diff --git a/code/todo_r.py b/code/todo_r.py deleted file mode 100644 index 466435a257f9edc9033b28d6a9b677712fff6274..0000000000000000000000000000000000000000 --- a/code/todo_r.py +++ /dev/null @@ -1,115 +0,0 @@ -# coding=utf-8 -import warnings -def fxn(): - warnings.warn("deprecated", DeprecationWarning) - -with warnings.catch_warnings(): - warnings.simplefilter("ignore") - fxn() - -import sys -input1 = sys.argv[1] -print(input1) -# insert at 1, 0 is the script path (or '' in REPL) -sys.path.insert(1, '../Functions') - -from imports import * -from constants import * -from functions import * - - -path = input1 - -AA = [] -#for p in path: -#print(p) -col = read_col_names(path) -df1 = pd.read_csv(path,skiprows=1,header=None,delimiter=r"\s+",names=col) -# -- quitar errores nulos para evitar problemas con leastsq -df1 = df1[df1["err_v(km/s)"]!=0] -print(len(df1)) - -for labe in ['ra','r','a']: - if labe == 'ra': - gal = df1.copy() - if labe == 'r': - dfr = df1.copy()[df1.copy()['Side'] == 'r'] - gal = dfr - if labe == 'a': - dfa = df1.copy()[df1.copy()['Side'] == 'a'] - gal = dfa - - AA.append((path.split("/")[-1][:-4],determine(gal,labe))) -best_parmeters = return_values(AA) - -grafica_data_ybestfit(path, dfr, best_parmeters, ss="r") - -y_pred_NFW_bestfit = vnfw(best_parmeters["M200_NFW(Msun)"][1], best_parmeters["c_NFW"][1], dfr["r(kpc)"]*1000/r200(best_parmeters["M200_NFW(Msun)"][1]), G = G, H0 = H0) -y_pred_ISO_bestfit = viso((best_parmeters["rho0_ISO(Msun/pc3)"][1]*best_parmeters["Rc_ISO(pc)"][1]**2) , dfr["r(kpc)"]*1000/abs(best_parmeters["Rc_ISO(pc)"][1]), G = G) - - -chi2_NFW_bestfit = (((y_pred_NFW_bestfit-dfr["v(km/s)"])/(dfr["err_v(km/s)"]))**2).sum() -chi2_ISO_bestfit = (((y_pred_ISO_bestfit-dfr["v(km/s)"])/(dfr["err_v(km/s)"]))**2).sum() -print("Mejor $\chi^2$ para \nNFW: {} \nISO: {}".format(chi2_NFW_bestfit,chi2_ISO_bestfit)) - -chi2_NFW_bestfit_red = chi2_NFW_bestfit / (len(dfr)-2) -chi2_ISO_bestfit_red = chi2_ISO_bestfit / (len(dfr)-2) -print("Mejor $\chi^2$ reducido para \nNFW: {} \nISO: {}".format(chi2_NFW_bestfit_red,chi2_ISO_bestfit_red)) - -print("La probabilidad cumulativa de encontrar un $\chi^2$ menor para NFW es: {}".format(scipy.stats.chi2.cdf(chi2_NFW_bestfit,len(dfr)-2))) -print("La probabilidad cumulativa de encontrar un $\chi^2$ menor para ISO es: {}".format(scipy.stats.chi2.cdf(chi2_ISO_bestfit,len(dfr)-2))) - - -combs_NFW_ra = parameters_range(best_parmeters, i = 0, ss = "r") -combs_ISO_ra = parameters_range(best_parmeters, i = 1, ss = "r") - -chis_NFW_ra = chi2_parameters_range(dfr, combs_NFW_ra, i = 0) -chis_ISO_ra = chi2_parameters_range(dfr, combs_ISO_ra, i = 1) - -ch2_inter_NFW_ = chi2_intervals(best_parmeters, dfr, chis_NFW_ra, i = 0, ss = "r") -ch2_inter_ISO_ = chi2_intervals(best_parmeters, dfr, chis_ISO_ra, i = 1, ss = "r") - -para_range_NFW = [] -para_range_ISO = [] - -for kkk in range(1,5): - para_range_NFW.append(parameters_each_interval(combs_NFW_ra, ch2_inter_NFW_, kk = kkk)) - para_range_ISO.append(parameters_each_interval(combs_ISO_ra, ch2_inter_ISO_, kk = kkk)) - - -# -- Ãndice dentro del arreglo de chi^2s que es el nuevo mÃnimo para NFW e ISO -# newi_min_ch2_NFW = [i for i in ch2_inter_NFW_[0] if i[1] == min(list(zip(*ch2_inter_NFW_[0]))[1])][0][0] -# newi_min_ch2_ISO = [i for i in ch2_inter_ISO_[0] if i[1] == min(list(zip(*ch2_inter_ISO_[0]))[1])][0][0] - -# new_para_min_ch2_NFW = combs_NFW_ra[newi_min_ch2_NFW] -# new_para_min_ch2_ISO = combs_ISO_ra[newi_min_ch2_ISO] - -# new_para_min_ch2_b = np.concatenate((new_para_min_ch2_NFW,new_para_min_ch2_ISO)) - -# print("Los nuevos parámetros para NFW son: {} con un $\chi^2 = {}$" -# .format(new_para_min_ch2_NFW, chis_NFW_ra[newi_min_ch2_NFW])) - -# print("Los nuevos parámetros para ISO son: {} con un $\chi^2 = {}$" -# .format(new_para_min_ch2_ISO, chis_ISO_ra[newi_min_ch2_ISO])) - -# print("La probabilidad cumulativa de encontrar un $\chi^2$ menor al nuevo para NFW es: {}".format(scipy.stats.chi2.cdf(chis_NFW_ra[newi_min_ch2_NFW]*(len(df1)-2),len(df1)-2))) -# print("La probabilidad cumulativa de encontrar un $\chi^2$ menor al nuevo para ISO es: {}".format(scipy.stats.chi2.cdf(chis_ISO_ra[newi_min_ch2_ISO]*(len(df1)-2),len(df1)-2))) - - -plot_ellipse_confidence_interval(path,para_range_NFW, best_parmeters, ss = "r", i = 0 ) - -plot_ellipse_confidence_interval(path,para_range_ISO, best_parmeters, ss = "r", i = 1 ) - -#grafica_data_ybestfit(path, df1, best_parmeters, ss="ra") - -file1 = open("results.txt","a") -file1.write("\n{}&{}&{:.2f}&{:.2f}&{:.2f}&{:.2f}&{:.2f}&{:.2f}&".format( -path.split("/")[-1][:-4][5:] -,len(dfr) -,best_parmeters["M200_NFW(Msun)"][1] -,best_parmeters["c_NFW"][1] -,chi2_NFW_bestfit_red -,abs(best_parmeters["rho0_ISO(Msun/pc3)"][1]) -,abs(best_parmeters["Rc_ISO(pc)"][1]) -,chi2_ISO_bestfit_red)) -file1.close()