diff --git a/LabAvanzado1/DifraccionElectrones/code/difraccionElectrones.ipynb b/LabAvanzado1/DifraccionElectrones/code/difraccionElectrones.ipynb index b6b27bbe8a5f9d855102d2bc316f9f744ba590b2..a3d2c7aedd0fa81c850f073916b1a88598689d98 100644 --- a/LabAvanzado1/DifraccionElectrones/code/difraccionElectrones.ipynb +++ b/LabAvanzado1/DifraccionElectrones/code/difraccionElectrones.ipynb @@ -87,7 +87,7 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 82, "metadata": {}, "outputs": [ { @@ -115,12 +115,13 @@ "plt.title(\"Longitud de onda del electron, Ley de Bragg vs De Broglie\")\n", "plt.grid(alpha=0.5)\n", "plt.legend()\n", + "plt.savefig(\"../images/longitud_de_onda_electron.png\")\n", "plt.show()" ] }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 83, "metadata": {}, "outputs": [ { @@ -150,23 +151,22 @@ "plt.title(\"Diametro de los anillos de difraccion\")\n", "plt.grid(alpha=0.5)\n", "plt.legend()\n", + "plt.savefig(\"../images/diametro_anillos_electron.png\")\n", "plt.show()" ] }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 98, "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "array([1.21935056, 0.82510524])" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "Error porcentual entre los valores experimentales y teoricos\n", + "[21.93505633 17.4894757 ]\n" + ] } ], "source": [ @@ -180,7 +180,11 @@ "\n", "# Redondeamos a 3 cifras significativas\n", "k_teo = np.round(k_teo, 3)\n", - "error_k_teo = np.round(error_k_teo, 3)" + "error_k_teo = np.round(error_k_teo, 3)\n", + "\n", + "# Error porcentual entre los valores experimentales y teoricos\n", + "print(\"Error porcentual entre los valores experimentales y teoricos\")\n", + "print(np.abs(k_exp - k_teo) / k_teo * 100)" ] }, { @@ -220,7 +224,7 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 84, "metadata": {}, "outputs": [ { @@ -247,6 +251,7 @@ "plt.title(\"Distancia entre planos del grafito\")\n", "plt.grid(alpha=0.5)\n", "plt.legend()\n", + "plt.savefig(\"../images/distancia_entre_planos.png\")\n", "plt.show()" ] }, @@ -290,12 +295,12 @@ }, { "cell_type": "code", - "execution_count": 66, + "execution_count": 86, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHFCAYAAAAHcXhbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABIgElEQVR4nO3deVyU5f7/8fewKwiKKySigfuapce0zK0EC9cW7ZSQreZS2eJyToGeyjQ1W6xOp5Is62vnl3najuZxycxyiUhNKzFQS1zSBAEXmLl+f3iY48giowPDra/n4zGPB/d1X3Pdn3uGG9/e93XP2IwxRgAAABbl4+0CAAAAzgdhBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBlUiNTVVNpvN+QgKClKjRo3Uu3dvTZ8+XQcOHCjxnJSUFNlsNi9UW3EFBQVKSUnR6tWrvV2KkpKS1LRpU4+NZ4XXvyKaNm2qpKQk53JWVpZsNptSU1OdbcW/n1lZWVVe35k8/T66sx2bzaaUlBSXthUrVuiKK65QcHCwbDablixZUum1uau0unFx8fN2Abi4zJ8/X61atVJhYaEOHDigtWvXasaMGZo1a5YWLVqkfv36OfveddddiouL82K1Z1dQUKCpU6dKknr16uXdYlCqDz/8UKGhod4uwxK+/vprNW7c2LlsjNHNN9+sFi1a6KOPPlJwcLBatmzpxQpLd2bduPgQZlCl2rVrpyuuuMK5PGzYMD300EO66qqrNHToUO3YsUMNGzaUJDVu3PiC+wNVUFCgmjVreruMi8pll13m7RIso1u3bi7Le/fu1eHDhzVkyBD17du33Od683f7zLpx8eEyE7yuSZMmmj17to4ePaq///3vzvbSLnMsWrRI1113nSIiIlSjRg21bt1akyZNUn5+vku/pKQkhYSE6Mcff1T//v0VHBysiIgIPfPMM5Kkb775RldddZWCg4PVokULvfXWWyXq2rdvn+699141btxYAQEBatasmaZOnaqioiJJpy5X1K9fX5I0depU5yW04ksaxfWnpaXpxhtvVJ06dRQTEyNJOn78uCZPnqxmzZopICBAl1xyicaMGaMjR45U6DVLTU1Vy5YtFRgYqNatW2vBggWl9jt58qSefPJJtWrVSoGBgapfv77uuOMOHTx4sELbOZPD4dDMmTOd4zVo0EAjR47Ur7/+6tLvu+++0w033KAGDRooMDBQkZGRuv7660v0O9Py5cs1aNAgNW7cWEFBQYqNjdW9996r33//3aVf8Wv7ww8/aMSIEQoLC1PDhg01atQo5eTkuPQ98zKTO95880117NhRQUFBCg8P15AhQ7R9+3aXPr/88ouGDx+uyMhIBQYGqmHDhurbt6/S09PPOn5VvY8V3c7pl2tSUlKc/5mYOHGibDab87JUeb/bmzZt0vDhw9W0aVPVqFFDTZs21YgRI7Rr164S2/vtt990zz33KCoqSgEBAYqMjNSNN96o/fv3O/scOXJEDz/8sC699FLn79yAAQP0448/llp3sa1bt2rQoEGqU6eOgoKC1KlTpxLH+erVq2Wz2fTee+/pL3/5iyIjIxUaGqp+/frpp59+qtBri+qBMzOoFgYMGCBfX1+tWbOm3H47duzQgAED9OCDDyo4OFg//vijZsyYoQ0bNmjlypUufQsLCzV06FDdd999evTRR/Xuu+9q8uTJys3N1QcffKCJEyeqcePGevHFF5WUlKR27drp8ssvl3QqyHTt2lU+Pj564oknFBMTo6+//lpPPvmksrKyNH/+fEVERGjp0qWKi4vTnXfeqbvuukuSnAGn2NChQzV8+HDdd999ys/PlzFGgwcP1ooVKzR58mRdffXV2rx5s5KTk/X111/r66+/VmBgYJmvQWpqqu644w4NGjRIs2fPVk5OjlJSUnTixAn5+Pzv/ycOh0ODBg3Sl19+qccee0zdu3fXrl27lJycrF69emnTpk2qUaOGW+/T6NGj9dprr2ns2LG64YYblJWVpccff1yrV69WWlqa6tWrp/z8fF177bVq1qyZ5s2bp4YNG2rfvn1atWqVjh49Wu74O3fu1JVXXqm77rpLYWFhysrK0pw5c3TVVVdpy5Yt8vf3d+k/bNgw3XLLLbrzzju1ZcsWTZ48WdKpEHK+pk+frilTpmjEiBGaPn26Dh06pJSUFF155ZXauHGjmjdvLunU767dbtfMmTPVpEkT/f7771q3bt1Zg2lVvY8V3c6Z7rrrLnXs2FFDhw7VuHHjdOutt5b4vTzzd1s6FfJbtmyp4cOHKzw8XNnZ2XrllVfUpUsXbdu2TfXq1ZN0Ksh06dJFhYWFmjJlijp06KBDhw5p2bJl+uOPP9SwYUMdPXpUV111lbKysjRx4kT96U9/Ul5entasWaPs7Gy1atWq1Np/+uknde/eXQ0aNNALL7ygunXr6p133lFSUpL279+vxx57zKX/lClT1KNHD73++uvKzc3VxIkTlZCQoO3bt8vX17fc9xHVhAGqwPz5840ks3HjxjL7NGzY0LRu3dq5nJycbMr7FXU4HKawsNB88cUXRpL5/vvvnesSExONJPPBBx842woLC039+vWNJJOWluZsP3TokPH19TUTJkxwtt17770mJCTE7Nq1y2Wbs2bNMpLMDz/8YIwx5uDBg0aSSU5OLlFfcf1PPPGES/vSpUuNJDNz5kyX9kWLFhlJ5rXXXitzn+12u4mMjDSdO3c2DofD2Z6VlWX8/f1NdHS0s+29994r8RoYY8zGjRuNJPPyyy+XuZ3T6y+2fft2I8ncf//9Lv3Wr19vJJkpU6YYY4zZtGmTkWSWLFlS7vhnU/z+7tq1y0gy//rXv0rUduZreP/995ugoCCX1yY6OtokJiY6lzMzM40kM3/+fGdb8e9nZmamMcaYP/74w9SoUcMMGDDAZfzdu3ebwMBAc+uttxpjjPn999+NJDN37ly39q2q3kd3tmOMKfG7XPxaPfvssy79yvrdLk1RUZHJy8szwcHB5vnnn3e2jxo1yvj7+5tt27aV+dxp06YZSWb58uXlbuPMuocPH24CAwPN7t27XfrFx8ebmjVrmiNHjhhjjFm1apWRVOJ9fv/9940k8/XXX591/1A9cJkJ1YYx5qx9fvnlF916661q1KiRfH195e/vr2uuuUaSSpz+t9lsGjBggHPZz89PsbGxioiIcJlHER4ergYNGricBv/kk0/Uu3dvRUZGqqioyPmIj4+XJH3xxRcV3q9hw4a5LBefQTrz0sdNN92k4OBgrVixosyxfvrpJ+3du1e33nqryyW46Ohode/e3aXvJ598otq1ayshIcFlHzp16qRGjRq5fQfWqlWrSq27a9euat26tbPu2NhY1alTRxMnTtSrr76qbdu2VXgbBw4c0H333aeoqCj5+fnJ399f0dHRkkq+v5I0cOBAl+UOHTro+PHjpd4d546vv/5ax44dK7GvUVFR6tOnj3Nfw8PDFRMTo2effVZz5szRd999J4fDcdbxq+p9dGc75+LM321JysvL08SJExUbGys/Pz/5+fkpJCRE+fn5Lu/hv//9b/Xu3VutW7cuc/x///vfatGihcuNARWxcuVK9e3bV1FRUS7tSUlJKigo0Ndff+3SXtrvkaRSL42heiLMoFrIz8/XoUOHFBkZWWafvLw8XX311Vq/fr2efPJJrV69Whs3btTixYslSceOHXPpX7NmTQUFBbm0BQQEKDw8vMTYAQEBOn78uHN5//79+vjjj+Xv7+/yaNu2rSSVmMNRnoiICJflQ4cOyc/Pr8TlKJvNpkaNGunQoUNljlW8rlGjRiXWndm2f/9+HTlyRAEBASX2Y9++fW7tw+nbPnN/JCkyMtK5PiwsTF988YU6deqkKVOmqG3btoqMjFRycrIKCwvLHN/hcOi6667T4sWL9dhjj2nFihXasGGDvvnmG0kl319Jqlu3rsty8WWQ0vq6o6L7arPZtGLFCvXv318zZ85U586dVb9+fY0fP77cS2pV9T66s51zUdrrc+utt+qll17SXXfdpWXLlmnDhg3auHGj6tev7/K+HDx48KwT/CvSpzSHDh0q870rXn+6yvo9QtVhzgyqhU8//VR2u73c25tXrlypvXv3avXq1c6zMZIqPGnWHfXq1VOHDh301FNPlbq+vNB1pjMnMdetW1dFRUU6ePCgS6Axxmjfvn3q0qVLmWMV/9Hdt29fiXVnttWrV09169bV0qVLSx2rVq1aFd6H07ednZ1d4h+YvXv3OudCSFL79u31f//3fzLGaPPmzUpNTdW0adNUo0YNTZo0qdTxt27dqu+//16pqalKTEx0tmdkZLhVpyecvq9nOnNfo6Oj9cYbb0iSfv75Z73//vtKSUnRyZMn9eqrr5Y7fmW/j+5s51yc+budk5OjTz75RMnJyS7v84kTJ3T48GGXvvXr1z/rhPCK9ClN3bp1y3zvJLm8f7gwcGYGXrd792498sgjCgsL07333ltmv+I/nGdOQjz9DihPueGGG7R161bFxMToiiuuKPEoDjPn8j+44ltc33nnHZf2Dz74QPn5+eXeAtuyZUtFRETovffec7kst2vXLq1bt67EPhw6dEh2u73UfXD380L69OlTat0bN27U9u3bS63bZrOpY8eOeu6551S7dm2lpaWVOX5Vvr9nc+WVV6pGjRol9vXXX391XsIoTYsWLfTXv/5V7du3L3dfq+p9dGc7nmCz2WSMKfEevv7667Lb7S5t8fHxWrVqVbl3DcXHx+vnn38uMbn/bPr27ev8z8/pFixYoJo1a3Ir9wWIMzOoUlu3bnVe8z9w4IC+/PJLzZ8/X76+vvrwww9LXHo5Xffu3VWnTh3dd999Sk5Olr+/vxYuXKjvv//e43VOmzZNy5cvV/fu3TV+/Hi1bNlSx48fV1ZWlj777DO9+uqraty4sWrVqqXo6Gj961//Ut++fRUeHq569eqV+wmu1157rfr376+JEycqNzdXPXr0cN7NdNlll+n2228v87k+Pj7629/+prvuuktDhgzR3XffrSNHjiglJaXEZYPhw4dr4cKFGjBggB544AF17dpV/v7++vXXX7Vq1SoNGjRIQ4YMqfBr0rJlS91zzz168cUX5ePjo/j4eOfdTFFRUXrooYcknZrj8fLLL2vw4MG69NJLZYzR4sWLdeTIEV177bVljt+qVSvFxMRo0qRJMsYoPDxcH3/8sZYvX17hGj2ldu3aevzxxzVlyhSNHDlSI0aM0KFDhzR16lQFBQUpOTlZkrR582aNHTtWN910k5o3b66AgACtXLlSmzdvLvMMlFR176M72/GE0NBQ9ezZU88++6zzOPjiiy/0xhtvqHbt2i59p02bpn//+9/q2bOnpkyZovbt2+vIkSNaunSpJkyYoFatWunBBx/UokWLNGjQIE2aNEldu3bVsWPH9MUXX+iGG25Q7969S60jOTnZOe/tiSeeUHh4uBYuXKhPP/1UM2fOVFhYmMf3HV7mtanHuKgU3y1S/AgICDANGjQw11xzjXn66afNgQMHSjyntLuZ1q1bZ6688kpTs2ZNU79+fXPXXXeZtLS0EnenJCYmmuDg4BJjXnPNNaZt27Yl2qOjo83111/v0nbw4EEzfvx406xZM+Pv72/Cw8PN5Zdfbv7yl7+YvLw8Z7///Oc/5rLLLjOBgYFGkvPOmeL6Dx48WGJ7x44dMxMnTjTR0dHG39/fREREmNGjR5s//vijvJfR6fXXXzfNmzc3AQEBpkWLFubNN980iYmJJe5OKSwsNLNmzTIdO3Y0QUFBJiQkxLRq1crce++9ZseOHeVuo7TX3263mxkzZpgWLVoYf39/U69ePXPbbbeZPXv2OPv8+OOPZsSIESYmJsbUqFHDhIWFma5du5rU1NSz7te2bdvMtddea2rVqmXq1KljbrrpJrN79+4Sd6uU9dqeeVeSMed2N1Ox119/3XTo0MEEBASYsLAwM2jQIOedbMYYs3//fpOUlGRatWplgoODTUhIiOnQoYN57rnnTFFR0Vn3tyreR3e2c+brfLa7mUr73f7111/NsGHDTJ06dUytWrVMXFyc2bp1a4n3wRhj9uzZY0aNGmUaNWpk/P39TWRkpLn55pvN/v37nX3++OMP88ADD5gmTZoYf39/06BBA3P99debH3/8scy6jTFmy5YtJiEhwYSFhZmAgADTsWNHl/fcmP/dzfTPf/7Tpb203xFUbzZjKnALCQAAQDXFnBkAAGBphBkAAGBphBkAAGBphBkAAGBphBkAAGBphBkAAGBpF/yH5jkcDu3du1e1atUq8dHbAACgejLG6OjRo4qMjJSPT/nnXi74MLN3794S35wKAACsYc+ePWf9wtELPswUfwnbnj17FBoa6tGx7Xa7du7cqZiYGPn6+np0bABnxzEIeFdlHoO5ubmKioqq0JfiXvBhpvjSUmhoaKWEmZCQEIWGhvKHFPACjkHAu6riGKzIFBEmAAMAAEsjzAAAAEsjzAAAAEu74OfMAACsx+Fw6OTJk94uA2dht9vlcDh0/Phxt+fM+Pv7e2yeDWEGAFCtnDx5UpmZmXI4HN4uBWdhjFFRUZF27dp1Tp/lVrt2bTVq1Oi8PweOMAMAqDaMMcrOzpavr6+ioqLO+mFp8C5jjE6cOKHAwEC3AokxRgUFBTpw4IAkKSIi4rzqIMwAAKqNoqIiFRQUKDIyUjVr1vR2OTgLY4wkKSgoyO2zKzVq1JAkHThwQA0aNDivS05EXgBAtWG32yVJAQEBXq4EVaE4sBYWFp7XOIQZAEC1w3fpXRw89T4TZgAAF5yCk0VqOulTNZ30qQpOFnm7HFQywgwAABbTq1cvPfjgg+X2adq0qebOnVsl9XgbYQYAcMGxO4zz5w2Zh12WK0NSUpIGDx5cqdtA2QgzAIALytKt2eo35wvnctL8jbpqxkot3ZrtxapQmQgzAIALxtKt2Rr9Tpr2555wad+Xc1yj30nzSqBJTU1V7dq1XdqWLFniMvm1adOmstlsJR7lKSoq0tixY1W7dm3VrVtXf/3rX523Spdmzpw5at++vYKDgxUVFaX7779feXl5JepctmyZWrdurZCQEMXFxSk72/U1e/PNN9W2bVsFBgYqMjJSDz30UIW3UVkIM+eo4GSRYv6yVHGpO5lcBgDVgN1hNPXjbSrtn/Pitqkfb6v0S07nYuPGjcrOzlZ2drZ+/fVXdevWTVdffXW5z3nrrbfk5+en9evX64UXXtBzzz2n119/vcz+Pj4+euGFF7R161a99dZbWrlypR577DGXPgUFBZo1a5befvttrVmzRrt379YjjzziXP/KK69ozJgxuueee7Rlyxb961//UkxMjFvbqAx8aN45Ov1g2Jh1WNe0bCRfH24lBABv2ZB5WNk5x8tcbyRl5xzXhszDujKmbtUVVgH169d3/vzAAw8oOztbGzduLPc5UVFReu6552Sz2dSyZUtt2bJFzz33nO6+++5S+58+YbhZs2b629/+ptGjR+vll192thcWFurVV191BpSxY8dq2rRpzvVPPvmkHn74YT3wwAOSTn1oXvv27d3aRmXgzMw5OPN67Ki30rgeCwBeduBo2UHmXPp5w2uvvaY33nhD//rXv1wCTmm6devmcinqyiuv1I4dO5wfPHimVatW6dprr9Ull1yiWrVqaeTIkTp06JDy8/OdfWrWrOlypiUiIsL5lQMHDhzQ3r171bdv3zJrqsg2KgNhxk3V8XosAEBqUCvIo/08xcfHp8RcltI+8Xb16tUaN26cFixYoI4dO3q0hl27dmnAgAFq166dPvjgA3377beaN29eiVr8/f1dnmez2Zy1F3/9wPluozIQZtxg5euxAHCh69osXBFhQSrrgr9NUkRYkLo2C6/KslS/fn0dPXrU5exEenq6S5+MjAwNGzZMU6ZM0dChQys07jfffFNiuXnz5qV+x9GmTZtUVFSk2bNnq1u3bmrRooX27t3r1n7UqlVLTZs21YoVK0pd74ltnCvmzLjBytdjAeBC5+tjU3JCG41+J002yeU/nsUBJzmhTaXNb8zJySkRUsLDw/WnP/1JNWvW1JQpUzRu3Dht2LBBqampzj7Hjh1TQkKCOnXqpHvuuUf79u1zrmvUqFGZ29uzZ48mTJige++9V2lpaXrxxRc1e/bsUvvGxMSoqKhIL774ohISEvTVV1/p1VdfdXsfU1JSdN9996lBgwaKj49Xbm6uvvjiCz300EMe28a54MyMGy6E67EAcCGLaxehV27rrAahgS7tjcKC9MptnRXXLqLStr169WpddtllLo8nnnhC4eHheuedd/TZZ5+pffv2eu+995SSkuJ83v79+/Xjjz9q5cqVioyMVEREhPNRnpEjR+rYsWPq2rWrxowZo3Hjxumee+4ptW+nTp00Z84czZgxQ+3atdPChQs1ffp0t/cxMTFRc+fO1csvv6y2bdsqISFBGRkZHt3GubCZ8m5KvwDk5uYqLCxMOTk5Cg0NPa+xvt55SCP+8c1Z+713dzfOzABVwG63a8eOHWWeWof1HD9+XJmZmWrWrJmCgs59bsvR44Vqn/K5JCn1ji66unl97jitBMYYHT9+XEFBQef0pZHlvd/u/PvNmRk3VNfrsQAAV6cHl67NwgkyFzjCjBuKr8dKKhFoquJ6LACgYmoG+CnrmeuV9cz1qhnA9NALHWHGTd68HgsAAEoirp6DuHYR6hFbz3k99s3EznwCMAAAXsKZmXN0enDp0pTrsQAAeAtnZs5RzQA/7XwqTjt27OB6LAAAXsSZGQAAYGmEGQAAYGmEGQDAhedkvpQSdupxsnK/sRneR5gBAADlSklJUadOnbxdRpkIMwCAC4/D/r+fd61zXa4ESUlJGjx4cKVuw5seeeSRMr8tuzogzAAALizbPpLmdf3f8sIbpbntTrVfJE6ePOnRfiEhIapbt/p+5yBhBgBw4dj2kfT+SOlotmt7bvapdi8Fmjlz5qh9+/YKDg5WVFSU7r//fuXl5TnX79q1SwkJCapTp46Cg4PVtm1bffbZZ87127Zt04ABAxQSEqKGDRvq9ttv1++//+5c36tXL40dO1YTJkxQvXr1dO2115ZaR/EZpOnTpysyMlItWrSQJG3ZskV9+vRRjRo1VLduXd1zzz0u9Z15mcnhcGjatGmKiopS7dq1ddlll2np0qWeerncRpgBAFwYHHZp6URJppSV/21bOqnSLzmVxsfHRy+88IK2bt2qt956SytXrtRjjz3mXD9mzBidOHFCa9as0ZYtWzRjxgyFhIRIkrKzs3XNNdeoU6dO2rRpk5YuXar9+/fr5ptvdtnGW2+9JT8/P3311Vf6+9//XmYtK1as0Pbt27V8+XJ98sknKigoUFxcnOrUqaONGzfqn//8p/7zn/9o7NixZY7x/PPPa/bs2Xr22We1YcMGXXfddRo4cKB27Nhxnq/UueHT3gAAF4Zd66TcveV0MFLub6f6Nbu6ysqSpAcffND5c7NmzfS3v/1No0eP1ssvvyxJ2r17t4YNG6b27dtLki699FJn/1deeUWdO3fW008/7Wx78803FRUVpZ9//tl5diU2NlYzZ848ay3BwcF6/fXXFRAQIEn6xz/+oWPHjmnBggUKDg6WJL300ktKSEjQjBkz1LBhwxJjzJo1SxMnTtTw4cN1/PhxzZgxQ6tXr9bcuXM1b948N1+d80eYAQBcGPL2e7afB61atUpPP/20tm3bptzcXBUVFen48ePKz89XcHCwxo8fr9GjR+vzzz9Xv379NGzYMHXo0EGS9O2332rVqlXOMzWn27lzpzPMXHHFFRWqpX379s4gI0nbt29Xx44dnUFGknr06CGHw6GffvqpRJjJzc3V3r171aNHD5f2Hj166Pvvv6/YC+JhXGYCAFwYQkqeQTivfh6ya9cuDRgwQO3atdMHH3ygb7/91nn2orCwUJJ011136ZdfftHtt9+uLVu26IorrtCLL74o6dT8lISEBKWnp7s8duzYoZ49ezq3c3oYKc+Z/YwxstlK/37BstpLW1feOJWNMAMAuDBEd5dCIyWV9Q+qTQq95FS/KrRp0yYVFRVp9uzZ6tatm1q0aKG9e0teDouKitJ9992nxYsX6+GHH9Y//vEPSVLnzp31ww8/qGnTpoqNjXV5VDTAlKdNmzZKT09Xfv7/Plzwq6++ko+Pj/Osz+lCQ0MVGRmptWvXurSvW7dOrVu3Pu96zgVhBgBwYfDxleJm/HfhzEDz3+W4Z071qwQ5OTklzp7s3r1bMTExKioq0osvvqhffvlFb7/9tl599VWX5z744INatmyZMjMzlZaWppUrVzqDwZgxY3T48GGNGDFCGzZs0C+//KLPP/9co0aNkt1+/pOZ//znPysoKEiJiYnaunWrVq1apXHjxun2228vdb6MJD366KOaMWOGFi1apJ9//lmTJk1Senq6HnjggfOu51wwZwYAcOFoM1C6eYH078dcb88OjTwVZNoMrLRNr169WpdddplLW2JiolJTUzVnzhzNmDFDkydPVs+ePTV9+nSNHDnS2c9ut2vMmDH69ddfFRoaqri4OD333HOSpMjISH311VeaOHGi+vfvrxMnTig6OlpxcXHy8Tn/cxI1a9bUsmXL9MADD6hLly6qWbOmhg0bpjlz5pT5nPHjxys3N1ePPPKIDhw4oDZt2uijjz5S8+bNz7uec2EzxpR2D9sFIzc3V2FhYcrJyVFoaKhHx7bb7dqxY4eaN28uX9/KSfoAysYxeOE5fvy4MjMz1axZMwUFBZ3HQLnSM1Gnfv7z/5Ni+lTaGZmLweTJk/Xll1+WuLRkjNHx48cVFBR0TvNlynu/3fn3m8tMAIALz+nBJbo7QeYcGWO0c+dOrVixQm3btvV2OWXiMhMA4MITECyl5Hi7CsvLyclRmzZt1KVLF02ZMsXb5ZSJMAMAAEpVu3ZtnThxwttlnBWXmQAAgKURZgAA1c4Ffm8K/stT7zNhBgBQbRTflXby5EkvV4KqUFBQIEny9/c/r3GYMwMAqDb8/PxUs2ZNHTx4UP7+/h75HBVUHmOMc06NO7dmG2NUUFCgAwcOqHbt2uf90QqEGQBAtWGz2RQREaHMzEzt2rXL2+XgLIwxKioqkp+f3zl9zkzt2rXVqFGj866DMAMAqFYCAgLUvHlzLjVZgN1u165duxQdHe322RV/f3+PfdglYQYAUO34+Pic3ycAo0rY7Xbne+XNT+HmYiQAALA0wgwAALA0r4aZNWvWKCEhQZGRkbLZbFqyZEmJPtu3b9fAgQMVFhamWrVqqVu3btq9e3fVFwsAAKolr4aZ/Px8dezYUS+99FKp63fu3KmrrrpKrVq10urVq/X999/r8ccf5zoqAABw8uoE4Pj4eMXHx5e5/i9/+YsGDBigmTNnOtsuvfTSqigNAABYRLW9m8nhcOjTTz/VY489pv79++u7775Ts2bNNHnyZA0ePLjM5504ccLlS7Fyc3MlnZpxbbfbPVqj3W6Xw+Hw+LgAKoZjEPCuyjwG3Rmz2oaZAwcOKC8vT88884yefPJJzZgxQ0uXLtXQoUO1atUqXXPNNaU+b/r06Zo6dWqJ9p07dyokJMSjNTocDh0+fFgZGRl8SiXgBRyDgHdV5jGYl5dX4b42U02+zctms+nDDz90nnXZu3evLrnkEo0YMULvvvuus9/AgQMVHBys9957r9RxSjszExUVpcOHDys0NNSjNdvtdmVkZCg2Ntar99cDFyuOQcC7KvMYzM3NVXh4uHJycs7673e1PTNTr149+fn5qU2bNi7trVu31tq1a8t8XmBgoAIDA0u0+/r6VsofOx8fn0obG8DZcQwC3lVZx6A741Xb87IBAQHq0qWLfvrpJ5f2n3/+WdHR0V6qCgAAVDdePTOTl5enjIwM53JmZqbS09MVHh6uJk2a6NFHH9Utt9yinj17qnfv3lq6dKk+/vhjrV692ntFAwCAasWrYWbTpk3q3bu3c3nChAmSpMTERKWmpmrIkCF69dVXNX36dI0fP14tW7bUBx98oKuuuspbJQMAgGrGq2GmV69eOtv841GjRmnUqFFVVBEAALCaajtnBgAAoCIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIMwAAwNIIM+fqZL58/xauVv/3J+lkvrerAQDgokWYAQAAlkaYOVcO+/9+3v216zIAAKgyhJlzse0jaV5X56LvezdLc9udagcAAFWKMOOubR9J74+Ujma7tudmn2on0AAAUKUIM+5w2KWlEyWZUlb+t23pJC45AQBQhQgz7ti1TsrdW04HI+X+dqofAACoEoQZd+Tt92w/AABw3ggz7ghp6Nl+AADgvBFm3BHdXQqNlGQro4NNCr3kVD8AAFAlCDPu8PGV4mb8d+HMQPPf5bhnTvUDAABVgjDjrjYDpZsXSLUaubaHRp5qbzPQO3UBAHCR8vN2AZbUZqB0aS/pmShJkn3E+/Jt3o8zMgAAeAFh5lwFhcr++GHt2LFDzWObE2QAAPASLjMBAABL82qYWbNmjRISEhQZGSmbzaYlS5a4rE9KSpLNZnN5dOvWzTvFAgCAasmrYSY/P18dO3bUSy+9VGafuLg4ZWdnOx+fffZZFVYIAACqO6/OmYmPj1d8fHy5fQIDA9WoUaNy+wAAgItXtZ8zs3r1ajVo0EAtWrTQ3XffrQMHDni7JAAAUI1U67uZ4uPjddNNNyk6OlqZmZl6/PHH1adPH3377bcKDAws9TknTpzQiRMnnMu5ubmSJLvdLrvds99mbbfb5XA4PD4ugIrhGAS8qzKPQXfGrNZh5pZbbnH+3K5dO11xxRWKjo7Wp59+qqFDh5b6nOnTp2vq1Kkl2nfu3KmQkBCP1udwOHT48GFlZGTIx6fan+QCLjgcg4B3VeYxmJeXV+G+1TrMnCkiIkLR0dHasWNHmX0mT56sCRMmOJdzc3MVFRWlmJgYhYaGerQeu92ujIwMxcbGyteXz5kBqhrHIOBdlXkMFl9ZqQhLhZlDhw5pz549ioiIKLNPYGBgqZegfH19K+WPnY+PT6WNDeDsOAYB76qsY9Cd8bwaZvLy8pSRkeFczszMVHp6usLDwxUeHq6UlBQNGzZMERERysrK0pQpU1SvXj0NGTLEi1UDAIDqxKthZtOmTerdu7dzufjyUGJiol555RVt2bJFCxYs0JEjRxQREaHevXtr0aJFqlWrlrdKBgAA1YxXw0yvXr1kjClz/bJly6qwGgAAYEVM/wcAAJZGmAEAAJZGmAEAAJZWoTkz7tzrXczTn+kCAABQmgqFmdq1a8tms1V4UJvNpp9//lmXXnrpORcGAABQERW+m+n//b//p/Dw8LP2M8ZowIAB51UUAABARVUozERHR6tnz56qW7duhQa99NJL5e/vf16FAQAAVESFwkxmZqZbg27duvWcigEAAHAXdzMBAABLO6dPAN6wYYNWr16tAwcOyOFwuKybM2eORwoDAACoCLfDzNNPP62//vWvatmypRo2bOhyl5M7dzwBAAB4gtth5vnnn9ebb76ppKSkSigHAADAPW7PmfHx8VGPHj0qoxYAAAC3uR1mHnroIc2bN68yagEAAHCb25eZHnnkEV1//fWKiYlRmzZtSnyezOLFiz1WHAAAwNm4HWbGjRunVatWqXfv3qpbty6TfgEAgFe5HWYWLFigDz74QNdff31l1AMAAOAWt+fMhIeHKyYmpjJqAQAAcJvbYSYlJUXJyckqKCiojHoAAADc4vZlphdeeEE7d+5Uw4YN1bRp0xITgNPS0jxWHAAAwNm4HWYGDx5cCWUAAACcG7fDTHJycmXUAQAAcE7cnjOzceNGrV+/vkT7+vXrtWnTJo8UBQAAUFFuh5kxY8Zoz549Jdp/++03jRkzxiNFAQAAVJTbYWbbtm3q3LlzifbLLrtM27Zt80hRAAAAFeV2mAkMDNT+/ftLtGdnZ8vPz+0pOAAAAOfF7TBz7bXXavLkycrJyXG2HTlyRFOmTNG1117r0eIAAADOxu1TKbNnz1bPnj0VHR2tyy67TJKUnp6uhg0b6u233/Z4gQAAAOVxO8xccskl2rx5sxYuXKjvv/9eNWrU0B133KERI0aU+AA9AACAynZOk1yCg4N1zz33eLoWAAAAt1VozsxHH32kwsLCCg/62Wef6dixY+dcFAAAQEVVKMwMGTJER44cqfCgw4cPV3Z29rnWBAAAUGEVusxkjFFSUpICAwMrNOjx48fPqygAAICKqlCYSUxMdGvQP//5zwoNDT2nggAAANxRoTAzf/78yq4DAADgnLj9oXkAAADVCWEGAABYGmEGAABYGmEGAABYGmEGAABY2jmFmS+++EIJCQmKjY1V8+bNNXDgQH355Zeerg0AAOCs3A4z77zzjvr166eaNWtq/PjxGjt2rGrUqKG+ffvq3XffrYwaAQAAyuT2F00+9dRTmjlzph566CFn2wMPPKA5c+bob3/7m2699VaPFggAAFAet8/M/PLLL0pISCjRPnDgQGVmZnqkKAAAgIpyO8xERUVpxYoVJdpXrFihqKgojxQFAABQUW5fZnr44Yc1fvx4paenq3v37rLZbFq7dq1SU1P1/PPPV0aNAAAAZXI7zIwePVqNGjXS7Nmz9f7770uSWrdurUWLFmnQoEEeLxAAAKA8boWZoqIiPfXUUxo1apTWrl1bWTUBAABUmFtzZvz8/PTss8/KbrdXVj0AAABucXsCcL9+/bR69epKKAUAAMB9bs+ZiY+P1+TJk7V161ZdfvnlCg4Odlk/cOBAjxUHAABwNuc0AViS5syZU2KdzWbjEhQAAKhSbocZh8NRGXUAAACcE7fnzCxYsEAnTpwo0X7y5EktWLDAI0UBAABUlNth5o477lBOTk6J9qNHj+qOO+5wa6w1a9YoISFBkZGRstlsWrJkSZl97733XtlsNs2dO9fNigEAwIXM7TBjjJHNZivR/uuvvyosLMytsfLz89WxY0e99NJL5fZbsmSJ1q9fr8jISLfGBwAAF74Kz5m57LLLZLPZZLPZ1LdvX/n5/e+pdrtdmZmZiouLc2vj8fHxio+PL7fPb7/9prFjx2rZsmW6/vrr3RofAABc+CocZgYPHixJSk9PV//+/RUSEuJcFxAQoKZNm2rYsGEeLc7hcOj222/Xo48+qrZt21boOSdOnHCZ05ObmyvpVODy9J1WdrtdDoeDO7gAL+EYBLyrMo9Bd8ascJhJTk6WJDVt2lS33HKLgoKC3K/MTTNmzJCfn5/Gjx9f4edMnz5dU6dOLdG+c+dOlwDmCQ6HQ4cPH1ZGRoZ8fNy+YgfgPHEMAt5VmcdgXl5ehfu6fWt2YmKijhw5onfeeUc7d+7Uo48+qvDwcKWlpalhw4a65JJL3B2yVN9++62ef/55paWllTpHpyyTJ0/WhAkTnMu5ubmKiopSTEyMQkNDPVJbMbvdroyMDMXGxsrX19ejYwM4O45BwLsq8xgsvrJSEW6Hmc2bN6tfv34KCwtTVlaW7r77boWHh+vDDz/Url27PHZ79pdffqkDBw6oSZMmzja73a6HH35Yc+fOVVZWVqnPCwwMVGBgYIl2X1/fSvlj5+PjU2ljAzg7jkHAuyrrGHRnPLfPCT300ENKSkrSjh07XC41xcfHa82aNe4OV6bbb79dmzdvVnp6uvMRGRmpRx99VMuWLfPYdgAAgLW5fWZm06ZNeu2110q0X3LJJdq3b59bY+Xl5SkjI8O5nJmZqfT0dIWHh6tJkyaqW7euS39/f381atRILVu2dLdsAABwgXI7zAQFBZV6Heunn35S/fr13Rpr06ZN6t27t3O5eK5LYmKiUlNT3S0NAABchNwOM4MGDdK0adP0/vvvSzr15ZK7d+/WpEmT3L41u1evXjLGVLh/WfNkAADAxcvtOTOzZs3SwYMH1aBBAx07dkzXXHONYmNjVatWLT311FOVUSMAAECZ3D4zExoaqrVr12rlypVKS0uTw+FQ586d1a9fv8qoDwAAoFxuh5liffr0UZ8+fTxZCwAAgNvOKcxs2LBBq1ev1oEDB+RwOFzWzZkzxyOFAQAAVITbYebpp5/WX//6V7Vs2VINGzZ0+XRedz6pFwAAwBPcDjPPP/+83nzzTSUlJVVCOQAAAO5x+24mHx8f9ejRozJqAQAAcNs5fZ3BvHnzKqMWAAAAt7l9memRRx7R9ddfr5iYGLVp00b+/v4u6xcvXuyx4gAAAM7G7TAzbtw4rVq1Sr1791bdunWZ9AsAALzK7TCzYMECffDBB7r++usrox4AAAC3uD1nJjw8XDExMZVRCwAAgNvcDjMpKSlKTk5WQUFBZdQDAADgFrcvM73wwgvauXOnGjZsqKZNm5aYAJyWluax4gCgLAUni9TmiWWSpC3JzVSrhq+XKwLgLW6HmcGDB1dCGQDgHrvDOH/emHVY17RsJF8fbkgALkZuh5nk5OTKqAMAKmzp1mwlf/SDc3nUW2mKCAtSckIbxbWL8GJlALzB7TkzAOBNS7dma/Q7adqfe8KlfV/OcY1+J01Lt2Z7qTIA3uJ2mLHb7Zo1a5a6du2qRo0aKTw83OUBAJXF7jCa+vE2mVLWFbdN/XibyyUoABc+t8PM1KlTNWfOHN18883KycnRhAkTNHToUPn4+CglJaUSSgSAUzZkHlZ2zvEy1xtJ2TnHtSHzcNUVBcDr3A4zCxcu1D/+8Q898sgj8vPz04gRI/T666/riSee0DfffFMZNQKAJOnA0bKDzLn0A3BhcDvM7Nu3T+3bt5ckhYSEKCcnR5J0ww036NNPP/VsdQBwmga1gjzaD8CFwe0w07hxY2Vnn5pgFxsbq88//1yStHHjRgUGBnq2OgA4Tddm4YoIC1JZN2DbJEWEBalrM+bvARcTt8PMkCFDtGLFCknSAw88oMcff1zNmzfXyJEjNWrUKI8XCADFfH1sSk5oI0klAk3xcnJCGz5vBrjIuP05M88884zz5xtvvFGNGzfWunXrFBsbq4EDB3q0OAA4U1y7CL1yW2clf/SDy+3ZjficGeCi5XaYOVO3bt3UrVs3T9QCABUS1y5CPWLrqX3KqcvcbyZ25hOAgYtYhcLMRx99pPj4ePn7++ujjz4qty9nZwBUhdODS5em4QQZ4CJWoTAzePBg7du3Tw0aNCj3u5lsNpvsdrunagOAMtUM8NPOp+K0Y8cO1Qw475PMACysQn8BHA5HqT8DAAB4G9/NBAAALM2tc7MOh0OpqalavHixsrKyZLPZ1KxZM9144426/fbbZbNxzRoAAFStCp+ZMcZo4MCBuuuuu/Tbb7+pffv2atu2rXbt2qWkpCQNGTKkMusEAAAoVYXPzKSmpmrNmjVasWKFevfu7bJu5cqVGjx4sBYsWKCRI0d6vEgAAICyVPjMzHvvvacpU6aUCDKS1KdPH02aNEkLFy70aHEAAABnU+Ews3nzZsXFxZW5Pj4+Xt9//71HigIAAKioCoeZw4cPq2HDhmWub9iwof744w+PFAUAAFBRFQ4zdrtdfn5lT7Hx9fVVUVGRR4oCAACoqApPADbGKCkpSYGBgaWuP3HiRKntAAAAlanCYSYxMfGsfbiTCQAAVLUKh5n58+dXZh0AAADnhK8zAAAAlkaYAQAAlkaYAQAAlkaYAQAAlkaYAQAAlkaYAQAAlkaYAQAAlkaYAQAAlkaYAQAAlkaYAQAAlkaYAQAAlkaYAQAAlkaYAQAAlkaYAQAAlkaYAQAAlubVMLNmzRolJCQoMjJSNptNS5YscVmfkpKiVq1aKTg4WHXq1FG/fv20fv167xQLAACqJa+Gmfz8fHXs2FEvvfRSqetbtGihl156SVu2bNHatWvVtGlTXXfddTp48GAVVwoAAKorP29uPD4+XvHx8WWuv/XWW12W58yZozfeeEObN29W3759K7s8AABgAV4NM+44efKkXnvtNYWFhaljx45l9jtx4oROnDjhXM7NzZUk2e122e12j9Zkt9vlcDg8Pi6AiuEYBLyrMo9Bd8as9mHmk08+0fDhw1VQUKCIiAgtX75c9erVK7P/9OnTNXXq1BLtO3fuVEhIiEdrczgcOnz4sDIyMuTjw1xqoKpxDALeVZnHYF5eXoX72owxxqNbP0c2m00ffvihBg8e7NKen5+v7Oxs/f777/rHP/6hlStXav369WrQoEGp45R2ZiYqKkqHDx9WaGioR2u22+3KyMhQbGysfH19PTo2gLPjGAS8qzKPwdzcXIWHhysnJ+es/35X+zMzwcHBio2NVWxsrLp166bmzZvrjTfe0OTJk0vtHxgYqMDAwBLtvr6+lfLHzsfHp9LGBnB2HIOAd1XWMejOeJY7L2uMcTnzAgAALm5ePTOTl5enjIwM53JmZqbS09MVHh6uunXr6qmnntLAgQMVERGhQ4cO6eWXX9avv/6qm266yYtVAwCA6sSrYWbTpk3q3bu3c3nChAmSpMTERL366qv68ccf9dZbb+n3339X3bp11aVLF3355Zdq27att0oGAADVjFfDTK9evVTe/OPFixdXYTUAAMCKLDdnBgAA4HSEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGmEGQAAYGleDTNr1qxRQkKCIiMjZbPZtGTJEue6wsJCTZw4Ue3bt1dwcLAiIyM1cuRI7d2713sFAwCAaserYSY/P18dO3bUSy+9VGJdQUGB0tLS9PjjjystLU2LFy/Wzz//rIEDB3qhUgAAUF35eXPj8fHxio+PL3VdWFiYli9f7tL24osvqmvXrtq9e7eaNGlSFSUCAIBqzlJzZnJycmSz2VS7dm1vlwIAAKoJr56Zccfx48c1adIk3XrrrQoNDS2z34kTJ3TixAnncm5uriTJbrfLbrd7tCa73S6Hw+HxcQFUDMcg4F2VeQy6M6YlwkxhYaGGDx8uh8Ohl19+udy+06dP19SpU0u079y5UyEhIR6ty+Fw6PDhw8rIyJCPj6VOcgEXBI5BwLsq8xjMy8urcF+bMcZ4dOvnyGaz6cMPP9TgwYNd2gsLC3XzzTfrl19+0cqVK1W3bt1yxyntzExUVJQOHz5c7hmdc2G325WRkaHY2Fj5+vp6dGwAZ8cxCHhXZR6Dubm5Cg8PV05Ozln//a7WZ2aKg8yOHTu0atWqswYZSQoMDFRgYGCJdl9f30r5Y+fj41NpYwM4O45BwLsq6xh0Zzyvhpm8vDxlZGQ4lzMzM5Wenq7w8HBFRkbqxhtvVFpamj755BPZ7Xbt27dPkhQeHq6AgABvlQ0AAKoRr4aZTZs2qXfv3s7lCRMmSJISExOVkpKijz76SJLUqVMnl+etWrVKvXr1qqoyAQBANebVMNOrVy+VN2WnmkznAQAA1RjT/wEAgKURZgAAgKURZgAAgKURZgAAgKURZgAAgKURZgAAgKURZgAAgKURZgAAgKURZgAAgKURZgAAgKURZgAAgKURZgAAgKURZgAAgKURZgAAgNsKThYp5i9LFZe6UwUni7xaC2EGAAC4ze4wzp83Zh12Wa5qhBkAAOCWpVuz1W/OF87lUW+l6aoZK7V0a7ZX6iHMAACAClu6NVuj30nT/twTLu37co5r9DtpXgk0hBkAAFAhdofR1I+3qbQLSsVtUz/eVuWXnAgzAACgQjZkHlZ2zvEy1xtJ2TnHtSHzcNUVJcIMAACooANHyw4y59LPUwgzAACgQhrUCvJoP08hzAAAgArp2ixcEWFBspWx3iYpIixIXZuFV2VZhBkAAFAxvj42JSe0kaQSgaZ4OTmhjXx9yoo7lYMwAwAAKiyuXYReua2zGoQGurQ3CgvSK7d1Vly7iCqvya/KtwgAACwtrl2EesTWU/uUzyVJbyZ21jUtG1X5GZlinJkBAABuOz24dGka7rUgI3FmBgAAnIOaAX7a+VScduzYoZoB3o0TnJkBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACW5uftAiqbMUaSlJub6/Gx7Xa78vLylJubK19fX4+PD6B8HIOAd1XmMVj873bxv+PlueDDzNGjRyVJUVFRXq4EAAC46+jRowoLCyu3j81UJPJYmMPh0N69e1WrVi3ZbDaPjp2bm6uoqCjt2bNHoaGhHh0bwNlxDALeVZnHoDFGR48eVWRkpHx8yp8Vc8GfmfHx8VHjxo0rdRuhoaH8IQW8iGMQ8K7KOgbPdkamGBOAAQCApRFmAACApRFmzkNgYKCSk5MVGBjo7VKAixLHIOBd1eUYvOAnAAMAgAsbZ2YAAIClEWYAAIClEWYAAIClEWY8yGazacmSJd4uA8B/paamqnbt2t4uA8B/ZWVlyWazKT093aPjEmb+KykpSTabTTabTX5+fmrSpIlGjx6tP/74o8JjZGdnKz4+vhKrBKwvISFB/fr1K3Xd119/LZvNprS0tCquCsDp1q1bJ19fX8XFxXm7lAohzJwmLi5O2dnZysrK0uuvv66PP/5Y999/f4Wf36hRI6/fngZUd3feeadWrlypXbt2lVj35ptvqlOnTurcubNbY548edJT5QHQqWNx3LhxWrt2rXbv3u3tcs6KMHOawMBANWrUSI0bN9Z1112nW265RZ9//rmkU9/xNG3aNDVu3FiBgYHq1KmTli5d6vL8My8zbdmyRX369FGNGjVUt25d3XPPPcrLy6vKXQKqnRtuuEENGjRQamqqS3tBQYEWLVqkO++8U+vWrVPPnj1Vo0YNRUVFafz48crPz3f2bdq0qZ588kklJSUpLCxMd999t6RTl5WaNGmimjVrasiQITp06FCJ7X/88ce6/PLLFRQUpEsvvVRTp05VUVFRpe4zYCX5+fl6//33NXr0aN1www0ux+rpVzFOf6xevVpS6dMtateuXeJ49zTCTBl++eUXLV26VP7+/pKk559/XrNnz9asWbO0efNm9e/fXwMHDtSOHTtKfX5BQYHi4uJUp04dbdy4Uf/85z/1n//8R2PHjq3K3QCqHT8/P40cOVKpqak6/WOu/vnPf+rkyZPq2LGj+vfvr6FDh2rz5s1atGiR1q5dW+LYefbZZ9WuXTt9++23evzxx7V+/XqNGjVK999/v9LT09W7d289+eSTLs9ZtmyZbrvtNo0fP17btm3T3//+d6Wmpuqpp56qkn0HrGDRokVq2bKlWrZsqdtuu03z5893HqvPP/+8srOznY8HHnhADRo0UKtWrbxbtIExxpjExETj6+trgoODTVBQkJFkJJk5c+YYY4yJjIw0Tz31lMtzunTpYu6//37nsiTz4YcfGmOMee2110ydOnVMXl6ec/2nn35qfHx8zL59+yp/h4BqbPv27UaSWblypbOtZ8+eZsSIEeb2228399xzj0v/L7/80vj4+Jhjx44ZY4yJjo42gwcPdukzYsQIExcX59J2yy23mLCwMOfy1VdfbZ5++mmXPm+//baJiIjwxG4BF4Tu3bubuXPnGmOMKSwsNPXq1TPLly8v0e+DDz4wgYGB5ssvv3S2nf7vYLGwsDAzf/58Y4wxmZmZRpL57rvvPFozZ2ZO07t3b6Wnp2v9+vUaN26c+vfvr3Hjxik3N1d79+5Vjx49XPr36NFD27dvL3Ws7du3q2PHjgoODnbp73A49NNPP1XqfgDVXatWrdS9e3e9+eabkqSdO3fqyy+/1KhRo/Ttt98qNTVVISEhzkf//v3lcDiUmZnpHOOKK65wGXP79u268sorXdrOXP722281bdo0l7HvvvtuZWdnq6CgoJL2FrCOn376SRs2bNDw4cMlnTqTessttziP1WLfffedRo4cqXnz5umqq67yRqku/LxdQHUSHBys2NhYSdILL7yg3r17a+rUqXr00UclnboWeDpjTIm2iqwrqx24mNx5550aO3as5s2bp/nz5ys6Olp9+/aVw+HQvffeq/Hjx5d4TpMmTZw/n/4fBUkul6zK4nA4NHXqVA0dOrTEuqCgoHPYC+DC8sYbb6ioqEiXXHKJs80YI39/f/3xxx+qU6eO9u3bp4EDB+rOO+/UnXfe6fJ8m81W4lgsLCys9Lo5M1OO5ORkzZo1S3l5eYqMjNTatWtd1q9bt06tW7cu9blt2rRRenq6y6TFr776Sj4+PmrRokWl1g1Ywc033yxfX1+9++67euutt3THHXfIZrOpc+fO+uGHHxQbG1viERAQUOZ4bdq00TfffOPSduZy586d9dNPP5U6to8Pfw5xcSsqKtKCBQs0e/ZspaenOx/ff/+9oqOjtXDhQh0/flyDBg1Sq1atNGfOnBJj1K9fX9nZ2c7lHTt2VMlZT87MlKNXr15q27atnn76aT366KNKTk5WTEyMOnXqpPnz5ys9PV0LFy4s9bl//vOflZycrMTERKWkpOjgwYMaN26cbr/9djVs2LCK9wSofkJCQnTLLbdoypQpysnJUVJSkiRp4sSJ6tatm8aMGaO7775bwcHB2r59u5YvX64XX3yxzPHGjx+v7t27a+bMmRo8eLA+//zzEnccPvHEE7rhhhsUFRWlm266ST4+Ptq8ebO2bNlSYrIwcLH55JNP9Mcff+jOO+9UWFiYy7obb7xRb7zxhjZu3Kg9e/ZoxYoVOnjwoHN9eHi4AgIC1KdPH7300kvq1q2bHA6HJk6c6LyRplJ5dAaOhSUmJppBgwaVaF+4cKEJCAgwWVlZZurUqeaSSy4x/v7+pmPHjubf//63S1+dMfFp8+bNpnfv3iYoKMiEh4ebu+++2xw9erSS9wSwjnXr1hlJ5rrrrnNp37Bhg7n22mtNSEiICQ4ONh06dHCZgB8dHW2ee+65EuO98cYbpnHjxqZGjRomISHBzJo1y2UCsDHGLF261HTv3t3UqFHDhIaGmq5du5rXXnutMnYPsJQbbrjBDBgwoNR13377rZFkatWq5bxB5vTHqlWrjDHG/Pbbb+a6664zwcHBpnnz5uazzz6rkgnANmMqcKEZZ3XixAkFBQVp+fLlZX66KQAA8DwuM3lAbm6uFi9eLB8fH+/faw8AwEWGMOMBycnJevfddzVjxgw1btzY2+UAAHBR4TITAACwNO5FBAAAlkaYAQAAlkaYAQAAlkaYAQAAlkaYAWB5KSkp6tSpk7fLAOAlhBkAXrdv3z6NGzdOl156qQIDAxUVFaWEhAStWLHC26UBsAA+ZwaAV2VlZalHjx6qXbu2Zs6cqQ4dOqiwsFDLli3TmDFj9OOPP1ZJHYWFhVXzHTIAPI4zMwC86v7775fNZtOGDRt04403qkWLFmrbtq0mTJjg/Nbr3bt3a9CgQQoJCVFoaKhuvvlm7d+/v8wxHQ6Hpk2bpsaNGyswMFCdOnVy+dLJrKws2Ww2vf/+++rVq5eCgoL0zjvvVPq+AqgchBkAXnP48GEtXbpUY8aMUXBwcIn1tWvXljFGgwcP1uHDh/XFF19o+fLl2rlzp2655ZYyx33++ec1e/ZszZo1S5s3b1b//v01cOBA7dixw6XfxIkTNX78eG3fvl39+/f3+P4BqBpcZgLgNRkZGTLGlPudZv/5z3+0efNmZWZmKioqSpL09ttvq23bttq4caO6dOlS4jmzZs3SxIkTNXz4cEnSjBkztGrVKs2dO1fz5s1z9nvwwQc1dOhQD+8VgKrGmRkAXlP8bSo2m63MPtu3b1dUVJQzyEhSmzZtVLt2bW3fvr1E/9zcXO3du1c9evRwae/Ro0eJ/ldcccX5lA+gmiDMAPCa5s2by2azlRpKihljSg07ZbUXO3Ndaf1Lu7QFwHoIMwC8Jjw8XP3799e8efOUn59fYv2RI0fUpk0b7d69W3v27HG2b9u2TTk5OWrdunWJ54SGhioyMlJr1651aV+3bl2p/QFYH3NmAHjVyy+/rO7du6tr166aNm2aOnTooKKiIi1fvlyvvPKKtm3bpg4dOujPf/6z5s6dq6KiIt1///265ppryrxM9Oijjyo5OVkxMTHq1KmT5s+fr/T0dC1cuLCK9w5AVSDMAPCqZs2aKS0tTU899ZQefvhhZWdnq379+rr88sv1yiuvyGazacmSJRo3bpx69uwpHx8fxcXF6cUXXyxzzPHjxys3N1cPP/ywDhw4oDZt2uijjz5S8+bNq3DPAFQVmymegQcAAGBBzJkBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACW9v8Bs/L2oyC53z8AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHFCAYAAAAHcXhbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABIqklEQVR4nO3deXgUVd728buzQ0ICYQmJCUHZQRYXeBAEiSAQZI2o4Iwm4g6yiAvCjCbwqAwKCCrqOCoRRV8cjYyiAzIQBAZlESMwICYY9rAIkpCELd3n/YMnPTRZSEMnncLv57r6uqhTp0/9qjuV3FSd6rYZY4wAAAAsysfbBQAAAFwKwgwAALA0wgwAALA0wgwAALA0wgwAALA0wgwAALA0wgwAALA0wgwAALA0wgwAALA0wgyqRGpqqmw2m/MRFBSkhg0bKi4uTlOnTtWhQ4dKPCclJUU2m80L1VZcYWGhUlJStGLFCm+XoqSkJDVu3Nhj41nh9a+Ixo0bKykpybm8c+dO2Ww2paamOtuKfz537txZ5fWdz9PvozvbsdlsSklJcWlbtmyZrr/+egUHB8tms2nhwoWVXpu7Sqsbvy9+3i4Avy9z585Vy5YtdebMGR06dEirV6/WtGnTNH36dC1YsEC9evVy9r3//vvVt29fL1Z7YYWFhZo8ebIkqUePHt4tBqX67LPPFBoa6u0yLOHbb79VdHS0c9kYozvuuEPNmzfX559/ruDgYLVo0cKLFZbu/Lrx+0OYQZW6+uqrdf311zuXb7vtNj322GO68cYblZCQoMzMTEVEREiSoqOjL7tfUIWFhapZs6a3y/hdueaaa7xdgmV07tzZZXn//v06evSohgwZop49e5b7XG/+bJ9fN35/uMwEr2vUqJFmzJih48eP669//auzvbTLHAsWLFDv3r0VGRmpGjVqqFWrVnr66adVUFDg0i8pKUkhISH66aef1KdPHwUHBysyMlJ/+ctfJEnfffedbrzxRgUHB6t58+Z67733StR14MABPfTQQ4qOjlZAQICuvPJKTZ48WUVFRZLOXq6oX7++JGny5MnOS2jFlzSK69+4caOGDh2qOnXqqEmTJpKkkydPauLEibryyisVEBCgK664QqNGjdKxY8cq9JqlpqaqRYsWCgwMVKtWrTRv3rxS+50+fVrPPfecWrZsqcDAQNWvX1/33nuvDh8+XKHtnM/hcOjFF190jtegQQPdc8892rt3r0u/H374Qf3791eDBg0UGBioqKgo3XrrrSX6nW/p0qUaNGiQoqOjFRQUpKZNm+qhhx7Sr7/+6tKv+LX9z3/+o+HDhyssLEwREREaMWKEcnNzXfqef5nJHe+++67at2+voKAghYeHa8iQIdq2bZtLn19++UXDhg1TVFSUAgMDFRERoZ49eyojI+OC41fV+1jR7Zx7uSYlJcX5n4kJEybIZrM5L0uV97O9YcMGDRs2TI0bN1aNGjXUuHFjDR8+XLt27SqxvX379unBBx9UTEyMAgICFBUVpaFDh+rgwYPOPseOHdPjjz+uq666yvkz169fP/3000+l1l1sy5YtGjRokOrUqaOgoCB16NChxHG+YsUK2Ww2ffTRR/rTn/6kqKgohYaGqlevXtq+fXuFXltUD5yZQbXQr18/+fr6auXKleX2y8zMVL9+/TRu3DgFBwfrp59+0rRp07Ru3TotX77cpe+ZM2eUkJCghx9+WE8++aQ+/PBDTZw4UXl5efr00081YcIERUdH69VXX1VSUpKuvvpqXXfddZLOBplOnTrJx8dHzz77rJo0aaJvv/1Wzz33nHbu3Km5c+cqMjJSixcvVt++fXXffffp/vvvlyRnwCmWkJCgYcOG6eGHH1ZBQYGMMRo8eLCWLVumiRMnqlu3btq0aZOSk5P17bff6ttvv1VgYGCZr0FqaqruvfdeDRo0SDNmzFBubq5SUlJ06tQp+fj89/8nDodDgwYN0qpVq/TUU0+pS5cu2rVrl5KTk9WjRw9t2LBBNWrUcOt9euSRR/TWW2/p0UcfVf/+/bVz504988wzWrFihTZu3Kh69eqpoKBAt9xyi6688krNmTNHEREROnDggNLT03X8+PFyx9+xY4duuOEG3X///QoLC9POnTs1c+ZM3Xjjjdq8ebP8/f1d+t9222268847dd9992nz5s2aOHGipLMh5FJNnTpVkyZN0vDhwzV16lQdOXJEKSkpuuGGG7R+/Xo1a9ZM0tmfXbvdrhdffFGNGjXSr7/+qjVr1lwwmFbV+1jR7Zzv/vvvV/v27ZWQkKDRo0frrrvuKvFzef7PtnQ25Ldo0ULDhg1TeHi4cnJy9MYbb6hjx47aunWr6tWrJ+lskOnYsaPOnDmjSZMmqV27djpy5IiWLFmi3377TRERETp+/LhuvPFG7dy5UxMmTND//M//KD8/XytXrlROTo5atmxZau3bt29Xly5d1KBBA73yyiuqW7euPvjgAyUlJengwYN66qmnXPpPmjRJXbt21dtvv628vDxNmDBBAwYM0LZt2+Tr61vu+4hqwgBVYO7cuUaSWb9+fZl9IiIiTKtWrZzLycnJprwfUYfDYc6cOWO++eYbI8n8+OOPznWJiYlGkvn000+dbWfOnDH169c3kszGjRud7UeOHDG+vr5m/PjxzraHHnrIhISEmF27drlsc/r06UaS+c9//mOMMebw4cNGkklOTi5RX3H9zz77rEv74sWLjSTz4osvurQvWLDASDJvvfVWmftst9tNVFSUufbaa43D4XC279y50/j7+5vY2Fhn20cffVTiNTDGmPXr1xtJ5vXXXy9zO+fWX2zbtm1Gkhk5cqRLv7Vr1xpJZtKkScYYYzZs2GAkmYULF5Y7/oUUv7+7du0yksw//vGPErWd/xqOHDnSBAUFubw2sbGxJjEx0bmcnZ1tJJm5c+c624p/PrOzs40xxvz222+mRo0apl+/fi7j79692wQGBpq77rrLGGPMr7/+aiSZWbNmubVvVfU+urMdY0yJn+Xi1+qll15y6VfWz3ZpioqKTH5+vgkODjazZ892to8YMcL4+/ubrVu3lvncKVOmGElm6dKl5W7j/LqHDRtmAgMDze7du136xcfHm5o1a5pjx44ZY4xJT083kkq8zx9//LGRZL799tsL7h+qBy4zodowxlywzy+//KK77rpLDRs2lK+vr/z9/XXTTTdJUonT/zabTf369XMu+/n5qWnTpoqMjHSZRxEeHq4GDRq4nAZftGiR4uLiFBUVpaKiIucjPj5ekvTNN99UeL9uu+02l+XiM0jnX/q4/fbbFRwcrGXLlpU51vbt27V//37dddddLpfgYmNj1aVLF5e+ixYtUu3atTVgwACXfejQoYMaNmzo9h1Y6enppdbdqVMntWrVyll306ZNVadOHU2YMEFvvvmmtm7dWuFtHDp0SA8//LBiYmLk5+cnf39/xcbGSir5/krSwIEDXZbbtWunkydPlnp3nDu+/fZbnThxosS+xsTE6Oabb3bua3h4uJo0aaKXXnpJM2fO1A8//CCHw3HB8avqfXRnOxfj/J9tScrPz9eECRPUtGlT+fn5yc/PTyEhISooKHB5D//5z38qLi5OrVq1KnP8f/7zn2revLnLjQEVsXz5cvXs2VMxMTEu7UlJSSosLNS3337r0l7az5GkUi+NoXoizKBaKCgo0JEjRxQVFVVmn/z8fHXr1k1r167Vc889pxUrVmj9+vVKS0uTJJ04ccKlf82aNRUUFOTSFhAQoPDw8BJjBwQE6OTJk87lgwcP6osvvpC/v7/Lo02bNpJUYg5HeSIjI12Wjxw5Ij8/vxKXo2w2mxo2bKgjR46UOVbxuoYNG5ZYd37bwYMHdezYMQUEBJTYjwMHDri1D+du+/z9kaSoqCjn+rCwMH3zzTfq0KGDJk2apDZt2igqKkrJyck6c+ZMmeM7HA717t1baWlpeuqpp7Rs2TKtW7dO3333naSS768k1a1b12W5+DJIaX3dUdF9tdlsWrZsmfr06aMXX3xR1157rerXr68xY8aUe0mtqt5Hd7ZzMUp7fe666y699tpruv/++7VkyRKtW7dO69evV/369V3el8OHD19wgn9F+pTmyJEjZb53xevPVVk/R6g6zJlBtfDll1/KbreXe3vz8uXLtX//fq1YscJ5NkZShSfNuqNevXpq166dnn/++VLXlxe6znf+JOa6deuqqKhIhw8fdgk0xhgdOHBAHTt2LHOs4l+6Bw4cKLHu/LZ69eqpbt26Wrx4calj1apVq8L7cO62c3JySvyB2b9/v3MuhCS1bdtW/+///T8ZY7Rp0yalpqZqypQpqlGjhp5++ulSx9+yZYt+/PFHpaamKjEx0dmelZXlVp2ecO6+nu/8fY2NjdU777wjSfr555/18ccfKyUlRadPn9abb75Z7viV/T66s52Lcf7Pdm5urhYtWqTk5GSX9/nUqVM6evSoS9/69etfcEJ4RfqUpm7dumW+d5Jc3j9cHjgzA6/bvXu3nnjiCYWFhemhhx4qs1/xL87zJyGeeweUp/Tv319btmxRkyZNdP3115d4FIeZi/kfXPEtrh988IFL+6effqqCgoJyb4Ft0aKFIiMj9dFHH7lcltu1a5fWrFlTYh+OHDkiu91e6j64+3khN998c6l1r1+/Xtu2bSu1bpvNpvbt2+vll19W7dq1tXHjxjLHr8r390JuuOEG1ahRo8S+7t2713kJozTNmzfXn//8Z7Vt27bcfa2q99Gd7XiCzWaTMabEe/j222/Lbre7tMXHxys9Pb3cu4bi4+P1888/l5jcfyE9e/Z0/ufnXPPmzVPNmjW5lfsyxJkZVKktW7Y4r/kfOnRIq1at0ty5c+Xr66vPPvusxKWXc3Xp0kV16tTRww8/rOTkZPn7+2v+/Pn68ccfPV7nlClTtHTpUnXp0kVjxoxRixYtdPLkSe3cuVNfffWV3nzzTUVHR6tWrVqKjY3VP/7xD/Xs2VPh4eGqV69euZ/gesstt6hPnz6aMGGC8vLy1LVrV+fdTNdcc43uvvvuMp/r4+Oj//3f/9X999+vIUOG6IEHHtCxY8eUkpJS4rLBsGHDNH/+fPXr109jx45Vp06d5O/vr7179yo9PV2DBg3SkCFDKvyatGjRQg8++KBeffVV+fj4KD4+3nk3U0xMjB577DFJZ+d4vP766xo8eLCuuuoqGWOUlpamY8eO6ZZbbilz/JYtW6pJkyZ6+umnZYxReHi4vvjiCy1durTCNXpK7dq19cwzz2jSpEm65557NHz4cB05ckSTJ09WUFCQkpOTJUmbNm3So48+qttvv13NmjVTQECAli9frk2bNpV5BkqquvfRne14QmhoqLp3766XXnrJeRx88803euedd1S7dm2XvlOmTNE///lPde/eXZMmTVLbtm117NgxLV68WOPHj1fLli01btw4LViwQIMGDdLTTz+tTp066cSJE/rmm2/Uv39/xcXFlVpHcnKyc97bs88+q/DwcM2fP19ffvmlXnzxRYWFhXl83+FlXpt6jN+V4rtFih8BAQGmQYMG5qabbjIvvPCCOXToUInnlHY305o1a8wNN9xgatasaerXr2/uv/9+s3HjxhJ3pyQmJprg4OASY950002mTZs2JdpjY2PNrbfe6tJ2+PBhM2bMGHPllVcaf39/Ex4ebq677jrzpz/9yeTn5zv7/etf/zLXXHONCQwMNJKcd84U13/48OES2ztx4oSZMGGCiY2NNf7+/iYyMtI88sgj5rfffivvZXR6++23TbNmzUxAQIBp3ry5effdd01iYmKJu1POnDljpk+fbtq3b2+CgoJMSEiIadmypXnooYdMZmZmudso7fW32+1m2rRppnnz5sbf39/Uq1fP/PGPfzR79uxx9vnpp5/M8OHDTZMmTUyNGjVMWFiY6dSpk0lNTb3gfm3dutXccsstplatWqZOnTrm9ttvN7t37y5xt0pZr+35dyUZc3F3MxV7++23Tbt27UxAQIAJCwszgwYNct7JZowxBw8eNElJSaZly5YmODjYhISEmHbt2pmXX37ZFBUVXXB/q+J9dGc757/OF7qbqbSf7b1795rbbrvN1KlTx9SqVcv07dvXbNmypcT7YIwxe/bsMSNGjDANGzY0/v7+Jioqytxxxx3m4MGDzj6//fabGTt2rGnUqJHx9/c3DRo0MLfeeqv56aefyqzbGGM2b95sBgwYYMLCwkxAQIBp3769y3tuzH/vZvr73//u0l7azwiqN5sxFbiFBAAAoJpizgwAALA0wgwAALA0wgwAALA0wgwAALA0wgwAALA0wgwAALC0y/5D8xwOh/bv369atWqV+OhtAABQPRljdPz4cUVFRcnHp/xzL5d9mNm/f3+Jb04FAADWsGfPngt+4ehlH2aKv4Rtz549Cg0N9ejYdrtdO3bsUJMmTeTr6+vRsQFcGMcg4F2VeQzm5eUpJiamQl+Ke9mHmeJLS6GhoZUSZkJCQhQaGsovUsALOAYB76qKY7AiU0SYAAwAACyNMAMAACyNMAMAACztsp8zAwCwHofDodOnT3u7DFyA3W6Xw+HQyZMn3Z4z4+/v77F5NoQZAEC1cvr0aWVnZ8vhcHi7FFyAMUZFRUXatWvXRX2WW+3atdWwYcNL/hw4wgwAoNowxignJ0e+vr6KiYm54IelwbuMMTp16pQCAwPdCiTGGBUWFurQoUOSpMjIyEuqgzADAKg2ioqKVFhYqKioKNWsWdPb5eACjDGSpKCgILfPrtSoUUOSdOjQITVo0OCSLjkReQEA1YbdbpckBQQEeLkSVIXiwHrmzJlLGocwAwCodvguvd8HT73PhBkAwGWnoKBANptNNptNBQUF3i4HlYwwAwCAxfTo0UPjxo0rt0/jxo01a9asKqnH2wgzAIDLTvHcG0lauXKly3JlSEpK0uDBgyt1GygbYQYAcFlJS0tT69atncv9+vVT48aNlZaW5sWqUJkIMwCAy0ZaWpqGDh2qffv2ubTv27dPQ4cO9UqgSU1NVe3atV3aFi5c6DL5tXHjxs45Puc+ylNUVKRHH31UtWvXVt26dfXnP//Zeat0aWbOnKm2bdsqODhYMTExGjlypPLz80vUuWTJErVq1UohISHq27evcnJyXMZ599131aZNGwUGBioqKkqPPfZYhbdRWQgzF6mgoEB+fn5q1aoVk8sAoBqw2+0aO3ZsqX/Qi9vGjRtX6ZecLsb69euVk5OjnJwc7d27V507d1a3bt3Kfc57770nPz8/rV27Vq+88opefvllvf3222X29/Hx0SuvvKItW7bovffe0/Lly/XUU0+59CksLNT06dP1/vvva+XKldq9e7eeeOIJ5/o33nhDo0aN0oMPPqjNmzfrH//4h5o0aeLWNiqFuczl5uYaSSY3N7dSxpVkFi1aZIqKijw6PoALKyoqMtu2beP4u4ycOHHCbN261Zw4ccLt56anpzt/L5f3SE9P93jdiYmJZtCgQaWumzt3rgkLC3Np++yzz0xZf4LHjBljYmNjzaFDh8rc3k033WRatWplHA6Hs23ChAmmVatWzuXY2Fjz8ssvlznGxx9/bOrWretSpySTlZXlbJszZ46JiIhwLkdFRZk//elPzmWHw2EKCwtd6ihvG+cr7/125+83Z2YuwvnXY/v378/1WADwsvMvh1xqP29466239M477+gf//iH6tevX27fzp07u1yKuuGGG5SZmVnmmaf09HTdcsstuuKKK1SrVi3dc889OnLkiMvVhZo1a7qcaYmMjHR+5cChQ4e0f/9+9ezZs8yaKrKNykCYcVN1vB4LAKj49/tc6vcAucvHx6fEpa/SPvF2xYoVGj16tObNm6f27dt7tIZdu3apX79+uvrqq/Xpp5/q+++/15w5c0rU4u/v7/I8m83mrL346wcudRuVgTDjBitfjwWAy123bt0UHR1d5sRZm82mmJiYC85F8bT69evr+PHjLmcnMjIyXPpkZWXptttu06RJk5SQkFChcb/77rsSy82aNSv1O442bNigoqIizZgxQ507d1bz5s21f/9+t/ajVq1aaty4sZYtW1bqek9s42IRZtywatUq7d27t8z1xhjt2bNHq1atqsKqAACS5Ovrq9mzZ0sq+TH5xcuzZs26pC80LE9ubq4yMjJcHrt379b//M//qGbNmpo0aZKysrL04YcfKjU11fm8EydOaMCAAerQoYMefPBBHThwwPkoz549ezR+/Hht375dH330kV599VWNHTu21L5NmjRRUVGRXn31Vf3yyy96//339eabb7q9jykpKZoxY4ZeeeUVZWZmauPGjXrjjTc8uo2LQZhxw+VwPRYALmcJCQn65JNPFBUV5dIeHR2tTz75pMJnPS7GihUrdM0117g8nn32WYWHh+uDDz7QV199pbZt2+qjjz5SSkqK83kHDx7UTz/9pOXLlysqKkqRkZHOR3nuuecenThxQp06ddKoUaM0evRoPfjgg6X27dChg2bOnKlp06bp6quv1vz58zV16lS39zExMVGzZs3S66+/rjZt2mjAgAHKysry6DYuhs2Uds3kMpKXl6ewsDDl5uYqNDT0ksZasWKF4uLiLtgvPT1dPXr0uKRtAbgwu92uzMzMMk+tw3pOnjyp7OxsXXnllQoKCrrocYp/90vSV199pd69e/MzUgmMMTp58qSCgoIu6ksjy3u/3fn7zZkZN1TX67EAAFfnBpfu3bsTZC5zhBk3ePt6LACgYoKDg2WMkTFGwcHB3i4HlYww4yZvXo8FAAAlEWYuQkJCgrZu3epcXrRokbKzswkyAAB4AWHmIp17Kalbt25cWgIAwEv8vF2AVQUHB6uoqEiZmZlcjwUAwIs4MwMAACyNMAMAACyNMAMAuPwUFEg229lHJX9jM7yPMAMAAMqVkpKiDh06eLuMMhFmAACXH7v9v/9eudJ1uRIkJSVp8ODBlboNb3riiSfK/Lbs6oAwAwC4vKSlSa1b/3e5Xz+pceOz7b8Tp0+f9mi/kJAQ1a1b91JKqlSEGQDA5SMtTRo6VNq3z7V9376z7V4KNDNnzlTbtm0VHBysmJgYjRw5Uvn5+c71u3bt0oABA1SnTh0FBwerTZs2+uqrr5zrt27dqn79+ikkJEQRERG6++679euvvzrX9+jRQ48++qjGjx+vevXq6ZZbbim1juIzSFOnTlVUVJSaN28uSdq8ebNuvvlm1ahRQ3Xr1tWDDz7oUt/5l5kcDoemTJmimJgY1a5dW9dcc40WL17sqZfLbYQZAMDlwW6Xxo6VjCm5rrht3LhKv+RUGh8fH73yyivasmWL3nvvPS1fvlxPPfWUc/2oUaN06tQprVy5Ups3b9a0adMUEhIiScrJydFNN92kDh06aMOGDVq8eLEOHjyoO+64w2Ub7733nvz8/PTvf/9bf/3rX8usZdmyZdq2bZuWLl2qRYsWqbCwUH379lWdOnW0fv16/f3vf9e//vUvPfroo2WOMXv2bM2YMUMvvfSS1q1bp969e2vgwIHKzMy8xFfqIpnLXG5urpFkcnNzPT52UVGR2bZtmykqKvL42AAujGPw8nPixAmzdetWc+LECfefnJ5uzNnYUv4jPd3TZZvExEQzaNCgCvf/+OOPTd26dZ3Lbdu2NSkpKaX2feaZZ0zv3r1d2vbs2WMkme3btxtjjLnppptMhw4dKlRnRESEOXXqlLPtrbfeMnXq1DH5+fnOti+//NL4+PiYAwcOGGOMSU5ONu3bt3euj4qKMs8//7xxOBymsLDQOBwO07FjRzNy5MgL7/w5ynu/3fn7zScAAwAuDzk5nu3nQenp6XrhhRe0detW5eXlqaioSCdPnlRBQYGCg4M1ZswYPfLII/r666/Vq1cv3XbbbWrXrp0k6fvvv1d6errzTM25duzY4bxUdP3111eolrZt2yogIMC5vG3bNrVv397l0+y7du0qh8Oh7du3KyIiwuX5eXl52r9/v7p27erS3rVrV/34448Ve0E8jMtMAIDLQ2SkZ/t5yK5du9SvXz9dffXV+vTTT/X9999rzpw5kqQzZ85Iku6//3798ssvuvvuu7V582Zdf/31evXVVyWdnZ8yYMAAZWRkuDwyMzPVvXt353Yq+tU65/czxshms5Xat6z20taVN05lI8wAAC4P3bpJ0dFnPyivNDabFBNztl8V2rBhg4qKijRjxgx17txZzZs31/79+0v0i4mJ0cMPP6y0tDQ9/vjj+tvf/iZJuvbaa/Wf//xHjRs3VtOmTV0envhuwNatWysjI0MF53y44L///W/5+Pg4z/qcKzQ0VFFRUVq9erVL+5o1a9SqVatLrudiEGYAAJcHX19p9uyz/z4/0BQvz5p1tl8lyM3NLXH2ZPfu3WrSpImKior06quv6pdfftH777+vN9980+W548aN05IlS5Sdna2NGzdq+fLlzmAwatQoHT16VMOHD9e6dev0yy+/6Ouvv9aIESNk98Bk5j/84Q8KCgpSYmKitmzZovT0dI0ePVp33313iUtMxZ588klNmzZNCxYs0M8//6ynn35aGRkZGjt27CXXczEIMwCAy0dCgvTJJ1JUlGt7dPTZ9oSEStv0ihUrdM0117g8nn32WXXo0EEzZ87UtGnTdPXVV2v+/PmaOnWqy3PtdrtGjRqlVq1aqW/fvmrRooVef/11SVJUVJT+/e9/y263q0+fPrr66qs1duxYhYWFycfn0v+M16xZU0uWLNHRo0fVsWNHDR06VD179tRrr71W5nPGjBmjxx9/XE888YQ6duyoJUuW6PPPP1ezZs0uuZ6LYTOmtHvYLh95eXkKCwtTbm6uQkNDPTq23W5XZmammjVrJt9KSvoAysYxePk5efKksrOzdeWVVyooKOjiB8rLk8LCzv77q6+k3r0r7YzM78HEiRO1atWqEpeWjDE6efKkgoKCLmq+THnvtzt/vzkzAwC4/JwbXLp3J8hcJGOMduzYoWXLlqlNmzbeLqdMhBkAwOUnOPi/nyzjgUmyv1e5ublq3bq1AgICNGnSJG+XUyY+ZwYAAJSqdu3aOnXqlLfLuCDOzAAAAEsjzAAAqp3L/N4U/B9Pvc+EGQBAtVF8V9rp06e9XAmqQmFhoSTJ39//ksZhzgwAoNrw8/NTzZo1dfjwYfn7+3vkc1RQeYwxzjk17tyabYxRYWGhDh06pNq1a1/yRysQZgAA1YbNZlNkZKSys7O1a9cub5eDCzDGqKioSH5+fhf1OTO1a9dWw4YNL7kOwgwAoFoJCAhQs2bNuNRkAXa7Xbt27VJsbKzbZ1f8/f099mGXhBkAQLXj4+NzaZ8AjCpht9ud75U3P4Wbi5EAAMDSCDMAAMDSvBpmVq5cqQEDBigqKko2m00LFy4s0Wfbtm0aOHCgwsLCVKtWLXXu3Fm7d++u+mIBAEC15NUwU1BQoPbt25f5NeM7duzQjTfeqJYtW2rFihX68ccf9cwzz3AdFQAAOHl1AnB8fLzi4+PLXP+nP/1J/fr104svvuhsu+qqq6qiNAAAYBHV9m4mh8OhL7/8Uk899ZT69OmjH374QVdeeaUmTpyowYMHl/m8U6dOuXwpVl5enqSzM67tdrtHa7Tb7XI4HB4fF0DFcAwC3lWZx6A7Y1bbMHPo0CHl5+frL3/5i5577jlNmzZNixcvVkJCgtLT03XTTTeV+rypU6dq8uTJJdp37NihkJAQj9bocDh09OhRZWVl8SmVgBdwDALeVZnHYH5+foX72kw1+TYvm82mzz77zHnWZf/+/briiis0fPhwffjhh85+AwcOVHBwsD766KNSxyntzExMTIyOHj2q0NBQj9Zst9uVlZWlpk2bevX+euD3imMQ8K7KPAbz8vIUHh6u3NzcC/79rrZnZurVqyc/Pz+1bt3apb1Vq1ZavXp1mc8LDAxUYGBgiXZfX99K+WXn4+NTaWMDuDCOQcC7KusYdGe8anteNiAgQB07dtT27dtd2n/++WfFxsZ6qSoAAFDdePXMTH5+vrKyspzL2dnZysjIUHh4uBo1aqQnn3xSd955p7p37664uDgtXrxYX3zxhVasWOG9ogEAQLXi1TCzYcMGxcXFOZfHjx8vSUpMTFRqaqqGDBmiN998U1OnTtWYMWPUokULffrpp7rxxhu9VTIAAKhmvBpmevTooQvNPx4xYoRGjBhRRRUBAACrqbZzZgAAACqCMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACyNMAMAACzNz9sFWFZBgXxDQtRSkj03VwoN9XZFAAD8LnFmBgAAWBph5mLZ7f/996pVrssAAKDKEGYuRlqa1Lq1c9G3f3+pceOz7QAAoEoRZtyVliYNHSrt2+favm/f2XYCDQAAVYow4w67XRo7VjKm5LritnHjuOQEAEAVIsy4Y9Uqae/estcbI+3Zc7YfAACoEoQZd+TkeLYfAAC4ZIQZd0RGerYfAAC4ZIQZd3TrJkVHSzZb6ettNikm5mw/AABQJQgz7vD1lWbPPvvv8wNN8fKsWWf7AQCAKkGYcVdCgvTJJ1JUlGt7dPTZ9oQE79QFAMDvFGHmYiQkSFu3OhftixZJ2dkEGQAAvIAvmrxYoaGyFxUpMzNTzZo149ISAABewpkZAABgaV4NMytXrtSAAQMUFRUlm82mhQsXuqxPSkqSzWZzeXTu3Nk7xQIAgGrJq2GmoKBA7du312uvvVZmn759+yonJ8f5+Oqrr6qwQgAAUN15dc5MfHy84uPjy+0TGBiohg0bVlFFAADAaqr9nJkVK1aoQYMGat68uR544AEdOnTI2yUBAIBqpFrfzRQfH6/bb79dsbGxys7O1jPPPKObb75Z33//vQIDA0t9zqlTp3Tq1Cnncl5eniTJbrfL7uFvs7bb7XI4HB4fF0DFcAwC3lWZx6A7Y1brMHPnnXc6/3311Vfr+uuvV2xsrL788ksllPGZLlOnTtXkyZNLtO/YsUMhISEerc/hcOjo0aPKysqSj0+1P8kFXHY4BgHvqsxjMD8/v8J9q3WYOV9kZKRiY2OVmZlZZp+JEydq/PjxzuW8vDzFxMSoSZMmCg0N9Wg9drtdWVlZatq0qXz5nBmgynEMAt5Vmcdg8ZWVirBUmDly5Ij27NmjyHK+lTowMLDUS1C+vr6V8svOx8en0sYGcGEcg4B3VdYx6M54Xg0z+fn5ysrKci5nZ2crIyND4eHhCg8PV0pKim677TZFRkZq586dmjRpkurVq6chQ4Z4sWoAAFCdeDXMbNiwQXFxcc7l4stDiYmJeuONN7R582bNmzdPx44dU2RkpOLi4rRgwQLVqlXLWyUDAIBqxqthpkePHjLGlLl+yZIlVVgNAACwIqb/AwAASyPMAAAASyPMAAAAS6vQnBl37vUu5unPdAEAAChNhcJM7dq1ZbPZKjyozWbTzz//rKuuuuqiCwMAAKiICt/N9Mknnyg8PPyC/Ywx6tev3yUVBQAAUFEVCjOxsbHq3r276tatW6FBr7rqKvn7+19SYQAAABVRoTCTnZ3t1qBbtmy5qGIAAADcxd1MAADA0i7qE4DXrVunFStW6NChQ3I4HC7rZs6c6ZHCAAAAKsLtMPPCCy/oz3/+s1q0aKGIiAiXu5zcueMJAADAE9wOM7Nnz9a7776rpKSkSigHAADAPW7PmfHx8VHXrl0roxYAAAC3uR1mHnvsMc2ZM6cyagEAAHCb25eZnnjiCd16661q0qSJWrduXeLzZNLS0jxWHAAAwIW4HWZGjx6t9PR0xcXFqW7dukz6BQAAXuV2mJk3b54+/fRT3XrrrZVRDwAAgFvcnjMTHh6uJk2aVEYtAAAAbnM7zKSkpCg5OVmFhYWVUQ8AAIBb3L7M9Morr2jHjh2KiIhQ48aNS0wA3rhxo8eKAwAAuBC3w8zgwYMroQwAAICL43aYSU5Orow6AAAALorbc2bWr1+vtWvXlmhfu3atNmzY4JGiAAAAKsrtMDNq1Cjt2bOnRPu+ffs0atQojxQFAABQUW6Hma1bt+raa68t0X7NNddo69atHikKAACgotwOM4GBgTp48GCJ9pycHPn5uT0FBwAA4JK4HWZuueUWTZw4Ubm5uc62Y8eOadKkSbrllls8WhwAAMCFuH0qZcaMGerevbtiY2N1zTXXSJIyMjIUERGh999/3+MFAgAAlMftMHPFFVdo06ZNmj9/vn788UfVqFFD9957r4YPH17iA/QAAAAq20VNcgkODtaDDz7o6VoAAADcVqE5M59//rnOnDlT4UG/+uornThx4qKLAgAAqKgKhZkhQ4bo2LFjFR502LBhysnJudiaAAAAKqxCl5mMMUpKSlJgYGCFBj158uQlFQUAAFBRFQoziYmJbg36hz/8QaGhoRdVEAAAgDsqFGbmzp1b2XUAAABcFLc/NA8AAKA6IcwAAABLI8wAAABLI8wAAABLI8wAAABLu6gw880332jAgAFq2rSpmjVrpoEDB2rVqlWerg0AAOCC3A4zH3zwgXr16qWaNWtqzJgxevTRR1WjRg317NlTH374YWXUCAAAUCa3v2jy+eef14svvqjHHnvM2TZ27FjNnDlT//u//6u77rrLowUCAACUx+0zM7/88osGDBhQon3gwIHKzs72SFEAAAAV5XaYiYmJ0bJly0q0L1u2TDExMR4pCgAAoKLcvsz0+OOPa8yYMcrIyFCXLl1ks9m0evVqpaamavbs2ZVRIwAAQJncDjOPPPKIGjZsqBkzZujjjz+WJLVq1UoLFizQoEGDPF4gAABAedwKM0VFRXr++ec1YsQIrV69urJqAgAAqDC35sz4+fnppZdekt1ur6x6AAAA3OL2BOBevXppxYoVlVAKAACA+9yeMxMfH6+JEydqy5Ytuu666xQcHOyyfuDAgR4rDgAA4EIuagKwJM2cObPEOpvNxiUoAABQpdwOMw6HozLqAAAAuChuz5mZN2+eTp06VaL99OnTmjdvnkeKAgAAqCi3w8y9996r3NzcEu3Hjx/Xvffe69ZYK1eu1IABAxQVFSWbzaaFCxeW2fehhx6SzWbTrFmz3KwYAABcztwOM8YY2Wy2Eu179+5VWFiYW2MVFBSoffv2eu2118rtt3DhQq1du1ZRUVFujQ8AAC5/FZ4zc80118hms8lms6lnz57y8/vvU+12u7Kzs9W3b1+3Nh4fH6/4+Phy++zbt0+PPvqolixZoltvvdWt8QEAwOWvwmFm8ODBkqSMjAz16dNHISEhznUBAQFq3LixbrvtNo8W53A4dPfdd+vJJ59UmzZtKvScU6dOuczpycvLk3Q2cHn6Tiu73S6Hw8EdXICXcAwC3lWZx6A7Y1Y4zCQnJ0uSGjdurDvvvFNBQUHuV+amadOmyc/PT2PGjKnwc6ZOnarJkyeXaN+xY4dLAPMEh8Oho0ePKisrSz4+bl+xA3CJOAYB76rMYzA/P7/Cfd2+NTsxMVHHjh3TBx98oB07dujJJ59UeHi4Nm7cqIiICF1xxRXuDlmq77//XrNnz9bGjRtLnaNTlokTJ2r8+PHO5by8PMXExKhJkyYKDQ31SG3F7Ha7srKy1LRpU/n6+np0bAAXxjEIeFdlHoPFV1Yqwu0ws2nTJvXq1UthYWHauXOnHnjgAYWHh+uzzz7Trl27PHZ79qpVq3To0CE1atTI2Wa32/X4449r1qxZ2rlzZ6nPCwwMVGBgYIl2X1/fSvll5+PjU2ljA7gwjkHAuyrrGHRnPLfPCT322GNKSkpSZmamy6Wm+Ph4rVy50t3hynT33Xdr06ZNysjIcD6ioqL05JNPasmSJR7bDgAAsDa3z8xs2LBBb731Von2K664QgcOHHBrrPz8fGVlZTmXs7OzlZGRofDwcDVq1Eh169Z16e/v76+GDRuqRYsW7pYNAAAuU26HmaCgoFKvY23fvl3169d3a6wNGzYoLi7OuVw81yUxMVGpqanulgYAAH6H3A4zgwYN0pQpU/Txxx9LOvvlkrt379bTTz/t9q3ZPXr0kDGmwv3LmicDAAB+v9yeMzN9+nQdPnxYDRo00IkTJ3TTTTepadOmqlWrlp5//vnKqBEAAKBMbp+ZCQ0N1erVq7V8+XJt3LhRDodD1157rXr16lUZ9QEAAJTL7TBT7Oabb9bNN9/syVoAAADcdlFhZt26dVqxYoUOHTokh8Phsm7mzJkeKQwAAKAi3A4zL7zwgv785z+rRYsWioiIcPl0Xnc+qRcAAMAT3A4zs2fP1rvvvqukpKRKKAcAAMA9bt/N5OPjo65du1ZGLQAAAG67qK8zmDNnTmXUAgAA4Da3LzM98cQTuvXWW9WkSRO1bt1a/v7+LuvT0tI8VhwAAMCFuB1mRo8erfT0dMXFxalu3bpM+gUAAF7ldpiZN2+ePv30U916662VUQ8AAIBb3J4zEx4eriZNmlRGLQAAAG5zO8ykpKQoOTlZhYWFlVEPAACAW9y+zPTKK69ox44dioiIUOPGjUtMAN64caPHigOAshQUFCgkJESSlJubq9DQUC9XBMBb3A4zgwcProQyAMA9drvd+e9Vq1apb9++8vX19WJFALzF7TCTnJxcGXUAQIWlpaVpzJgxzuX+/fsrOjpas2fPVkJCghcrA+ANbs+ZAQBvSktL09ChQ7Vv3z6X9n379mno0KF81hXwO+R2mLHb7Zo+fbo6deqkhg0bKjw83OUBAJXFbrdr7NixMsaUWFfcNm7cOJdLUAAuf26HmcmTJ2vmzJm64447lJubq/HjxyshIUE+Pj5KSUmphBIB4KxVq1Zp7969Za43xmjPnj1atWpVFVYFwNvcDjPz58/X3/72Nz3xxBPy8/PT8OHD9fbbb+vZZ5/Vd999Vxk1AoAkKScnx6P9AFwe3A4zBw4cUNu2bSVJISEhys3NlXR2At6XX37p2eoA4ByRkZEe7Qfg8uB2mImOjnb+r6dp06b6+uuvJUnr169XYGCgZ6sDgHN069ZN0dHRZX4nnM1mU0xMjLp161bFlQHwJrfDzJAhQ7Rs2TJJ0tixY/XMM8+oWbNmuueeezRixAiPFwgAxXx9fTV79mxJKhFoipdnzZrF580AvzNuf87MX/7yF+e/hw4dqujoaK1Zs0ZNmzbVwIEDPVocAJwvISFBn3zyicaMGeNye3Z0dLRmzZrF58wAv0Nuh5nzde7cWZ07d/ZELQBQIQkJCerVq5fCwsIkSYsWLeITgIHfsQqFmc8//1zx8fHy9/fX559/Xm5fzs4AqArnBpdu3boRZIDfsQqFmcGDB+vAgQNq0KBBud/NZLPZ+LAqAFUiODhYRUVFyszMVHBwsLfLAeBFFQozDoej1H8DAAB4G9/NBAAALM2tCcAOh0OpqalKS0vTzp07ZbPZdOWVV2ro0KG6++67y/zsBwAAgMpS4TMzxhgNHDhQ999/v/bt26e2bduqTZs22rVrl5KSkjRkyJDKrBMAAKBUFT4zk5qaqpUrV2rZsmWKi4tzWbd8+XINHjxY8+bN0z333OPxIgEAAMpS4TMzH330kSZNmlQiyEjSzTffrKefflrz58/3aHEAAAAXUuEws2nTJvXt27fM9fHx8frxxx89UhQAAEBFVTjMHD16VBEREWWuj4iI0G+//eaRogAAACqqwmHGbrfLz6/sKTa+vr4qKirySFEAAAAVVeEJwMYYJSUlKTAwsNT1p06d8lhRAAAAFVXhMJOYmHjBPtzJBAAAqlqFw8zcuXMrsw4AAICLwtcZAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAAS/NqmFm5cqUGDBigqKgo2Ww2LVy40GV9SkqKWrZsqeDgYNWpU0e9evXS2rVrvVMsAAColrwaZgoKCtS+fXu99tprpa5v3ry5XnvtNW3evFmrV69W48aN1bt3bx0+fLiKKwUAANWVnzc3Hh8fr/j4+DLX33XXXS7LM2fO1DvvvKNNmzapZ8+elV0eAACwAK+GGXecPn1ab731lsLCwtS+ffsy+506dUqnTp1yLufl5UmS7Ha77Ha7R2uy2+1yOBweHxdAxXAMAt5VmcegO2NW+zCzaNEiDRs2TIWFhYqMjNTSpUtVr169MvtPnTpVkydPLtG+Y8cOhYSEeLQ2h8Oho0ePKisrSz4+zKUGqhrHIOBdlXkM5ufnV7ivzRhjPLr1i2Sz2fTZZ59p8ODBLu0FBQXKycnRr7/+qr/97W9avny51q5dqwYNGpQ6TmlnZmJiYnT06FGFhoZ6tGa73a6srCw1bdpUvr6+Hh0bwIVxDALeVZnHYF5ensLDw5Wbm3vBv9/V/sxMcHCwmjZtqqZNm6pz585q1qyZ3nnnHU2cOLHU/oGBgQoMDCzR7uvrWym/7Hx8fCptbAAXxjEIeFdlHYPujGe587LGGJczLwAA4PfNq2dm8vPzlZWV5VzOzs5WRkaGwsPDVbduXT3//PMaOHCgIiMjdeTIEb3++uvau3evbr/9di9WDQAAqhOvhpkNGzYoLi7OuTx+/HhJUmJiot5880399NNPeu+99/Trr7+qbt266tixo1atWqU2bdp4q2QAAFDNeDXM9OjRQ+XNP05LS6vCagAAgBVZbs4MAADAuQgzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0ggzAADA0rwaZlauXKkBAwYoKipKNptNCxcudK47c+aMJkyYoLZt2yo4OFhRUVG65557tH//fu8VDAAAqh2vhpmCggK1b99er732Wol1hYWF2rhxo5555hlt3LhRaWlp+vnnnzVw4EAvVAoAAKorP29uPD4+XvHx8aWuCwsL09KlS13aXn31VXXq1Em7d+9Wo0aNqqJEAABQzVlqzkxubq5sNptq167t7VIAAEA14dUzM+44efKknn76ad11110KDQ0ts9+pU6d06tQp53JeXp4kyW63y263e7Qmu90uh8Ph8XEBVAzHIOBdlXkMujOmJcLMmTNnNGzYMDkcDr3++uvl9p06daomT55con3Hjh0KCQnxaF0Oh0NHjx5VVlaWfHwsdZILuCxwDALeVZnHYH5+foX72owxxqNbv0g2m02fffaZBg8e7NJ+5swZ3XHHHfrll1+0fPly1a1bt9xxSjszExMTo6NHj5Z7Rudi2O12ZWVlqWnTpvL19fXo2AAujGMQ8K7KPAbz8vIUHh6u3NzcC/79rtZnZoqDTGZmptLT0y8YZCQpMDBQgYGBJdp9fX0r5Zedj49PpY0N4MI4BgHvqqxj0J3xvBpm8vPzlZWV5VzOzs5WRkaGwsPDFRUVpaFDh2rjxo1atGiR7Ha7Dhw4IEkKDw9XQECAt8oGAADViFfDzIYNGxQXF+dcHj9+vCQpMTFRKSkp+vzzzyVJHTp0cHleenq6evToUVVlAgCAasyrYaZHjx4qb8pONZnOAwAAqjGm/wMAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEvz6rdmAwAAayooKFBISIgkKTc3V6GhoV6rhTMzAADAbXa73fnvVatWuSxXNcIMAABwS1pamlq3bu1c7t+/vxo3bqy0tDSv1EOYAQAAFZaWlqahQ4dq3759Lu379u3T0KFDvRJoCDMAAKBC7Ha7xo4dK2NMiXXFbePGjavyS06EGQAAUCGrVq3S3r17y1xvjNGePXu0atWqKqyKMAMAACooJyfHo/08hTADAAAqJDIy0qP9PIUwAwAAKqRbt26Kjo6WzWYrdb3NZlNMTIy6detWpXURZgAAQIX4+vpq9uzZklQi0BQvz5o1S76+vlVaF2EGAABUWEJCgj755BNFRUW5tEdHR+uTTz5RQkJClddEmAEAAG5JSEjQ1q1bncuLFi1Sdna2V4KMRJgBAAAX4dxLSd26davyS0vn4osmAQCA24KDg1VUVKTMzEwFBwd7tRbOzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEvz83YBlc0YI0nKy8vz+Nh2u135+fnKy8uTr6+vx8cHUD6OQcC7KvMYLP67Xfx3vDyXfZg5fvy4JCkmJsbLlQAAAHcdP35cYWFh5faxmYpEHgtzOBzav3+/atWqJZvN5tGx8/LyFBMToz179ig0NNSjYwO4MI5BwLsq8xg0xuj48eOKioqSj0/5s2Iu+zMzPj4+io6OrtRthIaG8osU8CKOQcC7KusYvNAZmWJMAAYAAJZGmAEAAJZGmLkEgYGBSk5OVmBgoLdLAX6XOAYB76oux+BlPwEYAABc3jgzAwAALI0wAwAALI0wAwAALI0w40E2m00LFy70dhkA/k9qaqpq167t7TIA/J+dO3fKZrMpIyPDo+MSZv5PUlKSbDabbDab/Pz81KhRIz3yyCP67bffKjxGTk6O4uPjK7FKwPoGDBigXr16lbru22+/lc1m08aNG6u4KgDnWrNmjXx9fdW3b19vl1IhhJlz9O3bVzk5Odq5c6fefvttffHFFxo5cmSFn9+wYUOv354GVHf33Xefli9frl27dpVY9+6776pDhw669tpr3Rrz9OnTnioPgM4ei6NHj9bq1au1e/dub5dzQYSZcwQGBqphw4aKjo5W7969deedd+rrr7+WdPY7nqZMmaLo6GgFBgaqQ4cOWrx4scvzz7/MtHnzZt18882qUaOG6tatqwcffFD5+flVuUtAtdO/f381aNBAqampLu2FhYVasGCB7rvvPq1Zs0bdu3dXjRo1FBMTozFjxqigoMDZt3HjxnruueeUlJSksLAwPfDAA5LOXlZq1KiRatasqSFDhujIkSMltv/FF1/ouuuuU1BQkK666ipNnjxZRUVFlbrPgJUUFBTo448/1iOPPKL+/fu7HKvnXsU497FixQpJpU+3qF27donj3dMIM2X45ZdftHjxYvn7+0uSZs+erRkzZmj69OnatGmT+vTpo4EDByozM7PU5xcWFqpv376qU6eO1q9fr7///e/617/+pUcffbQqdwOodvz8/HTPPfcoNTVV537M1d///nedPn1a7du3V58+fZSQkKBNmzZpwYIFWr16dYlj56WXXtLVV1+t77//Xs8884zWrl2rESNGaOTIkcrIyFBcXJyee+45l+csWbJEf/zjHzVmzBht3bpVf/3rX5Wamqrnn3++SvYdsIIFCxaoRYsWatGihf74xz9q7ty5zmN19uzZysnJcT7Gjh2rBg0aqGXLlt4t2sAYY0xiYqLx9fU1wcHBJigoyEgykszMmTONMcZERUWZ559/3uU5HTt2NCNHjnQuSzKfffaZMcaYt956y9SpU8fk5+c713/55ZfGx8fHHDhwoPJ3CKjGtm3bZiSZ5cuXO9u6d+9uhg8fbu6++27z4IMPuvRftWqV8fHxMSdOnDDGGBMbG2sGDx7s0mf48OGmb9++Lm133nmnCQsLcy5369bNvPDCCy593n//fRMZGemJ3QIuC126dDGzZs0yxhhz5swZU69ePbN06dIS/T799FMTGBhoVq1a5Ww79+9gsbCwMDN37lxjjDHZ2dlGkvnhhx88WjNnZs4RFxenjIwMrV27VqNHj1afPn00evRo5eXlaf/+/eratatL/65du2rbtm2ljrVt2za1b99ewcHBLv0dDoe2b99eqfsBVHctW7ZUly5d9O6770qSduzYoVWrVmnEiBH6/vvvlZqaqpCQEOejT58+cjgcys7Odo5x/fXXu4y5bds23XDDDS5t5y9///33mjJlisvYDzzwgHJyclRYWFhJewtYx/bt27Vu3ToNGzZM0tkzqXfeeafzWC32ww8/6J577tGcOXN04403eqNUF37eLqA6CQ4OVtOmTSVJr7zyiuLi4jR58mQ9+eSTks5eCzyXMaZEW0XWldUO/J7cd999evTRRzVnzhzNnTtXsbGx6tmzpxwOhx566CGNGTOmxHMaNWrk/Pe5/1GQ5HLJqiwOh0OTJ09WQkJCiXVBQUEXsRfA5eWdd95RUVGRrrjiCmebMUb+/v767bffVKdOHR04cEADBw7Ufffdp/vuu8/l+TabrcSxeObMmUqvmzMz5UhOTtb06dOVn5+vqKgorV692mX9mjVr1KpVq1Kf27p1a2VkZLhMWvz3v/8tHx8fNW/evFLrBqzgjjvukK+vrz788EO99957uvfee2Wz2XTttdfqP//5j5o2bVriERAQUOZ4rVu31nfffefSdv7ytddeq+3bt5c6to8Pvw7x+1ZUVKR58+ZpxowZysjIcD5+/PFHxcbGav78+Tp58qQGDRqkli1baubMmSXGqF+/vnJycpzLmZmZVXLWkzMz5ejRo4fatGmjF154QU8++aSSk5PVpEkTdejQQXPnzlVGRobmz59f6nP/8Ic/KDk5WYmJiUpJSdHhw4c1evRo3X333YqIiKjiPQGqn5CQEN15552aNGmScnNzlZSUJEmaMGGCOnfurFGjRumBBx5QcHCwtm3bpqVLl+rVV18tc7wxY8aoS5cuevHFFzV48GB9/fXXJe44fPbZZ9W/f3/FxMTo9ttvl4+PjzZt2qTNmzeXmCwM/N4sWrRIv/32m+677z6FhYW5rBs6dKjeeecdrV+/Xnv27NGyZct0+PBh5/rw8HAFBATo5ptv1muvvabOnTvL4XBowoQJzhtpKpVHZ+BYWGJiohk0aFCJ9vnz55uAgACzc+dOM3nyZHPFFVcYf39/0759e/PPf/7Tpa/Om/i0adMmExcXZ4KCgkx4eLh54IEHzPHjxyt5TwDrWLNmjZFkevfu7dK+bt06c8stt5iQkBATHBxs2rVr5zIBPzY21rz88sslxnvnnXdMdHS0qVGjhhkwYICZPn26ywRgY4xZvHix6dKli6lRo4YJDQ01nTp1Mm+99VZl7B5gKf379zf9+vUrdd33339vJJlatWo5b5A595Genm6MMWbfvn2md+/eJjg42DRr1sx89dVXVTIB2GZMBS4044JOnTqloKAgLV26tMxPNwUAAJ7HZSYPyMvLU1pamnx8fLx/rz0AAL8zhBkPSE5O1ocffqhp06YpOjra2+UAAPC7wmUmAABgadyLCAAALI0wAwAALI0wAwAALI0wAwAALI0wA8DyUlJS1KFDB2+XAcBLCDMAvO7AgQMaPXq0rrrqKgUGBiomJkYDBgzQsmXLvF0aAAvgc2YAeNXOnTvVtWtX1a5dWy+++KLatWunM2fOaMmSJRo1apR++umnKqnjzJkzVfMdMgA8jjMzALxq5MiRstlsWrdunYYOHarmzZurTZs2Gj9+vPNbr3fv3q1BgwYpJCREoaGhuuOOO3Tw4MEyx3Q4HJoyZYqio6MVGBioDh06uHzp5M6dO2Wz2fTxxx+rR48eCgoK0gcffFDp+wqgchBmAHjN0aNHtXjxYo0aNUrBwcEl1teuXVvGGA0ePFhHjx7VN998o6VLl2rHjh268847yxx39uzZmjFjhqZPn65NmzapT58+GjhwoDIzM136TZgwQWPGjNG2bdvUp08fj+8fgKrBZSYAXpOVlSVjTLnfafavf/1LmzZtUnZ2tmJiYiRJ77//vtq0aaP169erY8eOJZ4zffp0TZgwQcOGDZMkTZs2Tenp6Zo1a5bmzJnj7Ddu3DglJCR4eK8AVDXOzADwmuJvU7HZbGX22bZtm2JiYpxBRpJat26t2rVra9u2bSX65+Xlaf/+/eratatLe9euXUv0v/766y+lfADVBGEGgNc0a9ZMNput1FBSzBhTatgpq73Y+etK61/apS0A1kOYAeA14eHh6tOnj+bMmaOCgoIS648dO6bWrVtr9+7d2rNnj7N969atys3NVatWrUo8JzQ0VFFRUVq9erVL+5o1a0rtD8D6mDMDwKtef/11denSRZ06ddKUKVPUrl07FRUVaenSpXrjjTe0detWtWvXTn/4wx80a9YsFRUVaeTIkbrpppvKvEz05JNPKjk5WU2aNFGHDh00d+5cZWRkaP78+VW8dwCqAmEGgFddeeWV2rhxo55//nk9/vjjysnJUf369XXdddfpjTfekM1m08KFCzV69Gh1795dPj4+6tu3r1599dUyxxwzZozy8vL0+OOP69ChQ2rdurU+//xzNWvWrAr3DEBVsZniGXgAAAAWxJwZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAABgaf8f+CeCf+Gx9nkAAAAASUVORK5CYII=", "text/plain": [ "<Figure size 640x480 with 1 Axes>" ] @@ -307,13 +312,14 @@ "source": [ "# Diametros para el laser rojo\n", "plt.figure()\n", - "plt.errorbar(white_light[\"Color\"][::-1], white_light[\"D1\"][::-1]*1e2, yerr=np.full(len(white_light), dL)*1e2, fmt='o', label=\"Luz blanca\")\n", - "plt.errorbar(red_laser[\"Color\"], red_laser[\"D1\"]*1e2, yerr=dL*1e2, fmt='o', label=\"Laser rojo\")\n", + "plt.errorbar(white_light[\"Color\"][::-1], white_light[\"D1\"][::-1]*1e2, yerr=np.full(len(white_light), dL)*1e2, fmt='ok', label=\"Luz blanca\")\n", + "plt.errorbar(red_laser[\"Color\"], red_laser[\"D1\"]*1e2, yerr=dL*1e2, fmt='or', label=\"Laser rojo\")\n", "plt.xlabel(\"Color\")\n", "plt.ylabel(\"Diametro [cm]\")\n", "plt.title(\"Diametro de los anillos de difraccion\")\n", "plt.grid(alpha=0.5)\n", "plt.legend()\n", + "plt.savefig(\"../images/diametro_anillos_laser.png\")\n", "plt.show()" ] }, diff --git a/LabAvanzado1/DifraccionElectrones/images/diametro_anillos_electron.png b/LabAvanzado1/DifraccionElectrones/images/diametro_anillos_electron.png new file mode 100644 index 0000000000000000000000000000000000000000..e5ccf032a99c6165fa416db3b8d3ee376345aa48 Binary files /dev/null and b/LabAvanzado1/DifraccionElectrones/images/diametro_anillos_electron.png differ diff --git a/LabAvanzado1/DifraccionElectrones/images/diametro_anillos_laser.png b/LabAvanzado1/DifraccionElectrones/images/diametro_anillos_laser.png new file mode 100644 index 0000000000000000000000000000000000000000..c2711cb9231feaf81c9922d8b146398693b7f3f9 Binary files /dev/null and b/LabAvanzado1/DifraccionElectrones/images/diametro_anillos_laser.png differ diff --git a/LabAvanzado1/DifraccionElectrones/images/distancia_entre_planos.png b/LabAvanzado1/DifraccionElectrones/images/distancia_entre_planos.png new file mode 100644 index 0000000000000000000000000000000000000000..35bd85ca5ccbacbbd600b10b439c246edf3139b4 Binary files /dev/null and b/LabAvanzado1/DifraccionElectrones/images/distancia_entre_planos.png differ diff --git a/LabAvanzado1/DifraccionElectrones/images/longitud_de_onda_electron.png b/LabAvanzado1/DifraccionElectrones/images/longitud_de_onda_electron.png new file mode 100644 index 0000000000000000000000000000000000000000..a9fd128dfb888c50210b0f22eae1412585f6b945 Binary files /dev/null and b/LabAvanzado1/DifraccionElectrones/images/longitud_de_onda_electron.png differ