diff --git a/Fisica Estadistica/Trabajo_CPSs.ipynb b/Fisica Estadistica/Trabajo_CPSs.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..948fc032f23b6967d0fb71f2b52c266a423ca096 --- /dev/null +++ b/Fisica Estadistica/Trabajo_CPSs.ipynb @@ -0,0 +1,91 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "-426" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Link de datos\n", + "sistema5 = \"https://raw.githubusercontent.com/davidalejandromiranda/StatisticalPhysics/main/data/S5_Sistema_5.csv\"\n", + "\n", + "# Descargar datos V en cm^3 y P en Pa\n", + "data = pd.read_csv(sistema5, names=(\"V\",\"P\"), skiprows=1)\n", + "\n", + "# Aproximar la integral\n", + "integral = round(np.trapz(data.P, data.V))\n", + "integral" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHMCAYAAADVgKIjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABlWElEQVR4nO3dd1gUV9sG8Hu2sPTeFUEURaSpWKOxd1GjESwxUUmPJsQYjeZN1MRYY2+JUWOamjeJpmrU145YKGLsFWyAKCK973x/GPZzAZU+u+z9u669kp09O/sc1pHbM2fmCKIoiiAiIiIyADKpCyAiIiKqKww+REREZDAYfIiIiMhgMPgQERGRwWDwISIiIoPB4ENEREQGg8GHiIiIDAaDDxERERkMBh8iIiIyGAw+REREZDAYfIiIiMhgMPgQ1ZBNmzZBEARER0dX+r2RkZGYNWsWHjx4UPOF1YKSviYkJFTp/bNmzYIgCDVa044dOyAIguYhl8vh7u6OiRMnIiMjo0z7Tz75BD4+PlCr1QCACRMmQKlUoqCg4LGfMWDAAJiammL27Nlo0KABsrOza7QPNWn9+vUQBAHm5uZlXtu3bx8mTJgAb29vmJmZoUGDBhgyZAhiYmIeu7+IiAgMGDAANjY2MDExgZeXFz799NMarXnbtm0QBAE//fRTje6X6FEMPkQ6IDIyErNnz9ab4KOLYmNjAQC//PILjh49ir1792LQoEFYvXo13n77ba22iYmJWLhwIT755BPIZA//GvT390dRUREuXrxY7v537dqFnTt34oMPPsCHH34IMzMzLFy4sHY7VUW3b9/GlClT4OrqWu7ra9euRUJCAt555x3s2LEDy5cvR0pKCjp06IB9+/aVab9582Z07doVVlZW+Pbbb7Fjxw5MmzYNNb3Gdcl32KZNmxrdL9GjFFIXQETSy8nJgampqdRlVEtsbCxMTU0xdOhQTZjp1q0b9u/fjz/++EOr7fLly2FtbY1hw4Zptvn7+wMAzpw5Az8/P632RUVFmDx5Mjw8PDB16lQoFAq89tpr+PTTTzFt2jSd+9m9/vrrePbZZ2Fra4uff/65zOurV6+Go6Oj1rZ+/fqhadOmmDt3Lnr06KHZfvv2bbz66qt47bXXsGbNGs327t2713jdMTExsLGxgaenZ43vm6gER3yIaknJ6ZyzZ89i1KhRsLKygpOTEyZMmID09HStdu+//z4AoHHjxppTNQcOHNC0uXz5MkaPHg1HR0eoVCq0aNECq1evLvOZv/32G/z9/aFSqeDp6Ynly5eXOa1U8jw2NhbPP/88bGxs0KRJEwDAlStXMH78eHh5ecHU1BQNGjRAcHAwTp8+XeWfw19//YXAwECoVCo0btwYn3/++WPbVrSf5YmJiYGfn58m9JSwtLTUOiVVUFCADRs2YPTo0VptHw0+pX3xxRc4d+4cFi9eDGNjYwDAmDFjkJGRga1bt1aovrry/fff4+DBg1ohpbTSoQcAzM3N4ePjg5s3b2ptX79+PbKzszFt2rQq19S4cWO89NJLZbb36NEDXbt21TyPjY3laA/VOo74ENWy4cOHIzQ0FGFhYTh9+jSmT58OANi4cSMA4OWXX8b9+/excuVKbNu2DS4uLgAAHx8fAMC5c+fQqVMnNGrUCIsXL4azszN27dqFt99+G/fu3cPMmTMBAH///TeGDRuGZ599Fj/++COKiorw+eef486dO+XWNWzYMIwcORKvv/66JhgkJibCzs4O8+fPh4ODA+7fv49vvvkG7du3x8mTJ9G8efNK9X3v3r0YMmQIOnbsiK1bt6K4uBgLFy4st6aK9rM8qampuHHjBvr166e1/e7duzhz5gzatm2r2Xb8+HGkpqaWGbGwt7eHs7NzmeCTlpaGWbNmoWfPnlojRM7OzvD29sZff/2FCRMmPPHnIIoiiouLn9imhEJR9b+WU1JSEB4ejvnz56Nhw4aVem96ejpiY2O1RnsA4NChQ7C1tcWFCxcwZMgQnDlzBra2thg2bBgWLlwIS0vLJ+43NTUVCQkJmDx5stZ2URQRGxur+dndunULKSkpDD5U+0QiqhFff/21CECMiooSRVEUZ86cKQIQFy5cqNXuzTffFI2NjUW1Wq3ZtmjRIhGAGB8fX2a/ffv2FRs2bCimp6drbZ84caJobGws3r9/XxRFUWzbtq3o5uYm5ufna9pkZmaKdnZ24qOHekldH3/88VP7VFRUJBYUFIheXl7iu+++W6av5dX7qPbt24uurq5ibm6uZltGRoZoa2srlv7rp6L9LM/u3btFAOKKFSvEwsJCMSsrSzx27JjYqVMnUaFQiPv27dO0XbBggQhATE5OLrOfPn36iE2aNNHa9vbbb4sKhUI8c+ZMmfZjxowRnZycnvgzEEVR3L9/vwigQo+n/UyfZPjw4WKnTp00f7Zeeukl0czMrELvHTNmjKhQKMTo6Git7c2bNxeNjY1FCwsLce7cueL+/fvFhQsXiiYmJuIzzzyj9ee4PH///bcIQIyMjNTafvHiRRGA+P3334uiKIq//vqrCED86aefKtpdoirhqS6iWjZ48GCt5/7+/sjLy0NKSspT35uXl4e9e/fiueeeg6mpKYqKijSPAQMGIC8vD8eOHUN2djaio6MxdOhQGBkZad5vbm6O4ODgcvc9fPjwMtuKioowd+5c+Pj4wMjICAqFAkZGRrh8+TLOnz9fqX5nZ2cjKioKw4YN05weAgALC4syNVW0n49TcjXS22+/DaVSCXNzc3To0AEFBQXYtWuX1uhOYmIiBEGAvb19mf34+fkhPj4eOTk5AICLFy9i7dq1eOutt9CyZcsy7R0dHZGSkoKioqIn/izatGmDqKioCj0eNyG5xKM/m6KiIs0E419++QV//PEHvvrqq0pfMffRRx/hhx9+wNKlS8uMuKjVauTl5WHGjBmYPn06unXrhvfffx/z5s3DkSNHsHfv3ifuOyoqCgqFAoGBgVrbS76zks8r/ZyotvBUF1Ets7Oz03quUqkAALm5uU99b2pqKoqKirBy5UqsXLmy3Db37t1DWloaRFGEk5NTmdfL2wZAc0rtUZMnT8bq1asxbdo0dO3aFTY2NpDJZHj55ZcrVO+j0tLSoFar4ezsXOa10tsq2s/HiY2NhbGxMQ4dOgRBEGBkZIQGDRqU+dkDD3/uSqUScrm8zGv+/v5Qq9U4d+4cgoKCMHnyZFhbW2PWrFnlfq6xsTFEUUReXl65l42XMDc3L/OL/3GedKorISEBjRs31tq2f/9+BAUF4a233sKkSZPg6uqquTqw5NL8Bw8eQKlUwszMrMw+Z8+ejTlz5uCzzz7DxIkTy7xuZ2eHy5cvo2/fvlrb+/fvj/DwcMTGxqJXr16PrTk6Oho+Pj4wMTEps93c3BzNmjUD8PA7tLW1LdM/oprG4EOkw2xsbCCXyzF27Fi89dZb5bZp3LgxjI2NIQhCuXNnkpOTy31feaMC33//PV588UXMnTtXa/u9e/dgbW1d6doFQSj380tvq2g/Hyc2Nhb+/v5ac3kex97eHgUFBcjOzi4TBB6d4JyamoodO3bgq6++emzf79+/D5VK9cTQAwAHDx6s8FVQ8fHx8PDwKPc1V1dXREVFaW1r3rw57t27hzt37mDx4sVYvHhxmffZ2NhgyJAh+PXXX7W2z549G7NmzcKsWbMwY8aMcj/T39+/3NG2kpGm0pPJS4uOjkbv3r3LbD9w4ABatWqleX9MTAxHe6hOMPgQ6YDHjQKZmpqie/fuOHnyJPz9/bVOY5UWFBSEX3/9FZ9//rmmXVZWFv78888K1yEIgqaWEn/99Rdu376Npk2bVng/AGBmZoZ27dph27ZtWLRokeZ0V2ZmZpnLyyvTz9LS09Nx7do19OnTp0Ltvb29AQBXr17VBJ0SLVq0gEKhQFxcHBYtWoQ2bdo8ceLytWvXNJPQn6TkVFdFPOlUl5GREYKCgspsVyqV2L9/f5nt8+fPx8GDB7Fz584yp/Y+/fRTzJo1C//5z3+eOHF8+PDhWLduHXbu3IlWrVpptu/YsQMA0KFDh8e+Nzk5Gbdv3y4zinXw4EHExsYiPDwcwMPTj8nJyRg/fvxj90VUUxh8iHRAyX1jli9fjpdeeglKpRLNmzeHhYUFli9fjs6dO6NLly5444034OHhgczMTFy5cgV//PGH5oZzn3zyCQYOHIi+ffvinXfeQXFxMRYtWgRzc3Pcv3+/QnUMGjQImzZtgre3N/z9/RETE4NFixZV+gqhEp9++in69euH3r1747333kNxcTEWLFgAMzOzMjVVtJ+lxcbGQhTFCo8WdOvWDQBw7NixMsFHpVKhWbNmWLduHfLy8nDkyJHHjmio1WqcOHECYWFhT/1MCwuLcgNLTTE2Ntb061GbNm2CXC4v89rixYvx8ccfo1+/fhg4cGCZEZ1Hw0yfPn0QHByMTz75BGq1Gh06dEB0dDRmz56NQYMGoXPnzo+tqyTs/fTTT/Dx8UHTpk0RFxenuUVBSkoKzpw5o7kDOEd8qE5IOrWaqB553FVdd+/eLbdd6at3pk+fLrq6uooymUwEIO7fv1/zWnx8vDhhwgSxQYMGolKpFB0cHMROnTqJc+bM0drH9u3bRT8/P9HIyEhs1KiROH/+fPHtt98WbWxsNG0eV5coimJaWpoYFhYmOjo6iqampmLnzp3Fw4cPi127dhW7du361D6U5/fffxf9/f21aiqpobSK9vNRn3/+uQhAjI2NfWotJbp06SIOGDCg3NdGjhwpAhDHjh37xH3s3btXBCDGxMRU+HPr2uOu6uratesTrywrLScnR5w2bZro5uYmKhQKsVGjRuL06dPFvLy8J37+xx9/LCoUCvGnn34SPTw8RGNjY7Fbt27i8ePHxaZNm4ouLi5iZGSk+P777z/2SjuimiaIYg3fc5yIdEZhYSECAwPRoEED7N69W+pydMYvv/yC0NBQXL9+HQ0aNKjSPsaOHYtr167hyJEjNVxd/TFgwAAkJydrlqIoT35+Pry9vdGoUSMcPHiwDqsjQ8VTXUT1SFhYGHr37g0XFxckJyfjiy++wPnz57F8+XKpS9Mpw4YNQ9u2bTFv3jysWrWq0u+/evUqfvzxx8eefqOHYmJi8Nxzz5X72u3bt3Hq1CmsXr0at2/fxubNm+u4OjJUDD5E9UhmZiamTJmCu3fvQqlUonXr1tixY8cTLzc2RIIg4KuvvsLvv/8OtVr91CuTSrtx4wZWrVr1xPkthu7GjRtISUlBu3btyn39ww8/xF9//YXWrVvjyJEjFboij6gm8FQXERERGQzeuZmIiIgMBoMPERERGQwGHyIiIjIYnNxcilqtRmJiIiwsLCq90B8RERFJQxRFZGZmwtXV9YkXLDD4lJKYmAg3NzepyyAiIqIquHnz5hPvNs/gU4qFhQWAhz84S0tLiashIiKiisjIyICbm5vm9/jjMPiUUnJ6y9LSksGHiIhIzzxtmgonNxMREZHBYPAhIiIig8FTXURERBIpLi5GYWGh1GXoBaVSCblcXu39MPgQERHVMVEUkZycjAcPHkhdil6xtraGs7NztW43w+BDRERUx0pCj6OjI0xNTXnfuKcQRRE5OTlISUkBALi4uFR5Xww+REREdai4uFgTeuzs7KQuR2+YmJgAAFJSUuDo6Fjl016c3ExERFSHSub0mJqaSlyJ/in5mVVnXhSDDxERkQR4eqvyauJnxuBDREREBoPBh4iIiAwGgw8RERHVmI8++givvvpqpd5z+vRpNGzYENnZ2bVU1f9j8KlDRcVqqUsgIiKqsnHjxkEQBAiCAKVSCU9PT0yZMkUTWO7cuYPly5djxowZAIDg4GD06tWr3H0dPXoUgiAgNjYWfn5+aNeuHZYuXVrrfWDwqSMRl++h99JDOH4tVepSiIiIqqxfv35ISkrCtWvXMGfOHKxZswZTpkwBAGzYsAEdO3aEh4cHACAsLAz79u3D9evXy+xn48aNCAwMROvWrQEA48ePx9q1a1FcXFyr9TP41JHley8h/l42Qtcdw39+PY3MPN6inIiIHhJFETkFRXX+EEWx0rWqVCo4OzvDzc0No0ePxpgxY/Drr78CALZu3YrBgwdr2g4aNAiOjo7YtGmT1j5ycnLw448/IiwsTLOtb9++SE1NxcGDB6v0M6wo3sCwjmwY1xYf/XoGv8Ul4vtjN7DvfAo+e84P3b0dpS6NiIgklltYDJ+Pd9X55577pC9MjaoXBUxMTFBYWIi0tDScOXMGQUFBmtcUCgVefPFFbNq0CR9//LHmcvSffvoJBQUFGDNmjKatkZERAgICcPjwYfTo0aNaNT0JR3zqiKWxEh/098acob5wtjRGYnoexm+Kwrs/xuF+doHU5REREVXaiRMnsHnzZvTs2RPXr1+HKIpwdXXVajNhwgQkJCTgwIEDmm0bN27EsGHDYGNjo9W2QYMGSEhIqNWaOeJTxwIaWmPlqFb44fh1/H4qEdtP3sahS3cxe0hLDPRz4Q2tiIgMkIlSjnOf9JXkcyvrzz//hLm5OYqKilBYWIghQ4Zg5cqVuHr1KgDA2NhYq723tzc6deqEjRs3onv37rh69SoOHz6M3bt3l63HxAQ5OTlV60wFMfhIwFgpR1hnT3Ru6oAV+y7jxv0cTNx8Er/7JOLTob5wsjR++k6IiKjeEASh2qec6kr37t2xdu1aKJVKuLq6QqlUAgDS09MBAGlpaXBwcNB6T1hYGCZOnIjVq1fj66+/hru7O3r27Flm3/fv30eTJk1qtX6e6pJQc2cLLAsNxKi2bpDLBOw+dwe9lhzEj1E3qjThjIiIqLaZmZmhadOmcHd314QeAGjSpAksLS1x7ty5Mu8JCQmBXC7H5s2b8c0332D8+PHlnuE4c+YMWrVqVav162TwmTdvHgRBQHh4uGabKIqYNWsWXF1dYWJigm7duuHs2bNa78vPz8ekSZNgb28PMzMzDB48GLdu3arj6itHKZdhdHt3LAsJRFNHc2TmFWHaL6fxwobjuHm/dof7iIiIaopMJkOvXr0QERFR5jVzc3OEhoZixowZSExMxLhx48q0SUhIwO3btx97358aq7NW914FUVFRWLduHfz9/bW2L1y4EEuWLMGqVasQFRUFZ2dn9O7dG5mZmZo24eHh2L59O7Zu3YqIiAhkZWVh0KBBtX5PgJrgYW+Gz58PwPhOHjCSy3DkSir6LD2EjRHxKFZz9IeIiHTfq6++iq1bt0KtLnvD3rCwMKSlpaFXr15o1KhRmde3bNmCPn36wN3dvVZrFEQdOqeSlZWF1q1bY82aNZgzZw4CAwOxbNkyzSzx8PBwTJs2DcDD0R0nJycsWLAAr732GtLT0+Hg4IDvvvsOoaGhAIDExES4ublhx44d6Nu3YpPGMjIyYGVlhfT0dFhaWtZo/5LSc3Ev8+lXcCU+yMXKfZdxJjEDANC6kTUWDPeHl5NFjdZDRER1Ly8vD/Hx8WjcuHGZicD6ThRFdOjQAeHh4Rg1alSF35efnw8vLy9s2bIFzzzzzGPbPelnV9Hf3zo14vPWW29h4MCBZYa54uPjkZycjD59+mi2qVQqdO3aFZGRkQCAmJgYFBYWarVxdXWFr6+vpk158vPzkZGRofWQmqu1CT57zg9vdmsCE6UcsTceYOCKCKzcexmFXPaCiIh0lCAIWLduHYqKiir1vuvXr+PDDz98YuipKTozhXzr1q2IjY1FVFRUmdeSk5MBAE5OTlrbnZycNLfBTk5OhpGRUZl7Ajg5OWneX5558+Zh9uzZ1S2/xskEAf19XdDWwxar919B9PU0LN5zCX+dTsKi5wPg19BK6hKJiIjKCAgIQEBAQKXe06xZMzRr1qyWKtKmEyM+N2/exDvvvIPvv//+icN+pWeAi6L41PvePK3N9OnTkZ6ernncvHmzcsXXMntzFT4e5IP3ejeDhbECF5IzMXTNEczfeQF5hbo/d4mIiEiX6ETwiYmJQUpKCtq0aQOFQgGFQoGDBw9ixYoVUCgUmpGe0iM3KSkpmtecnZ1RUFCAtLS0x7Ypj0qlgqWlpdZD1wiCgG7NHbFmdGs862WPYrWILw5excAVh3HyRtrTd0BEREQAdCT49OzZE6dPn0ZcXJzmERQUhDFjxiAuLg6enp5wdnbGnj17NO8pKCjAwYMH0alTJwBAmzZtoFQqtdokJSXhzJkzmjb6ztrUCO/39caHA1rAxlSJq3ezMXxtJObtPM/RHyIiPaND1xbpjZr4menEHB8LCwv4+vpqbTMzM4OdnZ1me3h4OObOnQsvLy94eXlh7ty5MDU1xejRowEAVlZWCAsLw3vvvQc7OzvY2tpiypQp8PPzq/V7AtS1Dp52aOlqiXWHr+HAxbv48uA1/O/cHSwaEYDWjWyevgMiIpJMyU3/cnJyYGJiInE1+qVkOYtHb5xYWToRfCpi6tSpyM3NxZtvvom0tDS0b98eu3fvhoXF/1/ivXTpUigUCoSEhCA3Nxc9e/bEpk2bIJdXfi0SXWdhrMR7vZujc1N7rN5/BVfvZuP5tZF4pYsn3u3dDMZVWH+FiIhqn1wuh7W1NVJSUgAApqamXKfxKURRRE5ODlJSUmBtbV2t3+s6dR8fXaAL9/GprMy8Qs3oDwA0cTDj6A8RkQ4TRRHJycl48OCB1KXoFWtrazg7O5cbFCv6+5vBpxR9DD4ljsenYvX+K0jLKYRMAF7u4onJHP0hItJZxcXFKCwslLoMvaBUKp840sPgU0X6HHyAh6M/Xx2+hv3/jv54Ophh0fMBaOPO0R8iIqq/9PLOzVR9FsZKTO7dHB8NbAFbUyNcu5uNEV9EYu4OXvlFRETE4FNPtWtsh9WjW6NHc0eoRWDdoWsYsOIwYq7zvj9ERGS4GHzqMXNjBd7t3QwfDfTRjP48/0UkPvvrHEd/iIjIIDH4GIB2jW01oz+iCHx1OB4Dlh9GzPX7UpdGRERUpxh8DITW6I+ZEa7dy8bzXxzFnD85+kNERIaDwcfAtGtsi9WjWqOH98PRn/URD0d/ohM4+kNERPUfg48BMjdW4N1ezfDxoP8f/Rnx5cPRn9wCjv4QEVH9xeBjwNp6PBz96fno6M8Kjv4QEVH9xeBj4MyNFQjv1Qwz/x39if939OdTjv4QEVE9xOBDAIAgj4dXfvVq8XD0Z8O/oz9RHP0hIqJ6hMGHNMxVCrzT8+Hoj92/oz8hXx7FJ39w9IeIiOoHBh8qI8jDFqtGt0bvFk4QRWDjkXj0X36Ioz9ERKT3GHyoXOYqBd7u6YWZwQ9HfxJScxDy5VHM/uMsR3+IiEhvMfjQEwW5P5z7UzL68/WRBAxccRixN7jmFxER6R8GH3oqs39Hf2YFt4RdyV2f10Zi0a4LKChSS10eERFRhTH4UIW1cbfBqlGt0a25A9QisHr/VQxZfQTnkzKkLo2IiKhCGHyoUsyNFXivd3N80M8blsYKnE/KwOBVEVhz4AqK1aLU5RERET0Rgw9VyTNN7bFqdGu0b2yLwmIRC/++iBFfRCL+XrbUpRERET0Wgw9VmY2pET4c0ALv9PSCqZEcsTceYMDyw/juaAJEkaM/RESkexh8qFoEQUCvFk5YOaoV/BtaIbewGB/9dhYvbjyBpPRcqcsjIiLSwuBDNcLRwhifDvHFq108oVLIcPjyPfRZegjbYm9x9IeIiHQGgw/VGJkgIDjAFctDW6G5kwUy84ow+b+n8Pr3MUjNype6PCIiIgYfqnkNbEywYLg/xnZwh0ImYNfZO+iz9BB2nU2WujQiIjJwDD5UK+QyASFBblg8IgDutqZIzS7Aa9/F4L3/nkJGXqHU5RERkYFi8KFa5elgjqWhgRjeuiFkAvBL7C30W3oIR67ck7o0IiIyQAw+VOuUchnGdfLA/GH+cLEyRmJ6HsasP46Zv53hgqdERFSnGHyozrRwscSKka0wwM8FAPDN0esYwAVPiYioDjH4UJ0yVsrxRtcmmD344YKn8f8ueLrwby54SkREtY/BhyTRupH2gqdrDnDBUyIiqn0MPiSZkgVPp/cvu+BpUTFHf4iIqOYx+JDkOjUpu+BpyJdHueApERHVOAYf0gklC56Gl1rw9NujCVCrueQFERHVDAYf0hmCIKDnvwueBvy74OnH/y54mviAC54SEVH1MfiQznG0MMYnjyx4GnHlHvou44KnRERUfQw+pJOetODpPS54SkREVcTgQzqtvAVP+y07hH0X7khdGhER6SEGH9J5JQueLgl5uODpvawCTNgUjf/8eppLXhARUaUw+JDeaGxvjiUhgRgS4AoA+P7YDQxceRj/3HogbWFERKQ3GHxIrxgpZHi5iyc+HeILWzMjXLubjWFrIrF6/xUU87J3IiJ6CgYf0kuBbtZYNaoVnmlihyK1iEW7LiL0y6O4eT9H6tKIiEiHMfiQ3rIwVmJaP2+828sLJko5oq+nof/yw/g5hpe9ExFR+Rh8SK8JgoAe3g9veujjYoms/CJM+ekU3toci7TsAqnLIyIiHcPgQ/WCk6Ux5j7nhxc7uEMuE7DjdDL6LT+Ew5fvSl0aERHpEAYfqjfkMgEjgtzw+fMBaGBtgjsZ+Ri74QQ++eMc8gp52TsRETH4UD3U1NEcy0IDMcDPBQCw8Ug8Bq+KwLnEDIkrIyIiqTH4UL1krJTjja5NMHOQD6xNlLh0JwtDVx/BukNXudo7EZEBY/Chei3IwxarRrdG+8a2KChWY+6OCxiz/jhXeyciMlAMPlTvWZko8eGAFpjYvSlUChmOXktF32WH8PupRKlLIyKiOsbgQwZBEAT0bemMFSP/f7X3t7ecRPjWk0jPLZS6PCIiqiMMPmRQXK0frvY+qq0bZALwa1wi+i87hKNXU6UujYiI6gCDDxkcuUzA6PbuWDDMHy5WxkhMz8Po9ccwb+d55BfxsnciovqMwYcMlreLJZaHtkIfHyeIIvDlwWt4bnUkLt3JlLo0IiKqJQw+ZNBMjOSY1MMLMwa0gIWxAueSMjBoZQS+PhLPy96JiOohBh8iAB097bBqVGu0bmSDgiI1Zv9xDuM2ReFORp7UpRERUQ1i8CH6l62ZEWYF++D1Zz1hJJfh0KW76Lv0EP4+kyR1aUREVEMYfIgeIQgCBvq7YlloIJo4mOFBbiFe/z4W7/90Cln5RVKXR0RE1cTgQ1QON1tTLHo+ACPaNIQA4KeYWxiw/DBirt+XujQiIqoGBh+ix1DKZXixowfmDfODo4UKN+7nYMQXR7F490UUFqulLo+IiKqAwYfoKVq6WmHFyFbo3twBahFYue8Knl8biWt3s6QujYiIKonBh6gCzFQKTO7dHFP7NoeZSo5Tt9IxcEUENh+/AVHkZe9ERPqCwYeoErp4OWDVqNYIaGiF3MJizNh+Gm98H4sHOQVSl0ZERBXA4ENUSfbmKnwyxBfjO3lAIRPw99lk9F9+GMeucb0vIiJdx+BDVAUyQcCw1g2x6PkAuFoZIyk9D6O+OsaJz0REOo7Bh6gamjqaY1loK/Rq4Qjx34nPIV8exc37OVKXRkRE5WDwIaomEyM53unZ7OHEZyM5Tt54gAHLD+O3uNtSl0ZERKUw+BDVkC5eDlg+shVaOFsgM78I72yNw+T/xvGOz0REOoTBh6gGOVkaY94wf4xs6waZAGyLvY1BKw7j1M0HUpdGRERg8CGqcXKZgDHt3TH3OT/Ym6uQkJqD4Wsj8cXBq1Crec8fIiIpMfgQ1ZKWrlZYObIVnmlihyK1iPk7L2DsxuO4k5EndWlERAZLZ4LP2rVr4e/vD0tLS1haWqJjx47YuXOn5nVRFDFr1iy4urrCxMQE3bp1w9mzZ7X2kZ+fj0mTJsHe3h5mZmYYPHgwbt26VdddIdIwN1ZgWj9vTOrRFCqFDEeupKLfskP437k7UpdGRGSQdCb4NGzYEPPnz0d0dDSio6PRo0cPDBkyRBNuFi5ciCVLlmDVqlWIioqCs7MzevfujczMTM0+wsPDsX37dmzduhURERHIysrCoEGDUFxcLFW3iCAIAvr4OGNpaCA87c2QllOIl7+Nxse/nUFeIf9sEhHVJUHU4YWGbG1tsWjRIkyYMAGurq4IDw/HtGnTADwc3XFycsKCBQvw2muvIT09HQ4ODvjuu+8QGhoKAEhMTISbmxt27NiBvn37lvsZ+fn5yM/P1zzPyMiAm5sb0tPTYWlpWaP9SUrPxb1MLm1gyAqL1fj2aAJ+jUsEADR3ssCKUa3Q3NlC4sqIiPRbRkYGrKysnvr7W2dGfB5VXFyMrVu3Ijs7Gx07dkR8fDySk5PRp08fTRuVSoWuXbsiMjISABATE4PCwkKtNq6urvD19dW0Kc+8efNgZWWlebi5udVex8jgKeUyhHX2xKzglrA2UeLinUwMXhWB744mcLFTIqI6oFPB5/Tp0zA3N4dKpcLrr7+O7du3w8fHB8nJyQAAJycnrfZOTk6a15KTk2FkZAQbG5vHtinP9OnTkZ6ernncvHmzhntFVFYbdxusGNUKbdxtkF+kxke/ncUr38bgfjZHBImIapNOBZ/mzZsjLi4Ox44dwxtvvIGXXnoJ586d07wuCIJWe1EUy2wr7WltVCqVZkJ1yYOoLtiYGuHjQT54uXNjKGQC/nf+DvovP4TIK/ekLo2IqN7SqeBjZGSEpk2bIigoCPPmzUNAQACWL18OZ2dnACgzcpOSkqIZBXJ2dkZBQQHS0tIe24ZI18gEAUMCG2DxiAA0tDHBnYx8jNlwHPN3XuBip0REtUCngk9poigiPz8fjRs3hrOzM/bs2aN5raCgAAcPHkSnTp0AAG3atIFSqdRqk5SUhDNnzmjaEOkqTwdzLA0JRN+WzhBF4IuDV/H82kgk3MuWujQionpFIXUBJWbMmIH+/fvDzc0NmZmZ2Lp1Kw4cOIC///4bgiAgPDwcc+fOhZeXF7y8vDB37lyYmppi9OjRAAArKyuEhYXhvffeg52dHWxtbTFlyhT4+fmhV69eEveO6OmMlXJM7N4UrdyssWr/FZy6lY6BKw7jkyG+GNa6wVNP6xIR0dPpTPC5c+cOxo4di6SkJFhZWcHf3x9///03evfuDQCYOnUqcnNz8eabbyItLQ3t27fH7t27YWHx/5cBL126FAqFAiEhIcjNzUXPnj2xadMmyOVyqbpFVGnPNLVHMycLLN5zEWcTM/DeT6dw6PJdfDrUF5bGSqnLIyLSazp9Hx8pVPQ+AFXB+/hQZRSrRfwccxObT9yAWgTcbE2wfGQrtG5k8/Q3ExEZGL2+jw8RPVzsNLRtIywY5g9HCxVu3s/FiC+OYtW+yyjmYqdERFXC4EOk47xdLLFiZCs86+WAYrWIz3dfwpj1x5CUnit1aUREeofBh0gPmKkUmNKnGd7t5QUTpRzHrt1Hv2WH8feZx9+ck4iIymLwIdITgiCgh7cTloUGoqmjOdJzC/H69zGYsf00cgu42CkRUUUw+BDpGVdrEywc7o/hrRtCALD5+A0Er4rAucQMqUsjItJ5DD5Eekgpl2FcJw98OsQXtqZGuJKShaGrj+DrI/Fc7JSI6AkYfIj0WICbNVaMaoV2HrYoKFZj9h/nMGFTFO5l5UtdGhGRTmLwIdJzViZK/GdgC7z+rCeUcgH7L95Fv2WHcejSXalLIyLSOQw+RPWAIAgY6O+KpSGBaGRrintZ+Xhx4wl89tc5FBRxsVMiohIMPkT1iLudGZaEBGCgnwsA4KvD8Ri29gjiudgpEREABh+iekelkOP1rk3wn4EtYGGswJnbGRi04jB+i7stdWlERJJj8CGqp9o3tsOKka3Q0tUS2QXFeGdrHKb9/A/v+UNEBo3Bh6geszdX4bOhfhjZ1g0CgB+jb2LwqghcTM6UujQiIkkw+BDVc3KZgDHt3TFn6MN7/lxOycLgVRHYcuIG7/lDRAaHwYfIQPg3tMbykYFo3cga+UVqTN92Gm9vjUNmXqHUpRER1RkGHyIDYm1qhJnBLTG+kwfkMgF/nErEoJUR+OfWA6lLIyKqEww+RAZGJggY1roh5g/zg6OFCtdTczB8bSQ2RHC5CyKq/xh8iAyUt7Mlloe2QkdPOxQWi/j0z3N45dsYpGUXSF0aEVGtYfAhMmDmxgpM7++N17s2gUIm4H/n72DAisOISrgvdWlERLWCwYfIwAmCgIF+Llg8IgANrE2QlJ6HkeuOYdW+yyhW89QXEdUvDD5EBADwdDDHkpAAdGvugGK1iM93X8KLG48jJTNP6tKIiGoMgw8RaZgaKTC5VzO809MLKoUMR66kov/ywzh8mSu9E1H9wOBDRFoEQUCvFk5YGhIIDztTpGYV4MWNJ7Dw7wsoKuZK70Sk3xh8iKhcbram+HxEAPr7OkMUgTUHriJ03THcfpArdWlERFXG4ENEj6VSyPFmt6aY1s8bpkZyxFxPw4Dlh7H7bLLUpRERVQmDDxE9Veem9lge2gpejuZIzy3Eq9/FYNbvZ5FfxJXeiUi/MPgQUYU4WxljwXB/DA1sAADYFJmA4WsjEX8vW+LKiIgqjsGHiCpMKZchrHNjfDzIBxbGCpy5nYFBKw7jt7jbUpdGRFQhDD5EVGltPWyxYmQrtHS1RHZBMd7ZGodpP/+D3AKe+iIi3cbgQ0RVYm+uwmdD/TCyrRsEAD9G38TgVRG4mJwpdWlERI9V7eBTWFiImzdv4uLFi7h/n+v7EBkSuUzAmPbu+HSoL2xMlbickoXBqyKw5cQNrvRORDqpSsEnKysLX375Jbp16wYrKyt4eHjAx8cHDg4OcHd3xyuvvIKoqKiarpWIdFRAQ2usGNkKrRtZI79IjenbTuPtrXHIzCuUujQiIi2VDj5Lly6Fh4cHvvrqK/To0QPbtm1DXFwcLl68iKNHj2LmzJkoKipC79690a9fP1y+fLk26iYiHWNtaoSZwS0xrpMHZALwx6lEDFoZgX9uPZC6NCIiDUGs5Hj0iBEj8PHHH8PPz++J7fLz87FhwwYYGRnh5ZdfrlaRdSkjIwNWVlZIT0+HpaVlje47KT0X9zILanSfRLroQlIGFu6+iLuZ+VDKBXzQvwUmPOMBQRCkLo2I6qmK/v6udPCp7xh8iGpGVl4RVuy7jKPXUgEAvVo4YdHz/rAxM5K4MiKqj+ok+BQXF2P9+vW4cOECGjZsiMDAQAQGBsLOzq6qu5Qcgw9RzRFFETtOJ2F9RDyK1CJcrIyxYlQrtPWwlbo0IqpnKvr7u1pXdU2aNAkfffQRUlJSMH36dAwcOBCOjo5o1KgRBg8eXJ1dE1E9IAgCBvq74vMRAXC1MkZSeh5GrjuGVfsuo1jNwWYiqnvVCj7btm3Dd999hx9++AEqlQrR0dFYsWIF8vLy4O7uXlM1EpGea+JgjqWhgejW3AHFahGf776ElzaeQEpmntSlEZGBqVbwycrKgo+PDwBAqVRCLpfjrbfewvTp02FsbFwjBRJR/WBqpMDkXs3wTk8vqBQyRFy5h4ErInD0aqrUpRGRAalW8PH09ERiYiIAoEGDBrh9++F6PcHBwfj++++rXx0R1SuCIKBXCycsDQlEI1tT3M3Mx5j1x7B6/xWoeeqLiOpAtYLPiBEj8PfffwMAunXrho0bNwIAzp07h9zc3OpXR0T1kputKRaPCECP5o5Qi8CiXRcx4ZsopGVz8j8R1a4au5z9xo0baNeuHYqLi5GRkYGwsDCsWbOmJnZdp3hVF1HdEUUR/zt/B18cvIaCYjVcrYyxcnRrtHG3kbo0ItIzktzHJzU1FTt27ICtrS0GDhxYU7utUww+RHUv/l4W5u+8gMT0PChkAj7o742wzo15w0MiqrBaDz7Xr1/HP//8AycnJ7Rr167KheoaBh8iaeQUFGHFvis4cuUeAKBvSycsfD4AViZKiSsjIn1Qq/fx2bJlC5o1a4YhQ4agY8eOCAoKwt27d6tcLBGRqZEC0/o2x+vPekIhE7Dr7B0Er4zAmdvpUpdGRPVIlYLP7NmzMXbsWFy5cgX79u2DTCbDBx98UNO1EZGBKbnh4YLh/nC0UOHG/Rw8t+YIvj92HVxdh4hqQpVOdRkZGeHy5cuamxRevHgRrVu3RnZ2do0XWNd4qotIN2TlFWHp/y7hRMJ9AMDgAFfMHeYHc5VC4sqISBfV6qmuoqIimJiYaJ43b94carUaycnJVdkdEVEZ5sYK/GdgC4zv5AGZAPx+KhGDV0XgYnKm1KURkR6r8n18vvnmG0RGRiIrKwsAoFAokJOTU2OFEREJgoBhrRti3jB/2JkZ4drdbAxZHYGfY25JXRoR6akqBZ/OnTtjzpw56Ny5M6ytreHl5YW8vDxs2LAB+/fvR0ZGRk3XSUQGzMfFEstHtkIrN2vkFaox5adTmPrzKeQWFEtdGhHpmWrdx+fy5cuIiYlBbGwsYmJicPLkSTx48AAymQxeXl44f/58TdZaJzjHh0h3FatF/BRzE1tO3IBaBLydLbBmTGt4OphLXRoRSUySGxgCQHx8PKKjo3Hy5EnMnTu3JnddJxh8iHTfqVsP8Pmui3iQWwgzIznmD/dHcICr1GURkYRqLfjcuHEDjRo1qnD727dvo0GDBpX5CEkx+BDph/vZBVi06wLOJD48tf5iR3d8OLAFVAq5xJURkRRq7aqutm3b4pVXXsGJEyce2yY9PR1fffUVfH19sW3btsp+BBHRU9maGWHOUD+MaNMQAPDt0esY8cVR3LzPiyyI6PEqfUOM8+fPY+7cuejXrx+USiWCgoLg6uoKY2NjpKWl4dy5czh79iyCgoKwaNEi9O/fvzbqJiKCXCbgxY4e8HGxxJI9l/DPrXQMXHEYi0MC0dvHSeryiEgHVXmOT15eHnbs2IHDhw8jISEBubm5sLe3R6tWrdC3b1/4+vrWdK11gqe6iPRTSmYeFv59ERfvPLzPz6vPeuL9vs2hlFf5rh1EpEckm9ys7xh8iPRXYbEa30Qm4LdTiQCANu42WDW6FVysTJ7yTiLSd7V652YiIl2klMvwchdPzOjvDVMjOWKup2Hg8ggcvMRFlInoIQYfIqp3Ojaxx7LQQHg6mOF+TgHGfX0Ci3dfRLGaA9xEho7Bh4jqJRcrEywaHoD+vs4QRWDlvit4Yf1xpGTmSV0aEUmIwYeI6i0jhQxvdmuK93o3g7FShqPXUjFwRQSOXk2VujQikgiDDxHVe92aO2JJSCAa2ZribmY+xqw/htX7r0DNU19EBqfaV3Xt3bsXe/fuRUpKCtRqtdZrGzdurFZxUuBVXUT1V15hMdYevIp9F1IAAN2aO2BpSCBszIwkroyIqqtOruqaPXs2+vTpg7179+LevXtIS0vTehAR6RJjpRzv9mqGt3s0hZFchgMX72LgisOIuc6/r4gMRbVGfFxcXLBw4UKMHTu2JmuSFEd8iAxD/L1szN95HonpeVDIBHzQ3xthnRtDEASpSyOiKqiTEZ+CggJ06tSpOrsgIpJEY3szLA0NROem9ihSi5jz13m8/n0M0nMLpS6NiGpRtYLPyy+/jM2bN9dULUREdcrUSIGpfZvj9a5NoJAJ2HX2DgatOIzTt9KlLo2IakmlFyl9VF5eHtatW4f//e9/8Pf3h1Kp1Hp9yZIl1SqOiKi2CYKAgX4uaOZojvl/X8DNtFwMW3sEM4NbYkz7Rjz1RVTPVGuOT/fu3R+/Y0HAvn37qrpryXCOD5HhysorwrK9l3A8/j4AYHCAK+YO84O5qlr/RiSiOsBFSquIwYfIsImiiF/jbmNTZALUIuDpYIY1Y1rD27lm/z4gopqld4uUzps3D23btoWFhQUcHR0xdOhQXLx4UauNKIqYNWsWXF1dYWJigm7duuHs2bNabfLz8zFp0iTY29vDzMwMgwcPxq1bt+qyK0SkxwRBwHOtGmLeMH/YmRnh2t1sDF19BD9F35S6NCKqAdUOPg8ePMDixYvx8ssv45VXXsGSJUuQnl75iYEHDx7EW2+9hWPHjmHPnj0oKipCnz59kJ2drWmzcOFCLFmyBKtWrUJUVBScnZ3Ru3dvZGZmatqEh4dj+/bt2Lp1KyIiIpCVlYVBgwahuLi4ul0lIgPi42KJ5SNboXUja+QVqvH+z/9g6s+nkFvAv0uI9FmlTnXFx8ejcePGmufR0dHo27cvTExM0K5dO4iiiOjoaOTm5mL37t1o3bp1lQu7e/cuHB0dcfDgQTz77LMQRRGurq4IDw/HtGnTADwc3XFycsKCBQvw2muvIT09HQ4ODvjuu+8QGhoKAEhMTISbmxt27NiBvn37PvVzeaqLiB6lFkX8FH0Tm0/cgFoEvJ0tsHpMazRxMJe6NCJ6RK2c6tqyZQvCwsI0S1O8++67GDx4MBISErBt2zZs374d8fHxGDRoEMLDw6vVgZJRI1tbWwAPQ1dycjL69OmjaaNSqdC1a1dERkYCAGJiYlBYWKjVxtXVFb6+vpo2peXn5yMjI0PrQURUQiYICG3bCJ8M8YW1qRIXkjMxeGUE/jiVKHVpRFQFlQo+7733HhQKBQYMGADg4YjPtGnToFD8/xUPCoUCU6dORXR0dJWLEkURkydPRufOneHr6wsASE5OBgA4OTlptXVyctK8lpycDCMjI9jY2Dy2TWnz5s2DlZWV5uHm5lbluomo/gpoaI3loa3g62qJ7IJiTNpyEh/9egb5RTz1RaRPKhV8VCoVvvzyS4wfPx4AYGlpiRs3bpRpd/PmTVhYWFS5qIkTJ+Kff/7Bli1byrxW+p4aoig+9T4bT2ozffp0pKenax43b3ICIxGVz9bMCHOG+mFEm4YAgO+OXcfza4/i5v0ciSsjooqq0uTmkvkzoaGhCAsLw48//oibN2/i1q1b2Lp1K15++WWMGjWqSgVNmjQJv//+O/bv34+GDRtqtjs7OwNAmZGblJQUzSiQs7MzCgoKyiyQ+mib0lQqFSwtLbUeRESPI5cJeLGjB2YG+8BCpcDp2+kYsOIwdp8tf1SZiHRLta7q+vzzzzFs2DC8+OKL8PDwgLu7O8aNG4fnn38eCxYsqNS+RFHExIkTsW3bNuzbt09rEjUANG7cGM7OztizZ49mW0FBAQ4ePKhZL6xNmzZQKpVabZKSknDmzBmuKUZENSrI3RbLR7ZCcycLZOYV4dXvYvDZX+dQWKyWujQieoIauYFhTk4Orl69ClEU0bRpU5iamlZ6H2+++SY2b96M3377Dc2bN9dst7KygomJCQBgwYIFmDdvHr7++mt4eXlh7ty5OHDgAC5evKg5tfbGG2/gzz//xKZNm2Bra4spU6YgNTUVMTExkMvlT62DV3URUWUUFqvx7dEE/Br3cLJz60bWWDW6NVytTSSujMiw6N2dmx83B+frr7/GuHHjADwcFZo9eza+/PJLpKWloX379li9erVmAjTwcP2w999/H5s3b0Zubi569uyJNWvWVHjSMoMPEVXF0av3sHzvZWQXFMPGVImloYHo1txR6rKIDEatBZ/Jkyfj008/hZmZGSZPnvzEtvq4SCmDDxFVVVJ6Lhb8fQFX72ZDEICJ3ZsivFczyGVc6JSotlX093elV947efIkCgsLNf//OFzRmIgMjYuVCRYOD8D6iGvYeSYZK/ddQXRCGpaPCoSjhbHU5RERdOhUl67giA8R1YSDl+5i1f7LyCtUw97cCCtHtUbHJnZSl0VUb9XJIqW5ubnIyfn/+1dcv34dy5Ytw+7du6uzWyIivde1mQOWhATC3dYU97IKMGb9MazefwVqNf+tSSSlagWfIUOG4NtvvwXwcLHSdu3aYfHixRgyZAjWrl1bIwUSEekrNxtTfD4iAD29HaEWgUW7LmL8pijcz+bIL5FUqhV8YmNj0aVLFwDAzz//DGdnZ1y/fh3ffvstVqxYUSMFEhHpM2OlHOG9muGdHl4wkstw8NJdDFxxGDHX70tdGpFBqlbwycnJ0dw/Z/fu3Rg2bBhkMhk6dOiA69ev10iBRET1QS8fJ3w+IgANrE2QlJ6H0C+PYf3ha+A0S6K6Va3g07RpU/z666+4efMmdu3apVkVPSUlhUs/EBGV0tjeDEtCAtDFyx5FahFz/jqP176LQXpuodSlERmMagWfjz/+GFOmTIGHhwfatWuHjh07Ang4+tOqVasaKZCIqD4xNVLg/T7N8XrXJlDIBOw+dweDVh7GmdvpUpdGZBCqfTl7cnIykpKSEBgYqLl3z4kTJ2BpaQlvb+8aKbIu8XJ2Iqorl+9kYv7fF5CSmQ8jhQxzhvoiJKhid5knIm11cjk7AFy+fBmLFy/GM888g9u3bwMALl68iHv37lV310RE9ZqXkwWWh7ZCkLsNCorUmPrzP5i+7R/kFRZLXRpRvVWt4PPLL7+gb9++MDExQWxsLPLz8wEAmZmZmDt3bo0USERUn5kbK/DRIB+80L4RBABbTtzEiC+O4ub9nKe+l4gqr1rBZ86cOfjiiy/w1VdfQalUarZ36tQJsbGx1S6OiMgQyAQBoW0bYdbglrAwVuD07XQMWhmB/RdTpC6NqN6pVvC5ePEinn322TLbLS0t8eDBg+rsmojI4LRuZINloYHwcjRHem4hJmyKwtI9l3i3Z6IaVK3g4+LigitXrpTZHhERAU9Pz+rsmojIIDlaGGPBcH/093WGKALL917G+E1RSOPdnolqRLWCz2uvvYZ33nkHx48fhyAISExMxA8//IApU6bgzTffrKkaiYgMilIuw5vdmuLdXs2gUjy82/OglRH459YDqUsj0nuK6rx56tSpSE9PR/fu3ZGXl4dnn30WKpUKU6ZMwcSJE2uqRiIig9TD2xGN7c0wb+d53H6Qi+fXHsWswS0xqp2b5vYhRFQ51b6PD/Bw6Ypz585BrVbDx8cH5ubmNVGbJHgfHyLSNVn5RVj2v0s4Hv9wfa/n2zTEnKG+MFbKJa6MSHfU+n18CgsL0b17d1y6dAmmpqYICgpCu3bt9Dr0EBHpInOVAjMGtMCLHd0hE4CfY25h2JpI3EjlJe9ElVXl4KNUKnHmzBkOtxIR1QGZIGBEGzd8MtgXViZKnEvKwKCVh7H3/B2pSyPSK9Wa3Pziiy9iw4YNNVULERE9RYCbNZaFBqK5kwUy8ooQ9k00Pt91EcW85J2oQqo1ubmgoADr16/Hnj17EBQUBDMzM63XlyxZUq3iiIioLHtzFeYN88PGI/H4858krNp/BXE3H2D5yEDYmaukLo9Ip1VrcnP37t0fv2NBwL59+6q6a8lwcjMR6ZMDF1Owav8V5Bep4WpljNVjWqNVIxupyyKqcxX9/V0jV3XVJww+RKRvrqdmY97OC7j9IBdKuYCPB/nghQ7unINJBqVWr+rKycnBW2+9hQYNGsDR0RGjR4/mauxERBJxtzPDkpAAdPS0Q2GxiI9+O4vJ/z2F3AKu8k5UWpWCz8yZM7Fp0yYMHDgQI0eOxJ49e/DGG2/UdG1ERFRBpkYKTO/vjQnPeEAmANtP3sZza44g/l621KUR6ZQqnepq0qQJPvvsM4wcORIAcOLECTzzzDPIy8uDXK7fN9TiqS4i0nenb6dj4a4LeJBTCHOVAktCAtCnpbPUZRHVqlo91XXz5k106dJF87xdu3ZQKBRITEysyu6IiKgG+TWwwrKQQLRwsURWfhFe/S4G83deQFGxWurSiCRXpeBTXFwMIyMjrW0KhQJFRUU1UhQREVWPnbkKc4f6YnCAKwDgi4NXMXbDCdzNzJe4MiJpVek+PqIoYty4cVCp/v9+EXl5eXj99de17uWzbdu26ldIRERVopDL8EoXT3g7W2DFvss4ei0Vg1YexpoxrdHG3Vbq8ogkUaXg89JLL5XZ9sILL1S7GCIiqnldvBzgYWeGuTvP41ZaLkK/PIb/DGyBlzp58JJ3Mji8j08pnNxMRPVVTkERVu67gogrD28/MjjAFfOG+cFMVa2b+BPphFpfnZ2IiPSLqZECU/s2x8udG0MuE/D7qUQ8t+YIrt7Nkro0ojrD4ENEZEAEQcCQwAb4bKgvbE2NcOlOFoasOoKdp5OkLo2oTjD4EBEZoJauVlgWGghf14eXvL/xQyw+++scL3mneo/Bh4jIQNmYGWHOUD8Ma9UAAPDV4XiMXn8cKZl5EldGVHsYfIiIDJhcJmD8M40xvb83TJRynIi/j4ErInAi/r7UpRHVCgYfIiJCpyb2WBISgEa2pribmY9RXx3D+sPXwAt/qb5h8CEiIgBAQxtTLB4RgK7NHFCsFjHnr/OYuPkksvJ5V36qPxh8iIhIw1gpx3u9m+G1Zz2hkAn463QShqyKwJWUTKlLI6oRDD5ERKRFEAQM8nfFvOf8YGdmhKt3szF41RH8+Q8Xoib9x+BDRETl8naxxLLQQPg3tEJOQTEmbj6J2X+cRSEveSc9xuBDRESPZW1qhE8G+2JEm4YAgK+PJGDUumO4k8FL3kk/MfgQEdETyWUCXuzogQ8HtICpkRzR19MwcMVhHL2aKnVpRJXG4ENERBXSwdMOS0MC4WFnintZBXhhw3F8efAqL3knvcLgQ0REFeZqbYJFzwege/OHl7zP23kBr38fg4y8QqlLI6oQBh8iIqoUY6Uc7/Zqhje7NYFCJmDX2TsYsuoILibzknfSfQw+RERUaYIgoL+vCxYM94e9uQrx97IxdPUR/BZ3W+rSiJ6IwYeIiKqsmZMFloUGItDNGrmFxXhnaxxm/nYGBUW85J10E4MPERFVi5WJErOCWyK0rRsA4Juj1zHqK17yTrqJwYeIiKpNLhPwQnt3fDTQB2ZGcsRcT8PAFRE4fo2XvJNuYfAhIqIa066xLZZoLnnPx+j1x7nKO+kUBh8iIqpRJZe8P7rK+6QtJ5HNVd5JBzD4EBFRjStZ5f3VLp6QywT8+U8SnltzBNfuZkldGhk4Bh8iIqoVgiAgOMAVc5/zg62pES7dycKQVUew+2yy1KWRAWPwISKiWuXjYomloYFo6WqJzPwivPpdDBb+fQHFas77obrH4ENERLXO1swIc4b4YnCAKwBgzYGreGnjCdzPLpC4MjI0DD5ERFQnFHIZXuniiSl9mkOlkCHiyj0Er4zA6VvpUpdGBoTBh4iI6lTXZg74/PkAuFgZ4/aDXAz/IhL/jbopdVlkIBh8iIioznnYm2FJSCDaediioEiNqb/8g+nbTiO/qFjq0qieY/AhIiJJmKsU+HBgC7zQvhEEAFtO3EDIl8eQ+CBX6tKoHmPwISIiycgEAaFtG+HjYB+YqxQ4dfMBgldGIPLqPalLo3qKwYeIiCQX5G6LpSGB8LQ3Q2p2AcZuOIF1h65yqQuqcQw+RESkE5ytjLFguD96NHdEsVrE3B0XMHHzSWRxqQuqQQw+RESkM4yVcoT38sLrXZtALhPw1+kkDF19BFe51AXVEAYfIiLSKYIgYKCfC+b9u9TFlZSHS13s4lIXVAMYfIiISCe1cLHEsn+XusjKL8JrXOqCagCDDxER6Sybcpa6GPc1l7qgqmPwISIinVZ6qYvDlx8udXHmNpe6oMpj8CEiIr1QeqmLYWsj8d9oLnVBlcPgQ0REeqNkqYu2HjYPl7r4+R/M2M6lLqjiGHyIiEivmKsU+M9AH4z5d6mLzcdvIPTLY0hK51IX9HQ6E3wOHTqE4OBguLq6QhAE/Prrr1qvi6KIWbNmwdXVFSYmJujWrRvOnj2r1SY/Px+TJk2Cvb09zMzMMHjwYNy6dasOe0FERHVBJggY+chSF3H/LnVx7Fqq1KWRjtOZ4JOdnY2AgACsWrWq3NcXLlyIJUuWYNWqVYiKioKzszN69+6NzMxMTZvw8HBs374dW7duRUREBLKysjBo0CAUF3MIlIioPipZ6qKxvRnuZRVgzPrj2BARz6Uu6LEEUQf/dAiCgO3bt2Po0KEAHo72uLq6Ijw8HNOmTQPwcHTHyckJCxYswGuvvYb09HQ4ODjgu+++Q2hoKAAgMTERbm5u2LFjB/r27Vuhz87IyICVlRXS09NhaWlZo/1KSs/FvUxegklEVNPyCouxev8VHLh0FwAwOMAV84f7wdRIIXFlVFcq+vtbZ0Z8niQ+Ph7Jycno06ePZptKpULXrl0RGRkJAIiJiUFhYaFWG1dXV/j6+mralCc/Px8ZGRlaDyIi0i/GSjkm926GV7t4Qi4T8PupRAxbE4nrqdlSl0Y6Ri+CT3Lyw9uUOzk5aW13cnLSvJacnAwjIyPY2Ng8tk155s2bBysrK83Dzc2thqsnIqK6IAgCggNc8dlQX1ibKnEhORPBKyOw/0KK1KWRDtGL4FNCEASt56IoltlW2tPaTJ8+Henp6ZrHzZu8JwQRkT5r6WqFZSGB8Ha2QEZeESZ8E4Xl/7sMNZe6IOhJ8HF2dgaAMiM3KSkpmlEgZ2dnFBQUIC0t7bFtyqNSqWBpaan1ICIi/WZnrsLc5/wwwM8Foggs/d8lvPJtNNJzC6UujSSmF8GncePGcHZ2xp49ezTbCgoKcPDgQXTq1AkA0KZNGyiVSq02SUlJOHPmjKYNEREZDqVchje6NsE7Pb2glAvYeyEFQ1ZF4GJy5tPfTPWWzkx3z8rKwpUrVzTP4+PjERcXB1tbWzRq1Ajh4eGYO3cuvLy84OXlhblz58LU1BSjR48GAFhZWSEsLAzvvfce7OzsYGtriylTpsDPzw+9evWSqltERCSxXi2c4GFnhrk7zyMhNQdDVx/Bwuf9EfzvwqdkWHQm+ERHR6N79+6a55MnTwYAvPTSS9i0aROmTp2K3NxcvPnmm0hLS0P79u2xe/duWFhYaN6zdOlSKBQKhISEIDc3Fz179sSmTZsgl8vrvD9ERKQ7mjqaY2lIID7ffRFxNx9g0paT+OfWA0zr5w2FXC9OflAN0cn7+EiJ9/EhIqq/itUivjt2Hb/EPryrf0dPO6wc3Qr25iqJK6Pqqlf38SEiIqoJcpmAcZ088EE/b5go5Th6LRXBKyMQd/OB1KVRHWHwISIig/NMU3ssHhGABtYmSErPQ8gXR7H1xA2py6I6wOBDREQGyc3WFEtCAtC+sS0KitX4YNtpTN/2D/KLuL5jfcbgQ0REBsvUSIEZA1pgbAd3CAC2nLiJkC+PISk9V+rSqJYw+BARkUGTCQJCgtwwK7glzFUKnLr5AINWRODYtVSpS6NawOBDREQEoLW7DZaGBsLT3gyp2QUYs/44NkTEgxc/1y8MPkRERP9ytjTGguH+6NbcAcVqEZ/+eQ7hP8Yhp6BI6tKohjD4EBERPcJYKcfkXs3wahdPyGUCfotLxLA1kbiemi11aVQDGHyIiIhKEQQBwQGumDPEF9amSlxIzkTwygjsv5gidWlUTQw+REREj+HbwArLQgLR3MkCGXlFmLApCiv3XoZazXk/+orBh4iI6AnszFWYN8wP/X2dIYrA4j2X8Nr3McjIK5S6NKoCBh8iIqKnUMpleLNbU7zdoymUcgF7zt3B0FVHcPlOptSlUSUx+BAREVVQbx9nzB/mD3tzFa7dy8bQ1Uew83SS1GVRJTD4EBERVUIzJwssCw2EfwMrZBcU440fYrHw7wso5rwfvcDgQ0REVElWJkp8MsQXQwMbAADWHLiK8Zui8CCnQOLK6GkYfIiIiKpALhMQ1rkxpvRpDpVChkOX7iJ4VQTOJWZIXRo9AYMPERFRNXRt5oBFz/vDyVKFm/dzMWztEfwWd1vqsugxGHyIiIiqqbG9OZaGBKKVmzXyCtV4Z2sc5vx5DkXFaqlLo1IYfIiIiGqAhbESM4NbYkSbhgCA9RHxeHHjCaRm5UtcGT2KwYeIiKiGyGUCXuzogQ/6ecNYKUPk1VQMXnUEp2+lS10a/YvBh4iIqIY909Qenz8fAFcrY9x+kIvhX0Ti55hbUpdFYPAhIiKqFe52ZlgcEoi2HjYoKFJjyk+nMPO3MyjkvB9JMfgQERHVEnOVAv8Z6INRbd0AAN8cvY4xXx1HSmaexJUZLgYfIiKiWiQTBIxu747/DGwBUyM5TiTcR/DKCMTeSJO6NIPE4ENERFQH2je2w+IRAXCzMcGdjHyM/PIYtpy4IXVZBofBh4iIqI40tDHF5yMC0NHTDgXFakzfdhrTt51GflGx1KUZDAYfIiKiOmRqpMD0/t54sYM7BABbTtzAyHXHkJzOeT91gcGHiIiojgmCgBFBbpgZ3BJmKjlO3niAQSsjEJVwX+rS6j0GHyIiIom0cbfB0pBAeNiZ4l5WPkatO4ZvjyZAFEWpS6u3GHyIiIgk5GJlgkXPB+BZL3sUqUV8/NtZTPnpH+QVct5PbWDwISIikpixUo4pfZpjwjMekAnAL7G3MOKLo7j9IFfq0uodBh8iIiIdIAgCnmvVEJ8M9oWFsQKnb6cjeGUEIq/ek7q0eoXBh4iISIcEuFljWUggPB3McD+7AGM3nMD6w9c476eGMPgQERHpGEdLYywc7o8ezR1RrBYx56/zeGdrHHILOO+nuhh8iIiIdJBKIUd4Ly+82sUTcpmA308l4rk1R3AjNUfq0vQagw8REZGOEgQBwQGumDPEF9YmSlxIzkTwqggcunRX6tL0FoMPERGRjvNtYIWloYFo5mSO9NxCvPT1Caw5cIXzfqqAwYeIiEgP2JurMH+YP/r4OEEUgYV/X8Rbm2ORlV8kdWl6hcGHiIhITyjlMkzq4YW3ujWFQiZgx+lkPLf6COLvZUtdmt5g8CEiItIz/XydMe85P9iaGuFyShYGr4rA3vN3pC5LLzD4EBER6SFvF0ssDQ1ECxdLZOYVIeybaCz/32Wo1Zz38yQMPkRERHrK1swInw31xUA/FwDA0v9dwqvfxSAjr1DiynQXgw8REZEeU8pleL1rE7zT0wtKuYD/nb+DoauO4EpKptSl6SQGHyIionqgVwsnLBjmD3tzFa7dy8aQVUfw95kkqcvSOQw+RERE9YSXkwWWhgTAr4EVsguK8fr3sVi06wKKOe9Hg8GHiIioHrE2NcKnQ3wxJMAVALB6/1VM2BSF9BzO+wEYfIiIiOoduUzAy1088V7vZlApZDh46S6CV0XgfFKG1KVJjsGHiIionurW3BELh/vD0UKFG/dzMGxNJP44lSh1WZJi8CEiIqrHPB3MsTQkEIFu1sgtLMakLScxd8d5FBWrpS5NEgw+RERE9ZyliRKzgltieOuGAIB1h67hpa9P4H52gcSV1T0GHyIiIgMglwkY18kD0/p5w1gpw5ErqQheGYEzt9OlLq1OMfgQEREZkM5N7fH58wFwsTLG7Qe5GL42Ettib0ldVp1h8CEiIjIw7nZmWBISiCB3G+QXqTH5v6cw6/ezKDSAeT8MPkRERAbIXKXAR4N8MLKtGwBgU2QCxqw/jruZ+RJXVrsYfIiIiAyUTBAwpr07PhzQAiZKOU7E30fwygjE3XwgdWm1hsGHiIjIwHXwtMPikAA0tDFBckYeQr44ih+jbkhdVq1g8CEiIiK42Zhi8YgAdPC0RUGxGtN+OY0Pt59GQVH9mvfD4ENEREQAAFMjBab3b4EXOrhDAPDD8RsY9dUx3MnIk7q0GsPgQ0RERBoyQUBokBs+DvaBmUqOmOtpGLQyAtEJ96UurUYw+BAREVEZQe62WDIiEO62pribmY9RXx3Dd8euQxRFqUurFgYfIiIiKpertQkWPR+Azk3tUVgs4qNfz2DaL/8gr7BY6tKqjMGHiIiIHsvESI6pfZtjfCcPyATgv9G3EPrlUSQ+yJW6tCph8CEiIqInEgQBw1o3xOzBvrBQKXDqVjqCV0bg2LVUqUurNAYfIiIiqpBAN2ssDQ2Ep70ZUrMLMGb9cWyMiNereT8MPkRERFRhTpbGWDDcH92aO6BYLeKTP8/h3R/jkFugH/N+GHyIiIioUoyVckzu1QyvdPGETAB+jUvE8LWRuHk/R+rSnorBh4iIiCpNEAQMDnDFnKF+sDJR4lxSBoJXReDw5btSl/ZEDD5ERERUZX4NrLA0JBBejuZ4kFOIlzaewBcHr+rsvB8GHyIiIqoWBwsV5g/zR+8WTlCLwPydFzBxy0lk5xdJXVoZDD5ERERUbUYKGSb1aIo3uzWBQibgr3+SMGxNJBLuZUtdmhYGHyIiIqoRgiCgv68L5j7nBxtTJS7eycTgVRHYfyFF6tI06mXwWbNmDRo3bgxjY2O0adMGhw8flrokIiIig9HCxRLLQluhhbMFMvKKMOGbKKzcexlqtfTzfupd8Pnxxx8RHh6ODz/8ECdPnkSXLl3Qv39/3LhxQ+rSiIiIDIatmRE+e84P/X2dIYrA4j2X8Pr3McjMK5S0LkHU1WnXVdS+fXu0bt0aa9eu1Wxr0aIFhg4dinnz5pVpn5+fj/z8fM3zjIwMuLm5IT09HZaWljVaW1J6Lu5lFtToPomIiHTdnnPJWHPgKorUIpo4mOHLsUFo6mheo5+RkZEBKyurp/7+VtTop0qsoKAAMTEx+OCDD7S29+nTB5GRkeW+Z968eZg9e3ZdlAcbUyOYGtWrHzkREdFThXXxRDtPO7z33zhcvZuNbbG3MLWftyS11Kvfwvfu3UNxcTGcnJy0tjs5OSE5Obnc90yfPh2TJ0/WPC8Z8akNxko5jJXyWtk3ERGRLuvc1B5/vd0FXx2+hsm9m0lWR70KPiUEQdB6LopimW0lVCoVVCpVXZRFRERk0OzNVZjev4WkNdSryc329vaQy+VlRndSUlLKjAIRERGR4alXwcfIyAht2rTBnj17tLbv2bMHnTp1kqgqIiIi0hX17lTX5MmTMXbsWAQFBaFjx45Yt24dbty4gddff13q0oiIiEhi9S74hIaGIjU1FZ988gmSkpLg6+uLHTt2wN3dXerSiIiISGL17j4+1VXR+wAQERGR7qjo7+96NceHiIiI6EkYfIiIiMhgMPgQERGRwWDwISIiIoPB4ENEREQGg8GHiIiIDAaDDxERERkMBh8iIiIyGPXuzs3VVXI/x4yMDIkrISIioooq+b39tPsyM/iUkpmZCQBwc3OTuBIiIiKqrMzMTFhZWT32dS5ZUYparUZiYiIsLCwgCEKN7TcjIwNubm64efNmvV0Ko773sb73D6j/fWT/9F997yP7V3WiKCIzMxOurq6QyR4/k4cjPqXIZDI0bNiw1vZvaWlZL/8wP6q+97G+9w+o/31k//Rffe8j+1c1TxrpKcHJzURERGQwGHyIiIjIYDD41BGVSoWZM2dCpVJJXUqtqe99rO/9A+p/H9k//Vff+8j+1T5ObiYiIiKDwREfIiIiMhgMPkRERGQwGHyIiIjIYDD4EBERkcFg8CEiIiKDweBTBWvXroW/v7/mzpMdO3bEzp07n/iegwcPok2bNjA2Noanpye++OKLMm1++eUX+Pj4QKVSwcfHB9u3b6+tLjxRZfu3bds29O7dGw4ODpr2u3bt0mqzadMmCIJQ5pGXl1fb3SlXZft44MCBcuu/cOGCVjt9/Q7HjRtXbv9atmypaaNr3+Gj5s2bB0EQEB4e/sR2+nQcPqoi/dPH4/BRFemjvh2Hj6pI//TtOJw1a1aZOpydnZ/4Hl04Bhl8qqBhw4aYP38+oqOjER0djR49emDIkCE4e/Zsue3j4+MxYMAAdOnSBSdPnsSMGTPw9ttv45dfftG0OXr0KEJDQzF27FicOnUKY8eORUhICI4fP15X3dKobP8OHTqE3r17Y8eOHYiJiUH37t0RHByMkydParWztLREUlKS1sPY2LguulRGZftY4uLFi1r1e3l5aV7T5+9w+fLlWv26efMmbG1tMWLECK12uvQdloiKisK6devg7+//xHb6dhyWqGj/9PE4LFHRPpbQl+OwREX7p4/HYcuWLbXqOH369GPb6swxKFKNsLGxEdevX1/ua1OnThW9vb21tr322mtihw4dNM9DQkLEfv36abXp27evOHLkyJovtgqe1L/y+Pj4iLNnz9Y8//rrr0UrK6taqKzmPKmP+/fvFwGIaWlpj31/ffoOt2/fLgqCICYkJGi26eJ3mJmZKXp5eYl79uwRu3btKr7zzjuPbauPx2Fl+lcefTgOK9NHfTwOq/Md6vpxOHPmTDEgIKDC7XXlGOSITzUVFxdj69atyM7ORseOHcttc/ToUfTp00drW9++fREdHY3CwsIntomMjKydwiuoIv0rTa1WIzMzE7a2tlrbs7Ky4O7ujoYNG2LQoEFl/iUqlcr0sVWrVnBxcUHPnj2xf/9+rdfq03e4YcMG9OrVC+7u7lrbde07fOuttzBw4ED06tXrqW318TisTP9K05fjsCp91KfjsDrfoT4ch5cvX4arqysaN26MkSNH4tq1a49tqyvHIFdnr6LTp0+jY8eOyMvLg7m5ObZv3w4fH59y2yYnJ8PJyUlrm5OTE4qKinDv3j24uLg8tk1ycnKt9eFJKtO/0hYvXozs7GyEhIRotnl7e2PTpk3w8/NDRkYGli9fjmeeeQanTp3SGqauS5Xpo4uLC9atW4c2bdogPz8f3333HXr27IkDBw7g2WefBfD471nfvsOkpCTs3LkTmzdv1tqua9/h1q1bERsbi6ioqAq117fjsLL9K00fjsPK9lHfjsPqfIf6cBy2b98e3377LZo1a4Y7d+5gzpw56NSpE86ePQs7O7sy7XXmGKyxsSMDk5+fL16+fFmMiooSP/jgA9He3l48e/ZsuW29vLzEuXPnam2LiIgQAYhJSUmiKIqiUqkUN2/erNXm+++/F1UqVe104Ckq079Hbd68WTQ1NRX37NnzxHbFxcViQECAOGnSpJoqudKq2scSgwYNEoODgzXP68t3OHfuXNHOzk7Mz89/Yjspv8MbN26Ijo6OYlxcnGbb004j6NNxWJX+PUofjsPq9rGErh6H1e2fPhyHpWVlZYlOTk7i4sWLy31dV45BnuqqIiMjIzRt2hRBQUGYN28eAgICsHz58nLbOjs7l0mrKSkpUCgUmlT8uDalk29dqUz/Svz4448ICwvDf//736cO68pkMrRt2xaXL1+uybIrpSp9fFSHDh206q8P36Eoiti4cSPGjh0LIyOjJ7aV8juMiYlBSkoK2rRpA4VCAYVCgYMHD2LFihVQKBQoLi4u8x59Og6r0r8S+nIcVqePj9LV47A6/dOX47A0MzMz+Pn5PbYWXTkGGXxqiCiKyM/PL/e1jh07Ys+ePVrbdu/ejaCgICiVyie26dSpU+0UXElP6h8AbNmyBePGjcPmzZsxcODACu0vLi4OLi4uNVlmtTytj6WdPHlSq359/w6Bh5eaXrlyBWFhYRXan1TfYc+ePXH69GnExcVpHkFBQRgzZgzi4uIgl8vLvEefjsOq9A/Qr+Owqn0sTVePw+r0T1+Ow9Ly8/Nx/vz5x9aiM8dgjY0dGZDp06eLhw4dEuPj48V//vlHnDFjhiiTycTdu3eLoiiKH3zwgTh27FhN+2vXrommpqbiu+++K547d07csGGDqFQqxZ9//lnT5siRI6JcLhfnz58vnj9/Xpw/f76oUCjEY8eO6Xz/Nm/eLCoUCnH16tViUlKS5vHgwQNNm1mzZol///23ePXqVfHkyZPi+PHjRYVCIR4/frzO+yeKle/j0qVLxe3bt4uXLl0Sz5w5I37wwQciAPGXX37RtNHn77DECy+8ILZv377cferad1ha6dMI+n4clva0/unjcVja0/qob8dhaU/rXwl9OQ7fe+898cCBA+K1a9fEY8eOiYMGDRItLCw0V6Hp6jHI4FMFEyZMEN3d3UUjIyPRwcFB7Nmzp+YXiiiK4ksvvSR27dpV6z0HDhwQW7VqJRoZGYkeHh7i2rVry+z3p59+Eps3by4qlUrR29tb62CuS5XtX9euXUUAZR4vvfSSpk14eLjYqFEjzT779OkjRkZG1mGvtFW2jwsWLBCbNGkiGhsbizY2NmLnzp3Fv/76q8x+9fU7FEVRfPDggWhiYiKuW7eu3H3q2ndYWulfKvp+HJb2tP7p43FY2tP6qG/HYWkV+TOqT8dhaGio6OLiIiqVStHV1VUcNmyY1jxCXT0GBVEUxZobPyIiIiLSXZzjQ0RERAaDwYeIiIgMBoMPERERGQwGHyIiIjIYDD5ERERkMBh8iIiIyGAw+BAREZHBYPAhIiIig8HgQ0RERAaDwYeISMdkZmaibdu2CAwMhJ+fH7766iupSyKqN7hkBRGRjikuLkZ+fj5MTU2Rk5MDX19fREVFwc7OTurSiPQeR3yIqE5069YN4eHhUpdRLampqXB0dERCQkKtfo5cLoepqSkAIC8vD8XFxSj5N+rzzz+PJUuW1OrnE9VnDD5E9ETBwcHo1atXua8dPXoUgiAgNja2jquSxrx58xAcHAwPD49a/6wHDx4gICAADRs2xNSpU2Fvbw8A+Pjjj/HZZ58hIyOj1msgqo8YfIjoicLCwrBv3z5cv369zGsbN25EYGAgWrduLUFldSs3NxcbNmzAyy+/XCefZ21tjVOnTiE+Ph6bN2/GnTt3AAD+/v7w8PDADz/8UCd1ENU3DD5E9ESDBg2Co6MjNm3apLU9JycHP/74I8LCwgAA+fn5ePvtt+Ho6AhjY2N07twZUVFRj92vh4cHli1bprUtMDAQs2bN0jzv1q0bJk2ahPDwcNjY2MDJyQnr1q1DdnY2xo8fDwsLCzRp0gQ7d+7U2o8oili4cCE8PT1hYmKCgIAA/Pzzz1r7ffvttzF16lTY2trC2dlZ63PLs3PnTigUCnTs2LHMa3fv3sWrr74KJycnzecdOnQIAJCQkABBELBt2zY8++yzMDExQZs2bZCQkIADBw6gXbt2MDU1Rffu3XH//v0y+3ZycoK/v79mfwAwePBgbNmy5Yn1ElH5GHyI6IkUCgVefPFFbNq0CY9eC/HTTz+hoKAAY8aMAQBMnToVv/zyC7755hvExsaiadOm6Nu3b7m/zCvjm2++gb29PU6cOIFJkybhjTfewIgRI9CpUyfExsaib9++GDt2LHJycjTv+c9//oOvv/4aa9euxdmzZ/Huu+/ihRdewMGDB7X2a2ZmhuPHj2PhwoX45JNPsGfPnsfWcejQIQQFBZXZfv36dfj7+yMtLQ2//fYb/vnnH0yaNAkWFhYAgLi4OADAmjVrMHfuXBw9ehSpqakYO3YsFixYgNWrV+PAgQM4ffo0NmzYAAC4c+eO5lRWRkYGDh06hObNm2s+s127djhx4gTy8/Or/oMlMlQiEdFTnD9/XgQg7tu3T7Pt2WefFUeNGiWKoihmZWWJSqVS/OGHHzSvFxQUiK6uruLChQtFURTFrl27iu+8847mdXd3d3Hp0qVanxMQECDOnDlT87xr165i586dNc+LiopEMzMzcezYsZptSUlJIgDx6NGjmlqMjY3FyMhIrX2HhYVp6i29X1EUxbZt24rTpk177M9gyJAh4oQJE8ps79+/v9itWzdRrVaX+75Zs2aJNjY24t27dzXbxo0bJzZq1EjMysrSbOvXr584efJkURRFMTo6WgwICBD9/f1FPz8/cc2aNVr7PHXqlAhATEhIeGy9RFQ+hcS5i4j0gLe3Nzp16oSNGzeie/fuuHr1Kg4fPozdu3cDAK5evYrCwkI888wzmvcolUq0a9cO58+fr9Zn+/v7a/5fLpfDzs4Ofn5+mm1OTk4AgJSUFADAuXPnkJeXh969e2vtp6CgAK1atSp3vwDg4uKi2Ud5cnNzYWxsrLXtxo0b2LlzJ2JjYyEIQrnvi4uLw+DBgzWTk0veN2rUKJiZmWltGzhwIACgTZs2mpGi8piYmACA1igXEVUMgw8RVUhYWBgmTpyI1atX4+uvv4a7uzt69uwJAJpTYKV/+Yui+NhAIJPJtE6dAUBhYWGZdkqlUuu5IAha20r2r1artf77119/oUGDBlrvValUT9xvyXvLY29vj7S0NK1tJ0+ehJGRkVagKu3UqVOYOnWq1ra4uDhMnDhR8zwvLw+XLl1CYGDgY/fzqJLThw4ODhVqT0T/j3N8iKhCQkJCIJfLsXnzZnzzzTcYP368JnQ0bdoURkZGiIiI0LQvLCxEdHQ0WrRoUe7+HBwckJSUpHmekZGB+Pj4atfp4+MDlUqFGzduoGnTploPNze3Ku+3VatWOHfunNY2pVKJoqKix468ZGRkICEhQSsYXb9+Hffv39fadvbsWRQXFyMgIKBCtZw5cwYNGzbUGkUioorhiA8RVYi5uTlCQ0MxY8YMpKenY9y4cZrXzMzM8MYbb+D999+Hra0tGjVqhIULFyInJ0dz1VdpPXr0wKZNmxAcHAwbGxt89NFHkMvl1a7TwsICU6ZMwbvvvgu1Wo3OnTsjIyMDkZGRMDc3x0svvVSl/fbt2xfTp09HWloabGxsAADt27eHlZUV3njjDXzwwQcQRRGHDh1Ct27d4O3tjVOnTkEmk2mdVouLi4O1tbXWvYBOnToFT09PzYTopzl8+DD69OlTpX4QGToGHyKqsLCwMGzYsAF9+vRBo0aNtF6bP38+1Go1xo4di8zMTAQFBWHXrl2akFDa9OnTce3aNQwaNAhWVlb49NNPa2TEBwA+/fRTODo6Yt68ebh27Rqsra3RunVrzJgxo8r79PPzQ1BQEP773//itddeAwDY2dnhjz/+wPvvv4+2bdvCyMgI7dq1Q2hoKICHgcbb21szJwd4eHqs9MjOqVOnKnyaKy8vD9u3b8euXbuq3BciQ8a1uoiIKmjHjh2YMmUKzpw5A5lMmpkCq1evxm+//aaZWE5ElcMRHyKiChowYAAuX76M27dvV2u+UHUolUqsXLlSks8mqg844kNEREQGg1d1ERERkcFg8CEiIiKDweBDREREBoPBh4iIiAwGgw8REREZDAYfIiIiMhgMPkRERGQwGHyIiIjIYDD4EBERkcFg8CEiIiKDweBDREREBuP/ADXbY2NCqZmeAAAAAElFTkSuQmCC", + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Graficar\n", + "plt.plot(data.V, data.P, label=\"P(V)\")\n", + "plt.fill_between(data.V, data.P, alpha=0.2)\n", + "plt.xlabel(\"Volumen ($cm^3$)\")\n", + "plt.ylabel(\"Presión ($Pa$)\")\n", + "plt.title(\"Integral de $P(V)$ = \" + str(integral)+ \" $\\mu J$\")\n", + "plt.legend()\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.18" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}