEGf+9znNHXqVG222WbaZ599NDg4WLf6dNatZAAAAAAAgAYaN26c/vKXv2hwcFA9PT0bp99+++164IEHNG7cuCZGV9yWW265SWJpzpw5Fa174YUXascdd9z4fYcddhgx/9Of/rQuuugiff3rX9fMmTN15pln6sADD9Tvf/97zZw5s/bg85BoAgAAAAAAbWHChAnabbfddNFFF41INF100UXaf//9tWLFiiZGV1xnZ6f22GOPqtZ91atepXnz5hWc98gjj+gHP/iBvve972nhwoWSpP3331877rijvvGNb+jss8+uOuZieHQOAAAAAAC0jaOOOkqXXHKJ3F2S5O665JJLdNRRRxVc/te//rXe+MY3avz48dpmm230sY99TM8+++zG+Y899pg+8pGPaMcdd9Rmm22ml7/85TrhhBO0bt26jcs88MADMjNdcskl+vjHP64tt9xS06ZN0+LFi/Xiiy/Wt8Il3HXXXXrxxRd10EEHbZzW3d2tN7zhDbrqqqvqsk0STQAAAAAAoG0cccQRevzxxzUwMCApSiQ98cQTOuKIIzZZ9qabbtKBBx6oqVOn6rLLLtMZZ5yhq6++Wh/+8Ic3LvP3v/9dW2+9tU477TRde+21+vd//3f9z//8j3p7ezcp7z/+4z+0+eab67LLLtP73/9+nXzyybrsssvKxvz0009r0qRJ6urq0q677qqf/OQnFdd3//33V0dHh2bNmqWvfOUr2rBhw8Z5a9eulSSNHTt2xDpjx47Vgw8+qOeff77i7VSKR+cAAAAAAEDbmDhxog455BBddNFF2meffXTRRRfpkEMO0ZZbbrnJsscff7z22msvXXzxxRun7bDDDjrggAO0cuVKzZs3T7vssou++c1vbpz/+te/XhMmTNBHPvIRnXXWWSOSOG94wxu0ZMkSSdJBBx2ka6+9Vj/5yU/07ne/u2i8L3vZy3Tqqadq11131bPPPqvvfve7euc736kf//jHBZNjOVtuuaWOP/547bPPPho7dqyuvPJKLV68WE888YS+9a1vbSxbisaoeutb3yopusPr9ttvl7vrH//4hzbbbLNKmrViJJoAAAAAAEBbOeqoo3TsscfqtNNO02WXXaYzzzxzk2XWrFmjW265RWeddZbWr1+/cfree++trq4urVixQvPmzZO761vf+pa+973v6S9/+cvGu4Qk6aGHHtqYzJGkgw8+eMQ2dt55Zz300EMlY33/+98/4vtb3/pW7bXXXjr55JNLJpp23XVX7brrrhu/H3jggeru7tZpp52m//zP/9SkSZO0yy676PWvf72+8IUvaPvtt9eMGTN02mmn6c9//rMkacyY8A+68egcAAAAAABoK4cffrj+9a9/qa+vT88999zGu3mS/vGPf2jDhg365Cc/qa6uro2v7u5uDQ0N6eGHH5YknXHGGfrCF76gd7zjHbriiiv0m9/8Rt/+9rclaUTSSYrupkoaO3bsJsuUY2Y64ogjdOedd454DK4SRx55pNavX68777xz47Tzzz9f48ePV09Pj6ZMmaKf//zn+sxnPqOuri5ts802qcqvBHc0AQAAAACAtjJhwgQddthhOv300/Wud71LEyZM2GSZiRMnysx00kkn6dBDD91k/vbbby9JuvTSS3XkkUfqlFNO2Tjvj3/8Y/2CV5RsMrOq1ku+S9Hjc7/73e90//33a2hoSC9/+cvV29ur3XbbTV1dXcFiziHRBAAAAAAA2s4xxxyjF154QZ/4xCcKzp8wYYL22GMP3X333TrxxBOLlvP888+ru7t7xLQLL7wwaKxJ7q4f//jHevWrX62Ojo5U61522WXq7OzUq171qk3m7bjjjpKiwc0vueSSEYmzkEg0AQAAAACAtrPvvvtq3333LbnMqaeeqgMOOEBjxozRkUceqS222EIPPfSQrrrqKp1yyil6+ctfroMOOkhnnnmmXve61+mlL32pLrzwQt17773B4nzjG9+od77znXrlK1+p5557Tt///vd122236ac//emI5To7O3XiiSduTIodc8wxmjx5snbffXeNHTtWV199tc4++2wde+yxIx6JO/PMM7XNNttohx120D333KOvfvWr2mWXXbRw4cJgdRgRZ11KBQAAAAAAyLi9995bv/rVr7R48WJ94AMf0IYNGzRz5kwdcsgh2nbbbSVJJ554op544gmdcMIJkqQjjjhCZ555ZsFxn6rxspe9TGeccYYee+wxjRkzRrvttpuuuuoqvfnNbx6x3IYNG/Tiiy9u/D5nzhz94Ac/0Omnn65169bpZS97mZYsWaLPfOYzI9Z7/vnndcIJJ+ivf/2rpkyZove+971avHhxXQYClyRz97oUnBU9PT0+ODjY7DAAAAAAAMisVatWac6cOc0OAxlSrk+Y2Qp378mfzv86BwAAAAAAgCBINAEAAAAAACAIEk0AAAAAAAAIgkQTAAAAAAAAgiDRBAAAAAAAgCBINAEAAAAAACAIEk0AAAAAAAAIgkQTAAAAAAAAgiDRBAAAAAAAgCBINAEAAAAAACAIEk0AAAAAAGDUuvvuu/WpT31Kc+bM0fjx47XjjjvqM5/5jJ5++umy6y5evFi77LKLXvKSl2iLLbZQT0+PLr744k2WGxwc1MEHH6ytt95aW2+9tQ488EDddtttdahN83U2OwAAAAAAAIBmuf7663XTTTfpmGOO0ate9Srdf//9OuGEE3TLLbfo1ltv1Zgxxe/ReeaZZ/ShD31IO++8szo6OnTZZZfpqKOOUkdHh4488khJ0sMPP6wDDzxQu+22m370ox9Jkr7xjW/ooIMO0l133aWZM2c2pJ6NYu7e7BjqqqenxwcHB5sdBgAAAAAAmbVq1SrNmTOn2WE0xZNPPqmtt95aZrZx2nXXXac3velNuvHGG/XGN74xVXmvf/3rtc022+hnP/uZJOmcc87Rpz71KT311FPacsstJUn/+Mc/NGnSJJ199tk65phjwlUmoHJ9wsxWuHtP/nQenQMAAAAAAC3P3fXVr35VO+64o7q6umRmI14PPPBAwfW22WabEUkmSdp1110lSX/9619Tx7HNNtto3bp1G78PDQ2ps7NTEyZM2Dht8803V2dnp9rx5h8STQAAAAAAoOX98Ic/1Je+9CXtv//+uvLKK3X66adr/Pjxmj17tvr6+jRx4sSKy7rlllskSS9/+csrWn79+vV6+umndeGFF+q6667TJz7xiY3z3vnOd2r8+PH6/Oc/r9WrV2v16tX67Gc/q6222krvete7UtWxFfDoHAAAAAAAo1w7PDq38847a/vtt9f//d//bZz2rW99S8cdd5weeughTZkypaJy1qxZo/nz52vbbbfVjTfeWHb5W2+9VXvuuackqbOzU2effbY+/vGPj1jmjjvu0GGHHaZHH31UkrTddtvpmmuu0atf/eoKa9d4PDoHAAAAAABGpaGhId1999165zvfOWL6EUccoRdeeKHi/+HN3bVw4UKtXr1a5513XkXr7LLLLrr99tt1/fXXa9GiRVq0aJH6+/s3zn/sscf0rne9S/Pnz9c111yja665RvPnz9db3vIWPfTQQ5VXskXwv84BAAAAAICW9tRTT+nFF1/c5K6l3PfVq1dXVM5xxx2nyy+/XNdff7123HHHitaZMGGCenqiG3sOPPBA/fOf/9Rxxx2nBQsWSIr+h7mhoSFddtll6urqkiTtv//+2mmnnfTNb35TZ555ZkXbaRXc0QQAAAAAAFra5MmTNXbsWP3tb38bMf2xxx6TJO2www5lyzj99NP1zW9+UxdccIH22WefqmPZbbfd9PDDD2v9+vWSpD/96U+aO3fuxiSTJI0dO1Zz587VfffdV/V2sopEEwAAAAAAaGljxozR6173Ol166aUjpl900UXq7u7e+L/IFXPhhRfq85//vE477TS9+93vrimWm266SdOmTVNnZ/QQ2cyZM7Vy5coR/xPdCy+8oJUrV2rWrFk1bSuLeHQOAAAAAAC0vC9/+cs64IAD9MEPflDvfe97deedd2rx4sVatGiRtt1226Lr/fKXv9SHP/xhHXzwwdpjjz106623bpw3bdo0TZs2TZJ0wQUX6CMf+Yjuu+8+zZw5Uw8++KA+8pGP6KijjtJLX/pS/etf/9Lll1+uiy66SN/5znc2lvHRj35UP/jBD/SOd7xDn/zkJ+Xu+va3v63HHntMRx99dP0apElINAEAAAAAgJa333776dJLL9VJJ52k/v5+TZkyRV/4whf05S9/ueR6y5cv19DQkH7xi1/oF7/4xYh5ixcv1kknnSRJevHFF7Vhwwa5uyRp4sSJ2n777fXf//3feuyxxzRx4kTtvPPOuuqqq3TooYduLGP+/Pm69tpr9eUvf1kf+MAHJEUDiF9//fWZ/l/nqmW5BmpXPT09Pjg42OwwAAAAAADIrHL/lT1Gn3J9wsxWuHtP/nTGaAIAAAAAAEAQJJoAAAAAAAAQBIkmAAAAAAAABEGiCQAAAAAAAEGQaAIAAAAAAEAQJJoAAAAAAIDa/X+lR+Vq6QskmgAAAAAAGOW6urr0/PPPNzsMZMTzzz+vrq6uqtYl0QQAAAAAwCg3ZcoUPfroo1qzZg13No1i7q41a9bo0Ucf1ZQpU6oqozNwTAAAAAAAoMW85CUvkST99a9/1dDQUJOjQTN1dXVp22233dgn0iLRBAAAAAAA9JKXvKTq5AKQw6NzAAAAAAAACIJEEwAAAAAAAIIg0QQAAAAAAIAgSDQBAAAAAAAgiIYOBm5m50k6TNJqd58XT7tY0iviRSZKetrdX1Ng3QckPStpg6T17t7TgJABAAAAAABQoUb/r3PnSzpb0gW5Ce7+ntxnM1si6Z8l1t/P3f9et+gAAAAAAABQtYYmmtz9V2Y2q9A8MzNJ75a0fyNjAgAAAAAAQBhZGqNpH0mPu/s9Rea7pOvMbIWZHd3AuAAAAAAAAFCBRj86V8oCSf0l5u/t7o+a2RRJ15vZn9z9V4UWjBNRR0vSjBkzwkcKAAAAAACATWTijiYz65R0hKSLiy3j7o/G76slXS7ptSWW/Z6797h7z+TJk0OHCwAAAAAAgAIykWiSdKCkP7n7I4VmmtkEM9si91nSwZJWNjA+AAAAAAAAlNHQRJOZ9Uu6RdIrzOwRM1sYzzpKeY/Nmdn2ZnZ1/HVbSQNm9ntJv5F0lbtf26i4AQAAAAAAUF6j/9e5BUWmf6jAtL9KOjT+fL+kV9c1OAAAAAAAANQkK4/OAQAAAAAAoMWRaAIAAAAAAEAQJJoAAAAAAAAQBIkmAAAAAAAABEGiCQAAAAAAAEGQaAIAAAAAAEAQJJoAAAAAAAAQBIkmAAAAAAAABEGiCQAAAAAAAEGQaAIAAAAAAEAQJJoAAAAAAAAQBIkmAAAAAAAABEGiCQAAAAAAAEGQaAIAAAAAAEAQJJoAAAAAAAAQBIkmAAAAAAAABEGiCQAAAAAAAEGQaAIAAAAAAEAQJJoAAAAAAAAQBIkmAAAAAAAABEGiCQAAAAAAAEGQaAIAAAAAAEAQJJoAAAAAAAAQBIkmAAAAAAAABEGiCQAAAAAAAEGQaAIAAAAAAEAQJJoAAAAAAAAQBIkmAAAAAAAABEGiCQAAAAAAAEGQaAIAAAAAAEAQJJoAAAAAAAAQBIkmAAAAAAAABEGiCQAAAAAAAEGQaAIAAAAAAEAQJJoAAAAAAAAQBIkmAAAAAAAABEGiCQAAAAAAAEGQaAIAAAAAAEAQJJoAAAAAAAAQBIkmAAAAAAAABEGiCQAAAAAAAEGQaAIAAAAAAEAQJJoAAAAAAAAQBIkmAAAAAAAABEGiCQAAAAAAAEGQaAIAAAAAAEAQJJoAAAAAAAAQBIkmAAAAAAAABEGiCQAAAAAAAEGQaAIAAAAAAEAQJJoAAAAAAAAQBIkmAAAAAAAABEGiCQAAAAAAAEGQaAIAAAAAAEAQJJoAAAAAAAAQBIkmAAAAAAAABNHQRJOZnWdmq81sZWLaSWb2qJndEb8OLbLuIWZ2t5nda2bHNy5qAAAAAAAAVKLRdzSdL+mQAtNPd/fXxK+r82eaWYekb0t6s6SdJS0ws53rGikAAAAAAGio/n5p3jypoyN67+9vdkRIq7ORG3P3X5nZrCpWfa2ke939fkkys4skvU3SHwOGBwAAAAAAmqS/X+rrk849V9p7b2lgQFq4MJq3YEFzY0PlsjJG0yIzuzN+tG6rAvN3kPRw4vsj8TQAAAAAANAGTjklSjLtt5/U1RW9n3tuNB2tIwuJpu9Ieqmk10h6TNKSWgs0s6PNbNDMBp944olaiwMAAAAAAHW2alV0J1PS3ntH09E6mp5ocvfH3X2Du78o6fuKHpPL96ik6Ynv0+Jpxcr8nrv3uHvP5MmTwwYMAAAAAACCmzMnelwuaWAgmo7W0fREk5ltl/j6DkkrCyx2u6SdzGy2mY2VdJSknzUiPgAAAAAAUH99fdGYTMuXS0ND0fvChdF0tI6GDgZuZv2S9pU0ycwekbRY0r5m9hpJLukBSR+Pl91e0g/c/VB3X29miyT9QlKHpPPc/Q+NjB0AAAAAANRPbsDv3t7ocbk5c6LxmRgIvLWYuzc7hrrq6enxwcHBZocBAAAAAADQNsxshbv35E9v+qNzAAAAAAAAaA8kmgAAAAAAABAEiSYAAAAAAAAEQaIJAAAAAAAAQZBoAgAAAAAAQBAkmgAAAAAAABAEiSYAAAAAAAAEQaIJAAAAAAAAQZBoAgAAAAAAQBAkmgAAAAAAABAEiSYAAAAAAAAEQaIJAAAAAAAAQZBoAgAAAAAAQBAkmgAAAAAAABAEiSYAAAAAAAAEQaIJAAAAAAAAQZBoAgAAAAAAQBAkmgAAAAAAABAEiSYAAAAAAAAEQaIJAAAAAAAAQZBoAgAAAAAAQBAkmgAAAAAAABAEiSYAAAAAAAAEQaIJAAAAAAAAQZBoAgAAAAAAQBAkmgAAAAAAABAEiSYAAAAAAAAEQaIJAAAAAAAAQZBoAgAAAAAAQBAkmgAAAAAAABAEiSYAAAAAAAAEQaIJAAAAAAAAQZBoAgAAAAAAQBAkmgAAAAAAABAEiSYAAAAAAAAEQaIJAAAAAAAAQZBoAgAAAAAAQBAkmgAAAAAAABAEiSYAAAAAAAAEQaIJAAAAAAAAQZBoAgAAAAAAQBAkmgAAAAAAABAEiSYAAAAAAAAEQaIJAAAAAAAAQZBoAoBA+vulefOkjo7ovb+/2RGNlPX4AIxOnJvqi/atr1Zu31zsY8ZI48ZF761WBwDZ1NnsAACgHfT3S3190rnnSnvvLQ0MSAsXRvMWLGhubFL24wMwOnFuqi/at75auX1zsb/3vdKaNdKiRdJZZ0lvf3s0Xcp+HQBkl7l7s2Ooq56eHh8cHGx2GADa3Lx50Q+0/fYbnrZ8udTbK61c2by4crIeH4DRiXNTfdG+9dXK7ZuLvbd3uA652HPTs14HAM1nZivcvWeT6SSaAKB2HR3S2rVSV9fwtKGh6Fb0DRuaF1dO1uMDMDpxbqov2re+Wrl9c7GPGzdch1zsuelZrwOA5iuWaGKMJgAIYM6c6Jb5pIGBaHoWZD0+AKMT56b6on3rq5XbNxd7sg7J761QBwDZRaIJAALo64vGZVi+PPoXweXLo++5cQ6aLevxARidODfVF+1bX63cvrnY3/726P2006SPfGT4eyvUAUB2MRg4AASQGzCzt1datSr6l8BTTsnOQJpZjw/A6MS5qb5o3/pq5fbNxXjKKdIDD0hf+pK0bp3005+2Th0AZBdjNAEAAAAAACAVxmgCAAAAAABAXZFoAgAAAAAAQBAkmgAAAAAAABAEiSYAAAAAAAAE0dBEk5mdZ2arzWxlYto3zOxPZnanmV1uZhOLrPuAmd1lZneYGaN7AwAAAAAAZEyj72g6X9IhedOulzTP3V8l6c+Svlhi/f3c/TWFRjUHAAAAAABAczU00eTuv5L0VN6069x9ffz1VknTGhkTAAAAAAAAwsjaGE0fkXRNkXku6TozW2FmRzcwJgAAAAAAAFSgs9kB5JhZn6T1ki4sssje7v6omU2RdL2Z/Sm+Q6pQWUdLOlqSZsyYUZd4AQAAAAAAMFIm7mgysw9JOkzS+9zdCy3j7o/G76slXS7ptcXKc/fvuXuPu/dMnjy5DhEDAAAAAAAgX9MTTWZ2iKT/kHS4u68psswEM9si91nSwZJWFloWAAAAAAAAzdHQRJOZ9Uu6RdIrzOwRM1so6WxJWyh6HO4OMzsnXnZ7M7s6XnVbSQNm9ntJv5F0lbtf28jYAQAAAAAAUFpDx2hy9wUFJp9bZNm/Sjo0/ny/pFfXMTQAAAAAAADUqOmPzgEAAAAAAKA9kGgCAAAAAABAECSaAAAAAAAAEASJJgAAAAAAAARBogkAAAAAAABBkGgCAAAtob9fmjdP6uiI3vv722t77SBNm9G+AIBSQl4nuOY0VmezAwAAACinv1/q65POPVfae29pYEBauDCat2BB62+vHaRpM9oXAFBKyOsE15zGM3dvdgx11dPT44ODg80OAwAA1GDePOmss6T99huetny51NsrrVzZ+ttrB2najPYFAJQS8jrBNad+zGyFu/dsMp1EEwAAyLqODmntWqmra3ja0JA0bpy0YUPrb68dpGkz2hcAUErI6wTXnPoplmhijCYAAJB5c+ZEt7onDQxE09the+0gTZvRvgCAUkJeJ7jmNB6JJgAAkHl9fdF4CsuXR/8KuXx59L2vrz221w7StBntCwAoJeR1gmtO4zEYOAAAyLzcYJ29vdKqVdG/Qp5ySv0G8Wz09tpBmjajfQEApYS8TnDNaTzGaAIAAAAAAEAqjNEEAAAAAACAuqo40WRmc8xsj8T3zczsv83sp2bWW5/wAAAAAAAA0CrS3NH0/yS9NfH9G5I+I2mcpK+b2b+HDAwAAAAAAACtJU2iaZ6kWyTJzLokfUDSse5+iKQvSfpI+PAAAAAAAADQKtIkmiZIeib+vEf8/Sfx999KmhkwLgAAAAAAALSYNImmvyhKMEnSOyT9zt2fjL9PkvRsyMAAAAAAAADQWjpTLHuapO+Y2bsk7Srpw4l5+0q6M2BcAAAAAAAAaDEVJ5rc/Vwzu0fS7pKOd/cbErOfknRG4NgAAAAAAADQQtLc0SR3/5WkXxWYflKogAAAAAAAANCaUiWazGyipI9L2lvS1oruZPq1pO+5+9OhgwMAAAAAAEDrqHgwcDN7qaSVkk5W9D/OPRS/nyzpzng+AAAAAAAARqk0dzSdLukfkl7n7o/mJprZDpKuVjRY+NvChgcAAAAAAIBWUfEdTYr+Z7kTk0kmSYq/nyxpv4BxAQAAAAAAoMWkSTS5pI4S5Xjt4QAAAAAAAKBVpUk0LZf0X2Y2Mzkx/n6ypBtCBgYAAAAAAIDWkmaMpmMlLZN0j5n9VtLjkqZImi/pYUmfCx4dAAAAAAAAWkbFdzS5+wOSXinp05L+IKlL0h8lLZI0J54PAAAAAACAUSrNHU1y93WSzolfAAAAAAAAwEYV39FkZhvM7LVF5s03sw3hwgIAYPTp75fmzZM6OqL3/v5mR4RWRD9CvdHHWh/7EEA9pbmjyUrM65K0vsZYAAAYtfr7pb4+6dxzpb33lgYGpIULo3kLFjQ3NrQO+hHqjT7W+tiHAOrN3L34TLMZkmbFX2+UdIykVXmLjZP0QUnz3f2V4UOsTU9Pjw8ODjY7DAAASpo3TzrrLGm//YanLV8u9fZKK1c2Ly60FvoR6o0+1vrYhwBCMbMV7t6zyfQyiabFkhZLyi1U7K6m5yV91N0zd9MliSYAQCvo6JDWrpW6uoanDQ1J48ZJG3g4HRWiH6He6GOtj30IIJRiiaZyYzT9P0m7SHq1oiTT++LvydcrJG2dxSQTAACtYs6c6PGFpIGBaDpQKfoR6o0+1vrYhwDqrWSiyd2fcPc/uPtKSbMl/Tj+nnzd4+4vNCZcAADaU19fNEbG8uXRvywvXx597+trdmRoJfQj1Bt9rPWxDwHUW8WDgbv7g5JkZt2SdlA0NlP+Mn8MFxoAAKNHbgDW3l5p1aroX5ZPOYWBWZEO/Qj1Rh9rfexDAPVWcoymEQuabS/pe5LeXGi2JHf3joCxBcEYTQAAAAAAAGEVG6Op4juaJP1A0m6SPifpj5LWBYoNAAAAAAAAbSBNoun1kj7m7pfUKxgAAAAAAAC0rnL/61zSaknP1ysQAAAAAAAAtLY0iaYTJR1nZi+pVzAAAAAAAABoXWkenTtC0gxJD5rZ7ZKezpvv7v6eUIEBAAAAAACgtaRJNE2SdF/8uUvS5PDhAAAAAAAAoFVVnGhy9/3qGQgAAAAAAABaW5oxmjayyPZmluaOKAAAAAAAALSxVIkmMzvUzG6TtFbSw5JeFU//vpm9vw7xAQAAAAAAoEVUnGgys3+T9DNJf5J0tCRLzP6zpIVhQwMAAAAAAEArSXNHU5+kb7j7ByX9b968P0jaOVhUAAAAAAAAaDlpEk0zJV1fZN5aSS+pPRwAAAAAAAC0qjSJpocl7VpkXo+ke2sPBwAAAAAAAK0qTaLpXEmL40G/N4unmZkdIOk/JH0/dHAAAAAAAABoHZ0plv26pOmSfihpQzztZkkdkr7r7mcGjg0AAAAAAAAtpOJEk7u7pE+Z2emS9pc0SdJTkpa5+5/rFB8AAAAAAABaRMWJJjOb4O7Pufu9YjwmAAAAAAAA5EkzRtNqM7vYzN5hZt3VbtDMzjOz1Wa2MjFtazO73szuid+3KrLuB+Nl7jGzD1YbAwAAAAAAAMJLk2j6D0lTJV2mKOn0IzN7i5mlGedJks6XdEjetOMl3eDuO0m6If4+gpltLWmxpNdJeq2igckLJqRQWH+/NG+e1NERvff3Nzui6rVTXRBhn6KcZvYR+ifQeMWOO45HAGh/jTjXcz2pI3dP9ZK0vaRjFQ0E/qKkJxX9j3QHpShjlqSVie93S9ou/rydpLsLrLNA0aDjue/flbSg3Lbmz5/vcF+61H32bPdly9zXrYveZ8+OpreadqoLIuxTlNPMPkL/BBqv2HG3aBHHIwC0u0b89uL3XRiSBr1AHsaiedUxsxmS3i3ps5K2dfeK7m4ys1mSrnT3efH3p919YvzZJP0j9z2xzhckjXP3r8Tf/1PS8+7+zVLb6unp8cHBwTTVakvz5klnnSXtt9/wtOXLpd5eaeXK4utlUTvVBRH2KcppZh+hfwKNV+y4e/ObpWuu4XgEgHbWiN9e/L4Lw8xWuHvPJtOrTTSZ2cskvSd+zZP0sLvPrHDdWSqSaIq//8Pdt8pbp+JEk5kdLeloSZoxY8b8Bx98MH0F20xHh7R2rdTVNTxtaEgaN07asKF5cVWjneqCCPsU5TSzj9A/gcYrdtyNHSutW8fxCADtrBG/vfh9F0axRFOaMZpkZjPN7D/MbIWix90WSbpR0j6VJpmKeNzMtou3sZ2k1QWWeVTS9MT3afG0Tbj799y9x917Jk+eXENY7WPOHGlgYOS0gYFoeqtpp7ogwj5FOc3sI/RPoPGKHXfd3RyPANDuGvHbi9939VVxosnMfiPpfkn/LmlQ0oGSdnD3T7v7TTXG8TNJuf9F7oOSriiwzC8kHWxmW8WDgB8cT0MF+vqkhQuj2wGHhqL3hQuj6a2mneqCCPsU5TSzj9A/gcYrdtx97GMcjwDQ7hrx24vfd/WV5n+M+4OkEyVd7+5V30xmZv2S9pU0ycweUfQ/yX1N0iVmtlDSg4rGfZKZ9Uj6hLt/1N2fMrP/knR7XNTJ7v5UtXGMNgsWRO+9vdKqVVGm9pRThqe3knaqCyLsU5TTzD5C/wQar9Rxt9deHI8A0M4a8duL33f1VdNg4K2AwcABAAAAAADCCjVG06vM7GIzu8/MXjCz3eLpp5jZm0MFCwAAAAAAgNaTZoymN0taIWmqpAskJcZn1wuSesOGBgAAAAAAgFaS5o6mr0o6393fKOmUvHl3SHpNoJgAAAAAAADQgtIkml4p6eL4c/7ATs9I2jpIRAAAAAAAAGhJaRJNqyXtWGTeXEkP1R4OAAAAAAAAWlWaRNNFkk42s70T09zMXi7pOEkXBo0MAAAAAAAALaUzxbL/KWlnSb+S9Fg87QpFg4NfJ+m/w4YGAAAAAACAVlJxosndX5B0mJkdIOkASZMkPSXpBne/vk7xAQAAAAAAoEWkuaNJZvZvkn7m7jfUKR4AAAAAAAC0qDRjNEnS/0iaIUkWOdHMpoYPCwAAAAAAAK2m5B1NZnaNpDsk/T5+mSSPZ4+RtFjSlZL+Vr8QAQAAAAAA0ArKPTp3raRdJR0qaY6iJNPZZrZc0u0amXgCAAAAAADAKFYy0eTu38p9NrNuSc9L+q2kV0j6gKIk04/M7FpJ/+fu19YxVgAAAAAAAGRYyTGazOzTZraPmW0R/69zkvQ/7r5AUbLJJPVL2lzS2fUNFQAAAAAAAFlW7tG5wyT1SZpkZg8quoPpKDPbTNJd8TLXuPtv6xgjAAAAAAAAWkDJO5rc/WB331bSDpI+qegOpgMVjd30lKLE0zFmdkD8aB0AAAAAAABGqZKJphx3/1ti/KWPuvtWknoUJZ6mSzpf0j/qEiEAAAAAAABaQkWJpiJWxe9fcvfpkuYHiAcAAAAAAAAtKlWiyd3HuPudua+SHpT0QjxvVdEVgYzq75fmzZM6OqL3/v5mR5RtzWyvrO6rZsUVcrtZbdtW09srjRsnmUXvvb3Njqj10BfRLn2gXerRSmjz1tWO+64d65R1WWrzLMXSNO7e1q/58+c7UMjSpe6zZ7svW+a+bl30Pnt2NB2bamZ7ZXVfNSuukNvNatu2mkWL3Ds73ZcscX/uuei9szOajsrQF9EufaBd6tFKaPPW1Y77rh3rlHVZavMsxdIIkga9QB6m6Ymger9INKGYuXOjAz9p2bJoOjbVzPbK6r5qVlwht5vVtm013d1RcilpyZJoOipDX0S79IF2qUcroc1bVzvuu3asU9Zlqc2zFEsjFEs0WTSvffX09Pjg4GCzw0AGdXRIa9dKXV3D04aGokdeNmxoXlxZ1cz2yuq+alZcIbeb1bZtNWbSc89J48cPT1uzRpowQWrzy2ww9EW0Sx9ol3q0Etq8dbXjvmvHOmVdlto8S7E0gpmtcPee/Om1DAYOtLQ5c6SBgZHTBgai6dhUM9srq/uqWXGF3G5W27bVdHdL55wzcto550TTURn6ItqlD7RLPVoJbd662nHftWOdsi5LbZ6lWJqq0G1O7fTi0TkUM9qen60VYzRlJy7GaMoexmiqHX0R7dIH2qUerYQ2b13tuO/asU5Zl6U2z1IsjSDGaAI2tXRp9LzsmDHRe7ueAEJpZntldV81K66Q281q27aaRYuiMZmk6J0kU3r0RbRLH2iXerQS2rx1teO+a8c6ZV2W2jxLsdRbsUQTYzQBAAAAAAAgFcZoAgAAAAAAQF2RaAIAAAAAAEAQJJoAAAAAAAAQBIkmAAAAAAAABEGiCQAAAAAAAEGQaAIAAAAAAEAQJJoAAAAAAAAQBIkmAAAAAAAABEGiCQAAAAAAAEGQaAIAAAAAAEAQJJoAAAAAAAAQBIkmAAAAAAAABEGiCQAAAAAAAEGQaAIAAAAAAEAQJJoAAAAAAAAQBIkmAAAAAAAABEGiCQAAAAAAAEGQaAIAAAAAAEAQJJrQ9vr7pXnzpI4Oafr06NXREU3r7292dKNHcj+0e9vn6jpmjDRuXPTe7nUejUZTn2439dh3WewPWYypEmnjDlnPWspKs24j900r9INqYgxVryy2TxZjqpdG17Xa7Y2mfQIE4e5t/Zo/f75j9Fq61H32bPdly9wvuMB9u+3cp06NPi9bFs1burTZUba/5H5Yt6692z5X176+6H3JEvdZs4a/t2OdR6PR1KfbTT32XRb7QxZjqkTauEPWs5ay0qzbyH3TCv2gmhhD1SuL7ZPFmOql0XWtdnujaZ8AaUka9AJ5mKYngur9ItE0us2dG10Mkp+XLYs+u4/8jPpJ7oecdm37XF2TdU5+b8c6j0ajqU+3m3rsuyz2hyzGVIm0cYesZy1lpVm3kfumFfpBNTGGqlcW2yeLMdVLo+ta7fZG0z4B0iqWaLJoXvvq6enxwcHBZoeBJunokNaulbq6hj9L0eNMGzZIQ0PDn1E/yf2Q065tn6vruHHDdc7VNTe93eo8Go2mPt1u6rHvstgfshhTJdLGHbKetZSVZt1G7ptW6AfVxBiqXllsnyzGVC+Nrmu12xtN+wRIy8xWuHtP/nTGaEJbmzNHGhgY+XlgIPosjfyM+knuh5x2bftcXZN1Tn5vxzqPRqOpT7ebeuy7LPaHLMZUibRxh6xnLWWlWbeR+6YV+kE1MYaqVxbbJ4sx1Uuj61rt9kbTPgGCKXSbUzu9eHRudGOMpmwYTc+2M0bT6DCa+nS7YYym5sVUCcZoCqsV+gFjNGU/pnphjCag9YkxmjBaLV0aPUM9Zoz7tGnRa8yYaBoXiMZJ7od2b/tcXc3cu7uj93av82g0mvp0u6nHvstif8hiTJVIG3fIetZSVpp1G7lvWqEfVBNjqHplsX2yGFO9NLqu1W5vNO0TII1iiSbGaAIAAAAAAEAqjNEEAAAAAACAuiLRBAAAAAAAgCBINAEAAAAAACAIEk0AAAAAAAAIIhOJJjN7hZndkXg9Y2bH5i2zr5n9M7HMiU0KFwAAAAAAAAV0NjsASXL3uyW9RpLMrEPSo5IuL7Dor939sAaGBgAAAAAAgApl4o6mPAdIus/dH2x2IAAAAAAAAKhcFhNNR0nqLzJvTzP7vZldY2ZzGxkUAAAAAAAASstUosnMxko6XNKlBWb/VtJMd3+1pLMk/bREOUeb2aCZDT7xxBN1iRUAAAAAAAAjZSrRJOnNkn7r7o/nz3D3Z9z9X/HnqyV1mdmkQoW4+/fcvcfdeyZPnlzfiAEAAAAAACApe4mmBSry2JyZTTUziz+/VlHsTzYwNgAAAAAAAJSQif91TpLMbIKkgyR9PDHtE5Lk7udIOlLSMWa2XtLzko5yd29GrAAAAAAAANhUZhJN7v6cpG3ypp2T+Hy2pLMbHRcAAAAAAAAqk7VH5wAAAAAAANCiSDQBAAAAAAAgCBJNAAAAAAAACIJEEwAAAAAAAIIg0QQAAAAAAIAgSDSNYv390rx5UkdH9N7fH7bM6dOjVzXl1xJb2nVLLV9tHMXWq6a80Pspv7ze3vD9oNT2QpeP2rTr/snVa8wYady46D3L9WvX/dCOGrGvQl5DGhUzhjWrvcv9npk+XTKLXtOnZ78ftHq/beX46xl7K7dLOZX8xq7H3x31lKWY3vSm6Pdc7jy2+ebN/ZuqWdtoGe7e1q/58+c7NrV0qfvs2e7LlrmvWxe9z54dTQ9R5gUXuG+3nfvUqdHnNOXXElvadUstX20cxdZbtCh9eaH3U355fX3unZ3Re6h+UM/4EVa77p9cvfr6ovclS9xnzRr+nrX6tet+aEeN2FchryGNihnDmtXe5X7PTJ4c/S677rroNXVqNC2r/aDV+20rx1/P2Fu5Xcqp5Df25MnRK+TfHY2sUzNjOvhgd8n9mGPcf/AD9y22iL4feGBz/qZq1jaySNKgF8jDND0RVO8XiabC5s6NOn/SsmXR9BBl5j4ny6y0/FpiS7tuqeWrjaPYet3d6csLvZ/yy5s7N/ojPFlerf2g1PZCl4/atOv+ydUrWb/k96zVr133QztqxL4KeQ0pVR79qz6a1d7lfs/MmjVy/rJl0bSs9oNW77etHH89Y2/ldimnkt/Ys2ZFr6Ra/+6opyzFZBYlmZJxHXNMNL2SuJp5/W6H/l1KsUSTRfPaV09Pjw8ODjY7jMzp6JDWrpW6uoanDQ1Fj5hs2FB7mbnP0nCZlZZfS2xp1y21vFRdHMXKHDtWWrcuXXmh91N+eR0d0rPPSltsMVxerf2gnvEjrHbdP7l6jRs3XL9cvXLTs1S/dt0P7agR+yrkNaRRMWNYs9q73O8ZaeT8oSGpuzt6/CSL/aDV+20rx1/P2Fu5Xcqp5Dd2R4fkLr344vB6tf7dUU9Z2l9m0tNPS1tuORzXmjXSxIlRmzb6b6pmbSOLzGyFu/fkT2eMplFqzhxpYGDktIGBaHqIMnOfk2VWWn4tsaVdt9Ty1cZRbL3u7vTlhd5P+eXNmSOdc87I8mrtB6W2F7p81KZd90+uXsn6Jb9nrX7tuh/aUSP2VchrSKny6F/10az2Lvd7ZsaMkfMHBqSZM7PbD1q937Zy/PWMvZXbpZxKfmPPmBEdd0m1/t1RT1mKyUz64hdHxvXFL0bTK4mrmdfvdujfVSl0m1M7vXh0rjDGaCq/PGM01W60PqvcKtp1/zBGE+qFMZpQDmM0hdHq/baV42eMpuowRlN9MUZTdokxmpBv6dLomdExY6L3UBeQXJnTpkWvasqvJba065Zavto4iq1XTXmh91N+eYsWhe8HpbbX7ifbVtOu+ydXL7NobBuzbNevXfdDO2rEvgp5DWlUzBjWrPYu93tm2rTol78Ufc56P2j1ftvK8dcz9lZul3Iq+Y1dj7876ilLMR18cPR7LncemzChuX9TNWsbWVMs0cQYTQAAAAAAAEiFMZoAAAAAAABQVySaAAAAAAAAEASJJgAAAAAAAARBogkAAAAAAABBkGgCAAAAAABAECSaAAAAAAAAEASJJgAAAAAAAARBogkAAAAAAABBkGgCAAAAAABAECSaAAAAAAAAEASJJgAAAAAAAARBogkAAAAAAABBkGgCAAAAAABAECSaAAAAAAAAEASJJgAAAAAAAARBogkAAAAAAABBkGgCAAAAAABAECSaAAAAAAAAEASJphbW3y/Nmyd1dETv/f3p5jdaMp7p06NXNbE1o179/VG8ZtFr+vSR2601pmrWz60zZow0blz0Xm7dauOsdL0s9bmQx0eyrbu6iveDkDEWm1dN3LWUUUmsIepbrdBl9vaO3MfbbBOuHzf7OMovt7c3zHYKxRuin4ZU7hxeTUzV1rHY9a9Z588snbeTshZXmn5e7FhLc71uplaPv1aV7utaftfW+zpc6DdiLb+9G63a9klznq+3rJ3DalHN3xylyslCm2Qplrbl7m39mj9/vrejpUvdZ892X7bMfd266H327Gh6JfObGe8FF7hvt5371KnR5zSxNaNeS5e6T54cxXzdddFr6tRo2tKltcdUzfq5dfr6ovclS9xnzRr+XmjdauOsdL0s9bmQx0eyrSdPdt96a/dtt3U//viR/SBkjMXmLVqUPu5ayqi0PWutb7VCl7lokfuYMdE+vvpq91NPjb6/5CW19+NmH0f55fb1uXd2Ru+1bKdQvJMnR69a+mnI80a5c3g1MVVzDil1/avmuAwhS+ftLMeVpp/n78vcsfb2t1d+vW6mYueKVom/VpXu6+S0tL9ra/ndl/Z3S26fTZrkPnFidb+9G63a9klznq+3rJ3DalHN3xylyslCm2QplnYgadAL5GGangiq96tdE01z50YHRdKyZdH0SuY3WjKe3OdkPJXG1ox6zZ0bnVCT2122LJo2d27tMVWzfm6d5LrJ74XWrTbOStfLUp8LeXwk2zTXD5JtnesHIWMsNq+7O33ctZRRSayVqkf/CF1md3f0wzRZ5pIl7l1dtffjZh9H+eXOnRvVLVluNdspFO+sWdErKfR5KW2Mpc7h1cRUzTkk+Tn/+lfNcRlCls7bSVmLK00/z9+XuWMtOb3c9bqZip0rWiX+WlW6r5PT0v6ureV3XyXrFPqNmIu3mt/ejVZt+6Q5z9db1s5htajmb45S5SRl9e8EpFMs0WTRvPbV09Pjg4ODzQ4juI4Oae3a6BGPnKGh6HbGDRvKz29mvLnP0nA8lcbWjHp1dETvye0ODUnd3dGtufnz0sZUTZ1y64wbN7xubp3c9Px1q227StfLUp8LeXwk21oa2XfXrh3uB2nrWCqG3Hby540dK61bly7uWsqoJNZK612P/hG6TLPodvBkmWvWSBMmRNNr6cfNPo7yy+3okJ59Vtpii+Fyq9lOoXg7OiR36cUXy9ehEeeNcufwamKq5hxS6vpXzXEZQpbO21mOK00/z9+XuWNtwoTh6eWu181U7FzRKvHXqtJ9nZyW9ndtLb/70v5uSZ573KUXXkj/27vRqm0fqfLzfL1l7RxWi2r+5ihVThbaJEuxtAMzW+HuPfnTGaOpRc2ZIw0MjJw2MBBNr2R+oyXjyX1OxlNpbM2o15w50owZI7c7MCDNnBnNqzWmatbPrZNcN/m90LrVxlnpelnqcyGPj2Sb5vpBsq1z/SBkjMXmdXenj7uWMiqJtVL16B+hy+zulqZMGVnmOedEP0Rq7cfNPo7yy50zJ6pbstxqtlMo3hkzouMiKfR5KW2Mpc7h1cRUzTkk+Tn/+lfNcRlCls7bSVmLK00/z9+XuWMtOb3c9bqZip0rWiX+WlW6r5PT0v6ureV3XyXrFPqNmIu3mt/ejVZt+6Q5z9db1s5htajmb45S5SRl9e8EBFLoNqd2erXro3OM0cQYTYzRVH3MjNFUXX+rZd8yRhNjNDFGE2M0tWpcjNHUOvHXijGamo8xmrKFMZpQjhijqf0sXRo9SzpmTPRe6A+WUvMbLRnPtGnRq5rYmlGvpUujeKMbj6PP+X901BJTNevn1jGLxk4wK79utXFWul6W+lzI4yPZ1p2dxftByBiLzasm7lrKqCTWEPWtVugyFy0auY+33jpcP272cZRf7qJFYbZTKN4Q/TSkcufwamKqto7Frn/NOn9m6bydlLW40vTzYsdamut1M7V6/LWqdF/X8ru23tfhQr8Ra/nt3WjVtk+a83y9Ze0cVotq/uYoVU4W2iRLsbS6YokmxmgCAAAAAABAKozRBAAAAAAAgLoi0QQAAAAAAIAgSDQBAAAAAAAgCBJNAAAAAAAACIJEEwAAAAAAAIIg0QQAAAAAAIAgSDQBAAAAAAAgCBJNAAAAAAAACIJEEwAAAAAAAIIg0QQAAAAAAIAgSDQBAAAAAAAgCBJNAAAAAAAACIJEEwAAAAAAAIIg0QQAAAAAAIAgSDQBAAAAAAAgCBJNAAAAAAAACIJEEwAAAAAAAILIVKLJzB4ws7vM7A4zGyww38zsTDO718zuNLPdmhEnAAAAAAAANpWpRFNsP3d/jbv3FJj3Zkk7xa+jJX2noZFlVH+/NG+e1NERvff3N3eb5eJJG2/+8r296bddLt7p0yWz6DV9eumYCsVTbv167KNqyqwljlB1CN0/6i1Lx1e1x86YMdK4cdF7Ncdcbvne3qgcs+i9t7f8OrXWudp6VBpPmrjLnYty39O2dyih+2oj+n6a83vaWFvtXFMupmqP5+T6aa9V1e6PNEqd79Jcm9OUHVpyO9OnR6/8z8W2X6yele7vZvXjeh67IZZtV7X8hq6kP7abevwWqHX71e6Tev991ai/TZpxnUluu9brSqXbqfbv5Lbi7pl5SXpA0qQS878raUHi+92StitV5vz5872dLV3qPnu2+7Jl7uvWRe+zZ0fTm7HNcvGkjTd/+b4+987O6L3SbS9aVDreyZPdt9vO/brrotfUqdG0QjEVimfMGPeJE4uvX499VE2ZtcQRqg6h+0e9Zen4KtWPS5XT1xe9L1niPmvW8PdKj7ncdg4+ODr2lixxf+656L2zM4qr1naq5JySph6VxpMm7nLnotz3t789XXuHErqvNqLvpzm/p4118uTo1SrnmnIxVXs8J8sud60LtT9C1HnRonTX5jRlh97Hye1ccEEU89Sp7sccM/z5ggsKb7/Yftlii2h6uf3drH5cz2O31vN6O6vlN3Sybxbrj+2mHr8Fat1+8tqUZp/U+++rRv1t0ozrTHLbtV5XKt1OtX8ntypJg14od1NoYrNekv4i6beSVkg6usD8KyXtnfh+g6SeUmW2e6Jp7tyokyYtWxZNb8Y2y8WTNt785efOjX5wJZcvt+3u7tLxzpo1cv6yZdG0QjEVimfq1Gj5YuvXYx9VU2YtcYSqQ+j+UW9ZOr5K9eNS5STLS36v9JjLrWcWHXtJS5ZEcdXaTpWcU9LUo9J40sRd7lyU+57cT5W0dyih+2oj+n6a83vaWGfNGnlezi8ra+ca9/DHQX7Z5a51ofZHGqXOd2muzWnKDr2Pk9vJfU6es5PbzN9+sf3S1TVc11L7u1n9uJ7Hbq3n9XZWy2/oZN8s1h/bTT1+C9S6/eS1Kc0+qfffV+WWr0QlZTbjOpPcVq3XlUq3U+3fya2qWKLJonnZYGY7uPujZjZF0vWSet39V4n5V0r6mrsPxN9vkHScuw/mlXO0okfrNGPGjPkPPvhgw+rQaB0d0tq1UlfX8LShoeg26w0bGr9NqXQ8aePNX76jQ3r2WWmLLYaXL7ftsWOldeuKx5u/3tCQ1N0d3VKZH1OheCTJXXrxxcLr12MfVVNmLXGEqkO5cprRn2uJt5HbLNWPSx0748YNl5dbPje9kmMuuf3nnpPGjx+evmaNNGFC9EhHLe1UyTklTT0q3W9p9m+5c1Hu+4QJw/upkvYOJXRfbUTfT3N+L7XNQrF2dIw8L+eXlbVzjRT+OMgvO1dGsWtdqP0Ros5jx256Xil1bU5Tduh9nNxO7rM0fM6WhreZv/1i+2Xs2OFHO0rt72b143oeu5WegyvdRjup5Td0sm8W64/tph6/BWrdfvLalGafhP793Ky/TZpxnUnGJ9V2Xal0O9X+ndyqzGyFFxj2KFNjNLn7o/H7akmXS3pt3iKPSpqe+D4tnpZfzvfcvcfdeyZPnlyvcDNhzhxpYGDktIGBaHoztlkunrTx5i8/Z450zjkjly+37e7u0vHOmDFy/sCANHNm4ZgKxTNlSrR8sfXrsY+qKbOWOELVIXT/qLcsHV+l+nGpcpLlJb9Xeszl1jOLjr2kc86J4qq1nSo5p6SpR6XxpIm73Lko9z25nypp71BC99VG9P005/e0sc6YMfK8nF9W1s41UvjjIL/scte6UPsjjVLnuzTX5jRlh97Hye3kPifP2clt5m+/2H7p6hqua6n93ax+XM9jt9bzejur5Td0sm8W64/tph6/BWrdfvLalGaf1Pvvq3LLV6KSMptxnUluq9brSqXbqfbv5LZT6DanZrwkTZC0ReLzzZIOyVvmLZKukWSS9pD0m3Lltvujc1kaQ4YxmhijqdZysvbscpaOL8ZoYoymUhijaWSsjNG0admM0cQYTfWoM2M0NQ5jNKXDGE2M0ZQfH2M01YeyPkaTpB0l/T5+/UFSXzz9E5I+EX82Sd+WdJ+ku1RmfCYfBYkm96hzzp0bJTzmzm1MZy21zXLxpI03f/lFi9Jvu1y806ZFR4MUfS6XsMmPp9z69dhH1ZRZSxyh6hC6f9Rblo6vao8ds2i8ELPqjrnc8osWReVI0fuiReXXqbXO1daj0njSxF3uXJT7nra9QwndVxvR99Oc39PG2mrnmnIxVXs8J9dPe62qdn+kUep8l+banKbs0JLbmTYteuV/Lrb9YvWsdH83qx/X89gNsWy7quU3dCX9sd3U47dArduvdp/U+++rRv1t0ozrTHLbtV5XKt1OtX8nt6JiiaZMjdFUDz09PT44OFh+QQAAAAAAAFSkJcZoAgAAAAAAQOsi0QQAAAAAAIAgSDQBAAAAAAAgCBJNAAAAAAAACIJEEwAAAAAAAIIg0QQAAAAAAIAgSDQBAAAAAAAgCBJNAAAAAAAACIJEEwAAAAAAAIIg0QQAAAAAAIAgSDQBAAAAAAAgCBJNAAAAAAAACIJEEwAAAAAAAIIg0QQAAAAAAIAgSDQBAAAAAAAgCBJNAAAAAAAACIJEEwAAAAAAAIIg0QQAAAAAAIAgSDRlXH+/NG+e1NERvff3t8b2kuVMnx69ypVZ7bZribkR7dvofZhGJbHVGn9ufTNpzJjofdw4qbe3MfEnl50+Pdq+WfQ5xL7IxTBmTFSvMWMqa6dq10sTU7JdirVVM/pnyH2Rtg8kl+3tTb8PGnHMpJV/vt1mm+G27eoqX69CfTHtebvSNmzGeb7RQp0z01wzK91fUtTvx40bPicX22fl4mjWtbfYcVxNnK3Sr0LHmfU2qVd8IeqWtv9VWlaxY7jQ9tJcP9PWOc3vh2qk3bf1+u1WbpuVnFtDnSOT5+T838eh90ep3wuNaNtqYqz02hYyvlLHeTUx5ffjSn6btQV3b+vX/PnzvVUtXeo+e7b7smXu69ZF77NnR9OzvL1kORdc4L7ddu5Tp0afi5VZ7bZribkR7dvofRg6tlrjz63/9re7d3a6H3OM+8yZ7u97X/R90aL6xp9cdvLkqC9ed130mjo1mlbLvsjF0NcXvS9Z4j5r1vD3YmVXu16amJLtMnly9Mpvq0WLGt8/Q+6LtH0guWxfX9QH3/72yvdBI46ZtPLPtxMnund0uB9+eNSuW23lPmlS8XoV6ouTJkXlVHrerrQfN+M832ihzpnl1q/mOuseHfOdndE5eNas6Jzc0TF8HOTWKRdHs669xY7jvr70cbZKvwodZ9bbpF7xhahb2v5XaVnFjuH8a3Rfn/uYMdH5uZLrZ9o6p/n9UE2fSLtvJ09232KL8L/dKq1vqXNrqHNk7py8ZIn7c89F77nfx6H3R7HfC8cf35i2TXu9T3NtCxlfqeO8mpiSv3u/+MXKfpu1GkmDXiAP0/REUL1frZxomjs36sBJy5ZF07O8vWQ5uc/JcgqVWe22a4m5Ee3b6H2YRiWx1Rp/bv3u7ujimVx/yZJoej3jTy47a9bI5Zcti6bVsi9yMSRjSX4vVna166WJKWnWrOiVlNsvje6fIfdF2j6QXDbZByvdB404ZtLKP9/OmjWyXsm2LXXuTZaT6y+Vnrcr7cfNOM83WqhzZrn1q7nOug+fi5PrJ/tLbp1ycTTr2lvsOE6uW2mcrdKvQseZ9TapV3wh6pa2/1VaVrFjOP8aPXdu9Edq8npe6vqZts5pfj9U0yfS7ttZs9y7usL/disVT7K+pc6toc6Ryd/HOblzcuj9Uez3QrJu9WzbtNf7NNe2kPGVOs6riSn5uze5fqnfZq2mWKLJonntq6enxwcHB5sdRlU6OqS1a6Pb63KGhqLbKjdsyO72kuXkPkvD5RQqs9pt1xJzI9q30fswjUpiqzX+3Ppjx0rPPSeNHz+8/rPPShMmSNWegtLE1tERvSeXHxqSurujW1ir3Re5GMaNGy47F0NueqGyq10vTUzJdunoiNr5xReHpw0NRftl3brG9s+Q+yJtH0gu29Ex3AdzbVBuHzTimEkr/3wrjayXNNy2hepVqC/m+ssLL1R23q60HzfjPN9ooc6Z5dav5jorRf3gueekLbYYXn/NmuH+klunXBzNuvYWO4632GJ43UrjlFqjX4Xu/1lvk3rFF6Id0/a/SssqdgznX6Nz5/jk9bzU9TNtndP8fqimT6Tdtx0d0XaTbRDit1upeJL1LXVuLRRvNefI3Dl5/Pjhablz8pgxYfdHsd8Luf5b77ZNe71Pc20LGZ9U/DjPzUsTU/J3b+73kVT6t1mrMbMV7t6TP50xmjJszhxpYGDktIGBaHqWt5csJ/c5WU6hMqvddi0xN6J9G70P06gktlrjz63f3S2dc87I9c85J5pez/iTy86YMXL5gQFp5sza9kUuhmQsye/Fyq52vTQxJc2YEdU1KbdfGt0/Q+6LtH0guWyyD1a6DxpxzKSVf76dMWNkvZJtW+rcmywn118qPW9X2o+bcZ5vtFDnzHLrV3OdlYbPxcn1k/0lt065OJp17S12HCfXrTTOVulXoePMepvUK74QdUvb/yotq9gxnH+NnjNHmjJl5PW81PUzbZ3T/H6opk+k3bczZkR/7If+7VYqnmR9S51bQ50jk7+Pc3Ln5ND7o9jvhWTd6tm2aa/3aa5tIeMrdZxXE1Pyd29y/VK/zdpGoduc2unVyo/OMUYTYzTVE2M0MUYTYzQxRhNjNIXFGE31bSPGaKo9zqy3CWM0Fb9GM0YTYzQxRhNjNGWRGKOpNS1dGj23OWZM9F7vjhhqe8lypk2LXuXKrHbbtcTciPZt9D5Mo5LYao0/t77kbha9d3fXlmSqJralS6N+GN10HH0OdbGaOzeqW3d39F5JO1W7XpqYku1SrK2a0T9D7ou0fSC57KJF6fdBI46ZtPLPt1tvPdy2nZ3l61WoL6Y9b1fahs04zzdaqHNmmmtmpfvLPer33d3D5+Ri+6xcHM269hY7jquJs1X6Veg4s94m9YovRN3S9r9Kyyp2DBfaXprrZ9o6p/n9UI20+7Zev93KbbOSc2uoc2TynJz/+zj0/ij1e6ERbVtNjJVe20LGV+o4ryam/H5cyW+zVlIs0WTRvPbVymM0AQAAAAAAZBFjNAEAAAAAAKCuSDQBAAAAAAAgCBJNAAAAAAAACIJEEwAAAAAAAIIg0QQAAAAAAIAgSDQBAAAAAAAgCBJNAAAAAAAACIJEEwAAAAAAAIIg0QQAAAAAAIAgSDQBAAAAAAAgCBJNAAAAAAAACIJEEwAAAAAAAIIg0QQAAAAAAIAgSDQBAAAAAAAgCBJNAAAAAAAACIJEEwAAAAAAAIIg0QQAAAAAAIAgSDQBAAAAAAAgCBJNLaa/X5o3T+roiN77+2tbLn/5MWOkceOi90rWSxPv9OnRq1RMaZcPFVt++eXaL237ltt2b2999mvaOEK2caGyK9leb2/UB82i997ecDGFVq/jppoY0uzDeu73SjUyhizUt9KYQsSapfo28hhp1fNLf390rTOLXtOnZ6OPtqIs9f1mqUcb1Ou3Z8htI4x6/KZgHzZWu7Z3M+vVrm1ad+7e1q/58+d7u1i61H32bPdly9zXrYveZ8+OplezXP7yfX3R+5Il7rNmDX8vtl6aeC+4wH277dynTo0+F4op7fK1KNVG5dovbfuW23Zfn3tnZ/Qecr/W0ga1KlT25MnRq9T2Fi2K2mLJEvfnnoveOzuj6VlTr+OmmhjS7MN67vd6xt0K26o1pkWLao81S/Vt5DFSSb2zeH5ZujQ6L263nft110WvqVOjac3so60oS32/WerRBvX67dms+qC4evymYB82Vru2dzPr1a5tGpKkQS+Qh2l6Iqjer3ZKNM2dG3XupGXLounVLJe/fHK95Pdi66WJN/c5WV5+2WmXr0WpNirXfmnbt9y2586N/uBJrh9iv6aNo9byypU9a1b0KrW97u6oLZKWLImmZ029jptqYkgqt+167vdKNTKGLNQ3X7GYurtrjzVL9W3kMVJJvbN4fpk7NzovJmNftiya1sw+2oqy1PebpR5tUK/fniG3jTDq8ZuCfdhY7drezaxXu7ZpSMUSTRbNa189PT0+ODjY7DCC6OiQ1q6VurqGpw0NRbf/b9iQfrn85ceNG14vt3xueqH10sSb+ywNl5cfU9rla1GqjaTS7Ze2fcttu6NDevZZaYsthtcPsV/TxlFreeXK7uiQ3KUXXyy+PTPpueek8eOHl1mzRpowIVo3S+p13FQTQ5p9WM/9XqlGxpCF+lYa09ix0rp1tcWapfo28hippN5ZPL90dETvydiHhqTu7ijeZvXRVpSlvt8s9WiDev32DLlthFGP3xTsw8Zq1/ZuZr3atU1DMrMV7t6TP50xmlrInDnSwMDIaQMD0fRqlstfPrle8nux9dLEm/ucLC+/7LTL16JUG5Vrv7TtW27bc+ZI55wzcv0Q+zVtHLWWV67sGTOkmTNLb6+7O2qLpHPOiaZnTb2Om2piSCq37Xru90o1MoYs1DdfsZi6u2uPNUv1beQxUkm9s3h+mTMnOjcmYx8YiM6VzeyjrShLfb9Z6tEG9frtGXLbCKMevynYh43Vru3dzHq1a5s2RKHbnNrp1U6PzjFGE2M0MUZTdjBGU2PjboVt1RoTYzTVvq1WO78wRlM4Wer7zcIYTagFYzS1vnZtb8ZoyjYxRlN7WLo0eiZ0zJjovVTyqJLl8pc3i8arMKtsvTTxTpsWvUrFlHb5ULHll1+u/dK2b7ltL1pUn/2aNo7Qf/jll13J9hYtivqgFL1nMcmUU6/jppoY0uzDeu73SjUyhizUt9KYQsSapfo28hhp1fPL0qXRtS56gC/6nIU+2oqy1PebpR5tUK/fniG3jTDq8ZuCfdhY7drezaxXu7ZpKMUSTYzRBAAAAAAAgFQYowkAAAAAAAB1RaIJAAAAAAAAQZBoAgAAAAAAQBAkmgAAAAAAABBEJhJNZjbdzJab2R/N7A9m9pkCy+xrZv80szvi14nNiBUAAAAAAACFdTY7gNh6SZ9399+a2RaSVpjZ9e7+x7zlfu3uhzUhPgAAAAAAAJSRiTua3P0xd/9t/PlZSask7dDcqAAAAAAAAJBGJhJNSWY2S9Kukm4rMHtPM/u9mV1jZnMbGxkAAAAAAABKycqjc5IkM9tc0o8lHevuz+TN/q2kme7+LzM7VNJPJe1UpJyjJR0tSTNmzKhfwAAAAAAAANgoM3c0mVmXoiTThe7+k/z57v6Mu/8r/ny1pC4zm1SoLHf/nrv3uHvP5MmT6xo3AAAAAAAAIplINJmZSTpX0ip3P63IMlPj5WRmr1UU+5ONixIAAAAAAAClZOXRuddL+oCku8zsjnjalyTNkCR3P0fSkZKOMbP1kp6XdJS7exNiBQAAAAAAQAGZSDS5+4AkK7PM2ZLObkxEAAAAAAAASCsTj84BAAAAAACg9ZFoAgAAAAAAQBAkmgAAAAAAABAEiSYAAAAAAAAEQaIJAAAAAAAAQZBoQs36+6V586SOjui9v7/ZEQHtr17HHcdzOrQXMKza44HjKDzatHWwrxqHtgYap7PZAaC19fdLfX3SuedKe+8tDQxICxdG8xYsaG5sQLuq13HH8ZwO7QUMq/Z44DgKjzZtHeyrxqGtgcYyd292DHXV09Pjg4ODzQ6jbc2bJ511lrTffsPTli+XenullSubFxfQzup13HE8p0N7AcOqPR44jsKjTVsH+6pxaGugPsxshbv3bDKdRBNq0dEhrV0rdXUNTxsaksaNkzZsaF5cQDur13HH8ZwO7QUMq/Z44DgKjzZtHeyrxqGtgfoolmhijCbUZM6c6NbTpIGBaDqA+qjXccfxnA7tBQyr9njgOAqPNm0d7KvGoa2BxiLRhJr09UXPNy9fHv2rwPLl0fe+vmZHBrSveh13HM/p0F7AsGqPB46j8GjT1sG+ahzaGmgsBgNHTXKD5/X2SqtWRf8qcMopDKoH1FO9jjuO53RoL2BYtccDx1F4tGnrYF81Dm0NNBZjNAEAAAAAACAVxmgCAAAAAABAXZFoAgAAAAAAQBAkmgAAAAAAABAEiSYAAAAAAAAEQaIJAAAAAAAAQZBoAgAAAAAAQBAkmgAAAAAAABAEiSYAAAAAAAAEQaIJAAAAAAAAQZBoAgAAAAAAQBAkmgAAAAAAABAEiSYAAAAAAAAEQaIJAAAAAAAAQZBoAgAAAAAAQBAkmgAAAAAAABAEiSYAAAAAAAAEQaIJAAAAAAAAQZBoAgAAAAAAQBAkmoAM6e+X5s2TOjqi9/7+ZkcEAJviXAUAAIBiOpsdAIBIf7/U1yede660997SwIC0cGE0b8GC5sYGADmcqwAAAFCKuXuzY6irnp4eHxwcbHYYQFnz5klnnSXtt9/wtOXLpd5eaeXK5sUFAEmcqwAAACBJZrbC3Xs2mU6iCciGjg5p7Vqpq2t42tCQNG6ctGFD8+ICgCTOVQAAAJCKJ5oYownIiDlzokdQkgYGoukAkBWcqwAAAFAKiSYgI/r6onFOli+P7g5Yvjz63tfX7MgAYBjnKgAAAJTCYOBARuQG0e3tlVatiu4OOOUUBtcFkC2cqwAAAFAKYzQBAAAAAAAgFcZoAgAAAAAAQF2RaAIAAAAAAEAQJJoAAAAAAAAQBIkmAAAAAAAABEGiCQAAAAAAAEGQaAIAAAAAAEAQJJoAAAAAAAAQBIkmAAAAAAAABEGiCQAAAAAAAEGQaAIAAAAAAEAQJJoAAAAAAAAQBIkmAAAAAAAABEGiCQAAAAAAAEGQaAIAAAAAAEAQJJoAAAAAAAAQBIkmAAAAAAAABEGiCQAAAAAAAEGQaAIAAAAAAEAQJJoAAAAAAAAQBIkmAAAAAAAABGHu3uwY6srMnpD0YLPjGEUmSfp7s4MAKkBfRSugn6JV0FfRKuiraAX0U7SKme4+OX9i2yea0FhmNujuPc2OAyiHvopWQD9Fq6CvolXQV9EK6KdodTw6BwAAAAAAgCBINAEAAAAAACAIEk0I7XvNDgCoEH0VrYB+ilZBX0WroK+iFdBP0dIYowkAAAAAAABBcEcTAAAAAAAAgiDRNIqZ2XlmttrMVuZN39rMrjeze+L3rYqs/0Uzu9fM7jazN+XN6zCz35nZlUXWfYOZ/dbM1pvZkXnzPhhv+x4z+2Ct9UTra3Jf/ZyZ/dHM7jSzG8xsZmIefRUbNbmffsLM7jKzO8xswMx2rqRcjE7N7KuJ5d5pZm5mPYlp9FWM0OTz6ofM7In4vHqHmX00MY/rPzaqVz81swcS1/bBIuuamZ0Zr3+nme2WmEc/RdOQaBrdzpd0SIHpx0u6wd13knRD/H2E+I+YoyTNjcv4f2bWkVjkM5JWldj2Q5I+JGlpXrlbS1os6XWSXitpcbGTMkaV89W8vvo7ST3u/ipJl0k6NS6Xvop856t5/XSpu+/i7q9R1EdPq7BcjE7nq3l9VWa2RbzcbSnKxeh0vprYVyVd7O6viV8/iMvl+o9856t+/XS/uP/15K8be7OkneLX0ZK+E5dLP0VTkWgaxdz9V5KeKjDrbZJ+GH/+oaS3F1nmInd/wd3/IuleRScxmdk0SW+R9IMS237A3e+U9GLerDdJut7dn3L3f0i6XoVP3BhFmtxXl7v7mvjrrZKmxZ/pqxihyf30mcTXCZJyAzAWLRejVzP7auy/JH1d0tpKysXolYG+WgjXf4xQr35aobdJusAjt0qaaGbbiX6KJiPRhEK2dffH4s9/k7RtgWV2kPRw4vsj8TRJOkPSfygviWRmJ5vZ4WW2XapcIF+j++pCSddUUC6Q1JB+amafMrP7FN3R9OkKygXy1b2vxo91THf3q1KUC+Rr1PX/nfHjSJeZ2fQKygWSau2nLuk6M1thZkfnFrDocflPlFmffoqm6mx2AMg2d3czq/i/JjSzwyStdvcVZrZvXlknBg4P2KjefdXM3i+pR9IbawwVo1g9+6m7f1vSt83svZJOkMR4DKhaPfqqmY1R9Fjnh8JFitGujufVn0vqd/cXzOzjiu5I2T9AyBiF0vbT2N7u/qiZTZF0vZn9yd1/5e7n1CNGICTuaEIhj8e3XCp+X11gmUclTU98nxZPe72kw83sAUkXSdrfzP43xbaLlQsU0pC+amYHSuqTdLi7v1CmXCBfo8+pF2n49nz6KdKod1/dQtI8STfGy+0h6WcWDQhOX0UadT+vuvuTiWv+DyTNL1MukK+Wfip3z72vlnS5Cj9SV2x9+imaikQTCvmZhv8l/IOSriiyzFFm1m1msxUNQPcbd/+iu09z91mKBrZb5u7vT7HtX0g62My2igesOzieBhRS975qZrtK+q6iJFPyBwJ9FZVqRD/dKfH1LZLuKVVuiEqhLdW1r7r7P919krvPipe7VdG5dbBYuXWoI9pDI86r2yW+Hq7hgcO5/qNSVfdTM5sQ/8cJMrMJivrZyiLr/5tF9pD0z/hxPfopmopE0yhmZv2SbpH0CjN7xMwWxrO+JukgM7tH0oHx9xHc/Q+SLpH0R0nXSvqUu28os73kGA27m9kjkt4l6btm9oe43KcUDRJ6e/w6OZ6GUayZfVXSNyRtLulSi/572Z/F5dJXMUKT++kiM/uDmd0h6XOKf9hWUy7aX5P7akH0VRTS5L766fi8+ntF4959KC6X6z9GqFM/3VbSQNz/fiPpKne/Nt5ecoymqyXdr2gQ8e9L+mRcLv0UTWXuaR8VBQAAAAAAADbFHU0AAAAAAAAIgkQTAAAAAAAAgiDRBAAAAAAAgCBINAEAAAAAACAIEk0AAAAAAAAIgkQTAACoKzPzCl77mtkDZvbNZscbQlyfXN2ermD5QTM7v8wy83JtVcF255Up63wzGywXV1bE8ebasy36CAAA7aqz2QEAAIC2t2fi82aSlkn6iqSrEtP/KOkdkp5sYFyN8D5Jf252EG3gvySdI+nyZgcCAABKI9EEAADqyt1vzX02s83jj/clp8d+17ioGuZOd1/Z7CBanbvfJ+k+M3uh2bEAAIDSeHQOAABkQqFH58xsHzP7pZmtMbMnzez7ZrZFYv6H4sepdjOzG+Pl7oi/TzCz/zGzf5rZ/Wa2IK/sG83sMjM7Ot7282Z2lZntkLfcJDP7Ybz9NfF6PTXUc56Z3WRma81slZkdXmS5T5rZw2b2nJn9XNJ2KTYzycwuNbN/xXX/ZJFtHGRmd8bbGDCzuRXE72b2WTNbErfJ383sC/G8D8bbe9rMzjOzcYn1qt5XAACgdZBoAgAAmWRmr5f0f5L+JulIScdKOlTS/xRY/IeS+iW9U5JJukzSuZL+Gq97m6QLzGxa3np7SuqV9DlJCyW9StJP85b5qaQ3SfqCpPco+v203MxeVkWdNpP0C0mbS3qvokcIz5A0I2+5t0n6tqQrJR0h6S5J56XY1Pcl/V7R44g3Svq2mb02b5kZkr4h6RRJCyRNkXSxmVkijvPN7IEC5X8+rsMCSUslfcPMTpX0IUmflvQlRY8NHltg3Wr3FQAAaAE8OgcAALLqa5Judvf35CaY2aOSbjCzeXmPpH3T3X8YL2OKxn+60d374mm/UZTEeKuk7yTWmyJpT3d/KF7uQUkDZnaIu19rZodIer2kfd39l/EyyyQ9IOnfJX08ZZ0+HG/zde7+SFzeA5IG8pbrk3Stux8Tf/+FmU2W9NEKt9Pv7l+Jy79RUb2PkPSbxDJbS3q9u98TLzdG0RhIr5D0p3iZDZLWFyj/Hnf/eLze/0l6l6SPSZrp7s/E0/dVlOj6Wt661e4rAADQArijCQAAZI6ZjVd0t9ElZtaZeylKyAxJmp+3yg2Jz/fG78tyE9z9n5KekDTisThJv80lmeLlbpK0WlLu7p/XSlqdSzLFyzyn6E6jvauo2mslrcglmfK2KUmK67mbpCvy1v1Jiu1clyh/SNI9kvLvEHogl2SK/TF+37icuy9090J3bt2QWOZFSX9RVK9nEsvcq03be8S6SrevAABACyDRBAAAsmgrSR2S/p+ixFLu9YKkLknT85Z/OvF5XYFpuenj8qat1qZWa3g8pO2KLPO4ojuC0ppaYps5kxTVPX+5QusV83Te90J1L7SMCixXafmVbDN/3TT7CgAAtAAenQMAAFn0tCSXdJKkqwvM/2ug7UwpMu2x+PNjRZbZVtJTVWzvb5JeWSaOvyt6ZC1/u4XiAAAAyBTuaAIAAJkTP552q6RXuPtggVeoRNNuZrZxIO54APIpGh7L6DZJU8zsDYllxkt6izYdV6kSt0uanxzoOrFNSZK7r5f0O0lvy1v3iCq2BwAA0FDc0QQAALLqPxQN/P2iov+Z7FlF/1PaWyT1ufufA2zjCUlXmdliRY9qfV3RuE3XSpK7/8LMblb0v7EdL+lJRf/73GaK/se2tP5H0gnxNk+Ky/kvRXcxJf23pJ+Y2XcUDdD9RkmHVLG9mpjZuZLeWGScJgAAgE1wRxMAAMgkdx+Q9AZJkyX9SNLPFSWfHlY0RlIIN0v6tqQzJJ0raaWkt+ct83ZJ18fLXCrJJO3v7vcqJXdfI+lNkp6TdJGkxZI+L+nBvOUul9Sr6H9e+6mkXSUtTLu9ADrEP0wCAIAUzN2bHQMAAEDDmdmNkv7u7kfWoex9JS2X9BpJK919Q+htjCZmNkbRP5DeK+kyd/9Ck0MCAABFcEcTAABA/dyh6HE71OY8Rf/r4MxmBwIAAErjVmgAAIDwVkjaPf68vpmBtImTJJ0df/5bE+MAAABl8OgcAAAAAAAAguDROQAAAAAAAARBogkAAAAAAABBkGgCAAAAAABAECSaAAAAAAAAEASJJgAAAAAAAARBogkAAAAAAABB/H9NoREBPGU21gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 1440x720 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_date(events_3, counts_3, mean_3, std_3, \"Eventos de 10/04/21\")" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean: 5.59\n", + "Standard deviation: 2.38\n", + "Rate: 2333 events per hour\n" + ] + } + ], + "source": [ + "print(f\"Mean: {round(mean_3,2)}\")\n", + "print(f\"Standard deviation: {round(std_3,2)}\")\n", + "print(f\"Rate: {sum(counts_3)} events per hour\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.9" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +}