From 3f7e5f54a375c896e68a938932f926093c169051 Mon Sep 17 00:00:00 2001 From: Jose Miguel Ladino Mendez <ladinoj@jupyterMiLAB> Date: Thu, 18 Feb 2021 23:28:44 -0500 Subject: [PATCH] Entrega de tarea clase05 desde jupyterhub --- .gitignore | 1 + Entrega.html | 20313 ++++++++++++++++++++++++++++++++++++++++++++++++ Entrega.ipynb | 4328 +++++++++++ README.md | 56 + 4 files changed, 24698 insertions(+) create mode 100644 .gitignore create mode 100644 Entrega.html create mode 100644 Entrega.ipynb diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..87620ac --- /dev/null +++ b/.gitignore @@ -0,0 +1 @@ +.ipynb_checkpoints/ diff --git a/Entrega.html b/Entrega.html new file mode 100644 index 0000000..61c7c05 --- /dev/null +++ b/Entrega.html @@ -0,0 +1,20313 @@ +<!DOCTYPE html> +<html> +<head><meta charset="utf-8" /> +<meta name="viewport" content="width=device-width, initial-scale=1.0"> + +<title>Entrega</title><script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script> + + + + +<style type="text/css"> + pre { line-height: 125%; margin: 0; } +td.linenos pre { color: #000000; background-color: #f0f0f0; padding-left: 5px; padding-right: 5px; } +span.linenos { color: #000000; background-color: #f0f0f0; padding-left: 5px; padding-right: 5px; } +td.linenos pre.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } +span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } +.highlight .hll { background-color: var(--jp-cell-editor-active-background) } +.highlight { background: var(--jp-cell-editor-background); color: var(--jp-mirror-editor-variable-color) } +.highlight .c { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment */ +.highlight .err { color: var(--jp-mirror-editor-error-color) } /* Error */ +.highlight .k { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword */ +.highlight .o { color: var(--jp-mirror-editor-operator-color); font-weight: bold } /* Operator */ +.highlight .p { color: var(--jp-mirror-editor-punctuation-color) } /* Punctuation */ +.highlight .ch { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment.Hashbang */ +.highlight .cm { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment.Multiline */ +.highlight .cp { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment.Preproc */ +.highlight .cpf { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment.PreprocFile */ +.highlight .c1 { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment.Single */ +.highlight .cs { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment.Special */ +.highlight .kc { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword.Constant */ +.highlight .kd { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword.Declaration */ +.highlight .kn { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword.Namespace */ +.highlight .kp { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword.Pseudo */ +.highlight .kr { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword.Reserved */ +.highlight .kt { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword.Type */ +.highlight .m { color: var(--jp-mirror-editor-number-color) } /* Literal.Number */ +.highlight .s { color: var(--jp-mirror-editor-string-color) } /* Literal.String */ +.highlight .ow { color: var(--jp-mirror-editor-operator-color); font-weight: bold } /* Operator.Word */ +.highlight .w { color: var(--jp-mirror-editor-variable-color) } /* Text.Whitespace */ +.highlight .mb { color: var(--jp-mirror-editor-number-color) } /* Literal.Number.Bin */ +.highlight .mf { color: var(--jp-mirror-editor-number-color) } /* Literal.Number.Float */ +.highlight .mh { color: var(--jp-mirror-editor-number-color) } /* Literal.Number.Hex */ +.highlight .mi { color: var(--jp-mirror-editor-number-color) } /* Literal.Number.Integer */ +.highlight .mo { color: var(--jp-mirror-editor-number-color) } /* Literal.Number.Oct */ +.highlight .sa { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Affix */ +.highlight .sb { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Backtick */ +.highlight .sc { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Char */ +.highlight .dl { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Delimiter */ +.highlight .sd { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Doc */ +.highlight .s2 { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Double */ +.highlight .se { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Escape */ +.highlight .sh { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Heredoc */ +.highlight .si { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Interpol */ +.highlight .sx { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Other */ +.highlight .sr { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Regex */ +.highlight .s1 { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Single */ +.highlight .ss { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Symbol */ +.highlight .il { color: var(--jp-mirror-editor-number-color) } /* Literal.Number.Integer.Long */ + </style> + + + +<style type="text/css"> +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/* + * Mozilla scrollbar styling + */ + +/* use standard opaque scrollbars for most nodes */ +[data-jp-theme-scrollbars='true'] { + scrollbar-color: rgb(var(--jp-scrollbar-thumb-color)) + var(--jp-scrollbar-background-color); +} + +/* for code nodes, use a transparent style of scrollbar. These selectors + * will match lower in the tree, and so will override the above */ +[data-jp-theme-scrollbars='true'] .CodeMirror-hscrollbar, +[data-jp-theme-scrollbars='true'] .CodeMirror-vscrollbar { + scrollbar-color: rgba(var(--jp-scrollbar-thumb-color), 0.5) transparent; +} + +/* + * Webkit scrollbar styling + */ + +/* use standard opaque scrollbars for most nodes */ + +[data-jp-theme-scrollbars='true'] ::-webkit-scrollbar, +[data-jp-theme-scrollbars='true'] ::-webkit-scrollbar-corner { + background: var(--jp-scrollbar-background-color); +} + +[data-jp-theme-scrollbars='true'] ::-webkit-scrollbar-thumb { + background: rgb(var(--jp-scrollbar-thumb-color)); + border: var(--jp-scrollbar-thumb-margin) solid transparent; + background-clip: content-box; + border-radius: var(--jp-scrollbar-thumb-radius); +} + +[data-jp-theme-scrollbars='true'] ::-webkit-scrollbar-track:horizontal { + border-left: var(--jp-scrollbar-endpad) solid + var(--jp-scrollbar-background-color); + border-right: var(--jp-scrollbar-endpad) solid + var(--jp-scrollbar-background-color); +} + +[data-jp-theme-scrollbars='true'] ::-webkit-scrollbar-track:vertical { + border-top: var(--jp-scrollbar-endpad) solid + var(--jp-scrollbar-background-color); + border-bottom: var(--jp-scrollbar-endpad) solid + var(--jp-scrollbar-background-color); +} + +/* for code nodes, use a transparent style of scrollbar */ + +[data-jp-theme-scrollbars='true'] .CodeMirror-hscrollbar::-webkit-scrollbar, +[data-jp-theme-scrollbars='true'] .CodeMirror-vscrollbar::-webkit-scrollbar, +[data-jp-theme-scrollbars='true'] + .CodeMirror-hscrollbar::-webkit-scrollbar-corner, +[data-jp-theme-scrollbars='true'] + .CodeMirror-vscrollbar::-webkit-scrollbar-corner { + background-color: transparent; +} + +[data-jp-theme-scrollbars='true'] + .CodeMirror-hscrollbar::-webkit-scrollbar-thumb, +[data-jp-theme-scrollbars='true'] + .CodeMirror-vscrollbar::-webkit-scrollbar-thumb { + background: rgba(var(--jp-scrollbar-thumb-color), 0.5); + border: var(--jp-scrollbar-thumb-margin) solid transparent; + background-clip: content-box; + border-radius: var(--jp-scrollbar-thumb-radius); +} + +[data-jp-theme-scrollbars='true'] + .CodeMirror-hscrollbar::-webkit-scrollbar-track:horizontal { + border-left: var(--jp-scrollbar-endpad) solid transparent; + border-right: var(--jp-scrollbar-endpad) solid transparent; +} + +[data-jp-theme-scrollbars='true'] + .CodeMirror-vscrollbar::-webkit-scrollbar-track:vertical { + border-top: var(--jp-scrollbar-endpad) solid transparent; + border-bottom: var(--jp-scrollbar-endpad) solid transparent; +} + +/* + * Phosphor + */ + +.lm-ScrollBar[data-orientation='horizontal'] { + min-height: 16px; + max-height: 16px; + min-width: 45px; + border-top: 1px solid #a0a0a0; +} + +.lm-ScrollBar[data-orientation='vertical'] { + min-width: 16px; + max-width: 16px; + min-height: 45px; + border-left: 1px solid #a0a0a0; +} + +.lm-ScrollBar-button { + background-color: #f0f0f0; + background-position: center center; + min-height: 15px; + max-height: 15px; + min-width: 15px; + max-width: 15px; +} + +.lm-ScrollBar-button:hover { + background-color: #dadada; +} + +.lm-ScrollBar-button.lm-mod-active { + background-color: #cdcdcd; +} + +.lm-ScrollBar-track { + background: #f0f0f0; +} + +.lm-ScrollBar-thumb { + background: #cdcdcd; +} + +.lm-ScrollBar-thumb:hover { + background: #bababa; +} + +.lm-ScrollBar-thumb.lm-mod-active { + background: #a0a0a0; +} + +.lm-ScrollBar[data-orientation='horizontal'] .lm-ScrollBar-thumb { + height: 100%; + min-width: 15px; + border-left: 1px solid #a0a0a0; + border-right: 1px solid #a0a0a0; +} + +.lm-ScrollBar[data-orientation='vertical'] .lm-ScrollBar-thumb { + width: 100%; + min-height: 15px; + border-top: 1px solid #a0a0a0; + border-bottom: 1px solid #a0a0a0; +} + +.lm-ScrollBar[data-orientation='horizontal'] + .lm-ScrollBar-button[data-action='decrement'] { + background-image: var(--jp-icon-caret-left); + background-size: 17px; +} + +.lm-ScrollBar[data-orientation='horizontal'] + .lm-ScrollBar-button[data-action='increment'] { + background-image: var(--jp-icon-caret-right); + background-size: 17px; +} + +.lm-ScrollBar[data-orientation='vertical'] + .lm-ScrollBar-button[data-action='decrement'] { + background-image: var(--jp-icon-caret-up); + background-size: 17px; +} + +.lm-ScrollBar[data-orientation='vertical'] + .lm-ScrollBar-button[data-action='increment'] { + background-image: var(--jp-icon-caret-down); + background-size: 17px; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Copyright (c) 2014-2017, PhosphorJS Contributors +| +| Distributed under the terms of the BSD 3-Clause License. +| +| The full license is in the file LICENSE, distributed with this software. +|----------------------------------------------------------------------------*/ + + +/* <DEPRECATED> */ .p-Widget, /* </DEPRECATED> */ +.lm-Widget { + box-sizing: border-box; + position: relative; + overflow: hidden; + cursor: default; +} + + +/* <DEPRECATED> */ .p-Widget.p-mod-hidden, /* </DEPRECATED> */ +.lm-Widget.lm-mod-hidden { + display: none !important; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Copyright (c) 2014-2017, PhosphorJS Contributors +| +| Distributed under the terms of the BSD 3-Clause License. +| +| The full license is in the file LICENSE, distributed with this software. +|----------------------------------------------------------------------------*/ + + +/* <DEPRECATED> */ .p-CommandPalette, /* </DEPRECATED> */ +.lm-CommandPalette { + display: flex; + flex-direction: column; + -webkit-user-select: none; + -moz-user-select: none; + -ms-user-select: none; + user-select: none; +} + + +/* <DEPRECATED> */ .p-CommandPalette-search, /* </DEPRECATED> */ +.lm-CommandPalette-search { + flex: 0 0 auto; +} + + +/* <DEPRECATED> */ .p-CommandPalette-content, /* </DEPRECATED> */ +.lm-CommandPalette-content { + flex: 1 1 auto; + margin: 0; + padding: 0; + min-height: 0; + overflow: auto; + list-style-type: none; +} + + +/* <DEPRECATED> */ .p-CommandPalette-header, /* </DEPRECATED> */ +.lm-CommandPalette-header { + overflow: hidden; + white-space: nowrap; + text-overflow: ellipsis; +} + + +/* <DEPRECATED> */ .p-CommandPalette-item, /* </DEPRECATED> */ +.lm-CommandPalette-item { + display: flex; + flex-direction: row; +} + + +/* <DEPRECATED> */ .p-CommandPalette-itemIcon, /* </DEPRECATED> */ +.lm-CommandPalette-itemIcon { + flex: 0 0 auto; +} + + +/* <DEPRECATED> */ .p-CommandPalette-itemContent, /* </DEPRECATED> */ +.lm-CommandPalette-itemContent { + flex: 1 1 auto; + overflow: hidden; +} + + +/* <DEPRECATED> */ .p-CommandPalette-itemShortcut, /* </DEPRECATED> */ +.lm-CommandPalette-itemShortcut { + flex: 0 0 auto; +} + + +/* <DEPRECATED> */ .p-CommandPalette-itemLabel, /* </DEPRECATED> */ +.lm-CommandPalette-itemLabel { + overflow: hidden; + white-space: nowrap; + text-overflow: ellipsis; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Copyright (c) 2014-2017, PhosphorJS Contributors +| +| Distributed under the terms of the BSD 3-Clause License. +| +| The full license is in the file LICENSE, distributed with this software. +|----------------------------------------------------------------------------*/ + + +/* <DEPRECATED> */ .p-DockPanel, /* </DEPRECATED> */ +.lm-DockPanel { + z-index: 0; +} + + +/* <DEPRECATED> */ .p-DockPanel-widget, /* </DEPRECATED> */ +.lm-DockPanel-widget { + z-index: 0; +} + + +/* <DEPRECATED> */ .p-DockPanel-tabBar, /* </DEPRECATED> */ +.lm-DockPanel-tabBar { + z-index: 1; +} + + +/* <DEPRECATED> */ .p-DockPanel-handle, /* </DEPRECATED> */ +.lm-DockPanel-handle { + z-index: 2; +} + + +/* <DEPRECATED> */ .p-DockPanel-handle.p-mod-hidden, /* </DEPRECATED> */ +.lm-DockPanel-handle.lm-mod-hidden { + display: none !important; +} + + +/* <DEPRECATED> */ .p-DockPanel-handle:after, /* </DEPRECATED> */ +.lm-DockPanel-handle:after { + position: absolute; + top: 0; + left: 0; + width: 100%; + height: 100%; + content: ''; +} + + +/* <DEPRECATED> */ +.p-DockPanel-handle[data-orientation='horizontal'], +/* </DEPRECATED> */ +.lm-DockPanel-handle[data-orientation='horizontal'] { + cursor: ew-resize; +} + + +/* <DEPRECATED> */ +.p-DockPanel-handle[data-orientation='vertical'], +/* </DEPRECATED> */ +.lm-DockPanel-handle[data-orientation='vertical'] { + cursor: ns-resize; +} + + +/* <DEPRECATED> */ +.p-DockPanel-handle[data-orientation='horizontal']:after, +/* </DEPRECATED> */ +.lm-DockPanel-handle[data-orientation='horizontal']:after { + left: 50%; + min-width: 8px; + transform: translateX(-50%); +} + + +/* <DEPRECATED> */ +.p-DockPanel-handle[data-orientation='vertical']:after, +/* </DEPRECATED> */ +.lm-DockPanel-handle[data-orientation='vertical']:after { + top: 50%; + min-height: 8px; + transform: translateY(-50%); +} + + +/* <DEPRECATED> */ .p-DockPanel-overlay, /* </DEPRECATED> */ +.lm-DockPanel-overlay { + z-index: 3; + box-sizing: border-box; + pointer-events: none; +} + + +/* <DEPRECATED> */ .p-DockPanel-overlay.p-mod-hidden, /* </DEPRECATED> */ +.lm-DockPanel-overlay.lm-mod-hidden { + display: none !important; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Copyright (c) 2014-2017, PhosphorJS Contributors +| +| Distributed under the terms of the BSD 3-Clause License. +| +| The full license is in the file LICENSE, distributed with this software. +|----------------------------------------------------------------------------*/ + + +/* <DEPRECATED> */ .p-Menu, /* </DEPRECATED> */ +.lm-Menu { + z-index: 10000; + position: absolute; + white-space: nowrap; + overflow-x: hidden; + overflow-y: auto; + outline: none; + -webkit-user-select: none; + -moz-user-select: none; + -ms-user-select: none; + user-select: none; +} + + +/* <DEPRECATED> */ .p-Menu-content, /* </DEPRECATED> */ +.lm-Menu-content { + margin: 0; + padding: 0; + display: table; + list-style-type: none; +} + + +/* <DEPRECATED> */ .p-Menu-item, /* </DEPRECATED> */ +.lm-Menu-item { + display: table-row; +} + + +/* <DEPRECATED> */ +.p-Menu-item.p-mod-hidden, +.p-Menu-item.p-mod-collapsed, +/* </DEPRECATED> */ +.lm-Menu-item.lm-mod-hidden, +.lm-Menu-item.lm-mod-collapsed { + display: none !important; +} + + +/* <DEPRECATED> */ +.p-Menu-itemIcon, +.p-Menu-itemSubmenuIcon, +/* </DEPRECATED> */ +.lm-Menu-itemIcon, +.lm-Menu-itemSubmenuIcon { + display: table-cell; + text-align: center; +} + + +/* <DEPRECATED> */ .p-Menu-itemLabel, /* </DEPRECATED> */ +.lm-Menu-itemLabel { + display: table-cell; + text-align: left; +} + + +/* <DEPRECATED> */ .p-Menu-itemShortcut, /* </DEPRECATED> */ +.lm-Menu-itemShortcut { + display: table-cell; + text-align: right; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Copyright (c) 2014-2017, PhosphorJS Contributors +| +| Distributed under the terms of the BSD 3-Clause License. +| +| The full license is in the file LICENSE, distributed with this software. +|----------------------------------------------------------------------------*/ + + +/* <DEPRECATED> */ .p-MenuBar, /* </DEPRECATED> */ +.lm-MenuBar { + outline: none; + -webkit-user-select: none; + -moz-user-select: none; + -ms-user-select: none; + user-select: none; +} + + +/* <DEPRECATED> */ .p-MenuBar-content, /* </DEPRECATED> */ +.lm-MenuBar-content { + margin: 0; + padding: 0; + display: flex; + flex-direction: row; + list-style-type: none; +} + + +/* <DEPRECATED> */ .p--MenuBar-item, /* </DEPRECATED> */ +.lm-MenuBar-item { + box-sizing: border-box; +} + + +/* <DEPRECATED> */ +.p-MenuBar-itemIcon, +.p-MenuBar-itemLabel, +/* </DEPRECATED> */ +.lm-MenuBar-itemIcon, +.lm-MenuBar-itemLabel { + display: inline-block; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Copyright (c) 2014-2017, PhosphorJS Contributors +| +| Distributed under the terms of the BSD 3-Clause License. +| +| The full license is in the file LICENSE, distributed with this software. +|----------------------------------------------------------------------------*/ + + +/* <DEPRECATED> */ .p-ScrollBar, /* </DEPRECATED> */ +.lm-ScrollBar { + display: flex; + -webkit-user-select: none; + -moz-user-select: none; + -ms-user-select: none; + user-select: none; +} + + +/* <DEPRECATED> */ +.p-ScrollBar[data-orientation='horizontal'], +/* </DEPRECATED> */ +.lm-ScrollBar[data-orientation='horizontal'] { + flex-direction: row; +} + + +/* <DEPRECATED> */ +.p-ScrollBar[data-orientation='vertical'], +/* </DEPRECATED> */ +.lm-ScrollBar[data-orientation='vertical'] { + flex-direction: column; +} + + +/* <DEPRECATED> */ .p-ScrollBar-button, /* </DEPRECATED> */ +.lm-ScrollBar-button { + box-sizing: border-box; + flex: 0 0 auto; +} + + +/* <DEPRECATED> */ .p-ScrollBar-track, /* </DEPRECATED> */ +.lm-ScrollBar-track { + box-sizing: border-box; + position: relative; + overflow: hidden; + flex: 1 1 auto; +} + + +/* <DEPRECATED> */ .p-ScrollBar-thumb, /* </DEPRECATED> */ +.lm-ScrollBar-thumb { + box-sizing: border-box; + position: absolute; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Copyright (c) 2014-2017, PhosphorJS Contributors +| +| Distributed under the terms of the BSD 3-Clause License. +| +| The full license is in the file LICENSE, distributed with this software. +|----------------------------------------------------------------------------*/ + + +/* <DEPRECATED> */ .p-SplitPanel-child, /* </DEPRECATED> */ +.lm-SplitPanel-child { + z-index: 0; +} + + +/* <DEPRECATED> */ .p-SplitPanel-handle, /* </DEPRECATED> */ +.lm-SplitPanel-handle { + z-index: 1; +} + + +/* <DEPRECATED> */ .p-SplitPanel-handle.p-mod-hidden, /* </DEPRECATED> */ +.lm-SplitPanel-handle.lm-mod-hidden { + display: none !important; +} + + +/* <DEPRECATED> */ .p-SplitPanel-handle:after, /* </DEPRECATED> */ +.lm-SplitPanel-handle:after { + position: absolute; + top: 0; + left: 0; + width: 100%; + height: 100%; + content: ''; +} + + +/* <DEPRECATED> */ +.p-SplitPanel[data-orientation='horizontal'] > .p-SplitPanel-handle, +/* </DEPRECATED> */ +.lm-SplitPanel[data-orientation='horizontal'] > .lm-SplitPanel-handle { + cursor: ew-resize; +} + + +/* <DEPRECATED> */ +.p-SplitPanel[data-orientation='vertical'] > .p-SplitPanel-handle, +/* </DEPRECATED> */ +.lm-SplitPanel[data-orientation='vertical'] > .lm-SplitPanel-handle { + cursor: ns-resize; +} + + +/* <DEPRECATED> */ +.p-SplitPanel[data-orientation='horizontal'] > .p-SplitPanel-handle:after, +/* </DEPRECATED> */ +.lm-SplitPanel[data-orientation='horizontal'] > .lm-SplitPanel-handle:after { + left: 50%; + min-width: 8px; + transform: translateX(-50%); +} + + +/* <DEPRECATED> */ +.p-SplitPanel[data-orientation='vertical'] > .p-SplitPanel-handle:after, +/* </DEPRECATED> */ +.lm-SplitPanel[data-orientation='vertical'] > .lm-SplitPanel-handle:after { + top: 50%; + min-height: 8px; + transform: translateY(-50%); +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Copyright (c) 2014-2017, PhosphorJS Contributors +| +| Distributed under the terms of the BSD 3-Clause License. +| +| The full license is in the file LICENSE, distributed with this software. +|----------------------------------------------------------------------------*/ + + +/* <DEPRECATED> */ .p-TabBar, /* </DEPRECATED> */ +.lm-TabBar { + display: flex; + -webkit-user-select: none; + -moz-user-select: none; + -ms-user-select: none; + user-select: none; +} + + +/* <DEPRECATED> */ .p-TabBar[data-orientation='horizontal'], /* </DEPRECATED> */ +.lm-TabBar[data-orientation='horizontal'] { + flex-direction: row; +} + + +/* <DEPRECATED> */ .p-TabBar[data-orientation='vertical'], /* </DEPRECATED> */ +.lm-TabBar[data-orientation='vertical'] { + flex-direction: column; +} + + +/* <DEPRECATED> */ .p-TabBar-content, /* </DEPRECATED> */ +.lm-TabBar-content { + margin: 0; + padding: 0; + display: flex; + flex: 1 1 auto; + list-style-type: none; +} + + +/* <DEPRECATED> */ +.p-TabBar[data-orientation='horizontal'] > .p-TabBar-content, +/* </DEPRECATED> */ +.lm-TabBar[data-orientation='horizontal'] > .lm-TabBar-content { + flex-direction: row; +} + + +/* <DEPRECATED> */ +.p-TabBar[data-orientation='vertical'] > .p-TabBar-content, +/* </DEPRECATED> */ +.lm-TabBar[data-orientation='vertical'] > .lm-TabBar-content { + flex-direction: column; +} + + +/* <DEPRECATED> */ .p-TabBar-tab, /* </DEPRECATED> */ +.lm-TabBar-tab { + display: flex; + flex-direction: row; + box-sizing: border-box; + overflow: hidden; +} + + +/* <DEPRECATED> */ +.p-TabBar-tabIcon, +.p-TabBar-tabCloseIcon, +/* </DEPRECATED> */ +.lm-TabBar-tabIcon, +.lm-TabBar-tabCloseIcon { + flex: 0 0 auto; +} + + +/* <DEPRECATED> */ .p-TabBar-tabLabel, /* </DEPRECATED> */ +.lm-TabBar-tabLabel { + flex: 1 1 auto; + overflow: hidden; + white-space: nowrap; +} + + +/* <DEPRECATED> */ .p-TabBar-tab.p-mod-hidden, /* </DEPRECATED> */ +.lm-TabBar-tab.lm-mod-hidden { + display: none !important; +} + + +/* <DEPRECATED> */ .p-TabBar.p-mod-dragging .p-TabBar-tab, /* </DEPRECATED> */ +.lm-TabBar.lm-mod-dragging .lm-TabBar-tab { + position: relative; +} + + +/* <DEPRECATED> */ +.p-TabBar.p-mod-dragging[data-orientation='horizontal'] .p-TabBar-tab, +/* </DEPRECATED> */ +.lm-TabBar.lm-mod-dragging[data-orientation='horizontal'] .lm-TabBar-tab { + left: 0; + transition: left 150ms ease; +} + + +/* <DEPRECATED> */ +.p-TabBar.p-mod-dragging[data-orientation='vertical'] .p-TabBar-tab, +/* </DEPRECATED> */ +.lm-TabBar.lm-mod-dragging[data-orientation='vertical'] .lm-TabBar-tab { + top: 0; + transition: top 150ms ease; +} + + +/* <DEPRECATED> */ +.p-TabBar.p-mod-dragging .p-TabBar-tab.p-mod-dragging +/* </DEPRECATED> */ +.lm-TabBar.lm-mod-dragging .lm-TabBar-tab.lm-mod-dragging { + transition: none; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Copyright (c) 2014-2017, PhosphorJS Contributors +| +| Distributed under the terms of the BSD 3-Clause License. +| +| The full license is in the file LICENSE, distributed with this software. +|----------------------------------------------------------------------------*/ + + +/* <DEPRECATED> */ .p-TabPanel-tabBar, /* </DEPRECATED> */ +.lm-TabPanel-tabBar { + z-index: 1; +} + + +/* <DEPRECATED> */ .p-TabPanel-stackedPanel, /* </DEPRECATED> */ +.lm-TabPanel-stackedPanel { + z-index: 0; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Copyright (c) 2014-2017, PhosphorJS Contributors +| +| Distributed under the terms of the BSD 3-Clause License. +| +| The full license is in the file LICENSE, distributed with this software. +|----------------------------------------------------------------------------*/ + +@charset "UTF-8"; +/*! + +Copyright 2015-present Palantir Technologies, Inc. All rights reserved. +Licensed under the Apache License, Version 2.0. + +*/ +html{ + -webkit-box-sizing:border-box; + box-sizing:border-box; } + +*, +*::before, +*::after{ + -webkit-box-sizing:inherit; + box-sizing:inherit; } + +body{ + text-transform:none; + line-height:1.28581; + letter-spacing:0; + font-size:14px; + font-weight:400; + color:#182026; + font-family:-apple-system, "BlinkMacSystemFont", "Segoe UI", "Roboto", "Oxygen", "Ubuntu", "Cantarell", "Open Sans", "Helvetica Neue", "Icons16", sans-serif; } + +p{ + margin-top:0; + margin-bottom:10px; } + +small{ + font-size:12px; } + +strong{ + font-weight:600; } + +::-moz-selection{ + background:rgba(125, 188, 255, 0.6); } + +::selection{ + background:rgba(125, 188, 255, 0.6); } +.bp3-heading{ + color:#182026; + font-weight:600; + margin:0 0 10px; + padding:0; } + .bp3-dark .bp3-heading{ + color:#f5f8fa; } + +h1.bp3-heading, .bp3-running-text h1{ + line-height:40px; + font-size:36px; } + +h2.bp3-heading, .bp3-running-text h2{ + line-height:32px; + font-size:28px; } + +h3.bp3-heading, .bp3-running-text h3{ + line-height:25px; + font-size:22px; } + +h4.bp3-heading, .bp3-running-text h4{ + line-height:21px; + font-size:18px; } + +h5.bp3-heading, .bp3-running-text h5{ + line-height:19px; + font-size:16px; } + +h6.bp3-heading, .bp3-running-text h6{ + line-height:16px; + font-size:14px; } +.bp3-ui-text{ + text-transform:none; + line-height:1.28581; + letter-spacing:0; + font-size:14px; + font-weight:400; } + +.bp3-monospace-text{ + text-transform:none; + font-family:monospace; } + +.bp3-text-muted{ + color:#5c7080; } + .bp3-dark .bp3-text-muted{ + color:#a7b6c2; } + +.bp3-text-disabled{ + color:rgba(92, 112, 128, 0.6); } + .bp3-dark .bp3-text-disabled{ + color:rgba(167, 182, 194, 0.6); } + +.bp3-text-overflow-ellipsis{ + overflow:hidden; + text-overflow:ellipsis; + white-space:nowrap; + word-wrap:normal; } +.bp3-running-text{ + line-height:1.5; + font-size:14px; } + .bp3-running-text h1{ + color:#182026; + font-weight:600; + margin-top:40px; + margin-bottom:20px; } + .bp3-dark .bp3-running-text h1{ + color:#f5f8fa; } + .bp3-running-text h2{ + color:#182026; + font-weight:600; + margin-top:40px; + margin-bottom:20px; } + .bp3-dark .bp3-running-text h2{ + color:#f5f8fa; } + .bp3-running-text h3{ + color:#182026; + font-weight:600; + margin-top:40px; + margin-bottom:20px; } + .bp3-dark .bp3-running-text h3{ + color:#f5f8fa; } + .bp3-running-text h4{ + color:#182026; + font-weight:600; + margin-top:40px; + margin-bottom:20px; } + .bp3-dark .bp3-running-text h4{ + color:#f5f8fa; } + .bp3-running-text h5{ + color:#182026; + font-weight:600; + margin-top:40px; + margin-bottom:20px; } + .bp3-dark .bp3-running-text h5{ + color:#f5f8fa; } + .bp3-running-text h6{ + color:#182026; + font-weight:600; + margin-top:40px; + margin-bottom:20px; } + .bp3-dark .bp3-running-text h6{ + color:#f5f8fa; } + .bp3-running-text hr{ + margin:20px 0; + border:none; + border-bottom:1px solid rgba(16, 22, 26, 0.15); } + .bp3-dark .bp3-running-text hr{ + border-color:rgba(255, 255, 255, 0.15); } + .bp3-running-text p{ + margin:0 0 10px; + padding:0; } + +.bp3-text-large{ + font-size:16px; } + +.bp3-text-small{ + font-size:12px; } +a{ + text-decoration:none; + color:#106ba3; } + a:hover{ + cursor:pointer; + text-decoration:underline; + color:#106ba3; } + a .bp3-icon, a .bp3-icon-standard, a .bp3-icon-large{ + color:inherit; } + a code, + .bp3-dark a code{ + color:inherit; } + .bp3-dark a, + .bp3-dark a:hover{ + color:#48aff0; } + .bp3-dark a .bp3-icon, .bp3-dark a .bp3-icon-standard, .bp3-dark a .bp3-icon-large, + .bp3-dark a:hover .bp3-icon, + .bp3-dark a:hover .bp3-icon-standard, + .bp3-dark a:hover .bp3-icon-large{ + color:inherit; } +.bp3-running-text code, .bp3-code{ + text-transform:none; + font-family:monospace; + border-radius:3px; + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2); + background:rgba(255, 255, 255, 0.7); + padding:2px 5px; + color:#5c7080; + font-size:smaller; } + .bp3-dark .bp3-running-text code, .bp3-running-text .bp3-dark code, .bp3-dark .bp3-code{ + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4); + background:rgba(16, 22, 26, 0.3); + color:#a7b6c2; } + .bp3-running-text a > code, a > .bp3-code{ + color:#137cbd; } + .bp3-dark .bp3-running-text a > code, .bp3-running-text .bp3-dark a > code, .bp3-dark a > .bp3-code{ + color:inherit; } + +.bp3-running-text pre, .bp3-code-block{ + text-transform:none; + font-family:monospace; + display:block; + margin:10px 0; + border-radius:3px; + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.15); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.15); + background:rgba(255, 255, 255, 0.7); + padding:13px 15px 12px; + line-height:1.4; + color:#182026; + font-size:13px; + word-break:break-all; + word-wrap:break-word; } + .bp3-dark .bp3-running-text pre, .bp3-running-text .bp3-dark pre, .bp3-dark .bp3-code-block{ + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4); + background:rgba(16, 22, 26, 0.3); + color:#f5f8fa; } + .bp3-running-text pre > code, .bp3-code-block > code{ + -webkit-box-shadow:none; + box-shadow:none; + background:none; + padding:0; + color:inherit; + font-size:inherit; } + +.bp3-running-text kbd, .bp3-key{ + display:-webkit-inline-box; + display:-ms-inline-flexbox; + display:inline-flex; + -webkit-box-align:center; + -ms-flex-align:center; + align-items:center; + -webkit-box-pack:center; + -ms-flex-pack:center; + justify-content:center; + border-radius:3px; + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 0 0 rgba(16, 22, 26, 0), 0 1px 1px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 0 0 rgba(16, 22, 26, 0), 0 1px 1px rgba(16, 22, 26, 0.2); + background:#ffffff; + min-width:24px; + height:24px; + padding:3px 6px; + vertical-align:middle; + line-height:24px; + color:#5c7080; + font-family:inherit; + font-size:12px; } + .bp3-running-text kbd .bp3-icon, .bp3-key .bp3-icon, .bp3-running-text kbd .bp3-icon-standard, .bp3-key .bp3-icon-standard, .bp3-running-text kbd .bp3-icon-large, .bp3-key .bp3-icon-large{ + margin-right:5px; } + .bp3-dark .bp3-running-text kbd, .bp3-running-text .bp3-dark kbd, .bp3-dark .bp3-key{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 0 0 rgba(16, 22, 26, 0), 0 1px 1px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 0 0 rgba(16, 22, 26, 0), 0 1px 1px rgba(16, 22, 26, 0.4); + background:#394b59; + color:#a7b6c2; } +.bp3-running-text blockquote, .bp3-blockquote{ + margin:0 0 10px; + border-left:solid 4px rgba(167, 182, 194, 0.5); + padding:0 20px; } + .bp3-dark .bp3-running-text blockquote, .bp3-running-text .bp3-dark blockquote, .bp3-dark .bp3-blockquote{ + border-color:rgba(115, 134, 148, 0.5); } +.bp3-running-text ul, +.bp3-running-text ol, .bp3-list{ + margin:10px 0; + padding-left:30px; } + .bp3-running-text ul li:not(:last-child), .bp3-running-text ol li:not(:last-child), .bp3-list li:not(:last-child){ + margin-bottom:5px; } + .bp3-running-text ul ol, .bp3-running-text ol ol, .bp3-list ol, + .bp3-running-text ul ul, + .bp3-running-text ol ul, + .bp3-list ul{ + margin-top:5px; } + +.bp3-list-unstyled{ + margin:0; + padding:0; + list-style:none; } + .bp3-list-unstyled li{ + padding:0; } +.bp3-rtl{ + text-align:right; } + +.bp3-dark{ + color:#f5f8fa; } + +:focus{ + outline:rgba(19, 124, 189, 0.6) auto 2px; + outline-offset:2px; + -moz-outline-radius:6px; } + +.bp3-focus-disabled :focus{ + outline:none !important; } + .bp3-focus-disabled :focus ~ .bp3-control-indicator{ + outline:none !important; } + +.bp3-alert{ + max-width:400px; + padding:20px; } + +.bp3-alert-body{ + display:-webkit-box; + display:-ms-flexbox; + display:flex; } + .bp3-alert-body .bp3-icon{ + margin-top:0; + margin-right:20px; + font-size:40px; } + +.bp3-alert-footer{ + display:-webkit-box; + display:-ms-flexbox; + display:flex; + -webkit-box-orient:horizontal; + -webkit-box-direction:reverse; + -ms-flex-direction:row-reverse; + flex-direction:row-reverse; + margin-top:10px; } + .bp3-alert-footer .bp3-button{ + margin-left:10px; } +.bp3-breadcrumbs{ + display:-webkit-box; + display:-ms-flexbox; + display:flex; + -ms-flex-wrap:wrap; + flex-wrap:wrap; + -webkit-box-align:center; + -ms-flex-align:center; + align-items:center; + margin:0; + cursor:default; + height:30px; + padding:0; + list-style:none; } + .bp3-breadcrumbs > li{ + display:-webkit-box; + display:-ms-flexbox; + display:flex; + -webkit-box-align:center; + -ms-flex-align:center; + align-items:center; } + .bp3-breadcrumbs > li::after{ + display:block; + margin:0 5px; + background:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16'%3e%3cpath fill-rule='evenodd' clip-rule='evenodd' d='M10.71 7.29l-4-4a1.003 1.003 0 0 0-1.42 1.42L8.59 8 5.3 11.29c-.19.18-.3.43-.3.71a1.003 1.003 0 0 0 1.71.71l4-4c.18-.18.29-.43.29-.71 0-.28-.11-.53-.29-.71z' fill='%235C7080'/%3e%3c/svg%3e"); + width:16px; + height:16px; + content:""; } + .bp3-breadcrumbs > li:last-of-type::after{ + display:none; } + +.bp3-breadcrumb, +.bp3-breadcrumb-current, +.bp3-breadcrumbs-collapsed{ + display:-webkit-inline-box; + display:-ms-inline-flexbox; + display:inline-flex; + -webkit-box-align:center; + -ms-flex-align:center; + align-items:center; + font-size:16px; } + +.bp3-breadcrumb, +.bp3-breadcrumbs-collapsed{ + color:#5c7080; } + +.bp3-breadcrumb:hover{ + text-decoration:none; } + +.bp3-breadcrumb.bp3-disabled{ + cursor:not-allowed; + color:rgba(92, 112, 128, 0.6); } + +.bp3-breadcrumb .bp3-icon{ + margin-right:5px; } + +.bp3-breadcrumb-current{ + color:inherit; + font-weight:600; } + .bp3-breadcrumb-current .bp3-input{ + vertical-align:baseline; + font-size:inherit; + font-weight:inherit; } + +.bp3-breadcrumbs-collapsed{ + margin-right:2px; + border:none; + border-radius:3px; + background:#ced9e0; + cursor:pointer; + padding:1px 5px; + vertical-align:text-bottom; } + .bp3-breadcrumbs-collapsed::before{ + display:block; + background:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16'%3e%3cg fill='%235C7080'%3e%3ccircle cx='2' cy='8.03' r='2'/%3e%3ccircle cx='14' cy='8.03' r='2'/%3e%3ccircle cx='8' cy='8.03' r='2'/%3e%3c/g%3e%3c/svg%3e") center no-repeat; + width:16px; + height:16px; + content:""; } + .bp3-breadcrumbs-collapsed:hover{ + background:#bfccd6; + text-decoration:none; + color:#182026; } + +.bp3-dark .bp3-breadcrumb, +.bp3-dark .bp3-breadcrumbs-collapsed{ + color:#a7b6c2; } + +.bp3-dark .bp3-breadcrumbs > li::after{ + color:#a7b6c2; } + +.bp3-dark .bp3-breadcrumb.bp3-disabled{ + color:rgba(167, 182, 194, 0.6); } + +.bp3-dark .bp3-breadcrumb-current{ + color:#f5f8fa; } + +.bp3-dark .bp3-breadcrumbs-collapsed{ + background:rgba(16, 22, 26, 0.4); } + .bp3-dark .bp3-breadcrumbs-collapsed:hover{ + background:rgba(16, 22, 26, 0.6); + color:#f5f8fa; } +.bp3-button{ + display:-webkit-inline-box; + display:-ms-inline-flexbox; + display:inline-flex; + -webkit-box-orient:horizontal; + -webkit-box-direction:normal; + -ms-flex-direction:row; + flex-direction:row; + -webkit-box-align:center; + -ms-flex-align:center; + align-items:center; + -webkit-box-pack:center; + -ms-flex-pack:center; + justify-content:center; + border:none; + border-radius:3px; + cursor:pointer; + padding:5px 10px; + vertical-align:middle; + text-align:left; + font-size:14px; + min-width:30px; + min-height:30px; } + .bp3-button > *{ + -webkit-box-flex:0; + -ms-flex-positive:0; + flex-grow:0; + -ms-flex-negative:0; + flex-shrink:0; } + .bp3-button > .bp3-fill{ + -webkit-box-flex:1; + -ms-flex-positive:1; + flex-grow:1; + -ms-flex-negative:1; + flex-shrink:1; } + .bp3-button::before, + .bp3-button > *{ + margin-right:7px; } + .bp3-button:empty::before, + .bp3-button > :last-child{ + margin-right:0; } + .bp3-button:empty{ + padding:0 !important; } + .bp3-button:disabled, .bp3-button.bp3-disabled{ + cursor:not-allowed; } + .bp3-button.bp3-fill{ + display:-webkit-box; + display:-ms-flexbox; + display:flex; + width:100%; } + .bp3-button.bp3-align-right, + .bp3-align-right .bp3-button{ + text-align:right; } + .bp3-button.bp3-align-left, + .bp3-align-left .bp3-button{ + text-align:left; } + .bp3-button:not([class*="bp3-intent-"]){ + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1); + background-color:#f5f8fa; + background-image:-webkit-gradient(linear, left top, left bottom, from(rgba(255, 255, 255, 0.8)), to(rgba(255, 255, 255, 0))); + background-image:linear-gradient(to bottom, rgba(255, 255, 255, 0.8), rgba(255, 255, 255, 0)); + color:#182026; } + .bp3-button:not([class*="bp3-intent-"]):hover{ + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1); + background-clip:padding-box; + background-color:#ebf1f5; } + .bp3-button:not([class*="bp3-intent-"]):active, .bp3-button:not([class*="bp3-intent-"]).bp3-active{ + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 1px 2px rgba(16, 22, 26, 0.2); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 1px 2px rgba(16, 22, 26, 0.2); + background-color:#d8e1e8; + background-image:none; } + .bp3-button:not([class*="bp3-intent-"]):disabled, .bp3-button:not([class*="bp3-intent-"]).bp3-disabled{ + outline:none; + -webkit-box-shadow:none; + box-shadow:none; + background-color:rgba(206, 217, 224, 0.5); + background-image:none; + cursor:not-allowed; + color:rgba(92, 112, 128, 0.6); } + .bp3-button:not([class*="bp3-intent-"]):disabled.bp3-active, .bp3-button:not([class*="bp3-intent-"]):disabled.bp3-active:hover, .bp3-button:not([class*="bp3-intent-"]).bp3-disabled.bp3-active, .bp3-button:not([class*="bp3-intent-"]).bp3-disabled.bp3-active:hover{ + background:rgba(206, 217, 224, 0.7); } + .bp3-button.bp3-intent-primary{ + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2); + background-color:#137cbd; + background-image:-webkit-gradient(linear, left top, left bottom, from(rgba(255, 255, 255, 0.1)), to(rgba(255, 255, 255, 0))); + background-image:linear-gradient(to bottom, rgba(255, 255, 255, 0.1), rgba(255, 255, 255, 0)); + color:#ffffff; } + .bp3-button.bp3-intent-primary:hover, .bp3-button.bp3-intent-primary:active, .bp3-button.bp3-intent-primary.bp3-active{ + color:#ffffff; } + .bp3-button.bp3-intent-primary:hover{ + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2); + background-color:#106ba3; } + .bp3-button.bp3-intent-primary:active, .bp3-button.bp3-intent-primary.bp3-active{ + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 1px 2px rgba(16, 22, 26, 0.2); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 1px 2px rgba(16, 22, 26, 0.2); + background-color:#0e5a8a; + background-image:none; } + .bp3-button.bp3-intent-primary:disabled, .bp3-button.bp3-intent-primary.bp3-disabled{ + border-color:transparent; + -webkit-box-shadow:none; + box-shadow:none; + background-color:rgba(19, 124, 189, 0.5); + background-image:none; + color:rgba(255, 255, 255, 0.6); } + .bp3-button.bp3-intent-success{ + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2); + background-color:#0f9960; + background-image:-webkit-gradient(linear, left top, left bottom, from(rgba(255, 255, 255, 0.1)), to(rgba(255, 255, 255, 0))); + background-image:linear-gradient(to bottom, rgba(255, 255, 255, 0.1), rgba(255, 255, 255, 0)); + color:#ffffff; } + .bp3-button.bp3-intent-success:hover, .bp3-button.bp3-intent-success:active, .bp3-button.bp3-intent-success.bp3-active{ + color:#ffffff; } + .bp3-button.bp3-intent-success:hover{ + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2); + background-color:#0d8050; } + .bp3-button.bp3-intent-success:active, .bp3-button.bp3-intent-success.bp3-active{ + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 1px 2px rgba(16, 22, 26, 0.2); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 1px 2px rgba(16, 22, 26, 0.2); + background-color:#0a6640; + background-image:none; } + .bp3-button.bp3-intent-success:disabled, .bp3-button.bp3-intent-success.bp3-disabled{ + border-color:transparent; + -webkit-box-shadow:none; + box-shadow:none; + background-color:rgba(15, 153, 96, 0.5); + background-image:none; + color:rgba(255, 255, 255, 0.6); } + .bp3-button.bp3-intent-warning{ + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2); + background-color:#d9822b; + background-image:-webkit-gradient(linear, left top, left bottom, from(rgba(255, 255, 255, 0.1)), to(rgba(255, 255, 255, 0))); + background-image:linear-gradient(to bottom, rgba(255, 255, 255, 0.1), rgba(255, 255, 255, 0)); + color:#ffffff; } + .bp3-button.bp3-intent-warning:hover, .bp3-button.bp3-intent-warning:active, .bp3-button.bp3-intent-warning.bp3-active{ + color:#ffffff; } + .bp3-button.bp3-intent-warning:hover{ + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2); + background-color:#bf7326; } + .bp3-button.bp3-intent-warning:active, .bp3-button.bp3-intent-warning.bp3-active{ + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 1px 2px rgba(16, 22, 26, 0.2); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 1px 2px rgba(16, 22, 26, 0.2); + background-color:#a66321; + background-image:none; } + .bp3-button.bp3-intent-warning:disabled, .bp3-button.bp3-intent-warning.bp3-disabled{ + border-color:transparent; + -webkit-box-shadow:none; + box-shadow:none; + background-color:rgba(217, 130, 43, 0.5); + background-image:none; + color:rgba(255, 255, 255, 0.6); } + .bp3-button.bp3-intent-danger{ + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2); + background-color:#db3737; + background-image:-webkit-gradient(linear, left top, left bottom, from(rgba(255, 255, 255, 0.1)), to(rgba(255, 255, 255, 0))); + background-image:linear-gradient(to bottom, rgba(255, 255, 255, 0.1), rgba(255, 255, 255, 0)); + color:#ffffff; } + .bp3-button.bp3-intent-danger:hover, .bp3-button.bp3-intent-danger:active, .bp3-button.bp3-intent-danger.bp3-active{ + color:#ffffff; } + .bp3-button.bp3-intent-danger:hover{ + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2); + background-color:#c23030; } + .bp3-button.bp3-intent-danger:active, .bp3-button.bp3-intent-danger.bp3-active{ + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 1px 2px rgba(16, 22, 26, 0.2); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 1px 2px rgba(16, 22, 26, 0.2); + background-color:#a82a2a; + background-image:none; } + .bp3-button.bp3-intent-danger:disabled, .bp3-button.bp3-intent-danger.bp3-disabled{ + border-color:transparent; + -webkit-box-shadow:none; + box-shadow:none; + background-color:rgba(219, 55, 55, 0.5); + background-image:none; + color:rgba(255, 255, 255, 0.6); } + .bp3-button[class*="bp3-intent-"] .bp3-button-spinner .bp3-spinner-head{ + stroke:#ffffff; } + .bp3-button.bp3-large, + .bp3-large .bp3-button{ + min-width:40px; + min-height:40px; + padding:5px 15px; + font-size:16px; } + .bp3-button.bp3-large::before, + .bp3-button.bp3-large > *, + .bp3-large .bp3-button::before, + .bp3-large .bp3-button > *{ + margin-right:10px; } + .bp3-button.bp3-large:empty::before, + .bp3-button.bp3-large > :last-child, + .bp3-large .bp3-button:empty::before, + .bp3-large .bp3-button > :last-child{ + margin-right:0; } + .bp3-button.bp3-small, + .bp3-small .bp3-button{ + min-width:24px; + min-height:24px; + padding:0 7px; } + .bp3-button.bp3-loading{ + position:relative; } + .bp3-button.bp3-loading[class*="bp3-icon-"]::before{ + visibility:hidden; } + .bp3-button.bp3-loading .bp3-button-spinner{ + position:absolute; + margin:0; } + .bp3-button.bp3-loading > :not(.bp3-button-spinner){ + visibility:hidden; } + .bp3-button[class*="bp3-icon-"]::before{ + line-height:1; + font-family:"Icons16", sans-serif; + font-size:16px; + font-weight:400; + font-style:normal; + -moz-osx-font-smoothing:grayscale; + -webkit-font-smoothing:antialiased; + color:#5c7080; } + .bp3-button .bp3-icon, .bp3-button .bp3-icon-standard, .bp3-button .bp3-icon-large{ + color:#5c7080; } + .bp3-button .bp3-icon.bp3-align-right, .bp3-button .bp3-icon-standard.bp3-align-right, .bp3-button .bp3-icon-large.bp3-align-right{ + margin-left:7px; } + .bp3-button .bp3-icon:first-child:last-child, + .bp3-button .bp3-spinner + .bp3-icon:last-child{ + margin:0 -7px; } + .bp3-dark .bp3-button:not([class*="bp3-intent-"]){ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4); + background-color:#394b59; + background-image:-webkit-gradient(linear, left top, left bottom, from(rgba(255, 255, 255, 0.05)), to(rgba(255, 255, 255, 0))); + background-image:linear-gradient(to bottom, rgba(255, 255, 255, 0.05), rgba(255, 255, 255, 0)); + color:#f5f8fa; } + .bp3-dark .bp3-button:not([class*="bp3-intent-"]):hover, .bp3-dark .bp3-button:not([class*="bp3-intent-"]):active, .bp3-dark .bp3-button:not([class*="bp3-intent-"]).bp3-active{ + color:#f5f8fa; } + .bp3-dark .bp3-button:not([class*="bp3-intent-"]):hover{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4); + background-color:#30404d; } + .bp3-dark .bp3-button:not([class*="bp3-intent-"]):active, .bp3-dark .bp3-button:not([class*="bp3-intent-"]).bp3-active{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.6), inset 0 1px 2px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.6), inset 0 1px 2px rgba(16, 22, 26, 0.2); + background-color:#202b33; + background-image:none; } + .bp3-dark .bp3-button:not([class*="bp3-intent-"]):disabled, .bp3-dark .bp3-button:not([class*="bp3-intent-"]).bp3-disabled{ + -webkit-box-shadow:none; + box-shadow:none; + background-color:rgba(57, 75, 89, 0.5); + background-image:none; + color:rgba(167, 182, 194, 0.6); } + .bp3-dark .bp3-button:not([class*="bp3-intent-"]):disabled.bp3-active, .bp3-dark .bp3-button:not([class*="bp3-intent-"]).bp3-disabled.bp3-active{ + background:rgba(57, 75, 89, 0.7); } + .bp3-dark .bp3-button:not([class*="bp3-intent-"]) .bp3-button-spinner .bp3-spinner-head{ + background:rgba(16, 22, 26, 0.5); + stroke:#8a9ba8; } + .bp3-dark .bp3-button:not([class*="bp3-intent-"])[class*="bp3-icon-"]::before{ + color:#a7b6c2; } + .bp3-dark .bp3-button:not([class*="bp3-intent-"]) .bp3-icon, .bp3-dark .bp3-button:not([class*="bp3-intent-"]) .bp3-icon-standard, .bp3-dark .bp3-button:not([class*="bp3-intent-"]) .bp3-icon-large{ + color:#a7b6c2; } + .bp3-dark .bp3-button[class*="bp3-intent-"]{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4); } + .bp3-dark .bp3-button[class*="bp3-intent-"]:hover{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4); } + .bp3-dark .bp3-button[class*="bp3-intent-"]:active, .bp3-dark .bp3-button[class*="bp3-intent-"].bp3-active{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 1px 2px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 1px 2px rgba(16, 22, 26, 0.2); } + .bp3-dark .bp3-button[class*="bp3-intent-"]:disabled, .bp3-dark .bp3-button[class*="bp3-intent-"].bp3-disabled{ + -webkit-box-shadow:none; + box-shadow:none; + background-image:none; + color:rgba(255, 255, 255, 0.3); } + .bp3-dark .bp3-button[class*="bp3-intent-"] .bp3-button-spinner .bp3-spinner-head{ + stroke:#8a9ba8; } + .bp3-button:disabled::before, + .bp3-button:disabled .bp3-icon, .bp3-button:disabled .bp3-icon-standard, .bp3-button:disabled .bp3-icon-large, .bp3-button.bp3-disabled::before, + .bp3-button.bp3-disabled .bp3-icon, .bp3-button.bp3-disabled .bp3-icon-standard, .bp3-button.bp3-disabled .bp3-icon-large, .bp3-button[class*="bp3-intent-"]::before, + .bp3-button[class*="bp3-intent-"] .bp3-icon, .bp3-button[class*="bp3-intent-"] .bp3-icon-standard, .bp3-button[class*="bp3-intent-"] .bp3-icon-large{ + color:inherit !important; } + .bp3-button.bp3-minimal{ + -webkit-box-shadow:none; + box-shadow:none; + background:none; } + .bp3-button.bp3-minimal:hover{ + -webkit-box-shadow:none; + box-shadow:none; + background:rgba(167, 182, 194, 0.3); + text-decoration:none; + color:#182026; } + .bp3-button.bp3-minimal:active, .bp3-button.bp3-minimal.bp3-active{ + -webkit-box-shadow:none; + box-shadow:none; + background:rgba(115, 134, 148, 0.3); + color:#182026; } + .bp3-button.bp3-minimal:disabled, .bp3-button.bp3-minimal:disabled:hover, .bp3-button.bp3-minimal.bp3-disabled, .bp3-button.bp3-minimal.bp3-disabled:hover{ + background:none; + cursor:not-allowed; + color:rgba(92, 112, 128, 0.6); } + .bp3-button.bp3-minimal:disabled.bp3-active, .bp3-button.bp3-minimal:disabled:hover.bp3-active, .bp3-button.bp3-minimal.bp3-disabled.bp3-active, .bp3-button.bp3-minimal.bp3-disabled:hover.bp3-active{ + background:rgba(115, 134, 148, 0.3); } + .bp3-dark .bp3-button.bp3-minimal{ + -webkit-box-shadow:none; + box-shadow:none; + background:none; + color:inherit; } + .bp3-dark .bp3-button.bp3-minimal:hover, .bp3-dark .bp3-button.bp3-minimal:active, .bp3-dark .bp3-button.bp3-minimal.bp3-active{ + -webkit-box-shadow:none; + box-shadow:none; + background:none; } + .bp3-dark .bp3-button.bp3-minimal:hover{ + background:rgba(138, 155, 168, 0.15); } + .bp3-dark .bp3-button.bp3-minimal:active, .bp3-dark .bp3-button.bp3-minimal.bp3-active{ + background:rgba(138, 155, 168, 0.3); + color:#f5f8fa; } + .bp3-dark .bp3-button.bp3-minimal:disabled, .bp3-dark .bp3-button.bp3-minimal:disabled:hover, .bp3-dark .bp3-button.bp3-minimal.bp3-disabled, .bp3-dark .bp3-button.bp3-minimal.bp3-disabled:hover{ + background:none; + cursor:not-allowed; + color:rgba(167, 182, 194, 0.6); } + .bp3-dark .bp3-button.bp3-minimal:disabled.bp3-active, .bp3-dark .bp3-button.bp3-minimal:disabled:hover.bp3-active, .bp3-dark .bp3-button.bp3-minimal.bp3-disabled.bp3-active, .bp3-dark .bp3-button.bp3-minimal.bp3-disabled:hover.bp3-active{ + background:rgba(138, 155, 168, 0.3); } + .bp3-button.bp3-minimal.bp3-intent-primary{ + color:#106ba3; } + .bp3-button.bp3-minimal.bp3-intent-primary:hover, .bp3-button.bp3-minimal.bp3-intent-primary:active, .bp3-button.bp3-minimal.bp3-intent-primary.bp3-active{ + -webkit-box-shadow:none; + box-shadow:none; + background:none; + color:#106ba3; } + .bp3-button.bp3-minimal.bp3-intent-primary:hover{ + background:rgba(19, 124, 189, 0.15); + color:#106ba3; } + .bp3-button.bp3-minimal.bp3-intent-primary:active, .bp3-button.bp3-minimal.bp3-intent-primary.bp3-active{ + background:rgba(19, 124, 189, 0.3); + color:#106ba3; } + .bp3-button.bp3-minimal.bp3-intent-primary:disabled, .bp3-button.bp3-minimal.bp3-intent-primary.bp3-disabled{ + background:none; + color:rgba(16, 107, 163, 0.5); } + .bp3-button.bp3-minimal.bp3-intent-primary:disabled.bp3-active, .bp3-button.bp3-minimal.bp3-intent-primary.bp3-disabled.bp3-active{ + background:rgba(19, 124, 189, 0.3); } + .bp3-button.bp3-minimal.bp3-intent-primary .bp3-button-spinner .bp3-spinner-head{ + stroke:#106ba3; } + .bp3-dark .bp3-button.bp3-minimal.bp3-intent-primary{ + color:#48aff0; } + .bp3-dark .bp3-button.bp3-minimal.bp3-intent-primary:hover{ + background:rgba(19, 124, 189, 0.2); + color:#48aff0; } + .bp3-dark .bp3-button.bp3-minimal.bp3-intent-primary:active, .bp3-dark .bp3-button.bp3-minimal.bp3-intent-primary.bp3-active{ + background:rgba(19, 124, 189, 0.3); + color:#48aff0; } + .bp3-dark .bp3-button.bp3-minimal.bp3-intent-primary:disabled, .bp3-dark .bp3-button.bp3-minimal.bp3-intent-primary.bp3-disabled{ + background:none; + color:rgba(72, 175, 240, 0.5); } + .bp3-dark .bp3-button.bp3-minimal.bp3-intent-primary:disabled.bp3-active, .bp3-dark .bp3-button.bp3-minimal.bp3-intent-primary.bp3-disabled.bp3-active{ + background:rgba(19, 124, 189, 0.3); } + .bp3-button.bp3-minimal.bp3-intent-success{ + color:#0d8050; } + .bp3-button.bp3-minimal.bp3-intent-success:hover, .bp3-button.bp3-minimal.bp3-intent-success:active, .bp3-button.bp3-minimal.bp3-intent-success.bp3-active{ + -webkit-box-shadow:none; + box-shadow:none; + background:none; + color:#0d8050; } + .bp3-button.bp3-minimal.bp3-intent-success:hover{ + background:rgba(15, 153, 96, 0.15); + color:#0d8050; } + .bp3-button.bp3-minimal.bp3-intent-success:active, .bp3-button.bp3-minimal.bp3-intent-success.bp3-active{ + background:rgba(15, 153, 96, 0.3); + color:#0d8050; } + .bp3-button.bp3-minimal.bp3-intent-success:disabled, .bp3-button.bp3-minimal.bp3-intent-success.bp3-disabled{ + background:none; + color:rgba(13, 128, 80, 0.5); } + .bp3-button.bp3-minimal.bp3-intent-success:disabled.bp3-active, .bp3-button.bp3-minimal.bp3-intent-success.bp3-disabled.bp3-active{ + background:rgba(15, 153, 96, 0.3); } + .bp3-button.bp3-minimal.bp3-intent-success .bp3-button-spinner .bp3-spinner-head{ + stroke:#0d8050; } + .bp3-dark .bp3-button.bp3-minimal.bp3-intent-success{ + color:#3dcc91; } + .bp3-dark .bp3-button.bp3-minimal.bp3-intent-success:hover{ + background:rgba(15, 153, 96, 0.2); + color:#3dcc91; } + .bp3-dark .bp3-button.bp3-minimal.bp3-intent-success:active, .bp3-dark .bp3-button.bp3-minimal.bp3-intent-success.bp3-active{ + background:rgba(15, 153, 96, 0.3); + color:#3dcc91; } + .bp3-dark .bp3-button.bp3-minimal.bp3-intent-success:disabled, .bp3-dark .bp3-button.bp3-minimal.bp3-intent-success.bp3-disabled{ + background:none; + color:rgba(61, 204, 145, 0.5); } + .bp3-dark .bp3-button.bp3-minimal.bp3-intent-success:disabled.bp3-active, .bp3-dark .bp3-button.bp3-minimal.bp3-intent-success.bp3-disabled.bp3-active{ + background:rgba(15, 153, 96, 0.3); } + .bp3-button.bp3-minimal.bp3-intent-warning{ + color:#bf7326; } + .bp3-button.bp3-minimal.bp3-intent-warning:hover, .bp3-button.bp3-minimal.bp3-intent-warning:active, .bp3-button.bp3-minimal.bp3-intent-warning.bp3-active{ + -webkit-box-shadow:none; + box-shadow:none; + background:none; + color:#bf7326; } + .bp3-button.bp3-minimal.bp3-intent-warning:hover{ + background:rgba(217, 130, 43, 0.15); + color:#bf7326; } + .bp3-button.bp3-minimal.bp3-intent-warning:active, .bp3-button.bp3-minimal.bp3-intent-warning.bp3-active{ + background:rgba(217, 130, 43, 0.3); + color:#bf7326; } + .bp3-button.bp3-minimal.bp3-intent-warning:disabled, .bp3-button.bp3-minimal.bp3-intent-warning.bp3-disabled{ + background:none; + color:rgba(191, 115, 38, 0.5); } + .bp3-button.bp3-minimal.bp3-intent-warning:disabled.bp3-active, .bp3-button.bp3-minimal.bp3-intent-warning.bp3-disabled.bp3-active{ + background:rgba(217, 130, 43, 0.3); } + .bp3-button.bp3-minimal.bp3-intent-warning .bp3-button-spinner .bp3-spinner-head{ + stroke:#bf7326; } + .bp3-dark .bp3-button.bp3-minimal.bp3-intent-warning{ + color:#ffb366; } + .bp3-dark .bp3-button.bp3-minimal.bp3-intent-warning:hover{ + background:rgba(217, 130, 43, 0.2); + color:#ffb366; } + .bp3-dark .bp3-button.bp3-minimal.bp3-intent-warning:active, .bp3-dark .bp3-button.bp3-minimal.bp3-intent-warning.bp3-active{ + background:rgba(217, 130, 43, 0.3); + color:#ffb366; } + .bp3-dark .bp3-button.bp3-minimal.bp3-intent-warning:disabled, .bp3-dark .bp3-button.bp3-minimal.bp3-intent-warning.bp3-disabled{ + background:none; + color:rgba(255, 179, 102, 0.5); } + .bp3-dark .bp3-button.bp3-minimal.bp3-intent-warning:disabled.bp3-active, .bp3-dark .bp3-button.bp3-minimal.bp3-intent-warning.bp3-disabled.bp3-active{ + background:rgba(217, 130, 43, 0.3); } + .bp3-button.bp3-minimal.bp3-intent-danger{ + color:#c23030; } + .bp3-button.bp3-minimal.bp3-intent-danger:hover, .bp3-button.bp3-minimal.bp3-intent-danger:active, .bp3-button.bp3-minimal.bp3-intent-danger.bp3-active{ + -webkit-box-shadow:none; + box-shadow:none; + background:none; + color:#c23030; } + .bp3-button.bp3-minimal.bp3-intent-danger:hover{ + background:rgba(219, 55, 55, 0.15); + color:#c23030; } + .bp3-button.bp3-minimal.bp3-intent-danger:active, .bp3-button.bp3-minimal.bp3-intent-danger.bp3-active{ + background:rgba(219, 55, 55, 0.3); + color:#c23030; } + .bp3-button.bp3-minimal.bp3-intent-danger:disabled, .bp3-button.bp3-minimal.bp3-intent-danger.bp3-disabled{ + background:none; + color:rgba(194, 48, 48, 0.5); } + .bp3-button.bp3-minimal.bp3-intent-danger:disabled.bp3-active, .bp3-button.bp3-minimal.bp3-intent-danger.bp3-disabled.bp3-active{ + background:rgba(219, 55, 55, 0.3); } + .bp3-button.bp3-minimal.bp3-intent-danger .bp3-button-spinner .bp3-spinner-head{ + stroke:#c23030; } + .bp3-dark .bp3-button.bp3-minimal.bp3-intent-danger{ + color:#ff7373; } + .bp3-dark .bp3-button.bp3-minimal.bp3-intent-danger:hover{ + background:rgba(219, 55, 55, 0.2); + color:#ff7373; } + .bp3-dark .bp3-button.bp3-minimal.bp3-intent-danger:active, .bp3-dark .bp3-button.bp3-minimal.bp3-intent-danger.bp3-active{ + background:rgba(219, 55, 55, 0.3); + color:#ff7373; } + .bp3-dark .bp3-button.bp3-minimal.bp3-intent-danger:disabled, .bp3-dark .bp3-button.bp3-minimal.bp3-intent-danger.bp3-disabled{ + background:none; + color:rgba(255, 115, 115, 0.5); } + .bp3-dark .bp3-button.bp3-minimal.bp3-intent-danger:disabled.bp3-active, .bp3-dark .bp3-button.bp3-minimal.bp3-intent-danger.bp3-disabled.bp3-active{ + background:rgba(219, 55, 55, 0.3); } + +a.bp3-button{ + text-align:center; + text-decoration:none; + -webkit-transition:none; + transition:none; } + a.bp3-button, a.bp3-button:hover, a.bp3-button:active{ + color:#182026; } + a.bp3-button.bp3-disabled{ + color:rgba(92, 112, 128, 0.6); } + +.bp3-button-text{ + -webkit-box-flex:0; + -ms-flex:0 1 auto; + flex:0 1 auto; } + +.bp3-button.bp3-align-left .bp3-button-text, .bp3-button.bp3-align-right .bp3-button-text, +.bp3-button-group.bp3-align-left .bp3-button-text, +.bp3-button-group.bp3-align-right .bp3-button-text{ + -webkit-box-flex:1; + -ms-flex:1 1 auto; + flex:1 1 auto; } +.bp3-button-group{ + display:-webkit-inline-box; + display:-ms-inline-flexbox; + display:inline-flex; } + .bp3-button-group .bp3-button{ + -webkit-box-flex:0; + -ms-flex:0 0 auto; + flex:0 0 auto; + position:relative; + z-index:4; } + .bp3-button-group .bp3-button:focus{ + z-index:5; } + .bp3-button-group .bp3-button:hover{ + z-index:6; } + .bp3-button-group .bp3-button:active, .bp3-button-group .bp3-button.bp3-active{ + z-index:7; } + .bp3-button-group .bp3-button:disabled, .bp3-button-group .bp3-button.bp3-disabled{ + z-index:3; } + .bp3-button-group .bp3-button[class*="bp3-intent-"]{ + z-index:9; } + .bp3-button-group .bp3-button[class*="bp3-intent-"]:focus{ + z-index:10; } + .bp3-button-group .bp3-button[class*="bp3-intent-"]:hover{ + z-index:11; } + .bp3-button-group .bp3-button[class*="bp3-intent-"]:active, .bp3-button-group .bp3-button[class*="bp3-intent-"].bp3-active{ + z-index:12; } + .bp3-button-group .bp3-button[class*="bp3-intent-"]:disabled, .bp3-button-group .bp3-button[class*="bp3-intent-"].bp3-disabled{ + z-index:8; } + .bp3-button-group:not(.bp3-minimal) > .bp3-popover-wrapper:not(:first-child) .bp3-button, + .bp3-button-group:not(.bp3-minimal) > .bp3-button:not(:first-child){ + border-top-left-radius:0; + border-bottom-left-radius:0; } + .bp3-button-group:not(.bp3-minimal) > .bp3-popover-wrapper:not(:last-child) .bp3-button, + .bp3-button-group:not(.bp3-minimal) > .bp3-button:not(:last-child){ + margin-right:-1px; + border-top-right-radius:0; + border-bottom-right-radius:0; } + .bp3-button-group.bp3-minimal .bp3-button{ + -webkit-box-shadow:none; + box-shadow:none; + background:none; } + .bp3-button-group.bp3-minimal .bp3-button:hover{ + -webkit-box-shadow:none; + box-shadow:none; + background:rgba(167, 182, 194, 0.3); + text-decoration:none; + color:#182026; } + .bp3-button-group.bp3-minimal .bp3-button:active, .bp3-button-group.bp3-minimal .bp3-button.bp3-active{ + -webkit-box-shadow:none; + box-shadow:none; + background:rgba(115, 134, 148, 0.3); + color:#182026; } + .bp3-button-group.bp3-minimal .bp3-button:disabled, .bp3-button-group.bp3-minimal .bp3-button:disabled:hover, .bp3-button-group.bp3-minimal .bp3-button.bp3-disabled, .bp3-button-group.bp3-minimal .bp3-button.bp3-disabled:hover{ + background:none; + cursor:not-allowed; + color:rgba(92, 112, 128, 0.6); } + .bp3-button-group.bp3-minimal .bp3-button:disabled.bp3-active, .bp3-button-group.bp3-minimal .bp3-button:disabled:hover.bp3-active, .bp3-button-group.bp3-minimal .bp3-button.bp3-disabled.bp3-active, .bp3-button-group.bp3-minimal .bp3-button.bp3-disabled:hover.bp3-active{ + background:rgba(115, 134, 148, 0.3); } + .bp3-dark .bp3-button-group.bp3-minimal .bp3-button{ + -webkit-box-shadow:none; + box-shadow:none; + background:none; + color:inherit; } + .bp3-dark .bp3-button-group.bp3-minimal .bp3-button:hover, .bp3-dark .bp3-button-group.bp3-minimal .bp3-button:active, .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-active{ + -webkit-box-shadow:none; + box-shadow:none; + background:none; } + .bp3-dark .bp3-button-group.bp3-minimal .bp3-button:hover{ + background:rgba(138, 155, 168, 0.15); } + .bp3-dark .bp3-button-group.bp3-minimal .bp3-button:active, .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-active{ + background:rgba(138, 155, 168, 0.3); + color:#f5f8fa; } + .bp3-dark .bp3-button-group.bp3-minimal .bp3-button:disabled, .bp3-dark .bp3-button-group.bp3-minimal .bp3-button:disabled:hover, .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-disabled, .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-disabled:hover{ + background:none; + cursor:not-allowed; + color:rgba(167, 182, 194, 0.6); } + .bp3-dark .bp3-button-group.bp3-minimal .bp3-button:disabled.bp3-active, .bp3-dark .bp3-button-group.bp3-minimal .bp3-button:disabled:hover.bp3-active, .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-disabled.bp3-active, .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-disabled:hover.bp3-active{ + background:rgba(138, 155, 168, 0.3); } + .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-primary{ + color:#106ba3; } + .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-primary:hover, .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-primary:active, .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-primary.bp3-active{ + -webkit-box-shadow:none; + box-shadow:none; + background:none; + color:#106ba3; } + .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-primary:hover{ + background:rgba(19, 124, 189, 0.15); + color:#106ba3; } + .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-primary:active, .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-primary.bp3-active{ + background:rgba(19, 124, 189, 0.3); + color:#106ba3; } + .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-primary:disabled, .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-primary.bp3-disabled{ + background:none; + color:rgba(16, 107, 163, 0.5); } + .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-primary:disabled.bp3-active, .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-primary.bp3-disabled.bp3-active{ + background:rgba(19, 124, 189, 0.3); } + .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-primary .bp3-button-spinner .bp3-spinner-head{ + stroke:#106ba3; } + .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-primary{ + color:#48aff0; } + .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-primary:hover{ + background:rgba(19, 124, 189, 0.2); + color:#48aff0; } + .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-primary:active, .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-primary.bp3-active{ + background:rgba(19, 124, 189, 0.3); + color:#48aff0; } + .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-primary:disabled, .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-primary.bp3-disabled{ + background:none; + color:rgba(72, 175, 240, 0.5); } + .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-primary:disabled.bp3-active, .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-primary.bp3-disabled.bp3-active{ + background:rgba(19, 124, 189, 0.3); } + .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-success{ + color:#0d8050; } + .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-success:hover, .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-success:active, .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-success.bp3-active{ + -webkit-box-shadow:none; + box-shadow:none; + background:none; + color:#0d8050; } + .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-success:hover{ + background:rgba(15, 153, 96, 0.15); + color:#0d8050; } + .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-success:active, .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-success.bp3-active{ + background:rgba(15, 153, 96, 0.3); + color:#0d8050; } + .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-success:disabled, .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-success.bp3-disabled{ + background:none; + color:rgba(13, 128, 80, 0.5); } + .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-success:disabled.bp3-active, .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-success.bp3-disabled.bp3-active{ + background:rgba(15, 153, 96, 0.3); } + .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-success .bp3-button-spinner .bp3-spinner-head{ + stroke:#0d8050; } + .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-success{ + color:#3dcc91; } + .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-success:hover{ + background:rgba(15, 153, 96, 0.2); + color:#3dcc91; } + .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-success:active, .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-success.bp3-active{ + background:rgba(15, 153, 96, 0.3); + color:#3dcc91; } + .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-success:disabled, .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-success.bp3-disabled{ + background:none; + color:rgba(61, 204, 145, 0.5); } + .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-success:disabled.bp3-active, .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-success.bp3-disabled.bp3-active{ + background:rgba(15, 153, 96, 0.3); } + .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-warning{ + color:#bf7326; } + .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-warning:hover, .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-warning:active, .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-warning.bp3-active{ + -webkit-box-shadow:none; + box-shadow:none; + background:none; + color:#bf7326; } + .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-warning:hover{ + background:rgba(217, 130, 43, 0.15); + color:#bf7326; } + .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-warning:active, .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-warning.bp3-active{ + background:rgba(217, 130, 43, 0.3); + color:#bf7326; } + .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-warning:disabled, .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-warning.bp3-disabled{ + background:none; + color:rgba(191, 115, 38, 0.5); } + .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-warning:disabled.bp3-active, .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-warning.bp3-disabled.bp3-active{ + background:rgba(217, 130, 43, 0.3); } + .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-warning .bp3-button-spinner .bp3-spinner-head{ + stroke:#bf7326; } + .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-warning{ + color:#ffb366; } + .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-warning:hover{ + background:rgba(217, 130, 43, 0.2); + color:#ffb366; } + .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-warning:active, .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-warning.bp3-active{ + background:rgba(217, 130, 43, 0.3); + color:#ffb366; } + .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-warning:disabled, .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-warning.bp3-disabled{ + background:none; + color:rgba(255, 179, 102, 0.5); } + .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-warning:disabled.bp3-active, .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-warning.bp3-disabled.bp3-active{ + background:rgba(217, 130, 43, 0.3); } + .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-danger{ + color:#c23030; } + .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-danger:hover, .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-danger:active, .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-danger.bp3-active{ + -webkit-box-shadow:none; + box-shadow:none; + background:none; + color:#c23030; } + .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-danger:hover{ + background:rgba(219, 55, 55, 0.15); + color:#c23030; } + .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-danger:active, .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-danger.bp3-active{ + background:rgba(219, 55, 55, 0.3); + color:#c23030; } + .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-danger:disabled, .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-danger.bp3-disabled{ + background:none; + color:rgba(194, 48, 48, 0.5); } + .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-danger:disabled.bp3-active, .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-danger.bp3-disabled.bp3-active{ + background:rgba(219, 55, 55, 0.3); } + .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-danger .bp3-button-spinner .bp3-spinner-head{ + stroke:#c23030; } + .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-danger{ + color:#ff7373; } + .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-danger:hover{ + background:rgba(219, 55, 55, 0.2); + color:#ff7373; } + .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-danger:active, .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-danger.bp3-active{ + background:rgba(219, 55, 55, 0.3); + color:#ff7373; } + .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-danger:disabled, .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-danger.bp3-disabled{ + background:none; + color:rgba(255, 115, 115, 0.5); } + .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-danger:disabled.bp3-active, .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-danger.bp3-disabled.bp3-active{ + background:rgba(219, 55, 55, 0.3); } + .bp3-button-group .bp3-popover-wrapper, + .bp3-button-group .bp3-popover-target{ + display:-webkit-box; + display:-ms-flexbox; + display:flex; + -webkit-box-flex:1; + -ms-flex:1 1 auto; + flex:1 1 auto; } + .bp3-button-group.bp3-fill{ + display:-webkit-box; + display:-ms-flexbox; + display:flex; + width:100%; } + .bp3-button-group .bp3-button.bp3-fill, + .bp3-button-group.bp3-fill .bp3-button:not(.bp3-fixed){ + -webkit-box-flex:1; + -ms-flex:1 1 auto; + flex:1 1 auto; } + .bp3-button-group.bp3-vertical{ + -webkit-box-orient:vertical; + -webkit-box-direction:normal; + -ms-flex-direction:column; + flex-direction:column; + -webkit-box-align:stretch; + -ms-flex-align:stretch; + align-items:stretch; + vertical-align:top; } + .bp3-button-group.bp3-vertical.bp3-fill{ + width:unset; + height:100%; } + .bp3-button-group.bp3-vertical .bp3-button{ + margin-right:0 !important; + width:100%; } + .bp3-button-group.bp3-vertical:not(.bp3-minimal) > .bp3-popover-wrapper:first-child .bp3-button, + .bp3-button-group.bp3-vertical:not(.bp3-minimal) > .bp3-button:first-child{ + border-radius:3px 3px 0 0; } + .bp3-button-group.bp3-vertical:not(.bp3-minimal) > .bp3-popover-wrapper:last-child .bp3-button, + .bp3-button-group.bp3-vertical:not(.bp3-minimal) > .bp3-button:last-child{ + border-radius:0 0 3px 3px; } + .bp3-button-group.bp3-vertical:not(.bp3-minimal) > .bp3-popover-wrapper:not(:last-child) .bp3-button, + .bp3-button-group.bp3-vertical:not(.bp3-minimal) > .bp3-button:not(:last-child){ + margin-bottom:-1px; } + .bp3-button-group.bp3-align-left .bp3-button{ + text-align:left; } + .bp3-dark .bp3-button-group:not(.bp3-minimal) > .bp3-popover-wrapper:not(:last-child) .bp3-button, + .bp3-dark .bp3-button-group:not(.bp3-minimal) > .bp3-button:not(:last-child){ + margin-right:1px; } + .bp3-dark .bp3-button-group.bp3-vertical > .bp3-popover-wrapper:not(:last-child) .bp3-button, + .bp3-dark .bp3-button-group.bp3-vertical > .bp3-button:not(:last-child){ + margin-bottom:1px; } +.bp3-callout{ + line-height:1.5; + font-size:14px; + position:relative; + border-radius:3px; + background-color:rgba(138, 155, 168, 0.15); + width:100%; + padding:10px 12px 9px; } + .bp3-callout[class*="bp3-icon-"]{ + padding-left:40px; } + .bp3-callout[class*="bp3-icon-"]::before{ + line-height:1; + font-family:"Icons20", sans-serif; + font-size:20px; + font-weight:400; + font-style:normal; + -moz-osx-font-smoothing:grayscale; + -webkit-font-smoothing:antialiased; + position:absolute; + top:10px; + left:10px; + color:#5c7080; } + .bp3-callout.bp3-callout-icon{ + padding-left:40px; } + .bp3-callout.bp3-callout-icon > .bp3-icon:first-child{ + position:absolute; + top:10px; + left:10px; + color:#5c7080; } + .bp3-callout .bp3-heading{ + margin-top:0; + margin-bottom:5px; + line-height:20px; } + .bp3-callout .bp3-heading:last-child{ + margin-bottom:0; } + .bp3-dark .bp3-callout{ + background-color:rgba(138, 155, 168, 0.2); } + .bp3-dark .bp3-callout[class*="bp3-icon-"]::before{ + color:#a7b6c2; } + .bp3-callout.bp3-intent-primary{ + background-color:rgba(19, 124, 189, 0.15); } + .bp3-callout.bp3-intent-primary[class*="bp3-icon-"]::before, + .bp3-callout.bp3-intent-primary > .bp3-icon:first-child, + .bp3-callout.bp3-intent-primary .bp3-heading{ + color:#106ba3; } + .bp3-dark .bp3-callout.bp3-intent-primary{ + background-color:rgba(19, 124, 189, 0.25); } + .bp3-dark .bp3-callout.bp3-intent-primary[class*="bp3-icon-"]::before, + .bp3-dark .bp3-callout.bp3-intent-primary > .bp3-icon:first-child, + .bp3-dark .bp3-callout.bp3-intent-primary .bp3-heading{ + color:#48aff0; } + .bp3-callout.bp3-intent-success{ + background-color:rgba(15, 153, 96, 0.15); } + .bp3-callout.bp3-intent-success[class*="bp3-icon-"]::before, + .bp3-callout.bp3-intent-success > .bp3-icon:first-child, + .bp3-callout.bp3-intent-success .bp3-heading{ + color:#0d8050; } + .bp3-dark .bp3-callout.bp3-intent-success{ + background-color:rgba(15, 153, 96, 0.25); } + .bp3-dark .bp3-callout.bp3-intent-success[class*="bp3-icon-"]::before, + .bp3-dark .bp3-callout.bp3-intent-success > .bp3-icon:first-child, + .bp3-dark .bp3-callout.bp3-intent-success .bp3-heading{ + color:#3dcc91; } + .bp3-callout.bp3-intent-warning{ + background-color:rgba(217, 130, 43, 0.15); } + .bp3-callout.bp3-intent-warning[class*="bp3-icon-"]::before, + .bp3-callout.bp3-intent-warning > .bp3-icon:first-child, + .bp3-callout.bp3-intent-warning .bp3-heading{ + color:#bf7326; } + .bp3-dark .bp3-callout.bp3-intent-warning{ + background-color:rgba(217, 130, 43, 0.25); } + .bp3-dark .bp3-callout.bp3-intent-warning[class*="bp3-icon-"]::before, + .bp3-dark .bp3-callout.bp3-intent-warning > .bp3-icon:first-child, + .bp3-dark .bp3-callout.bp3-intent-warning .bp3-heading{ + color:#ffb366; } + .bp3-callout.bp3-intent-danger{ + background-color:rgba(219, 55, 55, 0.15); } + .bp3-callout.bp3-intent-danger[class*="bp3-icon-"]::before, + .bp3-callout.bp3-intent-danger > .bp3-icon:first-child, + .bp3-callout.bp3-intent-danger .bp3-heading{ + color:#c23030; } + .bp3-dark .bp3-callout.bp3-intent-danger{ + background-color:rgba(219, 55, 55, 0.25); } + .bp3-dark .bp3-callout.bp3-intent-danger[class*="bp3-icon-"]::before, + .bp3-dark .bp3-callout.bp3-intent-danger > .bp3-icon:first-child, + .bp3-dark .bp3-callout.bp3-intent-danger .bp3-heading{ + color:#ff7373; } + .bp3-running-text .bp3-callout{ + margin:20px 0; } +.bp3-card{ + border-radius:3px; + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.15), 0 0 0 rgba(16, 22, 26, 0), 0 0 0 rgba(16, 22, 26, 0); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.15), 0 0 0 rgba(16, 22, 26, 0), 0 0 0 rgba(16, 22, 26, 0); + background-color:#ffffff; + padding:20px; + -webkit-transition:-webkit-transform 200ms cubic-bezier(0.4, 1, 0.75, 0.9), -webkit-box-shadow 200ms cubic-bezier(0.4, 1, 0.75, 0.9); + transition:-webkit-transform 200ms cubic-bezier(0.4, 1, 0.75, 0.9), -webkit-box-shadow 200ms cubic-bezier(0.4, 1, 0.75, 0.9); + transition:transform 200ms cubic-bezier(0.4, 1, 0.75, 0.9), box-shadow 200ms cubic-bezier(0.4, 1, 0.75, 0.9); + transition:transform 200ms cubic-bezier(0.4, 1, 0.75, 0.9), box-shadow 200ms cubic-bezier(0.4, 1, 0.75, 0.9), -webkit-transform 200ms cubic-bezier(0.4, 1, 0.75, 0.9), -webkit-box-shadow 200ms cubic-bezier(0.4, 1, 0.75, 0.9); } + .bp3-card.bp3-dark, + .bp3-dark .bp3-card{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4), 0 0 0 rgba(16, 22, 26, 0), 0 0 0 rgba(16, 22, 26, 0); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4), 0 0 0 rgba(16, 22, 26, 0), 0 0 0 rgba(16, 22, 26, 0); + background-color:#30404d; } + +.bp3-elevation-0{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.15), 0 0 0 rgba(16, 22, 26, 0), 0 0 0 rgba(16, 22, 26, 0); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.15), 0 0 0 rgba(16, 22, 26, 0), 0 0 0 rgba(16, 22, 26, 0); } + .bp3-elevation-0.bp3-dark, + .bp3-dark .bp3-elevation-0{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4), 0 0 0 rgba(16, 22, 26, 0), 0 0 0 rgba(16, 22, 26, 0); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4), 0 0 0 rgba(16, 22, 26, 0), 0 0 0 rgba(16, 22, 26, 0); } + +.bp3-elevation-1{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 0 0 rgba(16, 22, 26, 0), 0 1px 1px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 0 0 rgba(16, 22, 26, 0), 0 1px 1px rgba(16, 22, 26, 0.2); } + .bp3-elevation-1.bp3-dark, + .bp3-dark .bp3-elevation-1{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 0 0 rgba(16, 22, 26, 0), 0 1px 1px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 0 0 rgba(16, 22, 26, 0), 0 1px 1px rgba(16, 22, 26, 0.4); } + +.bp3-elevation-2{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 1px 1px rgba(16, 22, 26, 0.2), 0 2px 6px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 1px 1px rgba(16, 22, 26, 0.2), 0 2px 6px rgba(16, 22, 26, 0.2); } + .bp3-elevation-2.bp3-dark, + .bp3-dark .bp3-elevation-2{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 1px 1px rgba(16, 22, 26, 0.4), 0 2px 6px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 1px 1px rgba(16, 22, 26, 0.4), 0 2px 6px rgba(16, 22, 26, 0.4); } + +.bp3-elevation-3{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 2px 4px rgba(16, 22, 26, 0.2), 0 8px 24px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 2px 4px rgba(16, 22, 26, 0.2), 0 8px 24px rgba(16, 22, 26, 0.2); } + .bp3-elevation-3.bp3-dark, + .bp3-dark .bp3-elevation-3{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 2px 4px rgba(16, 22, 26, 0.4), 0 8px 24px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 2px 4px rgba(16, 22, 26, 0.4), 0 8px 24px rgba(16, 22, 26, 0.4); } + +.bp3-elevation-4{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 4px 8px rgba(16, 22, 26, 0.2), 0 18px 46px 6px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 4px 8px rgba(16, 22, 26, 0.2), 0 18px 46px 6px rgba(16, 22, 26, 0.2); } + .bp3-elevation-4.bp3-dark, + .bp3-dark .bp3-elevation-4{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 4px 8px rgba(16, 22, 26, 0.4), 0 18px 46px 6px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 4px 8px rgba(16, 22, 26, 0.4), 0 18px 46px 6px rgba(16, 22, 26, 0.4); } + +.bp3-card.bp3-interactive:hover{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 2px 4px rgba(16, 22, 26, 0.2), 0 8px 24px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 2px 4px rgba(16, 22, 26, 0.2), 0 8px 24px rgba(16, 22, 26, 0.2); + cursor:pointer; } + .bp3-card.bp3-interactive:hover.bp3-dark, + .bp3-dark .bp3-card.bp3-interactive:hover{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 2px 4px rgba(16, 22, 26, 0.4), 0 8px 24px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 2px 4px rgba(16, 22, 26, 0.4), 0 8px 24px rgba(16, 22, 26, 0.4); } + +.bp3-card.bp3-interactive:active{ + opacity:0.9; + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 0 0 rgba(16, 22, 26, 0), 0 1px 1px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 0 0 rgba(16, 22, 26, 0), 0 1px 1px rgba(16, 22, 26, 0.2); + -webkit-transition-duration:0; + transition-duration:0; } + .bp3-card.bp3-interactive:active.bp3-dark, + .bp3-dark .bp3-card.bp3-interactive:active{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 0 0 rgba(16, 22, 26, 0), 0 1px 1px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 0 0 rgba(16, 22, 26, 0), 0 1px 1px rgba(16, 22, 26, 0.4); } + +.bp3-collapse{ + height:0; + overflow-y:hidden; + -webkit-transition:height 200ms cubic-bezier(0.4, 1, 0.75, 0.9); + transition:height 200ms cubic-bezier(0.4, 1, 0.75, 0.9); } + .bp3-collapse .bp3-collapse-body{ + -webkit-transition:-webkit-transform 200ms cubic-bezier(0.4, 1, 0.75, 0.9); + transition:-webkit-transform 200ms cubic-bezier(0.4, 1, 0.75, 0.9); + transition:transform 200ms cubic-bezier(0.4, 1, 0.75, 0.9); + transition:transform 200ms cubic-bezier(0.4, 1, 0.75, 0.9), -webkit-transform 200ms cubic-bezier(0.4, 1, 0.75, 0.9); } + .bp3-collapse .bp3-collapse-body[aria-hidden="true"]{ + display:none; } + +.bp3-context-menu .bp3-popover-target{ + display:block; } + +.bp3-context-menu-popover-target{ + position:fixed; } + +.bp3-divider{ + margin:5px; + border-right:1px solid rgba(16, 22, 26, 0.15); + border-bottom:1px solid rgba(16, 22, 26, 0.15); } + .bp3-dark .bp3-divider{ + border-color:rgba(16, 22, 26, 0.4); } +.bp3-dialog-container{ + opacity:1; + -webkit-transform:scale(1); + transform:scale(1); + display:-webkit-box; + display:-ms-flexbox; + display:flex; + -webkit-box-align:center; + -ms-flex-align:center; + align-items:center; + -webkit-box-pack:center; + -ms-flex-pack:center; + justify-content:center; + width:100%; + min-height:100%; + pointer-events:none; + -webkit-user-select:none; + -moz-user-select:none; + -ms-user-select:none; + user-select:none; } + .bp3-dialog-container.bp3-overlay-enter > .bp3-dialog, .bp3-dialog-container.bp3-overlay-appear > .bp3-dialog{ + opacity:0; + -webkit-transform:scale(0.5); + transform:scale(0.5); } + .bp3-dialog-container.bp3-overlay-enter-active > .bp3-dialog, .bp3-dialog-container.bp3-overlay-appear-active > .bp3-dialog{ + opacity:1; + -webkit-transform:scale(1); + transform:scale(1); + -webkit-transition-property:opacity, -webkit-transform; + transition-property:opacity, -webkit-transform; + transition-property:opacity, transform; + transition-property:opacity, transform, -webkit-transform; + -webkit-transition-duration:300ms; + transition-duration:300ms; + -webkit-transition-timing-function:cubic-bezier(0.54, 1.12, 0.38, 1.11); + transition-timing-function:cubic-bezier(0.54, 1.12, 0.38, 1.11); + -webkit-transition-delay:0; + transition-delay:0; } + .bp3-dialog-container.bp3-overlay-exit > .bp3-dialog{ + opacity:1; + -webkit-transform:scale(1); + transform:scale(1); } + .bp3-dialog-container.bp3-overlay-exit-active > .bp3-dialog{ + opacity:0; + -webkit-transform:scale(0.5); + transform:scale(0.5); + -webkit-transition-property:opacity, -webkit-transform; + transition-property:opacity, -webkit-transform; + transition-property:opacity, transform; + transition-property:opacity, transform, -webkit-transform; + -webkit-transition-duration:300ms; + transition-duration:300ms; + -webkit-transition-timing-function:cubic-bezier(0.54, 1.12, 0.38, 1.11); + transition-timing-function:cubic-bezier(0.54, 1.12, 0.38, 1.11); + -webkit-transition-delay:0; + transition-delay:0; } + +.bp3-dialog{ + display:-webkit-box; + display:-ms-flexbox; + display:flex; + -webkit-box-orient:vertical; + -webkit-box-direction:normal; + -ms-flex-direction:column; + flex-direction:column; + margin:30px 0; + border-radius:6px; + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 4px 8px rgba(16, 22, 26, 0.2), 0 18px 46px 6px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 4px 8px rgba(16, 22, 26, 0.2), 0 18px 46px 6px rgba(16, 22, 26, 0.2); + background:#ebf1f5; + width:500px; + padding-bottom:20px; + pointer-events:all; + -webkit-user-select:text; + -moz-user-select:text; + -ms-user-select:text; + user-select:text; } + .bp3-dialog:focus{ + outline:0; } + .bp3-dialog.bp3-dark, + .bp3-dark .bp3-dialog{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 4px 8px rgba(16, 22, 26, 0.4), 0 18px 46px 6px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 4px 8px rgba(16, 22, 26, 0.4), 0 18px 46px 6px rgba(16, 22, 26, 0.4); + background:#293742; + color:#f5f8fa; } + +.bp3-dialog-header{ + display:-webkit-box; + display:-ms-flexbox; + display:flex; + -webkit-box-flex:0; + -ms-flex:0 0 auto; + flex:0 0 auto; + -webkit-box-align:center; + -ms-flex-align:center; + align-items:center; + border-radius:6px 6px 0 0; + -webkit-box-shadow:0 1px 0 rgba(16, 22, 26, 0.15); + box-shadow:0 1px 0 rgba(16, 22, 26, 0.15); + background:#ffffff; + min-height:40px; + padding-right:5px; + padding-left:20px; } + .bp3-dialog-header .bp3-icon-large, + .bp3-dialog-header .bp3-icon{ + -webkit-box-flex:0; + -ms-flex:0 0 auto; + flex:0 0 auto; + margin-right:10px; + color:#5c7080; } + .bp3-dialog-header .bp3-heading{ + overflow:hidden; + text-overflow:ellipsis; + white-space:nowrap; + word-wrap:normal; + -webkit-box-flex:1; + -ms-flex:1 1 auto; + flex:1 1 auto; + margin:0; + line-height:inherit; } + .bp3-dialog-header .bp3-heading:last-child{ + margin-right:20px; } + .bp3-dark .bp3-dialog-header{ + -webkit-box-shadow:0 1px 0 rgba(16, 22, 26, 0.4); + box-shadow:0 1px 0 rgba(16, 22, 26, 0.4); + background:#30404d; } + .bp3-dark .bp3-dialog-header .bp3-icon-large, + .bp3-dark .bp3-dialog-header .bp3-icon{ + color:#a7b6c2; } + +.bp3-dialog-body{ + -webkit-box-flex:1; + -ms-flex:1 1 auto; + flex:1 1 auto; + margin:20px; + line-height:18px; } + +.bp3-dialog-footer{ + -webkit-box-flex:0; + -ms-flex:0 0 auto; + flex:0 0 auto; + margin:0 20px; } + +.bp3-dialog-footer-actions{ + display:-webkit-box; + display:-ms-flexbox; + display:flex; + -webkit-box-pack:end; + -ms-flex-pack:end; + justify-content:flex-end; } + .bp3-dialog-footer-actions .bp3-button{ + margin-left:10px; } +.bp3-drawer{ + display:-webkit-box; + display:-ms-flexbox; + display:flex; + -webkit-box-orient:vertical; + -webkit-box-direction:normal; + -ms-flex-direction:column; + flex-direction:column; + margin:0; + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 4px 8px rgba(16, 22, 26, 0.2), 0 18px 46px 6px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 4px 8px rgba(16, 22, 26, 0.2), 0 18px 46px 6px rgba(16, 22, 26, 0.2); + background:#ffffff; + padding:0; } + .bp3-drawer:focus{ + outline:0; } + .bp3-drawer.bp3-position-top{ + top:0; + right:0; + left:0; + height:50%; } + .bp3-drawer.bp3-position-top.bp3-overlay-enter, .bp3-drawer.bp3-position-top.bp3-overlay-appear{ + -webkit-transform:translateY(-100%); + transform:translateY(-100%); } + .bp3-drawer.bp3-position-top.bp3-overlay-enter-active, .bp3-drawer.bp3-position-top.bp3-overlay-appear-active{ + -webkit-transform:translateY(0); + transform:translateY(0); + -webkit-transition-property:-webkit-transform; + transition-property:-webkit-transform; + transition-property:transform; + transition-property:transform, -webkit-transform; + -webkit-transition-duration:200ms; + transition-duration:200ms; + -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + -webkit-transition-delay:0; + transition-delay:0; } + .bp3-drawer.bp3-position-top.bp3-overlay-exit{ + -webkit-transform:translateY(0); + transform:translateY(0); } + .bp3-drawer.bp3-position-top.bp3-overlay-exit-active{ + -webkit-transform:translateY(-100%); + transform:translateY(-100%); + -webkit-transition-property:-webkit-transform; + transition-property:-webkit-transform; + transition-property:transform; + transition-property:transform, -webkit-transform; + -webkit-transition-duration:100ms; + transition-duration:100ms; + -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + -webkit-transition-delay:0; + transition-delay:0; } + .bp3-drawer.bp3-position-bottom{ + right:0; + bottom:0; + left:0; + height:50%; } + .bp3-drawer.bp3-position-bottom.bp3-overlay-enter, .bp3-drawer.bp3-position-bottom.bp3-overlay-appear{ + -webkit-transform:translateY(100%); + transform:translateY(100%); } + .bp3-drawer.bp3-position-bottom.bp3-overlay-enter-active, .bp3-drawer.bp3-position-bottom.bp3-overlay-appear-active{ + -webkit-transform:translateY(0); + transform:translateY(0); + -webkit-transition-property:-webkit-transform; + transition-property:-webkit-transform; + transition-property:transform; + transition-property:transform, -webkit-transform; + -webkit-transition-duration:200ms; + transition-duration:200ms; + -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + -webkit-transition-delay:0; + transition-delay:0; } + .bp3-drawer.bp3-position-bottom.bp3-overlay-exit{ + -webkit-transform:translateY(0); + transform:translateY(0); } + .bp3-drawer.bp3-position-bottom.bp3-overlay-exit-active{ + -webkit-transform:translateY(100%); + transform:translateY(100%); + -webkit-transition-property:-webkit-transform; + transition-property:-webkit-transform; + transition-property:transform; + transition-property:transform, -webkit-transform; + -webkit-transition-duration:100ms; + transition-duration:100ms; + -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + -webkit-transition-delay:0; + transition-delay:0; } + .bp3-drawer.bp3-position-left{ + top:0; + bottom:0; + left:0; + width:50%; } + .bp3-drawer.bp3-position-left.bp3-overlay-enter, .bp3-drawer.bp3-position-left.bp3-overlay-appear{ + -webkit-transform:translateX(-100%); + transform:translateX(-100%); } + .bp3-drawer.bp3-position-left.bp3-overlay-enter-active, .bp3-drawer.bp3-position-left.bp3-overlay-appear-active{ + -webkit-transform:translateX(0); + transform:translateX(0); + -webkit-transition-property:-webkit-transform; + transition-property:-webkit-transform; + transition-property:transform; + transition-property:transform, -webkit-transform; + -webkit-transition-duration:200ms; + transition-duration:200ms; + -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + -webkit-transition-delay:0; + transition-delay:0; } + .bp3-drawer.bp3-position-left.bp3-overlay-exit{ + -webkit-transform:translateX(0); + transform:translateX(0); } + .bp3-drawer.bp3-position-left.bp3-overlay-exit-active{ + -webkit-transform:translateX(-100%); + transform:translateX(-100%); + -webkit-transition-property:-webkit-transform; + transition-property:-webkit-transform; + transition-property:transform; + transition-property:transform, -webkit-transform; + -webkit-transition-duration:100ms; + transition-duration:100ms; + -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + -webkit-transition-delay:0; + transition-delay:0; } + .bp3-drawer.bp3-position-right{ + top:0; + right:0; + bottom:0; + width:50%; } + .bp3-drawer.bp3-position-right.bp3-overlay-enter, .bp3-drawer.bp3-position-right.bp3-overlay-appear{ + -webkit-transform:translateX(100%); + transform:translateX(100%); } + .bp3-drawer.bp3-position-right.bp3-overlay-enter-active, .bp3-drawer.bp3-position-right.bp3-overlay-appear-active{ + -webkit-transform:translateX(0); + transform:translateX(0); + -webkit-transition-property:-webkit-transform; + transition-property:-webkit-transform; + transition-property:transform; + transition-property:transform, -webkit-transform; + -webkit-transition-duration:200ms; + transition-duration:200ms; + -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + -webkit-transition-delay:0; + transition-delay:0; } + .bp3-drawer.bp3-position-right.bp3-overlay-exit{ + -webkit-transform:translateX(0); + transform:translateX(0); } + .bp3-drawer.bp3-position-right.bp3-overlay-exit-active{ + -webkit-transform:translateX(100%); + transform:translateX(100%); + -webkit-transition-property:-webkit-transform; + transition-property:-webkit-transform; + transition-property:transform; + transition-property:transform, -webkit-transform; + -webkit-transition-duration:100ms; + transition-duration:100ms; + -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + -webkit-transition-delay:0; + transition-delay:0; } + .bp3-drawer:not(.bp3-position-top):not(.bp3-position-bottom):not(.bp3-position-left):not( + .bp3-position-right):not(.bp3-vertical){ + top:0; + right:0; + bottom:0; + width:50%; } + .bp3-drawer:not(.bp3-position-top):not(.bp3-position-bottom):not(.bp3-position-left):not( + .bp3-position-right):not(.bp3-vertical).bp3-overlay-enter, .bp3-drawer:not(.bp3-position-top):not(.bp3-position-bottom):not(.bp3-position-left):not( + .bp3-position-right):not(.bp3-vertical).bp3-overlay-appear{ + -webkit-transform:translateX(100%); + transform:translateX(100%); } + .bp3-drawer:not(.bp3-position-top):not(.bp3-position-bottom):not(.bp3-position-left):not( + .bp3-position-right):not(.bp3-vertical).bp3-overlay-enter-active, .bp3-drawer:not(.bp3-position-top):not(.bp3-position-bottom):not(.bp3-position-left):not( + .bp3-position-right):not(.bp3-vertical).bp3-overlay-appear-active{ + -webkit-transform:translateX(0); + transform:translateX(0); + -webkit-transition-property:-webkit-transform; + transition-property:-webkit-transform; + transition-property:transform; + transition-property:transform, -webkit-transform; + -webkit-transition-duration:200ms; + transition-duration:200ms; + -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + -webkit-transition-delay:0; + transition-delay:0; } + .bp3-drawer:not(.bp3-position-top):not(.bp3-position-bottom):not(.bp3-position-left):not( + .bp3-position-right):not(.bp3-vertical).bp3-overlay-exit{ + -webkit-transform:translateX(0); + transform:translateX(0); } + .bp3-drawer:not(.bp3-position-top):not(.bp3-position-bottom):not(.bp3-position-left):not( + .bp3-position-right):not(.bp3-vertical).bp3-overlay-exit-active{ + -webkit-transform:translateX(100%); + transform:translateX(100%); + -webkit-transition-property:-webkit-transform; + transition-property:-webkit-transform; + transition-property:transform; + transition-property:transform, -webkit-transform; + -webkit-transition-duration:100ms; + transition-duration:100ms; + -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + -webkit-transition-delay:0; + transition-delay:0; } + .bp3-drawer:not(.bp3-position-top):not(.bp3-position-bottom):not(.bp3-position-left):not( + .bp3-position-right).bp3-vertical{ + right:0; + bottom:0; + left:0; + height:50%; } + .bp3-drawer:not(.bp3-position-top):not(.bp3-position-bottom):not(.bp3-position-left):not( + .bp3-position-right).bp3-vertical.bp3-overlay-enter, .bp3-drawer:not(.bp3-position-top):not(.bp3-position-bottom):not(.bp3-position-left):not( + .bp3-position-right).bp3-vertical.bp3-overlay-appear{ + -webkit-transform:translateY(100%); + transform:translateY(100%); } + .bp3-drawer:not(.bp3-position-top):not(.bp3-position-bottom):not(.bp3-position-left):not( + .bp3-position-right).bp3-vertical.bp3-overlay-enter-active, .bp3-drawer:not(.bp3-position-top):not(.bp3-position-bottom):not(.bp3-position-left):not( + .bp3-position-right).bp3-vertical.bp3-overlay-appear-active{ + -webkit-transform:translateY(0); + transform:translateY(0); + -webkit-transition-property:-webkit-transform; + transition-property:-webkit-transform; + transition-property:transform; + transition-property:transform, -webkit-transform; + -webkit-transition-duration:200ms; + transition-duration:200ms; + -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + -webkit-transition-delay:0; + transition-delay:0; } + .bp3-drawer:not(.bp3-position-top):not(.bp3-position-bottom):not(.bp3-position-left):not( + .bp3-position-right).bp3-vertical.bp3-overlay-exit{ + -webkit-transform:translateY(0); + transform:translateY(0); } + .bp3-drawer:not(.bp3-position-top):not(.bp3-position-bottom):not(.bp3-position-left):not( + .bp3-position-right).bp3-vertical.bp3-overlay-exit-active{ + -webkit-transform:translateY(100%); + transform:translateY(100%); + -webkit-transition-property:-webkit-transform; + transition-property:-webkit-transform; + transition-property:transform; + transition-property:transform, -webkit-transform; + -webkit-transition-duration:100ms; + transition-duration:100ms; + -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + -webkit-transition-delay:0; + transition-delay:0; } + .bp3-drawer.bp3-dark, + .bp3-dark .bp3-drawer{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 4px 8px rgba(16, 22, 26, 0.4), 0 18px 46px 6px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 4px 8px rgba(16, 22, 26, 0.4), 0 18px 46px 6px rgba(16, 22, 26, 0.4); + background:#30404d; + color:#f5f8fa; } + +.bp3-drawer-header{ + display:-webkit-box; + display:-ms-flexbox; + display:flex; + -webkit-box-flex:0; + -ms-flex:0 0 auto; + flex:0 0 auto; + -webkit-box-align:center; + -ms-flex-align:center; + align-items:center; + position:relative; + border-radius:0; + -webkit-box-shadow:0 1px 0 rgba(16, 22, 26, 0.15); + box-shadow:0 1px 0 rgba(16, 22, 26, 0.15); + min-height:40px; + padding:5px; + padding-left:20px; } + .bp3-drawer-header .bp3-icon-large, + .bp3-drawer-header .bp3-icon{ + -webkit-box-flex:0; + -ms-flex:0 0 auto; + flex:0 0 auto; + margin-right:10px; + color:#5c7080; } + .bp3-drawer-header .bp3-heading{ + overflow:hidden; + text-overflow:ellipsis; + white-space:nowrap; + word-wrap:normal; + -webkit-box-flex:1; + -ms-flex:1 1 auto; + flex:1 1 auto; + margin:0; + line-height:inherit; } + .bp3-drawer-header .bp3-heading:last-child{ + margin-right:20px; } + .bp3-dark .bp3-drawer-header{ + -webkit-box-shadow:0 1px 0 rgba(16, 22, 26, 0.4); + box-shadow:0 1px 0 rgba(16, 22, 26, 0.4); } + .bp3-dark .bp3-drawer-header .bp3-icon-large, + .bp3-dark .bp3-drawer-header .bp3-icon{ + color:#a7b6c2; } + +.bp3-drawer-body{ + -webkit-box-flex:1; + -ms-flex:1 1 auto; + flex:1 1 auto; + overflow:auto; + line-height:18px; } + +.bp3-drawer-footer{ + -webkit-box-flex:0; + -ms-flex:0 0 auto; + flex:0 0 auto; + position:relative; + -webkit-box-shadow:inset 0 1px 0 rgba(16, 22, 26, 0.15); + box-shadow:inset 0 1px 0 rgba(16, 22, 26, 0.15); + padding:10px 20px; } + .bp3-dark .bp3-drawer-footer{ + -webkit-box-shadow:inset 0 1px 0 rgba(16, 22, 26, 0.4); + box-shadow:inset 0 1px 0 rgba(16, 22, 26, 0.4); } +.bp3-editable-text{ + display:inline-block; + position:relative; + cursor:text; + max-width:100%; + vertical-align:top; + white-space:nowrap; } + .bp3-editable-text::before{ + position:absolute; + top:-3px; + right:-3px; + bottom:-3px; + left:-3px; + border-radius:3px; + content:""; + -webkit-transition:background-color 100ms cubic-bezier(0.4, 1, 0.75, 0.9), -webkit-box-shadow 100ms cubic-bezier(0.4, 1, 0.75, 0.9); + transition:background-color 100ms cubic-bezier(0.4, 1, 0.75, 0.9), -webkit-box-shadow 100ms cubic-bezier(0.4, 1, 0.75, 0.9); + transition:background-color 100ms cubic-bezier(0.4, 1, 0.75, 0.9), box-shadow 100ms cubic-bezier(0.4, 1, 0.75, 0.9); + transition:background-color 100ms cubic-bezier(0.4, 1, 0.75, 0.9), box-shadow 100ms cubic-bezier(0.4, 1, 0.75, 0.9), -webkit-box-shadow 100ms cubic-bezier(0.4, 1, 0.75, 0.9); } + .bp3-editable-text:hover::before{ + -webkit-box-shadow:0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), inset 0 0 0 1px rgba(16, 22, 26, 0.15); + box-shadow:0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), inset 0 0 0 1px rgba(16, 22, 26, 0.15); } + .bp3-editable-text.bp3-editable-text-editing::before{ + -webkit-box-shadow:0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); + background-color:#ffffff; } + .bp3-editable-text.bp3-disabled::before{ + -webkit-box-shadow:none; + box-shadow:none; } + .bp3-editable-text.bp3-intent-primary .bp3-editable-text-input, + .bp3-editable-text.bp3-intent-primary .bp3-editable-text-content{ + color:#137cbd; } + .bp3-editable-text.bp3-intent-primary:hover::before{ + -webkit-box-shadow:0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), inset 0 0 0 1px rgba(19, 124, 189, 0.4); + box-shadow:0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), inset 0 0 0 1px rgba(19, 124, 189, 0.4); } + .bp3-editable-text.bp3-intent-primary.bp3-editable-text-editing::before{ + -webkit-box-shadow:0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); } + .bp3-editable-text.bp3-intent-success .bp3-editable-text-input, + .bp3-editable-text.bp3-intent-success .bp3-editable-text-content{ + color:#0f9960; } + .bp3-editable-text.bp3-intent-success:hover::before{ + -webkit-box-shadow:0 0 0 0 rgba(15, 153, 96, 0), 0 0 0 0 rgba(15, 153, 96, 0), inset 0 0 0 1px rgba(15, 153, 96, 0.4); + box-shadow:0 0 0 0 rgba(15, 153, 96, 0), 0 0 0 0 rgba(15, 153, 96, 0), inset 0 0 0 1px rgba(15, 153, 96, 0.4); } + .bp3-editable-text.bp3-intent-success.bp3-editable-text-editing::before{ + -webkit-box-shadow:0 0 0 1px #0f9960, 0 0 0 3px rgba(15, 153, 96, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px #0f9960, 0 0 0 3px rgba(15, 153, 96, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); } + .bp3-editable-text.bp3-intent-warning .bp3-editable-text-input, + .bp3-editable-text.bp3-intent-warning .bp3-editable-text-content{ + color:#d9822b; } + .bp3-editable-text.bp3-intent-warning:hover::before{ + -webkit-box-shadow:0 0 0 0 rgba(217, 130, 43, 0), 0 0 0 0 rgba(217, 130, 43, 0), inset 0 0 0 1px rgba(217, 130, 43, 0.4); + box-shadow:0 0 0 0 rgba(217, 130, 43, 0), 0 0 0 0 rgba(217, 130, 43, 0), inset 0 0 0 1px rgba(217, 130, 43, 0.4); } + .bp3-editable-text.bp3-intent-warning.bp3-editable-text-editing::before{ + -webkit-box-shadow:0 0 0 1px #d9822b, 0 0 0 3px rgba(217, 130, 43, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px #d9822b, 0 0 0 3px rgba(217, 130, 43, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); } + .bp3-editable-text.bp3-intent-danger .bp3-editable-text-input, + .bp3-editable-text.bp3-intent-danger .bp3-editable-text-content{ + color:#db3737; } + .bp3-editable-text.bp3-intent-danger:hover::before{ + -webkit-box-shadow:0 0 0 0 rgba(219, 55, 55, 0), 0 0 0 0 rgba(219, 55, 55, 0), inset 0 0 0 1px rgba(219, 55, 55, 0.4); + box-shadow:0 0 0 0 rgba(219, 55, 55, 0), 0 0 0 0 rgba(219, 55, 55, 0), inset 0 0 0 1px rgba(219, 55, 55, 0.4); } + .bp3-editable-text.bp3-intent-danger.bp3-editable-text-editing::before{ + -webkit-box-shadow:0 0 0 1px #db3737, 0 0 0 3px rgba(219, 55, 55, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px #db3737, 0 0 0 3px rgba(219, 55, 55, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); } + .bp3-dark .bp3-editable-text:hover::before{ + -webkit-box-shadow:0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), inset 0 0 0 1px rgba(255, 255, 255, 0.15); + box-shadow:0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), inset 0 0 0 1px rgba(255, 255, 255, 0.15); } + .bp3-dark .bp3-editable-text.bp3-editable-text-editing::before{ + -webkit-box-shadow:0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); + background-color:rgba(16, 22, 26, 0.3); } + .bp3-dark .bp3-editable-text.bp3-disabled::before{ + -webkit-box-shadow:none; + box-shadow:none; } + .bp3-dark .bp3-editable-text.bp3-intent-primary .bp3-editable-text-content{ + color:#48aff0; } + .bp3-dark .bp3-editable-text.bp3-intent-primary:hover::before{ + -webkit-box-shadow:0 0 0 0 rgba(72, 175, 240, 0), 0 0 0 0 rgba(72, 175, 240, 0), inset 0 0 0 1px rgba(72, 175, 240, 0.4); + box-shadow:0 0 0 0 rgba(72, 175, 240, 0), 0 0 0 0 rgba(72, 175, 240, 0), inset 0 0 0 1px rgba(72, 175, 240, 0.4); } + .bp3-dark .bp3-editable-text.bp3-intent-primary.bp3-editable-text-editing::before{ + -webkit-box-shadow:0 0 0 1px #48aff0, 0 0 0 3px rgba(72, 175, 240, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px #48aff0, 0 0 0 3px rgba(72, 175, 240, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); } + .bp3-dark .bp3-editable-text.bp3-intent-success .bp3-editable-text-content{ + color:#3dcc91; } + .bp3-dark .bp3-editable-text.bp3-intent-success:hover::before{ + -webkit-box-shadow:0 0 0 0 rgba(61, 204, 145, 0), 0 0 0 0 rgba(61, 204, 145, 0), inset 0 0 0 1px rgba(61, 204, 145, 0.4); + box-shadow:0 0 0 0 rgba(61, 204, 145, 0), 0 0 0 0 rgba(61, 204, 145, 0), inset 0 0 0 1px rgba(61, 204, 145, 0.4); } + .bp3-dark .bp3-editable-text.bp3-intent-success.bp3-editable-text-editing::before{ + -webkit-box-shadow:0 0 0 1px #3dcc91, 0 0 0 3px rgba(61, 204, 145, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px #3dcc91, 0 0 0 3px rgba(61, 204, 145, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); } + .bp3-dark .bp3-editable-text.bp3-intent-warning .bp3-editable-text-content{ + color:#ffb366; } + .bp3-dark .bp3-editable-text.bp3-intent-warning:hover::before{ + -webkit-box-shadow:0 0 0 0 rgba(255, 179, 102, 0), 0 0 0 0 rgba(255, 179, 102, 0), inset 0 0 0 1px rgba(255, 179, 102, 0.4); + box-shadow:0 0 0 0 rgba(255, 179, 102, 0), 0 0 0 0 rgba(255, 179, 102, 0), inset 0 0 0 1px rgba(255, 179, 102, 0.4); } + .bp3-dark .bp3-editable-text.bp3-intent-warning.bp3-editable-text-editing::before{ + -webkit-box-shadow:0 0 0 1px #ffb366, 0 0 0 3px rgba(255, 179, 102, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px #ffb366, 0 0 0 3px rgba(255, 179, 102, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); } + .bp3-dark .bp3-editable-text.bp3-intent-danger .bp3-editable-text-content{ + color:#ff7373; } + .bp3-dark .bp3-editable-text.bp3-intent-danger:hover::before{ + -webkit-box-shadow:0 0 0 0 rgba(255, 115, 115, 0), 0 0 0 0 rgba(255, 115, 115, 0), inset 0 0 0 1px rgba(255, 115, 115, 0.4); + box-shadow:0 0 0 0 rgba(255, 115, 115, 0), 0 0 0 0 rgba(255, 115, 115, 0), inset 0 0 0 1px rgba(255, 115, 115, 0.4); } + .bp3-dark .bp3-editable-text.bp3-intent-danger.bp3-editable-text-editing::before{ + -webkit-box-shadow:0 0 0 1px #ff7373, 0 0 0 3px rgba(255, 115, 115, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px #ff7373, 0 0 0 3px rgba(255, 115, 115, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); } + +.bp3-editable-text-input, +.bp3-editable-text-content{ + display:inherit; + position:relative; + min-width:inherit; + max-width:inherit; + vertical-align:top; + text-transform:inherit; + letter-spacing:inherit; + color:inherit; + font:inherit; + resize:none; } + +.bp3-editable-text-input{ + border:none; + -webkit-box-shadow:none; + box-shadow:none; + background:none; + width:100%; + padding:0; + white-space:pre-wrap; } + .bp3-editable-text-input::-webkit-input-placeholder{ + opacity:1; + color:rgba(92, 112, 128, 0.6); } + .bp3-editable-text-input::-moz-placeholder{ + opacity:1; + color:rgba(92, 112, 128, 0.6); } + .bp3-editable-text-input:-ms-input-placeholder{ + opacity:1; + color:rgba(92, 112, 128, 0.6); } + .bp3-editable-text-input::-ms-input-placeholder{ + opacity:1; + color:rgba(92, 112, 128, 0.6); } + .bp3-editable-text-input::placeholder{ + opacity:1; + color:rgba(92, 112, 128, 0.6); } + .bp3-editable-text-input:focus{ + outline:none; } + .bp3-editable-text-input::-ms-clear{ + display:none; } + +.bp3-editable-text-content{ + overflow:hidden; + padding-right:2px; + text-overflow:ellipsis; + white-space:pre; } + .bp3-editable-text-editing > .bp3-editable-text-content{ + position:absolute; + left:0; + visibility:hidden; } + .bp3-editable-text-placeholder > .bp3-editable-text-content{ + color:rgba(92, 112, 128, 0.6); } + .bp3-dark .bp3-editable-text-placeholder > .bp3-editable-text-content{ + color:rgba(167, 182, 194, 0.6); } + +.bp3-editable-text.bp3-multiline{ + display:block; } + .bp3-editable-text.bp3-multiline .bp3-editable-text-content{ + overflow:auto; + white-space:pre-wrap; + word-wrap:break-word; } +.bp3-control-group{ + -webkit-transform:translateZ(0); + transform:translateZ(0); + display:-webkit-box; + display:-ms-flexbox; + display:flex; + -webkit-box-orient:horizontal; + -webkit-box-direction:normal; + -ms-flex-direction:row; + flex-direction:row; + -webkit-box-align:stretch; + -ms-flex-align:stretch; + align-items:stretch; } + .bp3-control-group > *{ + -webkit-box-flex:0; + -ms-flex-positive:0; + flex-grow:0; + -ms-flex-negative:0; + flex-shrink:0; } + .bp3-control-group > .bp3-fill{ + -webkit-box-flex:1; + -ms-flex-positive:1; + flex-grow:1; + -ms-flex-negative:1; + flex-shrink:1; } + .bp3-control-group .bp3-button, + .bp3-control-group .bp3-html-select, + .bp3-control-group .bp3-input, + .bp3-control-group .bp3-select{ + position:relative; } + .bp3-control-group .bp3-input{ + z-index:2; + border-radius:inherit; } + .bp3-control-group .bp3-input:focus{ + z-index:14; + border-radius:3px; } + .bp3-control-group .bp3-input[class*="bp3-intent"]{ + z-index:13; } + .bp3-control-group .bp3-input[class*="bp3-intent"]:focus{ + z-index:15; } + .bp3-control-group .bp3-input[readonly], .bp3-control-group .bp3-input:disabled, .bp3-control-group .bp3-input.bp3-disabled{ + z-index:1; } + .bp3-control-group .bp3-input-group[class*="bp3-intent"] .bp3-input{ + z-index:13; } + .bp3-control-group .bp3-input-group[class*="bp3-intent"] .bp3-input:focus{ + z-index:15; } + .bp3-control-group .bp3-button, + .bp3-control-group .bp3-html-select select, + .bp3-control-group .bp3-select select{ + -webkit-transform:translateZ(0); + transform:translateZ(0); + z-index:4; + border-radius:inherit; } + .bp3-control-group .bp3-button:focus, + .bp3-control-group .bp3-html-select select:focus, + .bp3-control-group .bp3-select select:focus{ + z-index:5; } + .bp3-control-group .bp3-button:hover, + .bp3-control-group .bp3-html-select select:hover, + .bp3-control-group .bp3-select select:hover{ + z-index:6; } + .bp3-control-group .bp3-button:active, + .bp3-control-group .bp3-html-select select:active, + .bp3-control-group .bp3-select select:active{ + z-index:7; } + .bp3-control-group .bp3-button[readonly], .bp3-control-group .bp3-button:disabled, .bp3-control-group .bp3-button.bp3-disabled, + .bp3-control-group .bp3-html-select select[readonly], + .bp3-control-group .bp3-html-select select:disabled, + .bp3-control-group .bp3-html-select select.bp3-disabled, + .bp3-control-group .bp3-select select[readonly], + .bp3-control-group .bp3-select select:disabled, + .bp3-control-group .bp3-select select.bp3-disabled{ + z-index:3; } + .bp3-control-group .bp3-button[class*="bp3-intent"], + .bp3-control-group .bp3-html-select select[class*="bp3-intent"], + .bp3-control-group .bp3-select select[class*="bp3-intent"]{ + z-index:9; } + .bp3-control-group .bp3-button[class*="bp3-intent"]:focus, + .bp3-control-group .bp3-html-select select[class*="bp3-intent"]:focus, + .bp3-control-group .bp3-select select[class*="bp3-intent"]:focus{ + z-index:10; } + .bp3-control-group .bp3-button[class*="bp3-intent"]:hover, + .bp3-control-group .bp3-html-select select[class*="bp3-intent"]:hover, + .bp3-control-group .bp3-select select[class*="bp3-intent"]:hover{ + z-index:11; } + .bp3-control-group .bp3-button[class*="bp3-intent"]:active, + .bp3-control-group .bp3-html-select select[class*="bp3-intent"]:active, + .bp3-control-group .bp3-select select[class*="bp3-intent"]:active{ + z-index:12; } + .bp3-control-group .bp3-button[class*="bp3-intent"][readonly], .bp3-control-group .bp3-button[class*="bp3-intent"]:disabled, .bp3-control-group .bp3-button[class*="bp3-intent"].bp3-disabled, + .bp3-control-group .bp3-html-select select[class*="bp3-intent"][readonly], + .bp3-control-group .bp3-html-select select[class*="bp3-intent"]:disabled, + .bp3-control-group .bp3-html-select select[class*="bp3-intent"].bp3-disabled, + .bp3-control-group .bp3-select select[class*="bp3-intent"][readonly], + .bp3-control-group .bp3-select select[class*="bp3-intent"]:disabled, + .bp3-control-group .bp3-select select[class*="bp3-intent"].bp3-disabled{ + z-index:8; } + .bp3-control-group .bp3-input-group > .bp3-icon, + .bp3-control-group .bp3-input-group > .bp3-button, + .bp3-control-group .bp3-input-group > .bp3-input-action{ + z-index:16; } + .bp3-control-group .bp3-select::after, + .bp3-control-group .bp3-html-select::after, + .bp3-control-group .bp3-select > .bp3-icon, + .bp3-control-group .bp3-html-select > .bp3-icon{ + z-index:17; } + .bp3-control-group:not(.bp3-vertical) > *{ + margin-right:-1px; } + .bp3-dark .bp3-control-group:not(.bp3-vertical) > *{ + margin-right:0; } + .bp3-dark .bp3-control-group:not(.bp3-vertical) > .bp3-button + .bp3-button{ + margin-left:1px; } + .bp3-control-group .bp3-popover-wrapper, + .bp3-control-group .bp3-popover-target{ + border-radius:inherit; } + .bp3-control-group > :first-child{ + border-radius:3px 0 0 3px; } + .bp3-control-group > :last-child{ + margin-right:0; + border-radius:0 3px 3px 0; } + .bp3-control-group > :only-child{ + margin-right:0; + border-radius:3px; } + .bp3-control-group .bp3-input-group .bp3-button{ + border-radius:3px; } + .bp3-control-group > .bp3-fill{ + -webkit-box-flex:1; + -ms-flex:1 1 auto; + flex:1 1 auto; } + .bp3-control-group.bp3-fill > *:not(.bp3-fixed){ + -webkit-box-flex:1; + -ms-flex:1 1 auto; + flex:1 1 auto; } + .bp3-control-group.bp3-vertical{ + -webkit-box-orient:vertical; + -webkit-box-direction:normal; + -ms-flex-direction:column; + flex-direction:column; } + .bp3-control-group.bp3-vertical > *{ + margin-top:-1px; } + .bp3-control-group.bp3-vertical > :first-child{ + margin-top:0; + border-radius:3px 3px 0 0; } + .bp3-control-group.bp3-vertical > :last-child{ + border-radius:0 0 3px 3px; } +.bp3-control{ + display:block; + position:relative; + margin-bottom:10px; + cursor:pointer; + text-transform:none; } + .bp3-control input:checked ~ .bp3-control-indicator{ + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2); + background-color:#137cbd; + background-image:-webkit-gradient(linear, left top, left bottom, from(rgba(255, 255, 255, 0.1)), to(rgba(255, 255, 255, 0))); + background-image:linear-gradient(to bottom, rgba(255, 255, 255, 0.1), rgba(255, 255, 255, 0)); + color:#ffffff; } + .bp3-control:hover input:checked ~ .bp3-control-indicator{ + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2); + background-color:#106ba3; } + .bp3-control input:not(:disabled):active:checked ~ .bp3-control-indicator{ + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 1px 2px rgba(16, 22, 26, 0.2); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 1px 2px rgba(16, 22, 26, 0.2); + background:#0e5a8a; } + .bp3-control input:disabled:checked ~ .bp3-control-indicator{ + -webkit-box-shadow:none; + box-shadow:none; + background:rgba(19, 124, 189, 0.5); } + .bp3-dark .bp3-control input:checked ~ .bp3-control-indicator{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4); } + .bp3-dark .bp3-control:hover input:checked ~ .bp3-control-indicator{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4); + background-color:#106ba3; } + .bp3-dark .bp3-control input:not(:disabled):active:checked ~ .bp3-control-indicator{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 1px 2px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 1px 2px rgba(16, 22, 26, 0.2); + background-color:#0e5a8a; } + .bp3-dark .bp3-control input:disabled:checked ~ .bp3-control-indicator{ + -webkit-box-shadow:none; + box-shadow:none; + background:rgba(14, 90, 138, 0.5); } + .bp3-control:not(.bp3-align-right){ + padding-left:26px; } + .bp3-control:not(.bp3-align-right) .bp3-control-indicator{ + margin-left:-26px; } + .bp3-control.bp3-align-right{ + padding-right:26px; } + .bp3-control.bp3-align-right .bp3-control-indicator{ + margin-right:-26px; } + .bp3-control.bp3-disabled{ + cursor:not-allowed; + color:rgba(92, 112, 128, 0.6); } + .bp3-control.bp3-inline{ + display:inline-block; + margin-right:20px; } + .bp3-control input{ + position:absolute; + top:0; + left:0; + opacity:0; + z-index:-1; } + .bp3-control .bp3-control-indicator{ + display:inline-block; + position:relative; + margin-top:-3px; + margin-right:10px; + border:none; + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1); + background-clip:padding-box; + background-color:#f5f8fa; + background-image:-webkit-gradient(linear, left top, left bottom, from(rgba(255, 255, 255, 0.8)), to(rgba(255, 255, 255, 0))); + background-image:linear-gradient(to bottom, rgba(255, 255, 255, 0.8), rgba(255, 255, 255, 0)); + cursor:pointer; + width:1em; + height:1em; + vertical-align:middle; + font-size:16px; + -webkit-user-select:none; + -moz-user-select:none; + -ms-user-select:none; + user-select:none; } + .bp3-control .bp3-control-indicator::before{ + display:block; + width:1em; + height:1em; + content:""; } + .bp3-control:hover .bp3-control-indicator{ + background-color:#ebf1f5; } + .bp3-control input:not(:disabled):active ~ .bp3-control-indicator{ + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 1px 2px rgba(16, 22, 26, 0.2); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 1px 2px rgba(16, 22, 26, 0.2); + background:#d8e1e8; } + .bp3-control input:disabled ~ .bp3-control-indicator{ + -webkit-box-shadow:none; + box-shadow:none; + background:rgba(206, 217, 224, 0.5); + cursor:not-allowed; } + .bp3-control input:focus ~ .bp3-control-indicator{ + outline:rgba(19, 124, 189, 0.6) auto 2px; + outline-offset:2px; + -moz-outline-radius:6px; } + .bp3-control.bp3-align-right .bp3-control-indicator{ + float:right; + margin-top:1px; + margin-left:10px; } + .bp3-control.bp3-large{ + font-size:16px; } + .bp3-control.bp3-large:not(.bp3-align-right){ + padding-left:30px; } + .bp3-control.bp3-large:not(.bp3-align-right) .bp3-control-indicator{ + margin-left:-30px; } + .bp3-control.bp3-large.bp3-align-right{ + padding-right:30px; } + .bp3-control.bp3-large.bp3-align-right .bp3-control-indicator{ + margin-right:-30px; } + .bp3-control.bp3-large .bp3-control-indicator{ + font-size:20px; } + .bp3-control.bp3-large.bp3-align-right .bp3-control-indicator{ + margin-top:0; } + .bp3-control.bp3-checkbox input:indeterminate ~ .bp3-control-indicator{ + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2); + background-color:#137cbd; + background-image:-webkit-gradient(linear, left top, left bottom, from(rgba(255, 255, 255, 0.1)), to(rgba(255, 255, 255, 0))); + background-image:linear-gradient(to bottom, rgba(255, 255, 255, 0.1), rgba(255, 255, 255, 0)); + color:#ffffff; } + .bp3-control.bp3-checkbox:hover input:indeterminate ~ .bp3-control-indicator{ + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2); + background-color:#106ba3; } + .bp3-control.bp3-checkbox input:not(:disabled):active:indeterminate ~ .bp3-control-indicator{ + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 1px 2px rgba(16, 22, 26, 0.2); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 1px 2px rgba(16, 22, 26, 0.2); + background:#0e5a8a; } + .bp3-control.bp3-checkbox input:disabled:indeterminate ~ .bp3-control-indicator{ + -webkit-box-shadow:none; + box-shadow:none; + background:rgba(19, 124, 189, 0.5); } + .bp3-dark .bp3-control.bp3-checkbox input:indeterminate ~ .bp3-control-indicator{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4); } + .bp3-dark .bp3-control.bp3-checkbox:hover input:indeterminate ~ .bp3-control-indicator{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4); + background-color:#106ba3; } + .bp3-dark .bp3-control.bp3-checkbox input:not(:disabled):active:indeterminate ~ .bp3-control-indicator{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 1px 2px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 1px 2px rgba(16, 22, 26, 0.2); + background-color:#0e5a8a; } + .bp3-dark .bp3-control.bp3-checkbox input:disabled:indeterminate ~ .bp3-control-indicator{ + -webkit-box-shadow:none; + box-shadow:none; + background:rgba(14, 90, 138, 0.5); } + .bp3-control.bp3-checkbox .bp3-control-indicator{ + border-radius:3px; } + .bp3-control.bp3-checkbox input:checked ~ .bp3-control-indicator::before{ + background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16'%3e%3cpath fill-rule='evenodd' clip-rule='evenodd' d='M12 5c-.28 0-.53.11-.71.29L7 9.59l-2.29-2.3a1.003 1.003 0 0 0-1.42 1.42l3 3c.18.18.43.29.71.29s.53-.11.71-.29l5-5A1.003 1.003 0 0 0 12 5z' fill='white'/%3e%3c/svg%3e"); } + .bp3-control.bp3-checkbox input:indeterminate ~ .bp3-control-indicator::before{ + background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16'%3e%3cpath fill-rule='evenodd' clip-rule='evenodd' d='M11 7H5c-.55 0-1 .45-1 1s.45 1 1 1h6c.55 0 1-.45 1-1s-.45-1-1-1z' fill='white'/%3e%3c/svg%3e"); } + .bp3-control.bp3-radio .bp3-control-indicator{ + border-radius:50%; } + .bp3-control.bp3-radio input:checked ~ .bp3-control-indicator::before{ + background-image:radial-gradient(#ffffff, #ffffff 28%, transparent 32%); } + .bp3-control.bp3-radio input:checked:disabled ~ .bp3-control-indicator::before{ + opacity:0.5; } + .bp3-control.bp3-radio input:focus ~ .bp3-control-indicator{ + -moz-outline-radius:16px; } + .bp3-control.bp3-switch input ~ .bp3-control-indicator{ + background:rgba(167, 182, 194, 0.5); } + .bp3-control.bp3-switch:hover input ~ .bp3-control-indicator{ + background:rgba(115, 134, 148, 0.5); } + .bp3-control.bp3-switch input:not(:disabled):active ~ .bp3-control-indicator{ + background:rgba(92, 112, 128, 0.5); } + .bp3-control.bp3-switch input:disabled ~ .bp3-control-indicator{ + background:rgba(206, 217, 224, 0.5); } + .bp3-control.bp3-switch input:disabled ~ .bp3-control-indicator::before{ + background:rgba(255, 255, 255, 0.8); } + .bp3-control.bp3-switch input:checked ~ .bp3-control-indicator{ + background:#137cbd; } + .bp3-control.bp3-switch:hover input:checked ~ .bp3-control-indicator{ + background:#106ba3; } + .bp3-control.bp3-switch input:checked:not(:disabled):active ~ .bp3-control-indicator{ + background:#0e5a8a; } + .bp3-control.bp3-switch input:checked:disabled ~ .bp3-control-indicator{ + background:rgba(19, 124, 189, 0.5); } + .bp3-control.bp3-switch input:checked:disabled ~ .bp3-control-indicator::before{ + background:rgba(255, 255, 255, 0.8); } + .bp3-control.bp3-switch:not(.bp3-align-right){ + padding-left:38px; } + .bp3-control.bp3-switch:not(.bp3-align-right) .bp3-control-indicator{ + margin-left:-38px; } + .bp3-control.bp3-switch.bp3-align-right{ + padding-right:38px; } + .bp3-control.bp3-switch.bp3-align-right .bp3-control-indicator{ + margin-right:-38px; } + .bp3-control.bp3-switch .bp3-control-indicator{ + border:none; + border-radius:1.75em; + -webkit-box-shadow:none !important; + box-shadow:none !important; + width:auto; + min-width:1.75em; + -webkit-transition:background-color 100ms cubic-bezier(0.4, 1, 0.75, 0.9); + transition:background-color 100ms cubic-bezier(0.4, 1, 0.75, 0.9); } + .bp3-control.bp3-switch .bp3-control-indicator::before{ + position:absolute; + left:0; + margin:2px; + border-radius:50%; + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 1px 1px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 1px 1px rgba(16, 22, 26, 0.2); + background:#ffffff; + width:calc(1em - 4px); + height:calc(1em - 4px); + -webkit-transition:left 100ms cubic-bezier(0.4, 1, 0.75, 0.9); + transition:left 100ms cubic-bezier(0.4, 1, 0.75, 0.9); } + .bp3-control.bp3-switch input:checked ~ .bp3-control-indicator::before{ + left:calc(100% - 1em); } + .bp3-control.bp3-switch.bp3-large:not(.bp3-align-right){ + padding-left:45px; } + .bp3-control.bp3-switch.bp3-large:not(.bp3-align-right) .bp3-control-indicator{ + margin-left:-45px; } + .bp3-control.bp3-switch.bp3-large.bp3-align-right{ + padding-right:45px; } + .bp3-control.bp3-switch.bp3-large.bp3-align-right .bp3-control-indicator{ + margin-right:-45px; } + .bp3-dark .bp3-control.bp3-switch input ~ .bp3-control-indicator{ + background:rgba(16, 22, 26, 0.5); } + .bp3-dark .bp3-control.bp3-switch:hover input ~ .bp3-control-indicator{ + background:rgba(16, 22, 26, 0.7); } + .bp3-dark .bp3-control.bp3-switch input:not(:disabled):active ~ .bp3-control-indicator{ + background:rgba(16, 22, 26, 0.9); } + .bp3-dark .bp3-control.bp3-switch input:disabled ~ .bp3-control-indicator{ + background:rgba(57, 75, 89, 0.5); } + .bp3-dark .bp3-control.bp3-switch input:disabled ~ .bp3-control-indicator::before{ + background:rgba(16, 22, 26, 0.4); } + .bp3-dark .bp3-control.bp3-switch input:checked ~ .bp3-control-indicator{ + background:#137cbd; } + .bp3-dark .bp3-control.bp3-switch:hover input:checked ~ .bp3-control-indicator{ + background:#106ba3; } + .bp3-dark .bp3-control.bp3-switch input:checked:not(:disabled):active ~ .bp3-control-indicator{ + background:#0e5a8a; } + .bp3-dark .bp3-control.bp3-switch input:checked:disabled ~ .bp3-control-indicator{ + background:rgba(14, 90, 138, 0.5); } + .bp3-dark .bp3-control.bp3-switch input:checked:disabled ~ .bp3-control-indicator::before{ + background:rgba(16, 22, 26, 0.4); } + .bp3-dark .bp3-control.bp3-switch .bp3-control-indicator::before{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4); + background:#394b59; } + .bp3-dark .bp3-control.bp3-switch input:checked ~ .bp3-control-indicator::before{ + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4); } + .bp3-control.bp3-switch .bp3-switch-inner-text{ + text-align:center; + font-size:0.7em; } + .bp3-control.bp3-switch .bp3-control-indicator-child:first-child{ + visibility:hidden; + margin-right:1.2em; + margin-left:0.5em; + line-height:0; } + .bp3-control.bp3-switch .bp3-control-indicator-child:last-child{ + visibility:visible; + margin-right:0.5em; + margin-left:1.2em; + line-height:1em; } + .bp3-control.bp3-switch input:checked ~ .bp3-control-indicator .bp3-control-indicator-child:first-child{ + visibility:visible; + line-height:1em; } + .bp3-control.bp3-switch input:checked ~ .bp3-control-indicator .bp3-control-indicator-child:last-child{ + visibility:hidden; + line-height:0; } + .bp3-dark .bp3-control{ + color:#f5f8fa; } + .bp3-dark .bp3-control.bp3-disabled{ + color:rgba(167, 182, 194, 0.6); } + .bp3-dark .bp3-control .bp3-control-indicator{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4); + background-color:#394b59; + background-image:-webkit-gradient(linear, left top, left bottom, from(rgba(255, 255, 255, 0.05)), to(rgba(255, 255, 255, 0))); + background-image:linear-gradient(to bottom, rgba(255, 255, 255, 0.05), rgba(255, 255, 255, 0)); } + .bp3-dark .bp3-control:hover .bp3-control-indicator{ + background-color:#30404d; } + .bp3-dark .bp3-control input:not(:disabled):active ~ .bp3-control-indicator{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.6), inset 0 1px 2px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.6), inset 0 1px 2px rgba(16, 22, 26, 0.2); + background:#202b33; } + .bp3-dark .bp3-control input:disabled ~ .bp3-control-indicator{ + -webkit-box-shadow:none; + box-shadow:none; + background:rgba(57, 75, 89, 0.5); + cursor:not-allowed; } + .bp3-dark .bp3-control.bp3-checkbox input:disabled:checked ~ .bp3-control-indicator, .bp3-dark .bp3-control.bp3-checkbox input:disabled:indeterminate ~ .bp3-control-indicator{ + color:rgba(167, 182, 194, 0.6); } +.bp3-file-input{ + display:inline-block; + position:relative; + cursor:pointer; + height:30px; } + .bp3-file-input input{ + opacity:0; + margin:0; + min-width:200px; } + .bp3-file-input input:disabled + .bp3-file-upload-input, + .bp3-file-input input.bp3-disabled + .bp3-file-upload-input{ + -webkit-box-shadow:none; + box-shadow:none; + background:rgba(206, 217, 224, 0.5); + cursor:not-allowed; + color:rgba(92, 112, 128, 0.6); + resize:none; } + .bp3-file-input input:disabled + .bp3-file-upload-input::after, + .bp3-file-input input.bp3-disabled + .bp3-file-upload-input::after{ + outline:none; + -webkit-box-shadow:none; + box-shadow:none; + background-color:rgba(206, 217, 224, 0.5); + background-image:none; + cursor:not-allowed; + color:rgba(92, 112, 128, 0.6); } + .bp3-file-input input:disabled + .bp3-file-upload-input::after.bp3-active, .bp3-file-input input:disabled + .bp3-file-upload-input::after.bp3-active:hover, + .bp3-file-input input.bp3-disabled + .bp3-file-upload-input::after.bp3-active, + .bp3-file-input input.bp3-disabled + .bp3-file-upload-input::after.bp3-active:hover{ + background:rgba(206, 217, 224, 0.7); } + .bp3-dark .bp3-file-input input:disabled + .bp3-file-upload-input, .bp3-dark + .bp3-file-input input.bp3-disabled + .bp3-file-upload-input{ + -webkit-box-shadow:none; + box-shadow:none; + background:rgba(57, 75, 89, 0.5); + color:rgba(167, 182, 194, 0.6); } + .bp3-dark .bp3-file-input input:disabled + .bp3-file-upload-input::after, .bp3-dark + .bp3-file-input input.bp3-disabled + .bp3-file-upload-input::after{ + -webkit-box-shadow:none; + box-shadow:none; + background-color:rgba(57, 75, 89, 0.5); + background-image:none; + color:rgba(167, 182, 194, 0.6); } + .bp3-dark .bp3-file-input input:disabled + .bp3-file-upload-input::after.bp3-active, .bp3-dark + .bp3-file-input input.bp3-disabled + .bp3-file-upload-input::after.bp3-active{ + background:rgba(57, 75, 89, 0.7); } + .bp3-file-input.bp3-file-input-has-selection .bp3-file-upload-input{ + color:#182026; } + .bp3-dark .bp3-file-input.bp3-file-input-has-selection .bp3-file-upload-input{ + color:#f5f8fa; } + .bp3-file-input.bp3-fill{ + width:100%; } + .bp3-file-input.bp3-large, + .bp3-large .bp3-file-input{ + height:40px; } + .bp3-file-input .bp3-file-upload-input-custom-text::after{ + content:attr(bp3-button-text); } + +.bp3-file-upload-input{ + outline:none; + border:none; + border-radius:3px; + -webkit-box-shadow:0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), inset 0 0 0 1px rgba(16, 22, 26, 0.15), inset 0 1px 1px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), inset 0 0 0 1px rgba(16, 22, 26, 0.15), inset 0 1px 1px rgba(16, 22, 26, 0.2); + background:#ffffff; + height:30px; + padding:0 10px; + vertical-align:middle; + line-height:30px; + color:#182026; + font-size:14px; + font-weight:400; + -webkit-transition:-webkit-box-shadow 100ms cubic-bezier(0.4, 1, 0.75, 0.9); + transition:-webkit-box-shadow 100ms cubic-bezier(0.4, 1, 0.75, 0.9); + transition:box-shadow 100ms cubic-bezier(0.4, 1, 0.75, 0.9); + transition:box-shadow 100ms cubic-bezier(0.4, 1, 0.75, 0.9), -webkit-box-shadow 100ms cubic-bezier(0.4, 1, 0.75, 0.9); + -webkit-appearance:none; + -moz-appearance:none; + appearance:none; + overflow:hidden; + text-overflow:ellipsis; + white-space:nowrap; + word-wrap:normal; + position:absolute; + top:0; + right:0; + left:0; + padding-right:80px; + color:rgba(92, 112, 128, 0.6); + -webkit-user-select:none; + -moz-user-select:none; + -ms-user-select:none; + user-select:none; } + .bp3-file-upload-input::-webkit-input-placeholder{ + opacity:1; + color:rgba(92, 112, 128, 0.6); } + .bp3-file-upload-input::-moz-placeholder{ + opacity:1; + color:rgba(92, 112, 128, 0.6); } + .bp3-file-upload-input:-ms-input-placeholder{ + opacity:1; + color:rgba(92, 112, 128, 0.6); } + .bp3-file-upload-input::-ms-input-placeholder{ + opacity:1; + color:rgba(92, 112, 128, 0.6); } + .bp3-file-upload-input::placeholder{ + opacity:1; + color:rgba(92, 112, 128, 0.6); } + .bp3-file-upload-input:focus, .bp3-file-upload-input.bp3-active{ + -webkit-box-shadow:0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); } + .bp3-file-upload-input[type="search"], .bp3-file-upload-input.bp3-round{ + border-radius:30px; + -webkit-box-sizing:border-box; + box-sizing:border-box; + padding-left:10px; } + .bp3-file-upload-input[readonly]{ + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.15); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.15); } + .bp3-file-upload-input:disabled, .bp3-file-upload-input.bp3-disabled{ + -webkit-box-shadow:none; + box-shadow:none; + background:rgba(206, 217, 224, 0.5); + cursor:not-allowed; + color:rgba(92, 112, 128, 0.6); + resize:none; } + .bp3-file-upload-input::after{ + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1); + background-color:#f5f8fa; + background-image:-webkit-gradient(linear, left top, left bottom, from(rgba(255, 255, 255, 0.8)), to(rgba(255, 255, 255, 0))); + background-image:linear-gradient(to bottom, rgba(255, 255, 255, 0.8), rgba(255, 255, 255, 0)); + color:#182026; + min-width:24px; + min-height:24px; + overflow:hidden; + text-overflow:ellipsis; + white-space:nowrap; + word-wrap:normal; + position:absolute; + top:0; + right:0; + margin:3px; + border-radius:3px; + width:70px; + text-align:center; + line-height:24px; + content:"Browse"; } + .bp3-file-upload-input::after:hover{ + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1); + background-clip:padding-box; + background-color:#ebf1f5; } + .bp3-file-upload-input::after:active, .bp3-file-upload-input::after.bp3-active{ + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 1px 2px rgba(16, 22, 26, 0.2); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 1px 2px rgba(16, 22, 26, 0.2); + background-color:#d8e1e8; + background-image:none; } + .bp3-file-upload-input::after:disabled, .bp3-file-upload-input::after.bp3-disabled{ + outline:none; + -webkit-box-shadow:none; + box-shadow:none; + background-color:rgba(206, 217, 224, 0.5); + background-image:none; + cursor:not-allowed; + color:rgba(92, 112, 128, 0.6); } + .bp3-file-upload-input::after:disabled.bp3-active, .bp3-file-upload-input::after:disabled.bp3-active:hover, .bp3-file-upload-input::after.bp3-disabled.bp3-active, .bp3-file-upload-input::after.bp3-disabled.bp3-active:hover{ + background:rgba(206, 217, 224, 0.7); } + .bp3-file-upload-input:hover::after{ + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1); + background-clip:padding-box; + background-color:#ebf1f5; } + .bp3-file-upload-input:active::after{ + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 1px 2px rgba(16, 22, 26, 0.2); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 1px 2px rgba(16, 22, 26, 0.2); + background-color:#d8e1e8; + background-image:none; } + .bp3-large .bp3-file-upload-input{ + height:40px; + line-height:40px; + font-size:16px; + padding-right:95px; } + .bp3-large .bp3-file-upload-input[type="search"], .bp3-large .bp3-file-upload-input.bp3-round{ + padding:0 15px; } + .bp3-large .bp3-file-upload-input::after{ + min-width:30px; + min-height:30px; + margin:5px; + width:85px; + line-height:30px; } + .bp3-dark .bp3-file-upload-input{ + -webkit-box-shadow:0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); + background:rgba(16, 22, 26, 0.3); + color:#f5f8fa; + color:rgba(167, 182, 194, 0.6); } + .bp3-dark .bp3-file-upload-input::-webkit-input-placeholder{ + color:rgba(167, 182, 194, 0.6); } + .bp3-dark .bp3-file-upload-input::-moz-placeholder{ + color:rgba(167, 182, 194, 0.6); } + .bp3-dark .bp3-file-upload-input:-ms-input-placeholder{ + color:rgba(167, 182, 194, 0.6); } + .bp3-dark .bp3-file-upload-input::-ms-input-placeholder{ + color:rgba(167, 182, 194, 0.6); } + .bp3-dark .bp3-file-upload-input::placeholder{ + color:rgba(167, 182, 194, 0.6); } + .bp3-dark .bp3-file-upload-input:focus{ + -webkit-box-shadow:0 0 0 1px #137cbd, 0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px #137cbd, 0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); } + .bp3-dark .bp3-file-upload-input[readonly]{ + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4); } + .bp3-dark .bp3-file-upload-input:disabled, .bp3-dark .bp3-file-upload-input.bp3-disabled{ + -webkit-box-shadow:none; + box-shadow:none; + background:rgba(57, 75, 89, 0.5); + color:rgba(167, 182, 194, 0.6); } + .bp3-dark .bp3-file-upload-input::after{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4); + background-color:#394b59; + background-image:-webkit-gradient(linear, left top, left bottom, from(rgba(255, 255, 255, 0.05)), to(rgba(255, 255, 255, 0))); + background-image:linear-gradient(to bottom, rgba(255, 255, 255, 0.05), rgba(255, 255, 255, 0)); + color:#f5f8fa; } + .bp3-dark .bp3-file-upload-input::after:hover, .bp3-dark .bp3-file-upload-input::after:active, .bp3-dark .bp3-file-upload-input::after.bp3-active{ + color:#f5f8fa; } + .bp3-dark .bp3-file-upload-input::after:hover{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4); + background-color:#30404d; } + .bp3-dark .bp3-file-upload-input::after:active, .bp3-dark .bp3-file-upload-input::after.bp3-active{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.6), inset 0 1px 2px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.6), inset 0 1px 2px rgba(16, 22, 26, 0.2); + background-color:#202b33; + background-image:none; } + .bp3-dark .bp3-file-upload-input::after:disabled, .bp3-dark .bp3-file-upload-input::after.bp3-disabled{ + -webkit-box-shadow:none; + box-shadow:none; + background-color:rgba(57, 75, 89, 0.5); + background-image:none; + color:rgba(167, 182, 194, 0.6); } + .bp3-dark .bp3-file-upload-input::after:disabled.bp3-active, .bp3-dark .bp3-file-upload-input::after.bp3-disabled.bp3-active{ + background:rgba(57, 75, 89, 0.7); } + .bp3-dark .bp3-file-upload-input::after .bp3-button-spinner .bp3-spinner-head{ + background:rgba(16, 22, 26, 0.5); + stroke:#8a9ba8; } + .bp3-dark .bp3-file-upload-input:hover::after{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4); + background-color:#30404d; } + .bp3-dark .bp3-file-upload-input:active::after{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.6), inset 0 1px 2px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.6), inset 0 1px 2px rgba(16, 22, 26, 0.2); + background-color:#202b33; + background-image:none; } + +.bp3-file-upload-input::after{ + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1); } +.bp3-form-group{ + display:-webkit-box; + display:-ms-flexbox; + display:flex; + -webkit-box-orient:vertical; + -webkit-box-direction:normal; + -ms-flex-direction:column; + flex-direction:column; + margin:0 0 15px; } + .bp3-form-group label.bp3-label{ + margin-bottom:5px; } + .bp3-form-group .bp3-control{ + margin-top:7px; } + .bp3-form-group .bp3-form-helper-text{ + margin-top:5px; + color:#5c7080; + font-size:12px; } + .bp3-form-group.bp3-intent-primary .bp3-form-helper-text{ + color:#106ba3; } + .bp3-form-group.bp3-intent-success .bp3-form-helper-text{ + color:#0d8050; } + .bp3-form-group.bp3-intent-warning .bp3-form-helper-text{ + color:#bf7326; } + .bp3-form-group.bp3-intent-danger .bp3-form-helper-text{ + color:#c23030; } + .bp3-form-group.bp3-inline{ + -webkit-box-orient:horizontal; + -webkit-box-direction:normal; + -ms-flex-direction:row; + flex-direction:row; + -webkit-box-align:start; + -ms-flex-align:start; + align-items:flex-start; } + .bp3-form-group.bp3-inline.bp3-large label.bp3-label{ + margin:0 10px 0 0; + line-height:40px; } + .bp3-form-group.bp3-inline label.bp3-label{ + margin:0 10px 0 0; + line-height:30px; } + .bp3-form-group.bp3-disabled .bp3-label, + .bp3-form-group.bp3-disabled .bp3-text-muted, + .bp3-form-group.bp3-disabled .bp3-form-helper-text{ + color:rgba(92, 112, 128, 0.6) !important; } + .bp3-dark .bp3-form-group.bp3-intent-primary .bp3-form-helper-text{ + color:#48aff0; } + .bp3-dark .bp3-form-group.bp3-intent-success .bp3-form-helper-text{ + color:#3dcc91; } + .bp3-dark .bp3-form-group.bp3-intent-warning .bp3-form-helper-text{ + color:#ffb366; } + .bp3-dark .bp3-form-group.bp3-intent-danger .bp3-form-helper-text{ + color:#ff7373; } + .bp3-dark .bp3-form-group .bp3-form-helper-text{ + color:#a7b6c2; } + .bp3-dark .bp3-form-group.bp3-disabled .bp3-label, + .bp3-dark .bp3-form-group.bp3-disabled .bp3-text-muted, + .bp3-dark .bp3-form-group.bp3-disabled .bp3-form-helper-text{ + color:rgba(167, 182, 194, 0.6) !important; } +.bp3-input-group{ + display:block; + position:relative; } + .bp3-input-group .bp3-input{ + position:relative; + width:100%; } + .bp3-input-group .bp3-input:not(:first-child){ + padding-left:30px; } + .bp3-input-group .bp3-input:not(:last-child){ + padding-right:30px; } + .bp3-input-group .bp3-input-action, + .bp3-input-group > .bp3-button, + .bp3-input-group > .bp3-icon{ + position:absolute; + top:0; } + .bp3-input-group .bp3-input-action:first-child, + .bp3-input-group > .bp3-button:first-child, + .bp3-input-group > .bp3-icon:first-child{ + left:0; } + .bp3-input-group .bp3-input-action:last-child, + .bp3-input-group > .bp3-button:last-child, + .bp3-input-group > .bp3-icon:last-child{ + right:0; } + .bp3-input-group .bp3-button{ + min-width:24px; + min-height:24px; + margin:3px; + padding:0 7px; } + .bp3-input-group .bp3-button:empty{ + padding:0; } + .bp3-input-group > .bp3-icon{ + z-index:1; + color:#5c7080; } + .bp3-input-group > .bp3-icon:empty{ + line-height:1; + font-family:"Icons16", sans-serif; + font-size:16px; + font-weight:400; + font-style:normal; + -moz-osx-font-smoothing:grayscale; + -webkit-font-smoothing:antialiased; } + .bp3-input-group > .bp3-icon, + .bp3-input-group .bp3-input-action > .bp3-spinner{ + margin:7px; } + .bp3-input-group .bp3-tag{ + margin:5px; } + .bp3-input-group .bp3-input:not(:focus) + .bp3-button.bp3-minimal:not(:hover):not(:focus), + .bp3-input-group .bp3-input:not(:focus) + .bp3-input-action .bp3-button.bp3-minimal:not(:hover):not(:focus){ + color:#5c7080; } + .bp3-dark .bp3-input-group .bp3-input:not(:focus) + .bp3-button.bp3-minimal:not(:hover):not(:focus), .bp3-dark + .bp3-input-group .bp3-input:not(:focus) + .bp3-input-action .bp3-button.bp3-minimal:not(:hover):not(:focus){ + color:#a7b6c2; } + .bp3-input-group .bp3-input:not(:focus) + .bp3-button.bp3-minimal:not(:hover):not(:focus) .bp3-icon, .bp3-input-group .bp3-input:not(:focus) + .bp3-button.bp3-minimal:not(:hover):not(:focus) .bp3-icon-standard, .bp3-input-group .bp3-input:not(:focus) + .bp3-button.bp3-minimal:not(:hover):not(:focus) .bp3-icon-large, + .bp3-input-group .bp3-input:not(:focus) + .bp3-input-action .bp3-button.bp3-minimal:not(:hover):not(:focus) .bp3-icon, + .bp3-input-group .bp3-input:not(:focus) + .bp3-input-action .bp3-button.bp3-minimal:not(:hover):not(:focus) .bp3-icon-standard, + .bp3-input-group .bp3-input:not(:focus) + .bp3-input-action .bp3-button.bp3-minimal:not(:hover):not(:focus) .bp3-icon-large{ + color:#5c7080; } + .bp3-input-group .bp3-input:not(:focus) + .bp3-button.bp3-minimal:disabled, + .bp3-input-group .bp3-input:not(:focus) + .bp3-input-action .bp3-button.bp3-minimal:disabled{ + color:rgba(92, 112, 128, 0.6) !important; } + .bp3-input-group .bp3-input:not(:focus) + .bp3-button.bp3-minimal:disabled .bp3-icon, .bp3-input-group .bp3-input:not(:focus) + .bp3-button.bp3-minimal:disabled .bp3-icon-standard, .bp3-input-group .bp3-input:not(:focus) + .bp3-button.bp3-minimal:disabled .bp3-icon-large, + .bp3-input-group .bp3-input:not(:focus) + .bp3-input-action .bp3-button.bp3-minimal:disabled .bp3-icon, + .bp3-input-group .bp3-input:not(:focus) + .bp3-input-action .bp3-button.bp3-minimal:disabled .bp3-icon-standard, + .bp3-input-group .bp3-input:not(:focus) + .bp3-input-action .bp3-button.bp3-minimal:disabled .bp3-icon-large{ + color:rgba(92, 112, 128, 0.6) !important; } + .bp3-input-group.bp3-disabled{ + cursor:not-allowed; } + .bp3-input-group.bp3-disabled .bp3-icon{ + color:rgba(92, 112, 128, 0.6); } + .bp3-input-group.bp3-large .bp3-button{ + min-width:30px; + min-height:30px; + margin:5px; } + .bp3-input-group.bp3-large > .bp3-icon, + .bp3-input-group.bp3-large .bp3-input-action > .bp3-spinner{ + margin:12px; } + .bp3-input-group.bp3-large .bp3-input{ + height:40px; + line-height:40px; + font-size:16px; } + .bp3-input-group.bp3-large .bp3-input[type="search"], .bp3-input-group.bp3-large .bp3-input.bp3-round{ + padding:0 15px; } + .bp3-input-group.bp3-large .bp3-input:not(:first-child){ + padding-left:40px; } + .bp3-input-group.bp3-large .bp3-input:not(:last-child){ + padding-right:40px; } + .bp3-input-group.bp3-small .bp3-button{ + min-width:20px; + min-height:20px; + margin:2px; } + .bp3-input-group.bp3-small .bp3-tag{ + min-width:20px; + min-height:20px; + margin:2px; } + .bp3-input-group.bp3-small > .bp3-icon, + .bp3-input-group.bp3-small .bp3-input-action > .bp3-spinner{ + margin:4px; } + .bp3-input-group.bp3-small .bp3-input{ + height:24px; + padding-right:8px; + padding-left:8px; + line-height:24px; + font-size:12px; } + .bp3-input-group.bp3-small .bp3-input[type="search"], .bp3-input-group.bp3-small .bp3-input.bp3-round{ + padding:0 12px; } + .bp3-input-group.bp3-small .bp3-input:not(:first-child){ + padding-left:24px; } + .bp3-input-group.bp3-small .bp3-input:not(:last-child){ + padding-right:24px; } + .bp3-input-group.bp3-fill{ + -webkit-box-flex:1; + -ms-flex:1 1 auto; + flex:1 1 auto; + width:100%; } + .bp3-input-group.bp3-round .bp3-button, + .bp3-input-group.bp3-round .bp3-input, + .bp3-input-group.bp3-round .bp3-tag{ + border-radius:30px; } + .bp3-dark .bp3-input-group .bp3-icon{ + color:#a7b6c2; } + .bp3-dark .bp3-input-group.bp3-disabled .bp3-icon{ + color:rgba(167, 182, 194, 0.6); } + .bp3-input-group.bp3-intent-primary .bp3-input{ + -webkit-box-shadow:0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), inset 0 0 0 1px #137cbd, inset 0 0 0 1px rgba(16, 22, 26, 0.15), inset 0 1px 1px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), inset 0 0 0 1px #137cbd, inset 0 0 0 1px rgba(16, 22, 26, 0.15), inset 0 1px 1px rgba(16, 22, 26, 0.2); } + .bp3-input-group.bp3-intent-primary .bp3-input:focus{ + -webkit-box-shadow:0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); } + .bp3-input-group.bp3-intent-primary .bp3-input[readonly]{ + -webkit-box-shadow:inset 0 0 0 1px #137cbd; + box-shadow:inset 0 0 0 1px #137cbd; } + .bp3-input-group.bp3-intent-primary .bp3-input:disabled, .bp3-input-group.bp3-intent-primary .bp3-input.bp3-disabled{ + -webkit-box-shadow:none; + box-shadow:none; } + .bp3-input-group.bp3-intent-primary > .bp3-icon{ + color:#106ba3; } + .bp3-dark .bp3-input-group.bp3-intent-primary > .bp3-icon{ + color:#48aff0; } + .bp3-input-group.bp3-intent-success .bp3-input{ + -webkit-box-shadow:0 0 0 0 rgba(15, 153, 96, 0), 0 0 0 0 rgba(15, 153, 96, 0), inset 0 0 0 1px #0f9960, inset 0 0 0 1px rgba(16, 22, 26, 0.15), inset 0 1px 1px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 0 rgba(15, 153, 96, 0), 0 0 0 0 rgba(15, 153, 96, 0), inset 0 0 0 1px #0f9960, inset 0 0 0 1px rgba(16, 22, 26, 0.15), inset 0 1px 1px rgba(16, 22, 26, 0.2); } + .bp3-input-group.bp3-intent-success .bp3-input:focus{ + -webkit-box-shadow:0 0 0 1px #0f9960, 0 0 0 3px rgba(15, 153, 96, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px #0f9960, 0 0 0 3px rgba(15, 153, 96, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); } + .bp3-input-group.bp3-intent-success .bp3-input[readonly]{ + -webkit-box-shadow:inset 0 0 0 1px #0f9960; + box-shadow:inset 0 0 0 1px #0f9960; } + .bp3-input-group.bp3-intent-success .bp3-input:disabled, .bp3-input-group.bp3-intent-success .bp3-input.bp3-disabled{ + -webkit-box-shadow:none; + box-shadow:none; } + .bp3-input-group.bp3-intent-success > .bp3-icon{ + color:#0d8050; } + .bp3-dark .bp3-input-group.bp3-intent-success > .bp3-icon{ + color:#3dcc91; } + .bp3-input-group.bp3-intent-warning .bp3-input{ + -webkit-box-shadow:0 0 0 0 rgba(217, 130, 43, 0), 0 0 0 0 rgba(217, 130, 43, 0), inset 0 0 0 1px #d9822b, inset 0 0 0 1px rgba(16, 22, 26, 0.15), inset 0 1px 1px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 0 rgba(217, 130, 43, 0), 0 0 0 0 rgba(217, 130, 43, 0), inset 0 0 0 1px #d9822b, inset 0 0 0 1px rgba(16, 22, 26, 0.15), inset 0 1px 1px rgba(16, 22, 26, 0.2); } + .bp3-input-group.bp3-intent-warning .bp3-input:focus{ + -webkit-box-shadow:0 0 0 1px #d9822b, 0 0 0 3px rgba(217, 130, 43, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px #d9822b, 0 0 0 3px rgba(217, 130, 43, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); } + .bp3-input-group.bp3-intent-warning .bp3-input[readonly]{ + -webkit-box-shadow:inset 0 0 0 1px #d9822b; + box-shadow:inset 0 0 0 1px #d9822b; } + .bp3-input-group.bp3-intent-warning .bp3-input:disabled, .bp3-input-group.bp3-intent-warning .bp3-input.bp3-disabled{ + -webkit-box-shadow:none; + box-shadow:none; } + .bp3-input-group.bp3-intent-warning > .bp3-icon{ + color:#bf7326; } + .bp3-dark .bp3-input-group.bp3-intent-warning > .bp3-icon{ + color:#ffb366; } + .bp3-input-group.bp3-intent-danger .bp3-input{ + -webkit-box-shadow:0 0 0 0 rgba(219, 55, 55, 0), 0 0 0 0 rgba(219, 55, 55, 0), inset 0 0 0 1px #db3737, inset 0 0 0 1px rgba(16, 22, 26, 0.15), inset 0 1px 1px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 0 rgba(219, 55, 55, 0), 0 0 0 0 rgba(219, 55, 55, 0), inset 0 0 0 1px #db3737, inset 0 0 0 1px rgba(16, 22, 26, 0.15), inset 0 1px 1px rgba(16, 22, 26, 0.2); } + .bp3-input-group.bp3-intent-danger .bp3-input:focus{ + -webkit-box-shadow:0 0 0 1px #db3737, 0 0 0 3px rgba(219, 55, 55, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px #db3737, 0 0 0 3px rgba(219, 55, 55, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); } + .bp3-input-group.bp3-intent-danger .bp3-input[readonly]{ + -webkit-box-shadow:inset 0 0 0 1px #db3737; + box-shadow:inset 0 0 0 1px #db3737; } + .bp3-input-group.bp3-intent-danger .bp3-input:disabled, .bp3-input-group.bp3-intent-danger .bp3-input.bp3-disabled{ + -webkit-box-shadow:none; + box-shadow:none; } + .bp3-input-group.bp3-intent-danger > .bp3-icon{ + color:#c23030; } + .bp3-dark .bp3-input-group.bp3-intent-danger > .bp3-icon{ + color:#ff7373; } +.bp3-input{ + outline:none; + border:none; + border-radius:3px; + -webkit-box-shadow:0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), inset 0 0 0 1px rgba(16, 22, 26, 0.15), inset 0 1px 1px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), inset 0 0 0 1px rgba(16, 22, 26, 0.15), inset 0 1px 1px rgba(16, 22, 26, 0.2); + background:#ffffff; + height:30px; + padding:0 10px; + vertical-align:middle; + line-height:30px; + color:#182026; + font-size:14px; + font-weight:400; + -webkit-transition:-webkit-box-shadow 100ms cubic-bezier(0.4, 1, 0.75, 0.9); + transition:-webkit-box-shadow 100ms cubic-bezier(0.4, 1, 0.75, 0.9); + transition:box-shadow 100ms cubic-bezier(0.4, 1, 0.75, 0.9); + transition:box-shadow 100ms cubic-bezier(0.4, 1, 0.75, 0.9), -webkit-box-shadow 100ms cubic-bezier(0.4, 1, 0.75, 0.9); + -webkit-appearance:none; + -moz-appearance:none; + appearance:none; } + .bp3-input::-webkit-input-placeholder{ + opacity:1; + color:rgba(92, 112, 128, 0.6); } + .bp3-input::-moz-placeholder{ + opacity:1; + color:rgba(92, 112, 128, 0.6); } + .bp3-input:-ms-input-placeholder{ + opacity:1; + color:rgba(92, 112, 128, 0.6); } + .bp3-input::-ms-input-placeholder{ + opacity:1; + color:rgba(92, 112, 128, 0.6); } + .bp3-input::placeholder{ + opacity:1; + color:rgba(92, 112, 128, 0.6); } + .bp3-input:focus, .bp3-input.bp3-active{ + -webkit-box-shadow:0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); } + .bp3-input[type="search"], .bp3-input.bp3-round{ + border-radius:30px; + -webkit-box-sizing:border-box; + box-sizing:border-box; + padding-left:10px; } + .bp3-input[readonly]{ + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.15); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.15); } + .bp3-input:disabled, .bp3-input.bp3-disabled{ + -webkit-box-shadow:none; + box-shadow:none; + background:rgba(206, 217, 224, 0.5); + cursor:not-allowed; + color:rgba(92, 112, 128, 0.6); + resize:none; } + .bp3-input.bp3-large{ + height:40px; + line-height:40px; + font-size:16px; } + .bp3-input.bp3-large[type="search"], .bp3-input.bp3-large.bp3-round{ + padding:0 15px; } + .bp3-input.bp3-small{ + height:24px; + padding-right:8px; + padding-left:8px; + line-height:24px; + font-size:12px; } + .bp3-input.bp3-small[type="search"], .bp3-input.bp3-small.bp3-round{ + padding:0 12px; } + .bp3-input.bp3-fill{ + -webkit-box-flex:1; + -ms-flex:1 1 auto; + flex:1 1 auto; + width:100%; } + .bp3-dark .bp3-input{ + -webkit-box-shadow:0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); + background:rgba(16, 22, 26, 0.3); + color:#f5f8fa; } + .bp3-dark .bp3-input::-webkit-input-placeholder{ + color:rgba(167, 182, 194, 0.6); } + .bp3-dark .bp3-input::-moz-placeholder{ + color:rgba(167, 182, 194, 0.6); } + .bp3-dark .bp3-input:-ms-input-placeholder{ + color:rgba(167, 182, 194, 0.6); } + .bp3-dark .bp3-input::-ms-input-placeholder{ + color:rgba(167, 182, 194, 0.6); } + .bp3-dark .bp3-input::placeholder{ + color:rgba(167, 182, 194, 0.6); } + .bp3-dark .bp3-input:focus{ + -webkit-box-shadow:0 0 0 1px #137cbd, 0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px #137cbd, 0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); } + .bp3-dark .bp3-input[readonly]{ + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4); } + .bp3-dark .bp3-input:disabled, .bp3-dark .bp3-input.bp3-disabled{ + -webkit-box-shadow:none; + box-shadow:none; + background:rgba(57, 75, 89, 0.5); + color:rgba(167, 182, 194, 0.6); } + .bp3-input.bp3-intent-primary{ + -webkit-box-shadow:0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), inset 0 0 0 1px #137cbd, inset 0 0 0 1px rgba(16, 22, 26, 0.15), inset 0 1px 1px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), inset 0 0 0 1px #137cbd, inset 0 0 0 1px rgba(16, 22, 26, 0.15), inset 0 1px 1px rgba(16, 22, 26, 0.2); } + .bp3-input.bp3-intent-primary:focus{ + -webkit-box-shadow:0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); } + .bp3-input.bp3-intent-primary[readonly]{ + -webkit-box-shadow:inset 0 0 0 1px #137cbd; + box-shadow:inset 0 0 0 1px #137cbd; } + .bp3-input.bp3-intent-primary:disabled, .bp3-input.bp3-intent-primary.bp3-disabled{ + -webkit-box-shadow:none; + box-shadow:none; } + .bp3-dark .bp3-input.bp3-intent-primary{ + -webkit-box-shadow:0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), inset 0 0 0 1px #137cbd, inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), inset 0 0 0 1px #137cbd, inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); } + .bp3-dark .bp3-input.bp3-intent-primary:focus{ + -webkit-box-shadow:0 0 0 1px #137cbd, 0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px #137cbd, 0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); } + .bp3-dark .bp3-input.bp3-intent-primary[readonly]{ + -webkit-box-shadow:inset 0 0 0 1px #137cbd; + box-shadow:inset 0 0 0 1px #137cbd; } + .bp3-dark .bp3-input.bp3-intent-primary:disabled, .bp3-dark .bp3-input.bp3-intent-primary.bp3-disabled{ + -webkit-box-shadow:none; + box-shadow:none; } + .bp3-input.bp3-intent-success{ + -webkit-box-shadow:0 0 0 0 rgba(15, 153, 96, 0), 0 0 0 0 rgba(15, 153, 96, 0), inset 0 0 0 1px #0f9960, inset 0 0 0 1px rgba(16, 22, 26, 0.15), inset 0 1px 1px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 0 rgba(15, 153, 96, 0), 0 0 0 0 rgba(15, 153, 96, 0), inset 0 0 0 1px #0f9960, inset 0 0 0 1px rgba(16, 22, 26, 0.15), inset 0 1px 1px rgba(16, 22, 26, 0.2); } + .bp3-input.bp3-intent-success:focus{ + -webkit-box-shadow:0 0 0 1px #0f9960, 0 0 0 3px rgba(15, 153, 96, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px #0f9960, 0 0 0 3px rgba(15, 153, 96, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); } + .bp3-input.bp3-intent-success[readonly]{ + -webkit-box-shadow:inset 0 0 0 1px #0f9960; + box-shadow:inset 0 0 0 1px #0f9960; } + .bp3-input.bp3-intent-success:disabled, .bp3-input.bp3-intent-success.bp3-disabled{ + -webkit-box-shadow:none; + box-shadow:none; } + .bp3-dark .bp3-input.bp3-intent-success{ + -webkit-box-shadow:0 0 0 0 rgba(15, 153, 96, 0), 0 0 0 0 rgba(15, 153, 96, 0), 0 0 0 0 rgba(15, 153, 96, 0), inset 0 0 0 1px #0f9960, inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 0 rgba(15, 153, 96, 0), 0 0 0 0 rgba(15, 153, 96, 0), 0 0 0 0 rgba(15, 153, 96, 0), inset 0 0 0 1px #0f9960, inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); } + .bp3-dark .bp3-input.bp3-intent-success:focus{ + -webkit-box-shadow:0 0 0 1px #0f9960, 0 0 0 1px #0f9960, 0 0 0 3px rgba(15, 153, 96, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px #0f9960, 0 0 0 1px #0f9960, 0 0 0 3px rgba(15, 153, 96, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); } + .bp3-dark .bp3-input.bp3-intent-success[readonly]{ + -webkit-box-shadow:inset 0 0 0 1px #0f9960; + box-shadow:inset 0 0 0 1px #0f9960; } + .bp3-dark .bp3-input.bp3-intent-success:disabled, .bp3-dark .bp3-input.bp3-intent-success.bp3-disabled{ + -webkit-box-shadow:none; + box-shadow:none; } + .bp3-input.bp3-intent-warning{ + -webkit-box-shadow:0 0 0 0 rgba(217, 130, 43, 0), 0 0 0 0 rgba(217, 130, 43, 0), inset 0 0 0 1px #d9822b, inset 0 0 0 1px rgba(16, 22, 26, 0.15), inset 0 1px 1px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 0 rgba(217, 130, 43, 0), 0 0 0 0 rgba(217, 130, 43, 0), inset 0 0 0 1px #d9822b, inset 0 0 0 1px rgba(16, 22, 26, 0.15), inset 0 1px 1px rgba(16, 22, 26, 0.2); } + .bp3-input.bp3-intent-warning:focus{ + -webkit-box-shadow:0 0 0 1px #d9822b, 0 0 0 3px rgba(217, 130, 43, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px #d9822b, 0 0 0 3px rgba(217, 130, 43, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); } + .bp3-input.bp3-intent-warning[readonly]{ + -webkit-box-shadow:inset 0 0 0 1px #d9822b; + box-shadow:inset 0 0 0 1px #d9822b; } + .bp3-input.bp3-intent-warning:disabled, .bp3-input.bp3-intent-warning.bp3-disabled{ + -webkit-box-shadow:none; + box-shadow:none; } + .bp3-dark .bp3-input.bp3-intent-warning{ + -webkit-box-shadow:0 0 0 0 rgba(217, 130, 43, 0), 0 0 0 0 rgba(217, 130, 43, 0), 0 0 0 0 rgba(217, 130, 43, 0), inset 0 0 0 1px #d9822b, inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 0 rgba(217, 130, 43, 0), 0 0 0 0 rgba(217, 130, 43, 0), 0 0 0 0 rgba(217, 130, 43, 0), inset 0 0 0 1px #d9822b, inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); } + .bp3-dark .bp3-input.bp3-intent-warning:focus{ + -webkit-box-shadow:0 0 0 1px #d9822b, 0 0 0 1px #d9822b, 0 0 0 3px rgba(217, 130, 43, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px #d9822b, 0 0 0 1px #d9822b, 0 0 0 3px rgba(217, 130, 43, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); } + .bp3-dark .bp3-input.bp3-intent-warning[readonly]{ + -webkit-box-shadow:inset 0 0 0 1px #d9822b; + box-shadow:inset 0 0 0 1px #d9822b; } + .bp3-dark .bp3-input.bp3-intent-warning:disabled, .bp3-dark .bp3-input.bp3-intent-warning.bp3-disabled{ + -webkit-box-shadow:none; + box-shadow:none; } + .bp3-input.bp3-intent-danger{ + -webkit-box-shadow:0 0 0 0 rgba(219, 55, 55, 0), 0 0 0 0 rgba(219, 55, 55, 0), inset 0 0 0 1px #db3737, inset 0 0 0 1px rgba(16, 22, 26, 0.15), inset 0 1px 1px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 0 rgba(219, 55, 55, 0), 0 0 0 0 rgba(219, 55, 55, 0), inset 0 0 0 1px #db3737, inset 0 0 0 1px rgba(16, 22, 26, 0.15), inset 0 1px 1px rgba(16, 22, 26, 0.2); } + .bp3-input.bp3-intent-danger:focus{ + -webkit-box-shadow:0 0 0 1px #db3737, 0 0 0 3px rgba(219, 55, 55, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px #db3737, 0 0 0 3px rgba(219, 55, 55, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); } + .bp3-input.bp3-intent-danger[readonly]{ + -webkit-box-shadow:inset 0 0 0 1px #db3737; + box-shadow:inset 0 0 0 1px #db3737; } + .bp3-input.bp3-intent-danger:disabled, .bp3-input.bp3-intent-danger.bp3-disabled{ + -webkit-box-shadow:none; + box-shadow:none; } + .bp3-dark .bp3-input.bp3-intent-danger{ + -webkit-box-shadow:0 0 0 0 rgba(219, 55, 55, 0), 0 0 0 0 rgba(219, 55, 55, 0), 0 0 0 0 rgba(219, 55, 55, 0), inset 0 0 0 1px #db3737, inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 0 rgba(219, 55, 55, 0), 0 0 0 0 rgba(219, 55, 55, 0), 0 0 0 0 rgba(219, 55, 55, 0), inset 0 0 0 1px #db3737, inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); } + .bp3-dark .bp3-input.bp3-intent-danger:focus{ + -webkit-box-shadow:0 0 0 1px #db3737, 0 0 0 1px #db3737, 0 0 0 3px rgba(219, 55, 55, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px #db3737, 0 0 0 1px #db3737, 0 0 0 3px rgba(219, 55, 55, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); } + .bp3-dark .bp3-input.bp3-intent-danger[readonly]{ + -webkit-box-shadow:inset 0 0 0 1px #db3737; + box-shadow:inset 0 0 0 1px #db3737; } + .bp3-dark .bp3-input.bp3-intent-danger:disabled, .bp3-dark .bp3-input.bp3-intent-danger.bp3-disabled{ + -webkit-box-shadow:none; + box-shadow:none; } + .bp3-input::-ms-clear{ + display:none; } +textarea.bp3-input{ + max-width:100%; + padding:10px; } + textarea.bp3-input, textarea.bp3-input.bp3-large, textarea.bp3-input.bp3-small{ + height:auto; + line-height:inherit; } + textarea.bp3-input.bp3-small{ + padding:8px; } + .bp3-dark textarea.bp3-input{ + -webkit-box-shadow:0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); + background:rgba(16, 22, 26, 0.3); + color:#f5f8fa; } + .bp3-dark textarea.bp3-input::-webkit-input-placeholder{ + color:rgba(167, 182, 194, 0.6); } + .bp3-dark textarea.bp3-input::-moz-placeholder{ + color:rgba(167, 182, 194, 0.6); } + .bp3-dark textarea.bp3-input:-ms-input-placeholder{ + color:rgba(167, 182, 194, 0.6); } + .bp3-dark textarea.bp3-input::-ms-input-placeholder{ + color:rgba(167, 182, 194, 0.6); } + .bp3-dark textarea.bp3-input::placeholder{ + color:rgba(167, 182, 194, 0.6); } + .bp3-dark textarea.bp3-input:focus{ + -webkit-box-shadow:0 0 0 1px #137cbd, 0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px #137cbd, 0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); } + .bp3-dark textarea.bp3-input[readonly]{ + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4); } + .bp3-dark textarea.bp3-input:disabled, .bp3-dark textarea.bp3-input.bp3-disabled{ + -webkit-box-shadow:none; + box-shadow:none; + background:rgba(57, 75, 89, 0.5); + color:rgba(167, 182, 194, 0.6); } +label.bp3-label{ + display:block; + margin-top:0; + margin-bottom:15px; } + label.bp3-label .bp3-html-select, + label.bp3-label .bp3-input, + label.bp3-label .bp3-select, + label.bp3-label .bp3-slider, + label.bp3-label .bp3-popover-wrapper{ + display:block; + margin-top:5px; + text-transform:none; } + label.bp3-label .bp3-button-group{ + margin-top:5px; } + label.bp3-label .bp3-select select, + label.bp3-label .bp3-html-select select{ + width:100%; + vertical-align:top; + font-weight:400; } + label.bp3-label.bp3-disabled, + label.bp3-label.bp3-disabled .bp3-text-muted{ + color:rgba(92, 112, 128, 0.6); } + label.bp3-label.bp3-inline{ + line-height:30px; } + label.bp3-label.bp3-inline .bp3-html-select, + label.bp3-label.bp3-inline .bp3-input, + label.bp3-label.bp3-inline .bp3-input-group, + label.bp3-label.bp3-inline .bp3-select, + label.bp3-label.bp3-inline .bp3-popover-wrapper{ + display:inline-block; + margin:0 0 0 5px; + vertical-align:top; } + label.bp3-label.bp3-inline .bp3-button-group{ + margin:0 0 0 5px; } + label.bp3-label.bp3-inline .bp3-input-group .bp3-input{ + margin-left:0; } + label.bp3-label.bp3-inline.bp3-large{ + line-height:40px; } + label.bp3-label:not(.bp3-inline) .bp3-popover-target{ + display:block; } + .bp3-dark label.bp3-label{ + color:#f5f8fa; } + .bp3-dark label.bp3-label.bp3-disabled, + .bp3-dark label.bp3-label.bp3-disabled .bp3-text-muted{ + color:rgba(167, 182, 194, 0.6); } +.bp3-numeric-input .bp3-button-group.bp3-vertical > .bp3-button{ + -webkit-box-flex:1; + -ms-flex:1 1 14px; + flex:1 1 14px; + width:30px; + min-height:0; + padding:0; } + .bp3-numeric-input .bp3-button-group.bp3-vertical > .bp3-button:first-child{ + border-radius:0 3px 0 0; } + .bp3-numeric-input .bp3-button-group.bp3-vertical > .bp3-button:last-child{ + border-radius:0 0 3px 0; } + +.bp3-numeric-input .bp3-button-group.bp3-vertical:first-child > .bp3-button:first-child{ + border-radius:3px 0 0 0; } + +.bp3-numeric-input .bp3-button-group.bp3-vertical:first-child > .bp3-button:last-child{ + border-radius:0 0 0 3px; } + +.bp3-numeric-input.bp3-large .bp3-button-group.bp3-vertical > .bp3-button{ + width:40px; } + +form{ + display:block; } +.bp3-html-select select, +.bp3-select select{ + display:-webkit-inline-box; + display:-ms-inline-flexbox; + display:inline-flex; + -webkit-box-orient:horizontal; + -webkit-box-direction:normal; + -ms-flex-direction:row; + flex-direction:row; + -webkit-box-align:center; + -ms-flex-align:center; + align-items:center; + -webkit-box-pack:center; + -ms-flex-pack:center; + justify-content:center; + border:none; + border-radius:3px; + cursor:pointer; + padding:5px 10px; + vertical-align:middle; + text-align:left; + font-size:14px; + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1); + background-color:#f5f8fa; + background-image:-webkit-gradient(linear, left top, left bottom, from(rgba(255, 255, 255, 0.8)), to(rgba(255, 255, 255, 0))); + background-image:linear-gradient(to bottom, rgba(255, 255, 255, 0.8), rgba(255, 255, 255, 0)); + color:#182026; + border-radius:3px; + width:100%; + height:30px; + padding:0 25px 0 10px; + -moz-appearance:none; + -webkit-appearance:none; } + .bp3-html-select select > *, .bp3-select select > *{ + -webkit-box-flex:0; + -ms-flex-positive:0; + flex-grow:0; + -ms-flex-negative:0; + flex-shrink:0; } + .bp3-html-select select > .bp3-fill, .bp3-select select > .bp3-fill{ + -webkit-box-flex:1; + -ms-flex-positive:1; + flex-grow:1; + -ms-flex-negative:1; + flex-shrink:1; } + .bp3-html-select select::before, + .bp3-select select::before, .bp3-html-select select > *, .bp3-select select > *{ + margin-right:7px; } + .bp3-html-select select:empty::before, + .bp3-select select:empty::before, + .bp3-html-select select > :last-child, + .bp3-select select > :last-child{ + margin-right:0; } + .bp3-html-select select:hover, + .bp3-select select:hover{ + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1); + background-clip:padding-box; + background-color:#ebf1f5; } + .bp3-html-select select:active, + .bp3-select select:active, .bp3-html-select select.bp3-active, + .bp3-select select.bp3-active{ + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 1px 2px rgba(16, 22, 26, 0.2); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 1px 2px rgba(16, 22, 26, 0.2); + background-color:#d8e1e8; + background-image:none; } + .bp3-html-select select:disabled, + .bp3-select select:disabled, .bp3-html-select select.bp3-disabled, + .bp3-select select.bp3-disabled{ + outline:none; + -webkit-box-shadow:none; + box-shadow:none; + background-color:rgba(206, 217, 224, 0.5); + background-image:none; + cursor:not-allowed; + color:rgba(92, 112, 128, 0.6); } + .bp3-html-select select:disabled.bp3-active, + .bp3-select select:disabled.bp3-active, .bp3-html-select select:disabled.bp3-active:hover, + .bp3-select select:disabled.bp3-active:hover, .bp3-html-select select.bp3-disabled.bp3-active, + .bp3-select select.bp3-disabled.bp3-active, .bp3-html-select select.bp3-disabled.bp3-active:hover, + .bp3-select select.bp3-disabled.bp3-active:hover{ + background:rgba(206, 217, 224, 0.7); } + +.bp3-html-select.bp3-minimal select, +.bp3-select.bp3-minimal select{ + -webkit-box-shadow:none; + box-shadow:none; + background:none; } + .bp3-html-select.bp3-minimal select:hover, + .bp3-select.bp3-minimal select:hover{ + -webkit-box-shadow:none; + box-shadow:none; + background:rgba(167, 182, 194, 0.3); + text-decoration:none; + color:#182026; } + .bp3-html-select.bp3-minimal select:active, + .bp3-select.bp3-minimal select:active, .bp3-html-select.bp3-minimal select.bp3-active, + .bp3-select.bp3-minimal select.bp3-active{ + -webkit-box-shadow:none; + box-shadow:none; + background:rgba(115, 134, 148, 0.3); + color:#182026; } + .bp3-html-select.bp3-minimal select:disabled, + .bp3-select.bp3-minimal select:disabled, .bp3-html-select.bp3-minimal select:disabled:hover, + .bp3-select.bp3-minimal select:disabled:hover, .bp3-html-select.bp3-minimal select.bp3-disabled, + .bp3-select.bp3-minimal select.bp3-disabled, .bp3-html-select.bp3-minimal select.bp3-disabled:hover, + .bp3-select.bp3-minimal select.bp3-disabled:hover{ + background:none; + cursor:not-allowed; + color:rgba(92, 112, 128, 0.6); } + .bp3-html-select.bp3-minimal select:disabled.bp3-active, + .bp3-select.bp3-minimal select:disabled.bp3-active, .bp3-html-select.bp3-minimal select:disabled:hover.bp3-active, + .bp3-select.bp3-minimal select:disabled:hover.bp3-active, .bp3-html-select.bp3-minimal select.bp3-disabled.bp3-active, + .bp3-select.bp3-minimal select.bp3-disabled.bp3-active, .bp3-html-select.bp3-minimal select.bp3-disabled:hover.bp3-active, + .bp3-select.bp3-minimal select.bp3-disabled:hover.bp3-active{ + background:rgba(115, 134, 148, 0.3); } + .bp3-dark .bp3-html-select.bp3-minimal select, .bp3-html-select.bp3-minimal .bp3-dark select, + .bp3-dark .bp3-select.bp3-minimal select, .bp3-select.bp3-minimal .bp3-dark select{ + -webkit-box-shadow:none; + box-shadow:none; + background:none; + color:inherit; } + .bp3-dark .bp3-html-select.bp3-minimal select:hover, .bp3-html-select.bp3-minimal .bp3-dark select:hover, + .bp3-dark .bp3-select.bp3-minimal select:hover, .bp3-select.bp3-minimal .bp3-dark select:hover, .bp3-dark .bp3-html-select.bp3-minimal select:active, .bp3-html-select.bp3-minimal .bp3-dark select:active, + .bp3-dark .bp3-select.bp3-minimal select:active, .bp3-select.bp3-minimal .bp3-dark select:active, .bp3-dark .bp3-html-select.bp3-minimal select.bp3-active, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-active, + .bp3-dark .bp3-select.bp3-minimal select.bp3-active, .bp3-select.bp3-minimal .bp3-dark select.bp3-active{ + -webkit-box-shadow:none; + box-shadow:none; + background:none; } + .bp3-dark .bp3-html-select.bp3-minimal select:hover, .bp3-html-select.bp3-minimal .bp3-dark select:hover, + .bp3-dark .bp3-select.bp3-minimal select:hover, .bp3-select.bp3-minimal .bp3-dark select:hover{ + background:rgba(138, 155, 168, 0.15); } + .bp3-dark .bp3-html-select.bp3-minimal select:active, .bp3-html-select.bp3-minimal .bp3-dark select:active, + .bp3-dark .bp3-select.bp3-minimal select:active, .bp3-select.bp3-minimal .bp3-dark select:active, .bp3-dark .bp3-html-select.bp3-minimal select.bp3-active, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-active, + .bp3-dark .bp3-select.bp3-minimal select.bp3-active, .bp3-select.bp3-minimal .bp3-dark select.bp3-active{ + background:rgba(138, 155, 168, 0.3); + color:#f5f8fa; } + .bp3-dark .bp3-html-select.bp3-minimal select:disabled, .bp3-html-select.bp3-minimal .bp3-dark select:disabled, + .bp3-dark .bp3-select.bp3-minimal select:disabled, .bp3-select.bp3-minimal .bp3-dark select:disabled, .bp3-dark .bp3-html-select.bp3-minimal select:disabled:hover, .bp3-html-select.bp3-minimal .bp3-dark select:disabled:hover, + .bp3-dark .bp3-select.bp3-minimal select:disabled:hover, .bp3-select.bp3-minimal .bp3-dark select:disabled:hover, .bp3-dark .bp3-html-select.bp3-minimal select.bp3-disabled, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-disabled, + .bp3-dark .bp3-select.bp3-minimal select.bp3-disabled, .bp3-select.bp3-minimal .bp3-dark select.bp3-disabled, .bp3-dark .bp3-html-select.bp3-minimal select.bp3-disabled:hover, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-disabled:hover, + .bp3-dark .bp3-select.bp3-minimal select.bp3-disabled:hover, .bp3-select.bp3-minimal .bp3-dark select.bp3-disabled:hover{ + background:none; + cursor:not-allowed; + color:rgba(167, 182, 194, 0.6); } + .bp3-dark .bp3-html-select.bp3-minimal select:disabled.bp3-active, .bp3-html-select.bp3-minimal .bp3-dark select:disabled.bp3-active, + .bp3-dark .bp3-select.bp3-minimal select:disabled.bp3-active, .bp3-select.bp3-minimal .bp3-dark select:disabled.bp3-active, .bp3-dark .bp3-html-select.bp3-minimal select:disabled:hover.bp3-active, .bp3-html-select.bp3-minimal .bp3-dark select:disabled:hover.bp3-active, + .bp3-dark .bp3-select.bp3-minimal select:disabled:hover.bp3-active, .bp3-select.bp3-minimal .bp3-dark select:disabled:hover.bp3-active, .bp3-dark .bp3-html-select.bp3-minimal select.bp3-disabled.bp3-active, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-disabled.bp3-active, + .bp3-dark .bp3-select.bp3-minimal select.bp3-disabled.bp3-active, .bp3-select.bp3-minimal .bp3-dark select.bp3-disabled.bp3-active, .bp3-dark .bp3-html-select.bp3-minimal select.bp3-disabled:hover.bp3-active, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-disabled:hover.bp3-active, + .bp3-dark .bp3-select.bp3-minimal select.bp3-disabled:hover.bp3-active, .bp3-select.bp3-minimal .bp3-dark select.bp3-disabled:hover.bp3-active{ + background:rgba(138, 155, 168, 0.3); } + .bp3-html-select.bp3-minimal select.bp3-intent-primary, + .bp3-select.bp3-minimal select.bp3-intent-primary{ + color:#106ba3; } + .bp3-html-select.bp3-minimal select.bp3-intent-primary:hover, + .bp3-select.bp3-minimal select.bp3-intent-primary:hover, .bp3-html-select.bp3-minimal select.bp3-intent-primary:active, + .bp3-select.bp3-minimal select.bp3-intent-primary:active, .bp3-html-select.bp3-minimal select.bp3-intent-primary.bp3-active, + .bp3-select.bp3-minimal select.bp3-intent-primary.bp3-active{ + -webkit-box-shadow:none; + box-shadow:none; + background:none; + color:#106ba3; } + .bp3-html-select.bp3-minimal select.bp3-intent-primary:hover, + .bp3-select.bp3-minimal select.bp3-intent-primary:hover{ + background:rgba(19, 124, 189, 0.15); + color:#106ba3; } + .bp3-html-select.bp3-minimal select.bp3-intent-primary:active, + .bp3-select.bp3-minimal select.bp3-intent-primary:active, .bp3-html-select.bp3-minimal select.bp3-intent-primary.bp3-active, + .bp3-select.bp3-minimal select.bp3-intent-primary.bp3-active{ + background:rgba(19, 124, 189, 0.3); + color:#106ba3; } + .bp3-html-select.bp3-minimal select.bp3-intent-primary:disabled, + .bp3-select.bp3-minimal select.bp3-intent-primary:disabled, .bp3-html-select.bp3-minimal select.bp3-intent-primary.bp3-disabled, + .bp3-select.bp3-minimal select.bp3-intent-primary.bp3-disabled{ + background:none; + color:rgba(16, 107, 163, 0.5); } + .bp3-html-select.bp3-minimal select.bp3-intent-primary:disabled.bp3-active, + .bp3-select.bp3-minimal select.bp3-intent-primary:disabled.bp3-active, .bp3-html-select.bp3-minimal select.bp3-intent-primary.bp3-disabled.bp3-active, + .bp3-select.bp3-minimal select.bp3-intent-primary.bp3-disabled.bp3-active{ + background:rgba(19, 124, 189, 0.3); } + .bp3-html-select.bp3-minimal select.bp3-intent-primary .bp3-button-spinner .bp3-spinner-head, .bp3-select.bp3-minimal select.bp3-intent-primary .bp3-button-spinner .bp3-spinner-head{ + stroke:#106ba3; } + .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-primary, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-primary, + .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-primary, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-primary{ + color:#48aff0; } + .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-primary:hover, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-primary:hover, + .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-primary:hover, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-primary:hover{ + background:rgba(19, 124, 189, 0.2); + color:#48aff0; } + .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-primary:active, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-primary:active, + .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-primary:active, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-primary:active, .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-primary.bp3-active, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-primary.bp3-active, + .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-primary.bp3-active, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-primary.bp3-active{ + background:rgba(19, 124, 189, 0.3); + color:#48aff0; } + .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-primary:disabled, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-primary:disabled, + .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-primary:disabled, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-primary:disabled, .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-primary.bp3-disabled, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-primary.bp3-disabled, + .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-primary.bp3-disabled, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-primary.bp3-disabled{ + background:none; + color:rgba(72, 175, 240, 0.5); } + .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-primary:disabled.bp3-active, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-primary:disabled.bp3-active, + .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-primary:disabled.bp3-active, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-primary:disabled.bp3-active, .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-primary.bp3-disabled.bp3-active, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-primary.bp3-disabled.bp3-active, + .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-primary.bp3-disabled.bp3-active, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-primary.bp3-disabled.bp3-active{ + background:rgba(19, 124, 189, 0.3); } + .bp3-html-select.bp3-minimal select.bp3-intent-success, + .bp3-select.bp3-minimal select.bp3-intent-success{ + color:#0d8050; } + .bp3-html-select.bp3-minimal select.bp3-intent-success:hover, + .bp3-select.bp3-minimal select.bp3-intent-success:hover, .bp3-html-select.bp3-minimal select.bp3-intent-success:active, + .bp3-select.bp3-minimal select.bp3-intent-success:active, .bp3-html-select.bp3-minimal select.bp3-intent-success.bp3-active, + .bp3-select.bp3-minimal select.bp3-intent-success.bp3-active{ + -webkit-box-shadow:none; + box-shadow:none; + background:none; + color:#0d8050; } + .bp3-html-select.bp3-minimal select.bp3-intent-success:hover, + .bp3-select.bp3-minimal select.bp3-intent-success:hover{ + background:rgba(15, 153, 96, 0.15); + color:#0d8050; } + .bp3-html-select.bp3-minimal select.bp3-intent-success:active, + .bp3-select.bp3-minimal select.bp3-intent-success:active, .bp3-html-select.bp3-minimal select.bp3-intent-success.bp3-active, + .bp3-select.bp3-minimal select.bp3-intent-success.bp3-active{ + background:rgba(15, 153, 96, 0.3); + color:#0d8050; } + .bp3-html-select.bp3-minimal select.bp3-intent-success:disabled, + .bp3-select.bp3-minimal select.bp3-intent-success:disabled, .bp3-html-select.bp3-minimal select.bp3-intent-success.bp3-disabled, + .bp3-select.bp3-minimal select.bp3-intent-success.bp3-disabled{ + background:none; + color:rgba(13, 128, 80, 0.5); } + .bp3-html-select.bp3-minimal select.bp3-intent-success:disabled.bp3-active, + .bp3-select.bp3-minimal select.bp3-intent-success:disabled.bp3-active, .bp3-html-select.bp3-minimal select.bp3-intent-success.bp3-disabled.bp3-active, + .bp3-select.bp3-minimal select.bp3-intent-success.bp3-disabled.bp3-active{ + background:rgba(15, 153, 96, 0.3); } + .bp3-html-select.bp3-minimal select.bp3-intent-success .bp3-button-spinner .bp3-spinner-head, .bp3-select.bp3-minimal select.bp3-intent-success .bp3-button-spinner .bp3-spinner-head{ + stroke:#0d8050; } + .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-success, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-success, + .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-success, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-success{ + color:#3dcc91; } + .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-success:hover, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-success:hover, + .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-success:hover, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-success:hover{ + background:rgba(15, 153, 96, 0.2); + color:#3dcc91; } + .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-success:active, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-success:active, + .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-success:active, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-success:active, .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-success.bp3-active, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-success.bp3-active, + .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-success.bp3-active, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-success.bp3-active{ + background:rgba(15, 153, 96, 0.3); + color:#3dcc91; } + .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-success:disabled, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-success:disabled, + .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-success:disabled, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-success:disabled, .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-success.bp3-disabled, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-success.bp3-disabled, + .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-success.bp3-disabled, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-success.bp3-disabled{ + background:none; + color:rgba(61, 204, 145, 0.5); } + .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-success:disabled.bp3-active, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-success:disabled.bp3-active, + .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-success:disabled.bp3-active, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-success:disabled.bp3-active, .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-success.bp3-disabled.bp3-active, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-success.bp3-disabled.bp3-active, + .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-success.bp3-disabled.bp3-active, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-success.bp3-disabled.bp3-active{ + background:rgba(15, 153, 96, 0.3); } + .bp3-html-select.bp3-minimal select.bp3-intent-warning, + .bp3-select.bp3-minimal select.bp3-intent-warning{ + color:#bf7326; } + .bp3-html-select.bp3-minimal select.bp3-intent-warning:hover, + .bp3-select.bp3-minimal select.bp3-intent-warning:hover, .bp3-html-select.bp3-minimal select.bp3-intent-warning:active, + .bp3-select.bp3-minimal select.bp3-intent-warning:active, .bp3-html-select.bp3-minimal select.bp3-intent-warning.bp3-active, + .bp3-select.bp3-minimal select.bp3-intent-warning.bp3-active{ + -webkit-box-shadow:none; + box-shadow:none; + background:none; + color:#bf7326; } + .bp3-html-select.bp3-minimal select.bp3-intent-warning:hover, + .bp3-select.bp3-minimal select.bp3-intent-warning:hover{ + background:rgba(217, 130, 43, 0.15); + color:#bf7326; } + .bp3-html-select.bp3-minimal select.bp3-intent-warning:active, + .bp3-select.bp3-minimal select.bp3-intent-warning:active, .bp3-html-select.bp3-minimal select.bp3-intent-warning.bp3-active, + .bp3-select.bp3-minimal select.bp3-intent-warning.bp3-active{ + background:rgba(217, 130, 43, 0.3); + color:#bf7326; } + .bp3-html-select.bp3-minimal select.bp3-intent-warning:disabled, + .bp3-select.bp3-minimal select.bp3-intent-warning:disabled, .bp3-html-select.bp3-minimal select.bp3-intent-warning.bp3-disabled, + .bp3-select.bp3-minimal select.bp3-intent-warning.bp3-disabled{ + background:none; + color:rgba(191, 115, 38, 0.5); } + .bp3-html-select.bp3-minimal select.bp3-intent-warning:disabled.bp3-active, + .bp3-select.bp3-minimal select.bp3-intent-warning:disabled.bp3-active, .bp3-html-select.bp3-minimal select.bp3-intent-warning.bp3-disabled.bp3-active, + .bp3-select.bp3-minimal select.bp3-intent-warning.bp3-disabled.bp3-active{ + background:rgba(217, 130, 43, 0.3); } + .bp3-html-select.bp3-minimal select.bp3-intent-warning .bp3-button-spinner .bp3-spinner-head, .bp3-select.bp3-minimal select.bp3-intent-warning .bp3-button-spinner .bp3-spinner-head{ + stroke:#bf7326; } + .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-warning, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-warning, + .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-warning, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-warning{ + color:#ffb366; } + .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-warning:hover, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-warning:hover, + .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-warning:hover, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-warning:hover{ + background:rgba(217, 130, 43, 0.2); + color:#ffb366; } + .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-warning:active, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-warning:active, + .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-warning:active, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-warning:active, .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-warning.bp3-active, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-warning.bp3-active, + .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-warning.bp3-active, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-warning.bp3-active{ + background:rgba(217, 130, 43, 0.3); + color:#ffb366; } + .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-warning:disabled, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-warning:disabled, + .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-warning:disabled, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-warning:disabled, .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-warning.bp3-disabled, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-warning.bp3-disabled, + .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-warning.bp3-disabled, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-warning.bp3-disabled{ + background:none; + color:rgba(255, 179, 102, 0.5); } + .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-warning:disabled.bp3-active, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-warning:disabled.bp3-active, + .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-warning:disabled.bp3-active, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-warning:disabled.bp3-active, .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-warning.bp3-disabled.bp3-active, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-warning.bp3-disabled.bp3-active, + .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-warning.bp3-disabled.bp3-active, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-warning.bp3-disabled.bp3-active{ + background:rgba(217, 130, 43, 0.3); } + .bp3-html-select.bp3-minimal select.bp3-intent-danger, + .bp3-select.bp3-minimal select.bp3-intent-danger{ + color:#c23030; } + .bp3-html-select.bp3-minimal select.bp3-intent-danger:hover, + .bp3-select.bp3-minimal select.bp3-intent-danger:hover, .bp3-html-select.bp3-minimal select.bp3-intent-danger:active, + .bp3-select.bp3-minimal select.bp3-intent-danger:active, .bp3-html-select.bp3-minimal select.bp3-intent-danger.bp3-active, + .bp3-select.bp3-minimal select.bp3-intent-danger.bp3-active{ + -webkit-box-shadow:none; + box-shadow:none; + background:none; + color:#c23030; } + .bp3-html-select.bp3-minimal select.bp3-intent-danger:hover, + .bp3-select.bp3-minimal select.bp3-intent-danger:hover{ + background:rgba(219, 55, 55, 0.15); + color:#c23030; } + .bp3-html-select.bp3-minimal select.bp3-intent-danger:active, + .bp3-select.bp3-minimal select.bp3-intent-danger:active, .bp3-html-select.bp3-minimal select.bp3-intent-danger.bp3-active, + .bp3-select.bp3-minimal select.bp3-intent-danger.bp3-active{ + background:rgba(219, 55, 55, 0.3); + color:#c23030; } + .bp3-html-select.bp3-minimal select.bp3-intent-danger:disabled, + .bp3-select.bp3-minimal select.bp3-intent-danger:disabled, .bp3-html-select.bp3-minimal select.bp3-intent-danger.bp3-disabled, + .bp3-select.bp3-minimal select.bp3-intent-danger.bp3-disabled{ + background:none; + color:rgba(194, 48, 48, 0.5); } + .bp3-html-select.bp3-minimal select.bp3-intent-danger:disabled.bp3-active, + .bp3-select.bp3-minimal select.bp3-intent-danger:disabled.bp3-active, .bp3-html-select.bp3-minimal select.bp3-intent-danger.bp3-disabled.bp3-active, + .bp3-select.bp3-minimal select.bp3-intent-danger.bp3-disabled.bp3-active{ + background:rgba(219, 55, 55, 0.3); } + .bp3-html-select.bp3-minimal select.bp3-intent-danger .bp3-button-spinner .bp3-spinner-head, .bp3-select.bp3-minimal select.bp3-intent-danger .bp3-button-spinner .bp3-spinner-head{ + stroke:#c23030; } + .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-danger, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-danger, + .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-danger, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-danger{ + color:#ff7373; } + .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-danger:hover, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-danger:hover, + .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-danger:hover, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-danger:hover{ + background:rgba(219, 55, 55, 0.2); + color:#ff7373; } + .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-danger:active, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-danger:active, + .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-danger:active, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-danger:active, .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-danger.bp3-active, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-danger.bp3-active, + .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-danger.bp3-active, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-danger.bp3-active{ + background:rgba(219, 55, 55, 0.3); + color:#ff7373; } + .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-danger:disabled, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-danger:disabled, + .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-danger:disabled, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-danger:disabled, .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-danger.bp3-disabled, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-danger.bp3-disabled, + .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-danger.bp3-disabled, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-danger.bp3-disabled{ + background:none; + color:rgba(255, 115, 115, 0.5); } + .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-danger:disabled.bp3-active, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-danger:disabled.bp3-active, + .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-danger:disabled.bp3-active, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-danger:disabled.bp3-active, .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-danger.bp3-disabled.bp3-active, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-danger.bp3-disabled.bp3-active, + .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-danger.bp3-disabled.bp3-active, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-danger.bp3-disabled.bp3-active{ + background:rgba(219, 55, 55, 0.3); } + +.bp3-html-select.bp3-large select, +.bp3-select.bp3-large select{ + height:40px; + padding-right:35px; + font-size:16px; } + +.bp3-dark .bp3-html-select select, .bp3-dark .bp3-select select{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4); + background-color:#394b59; + background-image:-webkit-gradient(linear, left top, left bottom, from(rgba(255, 255, 255, 0.05)), to(rgba(255, 255, 255, 0))); + background-image:linear-gradient(to bottom, rgba(255, 255, 255, 0.05), rgba(255, 255, 255, 0)); + color:#f5f8fa; } + .bp3-dark .bp3-html-select select:hover, .bp3-dark .bp3-select select:hover, .bp3-dark .bp3-html-select select:active, .bp3-dark .bp3-select select:active, .bp3-dark .bp3-html-select select.bp3-active, .bp3-dark .bp3-select select.bp3-active{ + color:#f5f8fa; } + .bp3-dark .bp3-html-select select:hover, .bp3-dark .bp3-select select:hover{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4); + background-color:#30404d; } + .bp3-dark .bp3-html-select select:active, .bp3-dark .bp3-select select:active, .bp3-dark .bp3-html-select select.bp3-active, .bp3-dark .bp3-select select.bp3-active{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.6), inset 0 1px 2px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.6), inset 0 1px 2px rgba(16, 22, 26, 0.2); + background-color:#202b33; + background-image:none; } + .bp3-dark .bp3-html-select select:disabled, .bp3-dark .bp3-select select:disabled, .bp3-dark .bp3-html-select select.bp3-disabled, .bp3-dark .bp3-select select.bp3-disabled{ + -webkit-box-shadow:none; + box-shadow:none; + background-color:rgba(57, 75, 89, 0.5); + background-image:none; + color:rgba(167, 182, 194, 0.6); } + .bp3-dark .bp3-html-select select:disabled.bp3-active, .bp3-dark .bp3-select select:disabled.bp3-active, .bp3-dark .bp3-html-select select.bp3-disabled.bp3-active, .bp3-dark .bp3-select select.bp3-disabled.bp3-active{ + background:rgba(57, 75, 89, 0.7); } + .bp3-dark .bp3-html-select select .bp3-button-spinner .bp3-spinner-head, .bp3-dark .bp3-select select .bp3-button-spinner .bp3-spinner-head{ + background:rgba(16, 22, 26, 0.5); + stroke:#8a9ba8; } + +.bp3-html-select select:disabled, +.bp3-select select:disabled{ + -webkit-box-shadow:none; + box-shadow:none; + background-color:rgba(206, 217, 224, 0.5); + cursor:not-allowed; + color:rgba(92, 112, 128, 0.6); } + +.bp3-html-select .bp3-icon, +.bp3-select .bp3-icon, .bp3-select::after{ + position:absolute; + top:7px; + right:7px; + color:#5c7080; + pointer-events:none; } + .bp3-html-select .bp3-disabled.bp3-icon, + .bp3-select .bp3-disabled.bp3-icon, .bp3-disabled.bp3-select::after{ + color:rgba(92, 112, 128, 0.6); } +.bp3-html-select, +.bp3-select{ + display:inline-block; + position:relative; + vertical-align:middle; + letter-spacing:normal; } + .bp3-html-select select::-ms-expand, + .bp3-select select::-ms-expand{ + display:none; } + .bp3-html-select .bp3-icon, + .bp3-select .bp3-icon{ + color:#5c7080; } + .bp3-html-select .bp3-icon:hover, + .bp3-select .bp3-icon:hover{ + color:#182026; } + .bp3-dark .bp3-html-select .bp3-icon, .bp3-dark + .bp3-select .bp3-icon{ + color:#a7b6c2; } + .bp3-dark .bp3-html-select .bp3-icon:hover, .bp3-dark + .bp3-select .bp3-icon:hover{ + color:#f5f8fa; } + .bp3-html-select.bp3-large::after, + .bp3-html-select.bp3-large .bp3-icon, + .bp3-select.bp3-large::after, + .bp3-select.bp3-large .bp3-icon{ + top:12px; + right:12px; } + .bp3-html-select.bp3-fill, + .bp3-html-select.bp3-fill select, + .bp3-select.bp3-fill, + .bp3-select.bp3-fill select{ + width:100%; } + .bp3-dark .bp3-html-select option, .bp3-dark + .bp3-select option{ + background-color:#30404d; + color:#f5f8fa; } + .bp3-dark .bp3-html-select::after, .bp3-dark + .bp3-select::after{ + color:#a7b6c2; } + +.bp3-select::after{ + line-height:1; + font-family:"Icons16", sans-serif; + font-size:16px; + font-weight:400; + font-style:normal; + -moz-osx-font-smoothing:grayscale; + -webkit-font-smoothing:antialiased; + content:""; } +.bp3-running-text table, table.bp3-html-table{ + border-spacing:0; + font-size:14px; } + .bp3-running-text table th, table.bp3-html-table th, + .bp3-running-text table td, + table.bp3-html-table td{ + padding:11px; + vertical-align:top; + text-align:left; } + .bp3-running-text table th, table.bp3-html-table th{ + color:#182026; + font-weight:600; } + + .bp3-running-text table td, + table.bp3-html-table td{ + color:#182026; } + .bp3-running-text table tbody tr:first-child th, table.bp3-html-table tbody tr:first-child th, + .bp3-running-text table tbody tr:first-child td, + table.bp3-html-table tbody tr:first-child td{ + -webkit-box-shadow:inset 0 1px 0 0 rgba(16, 22, 26, 0.15); + box-shadow:inset 0 1px 0 0 rgba(16, 22, 26, 0.15); } + .bp3-dark .bp3-running-text table th, .bp3-running-text .bp3-dark table th, .bp3-dark table.bp3-html-table th{ + color:#f5f8fa; } + .bp3-dark .bp3-running-text table td, .bp3-running-text .bp3-dark table td, .bp3-dark table.bp3-html-table td{ + color:#f5f8fa; } + .bp3-dark .bp3-running-text table tbody tr:first-child th, .bp3-running-text .bp3-dark table tbody tr:first-child th, .bp3-dark table.bp3-html-table tbody tr:first-child th, + .bp3-dark .bp3-running-text table tbody tr:first-child td, + .bp3-running-text .bp3-dark table tbody tr:first-child td, + .bp3-dark table.bp3-html-table tbody tr:first-child td{ + -webkit-box-shadow:inset 0 1px 0 0 rgba(255, 255, 255, 0.15); + box-shadow:inset 0 1px 0 0 rgba(255, 255, 255, 0.15); } + +table.bp3-html-table.bp3-html-table-condensed th, +table.bp3-html-table.bp3-html-table-condensed td, table.bp3-html-table.bp3-small th, +table.bp3-html-table.bp3-small td{ + padding-top:6px; + padding-bottom:6px; } + +table.bp3-html-table.bp3-html-table-striped tbody tr:nth-child(odd) td{ + background:rgba(191, 204, 214, 0.15); } + +table.bp3-html-table.bp3-html-table-bordered th:not(:first-child){ + -webkit-box-shadow:inset 1px 0 0 0 rgba(16, 22, 26, 0.15); + box-shadow:inset 1px 0 0 0 rgba(16, 22, 26, 0.15); } + +table.bp3-html-table.bp3-html-table-bordered tbody tr td{ + -webkit-box-shadow:inset 0 1px 0 0 rgba(16, 22, 26, 0.15); + box-shadow:inset 0 1px 0 0 rgba(16, 22, 26, 0.15); } + table.bp3-html-table.bp3-html-table-bordered tbody tr td:not(:first-child){ + -webkit-box-shadow:inset 1px 1px 0 0 rgba(16, 22, 26, 0.15); + box-shadow:inset 1px 1px 0 0 rgba(16, 22, 26, 0.15); } + +table.bp3-html-table.bp3-html-table-bordered.bp3-html-table-striped tbody tr:not(:first-child) td{ + -webkit-box-shadow:none; + box-shadow:none; } + table.bp3-html-table.bp3-html-table-bordered.bp3-html-table-striped tbody tr:not(:first-child) td:not(:first-child){ + -webkit-box-shadow:inset 1px 0 0 0 rgba(16, 22, 26, 0.15); + box-shadow:inset 1px 0 0 0 rgba(16, 22, 26, 0.15); } + +table.bp3-html-table.bp3-interactive tbody tr:hover td{ + background-color:rgba(191, 204, 214, 0.3); + cursor:pointer; } + +table.bp3-html-table.bp3-interactive tbody tr:active td{ + background-color:rgba(191, 204, 214, 0.4); } + +.bp3-dark table.bp3-html-table.bp3-html-table-striped tbody tr:nth-child(odd) td{ + background:rgba(92, 112, 128, 0.15); } + +.bp3-dark table.bp3-html-table.bp3-html-table-bordered th:not(:first-child){ + -webkit-box-shadow:inset 1px 0 0 0 rgba(255, 255, 255, 0.15); + box-shadow:inset 1px 0 0 0 rgba(255, 255, 255, 0.15); } + +.bp3-dark table.bp3-html-table.bp3-html-table-bordered tbody tr td{ + -webkit-box-shadow:inset 0 1px 0 0 rgba(255, 255, 255, 0.15); + box-shadow:inset 0 1px 0 0 rgba(255, 255, 255, 0.15); } + .bp3-dark table.bp3-html-table.bp3-html-table-bordered tbody tr td:not(:first-child){ + -webkit-box-shadow:inset 1px 1px 0 0 rgba(255, 255, 255, 0.15); + box-shadow:inset 1px 1px 0 0 rgba(255, 255, 255, 0.15); } + +.bp3-dark table.bp3-html-table.bp3-html-table-bordered.bp3-html-table-striped tbody tr:not(:first-child) td{ + -webkit-box-shadow:inset 1px 0 0 0 rgba(255, 255, 255, 0.15); + box-shadow:inset 1px 0 0 0 rgba(255, 255, 255, 0.15); } + .bp3-dark table.bp3-html-table.bp3-html-table-bordered.bp3-html-table-striped tbody tr:not(:first-child) td:first-child{ + -webkit-box-shadow:none; + box-shadow:none; } + +.bp3-dark table.bp3-html-table.bp3-interactive tbody tr:hover td{ + background-color:rgba(92, 112, 128, 0.3); + cursor:pointer; } + +.bp3-dark table.bp3-html-table.bp3-interactive tbody tr:active td{ + background-color:rgba(92, 112, 128, 0.4); } + +.bp3-key-combo{ + display:-webkit-box; + display:-ms-flexbox; + display:flex; + -webkit-box-orient:horizontal; + -webkit-box-direction:normal; + -ms-flex-direction:row; + flex-direction:row; + -webkit-box-align:center; + -ms-flex-align:center; + align-items:center; } + .bp3-key-combo > *{ + -webkit-box-flex:0; + -ms-flex-positive:0; + flex-grow:0; + -ms-flex-negative:0; + flex-shrink:0; } + .bp3-key-combo > .bp3-fill{ + -webkit-box-flex:1; + -ms-flex-positive:1; + flex-grow:1; + -ms-flex-negative:1; + flex-shrink:1; } + .bp3-key-combo::before, + .bp3-key-combo > *{ + margin-right:5px; } + .bp3-key-combo:empty::before, + .bp3-key-combo > :last-child{ + margin-right:0; } + +.bp3-hotkey-dialog{ + top:40px; + padding-bottom:0; } + .bp3-hotkey-dialog .bp3-dialog-body{ + margin:0; + padding:0; } + .bp3-hotkey-dialog .bp3-hotkey-label{ + -webkit-box-flex:1; + -ms-flex-positive:1; + flex-grow:1; } + +.bp3-hotkey-column{ + margin:auto; + max-height:80vh; + overflow-y:auto; + padding:30px; } + .bp3-hotkey-column .bp3-heading{ + margin-bottom:20px; } + .bp3-hotkey-column .bp3-heading:not(:first-child){ + margin-top:40px; } + +.bp3-hotkey{ + display:-webkit-box; + display:-ms-flexbox; + display:flex; + -webkit-box-align:center; + -ms-flex-align:center; + align-items:center; + -webkit-box-pack:justify; + -ms-flex-pack:justify; + justify-content:space-between; + margin-right:0; + margin-left:0; } + .bp3-hotkey:not(:last-child){ + margin-bottom:10px; } +.bp3-icon{ + display:inline-block; + -webkit-box-flex:0; + -ms-flex:0 0 auto; + flex:0 0 auto; + vertical-align:text-bottom; } + .bp3-icon:not(:empty)::before{ + content:"" !important; + content:unset !important; } + .bp3-icon > svg{ + display:block; } + .bp3-icon > svg:not([fill]){ + fill:currentColor; } + +.bp3-icon.bp3-intent-primary, .bp3-icon-standard.bp3-intent-primary, .bp3-icon-large.bp3-intent-primary{ + color:#106ba3; } + .bp3-dark .bp3-icon.bp3-intent-primary, .bp3-dark .bp3-icon-standard.bp3-intent-primary, .bp3-dark .bp3-icon-large.bp3-intent-primary{ + color:#48aff0; } + +.bp3-icon.bp3-intent-success, .bp3-icon-standard.bp3-intent-success, .bp3-icon-large.bp3-intent-success{ + color:#0d8050; } + .bp3-dark .bp3-icon.bp3-intent-success, .bp3-dark .bp3-icon-standard.bp3-intent-success, .bp3-dark .bp3-icon-large.bp3-intent-success{ + color:#3dcc91; } + +.bp3-icon.bp3-intent-warning, .bp3-icon-standard.bp3-intent-warning, .bp3-icon-large.bp3-intent-warning{ + color:#bf7326; } + .bp3-dark .bp3-icon.bp3-intent-warning, .bp3-dark .bp3-icon-standard.bp3-intent-warning, .bp3-dark .bp3-icon-large.bp3-intent-warning{ + color:#ffb366; } + +.bp3-icon.bp3-intent-danger, .bp3-icon-standard.bp3-intent-danger, .bp3-icon-large.bp3-intent-danger{ + color:#c23030; } + .bp3-dark .bp3-icon.bp3-intent-danger, .bp3-dark .bp3-icon-standard.bp3-intent-danger, .bp3-dark .bp3-icon-large.bp3-intent-danger{ + color:#ff7373; } + +span.bp3-icon-standard{ + line-height:1; + font-family:"Icons16", sans-serif; + font-size:16px; + font-weight:400; + font-style:normal; + -moz-osx-font-smoothing:grayscale; + -webkit-font-smoothing:antialiased; + display:inline-block; } + +span.bp3-icon-large{ + line-height:1; + font-family:"Icons20", sans-serif; + font-size:20px; + font-weight:400; + font-style:normal; + -moz-osx-font-smoothing:grayscale; + -webkit-font-smoothing:antialiased; + display:inline-block; } + +span.bp3-icon:empty{ + line-height:1; + font-family:"Icons20"; + font-size:inherit; + font-weight:400; + font-style:normal; } + span.bp3-icon:empty::before{ + -moz-osx-font-smoothing:grayscale; + -webkit-font-smoothing:antialiased; } + +.bp3-icon-add::before{ + content:""; } + +.bp3-icon-add-column-left::before{ + content:""; } + +.bp3-icon-add-column-right::before{ + content:""; } + +.bp3-icon-add-row-bottom::before{ + content:""; } + +.bp3-icon-add-row-top::before{ + content:"î›·"; } + +.bp3-icon-add-to-artifact::before{ + content:""; } + +.bp3-icon-add-to-folder::before{ + content:"î›’"; } + +.bp3-icon-airplane::before{ + content:"î‹"; } + +.bp3-icon-align-center::before{ + content:""; } + +.bp3-icon-align-justify::before{ + content:""; } + +.bp3-icon-align-left::before{ + content:""; } + +.bp3-icon-align-right::before{ + content:""; } + +.bp3-icon-alignment-bottom::before{ + content:""; } + +.bp3-icon-alignment-horizontal-center::before{ + content:""; } + +.bp3-icon-alignment-left::before{ + content:""; } + +.bp3-icon-alignment-right::before{ + content:""; } + +.bp3-icon-alignment-top::before{ + content:""; } + +.bp3-icon-alignment-vertical-center::before{ + content:""; } + +.bp3-icon-annotation::before{ + content:"î›°"; } + +.bp3-icon-application::before{ + content:""; } + +.bp3-icon-applications::before{ + content:""; } + +.bp3-icon-archive::before{ + content:""; } + +.bp3-icon-arrow-bottom-left::before{ + content:"↙"; } + +.bp3-icon-arrow-bottom-right::before{ + content:"↘"; } + +.bp3-icon-arrow-down::before{ + content:"↓"; } + +.bp3-icon-arrow-left::before{ + content:"â†"; } + +.bp3-icon-arrow-right::before{ + content:"→"; } + +.bp3-icon-arrow-top-left::before{ + content:"↖"; } + +.bp3-icon-arrow-top-right::before{ + content:"↗"; } + +.bp3-icon-arrow-up::before{ + content:"↑"; } + +.bp3-icon-arrows-horizontal::before{ + content:"↔"; } + +.bp3-icon-arrows-vertical::before{ + content:"↕"; } + +.bp3-icon-asterisk::before{ + content:"*"; } + +.bp3-icon-automatic-updates::before{ + content:""; } + +.bp3-icon-badge::before{ + content:""; } + +.bp3-icon-ban-circle::before{ + content:"îš"; } + +.bp3-icon-bank-account::before{ + content:"î¯"; } + +.bp3-icon-barcode::before{ + content:"î™¶"; } + +.bp3-icon-blank::before{ + content:""; } + +.bp3-icon-blocked-person::before{ + content:"î¨"; } + +.bp3-icon-bold::before{ + content:""; } + +.bp3-icon-book::before{ + content:""; } + +.bp3-icon-bookmark::before{ + content:""; } + +.bp3-icon-box::before{ + content:"îš¿"; } + +.bp3-icon-briefcase::before{ + content:"î™´"; } + +.bp3-icon-bring-data::before{ + content:""; } + +.bp3-icon-build::before{ + content:"îœ"; } + +.bp3-icon-calculator::before{ + content:""; } + +.bp3-icon-calendar::before{ + content:""; } + +.bp3-icon-camera::before{ + content:"îšž"; } + +.bp3-icon-caret-down::before{ + content:"⌄"; } + +.bp3-icon-caret-left::before{ + content:"〈"; } + +.bp3-icon-caret-right::before{ + content:"〉"; } + +.bp3-icon-caret-up::before{ + content:"⌃"; } + +.bp3-icon-cell-tower::before{ + content:"î°"; } + +.bp3-icon-changes::before{ + content:""; } + +.bp3-icon-chart::before{ + content:""; } + +.bp3-icon-chat::before{ + content:""; } + +.bp3-icon-chevron-backward::before{ + content:""; } + +.bp3-icon-chevron-down::before{ + content:"îš—"; } + +.bp3-icon-chevron-forward::before{ + content:"î› "; } + +.bp3-icon-chevron-left::before{ + content:"îš”"; } + +.bp3-icon-chevron-right::before{ + content:"îš•"; } + +.bp3-icon-chevron-up::before{ + content:"îš–"; } + +.bp3-icon-circle::before{ + content:""; } + +.bp3-icon-circle-arrow-down::before{ + content:""; } + +.bp3-icon-circle-arrow-left::before{ + content:""; } + +.bp3-icon-circle-arrow-right::before{ + content:"îš‹"; } + +.bp3-icon-circle-arrow-up::before{ + content:"îš"; } + +.bp3-icon-citation::before{ + content:""; } + +.bp3-icon-clean::before{ + content:""; } + +.bp3-icon-clipboard::before{ + content:"î˜"; } + +.bp3-icon-cloud::before{ + content:"â˜"; } + +.bp3-icon-cloud-download::before{ + content:"îš"; } + +.bp3-icon-cloud-upload::before{ + content:"îš‘"; } + +.bp3-icon-code::before{ + content:""; } + +.bp3-icon-code-block::before{ + content:"î›…"; } + +.bp3-icon-cog::before{ + content:"î™…"; } + +.bp3-icon-collapse-all::before{ + content:"î£"; } + +.bp3-icon-column-layout::before{ + content:""; } + +.bp3-icon-comment::before{ + content:""; } + +.bp3-icon-comparison::before{ + content:""; } + +.bp3-icon-compass::before{ + content:"îžœ"; } + +.bp3-icon-compressed::before{ + content:""; } + +.bp3-icon-confirm::before{ + content:""; } + +.bp3-icon-console::before{ + content:"îž›"; } + +.bp3-icon-contrast::before{ + content:""; } + +.bp3-icon-control::before{ + content:""; } + +.bp3-icon-credit-card::before{ + content:""; } + +.bp3-icon-cross::before{ + content:"✗"; } + +.bp3-icon-crown::before{ + content:"îž´"; } + +.bp3-icon-cube::before{ + content:""; } + +.bp3-icon-cube-add::before{ + content:""; } + +.bp3-icon-cube-remove::before{ + content:"îŸ"; } + +.bp3-icon-curved-range-chart::before{ + content:""; } + +.bp3-icon-cut::before{ + content:""; } + +.bp3-icon-dashboard::before{ + content:"î‘"; } + +.bp3-icon-data-lineage::before{ + content:""; } + +.bp3-icon-database::before{ + content:""; } + +.bp3-icon-delete::before{ + content:""; } + +.bp3-icon-delta::before{ + content:"Δ"; } + +.bp3-icon-derive-column::before{ + content:""; } + +.bp3-icon-desktop::before{ + content:""; } + +.bp3-icon-diagram-tree::before{ + content:"îž³"; } + +.bp3-icon-direction-left::before{ + content:"îš"; } + +.bp3-icon-direction-right::before{ + content:"îš‚"; } + +.bp3-icon-disable::before{ + content:""; } + +.bp3-icon-document::before{ + content:""; } + +.bp3-icon-document-open::before{ + content:""; } + +.bp3-icon-document-share::before{ + content:""; } + +.bp3-icon-dollar::before{ + content:"$"; } + +.bp3-icon-dot::before{ + content:"•"; } + +.bp3-icon-double-caret-horizontal::before{ + content:""; } + +.bp3-icon-double-caret-vertical::before{ + content:""; } + +.bp3-icon-double-chevron-down::before{ + content:""; } + +.bp3-icon-double-chevron-left::before{ + content:""; } + +.bp3-icon-double-chevron-right::before{ + content:"îœ"; } + +.bp3-icon-double-chevron-up::before{ + content:""; } + +.bp3-icon-doughnut-chart::before{ + content:""; } + +.bp3-icon-download::before{ + content:""; } + +.bp3-icon-drag-handle-horizontal::before{ + content:""; } + +.bp3-icon-drag-handle-vertical::before{ + content:""; } + +.bp3-icon-draw::before{ + content:""; } + +.bp3-icon-drive-time::before{ + content:""; } + +.bp3-icon-duplicate::before{ + content:"îšœ"; } + +.bp3-icon-edit::before{ + content:"✎"; } + +.bp3-icon-eject::before{ + content:"â"; } + +.bp3-icon-endorsed::before{ + content:"îŸ"; } + +.bp3-icon-envelope::before{ + content:"✉"; } + +.bp3-icon-equals::before{ + content:""; } + +.bp3-icon-eraser::before{ + content:"î³"; } + +.bp3-icon-error::before{ + content:""; } + +.bp3-icon-euro::before{ + content:"€"; } + +.bp3-icon-exchange::before{ + content:""; } + +.bp3-icon-exclude-row::before{ + content:""; } + +.bp3-icon-expand-all::before{ + content:"î¤"; } + +.bp3-icon-export::before{ + content:""; } + +.bp3-icon-eye-off::before{ + content:""; } + +.bp3-icon-eye-on::before{ + content:"îš"; } + +.bp3-icon-eye-open::before{ + content:""; } + +.bp3-icon-fast-backward::before{ + content:""; } + +.bp3-icon-fast-forward::before{ + content:""; } + +.bp3-icon-feed::before{ + content:"î™–"; } + +.bp3-icon-feed-subscribed::before{ + content:"îž"; } + +.bp3-icon-film::before{ + content:"îš¡"; } + +.bp3-icon-filter::before{ + content:""; } + +.bp3-icon-filter-keep::before{ + content:""; } + +.bp3-icon-filter-list::before{ + content:"î›®"; } + +.bp3-icon-filter-open::before{ + content:""; } + +.bp3-icon-filter-remove::before{ + content:"îž"; } + +.bp3-icon-flag::before{ + content:"âš‘"; } + +.bp3-icon-flame::before{ + content:"îž©"; } + +.bp3-icon-flash::before{ + content:"îš³"; } + +.bp3-icon-floppy-disk::before{ + content:"îš·"; } + +.bp3-icon-flow-branch::before{ + content:"îŸ"; } + +.bp3-icon-flow-end::before{ + content:""; } + +.bp3-icon-flow-linear::before{ + content:""; } + +.bp3-icon-flow-review::before{ + content:""; } + +.bp3-icon-flow-review-branch::before{ + content:""; } + +.bp3-icon-flows::before{ + content:"î™™"; } + +.bp3-icon-folder-close::before{ + content:"î™’"; } + +.bp3-icon-folder-new::before{ + content:"îž°"; } + +.bp3-icon-folder-open::before{ + content:""; } + +.bp3-icon-folder-shared::before{ + content:""; } + +.bp3-icon-folder-shared-open::before{ + content:"î™°"; } + +.bp3-icon-follower::before{ + content:"î "; } + +.bp3-icon-following::before{ + content:"î¡"; } + +.bp3-icon-font::before{ + content:"îš´"; } + +.bp3-icon-fork::before{ + content:""; } + +.bp3-icon-form::before{ + content:"îž•"; } + +.bp3-icon-full-circle::before{ + content:"îš…"; } + +.bp3-icon-full-stacked-chart::before{ + content:"îž"; } + +.bp3-icon-fullscreen::before{ + content:"îš™"; } + +.bp3-icon-function::before{ + content:""; } + +.bp3-icon-gantt-chart::before{ + content:"î›´"; } + +.bp3-icon-geolocation::before{ + content:""; } + +.bp3-icon-geosearch::before{ + content:""; } + +.bp3-icon-git-branch::before{ + content:""; } + +.bp3-icon-git-commit::before{ + content:""; } + +.bp3-icon-git-merge::before{ + content:""; } + +.bp3-icon-git-new-branch::before{ + content:"î‰"; } + +.bp3-icon-git-pull::before{ + content:""; } + +.bp3-icon-git-push::before{ + content:""; } + +.bp3-icon-git-repo::before{ + content:"îˆ"; } + +.bp3-icon-glass::before{ + content:"îš±"; } + +.bp3-icon-globe::before{ + content:""; } + +.bp3-icon-globe-network::before{ + content:"îžµ"; } + +.bp3-icon-graph::before{ + content:""; } + +.bp3-icon-graph-remove::before{ + content:""; } + +.bp3-icon-greater-than::before{ + content:""; } + +.bp3-icon-greater-than-or-equal-to::before{ + content:""; } + +.bp3-icon-grid::before{ + content:"î›"; } + +.bp3-icon-grid-view::before{ + content:""; } + +.bp3-icon-group-objects::before{ + content:""; } + +.bp3-icon-grouped-bar-chart::before{ + content:"î"; } + +.bp3-icon-hand::before{ + content:""; } + +.bp3-icon-hand-down::before{ + content:"îš»"; } + +.bp3-icon-hand-left::before{ + content:"îš¼"; } + +.bp3-icon-hand-right::before{ + content:"îš¹"; } + +.bp3-icon-hand-up::before{ + content:""; } + +.bp3-icon-header::before{ + content:"îšµ"; } + +.bp3-icon-header-one::before{ + content:"îž“"; } + +.bp3-icon-header-two::before{ + content:"îž”"; } + +.bp3-icon-headset::before{ + content:""; } + +.bp3-icon-heart::before{ + content:"♥"; } + +.bp3-icon-heart-broken::before{ + content:""; } + +.bp3-icon-heat-grid::before{ + content:""; } + +.bp3-icon-heatmap::before{ + content:""; } + +.bp3-icon-help::before{ + content:"?"; } + +.bp3-icon-helper-management::before{ + content:"î™"; } + +.bp3-icon-highlight::before{ + content:"î›"; } + +.bp3-icon-history::before{ + content:""; } + +.bp3-icon-home::before{ + content:"⌂"; } + +.bp3-icon-horizontal-bar-chart::before{ + content:""; } + +.bp3-icon-horizontal-bar-chart-asc::before{ + content:"îœ"; } + +.bp3-icon-horizontal-bar-chart-desc::before{ + content:"îœ"; } + +.bp3-icon-horizontal-distribution::before{ + content:"îœ "; } + +.bp3-icon-id-number::before{ + content:"î±"; } + +.bp3-icon-image-rotate-left::before{ + content:""; } + +.bp3-icon-image-rotate-right::before{ + content:""; } + +.bp3-icon-import::before{ + content:""; } + +.bp3-icon-inbox::before{ + content:""; } + +.bp3-icon-inbox-filtered::before{ + content:""; } + +.bp3-icon-inbox-geo::before{ + content:""; } + +.bp3-icon-inbox-search::before{ + content:""; } + +.bp3-icon-inbox-update::before{ + content:""; } + +.bp3-icon-info-sign::before{ + content:"ℹ"; } + +.bp3-icon-inheritance::before{ + content:""; } + +.bp3-icon-inner-join::before{ + content:""; } + +.bp3-icon-insert::before{ + content:""; } + +.bp3-icon-intersection::before{ + content:"î¥"; } + +.bp3-icon-ip-address::before{ + content:"î²"; } + +.bp3-icon-issue::before{ + content:"î´"; } + +.bp3-icon-issue-closed::before{ + content:"î¶"; } + +.bp3-icon-issue-new::before{ + content:"îµ"; } + +.bp3-icon-italic::before{ + content:""; } + +.bp3-icon-join-table::before{ + content:""; } + +.bp3-icon-key::before{ + content:""; } + +.bp3-icon-key-backspace::before{ + content:""; } + +.bp3-icon-key-command::before{ + content:""; } + +.bp3-icon-key-control::before{ + content:""; } + +.bp3-icon-key-delete::before{ + content:""; } + +.bp3-icon-key-enter::before{ + content:""; } + +.bp3-icon-key-escape::before{ + content:""; } + +.bp3-icon-key-option::before{ + content:"î‚"; } + +.bp3-icon-key-shift::before{ + content:""; } + +.bp3-icon-key-tab::before{ + content:"î—"; } + +.bp3-icon-known-vehicle::before{ + content:""; } + +.bp3-icon-label::before{ + content:""; } + +.bp3-icon-layer::before{ + content:"î›"; } + +.bp3-icon-layers::before{ + content:""; } + +.bp3-icon-layout::before{ + content:""; } + +.bp3-icon-layout-auto::before{ + content:"î˜"; } + +.bp3-icon-layout-balloon::before{ + content:""; } + +.bp3-icon-layout-circle::before{ + content:""; } + +.bp3-icon-layout-grid::before{ + content:"î˜"; } + +.bp3-icon-layout-group-by::before{ + content:""; } + +.bp3-icon-layout-hierarchy::before{ + content:"î˜"; } + +.bp3-icon-layout-linear::before{ + content:""; } + +.bp3-icon-layout-skew-grid::before{ + content:""; } + +.bp3-icon-layout-sorted-clusters::before{ + content:"î›”"; } + +.bp3-icon-learning::before{ + content:""; } + +.bp3-icon-left-join::before{ + content:""; } + +.bp3-icon-less-than::before{ + content:""; } + +.bp3-icon-less-than-or-equal-to::before{ + content:""; } + +.bp3-icon-lifesaver::before{ + content:""; } + +.bp3-icon-lightbulb::before{ + content:"îš°"; } + +.bp3-icon-link::before{ + content:"î˜"; } + +.bp3-icon-list::before{ + content:"☰"; } + +.bp3-icon-list-columns::before{ + content:"îž¹"; } + +.bp3-icon-list-detail-view::before{ + content:"îƒ"; } + +.bp3-icon-locate::before{ + content:""; } + +.bp3-icon-lock::before{ + content:""; } + +.bp3-icon-log-in::before{ + content:"îšš"; } + +.bp3-icon-log-out::before{ + content:""; } + +.bp3-icon-manual::before{ + content:"î›¶"; } + +.bp3-icon-manually-entered-data::before{ + content:"îŠ"; } + +.bp3-icon-map::before{ + content:""; } + +.bp3-icon-map-create::before{ + content:"î"; } + +.bp3-icon-map-marker::before{ + content:""; } + +.bp3-icon-maximize::before{ + content:""; } + +.bp3-icon-media::before{ + content:""; } + +.bp3-icon-menu::before{ + content:"î¢"; } + +.bp3-icon-menu-closed::before{ + content:""; } + +.bp3-icon-menu-open::before{ + content:"î™”"; } + +.bp3-icon-merge-columns::before{ + content:"î"; } + +.bp3-icon-merge-links::before{ + content:""; } + +.bp3-icon-minimize::before{ + content:""; } + +.bp3-icon-minus::before{ + content:"−"; } + +.bp3-icon-mobile-phone::before{ + content:""; } + +.bp3-icon-mobile-video::before{ + content:""; } + +.bp3-icon-moon::before{ + content:"î”"; } + +.bp3-icon-more::before{ + content:""; } + +.bp3-icon-mountain::before{ + content:"îž±"; } + +.bp3-icon-move::before{ + content:"îš“"; } + +.bp3-icon-mugshot::before{ + content:"î››"; } + +.bp3-icon-multi-select::before{ + content:""; } + +.bp3-icon-music::before{ + content:""; } + +.bp3-icon-new-drawing::before{ + content:""; } + +.bp3-icon-new-grid-item::before{ + content:"î‡"; } + +.bp3-icon-new-layer::before{ + content:""; } + +.bp3-icon-new-layers::before{ + content:""; } + +.bp3-icon-new-link::before{ + content:""; } + +.bp3-icon-new-object::before{ + content:"î™"; } + +.bp3-icon-new-person::before{ + content:""; } + +.bp3-icon-new-prescription::before{ + content:"îž‹"; } + +.bp3-icon-new-text-box::before{ + content:"î™›"; } + +.bp3-icon-ninja::before{ + content:""; } + +.bp3-icon-not-equal-to::before{ + content:"îŸ "; } + +.bp3-icon-notifications::before{ + content:""; } + +.bp3-icon-notifications-updated::before{ + content:""; } + +.bp3-icon-numbered-list::before{ + content:"î†"; } + +.bp3-icon-numerical::before{ + content:"î–"; } + +.bp3-icon-office::before{ + content:"îš›"; } + +.bp3-icon-offline::before{ + content:""; } + +.bp3-icon-oil-field::before{ + content:""; } + +.bp3-icon-one-column::before{ + content:""; } + +.bp3-icon-outdated::before{ + content:""; } + +.bp3-icon-page-layout::before{ + content:"î™ "; } + +.bp3-icon-panel-stats::before{ + content:"î·"; } + +.bp3-icon-panel-table::before{ + content:"î¸"; } + +.bp3-icon-paperclip::before{ + content:""; } + +.bp3-icon-paragraph::before{ + content:"î¬"; } + +.bp3-icon-path::before{ + content:"î“"; } + +.bp3-icon-path-search::before{ + content:""; } + +.bp3-icon-pause::before{ + content:"îš©"; } + +.bp3-icon-people::before{ + content:""; } + +.bp3-icon-percentage::before{ + content:"îª"; } + +.bp3-icon-person::before{ + content:""; } + +.bp3-icon-phone::before{ + content:"☎"; } + +.bp3-icon-pie-chart::before{ + content:"îš„"; } + +.bp3-icon-pin::before{ + content:""; } + +.bp3-icon-pivot::before{ + content:"î›±"; } + +.bp3-icon-pivot-table::before{ + content:""; } + +.bp3-icon-play::before{ + content:"îš«"; } + +.bp3-icon-plus::before{ + content:"+"; } + +.bp3-icon-polygon-filter::before{ + content:""; } + +.bp3-icon-power::before{ + content:"î›™"; } + +.bp3-icon-predictive-analysis::before{ + content:""; } + +.bp3-icon-prescription::before{ + content:""; } + +.bp3-icon-presentation::before{ + content:""; } + +.bp3-icon-print::before{ + content:"⎙"; } + +.bp3-icon-projects::before{ + content:""; } + +.bp3-icon-properties::before{ + content:""; } + +.bp3-icon-property::before{ + content:""; } + +.bp3-icon-publish-function::before{ + content:"î’"; } + +.bp3-icon-pulse::before{ + content:""; } + +.bp3-icon-random::before{ + content:""; } + +.bp3-icon-record::before{ + content:"îš®"; } + +.bp3-icon-redo::before{ + content:""; } + +.bp3-icon-refresh::before{ + content:""; } + +.bp3-icon-regression-chart::before{ + content:"î˜"; } + +.bp3-icon-remove::before{ + content:""; } + +.bp3-icon-remove-column::before{ + content:"î•"; } + +.bp3-icon-remove-column-left::before{ + content:""; } + +.bp3-icon-remove-column-right::before{ + content:""; } + +.bp3-icon-remove-row-bottom::before{ + content:""; } + +.bp3-icon-remove-row-top::before{ + content:"î›»"; } + +.bp3-icon-repeat::before{ + content:"îš’"; } + +.bp3-icon-reset::before{ + content:""; } + +.bp3-icon-resolve::before{ + content:""; } + +.bp3-icon-rig::before{ + content:"î€"; } + +.bp3-icon-right-join::before{ + content:""; } + +.bp3-icon-ring::before{ + content:""; } + +.bp3-icon-rotate-document::before{ + content:""; } + +.bp3-icon-rotate-page::before{ + content:""; } + +.bp3-icon-satellite::before{ + content:"î«"; } + +.bp3-icon-saved::before{ + content:"îš¶"; } + +.bp3-icon-scatter-plot::before{ + content:""; } + +.bp3-icon-search::before{ + content:""; } + +.bp3-icon-search-around::before{ + content:""; } + +.bp3-icon-search-template::before{ + content:""; } + +.bp3-icon-search-text::before{ + content:""; } + +.bp3-icon-segmented-control::before{ + content:""; } + +.bp3-icon-select::before{ + content:""; } + +.bp3-icon-selection::before{ + content:"⦿"; } + +.bp3-icon-send-to::before{ + content:"î™®"; } + +.bp3-icon-send-to-graph::before{ + content:""; } + +.bp3-icon-send-to-map::before{ + content:""; } + +.bp3-icon-series-add::before{ + content:"îž–"; } + +.bp3-icon-series-configuration::before{ + content:"îžš"; } + +.bp3-icon-series-derived::before{ + content:"îž™"; } + +.bp3-icon-series-filtered::before{ + content:""; } + +.bp3-icon-series-search::before{ + content:"îž—"; } + +.bp3-icon-settings::before{ + content:""; } + +.bp3-icon-share::before{ + content:""; } + +.bp3-icon-shield::before{ + content:"îž²"; } + +.bp3-icon-shop::before{ + content:""; } + +.bp3-icon-shopping-cart::before{ + content:"î›"; } + +.bp3-icon-signal-search::before{ + content:""; } + +.bp3-icon-sim-card::before{ + content:""; } + +.bp3-icon-slash::before{ + content:"î©"; } + +.bp3-icon-small-cross::before{ + content:"î›—"; } + +.bp3-icon-small-minus::before{ + content:""; } + +.bp3-icon-small-plus::before{ + content:"îœ"; } + +.bp3-icon-small-tick::before{ + content:""; } + +.bp3-icon-snowflake::before{ + content:"îž¶"; } + +.bp3-icon-social-media::before{ + content:"î™±"; } + +.bp3-icon-sort::before{ + content:"î™"; } + +.bp3-icon-sort-alphabetical::before{ + content:"î™"; } + +.bp3-icon-sort-alphabetical-desc::before{ + content:""; } + +.bp3-icon-sort-asc::before{ + content:""; } + +.bp3-icon-sort-desc::before{ + content:"î›–"; } + +.bp3-icon-sort-numerical::before{ + content:""; } + +.bp3-icon-sort-numerical-desc::before{ + content:""; } + +.bp3-icon-split-columns::before{ + content:"î"; } + +.bp3-icon-square::before{ + content:""; } + +.bp3-icon-stacked-chart::before{ + content:"î›§"; } + +.bp3-icon-star::before{ + content:"★"; } + +.bp3-icon-star-empty::before{ + content:"☆"; } + +.bp3-icon-step-backward::before{ + content:"îš§"; } + +.bp3-icon-step-chart::before{ + content:"îœ"; } + +.bp3-icon-step-forward::before{ + content:"îš"; } + +.bp3-icon-stop::before{ + content:""; } + +.bp3-icon-stopwatch::before{ + content:"î¤"; } + +.bp3-icon-strikethrough::before{ + content:""; } + +.bp3-icon-style::before{ + content:"î˜"; } + +.bp3-icon-swap-horizontal::before{ + content:"î…"; } + +.bp3-icon-swap-vertical::before{ + content:"î„"; } + +.bp3-icon-symbol-circle::before{ + content:""; } + +.bp3-icon-symbol-cross::before{ + content:""; } + +.bp3-icon-symbol-diamond::before{ + content:""; } + +.bp3-icon-symbol-square::before{ + content:""; } + +.bp3-icon-symbol-triangle-down::before{ + content:""; } + +.bp3-icon-symbol-triangle-up::before{ + content:""; } + +.bp3-icon-tag::before{ + content:""; } + +.bp3-icon-take-action::before{ + content:""; } + +.bp3-icon-taxi::before{ + content:"îžž"; } + +.bp3-icon-text-highlight::before{ + content:"î›"; } + +.bp3-icon-th::before{ + content:"î™§"; } + +.bp3-icon-th-derived::before{ + content:""; } + +.bp3-icon-th-disconnect::before{ + content:""; } + +.bp3-icon-th-filtered::before{ + content:""; } + +.bp3-icon-th-list::before{ + content:""; } + +.bp3-icon-thumbs-down::before{ + content:"îš¾"; } + +.bp3-icon-thumbs-up::before{ + content:"îš½"; } + +.bp3-icon-tick::before{ + content:"✓"; } + +.bp3-icon-tick-circle::before{ + content:"î¹"; } + +.bp3-icon-time::before{ + content:"â²"; } + +.bp3-icon-timeline-area-chart::before{ + content:"î›"; } + +.bp3-icon-timeline-bar-chart::before{ + content:"î˜ "; } + +.bp3-icon-timeline-events::before{ + content:""; } + +.bp3-icon-timeline-line-chart::before{ + content:""; } + +.bp3-icon-tint::before{ + content:"îš²"; } + +.bp3-icon-torch::before{ + content:"î™·"; } + +.bp3-icon-tractor::before{ + content:""; } + +.bp3-icon-train::before{ + content:""; } + +.bp3-icon-translate::before{ + content:"î™"; } + +.bp3-icon-trash::before{ + content:""; } + +.bp3-icon-tree::before{ + content:"îž·"; } + +.bp3-icon-trending-down::before{ + content:""; } + +.bp3-icon-trending-up::before{ + content:""; } + +.bp3-icon-truck::before{ + content:""; } + +.bp3-icon-two-columns::before{ + content:"î™—"; } + +.bp3-icon-unarchive::before{ + content:""; } + +.bp3-icon-underline::before{ + content:"âŽ"; } + +.bp3-icon-undo::before{ + content:"⎌"; } + +.bp3-icon-ungroup-objects::before{ + content:""; } + +.bp3-icon-unknown-vehicle::before{ + content:""; } + +.bp3-icon-unlock::before{ + content:""; } + +.bp3-icon-unpin::before{ + content:"î™"; } + +.bp3-icon-unresolve::before{ + content:""; } + +.bp3-icon-updated::before{ + content:"îž§"; } + +.bp3-icon-upload::before{ + content:"îš"; } + +.bp3-icon-user::before{ + content:""; } + +.bp3-icon-variable::before{ + content:""; } + +.bp3-icon-vertical-bar-chart-asc::before{ + content:"î›"; } + +.bp3-icon-vertical-bar-chart-desc::before{ + content:""; } + +.bp3-icon-vertical-distribution::before{ + content:""; } + +.bp3-icon-video::before{ + content:"îš "; } + +.bp3-icon-volume-down::before{ + content:""; } + +.bp3-icon-volume-off::before{ + content:""; } + +.bp3-icon-volume-up::before{ + content:""; } + +.bp3-icon-walk::before{ + content:"îž"; } + +.bp3-icon-warning-sign::before{ + content:""; } + +.bp3-icon-waterfall-chart::before{ + content:""; } + +.bp3-icon-widget::before{ + content:""; } + +.bp3-icon-widget-button::before{ + content:"îž"; } + +.bp3-icon-widget-footer::before{ + content:"îž’"; } + +.bp3-icon-widget-header::before{ + content:"îž‘"; } + +.bp3-icon-wrench::before{ + content:""; } + +.bp3-icon-zoom-in::before{ + content:"î™"; } + +.bp3-icon-zoom-out::before{ + content:""; } + +.bp3-icon-zoom-to-fit::before{ + content:"î™»"; } +.bp3-submenu > .bp3-popover-wrapper{ + display:block; } + +.bp3-submenu .bp3-popover-target{ + display:block; } + +.bp3-submenu.bp3-popover{ + -webkit-box-shadow:none; + box-shadow:none; + padding:0 5px; } + .bp3-submenu.bp3-popover > .bp3-popover-content{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 2px 4px rgba(16, 22, 26, 0.2), 0 8px 24px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 2px 4px rgba(16, 22, 26, 0.2), 0 8px 24px rgba(16, 22, 26, 0.2); } + .bp3-dark .bp3-submenu.bp3-popover, .bp3-submenu.bp3-popover.bp3-dark{ + -webkit-box-shadow:none; + box-shadow:none; } + .bp3-dark .bp3-submenu.bp3-popover > .bp3-popover-content, .bp3-submenu.bp3-popover.bp3-dark > .bp3-popover-content{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 2px 4px rgba(16, 22, 26, 0.4), 0 8px 24px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 2px 4px rgba(16, 22, 26, 0.4), 0 8px 24px rgba(16, 22, 26, 0.4); } +.bp3-menu{ + margin:0; + border-radius:3px; + background:#ffffff; + min-width:180px; + padding:5px; + list-style:none; + text-align:left; + color:#182026; } + +.bp3-menu-divider{ + display:block; + margin:5px; + border-top:1px solid rgba(16, 22, 26, 0.15); } + .bp3-dark .bp3-menu-divider{ + border-top-color:rgba(255, 255, 255, 0.15); } + +.bp3-menu-item{ + display:-webkit-box; + display:-ms-flexbox; + display:flex; + -webkit-box-orient:horizontal; + -webkit-box-direction:normal; + -ms-flex-direction:row; + flex-direction:row; + -webkit-box-align:start; + -ms-flex-align:start; + align-items:flex-start; + border-radius:2px; + padding:5px 7px; + text-decoration:none; + line-height:20px; + color:inherit; + -webkit-user-select:none; + -moz-user-select:none; + -ms-user-select:none; + user-select:none; } + .bp3-menu-item > *{ + -webkit-box-flex:0; + -ms-flex-positive:0; + flex-grow:0; + -ms-flex-negative:0; + flex-shrink:0; } + .bp3-menu-item > .bp3-fill{ + -webkit-box-flex:1; + -ms-flex-positive:1; + flex-grow:1; + -ms-flex-negative:1; + flex-shrink:1; } + .bp3-menu-item::before, + .bp3-menu-item > *{ + margin-right:7px; } + .bp3-menu-item:empty::before, + .bp3-menu-item > :last-child{ + margin-right:0; } + .bp3-menu-item > .bp3-fill{ + word-break:break-word; } + .bp3-menu-item:hover, .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-menu-item{ + background-color:rgba(167, 182, 194, 0.3); + cursor:pointer; + text-decoration:none; } + .bp3-menu-item.bp3-disabled{ + background-color:inherit; + cursor:not-allowed; + color:rgba(92, 112, 128, 0.6); } + .bp3-dark .bp3-menu-item{ + color:inherit; } + .bp3-dark .bp3-menu-item:hover, .bp3-dark .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-menu-item, .bp3-submenu .bp3-dark .bp3-popover-target.bp3-popover-open > .bp3-menu-item{ + background-color:rgba(138, 155, 168, 0.15); + color:inherit; } + .bp3-dark .bp3-menu-item.bp3-disabled{ + background-color:inherit; + color:rgba(167, 182, 194, 0.6); } + .bp3-menu-item.bp3-intent-primary{ + color:#106ba3; } + .bp3-menu-item.bp3-intent-primary .bp3-icon{ + color:inherit; } + .bp3-menu-item.bp3-intent-primary::before, .bp3-menu-item.bp3-intent-primary::after, + .bp3-menu-item.bp3-intent-primary .bp3-menu-item-label{ + color:#106ba3; } + .bp3-menu-item.bp3-intent-primary:hover, .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-primary.bp3-menu-item, .bp3-menu-item.bp3-intent-primary.bp3-active{ + background-color:#137cbd; } + .bp3-menu-item.bp3-intent-primary:active{ + background-color:#106ba3; } + .bp3-menu-item.bp3-intent-primary:hover, .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-primary.bp3-menu-item, .bp3-menu-item.bp3-intent-primary:hover::before, .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-primary.bp3-menu-item::before, .bp3-menu-item.bp3-intent-primary:hover::after, .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-primary.bp3-menu-item::after, + .bp3-menu-item.bp3-intent-primary:hover .bp3-menu-item-label, + .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-primary.bp3-menu-item .bp3-menu-item-label, .bp3-menu-item.bp3-intent-primary:active, .bp3-menu-item.bp3-intent-primary:active::before, .bp3-menu-item.bp3-intent-primary:active::after, + .bp3-menu-item.bp3-intent-primary:active .bp3-menu-item-label, .bp3-menu-item.bp3-intent-primary.bp3-active, .bp3-menu-item.bp3-intent-primary.bp3-active::before, .bp3-menu-item.bp3-intent-primary.bp3-active::after, + .bp3-menu-item.bp3-intent-primary.bp3-active .bp3-menu-item-label{ + color:#ffffff; } + .bp3-menu-item.bp3-intent-success{ + color:#0d8050; } + .bp3-menu-item.bp3-intent-success .bp3-icon{ + color:inherit; } + .bp3-menu-item.bp3-intent-success::before, .bp3-menu-item.bp3-intent-success::after, + .bp3-menu-item.bp3-intent-success .bp3-menu-item-label{ + color:#0d8050; } + .bp3-menu-item.bp3-intent-success:hover, .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-success.bp3-menu-item, .bp3-menu-item.bp3-intent-success.bp3-active{ + background-color:#0f9960; } + .bp3-menu-item.bp3-intent-success:active{ + background-color:#0d8050; } + .bp3-menu-item.bp3-intent-success:hover, .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-success.bp3-menu-item, .bp3-menu-item.bp3-intent-success:hover::before, .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-success.bp3-menu-item::before, .bp3-menu-item.bp3-intent-success:hover::after, .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-success.bp3-menu-item::after, + .bp3-menu-item.bp3-intent-success:hover .bp3-menu-item-label, + .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-success.bp3-menu-item .bp3-menu-item-label, .bp3-menu-item.bp3-intent-success:active, .bp3-menu-item.bp3-intent-success:active::before, .bp3-menu-item.bp3-intent-success:active::after, + .bp3-menu-item.bp3-intent-success:active .bp3-menu-item-label, .bp3-menu-item.bp3-intent-success.bp3-active, .bp3-menu-item.bp3-intent-success.bp3-active::before, .bp3-menu-item.bp3-intent-success.bp3-active::after, + .bp3-menu-item.bp3-intent-success.bp3-active .bp3-menu-item-label{ + color:#ffffff; } + .bp3-menu-item.bp3-intent-warning{ + color:#bf7326; } + .bp3-menu-item.bp3-intent-warning .bp3-icon{ + color:inherit; } + .bp3-menu-item.bp3-intent-warning::before, .bp3-menu-item.bp3-intent-warning::after, + .bp3-menu-item.bp3-intent-warning .bp3-menu-item-label{ + color:#bf7326; } + .bp3-menu-item.bp3-intent-warning:hover, .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-warning.bp3-menu-item, .bp3-menu-item.bp3-intent-warning.bp3-active{ + background-color:#d9822b; } + .bp3-menu-item.bp3-intent-warning:active{ + background-color:#bf7326; } + .bp3-menu-item.bp3-intent-warning:hover, .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-warning.bp3-menu-item, .bp3-menu-item.bp3-intent-warning:hover::before, .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-warning.bp3-menu-item::before, .bp3-menu-item.bp3-intent-warning:hover::after, .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-warning.bp3-menu-item::after, + .bp3-menu-item.bp3-intent-warning:hover .bp3-menu-item-label, + .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-warning.bp3-menu-item .bp3-menu-item-label, .bp3-menu-item.bp3-intent-warning:active, .bp3-menu-item.bp3-intent-warning:active::before, .bp3-menu-item.bp3-intent-warning:active::after, + .bp3-menu-item.bp3-intent-warning:active .bp3-menu-item-label, .bp3-menu-item.bp3-intent-warning.bp3-active, .bp3-menu-item.bp3-intent-warning.bp3-active::before, .bp3-menu-item.bp3-intent-warning.bp3-active::after, + .bp3-menu-item.bp3-intent-warning.bp3-active .bp3-menu-item-label{ + color:#ffffff; } + .bp3-menu-item.bp3-intent-danger{ + color:#c23030; } + .bp3-menu-item.bp3-intent-danger .bp3-icon{ + color:inherit; } + .bp3-menu-item.bp3-intent-danger::before, .bp3-menu-item.bp3-intent-danger::after, + .bp3-menu-item.bp3-intent-danger .bp3-menu-item-label{ + color:#c23030; } + .bp3-menu-item.bp3-intent-danger:hover, .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-danger.bp3-menu-item, .bp3-menu-item.bp3-intent-danger.bp3-active{ + background-color:#db3737; } + .bp3-menu-item.bp3-intent-danger:active{ + background-color:#c23030; } + .bp3-menu-item.bp3-intent-danger:hover, .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-danger.bp3-menu-item, .bp3-menu-item.bp3-intent-danger:hover::before, .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-danger.bp3-menu-item::before, .bp3-menu-item.bp3-intent-danger:hover::after, .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-danger.bp3-menu-item::after, + .bp3-menu-item.bp3-intent-danger:hover .bp3-menu-item-label, + .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-danger.bp3-menu-item .bp3-menu-item-label, .bp3-menu-item.bp3-intent-danger:active, .bp3-menu-item.bp3-intent-danger:active::before, .bp3-menu-item.bp3-intent-danger:active::after, + .bp3-menu-item.bp3-intent-danger:active .bp3-menu-item-label, .bp3-menu-item.bp3-intent-danger.bp3-active, .bp3-menu-item.bp3-intent-danger.bp3-active::before, .bp3-menu-item.bp3-intent-danger.bp3-active::after, + .bp3-menu-item.bp3-intent-danger.bp3-active .bp3-menu-item-label{ + color:#ffffff; } + .bp3-menu-item::before{ + line-height:1; + font-family:"Icons16", sans-serif; + font-size:16px; + font-weight:400; + font-style:normal; + -moz-osx-font-smoothing:grayscale; + -webkit-font-smoothing:antialiased; + margin-right:7px; } + .bp3-menu-item::before, + .bp3-menu-item > .bp3-icon{ + margin-top:2px; + color:#5c7080; } + .bp3-menu-item .bp3-menu-item-label{ + color:#5c7080; } + .bp3-menu-item:hover, .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-menu-item{ + color:inherit; } + .bp3-menu-item.bp3-active, .bp3-menu-item:active{ + background-color:rgba(115, 134, 148, 0.3); } + .bp3-menu-item.bp3-disabled{ + outline:none !important; + background-color:inherit !important; + cursor:not-allowed !important; + color:rgba(92, 112, 128, 0.6) !important; } + .bp3-menu-item.bp3-disabled::before, + .bp3-menu-item.bp3-disabled > .bp3-icon, + .bp3-menu-item.bp3-disabled .bp3-menu-item-label{ + color:rgba(92, 112, 128, 0.6) !important; } + .bp3-large .bp3-menu-item{ + padding:9px 7px; + line-height:22px; + font-size:16px; } + .bp3-large .bp3-menu-item .bp3-icon{ + margin-top:3px; } + .bp3-large .bp3-menu-item::before{ + line-height:1; + font-family:"Icons20", sans-serif; + font-size:20px; + font-weight:400; + font-style:normal; + -moz-osx-font-smoothing:grayscale; + -webkit-font-smoothing:antialiased; + margin-top:1px; + margin-right:10px; } + +button.bp3-menu-item{ + border:none; + background:none; + width:100%; + text-align:left; } +.bp3-menu-header{ + display:block; + margin:5px; + border-top:1px solid rgba(16, 22, 26, 0.15); + cursor:default; + padding-left:2px; } + .bp3-dark .bp3-menu-header{ + border-top-color:rgba(255, 255, 255, 0.15); } + .bp3-menu-header:first-of-type{ + border-top:none; } + .bp3-menu-header > h6{ + color:#182026; + font-weight:600; + overflow:hidden; + text-overflow:ellipsis; + white-space:nowrap; + word-wrap:normal; + margin:0; + padding:10px 7px 0 1px; + line-height:17px; } + .bp3-dark .bp3-menu-header > h6{ + color:#f5f8fa; } + .bp3-menu-header:first-of-type > h6{ + padding-top:0; } + .bp3-large .bp3-menu-header > h6{ + padding-top:15px; + padding-bottom:5px; + font-size:18px; } + .bp3-large .bp3-menu-header:first-of-type > h6{ + padding-top:0; } + +.bp3-dark .bp3-menu{ + background:#30404d; + color:#f5f8fa; } + +.bp3-dark .bp3-menu-item.bp3-intent-primary{ + color:#48aff0; } + .bp3-dark .bp3-menu-item.bp3-intent-primary .bp3-icon{ + color:inherit; } + .bp3-dark .bp3-menu-item.bp3-intent-primary::before, .bp3-dark .bp3-menu-item.bp3-intent-primary::after, + .bp3-dark .bp3-menu-item.bp3-intent-primary .bp3-menu-item-label{ + color:#48aff0; } + .bp3-dark .bp3-menu-item.bp3-intent-primary:hover, .bp3-dark .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-primary.bp3-menu-item, .bp3-submenu .bp3-dark .bp3-popover-target.bp3-popover-open > .bp3-intent-primary.bp3-menu-item, .bp3-dark .bp3-menu-item.bp3-intent-primary.bp3-active{ + background-color:#137cbd; } + .bp3-dark .bp3-menu-item.bp3-intent-primary:active{ + background-color:#106ba3; } + .bp3-dark .bp3-menu-item.bp3-intent-primary:hover, .bp3-dark .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-primary.bp3-menu-item, .bp3-submenu .bp3-dark .bp3-popover-target.bp3-popover-open > .bp3-intent-primary.bp3-menu-item, .bp3-dark .bp3-menu-item.bp3-intent-primary:hover::before, .bp3-dark .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-primary.bp3-menu-item::before, .bp3-submenu .bp3-dark .bp3-popover-target.bp3-popover-open > .bp3-intent-primary.bp3-menu-item::before, .bp3-dark .bp3-menu-item.bp3-intent-primary:hover::after, .bp3-dark .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-primary.bp3-menu-item::after, .bp3-submenu .bp3-dark .bp3-popover-target.bp3-popover-open > .bp3-intent-primary.bp3-menu-item::after, + .bp3-dark .bp3-menu-item.bp3-intent-primary:hover .bp3-menu-item-label, + .bp3-dark .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-primary.bp3-menu-item .bp3-menu-item-label, + .bp3-submenu .bp3-dark .bp3-popover-target.bp3-popover-open > .bp3-intent-primary.bp3-menu-item .bp3-menu-item-label, .bp3-dark .bp3-menu-item.bp3-intent-primary:active, .bp3-dark .bp3-menu-item.bp3-intent-primary:active::before, .bp3-dark .bp3-menu-item.bp3-intent-primary:active::after, + .bp3-dark .bp3-menu-item.bp3-intent-primary:active .bp3-menu-item-label, .bp3-dark .bp3-menu-item.bp3-intent-primary.bp3-active, .bp3-dark .bp3-menu-item.bp3-intent-primary.bp3-active::before, .bp3-dark .bp3-menu-item.bp3-intent-primary.bp3-active::after, + .bp3-dark .bp3-menu-item.bp3-intent-primary.bp3-active .bp3-menu-item-label{ + color:#ffffff; } + +.bp3-dark .bp3-menu-item.bp3-intent-success{ + color:#3dcc91; } + .bp3-dark .bp3-menu-item.bp3-intent-success .bp3-icon{ + color:inherit; } + .bp3-dark .bp3-menu-item.bp3-intent-success::before, .bp3-dark .bp3-menu-item.bp3-intent-success::after, + .bp3-dark .bp3-menu-item.bp3-intent-success .bp3-menu-item-label{ + color:#3dcc91; } + .bp3-dark .bp3-menu-item.bp3-intent-success:hover, .bp3-dark .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-success.bp3-menu-item, .bp3-submenu .bp3-dark .bp3-popover-target.bp3-popover-open > .bp3-intent-success.bp3-menu-item, .bp3-dark .bp3-menu-item.bp3-intent-success.bp3-active{ + background-color:#0f9960; } + .bp3-dark .bp3-menu-item.bp3-intent-success:active{ + background-color:#0d8050; } + .bp3-dark .bp3-menu-item.bp3-intent-success:hover, .bp3-dark .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-success.bp3-menu-item, .bp3-submenu .bp3-dark .bp3-popover-target.bp3-popover-open > .bp3-intent-success.bp3-menu-item, .bp3-dark .bp3-menu-item.bp3-intent-success:hover::before, .bp3-dark .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-success.bp3-menu-item::before, .bp3-submenu .bp3-dark .bp3-popover-target.bp3-popover-open > .bp3-intent-success.bp3-menu-item::before, .bp3-dark .bp3-menu-item.bp3-intent-success:hover::after, .bp3-dark .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-success.bp3-menu-item::after, .bp3-submenu .bp3-dark .bp3-popover-target.bp3-popover-open > .bp3-intent-success.bp3-menu-item::after, + .bp3-dark .bp3-menu-item.bp3-intent-success:hover .bp3-menu-item-label, + .bp3-dark .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-success.bp3-menu-item .bp3-menu-item-label, + .bp3-submenu .bp3-dark .bp3-popover-target.bp3-popover-open > .bp3-intent-success.bp3-menu-item .bp3-menu-item-label, .bp3-dark .bp3-menu-item.bp3-intent-success:active, .bp3-dark .bp3-menu-item.bp3-intent-success:active::before, .bp3-dark .bp3-menu-item.bp3-intent-success:active::after, + .bp3-dark .bp3-menu-item.bp3-intent-success:active .bp3-menu-item-label, .bp3-dark .bp3-menu-item.bp3-intent-success.bp3-active, .bp3-dark .bp3-menu-item.bp3-intent-success.bp3-active::before, .bp3-dark .bp3-menu-item.bp3-intent-success.bp3-active::after, + .bp3-dark .bp3-menu-item.bp3-intent-success.bp3-active .bp3-menu-item-label{ + color:#ffffff; } + +.bp3-dark .bp3-menu-item.bp3-intent-warning{ + color:#ffb366; } + .bp3-dark .bp3-menu-item.bp3-intent-warning .bp3-icon{ + color:inherit; } + .bp3-dark .bp3-menu-item.bp3-intent-warning::before, .bp3-dark .bp3-menu-item.bp3-intent-warning::after, + .bp3-dark .bp3-menu-item.bp3-intent-warning .bp3-menu-item-label{ + color:#ffb366; } + .bp3-dark .bp3-menu-item.bp3-intent-warning:hover, .bp3-dark .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-warning.bp3-menu-item, .bp3-submenu .bp3-dark .bp3-popover-target.bp3-popover-open > .bp3-intent-warning.bp3-menu-item, .bp3-dark .bp3-menu-item.bp3-intent-warning.bp3-active{ + background-color:#d9822b; } + .bp3-dark .bp3-menu-item.bp3-intent-warning:active{ + background-color:#bf7326; } + .bp3-dark .bp3-menu-item.bp3-intent-warning:hover, .bp3-dark .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-warning.bp3-menu-item, .bp3-submenu .bp3-dark .bp3-popover-target.bp3-popover-open > .bp3-intent-warning.bp3-menu-item, .bp3-dark .bp3-menu-item.bp3-intent-warning:hover::before, .bp3-dark .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-warning.bp3-menu-item::before, .bp3-submenu .bp3-dark .bp3-popover-target.bp3-popover-open > .bp3-intent-warning.bp3-menu-item::before, .bp3-dark .bp3-menu-item.bp3-intent-warning:hover::after, .bp3-dark .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-warning.bp3-menu-item::after, .bp3-submenu .bp3-dark .bp3-popover-target.bp3-popover-open > .bp3-intent-warning.bp3-menu-item::after, + .bp3-dark .bp3-menu-item.bp3-intent-warning:hover .bp3-menu-item-label, + .bp3-dark .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-warning.bp3-menu-item .bp3-menu-item-label, + .bp3-submenu .bp3-dark .bp3-popover-target.bp3-popover-open > .bp3-intent-warning.bp3-menu-item .bp3-menu-item-label, .bp3-dark .bp3-menu-item.bp3-intent-warning:active, .bp3-dark .bp3-menu-item.bp3-intent-warning:active::before, .bp3-dark .bp3-menu-item.bp3-intent-warning:active::after, + .bp3-dark .bp3-menu-item.bp3-intent-warning:active .bp3-menu-item-label, .bp3-dark .bp3-menu-item.bp3-intent-warning.bp3-active, .bp3-dark .bp3-menu-item.bp3-intent-warning.bp3-active::before, .bp3-dark .bp3-menu-item.bp3-intent-warning.bp3-active::after, + .bp3-dark .bp3-menu-item.bp3-intent-warning.bp3-active .bp3-menu-item-label{ + color:#ffffff; } + +.bp3-dark .bp3-menu-item.bp3-intent-danger{ + color:#ff7373; } + .bp3-dark .bp3-menu-item.bp3-intent-danger .bp3-icon{ + color:inherit; } + .bp3-dark .bp3-menu-item.bp3-intent-danger::before, .bp3-dark .bp3-menu-item.bp3-intent-danger::after, + .bp3-dark .bp3-menu-item.bp3-intent-danger .bp3-menu-item-label{ + color:#ff7373; } + .bp3-dark .bp3-menu-item.bp3-intent-danger:hover, .bp3-dark .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-danger.bp3-menu-item, .bp3-submenu .bp3-dark .bp3-popover-target.bp3-popover-open > .bp3-intent-danger.bp3-menu-item, .bp3-dark .bp3-menu-item.bp3-intent-danger.bp3-active{ + background-color:#db3737; } + .bp3-dark .bp3-menu-item.bp3-intent-danger:active{ + background-color:#c23030; } + .bp3-dark .bp3-menu-item.bp3-intent-danger:hover, .bp3-dark .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-danger.bp3-menu-item, .bp3-submenu .bp3-dark .bp3-popover-target.bp3-popover-open > .bp3-intent-danger.bp3-menu-item, .bp3-dark .bp3-menu-item.bp3-intent-danger:hover::before, .bp3-dark .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-danger.bp3-menu-item::before, .bp3-submenu .bp3-dark .bp3-popover-target.bp3-popover-open > .bp3-intent-danger.bp3-menu-item::before, .bp3-dark .bp3-menu-item.bp3-intent-danger:hover::after, .bp3-dark .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-danger.bp3-menu-item::after, .bp3-submenu .bp3-dark .bp3-popover-target.bp3-popover-open > .bp3-intent-danger.bp3-menu-item::after, + .bp3-dark .bp3-menu-item.bp3-intent-danger:hover .bp3-menu-item-label, + .bp3-dark .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-danger.bp3-menu-item .bp3-menu-item-label, + .bp3-submenu .bp3-dark .bp3-popover-target.bp3-popover-open > .bp3-intent-danger.bp3-menu-item .bp3-menu-item-label, .bp3-dark .bp3-menu-item.bp3-intent-danger:active, .bp3-dark .bp3-menu-item.bp3-intent-danger:active::before, .bp3-dark .bp3-menu-item.bp3-intent-danger:active::after, + .bp3-dark .bp3-menu-item.bp3-intent-danger:active .bp3-menu-item-label, .bp3-dark .bp3-menu-item.bp3-intent-danger.bp3-active, .bp3-dark .bp3-menu-item.bp3-intent-danger.bp3-active::before, .bp3-dark .bp3-menu-item.bp3-intent-danger.bp3-active::after, + .bp3-dark .bp3-menu-item.bp3-intent-danger.bp3-active .bp3-menu-item-label{ + color:#ffffff; } + +.bp3-dark .bp3-menu-item::before, +.bp3-dark .bp3-menu-item > .bp3-icon{ + color:#a7b6c2; } + +.bp3-dark .bp3-menu-item .bp3-menu-item-label{ + color:#a7b6c2; } + +.bp3-dark .bp3-menu-item.bp3-active, .bp3-dark .bp3-menu-item:active{ + background-color:rgba(138, 155, 168, 0.3); } + +.bp3-dark .bp3-menu-item.bp3-disabled{ + color:rgba(167, 182, 194, 0.6) !important; } + .bp3-dark .bp3-menu-item.bp3-disabled::before, + .bp3-dark .bp3-menu-item.bp3-disabled > .bp3-icon, + .bp3-dark .bp3-menu-item.bp3-disabled .bp3-menu-item-label{ + color:rgba(167, 182, 194, 0.6) !important; } + +.bp3-dark .bp3-menu-divider, +.bp3-dark .bp3-menu-header{ + border-color:rgba(255, 255, 255, 0.15); } + +.bp3-dark .bp3-menu-header > h6{ + color:#f5f8fa; } + +.bp3-label .bp3-menu{ + margin-top:5px; } +.bp3-navbar{ + position:relative; + z-index:10; + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 0 0 rgba(16, 22, 26, 0), 0 1px 1px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 0 0 rgba(16, 22, 26, 0), 0 1px 1px rgba(16, 22, 26, 0.2); + background-color:#ffffff; + width:100%; + height:50px; + padding:0 15px; } + .bp3-navbar.bp3-dark, + .bp3-dark .bp3-navbar{ + background-color:#394b59; } + .bp3-navbar.bp3-dark{ + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), 0 0 0 rgba(16, 22, 26, 0), 0 1px 1px rgba(16, 22, 26, 0.4); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), 0 0 0 rgba(16, 22, 26, 0), 0 1px 1px rgba(16, 22, 26, 0.4); } + .bp3-dark .bp3-navbar{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 0 0 rgba(16, 22, 26, 0), 0 1px 1px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 0 0 rgba(16, 22, 26, 0), 0 1px 1px rgba(16, 22, 26, 0.4); } + .bp3-navbar.bp3-fixed-top{ + position:fixed; + top:0; + right:0; + left:0; } + +.bp3-navbar-heading{ + margin-right:15px; + font-size:16px; } + +.bp3-navbar-group{ + display:-webkit-box; + display:-ms-flexbox; + display:flex; + -webkit-box-align:center; + -ms-flex-align:center; + align-items:center; + height:50px; } + .bp3-navbar-group.bp3-align-left{ + float:left; } + .bp3-navbar-group.bp3-align-right{ + float:right; } + +.bp3-navbar-divider{ + margin:0 10px; + border-left:1px solid rgba(16, 22, 26, 0.15); + height:20px; } + .bp3-dark .bp3-navbar-divider{ + border-left-color:rgba(255, 255, 255, 0.15); } +.bp3-non-ideal-state{ + display:-webkit-box; + display:-ms-flexbox; + display:flex; + -webkit-box-orient:vertical; + -webkit-box-direction:normal; + -ms-flex-direction:column; + flex-direction:column; + -webkit-box-align:center; + -ms-flex-align:center; + align-items:center; + -webkit-box-pack:center; + -ms-flex-pack:center; + justify-content:center; + width:100%; + height:100%; + text-align:center; } + .bp3-non-ideal-state > *{ + -webkit-box-flex:0; + -ms-flex-positive:0; + flex-grow:0; + -ms-flex-negative:0; + flex-shrink:0; } + .bp3-non-ideal-state > .bp3-fill{ + -webkit-box-flex:1; + -ms-flex-positive:1; + flex-grow:1; + -ms-flex-negative:1; + flex-shrink:1; } + .bp3-non-ideal-state::before, + .bp3-non-ideal-state > *{ + margin-bottom:20px; } + .bp3-non-ideal-state:empty::before, + .bp3-non-ideal-state > :last-child{ + margin-bottom:0; } + .bp3-non-ideal-state > *{ + max-width:400px; } + +.bp3-non-ideal-state-visual{ + color:rgba(92, 112, 128, 0.6); + font-size:60px; } + .bp3-dark .bp3-non-ideal-state-visual{ + color:rgba(167, 182, 194, 0.6); } + +.bp3-overflow-list{ + display:-webkit-box; + display:-ms-flexbox; + display:flex; + -ms-flex-wrap:nowrap; + flex-wrap:nowrap; + min-width:0; } + +.bp3-overflow-list-spacer{ + -ms-flex-negative:1; + flex-shrink:1; + width:1px; } + +body.bp3-overlay-open{ + overflow:hidden; } + +.bp3-overlay{ + position:static; + top:0; + right:0; + bottom:0; + left:0; + z-index:20; } + .bp3-overlay:not(.bp3-overlay-open){ + pointer-events:none; } + .bp3-overlay.bp3-overlay-container{ + position:fixed; + overflow:hidden; } + .bp3-overlay.bp3-overlay-container.bp3-overlay-inline{ + position:absolute; } + .bp3-overlay.bp3-overlay-scroll-container{ + position:fixed; + overflow:auto; } + .bp3-overlay.bp3-overlay-scroll-container.bp3-overlay-inline{ + position:absolute; } + .bp3-overlay.bp3-overlay-inline{ + display:inline; + overflow:visible; } + +.bp3-overlay-content{ + position:fixed; + z-index:20; } + .bp3-overlay-inline .bp3-overlay-content, + .bp3-overlay-scroll-container .bp3-overlay-content{ + position:absolute; } + +.bp3-overlay-backdrop{ + position:fixed; + top:0; + right:0; + bottom:0; + left:0; + opacity:1; + z-index:20; + background-color:rgba(16, 22, 26, 0.7); + overflow:auto; + -webkit-user-select:none; + -moz-user-select:none; + -ms-user-select:none; + user-select:none; } + .bp3-overlay-backdrop.bp3-overlay-enter, .bp3-overlay-backdrop.bp3-overlay-appear{ + opacity:0; } + .bp3-overlay-backdrop.bp3-overlay-enter-active, .bp3-overlay-backdrop.bp3-overlay-appear-active{ + opacity:1; + -webkit-transition-property:opacity; + transition-property:opacity; + -webkit-transition-duration:200ms; + transition-duration:200ms; + -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + -webkit-transition-delay:0; + transition-delay:0; } + .bp3-overlay-backdrop.bp3-overlay-exit{ + opacity:1; } + .bp3-overlay-backdrop.bp3-overlay-exit-active{ + opacity:0; + -webkit-transition-property:opacity; + transition-property:opacity; + -webkit-transition-duration:200ms; + transition-duration:200ms; + -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + -webkit-transition-delay:0; + transition-delay:0; } + .bp3-overlay-backdrop:focus{ + outline:none; } + .bp3-overlay-inline .bp3-overlay-backdrop{ + position:absolute; } +.bp3-panel-stack{ + position:relative; + overflow:hidden; } + +.bp3-panel-stack-header{ + display:-webkit-box; + display:-ms-flexbox; + display:flex; + -ms-flex-negative:0; + flex-shrink:0; + -webkit-box-align:center; + -ms-flex-align:center; + align-items:center; + z-index:1; + -webkit-box-shadow:0 1px rgba(16, 22, 26, 0.15); + box-shadow:0 1px rgba(16, 22, 26, 0.15); + height:30px; } + .bp3-dark .bp3-panel-stack-header{ + -webkit-box-shadow:0 1px rgba(255, 255, 255, 0.15); + box-shadow:0 1px rgba(255, 255, 255, 0.15); } + .bp3-panel-stack-header > span{ + display:-webkit-box; + display:-ms-flexbox; + display:flex; + -webkit-box-flex:1; + -ms-flex:1; + flex:1; + -webkit-box-align:stretch; + -ms-flex-align:stretch; + align-items:stretch; } + .bp3-panel-stack-header .bp3-heading{ + margin:0 5px; } + +.bp3-button.bp3-panel-stack-header-back{ + margin-left:5px; + padding-left:0; + white-space:nowrap; } + .bp3-button.bp3-panel-stack-header-back .bp3-icon{ + margin:0 2px; } + +.bp3-panel-stack-view{ + position:absolute; + top:0; + right:0; + bottom:0; + left:0; + display:-webkit-box; + display:-ms-flexbox; + display:flex; + -webkit-box-orient:vertical; + -webkit-box-direction:normal; + -ms-flex-direction:column; + flex-direction:column; + margin-right:-1px; + border-right:1px solid rgba(16, 22, 26, 0.15); + background-color:#ffffff; + overflow-y:auto; } + .bp3-dark .bp3-panel-stack-view{ + background-color:#30404d; } + +.bp3-panel-stack-push .bp3-panel-stack-enter, .bp3-panel-stack-push .bp3-panel-stack-appear{ + -webkit-transform:translateX(100%); + transform:translateX(100%); + opacity:0; } + +.bp3-panel-stack-push .bp3-panel-stack-enter-active, .bp3-panel-stack-push .bp3-panel-stack-appear-active{ + -webkit-transform:translate(0%); + transform:translate(0%); + opacity:1; + -webkit-transition-property:opacity, -webkit-transform; + transition-property:opacity, -webkit-transform; + transition-property:transform, opacity; + transition-property:transform, opacity, -webkit-transform; + -webkit-transition-duration:400ms; + transition-duration:400ms; + -webkit-transition-timing-function:ease; + transition-timing-function:ease; + -webkit-transition-delay:0; + transition-delay:0; } + +.bp3-panel-stack-push .bp3-panel-stack-exit{ + -webkit-transform:translate(0%); + transform:translate(0%); + opacity:1; } + +.bp3-panel-stack-push .bp3-panel-stack-exit-active{ + -webkit-transform:translateX(-50%); + transform:translateX(-50%); + opacity:0; + -webkit-transition-property:opacity, -webkit-transform; + transition-property:opacity, -webkit-transform; + transition-property:transform, opacity; + transition-property:transform, opacity, -webkit-transform; + -webkit-transition-duration:400ms; + transition-duration:400ms; + -webkit-transition-timing-function:ease; + transition-timing-function:ease; + -webkit-transition-delay:0; + transition-delay:0; } + +.bp3-panel-stack-pop .bp3-panel-stack-enter, .bp3-panel-stack-pop .bp3-panel-stack-appear{ + -webkit-transform:translateX(-50%); + transform:translateX(-50%); + opacity:0; } + +.bp3-panel-stack-pop .bp3-panel-stack-enter-active, .bp3-panel-stack-pop .bp3-panel-stack-appear-active{ + -webkit-transform:translate(0%); + transform:translate(0%); + opacity:1; + -webkit-transition-property:opacity, -webkit-transform; + transition-property:opacity, -webkit-transform; + transition-property:transform, opacity; + transition-property:transform, opacity, -webkit-transform; + -webkit-transition-duration:400ms; + transition-duration:400ms; + -webkit-transition-timing-function:ease; + transition-timing-function:ease; + -webkit-transition-delay:0; + transition-delay:0; } + +.bp3-panel-stack-pop .bp3-panel-stack-exit{ + -webkit-transform:translate(0%); + transform:translate(0%); + opacity:1; } + +.bp3-panel-stack-pop .bp3-panel-stack-exit-active{ + -webkit-transform:translateX(100%); + transform:translateX(100%); + opacity:0; + -webkit-transition-property:opacity, -webkit-transform; + transition-property:opacity, -webkit-transform; + transition-property:transform, opacity; + transition-property:transform, opacity, -webkit-transform; + -webkit-transition-duration:400ms; + transition-duration:400ms; + -webkit-transition-timing-function:ease; + transition-timing-function:ease; + -webkit-transition-delay:0; + transition-delay:0; } +.bp3-popover{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 2px 4px rgba(16, 22, 26, 0.2), 0 8px 24px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 2px 4px rgba(16, 22, 26, 0.2), 0 8px 24px rgba(16, 22, 26, 0.2); + -webkit-transform:scale(1); + transform:scale(1); + display:inline-block; + z-index:20; + border-radius:3px; } + .bp3-popover .bp3-popover-arrow{ + position:absolute; + width:30px; + height:30px; } + .bp3-popover .bp3-popover-arrow::before{ + margin:5px; + width:20px; + height:20px; } + .bp3-tether-element-attached-bottom.bp3-tether-target-attached-top > .bp3-popover{ + margin-top:-17px; + margin-bottom:17px; } + .bp3-tether-element-attached-bottom.bp3-tether-target-attached-top > .bp3-popover > .bp3-popover-arrow{ + bottom:-11px; } + .bp3-tether-element-attached-bottom.bp3-tether-target-attached-top > .bp3-popover > .bp3-popover-arrow svg{ + -webkit-transform:rotate(-90deg); + transform:rotate(-90deg); } + .bp3-tether-element-attached-left.bp3-tether-target-attached-right > .bp3-popover{ + margin-left:17px; } + .bp3-tether-element-attached-left.bp3-tether-target-attached-right > .bp3-popover > .bp3-popover-arrow{ + left:-11px; } + .bp3-tether-element-attached-left.bp3-tether-target-attached-right > .bp3-popover > .bp3-popover-arrow svg{ + -webkit-transform:rotate(0); + transform:rotate(0); } + .bp3-tether-element-attached-top.bp3-tether-target-attached-bottom > .bp3-popover{ + margin-top:17px; } + .bp3-tether-element-attached-top.bp3-tether-target-attached-bottom > .bp3-popover > .bp3-popover-arrow{ + top:-11px; } + .bp3-tether-element-attached-top.bp3-tether-target-attached-bottom > .bp3-popover > .bp3-popover-arrow svg{ + -webkit-transform:rotate(90deg); + transform:rotate(90deg); } + .bp3-tether-element-attached-right.bp3-tether-target-attached-left > .bp3-popover{ + margin-right:17px; + margin-left:-17px; } + .bp3-tether-element-attached-right.bp3-tether-target-attached-left > .bp3-popover > .bp3-popover-arrow{ + right:-11px; } + .bp3-tether-element-attached-right.bp3-tether-target-attached-left > .bp3-popover > .bp3-popover-arrow svg{ + -webkit-transform:rotate(180deg); + transform:rotate(180deg); } + .bp3-tether-element-attached-middle > .bp3-popover > .bp3-popover-arrow{ + top:50%; + -webkit-transform:translateY(-50%); + transform:translateY(-50%); } + .bp3-tether-element-attached-center > .bp3-popover > .bp3-popover-arrow{ + right:50%; + -webkit-transform:translateX(50%); + transform:translateX(50%); } + .bp3-tether-element-attached-top.bp3-tether-target-attached-top > .bp3-popover > .bp3-popover-arrow{ + top:-0.3934px; } + .bp3-tether-element-attached-right.bp3-tether-target-attached-right > .bp3-popover > .bp3-popover-arrow{ + right:-0.3934px; } + .bp3-tether-element-attached-left.bp3-tether-target-attached-left > .bp3-popover > .bp3-popover-arrow{ + left:-0.3934px; } + .bp3-tether-element-attached-bottom.bp3-tether-target-attached-bottom > .bp3-popover > .bp3-popover-arrow{ + bottom:-0.3934px; } + .bp3-tether-element-attached-top.bp3-tether-element-attached-left > .bp3-popover{ + -webkit-transform-origin:top left; + transform-origin:top left; } + .bp3-tether-element-attached-top.bp3-tether-element-attached-center > .bp3-popover{ + -webkit-transform-origin:top center; + transform-origin:top center; } + .bp3-tether-element-attached-top.bp3-tether-element-attached-right > .bp3-popover{ + -webkit-transform-origin:top right; + transform-origin:top right; } + .bp3-tether-element-attached-middle.bp3-tether-element-attached-left > .bp3-popover{ + -webkit-transform-origin:center left; + transform-origin:center left; } + .bp3-tether-element-attached-middle.bp3-tether-element-attached-center > .bp3-popover{ + -webkit-transform-origin:center center; + transform-origin:center center; } + .bp3-tether-element-attached-middle.bp3-tether-element-attached-right > .bp3-popover{ + -webkit-transform-origin:center right; + transform-origin:center right; } + .bp3-tether-element-attached-bottom.bp3-tether-element-attached-left > .bp3-popover{ + -webkit-transform-origin:bottom left; + transform-origin:bottom left; } + .bp3-tether-element-attached-bottom.bp3-tether-element-attached-center > .bp3-popover{ + -webkit-transform-origin:bottom center; + transform-origin:bottom center; } + .bp3-tether-element-attached-bottom.bp3-tether-element-attached-right > .bp3-popover{ + -webkit-transform-origin:bottom right; + transform-origin:bottom right; } + .bp3-popover .bp3-popover-content{ + background:#ffffff; + color:inherit; } + .bp3-popover .bp3-popover-arrow::before{ + -webkit-box-shadow:1px 1px 6px rgba(16, 22, 26, 0.2); + box-shadow:1px 1px 6px rgba(16, 22, 26, 0.2); } + .bp3-popover .bp3-popover-arrow-border{ + fill:#10161a; + fill-opacity:0.1; } + .bp3-popover .bp3-popover-arrow-fill{ + fill:#ffffff; } + .bp3-popover-enter > .bp3-popover, .bp3-popover-appear > .bp3-popover{ + -webkit-transform:scale(0.3); + transform:scale(0.3); } + .bp3-popover-enter-active > .bp3-popover, .bp3-popover-appear-active > .bp3-popover{ + -webkit-transform:scale(1); + transform:scale(1); + -webkit-transition-property:-webkit-transform; + transition-property:-webkit-transform; + transition-property:transform; + transition-property:transform, -webkit-transform; + -webkit-transition-duration:300ms; + transition-duration:300ms; + -webkit-transition-timing-function:cubic-bezier(0.54, 1.12, 0.38, 1.11); + transition-timing-function:cubic-bezier(0.54, 1.12, 0.38, 1.11); + -webkit-transition-delay:0; + transition-delay:0; } + .bp3-popover-exit > .bp3-popover{ + -webkit-transform:scale(1); + transform:scale(1); } + .bp3-popover-exit-active > .bp3-popover{ + -webkit-transform:scale(0.3); + transform:scale(0.3); + -webkit-transition-property:-webkit-transform; + transition-property:-webkit-transform; + transition-property:transform; + transition-property:transform, -webkit-transform; + -webkit-transition-duration:300ms; + transition-duration:300ms; + -webkit-transition-timing-function:cubic-bezier(0.54, 1.12, 0.38, 1.11); + transition-timing-function:cubic-bezier(0.54, 1.12, 0.38, 1.11); + -webkit-transition-delay:0; + transition-delay:0; } + .bp3-popover .bp3-popover-content{ + position:relative; + border-radius:3px; } + .bp3-popover.bp3-popover-content-sizing .bp3-popover-content{ + max-width:350px; + padding:20px; } + .bp3-popover-target + .bp3-overlay .bp3-popover.bp3-popover-content-sizing{ + width:350px; } + .bp3-popover.bp3-minimal{ + margin:0 !important; } + .bp3-popover.bp3-minimal .bp3-popover-arrow{ + display:none; } + .bp3-popover.bp3-minimal.bp3-popover{ + -webkit-transform:scale(1); + transform:scale(1); } + .bp3-popover-enter > .bp3-popover.bp3-minimal.bp3-popover, .bp3-popover-appear > .bp3-popover.bp3-minimal.bp3-popover{ + -webkit-transform:scale(1); + transform:scale(1); } + .bp3-popover-enter-active > .bp3-popover.bp3-minimal.bp3-popover, .bp3-popover-appear-active > .bp3-popover.bp3-minimal.bp3-popover{ + -webkit-transform:scale(1); + transform:scale(1); + -webkit-transition-property:-webkit-transform; + transition-property:-webkit-transform; + transition-property:transform; + transition-property:transform, -webkit-transform; + -webkit-transition-duration:100ms; + transition-duration:100ms; + -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + -webkit-transition-delay:0; + transition-delay:0; } + .bp3-popover-exit > .bp3-popover.bp3-minimal.bp3-popover{ + -webkit-transform:scale(1); + transform:scale(1); } + .bp3-popover-exit-active > .bp3-popover.bp3-minimal.bp3-popover{ + -webkit-transform:scale(1); + transform:scale(1); + -webkit-transition-property:-webkit-transform; + transition-property:-webkit-transform; + transition-property:transform; + transition-property:transform, -webkit-transform; + -webkit-transition-duration:100ms; + transition-duration:100ms; + -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + -webkit-transition-delay:0; + transition-delay:0; } + .bp3-popover.bp3-dark, + .bp3-dark .bp3-popover{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 2px 4px rgba(16, 22, 26, 0.4), 0 8px 24px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 2px 4px rgba(16, 22, 26, 0.4), 0 8px 24px rgba(16, 22, 26, 0.4); } + .bp3-popover.bp3-dark .bp3-popover-content, + .bp3-dark .bp3-popover .bp3-popover-content{ + background:#30404d; + color:inherit; } + .bp3-popover.bp3-dark .bp3-popover-arrow::before, + .bp3-dark .bp3-popover .bp3-popover-arrow::before{ + -webkit-box-shadow:1px 1px 6px rgba(16, 22, 26, 0.4); + box-shadow:1px 1px 6px rgba(16, 22, 26, 0.4); } + .bp3-popover.bp3-dark .bp3-popover-arrow-border, + .bp3-dark .bp3-popover .bp3-popover-arrow-border{ + fill:#10161a; + fill-opacity:0.2; } + .bp3-popover.bp3-dark .bp3-popover-arrow-fill, + .bp3-dark .bp3-popover .bp3-popover-arrow-fill{ + fill:#30404d; } + +.bp3-popover-arrow::before{ + display:block; + position:absolute; + -webkit-transform:rotate(45deg); + transform:rotate(45deg); + border-radius:2px; + content:""; } + +.bp3-tether-pinned .bp3-popover-arrow{ + display:none; } + +.bp3-popover-backdrop{ + background:rgba(255, 255, 255, 0); } + +.bp3-transition-container{ + opacity:1; + display:-webkit-box; + display:-ms-flexbox; + display:flex; + z-index:20; } + .bp3-transition-container.bp3-popover-enter, .bp3-transition-container.bp3-popover-appear{ + opacity:0; } + .bp3-transition-container.bp3-popover-enter-active, .bp3-transition-container.bp3-popover-appear-active{ + opacity:1; + -webkit-transition-property:opacity; + transition-property:opacity; + -webkit-transition-duration:100ms; + transition-duration:100ms; + -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + -webkit-transition-delay:0; + transition-delay:0; } + .bp3-transition-container.bp3-popover-exit{ + opacity:1; } + .bp3-transition-container.bp3-popover-exit-active{ + opacity:0; + -webkit-transition-property:opacity; + transition-property:opacity; + -webkit-transition-duration:100ms; + transition-duration:100ms; + -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + -webkit-transition-delay:0; + transition-delay:0; } + .bp3-transition-container:focus{ + outline:none; } + .bp3-transition-container.bp3-popover-leave .bp3-popover-content{ + pointer-events:none; } + .bp3-transition-container[data-x-out-of-boundaries]{ + display:none; } + +span.bp3-popover-target{ + display:inline-block; } + +.bp3-popover-wrapper.bp3-fill{ + width:100%; } + +.bp3-portal{ + position:absolute; + top:0; + right:0; + left:0; } +@-webkit-keyframes linear-progress-bar-stripes{ + from{ + background-position:0 0; } + to{ + background-position:30px 0; } } +@keyframes linear-progress-bar-stripes{ + from{ + background-position:0 0; } + to{ + background-position:30px 0; } } + +.bp3-progress-bar{ + display:block; + position:relative; + border-radius:40px; + background:rgba(92, 112, 128, 0.2); + width:100%; + height:8px; + overflow:hidden; } + .bp3-progress-bar .bp3-progress-meter{ + position:absolute; + border-radius:40px; + background:linear-gradient(-45deg, rgba(255, 255, 255, 0.2) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.2) 50%, rgba(255, 255, 255, 0.2) 75%, transparent 75%); + background-color:rgba(92, 112, 128, 0.8); + background-size:30px 30px; + width:100%; + height:100%; + -webkit-transition:width 200ms cubic-bezier(0.4, 1, 0.75, 0.9); + transition:width 200ms cubic-bezier(0.4, 1, 0.75, 0.9); } + .bp3-progress-bar:not(.bp3-no-animation):not(.bp3-no-stripes) .bp3-progress-meter{ + animation:linear-progress-bar-stripes 300ms linear infinite reverse; } + .bp3-progress-bar.bp3-no-stripes .bp3-progress-meter{ + background-image:none; } + +.bp3-dark .bp3-progress-bar{ + background:rgba(16, 22, 26, 0.5); } + .bp3-dark .bp3-progress-bar .bp3-progress-meter{ + background-color:#8a9ba8; } + +.bp3-progress-bar.bp3-intent-primary .bp3-progress-meter{ + background-color:#137cbd; } + +.bp3-progress-bar.bp3-intent-success .bp3-progress-meter{ + background-color:#0f9960; } + +.bp3-progress-bar.bp3-intent-warning .bp3-progress-meter{ + background-color:#d9822b; } + +.bp3-progress-bar.bp3-intent-danger .bp3-progress-meter{ + background-color:#db3737; } +@-webkit-keyframes skeleton-glow{ + from{ + border-color:rgba(206, 217, 224, 0.2); + background:rgba(206, 217, 224, 0.2); } + to{ + border-color:rgba(92, 112, 128, 0.2); + background:rgba(92, 112, 128, 0.2); } } +@keyframes skeleton-glow{ + from{ + border-color:rgba(206, 217, 224, 0.2); + background:rgba(206, 217, 224, 0.2); } + to{ + border-color:rgba(92, 112, 128, 0.2); + background:rgba(92, 112, 128, 0.2); } } +.bp3-skeleton{ + border-color:rgba(206, 217, 224, 0.2) !important; + border-radius:2px; + -webkit-box-shadow:none !important; + box-shadow:none !important; + background:rgba(206, 217, 224, 0.2); + background-clip:padding-box !important; + cursor:default; + color:transparent !important; + -webkit-animation:1000ms linear infinite alternate skeleton-glow; + animation:1000ms linear infinite alternate skeleton-glow; + pointer-events:none; + -webkit-user-select:none; + -moz-user-select:none; + -ms-user-select:none; + user-select:none; } + .bp3-skeleton::before, .bp3-skeleton::after, + .bp3-skeleton *{ + visibility:hidden !important; } +.bp3-slider{ + width:100%; + min-width:150px; + height:40px; + position:relative; + outline:none; + cursor:default; + -webkit-user-select:none; + -moz-user-select:none; + -ms-user-select:none; + user-select:none; } + .bp3-slider:hover{ + cursor:pointer; } + .bp3-slider:active{ + cursor:-webkit-grabbing; + cursor:grabbing; } + .bp3-slider.bp3-disabled{ + opacity:0.5; + cursor:not-allowed; } + .bp3-slider.bp3-slider-unlabeled{ + height:16px; } + +.bp3-slider-track, +.bp3-slider-progress{ + top:5px; + right:0; + left:0; + height:6px; + position:absolute; } + +.bp3-slider-track{ + border-radius:3px; + overflow:hidden; } + +.bp3-slider-progress{ + background:rgba(92, 112, 128, 0.2); } + .bp3-dark .bp3-slider-progress{ + background:rgba(16, 22, 26, 0.5); } + .bp3-slider-progress.bp3-intent-primary{ + background-color:#137cbd; } + .bp3-slider-progress.bp3-intent-success{ + background-color:#0f9960; } + .bp3-slider-progress.bp3-intent-warning{ + background-color:#d9822b; } + .bp3-slider-progress.bp3-intent-danger{ + background-color:#db3737; } + +.bp3-slider-handle{ + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1); + background-color:#f5f8fa; + background-image:-webkit-gradient(linear, left top, left bottom, from(rgba(255, 255, 255, 0.8)), to(rgba(255, 255, 255, 0))); + background-image:linear-gradient(to bottom, rgba(255, 255, 255, 0.8), rgba(255, 255, 255, 0)); + color:#182026; + position:absolute; + top:0; + left:0; + border-radius:3px; + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 1px 1px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 1px 1px rgba(16, 22, 26, 0.2); + cursor:pointer; + width:16px; + height:16px; } + .bp3-slider-handle:hover{ + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1); + background-clip:padding-box; + background-color:#ebf1f5; } + .bp3-slider-handle:active, .bp3-slider-handle.bp3-active{ + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 1px 2px rgba(16, 22, 26, 0.2); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 1px 2px rgba(16, 22, 26, 0.2); + background-color:#d8e1e8; + background-image:none; } + .bp3-slider-handle:disabled, .bp3-slider-handle.bp3-disabled{ + outline:none; + -webkit-box-shadow:none; + box-shadow:none; + background-color:rgba(206, 217, 224, 0.5); + background-image:none; + cursor:not-allowed; + color:rgba(92, 112, 128, 0.6); } + .bp3-slider-handle:disabled.bp3-active, .bp3-slider-handle:disabled.bp3-active:hover, .bp3-slider-handle.bp3-disabled.bp3-active, .bp3-slider-handle.bp3-disabled.bp3-active:hover{ + background:rgba(206, 217, 224, 0.7); } + .bp3-slider-handle:focus{ + z-index:1; } + .bp3-slider-handle:hover{ + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1); + background-clip:padding-box; + background-color:#ebf1f5; + z-index:2; + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 1px 1px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 1px 1px rgba(16, 22, 26, 0.2); + cursor:-webkit-grab; + cursor:grab; } + .bp3-slider-handle.bp3-active{ + -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 1px 2px rgba(16, 22, 26, 0.2); + box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 1px 2px rgba(16, 22, 26, 0.2); + background-color:#d8e1e8; + background-image:none; + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 1px 1px rgba(16, 22, 26, 0.1); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 1px 1px rgba(16, 22, 26, 0.1); + cursor:-webkit-grabbing; + cursor:grabbing; } + .bp3-disabled .bp3-slider-handle{ + -webkit-box-shadow:none; + box-shadow:none; + background:#bfccd6; + pointer-events:none; } + .bp3-dark .bp3-slider-handle{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4); + background-color:#394b59; + background-image:-webkit-gradient(linear, left top, left bottom, from(rgba(255, 255, 255, 0.05)), to(rgba(255, 255, 255, 0))); + background-image:linear-gradient(to bottom, rgba(255, 255, 255, 0.05), rgba(255, 255, 255, 0)); + color:#f5f8fa; } + .bp3-dark .bp3-slider-handle:hover, .bp3-dark .bp3-slider-handle:active, .bp3-dark .bp3-slider-handle.bp3-active{ + color:#f5f8fa; } + .bp3-dark .bp3-slider-handle:hover{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4); + background-color:#30404d; } + .bp3-dark .bp3-slider-handle:active, .bp3-dark .bp3-slider-handle.bp3-active{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.6), inset 0 1px 2px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.6), inset 0 1px 2px rgba(16, 22, 26, 0.2); + background-color:#202b33; + background-image:none; } + .bp3-dark .bp3-slider-handle:disabled, .bp3-dark .bp3-slider-handle.bp3-disabled{ + -webkit-box-shadow:none; + box-shadow:none; + background-color:rgba(57, 75, 89, 0.5); + background-image:none; + color:rgba(167, 182, 194, 0.6); } + .bp3-dark .bp3-slider-handle:disabled.bp3-active, .bp3-dark .bp3-slider-handle.bp3-disabled.bp3-active{ + background:rgba(57, 75, 89, 0.7); } + .bp3-dark .bp3-slider-handle .bp3-button-spinner .bp3-spinner-head{ + background:rgba(16, 22, 26, 0.5); + stroke:#8a9ba8; } + .bp3-dark .bp3-slider-handle, .bp3-dark .bp3-slider-handle:hover{ + background-color:#394b59; } + .bp3-dark .bp3-slider-handle.bp3-active{ + background-color:#293742; } + .bp3-dark .bp3-disabled .bp3-slider-handle{ + border-color:#5c7080; + -webkit-box-shadow:none; + box-shadow:none; + background:#5c7080; } + .bp3-slider-handle .bp3-slider-label{ + margin-left:8px; + border-radius:3px; + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 2px 4px rgba(16, 22, 26, 0.2), 0 8px 24px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 2px 4px rgba(16, 22, 26, 0.2), 0 8px 24px rgba(16, 22, 26, 0.2); + background:#394b59; + color:#f5f8fa; } + .bp3-dark .bp3-slider-handle .bp3-slider-label{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 2px 4px rgba(16, 22, 26, 0.4), 0 8px 24px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 2px 4px rgba(16, 22, 26, 0.4), 0 8px 24px rgba(16, 22, 26, 0.4); + background:#e1e8ed; + color:#394b59; } + .bp3-disabled .bp3-slider-handle .bp3-slider-label{ + -webkit-box-shadow:none; + box-shadow:none; } + .bp3-slider-handle.bp3-start, .bp3-slider-handle.bp3-end{ + width:8px; } + .bp3-slider-handle.bp3-start{ + border-top-right-radius:0; + border-bottom-right-radius:0; } + .bp3-slider-handle.bp3-end{ + margin-left:8px; + border-top-left-radius:0; + border-bottom-left-radius:0; } + .bp3-slider-handle.bp3-end .bp3-slider-label{ + margin-left:0; } + +.bp3-slider-label{ + -webkit-transform:translate(-50%, 20px); + transform:translate(-50%, 20px); + display:inline-block; + position:absolute; + padding:2px 5px; + vertical-align:top; + line-height:1; + font-size:12px; } + +.bp3-slider.bp3-vertical{ + width:40px; + min-width:40px; + height:150px; } + .bp3-slider.bp3-vertical .bp3-slider-track, + .bp3-slider.bp3-vertical .bp3-slider-progress{ + top:0; + bottom:0; + left:5px; + width:6px; + height:auto; } + .bp3-slider.bp3-vertical .bp3-slider-progress{ + top:auto; } + .bp3-slider.bp3-vertical .bp3-slider-label{ + -webkit-transform:translate(20px, 50%); + transform:translate(20px, 50%); } + .bp3-slider.bp3-vertical .bp3-slider-handle{ + top:auto; } + .bp3-slider.bp3-vertical .bp3-slider-handle .bp3-slider-label{ + margin-top:-8px; + margin-left:0; } + .bp3-slider.bp3-vertical .bp3-slider-handle.bp3-end, .bp3-slider.bp3-vertical .bp3-slider-handle.bp3-start{ + margin-left:0; + width:16px; + height:8px; } + .bp3-slider.bp3-vertical .bp3-slider-handle.bp3-start{ + border-top-left-radius:0; + border-bottom-right-radius:3px; } + .bp3-slider.bp3-vertical .bp3-slider-handle.bp3-start .bp3-slider-label{ + -webkit-transform:translate(20px); + transform:translate(20px); } + .bp3-slider.bp3-vertical .bp3-slider-handle.bp3-end{ + margin-bottom:8px; + border-top-left-radius:3px; + border-bottom-left-radius:0; + border-bottom-right-radius:0; } + +@-webkit-keyframes pt-spinner-animation{ + from{ + -webkit-transform:rotate(0deg); + transform:rotate(0deg); } + to{ + -webkit-transform:rotate(360deg); + transform:rotate(360deg); } } + +@keyframes pt-spinner-animation{ + from{ + -webkit-transform:rotate(0deg); + transform:rotate(0deg); } + to{ + -webkit-transform:rotate(360deg); + transform:rotate(360deg); } } + +.bp3-spinner{ + display:-webkit-box; + display:-ms-flexbox; + display:flex; + -webkit-box-align:center; + -ms-flex-align:center; + align-items:center; + -webkit-box-pack:center; + -ms-flex-pack:center; + justify-content:center; + overflow:visible; + vertical-align:middle; } + .bp3-spinner svg{ + display:block; } + .bp3-spinner path{ + fill-opacity:0; } + .bp3-spinner .bp3-spinner-head{ + -webkit-transform-origin:center; + transform-origin:center; + -webkit-transition:stroke-dashoffset 200ms cubic-bezier(0.4, 1, 0.75, 0.9); + transition:stroke-dashoffset 200ms cubic-bezier(0.4, 1, 0.75, 0.9); + stroke:rgba(92, 112, 128, 0.8); + stroke-linecap:round; } + .bp3-spinner .bp3-spinner-track{ + stroke:rgba(92, 112, 128, 0.2); } + +.bp3-spinner-animation{ + -webkit-animation:pt-spinner-animation 500ms linear infinite; + animation:pt-spinner-animation 500ms linear infinite; } + .bp3-no-spin > .bp3-spinner-animation{ + -webkit-animation:none; + animation:none; } + +.bp3-dark .bp3-spinner .bp3-spinner-head{ + stroke:#8a9ba8; } + +.bp3-dark .bp3-spinner .bp3-spinner-track{ + stroke:rgba(16, 22, 26, 0.5); } + +.bp3-spinner.bp3-intent-primary .bp3-spinner-head{ + stroke:#137cbd; } + +.bp3-spinner.bp3-intent-success .bp3-spinner-head{ + stroke:#0f9960; } + +.bp3-spinner.bp3-intent-warning .bp3-spinner-head{ + stroke:#d9822b; } + +.bp3-spinner.bp3-intent-danger .bp3-spinner-head{ + stroke:#db3737; } +.bp3-tabs.bp3-vertical{ + display:-webkit-box; + display:-ms-flexbox; + display:flex; } + .bp3-tabs.bp3-vertical > .bp3-tab-list{ + -webkit-box-orient:vertical; + -webkit-box-direction:normal; + -ms-flex-direction:column; + flex-direction:column; + -webkit-box-align:start; + -ms-flex-align:start; + align-items:flex-start; } + .bp3-tabs.bp3-vertical > .bp3-tab-list .bp3-tab{ + border-radius:3px; + width:100%; + padding:0 10px; } + .bp3-tabs.bp3-vertical > .bp3-tab-list .bp3-tab[aria-selected="true"]{ + -webkit-box-shadow:none; + box-shadow:none; + background-color:rgba(19, 124, 189, 0.2); } + .bp3-tabs.bp3-vertical > .bp3-tab-list .bp3-tab-indicator-wrapper .bp3-tab-indicator{ + top:0; + right:0; + bottom:0; + left:0; + border-radius:3px; + background-color:rgba(19, 124, 189, 0.2); + height:auto; } + .bp3-tabs.bp3-vertical > .bp3-tab-panel{ + margin-top:0; + padding-left:20px; } + +.bp3-tab-list{ + display:-webkit-box; + display:-ms-flexbox; + display:flex; + -webkit-box-flex:0; + -ms-flex:0 0 auto; + flex:0 0 auto; + -webkit-box-align:end; + -ms-flex-align:end; + align-items:flex-end; + position:relative; + margin:0; + border:none; + padding:0; + list-style:none; } + .bp3-tab-list > *:not(:last-child){ + margin-right:20px; } + +.bp3-tab{ + overflow:hidden; + text-overflow:ellipsis; + white-space:nowrap; + word-wrap:normal; + -webkit-box-flex:0; + -ms-flex:0 0 auto; + flex:0 0 auto; + position:relative; + cursor:pointer; + max-width:100%; + vertical-align:top; + line-height:30px; + color:#182026; + font-size:14px; } + .bp3-tab a{ + display:block; + text-decoration:none; + color:inherit; } + .bp3-tab-indicator-wrapper ~ .bp3-tab{ + -webkit-box-shadow:none !important; + box-shadow:none !important; + background-color:transparent !important; } + .bp3-tab[aria-disabled="true"]{ + cursor:not-allowed; + color:rgba(92, 112, 128, 0.6); } + .bp3-tab[aria-selected="true"]{ + border-radius:0; + -webkit-box-shadow:inset 0 -3px 0 #106ba3; + box-shadow:inset 0 -3px 0 #106ba3; } + .bp3-tab[aria-selected="true"], .bp3-tab:not([aria-disabled="true"]):hover{ + color:#106ba3; } + .bp3-tab:focus{ + -moz-outline-radius:0; } + .bp3-large > .bp3-tab{ + line-height:40px; + font-size:16px; } + +.bp3-tab-panel{ + margin-top:20px; } + .bp3-tab-panel[aria-hidden="true"]{ + display:none; } + +.bp3-tab-indicator-wrapper{ + position:absolute; + top:0; + left:0; + -webkit-transform:translateX(0), translateY(0); + transform:translateX(0), translateY(0); + -webkit-transition:height, width, -webkit-transform; + transition:height, width, -webkit-transform; + transition:height, transform, width; + transition:height, transform, width, -webkit-transform; + -webkit-transition-duration:200ms; + transition-duration:200ms; + -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + pointer-events:none; } + .bp3-tab-indicator-wrapper .bp3-tab-indicator{ + position:absolute; + right:0; + bottom:0; + left:0; + background-color:#106ba3; + height:3px; } + .bp3-tab-indicator-wrapper.bp3-no-animation{ + -webkit-transition:none; + transition:none; } + +.bp3-dark .bp3-tab{ + color:#f5f8fa; } + .bp3-dark .bp3-tab[aria-disabled="true"]{ + color:rgba(167, 182, 194, 0.6); } + .bp3-dark .bp3-tab[aria-selected="true"]{ + -webkit-box-shadow:inset 0 -3px 0 #48aff0; + box-shadow:inset 0 -3px 0 #48aff0; } + .bp3-dark .bp3-tab[aria-selected="true"], .bp3-dark .bp3-tab:not([aria-disabled="true"]):hover{ + color:#48aff0; } + +.bp3-dark .bp3-tab-indicator{ + background-color:#48aff0; } + +.bp3-flex-expander{ + -webkit-box-flex:1; + -ms-flex:1 1; + flex:1 1; } +.bp3-tag{ + display:-webkit-inline-box; + display:-ms-inline-flexbox; + display:inline-flex; + -webkit-box-orient:horizontal; + -webkit-box-direction:normal; + -ms-flex-direction:row; + flex-direction:row; + -webkit-box-align:center; + -ms-flex-align:center; + align-items:center; + position:relative; + border:none; + border-radius:3px; + -webkit-box-shadow:none; + box-shadow:none; + background-color:#5c7080; + min-width:20px; + max-width:100%; + min-height:20px; + padding:2px 6px; + line-height:16px; + color:#f5f8fa; + font-size:12px; } + .bp3-tag.bp3-interactive{ + cursor:pointer; } + .bp3-tag.bp3-interactive:hover{ + background-color:rgba(92, 112, 128, 0.85); } + .bp3-tag.bp3-interactive.bp3-active, .bp3-tag.bp3-interactive:active{ + background-color:rgba(92, 112, 128, 0.7); } + .bp3-tag > *{ + -webkit-box-flex:0; + -ms-flex-positive:0; + flex-grow:0; + -ms-flex-negative:0; + flex-shrink:0; } + .bp3-tag > .bp3-fill{ + -webkit-box-flex:1; + -ms-flex-positive:1; + flex-grow:1; + -ms-flex-negative:1; + flex-shrink:1; } + .bp3-tag::before, + .bp3-tag > *{ + margin-right:4px; } + .bp3-tag:empty::before, + .bp3-tag > :last-child{ + margin-right:0; } + .bp3-tag:focus{ + outline:rgba(19, 124, 189, 0.6) auto 2px; + outline-offset:0; + -moz-outline-radius:6px; } + .bp3-tag.bp3-round{ + border-radius:30px; + padding-right:8px; + padding-left:8px; } + .bp3-dark .bp3-tag{ + background-color:#bfccd6; + color:#182026; } + .bp3-dark .bp3-tag.bp3-interactive{ + cursor:pointer; } + .bp3-dark .bp3-tag.bp3-interactive:hover{ + background-color:rgba(191, 204, 214, 0.85); } + .bp3-dark .bp3-tag.bp3-interactive.bp3-active, .bp3-dark .bp3-tag.bp3-interactive:active{ + background-color:rgba(191, 204, 214, 0.7); } + .bp3-dark .bp3-tag > .bp3-icon, .bp3-dark .bp3-tag .bp3-icon-standard, .bp3-dark .bp3-tag .bp3-icon-large{ + fill:currentColor; } + .bp3-tag > .bp3-icon, .bp3-tag .bp3-icon-standard, .bp3-tag .bp3-icon-large{ + fill:#ffffff; } + .bp3-tag.bp3-large, + .bp3-large .bp3-tag{ + min-width:30px; + min-height:30px; + padding:0 10px; + line-height:20px; + font-size:14px; } + .bp3-tag.bp3-large::before, + .bp3-tag.bp3-large > *, + .bp3-large .bp3-tag::before, + .bp3-large .bp3-tag > *{ + margin-right:7px; } + .bp3-tag.bp3-large:empty::before, + .bp3-tag.bp3-large > :last-child, + .bp3-large .bp3-tag:empty::before, + .bp3-large .bp3-tag > :last-child{ + margin-right:0; } + .bp3-tag.bp3-large.bp3-round, + .bp3-large .bp3-tag.bp3-round{ + padding-right:12px; + padding-left:12px; } + .bp3-tag.bp3-intent-primary{ + background:#137cbd; + color:#ffffff; } + .bp3-tag.bp3-intent-primary.bp3-interactive{ + cursor:pointer; } + .bp3-tag.bp3-intent-primary.bp3-interactive:hover{ + background-color:rgba(19, 124, 189, 0.85); } + .bp3-tag.bp3-intent-primary.bp3-interactive.bp3-active, .bp3-tag.bp3-intent-primary.bp3-interactive:active{ + background-color:rgba(19, 124, 189, 0.7); } + .bp3-tag.bp3-intent-success{ + background:#0f9960; + color:#ffffff; } + .bp3-tag.bp3-intent-success.bp3-interactive{ + cursor:pointer; } + .bp3-tag.bp3-intent-success.bp3-interactive:hover{ + background-color:rgba(15, 153, 96, 0.85); } + .bp3-tag.bp3-intent-success.bp3-interactive.bp3-active, .bp3-tag.bp3-intent-success.bp3-interactive:active{ + background-color:rgba(15, 153, 96, 0.7); } + .bp3-tag.bp3-intent-warning{ + background:#d9822b; + color:#ffffff; } + .bp3-tag.bp3-intent-warning.bp3-interactive{ + cursor:pointer; } + .bp3-tag.bp3-intent-warning.bp3-interactive:hover{ + background-color:rgba(217, 130, 43, 0.85); } + .bp3-tag.bp3-intent-warning.bp3-interactive.bp3-active, .bp3-tag.bp3-intent-warning.bp3-interactive:active{ + background-color:rgba(217, 130, 43, 0.7); } + .bp3-tag.bp3-intent-danger{ + background:#db3737; + color:#ffffff; } + .bp3-tag.bp3-intent-danger.bp3-interactive{ + cursor:pointer; } + .bp3-tag.bp3-intent-danger.bp3-interactive:hover{ + background-color:rgba(219, 55, 55, 0.85); } + .bp3-tag.bp3-intent-danger.bp3-interactive.bp3-active, .bp3-tag.bp3-intent-danger.bp3-interactive:active{ + background-color:rgba(219, 55, 55, 0.7); } + .bp3-tag.bp3-fill{ + display:-webkit-box; + display:-ms-flexbox; + display:flex; + width:100%; } + .bp3-tag.bp3-minimal > .bp3-icon, .bp3-tag.bp3-minimal .bp3-icon-standard, .bp3-tag.bp3-minimal .bp3-icon-large{ + fill:#5c7080; } + .bp3-tag.bp3-minimal:not([class*="bp3-intent-"]){ + background-color:rgba(138, 155, 168, 0.2); + color:#182026; } + .bp3-tag.bp3-minimal:not([class*="bp3-intent-"]).bp3-interactive{ + cursor:pointer; } + .bp3-tag.bp3-minimal:not([class*="bp3-intent-"]).bp3-interactive:hover{ + background-color:rgba(92, 112, 128, 0.3); } + .bp3-tag.bp3-minimal:not([class*="bp3-intent-"]).bp3-interactive.bp3-active, .bp3-tag.bp3-minimal:not([class*="bp3-intent-"]).bp3-interactive:active{ + background-color:rgba(92, 112, 128, 0.4); } + .bp3-dark .bp3-tag.bp3-minimal:not([class*="bp3-intent-"]){ + color:#f5f8fa; } + .bp3-dark .bp3-tag.bp3-minimal:not([class*="bp3-intent-"]).bp3-interactive{ + cursor:pointer; } + .bp3-dark .bp3-tag.bp3-minimal:not([class*="bp3-intent-"]).bp3-interactive:hover{ + background-color:rgba(191, 204, 214, 0.3); } + .bp3-dark .bp3-tag.bp3-minimal:not([class*="bp3-intent-"]).bp3-interactive.bp3-active, .bp3-dark .bp3-tag.bp3-minimal:not([class*="bp3-intent-"]).bp3-interactive:active{ + background-color:rgba(191, 204, 214, 0.4); } + .bp3-dark .bp3-tag.bp3-minimal:not([class*="bp3-intent-"]) > .bp3-icon, .bp3-dark .bp3-tag.bp3-minimal:not([class*="bp3-intent-"]) .bp3-icon-standard, .bp3-dark .bp3-tag.bp3-minimal:not([class*="bp3-intent-"]) .bp3-icon-large{ + fill:#a7b6c2; } + .bp3-tag.bp3-minimal.bp3-intent-primary{ + background-color:rgba(19, 124, 189, 0.15); + color:#106ba3; } + .bp3-tag.bp3-minimal.bp3-intent-primary.bp3-interactive{ + cursor:pointer; } + .bp3-tag.bp3-minimal.bp3-intent-primary.bp3-interactive:hover{ + background-color:rgba(19, 124, 189, 0.25); } + .bp3-tag.bp3-minimal.bp3-intent-primary.bp3-interactive.bp3-active, .bp3-tag.bp3-minimal.bp3-intent-primary.bp3-interactive:active{ + background-color:rgba(19, 124, 189, 0.35); } + .bp3-tag.bp3-minimal.bp3-intent-primary > .bp3-icon, .bp3-tag.bp3-minimal.bp3-intent-primary .bp3-icon-standard, .bp3-tag.bp3-minimal.bp3-intent-primary .bp3-icon-large{ + fill:#137cbd; } + .bp3-dark .bp3-tag.bp3-minimal.bp3-intent-primary{ + background-color:rgba(19, 124, 189, 0.25); + color:#48aff0; } + .bp3-dark .bp3-tag.bp3-minimal.bp3-intent-primary.bp3-interactive{ + cursor:pointer; } + .bp3-dark .bp3-tag.bp3-minimal.bp3-intent-primary.bp3-interactive:hover{ + background-color:rgba(19, 124, 189, 0.35); } + .bp3-dark .bp3-tag.bp3-minimal.bp3-intent-primary.bp3-interactive.bp3-active, .bp3-dark .bp3-tag.bp3-minimal.bp3-intent-primary.bp3-interactive:active{ + background-color:rgba(19, 124, 189, 0.45); } + .bp3-tag.bp3-minimal.bp3-intent-success{ + background-color:rgba(15, 153, 96, 0.15); + color:#0d8050; } + .bp3-tag.bp3-minimal.bp3-intent-success.bp3-interactive{ + cursor:pointer; } + .bp3-tag.bp3-minimal.bp3-intent-success.bp3-interactive:hover{ + background-color:rgba(15, 153, 96, 0.25); } + .bp3-tag.bp3-minimal.bp3-intent-success.bp3-interactive.bp3-active, .bp3-tag.bp3-minimal.bp3-intent-success.bp3-interactive:active{ + background-color:rgba(15, 153, 96, 0.35); } + .bp3-tag.bp3-minimal.bp3-intent-success > .bp3-icon, .bp3-tag.bp3-minimal.bp3-intent-success .bp3-icon-standard, .bp3-tag.bp3-minimal.bp3-intent-success .bp3-icon-large{ + fill:#0f9960; } + .bp3-dark .bp3-tag.bp3-minimal.bp3-intent-success{ + background-color:rgba(15, 153, 96, 0.25); + color:#3dcc91; } + .bp3-dark .bp3-tag.bp3-minimal.bp3-intent-success.bp3-interactive{ + cursor:pointer; } + .bp3-dark .bp3-tag.bp3-minimal.bp3-intent-success.bp3-interactive:hover{ + background-color:rgba(15, 153, 96, 0.35); } + .bp3-dark .bp3-tag.bp3-minimal.bp3-intent-success.bp3-interactive.bp3-active, .bp3-dark .bp3-tag.bp3-minimal.bp3-intent-success.bp3-interactive:active{ + background-color:rgba(15, 153, 96, 0.45); } + .bp3-tag.bp3-minimal.bp3-intent-warning{ + background-color:rgba(217, 130, 43, 0.15); + color:#bf7326; } + .bp3-tag.bp3-minimal.bp3-intent-warning.bp3-interactive{ + cursor:pointer; } + .bp3-tag.bp3-minimal.bp3-intent-warning.bp3-interactive:hover{ + background-color:rgba(217, 130, 43, 0.25); } + .bp3-tag.bp3-minimal.bp3-intent-warning.bp3-interactive.bp3-active, .bp3-tag.bp3-minimal.bp3-intent-warning.bp3-interactive:active{ + background-color:rgba(217, 130, 43, 0.35); } + .bp3-tag.bp3-minimal.bp3-intent-warning > .bp3-icon, .bp3-tag.bp3-minimal.bp3-intent-warning .bp3-icon-standard, .bp3-tag.bp3-minimal.bp3-intent-warning .bp3-icon-large{ + fill:#d9822b; } + .bp3-dark .bp3-tag.bp3-minimal.bp3-intent-warning{ + background-color:rgba(217, 130, 43, 0.25); + color:#ffb366; } + .bp3-dark .bp3-tag.bp3-minimal.bp3-intent-warning.bp3-interactive{ + cursor:pointer; } + .bp3-dark .bp3-tag.bp3-minimal.bp3-intent-warning.bp3-interactive:hover{ + background-color:rgba(217, 130, 43, 0.35); } + .bp3-dark .bp3-tag.bp3-minimal.bp3-intent-warning.bp3-interactive.bp3-active, .bp3-dark .bp3-tag.bp3-minimal.bp3-intent-warning.bp3-interactive:active{ + background-color:rgba(217, 130, 43, 0.45); } + .bp3-tag.bp3-minimal.bp3-intent-danger{ + background-color:rgba(219, 55, 55, 0.15); + color:#c23030; } + .bp3-tag.bp3-minimal.bp3-intent-danger.bp3-interactive{ + cursor:pointer; } + .bp3-tag.bp3-minimal.bp3-intent-danger.bp3-interactive:hover{ + background-color:rgba(219, 55, 55, 0.25); } + .bp3-tag.bp3-minimal.bp3-intent-danger.bp3-interactive.bp3-active, .bp3-tag.bp3-minimal.bp3-intent-danger.bp3-interactive:active{ + background-color:rgba(219, 55, 55, 0.35); } + .bp3-tag.bp3-minimal.bp3-intent-danger > .bp3-icon, .bp3-tag.bp3-minimal.bp3-intent-danger .bp3-icon-standard, .bp3-tag.bp3-minimal.bp3-intent-danger .bp3-icon-large{ + fill:#db3737; } + .bp3-dark .bp3-tag.bp3-minimal.bp3-intent-danger{ + background-color:rgba(219, 55, 55, 0.25); + color:#ff7373; } + .bp3-dark .bp3-tag.bp3-minimal.bp3-intent-danger.bp3-interactive{ + cursor:pointer; } + .bp3-dark .bp3-tag.bp3-minimal.bp3-intent-danger.bp3-interactive:hover{ + background-color:rgba(219, 55, 55, 0.35); } + .bp3-dark .bp3-tag.bp3-minimal.bp3-intent-danger.bp3-interactive.bp3-active, .bp3-dark .bp3-tag.bp3-minimal.bp3-intent-danger.bp3-interactive:active{ + background-color:rgba(219, 55, 55, 0.45); } + +.bp3-tag-remove{ + display:-webkit-box; + display:-ms-flexbox; + display:flex; + opacity:0.5; + margin-top:-2px; + margin-right:-6px !important; + margin-bottom:-2px; + border:none; + background:none; + cursor:pointer; + padding:2px; + padding-left:0; + color:inherit; } + .bp3-tag-remove:hover{ + opacity:0.8; + background:none; + text-decoration:none; } + .bp3-tag-remove:active{ + opacity:1; } + .bp3-tag-remove:empty::before{ + line-height:1; + font-family:"Icons16", sans-serif; + font-size:16px; + font-weight:400; + font-style:normal; + -moz-osx-font-smoothing:grayscale; + -webkit-font-smoothing:antialiased; + content:"î›—"; } + .bp3-large .bp3-tag-remove{ + margin-right:-10px !important; + padding:5px; + padding-left:0; } + .bp3-large .bp3-tag-remove:empty::before{ + line-height:1; + font-family:"Icons20", sans-serif; + font-size:20px; + font-weight:400; + font-style:normal; } +.bp3-tag-input{ + display:-webkit-box; + display:-ms-flexbox; + display:flex; + -webkit-box-orient:horizontal; + -webkit-box-direction:normal; + -ms-flex-direction:row; + flex-direction:row; + -webkit-box-align:start; + -ms-flex-align:start; + align-items:flex-start; + cursor:text; + height:auto; + min-height:30px; + padding-right:0; + padding-left:5px; + line-height:inherit; } + .bp3-tag-input > *{ + -webkit-box-flex:0; + -ms-flex-positive:0; + flex-grow:0; + -ms-flex-negative:0; + flex-shrink:0; } + .bp3-tag-input > .bp3-tag-input-values{ + -webkit-box-flex:1; + -ms-flex-positive:1; + flex-grow:1; + -ms-flex-negative:1; + flex-shrink:1; } + .bp3-tag-input .bp3-tag-input-icon{ + margin-top:7px; + margin-right:7px; + margin-left:2px; + color:#5c7080; } + .bp3-tag-input .bp3-tag-input-values{ + display:-webkit-box; + display:-ms-flexbox; + display:flex; + -webkit-box-orient:horizontal; + -webkit-box-direction:normal; + -ms-flex-direction:row; + flex-direction:row; + -ms-flex-wrap:wrap; + flex-wrap:wrap; + -webkit-box-align:center; + -ms-flex-align:center; + align-items:center; + -ms-flex-item-align:stretch; + align-self:stretch; + margin-top:5px; + margin-right:7px; + min-width:0; } + .bp3-tag-input .bp3-tag-input-values > *{ + -webkit-box-flex:0; + -ms-flex-positive:0; + flex-grow:0; + -ms-flex-negative:0; + flex-shrink:0; } + .bp3-tag-input .bp3-tag-input-values > .bp3-fill{ + -webkit-box-flex:1; + -ms-flex-positive:1; + flex-grow:1; + -ms-flex-negative:1; + flex-shrink:1; } + .bp3-tag-input .bp3-tag-input-values::before, + .bp3-tag-input .bp3-tag-input-values > *{ + margin-right:5px; } + .bp3-tag-input .bp3-tag-input-values:empty::before, + .bp3-tag-input .bp3-tag-input-values > :last-child{ + margin-right:0; } + .bp3-tag-input .bp3-tag-input-values:first-child .bp3-input-ghost:first-child{ + padding-left:5px; } + .bp3-tag-input .bp3-tag-input-values > *{ + margin-bottom:5px; } + .bp3-tag-input .bp3-tag{ + overflow-wrap:break-word; } + .bp3-tag-input .bp3-tag.bp3-active{ + outline:rgba(19, 124, 189, 0.6) auto 2px; + outline-offset:0; + -moz-outline-radius:6px; } + .bp3-tag-input .bp3-input-ghost{ + -webkit-box-flex:1; + -ms-flex:1 1 auto; + flex:1 1 auto; + width:80px; + line-height:20px; } + .bp3-tag-input .bp3-input-ghost:disabled, .bp3-tag-input .bp3-input-ghost.bp3-disabled{ + cursor:not-allowed; } + .bp3-tag-input .bp3-button, + .bp3-tag-input .bp3-spinner{ + margin:3px; + margin-left:0; } + .bp3-tag-input .bp3-button{ + min-width:24px; + min-height:24px; + padding:0 7px; } + .bp3-tag-input.bp3-large{ + height:auto; + min-height:40px; } + .bp3-tag-input.bp3-large::before, + .bp3-tag-input.bp3-large > *{ + margin-right:10px; } + .bp3-tag-input.bp3-large:empty::before, + .bp3-tag-input.bp3-large > :last-child{ + margin-right:0; } + .bp3-tag-input.bp3-large .bp3-tag-input-icon{ + margin-top:10px; + margin-left:5px; } + .bp3-tag-input.bp3-large .bp3-input-ghost{ + line-height:30px; } + .bp3-tag-input.bp3-large .bp3-button{ + min-width:30px; + min-height:30px; + padding:5px 10px; + margin:5px; + margin-left:0; } + .bp3-tag-input.bp3-large .bp3-spinner{ + margin:8px; + margin-left:0; } + .bp3-tag-input.bp3-active{ + -webkit-box-shadow:0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); + background-color:#ffffff; } + .bp3-tag-input.bp3-active.bp3-intent-primary{ + -webkit-box-shadow:0 0 0 1px #106ba3, 0 0 0 3px rgba(16, 107, 163, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px #106ba3, 0 0 0 3px rgba(16, 107, 163, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); } + .bp3-tag-input.bp3-active.bp3-intent-success{ + -webkit-box-shadow:0 0 0 1px #0d8050, 0 0 0 3px rgba(13, 128, 80, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px #0d8050, 0 0 0 3px rgba(13, 128, 80, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); } + .bp3-tag-input.bp3-active.bp3-intent-warning{ + -webkit-box-shadow:0 0 0 1px #bf7326, 0 0 0 3px rgba(191, 115, 38, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px #bf7326, 0 0 0 3px rgba(191, 115, 38, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); } + .bp3-tag-input.bp3-active.bp3-intent-danger{ + -webkit-box-shadow:0 0 0 1px #c23030, 0 0 0 3px rgba(194, 48, 48, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px #c23030, 0 0 0 3px rgba(194, 48, 48, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); } + .bp3-dark .bp3-tag-input .bp3-tag-input-icon, .bp3-tag-input.bp3-dark .bp3-tag-input-icon{ + color:#a7b6c2; } + .bp3-dark .bp3-tag-input .bp3-input-ghost, .bp3-tag-input.bp3-dark .bp3-input-ghost{ + color:#f5f8fa; } + .bp3-dark .bp3-tag-input .bp3-input-ghost::-webkit-input-placeholder, .bp3-tag-input.bp3-dark .bp3-input-ghost::-webkit-input-placeholder{ + color:rgba(167, 182, 194, 0.6); } + .bp3-dark .bp3-tag-input .bp3-input-ghost::-moz-placeholder, .bp3-tag-input.bp3-dark .bp3-input-ghost::-moz-placeholder{ + color:rgba(167, 182, 194, 0.6); } + .bp3-dark .bp3-tag-input .bp3-input-ghost:-ms-input-placeholder, .bp3-tag-input.bp3-dark .bp3-input-ghost:-ms-input-placeholder{ + color:rgba(167, 182, 194, 0.6); } + .bp3-dark .bp3-tag-input .bp3-input-ghost::-ms-input-placeholder, .bp3-tag-input.bp3-dark .bp3-input-ghost::-ms-input-placeholder{ + color:rgba(167, 182, 194, 0.6); } + .bp3-dark .bp3-tag-input .bp3-input-ghost::placeholder, .bp3-tag-input.bp3-dark .bp3-input-ghost::placeholder{ + color:rgba(167, 182, 194, 0.6); } + .bp3-dark .bp3-tag-input.bp3-active, .bp3-tag-input.bp3-dark.bp3-active{ + -webkit-box-shadow:0 0 0 1px #137cbd, 0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px #137cbd, 0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); + background-color:rgba(16, 22, 26, 0.3); } + .bp3-dark .bp3-tag-input.bp3-active.bp3-intent-primary, .bp3-tag-input.bp3-dark.bp3-active.bp3-intent-primary{ + -webkit-box-shadow:0 0 0 1px #106ba3, 0 0 0 3px rgba(16, 107, 163, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px #106ba3, 0 0 0 3px rgba(16, 107, 163, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); } + .bp3-dark .bp3-tag-input.bp3-active.bp3-intent-success, .bp3-tag-input.bp3-dark.bp3-active.bp3-intent-success{ + -webkit-box-shadow:0 0 0 1px #0d8050, 0 0 0 3px rgba(13, 128, 80, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px #0d8050, 0 0 0 3px rgba(13, 128, 80, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); } + .bp3-dark .bp3-tag-input.bp3-active.bp3-intent-warning, .bp3-tag-input.bp3-dark.bp3-active.bp3-intent-warning{ + -webkit-box-shadow:0 0 0 1px #bf7326, 0 0 0 3px rgba(191, 115, 38, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px #bf7326, 0 0 0 3px rgba(191, 115, 38, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); } + .bp3-dark .bp3-tag-input.bp3-active.bp3-intent-danger, .bp3-tag-input.bp3-dark.bp3-active.bp3-intent-danger{ + -webkit-box-shadow:0 0 0 1px #c23030, 0 0 0 3px rgba(194, 48, 48, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px #c23030, 0 0 0 3px rgba(194, 48, 48, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); } + +.bp3-input-ghost{ + border:none; + -webkit-box-shadow:none; + box-shadow:none; + background:none; + padding:0; } + .bp3-input-ghost::-webkit-input-placeholder{ + opacity:1; + color:rgba(92, 112, 128, 0.6); } + .bp3-input-ghost::-moz-placeholder{ + opacity:1; + color:rgba(92, 112, 128, 0.6); } + .bp3-input-ghost:-ms-input-placeholder{ + opacity:1; + color:rgba(92, 112, 128, 0.6); } + .bp3-input-ghost::-ms-input-placeholder{ + opacity:1; + color:rgba(92, 112, 128, 0.6); } + .bp3-input-ghost::placeholder{ + opacity:1; + color:rgba(92, 112, 128, 0.6); } + .bp3-input-ghost:focus{ + outline:none !important; } +.bp3-toast{ + display:-webkit-box; + display:-ms-flexbox; + display:flex; + -webkit-box-align:start; + -ms-flex-align:start; + align-items:flex-start; + position:relative !important; + margin:20px 0 0; + border-radius:3px; + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 2px 4px rgba(16, 22, 26, 0.2), 0 8px 24px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 2px 4px rgba(16, 22, 26, 0.2), 0 8px 24px rgba(16, 22, 26, 0.2); + background-color:#ffffff; + min-width:300px; + max-width:500px; + pointer-events:all; } + .bp3-toast.bp3-toast-enter, .bp3-toast.bp3-toast-appear{ + -webkit-transform:translateY(-40px); + transform:translateY(-40px); } + .bp3-toast.bp3-toast-enter-active, .bp3-toast.bp3-toast-appear-active{ + -webkit-transform:translateY(0); + transform:translateY(0); + -webkit-transition-property:-webkit-transform; + transition-property:-webkit-transform; + transition-property:transform; + transition-property:transform, -webkit-transform; + -webkit-transition-duration:300ms; + transition-duration:300ms; + -webkit-transition-timing-function:cubic-bezier(0.54, 1.12, 0.38, 1.11); + transition-timing-function:cubic-bezier(0.54, 1.12, 0.38, 1.11); + -webkit-transition-delay:0; + transition-delay:0; } + .bp3-toast.bp3-toast-enter ~ .bp3-toast, .bp3-toast.bp3-toast-appear ~ .bp3-toast{ + -webkit-transform:translateY(-40px); + transform:translateY(-40px); } + .bp3-toast.bp3-toast-enter-active ~ .bp3-toast, .bp3-toast.bp3-toast-appear-active ~ .bp3-toast{ + -webkit-transform:translateY(0); + transform:translateY(0); + -webkit-transition-property:-webkit-transform; + transition-property:-webkit-transform; + transition-property:transform; + transition-property:transform, -webkit-transform; + -webkit-transition-duration:300ms; + transition-duration:300ms; + -webkit-transition-timing-function:cubic-bezier(0.54, 1.12, 0.38, 1.11); + transition-timing-function:cubic-bezier(0.54, 1.12, 0.38, 1.11); + -webkit-transition-delay:0; + transition-delay:0; } + .bp3-toast.bp3-toast-exit{ + opacity:1; + -webkit-filter:blur(0); + filter:blur(0); } + .bp3-toast.bp3-toast-exit-active{ + opacity:0; + -webkit-filter:blur(10px); + filter:blur(10px); + -webkit-transition-property:opacity, -webkit-filter; + transition-property:opacity, -webkit-filter; + transition-property:opacity, filter; + transition-property:opacity, filter, -webkit-filter; + -webkit-transition-duration:300ms; + transition-duration:300ms; + -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + -webkit-transition-delay:0; + transition-delay:0; } + .bp3-toast.bp3-toast-exit ~ .bp3-toast{ + -webkit-transform:translateY(0); + transform:translateY(0); } + .bp3-toast.bp3-toast-exit-active ~ .bp3-toast{ + -webkit-transform:translateY(-40px); + transform:translateY(-40px); + -webkit-transition-property:-webkit-transform; + transition-property:-webkit-transform; + transition-property:transform; + transition-property:transform, -webkit-transform; + -webkit-transition-duration:100ms; + transition-duration:100ms; + -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + -webkit-transition-delay:50ms; + transition-delay:50ms; } + .bp3-toast .bp3-button-group{ + -webkit-box-flex:0; + -ms-flex:0 0 auto; + flex:0 0 auto; + padding:5px; + padding-left:0; } + .bp3-toast > .bp3-icon{ + margin:12px; + margin-right:0; + color:#5c7080; } + .bp3-toast.bp3-dark, + .bp3-dark .bp3-toast{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 2px 4px rgba(16, 22, 26, 0.4), 0 8px 24px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 2px 4px rgba(16, 22, 26, 0.4), 0 8px 24px rgba(16, 22, 26, 0.4); + background-color:#394b59; } + .bp3-toast.bp3-dark > .bp3-icon, + .bp3-dark .bp3-toast > .bp3-icon{ + color:#a7b6c2; } + .bp3-toast[class*="bp3-intent-"] a{ + color:rgba(255, 255, 255, 0.7); } + .bp3-toast[class*="bp3-intent-"] a:hover{ + color:#ffffff; } + .bp3-toast[class*="bp3-intent-"] > .bp3-icon{ + color:#ffffff; } + .bp3-toast[class*="bp3-intent-"] .bp3-button, .bp3-toast[class*="bp3-intent-"] .bp3-button::before, + .bp3-toast[class*="bp3-intent-"] .bp3-button .bp3-icon, .bp3-toast[class*="bp3-intent-"] .bp3-button:active{ + color:rgba(255, 255, 255, 0.7) !important; } + .bp3-toast[class*="bp3-intent-"] .bp3-button:focus{ + outline-color:rgba(255, 255, 255, 0.5); } + .bp3-toast[class*="bp3-intent-"] .bp3-button:hover{ + background-color:rgba(255, 255, 255, 0.15) !important; + color:#ffffff !important; } + .bp3-toast[class*="bp3-intent-"] .bp3-button:active{ + background-color:rgba(255, 255, 255, 0.3) !important; + color:#ffffff !important; } + .bp3-toast[class*="bp3-intent-"] .bp3-button::after{ + background:rgba(255, 255, 255, 0.3) !important; } + .bp3-toast.bp3-intent-primary{ + background-color:#137cbd; + color:#ffffff; } + .bp3-toast.bp3-intent-success{ + background-color:#0f9960; + color:#ffffff; } + .bp3-toast.bp3-intent-warning{ + background-color:#d9822b; + color:#ffffff; } + .bp3-toast.bp3-intent-danger{ + background-color:#db3737; + color:#ffffff; } + +.bp3-toast-message{ + -webkit-box-flex:1; + -ms-flex:1 1 auto; + flex:1 1 auto; + padding:11px; + word-break:break-word; } + +.bp3-toast-container{ + display:-webkit-box !important; + display:-ms-flexbox !important; + display:flex !important; + -webkit-box-orient:vertical; + -webkit-box-direction:normal; + -ms-flex-direction:column; + flex-direction:column; + -webkit-box-align:center; + -ms-flex-align:center; + align-items:center; + position:fixed; + right:0; + left:0; + z-index:40; + overflow:hidden; + padding:0 20px 20px; + pointer-events:none; } + .bp3-toast-container.bp3-toast-container-top{ + top:0; + bottom:auto; } + .bp3-toast-container.bp3-toast-container-bottom{ + -webkit-box-orient:vertical; + -webkit-box-direction:reverse; + -ms-flex-direction:column-reverse; + flex-direction:column-reverse; + top:auto; + bottom:0; } + .bp3-toast-container.bp3-toast-container-left{ + -webkit-box-align:start; + -ms-flex-align:start; + align-items:flex-start; } + .bp3-toast-container.bp3-toast-container-right{ + -webkit-box-align:end; + -ms-flex-align:end; + align-items:flex-end; } + +.bp3-toast-container-bottom .bp3-toast.bp3-toast-enter:not(.bp3-toast-enter-active), +.bp3-toast-container-bottom .bp3-toast.bp3-toast-enter:not(.bp3-toast-enter-active) ~ .bp3-toast, .bp3-toast-container-bottom .bp3-toast.bp3-toast-appear:not(.bp3-toast-appear-active), +.bp3-toast-container-bottom .bp3-toast.bp3-toast-appear:not(.bp3-toast-appear-active) ~ .bp3-toast, +.bp3-toast-container-bottom .bp3-toast.bp3-toast-leave-active ~ .bp3-toast{ + -webkit-transform:translateY(60px); + transform:translateY(60px); } +.bp3-tooltip{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 2px 4px rgba(16, 22, 26, 0.2), 0 8px 24px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 2px 4px rgba(16, 22, 26, 0.2), 0 8px 24px rgba(16, 22, 26, 0.2); + -webkit-transform:scale(1); + transform:scale(1); } + .bp3-tooltip .bp3-popover-arrow{ + position:absolute; + width:22px; + height:22px; } + .bp3-tooltip .bp3-popover-arrow::before{ + margin:4px; + width:14px; + height:14px; } + .bp3-tether-element-attached-bottom.bp3-tether-target-attached-top > .bp3-tooltip{ + margin-top:-11px; + margin-bottom:11px; } + .bp3-tether-element-attached-bottom.bp3-tether-target-attached-top > .bp3-tooltip > .bp3-popover-arrow{ + bottom:-8px; } + .bp3-tether-element-attached-bottom.bp3-tether-target-attached-top > .bp3-tooltip > .bp3-popover-arrow svg{ + -webkit-transform:rotate(-90deg); + transform:rotate(-90deg); } + .bp3-tether-element-attached-left.bp3-tether-target-attached-right > .bp3-tooltip{ + margin-left:11px; } + .bp3-tether-element-attached-left.bp3-tether-target-attached-right > .bp3-tooltip > .bp3-popover-arrow{ + left:-8px; } + .bp3-tether-element-attached-left.bp3-tether-target-attached-right > .bp3-tooltip > .bp3-popover-arrow svg{ + -webkit-transform:rotate(0); + transform:rotate(0); } + .bp3-tether-element-attached-top.bp3-tether-target-attached-bottom > .bp3-tooltip{ + margin-top:11px; } + .bp3-tether-element-attached-top.bp3-tether-target-attached-bottom > .bp3-tooltip > .bp3-popover-arrow{ + top:-8px; } + .bp3-tether-element-attached-top.bp3-tether-target-attached-bottom > .bp3-tooltip > .bp3-popover-arrow svg{ + -webkit-transform:rotate(90deg); + transform:rotate(90deg); } + .bp3-tether-element-attached-right.bp3-tether-target-attached-left > .bp3-tooltip{ + margin-right:11px; + margin-left:-11px; } + .bp3-tether-element-attached-right.bp3-tether-target-attached-left > .bp3-tooltip > .bp3-popover-arrow{ + right:-8px; } + .bp3-tether-element-attached-right.bp3-tether-target-attached-left > .bp3-tooltip > .bp3-popover-arrow svg{ + -webkit-transform:rotate(180deg); + transform:rotate(180deg); } + .bp3-tether-element-attached-middle > .bp3-tooltip > .bp3-popover-arrow{ + top:50%; + -webkit-transform:translateY(-50%); + transform:translateY(-50%); } + .bp3-tether-element-attached-center > .bp3-tooltip > .bp3-popover-arrow{ + right:50%; + -webkit-transform:translateX(50%); + transform:translateX(50%); } + .bp3-tether-element-attached-top.bp3-tether-target-attached-top > .bp3-tooltip > .bp3-popover-arrow{ + top:-0.22183px; } + .bp3-tether-element-attached-right.bp3-tether-target-attached-right > .bp3-tooltip > .bp3-popover-arrow{ + right:-0.22183px; } + .bp3-tether-element-attached-left.bp3-tether-target-attached-left > .bp3-tooltip > .bp3-popover-arrow{ + left:-0.22183px; } + .bp3-tether-element-attached-bottom.bp3-tether-target-attached-bottom > .bp3-tooltip > .bp3-popover-arrow{ + bottom:-0.22183px; } + .bp3-tether-element-attached-top.bp3-tether-element-attached-left > .bp3-tooltip{ + -webkit-transform-origin:top left; + transform-origin:top left; } + .bp3-tether-element-attached-top.bp3-tether-element-attached-center > .bp3-tooltip{ + -webkit-transform-origin:top center; + transform-origin:top center; } + .bp3-tether-element-attached-top.bp3-tether-element-attached-right > .bp3-tooltip{ + -webkit-transform-origin:top right; + transform-origin:top right; } + .bp3-tether-element-attached-middle.bp3-tether-element-attached-left > .bp3-tooltip{ + -webkit-transform-origin:center left; + transform-origin:center left; } + .bp3-tether-element-attached-middle.bp3-tether-element-attached-center > .bp3-tooltip{ + -webkit-transform-origin:center center; + transform-origin:center center; } + .bp3-tether-element-attached-middle.bp3-tether-element-attached-right > .bp3-tooltip{ + -webkit-transform-origin:center right; + transform-origin:center right; } + .bp3-tether-element-attached-bottom.bp3-tether-element-attached-left > .bp3-tooltip{ + -webkit-transform-origin:bottom left; + transform-origin:bottom left; } + .bp3-tether-element-attached-bottom.bp3-tether-element-attached-center > .bp3-tooltip{ + -webkit-transform-origin:bottom center; + transform-origin:bottom center; } + .bp3-tether-element-attached-bottom.bp3-tether-element-attached-right > .bp3-tooltip{ + -webkit-transform-origin:bottom right; + transform-origin:bottom right; } + .bp3-tooltip .bp3-popover-content{ + background:#394b59; + color:#f5f8fa; } + .bp3-tooltip .bp3-popover-arrow::before{ + -webkit-box-shadow:1px 1px 6px rgba(16, 22, 26, 0.2); + box-shadow:1px 1px 6px rgba(16, 22, 26, 0.2); } + .bp3-tooltip .bp3-popover-arrow-border{ + fill:#10161a; + fill-opacity:0.1; } + .bp3-tooltip .bp3-popover-arrow-fill{ + fill:#394b59; } + .bp3-popover-enter > .bp3-tooltip, .bp3-popover-appear > .bp3-tooltip{ + -webkit-transform:scale(0.8); + transform:scale(0.8); } + .bp3-popover-enter-active > .bp3-tooltip, .bp3-popover-appear-active > .bp3-tooltip{ + -webkit-transform:scale(1); + transform:scale(1); + -webkit-transition-property:-webkit-transform; + transition-property:-webkit-transform; + transition-property:transform; + transition-property:transform, -webkit-transform; + -webkit-transition-duration:100ms; + transition-duration:100ms; + -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + -webkit-transition-delay:0; + transition-delay:0; } + .bp3-popover-exit > .bp3-tooltip{ + -webkit-transform:scale(1); + transform:scale(1); } + .bp3-popover-exit-active > .bp3-tooltip{ + -webkit-transform:scale(0.8); + transform:scale(0.8); + -webkit-transition-property:-webkit-transform; + transition-property:-webkit-transform; + transition-property:transform; + transition-property:transform, -webkit-transform; + -webkit-transition-duration:100ms; + transition-duration:100ms; + -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + -webkit-transition-delay:0; + transition-delay:0; } + .bp3-tooltip .bp3-popover-content{ + padding:10px 12px; } + .bp3-tooltip.bp3-dark, + .bp3-dark .bp3-tooltip{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 2px 4px rgba(16, 22, 26, 0.4), 0 8px 24px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 2px 4px rgba(16, 22, 26, 0.4), 0 8px 24px rgba(16, 22, 26, 0.4); } + .bp3-tooltip.bp3-dark .bp3-popover-content, + .bp3-dark .bp3-tooltip .bp3-popover-content{ + background:#e1e8ed; + color:#394b59; } + .bp3-tooltip.bp3-dark .bp3-popover-arrow::before, + .bp3-dark .bp3-tooltip .bp3-popover-arrow::before{ + -webkit-box-shadow:1px 1px 6px rgba(16, 22, 26, 0.4); + box-shadow:1px 1px 6px rgba(16, 22, 26, 0.4); } + .bp3-tooltip.bp3-dark .bp3-popover-arrow-border, + .bp3-dark .bp3-tooltip .bp3-popover-arrow-border{ + fill:#10161a; + fill-opacity:0.2; } + .bp3-tooltip.bp3-dark .bp3-popover-arrow-fill, + .bp3-dark .bp3-tooltip .bp3-popover-arrow-fill{ + fill:#e1e8ed; } + .bp3-tooltip.bp3-intent-primary .bp3-popover-content{ + background:#137cbd; + color:#ffffff; } + .bp3-tooltip.bp3-intent-primary .bp3-popover-arrow-fill{ + fill:#137cbd; } + .bp3-tooltip.bp3-intent-success .bp3-popover-content{ + background:#0f9960; + color:#ffffff; } + .bp3-tooltip.bp3-intent-success .bp3-popover-arrow-fill{ + fill:#0f9960; } + .bp3-tooltip.bp3-intent-warning .bp3-popover-content{ + background:#d9822b; + color:#ffffff; } + .bp3-tooltip.bp3-intent-warning .bp3-popover-arrow-fill{ + fill:#d9822b; } + .bp3-tooltip.bp3-intent-danger .bp3-popover-content{ + background:#db3737; + color:#ffffff; } + .bp3-tooltip.bp3-intent-danger .bp3-popover-arrow-fill{ + fill:#db3737; } + +.bp3-tooltip-indicator{ + border-bottom:dotted 1px; + cursor:help; } +.bp3-tree .bp3-icon, .bp3-tree .bp3-icon-standard, .bp3-tree .bp3-icon-large{ + color:#5c7080; } + .bp3-tree .bp3-icon.bp3-intent-primary, .bp3-tree .bp3-icon-standard.bp3-intent-primary, .bp3-tree .bp3-icon-large.bp3-intent-primary{ + color:#137cbd; } + .bp3-tree .bp3-icon.bp3-intent-success, .bp3-tree .bp3-icon-standard.bp3-intent-success, .bp3-tree .bp3-icon-large.bp3-intent-success{ + color:#0f9960; } + .bp3-tree .bp3-icon.bp3-intent-warning, .bp3-tree .bp3-icon-standard.bp3-intent-warning, .bp3-tree .bp3-icon-large.bp3-intent-warning{ + color:#d9822b; } + .bp3-tree .bp3-icon.bp3-intent-danger, .bp3-tree .bp3-icon-standard.bp3-intent-danger, .bp3-tree .bp3-icon-large.bp3-intent-danger{ + color:#db3737; } + +.bp3-tree-node-list{ + margin:0; + padding-left:0; + list-style:none; } + +.bp3-tree-root{ + position:relative; + background-color:transparent; + cursor:default; + padding-left:0; } + +.bp3-tree-node-content-0{ + padding-left:0px; } + +.bp3-tree-node-content-1{ + padding-left:23px; } + +.bp3-tree-node-content-2{ + padding-left:46px; } + +.bp3-tree-node-content-3{ + padding-left:69px; } + +.bp3-tree-node-content-4{ + padding-left:92px; } + +.bp3-tree-node-content-5{ + padding-left:115px; } + +.bp3-tree-node-content-6{ + padding-left:138px; } + +.bp3-tree-node-content-7{ + padding-left:161px; } + +.bp3-tree-node-content-8{ + padding-left:184px; } + +.bp3-tree-node-content-9{ + padding-left:207px; } + +.bp3-tree-node-content-10{ + padding-left:230px; } + +.bp3-tree-node-content-11{ + padding-left:253px; } + +.bp3-tree-node-content-12{ + padding-left:276px; } + +.bp3-tree-node-content-13{ + padding-left:299px; } + +.bp3-tree-node-content-14{ + padding-left:322px; } + +.bp3-tree-node-content-15{ + padding-left:345px; } + +.bp3-tree-node-content-16{ + padding-left:368px; } + +.bp3-tree-node-content-17{ + padding-left:391px; } + +.bp3-tree-node-content-18{ + padding-left:414px; } + +.bp3-tree-node-content-19{ + padding-left:437px; } + +.bp3-tree-node-content-20{ + padding-left:460px; } + +.bp3-tree-node-content{ + display:-webkit-box; + display:-ms-flexbox; + display:flex; + -webkit-box-align:center; + -ms-flex-align:center; + align-items:center; + width:100%; + height:30px; + padding-right:5px; } + .bp3-tree-node-content:hover{ + background-color:rgba(191, 204, 214, 0.4); } + +.bp3-tree-node-caret, +.bp3-tree-node-caret-none{ + min-width:30px; } + +.bp3-tree-node-caret{ + color:#5c7080; + -webkit-transform:rotate(0deg); + transform:rotate(0deg); + cursor:pointer; + padding:7px; + -webkit-transition:-webkit-transform 200ms cubic-bezier(0.4, 1, 0.75, 0.9); + transition:-webkit-transform 200ms cubic-bezier(0.4, 1, 0.75, 0.9); + transition:transform 200ms cubic-bezier(0.4, 1, 0.75, 0.9); + transition:transform 200ms cubic-bezier(0.4, 1, 0.75, 0.9), -webkit-transform 200ms cubic-bezier(0.4, 1, 0.75, 0.9); } + .bp3-tree-node-caret:hover{ + color:#182026; } + .bp3-dark .bp3-tree-node-caret{ + color:#a7b6c2; } + .bp3-dark .bp3-tree-node-caret:hover{ + color:#f5f8fa; } + .bp3-tree-node-caret.bp3-tree-node-caret-open{ + -webkit-transform:rotate(90deg); + transform:rotate(90deg); } + .bp3-tree-node-caret.bp3-icon-standard::before{ + content:"îš•"; } + +.bp3-tree-node-icon{ + position:relative; + margin-right:7px; } + +.bp3-tree-node-label{ + overflow:hidden; + text-overflow:ellipsis; + white-space:nowrap; + word-wrap:normal; + -webkit-box-flex:1; + -ms-flex:1 1 auto; + flex:1 1 auto; + position:relative; + -webkit-user-select:none; + -moz-user-select:none; + -ms-user-select:none; + user-select:none; } + .bp3-tree-node-label span{ + display:inline; } + +.bp3-tree-node-secondary-label{ + padding:0 5px; + -webkit-user-select:none; + -moz-user-select:none; + -ms-user-select:none; + user-select:none; } + .bp3-tree-node-secondary-label .bp3-popover-wrapper, + .bp3-tree-node-secondary-label .bp3-popover-target{ + display:-webkit-box; + display:-ms-flexbox; + display:flex; + -webkit-box-align:center; + -ms-flex-align:center; + align-items:center; } + +.bp3-tree-node.bp3-disabled .bp3-tree-node-content{ + background-color:inherit; + cursor:not-allowed; + color:rgba(92, 112, 128, 0.6); } + +.bp3-tree-node.bp3-disabled .bp3-tree-node-caret, +.bp3-tree-node.bp3-disabled .bp3-tree-node-icon{ + cursor:not-allowed; + color:rgba(92, 112, 128, 0.6); } + +.bp3-tree-node.bp3-tree-node-selected > .bp3-tree-node-content{ + background-color:#137cbd; } + .bp3-tree-node.bp3-tree-node-selected > .bp3-tree-node-content, + .bp3-tree-node.bp3-tree-node-selected > .bp3-tree-node-content .bp3-icon, .bp3-tree-node.bp3-tree-node-selected > .bp3-tree-node-content .bp3-icon-standard, .bp3-tree-node.bp3-tree-node-selected > .bp3-tree-node-content .bp3-icon-large{ + color:#ffffff; } + .bp3-tree-node.bp3-tree-node-selected > .bp3-tree-node-content .bp3-tree-node-caret::before{ + color:rgba(255, 255, 255, 0.7); } + .bp3-tree-node.bp3-tree-node-selected > .bp3-tree-node-content .bp3-tree-node-caret:hover::before{ + color:#ffffff; } + +.bp3-dark .bp3-tree-node-content:hover{ + background-color:rgba(92, 112, 128, 0.3); } + +.bp3-dark .bp3-tree .bp3-icon, .bp3-dark .bp3-tree .bp3-icon-standard, .bp3-dark .bp3-tree .bp3-icon-large{ + color:#a7b6c2; } + .bp3-dark .bp3-tree .bp3-icon.bp3-intent-primary, .bp3-dark .bp3-tree .bp3-icon-standard.bp3-intent-primary, .bp3-dark .bp3-tree .bp3-icon-large.bp3-intent-primary{ + color:#137cbd; } + .bp3-dark .bp3-tree .bp3-icon.bp3-intent-success, .bp3-dark .bp3-tree .bp3-icon-standard.bp3-intent-success, .bp3-dark .bp3-tree .bp3-icon-large.bp3-intent-success{ + color:#0f9960; } + .bp3-dark .bp3-tree .bp3-icon.bp3-intent-warning, .bp3-dark .bp3-tree .bp3-icon-standard.bp3-intent-warning, .bp3-dark .bp3-tree .bp3-icon-large.bp3-intent-warning{ + color:#d9822b; } + .bp3-dark .bp3-tree .bp3-icon.bp3-intent-danger, .bp3-dark .bp3-tree .bp3-icon-standard.bp3-intent-danger, .bp3-dark .bp3-tree .bp3-icon-large.bp3-intent-danger{ + color:#db3737; } + +.bp3-dark .bp3-tree-node.bp3-tree-node-selected > .bp3-tree-node-content{ + background-color:#137cbd; } +/*! + +Copyright 2017-present Palantir Technologies, Inc. All rights reserved. +Licensed under the Apache License, Version 2.0. + +*/ +.bp3-omnibar{ + -webkit-filter:blur(0); + filter:blur(0); + opacity:1; + top:20vh; + left:calc(50% - 250px); + z-index:21; + border-radius:3px; + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 4px 8px rgba(16, 22, 26, 0.2), 0 18px 46px 6px rgba(16, 22, 26, 0.2); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 4px 8px rgba(16, 22, 26, 0.2), 0 18px 46px 6px rgba(16, 22, 26, 0.2); + background-color:#ffffff; + width:500px; } + .bp3-omnibar.bp3-overlay-enter, .bp3-omnibar.bp3-overlay-appear{ + -webkit-filter:blur(20px); + filter:blur(20px); + opacity:0.2; } + .bp3-omnibar.bp3-overlay-enter-active, .bp3-omnibar.bp3-overlay-appear-active{ + -webkit-filter:blur(0); + filter:blur(0); + opacity:1; + -webkit-transition-property:opacity, -webkit-filter; + transition-property:opacity, -webkit-filter; + transition-property:filter, opacity; + transition-property:filter, opacity, -webkit-filter; + -webkit-transition-duration:200ms; + transition-duration:200ms; + -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + -webkit-transition-delay:0; + transition-delay:0; } + .bp3-omnibar.bp3-overlay-exit{ + -webkit-filter:blur(0); + filter:blur(0); + opacity:1; } + .bp3-omnibar.bp3-overlay-exit-active{ + -webkit-filter:blur(20px); + filter:blur(20px); + opacity:0.2; + -webkit-transition-property:opacity, -webkit-filter; + transition-property:opacity, -webkit-filter; + transition-property:filter, opacity; + transition-property:filter, opacity, -webkit-filter; + -webkit-transition-duration:200ms; + transition-duration:200ms; + -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9); + -webkit-transition-delay:0; + transition-delay:0; } + .bp3-omnibar .bp3-input{ + border-radius:0; + background-color:transparent; } + .bp3-omnibar .bp3-input, .bp3-omnibar .bp3-input:focus{ + -webkit-box-shadow:none; + box-shadow:none; } + .bp3-omnibar .bp3-menu{ + border-radius:0; + -webkit-box-shadow:inset 0 1px 0 rgba(16, 22, 26, 0.15); + box-shadow:inset 0 1px 0 rgba(16, 22, 26, 0.15); + background-color:transparent; + max-height:calc(60vh - 40px); + overflow:auto; } + .bp3-omnibar .bp3-menu:empty{ + display:none; } + .bp3-dark .bp3-omnibar, .bp3-omnibar.bp3-dark{ + -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 4px 8px rgba(16, 22, 26, 0.4), 0 18px 46px 6px rgba(16, 22, 26, 0.4); + box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 4px 8px rgba(16, 22, 26, 0.4), 0 18px 46px 6px rgba(16, 22, 26, 0.4); + background-color:#30404d; } + +.bp3-omnibar-overlay .bp3-overlay-backdrop{ + background-color:rgba(16, 22, 26, 0.2); } + +.bp3-select-popover .bp3-popover-content{ + padding:5px; } + +.bp3-select-popover .bp3-input-group{ + margin-bottom:0; } + +.bp3-select-popover .bp3-menu{ + max-width:400px; + max-height:300px; + overflow:auto; + padding:0; } + .bp3-select-popover .bp3-menu:not(:first-child){ + padding-top:5px; } + +.bp3-multi-select{ + min-width:150px; } + +.bp3-multi-select-popover .bp3-menu{ + max-width:400px; + max-height:300px; + overflow:auto; } + +.bp3-select-popover .bp3-popover-content{ + padding:5px; } + +.bp3-select-popover .bp3-input-group{ + margin-bottom:0; } + +.bp3-select-popover .bp3-menu{ + max-width:400px; + max-height:300px; + overflow:auto; + padding:0; } + .bp3-select-popover .bp3-menu:not(:first-child){ + padding-top:5px; } +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/* This file was auto-generated by ensureUiComponents() in @jupyterlab/buildutils */ + +/** + * (DEPRECATED) Support for consuming icons as CSS background images + */ + +/* Icons urls */ + +:root { + --jp-icon-add: url(); + --jp-icon-bug: url(); + --jp-icon-build: url(); + --jp-icon-caret-down-empty-thin: url(); + --jp-icon-caret-down-empty: url(); + --jp-icon-caret-down: url(); + --jp-icon-caret-left: url(); + --jp-icon-caret-right: url(); + --jp-icon-caret-up-empty-thin: url(); + --jp-icon-caret-up: url(); + --jp-icon-case-sensitive: url(); + --jp-icon-check: url(); + --jp-icon-circle-empty: url(); + --jp-icon-circle: url(); + --jp-icon-clear: url(); + --jp-icon-close: url(); + --jp-icon-console: url(); + --jp-icon-copy: url(); + --jp-icon-cut: url(); + --jp-icon-download: url(); + --jp-icon-edit: url(); + --jp-icon-ellipses: url(); + --jp-icon-extension: url(); + --jp-icon-fast-forward: url(); + --jp-icon-file-upload: url(); + --jp-icon-file: url(); + --jp-icon-filter-list: url(); + --jp-icon-folder: url(); + --jp-icon-html5: url(); + --jp-icon-image: url(); + --jp-icon-inspector: url(); + --jp-icon-json: url(); + --jp-icon-jupyter-favicon: url(); + --jp-icon-jupyter: url(); + --jp-icon-jupyterlab-wordmark: url(); + --jp-icon-kernel: url(); + --jp-icon-keyboard: url(); + --jp-icon-launcher: url(); + --jp-icon-line-form: url(); + --jp-icon-link: url(); + --jp-icon-list: url(); + --jp-icon-listings-info: url(); + --jp-icon-markdown: url(); + --jp-icon-new-folder: url(); + --jp-icon-not-trusted: url(); + --jp-icon-notebook: url(); + --jp-icon-palette: url(); + --jp-icon-paste: url(); + --jp-icon-python: url(); + --jp-icon-r-kernel: url(); + --jp-icon-react: url(); + --jp-icon-refresh: url(); + --jp-icon-regex: url(); + --jp-icon-run: url(); + --jp-icon-running: url(); + --jp-icon-save: url(); + --jp-icon-search: url(); + --jp-icon-settings: url(); + --jp-icon-spreadsheet: url(); + --jp-icon-stop: url(); + --jp-icon-tab: url(); + --jp-icon-terminal: url(); + --jp-icon-text-editor: url(); + --jp-icon-trusted: url(); + --jp-icon-undo: url(); + --jp-icon-vega: url(); + --jp-icon-yaml: url(); +} + +/* Icon CSS class declarations */ + +.jp-AddIcon { + background-image: var(--jp-icon-add); +} +.jp-BugIcon { + background-image: var(--jp-icon-bug); +} +.jp-BuildIcon { + background-image: var(--jp-icon-build); +} +.jp-CaretDownEmptyIcon { + background-image: var(--jp-icon-caret-down-empty); +} +.jp-CaretDownEmptyThinIcon { + background-image: var(--jp-icon-caret-down-empty-thin); +} +.jp-CaretDownIcon { + background-image: var(--jp-icon-caret-down); +} +.jp-CaretLeftIcon { + background-image: var(--jp-icon-caret-left); +} +.jp-CaretRightIcon { + background-image: var(--jp-icon-caret-right); +} +.jp-CaretUpEmptyThinIcon { + background-image: var(--jp-icon-caret-up-empty-thin); +} +.jp-CaretUpIcon { + background-image: var(--jp-icon-caret-up); +} +.jp-CaseSensitiveIcon { + background-image: var(--jp-icon-case-sensitive); +} +.jp-CheckIcon { + background-image: var(--jp-icon-check); +} +.jp-CircleEmptyIcon { + background-image: var(--jp-icon-circle-empty); +} +.jp-CircleIcon { + background-image: var(--jp-icon-circle); +} +.jp-ClearIcon { + background-image: var(--jp-icon-clear); +} +.jp-CloseIcon { + background-image: var(--jp-icon-close); +} +.jp-ConsoleIcon { + background-image: var(--jp-icon-console); +} +.jp-CopyIcon { + background-image: var(--jp-icon-copy); +} +.jp-CutIcon { + background-image: var(--jp-icon-cut); +} +.jp-DownloadIcon { + background-image: var(--jp-icon-download); +} +.jp-EditIcon { + background-image: var(--jp-icon-edit); +} +.jp-EllipsesIcon { + background-image: var(--jp-icon-ellipses); +} +.jp-ExtensionIcon { + background-image: var(--jp-icon-extension); +} +.jp-FastForwardIcon { + background-image: var(--jp-icon-fast-forward); +} +.jp-FileIcon { + background-image: var(--jp-icon-file); +} +.jp-FileUploadIcon { + background-image: var(--jp-icon-file-upload); +} +.jp-FilterListIcon { + background-image: var(--jp-icon-filter-list); +} +.jp-FolderIcon { + background-image: var(--jp-icon-folder); +} +.jp-Html5Icon { + background-image: var(--jp-icon-html5); +} +.jp-ImageIcon { + background-image: var(--jp-icon-image); +} +.jp-InspectorIcon { + background-image: var(--jp-icon-inspector); +} +.jp-JsonIcon { + background-image: var(--jp-icon-json); +} +.jp-JupyterFaviconIcon { + background-image: var(--jp-icon-jupyter-favicon); +} +.jp-JupyterIcon { + background-image: var(--jp-icon-jupyter); +} +.jp-JupyterlabWordmarkIcon { + background-image: var(--jp-icon-jupyterlab-wordmark); +} +.jp-KernelIcon { + background-image: var(--jp-icon-kernel); +} +.jp-KeyboardIcon { + background-image: var(--jp-icon-keyboard); +} +.jp-LauncherIcon { + background-image: var(--jp-icon-launcher); +} +.jp-LineFormIcon { + background-image: var(--jp-icon-line-form); +} +.jp-LinkIcon { + background-image: var(--jp-icon-link); +} +.jp-ListIcon { + background-image: var(--jp-icon-list); +} +.jp-ListingsInfoIcon { + background-image: var(--jp-icon-listings-info); +} +.jp-MarkdownIcon { + background-image: var(--jp-icon-markdown); +} +.jp-NewFolderIcon { + background-image: var(--jp-icon-new-folder); +} +.jp-NotTrustedIcon { + background-image: var(--jp-icon-not-trusted); +} +.jp-NotebookIcon { + background-image: var(--jp-icon-notebook); +} +.jp-PaletteIcon { + background-image: var(--jp-icon-palette); +} +.jp-PasteIcon { + background-image: var(--jp-icon-paste); +} +.jp-PythonIcon { + background-image: var(--jp-icon-python); +} +.jp-RKernelIcon { + background-image: var(--jp-icon-r-kernel); +} +.jp-ReactIcon { + background-image: var(--jp-icon-react); +} +.jp-RefreshIcon { + background-image: var(--jp-icon-refresh); +} +.jp-RegexIcon { + background-image: var(--jp-icon-regex); +} +.jp-RunIcon { + background-image: var(--jp-icon-run); +} +.jp-RunningIcon { + background-image: var(--jp-icon-running); +} +.jp-SaveIcon { + background-image: var(--jp-icon-save); +} +.jp-SearchIcon { + background-image: var(--jp-icon-search); +} +.jp-SettingsIcon { + background-image: var(--jp-icon-settings); +} +.jp-SpreadsheetIcon { + background-image: var(--jp-icon-spreadsheet); +} +.jp-StopIcon { + background-image: var(--jp-icon-stop); +} +.jp-TabIcon { + background-image: var(--jp-icon-tab); +} +.jp-TerminalIcon { + background-image: var(--jp-icon-terminal); +} +.jp-TextEditorIcon { + background-image: var(--jp-icon-text-editor); +} +.jp-TrustedIcon { + background-image: var(--jp-icon-trusted); +} +.jp-UndoIcon { + background-image: var(--jp-icon-undo); +} +.jp-VegaIcon { + background-image: var(--jp-icon-vega); +} +.jp-YamlIcon { + background-image: var(--jp-icon-yaml); +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/** + * (DEPRECATED) Support for consuming icons as CSS background images + */ + +:root { + --jp-icon-search-white: url(); +} + +.jp-Icon, +.jp-MaterialIcon { + background-position: center; + background-repeat: no-repeat; + background-size: 16px; + min-width: 16px; + min-height: 16px; +} + +.jp-Icon-cover { + background-position: center; + background-repeat: no-repeat; + background-size: cover; +} + +/** + * (DEPRECATED) Support for specific CSS icon sizes + */ + +.jp-Icon-16 { + background-size: 16px; + min-width: 16px; + min-height: 16px; +} + +.jp-Icon-18 { + background-size: 18px; + min-width: 18px; + min-height: 18px; +} + +.jp-Icon-20 { + background-size: 20px; + min-width: 20px; + min-height: 20px; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/** + * Support for icons as inline SVG HTMLElements + */ + +/* recolor the primary elements of an icon */ +.jp-icon0[fill] { + fill: var(--jp-inverse-layout-color0); +} +.jp-icon1[fill] { + fill: var(--jp-inverse-layout-color1); +} +.jp-icon2[fill] { + fill: var(--jp-inverse-layout-color2); +} +.jp-icon3[fill] { + fill: var(--jp-inverse-layout-color3); +} +.jp-icon4[fill] { + fill: var(--jp-inverse-layout-color4); +} + +.jp-icon0[stroke] { + stroke: var(--jp-inverse-layout-color0); +} +.jp-icon1[stroke] { + stroke: var(--jp-inverse-layout-color1); +} +.jp-icon2[stroke] { + stroke: var(--jp-inverse-layout-color2); +} +.jp-icon3[stroke] { + stroke: var(--jp-inverse-layout-color3); +} +.jp-icon4[stroke] { + stroke: var(--jp-inverse-layout-color4); +} +/* recolor the accent elements of an icon */ +.jp-icon-accent0[fill] { + fill: var(--jp-layout-color0); +} +.jp-icon-accent1[fill] { + fill: var(--jp-layout-color1); +} +.jp-icon-accent2[fill] { + fill: var(--jp-layout-color2); +} +.jp-icon-accent3[fill] { + fill: var(--jp-layout-color3); +} +.jp-icon-accent4[fill] { + fill: var(--jp-layout-color4); +} + +.jp-icon-accent0[stroke] { + stroke: var(--jp-layout-color0); +} +.jp-icon-accent1[stroke] { + stroke: var(--jp-layout-color1); +} +.jp-icon-accent2[stroke] { + stroke: var(--jp-layout-color2); +} +.jp-icon-accent3[stroke] { + stroke: var(--jp-layout-color3); +} +.jp-icon-accent4[stroke] { + stroke: var(--jp-layout-color4); +} +/* set the color of an icon to transparent */ +.jp-icon-none[fill] { + fill: none; +} + +.jp-icon-none[stroke] { + stroke: none; +} +/* brand icon colors. Same for light and dark */ +.jp-icon-brand0[fill] { + fill: var(--jp-brand-color0); +} +.jp-icon-brand1[fill] { + fill: var(--jp-brand-color1); +} +.jp-icon-brand2[fill] { + fill: var(--jp-brand-color2); +} +.jp-icon-brand3[fill] { + fill: var(--jp-brand-color3); +} +.jp-icon-brand4[fill] { + fill: var(--jp-brand-color4); +} + +.jp-icon-brand0[stroke] { + stroke: var(--jp-brand-color0); +} +.jp-icon-brand1[stroke] { + stroke: var(--jp-brand-color1); +} +.jp-icon-brand2[stroke] { + stroke: var(--jp-brand-color2); +} +.jp-icon-brand3[stroke] { + stroke: var(--jp-brand-color3); +} +.jp-icon-brand4[stroke] { + stroke: var(--jp-brand-color4); +} +/* warn icon colors. Same for light and dark */ +.jp-icon-warn0[fill] { + fill: var(--jp-warn-color0); +} +.jp-icon-warn1[fill] { + fill: var(--jp-warn-color1); +} +.jp-icon-warn2[fill] { + fill: var(--jp-warn-color2); +} +.jp-icon-warn3[fill] { + fill: var(--jp-warn-color3); +} + +.jp-icon-warn0[stroke] { + stroke: var(--jp-warn-color0); +} +.jp-icon-warn1[stroke] { + stroke: var(--jp-warn-color1); +} +.jp-icon-warn2[stroke] { + stroke: var(--jp-warn-color2); +} +.jp-icon-warn3[stroke] { + stroke: var(--jp-warn-color3); +} +/* icon colors that contrast well with each other and most backgrounds */ +.jp-icon-contrast0[fill] { + fill: var(--jp-icon-contrast-color0); +} +.jp-icon-contrast1[fill] { + fill: var(--jp-icon-contrast-color1); +} +.jp-icon-contrast2[fill] { + fill: var(--jp-icon-contrast-color2); +} +.jp-icon-contrast3[fill] { + fill: var(--jp-icon-contrast-color3); +} + +.jp-icon-contrast0[stroke] { + stroke: var(--jp-icon-contrast-color0); +} +.jp-icon-contrast1[stroke] { + stroke: var(--jp-icon-contrast-color1); +} +.jp-icon-contrast2[stroke] { + stroke: var(--jp-icon-contrast-color2); +} +.jp-icon-contrast3[stroke] { + stroke: var(--jp-icon-contrast-color3); +} + +/* CSS for icons in selected items in the settings editor */ +#setting-editor .jp-PluginList .jp-mod-selected .jp-icon-selectable[fill] { + fill: #fff; +} +#setting-editor + .jp-PluginList + .jp-mod-selected + .jp-icon-selectable-inverse[fill] { + fill: var(--jp-brand-color1); +} + +/* CSS for icons in selected filebrowser listing items */ +.jp-DirListing-item.jp-mod-selected .jp-icon-selectable[fill] { + fill: #fff; +} +.jp-DirListing-item.jp-mod-selected .jp-icon-selectable-inverse[fill] { + fill: var(--jp-brand-color1); +} + +/* CSS for icons in selected tabs in the sidebar tab manager */ +#tab-manager .lm-TabBar-tab.jp-mod-active .jp-icon-selectable[fill] { + fill: #fff; +} + +#tab-manager .lm-TabBar-tab.jp-mod-active .jp-icon-selectable-inverse[fill] { + fill: var(--jp-brand-color1); +} +#tab-manager + .lm-TabBar-tab.jp-mod-active + .jp-icon-hover + :hover + .jp-icon-selectable[fill] { + fill: var(--jp-brand-color1); +} + +#tab-manager + .lm-TabBar-tab.jp-mod-active + .jp-icon-hover + :hover + .jp-icon-selectable-inverse[fill] { + fill: #fff; +} + +/** + * TODO: come up with non css-hack solution for showing the busy icon on top + * of the close icon + * CSS for complex behavior of close icon of tabs in the sidebar tab manager + */ +#tab-manager + .lm-TabBar-tab.jp-mod-dirty + > .lm-TabBar-tabCloseIcon + > :not(:hover) + > .jp-icon3[fill] { + fill: none; +} +#tab-manager + .lm-TabBar-tab.jp-mod-dirty + > .lm-TabBar-tabCloseIcon + > :not(:hover) + > .jp-icon-busy[fill] { + fill: var(--jp-inverse-layout-color3); +} + +#tab-manager + .lm-TabBar-tab.jp-mod-dirty.jp-mod-active + > .lm-TabBar-tabCloseIcon + > :not(:hover) + > .jp-icon-busy[fill] { + fill: #fff; +} + +/** +* TODO: come up with non css-hack solution for showing the busy icon on top +* of the close icon +* CSS for complex behavior of close icon of tabs in the main area tabbar +*/ +.lm-DockPanel-tabBar + .lm-TabBar-tab.lm-mod-closable.jp-mod-dirty + > .lm-TabBar-tabCloseIcon + > :not(:hover) + > .jp-icon3[fill] { + fill: none; +} +.lm-DockPanel-tabBar + .lm-TabBar-tab.lm-mod-closable.jp-mod-dirty + > .lm-TabBar-tabCloseIcon + > :not(:hover) + > .jp-icon-busy[fill] { + fill: var(--jp-inverse-layout-color3); +} + +/* CSS for icons in status bar */ +#jp-main-statusbar .jp-mod-selected .jp-icon-selectable[fill] { + fill: #fff; +} + +#jp-main-statusbar .jp-mod-selected .jp-icon-selectable-inverse[fill] { + fill: var(--jp-brand-color1); +} +/* special handling for splash icon CSS. While the theme CSS reloads during + splash, the splash icon can loose theming. To prevent that, we set a + default for its color variable */ +:root { + --jp-warn-color0: var(--md-orange-700); +} + +/* not sure what to do with this one, used in filebrowser listing */ +.jp-DragIcon { + margin-right: 4px; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/** + * Support for alt colors for icons as inline SVG HTMLElements + */ + +/* alt recolor the primary elements of an icon */ +.jp-icon-alt .jp-icon0[fill] { + fill: var(--jp-layout-color0); +} +.jp-icon-alt .jp-icon1[fill] { + fill: var(--jp-layout-color1); +} +.jp-icon-alt .jp-icon2[fill] { + fill: var(--jp-layout-color2); +} +.jp-icon-alt .jp-icon3[fill] { + fill: var(--jp-layout-color3); +} +.jp-icon-alt .jp-icon4[fill] { + fill: var(--jp-layout-color4); +} + +.jp-icon-alt .jp-icon0[stroke] { + stroke: var(--jp-layout-color0); +} +.jp-icon-alt .jp-icon1[stroke] { + stroke: var(--jp-layout-color1); +} +.jp-icon-alt .jp-icon2[stroke] { + stroke: var(--jp-layout-color2); +} +.jp-icon-alt .jp-icon3[stroke] { + stroke: var(--jp-layout-color3); +} +.jp-icon-alt .jp-icon4[stroke] { + stroke: var(--jp-layout-color4); +} + +/* alt recolor the accent elements of an icon */ +.jp-icon-alt .jp-icon-accent0[fill] { + fill: var(--jp-inverse-layout-color0); +} +.jp-icon-alt .jp-icon-accent1[fill] { + fill: var(--jp-inverse-layout-color1); +} +.jp-icon-alt .jp-icon-accent2[fill] { + fill: var(--jp-inverse-layout-color2); +} +.jp-icon-alt .jp-icon-accent3[fill] { + fill: var(--jp-inverse-layout-color3); +} +.jp-icon-alt .jp-icon-accent4[fill] { + fill: var(--jp-inverse-layout-color4); +} + +.jp-icon-alt .jp-icon-accent0[stroke] { + stroke: var(--jp-inverse-layout-color0); +} +.jp-icon-alt .jp-icon-accent1[stroke] { + stroke: var(--jp-inverse-layout-color1); +} +.jp-icon-alt .jp-icon-accent2[stroke] { + stroke: var(--jp-inverse-layout-color2); +} +.jp-icon-alt .jp-icon-accent3[stroke] { + stroke: var(--jp-inverse-layout-color3); +} +.jp-icon-alt .jp-icon-accent4[stroke] { + stroke: var(--jp-inverse-layout-color4); +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +.jp-icon-hoverShow:not(:hover) svg { + display: none !important; +} + +/** + * Support for hover colors for icons as inline SVG HTMLElements + */ + +/** + * regular colors + */ + +/* recolor the primary elements of an icon */ +.jp-icon-hover :hover .jp-icon0-hover[fill] { + fill: var(--jp-inverse-layout-color0); +} +.jp-icon-hover :hover .jp-icon1-hover[fill] { + fill: var(--jp-inverse-layout-color1); +} +.jp-icon-hover :hover .jp-icon2-hover[fill] { + fill: var(--jp-inverse-layout-color2); +} +.jp-icon-hover :hover .jp-icon3-hover[fill] { + fill: var(--jp-inverse-layout-color3); +} +.jp-icon-hover :hover .jp-icon4-hover[fill] { + fill: var(--jp-inverse-layout-color4); +} + +.jp-icon-hover :hover .jp-icon0-hover[stroke] { + stroke: var(--jp-inverse-layout-color0); +} +.jp-icon-hover :hover .jp-icon1-hover[stroke] { + stroke: var(--jp-inverse-layout-color1); +} +.jp-icon-hover :hover .jp-icon2-hover[stroke] { + stroke: var(--jp-inverse-layout-color2); +} +.jp-icon-hover :hover .jp-icon3-hover[stroke] { + stroke: var(--jp-inverse-layout-color3); +} +.jp-icon-hover :hover .jp-icon4-hover[stroke] { + stroke: var(--jp-inverse-layout-color4); +} + +/* recolor the accent elements of an icon */ +.jp-icon-hover :hover .jp-icon-accent0-hover[fill] { + fill: var(--jp-layout-color0); +} +.jp-icon-hover :hover .jp-icon-accent1-hover[fill] { + fill: var(--jp-layout-color1); +} +.jp-icon-hover :hover .jp-icon-accent2-hover[fill] { + fill: var(--jp-layout-color2); +} +.jp-icon-hover :hover .jp-icon-accent3-hover[fill] { + fill: var(--jp-layout-color3); +} +.jp-icon-hover :hover .jp-icon-accent4-hover[fill] { + fill: var(--jp-layout-color4); +} + +.jp-icon-hover :hover .jp-icon-accent0-hover[stroke] { + stroke: var(--jp-layout-color0); +} +.jp-icon-hover :hover .jp-icon-accent1-hover[stroke] { + stroke: var(--jp-layout-color1); +} +.jp-icon-hover :hover .jp-icon-accent2-hover[stroke] { + stroke: var(--jp-layout-color2); +} +.jp-icon-hover :hover .jp-icon-accent3-hover[stroke] { + stroke: var(--jp-layout-color3); +} +.jp-icon-hover :hover .jp-icon-accent4-hover[stroke] { + stroke: var(--jp-layout-color4); +} + +/* set the color of an icon to transparent */ +.jp-icon-hover :hover .jp-icon-none-hover[fill] { + fill: none; +} + +.jp-icon-hover :hover .jp-icon-none-hover[stroke] { + stroke: none; +} + +/** + * inverse colors + */ + +/* inverse recolor the primary elements of an icon */ +.jp-icon-hover.jp-icon-alt :hover .jp-icon0-hover[fill] { + fill: var(--jp-layout-color0); +} +.jp-icon-hover.jp-icon-alt :hover .jp-icon1-hover[fill] { + fill: var(--jp-layout-color1); +} +.jp-icon-hover.jp-icon-alt :hover .jp-icon2-hover[fill] { + fill: var(--jp-layout-color2); +} +.jp-icon-hover.jp-icon-alt :hover .jp-icon3-hover[fill] { + fill: var(--jp-layout-color3); +} +.jp-icon-hover.jp-icon-alt :hover .jp-icon4-hover[fill] { + fill: var(--jp-layout-color4); +} + +.jp-icon-hover.jp-icon-alt :hover .jp-icon0-hover[stroke] { + stroke: var(--jp-layout-color0); +} +.jp-icon-hover.jp-icon-alt :hover .jp-icon1-hover[stroke] { + stroke: var(--jp-layout-color1); +} +.jp-icon-hover.jp-icon-alt :hover .jp-icon2-hover[stroke] { + stroke: var(--jp-layout-color2); +} +.jp-icon-hover.jp-icon-alt :hover .jp-icon3-hover[stroke] { + stroke: var(--jp-layout-color3); +} +.jp-icon-hover.jp-icon-alt :hover .jp-icon4-hover[stroke] { + stroke: var(--jp-layout-color4); +} + +/* inverse recolor the accent elements of an icon */ +.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent0-hover[fill] { + fill: var(--jp-inverse-layout-color0); +} +.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent1-hover[fill] { + fill: var(--jp-inverse-layout-color1); +} +.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent2-hover[fill] { + fill: var(--jp-inverse-layout-color2); +} +.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent3-hover[fill] { + fill: var(--jp-inverse-layout-color3); +} +.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent4-hover[fill] { + fill: var(--jp-inverse-layout-color4); +} + +.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent0-hover[stroke] { + stroke: var(--jp-inverse-layout-color0); +} +.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent1-hover[stroke] { + stroke: var(--jp-inverse-layout-color1); +} +.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent2-hover[stroke] { + stroke: var(--jp-inverse-layout-color2); +} +.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent3-hover[stroke] { + stroke: var(--jp-inverse-layout-color3); +} +.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent4-hover[stroke] { + stroke: var(--jp-inverse-layout-color4); +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/* Sibling imports */ + +/* Override Blueprint's _reset.scss styles */ +html { + box-sizing: unset; +} + +*, +*::before, +*::after { + box-sizing: unset; +} + +body { + color: unset; + font-family: var(--jp-ui-font-family); +} + +p { + margin-top: unset; + margin-bottom: unset; +} + +small { + font-size: unset; +} + +strong { + font-weight: unset; +} + +/* Override Blueprint's _typography.scss styles */ +a { + text-decoration: unset; + color: unset; +} +a:hover { + text-decoration: unset; + color: unset; +} + +/* Override Blueprint's _accessibility.scss styles */ +:focus { + outline: unset; + outline-offset: unset; + -moz-outline-radius: unset; +} + +/* Styles for ui-components */ +.jp-Button { + border-radius: var(--jp-border-radius); + padding: 0px 12px; + font-size: var(--jp-ui-font-size1); +} + +/* Use our own theme for hover styles */ +button.jp-Button.bp3-button.bp3-minimal:hover { + background-color: var(--jp-layout-color2); +} +.jp-Button.minimal { + color: unset !important; +} + +.jp-Button.jp-ToolbarButtonComponent { + text-transform: none; +} + +.jp-InputGroup input { + box-sizing: border-box; + border-radius: 0; + background-color: transparent; + color: var(--jp-ui-font-color0); + box-shadow: inset 0 0 0 var(--jp-border-width) var(--jp-input-border-color); +} + +.jp-InputGroup input:focus { + box-shadow: inset 0 0 0 var(--jp-border-width) + var(--jp-input-active-box-shadow-color), + inset 0 0 0 3px var(--jp-input-active-box-shadow-color); +} + +.jp-InputGroup input::placeholder, +input::placeholder { + color: var(--jp-ui-font-color3); +} + +.jp-BPIcon { + display: inline-block; + vertical-align: middle; + margin: auto; +} + +/* Stop blueprint futzing with our icon fills */ +.bp3-icon.jp-BPIcon > svg:not([fill]) { + fill: var(--jp-inverse-layout-color3); +} + +.jp-InputGroupAction { + padding: 6px; +} + +.jp-HTMLSelect.jp-DefaultStyle select { + background-color: initial; + border: none; + border-radius: 0; + box-shadow: none; + color: var(--jp-ui-font-color0); + display: block; + font-size: var(--jp-ui-font-size1); + height: 24px; + line-height: 14px; + padding: 0 25px 0 10px; + text-align: left; + -moz-appearance: none; + -webkit-appearance: none; +} + +/* Use our own theme for hover and option styles */ +.jp-HTMLSelect.jp-DefaultStyle select:hover, +.jp-HTMLSelect.jp-DefaultStyle select > option { + background-color: var(--jp-layout-color2); + color: var(--jp-ui-font-color0); +} +select { + box-sizing: border-box; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/* This file was auto-generated by ensurePackage() in @jupyterlab/buildutils */ + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +.jp-Collapse { + display: flex; + flex-direction: column; + align-items: stretch; + border-top: 1px solid var(--jp-border-color2); + border-bottom: 1px solid var(--jp-border-color2); +} + +.jp-Collapse-header { + padding: 1px 12px; + color: var(--jp-ui-font-color1); + background-color: var(--jp-layout-color1); + font-size: var(--jp-ui-font-size2); +} + +.jp-Collapse-header:hover { + background-color: var(--jp-layout-color2); +} + +.jp-Collapse-contents { + padding: 0px 12px 0px 12px; + background-color: var(--jp-layout-color1); + color: var(--jp-ui-font-color1); + overflow: auto; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/*----------------------------------------------------------------------------- +| Variables +|----------------------------------------------------------------------------*/ + +:root { + --jp-private-commandpalette-search-height: 28px; +} + +/*----------------------------------------------------------------------------- +| Overall styles +|----------------------------------------------------------------------------*/ + +.lm-CommandPalette { + padding-bottom: 0px; + color: var(--jp-ui-font-color1); + background: var(--jp-layout-color1); + /* This is needed so that all font sizing of children done in ems is + * relative to this base size */ + font-size: var(--jp-ui-font-size1); +} + +/*----------------------------------------------------------------------------- +| Search +|----------------------------------------------------------------------------*/ + +.lm-CommandPalette-search { + padding: 4px; + background-color: var(--jp-layout-color1); + z-index: 2; +} + +.lm-CommandPalette-wrapper { + overflow: overlay; + padding: 0px 9px; + background-color: var(--jp-input-active-background); + height: 30px; + box-shadow: inset 0 0 0 var(--jp-border-width) var(--jp-input-border-color); +} + +.lm-CommandPalette.lm-mod-focused .lm-CommandPalette-wrapper { + box-shadow: inset 0 0 0 1px var(--jp-input-active-box-shadow-color), + inset 0 0 0 3px var(--jp-input-active-box-shadow-color); +} + +.lm-CommandPalette-wrapper::after { + content: ' '; + color: white; + background-color: var(--jp-brand-color1); + position: absolute; + top: 4px; + right: 4px; + height: 30px; + width: 10px; + padding: 0px 10px; + background-image: var(--jp-icon-search-white); + background-size: 20px; + background-repeat: no-repeat; + background-position: center; +} + +.lm-CommandPalette-input { + background: transparent; + width: calc(100% - 18px); + float: left; + border: none; + outline: none; + font-size: var(--jp-ui-font-size1); + color: var(--jp-ui-font-color0); + line-height: var(--jp-private-commandpalette-search-height); +} + +.lm-CommandPalette-input::-webkit-input-placeholder, +.lm-CommandPalette-input::-moz-placeholder, +.lm-CommandPalette-input:-ms-input-placeholder { + color: var(--jp-ui-font-color3); + font-size: var(--jp-ui-font-size1); +} + +/*----------------------------------------------------------------------------- +| Results +|----------------------------------------------------------------------------*/ + +.lm-CommandPalette-header:first-child { + margin-top: 0px; +} + +.lm-CommandPalette-header { + border-bottom: solid var(--jp-border-width) var(--jp-border-color2); + color: var(--jp-ui-font-color1); + cursor: pointer; + display: flex; + font-size: var(--jp-ui-font-size0); + font-weight: 600; + letter-spacing: 1px; + margin-top: 8px; + padding: 8px 0 8px 12px; + text-transform: uppercase; +} + +.lm-CommandPalette-header.lm-mod-active { + background: var(--jp-layout-color2); +} + +.lm-CommandPalette-header > mark { + background-color: transparent; + font-weight: bold; + color: var(--jp-ui-font-color1); +} + +.lm-CommandPalette-item { + padding: 4px 12px 4px 4px; + color: var(--jp-ui-font-color1); + font-size: var(--jp-ui-font-size1); + font-weight: 400; + display: flex; +} + +.lm-CommandPalette-item.lm-mod-disabled { + color: var(--jp-ui-font-color3); +} + +.lm-CommandPalette-item.lm-mod-active { + background: var(--jp-layout-color3); +} + +.lm-CommandPalette-item.lm-mod-active:hover:not(.lm-mod-disabled) { + background: var(--jp-layout-color4); +} + +.lm-CommandPalette-item:hover:not(.lm-mod-active):not(.lm-mod-disabled) { + background: var(--jp-layout-color2); +} + +.lm-CommandPalette-itemContent { + overflow: hidden; +} + +.lm-CommandPalette-itemLabel > mark { + color: var(--jp-ui-font-color0); + background-color: transparent; + font-weight: bold; +} + +.lm-CommandPalette-item.lm-mod-disabled mark { + color: var(--jp-ui-font-color3); +} + +.lm-CommandPalette-item .lm-CommandPalette-itemIcon { + margin: 0 4px 0 0; + position: relative; + width: 16px; + top: 2px; + flex: 0 0 auto; +} + +.lm-CommandPalette-item.lm-mod-disabled .lm-CommandPalette-itemIcon { + opacity: 0.4; +} + +.lm-CommandPalette-item .lm-CommandPalette-itemShortcut { + flex: 0 0 auto; +} + +.lm-CommandPalette-itemCaption { + display: none; +} + +.lm-CommandPalette-content { + background-color: var(--jp-layout-color1); +} + +.lm-CommandPalette-content:empty:after { + content: 'No results'; + margin: auto; + margin-top: 20px; + width: 100px; + display: block; + font-size: var(--jp-ui-font-size2); + font-family: var(--jp-ui-font-family); + font-weight: lighter; +} + +.lm-CommandPalette-emptyMessage { + text-align: center; + margin-top: 24px; + line-height: 1.32; + padding: 0px 8px; + color: var(--jp-content-font-color3); +} + +/*----------------------------------------------------------------------------- +| Copyright (c) 2014-2017, Jupyter Development Team. +| +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +.jp-Dialog { + position: absolute; + z-index: 10000; + display: flex; + flex-direction: column; + align-items: center; + justify-content: center; + top: 0px; + left: 0px; + margin: 0; + padding: 0; + width: 100%; + height: 100%; + background: var(--jp-dialog-background); +} + +.jp-Dialog-content { + display: flex; + flex-direction: column; + margin-left: auto; + margin-right: auto; + background: var(--jp-layout-color1); + padding: 24px; + padding-bottom: 12px; + min-width: 300px; + min-height: 150px; + max-width: 1000px; + max-height: 500px; + box-sizing: border-box; + box-shadow: var(--jp-elevation-z20); + word-wrap: break-word; + border-radius: var(--jp-border-radius); + /* This is needed so that all font sizing of children done in ems is + * relative to this base size */ + font-size: var(--jp-ui-font-size1); + color: var(--jp-ui-font-color1); +} + +.jp-Dialog-button { + overflow: visible; +} + +button.jp-Dialog-button:focus { + outline: 1px solid var(--jp-brand-color1); + outline-offset: 4px; + -moz-outline-radius: 0px; +} + +button.jp-Dialog-button:focus::-moz-focus-inner { + border: 0; +} + +.jp-Dialog-header { + flex: 0 0 auto; + padding-bottom: 12px; + font-size: var(--jp-ui-font-size3); + font-weight: 400; + color: var(--jp-ui-font-color0); +} + +.jp-Dialog-body { + display: flex; + flex-direction: column; + flex: 1 1 auto; + font-size: var(--jp-ui-font-size1); + background: var(--jp-layout-color1); + overflow: auto; +} + +.jp-Dialog-footer { + display: flex; + flex-direction: row; + justify-content: flex-end; + flex: 0 0 auto; + margin-left: -12px; + margin-right: -12px; + padding: 12px; +} + +.jp-Dialog-title { + overflow: hidden; + white-space: nowrap; + text-overflow: ellipsis; +} + +.jp-Dialog-body > .jp-select-wrapper { + width: 100%; +} + +.jp-Dialog-body > button { + padding: 0px 16px; +} + +.jp-Dialog-body > label { + line-height: 1.4; + color: var(--jp-ui-font-color0); +} + +.jp-Dialog-button.jp-mod-styled:not(:last-child) { + margin-right: 12px; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) 2014-2016, Jupyter Development Team. +| +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +.jp-HoverBox { + position: fixed; +} + +.jp-HoverBox.jp-mod-outofview { + display: none; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +.jp-IFrame { + width: 100%; + height: 100%; +} + +.jp-IFrame > iframe { + border: none; +} + +/* +When drag events occur, `p-mod-override-cursor` is added to the body. +Because iframes steal all cursor events, the following two rules are necessary +to suppress pointer events while resize drags are occurring. There may be a +better solution to this problem. +*/ +body.lm-mod-override-cursor .jp-IFrame { + position: relative; +} + +body.lm-mod-override-cursor .jp-IFrame:before { + content: ''; + position: absolute; + top: 0; + left: 0; + right: 0; + bottom: 0; + background: transparent; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) 2014-2016, Jupyter Development Team. +| +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +.jp-MainAreaWidget > :focus { + outline: none; +} + +/** + * google-material-color v1.2.6 + * https://github.com/danlevan/google-material-color + */ +:root { + --md-red-50: #ffebee; + --md-red-100: #ffcdd2; + --md-red-200: #ef9a9a; + --md-red-300: #e57373; + --md-red-400: #ef5350; + --md-red-500: #f44336; + --md-red-600: #e53935; + --md-red-700: #d32f2f; + --md-red-800: #c62828; + --md-red-900: #b71c1c; + --md-red-A100: #ff8a80; + --md-red-A200: #ff5252; + --md-red-A400: #ff1744; + --md-red-A700: #d50000; + + --md-pink-50: #fce4ec; + --md-pink-100: #f8bbd0; + --md-pink-200: #f48fb1; + --md-pink-300: #f06292; + --md-pink-400: #ec407a; + --md-pink-500: #e91e63; + --md-pink-600: #d81b60; + --md-pink-700: #c2185b; + --md-pink-800: #ad1457; + --md-pink-900: #880e4f; + --md-pink-A100: #ff80ab; + --md-pink-A200: #ff4081; + --md-pink-A400: #f50057; + --md-pink-A700: #c51162; + + --md-purple-50: #f3e5f5; + --md-purple-100: #e1bee7; + --md-purple-200: #ce93d8; + --md-purple-300: #ba68c8; + --md-purple-400: #ab47bc; + --md-purple-500: #9c27b0; + --md-purple-600: #8e24aa; + --md-purple-700: #7b1fa2; + --md-purple-800: #6a1b9a; + --md-purple-900: #4a148c; + --md-purple-A100: #ea80fc; + --md-purple-A200: #e040fb; + --md-purple-A400: #d500f9; + --md-purple-A700: #aa00ff; + + --md-deep-purple-50: #ede7f6; + --md-deep-purple-100: #d1c4e9; + --md-deep-purple-200: #b39ddb; + --md-deep-purple-300: #9575cd; + --md-deep-purple-400: #7e57c2; + --md-deep-purple-500: #673ab7; + --md-deep-purple-600: #5e35b1; + --md-deep-purple-700: #512da8; + --md-deep-purple-800: #4527a0; + --md-deep-purple-900: #311b92; + --md-deep-purple-A100: #b388ff; + --md-deep-purple-A200: #7c4dff; + --md-deep-purple-A400: #651fff; + --md-deep-purple-A700: #6200ea; + + --md-indigo-50: #e8eaf6; + --md-indigo-100: #c5cae9; + --md-indigo-200: #9fa8da; + --md-indigo-300: #7986cb; + --md-indigo-400: #5c6bc0; + --md-indigo-500: #3f51b5; + --md-indigo-600: #3949ab; + --md-indigo-700: #303f9f; + --md-indigo-800: #283593; + --md-indigo-900: #1a237e; + --md-indigo-A100: #8c9eff; + --md-indigo-A200: #536dfe; + --md-indigo-A400: #3d5afe; + --md-indigo-A700: #304ffe; + + --md-blue-50: #e3f2fd; + --md-blue-100: #bbdefb; + --md-blue-200: #90caf9; + --md-blue-300: #64b5f6; + --md-blue-400: #42a5f5; + --md-blue-500: #2196f3; + --md-blue-600: #1e88e5; + --md-blue-700: #1976d2; + --md-blue-800: #1565c0; + --md-blue-900: #0d47a1; + --md-blue-A100: #82b1ff; + --md-blue-A200: #448aff; + --md-blue-A400: #2979ff; + --md-blue-A700: #2962ff; + + --md-light-blue-50: #e1f5fe; + --md-light-blue-100: #b3e5fc; + --md-light-blue-200: #81d4fa; + --md-light-blue-300: #4fc3f7; + --md-light-blue-400: #29b6f6; + --md-light-blue-500: #03a9f4; + --md-light-blue-600: #039be5; + --md-light-blue-700: #0288d1; + --md-light-blue-800: #0277bd; + --md-light-blue-900: #01579b; + --md-light-blue-A100: #80d8ff; + --md-light-blue-A200: #40c4ff; + --md-light-blue-A400: #00b0ff; + --md-light-blue-A700: #0091ea; + + --md-cyan-50: #e0f7fa; + --md-cyan-100: #b2ebf2; + --md-cyan-200: #80deea; + --md-cyan-300: #4dd0e1; + --md-cyan-400: #26c6da; + --md-cyan-500: #00bcd4; + --md-cyan-600: #00acc1; + --md-cyan-700: #0097a7; + --md-cyan-800: #00838f; + --md-cyan-900: #006064; + --md-cyan-A100: #84ffff; + --md-cyan-A200: #18ffff; + --md-cyan-A400: #00e5ff; + --md-cyan-A700: #00b8d4; + + --md-teal-50: #e0f2f1; + --md-teal-100: #b2dfdb; + --md-teal-200: #80cbc4; + --md-teal-300: #4db6ac; + --md-teal-400: #26a69a; + --md-teal-500: #009688; + --md-teal-600: #00897b; + --md-teal-700: #00796b; + --md-teal-800: #00695c; + --md-teal-900: #004d40; + --md-teal-A100: #a7ffeb; + --md-teal-A200: #64ffda; + --md-teal-A400: #1de9b6; + --md-teal-A700: #00bfa5; + + --md-green-50: #e8f5e9; + --md-green-100: #c8e6c9; + --md-green-200: #a5d6a7; + --md-green-300: #81c784; + --md-green-400: #66bb6a; + --md-green-500: #4caf50; + --md-green-600: #43a047; + --md-green-700: #388e3c; + --md-green-800: #2e7d32; + --md-green-900: #1b5e20; + --md-green-A100: #b9f6ca; + --md-green-A200: #69f0ae; + --md-green-A400: #00e676; + --md-green-A700: #00c853; + + --md-light-green-50: #f1f8e9; + --md-light-green-100: #dcedc8; + --md-light-green-200: #c5e1a5; + --md-light-green-300: #aed581; + --md-light-green-400: #9ccc65; + --md-light-green-500: #8bc34a; + --md-light-green-600: #7cb342; + --md-light-green-700: #689f38; + --md-light-green-800: #558b2f; + --md-light-green-900: #33691e; + --md-light-green-A100: #ccff90; + --md-light-green-A200: #b2ff59; + --md-light-green-A400: #76ff03; + --md-light-green-A700: #64dd17; + + --md-lime-50: #f9fbe7; + --md-lime-100: #f0f4c3; + --md-lime-200: #e6ee9c; + --md-lime-300: #dce775; + --md-lime-400: #d4e157; + --md-lime-500: #cddc39; + --md-lime-600: #c0ca33; + --md-lime-700: #afb42b; + --md-lime-800: #9e9d24; + --md-lime-900: #827717; + --md-lime-A100: #f4ff81; + --md-lime-A200: #eeff41; + --md-lime-A400: #c6ff00; + --md-lime-A700: #aeea00; + + --md-yellow-50: #fffde7; + --md-yellow-100: #fff9c4; + --md-yellow-200: #fff59d; + --md-yellow-300: #fff176; + --md-yellow-400: #ffee58; + --md-yellow-500: #ffeb3b; + --md-yellow-600: #fdd835; + --md-yellow-700: #fbc02d; + --md-yellow-800: #f9a825; + --md-yellow-900: #f57f17; + --md-yellow-A100: #ffff8d; + --md-yellow-A200: #ffff00; + --md-yellow-A400: #ffea00; + --md-yellow-A700: #ffd600; + + --md-amber-50: #fff8e1; + --md-amber-100: #ffecb3; + --md-amber-200: #ffe082; + --md-amber-300: #ffd54f; + --md-amber-400: #ffca28; + --md-amber-500: #ffc107; + --md-amber-600: #ffb300; + --md-amber-700: #ffa000; + --md-amber-800: #ff8f00; + --md-amber-900: #ff6f00; + --md-amber-A100: #ffe57f; + --md-amber-A200: #ffd740; + --md-amber-A400: #ffc400; + --md-amber-A700: #ffab00; + + --md-orange-50: #fff3e0; + --md-orange-100: #ffe0b2; + --md-orange-200: #ffcc80; + --md-orange-300: #ffb74d; + --md-orange-400: #ffa726; + --md-orange-500: #ff9800; + --md-orange-600: #fb8c00; + --md-orange-700: #f57c00; + --md-orange-800: #ef6c00; + --md-orange-900: #e65100; + --md-orange-A100: #ffd180; + --md-orange-A200: #ffab40; + --md-orange-A400: #ff9100; + --md-orange-A700: #ff6d00; + + --md-deep-orange-50: #fbe9e7; + --md-deep-orange-100: #ffccbc; + --md-deep-orange-200: #ffab91; + --md-deep-orange-300: #ff8a65; + --md-deep-orange-400: #ff7043; + --md-deep-orange-500: #ff5722; + --md-deep-orange-600: #f4511e; + --md-deep-orange-700: #e64a19; + --md-deep-orange-800: #d84315; + --md-deep-orange-900: #bf360c; + --md-deep-orange-A100: #ff9e80; + --md-deep-orange-A200: #ff6e40; + --md-deep-orange-A400: #ff3d00; + --md-deep-orange-A700: #dd2c00; + + --md-brown-50: #efebe9; + --md-brown-100: #d7ccc8; + --md-brown-200: #bcaaa4; + --md-brown-300: #a1887f; + --md-brown-400: #8d6e63; + --md-brown-500: #795548; + --md-brown-600: #6d4c41; + --md-brown-700: #5d4037; + --md-brown-800: #4e342e; + --md-brown-900: #3e2723; + + --md-grey-50: #fafafa; + --md-grey-100: #f5f5f5; + --md-grey-200: #eeeeee; + --md-grey-300: #e0e0e0; + --md-grey-400: #bdbdbd; + --md-grey-500: #9e9e9e; + --md-grey-600: #757575; + --md-grey-700: #616161; + --md-grey-800: #424242; + --md-grey-900: #212121; + + --md-blue-grey-50: #eceff1; + --md-blue-grey-100: #cfd8dc; + --md-blue-grey-200: #b0bec5; + --md-blue-grey-300: #90a4ae; + --md-blue-grey-400: #78909c; + --md-blue-grey-500: #607d8b; + --md-blue-grey-600: #546e7a; + --md-blue-grey-700: #455a64; + --md-blue-grey-800: #37474f; + --md-blue-grey-900: #263238; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) 2017, Jupyter Development Team. +| +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +.jp-Spinner { + position: absolute; + display: flex; + justify-content: center; + align-items: center; + z-index: 10; + left: 0; + top: 0; + width: 100%; + height: 100%; + background: var(--jp-layout-color0); + outline: none; +} + +.jp-SpinnerContent { + font-size: 10px; + margin: 50px auto; + text-indent: -9999em; + width: 3em; + height: 3em; + border-radius: 50%; + background: var(--jp-brand-color3); + background: linear-gradient( + to right, + #f37626 10%, + rgba(255, 255, 255, 0) 42% + ); + position: relative; + animation: load3 1s infinite linear, fadeIn 1s; +} + +.jp-SpinnerContent:before { + width: 50%; + height: 50%; + background: #f37626; + border-radius: 100% 0 0 0; + position: absolute; + top: 0; + left: 0; + content: ''; +} + +.jp-SpinnerContent:after { + background: var(--jp-layout-color0); + width: 75%; + height: 75%; + border-radius: 50%; + content: ''; + margin: auto; + position: absolute; + top: 0; + left: 0; + bottom: 0; + right: 0; +} + +@keyframes fadeIn { + 0% { + opacity: 0; + } + 100% { + opacity: 1; + } +} + +@keyframes load3 { + 0% { + transform: rotate(0deg); + } + 100% { + transform: rotate(360deg); + } +} + +/*----------------------------------------------------------------------------- +| Copyright (c) 2014-2017, Jupyter Development Team. +| +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +button.jp-mod-styled { + font-size: var(--jp-ui-font-size1); + color: var(--jp-ui-font-color0); + border: none; + box-sizing: border-box; + text-align: center; + line-height: 32px; + height: 32px; + padding: 0px 12px; + letter-spacing: 0.8px; + outline: none; + appearance: none; + -webkit-appearance: none; + -moz-appearance: none; +} + +input.jp-mod-styled { + background: var(--jp-input-background); + height: 28px; + box-sizing: border-box; + border: var(--jp-border-width) solid var(--jp-border-color1); + padding-left: 7px; + padding-right: 7px; + font-size: var(--jp-ui-font-size2); + color: var(--jp-ui-font-color0); + outline: none; + appearance: none; + -webkit-appearance: none; + -moz-appearance: none; +} + +input.jp-mod-styled:focus { + border: var(--jp-border-width) solid var(--md-blue-500); + box-shadow: inset 0 0 4px var(--md-blue-300); +} + +.jp-select-wrapper { + display: flex; + position: relative; + flex-direction: column; + padding: 1px; + background-color: var(--jp-layout-color1); + height: 28px; + box-sizing: border-box; + margin-bottom: 12px; +} + +.jp-select-wrapper.jp-mod-focused select.jp-mod-styled { + border: var(--jp-border-width) solid var(--jp-input-active-border-color); + box-shadow: var(--jp-input-box-shadow); + background-color: var(--jp-input-active-background); +} + +select.jp-mod-styled:hover { + background-color: var(--jp-layout-color1); + cursor: pointer; + color: var(--jp-ui-font-color0); + background-color: var(--jp-input-hover-background); + box-shadow: inset 0 0px 1px rgba(0, 0, 0, 0.5); +} + +select.jp-mod-styled { + flex: 1 1 auto; + height: 32px; + width: 100%; + font-size: var(--jp-ui-font-size2); + background: var(--jp-input-background); + color: var(--jp-ui-font-color0); + padding: 0 25px 0 8px; + border: var(--jp-border-width) solid var(--jp-input-border-color); + border-radius: 0px; + outline: none; + appearance: none; + -webkit-appearance: none; + -moz-appearance: none; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) 2014-2016, Jupyter Development Team. +| +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +:root { + --jp-private-toolbar-height: calc( + 28px + var(--jp-border-width) + ); /* leave 28px for content */ +} + +.jp-Toolbar { + color: var(--jp-ui-font-color1); + flex: 0 0 auto; + display: flex; + flex-direction: row; + border-bottom: var(--jp-border-width) solid var(--jp-toolbar-border-color); + box-shadow: var(--jp-toolbar-box-shadow); + background: var(--jp-toolbar-background); + min-height: var(--jp-toolbar-micro-height); + padding: 2px; + z-index: 1; +} + +/* Toolbar items */ + +.jp-Toolbar > .jp-Toolbar-item.jp-Toolbar-spacer { + flex-grow: 1; + flex-shrink: 1; +} + +.jp-Toolbar-item.jp-Toolbar-kernelStatus { + display: inline-block; + width: 32px; + background-repeat: no-repeat; + background-position: center; + background-size: 16px; +} + +.jp-Toolbar > .jp-Toolbar-item { + flex: 0 0 auto; + display: flex; + padding-left: 1px; + padding-right: 1px; + font-size: var(--jp-ui-font-size1); + line-height: var(--jp-private-toolbar-height); + height: 100%; +} + +/* Toolbar buttons */ + +/* This is the div we use to wrap the react component into a Widget */ +div.jp-ToolbarButton { + color: transparent; + border: none; + box-sizing: border-box; + outline: none; + appearance: none; + -webkit-appearance: none; + -moz-appearance: none; + padding: 0px; + margin: 0px; +} + +button.jp-ToolbarButtonComponent { + background: var(--jp-layout-color1); + border: none; + box-sizing: border-box; + outline: none; + appearance: none; + -webkit-appearance: none; + -moz-appearance: none; + padding: 0px 6px; + margin: 0px; + height: 24px; + border-radius: var(--jp-border-radius); + display: flex; + align-items: center; + text-align: center; + font-size: 14px; + min-width: unset; + min-height: unset; +} + +button.jp-ToolbarButtonComponent:disabled { + opacity: 0.4; +} + +button.jp-ToolbarButtonComponent span { + padding: 0px; + flex: 0 0 auto; +} + +button.jp-ToolbarButtonComponent .jp-ToolbarButtonComponent-label { + font-size: var(--jp-ui-font-size1); + line-height: 100%; + padding-left: 2px; + color: var(--jp-ui-font-color1); +} + +/*----------------------------------------------------------------------------- +| Copyright (c) 2014-2017, Jupyter Development Team. +| +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/* This file was auto-generated by ensurePackage() in @jupyterlab/buildutils */ + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Copyright (c) 2014-2017, PhosphorJS Contributors +| +| Distributed under the terms of the BSD 3-Clause License. +| +| The full license is in the file LICENSE, distributed with this software. +|----------------------------------------------------------------------------*/ + + +/* <DEPRECATED> */ body.p-mod-override-cursor *, /* </DEPRECATED> */ +body.lm-mod-override-cursor * { + cursor: inherit !important; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) 2014-2016, Jupyter Development Team. +| +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +.jp-JSONEditor { + display: flex; + flex-direction: column; + width: 100%; +} + +.jp-JSONEditor-host { + flex: 1 1 auto; + border: var(--jp-border-width) solid var(--jp-input-border-color); + border-radius: 0px; + background: var(--jp-layout-color0); + min-height: 50px; + padding: 1px; +} + +.jp-JSONEditor.jp-mod-error .jp-JSONEditor-host { + border-color: red; + outline-color: red; +} + +.jp-JSONEditor-header { + display: flex; + flex: 1 0 auto; + padding: 0 0 0 12px; +} + +.jp-JSONEditor-header label { + flex: 0 0 auto; +} + +.jp-JSONEditor-commitButton { + height: 16px; + width: 16px; + background-size: 18px; + background-repeat: no-repeat; + background-position: center; +} + +.jp-JSONEditor-host.jp-mod-focused { + background-color: var(--jp-input-active-background); + border: 1px solid var(--jp-input-active-border-color); + box-shadow: var(--jp-input-box-shadow); +} + +.jp-Editor.jp-mod-dropTarget { + border: var(--jp-border-width) solid var(--jp-input-active-border-color); + box-shadow: var(--jp-input-box-shadow); +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/* This file was auto-generated by ensurePackage() in @jupyterlab/buildutils */ + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/* BASICS */ + +.CodeMirror { + /* Set height, width, borders, and global font properties here */ + font-family: monospace; + height: 300px; + color: black; + direction: ltr; +} + +/* PADDING */ + +.CodeMirror-lines { + padding: 4px 0; /* Vertical padding around content */ +} +.CodeMirror pre.CodeMirror-line, +.CodeMirror pre.CodeMirror-line-like { + padding: 0 4px; /* Horizontal padding of content */ +} + +.CodeMirror-scrollbar-filler, .CodeMirror-gutter-filler { + background-color: white; /* The little square between H and V scrollbars */ +} + +/* GUTTER */ + +.CodeMirror-gutters { + border-right: 1px solid #ddd; + background-color: #f7f7f7; + white-space: nowrap; +} +.CodeMirror-linenumbers {} +.CodeMirror-linenumber { + padding: 0 3px 0 5px; + min-width: 20px; + text-align: right; + color: #999; + white-space: nowrap; +} + +.CodeMirror-guttermarker { color: black; } +.CodeMirror-guttermarker-subtle { color: #999; } + +/* CURSOR */ + +.CodeMirror-cursor { + border-left: 1px solid black; + border-right: none; + width: 0; +} +/* Shown when moving in bi-directional text */ +.CodeMirror div.CodeMirror-secondarycursor { + border-left: 1px solid silver; +} +.cm-fat-cursor .CodeMirror-cursor { + width: auto; + border: 0 !important; + background: #7e7; +} +.cm-fat-cursor div.CodeMirror-cursors { + z-index: 1; +} +.cm-fat-cursor-mark { + background-color: rgba(20, 255, 20, 0.5); + -webkit-animation: blink 1.06s steps(1) infinite; + -moz-animation: blink 1.06s steps(1) infinite; + animation: blink 1.06s steps(1) infinite; +} +.cm-animate-fat-cursor { + width: auto; + border: 0; + -webkit-animation: blink 1.06s steps(1) infinite; + -moz-animation: blink 1.06s steps(1) infinite; + animation: blink 1.06s steps(1) infinite; + background-color: #7e7; +} +@-moz-keyframes blink { + 0% {} + 50% { background-color: transparent; } + 100% {} +} +@-webkit-keyframes blink { + 0% {} + 50% { background-color: transparent; } + 100% {} +} +@keyframes blink { + 0% {} + 50% { background-color: transparent; } + 100% {} +} + +/* Can style cursor different in overwrite (non-insert) mode */ +.CodeMirror-overwrite .CodeMirror-cursor {} + +.cm-tab { display: inline-block; text-decoration: inherit; } + +.CodeMirror-rulers { + position: absolute; + left: 0; right: 0; top: -50px; bottom: 0; + overflow: hidden; +} +.CodeMirror-ruler { + border-left: 1px solid #ccc; + top: 0; bottom: 0; + position: absolute; +} + +/* DEFAULT THEME */ + +.cm-s-default .cm-header {color: blue;} +.cm-s-default .cm-quote {color: #090;} +.cm-negative {color: #d44;} +.cm-positive {color: #292;} +.cm-header, .cm-strong {font-weight: bold;} +.cm-em {font-style: italic;} +.cm-link {text-decoration: underline;} +.cm-strikethrough {text-decoration: line-through;} + +.cm-s-default .cm-keyword {color: #708;} +.cm-s-default .cm-atom {color: #219;} +.cm-s-default .cm-number {color: #164;} +.cm-s-default .cm-def {color: #00f;} +.cm-s-default .cm-variable, +.cm-s-default .cm-punctuation, +.cm-s-default .cm-property, +.cm-s-default .cm-operator {} +.cm-s-default .cm-variable-2 {color: #05a;} +.cm-s-default .cm-variable-3, .cm-s-default .cm-type {color: #085;} +.cm-s-default .cm-comment {color: #a50;} +.cm-s-default .cm-string {color: #a11;} +.cm-s-default .cm-string-2 {color: #f50;} +.cm-s-default .cm-meta {color: #555;} +.cm-s-default .cm-qualifier {color: #555;} +.cm-s-default .cm-builtin {color: #30a;} +.cm-s-default .cm-bracket {color: #997;} +.cm-s-default .cm-tag {color: #170;} +.cm-s-default .cm-attribute {color: #00c;} +.cm-s-default .cm-hr {color: #999;} +.cm-s-default .cm-link {color: #00c;} + +.cm-s-default .cm-error {color: #f00;} +.cm-invalidchar {color: #f00;} + +.CodeMirror-composing { border-bottom: 2px solid; } + +/* Default styles for common addons */ + +div.CodeMirror span.CodeMirror-matchingbracket {color: #0b0;} +div.CodeMirror span.CodeMirror-nonmatchingbracket {color: #a22;} +.CodeMirror-matchingtag { background: rgba(255, 150, 0, .3); } +.CodeMirror-activeline-background {background: #e8f2ff;} + +/* STOP */ + +/* The rest of this file contains styles related to the mechanics of + the editor. You probably shouldn't touch them. */ + +.CodeMirror { + position: relative; + overflow: hidden; + background: white; +} + +.CodeMirror-scroll { + overflow: scroll !important; /* Things will break if this is overridden */ + /* 30px is the magic margin used to hide the element's real scrollbars */ + /* See overflow: hidden in .CodeMirror */ + margin-bottom: -30px; margin-right: -30px; + padding-bottom: 30px; + height: 100%; + outline: none; /* Prevent dragging from highlighting the element */ + position: relative; +} +.CodeMirror-sizer { + position: relative; + border-right: 30px solid transparent; +} + +/* The fake, visible scrollbars. Used to force redraw during scrolling + before actual scrolling happens, thus preventing shaking and + flickering artifacts. */ +.CodeMirror-vscrollbar, .CodeMirror-hscrollbar, .CodeMirror-scrollbar-filler, .CodeMirror-gutter-filler { + position: absolute; + z-index: 6; + display: none; +} +.CodeMirror-vscrollbar { + right: 0; top: 0; + overflow-x: hidden; + overflow-y: scroll; +} +.CodeMirror-hscrollbar { + bottom: 0; left: 0; + overflow-y: hidden; + overflow-x: scroll; +} +.CodeMirror-scrollbar-filler { + right: 0; bottom: 0; +} +.CodeMirror-gutter-filler { + left: 0; bottom: 0; +} + +.CodeMirror-gutters { + position: absolute; left: 0; top: 0; + min-height: 100%; + z-index: 3; +} +.CodeMirror-gutter { + white-space: normal; + height: 100%; + display: inline-block; + vertical-align: top; + margin-bottom: -30px; +} +.CodeMirror-gutter-wrapper { + position: absolute; + z-index: 4; + background: none !important; + border: none !important; +} +.CodeMirror-gutter-background { + position: absolute; + top: 0; bottom: 0; + z-index: 4; +} +.CodeMirror-gutter-elt { + position: absolute; + cursor: default; + z-index: 4; +} +.CodeMirror-gutter-wrapper ::selection { background-color: transparent } +.CodeMirror-gutter-wrapper ::-moz-selection { background-color: transparent } + +.CodeMirror-lines { + cursor: text; + min-height: 1px; /* prevents collapsing before first draw */ +} +.CodeMirror pre.CodeMirror-line, +.CodeMirror pre.CodeMirror-line-like { + /* Reset some styles that the rest of the page might have set */ + -moz-border-radius: 0; -webkit-border-radius: 0; border-radius: 0; + border-width: 0; + background: transparent; + font-family: inherit; + font-size: inherit; + margin: 0; + white-space: pre; + word-wrap: normal; + line-height: inherit; + color: inherit; + z-index: 2; + position: relative; + overflow: visible; + -webkit-tap-highlight-color: transparent; + -webkit-font-variant-ligatures: contextual; + font-variant-ligatures: contextual; +} +.CodeMirror-wrap pre.CodeMirror-line, +.CodeMirror-wrap pre.CodeMirror-line-like { + word-wrap: break-word; + white-space: pre-wrap; + word-break: normal; +} + +.CodeMirror-linebackground { + position: absolute; + left: 0; right: 0; top: 0; bottom: 0; + z-index: 0; +} + +.CodeMirror-linewidget { + position: relative; + z-index: 2; + padding: 0.1px; /* Force widget margins to stay inside of the container */ +} + +.CodeMirror-widget {} + +.CodeMirror-rtl pre { direction: rtl; } + +.CodeMirror-code { + outline: none; +} + +/* Force content-box sizing for the elements where we expect it */ +.CodeMirror-scroll, +.CodeMirror-sizer, +.CodeMirror-gutter, +.CodeMirror-gutters, +.CodeMirror-linenumber { + -moz-box-sizing: content-box; + box-sizing: content-box; +} + +.CodeMirror-measure { + position: absolute; + width: 100%; + height: 0; + overflow: hidden; + visibility: hidden; +} + +.CodeMirror-cursor { + position: absolute; + pointer-events: none; +} +.CodeMirror-measure pre { position: static; } + +div.CodeMirror-cursors { + visibility: hidden; + position: relative; + z-index: 3; +} +div.CodeMirror-dragcursors { + visibility: visible; +} + +.CodeMirror-focused div.CodeMirror-cursors { + visibility: visible; +} + +.CodeMirror-selected { background: #d9d9d9; } +.CodeMirror-focused .CodeMirror-selected { background: #d7d4f0; } +.CodeMirror-crosshair { cursor: crosshair; } +.CodeMirror-line::selection, .CodeMirror-line > span::selection, .CodeMirror-line > span > span::selection { background: #d7d4f0; } +.CodeMirror-line::-moz-selection, .CodeMirror-line > span::-moz-selection, .CodeMirror-line > span > span::-moz-selection { background: #d7d4f0; } + +.cm-searching { + background-color: #ffa; + background-color: rgba(255, 255, 0, .4); +} + +/* Used to force a border model for a node */ +.cm-force-border { padding-right: .1px; } + +@media print { + /* Hide the cursor when printing */ + .CodeMirror div.CodeMirror-cursors { + visibility: hidden; + } +} + +/* See issue #2901 */ +.cm-tab-wrap-hack:after { content: ''; } + +/* Help users use markselection to safely style text background */ +span.CodeMirror-selectedtext { background: none; } + +.CodeMirror-dialog { + position: absolute; + left: 0; right: 0; + background: inherit; + z-index: 15; + padding: .1em .8em; + overflow: hidden; + color: inherit; +} + +.CodeMirror-dialog-top { + border-bottom: 1px solid #eee; + top: 0; +} + +.CodeMirror-dialog-bottom { + border-top: 1px solid #eee; + bottom: 0; +} + +.CodeMirror-dialog input { + border: none; + outline: none; + background: transparent; + width: 20em; + color: inherit; + font-family: monospace; +} + +.CodeMirror-dialog button { + font-size: 70%; +} + +.CodeMirror-foldmarker { + color: blue; + text-shadow: #b9f 1px 1px 2px, #b9f -1px -1px 2px, #b9f 1px -1px 2px, #b9f -1px 1px 2px; + font-family: arial; + line-height: .3; + cursor: pointer; +} +.CodeMirror-foldgutter { + width: .7em; +} +.CodeMirror-foldgutter-open, +.CodeMirror-foldgutter-folded { + cursor: pointer; +} +.CodeMirror-foldgutter-open:after { + content: "\25BE"; +} +.CodeMirror-foldgutter-folded:after { + content: "\25B8"; +} + +/* + Name: material + Author: Mattia Astorino (http://github.com/equinusocio) + Website: https://material-theme.site/ +*/ + +.cm-s-material.CodeMirror { + background-color: #263238; + color: #EEFFFF; +} + +.cm-s-material .CodeMirror-gutters { + background: #263238; + color: #546E7A; + border: none; +} + +.cm-s-material .CodeMirror-guttermarker, +.cm-s-material .CodeMirror-guttermarker-subtle, +.cm-s-material .CodeMirror-linenumber { + color: #546E7A; +} + +.cm-s-material .CodeMirror-cursor { + border-left: 1px solid #FFCC00; +} + +.cm-s-material div.CodeMirror-selected { + background: rgba(128, 203, 196, 0.2); +} + +.cm-s-material.CodeMirror-focused div.CodeMirror-selected { + background: rgba(128, 203, 196, 0.2); +} + +.cm-s-material .CodeMirror-line::selection, +.cm-s-material .CodeMirror-line>span::selection, +.cm-s-material .CodeMirror-line>span>span::selection { + background: rgba(128, 203, 196, 0.2); +} + +.cm-s-material .CodeMirror-line::-moz-selection, +.cm-s-material .CodeMirror-line>span::-moz-selection, +.cm-s-material .CodeMirror-line>span>span::-moz-selection { + background: rgba(128, 203, 196, 0.2); +} + +.cm-s-material .CodeMirror-activeline-background { + background: rgba(0, 0, 0, 0.5); +} + +.cm-s-material .cm-keyword { + color: #C792EA; +} + +.cm-s-material .cm-operator { + color: #89DDFF; +} + +.cm-s-material .cm-variable-2 { + color: #EEFFFF; +} + +.cm-s-material .cm-variable-3, +.cm-s-material .cm-type { + color: #f07178; +} + +.cm-s-material .cm-builtin { + color: #FFCB6B; +} + +.cm-s-material .cm-atom { + color: #F78C6C; +} + +.cm-s-material .cm-number { + color: #FF5370; +} + +.cm-s-material .cm-def { + color: #82AAFF; +} + +.cm-s-material .cm-string { + color: #C3E88D; +} + +.cm-s-material .cm-string-2 { + color: #f07178; +} + +.cm-s-material .cm-comment { + color: #546E7A; +} + +.cm-s-material .cm-variable { + color: #f07178; +} + +.cm-s-material .cm-tag { + color: #FF5370; +} + +.cm-s-material .cm-meta { + color: #FFCB6B; +} + +.cm-s-material .cm-attribute { + color: #C792EA; +} + +.cm-s-material .cm-property { + color: #C792EA; +} + +.cm-s-material .cm-qualifier { + color: #DECB6B; +} + +.cm-s-material .cm-variable-3, +.cm-s-material .cm-type { + color: #DECB6B; +} + + +.cm-s-material .cm-error { + color: rgba(255, 255, 255, 1.0); + background-color: #FF5370; +} + +.cm-s-material .CodeMirror-matchingbracket { + text-decoration: underline; + color: white !important; +} +/** + * " + * Using Zenburn color palette from the Emacs Zenburn Theme + * https://github.com/bbatsov/zenburn-emacs/blob/master/zenburn-theme.el + * + * Also using parts of https://github.com/xavi/coderay-lighttable-theme + * " + * From: https://github.com/wisenomad/zenburn-lighttable-theme/blob/master/zenburn.css + */ + +.cm-s-zenburn .CodeMirror-gutters { background: #3f3f3f !important; } +.cm-s-zenburn .CodeMirror-foldgutter-open, .CodeMirror-foldgutter-folded { color: #999; } +.cm-s-zenburn .CodeMirror-cursor { border-left: 1px solid white; } +.cm-s-zenburn { background-color: #3f3f3f; color: #dcdccc; } +.cm-s-zenburn span.cm-builtin { color: #dcdccc; font-weight: bold; } +.cm-s-zenburn span.cm-comment { color: #7f9f7f; } +.cm-s-zenburn span.cm-keyword { color: #f0dfaf; font-weight: bold; } +.cm-s-zenburn span.cm-atom { color: #bfebbf; } +.cm-s-zenburn span.cm-def { color: #dcdccc; } +.cm-s-zenburn span.cm-variable { color: #dfaf8f; } +.cm-s-zenburn span.cm-variable-2 { color: #dcdccc; } +.cm-s-zenburn span.cm-string { color: #cc9393; } +.cm-s-zenburn span.cm-string-2 { color: #cc9393; } +.cm-s-zenburn span.cm-number { color: #dcdccc; } +.cm-s-zenburn span.cm-tag { color: #93e0e3; } +.cm-s-zenburn span.cm-property { color: #dfaf8f; } +.cm-s-zenburn span.cm-attribute { color: #dfaf8f; } +.cm-s-zenburn span.cm-qualifier { color: #7cb8bb; } +.cm-s-zenburn span.cm-meta { color: #f0dfaf; } +.cm-s-zenburn span.cm-header { color: #f0efd0; } +.cm-s-zenburn span.cm-operator { color: #f0efd0; } +.cm-s-zenburn span.CodeMirror-matchingbracket { box-sizing: border-box; background: transparent; border-bottom: 1px solid; } +.cm-s-zenburn span.CodeMirror-nonmatchingbracket { border-bottom: 1px solid; background: none; } +.cm-s-zenburn .CodeMirror-activeline { background: #000000; } +.cm-s-zenburn .CodeMirror-activeline-background { background: #000000; } +.cm-s-zenburn div.CodeMirror-selected { background: #545454; } +.cm-s-zenburn .CodeMirror-focused div.CodeMirror-selected { background: #4f4f4f; } + +.cm-s-abcdef.CodeMirror { background: #0f0f0f; color: #defdef; } +.cm-s-abcdef div.CodeMirror-selected { background: #515151; } +.cm-s-abcdef .CodeMirror-line::selection, .cm-s-abcdef .CodeMirror-line > span::selection, .cm-s-abcdef .CodeMirror-line > span > span::selection { background: rgba(56, 56, 56, 0.99); } +.cm-s-abcdef .CodeMirror-line::-moz-selection, .cm-s-abcdef .CodeMirror-line > span::-moz-selection, .cm-s-abcdef .CodeMirror-line > span > span::-moz-selection { background: rgba(56, 56, 56, 0.99); } +.cm-s-abcdef .CodeMirror-gutters { background: #555; border-right: 2px solid #314151; } +.cm-s-abcdef .CodeMirror-guttermarker { color: #222; } +.cm-s-abcdef .CodeMirror-guttermarker-subtle { color: azure; } +.cm-s-abcdef .CodeMirror-linenumber { color: #FFFFFF; } +.cm-s-abcdef .CodeMirror-cursor { border-left: 1px solid #00FF00; } + +.cm-s-abcdef span.cm-keyword { color: darkgoldenrod; font-weight: bold; } +.cm-s-abcdef span.cm-atom { color: #77F; } +.cm-s-abcdef span.cm-number { color: violet; } +.cm-s-abcdef span.cm-def { color: #fffabc; } +.cm-s-abcdef span.cm-variable { color: #abcdef; } +.cm-s-abcdef span.cm-variable-2 { color: #cacbcc; } +.cm-s-abcdef span.cm-variable-3, .cm-s-abcdef span.cm-type { color: #def; } +.cm-s-abcdef span.cm-property { color: #fedcba; } +.cm-s-abcdef span.cm-operator { color: #ff0; } +.cm-s-abcdef span.cm-comment { color: #7a7b7c; font-style: italic;} +.cm-s-abcdef span.cm-string { color: #2b4; } +.cm-s-abcdef span.cm-meta { color: #C9F; } +.cm-s-abcdef span.cm-qualifier { color: #FFF700; } +.cm-s-abcdef span.cm-builtin { color: #30aabc; } +.cm-s-abcdef span.cm-bracket { color: #8a8a8a; } +.cm-s-abcdef span.cm-tag { color: #FFDD44; } +.cm-s-abcdef span.cm-attribute { color: #DDFF00; } +.cm-s-abcdef span.cm-error { color: #FF0000; } +.cm-s-abcdef span.cm-header { color: aquamarine; font-weight: bold; } +.cm-s-abcdef span.cm-link { color: blueviolet; } + +.cm-s-abcdef .CodeMirror-activeline-background { background: #314151; } + +/* + + Name: Base16 Default Light + Author: Chris Kempson (http://chriskempson.com) + + CodeMirror template by Jan T. Sott (https://github.com/idleberg/base16-codemirror) + Original Base16 color scheme by Chris Kempson (https://github.com/chriskempson/base16) + +*/ + +.cm-s-base16-light.CodeMirror { background: #f5f5f5; color: #202020; } +.cm-s-base16-light div.CodeMirror-selected { background: #e0e0e0; } +.cm-s-base16-light .CodeMirror-line::selection, .cm-s-base16-light .CodeMirror-line > span::selection, .cm-s-base16-light .CodeMirror-line > span > span::selection { background: #e0e0e0; } +.cm-s-base16-light .CodeMirror-line::-moz-selection, .cm-s-base16-light .CodeMirror-line > span::-moz-selection, .cm-s-base16-light .CodeMirror-line > span > span::-moz-selection { background: #e0e0e0; } +.cm-s-base16-light .CodeMirror-gutters { background: #f5f5f5; border-right: 0px; } +.cm-s-base16-light .CodeMirror-guttermarker { color: #ac4142; } +.cm-s-base16-light .CodeMirror-guttermarker-subtle { color: #b0b0b0; } +.cm-s-base16-light .CodeMirror-linenumber { color: #b0b0b0; } +.cm-s-base16-light .CodeMirror-cursor { border-left: 1px solid #505050; } + +.cm-s-base16-light span.cm-comment { color: #8f5536; } +.cm-s-base16-light span.cm-atom { color: #aa759f; } +.cm-s-base16-light span.cm-number { color: #aa759f; } + +.cm-s-base16-light span.cm-property, .cm-s-base16-light span.cm-attribute { color: #90a959; } +.cm-s-base16-light span.cm-keyword { color: #ac4142; } +.cm-s-base16-light span.cm-string { color: #f4bf75; } + +.cm-s-base16-light span.cm-variable { color: #90a959; } +.cm-s-base16-light span.cm-variable-2 { color: #6a9fb5; } +.cm-s-base16-light span.cm-def { color: #d28445; } +.cm-s-base16-light span.cm-bracket { color: #202020; } +.cm-s-base16-light span.cm-tag { color: #ac4142; } +.cm-s-base16-light span.cm-link { color: #aa759f; } +.cm-s-base16-light span.cm-error { background: #ac4142; color: #505050; } + +.cm-s-base16-light .CodeMirror-activeline-background { background: #DDDCDC; } +.cm-s-base16-light .CodeMirror-matchingbracket { color: #f5f5f5 !important; background-color: #6A9FB5 !important} + +/* + + Name: Base16 Default Dark + Author: Chris Kempson (http://chriskempson.com) + + CodeMirror template by Jan T. Sott (https://github.com/idleberg/base16-codemirror) + Original Base16 color scheme by Chris Kempson (https://github.com/chriskempson/base16) + +*/ + +.cm-s-base16-dark.CodeMirror { background: #151515; color: #e0e0e0; } +.cm-s-base16-dark div.CodeMirror-selected { background: #303030; } +.cm-s-base16-dark .CodeMirror-line::selection, .cm-s-base16-dark .CodeMirror-line > span::selection, .cm-s-base16-dark .CodeMirror-line > span > span::selection { background: rgba(48, 48, 48, .99); } +.cm-s-base16-dark .CodeMirror-line::-moz-selection, .cm-s-base16-dark .CodeMirror-line > span::-moz-selection, .cm-s-base16-dark .CodeMirror-line > span > span::-moz-selection { background: rgba(48, 48, 48, .99); } +.cm-s-base16-dark .CodeMirror-gutters { background: #151515; border-right: 0px; } +.cm-s-base16-dark .CodeMirror-guttermarker { color: #ac4142; } +.cm-s-base16-dark .CodeMirror-guttermarker-subtle { color: #505050; } +.cm-s-base16-dark .CodeMirror-linenumber { color: #505050; } +.cm-s-base16-dark .CodeMirror-cursor { border-left: 1px solid #b0b0b0; } + +.cm-s-base16-dark span.cm-comment { color: #8f5536; } +.cm-s-base16-dark span.cm-atom { color: #aa759f; } +.cm-s-base16-dark span.cm-number { color: #aa759f; } + +.cm-s-base16-dark span.cm-property, .cm-s-base16-dark span.cm-attribute { color: #90a959; } +.cm-s-base16-dark span.cm-keyword { color: #ac4142; } +.cm-s-base16-dark span.cm-string { color: #f4bf75; } + +.cm-s-base16-dark span.cm-variable { color: #90a959; } +.cm-s-base16-dark span.cm-variable-2 { color: #6a9fb5; } +.cm-s-base16-dark span.cm-def { color: #d28445; } +.cm-s-base16-dark span.cm-bracket { color: #e0e0e0; } +.cm-s-base16-dark span.cm-tag { color: #ac4142; } +.cm-s-base16-dark span.cm-link { color: #aa759f; } +.cm-s-base16-dark span.cm-error { background: #ac4142; color: #b0b0b0; } + +.cm-s-base16-dark .CodeMirror-activeline-background { background: #202020; } +.cm-s-base16-dark .CodeMirror-matchingbracket { text-decoration: underline; color: white !important; } + +/* + + Name: dracula + Author: Michael Kaminsky (http://github.com/mkaminsky11) + + Original dracula color scheme by Zeno Rocha (https://github.com/zenorocha/dracula-theme) + +*/ + + +.cm-s-dracula.CodeMirror, .cm-s-dracula .CodeMirror-gutters { + background-color: #282a36 !important; + color: #f8f8f2 !important; + border: none; +} +.cm-s-dracula .CodeMirror-gutters { color: #282a36; } +.cm-s-dracula .CodeMirror-cursor { border-left: solid thin #f8f8f0; } +.cm-s-dracula .CodeMirror-linenumber { color: #6D8A88; } +.cm-s-dracula .CodeMirror-selected { background: rgba(255, 255, 255, 0.10); } +.cm-s-dracula .CodeMirror-line::selection, .cm-s-dracula .CodeMirror-line > span::selection, .cm-s-dracula .CodeMirror-line > span > span::selection { background: rgba(255, 255, 255, 0.10); } +.cm-s-dracula .CodeMirror-line::-moz-selection, .cm-s-dracula .CodeMirror-line > span::-moz-selection, .cm-s-dracula .CodeMirror-line > span > span::-moz-selection { background: rgba(255, 255, 255, 0.10); } +.cm-s-dracula span.cm-comment { color: #6272a4; } +.cm-s-dracula span.cm-string, .cm-s-dracula span.cm-string-2 { color: #f1fa8c; } +.cm-s-dracula span.cm-number { color: #bd93f9; } +.cm-s-dracula span.cm-variable { color: #50fa7b; } +.cm-s-dracula span.cm-variable-2 { color: white; } +.cm-s-dracula span.cm-def { color: #50fa7b; } +.cm-s-dracula span.cm-operator { color: #ff79c6; } +.cm-s-dracula span.cm-keyword { color: #ff79c6; } +.cm-s-dracula span.cm-atom { color: #bd93f9; } +.cm-s-dracula span.cm-meta { color: #f8f8f2; } +.cm-s-dracula span.cm-tag { color: #ff79c6; } +.cm-s-dracula span.cm-attribute { color: #50fa7b; } +.cm-s-dracula span.cm-qualifier { color: #50fa7b; } +.cm-s-dracula span.cm-property { color: #66d9ef; } +.cm-s-dracula span.cm-builtin { color: #50fa7b; } +.cm-s-dracula span.cm-variable-3, .cm-s-dracula span.cm-type { color: #ffb86c; } + +.cm-s-dracula .CodeMirror-activeline-background { background: rgba(255,255,255,0.1); } +.cm-s-dracula .CodeMirror-matchingbracket { text-decoration: underline; color: white !important; } + +/* + + Name: Hopscotch + Author: Jan T. Sott + + CodeMirror template by Jan T. Sott (https://github.com/idleberg/base16-codemirror) + Original Base16 color scheme by Chris Kempson (https://github.com/chriskempson/base16) + +*/ + +.cm-s-hopscotch.CodeMirror {background: #322931; color: #d5d3d5;} +.cm-s-hopscotch div.CodeMirror-selected {background: #433b42 !important;} +.cm-s-hopscotch .CodeMirror-gutters {background: #322931; border-right: 0px;} +.cm-s-hopscotch .CodeMirror-linenumber {color: #797379;} +.cm-s-hopscotch .CodeMirror-cursor {border-left: 1px solid #989498 !important;} + +.cm-s-hopscotch span.cm-comment {color: #b33508;} +.cm-s-hopscotch span.cm-atom {color: #c85e7c;} +.cm-s-hopscotch span.cm-number {color: #c85e7c;} + +.cm-s-hopscotch span.cm-property, .cm-s-hopscotch span.cm-attribute {color: #8fc13e;} +.cm-s-hopscotch span.cm-keyword {color: #dd464c;} +.cm-s-hopscotch span.cm-string {color: #fdcc59;} + +.cm-s-hopscotch span.cm-variable {color: #8fc13e;} +.cm-s-hopscotch span.cm-variable-2 {color: #1290bf;} +.cm-s-hopscotch span.cm-def {color: #fd8b19;} +.cm-s-hopscotch span.cm-error {background: #dd464c; color: #989498;} +.cm-s-hopscotch span.cm-bracket {color: #d5d3d5;} +.cm-s-hopscotch span.cm-tag {color: #dd464c;} +.cm-s-hopscotch span.cm-link {color: #c85e7c;} + +.cm-s-hopscotch .CodeMirror-matchingbracket { text-decoration: underline; color: white !important;} +.cm-s-hopscotch .CodeMirror-activeline-background { background: #302020; } + +/****************************************************************/ +/* Based on mbonaci's Brackets mbo theme */ +/* https://github.com/mbonaci/global/blob/master/Mbo.tmTheme */ +/* Create your own: http://tmtheme-editor.herokuapp.com */ +/****************************************************************/ + +.cm-s-mbo.CodeMirror { background: #2c2c2c; color: #ffffec; } +.cm-s-mbo div.CodeMirror-selected { background: #716C62; } +.cm-s-mbo .CodeMirror-line::selection, .cm-s-mbo .CodeMirror-line > span::selection, .cm-s-mbo .CodeMirror-line > span > span::selection { background: rgba(113, 108, 98, .99); } +.cm-s-mbo .CodeMirror-line::-moz-selection, .cm-s-mbo .CodeMirror-line > span::-moz-selection, .cm-s-mbo .CodeMirror-line > span > span::-moz-selection { background: rgba(113, 108, 98, .99); } +.cm-s-mbo .CodeMirror-gutters { background: #4e4e4e; border-right: 0px; } +.cm-s-mbo .CodeMirror-guttermarker { color: white; } +.cm-s-mbo .CodeMirror-guttermarker-subtle { color: grey; } +.cm-s-mbo .CodeMirror-linenumber { color: #dadada; } +.cm-s-mbo .CodeMirror-cursor { border-left: 1px solid #ffffec; } + +.cm-s-mbo span.cm-comment { color: #95958a; } +.cm-s-mbo span.cm-atom { color: #00a8c6; } +.cm-s-mbo span.cm-number { color: #00a8c6; } + +.cm-s-mbo span.cm-property, .cm-s-mbo span.cm-attribute { color: #9ddfe9; } +.cm-s-mbo span.cm-keyword { color: #ffb928; } +.cm-s-mbo span.cm-string { color: #ffcf6c; } +.cm-s-mbo span.cm-string.cm-property { color: #ffffec; } + +.cm-s-mbo span.cm-variable { color: #ffffec; } +.cm-s-mbo span.cm-variable-2 { color: #00a8c6; } +.cm-s-mbo span.cm-def { color: #ffffec; } +.cm-s-mbo span.cm-bracket { color: #fffffc; font-weight: bold; } +.cm-s-mbo span.cm-tag { color: #9ddfe9; } +.cm-s-mbo span.cm-link { color: #f54b07; } +.cm-s-mbo span.cm-error { border-bottom: #636363; color: #ffffec; } +.cm-s-mbo span.cm-qualifier { color: #ffffec; } + +.cm-s-mbo .CodeMirror-activeline-background { background: #494b41; } +.cm-s-mbo .CodeMirror-matchingbracket { color: #ffb928 !important; } +.cm-s-mbo .CodeMirror-matchingtag { background: rgba(255, 255, 255, .37); } + +/* + MDN-LIKE Theme - Mozilla + Ported to CodeMirror by Peter Kroon <plakroon@gmail.com> + Report bugs/issues here: https://github.com/codemirror/CodeMirror/issues + GitHub: @peterkroon + + The mdn-like theme is inspired on the displayed code examples at: https://developer.mozilla.org/en-US/docs/Web/CSS/animation + +*/ +.cm-s-mdn-like.CodeMirror { color: #999; background-color: #fff; } +.cm-s-mdn-like div.CodeMirror-selected { background: #cfc; } +.cm-s-mdn-like .CodeMirror-line::selection, .cm-s-mdn-like .CodeMirror-line > span::selection, .cm-s-mdn-like .CodeMirror-line > span > span::selection { background: #cfc; } +.cm-s-mdn-like .CodeMirror-line::-moz-selection, .cm-s-mdn-like .CodeMirror-line > span::-moz-selection, .cm-s-mdn-like .CodeMirror-line > span > span::-moz-selection { background: #cfc; } + +.cm-s-mdn-like .CodeMirror-gutters { background: #f8f8f8; border-left: 6px solid rgba(0,83,159,0.65); color: #333; } +.cm-s-mdn-like .CodeMirror-linenumber { color: #aaa; padding-left: 8px; } +.cm-s-mdn-like .CodeMirror-cursor { border-left: 2px solid #222; } + +.cm-s-mdn-like .cm-keyword { color: #6262FF; } +.cm-s-mdn-like .cm-atom { color: #F90; } +.cm-s-mdn-like .cm-number { color: #ca7841; } +.cm-s-mdn-like .cm-def { color: #8DA6CE; } +.cm-s-mdn-like span.cm-variable-2, .cm-s-mdn-like span.cm-tag { color: #690; } +.cm-s-mdn-like span.cm-variable-3, .cm-s-mdn-like span.cm-def, .cm-s-mdn-like span.cm-type { color: #07a; } + +.cm-s-mdn-like .cm-variable { color: #07a; } +.cm-s-mdn-like .cm-property { color: #905; } +.cm-s-mdn-like .cm-qualifier { color: #690; } + +.cm-s-mdn-like .cm-operator { color: #cda869; } +.cm-s-mdn-like .cm-comment { color:#777; font-weight:normal; } +.cm-s-mdn-like .cm-string { color:#07a; font-style:italic; } +.cm-s-mdn-like .cm-string-2 { color:#bd6b18; } /*?*/ +.cm-s-mdn-like .cm-meta { color: #000; } /*?*/ +.cm-s-mdn-like .cm-builtin { color: #9B7536; } /*?*/ +.cm-s-mdn-like .cm-tag { color: #997643; } +.cm-s-mdn-like .cm-attribute { color: #d6bb6d; } /*?*/ +.cm-s-mdn-like .cm-header { color: #FF6400; } +.cm-s-mdn-like .cm-hr { color: #AEAEAE; } +.cm-s-mdn-like .cm-link { color:#ad9361; font-style:italic; text-decoration:none; } +.cm-s-mdn-like .cm-error { border-bottom: 1px solid red; } + +div.cm-s-mdn-like .CodeMirror-activeline-background { background: #efefff; } +div.cm-s-mdn-like span.CodeMirror-matchingbracket { outline:1px solid grey; color: inherit; } + +.cm-s-mdn-like.CodeMirror { background-image: url(); } + +/* + + Name: seti + Author: Michael Kaminsky (http://github.com/mkaminsky11) + + Original seti color scheme by Jesse Weed (https://github.com/jesseweed/seti-syntax) + +*/ + + +.cm-s-seti.CodeMirror { + background-color: #151718 !important; + color: #CFD2D1 !important; + border: none; +} +.cm-s-seti .CodeMirror-gutters { + color: #404b53; + background-color: #0E1112; + border: none; +} +.cm-s-seti .CodeMirror-cursor { border-left: solid thin #f8f8f0; } +.cm-s-seti .CodeMirror-linenumber { color: #6D8A88; } +.cm-s-seti.CodeMirror-focused div.CodeMirror-selected { background: rgba(255, 255, 255, 0.10); } +.cm-s-seti .CodeMirror-line::selection, .cm-s-seti .CodeMirror-line > span::selection, .cm-s-seti .CodeMirror-line > span > span::selection { background: rgba(255, 255, 255, 0.10); } +.cm-s-seti .CodeMirror-line::-moz-selection, .cm-s-seti .CodeMirror-line > span::-moz-selection, .cm-s-seti .CodeMirror-line > span > span::-moz-selection { background: rgba(255, 255, 255, 0.10); } +.cm-s-seti span.cm-comment { color: #41535b; } +.cm-s-seti span.cm-string, .cm-s-seti span.cm-string-2 { color: #55b5db; } +.cm-s-seti span.cm-number { color: #cd3f45; } +.cm-s-seti span.cm-variable { color: #55b5db; } +.cm-s-seti span.cm-variable-2 { color: #a074c4; } +.cm-s-seti span.cm-def { color: #55b5db; } +.cm-s-seti span.cm-keyword { color: #ff79c6; } +.cm-s-seti span.cm-operator { color: #9fca56; } +.cm-s-seti span.cm-keyword { color: #e6cd69; } +.cm-s-seti span.cm-atom { color: #cd3f45; } +.cm-s-seti span.cm-meta { color: #55b5db; } +.cm-s-seti span.cm-tag { color: #55b5db; } +.cm-s-seti span.cm-attribute { color: #9fca56; } +.cm-s-seti span.cm-qualifier { color: #9fca56; } +.cm-s-seti span.cm-property { color: #a074c4; } +.cm-s-seti span.cm-variable-3, .cm-s-seti span.cm-type { color: #9fca56; } +.cm-s-seti span.cm-builtin { color: #9fca56; } +.cm-s-seti .CodeMirror-activeline-background { background: #101213; } +.cm-s-seti .CodeMirror-matchingbracket { text-decoration: underline; color: white !important; } + +/* +Solarized theme for code-mirror +http://ethanschoonover.com/solarized +*/ + +/* +Solarized color palette +http://ethanschoonover.com/solarized/img/solarized-palette.png +*/ + +.solarized.base03 { color: #002b36; } +.solarized.base02 { color: #073642; } +.solarized.base01 { color: #586e75; } +.solarized.base00 { color: #657b83; } +.solarized.base0 { color: #839496; } +.solarized.base1 { color: #93a1a1; } +.solarized.base2 { color: #eee8d5; } +.solarized.base3 { color: #fdf6e3; } +.solarized.solar-yellow { color: #b58900; } +.solarized.solar-orange { color: #cb4b16; } +.solarized.solar-red { color: #dc322f; } +.solarized.solar-magenta { color: #d33682; } +.solarized.solar-violet { color: #6c71c4; } +.solarized.solar-blue { color: #268bd2; } +.solarized.solar-cyan { color: #2aa198; } +.solarized.solar-green { color: #859900; } + +/* Color scheme for code-mirror */ + +.cm-s-solarized { + line-height: 1.45em; + color-profile: sRGB; + rendering-intent: auto; +} +.cm-s-solarized.cm-s-dark { + color: #839496; + background-color: #002b36; + text-shadow: #002b36 0 1px; +} +.cm-s-solarized.cm-s-light { + background-color: #fdf6e3; + color: #657b83; + text-shadow: #eee8d5 0 1px; +} + +.cm-s-solarized .CodeMirror-widget { + text-shadow: none; +} + +.cm-s-solarized .cm-header { color: #586e75; } +.cm-s-solarized .cm-quote { color: #93a1a1; } + +.cm-s-solarized .cm-keyword { color: #cb4b16; } +.cm-s-solarized .cm-atom { color: #d33682; } +.cm-s-solarized .cm-number { color: #d33682; } +.cm-s-solarized .cm-def { color: #2aa198; } + +.cm-s-solarized .cm-variable { color: #839496; } +.cm-s-solarized .cm-variable-2 { color: #b58900; } +.cm-s-solarized .cm-variable-3, .cm-s-solarized .cm-type { color: #6c71c4; } + +.cm-s-solarized .cm-property { color: #2aa198; } +.cm-s-solarized .cm-operator { color: #6c71c4; } + +.cm-s-solarized .cm-comment { color: #586e75; font-style:italic; } + +.cm-s-solarized .cm-string { color: #859900; } +.cm-s-solarized .cm-string-2 { color: #b58900; } + +.cm-s-solarized .cm-meta { color: #859900; } +.cm-s-solarized .cm-qualifier { color: #b58900; } +.cm-s-solarized .cm-builtin { color: #d33682; } +.cm-s-solarized .cm-bracket { color: #cb4b16; } +.cm-s-solarized .CodeMirror-matchingbracket { color: #859900; } +.cm-s-solarized .CodeMirror-nonmatchingbracket { color: #dc322f; } +.cm-s-solarized .cm-tag { color: #93a1a1; } +.cm-s-solarized .cm-attribute { color: #2aa198; } +.cm-s-solarized .cm-hr { + color: transparent; + border-top: 1px solid #586e75; + display: block; +} +.cm-s-solarized .cm-link { color: #93a1a1; cursor: pointer; } +.cm-s-solarized .cm-special { color: #6c71c4; } +.cm-s-solarized .cm-em { + color: #999; + text-decoration: underline; + text-decoration-style: dotted; +} +.cm-s-solarized .cm-error, +.cm-s-solarized .cm-invalidchar { + color: #586e75; + border-bottom: 1px dotted #dc322f; +} + +.cm-s-solarized.cm-s-dark div.CodeMirror-selected { background: #073642; } +.cm-s-solarized.cm-s-dark.CodeMirror ::selection { background: rgba(7, 54, 66, 0.99); } +.cm-s-solarized.cm-s-dark .CodeMirror-line::-moz-selection, .cm-s-dark .CodeMirror-line > span::-moz-selection, .cm-s-dark .CodeMirror-line > span > span::-moz-selection { background: rgba(7, 54, 66, 0.99); } + +.cm-s-solarized.cm-s-light div.CodeMirror-selected { background: #eee8d5; } +.cm-s-solarized.cm-s-light .CodeMirror-line::selection, .cm-s-light .CodeMirror-line > span::selection, .cm-s-light .CodeMirror-line > span > span::selection { background: #eee8d5; } +.cm-s-solarized.cm-s-light .CodeMirror-line::-moz-selection, .cm-s-ligh .CodeMirror-line > span::-moz-selection, .cm-s-ligh .CodeMirror-line > span > span::-moz-selection { background: #eee8d5; } + +/* Editor styling */ + + + +/* Little shadow on the view-port of the buffer view */ +.cm-s-solarized.CodeMirror { + -moz-box-shadow: inset 7px 0 12px -6px #000; + -webkit-box-shadow: inset 7px 0 12px -6px #000; + box-shadow: inset 7px 0 12px -6px #000; +} + +/* Remove gutter border */ +.cm-s-solarized .CodeMirror-gutters { + border-right: 0; +} + +/* Gutter colors and line number styling based of color scheme (dark / light) */ + +/* Dark */ +.cm-s-solarized.cm-s-dark .CodeMirror-gutters { + background-color: #073642; +} + +.cm-s-solarized.cm-s-dark .CodeMirror-linenumber { + color: #586e75; + text-shadow: #021014 0 -1px; +} + +/* Light */ +.cm-s-solarized.cm-s-light .CodeMirror-gutters { + background-color: #eee8d5; +} + +.cm-s-solarized.cm-s-light .CodeMirror-linenumber { + color: #839496; +} + +/* Common */ +.cm-s-solarized .CodeMirror-linenumber { + padding: 0 5px; +} +.cm-s-solarized .CodeMirror-guttermarker-subtle { color: #586e75; } +.cm-s-solarized.cm-s-dark .CodeMirror-guttermarker { color: #ddd; } +.cm-s-solarized.cm-s-light .CodeMirror-guttermarker { color: #cb4b16; } + +.cm-s-solarized .CodeMirror-gutter .CodeMirror-gutter-text { + color: #586e75; +} + +/* Cursor */ +.cm-s-solarized .CodeMirror-cursor { border-left: 1px solid #819090; } + +/* Fat cursor */ +.cm-s-solarized.cm-s-light.cm-fat-cursor .CodeMirror-cursor { background: #77ee77; } +.cm-s-solarized.cm-s-light .cm-animate-fat-cursor { background-color: #77ee77; } +.cm-s-solarized.cm-s-dark.cm-fat-cursor .CodeMirror-cursor { background: #586e75; } +.cm-s-solarized.cm-s-dark .cm-animate-fat-cursor { background-color: #586e75; } + +/* Active line */ +.cm-s-solarized.cm-s-dark .CodeMirror-activeline-background { + background: rgba(255, 255, 255, 0.06); +} +.cm-s-solarized.cm-s-light .CodeMirror-activeline-background { + background: rgba(0, 0, 0, 0.06); +} + +.cm-s-the-matrix.CodeMirror { background: #000000; color: #00FF00; } +.cm-s-the-matrix div.CodeMirror-selected { background: #2D2D2D; } +.cm-s-the-matrix .CodeMirror-line::selection, .cm-s-the-matrix .CodeMirror-line > span::selection, .cm-s-the-matrix .CodeMirror-line > span > span::selection { background: rgba(45, 45, 45, 0.99); } +.cm-s-the-matrix .CodeMirror-line::-moz-selection, .cm-s-the-matrix .CodeMirror-line > span::-moz-selection, .cm-s-the-matrix .CodeMirror-line > span > span::-moz-selection { background: rgba(45, 45, 45, 0.99); } +.cm-s-the-matrix .CodeMirror-gutters { background: #060; border-right: 2px solid #00FF00; } +.cm-s-the-matrix .CodeMirror-guttermarker { color: #0f0; } +.cm-s-the-matrix .CodeMirror-guttermarker-subtle { color: white; } +.cm-s-the-matrix .CodeMirror-linenumber { color: #FFFFFF; } +.cm-s-the-matrix .CodeMirror-cursor { border-left: 1px solid #00FF00; } + +.cm-s-the-matrix span.cm-keyword { color: #008803; font-weight: bold; } +.cm-s-the-matrix span.cm-atom { color: #3FF; } +.cm-s-the-matrix span.cm-number { color: #FFB94F; } +.cm-s-the-matrix span.cm-def { color: #99C; } +.cm-s-the-matrix span.cm-variable { color: #F6C; } +.cm-s-the-matrix span.cm-variable-2 { color: #C6F; } +.cm-s-the-matrix span.cm-variable-3, .cm-s-the-matrix span.cm-type { color: #96F; } +.cm-s-the-matrix span.cm-property { color: #62FFA0; } +.cm-s-the-matrix span.cm-operator { color: #999; } +.cm-s-the-matrix span.cm-comment { color: #CCCCCC; } +.cm-s-the-matrix span.cm-string { color: #39C; } +.cm-s-the-matrix span.cm-meta { color: #C9F; } +.cm-s-the-matrix span.cm-qualifier { color: #FFF700; } +.cm-s-the-matrix span.cm-builtin { color: #30a; } +.cm-s-the-matrix span.cm-bracket { color: #cc7; } +.cm-s-the-matrix span.cm-tag { color: #FFBD40; } +.cm-s-the-matrix span.cm-attribute { color: #FFF700; } +.cm-s-the-matrix span.cm-error { color: #FF0000; } + +.cm-s-the-matrix .CodeMirror-activeline-background { background: #040; } + +/* +Copyright (C) 2011 by MarkLogic Corporation +Author: Mike Brevoort <mike@brevoort.com> + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in +all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +THE SOFTWARE. +*/ +.cm-s-xq-light span.cm-keyword { line-height: 1em; font-weight: bold; color: #5A5CAD; } +.cm-s-xq-light span.cm-atom { color: #6C8CD5; } +.cm-s-xq-light span.cm-number { color: #164; } +.cm-s-xq-light span.cm-def { text-decoration:underline; } +.cm-s-xq-light span.cm-variable { color: black; } +.cm-s-xq-light span.cm-variable-2 { color:black; } +.cm-s-xq-light span.cm-variable-3, .cm-s-xq-light span.cm-type { color: black; } +.cm-s-xq-light span.cm-property {} +.cm-s-xq-light span.cm-operator {} +.cm-s-xq-light span.cm-comment { color: #0080FF; font-style: italic; } +.cm-s-xq-light span.cm-string { color: red; } +.cm-s-xq-light span.cm-meta { color: yellow; } +.cm-s-xq-light span.cm-qualifier { color: grey; } +.cm-s-xq-light span.cm-builtin { color: #7EA656; } +.cm-s-xq-light span.cm-bracket { color: #cc7; } +.cm-s-xq-light span.cm-tag { color: #3F7F7F; } +.cm-s-xq-light span.cm-attribute { color: #7F007F; } +.cm-s-xq-light span.cm-error { color: #f00; } + +.cm-s-xq-light .CodeMirror-activeline-background { background: #e8f2ff; } +.cm-s-xq-light .CodeMirror-matchingbracket { outline:1px solid grey;color:black !important;background:yellow; } + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +.CodeMirror { + line-height: var(--jp-code-line-height); + font-size: var(--jp-code-font-size); + font-family: var(--jp-code-font-family); + border: 0; + border-radius: 0; + height: auto; + /* Changed to auto to autogrow */ +} + +.CodeMirror pre { + padding: 0 var(--jp-code-padding); +} + +.jp-CodeMirrorEditor[data-type='inline'] .CodeMirror-dialog { + background-color: var(--jp-layout-color0); + color: var(--jp-content-font-color1); +} + +/* This causes https://github.com/jupyter/jupyterlab/issues/522 */ +/* May not cause it not because we changed it! */ +.CodeMirror-lines { + padding: var(--jp-code-padding) 0; +} + +.CodeMirror-linenumber { + padding: 0 8px; +} + +.jp-CodeMirrorEditor-static { + margin: var(--jp-code-padding); +} + +.jp-CodeMirrorEditor, +.jp-CodeMirrorEditor-static { + cursor: text; +} + +.jp-CodeMirrorEditor[data-type='inline'] .CodeMirror-cursor { + border-left: var(--jp-code-cursor-width0) solid var(--jp-editor-cursor-color); +} + +/* When zoomed out 67% and 33% on a screen of 1440 width x 900 height */ +@media screen and (min-width: 2138px) and (max-width: 4319px) { + .jp-CodeMirrorEditor[data-type='inline'] .CodeMirror-cursor { + border-left: var(--jp-code-cursor-width1) solid + var(--jp-editor-cursor-color); + } +} + +/* When zoomed out less than 33% */ +@media screen and (min-width: 4320px) { + .jp-CodeMirrorEditor[data-type='inline'] .CodeMirror-cursor { + border-left: var(--jp-code-cursor-width2) solid + var(--jp-editor-cursor-color); + } +} + +.CodeMirror.jp-mod-readOnly .CodeMirror-cursor { + display: none; +} + +.CodeMirror-gutters { + border-right: 1px solid var(--jp-border-color2); + background-color: var(--jp-layout-color0); +} + +.jp-CollaboratorCursor { + border-left: 5px solid transparent; + border-right: 5px solid transparent; + border-top: none; + border-bottom: 3px solid; + background-clip: content-box; + margin-left: -5px; + margin-right: -5px; +} + +.CodeMirror-selectedtext.cm-searching { + background-color: var(--jp-search-selected-match-background-color) !important; + color: var(--jp-search-selected-match-color) !important; +} + +.cm-searching { + background-color: var( + --jp-search-unselected-match-background-color + ) !important; + color: var(--jp-search-unselected-match-color) !important; +} + +.CodeMirror-focused .CodeMirror-selected { + background-color: var(--jp-editor-selected-focused-background); +} + +.CodeMirror-selected { + background-color: var(--jp-editor-selected-background); +} + +.jp-CollaboratorCursor-hover { + position: absolute; + z-index: 1; + transform: translateX(-50%); + color: white; + border-radius: 3px; + padding-left: 4px; + padding-right: 4px; + padding-top: 1px; + padding-bottom: 1px; + text-align: center; + font-size: var(--jp-ui-font-size1); + white-space: nowrap; +} + +.jp-CodeMirror-ruler { + border-left: 1px dashed var(--jp-border-color2); +} + +/** + * Here is our jupyter theme for CodeMirror syntax highlighting + * This is used in our marked.js syntax highlighting and CodeMirror itself + * The string "jupyter" is set in ../codemirror/widget.DEFAULT_CODEMIRROR_THEME + * This came from the classic notebook, which came form highlight.js/GitHub + */ + +/** + * CodeMirror themes are handling the background/color in this way. This works + * fine for CodeMirror editors outside the notebook, but the notebook styles + * these things differently. + */ +.CodeMirror.cm-s-jupyter { + background: var(--jp-layout-color0); + color: var(--jp-content-font-color1); +} + +/* In the notebook, we want this styling to be handled by its container */ +.jp-CodeConsole .CodeMirror.cm-s-jupyter, +.jp-Notebook .CodeMirror.cm-s-jupyter { + background: transparent; +} + +.cm-s-jupyter .CodeMirror-cursor { + border-left: var(--jp-code-cursor-width0) solid var(--jp-editor-cursor-color); +} +.cm-s-jupyter span.cm-keyword { + color: var(--jp-mirror-editor-keyword-color); + font-weight: bold; +} +.cm-s-jupyter span.cm-atom { + color: var(--jp-mirror-editor-atom-color); +} +.cm-s-jupyter span.cm-number { + color: var(--jp-mirror-editor-number-color); +} +.cm-s-jupyter span.cm-def { + color: var(--jp-mirror-editor-def-color); +} +.cm-s-jupyter span.cm-variable { + color: var(--jp-mirror-editor-variable-color); +} +.cm-s-jupyter span.cm-variable-2 { + color: var(--jp-mirror-editor-variable-2-color); +} +.cm-s-jupyter span.cm-variable-3 { + color: var(--jp-mirror-editor-variable-3-color); +} +.cm-s-jupyter span.cm-punctuation { + color: var(--jp-mirror-editor-punctuation-color); +} +.cm-s-jupyter span.cm-property { + color: var(--jp-mirror-editor-property-color); +} +.cm-s-jupyter span.cm-operator { + color: var(--jp-mirror-editor-operator-color); + font-weight: bold; +} +.cm-s-jupyter span.cm-comment { + color: var(--jp-mirror-editor-comment-color); + font-style: italic; +} +.cm-s-jupyter span.cm-string { + color: var(--jp-mirror-editor-string-color); +} +.cm-s-jupyter span.cm-string-2 { + color: var(--jp-mirror-editor-string-2-color); +} +.cm-s-jupyter span.cm-meta { + color: var(--jp-mirror-editor-meta-color); +} +.cm-s-jupyter span.cm-qualifier { + color: var(--jp-mirror-editor-qualifier-color); +} +.cm-s-jupyter span.cm-builtin { + color: var(--jp-mirror-editor-builtin-color); +} +.cm-s-jupyter span.cm-bracket { + color: var(--jp-mirror-editor-bracket-color); +} +.cm-s-jupyter span.cm-tag { + color: var(--jp-mirror-editor-tag-color); +} +.cm-s-jupyter span.cm-attribute { + color: var(--jp-mirror-editor-attribute-color); +} +.cm-s-jupyter span.cm-header { + color: var(--jp-mirror-editor-header-color); +} +.cm-s-jupyter span.cm-quote { + color: var(--jp-mirror-editor-quote-color); +} +.cm-s-jupyter span.cm-link { + color: var(--jp-mirror-editor-link-color); +} +.cm-s-jupyter span.cm-error { + color: var(--jp-mirror-editor-error-color); +} +.cm-s-jupyter span.cm-hr { + color: #999; +} + +.cm-s-jupyter span.cm-tab { + background: url(); + background-position: right; + background-repeat: no-repeat; +} + +.cm-s-jupyter .CodeMirror-activeline-background, +.cm-s-jupyter .CodeMirror-gutter { + background-color: var(--jp-layout-color2); +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/* This file was auto-generated by ensurePackage() in @jupyterlab/buildutils */ + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/*----------------------------------------------------------------------------- +| RenderedText +|----------------------------------------------------------------------------*/ + +.jp-RenderedText { + text-align: left; + padding-left: var(--jp-code-padding); + line-height: var(--jp-code-line-height); + font-family: var(--jp-code-font-family); +} + +.jp-RenderedText pre, +.jp-RenderedJavaScript pre, +.jp-RenderedHTMLCommon pre { + color: var(--jp-content-font-color1); + font-size: var(--jp-code-font-size); + border: none; + margin: 0px; + padding: 0px; + line-height: normal; +} + +.jp-RenderedText pre a:link { + text-decoration: none; + color: var(--jp-content-link-color); +} +.jp-RenderedText pre a:hover { + text-decoration: underline; + color: var(--jp-content-link-color); +} +.jp-RenderedText pre a:visited { + text-decoration: none; + color: var(--jp-content-link-color); +} + +/* console foregrounds and backgrounds */ +.jp-RenderedText pre .ansi-black-fg { + color: #3e424d; +} +.jp-RenderedText pre .ansi-red-fg { + color: #e75c58; +} +.jp-RenderedText pre .ansi-green-fg { + color: #00a250; +} +.jp-RenderedText pre .ansi-yellow-fg { + color: #ddb62b; +} +.jp-RenderedText pre .ansi-blue-fg { + color: #208ffb; +} +.jp-RenderedText pre .ansi-magenta-fg { + color: #d160c4; +} +.jp-RenderedText pre .ansi-cyan-fg { + color: #60c6c8; +} +.jp-RenderedText pre .ansi-white-fg { + color: #c5c1b4; +} + +.jp-RenderedText pre .ansi-black-bg { + background-color: #3e424d; +} +.jp-RenderedText pre .ansi-red-bg { + background-color: #e75c58; +} +.jp-RenderedText pre .ansi-green-bg { + background-color: #00a250; +} +.jp-RenderedText pre .ansi-yellow-bg { + background-color: #ddb62b; +} +.jp-RenderedText pre .ansi-blue-bg { + background-color: #208ffb; +} +.jp-RenderedText pre .ansi-magenta-bg { + background-color: #d160c4; +} +.jp-RenderedText pre .ansi-cyan-bg { + background-color: #60c6c8; +} +.jp-RenderedText pre .ansi-white-bg { + background-color: #c5c1b4; +} + +.jp-RenderedText pre .ansi-black-intense-fg { + color: #282c36; +} +.jp-RenderedText pre .ansi-red-intense-fg { + color: #b22b31; +} +.jp-RenderedText pre .ansi-green-intense-fg { + color: #007427; +} +.jp-RenderedText pre .ansi-yellow-intense-fg { + color: #b27d12; +} +.jp-RenderedText pre .ansi-blue-intense-fg { + color: #0065ca; +} +.jp-RenderedText pre .ansi-magenta-intense-fg { + color: #a03196; +} +.jp-RenderedText pre .ansi-cyan-intense-fg { + color: #258f8f; +} +.jp-RenderedText pre .ansi-white-intense-fg { + color: #a1a6b2; +} + +.jp-RenderedText pre .ansi-black-intense-bg { + background-color: #282c36; +} +.jp-RenderedText pre .ansi-red-intense-bg { + background-color: #b22b31; +} +.jp-RenderedText pre .ansi-green-intense-bg { + background-color: #007427; +} +.jp-RenderedText pre .ansi-yellow-intense-bg { + background-color: #b27d12; +} +.jp-RenderedText pre .ansi-blue-intense-bg { + background-color: #0065ca; +} +.jp-RenderedText pre .ansi-magenta-intense-bg { + background-color: #a03196; +} +.jp-RenderedText pre .ansi-cyan-intense-bg { + background-color: #258f8f; +} +.jp-RenderedText pre .ansi-white-intense-bg { + background-color: #a1a6b2; +} + +.jp-RenderedText pre .ansi-default-inverse-fg { + color: var(--jp-ui-inverse-font-color0); +} +.jp-RenderedText pre .ansi-default-inverse-bg { + background-color: var(--jp-inverse-layout-color0); +} + +.jp-RenderedText pre .ansi-bold { + font-weight: bold; +} +.jp-RenderedText pre .ansi-underline { + text-decoration: underline; +} + +.jp-RenderedText[data-mime-type='application/vnd.jupyter.stderr'] { + background: var(--jp-rendermime-error-background); + padding-top: var(--jp-code-padding); +} + +/*----------------------------------------------------------------------------- +| RenderedLatex +|----------------------------------------------------------------------------*/ + +.jp-RenderedLatex { + color: var(--jp-content-font-color1); + font-size: var(--jp-content-font-size1); + line-height: var(--jp-content-line-height); +} + +/* Left-justify outputs.*/ +.jp-OutputArea-output.jp-RenderedLatex { + padding: var(--jp-code-padding); + text-align: left; +} + +/*----------------------------------------------------------------------------- +| RenderedHTML +|----------------------------------------------------------------------------*/ + +.jp-RenderedHTMLCommon { + color: var(--jp-content-font-color1); + font-family: var(--jp-content-font-family); + font-size: var(--jp-content-font-size1); + line-height: var(--jp-content-line-height); + /* Give a bit more R padding on Markdown text to keep line lengths reasonable */ + padding-right: 20px; +} + +.jp-RenderedHTMLCommon em { + font-style: italic; +} + +.jp-RenderedHTMLCommon strong { + font-weight: bold; +} + +.jp-RenderedHTMLCommon u { + text-decoration: underline; +} + +.jp-RenderedHTMLCommon a:link { + text-decoration: none; + color: var(--jp-content-link-color); +} + +.jp-RenderedHTMLCommon a:hover { + text-decoration: underline; + color: var(--jp-content-link-color); +} + +.jp-RenderedHTMLCommon a:visited { + text-decoration: none; + color: var(--jp-content-link-color); +} + +/* Headings */ + +.jp-RenderedHTMLCommon h1, +.jp-RenderedHTMLCommon h2, +.jp-RenderedHTMLCommon h3, +.jp-RenderedHTMLCommon h4, +.jp-RenderedHTMLCommon h5, +.jp-RenderedHTMLCommon h6 { + line-height: var(--jp-content-heading-line-height); + font-weight: var(--jp-content-heading-font-weight); + font-style: normal; + margin: var(--jp-content-heading-margin-top) 0 + var(--jp-content-heading-margin-bottom) 0; +} + +.jp-RenderedHTMLCommon h1:first-child, +.jp-RenderedHTMLCommon h2:first-child, +.jp-RenderedHTMLCommon h3:first-child, +.jp-RenderedHTMLCommon h4:first-child, +.jp-RenderedHTMLCommon h5:first-child, +.jp-RenderedHTMLCommon h6:first-child { + margin-top: calc(0.5 * var(--jp-content-heading-margin-top)); +} + +.jp-RenderedHTMLCommon h1:last-child, +.jp-RenderedHTMLCommon h2:last-child, +.jp-RenderedHTMLCommon h3:last-child, +.jp-RenderedHTMLCommon h4:last-child, +.jp-RenderedHTMLCommon h5:last-child, +.jp-RenderedHTMLCommon h6:last-child { + margin-bottom: calc(0.5 * var(--jp-content-heading-margin-bottom)); +} + +.jp-RenderedHTMLCommon h1 { + font-size: var(--jp-content-font-size5); +} + +.jp-RenderedHTMLCommon h2 { + font-size: var(--jp-content-font-size4); +} + +.jp-RenderedHTMLCommon h3 { + font-size: var(--jp-content-font-size3); +} + +.jp-RenderedHTMLCommon h4 { + font-size: var(--jp-content-font-size2); +} + +.jp-RenderedHTMLCommon h5 { + font-size: var(--jp-content-font-size1); +} + +.jp-RenderedHTMLCommon h6 { + font-size: var(--jp-content-font-size0); +} + +/* Lists */ + +.jp-RenderedHTMLCommon ul:not(.list-inline), +.jp-RenderedHTMLCommon ol:not(.list-inline) { + padding-left: 2em; +} + +.jp-RenderedHTMLCommon ul { + list-style: disc; +} + +.jp-RenderedHTMLCommon ul ul { + list-style: square; +} + +.jp-RenderedHTMLCommon ul ul ul { + list-style: circle; +} + +.jp-RenderedHTMLCommon ol { + list-style: decimal; +} + +.jp-RenderedHTMLCommon ol ol { + list-style: upper-alpha; +} + +.jp-RenderedHTMLCommon ol ol ol { + list-style: lower-alpha; +} + +.jp-RenderedHTMLCommon ol ol ol ol { + list-style: lower-roman; +} + +.jp-RenderedHTMLCommon ol ol ol ol ol { + list-style: decimal; +} + +.jp-RenderedHTMLCommon ol, +.jp-RenderedHTMLCommon ul { + margin-bottom: 1em; +} + +.jp-RenderedHTMLCommon ul ul, +.jp-RenderedHTMLCommon ul ol, +.jp-RenderedHTMLCommon ol ul, +.jp-RenderedHTMLCommon ol ol { + margin-bottom: 0em; +} + +.jp-RenderedHTMLCommon hr { + color: var(--jp-border-color2); + background-color: var(--jp-border-color1); + margin-top: 1em; + margin-bottom: 1em; +} + +.jp-RenderedHTMLCommon > pre { + margin: 1.5em 2em; +} + +.jp-RenderedHTMLCommon pre, +.jp-RenderedHTMLCommon code { + border: 0; + background-color: var(--jp-layout-color0); + color: var(--jp-content-font-color1); + font-family: var(--jp-code-font-family); + font-size: inherit; + line-height: var(--jp-code-line-height); + padding: 0; + white-space: pre-wrap; +} + +.jp-RenderedHTMLCommon :not(pre) > code { + background-color: var(--jp-layout-color2); + padding: 1px 5px; +} + +/* Tables */ + +.jp-RenderedHTMLCommon table { + border-collapse: collapse; + border-spacing: 0; + border: none; + color: var(--jp-ui-font-color1); + font-size: 12px; + table-layout: fixed; + margin-left: auto; + margin-right: auto; +} + +.jp-RenderedHTMLCommon thead { + border-bottom: var(--jp-border-width) solid var(--jp-border-color1); + vertical-align: bottom; +} + +.jp-RenderedHTMLCommon td, +.jp-RenderedHTMLCommon th, +.jp-RenderedHTMLCommon tr { + vertical-align: middle; + padding: 0.5em 0.5em; + line-height: normal; + white-space: normal; + max-width: none; + border: none; +} + +.jp-RenderedMarkdown.jp-RenderedHTMLCommon td, +.jp-RenderedMarkdown.jp-RenderedHTMLCommon th { + max-width: none; +} + +:not(.jp-RenderedMarkdown).jp-RenderedHTMLCommon td, +:not(.jp-RenderedMarkdown).jp-RenderedHTMLCommon th, +:not(.jp-RenderedMarkdown).jp-RenderedHTMLCommon tr { + text-align: right; +} + +.jp-RenderedHTMLCommon th { + font-weight: bold; +} + +.jp-RenderedHTMLCommon tbody tr:nth-child(odd) { + background: var(--jp-layout-color0); +} + +.jp-RenderedHTMLCommon tbody tr:nth-child(even) { + background: var(--jp-rendermime-table-row-background); +} + +.jp-RenderedHTMLCommon tbody tr:hover { + background: var(--jp-rendermime-table-row-hover-background); +} + +.jp-RenderedHTMLCommon table { + margin-bottom: 1em; +} + +.jp-RenderedHTMLCommon p { + text-align: left; + margin: 0px; +} + +.jp-RenderedHTMLCommon p { + margin-bottom: 1em; +} + +.jp-RenderedHTMLCommon img { + -moz-force-broken-image-icon: 1; +} + +/* Restrict to direct children as other images could be nested in other content. */ +.jp-RenderedHTMLCommon > img { + display: block; + margin-left: 0; + margin-right: 0; + margin-bottom: 1em; +} + +/* Change color behind transparent images if they need it... */ +[data-jp-theme-light='false'] .jp-RenderedImage img.jp-needs-light-background { + background-color: var(--jp-inverse-layout-color1); +} +[data-jp-theme-light='true'] .jp-RenderedImage img.jp-needs-dark-background { + background-color: var(--jp-inverse-layout-color1); +} +/* ...or leave it untouched if they don't */ +[data-jp-theme-light='false'] .jp-RenderedImage img.jp-needs-dark-background { +} +[data-jp-theme-light='true'] .jp-RenderedImage img.jp-needs-light-background { +} + +.jp-RenderedHTMLCommon img, +.jp-RenderedImage img, +.jp-RenderedHTMLCommon svg, +.jp-RenderedSVG svg { + max-width: 100%; + height: auto; +} + +.jp-RenderedHTMLCommon img.jp-mod-unconfined, +.jp-RenderedImage img.jp-mod-unconfined, +.jp-RenderedHTMLCommon svg.jp-mod-unconfined, +.jp-RenderedSVG svg.jp-mod-unconfined { + max-width: none; +} + +.jp-RenderedHTMLCommon .alert { + padding: var(--jp-notebook-padding); + border: var(--jp-border-width) solid transparent; + border-radius: var(--jp-border-radius); + margin-bottom: 1em; +} + +.jp-RenderedHTMLCommon .alert-info { + color: var(--jp-info-color0); + background-color: var(--jp-info-color3); + border-color: var(--jp-info-color2); +} +.jp-RenderedHTMLCommon .alert-info hr { + border-color: var(--jp-info-color3); +} +.jp-RenderedHTMLCommon .alert-info > p:last-child, +.jp-RenderedHTMLCommon .alert-info > ul:last-child { + margin-bottom: 0; +} + +.jp-RenderedHTMLCommon .alert-warning { + color: var(--jp-warn-color0); + background-color: var(--jp-warn-color3); + border-color: var(--jp-warn-color2); +} +.jp-RenderedHTMLCommon .alert-warning hr { + border-color: var(--jp-warn-color3); +} +.jp-RenderedHTMLCommon .alert-warning > p:last-child, +.jp-RenderedHTMLCommon .alert-warning > ul:last-child { + margin-bottom: 0; +} + +.jp-RenderedHTMLCommon .alert-success { + color: var(--jp-success-color0); + background-color: var(--jp-success-color3); + border-color: var(--jp-success-color2); +} +.jp-RenderedHTMLCommon .alert-success hr { + border-color: var(--jp-success-color3); +} +.jp-RenderedHTMLCommon .alert-success > p:last-child, +.jp-RenderedHTMLCommon .alert-success > ul:last-child { + margin-bottom: 0; +} + +.jp-RenderedHTMLCommon .alert-danger { + color: var(--jp-error-color0); + background-color: var(--jp-error-color3); + border-color: var(--jp-error-color2); +} +.jp-RenderedHTMLCommon .alert-danger hr { + border-color: var(--jp-error-color3); +} +.jp-RenderedHTMLCommon .alert-danger > p:last-child, +.jp-RenderedHTMLCommon .alert-danger > ul:last-child { + margin-bottom: 0; +} + +.jp-RenderedHTMLCommon blockquote { + margin: 1em 2em; + padding: 0 1em; + border-left: 5px solid var(--jp-border-color2); +} + +a.jp-InternalAnchorLink { + visibility: hidden; + margin-left: 8px; + color: var(--md-blue-800); +} + +h1:hover .jp-InternalAnchorLink, +h2:hover .jp-InternalAnchorLink, +h3:hover .jp-InternalAnchorLink, +h4:hover .jp-InternalAnchorLink, +h5:hover .jp-InternalAnchorLink, +h6:hover .jp-InternalAnchorLink { + visibility: visible; +} + +.jp-RenderedHTMLCommon kbd { + background-color: var(--jp-rendermime-table-row-background); + border: 1px solid var(--jp-border-color0); + border-bottom-color: var(--jp-border-color2); + border-radius: 3px; + box-shadow: inset 0 -1px 0 rgba(0, 0, 0, 0.25); + display: inline-block; + font-size: 0.8em; + line-height: 1em; + padding: 0.2em 0.5em; +} + +/* Most direct children of .jp-RenderedHTMLCommon have a margin-bottom of 1.0. + * At the bottom of cells this is a bit too much as there is also spacing + * between cells. Going all the way to 0 gets too tight between markdown and + * code cells. + */ +.jp-RenderedHTMLCommon > *:last-child { + margin-bottom: 0.5em; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/* This file was auto-generated by ensurePackage() in @jupyterlab/buildutils */ + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +.jp-MimeDocument { + outline: none; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/* This file was auto-generated by ensurePackage() in @jupyterlab/buildutils */ + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/*----------------------------------------------------------------------------- +| Variables +|----------------------------------------------------------------------------*/ + +:root { + --jp-private-filebrowser-button-height: 28px; + --jp-private-filebrowser-button-width: 48px; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +.jp-FileBrowser { + display: flex; + flex-direction: column; + color: var(--jp-ui-font-color1); + background: var(--jp-layout-color1); + /* This is needed so that all font sizing of children done in ems is + * relative to this base size */ + font-size: var(--jp-ui-font-size1); +} + +.jp-FileBrowser-toolbar.jp-Toolbar { + border-bottom: none; + height: auto; + margin: var(--jp-toolbar-header-margin); + box-shadow: none; +} + +.jp-BreadCrumbs { + flex: 0 0 auto; + margin: 4px 12px; +} + +.jp-BreadCrumbs-item { + margin: 0px 2px; + padding: 0px 2px; + border-radius: var(--jp-border-radius); + cursor: pointer; +} + +.jp-BreadCrumbs-item:hover { + background-color: var(--jp-layout-color2); +} + +.jp-BreadCrumbs-item:first-child { + margin-left: 0px; +} + +.jp-BreadCrumbs-item.jp-mod-dropTarget { + background-color: var(--jp-brand-color2); + opacity: 0.7; +} + +/*----------------------------------------------------------------------------- +| Buttons +|----------------------------------------------------------------------------*/ + +.jp-FileBrowser-toolbar.jp-Toolbar { + padding: 0px; +} + +.jp-FileBrowser-toolbar.jp-Toolbar { + justify-content: space-evenly; +} + +.jp-FileBrowser-toolbar.jp-Toolbar .jp-Toolbar-item { + flex: 1; +} + +.jp-FileBrowser-toolbar.jp-Toolbar .jp-ToolbarButtonComponent { + width: 100%; +} + +/*----------------------------------------------------------------------------- +| DirListing +|----------------------------------------------------------------------------*/ + +.jp-DirListing { + flex: 1 1 auto; + display: flex; + flex-direction: column; + outline: 0; +} + +.jp-DirListing-header { + flex: 0 0 auto; + display: flex; + flex-direction: row; + overflow: hidden; + border-top: var(--jp-border-width) solid var(--jp-border-color2); + border-bottom: var(--jp-border-width) solid var(--jp-border-color1); + box-shadow: var(--jp-toolbar-box-shadow); + z-index: 2; +} + +.jp-DirListing-headerItem { + padding: 4px 12px 2px 12px; + font-weight: 500; +} + +.jp-DirListing-headerItem:hover { + background: var(--jp-layout-color2); +} + +.jp-DirListing-headerItem.jp-id-name { + flex: 1 0 84px; +} + +.jp-DirListing-headerItem.jp-id-modified { + flex: 0 0 112px; + border-left: var(--jp-border-width) solid var(--jp-border-color2); + text-align: right; +} + +.jp-DirListing-narrow .jp-id-modified, +.jp-DirListing-narrow .jp-DirListing-itemModified { + display: none; +} + +.jp-DirListing-headerItem.jp-mod-selected { + font-weight: 600; +} + +/* increase specificity to override bundled default */ +.jp-DirListing-content { + flex: 1 1 auto; + margin: 0; + padding: 0; + list-style-type: none; + overflow: auto; + background-color: var(--jp-layout-color1); +} + +/* Style the directory listing content when a user drops a file to upload */ +.jp-DirListing.jp-mod-native-drop .jp-DirListing-content { + outline: 5px dashed rgba(128, 128, 128, 0.5); + outline-offset: -10px; + cursor: copy; +} + +.jp-DirListing-item { + display: flex; + flex-direction: row; + padding: 4px 12px; + -webkit-user-select: none; + -moz-user-select: none; + -ms-user-select: none; + user-select: none; +} + +.jp-DirListing-item.jp-mod-selected { + color: white; + background: var(--jp-brand-color1); +} + +.jp-DirListing-item.jp-mod-dropTarget { + background: var(--jp-brand-color3); +} + +.jp-DirListing-item:hover:not(.jp-mod-selected) { + background: var(--jp-layout-color2); +} + +.jp-DirListing-itemIcon { + flex: 0 0 20px; + margin-right: 4px; +} + +.jp-DirListing-itemText { + flex: 1 0 64px; + white-space: nowrap; + overflow: hidden; + text-overflow: ellipsis; + user-select: none; +} + +.jp-DirListing-itemModified { + flex: 0 0 125px; + text-align: right; +} + +.jp-DirListing-editor { + flex: 1 0 64px; + outline: none; + border: none; +} + +.jp-DirListing-item.jp-mod-running .jp-DirListing-itemIcon:before { + color: limegreen; + content: '\25CF'; + font-size: 8px; + position: absolute; + left: -8px; +} + +.jp-DirListing-item.lm-mod-drag-image, +.jp-DirListing-item.jp-mod-selected.lm-mod-drag-image { + font-size: var(--jp-ui-font-size1); + padding-left: 4px; + margin-left: 4px; + width: 160px; + background-color: var(--jp-ui-inverse-font-color2); + box-shadow: var(--jp-elevation-z2); + border-radius: 0px; + color: var(--jp-ui-font-color1); + transform: translateX(-40%) translateY(-58%); +} + +.jp-DirListing-deadSpace { + flex: 1 1 auto; + margin: 0; + padding: 0; + list-style-type: none; + overflow: auto; + background-color: var(--jp-layout-color1); +} + +.jp-Document { + min-width: 120px; + min-height: 120px; + outline: none; +} + +.jp-FileDialog.jp-mod-conflict input { + color: red; +} + +.jp-FileDialog .jp-new-name-title { + margin-top: 12px; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/* This file was auto-generated by ensurePackage() in @jupyterlab/buildutils */ + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/*----------------------------------------------------------------------------- +| Private CSS variables +|----------------------------------------------------------------------------*/ + +:root { +} + +/*----------------------------------------------------------------------------- +| Main OutputArea +| OutputArea has a list of Outputs +|----------------------------------------------------------------------------*/ + +.jp-OutputArea { + overflow-y: auto; +} + +.jp-OutputArea-child { + display: flex; + flex-direction: row; +} + +.jp-OutputPrompt { + flex: 0 0 var(--jp-cell-prompt-width); + color: var(--jp-cell-outprompt-font-color); + font-family: var(--jp-cell-prompt-font-family); + padding: var(--jp-code-padding); + letter-spacing: var(--jp-cell-prompt-letter-spacing); + line-height: var(--jp-code-line-height); + font-size: var(--jp-code-font-size); + border: var(--jp-border-width) solid transparent; + opacity: var(--jp-cell-prompt-opacity); + /* Right align prompt text, don't wrap to handle large prompt numbers */ + text-align: right; + white-space: nowrap; + overflow: hidden; + text-overflow: ellipsis; + /* Disable text selection */ + -webkit-user-select: none; + -moz-user-select: none; + -ms-user-select: none; + user-select: none; +} + +.jp-OutputArea-output { + height: auto; + overflow: auto; + user-select: text; + -moz-user-select: text; + -webkit-user-select: text; + -ms-user-select: text; +} + +.jp-OutputArea-child .jp-OutputArea-output { + flex-grow: 1; + flex-shrink: 1; +} + +/** + * Isolated output. + */ +.jp-OutputArea-output.jp-mod-isolated { + width: 100%; + display: block; +} + +/* +When drag events occur, `p-mod-override-cursor` is added to the body. +Because iframes steal all cursor events, the following two rules are necessary +to suppress pointer events while resize drags are occurring. There may be a +better solution to this problem. +*/ +body.lm-mod-override-cursor .jp-OutputArea-output.jp-mod-isolated { + position: relative; +} + +body.lm-mod-override-cursor .jp-OutputArea-output.jp-mod-isolated:before { + content: ''; + position: absolute; + top: 0; + left: 0; + right: 0; + bottom: 0; + background: transparent; +} + +/* pre */ + +.jp-OutputArea-output pre { + border: none; + margin: 0px; + padding: 0px; + overflow-x: auto; + overflow-y: auto; + word-break: break-all; + word-wrap: break-word; + white-space: pre-wrap; +} + +/* tables */ + +.jp-OutputArea-output.jp-RenderedHTMLCommon table { + margin-left: 0; + margin-right: 0; +} + +/* description lists */ + +.jp-OutputArea-output dl, +.jp-OutputArea-output dt, +.jp-OutputArea-output dd { + display: block; +} + +.jp-OutputArea-output dl { + width: 100%; + overflow: hidden; + padding: 0; + margin: 0; +} + +.jp-OutputArea-output dt { + font-weight: bold; + float: left; + width: 20%; + padding: 0; + margin: 0; +} + +.jp-OutputArea-output dd { + float: left; + width: 80%; + padding: 0; + margin: 0; +} + +/* Hide the gutter in case of + * - nested output areas (e.g. in the case of output widgets) + * - mirrored output areas + */ +.jp-OutputArea .jp-OutputArea .jp-OutputArea-prompt { + display: none; +} + +/*----------------------------------------------------------------------------- +| executeResult is added to any Output-result for the display of the object +| returned by a cell +|----------------------------------------------------------------------------*/ + +.jp-OutputArea-output.jp-OutputArea-executeResult { + margin-left: 0px; + flex: 1 1 auto; +} + +.jp-OutputArea-executeResult.jp-RenderedText { + padding-top: var(--jp-code-padding); +} + +/*----------------------------------------------------------------------------- +| The Stdin output +|----------------------------------------------------------------------------*/ + +.jp-OutputArea-stdin { + line-height: var(--jp-code-line-height); + padding-top: var(--jp-code-padding); + display: flex; +} + +.jp-Stdin-prompt { + color: var(--jp-content-font-color0); + padding-right: var(--jp-code-padding); + vertical-align: baseline; + flex: 0 0 auto; +} + +.jp-Stdin-input { + font-family: var(--jp-code-font-family); + font-size: inherit; + color: inherit; + background-color: inherit; + width: 42%; + min-width: 200px; + /* make sure input baseline aligns with prompt */ + vertical-align: baseline; + /* padding + margin = 0.5em between prompt and cursor */ + padding: 0em 0.25em; + margin: 0em 0.25em; + flex: 0 0 70%; +} + +.jp-Stdin-input:focus { + box-shadow: none; +} + +/*----------------------------------------------------------------------------- +| Output Area View +|----------------------------------------------------------------------------*/ + +.jp-LinkedOutputView .jp-OutputArea { + height: 100%; + display: block; +} + +.jp-LinkedOutputView .jp-OutputArea-output:only-child { + height: 100%; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/* This file was auto-generated by ensurePackage() in @jupyterlab/buildutils */ + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +.jp-Collapser { + flex: 0 0 var(--jp-cell-collapser-width); + padding: 0px; + margin: 0px; + border: none; + outline: none; + background: transparent; + border-radius: var(--jp-border-radius); + opacity: 1; +} + +.jp-Collapser-child { + display: block; + width: 100%; + box-sizing: border-box; + /* height: 100% doesn't work because the height of its parent is computed from content */ + position: absolute; + top: 0px; + bottom: 0px; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/*----------------------------------------------------------------------------- +| Header/Footer +|----------------------------------------------------------------------------*/ + +/* Hidden by zero height by default */ +.jp-CellHeader, +.jp-CellFooter { + height: 0px; + width: 100%; + padding: 0px; + margin: 0px; + border: none; + outline: none; + background: transparent; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/*----------------------------------------------------------------------------- +| Input +|----------------------------------------------------------------------------*/ + +/* All input areas */ +.jp-InputArea { + display: flex; + flex-direction: row; +} + +.jp-InputArea-editor { + flex: 1 1 auto; +} + +.jp-InputArea-editor { + /* This is the non-active, default styling */ + border: var(--jp-border-width) solid var(--jp-cell-editor-border-color); + border-radius: 0px; + background: var(--jp-cell-editor-background); +} + +.jp-InputPrompt { + flex: 0 0 var(--jp-cell-prompt-width); + color: var(--jp-cell-inprompt-font-color); + font-family: var(--jp-cell-prompt-font-family); + padding: var(--jp-code-padding); + letter-spacing: var(--jp-cell-prompt-letter-spacing); + opacity: var(--jp-cell-prompt-opacity); + line-height: var(--jp-code-line-height); + font-size: var(--jp-code-font-size); + border: var(--jp-border-width) solid transparent; + opacity: var(--jp-cell-prompt-opacity); + /* Right align prompt text, don't wrap to handle large prompt numbers */ + text-align: right; + white-space: nowrap; + overflow: hidden; + text-overflow: ellipsis; + /* Disable text selection */ + -webkit-user-select: none; + -moz-user-select: none; + -ms-user-select: none; + user-select: none; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/*----------------------------------------------------------------------------- +| Placeholder +|----------------------------------------------------------------------------*/ + +.jp-Placeholder { + display: flex; + flex-direction: row; + flex: 1 1 auto; +} + +.jp-Placeholder-prompt { + box-sizing: border-box; +} + +.jp-Placeholder-content { + flex: 1 1 auto; + border: none; + background: transparent; + height: 20px; + box-sizing: border-box; +} + +.jp-Placeholder-content .jp-MoreHorizIcon { + width: 32px; + height: 16px; + border: 1px solid transparent; + border-radius: var(--jp-border-radius); +} + +.jp-Placeholder-content .jp-MoreHorizIcon:hover { + border: 1px solid var(--jp-border-color1); + box-shadow: 0px 0px 2px 0px rgba(0, 0, 0, 0.25); + background-color: var(--jp-layout-color0); +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/*----------------------------------------------------------------------------- +| Private CSS variables +|----------------------------------------------------------------------------*/ + +:root { + --jp-private-cell-scrolling-output-offset: 5px; +} + +/*----------------------------------------------------------------------------- +| Cell +|----------------------------------------------------------------------------*/ + +.jp-Cell { + padding: var(--jp-cell-padding); + margin: 0px; + border: none; + outline: none; + background: transparent; +} + +/*----------------------------------------------------------------------------- +| Common input/output +|----------------------------------------------------------------------------*/ + +.jp-Cell-inputWrapper, +.jp-Cell-outputWrapper { + display: flex; + flex-direction: row; + padding: 0px; + margin: 0px; + /* Added to reveal the box-shadow on the input and output collapsers. */ + overflow: visible; +} + +/* Only input/output areas inside cells */ +.jp-Cell-inputArea, +.jp-Cell-outputArea { + flex: 1 1 auto; +} + +/*----------------------------------------------------------------------------- +| Collapser +|----------------------------------------------------------------------------*/ + +/* Make the output collapser disappear when there is not output, but do so + * in a manner that leaves it in the layout and preserves its width. + */ +.jp-Cell.jp-mod-noOutputs .jp-Cell-outputCollapser { + border: none !important; + background: transparent !important; +} + +.jp-Cell:not(.jp-mod-noOutputs) .jp-Cell-outputCollapser { + min-height: var(--jp-cell-collapser-min-height); +} + +/*----------------------------------------------------------------------------- +| Output +|----------------------------------------------------------------------------*/ + +/* Put a space between input and output when there IS output */ +.jp-Cell:not(.jp-mod-noOutputs) .jp-Cell-outputWrapper { + margin-top: 5px; +} + +/* Text output with the Out[] prompt needs a top padding to match the + * alignment of the Out[] prompt itself. + */ +.jp-OutputArea-executeResult .jp-RenderedText.jp-OutputArea-output { + padding-top: var(--jp-code-padding); +} + +.jp-CodeCell.jp-mod-outputsScrolled .jp-Cell-outputArea { + overflow-y: auto; + max-height: 200px; + box-shadow: inset 0 0 6px 2px rgba(0, 0, 0, 0.3); + margin-left: var(--jp-private-cell-scrolling-output-offset); +} + +.jp-CodeCell.jp-mod-outputsScrolled .jp-OutputArea-prompt { + flex: 0 0 + calc( + var(--jp-cell-prompt-width) - + var(--jp-private-cell-scrolling-output-offset) + ); +} + +/*----------------------------------------------------------------------------- +| CodeCell +|----------------------------------------------------------------------------*/ + +/*----------------------------------------------------------------------------- +| MarkdownCell +|----------------------------------------------------------------------------*/ + +.jp-MarkdownOutput { + flex: 1 1 auto; + margin-top: 0; + margin-bottom: 0; + padding-left: var(--jp-code-padding); +} + +.jp-MarkdownOutput.jp-RenderedHTMLCommon { + overflow: auto; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/* This file was auto-generated by ensurePackage() in @jupyterlab/buildutils */ + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/*----------------------------------------------------------------------------- +| Variables +|----------------------------------------------------------------------------*/ + +/*----------------------------------------------------------------------------- + +/*----------------------------------------------------------------------------- +| Styles +|----------------------------------------------------------------------------*/ + +.jp-NotebookPanel-toolbar { + padding: 2px; +} + +.jp-Toolbar-item.jp-Notebook-toolbarCellType .jp-select-wrapper.jp-mod-focused { + border: none; + box-shadow: none; +} + +.jp-Notebook-toolbarCellTypeDropdown select { + height: 24px; + font-size: var(--jp-ui-font-size1); + line-height: 14px; + border-radius: 0; + display: block; +} + +.jp-Notebook-toolbarCellTypeDropdown span { + top: 5px !important; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/*----------------------------------------------------------------------------- +| Private CSS variables +|----------------------------------------------------------------------------*/ + +:root { + --jp-private-notebook-dragImage-width: 304px; + --jp-private-notebook-dragImage-height: 36px; + --jp-private-notebook-selected-color: var(--md-blue-400); + --jp-private-notebook-active-color: var(--md-green-400); +} + +/*----------------------------------------------------------------------------- +| Imports +|----------------------------------------------------------------------------*/ + +/*----------------------------------------------------------------------------- +| Notebook +|----------------------------------------------------------------------------*/ + +.jp-NotebookPanel { + display: block; + height: 100%; +} + +.jp-NotebookPanel.jp-Document { + min-width: 240px; + min-height: 120px; +} + +.jp-Notebook { + padding: var(--jp-notebook-padding); + outline: none; + overflow: auto; + background: var(--jp-layout-color0); +} + +.jp-Notebook.jp-mod-scrollPastEnd::after { + display: block; + content: ''; + min-height: var(--jp-notebook-scroll-padding); +} + +.jp-Notebook .jp-Cell { + overflow: visible; +} + +.jp-Notebook .jp-Cell .jp-InputPrompt { + cursor: move; +} + +/*----------------------------------------------------------------------------- +| Notebook state related styling +| +| The notebook and cells each have states, here are the possibilities: +| +| - Notebook +| - Command +| - Edit +| - Cell +| - None +| - Active (only one can be active) +| - Selected (the cells actions are applied to) +| - Multiselected (when multiple selected, the cursor) +| - No outputs +|----------------------------------------------------------------------------*/ + +/* Command or edit modes */ + +.jp-Notebook .jp-Cell:not(.jp-mod-active) .jp-InputPrompt { + opacity: var(--jp-cell-prompt-not-active-opacity); + color: var(--jp-cell-prompt-not-active-font-color); +} + +.jp-Notebook .jp-Cell:not(.jp-mod-active) .jp-OutputPrompt { + opacity: var(--jp-cell-prompt-not-active-opacity); + color: var(--jp-cell-prompt-not-active-font-color); +} + +/* cell is active */ +.jp-Notebook .jp-Cell.jp-mod-active .jp-Collapser { + background: var(--jp-brand-color1); +} + +/* collapser is hovered */ +.jp-Notebook .jp-Cell .jp-Collapser:hover { + box-shadow: var(--jp-elevation-z2); + background: var(--jp-brand-color1); + opacity: var(--jp-cell-collapser-not-active-hover-opacity); +} + +/* cell is active and collapser is hovered */ +.jp-Notebook .jp-Cell.jp-mod-active .jp-Collapser:hover { + background: var(--jp-brand-color0); + opacity: 1; +} + +/* Command mode */ + +.jp-Notebook.jp-mod-commandMode .jp-Cell.jp-mod-selected { + background: var(--jp-notebook-multiselected-color); +} + +.jp-Notebook.jp-mod-commandMode + .jp-Cell.jp-mod-active.jp-mod-selected:not(.jp-mod-multiSelected) { + background: transparent; +} + +/* Edit mode */ + +.jp-Notebook.jp-mod-editMode .jp-Cell.jp-mod-active .jp-InputArea-editor { + border: var(--jp-border-width) solid var(--jp-cell-editor-active-border-color); + box-shadow: var(--jp-input-box-shadow); + background-color: var(--jp-cell-editor-active-background); +} + +/*----------------------------------------------------------------------------- +| Notebook drag and drop +|----------------------------------------------------------------------------*/ + +.jp-Notebook-cell.jp-mod-dropSource { + opacity: 0.5; +} + +.jp-Notebook-cell.jp-mod-dropTarget, +.jp-Notebook.jp-mod-commandMode + .jp-Notebook-cell.jp-mod-active.jp-mod-selected.jp-mod-dropTarget { + border-top-color: var(--jp-private-notebook-selected-color); + border-top-style: solid; + border-top-width: 2px; +} + +.jp-dragImage { + display: flex; + flex-direction: row; + width: var(--jp-private-notebook-dragImage-width); + height: var(--jp-private-notebook-dragImage-height); + border: var(--jp-border-width) solid var(--jp-cell-editor-border-color); + background: var(--jp-cell-editor-background); + overflow: visible; +} + +.jp-dragImage-singlePrompt { + box-shadow: 2px 2px 4px 0px rgba(0, 0, 0, 0.12); +} + +.jp-dragImage .jp-dragImage-content { + flex: 1 1 auto; + z-index: 2; + font-size: var(--jp-code-font-size); + font-family: var(--jp-code-font-family); + line-height: var(--jp-code-line-height); + padding: var(--jp-code-padding); + border: var(--jp-border-width) solid var(--jp-cell-editor-border-color); + background: var(--jp-cell-editor-background-color); + color: var(--jp-content-font-color3); + text-align: left; + margin: 4px 4px 4px 0px; +} + +.jp-dragImage .jp-dragImage-prompt { + flex: 0 0 auto; + min-width: 36px; + color: var(--jp-cell-inprompt-font-color); + padding: var(--jp-code-padding); + padding-left: 12px; + font-family: var(--jp-cell-prompt-font-family); + letter-spacing: var(--jp-cell-prompt-letter-spacing); + line-height: 1.9; + font-size: var(--jp-code-font-size); + border: var(--jp-border-width) solid transparent; +} + +.jp-dragImage-multipleBack { + z-index: -1; + position: absolute; + height: 32px; + width: 300px; + top: 8px; + left: 8px; + background: var(--jp-layout-color2); + border: var(--jp-border-width) solid var(--jp-input-border-color); + box-shadow: 2px 2px 4px 0px rgba(0, 0, 0, 0.12); +} + +/*----------------------------------------------------------------------------- +| Cell toolbar +|----------------------------------------------------------------------------*/ + +.jp-NotebookTools { + display: block; + min-width: var(--jp-sidebar-min-width); + color: var(--jp-ui-font-color1); + background: var(--jp-layout-color1); + /* This is needed so that all font sizing of children done in ems is + * relative to this base size */ + font-size: var(--jp-ui-font-size1); + overflow: auto; +} + +.jp-NotebookTools-tool { + padding: 0px 12px 0 12px; +} + +.jp-ActiveCellTool { + padding: 12px; + background-color: var(--jp-layout-color1); + border-top: none !important; +} + +.jp-ActiveCellTool .jp-InputArea-prompt { + flex: 0 0 auto; + padding-left: 0px; +} + +.jp-ActiveCellTool .jp-InputArea-editor { + flex: 1 1 auto; + background: var(--jp-cell-editor-background); + border-color: var(--jp-cell-editor-border-color); +} + +.jp-ActiveCellTool .jp-InputArea-editor .CodeMirror { + background: transparent; +} + +.jp-MetadataEditorTool { + flex-direction: column; + padding: 12px 0px 12px 0px; +} + +.jp-RankedPanel > :not(:first-child) { + margin-top: 12px; +} + +.jp-KeySelector select.jp-mod-styled { + font-size: var(--jp-ui-font-size1); + color: var(--jp-ui-font-color0); + border: var(--jp-border-width) solid var(--jp-border-color1); +} + +.jp-KeySelector label, +.jp-MetadataEditorTool label { + line-height: 1.4; +} + +/*----------------------------------------------------------------------------- +| Presentation Mode (.jp-mod-presentationMode) +|----------------------------------------------------------------------------*/ + +.jp-mod-presentationMode .jp-Notebook { + --jp-content-font-size1: var(--jp-content-presentation-font-size1); + --jp-code-font-size: var(--jp-code-presentation-font-size); +} + +.jp-mod-presentationMode .jp-Notebook .jp-Cell .jp-InputPrompt, +.jp-mod-presentationMode .jp-Notebook .jp-Cell .jp-OutputPrompt { + flex: 0 0 110px; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/* This file was auto-generated by ensurePackage() in @jupyterlab/buildutils */ + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +</style> + + <style type="text/css"> +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/* +The following CSS variables define the main, public API for styling JupyterLab. +These variables should be used by all plugins wherever possible. In other +words, plugins should not define custom colors, sizes, etc unless absolutely +necessary. This enables users to change the visual theme of JupyterLab +by changing these variables. + +Many variables appear in an ordered sequence (0,1,2,3). These sequences +are designed to work well together, so for example, `--jp-border-color1` should +be used with `--jp-layout-color1`. The numbers have the following meanings: + +* 0: super-primary, reserved for special emphasis +* 1: primary, most important under normal situations +* 2: secondary, next most important under normal situations +* 3: tertiary, next most important under normal situations + +Throughout JupyterLab, we are mostly following principles from Google's +Material Design when selecting colors. We are not, however, following +all of MD as it is not optimized for dense, information rich UIs. +*/ + +:root { + /* Elevation + * + * We style box-shadows using Material Design's idea of elevation. These particular numbers are taken from here: + * + * https://github.com/material-components/material-components-web + * https://material-components-web.appspot.com/elevation.html + */ + + --jp-shadow-base-lightness: 0; + --jp-shadow-umbra-color: rgba( + var(--jp-shadow-base-lightness), + var(--jp-shadow-base-lightness), + var(--jp-shadow-base-lightness), + 0.2 + ); + --jp-shadow-penumbra-color: rgba( + var(--jp-shadow-base-lightness), + var(--jp-shadow-base-lightness), + var(--jp-shadow-base-lightness), + 0.14 + ); + --jp-shadow-ambient-color: rgba( + var(--jp-shadow-base-lightness), + var(--jp-shadow-base-lightness), + var(--jp-shadow-base-lightness), + 0.12 + ); + --jp-elevation-z0: none; + --jp-elevation-z1: 0px 2px 1px -1px var(--jp-shadow-umbra-color), + 0px 1px 1px 0px var(--jp-shadow-penumbra-color), + 0px 1px 3px 0px var(--jp-shadow-ambient-color); + --jp-elevation-z2: 0px 3px 1px -2px var(--jp-shadow-umbra-color), + 0px 2px 2px 0px var(--jp-shadow-penumbra-color), + 0px 1px 5px 0px var(--jp-shadow-ambient-color); + --jp-elevation-z4: 0px 2px 4px -1px var(--jp-shadow-umbra-color), + 0px 4px 5px 0px var(--jp-shadow-penumbra-color), + 0px 1px 10px 0px var(--jp-shadow-ambient-color); + --jp-elevation-z6: 0px 3px 5px -1px var(--jp-shadow-umbra-color), + 0px 6px 10px 0px var(--jp-shadow-penumbra-color), + 0px 1px 18px 0px var(--jp-shadow-ambient-color); + --jp-elevation-z8: 0px 5px 5px -3px var(--jp-shadow-umbra-color), + 0px 8px 10px 1px var(--jp-shadow-penumbra-color), + 0px 3px 14px 2px var(--jp-shadow-ambient-color); + --jp-elevation-z12: 0px 7px 8px -4px var(--jp-shadow-umbra-color), + 0px 12px 17px 2px var(--jp-shadow-penumbra-color), + 0px 5px 22px 4px var(--jp-shadow-ambient-color); + --jp-elevation-z16: 0px 8px 10px -5px var(--jp-shadow-umbra-color), + 0px 16px 24px 2px var(--jp-shadow-penumbra-color), + 0px 6px 30px 5px var(--jp-shadow-ambient-color); + --jp-elevation-z20: 0px 10px 13px -6px var(--jp-shadow-umbra-color), + 0px 20px 31px 3px var(--jp-shadow-penumbra-color), + 0px 8px 38px 7px var(--jp-shadow-ambient-color); + --jp-elevation-z24: 0px 11px 15px -7px var(--jp-shadow-umbra-color), + 0px 24px 38px 3px var(--jp-shadow-penumbra-color), + 0px 9px 46px 8px var(--jp-shadow-ambient-color); + + /* Borders + * + * The following variables, specify the visual styling of borders in JupyterLab. + */ + + --jp-border-width: 1px; + --jp-border-color0: var(--md-grey-400); + --jp-border-color1: var(--md-grey-400); + --jp-border-color2: var(--md-grey-300); + --jp-border-color3: var(--md-grey-200); + --jp-border-radius: 2px; + + /* UI Fonts + * + * The UI font CSS variables are used for the typography all of the JupyterLab + * user interface elements that are not directly user generated content. + * + * The font sizing here is done assuming that the body font size of --jp-ui-font-size1 + * is applied to a parent element. When children elements, such as headings, are sized + * in em all things will be computed relative to that body size. + */ + + --jp-ui-font-scale-factor: 1.2; + --jp-ui-font-size0: 0.83333em; + --jp-ui-font-size1: 13px; /* Base font size */ + --jp-ui-font-size2: 1.2em; + --jp-ui-font-size3: 1.44em; + + --jp-ui-font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Helvetica, + Arial, sans-serif, 'Apple Color Emoji', 'Segoe UI Emoji', 'Segoe UI Symbol'; + + /* + * Use these font colors against the corresponding main layout colors. + * In a light theme, these go from dark to light. + */ + + /* Defaults use Material Design specification */ + --jp-ui-font-color0: rgba(0, 0, 0, 1); + --jp-ui-font-color1: rgba(0, 0, 0, 0.87); + --jp-ui-font-color2: rgba(0, 0, 0, 0.54); + --jp-ui-font-color3: rgba(0, 0, 0, 0.38); + + /* + * Use these against the brand/accent/warn/error colors. + * These will typically go from light to darker, in both a dark and light theme. + */ + + --jp-ui-inverse-font-color0: rgba(255, 255, 255, 1); + --jp-ui-inverse-font-color1: rgba(255, 255, 255, 1); + --jp-ui-inverse-font-color2: rgba(255, 255, 255, 0.7); + --jp-ui-inverse-font-color3: rgba(255, 255, 255, 0.5); + + /* Content Fonts + * + * Content font variables are used for typography of user generated content. + * + * The font sizing here is done assuming that the body font size of --jp-content-font-size1 + * is applied to a parent element. When children elements, such as headings, are sized + * in em all things will be computed relative to that body size. + */ + + --jp-content-line-height: 1.6; + --jp-content-font-scale-factor: 1.2; + --jp-content-font-size0: 0.83333em; + --jp-content-font-size1: 14px; /* Base font size */ + --jp-content-font-size2: 1.2em; + --jp-content-font-size3: 1.44em; + --jp-content-font-size4: 1.728em; + --jp-content-font-size5: 2.0736em; + + /* This gives a magnification of about 125% in presentation mode over normal. */ + --jp-content-presentation-font-size1: 17px; + + --jp-content-heading-line-height: 1; + --jp-content-heading-margin-top: 1.2em; + --jp-content-heading-margin-bottom: 0.8em; + --jp-content-heading-font-weight: 500; + + /* Defaults use Material Design specification */ + --jp-content-font-color0: rgba(0, 0, 0, 1); + --jp-content-font-color1: rgba(0, 0, 0, 0.87); + --jp-content-font-color2: rgba(0, 0, 0, 0.54); + --jp-content-font-color3: rgba(0, 0, 0, 0.38); + + --jp-content-link-color: var(--md-blue-700); + + --jp-content-font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', + Helvetica, Arial, sans-serif, 'Apple Color Emoji', 'Segoe UI Emoji', + 'Segoe UI Symbol'; + + /* + * Code Fonts + * + * Code font variables are used for typography of code and other monospaces content. + */ + + --jp-code-font-size: 13px; + --jp-code-line-height: 1.3077; /* 17px for 13px base */ + --jp-code-padding: 5px; /* 5px for 13px base, codemirror highlighting needs integer px value */ + --jp-code-font-family-default: Menlo, Consolas, 'DejaVu Sans Mono', monospace; + --jp-code-font-family: var(--jp-code-font-family-default); + + /* This gives a magnification of about 125% in presentation mode over normal. */ + --jp-code-presentation-font-size: 16px; + + /* may need to tweak cursor width if you change font size */ + --jp-code-cursor-width0: 1.4px; + --jp-code-cursor-width1: 2px; + --jp-code-cursor-width2: 4px; + + /* Layout + * + * The following are the main layout colors use in JupyterLab. In a light + * theme these would go from light to dark. + */ + + --jp-layout-color0: white; + --jp-layout-color1: white; + --jp-layout-color2: var(--md-grey-200); + --jp-layout-color3: var(--md-grey-400); + --jp-layout-color4: var(--md-grey-600); + + /* Inverse Layout + * + * The following are the inverse layout colors use in JupyterLab. In a light + * theme these would go from dark to light. + */ + + --jp-inverse-layout-color0: #111111; + --jp-inverse-layout-color1: var(--md-grey-900); + --jp-inverse-layout-color2: var(--md-grey-800); + --jp-inverse-layout-color3: var(--md-grey-700); + --jp-inverse-layout-color4: var(--md-grey-600); + + /* Brand/accent */ + + --jp-brand-color0: var(--md-blue-700); + --jp-brand-color1: var(--md-blue-500); + --jp-brand-color2: var(--md-blue-300); + --jp-brand-color3: var(--md-blue-100); + --jp-brand-color4: var(--md-blue-50); + + --jp-accent-color0: var(--md-green-700); + --jp-accent-color1: var(--md-green-500); + --jp-accent-color2: var(--md-green-300); + --jp-accent-color3: var(--md-green-100); + + /* State colors (warn, error, success, info) */ + + --jp-warn-color0: var(--md-orange-700); + --jp-warn-color1: var(--md-orange-500); + --jp-warn-color2: var(--md-orange-300); + --jp-warn-color3: var(--md-orange-100); + + --jp-error-color0: var(--md-red-700); + --jp-error-color1: var(--md-red-500); + --jp-error-color2: var(--md-red-300); + --jp-error-color3: var(--md-red-100); + + --jp-success-color0: var(--md-green-700); + --jp-success-color1: var(--md-green-500); + --jp-success-color2: var(--md-green-300); + --jp-success-color3: var(--md-green-100); + + --jp-info-color0: var(--md-cyan-700); + --jp-info-color1: var(--md-cyan-500); + --jp-info-color2: var(--md-cyan-300); + --jp-info-color3: var(--md-cyan-100); + + /* Cell specific styles */ + + --jp-cell-padding: 5px; + + --jp-cell-collapser-width: 8px; + --jp-cell-collapser-min-height: 20px; + --jp-cell-collapser-not-active-hover-opacity: 0.6; + + --jp-cell-editor-background: var(--md-grey-100); + --jp-cell-editor-border-color: var(--md-grey-300); + --jp-cell-editor-box-shadow: inset 0 0 2px var(--md-blue-300); + --jp-cell-editor-active-background: var(--jp-layout-color0); + --jp-cell-editor-active-border-color: var(--jp-brand-color1); + + --jp-cell-prompt-width: 64px; + --jp-cell-prompt-font-family: 'Source Code Pro', monospace; + --jp-cell-prompt-letter-spacing: 0px; + --jp-cell-prompt-opacity: 1; + --jp-cell-prompt-not-active-opacity: 0.5; + --jp-cell-prompt-not-active-font-color: var(--md-grey-700); + /* A custom blend of MD grey and blue 600 + * See https://meyerweb.com/eric/tools/color-blend/#546E7A:1E88E5:5:hex */ + --jp-cell-inprompt-font-color: #307fc1; + /* A custom blend of MD grey and orange 600 + * https://meyerweb.com/eric/tools/color-blend/#546E7A:F4511E:5:hex */ + --jp-cell-outprompt-font-color: #bf5b3d; + + /* Notebook specific styles */ + + --jp-notebook-padding: 10px; + --jp-notebook-select-background: var(--jp-layout-color1); + --jp-notebook-multiselected-color: var(--md-blue-50); + + /* The scroll padding is calculated to fill enough space at the bottom of the + notebook to show one single-line cell (with appropriate padding) at the top + when the notebook is scrolled all the way to the bottom. We also subtract one + pixel so that no scrollbar appears if we have just one single-line cell in the + notebook. This padding is to enable a 'scroll past end' feature in a notebook. + */ + --jp-notebook-scroll-padding: calc( + 100% - var(--jp-code-font-size) * var(--jp-code-line-height) - + var(--jp-code-padding) - var(--jp-cell-padding) - 1px + ); + + /* Rendermime styles */ + + --jp-rendermime-error-background: #fdd; + --jp-rendermime-table-row-background: var(--md-grey-100); + --jp-rendermime-table-row-hover-background: var(--md-light-blue-50); + + /* Dialog specific styles */ + + --jp-dialog-background: rgba(0, 0, 0, 0.25); + + /* Console specific styles */ + + --jp-console-padding: 10px; + + /* Toolbar specific styles */ + + --jp-toolbar-border-color: var(--jp-border-color1); + --jp-toolbar-micro-height: 8px; + --jp-toolbar-background: var(--jp-layout-color1); + --jp-toolbar-box-shadow: 0px 0px 2px 0px rgba(0, 0, 0, 0.24); + --jp-toolbar-header-margin: 4px 4px 0px 4px; + --jp-toolbar-active-background: var(--md-grey-300); + + /* Input field styles */ + + --jp-input-box-shadow: inset 0 0 2px var(--md-blue-300); + --jp-input-active-background: var(--jp-layout-color1); + --jp-input-hover-background: var(--jp-layout-color1); + --jp-input-background: var(--md-grey-100); + --jp-input-border-color: var(--jp-border-color1); + --jp-input-active-border-color: var(--jp-brand-color1); + --jp-input-active-box-shadow-color: rgba(19, 124, 189, 0.3); + + /* General editor styles */ + + --jp-editor-selected-background: #d9d9d9; + --jp-editor-selected-focused-background: #d7d4f0; + --jp-editor-cursor-color: var(--jp-ui-font-color0); + + /* Code mirror specific styles */ + + --jp-mirror-editor-keyword-color: #008000; + --jp-mirror-editor-atom-color: #88f; + --jp-mirror-editor-number-color: #080; + --jp-mirror-editor-def-color: #00f; + --jp-mirror-editor-variable-color: var(--md-grey-900); + --jp-mirror-editor-variable-2-color: #05a; + --jp-mirror-editor-variable-3-color: #085; + --jp-mirror-editor-punctuation-color: #05a; + --jp-mirror-editor-property-color: #05a; + --jp-mirror-editor-operator-color: #aa22ff; + --jp-mirror-editor-comment-color: #408080; + --jp-mirror-editor-string-color: #ba2121; + --jp-mirror-editor-string-2-color: #708; + --jp-mirror-editor-meta-color: #aa22ff; + --jp-mirror-editor-qualifier-color: #555; + --jp-mirror-editor-builtin-color: #008000; + --jp-mirror-editor-bracket-color: #997; + --jp-mirror-editor-tag-color: #170; + --jp-mirror-editor-attribute-color: #00c; + --jp-mirror-editor-header-color: blue; + --jp-mirror-editor-quote-color: #090; + --jp-mirror-editor-link-color: #00c; + --jp-mirror-editor-error-color: #f00; + --jp-mirror-editor-hr-color: #999; + + /* Vega extension styles */ + + --jp-vega-background: white; + + /* Sidebar-related styles */ + + --jp-sidebar-min-width: 180px; + + /* Search-related styles */ + + --jp-search-toggle-off-opacity: 0.5; + --jp-search-toggle-hover-opacity: 0.8; + --jp-search-toggle-on-opacity: 1; + --jp-search-selected-match-background-color: rgb(245, 200, 0); + --jp-search-selected-match-color: black; + --jp-search-unselected-match-background-color: var( + --jp-inverse-layout-color0 + ); + --jp-search-unselected-match-color: var(--jp-ui-inverse-font-color0); + + /* Icon colors that work well with light or dark backgrounds */ + --jp-icon-contrast-color0: var(--md-purple-600); + --jp-icon-contrast-color1: var(--md-green-600); + --jp-icon-contrast-color2: var(--md-pink-600); + --jp-icon-contrast-color3: var(--md-blue-600); +} +</style> + +<style type="text/css"> +a.anchor-link { + display: none; +} +.highlight { + margin: 0.4em; +} + +/* Input area styling */ +.jp-InputArea { + overflow: hidden; +} + +.jp-InputArea-editor { + overflow: hidden; +} + +@media print { + body { + margin: 0; + } +} +</style> + + + +<!-- Load mathjax --> + <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/latest.js?config=TeX-MML-AM_CHTML-full,Safe"> </script> + <!-- MathJax configuration --> + <script type="text/x-mathjax-config"> + init_mathjax = function() { + if (window.MathJax) { + // MathJax loaded + MathJax.Hub.Config({ + TeX: { + equationNumbers: { + autoNumber: "AMS", + useLabelIds: true + } + }, + tex2jax: { + inlineMath: [ ['$','$'], ["\\(","\\)"] ], + displayMath: [ ['$$','$$'], ["\\[","\\]"] ], + processEscapes: true, + processEnvironments: true + }, + displayAlign: 'center', + CommonHTML: { + linebreaks: { + automatic: true + } + }, + "HTML-CSS": { + linebreaks: { + automatic: true + } + } + }); + + MathJax.Hub.Queue(["Typeset", MathJax.Hub]); + } + } + init_mathjax(); + </script> + <!-- End of mathjax configuration --></head> +<body class="jp-Notebook" data-jp-theme-light="true" data-jp-theme-name="JupyterLab Light"> + +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<h1 id="José-Miguel-Ladino-Méndez---Maestría-en-Ciencias-Astronomía---UNAL">José Miguel Ladino Méndez - Maestría en Ciencias Astronomía - UNAL<a class="anchor-link" href="#José-Miguel-Ladino-Méndez---Maestría-en-Ciencias-Astronomía---UNAL">¶</a></h1><h1 id="LACoNGA-Physics---Ciencia-de-Datos---Tarea-Clase-05">LACoNGA Physics - Ciencia de Datos - Tarea-Clase-05<a class="anchor-link" href="#LACoNGA-Physics---Ciencia-de-Datos---Tarea-Clase-05">¶</a></h1> +</div> +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<h2 id="Ejercicios-para-practicar-numpy-y-optimización-con-scipy">Ejercicios para practicar numpy y optimización con scipy<a class="anchor-link" href="#Ejercicios-para-practicar-numpy-y-optimización-con-scipy">¶</a></h2><h2 id="Resolución-espacial">Resolución espacial<a class="anchor-link" href="#Resolución-espacial">¶</a></h2><ul> +<li>En observaciones astronómicas e imágenes en general, llamamos resolución espacial +a la distancia angular minima a la que pueden estar dos fuentes puntuales de luz +y aun poder ser reconocidas como objetos individuales. +En el caso de la astronomÃa, este efecto tiene que ver con la dispersión de la +luz al atravezar la atmósfera, la cual hace que una estrella, que deberÃa +en principio aparecer como una fuente puntual (pues las estrellas están muy +lejos), aparezca en cambio como una mancha. AsÃ, si dos estrellas están +demasiado cerca sus manchas se superpondrán hasta el punto en que sea imposible +distinguirlas como fuentes individuales. +Para modelar este efecto, tÃpicamente consideramos la acción de la atmósfera +como la convolución de la imagen "perfecta" (como se verÃa desde el espacio) +con un kernel gaussiano. El ancho de esa función gaussiana 2D caracteriza +las condiciones de observación, varÃa con las condiciones climáticas y para +cada sitio de la Tierra. +La resolución espacial normalmente se toma como el FWHM +de la gaussiana caracteristica registrada durante una observación. Es decir, +si dos estrellas están a una distancia aparente en el cielo menor que el +FWHM del efecto atmosférico, la luz de ambas fuentes se mezclará después de +la convolución hasta el punto de impedir reconocerlas de modo individual. +Además, la atmósfera puede interactuar de maneras distintas con la luz de +distintas longitudes de onda, de manera que el ancho de la gaussiana puede +ser distinto para observaciones con diferentes filtros. +El objetivo de esta tarea es medir de forma aproximada la resolución +espacial en una noche de observación en Zapatoca, Santander (Colombia), a partir +de una foto del cielo estrellado.</li> +</ul> +<ul> +<li>El objetivo de esta tarea es medir de forma aproximada la resolución +espacial en una noche de observación en Zapatoca, Santander (Colombia), a partir +de una foto del cielo estrellado. +## Ejercicio:</li> +<li>Leer la imagen almacenada en la carpeta data como un array de numpy. Ese +array estará compuesto de 3 matrices, una tras otra, correspondiente a los +canales R,G,B.</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [99]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> <span class="c1">#librerÃa util para manejar los array y funciones matemáticas</span> +<span class="kn">from</span> <span class="nn">PIL</span> <span class="kn">import</span> <span class="n">Image</span> <span class="c1">#Módulo para abrir imagen.</span> + +<span class="n">imagen</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">Image</span><span class="o">.</span><span class="n">open</span><span class="p">(</span><span class="s1">'data/zapatocaImage.jpeg'</span><span class="p">))</span> <span class="c1">#volviendo imagen en array</span> +<span class="c1">#print(imagen)</span> +</pre></div> + + </div> +</div> +</div> +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>Combinar los 3 array para generar una versión blanco y negro de la imagen, +en la cual ella consiste de una sola matriz 2D. Puede usar su intuición y prueba +y error para combinar las 3 imágenes, explicando el procedimiento elegido. Esto +será más interesante que usar un comando desconocido de una biblioteca sofisticada +que haga las cosas como una caja negra (queremos practicar numpy).</li> +</ul> + +</div> +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>Algunas maneras que se encontrarón para combinar los array RGB son:</li> +</ul> + +</div> +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<p><strong>1)</strong> Tomando el promedio aritmético para cada pixel</p> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [899]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">Escalagrises2</span> <span class="o">=</span> <span class="n">imagen</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">axis</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span> <span class="c1">#Toma el promedio aritmético para cada pixel (R+G+B/3)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">Escalagrises2</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'gray'</span><span class="p">))</span> <span class="c1">#muestra imagen en escala de grises</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +<span class="nb">print</span><span class="p">(</span><span class="n">Escalagrises2</span><span class="o">.</span><span class="n">ndim</span><span class="p">)</span> <span class="c1">#dim del array</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + +<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain"> +<pre>2 +</pre> +</div> +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<p><strong>2)</strong> Usando la formula lineal estandar de Luma de brillo en una imagen [1]</p> +<ul> +<li>[1] : <a href="https://en.wikipedia.org/wiki/Grayscale">https://en.wikipedia.org/wiki/Grayscale</a></li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [438]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">Escalagrises3</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">empty_like</span><span class="p">(</span><span class="n">imagen</span><span class="p">)</span> <span class="c1">#array del mismo shape</span> +<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">3</span><span class="p">):</span> + <span class="n">Escalagrises3</span><span class="p">[:,:,</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="mf">0.299</span><span class="o">*</span><span class="n">imagen</span><span class="p">[:,:,</span><span class="mi">0</span><span class="p">]</span> <span class="o">+</span> <span class="mf">0.587</span><span class="o">*</span><span class="n">imagen</span><span class="p">[:,:,</span><span class="mi">1</span><span class="p">]</span><span class="o">+</span><span class="mf">0.114</span><span class="o">*</span><span class="n">imagen</span><span class="p">[:,:,</span><span class="mi">2</span><span class="p">]</span> <span class="c1">#aplicando formula Luma a cada pixel</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">Escalagrises3</span><span class="p">[:,:,</span><span class="mi">0</span><span class="p">],</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'gray'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +<span class="nb">print</span><span class="p">(</span><span class="n">Escalagrises3</span><span class="p">[:,:,</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">ndim</span><span class="p">)</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + +<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain"> +<pre>2 +</pre> +</div> +</div> + +</div> + +</div> + +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [462]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">trim</span><span class="p">(</span><span class="n">array</span><span class="p">,</span> <span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">width</span><span class="p">,</span> <span class="n">height</span><span class="p">):</span> <span class="c1">#función para recortar </span> + <span class="k">return</span> <span class="n">array</span><span class="p">[</span><span class="n">y</span><span class="p">:</span><span class="n">y</span> <span class="o">+</span> <span class="n">height</span><span class="p">,</span> <span class="n">x</span><span class="p">:</span><span class="n">x</span><span class="o">+</span><span class="n">width</span><span class="p">]</span> + +<span class="c1"># Calcula el error entre el valor z dado por la imagen y el determinado por el modelo teniendo en cuenta la incertidumbre</span> + +<span class="k">def</span> <span class="nf">error</span><span class="p">(</span><span class="n">xdatatuple</span><span class="p">,</span><span class="n">a</span><span class="p">,</span><span class="n">b</span><span class="p">,</span> <span class="n">x0</span><span class="p">,</span><span class="n">y0</span><span class="p">,</span><span class="n">c</span><span class="p">,</span><span class="n">z</span><span class="p">,</span><span class="n">inc</span><span class="p">):</span> + <span class="n">model</span> <span class="o">=</span> <span class="n">gauss2d</span><span class="p">(</span><span class="n">xdatatuple</span><span class="p">,</span><span class="n">a</span><span class="p">,</span><span class="n">b</span><span class="p">,</span> <span class="n">x0</span><span class="p">,</span><span class="n">y0</span><span class="p">,</span><span class="n">c</span><span class="p">)</span> + <span class="n">errors</span> <span class="o">=</span> <span class="p">(</span><span class="n">model</span> <span class="o">-</span> <span class="n">z</span><span class="p">)</span><span class="o">/</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="nb">abs</span><span class="p">(</span><span class="n">inc</span><span class="p">))</span> + <span class="k">return</span> <span class="n">errors</span> +</pre></div> + + </div> +</div> +</div> +</div> + +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [303]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">from</span> <span class="nn">scipy.optimize</span> <span class="kn">import</span> <span class="n">curve_fit</span> <span class="c1">#función del módelo de mÃnimos cuadrados general no lineal para ajustar</span> + + +<span class="k">def</span> <span class="nf">gauss2d</span><span class="p">(</span><span class="n">xdatatuple</span><span class="p">,</span><span class="n">a</span><span class="p">,</span><span class="n">b</span><span class="p">,</span> <span class="n">x0</span><span class="p">,</span><span class="n">y0</span><span class="p">,</span><span class="n">c</span><span class="p">):</span> <span class="c1">#modelo gaussiano 2d a inplementar con constante aditiva ("el cielo vacio brilla")</span> + <span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="n">y</span><span class="p">)</span><span class="o">=</span><span class="n">xdatatuple</span> + <span class="n">z</span> <span class="o">=</span> <span class="n">a</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="o">-</span><span class="p">((</span><span class="n">x</span><span class="o">-</span><span class="n">x0</span><span class="p">)</span><span class="o">**</span><span class="mi">2</span><span class="o">+</span><span class="p">(</span><span class="n">y</span><span class="o">-</span><span class="n">y0</span><span class="p">)</span><span class="o">**</span><span class="mi">2</span><span class="p">)</span><span class="o">/</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">c</span><span class="p">))</span><span class="o">+</span><span class="n">b</span> + <span class="k">return</span> <span class="n">z</span><span class="o">.</span><span class="n">ravel</span><span class="p">()</span> +<span class="n">FWHM</span><span class="o">=</span><span class="p">[]</span> <span class="c1">#lista para los primeros valores de FWHM a blanco y negro</span> +</pre></div> + + </div> +</div> +</div> +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>Tomando el modelo de gaussiana 2d de tal manera que se tomarán a sigma_x=sigma_y=sigma [2]</li> +</ul> + +</div> +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<p>[2] : <a href="http://campar.in.tum.de/Chair/HaukeHeibelGaussianDerivatives">http://campar.in.tum.de/Chair/HaukeHeibelGaussianDerivatives</a></p> + +</div> +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 1 (blanco y negro)</li> +<li>Todos los tratamientos de las estrellas son iguales de tal manera que solo se comentará el procedimiento en la siguiente celda</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [304]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">recorte1</span> <span class="o">=</span> <span class="n">trim</span><span class="p">(</span><span class="n">Escalagrises3</span><span class="p">[:,:,</span><span class="mi">0</span><span class="p">],</span> <span class="mi">210</span><span class="p">,</span> <span class="mi">237</span><span class="p">,</span> <span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">)</span> <span class="c1">#Recorte de la estrella individual</span> +<span class="n">x1</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">15</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span> +<span class="n">y1</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">15</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span> +<span class="n">y1</span><span class="p">,</span><span class="n">x1</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">meshgrid</span><span class="p">(</span><span class="n">x1</span><span class="p">,</span><span class="n">y1</span><span class="p">)</span> <span class="c1">#creando tupla xy</span> +<span class="n">xdata1</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">vstack</span><span class="p">((</span><span class="n">x1</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span><span class="n">y1</span><span class="o">.</span><span class="n">ravel</span><span class="p">()))</span> <span class="c1">#util para leer rejilla simetrica (2,225) en curve_fit</span> +<span class="c1">#aplicación de curve_fit para hallar constantes, p0 es una sugerencia a los parametros, util para el ajuste</span> +<span class="n">popt1</span><span class="p">,</span> <span class="n">pcov1</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata1</span><span class="p">,</span> <span class="n">recorte1</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">])</span> +<span class="n">estrella1</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata1</span><span class="p">,</span> <span class="n">popt1</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">popt1</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">popt1</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">popt1</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">popt1</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> <span class="c1">#aplicacion gaussiana con los parametros hallados</span> +<span class="n">FWHM1</span><span class="o">=</span><span class="n">FWHM</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">popt1</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> <span class="c1">#valor de FWHM de la gaussiana obtenida </span> +<span class="c1">#parametros para graficar, tamaño, barra de colores, titulos y color.</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 1 fotografÃa"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorte1</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'gray'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 1 a partir de la gaussiana"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrella1</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'gray'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li><p>Repita este procedimiento para varias estrellas y presente alguna estadÃstica +sobre las medidas de la FWHM de las distintas gaussianas: histograma, media, mediana, +desviación estándar</p> +</li> +<li><p>Al repetir el procedimiento en cada estrella a blanco y negro y cada una de las BandasRGB se modifican los parametros de cada recorte, rejilla, color y sugerencias p0</p> +</li> +</ul> + +</div> +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 2 (blanco y negro)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [305]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">x2</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">35</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span> +<span class="n">y2</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">35</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span> +<span class="n">y2</span><span class="p">,</span><span class="n">x2</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">meshgrid</span><span class="p">(</span><span class="n">x2</span><span class="p">,</span><span class="n">y2</span><span class="p">)</span> +<span class="n">recorte2</span> <span class="o">=</span> <span class="n">trim</span><span class="p">(</span><span class="n">Escalagrises3</span><span class="p">[:,:,</span><span class="mi">0</span><span class="p">],</span> <span class="mi">645</span><span class="p">,</span> <span class="mi">535</span><span class="p">,</span> <span class="mi">35</span><span class="p">,</span> <span class="mi">35</span><span class="p">)</span> +<span class="n">xdata2</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">vstack</span><span class="p">((</span><span class="n">x2</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span><span class="n">y2</span><span class="o">.</span><span class="n">ravel</span><span class="p">()))</span> +<span class="n">popt2</span><span class="p">,</span> <span class="n">pcov2</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata2</span><span class="p">,</span> <span class="n">recorte2</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">])</span> +<span class="n">estrella2</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata2</span><span class="p">,</span> <span class="n">popt2</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">popt2</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">popt2</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">popt2</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">popt2</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHM2</span><span class="o">=</span><span class="n">FWHM</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">popt2</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 2 fotografÃa"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorte2</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'gray'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 2 a partir de la gaussiana"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrella2</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">35</span><span class="p">,</span> <span class="mi">35</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'gray'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 3 (blanco y negro)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [306]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">recorte3</span> <span class="o">=</span> <span class="n">trim</span><span class="p">(</span><span class="n">Escalagrises3</span><span class="p">[:,:,</span><span class="mi">0</span><span class="p">],</span> <span class="mi">560</span><span class="p">,</span> <span class="mi">320</span><span class="p">,</span> <span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">)</span> +<span class="n">x3</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">15</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span> +<span class="n">y3</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">15</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span> +<span class="n">y3</span><span class="p">,</span><span class="n">x3</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">meshgrid</span><span class="p">(</span><span class="n">x3</span><span class="p">,</span><span class="n">y3</span><span class="p">)</span> +<span class="n">xdata3</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">vstack</span><span class="p">((</span><span class="n">x3</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span><span class="n">y3</span><span class="o">.</span><span class="n">ravel</span><span class="p">()))</span> +<span class="n">popt3</span><span class="p">,</span> <span class="n">pcov3</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata3</span><span class="p">,</span> <span class="n">recorte3</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">])</span> +<span class="n">estrella3</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata3</span><span class="p">,</span> <span class="n">popt3</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">popt3</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">popt3</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">popt3</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">popt3</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHM3</span><span class="o">=</span><span class="n">FWHM</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">popt3</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 3 fotografÃa"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorte3</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'gray'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 3 a partir de la gaussiana"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrella3</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'gray'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 4 (blanco y negro)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [307]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">recorte4</span> <span class="o">=</span> <span class="n">trim</span><span class="p">(</span><span class="n">Escalagrises3</span><span class="p">[:,:,</span><span class="mi">0</span><span class="p">],</span> <span class="mi">442</span><span class="p">,</span> <span class="mi">370</span><span class="p">,</span> <span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">)</span> +<span class="n">x4</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">15</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span> +<span class="n">y4</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">15</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span> +<span class="n">y4</span><span class="p">,</span><span class="n">x4</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">meshgrid</span><span class="p">(</span><span class="n">x4</span><span class="p">,</span><span class="n">y4</span><span class="p">)</span> +<span class="n">xdata4</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">vstack</span><span class="p">((</span><span class="n">x4</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span><span class="n">y4</span><span class="o">.</span><span class="n">ravel</span><span class="p">()))</span> +<span class="n">popt4</span><span class="p">,</span> <span class="n">pcov4</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata4</span><span class="p">,</span> <span class="n">recorte4</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">])</span> +<span class="n">estrella4</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata4</span><span class="p">,</span> <span class="n">popt4</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">popt4</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">popt4</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">popt4</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">popt4</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHM4</span><span class="o">=</span><span class="n">FWHM</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">popt4</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 4 fotografÃa"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorte4</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'gray'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 4 a partir de la gaussiana"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrella4</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'gray'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 5 (blanco y negro)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [308]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">recorte5</span> <span class="o">=</span> <span class="n">trim</span><span class="p">(</span><span class="n">Escalagrises3</span><span class="p">[:,:,</span><span class="mi">0</span><span class="p">],</span> <span class="mi">320</span><span class="p">,</span> <span class="mi">455</span><span class="p">,</span> <span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">)</span> +<span class="n">x5</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">15</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span> +<span class="n">y5</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">15</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span> +<span class="n">y5</span><span class="p">,</span><span class="n">x5</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">meshgrid</span><span class="p">(</span><span class="n">x5</span><span class="p">,</span><span class="n">y5</span><span class="p">)</span> +<span class="n">xdata5</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">vstack</span><span class="p">((</span><span class="n">x5</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span><span class="n">y5</span><span class="o">.</span><span class="n">ravel</span><span class="p">()))</span> +<span class="n">popt5</span><span class="p">,</span> <span class="n">pcov5</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata5</span><span class="p">,</span> <span class="n">recorte5</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">])</span> +<span class="n">estrella5</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata5</span><span class="p">,</span> <span class="n">popt5</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">popt5</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">popt5</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">popt5</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">popt5</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHM5</span><span class="o">=</span><span class="n">FWHM</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">popt5</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 5 fotografÃa"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorte5</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'gray'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 5 a partir de la gaussiana"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrella5</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'gray'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 6 (blanco y negro)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [309]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">recorte6</span> <span class="o">=</span> <span class="n">trim</span><span class="p">(</span><span class="n">Escalagrises3</span><span class="p">[:,:,</span><span class="mi">0</span><span class="p">],</span> <span class="mi">535</span><span class="p">,</span> <span class="mi">335</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span> +<span class="n">x6</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">10</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span> +<span class="n">y6</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">10</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span> +<span class="n">y6</span><span class="p">,</span><span class="n">x6</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">meshgrid</span><span class="p">(</span><span class="n">x6</span><span class="p">,</span><span class="n">y6</span><span class="p">)</span> +<span class="n">xdata6</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">vstack</span><span class="p">((</span><span class="n">x6</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span><span class="n">y6</span><span class="o">.</span><span class="n">ravel</span><span class="p">()))</span> +<span class="n">popt6</span><span class="p">,</span> <span class="n">pcov6</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata6</span><span class="p">,</span> <span class="n">recorte6</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">])</span> +<span class="n">estrella6</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata6</span><span class="p">,</span> <span class="n">popt6</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">popt6</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">popt6</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">popt6</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">popt6</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHM6</span><span class="o">=</span><span class="n">FWHM</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">popt6</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 6 fotografÃa"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorte6</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'gray'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 6 a partir de la gaussiana"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrella6</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'gray'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 7 (blanco y negro)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [310]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">recorte7</span> <span class="o">=</span> <span class="n">trim</span><span class="p">(</span><span class="n">Escalagrises3</span><span class="p">[:,:,</span><span class="mi">0</span><span class="p">],</span> <span class="mi">540</span><span class="p">,</span> <span class="mi">345</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span> +<span class="n">x7</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">10</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span> +<span class="n">y7</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">10</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span> +<span class="n">y7</span><span class="p">,</span><span class="n">x7</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">meshgrid</span><span class="p">(</span><span class="n">x7</span><span class="p">,</span><span class="n">y7</span><span class="p">)</span> +<span class="n">xdata7</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">vstack</span><span class="p">((</span><span class="n">x7</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span><span class="n">y7</span><span class="o">.</span><span class="n">ravel</span><span class="p">()))</span> +<span class="n">popt7</span><span class="p">,</span> <span class="n">pcov7</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata7</span><span class="p">,</span> <span class="n">recorte7</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">])</span> +<span class="n">estrella7</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata7</span><span class="p">,</span> <span class="n">popt7</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">popt7</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">popt7</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">popt7</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">popt7</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHM7</span><span class="o">=</span><span class="n">FWHM</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">popt7</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 7 fotografÃa"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorte7</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'gray'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 7 a partir de la gaussiana"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrella7</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'gray'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 8 (blanco y negro)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [311]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">recorte8</span> <span class="o">=</span> <span class="n">trim</span><span class="p">(</span><span class="n">Escalagrises3</span><span class="p">[:,:,</span><span class="mi">0</span><span class="p">],</span> <span class="mi">620</span><span class="p">,</span> <span class="mi">306</span><span class="p">,</span> <span class="mi">20</span><span class="p">,</span> <span class="mi">20</span><span class="p">)</span> +<span class="n">x8</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">20</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span> +<span class="n">y8</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">20</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span> +<span class="n">y8</span><span class="p">,</span><span class="n">x8</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">meshgrid</span><span class="p">(</span><span class="n">x8</span><span class="p">,</span><span class="n">y8</span><span class="p">)</span> +<span class="n">xdata8</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">vstack</span><span class="p">((</span><span class="n">x8</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span><span class="n">y8</span><span class="o">.</span><span class="n">ravel</span><span class="p">()))</span> +<span class="n">popt8</span><span class="p">,</span> <span class="n">pcov8</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata8</span><span class="p">,</span> <span class="n">recorte8</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">])</span> +<span class="n">estrella8</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata8</span><span class="p">,</span> <span class="n">popt8</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">popt8</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">popt8</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">popt8</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">popt8</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHM8</span><span class="o">=</span><span class="n">FWHM</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">popt8</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 8 fotografÃa"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorte8</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'gray'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 8 a partir de la gaussiana"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrella8</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">20</span><span class="p">,</span> <span class="mi">20</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'gray'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 9 (blanco y negro)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [312]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">recorte9</span> <span class="o">=</span> <span class="n">trim</span><span class="p">(</span><span class="n">Escalagrises3</span><span class="p">[:,:,</span><span class="mi">0</span><span class="p">],</span> <span class="mi">545</span><span class="p">,</span> <span class="mi">360</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span> +<span class="n">x9</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">10</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span> +<span class="n">y9</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">10</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span> +<span class="n">y9</span><span class="p">,</span><span class="n">x9</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">meshgrid</span><span class="p">(</span><span class="n">x9</span><span class="p">,</span><span class="n">y9</span><span class="p">)</span> +<span class="n">xdata9</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">vstack</span><span class="p">((</span><span class="n">x9</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span><span class="n">y9</span><span class="o">.</span><span class="n">ravel</span><span class="p">()))</span> +<span class="n">popt9</span><span class="p">,</span> <span class="n">pcov9</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata9</span><span class="p">,</span> <span class="n">recorte9</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">])</span> +<span class="n">estrella9</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata9</span><span class="p">,</span> <span class="n">popt9</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">popt9</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">popt9</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">popt9</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">popt9</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHM9</span><span class="o">=</span><span class="n">FWHM</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">popt9</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 9 fotografÃa"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorte9</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'gray'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 9 a partir de la gaussiana"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrella9</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'gray'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 10 (blanco y negro)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [313]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">recorte10</span> <span class="o">=</span> <span class="n">trim</span><span class="p">(</span><span class="n">Escalagrises3</span><span class="p">[:,:,</span><span class="mi">0</span><span class="p">],</span> <span class="mi">615</span><span class="p">,</span> <span class="mi">394</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span> +<span class="n">x10</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">10</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span> +<span class="n">y10</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">10</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span> +<span class="n">y10</span><span class="p">,</span><span class="n">x10</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">meshgrid</span><span class="p">(</span><span class="n">x10</span><span class="p">,</span><span class="n">y10</span><span class="p">)</span> +<span class="n">xdata10</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">vstack</span><span class="p">((</span><span class="n">x10</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span><span class="n">y10</span><span class="o">.</span><span class="n">ravel</span><span class="p">()))</span> +<span class="n">popt10</span><span class="p">,</span> <span class="n">pcov10</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata10</span><span class="p">,</span> <span class="n">recorte10</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">])</span> +<span class="n">estrella10</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata10</span><span class="p">,</span> <span class="n">popt10</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">popt10</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">popt10</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">popt10</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">popt10</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHM10</span><span class="o">=</span><span class="n">FWHM</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">popt10</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 10 fotografÃa"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorte10</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'gray'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 10 a partir de la gaussiana"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrella10</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'gray'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Histograma (blanco y negro)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [447]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">FWHM</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">FWHM</span><span class="p">)</span> +<span class="n">sigmaBN</span> <span class="o">=</span> <span class="n">FWHM</span><span class="o">.</span><span class="n">std</span><span class="p">()</span> +<span class="n">mediaBN</span> <span class="o">=</span> <span class="n">FWHM</span><span class="o">.</span><span class="n">mean</span><span class="p">()</span> +<span class="n">medianaBN</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">median</span><span class="p">(</span><span class="n">FWHM</span><span class="p">)</span> +<span class="nb">print</span><span class="p">(</span><span class="s2">"Datos de FWHM de las estrellas a blanco y negro :"</span><span class="p">)</span> +<span class="nb">print</span><span class="p">(</span><span class="s2">"Desviación :"</span><span class="p">,</span> <span class="n">sigmaBN</span><span class="p">)</span> +<span class="nb">print</span><span class="p">(</span><span class="s2">"Media :"</span><span class="p">,</span> <span class="n">mediaBN</span><span class="p">)</span> +<span class="nb">print</span><span class="p">(</span><span class="s2">"Mediana :"</span><span class="p">,</span> <span class="n">medianaBN</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">hist</span><span class="p">(</span><span class="n">FWHM</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'FHWM'</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'# de estrellas'</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + +<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain"> +<pre>Datos de FWHM de las estrellas a blanco y negro : +Desviación : 2.506520397288835 +Media : 4.2231882458162096 +Mediana : 3.1419657079162633 +</pre> +</div> +</div> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>Repita el mismo ejercicio sobre cada una de las bandas R,G,B separadamente +y comente si observa diferencias en los resultados</li> +</ul> + +</div> +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<h2 id="Para-la-banda-R">Para la banda R<a class="anchor-link" href="#Para-la-banda-R">¶</a></h2><ul> +<li>## Estrella 1 (Rojo)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [353]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">FWHMR</span><span class="o">=</span><span class="p">[]</span> +</pre></div> + + </div> +</div> +</div> +</div> + +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [354]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">recorteR1</span> <span class="o">=</span> <span class="n">trim</span><span class="p">(</span><span class="n">imagen</span><span class="p">[:,:,</span><span class="mi">0</span><span class="p">],</span> <span class="mi">210</span><span class="p">,</span> <span class="mi">237</span><span class="p">,</span> <span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">)</span> +<span class="n">poptR1</span><span class="p">,</span> <span class="n">pcovR1</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata1</span><span class="p">,</span> <span class="n">recorteR1</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">])</span> +<span class="n">estrellaR1</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata1</span><span class="p">,</span> <span class="n">poptR1</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptR1</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptR1</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptR1</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptR1</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMR1</span><span class="o">=</span><span class="n">FWHMR</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptR1</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 1 fotografÃa (Banda Rojo)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteR1</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Reds'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 1 a partir de la gaussiana (Banda Rojo)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaR1</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Reds'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 2 (Rojo)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [355]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">recorteR2</span> <span class="o">=</span> <span class="n">trim</span><span class="p">(</span><span class="n">imagen</span><span class="p">[:,:,</span><span class="mi">0</span><span class="p">],</span> <span class="mi">645</span><span class="p">,</span> <span class="mi">535</span><span class="p">,</span> <span class="mi">35</span><span class="p">,</span> <span class="mi">35</span><span class="p">)</span> +<span class="n">poptR2</span><span class="p">,</span> <span class="n">pcovR2</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata2</span><span class="p">,</span> <span class="n">recorteR2</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">])</span> +<span class="n">estrellaR2</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata2</span><span class="p">,</span> <span class="n">poptR2</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptR2</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptR2</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptR2</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptR2</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMR2</span><span class="o">=</span><span class="n">FWHMR</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptR2</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 2 fotografÃa (Banda Rojo)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteR2</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Reds'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 2 a partir de la gaussiana (Banda Rojo)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaR2</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">35</span><span class="p">,</span> <span class="mi">35</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Reds'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 3 (Rojo)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [356]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">recorteR3</span> <span class="o">=</span> <span class="n">trim</span><span class="p">(</span><span class="n">imagen</span><span class="p">[:,:,</span><span class="mi">0</span><span class="p">],</span> <span class="mi">560</span><span class="p">,</span> <span class="mi">320</span><span class="p">,</span> <span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">)</span> +<span class="n">poptR3</span><span class="p">,</span> <span class="n">pcovR3</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata3</span><span class="p">,</span> <span class="n">recorteR3</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">])</span> +<span class="n">estrellaR3</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata3</span><span class="p">,</span> <span class="n">poptR3</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptR3</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptR3</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptR3</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptR3</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMR3</span><span class="o">=</span><span class="n">FWHMR</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptR3</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 3 fotografÃa (Banda Rojo)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteR3</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Reds'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 3 a partir de la gaussiana (Banda Rojo)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaR3</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Reds'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 4 (Rojo)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [357]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">recorteR4</span> <span class="o">=</span> <span class="n">trim</span><span class="p">(</span><span class="n">imagen</span><span class="p">[:,:,</span><span class="mi">0</span><span class="p">],</span> <span class="mi">442</span><span class="p">,</span> <span class="mi">370</span><span class="p">,</span> <span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">)</span> +<span class="n">poptR4</span><span class="p">,</span> <span class="n">pcovR4</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata4</span><span class="p">,</span> <span class="n">recorteR4</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">])</span> +<span class="n">estrellaR4</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata4</span><span class="p">,</span> <span class="n">poptR4</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptR4</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptR4</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptR4</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptR4</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMR4</span><span class="o">=</span><span class="n">FWHMR</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptR4</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 4 fotografÃa (Banda Rojo)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteR4</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Reds'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 4 a partir de la gaussiana (Banda Rojo)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaR4</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Reds'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 5 (Rojo)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [358]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">recorteR5</span> <span class="o">=</span> <span class="n">trim</span><span class="p">(</span><span class="n">imagen</span><span class="p">[:,:,</span><span class="mi">0</span><span class="p">],</span> <span class="mi">320</span><span class="p">,</span> <span class="mi">455</span><span class="p">,</span> <span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">)</span> +<span class="n">poptR5</span><span class="p">,</span> <span class="n">pcovR5</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata5</span><span class="p">,</span> <span class="n">recorteR5</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">])</span> +<span class="n">estrellaR5</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata5</span><span class="p">,</span> <span class="n">poptR5</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptR5</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptR5</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptR5</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptR5</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMR5</span><span class="o">=</span><span class="n">FWHMR</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptR5</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 5 fotografÃa (Banda Rojo)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteR5</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Reds'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 5 a partir de la gaussiana (Banda Rojo)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaR5</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Reds'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 6 (Rojo)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [359]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">recorteR6</span> <span class="o">=</span> <span class="n">trim</span><span class="p">(</span><span class="n">imagen</span><span class="p">[:,:,</span><span class="mi">0</span><span class="p">],</span> <span class="mi">535</span><span class="p">,</span> <span class="mi">335</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span> +<span class="n">poptR6</span><span class="p">,</span> <span class="n">pcovR6</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata6</span><span class="p">,</span> <span class="n">recorteR6</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">])</span> +<span class="n">estrellaR6</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata6</span><span class="p">,</span> <span class="n">poptR6</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptR6</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptR6</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptR6</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptR6</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMR6</span><span class="o">=</span><span class="n">FWHMR</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptR6</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 6 fotografÃa (Banda Rojo)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteR6</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Reds'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 6 a partir de la gaussiana (Banda Rojo)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaR6</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Reds'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 7 (Rojo)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [360]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">recorteR7</span> <span class="o">=</span> <span class="n">trim</span><span class="p">(</span><span class="n">imagen</span><span class="p">[:,:,</span><span class="mi">0</span><span class="p">],</span> <span class="mi">540</span><span class="p">,</span> <span class="mi">345</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span> +<span class="n">poptR7</span><span class="p">,</span> <span class="n">pcovR7</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata7</span><span class="p">,</span> <span class="n">recorteR7</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">])</span> +<span class="n">estrellaR7</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata7</span><span class="p">,</span> <span class="n">poptR7</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptR7</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptR7</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptR7</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptR7</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMR7</span><span class="o">=</span><span class="n">FWHMR</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptR7</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 7 fotografÃa (Banda Rojo)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteR7</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Reds'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 7 a partir de la gaussiana (Banda Rojo)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaR7</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Reds'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 8 (Rojo)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [361]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">recorteR8</span> <span class="o">=</span> <span class="n">trim</span><span class="p">(</span><span class="n">imagen</span><span class="p">[:,:,</span><span class="mi">0</span><span class="p">],</span> <span class="mi">620</span><span class="p">,</span> <span class="mi">306</span><span class="p">,</span> <span class="mi">20</span><span class="p">,</span> <span class="mi">20</span><span class="p">)</span> +<span class="n">poptR8</span><span class="p">,</span> <span class="n">pcovR8</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata8</span><span class="p">,</span> <span class="n">recorteR8</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">])</span> +<span class="n">estrellaR8</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata8</span><span class="p">,</span> <span class="n">poptR8</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptR8</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptR8</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptR8</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptR8</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMR8</span><span class="o">=</span><span class="n">FWHMR</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptR8</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 8 fotografÃa (Banda Rojo)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteR8</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Reds'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 8 a partir de la gaussiana (Banda Rojo)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaR8</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">20</span><span class="p">,</span> <span class="mi">20</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Reds'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 9 (Rojo)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [362]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">recorteR9</span> <span class="o">=</span> <span class="n">trim</span><span class="p">(</span><span class="n">imagen</span><span class="p">[:,:,</span><span class="mi">0</span><span class="p">],</span> <span class="mi">545</span><span class="p">,</span> <span class="mi">360</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span> +<span class="n">poptR9</span><span class="p">,</span> <span class="n">pcovR9</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata9</span><span class="p">,</span> <span class="n">recorteR9</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">])</span> +<span class="n">estrellaR9</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata9</span><span class="p">,</span> <span class="n">poptR9</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptR9</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptR9</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptR9</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptR9</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMR9</span><span class="o">=</span><span class="n">FWHMR</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptR9</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 9 fotografÃa (Banda Rojo)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteR9</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Reds'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 9 a partir de la gaussiana (Banda Rojo)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaR9</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Reds'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 10 (Rojo)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [363]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">recorteR10</span> <span class="o">=</span> <span class="n">trim</span><span class="p">(</span><span class="n">imagen</span><span class="p">[:,:,</span><span class="mi">0</span><span class="p">],</span> <span class="mi">615</span><span class="p">,</span> <span class="mi">394</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span> +<span class="n">poptR10</span><span class="p">,</span> <span class="n">pcovR10</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata10</span><span class="p">,</span> <span class="n">recorteR10</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">])</span> +<span class="n">estrellaR10</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata10</span><span class="p">,</span> <span class="n">poptR10</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptR10</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptR10</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptR10</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptR10</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMR10</span><span class="o">=</span><span class="n">FWHMR</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptR10</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 10 fotografÃa (Banda Rojo)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteR10</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Reds'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 10 a partir de la gaussiana (Banda Rojo)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaR10</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Reds'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Histograma (Banda Rojo)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [446]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">FWHMR</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">FWHMR</span><span class="p">)</span> +<span class="n">sigmaR</span> <span class="o">=</span> <span class="n">FWHMR</span><span class="o">.</span><span class="n">std</span><span class="p">()</span> +<span class="n">mediaR</span> <span class="o">=</span> <span class="n">FWHMR</span><span class="o">.</span><span class="n">mean</span><span class="p">()</span> +<span class="n">medianaR</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">median</span><span class="p">(</span><span class="n">FWHMR</span><span class="p">)</span> +<span class="nb">print</span><span class="p">(</span><span class="s2">"Datos de FWHM de las estrellas para la Banda rojo :"</span><span class="p">)</span> +<span class="nb">print</span><span class="p">(</span><span class="s2">"Desviación :"</span><span class="p">,</span> <span class="n">sigmaR</span><span class="p">)</span> +<span class="nb">print</span><span class="p">(</span><span class="s2">"Media :"</span><span class="p">,</span> <span class="n">mediaR</span><span class="p">)</span> +<span class="nb">print</span><span class="p">(</span><span class="s2">"Mediana :"</span><span class="p">,</span> <span class="n">medianaR</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">hist</span><span class="p">(</span><span class="n">FWHMR</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'FHWM'</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'# de estrellas'</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + +<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain"> +<pre>Datos de FWHM de las estrellas para la Banda rojo : +Desviación : 2.329889939974896 +Media : 4.021186556528661 +Mediana : 2.9192045463592478 +</pre> +</div> +</div> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<h2 id="Para-la-banda-G">Para la banda G<a class="anchor-link" href="#Para-la-banda-G">¶</a></h2><ul> +<li>## Estrella 1 (Verde)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [411]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">FWHMG</span><span class="o">=</span><span class="p">[]</span> +</pre></div> + + </div> +</div> +</div> +</div> + +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [412]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">recorteG1</span> <span class="o">=</span> <span class="n">trim</span><span class="p">(</span><span class="n">imagen</span><span class="p">[:,:,</span><span class="mi">1</span><span class="p">],</span> <span class="mi">210</span><span class="p">,</span> <span class="mi">237</span><span class="p">,</span> <span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">)</span> +<span class="n">poptG1</span><span class="p">,</span> <span class="n">pcovG1</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata1</span><span class="p">,</span> <span class="n">recorteG1</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">])</span> +<span class="n">estrellaG1</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata1</span><span class="p">,</span> <span class="n">poptG1</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptG1</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptG1</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptG1</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptG1</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMG1</span><span class="o">=</span><span class="n">FWHMG</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptG1</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 1 fotografÃa (Banda Verde)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteG1</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Greens'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 1 a partir de la gaussiana (Banda Verde)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaG1</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Greens'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 2 (Verde)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [413]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">recorteG2</span> <span class="o">=</span> <span class="n">trim</span><span class="p">(</span><span class="n">imagen</span><span class="p">[:,:,</span><span class="mi">1</span><span class="p">],</span> <span class="mi">645</span><span class="p">,</span> <span class="mi">535</span><span class="p">,</span> <span class="mi">35</span><span class="p">,</span> <span class="mi">35</span><span class="p">)</span> +<span class="n">poptG2</span><span class="p">,</span> <span class="n">pcovG2</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata2</span><span class="p">,</span> <span class="n">recorteG2</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">])</span> +<span class="n">estrellaG2</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata2</span><span class="p">,</span> <span class="n">poptG2</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptG2</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptG2</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptG2</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptG2</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMG2</span><span class="o">=</span><span class="n">FWHMG</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptG2</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 2 fotografÃa (Banda Verde)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteG2</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Greens'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 2 a partir de la gaussiana (Banda Verde)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaG2</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">35</span><span class="p">,</span> <span class="mi">35</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Greens'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 3 (Verde)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [414]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">recorteG3</span> <span class="o">=</span> <span class="n">trim</span><span class="p">(</span><span class="n">imagen</span><span class="p">[:,:,</span><span class="mi">1</span><span class="p">],</span> <span class="mi">560</span><span class="p">,</span> <span class="mi">320</span><span class="p">,</span> <span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">)</span> +<span class="n">poptG3</span><span class="p">,</span> <span class="n">pcovG3</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata3</span><span class="p">,</span> <span class="n">recorteG3</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">])</span> +<span class="n">estrellaG3</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata3</span><span class="p">,</span> <span class="n">poptG3</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptG3</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptG3</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptG3</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptG3</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMG3</span><span class="o">=</span><span class="n">FWHMG</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptG3</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 3 fotografÃa (Banda Verde)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteG3</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Greens'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 3 a partir de la gaussiana (Banda Verde)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaG3</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Greens'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 4 (Verde)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [415]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">recorteG4</span> <span class="o">=</span> <span class="n">trim</span><span class="p">(</span><span class="n">imagen</span><span class="p">[:,:,</span><span class="mi">1</span><span class="p">],</span> <span class="mi">442</span><span class="p">,</span> <span class="mi">370</span><span class="p">,</span> <span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">)</span> +<span class="n">poptG4</span><span class="p">,</span> <span class="n">pcovG4</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata4</span><span class="p">,</span> <span class="n">recorteG4</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">])</span> +<span class="n">estrellaG4</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata4</span><span class="p">,</span> <span class="n">poptG4</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptG4</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptG4</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptG4</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptG4</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMG4</span><span class="o">=</span><span class="n">FWHMG</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptG4</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 4 fotografÃa (Banda Verde)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteG4</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Greens'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 4 a partir de la gaussiana (Banda Verde)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaG4</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Greens'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 5 (Verde)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [416]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">recorteG5</span> <span class="o">=</span> <span class="n">trim</span><span class="p">(</span><span class="n">imagen</span><span class="p">[:,:,</span><span class="mi">1</span><span class="p">],</span> <span class="mi">320</span><span class="p">,</span> <span class="mi">455</span><span class="p">,</span> <span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">)</span> +<span class="n">poptG5</span><span class="p">,</span> <span class="n">pcovG5</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata5</span><span class="p">,</span> <span class="n">recorteG5</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">])</span> +<span class="n">estrellaG5</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata5</span><span class="p">,</span> <span class="n">poptG5</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptG5</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptG5</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptG5</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptG5</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMG5</span><span class="o">=</span><span class="n">FWHMG</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptG5</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 5 fotografÃa (Banda Verde)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteG5</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Greens'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 5 a partir de la gaussiana (Banda Verde)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaG5</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Greens'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 6 (Verde)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [417]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">recorteG6</span> <span class="o">=</span> <span class="n">trim</span><span class="p">(</span><span class="n">imagen</span><span class="p">[:,:,</span><span class="mi">1</span><span class="p">],</span> <span class="mi">535</span><span class="p">,</span> <span class="mi">335</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span> +<span class="n">poptG6</span><span class="p">,</span> <span class="n">pcovG6</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata6</span><span class="p">,</span> <span class="n">recorteG6</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">])</span> +<span class="n">estrellaG6</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata6</span><span class="p">,</span> <span class="n">poptG6</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptG6</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptG6</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptG6</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptG6</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMG6</span><span class="o">=</span><span class="n">FWHMG</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptG6</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 6 fotografÃa (Banda Verde)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteG6</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Greens'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 6 a partir de la gaussiana (Banda Verde)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaG6</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Greens'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 7 (Verde)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [418]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">recorteG7</span> <span class="o">=</span> <span class="n">trim</span><span class="p">(</span><span class="n">imagen</span><span class="p">[:,:,</span><span class="mi">1</span><span class="p">],</span> <span class="mi">540</span><span class="p">,</span> <span class="mi">345</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span> +<span class="n">poptG7</span><span class="p">,</span> <span class="n">pcovG7</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata7</span><span class="p">,</span> <span class="n">recorteG7</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">])</span> +<span class="n">estrellaG7</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata7</span><span class="p">,</span> <span class="n">poptG7</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptG7</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptG7</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptG7</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptG7</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMG7</span><span class="o">=</span><span class="n">FWHMG</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptG7</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 7 fotografÃa (Banda Verde)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteG7</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Greens'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 7 a partir de la gaussiana (Banda Verde)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaG7</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Greens'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 8 (Verde)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [419]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">recorteG8</span> <span class="o">=</span> <span class="n">trim</span><span class="p">(</span><span class="n">imagen</span><span class="p">[:,:,</span><span class="mi">1</span><span class="p">],</span> <span class="mi">620</span><span class="p">,</span> <span class="mi">306</span><span class="p">,</span> <span class="mi">20</span><span class="p">,</span> <span class="mi">20</span><span class="p">)</span> +<span class="n">poptG8</span><span class="p">,</span> <span class="n">pcovG8</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata8</span><span class="p">,</span> <span class="n">recorteG8</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">])</span> +<span class="n">estrellaG8</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata8</span><span class="p">,</span> <span class="n">poptG8</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptG8</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptG8</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptG8</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptG8</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMG8</span><span class="o">=</span><span class="n">FWHMG</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptG8</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 8 fotografÃa (Banda Verde)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteG8</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Greens'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 8 a partir de la gaussiana (Banda Verde)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaG8</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">20</span><span class="p">,</span> <span class="mi">20</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Greens'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 9 (Verde)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [420]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">recorteG9</span> <span class="o">=</span> <span class="n">trim</span><span class="p">(</span><span class="n">imagen</span><span class="p">[:,:,</span><span class="mi">1</span><span class="p">],</span> <span class="mi">545</span><span class="p">,</span> <span class="mi">360</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span> +<span class="n">poptG9</span><span class="p">,</span> <span class="n">pcovG9</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata9</span><span class="p">,</span> <span class="n">recorteG9</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">])</span> +<span class="n">estrellaG9</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata9</span><span class="p">,</span> <span class="n">poptG9</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptG9</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptG9</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptG9</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptG9</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMG9</span><span class="o">=</span><span class="n">FWHMG</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptG9</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 9 fotografÃa (Banda Verde)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteG9</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Greens'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 9 a partir de la gaussiana (Banda Verde)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaG9</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Greens'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 10 (Verde)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [421]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">recorteG10</span> <span class="o">=</span> <span class="n">trim</span><span class="p">(</span><span class="n">imagen</span><span class="p">[:,:,</span><span class="mi">1</span><span class="p">],</span> <span class="mi">615</span><span class="p">,</span> <span class="mi">394</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span> +<span class="n">poptG10</span><span class="p">,</span> <span class="n">pcovG10</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata10</span><span class="p">,</span> <span class="n">recorteG10</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">])</span> +<span class="n">estrellaG10</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata10</span><span class="p">,</span> <span class="n">poptG10</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptG10</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptG10</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptG10</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptG10</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMG10</span><span class="o">=</span><span class="n">FWHMG</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptG10</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 10 fotografÃa (Banda Verde)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteG10</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Greens'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 10 a partir de la gaussiana (Banda Verde)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaG10</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Greens'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Histograma (Banda Verde)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [445]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">FWHMG</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">FWHMG</span><span class="p">)</span> +<span class="n">sigmaG</span> <span class="o">=</span> <span class="n">FWHMG</span><span class="o">.</span><span class="n">std</span><span class="p">()</span> +<span class="n">mediaG</span> <span class="o">=</span> <span class="n">FWHMG</span><span class="o">.</span><span class="n">mean</span><span class="p">()</span> +<span class="n">medianaG</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">median</span><span class="p">(</span><span class="n">FWHMG</span><span class="p">)</span> +<span class="nb">print</span><span class="p">(</span><span class="s2">"Datos de FWHM de las estrellas para la Banda verde :"</span><span class="p">)</span> +<span class="nb">print</span><span class="p">(</span><span class="s2">"Desviación :"</span><span class="p">,</span> <span class="n">sigmaG</span><span class="p">)</span> +<span class="nb">print</span><span class="p">(</span><span class="s2">"Media :"</span><span class="p">,</span> <span class="n">mediaG</span><span class="p">)</span> +<span class="nb">print</span><span class="p">(</span><span class="s2">"Mediana :"</span><span class="p">,</span> <span class="n">medianaG</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">hist</span><span class="p">(</span><span class="n">FWHMG</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'FHWM'</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'# de estrellas'</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + +<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain"> +<pre>Datos de FWHM de las estrellas para la Banda verde : +Desviación : 2.525571326812283 +Media : 4.24280156594701 +Mediana : 3.1827269210351594 +</pre> +</div> +</div> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<h2 id="Para-la-banda-B">Para la banda B<a class="anchor-link" href="#Para-la-banda-B">¶</a></h2><ul> +<li>## Estrella 1 (Azul)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [426]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">FWHMB</span><span class="o">=</span><span class="p">[]</span> +</pre></div> + + </div> +</div> +</div> +</div> + +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [427]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">recorteB1</span> <span class="o">=</span> <span class="n">trim</span><span class="p">(</span><span class="n">imagen</span><span class="p">[:,:,</span><span class="mi">2</span><span class="p">],</span> <span class="mi">210</span><span class="p">,</span> <span class="mi">237</span><span class="p">,</span> <span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">)</span> +<span class="n">poptB1</span><span class="p">,</span> <span class="n">pcovB1</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata1</span><span class="p">,</span> <span class="n">recorteB1</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">])</span> +<span class="n">estrellaB1</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata1</span><span class="p">,</span> <span class="n">poptB1</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptB1</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptB1</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptB1</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptB1</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMB1</span><span class="o">=</span><span class="n">FWHMB</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptB1</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 1 fotografÃa (Banda Azul)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteB1</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Blues'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 1 a partir de la gaussiana (Banda Azul)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaB1</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Blues'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 2 (Azul)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [428]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">recorteB2</span> <span class="o">=</span> <span class="n">trim</span><span class="p">(</span><span class="n">imagen</span><span class="p">[:,:,</span><span class="mi">2</span><span class="p">],</span> <span class="mi">645</span><span class="p">,</span> <span class="mi">535</span><span class="p">,</span> <span class="mi">35</span><span class="p">,</span> <span class="mi">35</span><span class="p">)</span> +<span class="n">poptB2</span><span class="p">,</span> <span class="n">pcovB2</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata2</span><span class="p">,</span> <span class="n">recorteB2</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">])</span> +<span class="n">estrellaB2</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata2</span><span class="p">,</span> <span class="n">poptB2</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptB2</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptB2</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptB2</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptB2</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMB2</span><span class="o">=</span><span class="n">FWHMB</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptB2</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 2 fotografÃa (Banda Azul)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteB2</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Blues'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 2 a partir de la gaussiana (Banda Azul)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaB2</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">35</span><span class="p">,</span> <span class="mi">35</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Blues'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 3 (Azul)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [429]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">recorteB3</span> <span class="o">=</span> <span class="n">trim</span><span class="p">(</span><span class="n">imagen</span><span class="p">[:,:,</span><span class="mi">2</span><span class="p">],</span> <span class="mi">560</span><span class="p">,</span> <span class="mi">320</span><span class="p">,</span> <span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">)</span> +<span class="n">poptB3</span><span class="p">,</span> <span class="n">pcovB3</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata3</span><span class="p">,</span> <span class="n">recorteB3</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">])</span> +<span class="n">estrellaB3</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata3</span><span class="p">,</span> <span class="n">poptB3</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptB3</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptB3</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptB3</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptB3</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMB3</span><span class="o">=</span><span class="n">FWHMB</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptB3</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 3 fotografÃa (Banda Azul)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteB3</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Blues'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 3 a partir de la gaussiana (Banda Azul)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaB3</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Blues'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 4 (Azul)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [430]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">recorteB4</span> <span class="o">=</span> <span class="n">trim</span><span class="p">(</span><span class="n">imagen</span><span class="p">[:,:,</span><span class="mi">2</span><span class="p">],</span> <span class="mi">442</span><span class="p">,</span> <span class="mi">370</span><span class="p">,</span> <span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">)</span> +<span class="n">poptB4</span><span class="p">,</span> <span class="n">pcovB4</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata4</span><span class="p">,</span> <span class="n">recorteB4</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">])</span> +<span class="n">estrellaB4</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata4</span><span class="p">,</span> <span class="n">poptB4</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptB4</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptB4</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptB4</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptB4</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMB4</span><span class="o">=</span><span class="n">FWHMB</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptB4</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 4 fotografÃa (Banda Azul)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteB4</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Blues'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 4 a partir de la gaussiana (Banda Azul)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaB4</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Blues'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 5 (Azul)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [431]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">recorteB5</span> <span class="o">=</span> <span class="n">trim</span><span class="p">(</span><span class="n">imagen</span><span class="p">[:,:,</span><span class="mi">2</span><span class="p">],</span> <span class="mi">320</span><span class="p">,</span> <span class="mi">455</span><span class="p">,</span> <span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">)</span> +<span class="n">poptB5</span><span class="p">,</span> <span class="n">pcovB5</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata5</span><span class="p">,</span> <span class="n">recorteB5</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">])</span> +<span class="n">estrellaB5</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata5</span><span class="p">,</span> <span class="n">poptB5</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptB5</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptB5</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptB5</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptB5</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMB5</span><span class="o">=</span><span class="n">FWHMB</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptB5</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 5 fotografÃa (Banda Azul)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteB5</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Blues'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 5 a partir de la gaussiana (Banda Azul)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaB5</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Blues'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 6 (Azul)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [432]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">recorteB6</span> <span class="o">=</span> <span class="n">trim</span><span class="p">(</span><span class="n">imagen</span><span class="p">[:,:,</span><span class="mi">2</span><span class="p">],</span> <span class="mi">535</span><span class="p">,</span> <span class="mi">335</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span> +<span class="n">poptB6</span><span class="p">,</span> <span class="n">pcovB6</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata6</span><span class="p">,</span> <span class="n">recorteB6</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">])</span> +<span class="n">estrellaB6</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata6</span><span class="p">,</span> <span class="n">poptB6</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptB6</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptB6</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptB6</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptB6</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMB6</span><span class="o">=</span><span class="n">FWHMB</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptB6</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 6 fotografÃa (Banda Azul)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteB6</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Blues'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 6 a partir de la gaussiana (Banda Azul)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaB6</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Blues'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 7 (Azul)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [433]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">recorteB7</span> <span class="o">=</span> <span class="n">trim</span><span class="p">(</span><span class="n">imagen</span><span class="p">[:,:,</span><span class="mi">2</span><span class="p">],</span> <span class="mi">540</span><span class="p">,</span> <span class="mi">345</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span> +<span class="n">poptB7</span><span class="p">,</span> <span class="n">pcovB7</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata7</span><span class="p">,</span> <span class="n">recorteB7</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">])</span> +<span class="n">estrellaB7</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata7</span><span class="p">,</span> <span class="n">poptB7</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptB7</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptB7</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptB7</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptB7</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMB7</span><span class="o">=</span><span class="n">FWHMB</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptB7</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 7 fotografÃa (Banda Azul)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteB7</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Blues'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 7 a partir de la gaussiana (Banda Azul)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaB7</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Blues'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 8 (Azul)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [434]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">recorteB8</span> <span class="o">=</span> <span class="n">trim</span><span class="p">(</span><span class="n">imagen</span><span class="p">[:,:,</span><span class="mi">2</span><span class="p">],</span> <span class="mi">620</span><span class="p">,</span> <span class="mi">306</span><span class="p">,</span> <span class="mi">20</span><span class="p">,</span> <span class="mi">20</span><span class="p">)</span> +<span class="n">poptB8</span><span class="p">,</span> <span class="n">pcovB8</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata8</span><span class="p">,</span> <span class="n">recorteB8</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">])</span> +<span class="n">estrellaB8</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata8</span><span class="p">,</span> <span class="n">poptB8</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptB8</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptB8</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptB8</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptB8</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMB8</span><span class="o">=</span><span class="n">FWHMB</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptB8</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 8 fotografÃa (Banda Azul)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteB8</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Blues'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 8 a partir de la gaussiana (Banda Azul)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaB8</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">20</span><span class="p">,</span> <span class="mi">20</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Blues'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 9 (Azul)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [435]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">recorteB9</span> <span class="o">=</span> <span class="n">trim</span><span class="p">(</span><span class="n">imagen</span><span class="p">[:,:,</span><span class="mi">2</span><span class="p">],</span> <span class="mi">545</span><span class="p">,</span> <span class="mi">360</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span> +<span class="n">poptB9</span><span class="p">,</span> <span class="n">pcovB9</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata9</span><span class="p">,</span> <span class="n">recorteB9</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">])</span> +<span class="n">estrellaB9</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata9</span><span class="p">,</span> <span class="n">poptB9</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptB9</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptB9</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptB9</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptB9</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMB9</span><span class="o">=</span><span class="n">FWHMB</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptB9</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 9 fotografÃa (Banda Azul)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteB9</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Blues'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 9 a partir de la gaussiana (Banda Azul)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaB9</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Blues'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 10 (Azul)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [436]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">recorteB10</span> <span class="o">=</span> <span class="n">trim</span><span class="p">(</span><span class="n">imagen</span><span class="p">[:,:,</span><span class="mi">2</span><span class="p">],</span> <span class="mi">615</span><span class="p">,</span> <span class="mi">394</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span> +<span class="n">poptB10</span><span class="p">,</span> <span class="n">pcovB10</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata10</span><span class="p">,</span> <span class="n">recorteB10</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">])</span> +<span class="n">estrellaB10</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata10</span><span class="p">,</span> <span class="n">poptB10</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptB10</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptB10</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptB10</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptB10</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMB10</span><span class="o">=</span><span class="n">FWHMB</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptB10</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 10 fotografÃa (Banda Azul)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteB10</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Blues'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 10 a partir de la gaussiana (Banda Azul)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaB10</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Blues'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Histograma (Banda Azul)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [444]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">FWHMB</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">FWHMB</span><span class="p">)</span> +<span class="n">sigmaB</span> <span class="o">=</span> <span class="n">FWHMB</span><span class="o">.</span><span class="n">std</span><span class="p">()</span> +<span class="n">mediaB</span> <span class="o">=</span> <span class="n">FWHMB</span><span class="o">.</span><span class="n">mean</span><span class="p">()</span> +<span class="n">medianaB</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">median</span><span class="p">(</span><span class="n">FWHMB</span><span class="p">)</span> +<span class="nb">print</span><span class="p">(</span><span class="s2">"Datos de FWHM de las estrellas para la Banda azul :"</span><span class="p">)</span> +<span class="nb">print</span><span class="p">(</span><span class="s2">"Desviación :"</span><span class="p">,</span> <span class="n">sigmaB</span><span class="p">)</span> +<span class="nb">print</span><span class="p">(</span><span class="s2">"Media :"</span><span class="p">,</span> <span class="n">mediaB</span><span class="p">)</span> +<span class="nb">print</span><span class="p">(</span><span class="s2">"Mediana :"</span><span class="p">,</span> <span class="n">medianaB</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">hist</span><span class="p">(</span><span class="n">FWHMB</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'FHWM'</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'# de estrellas'</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + +<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain"> +<pre>Datos de FWHM de las estrellas para la Banda azul : +Desviación : 2.699911640184987 +Media : 4.508060549859931 +Mediana : 3.4823388160938347 +</pre> +</div> +</div> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<h1 id="Para-quienes-ya-"dominaron"-el-ejercicio-inicial">Para quienes ya "dominaron" el ejercicio inicial<a class="anchor-link" href="#Para-quienes-ya-"dominaron"-el-ejercicio-inicial">¶</a></h1><ul> +<li>Como ejercicio final, repita los ajustes realizados inicialmente, esta vez teniendo +en cuenta la incertidumbre de los datos, para ver si surge algún cambio en los resultados. +Encuentre una forma de programar sus rutinas de modo que sean fácilmente reutilizables; +con una buena implementación, este nuevo ajuste debe ser cuestión de un par de minutos +con pocos o ningún paso manual.</li> +</ul> +<h1 id="Repitiendo-todos-los-análisis-ahora-con-incertidumbre-:">Repitiendo todos los análisis ahora con incertidumbre :<a class="anchor-link" href="#Repitiendo-todos-los-análisis-ahora-con-incertidumbre-:">¶</a></h1><ul> +<li>Se añade la incertidumbre al fit mediante el valor de sigma, incluyendo el array dado por la aplicacion de la funcion error ya definida al inicio, para cada pixel, repitiendo todos los calculos para las 10 estrellas BN y cada una de sus bandas R,G y B.</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [816]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Lsitas de valores de FWHM teniendo en cuenta las incertidumbres</span> +<span class="n">FWHM_I</span><span class="o">=</span><span class="p">[]</span> +<span class="n">FWHMR_I</span><span class="o">=</span><span class="p">[]</span> +<span class="n">FWHMG_I</span><span class="o">=</span><span class="p">[]</span> +<span class="n">FWHMB_I</span><span class="o">=</span><span class="p">[]</span> +</pre></div> + + </div> +</div> +</div> +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 1 con incertidumbre (blanco y negro)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [817]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">Err_BN1</span><span class="o">=</span><span class="n">error</span><span class="p">(</span><span class="n">xdata1</span><span class="p">,</span> <span class="n">popt1</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">popt1</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">popt1</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">popt1</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">popt1</span><span class="p">[</span><span class="mi">4</span><span class="p">],</span> <span class="n">recorte1</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">inc</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> +<span class="n">popt1Err</span><span class="p">,</span> <span class="n">pcov1Err</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata1</span><span class="p">,</span> <span class="n">recorte1</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">3</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span><span class="n">sigma</span><span class="o">=</span><span class="n">Err_BN1</span><span class="p">)</span> +<span class="n">estrella1Err</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata1</span><span class="p">,</span> <span class="n">popt1Err</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">popt1Err</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">popt1Err</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">popt1Err</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">popt1Err</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHM1Err</span><span class="o">=</span><span class="n">FWHM_I</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">popt1Err</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 1 fotografÃa"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorte1</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'gray'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 1 a partir de la gaussiana con incertidumbre"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrella1Err</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'gray'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [818]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">FWHMBI</span><span class="o">=</span><span class="p">[]</span> +<span class="c1">#recorteB10 = trim(imagen[:,:,2], 615, 394, 10, 10)</span> +<span class="n">E</span><span class="o">=</span><span class="n">error</span><span class="p">(</span><span class="n">xdata10</span><span class="p">,</span> <span class="n">poptB10</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptB10</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptB10</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptB10</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptB10</span><span class="p">[</span><span class="mi">4</span><span class="p">],</span> <span class="n">recorteB10</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">inc</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> +<span class="n">poptB10I</span><span class="p">,</span> <span class="n">pcovB10I</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata10</span><span class="p">,</span> <span class="n">recorteB10I</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span><span class="n">sigma</span><span class="o">=</span><span class="n">E</span><span class="p">)</span> +<span class="n">estrellaB10I</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata10</span><span class="p">,</span> <span class="n">poptB10I</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptB10I</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptB10I</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptB10I</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptB10I</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMB10I</span><span class="o">=</span><span class="n">FWHMBI</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptB10I</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 10 fotografÃa (Banda Azul)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteB10</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Blues'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 10 a partir de la gaussiana (Banda Azul) con incertidumbre"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaB10I</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Blues'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +<span class="nb">print</span><span class="p">(</span><span class="n">FWHMBI</span><span class="p">)</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + +<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain"> +<pre>[3.041995114502331] +</pre> +</div> +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 2 con incertidumbre (blanco y negro)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [819]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">Err_BN2</span><span class="o">=</span><span class="n">error</span><span class="p">(</span><span class="n">xdata2</span><span class="p">,</span> <span class="n">popt2</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">popt2</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">popt2</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">popt2</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">popt2</span><span class="p">[</span><span class="mi">4</span><span class="p">],</span> <span class="n">recorte2</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">inc</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> +<span class="n">popt2E</span><span class="p">,</span> <span class="n">pcov2E</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata2</span><span class="p">,</span> <span class="n">recorte2</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span> <span class="n">sigma</span><span class="o">=</span><span class="n">Err_BN2</span><span class="p">)</span> +<span class="n">estrella2E</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata2</span><span class="p">,</span> <span class="n">popt2E</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">popt2E</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">popt2E</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">popt2E</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">popt2E</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHM2E</span><span class="o">=</span><span class="n">FWHM_I</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">popt2E</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 2 fotografÃa"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorte2</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'gray'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 2 a partir de la gaussiana con incertidumbre"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrella2E</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">35</span><span class="p">,</span> <span class="mi">35</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'gray'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 3 con incertidumbre (blanco y negro)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [820]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">Err_BN3</span><span class="o">=</span><span class="n">error</span><span class="p">(</span><span class="n">xdata3</span><span class="p">,</span> <span class="n">popt3</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">popt3</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">popt3</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">popt3</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">popt3</span><span class="p">[</span><span class="mi">4</span><span class="p">],</span> <span class="n">recorte3</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">inc</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> +<span class="n">popt3E</span><span class="p">,</span> <span class="n">pcov3E</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata3</span><span class="p">,</span> <span class="n">recorte3</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span><span class="n">sigma</span><span class="o">=</span><span class="n">Err_BN3</span><span class="p">)</span> +<span class="n">estrella3E</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata3</span><span class="p">,</span> <span class="n">popt3E</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">popt3E</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">popt3E</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">popt3E</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">popt3E</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHM3E</span><span class="o">=</span><span class="n">FWHM_I</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">popt3E</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 3 fotografÃa"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorte3</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'gray'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 3 a partir de la gaussiana con incertidumbre"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrella3E</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'gray'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 4 con incertidumbre (blanco y negro)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [821]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">Err_BN4</span><span class="o">=</span><span class="n">error</span><span class="p">(</span><span class="n">xdata4</span><span class="p">,</span> <span class="n">popt4</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">popt4</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">popt4</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">popt4</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">popt4</span><span class="p">[</span><span class="mi">4</span><span class="p">],</span> <span class="n">recorte4</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">inc</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> +<span class="n">popt4E</span><span class="p">,</span> <span class="n">pcov4E</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata4</span><span class="p">,</span> <span class="n">recorte4</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">3</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span><span class="n">sigma</span><span class="o">=</span><span class="n">Err_BN4</span><span class="p">)</span> +<span class="n">estrella4E</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata4</span><span class="p">,</span> <span class="n">popt4E</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">popt4E</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">popt4E</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">popt4E</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">popt4E</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHM4E</span><span class="o">=</span><span class="n">FWHM_I</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">popt4E</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 4 fotografÃa"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorte4</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'gray'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 4 a partir de la gaussiana con incertidumbre"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrella4E</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'gray'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 5 con incertidumbre (blanco y negro)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [822]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">Err_BN5</span><span class="o">=</span><span class="n">error</span><span class="p">(</span><span class="n">xdata5</span><span class="p">,</span> <span class="n">popt5</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">popt5</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">popt5</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">popt5</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">popt5</span><span class="p">[</span><span class="mi">4</span><span class="p">],</span> <span class="n">recorte5</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">inc</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> +<span class="n">popt5E</span><span class="p">,</span> <span class="n">pcov5E</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata5</span><span class="p">,</span> <span class="n">recorte5</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">3</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span> <span class="n">sigma</span><span class="o">=</span><span class="n">Err_BN5</span><span class="p">)</span> +<span class="n">estrella5E</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata5</span><span class="p">,</span> <span class="n">popt5E</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">popt5E</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">popt5E</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">popt5E</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">popt5E</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHM5E</span><span class="o">=</span><span class="n">FWHM_I</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">popt5E</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 5 fotografÃa"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorte5</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'gray'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 5 a partir de la gaussiana con incertidumbre"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrella5E</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'gray'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 6 con incertidumbre (blanco y negro)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [823]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">Err_BN6</span><span class="o">=</span><span class="n">error</span><span class="p">(</span><span class="n">xdata6</span><span class="p">,</span> <span class="n">popt6</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">popt6</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">popt6</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">popt6</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">popt6</span><span class="p">[</span><span class="mi">4</span><span class="p">],</span> <span class="n">recorte6</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">inc</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> +<span class="n">popt6E</span><span class="p">,</span> <span class="n">pcov6E</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata6</span><span class="p">,</span> <span class="n">recorte6</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">3</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span><span class="n">sigma</span><span class="o">=</span><span class="n">Err_BN6</span><span class="p">)</span> +<span class="n">estrella6E</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata6</span><span class="p">,</span> <span class="n">popt6E</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">popt6E</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">popt6E</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">popt6E</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">popt6E</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHM6E</span><span class="o">=</span><span class="n">FWHM_I</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">popt6E</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 6 fotografÃa"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorte6</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'gray'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 6 a partir de la gaussiana con incertidumbre"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrella6E</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'gray'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 7 con incertidumbre (blanco y negro)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [824]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">Err_BN7</span><span class="o">=</span><span class="n">error</span><span class="p">(</span><span class="n">xdata7</span><span class="p">,</span> <span class="n">popt7</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">popt7</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">popt7</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">popt7</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">popt7</span><span class="p">[</span><span class="mi">4</span><span class="p">],</span> <span class="n">recorte7</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">inc</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> +<span class="n">popt7E</span><span class="p">,</span> <span class="n">pcov7E</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata7</span><span class="p">,</span> <span class="n">recorte7</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">2</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span><span class="n">sigma</span><span class="o">=</span><span class="n">Err_BN7</span><span class="p">)</span> +<span class="n">estrella7E</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata7</span><span class="p">,</span> <span class="n">popt7E</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">popt7E</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">popt7E</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">popt7E</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">popt7E</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHM7E</span><span class="o">=</span><span class="n">FWHM_I</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">popt7E</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 7 fotografÃa"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorte7</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'gray'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 7 a partir de la gaussiana con incertidumbre"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrella7E</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'gray'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 8 con incertidumbre (blanco y negro)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [825]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">Err_BN8</span><span class="o">=</span><span class="n">error</span><span class="p">(</span><span class="n">xdata8</span><span class="p">,</span> <span class="n">popt8</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">popt8</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">popt8</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">popt8</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">popt8</span><span class="p">[</span><span class="mi">4</span><span class="p">],</span> <span class="n">recorte8</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">inc</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> +<span class="n">popt8E</span><span class="p">,</span> <span class="n">pcov8E</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata8</span><span class="p">,</span> <span class="n">recorte8</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span><span class="n">sigma</span><span class="o">=</span><span class="n">Err_BN8</span><span class="p">)</span> +<span class="n">estrella8E</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata8</span><span class="p">,</span> <span class="n">popt8E</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">popt8E</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">popt8E</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">popt8E</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">popt8E</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHM8E</span><span class="o">=</span><span class="n">FWHM_I</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">popt8E</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 8 fotografÃa"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorte8</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'gray'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 8 a partir de la gaussiana con incertidumbre"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrella8E</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">20</span><span class="p">,</span> <span class="mi">20</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'gray'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 9 con incertidumbre (blanco y negro)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [826]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">Err_BN9</span><span class="o">=</span><span class="n">error</span><span class="p">(</span><span class="n">xdata9</span><span class="p">,</span> <span class="n">popt9</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">popt9</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">popt9</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">popt9</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">popt9</span><span class="p">[</span><span class="mi">4</span><span class="p">],</span> <span class="n">recorte9</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">inc</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> +<span class="n">popt9E</span><span class="p">,</span> <span class="n">pcov9E</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata9</span><span class="p">,</span> <span class="n">recorte9</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">12</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span> <span class="n">sigma</span><span class="o">=</span><span class="n">Err_BN9</span><span class="p">)</span> +<span class="n">estrella9E</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata9</span><span class="p">,</span> <span class="n">popt9E</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">popt9E</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">popt9E</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">popt9E</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">popt9E</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHM9E</span><span class="o">=</span><span class="n">FWHM_I</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">popt9E</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 9 fotografÃa"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorte9</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'gray'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 9 a partir de la gaussiana con incertidumbre"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrella9E</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'gray'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 10 con incertidumbre (blanco y negro)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [827]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">Err_BN10</span><span class="o">=</span><span class="n">error</span><span class="p">(</span><span class="n">xdata10</span><span class="p">,</span> <span class="n">popt10</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">popt10</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">popt10</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">popt10</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">popt10</span><span class="p">[</span><span class="mi">4</span><span class="p">],</span> <span class="n">recorte10</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">inc</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> +<span class="n">popt10E</span><span class="p">,</span> <span class="n">pcov10E</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata10</span><span class="p">,</span> <span class="n">recorte10</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">2</span><span class="p">,</span><span class="mi">13</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span> <span class="n">sigma</span><span class="o">=</span><span class="n">Err_BN10</span><span class="p">)</span> +<span class="n">estrella10E</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata10</span><span class="p">,</span> <span class="n">popt10E</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">popt10E</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">popt10E</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">popt10E</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">popt10E</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHM10E</span><span class="o">=</span><span class="n">FWHM_I</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">popt10E</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 10 fotografÃa"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorte10</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'gray'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 10 a partir de la gaussiana con incertidumbre"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrella10E</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'gray'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Histograma con incertidumbres (blanco y negro)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [828]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">FWHM_I</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">FWHM_I</span><span class="p">)</span> +<span class="n">sigmaBN_I</span> <span class="o">=</span> <span class="n">FWHM_I</span><span class="o">.</span><span class="n">std</span><span class="p">()</span> +<span class="n">mediaBN_I</span> <span class="o">=</span> <span class="n">FWHM_I</span><span class="o">.</span><span class="n">mean</span><span class="p">()</span> +<span class="n">medianaBN_I</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">median</span><span class="p">(</span><span class="n">FWHM_I</span><span class="p">)</span> +<span class="nb">print</span><span class="p">(</span><span class="s2">"Datos de FWHM con incertidumbres de las estrellas a blanco y negro :"</span><span class="p">)</span> +<span class="nb">print</span><span class="p">(</span><span class="s2">"Desviación :"</span><span class="p">,</span> <span class="n">sigmaBN_I</span><span class="p">)</span> +<span class="nb">print</span><span class="p">(</span><span class="s2">"Media :"</span><span class="p">,</span> <span class="n">mediaBN_I</span><span class="p">)</span> +<span class="nb">print</span><span class="p">(</span><span class="s2">"Mediana :"</span><span class="p">,</span> <span class="n">medianaBN_I</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">hist</span><span class="p">(</span><span class="n">FWHM_I</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'FHWM'</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'# de estrellas'</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + +<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain"> +<pre>Datos de FWHM con incertidumbres de las estrellas a blanco y negro : +Desviación : 2.5072119906676873 +Media : 4.216826728193483 +Mediana : 3.1229418738608983 +</pre> +</div> +</div> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 1 con incertidumbre (Banda Rojo)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [829]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">Err_R1</span><span class="o">=</span><span class="n">error</span><span class="p">(</span><span class="n">xdata1</span><span class="p">,</span> <span class="n">poptR1</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptR1</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptR1</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptR1</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptR1</span><span class="p">[</span><span class="mi">4</span><span class="p">],</span> <span class="n">recorteR1</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">inc</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> +<span class="n">poptR1E</span><span class="p">,</span> <span class="n">pcovR1E</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata1</span><span class="p">,</span> <span class="n">recorteR1</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span><span class="n">sigma</span><span class="o">=</span><span class="n">Err_R1</span><span class="p">)</span> +<span class="n">estrellaR1E</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata1</span><span class="p">,</span> <span class="n">poptR1E</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptR1E</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptR1E</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptR1E</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptR1E</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMR1E</span><span class="o">=</span><span class="n">FWHMR_I</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptR1E</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 1 fotografÃa (Banda Rojo)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteR1</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Reds'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 1 a partir de la gaussiana con incertidumbre (Banda Rojo)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaR1E</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Reds'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 2 con incertidumbre (Banda Rojo)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [830]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">Err_R2</span><span class="o">=</span><span class="n">error</span><span class="p">(</span><span class="n">xdata2</span><span class="p">,</span> <span class="n">poptR2</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptR2</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptR2</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptR2</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptR2</span><span class="p">[</span><span class="mi">4</span><span class="p">],</span> <span class="n">recorteR2</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">inc</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> +<span class="n">poptR2E</span><span class="p">,</span> <span class="n">pcovR2E</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata2</span><span class="p">,</span> <span class="n">recorteR2</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span><span class="n">sigma</span><span class="o">=</span><span class="n">Err_R2</span><span class="p">)</span> +<span class="n">estrellaR2E</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata2</span><span class="p">,</span> <span class="n">poptR2E</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptR2E</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptR2E</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptR2E</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptR2E</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMR2E</span><span class="o">=</span><span class="n">FWHMR_I</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptR2E</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 2 fotografÃa (Banda Rojo)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteR2</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Reds'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 2 a partir de la gaussiana con incertidumbre (Banda Rojo)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaR2E</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">35</span><span class="p">,</span> <span class="mi">35</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Reds'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 3 con incertidumbre (Banda Rojo)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [831]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">Err_R3</span><span class="o">=</span><span class="n">error</span><span class="p">(</span><span class="n">xdata3</span><span class="p">,</span> <span class="n">poptR3</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptR3</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptR3</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptR3</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptR3</span><span class="p">[</span><span class="mi">4</span><span class="p">],</span> <span class="n">recorteR3</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">inc</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> +<span class="n">poptR3E</span><span class="p">,</span> <span class="n">pcovR3E</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata3</span><span class="p">,</span> <span class="n">recorteR3</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">8</span><span class="p">,</span><span class="mi">9</span><span class="p">,</span><span class="mi">4</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span><span class="n">sigma</span><span class="o">=</span><span class="n">Err_R3</span><span class="p">)</span> +<span class="n">estrellaR3E</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata3</span><span class="p">,</span> <span class="n">poptR3E</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptR3E</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptR3E</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptR3E</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptR3E</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMR3E</span><span class="o">=</span><span class="n">FWHMR_I</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptR3E</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 3 fotografÃa (Banda Rojo)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteR3</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Reds'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 3 a partir de la gaussiana con incertidumbre (Banda Rojo)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaR3E</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Reds'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 4 con incertidumbre (Banda Rojo)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [832]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">Err_R4</span><span class="o">=</span><span class="n">error</span><span class="p">(</span><span class="n">xdata4</span><span class="p">,</span> <span class="n">poptR4</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptR4</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptR4</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptR4</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptR4</span><span class="p">[</span><span class="mi">4</span><span class="p">],</span> <span class="n">recorteR4</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">inc</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> +<span class="n">poptR4E</span><span class="p">,</span> <span class="n">pcovR4E</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata4</span><span class="p">,</span> <span class="n">recorteR4</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span> <span class="n">sigma</span><span class="o">=</span><span class="n">Err_R4</span><span class="p">)</span> +<span class="n">estrellaR4E</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata4</span><span class="p">,</span> <span class="n">poptR4E</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptR4E</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptR4E</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptR4E</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptR4E</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMR4E</span><span class="o">=</span><span class="n">FWHMR_I</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptR4E</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 4 fotografÃa (Banda Rojo)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteR4</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Reds'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 4 a partir de la gaussiana con incertidumbre (Banda Rojo)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaR4E</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Reds'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 5 con incertidumbre (Banda Rojo)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [833]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">Err_R5</span><span class="o">=</span><span class="n">error</span><span class="p">(</span><span class="n">xdata5</span><span class="p">,</span> <span class="n">poptR5</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptR5</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptR5</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptR5</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptR5</span><span class="p">[</span><span class="mi">4</span><span class="p">],</span> <span class="n">recorteR5</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">inc</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> +<span class="n">poptR5E</span><span class="p">,</span> <span class="n">pcovR5E</span><span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata5</span><span class="p">,</span> <span class="n">recorteR5</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">3</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span> <span class="n">sigma</span><span class="o">=</span><span class="n">Err_R5</span><span class="p">)</span> +<span class="n">estrellaR5E</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata5</span><span class="p">,</span> <span class="n">poptR5E</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptR5E</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptR5E</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptR5E</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptR5E</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMR5E</span><span class="o">=</span><span class="n">FWHMR_I</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptR5E</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 5 fotografÃa (Banda Rojo)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteR5</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Reds'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 5 a partir de la gaussiana con incertidumbre (Banda Rojo)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaR5E</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Reds'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 6 con incertidumbre (Banda Rojo)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [834]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">Err_R6</span><span class="o">=</span><span class="n">error</span><span class="p">(</span><span class="n">xdata6</span><span class="p">,</span> <span class="n">poptR6</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptR6</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptR6</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptR6</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptR6</span><span class="p">[</span><span class="mi">4</span><span class="p">],</span> <span class="n">recorteR6</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">inc</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> +<span class="n">poptR6E</span><span class="p">,</span> <span class="n">pcovR6E</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata6</span><span class="p">,</span> <span class="n">recorteR6</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span><span class="n">sigma</span><span class="o">=</span><span class="n">Err_R6</span><span class="p">)</span> +<span class="n">estrellaR6E</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata6</span><span class="p">,</span> <span class="n">poptR6E</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptR6E</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptR6E</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptR6E</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptR6E</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMR6E</span><span class="o">=</span><span class="n">FWHMR_I</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptR6E</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 6 fotografÃa (Banda Rojo)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteR6</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Reds'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 6 a partir de la gaussiana con incertidumbre (Banda Rojo)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaR6E</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Reds'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 7 con incertidumbre (Banda Rojo)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [835]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">Err_R7</span><span class="o">=</span><span class="n">error</span><span class="p">(</span><span class="n">xdata7</span><span class="p">,</span> <span class="n">poptR7</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptR7</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptR7</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptR7</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptR7</span><span class="p">[</span><span class="mi">4</span><span class="p">],</span> <span class="n">recorteR7</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">inc</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> +<span class="n">poptR7E</span><span class="p">,</span> <span class="n">pcovR7E</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata7</span><span class="p">,</span> <span class="n">recorteR7</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span><span class="n">sigma</span><span class="o">=</span><span class="n">Err_R7</span><span class="p">)</span> +<span class="n">estrellaR7E</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata7</span><span class="p">,</span> <span class="n">poptR7E</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptR7E</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptR7E</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptR7E</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptR7E</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMR7E</span><span class="o">=</span><span class="n">FWHMR_I</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptR7E</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 7 fotografÃa (Banda Rojo)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteR7</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Reds'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 7 a partir de la gaussiana con incertidumbre (Banda Rojo)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaR7E</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Reds'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 8 con incertidumbre (Banda Rojo)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [836]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">Err_R8</span><span class="o">=</span><span class="n">error</span><span class="p">(</span><span class="n">xdata8</span><span class="p">,</span> <span class="n">poptR8</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptR8</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptR8</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptR8</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptR8</span><span class="p">[</span><span class="mi">4</span><span class="p">],</span> <span class="n">recorteR8</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">inc</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> +<span class="n">poptR8E</span><span class="p">,</span> <span class="n">pcovR8E</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata8</span><span class="p">,</span> <span class="n">recorteR8</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span><span class="n">sigma</span><span class="o">=</span><span class="n">Err_R8</span><span class="p">)</span> +<span class="n">estrellaR8E</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata8</span><span class="p">,</span> <span class="n">poptR8E</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptR8E</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptR8E</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptR8E</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptR8E</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMR8E</span><span class="o">=</span><span class="n">FWHMR_I</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptR8E</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 8 fotografÃa (Banda Rojo)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteR8</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Reds'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 8 a partir de la gaussiana con incertidumbre (Banda Rojo)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaR8E</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">20</span><span class="p">,</span> <span class="mi">20</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Reds'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 9 con incertidumbre (Banda Rojo)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [837]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">Err_R9</span><span class="o">=</span><span class="n">error</span><span class="p">(</span><span class="n">xdata9</span><span class="p">,</span> <span class="n">poptR9</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptR9</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptR9</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptR9</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptR9</span><span class="p">[</span><span class="mi">4</span><span class="p">],</span> <span class="n">recorteR9</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">inc</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> +<span class="n">poptR9E</span><span class="p">,</span> <span class="n">pcovR9E</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata9</span><span class="p">,</span> <span class="n">recorteR9</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">4</span><span class="p">,</span><span class="mi">7</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span><span class="n">sigma</span><span class="o">=</span><span class="n">Err_R9</span><span class="p">)</span> +<span class="n">estrellaR9E</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata9</span><span class="p">,</span> <span class="n">poptR9E</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptR9E</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptR9E</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptR9E</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptR9E</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMR9E</span><span class="o">=</span><span class="n">FWHMR_I</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptR9E</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 9 fotografÃa (Banda Rojo)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteR9</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Reds'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 9 a partir de la gaussiana con incertidumbre (Banda Rojo)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaR9E</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Reds'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 10 con incertidumbre (Banda Rojo)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [838]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">Err_R10</span><span class="o">=</span><span class="n">error</span><span class="p">(</span><span class="n">xdata10</span><span class="p">,</span> <span class="n">poptR10</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptR10</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptR10</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptR10</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptR10</span><span class="p">[</span><span class="mi">4</span><span class="p">],</span> <span class="n">recorteR10</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">inc</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> +<span class="n">poptR10E</span><span class="p">,</span> <span class="n">pcovR10E</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata10</span><span class="p">,</span> <span class="n">recorteR10</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span><span class="n">sigma</span><span class="o">=</span><span class="n">Err_R10</span><span class="p">)</span> +<span class="n">estrellaR10E</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata10</span><span class="p">,</span> <span class="n">poptR10E</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptR10E</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptR10E</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptR10E</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptR10E</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMR10E</span><span class="o">=</span><span class="n">FWHMR_I</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptR10E</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 10 fotografÃa (Banda Rojo)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteR10</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Reds'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 10 a partir de la gaussiana con incertidumbre (Banda Rojo)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaR10E</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Reds'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Histograma con incertidumbres (Banda Rojo)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [839]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">FWHMR_I</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">FWHMR_I</span><span class="p">)</span> +<span class="n">sigmaR_I</span> <span class="o">=</span> <span class="n">FWHMR_I</span><span class="o">.</span><span class="n">std</span><span class="p">()</span> +<span class="n">mediaR_I</span> <span class="o">=</span> <span class="n">FWHMR_I</span><span class="o">.</span><span class="n">mean</span><span class="p">()</span> +<span class="n">medianaR_I</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">median</span><span class="p">(</span><span class="n">FWHMR_I</span><span class="p">)</span> +<span class="nb">print</span><span class="p">(</span><span class="s2">"Datos de FWHM con incertidumbres de las estrellas para la Banda rojo :"</span><span class="p">)</span> +<span class="nb">print</span><span class="p">(</span><span class="s2">"Desviación :"</span><span class="p">,</span> <span class="n">sigmaR_I</span><span class="p">)</span> +<span class="nb">print</span><span class="p">(</span><span class="s2">"Media :"</span><span class="p">,</span> <span class="n">mediaR_I</span><span class="p">)</span> +<span class="nb">print</span><span class="p">(</span><span class="s2">"Mediana :"</span><span class="p">,</span> <span class="n">medianaR_I</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">hist</span><span class="p">(</span><span class="n">FWHMR_I</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'FHWM'</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'# de estrellas'</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + +<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain"> +<pre>Datos de FWHM con incertidumbres de las estrellas para la Banda rojo : +Desviación : 2.344334810725805 +Media : 4.008532518694751 +Mediana : 2.9196546806439647 +</pre> +</div> +</div> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 1 con incertidumbre (Banda Verde)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [840]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">Err_G1</span><span class="o">=</span><span class="n">error</span><span class="p">(</span><span class="n">xdata1</span><span class="p">,</span> <span class="n">poptG1</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptG1</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptG1</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptG1</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptG1</span><span class="p">[</span><span class="mi">4</span><span class="p">],</span> <span class="n">recorteG1</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">inc</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> +<span class="n">poptG1E</span><span class="p">,</span> <span class="n">pcovG1E</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata1</span><span class="p">,</span> <span class="n">recorteG1</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">12</span><span class="p">,</span><span class="mi">4</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span><span class="n">sigma</span><span class="o">=</span><span class="n">Err_G1</span><span class="p">)</span> +<span class="n">estrellaG1E</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata1</span><span class="p">,</span> <span class="n">poptG1E</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptG1E</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptG1E</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptG1E</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptG1E</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMG1E</span><span class="o">=</span><span class="n">FWHMG_I</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptG1E</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 1 fotografÃa (Banda Verde)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteG1</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Greens'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 1 a partir de la gaussiana con incertidumbre (Banda Verde)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaG1E</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Greens'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 2 con incertidumbre (Banda Verde)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [841]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">Err_G2</span><span class="o">=</span><span class="n">error</span><span class="p">(</span><span class="n">xdata2</span><span class="p">,</span> <span class="n">poptG2</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptG2</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptG2</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptG2</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptG2</span><span class="p">[</span><span class="mi">4</span><span class="p">],</span> <span class="n">recorteG2</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">inc</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> +<span class="n">poptG2E</span><span class="p">,</span> <span class="n">pcovG2E</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata2</span><span class="p">,</span> <span class="n">recorteG2</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span><span class="n">sigma</span><span class="o">=</span><span class="n">Err_G2</span><span class="p">)</span> +<span class="n">estrellaG2E</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata2</span><span class="p">,</span> <span class="n">poptG2E</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptG2E</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptG2E</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptG2E</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptG2E</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMG2E</span><span class="o">=</span><span class="n">FWHMG_I</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptG2E</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 2 fotografÃa (Banda Verde)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteG2</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Greens'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 2 a partir de la gaussiana con incertidumbre (Banda Verde)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaG2E</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">35</span><span class="p">,</span> <span class="mi">35</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Greens'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 3 con incertidumbre (Banda Verde)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [842]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">Err_G3</span><span class="o">=</span><span class="n">error</span><span class="p">(</span><span class="n">xdata3</span><span class="p">,</span> <span class="n">poptG3</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptG3</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptG3</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptG3</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptG3</span><span class="p">[</span><span class="mi">4</span><span class="p">],</span> <span class="n">recorteG3</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">inc</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> +<span class="n">poptG3E</span><span class="p">,</span> <span class="n">pcovG3E</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata3</span><span class="p">,</span> <span class="n">recorteG3</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">4</span><span class="p">,</span><span class="mi">4</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span><span class="n">sigma</span><span class="o">=</span><span class="n">Err_G3</span><span class="p">)</span> +<span class="n">estrellaG3E</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata3</span><span class="p">,</span> <span class="n">poptG3E</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptG3E</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptG3E</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptG3E</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptG3E</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMG3E</span><span class="o">=</span><span class="n">FWHMG_I</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptG3E</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 3 fotografÃa (Banda Verde)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteG3</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Greens'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 3 a partir de la gaussiana con incertidumbre (Banda Verde)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaG3E</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Greens'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 4 con incertidumbre (Banda Verde)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [843]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">Err_G4</span><span class="o">=</span><span class="n">error</span><span class="p">(</span><span class="n">xdata4</span><span class="p">,</span> <span class="n">poptG4</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptG4</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptG4</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptG4</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptG4</span><span class="p">[</span><span class="mi">4</span><span class="p">],</span> <span class="n">recorteG4</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">inc</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> +<span class="n">poptG4E</span><span class="p">,</span> <span class="n">pcovG4E</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata4</span><span class="p">,</span> <span class="n">recorteG4</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">3</span><span class="p">,</span><span class="mi">5</span><span class="p">,</span><span class="mi">4</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span> <span class="n">sigma</span><span class="o">=</span><span class="n">Err_G4</span><span class="p">)</span> +<span class="n">estrellaG4E</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata4</span><span class="p">,</span> <span class="n">poptG4E</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptG4E</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptG4E</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptG4E</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptG4E</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMG4E</span><span class="o">=</span><span class="n">FWHMG_I</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptG4E</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 4 fotografÃa (Banda Verde)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteG4</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Greens'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 4 a partir de la gaussiana con incertidumbre (Banda Verde)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaG4E</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Greens'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 5 con incertidumbre (Banda Verde)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [844]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">Err_G5</span><span class="o">=</span><span class="n">error</span><span class="p">(</span><span class="n">xdata5</span><span class="p">,</span> <span class="n">poptG5</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptG5</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptG5</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptG5</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptG5</span><span class="p">[</span><span class="mi">4</span><span class="p">],</span> <span class="n">recorteG5</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">inc</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> +<span class="n">poptG5E</span><span class="p">,</span> <span class="n">pcovG5E</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata5</span><span class="p">,</span> <span class="n">recorteG5</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span><span class="n">sigma</span><span class="o">=</span><span class="n">Err_G5</span><span class="p">)</span> +<span class="n">estrellaG5E</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata5</span><span class="p">,</span> <span class="n">poptG5E</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptG5E</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptG5E</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptG5E</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptG5E</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMG5E</span><span class="o">=</span><span class="n">FWHMG_I</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptG5E</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 5 fotografÃa (Banda Verde)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteG5</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Greens'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 5 a partir de la gaussiana con incertidumbre (Banda Verde)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaG5E</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Greens'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 6 con incertidumbre (Banda Verde)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [845]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">Err_G6</span><span class="o">=</span><span class="n">error</span><span class="p">(</span><span class="n">xdata6</span><span class="p">,</span> <span class="n">poptG6</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptG6</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptG6</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptG6</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptG6</span><span class="p">[</span><span class="mi">4</span><span class="p">],</span> <span class="n">recorteG6</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">inc</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> +<span class="n">poptG6E</span><span class="p">,</span> <span class="n">pcovG6E</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata6</span><span class="p">,</span> <span class="n">recorteG6</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span><span class="n">sigma</span><span class="o">=</span><span class="n">Err_G6</span><span class="p">)</span> +<span class="n">estrellaG6E</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata6</span><span class="p">,</span> <span class="n">poptG6E</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptG6E</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptG6E</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptG6E</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptG6E</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMG6E</span><span class="o">=</span><span class="n">FWHMG_I</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptG6E</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 6 fotografÃa (Banda Verde)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteG6</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Greens'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 6 a partir de la gaussiana con incertidumbre (Banda Verde)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaG6E</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Greens'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 7 con incertidumbre (Banda Verde)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [846]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">Err_G7</span><span class="o">=</span><span class="n">error</span><span class="p">(</span><span class="n">xdata7</span><span class="p">,</span> <span class="n">poptG7</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptG7</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptG7</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptG7</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptG7</span><span class="p">[</span><span class="mi">4</span><span class="p">],</span> <span class="n">recorteG7</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">inc</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> +<span class="n">poptG7E</span><span class="p">,</span> <span class="n">pcovG7E</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata7</span><span class="p">,</span> <span class="n">recorteG7</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span><span class="n">sigma</span><span class="o">=</span><span class="n">Err_G7</span><span class="p">)</span> +<span class="n">estrellaG7E</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata7</span><span class="p">,</span> <span class="n">poptG7E</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptG7E</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptG7E</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptG7E</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptG7E</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMG7E</span><span class="o">=</span><span class="n">FWHMG_I</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptG7E</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 7 fotografÃa (Banda Verde)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteG7</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Greens'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 7 a partir de la gaussiana con incertidumbre (Banda Verde)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaG7E</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Greens'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 8 con incertidumbre (Banda Verde)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [847]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">Err_G8</span><span class="o">=</span><span class="n">error</span><span class="p">(</span><span class="n">xdata8</span><span class="p">,</span> <span class="n">poptG8</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptG8</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptG8</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptG8</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptG8</span><span class="p">[</span><span class="mi">4</span><span class="p">],</span> <span class="n">recorteG8</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">inc</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> +<span class="n">poptG8E</span><span class="p">,</span> <span class="n">pcovG8E</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata8</span><span class="p">,</span> <span class="n">recorteG8</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">3</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span><span class="n">sigma</span><span class="o">=</span><span class="n">Err_G8</span><span class="p">)</span> +<span class="n">estrellaG8E</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata8</span><span class="p">,</span> <span class="n">poptG8E</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptG8E</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptG8E</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptG8E</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptG8E</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMG8E</span><span class="o">=</span><span class="n">FWHMG_I</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptG8E</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 8 fotografÃa (Banda Verde)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteG8</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Greens'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 8 a partir de la gaussiana con incertidumbre (Banda Verde)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaG8E</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">20</span><span class="p">,</span> <span class="mi">20</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Greens'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 9 con incertidumbre (Banda Verde)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [848]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">Err_G9</span><span class="o">=</span><span class="n">error</span><span class="p">(</span><span class="n">xdata9</span><span class="p">,</span> <span class="n">poptG9</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptG9</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptG9</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptG9</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptG9</span><span class="p">[</span><span class="mi">4</span><span class="p">],</span> <span class="n">recorteG9</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">inc</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> +<span class="n">poptG9E</span><span class="p">,</span> <span class="n">pcovG9E</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata9</span><span class="p">,</span> <span class="n">recorteG9</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">5</span><span class="p">,</span><span class="mi">6</span><span class="p">,</span><span class="mi">6</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span><span class="n">sigma</span><span class="o">=</span><span class="n">Err_G9</span><span class="p">)</span> +<span class="n">estrellaG9E</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata9</span><span class="p">,</span> <span class="n">poptG9E</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptG9E</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptG9E</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptG9E</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptG9E</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMG9E</span><span class="o">=</span><span class="n">FWHMG_I</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptG9E</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 9 fotografÃa (Banda Verde)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteG9</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Greens'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 9 a partir de la gaussiana con incertidumbre (Banda Verde)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaG9E</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Greens'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 10 con incertidumbre (Banda Verde)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [849]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">Err_G10</span><span class="o">=</span><span class="n">error</span><span class="p">(</span><span class="n">xdata10</span><span class="p">,</span> <span class="n">poptG10</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptG10</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptG10</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptG10</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptG10</span><span class="p">[</span><span class="mi">4</span><span class="p">],</span> <span class="n">recorteG10</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">inc</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> +<span class="n">poptG10E</span><span class="p">,</span> <span class="n">pcovG10E</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata10</span><span class="p">,</span> <span class="n">recorteG10</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span><span class="n">sigma</span><span class="o">=</span><span class="n">Err_G10</span><span class="p">)</span> +<span class="n">estrellaG10E</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata10</span><span class="p">,</span> <span class="n">poptG10E</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptG10E</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptG10E</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptG10E</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptG10E</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMG10E</span><span class="o">=</span><span class="n">FWHMG_I</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptG10E</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 10 fotografÃa (Banda Verde)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteG10</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Greens'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 10 a partir de la gaussiana con incertidumbre (Banda Verde)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaG10E</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Greens'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Histograma con incertidumbres (Banda Verde)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [850]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">FWHMG_I</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">FWHMG_I</span> <span class="p">)</span> +<span class="n">sigmaG_I</span> <span class="o">=</span> <span class="n">FWHMG_I</span> <span class="o">.</span><span class="n">std</span><span class="p">()</span> +<span class="n">mediaG_I</span> <span class="o">=</span> <span class="n">FWHMG_I</span> <span class="o">.</span><span class="n">mean</span><span class="p">()</span> +<span class="n">medianaG_I</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">median</span><span class="p">(</span><span class="n">FWHMG_I</span> <span class="p">)</span> +<span class="nb">print</span><span class="p">(</span><span class="s2">"Datos de FWHM con incertidumbres de las estrellas para la Banda verde :"</span><span class="p">)</span> +<span class="nb">print</span><span class="p">(</span><span class="s2">"Desviación :"</span><span class="p">,</span> <span class="n">sigmaG_I</span> <span class="p">)</span> +<span class="nb">print</span><span class="p">(</span><span class="s2">"Media :"</span><span class="p">,</span> <span class="n">mediaG_I</span> <span class="p">)</span> +<span class="nb">print</span><span class="p">(</span><span class="s2">"Mediana :"</span><span class="p">,</span> <span class="n">medianaG_I</span> <span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">hist</span><span class="p">(</span><span class="n">FWHMG_I</span> <span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'FHWM'</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'# de estrellas'</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + +<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain"> +<pre>Datos de FWHM con incertidumbres de las estrellas para la Banda verde : +Desviación : 2.525343798913612 +Media : 4.246485293065105 +Mediana : 3.173731685005169 +</pre> +</div> +</div> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 1 con incertidumbre (Banda Azul)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [851]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">Err_B1</span><span class="o">=</span><span class="n">error</span><span class="p">(</span><span class="n">xdata1</span><span class="p">,</span> <span class="n">poptB1</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptB1</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptB1</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptB1</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptB1</span><span class="p">[</span><span class="mi">4</span><span class="p">],</span> <span class="n">recorteB1</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">inc</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> +<span class="n">poptB1E</span><span class="p">,</span> <span class="n">pcovB1E</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata1</span><span class="p">,</span> <span class="n">recorteB1</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">3</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span><span class="n">sigma</span><span class="o">=</span><span class="n">Err_B1</span><span class="p">)</span> +<span class="n">estrellaB1E</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata1</span><span class="p">,</span> <span class="n">poptB1E</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptB1E</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptB1E</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptB1E</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptB1E</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMB1E</span><span class="o">=</span><span class="n">FWHMB_I</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptB1E</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 1 fotografÃa (Banda Azul)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteB1</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Blues'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 1 a partir de la gaussiana con incertidumbre (Banda Azul)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaB1E</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Blues'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 2 con incertidumbre (Banda Azul)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [852]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">Err_B2</span><span class="o">=</span><span class="n">error</span><span class="p">(</span><span class="n">xdata2</span><span class="p">,</span> <span class="n">poptB2</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptB2</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptB2</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptB2</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptB2</span><span class="p">[</span><span class="mi">4</span><span class="p">],</span> <span class="n">recorteB2</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">inc</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> +<span class="n">poptB2E</span><span class="p">,</span> <span class="n">pcovB2E</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata2</span><span class="p">,</span> <span class="n">recorteB2</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">4</span><span class="p">,</span><span class="mi">4</span><span class="p">,</span><span class="mi">4</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span> <span class="n">sigma</span><span class="o">=</span> <span class="n">Err_B2</span><span class="p">)</span> +<span class="n">estrellaB2E</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata2</span><span class="p">,</span> <span class="n">poptB2E</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptB2E</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptB2E</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptB2E</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptB2E</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMB2E</span><span class="o">=</span><span class="n">FWHMB_I</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptB2E</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 2 fotografÃa (Banda Azul)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteB2</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Blues'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 2 a partir de la gaussiana con incertidumbre (Banda Azul)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaB2E</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">35</span><span class="p">,</span> <span class="mi">35</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Blues'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 3 con incertidumbre (Banda Azul)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [853]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">Err_B3</span><span class="o">=</span><span class="n">error</span><span class="p">(</span><span class="n">xdata3</span><span class="p">,</span> <span class="n">poptB3</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptB3</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptB3</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptB3</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptB3</span><span class="p">[</span><span class="mi">4</span><span class="p">],</span> <span class="n">recorteB3</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">inc</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> +<span class="n">poptB3E</span><span class="p">,</span> <span class="n">pcovB3E</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata3</span><span class="p">,</span> <span class="n">recorteB3</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">4</span><span class="p">,</span><span class="mi">4</span><span class="p">,</span><span class="mi">5</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span><span class="n">sigma</span><span class="o">=</span><span class="n">Err_B3</span><span class="p">)</span> +<span class="n">estrellaB3E</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata3</span><span class="p">,</span> <span class="n">poptB3E</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptB3E</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptB3E</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptB3E</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptB3E</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMB3E</span><span class="o">=</span><span class="n">FWHMB_I</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptB3E</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 3 fotografÃa (Banda Azul)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteB3</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Blues'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 3 a partir de la gaussiana con incertidumbre (Banda Azul)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaB3E</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Blues'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 4 con incertidumbre (Banda Azul)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [854]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">Err_B4</span><span class="o">=</span><span class="n">error</span><span class="p">(</span><span class="n">xdata4</span><span class="p">,</span> <span class="n">poptB4</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptB4</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptB4</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptB4</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptB4</span><span class="p">[</span><span class="mi">4</span><span class="p">],</span> <span class="n">recorteB4</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">inc</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> +<span class="n">poptB4E</span><span class="p">,</span> <span class="n">pcovB4E</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata4</span><span class="p">,</span> <span class="n">recorteB4</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span><span class="n">sigma</span><span class="o">=</span><span class="n">Err_B4</span><span class="p">)</span> +<span class="n">estrellaB4E</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata4</span><span class="p">,</span> <span class="n">poptB4E</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptB4E</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptB4E</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptB4E</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptB4E</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMB4E</span><span class="o">=</span><span class="n">FWHMB_I</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptB4E</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 4 fotografÃa (Banda Azul)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteB4</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Blues'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 4 a partir de la gaussiana con incertidumbre (Banda Azul)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaB4E</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Blues'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 5 con incertidumbre (Banda Azul)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [855]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">Err_B5</span><span class="o">=</span><span class="n">error</span><span class="p">(</span><span class="n">xdata5</span><span class="p">,</span> <span class="n">poptB5</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptB5</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptB5</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptB5</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptB5</span><span class="p">[</span><span class="mi">4</span><span class="p">],</span> <span class="n">recorteB5</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">inc</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> +<span class="n">poptB5E</span><span class="p">,</span> <span class="n">pcovB5E</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata5</span><span class="p">,</span> <span class="n">recorteB5</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">2</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span> <span class="n">sigma</span><span class="o">=</span><span class="n">Err_B5</span><span class="p">)</span> +<span class="n">estrellaB5E</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata5</span><span class="p">,</span> <span class="n">poptB5E</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptB5E</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptB5E</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptB5E</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptB5E</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMB5E</span><span class="o">=</span><span class="n">FWHMB_I</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptB5E</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 5 fotografÃa (Banda Azul)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteB5</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Blues'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 5 a partir de la gaussiana con incertidumbre (Banda Azul)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaB5E</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Blues'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 6 con incertidumbre (Banda Azul)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [856]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">Err_B6</span><span class="o">=</span><span class="n">error</span><span class="p">(</span><span class="n">xdata6</span><span class="p">,</span> <span class="n">poptB6</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptB6</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptB6</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptB6</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptB6</span><span class="p">[</span><span class="mi">4</span><span class="p">],</span> <span class="n">recorteB6</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">inc</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> +<span class="n">poptB6E</span><span class="p">,</span> <span class="n">pcovB6E</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata6</span><span class="p">,</span> <span class="n">recorteB6</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">2</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span> <span class="n">sigma</span><span class="o">=</span><span class="n">Err_B6</span><span class="p">)</span> +<span class="n">estrellaB6E</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata6</span><span class="p">,</span> <span class="n">poptB6E</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptB6E</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptB6E</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptB6E</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptB6E</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMB6E</span><span class="o">=</span><span class="n">FWHMB_I</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptB6E</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 6 fotografÃa (Banda Azul)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteB6</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Blues'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 6 a partir de la gaussiana con incertidumbre (Banda Azul)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaB6E</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Blues'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 7 con incertidumbre (Banda Azul)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [857]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">Err_B7</span><span class="o">=</span><span class="n">error</span><span class="p">(</span><span class="n">xdata7</span><span class="p">,</span> <span class="n">poptB7</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptB7</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptB7</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptB7</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptB7</span><span class="p">[</span><span class="mi">4</span><span class="p">],</span> <span class="n">recorteB7</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">inc</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> +<span class="n">poptB7E</span><span class="p">,</span> <span class="n">pcovB7E</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata7</span><span class="p">,</span> <span class="n">recorteB7</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">3</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span><span class="n">sigma</span><span class="o">=</span><span class="n">Err_B7</span><span class="p">)</span> +<span class="n">estrellaB7E</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata7</span><span class="p">,</span> <span class="n">poptB7E</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptB7E</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptB7E</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptB7E</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptB7E</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMB7E</span><span class="o">=</span><span class="n">FWHMB_I</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptB7E</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 7 fotografÃa (Banda Azul)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteB7</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Blues'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 7 a partir de la gaussiana con incertidumbre (Banda Azul)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaB7E</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Blues'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 8 con incertidumbre (Banda Azul)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [858]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">Err_B8</span><span class="o">=</span><span class="n">error</span><span class="p">(</span><span class="n">xdata8</span><span class="p">,</span> <span class="n">poptB8</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptB8</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptB8</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptB8</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptB8</span><span class="p">[</span><span class="mi">4</span><span class="p">],</span> <span class="n">recorteB8</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">inc</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> +<span class="n">poptB8E</span><span class="p">,</span> <span class="n">pcovB8E</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata8</span><span class="p">,</span> <span class="n">recorteB8</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span> <span class="n">sigma</span><span class="o">=</span><span class="n">Err_B8</span><span class="p">)</span> +<span class="n">estrellaB8E</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata8</span><span class="p">,</span> <span class="n">poptB8E</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptB8E</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptB8E</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptB8E</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptB8E</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMB8E</span><span class="o">=</span><span class="n">FWHMB_I</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptB8E</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 8 fotografÃa (Banda Azul)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteB8</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Blues'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 8 a partir de la gaussiana con incertidumbre (Banda Azul)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaB8E</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">20</span><span class="p">,</span> <span class="mi">20</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Blues'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 9 con incertidumbre (Banda Azul)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [859]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">Err_B9</span><span class="o">=</span><span class="n">error</span><span class="p">(</span><span class="n">xdata9</span><span class="p">,</span> <span class="n">poptB9</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptB9</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptB9</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptB9</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptB9</span><span class="p">[</span><span class="mi">4</span><span class="p">],</span> <span class="n">recorteB9</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">inc</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> +<span class="n">poptB9E</span><span class="p">,</span> <span class="n">pcovB9E</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata9</span><span class="p">,</span> <span class="n">recorteB9</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span><span class="n">sigma</span><span class="o">=</span><span class="n">Err_B9</span><span class="p">)</span> +<span class="n">estrellaB9E</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata9</span><span class="p">,</span> <span class="n">poptB9E</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptB9E</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptB9E</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptB9E</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptB9E</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMB9E</span><span class="o">=</span><span class="n">FWHMB_I</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptB9E</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 9 fotografÃa (Banda Azul)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteB9</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Blues'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 9 a partir de la gaussiana con incertidumbre (Banda Azul)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaB9E</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Blues'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Estrella 10 con incertidumbre (Banda Azul)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [860]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">Err_B10</span><span class="o">=</span><span class="n">error</span><span class="p">(</span><span class="n">xdata10</span><span class="p">,</span> <span class="n">poptB10</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptB10</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptB10</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptB10</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptB10</span><span class="p">[</span><span class="mi">4</span><span class="p">],</span> <span class="n">recorteB10</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">inc</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> +<span class="n">poptB10E</span><span class="p">,</span> <span class="n">pcovB10E</span> <span class="o">=</span> <span class="n">curve_fit</span><span class="p">(</span><span class="n">gauss2d</span><span class="p">,</span> <span class="n">xdata10</span><span class="p">,</span> <span class="n">recorteB10</span><span class="o">.</span><span class="n">ravel</span><span class="p">(),</span> <span class="n">p0</span><span class="o">=</span><span class="p">[</span><span class="mi">3</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span><span class="n">sigma</span><span class="o">=</span><span class="n">Err_B10</span><span class="p">)</span> +<span class="n">estrellaB10E</span><span class="o">=</span><span class="n">gauss2d</span><span class="p">(</span><span class="n">xdata10</span><span class="p">,</span> <span class="n">poptB10E</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">poptB10E</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">poptB10E</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">poptB10E</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">poptB10E</span><span class="p">[</span><span class="mi">4</span><span class="p">])</span> +<span class="n">FWHMB10E</span><span class="o">=</span><span class="n">FWHMB_I</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">poptB10E</span><span class="p">[</span><span class="mi">4</span><span class="p">]))</span> +<span class="n">fig</span><span class="o">=</span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span> +<span class="n">pos</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_axes</span><span class="p">([</span><span class="mf">0.5</span><span class="p">,</span><span class="mf">0.35</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.3</span><span class="p">])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">131</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 10 fotografÃa (Banda Azul)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">recorteB10</span><span class="p">,</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Blues'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">133</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Estrella 10 a partir de la gaussiana con incertidumbre (Banda Azul)"</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">estrellaB10E</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">),</span> <span class="n">plt</span><span class="o">.</span><span class="n">get_cmap</span><span class="p">(</span><span class="s1">'Blues'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">(</span><span class="n">cax</span><span class="o">=</span><span class="n">pos</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Histograma con incertidumbres (Banda Azul)</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [861]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="n">FWHMB_I</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">FWHMB_I</span><span class="p">)</span> +<span class="n">sigmaB_I</span> <span class="o">=</span> <span class="n">FWHMB_I</span><span class="o">.</span><span class="n">std</span><span class="p">()</span> +<span class="n">mediaB_I</span> <span class="o">=</span> <span class="n">FWHMB_I</span><span class="o">.</span><span class="n">mean</span><span class="p">()</span> +<span class="n">medianaB_I</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">median</span><span class="p">(</span><span class="n">FWHMB_I</span><span class="p">)</span> +<span class="nb">print</span><span class="p">(</span><span class="s2">"Datos de FWHM con incertidumbres de las estrellas para la Banda azul :"</span><span class="p">)</span> +<span class="nb">print</span><span class="p">(</span><span class="s2">"Desviación :"</span><span class="p">,</span> <span class="n">sigmaB_I</span><span class="p">)</span> +<span class="nb">print</span><span class="p">(</span><span class="s2">"Media :"</span><span class="p">,</span> <span class="n">mediaB_I</span><span class="p">)</span> +<span class="nb">print</span><span class="p">(</span><span class="s2">"Mediana :"</span><span class="p">,</span> <span class="n">medianaB_I</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">hist</span><span class="p">(</span><span class="n">FWHMB_I</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'FHWM'</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'# de estrellas'</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + +<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain"> +<pre>Datos de FWHM con incertidumbres de las estrellas para la Banda azul : +Desviación : 2.6951116878528705 +Media : 4.515986827150282 +Mediana : 3.49839915953825 +</pre> +</div> +</div> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + + + +<div class="jp-RenderedImage jp-OutputArea-output "> +<img src=" +" +> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li>## Resumen de resultados:</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [897]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span> +<span class="c1"># -- crear un data frame con esa información</span> +<span class="c1"># -- crear un array con todas las cantidades calculadas anteriormente para el FWHM</span> +<span class="n">datos</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([[</span><span class="n">sigmaBN</span><span class="p">,</span><span class="n">mediaBN</span><span class="p">,</span><span class="n">medianaBN</span><span class="p">],</span> + <span class="p">[</span><span class="n">sigmaR</span><span class="p">,</span><span class="n">mediaR</span><span class="p">,</span><span class="n">medianaR</span><span class="p">],</span> + <span class="p">[</span><span class="n">sigmaG</span><span class="p">,</span><span class="n">mediaG</span><span class="p">,</span><span class="n">medianaG</span><span class="p">],</span> + <span class="p">[</span><span class="n">sigmaB</span><span class="p">,</span><span class="n">mediaB</span><span class="p">,</span><span class="n">medianaB</span><span class="p">],</span> + <span class="p">[</span><span class="n">sigmaBN_I</span><span class="p">,</span><span class="n">mediaBN_I</span><span class="p">,</span><span class="n">medianaBN_I</span><span class="p">],</span> + <span class="p">[</span><span class="n">sigmaR_I</span><span class="p">,</span><span class="n">mediaR_I</span><span class="p">,</span><span class="n">medianaR_I</span><span class="p">],</span> + <span class="p">[</span><span class="n">sigmaG_I</span><span class="p">,</span><span class="n">mediaG_I</span><span class="p">,</span><span class="n">medianaG_I</span><span class="p">],</span> + <span class="p">[</span><span class="n">sigmaB_I</span><span class="p">,</span><span class="n">mediaB_I</span><span class="p">,</span><span class="n">medianaB_I</span><span class="p">]])</span> + +<span class="nb">print</span><span class="p">(</span><span class="s1">'</span><span class="se">\033</span><span class="s1">[1m'</span> <span class="o">+</span> <span class="s1">'Los valores estadÃsticos obtenidos para el Full Width at Half Maximum (FHWM) son:'</span> <span class="p">)</span> +<span class="n">FWHM_tabla</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">(</span><span class="n">datos</span><span class="p">,</span> + <span class="n">columns</span><span class="o">=</span><span class="p">[</span><span class="s1">'D-E'</span><span class="p">,</span><span class="s1">'Media'</span><span class="p">,</span><span class="s1">'Mediana'</span><span class="p">],</span> + <span class="n">index</span><span class="o">=</span><span class="p">[</span><span class="s1">'Blanco/Negro'</span><span class="p">,</span><span class="s1">'Blanco/Negro con incertidumbre'</span><span class="p">,</span> + <span class="s1">'B-Rojo'</span><span class="p">,</span><span class="s1">'B-Rojo con incertidumbre'</span><span class="p">,</span> + <span class="s1">'B-Verde'</span><span class="p">,</span><span class="s1">'B-Verde con incertidumbre'</span><span class="p">,</span> + <span class="s1">'B-Azul'</span><span class="p">,</span><span class="s1">'B-Azul con incertidumbre'</span><span class="p">])</span> +<span class="n">FWHM_tabla</span> +</pre></div> + + </div> +</div> +</div> +</div> + +<div class="jp-Cell-outputWrapper"> + + +<div class="jp-OutputArea jp-Cell-outputArea"> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> + + +<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain"> +<pre><span class="ansi-bold">Los valores estadÃsticos obtenidos para el Full Width at Half Maximum (FHWM) son: +</span></pre> +</div> +</div> + +<div class="jp-OutputArea-child"> + + + <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[897]:</div> + + + +<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output jp-OutputArea-executeResult" data-mime-type="text/html"> +<div> +<style scoped> + .dataframe tbody tr th:only-of-type { + vertical-align: middle; + } + + .dataframe tbody tr th { + vertical-align: top; + } + + .dataframe thead th { + text-align: right; + } +</style> +<table border="1" class="dataframe"> + <thead> + <tr style="text-align: right;"> + <th></th> + <th>D-E</th> + <th>Media</th> + <th>Mediana</th> + </tr> + </thead> + <tbody> + <tr> + <th>Blanco/Negro</th> + <td>2.506520</td> + <td>4.223188</td> + <td>3.141966</td> + </tr> + <tr> + <th>Blanco/Negro con incertidumbre</th> + <td>2.329890</td> + <td>4.021187</td> + <td>2.919205</td> + </tr> + <tr> + <th>B-Rojo</th> + <td>2.525571</td> + <td>4.242802</td> + <td>3.182727</td> + </tr> + <tr> + <th>B-Rojo con incertidumbre</th> + <td>2.699912</td> + <td>4.508061</td> + <td>3.482339</td> + </tr> + <tr> + <th>B-Verde</th> + <td>2.507212</td> + <td>4.216827</td> + <td>3.122942</td> + </tr> + <tr> + <th>B-Verde con incertidumbre</th> + <td>2.344335</td> + <td>4.008533</td> + <td>2.919655</td> + </tr> + <tr> + <th>B-Azul</th> + <td>2.525344</td> + <td>4.246485</td> + <td>3.173732</td> + </tr> + <tr> + <th>B-Azul con incertidumbre</th> + <td>2.695112</td> + <td>4.515987</td> + <td>3.498399</td> + </tr> + </tbody> +</table> +</div> +</div> + +</div> + +</div> + +</div> + +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li># Comentarios y conclusiones:</li> +</ul> + +</div> +</div> +<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown"> +<ul> +<li><p>#### Fue posible implementar la función curve_fit para modelar la gaussiana sin mayores inconvenientes, sin embargo, la determinación de los parámetros sugeridos p0 fue totalmente aleatoria de tal manera que presentaba bastantes inconvenientes para algunos valores, y variaciones en los resultados bastante notables en el ingreso de diferentes enteros, como por ejemplo tomando x0=0 o y0=0 , el valor sugerido en p0 para la constante aditiva b de la gaussiana fue la que más cambio en los diferentes 8 resultados estadÃsticos del cálculo del FHWM, la segunda constante en más variar fue la multiplicativa de amplitud a.</p> +</li> +<li><p>#### Los resultados obtenidos para los análisis a blanco y negro se tomarón de la función lÃneal de Luma, como recomendación de algunos sitios web [1]. No se automatizó el plot de cada imagen ni la aplicación del modelo para cada una de las estrellas por que se estaban presentando errores de acumulación de datos en los arrays y listas, decidà hacerlo para cada una de tal manera que pudisese aprovechar esto y modificar algunos detalles para cada estrella, cómo: tamaño rejilla, titulos, añadidura de incertidumbres al fit y cambio en los p0 para cada uno de los tratamientos.</p> +</li> +<li><p>#### Al comparar los resultados obtenidos sin incertidumbres para los valores estadÃsticos del FHWM se observa que los canales rojo y azul tienen tanto mayor desviación como mayor FWHM que el canal verde y los resultados para los recortes blanco y negro, por lo que estos dos ultimos son los más considerables para modelar.</p> +</li> +<li><p>#### Al aplicar el módelo a todos los procedimientos, pero teniendo en cuenta la incertidumbre, los valores de p0 se hicieron mucho más variados que en los realizados sin incertidumbre. Razón por la cual es probable que justifique el hecho de que las desviaciones para los resultados de los valores estadÃsticos obtenidos del FHWM sean mayores en los casos de la bandas rojo y azul. El valor de la constante aditiva b de la gaussiana en la mayorÃa de los casos sin incertidumbre era cercano a 0 mientras que con incertidumbre tomaba siempre el mayor valor que todas las otras constantes, en especial en los casos de las bandas rojo y azul. Por lo que una vez más se presentan mejores resultados para el análisis a blanco y negro y para la banda verde.</p> +</li> +<li><p>#### Los valores obtenidos para el FWHM no varian significativamente con o sin incertidumbre, en la mayorÃa de todos los resultados el FWHM estaba entre 2 y 4, a excepsión de curiosamente la estrella más luminosa de la fotografÃa, la estrella 2, la cual presentaba FWHM alrededor de 11, como FWHM es el ancho de la gaussiana en su punto medio, podrÃa decirse que la estrella 2 es la más "desenfocada" de la fotografÃa por ser el objeto (o varios) de mayor tamaño.</p> +</li> +</ul> + +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs "> +<div class="jp-Cell-inputWrapper"> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> + <div class="CodeMirror cm-s-jupyter"> +<div class=" highlight hl-ipython3"><pre><span></span> +</pre></div> + + </div> +</div> +</div> +</div> + +</div> +</body> + + + + + + + +</html> diff --git a/Entrega.ipynb b/Entrega.ipynb new file mode 100644 index 0000000..9ae1c93 --- /dev/null +++ b/Entrega.ipynb @@ -0,0 +1,4328 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# José Miguel Ladino Méndez - MaestrÃa en Ciencias AstronomÃa - UNAL\n", + "# LACoNGA Physics - Ciencia de Datos - Tarea-Clase-05" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ejercicios para practicar numpy y optimización con scipy\n", + "## Resolución espacial\n", + "* En observaciones astronómicas e imágenes en general, llamamos resolución espacial\n", + "a la distancia angular minima a la que pueden estar dos fuentes puntuales de luz\n", + "y aun poder ser reconocidas como objetos individuales.\n", + "En el caso de la astronomÃa, este efecto tiene que ver con la dispersión de la\n", + "luz al atravezar la atmósfera, la cual hace que una estrella, que deberÃa\n", + "en principio aparecer como una fuente puntual (pues las estrellas están muy\n", + "lejos), aparezca en cambio como una mancha. AsÃ, si dos estrellas están\n", + "demasiado cerca sus manchas se superpondrán hasta el punto en que sea imposible\n", + "distinguirlas como fuentes individuales.\n", + "Para modelar este efecto, tÃpicamente consideramos la acción de la atmósfera\n", + "como la convolución de la imagen \"perfecta\" (como se verÃa desde el espacio)\n", + "con un kernel gaussiano. El ancho de esa función gaussiana 2D caracteriza\n", + "las condiciones de observación, varÃa con las condiciones climáticas y para\n", + "cada sitio de la Tierra.\n", + "La resolución espacial normalmente se toma como el FWHM\n", + "de la gaussiana caracteristica registrada durante una observación. Es decir,\n", + "si dos estrellas están a una distancia aparente en el cielo menor que el\n", + "FWHM del efecto atmosférico, la luz de ambas fuentes se mezclará después de\n", + "la convolución hasta el punto de impedir reconocerlas de modo individual.\n", + "Además, la atmósfera puede interactuar de maneras distintas con la luz de\n", + "distintas longitudes de onda, de manera que el ancho de la gaussiana puede\n", + "ser distinto para observaciones con diferentes filtros.\n", + "El objetivo de esta tarea es medir de forma aproximada la resolución\n", + "espacial en una noche de observación en Zapatoca, Santander (Colombia), a partir\n", + "de una foto del cielo estrellado.\n", + "\n", + "\n", + "* El objetivo de esta tarea es medir de forma aproximada la resolución\n", + "espacial en una noche de observación en Zapatoca, Santander (Colombia), a partir\n", + "de una foto del cielo estrellado.\n", + "## Ejercicio:\n", + "* Leer la imagen almacenada en la carpeta data como un array de numpy. Ese\n", + "array estará compuesto de 3 matrices, una tras otra, correspondiente a los\n", + "canales R,G,B." + ] + }, + { + "cell_type": "code", + "execution_count": 99, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np #librerÃa util para manejar los array y funciones matemáticas\n", + "from PIL import Image #Módulo para abrir imagen.\n", + "\n", + "imagen = np.array(Image.open('data/zapatocaImage.jpeg')) #volviendo imagen en array\n", + "#print(imagen)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* Combinar los 3 array para generar una versión blanco y negro de la imagen,\n", + "en la cual ella consiste de una sola matriz 2D. Puede usar su intuición y prueba\n", + "y error para combinar las 3 imágenes, explicando el procedimiento elegido. Esto\n", + "será más interesante que usar un comando desconocido de una biblioteca sofisticada\n", + "que haga las cosas como una caja negra (queremos practicar numpy)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* Algunas maneras que se encontrarón para combinar los array RGB son:" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**1)** Tomando el promedio aritmético para cada pixel" + ] + }, + { + "cell_type": "code", + "execution_count": 899, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAD8CAYAAABXe05zAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9aYysWXoeBj7fF/seGbnezLxLVd2q7uoqNlXNFluUKImSYUOSDdM/bIkzhs0RBPQfG/BgZjCi588s8A/5z3hsaEC7MRwMZXhMczwjkDA0Ggm0JY2oMSmTVHd1Vddy6265b5Gx7xHf/Ih8TjzfGyfyVktsOgndAyQyM+L7zvKed3ne97znnCCKIrwur8vr8rq8Ln94Svg/dgdel9fldXldXpcfrrxW3K/L6/K6vC5/yMprxf26vC6vy+vyh6y8Vtyvy+vyurwuf8jKa8X9urwur8vr8oesvFbcr8vr8rq8Ln/Iyo9EcQdB8OeCIPg0CIInQRD8wo+ijdfldXldXpd/Xkvw+53HHQRBAsBnAP5FAIcA/jGA/0kURR//vjb0urwur8vr8s9p+VEg7p8E8CSKoqdRFI0A/AqAn/0RtPO6vC6vy+vyz2VJ/gjq3ANwIP8fAviWfSgIgm8D+PbNvz8Rhl/OhgRBAABQTyEIAvc5SxiG0Dqn0ymiKEIqlXKf63v6O4qipfpe1Se+p+VV9ehY9DlfXb7CZ/TdRCKB6XS61E4URa4d255+vqqfvrZsH3zj973zqvds2/r8q/q3qvjGqPP2w3ieX6Y9S3P7nv5t+2T7/WX682Wf/WHL70edt8nBqu9su/+0Y7S09dF6Fd++ql5ffVbOfO3av8MwjPEgf0+nU8xmMy/hfhSK+0uVKIq+A+A7AJBIJKJCoRDr+Gw2c4IVhiGm0ymCIEAymUQikcB4PHaDpTJWJshkMsjn8wiCAN1uF6PRCPfu3UOtVkMqlUIikVgSrEQi4RQf27UKtVAoAAAGg4GOBclkcklh6nssPsWaSCRiSiSRSGA2m30pQzCZTJDNZjGZTNz7mUwG0+kU4/EYQRCgWq2i1Wq554bDIcIwdG1YZc7+0cCRVpPJxP2dTCYxm83cTyqVwnQ6xXQ6dbSw/Z3NZm7+hsOha4P0XjVG/VwZnHOu9JrNZrGxsV/8nDTT8bFvLHyfn1tQkc1mMRgMYvPD9vis0oB95w95W+eYY+P7+Xwe/X7f9VX7pfOl7ycSCccHtv98Vj9Pp9Nu/uxYx+Ox40vtF8cznU7dZ1o/f1in0pLf8T2Vcd88W54IwxCj0WiJN/Rdn2ImP2s9Ot/6XTKZdLKt/ZxMJg4MkmbJZBKTySQ2VtKONOAzWvh+GIau3iiKnLzy3cvLy5Vj/VGESo4A3Jf/928+u7VQuJSZSUyr6IbDYWyCxuOxE34ScTQaYTgcYjweIwxDVKtVFItFAIg9x/9JMBVq7QuZmIpPC/tIRkkmk0ilUktMmUwmY4zLeoG5MrFjUIHg/8r8OvmqHAaDAabTKTKZDACg2WwiiiLH9KpEWKhA+TfLbDaLGU32ZTKZxBhyPB7HaMGxWUGazWaxfvB7pbWOk0xsFbZVTlQCyWQypiCHw2HMwEwmE6TT6Vh/VLHo2Fd5Imq0WQ+NPp8lT3IsFlWxfm2XCjGKInQ6HUdT2x+lB+dGeVdpSj5hX8hvqoB8fVI6Kk/wMxpgVTqWftoHFvv9bUqbPDadTjGZTGJK2ypLAK4/6m1HURSbb46vVCotjRmAU6RsQ0GdpZVP+SsfUmmzvmw2i2QyGeu36pnb6GTLj0Jx/2MAbwdB8EYQBGkAPwfg1297gZ32IQhrlclsVPR8lkIJzIlcLBaRSCTQ6XQQBAHG4zEuLy9xfn6OVqsVU8gUAK0PWFZgykwWRSnDqUVXRqJ1thO+u7sbC+GQHqroVZFZg2aVHNunMJE+4/EYg8Eg1odisRhTiKqkdSxKXz6Tz+djSk/H5fMWtK/8m+Pmj45LFY2tk8/SoCqN2NdEIoFkMhlDSmqgfB6S0kb5Tg2mCqhVxsqP+luVuL6vNPaNX/lM29I6tY/0eiyPAQulRJr6+J1/q7xxHKxXv7PGlqjR582okvYhVX2PvGblSOf/tqIync/nY6CDBt2CCpUtFh0z6Wa9caW/1gfA8V8ymYyBG/tbec3ncdry+664oyiaAPh3Afx/APwAwK9GUfTRbe9YxcfP1AKTKMqsdoAUrLW1NaRSKXS7XQALNNvtdlGv191kWIVnEYZOCBlXXRtFE+pWKvMqGrSMx/G12+0lF5OKUYVfDdxkMnFW3YcU+TuTySCdTq9k9G63G0OFZE7LxESUQByNsQ92LrTf1pW2Amo9rEQi4TwW6+byM9KJCJW/1a3l8/l8fmlsRGcAHH0s+mPh3AILZaV8kkqlYu4vAORyOfd3JpNx7fs8MTVOyntqmPg5acv58PErDRbr1fqp2FURruINa7jYd/2e9WSzWQBAKpWKjZd9scUaEPWedAx8l3+vQuyUz2w2i/X1ddeHMAzRarVcCInPj0YjL8+qQWS9Pq9L9YcaYJ8SVxqzHyozdq7VOK8qP5IYdxRFfwvA3/ph3vGhG/7tG4BVZPw7k8kgmUyi2WzGkJWiz8FggFQq5SaPoQ9Ous/yqYDohM1mM4faFTkJLWIKyDfmdrtt6Qdgjob5nTKTjldpoP3jMxr7tuiIwkjDZhmHbTFOzML2iFoY79aiyJ9GxhoDq4hmsxnW19fR7XZdOMLyBd9T5KyMbvs+m83Q6XTc/8lkEqPRyCnuWq2G8XiMbrcbW9vgnK6trWFnZwcffvhhDEWpwVFDrXzL+shnpVIJyWQSl5eXsbCYjgVYrINwPKSNggs18D43W+tTulkDRGMyHo+XPCal/Ww2cwZK27UKl/Sg8SRf6dqOGlDts+23eiGKwJWHaLD5/mg0wmg0iilcNQbKIzpHLBbp+0AlMNcVnFdV8lbOadTW1tYccFSvhYaJ7RKZ27i4Lb/vedz/NCWRSETW7bbWyAo9A/86EWQuVeaK0KioyuUyJpMJBoMBkskkMpkMisUi1tfXkc/nXbvAIgaVTqdjCpHfyRhiTLwKxSjTUulbpGfbVsWl7rRV0ux3qVSKoXjrxajbz7qs8LM9+zfprsyvnoUiOXXNaThJg3Q6jX6/H5snMvl4PI49z0JERSVjx6790TFSmMhLDKMA80XAdru9tGisaJQGVBc5fXFxnyzRWChwsPNaLBbR7XZj/MPnFCkqz+j827m1PGqVkFUKKi/WAOv7HKPy63Q6RTqddqEP8pPG+5XHLAijAmShDOs6CPuh4ZXb+qiFyllBlSpaRc7aV76rfVCeymaz6Pf7Mbmw7WopFAoYjUaxUKX2Q0EOvaKLiwuMRiMv7L4TW96JDC2D6Q8/VxfR5zZx8FG0WJRgG7Su7XbbCQqVdi6XA7C86ME27USoolZmpOusdajbyL5QoH3CrkqR76twMXODgqbCqi6bhgP4Hmmn7/NZDan4FJIqFg1NqBLS54GFt0M68Z3BYBDrMz/v9Xouo4F1MfuBWRNKW36eyWTc4o+6nTo/6tJSofd6vViGkY6VP61Wy4sEfXFOeig6XkWAmu1j6+dn7IdVNKtCKNZwW7SsfbVZKr45s2EMfucLeVg5VcOpilFpxKKyTN7S9SOVO9LCLu5pXb5CXte50zpVZnyesvX21IvjM2rEbQiF73U6nVi2itVhHJ+O/bZyJxQ3iyIRMprGvzjRNh7JYtHXcDh0jEDFpIxdLBZRLBZd6qC6pESWm5ubsZV4bUeRnSo1phvqOFTw1d1VRtJJU2FVpGfdV1V6bKfRaMQQmLZLOlo0HkXz2LzGln1GRcelKIPjswhGC2OUdrxaB3/UdRyNRshkMjGvid+Rjgx/TKdT1Go1Z5h0DrSf+luRLGnuc39VASj9lEcBOLSowstxk35KXxpM32Kjlul0ilQqFTMymUwmNja2oYaPCJG8Ra9U+UyNr8obsDBGGxsbjp6qyDRsZAGP9SjteLrd7pI3R/qR9hbxK4ixc6RzQ36x88N3WI/PgCUSCRQKBbdWoN69DzTqfKt8qPzaNlRv0MD7vBJfuTOK2yIJq9RUqFQgksmkY3wlhK4GKyqk4GezWYRhiH6/j9lshkajgevra5yensZydLlAGARBLA6oCpT9YtG0LDVEZChF2jQmZH5rtXVM7DOLD1VaGqkgheE8LfLx48cx5aRCMBwOY2hHhaNQKCyhPjUw/K3KSpGD0kWVnrbDd/i5KnLWa7Nz2B/Gsi8vL138nXxgkZ3SS4XKGlktk8nE8U46nXYLvwomqDjVW1HjoQqP80QErlkwOi/WrVbDVSgU3FhSqZQXFVuPVkMHqqTVUJB2LOPxGNfX1zFwZZUMx+NDrizWOPrCHPq+z+PgGIIgQLlcXtmelVHWoQbSt65j91WwPRat0wIjXRBWj0eLRdv0JKwXd1v5H20Djq+Q6QG4uCiwQDqKxEikarWKIAjQ6/Vc6p+iJ0U2iqaBuZJKJBLOlaVSTSaTLpZ6cHDglAfbVReLueJUaly4sql8LMzxpiLy5Ugr+uF3s9kMuVzOxcCYn07mYj36nnXvoihCo9GItaHP+OLmqhRUuLlBRBdN+b0iRl98VI2YNTzWzVQaquLls2xbhdEqZwqrojX2I51OYzAYxITLtkNFzNxsLtaGYeiMvKItO4YgCFxMVMGIzl82m3Xok3zI0Bb7QCNEZDabzXB9fb2kBBSoqLFjiI1AgXn+qqRVbqxSpTG0c6b8yoVO9oXfsy71zBSVWuWtxQIIrZt5+pbv7DxYgOHzRjWdOIoitwajoIrvZ7NZRw8+P5vN3CY39RrYvobDWBSVk69Ux60qd0Zx68RowrwVOhbGp9PpNKrVqlsomM1mbmegT9ABxCaIROYiJZFUr9dDLpdzSrJer2MwGKBSqbjdk0EQ4OzsDI1GA1tbW9jc3EQ6nXYCZl1O9rvX6zlFqciWBkeRi7p0jUYjpnzYB0UOYTjPrImiyGXLqEJnTFXpYRUP3+Hz7A/TK+nWcWyad7wKyWqdHJdF3kTa7IeNHbIfmrGgtOJ8WiXqi7OqQbVonEXHpt4CY5VRNA9VcMEpkUggl8stbdAB4ECFpQ8Fv9/vx2hGw763t4dkMokXL17EDIEuruqGMPaHIQfOCUMs7HcYhk5ObFioWCw6o8xi6eebV86N0p5/6xyrQbcepC8rQz1nbW86ncaUpxoQLZlMJmbsWIcFFtZ40zsPw3ApfVCNkCp1K/dqVBSEWQPOenw6w1fujOJmoetoLawyq0W7VPQMawBYUlo2lMK6w3C+mEj3czwe4+rqColEAtvb20gmk8jlcoiiCBcXF2i1WlhbW8NwOHSrxBTmq6srp4w1O4VozTIXPQlVICy+MAb7qwzim2jShn/rbyC+AKSGgIJFQ6mCrkXRCcdhUaYqc/ZPFbEuNKpRtm0qOrf1KC+QPlZ56zPaJ/5NgWSmiSoPHw9q0XbopSmNWNQDVPqRN33KivW2Wi0EQYB0Ou3CWIpQqZAALK1PqPJUWrNvugCpfGSVtgUQABx6t/HjMAzxkz/5k/jwww/Rbrfx7rvv4unTp24NgscF+FC2jw5hGC4hUB9aXlVoTPTZVUbIGtYgCFZusadRXPU5x5fJZJZScpWfiNAJPJLJ5NLmIF+5c4obgHMVNYNAXRYSZTgcotlsYm1tzSnYZrPpFiWpjKybojEsYLGTCoATkvX1dYesKRyJRMKde0IhouvZarXQ6XRweXmJnZ0dtxjKOqmktU0AMQVmGYfFuvYqrBblqoun4RAbstH/qWjZF6Wb9kHnxq4b8BnLcBpL1HizjksVuiotfsdQAjNRWKd6Y8lkEpVKBVdXV0v9tQaK49WFPlXmwMKozmYzbGxsuBBTJpNxIQ2NJzNsom1aGlSrVec12Xm23gZp32q1UCqVlrwT/lbFOZ1OHY0U9QKLnYpsR5Gs5R/f/JEWWvRdBRMHBwdOgT179syBG51PG1u3Br9QKMSSC7R/ygP2M+2njpXgSdvSfvN5vq88fdseDO2zFvIl9YpdLFY6qPfBMOqr8rjv1OKk/tbYdDKZRKlUcruh1M0eDAY4OTnB8fHx0nZ2i5hUeWsdJDxTA20SfqvVwsHBgUMiw+EwFg6Zzebbyak8+C7HwImg8NAI+BQK+20Zmz+rzknhe4qmGDJR2vpQhipMZSK7+Ml+KsL2CR3HR7RkkQYwR4c0bL62FKFw3NbT0PYnkwmazWaMh/Rvu1hkFRf7QOHXrJZWq4XZbJ5mWiqVHB1IX45d+6SoamtrC6lUyilt0oc8V6lUYohceSsIgqXDpqwXpopVaan8pOBBP/MZEUszn2LinDBcpam3R0dHLs6tXgKwQKTWeybNaOTJk7omEUWR22CnYwvDEG+//TbW1ta8Cpyyp/yvbZInLIjQ+i26tvrKZujYBWq2z7Z0bYb9Go1GLk35Ni8CuCOK21ptqxS4gEh31k4AlQBX+PVdfdYyrlpWMh5dIy5YXlxc4NmzZxiNRk6guFipSoQIbmtrC/l8fmnbNVf8NQOB7VsGtd6A/c7GgW3sn+OzfdB0SqWxrvTTSKoiUWVEReJDQTYup0peFc90OsXbb7+NWq0WQzmKxFmvTyAsauLf1uDyO+uW69++xSDOB8esi9enp6duznu9njfNU+sCgEajEQv/Ea0HwTxTqdPpLCkQDQfY0A8zkYBFiqVVcBY5W5Sp3+vJdyyqdHQOtD5ggSQ1rq9Kmb8pI0EQYGdnJyaL/JzvEghxrtg2Y82Kwilb9JBpxO04tP92M5DSz8qNKlEaHKUv6a8puzYsaGWX48pkMi6dk0DLvrOq3JlQiRKJxODkqYtjkUcQBKjX6y7PV5Whta4sSmDdack0r8lk4lLLBoMBxuOxW/RRJUJESSbk+5oRoBOlSBuAV4mSyX2xYXX7rNKyCp8hFT2dLJfLuY0Dth0VeM144Vg0LMIFWCCOmHThiShU46MqRE+fPl1CcopyqdTYN507Vd5qlGw/2D8VNKtYqdg5Tm2rUqmgXq+7PqvAK90tb2lRxa/oXj/jfHG+OWfqRitPl0ol1Ot1R2Nf6MkaNvUAfEicz7A+Dd0or9h4ti3qfSid8/k8yuUyLi4ucH19HTOyFp1yLlV5a7H0n06n+N3f/V23jqRHNFjDzf+V9zTThd/7QpBKMxa77d3OlTW6nCtuKuPaBT06K0Oryp1R3MokQRDEYrnM1WYKHLBYdSeTc1UeWF7QApZdH7WitHqsp9/vu1gmsFipJ8Pozjf2hb+prPb29nB1deXGQwbVMbI/OvHaN7p+TPnSomOzAsR4q3WHNcziY1DSTGmp6Yocbz6fdwZNFzO1X1Smvrij3R6tY7LZD4oSrSDxO986AedZ+6YoWjfo8Du7o5Fxbfbfzpn2w2cQWK8qBNZN2lAhqheXy+WWdpvquC8vL934rBu+yqDoefFKR86rel9qdFcpbR2zL7yg9AHmIRPKA48d1mLl1dem7bu2T8XHkwCZuKDpqgqA1PhrKIVFAQ+Lrx41OJbmFhzQMOoaETPMOBeq/25D3HciVKLKlMLMBbZ0Oo1UKhU7bY27wPiuj2EsEbUt/Z4HDA0GA5dny4kfDAYOyROF6KqxnvQWBAEuLi7w5MkTdDodF88E4kIPxHekKeLVUBEAtNttF1+1ISTSyxd/U3ShKM+iVEXumnLJz/kZDRvf6fV6sZihGjTSD1jkrAOLMAz/tqiHhcavUCg45eZDdqxPEWYul3Or+FRofNbGuPkOPSTfme7aV/7NM92Z75/L5VwITGlhPSjlVf1elS/njHOtaJwZK6xf+dn22c4nDa++o38rsmdR+SHv28wYtsNCGvgONtM2aNR9obXb4uq2aEiGY7UHlLFt6g/ygs6Xhi/J49bw+AyXDVGSfxRc6jgJQvm3VczKJ68a/51Q3KsmmXFh3U1m0YhaPBbrtmh6m89ir62toVwuO+En+spkMm5lWyeabSWTSbdtvlQqYW1tzeWFM7dXx7cKZVNQNZ5No7IqPMJ6VDGsQggsvt1fFHpFgxaN063XuVGUY40JDdp4PI6hfHWPraLQEkXLi7Cr5lXrY8aPPYNb6aXjYuYPPQDfKYd2/pQ+ShtrWK1ytnyqisIqEruZajweYzQaIZvNurbID1Q6VqnqFm3SUw2CjUMrXS2/qdFbVai4ALhTBNXzYdEjgdkPyh5BQi6Xi51ESHopPbmLeFVIwbZLL1I/034yFY/F5y1a46P9UgCmPPfKkIfwqtZhw3ZL76385g+w6IQAcAiGi3xK3MlkspTnrZYym83GBN+6X3RBmLtNxJVMJtHv99FoNBzqI7oulUpoNpsunjWbzQ9n39jYcOk7xWIR6XQahUIhhlBZVJGo+2bddWvhVTnr97qpwKIuMgMXWnU3pwqY0lzdR+2zbV/r4/8cDw1kr9dbch2pKG5DEtoeXUgKlC89yrqlVObWRbU8lkgk3AmE+j7RogoQAMcro9HIjU2NrfKgjlVpogpfQYo15izVahWz2fwwIyJYzX+2hkTlwUcvKnk+a0MRFgwoWPHNmb6rfKSghJ8r72o/yW+9Xs+NQ3crauGY1VOz86Q8QY/YpmhaRcp+2DFqaJOFdNXnde6tR0fj7AtRaX8sWPB5I0v0v/XbP+Ciws6YH+NP3W43llLHYuO0vOVFJ4eEyGQySKVSKJVKqFQqqNVqqFarLlyibkwURbHzulUhhOE8Lr6+vo7NzU1sbm6iUqlgbW0N+XzeZbewkJF1U44P6didWPZ9RXTVajX2rj5v43W6a4xuI1ewAbiLJxTxcZyWKRWZco4UwSo6VeXENC4Km2VMHyLlu6pkiDqtoPBZ/Uw9JPZPDZ0vPq+xZ37OjCL2W3lUkZLyD89U1jljv9QA83lFzYlEwmVeEIywEDRwfLqoqfTi3/zNkJU1OjpP2ie7YGnBlX2ORQ2D9oFtafYF25tOp8jlcrF3GWazQIIhsjAMXaqh/V77ojRmPzimyWTijmu286HzQvljvzVDzBYNq9mLJ3QOLS1883dbuROIG4hPuCoZGx/mc774GLC4yJULTfq8xqvpahGBa1oPJxSI70xjO7PZDM1mE51Ox52VAsSZnUzE/G4iCx2DIiYdvwocn7Oo/OzsbIkm+vdgMFhCDPQ4KpUKrq+v3fZsIk8VTF9mAOlI1KnhFYsi2W9mKTDso26nFg33UFjo+fD7bDa7dFGv0soKiTXeQHwjio5R+x9F0ZJ3wucIAhRJc+41FKTn63Bc+lvpZg35dDrFZ5995hSuVf7dbjdmPLQfShOlg50fPlOr1TAcDt0OTX1fx8w2rNxp6hxDi4owLRq3ssTfdnOM5XudL/IT31Vvhn/PZjMXNrPtUoZUSeotRjp+PqseAMNjqjN8StzOC/tnPWCdf5Wp28qdUdwsKsBkSpve5csrJbNojjEtGUMY4/HYLfhF0SKZn0RnHDCbzcasIRXeZDKJ7bDkOcpU2Bp3ZJ8U+Vnh4rM6ZjK6VSTKaDbWy3e4M88KHusG5oJ2fX2N4XCIjY0N9Pt9tNvtmJBYBKbehmUw635axK2urW++fPOvzMxsCJ69YQ0py/r6OnK5HI6OjmL0VDppyM3Ge62yUaWlfeZ3RMK+WLylvUWFSlNNu9PvU6lUTAlaT4T129AQ+8znc7lcDDBoXcB8AVzDFgxHqjIinXRxWd9hX3RDDkGDzpc1HNoPG3ah10JPQWXRekkW6CjfWj61eoPj0XpULhVY+ZSw1m9DoDQc/M4aFzt+9Vx9PB7r863f/gEXi6KsVeRndEP0gl2NJ6mLQ6vG3WdktE6ng3q9jrOzM7RaLfT7fcd4eiohERrDApzEQqGAarWKwWCA4XCIw8NDPHv2zC1mMhamgsZ+qZto3X69aUd3o+lE+7yRKIpiV6BR6OjW6Ts8N6LT6SwxFuvXov21c6JoR4VCF9vUEGn8TudOQ1k8c0aNtyoOn+Azk2djY8PNPdu0O+00g4O7HzXc5jN4HJMK/+7urusjFSz7mM/nY5kg7Ivdxafzp0hLb/nxhYZ0TpQWURQ5HgIWJ/pZxc/CMJB6SOQbDUHZ/uXzeTx8+DBGK1VcegSyzrc919p602E4z9whoFKvRw2TvsMfu2ahc6qK2eftKa9aJW/RunqF1uAoIFD5tQaX/Kzt6ty8CnG/UnEHQfB/DYLgPAiC78tntSAI/m4QBJ/f/F67+TwIguA/CYLgSRAE3wuC4Buvqp9FCSvtLFlrEoaLlMByPJOFSoqLSgyf6NGW7XYbnU4HnU7HHRwFLDawsB5FiNxdGIYhrq6u8Pz5c5yenmI0GjmGVSFXRrWI0jdmnXwr3IoubB166qHNINH4MsekzEXGV1RqlYMiKdaVy+Xcs/l8PtZvuvLKrFZBktnZ/8lksnS6nhpk0kGR2Ww2P2um2+26kw+VF6zhUQ9GN7so6tRQhlV2/O7ly5cxb0MXbRlu01RBFqsI2F9bv8/wZbNZbG1txYyNVawMpcxms1gYTFFhEATOsKhs2T6wj/q/ItBVCsciUiu/Fv3rZ74wKMevCNyiUrvWYPWB8o3+r8qXoQwFXSoPxWIRhULB9VefIS20/z7jqs/wuGQdk/WyfOXLIO7/G4A/Zz77BQC/EUXR2wB+4+Z/APjzAN6++fk2gF/8EvW7Tlom0KJCNJst7majsFsCWUFlShUzSPTmEAowlQMXQ/WgoWQy6c7cZp2tVguNRgP9fh/FYhFhGOLg4AAHBwcxprUCpgxklTPP5GCfOQb20xafACj647ba9fV1rK+vxzJpiHBZdIEkiiKXo6xuOb8nM2vsTxeL7CKy1mmNKxHxq1Kg7M5FWzfdU8vw7EehUFi6Vow8xP/VXWW/mONNGllBUwFm/aPRyIXkptOp21XLQl63x41q33VcbGMymbh4tNKA7VulYUNAShMNK1plyTaVD7Wefr+Pg4ODmBegMV9V9j4PQdtQ9DqbzTc+kbZ8RjNc1HNTWVdaqDFjmz5wx+fVO1MakDZUsJ1OxxlGXUwmH2lRRWxzvKln1GP1jWFVeaXijqLoHwCom49/FsAv3/z9ywD+Nfn8b0Tz8t8DqAZBcO9VbQB+62jdcTvRfM5OrrqYSlANFwDxnXT6W/uirmOhUHCr351OB81m0yl4xo47nU5sEhSZaF9ZKpVKjFlY1JJbJaUGR4VDGZNWfXd314UeuDhLhun3+44JLU35PdcI2Cfd4cf2WTSUpAiE3xEN8n5PWzSn1ZeayDFbvtH+K/LUOQyC+WUbDKVY4dW5UeOjwmu9D7t4qrzFoqEPu6DG2D3HbXnD9oeKngcRsc/21Ex9XnlcP9e5Yx1KT/K0omBfXTq3q8CTji0MQ+et8js1yDrH1gtRnQDAm3ZLEGaftZ6v0tYHrDgujl3n2jduy08W1KjXpToKWL5Znv29rfzTLk5uR1F0cvP3KYDtm7/3ABzIc4c3n53AlCAIvo05KtfPACwvYiihFe1YIVbms8iFP0RPVFi2XVp1ALHtqEwzZDiBZ34kk0k0m01ks1lUq1UUCgXUarWlOvVmEB0TF4d8SNIaMrXWKoSqvPmbyurw8HBpxZ59oQL3xfPUA9DNCYpUWRKJBB49eoQvvvhiCYVyV6K2z8UynR/Nh+dRA7pwa+OcURTFFget0mP7loanp6dLgmuFrlAoYDqdup20DCnoMQKkPRdNNeSjBkv7TwUxnS5uO7EhLQ3b6DkXypdUFJopwz7pOTmWjzQkRX5SvqIxKZfL7pwbzoOtQ5WyXexlfTymQvtHuqrxV3DDNvi8ghKOj+3rpdIKsNRD8MWWOSa+x2wY9uO23Y1aVoExFkXkROxcA7P90vkkKLit/DMvTkbzGbx9CdT/3neiKPpmFEXftNZOhc7nOlr3j4RRRGCLjS3zMyW4DRWwLQpRu912272pGLlRZzgcot/vo1qtxhal7GKNz0jomH1oXWgWQx72jkHWwzzy6XTqzoVQV1BTn9RVUyXBNEftzzvvvOPGpqlMAHB1dYVsNhu7l5KhBjUKNkYOINa/MAydV7O7u7t0z6UKslXapI0q/FWISIsFCFxwZq47b4+37iu9Fx0LkalmYPAzRbMa+1fes+ElljAMY2Ety7eqPGzKovKV8rbODd8huNGDxnzIn7+1XSt3CrSAxcY6Gibr8VLW9OA3HbNV7Kr4WfQkR/ZB16SUP/i+PTtF9zSwTp/3Z8drDaDyFcEUaa3zTx5ROvq88Fhbt367upwFNyGQm9/nN58fAbgvz+3ffPbKoswELFtaVXgkvrW+duHDEk4Jo+jGprtZl5cLZnbXnC6YpdNp5HI5nJ2due21mj5mPQYr7Dpm7YcaGnXbwzBcQjPaX0UUqryiKHKZBkpjTWukUtTFnlQqhVar5WLmVOykH2//UZpUq9VYOzZswhIEi63j7XbbHRfQaDRizyaTSbej0CK/RCKBYrEYE2gqCKt0OPfMkValrWiHV4B1Oh23o48KTueMPxRIHopmjYkqDJ1r0kCVlJUJy9NRtLhHUmWGPxrmUTDji6lGUeS8Bhp7G35RXrUyqTysfdU6qJwIguwpnxrW8YWgOGY77xyrFtalhoHek/Vc+LzNxFG5srpDDQM/s99xfrlhjDTleDVZQN9T5X5b+adV3L8O4Odv/v55AL8mn//bwbz8MQDNaBFSWVlUsCzqtrsQWXgmCAerDKxInDfA6+eKOgAsoSNF3pxouxHDegK8BZvWUpmabVKgdVHFIgZ16dSLUANk3VY+qxuAeJIi29NxMLuGB3hZmjG8QeYrFApYX1/HxcWFOyVR71CkQKgnws09irr19ESLKFSREMVGUYT79+/HlKTvIgnrhVkake5WUDS2qHyhil1RkSJUGyrScAIPLNOioQHWp3WzD6pw7PiskSa/2hgx27tN8fNv9kGRsD6n2RXsB99Xr1NdfVWy+sMT+3T+LSix3o/lDf2ec6egQOdB49p64Bh/Vsmd0oZ1EQz5Fi85D9pHXUew4+Gc8A4BfY9jWLXPgeWVMe4gCP5LAD8DYCMIgkMA/1sAfw3ArwZB8FcAvADwF28e/1sA/gKAJwB6AP7yq+rXgahCVaVg0Y0SfNVEEz2sUrRqKKwrw2L/135pe4oYuX1cUZ9F6XxH++MzTtPpNJaWqMUqfEURFh1oUWG3ioP1vvfee/jBD37g8r25iMlxaL6uhrQUOQyHQ0cHPeOByknnSlGzKovhcIhnz57FxsNx6jg4F71eL3YWswqd8o0qLBsHZzsWidPQ2cwXVejWaFCZ2Xm3SJVZJ6lUyq2r6DoF6UFZsGdAK11t6MtXLIBReli54J2uVJBqiC1vaX660seGLkhjnxzxefVItJ86BjtnqvDs/Pni9LZYmmjb/N4+p323C9iW3vo/dYbPiNzWR1fHqsn9gyxhGEZ6HoOWKJrvcMzn82i3287i2fOKlZCKEFisUWCx+dYAlgTfLkIog/E6NQrn7u4u3nzzzRjStZMCxMMitVoNnU7Hu8jFxS8tdDd9DK3vs31VmoyvWqOkoZVCobAU9+P4GackiuE29Far5RaL+J0uWnEOOHYVKP6v25PDMFy6uEL7SuNRLpfdudka5lChVXrQm9DvFAXr3gBtV2ms27z5nSJfnQdtX40K3+P3ds1AD0gCgHK57Iwn+8X5UM+B7Volru9YNGkVlnqIdj1Jx+WTPQ1PWWOp/VQDofLq64f2WQ2a0lb5wiJW7ZtvC7zOswVwmlqrOf++g7z4nX6uHgH5k59RZ5CXKNfsy5MnT9Dv972ro3dGceuhRyyKRDl5KugkkAq7MgR/q8tkGc8qSuteWgQVRZFbvCiXy6jVapjNZri6ukKn00E+n8d7772HRCKBwWCAcrnsrlTScbBQeQXBIva2ahVf0eoqZU0h4Io+szVUAWndyji2DRVg9omKjWe9jMdjbG1t4fz8HIPBAPl8PpYfrGjad2LdbDZz7qJ6VGqcAP8N4IqyFMHZsa5CM8r7GuvnM6pQ+L1N3dI4uUXVVolZdKuAQfupCpCKSM/esbzDWLJm2VCx6JxqOEZ5yod4LV2oZHyZPuQNpYkaUTt/2p7SeVXYxzefrIN9UoWrhtAqdtKRfK/f2znQudc+E5T41pfUSKyqV+vQ+c5ms7E9A7cp7jux5Z1uqMayWBQZ0Joxdu3LAgHioRf+b+ujBVT3fpUlViWuWQPD4RDVahWtVgvdbhepVArlchmXl5c4PDx0Gwmsq6TtUBB8TO4Lc/AdPVxfrbpa8yiK3KKIunJqEH2xOS1Ezz50s7GxgT/9p/80ms2mE4hKpRKL+Vkh5FEFQRC4jBHGb1VAffyg8V9VHmpg+Bzzo1mf9kGPFeBGJPbVZmgosiPSUz5QRagG2AqlXYzT8ahit6hVFRLfSyaT7gxrVZZah6J/Sz/+zfFr/rzygXpnqmCVVrqRTWnA9Qz+6Lu6wElaViqVlXKrdCLvhmHo9kCQZtpHu8DJop6K9oEL8IlEAmtra7HNd+qx8XkNmVm6WDnRdQL+r0dNsH1V2q8qd0JxA/Gddjp5yoz8jhcVcCLtCjSwuOWcxbrsZE7+VmXHZ1S52ue4OPrhhx+i2Wy6W3qCIMDJyYnLCz06OooxP9vW9DIqMk6uKiBfmc0WW/nt56SRLsboCjYXI+3iGotNe+N7Gl4h0p7NZvj0009j7j0Rn6J5ReoqUHzW9iUMl4/s1Pm1n1MISDciNx9iJ1JSxaqZNzpu68kpz+jf6vnxXYu2rfvOOrQN5Uf2n/Xp+R1f+cpXsLm5Gesjj4DQcamysN4Fn1FlqT/APDyj41VDkUgkYplFyr+ahqhz5wt7sdh1CNKIbWl/yYuaKWLlme9HUeTCmXoiH79X8MZ9GHr6pDVmqpjtOKzxsJ6Ir9Db9IHG28qdUdzWNeHf1voqE1llqJbcRzBFN1QsOkEWcaqbpMxDpc3dcBT64XDoMi/q9TrOz89RrVZjaMZmuSgCooDbMAmf1XHweysM7K8qf0VyuoCkCrtSqThXUr0SIlKLuKhYxuOx2wk5nU5jV7Zp7E69I84bFbs1YFtbW8442IwhHT+vN6NCpHFQFK7Cr0pGv1OFYbd3K8+xEBRQweq50fQWOD6NkdpMGuvlKarXBUmlTRRFOD8/x/n5eQyMWB7R/pD+Ou9MnVQ0b8FNvV5fcvH159GjRzFgYMGPFuUFjpXPMp7PfHlbNJzHdzVUEYahU4D0/FTGWIcaFLvdPAjmmVJMBlBDTrpr6InyYD1L9l8zvNhnHTff0XCZfmeNrS13IsadTqcjnrSnCwBaSBQby1Qi8L5By9B8Xy2sVQQqPOq6MGUunU6720hU0BWNsx+cxPX1dbz//vsup9e6SXbnoo5LEb+vkD6asaELb2rtrfFjyeVybhcblY2iPAq2tqFGaDqdolgsotVquR1rpK2GgLa3t3FxceGUEn+y2ayLh6uQ6CINaaOGibTxLdzyGV+MkYpW6+SY7K7bXC4XO6xJFxY1ZKLvWJSpipkCTjrq4qP2Q+fJjt8adyp6/u/zFlmfLj5b+qiC0aLXutmQF+chnU5jc3MTBwcHri67VV5p68t+WjV3vvDMKkWnc2jHx/8VcWtfqPipmO06B9tQj4lyYNcRdGz6m32337Gu0Wjk9gpks1lMJhN88cUXGI1G3hj3nTiPm0qXB/Ekk0kcHx/HEHUikUCpVMJgMIhtx2WsW4+n1KMjVbiVePzfohRFsMlkEvl8Phan011vVMREn7pIks1mkcvl0Gg0kM/n3YLNyckJtra2XIxSkb4KrCITVRA2Xsh3iACJGEulErLZLM7Pz2Pv+BgKWBwXwGKzFYD5giTnaTabb5Dhln2GrliCIECpVML19bW79EFdSColq2DV2HDu1EjpnNksHBbNOmA9Nhxi55qFz/T7fa/LS4FVA2YVrSpCO7d8zxp/8o2Oxypg9s0qPzX0inp9oQblIZ8SsXxlPV0dK5U6D1VjXygnlDsf33JO1KiyXksf7ZMad51n3xZxVdS2Xq1jNoufosh+KFpXr0Xp5qON6h6rc4jI1QjwZMt+v++SChgGWlXujOImE5RKJeTzeWxtbaHVasWuDdPry0gcnvqnShCYp9jl83kkEgm3VV0vr1W3hhYvDEOXhcGJZdyQREylUtjd3cXx8bFjSLp7/JuG5Pz8HM1mE1tbWwiC+cULYRhid3fXtasCrSEBCiHHuSpGSIGwyFM3J6mSVkWgm1nsApj+zbYnkwk2NjbwJ/7En8Dnn3/u5oNhgGq1ipOT+X6ryWSCZrMZ83DUxaVyVNShY4uiCPl83ikIG5tWwWPxCb+lKwVZUZQqHB2/XWRk/Yw1c57pJep8JpNJd9MQMDesekY1+20v7VBXmfxFb8q34KZjtop+ldemaX4MDSgNSBM9Y0bpr3xukT5pxTptapwWPVfEro9ofVpU7hXgqILm+/R0FVmT5ppqqXPM53xeG4umHProrz/Wuycfkdeoz7gxifH1V51VcicUN90DYL7r7PLy0iFetVB2AZO/LeJJpVK4urpyhxlNp1O3mYQMqMSjy2cXtLgAyBV7Kq9msxlDC5wcDSFQaU6nU1xeXjoUvrGx4QyBWv5VTGqzEayy4uesjylhNFKqwJSxFBX6mNQuDvJ5ogMaKx68NZlMXD61zg3HSoWgq/E0nhQkVUo0dKQ9Qzb8nu/r+PidhhQ0xsx+sm+kP2mgfQeWj0jVUBb7pOEfpfPa2hqy2azLLCLvkh7kFz3z3SpA1mczf/Q55SOLnn0uu51rdfWtYVe6sKj8Kf2136xD5UYzJmwsnIqYf6u3R9SqwEKNox2bhmqYfaW7WAnG7FjtuDkmn1et82GL8rZvrYXrARohSKVSbh3JF5bytuOzyH/QJZVKRe+//z4Gg4E7q0LP0yCDrEqpUualm0aGVIvMv21c1ecCWcbSogLD79V1ZiETMmyQyWSwtraGtbU1AHOvQPuv/bZCwHaV+ZUhWIeedGb7T6WhcVF1Y31KT0M5NIrMS4+iyHkROl/aX5tPbOmscVTtK79X5cux6oYiLgyqMtVQjF4GqyEGG4/k81QGls/U4Ci/WeFn/JpGhicd8r1isYjpdBpbD7DgQ/maxfe/egvK/xbZclw6flXiOhbWyzb4Pt/J5/NO6ej41SDp/Cm9LOCwitbnUeqz6hlns1kkEgm37mT7q/JhQ2Fapx3fqvCELxzFohlLeieqD7HToyc/ck2Ku5N1Tenm/J+7G+OezWYupm0PeEmlUqhUKrFt15YpSMgwDN3dkgBiwkoGsYhKFRcnm66r3WWlYQvWb5GaxpITifkmnEKh4LJQptMpDg4OcP/+fZdxwrFygVCFycY7rTtvFSEvCbbIiN+r+28L+27j7RRm0qTdbiOXy2FjYwOdTifWF5sCpcJs6ajeijWGyht8j/Ok8X+6mOpxMN7Oz7UOVSKkSz6fd94ZlT1RGfurY1RUxWLRo8Z3rXK3awd2DjR0wufsfKoisd6IjtsW9oUG3qJwDStpBhJ/iF5V+T948ACHh4exz7Q98pMvvKD8XCqVMJvNDxrTPqlhZl3FYjGGyi3vqHdjP7PhJs6TGhZ9ToGU9suOazqdrlTali7T6RSdTseNNQiC2J2d9rwjW+5EOiCRG0+F42f8TaWnikstqqIWnUCNryoTat12YnXhySptvkMFxVCOTbLXSaRxyOVyLo2Q133ZcfKAfFVsGkbhuPUd28cgCGJuqe56DIJ4Whn7quPTNm38Dliky/X7fbdwaO81JO2VYXXONDUNiB+nqzTR4su60EwNzrOm89lx8R1tG4BT2jrvq/LZ7Th9/KG0L5fLLneehlxppAaaayzkLeUFLT6vRp/TzTgKRvQZG0O1BskqDaU550KV+SqPVReFbVHeDsMQvV4Pw+EQ5XIZ+Xw+BoLs/JydnaHRaMRCccqz2mc9ddGXcsgwrYZBbst+YVsKOrRv5HGlrQIO9oFrcLyknKnC3W536cx6W+4E4uZALeIFFgrNTrxVYCQkL8y1jAQs4ktcsVXGVmTgc4NZp/1hvJwxcrrAinzy+TwqlQqCYB7KKBaLbnOD9lWZTl1hHSO/s26qPqtxYRVCH/JVtMA4m7rgLEoLuqsHBwdLXok1IkGwOIWQGSh6MhzRE+cknU678IKOkcyfTqdj8XDGMTX7RJE/fzRV0hp8nV8gvuJP5akhu1X8FUURCoVCbBGxWCzGvBILFuzaA3mf6NA3nz6+VCRI42CRuc6LvqfGw0d39tnmFlPxXl5ewhYrA9aL07pseGc2m6FcLi+dsKgy6zPUagD1M/VgyGeaB67ekc4T39Uwqw/o6Xz55kd5hguR/LxcLjuDrp62vucrd0Zx5/N5AFhaQKIrYpWDjVf6GM2ngLlYYWOcFm3NZstnGtNqqsKkgtUYL59lG1Qqu7u7SKfTLlWPxS5YAYgZEaUF+6Bx6VVeAcdBlA0sVu9V6ajwJhLzzSWrhIb9ZdH4olWCVNphGCKTyTgFRkHhWKvVqhMohjk01KLj5IKr5sL7VuC5GM3C7A3Orypni6iUhlYZ6Lwon1FwiZ7Y55OTk1g/lC/T6TQqlQrOzs7c8/boA1/c14cqLQrnb+UNbZt1aP6+KlkNFaoRsUaPmSGpVMplklDhaaiCdajc6djIq0Teaux0nNp3G6PWwnY5Bt0k5TNQ/FzlC4iflW9TdHU9xOoTrbdUKrkMLCt3jNWnUil30JydY1+5E4uTmUwm+sY3voEoinB8fIyrqyvMZvNDV8rlcuwge0U6auV8ro1VZFaRa3YHBVIRihUGmw/L3Gy9BgyIHznKa7AKhQL+yB/5Iy5XXQWE9euYNEZplSIXLzg+1qcogYJl0ZhFmSxsl8KlC1C2WISkAsyxWGNCVG1P3+P7+ltposrLGjK6wAxJKaLWOjXsQQNiUSDrZf6xrUMVBvtPQaTx1nnwKRJFU0oD0tlmIVgwQp7UflDpBcE8HMexsVBhKQjRPlQqFbTbbde2jeGqAmPbOzs7ODk5WfIILT01Xk7esjyitOWzuvtRDeyqtQeft6f00tCR0kaLAiMA3gXPVUVRt/ZL87/5PZ9hOIzeJRcjeWdtIpFAs9nEZDLxBrrvRIybSOvq6sqd+5FIJFAoFLCzs+NSxriDka53pVJBsVgEsJxdYhnDCg3dLIYJlLEtiqUyU+Kzz6PRCOl0Gvl83m0eojXe29vDO++8g0qlEjtfhV6EzxCpArcH4eh3rIOGg8xB2hHx+4yQxugsemHR+P0rrb+MQWmsf2t4Q70b9VKs92Pn0baVz+djucU+DwJALFd2lXEhfYg86bGwL2EYYn193W2tVsPNvnDrP/tAb8P2h2OezWYxHiTv8Rn+9hlhVQJaD4sqSkV6q+pQHlCjQw9TlbTG6VmUx3w8q14y+6w00Vi40l49QZs6aeXb8p3Wre/Z8dr5UXStc+IrPg9C6RwEgdtTocY/COYpo5RbzYJbdeBerN1bv/0DLBcXF+j3++6gJirWXq/nXAqe4BWG80Wc9fV1bG1txY7WBOIn+gELRqQy0kn3IWu1vpwEDTdQMQNzdNDtdmMxKvZhMpmg2+1iNBphf38fQRDEmJ7Pa/9pifm9PqtuGY0XFQMRgtZvjY8dnxoPdfn1ZDcWuwDLoozINjXso3TW51VBWeFWBUzj4VtlV3dahdCGWVS4VsV/1SCyHlUms9n86F6GmZS+wCLn33pG6sVZz1AXzLU+0mtVTFuLGl+Ltq0y9L3DTAZ9h8/wR1Eo6aAuvyopaxAs2OCzugCu72r7NKLkPSo1uzhqQx+Wb0lT6g0trKtarTqjzLlnG7YuFvZ9f38/lgDA8XP+fUp4Mpng9PTUzS3BhbZ9W7kTins2m+H6+hrdbje2E3I2m19UsLW15VxeCgIv6CVjBUHgdkqtEgSiLrXI1lqT6KpsaP0LhQIymUxM4XHirXBEUYRGo4Hnz59jPB6jXq/jBz/4gduQoZOs73CzEBBfuCLDKRpQY0HFpvFvi7x13BaRc0wbGxsx5aU0VAFTegHxLAVFdT7kqP/rO6rAw3B+bCc9LTUEKhzqJem4fAJD+rBtK8SWJ0kDpZP2kzQG4hs72G6v11vKmLHAgLSwz+g41MBon1iHImoqJ80WIjig0lODxpx/0tTyjPZPT1+0/Klo0soC31FPg2EUlUfN6lDjS5mg3GuftC3tA4vST/nWxuw3NzeRzWaX5sbWxaL0KZVKS/KlRlqLRe+kdTabdet8uri9qtwJxQ0sduv1ej03OC76kRlLpZLb/JFMJh16yuVyyOfzWFtbc2d2sE5lel2xV6ZU4VemViWSz+ddbJm7En3umqIJYJHxwV2FNo5FBafIkP9zLCqcwGJiVTlSEBSlKVNrCpRFSIqauUVblYkaDWafcFFFmdnG0a0Hwr+5MKt0ZnxY3+92u24XqM4TFbB1t20KlkVItq+bm5vO4KnRIEiwikA9Dj6rvMoxKQJU/lPFqAbENwZV0kpnizLpRaqx1DiqprfxRz1Hqyj1iGFraG3xKWytk23wO80Ws+P1KVx+butUtK9zoX2wSpbypDRRlP/06VN3qJjlCeslKhBKJpP49NNPY4rWAhJ+pnJBuSXgSSTmx+Sura0hl8s5+VpVXqm4gyC4HwTBfxcEwcdBEHwUBMG/d/N5LQiCvxsEwec3v9duPg+CIPhPgiB4EgTB94Ig+Mar2uAAiWwVVR8fHyOKIuzt7WFjYwNhOD+bmG4TMD/ec3NzE5lMBqVSaUlJWaREQlpkQ+SZzWZRrVaxvr6OfD7vDlVSZKqTpIZBU+nUSFDA7t27F/tOlStjpGSMXq8XMzYcjxVOi2bZL/bJnnGhdamBAJaRcxAELsVR3UcqIeuKqjdiFVK1Wl2KHZI+o9HIhUVYP91H8gONk9KPP9ZVtW6u9RYSiQQuLy+9W+D5nCpmfTcMF1u4yT+qeFRxKMJSpa/v0cjojxo8VWJWYdEl18LvVVGSNzlOLtgpH3JcfH4Vwrf8lkwmneG16FefZajTZ1D5rt1XYEMv+p2OVY2R/q+0ZE69BXZaD8ejWSi+QqWr4E7nRPtodYGVC85rGIYolUrY3NzE+vr6ktei5csg7gmA/2UURV8D8McA/DtBEHwNwC8A+I0oit4G8Bs3/wPAnwfw9s3PtwH84qsaUPeE24U1HNBsNtHr9XB+fo6rqys0Gg032Hq9juvra3Q6nRi60GKF3meNOVlc/NzY2ECxWHSHAxFh02pbBgmCwF3npcLI+mgIqtUqarVabFI4+f1+P4ZAbFydtLJxRzU6ihKUqe2uUWVaveTAKhTWq7TULBobCgAWoSV7gzw3GPFCXCsYamQoxHYcOr+KFlVZ8TPLA6Sjj0/UC+Hzmm+u/GLrtZ6aGhD2U9+zhlfnRGVBBZxt+/rC8AE9E+UJ7T/nMplMxkCCNWqrPElryPj5ZDKJHVjmQ5xsS+fBzo39nHJp61V+8IU0rHKkofrGN76xhPit0QUWfKiLz6vCjsPhcOkyBF1HY3tMXLB04RgUBHGOfGNz799mVbwvBMGvAfjrNz8/E0XRSRAE9wD8vSiKvhIEwX928/d/efP8p3xuVZ1hGEbMytBULKuQFF1lMhl3yJFufSVBqFxIZDvpFv2wjURinpify+UQRYvMk1wuh729PVxfX7sF036/HxMSujndbte5O9VqFblczhkBzTyIovhZHeoFqLtORcfC8IvuyPNlJVhFrUVPybNC6aORunVhGN8cRNqpsPtidKyXYQ4+q8iF/bEKUNGKVXBAPH1L26eySCQS7rRBHqug37Mtu0ZQKBRwfX0dU+yKTFkHjR4LFbn+Bhan8dlnVKFZXuUcaGaFbUt5wM7zq06aA+JnjKsXqSCB/WCb9n9rdHTeKce6OKvv64l9FmHzPfZFD55SYJFKpbC9vY2XL1/G2mY7+Xw+FnqbzWYoFAr4xje+gX/0j/5RzCOx9GTblm+sx65zqmDCKnP2n7d0KU9yzm67c/KH2oATBMEjAB8A+C0A26KMTwFs3/y9B+BAXju8+Wyl4r6p202WDtoqHArlcDh0R2qq5dfQARWEFhsvZFFGoOsehqE7g7parTrX+o033kChUMCzZ8/QbDbdAg93beZyOXzlK1/B2tqacw15S73Gy6gM9UIBdbPIOMyRpuLSODaf5QYIpRu/U+TkQy1skwrZImkqMnofWhffq1QqSxtsOE7rndDgWjTGceqca4xY50lDCuqyA8s5uKSl7gWw82D7QrrQk1PlbHnSKjcVXBVWLmCyD8rv/IzAgZ+rF2WNE8dsM0Ns32zxyYYuHqryVlpom3aTnDXmdPu5ZmI9KEWcFqXaufN9pnsVNKxzfn4eG6vOK2PYrCsM5/sVvv/97y+Ny9JTQQr7RJ63/KaGepVXQJoNh8OYwRoMBjFjsKp8acUdBEERwP8TwP88iqKWUXpREAQ/FHQPguDbmIdS3KTqCrMqFrsxwee2aUySjMDvFA2pwlG0yQ0U+XwemUwGl5eX7nYPblc/PT1Fp9PB4eEh9vf3cf/+faTTaZyenrpwTLvdxptvvomtrS1ntafTKbrdrjcOSuUdBIFDY1aRKLIE/AtY+j/HyTHWajWXscPnVCFapKsoKp1Ou5ty6A6zPV20vLy8jDEsC5G99p3zrArLGiN9x8asrVBHURTbZMG/gbgA2lAQ6cSiIRhrZKyxt8he+2ppq96QKm1VdqS/pRUVuVX0qlB11yE/08VrGxpSefHJw2w2i90Yb/nRnmJpZYn1E8iw6BxahNrpdJaAhvKz0kbnQg0Aw3icNyB+FR2L5bNms7nEK7532Acqah7hYBUtv7d0ARa3CqmX3e/3MRgMHPqm8vb13dFj5TfxTqcwV9r/RRRF/6+bj8+CeYgEN79p6o4A3JfX928+i5Uoir4TRdE3oyj65s3/twqn/m1dWxKJhXFlPs8J9hkFfpbJZLC5uYl3333XIexarYZisYgXL17g2bNnjpGvr6/x7NkzzGYzd0wrL4BIJBJugdTGqlTw9G+NTaoSVqG3oR1gsStuMBg45aJb6dWYmfmM0cEX/+dv5qkrE6nLauPfDDEo+lDDo0pD44eaow8slKdF1uqNKH2UN1SJsZ+sn/1kfRpbZB28iDefz+P+/fsODeqmEI5L10VY1CgratWi49f6lC/p+enzWgh2dNyMzxK48B1fbrPyA2nPdggguM6iSkgRIn/74uOK0tULsXNsQxRqeJS37EI4/7Y0ARA7odHSXXWC8gP76UsTVcNhM3nUYDHlkm1ZWeMVZYPBAK1WC+122ylyom/rlfjKl8kqCQD8EoAfRFH0f5Svfh3Az9/8/fMAfk0+/7eDefljAJrRLfHtmzbcb1Uc1s2wjK2ToO/pTTcq+Jpgr5PGWFc2m0W73Ua320WhUHCuEBdIuUORjP3JJ5/g6uoKmUwGhUIB6XQa29vbqFarMQZ2xPYIMJWvCp/1JviuXeTSE9T4zHA4XEp5arVajjYqZOqmWjeUtLGoXhmbOxEpZNwtat1RIgmNEQLzuCYNTTabdZlBqiSY1cM5t+lqbIPCpy6/Ggn1Kth3fmbzk2/OQUav18MXX3wRyxTieLX+ZHJ+242lk/aTY7JGG5gDDWb2WAXIoiidfeXYFV3zfV08Zj18h6lmyotq7BRw2EOc1Mgrr1Dhah2KqJXflN9JKz3hkIBAj5FgfTpOCzJsUT609FTdoXVY46LGHpgDPNt3S3NfZgxp1+l0XLJFv99Hu912WVtMNdaboVaVVy5OBkHw0wD+vwA+BEDo9r/BPM79qwAeAHgB4C9GUVS/UfR/HcCfA9AD8JejKPofbmsjDMOIAqwE9MVZ1VLa3U1WkTM+zeNU9RwKrZOr7Bp/LJVKbjFyNBo5t286nZ87QheaSqnX6yGKIrz//vvY2dmJeQPKwFbAdMzqvlHh2Z2QmklhGdLGxdTQafyR71sUyzUCjhOIx/0o9JpBoKhpNpu5s2X0HRqSTCaDRqMRE2xVaMIPTsm/9dZbGA6HODw8jM23FWqOV11RDR2QDpZeDGcpSlUFpPS082aVNAWQxkYvmbCLXWqcWPd0OsX6+jqazWZMGZBn2F9FiOyTrV8NB58D5saetxatKhbZW17VtjkWfucrKm/8X71mIB5+sW1ZA2bnRJ+zYE/7qfKgBsVnJJWnVy38sj3fgqUaFvZpMBigXq87HpnNZk4v9ft9d5YP27+RI68GvxOHTIVhGDHbQhUKEEfjyjCKZKzwq2vLCeCB+6yLjJ1KpRzqI5qiotGEeMaxG40GSqUS9vf3cXV15YwBT6Pb2trCgwcPnGtuV9GBRdz0ZuwA4nmzPkOkdNBiXVIW/l8qldDpdGIH97BeGgYVIDK1KhaNzepYSEPdDOVDIj4h2dzcxHg8dt7AbDaLZdiwn/YkP73mTIWWComF881+ExkreiY9rBJhP/m88o3d4KSCTfTLevQ4W+VhPaHRoj575K0a0ChahNO0fauoWGgAWR+zo8irpJeGKfL5vEvbtONhUVRqwZIaPOUT673pIWk6Xk0uUH7Ucaqnwno13GLbXAXslDZcFxkOh05v0LixTzYsZ/uvfbPP0ShdX187nRNF8xRZ3orDRAfyUq/XW6m478Sxriy+0IiiUUURigytxSRzMzOEdVtmI6Ny+7w+x3BLsVh0N6QcHx9jNpvh4uIC0+kU9+/fRz6fRxAEztVVl1cZxypeK2xWMVqjpO9SwMlMbI8KRBVHp9OJMSnTKJvN5lJmB/ul7Sr9WY+dI4vA1D3XsbLf4/HYxfYUJamypnDrQk8ikcDjx4/x+eefu6N52Y5mpGi6oa9/qvB8aHKVO6701mLBD/vAyybo1Q0GgxiqV69MF7ILhYIzqKoQbEyZYSuG8KjkNEyhdJ/NZjEDq6dMcmztdntpn4JVUjpONeo+hW3prmO3dCPt7YKyhoVIWwAx+da5tCFJNUzqaVh0zwwdel+sJ51Ox+5g9Rkt9eB1zHxHw7W8TIXAJQzD2O1Xli995U5seVcEbDMm+D0nWrej8jmLGFmf3UBhGbJQKDjFq4LOOCovCmZ4Rd25wWCAZ8+e4fDw0G3Hr1QqTpDOz89drCqZTKJYLLp+2N2J7Jsdt47HMroiTrtQx+c0i0QNUqfTQSqVim2QKRQKKBaLXo9HFSuVhdKedCJ9VQHasZC5efaECiXpzBMfdSxs5+OPP3ZnhWufer2eU9xUZDrnyg/kM1VKFhBoLB2IhyT4t0W7pJ0qRIZAqGQ0e2rVIpbumFWjY2OnSk9dzNVDyzhHdoco+VDlgd+zbat8SHOrwKyh5nfss08+9X/lNfU8E4nFSXlq/G1f1HtiUVqxrduMroZTycP8zbUkvsuNdr5Cj8oCHLZFL0zP/OeZQ1yD83nQttwZxE3C280oPgVCpaMXsVpUqkzLLethGDoXejKZ30rOA87VMFCwMplM7LzcdDqNbDbrFixTqRROTk4wHA7xwQcfIJPJ4OjoCMfHxwDmaT0Mm1jXXfuqCJCM6wtRKK0sCrLCrJ+xDTIihZKCHkXRUqofhU4zEPh+rVZzsTpudLLCq8jX1qvhIXoI9iB9KnEWfqcKiL85ZtJF0ai+q7Fr3ZylsX1gfoRCoVDA2dmZ66dF9xr/tPFiX0aE9pVzoyEh0oJK1mf4LPCwG6JY+L7mhGsddk60qMfBojRT46X8ugpB63dWAVsetM/qfK7yVNULt2tevqLGSOXLIlwq8OFw6HLR+QzXMtg++00eJj+QVsAiMsCNeXxXt9Zr6FINmK/ciRh3IpGIGKwH4oxv3RIALgWLqM0iFg0NAPPb1LlrqtVqxTaqWJeQW9o3NzdRq9VcTPDkZJ4Y0+v10Gq13DZ2Hh7F9zg57777LrLZrFvIpCKjO0Zlw9tmVAH5Cr/3KUIWiy6s4tYxa5xSn9G6bY6xKk4KCBWORWLsD+vR7JlVoQrbNx0v61LDquO3Aq99Is3t2ogqchXiUqmEMAydwOpCpxYqM2tELdq1AMSGtNTL0Xmy3/vo5VMg3NSVSqXcorntA+fgyxRFwIlEIpaiqPJp37H0Ijqn3KrskbeUBy1SVkNrlTvf09AhsMjasntE7N+r6OELPalBtPVoHcrHnHOlE499tl4WLzG5ueDCa4XuRKgEiLv+nOBCoeA91W46nTpBVDSzygh1Oh2USiVsbGwgl8sthVv4W9P6uOCYz+ddih9DCbzhnMc50pUaj8fOTWY6oVXGYRhPx7KLlCw6HmUK0iCKoljesyI3xrFVCCwaXuV+atvWqGnhXHERVvOGVeA0r9YeV2ljn4o0VOlZVEplrHPH/t67dw+7u7uxlEjNJOJnHL/GsimczWYT19fXsTFqG+peA8tnkVhUrXPP94IgcMcEq3ut7+t7yutKM32Pn1NJ9Pt9Ry81AoqYlRa2n+RV9tGH0G3bVqa0UIGyPaU5+8V2SDsLLvQ5tqcyZo0bt7hb7037pLxt21d+1lCaPmvH6zuTxEYOyMPVahXVatWhbXo1t3kNwB0KlbCQGKVSCQBiaBRYMCa3X2u8Vd1oHfxwOMTR0RHu3bu3FEsmA3CVl7HIdrvtTrNLJpN44403MBgMkM/nkUqlUCwWcXl5iVwu51K49HTC9fV11zb7rPdNcoETiOdLA8vMR5qoS0yl71PoPNvEom8NF6xy39k++8V2GT/e3Nx0YRK+owrKl4Vgx6X9YTvaviob/U6Vpt5kw4W2MAzRarXcnOoiJZX2bYs/Po9GQwGkA7BQ1nyevzOZDNLpNNrttlM6FlGT7jREajyCIHC7VVutlnvOGk/Wq9kZVuGRLqrgNCTFYlMzVckrsFBEbD0M+9kqHiNNFTRoe4qklXZa1ANQcGCVtz0HSI0wn5tOp7FsIzUoNsNFFbnlVfXYrNesYMFGCNifSqXiMkt8Howtd0Zxq6Xjsa2dTgfZbNalLykSo0JdW1vDaDRCs9lcirfpJLTbbYfSNVcSmDMCM0gePHjgXOQwDF26DlGl3lkYRRH29/exubmJ6+tr12+7XZglDOfXX/3Yj/0Y/v7f//tuQYTjV4GyGxisa834mE0PYzukp8aKlW42TmeVA+nDukulEgaDAXq9nvteXVBFT2RUzaDgOyw6NuvKp9PpmBBaPtHYO8dEeumZypplojnxjGlrvJd16xZ99lcXXZmOqK6z/p5Op45GSic1gix6G4+mQRYKBZTLZTSbzSXEyTGrMrZGjX/bTTHKZzpegh4i2WKx6LZzs7xqDn2KWBUaiy80pXVxHnXhlPOtSo8GjmfbaxjDrknoWG3RvHgadw236FgUXat8ap9IK2u4VH7ZD+4fAOBu9CL/jUYjlyrrK3cixh3KBhy6jcViEZubm27Q6XQa9Xrd5SQDwNraGvb29nBxcYGTkxNE0XzVloKVTqfd+6r4VWEpskulUjGXJZ/Po1wuu1P+dnZ2cH19jevra4fK33zzTWxsbMR235FprMAw/ZAHTvHSCBsasFbeFt+cqcAwK4P5uELnWNqcVZj8zLp/UTSP/dPwWWRBgde4HwWPi3fq3uocaK49i2/Dg6WDxrotaqOQ2jqZ/aIIzRo1VSpEw3xfx6Z0swrOhqAsYlSjpPFSPs/QhF6TxnqUflYRcV5U6fli4nZM7IPSYtX4Vo3Jfm8/860nKL18/EgaKX/aetWrURrZonOtcmnXKNTQ+rxUpYkeDkfaW160oEqRun5G/mP8fzKZ4NNPP8VgMLjbedyq6JhDzTzeZDKJer3uDoNJp9MoFAro9/s4ODhwyCQIApeXrQhSEbhdpFAlxfb4zmg0cjv96vU6PvroI5eyk0gk8OjRI6cEVYgUObB+eg69Xs8tRFjUqSvQ7JMqMU1HVIZWlMtFDY5PmQ9YPpCKgsQbtHUMioaZgucTZkX92g5/GM7SdQwfGufnGvPke9bdprIrFApL9z1y6/2LFy9cvdad1nb1M5/3YZ/VsWp8m8rUusNKEyoEfsb51AVLpqXp+2o4dLHOh8gJfnRNwKJC9lPpbg9H0j5r3VqUb+1cWgWsNOZzqkzpsQBz+crlcpjNZjHvVeVZvQ0CNhsu0TAQi45HvS41ivq8Ghuty3fEriph1qngcFVKInk0DBd3A2g83ZY7o7gtkw+HQxwcHDiFqoq9XC67BcR6ve7e11s4GNYg8+ruJ1VowHLOOD/jYhrRmzIzwx68VcO6rnyWSo3o2lpmCiJ/a99U4SgyU8ZXobbCZgVD67OCqjFjrd+63yw+91D7xpgolTB3pmmecRRFbgGYC84qeKS9zy1l/7h9WxXZZDLB4eGho48qH9Kanocdpx0P+7K7u4tmsxnbVQgsdmiycIy6yGrnQefOFzrgPNnPlDc0ndEiTCp/zpPlcw0P+MZg51xjxgo42B+fYqdHZIv2RQ0jx6IG5b333kO9XsfBwYHz9lSZqTJlSFC/V77xeXG+mDPrsLyu/VXla+mvc+SLf9u2lW4qk0x8WFXujOJWd0jdPc0e4EC63W5s4YaMSDeDz/LEPiqmRqPhEDfjw8p8OpHK8GQGIoDpdIrd3V1sbGzENj4oA+gRoqyL8UQdp9YPxFPwrEfgOxRfDY3P5dPvKPDZbDa2qGOFyYdIrDvoC6dYlEo0qigRmHtM/X7fPcPvueCsRuA2t5/FIh5ryPiuuq2q2FRZq7BpPfV63b3DeWCdepa0LjiSXorqFN2tmjtLPw3Z6FyqsdLf3FLP+VNEb9vWeSG9+TfbUjqox2H77OMl7aOOTfuqIQgdyyeffBKbE4tALVCijACLQ8QUiNh++pS2GnAfECI9KCeqoLXYfQhKewsKdPxK59vKnVDcPpSjCBSAy+bgBbIag+LzannDcH64P+PPegAQFcTl5SWq1Spms/kt89ZF5qLW2toaBoOB28hz79493L9/f+n+Ol1MscpXJ4zfWfdLn9V3SqWSS2tSRchihUMRGZlLFTDDHpbZVJFo++rqafjEt4DD9jmf2ifWzcVdCsBgMEAikYgdXsX6fC62RTUW0Wi/eSORb4zAYqFI+cZ6YMVi0Rkaa7iU3qs2t1hBtX309V3HbdHaKqUfRRE2NjacjKjCtkcH2JxiGiCdT+tV2DUD682wvzRsmpKp4SjWz/0Yur1f55Y5zr5iaUaZUB6lXKTTaXS73VhfLFDz0cXyCj+zfdJ59/GHGh17Fo8aJU1UoIyuKndCcVvF5WNSnvVgF5RWWX5gfhtGLpdzGyqq1SpGoxFqtRpOT0/xxhtvYG1tDc+fP3dhFm6OYY7l7u4ucrkcrq+vsba2hs3NTZTLZa/7ykImV6a2SlyzF6hYgfgh7GTy2244IWLlO76+qOK2yCyKFncUsg5V8sCy0lTExb+tx6EInfXq9+yXxnpZBwXfJ0T696q6VJFoOlsURUshEm5SUQWqKJX0UWNskT/j6/Zz9st6SUofi/Cs0VT+4me+7Ag+x9xt1qmKVL0C1qkeIjD3KikDnHfr8WgIS702jsGeMqljVL62ef0WhFkQxb6vAjpU3haAcQxqfNSbVjS8qiiy53s+naP6iuPUUJQqeaWRL+XztnInskoSiUTEc259Vg6A28HI7yzTKwLkZ6lUCjs7OxiNRu5arXQ6jbfeegvr6+suxa3VaqHT6aDb7eLi4sKh6jfffBNBMI8XFotFh0qIDrPZrEPzzNMmUvAhYkXKNrfTFxe1YRsKhUXYOnamSF5eXrr4MplGMwdsKpxFzkpH7bdFpFRwrF/XA8IwjKWW8TP21adogfiWcqWhKiSrFG0Ms1AouHi08gt/dGzKUyz8W4GCrjPwO4s4lS4+wfa56OQpTSNUz2ZVH8mPepiYlQ2+9yqQw7mxHhZpYRdErddH75OhDes1sA39bUMYbDuRSODHfuzH8PHHH8dCHmrMtM981zc2bYvj1xCdgijdqq794w5ppSmzz5SvLB9oqqXVbZRV5UeVCQD46KOP0Ol07m5WicaCLcPwe660WySiysYiwUwmg9ls5nKvgXl2B3fxEY1tbGxga2sLANBoNFAsFmMn1Kl1vby8xNHREd59910AcMe6TqfT2KFSyuBUKnZcTLHTz7QoOmFRhlPEpO1cXV3FEJUvJ9q6ufyuXC7H3DSiBasUlOGiaLEjzp6+pkpbhU/nyxYrAHS5FbmQyZlXbZWbnr2idLcuPz+3HpTykSJEK6AailLk5AslqNLm9/ytBlnroPFrtVoolUqx67Jms8X2aO23RYd2HDber89rHrNFmBZ0cEz8fzgcOllWHl1Ffy52km9Unj///PNYGim/LxQKzkOysWWL2C3CJmJfhZb1hD5dxK9UKmi1WrH1Dz1CWPlA5c13sJcFTpbX7dytKndCcedyOWxvb2M4HKLb7S7tliSD64W4qrSUIckcmUwGtVoN1WrVbeThTeuNRgOXl5cAgPX1dbzzzjtu5yST4DUuOJ3O74w8OzvD2dkZ3n77bUdce7woEI+f6uKbGiIAMUWvecmJxOJME00DYz3WveZ3fMdOuuYn+9z52WzmQgiM9ZLmLHYBRdvWZ/R7Cgnb0THYNQpFrypsVuB0YQhYCIfd1qxjs33l/NpQAD2SXC7nTmwLgsCdQ8NYrHV3Gbfk/7b4lKBV/qQZ+xKGobshiIvuzEziO3xWF8KsQtaFRQ1rKYoGFsf98u5HpRv7pnd52vnRxfj9/X13BLJeBMF+q9yq0ddQTK/Xi9GNNNPLpDWFVUN1FtmrMmXbGprTtSPbRwA4OzuL0cPKnyJmGls1rkp3630oELEeym3lTpxVMplMUKvV3GYXzY0FFgTSGDefs5MURYvt62tra9ja2sLOzg7effddvP32205BTSYT9Pt9HB4e4vLy0iEXYHFfnT734sULfPHFF7GNNmq5FQkDc9eRWShW4bGohWaYgUpbz9fgczRISht+R/RlDR5dQRVcFlU25XI5NnaeQcznFA2xXfaDbWrusSJqVUgMd3GONf+an7N+7aPWoYyt8Wr2hQrDplf6FDsFj/PJPun3AGIL4jwOWL9n3Nd6QCxqbLT/Nv6tAt/r9dDtdh26851CqEjPeqtBsEiRtWEGNar0UDRUozRl/zWUR7rqmemkhx6JoDRRnvHRQY0M2+M8sm3Kv46V73CeqRcssLBesO2HhvjY3yAI8FM/9VPuRD8b8uDzCkD4rqWl5WWVUxs+9HkEsfpeBcn/IEo6nY42NzcBzBeTKCSAf1EKiCtKtXphuDgqcW1tDe+88w5qtVoMVfFy3YuLCzQaDYRhiA8++CCmGLrdLg4PD3Hv3j18/vnn7hJP3g/45ptv4itf+YrLWLALNaxH47VqgVmUwQHEBEvHdUOn2CIt3ycjaEhCj5K1C2uK/HigO4WjXC67rbZ2Ecye7+1DBlaYmHbJ+fMhOT0rwoeQiYJ50h2N0WQyQblcdsfA8jvd8MOiW+DpmiuCVMFTd5X/q0eUzWbdcQWKXDXmzn6pYlblovxgFYwW1uvzlmy9Gk5ShOfz0vR7NWBWlqwCVG9Sx2Y9tDAM8dZbb+Hp06cxQ7gqfKTvKTq2/WYfbJ/0e23D8pL1jK1nSBnRvup1ePquT4mzWCBBfWU9EB2T6oJUKoXf/u3fvtsxbmCe7sczkBU9UtDUfeEgbagAAPb395FOp3FxcRE7aYs/mUzGKSTuuuv1eu40OArm4eEhzs/PXcybfchms+4QISptRV5U4HpaHhWeDZcoWtIddLVazYVyVLipLPQ9G55QBUSFSHeb9bNeKhpFGrqICyCmeIFFHJPPq3LU+dH6FVmwT9p/tq9zrO8AiBkTdX3ZN1005lzzijiLQqnc2Uf2U11wLqqqYBHJMRxFetuzX0h/tqOITt1/CrTy8CpX3Gf0+Qz7rje+kzY+YOaTKdbli3/zHZUjn+emCpBhjFUIm3Wq4VqVmaTPW5nXeeH/9mAtXyhT31fP0Bofem++on1TgKYKWr1SSwM1XuwH67ztTlDgS4RKgiDIBkHw20EQfDcIgo+CIPjf33z+RhAEvxUEwZMgCP6rIAjSN59nbv5/cvP9o1e1EUURdnZ2sLu7i/39fbcb0aa6WYVt42WFQgF7e3sA5guO+/v7ODs7w9XVVSxXVGNrFLCXL1/i+fPnqNfr+Oyzz3B6eho7WSydTruLFIjq7STr33qeBZ8nY5AZlOGBxeHtPORKQ0EamlGGpcJiG6yHlxhTySljsK/b29vufbbBPjEFkTnBGipQBcQ+WzeUGTZWGekCnz1+1qIXrY/0tud6ENXqcQVUrDxmNwgWF/lyDKSZrmVw7vL5PNLpNL7+9a+7ebMusQICfsfPo2i+9qG3DJFmOzs7rk6WdDodQ8esN5FIoFQqoVAouD5yDFQSymcKYHwK3qJPrY+FPKa8ZnlRla3SUudlPB7j6Ogoprxtn7RvpJEiUW2bKb3aR76rOkF53BogGlnWryEe7b/yND+zRkdpQ15Tb9bu+NV4v+ouC1D0+dvKl0HcQwB/NoqiThAEKQD/MAiC/zeA/wWA/yiKol8JguA/BfBXAPzize/rKIoeB0HwcwD+QwB/6bYGghtXmIuH2WwWL168cPcSWreCf6tSSCbn14OdnJzg/PwcW1tbKBaLaDab+PzzzxGGocsW4dbl8XjsNuP0ej1ks1lcX18jkUi4W5gHg4E7qpV1APNjGIEFEzG2Np1O3cYCzf9l2ISo0yoL/lbXXNGqpg6xPU6wonIy59ramkttVMOgbjNDDFpHtVp13oeGfrjbUdvmITsWaVO5s0+KinQOmQ3CcWvWkEV/1i23jJ1Op50gqJCoYmM/+G6hUIidg8H2h8Oho4u67apUdUevIls9NlUX0oC5Yrq4uHDZEnxG86ItHXk+D3lNt7orPZReaqw5fxYxW+RnFR3HpvOmuck+xaLKj/1URcV3VsV6dU1CUf10OnUL9ZrZYhWlpt2t8hhsP1kUDNr+KY1siMf2Qw2Kyo8NaWq/NJ3Who5WlVcq7mjeo87Nv6mbnwjAnwXwP735/JcB/O8wV9w/e/M3APzXAP56EARB5PPZbkomk8FkMnEryQCcYvW5ufo/MBfaN954A41GA+1227kZXPCYTCZotVq4urpyk89J1nhxp9NZWvFXRs7lckilUqhUKlhfX48hGOti2vgnn7Fk4OSr8qaSD8MwtrlDFbUqefaTSjuKIlQqFdTr9Vh8WUsikXBH4aoLzvOsFQkQUXBhl+NWpWfPPtY+sX1lSktj/d7GaK3AqfDo4UI27q+xRbrxavCYQcH+kV+YKcQ51PFY/vP1m0Z8NpvFzozXOY6i+LZmHRP/z+fz7m+OyR4GZj0w5SGbgaP8pnOzyo1XHuMc8YwgVbbkJx0P27DrOzrfOv/8TsegC5YK4DhuHb9VetbosGj2ko5fFb3yo3q81rPSkyZt8Xm4unZHL5K8q/NHT/q28qVi3EEQJAD8DoDHAP7PAL4A0IiiiDDoEMDezd97AA5uOj8JgqAJYB3Apanz2wC+DSxyq4+OjjCZzO+CtJttfEqSJQxDnJycxFzmZDKJs7MzDAYD7O3tIQxDt22ZRdOhbvrk6qYR4QJeuVx2m3Z44acyh7qP/F9dMNZPdKVMRqXDCVN0R5QzmUxih1lxYnkuBRmZivrJkyeOqfjOqrQnRXosbIv9VAa1ng8wzxZhXroiMhtftAJhQw65XA65XA6NRsOhei4MA8spYMViMbZwpPVZ5KIoV8M4HK89HVERLN+3hndjYwPNZtMtnHLMumZhaaXtKv+owtX9AUpL8onyrhoqi7ItPTSkoL8tTwDLl2LQm9S+KMJnYZiMXgvrtYbEyrA16hraUJCg9LO0ZT0EMDb3n969AjaLlq0Hy8tVLD9VKhV3zLSOX8GBb15ISzUiFpRa2tvypRR3FEVTAH8kCIIqgL8J4Ktf5r1X1PkdAN8BgGQyGX388ccxl1OZ2LwXc1dTqRQKhQKAOXK/urpCGIY4PT3FeDzGw4cPkc/nsbm5iUaj4S6AVesJxC04kVIYzrfJP3jwAOVyGblczm0AUAutylqRntat46LyUjdLFb9VOhyrFQ57d6YKoJ6JwB9lIh/SpLJWb0EPAYqiCMViMXbFkkUtHJNv0Y3P6fVVpDVz2ff29vD1r38df+fv/J2lnYQ0YGtra+6mEJ57os+x2KNjVVjsnKjQ8D0aS1We1lgzRKPFCqJmeijddW1Cx6qhFuUZnyfjG7tt36fkbBiDgEEVi/W8gMURAtqG7Y++Q+XLdQfL1xaQKZ2J2K3hZ92WnuRlzh1pYkNBXO/SOnXcKstRtAihabhyNpu5k0nV6LLP9hA77SflxOo6K/d23rT8UHncURQ1APx3AH4KQDUIAir+fQBHN38fAbh/08kkgAqAq1fVrTvASqUS3n77bXd1GLB81i/j0JVKBTs7O0gmk7H0KzIe81iz2awTFnXZKDi84UZR8mw2Q6VSwfb2NorFolNiqgxVefG3Lp4Ai4UKZs4wrGBdVKJituPL2CA9mP2hBzOp265oWfun4QLSQFfh9T1gOU+anpB+pkKmn7N+XmhhkboumtJwnJ2d4Td/8zedYWB7ZOzJZBLzMJg1QpSqi08WrfqyFvidom0qeM6HotswDN1mrnw+j/Pz89gNTaxXXWUCjHK57Dw4VZrqUegcKq34rPKKL+xk50XTZkljCzSIom39yuMWEbJffEZTC5n9xGfpAVsDp4rcjsHKBmlvx2k9Gp+R8nm9OkZF2vxbr0Tks9ona4R0/nQRXQ2SZpopHa2MqqJfVb5MVsnmDdJGEAQ5AP8igB9grsD/9ZvHfh7Ar938/es3/+Pm+/82us10sCPh4qzt3d1dFItFt5hoFYEySz6fR6/Xc2eNJJPz+x7X19eRzWZRKpVi5yhoFkYiMb+QmBt1mOqXz+ddZoYuBqlFV8GxYQQqDDIVFVS/38dgMIiFgXQBg3E6TWnL5/NOKdi4l3U1VWnr5xbta1+1HnXNSSsaNtJd0wf5PYAlAbKIXr0MNY7s02QyQafTQbvddiEuYHkhK5lMotvtYjQaYTKZuNMeNcOGP5lMBru7u64N3ixj6aeZKqsUCM8ESafTePjwIf7Un/pT2Nracm0q0rTjZxs0MvY0PJvOZg2AKlnSRGPL+Xw+9iyL7QMQR9JUYho/5mfkAfKk5THLW9wYpkaBPME6VYkqILN8qBktVoFZntfsLpuDr7pD+ZP8oeEi1sX39RmdU/KV5XfLNzp/ts/2ADXSge/o/6vKlwmV3APwy8E8zh0C+NUoiv6bIAg+BvArQRD8BwB+D8Av3Tz/SwD+8yAIngCoA/i5VzWgaCIIAqytrSGfz7sT+XhfJImgcU6ey82jQan0O50OHjx4gFqthiiKcHFx4WLTk8kE6XQae3t7TrEHQYCLiwsXW7y4uEAul3N9VJdulQUno5BprfsTBAFqtRqGw6G7tUcLY5fKrERsViiVybV+PfwGWD7CkkzHhV+OR70Jhkv0/Ahth8/ZLAsaIs2sWNVPLVbgWbe+R4Fhm/l83u3Qu3fvHi4uLlzmAfvEw5c09GDRrK8vSgdVAFE035X76NEj/Mk/+SdxenqK09NTx5eax8xx5/N5d/aLDYepkGoohe3qc/q89jGRSMTWAXSRTvul47H1kg52vWSV8vTNJUM9PsSr/Mc+s9iNZ/zbekUs5AVNh9S51DHaA8G0EEzoKZ3UKRYgWXqwTyqvOkbbbxpa1qt7DtQD5hkselz0qvJlskq+B+ADz+dPAfyk5/MBgH/jVfX6CgnQ7/cd8t3Z2UGv18Pl5SUymYw79W44HKLf78dWsx89eoRcLoerqyvs7OzgjTfeQBRFbqNMsVh0BM3n83j33Xed0ppOp+6Oy0aj4dB3Lpdziy16+ezNWGMW1cazuG1cV6RpaBjCAfxnavA3Mx+skPssso1L2jhoFM0zQTTfW/OYg2B+9jRzuLl5h+lrVPg25sq6FYGx/VqthvX1dVxfX6PZbC4dzsN2NfZ8//59vHz50jE8aU8jo4YaAI6OjpYEg+PivF5fX8di65wTu9HBrqkkk0nnBT558gTj8Rgff/wxrq6ucHh4GNvkpXFUzt/Ozg6eP38eQ9E+F1kRsHonQRDEMouUlxhK0nCSbnDivNvsCp0j/c7e4an98xUNI7DvNHIKXGjUdb7JH+Qpq+g4lxwLf9g/jk83uiifv6r/7LO+Y2VZ62S7Cig4T+qhsP8+Y2flWEu/30e9Xkcmk3EJELeVO7HlPZVKRYz9qkWuVqvY2NjAaDTC9fW1c6VZgmB+y40ismq1inw+j4cPH7pY0+npqUM9FxcXqNfrSKfT+Na3voWtrS2HuDUzgXFoIJ6ipMhI86zpBZAZLFOzHg2NqLuk1lyRko6V71Gh2fpIB54ix3cURTGWz4O8gOWQiSIVVR5sj+MnWuEP3ydiGAwGyGQy2N7exmw2cxuhSB8aQfUAGAPWcAKNq8bbbZ6wXbylQNOF51G7PGeEC0t20wcRrIYPyJOK0kgLnmejwqpeE5VYGIbY2trC8fFxTLFYHmE/VOnp0QU+o0366XywHs2N17lWY6Mpf/YZnzFKJBIu00I/57vqlarXqUbBjteGGzT8QeOSSqWwvb2Nk5MT73gsbSwI0s++bFHQYIGRzqNta1WapBpQ1j2ZTNBut9FoNJDL5Rz/PXv27G5fFqwomC57p9PBxcUFzs/PHbLgszZeHUWRyz/u9XrY3d1Fo9FwC5atVgutVstlg1SrVTSbTfT7fVcHN5ioa8xFNev2q9vHyfJlxCg6AJbPFVHkpROvSFPb0Gfs1m8yLHNDqdxs3VQ21m2mwFN5qfFR48Lf7Cfb1Q0pimJHoxGOj49RKpWwubmJ4+NjNzYqTVXQQRC4eVBBYSigWCzGMjCCYJ7exeeVDuPx2G0Qymazztuo1WpoNpsxT0MFWi9fUCNBOvAgLp1Ti2LZniqWVqvllJ2iStLYKgTyFfuhY+ZJmToHOkdUfL6sGAvWfMbA8p3lFespWIVo37V8xPlSGli5Ug+DfEXDZ4EN37Epm9YAWqWtssn2lVYWqHDueCSt5Q2+p+EqS2PSbDgcotFouPWP6XSKTqfj+PQ2UH0nTgfUCa5Wq6jVai7MwNvedaFDkQ033fC7KJpfjfXy5Uu8fPkSFxcXODk5Qb1ed8qOwsDzQKbTqdt0YdEAsEBcRJ8WpWkc1y4kqgCoslVG505LrvoTFatC1WwZG2vWwsVPFRKN+yoSKBQKTukp8/FZ7bvm77I+G+qx86mLl71eDxcXFzHhUmOocWTSgvTRc2uowBXt8bwZ0kZpqe54GM5zcp8+ferCKByvz6VmuAhALIygxpXFxkX1PBPSpNPpxBbp6A5TuRQKBTx+/HhJESgaZbs0jpwXALExbW5u4r333ot9xjp5bIPWpzTw8b/S28bq1WiT3pwLRduq+MkfKicKVHxxf45BZcDOn/UelTZA3HvmBicFUPq/erlAnB82NjYcf6msaJ8BOPCnW+JphHq9Hq6urtyeBWauFQoF1Gq1pbCdljuBuAFgd3cXlUoFl5eXblDqAqsVY3oREL+MAICLffZ6PXcDOJVAp9OJuc+Hh4d4//33UalUHDPYxUEVfHXPdVHCx0Q+paqxOE2rS6fTKJVKqNfrMTSqLroiNY0lK8OosPA7n5LnZ4PBwClXFQyGJuwpjTYebAXdjlmVj4YeiOh5TZai/SBY3FCuxpqXPhMNky/ID2pglOHX19dj6FqvgbPuuhpYywf8XMNU9twUemk2Zqv04uI36a98MZ1O0W63Y0rIokrS2TcGLZeXl0u3trCoElUDurW1hdPT0yUjru9oyEj76HvH8quVHd4HqgZMETrlXOdG+YuIXNdHrOdg6UaPMgzj2VssapDUUFk6nJ6extrQcWoq4WAwcPNQKBRceIQnlKrHWiwWnfdvM1eWxrTymz/g0mw2cXh4iOFw6FLx6CoCi5Q6xrJTqZRbbFS0lkgk0G63Ua/XnRInQZlNwjS/wWCAf/JP/om73aLRaODJkyexWLf2wecKWiVvc5MVcYThIhVImXs4HLoMCUWrPqG0ilEPbQIWyJWoiimVFACmzbEde3gRaW1Ruw0VAXALt7ZvQRC4Q67UGLJN/q9KVA2RokTW2e/33VVkNHx2sZjPrq2t4ad/+qeRTCbRaDRix9GSttls1iEuTSNUFGjTOXlBdKFQiMVeVdlotk4QBO6c80Kh4OZEn1cwMhgM3OmYqvRUkahxVM/F1kmUZ8MUYRi69QM7n2dnZ0s8rnTjfKo3pAia//vqZlEvTW+iJ50VTWvYg79VDzBcof2ybSp4oS4IggBvvvnm0pECOmYtGqpSkKJGVftK+ZnNZk5Jn52d4ejoCI1GA+fn57i8vHS7s8lz2WwW6+vr3k1dttwZxG0vbNXdTaoko2h+Dke1WsXa2hpOTk7cwuN4PI7dDK2KKQznGQ7FYtHFlZLJJJ49e4Z6vY6trS2Mx2Ps7u4uCYBv0jSGtcpNsi6lPZJVx6QoBlicoke0rciCyk+VqQpZIpHA+vo6jo+P0e/3Xd1cVNLQCZlW06IscqHCKJfLDikAcFk9Gv7g+OwirEWw1kuxikHftc+pEmNoRPva7/fx5MkT1y+mgDLkRuFnX8kL6okQOSliffLkSawdNUh6NIGmQzJeXygU0O/33cYpVXBW+VvEZ/9mIQ/aUAfnk/WvWk9RvikUCu7eSotAlYetgrP1K/8oT9q/9XvNDtP0QH1H6wYWC8AaA9ezQygf7COPNuY4Xrx44fhS87WVhlZ5cq7U2+KzSi8e3qZtA3P9xPOQ8vm880LL5bLbO8K+3Ia2gTuiuDkBYTg/I0RDH2oxg2AeB6RbAcyPJu12u+j1ei5TQAWAE8nbdbhdm4IUhqGLPX79619391QC8YUdG3ujwtJtrSow6r5boVJEbhcXrbDa8Wh9VvlyvGEYOpeX9xXyGdLZnk7IuqwgqjHi1VmK9GgM+LluF1cPhHNskbRV6MoT0+kUmUwG6+vrODo6ckLD/lGxWqUWRRHOz89datVoNEKz2XQIn2PVzSU+1GVDQzovHA+wODCIi906PtZxcXGxpCB8Bs3WrchOQziaQ6xAgP3heFR+fEqcvzULSWPTdtycAzU6FuECiKFhrUt5VeeT47N8r2EjNeos6vkQwFmABSDmQTJcYfuuNGHR+VZZU1Ch4xuPx2i1WhgOhxiPx85gVKtVZ9DT6TR6vZ5bOE+n0ygUCq4NHcOqcidCJYw7q2vHUIiew0ui1et1PHnyBEdHR07xciu0ImDmgudyOdy/f9+1t7GxgUwm426UobuSTqexvb3tXFpVygBiSlYVoaJNu3ACLCbW7tDTZ4merYInLfgMDYZdjbeKl3W32+2YwuA4LOpSQdS6wnC+iFMul2OII51OY21tDVEUuTRORXislwutqmBVwfBd2w9VfBcXF7ExalFDxr95AcLW1pbbAKOGRRU++2EVn9JXr4vTEJYuVlGB2JMAbZ8Zg1f32xofO/fkT2vQ+S7b0b5Z5aztKb9ZIGD7ZcdizzRRJauHr9mMIf1h25b/LAjR+dV+aP/ZH1uXJhNY70DbYhtWRnR8yitqJEk/7U8iMT/4rFKpOAWvYUquuxGJR1H8SsYvW+4E4lYLH4bzhbGNjQ0kk0l3HjGJzAwSbjxIJpNot9vOJVVUQYHjBcDr6+uoVqsunYzvD4dDtx1a3V9aVVVKihJsiIF/+1w7/ZuMr+cya9HFSA2L2NAMsJyXalG8D0ErclG3VfOptU8aYlDFwpizhjl0EXI6nSKfz8dOidN+q4FT2uoCmKIz1qnP6+YO1s0YYS6XQ7Vaxenp6dIin84ZvQbmz7I+bkYiqCBKt4UKnHOqqJp9Vy9BL4Fmv61CZjtcuO52u0vPqIH1AQZ75o2iZc4b0xZ9cWqLbnWeVdmST0ejkdttbMGBNRIKEKwno3WykP9odLV+9sdn1BXIaJYTx6dtqbwov9p6fZ6p0pz8pOcnBcHiMg9uMKxWq0seuW1nVbkTihuYM+j6+joSiYQ7JjMIgph7a4nb7/fx/PnzpRPsOOBer+e2gAPAe++9h2w26w4GYkZKuVxGqVRy6ThAfBOEVXwsVinr7j616PyeY6CCV3dYGVUVPP/e2NiILWDSwqvrr/20G1JsPq8Wvq8uOWkAzJWInlRHGlNJT6dTd1qhzg/Pylb3UmmoiIf55/xcmVmfC8PFHYAcvxrS6XTqsgVevHiBZ8+exTYgkW6MRdPDGg6HqNVqOD09dWsg/X4/5vGx+MIP+h3nVW/g4bwxDKhn4KjiUuQ7Go1c/JfKSufMp0BpPGgwVdmqe8/C/pBfrDLmmNRoaJuWhzRTwi4u+jwFW6f9Xj0H8p4dg/UQLC01nqy0V15TZewrtj9q1HxgLZGYX8DN3Ox+v4/xeIyNjQ3HT7lczgEPyqeP/r5yZxQ3GY1KQs8N8Ln1qiA5YC0kXjKZRKVSwebmplsA2NjYQDqddjuwwjDE3t4eqtXqkvvDQoVrc7g1dqcKUJWp9j+KolheulpujVnqeMIwdOmRakxum2R1S2ezePohv7ceANtShBYEixMWiSxZL58PgsDtpCMtrGuuf5NJWRfTAn0CyFt2tA6+Vy6XXQ43ETbr0QUkfv7222/jk08+iW0hr9frqNVqKJVK+OCDD9BsNvHxxx/jyZMn7rhVFXqOD0DMW9LQGWml6E0POtOxKL3pPtN11ro15U1jq5qRoZ6hPdVRPTFtV9tQoKBz4ZMt5Q8fD1okrOhY5VdlV+tVuVeaKYgjrXVdRcfH562XxLAo+YZtWk/TeqwKDDXTTMGM8gbTjHO5nIsQ8FA8bjZkHdbo3Ka0gTuiuKMocjuiiJ6pMLgRxw5G3Xtr/YE5AYrFIt5//33s7u7GhCybzaJQKLjt9IPBABsbG7E0J9+uOousrKtk3b1VY1XUQMRoF5poJPgdd0NaZKALVvxOF3zUKPgEROuzypx/c5HFLuaxLbqEbIfP2EN0qNg0JdIqCzU2ANyCqAoI3+VuWY5LD5FKJpPI5XJOIf+Df/AP3IYrLhgB8wySZrPpdulub2+jXq87DyqTybhMHM6XIlBVuqpgNCRFBWU9Hl3cZH1KG77vCyXwh8qBucKrshGs0rZzzMVENQp2LlRB6furvDg18Moz+r9V/D7DYeVJvQilpe07v9cdk6xPDyQj6LDrVbYNnzGyfSWdyIM0EuSVi4sLlwzBo6aVxio/t5U7obiBxeo70Q3jRHpIkzIJXV51iXRRMZVK4f3338f9+/cdU7IOTlgmk0Emk3GJ8WxfGUWFBlgIJXPBGYO8uLiIMZ+PwdlXKltuw7WIqlqtOled/bWxXVWGlvGLxaLLmNFcaSp0n8fCjSE+o6MxO5sVQmXD/jDHeTQaxRYB1TjofE6n8wuJFaEHQRC7n1PDNMByBo79mx4GDyT7vd/7vdjxBqyHPMEQzfX1tdupSzroPgIKtvKBhiB0XYL91TEpnbQPeqCSjk3b8oUy2GctVDqKFn0hAAUOwHyj0tXVlRunnX8tNGYqT2qIfQrNhyCDIMD+/j7q9brjdTV+ytNWHrXorkTrDfo8Xlt0nrRNq8RtmNQaLZ0n62mwDAYDt1t5MBigUCgsGSBr8HzlThwyFYZhxDAGrSOZmdvBW60WAKwkSBAE7noxAO50QI0x2gnnZ1QSLD4rz7+tS2ndYXvCmtJ3FaK1hZuPdAdhMpmMnazHhUROsiow+9v21cYIlUEp6L7YLQ0qFTkZtFQquZRDu4hpERRRyGw2c7nVVqnMZrPYQU92rtlHupq6uKZj5Q+wUFA6t+pC6+fkh1KphOvra2egWY8aPgUUqrjt3LMNVdqKDK1RYlvKJ7lczoXMlK42LU2NgV1foIF+VTzXAgb9znp0bNun/Oy86vwAiyvyVG7UCLJYevJ7qzhtH60xsM+pobzNk7Bt8TOtzwIK9YzInzS0vIxcjyywbf3u7/4u2u22V0nciXRAomWuyJIAqVQKDx8+dLv/OFlMu1KXNYrmZ0Fks1l88MEHePz4scsqUSLy//F47M5S1n6sYjhgsTjG7zVXlahLJ0sZwTKGdcfYDwqLLixp/2ezWSx1UmmidatyUUWqrhiZhu75KjdNkUsUxc9hCcPQHSVgz6zgTS+kGXOyf+zHfsylF6ZSKbfLUueBCkfHpP3h1nIurrEdDc1o6IE/NAaaZ690Ju0nk4k7DnjVYVCcL43/23UR/dsqEP6ti9Qci0Vd5Fm2T+NikSYzL5RmiUTCnYqoZ3aQVqrUtX++Iw7UUOhnqugsmPAZcXoXOofWiPnatjJIL1s9QDWgKgf83ofkLS9YA+qbUwWRduzaR/VYKpUKSqUSEomE25jD8Wm9r0Lcd0Jxh+F8UUZjfmEYYmdnx1mpbDaLbDaLSqWCr3zlK7h3757bsgosCKq33gDxDIUwnK/Ud7td/N7v/R7a7XZMWBhCUaKzP9bdIyJexRQqBMrAdoI40RTA6XTqrstiXTZ+p/Fu9l37yeeIgEkLTRMEEDvH5TZmUYVDpedzPxWpsX6rXPL5PL7yla+gUqk4pae7WzlfeoKhpQWzgSxSVVTNz/i5z4jqnOuc0OOzsW2N66vi5JiZk25T4Tg2X2yZ/eAc2XCM1sFQS7lcxptvvunOs1ClZncekvYMO7Kox8T+WQNq+cFneHQMmhqrhsfKh84DDwSz31m62TCRzoeO1/7Y8JX13HzybmVdx6Hz46OV8hfr1F2U9Dg1OUFp+2XLnYhxz2YzJ4gc8Hg8dke6ZjIZbG5uuom6d+8eZrOZi4v1ej0UCgXs7e3h8ePHMcECFhMxGAzwO7/zO2g0Gnj8+DHeeuutmCupk21jgxROxl2jaJ4Dy4VDYGFwiPL4PmOCGk5hUZdOJ13Tg/i8fc4aEmVY/m8ZXBmF/SVi0LEDcwSmm4bo5dhdoaSPdUsVjfC7i4sL/O2//bfdDlamzJH+vvCDKiYASwvWGhYh7+hcaB8oMDonFkVx/UK9P6UxFQfdfNZNw0HEa4VRech6QxzH+vo67t27h48++mgpG0LpoQZdDZGlN59XnmO7+vdsNnNrDauUyKrwGenBMVp+JK9ZxU+ZVNBgjeFtCl1BjP2eddCYsR7Lnzpv6vlYL0+LLx1RPQzlE23LJ68aluRCJo9FuK3cCcWtrhQFLwxDl6nAS4OZ2kcm39jYcIcIZbNZfP3rX0ehUIgpOzL2y5cv8fHHH6PVaiGdTuP4+BhbW1tYX193BNWQAvsFLKMXMqqe7mZjfuqmaqqczd9VxE8aEFEqI2QyGZTLZZfLbV1Pfqa3S/tQnyp9jpdCpZdH2GNKg2BxGzyL/m2ZVNtUoe31em5eVaApQKqMWOwJkNbV5fNal6IyLXxPww6qgDiHyo8cl8+osM+K+K2gqlLid3YjCd/r9/u4ulrcrW0NQBTNt3YfHh7GULNVjDbcwv+1jxbtKT/qHLOPCnIs35L+qghX8QXf1fnSudFxWyS86n/fXGlf1Diu4lUtFjmvMmYEN5ZnrR5QnrWGls9Pp/M9CLcZT9furd/GB5IA8D8AOIqi6F8JguANAL8CYB3A7wD4t6IoGgVBkAHwNwD8BOa3u/+lKIqe39qJZBI7OzsIw/lRq8ActWxubiIIAjx8+NAh6Gq1iuvraySTSXfoeC6Xw2QywYcffoivf/3riKLI7aZ89uwZgiBAt9tFt9t1ce8wDNFut7G5uel2T96M0/XLogj+bRdPaFTUYFjEAywjFv1MmYqpQkSl1mVV95AxW1UqagT4LFGqZUTWTwYMggBbW1uxM2O03xRgjp0ZPHo/5cbGBobDodt6zs/tjlANf6jxVFoDcGdwM6zCczX0iFSLuqyyU2G1R68q4uG7KnB8Ro0en1ODw6LzyXd1ftX1Z59IV/IpsLgMQg2E0kh5Z9V46XVQSdrQkr7nU2KKRn2gRt/X+mmcNOTFeshnukitfKl0UkN8mxLX+eDfDL8SOFkPx4Ib9d58Y1R5tkBNn1XdYIvlOfZFw4ur3tXywyDufw/z293LN///hwD+oyiKfiUIgv8UwF8B8Is3v6+jKHocBMHP3Tz3l26rmPnWn332mXMzt7e3sbe357apczCMOw4GA5yfn7vV/kQigdPTU1xfX7vb1IkQuLFmfX3dob1CoYBqtRoTPE7CdDqNLTxqyICFAmGLRSO+SWZ/2a5FBoreOKHD4dDlISvy0RCPZuVo7JYLbip8rFddbtbZarWcklW064t5UhhUIfOwL/uOz/20hkvrtu9ZF5TzYg2XRWv2b+teMwvDKg2tj7Ty9dEXk9Z+2np0XPq9HbfyjdZn1yqU9px7ayA4/xoGVBDiC4GoQdXQmq8or/FvuwmIRxFwvoNgvmnK3quq/SbdbNhKwz2W9vxe01tVQVojp3OgXrUve4YGXv/Xfiqo0vetoeGY7LqMDc+uKl9qcTIIgn0A/zKA/8vN/wGAPwvgv7555JcB/Gs3f//szf+4+f5fCG7rARZxRV7Om0ql0Ol08OzZM3zxxRfueFIy43A4dJe/8vBx5j2fnJzg+vraXRJA4tEC5/N5rK2tYX19HbVazfXBKlUlJFeAdfGUjKz1W9dO67aMbxE2C9FTIjE/+pELUD5UoMyq7loQzMNLKqBkSmXMKIpQKpXcmDQu7BuLKgr9To0AjY7NvQYWgsuicW0bp9bMFRVeZqoEweLoX7ah82EFSPuqhsAiVl+4hCmlzHKqVquOb1VpAoghae0D6ydPWjpo/y3NlR6khV0AtW64Gkh6VOynzp9NCNB51mycVXxgDztTGuqzAFAqlWKGjccwk7asw8qD9ls/p2wS7NGbYlkli0oD/VE6WO+CvEldo7Szhbxq+2CNC42cNcQ67lXlyyLu/xOA/zWA0s3/6wAaURQRch4C2Lv5ew/AwU3jkyAImjfPX97WgB5uT6Fhet+TJ08QhqHbst5ut92521zc6vV6LqjPIH82m0W323WhGACo1WrY3t52IRMmzPOsDLW8JKa6V4pmlOgs9n9F5ZouRrRtt+nyfb3TkGUVItTfrIPuNtGk5u9qmwyfKHoG4A42yufzsctSta/8bDwexzJXoihaSlfjmGz4QBGPVToUFKIQ9TSsEOiGEA39aL2qaK37re3OZrPY4rZ6Xm+++SaePHniThzUu1ApsOpFKL1UCVEh8zgBbnCyissqK21LPQulhW/XL+vS8I6vWI/CKhrSGoA7ilSL9TTCMHRpvozd+/pMj8AqL58xsG2pR+K71cb2Ud+xNGI7qtCVD8iT+j+BluoJ22f1qMi/muygXrDlAV95peIOguBfAXAeRdHvBEHwM696/suWIAi+DeDbANzhTtVq1R3IQkWtjD2ZTNDpdDCbzVxOMC23xsm4VZ4I5vHjxy53kke68tB4Kmbfoo1lDH7GZ3zE5QSqglKEopNM5KWLfvY8FH3Gxjq1P0AcxWs8GYALHfFdbsO1i08cG4VNmVvHqEhVXVsdh40/WyXk8whUKRGJUQHT0JE2+Xw+dgiZ0koP/GJRhOhL92M/eT4yb4Znn8bjMX77t3/bbRzSd27h85gy8M0bAHcOPI2b8h4Qjx8r/UlL/uaYVeFMJhO3oYnAQ/nU9lH5l+3QkLXbbRwcHCCXy2Fra8vtPta+WpqE4eLURB2HjsvOv0XYProqfS1t7Wcqg0ozrcf2WT0yX3/UW7HGUeu0YT+OmfJmAYnSYVX5Moj7TwD4V4Mg+AsAspjHuP9jANUgCJI3qHsfwNHN80cA7gM4DIIgCaCC+SJlrERR9B0A3wGAzc3NCIBTxPl8HpubmwjD0J0UyDhrJpNBtVrF5uYmptMpzs/P3WIlQy2lUskt7jHtjwt+0+n8vIByuYwgWNxvqERX5rJKi4S1izb6uVXeGu9Sa8v67AHybnJukPLjx4/xySefxNLwdBcd+w7EY26KRDQMobRU5mS/eJxuFEUOuVslaIXLxkl5HKrdSKTKXY0IvR3SgrnsHJMqZvafHpaifz2T2hZFyOybHsPKMp1O0Wq1YuGJbDbrNovY8JbyhRVMjnNrawvNZnNpe7YaaaW/b01FkbIaPquEVBkr71mloPxJI0Q+oRycnZ25EEcQBA7wTCYTHB8fI5/P4/79+0trNQpS9KhgG45R2tv0Rp/y8smJfdYXO7YhMNu2ghqdXx9q9hVfEoFtn/T1GQ1NfVTds6q8UnFHUfTvA/j3byr6GQD/qyiK/s0gCP4fAP51zDNLfh7Ar9288us3////br7/b6PbgjU3ZTgcotfrodFo4P79+27r+u7urrvBm24o7zrsdDouJDKZTPDWW29hc3PT3fpSqVSQz+edcDDVinF0uil63jT/15AC44OKGBRxKuGV4Fo3sJwWppOq7jjDRfQkXrx44Vw0MoBuf1fyKoPquQnT6dQpK/ViVJgoNMPh0IU++IyP8TgmNVw6Ro0bU6H6BIr5+IpCfEyr2QirjkW1rBaGYcwwsF5mvLAPPqTHkMl4PI6FRFivKmYaalV6LHoZgt7+bnOpWRfP7Na6OT9q+C3qVM/QjoPP+bzFRqOBbreLra0tRNH86i1d8+Dz9Xod19fXrl4eh2yPEFY5UbrY+de++jwT+73Wx3HpMzRQeqgUi8qOrw0W9kHn1PbP9plKX40p+0fZ17ChjlP1is6x9sVX/lnyuP8qgF8JguA/APB7AH7p5vNfAvCfB0HwBEAdwM+9qqJ+v4/f/M3fdIN8++235527EXZeU6YDogLnDSv37t1DsVh0seuNjQ2nhLiweXJyglarhcePH8fispwcCoONY1trbhWFMiQQPw7Sohq16mzDulqqJMIwdPFUG0vzoWwNo2jYQYXVonR+Zg2MLjBy0UcvFGCfqZjYnm7a0fpspgAQF06NEXIsio74vno1nBNLexWKYrEYyySx4SutSz0gzbSxc6y0UgFTY8X20um020ym3/k8vOl06u4lJJ0YA2UfFM0yk4i0Yy6+KhTrdSlwoJdYKBRcKOrFixexNE/+PZstLjUuFArI5XKxUyPteo2CG5UtjlOVnaUd58Iqbf3Mx0fKbz7Fp0bMKlr9XutkOz7jZOVQeVD5Rp/XvlkjasewqvxQijuKor8H4O/d/P0UwE96nhkA+Dd+mHqZ81utVvG1r33NnT8ALK/S85wOKpVMJuOQgirXIAjcbe9BEODzzz9Hq9XC3t4eGo0G1tbWXPt8j22pEmLxMZVFXRbxqXJWBWHr9r3DZ3THWyaTibnWShdVPlpXEASxPGsyigqQutR6KYUi7PF4jEql4lIFtX29NcYaPEWIrNeXgqZt8R2fMoiiKLa1XOfHhnJoRC4uLpzXpNvrOX6bxUBFZI22NZT82x4UZJEW1xeoKBQd+1Ac+0UacT2Cc6Qpmpqfr6EgLayTSlrBQhRFuHfvHjqdDhqNhjMEeokDvWHe90pv7+zsDMB8kXIwGLjsK6b3cU2Knq9VRqq0KSM2RKTjpEG1/Mbx2ZM9VUlaNO/zUn1yaD9X2VFlroBMDTbfYdF555yxWCB1W7kTOyez2Sy+9a1vudh0v9934QIKK3+4s4jFLiqSOSeTCQ4PDxFFEU5PT3FxcYFarebON1Fm1gUrfmcZwyIrZQQqPG4UsfXzeUXq6vZqUffMWngdu0/x+ZQ3AHfbC5EZ67BxOR74rguNVEx0lTUkpIpWlZKOQ/uo4S59Vot1j3nBBj0kzm8UxW9hp8BqTNUaR1XuVBIWhdv5UMOsXpTyWxgurqGzhotts4+WJnahEYjfQKQeGPvJuHwmk8Hjx4/x0UcfuYVWrceGH5S3LHggrblWxBuXoihy2VlnZ2cudDYYDFCv151ivrq6QiKRwP379zEej90RuTw7yC64afohiz0Dh20Wi0V3/aDvuAWljaWv5TX7DulMJeoz1KrEGWbU+oF45hF5TY0Zc8r1PWscNEz4z5xV8gdRmCN9enqKdruNt956K3aAlFWauppvJ7/RaKBer6PVamE8HrtNK3Tx8vk8tra2XMzRLuYpAuBndsGLBFelTyGzTGIVNT9XRMbPWKgM9AxmKlB+x6wPZlUQqfA5MooqVKtorWdBJKXuraIiizCUDoVCwd0HSgHS8Wmclu/beKcayCiKlmLC9hhW1q8oS891UWRkhd0aDavUNZ4ahiFqtZq7rMB6A6sWsuwYNcyl47AIkc/ojz5HmnY6HXz88cdLNLXhJW3HZgRF0eKwNHq9zNzJZrNot9tuDuylFjSQzNCZzWZ4+vQpksmk489ut4vr62vk83l3qBtDnzTk9KJtyIS3D9Eo5PN5R4tViliVqv6vIQ1VilqfDY34jJvyij6nhl+96ul0ilKpFDO+irRVBnUxXsN/vnInFPd4PMYXX3wBIJ6mBqxePADiBGQmwEcffeSsXb/fdxt7RqMRNjc3sbu7i2Kx6BjNxspUuILAn/HB64eovDT2qruqWNRy2/ibRWGquGwcVlOqJpMJ8vk8stksGo1GzPNQ5aAKWmPGFBarSCwjUUD5GdPzyHykTbvdjnkQ9khQFj0fneO0Y1akyT4rmqVyUnRCBEflRM9BkTJ5S40r50szOex6QhRFTmkDCw/GF7Li96lUCnt7ezg8PFw66EpBghor1qcpoRrSUGDBdnUhTo2NPsv3VWlzPjudDq6vr1GpVFCpVNDv911opNvtYjQauTs4Ncyi2/HpDZGfstkscrkcCoUCrq6ucHp66mjGa+jK5bIbh25oIR9TaReLRXS7XfR6PZydnbkxD4dDrK2tLeWSW8Rty23fqXyyaCyeP6ojdO4pl3ZNotFouHmwXrLPQ7qtjyx3QnEPBgMMh0Mkk/P7IDX+DCzcQyVgp9PBYDDA2toakskkGo0Gvve977n0wWw263YPptNpfPDBB9jc3HSLNz6rSiEig/sWH4IgcCERKjIVHlWgiuQ5Dn6n31tLDyxQr7pefIbfMx3OF39neEOLokodnwq1dQ/pKjOtT3dVWveSaN8ysxoevZTA0sF6IWpoFGHzO/abbWs6oO4UJHrnPYNsW3cxcv3AhhbsvBJNUmnxe26e0XNBeAOPpTvb0NCGok3lB9Jmb28Pl5eXLj3T5z34jKUaR9bJfkbR/HQ+XlKiZ7U0Go2l1ERNK1RUztRPXqhBBM6LTa6urtBoNJyM86gJFnuZxnA4xNOnTxGG86OdmQ11dHTkjqzg/BUKhSUe1/UbLeyXNbQ+VK11kdYa1rBZKtYbtB6cypvOq9bpm7dV5U4o7slkgkajga997Wu4f/9+7BJNIB7Qj6IIrVYLg8EApVLJLap8+umnODs7QyKRcHmnYTjfxPO1r30NtVotlprni8Guiv9xElQR6aQq6vbFrqxC1tCPtcKKOIkW9fwRDTnYVXbWDyzuX7SLeCw+70DpTeZkbF3pYTMVSAsyp46fbWi+tCoCXRtQZcn2iPAtOrUKj+/Y2LXyGK/B880LUxJZl86P8oQ19Gq0GP/ku9wspoXP2oUozhO/J91YX7PZjKE51ksj6DupUuli55i0YlbWaDTCxcUFUqmUM0z5fB7FYhGnp6fO6+IiIdEl+T6TyeCNN97AeDx2J3YC8zAoj6W4vr52YT27xqOGTcMnYTg/O4fxdsaMNzY23JEV5+fnKBaLLqnBl/0BxM/FVt6xRtUns0o7/Uw/t4bAhn5U1n08zDKbzWKng/rKnVDcihDr9brbnq5xHhKDdxmOx2NcXV3h8vISn3zyiVsIIKLmTROPHj1CpVKJKVxFIBZh+sIaajj0fyB+Upu6w9pndelZN0+ou82d1QnV/HJtw1f4PlGn9oXCogt4RMP6OZW+ojgiao5Bf/vislRmDEtZg6fGjmNVj0WLppPpwVL6LOu086lhHh9K9wEE2z4RHulhs4g0pMMwhw1rsOj6if6vyswaDq4fqIFi0dMTtQ2lp9KDfeelIvl8HqenpxgMBshkMi7Nb2try9FI54mZHslk0u2c5O7nN998E7PZDM+fP3e3ml9fX7tQE8McioyVN8IwdHs4nj59ivPzczcGpnXmcjmsra0hkZgfNsdQTq1Wc7fK+OhN/lBZ0Ofs4i7r8c2H9Yz1Xetxah0+I0Be4Gc8i+m2BcovdcjUj7qQaT/55BO0Wq0YY89m83g1mefZs2e4vr7G1dUVPvzwQ3zve99zaInnndy7dw/vvfcevvrVr2JjYyOmpK3VtITUxR1+TgbjTkbtsxUWuszalqJPjcVq25o7TMFUZc9t1lZote/8ju68hiSy2axjMmVeKmtFGtYj0PElEgl32Snro1Cn02l34E8ikYgZBI5PFzwVpethRdY7YV3FYjEWmiCtdewcP+msior1+OL61siSFnruh+ZWqyLk/yqkNBQsquh1fAoGdKFbBdnOixpJIm3Oq+VH5X19n/QvFosufESwA8Cdvnl8fAwAjn+m06lbP5hMJmg2m8hkMtjd3cVgMEA6ncbu7i4mk/nVb5PJxG2Y4ymd7XYbjUYDzWYz1n9gDsxarRYSiQTK5XIsFMN1gyian6/PePza2los3ZA8oEZO10X0yjCluc6/8pOdP31ev1fQt4q3VP71ffXoNW9+VbkTiHs6nW86yOVyODg4wP7+PorFIiaTiUvlW1tbw8HBgTuH5ODgwN0ZqYqyVqvhp37qp2KKQIVWz6fgd9YC20nUQiG1lwpYxK1K16fE9SJg0kCV+ar2rBXm2DXGxgnX80k0fMDjAPisMrciQZueRQSuLqXGtdU1VIVqzwQBEMuQYVv2PWtkmNXgKxYBWWTkc2PplWhusiJL0o4GxpcnvKodq0T1O1XwShMbxlFvzB5ExM913lQJ+DKvbLsMcXBB8d69e+h2u2g2m5jNZuj1em7jEsOPvV7P8Tpj4K1WC9fX1ygUCvj+97/vFoGz2SyOj4/RaDSwsbGBjY0Nh+q5dX59fd2dGtlut3F6euoWSsvlcmxRmH2fTqe4urrC1dUVSqWS89AvLy+xubkZu4LNF27QMKkvDGbBnTXyNtyhhlyVvnpd9j31BHV+uBZjwZktd0JxA4tzMwaDAX7rt34La2trblEjm83i8vISg8EAOzs7Lk/UIh7GuPT4UFUmNrnfoiAbt9J4JdGXFQZ1+9Xl0ecYS7SHpPN5nSS+O5vNkMvlYt6EdckU9WsGBNtmf+0GE27/pkK3StciBosU+Yy9sNku7vE9NRQqMIyza99USPSEP46Dc65Flb+iYlVyuVwuRh/Snacfkr5EkhZx6dxYI+yjOftrBVjr4buKhFWg+aOHZimwoPGzBkDDTlZRA3Ab2Bhq4ILneDx2599wYZ97B9gHYHFxyHQ6RbFYdBt21tfXMZvNcHx8jGaziZ2dHVSrVTSbTbTbbecJjkYj1Go1rK+vO8M4GAxwcnLi1m64cUrPRhkOhxgOh9jc3ES1WnWpvl988QVyuZy7UEU9LsqGL2tIsz+Ul6wMKO2Ut5XuasTJW1Yp67yqp6X1zmbzA/R8oFHLnVHcHHy320W9XsfR0fzMqkKh4LbVptNp7OzsOPdIkSxPFeQuSiBuEX1IzX5mDcEqZa7ZDiqUPkFmYX9PT0+XFi0sQuRvImZlAu2PumtWOSvTUJlRABUNWiViXXQqM0VxVPjsuypIpY3WwTHoBopUKoWdnR2cnJzEQkXsPy+zUGOoSpdtK6pXuuv88YwWPfazWq2i1WqtpKnSQY2yhnp8horvZLNZd6YOaVIul9FqtWKejjXeNMLqJahx5DM2tm1BBN9VRD6bzXB1dYWLiwtsbW3h4uLC9fX8/Nwt4HKzFRUgszE0W2k6naLdbmNtbc0t/l9dXeHs7AzT6fwwt1Kp5Azg1dWVM0CpVArNZhOpVMql9JXLZXeq52g0QiaTcWmB7Bc36G1sbGBvb88Zm0Kh4ACSjt3yAeeGsmDDG6uUrXpi1hj6POpViln5SRX+dDqNXVloEwJsuTOKW3NCgcX5GHShRqMR3n33XWxvbztlUigU3Hb5QqGA9957D2+99dYSYlREZhWyTogKjHXZWTQNyCoJ1qMKhm1cXV3FmIRKWAVW36USsOEYu3lAwyd20Y/fZzIZhzg0BKAlk8k4dG9RAeON4/HY3S7EOVOkyD5xLBo2sMif73DbtB6TykwS9sf21aJgYJG9wvAH21Ah05V68pftK9uy3pgKnQqrD4Gz8ChiFXbNbFAetMbb8gr/1rRF9lG/twhyOp26HYzT6fyc9kaj4Q5cGwwGKBaLLnebCkPDa9w8k81mXS4287GJyi8vLx0qLxaLaDQaaLVamE6nzkBWKpXYFnZmk3W7XZd1QoPNRW3dAMSsnclkgrOzM6yvr6NQKCCTybjNOSwaotBjDqz3sypsZUGYPqP/W11iPyMvMVFA0xH1Weo+Zg/ZOmy5M4obWBCbizrj8Rjlchn379/Hy5cvnbBNJhPcu3cPhUIB19fXmEwm+OCDD/D48WMv2vOhZhLNCpAKpF3E4jP6G1hsmPB9x0IlZxWxThD/t5ae3ymi037xM6JTXeigIvyJn/gJ/OAHP8Dl5WVM+eiGB2Uiu6DDXHt1l+1Coz6vGQMa62ffVTHomBXN27laxTPW8HKbvBoU1qdKlnnWiuLV4HFO1Yhaw8p6FelS+WgfqEA0lq6CrrTRubYxbA33cXPIquwDzs3p6SnCMHS7W9vttkP9nHt6SrqgbUNtvKOVdOdJluPxGOfn5wjD0KX/JZPzC094uTcAXFxcYHd3F4lEwm2OC4IAR0dHKJVKbmclwzhUZpyH4XCIk5MTFAoFbG9v4/PPP3f88uabbzpvW70Q3zqD/UxBF4vmrGudvlCK8qbytRpVDbPa79hPpj0y3HPnFbcOXDcBhGGIvb097OzsoNVquYlhrnaz2US1WsX+/r6LrwHL2SKWyDYkokXftULB5xWNqcD63CJbp8YhdeL0e58VZ+yPE6rxUzKe9pXMRTfz+9//PjqdjleJ+hZKbN8Y6+TnOk/Wu9CiG4jUpWccU+tkTjERIlM/rfJnPRqj1PEzdY7FJ6w6Bz6kpMhLFbVFdTRQ6ikQhaqhsOsr6ploOzp3+r2GhXSufApAacz+cd8D+5JOp1Gr1TAajXB5eRkzyPQMqLz1tMJms+n4sFgsuk1Nmp89GAzc1vlGo4FKpYJkMol6vY6XL1+6VFimHjK1l/1niEyNnBrH0WjkQiedTgdhGOLy8tKFUcJwnrnCFMV0Ou3OPmIbuoeBPJjNZl2GDdutVqvOoPg8bMvvOne6ZrFKN6hxYHrlZDKJHbTnK3dCcatQhOHi3OLt7W10u118+OGHbuX//Pwc4/HYnQ385ptvolgsLsUKlaBKSD13RCdDhVuZRBGYT8hUgVvhVwTNZy3CtwrbMgf7qCfCsSjj8XlgkTXC/0ejEa6urpZypG3s2jKnKjafsfB5A3xf0wEpGMyDZlt6aQILx8Lcb46RDK0KXBcv7bwQ8Wq91i22LjDrtLS1aD8I4meC+9CXehGMC2vsVEMzHD9v3VmFtBRQKIJTJc96M5mMWyMpl8sutEhkVyqVkMvlMJvNHG0Z6shmsygUCu6UPwCxMeiYaBgqlQpGoxGur6+RSqXcNu/xeIyLiwvX38lk4uaFd07qAjvHo7S1nmy/38fBwUFsni4vL93hdIPBAIPBwBmDTCaDt99+G9lsNgZOWNTz0M+CIHCZTAoMrI5R46kyrt671qseovJ4NpvF2tqaMzarvEzgjihuohUi6UQigQcPHmBvbw8vXrxwlvfp06eOaRTB6GRQWFTwZrP5lUvM9bSKlsUXjlAlB8QX23xhC0X0NotBlbgqL2u4ZrPFiXz8jC6jbkRRRrLolZ8Dy6Eca0y0bTVavk0FrE8NpYZLNFTADAKOk4Xf9fv9pRMK6dGwfSr+yWSCUqkUi69zvoH4SYe+NQst1kADi6wm1kPUo9kwnAeO33pVPu+CBsReqsF+KBJjdod+psKv4Ss984U8r+Nm2h53GVJBlstlXF5eIggCHBwcYDgcYn193aFmxrA5l7PZLIZww3B+KiEv+WX4jLyQz+fd4qJmUVl+U6VFHuKc6r4CaxTVIKrBBRYhVp6/PxwOnaE4Pz9HrVZzXocttk7Opx5toODNLgBbA65AweepaR06d7lczoX67rzi5vkF3IH1zjvvIJ1Ou91cnOgwDNHr9ZxLXa1W3a3fQHwXk6K8733ve+j1evjGN76xRFxbSEifa63FTrJFsUD8tDbLZGRAVe4WOash0RANlZo9Y5qCYHO69e5HFQZV1IqUwzB08Vm+p8aCQmaNktJW47kM9XCu2XdVXJwvojJVRiztdjumxOyBPjqH+ptjtu6q9p+hIO2TGgN+rjSwIRi6+NqGzo0aFlXI6nEoqtb+UMiZI836KeBUMmoggYUyYx+AuWJstVrugo6rqyvHR1zIVp7THbvc+ch+EBmzbYa4NMmAY1dQwD5r+qX1QBXZa+yd9NB+zWYzNJtNZzzCMHSLowBweHiIwWCAt956y9HIZ3zVqOsaggVi+qM8puOwIR4LUJRPmfGkdL8tVHIndk4Ci5zdWq2GYrHoVsCLxaJL9bm4uHACtr29jXv37rlJUuHlpDIX9MWLF24RRYmpQqHIQBWRnQBVHHqgEov2wQqxKjfGsKxrTYWlKXs+I2IVkc990/rU+rNuVeBsh4LJzxVF2/i7IhGlaRRFMcVPlEmFTMWh8VidC/KD9Qz4m0pBUxsZmlH6AHA77nzj5Zitt8ZxU4CoZFQpqoLnuOlWazsqoLrrVt9TBbAqNMN+0DMdjUYO1AAL9GYVbb/fd8p9PB7jk08+cXsjGDqgrADzWLjmjVujyItL1Mvj2KrVKhKJhDtMis9wDDxkjLLBDAttRz0/0iuRmF/yzcyYIAjcJhvyEwEKEbIes8C2lPZsj33xgTXKOHltMpng5OQEBwcHbl1AjagaY51j5Wf9TOVQQYoaj1XlTiDu6XS+c3JnZwf7+/suSP/w4UMcHh5iPB67s7TfeustFAoFt1urXC7HhIiE4C6swWCAP/7H/7jLD/VZSRufUqRJpWDDIlROqrBUOeuimuYXk1EZf7RGgoiBrq1a/FUKPJFYHNakyJn0sK629kXjlowP8jt9hjF2KjX+r2PU+B2wUFwan6YAq1Lm+wxFKJ0pODbUwznScJGOkQqMKNCeNe4raphVoZAGwFwAuTFKBYzokcpV+8b+cfFMj+flJcS6zmANiYKHXq8XMwDWBafS1LlQ48GFw1QqhWKxiHa7HTsmdTAYOOTKdnVTi6YiMgebmUqcOypD8grRuBowzbax6NN6r8xZZ8oqM1eo+JVOqVQKnU7HKVUNUfZ6vVjGil3M528N/5FvptMpLi8vcXp6il6vh0wm404mrVarWFtbWwI2ykvKQxyvZmVpeEjDsKvKnVDcAFCtVvHGG2+4hYVGo+EOp+Gg3nnnHXcR8OXlpdsWH4ahUyIAcHx8jOfPn6PT6SCfz+OrX/1q7HwCJYpaSF/cFogjMeu+q+KzQgTEt8Jr1oG2b5Egz2ZR9GXdTVVeOh4+p16I/W2VExm+VCrFFKwqDN25x11q9Gz4jD3UyqfEgUU2CPuuY9Ri5+E2BAIssiUU9TIzxfaFtNANG7qQSgHXdtkfZoyom66C6HOTNXynfKZ9ZRuMi2sdSis9RtjOv+Z2W7ql02m89dZbGAwG7jq3N954A8A8lFCtVlEoFPDkyROXSaHAggaj1+vFTiWMosgZhHa77Y5h5dzZkCFpx++JzC244d8My/AI19Fo5NYNOGfk4XQ67bKKOH72u9Vq4eTkxHm7Gxsbjl6DwQCdTgepVMrpCl1r4c5O7uTkQmYURajX67h3755T5CoD1mu2PK7o24LI28qXUtxBEDwH0AYwBTCJouibQRDUAPxXAB4BeA7gL0ZRdB3MKf4fA/gLAHoA/mdRFP3uK+pHMpnE06dPMZ1Osbu767JHiGqpKOim8CSwZrOJIJhv0jk5OUEqlUKv13ObH1YxgyWe/vgUsdZBpanuFhE9wwy6EEXrbs9L5vuqKFTI6cYq4ud7ln72b7t4q2OwsXRg4bbt7Oy4XasaHuE4oihCt9t1i1MairGeDPuuxoCKSePfijzUKHKNQkMonAPN9dewkm62oPLqdrtL3kAymXQ7B21YSj0BW3iNF9tQunA86slo4QFqiqgVybPv1rvTokZBC/mSno8aPNKbG1oajQaKxSKOj4/dbuStrS2Xi72/v4/BYOAuQGAIgt4Gz9IgoMrn824DD68py2azOD09jW04sePy8Yz1EmgodbGT2SNUsLofgEBC36f8TadTvHz5EqlUyoGPfD6Per2Os7MzdxQAjRK9oSAIYpuHOIf0cEejEY6PjzEYDLC7uwtg+VJxLeyPlUNd/HxV+WEQ95+JouhS/v8FAL8RRdFfC4LgF27+/6sA/jyAt29+vgXgF29+ryyz2cwtlnCFu91uu6wDZpuQkbgFfjKZ4NmzZ5hOp+6OO+aWcjvwo0eP3NVobItFkSewsO4WFaswsA4KiYYJiOxYN+u04QlrWVVgGVZRV04neZXg2lQ/hijoOqr1t2iYz9frdefGKo2A+MFF7AO/5xg124IIjXOhSl63T2toRE+gUy9BFaH1aixaZVGDN5vF83b5m2jRIvFVhUaAz9KAKAJWZKo05POkk867GvB8Pu9Qnc630lo/Z+aOLwNIQ2g8c7vVauHs7MztmDw/P3cXQE8mE7c3grfYAMD19bWjjYbLqKAfPHjgFBeVH9sj4mZ/lP7qhXAe1LsF4qGwdrvtZIR3XzJvm+EGKl3lC/JbFEXO0BOtf/HFFy6jRtMl1fOmfqHB4pnlvCwCmCv5SqUSk3+f4bfGXn9YfPJtyz9LqORnAfzMzd+/jPnt73/15vO/Ec178t8HQVANguBeFEUnt1XW6XRc6hKv4mJ8kotZ3BKbyWSQSCRweXmJfD7vFlPITDzn4PHjx3jw4AGABaLUBSwNF/BvXQ0H4nFg/s/fVAh8V5lI2wDi6ILvq6UlIvDthLPITd8nI9tFDjK3eh18j2OyNCDz21CKdfn0vAq2p320BsGOg+9Q0FSo9LhWXWBSgWD/FaVrCMh6L/w8l8vFFvTq9bpD9So8GienAFphUlSuY9RQAA2dGkoq51KpFFvg4rj0hh4FIDQIdNtZvy5E+ox3v9/H2dkZzs/PUSqVkE6nUSgUXMocac0NMlxbyefz6Pf7MWVJ74khKf7k83ns7u7is88+i4V6SEs1JIqAFQQoaubnPjnib6JflUcbHlK+Vm+O/DKbzbCxseFuAOI1hzy/Rnmdi+2Me+v5SY8ePXLv6ph074X2zSpsRhx8wGhV+bKKOwLwd4IgiAD8Z1EUfQfAtijjUwDbN3/vATiQdw9vPosp7iAIvg3g2yTyZDLBzs6OU650gwaDgctJZXn48CEuLy8dwSeT+fm1lUoFuVzO3StZqVRiJ9gBC0Ej4rCoWxUsv5M+x/7mZKhy4ASsisvqhOi72r6iM00Lsgt3vvp1nGROdc181pyr9UQmdrOR0kKVuPbT1ydVgPzcokKlhyJkm5etCEXdUM0+sYZLwzDT6TR2Vsl0OnXxbc4llQ3nhaiRfeN3LDp+HQONn8ZedVGvWq3i3XffxT/8h/8wtkNRhZuGl/1VT1DpS+TIOyILhYILK4bhfO2HYa2TkxOH8nO5nNvgtr6+jslkfvkI48Pb29su/EEFxgu8aVxms5k7R4gonaib41LvVPmRPKaL0qpclX7KV6rULC+wTxaMKU/YNYxiseiOrG23227TDnlE5UbrZl57u93G8fExqtUqNjY2lkCS7nTWcaiXpfX+fodKfjqKoqMgCLYA/N0gCD7RL6Moim6U+pcuN8r/OwCQSCSiMAzRbDZxenrqXFCuIs9mM+em7OzsoFQq4fDwEJubm+6AnFKphEKhgJ2dHRSLRYce7YHks9n8LkBu2bVoVrMjOOE+pa6pbure+QQ7nU474dEDkBQdWkRgc7GB+DGnvs0eN3RdMjgaUrCWPAiC2EKYfm49Des9UPDS6bS7EdwqMlUyysBE2mrsrLvI92x/FaGS7vZ/1kfFqQpEj3HlZ5pOx7/pjhPNsq++U+Us/dVzUi8uiiJcXFyg1WrFtsVr1oXWaxc8rVJiW71eD+fn55hMJnj33Xfd/NTrdadYuXWddTN76fT0FA8ePMDGxobbbMNdfAxBctx6/Rt5gRt2crmcWzi0HqkaNPKIejKks/1b0bcqPEsL1qfvWCNAfuUmIS7Ijsdjd+oo9Y3KkMo161Bvj8q+UqnEQArfs6CC82o9CtUhr1LgX0pxR1F0dPP7PAiCvwngJwGcBTchkCAI7gE4v3n8CMB9eX3/5rOVJQgClwPKi365ZZd53EEQYGNjA1tbWzg9PcWP//iPI5/Pu+3xXDQpFAouJtXtdvHgwQOnLCeTCa6vr1Gv13H//v0YElfUpgr0ZtxLxFVLqePgZ8rcKuhUvDqB+htYzgyh4uBBT9VqdSXTK1K236khUvSrxSc01iBpTJ8CQyWlRs8qe/UwFIkD8Z1oSlufobEI23oHil6JSqmEVbGrMbE0sePRNgqFggvj2JQ/q2D4jhogLrZxDHyW6NnyD8dML6BWq+H6+hqZTMYdttRsNlGv1zEYDFAul7G9ve280OFw6GLx3W7XhVwODg5wcXGBdDrtQorA4rxuGhcurKtHwv6nUikcHBy4685sSJB01tCS0kUBkHo11gNVniZN9FnyOg2memK6ZsVc8kKhgEajgUajgdls5pSvnnqoKDiKIpeAwLAOx8rt/gcHBw5k5nI51Go1rwehdXL8GtLkOG4rr1TcQRAUAIRRFLVv/v6XAPwfAPw6gJ8H8Ndufv/azSu/DuDfDYLgVzBflGxGr4hv81zm4+NjhzZTqRTef/99FAoFx8iFQsEtVJIAFxcXODs7Q6VSQaFQQDqddsh9d3cXs9nM7bbkxQy8fdrGkkksRaeqPJThVBh9aFZjdkRcynhaBxWJVRYUjk6ng+fPn+P8/Bzdbhd/5s/8GXdTNt9VtGL7re1Zd5ShJI39UoEpsrCKXpE1435KI4v6tT9WqakStbTm34pg9TlVxvRC2Ff+rznXajB1POoOawyW7Svy1nxl8q8ido7J0oD1qCLRDCL9LJ1OY2NjA5eXl06xfv7554iiyB2/yhvaO52OO/ObserJZIL19XVks1ns7+9jPB5jbW3NKTJeSpDL5RwQGA6HOD09RbvddkcSbG5uot1uO4+RRptj5wl/19fXLu6rY7ceqHovyoerMip0TqyytoX7P5gazPat15bL5bC+vu5SAMNwvvCpMXh6B9pXehvKv8y6efjwIRqNhgsdkWbVatWdlqh8TR7jfZntdtt5LEzLvK18GcS9DeBv3jSYBPB/j6LobwdB8I8B/GoQBH8FwAsAf/Hm+b+FeSrgE8zTAf/yqxrIZDIutKF/c2AbGxtuhRuYb31++vQparUajo+P3QlmDx48wNOnT3F0dIRkMumOg726usL29jYODw+dojo+PnaLROpqsyiSUwSozKYKTX9bhMbnVYiBBQq1CJ8I8cmTJ7i6usL5+XlMmTcaDbcoqwfnaB9sO74+KGpVpaO0sDF7Ki7Gh33GzZdCaP+2SErDQDZmzud1fNZdVgHXcWi6ndJBPQA1GoqaWdQ74ByoR8Rw1yrDZNGTzkMQBNjZ2XGI76tf/SqePHkCALEsje9///uufp5TTuR7cXHhMke4cEkEuL29jVqtFgsR9Pt9dLtd9Pt9FItFrK+vo9lsotvtus1STKHk+8fHxy7+bePTquw4D0oPRcCWJ5V3lHdt2MM33wpcAMTO6yZttT3uVQiCAFdXV7Hz59lv/ih4sXxj+9vpdHBycuL2QTCLqtfrodPp4NGjR+6MFO0/1yao5LkZyh6H6yuvVNxRFD0F8OOez68A/AuezyMA/86r6tXCQ2DG47GzOrVazQ2o2+2iVCo5ZM7V9C+++AKtVssRlAqt0WigVquh1+vhxYsXODs7Q71ex3Q6RS6XczHuN954A++8804sLmURKRBHdfzcojV9/4YOsWwFnTBVLgBiQkDGOz8/dwdslUol1Ot1h8A+/fRTHBwcYDwe46d/+qcdw2q/eHSm9o990niypub5QirqOURRhNPTUySTSWxvb7vUK935p8wehvPUKS4K+txc9q9araJer8fGQLqpC62IVpU4i6JaNRh2/cDGLfVdLRYx/jCfA4tjUqfTqYunTiYTPHjwACcnJxiNRs4jmE7nF2bTMDAjwWa1zGYzl+1xeXmJg4MDjEYjrK2tOVe/Vqvh5OQEL1++xGw2Q6lUcpkR5XLZXfLLuS6Xy3j58iVKpZI7nImLl+PxOHZaIOeA4Uz2L5/PY3NzE2dnZzHvgWOzXg3nTj1flRVroDlv9nPOHc+U17mlTDI1NZPJoNFoLG2Jt94B59U3zxZwzWbzc1IYWlIAxpATj+1Q/qYxZYop5YSXIOs6ly13YuckY2/MO1Yh29/fx5MnT3B8fIyHDx+6bbrFYhFXV1cxt4huJNHVd7/7XXdjNHdF8R1mrrzxxhux3XOqhNX6k+g29xiAU05Wgdh4NgutrTKtMuzV1ZWLVxL98GwGxv1p5AqFgkNZrIeGgQyrqVP2GFSOi5/bcz2UcdvtNl68eIFHjx4hiuLXKymaVgWj2/CtYCh9eQyoRapc1PK1oUhZY+sqkKxLY9V0W/WSY10EtOEAFVAW8gwVALAIe3BjB13lKIocomYo4bPPPnN8S2WrsXfOCWOqjJ3y/J1PP/00dkIi71vkdV/MSz47O8PBwQH29vbcsbEvXrzAbDbD/fv3Ua1WUavV8ODBA3zve99Dq9VyaaSHh4duXHpGCuWLuxYTiYRTWARMjUYjBkRIW4IZDX2pTPEdi3StJ6hhTWu8GYsmHfRzejFE4Lrz13rcymuUHRbrnbJ93TkZhqFLE5xOp85Aa6Ybc795FALbtntJbLkTipuDXltbQyaTQbPZxGAwQL/fx+npqTu8nau+FxcX7mB03faqk0SrqpNRKpXcyrruvOP1ZxsbG7EdbBoOIaMpcUlYu1hhC1Ee3/MVNT7MS+dJbVTyPCx+Z2cHT58+xTe/+c3YmdN6EhzdQLZp29X/fa4g+zKdTt3uQiqLSqWC8XjsUBzHyD7oDlF1Z1W5KqLSfGR+R8/Al2poBVr/VmO0CuGrYdLv2HedczVyLLqQdu/ePXcG9f7+Pp49ewYArp6zszPHKzpXvnoZkuEBUmEYol6v4/Dw0C2887oxze7Y3d11BiGTyeDq6spdNUYEx81VOu5Go+HqqNfrABYeGGmo3hwXH/U0P+5UVoXMre8200PHyHxw0lJ51YYmtc92ztVYKz/RuPj4ibKoBsWuaahBJ39b70B50nq3iUQCtVoNW1tb7oC74+Njt7sUWOg7ZmURYBFU2vP3tdwJxZ1MJvHWW28hnU7j5cuXzvp0u13HkIlEAs+fP8fBwQESiQROTk5iBzURkVSrVQBwFwdwYhn/o1vHhc52u42XL19ibW0NALxKm+hLLaAiaf1cFYgyCxDfAckx0SCoUmk0Guh0Otjf30en08HR0ZE7A7lWq6HT6eCNN96Incuh6NYiE7vJwyp0XXCxivvw8BDf/e53Xdz9/v37aDabLmbZ7/fdOoGiEvaDc8M6bQyZQqUhJc6DCijHwRis0p20VkFUd9wqSWvE1HPSLfM6X1xg6nQ6TlnraXSDwQCfffYZALjwhy/3W9vn9zbTot/v4/nz58hms/j8888xmUxc1gbvLmXWAr1A5m8zL5t7HJLJJLrdrjO+PAZ5NBqh2Wy6w90oZ8zV5qFOqVTK7WLWsA/BCBeld3Z2HN247qIGmiBLFbYuVqqnaGVF12JY+J3Ol8qV7j7lwjVDOc+fP3drAjREusCvbdiQiA3RkPc4Dmb+kJb0eriZsNPp4OLiwnkpPMBrNpuhUCi4UFWlUnFz6Ct3QnFzFf3p06cupKH5lFxh1UPfdesqFSO39ALxYy6TyaTb+st453Q6xenpKa6urlAoFPD48WMAC8Wrp+1prjYQPxiG71iEx80IqiiB5R13qsy41XZjYwO1Wg35fN4tvtZqNXcEwGAwwNe+9rWlw5q0sD+aBqfCRNry9nMdO8fV6XTwgx/8wKWEBcH86qpGo4GtrS00m013Upt6IpoBwLZsKEcVNRleUROwQO9MXyOKZT08bU/Hr8rF0oVGSueO9KAgJZNJbG5uol6vuxPgjo6OXGx6NBrh5cuX7l3uIdAjPoH4aYVq1DjXPIjJxsen0yl6vR4uLi5cGIaZH2EYotFoIAgCrK+vI5lM4vLy0m28efDgwZJRU9rrWg7nYTKZuPO4ld4MzTHuSm9OkTOf0RDK1dVVDEwoKs7lciiVSm49S+mvno8u/Fr58RX1kIJgca4RlT89ZV7dx3na29tDu912Hr3KDRUyAR/fsUdC6FiBuSHhKZuMDJyenmI2m6Farbq1p+l06vY90KN+9OgRyuUyRqMROp3OrWO+E4p7MBjgo48+cnEydb+5UYaD3djYcML65MmTmLVOpVLuRml1m3i/Xq/XcyEYvZeQ235ZgiCIxW/twp8qW0XXwEIh6/kIwEKBcCHj7OwM29vbKJfLDrF9//vfx9raGh4+fOhSzHZ2dpzg9no9HBwcOFSWy+WWUhjZP3Xz9Hs7jk6n41awmfKVzWZxeHiIFy9eoNFoIIoibG9vu9MYj4+PnbL45je/6eLsVIw27EElZhcBVSitgQyCxSUE6nJrHfZYXbsI6/OQyA8AHIpttVrY3d1Ft9tFs9l0q/tEpcBiAVbbYGm32zFlQ+RInqDw828a9Uwmg83NTRwfH8cUGXmTcWpmdhA1npycIJPJOL4Zj+dX+dFr5El9bIvzprsswzDE5uamO6dEQY7ehlMsFt32eJ0nGk3KRr1ed/ymt+Wokeh0Ou6eSSAeqlDepeHo9XqxEKPyk85BJpNxhhVY7OzUOeHc8diMKJpvhNKFbOutzmYzbG5uYjyeX7/Gi1702Fj7fi6Xc4aOoV7qk7OzMxSLRef1cA2LIbnLy0sXHmVq5apyJxR3FC0W61QAs9ks9vb20Ov1UKvVXO4qY286uHQ6jXfeeQflctmhRLqxTBcksdR9Z0yOgu5bZJtOF9uj+Z51b/mZMpjGyWhEjo6O8OzZM2SzWVSrVbfIQ3eWyjOTyeD09BS5XA6PHj1yLuvOzg6ePXuGZ8+e4Y033kA+n48xs1VY7D8VKvtCYWs2mygWi+j1evjoo4+QSCTw4z/+47i+vsbZ2ZlTdPR6JpOJ2yQ1mUxweXmJSqXi6tT4pxafm8nP7TkNljdYVBB1R6zOWxgu0tJokCeTCTY3N52S293dxeHhIWazmQMB5+fnLqbY7/djiE3bV+FmmIt8QKABwKFR8owuhFJgJ5P5wfwcB/vOHO6zszOXBbG7u4v19XXH9wcHB66P2WzWhXkuLy8xGo2Qz+fdNnTyWKPRwPb2Nvb393FwcBBLK6TSWVtbc3UD8SvilM+p0AhQeNCV8p5mMFEmeG0aMyqsPJLHVLa0bdKRHhcX8XSNSxUp6arn8VMPdLtdB34UiVNeqJfS6bSbV72QRXeCsihNqIzJB+zf/v6+M5JPnz51tOt2uzg5mW95KZfLS7Kg5U4obiC+sw6A2/JOd6XVamF7exuNRiPm2nCS1tbW3E4lbiggWqSLm0wmUS6X3UIMCc5FHFV6qsBtCp2PoDaXl0JvQxm9Xs8dO/vd734X2WwWb7/9tkMF9XrdWfTpdOq279+7dw+1Ws3F5BRhaH/1YCJFvtoffnZ1dYUXL16gVCo5L4AxThq9MAzdTUMvXrxwKJWu3tnZGfb29pwrrF6Kxng1/KEIiN9zDEozFqIwXu9Er0wNrLrKu7u7uLq6cjtwG42G87aiKMLz589jPKcxSs6VpRfnVLMhlIc0jptOp1EsFt3mlG6361DudDqNpaLZuDx3RuZyOaRSKVxeXqLRaODTTz/FH/2jf9R5Yq1WC5lMBpVKBbu7u0gk5lu4aWiJsK+vr51BY3+4o1I9W3pflDvShmeVWDTKDSO6fqLGWb0kC4So9MgjGgbjPDLuDMTXArS/PCCKm49s2IWGhJcf05tgOIIHatmt+KqIGY/m4vLx8bGbK+vlqZdox8x+J5NJlxrY6/Wwvr4eOyaAxowga1W5E4pbXaAwDFEoFJx7x2NbiWC4UEKryffT6TROTk7cVne6S2QMuqZc8FQk1Wq18OTJEzx8+NAdsq6LdYoUNZ6tCsmHtBlzL5VKbnEviiKX+kbm7Ha72NzcdNdMMe7McMDZ2RmGwyEePnzocnO/9a1vuR2k2jYRuxoZdVf5LOu9vr7GwcEBnj9/jn6/744MSCQSbmt3r9dzSI7obTaboVaroVAo4OTkBMlkEvv7+6493/kjNp7Lz3QM9nAp1kFkpYLO4xAuLi5cnHk4HOLy8tI93263Y7no6hVwnol+qbxPTk6wv78fi70TIfmMNhUJDQczfx4/fowgCPD06dMYiiV/WCUDLMIjvFf18vISs9kM19fXeP78OWq1mluUns1mbjt7p9NBtVp1HlG/38fR0ZFT4vReeZkAw4rVahUvX750FyfU63VHB47J9nc2m7mwB8Mv5GcNj5Dn+J4aQl0U5Hh8QEf5Qw0oFZ81rioL6+vrLjRCfZJKpdBqtVy/GRKyoU/lU+VVvcRXvQQFD9bQse9c2+DnvHWIcm8Xwi2A0XInFDdLEMzzGh89eoTZbOYWYrrdrouR0Y3VO+SCIHBuPVP96CJyUcWes01CJhIJF+viphIf0VdZZO2DTjrP+r24uHCx7F6vhydPnsRu6wHg4pP0GCaTicvc4Bnj6+vrODg4wPn5OXZ2dtDv9118mqiBaNamsWl8l2OgS0d3je9nMhkcHx/j5cuXThA1Q4dzEkWRu7aq2Wxif3/fG1dn9gkVMH/rFmANORBtkXG5yk6k32w23QYSbs7ihiUNGdHAaI6+zpcKJPsKwJ0QV6lUMBgMUKvVnHuuBkkLd+PxHJBcLof9/X184xvfcMq80Wi4sIAqefZHTxBUEMNNV+PxGJ999plbyKfRZpoZD4cqlUqxQ5/ogWkGA2WJ3ks+n3frQopqVSmpImX82oZR9G+7IAvAZb1oqInvcPyqvFUBap496240Gi6dDljcNUva8RySXq+Hw8NDt2jJUCvP1KZC18PS1IBYb8Mqdw3JKH/Tc+GRG+QfersEHzSAzWYzdgmMptXacqcUdyaTcVfTc0GO8bp79+4hlUrh5cuXjslo/TKZDMrlslMw3MJbKpUwnc4T3yl83EigSGs6nTr03mq1XEhC0SoQvxXdfkdUwvYODw/xgx/8wO0u49ZWKm0VjOFw6FL+uNLNjUPZbBabm5sol8tIp9OoVCpoNpvu6jbGnvP5vHNPldl01Vvd8W63i9FohL29PRweHiKRSKBcLrsrmpgulUgkYotTXAROJBI4Pj4GMA81ff3rX3cCA8SvdLOISRUWiypGHsfbarWQTqfR7/fd9uHZbJ4bbd/XMyr4naZ4aThC505DW3xnOBy6TItSqeQUjHoRNCxBMN+xp8aIwEJvQ2ef+IxmyPB/u5jGTSwa7lOlrwqDaI6hC7rds9kM+XzeKaN79+6hWCzi5OQEzWYTJycnyOfzyOVybh1I+VrDSSw00BreUJpq35TvuI1eaUjjw/dIZ4t+LbJl3WEYur6rl6yGmfF0tkXdoQv7VJY0bOplKC3YBwVCfI7HUOiZ6szH5sFTg8HA7dzudDo4ODhwa0Q0prpQvarcGcUdhqFLcep0Ou6uyel0igcPHqBUKuHZs2exnU9kdN7WQYVMV5m3iQBwZw0zlZATk8lk8JWvfAX37993/5OJmArFMI2dKABLDH5+fo5nz565TAG6lVypV6TB9wCg2WyiUqm41DNgcYciL5fgWHnY0OnpKTKZjIvhaUhAC/8/PT3FcDjEvXv3XIoh0TdDDZlMJraAxPe5+0sFjwid23p5GwjnUxnPuqPsE+vkd9yWzWfq9XpMaDXGrEpOPSPOD/OGLU3sswyPlMtlNBoNd3pft9vFvXv3YnTQeeP/RPZcIOz3+3j58qULA5yenrqt4/T6rNJVXgDmAOLg4ACNRgPpdDqmDEgv0qPT6bhxElXy862tLVxdXbmsFN4JSY9iOBy6TWk+VOlDm0EQxFJrdT45Hh2jrUPnXr+ntzUYDGJn4Wg99n8aSA1H+DwF9ldjzMViEfV63dGYwEf7b0MwPsDGQmNAr5k6iJ8xnXc4HGJ7e359AbNNyEdfRmkDd0RxkyBMmqfCJmo7Pz/H0dERLi4ultxbLohp/ihT+XiITrFYdK4Qt8JSId67dw+lUgkXFxdot9vY3NzEo0ePMBqN8Pz5c+zu7jpXTDMXuNijCyOtVgsXFxdO+SYSCVe3bl+2OcQAnMBxgUhv2Xjx4gUAuBgkETAXM9977z13xC0Fm0URyOnpKRKJBNbX13F8fOwYlkcBsE9E1TwPPQzD2C5JxuofP36M8/Nzl76kDE16qQArClLlqUjcuqj8XJW01k8eofArWtIsD0V+qsi50Hd2duZCcfQ6GGazG2XUKJEXptOpi7kOh0N35jbXV5g6pxkTfJ9hAKYJMu2TBpTCTFBhF+4IZqbTqUtf5ALy0dGRoxvBAa8ZI+Chp6o0Vw9FeUnnTenKdzgmHZ9VQjYjS8NEeqE255zInDpBw0xE0FSOlDGVKQIComJg7qHm83mX9cEURd5+o7KuCH4VcCPQ07AfjVClUgEAtx9iOBzi/PzchW8JJHlDEefzziNuCoN1d4A5YZrNplsY81lyHtLC5HZFb8nk/JhLTbtiHHJzcxMXFxfO3Z3N5pflNhoNF4vThTK1vsDi+iRgzkCff/6527hBlLS2tuZiVzb+p0VRA9seDofIZDI4Ojpy/zP9iyhXF890kUZpdHV1hY8//tihdj2LuFwuu2uqGB/M5XKoVCqx+SBi3N/fR6vVQqvVwmeffYbRaORCUp1OB/l8PhbT1PCFjZvyOYYTdNuwLiBaQ6cKRhE4hVsVPWnCRSj2hcqCW7PH4zEuLy9df+v1urv4lYtc6h1QqakhYN/odjNtkgqH9FWkyX7zR0Mp9Iy4mMb1F86L8qAqOt0sQ6Q+nc4Pl7q+vnaHGOkFCRo6UkPIum04hHXq2TY2BGZRqsos51nnwy40qkfEUKddX9B593kyulhIug6HQ9TrdXfGEAAX7iLvsQ6bzqhG1yJvGmD+5jpAtVpFuVxGEAR4/vy58xJozBOJ+U08m5ubuLy8XDKivnJnFLe6izY2StSngyHDMBTC75j/qLe/M+WKmRK06kdHRy52SHf36uoKT548cacHFovFpT5qKmK9XneTcHh4iNFo5M6O4GE7XASy8VZFfSoMwBxdUdjJVFRITGsjMmb6IwuZgWh0MBjg7OzM3W7NXHimR1HREPFwxZ4xSSoUIkYaRLqfXCB78OCBQ94A3BkWmpmgc8u6ibB8iMYacj1Lhp/RzeUYSBd1fTmHFGQaym6363J67e3tdMU//PBDbGxsxBSLjknnThU4Qwr///a+NUayJCvvi6yqrMp6ZFXWu3q659EzPcwMw3p3DYaVkWWZh1lksfxACGSJNUbaH8YYW5YskCWQ/2HJMl4kC7EGY7AQYGNsHkKs8Jof8INdL8POzri3e7p6uvpRj6xX1rPrndc/Mr+oL7+Km9UN7HbVKEMqVebNe+NGnDhxzndOnDihbXCFrd+5ztLT04Nr165F/i2VSi2LcFTsOn9Y19DQUIxZV8FwfNzIz01rMITTnB4ax6ztIb9xzHwLv1pBKXeGInB1b7GtrFNdW6SpbotnvYqs3W2hPMV1ErrdBgYGoqtSN3WpRcEFSkXZutPVrUnyort7CHx0Ry9DmhlwQJkWQmjJmcQwQAK0duVCCG4ALWa+N5oTmwNdLBZx/fp13Llzp8UXxf39ilxoHpVKJWxubkZCUbMSKbKe2dlZZFmGwcHBuEAHnC4+Hh4eYn5+PkZ1VKtVlMvllgT0TD5/dHSEhw8fxj6wny5klZn5nYKb7eLkokXBPl+5ciUuvJB+7BefIe2YVnR+fj7GiuuCF2nP6AeuCxAhcCPT2NhY3MbLUMdarYbp6WlsbW3FjUWkM8chZUKzzdp33UGpC36KZDiR+B6mhXUhre/WUC66GHZ3d6O57EhyeXkZJyeN3auM5OBYcjIqqnOhR0GhwkXb43zA/1nW2Kl6eHjYcvYq6a/Iz/kEOHVl1ev1GN5KdDk+Ph7rANCyWE7z3oUiQyHJH47AVYkoDXxNJ+WqUmTKsEUqAtZFxePuLip9r49RWcPDw+jt7Y2pJKgcNMJJn1FXnrePY6Pv0o11PDhZgSYBQq1Wi1vg1dVG2nA3KwFUakeplwshuEk4n8wkNLcls5ycnODRo0dngt3Vh8j8I3SxLC4uRjOW+Rjob2KUBLUgw6jGx8dbJhsR/q1bt+LCDpEpt+cWCgUsLi5G14Myn7pJVOiwD4rCFf2Vy+XIZLQwmI1ua2sLb7/9NiqVCq5du4a9vT3Mzs5iZGQE165dw8HBQYzO4MRnP1OCRM9ZpEuG4WVE2Yx2qdcbeVXoz11aWsLJyQleeOEFrK+vY2xs7MwBqnwf/6t57oiOY006pPzf9fppci3dvKWZ+CiYSHuG7dH9odu+OanL5TL6+vqwsbGBmZkZPH78OEbwMNkX6yMfuhBLITX63TU1sCojVeQMExsYGMDy8jIWFhZiXLL2k891dTVyhqytrbWExQENAc3TVnRdIIWOtT4FUrzXw01TfdT6tZ8+Ju560f0X2ifWq4KbtHQLAGgo1+3t7dhnlS0KIJwGipw5tqm5y3czKICHDgPA3Nwc6vV6PIycC8AaXZJlWdwJrqDMrbe8cmEEt2pybTQnphKNCzFAa1rOWq0WNd/09DQmJiZQr9cjMmfMZK1Wa0F0zOfA7ab1eiO6ZH19PW6Hp9n9/vvvxx2E1I4MT2S5d+9eC4JM+UGB1jzPOuk5cXp6ejA2Ntbi/tne3sbQ0BCGhoZi3gRdsFleXsbq6mp0B62treHevXsxVaj7aOlm8F10FC6qZLghp7u7Ox5sQddIvV6PDEtBNj4+3jLGLIpqFNkArYcv69jyHjWZOSYPHz7EtWvXIrp0uuokPDw8xOrqKrIsiycLkac0Je3e3l5UTjwyDmhEJ62vr2NoaOiMYHbhxO3RusM1hby5MUz5RelDIMK4YN1WryY955HSVS09Lv77GgLvJR+lEDWFPcdIdxvy99RcViGvNFKLSceb/1UZKi+odejzRhU++668o1FhPhaOblWxqDWjwn9wcBDlchk9PT1xbwEtzp2dHZRKJVy7dg3b29t49OhR5AU9D4B0dyBHGueVCyG4lShqmvjA8ppPEDebe3p6UKvV4gTlIkxXV1d0F9B84k48+qFJRJ7nB5wywP7+PtbX16PZnTL93D9PBqe5mjIrXXjxc6lUwszMTPQ5ayjX0NAQKpUKbty4Efuwu7sbj2QiWrx79270525tbaFSqcS8FVRc6j+mMiCD7e7uoq+vL8bGd3d3x7wZ7777Lm7duoWpqakYa00XQ6VSiQsyLlRId58sOqn4nCJQpR0n8MrKChYWFjA9PR3dYLog6i6EhYWFaH3t7OxEpcz76fcFEBUXw0jpUtPdmBpGpya08qPyq5roer+7W1xZ9fb2Ynx8HEtLS3j8+HGMjkq5CTiHVPhopIPyrAovtUooxLUNLP68864WbYvX5QpPLQ8tqng1p5DXyfnrSD7ldlDlpHXp7zpG6tYKIcQIkN3d3QiSNNyzXC5H2cX5NDk52UIXlS9at9M7VS6E4AbSizY+UfVzni+KgrKvrw8LCwvo6enB6OhoPDmHYX+Ogvr6+uIEKhaLmJycjDlEyDjVahWLi4stizIsNJ08K2CeEnITWfvLazwkmIummqiIGeSuXLkSBcjCwgIWFhbQ29uLBw8exKgGHk5BZtGQNM0ZwXzATNfKvvMsPb5/a2sLjx8/jhnhdCOGIsKtrS1MTk7GNvNYOuAsOtKx7e/vj0m1UoUoc2dnB2tra/HcxZdeeqmF5ixE5qurq3H8KZQ53nRJUThzNyHfRctqZWUFR0dHWFxcjFEnXDRUYUD/pitndYeQ79xPq4qK0S7MUMdII+6q5cI1nyNPqvVKfkyZ3yrc9TnyrApAbbfytCsBp7/2n89okjBF7qrUlQ46V5yGbsUArZabC2a1JPS7t5VtUaDGtvCYMmb7o9XETJl0yRL8HBwc4OrVqxgeHo6HMnN3KxfIU6Aur5ylcKKEEEZCCL8VQrgVQvhKCOFjIYTREMIfhRDuNP9XmveGEMLPhRBmQwhfDiF89AnfcYawOig+QIpoHM0wWTldALu7u1E70uelddRqtbjYxg0UFAaMqV1ZWYkbWPSdqum5iu2mvjIK+6BIVAdJJwZj1FdXVyOyOzo6iu4QFfjsG4CYWZD+Mz1AQl0ZXBAm0jo+bhyLNTg4iBdeeAGHh4d46aWXojD4+q//etTr9Vg3zXz6VAHEcEDu6qSgJmJK0caRlprsWjihKZD29vZQLBZx7dq1GOZG5ahjBDQiXO7evRsXihivzTE7PDyMMf9Z1vCD811Mw8kDPkIIMUQ1y7LkyTYq8HTc2T7Sge1wupAPGPO7urqKarUa468HBwfjSUTcqu0Lu8qLLClUr23iGGlERx6qTiHZFBLWEE3le46nrgWppUB66XvUhaJhcyrUnYZq4agcUf6iRaxnQ5IX2X7dsVqvNzJL8tCT5eXleHYu4/n39/cxNzcXI9w2Njbw8OFDvP/++zHBVao9T4K6n0hwA/g0gD/Msuw1NA4O/gqAnwDwuSzLbgD4XPM7AHwcwI3m36cA/PyTvEAJ7gTmNaBVyztj8TNXZ4HTxDePHj2KWQWzrBE2xZSoZFhqyePjY9RqNdy/fx+rq6uYnZ2NA0QhrZND3SEpE1LbzuRBbjFof1hHT09PbDP7Uy6XcXx8jKtXr+LVV19FljXcMffv348RH2tra5HJKKiA1g0xWZa1JDMCELfB09I4PDyMG36KxSLW19fj0Uv7+/vY39+P7SMKZK4PD4PUeGu1mBwJAY3JwgyO+pv68rlBZnR0FFeuXMHLL7/cEjrpJjcVsvuSKTQ49iypHWx0BfX19WF5eRlbW1txcZOCyPtGy0zrcUGuvO+uIrr4uE2agpoKWTeeFAqFuGaRJ6CyLItnlSr/8d0UiLQy9DkVpHwH6cjfSHfPLcI6CBLUR51yj7DonGId7I8qAvW/03/M3brsp881XiOdCV7yFJIrPPLJ8vJyVMC0soaGhjAyMhLXRgBgdXUVy8vLce4wCZ3uX9BxaIe6zxXcIYRhAH8HwC81CXeYZdkGgE8A+JXmbb8C4Hubnz8B4FezRvkzACMhhJnz3tOsOzbeB8XNG0UOOllSzzDRvCL5EEJc3OFzwGk62cHBQRwcHOCdd95BlmUtmQiNPiiXyyiXyzEMTt0GfB9PmCZDaQ4L9pc+Wl7f3NyM/lomrbly5QoqlQquX78eBQVzTjAChOFIun1fFQ77CbTmLibD8gR5+ueYC71Wq6G7uxtjY2NxUZLCmJtDsqyRImB6ejrGwJMxVeFlWdayY09Dx7j47MKO4w4guoVYN4+sq1arLYirUCjExSEiW0VtXJxm/ham0aWPX91vTHbGHXGLi4tYX1+P7ikic/3TuGNtP4Wbpj9g5I5aYkTStVothvHVarWYQ4Vou1KpxBh3WlJ8j/Ii13O46K608q39rmBUAOtc1LmrzygN3HXjc5Z16JxmXSoodU1BLRjl83q9HjeMeVtVOLLQ1cUNfEorVUIMAeU4cc8DLSfdG7CysoL19fW4jZ08XalUYh598pYrWuWXvPIkiPslACsAfjmE8BchhF8MIQwAmMqybLF5zxKAqebn5wA8lOcfNa+1lBDCp0IIXwwhfDGFrh21OLHdd6yFgkA3oHi9W1tb2NzcPIMgiL7W19dRq9VQq9WwubmJd955BwsLCxE9snBFeXBwsMUP5iihVCrFTRzKFCy6cYXm+dTUVFwwHBgYwMTEBEqlEq5fvx637vIAhGq1GjPmMUyMseaKaNjHk5OT6OvVNipK7+npwXPPPYexsbGIFrjoubi4GK2CEELM2nj16lVcv34dV65ciWNH1K7J/rmb9OjoKO5e3NzcjO1R+iii4ufXXnsNpVIJs7OzMVKEIXOqPAHEBPVuZtfr9RhDCyCGcHLsKBhPThp50Z9//vmozOgyunPnDhYXF1GtVqOrRnmV9HZB6m4A7SsVCgXRxMREjG9mClQKJSr2iYkJjI2NxTHRGH4KG1V+a2trLYpX29HV1dWykM52+BxVNKtKiPf6+o2ja50nquzYRgUUvN/nvyN1pb+65hy0UaFQaXMLfLtQR7V81SWlip5yhznglbZdXV346Ec/ip/6qZ+KQMddWa4Q88qTLE52A/gogB/LsuzzIYRP49QtwoZlIYT2KsJKlmWfAfAZACgUCpn9duazL1SosA6hsaDFvCDql1KEpYzn/4l4iVgo+IrFYkSYTB2rK/P1ej3mTHbzWs1gTmoKB70vhNMddmQiZjsEGkxSqVRiGtU333wzIosHDx7EsDaiBSohomndvKJoh8xUr9fjKSr04y4sLGBqaioeJMtzGLMsiwKW8eXcyMNtu8wpw7ZQuNTrjXM1Hz16FA+voKuBW+yZIpWT3/MS8/P9+/ej22J7exuVSgUvv/wypqam4mLu8PBwPHyB7gy+U3mHqIduFip8WikDAwMtApD5v6kYgYYCHRkZiZaMWjc+EZW/1Z9LQaoImQicya5oGdAdpTxIRcjn+CyzA6rgoh/W54G2R9uoil/nIT8rKFJFpPOLdCXvab/Ji9pG0jEl2KgofE2J7VfXnPeBY1koNHY5Mh67XC7j6Kj1bEpXsCxqqaZCHjV8ku3iOH32s5+NbrY8dH2e8H4Swf0IwKMsyz7f/P5baAjuaghhJsuyxdBwhSw3f58HcE2ev9q8lluUCXRQ1Qem14HWnXcUuoycYFEBT2Z2s80XTJjonP7D8fFxvPzyy6hWqzGNqbaDvmB9F7e1KvHp/1LFwzqoMIiWyEA01fv6+uImECoinnPIHY18nybd4e5Pd99o0e3PFKbA6WaIW7dutSy80uyjQNTFRwB4+PBhi290aWkJ9+7di0jxvffew8bGBqanp+NpRENDQ1hbW8PY2Fh0QzCUkO3d3d2NaTMZR87FWJ5WzjGj33F/fx8TExMtmfvcN6vpFKjsKAx4riLRLa2fw8PDuIhF3/mtW7dwdHSEF198sYVHWdQVpMJMhQ6AFvOc48O8MgwDrdVqMRSQG1SYwXJjYyMCF/KYppfVeH39zzbotnPOG3U9poSy+py1eNSVvsdRt66FcI44YmcJ4fQwDK2fykFjzLUPqiS4rsN9CdwDwp3PS0tLUYlre7S4wFYl48iZvPzWW2/h3XffbYk+UzlGGvk89XKu4M6ybCmE8DCE8HVZlt0G8G0Abjb/PgngZ5r/f6f5yO8C+KchhN8A8M0ANrNTl0reO86YkykGcS2kv+sBwb4YQ2ZQIa0LZXyfh/wAiPk86N90tKaaXBddtB/+WZ9nHcxeWC6XsbW1FRES/eG7u7tYXl5GlmX4/OcbOvTVV1+Nu/+UNhQ6ugtS26sMSIZWIca6qBQo/Kn0iFBpUqsPmIm16vVG3PudO3diHUSKNFG5XZ4bGYaHh2NOCR3fev30pBcuENLSKBQKeOONN7C8vIylpSV0d3fjIx/5SMyyd/fu3Tg5KdTdFOZGGV1kzrJG2gNacADiIdOcsDs7OyiXy9H/r7SkgKRJ7Os0Krx9UUrv7+npwfj4OGZnZyOg4GIa885sbm7GMzQ59opYj46O4qHDPInHedFNfwoq5ekUslbhqjyl6zt6v89jnyuO/PU+Vx7O1ypoU+9jfXRDcc4zMIEuVUXb/qz2SS2FlLs2ZSmoB8DlWcoVnFeeNI77xwD8WgihCOB9AD+Mhn/8v4UQfgTAfQDf37z3DwB8N4BZAI+b97Yt7JQzgApRFerKREog1VwagtTb2xvzHQCIJnxK0PtK+vHxMe7cuRN3CmrkgaKlVHvYXk+MRGRNhM9cI6VSCYODgzF3BgXN3t5ezBvc19cXT3350pe+1LJLjYUoy9uiGp73qWDnPQDiYijRfKlUigKJ/eQBFuvr61HpFQqFuF18aWkJW1tbuH79Oo6Pj/Hw4UMUi0W8/PLLyLIs7nKldQAAt2/fxujoaFxsLBQaYXhq7fT09KBaraKrq5E2d2FhIbpvBgYGsL6+ju3tbczPz8dJSIRF1wsFARVSqVSKJ3KTXxh6R2VF4VwoFLC6utoSTsiIj2q1Go+hW11dxUsvvdQiKNgHR+MqaDVTXnd3N2ZmZvD8888DaMTt9/b24ubNmzEt8e3bt1tS/QKNNZNisRjHZXd3N7bfw+jYPxVSLnBTyFf5JQVMlP8dEJ0HzFKgR+e+jp/W4Z+9vYzZJ2KnLABOc7x4+7UN7jbiQdrcH+H00ja5wnH6qgz5KyPuZsVfAvCNiZ++LXFvBuBHn6ReL+77ataXi7TtvS0d1zo0tIkDpjvmUogfOM2JQmGkDO/amO9UxE1fmwpATvz+/v6Y9IchaqOjo1hfX2+JayVi4pmZjILg2ZSkG9+ntHTm5z2qYIgY+HlgYCBufFG3CJmTdZH5eWiFo6jHjx/j/fffB9DIr1Kr1eLOTyY8Ys6Q9fV1lMtlDAwMYHd3F5OTk3HxdHBwMC5cUqH19fVhZGQkntZOFwkXSO/du4dardbiwtIt3o4mmXyMAp5unb6+PgwPD8cYedJSY+MpQLq7uzE3N4csy/DhD38Y+/v7ePDgQTy2jjyqY6E8q7RT0MH2fsM3fAOWlpZw//79uBdha2sLV65cwejoaMwTQ545Pj7G9PQ0Hj9+HKN39Ng5F858d8rvrZamK3ltfwghWmJaHFi4ANN3qbBTy8sRrwtGtyZVlugztFjUPw60Jn9LWQEpGUFgx30fLoMcjLrA1raz76pQ25ULs3NSzQ7g7KIN0BrDze96XdGEdlwnLQuJpL5P4NTfrExdrzfCi6ampmJiejcH1VzTtmmuCp2I9F/zVPfe3l7cv38/BuYDiIKZrgYeP6UTIw+V8H3ORKp8SMdyuRxdQWNjY9je3m5pI0/IVrOQwlAXPhn6trS0hPX19bhdnuiUSmh+fh49PT24d+8eCoXGdv6ZmZmWSJq9vT3Mzc1heno6+tt5HN36+jpefPHFiOiZT5yWTLVajePHCanoUhE4gBaasA+FQiEuPJIHgNPc4U5HWg1chF5bW4s74phsyCejC3DlN12kJAIfGxvD3Nxc5BegkdCoUqlEn7/6ZpmU3wWku/vUCnMky/Hl9RRociHsNFPh5etV/Ow8rbzm7hjSnHs0vD6nL+vkfXQh0tojL/M9akm7r1/HKIQQF+bdInAZpVaV35eyRP5aEPfXorgWVb+RC0h/DjhrZrGQ8dSlwN91dxgHzXdx8f1ZlsXwQUVufJ8uLOiEduZV/xlPuqGpSkHpdRFxU0BQ0zOlZ4oOrsV1BZuIQ3/nM1wr4PmTTCObOoNSBSL/M4qE9GbuaLVEHj582DI5CoXGgcTMu0Lf9ezsbETlXJAcGBho2Y4fwulBGtz5qUKPR7KRdhz3mZkZrK6uthysy3Fg5AYnO6MMqPhCCNENwfdwIZuLp9wgxCgTV7gUAioMlBf5HlWY5XIZMzMzcRFtcHAwHkjNDTW89+joCI8ePToTI6w0V0Sri/aKZJXflY/1Hv2s9/k8VYtUlYDzaqlUioCH9/k6jsoLF9par7dXUTgBnWeG5PMpemg7VRG7sPb+uxXi8szll7/Ty4UQ3Co48vxqqlmB1qiSdnWqcNZ3UEB6ek29jwKfTE5XgS7kpKwBb7t/5jOuqYFTxKOKS8MbaZYfHx9Hl4nGq6oLSIW6WggAYpwuhfNzzz2HarWKjY0N9PT0oFKp4OHDhwjh9OQdRifQT0zhTcuAERfAabiUhoDV640FS2504DgylnttbQ3r6+u4ceNGSyIoZnrs7u5GtVpFsViMwl2TzqsAomKkkiHtaCXo4RGcVIxu4RmfHKvXXnsNN2/ejP0qFAqRRkTu3C6/u7uLO3fu4OjoCKOjo8iyDLVaDZVKJTlRz0NWavkdHh5ienoa09PTMfqpr68P9+/fj3nf2UYALYutviDpCp+fnUc5Rqn7tB/eXud7/Z1FXRu8t1A4zQvi4YEuhHXO5iFdR+DKuy5LVKaQPq6ItA3eFirnPKXmtHI66/zMk2ssF0JwKzp1Mx446yLhNS0pjavP8rpObA0b8vqY/Efv1zpdM7N+1ezeR+0rhauvSJNR/BRqvkffS9eJn9PnYUmOOGguUqn19vbi8ePH0Z3BMzqJHin8iEgpMNwNpIdOOAriROzv72856UVTx1arVQwNDcWTWqanp2MMdqlUimck8hAIWh5qGTEZlrraKOCJkLlYyBBIrkNwQZeom33lqfN9fX3R6lKLh4vFDx48wMOHD6NSHBoawu3bt+OuWkfUefyrbefng4MDzM7OYn9/P24+CiHg+eefR3d3dzyVnusLqiy9Xo6HCipV+j4ndH6mLEj93QU+n1FwQuHJezXax+eDA6IUT+v8cgHu91OhK09yTYBKjlamzj0X1Fp0bqcUcTu5oH3Se32DnpcLIbiBVkZys47FGUOLMrt+B87u0HK/WcoE4yRWhnR0rMUZy/vG96uPONUXzXfhE5j3a4QK66cg0HA3tkUXH3mNkRD0YavpqqeQ0Kfb3d0ds+Vx8Y6+Qr6fOyBJY42bZ9/oB3ZFSMFaqVSi8OUp3BTezEXifk1GDKkVoEpP/fAA4mInFTPpyf6sra3FdAEjIyOYn5+PoZHFYjHusnv8+HF0LY2NjaFQKMQjq3hAbJZl0Y3hrhEALXRXXqFCZuEaBy0FVQITExN47bXXooVExaiC1vnSLUPen+JJR9iOqh3p6mcqKQU/5HF1aeUtxnGjjaJkf4eekqRtceud1zTsVoW6y5CU1eBCWJWW0zhFP6e/C3T+57pNXnnSJFNfk8LO0Y1BpnbmYofdb01GbWfKOZPooPG5lGnofrnUYJzXL0Upfp11MqZU30th6L5v9pcCyBGU00hNTwBxazRRMLfRl8vlFkE3OTkZT5EnKqOCUPqrX1YnuDIlI2iAViUTQoiZBm/duoWurq64LZ7ClVvNmfeFse/KE+QDLhpxkY59Iw9wMZPuEn4HGpYMFffS0lJ027Ddg4OD6O/vR61Ww9HRUUxnQIG6v7+PWq2G9fX1ZJQF0OrzVIGm28bVPz0wMNCy5V4tJ6BxaEW93sh06ejQUauifRVuji61fUpfnZvKZxTUOh9VmKq/2gU/+6ztcQtc/7SNuuHIlZPLkRBCjLTRk2nULan36/MECam5lJqfqT8tKYDFvRHnudAuFOJmY1OmpCNdJWoe0tVrSjhF9q5RlXH43+/XNrtZ5u1VlJ83GKzHFwy1fkfd/rz+Zx8dDSh9u7q6YrQITzcn8tzY2IgCgbmnj46OzrhHHMWr4KQS0vbU6/UYsZLqx/T0NFZXV7G4uIjBwcEYm83Qtrm5uZhZjQqEAlndQ4rIuagHIIYL0kXFFL2kE5GqHvZK9M+doswbwiRDdCfx4A1GK4yMjMSY8sXFRYyPj+Pg4CDmE6GyVX5hoVBQ3iJ/bGxsoFqtoq+vD6Ojoy0RO/v7+/FkJh4onSoKXNSdxPeoEHYed3eLCi/ti/N6Csn6giP7qLTRyBF1segCLtuQmqfOa7yXgEB/1zZqXZRFnseE4+99Z3EQ5bQk2FJ/Ol2Ol0ZwK/Hdp6wdTfm6fZD8mt6bes7vdeSRJ5zVt6r3uCJxFKFMofc5PbQ+NyV9Emi/U/crk7Pe/v5+vPTSS/jiF78Yz8xUpDQzM4P9/f0Yw+yr7ikapszzEBpHb2l4naI/MiyzITJhD5/l6fRMWcsFySzLorDkX7FYjCF55CXGaStfcYGXJ5Vsbm7GPumCNXCa3RBAjO7Z2dmJrhVuxKFlMjIygqmpKRwfH2N5uZEJ4t69e+ju7sbo6GhcHOWmI32X85AKKqYKHR0dBQCsra3FPN19fX0x69/x8XHMiEnBopvHUsI2pfxVEWv7VEhqm/U5B19uCQOt4ao6L1Tw6zX3mev71KJQNKz3O3hT/lThre6dVBv4DvKU8lVqbvAzE5ZxPNgGdRmRx84rF85V4kI7T4im0ESekHVm0UmhhHf0yPt5rw4+25oyNfV7SkD7Rh6vz+txQZ/qu1sorMeZSk2/jY0NfOUrX2k5w5MLYcPDwxgZGcHGxkasgyeNq8uInynslebafwoe9+myP4za0YgY0oM5aPg80EjjqqlNQwhxAXNmZiYm6xoaGopoVHmHaT+ZmEv9yY7kaD1kWeMYM2ZhZLuZx3xqagovvPBCTMw1Pz8fTXGG7RG1LSwsRIFPlEUUD+BMClGuRXzoQx/C+Pg4KpUKSqVSPBB3bm4O29vbMUshUasucqlyVV5yoczn8lyWqfHTuaJ8q/ygY89+KU+y7/qcukBS6NaVO8MnWdq5N9hOtUipVB18cIczd1DzPhXOqblOWlLQs7/9/f0tOdFTVmq7cmEQtxcVmCnm4megFX36QlQek7GkNH4KHegCSZ6pmGLsFBLXdqUYKWVBpH5P0Yt16mJJSogSNTIigvcyH/Xu7m5cjHT6k8bPPfdcPFaLNHLa0i0xMjKCyclJvPPOOy2x8pwE+h41x7nq/+Uvfzmilp6eHmxsbKCrq5E1kWeLbm1tYXR0FK+//nq0ElL5jkkTLoTu7e3Fk2+onNg+NedPTk5iylwqMHVvVatVlEolrKysYHd3N56SwxS4zz//PEII8ZCOsbGxqJCUZswP7RZUCCE+k2WNXCpvvvlmzGETQojZ7RguyD+N/gHOujz4X4GN87XyodKFNPCxc6SufVIkz7o1ICDlzlQaKY+n5oaCiBRI4vUUCNLn2A4etME8O25Z5rVTrXE9KYk5eRRE6ni1axdwAQW3I+aUkPIB0OsupFzTp+7NE+4pgZkanNSz/lzePan+piwGR+Zqvmm9vkDJe1MoRgtdFsw6qO10xcP6mbyJDEjfsC6+0rzl8VvqV3ZrQJEbER/D7lShclGVC5WMZwcaC4tf+MIXWnJja3/4TAghZhssFouYmprC5OQk3n777TN90AmutMuyLKLk69evY3FxEaVSCffv34/rB0SDL774IiqVCnZ3d7GwsIByuRyRNw861vHjfwpIvp8uHtKvv78fL7zwQjzHkCGiQ0NDODg4iBkUtS/Ob8pX5D91S/gYKe+keIX1Uenqb+qKUAGsNFZFlQeMXAnX6/WWk558/ugcUR52kKPt9LHX+9QH7/POaZtlp2GHXFvSlBVAq787by1Ly4UR3CmNqNdZlHiKgFOoloVCSX/PQ+T6Th9wRdspBeF164TQulnaLXr6Z0e9ec/71lpXBK4AeF87C4fP6eJQvV6PuUN4v/vmtB/qd9b3qM9Q2+eIkEJE1zkoBIaHh7G1tRVPiGH0iY47+0oTfW9vDysrK5iYmAAAVCoVTE9P486dO2dSC+jkU383ExbV63WsrKygt7cXN27cwNjYGJaWlrC0tISenh68+eabmJqain77SqWCsbGxeIJPShE70laByXHgZqIQGjHjWZbFDIarq6tn/Po65m6hubJPCVLl/5QAVQGlY6xFx1XHxedXniB3ge2CnfdTSDrv+9xWcKdt4fPu76Y1mmVZjGhSa8afY7t0fNXXzecIUpwmeeVCCG4VgPrdB8eFc2pFPNVZ16zOCLxH25MSeHloO6XF9Z6UcNfn8pRWql159+tEdwbVdqaeS/UnTxH5O1RR0K/qz/pClY+lv4emqOYsZuggDztg7C53JRLtZ1kjayFP3EmZtMDppg+emXnz5k3s7e3FAxeA1vA0XTRn5sQsy2K62Z2dHUxOTqJer2NsbAzVajUiY4ZAMvrj5ZdfxsbGBu7duxd9pqS/jpf7jL3s7Ozg1q1buHfvHgDE8wvZLqJB51lF1/57SiDz/tSCpO5E9Hqdv3QRznmK96aeI+2dHr5ZJ+UeZD2OqlmngxwV1Ew4xiR1KryBRvQRUy77uhXbq/2ltURg4fJD6e5Wg5cLIbiVyI4CU50CzqJSZTJ/xhFqCp23E8j6OSWYfaKpyenP+cRwOvB5N5n9vV6UWVgHrzvKnZ6exvb2dhSCvM+Vm//GPlJg+7jomKUETUp5Kd1YHxd9QghnFnV8Qfn4+BgzMzMxDpsLkVmWxUgLXfDp7u7GyMhIjLFmPZubm7h7927Liev0uabGiEiZyOv4+BgbGxv4kz/5k+jnLpVK8ZCD0dFRHB4eYmFhAQ8fPsTk5CRqtVo8Lis1to62fSMVgHi6uMcy6y7I1Djofx9jB0bab71fec4/59WniiAFINy60Pp8LNySTgn7FE87INS6tc8M9RwdHcXe3l6MvOJ9Ozs7MRUzhbGCFLrRNE68Xq9Hd6HOOZc/qfmj5UIIbuAses5DAsDpAlmehtaSh1JTiNJRa+q31LU84eXt8uf1HtXQKTSgSEbr13eoieaIlnQtFAoxTEwVBYWkPp9iJu0j61c0qqfx8HdVZK5Q+JwjNbYVQNxUon5CFRIPHjyI8dyFQiFGFvCUGLafOaoPDg7i0WOMzCACV+Dg/XcFyN+pHBjOuLKygsnJSYyPj2NrawuvvvpqPEj69u3bWF9fx9zcXMsBE8xlojzh8b28RtqNjo7i6tWr6OrqwuPHj2MaAx0ndS8pzfNAhc9BLfp7HgBSl1RqDui7HYx4/9XiaQdc+BsXjH3+pNrhLkXe46fncB/ByMhIzJWvfdCw1RQtNA5dt9Ir75NerNfzyqTKhRHcqvFUO+WhXx9ERWMumPPelWIaFZJ6T0pgpdrBooLKEbbW7ULb255aqNAJpKYi7/d+AqeMWigUWsKY+IyjOX029VvKavDJpWOhz5E5nc4qFFI77iiUS6VSPP+Sk4fMzlV/KhDdzMFc5gcHB5iamkK1Wo1IiZPMhZkrMhWA2s/V1dW4eSTLGr7m/v5+fNM3fVOMEllZWUG1WkV/f390rQwODuLevXtxi7zW65aIXqNlsrS0hLW1tcgLRNqef1x5wgGHjrcrWB83BQkp/3SKN/T5PGDh79I2KaL3ean30X3G8XQhqfWrIlQAo3XxvdyQ1t/fj97e3pbII/Xpp+Y136lzgS4TbZfymI9ZqlyYOG4lHr8rkzrj6GTW5/hZNZlfc1+ZIw79ze9JLbho+/2a/qlwJjLQZ1VY87v7A7VuV3AphOHv4GedIGQUXexSerpbhO9w5cH2qgJ1+qSUprdLfw/hNL8LXRelUim6F/h+mp/A6fmedLHU642Fyr29vXgY8eLiYnQVMVkU+8Nc1+yP91cFgtKd2QJDaKTHZa71+fl5LC8v4+bNm3j8+DF2dnbQ19eHwcHBeBhFaheh8ooLQrb7lVdewfDwcDxMQl0M5I12PMSicdvaN0X7qTmofMZ2OUhJCVm9T8dd3UM6vmwj25kCVv5u8rQL7ZRiIb9q3fyNuW2q1WrL0Xp0kbl7SNuvtOd1jyvXNqTGKVUuDOL2ia2ffXDPqyOFUJWBHAGSaO4icUGvSsWZIQ+NOnM6U/hE0u9ukqboohaAI3eni353hj9PsDoDKr0caShNffLlCezUNdbDkD0uEtFc9barW4D5VFhPV1cjX/ba2lrcwk4fablcjnG6+n4XgqRPHqJaXV2NBy6H0AgD3N7eRqlUwrvvvov79++jXq9HNA40lMzY2FjccMN+qNJ1/tXxeP3112O8OHNvqJ/VhUYej7miTbkstd/ad6eNCi3nT74j5UpxZA6cPQWnnVJQsJHiKS2puafvoYJgG/gunmbFBWqG9LG/2k5vjwKklKB/mnKu4A4hfB2A35RL1wH8FIBfbV5/EcAcgO/PsqwWGhT4NBrnTj4G8I+yLHvrSRqTIqRPztS9en+qTvUfuUZzRnONCZxliJSw5m8+2V0gOtOl0AifzxP0mmOBwjuPRo4w9P2eNjbVP0VXeYJSaeTPqDJUl0vKJeZCnoXIWRNp+bvYXt0hqYuSfX19KJfL2NjYwOjoKIaHh7G3txePshoYGIibdtxlQgFPE9eVs9JqYGAAXV2NwyZmZ2dRKBTiO2hm9/T0YGxsDK+++irq9XrLjtA8Ra7CgEKbBzwQierpSc4bpDND2NwqSiFF53EKYvdT+ziweCIt53nSVtGn5gXRZ4GzO46V70ijvNBfFZwuWNnf/v5+hBBa1jp0MZL19fT0xAOmWZ/nWMmy7IzS0Ta0AwbO/6lyrqsky7LbWZZ9OMuyDwP4m2gI4/8J4CcAfC7LshsAPtf8DgAfB3Cj+fcpAD9/bivQaurExonZ4ojABa8/63Urs7j/LqXBU0gi735tQ15fWFLCNYVg+Ly7jlILk46GfRK5m4jXPfeITwjtn5vc/u48JaS00D8+l+q3lt7eXgwPD0dEzMWilGvM1xP4d3JyEk98Pzk5iVvQmYO8Wq2it7e3ZQuy0kFp7sKMNCBa3t7ejqfq7OzsYGtrKx5ywKyLVBQA8Morr+D5559P8orTVQXQ3t4e/vRP/xS/93u/13IoBK2NFOChMkshUx8LH6PUvEjRIsX7KWWudZGGaiVw3Lwunz++YOzzUQFBql699+TkJK6DkFbeDx5Hx6P0WD8VD8GMvpfonHsImGmTvKUbypyueeVpfdzfBuBulmX3AXwCwK80r/8KgO9tfv4EgF/NGuXPAIyEEGbOq5iaSwdGNZIKXBekKVTpgtSFK5COHOD9eo33tdOErjVTgihPsOUJfme4VBuVQUgzn4ApWqfelzehtThC0+upPrkVk2q71+9914yC3j91maT6SjTKiVkoNPJtM08IUd7o6Cj6+voielK68nk9UUbby12SXKgiYmPfj46OYmbDgYEBTExMYGJiIqaF5cTPo4nSlL8xbW2xWMTo6CgmJibQ39+Pnp6e2JbU+Hl9zmupcXJXlz6X8gk7X/E5twzVlaLvc14nfVI0UoHtRcGO9k/bps8fHh7GzJOlUqnlPu0L88LzWSpO8puGA/Jcy3K5jHK5jN7e3hbLgIpC0/kqP+SVp/Vx/wCAX29+nsqybLH5eQnAVPPzcwAeyjOPmtcW5RpCCJ9CA5GfEVA+wEpkdUGkBITWoYPi9Uk7WiZFSuvxug+89QdAq0nlSsURajvB6s+l3qd95TW9zjb75Eq5I7QPKeXA5/S60y3LsjPIgb/lTSz/TYWy5iZvt9lC35Wij064FP8Ui0UsLi7Gd2nUjZuzKuiAhtUyMDAQT8ZhbnOazZrkqqurC8PDw5iamsKNGzdaXBtOF+U5FzAhNHZKXrt2DWtraxHdn5ycxLUAhqn5c+471r44z/sYkx7eJvWp673+n/V5FIaPl/IGn1EAoCUFkM77PcUz/MzUA8xLov3UdtLPrbwFnIajMh0E6+eu3mKxiO3tbQBoQd96KEleX7Q8seAOIRQBfA+An0wQJwshPJV3PcuyzwD4DAB0dXVlLrTdPPVBSwlkMqbGv0r743M+8XzxMbVCnjfwPqAudP15b4fXqSXFrN5v/d0H3BeG/P1adGJqvTqB9Dmno9LA6ZPXfraRY+CTn3ygPsTUJHbF6MpLEaXm+eA4Hx4exi35epqKm+GFQqElLwpR0dbWVvR/DwwMRHcEjzsbGhrC/Px8RNejo6OYn5/HnTt3MDU1hW/91m89IyB1DqTGqqenBx/60Iews7ODt956K+7UzKORjq27Plwou5J0oeo+bo879vHO4wGfP+o/d77KA06sn0LUeT01R1Pt5HjW640Ipf39/YiOdQcv267oX3lPM20CpyGKzP/N3bN6fF4qI6HKrlR5GlfJxwG8lWVZtfm9GpoukOb/5eb1eQDX5LmrzWttS0q4AWcXBlOoME8zpwQ+n1XN7+3wyc6Bcubz+lJ1pUxBb4v2TX2ArgBSQjxvocmf1/elIk9YFI270MhzpaQU7JP8ru3wa2wL60iNaWp8nWZujvs99Xq9ZcERSB9kwDqItNguxoWzLka8cBKvrKzEqBgegnD79u0YFjg7O4tqtZorzFLjxu/d3d0xRzcPaEitQ3gfUvWxP0pvLe0AjN6j7df7lYdTwMjBgVtXOl5eb+q3PKGdN1dZFxd7i8UixsbG4oKl0kz5UkMUnVZU4KoYafXx0O3Dw8OWI//4nvMWKJ9GcP8gTt0kAPC7AD7Z/PxJAL8j138oNMq3ANjMTl0quUUHtKWBiUF2tKCDlCes/dkU4/J9LjhTgvA84dIO/er97Uo7FOPCt91EVMbRxSv9TSeDr+jzT32gjoC8b46kUgpE61EE7nW4ktX68hQTJ5Oaq5pHxSegjgc3X+iWeFWSg4OD8ffd3d0ovAuFRsKr119/vSU1K5NJAYjZAQHgYx/7GKampuJ399fmgRalQ6FQwCuvvILR0VGMjo6e4TM+q7m52/GiLwimQI/Xq21LLSj6dQU0ruS97eynFp1rGmmkaFjrcF5KFVV4BwcHODo6ipkV9X3kKXWjqKXO39img4ODuF+APMw9Bfv7+y2ZKB3gtCtPJLhDCAMAvgPAb8vlnwHwHSGEOwC+vfkdAP4AwPsAZgH8JwD/5Ene4QhX3p1EZjoZObDKRM54jla0fh0UbYszcIqZ3bRrJ2zzkKejRL2Hk9NpkKpHmSiluNRqyKtTx0GtDaeNT1h/nrRJ0cIndwqJOS01Z7hO/nZmMZFxXt2O8liHhoP5+JVKJQwPD0fUpP1mNMLIyAgmJiZQKBTi6fG8zuOu1tbWUK/Xsba21rLQxTF0JciJ79YlC904pVIpmvikgYZspkxw8o4DJF3g9PnBa75GkeJlHTe2I4WEgdbF5BSw8vqeZI6mrnvgQwinu3lpge3v78eTkZQPCoVCywk2HAvmJtF56GPmY5oS0uehbeAJfdxZlu0CGLNra2hEmfi9GYAffZJ6tag/UX1d+rsLVEfoKRSbhwKd6fIQsNevz/t9KiCccVKf/Zr72h1Nent4D80snyy+4JvqZ0rBpSacCmhnuhBOz1D0+lTx6u7EFL15j/dThYS3y4v2Wf2eKpyIllMTxoWmFuZSZpRLpVKJeV+Y4W97exsLCwsoFovIslNzeW9vD6+88koU0qurqyiVSjg4OIi7OJmsiOFjLgRTPF+vN1LK7u/v44UXXgDQ2NSztLSEEBo5x5mGFDj13aeUlvbTQ0XzBKLOoxSfkO90zFPALDWmqpwcYLDvDmJUAaqS0nwtbI+32XnIv7P+vb29ls1S7GdfX1/LphylF/mRY5A3x1NKL1Uu1M5Jn0x56I3353UuL4pBn0sxkTNqimlTgtQFozKNKhtvR6rNjiT9Pam2p9wLQGv+A2eIlO9d79XxyKOz16cCj3W4q0vrUxqnzMW80o6ptU3qEiJ93Tqj0NWFS46htpf92N7ejmc61mq1iNC5Df/w8BDVajWGgFEQn5ycYG5uDoVC49iqg4MD3Lt3L8Z93759G2+88QY2NjZQKBQwNTV1hg4p4VOvN452Oz4+xuTkJDY3N/Hee+9F4cst2o4qlVbsG+tPoeg8hZ66pojZ57TyuX73een+Xh8/9t/5wetW5c3fde64ktbka9pmB3m62Yb/eTgCE5Y5n+Yh6Tzh3a5cGMGtvs6UoAHSwiE10VNMxuKCT5/PUw4pH6y2u16vn/GreR3KMG4q6n2KMrS93pcU6k9ZAdpOfY/S25WVvjMPfZ7HXPoeTiCnt7Yjrz5HRCl65d3vdNNndTIeHx9jcHAwrvYzi5v2nUiVOb9JU/7GjUHqG+/t7Y33TE1NoVAooFaroVgsolgsxgiESqWCBw8exPzOh4eHGB8fPyPEUiXLMiwuLmJ1dRWLi4sYHBxsEfC6vdp52S2YlEmfGu+UUk39ljd2PodT6xzentR85W8OnqjQeD0VZeaC2H9X+ui8YDs08oa8wXUObeuT8Ot5dEyVCyO4taPuN3Zhlyop1JiHvB2Fpu51oeZIkddS7gFPranPu/bXNunndhaD3qO+utR9Okk9qF+fbWelOFrxZ1Pj5khOacH7POzMx8Tp5uPkPOICwfugk9uVGk+gTyHtPP6jkFekeXh4GFOAMrc3lUNfX1/MB14qlXDz5k2EcHqE2sbGBoaGhrC8vIzr16+3tN2tMAoj5ic5ODjAW2+9Fc/RTCktKkqlo9M8JTx1XBl1kQIeymPKmymAoS5RH3t3c3j78gS8PpfiDeUP8mbKBavPqDLQ8fCFZE3OxvWhlALMs8TPW4j2cuEEt06WFCFduDojan36p8TzAWsnXPVd+psTNuWb53/3PxOV8btGO2jbvc0pGuj7vc+p6BHtZ4quTpOUQM8TpC7w3GVEIUB6qG+ebUn5X8/jA7bT+5miW8pcTSExdzOpsKKQ5me2WV0tDAHMssZhwPfv38fm5mYMA1teXsbx8XHM7MdDm5m0f29vL26Lr9frMVWrnkbf1dUVF8MYWrayshLjjpUWqfmhQkOVk4+ng4J26JpjqguLapEqDXU+6DirwFQw5O3LE3YuO/wdXrcrOV/n0L7kAS+njfJbSolqu/zZJykXRnC7wMtDDPo5hbBSWi7FEJx87QQ+v+s78gYwT6BrWxypOMPq+704MnCloG2kkNT2O/3y3u1tzlN+PqFTDA6c3ayhMdAq+PU5VYCptuYJkpRLQVG/3u985LThhh81u9264KYJpTkXHnt7ezE0NIRSqYSJiQlsbW2hVqvh5OQEi4uLWF9fj+/Y2tqKvmqmp33rrbfw5ptvYmBgIParWq1iZmYm9oXKZWpqChsbG+ju7o5Jttzt6GOqtHY3hQtILc7rzh+6wJ4HGvIATUrpAsidp9pG50+CI30nFQuv5YGS1BzUdvpaQ0pWaDsd0LlS0Drd2sgrF0Zw5wkNfvff22l9rTOFBvMY2evW5/JQmwt6rye1cOhtcNSpbUsh+BTTOu3OE2apVW1tQx7q1WQ6rCuFWNoJC78vNW7adzebU8+psvK+Om30e+oZVUIplxDrUcHuCpQCeW9vD6urqygUChgaGsLm5iaWl5djwiEAUVjv7e2hVquhXC7j4OAAy8vLmJycjFvZ5+fnMTw8jFKpFNvHOOBCodCSYtSVuNJXx57CTGmeEqhKC1e6pI/SJvWMK12lF9/L5EtahwMHrasdL6rAZJv1mRSvnidP9LrLCu2T3+e/sS617BgKealOwHH/lA64mzYpoeOCs90A8PeUBkzVxXdqW3yiOtPoO/J+1z48icmUmhjsm0YOpCaZP6P1OVpxJefoyumi1/nZUbPTl4zq97CkXCa8ngrlS7XThRef1z6mUv7qwlZKUSuK93u1r0xaxERDlUoFu7u7cTMOF7R0AbFer6NcLuP69euo1WoolUrY3d0FAKyursbNIX19fQBOww/39vZa8o+fN/68x3naNzrpPSqkld+cN/ld6a3j6S40PVignSB0evuajadV1b47P7INOl4O0vR6HgrO82W3+6wLmETZWXY2fLVduTCCu50rQEsKrbIoMdoh0jzNqoPm73GU4QzlDOco2pFAiklSZlLeYotOKF0USvkp9Z2KElSheBuVNqxXhZy7fZRGLnS9P+eZvX5d72/nq9VrOk6u/FP08bbrWHhf8wBDStgTRZZKJYTQSA7FLfI85FfbWSwWsbOzg/feew/r6+vxkNr19XXs7+9jbm4OKysrKJfL8fg1rYeF/Tf3BAAADtxJREFUyM37qW1NzTkXsOyD846PgS40+9hzDPV9Pr66WOjKUJWavs952dNS+Pz1ueRjqovo7eRHai2rHQ+nQITKKn6mQm+nKFgujODWktI2KeSgQiol/Lhok2K4FBp0IZCHNF3Aps7383c6Q/mg8fmUMHcGdLo40vGJoOhGaeCKwGmvn33SpepypJL3TIopdSLqn4+RM7XTWHnCxy7VdkdL/s48q0GLvltRnE7Iq1evxjMLt7a2InLWydzb24v+/v6WwwXef/99jI+PI4SAg4MDvP3223j8+DFKpVLM983YYT1RXMczz3r1PiuKdsFJ/iRNlC9Yh1smTs+UYksJPeUdr4PPthsXFY6p8WK72WfnJedt7b/GwbONnmdE6a5t99xIuoirrhvvT6pcGMGdp2V8AHwwHN3xdxLF0ZPW4z4wXtc2pZCxIzDX/ryepwj8XlcaysQpmhBdqCBUZk8hB9JIkXnKf96uD44c3LXlCtf7leq7Ci4veUrE/bBKI35m2JrW6+4476cKAj7L9zj9lN6pcdAsgpOTk+jq6sLdu3fR09MTfZi9vb3o7e2NoYilUgnXrl1Df38/CoUC5ufnYwpQvpcpY3d3d7GyshIPmqhWqzHiJCW0UmsRbKuPq9O83dxzBZ0CDi6Unfd1fHQMVWC2e87HQsfcAYErEeUL7Z+vTSmPO6jyOp0ftC9K29QGudQcSZULI7iB1sUon5SO/vwZIJ8J2jGkC0wlcEpjOxPyHee5KFJ1uJLwa/pbaoFOv6cWlEibPAbRPqaEM9+dJ/BSjJYS0nn9dGWZx7RaT57AdoGSF2KZGgd9R16Mcp6i9XrZJt05t7a2hqWlpTOCrFA4Pc6sUGjkPnn06FE8A3NzcxNZ1nCpzMzMtBy8UK838pxMT09jaGgIi4uLceOQj6G2rR3dnZZ+3d1Pfl3fk2fRutJPjUVqbFJCMq+fmgAqlSc8j8e8HqePg4cUuOL46rF5zu9581/br+9PlQsjuFPIUgc5pblc03lH3fxXjehaXd/nhM2bpPzu5+T54inb7ijO+6lt1Pq9uFJop9X1fr1H6aCKwH3zKWvFNxi5IEjRknRJKTKWlPWT6oMLA7Zb6UezVhfS1NRP0ZVjmbduonzQLue756Ko1+sxgyBpd3x8HHOAM+l+rVZDf38/NjY2cHJygt7eXkxNTWF/fx9XrlxBtVrFxsYGQgjxZHoeUMwDAFQpsK8eg+5ClKDDaaH84P3XuZEHnlyZpniM97mLKY+XdT3HeTD1TDtL0AGQ86q2R9+nfWA9SicHAO3mtPJrSpnklQsjuF3D6nWdiDqozkxOHJ1geQJGi7/fCe6DrIJT25OHMnSCKINo+/xZRwd5aIjFGTXFDGodOHJ/EpeFh49pe1JM6kmwUn3V9qXQSR4NUn0ETtcdUgt03vdUe3xy+wKpI3/vt9KGuSuYs0Tfube314JQd3d3oxCmcB8aGsJ7773Xcu/Y2Bjq9ToWFxexv78f2+3x6myH89J5SszpkAIb2kcHSUpLFbR8ty/Q+dzRcdLPKTDhfUqNhYMTr195rJ371PvGNAnKZ/5sHrDx9qRcQnnlafJxf9WLriZ7x9Wxr2hABaMWfd4ZxVGlviePWfQz6/DP7IO3U9uk11KLWTpRfBVc35USXiG0plvViaDv4Xd/Xt+lQi5POOehK383n3Pk7s/4RPLrjoZcSfI/35W6z4tOFkV+qT/tK83wFC20jcCp22RoaKjlpHjtJ3CaFOvg4CCicM6Jnp4eHB0dob+/H9PT0yiXy7hy5Qqee+652KaBgQGUy+W4m5Lv8Dzk2ocUvVNzwtvqwja1CK6FvMnfNQIk75ASF3SpcXTB7PzpC6ruXtNnUkeqaX+9HbrAqfRwOcJ7tW9KV35mHU8ivC8c4k4JEv5PCWcXYvrdzTP+T2nDdto1hfryFIYjjdQgatufhAZ+j9aTd36fIwAqidTClU9QIO1nUzqkaOH91jULfz5lLucVnwyO4HSC8l63xoCzk9fNXf7pyr5bIKr41c2ktE21nQfMcju6065YLMZJyw03vO/Ro0fxvYODg7h69SqWlpZign4ekUaFUC6X47Z51qeC1XmiHY/6Am9e8THQcdZx0DBFp2UqwkOLKoo84ODAKzV31XrX+/QMSS/OS37d25PieW2r8pve42OQVy4M4nbBo6d1uAmUErYuPFwDttPULpzy3uH35/3m7ztPQKfQhJue+j5tpzMyJ6oKTNJQJ0g7xZMy/XUSMjm/IyW+SxVnygecx5x5Y+J98TFIjT+L8pFnKPR7iaLZR/7u9EwpMy2KmrRdPBxYrR/Si6icgv3o6AgDAwMxhwn948vLy9je3sbIyAiOjo5QrVZj/m6eyKNHqen4sW1+UAEXc9kfnTd5C5I+N30snMbMteLuRhe4Kb7W/z5vUmOibdQxViWqv3sffNx4rwt65XWdDyl6pepI9Ufb0a5cCMSdEmLOJHlohv9d0LKQwCmkmSKsrxZzEqaQlws3/d/Ob6ft8na6UFVB6ozk72Z78/zJumDnNFSTMmXWpZg2D72zkHYuzLXuPKShjM025bWLtGZRS8sja7TdqQVx7UfqJJbUmDrd+CxNaLf8Un3kvRrKeXJygoODAxSLRRQKjTzeXV1dmJubw8TEBICGG+bo6CgeQluvn55rqO1VGqf8/n4EWMq14ALU+U/7xDp1PUXr0brVraPuQ33O6eZunnZCNu+6u9Ly1qicZxQkKW/7u/R5jTLRonPWFWa7ciEEtxIgT2jzs2tlJaA+kxLqqff6dxVKLlBSzJdSBqk2pe5N+Y79c97zOmlceKUYiNdTCXKcUfk5z/zXtqtw9vuoKJQJXXH45HAe4G9Oe49kcN5I+fB9TQFAiysgb0xV4ekZlh7y5aa8fya9nOasl+2gH3x3dzdurunt7UVfXx+mpqbi5hvGf/OkcBdA6n5QAej8pbRxMOL86v1IIXEVwvyemlP6TIr2qcU6H6sUuFAFqPfyNxe+2kZ/X5a1ZrH0w0Xy+FB5OiWEeY/mu2Ed56Ft4AK5Sli80d5pJTaJ4wt5fC4laPkbB9DNfU7MPIGftwDjjJRiAr/XF2v093bMrd856XwBiqa+0kwFtv/Gz6Rp3ndtvzKp3p9Hd++HMr8rZzfDfdFX61Vh7G3RfutvnISqdBR9+uT1/qsQd9Tl7/JzFJVXh4eHYy4THrxwcHCAk5MT9Pf3x1C/rq4uXL16Fd3d3TFPifrLdRzp8lFhkIcMtY9uFahbyhVjnnBxfskDCXlgQceDtKI1wP8p16nOO1fgzitOA7YhheJ1Xmn7tY0pXnF6OR0dFPk955XwJNL9q11CCNsAbj/rdnyVyjiA1WfdiK9S+SD3Dfhg96/Tt4tfXsiybCL1w4VwlQC4nWXZNz7rRnw1Sgjhi52+Xc7yQe5fp2+Xu1w4V0mndEqndEqntC8dwd0pndIpnXLJykUR3J951g34KpZO3y5v+SD3r9O3S1wuxOJkp3RKp3RKpzx5uSiIu1M6pVM6pVOesHQEd6d0Sqd0yiUrz1xwhxC+K4RwO4QwG0L4iWfdnqctIYRrIYQ/DiHcDCH8vxDCjzevj4YQ/iiEcKf5v9K8HkIIP9fs75dDCB99tj04v4QQukIIfxFC+P3m95dCCJ9v9uE3QwjF5vXe5vfZ5u8vPtOGn1NCCCMhhN8KIdwKIXwlhPCxD8q4hRD+RZMf3w0h/HoIoe+yjlsI4T+HEJZDCO/KtacepxDCJ5v33wkhfPJZ9OWvqzxTwR1C6ALwHwF8HMAbAH4whPDGs2zTX6IcA/iXWZa9AeBbAPxosw8/AeBzWZbdAPC55neg0dcbzb9PAfj5r32Tn7r8OICvyPd/C+Bnsyx7BUANwI80r/8IgFrz+s8277vI5dMA/jDLstcA/A00+njpxy2E8ByAfwbgG7MsexNAF4AfwOUdt/8C4Lvs2lONUwhhFMBPA/hmAH8LwE9T2F/K4ttGv5Z/AD4G4LPy/ScB/OSzbNNfQ59+B8B3oLETdKZ5bQaNTUYA8AsAflDuj/ddxD8AV9GYGH8PwO8DCGjsSuv2MQTwWQAfa37ubt4XnnUfcvo1DOCet++DMG4AngPwEMBocxx+H8Dfv8zjBuBFAO/+ZccJwA8C+AW53nLfZft71q4SMhjLo+a1S1maJuZHAHwewFSWZYvNn5YATDU/X7Y+/wcA/woAk4WMAdjIsowZlrT9sW/N3zeb91/E8hKAFQC/3HQD/WIIYQAfgHHLsmwewL8D8ADAIhrj8Of4YIwby9OO06UZvycpz1pwf2BKCGEQwP8A8M+zLNvS37KGir90cZchhH8AYDnLsj9/1m35KpRuAB8F8PNZln0EwC5OzW0Al3rcKgA+gYZyugJgAGddDR+YclnH6a9SnrXgngdwTb5fbV67VCWE0IOG0P61LMt+u3m5GkKYaf4+A2C5ef0y9flvA/ieEMIcgN9Aw13yaQAjIQTmudH2x741fx8GsPa1bPBTlEcAHmVZ9vnm999CQ5B/EMbt2wHcy7JsJcuyIwC/jcZYfhDGjeVpx+kyjd+55VkL7v8L4EZztbuIxgLK7z7jNj1VCY0cjL8E4CtZlv17+el3AXDl+pNo+L55/Yeaq9/fAmBTTL4LVbIs+8ksy65mWfYiGmPzf7Is+4cA/hjA9zVv876xz9/XvP9CIqEsy5YAPAwhfF3z0rcBuIkPwLih4SL5lhBCf5M/2bdLP25SnnacPgvgO0MIlaZF8p3Na5ezPGsnO4DvBvAegLsA/vWzbs9fov3fioaZ9mUAX2r+fTcaPsLPAbgD4H8DGG3eH9CIpLkL4B00Vv6feT+eoJ9/F8DvNz9fB/AFALMA/juA3ub1vub32ebv1591u8/p04cBfLE5dv8LQOWDMm4A/g2AWwDeBfBfAfRe1nED8Oto+OqP0LCUfuQvM04A/nGzj7MAfvhZ9+uv8tfZ8t4pndIpnXLJyrN2lXRKp3RKp3TKU5aO4O6UTumUTrlkpSO4O6VTOqVTLlnpCO5O6ZRO6ZRLVjqCu1M6pVM65ZKVjuDulE7plE65ZKUjuDulUzqlUy5Z+f/n7CU2YvP/QgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2\n" + ] + } + ], + "source": [ + "Escalagrises2 = imagen.mean(axis=2) #Toma el promedio aritmético para cada pixel (R+G+B/3)\n", + "plt.imshow(Escalagrises2, plt.get_cmap('gray')) #muestra imagen en escala de grises\n", + "plt.show()\n", + "print(Escalagrises2.ndim) #dim del array" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**2)** Usando la formula lineal estandar de Luma de brillo en una imagen [1]\n", + "* [1] : https://en.wikipedia.org/wiki/Grayscale" + ] + }, + { + "cell_type": "code", + "execution_count": 438, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAD8CAYAAABXe05zAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9W4xlWZoehn17n/s1zokT94zMrMyqrKqu5lRXs4lpks0hSAoySFow9SCRYxvWmCDQLxIgwzZMyi++QA/Ui2UJNCgNTMNDQdZoLIuYgUDTJikRHAJsmT3s6Z7urktWVlZmRsY9zv1+2dsPJ74V3/7POpk1HM4wBswFBM6JffZee61//Zfv/9e/1griOMab8qa8KW/Km/L7p4T/ohvwprwpb8qb8qb89sobxf2mvClvypvy+6y8Udxvypvyprwpv8/KG8X9prwpb8qb8vusvFHcb8qb8qa8Kb/PyhvF/aa8KW/Km/L7rPyuKO4gCP50EASfBkHweRAEf+V34x1vypvyprwp/7KW4J93HncQBCkAnwH4VwEcAfgnAP7HcRz/9J/ri96UN+VNeVP+JS2/G4j7ZwF8HsfxF3EcTwH8MoA/97vwnjflTXlT3pR/KUv6d6HOOwBeyP9HAL5tbwqC4LsAvnv977fC8MaGxHGMIAi8lfO6egpBEKzcH4YhWGcQBJjP54jjGNlsNnFdP/ncOi/kdW3yFdal7X5VPfZ32xbfb/pcKpXCYrFw/8dxjDAMEUXR2jb62vyqPuk7ff+/qs2+319X7Lu0jfr5VYv2zz6rv/nGgrwWRdFaXvS1yVfPq9ps6bluPNbxi6/+r8Knr6v/db+t4wnbjlfJ2Kvo8tsd93VtfJWM+er4Kr9ZOfPJvq8+9sP+vlgsEEWRl/i/G4r7K5U4jn8RwC8CQCqViovFYqLhFIwgCBCGIRaLBYIgQDqdRiqVwnw+d0RKp9NO4ZJIuVwO5XIZYRii3+9jOp1ib28PW1tbyGazSKVS7j1U5KlUCmEYYj6fu+86wEEQoFAoAADG43FioDKZDBaLhbtP+plQEmynDqr+RVGEdDqNKIoSTMDftE1xHGOxWCCXy2E2myX6vlgs3LVarYZOp4N8Po/5fI7xeIxUKoUoilYUvNKe7yWtFouFu0fpF0URMpkMoijCfD5PtF+N6nw+RyaTQSqVwng8djQn3Sy9WF4lEHz3fD4HAEcj9k3bwnGmYUulUq5OpYXSl3TRks/nMRqNEgKoz5Mn2Sa9rv1VPmCb+a5isYjhcJjot4IK+0nZUDooz9j3kW+UzxaLhaPJbDZL9Jt8xzG34xMEQaJfLGyDPmdlzyo21pVOp1doNJvNVt6hY+ArvK7vZ9F2hWGIdDqNyWTi2sF7KEuUG8rpYrFw/Wa/ptOpex/HVY0MdVcqlXJ05nOqxC8vL739AX53QiUvAdyV/w+vr72yUJg4yAASaFGFeTqdJu6ZzWZOsfPe2WyGyWTiiFGr1bCxseHqsIPMZ+fzuUPr2hYyWBRFjtgcGDUswHIA0+l04jkKFt+l7wWWg8k6yAjWa0ilUgkG0L6qchiPx5jP58jlcgCATqfj3kHjoQpKjaO2if1lu1RxkGH5/2w2W1Ga1kjxNyptq4j0Pqtk+L8qV75DPQzSiH0gbShsi8UCmUzG0VUNjI6XFnpr/BuNRiu8o2POZyic5An2Rfto38W+DAaDBH2VRtdILMEDcRwnDAV/I83ZFvabSscaHH5nX5SPrbJknyg3ek3by3eGYZj4nbRj0b4QnLGNlDs1HuRJ1p1Opx2I05LNZt09fGelUllBy9aTskaTv7MOq6vY1lQqhVQqhUwmk5CDfD7v6uE1pStpo/y7rvxuKO5/AuBREAQPgiDIAvh5AL/2qgd0cNXq0rppUQG0CoHME4ZhAm3TUp+dneH8/BzdbjdBLBKd7VAFrG0ElgKpSso3EIoQ+b8qGIu29/f3kclkVpAHEYcOLpnFh1QVxdCg6XPT6RSTySSBMsrl8gqCJe31GmnOuuh9KGK3StgaAACJNhO1KC1ouNTb0nqt0aOgWhqRDlTk7A/HgfdYdKg0ZtGx43sUKFj0y/vVoCuaVRpaA2oNtxZ9F+9TfuUYWe+Ev/N+NYz6/nQ6nTBgABIInnWT5jqWLOr5aRs4Fhad813kafWK+F7eozyp46385aNXsVh0nhfbMx6PE8pfvU37POmmxfbR9z/7RKNOJK68rc9afnhV+eeuuOM4ngP4dwD8fwB8DOBX4jj+yaue0YFY12hFX8qs+klCbW5uIpPJYDAYOCSyWCwwHA5xdXXlEJSt34YH7O+KyIEbplIUy3sUxVoB4W98nu1UYUqlUigWi65fijCJshk2UsOnSjSKImSzWeRyuRV3mW0ZDocJwbGo3oeWFNWqMOrYqSGz/VVPwif8ZHQabqWB0h24QbYUMkVj/CsWiwlXH7gJrwVB4Iwmx09pyX4rutRxT6fTLkymCLdQKLh6FPHxu+0v61P6WlrxulWCOg68T//XsaECVnqsC4loHeyHvZdtoRFPp9PI5/MJmSCPWtCiMmPDKUTQtk8AvPLEOnK5HBqNRgLddrtdF/5kW2woSHmV9atxsobBejVss46jlQe9Xz0Z5TF9/6sU+O9KjDuO478N4G//dp5R5W3Rpc+C63O8FgQB8vk80uk0Op2OIzrjvbxnPB5jMBhgOp0iDEMXesnn89jc3EwwtCqBdW1R5bnuHhV2HRgyls/aVqtV5zJbhaLFCqEqeio2FRwVJMaHVaFbj0DRiiIFxgKVTrxH/yfapJdg+6qIp9FoYDAYuHCKtkP7a42i9dqULwaDgXuWcWD2o16vYz6fYzAYOHRJZR7HMer1OnZ3d/HjH/84gUzn8/lKXF3bx34HQeCQVrVaRTqdxuXlZQKxc35A6W69DKWp5SHLGxbR+uhInqRLT/mwAEIVTjabXeFjVbS8rqFM+zuL8iD/D4LAASP2Sz1iDQ9ZT4PPTyYT51WSL5VWCiCsTKsnpdf5jBoOImg1pipnalTz+Tzq9ToGgwGazeYKbZVO6XQas9nM8da68s89j/ufpaRSqbhQKCRcGVUCiiJ1sNS14+/ZbHZF0DW0ks1msbGxgdlshvF4jEwmg2w2i2q1ikaj4VCuvvu6jSvttuiEbaCi8vXBIl/L0Lyf9atQKsP6BJP0qVQq6PV6a99h3WTL3NYwqoCxXRZx+BQ7hdBOJqdSKWSzWYxGI9cXKvZcLofpdOqMiY7vfD53E6wam/YZHKWH7R8nvoDlRGO/318Jy+kYlMtl9Ho9F9fX/vIe0sLHI5yEYqEB43OlUgnD4TCB7micaGR03NQAaj/5XT8t+OC4WMSqikfrJL3UCKsXMJ/Pkc1mnXHS9tt2WQNHsMRneY9ONqsMaOhPix17vcc38a0yZHmb7accsw0qc2EYIp/Pu3CLpbtPPsvlsgtVWqVM/l8sFi46sFgscHFxgel06oXdt2LJuyJDIOlG2T+60aog7EBR6DOZjPtdB6Lb7WIwGDgUUa1WwawWRQhWEWixWRksYRgmXG8+by2sjdlpUWShz/OaKh7LdNa1Vhqp4OjzbJsaPUXv2kbSUoVc0bW2iUpTkSwVLr0dNXpRFGE0GiXiwZxMpKG2oQr2KZvNolAoON7wjZmOA58djUYJo6suO3mm0+msKGU7GamFfEfa2LkGndyOosgZBaW3jpdtN9+vxsUWe6/2Wemh/dbrdjKV9bBuq/AUjVqeUyPCwvus0bM6wM4R2DkR1qv00N8ZctP+Kr9aNM5r5EvWa+dm+v3+SpvpFWiWCUu/33eegIYatZ9q7NbxFsutUNwsFh2ooFtCrhNMZRRaNz7LGB2ZplKpoFwuJ4ReJ2FSqRS2t7dXYlhAMuNF3UvG2ciUr0LI+izr5Hv0nbTAGufj/dYbWSwWaLfb3tl70sym67Eupuv5ULYVPnuPIg+rCHidgqf3WCTIP9Irk8lgOp0mUtcYJ9aYICfFFosFGo2GC3VQMKyCUHSrgqq04nWCCgqTKndND2NRdK3jpPRTtMf+aBhJ38M6iEaVzswcsghReTUIgkTcmXKgRsHygtZDMLK1tbUClugV+FJh9R22UA41rZJjwBAc+6x8ohlOGqryyaFFzjoOCiYszdm+QqHgeMxmq1j6aqGhtMaY91pZYdHJS59nkaDfK3/9PSwcDCImJTywau1JrEwm4xSlKgMqX+sqUwApLIyltlotNJtNnJ2duWtBcDOxBSDhvlkUpAOpaUt8ryISnXTT/voYXJVCLpdLoHhVzhZtWFea12u1Gt5+++0V4WYh81gUGkU3E26qhPS7ohf9U49H6+Mz6m3x3Zr5oSjGfte+M5Z9cXHhhN9mC6nCsQaT9akrq7RbLBbIZrPI5/PIZrPIZrMuBU0F26c4fQiK7WasVL1Ji1wVAdP4pdNpF9oLgsDlyGv9bL/SmCEsVSAcb/6vtKfXRECg3pjyncqolnVtUv6wfG0NAJ8hHUmHSqWyUrf11m1hf4nUaQRU19gxVEVqr6sC1klH2y7++dKC7WSzr91a/oUtwPEVi3ooQDpYailTqRTq9TqCIMBwOES/308gIT6jSkEtOAVmMpk45U5hzOfziOMYR0dHDvH6iMl4LBU882MpXPoMB00X67BeCoT1Gij0VJykAfPTFZFb91HjsWSabreb8GysYvIhdeCGsfgc47JatA/sr62fwqJGzRZtt6Il2241mDZTgu+0npH2KwgCZLPZxIIL1qneDL0QDcGRVnR/bcqY9ThyudyKgVLlyVg728k4r2by8P2c/IuiCK1WK2FAOXGqyFEVMOlPHqVhs+69Agl+TiaTBI8oWGLfNd6t4+Hz0HxKW8MPyke+UArbxOtq6LQuDcWx79Yr5HV9h2ZcqcdMD2Y8Hq8oWc7B0OuyuodGgm2lDlK+Uh23rtwaxa3ojmiYHVTUpPfn83nk83nUajWXUhdFkVvVSGWh9bNeAG7SaDqdIp1OI5fLOTQ+Go2Qy+XcPa1WC+PxGNVqFaVSybXj/Pwc7XYb29vb2N3dRTab9aJK4IYxieh9DE3FoYzIwW+3267dFrWoMOXz+cR7VEEQOVna8z4WdR3ZxuFw6Nrqc+us0lbXXY2yKtJ1wmMNHifUGCNWQ8Bn7SQgi89V1mLjv4qcLaJaLBZOYOm9qSItFouYTCYJmgPLGKcaBe17GIZuopb0Zh/v3LmDVCqF58+fJwwK21gsFl17GAbhhCFXyBJQTCaTlXdQkatiLJVKGI1GK16R0kbHXK9x7sIqbFVY1vPRsfEBHQ2J6DNRFCWMBPnG1sEJb+oS5UG9z1fUk9I+W57QelgvwZuCMw2tkb4+oOPzhhPteuWv/wKKKgUgaWFtHud4PMZkMnGKvlgsuue4us2iKFVEOuGhxqLZbCIMQ6eIaUVPT0/RbrdRq9XcykzG6MbjMS4vL1Gv15FKpVxb6HJR8VhmZn947zoG5qcyviJSG0sko/oQlIYClD4Wkdj3a/1ULKpEyIh0rZXu6mWwH6pkbSzQLkKxQqvt4af1MGyd1oACSCgzRaPaV42x6phZ2ufzeVc/DZXymbZbwxU2BU371el0nGegCprtV1nRMAs9MkV5bLd6UeyfhgmotC19lfd00lgVTiaTwbe//W386Ec/Qr/fx3vvvYenT586Y6ZI1Rpu6xHZNqrC1+dU8el33qehS8tPWoeVIeUP69HxOumu9+t9urBOU3PZNxom9Win0+lK+2y5VYrbuqd0DUkIm50wmUzQ6XTQaDSQTqdRKBTQbrcxHo8TebKqOKmcVEA4EHxXNpvF1taWQ9bMCkilUuj3+85gBMFNjLrdbqPf7+Pi4gL7+/sJY6ACr30FVvfqsMKiz7Ntmidr44FRFGE4HCYUkG9i1Bb1btg+vlPRP4CEi6190XdZYVeDoF6CjqtlVhtK0NxuzQuPouWkXaVSQbPZdM9SoWiIRRUGERGLtl1DdltbW2i1WgCWIQ96HjbkQ9SsfKwKsF6vo91ur0X+Sje+v9vtolKpeF1uojZFfjbso79Z0KDjZsMLOq4ajrLtVKVGWjx//twZlCdPniTGzfKMlQuOZ7lcTiQX6Ps13GbpYeumt2G9YP5O+ll9YEEeeU29E18ITtvkMy46NtzXR1E5PaZ1HgDLrVHclpE1j5eTMNx7RC38aDTCy5cvHVIYj8crzMEB4KfOTCsiyuVyyOfzjhF5vd1u4+joyClwm89Lw5DP591Se40768BQkdlFLesEWZVTEAQJS89nmQ2ijM1YOpE3i8+SKxJhn9lWRZ+qVIgebEjKIhvWp2MG3LigdNctElJFT49Gi8YjSX8uZGKf1GDS2KhCUwVmlTpjwKlUCp1Ox91fqVScgs7lco7fLHrUcWg0Gmi322i1Wgk3OooiN9E5HA4TGyipciAQ0T6pkrI8ZsdajbxFyNbz87noNq7MeyeTiRtH0gIAXr586erX1EdgiUgtT2udqpRtBlUURS67SOeuwjDE22+/jcvLS5e6qf2j90GDTJpZQGMBHouCEIvabcxa++HzKjgOfLfm6c9mM8cDr9IJwC3JKlHCKGMpw3ES0KZsUQnmcrnErLoiLBZ9FkjGqpjDTKTAz8vLS+fqaXK85mxyQiGdTmN/f98pf30/lYAVLItmfQiEio31ad/oQVgUZwWZTOuL2WnsOZVKoVKprAiNNZaqMBSd22JjpLz/nXfewebmZiKlzzebz2ta3zrjQ2Nv3Wr1JGx/fKlsbBPHl5uYRVGEs7MzFwpiSEHRlaI59r3dbrv9bVjoXs9mMzepvs5dpzBzTOjJxXGcWLpvlYcW5RtFqwC8Bk3pYflPf+M1jfvbdmj8HAB2d3e9e/OwPipb/Y3tnkwmK3sFZbNZNBoNlEolB2Rs+7TtFiXTe7Ngw9c29XSUX9XzsjJO2beGM5/Pu4y4VCqVSAt9Xbk1iFutGcMPFERdru6baGo2m4k8X2vxfLFOJRaJzcnO2WyGbrcLYKmkZrOZizFqXbS2zBkmeuIqUF88TRWidfl4r/bN5j2TWXxurnoRuVwuEf4BluEGLjyyNNR26uSf3UUOWCoOH3NZwVAXVpVAEAR4+vTpSh1EZxqrtUbdKgarXOw7VUn73FUqG0Xk/H1jY8OFSHzIymaS2LFW78x6ADaOyfxsKieL1jQGXy6X3bJoKhkbktKihksNGtukWReqEMk7ypOWl/UaPxUNk99LpRIqlQouLi7QbDYT3oVtN/+3E81q2NQQzedz/OAHP8BsNnPgRPtuZUrb6gM4/Fy3NS/rBZL54LbwmgJOPkedwUlj9T4pe68Kl9waxa2CFgTLWI8qbM4Mr0OVnIwkcrOxq1cJsFo97pORy+VcXjDdQNalig24GTwKUhiGuHPnDq6urhLxP1Vs2gcfQwJwqY6tVmslk0TrIDOoEqMLrzTViSxFhlriOE7EaoleqNiApRCOx2PHaKqYlK6KprWvUZTMrNGiSMe6q1qfCrkKmNJBU+iUD2gALR04ruQdZt9ofWybpptqsUZD/1clopNRwE1++mKxQKFQcCjflji+2adZFYM1dFaR6DJy/c3OVyjYULnRcdS++cZQjSd/0zCnhjMt6laAZvuiIMx+Z+iuVCq5EKHdatjGnVm3ReCkKXUCx1mBgV5jn23hb+ppW09H0wYZ7qT+8xkDN25rf/k9LuoiLhYLp4i5lwhzmBkXtDnEQHJg18VnVYijKHICQiGnxeb7q9WqWxZNNKRxahWu670FcO/ePTcJxaKDoPFoq5AVqdKF9ilGNQZWSOw7VfB8YQcb5yXt+Bu9ENan+2roe3iNEyxBsFwUoocm8D6NJ2ohauJ+yTbjggqFqFxDEOQRjp0qKp+XEoahG4vpdJrIlNC+6XOlUgm9Xs/1RffasPF5VWzWqPF+joHNwlGvka62PbxD6/bFi/VdVkGzWLRsDQDbwffaFE/rFZF/LUjRLBrfJ58n7TS5QOlmEb/OgwA3i7DIy2yDzWZZF5tmvdbo6pja8dH367305FgUeSu9LQiwoMVXbkWMm4XKRzMF7Kq0QqGwIpDA+pVNOpHhY8ggCFCv11GtVhGGy2WuVAi64ZEvxsdMhnK5jFqthnq9jihaZrvoBjT6PrZJhdTGZskwXBik4REb8rHPKS1UESt9+Rtpxeft7/zj5BiLCoumOFHA6fZrloN9TplUC40G0ZmNGasnoBOUwFJoud2tImxrwNRDUc9ODbE+b2mkHhIXpZDPVKiJ8HzG1aJe5SurxLkhGg2iFt+8AOvUQl5SOisf2f5aT8GOlYYadDyUjgqi2Dfdx4XtqFarjraZTMahZj6jxkk9cEtTK6NadDU0f+duh8q3/F1XN6rBU4Vr9QHbYOdT1hUaKiunPkNsy61A3IoyOfDMhVbrS0umsS9lcg5oHCdzwdUN4wQAlyxz0U06ncZ4PEa73XZMyBnwSqWCdrudyI0tFovY3t528d5KpYJMJoNyuZxYms6i6WsWjalyUqtvFZ1mZ2jakEX2FGad1NJUJmUsjalpOywSV2TEbUA1T1kFi+lyilYVhbCd1g1XZUKPisbbhkIs8mSxfWOxCIeeFsNCVnHpuzKZjOszJ2b1j3VrnJnvtFu/KjhRQ6TPx3Gc2G6WtOYqO2tEldeo/Oyy/ThezdJQBGuN3FcJA6hna5W7pqMSfFjQQb7j4jkADhXb8VYZmM9vTnciXS3ypadIha38zLkb6xVoP/kuHSeVI+vNKz/aeL22ScdJaaF0VT2wrtw6xA3cKHIyPhmY31VoFIkBcAtj9B4qTWaeVCoVbGxsoF6vo1aruQwB3TEvim5WZWleOHDDFFtbW9jd3cXu7i4qlQo2NzdRLBZX9oygZeV5ldpXfrdCbpGKnUCq1WoJJKlMq+EFACsplJzN5ntqtVriOC+7Jwu/s22qsG282CoAFq5C1f5oUdRIeml9fCczduyzttgMHhUIdX81Z1b5SenFMArr1bGg0KqnQd7RiS1th22Xvpfv2Nvbc2PChT0c21Kp5OijG25pfVoU6bLd1mjaZ3Q+wd5v72Of2H4FJ74YscbP+Rs3viKwIJjSNrJNpIuu0mQ/rTHSop6evof/Kx+owVFwAyxBH2Xc0oTfbQaX/mb1nPUSXhcmAW4J4mbRgWTskh3Tpa0WFenztLJ6CCcAlzIYRcsl9dxbRBfJ6CG7mh5omTqOY3Q6HfT7fdTr9YTA6eBQMZAJGH9TBWWRjc1UUDeW/YjjGBcXF+4ei16B1RVcrCuVSqFaraLdbrvl0jpBogsCWBRNhGHo0LANr/gEhgjF7qXscyfVc6LHoAg1n8+jUCgklmOrS2ldfEVtzJtWo6RoWZUX6aQKiAqewmjDIHwfx4BZA9YjpDJTz0eNHdv06aefJupRepGPLEK2bvs6w678tLm5ifF47Paw0ec0nq1gQmmu9Mzn8y50ZGlJ/rDeidLuVaFFa5DIsxwbnezl52QycXMW+l7lVRbS2V7XZ1mYEcTIAHnEV7eN0QOrHrCOpY7Zq8qtUtxAcmmzMjaLEskybhwnt4nkfTzxfTqdotfruSR9npZDy0lkrUn+JC5DE2RMAIl9lBUVK8pQN9wiRd6re0bYCRDeZ1GA0otMvrGxgXa7nXD7rUVfLBYu7LO1tYXxeIx+v+/ope/1uZDKYNbdtvewXVRg+juLr69sp/aV7r/dZ4XPb21tIZ/P4/j42Ambbl+ripZjqvFNGzLg/4r6+Az/L5VKzrtjsahKr6syUkSqfMxPTuqu8y7YF1/miaJQnhavdSuteeAG+0mwocpZw2RahzV+bG8Yrqb0qkwqMvYpZdJkNpslNviyY8O2qbfh82T1N1WeLBbZ837Kr7bPhhMVNKi8Ux+R17jOQ9/h4xFfP3zlVoVKFBHo/xYx0A3RJH4KIAlGAlN4mQlB9NLr9XB5eYnT01N0u123jH2xWCTQFWOhvM53cUJyPB5jPB7j6OjILdThCiidVNQsDUWqqvgBuF0JgyBInE9oXUsaFlWivV7P3asIXeOPZKJUKuVOfmF7rBJj8XkAbL/2Se9TAVWBs0aXY8Xx5NYFDD3YkATrVrQCLDdxarfb2NraWkF4mimi6JVGnW3woR1rpPS3g4ODBPomveM4RqFQcOcequAz3Kf0YR81JEFUx/baXG2bq6ztUr5h6p1FnOwb0+bYP9JGF/aoR8d68vk8Dg8PVzwW8pPdoVC9Dd5P2igwY566zglZo2/5jHVYI6rvUyVrwxu+vXus4VLDqu9UeeAnaagTsaSnGgDdAlb5W73YdeW1ijsIgv9bEATnQRD8WK5tBkHwd4MgeHz9Wb++HgRB8B8HQfB5EAQ/CoLgD76ufpZ1DV2HxLh1onZYBwO42WBmOp1iOBy6cIumknW7XfR6PfR6PZdrCsBllLAeTV1Lp9Mol8sIggBXV1f48ssvcXJy4sIORHuqlMnEuv+Kurfa/3VuLbAqePqcZtuou6oK1LqfnOTh81ZwrSAorYMgcPtBh2HoYvjWRVeUapW5NUg83kmVoRoKrU+R83Q6xWg0cgun7ByD5Qu+W3O3NQynfGeVC9vx7NmzRBuJVum+0xBpCE376+NdVYSkt+61USwWsbu760VkbBc9KKJWpYPynB7CoO9WGiktfTzpM0C8bo28/q4yYelvU+a06DyUVcD8zU7CKt11fG16pBof/rEvNJbFYtEdjKz1cqx4rw2bKELXcdcDmH0e7rryVRD3/x3AnzbX/gqAvx/H8SMAf//6fwD4MwAeXf99F8Bf/wr1A7gJGyg61N/UraIipWLWg071WR0sKnAKk56GA8CtRIvj2E2G6oQO05R0dpwobzAYoFwuI51O48WLF3jx4oVz4XRQLRKkAdHfdJGRL2XOGjifd0I6pVIplzlTr9fdEnPuOc7PdW5goVBIoFVFzGRARSv27ECfoFO5q7JQl9saC59g+YyZNYysWz+LxWJipSzRkXV5+cnvNGh8ThWZKo8guIlJz2Yz9Ho9945cLufSz1QwiYhtaiPrU2XHsBp3DLRG1H5XmbB1x3EyrGgni7VfvhDfZDLB0dFR4p009uvynW2/SGfSlLRpNpuJtqqHocqe71oXLrK09r1b+0SZtLRLpVJuQnQ4HLpMJNLMZkxpnRYoadH9fuxvFoSu9O+Vvy5f/g8BNM3lPwfgl66//xKAf12u/814Wb4HoBYEwf7r3sGGWqWkrqK91yIgElKVNQfVbt6jrrcqGRtzU1SQzWZRKpVcnne/30ez2USv13Ppas1mE/1+fwUVW4Wkv/Pkb6ugFJFaplchpWKwyIf0ODg4cKEH7hVON3w4HGIwGLh7ldmjaHkeI59ju0lTGlqdTFXlxvbZMM1gMHDHaNliwwHsh7qlvmwUVRoacmAh/wyHQ2xubq6gXrZP32eNj44f7yHtld+s4uWnntytWSnZbDaRqeI7QUUV9Hg8dnMrVj6sDCk/6HWVExYbLtCUN1W+akiUvpZWOg7kG/7GPUX4Z8Ob9tP3TgArB4PruPgUtvXy1INmUc+A7SJAsWEhNfxKYzUqOoYWHFja2+dfpbz/WScnd+M4Prn+fgpg9/r7HQAv5L6j62snMCUIgu9iicr1GgC/S8bii1kpMuJz1mKyED1RYekAKpPFcezuAeAOW2AoRCd1Op0OCoUCarWaSwtkYZ10o7Uf8bVba9tqPQeth99t30kPm2f68uXLRAxTwzga89e8Vi26fa3SVl3uVCqFt99+G48fP060lfTh+3mNed5sP/9msxnK5XLCmFjUrLTRXHZ1Q9lO3YGR5fT0dAWdWsBQLpcTm0hx3kF3AmTb7aIYbYcqHF5nnzjZao3MOuWiIIL91wlAFhuiswt2gGS4zqLCKIqwsbGR2JHQekEqX6/zPmxMn7nzKqvKtzrWVsHpNYbHFDQwrKRe1zpQobKUyWQSh18QBPhy4S2/2BCIXlcQwvRBPeVdPUUbR39dnPt3PDkZL2t/dSTd/9wvxnH8h+I4/kMWGSjqscwAYAVhhGG4sjMgf9d6SRwSxBJLlZeiKCrCXq/nmI4xb8ZlOUlZrVYTG+rzfTpTr0Kpk5a+MBGFR5EwLT1zXYWmjhY0QHYFJ/PZtU7fBGWtVnOMx3Y9evTIhTrUEMVxjKurK+TzeZRKJXe/ombSUz0DPmsnshg3Pzg4SJypSEVkDbV9h66AVPSlvKQ00/qpoLlSEYDLPlK+VG/HjimFlffrd/6vSJ39VkFW+vF3HWsLNngPADfRq3KifK+f+gzHhjnor1MgdoLY3qcelPZflaPSgLLGEJ4CBu2fhh00phyLN6l0YgqsfZa/c06FNKX88E/TPHWMdRyUr8jTylfW67Cev835tp6lLf+sivssuA6BXH+eX19/CeCu3Hd4fe21hQOoSlXdBX6SkXTyII7jxJ4V6lry06Kgdf+rcmQh+uLOeuqiss08Kefi4iKxV4Z1oXTCQ62/RTBUCvyun5zwUgOihcoYSLqx/NQzNrXfulRc9yahgej1em7FqXoVURTh8vJyhW6bm5srxkHHmjQJw9AtcuFBFYvFwu1fzfFJp9Oo1WorhgxYMjoPvtAJQhUI5QMiQuvVUHEBN3tH93o9DIfDFUVseZcCyQOs9R5fKMeGQ+wkoN6rvKIoUsMz6rpr3rwif6t42HbdJ3s0GiWUvipviyx1DFkfv6unx3YTEVu+1X7pQjtfaqL99KFp2z/diljBEJ9TY6+Lp7R9OjY+r1jfx7r1GEH1MnSBkR0f1QPryj+r4v41AL9w/f0XAPyqXP+3gmX5wwA68U1IZW3xMRKVHGOAPtTNwVXmtWhC9x/QOlQYNAyg1pu/KyNZpMT7eC4lFaAWzdRgfyzj6L28xnuBG8FWFGYtNulE2rAO6wozHZArwNQTYV1ELkTAW1tbuLy8dDnButES72PdwM1ZiLrnhI6TMq0icQorx+Du3buJiSmLqGz4iHTSNlGR6r2KitRDU1prOpeOg4/P1DjwSDvlb5vBoHWocmRdShfNpLLFzo+waNxV0aJ9tyJ6KgyfQlWPRpWojqu2W40OlaumyXJMNeSmnz70uW7c9U+9AAIR0k71gC/Ob8eRfWAYzyZPWG9J+0B5tEZH9RU9I20D2+ebcNXy2hh3EAT/BYA/AWArCIIjAP87AH8VwK8EQfCXADwD8Oevb//bAP4sgM8BDAH8xdfVr0TwMYcyk1pX/sZBVmVMBafW2rrJWgeQ3F+A16yg6Pu0nURpjA9qHq0qWYs0tS3KqOo62s12fMjHMq/GJH1ZEyps1rqHYYgPPvgAH3/8sUPK4/EYw+FwJdSk6MoqFs4JsA7NNFDD6EPDFJDpdIqnT58m6KKToTpmi8UCw+EwgZzUqKrQs73kK5/H4lOG3JdGlb3SwfKUKhKd6LIeVhRFzogOBoPEGAE3rjtpo2mtpB3pYRWRtscqSNtWlS0WhuTi+GbilP1QvgKwgqItSrZyzf5oUa/EKkqVcxtWss9qiIZ0VmVojbWiXpVF3qvv9Xm5Noyj/bL6h7/5TrtRYPqqEvgY9Pe6hGEYMy5smSGOl4cCFItFl8FBRQkkmdGiN9/gqLK1SsQSzaIRFjJcFEVuDw4y/uHhIR4+fOiuWyZg0X42Gg10u93E6jC2jSlg9t12m0wrnGrwNDtA065UCWtohWjZKjAaEq2Dh0ew/aSFombfmFqBCoJgZbtbPT9RQwZqCCqVCjqdjhsnXQqtgsw6qfh0zBQl2VPDfTzEZ9To2E33+W6fEle+0rbpmGSzWbegJAgClMtlN6mrf/peNZJKZx1bHQMFAspfvMbJRcqGRdWqkDR0obS391jjq2E9VW70NJS3+btVwGoQ1dPiu/V+XU1ri+2Ljj/pzHbpmbiWdqrY2R6tg3Ji11rwd77zs88+w2g08qaW3JqVk8pEav2IoHieIAlDweO9dgJBQxo+a6coQBGRjX9ZxlFrXq/Xcf/+fezv77vsgouLCwyHQ/R6PRwfH7vsE+0nkIzD6QGyyvhAcpN8MqBO0ClS1T8aQruQRhmdtGTdZJrhcJgIDzFswOwKbp2az+cxn89RKpUcGuN2AdZ7UoFXOqgLqqe62LglaQYkN9HialF1P1VhK3JjH3m/jjVpo0pK+UaNvU8obV2KqPlnDZiNI6vS1L1mwjBEt9tdSbvT+2lEVenyXaSptk95xSoffqrStn1jm30hGRtuUb7TYu+xmU3KQ2qMLEpn2I88QoOmMs+wqS/cxKJ0tWFIGmMbdrQeqPIH20O6Ub7UuCq/raOLr9wKxR0EN7FY6zL4YmXMjNABtCjACpDWYZWyVSaWWRX9MnaVTi+PHOKGTVywU61WcXV1hRcvXrhDZi1it4jaGh7rJrE9ZEZVpMpkqlj4Di7j53NWuNS9VnSmCEYRHUsqlcLW1hb++B//406phOFyb2WdONaxBG52VguCm1WXOl/B9yo/KE8oileDawWMW7Eq/dgHjevTAPE3G25QPlBX2kdv9fQUoQOrJ6SzLzZ+zHYozZRn2eZKpeJop31SVGuLVdSsi8bOjr3d68WmqlJufUbNB5z4pztRUp42NjZWQIW2W8NabNvGxoYDDJpix//1cG+rDNUb5jiQX2q1mlvzoLKpYMmG/tYV1q3vonxQvqhPFES9rtwKxQ3cWCNrtWwskYiPp4FY1EGG4W6AfM6iBf2zE0JAEnnoxBTvm8/nmE6n+NGPfoROp4NUarl/OAAcHR25STzmUWusmQLD+u2yaP3NTnqwn1warkWZXRWhMimVpg09aF/VgOokEutn+GaxWLhd7Ehz3SbAuqtBELjnguDmxHrrEfE3Ow4+xEgh1rYrurZhAnpwOoFswxf6qQrZvsMXitI269yMIm4dS6ugFIGp18H9O8IwxHvvvYednZ3EONJb0XfqXIAFJTaMZI0jAHe4CK9pH8NwmTJK+mkd+r/Pm/EhfM1A0aL0VxCmefY6Xkpfjj0npjnubIt631G0nJ+qVCorKbSs356OpADQ8qe2SWmihYbP99zrUPetUdxqyZUQltG10N0FVq3yOqZUAqvrqQytbVJkwGtU2rrcHlguX764uMB4PEar1cLZ2Rk2NjYSilOzPHx9U1RsDQnvtfFXpZ8qUWuQFD2zHtZJIdXtA6gUNS+d7yL9ZrOZ+32xWO48qPmqpKn2i3RX5cK+A8tTwHmf3quIHIBbgcf3KcKyysNm5GhRhGsPqPWNEz0+9lkzAyiMpI/G7DUDRBWYjjeRnFWURLZxHOP8/BxnZ2cryMynHDgOmiHDPel9cXilT7PZ9CpjjsH9+/fd2Cpi9ylm6z2pQudOiPl8fgVZk3/V2NDrttlaOn4WTavnACTPh+V99JrJR+RP8o3dZtj2mSBMaWLHhPVaI8h+qrH28aqj66t+/L0q2Ww2rtfrbnGLr8PAzVmNqpy1/Ywzr4un6eDr74qu1HXh8WV0u/v9fmJ/gTi+mQC01jUMQzQaDXzjG99wTKVhFipJDcWwnXZgbdHBZ38onJZxbYiG74jj5Q52RBdEExp6oFIkSlVh4viUSiV0u11ks9nEjnbqmezu7uL8/HwFcXLvdNsfInqrfPVZGiedmVeDw3Hgp8bRFdlpqiHpGEXLzZx032udOFXDpO/md0tvbROVTjabTRxwrUZUDZxFoeQ5NVA+Q24LjYbNiGD9NjwTBEFCiemYqjLOZrPY3t7G8+fP3XWdmLbxXF/4hO3Qd7Aeu8BMDZsqYqW3pSNpowrf6hjdP12BzqtQs4Y3dIyt4dJ2qpFWes9mM5dRxHNMnzx5gul06kWtt2I/7jheZo7wL51O4/j4ODFry7get18lcmSuMxdwUKBVMPUEGJ9S16Ix1Ewmg2KxmLDOVGIcKDKCWuA4jt0qwmaziUql4hDfyckJdnZ23Dl7VhhID/2uHoONz7PQHeTCmUqlglwu5xbGWCGxiN5O2thsBWCpaHl6ThwvT0HnTnQ8cor1huEy/7vZbOLs7GxFWVoB4W8219uuqmQJgsBlh+iYBkGQCJGQR6x3xqLKXT+54Ib3q5JUT0LrUQSn7dH7yCPaZ95jFUoY3qSeqRH4qkhbx1KVpeUp36ctPv6koX7x4sWKkcpms4lzHpU29I6VppZ3fIqQ10hDBXk+pe0LlVkPXa8rUGB79bv1ACz4s3rF5tgTQPA7y3Q6Rb/fx2g0cgBIw0C+cmsUN5VjtVpFpVLBfL7cNF8POeXxZTx4AIDb9U9jTUEQYGtryy2/7na77llNsdLJLO57oDPPVIQqTJlMBnfu3MHLl8sFoVTiRGREGdPpFKenp2i329jb20MQBO6UkTt37gBICoNND1IUpgpWQz2qyHVnviAIEqfaWFTDYtPt+F2FWN+xWCzP1vy5n/s5fPbZZ84DId3q9brbC4SZQMrQZFyiOO6yZtEmP4vFIvr9/kpfWafGK/V5nS+g8uP7bTqYxqd9iNeXj2u9JhpLDcVwlWezudyfLZfLrbjaANxRbDrZZXmZ/VEAwfbznT4hV6Wm46657lQU7LsqM/VOqCiVTxXpW0XLOSi7j4vSUfex4XcdA6vQOR5xHK+cqERjqGOlh1aTHkEQuLHQMJZP6fqKtsMCASur/N0XL2dh9hb7zhWevpBdon2v/PX3qATBMsOAA355eemIQ3dN453rXFMKZBAEbpUfCT2ZTBKrmTTuHARBApWRWabTqdsKlsiABkXdWMu4ZFYK2tnZGaJouU3q1taWQ1dWMFmUaW02wrrv7HehUHCHOVB4FNVorNgqa3XnOHGo7SEduTEWURXRJk+nUUVNgeTzOsNP48m9z+32vFydaV1R7YMWvU+FHLgRbOtZWKRplYHWTYUaRTcbHKnh0DbV63V3kILyripTAgbtk46HenXqSShP6HedR+B48hp5l+1RT0vb7cto0mJdfmAVbSowYht0xeurvD2LZjXEpPcASUSrfWU/mTFDb5D1qdJmfVa5qneVy+USRlP7a0MuOnbWYPJ+8iL/KANRFCUWuq3zfoBboriBZQrOYDBAr9dzKFoJqspOmRNIuqW6j4cKPq9raEMtrrrAluB6YjyRszUgNrcauDEk/X7fHbwQRZHb/Y4bOVGo1f1b59L6YuKquFlUOPmcVd58XhlFkZfWSQZtt9v4h//wHyZQA1GbPWpL3Vp9vwpnGIaJ3QK1T1aRKQ34XWPUSh96HZzU0z7wu6JqTauzfVADqrRTRaSFi2d08yIKPveuUA9J+02eVx609+rudda4W6VCXrCTZTRCOndBHrRIlAYvjpfzIrr4zXqCKpsKYNSrUg+K7bUGR3lT+zwej5FKpZxR1HkIi4B9YTY7/sqbOrb2fpU5G8pR2nPeSIGd9tUu1FK9wfDIq7wolluhuKMowtHRkQtlqNLJZrPY2NjAcDhMCLgythK0VColGF03drErnahYlFHZHkVs+h6r1NcNOF21yWSCYrHoNq6Zz+d49uwZ7t+/j42NjQQdrNLwoWpfDJWf6qIqnXyhBB9C0j99HkguMOl2u8jn89je3nYxbhaiIFV0yvzaVp+Q+hCeohcbVrErSOkFMJyhCl0FQZE/DyDmdRoiPqfI26fsbKGnpkXpTeSmvKmfapxJFwUKyguqiCyfvmqxifZR61H+o/uufzqhyjYfHh66QxW0HyzkNxvOsPHtcrkMYBkSpQFRHlGZLJVKiZCmyobPq1T+UXn1tdmOrQUQHA/tFw2/bv2rMmTDdARwPBQDgPNedTfKdeVWpAPG8fLUdBuQJ6NS6am76nNxSSBrGcnEVikBSUbVEIpV0ipUrJsIXhPqWSeNENvKSc7pdOpO0tF2LxYLZ5gUIdp4rVWqto1EYBR0ehp8ngyhCtm6ZSpM7DO/M/amx7T58l7VHSQ9FeXY9ymNtagH4BMu9kHpqOOptGM9yj8AnDLScefSft5rERi/WwWgSCmTybhFIuw3BVvHi8/R2NPo8B7th6JfbbPep/M0OjlnY6u27T7a2zHRBTssFiywP2yv9SAsP/OP2+mWSqXEYRvkV/Uazs/P0el0EuEYvVfboqtIidRVX3CyXdvGNvu8KvKDrz+8pmmNKodBsAxn0mtIpVLOM6N32O/33TqQdeVWIG4ytY1nkbjcTtUqNRZlkl6vt0Jk/s4BpIFQZubga9jAh6b4G5mOy7+JlukSU2EtFsu9PzY2NhwiLJfLLqtE26h9ogK2gq1tUCbRe3UVndLIhyBUwerRWj43mIXj8/Lly7UCqzTKZDJuPxNF/ByDarXqxiSXyzn317ZBETX5QVM32T8aUhU+nWyySlgzCHjdIjY12D5wwc9isejCcHEco1KpuDkB3mOfJw35XkX0NCLKr5YvFahEUZQQep/nowqT31+1hwfH1fIBFdHl5eXKvarw9FlFvsovVkEqT2i91hO2YUwFInyvHuTByT+VGZvcoGEOvs96C9pmLTrG2gb+xolI0o96geEVBQk2FKPl1ihurjrUlXU6yKoglCg+hecLIwA3aYc8kovXdNBUyK27QwRsrWoURS5bRd1ctpnMdefOHWSzWXfYAhlMGVER5rqwiW7+YxUB6QPcCLI9bZoTj/xdhZhMqvsXs/80bhb9+TwZizSYrkivg22J4xi1Ws2hXk4kWaVKutKL4R9XDFpkylRBtpOxZTXQGte1fMJiwxG+mCjfzfZohsjx8bEzLjpWNEIbGxs4Oztz9dkNimybbKjIh96phLXtyiPkfd0TWkNO5D1ts89DorGncVEPU+O4amTZVsoIaaegaTAYuBCcyjn1guZiU7naDCA7fsyk8eWVq+FUVK9t5LM65ppmyaL6hO2tVqtu/x+ryKkHMpkMer3eyiZn68qtWICTy+XiP/gH/yCAJYq7urpySrZarbocR6sgLGF5zSJTVU4WqfI3GxrxISMNb4ThzUkzVB4+AWcsrlQq4Vvf+pY7gNciGBVGMpnWx0ImVAHnjDTrVDdYFbTWwWKVFBU35xqULtZDUKHSxT++fnHHQTKmzdjQou2zXpHSiQub6Koze0XfT8NFOuRyOfT7/ZXQAX8PwzBxjJUWnQjVGDWFlJlJtg/6jJZ1Ocas06JQWyf5nv3L5/MrCk8VM8dMx69arSYONValqHn0mlm1vb2N09NTr0eo424zXnTBFJ9RRacIme3UOujVWrpY1G49KlXW1hvQ91C2SC/W7+MFC1IAeMNTNiGCzzJ8xlz38XiMq6srd2ZtKpVCp9PBfD73BrpvRYybcdLLy0sXtwrDEOVyGQcHB25DJbrc/OTeAkBygkKZ0yptIEloElSVncYuSUTrzsZx7BRRNpt1J4iz7el0GgcHB3jvvfewsbHh0vPYLl+sVdvGwbXCrmiAaFa3KdVYmgq8hkmUPhpfVqYmGtN6+LxtL2nj6w/v10VTumOhvtOiQvVafAJeKBQSefY+HgBuvDh1U31emiovoiCOUyqVwubmZoImXPwVhstsAh7rxjaQHzQMSJoQQeqOiOpp+MJc1vvRe6lglccVVCg/09BoWEzHRXnGF760E6/aJ6W77bOme6pcsn71oJVualBt3+072Xd9v1XaVg8ovZQHWMe68JHW4TPM/N8HVoDlds6sX+VOt8VYV26F4gbgjvziieRRFLkVREQT7BTzu7e2trC7u7uCYK1F5XfGolX5AqvxNWVyXlfURkEGbpaqMu5qlWW/38dsNsPdu3ddLMsiKI2/WrdaPQC9h4aMbaHgav0WTVulqwpOw0+cDLaIiX3XYlG4KkC9pjT10Z7ttXFc0kORNN+pGS1sl8Yi1ZARRelqPu0zkDx0gsqN1xaLBZrNpluha+nLFFZtD0NavF9DU+r6Wy/BGjTrvVhgwr4PBoMEfTTtVUOD6oXYnGZd3KbhAuBmsYiuxrW8pAaB121YiTyrfde28TtRL++n/Oo+PHwn79NxtMqUXrO+l99rtZrbf8bn7SiPqbFIpVJOtvk+GiGVOY639o3rO0hrG656VbkVijuKIrRaLQwGAycA7EAmk8He3p5zxzkgmjfMQaClsgSzCMcKgA/JqHIh8iqVSomj1FSRq8CwrmaziadPn7pjzX7yk58kzlHkfVoWi4Vb0ahMTeOkg0pjQYSiykIzXTRDYV2/+a6tra2EolA6akyS18ikNh6v8X+LkjjmKljaJl6v1WrOYNv2q5Br+3Q8bN1UABre0WKVG3BjOPgcAYAacPZX91uO4+WkOtuuykCRpY8HfApNx0KVFBWFVXIWYSuS03kJu1UBMxv0/Rwr8p2iUV/xoWCdkKYhpLLSsfcZMcoEFZ7ygtLRByws+FGe4DNBEGBnZ8eFHG1ftC4tfJYbdlm6+FaN2kIZzeVy7sxUrsZ9VbkVihtYdmwymbiVQxww5uRyUo87wukWosViEaVSCZubmyv7Ayuy04wPYHUJuCIY6/IVi0UX85vNZoml+CpQVJh8lvEtLn2+vLx0cSy63TQ+ynR0tckMGqPUZf8UBP5xwNUtVCXlC2Xoe1ut1kqf+CzfwT1lLIq39LBxZH7nboIahrBn79FbmUwmCSRrkbtVYvouywNaoijC9vb2SjjIhqG0jzq2qjhU0av3pwZEvSvyCZ9Xg8T6rZK2qJuG0u5Gp0DFZmqpAuZ77XPK++toR/ramLKlkbbXepCqqLUOpacCI3qX2iY1ECrnPq9Q5UnfSyPy+eefO0OrfGnlRftIo/7pp5+upKHyPp8hUcOla0hqtRrq9ToKhQKKxeIrUfdrFXcQBHeDIPjvgiD4aRAEPwmC4N+9vr4ZBMHfDYLg8fVn/fp6EATBfxwEwedBEPwoCII/+Lp3XD+3wkTT6RQnJyeI4xiHh4dO0MrlcgJBlEolbG9vI5/Po1qtJpCUEt4KnFp6Mgu3Ma3X69ja2kKxWHQZCRQGLdY11QwHjSEyZnznzh133S6QoEJj4cnQqhgUxQLr96rg/5qiyOuq/IIgSBykq20ibeyG9Gps9P3K7PYvDEPU6/UEkmPb+F4Ni/CaGiJdBGSRvCpJO7baBvY9nU7j8vIykf2gikLfoTyi/VflYg290l/r5e98xl7TP7bLjofyHFGy8iPbpehUwz40xgqQSDu7NS5lgiEoy29UqpoLbQvlmTLg2wfEhq2sIVWFbQ2L0srWrSiY58G+SiES5OhiOJ9nEcex896t8eWnz/Dp+KoBJ5Db2NjA9va22xpjXfkqiHsO4H8Vx/EHAP4wgH87CIIPAPwVAH8/juNHAP7+9f8A8GcAPLr++y6Av/66F6gisZM54/EYzWYTw+EQp6enuLi4QKfTcUJ4dXXlwix2lh5YVXSWMdRycsByuRy2trZQLpeRzWbdxCIA57pblwu42aGPjEXjks1mnSGo1WrY3Nx0/WUbomiZf6vXlMEUIfgUiCIs6y6TJpaRKHxEtIr8FbHadDndOtciGOAGBTKOyueYn60772lRr4j/W7SpgqLv5D1WEetvrEPTBLW/Fi3qYiUrmPpe/mn7qLyVltpPRWXaF63LKm9LC/7O9E57iIXWx+/sY6FQWOmTjVvznfqptOCzXGxmiw1V2RCO0kOL/q8yoMqd/VfFp++ztEun0/jmN7+Z0A22nXyWMmUPabbABIDb0Y9F88z1/Zyotv331c17fTLi2rnOSq59IAh+FcBfu/77E3EcnwRBsA/gH8Rx/F4QBP/p9ff/4vr+T3nfujrDMIwLhYJbhksGtcxN5aOTc9zDG0gKmioAteRWcXOQaakZDikUCg71R9Fyg6g7d+6g1Wo5xaPvjuNlPjL3cS6VSigUCm6zIW6zyslXKj9uYGNRK/NowzB0Oc4s/F0nTH2xZO2r7T9zfVUQ7XPKXBb1a6qgxrP5uyIlq0DJ2KzD7gqnfVL0a5GWoi1FjbYtvF4sFl1ITtGUolRNtaQ3R6Cg6F3Txfi/GjttO8ebxsymG1raKq1Y2B6llZEhL40Ye9d6dIzUGNvQAMdIlSfrtmjUhkFsuzjuOkHHsY7j2O3Nrnxo61D58PFAOp3Gzs4OXrx4sYJ4gyBwW0/oLo2FQgEfffQRvve97yXGzY4D22qX2bNfyoP6LOvUBU56nZ6Krg5n2uTjx48xHA692vu3tQAnCIK3AHwTwH8PYFeU8SmA3evvdwC8kMeOrq+tVdzXdSfcS2VcixQZ++YueGRqCodlClVcmnWggmgZjwakUCggl8uhXq+j2WxiNpvhwYMHKJfL+OKLL9Dtdt0ET7/fRxAs91x4//33Ua/X3Sx4Pp93m0vRylIB6l4ZKny0/BQ+vc42q/LU1YM+ZKSfVrGRhqoA+TsV7LpTv4MgcJuEkQmtoQBulCRPPNFx0fp9XoHWpwKshcZX26j10KPxjbvyjQouN7dXpWONDMfI9lP5l8+RR0lrVaA6vnxOvR0NVbHouFuFofTztduGjkhbyojyqfIL79W2an+AZay/VCq5HSOBGzRq+xEEgeMJH99aBc1+ad94z8XFRYIntM/cdI50I8D7+OOP3TXlST6vfde5iY2NDbcmQAv7aNts+wTA6TH2h3N6+l5f+cqKOwiCMoD/F4D/RRzHXWOZ4yAIflvQPQiC72IZSnEMYLd31N+sQClKUhRAS6joWyfJVEBUGcRx7GZ2s9ksLi8vEYbLxQb1eh0AcHJy4pTzvXv38ODBA5ycnOD4+BhxvIx59Xo9vPPOO9jd3U2gObv3gLZBt6HU/cK1nypkFCyd8AJWQ0QstVrNrdyyBsoiF30PEQHREBWEIhzed3l5ucL0VDxKZyoaKxAUZpsOyOd07K0wEKWwb3o2oHoVpJmG4qwrbuvnSTUWEbM9qqx0DPR9+psiVGuEVUlrn62Ctx6R7tdBBaoGT0NDFpGrV8D/F4uFO4XFx0+6EEbHl/dQcfV6vcQ42bCLyrVuVaFgS/tqwYAqf9bJ5eu6kIb3WjBCQNTpdAAg4UXZ9ygdSFsuXFJlbjN8lMZRFK0s0orjGP1+H+Px2KFvemSv2iTsK2WVBEGQwVJp/+dxHP/X15fPgmWIBNef59fXXwK4K48fXl9LlDiOfzGO4z8Ux/Efco1ZI5wcSEVINoyig5jL5VzcyRJfFZUOZi6Xw/b2Nj744APk83nUajU0Gg1Uq1U8e/YMT58+dYzcarXw9OlTzOdzNxNcqVTc5lF60rn2yYeIqPAZ36VS5j02M0Npw71FuDkPkJzg1L4C6/PVfQLBMp1OMRwOV1ZFEiVZ1KsxXTUEinTZJo3t2Ykr1qsLirSdvjREdUH1fVq3KkC+R0MEcRxjZ2cHqdTy8Oe7d++6yW69j/3i3IiN3+p3H+pScMG6rUIiQme7NCQGwKW3sj4qKl1EpB6WbZ+VIw23kCc1G4njzu0QeK8P/UZRlBgbG5pThafGTsGOKlof/X3omP/rARfWS9EUYuVPXrPJDdYL0Hi08mYQ3CzKUtqS/mEYurUp4/EYvV6PqyPdGgPOV7wKbQNfLaskAPA3AHwcx/H/SX76NQC/cP39FwD8qlz/t4Jl+cMAOvEr4tskjk+ZWCtpQxx6nz6nJ6DrJB+VuWXoKIrcjmS9Xs/tn033fzgcot1uYzqdOmEbjUb4+OOPcXl5iXw+71ZO7u/vO4Ru0a1lICB5rBRn/vkskERV2hfGbK2Lrlua8r2KfFR4VCCsG0paWmHX+QCuhtQMk4ODg4TSTKVuDtZVRQTAoXl+1/Q8KnYel8aicX01CFQiNma9TkFphgrHgDTgQR7D4RBPnjxJjIlOBrP+dHp52g3fb/lWx1GVHGlBoOHzNFjYR9avueQa3lBesh4PeSWXyyVAhcoWx5e8ptsIAFgxmDq/pDS0m3opeNAxIa2oLH2eBttuPVFLJ0s79VxsyE3vUUCo95B/eS2OY4eKrWdF2uj4sq2k0WKxQL/fR6fTcTsA8vwBIvXZbOYWHb6qvHZyMgiCPwbg1wH8FgBS5n+LZZz7VwDcA/AMwJ+P47h5rej/GoA/DWAI4C/Gcfz9V70jlUrFJIgOgrqOaoGtVfYhWQAu35gbGzHor0qbjJrP5xMuTrlcxt27d9FqtTCdTtHtdt0glEol5HI5DIdDp1S4JeuHH37olBfba9tqFYuNkbHvuVzOIWlet7nfNmRirTzpZV16ZWwVSqXt9dgklABPq1Gm13u494W6waRxLpdDu91O0EERmypsuooPHz7EZDLB0dFRok26N4wqJ2YBKaqynoTShW3XSTh9VullUZB6UjRKUbQ8aLhQKLhJTV1Q5lMu/G2xWKDRaCROEtJ5G9JaPQYqHBuSskCB7+WeMetOs9dPDWmocmN7NL6tPOmr1xptOyaUTe0bf7cGTPtoFaUFR+vGbT6fJ2RJ79H+WGBoQaL2S8NOaqBIE2bIEShyri6bzWI4HGI0GjleIeBat1fJrdhkKrzOKrEKDVgVDiDpNtrrZGIguXufLuXlM7T0RIRkHCLWer2Ozc1NFAoFnJycYLFYHs+1sbGBw8NDNJtNpFIpt0gkDEPs7e3hrbfeci60L06lB6my3WQey/iqZCxTsm+vSnEql8tuRap9nobBuoI6Bj466/sBuEwJ9oW/qUuvRiyOYzQaDcxmM7fl6WKxQC6Xc8iDikgzCIBlKIhIX5EvTx7hu3WCkn3Q3FyL3qyAAjcZRgoYqMTIq6rI2Fflv2w2687NpKFIpZKHWytdiVRZnyJajrWGOvR5i0b5PkWE+XzeyYKmD9LAFgoFB0Js/FvrYf1WKWroQNuhCnYdkLC0ZJ9UMWu9upLaNweh9FXDo7zN+lgXjzgMgsDRSduvbbDtJy1tnwlCoihCs9lEOp12GU79ft/xWafTcdklYRhyXup3nlXyu13UxQRWY8GqvBQtWaRN5qYy1fqsUWCKkC4zZ3ysUCigVCo55Xd8fIwoinB6eor5fI579+6hWCwiDJdLVoMgcJ8WXWmxg873KtMqwlJkBtwgb2V2GhxV4rTkavWZRqnZMHYMNPyi7dExsG1nuzRcYX+P45tUJ0XlwE1IazabufxZHxJ6++238dlnn61kEGWzWRe20Xiq5QsVMB8643usQVTjqopSFZqi21Qq5ZBtKpVKZNLYzAqL/Eul0srxV8pPqhBIT3opViGxDvIL+Zxt1AVjcRy7Vb3aR9s/FlWENqTAMeV99jlrJFk/x13vVY9D22HTHFWu1WBrGzVryeoXzfQiPcPwZg941mtpzOt28pm8xE/1ogkuut2u0xtqmH/HMe7fi0Iis3MWRavSojVUZQAkCcTfNc7GgVMmKJVKTvFygKPo5iQK7vxHA6DbUo5GI3z++ed4/vw5MpkMKpUK6vW6O0H69PTUZZKk02lUKhXXVnVTrVvKYmPRKlwAEkrNIiEWnbgirebz5VmcXGzE+mikfMKkyiUIgpXVaZPJxE3QkbHXIXRFIBQA1k0FVKlUVtBjHC8ncT/++GOHrHWsdQJVUbLOCWjcXw2l9tHHZyqkij59Hh/7ooZFvQhOKJKOKqQc38FgsOKmq5LQfitaZn912we2Sz0NFjtJZ9+l/MbfddKdfbVypjysJ8XbokbU8jL7YvepsTJhFSPvUyP9KsXK3zlGOoFN+vKkGtJHT+exsfMgCBzwsDJNZJ/L5Ry44OI+6h3btnXlViFudSmsK6sDRaWju6Ep4fjJevL5vLOoVMLz+fK09uFwmGBqKucwXE7+cbHNfD5HNptFoVBw6TvpdBonJyeYzWb45je/iUwmg+PjYxwfHwNYZmTcv38fABKHFwCreyrwf0VIKjhsnxosnzCwLl9RmujewVF0c3itMqRtIxm50Wig2Ww6ZepDt2yrXaihfVDlpEpoOBy6tC4iQ/6mRk/7qSEMvkP3WNGQD8ef/bV5xeVyGYVCweUEqxImzTTub8NhRGyqmBSZkx5UFKS1Kk2lGdulnpDlD/ZNjTf3SFc+0Ri5jrU1YupZUAnpyS1E6hYs+LwxRalqBPkOpZXWYxGz0kTv0TbxuvZFaap8rchaQ6mkXRgut5LVXHQgeXizTsqyvcqjNlVQJ9uJ5skX3LJaPaV15VbEuFOplItxc0CtoCvxuZRclQaLdenjeBlPpfvZ6/US8WUVClrXMAyxu7uLRqPhJnO4cfxwOESn03Epg+1227k6rKNYLOIP/IE/kMg2oQJiCIcIM5/Pr8QUfWPiU4SvEhxf3JvFxt/0HVqHjXVb4dBwhkV4th47eWZjpyqYKqzWTWeuuw858XkqRUWFNj+e7VAFwVKtVhGGIVqtVkKxq/Lmszo3Yd1u7Ru/q6Kwk6E+9MY+ajhFC2mlSp4KIpVKnmTkkxPtiyo8331Eo5qiqHXr+LPNFnwRPFlPWo0pC2mo9Of7tc/aVhuGIY01R3sdwPABnnUAydJd+VWBgvbT9o+ptlEUOY8xjmM3/3EdTrzdMW47kRCGoVv4YYV3sVgkNlX3ueTADTH7/T52d3dRrVbdxvJ2yTKwnKzTZdGz2QylUgm1Ws1NQA6HQ7cTYT6fR6fTcc9Mp1OXnVIoFFCpVJxrTMGme0xhtbEzlnUehDKKLrxRJV4sFhNbQ3Lyg0Xda4totCgKs8aEtE+n064vOuFkEaa+37rl2j/r0isCVAWm4QiNJ+7t7SEMQ5yenrp3kP6LxcKhUEXNGvYA4BZkUNHqBKkqcvVatM2qxFkHcLNwRT06ZhaQjuo5KL2sUmFb+JwdN46/D3lmMhnn0Vjlo/VTBjW8o+/WuoHkxKyOsf5ujZTKtp0M1pQ7Fr6DfKsLbbQtLL4tAhRIWD7lePomjm3xeScAEpPgFgTp2Gaz2cSRelzcZydufeXWKG5VUGEYupNtfFkPjOPp/hBkCnU3SaTJZILj42Mn1Da0EsexOzuPoZRut4t6ve4mlh4+fIjRaIRSqYR0Oo1qtYqzszMUi0Vsbm6i1+shn8+7nQu3trYAwBkYZplwt8Fms5nID9b2+gRJmZ/f1XNgPJDWW8u6dCW+wxowRbNESUyx29rackfLsVhBtEynCo3KWRGUekkUQhVeRWUa6lFDxrAIV+AxZqhIyhoZy3+2LeQrG0JQ5KwKGrjJyeYB1zZkokqCtNBQCesoFAqJFFTLs9oWKzs6ttpG/V3Rqk4iKh9GUeTkj4jR8qS2S1G/0pg01zHVbBdet5ONPoOl7dQJXVuCIEgcp6eGX5Wt8glpYUETi09WtB7SY523aw0f+55KLRftzedztFotb+jIllujuIGbVKJyuewOz2T6l25DSYHIZDJoNBqYTqcJRciihGIWBWNQ1rWfTCYol8u4d+8e2u22Ywzu0cvtZHlmIRnq7t272NnZQavVckqdbWbdijzq9Tp+5md+Br/+67/u8svZVhsyUESqwktBImPauCGFJAhuTrAGkKAbN8/iuyzS4zM0Bjzw1J7Abt+vTGmzCqwLrkZEhVQ3tFfasd+z2WxloQ6/c28R9TKYQ05Dp1sM2HxmVSj6TvaRqY86Njp+DKdZwWOdmiWkCy2oFINgOWleqVRcbNWGBPSdSmurQLUfqkjtfUDSQHKjNH3POg+QStgqcfVOVKHrffb9HEsbxtMwhBpRGkiVC83Y0ecIQHzomm223rC9V2VTf7Oehw+p27HQ63G8XNjDo/FoMGm4feVWxLjDMIx1dV02m0W5XMb29jaAm7BAq9VyS0QBoF6v4/DwEBcXFy5Vj6k7JEYcJ5eNq2tkGYkzvkzjYpiE+3Pv7u6i3W67/O1Op4N3330XjUbDIXadQNIYH4Wfce/BYIDRaJRAhJbReA1IIlmfK6XMUi6XAcChPj5PA0QX2ipMW4/GaRm20t9V8dv4t6JqzV5QA0Nh0rp8wmffRX7wuftar/UKJpNJAl3ZdD+bDqZjY5WMr23sl6ZqWoQGJD0gX+yTKaXqUfF+O546dja+r21jscoPuFn8YlGk0kY/15V1vyuvWWXu48F1ffbVy7G3/GHbo3Vo333ZJ+oZqaFV3UH9omsHtD/UOypDtqj3pqCEGS7XGVS3O8atgsMTZohCUqkUrq6u0O12HcE4afjixQt0Op0EWmFwX60ukFyYwaLfNS4cBAEmkwmurq4QhiEuLy/xW7/1WwkF/fDhQzfRooJNxaKuKlcccp8Cja+S8ajolCGB5Gb8Fg3yd90Zb93mPvrdomCmParBUMVGpe0TCu0Lf1OjZV1xKh1tB4vGB7WflsakF8dbN0RKp5cHVjx79iwRXmFb9ZOGRT053q/91b7x06JxvtvS1houPq8hEkWD9DB1rHRRjw096FwE/6eHauVADakqJPVQtD92HkQ/7VhbflYe0YlG9kVBk2bX8L2M/3IbB2to+XwY3uRaa1uVf5SfrLGzxkPRvvKfyiC9WYuuWT91mfbHp7ytPDLk+boDH26N4rYojkoZSCKUIAjcSRbT6RRXV1euDmZvBEHg3OMoutm8iYxjFcu6duiCDo2fU2i2t7ddW9YhVQ4i0bUPdahw2Z3FrALX+imEdrWdPkvmpmJgHTZVTJdlq/JZx3gWtfm8GO2XGjIKJN+rE2CKgNg3NSYcX9bFU4Isoj06OlpBz0pD8o+OubZflXYQBDg4OHDpo6q07KSYVUIqxApOrJJTwWXc1oYLNAymS/6VJmybnhxk26cokvTSYvmIRXcF9PGmGhMbhmI9voU6SifSLggCfPDBB2g2mzg6OlrJRFHDEEVRYh9/X9hGJyNV+Wo7WMirWnyel6WRyhyzZ8iDvNcaDRaGMEkzXcvgK7dGcSvCYWcVmQE3Atbv9xOHD3AAGLflwG1sbKBYLAJYMnK73XYxWRJJB9+6Q6yHbaAhiKIId+7cwdbWlvuNiIWCqcaGCsgyhCIVftrMDP1dMwisN2GNiqIT7Q8zXmiUVKlaQWIIRJWIj4Ff1xaL/DKZTCIFkuPNLQJUiSmj+4SNcUmLKm0/bPt1ubf2Qa9ruKXZbLrYNunLcdV20uCrkrVhFt7nAw86BhpztePJZ7XfpA9XaVpUrvTTcVJDaNG1XuffOsCjilyNngIJ/sY+2Hx0/fz0009X5NGOmfYNuNmEzG5Ja+VM+8r2WbCkBmzd+zSnXe9R75X9UdCo9NGxsHyyrtwKxb1uQCgEcRyjWCy6RTd0iRRJcECY4xuGy8yUvb29xF4anPiczWa4uLhAvV7HYrFwm78osYnat7a23H65URRhf38f9+/fd0LLtjKzwSdkKtiaW2rdIWUOYDmglUolcWiERbOvEhZVIGwDFxX5nqOysntj2L5Y47Ku7cr8bC8nd/kuKhk1pFof67LhBio1DTPxXl4rl8vo9/serlsWeku6QEqVRxAswzFcqKVCrgcDAzeGRpWq0pf3sG8WpSo6U77SvtlChcB37+zsuM2KSGNV/BxjG3Zgf1ThsA827ZLts8CC462pmpqrbkMHDAnQIGqbUqmUd5LXZ4SVF1Qe2A+ulVDUrQpUZUQncH0hH1+xYRUdPzvRSS/Nho7I/6xn3fF+LLdCcSuRfCiEaJOxYSvQ9l6W8/NzVKtVlMtlpFIpl4/daDRwdnaGhw8fYmtrC1988YULs9BSc6vOw8NDFItFNJtNbG5uYnt72y3Q8Lk9KrBWYfMaUade40DbLIcgCFy839ZvmVR/03ZRSPRwU1UYOglHWtsQiZ1EZKHCsAbIIgor4LatHHsaDaJWXwiG9fN/jSdaxa/L46MoSoRISAMaDhZ6IKSDTT1UIQyCm8OUff2z3o/Sxue18LoKPNupgq60Vc9Ad/5Tb48AyHp1LGyjLyPKGngNYbEujoOGJkkrNfRq+BeLRWLuRHPALTjgmKjHYnkHwMoaDdLJGj7lVx8i1/77+FWz3FTBW09Tj6qzBtHnjdj3riu3MqvEljiOEydyWILyOVWUQbDMTjk4OHDbsgbBcoXjo0eP3GHAXNLa6/UwHA5xdnaGOI6xv7+Pd955B2EYulRBLsbg6j3uOcD0NO7XYY8zUkFTJMLBU2SkaFGtvyIa1qXf+X8qlcLm5qZbrq0C4GsTiyIyPsf/Ga/jc1YRqVBpnA5Yxup4Uohtq3WdOYY+pKOKmUKgKMuGK7hdgSIqVbhar6/wHXalqF3IpH1RAVclbF106/7Tc9OTdhTRWoOhbUylUi5F1ccb+tyr+m29KUXH/G4VnP5uw2oqm/b92i9VfHxHKpXChx9+iB//+McJo2lROWmgz1q94KOJBRo0bNYosL6NjQ202+2ELOVyucQByTqm/F8XVVmQR6VOWvF39W5+67d+C/1+//ZmlVAhKvNY5cz9tNlJ3+ArMgjD0IU29EQLrmzkiRNhGGJnZwe7u7sIggDtdhulUsnFyoge+J7Ly0u8ePECX//61wHApaWxTqJbbbtNLWMbif58xlOf8xklRdvADXpbLBbuGDFe98UmVRhYJwCXr83imxDVMWBdRDkMObBOKm2LIlQ5WCXj8xroOlt3l642acq66PJrXVTGPuHnu7UdbCfRr91Zjp9UvlQyvvHie0g7S089cktXZKZSKZRKJfR6PdRqNberoo6r0lfRsNLVen+qVH1K1GeA+C470Uf6sQ++0JqGEHSCXEMoOl6fffaZ8y50RSX3CtJ61DhaevtQsUXfbBsVqXoSXBzDjDaGgezOmtYjYx2qA9g21mNTgZUXX1duheIuFAo4ODjAaDRyJ85Y9KIxOHWrgNU8U6KQRqPhzlssFovupPVms4nz83PEcYytrS28//77LtOh0WgkLDAHYDAY4PT0FKenp3j06JFrFw+gtULPwbIupbq9HHwNZVBYiXJVwBXxKaMCqyEO3sNndWGDFvaDfdbsEhvz86EG+y6LyMiI6iqqIbFCrqjKhgiITNVwkK6+CSJVQto2DR3QKCuCZKop66ZnRbdeeY1joqEla3isl6GKj31XT4I8ww2JuCcPdw20tNWMCpu/rlkcOq4ahwaWCDKTybhl1z5DayeLbbiN43n37l28fPkScXyzQEtlwxp/nTtgXXqws7Zds2U07GWBH9/FtmtIx77TyhL7xnJxcZEwjKzb5mhrGMvHfzbV1OdNWS9lXbkV27ouFgvU63VUq1W3OY5Fz1R0VpiA5MwsALcbYKPRwMHBAfb39/H1r38d7777rtucilbz+fPnuLi4wGQycYMym80wnU7dfaPRCF988QUeP37s2kUlwpCHbtFJJi8UConJMy2qxAEktpRMpVKJiQq+gwbJIm0qWE7ysKghswgbSMbdq9Wq6/tsNnNCYd1efa/Wo+3U/vE7r+sOc2F4MyGpykIFTBnYjjPrUxTFZxaLRQIBa9tUGdGIkI40mCpwABIT4tw9UOkZRVFislpRFt/pU4a6YpL3sV4CGa6wVEUL3MxNqHFU2lBOeJ/S0iqZyWSyslWCFio79XZYj2ZQAcDV1ZV7l/U+1UDa9mjfOI4EUHy3ptRasMTx86Xzab2WN60BVfoBwLe//W132IoabLZR9ZDKlEXTFpDYtmt5VQ43cEti3NlsNt7Z2QEAt0DFZwn1OwXfun86cJubm/ja176GRqPhniWqHI1GOD8/dzvAfetb30osYun3+zg6OsL+/j4eP37shId7UTx69AjvvfdeIkND461sk+ZPW2ZRi6/IiM/qwAdB4Laz1QkoZURVslT+1uqrMqRxoYGKosgdGsHftejkJpDcGIzFGg51/dUlVuXFWKD9XRV+Pp/HaDRK0HWxWKBarWI0GiV2ivRl99CjIXLnvATvsZNfGhrg70T1VIa69azyALDMXtKYNdutKFKNkxo8RfXK5z6jrNe0jYq+fceUKQK0161ysgZHXX0df1U+QRDg7bffxpMnT7zbrVpFrjJhU151PPh+G5qwv/ve9Tplbv/n/dxjX71Pq58syLBI2ucx2/YoL6ZSKXzve9+73THuIFgePVUul3F2doYoihJ5mD7lo66WorTDw0PkcjmcnZ0lZpjVJaSC5qq7fr/v9pemi3p0dISzszMX8yaDFQoFt4+KIhSLbilwZHB1U3mfPqOoZXNzMxGnZn+pLFQB+LbCBG5m/qMocoxHweCzVO6qrKi0qfzs8WtcxaZCpkpYDZENYaghU9Skk7IWpbNtnHzjikLyg9KN8W5V9nZ3SdJEDx22/cjlciiXy+h2uyvbAwBYWQzC55VHyZs2dKH90rFgH5S/rddpQwp8hjQgOtV0U6vUWJ8qbav0XhVC4P3aH32HyhlDfTo3oMraAhabYqhKm/ewPfocja6dN9D5GTWOVuFqse9Ww2fv1bHgpncWXdtYtg3RaD3KC6/L435tqCQIgnwQBP+/IAh+GATBT4Ig+D9cX38QBMF/HwTB50EQ/JdBEGSvr+eu///8+ve3XveOKIpw9+5d3Lt3D/fu3UOtVnMC6nNlVOBJ0ChaHsB5584dAMD29jYODw9xdnaGq6urxJ4CvJ9IEwCePXuGp0+f4urqCp9++qk7IIHMn81m3TaMGrtmnZYRLIpQRW77ohMhYbjcBxpYVe4aQqISpHUmIud17nfBe4Gb+Cuv7+7uJtx7FZDJZIIoWu40yC1tNe7NuqgAFdmkUim3ZNcKgioIxlVVCWpR2rGdNtVrNBq5MaLgcKx1MyoacTXk7Isu5grD0BnnDz/8MDHONm9fi45LHC/DHPSQ9P6dnR0XVmNh+MvG/tPp5clJPFiWNGFb2WcbOrMK17ZVXfp1SFFDS3xGZU9BgK7c5T2TycQd8af01vr4jFXmyi/8jeBJ26h9Yb+Vly0iJx9pv9k2lQtd1KX6Qt9tEbpNCU2lUokTpoDVAzl8eoPt9YVXtXwVxD0B8KfiOO4HQZAB8I+CIPh/A/hfAvgP4zj+5SAI/hMAfwnAX7/+bMVx/E4QBD8P4D8A8Bde9YIwXC6DLpVK7hzHxWKBTqeTcMeUeNYyc/e+4+NjXFxcYG9vD5VKBd1uF59++imCIHBbrrbbbXeALmPePLH98vISqVTK7bE9Ho9RqVScguIGThsbGwmkrzEvnQlXoVCm8iEcdRs1fEBGUCSmIRidJKGCJ2rX+KDd5pQnzWgbarWa22lRBSWbzbpwEdtvDz0GbhiafVcErsxJBav16So6K5C6uELrZdHjujQbx4Z3NBuhVColMlLoXXB+48WLFwmeU8+DY0ljoqE6ttMe2xVFkRsT9ZjoxWjf+DvTWPVdSuc4vtkGl7xgPTGLhtWTYbvYdht/1lCXAgP1Yvip/VRDaEM9ijT1OY3ZqyIHkp4en1WFqjLAZ22YSueQ+D4FDXzfuhCgpaP1TlQncfytUWVRWqmHZMHLuvJaxR0vKcWlZ5nrvxjAnwLwP7m+/ksA/vdYKu4/d/0dAP4rAH8tCIIgtn6GFCoU3eaSilWLRQD8zGQyeOutt9But9Htdp0yYrig3++j3W7j4uLCCS6FiogNgEszUtdPGZQH7fL0d+sNKBNypt/n3voYQpUklSJww8xkSt/kDH/TrIuNjQ00m82VdyqjMzdVEUCn00mgEJ2w1f0nbDgrl8ut5MKyb75+r/tfjZoaNEXkatAYHrF04v1UZCq4FDJdURkEgRszph1qni7prGOmz6rxViXIdFKGZ3i/CrqPXovFwp1tqC44DbqNnRK8cGyt0WNRRWHjsDa2bA2A0tvnzaksrDO4pJ+VAQ0taH1WySq9Vebs6k6CH22jGhPruVHWLc9ZlK9Km+mMFkSwPt0OA7jZZoG8wsU5GjZSI/2q8pVi3EEQpAD8BoB3APxfADwB0I7jmKN6BODO9fc7AF5cd24eBEEHQAPApanzuwC+C8ClPL148QKLxQJXV1eOOSyDK1ORgGEYJmLaHMTj42PMZjMcHh46gVQGUKWlBA/D0J12nU6nUSwWsbGxgc3NTVSrVefiK4EVKao7q+1VZhM6JGLMdNNs9gWzTtQ9ja/DDZyYA26U2ueff77iAltDaAVB0QyFX5e+K420juDaNeZmUVq3VcSs08YNSQdue9vtdjGfzxOnYgPJzaEYStDMBhVmpleq8CkS0rZpvaSj0l+Rpo5fo9FAp9NJpAqqslVB9/GBjSer18T5B1VG2j+rPBVoqOK0IUdVpKogLH/avs7nc+d56u8EKHyHHratsqZeo1XeOhbaByo9NaIqUz5vnDwWX4cwLBrn6lAFGUozKwvWa2OpVqsYDAYrazEs7dUzYImiyK2oVO/W9mdd+UqKO47jBYCPgiCoAfhbAN7/Ks+9ps5fBPCLAJBOp+Mf/vCHCWRBIbGuiTI/Y6mlUgnAEvUx1HF2dobJZIKHDx+iWCxid3cXV1dXOD09dW2wjMNrREpBsDz44P79+9jY2EChUHA5vtYqW4ZXt84Kjb7PDpRO5mj71P0n8tF0PTKqtkHDKIrk9FPbzpicunjKeHEcu9WmNBbqNhM18L0a9lFUQmRLIeP9mUwGBwcH+PDDD/H3/t7fc1kkSsPZbIZ6ve48A12VqWOqCJTv9WX9XPNfgu+UVopw2RelCZWU4W3XNxokCzhoHKmcONHN+9XQWv63/VQe8aFP9SD1fzuHop+qTPhMECQPf2Cf1Jj4QBVXGuu9drxURrQuRexKXwVK+gwNuIIhlRvgZotiC2yUR5RmvrTOKIqcR6v3qqdP/WWRu/XorQH6Kor7t5XHHcdxG8B/B+CPAKgFQUDFfwjg5fX3lwDuXhMzDWADwBVeUeL45oBMuvnvvvsu6vX6irvDTjIOXa/XcXBw4GKwHDAyLzcR4mSZCimJlclk3O596nrG8TLmu7e35+Lj2g7ex2c4+HZHQy6FLxaLKJVKLp1M+8+BnU6nLpZowxg0VnEcu5M/FEUr+mG7bBqiThiy6Gy+ZRwb71N0YRlbhUX75surVaFUI3xxcYF//I//sQu76G59VGq69wNdTdKffdHQifZdBYnPWTqqguQEtebqcj/4QqGA8/PzBKrT51k3jVK1WnUpmHx/FEWJvVJ0jFk0BGTBgIIZCwrUODBUk81mEwaTxojjp3xJ5K/KxY6h8j7bwVAk26lrFCyI0b7xGj+tArNK2vKzjhvrVOBHmhCUsX/6G9/xqlCFvktpTvmzxoK8aI2jDbdRr7GeV5WvklWyfY20EQRBAcC/CuBjLBX4v3F92y8A+NXr7792/T+uf/9vYzviq+9wHd/Y2MDh4SEqlQoqlUpCCQLJvGWGMYbDIXq9Hvr9vjvOrNFooFAooFqtOoYlstNwQ6VSwebmJnZ3d1EoFNx5f9y5TPdb5qCrklbmIvE5WcUBIhMPh0OMx+OVMBCfpdDoKeaaimgVoo2NKxL0xR41bODzNojg+cf7qXjJkJpvqqlYLNpWPsN32uwaRUr9fh+9Xg9nZ2dOmdnQQDqddu7pbDZDoVBwyoiZSNw3JpvNYn9/3z2rmTbaZlXaGrNU2mqdd+/exc/93M+5bX2tQVCExcJJyMVikZjQVbfe8gSVmkWqquh0It22geOnz1kkzdCipieSBhxrHUs1OPwex7Fb9KZ9sIBA+/AqL0L52ip7FjWIqiD1fgIm8iplgXzC/zmGapwJ5rSdrCeXyyX4V0GItlOfUXmkIvehagVMrypfJVSyD+CXgmWcOwTwK3Ec/zdBEPwUwC8HQfDvA/gBgL9xff/fAPCfBUHwOYAmgJ9/3QtU2QRBgFqthkKhgFar5Q7iVWTFTBAA6Ha7iKIIo9EI6XQa+/v7KJfLGA6HuH//PhqNBqJoOZvPxTOMnd69exfVatUN2MXFhYu/np2dIZ/Pe4mqRWOmijw1e0GfrdfriU2vrLtnXacguAmLqNFSZKDt0sMkgNWDgul56JJ+KibLXHqepI1PqutN5EIGtvF/GzqwiNIqOTUQKmy6o2KxWESr1UIULbfZ5epXVVzcfIn1M1ZpaazuKxWAxkU1dzyXy+Gtt97Cd77zHZyenuL8/HwlVKTjQV7kWNh38rrygEVxFlHbtjNfnW23brhe4/MaeuO7mCWk9/rGSMEAr9s1DXq/hor4PIvyCD+V99d5FDQYuqBF32/j7jaOzP4pT6nnZo239kflxIIUn3diaUl50TkV0jCKlscEvg5xf5Wskh8B+Kbn+hcAftZzfQzg33xdvb5CoRqPxy52vb+/j9FohNPTU+TzeVxcXDih5gpCDt5bb72FQqGAdruNvb09PHjwAADcopJKpeIIWiwW8cEHHzirvVgssLu7CwBotVoulzefzztEpxOGwA1D2pgpCwVK0TmPFaMHYBWHjYnx1HJlXutC6m/qIRChKmMyFMN+aB5zEASoVCqYTqcOFXJXRvaBHodVgKr4+K4wDFGr1bC1tYVWq4V2u71ygIHtA7A8gPnZs2cJ4bHxXqaHAcDR0ZHzEFT5sm+NRgOtVsuFNDSkYhdoKeqiwdjY2HAraGezGT755BNcXV3h6OhoJTxkld7Ozo7rixbrxmuMVY0y+05FpSGJOI7dASGkoc2KUkPJ6wooNBbLsbGo3KfI7bhZsKG/qXzo7xwHu0BHvSF9r4IH1q8yZMMXmh6p7bEGgL8pD5OfLPLV8ebvWofKxTojzHu1DYPBAJeXl8hms87bf1W5FUveM5lMXCqVHBrkoNVqNWxvb7tT3Pv9vtulC7jZY4MxNGZ/lEolvPXWW46wp6enbuOq8/Nzh76/853vYGdnJ7FIgm67nn2oMSlFG+pGqhdgU5ekn4mBV4blvTZ0okxuXVHew9/JbNxKlc/q5vh0H+1ybC16nYqM6Fvj51QSVCB0+YlQaYB3dnYQxzGurq4SmRIUUGZQsE/FYjExmUXjqulUqnAZblBDQgPD8AjnP4rFokPr7KtFzPTKFFnpeGh4hHMzqoSt4mN8d3d3F0dHR4nxsuhUx4DvUtr7lCjpZ/PgGQbQyVXlXbbNrr5V5UKe13rT6XRiMzLeZ5WWrcvyNz81ds+iIQrem06nsb29jdPTU29M3CJl61nZ+mxR2VYjpKm9vmfVC+Xz6o3a1cPaBnq23W4XrVYLxWLRZWc9fvz4dh8WrCiYmQ29Xg/n5+c4OztznbMEIlMFwXKhQq/XQ6/Xw927d9Fut91sfavVQr/fdyev1Go1dLtdDAYDJ4TcA0QVjyJrRWkqRIp8rBJlUaa2v1sGo7Ii06jLxP/VYGgdANwudsDNIhhFYGEYuli2bwzYPsuAfA8/2U62mZPA1iDN53Ocnp6iUqlgZ2cHx8fHCeSnipP94zJ1pQv7VKlUXLYJBYArC7m9bhAEbjENQwhMAWMevs1h135ZL4lZAizz+TxxXqcKJf9niqsqkU6nk0C/Gie1oRp9lx3rILjJp9Z71JBpbFdp5fPWLL9qPbZf/F+BhFVmivx9IQPNGLNzHUoH62XOZjOcnJwkZNDypcqThmGoQJWWvG7Rvq2XRSdx9fxNa6TUA1Da2dDLaDRy6054dmqv18N4PF5ZdWnLrdgdUN0butbM32U4RAVJrVW73U4spIjjGJ1OB0+fPsXTp09xdnaGk5MTlyZItBaGoduukWEXy/wsVNoqWGrx1c1mzIyDrC6Vvl+Zn/FbTpDokluLkHzvVgabTqcrC0d0plq9CFp3i0JYpxoO9TqsG6uTULxOtMdrg8EA5+fnTqDI8LZ+xpT1WQ0V6NYFpMdkMnGMz+dJS76PPDSZTPDFF18gim6yKnwGkkKnHoUiOj5PmthJdCJxHUPupc2x1z3f6Wk8ePBgpS0ca6UtDYcqJ+WN7e1tfPDBB24uQ5WIxlC1Pcqzyg82+0KNKhG4esHqmakiVfTOtnOMVPZ8SlvDIGrslWcV9ChiZz95H+nKNGIdb6W5erusg/U0Gg0XQuW9/FPUzl0F1TPjmI/HY1xcXDgQwRXa5XLZbS+9rtwaxH1wcIBarYbLy0vM53MMBgMn/DoYZFAqI0UetGKpVMplcOjEIRfV0H1+/vw5PvzwQ9RqtZX0MbaLDM3tTlVxWXTEQsVkY3LKnLpoJpPJoFKpoNVquZV2ihx1AcA6tKNK2WfkFF2wjslkspJpwj7rqi7WaQ9A9aEVO64sGkunISsWiw79Kx3tXAIRbBiGbp9mRTx2Bacqma2tLXQ6HUdPVajrFIRuN8D3czw55uyDKhS+37fiVz05jqeeC0lPhZPWdrdCVWqqoG1ohPdeXFy4c1Tt+FiFyzHZ2dnBycmJdyzJA2yn8oE1UNbYWH7ld54FyXguFbIFJtYbVP5SQ6Bt8AEr/T8IgoTesCESDQP5jMT5+XnimgIX9mcymWAymaDVaiGOY5RKJTf+w+HQLQjkWDCLjnNr2u6VsVj7y+9hCYLlUuujoyOnTGip1N0H4GKQtExAMm86lUqh1+uh2Ww6Ja4TUZoaOJlM8P3vfx+dTgdxHKPdbrsJKOBGKOx+wywW8ZKpbdqhxj+tkgKW1rjdbidmyGnNrbum/1tUSBSjio5WnAZQc3OpGCxamc/nK6jdusRBECQ2iVLGDcOb/Hk1FCoINBy+3Q1t2AlYTkYycyGKopV71LBvbGzgj/7RP4owXG7YpZNuVMxcocl3cqzo8SiaZRvv3bvnJs1JS9sn3UuE8w1xvDzsmoBBAYIueppMJri8vHRjqyl6LOqaa8jQolDSyCJ1YLkxlyp71sPFaVZZqWGynpQPcVo+1aJ8YiecLXiygIJGSwGVGk7NFdf2Kfggrzx8+NBtKWDDdWwni28MKMe+5ziWBBWj0QgnJyc4OjpCu93G2dkZLi4uMBgMEl52oVBw0QYrb7bcCsQNrJ48rhvXq1WN4xj1et2FVI6OjhK7wenZe1S6RBRbW1uoVCq4urpyyPbp06dotVrY3d3FfD7H3bt33fM2BKDuuQqLuntUnNbyExHbTBLLOCwUOrXIGttWlKFtY18bjQaOj4/dXtVs22QySSgmGkbWz7ba9iwWC3faPNPuNLzEPttUSPVKtO22fn2PhmV8E2fqOmuclM+Px2M8efLEvY+TPVbJKYLU7BvOdVChk16ff/55wvPhGGgKpE4ShmHoJoF5Uvyr9t9hnzTcYJWxhgDIRzrfwt+ojG3aHxWjKlxguV5AT7/RYnmYxYY1bNH22LZxrJSPdCztM+vqVK9MJ/9VVsIwTJxZG4YhXrx44Yw/6U16af02ZEpZUb60/eeZAqyXacWTyQTdbhfpdNrNy8Rx7A40Jw9xgdaryq1Q3Kr0GOJQN0utGrNPuDvf/v6+O+7s8vJyJTTBgazVam6CSgUpDEP0ej3MZjN861vfcnnQQHJDHzKpxgNZtw6cZmGo9bdo3VeHnQzS4rumTKzGKooih57K5bJbFs74L1G1KjC20aI4/WRmjho0LmdmP8l8dKeVfmqsrPDaQoWaz+exubmJly9fJvrsQyRsG0MF2WzWpTcyXKLv17kTKjTt+6uMhqIweojD4TCRakn0FQQBLi8vE4advEk62W0BNBxEAVe6kxeVx2xoQvuk11WJ87PX6yWeU7mzSlTnKKzSUpr4wjg2HKnP0lDautWbsmOu/MNJaxuSAZJ7qAdBsPI/67dAzYZi2AfVLQokOME4Go0wnU6dwajVas6g53I5p7Poueq2teoFryu3IlQShmFis/84jl0opFqtroQZLi8v8cknn+DFixfIZDJuJ0GduKISKRQKKBQKuHv3riPw9vY2crmcO1SBrn06ncbu7q7bc9vuGcKB0vAEhZGDZkMhyrAUUgqHpg2yHqtIgJtDDVTh2WX12m8i3ziOnUDa3xRF8X3Ww6ByKpVKbrk2AOfe1et1RNHNToaKUthWXTijyoT1kO6WH9iu2WyWmFhWRMRPG1Ji9tD29nZibxnNINJ2qFFWN5x1ak4tx8iHuu0knt7P8dF95rVYJadyQMWuPGXRKGnjM2ZqlK1SsjRQ2mvdync6DgooGDojPTT0sS6kp+0EkpPv61CnKltNGtC61Ehqny2d9VPrUUVujZ/yuLaJ76S88H7yWxiGbuW0hoPplVnj8CrUfSsQt4YMgmA54cjlxJ1Ox90DwGWQMD6aSqXQ6XQcGlRLyA3qmau9vb2NjY0NZ+l4cvx4PHbKWidaiPo0DZAKQFEQ262TkYqELALg4PP9vlil5uRy4QiZ2udOstDgsPC9mg6l7qoifUWa6iGQBmq4gGWmiKI6/U4DoROQFi0qrTTz5lW5y7rPBGlhDRcVdKFQQK1WcymlKpR8P+8lOtJURuaTM697XejGZgv4xp3tYw60CqkqCRaNxzMvX8dT+6wypIUoXhGs8lgcxwkv1Bpza4Qsv1haTiYTFIvFxF7sHGvrbVmeU35V48V7eI0esZ2gVeOiYEnbp8bLZ/BtWIrtUcNr+dXSgdla5OPhcOh4hrxFfVOr1RL01rpeV26F4gbgkHEYhu6ggzAM3faL1o0AlnHxp0+fJhgUSC7D1eXAP/MzP4NCoYDT01O3OIRuTLVadRN5QHIQbbzMujAcTBVaq0CBZLaJ5gbbkIu+i8y3vb2NZrOZiNlbd1JRpF2MQWNjMypYiJKoLNge4OYAYaUtr6uhsa4mjSIFTU+7IS34Ht3bmHu1EMFY+lCRMtZI5cv+kbbPnz/Hl19+ubI3OsMkXNBBHtnc3MTp6alL2xuPxyiXyyuCpIrFhvIUsWrsWfsGIMErqnRVSTC/154vavlO28R+6unwvray0Iholgzbq8pIFa9VtPqpR8XpGPtCfXrdts0aEW2/ndz3eQgKTriXC5/TCWTKlz6n360HpOBNx8HSJJ1eHuwyn89dBsl8PsfW1pZ7HzeuA5ILoaxs+sqtUdycQOIxWcpQ1n1XZUVGtR3ls9yVbW9vz20itbOzg2w2i5cvXzoleOfOHdRqtQRitxZaUa8iHWA19U2tvbpBRLQ2TkjkBiSRDpXXYDBIrObTfrId1tVSxGNPQ9c+KJ017s5ClMO2kxbaBkXp6qqqN8Lx0pN44jhGoVBYyWJhvcznV1rzs1wuYzabOSNPBUxFw35Qib3zzjv45JNP3LuiKEKr1UK9Xke5XMZHH32EdruNTz75BF988YULw1n+UrTmUxpqQNWw2Ulbjq/yG/trvSI1eJrlxHGz6Ys63hZ56nuVX+z48T5VTCoHQHKiXsfG1qnXeJ0Gwlc0vGBBFIsCIPaZbVQDZw0/Q3Sj0WjF2/F5ND5gpGFU9aJVhuv1OubzuTtpaTaboVQqYTAYoFwuu8wrn8FYZ+hYboXijuPYTT7pTmlcs6/Ln4HV1YaAP7+zUqngG9/4Bg4ODhI7w3Ff7e3tbZclwYR3DqQiTJ9raq/rAPgQLe+xzKj/2zgjmTKO48Q+yPo8LTWf4Z/tg+Ycq4JX11X7o+EYbspFRtd2UyGxfbwex7FDuoq8GG6gAlC6KcKjQuDGOzrGNmzGaxrWCoJlSmS5XMY3v/lN/Pqv/zouLi7cdU4ajsdj9Pt9XF1d4fLyEjs7O26FI4+2s0ZJx1+9JHXZFaGxfRaVaQiONOJufUoLH5+xbGxsYLFYLkTzGVS2Vw2G8inbag2AAiRfXFhRqi8bSemhvK/lVVlMSlP+b4t6wjaUqPX5TrknMCQ/qqfMtlpQpnKqY+HzdukJcjdBou+Liws3B8PwLOuiJ+gLUdlyKxQ3cGPBdEtUIm/ryqwLFTB3mW75Rx99hLfeemvlpHIyAScoiYiA5Cb/LNYq02LP53OXuXB5eZlgFnWrVFFyMBnPZb8197tSqSCKooSy1rawDcxKUGSfSqXcjnRUTJbZFAUDN1uLauzVKlTG462A2bgl3VJOwPCdqtSVLnEcu4VRilyI8tku9lkVgG0Lx4jvv7q6QhRF+M3f/M0EEuc7SHvSmZtgqaDr4iflCau8FEhY78fn5ehY+JQ7x5LP6xirQtPj6bQONaA+pUdFQ+W5ubnpFoDZUJlFzZQnBVjKB7b4lDbbd3h4iFar5fhVPVQFPkoj8gGLXevBop6BNfq8poha6cHnrbevhsiG+8i31otQkDQej936AYbitA4Ctdcp71uxyVQYhjH3wKagkHk4U81Jyuv7Aayi3o2NDWxvbwMADg4O8Pbbbzs3yg4gcDOIurUjkLSkFmErMtZBpLHQpdH8zVcv22JRGXCTxcCUJWYraDiB1nldn9RVVwVgGVwNjAqNMqWiCk666ORwuVx2i5hsXNN6KlyOTnTJmLT1QjhRSAWjfbQZHL69V4DVDBDWrW6tjhP7SaNRKpUckiU/Ko18CtGOufZdEboaM3sP20he4rsKhYKbhNextYrCZwxYDz0J6zGwDYqY9X9tv46VeiBKD6UR36F7qiiQAZIG0hc+sWiX42onCJUufK+VfTUK2g8rn0obq6D1GsGirdMnlzS0xWIRcRx7dwGMomU8/vvf/z663a6XyW5FOiDRsgo1sFRg9+/fd0F8EoLLQhWJAEvXuVAo4Gd/9mfx6NEjt/pQ3VHWMZ1OcXx8nBAyi+BZdNB0MOyiFZ34s4jMPqtMZ/fGZqxfFZ8qG11WrS71OndTs0FsdgXfry66VUgq5IoGaBR5yLJO2IRh6BYSsL58Po+trS189NFHqNfr7hl6PUo7NTDWFaXS1hRQNU6kL8NFrEtT1OwCCn4SrXNZstZJGip9bCqoHWP97uM19e60f2pwea8u17cT2xwPeikKHpjpUCgUVuZv9N127O12qz5lrnMX1jiyXqu0WTfHQY8SI39Z5K7vsDxF2bbvtjyj12wYx46ZVdDW+GrISOvkuFk9wVKr1bCxseGWtdt3cWxetU8JcEsUdxguJ5aoCMh4e3t7iOPlUnTGpev1Oj744AMcHBw4l0NDGdlsFuVy2eVI6kATxfT7ffzGb/wGut0ugGQOps/dUyFQFGERkbrqVui0LoviNStmsVi4PcaVwXQbU929DrhRHsyIUVRHIwckJ2mobBSJaZu1KILgc69idtajJ1iznmKxiPfee8/lhTPcw/eyv5rTz/dRqGm4iLyBG+Nn260G0iJANeb8n98ZorFIm88wQ0Yno/RYMKWjFUzryQXBzcIlVaaWr+jhVCoVPHz4MHFoNduoXpU+a9c5kH58B+mqvGMVu0XjNhRoQwfWmJK/eS2KIm8ev9KHfKnpf+yPzdqxY2hDG9oWYDXuv67oWLE9FnWTjxTp809XbHJOSGVNdYTllXXlVsS4oyhKoAlg6TrxdJFsNou9vT2HJu7cuePStcIwdLO0d+7cwfvvv++QHAeUzDscDvH9738frVYLDx8+xHvvvZdQjqrg1Q1VhKpKmZkwGoPlO7VOPYmdcW1lTIssg+AmVqYTMMqoinqstdb6NMWLvysKUVSu38lkVKpRFK2sirRuNpB0nfm8Ku6zszP8nb/zd9zyb3XjtR72UQ2qGme7tavuqMjDIqig7H0Mxdj8chaeCWpXtmq7yIscF9IFgDellLTndfUWOU5hGKLRaGB3dxc//elPVwyRGhwfSrMhN6XtupPKyY+LxQLD4dDxo8/YKLrUsVJPTkEU+0Za+UJvTNW1nhaNmb7PgpUwDN2qXVWmNKjqoet11kX62FCKGi8f/XVcrAHW6+pl2ZCW9exJo2w2m5h0X1duheJWC0/3KQxDJ5xcLhoEy1PXKbxbW1tot9uYzWbI5XL46KOP3KY+eqhBFEV4/vw5fvKTn6DVaiGbzeLk5AR7e3suJq6Kwioktk0HgkznG1x+KsrX563bBSRn4bkogqglipbLZBuNhtvxTRmTbedkqV0AwWJdfnVLaSB1gYsyMgXch/St8VEaUqCowPv9vpuIUrqqweC4sT7dAZJtZ39Yjw1n+UITfFZT6oCbkBfbrGEafV4nxRTdUilpSMqmdOp4qFdi3zMcDtFsNhOGVusNw2WmDU/f0dx0i4q1WJooANB+W6Ws9NUx8o2BjrUqYt6nhoWKWcdcvQRF0b5x19CKjpHyneUp8obSZB26Ja1sGMsqdSpkmzKqxhNYPUNSDSHrpU5RcLWufGXFHSzPnPw+gJdxHP9rQRA8APDLABoAfgPA/yyO42kQBDkAfxPAt7A83f0vxHH85SsbkV6eFZlKpfD8+XMnrDs7OwCABw8eOARar9fRarWc8I3HYxQKBURRhB//+Mf4xje+gSiK3H4B3GyIBylwNWUqtcyN3t3ddZNtJCiLTwgUFaty5v+KRlUIyNiW8VWh8D3co2M0Gjn3WK1zGIaJXeVsaIaKVJkjl8ut9FFRkaLrnZ0dt2eMRVH6B9xsKq9xwEajgfF47LbmZZs1f51FFb/Pk4jjOHG48mKxcMv4aRSt8tO+6f+sk5PIFu0rMtPxANavIuR4qbtPhcLnLRK2qI110SscDAZuTBgO4oIhpZGPV+3/lBPS2IYtlJd9iNMqeusZaVGPEIA7tUjHQkMJVK66r4/yg4IZpSPbbzPLrEfKkIRmijHdTtv0Ko9Vx1kNrxoyBUgcL+sl+HhUr2mbvkq45LeDuP9dLE93r17//x8A+A/jOP7lIAj+EwB/CcBfv/5sxXH8ThAEP3993194VcXMt/7kk0+cm7mzs4N79+6h0Wi4paHAze5rw+EQZ2dnidjg8fExLi8vMRqN3Pr/KIqwubnpVslxsUapVHIbVVlic/tXFXaNB9prPuuo7p+iNGUq/WShsNhJKG75ycFVxmXRrBybdaHpedoX9XTIjN1u16FrzWbR9D72R5UuGU5T1EhXRXWWTqroLK2UtqpQaIx8fdG2sb+KcPWUdY435xnYBit8qmyUZqQ7+6JekI6n3r+uqIJQo0qFpLTRT4uKWdQL0PkYNdaWftpf7bdF4nZMdCz53Z4SRJ5Ug6A59T6PlG3TUAvDdpq2adEzgYLKbBwn55Ms4lVetOhcx0Y9HKWnelJAMgzqMzrWU1T6art95StNTgZBcAjgfwjg/3r9fwDgTwH4r65v+SUA//r19z93/T+uf/9XgteYjyBYhgdyuZw7pHcwGOCLL77AkydPcHJyksgeYI7udDpFsVh0gzQYDHB8fIxms+mWtBNJEsWWy2XU63U0Gg00Go0EMVmU+GQa3dhchVuVnh1sFmUEy5QULlVQFFSu9LSz1FSo/E4kobvf1ev1lVQpm/4Wx3FiMxxFQD4Fy0+LvqzHwbi/dWPp7SidVdFp3apI9T1ctMD4pgo649wWjanStsjZKkH1JHi/TpofHh46g6/eiI6d9kfpAsDtjW69OB1LO2ZqwKkc7Cpai1Ct56JGV2mqnpovHKjK3/aFPKMKVmlIAMJCXuP9lNkwvMmiWAdkrAfD/jIuzPbrhmdarCG1iQhKD6s0rfHRMKM1XEqX1ylfy3t2PF9Vviri/j8D+N8AqFz/3wDQjuOYgcIjAHeuv98B8AIA4jieB0HQub7/8lUvyGQybntDMku/30c+n8fjx48RBIFLC+x2u25FHdHSaDRyQX3uSJfP59HtdpHNZnHnzh3EcYzNzU3s7e25TdQ5ccgTXyzCsFZRB1rjjyzW1dH/7Sy4TlgoUgzDm9NmVIgUuSnC9TE19yVnKIPuthVq7gtiBZ6LeBQRKbJQ9KZuPOlkD1IIgiCxB4lFeeyjIi+91yJxi3D0YAXNRGB7qPxsXb7sH84VaPsZnnrw4AG++OILjMdjlxGjz2q4RftGxMhxJJ2ZM64n0KsnZ1GfKkOLkll08tuHiH2ej63HGl0dRxpnZnVpW5UvVbmmUinniWkYj+/REIa2yca/tViEH0WRC6u9KuyjITK9l2PD+shLGt5UT0SNpX5az0jbq96ffcbOoVjjo+W1ijsIgn8NwHkcx78RBMGfeN39X7UEQfBdAN8F4I7s2dzcRK/Xc7PbXNlIAWEqH9EzN2zhRjwcCBoBMs2jR49c+hlPmBgMBgBukJVVCFrsAKjytUxi43JWuJQZdTKHxe4VYgWJRkYZTNtjQwVkWD0cAIDLnSbC1vYDNwtlbByR7+T9Nmav6FSXFbO/pLm6mnYBlPBIYk9q4Ca3OIqixJatWr/Ni1daavvsftwcewII7n7Itk2nU3z/+993/OhTJirYtvBdvgUmnMPRkIZVYuyfbiCmvOELlfB9uVwuMbms9Nd7rVJn//UQ7+fPn7stI3K5nDu31GaWqHG1K1D5XgIvy+d27GxRw6/vUhlkfWqwdAzUaAPJtQCUJ2v87fv1fh+61nezWJlRo2hpsK58FcT9HQD/oyAI/iyAPJYx7v8IQC0IgvQ16j4E8PL6/pcA7gI4CoIgDWADy0nKRInj+BcB/CIA7OzsxMDyfEAi693dXQBwp7Fr2tDGxgZ2dnYQRcsDAzj5ks1mUSwWUS6XUSqVMB6PcefOHTx69MjFRKMowvn5uYub63mFFu35io1VWotrXdbrvq4Iitbvy2Pl9VQqhXfeeQcff/xxQuHxvD5VWmy/onkNHSgTcx8OdUUpZGEYupWqNHBWGfFdPsQKLJG87rFOOkRRlHD7AThvR/thc9nV/eSYadsYLrNKwHomNCbZbNa9w7rLi8XCnVTC64VCwW3BoErKemfrDPfW1ha63a57ThcCWWWlE8VKbwULOmb6bq1HlTHr8z0HJEMtLLPZDBcXF6hUKq5uHsrBE9eLxSLu3r2b8MCU3zWsowpb4+w+xK7jp/1f97sqb9sPy3/qsShN1CDa8KVV3FqvVc6qQyyKZwiQfEta2LkgpZWvvFZxx3H87wH4965f/CcA/K/jOP6fBkHw/wTwb2CZWfILAH71+pFfu/7/H1///t/Gr8L812U0GmE4HKLdbuP+/fvY3Nx0HdNDNcNwObHIODhDIvP53KX3lctl9Pt9bGxsJLZ0ZKoVV2kqcX2fdoDV/bNxKRubA242m7GWXRUo/1fGY5YMkfCzZ88S8ccgCFbS46hkKKDMQ2Z76f7r0VrT6TQRiyOdODlLJan9t0KhSMMaJu2fzYjQcAFPIuJ1Wy8LUZuGE9h/pY81MMzQ0fZxox8+71MSFChmL2l71PBq5oaOCeuiAeYeHzSsPpTLBVN2Zaz2kwZW+8mxs8rAem++MBu3Ud7e3kYYLtMN2WYaxcVigWaziVar5d5RLpedt6zIVN/DcbLpjxbtKzCw426Vvi98Qh6L49g72amT6Dqpb5Uri27e5qMZ26nAwipeGi4NrfAeVdb2HVr3uvI7yeP+ywB+OQiCfx/ADwD8jevrfwPAfxYEwecAmgB+/nUVDYdD/Pqv/7pDVY8ePVo27lrYy+XyirVNpZbLeBnPPjg4QLVaRTabRSqVwu7urlNORGZHR0fo9Xp49OiRQ5xAMkb3qpgacMM0KlCq5HXwfHmoPgWlQqxZHLyH8Xy2UdGeokQqCRa17KocWFTRWMQGIJE+yN0ViWpVoauSZz8tzZRxSWcVJCIc682oQVNh1Eki9o+0Ue+Dhp4bSVkUrkJm6aLvIo0tPbWNiuxItziOkcvlcHFxkVDAOrGtbWG4RMdWt8HVdxKdq5JnLj5Ro8bWLd+yf4vFAqVSydX17NkzTKdT5zHxOz0EbpS0u7vrDk5QGbBjbidA+W41lHrNhmr4O99j0a+t1/cO9SyUl9blwatCVbr5UL62VcfdGib9Tf/35Xi/rvy2FHccx/8AwD+4/v4FgJ/13DMG8G/+durlIZqbm5v4+te/7jIHrJXivhbcwS0IbvK9VZg5kIPBwC1m+Oyzz9DpdHB4eIh2u41arZYQGGAVeZl+uXuAZOyZMUBrMfk7lZOuJLQDboWfdWhKla6mVCVGg7eOsdT11hAKsBpvpTHTe4Cl0GxsbKDX6zkFzfevOwBXhUTp5aORdQ35v6Js3svYu54xaMdSjRyPPovj5OHRin6UnqzTKglFjWowCTAs3amEGIenogCQiK9b5WK9Bh2HMAzdAi3gJswUhqFTsjbWrcbRhp0WiwX29/fR7/fR6XQQhqELCXExCE8qL5VKCMObA5DPzs4AwIUlmX3F/H0mGNRqNRSLxRVla3mGnqGOH/uWzWZXtm6wIMqm//lAEos1Xhbdrks6sAbHLkrTd1EnaPqpBTX2vQocX1VuxcrJfD6P73znO6hWq24z/FKplBAAChiVhlWSOlhxHLvVZVEU4eTkBKenp9jc3EShUHD3AavuPT+tS+dz3/hubtWq27D6JuJUmahSYz1ar2UmIloqNNtmRZzWMOgiDnU7LXOWSqXEtqa6adF8Pkez2VwxjtZQWGRj0aeiWxUEn6KK49gdfcbsGN3Ck66xKm4r/PqnY0FFZ5WnCiH7QdBgkZS6w9adtghcDbgvfKHjbPPlOe76P+d03nnnHfz4xz9OhGr0U+mq9FckzHt4AlUul8PW1pZbpUtlfHZ25kJGTMnt9/uoVCpoNpsIwxD379/HZDJBu912yJzbFFu+tehaQ5NhuFw0d3JygnK5jEaj4SZY2WY16Oyv1qnGk32046tjox6N3mdlXcdPaWgBBr1Sgk3lM95jvQvbvnXlVijuQqGAVCqF4+NjdDodvPvuu27bQ3WzFBVZhQcsCdFut3F5eYlOp4PpdOr2ZKaLVyqVsLe352KOvhVsGuLQAfFNeOh9KpQ23mjdaouyfP/rUmwbE2Nsnxs56Z4iPJJN3UF1z1R5acyeCJbtUI9HESaViwoET5PXtgM3yJL00LkKVXa2TQBcSIb/282tfIbBCjb760N7qmjVoKmC5bVGo4F2u51oP+nKMbfhNdZBI2knjH0eFuvRNquBUh4dDAb4+OOPEzzK33wxbms4+En03u12UavVnOFmOi2PD9R5AQIJehz8/uTJEwdk0uk0er0ems0misUier0e4jh2YRm2h/xq2zUYDDCdTh1gIOLXiUNLK+s9WYWtgEX5TmloDa/PM7L6hzykBoC/2UVGeo9GFnzvXFduheKeTqf47LPPAMClFllkyaKMrtZxsVieAvKbv/mbiONl+ttoNHKZJtPpFLu7uy4WToWgCJlCpogSWEVFxWLRbfkJYAUF2piiFjuJaY2CRcq8phNgFE6e09lqtRLPax4vrxE1kknt4RJ6L+lMJaNogRNnFnVyGTqL3qNtsCjPMrLSTQ9v0OXfep8dL/aT46vxbt09kTymz2gGjM3PVhpbb4xFDTU3Qzs6OlqLEklfjgvHWw22Kg01lPzfrh58VRjMKr1UKoVut4tWq4WNjQ3UajWMRiNMJhO3p8xsNkOr1UrsxkfQw9zryWSSCGNwoVuxWMTV1ZXL/KJXuru7i42NDdc/3R2SNOJRfdVqFcPhEKPRCOfn527yfDKZuCPn1OvyeTDWuOtvFvipZ8P+qMzZdlrgZQFAFEWJXUg5hqq0dWzYDh1rX7kVins8HmM8HiOXy2F7exubm5srAmET9Hu9njvgNZPJoNVq4Qc/+IGbIc/n86jX6wCWgvCtb30LOzs7bkc/FTKtl7HoKLrZ8cwqV2ZBUOgU7eqqMh/qse+zhskynjIN20IG4IIjVYJ8hshCXTfrSShqYZ99ueVMhaOi0P5YV1M3DrIhDNJUzxPk+9U9ZTu1LkW1pJN+sh2K5LRuZmswu4Tt4/j4TkmysWz2Q7cW4Lup0HidsXUKoIYo2Ac1YrZ/thwcHODq6sqlgPrcap+iVnopSGE7xuOx85Q01NBut91cgs6P8L00ADSS+XweGxsbaLfbSKeXh0RXq1W3MRpDJ+l0GvV6PUE760lNJhN88cUXLsmA2VDPnz9fkb1SqZRA2Ko4bcw7lUolVvT6FK/KmM0IU3pqeIzjRtopP6ox8YVHVQZ9nsK6cisU93w+R7vdxs/8zM/g8PAwsdwZWE0X4iKdSqWCfr+PVquFn/70pzg5OUEqlXKLbVKpFAqFAr72ta9ha2srsRmQoj/gBtWqIlKh1SwADVmwLp0wUeG0qMmHCqxiZ9vYJl3IogKuzGIVsipPVfr6HiI7FWq19syJ9u3/rXTjJ9/F93MMaNC0PaSDHtrKdqni1d0Olb7aD20DEZzSmjzG2DD7qTSx6X76u/KE7bMaTWukdZMt+6wqSR1b9Y4UHXP/GPUM4zh2e4DrXttW6NeNHZVfKpXCeDx2q4y5OVShUEC1WsXx8bHzRrhkn2NKXslms3jrrbcwm81cmDKKIhQKBadc2+22237CbnxlZZ1x4TBcrings2EYusU/m5ubAIDz83OUSiWX1ODjaSpilVkNYSoatmOtYQ1tp9JxnYdt71UDo0pff1ssFm4V97pyKxQ30RXjWXqwL5CM+3KzpFQqhcvLS5yfn+OTTz5xqy0p6MwxffjwIRqNhhMsdbGt8rX/KwIksfm/ZikAqwqb1/hJhUVGsQqJRWf/2U4AKyEKRQa2qPK36IKCqxvp0zjQs9H6+T/rtAcI6DtV4VpERsa3DMslyupC6vOsj8JNBKixYhUm38IVpS0/qeDVEKtC9HlCRNQEAD6XXFMb1cPR8JUaE22P9YhYbxRFifkD7XcQ3GQt2JCBGgYFFprvPBwOUSwWcXp6itFolAjBbW9vO55WwEEjl0qlkM/nkc/nUa1W3ZYA8/kcL168wGw2Q6FQwNXVFXq9XiLMYZWSyh8X4n3++ec4OztzbSiXy27Cs16vu9ALt3ZuNBorE5Q2Zq1K3cqQjqkaZNJcx1mVtQWWlvesh6+GSvvPuieTCVqt1oqMabk1inuxWODjjz9GoVDA4eFhwrXkxvgA8OTJE1QqFQwGA3z22Wc4PT11xOCE3d7eHt566y1sbm6iUqmsENuGFnRgfbFmCjyV1rpYp8ZTfSEJMoaGOyjsVJ4WLVC4iXgs4tR3kWb85D7WRDCMy1ulpKtH7WSJHSfWRUWiAsLj5BRds267iZA1pBat2ncGQYBisegm0hgSIT3UY1JEqPFjO2GqfbaTeCxqGBgW07Gz92oddPEtgvYJrd6jdVnEruEACjnvUY+SPGa9Q95HPisWizg5OUEURdjY2HCAYjQa4eLiwtWvE+E60dput7Gzs4ODg4NEuPPp06cYDAZIp9NuawJmn3S7XbTbbSev3POE/aExrdVqGI/HaDabyGazru5Op4Pnz59jd3cXi8UCtVrNbTTFvuuY2vHSyXv1YsnHOuakN422Rdx8XvladYxV+urx6/u0LVwAd+sV92Kx3GM5n8/j+fPn7pzJ2WyG09NTXFxcoFar4fnz527BzZdffunOjFRF12g08J3vfCeRvkUloQtH1MJZJGTdJRZFir5QC5/lJwmvLhZ/t/t46CotvU+RvGUyvtcXPgCQiOdqvI57cyuSovFUZUqlo+69xiOtQWKfFWEow6sA6R7efE4VkqIVKh/mD7PfOj6KeKwStuEDi8jC8GZTL7ZZ20P62pxy/q7tpgGjR+PjL5+3or/bogqYRevl+9WjUENllYqOBVcdFwoFHBwcoNfruaX53GoCgANA3M2P/J/JZNDr9dBqtVAul/GTn/zE8UMul8PLly/dGo3t7W1Mp1Nks1mHwLnfCbAMgZ6enqJSqaDRaGBjYyPhlZK+i8UCV1dXuLi4QLVadUccXl5eYnt72yU4WDqRlnbyntetd2r5hrygXp2NbStf+vQI5Uz5VcESvfHXlVuhuAG48+6GwyH+0T/6R+7ABIZOmOS/t7fnZrpV6RAVkJmsZaRbDiRzdpW4Oth2gKi0bKjCZjlYIaTStjFLfb9VQtofPbBWUapFC/yuaME3iQjALQjRZ1j4v3UjlanZDy4IYlG3WhWvHuKgnhSVshpY9kvbZ9PEyOjWxdVDJ3if0tIKHOdAuHEX20RDY11a6y7bQqXAexnWWxeT136o4OoYsk6N27M+3Y9cPS1F7TrurJfxfk4icv0BF9pEUYRarebCIhwHNVw0DuVy2W0Al8/nEUURXrx4gW63i729PdTrdbTbbfR6PRc/Z7YIQxvMTDk5OXHAYDqd4uLiwmVkMJ13MplgZ2cHtVoNl5fLDUefPHmCfD6PUqmU8CaUr1RWFEXbMIfSeJ03pXF08qXeqzLN7xaF67gof83nc2fI1hly4BYpbhJ1MBjg6uoKL168ALDMD6ablslksL+/j+l0mtjLJI5jl2XCzalIGJ/l5HUbX7aGwKIcRaUax/QJsdYZBIHLlGFoB0hu1crB1cHSbWYtqlamsBafdSoC0/aQuXm//q5oQJlOx0gzaUgP9sfnNSjK09S4VCqFvb09nJ6eOg/JzgOMx+MV5KvxbY2pW8/Geg+cR+E9tVoN3W43gfyV3kpP9oN1275aHlssltueEl3yHZxQVwNv4/RWMahS0IlmxprVkNtQIGmuyvby8hIXFxfY2dlxKXb5fN4tsEmn025BDWnKuQ4qXo5Vv9/H5uYmNjc3MZvN0Gw2cXFxgfl8jvPzc2xsbLgJ0KurK6f8M5kMut0uMpmMm7xknJyeMSdeqbS5MnM4HGJ7exuHh4crqzq5WtEHhOw1G3LkeFB+1NPVT9/YW6Bo67UgSMeNz9HwLRaLRPjSV26N4uaAagiBcat+v4/pdIqvf/3r2Nvbc9a/VCphMpmg0+mgUqngww8/xLvvvpuol3WRgW38Sq2xztgrKtLB0I2bbNHUIWutLy8vE0ZBGcS6aapEbBaMWnertBX9s27Skc+SvkSjFt1rv1hvOp1GtVp1J4UTPZO5NFVOlYeGQXgfr9OVPz09BZDcipXeCbNNrGHwGUrGsqMoeYivtkM35qJnZmlPGmqGkY6tKm22zSIq1jWZTBKn1bPffA+/WwWgikAVShRFCS/H8pL19kj78XjswgfcyG04HOLy8hLj8diFJfv9/sqe6cDN4ioeJsITptif6XSKy8tLh+RLpZJD2XEco1arodfrYWNjw6XjMYbbbrfR7/eRSqXQarXc+HMFNRcAaRhssVjg9PQUW1tbLpuEB6qQLkpTa1zVAFulbr0UW3yKXGWF79HvysPsv0XlDNcxI+dVaBu4RYpbiaWz3vV6HXfv3nU75DEMcufOHVSrVVxeXmKxWOD999/Hu+++u4I4rOtuEY6ialWkwI3rb9tpXVsiUIs0gZtB1AwGFkXa/J/v1fexHqWRz42zcVmWdDqNjz76CI8fP8bFxcWKIomiyB3ga5EracBcew0FaOxUJ+40BKDoXsMPijhU8RFhWeVmvQA7Hur6chJT6a3PsZ9cVav95jMaptEwlSpKNfxWcXIPEbafikr3LSF9dbx8aFHvUw9PkaHlE+XRs7MzhOFys61er4dOp+M8DQCJ09251S9RNscwjmN0u12X8cExZwjz9PQUYRgmMkw6nQ42NjZc+87Pz3F4eIhUarnPTD6fB7Dc/K1cLqPT6bjJOfKIzhUwnFIul7G3t4dPP/3U0eSdd95xoM56Pz5ZUhCgsrIOefMZ3ZZV5ZT3qTeq42TDrMo3/L/T6TivhAdsrCu3RnEDSbedHbpz546bNOHhwalUCpVKxW0Wde/ePWxtba3EagH/iR6+6+rGKMryCYUqe8ZWfcxi66SC4HMqsNZ90nAAi3WpfeESq9DjeBkv/Pjjj52LrooQgIvvKgrX36m47cpL7acyIguFm8/YvmiYhe2gm8y4uK7IU4SioQFN5wOQSJ2zyEbbrGEJjY3btirt1dDSa+A7KLQ6b6BxUB0fX1jDGieL/CxCU1Bix91mkzCrg/yazWaxubnpYsn0nkgH9aYGg4G7zonLVCqFcrns9g+hwiUCr1arWCyWW8HWajWk02lcXV3h6dOnbtdBHsLArSn4Pho5Im1VnKyfnkGv10MqlcLFxQVyuRzG4zFSqZTzwpnMUC6XE3xpU2WDIEgcsEI6V6tVJzc6lqSVVeK6iZxF8qxXiz7PTfQY5/59EeNmJzlZMZvNcHBwgOFwiB/96EfIZDIYj8c4Pz/HbDbD1dUVrq6u8M4776BcLicEUOuzytzGQa0gAUmUQ6bRkIlVHCrUPtdXQwU2bqmxYhs20XfpBJ/+5lOYhUIhsaBE92xR5cT0MSpFNUAqMGRQH2og7WymBOOauuiB46oGUOOnrIvoivQJgiCxtSkL07rUveUYMJ6ttPYpQkX91ttiP/ibIm+9d53B5m9E35Y3FdnTU+AWvlqPVfLq3VheYL2qxKrVKqIoQqlUwmKxcAttuB+QKl9OMhaLRXfaPACnTEkLjXUDcGGQVquVOKFpNpvh/Pzc3cs8bvJlv993/Vf6WF5kfTQkz549c+MUBAHOz88xHA6dB8BQUBzHKBQKeP/99x3C16L16zYWpCVPQVJ+tyl9vpg3P+135VEde2C53Uej0XDGxip5LbdGcTMOy43Zt7a2cOfOHTx79szNfD958sQF8e1xW+ykzhwDNwqm0+mgVCqtxAiVOIp4+L+1soqkfDFFVVIMj6hrpvFoIh8VSt6j6XK6j4YVZvaBil8NCO/VnFZ1udXwKNrW+3xomQpH0SKv83lmEHQ6HafsWD9/o1CowbIuLJUFMxh0q1Er0IpQ+L+dE1Ajo4LErCZNXeTkqPKCzSBQgVbkz3ppXNRAalhHQ0S6Hap6E+QBhpGIzkgXy+uMQ7NfW1tbGAwGWCwWbs/6MAzx7NkzTCYTNBoNF7fmohadV5hMJs7jCsPlnAlDa4zjc9yKxaILhWj40MqKTvCz3WpobazZGikfiCCNSUeG9iaTCY6Pj7G9ve0OLPbVqfKk9VkjzfdrVopVsqqUrZ5hPRbIcZKY+u3WI+50Ou32HKlUKvj617/uJq54KCsZmPGfTCaDjY0NN5ts4038S6VS+OEPf4jRaIRvfetbK8rVV5Rx1hXrBrEu3VOFA6sDpBOYZN51YQAguWpTEYhVsmyzhm7YTst8ykyWeakQuEKQbSY9+Q7frLe+h5kAfEZRFcdFFbX2mW1Wlx+A25uF9/E0HzuhbL0ai8h5jyoVut4aclFvge2yyEqNl6bn8Xddearv1vGg4lN+4+SpjimARI4vhR24WVlreVo31uI75vM5Op2OWyl5dXXljFYul0tslKZpsETkk8nExcLZPxonhj50LoSyQDqwPo6d5Vc1fkT69tATncxm3zqdDlKplJuoZMw8jmM8f/4c4/EY77333kqYj58q92o4eU29SjWobLfylYax+LvlF5V3u7hPIwO+cisUN4V2Pp9ja2vLrbQaDAYoFosOcV5cXDiFzb0KdDZZlQQJ0mw28ezZM7ePAg/BVSKpMreoT9tolYwiWa1HBUoZQ4uuRGNRxaenmtgwhA6+nURR900ZRT0RRT8W7WrYQhE0sKrIbKYF35tKpRKKnWPLtnCTfkVTNM6sSzf6Yt/4brZD0aYiYqWTby8PnwDpmClNSF81Avy0PEMPYp3B17qsZ6deE9up7eN1rmwk/dTTJBjQRWbclIpeyuPHj9Fut91+90TGrIthDI6B0pMInlkmDP8w1l+r1TCfz9Hr9VaUMo056yZg0awclRUFQ6lUCjs7O+j1em4BELOgWBef4YSpTgxb+VG6chx8Y0OPibntTHGcz+duEzsaAdJex94CBeU568XqmK+Lh2u5FYp7sVjmgx4cHODu3bvOmt+/fx/Pnz93gl4sFvHo0SNUKhV0Oh23HaWiHApzv9/H8fExRqMRvvOd77iJLzsJZZW2ElgZyLqjVqmo0EdR5EIgZGobgiBj6eCxXsY6OfA2Nm2NAdEZ49oamrAupTKxoioAiSXl9h7GQXk/ER6RiGaAWFroUnhgdZWoje+rYtXJST3Sy6IgK/T6brtcW0NAdsx9bq96LWG4un0AEZOGWVRR8X+muOkY6J41aqAssOB1ngdp+8z7uJGWz0MDlpOUnCxkJgfDCfV6HcPhEN1uN0Ejjq+GN8gD3LqVKJj3M5TAeQ2VAZunrsbT8ioB0nA4RC6Xw2g0cptfcX5DjWUmk0G/33deDOmwWCzPnCV9bFhUvTLlB017vLi4wPHxMYbDIbLZrItH12o11Ov1FQOhPK3v4qfOHTF7xgcafeVWKG4A2NzcxNtvv43JZILJZOIOJuV2kIvFAh9++CFKpRK63a47fZpKQCepXr58iadPn6LT6aBcLuODDz5wp3sAyYkctYgq9BZF6sSnWmcfIuQzei/RgLqsWlS4qGRsGMMqNwqRMoSGI7T9KjTAqpufyWRQrVa9+04Dyf21uQkRd6wjHXUCV109IkbrGakxZDtYVEHzN4to9HfSg+EF0oUuPNtgDZ/SSkNIqliUlnEcu42xlJdoJGxsFriZFCdwsApF+0CF6DvpiTz2qsUZ6ilY5JbNZvHo0SNMJhOcnp4ilUrh7bffBgC8ePECm5ubODw8xGeffeYWDSnv0GCMRiPn2lM2R6MR6vW6y/cmD7PNapx0LHQuwhptfmeYpFQqAUAi5q6nA2UyGbfgiXTX59vtNo6Pj50u2N7edp7daDRCv993ht7yy3g8dsv3KQ8c/8vLS9y5cwebm5uJVFjlaZ9MqaFQpf1VyldS3EEQfAmgB2ABYB7H8R8KgmATwH8J4C0AXwL483Ect4Jli/8jAH8WwBDA/zyO43/6mvqRyWTw+PFjxHGMg4MDnJ+fuwEKgsDNiL948QIXFxeo1+vI5/Not9sIggC9Xg9HR0fI5/Po9/sJZENiWMIo0rMuoX73udVkStZrXXLdG4QDo+ECqxzUjdSihsQicIsM9ZqdgNM+KHOp4lksFtjd3cXJyYlrt06SUBn0+330+/2EArZoQ91kLtmm8uZSaxsWsLF4uqoa4+VvROJ2QYMaEtJNvRfWQcG9uLhITCJZg63vDIIAhUIB/X5/xejbcfV5RkSy2jblKXX51xUbO7XjrzFZ/lHBzWYzdLtdB2iOj4/damSuogSAe/fuYTgcuiXojFkvFsudAxluZKiCR95xq2Uq0bOzs5WdAJWfrfenPKb8ybZzrOl9c1GRjrnOF7Au0nSxWODp06fIZrMolUooFArOY2BbGU4F4A5gYdKEbpnBCVga0pcvX2IymWB/f38FBNrxpD6w/KHtfV357SDuPxnH8aX8/1cA/P04jv9qEAR/5fr/vwzgzwB4dP33bQB//fpzbYmiCK1WC8PhEDs7OxiNRuh0OhgOhwkX9eXLly5diQz1+eefI4oiNJtNTCYTl/zP+NvDhw/d0WhAcv8ORbAs3NFNERYFTQeCg6eIgYgKSCp8q9TUgKgBoFIFkqegWATiQyaq2Hidk7g8nUZj1DYswTHo9XqJ+Lreb+PH1pWna6ztSqfTibipMrGGV+I4doKosWsKnCo4696yWBSs4Rm2i20litIxtghf6+N7Nc+X9NGVbkTe2i9FrOQTVVzsQxguszL6/X7C0PpitPzNLuPX+oIgcGmBHIdOp4OTkxPUajWUy2VcXFy4MZ/P5+74slKphFKp5PiC4z+ZTFw/qMjv37+Ply9fYjQaOSXL92koTmnEMVEeowHl2PEa+ZYrMVOplEt1pPKMosglLrDwPXq4NUMSNGYnJyfutJ1CoYAoitwGWN1u19H/6urKgTMi+8lkglqtBmCp5Dc2NlYmh5XfyTOqTyy/qcf0qvI7CZX8OQB/4vr7L2F5+vtfvr7+N+Ml93wvCIJaEAT7cRyfrKsojpd7jRQKBWxtbblN0zOZjNsEiDFtTkyk02lcXFw4a0/mJZMXCgU8evQIDx8+TCgDH5pWgqnSYttsmAJI7jdNBKExZhUeH4LSa+oq8p3rwiksGqLRCR6+k2jZphXZGJrSg8xvQzI+46YegmUyRU9arOfDMeY15pUzh1W3ubW0UKZnf5XeljbAzYQwx6fT6bh2+caMSkXHRu/XMIcqI80wYtEFMTxA9+rqyoVdSGOm2dELpYJiZgW9OvaPaNPGerW+8/Nzp6w5uTgcDlEoFFwYiQtkqMSKxaIDUOwz88e5rD2fz7u9Rg4PD/Hxxx8jlUo5paa0Uhpopgrprh6i9XyUT/mpylhl1IYi9B71xFjP9va2C/swFY8prAxvAsvwDMM9k8nEzfmMx2O8/fbbyGazK7v66ToDi/6tTlCaKD+tK19VcccA/r9BEMQA/tM4jn8RwK4o41MAu9ff7wB4Ic8eXV9LKO4gCL4L4LvX3zGfz7G/v+8aXCwWEUWRyy5RZfLWW2/h8vISrVbLdZKTBGSiUqnkGFUtHAeEBwergmZdlknspzKJujxAEinzGYs0HFEFYev7ravF53V3NkVpfP5VgqBMqNcBJDwYvk/rs2EBKix6GHaCkPfpe0kzRaIsqvQ4PmoQNHbO//W7GmxVErZOzeJhuxQB6cHEjEkzvKX8p2OrvEEvjOPE+ClpxHfWajW8++67+N73vpc4SMJ6Uer5cYy0LcCNchgOh+5QhEKh4Og8mUycx3V0dOR4s1gsYm9vD4PBAI1GA7PZzK0SBID9/X2Mx2O3apDZGowHE4FzH6FareYWfhEwKF+qDGisn+Nnt4SwfK60VoVsY8o2lKTP06hyjIDlPizlchlBEKDT6bgdB4EbtK88xPro0Xc6HTx79gxbW1vY3t5eyVhT469oWvnMhuq+SvmqivuPxXH8MgiCHQB/NwiCT/THOI7ja6X+lcu18v/F68bHYbjMu+SmQ5wk4J7SRAYHBweoVCo4OjrC3t4eyuUyptMpKpWK28OgXC479Hj9LifYURTh4uICqVRqRXGTqDrwOkOvsWV1waloVMGwLiIQZiEQYeo+EPpOVXjW+uqsvp3oVKXic7PWhRTYFjUYiuYsStaQCYUwm826E8G1zWoslU4AEnm5RC/sxzolrb/rpKKiNA2RsH96sgmVsT1ggbyi422zWCj8ivStYtFx5H2kF4X64uIisZmQNdZqxHWvc463GkjWOxqN3KG8X/va15zCuLq6wnw+x+bmpgvBkEaFQgGDwQCnp6d46623sL297TYSy+fz2NzcdCFIZs3YrWqjKHJL4guFgksu4Hs0HGIRpXrByrNaP2VDc8k17KXjQOWo48DfSWce7JDJZNyE7HQ6xZ07dzCdTl1Kp46p9bQ1Jz0IAlxdXSGVSrmdEPWd5FtF/SobLBaRv658JcUdx/HL68/zIAj+FoCfBXAWXIdAgiDYB3B+fftLAHfl8cPra2tLEARoNBoIwxD9ft+5LNxfgfsM7OzsYH9/H6enp/joo49QKpVcvKtUKrl9u2ezmdsB7d69e46Y8/nc7fF99+7dhButBCPBbdxQLaYqUe2HKioWKppYQjEs9l06QacuI9OZeECyjfv6XETWq223xzPps/RcrMKmILEuzd2lMvYhBkXN7IMqXEX3OpGsKN56QEon/q7vs+iVfaYS9t3jQzz6XjVARKsM41iPROvRvquyZRzYegk2Lqzvp9HgYrVWq4VcLofd3V08fvzY8TXT/XZ2dpDNZlGr1dyE22w2Q6/Xc+mZz549w+XlJfL5PN566y3XFiLmbrfrvBCmrLE/bGc2m3VJAdyWVMNL+ml5QpWtepZKa1/aoFXYykvKm6xLQQFpz9N42u02FouFQ9qj0SjBVyof9BT0QGgq7MlkgmfPniGOY5cmyf3GlXdtuEQRvAI3a5xtea3iDoKgBCCM47h3/f1/AOD/CODXAPwCgL96/fmr14/8GoB/JwiCX8ZyUrITvyK+DcDNbB8dHbnOZTIZfPjhhyiXy074uCcJEXUYhi63stFoOEvabrdxdnaGg4MD59oxhtdut90m7tatsrFiZSASH1jN/1ZFyMJYMRWWr/DdPneJiI/u6LNnz3B6eorhcIg/+Sf/pDsolQxkFYjP5SITq1FhuIAxSVXmunJPlSmfUfdPF7io++pz/6w3oe6jhnTUdVYaqUHV7xovVzfaLvax7dL36zUWFbrFYpFIPVWXXo2F1qXvoOBbFG69OOYJc1Ls3r17+OyzzwAsd/ObTCYYjUbodrvo9XqJkMbl5aU7g5FHAc7nczQaDef+c16oUCi4vbTDMMTx8bHby2Q4HGJrayuRRWQ9J4YiW62WC+eoMvahSqJnnZew3qoNd9h5Gp9McpMm7uFun+W9PLOSKYBBsNw8S+chbIYPZURBDGVvOp3iwYMHLn05nU6j2+1iMBigXq+7bTyU/0gLnpfJOb7JZILNzU2X+riufBXEvQvgb113Og3g/xHH8d8JguCfAPiVIAj+EoBnAP789f1/G8tUwM+xTAf8i697AZcKT6dTZ7XJ3O122+27y8Hq9Xp48uQJNjc38fLlS7dZzb179/DkyRO8ePEC6XTabQd7dXWFnZ0dvHz50hHw5cuXKBaLqFarCUKq4KqCtkpeQwYsPrfPZrEAWGFQy4Sc8X78+DEuLy9xdnbm6h6Px2i1WigWi24mXNukbdR2AcmVjlahqvCoItIVjGy77tqnyEjDFEoDdQ+tsuR3In0qFi3r3EtLNwoblTwnfPguq0gtcvO9Sz85hprFoajQhjOsgdfxUSWxvb2Nq6srZDIZPHz4EJ9//jmAJQojQvzxj3/s6uW+6RyLi4sLlznCyczZbIbnz59jf38fm5ubbjn63t4ehsMh+v2+S9/b3NxEp9PBYDBw48CQwYMHD7C1tYXj42M3UWnj0xpaIo+oIiYCtp6JHQf9rp6n/V35nXIYBOtTRzmm3FeehkYXUXHc+MfxVJ5Tj1rb0u/38fLlS7dnPecABoMBer0eHjx4gI2NjZW+EpTR8NIz7Ha7qNfrXvDF8lrFHcfxFwC+4bl+BeBf8VyPAfzbr6tXy3Q6xenpKabTKYrFImazGba2ttDr9RyTbWxsOGS+WCxX0T1+/NgxUxQt05YKhQI6nQ4ajQaGw6E7m5KncjAFKp1O48GDB/ja176WQD3WlVOEZgVQ7+F1DiwRKxUZC+tPpVKJmXG6emS8s7MzPHv2DMPhEOVyGa1WC3t7e7i4uMAnn3yCo6MjzGYz/LE/9sfcSlNtlx42qv3RPF/Sni6vnUCxzwPA6ekpMpkMdnd3VzJC+A49bIKZEUo30ktzu+v1Oi4vLxPhF6WvxijXoWEqRKvIgeRqPZuqp/WtQ/N8l46j8oaOvd6r7avX6y474d69ezg5OXETizSOn3zyiVuyrifcWEPXbrcRRcv5mhcvXrhToejq1+t1nJyc4NmzZ1gsFtjY2HBIlAutuLEW5ymePXuGcrns8pn39vbQ7/ddlgkXtpB/iW5ptHmY79nZWWJs2Tc756GhKvbLypQaREXyGiJhYRKDVbbax3w+j1arlchY8iF9+6nyr/fRcLTbbXQ6HbfnDXmOhyPwzE6tMwxDlMtlNyFMz3AwGDg+WVduxcpJnr6Ry+Vccj+w7Pjh4SE+/fRTvHz5Eg8ePHAdLZVKOD8/d4zDwVTU8P3vf9+5eIztcWFPKpVCPp/HO++8k9hvQBXDuhiaxqmD4CZtSxV7GN5sV6puPpDcLlYtOH/nqtHhcIj5fO6W+8bxcm8J7pJXLpddvFXRDBUmGZYLF/T9WmhcqMBVATFfF4DbTvPBgwfOK1qH8tk/Km3W5Svz+dwdlWVj3aS3omZVinyXVcIa2uG7Nf7p86TUaOm4WIEFbsJFbBvbDCxdceZjEzlxW116FZ999plrn54rqhNsDGtx8phpmGdnZ/j4448TKZl6dibRcrFYxOnpKZ4/f467d++6NMAvv/wSURRhf38f9Xodm5ubODg4wA9/+EMX157NZjg6OkrwE1E1M6e4qZV6Idvb2xiPx7i6unL8Ta+H/Mg6NXasabgWsXOsbVjEKlD+xpN6aBBpKLhknt489YT1Bi0Ps15fyqIWbRd1CfccXyxuDtFgrDwMQ7dbIXPg2VbyybpyKxQ3FR0nVJrNJgaDAUajEY6Pj90EAuN6Z2dnKBQKK4RShMWl8qpQeN4fGRGAW5HV6XSwvb2dCIFY11bdblVoNp5nkZoWn5KzFp5tymazTvECwOXlJQqFAvb29vDFF1/g29/+thNqXfxCBU/hV4XD96mC1HZbJRhFkTuX8LPPPsN0OnWnb3P7STIbx8OmgqmBsjRl0bGjkVRh0fpUUVojpKiMhd9Zly/EBdzssKeCbN/Juhn/39vbQ6vVQjqdxuHhIb788kun4OI4dmEuhgJtCEXbrzRgOKTZbOLFixduj+xms+mEnEpwb2/PKfFqterQX6FQcHVdXV0ldrILgsBtBhWGoZucowdGRExDHgSBkznNwU6n0w4sAUuDWavV3B4oaojYR8oSDRNDImybDVsq3yr9FH0rT9jMEypRyqzuqcJ3Ku3tO3TcfWEY4Gbls4bUmCLIzLeXL186DzoMQ7cjKj0BghyGtRT02HIrFHcmk8GjR4+cu8ZFANwshgT8/PPP8eWXXyKVSjklrvFX7tgVRZE70oyE5Iw9UQJjbp1OB19++aWb7LMrEBU1aPxL3XYVPs3j1FQuYHVSjgpK0Tjdrn6/j/v376Pf7+PFixduD4Z6vY5+v4+HDx8m9hYnU9o4tq4E1ZCQRTxsmzJgFEU4OjrCD37wA6fUDg8P3QRMEATOA1CXmHRgO7TvvgkrFVq9X5UlhZ0KU9E5++BD2Gqk1BX3vZ+pgmyn8k+1WkUqlUK/38f+/r4DBkSa4/EYjx8/BgA30WvHQt+t7jdpYz2bTCaDzz//3IUqCoUCLi4uEATLDau2trYAwC3h5qKZMAzd8noq1rOzMywWC7df9mQyQavVQrfbxf7+vlOy3KdjPB4nVt5qzFm9F4YG9vf3HT15YIE13KSvKmwbk7Z8w+++cIYCEzXOHCfldaYB7uzs4IsvvsB4PHa8xFWjOjfBokZcQ2w6ZppaSt2yWCxXlVYqFZycnDhl3Ov1cH5+jlQq5VaGM6xZLpdRqVRc1gvDwL5yKxQ3Z9GfPHmCbreLdDrtOkVLDywFolwuYzAYJJauMsY2Ho/RbrcB3ExupNNpF9/iBA6wVNCnp6e4vLxEtVrFo0ePACTPjmOKji/UoZ98DrhhVu7wp0UVh938KIoit8R2e3vbZQRwv4hGo+E2wx+Px27PctsWG5OjYCk60TYzp5n/kwFnsxkGgwF+8pOfJE5a73a7aLfb2N3dRafTQbFYdCmYikLU8CkCsrSislfFS/SmOdcazuFzikoo0D5lzfcx7mpDVORBhgG2t7fRbDZRLpdRr9dxfHzsvJ7pdIrnz5+7uieTSeIQXPZfw2bsu07a8vgu3sP6FouFW+3IHSRLpRI2NjZcXUEQYGdnB+l0Gufn5xgMBiiVSrh//35i0Y72X59loeLjSTFUIHTx2V/+pgZosVi4jBLGcjOZDC4uLhJjpN4TkwFOT08dILNhKgIM5Wmf0dP+2fkNLkDStD0CQQUEd+7ccXu3aDyZ/MGTaDhvQOSu+egsbCuN7GQywfn5OYrFIk5OTrBYLLC5uemA1GKxQK/XQxAEzsjev38f9XrdZZm8qtwKxT0ajfCjH/0osZQXuImt8RTqKIqws7PjFMlnn32WsJRcNNButxMWmKlVw+EQo9HIbV1J4vP0HXXV1a1VpMxiY6hqEOgWa9EQS7PZxMXFBXZ2dlCr1Rxi++EPf4h6vY633nrLuai7u7soFArY2NjAYDBw6JvbW2q4AbiZ0beun42r0zhxb4ooWm5ET8T0/PlzfPnll2i1WojjGPv7+6hUKphOpzg+PsZgMEChUMC3v/1td1wUBVVXm5GeNsTBokpWJyZJKyo87R9pqYKp3hHj44re+V4qIQoYUdD+/r6b4efeHZPJxAEBjqEqEX4nL5F3+X7yBLM9ALhtHIhot7a2cHJyktgciZNVi8UClUoFu7u7aDQabvXiycmJQ8YMm/AkGwBuJSPncSg/HBvSjwkAutJTQRNTcHXPbvaNi+PIU5xYBpI5yaQ555lyuZwDYjo/oJO9NBz0vC0KVn4KgsAZQfVYrGfJeprNphs/ei/q1es8ShRF2Nrawnw+d2daEglr25U/mRWXSqUwGAxwfHyMIAjcviiVSgXFYtF5NXr4RbPZdOcPMLVyXbkVipvIBUgm6BcKBdy9e9flk47HY3dfPp93EzLAEsF87Wtfw8bGBn7rt37LpVLRxaZVI7OpMNfrdYf4VOCBG8XCyRk+a2OvREsWySmimM1mePHiBT7//HMUCgXUajUX4uj3+zg/P3d5pblcDqenpygUCnj77bfdpNP+/j6ePn2Kp0+f4uHDh44J2G66f4o4GWLQfUgY1+x2u044f/zjHyMMQ3zjG99Aq9XC6empQx5c7qyTpURY1WrVCamuBFUaWs+A96gLzeKLXfM6Bda3otIqdEXq29vbTgHt7e3h5cuXznsB4HaHA27CTmr82A+N15I3NK5JL0rPDFR3ej6fJ477Oj09TaB+3ru5uenGrdlsYn9/H1tbW06onz175niRe4bM58uN/qfTKcrlMmq1mpsYY/bK3t4eSqUSnj9/7uZByK+ZTAaNRgPPnz93ipoKinxNHt/Z2XH54ABcloaG3+yqTyp49pUHpmj9Gq7j2GodRP5xHDv5t6EzBQgaMtRVnKPRCIPBAPl8PgHC2Ec+y03tKF/MteZvyg8Mu2gywOXl5QoAvHv3ruPNJ0+eOD3FMwQAJI5Y85VbobiBmwEi8k2n024LyXQ67U55Z1yOxCGDNRoNtx8uEWSz2XT3MDRRrVbdidIkOK0kUS6QTEOymSS+QuKzrJsA49l+i8UC//Sf/lPk83m8//77zp27urpCv993bnK5XMZiscDBwYGL39Mt1Xeo98BcXnXNdUEQP5vNJr788kuUy2W0222cnJwk0BBpcHBwgEKhgGfPniGfz7u8+16vh9PTU9y5c8fRkUVj6hofZXaMTq6psFu3mIXhLqI5RTw2NHHv3j1cXV251XztdtulWEVR5Fa4acaBtoPfFdVxTDXMQyWgz7Cd5XLZKW/uI0JFq6fXaO4zsFRoPAUqn8/j4uICV1dX+PTTT93eO6Q9T4M6PDxEKpVyxog7BqZSKYcwwzB02wzwOSpd9oH7UevBzHpYrk4adrvdxOQ0jTNppoaPcqTG2s7J2A251AhoeEv/bzQabgGSGge2k5kp+XzenTc7GAxQqVRQKpXcQcWqgO0c19nZmTNA0+kUR0dHrg+qr9hX33yKGpJUKuVWfHM3VM6VAHDGzK6FsOVWKG7tWBiGbuOX+XyOJ0+eOKsXx7E7K4+uBoUql8vh5OTE7XDG7TdpZcfjccL90om6druNx48f46233nLWVcMKNkzCtmoMzioaDnS320WlUnHCxFAJADdRMxwOHSKk26s75J2dnWE6nbrc32fPnuGP/JE/4lCwzqRzQyFf0X7MZjOcnZ2h2Wzi+fPnePr0qTslmwqKOfX9fh8XFxduX2YaTa7wYm43FbiGa5QeOtPPa9pWjYuyvTppy1AaT7wvlUool8s4Pz93J6IwFY07tzEPWVGyrlDkGLCtXFPAvqirr96YReLa5mw2i52dHbz99tsIggBPnjzBy5cvXRaHokTWrxNc5XIZ6XQ6ETNuNpt4+vSpy0QgXWjEB4MBarWaO+GcG//TwOdyORweHqLf7+PLL79EOp1Go9FAvV7H06dP0e123XuoWNWT01BGFEVuawpmPZGu6hVpfJ19VYVKuhMwqUxZ1OwzoDzU2IY52NZ6ve7Cf1xtzclWgjGdQ1FPXHlSw0TsK/lX9QF5SnWGelM0InwXTx0ajUaJdOJKpbKSDmnLrVDcwI0bWqvV8PDhQwBwbgYT63u9XuL0aBVGTgAQWRBFE8Xp0Vvq3qRSKZyfnyOdTmN3d9chwnUxWQq4JaoqGWAZ53vy5AnOzs6wt7eHarWKwWCATz/91MWD+Y7Ly0vU63UXsuFeK7rXcqPRwIsXL3B+fu52bhsOh6hWq96UPw1NsD+kD40KkfmTJ0+cschms3j58iWeP3/uUHez2XTGjgdXAMud1a6urtDtdnF4eJgQIN6jsX+ln84pEHVRUVCYoihCpVLBeDxGoVBwG1nRCxkOh27C9vz83L2XSkSFUkNWQFIg+X8cL9cBNJtN1Go1d6oL3XOGQqw3RbeWx4oVCgXcuXMHH330kes/F2cQbLD/5AHdKheAAxCNRsMZ7o8//tiNEZdEz+dzHB8fu7qr1aob10Kh4BbJ0OiSHtzVLwgCd4SZIkYLRkgfhkAIKsj3aoxJK+W9ILg5hILjoZ4OjZHWR35VA8fnoihyi4joSWjGShAE7rDg4XCIly9fuklLAM6T50IX0pUnOylf+IoNhQLJs1UZp4/j2PEFjTHj6wxp5XI5J1u6WvZVXv6tUtzZbNYtKCmVSmg0Gjg5OUG5XMbBwQEymQy+/PJLNznAjuXzeWxsbLjVkXSheLQZJ4JIUFpp1kH3FYBbdalMp+jBruxj4UDOZjMMh0McHR3hpz/9qZuYGgwG6Ha7Lj6min4ymbhJx/39fTfTzUmg7e1tbGxsIJvNuh3bLi8vXQoYsPQ4bOzdh3qJbLi45/Dw0G0RQCV5enrqEEAqlXLzAsDNhHE6nXbxuHw+jw8//NApJCB5rqQaWCsIpC1pkk6n3SrZbrfrFk1QSUdRhLOzM1cfP4nCFSHrGPJd1ktShUPFxaPzODmo+0xwIlQzejgZpudjcpc8yytUKr6Te/gOPtNutxP0pBFXQ6coOJfLJerl1siFQsEplP39fZTLZRwdHaHVauH4+DixYMh6lwxZqDFmOIay4xtXpTH7x6wOpaEaUDX27IMicOvlULHTIPhi3XwPaUFjw1ASaaeGTUM1rM/G3tUb532kM7NQCCK5fzfTNRl+4bYENPw8gFlXVK8rt0Jxc1C2traQzWbR7XbRbDbdTPGDBw9QrVbx5MkTF07QuBtXJ1EhEyFqSh73GqbrrBM777//Pu7du+f+Z3uoZJn2pAOlbWch8nvy5AmOjo4wnU6Ry+XcvhA255TPLxYLd/DxixcvHIPMZjO3jJiIKJvNugUx9Cy4KEdDR3aCkPG68Xjs8nY5F8C9mOfzOXK5nDvCSmP2nOQiQ3OVHpFir9dzKWt8vxad3FW0YjNCdNc94Ob8TdZpFTINsC7k4AQfY8i+0Av/Zx0nJyeoVqtoNpsuXMWcbV+IROuZz+duI316MvRYcrkczs7OEimsOi6+NgHLTJXnz5+j2WwmUtLIt2w7J7UYpy0Wi06hdbtd7O7u4urqCvV63YXScrmcC6twnx/SSBWx9VL0d6J6GzK0bdRQgaWhonv1tpi2q4ZZ+Viv6zayvklttmE4HLpMH8aYeZhFq9VyISXylvbdZiitM1RqDIj+mSWiYGk8HmNvb8+F/waDgXtGVyO/qtwKxQ0sB6TX67kDaDlZl06ncXZ2hhcvXrhVaLyfqCIIlrPVHDTGwEejEUqlEqrVqhMsTnRmMhm3TWy1WsXl5aWbAH3w4AEmkwm+/PJL7O/vO1dMXTwqUaIttv/s7Mwp7TAMUalUcH5+7uKsKrjWjeRkEFF6Pp/HdDrFs2fPAMDFx/WdV1dX7hBlO9mnZbFYuNQkbhrUbrdddghn+ykAuh96KpVCtVp1E4PMvnj33Xdd5gnT03zCSaWgfWcYS8MbABJhHxviUIRM5KmuMQ258o6ukGX/ACTc9E6ng4uLC/T7fYfueR4jBff/396bxkiaZddh50UukZFr5FaZlbV3d3X3zHRDPUPCGsIEYZiiLBKGRj8EQQMDGssE5odpmSYMGCQMWPA/GTAsjwCD0NiyTBoCJZsmTYIQRcijAfiHM8OZlmZ6uqurK2vrXCKXyC1yqdwiPv+IOC9PnHxfVDU5w8psxAMCEfEtb7nvvnvPu++++1RZqP2R+dTr9WjSo52dApECUhEkky5w0i/96OgIH3/8cTT/sO6cNarJr7e3t20bNzdtcAa2tLQUBene3l4MGcETcAYGBuKagM9OlJcciWt/8FkKYlXaauJQXtRyuBjK3757VWe5XMvh+1TM5Aei5SzL4phSRD04ONi2jra+vg6guSjIMazCWdG38qSab1gXhtJQhE4/f95vNBoxdjpBD/uXa2HKL3npQghuDjif7rDxRN/O+Bys1FicvpF49FyoVqtYXl6OeTJe7vT0NKrVavS5bDSaftNbW1sxT92c4gslfpbdvXv3UK1W446zg4OD6FfOQc16u4CjjZJ2skKhEKdYCwsL8ZnT09PoBsUdjHw+tRJdKBSwtraGH/zgB9E+XS6XYzwUnlxCNMApHxd2yMT097116xa2t7dRq9Xw4YcfRsY8PW1GlKMiBRBnL4qY3ROG00k181Ag8x1fuPL2sV99YLtZRAcVhQEX5YiwOcD39vZw7do1ZFnTY4k2ap9tuWmKgpVKgDMVClugHWl60pnCtWvXUK/Xo8mEm2I4TsgTQHss8v7+/jg2OOPkDGtrawvPnj2LU3K32btZhO302Rv7VV3+yHs6Tlz4qJLWPmVANhXYilxpG04llq8CV0GWmusYzrZarcazaYF232+2kbzl7XDTHz/sfzVlHR8fY3x8PLrMPnr0KM4SeIg10f/MzAyq1WrbYnleuhCCGzi/G5EdkWVZ3MarxONihp7qATRNIlmWxU0Ru7u7bSYKarWTk5N4+DDdb4rFIjY2NjA/P4++vj7cuXMnLgKpINCFto2NjTjdXFhYwOHhIW7evBm9RXiCiNp7VfizzY5aOHWjEODzFOj8T7u3Ci+tb71ej3Y1+mNzMHOaTWGVZVkcQPv7+21Bemh35LoAkR53zS0uLuLOnTtxoYUzHqJWCjSdkis93Z6pyQc4BxPpqV4WRPjqz+5IkAgsy5qLkZyucuOL9snR0RHee++9GMdGEbuaebTvVEFr9LxUm1SBa6yKmzdvIoTmrjq6BtIVkKCCtGK9QggYGRnB9PR09Num2aher8cwyBRWulipqFKTzjaUfs5jKszcnKACkHmosFOe57NUwEpL8r8qFS2HirS3t3k8HE2qDK6lAlHNpfyvaxTKrynziI4JtpEfzpz4Dk2KVMCcURNAUFGrV1lqd6amCyG4tQGKvHTAK7MMDAzglVdeaYuwRv9tHvSpbkI82HRnZ6fNQ4AdSc8EAPjoo49iZ6utjYLi+PgYCwsLMYj92tpajEdAE8z09HT0xV5YWIhtANIxNZSZiTiI1BQBUZDzf09PD+bm5mKscraXUy91MWs0mmFFWf/d3d24eq0mBgr6LMsiPTkboBKZmJhApVJBo9GIC4nb29vR/ZEbixwl6+YJZXrSQwUf39V3FIm5TXZsbAzb29vn7qtgU1eunp7myUm7u7vY2NhoU/4cbFxLmJubQ39/fwzNyb7UTU155in3ZWa/uRBU00SWZZiZmYlusADa7O4qJCnM1e5NUwNNWD09PdFDaXJysm07te545ZjwevF9XeNQZeECxvtVr2s9eY3moNPT08j3riQpA5SOakvXxA13Y2NjKBaL0buEeSm/sRxXXMpDyku8x7zIDzTFZlnWtgP8+Pg4uihzp6bOSLhISXmh6yAX3lSi2k07BTg7e5JO9mSuhYWFc6vHFGxEHq+99loUYgxRSW1GZqAfLB3iQ2gu8HBRUPNvNBrY3d3FBx98gIODg3hGXa1WazM1MAqYanQqEu00ZTplSJp/+N7o6GhsK1FhX18frl+/jp2dHbz77ruYnJzEjRs3sLe3hwcPHmBiYgI3btyIgdk5IGjf9EUlCm4VbjwVnQtj3A5Nc0qWNX25q9Uqtre3sbTUPKHu1q1b2NjYwPT0dAyE5HZP7WMKDk4xfXCSbqSn0o2DQ9GY2oU1f+bBmQI9R7iuwkGYZRnGxsaisr927Vo8iBdANIFp/bTvGo0zn3VNvM/B6vf4rbtgucNwbW0Ny8vLMVwq8/GIgzQDkBfJb/SUIVhRWvOb+fJDtM0Pn6HS1WspWrtCU4HtJhnSTWeD7HfdKMRxzn52PmZ7yPdsryJnR/HaBkX2PktUOnNWNzQ0hNPTZpx/2rIfPXqEer0eg6/xwOajo6Pocgggji0qE9/M1CldGMGtA5KdCiAONCUy7ak6TWk0zvw6Geh/ZmYGWZbh/v37EUVzyqJas1QqYXh4GMvLy7EujMTG3ZicCTx8+BBPnjyJsQSIFLRTHz582CaYFWX4FJLtB84H6ucWZLoLcZfYyMgIxsbGoq+xDoJqtYpqtRqR2Pr6evTTpj2STMkyKLBZB+alrmUA4mIpd6DSzQpoopcnT57E/smyLCo+tie1Q7ETTXSmozRSG3aj0YxgeP369XgakCI0HdxU1Ovr68iyLB5MTRu3mlwODg5iH/PIuM9+9rPxEIKRkZG2OrJuek3PpvQ28ZvrIWpjdb7mYhr9gjkLoY+28h9BCZPODmhyo2JTIcZnOSN0RK2zYIInfV/bqKYh3XSVEpRZdratXnlCXe90bKhQdeHvilLjv/B55T9/Xv/n1VfrMDQ0hHK5jP7+/hhOl6fX1Go1lEol3Lp1C7u7u9HLiAuWnC0pf2s5vlbl6UIIbmVW/gfap1Z+P6WRSIC+vj5sbW3hO9/5TvSpJXoZHx/H6elpXHjjwOb0hkxHm6cKooODg7gKrUJNGcGRpA5CdXHS5zXplJkbOegJs7Ozg2KxiPHx8RiL4rXXXou+p6wfF8W2trbw4MGDaBPf2dmJm3wYPEnrz6BCXBeg7ZfnEjJy47Vr1zA5OYn3338f9+7dw5UrV6I3Rm9vLyqVSqwj295oNNoWjh2R6myEfawLTEoXRXTb29tYXl6O7lVEOKkF26OjI1QqlRhxkfXlNBloP8WbfcwZFcObKkKn2UPrrYjUFRMFG+kCoM0bgnk4jxeLRUxOTmJ5eRkHBwdx8ZuCi/mTV5mfmtkoELVeilb147MaH5N8x5WNXue7aifnfeV1N5toPsoHyjeu1MkPbnpkSs0ulZ9cnqi3kr7PNDIyEl19CWjUG45HlXEWcXrajJGjedGs60pKgWteuhCCGzgvxFwru8bL0+K0OZZKJSwuLkbUOjY2hp2dHaytrcUByDyy7OzUDC4ezM7O4vXXX29THCsrK6hUKm1bdpnUjqgM46YRXdDitw98Co69vT08fvwYvb292NzcbBMI3Np+7dq1KCzm5+extLSEYrGIp0+f4tmzZygWiygWi9H+W6vV2nxF9XSZoaGhGP1Mo5yNjIyg0TiL5cLzCemR4zsQueBFLxNe16Bgipi8zxmjRhcLtf856GifZgjNO3futE3zHW1vbGxgfX09HtDK/uECKn39yQ/0OKFnA90GT05OUKlUMDc3F3lGUSlnAnpkG78pFCmAiOqdv4Gzk2G4AM5AWORVReoqrFkHrYsKXKU368IyU2sTrjS1r105pcakj2XySMo+nRJazEP70xW9gwDdIOWKJaUwtB4sg7RgP2h7GC9peHg4rqHx6ETOgui5QzNJuVyOMWKWlpbiBjuGKNC6+WzAU2exfka4cgjht0MIH4YQ7oUQfiqEMBFC+NchhAet7/HWsyGE8I9CCPMhhB+EEL7wgmXECntH63Um1eAqgBuNRoy0R5RHhLK/v4+tra22WMBZlmFraysuttHL5OTkBNVqFQcHB1hYWIinyTuByaTsKLcHanvyEKUyu6IBLkytr69HpmWMESJ/oMloe3t7EUUXi8WIzIhAdaVcF0oVvZ6eNsNXDg8P4/bt2zg5OcGdO3ciSnv77bfRaDTiRp5CoRA9cSgIGaifDK3xodXDQ5GMT3nr9Xqb+xdppGsgXIXv7+/HjRs3sLm5GRfa3EQFNE0fDx8+jM8xPoTGXxkZGcHw8DCyLGvbLUrf34ODg6j0qABpm0zxckqokZZE+fRq8V15rP/R0VHs77W1tTibGh0djbNH2k2J3BUkqNmCqFX/sxzWh+9ofzC5MHHeJS/q1J/9Sd5WepDXU7MARdQ61pVOCoJcOQJnZhpvs9eP9ebmHG23AjS1dRNJb21tRUB4eHiI1dXVuFZ2eHiI+fl5bG1tIYQQ4wLNz8/HAFcqt1Q2uDLx9EKCG8DXAPyrLMveRPPg4HsAfhXAN7IsuwvgG63/APDzAO62Pl8F8OsvWEbbVM0Rgk4JVfv6lJLMTuFMNPPxxx/HI9AAxPMaAUTm4SAmOnv48CHW19fx4MGDuPGFqEZd0sjo3rEpJaT+qnxW26904LZvMk+WNRfNTk5OcPPmTbzxxhtR2Tx9+hS7u7uYnJzExsZGrMvm5mbbmYZq1uGuLiJ8RtC7e/cusqy5oLWxsRGR+/r6eoyudnh4iMPDwxiEvlgsxvje6+vr8YgtlkVhy5TyOOCnXq+3xU3WviWS5gaGiYkJXLt2Da+//npc+wDQJsSAs3NN6QNNZcs60WuDZaaCCT179izGoFhdXY3eCvxWe6/+Vq8o5RNtn9qlledp4uNmHApqKhLSg2Y4bupwMKPlMVqeI2PShXVWIelI0FGvjkvOePis26R1oVkFuvI+k8oElu/v8bf2u7qlOsLW5/mbdFS7uCbNR+l5cnISD7PQXd00ZZIfgSYAW11dbfOjJwDQlDIPn+ON3DtnFR4D8DMA/kmLcMdZlm0D+BKA32g99hsA/kbr95cA/GbWTN8CUA4hXO1Uhk+pSEz9OPFTyJb31e4YQoguOUoQokUXoPRioTvgu+++G+2hKV/XEEJcLGTYVW9PljUXobg1v6+vLy5MMNHUonWp1WoRRTIO89zcHCYmJvDqq6/GHZ306Dg+Po5hY9k+RfsqQDjQ3cwBAAsLC3H2QPc/HnXFWNHcKak+uEzFYhFzc3PRfU7NI9pmenUoKuKGIo2D4f2eZRmWlpZim7Msi/77KysrbYOSvuqLi4uxTYqg2N/0mGEUOV1EovLXrcncXbmxsRHNU0TmKpwpSJgcjKiZgs+qjZZCmsfZhRDi4ihDyPLIPu469O3iKpR7enripindccp7SmsFSjp2lKcUpKhAVHClm2AU/aZMNz4jVb5UvnXFpOUTDacOSGCeOo5pKqPSU1qpEmKgKI5VKlWgOaMjf9H1jxsHuemn0WhgYmICt2/fjhvVuGCpYzBlc/f0IjbuOwDWAfzTEMJfAvA9AL8MYCbLskrrmRUAM63f1wAsyPuLrWsVuYYQwlfRRORt2pRMpLY61z4+/fSkUz9uIeV7nLbVarW2/LW84+PjGCOCC12MdcwFEhKWsY11wU/bxHYNDg5GO7siBSb3Xx0cHMTIyAhWVlbiBoypqal4sAJnC8+ePcN7770Xbe/026UpgQtwrJOiWi6ycaddqVTC8fExtra2oq3/+vXrGBgYwHvvvReV1Pb2doxnwryJrm/evImRkRHMzc1FhMVoezwph5EPue365OQkLooy3gnzBdrdBznwPvOZz8TNUnfv3o0uiZVKBa+++mqb8KzVavG4LDWjsK/Zl6SVCjMOZnoQ6IaolZWVGCZ4dXU1BicjfyjgSCVVTD5bo6Lt6WnG52bsa4INCiXurp2ZmUGhUMDy8nIslwuztPcqj29ubraNB+VZFfYpftZndMz6FD/lUaL5pBbgVBHwGTc5KS/n0VRnqap4NK+enp6oGGluolkROA8oqfAdCDFPPahka2urLR/S4yd+4ifw5S9/Gb/yK7/SVh+nq9Pb04sI7l4AXwDw97Is+3YI4Ws4M4uwYlkIobM13VKWZV8H8HUAKBQKmU+JVZgD5wWh3+PCGjdNkCE57VMNzTJcy/EUEYZ7pImAge1pB9dNCHS508Hk9SwUzk7eYVwJrz8PV+B2fD3woVAoxNjX6+vreOedd+Ki4NOnT7GyshJtrYoo1Z6q00YdHBQynAkwbO7y8jJmZmYwNzeHk5MTTE9Px/pws83Y2Fh0JaTwnZ6extraWhws3LzDPtne3sbi4mLbdvidnZ14NNvIyAgAtKEc7Tf+5mG69PGfmJjAa6+9htnZ2XhqDFf+j4+P4+Is6aJJET7pp5tOuMGJsW5WVlZQLpej6QVoCn26hgFn9nwKpzwhpeYGN2VR+dCTh4qEtlW6tTYajWjGIm/RJEc/cC5mc1zQ7KfjISXI1cSREpRqHvFFVkfnpIcja/7nmovSJzWrJn9oHBF9nu1227byPlE2gc7o6GgMvMVAdKQLP84zzE+BHJPTjOWvr6/jD//wD9sOYE7R9UchuBcBLGZZ9u3W/99GU3CvhhCuZllWCU1TyFrr/hKAG/L+9da13KSV9I5SYuuz+k10qDvnmBdwpjk51VGhTqYiwzASILepT01N4e7du1hZWYmnX+iUK8vaj3cCzlCols/FMG0X8yCq48Dkdl0GrRkYGMDVq1djbANuO+fCowoiLp719DRP2tCj2hxF6fONRuOcX+nBwQHef//9NqXA8hiukv7fzHdhYaFNgVUqFTx8+DDm/dFHH2F7ezvGKKeA3dzcxOTkJOr1ZsQ0mlmYD/2q6/WzsxA5w9nZ2YkBwrgphaFpp6amYhharmEor9FOzH7SHXoMKcv28GSbk5OTOOM5PW2G8bx37x5OT09x+/btWG91XaMQUbOJ84LPNNg/jCszOjqKsbExbG5uRoVB04ceRuBg5fj4ON7nNdbDzRGuKNVkoONR26BjVgGXzpZ9Vq1JzRep314e0L5GomOYfajPqrmD5anL5+DgYJxh80xMBWmqYNkG/c88UzseXbZ997vfxXvvvdcW5yg1a/lzm0qyLFsJISyEEN7Isuw+gJ8F8EHr8xUA/6D1/XutV34fwH8RQvjnAP4ygJ3szKSSV0YSWfO/E8I1VKPRiNt4dVWbiYNCTRSOLIi01IbGgcRY0L4Y6vmk/FWdUb3uigD6+/vj1m2eAE3BzVNoGo0G/uRP/gQhBNy9excbGxttTExaEmn6QqgOCNKGjELbOK9xkZe2O+ZFuxynmiyH8U1o6z84OMD9+/ejT/je3l48VHZgYCDGjeFRUuVyOa4lsL9YN4YR5U6zJ0+exC3En/vc57C6uoqVlRX09vbiC1/4Ap49e4a9vb1YPpW2uj+y/TzpRzelZFnTbs4ZXJZl0XOHdNjb24sHF2xtbcXrhcLZbj+aoYgAfSbpNm3lJaYrV67g0aNHMcYFgUq5XMbR0RF2dnZiaIUsy+L6A/uNJxvNzMxgaWmpDS2SR9V9zoWJ1teVvzoNOE/7u6kxoLypQtf5VBFsSvirs4CXoetdQLud/OTkJIZ/ILBSm7PbxlWw+rj3NqYEOMePXtN3mE9qhqbpRf24/x6AfxZC6AfwCMDfRXNh8/8KIfwigKcA/lbr2X8J4BcAzAM4aD3bMaUYRDtIiZ5C3/qeMiN/0+/Vpz+aH9/36dXJyQnu378fY3LQ28CnkY7ymTjVdTMKkVWxWIxT8VKphJGRkbizj+9RafAUaMZffvfdd5PTOCJxpYvSVGmTms4BiEKZ9KBft3pblEqlaNJR+zEjDi4vL6NWq8XQAwsLC+jr64teK/Qx58aoLMvw4YcfYnp6GuVyOfYPTzBRVEgvi9HR0Xgs2NHREYaHh7G5uYlarYbFxcVIH9KbuyNVEXH37MrKCkII0UOGoXU506BbV09PD9bX1+OMg7OA4+NjrK2txWPoqtUq7ty5E4WwIleP1aJIkyYDKvS5uTncunULAHD16lVUKhVUq1XcuHEDpVIJ9+/fPxdigedt6iIzlYjyA/tfffvVNq08nhLmvOZTfi3HecxnzSok9Z1U0rqo/TvLzjY2eVk6o6EJiTNcdVHlRjVNLlxdIXEWxs00DtqU1qwP+0jRPNv8I0PcrUL/HYCfTNz62cSzGYBfepF8PeVV1pki5WWinaPPUIvzed3xpvaxFEOdnp5icXERhUIhLuTxvk9vWKZ2BBmaq/0cFCE0bfJHR0eYmpqKg46ufGoDp5mCZ2YWCoWIqNRM4VM3ZWhtk9ZRByrpwEVCABFZ86gsLuiyXScnJ1hfXz83e+EC3sOHDwEgHozBmClcQ6CddXNzE6Ojo/G0edaHx5Q1Gs1wBvRdZ9jZubm56AHDchuNRvTX5kBUJKcxMDi9rdVq0SuGnhoclNyUo8H6C4VCtNuTl3p7e+PJ65///OdxeHiIJ0+eYGZmJiohnWLrbxXaFEycznPW9/bbb2N5eRlPnz6NexFqtRquXbsWvX6AM9s6w8LSw4HrC8rrLiCUZ1T4ue09hXg5DlILiSk02gmAqUJTftOxl1IU6n+uY0LrQhMo+57PacxvbYOvhSmfk6/oBuizGKdDih4++3CZkpcuzM5JJnaIem8oAVLTTf7mfUfq7kCv79K+TIHOBUpH4fv7+5ieno7xTPJmAs5MFH4sn+9xAwsjhxWLRTx+/LgtUiEFMz1E6IOs02ifmeggI4MqDX27NXB2OlChUIjHvmVZFk0gg4ODcUOMbvDQeCAqhFZWVqLf+8DAAKrValz0PDk5weLiYmwv3fWuXbuGwcHBuLi4v7+PR48eYXZ2FlnWtLfv7OzEQy9u376NSqWCnZ2dGBOEQo6HOxCxko66YKVxSXxqTNrwUAsVEqSDz8y4eYORFavVahT4TvPULMeRGHC2QYrmpJmZGTx9+jTubAUQDxAeGxvDxsbGubankJ+a1nyxUJE2cIZwVSi6oGXdPa+UYHbQpWPdk/Ku8zXp5ApAhaKWq/UjrzC+OQWwmglTbdA6sF7c/6F0SFkC3N6vz6WEuyN/TxdGcDuhFAVqo1Mdr4JcNZYyBYWNDky1L/J6yv7EjuRmGO3EFKLVa27D4zs8+ovIjYuRii5YLu3MzJ9CU7dLe0criiMdVMDqYo3Sjd4HDGDF45gY4pa/VYmSdmRkjUFN32cu9GRZho8//vjcgKhWq3j99dcRQsDq6ioKhQLm5+fjppfe3uZZlDy1hW0MIcRt36enp9EmzTK5YYnIGEAMacDNRfS8oCmoWCzG2QVnD76grSFdqdCmp6ej7b9SqcSAZ0pjR6w+K1LeOj09O0CAZiGevUoT24MHD1CtVttCC9AXnhE0dRwp/yqi9dgxTCosfZz52PVZn44LHbtqXkyhfLqIkrfJVzoufGyqUFXaat56XwEd6ZDa1ZsaWykaqEJLzUiUfvzvfKDvXgrBrYJDp2RuV1Mbnk6d+K2NZ8M9gA/QPiVxbal50gOFrnc0IegipJbrWjXFyKx7lmXJg4NVsCoCUyHJgUkPGEWMurOT+bFNWj8u0HB7//Xr11GpVOImm/Hx8SjEKYjpvaAxxTktz7IMw8PDEd2yThxw7BOafDRWCNtJX+y7d+/Gmc3u7i5mZ2cxNTWFSqWClZUV9PX1YWVlJXpUUCEo3dhGmqGIXjm70o0P7KORkRFUq1VMTk5GP2eg6TP+wx/+MLaL5q+JiYnoMlgul+OxYA8ePMDx8TGmpqaimYcLti6wXYExKS/zvePjY1y9ejUep0ez2ePHj+Pxdkp7DXerMwT2m/IH+dfHnIMlr5//VsWUGgOp8jwPjkl3YVW6edIxrcmfTQFC5pnyAvL6Oer28eXjPQUsXVF7G1hOp3QhBDdTaprjKCXVMWROEkSZzweHDmwiJi2TZfHEZn3eUVNevZ2RFSmwrm5m0Hc5SH3LrioLAPF8PD+nTwep15e/mT+3B9NdsV5vxhFWn3ZO/xuNRkSv3BCinhhcAFRUpfQnstXTPzRuTKVSQblcxsTEBBYWFuIByDs7OxgaGoo7T3W9QX2HqUS48KdTbS4kEi1T4XHhml44wNmhrxTS4+PjKBaLMSQwZxt0saOb5pMnT+ICbKHQPG3p/v37GBkZiWFwtU/8dwq5sv6Hh4f46KOPcHh4iDfffDMi7Fu3bqG3tzeeGcr6KNBR/nH7uvKpmiadnzU/FzbO3/6Olk8+0HxIa6+DzlA9/zxFomhek+ZBX3uaHek+SZ5kv3vZ/u1o+XlIOXVf+UCf0R21qXRhBLdr9pRWSk1BVDApUzph+UkhihRK1ih//u2LC520qgtmXbH3hRNFwm6r1zLUO4bfqoycPi68mT/LGh4ebqMzlVYIIS7U9fb2xlC4FFi0gRNZ66YCRbk6YLkA6TSkYKUvd29vb0TAjLBGDxvvcypCDnQOSO0vpfvp6WmML0JlBCAK9s3NzXj81Pj4eDzxiLsUh4aGMDg4GO3uIQRcuXIluisCiGE9syyLm4rU9KH9ozZb7XP1L+caB71E2J6enh5cuXIFb731VoyHrifCp8ZRiveVn5yfU4jXEW4n/nf/ZgqllI+0J6WB1k/rovsmtE4pIEj+HR0djbuYOfMlz/rM29vvM2te85SiicuwPIUwODgYzaOp9KJBpn6sSQUr/3scBV7XBrq5Qu2ofMa1nHcuialowt9xIeHTmU6a0dtJweGDV4Wyhz7Nmway/bqwoonIUAWn0pKxFrgVnedrcgs/37ty5UpcoKSZRE8tZ93UcyOFmBqNRlx8JerXPiwWi6hWq/jggw9iDHJGODw9PY1rDIz7Qt935sG6UBgzeh+FrfKJHqILIM4CgObOUA7mSqUST0qneWF0dBRDQ0PRc2VwcBCTk5Nx9vHs2TNsbm7GWCzsG12ASwkqzoAozFUhDw0N4fr166jX63GRutFoxHUR2te3trbawIvykQOF5wld/dZ3lNdYD43xwUQkq3yufOs8qzMkH998PyUTaBpMKQAfN4VCMziXAgINe8CxpEDP/6t8UgXlSD81K8hD58yTHko6blLpQiBuZSyg/TRwZRjVaoqc3XbIlBLQ+i5/6/subPLy4P887ZlC3b444mjYFyUVlQM4NzC0TCY+o0pFBRqv9fT0xA0wDElJ5t/c3Izok7GnaVOnQHR6KAJRhaLlZVkWzTvejhACrl69ivX1dSwtLWF4eDjGPD49bQahZwjUEM6mtFxUVLSqdWA7C4VC9GzhdV3wBRBj2gwMDETUykVk7hQtl8vRz5sLj1wHqNVq0f+9XC5jcHAwHvQwPT2Nk5MTjI+PR9qlhLfym4MEmmqWl5djYKlqtdq2wF0qldDf3x9nNc7HKVOI9p8qjNQak76TAkZ81sdvyiToHmLkE5oo+Yz2ZQrpax1c2PsY5bN6ALkKZR0/zItt8QV9mhO9/7TdOr617uRhpRWVe95CsaYLIbiV+Mogjgx02s2khPfB4I33zvWVXT6jDKnM6s+qQE4hYs2PvxX5+GKGM1ve/9Q10ibVJuDMdUrfGRoawiuvvILvfOc78ZQORTBXr16NG08oiHXgpxQmB723iaYFZ2gu/hYKzQh4uhDKAdTf34/BwUFcuXIlbnyhoK7Vam1oh4Hp1d6/vb3dtpkIOFt45iERdIEketQ6EkkDiMfo7e3tReV2eHiIo6MjzM7OxnCeMzMzqNfr+O53vwsA8UAMLlIeHx/HGQ7LUoWbEnzDw8MYHx+P53hubGygWq1GDxaadhgUS/cE6DmXjqq1T9R8kQJG3q/63wGHCmYVqM67Ota8zNTaldZR3+Vvn/HpvdRsw0EW604+ZrlqlmMsG9bH89XfrCddUCm0OQNjX/OemztT6UIIbuD84oLfU4HnjAXkbwzQ94Hzq8Ka+L5qW2WAFAJRZeBKwwWbM7GjEEdIzCelsLx9OkgAnPvPdun3xsZGPExAUcXx8THK5TLK5TLu3bsXyybaVTTvU2a959ProaGhuKXd+4YbStQ8wPpvbW1hZmYGw8PDqFaryLIsCqjd3d3omsdDnsfHx1GpVGLgrL29vYigSav9/f0opDmQOGAcCbIve3p6oq2diDaEpjvi8fExZmZmYgRH+qvT93xtbQ0TExN46623oqvenTt3omeI8naj0WhzIyQdh4eH8c4776Cvrw/Dw8M4ODhArVaL/cgDIgYHB9sQasqjxAWW8m0qnorypwtBJt9f4LNZBz16nyYwPSHdBa0qVOdthlml2cMVoY43n2HrGAbaF7yZP81zvb29ceeytt9pwfc1JgzrVygUYix8dZdlG1MyzNOFEdzA+UUANkgJ7RqY7+k9dflxdKHa18smw6TsZepdoougnr/WXQejts+nln5dnwfSi0apfFJl6HUKVjLT3t5eDEvKZ7n9nmdcqpDVcguFAubm5tpQnW+i0LZNTExgeno6hodlm3TDkwa8Usav1+v4/ve/H9F3X18ftre30dvbi6mpqRiNkEL8M5/5TJwl0M6tA5T9MjExgdPTZmxtHv6rNnhXiPV6vS3Ur9Ky0WhgbW0NpVIJq6ur2N/fj1EUeUzVO++8gxCaIT+fPHkSD1PWszmVjopCWZ/Jyck2Qc44LZwJcDZCZUCe9pCkvp7Dj5sDtB+VD31Men+TJnkzwBSS18U4R9J5ycGb9pU/kwf2UnnxP+uv8XkYBsHpkxqTCjgVSXuIAlWKeQu1mi6M4E5pLJ9S8bkUuk4RTzs+T+DxWiq5ZnaUkkIS2hYVcsr0qYGhZaTar4g7j9l84OksQ2mgi6P6bAhnG3C8TH+2p6cnut5R0A0ODsbwtFr3er2O1dVVVKvVpO96im40n3BxkX1JZKY7IHlYK7evf+tb3zoXrEppT3fAoaGhmP/Vq1dx5coVvPvuu227Vx1d6q5a0rtYLOKNN96IKP/x48cYHh6ObmfFYhGvvvoqJicnsbe3h6WlpbgNfnl5GVevXo2eETotV6SvfambgUZGRnD79m0cHh6iUqmgVqtFl86jo6O4zT3FR85nLjx09qPPuiksNaYAxHUIV5iqELVODlBS482FsM74NO6+ywbnMc0zZQ7VhVwfs+RPKkTtLx+3yifsSwY1o/spgDZ+f56yAi6Q4PbO987ibyWyT6n5nl9zAczvvGsp7anMp0iC9/S/1oPle5natpQg1rxTg4Lva/t8QHSir9NKB5Fe09mFHvDaaDSi7zCf545Kp1kIIdq3tc78VoXDj68FqClG29jT04NyuYxarRYjKu7u7iLL2rdSq+Cjb/rq6mq0RZfL5WijptsjbaX6rqImPYZudXUVfX19ePPNN+NmoUqlgr6+Prz99tuYm5uLiHJiYgJTU1NtJ/ikzIOkC+lADxXSlrOUQqEQTwBihMaNjY02pep94msrLhCVZtpvbnpwu7RvHPMy2CamFKDxurIsR80u+JXn2fc+xn1W4IpKETuVqXuq0cxGjyadzZAGPqtRwU7gwaS2c9IkTxkyXQjBnULR2mhthKJXJwqvMU8XkkoQzTcPrTuiduZSRvI6aR6u0TuV+bxpkgt0p5G3OaW5vXxNrvC8TG2HKwp1pdI6Utj6u54vv0ulUvSS4HUiGy5ecmFoc3MzHqVG5UCvEC4GufACzmz5PKnk/fffx8HBQdspRj74SA+i7CxrujTybNCZmRmcnp5icnIynrhDpdVonB2i8eqrr6JWq2F+fj66XnqfkUZ+j990C3z//ffx6NEj1Ov16NpGOqkyTAneFHDQPvJxkhpnGr/bUac+p8pYlXBKqTgfKljS5O/7GNQ6ed4p+zuBgC5MUsienp5GPiIv04MnNUNz4EHgo+sreUolNS49XQjBDbQLuZSW4jMpoaOCP8UMmh9wXhCnnu+EdFNuRPo/tfijg1+ZScvTaZ8zXio/1pffPsXy9/js7Oxs9JF2ocnfamd1JUZBnFK0fi8l7P2eozh6lHAgcXDoVJKLUPV6HXNzc3GRp16vR+TPo6h0wYdxrBlhj4Nqa2srRnrjIFSzjtOdJhMiL/pQf/Ob38TQ0BBWV1cxNDQUY5+Mj4/j6OgIS0tLePr0KWZmZrC5uYnh4eGI0JQe2nc+TlShViqVtgBe7IdUgDbNw1PqfkpQ6zPOcynTov4mT6We53WOEZ3l5I1Fb19K2Kfa6GBH89fxzJ3DExMT8RhADdWwt7eHUqmE4eHhKLwVpNAnW/c8kD+1zmqOYh3yZA/ThRHcatsD8t3ogM5mFU2O6pwYnYiTQtnOcHn5acyDVD55TMj2OdLTd5xGLlDzGFbz3NzcPDe9I7pzwZCiIa/rwOY7vvKv+bmtXwdlCoGxnTzxXZGXTssfP34cXetoCsmyLC7Ysa4DAwPRH3tkZCSeebm7uxsRuC/Gsq4qXH3BkMqB7oxra2uYnZ3FzMwMtre38eabb0b/7Q8++ADVahWPHz9uO2BiYmKird98AdzRW09PDyYmJnDjxo24Y5OLtN6HGqvHEbAKMeadt8bB1AkN6qxExwOTmnsU+SqtdXagvKNlq+DjNZqNlNeVFvq+LjqrANc8gLMNcYxF42GMFWS4THAA523X51XRpmaIni6M4E6hyk6C1rW5TsF4P0/YpQS9I0MvR/+7MNXn/HkVyFofHzD6X/NxplPhqZ2t36lytAwym+aZUhC8poPQkYL3jwtzRzYuJJzp+T6ZXBUEEUypVGo7IZ7bwElrxlGh/ZH07+3tjTFJZmdnsbKyErfp017sdKPQUyGg02DWdX19PW4eaTTOTp354he/GD08VldXUalUMDQ0hK2tLczOzmJoaAgPHz6MhySrOUD51vmPNOGhCq7MNLJeCmikELTm7X2r/JIapw4itCwdk4pIHe063+UBJq83n9Ot79pHLshVEbrrJ7/1lJydnZ02d9PDw8MIUFQxOIgialclyXpqaAigPUStA5hUujBb3oE0EZTQaj/VTnGB5YiIg8un98yf+aWIpUzo5WjSQa1mA0cXLqB1gDBvChJOrXjd28X2pBiaZboi0EHnA41CR+nCenl/MDmKVhrwWmowppLTWtEIBXSWNU0gvjVckQ990zUeNYUpz7KsVCpx2zvPsmQ9GadZ+0fRqIdjIF+Uy+U44Gu1GqrVKvb397G4uIjl5WW89957ODg4wN7eXjy6rV6vo1qtJt0uU4hQ+7Kvrw9vvPEGxsfH22z67BfWK8WzqX7kR1F3asy58tA6uTDWMlygk656XRWil8FdhVoPX7TUslM8nQISvKcyRmUHY9usrq627UNgZEifAecBKSYqGLaF7/rMo1O6EIg7b2CrIO60kMGkDJZKLsS0c1yQsVzNz9G91z010DzvTm3XMlP19borItP/eULcUa8jXx1sLtxTm2b024WAKpTUgnKqbt5O/mdwJi4SVavVNiWm5bEsN9kwXvbGxgb6+/tjLPNisYjR0dFzhy6zbU5/RXJah0aj6WVTKpViu7loWSwWsbi4iMePH7ehcSojPdBY+yglEByFv/XWW9jZ2Ym7N+lZ437Mzj/aVyl07WY3Bzh5Qkb5yGebOgvw9StvJ9/T7eA+c9XyFMmn2ull5I15lq+IW/MtFovRY2VgYCAeZ6ftdZOa0lRReAqkvGh6ruAOIbwB4F/IpVcA/HcAfrN1/TaAJwD+VpZlW6HZiq+hee7kAYD/NMuyd59TRmQ2HcQupPwd3lOm9md0YOszqc53QeNCxgVaStikbHwpReEM6oLCn9P7zvRaX00phMHrilo8NkJK0aiHgtaXwiZlG1b0ovVWAQucj0PsQoFnJWZZe8xkR2tE3qyfHjJRKpUwNjaGra0tTE5OolwuY29vLx4QwZPmyYc6sHUNQLf9q9AGmkJmaGgoxgG/f/8+QmjurOThB0TG09PT+MxnPoN6vY6xsbEk2FAecGHQaDTiAQ9EovReSfVfqr+cZ7Q8b6P2fWpXrif2lZadGk+8TvSpgcr0GReEfo80cgTMb6Wh05L5DA4OolAoxLUOrY+Oub6+vnjqEssgb6gLqcfqUf7W/HSLvivFvPRcU0mWZfezLHsny7J3APwEmsL4dwH8KoBvZFl2F8A3Wv8B4OcB3G19vgrg159bC6TPm0xNI/KQoqPbPAGrAtDLTqFVzZP1SA0OF4wphKlCmM+x/JTdz5nVp3Gq6fmulkX6uT1Z7cj+jtbJlYYrIr2uiEjb5uUrfZROrnT5v1gsYmRkJAab0qh/nr+bZ3jt9PQU+/v7ePDgQVzVn5+fx8HBAQ4PD7G8vIz+/v64e1Lz0JmF84s+y8GnEQ339vZQq9XiCeyMyc1NGABw9+5d3Lx5M+btPOJjgPcODw/xx3/8x/jd3/3dKGj0o88rb6irm/al0k/NXZ6P1jGVfBz4N/kvpTB8luB1dR5S+jiPuyzQxV5XzHqdSJqK39tGZc+Qvqy/+m6rmYmL5f39/XGNhtvdqQB1P4DSo1P6pDbunwXwMMuypwC+BOA3Wtd/A8DfaP3+EoDfzJrpWwDKIYSrnTIl4bxDU7biPOGcYiZ9Rt/1e/6ua3XWJSWsmdSUk0Ip/k5KqTgjufBlOdomb7sKWKeV0lXr5oJP26319/b7Mykl4KYFfS6FwHhfp5wMY8q6fhJbINEolWOhUIhnYDJIFH2vaTtX+zlt2sBZvG51lQwhRJRNxMc4FhyYJycnePjwIQ4PDzEyMoIrV65gdnY2uiT6+k2Kj70fGb+8WCxicnIyLnRSQHjYUU/Ka0B7WFLlC9LQ80kpY347z2j+2h43pWgfKx1Ic9ZDeSPPJMT3tF1KYwdG7CfOwEqlUttz2i4CAV4jqKACZ78zEFWh0NwgNTo6Gg/8ppLggrnunFUey0uf1Mb9twH8Vuv3TJZlldbvFQAzrd/XACzIO4utaxW5hhDCV9FE5LHCJJQLWyZFHD7tSQk9/d0qM+apglGFYErQktCdBLy0K5d4KYbVfFJIQe+74tHf/NY81Oam76Tsmno/hWr4HvuB91MIxwVzpym5l6dtpRBkHVxga51Sijg14BTJNhqNuJlmeXm57XDmPGTnIKNer2NwcBA7OzvIsiweGMxp8+joKOr1ejw7s1wuY25uDnfv3o0LXSkeVfr69RACRkdHcfPmTayvr6O3tzdudadZiSYjF4K+VqRlpRYb/RmlhYIJdTf0OisvqIDuBAJSCsSRsz6fNxZTSsTrpXlzY9fJyUlb9D6vl+6sBNBmlqPvNu3kAOJh3H19fW1HIBJ966EkL2IqeWHBHULoB/DXAfya38uyLAshfCLrepZlXwfwdQDo6enJnDApxlFh53YippTPqpWrbWoTKr4YyXupDSX+33/rIMizTafqmRq4KoRSZaUQmj7nKMhp4UpCZzpa/9T7Wr9ObfAy9R77Uhei9L7GcVAk6+sDqQVsn0VwgPG70Whu5uHGGw5cFWRqDqKrIQcoANRqtTj1pe2T9uRisYixsTEsLi5GJTQ+Po6lpSV89NFHmJ2dxc/8zM+co5ULUqd3f38/3nnnHezu7uJP//RPUalU2s7RdKWrfKsASEEEFZkLTUWqjpKZhybvb1dA+l/HnwILzcMVSgrYecgEfTfPBOHjjs/y4O5isRjjtmveKTBEOih/hhAiPx0cHER/e/IGZQt3CSsgSq15aPokppKfB/BulmWrrf+roWUCaX2vta4vAbgh711vXctNTmxlXtd23slqi3Om1JTSsq75NY8UUkkxpP5PaXgXinovVS8ykL+XJ8S1zl5GSqg603lSRk+10evsQkLbkVefVDv50UWplLBI5ZOH1pQfNDldPVCQxrhQugBnMTCYuDuTvKrxW05OTrC+vh69Yra2trCysoIPP/wQ+/v7qNVq+Oijj1CpVM7Z0PMQpNKeR3BNTEzgypUrbUL6eQg0NUbyeDqvTqn3XaimELEDipT5S3nebfV58kLlgPJ+Sm544jX2Lw+DHhwcbONXd+Hr7e2N6xbedq7FaF1orqMX0cnJSduRf53qqOmTCO4v48xMAgC/D+Arrd9fAfB7cv3vhGb6IoCd7MykkpvyBrqjnlSn8Fm9p9c9Xz7nWi31rjO4l5NaaFEU4vXwOqRSJ+bk/RQq8QVCz5MDxKe1Xp5vd/f6aj+k1h6cxqn+0jql6OVl60KRL9KmeIYDjMiGSoHPq51UyyJKIhpS+z8/PFHn9PQ0+mQfHR2hUCigXC7jc5/7XIwMmGUZFhcXo3LY39/HwkLTkvjTP/3TmJmZweLiIoD0ApvSMk/R3r17F+Pj45ienj6HhvmM2r3zeNHbrPc9T6W192dKcWi+Xjcfo47g8/qJferm0tRMpZNCY5ksl/sAeDC0ttfL9PHkQvzo6Cgetk0eoOmM99QxwWmSl15IcIcQhgD8HIDfkcv/AMDPhRAeAPgrrf8A8C8BPAIwD+B/BfCfv0D+bYRxxk0hs9gAGcT6nCNvZTDvaJbtC0SOJrW+Xo62Q1OKgVzop1CNM4nWLc8WSUbKo69qdBX0Pnj0mgpCbU/qHRXEpI3XMzW4fcClhIaHomWZnbx3VGh3Mhl4v6ibl/cl3QoLhUK0J+s9ACiXy5iamorIjeFGx8fHY1yTjY0NNBoNbGxstB2erLRxNOrIlG3ljKRUKqFUKmFgYCD2FxdNnwd0tF/YHu1z8oDzWArRpvpRx3NKQSm/02XRx5y3W3lBlbiOLb+uYw04H2qWgphCt1arneMBLjoqfYjUuQlKzSbuMebOAN62H5mNO8uyfQCTdm0DTS8TfzYD8Esvkq8mJaiGhmTyaUQKbbXKT/7PYyR2XGoBjfVRRNgpaZ2c6VIM7u+m0GueANF8VABpm9V2qXmnaJVScF5eCgnqIp0rFFe4ndYeeJ3PqAJI0SJFG1emjBnug5XlpJReHjpje4aGhuLi0vj4eNx6T1vm7u4ulpaWMDAwAOAsGNXBwQFef/31uHC5trYWIxouLy9jf38fIyMj2Nvbi7ZxFT5KV/3faDTicW63b99Go9GMS720tIQQmqeFMxqd9pkrLW+n2vVTSJe8omPD7ynfpdajVMjm8YXygQM3DWfgM3MKUj5LmeLAIwWAUm3mN/tSN0tRmA8MDJzblMN2ZtnZmoi7a6b4OjXuNV2ILe9AuyBNCZTUYNLrjiRS9zw//a3fmjqhYh8Mavv0+ip6StkL9bkUuvC8UkjD6ZNnO2SeeUgrJaBT7fEyvC5a95Ti02ecLnkIS5MvPPKaIx3mrQNf3QTpWZKaFXj+tVoN29vbODk5wdbWVjSZqLtapVLB5uZm3F5PFPbo0SOsra3h6OgIOzs7mJ+fx+7uLpaXl3Hv3j0cHBzE0+GdHi5ElR7b29s4PT3F9PQ0xsfHsb29HdvGqbgKSBUY2ncef9z5wfvB33dU726Eep/vuTufo3H17PC1LJ/1KdpnGQ6GWA9/j3nqQRnKZ+ofz/owDwpkms7c1KjvpDaqvQive7oQW96BdIjHFKLqlFz4u0B3tA6cFx4pLawM58ghb8U67xllWmfq1BQyhYj4cfuit0/boYskL2J/zxtwXlZe37hS8J2XWlZeHbS9qedcubBvOqGpVBtPT0/jFng9F9AVdKFQaDssQhUEPTpI63q93nbE1ezsLEJoHltWLBbjOZn0IX/69CmGhobi9StXrsRZTKdZEBXF2toaFhcXo3sZ60gPGH5UePv46LTO0ImeKeCTxx8uEEkvN2W6AnFhq2U4T+mMQYGFKx1tt/KN1s9prWPPlQjXOVL1TMkep4e/0yldGMGthHEtD5x3S+pEgJRgYRmeVDvrO6mFyxQS6TRD8Kmio3UVwpq/Cx5vkzMC3/F2+zVXRCllxHo78+UNckc4SoMU2tG8fPpKevkgylNGyiM6NU8xv19zAbK3txd/a1kqREgbJkWUVE7Hx8cYHx/H8PBw24GyJycnKJVK6O3txejoKIaGhvD++++jUGgeHEu7Nw8WfuWVV+KJQ6yHojzW4/j4GPv7+3j27BneffddjI+Pt8XlVlop3zlf5NFXUS7rkLcArjTJ4zmlv65RONBR84n3sfKt9q++l9f/2hZVZD6evL55C558TpU2lW2qban1hhRQuhSCWzvREVOqk5jyGC5FBEcFKcGu9fFnXfB6ItOkPDZSyFDzUltcpw5LMZUrAgDnhE2qvanrzriabye04oMxpWR06s9nVAh0KieFBN1mn2c/d/qkBLjylqJAbYMft6XTYd+ZyYHMHXhjY2N49OgRtre3Y0zw1dXVGOf52bNn8aT4ycnJGLR/eHg40oTb/Wk7Zz/TVMNDjFdXV+PiqvJgpxltyt6dElh5Slyv+UY1XutkRnQB7H3i9XCl4gAoNYaUX/Lq7nVQWuUJWU9Oo5Qs0ZQCYS+SLoTgVgHgBHIG5PNue3YkwqSEc0RGRKPv6++UKSKF2PKEgCct25VTiqG0HNf4SgelV0rgppRbakBq0vddSLpQ1vZ5XVNC3M0QrpgdkWg/qeBP5a31dGTlA1VRkc+OuJHLUZ7WT/10mUej0YwS2N/fj7GxMQwODmJqagrb29vxAIulpSVsbm7GxVPGE+dBDIVCAd/73vfw9ttvxxNyAGBtbS0eLMz29/T0xNN0ent74+kqKc8OF4pssz6bQpZKMwdUpIf2XQqoOP+lBJajbG2jR/5zHkmVmef2qvRxftTnnR8VaOlMxJPLII/prkn5k/yTGuueLoTg1pQnEP0ZZ4IUk+Z1gP9OMXleXYDzi2IpDZ9Cdvyfh1JTgj8lrDshH0dPbrdzpvUyfPCyvrznx0+p8FMk5MonZRN0VKt1zFuo1PxV2KbMO/6u9psOlE7veVu0Tbr7Uj2huMi1vb2Ng4MDrK2toVAoYGRkBDs7O/E/435zA8+zZ8+wubmJcrkcT9JRRL2wzVfgxgAAENhJREFUsICxsTGUSqXYr9w2r/R0YeZ9rf2l/ce6+zVHuCpoWIaajXxRkN/OW0pvlqf2efaTtkXb4ODHBV4eQMgDM6k+Vlo6PZ9nO88DL5ov+4w8RCF/KQS3EiOPSfgccP7YodTgyhuMeULC3+0keB0x+DualMG9brzP71QeKbpoPZjcZp4aII5KU3bxPDrmPeNugFpOXr/oYPd6qzJVheGIj8+kFLTaGHWwqSLjPdZBFYt6MHg7SFutl9OY14+Pj3F4eIj+/v54diFNIqzz4eFh2wJio9HA6OgoXn31VWxvb2NnZwf7+/sAgGq1GjeHMIJdrVbD4uIi9vf3o3ucos0Uv2mfe9ucvxT1Kt1T+ev4cn5NCVHnCTen+LN6ar0+zzrSPOXAzhWN/vZ2Ku+lxmPq2dS4dwWn11O2+SzLzsVj75QuhOB2FKjfqalbysDP5LZyvqPJzQjObK5p9Rmviz6j1xzFu/BMCSJfOFIhoe1LlU0mTtmDHREoYk0hA2838yVtdXrtbdB3/TvVn50URaoN2m5fjPKByee9f7V/vC91GpxCeyke0TycTwqF5vbmoaEh9PT0YGRkJCJsepWoICwWi9jb28OHH36I7e3tGEaUEQ0fPnyI9fV1jI2N4erVq1hZWWmLH61CzcOSev+kxpzTTmmiyU1bqoSVb5iPKkftAwpiNRmk3mcefC9Vju4M1XHga2d5oEYXVr2vU2PETZ8ulJmHt1uVkdZTj87rZHIFLojgBvIRXZ5ASBHUtZUuInkePk3W8lIoK1Un5pUXOdA7O08oaptdYOm9Tpo9j0YpWmlZ/HaTgb+rQjuvPK1TyjPAg0hpm1KKLsXAXge3xesAd2Htg0XLdwGm5Wmdnc/8+ZRiPjk5wcTEBEqlEmZnZ7Gzs4Ojo6O4OYgIv1gsYmhoqA3Nzs/PY2ZmBlnW3Mn3/e9/H7u7u3Fjzfb2No6Pj+MuTSoFF1yse6d1iDylnzcr8mdVcKcEj4+blELWfDsJS18Tc6WRUiLeZ3o/pXS9nmpeU57IM52qjGE/K6+kDppwpZmXLozg9ulq6n5KW7qN1ZGRrzw7EwLtU6M8+692uPokK9rQ5EJP89L28Lr+dq2fSiltnydEU89S4bhwddSv9UkpNH6nrivdUmiqE501H7djuw01pXBSJpyUK1ueknNaUpjqtm+NSeHvlkqlGCb2ypUr6OnpwYMHD9qm+8ViMSLsEJpxvW/duoWhoSEUCgVUKhVsb28DONvkQZPI3t4eKpUKSqUSyuUyVlZW2ngrj1+UHql687oLMae5z8DyzI0ucFPgTP878PI1GhWy3j5vl5fjgML50GVJihau1FPgyAV7SpkpkFEa6/9O6cIIbuC8cNbGKsF0WuICP09LAp0XLPmdp8n1Webl9VHh5PmkBkxK4KrW1ZQnDPnfGVTzdAbRweSoI2Wzc0Th5VA5en3zFm/ylBHvO61U+aoQd/rxw0Ueb3OqbT5Afbef8loe36SUjdqtq9UqKpXKOUEWQogHH/T398ezKWlO2dzcRJY1beVTU1PY3NyM9vFGoxnnZHZ2FsPDw3ETkNfRv1MmolR/+BhQcKP9oXn4OEkJOc07tSiq9UrNzFLleFv4np904+PX+TKVND99Nw+okL6cRbl8SZXlY+V5ZhLgAglun/4C51eivaNSWlGvpxgsJaBSjObE1cHr7/k5eT6IVSj4NN0Fj95zJtU2Kc1UgOYJxVS9O7VJkasrH29HSnCl0Ese4u2UHKWkynRaEQ1TGOiWbx10KfSXQuq+WOXgIKXoGBSLNCwWi3FHJtDcrcmocTyRfmNjA4ODg9ja2sLp6Sn6+/sxOzuLo6MjXL9+HSsrK3F3Xn9/P+r1OtbX11EqldDf358UUs+bQWkfpISagx9eS/Wz92dKASqNtD6+lyFP6fvY1f8uB7Qc7Sc1oXYafy5rlJ4KKHUMcXw6AFAaqTxTGZWqf14Kzxs4fxGpp6cnY2Q1oJ2YuhiWmsYwOXPqIPaO0zw0nzxGzhPoXoY/q891Qq16TZ9NLUQ6A3jyweeM0IkOqfY9D511ep91dLe/FPJ1BZuiiU+38xY6lW+0Hn6PQpr5q0Lyurpic4WSZyrIsrPDjnURUgMN6VFpAGLAqnq9jqmpKYyOjuLw8DAGkwKA69evo9FotMXypsBQ98CUguFzwPmNSdr2TuPCbf7aZkfEbgtW2qsw1E/eWHdg4eV7X2iZ/py2N0ULf87HMP+ndoumQJmPQ9805kqwdbhCUopfmCBTwHkESoGdp4Fd2zEP7WxFe0x5tvTUNe88ZzDmp3m8iDDUNjqjp9BQ6nm97sxB2uhilNaf+ajyUfoqPZlv6hxDfy5P8Lsy9Xd5PSW08+inz3l9fDt9ajD6QFeQoOF0lQ+1nSoYPX/tR5pNhoeH2w6J9f4jSud5ktoGBt0fHh7G7OwsRkdHce3aNVy7di22b2hoCGNjYxGNp/rNlVuqr5y2fj21SKf8lVoYDOEszC7bw/w8TrjSzvtKP8qbXp4iX5cfTgM+mwJX2tf+vgJKPucKgt8+K0iNIc3neenCmEqA9GBNaaOU8HAUoO8omtFOVKI7g7jA7FTnlLBm/lofvZ4yazyvzJT2doXE5xzlKlP54PI2KyLLM1OlFJzXP7UQnKJXnrJL5al9qfX1haAUfd2rJaUElCeA8x4oKYXtNuDU4KNpROOIaNv6+/vjdYaJZT148EKhUMDw8DBu3LiBSqWCw8NDNBqNaB9nZDsqiIODg6gQVLhqe1KCRvs0T3F6PuQZnUF4HqQvg3A5sHCvC9LW+d6RuvaNlqk8ou3VmY8mLgCnAEhqfCvNVPmnyvfvTvTMK0vThULcmnT66NOyFOP7IqY/p8TQ33kM7b99atyJuJ0EHJBvvvE8UgIuVRfNl+12JK+//TglZ9SUeUDrzMU/R0o6qPic1yNFF+8bzSeVbx6t/ZryT6FQiCfbaNv0fdqmAbQhQrZd25uil/Ybf2t99/b24m5LXuc0W9F2o9GI6JpeJLSPr66uYnd3F5OTkzg6OsLa2loMS1uv1+MGH0WQOgbUvqu09jHGZz3sqtJWx53SyenKuugMJfVM3rsOMJTuzhfP4wftY/Jman3NAUcKhCkIVF5X8ODPaz4+680bH6l0KRB3oVBoO6G70/POWH5f33VU5tdSgo3X8swtvJ6KrcD6dUIGKY2dUjraJpZJ1OcnlSjTe/7KmJ2URQr1pBSj5p2y1adMX6k+0/9qwtCkg1r7ws0krItObbUeKd5QNK0CW5We9lEKjatngU61UyiX/O0IlIfWFgrNKII9PT148uQJpqamADS9V3i4rR6N5QpG6ePxVaiU9D/pkmfK8zxTQCYFAJQflKb8r+sOOs6U5krvlEBne/ic5tFJSLs88Hf0t7cpJX88b82Tv33nbmr9J5UujODOQ1TasW5n1N8qHLyDeF3va+ok1F3Ipa55OanO0/oy5QmvvAGRQkVaX5+u+fsq3PMQrz+bUhyOJvIGry6QaZt9APLZVL86vb1/mKcKmNR7rLPn5QGAfKDxGR6WwOm07kz0wet18Lq6cisUCm2BtHp7e3F6ehrRc09PDwYHBzEwMICrV69ic3MTOzs72N3djYJahTGj8an5IUVH7RO2I0+paj+xDJ9paP/4tZQydR5NCVxf9PX/qXHtC9Ne77z1D1XWmr9GN1TPKOUpTUrrlN1a5ZUGMuO9FxHcF8ZUwgo7QVO2KKCdODpo+duneJp04cKnN27/1PcdiaXqwv/uGujPAu3ug77Dk8+m3tN7pJkiSC6uKSMrAvfkzO8IObV2kFKAWs+UEPZ25CG3POWYJ4BSz6riyUP0Os11BanvKULTvPRMS6Wltlv7w+kZQoiLifTlJsqu1+solUooFosx1smNGzeiPTvLsmgS0Y/yhNY3tVahtFT+0DHhoCUlWHx8OMDw+rni0v7QftZnSUPNX4ViCgGT3nrNAZ7ykI9pLZP5qwlXaeK0SNHGZVaqDlrfTulCuAOGEHYB3H/Z9fgxpSkA1ZddiR9T+jS3Dfh0t6/btoufbmVZNp26cVFMJfezLPvJl12JH0cKIXy327bLmT7N7eu27XKnC2Mq6aZu6qZu6qYXS13B3U3d1E3ddMnSRRHcX3/ZFfgxpm7bLm/6NLev27ZLnC7E4mQ3dVM3dVM3vXi6KIi7m7qpm7qpm14wdQV3N3VTN3XTJUsvXXCHEP5aCOF+CGE+hPCrL7s+nzSFEG6EEL4ZQvgghPB+COGXW9cnQgj/OoTwoPU93roeQgj/qNXeH4QQvvByW/D8FELoCSH82xDCH7T+3wkhfLvVhn8RQuhvXS+2/s+37t9+qRV/TgohlEMIvx1C+DCEcC+E8FOfln4LIfxKix9/GEL4rRDCwGXttxDC/x5CWAsh/FCufeJ+CiF8pfX8gxDCV15GW35U6aUK7hBCD4D/BcDPA/gsgC+HED77Muv0Z0inAP7rLMs+C+CLAH6p1YZfBfCNLMvuAvhG6z/QbOvd1uerAH79L77Knzj9MoB78v9/APAPsyx7DcAWgF9sXf9FAFut6/+w9dxFTl8D8K+yLHsTwF9Cs42Xvt9CCNcA/JcAfjLLsrcA9AD427i8/fZ/APhrdu0T9VMIYQLA3wfwlwH8ewD+PoX9pUypbal/UR8APwXgj+T/rwH4tZdZpx9Bm34PwM+huRP0auvaVTQ3GQHAPwbwZXk+PncRPwCuozkw/kMAfwAgoLkrrdf7EMAfAfip1u/e1nPhZbchp11jAB57/T4N/QbgGoAFABOtfvgDAP/RZe43ALcB/PDP2k8AvgzgH8v1tucu2+dlm0rIYEyLrWuXMrWmmJ8H8G0AM1mWVVq3VgDMtH5ftjb/zwD+GwAM5DAJYDvLstPWf61/bFvr/k7r+YuY7gBYB/BPW2ag/y2EMIRPQb9lWbYE4H8E8DGACpr98D18OvqN6ZP206XpvxdJL1twf2pSCGEYwP8D4L/Ksqym97Kmir90fpchhP8YwFqWZd972XX5MaReAF8A8OtZln0ewD7OptsALnW/jQP4EprKaQ7AEM6bGj416bL2058nvWzBvQTghvy/3rp2qVIIoQ9Nof3Psiz7ndbl1RDC1db9qwDWWtcvU5v/fQB/PYTwBMA/R9Nc8jUA5RAC49xo/WPbWvfHAGz8RVb4E6RFAItZln279f+30RTkn4Z++ysAHmdZtp5l2QmA30GzLz8N/cb0SfvpMvXfc9PLFtx/CuBua7W7H80FlN9/yXX6RCk0YzD+EwD3siz7n+TW7wPgyvVX0LR98/rfaa1+fxHAjkz5LlTKsuzXsiy7nmXZbTT75t9kWfafAPgmgL/Zeszbxjb/zdbzFxIJZVm2AmAhhPBG69LPAvgAn4J+Q9NE8sUQwmCLP9m2S99vkj5pP/0RgL8aQhhvzUj+auva5Uwv28gO4BcAfATgIYD/9mXX589Q/59Gc5r2AwD/rvX5BTRthN8A8ADA/wdgovV8QNOT5iGA99Bc+X/p7XiBdv4HAP6g9fsVAN8BMA/g/wZQbF0faP2fb91/5WXX+zltegfAd1t99/8CGP+09BuA/x7AhwB+COD/BFC8rP0G4LfQtNWfoDlT+sU/Sz8B+M9abZwH8Hdfdrv+PJ/ulvdu6qZu6qZLll62qaSbuqmbuqmbPmHqCu5u6qZu6qZLlrqCu5u6qZu66ZKlruDupm7qpm66ZKkruLupm7qpmy5Z6grubuqmbuqmS5a6grubuqmbuumSpf8fMTAh/ETPKjMAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2\n" + ] + } + ], + "source": [ + "Escalagrises3 = np.empty_like(imagen) #array del mismo shape\n", + "for i in range(3):\n", + " Escalagrises3[:,:,i] = 0.299*imagen[:,:,0] + 0.587*imagen[:,:,1]+0.114*imagen[:,:,2] #aplicando formula Luma a cada pixel\n", + "plt.imshow(Escalagrises3[:,:,0], plt.get_cmap('gray'))\n", + "plt.show()\n", + "print(Escalagrises3[:,:,0].ndim)" + ] + }, + { + "cell_type": "code", + "execution_count": 462, + "metadata": {}, + "outputs": [], + "source": [ + "def trim(array, x, y, width, height): #función para recortar \n", + " return array[y:y + height, x:x+width]\n", + "\n", + "# Calcula el error entre el valor z dado por la imagen y el determinado por el modelo teniendo en cuenta la incertidumbre\n", + "\n", + "def error(xdatatuple,a,b, x0,y0,c,z,inc): \n", + " model = gauss2d(xdatatuple,a,b, x0,y0,c)\n", + " errors = (model - z)/np.sqrt(abs(inc))\n", + " return errors\n" + ] + }, + { + "cell_type": "code", + "execution_count": 303, + "metadata": {}, + "outputs": [], + "source": [ + "from scipy.optimize import curve_fit #función del módelo de mÃnimos cuadrados general no lineal para ajustar\n", + "\n", + "\n", + "def gauss2d(xdatatuple,a,b, x0,y0,c): #modelo gaussiano 2d a inplementar con constante aditiva (\"el cielo vacio brilla\")\n", + " (x,y)=xdatatuple\n", + " z = a*np.exp(-((x-x0)**2+(y-y0)**2)/(2*c))+b\n", + " return z.ravel()\n", + "FWHM=[] #lista para los primeros valores de FWHM a blanco y negro" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* Tomando el modelo de gaussiana 2d de tal manera que se tomarán a sigma_x=sigma_y=sigma [2]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[2] : http://campar.in.tum.de/Chair/HaukeHeibelGaussianDerivatives" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 1 (blanco y negro)\n", + "* Todos los tratamientos de las estrellas son iguales de tal manera que solo se comentará el procedimiento en la siguiente celda" + ] + }, + { + "cell_type": "code", + "execution_count": 304, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAFSCAYAAAB2Y6dSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAugElEQVR4nO3dfbRcdX3v8c/n5JycBAIEjRJIolAb6QWqyI2Ictuq+BCUGldva6Fq8aGmtqjopZcC3ha8XVpu9fpAfWoUBFdZIBehzbW0BMWK9hI0IM8BkiqaE4IhJpCEQHIevvePvU8ZTs6ZmTO/PQ97n/drrVmZ2bN/e39nz+TM9zu/3/5tR4QAAAAAAN3V1+0AAAAAAAAUZwAAAADQEyjOAAAAAKAHUJwBAAAAQA+gOAMAAACAHkBxBgAAAAA9oL/bAQAA0Irly5fHtm3bCt/u7bfffmNELC98wwAANEBxBgAopW3btmndunWFb9f2gsI3CgBAEyjOAAClFRHdDgEAgMJQnAEASoviDABQJRRnAIDSojgDAFQJxRkAoJQiguIMAFApTKUPAAAAAD2AnjMAQGnRcwYAqBKKMwBAaVGcAQCqhOIMAFBaFGcAgCqhOAMAlBbFGQCgSpgQBAAAAAB6AD1nAIBSYip9AEDVUJwBAEqL4gwAUCUUZwCA0qI4AwBUCeecAQBKa3xoY5G3emwvsf1d2/fbvs/22ROeP8d22F6QP7btS2xvtH237RPaeDgAACVHzxkAAM0bkXRORNxh+yBJt9u+KSLut71E0hsk/bxm/VMlLc1vr5D0pfxfAAD2Q88ZAKC0Ot1zFhFbIuKO/P4uSeslLcqf/oykcyXVbmSFpK9HZq2k+bYPL/xAAAAqgZ4zAEAptXG2xgW219U8XhURqyauZPtISS+TdJvtFZI2R8RdtmtXWyRpU83joXzZlsKjBgCUHsUZAKC02lScbYuIZfVWsD1P0jclfVjZUMcLlA1pBACgZQxrnAFsH5mfoN6fP/5X23/Ugf3a9tds77D9w3bvL5Xto23faXuX7Q/lyz5t+7NdDg1AD7E9oKwwuzIirpP0IklHSbrL9sOSFku6w/ZCSZslLalpvjhfBsxI3cpJeo3t37D9YOI2Wjp2E9+DMssnZnp1t+MoEsVZB9l+2PZTtnfX3D7fRLuw/audiLER239l+x7bI7YvarD6f5H0ekmLI+LEJrbd7dd5rqTvRsRBEXGJ7d+Q9HJJ/72LMQGoowuzNVrSpZLWR8Sn8xjuiYjnR8SREXGksqGLJ0TEo5JWS/rD/MeqkyQ9EREMaUTXzcCcpKsmHreI+H5EHN3NmKogIo6NiH/tdhxFKn3FXEK/HRHfLnKDtvsjYqTIbdaxUVkR8/4m1n2hpIcj4sn2htRYk8fohZKurnl8lKTfj4jh9kUGIEUXrnN2sqR3SrrH9p35sgsi4oYp1r9B0puU/e3cI+ndbY8QaN5Mykm6opXj0eFjiB5Dz1mPsP2rtr9n+wnb22x/I19+S77KXfmvWr9v+9W2h2z/ue1HJX3Ndp/t82z/u+1f2r7G9nOa2O+LbN+ct9lm+0rb86daPyKuiIh/lrSrwXbfK+mrkl6Zx/2xfPn78uv9bLe92vYRU73Oeuvnz73B9oP5Mftifvz+KH/uXbb/zfZnbP9S0kX1XqvtmyW9RtLn8/2/WNJrJf1p/vyhtr9l+zFnwzS/ZXtxo+MLoH3a0WvWxGyNP4gIR8RLIuL4/HbDhHWOjIht+f2IiLMi4kUR8esRsW7yLQO9o2o5Sb7tE23favtx21tsf9727CnWHR/2t9L2I/n6f9bstvK2Z9neIGlDveNW0+bh/BjeLelJTzLk0PbrbT+Qvy+fl+QJz7/H9vo8T7nR9gsbHZe83bvzdrts/8T2H9dZd5bt/52/Pz+1/QE/e5jqlNvKc7MfTNjef/Qo2n6Ts2tI7rK9efyY216Q512PO8sHv2+7r+a4vW4a78v7bW/I1/mCnc3gNN3PXjtRnPWOv5K0RtKhys5J+FtJiojfzJ9/aUTMi4hv5I8XSnqOst6elZI+KOmtkn5L0hGSdkj6QhP7taS/ztv8J2XnRlyU+mIi4lJlv2Tdmsd9oe3X5vt6m6TDJf1MeU/VZK+z3vrOLvB6raTzJT1X0oOSXjUhjFdI+omkwyR9vN5rjYjXSvq+pA/k+39owrb6JH1N2fF+gaSnJDUc/gGgvTpdnAEzRKVyktyopI9IWiDplZJOUf4DbB2vUXaNwjdI+vPxIqDJbb1VWR5yTJ3jNtEZkt4saf7EnrM877lO0v/I9/vvynryx59foWxiot+R9DxlOc1VDV7fuK2STpN0sLLe/c/YPmGKdd+n7PqNx0s6IX+drW5roksl/XFEHCTpOEk358vPUTZc/HnKcroL9OxLloxr5n05TdkpKy9Rll++MV/ezs/etFCcdd4/5NX6+O19+fJhZX/UjoiIpyPiB3W2IUljki6MiL0R8ZSyQuijETEUEXuVfaB+d7JfXmpFxMaIuCnfzmOSPq3sj2k7vF3SZRFxRx7j+cp61o5sYf03SbovIq7L/4BdIunRCe0fiYi/jYiRiHgq5bVGxC8j4psRsSeyaxt9vNm2AAD0qBmTk0TE7RGxNs8JHpb0d01s+2MR8WRE3KPsB9ozprGtv46I7fnxaNYlEbFpijbjec+1kZ1u8Vk9O+95f77P9Xle9AlJxzfTexYR/xQR/5739H9PWWH+G1Os/jZJn8vf2x2SLk7Y1kTDko6xfXBE7Ij8mpL58sMlvTAihiM7X2+/4qzJ9+XiiHg8In4u6bvKisxO58N1UZx13lsjYn7N7Sv58nOVVe0/dDbzzHsabOexiHi65vELJV0//gdW2YVRR5X9wjAl24fZvjrvPt4p6e+V/eLQDkco6/2SJEXEbkm/1DMXcJ3O+keo5tpB+X/SoQnta68tlPRabR9g++9s/yxve4uyi8nOaqY9gPYoqrcs6DnDzDRjchLbL86Hxj2ab/sTTWy7No/4mbLco9ltbdL01WszWd5Tu/4LJX2u5phvV/YeTpVj/Qfbp9pemw8ZfFxZITjVsXlWHBNjnua2Jvqv+fo/czas9pX58k8qO79wTT5U8rwpXkcz70ttQbtH0ry8bSfz4booznpERDwaEe+LiCMk/bGkL7r+bEgTM4hNkk6d8Ed2TkQ0mrL5E/m2fj0iDpb0Dk0Yw1ygR5T98ZAk2T5Q2ZDEqWKst/4WZUMtxp9z7ePcxGOU8lrPkXS0pFfkbceHKLTrWAFoAsUZULyK5iRfkvSApKX5ti9oYtu1l8F4gbK8pNlttfLHpF6bLbXx5HlPbXyblA0JrD3mcyPi/9Xboe1BZZcG+ZSkwyJivrKJjKY6Ns/KvybE1GhbT0o6oGb9hbUbjogfRcQKSc+X9A+SrsmX74qIcyLiVyS9RdJ/s33KJLG18h6P62Q+XBfFWY+w/Xt+ZoKJHco+IGP5419I+pUGm/iypI+Pd1/bfl4+/riRgyTtlvSE7UVqMG287QHbc5R9dvptz5lG79FVkt5t+/j8P/AnJN2Wdz1L+7/Oeuv/k6Rft/3WfJjEWcrGvBf2Widp+5Skx52d1HzhNNoCaBOKM6B4Fc1JDpK0U9Ju278m6U+aiOcv8pEzxyo7f2r8XLFWttXMcavnnyQda/t38rznQ3p23vNlSefnscr2IbZ/r4ntzpY0KOkxSSO2T1V2jt1UrpF0tu1FzibM+PNpbOuu/DUcn79vF40/YXu27bfbPiSyYZs7lX/mbJ/mbJIaS3pCWS/smPbXyvtS27bVHLFQFGed93/97GuKXJ8vf7mk22zvVnZdnLMj4if5cxdJuiLvqn7bFNv9XN5uje1dktYqOxG1kY8pO6HzCWX/8a9rsP5XlBUpZ0j6aH7/nU3sR5FN1/sXyn5V2aLswq2n16xykWpeZ731I5sJ7fck/Y2yoY7HSFonaW+Br7XWZyXNlbRN2bH9l2m0BdAG7SjMKM4ww8yknOTPJP2Bspkdv6JnCq16vqdsON13JH0qItYkbOsiNT5uU6rJey5WlvcslfRvNc9fL+l/Sbo6H5Z3r7KJOxptd5eyQu8aZYX4Hyh776byFWXnkd0t6cfKesZGJI022lZkk639T0nflrRB0sRzGd8p6eE8/vcrm3tA+Wv9trLi6VZJX4yI704SWyvvy7iUHLFQ5osIVeBsStUhSW+f4j8sgIp56UtfGmvWrGm84jQtXLjw9ohYVviGAZSCs4nHfippILjeWF1579iXI6KpafvRGD1nKC3bb7Q9Px/yOD6ueG2XwwLQQfScAUDn2J7r7Hpk/fnwvwslXd+oHZpHcYYye6Wy63xsk/Tbymadms6UtQBKjuIMADrKyoYA7lA2rHG9pL/sakQVU/d6E0Avi4iL1KULBALoDRRTAIqWTzzGbMyTiIg9ys5JRJtQnAEASoviDABQJQxrBAAAAIAe0NGeM9uRXaKgNX196bVkEdtINTY22aUZOtdekmbNavbSZJNLeR+L2kZVfjHv9uch9bMwOjqqsbExhn+g4zhHDDOBbT7kQAVFxKS5U6eLMw0MDLTcfu7cuckxzJs3L3kbqXbv3p3Ufs+ePckxHHLIIUntBwcHk2NILQqKKFJ7IbF76qm0OUxSPw+p/ycef/zxpPZAil74PwwAQFE45wwAUFoUZwCAKun+GD8AAAAAAD1nAIDyoucMAFAlST1ntpfbftD2RtvnFRUUAADN4CLUKBtyJwD1tNxzZnuWpC9Ier2kIUk/sr06Iu4vKjgAAKZCMYWyIXcC0EhKz9mJkjZGxE8iYp+kqyWtKCYsAAAao+cMJUPuBKCulOJskaRNNY+H8mXPYnul7XW21/GlBwAAZrBp504diwxAT2j7hCARsUrSKknq6+ujOgMAFIYf/VBFtbkTF6EGZpaU4myzpCU1jxfnywAA6AiKM5QMuROAulKGNf5I0lLbR9meLel0SauLCQsAgMY45wwlQ+4EoK6We84iYsT2ByTdKGmWpMsi4r7CIgMAoA6KKZQNuROARpLOOYuIGyTdUFAsAAAAlUbuBKCetk8IAgBAu9BzBgCoko4WZ/39/Xruc5/bcvuBgYHkGPr6Uk6zk8bGxpJjGBwcTN5Gqjlz5iS17+/vfl0/OjqavI2RkZECIkmT+pkq4jMJlBXFGQCgSrqfYQMA0CKKMwBAlVCcAQBKi+IMAFAlaWP8AAAAAACFoOcMAFBKTKUPAKgaijMAQGlRnAEAqoTiDABQWhRnAIAq4ZwzAAAAAOgB9JwBAEqLnjMAQJVQnAEASoviDABQJRRnAIBSYrZGAEDVUJwBAEqL4gwAUCVMCAIAAAAAPYDiDABQWuNDG4u81WN7ie3v2r7f9n22z86Xf9L2A7bvtn297fk1bc63vdH2g7bf2N4jAgAoM4ozAEBpdbo4kzQi6ZyIOEbSSZLOsn2MpJskHRcRL5H0kKTzJSl/7nRJx0paLumLtme16XAAAEqO4gwAUFqdLs4iYktE3JHf3yVpvaRFEbEmIkby1dZKWpzfXyHp6ojYGxE/lbRR0oltORgAgNJjQhAAQCm1cbbGBbbX1TxeFRGrJq5k+0hJL5N024Sn3iPpG/n9RcqKtXFD+TIAAPbT0eLMtgYHB1tuPzw8nBzDjh07ktqPjo4mx3DQQQcltV+0KP17fd++fUnt+/rSO11TYxgbG0uOIfX9LOI4pG6jvz/tv3Ev/J8Aesy2iFhWbwXb8yR9U9KHI2JnzfKPKhv6eGV7QwTQaba72r6IbRTxg1bqNphltz56zgAApdWNL3nbA8oKsysj4rqa5e+SdJqkU+KZwDZLWlLTfHG+DACA/XDOGQCgtLowW6MlXSppfUR8umb5cknnSnpLROypabJa0um2B20fJWmppB8WfiAAAJVAzxkAoLS60HN2sqR3SrrH9p35sgskXSJpUNJN+bCjtRHx/oi4z/Y1ku5XNtzxrIhgLDAAYFIUZwCA0up0cRYRP5A02UkfN9Rp83FJH29bUACAymh5WONUF+IEAADA/sidADSS0nM2fiHOO2wfJOl22zdFxP0FxQYAwJTaOJU+0C7kTgDqark4i4gtkrbk93fZXq/s2i38gQEAdATFGcqE3AlAI4Wcc1bnQpwAALQNxRnKitwJwGSSi7OpLsRZ8/xKSSsladasWam7AwAAKLXp5E4AZpak4myqC3HWiohVklZJ0uDgID9xAgAKQ88Zyma6uZNtPuTADNJycTbVhTgBAOgUijOUCbkTgEZankpfz1yI87W278xvbyooLgAA6hqfrbHoG9BG5E4A6kqZrXGqC3ECANARFFMoE3InAI2k9JwBAAAAAApSyFT6AAB0Az1nAIAq6XhxNjY21nLb7DzaNAcccEBS+/7+9EM2d+7cpPZ9fekdnkcccURS+50795v5d9pmz56d1D7lszRucHAwqf3w8HByDKnmzJmT1D71fdi1a1dSeyAFxRmAZhRxOaeBgYGk9qk5h5T+OkZGRpJj2Lt3b1L7InKnInLAXkXPGQCgtCjOAABVQnEGACglZlcEAFQNE4IAAAAAQA+g5wwAUFr0nAEAqoTiDABQWhRnAIAqoTgDAJQWxRkAoEoozgAApUVxBgCoEiYEAQAAAIAeQM8ZAKCUmEofAFA1FGcAgNKiOAMAVAnFGQCgtCjOAABVQnEGACgtijMAQJUwIQgAAAAA9AB6zgAApUXPGQCgSijOAAClxGyNAICqoTgDAJQWxRkAoEo6WpxFhMbGxpLap+rrSzvNbmBgIDmG/v60w57aXlLS+yBJS5YsSY4h9XU89thjyTHs2bMnqX3qcZSkffv2JbX/5S9/mdR+eHg4qT0AAO2Wmr/NmTMnOYbnPe95Se0XLlyYHMPcuXOT2u/cuTM5hi1btiS13759e3IMe/fuTWrfyz/s0XMGACitXv6CBQBguijOAAClRXEGAKgSijMAQGlRnAEAqoTiDABQSszWCAComuSLUNueZfvHtr9VREAAAABVRu4EYCpF9JydLWm9pIML2BYAAE2j5wwlRe4EYFJJPWe2F0t6s6SvFhMOAADNGx/aWOQNaCdyJwD1pPacfVbSuZIOSg8FAIDpoZhCCX1W5E4AptByz5nt0yRtjYjbG6y30vY62+uKuGAvAADj6DlDmbSSO3UoNAA9ImVY48mS3mL7YUlXS3qt7b+fuFJErIqIZRGxLPXq7gAAACU27dyp0wEC6K6Wq6WIOD8iFkfEkZJOl3RzRLyjsMgAAKijHb1m9JyhncidADRCVxYAoLQ6XZzZXmL7u7bvt32f7bPz5c+xfZPtDfm/h+bLbfsS2xtt3237hA4cFgBASRVSnEXEv0bEaUVsCwCAZnWh52xE0jkRcYykkySdZfsYSedJ+k5ELJX0nfyxJJ0qaWl+WynpS+04DigfcicAk6HnDABQWp0uziJiS0Tckd/fpexaVYskrZB0Rb7aFZLemt9fIenrkVkrab7tw9twKAAAFUBxBgBAC2wfKellkm6TdFhEbMmfelTSYfn9RZI21TQbypcBALCf1Ouclc6sWbOS2vf3px+ywcHBpPZz5sxJjuGgg9Iur3Lqqacmx3DooYcmtb/33nuTY1i3Lm2W4t27dyfHcOCBBya137NnT3IMKWx3df+Y2do0gceCCVOYr4qIVbUr2J4n6ZuSPhwRO2v/H0RE2GZmESBXxPdEav6VmnNI0nHHHZfU/uSTT06O4bDDDmu8Uh0bNmxIjuH73/9+Uvt9+/YlxzAyMtLV9u0044ozAEA1tHF2xW31pjC3PaCsMLsyIq7LF//C9uERsSUftrg1X75Z0pKa5ovzZQAA7IdhjQCA0urCbI2WdKmk9RHx6ZqnVks6M79/pqR/rFn+h/msjSdJeqJm+CMAAM9CzxkAAM07WdI7Jd1j+8582QWSLpZ0je33SvqZpLflz90g6U2SNkraI+ndHY0WAFAqFGcAgNLq9EWjI+IHkqY6geaUSdYPSWe1NSgAQGVQnAEASqvTxRkAAO1EcQYAKKU2TggCAEBXUJwBAEqL4gwAUCXM1ggAAAAAPYCeMwBAadFzBgCoEoozAEBpUZwBAKqE4gwAUFoUZwCAKqE4AwCUErM1AgCqhglBAAAAAKAH0HMGACgtes4AAFVCcQYAKC2KMwBAlVCcAQBKi+IMAFAlHS/ORkdHW247a9as5P339aWdZpfaXpIGBweT2s+ZMyc5hkWLFiW1f/Ob35wcwwte8IKk9jfffHNyDA888EBS+x07diTHkPqZ6u9P+2+c2t52UnsgBcUZMDOkflfNnz8/OYZjjz02qf1pp52WHMPSpUuT2t96663JMTz66KNJ7YeGhpJj2LVrV1L7lHpEau93DxOCAAAAAEAPYFgjAKCUmEofAFA1FGcAgNKiOAMAVAnFGQCgtCjOAABVknTOme35tq+1/YDt9bZfWVRgAAAAVUPuBKCe1J6zz0n6l4j4XduzJR1QQEwAADSFnjOUELkTgCm1XJzZPkTSb0p6lyRFxD5J+4oJCwCAxijOUCbkTgAaSRnWeJSkxyR9zfaPbX/V9oEFxQUAQF3jszUWfQPaiNwJQF0pxVm/pBMkfSkiXibpSUnnTVzJ9krb62yvGxsbS9gdAADPRnGGkpl27tTpAAF0V0pxNiRpKCJuyx9fq+wPzrNExKqIWBYRy/r6uOY1AACYsaadO3U0OgBd13K1FBGPStpk++h80SmS7i8kKgAAmkDPGcqE3AlAI6mzNX5Q0pX5bEM/kfTu9JAAAGgOxRRKiNwJwJSSirOIuFMSXe4AgK6gOEPZkDsBqCe15wwAgK5gGCIAoGqYoQMAAAAAekBHe84iQinT6VdltscqXFKgF96LgYGB5G3YLiCSNKm//I+MjCS174VjALSKnjNgZuiF76rU3GdwcDA5htRtzJ49OzmGXsgBq4xhjQCA0qI4AwBUCcUZAKC0KM4AAFVCcQYAKC2KMwBAlTBoFAAAAAB6AD1nAIBSYip9AEDVUJwBAEqL4gwAUCUUZwCA0qI4AwBUCeecAQAAAEAPoOcMAFBa9JwBAKqE4gwAUFoUZwCAKqE4AwCUErM1AgCqhuIMAFBaFGcAgCphQhAAAKbB9mW2t9q+t2bZ8bbX2r7T9jrbJ+bLbfsS2xtt3237hO5FDgDodRRnAIDSGh/aWOStCZdLWj5h2d9I+lhEHC/pL/PHknSqpKX5baWkLxXxugEA1cSwRgBAaXVjWGNE3GL7yImLJR2c3z9E0iP5/RWSvh5ZoGttz7d9eERs6Uy0AIAyoTgDAJRWm4qzBbbX1TxeFRGrGrT5sKQbbX9K2aiUV+XLF0naVLPeUL6M4gwAsJ+OF2cpX6QjIyPJ+x8bG0tqPzAwkBzD008/ndS+vz/9bdu8eXNS+zVr1iTHsHDhwqT269evT45h7969Se2L+DwMDw93tT1QVm2crXFbRCybZps/kfSRiPim7bdJulTS64oPDZiZUnPAnTt3Jsfw0EMPJbW/8cYbk2O45557kto/8MADyTE8/PDDSe337NmTHMPo6GhS+16eTIpzzgAASHempOvy+/9H0on5/c2SltSstzhfBgDAfijOAACl1aUJQSbziKTfyu+/VtKG/P5qSX+Yz9p4kqQnON8MADAVzjkDAJRWN4am2L5K0quVnZs2JOlCSe+T9Dnb/ZKeVjYzoyTdIOlNkjZK2iPp3R0PGABQGhRnAIDS6tJsjWdM8dR/nmTdkHRWeyMCAFRF0rBG2x+xfZ/te21fZXtOUYEBANBIDw1rBJpC7gSgnpaLM9uLJH1I0rKIOE7SLEmnFxUYAABAlZA7AWgkdVhjv6S5toclHaBnLroJAEBb0dOFkiJ3AjCllnvOImKzpE9J+rmyi2k+ERHpF78CAKBJDGtEmZA7AWgkZVjjoZJWSDpK0hGSDrT9jknWW2l7ne11qReABgCgFsUZyqSV3KnTMQLorpQJQV4n6acR8VhEDCu7+OarJq4UEasiYllELOvr47JqAIDiUJyhZKadO3U8QgBdlVIt/VzSSbYPsG1Jp0haX0xYAAAAlUPuBKCulicEiYjbbF8r6Q5JI5J+LGlVUYEBANAIPV0oE3InAI0kzdYYERdKurCgWAAAaBrDEFFG5E4A6kmdSh8AgK6hOAMAVAkzdAAAAABADyhVz9no6GjXt7F3797kGAYGBpLaP/XUU8kxpG5j9erVyTEceuihSe137NiRHMMTTzyR1L6Iz8PTTz+d1D47p7x1w8PDSe3puUA38fkDel8R/09HRkaS2heRM9x1111J7bdv354cw7x587oew6ZNm5La7969OzmGKl+eq1TFGQAAtSjOAABVQnEGACgtijMAQJVQnAEASonZGgEAVcOEIAAAAADQA+g5AwCUFj1nAIAqoTgDAJQWxRkAoEoozgAApUVxBgCoEoozAEBpUZwBAKqECUEAAAAAoAfQcwYAKCWm0gcAVA3FGQCgtCjOAABVQnEGACgtijMAQJVQnAEASoviDABQJUwIAgAAAAA9gJ4zAEBp0XMGAKgSijMAQCkxWyMAoGo6XpyNjY11pW1RhoeHu76N/v70t21kZCSp/YYNG5JjOPTQQ5PaP/XUU8kxpNq9e3fyNvbt25fUvq8vbXTy6OhoUnugmyjOgJkh9buqiJzhkUceSWq/Y8eO5BhmzZqV1L6IPDb1WKbmPVJv1ATtwjlnAAAAANADGNYIACgtes4AAFVCcQYAKC2KMwBAlVCcAQBKi+IMAFAlDc85s32Z7a22761Z9hzbN9nekP+bNrMDAADTND5bY9E3IBW5E4BWNTMhyOWSlk9Ydp6k70TEUknfyR8DAACA3AlAixoWZxFxi6TtExavkHRFfv8KSW8tNiwAABqj5wy9iNwJQKtaPefssIjYkt9/VNJhU61oe6WklVL69ZgAAKhFMYUSaSl3AjCzJE8IEhFhe8pvx4hYJWmVJA0MDPAtCgAoDMUZymg6uVO99QBUT6vF2S9sHx4RW2wfLmlrkUEBANAMijOUCLkTgIZaHWe4WtKZ+f0zJf1jMeEAAABUErkTgIaamUr/Kkm3Sjra9pDt90q6WNLrbW+Q9Lr8MQAAHdOtqfQnmyY9X/5B2w/Yvs/239QsP9/2RtsP2n5jGw4Fegy5E4BWNRzWGBFnTPHUKQXHAgDAtHRpWOPlkj4v6evjC2y/RtlsfC+NiL22n58vP0bS6ZKOlXSEpG/bfnFEjHY8anQMuROAVjF9IgCgtLrRczbFNOl/IuniiNibrzN+PtEKSVdHxN6I+KmkjZJOLO4IAACqhOIMAFBabSrOFtheV3NrZkrzF0v6Ddu32f6e7ZfnyxdJ2lSz3lC+DACA/SRPpT9dKdc6Gx4eTt7/wMBAUvu5c+cmxzA6mjaa5ZFHHkmOob8/7a23nRzDzp07k9qnvoYijI2NdX0bRfy/APAs2yJi2TTb9Et6jqSTJL1c0jW2f6XwyAC0ZGRkJHkbqd/Xe/fuTY4hNf8qYih46nFglt36up/dAgDQoh76kh+SdF1kAf3Q9pikBZI2S1pSs97ifBkAAPthWCMAoJS6NVvjFP5B0mskyfaLJc2WtE3Z9Omn2x60fZSkpZJ+mP7qAQBVRM8ZAKC0utFzlk+T/mpl56YNSbpQ0mWSLsun198n6cy8F+0+29dIul/SiKSzmKkRADAVijMAAKahzjTp75hi/Y9L+nj7IgIAVAXFGQCgtHronDMAAJJRnAEASoviDABQJRRnAIBSSpzAAwCAnkNxBgAoLYozAECVMJU+AAAAAPQAes4AAKVFzxkAoEoozgAApUVxBgCoEoozAEBpUZwBAKqE4gwAUErM1ggAqBomBAEAAACAHkDPGQCgtOg5AwBUCcUZAKC0KM4AAFXS0eJsZGREW7dubbn9nDlzkmMYGBhIar9nz57kGEZGRpLa9/Wlj0YdGxvregyjo6OljyH1OPZCDEUcR6BbKM4AdEoR3/lAI/ScAQBKi+IMAFAl/GQOAAAAAD2AnjMAQCkxlT4AoGoozgAApUVxBgCokobDGm1fZnur7Xtrln3S9gO277Z9ve35bY0SAIBJjPeeFXkDUpE7AWhVM+ecXS5p+YRlN0k6LiJeIukhSecXHBcAAEBZXS5yJwAtaFicRcQtkrZPWLYmIsbng18raXEbYgMAoC56ztCLyJ0AtKqIc87eI+kbUz1pe6WklQXsBwCAZ6GYQkmROwGYVFJxZvujkkYkXTnVOhGxStKqfH2+RQEAhaCnC2VE7gSgnpaLM9vvknSapFOCb0cAQBfw9YMyIXcC0EhLxZnt5ZLOlfRbEbGn2JAAAACqhdwJQDMaFme2r5L0akkLbA9JulDZDEODkm6yLUlrI+L9bYwTAID90PmAXkTuBKBVDYuziDhjksWXtiEWAACmheIMvYjcCUCripitEQCArqA4AwBUCcUZAKCUmK0RAFA1HS3O+vr6NHfu3Jbbz58/PzmGlP1L0s6dO5NjGBsbS2p/8MEHJ8eQ+jr6+hpev7yh0dHRpPapx1FK/9V9ZGSk8UoNpB6H1BjmzZuX1B4AAADFoOcMAFBa9JwBAKqE4gwAUFoUZwCAKqE4AwCUFsUZAKBKKM4AAKVFcQYAqJL0WR0AAAAAAMnoOQMAlBJT6QMAqobiDABQWhRnAIAqoTgDAJQWxRkAoEoozgAApUVxBgCoEiYEAQAAAIAeQM8ZAKC06DkDAFQJPWcAgFIan62x6Fsjti+zvdX2vZM8d47tsL0gf2zbl9jeaPtu2ye04VAAACqC4gwAUFrdKM4kXS5p+cSFtpdIeoOkn9csPlXS0vy2UtKXkl80AKCyKM4AAJiGiLhF0vZJnvqMpHMl1VZ4KyR9PTJrJc23fXgHwgQAlBDnnAEASqtXzjmzvULS5oi4y3btU4skbap5PJQv29LB8AAAJUFxBgAorTYVZwtsr6t5vCoiVk21su0DJF2gbEgjAAAt62hxFhEaHh5uuf3evXsLjKY1Tz75ZPI29u3bl9S+ry99NGrqNkZGRroeQxFSX8fo6GhyDGNjY12NoVd6HoBWtOnzuy0ilk1j/RdJOkrSeK/ZYkl32D5R0mZJS2rWXZwvAwBgP/ScAQBKaRoTeLQ7jnskPX/8se2HJS2LiG22V0v6gO2rJb1C0hMRwZBGAMCkut91AQBAidi+StKtko62PWT7vXVWv0HSTyRtlPQVSX/agRABACVFzxkAoLS60XMWEWc0eP7Imvsh6ax2xwQAqIaGPWfTudgmAACd1KXrnAF1kTsBaFUzwxovV/MX2wQAoGMoztCjLhe5E4AWNCzOpnmxTQAAOobiDL2I3AlAq1qaEKT2YpsFxwMAAFA55E4AmjHtCUGme7FN2yslrZzufgAAqIeeLpQFuROAZrUyW+OUF9uMiEcnrhwRqyStkqS+vj6+RQEAhaE4Q0m0nDvZ5kMOzCDTLs7qXWyzwLgAAGiI4gxlQO4EoFnNTKU/nYttAgDQMUwIgl5E7gSgVQ17zqZzsU0AAICZjtwJQKtaOecMAICeQE8XAKBKKM4AAKXEMEQAQNVQnAEASoviDABQJR0tziJi2759+35WZ5UFkqacuWjbto5MalQ3hg6pG8P27du7HsMM2P+MieHpp59OjeGFxUUDAJhgm6SWc6cOIYbu758YyhXDlLlTp4uz59V73va6iFjWqXiIoXdj6Pb+iaG3YgCmQs8Zqo7cqRwxdHv/xFCdGBjWCAAoLYozAECVUJwBAEqL4gwAUCW9Vpyt6nYAIoZx3Y6h2/uXiGFcL8QA7IfZGgFJvfE3mhi6v3+JGMaVOgbzxQYAKKPZs2fHwoULC9/upk2bbu/2+QoAgJmp13rOAABoGj8wAgCqhOIMAFBaFGcAgCrp63YA42wvt/2g7Y22z+vC/pfY/q7t+23fZ/vsTseQxzHL9o9tf6tL+59v+1rbD9heb/uVXYjhI/l7cK/tq2zP6cA+L7O91fa9NcueY/sm2xvyfw/tQgyfzN+Lu21fb3t+p2Ooee4c22F7QTtjAKZj/LyzIm9AGZA3PSsWcidyp8rkTj1RnNmeJekLkk6VdIykM2wf0+EwRiSdExHHSDpJ0lldiEGSzpa0vgv7Hfc5Sf8SEb8m6aWdjsX2IkkfkrQsIo6TNEvS6R3Y9eWSlk9Ydp6k70TEUknfyR93OoabJB0XES+R9JCk87sQg2wvkfQGST9v8/6BaaE4w0xE3rQfcidyp1qlzp16ojiTdKKkjRHxk4jYJ+lqSSs6GUBEbImIO/L7u5T9x1rUyRhsL5b0Zklf7eR+a/Z/iKTflHSpJEXEvoh4vAuh9Euaa7tf0gGSHmn3DiPiFknbJyxeIemK/P4Vkt7a6RgiYk1EjOQP10pa3OkYcp+RdK4kMlcA6D7yphy5038gd3pmWalzp14pzhZJ2lTzeEhd+A8+zvaRkl4m6bYO7/qzyt7EsQ7vd9xRkh6T9LV8eMBXbR/YyQAiYrOkTyn7lWGLpCciYk0nY6hxWERsye8/KumwLsUx7j2S/rnTO7W9QtLmiLir0/sG6mlHrxk9ZygJ8qZnfFbkTuROUytd7tQrxVnPsD1P0jclfTgidnZwv6dJ2hoRt3dqn5Pol3SCpC9FxMskPan2d0c/Sz42eYWyP3ZHSDrQ9js6GcNkIsvYupa12f6osiEkV3Z4vwdIukDSX3Zyv0CzKM6A7upW3pTvm9xJ5E5TKWvu1CvF2WZJS2oeL86XdZTtAWV/YK6MiOs6vPuTJb3F9sPKhie81vbfdziGIUlDETH+y9e1yv7gdNLrJP00Ih6LiGFJ10l6VYdjGPcL24dLUv7v1m4EYftdkk6T9PbofOb4ImV/7O/KP5uLJd1hu/iLSwEtoDjDDEXelCF3ypA7TVDm3KlXirMfSVpq+yjbs5WdxLi6kwHYtrLxwusj4tOd3LckRcT5EbE4Io5U9vpvjoiO/uoREY9K2mT76HzRKZLu72QMyrrkT7J9QP6enKLuneS7WtKZ+f0zJf1jpwOwvVzZcI23RMSeTu8/Iu6JiOdHxJH5Z3NI0gn5ZwXoOoozzFAzPm+SyJ1qkDvVKHvu1BPFWWQn7X1A0o3KPkzXRMR9HQ7jZEnvVPary5357U0djqEXfFDSlbbvlnS8pE90cuf5L0/XSrpD0j3KPqOr2r1f21dJulXS0baHbL9X0sWSXm97g7JfpS7uQgyfl3SQpJvyz+SXuxADAKCHkDf1HHIncqfCcifzKyEAoIwGBgZi/vz5hW9327Ztt0fEssI3DABAA/3dDgAAgFYwDBEAUDUUZwCA0qI4AwBUSU+ccwYAAAAAMx09ZwCA0qLnDABQJRRnAIDSojgDAFQJxRkAoLQozgAAVUJxBgAoJWZrBABUDROCAAAAAEAPoOcMAFBa9JwBAKqE4gwAUFoUZwCAKqE4AwCUFsUZAKBKKM4AAKVFcQYAqBImBAEAYBpsX2Z7q+17a5Z90vYDtu+2fb3t+TXPnW97o+0Hbb+xK0EDAEqB4gwAUErjU+kXfWvC5ZKWT1h2k6TjIuIlkh6SdL4k2T5G0umSjs3bfNH2rKKOAQCgWijOAACl1Y3iLCJukbR9wrI1ETGSP1wraXF+f4WkqyNib0T8VNJGSScWdwQAAFXCOWcAgNJq0zlnC2yvq3m8KiJWTaP9eyR9I7+/SFmxNm4oXwYAwH4ozgAApdWm4mxbRCxrpaHtj0oakXRlsSEBAGYCijMAAApg+12STpN0SjxTNW6WtKRmtcX5MgAA9sM5ZwCA0urShCD7sb1c0rmS3hIRe2qeWi3pdNuDto+StFTSD5NfOACgkug5AwCUUkoxlcL2VZJerezctCFJFyqbnXFQ0k22JWltRLw/Iu6zfY2k+5UNdzwrIkY7HjQAoBTMBTwBAGVkO2bNKn5W+tHR0dtbPecMAIAUDGsEAAAAgB7AsEYAQGkx+gMAUCUUZwCA0qI4AwBUCcUZAKC0KM4AAFVCcQYAKKsbJS1ow3a3tWGbAAA0xGyNAAAAANADmK0RAAAAAHoAxRkAAAAA9ACKMwAAAADoARRnAAAAANADKM4AAAAAoAf8f3fUY/jH94lZAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "recorte1 = trim(Escalagrises3[:,:,0], 210, 237, 15, 15) #Recorte de la estrella individual\n", + "x1=np.arange(0,15,1)\n", + "y1=np.arange(0,15,1)\n", + "y1,x1 = np.meshgrid(x1,y1) #creando tupla xy\n", + "xdata1 = np.vstack((x1.ravel(),y1.ravel())) #util para leer rejilla simetrica (2,225) en curve_fit\n", + "#aplicación de curve_fit para hallar constantes, p0 es una sugerencia a los parametros, util para el ajuste\n", + "popt1, pcov1 = curve_fit(gauss2d, xdata1, recorte1.ravel(), p0=[1,0,1,1,1]) \n", + "estrella1=gauss2d(xdata1, popt1[0], popt1[1],popt1[2], popt1[3], popt1[4]) #aplicacion gaussiana con los parametros hallados\n", + "FWHM1=FWHM.append(2*np.sqrt(2*np.log(2))*np.sqrt(popt1[4])) #valor de FWHM de la gaussiana obtenida \n", + "#parametros para graficar, tamaño, barra de colores, titulos y color.\n", + "fig=plt.figure(figsize=(15, 15)) \n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 1 fotografÃa\")\n", + "plt.imshow(recorte1, plt.get_cmap('gray'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 1 a partir de la gaussiana\")\n", + "plt.imshow(estrella1.reshape(15, 15), plt.get_cmap('gray'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* Repita este procedimiento para varias estrellas y presente alguna estadÃstica\n", + "sobre las medidas de la FWHM de las distintas gaussianas: histograma, media, mediana,\n", + "desviación estándar\n", + "\n", + "* Al repetir el procedimiento en cada estrella a blanco y negro y cada una de las BandasRGB se modifican los parametros de cada recorte, rejilla, color y sugerencias p0" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 2 (blanco y negro)" + ] + }, + { + "cell_type": "code", + "execution_count": 305, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAFVCAYAAABrZpfqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA82klEQVR4nO3de7wldXnn+++3d19oaNoGmpsNA2pwcjCJ6BCiMZmgThQ9zmDmJI4m8RjjiMnBjM6QY9ScGTTnmJgbxoyJmXYg4DlGwomYMAmvBGKYEOcEFAgqF40dhdDQ0DT0lb53P+ePqq2LZtez9v7tdamq/rxfr/3aa9dvVa1f1aq96nlWVT0/R4QAAAAAANO1ZNodAAAAAACQnAEAAABAK5CcAQAAAEALkJwBAAAAQAuQnAEAAABAC5CcAQAAAEALLJ12BwAAKHHRRRfFli1bRr7cO++88y8i4qKRLxgAgCFIzgAAnbRlyxZ98YtfHPlylyxZsnbkCwUAYB64rBEAAAAAWoAzZwCAzoqIaXcBAICRITkDAHQWyRkAoE9IzgAAnRQRJGcAgF7hnjMAAAAAaAHOnAEAOoszZwCAPiE5AwB0FskZAKBPSM4AAJ1FcgYA6BOSMwBAZ5GcAQD6hIIgAAAAANACnDkDAHQSpfQBAH3DmTMAQGfNJmij/MnYPtP2Lbbvs32v7XcNtP2c7a/W039tYPr7bG+w/TXbrx7j5gAAdBxnzgAAnTWFM2cHJV0WEXfZPl7SnbZvlnSqpIslvTAi9tk+RZJsnyvpjZJeIOnZkv7S9vMj4tCkOw4AaD+SMwBAZ006OYuITZI21Y932r5f0jpJb5f04YjYV7dtrme5WNK19fRv2t4g6QJJfzvRjgMAOoHLGgEAKGD7bEkvknS7pOdL+kHbt9v+a9vfWz9tnaSHBmbbWE8DAOAZOHMGAOisMZ05W2v7joG/10fE+sEn2F4l6TOS3h0RO2wvlXSipJdI+l5J19l+7jg6BwDoL5IzAEAnjbFa45aIOL+p0fYyVYnZpyLi+nryRknXR9WhL9g+LGmtpIclnTkw+xn1NAAAnoHLGgEAnTWFao2WdKWk+yPiioGmP5b08vo5z5e0XNIWSTdIeqPtFbafI+kcSV8Y/ZYAAPQBydlRwPbZtqO+7Ea2/7vtfzuB17Xt37e91XbrgxHb/9T23bZ32v539bQrbP/WlLsGoMGkkzNJL5P0ZkmvqD8v7rb9WklXSXqu7XskXSvpLVG5V9J1ku6T9OeSLqVSI45m04pJ2sb2D9r+2iKXUbTtjnwPuqweuuTCafdjlDr/pnSJ7QdUlVsePDBfHRHvHDJfSDonIjaMsXtD1aWhPyrphyQdJ+keSf8hIm5vmOUHJP2wpDMi4ql5LH/a6/keSbdExHl1f35Q1b0jr5hSfwC0TER8XpIbmn+yYZ4PSfrQ2DoFFDgKY5KpOnK7RcTfSPqn0+1V90XEC6bdh1HjzNnk/cuIWDXwk34IzscEv/lYJemLkv6Zqhvfr5H0Z/WN8XM5S9ID80nMxm2e2+gsSfcO/P0cSf8mIg6Mp1cAFmsKZ86APjmaYpKpKNkefTijhXIkZy1h+zvq8svbbW+x/Yf19Fvrp3zJ9i7b/8b2hbY32v4F249K+n3bS2y/1/Y/2H7C9nW2T5zH6z7P9l/V82yx/Snba+Z6bkR8IyKuiIhNEXGorl62XHN882P7bZL+q6SX1v3+YD397bY32H7S9g22n920ntnz67ZX2f5avc1+t95+/7Zu+ynb/8P2R2w/IekD2bra/itV94t8rH7956s6Y/a/1e0n2P5T24/Xl2n+qe0zhm1fAOMzjsSM5AzoX0xSL/sC239re5vtTbY/Znt5w3NnL/u7xPYj9fN/fr7Lque91PbXJX09224D8zxQb8MvS3rKcyRotn/Y9lfr9+VjOuIsvu2ftn1/Haf8he2zGjb1kct9az3fTtvfsP2O5Lkztn+zfn++afudfvplqo3LqmOzzx+xvLD9HfXj19q+r5734dltbnttHXdtcxUP/o3tJQPb7V8s4H35Gdtfr5/zO7Zdt8173xs3krP2+D8l3STpBFXVvP6zJEXEP6/bX1h/q/WH9d+nqfqm6CxJl0j6OUmvV3V6/9mStkr6nXm8riX9Sj3P/6SqqtgH5tNh2+ep+iB8xqUNEXGlpJ+R9Ld1vy+3/Yr6td4g6XRJD6q6N2PO9cyeb3utpD+S9D5JJ0n6mqTvP6Ib3yfpG6ou2/hQtq4R8QpJfyPpnfXr//0Ry1oi6fdVbe9/ImmPpI/NZzsBGB+SM2AsehWT1A5J+veqqqi+VNIrVX8Bm3i5qiI+r5L0C7NJwDyX9XpVcci5yXY70psk/c+S1kTEwSPWb62k6yX9H/Xr/oOqe2Bn2y+W9H5J/1rSyapimk8PWb9ZmyW9TtJqSW+V9BHbL2547tslvUbSeZJeXK9n6bKOdKWkd0TE8ZK+S9Jf1dMvU1UR92RVMd37Jc31YT2f9+V1qm5Z+R5V8eWr6+nF+96okZxN3h/X2frsz9vr6QdUfag9OyL21vc1ZA5Lujwi9kXEHlWJ0C9GxMaI2Kdqh/rRub55GRQRGyLi5no5j0u6QtWHacr2akn/t6QPRsT2Yc+v/YSkqyLirrqP71N1Zu3sgue/VtK9EXF9/QH225IePWL+RyLiP0fEwYjYU7qukhQRT0TEZyJid0TsVJXszWteAABa6qiJSSLizoi4rY4JHpD0X+ax7A9GxFMR8RVVX9C+aQHL+pWIeLLeHvP12xHxUMM8s3HPH0V1u8Vv6elxz8/Ur3l/HRf9sqTz5nP2LCL+LCL+ISp/rSox/8GGp79B0kfr93arpA8vYllHOiDpXNurI2JrRNw1MP10SWdFxIGI+JuY45u0eb4vH46IbRHxj5JuUZVkFu9740ByNnmvj4g1Az+fqKe/R1XW/gVXlWd+eshyHo+IvQN/nyXps7MfsJLuV/UNwqnZQmyfavva+vTxDkn/j6pvHLJ5Vkr6b5Jui4hfGdLPQc9WdfZLkhQRuyQ9IWldwfOfLemhgbZQ9a3KoIcG/yhZ14F5j7X9X2w/WM97q6Q1tmfmMz+A8VjMGbKmH+AoctTEJLafX18a92i97F8etmw9PY54UFXsMd9lPaSFy+aZK+4ZfP5Zkj46sM2fVPUeNsVY32L7NbZvqy8Z3KYqEWzaNk/rx5F9XuCyjvS/1M9/0NVltS+tp/+6qjOiN9WXSr63YT3m874MJrS7Vd27uKgYcdRIzloiIh6NiLdHxLMlvUPS785eg9s0yxF/PyTpNUd8yB4TEcMGO/3lelnfHRGrVVUba6pEJtsrVI3ns7Hu50I8ourDY3ZZx6m6JLGpj9nzN6m61GK2zYN/147cRgta1yNcpuo69u+r5529RGG+8wMYA5IzYPR6GpN8XNJXVVVMXK3q0rhhx/DBAeT/iaq4ZL7LKvkwyebZNNifOu4Z7N9Dqi4JHNzmKyPi/8tesN6Gn5H0G5JOjYg1km5U87Z5Wvx1RJ+GLespSccOPP+0wQVHxBcj4mJJp6h6X6+rp++MiMsi4rmS/pWk/2D7lXP0reQ9nrWYGHGkSM5awvaP+dsFJraq2kEO138/Jum5Qxbxe5I+NHv62vbJ9fXHwxwvaZek7bbXSfrfkz4uU3Wf1x5VY/gcbnpug09Leqvt8+p/4F+WdHt96ll65npmz/8zSd9t+/X1ZRKXqrrmPTPvdW2Yd4+kba5uar58AfMCGBOSM2D0ehqTHC9ph6Rdtr9T0s/Ooz//sb5y5gWq7p+avVesZFnz2W6ZP5P0Atv/uo57/p2eHvf8nqT31X2V7WfZ/rF5LHe5pBWSHpd00PZrVN1j1+Q6Se+yvc5VwYxfWMCyvlSvw3m2j9HAPV22l9v+CdvPiuqyzR2q9znbr3NVpMaStqs6CzvX+13yvgzOWxojjhTJ2eT9N1eVemZ/PltP/15Jt9veJekGSe+KiG/UbR+QdE19qvoNDcv9aD3fTbZ3SrpN1Y2ow3xQ1Q2d21X941+fPPf7Vd1I+SpVScrsOszrWuKI+EtJ/1HVtyqbJD1P0hsHnvIBDaxn9vyI2CLpxyT9mqpLHc+VdIekfSNa1yP9lqSVkrao2rZ/voB5AYzBOBIzkjMcZY6mmOTnJf24pJ2SPqFvJ1qZv1Z1Od3nJP1GRNy0iGV9QMO3W6OBuOfDquKecyT9j4H2z0r6VUnX1pfl3aOqcMew5e5UlehdpyoR/3FV712TT6i6j+zLkv5O1Zmxg5IODVtWVMXWfknSX0r6uqQj72V8s6QH6v7/jKraA6rX9S9VJU9/K+l3I+KWOfpW8r7MWkyMOFLmQIQ+cFVSdaOkn2j4hwXQMy984QvjpptuGv7EBTrttNPujIjzR75gAJ3gqvDYNyUtiyOqJuLp6rNjvxcR8yrbj+E4c4bOsv1q22vqSx5nryu+bcrdAjBBnDkDgMmxvdLVeGRL68v/Lpf02WHzYf5IztBlL1U1zscWSf9SVdWphZSsBdBxJGcAMFFWdQngVlWXNd4v6T9NtUc9k443AbRZRHxAUxogEEA7kEwBGLW68BjVmOcQEbtV3ZOIMSE5AwB0FskZAKBPuKwRAAAAAFpgUWfObF+kqlzqjKT/GhEfHvL8oq84q2EN5rZkSVl+WfptazZf1s9xyV6ztI1vokfv0KFDE3290n2xZL7Dhw/r8OHDXP6BieMeMXTRpGInAO0WEXPGTsXJme0ZSb8j6YdVlTD/ou0bIuK+IfMt+LWWLm3u5qpVqxrbDh9uHo8wC5az+bK2YYli1l4aTC9fvryxbdmyZUWvlwU7pdsmU5pgt8mwdXjyyScn+prZ/0z23mfzNb3etm3bGucBxo3kDF1SGjsBOHosJiq+QNKGiPhGROyXdK2k+Yz+DgDASFCtER1D7AQgtZjLGtdJemjg742aY/R325dIumQRrwMAwJxIptAxxE4AUmOv1hgR6yWtl7huGgAAYBhiJ+DotZjk7GFJZw78fUY9DQCAieDMGTqG2AlAajHJ2RclnWP7Oao+WN4o6cezGWZmZrRmzZo527JiEk899VRj2549exrbxlFoYjHLPHjwYGNbtv4rV64sWmamtChEVmSkdNs89NBDjW0nnXRSY9tZZ53V2JYVStmyZUtjW2lxiwMHDqTtxx9/fGPb/v37i5abvU8rVqxobJuZmSl6vX379s05neAY08I9YuigBcdOAI4uxclZRBy0/U5Jf6GqHOxVEXHvyHoGAMAQJGfoEmInAMMs6p6ziLhR0o0j6gsAAECvETsByIy9IAgAAOPCmTMAQJ+QnAEAOovkDADQJyRnAIDOIjkDAPQJyRkAoJOo1ggA6JtOJGdZifasBH3Wli2ztC0rTy/lJcwzWcn0TNafxazHqGVl5rPS/dkwAtk6ZPOV7mvTkPWndIiFbL6mNoJjAACA0ehEcgYAwFz4cgAA0CckZwCAziI5AwD0CckZAKCzSM4AAH1CcgYA6CySMwBAnzRXPwAAAAAATAxnzgAAnUQpfQBA37QmOctKmGel5Pfv3z/RvmQl2ktL3g97zaycfKlxlMsvLTW/Zs2axrZsu2Tv/aFDhxrbDhw4MK9+HSl7f7PXW4xs/TPZe1G63ca1jsBiTDo5s32mpE9KOlVSSFofER8daL9M0m9IOjkitrj6sP2opNdK2i3ppyLirol2GsC8TXo4oa7gi7DJaU1yBgDAQk0hYDgo6bKIuMv28ZLutH1zRNxXJ26vkvSPA89/jaRz6p/vk/Tx+jcAAM/APWcAgM6avbRxlD9DXm/T7JmviNgp6X5J6+rmj0h6j6ozarMulvTJqNwmaY3t00e+IQAAvUByBgBAAdtnS3qRpNttXyzp4Yj40hFPWyfpoYG/N+rbyRwAAE/DZY0AgM4a02WNa23fMfD3+ohYP/gE26skfUbSu1Vd6vh+VZc0AgBQjOQMANBJY6zWuCUizm9qtL1MVWL2qYi43vZ3S3qOpC/VxQTOkHSX7QskPSzpzIHZz6inAQDwDCRnAIDOmkK1Rku6UtL9EXFF3YevSDpl4DkPSDq/rtZ4g6R32r5WVSGQ7RGxaaKdBgB0xsSTs6YS36Wl5EtLnpaWKM/mG7bMrK/ZvDMzM8M7NiGl5fIzxx13XGPbvn37Gtv27t3b2JYFbFkp/dL3YdhwB9l2W8wQDJNEeWFAkvQySW+W9BXbd9fT3h8RNzY8/0ZVZfQ3qCql/9ax9xBA8TFrHMe6SR8/21T2vk196YpuRIUAAMxh0gf+iPi8pDTSioizBx6HpEvH3C0AQE+QnAEAOotvZQEAfUJyBgDoLJIzAECfkJwBADppjNUaAQCYCgahBgAAAIAW4MwZAKCzOHMGAOiT1pTSz2QlzFesWDHyfoyjXLxUXjK9tOx/ZlzrWCLry/79+xvbSoOyQ4cONbZl23oxJe+z8v2ZrD+l72HpfE19OXjwYNHygFEgOQP6bRwl8buyzEzpZ182X9aW9XNcn8NH6+f7opKzeqDNnZIOSToYEeePolMAAMzH0XrwRncROwHIjOLM2csjYssIlgMAwIKQnKGjiJ0AzImCIAAAAADQAotNzkLSTbbvtH3JKDoEAMB8zJbSH/UPMGbETgAaLfayxh+IiIdtnyLpZttfjYhbB59Qf/BcUj9e5MsBAPBtJFPooAXFTgCOLos6cxYRD9e/N0v6rKQL5njO+og4PyLOH0fVQQDA0YszZ+iahcZOk+4fgOkqPnNm+zhJSyJiZ/34VZJ+KZsnItIy5k2WLVvW2JaV0h9Hie+sDPliks/srGI2lECpcSyzNKgZ1zZtku0Xpe/DsLPCWSn90nL5bfmygzPimCaSKXRJSezUd8OOIaXl68fRlh13x1Fmv1Rpufws5hjHMhejz5/9i7ms8VRJn613uKWS/iAi/nwkvQIAAOgfYicAqeLkLCK+IemFI+wLAAAL0udvT9E/xE4AhhnFOGcAAEwc94gBAPqG5AwA0FkkZwCAPiE5AwB0FskZAKBP2lHuDQAAAACOchM9cxYRjWXMS0uXZmXRs/KdWVtW7n8x5VCzUuzZOmbDBbRJ6bbJvvnOtss4hgPIXm8xpetLS+mXKt33x7X+wLhw5gxov8WUmS+ND7vSVmocpe1LY+PScvnj+vzu+nGByxoBAJ3V9YMwAACDSM4AAJ1EtUYAQN9wnRIAAAAAtABnzgAAncWZMwBAn5CcAQA6i+QMANAnJGcAgM4iOQMA9MnEk7OmcpulB9isRHlpSdDMYkqllpaFX7Zs2fCOjVBpydfS+bLhEJYubd5FsyEGsvc+22fGsV8Me82sTHC2/qXlcEtRSh9tRHIGtENpufxhpfRLY6fStuy4m7WVDpc0jmGIslgma8visXHMNyxWGUcs04VjBtEWAAAAALQAlzUCADqJUvoAgL4hOQMAdBbJGQCgT0jOAACdRXIGAOgTkjMAQGeRnAEA+oSCIAAAAADQApw5AwB0FmfOAAB9MtHkbMmSJTruuOPmbNuxY0fjfKtWrWpsy8ZPyMacKB0jK5ONfyFJK1eubGw75phjGtuOPfbYxrbScS4ypWODLF++vLEtG6tt3759jW3Z2BnZ+7R3797Gtqyf+/fvb2wrHVNPkk466aSieUvHDslk82XvRVPbOMYhAeaDao3AZI1jLLNhY2iWjkmWxR1ZWxYjZK+XzVc6VlumdNyxrC2Lc7L4KFu/cYwtK/V7DDQuawQAdNZsgjbKn4ztM23fYvs+2/faflc9/ddtf9X2l21/1vaagXneZ3uD7a/ZfvV4twgAoMtIzgAAnTXp5EzSQUmXRcS5kl4i6VLb50q6WdJ3RcT3SPp7Se+TpLrtjZJeIOkiSb9ru+yrcgBA75GcAQAwTxGxKSLuqh/vlHS/pHURcVNEzF4vdJukM+rHF0u6NiL2RcQ3JW2QdMGk+w0A6AYKggAAOmtM9wistX3HwN/rI2L9kU+yfbakF0m6/Yimn5b0h/XjdaqStVkb62kAADwDyRkAoLPGlJxtiYjzsyfYXiXpM5LeHRE7Bqb/oqpLHz81jo4BAPqN5AwA0EnTqtZoe5mqxOxTEXH9wPSfkvQ6Sa+Mb3fsYUlnDsx+Rj0NAIBnGJqc2b5K1cFmc0R8Vz3tRFWXbJwt6QFJb4iIrcOWFRGNJTxLS4KWln0fVva+SVYONiujKuUl8bNS+sOW22RYedom2XbLys9m2ybb3tnrZaVSs/KsmWyZpYHesFK42f6dvU9Z2ziC0pKSvll5XaBvXH3QXSnp/oi4YmD6RZLeI+mHImL3wCw3SPoD21dIerakcyR9YYJdxhSMMnaatOxYXjrfYkrJl5avz4ZMytqyeKy0rTQGymRxRXZczobMyYYhKm3L9othcVxpnDOOOG+S5hO9X62qwtSg90r6XEScI+lz9d8AAEzUFKo1vkzSmyW9wvbd9c9rJX1M0vGSbq6n/V7dv3slXSfpPkl/LunSiCgf3AddcbWInQAUGHr6KCJurW96HnSxpAvrx9dI+u+SfmGUHQMAYJhJfwsaEZ+XNNdXwTcm83xI0ofG1im0DrETgFKl95ydGhGb6sePSjp1RP0BAGDeunCJClAjdgIw1KILgkRE2G48Otq+RNIl9ePFvhwAAN9CcoYuWkjsBODoUjoI9WO2T5ek+vfmpidGxPqIOD8izic5AwAAR6mi2GlivQPQCqXJ2Q2S3lI/foukPxlNdwAAmJ9xFAPhTBzGiNgJwFDzKaX/aVU3sK61vVHS5ZI+LOk622+T9KCkN8znxWw3lhPNSolmB8vSEuWZ0pLwWZl5qbx0a9af7DVLy8ged9xxRa+XvYfZe7Fr167Gtqzk6549e4peL5PNl637sHKw2X46DqUljUuGmOCMOKaJZAptNMrYqU2yz/txldIvjXOy4YtWrlzZ2LZq1aqituz1sn6WltLPhpnKSts/9dRTjW27d+9ubMvmK90vhn1+Z+3Z+mfzlcYskzzWzKda45saml454r4AALAgJGdoI2InAKUWXRAEAIBpITkDAPRJ6T1nAAAAAIAR4swZAKCzOHMGAOgTkjMAQCdRXREA0DckZwCAziI5AwD0yUSTsyVLljSWGs1KYmZK5ystl5+Vgx1WLj3r6+HDhxvbsjL7WTnY1atXN7adcMIJjW1ZKf2sjGxpqdjNmxvH4UzL5Wcl+Ldt29bYlpXlzZaZlZgdVro/K7Wf7TfZfpG1ZbK+lv5fANNCcgYsXGnp83GUyx92bFm+fHljWxYDZbFMFh+tWbOmse1Zz3pWY9vxxx/f2Jb1M4tJss+3LK7I4pUdO3Y0tm3fvr2xrbTkf2ZYHFMaA2VtiyntPykUBAEAAACAFuCrcABAZ7Xlm04AAEaB5AwA0EkUBAEA9A3JGQCgs0jOAAB9wj1nAAAAANACnDkDAHQWZ84AAH0y8eSsqdRqVoa99OCblcvMLKZcfqZ0PbKSr1mp2LVr1za2nXzyyY1tWZn9rC9Zqdhsm2bLzMrBPvbYY41tWcnXrC+lpVmzfi7mNcexL0769YBxIjkDJmccZfazUvJSHh9mcUdW2j6Lc7LY6aSTTmpsKy2znw0VkNm7d29jWzYs0NatW0felyyuyIaRGjYcVtaexSTZ/pYdM0rzhlEfhzhzBgDoLJIzAECfkJwBADqJao0AgL6hIAgAAAAAtABnzgAAncWZMwBAn5CcAQA6i+QMANAnJGcAgM4iOQMA9MlEk7OI0J49exrbmmQlOpcubV6FrDxrVn41W2ZWZvOYY45pbBvWnpWKzcrlZ+VZTz311Ma2s846q7HttNNOa2w78cQTG9uyEqxZ2+OPP17Uduyxxza2Ze9habn4AwcONLbt37+/sW1YfzKlpWJLy+Vn8wFtRHIGjNY4yuVnw9sMOz5m8cM4SulnQw1lcVVWgj8bMiiLDbPPt6Z4WpK2b9/e2JbFm5ksBspK3mfx0bDYqfQ1s9iptFz+JFEQBAAAAABagMsaAQCdRCl9AEDfkJwBADqL5AwA0CckZwCAziI5AwD0CckZAKCzSM4AAH1CQRAAAAAAaIGhZ85sXyXpdZI2R8R31dM+IOntkmbrnL8/Im4ctqzDhw9r3759c3eksCR+acnwrC0rs5mVIB1WDjYriZ+VhV+1alVjW1a6NSuJf+aZZxa1ZaX0s/cpk5W0zcrPZu9hVn61aR+U8tK0u3fvLlqmlL+/w0rJlsjWP5Nt0yZdKEuL/uLMGdpolLFTm0yjlH4Wd2Vl6LPYac2aNY1tJ510UmPbKaec0tiWxVxZnJMNB5DFuFm8ksWb2fuUlaffu3dvUV+eeuqpxrZsmIRhr1ka45eW2Z/ksWY+kdjVki6aY/pHIuK8+qdTHy4AgO6brdY46h9gBK4WsROAAkOTs4i4VdKTE+gLAAALMunkzPaZtm+xfZ/te22/q55+ou2bbX+9/n1CPd22f9v2Bttftv3iCWwWTBmxE4BSi7nn7J31geaq2YMQAAA9d1DSZRFxrqSXSLrU9rmS3ivpcxFxjqTP1X9L0msknVP/XCLp45PvMlqE2AlAqjQ5+7ik50k6T9ImSb/Z9ETbl9i+w/YdXC4CABilSZ85i4hNEXFX/XinpPslrZN0saRr6qddI+n19eOLJX0yKrdJWmP79DFsCrRfUew0ob4BaImiUvoR8djsY9ufkPSnyXPXS1ovSTMzM2RnAICRmeaXfrbPlvQiSbdLOjUiNtVNj0o6tX68TtJDA7NtrKdtEo4qpbGTbWIn4ChSlJzZPn3gIPQjku4ZXZcAAJifMSVna484Y7G+Dpa/xfYqSZ+R9O6I2DFY5SsigoAaRyJ2AjAf8yml/2lJF6o6WG2UdLmkC22fJykkPSDpHfN9wZIDaVZGdceOHY1tWXnWrDxpVvI1K885rBxs6XABWTnY448/vrEtKxVb2pa9F6VKhwrI3vutW7cWvV5W0jYr+TqsHGxWujXbF7N9Jit5my0za8uUlNkHxmmM1RW3RMT5TY22l6lKzD4VEdfXkx+bDb7ryxY319MfljQ4PskZ9TT02Khjp8I+tKZtXLFTVko/O55npeZLy+yffPLJRfNlQ+1kn2+7du1qbMu2dzZ8z86dOxvbxhE7DXvvS+Px0v20LYYmZxHxpjkmXzmGvgAA0GqujuxXSro/Iq4YaLpB0lskfbj+/ScD099p+1pJ3ydp+8DZE/QUsROAUkWXNQIA0AZTuOfsZZLeLOkrtu+up71fVVJ2ne23SXpQ0hvqthslvVbSBkm7Jb11or0FAHQKyRkAoLMmnZxFxOclNV0X88o5nh+SLh1rpwAAvUFyBgDoLIZoAQD0CckZAKCzSM4AAH1C+TUAAAAAaIHWnDnLSmJmJcOz8p1ZefqsbVhpzyZZP6W8JGhW1jUrfZ7Nl5Whz0q+Zts0U1pqvXT9TjnllMa2rMz+E0880diWlbTNtsvu3bsb26S8dG0m2xez8rR79+4ter3s/6Jp/+5CWVr00xhL6QNYoHGU2Zfy2Kn0GJkdz7O20qGNVq9e3diWxTnZ51u2Xfbt21f0elkMlA2lVBpTZ+sg5fvGpEvpl85XcoxqTXIGAMBCkZwBAPqE5AwA0FkkZwCAPiE5AwB0FskZAKBPKAgCAAAAAC3AmTMAQGdx5gwA0CckZwCATqJaIwCgbyaanNluLMWZlTwdtswmWZnNcRzQh5UEzUrtZ+XkszKk2fqXzpcpLV2aGbbdmmRlXbN1H0fJ12HDL5SWgy1ty9bxwIEDjW3ZPnro0KE5pxMcY5rY/4D2W8yQK+Mo0Z/Nlx3rS+OAxZSTL5mvtG0c8chiytofrUP1cOYMANBZJGcAgD6hIAgAAAAAtABnzgAAncWZMwBAn5CcAQA6i+QMANAnJGcAgE6iWiMAoG+45wwAAAAAWmCiZ86WLFmiY489trGtyVNPPdXYlpVTL9VUMlzKS5Bm80l5ufysvHkme819+/Y1tu3fv7+xLetntv7j+AY760vp0ATZts62S7ath6373r17i14zW27ptsnasv/Dpu3GmQtME/sf0H6lx7LFzFsyNIxUHiNkMVfWVhpXlcZ4WVvpNsvasvdo2Od31j6OtrbgskYAQGd14UALAMB8kZwBADqL5AwA0CckZwCAziI5AwD0CQVBAAAAAKAFOHMGAOgkSukDAPqG5AwA0FkkZwCAPpl4Kf2m0vdZ6dKsbeXKlUV9yUp7ZuXEF1MStHQdd+zYUdT2+OOPN7atWbOmsW358uWNbatXr25sW7q0bHfKSrdu3769se3JJ59sbHviiSca23bu3NnYlpW837NnT2PbsKEQslK5mdLytJls+Illy5Y1tjWt465du4r6AYwCyRkwWqX/U6Ul74e9XhYjlJaMz47nWYyQxVzHHXdcY1sWA2RxR7ZtsmGmstgpW7/seL579+7GtqysfxYfZe+ttLghjEZtkuX5h95zZvtM27fYvs/2vbbfVU8/0fbNtr9e/z5hpD0DAGCI2UsbR/kDLBaxE4BS8ykIclDSZRFxrqSXSLrU9rmS3ivpcxFxjqTP1X8DAAAc7YidABQZmpxFxKaIuKt+vFPS/ZLWSbpY0jX1066R9Pox9REAgDlx5gxtROwEoNSCbhKyfbakF0m6XdKpEbGpbnpU0qkN81wi6RKp/J4kAACORDKFLlhs7ATg6DLvbMn2KkmfkfTuiNhh+1ttERG25zxCRsR6Sesl6ZhjjuEoCgAYGZIztNkoYqem5wDop3klZ7aXqfpw+VREXF9Pfsz26RGxyfbpkjaPq5MAAMyF5AxtRewEoMTQ5MzV1zxXSro/Iq4YaLpB0lskfbj+/SfDlnX48OHGcptZmdWsvPew12uSle/MSumXziflJUGzEqVZudSsZPzmzc2f+Vk59UxWmnbVqlWNbdl7mJX837p1a2Pbgw8+2Nj26KOPNrZlZWRLS9dn80n5+mdDF5SWJs4uIc7e+2OPPbaxrUk2pAEAHI1GGTuVKv3iYvDs3kKWmR2TSuMxqbxcfhY7ZSXxt23b1tiWHSOzGDArNZ8NCZVt7yxuzGKnLVu2NLZl6z7pMvtSeUy2mKEb2mA+Z85eJunNkr5i++562vtVfbBcZ/ttkh6U9Iax9BAAgAZdONDiqETsBKDI0OQsIj4vqelrlFeOtjsAAMwfyRnaiNgJQCnKJwIAOolqjQCAvpnPINQAAKBm+yrbm23fMzDtPNu32b7b9h22L6in2/Zv295g+8u2Xzy9ngMA2o7kDADQWVMahPpqSRcdMe3XJH0wIs6T9J/qvyXpNZLOqX8ukfTxUaw3AKCfuKwRANBZ07isMSJurQcWftpkSavrx8+S9Ej9+GJJn4yqo7fZXjNbSn0yvQUAdMnEk7NhJVPnsnr16sa2rAxnaZnNTFb2fFg59ayc6MzMTGPb3r17G9uy8qWPPPJIY1u23bZv397Ytnbt2sa24447rrEtKyWfrcNjjz3W2JaVy8/K82fldbOyvIsJArN1zMrTZv8v2f6UtWWy/bBJ6f8SMApjSs7W2r5j4O/19aDAmXdL+gvbv6HqqpTvr6evk/TQwPM21tNIztBK2f9UaVsWHw2LC7N4Zc+ePY1t2bE1KxmfxXlZufysn9kQPtnwNtk2zdY9GyogG4Ipa8u2WRZXZTFsFnNJ+b6R7VPj2IcniTNnAIDOGtPBdEtEnL/AeX5W0r+PiM/YfoOqMa7+xei7BgDoM+45AwBg8d4i6fr68f8r6YL68cOSzhx43hn1NAAAnoHkDADQSeMoBrKIM3GPSPqh+vErJH29fnyDpP+1rtr4Eknbud8MANCEyxoBAJ01jXsEbH9a0oWq7k3bKOlySW+X9FHbSyXtVVWZUZJulPRaSRsk7Zb01ol3GADQGSRnAIDOmlK1xjc1NP2zOZ4bki4db48AAH1BcgYA6Ky2VNcCAGAUJpqczczM6MQTT5yzLSvRuXRpczezkuHDSts3yUqlZmU/bafLzcqsZuuRlYPNXjMrQZqVWc1K8J9wwgmNbatWrWpsy7ZpVoo92y+ykq/ZNsu2dVbuNisVm23PYf3JyuFmsu2W7ftZWf9sH21qKxkeAwDQPdmXIaXDF2XHHSk/ZmfHs2wInyyuzJQeW7OhhrLS/dn2zuLR0mEEnnzyyaL5stgpi3EWU0q/dH/rwhd6nDkDAHRWFw60AADMF8kZAKCTFlldEQCA1iE5AwB0FskZAKBPSM4AAJ1FcgYA6BMGoQYAAACAFuDMGQCgszhzBgDok4kmZ8uXL9e6devmbMvKlGdlVDNZCc6stHvpfMNK92fLzebdsmVL0TKz8rQrVqxobMtKvmblSbP3aWZmprGttARrVtZ17969jW2lwxZk5fKHldLPyvZm5X6ztiwoLd1Ps/2pabsRHGOa2P+AhSv9vyktpV963JHKY4vsOJgNQ5StR1b6PYtlVq5c2dhWWtY/i/Gysv6lcc727duLljmuUvrZPjWO/XuSxxrOnAEAOolqjQCAvuGeMwAAAABoAc6cAQA6izNnAIA+ITkDAHQWyRkAoE9IzgAAnUVyBgDoE5IzAEBnkZwBAPpkosnZ/v379cgjjyx4vqyMalYONStDnpVYzWRlPbOSrlJenjVbbraOWfnSrMzq8uXLG9uyEqxZmdXS7Z2tQ7bNMqUl+LPtkpXCHTbcQ1bav3S+rARtVmK2dJsec8wxc04vXTcAQLeUlhrPjklZjCPl8UPp8Sc7DpaWqM9K6WfDFw2LHZuUDH0j5fFRtn7ZkFfZMrP3KNvWUnksk7V14Qu9oRmK7TNt32L7Ptv32n5XPf0Dth+2fXf989rxdxcAgMpsKf1R/wCLRewEoNR8zpwdlHRZRNxl+3hJd9q+uW77SET8xvi6BwBAM5IptBSxE4AiQ5OziNgkaVP9eKft+yWtG3fHAAAYhuQMbUTsBKDUgm68sn22pBdJur2e9E7bX7Z9le0TGua5xPYdtu/Irh0FAGChuKwRbbfY2GlS/QTQDvNOzmyvkvQZSe+OiB2SPi7peZLOU/Xt0G/ONV9ErI+I8yPi/NKbHgEAALpmFLHTpPoKoB3mVa3R9jJVHy6fiojrJSkiHhto/4SkPx1LDwEAaMCZLrQVsROAEkOTM1c1Tq+UdH9EXDEw/fT6mmpJ+hFJ9wxb1qFDh7R169Y527Kyn6Vl7zPjOKAPu2wzKxmarePSpc1vU1a+NCuzmvU1a8teL+tnViq3tPxuJisHm5Wgz96jrC9tKydfWi4f6BIuQ0RbjTJ2mrTS/6nS485iYqdMth6lQxtlx/os7sjio3EM7ZS1ZTFQFouXtpXGXFJ5Kf3SIR/acjyZz5mzl0l6s6Sv2L67nvZ+SW+yfZ6kkPSApHeMoX8AADRqy8EUOAKxE4Ai86nW+HlJc532uHH03QEAYP5IztBGxE4ASo3+ekEAAAAAwILNqyAIAABtxJkzAECfkJwBADqJgiAAgL4hOQMAdBbJGQCgT7jnDAAAAABaYKJnzg4ePKgnnnhizrZsnIeVK1c2tmXjZ2VKx+PI+pmN5SBJMzMzRa9ZKvtGORsDI+tn1lY6Vkc2/kfWz0w23siOHTsa20rXYdeuXWn76tWrG9vaNCZZyVkIzlxgmtj/gPYrHXNMKo8DSsdQzcbeysbzyuKjcYxzVjpWW9aWrfs45hs2xl3W3oXxykpxWSMAoLO6fhAGAGAQyRkAoLNIzgAAfUJyBgDoJKo1AgD6hoIgAAAsgO2rbG+2fc8R03/O9ldt32v71wamv8/2Bttfs/3qyfcYANAVnDkDAHTWlM6cXS3pY5I+OTvB9sslXSzphRGxz/Yp9fRzJb1R0gskPVvSX9p+fkTkd8IDAI5KnDkDAHTW7KWNo/yZx2veKunJIyb/rKQPR8S++jmb6+kXS7o2IvZFxDclbZB0wei2AACgTyZ+5mxY2cxJyQ7ApeX5h8lKjWYlUbP+ZOsxrLR/k9KSr6VtmWwdsmWWlsnNZO/DsFLApeXys/my975027SprD8wHy265+z5kn7Q9ock7ZX08xHxRUnrJN028LyN9TSgc8bx/7aY405Wpj1bbnYcLI0fSmOg0pizdHiC0nUfR9uw934xQzCULLMtuKwRANBZYzrQrrV9x8Df6yNi/ZB5lko6UdJLJH2vpOtsP3ccnQMA9BfJGQAAT7clIs5f4DwbJV0fVbb4BduHJa2V9LCkMweed0Y9DQCAZ+CeMwBAJ43jfrNFnIn7Y0kvlyTbz5e0XNIWSTdIeqPtFbafI+kcSV9Y/NoDAPqIM2cAgM6axv0Dtj8t6UJVlz9ulHS5pKskXVWX198v6S31WbR7bV8n6T5JByVdSqVGAEATkjMAQGdNIzmLiDc1NP1kw/M/JOlD4+sRAKAvSM4AAJ3VhcpbAADM10STM9s65phj5mwrLTOazVdanj5TWhJeyvtTWva01MzMTGNbto6lZfaz18vs27evaJnZ+1s6NEHWNmz9snK/2ftbWia4tMTsYvZvAMDRa1xflJQOKTOOUvPjKJc/jlL6pes+jrbFlMMv3ae6/qUdZ84AAJ3V9YMwAACDSM4AAJ20yOqKAAC0DskZAKCzSM4AAH1CcgYA6CySMwBAn3D3PwAAAAC0AGfOAACdxZkzAECfDE3ObB8j6VZJK+rn/1FEXG77OZKulXSSpDslvTki9mfLWrJkiVasWLHgTo6jvPdiyqKXysqzlpYoLR1KIJOVy8/ev2XLljW2Zdu7ZJ8YtszSkv/Ze5TtF8PW4cCBA41tpe9TqVEPI1G6PGAUSM7QRqOMnfpgMf+n2bylQ+Nk85UOwzSOtkxpKf2utA3T58/++WQ9+yS9IiJeKOk8SRfZfomkX5X0kYj4DklbJb1tbL0EAOAIs9UaR/0DjACxE4AiQ5OzqOyq/1xW/4SkV0j6o3r6NZJeP44OAgAAdAmxE4BS87pe0PaM7bslbZZ0s6R/kLQtIg7WT9koaV3DvJfYvsP2HZO+fAsA0G+cOUNbjSp2mkhnAbTGvAqCRMQhSefZXiPps5K+c74vEBHrJa2XpGXLlnHUAwCMDMkU2mpUsZNtdnLgKLKgao0Rsc32LZJeKmmN7aX1N0BnSHp4HB0EAKAJyRnajtgJwEIMvazR9sn1tz6yvVLSD0u6X9Itkn60ftpbJP3JmPoIAMCcuKwRbUTsBKDUfM6cnS7pGtszqpK56yLiT23fJ+la2/+XpL+TdOWwBUVEY6nyrLx51paVKD948GBj2zgMK/lf2tesTHt2H19pGdlM1s/SZS5fvryxbe/evUWvl7WVltIv3daLmbf0Ps3S4SfGMWwFAByFRhY79d2w42dpufzS1yyNZSY93zjWvXS+Sfel74YmZxHxZUkvmmP6NyRdMI5OAQAwDGe60FbETgBKLeieMwAA2oTkDADQJyRnAIDOIjkDAPQJyRkAoLNIzgAAfcLd/wAAAADQApw5AwB0FmfOAAB9MtHk7PDhw9qzZ8+cbcuWLWucLyu1npV2Ly2LnrVlfRlW9ry0rytXrixaZibra+mwBqVtS5c274bZfpEpLQk/ruEXsvc3M45S+qXbpqncb2kZYGCxqNYI9N+k/8dLy+z34bNoHOvQh+0yaZw5AwB0Fgd+AECfkJwBADqL5AwA0CcUBAEAAACAFuDMGQCgszhzBgDoE5IzAEBnkZwBAPqE5AwA0ElUawQA9M1Ek7OlS5fqhBNOmLMtO8CWlsRfsWJFY1tpifas1PqwICHrz8zMTGPbrl27GttKS61nr5dtm6zsffY+HThwoLFt27ZtjW3Z+u3fv7/o9bJllgZ6iyknn223bH8rfe8z2fvbtM8QHAMA2oZj08KxzdqBM2cAgM4imAAA9AnJGQCgs0jOAAB9QnIGAOgskjMAQJ+QnAEAOovkDADQJwxCDQAAAAAtQHIGAOik2VL6o/4ZxvZVtjfbvmeOtstsh+219d+2/du2N9j+su0Xj2FTAAB6YqKXNR46dKixLHx2QMzKiZcqLUO+mL4sWdKcC2fl67O+lq5H1pfMOMq3b9++vbEt2y/GsV0yWZn5YQFdVi4/K8NfOuTDOC71aloHLivDNE1p/7ta0sckfXJwou0zJb1K0j8OTH6NpHPqn++T9PH6N4CO4XiHSeDMGQCgs6Zx5iwibpX05BxNH5H0HkmDC7lY0iejcpukNbZPH8W6AwD6h4IgAIDOGtM32Wtt3zHw9/qIWJ/NYPtiSQ9HxJeOOBu+TtJDA39vrKdtGlVnAQD9QXIGAMDTbYmI8+f7ZNvHSnq/qksaAQAoRnIGAOisltwD8jxJz5E0e9bsDEl32b5A0sOSzhx47hn1NAAAnoHkDADQSfO9R2wC/fiKpFNm/7b9gKTzI2KL7RskvdP2taoKgWyPCC5pBADMieQMANBZ00jObH9a0oWq7k3bKOnyiLiy4ek3SnqtpA2Sdkt660Q6CQDopIkmZ4cPH96yc+fOB+s/10raMs7X27t370KePvb+LAB9mRt9mdu0+3LWFF8bR7lpJGcR8aYh7WcPPA5Jl467T+i1LZImFjstQJv6IrWrP/RlbvTl2xpjp4kmZxFx8uxj23cs5IbrcWtTf+jL3OjL3NrUFwDAaLU1dmpTX6R29Ye+zI2+zA+XNQIAOqsN95wBADAqJGcAgM4iOQMA9Mk0k7N0QM8paFN/6Mvc6Mvc2tQXYGLaUq0RmKA2fd63qS9Su/pDX+ZGX+bBHNgAAF20fPnyOO2000a+3IceeujOtt6LAADoNy5rBAB0Fl8wAgD6hOQMANBZJGcAgD5ZMo0XtX2R7a/Z3mD7vdPow0BfHrD9Fdt3275jCq9/le3Ntu8ZmHai7Zttf73+fcIU+/IB2w/X2+du26+dUF/OtH2L7fts32v7XfX0iW+bpC8T3za2j7H9BdtfqvvywXr6c2zfXv9P/aHt5ePuC9AGs/edjfIHaCNip2+9dmvipqQ/04gPWhM3DekPsdMQE0/ObM9I+h1Jr5F0rqQ32T530v04wssj4rwp3WNwtaSLjpj2Xkmfi4hzJH2u/ntafZGkj9Tb57yIuHFCfTko6bKIOFfSSyRdWu8n09g2TX2RJr9t9kl6RUS8UNJ5ki6y/RJJv1r35TskbZX0tgn0BZg6kjMcDYidnuZqtSduauqPNPn4oE1xU9YfidgpNY0zZxdI2hAR34iI/ZKulXTxFPrRChFxq6Qnj5h8saRr6sfXSHr9FPsyFRGxKSLuqh/vlHS/pHWawrZJ+jJxUdlV/7ms/glJr5D0R/X0ie0zAICJIHaqtSluSvozcW2Km4b0Z+K6FjtNIzlbJ+mhgb83akpvVi0k3WT7TtuXTLEfg06NiE3140clnTrNzkh6p+0v16fuJ3apwCzbZ0t6kaTbNeVtc0RfpClsG9sztu+WtFnSzZL+QdK2iDhYP2Xa/1PARIzjrBlnztBSxE65tsVN0hRjpzbFTXP0RyJ2Sk3lnrOW+YGIeLGqSwUutf3Pp92hQVFFCtOMFj4u6XmqTgNvkvSbk3xx26skfUbSuyNix2DbpLfNHH2ZyraJiEMRcZ6kM1R9m/qdk3hdoI1IzoCpaG3s1IK4SZpi7NSmuKmhP8ROQ0wjOXtY0pkDf59RT5uKiHi4/r1Z0mdVvWHT9pjt0yWp/r15Wh2JiMfqHfqwpE9ogtvH9jJV/9Cfiojr68lT2TZz9WWa26Z+/W2SbpH0UklrbM9WX53q/xQwSSRnOEoQO+VaEzdJ04sP2hQ3NfWH2Gm4aSRnX5R0Tl0hZbmkN0q6YQr9kO3jbB8/+1jSqyTdk881ETdIekv9+C2S/mRaHZn9h679iCa0fWxb0pWS7o+IKwaaJr5tmvoyjW1j+2Tba+rHKyX9sKrruG+R9KP106a6zwCTRHKGowSxU641cZM0tfigNXFT1h9ip+E8jQNRXTbztyTNSLoqIj408U5U/Xiuqm98pGrMtz+YdF9sf1rShZLWSnpM0uWS/ljSdZL+iaQHJb0hIsZ+s2lDXy5Udeo5JD0g6R0D1y6Psy8/IOlvJH1F0uF68vtVXa880W2T9OVNmvC2sf09qm5anVH15cp1EfFL9b58raQTJf2dpJ+MiH3j7AswbcuWLYsTThj97QqPP/74nTGd6r1AI2Knb71+a+KmpD8XavLxQWvipiH9IXYaYirJGQAAi7Vs2bJYs2bNyJe7ZcsWkjMAwFQsHf4UAADah8sQAQB9Q3IGAOgskjMAQJ+QnAEAOovkDADQJ4xzBgAAAAAtwJkzAEBnceYMANAnJGcAgM4iOQMA9AnJGQCgk6jWCADoG+45AwAAAIAW4MwZAKCzOHMGAOgTkjMAQGeRnAEA+oTkDADQWSRnAIA+ITkDAHQWyRkAoE8oCAIAAAAALcCZMwBAJ1FKHwDQNyRnAIDOIjkDAPQJyRkAoLNIzgAAfUJyBgDoLJIzAECfUBAEAAAAAFqA5AwA0FmzRUFG+TOM7atsb7Z9z8C0X7f9Vdtftv1Z22sG2t5ne4Ptr9l+9Xi2BACgD0jOAACdNI7EbJ6XSV4t6aIjpt0s6bsi4nsk/b2k90mS7XMlvVHSC+p5ftf2zKi2AQCgX0jOAACdNY3kLCJulfTkEdNuioiD9Z+3STqjfnyxpGsjYl9EfFPSBkkXjG4LAAD6hIIgAIDOamlBkJ+W9If143WqkrVZG+tpAAA8A8kZAABPt9b2HQN/r4+I9fOZ0fYvSjoo6VNj6RkAoNdIzgAAnTWmM2dbIuL8hc5k+6ckvU7SK+PbHXtY0pkDTzujngYAwDNwzxkAoLOmVBDkGWxfJOk9kv5VROweaLpB0httr7D9HEnnSPrColccANBLnDkDAHTVX0haO4blbskabX9a0oWqLn/cKOlyVdUZV0i62bYk3RYRPxMR99q+TtJ9qi53vDQiDo2hzwCAHnBLb6YGAAAAgKMKlzUCAAAAQAuQnAEAAABAC5CcAQAAAEALkJwBAAAAQAuQnAEAAABAC5CcAQAAAEALkJwBAAAAQAuQnAEAAABAC/z/jRVXeCerfbkAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "x2=np.arange(0,35,1)\n", + "y2=np.arange(0,35,1)\n", + "y2,x2 = np.meshgrid(x2,y2)\n", + "recorte2 = trim(Escalagrises3[:,:,0], 645, 535, 35, 35)\n", + "xdata2 = np.vstack((x2.ravel(),y2.ravel()))\n", + "popt2, pcov2 = curve_fit(gauss2d, xdata2, recorte2.ravel(), p0=[1,0,1,1,1])\n", + "estrella2=gauss2d(xdata2, popt2[0], popt2[1],popt2[2], popt2[3], popt2[4])\n", + "FWHM2=FWHM.append(2*np.sqrt(2*np.log(2))*np.sqrt(popt2[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 2 fotografÃa\")\n", + "plt.imshow(recorte2, plt.get_cmap('gray'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 2 a partir de la gaussiana\")\n", + "plt.imshow(estrella2.reshape(35, 35), plt.get_cmap('gray'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 3 (blanco y negro)" + ] + }, + { + "cell_type": "code", + "execution_count": 306, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAFTCAYAAAC9P3T3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAwpElEQVR4nO3de7hkdX3n+/end3fTXETUjgh0j6CD5KCJykGi8cSoJIrGsc2cxMGJBi8jMSEJ5jDHiDkTzDkx48Qcb2NipqOIPuFIOIqGY4iCl2icI5iGCAiIdhShsaFplTt09+7+zh+1thab3pfeq3ZVrer363nq2VWr1m+tb62qXfX91u+3fpWqQpIkSZI0WitGHYAkSZIkyeJMkiRJksaCxZkkSZIkjQGLM0mSJEkaAxZnkiRJkjQGLM4kSZIkaQysHHUAkiQtxSmnnFLbt28f+HavvPLKz1TVKQPfsCRJC7A4kyR10vbt29m0adPAt5tk7cA3KknSIjisUZLUWVU18Mt8kqxP8oUk1ye5LsmZfff9TpJvNMv/tG/52Uk2J7kxyQuX8XBIkjrOnjNJUmctVEwtg2ngrKq6KskjgCuTXAYcDmwAnlpVO5I8FiDJ8cCpwJOBI4HPJnlSVe0eduCSpPFncSZJ6qxhF2dVtRXY2ly/J8kNwFHA64G3V9WO5r5tTZMNwAXN8u8k2QycBHxlqIFLkjrBYY2SpE5ajiGNTbG3Nsmmvsvpe9t/kqOBpwNXAE8Cfi7JFUm+mOQZzWpHAbf0NdvSLJMk6WHsOZMk6aG2V9WJ862Q5BDg48Abq+ruJCuBRwPPBJ4BXJjkCcsfqiRpklicSZI6awTnnJFkFb3C7PyquqhZvAW4qHoBfTXJHmAtcCuwvq/5umaZJEkP47BGSVJnjWC2xgAfBG6oqnf23fVJ4HnNOk8CVgPbgYuBU5MckOQY4Fjgq4M/EpKkSWDPmSSps0bQc/Zs4FXAtUm+1ix7C3AucG6SrwM7gdOaXrTrklwIXE9vpscznKlRkjQXizNJUmeNYLbGLwOZ4+5XztHmbcDbli0oSdLEcFijJEmSJI0Be84kSZ20mHPEJEnqEoszSVJnWZxJkiaJxZkkqbMsziRJk8TiTJLUWRZnkqRJ4oQgkiRJkjQG7DmTJHWWPWeSpElicSZJ6iRna5QkTRqLM0lSZ1mcSZImieec7QeSHJ2kkqxsbv9Dkv8whP0myYeS/DDJV5d7f20lOS7J15Lck+R3m2XvTPLuEYcmSdJEGFVOMm6S/FySG1tuY0nHbvZz0GVJrkvy3FHHMUgWZ0OU5KYkDyS5t+/yvkW0qyT/ehgxLiTJF5LckeTuJFcn2TDP6v8L8IvAuqo6aRHbHvXjfBPwhap6RFW9N8nPAc8A/vcRxiRpHjNDGwd5kfYH+2FOMlKzj1tV/WNVHTfKmCZBVT25qv5h1HEMUucr5g76N1X12UFuMMnKqpoe5DbncSZwfVVNJ/kZ4LNJnlRVW/ey7uOBm6rqviHFNqdFHqPHAxf03T4G+HdVtWv5IpPUhsWU1Mr+lJOMxFKOx5CPocaMPWdjIsm/TvLFJHcl2Z7kb5rlX2pWubr5VuvfJXluki1Jfj/JbcCHkqxI8uYk/5Lk+0kuTPLoRez3iUk+37TZnuT8JIfNtX5VXdP3hlHAKmD9Xrb7OuADwLOauP+oWf76JJuT/CDJxUmOnOtxzrd+c98LktzYHLO/aI7ff2jue3WS/57kXUm+D7x1vsea5PPA84D3Nft/EvB84Lea+x+V5FPNN3Q/bK6vW+j4Slo+y9FrZrEnTV5O0mz7pCRfSXJnkq1J3pdk9Rzrzgz7Oz3J95r1/+Nit9W0PSPJt4BvzXfc+trc1BzDa4D7spchh0l+Mck3muflfUBm3f/aJDc0ecpnkjx+rmM3q91rmnb3JPl2kt+YZ92pJP938/x8J8lv56HDVOfcVpObfXnW9n7Uo5jkxUmub9reOnPMk6xt8q4708sH/zHJir7j9gv78Ly8Icm3mnX+PEma+/bptbecLM7Gx/8FXAo8ClgH/FeAqnpOc/9Tq+qQqvqb5vbjgEfT6+05Hfgd4GXAzwNHAj8E/nwR+w3wn5s2/xO9N7W3ztug9w/yIHAF8A/AptnrVNUHgTcAX2niPifJ85t9vRw4AvguTU/V3h7nfOsnWQt8DDgbeAxwI/Czs8L4GeDbwOHA2+Z7rFX1fOAfgd9u9v/NWdtaAXyI3vH+V8ADwILDPyQtL4szaVlMVE7S2A38HrAWeBZwMs0XsPN4HnAs8ALg92eKgEVu62X08pDj5zlus70C+CXgsNk9Z03ecxHwfzT7/Rfg2X33bwDeAvxb4Cfo5TQfXeDxzdgGvAQ4FHgN8K4kJ8yx7uuBFwFPA05oHudStzXbB4HfqKpHAE8BPt8sPwvYQu9xHU7vce7tzXoxz8tL6J2y8tP08ssXNsv3+bW3XCzOhu+TTbU+c3l9s3wXvTe1I6vqwar68jzbANgDnFNVO6rqAXqF0B9U1Zaq2kHvBfUre/vmpV9Vba6qy5rt3AG8k96b6XxtXgI8AngxcGlV7Vkg1hm/BpxbVVc1MZ5Nr2ft6CWs/2Lguqq6qHkDey9w26z236uq/1pV01X1wFIea99j/n5Vfbyq7q+qe+gVe4tqK0nSmNpvcpKqurKqLm9ygpuA/7bQtoE/qqr7qupael/QvmIftvWfq+oHzfFYrPdW1S1ztJnJez5WvdMt3s1D8543NPu8ocmL/gR42mJ6z6rq76rqX6rni/QK85+bY/WXA+9pntsfAm9vsa3ZdgHHJzm0qn5YVVf1LT8CeHxV7are+XoPK84W+by8varurKqbgS/QKzKX9NpbLhZnw/eyqjqs7/JXzfI30avav5rezDOvXWA7d1TVg323Hw98YuYNFriB3jcIh8+3kSSHJ7mg6T6+G/hret84zKv55/h74AVJXrrQ+o0j6fV+zWzjXuD7wFFLWP9I4Ja++4retyr9bum/sdTH2rQ9KMl/S/Ldpu2XgMOSTC2mvaTlsa+9You5SPuR/SYnSfKkppfttmbbf7KIbffnEd+ll3ssdlu3sO/ma7O3vKd//ccD7+k75j+g9xzOlWP9SJIXJbm8GTJ4J71CcK5j85A4Zse8j9ua7X9t1v9uesNqn9UsfwewGbi0GSr55jkex2Kel/6C9n7gkKbtknPEQbM4GxNVdVtVvb6qjgR+A/iLzD8b0uwM4hbgRbPeZNdU1a0L7PpPmm39VFUdCrySWWOYF7ASeOIi1/0evTcPAJIcTG9I4lwxzrf+VnpDLWbuS//txuxj1OaxngUcB/xM03ZmiMK+HCtJA2ZxJg3ehOYk7we+ARzbbPsti9h2//lr/4peXrLYbS3lzWS+Nlv742nynv74bqE3JLD/mB9YVf//fDtMcgDwceDPgMOr6jDgEuY+Ng/Jv2bFtNC27gMO6lv/cf0brqp/qqoNwGOBTwIXNsvvqaqzquoJwEuB/y3JyXuJbSnP8Yy2r72BsTgbE0l+NT+eYOKH9F4gM13ztwNPWGATfwm8bab7OslPZHFTyj4CuBe4K8lRzDNtfJKfbL4ROTDJqiSvpFekfHER+4He2OfXJHla8w/8J8AVTdczPPxxzrf+3wE/leRlzTCJM+iNeR/IY52j7QPAnemd1HzOPrSVtEwszqTBm9Cc5BHA3cC9SX4S+M1FxPOfmpEzT6Z3/tTMuWJL2dZijtt8/g54cpJ/2+Q9v8tD856/BM5uYiXJI5P86iK2uxo4ALgDmE7yInrn2M3lQuDMJEelN2HG7+/Dtq5uHsPTkqyh75yuJKuT/FqSR1Zv2ObdNK+5JC9Jb5KaAHfR64Xd2/DVpTwv/W2XmiMOlMXZ8P1/eehvinyiWf4M4Iok9wIXA2dW1beb+94KfLjpqn75HNt9T9Pu0iT3AJfTOxF1IX9E74TOu+j94180z7ppYtlG7x/vTHpTzV81T5sfqd50vf+J3rcqW+l9u3Vq3ypvpe9xzrd+VW0HfhX4U3pDHY+ndxLwjgE91tneDRwIbKd3bD+9D20lLYPlKMwszrSf2Z9ykv8I/HvgHuCv+HGhNZ8v0htO9zngz6rq0hbbeisLH7c59eU9b6eX9xwL/Pe++z8B/BfggmZY3tfpTdyx0HbvoVfoXUivEP/39J67ufwVvfPIrgH+mV7P2DSwe6FtVW+ytf8T+CzwLWD2uYyvAm5q4n8DvbkHaB7rZ+kVT18B/qKqvrCX2JbyvMxokyMOVPwg0iRIb0rVLcCvzfEPK2nCPPWpT61LL7104RX30eMe97grq+rEgW9YUiekN/HYd4BV5e+NzavpHfvLqlrUtP1amD1n6qwkL0xyWDPkcWZc8eUjDkvSENlzJknD0wwjfXGSlc3wv3OATyzUTotncaYuexa93/nYDvwberNO7cuUtZI6zuJMkoYq9IYA/pDesMYbgD8caUQTZt7fm5DGWVW9lRH9QKCk8WAxJWnQmonHnI15L6rqfnrnJGqZWJxJkjrL4kySNEkc1ihJkiRJY2CoPWcrVqyoqampYe7yYfbs2dvPIizeihWjr2cH8U1x76ciRhtDW20fwyAM4vXc9nFMT7ebSKpte4CqGv2Tof2O54hpf5DEF7k0gebKnYZanE1NTbF27doltx9EEvnggw+2ar9mzZrWMYw6GQdYubLdUz+IGNoeh0EUym2Lq0MOOaR1DG1fU9///vdbtb/99ttbtTc51ij5+pMkTRLPOZMkdZbFmSRpklicSZI6y+JMkjRJRn8ClSRJkiSpXXGW5JQkNybZnOTNgwpKkqTFGPaPUCdZn+QLSa5Pcl2SM2fdf1aSSrK2uZ0k720+J69JcsIyHg51gLmTpPkseVhjkingz4FfBLYA/5Tk4qq6flDBSZI0lxHN1jgNnFVVVyV5BHBlksuq6vok64EXADf3rf8i4Njm8jPA+5u/2g+ZO0laSJues5OAzVX17araCVwAbBhMWJIkLWzYPWdVtbWqrmqu3wPcABzV3P0u4E1A/0Y2AB+pnsuBw5IcMfADoa4wd5I0rzbF2VHALX23t/DjD6gfSXJ6kk1JNrX9jTFJkoZg7cznVnM5fW8rJTkaeDpwRZINwK1VdfWs1Rb1Wan9xj7nTkOLTNJYWPbZGqtqI7ARYNWqVU6rJUkamGUa1ri9qk6cb4UkhwAfB95Ib6jjW+gNaZRa68+d/BFqaf/Spji7FVjfd3tds0ySpKEYxVT6SVbRK8zOr6qLkvwUcAxwdRLofR5eleQk/KzUQ/l6kDSvNsMa/wk4NskxSVYDpwIXDyYsSZIWNoLZGgN8ELihqt7ZxHBtVT22qo6uqqPpDVU7oapuo/e5+OvNrI3PBO6qqq3LelA0zsydJM1ryT1nVTWd5LeBzwBTwLlVdd3AIpMkaR4jmq3x2cCrgGuTfK1Z9paqumSO9S8BXgxsBu4HXrPsEWpsmTtJWkirc86aD6O5PpAkSZooVfVlIAusc3Tf9QLOWOaw1CHmTpLms+wTgkiStFxGcc6ZJEnLZajF2fT0NNu3b19y+0MPPbR1DGvWrGm9jbamp6dbtW9OOG+lbUKzY8eO1jHs3r27VfupqanWMRxwwAGt2rd9DND++Wz7mj7kkENatb/vvvtatZfasDiTJE0Se84kSZ1lcSZJmiQWZ5KkzrI4kyRNkjZT6UuSJEmSBsSeM0lSJ41oKn1JkpaNxZkkqbMsziRJk8TiTJLUWRZnkqRJYnEmSeosizNJ0iRxQhBJkiRJGgP2nEmSOsueM0nSJLE4kyR1krM1SpImjcWZJKmzLM4kSZPEc84kSZIkaQzYcyZJ6ix7ziRJk8TiTJLUWRZnkqRJYnEmSeosizNJ0iSxOJMkdZKzNUqSJs1Qi7MVK1Zw4IEHLrn9ID6Ek7Rqv2JF+zlUDjjggFbtB3Ecdu3a1ap928cAMD093ar9qlWrWscwNTXVqv0gnoudO3e2at/2uWz7PJgcS5IkDYY9Z5KkzvLLAUnSJLE4kyR1lsWZJGmSWJxJkjrL4kySNEksziRJnWVxJkmaJEue3SLJ+iRfSHJ9kuuSnDnIwCRJkiaJuZOkhbTpOZsGzqqqq5I8ArgyyWVVdf2AYpMkaU5Opa8OMneSNK8lF2dVtRXY2ly/J8kNwFGAbzCSpKGwOFOXmDtJWshAzjlLcjTwdOCKQWxPkqTFsDhTV5k7Sdqb1sVZkkOAjwNvrKq793L/6cDpzfW2u5Mk6UcsztRF+5I7Sdq/tCrOkqyi9+ZyflVdtLd1qmojsBFgamrKT1FJkrTf2tfcKYm5k7QfWXJxll432AeBG6rqnYMLSZKkxbHnTF1i7iRpIUueSh94NvAq4PlJvtZcXjyguCRJmtfMbI2DvsxnrqnQk7wjyTeSXJPkE0kO62tzdpLNSW5M8sLlPSoac+ZOkubVZrbGLwOeRCZJGpkR9JztdSp04DLg7KqaTvJfgLOB309yPHAq8GTgSOCzSZ5UVbuHHbhGz9xJ0kLa9JxJkrRfqaqtVXVVc/0e4AbgqKq6tKqmm9UuB9Y11zcAF1TVjqr6DrAZOGnYcUuSumEgU+lLkjQKozznbJ6p0F8L/E1z/Sh6xdqMLc0ySZIeZqjF2YoVKzjggAOW3H7Xrl2tY5iammrVfsWK9p2NO3fubNV+enp64ZWWeRsHH3xw6xgG8XyO2o4dO0YdQuvX0549ewYUiTR8y1ScrU2yqe/2xmb2vB+Zayr0JH9Ab+jj+csRmLS/avtzTIPI39q+3/h5q8Ww50yS1FnLVJxtr6oT57pzrqnQk7waeAlwcv04sFuB9X3N1zXLJEl6GM85kyR10ohma9zrVOhJTgHeBLy0qu7va3IxcGqSA5IcAxwLfHXgB0OSNBHsOZMkafFmpkK/NsnXmmVvAd4LHABc1gy/uryq3lBV1yW5ELie3nDHM5ypUZI0F4szSVJnDXtCkHmmQr9knjZvA962bEFJkiaGxZkkqbNGOVujJEmDZnEmSeosizNJ0iSxOJMkdZbFmSRpkjhboyRJkiSNAXvOJEmdtJip7yVJ6hKLM0lSZ1mcSZImicWZJKmzLM4kSZPE4kyS1FkWZ5KkSeKEIJIkSZI0Buw5kyR1lj1nkqRJYnEmSeokZ2uUJE0aizNJUmdZnEmSJslQi7Pdu3dzzz33LLn9mjVrWsewatWqVu137tzZOobHPOYxrdqvX7++dQy33357q/bbtm1rHcO9997bqv2BBx7YOoaVK9v9C7RtD7BiRbtTP6emplq1P+igg1q1n56ebtVekjTZ2n5OQfvc6bGPfWzrGO68885W7dvmXgC7du1qvQ2NN3vOJEmdZc+ZJGmSWJxJkjrL4kySNEksziRJnWVxJkmaJBZnkqROcrZGSdKkaf0j1Emmkvxzkk8NIiBJkqRJZu4kaS6D6Dk7E7gBOHQA25IkadHsOVNHmTtJ2qtWPWdJ1gG/BHxgMOFIkrR4M0MbB3mRlpO5k6T5tO05ezfwJuAR7UORJGnfWEypg96NuZOkOSy55yzJS4BtVXXlAuudnmRTkk1+iEqSBsmeM3XJUnKnIYUmaUy0Gdb4bOClSW4CLgCen+SvZ69UVRur6sSqOjFJi91JkiR12j7nTsMOUNJoLbk4q6qzq2pdVR0NnAp8vqpeObDIJEmax3L0mtlzpuVk7iRpIf7OmSSpsyymJEmTZCDFWVX9A/APg9iWJEmLZXGmrjJ3krQ39pxJkjrL4kySNEla/c6ZJEmSJGkwhtpztnLlSh7zmMcsuf3OnTtbx3DnnXe2ar9iRft69pd/+Zdbtf+t3/qt1jF88pOfbNX+j//4j1vHsHr16lbt16xZ0zqGtjOI7tq1q3UMg3hdtzE9Pd2qvT0XGiVff9L4O/jgg1tv45RTTmnV/nWve13rGD796U+3an/uuee2jmHbtm2t2vueOf4c1ihJ6iRnV5QkTRqHNUqSOmvYU+knWZ/kC0muT3JdkjOb5Y9OclmSbzV/H9UsT5L3Jtmc5JokJwzhsEiSOsriTJLUWSP4nbNp4KyqOh54JnBGkuOBNwOfq6pjgc81twFeBBzbXE4H3r8cx0GSNBksziRJWqSq2lpVVzXX7wFuAI4CNgAfblb7MPCy5voG4CPVczlwWJIjhhu1JKkrPOdMktRZozznLMnRwNOBK4DDq2prc9dtwOHN9aOAW/qabWmWbUWSpFksziRJnbSME4KsTbKp7/bGqtrYv0KSQ4CPA2+sqrv7Z36tqkriTCWSpH1mcSZJ6qxlKs62V9WJc92ZZBW9wuz8qrqoWXx7kiOqamszbHFmvutbgfV9zdc1yyRJehjPOZMkaZHS6yL7IHBDVb2z766LgdOa66cBf9u3/NebWRufCdzVN/xRkqSHsOdMktRZIzjn7NnAq4Brk3ytWfYW4O3AhUleB3wXeHlz3yXAi4HNwP3Aa4YarSSpUyzOJEmdNezirKq+DGSOu0/ey/oFnLGsQUmSJobFmSSps0Y5W6MkSYNmcSZJ6qRlnK1RkqSRcEIQSZIkSRoD9pxJkjrLnjNJ0iSxOJMkdZbFmSRpklicSZI6y+JMkjRJhlqcrVixgoMOOmjJ7Xft2tU6hrYf5IOIYe3ata3ar1u3rnUM69evb9V+amqqdQyHHnpoq/YHH3xw6xjaPp+DeD3s2LGjVfsVK9qdOjo9Pd2qvcmxRsnXnzT+Vq5sn24+/vGPb9X+Oc95TusYbrrpplbt16xZ0zoGTT4nBJEkSZKkMeCwRklSJzmVviRp0licSZI6y+JMkjRJLM4kSZ1lcSZJmiStzjlLcliSjyX5RpIbkjxrUIFJkrSQmaGNg7xIy8ncSdJ82vacvQf4dFX9SpLVwNKnYpQkSZp85k6S5rTk4izJI4HnAK8GqKqdwM7BhCVJ0sLs6VKXmDtJWkibYY3HAHcAH0ryz0k+kKT9D09JkrQIyzGk0WJPy8zcSdK82hRnK4ETgPdX1dOB+4A3z14pyelJNiXZtHv37ha7kyTpoSzO1DH7nDsNO0BJo9WmONsCbKmqK5rbH6P3hvMQVbWxqk6sqhOnpqZa7E6SJKnT9jl3Gmp0kkZuycVZVd0G3JLkuGbRycD1A4lKkqRFsOdMXWLuJGkhbWdr/B3g/Ga2oW8Dr2kfkiRJi2MxpQ4yd5I0p1bFWVV9DbDLXZI0EhZn6hpzJ0nzadtzJknSSDgMUZI0adpMCCJJkiRJGpCh9pzt3LmTm2++ecntDznkkNYxHH744a3ab9mypXUMn/rUp1q1H8RxuPLKK1tvo60dO3a0ar969erWMezZs6dV+0F8a992FtO2x2HVqlWt2u/atatVe6kNe86k8Xffffe13sYll1zSqv0dd9zROoYbb7yxVfvvf//7rWPwPW/yOaxRktRZJiqSpElicSZJ6iyLM0nSJLE4kyR1lsWZJGmSOCGIJEmSJI0Be84kSZ3kVPqSpEljcSZJ6iyLM0nSJLE4kyR1lsWZJGmSeM6ZJKmzZoY2DvKykCTnJtmW5Ot9y56W5PIkX0uyKclJzfIkeW+SzUmuSXLCMh4OSVLHWZxJkrRvzgNOmbXsT4E/qqqnAX/Y3AZ4EXBsczkdeP9wQpQkdZHDGiVJnTWKYY1V9aUkR89eDBzaXH8k8L3m+gbgI9UL9PIkhyU5oqq2DidaSVKXWJxJkjppzGZrfCPwmSR/Rm9Uys82y48Cbulbb0uzzOJMkvQwDmuUJHXWMp1ztrY5b2zmcvoiQvlN4Peqaj3we8AHl/NxS5Imkz1nkiQ91PaqOnEf25wGnNlc/3+BDzTXbwXW9623rlkmSdLD2HMmSeqsUczWOIfvAT/fXH8+8K3m+sXArzezNj4TuMvzzSRJc7HnTJLUWaM45yzJR4Hn0hv+uAU4B3g98J4kK4EH6c3MCHAJ8GJgM3A/8JqhByxJ6gyLM0lSZ41otsZXzHHX/7yXdQs4Y3kjkiRNiqEWZ1NTUzzykY9ccvvVq1e3jmH37t2t2h9xxBGtY7j55ptbtX/HO97ROoZ77723Vfsf/vCHrWM47rjjWrXfs2dP6xjaHofp6enWMbTV9jXdNrkdo9nytJ8Zs9kaJc1hx44drbdx7bXXtmr/zW9+s3UMu3btatV+EMdBk89zziRJkiRpDDisUZLUWfacSZImicWZJKmzLM4kSZPE4kyS1FkWZ5KkSdLqnLMkv5fkuiRfT/LRJGsGFZgkSQsZo985kxbF3EnSfJZcnCU5Cvhd4MSqegowBZw6qMAkSZImibmTpIW0Hda4EjgwyS7gIOB77UOSJGlh9nSpo8ydJM1pyT1nVXUr8GfAzcBW4K6qunT2eklOT7IpyaZB/C6VJEkzHNaoLllK7jTsGCWNVpthjY8CNgDHAEcCByd55ez1qmpjVZ1YVSeuWOHPqkmSBsfiTF2ylNxp2DFKGq021dIvAN+pqjuqahdwEfCzgwlLkqSFWZypY8ydJM2rTXF2M/DMJAclCXAycMNgwpIkSZo45k6S5rXkCUGq6ookHwOuAqaBfwY2DiowSZIWYk+XusTcSdJCWs3WWFXnAOcMKBZJkhbNYYjqInMnSfNpO5W+JEkjY3EmSZokTp8oSZIkSWOgUz1nO3bsGPk2BvFbbatWrWq9jbZ2797dqv1BBx3UOoZt27a1aj81NdU6hgceeKBV+wcffLB1DOPwepC6yp4zaf+wc+fOkbaXhqVTxZkkSf0sziRJk8TiTJLUWRZnkqRJYnEmSeokZ2uUJE0aJwSRJEmSpDFgz5kkqbPsOZMkTRKLM0lSZ1mcSZImicWZJKmzLM4kSZPE4kyS1FkWZ5KkSeKEIJIkSZI0Buw5kyR1klPpS5ImjcWZJKmzLM4kSZPE4kyS1FkWZ5KkSWJxJknqLIszSdIkcUIQSZIkSRoDFmeSpM6amRRkkJeFJDk3ybYkX5+1/HeSfCPJdUn+tG/52Uk2J7kxyQuX4TBIkiaEwxolSZ00wtkazwPeB3xkZkGS5wEbgKdW1Y4kj22WHw+cCjwZOBL4bJInVdXuoUctSRp7Qy3Oqorp6eklt2/TdsaqVatatV+9enXrGNp64IEHRh3CQI7D3Xff3ap92+cSYOfOna3a797dPr9asWK0Hdh79uxp1d5zfjRKo3j9VdWXkhw9a/FvAm+vqh3NOtua5RuAC5rl30myGTgJ+Mqw4pUkdYfDGiVJnbVMwxrXJtnUdzl9EaE8Cfi5JFck+WKSZzTLjwJu6VtvS7NMkqSHcVijJEkPtb2qTtzHNiuBRwPPBJ4BXJjkCQOPTJI00SzOJEmdNUbDarcAF1UvoK8m2QOsBW4F1vett65ZJknSwzisUZLUWaOYrXEOnwSeB5DkScBqYDtwMXBqkgOSHAMcC3y1/SOXJE2iBYuzvU0ZnOTRSS5L8q3m76OWN0xJkh5qOQqzRU6l/1F6E3ocl2RLktcB5wJPaD4rLwBOq57rgAuB64FPA2c4U+PkM3eStFSL6Tk7Dzhl1rI3A5+rqmOBzzW3JUmaeFX1iqo6oqpWVdW6qvpgVe2sqldW1VOq6oSq+nzf+m+rqidW1XFV9fejjF1Dcx7mTpKWYMHirKq+BPxg1uINwIeb6x8GXjbYsCRJWtgYDWuUfsTcSdJSLXVCkMOramtz/Tbg8LlWbKYgPh1G/3tOkqTJYjGlDllS7iRp/9J6tsaqqiRzfjpW1UZgI8DKlSv9FJUkDYzFmbpoX3Kn+daTNHmWWpzdnuSIqtqa5Ahg2yCDkiRpMSzO1CHmTpIWtNRxhhcDpzXXTwP+djDhSJIkTSRzJ0kLWrDnrJky+LnA2iRbgHOAtwMXNtMHfxd4+XIGKUnSbE7goXFl7iRpqRYszqrqFXPcdfKAY5EkaZ9YnGkcmTtJWqrWE4JIkjQqFmeSpElicSZJ6iyLM0nSJBl6cbZnz54lt125sn24Bx54YKv2j3nMY1rHsHPnzlbtp6enW8ewY8eO1ttoa9WqVa3ar1mzpnUMbX97b9euXa1jmJqaGmkMbV9PJseSJEmDYc+ZJKmz/HJAkjRJLM4kSZ3kbI2SpEljcSZJ6iyLM0nSJLE4kyR1lsWZJGmStJsNQZIkSZI0EPacSZI6y54zSdIksTiTJHWSE4JIkiaNxZkkqbMsziRJk8RzziRJkiRpDNhzJknqLHvOJEmTxOJMktRZFmeSpElicSZJ6iyLM0nSJLE4kyR1krM1SpImjROCSJIkSdIYsOdMktRZ9pxJkiaJxZkkqbMsziRJk2SoxVkSDjzwwCW3H8SH8AEHHNCq/YoVkzESdPfu3a3aD+K5WLVqVav2U1NTrWMYxDZGHcOePXtatW/7WpBGyeJMkjRJ7DmTJHWWxZkkaZJMRjeQJEmSJHWcPWeSpE5yKn1J0qSx50yS1FkzBdogLwtJcm6SbUm+vpf7zkpSSdY2t5PkvUk2J7kmyQnLcBgkSRNiweJsbx9CSd6R5BvNB80nkhy2rFFKkrQXoyjOgPOAU2YvTLIeeAFwc9/iFwHHNpfTgfe3ftAae+ZOkpZqMT1n5/HwD6HLgKdU1U8D3wTOHnBckiQtaBTFWVV9CfjBXu56F/AmoH8jG4CPVM/lwGFJjhjEY9dYOw9zJ0lLsGBxtrcPoaq6tKqmm5uXA+uWITZJkkZhbZJNfZfTF2qQZANwa1VdPeuuo4Bb+m5vaZZpgpk7SVqqQUwI8lrgb+a6s/lQOx0m5zfCJEnjYZkmBNleVScuduUkBwFvoTekUVqMRedOkvYvrYqzJH8ATAPnz7VOVW0ENgKsWrXKabUkSQMxRrM1PhE4Brg6CfR6RK5KchJwK7C+b911zTLtp/Y1d0oyFi9yScOx5OIsyauBlwAn15h8OkqS9i/j8PFTVdcCj525neQm4MSq2p7kYuC3k1wA/AxwV1VtHU2kGjVzJ0kLWdI4wySn0Dvp+aVVdf9gQ5IkaXwl+SjwFeC4JFuSvG6e1S8Bvg1sBv4K+K0hhKgxZO4kaTEW7DlrPoSeS+8E6S3AOfRmGDoAuKwZwnF5Vb1hGeOUJOlhRtH5UFWvWOD+o/uuF3DGcsek8WLuJGmpFizO5vgQ+uAyxCJJ0j5xZJjGkbmTpKUaxGyNkiSNhMWZJGmSWJxJkjppjGZrlCRpIIZanK1YsYI1a9Ysuf2DDz7YOoa229i1a9fIYxjEcRgHO3bsaNV+z549rWPYvXv3yGNozj1Ysra/H7hq1apW7QfxPyFJkiR7ziRJHWbPmSRpklicSZI6y+JMkjRJLM4kSZ1lcSZJmiQWZ5KkzrI4kyRNknYzCUiSJEmSBsKeM0lSJzmVviRp0licSZI6y+JMkjRJLM4kSZ1lcSZJmiQWZ5KkzrI4kyRNEicEkSRJkqQxYM+ZJKmz7DmTJE0SizNJUic5W6MkadJYnEmSOsviTJI0STznTJIkSZLGgD1nkqTOsudMkjRJLM4kSZ1lcSZJmiRDLc6qil27di25/e7du1vHsGPHjlbt28Q/TlasaDei9cEHH2wdw549e1pvo622r6lBJIYrV472O5KpqalW7ZMMKBJp31mcSZImiT1nkqROcrZGSdKkcUIQSZIkSRoD9pxJkjrLnjNJ0iRZsOcsyblJtiX5+l7uOytJJVm7POFJkjS3maGNg7xIbZk7SVqqxQxrPA84ZfbCJOuBFwA3DzgmSZIWxeJMY+o8zJ0kLcGCxVlVfQn4wV7uehfwJsBPMknSSFicaRyZO0laqiVNCJJkA3BrVV094HgkSZImjrmTpMXY5wlBkhwEvIVet/xi1j8dOB3a/56SJEkz7OlSV7TJnSTtX5YyW+MTgWOAq5sfn10HXJXkpKq6bfbKVbUR2AiwevVqP0UlSQNjcaaOWHLulMQXubQf2edhjVV1bVU9tqqOrqqjgS3ACXt7c5EkaTmN4pyzvc3El+QdSb6R5Jokn0hyWN99ZyfZnOTGJC9cniOhcWbuJGmxFjOV/keBrwDHJdmS5HXLH5YkSQsb0YQg5/HwmfguA55SVT8NfBM4GyDJ8cCpwJObNn+RxDH+E87cSdJSLTissapescD9Rw8sGkmSxlxVfSnJ0bOWXdp383LgV5rrG4ALqmoH8J0km4GT6CXumlDmTpKWainnnEmSNBbG9Jyz1wJ/01w/il6xNmNLs0ySpIexOJMkddIyzta4NsmmvtsbmwkaFpTkD4Bp4PzlCEySNNksziRJnbVMxdn2qjpxXxsleTXwEuDk+nFgtwLr+1Zb1yyTJOlhhlqc7dq1a/utt9763XlWWQtsH1Y8xjDWMYx6/0OL4YEHHhh5DAtYKIbHDysQabZxGdaY5BTgTcDPV9X9fXddDPw/Sd4JHAkcC3x1BCGqu7YD5k7jH8Oo928M3YphztxpqMVZVf3EfPcn2bSUbysHyRjGI4ZR798YxisGaZw0M/E9l97wxy3AOfRmZzwAuKz5HavLq+oNVXVdkguB6+kNdzyjqnaPJnJ1kblTN2IY9f6NYXJicFijJKmzRtFzNsdMfB+cZ/23AW9bvogkSZPC4kyS1FnjMqxRkqRBGLfibFGzYS0zY+gZdQyj3j8Yw4xxiEF6mGWcrVHqknF4jzaG0e8fjGFGp2OIH2ySpC5avXp1Pe5xjxv4dm+55ZYrR32+giRp/zRuPWeSJC2aXzBKkiaJxZkkqbMsziRJk2TFqAOYkeSUJDcm2ZzkzSPY//okX0hyfZLrkpw57BiaOKaS/HOST41o/4cl+ViSbyS5IcmzRhDD7zXPwdeTfDTJmiHs89wk25J8vW/Zo5NcluRbzd9HjSCGdzTPxTVJPpHksGHH0HffWUkqydrljEHaFzPnnQ3yInWBedNDYjF3MneamNxpLIqzJFPAnwMvAo4HXpHk+CGHMQ2cVVXHA88EzhhBDABnAjeMYL8z3gN8uqp+EnjqsGNJchTwu8CJVfUUYAo4dQi7Pg84ZdayNwOfq6pjgc81t4cdw2XAU6rqp4Fv0vstpWHHQJL1wAuAm5d5/9I+sTjT/si86WHMncyd+nU6dxqL4gw4CdhcVd+uqp3ABcCGYQZQVVur6qrm+j30/rGOGmYMSdYBvwR8YJj77dv/I4Hn0PxeT1XtrKo7RxDKSuDAJCuBg4DvLfcOq+pLwA9mLd4AfLi5/mHgZcOOoaourarp5ublwLphx9B4F/AmwMxVkkbPvKlh7vQj5k4/Xtbp3GlcirOjgFv6bm9hBP/gM5IcDTwduGLIu343vSdxz5D3O+MY4A7gQ83wgA8kOXiYAVTVrcCf0fuWYStwV1VdOswY+hxeVVub67cBh48ojhmvBf5+2DtNsgG4taquHva+pfksR6+ZPWfqCPOmH3s35k7mTnPrXO40LsXZ2EhyCPBx4I1VdfcQ9/sSYFtVXTmsfe7FSuAE4P1V9XTgPpa/O/ohmrHJG+i92R0JHJzklcOMYW+ql7GNLGtL8gf0hpCcP+T9HgS8BfjDYe5XWiyLM2m0RpU3Nfs2d8LcaS5dzZ3GpTi7FVjfd3tds2yokqyi9wZzflVdNOTdPxt4aZKb6A1PeH6Svx5yDFuALVU1883Xx+i94QzTLwDfqao7qmoXcBHws0OOYcbtSY4AaP5uG0UQSV4NvAT4tRp+5vhEem/2VzevzXXAVUkG/+NS0hJYnGk/Zd7UY+7UY+40S5dzp3Epzv4JODbJMUlW0zuJ8eJhBpAk9MYL31BV7xzmvgGq6uyqWldVR9N7/J+vqqF+61FVtwG3JDmuWXQycP0wY6DXJf/MJAc1z8nJjO4k34uB05rrpwF/O+wAkpxCb7jGS6vq/mHvv6qurarHVtXRzWtzC3BC81qRRs7iTPup/T5vAnOnPuZOfbqeO41FcVa9k/Z+G/gMvRfThVV13ZDDeDbwKnrfunytubx4yDGMg98Bzk9yDfA04E+GufPmm6ePAVcB19J7jW5c7v0m+SjwFeC4JFuSvA54O/CLSb5F71upt48ghvcBjwAua16TfzmCGCRJY8S8aeyYO5k7DSx3it8SSpK6aNWqVXXYYYcNfLvbt2+/sqpOHPiGJUlawMpRByBJ0lI4DFGSNGksziRJnWVxJkmaJBZnkqTOsjiTJE2SsZgQRJIkSZL2d/acSZI6y54zSdIksTiTJHWWxZkkaZJYnEmSOsnZGiVJk8ZzziRJkiRpDNhzJknqLHvOJEmTxOJMktRZFmeSpElicSZJ6iyLM0nSJLE4kyR1lsWZJGmSOCGIJEmSJI0Be84kSZ3kVPqSpEljcSZJ6iyLM0nSJLE4kyR1lsWZJGmSeM6ZJKmzZoY2DvKykCTnJtmW5Ot9yx6d5LIk32r+PqpZniTvTbI5yTVJTljGwyFJ6jiLM0mS9s15wCmzlr0Z+FxVHQt8rrkN8CLg2OZyOvD+IcUoSeogizNJUmeNouesqr4E/GDW4g3Ah5vrHwZe1rf8I9VzOXBYkiMG8+glSZPGc84kSZ00ZrM1Hl5VW5vrtwGHN9ePAm7pW29Ls2wrkiTNYnEmSeqsZSrO1ibZ1Hd7Y1VtXGzjqqokY1M1SpK6w+JMktRZy1Scba+qE/exze1Jjqiqrc2wxW3N8luB9X3rrWuWSZL0MJ5zJklSexcDpzXXTwP+tm/5rzezNj4TuKtv+KMkSQ9hz5kkqbNGcc5Zko8Cz6U3/HELcA7wduDCJK8Dvgu8vFn9EuDFwGbgfuA1Qw9YktQZGaOTqSVJWrRlPK/ryiUMa5QkqTV7ziRJXfUZYO0ybHf7MmxTkqQF2XMmSZIkSWPACUEkSZIkaQxYnEmSJEnSGLA4kyRJkqQxYHEmSZIkSWPA4kySJEmSxoDFmSRJkiSNgf8BDQM0P1rEynUAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "recorte3 = trim(Escalagrises3[:,:,0], 560, 320, 15, 15)\n", + "x3=np.arange(0,15,1)\n", + "y3=np.arange(0,15,1)\n", + "y3,x3 = np.meshgrid(x3,y3)\n", + "xdata3 = np.vstack((x3.ravel(),y3.ravel()))\n", + "popt3, pcov3 = curve_fit(gauss2d, xdata3, recorte3.ravel(), p0=[1,0,1,1,1])\n", + "estrella3=gauss2d(xdata3, popt3[0], popt3[1],popt3[2], popt3[3], popt3[4])\n", + "FWHM3=FWHM.append(2*np.sqrt(2*np.log(2))*np.sqrt(popt3[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 3 fotografÃa\")\n", + "plt.imshow(recorte3, plt.get_cmap('gray'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 3 a partir de la gaussiana\")\n", + "plt.imshow(estrella3.reshape(15, 15), plt.get_cmap('gray'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 4 (blanco y negro)" + ] + }, + { + "cell_type": "code", + "execution_count": 307, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAFSCAYAAAB2Y6dSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAvuklEQVR4nO3de5hcdZ3n8c+nO0knIUADGbkkGRMcZES8YSaDMo6MeImKxn0ex8H1AupMVgcdcNllBVdRd3V8RtfbOjKbEQZcWdBBVMZhRhgvw+M8gob7JVyiQZKQEHoI5NpJX777xzmllU53V3f9Tl3O6ffreerpqlPnd863TlVXfb/1+51fOSIEAAAAAOisnk4HAAAAAACgOAMAAACArkBxBgAAAABdgOIMAAAAALoAxRkAAAAAdAGKMwAAAADoArM6HQAAAM1YuXJlDAwMFL7d22677fsRsbLwDQMA0ADFGQCglAYGBrR27drCt2t7YeEbBQBgCijOAAClFRGdDgEAgMJQnAEASoviDABQJRRnAIDSojgDAFQJxRkAoJQiguIMAFApTKUPAAAAAF2A4gwAUFq13rMiL5OxvcT2j2zfb/s+2+eNuf8C21Gb8dGZL9leb/tu26e08HAAAEqOYY0AgNLqwLDGYUkXRMTttg+VdJvtmyLifttLJL1a0qN1679W0gn55fclXZr/BQDgIPScAQBKq909ZxGxJSJuz6/vlLRO0qL87s9LulBS/UZWSfpaZG6R1G/72MIPBACgEug5AwCUVot6zhbarv916zURsWbsSraXSnqRpFttr5K0OSLusl2/2iJJG+tub8qXbSk8agBA6VGcAQBwoIGIWD7ZCrYXSPqWpPOVDXW8WNmQRgAAmkZxBgAopU5NpW97trLC7KqIuM728yQtk1TrNVss6XbbKyRtlrSkrvnifBkAAAehOAMAlFa7izNn1ddlktZFxOfyGO6R9Iy6dR6RtDwiBmxfL+n9tq9RNhHI0xHBkEYAwLgozgAApdWBnrPTJL1D0j2278yXXRwRN0yw/g2SXidpvaQ9kt7V8ggBAKVFcQYAKK12F2cR8RNJbrDO0rrrIencFocFAKgIptIHAAAAgC5AzxkAoLQ6MSEIAACtQnEGACilTs3WCABAq1CcAQBKi+IMAFAlnHM2Q9heajtsz8pv/9j2n7Zhv/Ns/4Ptp23/fav3l8r2abYftr3L9pvyZdfZPr+zkQEAUH6dyke6je232b4xcRuP2H5lE+1Ot70pZd/dIs/Xju90HEWiOGuz/B9pb/5iql2+PIV2Yft32hHjVNl+eR7X/5xktTdLOlrSURHxxw22d8Abdod8QtKXI2JBRHzH9tskDUXEFzoYE4AJ1IY2FnkBZoIZmI90zHj5TURcFRGv7mRcVZDna7/sdBxFYlhjZ7whIv6lyA3anhURw0Vus8H+Zkv6oqRbG6z6TEkPtTO2iUzxGD1T0n11t4+Q9J7WRQUgBcUUkGQm5SMd0cwXzu0+hugu9Jx1Edu/Y/tf8yGAA7a/kS+/OV/lrvybrT+pdUnb/m+2t0r6O9s9tj9k+xe2/932N20fOYX9Psv2D/M2A7avst3foNkFkm6U9MAk2/24pI9K+pM87vfkMf5327+yvc3212wfnjepPc6n8vVf0mB92X5nft+/2/5IfRe/7Y/Zvtb2123vkHSO7RW2f2r7KdtbbH/Z9px8/V9IOl7SP+T771PW83dWwnEC0CKt6DWj2AOql4/k23697Tts77C90fbHJlm39pguzuN4xNlImobbqusle4/tRyX9UOPnN+fY/kldu7B9ru2HJT08QVzvqMt5PjzmvqaOed621m6n7ftt/4dJ1p1n+0rb222vs32h64ZITratPC/7+jjHqjbE9Rzbv8zbbqgd84lej3XH7Xfy61N5Xs62/Wi+nQ/X3T9hfthuFGfd5X8oe4M5QtJiSf9bkiLiD/P7X5B339ZelMdIOlJZb89qSR+Q9CZJL5d0nKTtkv56Cvu1pL/M2zxH0hJJH5twZfuZkt6tbAjghCLiEkmfkvSNPO7LJJ2TX/5IWSG0QFJtGEXtcfbn6/90svVtnyTpK5LeJulYSYdLWjQmjFWSrpXUL+kqSSOSPihpoaSXSDpD0p/n8T5L0qPKvklcEBH7xj50TeM4AWg9ijOgJSqVj+R2S3qnsnzg9ZLe5/zc8gkcoyxXWCTpbElrbJ84jW29PH8Mr9H4+c143iTp9yWdNPaOPOe5VNI7lB2fo5Q9NzXNHnNJ+oWklynLoz4u6eu2j51g3UskLVWWk71K0tsTtvVrtg+R9CVJr42IQyW9VNKd+d3jvh7HMZXn5Q8knags//uo7efkyyfMD9uN4qwzvpNX5rXLn+XLh5S9sR0XEYMR8ZNJtiFJo5IuiYh9EbFX0nslfTgiNuWFxcckvdkNutQjYn1E3JRv5wlJn1P2zz2RL0n6SETsavxQD/I2SZ+LiF/m7S+SdNYkMU62/psl/UNE/CQi9ivrpRubWf00Ir4TEaMRsTcibouIWyJiOCIekfR/GjzWX2viOAEA0M1mTD4SET+OiHvyfOBuSVc32Lbybe+LiH+V9I+S3jKNbX0sInbnx2Oq/jIinpygzZslfS8ibs6P6UeUHfeapo55/nj+PiIeyx/PN5T13K2YYPW3SPpURGyPiE3KnoNmtzXWqKSTbc+LiC0RUTvNZEqvxyk+Lx/P88G7JN0l6QV526bzw6JRnHXGmyKiv+7yt/nyC5V9a/Qz2/fZfneD7TwREYN1t58p6du1N1lJ65R9E3D0ZBuxfbTta2xvdjb87+vKvjkYb903SDq07tuy6TpO0q/qbv9K2bmPE8U42frHSdpYuyMi9kj69zHtN9bfsP1s29+zvTV/rJ/SBI91rOkcJwDtQc8ZkGTG5CO2f9/2j2w/YftpZcXMZJ/h2yNid93tXynLO6a6rY2avsnajM15duvAnKepYy79+hSRO+vanqyJj80BcYyNeZrb+rX88fyJsmO5xfY/2v7d/O4pvR6n+Lxsrbu+R9mIrKT8sGgUZ10kIrZGxJ9FxHGS/pOkr3jyGZHGZhEblXUH17/Rzo2IzQ12/al8W8+LiMOUdVF7gnXPkLQ8f/FuVfaPdL7t7zZ6fLnHlL2B1Py2pGFJj4/zeBqtv0V1Xfq25ynr5q83dpuXKhuXfkL+WC/WxI91rOkcJwBtQHEGFK+i+cj/k3S9pCURcbikv5lk25J0RD7Urua3leUkU91WTHB9MpOtt0XZME9Jku35OjDnaeqY50ND/1bS+5XNrN0v6V5NfGwOyL3GxNRoW7slza9re0z9hiPi+xHxKmWnqjyQb2s6r8fpPsf1UvLDQlGcdRHbf2y79oLfruyftNZl/biy8b2T+RtJn8z/OWT7t2yvmsKuD5W0S9LTthdJ+q+TrPsRSc+W9ML8cr2yf553TWE/UtbF/EHby2wv0G/OSRuW9ISyx3v8FNe/VtIbbL80P2nzY2r8j3SopB2SduXfyLxvinHX2k71OAFoA4ozoHgVzUcOlfRkRAzaXiHpP04hno/bnmP7ZZLOlFT7vdbpbmu8/Ga6rpV0pu0/yHOeT+jAPL7ZY36Isuf3ibzdu5T1dk3km5Iusn1E/hy9fxrbulPSH9r+bWeTu11UuyPvNV2VF8T7lL0ORvP7Jns91mvmOa5v22x+WCiKs86ozQZYu3w7X/57km61vUvZm8x58ZvfbviYpCvzbuK3TLDdL+btbrS9U9Ityk4sbeTjkk6R9LSyMdXXTbRiROzMv8HYGhFbJe2VtDsinpzCfiTpckn/V9nMRRskDSo7ibU2LPGTkv4tf5ynNlj/vvz6Ncq+ydklaZuyf+qJ/Bdl/6w7lb2JT2d45pSPE4DWa0VhRnGGGWYm5SN/LukTeTwfVVZkTGarskLgMWUTir03ImozQk5rWxPkN9OS5zznKusd2pLHVv9D0k0d84i4X9L/kvRTZYX38yT92yRNPpHvd4Okf1FWNO6byrYi4iZledfdkm6T9L267fZI+s/KjveTys73qhVIk70e6033Oa6Xkh8WynwQoSrynrWnlHVJb+hwOABa7AUveEHceOONhW/3mGOOuS0ilhe+YQClYPt0SV+PiMUNVp3xbL9P0lkRwQRpBaHnDKVm+w225+fd4J+VdI+kRzobFYB2oecMANrH9rG2T3P2u2onKvuduW83aoepm/avlgNdZpWyYY+WtFbZtzdkV8AMwb87ALTVHGXTzC9TNlrpGmW/OYuCUJyh1CLiTyX9aafjANAZFGcAihYRP9aBMxIiFxG/0uQThiARxRkAoLQozgAAVcI5ZwAAAADQBdrac2Y77M7+Zm+n91+EIr4p7u3t7XgMqc9FEc9lT0/a9xNFHIfUbYyOjvdTH+3df0SU/x8LpcMEHpgJbPMiBypootyp3cWZ+vr62rnLg6Qm46ntpfRkemRkJDmGww8/vOMxpB7LIl5Lc+fOTWo/PDycHMP+/fuT2u/evTup/dDQUFL7wcHBpPZACoozAECVcM4ZAKC0KM4AAFXCOWcAAAAA0AXoOQMAlBY9ZwCAKknqObO90vaDttfb/lBRQQEAMBW1SUGKvACtRO4EYDJN95zZ7pX015JeJWmTpJ/bvj4i7i8qOAAAJkIxhbIhdwLQSErP2QpJ6yPilxGxX9I1klYVExYAAI3Rc4aSIXcCMKmU4myRpI11tzflyw5ge7XttbbX8qEHAABmsGnnTm2LDEBXaPmEIBGxRtIaSerp6aE6AwAUhi/9UEX1uRM/Qg3MLCnF2WZJS+puL86XAQDQFhRnKBlyJwCTShnW+HNJJ9heZnuOpLMkXV9MWAAANMY5ZygZcicAk2q65ywihm2/X9L3JfVKujwi7issMgAAJkExhbIhdwLQSNI5ZxFxg6QbCooFAACg0sidAEym5ROCAADQKvScAQCqpK3FWURocHCwnbs8SF9fX1L7np6U0/Qys2fPTmp/yCGHJMeQehxGRkaSYxgaGkpqv3fv3uQY9u3bl7yNTseQehwWLFiQ1L4bjiFmLoozAO1iu6Pti9pGqtT33SLet6v83k/PGQCgtKr8AQ0AmHkozgAApUVxBgCokvQxegAAAACAZPScAQBKian0AQBVQ88ZAKC02v0j1LaX2P6R7ftt32f7vHz5Z2w/YPtu29+23V/X5iLb620/aPs1rT0iAIAyozgDAJRWu4szScOSLoiIkySdKulc2ydJuknSyRHxfEkPSbpIkvL7zpL0XEkrJX3Fdm+LDgcAoOQozgAAmKKI2BIRt+fXd0paJ2lRRNwYEcP5ardIWpxfXyXpmojYFxEbJK2XtKLdcQMAyoFzzgAApdWic84W2l5bd3tNRKwZu5LtpZJeJOnWMXe9W9I38uuLlBVrNZvyZQAAHITiDABQWi0qzgYiYvlkK9heIOlbks6PiB11yz+sbOjjVa0IDABQbRRnAIBS6tRsjbZnKyvMroqI6+qWnyPpTElnxG8C2yxpSV3zxfkyAAAOwjlnAIDS6sBsjZZ0maR1EfG5uuUrJV0o6Y0RsaeuyfWSzrLdZ3uZpBMk/azwAwEAqAR6zgAAmLrTJL1D0j2278yXXSzpS5L6JN2U1W+6JSLeGxH32f6mpPuVDXc8NyJG2h82AKAMKM4AAKXV7mGNEfETSR7nrhsmafNJSZ9sWVAAgMqgOAMAlFYnzjkDAKBVKM4AAKVFcQYAqBKKMwBAKXVqtkYAAFqlrcWZbc2a1fwuZ8+enRxDEdtINW/evKT2fX19yTH09/cnbyPV3r17O9pekkZG0s7L7+3tTY4h9fmcO3duUvvU5Daf/AAAgJZJ/azp6UmfoDwlhy2ivVTM40g1PDzc0fZSev42OjqaHEOr0HMGACgtes4AAFVCcQYAKC2KMwBAlVCcAQBKi+IMAFAlFGcAgNKiOAMAVEnTZxXaXmL7R7bvt32f7fOKDAwAAKBKyJ0ANJLSczYs6YKIuN32oZJus31TRNxfUGwAAEyIqfRRQuROACbVdHEWEVskbcmv77S9TtIiSbzBAADaguIMZULuBKCRQs45s71U0osk3VrE9gAAmAqKM5QVuROA8SQXZ7YXSPqWpPMjYsc496+WtDp1PwAAAFVA7gRgIknFme3Zyt5croqI68ZbJyLWSFojST09PXzFCQAoDD1nKJvp5k62eZEDM0jTxZltS7pM0rqI+FxxIQEAMDUUZygTcicAjTQ9lb6k0yS9Q9IrbN+ZX15XUFwAAEyqNltj0ReghcidAEwqZbbGn0hygbEAADAtFFMoE3InAI2k9JwBAAAAAApSyFT6AAB0Aj1nAIAqaWtx1tvbq/7+/qbbH3LIIcUF06Th4eHkbfT29ia1L+I4zJs3L6n9ggULkmPo6UnruN2x46DZh6dt7969Se1HRkaSY0g1ODiY1H779u1J7UmO0Um8/oDul82DkiY1Z+jr60uOYf78+Unti8id5s6dm9S+iPfMPXv2JLXftWtXx2MYGhpKaj86OprUfjL0nAEASoviDABQJRRnAIBSYnZFAEDVMCEIAAAAAHQBes4AAKVFzxkAoEoozgAApUVxBgCoEoozAEBpUZwBAKqE4gwAUFoUZwCAKmFCEAAAAADoAvScAQBKian0AQBVQ3EGACgtijMAQJVQnAEASoviDABQJRRnAIDSojgDAFQJE4IAAAAAQBeg5wwAUFr0nAEAqoTiDABQSszWCACoGoozAEBpUZwBAKqk7cWZ7abb9vb2FhhJc/bv35+8jblz5ya1X7BgQXIMo6OjSe37+/uTYzjiiCOS2u/Zsyc5hscffzyp/cDAQHIM27dvT2r/1FNPJbWfNYvvaAAArZOS+9XMmTMnqf2hhx6aHMOxxx6b1H7x4sXJMRx55JFJ7YeGhpJj2LZtW1L7TZs2dTyG3bt3J7VPPY6TfbFIVgYAKC16zgAAVUJxBgAoLYozAECVUJwBAEqL4gwAUCX8zhkAoJRqszUWfZmM7SW2f2T7ftv32T4vX36k7ZtsP5z/PSJfbttfsr3e9t22T2nDoQEAlFRycWa71/Ydtr9XREAAAHSxYUkXRMRJkk6VdK7tkyR9SNIPIuIEST/Ib0vSayWdkF9WS7q0/SGj25A7AZhIET1n50laV8B2AACYlnb3nEXEloi4Pb++U9nn3yJJqyRdma92paQ35ddXSfpaZG6R1G87bco3VAG5E4BxJRVnthdLer2krxYTDgAAU9fu4qye7aWSXiTpVklHR8SW/K6tko7Ory+StLGu2aZ8GWYocicAk0mdEOQLki6UlP7jEQAATFOLJgRZaHtt3e01EbGmfgXbCyR9S9L5EbGj/necIiJsM1MJJvIFkTsBmEDTxZntMyVti4jbbJ8+yXqrlY2zV08P848AAIrTouJsICKWT3Sn7dnKCrOrIuK6fPHjto+NiC35sMXaL6RulrSkrvnifBlmoGZyJwAzS0q1dJqkN9p+RNI1kl5h++tjV4qINRGxPCKWU5wBAMrMWRfZZZLWRcTn6u66XtLZ+fWzJX23bvk781kbT5X0dN3wR8w8086d2h0ggM5qulqKiIsiYnFELJV0lqQfRsTbC4sMAIBJdGIqfWXJ9TuUJdV35pfXSfq0pFfZfljSK/PbknSDpF9KWi/pbyX9eUsOBkqB3AlAI/wINQCgtNr9I9QR8RNJnuDuM8ZZPySd29KgAACVUUhxFhE/lvTjIrYFAMBUtbs4A4pC7gRgPPScAQBKi+IMAFAlzNABAAAAAF2grT1no6OjGhwcbOcuDzIyMpLUfnR0NDmGww47LKl9f39/cgzHHHNMUvvnPOc5yTEsW7Ysqf3u3buTY3j44YeT2q9fvz45hkceeSSp/dDQUFL71Nd0/e87Ae1GzxnQeqnv80XM1t3X15fU/qijjkqO4dnPfnZS+xe/+MXJMSxdujSp/b59+5JjWLduXVL73t7e5BhS64n9+/cntU+tJyZrz7BGAEApTXF2RQAASoPiDABQWhRnAIAq4ZwzAAAAAOgC9JwBAEqLnjMAQJVQnAEASoviDABQJRRnAIBSYkIQAEDVUJwBAEqL4gwAUCVMCAIAAAAAXYCeMwBAadFzBgCoEoozAEBpUZwBAKqE4gwAUFoUZwCAKqE4AwCUErM1AgCqhglBAAAAAKAL0HMGACgtes4AAFVCcQYAKC2KMwBAlVCcAQBKi+IMAFAlbS/ORkdHm267b9++5P3PmTMnqf2hhx6aHMNhhx2W1H727NnJMRx33HFJ7U877bTkGF72spcltS/i9XDdddcltX/iiSeSY0h9Tc2fPz+p/a5du5LaA51EcQZ0v56e9CkOUvO3I444IjmG448/Pqn9ihUrkmN43vOel9R+z549yTH09fUltd+6dWtyDI899lhS+6eeeiqpve2k9pNhQhAAAAAA6AIMawQAlBJT6QMAqobiDABQWhRnAIAqoTgDAJQWxRkAoEqSzjmz3W/7WtsP2F5n+yVFBQYAAFA15E4AJpPac/ZFSf8cEW+2PUdS2rRxAABMAz1nKCFyJwATaro4s324pD+UdI4kRcR+SfuLCQsAgMYozlAm5E4AGkkZ1rhM0hOS/s72Hba/avuQguICAGBStdkai74ALUTuBGBSKcXZLEmnSLo0Il4kabekD41dyfZq22ttr+VDDwBQJIozlMy0c6d2Bwigs1KKs02SNkXErfnta5W94RwgItZExPKIWN7KX9MGAADoctPOndoaHYCOa7o4i4itkjbaPjFfdIak+wuJCgCAKaDnDGVC7gSgkdTZGj8g6ap8tqFfSnpXekgAAEwNxRRKiNwJwISSirOIuFMSXe4AgI6gOEPZkDsBmExqzxkAAB3BMEQAQNWkTAgCAAAAAChIqXrO5syZk7yN2bNnJ7WfNSv9kPX0pNXEo6OjyTEMDQ0ltR8ZGUmOIVXqcZSkefPmJbUv4jU5f/78pPYLFixIaj84OJjUnllY0Un0nAHdr4jPidTP/NT8T0r/vO7v70+O4aijjkpqn5r3SNJhhx2W1H7u3LnJMaTm492cu5SqOAMAoB7FGQCgSijOAAClRXEGAKgSijMAQGlRnAEAqoQJQQAAAACgC1CcAQBKqTaVftGXRmxfbnub7Xvrlr3Q9i2277S91vaKfLltf8n2ett32z6lhYcEAFByFGcAgNLqRHEm6QpJK8cs+ytJH4+IF0r6aH5bkl4r6YT8slrSpUU8bgBANXHOGQCgtDpxzllE3Gx76djFkmrzSx8u6bH8+ipJX4ss0Fts99s+NiK2tCdaAECZUJwBAHCghbbX1t1eExFrGrQ5X9L3bX9W2aiUl+bLF0naWLfepnwZxRkA4CAUZwCA0mpRz9lARCyfZpv3SfpgRHzL9lskXSbplcWHBgCoMs45AwCUVofOORvP2ZKuy6//vaQV+fXNkpbUrbc4XwYAwEEozgAApdSp2Ron8Jikl+fXXyHp4fz69ZLemc/aeKqkpznfDAAwEYY1AgBKqxMTgti+WtLpys5N2yTpEkl/JumLtmdJGlQ2M6Mk3SDpdZLWS9oj6V1tDxgAUBoUZwAATENEvHWCu148zroh6dzWRgQAqAqKMwBAaXWi5wwAgFahOAMAlBbFGQCgSijOAAClRXEGAKiSthdnPT3NTxBpO3n/vb29ydtINTw8nNR+aGgoOYY9e/YktX/88ceTY9i6dWtS+yKOw5YtaZOm7dy5MzmG1NfD3Llzk9qn/k8U8X8JNCNxdkUAbVLE/2nqZ+WuXbuSYxgYGEhqv2HDhuQYUj/zBwcHk2PYuHFjUvunnnoqOYbUxzE6OprUvpWfPUylDwAAAABdgGGNAIDSoucMAFAlFGcAgNKiOAMAVAnFGQCgtCjOAABVknTOme0P2r7P9r22r7addpYiAADTUJsUpMgL0ErkTgAm03RxZnuRpL+QtDwiTpbUK+msogIDAACoEnInAI2kDmucJWme7SFJ8yU9lh4SAACN0dOFkiJ3AjChpnvOImKzpM9KelTSFklPR8SNRQUGAEAjDGtEmZA7AWgkZVjjEZJWSVom6ThJh9h++zjrrba91vZaPvQAAEWiOEOZNJM7tTtGAJ2VMiHIKyVtiIgnImJI0nWSXjp2pYhYExHLI2K57YTdAQBwIIozlMy0c6e2Rwigo1KKs0clnWp7vrOq6wxJ64oJCwAAoHLInQBMqukJQSLiVtvXSrpd0rCkOyStKSowAAAaoacLZULuBKCRpNkaI+ISSZcUFAsAAFPGMESUEbkTgMmkTqUPAEDHUJwBAKok5ZwzAAAAAEBB2t5zNjo62nTbkZGR5P3v27cveRup9u7dm9R+1qz0p21gYCCp/R133JEcw44dO5Lapx5HSfr5z3+e1H7jxo3JMaQ+jj179iS1T/2/oucCncTrD2i91P+zlNyvJjV/2759e3IMDz30UFL73t7e5Bg2bNiQ1H5oaCg5hl/84hdJ7R999NHkGFJzyNTj0MrPHoY1AgBKi+IMAFAlFGcAgNKiOAMAVAnFGQCglJitEQBQNUwIAgAAAABdgJ4zAEBp0XMGAKgSijMAQGlRnAEAqoTiDABQWhRnAIAqoTgDAJQWxRkAoEqYEAQAAAAAugA9ZwCAUmIqfQBA1VCcAQBKi+IMAFAlFGcAgNKiOAMAVAnFGQCgtCjOAABVwoQgAAAAANAF6DkDAJQWPWcAgCqhOAMAlBKzNQIAqqbtxdno6GjTbfft25e8/97e3qT2RSQCqTEUYdu2bUntt2/fnhzDgw8+mNR+ZGQkOYYnnngiqf3OnTuTYxgcHOxoDKmvaZJjdBKvP6D7peR+Nak5YBF5y/r165Pa79ixIzmGdevWJbUvInd68sknk9qn5l5Seu4zNDSU1L6Vnz2ccwYAAAAAXYBhjQCA0qLnDABQJRRnAIDSojgDAFQJwxoBAKVVmxSkyEsjti+3vc32vWOWf8D2A7bvs/1Xdcsvsr3e9oO2X9OCwwAAqIiGxdl4H0K2j7R9k+2H879HtDZMAAAO1IrCbIo9cVdIWlm/wPYfSVol6QUR8VxJn82XnyTpLEnPzdt8xXbnZ4VCS5E7AWjWVHrOrtCYDyFJH5L0g4g4QdIP8tsAAFReRNwsaex0Ze+T9OmI2JevU5sSd5WkayJiX0RskLRe0oq2BYtOuULkTgCa0LA4m+BDaJWkK/PrV0p6U7FhAQDQWIt6zhbaXlt3WT2FUJ4t6WW2b7X9r7Z/L1++SNLGuvU25ctQYeROAJrV7IQgR0fElvz6VklHT7Ri/qG2Or/e5O4AADhYiyYEGYiI5dNsM0vSkZJOlfR7kr5p+/jCI0OZNZU7AZhZkmdrjIiwPeGnY0SskbRGknp7e5lWCwBQmC6arXGTpOsiC+hntkclLZS0WdKSuvUW58swg00nd5psPQDV0+xsjY/bPlaS8r/bGqwPAEDhOjQhyHi+I+mPJMn2syXNkTQg6XpJZ9nus71M0gmSfpb+yFFC5E4AGmq2OLte0tn59bMlfbeYcAAA6G62r5b0U0kn2t5k+z2SLpd0fD473zWSzo7MfZK+Kel+Sf8s6dyIGOlU7OgocicADTUc1ph/CJ2u7ATpTZIukfRpZePp3yPpV5Le0sogAQAYK7GnK2W/b53grrdPsP4nJX2ydRGh25A7AWhWw+Jskg+hMwqOBQCAaemic86AXyN3AtCs5AlBAADoFIozAECVUJwBAEqL4gwAUCUzrjhL/SDfv39/cgy9vb1J7UdG0s8l74bj0NfXl9R+3rx5yTGkKiIx3LdvX1L7PXv2JLVPfR5IjgEAkxkdHU3exvDwcFL73bt3dzyGnTt3Jscwe/bspPbdkLfs3bs3OYbUPDQ1l25l7jPjijMAQHXw5QAAoEoozgAApdSp2RoBAGgVijMAQGlRnAEAqqTZH6EGAAAAABSInjMAQGnRcwYAqBKKMwBAaVGcAQCqhOIMAFBKTAgCAKgaijMAQGlRnAEAqoQJQQAAAACgC9BzBgAoLXrOAABVQnEGACgtijMAQJVQnAEASoviDABQJRRnAIBSYrZGAEDVMCEIAAAAAHQBes4AAKVFzxkAoEoozgAApUVxBgCokrYXZz09zY+knD17dvL+U7cxMjKSHMPQ0FDHY0h5HqT0xyBJg4ODSe337duXHMOcOXOS2u/fvz85hlTz5s1Laj86OlpQJED7UZwBM0PqZ1UReUtq/lVE3mI7eRupUp+LIvLY1Bi6+bODnjMAQGl18wcsAADTxYQgAAAAANAF6DkDAJQSU+kDAKqG4gwAUFoUZwCAKmk4rNH25ba32b63btlnbD9g+27b37bd39IoAQAYR633rMgLkIrcCUCzpnLO2RWSVo5ZdpOkkyPi+ZIeknRRwXEBAACU1RUidwLQhIbFWUTcLOnJMctujIjh/OYtkha3IDYAACZFzxm6EbkTgGYVcc7ZuyV9Y6I7ba+WtDq/XsDuAADIUEyhpKacOwGYWZKKM9sfljQs6aqJ1omINZLWSFJvby+fogCAQtDThTKabu5kmxc5MIM0XZzZPkfSmZLOCD4dAQAdwMcPyoTcCUAjTRVntldKulDSyyNiT7EhAQAAVAu5E4CpaFic2b5a0umSFtreJOkSZTMM9Um6KT+P7JaIeG8L4wQA4CB0PqAbkTsBaFbD4iwi3jrO4staEAsAANNCcYZuRO4EoFlFzNYIAEBHUJwBAKqE4gwAUErM1ggAqJq2F2c9PQ1/93pC8+bNS95/b29vUvuRkZHkGPbu3ZvUfnh4uPFKDfT19SW1HxoaSo4h9XGkHkcp7fUoFfPbfXPmzElqf9hhhyW137FjR1J7fr8QANDtRkdHk7eR+mVQETlkN3zmph4HvlSbHD1nAIDS4kMeAFAlFGcAgNKiOAMAVAnFGQCgtCjOAABVknbCDQAAHVSbFKTISyO2L7e9zfa949x3ge2wvTC/bdtfsr3e9t22T2nBYQAAVATFGQAA03OFpJVjF9peIunVkh6tW/xaSSfkl9WSLm1DfACAkqI4AwCUUit6zabScxYRN0t6cpy7Pi/pQkn1G1kl6WuRuUVSv+1ji3j8AIDq4ZwzAEBpdcs5Z7ZXSdocEXeNmep6kaSNdbc35cu2tDE8AEBJUJwBAEqrRcXZQttr626viYg1E61se76ki5UNaQQAoGkUZwCA0mpRcTYQEcunsf6zJC2TVOs1WyzpdtsrJG2WtKRu3cX5MgAADsI5ZwAAJIiIeyLiGRGxNCKWKhu6eEpEbJV0vaR35rM2nirp6YhgSCMAYFz0nAEASqsT55zZvlrS6cqGP26SdElEXDbB6jdIep2k9ZL2SHpXW4IEAJQSxRkAoJSmOrtiC/b71gb3L627HpLObXVMAIBqoDgDAJRWt8zWCABAETjnDAAAAAC6AD1nAIDSoucMAFAlFGcAgNKiOAMAVEnbi7PR0dGOtC3K3r17k7cxNDRUQCRpdu7c2ekQNDIyktS+G14PPT3pI4MHBweT2ue/q9Sx/ac+j0AKijMA7dIN7zfdEANai54zAEApdWq2RgAAWoUJQQAAAACgC9BzBgAoLXrOAABV0rDnzPbltrfZvnec+y6wHbYXtiY8AAAmVhvaWOQFSEXuBKBZUxnWeIWklWMX2l4i6dWSHi04JgAApoTiDF3qCpE7AWhCw+IsIm6W9OQ4d31e0oWS+CQDAHQExRm6EbkTgGY1NSGI7VWSNkfEXQXHAwAAUDnkTgCmYtoTgtieL+liZd3yU1l/taTV+fXp7g4AgHHR04WySMmdAMwszczW+CxJyyTdlRdbiyXdbntFRGwdu3JErJG0RpJ6e3v5FAUAFIbiDCXRdO5kmxc5MINMuziLiHskPaN22/YjkpZHxECBcQEA0BDFGcqA3AnAVE1lKv2rJf1U0om2N9l+T+vDAgCgMSYEQTcidwLQrIY9ZxHx1gb3Ly0sGgAAgJIjdwLQrGbOOQMAoCvQ0wUAqBKKMwBAKTEMEQBQNRRnAIDSojgDAFRJW4uz0dHRgV27dv1qklUWSppw5qJdu3YVH9Q0Y2gTYuj8/olh6jE8s12BAMAMNCCp6dypTYih8/snhnLFMGHu1NbiLCJ+a7L7ba+NiOXtiocYujeGTu+fGLorBmAi9Jyh6sidyhFDp/dPDNWJgWGNAIDSojgDAFQJxRkAoLQozgAAVdJtxdmaTgcgYqjpdAyd3r9EDDXdEANwEGZrBCR1x3s0MXR+/xIx1JQ6BvPBBgAoozlz5sQxxxxT+HY3btx4W6fPVwAAzEzd1nMGAMCU8QUjAKBKKM4AAKVFcQYAqJKeTgdQY3ul7Qdtr7f9oQ7sf4ntH9m+3/Z9ts9rdwx5HL2277D9vQ7tv9/2tbYfsL3O9ks6EMMH8+fgXttX257bhn1ebnub7Xvrlh1p+ybbD+d/j+hADJ/Jn4u7bX/bdn+7Y6i77wLbYXthK2MApqN23lmRF6AMyJsOiIXcidypMrlTVxRntnsl/bWk10o6SdJbbZ/U5jCGJV0QESdJOlXSuR2IQZLOk7SuA/ut+aKkf46I35X0gnbHYnuRpL+QtDwiTpbUK+msNuz6Ckkrxyz7kKQfRMQJkn6Q3253DDdJOjkini/pIUkXdSAG2V4i6dWSHm3x/oFpoTjDTETedBByJ3KneqXOnbqiOJO0QtL6iPhlROyXdI2kVe0MICK2RMTt+fWdyv6xFrUzBtuLJb1e0lfbud+6/R8u6Q8lXSZJEbE/Ip7qQCizJM2zPUvSfEmPtXqHEXGzpCfHLF4l6cr8+pWS3tTuGCLixogYzm/eImlxu2PIfV7ShZLIXAGg88ibcuROv0bu9Jtlpc6duqU4WyRpY93tTerAP3iN7aWSXiTp1jbv+gvKnsTRNu+3ZpmkJyT9XT484Ku2D2lnABGxWdJnlX3LsEXS0xFxYztjqHN0RGzJr2+VdHSH4qh5t6R/avdOba+StDki7mr3voHJtKLXjJ4zlAR50298QeRO5E4TK13u1C3FWdewvUDStySdHxE72rjfMyVti4jb2rXPccySdIqkSyPiRZJ2q/Xd0QfIxyavUvZmd5ykQ2y/vZ0xjCeyjK1jWZvtDysbQnJVm/c7X9LFkj7azv0CU0VxBnRWp/KmfN/kTiJ3mkhZc6duKc42S1pSd3txvqytbM9W9gZzVURc1+bdnybpjbYfUTY84RW2v97mGDZJ2hQRtW++rlX2htNOr5S0ISKeiIghSddJemmbY6h53PaxkpT/3daJIGyfI+lMSW+L9meOz1L2Zn9X/tpcLOl228X/uBTQBIozzFDkTRlypwy50xhlzp26pTj7uaQTbC+zPUfZSYzXtzMA21Y2XnhdRHyunfuWpIi4KCIWR8RSZY//hxHR1m89ImKrpI22T8wXnSHp/nbGoKxL/lTb8/Pn5Ax17iTf6yWdnV8/W9J32x2A7ZXKhmu8MSL2tHv/EXFPRDwjIpbmr81Nkk7JXytAx1GcYYaa8XmTRO5Uh9ypTtlzp64oziI7ae/9kr6v7MX0zYi4r81hnCbpHcq+dbkzv7yuzTF0gw9Iusr23ZJeKOlT7dx5/s3TtZJul3SPstfomlbv1/bVkn4q6UTbm2y/R9KnJb3K9sPKvpX6dAdi+LKkQyXdlL8m/6YDMQAAugh5U9chdyJ3Kix3Mt8SAgDKaPbs2dHf31/4dgcGBm6LiOWFbxgAgAZmdToAAACawTBEAEDVUJwBAEqL4gwAUCVdcc4ZAAAAAMx09JwBAEqLnjMAQJXQcwYAKK1OTKVv+3Lb22zfW7fsM7YfsH237W/b7q+77yLb620/aPs1rTkSAIAqoDgDAJRWh37n7ApJK8csu0nSyRHxfEkPSbpIkmyfpOz3l56bt/mK7d6iHj8AoFoozgAApdSKwmwqxVlE3CzpyTHLbsx/e0qSbpG0OL++StI1EbEvIjZIWi9pRXFHAQBQJRRnAAAcaKHttXWX1dNs/25J/5RfXyRpY919m/JlAAAchAlBAACl1aIJQQaa/RFq2x+WNCzpqmJDAgDMBBRnAIDS6qbZGm2fI+lMSWfEbwLbLGlJ3WqL82UAAByEYY0AgNLq0IQgB7G9UtKFkt4YEXvq7rpe0lm2+2wvk3SCpJ8lP3AAQCXRcwYAKK1O9JzZvlrS6crOTdsk6RJlszP2SbrJtiTdEhHvjYj7bH9T0v3KhjueGxEjbQ8aAFAK7qYhIQAATFVvb2/MnTu38O3u2bPntmbPOQMAIAU9ZwCAUkoZhggAQDeiOAMAlBbFGQCgSijOAAClRXEGAKgSijMAQGlRnAEAqoSp9AEAAACgC9BzBgAoLXrOAABVQnEGACglZmsEAFQNxRkAoLQozgAAVcI5ZwAAAADQBeg5AwCUFj1nAIAqoTgDAJQWxRkAoEoozgAApUVxBgCoEoozAEBZfV/SwhZsd6AF2wQAoCHzrSMAAAAAdB6zNQIAAABAF6A4AwAAAIAuQHEGAAAAAF2A4gwAAAAAugDFGQAAAAB0gf8PKtTnAvn5BpEAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "recorte4 = trim(Escalagrises3[:,:,0], 442, 370, 15, 15)\n", + "x4=np.arange(0,15,1)\n", + "y4=np.arange(0,15,1)\n", + "y4,x4 = np.meshgrid(x4,y4)\n", + "xdata4 = np.vstack((x4.ravel(),y4.ravel()))\n", + "popt4, pcov4 = curve_fit(gauss2d, xdata4, recorte4.ravel(), p0=[1,0,1,1,1])\n", + "estrella4=gauss2d(xdata4, popt4[0], popt4[1],popt4[2], popt4[3], popt4[4])\n", + "FWHM4=FWHM.append(2*np.sqrt(2*np.log(2))*np.sqrt(popt4[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 4 fotografÃa\")\n", + "plt.imshow(recorte4, plt.get_cmap('gray'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 4 a partir de la gaussiana\")\n", + "plt.imshow(estrella4.reshape(15, 15), plt.get_cmap('gray'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 5 (blanco y negro)" + ] + }, + { + "cell_type": "code", + "execution_count": 308, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAFTCAYAAAC9P3T3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAta0lEQVR4nO3dfZRddX3v8c8nM5MQAiWmEQJJNGijLbWlclNEuT5U1EalRteyFq8PoLa5WrTo5ZYreCvqXVpX67XqtaU3FQpcuCBF1NRyKyk+ULsADchTEpTIUxImQEqen2Ym871/7D16Mpk558z57fOw97xfa5015+yzf3t/z54zZ77f8/vt33ZECAAAAADQXTO6HQAAAAAAgOIMAAAAAHoCxRkAAAAA9ACKMwAAAADoARRnAAAAANADKM4AAAAAoAdQnAEA0CTbi21/1/Z62+tsXzDu+Qtth+35+WPb/pLtjbbvs31adyIHAJRBf7cDAACgFcuXL49t27YVvt277rrr2xGxfJKnRyRdGBF32z5W0l2210TEetuLJb1O0uM1679e0tL89hJJl+U/AQA4AsUZAKCUtm3bprVr1xa+3bFer4lExKCkwfz+btsbJC2UtF7SX0m6SNI3a5qskHR1RISkO2zPtX1ivh0AAA5DcQYAKK2s5ukO20skvVjSnbZXSNoSEffarl1toaRNNY8358sozgAAR6A4AwCUVpuKs/m2a7vkVkXEqtoVbB8j6WuSPqxsqOMlyoY0AgDQMoozAEBptak42xYRyyZ70vaAssLs2oi4yfZvSDpZ0liv2SJJd9s+XdIWSYtrmi/KlwEAcASKMwBAKUVEx4c1Oqu+Lpe0ISI+n8dxv6Tja9Z5VNKyiNhme7WkD9q+XtlEIDs53wwAMBmKMwAAmnempHdJut/2PfmySyLi5knWv1nSGyRtlLRP0nvaHiEAoLQozgAApdXpnrOI+IEkN1hnSc39kHR+m8MCAFQExRkAoLS6OVsjAABFozgDAJQWxRkAoEoozgAApUVxBgCokhndDgAAAAAAQM8ZAKCkujGVPgAA7URxBgAoLYozAECVUJwBAEqL4gwAUCUUZwCA0qI4AwBUCROCAAAAAEAPoOcMAFBa9JwBAKqE4gwAUErM1ggAqBqKMwBAaVGcAQCqhHPOpgnbS2yH7f788fds/2EH9jvb9j/a3mn7H9q9v1S2z7T9kO09tt+cL7vJ9oe7GxkAAOXXrXyk19h+h+1bErfxqO3XtNDuVbY3p+y7V+T52vO6HUeRKM46LP9D2p+/mcZuX26iXdj+lU7E2MgEr6Heh8tbJZ0g6Zcj4vcbbPewD+wu+ZSkL0fEMRHxDdvvkDQcEV/oYkwAJjE2tLHIGzAdTMN8pGsmym8i4tqIeF0346qCPF97uNtxFIlhjd3xexHxL0Vu0HZ/RIwUuc0Gmn0Nz5X00w7HNqEmj9FzJa2refwsSe9rX1QAUlBMAUmmUz7SFa184dyFY4geQs9ZD7H9K7a/nw8B3Gb7q/ny2/JV7s2/GfqDsS5p2//N9lZJf297hu2P2v6Z7X+3fYPteU3s9/m2v5O32Wb7WttzC3g9n5T0cUl/kMf9vjzG/277MdtP2b7a9nF5k7HXuSNf/6UN1pftd+fP/bvtP6vt4rf9Cds32r7G9i5J59k+3fbttnfYHrT9Zdsz8/V/Jul5kv4x3/8sZT1/57TzOAFoTTt6zSj2gOrlI/m232j7x7Z32d5k+xN11h17TZfkcTzqbCRNw23V9JK9z/bjkr6jifOb82z/oKZd2D7f9kOSHpokrnfV5DwfG/dcS8c8bzvWbrft9bbfUmfd2bavsr3d9gbbF7lmiGS9beV52TUTHKuxIa7n2X44b/vI2DGf7P1Yc9x+Jb/fzO/lXNuP59v5WM3zk+aHnUZx1lv+h6RblPXWLJL0vyQpIl6RP39q3n079qZcIGmest6elZI+JOnNkl4p6SRJ2yX9dRP7taQ/z9v8mqTFkj7RoM21tp+2fYvtUydaISIulfQZSV/N475c0nn57XeUFULHSBobRjH2Oufm699eb33bp0j6G0nvkHSipOMkLRwXxgpJN0qaK+laSYckfUTSfEkvlXSWpD/O432+pMeVfQt3TEQcLOA4AWgjijOgLSqVj+T2Snq3snzgjZI+4Pzc8kksUJYrLJR0rqRVtl84hW29Mn8Nv6uJ85uJvFnSSySdMv6JPOe5TNK7lB2fX1b2uxnT6jGXpJ9JermyPOqTkq6xfeIk614qaYmynOy1kt6ZsK2fsz1H0pckvT4ijpX0Mkn35E9P+H6cQDO/l/8o6YXK8r+P2/61fPmk+WGnUZx1xzfyynzs9kf58mFlH2wnRcSBiPhBnW1I0qikSyPiYETsl/R+SR+LiM15YfEJSW91gy71iNgYEWvy7Twt6fPK/rgn8w5lf5jPlfRdSd+ewjdb75D0+Yh4OCL2SLpY0jl1Yqy3/lsl/WNE/CAihpT10o3PrG6PiG9ExGhE7I+IuyLijogYiYhHJf3vBq/151o4TgAA9LJpk49ExPci4v48H7hP0nUNti1Jf5bH8n1J/yTpbVPY1iciYm9+PJr15xHxzCRt3irpWxFxW35M/0zZcR/T0jHPX88/RMQT+ev5qrKeu9MnWf1tkj4TEdsjYrOygqrVbY03KulFtmdHxGBEjJ1m0tT7scnfyyfzfPBeSfdKOjVv23J+WDSKs+54c0TMrbn9Xb78ImXfGv3Q9jrb722wnacj4kDN4+dK+vrYh6ykDcq+CTih3kZsn2D7ettbnA3/u0bZNwcTioh/y9/Y+yLizyXtUPYtSTNOkvRYzePHlJ37OFmM9dY/SdKmmrj2Sfr3ce031T6w/QLb37K9NX+tn1Gd1zqu7ZSOE4D2o+cMSDJt8hHbL7H93byXbaeyYqbe//DtEbG35vFjyvKOZre1SVNXr834nGevDs95Wjrm0s9PEbmnpu2LNPmxOSyO8TFPcVs/l7+eP1B2LAdt/5PtX82fbur92OTvZWvN/X3KRmQl5YdFozjrIRGxNSL+KCJOkvSfJf2N68+IND6L2KSsO7j2g/aoiNjSYNefybf1GxHxS8q6qD2V0Kew/hPKPkDGPEfSiKQndeTrabT+oGq69G3PVtbNPz62WpdJelDS0vy1XjKF2FOPE4CCUZwBxatoPvJ/Ja2WtDgijpP0tw22/ax8qN2Y5yjLSZrdVkxyv5566w0qG+YpSbJ9tA7PeVo65rafK+nvJH1Q2czacyU9oMmPzWG517iYGm1rr6Sja9ouqN1wRHw7Il6r7FSVB/NtTeX9ONXfca2U/LBQFGc9xPbv2x57w29X9kc61mX9pLLxvfX8raRP538csv1s2yua2PWxkvZI2ml7oaQ/rRPjc5xdC2ym7aNs/6mybxb+rYn9SFkX80dsn2z7GP3inLQRSU8re73Pa3L9GyX9nu2X5SdtfkKN/5COlbRL0p78G5kPNBn3WNumjhOAzqA4A4pX0XzkWEnPRMQB26dL+k9NxPPJfPsvl3S2pLHrtU51WxPlN1N1o6Szbf/HPOf5lA7P41s95nOU/X6fztu9R1lv12RukHSx7Wflv6MPTmFb90h6Rf67O07ZqSrK1z3B9oq8ID6o7H0wmj9X7/1Yq5XfcW3bVvPDQlGcdcfYbIBjt6/ny39b0p229yir/C+IX1y74ROSrsq7id82yXa/mLe7xfZuSXcoO7G0kU9KOk3STmVjqm+qs+6xyr5d2C5pi6Tlyr6pGT+ccDJXSPo/ymYuekTSAWUnsY4NS/y0pH/LX+cZDdZfl9+/Xtk3OXskPaXsj3oy/1XZH+tuZd/IfLXOuuNN5TgBaLN2FGYUZ5hmplM+8seSPpXH83FlRUY9W/NtP6FsQrH3R8SDrWxrkvxmSvKc53xlvUODeWy1F5Ju6ZhHxHpJ/1PS7coK799Q/S/cP5Xv9xFJ/6KsaDzYzLYiYo2yvOs+SXdJ+lbNdmdI+i/Kjvczys73GiuQ6r0fa031d1wrJT8slPlHhKrIe9Z2KOuSfqTL4QBos1NPPTVuuaX4a84uWLDgrohYVviGAZSC7VdJuiYiFjVYddqz/QFJ50QEE6QVhJ4zlJrt37N9dN4N/jlJ90t6tLtRAegUes4AoHNsn5gPJ53h7NICF0r6eqN2aN6Ur1oO9JgVyoY9WtJaZd/ekF0B0wR/7gDQUTOVTTN/srLRStcru+YsCkJxhlKLiD+U9IfdjgNAd1CcAShaRHxPh89IiFxEPKb6E4YgEcUZAKC0KM4AAFXCOWcAAAAA0AM62nNmO+zWr+c2c+bMAqNpzfDwcPI2Ur/p7e/vfofnoUOHkrcxMDCQ1L6vry85hpGRkaT2Q0NDyTEU8TpSjI5OdKmQ5uWTKHAxbnQcE3hgOrDNmxyooMlyp04XZzrqqKNabr9w4cLkGFIT4S1bGl3cvrGDB+tdhqux+fPnJ8eQehx27NiRHMOCBQsar1THvHnzkmPYunVrUvsi3g/HHXdcUvuULzwkadeuXUntUwtcIAXFGQCgSrrfBQMAQIsozgAAVcI5ZwAAAADQA+g5AwCUFj1nAIAqSeo5s73c9k9sb7T90aKCAgCgGWOTghR5A9qJ3AlAPS33nNnuk/TXkl4rabOkH9leHRHriwoOAIDJUEyhbMidADSS0nN2uqSNEfFwRAxJul7SimLCAgCgMXrOUDLkTgDqSinOFkraVPN4c77sMLZX2l5re23CvgAAAMqO3AlAXW2fECQiVklaJUkzZszgK0kAQGHo6UIV1eZOXIQamF5SirMtkhbXPF6ULwMAoCMozlAy5E4A6koZ1vgjSUttn2x7pqRzJK0uJiwAABrjnDOUDLkTgLpa7jmLiBHbH5T0bUl9kq6IiHWFRQYAQB0UUygbcicAjSSdcxYRN0u6uaBYAAAAKo3cCUA9bZ8QBACAdqHnDABQJR0tzmbOnKmFC4+YMbZpS5cuTY5hw4YNSe1nzEg5TS8zMDCQ1D7lGI555JFHktr396e/dQ4cOJDUfsuW7p9DffzxxydvY2hoKKn9oUOHktrPnj07qf2ePXuS2gMpKM4AAFVCzxkAoLQozgAAVUJxBgAoLYozAECVpI/RAwBgmrC92PZ3ba+3vc72Bfnyv7T9oO37bH/d9tyaNhfb3mj7J7Z/t2vBAwB6HsUZAKCU2nGNsyZ64kYkXRgRp0g6Q9L5tk+RtEbSiyLiNyX9VNLFkpQ/d46kX5e0XNLf2O5r0yEBAJQcxRkAoLQ6XZxFxGBE3J3f3y1pg6SFEXFLRIzkq90haVF+f4Wk6yPiYEQ8ImmjpNPbcjAAAKXHOWcAgNJq0zln822vrXm8KiJWjV/J9hJJL5Z057in3ivpq/n9hcqKtTGb82UAAByB4gwAgMNti4hl9VawfYykr0n6cETsqln+MWVDH69tb4gAgCqiOAMAlFY3Zmu0PaCsMLs2Im6qWX6epLMlnRW/CGyLpMU1zRflywAAOALnnAEASqvT55zZtqTLJW2IiM/XLF8u6SJJb4qIfTVNVks6x/Ys2ydLWirph4UfCABAJdBzBgAopSZnVyzamZLeJel+2/fkyy6R9CVJsyStyeo33RER74+IdbZvkLRe2XDH8yPiUKeDBgCUA8UZAKC0Ol2cRcQPJHmCp26u0+bTkj7dtqAAAJXBsEYAAAAA6AH0nAEASqsbE4IAANAuFGcAgNKiOAMAVAnFGQCgtCjOAABVQnEGACilLs3WCABA23S0OLOt/v7Wd/nwww8nx7Bjx46k9scff3xyDLt3705qPzQ0lBzDjBlpc8EcOtT9maBHR0e7vo0iYkjV19eX1L4XXgMAoLryy0uUHl8GoRPoOQMAlBbJEgCgSijOAAClRXEGAKgSijMAQGlRnAEAqoTiDABQWhRnAIAqSZsVAgAAAABQiJaLM9uLbX/X9nrb62xfUGRgAADUMzaVftE3oF3InQA0kjKscUTShRFxt+1jJd1le01ErC8oNgAA6qKYQsmQOwGoq+XiLCIGJQ3m93fb3iBpoSQ+YAAAHUFxhjIhdwLQSCETgtheIunFku6c4LmVklZKSroANQAAQFU0mzsBmF6SqyXbx0j6mqQPR8Su8c9HxCpJqyRp9uzZfMUJACgMPWcoo6nkTrZ5kwPTSFJxZntA2YfLtRFxUzEhAQDQHIozlA25E4B6Wi7ObFvS5ZI2RMTniwsJAIDGmF0RZUPuBKCRlOucnSnpXZJebfue/PaGguICAKAhptJHyZA7AagrZbbGH0hygbEAAABUFrkTgEaYPhEAUFr0dAEAqqSjxZltHXXUUS23f/rpp5NjGBgYSGp/9NFHJ8cwMjKSvI1U8+bNS2q/f//+5BhmzEgZVSsNDw8nx1DENlKlvidTHTp0KKl9dgoF0B0UZ0D79fX1JbUv4v9c6uWYRkdHk2MYGhpKap/6/1biM286oOcMAFBaJCoAgCqhOAMAlBITeAAAqiZtXBkAAAAAoBD0nAEASoueMwBAlVCcAQBKi+IMAFAlFGcAgNKiOAMAVAnFGQCgtCjOAABVwoQgAAAAANAD6DkDAJQSU+kDAKqG4gwAUFoUZwCAKqE4AwCUFsUZAKBKKM4AAKVFcQYAqBImBAEAAACAHkDPGQCgtOg5AwBUCcUZAKCUmK0RAFA1FGcAgNKiOAMAVElHi7OI0IEDB1pu/+xnPzs5huHh4aT2/f3ph2zJkiVJ7Y899tjkGLZv357UfseOHckxpLwXijI6OprUfsaM9NM2U99TtpPaj4yMJLUHAPSuvr6+5G2k5h0LFixIjmHevHlJ7ffu3Zscw+DgYFL7InKnoaGh5G2gt9FzBgAoLXrOAABVQnEGACgtijMAQJVQnAEASoviDABQJRRnAIBSYrZGAEDVJM9mYLvP9o9tf6uIgAAAAKqM3AnAZIroObtA0gZJv1TAtgAAaBo9ZygpcicAE0rqObO9SNIbJX2lmHAAAGje2NDGIm9AO5E7AagndVjjFyRdJCntYlEAALSg08WZ7cW2v2t7ve11ti/Il8+zvcb2Q/nPZ+XLbftLtjfavs/2aR04LOhtXxC5E4BJtFyc2T5b0lMRcVeD9VbaXmt7LRe7BQAUqQs9ZyOSLoyIUySdIel826dI+qikWyNiqaRb88eS9HpJS/PbSkmXteM4oBxayZ06FBqAHpHSc3ampDfZflTS9ZJebfua8StFxKqIWBYRy/r7mRwSAFBeETEYEXfn93crO29ooaQVkq7KV7tK0pvz+yskXR2ZOyTNtX1iZ6NGD5ly7tTpAAF0V8vFWURcHBGLImKJpHMkfSci3llYZAAA1NGOXrO852z+WK9Ffls50f5tL5H0Ykl3SjohIgbzp7ZKOiG/v1DSpppmm/NlmIbInQA0QlcWAKC02jSBx7ZGPRa2j5H0NUkfjohdtmtjCtvMLAIAmLJCirOI+J6k7xWxLQAAmtWN2RVtDygrzK6NiJvyxU/aPjEiBvNhi0/ly7dIWlzTfFG+DNMcuROAiSRfhBoAgG7pwmyNlnS5pA0R8fmap1ZLOje/f66kb9Ysf3c+a+MZknbWDH8EAOAwDGsEAKB5Z0p6l6T7bd+TL7tE0mcl3WD7fZIek/S2/LmbJb1B0kZJ+yS9p6PRAgBKpaPF2aFDh7Rz586W28+dOzc5hjlz5iS1X7gw/Tzut7zlLUntBwfTv3Rds2ZNUvvh4eHkGFIvrTAwMND1GIpQe65KN8yYkdaB3u34Mb11elhjRPxA0mRv+rMmWD8knd/WoFB5KZ+zs2bNSt7/c57znKT2Z511xJ/GlJ166qlJ7Tdt2tR4pQZSc6f7778/OYbUvGV0lMvr9Tp6zgAApdTkdckAACgNijMAQGlRnAEAqoQJQQAAAACgB9BzBgAoLXrOAABVQnEGACgtijMAQJVQnAEASokJQQAAVUNxBgAoLYozAECVMCEIAAAAAPQAes4AAKVFzxkAoEoozgAApUVxBgCoEoozAEBpUZwBAKqE4gwAUErM1ggAqBomBAEAAACAHkDPGQCgtOg5AwBUCcUZAKC0KM4AAFVCcQYAKC2KMwBAlXS0OLOtWbNmtdx+aGgoOYZ58+YltX/5y1+eHMM555yT1P72229PjuH73/9+UvujjjoqOYYdO3Ykte/vT3/7zpw5M6n9yMhIcgyHDh1Kaj86OprUfnh4OKk9yTG6ifcfpgPbLbdNybvGLFy4MKn9q1/96uQYzj777KT29913X3IMjz76aFL7n/3sZ8kx7N69O6l9as6A9mNCEAAAAADoAQxrBACUElPpAwCqhuIMAFBaFGcAgCqhOAMAlBbFGQCgSpLOObM91/aNth+0vcH2S4sKDAAAoGrInQDUk9pz9kVJ/xwRb7U9U9LRBcQEAEBT6DlDCZE7AZhUy8WZ7eMkvULSeZIUEUOS0ue6BwCgSRRnKBNyJwCNpAxrPFnS05L+3vaPbX/F9pyC4gIAoK6x2RqLvgFtRO4EoK6U4qxf0mmSLouIF0vaK+mj41eyvdL2WttrUy+2CwBALYozlMyUc6dOBwigu1KKs82SNkfEnfnjG5V94BwmIlZFxLKIWNbX15ewOwAAgFKbcu7U0egAdF3LxVlEbJW0yfYL80VnSVpfSFQAADSBnjOUCbkTgEZSZ2v8kKRr89mGHpb0nvSQAABoDsUUSojcCcCkkoqziLhHEl3uAICuoDhD2ZA7AagntecMAICuYBgiAKBqUiYEAQAAAAAUpKM9Z7Y1a9asltsPDaVfp3FgYCCpfRHf0qZu45FHHkmOYe/evUntR0ZGkmPohUsrpM4gWsRxSH1fDw8Pd7X96OhoUnsgBT1nQH1F/I2k/p/YvXt3cgzbtm1Lar99+/bkGA4cOJDUvoj/l3zmVR/DGgEApUWiAgCoEoozAEBpUZwBAKqE4gwAUFoUZwCAKmFCEAAAAADoAfScAQBKian0AQBVQ3EGACgtijMAQJVQnAEASoviDABQJZxzBgAAAAA9gJ4zAEBp0XMGAKgSijMAQGlRnAEAqoTiDABQSszWCACoGoozAEBpUZwBAKqECUEAAJgC21fYfsr2AzXLfsv2Hbbvsb3W9un5ctv+ku2Ntu+zfVr3IgcA9DqKMwBAaY0NbSzy1oQrJS0ft+wvJH0yIn5L0sfzx5L0eklL89tKSZcV8boBANXEsEYAQGl1Y1hjRNxme8n4xZJ+Kb9/nKQn8vsrJF0dWaB32J5r+8SIGOxMtACAMqE4AwCUVg+dc/ZhSd+2/Tllo1Jeli9fKGlTzXqb82UUZwCAI3S0OIsIHTx4sOX2hw4dSo4hdRs/+tGPkmO4/PLLk9rfeuutyTFs3bo1qf3IyEhyDMgMDw8ntU/5m5KkoaGhpPY9lBxjmmnjbI3zba+tebwqIlY1aPMBSR+JiK/ZfpukyyW9ph3BYfpJeZ8fOHAgef+PPvpoUvvVq1cnx7Bhw4ak9k8++WRyDOvWrUtqv2fPnuQY+J9bffScAQBwuG0RsWyKbc6VdEF+/x8kfSW/v0XS4pr1FuXLAAA4AhOCAABKq0sTgkzkCUmvzO+/WtJD+f3Vkt6dz9p4hqSdnG8GAJgMPWcAgNLqxhAf29dJepWy4Y+bJV0q6Y8kfdF2v6QDymZmlKSbJb1B0kZJ+yS9p+MBAwBKg+IMAFBaXZqt8e2TPPUfJlg3JJ3f3ogAAFWRNKzR9kdsr7P9gO3rbB9VVGAAADTSQ8MagaaQOwGop+XizPZCSX8iaVlEvEhSn6RzigoMAACgSsidADSSOqyxX9Js28OSjtYvLroJAEBb0dOFkiJ3AjCplnvOImKLpM9JelzZxTR3RsQtRQUGAEAjDGtEmZA7AWgkZVjjsyStkHSypJMkzbH9zgnWW2l7re21RVxEGgCAMRRnKJNWcqdOxwigu1ImBHmNpEci4umIGJZ0k6SXjV8pIlZFxLKIWNbX15ewOwAADkdxhpKZcu7U8QgBdFVKcfa4pDNsH23bks6StKGYsAAAACqH3AlAXS1PCBIRd9q+UdLdkkYk/VjSqqICAwCgEXq6UCbkTgAaSZqtMSIulXRpQbEAANA0hiGijMidANSTOpU+AABdQ3EGAKiSlHPOAAAAAAAF6WjPWV9fn+bOndty+02bNiXH8MQTadd63LFjR3IMGzaknfs7MjKSHMP27duT2s+aNSs5htHR0aT2Bw8eTI4hdRupr0GS+vvT/gwHBgaSY0hRxN8E0Cp6zjAdpLzPh4aGkvc/ODiY1P5f//Vfk2O4++67k9oXkTOk5k779+9PjqGIvAO9jWGNAIDSojgDAFQJxRkAoLQozgAAVUJxBgAoJWZrBABUDROCAAAAAEAPoOcMAFBa9JwBAKqE4gwAUFoUZwCAKqE4AwCUFsUZAKBKKM4AAKVFcQYAqBImBAEAAACAHkDPGQCglJhKHwBQNRRnAIDSojgDAFQJxRkAoLQozgAAVUJxBgAoLYozAECVMCEIAAAAAPQAes4AAKVFzxkAoEoozgAApcRsjQCAqulocTYyMqInn3yy5fb79+9PjmHXrl1dbV+E2bNnJ29jdHQ0qX0Rv4tUqa+hV2IYGRlJaj9jRtro5NT2QDdRnAH1FfF/at++fUntDx48mBxD6v+qIj4rDh06lNS+F/IW9D6yMgAAAADoAQxrBACUFj1nAIAqoTgDAJQWxRkAoEoozgAApUVxBgCokobnnNm+wvZTth+oWTbP9hrbD+U/n9XeMAEAONzYbI1F34BU5E4AWtXMhCBXSlo+btlHJd0aEUsl3Zo/BgAAALkTgBY1LM4i4jZJz4xbvELSVfn9qyS9udiwAABojJ4z9CJyJwCtavWcsxMiYjC/v1XSCZOtaHulpJWS1NfX1+LuAAA4EsUUSqSl3AnA9JI8IUhEhO1J/ztGxCpJqyRp5syZ/BcFABSG4gxlNJXcqd56AKqn1eLsSdsnRsSg7RMlPVVkUAAANIPiDCVC7gSgoWYmBJnIaknn5vfPlfTNYsIBAACoJHInAA017DmzfZ2kV0mab3uzpEslfVbSDbbfJ+kxSW9rZ5AAAIzHBB7oVeROAFrVsDiLiLdP8tRZBccCAMCUUJyhF5E7AWhV8oQgAAB0C8UZAKBKKM4AAKVFcQYAqJKOFmejo6M6ePBgy+1nz55dYDSt2bNnT/I2bCe1nzlzZnIMM2a0OhdMZmhoKDmG4eHhpPZFXDcv9XcxOjqaHEPqcUg1MDCQ1J7kGACqLfVzfmRkpKBIgOqj5wwAUFp8OQAAqJK07hMAALpkbLbGom+N2L7C9lO2Hxi3/EO2H7S9zvZf1Cy/2PZG2z+x/bttOBQAgIqg5wwAUFpd6jm7UtKXJV09tsD270haIenUiDho+/h8+SmSzpH065JOkvQvtl8QEYc6HjUAoOfRcwYAwBRExG2Snhm3+AOSPhsRB/N1nsqXr5B0fUQcjIhHJG2UdHrHggUAlArFGQCgtNo0rHG+7bU1t5VNhPICSS+3faft79v+7Xz5QkmbatbbnC8DAOAIDGsEAJRWm4Y1bouIZVNs0y9pnqQzJP22pBtsP6/wyAAAlUZxBgAopWYn8OiQzZJuiiygH9oelTRf0hZJi2vWW5QvAwDgCAxrBACUVjdma5zENyT9jiTZfoGkmZK2SVot6Rzbs2yfLGmppB+mv3IAQBXRcwYAwBTYvk7Sq5Sdm7ZZ0qWSrpB0RT69/pCkc/NetHW2b5C0XtKIpPOZqREAMBmKMwBAaXVjWGNEvH2Sp945yfqflvTp9kUEAKgKijMAQGn10DlnAAAkozgDAJQWxRkAoEoozgAApdRjszUCAJCM2RoBAAAAoAfQcwYAKC16zgAAVUJxBgAoLYozAECVdLQ4iwiNjIy03H7OnDnJMRw6VP7Ly+zfvz95G3v37k1qPzQ0lBxDqiLeDzNmpI3sHR4eTo5hdHQ0eRvAdEVxBgCoEnrOAAClRXEGAKgSJgQBAAAAgB5AzxkAoJSYSh8AUDUUZwCA0qI4AwBUScNhjbavsP2U7Qdqlv2l7Qdt32f767bntjVKAAAmMNZ7VuQNSEXuBKBVzZxzdqWk5eOWrZH0ooj4TUk/lXRxwXEBAACU1ZUidwLQgobFWUTcJumZcctuiYixOfHvkLSoDbEBAFAXPWfoReROAFpVxDln75X01cmetL1S0sr8fgG7AwAgQzGFkmo6dwIwvSQVZ7Y/JmlE0rWTrRMRqyStkqS+vj7+iwIACkFPF8poqrmTbd7kwDTScnFm+zxJZ0s6K/jvCADoAv79oEzInQA00lJxZnu5pIskvTIi9hUbEgAAQLWQOwFoRsPizPZ1kl4lab7tzZIuVTbD0CxJa/LzyO6IiPe3MU4AAI5A5wN6EbkTgFY1LM4i4u0TLL68DbEAADAlFGfoReROAFpVxGyNAAB0BcUZAKBKKM4AAKXEbI0AgKrpaHE2OjqqXbt2dXKXRxgeHk5q39fXlxzDrFmzkto/88wzjVdqYP/+/Unte+E4zJjR8BrqDfX3l//7idTXUMRxBAAAQLryZ6YAgGmLnjMAQJVQnAEASoviDABQJRRnAIDSojgDAFQJxRkAoLQozgAAVcJMAAAAAADQA+g5AwCUElPpAwCqhuIMAFBaFGcAgCqhOAMAlBbFGQCgSijOAAClRXEGAKgSJgQBAAAAgB5AzxkAoLToOQMAVAnFGQCglJitEQBQNRRnAIDSojgDAFQJ55wBAAAAQA+g5wwAUFr0nAEAqoTiDABQWhRnAIAq6XhxZrvltnPmzEne/86dO5Pa9/enH7LZs2cntd+/f3/XY5g1a1ZyDCMjI0ntZ8yoxqjc1PfUwMBAV/ef8jcNpKI4AwBUCT1nAIBSYrZGAEDVVKPrAQAAAABKjp4zAEBp0XMGAKiShj1ntq+w/ZTtByZ47kLbYXt+e8IDAGByY0Mbi7wBqcidALSqmWGNV0paPn6h7cWSXifp8YJjAgCgKRRn6FFXitwJQAsaFmcRcZukZyZ46q8kXSSJ/2QAgK6gOEMvIncC0KqWJgSxvULSloi4t+B4AADoaVMZsubMl2xvtH2f7dM6HzF6AbkTgGZMeUIQ20dLukRZt3wz66+UtHKq+wEAoJ4u9nRdKenLkq6uXTjJkLXXS1qa314i6bL8J6YRcicAzWql5+z5kk6WdK/tRyUtknS37QUTrRwRqyJiWUQsaz1MAACO1I1hjVMcsrZC0tWRuUPSXNsnFvHaUSrkTgCaMuWes4i4X9LxY4/zD5llEbGtwLgAAGioTT1n822vrXm8KiJW1WtQO2TNdu1TCyVtqnm8OV82WFSw6H3kTgCa1bA4s32dpFcp+2e1WdKlEXF5uwMDAKCRNhVn26bSYzHVIWuoPnInAK1qWJxFxNsbPL+ksGgAACif2iFr0i+GrJ0uaYukxTXrLsqXocLInQC0asrDGgEA6BW9MPV9vSFrtldL+qDt65VNBLIzIhjSCACYEMUZAKCUujVb4xSHrN0s6Q2SNkraJ+k9HQkSAFBKFGcAgNLqRnE2lSFrkQV4frtjAgBUQ6eLs20R8Vid5+dLmnTmosHBjowEqRvDvn37knewY8eOpBg6pG4M+/fv7+r+JWnPnj1dj6EDGsbQA7+L57Y7AACYxrZJajl36hBi6P7+iaFcMUyaO3W0OIuIZ9d73vbabl/Tgxh6I4Zu758YeisGYDK9cM4Z0E7kTuWIodv7J4bqxMCwRgBAaVGcAQCqhOIMAFBaFGcAgCrpteJsVbcDEDGM6XYM3d6/RAxjeiEG4Ajdmq0R6DG98BlNDN3fv0QMY0odg/nHBgAoo5kzZ8aCBQsK3+6mTZvu6vb5CgCA6anXes4AAGgaXzACAKqE4gwAUFoUZwCAKpnR7QDG2F5u+ye2N9r+aBf2v9j2d22vt73O9gWdjiGPo8/2j21/q0v7n2v7RtsP2t5g+6VdiOEj+e/gAdvX2T6qA/u8wvZTth+oWTbP9hrbD+U/n9WFGP4y/13cZ/vrtud2Ooaa5y60HbbntzMGYCrGzjsr8gaUAXnTYbGQO5E7VSZ36onizHafpL+W9HpJp0h6u+1TOhzGiKQLI+IUSWdIOr8LMUjSBZI2dGG/Y74o6Z8j4lclndrpWGwvlPQnkpZFxIsk9Uk6pwO7vlLS8nHLPirp1ohYKunW/HGnY1gj6UUR8ZuSfirp4i7EINuLJb1O0uNt3j8wJRRnmI7Im45A7kTuVKvUuVNPFGeSTpe0MSIejoghSddLWtHJACJiMCLuzu/vVvaHtbCTMdheJOmNkr7Syf3W7P84Sa+QdLkkRcRQROzoQij9kmbb7pd0tKQn2r3DiLhN0jPjFq+QdFV+/ypJb+50DBFxS0SM5A/vkLSo0zHk/krSRZLIXAGg+8ibcuROP0fu9Itlpc6deqU4WyhpU83jzerCH/gY20skvVjSnR3e9ReU/RJHO7zfMSdLelrS3+fDA75ie04nA4iILZI+p+xbhkFJOyPilk7GUOOEiBjM72+VdEKX4hjzXkn/r9M7tb1C0paIuLfT+wbqaUevGT1nKAnypl/4gsidyJ0mV7rcqVeKs55h+xhJX5P04YjY1cH9ni3pqYi4q1P7nEC/pNMkXRYRL5a0V+3vjj5MPjZ5hbIPu5MkzbH9zk7GMJHIMrauZW22P6ZsCMm1Hd7v0ZIukfTxTu4XaBbFGdBd3cqb8n2TO4ncaTJlzZ16pTjbImlxzeNF+bKOsj2g7APm2oi4qcO7P1PSm2w/qmx4wqttX9PhGDZL2hwRY9983ajsA6eTXiPpkYh4OiKGJd0k6WUdjmHMk7ZPlKT851PdCML2eZLOlvSO6Hzm+HxlH/b35u/NRZLutl38xaWAFlCcYZoib8qQO2XIncYpc+7UK8XZjyQttX2y7ZnKTmJc3ckAbFvZeOENEfH5Tu5bkiLi4ohYFBFLlL3+70RER7/1iIitkjbZfmG+6CxJ6zsZg7Iu+TNsH53/Ts5S907yXS3p3Pz+uZK+2ekAbC9XNlzjTRGxr9P7j4j7I+L4iFiSvzc3Szotf68AXUdxhmlq2udNErlTDXKnGmXPnXqiOIvspL0PSvq2sjfTDRGxrsNhnCnpXcq+dbknv72hwzH0gg9Jutb2fZJ+S9JnOrnz/JunGyXdLel+Ze/RVe3er+3rJN0u6YW2N9t+n6TPSnqt7YeUfSv12S7E8GVJx0pak78n/7YLMQAAegh5U88hdyJ3Kix3Mt8SAgDKaGBgIObOnVv4drdt23ZXRCwrfMMAADTQ3+0AAABoBcMQAQBVQ3EGACgtijMAQJX0xDlnAAAAADDd0XMGACgtes4AAFVCcQYAKC2KMwBAlVCcAQBKi+IMAFAlFGcAgFJitkYAQNUwIQgAAAAA9AB6zgAApUXPGQCgSijOAAClRXEGAKgSijMAQGlRnAEAqoTiDABQWhRnAIAqYUIQAAAAAOgB9JwBAEqJqfQBAFVDcQYAKC2KMwBAlVCcAQBKi+IMAFAlFGcAgNKiOAMAVAkTggAAAABAD6DnDABQWvScAQCqhOIMAFBKzNYIAKgaijMAQGlRnAEAqoRzzgAAAACgB9BzBgAoLXrOAABVQnEGACgtijMAQJVQnAEASoviDABQJRRnAICy+rak+W3Y7rY2bBMAgIbMt44AAAAA0H3M1ggAAAAAPYDiDAAAAAB6AMUZAAAAAPQAijMAAAAA6AEUZwAAAADQA/4/jM17nP5qGqQAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "recorte5 = trim(Escalagrises3[:,:,0], 320, 455, 15, 15)\n", + "x5=np.arange(0,15,1)\n", + "y5=np.arange(0,15,1)\n", + "y5,x5 = np.meshgrid(x5,y5)\n", + "xdata5 = np.vstack((x5.ravel(),y5.ravel()))\n", + "popt5, pcov5 = curve_fit(gauss2d, xdata5, recorte5.ravel(), p0=[1,1,1,1,1])\n", + "estrella5=gauss2d(xdata5, popt5[0], popt5[1],popt5[2], popt5[3], popt5[4])\n", + "FWHM5=FWHM.append(2*np.sqrt(2*np.log(2))*np.sqrt(popt5[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 5 fotografÃa\")\n", + "plt.imshow(recorte5, plt.get_cmap('gray'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 5 a partir de la gaussiana\")\n", + "plt.imshow(estrella5.reshape(15, 15), plt.get_cmap('gray'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 6 (blanco y negro)" + ] + }, + { + "cell_type": "code", + "execution_count": 309, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2AAAAFSCAYAAACUv7wrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAq3UlEQVR4nO3de7hkdX3n+/enL6ACLRqUWyOQDDgB44WDBOOYUckoEEd8ZiYZTDSGJBJzUNEwY8ScGfScR8ckHqOO8dIRTHzkiAxChlEnotFonAimId4A0Y6i3dgONtcGBPryPX/U2lJseu9du6lVtWr1+/U89XTVqrV+67dWVdf+fer3W79KVSFJkiRJat+KaVdAkiRJkvYUBjBJkiRJmhADmCRJkiRNiAFMkiRJkibEACZJkiRJE2IAkyRJkqQJWTXtCkiStJiTTz65tmzZMtYyr7766k9V1cljLVSSpBEYwCRJnbZlyxbWr18/1jKTHLDE84cBHwIOBApYV1XvbJ57FXAWsAP4RFW9rll+LvDbzfJXV9WnxlppSVIvGMAkSZ1XVZPe5XbgnKq6Jsl+wNVJPs0gkJ0GPKWq7kvyeIAkxwCnA8cChwCfSXJ0Ve2YdMUlSd1mAJMkdd6kA1hVbQY2N/e3JrkeOBR4OfDWqrqvee7mZpPTgIua5d9NsgE4AfjSRCsuSeo8J+GQJHVeVY31thxJjgCeBlwFHA08K8lVST6f5OnNaocCG4c229QskyTpQewBkyR12u6EphEckGT4wrJ1VbVu/kpJ9gU+Brymqu5Msgp4LHAi8HTg4iQ/Pe7KSZL6ywAmSdoTbamq4xdbIclqBuHrwqq6tFm8Cbi0Bonwy0l2AgcANwGHDW2+tlkmSdKDOARRktR5kx6CmCTA+cD1VfX2oaf+CnhOs87RwF7AFuBy4PQkeyc5EjgK+PJ4z4IkqQ/sAZMkdd4UZkF8JvBS4OtJvtIsewNwAXBBkm8A9wMva3rDrk1yMXAdgxkUz3IGREnSrhjAJEmdN4VZEL8IZIGnX7LANm8G3txapSRJvWAAkyR13hR6wCRJaoXXgEmSJEnShNgDJknqtJamoZckaSoMYJKkzjOASZL6wgAmSeo8A5gkqS8MYJKkzjOASZL6wkk4JEmSJGlC7AGTJHWePWCSpL4wgEmSOs1ZECVJfWIAkyR1ngFMktQXXgPWI0mOSFJJVjWP/zbJ70xgv0nywSS3Jfly2/t7uJI8MclXkmxN8upm2duTvGPKVZMkaeZNqz3SNUmeleSGh1nGbp27+a/BLEtybZJnT7se42QAa0GSG5P8OMldQ7d3j7BdJflnk6jjKJKcneS7Se5Ocn2SoxdY9V8A/wpYW1UnjFDutI/zdcDnqmq/qnpXkmcBTwf+4xTrJGkRc8MQx3WT9gR7YHtkquaft6r6u6p64jTr1AdVdWxV/e206zFOM5+KO+xfV9VnxllgklVVtX2cZS6yr98Bfhv4ZeB64KeB2xZY/XDgxqq6exJ1W8yI5+hw4KKhx0cC/76qtrVXM0kPh6FJ2m17UntkKnbnfEzyHKp77AGbsCT/LMnnk9yRZEuSjzbLv9Cs8tXmG6p/n+TZSTYl+YMkPwQ+mGRFktcn+acktyS5OMljR9jvzyT5bLPNliQXJtl/gXVXAOcBr62q62rgn6rq1l2s+9vAB4BnNPV+U7P85Uk2JLk1yeVJDlnoOBdbv3nueUluaM7Ze5rz9zvNc7+Z5H8l+dMktwBvXOxYk3wWeA7w7mb/RwPPBf7P5vnHJPl4kh9lMKTy40nWLnV+JbVn3L1fhjmpf+2RZv0Tknwpye1JNid5d5K9Flh3bojemUl+0Kz/H0Ytq9n2rCTfBr692Hkb2ubG5hx+Dbg7uxgemORfJflm87q8G8i8538rg17A25J8KsnhC5zq+eWe0Wy3Ncl3kvzuIuuuTPL/Nq/Pd5O8Mg8eUrpgWU277IvzyvtJz2CSU5Nc12x709w5T3JA0+a6PYO24N81r//cefulZbwur0jy7WadP0uS5rmR33ttM4BN3v8DXAE8BlgL/FeAqvrF5vmnVNW+VfXR5vFBwGMZ9NqcCbwKeBHwL4FDGHwL9Gcj7DfAf2m2+VngMOCNC6y7trk9KcnG5j/fm+b+IwyrqvOBVwBfaup9XpLnNvv6VeBg4Hs0PU67Os7F1k9yAHAJcC7wU8ANwC/Mq8bPA98BDgTevNixVtVzgb8DXtns/1vzyloBfJDB+X4C8GNgyeEaktplAJPGrlftkcYO4LXAAcAzgJNovmBdxHOAo4DnAX8w19AfsawXMWiDHLPIeZvvxQx68/af3wPWtHkuBf6vZr//BDxz6PnTgDcA/wZ4HIP2zEeWOL45NwMvANYAZwB/muS4BdZ9OXAK8FTguOY4d7es+c4Hfreq9gOeBHy2WX4OsInBcR3I4Dh39WE9yuvyAgaXljyZQdvy+c3y5bz3WmUAa89fNcl77vbyZvk2Bh9eh1TVvVX1xUXKANgJnFdV91XVjxmEnT+sqk1VdR+DN86/29W3KMOqakNVfbop50fA2xl8aO7KXI/P84CfY/Dh9GIGQwBG8evABVV1TVPHcxn0kB2xG+ufClxbVZc2H1TvAn44b/sfVNV/rartVfXjZR7rg1TVLVX1saq6p6q2Mgh0I20rSVIH7THtkaq6uqqubNoDNwLvX6TsOW+qqrur6usMvoB98TLK+i9VdWtzPkb1rqrauMA2c22eS2pwWcQ7eHCb5xXNPq9v2kRvAZ46Si9YVX2i6T2sqvo8g/D9rAVW/1Xgnc1rexvw1odR1nzbgGOSrKmq26rqmqHlBwOHV9W2Glw/95AANuLr8taqur2qvg98jkGQXO57r1UGsPa8qKr2H7r9ebP8dQwS+JczmNXlt5Yo50dVde/Q48OBy+Y+SBmMh97B4NuCBSU5MMlFTXfvncCHGXx7sCtzHwp/3LyBb2TwBj91ibrOOYRBLxYAVXUXcAtw6G6sfwiwcei5YvANybCNww+WeawPkuRRSd6f5HvNtl8A9k+ycpTtJbXj4fZ4zb9Je5A9pj2S5OhmGNsPm7LfskjZc4bbEN9j0O4YtayNLN9i2+yqzTO8/uHAO4fO+a0MXsOF2lc/keSUJFc2w/tuZ3AOFzo3D6rH/Dovs6z5/m2z/vcyGAL7jGb5nwAbgCuaYY2vX+A4RnldhkPrPcC+zba73T4cNwPYhFXVD6vq5VV1CPC7wHuy+ExD81sKG4FT5n2YPqKqblpi129pyvq5qloDvIR544qH3ADcP2/fy2mx/IDBhwQASfZhMHxwoToutv5mHvgGjGYc7/xrsubXbTnHOt85wBOBn2+2nRtSMOr2klpgAJPGq6ftkfcC3wSOasp+wyJlzzls6P4TGLRJRi1rdz5MFttm83B9mjbPcP02Mhi+N3zOH1lVf7/YDpPsDXwMeBtwYFXtD3yShc/Ng9pe8+q0VFl3A48aWv+g4YKr6h+q6jTg8cBfARc3y7dW1TlV9dPAC4HfT3LSLuq2O6/xnIfTPhwrA9iEJfmVPDCpw20M3gg7m8f/m8HsPot5H/Dmue7mJI9rxgQvZT/gLuCOJIeyyJTrVXUP8FHgdUn2a+p7JvDxEfYDg/HIZyR5avMf9S3AVc03V/DQ41xs/U8AP5fkRc2whrMYjEMfy7EusO2PgdszuJj4vGVsK6klBjBpvHraHtkPuBO4K8k/B35vhPr8p2b0y7EMrmeau3Zrd8oa5bwt5hPAsUn+TdPmeTUPbvO8Dzi3qStJHp3kV0Yody9gb+BHwPYkpzAY1rmQi4GzkxyawSQVf7CMsr7aHMNTkzyCoWuskuyV5NeTPLoGQyzvpHnPJXlBBhPDBLiDQW/qTh5qd16X4W13t304Vgaw9vyPPPh3Ny5rlj8duCrJXcDlwNlV9Z3muTcCf9l0Lf/qAuW+s9nuiiRbgSsZXAC6lDcxuJDyDgb/wS9dYv1XMniT/gD4EvD/AReMsB9qMN3tf2LwDclm4GeA04dWeSNDx7nY+lW1BfgV4I8ZDEs8BlgP3DfGYx32DuCRwBYG5/avl7GtpBaMO3wZwLSH2ZPaI/8B+DVgK/DnPBCmFvN5BkPf/gZ4W1Vd8TDKeiNLn7cFDbV53sqgzXMU8L+Gnr8M+CPgomYI3TcYTJaxVLlbGYS5ixmE7V9j8Not5M8ZXNf1NeAfGfRwbQd2LFVWDSY3+7+BzwDfBuZfW/hS4Mam/q9gMA8AzbF+hsFr/SXgPVX1uV3UbXdelzkPp304VvEPkWZJBjMfbQJ+fYH/mJJ65ilPeUpdccUVS6+4DAcddNDVVXX8WAuVNDMymOjru8Dq8ve4FtX0cr2vqkaa8l5LswdMnZfk+Un2b4Ynzo31vXLK1ZI0QfaASdJkJHlkBr/XtaoZqncecNlS22l0BjDNgmcw+C2MLcC/ZjCj03KmfJU04wxgkjQxYTBc7zYGQxCvB/7zVGvUM4v+VoPUBVX1Rqb0Q3mSusHQJGmcmom+nOF4F5rJT54+7Xr0mQFMktR5BjBJUl84BFGSJEmSJqSVHrAVK1bUqlXtdq7t3LmrnwYYnxUr2s+mK1eubH0fbZ+ntsuHybwWg5+daFfb52r79nYncWqunXG4hibO67bUd0l8g0v9tKWqHjd/YSspadWqVTzucQ/Z11jdfffdrZa/zz77tFo+wJo1a1rfx/33399q+W2/DjCZ12ISIa/tc3XLLbe0Wv62bdtaLV9ajAFMkjSDvrerhV4DJknqPAOYJKkvvAZMkiRJkibEHjBJUufZAyZJ6gsDmCSp8wxgkqS+MIBJkjrNWRAlSX3iNWCSpM6bC2Hjui0lyWFJPpfkuiTXJjl73vPnJKkkBzSPk+RdSTYk+VqS41o6FZKkGWcPmCRJD7UdOKeqrkmyH3B1kk9X1XVJDgOeB3x/aP1TgKOa288D723+lSTpQUbqAUtycpIbmm/2Xt92pSRJGjbpHrCq2lxV1zT3twLXA4c2T/8p8DpguKDTgA/VwJXA/kkOHutJ0Eyx7SRpIUsGsCQrgT9j8O3eMcCLkxzTdsUkSZoz6QA2LMkRwNOAq5KcBtxUVV+dt9qhwMahx5t4ILBpD2PbSdJiRhmCeAKwoaq+A5DkIgbf9F3XZsUkSZrTwiQcByRZP/R4XVWtm79Skn2BjwGvYTAs8Q0Mhh9Ki7HtJGlBowSwXX2r95Bx7UnOBM4EWLly5VgqJ0lSS7Mgbqmq4xdbIclqBuHrwqq6NMnPAUcCX00CsBa4JskJwE3AYUObr22Wac+0ZNtpuN0kac8ytlkQq2pdVR1fVcevWOHkipKk2ZVBwjofuL6q3g5QVV+vqsdX1RFVdQSDRvVxVfVD4HLgN5rZEE8E7qiqzdOqv7pvuN007bpImqxResD8Vk+SNFVT+B2wZwIvBb6e5CvNsjdU1ScXWP+TwKnABuAe4IzWa6gus+0kaUGjBLB/AI5KciSDD4/TgV9rtVaSJA2ZdACrqi8CWWKdI4buF3BWy9XS7LDtJGlBSwawqtqe5JXAp4CVwAVVdW3rNZMkqTGFHjBpt9l2krSYkX6IuRlysdCwC0mSWmUA06yx7SRpIc6WIUmSJEkTMlIPmCRJ09LSNPSSJE2FAUyS1HkGMElSXxjAJEmdZwCTJPWF14BJkiRJ0oTYAyZJ6jx7wCRJfdFKANu5cyf33ntvG0X/xOMe97hWy5+ESTQoVqxot5Nz9erVrZYPtP5egskcx8qVK1st/+CDD261/M2bN7davrQYA5ikZNHfRh+LVava7ZuYRHtjEp+X999/f+v72LFjR+v7mBZ7wCRJneYsiJKkPjGASZI6zwAmSeoLJ+GQJEmSpAmxB0yS1Hn2gEmS+sIAJknqPAOYJKkvDGCSpM4zgEmS+sIAJknqNGdBlCT1iZNwSJIkSdKE2AMmSeo8e8AkSX1hAJMkdZ4BTJLUFwYwSVLnGcAkSX1hAJMkdZ4BTJLUF07CIUmSJEkTYg+YJKnTnIZektQnBjBJUucZwCRJfWEAkyR1ngFMktQXXgMmSZIkSRNiD5gkqfPsAZMk9YUBTJLUeQYwSVJfGMAkSZ3mLIiSpD4xgEmSOs8AJknqCyfhkCRJkqQJsQdMktR59oBJkvpiZgPY1q1bWy3/kY98ZKvlA+zcubP1fTzhCU9otfwnP/nJrZYPsGPHjtb38dWvfrX1fWzcuLHV8pO0Wr40TQYwSXvttVfr+zj44INbLf/II49stXyAbdu2tb6PDRs2tL6PLVu2tFr+9u3bWy1/MQ5BlCR13txEHOO6LSXJYUk+l+S6JNcmObtZ/idJvpnka0kuS7L/0DbnJtmQ5IYkz2/vbEiSZpkBTJLUaeMOXyP2pm0HzqmqY4ATgbOSHAN8GnhSVT0Z+BZwLkDz3OnAscDJwHuSrGzhdEiSZpwBTJKkeapqc1Vd09zfClwPHFpVV1TV3LiVK4G1zf3TgIuq6r6q+i6wAThh0vWWJHXfzF4DJknac0zzGrAkRwBPA66a99RvAR9t7h/KIJDN2dQskyTpQQxgkqTOayGAHZBk/dDjdVW1bv5KSfYFPga8pqruHFr+hwyGKV447opJkvrNACZJ6rwWAtiWqjp+sRWSrGYQvi6sqkuHlv8m8ALgpHqgYjcBhw1tvrZZJknSg3gNmCSp86YwC2KA84Hrq+rtQ8tPBl4HvLCq7hna5HLg9CR7JzkSOAr48lhPgiSpF+wBkyTpoZ4JvBT4epKvNMveALwL2Bv4dPPbe1dW1Suq6tokFwPXMRiaeFZVtf8jhpKkmWMAkyR12jKmjh/nPr8I7OrXzT+5yDZvBt7cWqUkSb2w5BDEhX6MUpKkSZnC74BJu822k6TFjNIDNvdjlNck2Q+4Osmnq+q6lusmSRIw3Wnopd1g20nSgpYMYFW1Gdjc3N+a5HoGv23ih4gkaSIMYJoltp0kLWZZsyAu8mOUkiRJmse2k6T5Rp6EY6Efoxx6/kzgTIAVK5zdXpI0PvaAaRYt1nYabjdJ2rOMFMAW+jHKYVW1DlgHsGrVKv9SSpLGwokzNIuWajsNt5uS+AaX9iBLBrCFfoxSkqRJMYBplth2krSYUcYKzv0Y5XOTfKW5ndpyvSRJkmaVbSdJCxplFsSFfoxSkqSJsAdMs8S2k6TFjDwJhyRJ02IAkyT1hQFMktR5BjBJUl8YwCRJneYsiJKkPvEHuyRJkiRpQuwBkyR1nj1gkqS+MIBJkjrPACZJ6otWAlgSVqxod3Tj6tWrWy3/0Y9+dKvlA2zbtq31fRx77LGtlv/7v//7rZYPcOedd7a+jz/6oz9qfR833nhjq+W3/X7auXNnq+VLizGASd3WdrsPYM2aNa3v4znPeU6r5Z9xxhmtlg9wyy23tL6P973vfa3v4+///u9bLf+uu+5qtXxY+G+XPWCSpM4zgEmS+sJJOCRJkiRpQuwBkyR1mtPQS5L6xAAmSeo8A5gkqS8MYJKkzjOASZL6wgAmSeo8A5gkqS+chEOSJEmSJsQeMElS59kDJknqCwOYJKnTnAVRktQnBjBJUucZwCRJfeE1YJIkSZI0IfaASZI6zx4wSVJfGMAkSZ1nAJMk9YUBTJLUaU7CIUnqEwOYJKnzDGCSpL5wEg5JkiRJmhB7wCRJnWcPmCSpL+wBkyR13tx1YOO6LSXJYUk+l+S6JNcmObtZ/tgkn07y7ebfxzTLk+RdSTYk+VqS41o+JZKkGWUAkyR13qQDGLAdOKeqjgFOBM5KcgzweuBvquoo4G+axwCnAEc1tzOB9477HEiS+sEAJknqtHGHr1ECWFVtrqprmvtbgeuBQ4HTgL9sVvtL4EXN/dOAD9XAlcD+SQ4e86mQJPWAAUySpEUkOQJ4GnAVcGBVbW6e+iFwYHP/UGDj0GabmmWSJD2Ik3BIkjqvhUk4DkiyfujxuqpaN3+lJPsCHwNeU1V3JhmuUyVxdhBJ0rIYwCRJnddCANtSVccvtkKS1QzC14VVdWmz+H8nObiqNjdDDG9ult8EHDa0+dpmmSRJD+IQRElS501hFsQA5wPXV9Xbh566HHhZc/9lwH8fWv4bzWyIJwJ3DA1VlCTpJ2a2B2zNmjWtln/IIYe0Wj7A1q1bW9/HQQcd1Gr5hx9+eKvlA9x3332t72OvvfZqfR9t27ZtW6vl+ztMmqYpvP+eCbwU+HqSrzTL3gC8Fbg4yW8D3wN+tXnuk8CpwAbgHuCMidZW2gPsvffere+j7XbNs571rFbLB9i8uf3vfi677LLW97Fq1czGlCX198gkSdpNVfVFIAs8fdIu1i/grFYrJUnqBQOYJKnTlvHbXZIkdZ4BTJLUeQYwSVJfGMAkSZ1nAJMk9YWzIEqSJEnShNgDJknqPHvAJEl9YQCTJHWeAUyS1BcGMElSpzkLoiSpT0YOYElWAuuBm6rqBe1VSZKkBzOAaRbZdpK0K8uZhONs4Pq2KiJJktQztp0kPcRIASzJWuCXgQ+0Wx1Jkh5qbhjiuG5S22w7SVrIqEMQ3wG8DtivvapIkrRrhibNoHdg20nSLizZA5bkBcDNVXX1EuudmWR9kvU7d+4cWwUlSbIHTLNklLbTcLtpglWT1AGj9IA9E3hhklOBRwBrkny4ql4yvFJVrQPWAaxevdq/bpKksTA0aQYt2XYabjcl8Q0u7UGW7AGrqnOram1VHQGcDnx2fviSJEnSgG0nSYvxd8AkSZ1nD5gkqS+WFcCq6m+Bv22lJpIkLcAAplll20nSfPaASZI6zwAmSeoLA5gkqfMMYJKkvhjph5glSZIkSQ+fPWCSpE5zGnpJUp8YwCRJnWcAkyT1hQFMktR5BjBJUl+0EsCqip07d7ZR9E/ceeedrZa/YkU/Lo+78cYbWy3/mmuuabV8gI0bN7a+j+9///ut72PNmjWtlt/2e/auu+5qtXxJ0uyaxJckd999d+v7WL9+favlv//972+1fIA77rij9X3ccMMNre/jvvvua7X8aX6xZw+YJKnz7AGTJPWFAUyS1HkGMElSXxjAJEmd5iyIkqQ+MYBJkjrPACZJ6ot+zDQhSZIkSTPAHjBJUufZAyZJ6gsDmCSp8wxgkqS+MIBJkjrPACZJ6gsDmCSp05wFUZLUJ07CIUmSJEkTYgCTJHXeXC/YuG5LSXJBkpuTfGNo2VOTXJnkK0nWJzmhWZ4k70qyIcnXkhzX4qmQJM04A5gkqfMmHcCAvwBOnrfsj4E3VdVTgf/cPAY4BTiquZ0JvHccxyxJ6ievAZMkdd6krwGrqi8kOWL+YmBNc//RwA+a+6cBH6pBJa9Msn+Sg6tq82RqK0maJQYwSVLndWQSjtcAn0ryNgYjSH6hWX4osHFovU3NMgOYJOkhHIIoSdoTHdBcxzV3O3OEbX4PeG1VHQa8Fji/3SpKkvrIHjBJUqe1NA39lqo6fpnbvAw4u7n/34APNPdvAg4bWm9ts0ySpIewB0yS1HlTmIRjV34A/Mvm/nOBbzf3Lwd+o5kN8UTgDq//kiQtxB4wSVLnTfoasCQfAZ7NYKjiJuA84OXAO5OsAu5lMOMhwCeBU4ENwD3AGROtrCRpphjAJEmdN4VZEF+8wFP/xy7WLeCsdmskSeoLhyBKkiRJ0oTYAyZJ6ryOTEMvSdLDZgCTJHVaS7MgSpI0FQYwSVLnGcAkSX3hNWCSJEmSNCGt9YC1/W3lpk2bWi3/p37qp1otH+Dee+9tfR9btmxptfzbb7+91fIBbrnlltb38a1vfav1fTz+8Y9vtfx999231fJXrPD7Gk2PPWBSt03i/+jWrVtb38eVV17ZavkbNmxotXyA7du3t76Pm2++ufV9TKKdPC0OQZQkdZ4BTJLUFwYwSVLnGcAkSX1hAJMkdZqzIEqS+sSLOiRJkiRpQuwBkyR1nj1gkqS+MIBJkjrPACZJ6gsDmCSp8wxgkqS+MIBJkjrPACZJ6ouRJuFIsn+SS5J8M8n1SZ7RdsUkSZJmlW0nSQsZtQfsncBfV9W/S7IX8KgW6yRJ0k84Db1mlG0nSbu0ZABL8mjgF4HfBKiq+4H7262WJEkPMIBplth2krSYUYYgHgn8CPhgkn9M8oEk+7RcL0mSfmKuF2xcN6lltp0kLWiUALYKOA54b1U9DbgbeP38lZKcmWR9kvX+cZMkjZMBTDNmybbTcLtpGhWUND2jBLBNwKaquqp5fAmDD5UHqap1VXV8VR2fZJx1lCRJmiVLtp2G200Tr52kqVoygFXVD4GNSZ7YLDoJuK7VWkmSNMQeMM0S206SFjPqLIivAi5sZvH5DnBGe1WSJOkBhibNKNtOknZppABWVV8B7CKXJE2FAUyzxraTpIWM9EPMkiRJkqSHb9QhiJIkTY09YJKkvjCASZI6zwAmSeoLA5gkqfMMYJKkvjCASZI6zVkQJUl94iQckiRJkjQh9oBJkjrPHjBJUl+0FsB27tzZVtEA7LPPPq2Wf9ttt7VaPsC2bdta38e9997bavl33nlnq+UD7Nixo/V9TOK1mMS5alPb/6elxRjAJG3fvr31fdx6662tln/77be3Wv6kTKJt1ufPfXvAJEmd1+c/xJKkPYsBTJLUeQYwSVJfOAmHJEnzJLkgyc1JvjFv+auSfDPJtUn+eGj5uUk2JLkhyfMnX2NJ0qywB0yS1GlTmob+L4B3Ax+aW5DkOcBpwFOq6r4kj2+WHwOcDhwLHAJ8JsnRVdX+RRKSpJljD5gkqfPmQti4biPs7wvA/Kvxfw94a1Xd16xzc7P8NOCiqrqvqr4LbABOGN/RS5L6xAAmSeq8SQewBRwNPCvJVUk+n+TpzfJDgY1D621qlkmS9BAOQZQkdV4LQxAPSLJ+6PG6qlq3xDargMcCJwJPBy5O8tPjrpgkqd8MYJKkPdGWqjp+mdtsAi6tQRr8cpKdwAHATcBhQ+utbZZJkvQQDkGUJHVeR4Yg/hXwHIAkRwN7AVuAy4HTk+yd5EjgKODLD/+oJUl9ZA+YJKnTpjELYpKPAM9mMFRxE3AecAFwQTM1/f3Ay5resGuTXAxcB2wHznIGREnSQgxgkqTOm3QAq6oXL/DUSxZY/83Am9urkSSpLxyCKEmSJEkTYg+YJKnzpvBDzJIktcIAJknqPAOYJKkvDGCSpE6bxiQckiS1xQAmSeo8A5gkqS+chEOSJEmSJsQeMElS59kDJknqCwOYJKnzDGCSpL4wgEmSOs8AJknqCwOYJKnTnAVRktQnTsIhSZIkSRNiD5gkqfPsAZMk9YUBTJLUeQYwSVJfzGwA+9mf/dlWy7/99ttbLR9g586dre9jzZo1rZa/zz77tFo+wOrVq1vfx9133936Pm699dZWy2/7PE3i/SotxAAmaRLa/lvn31LBDAcwSdKewwAmSeoLJ+GQJEmSpAmxB0yS1GlOQy9J6hMDmCSp8wxgkqS+MIBJkjrPACZJ6guvAZMkSZKkCbEHTJLUefaASZL6wgAmSeo8A5gkqS9GGoKY5LVJrk3yjSQfSfKItismSRI8MAviOG9S22w7SVrIkgEsyaHAq4Hjq+pJwErg9LYrJknSHAOYZoltJ0mLGXUSjlXAI5OsAh4F/KC9KkmSJM08206SdmnJAFZVNwFvA74PbAbuqKor5q+X5Mwk65Os37lz5/hrKknaY9kDplkySttpuN00jTpKmp5RhiA+BjgNOBI4BNgnyUvmr1dV66rq+Ko6fsUKZ7eXJI2PAUyzZJS203C7aRp1lDQ9oySlXwK+W1U/qqptwKXAL7RbLUmSHmAA04yx7SRpQaNMQ/994MQkjwJ+DJwE2F0uSZoIQ5NmkG0nSQsa5Rqwq4BLgGuArzfbrGu5XpIkSTPJtpOkxYz0Q8xVdR5wXst1kSRpl+wB06yx7SRpISMFMEmSpskAJknqCwOYJKnzDGCSpL5wvnhJUudNehbEJBckuTnJN3bx3DlJKskBzeMkeVeSDUm+luS4Fk6BJKknDGCSJD3UXwAnz1+Y5DDgeQxmuZtzCnBUczsTeO8E6idJmlEGMElSp42792uUHrCq+gJw6y6e+lPgdcBwIacBH6qBK4H9kxw8jmOXJPWP14BJkjqvC9eAJTkNuKmqvppk+KlDgY1Djzc1yzZPsHqSpBnRWgBbuXJlW0UDcOCBB7Za/iTceuuuvlwdrx07drRa/s6dO1stH9o/BoBt27a1vo+2j2Pvvfdutfx5DU5poloIYAckGf5h3HVVteDvNDU/qPsGBsMPJUnabfaASZI6r4UAtqWqjl/G+j8DHAnM9X6tBa5JcgJwE3DY0Lprm2WSJD2E14BJkrSEqvp6VT2+qo6oqiMYDDM8rqp+CFwO/EYzG+KJwB1V5fBDSdIu2QMmSeq8SV8DluQjwLMZDFXcBJxXVecvsPongVOBDcA9wBkTqaQkaSYZwCRJnTbqzIVj3ueLl3j+iKH7BZzVdp0kSf1gAJMkdV4XZkGUJGkcvAZMkiRJkibEHjBJUufZAyZJ6gsDmCSp8wxgkqS+MIBJkjrPACZJ6gsDmCSp06YxC6IkSW1xEg5JkiRJmhB7wCRJnWcPmCSpLwxgkqTOM4BJkvrCACZJ6jwDmCSpLwxgkqTOM4BJkvrCSTgkSZIkaULsAZMkdZrT0EuS+sQAJknqPAOYJKkvDGCSpM4zgEmS+sIAJknqPAOYJKkvnIRDkiRJkibEHjBJUufZAyZJ6gsDmCSp05wFUZLUJwYwSVLnGcAkSX3RSgDbsWPHlltvvfV7y9jkAGDLcvbxiU98YnmVat+yj6GD+nAM0I/jWPYx3HHHHS1V5ScOb3sHkrSH2gIsp90Ee+jfug7yGLqji8exy7ZTKwGsqh63nPWTrK+q49uoy6R4DN3Rh+PowzFI42QPmPpsue0m6MffCY+hG/pwDDBbx+EQRElS5xnAJEl9YQCTJHWeAUyS1BddCWDrpl2BMfAYuqMPx9GHY5DGwlkQpV3qw98Jj6Eb+nAMMEPHEf+oSZK6bK+99qqDDjporGVu3Ljx6lm5VkCS1C9d6QGTJGlBflkoSeoLA5gkqfMMYJKkvlgxzZ0nOTnJDUk2JHn9NOuyu5IcluRzSa5Lcm2Ss6ddp92VZGWSf0zy8WnXZXck2T/JJUm+meT6JM+Ydp2WK8lrm/fRN5J8JMkjpl0nqQvmrgMb102aVbadumPW201g22laphbAkqwE/gw4BTgGeHGSY6ZVn4dhO3BOVR0DnAicNaPHAXA2cP20K/EwvBP466r658BTmLFjSXIo8Grg+Kp6ErASOH26tZK6wQAm2XbqoFlvN4Ftp6mYZg/YCcCGqvpOVd0PXAScNsX67Jaq2lxV1zT3tzJ44x463VotX5K1wC8DH5h2XXZHkkcDvwicD1BV91fV7VOt1O5ZBTwyySrgUcAPplwfSVJ32HbqiFlvN4Ftp2maZgA7FNg49HgTM/afb74kRwBPA66aclV2xzuA1wE7p1yP3XUk8CPgg81wgA8k2WfalVqOqroJeBvwfWAzcEdVXTHdWknTN+7eL3vANMNsO3XHO5jtdhPYdpqaqV4D1idJ9gU+Brymqu6cdn2WI8kLgJur6upp1+VhWAUcB7y3qp4G3A3M1Nj4JI9h8E3mkcAhwD5JXjLdWkndYACT+mdW2049aTeBbaepmWYAuwk4bOjx2mbZzEmymsEHyIVVdem067Mbngm8MMmNDIYzPDfJh6dbpWXbBGyqqrlv0C5h8KEyS34J+G5V/aiqtgGXAr8w5TpJnTDpAJbkgiQ3J/nG0LI/aS5U/1qSy5LsP/Tcuc2kCDckeX47Z0Gy7dQRfWg3gW2nqZlmAPsH4KgkRybZi8EFc5dPsT67JUkYjJ29vqrePu367I6qOreq1lbVEQxeh89WVee/PRhWVT8ENiZ5YrPoJOC6KVZpd3wfODHJo5r31UnM2MWwUlum0AP2F8DJ85Z9GnhSVT0Z+BZwLkAzecDpwLHNNu9pJkuQxs22Uwf0od0Etp2maWoBrKq2A68EPsXgRF1cVddOqz4PwzOBlzL49uMrze3UaVdqD/Uq4MIkXwOeCrxlutVZnuYbqEuAa4CvM/j/uW6qlZL2UFX1BeDWecuuaP52AVzJoPcBBsNfLqqq+6rqu8AGBpMlSGNl20ktsO00BXEsvCSpy1avXl3777//WMvcsmXL1VV1/GLrNJMDfLwGUxvPf+5/AB+tqg8neTdwZVV9uHnufOB/VtUlY620JKkXVk27ApIkLaaliTMOSLJ+6PG6qhrpW9Mkf8jgd4wuHHelJEn9ZwCTJHVeCwFsy1I9YLuS5DeBFwAn1QOV6s3ECJKk9jkNvSRJI0hyMoPf/XlhVd0z9NTlwOlJ9k5yJHAU8OVp1FGS1H32gEmSOm/S1ysn+QjwbAZDFTcB5zGY9XBv4NODyba4sqpeUVXXJrmYwexh24GzqmrHRCssSZoZTsIhSeq0VatW1X777TfWMm+//fYlJ+GQJKkN9oBJkjrPLwslSX1hAJMkdVpLsyBKkjQVTsIhSZIkSRNiD5gkqfPsAZMk9YUBTJLUeQYwSVJfGMAkSZ1nAJMk9YUBTJLUeQYwSVJfOAmHJEmSJE2IPWCSpE5zGnpJUp8YwCRJnWcAkyT1hQFMktR5BjBJUl8YwCRJnWcAkyT1hZNwSJIkSdKE2AMmSeo8e8AkSX1hAJMkdZqzIEqS+sQAJknqPAOYJKkvvAZMkiRJkibEHjBJUufZAyZJ6gsDmCSp8wxgkqS+MIBJkjrPACZJ6gsDmCSp6z4FHDDmMreMuTxJkkYSv1WUJEmSpMlwFkRJkiRJmhADmCRJkiRNiAFMkiRJkibEACZJkiRJE2IAkyRJkqQJ+f8BxMyApRGFzQIAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "recorte6 = trim(Escalagrises3[:,:,0], 535, 335, 10, 10)\n", + "x6=np.arange(0,10,1)\n", + "y6=np.arange(0,10,1)\n", + "y6,x6 = np.meshgrid(x6,y6)\n", + "xdata6 = np.vstack((x6.ravel(),y6.ravel()))\n", + "popt6, pcov6 = curve_fit(gauss2d, xdata6, recorte6.ravel(), p0=[1,0,1,1,1])\n", + "estrella6=gauss2d(xdata6, popt6[0], popt6[1],popt6[2], popt6[3], popt6[4])\n", + "FWHM6=FWHM.append(2*np.sqrt(2*np.log(2))*np.sqrt(popt6[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 6 fotografÃa\")\n", + "plt.imshow(recorte6, plt.get_cmap('gray'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 6 a partir de la gaussiana\")\n", + "plt.imshow(estrella6.reshape(10, 10), plt.get_cmap('gray'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 7 (blanco y negro)" + ] + }, + { + "cell_type": "code", + "execution_count": 310, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2AAAAFSCAYAAACUv7wrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAqkElEQVR4nO3df7xldX3f+9d7hgHEQZGMiAwomKK9qFHJiBhrajSJaKjY3sZio1HTSkzRaEprxLTF9D5MvYkxao2mk4gJDQ8JFzCXm/hQNBqIvYIZ8AfySyf8HGSAw89Bfs7Mp3/sdWRzOD/2mTlr77XXvJ6Px37M3muv9V3ftfaZc77v/f2u70pVIUmSJElq36pJV0CSJEmS9hQGMEmSJEkaEwOYJEmSJI2JAUySJEmSxsQAJkmSJEljYgCTJEmSpDHZa9IVkCRpMccdd1zNzMysaJmXXnrpF6vquBUtVJKkERjAJEmdNjMzw6ZNm1a0zCTrVrRASZJGZACTJHVeVU26CpIkrQgDmCSp8wxgkqS+MIBJkjrPACZJ6gsDmCSp06rKACZJ6g2noZckSZKkMbEHTJLUefaASZL6wgAmSeo8A5gkqS8MYJKkzjOASZL6wmvAJEmdNzsRx0o9lpLksCRfTXJlkiuSvHvovXclubpZ/rtDy09NsjnJNUle3dKpkCRNOXvAJEl6vO3AKVV1WZL9gUuTfAl4GnAC8IKqeijJQQBJjgJOBJ4LHAJ8Ocmzq2rHhOovSeooA5gkqdMmMQ19Vd0C3NI835bkKmA98HbgQ1X1UPPebc0mJwBnNcuvS7IZOAb4+lgrLknqPIcgSpI6b9xDEIclORx4EXAJ8Gzg5UkuSXJhkhc3q60HbhrabEuzTJKkx7AHTJLUeS30gK1Lsmno9caq2jh3pSRrgXOB91TVvUn2Ag4EjgVeDJyd5FkrXTlJUn8ZwCRJnddCAJupqg2LrZBkDYPwdWZVndcs3gKcV4MKfSPJTmAdcDNw2NDmhzbLJEl6DIcgSpI0R5IAnwauqqqPDL31l8DPNOs8G9gbmAHOB05Msk+SI4AjgW+MtdKSpKlgD5gkqfMmcB+wlwFvBi5P8q1m2fuB04HTk3wXeBh4S9MbdkWSs4ErGcygeLIzIEqS5mMAkyR12oRmQfwakAXeftMC23wQ+GBrlZIk9YIBTJLUeRPoAZMkqRVeA9YjSQ5PUs0sXST52yT/dgz7TZLPJLkrSeeveUjynCTfSrItya83yz6S5KMTrpokSVNvUu2Rrkny8iTX7GYZu3Tu5n4G0yzJFUleMel6rCQDWAuSXJ/kgST3DT0+McJ2leQfjaOOS9TjGXPqfl9Tt1MW2OSfAD8HHFpVx4xQ/qSP873AV6tq/6r6eJKXM5hO+j9OsE6SFjHJ+4BJ02oPbI9M1NzzVlV/V1XPmWSd+qCqnltVfzvpeqykqU/FHfbPqurLK1lgkr2qavtKljmfqroRWDu03yOAzQymY57PM4Hrq+qHbddtKSOeo2cCZw29PgL4V1X1SHs1k7Q7DE3SLtuT2iMTsSvnY1znUN1kD9iYJflHSS5Mck+SmSR/0Sy/qFnl2803PP8qySuSbEnym0m2Ap9JsirJ+5L8Q5I7kpyd5MAR9vvjSb7SbDOT5MwkB4xY7V8GLqqq6+cp998AfwK8tKn3bzfL355kc5I7k5yf5JCFjnOx9Zv3fj7JNc05+2Rz/v5t895bk/yvJH+Q5A7gA4sda5KvMJhC+hPN/p8NvBL4d837T0nyV0luz2BI5V8lOXTE8ySpBSvd+2WYk/rXHmnKPibJ15PcneSWJJ9IsvcC684O0TspyQ+a9f/DqGU1256c5PvA9xc7b0PbXN+cw+8AP8w8wwOT/FySq5vP5RPMmQwoya8kuappo3wxyTNHOXFJ3tZsty3JtUl+dZF1Vyf5/ebzuS7JO/PYIaULltW0y742p7wf9QwmeW2SK5ttb54950nWNW2uuzNoC/5dklVD5+1nl/G5vCPJ95t1/jBJmvd252dvRRnAxu//Ai4AnsLgRp3/HaCqfrp5/wVVtbaq/qJ5fTBwIINem5OAdwGvB/4pcAhwF/CHI+w3wH9rtvk/GNww9ANLbjT4of1l4M/me7+qPg28A/h6U+/Tkryy2dcbgKcDN9D0OM13nIutn2QdcA5wKvBjwDXAT82pxkuAa4GnMZiBbMFjrapXAn8HvLPZ//fmlLUK+AyD8/0M4AFgyeEaktplAJNWXK/aI40dwG8wuDn6S4FX0XzBuoifYXDfvp8HfnO2oT9iWa9n0AY5apHzNtcbgV8ADpjbA9a0ec4D/lOz339gcEuM2fdPYHA7jH8BPJVBe+azSxzfrNuA44EnAW8D/iDJ0Qus+3bgNcALgaOb49zVsub6NPCrVbU/8DzgK83yUxjc6P6pDNpz7wfm+2U9yudyPINLS36CQdvy1c3yXfrZa4MBrD1/2STv2cfbm+WPMPjldUhVPdhMdbyYncBpVfVQVT3AIOz8VlVtqaqHGPzg/Mv5vkUZVlWbq+pLTTm3Ax9h8EtzKf+EwX+Ec0ZYd9YvAadX1WVNHU9l0EN2+C6s/1rgiqo6r/lF9XFg65ztf1BV/72qtlfVA7txrFTVHVV1blXdX1XbGAS6kbaVJKmD9pj2SFVdWlUXN+2B64H/MULZv11VP6yqyxl8AfvGZZT136rqzuZ8jOrjVXXTAtvMtnnOaS6L+CiPbfO8o9nnVU2b6HeAF47SC1ZVf11V/1ADFzII3y9fYPU3AB9rPtu7gA/tRllzPQIcleRJVXVXVV02tPzpwDOr6pEaXD/3uAA24ufyoaq6uwZDWL/KIEjuzs/eijOAtef1VXXA0OOPm+XvZZDAv5HBrC6/skQ5t1fVg0Ovnwl8bvYXKXAVg28DnrZYIUmeluSsprv3XuDPGXx7sJS3AOdW1X0jrDvrEAa9WAA0294BrN+F9Q8Bbhp6rxh8QzLspuEXu3GsJNkvyf9IckOz7UXAAUlWj7K9pHasRK9X2QOmPdMe0x5J8uxmGNvWpuzfGaHs4TbEDQzaHaOWdRPLt9g287V5htd/JvCxoXN+J4PPcKH21Y8keU2Si5vhfXczCHsLnZvH1GNunZdZ1lz/Z7P+DRkMgX1ps/z3GFzfd0EzrPF9CxzHKJ/LcGi9n+Y6wt1pH640A9iYVdXWqnp7VR0C/CrwySw+09DclsJNwGvm/DLdt6puXmLXv9OU9fyqehKDG4kudJNRAJI8AfhFFu/un88PGPySmC3niQyGDy5Ux8XWv4XB0IjZ9zL8ujH3HC37WIecAjwHeEmz7eyQglG3l9QCA5i0snraHvkUcDVwZFP2+5cqm8EwtFnPYNAmGbWsXfllstg2twzXp2nzDNfvJgbD94bP+ROq6v9fbIdJ9mEwccmHgadV1QHA51n43Dym7TWnTkuV9UNgv6H1Dx4uuKr+vqpOAA4C/hI4u1m+rapOqapnAa8D/n2SV81Tt135jGftTvtwRRnAxizJL+bRSR3uYvCDsLN5fSvwrCWK+CPgg7PdzUme2owJXsr+wH3APUnWM9qU6/+8qeNXR1h32GeBtyV5YfMf9XeAS+rRi2bnHudi6/818Pwkr2+GNZzMYBz6YnblWIe3fQC4O4OLiU9bxraSWmIAk1ZWT9sj+wP3Avcl+cfAr41Q9n9uRr88l8H1TLPXbu1KWaOct8X8NfDcJP+iafP8Oo9t8/wRcGpTV5I8OckvjlDu3sA+wO3A9iSvYXDN20LOBt6dZH0Gk1T85jLK+nZzDC9Msi9D11gl2TvJLyV5cg2GWN5L8zOX5PgMJoYJcA+D3tSdPN6ufC7D2+5q+3BFGcDa8//lsfet+Fyz/MXAJUnuA84H3l1V1zbvfQD4s6Zr+Q0LlPuxZrsLkmwDLmZwAehSfpvBhZT3MPgPft4I27wF+J+1zNZKDaa7/c8MviG5Bfhx4MShVT7A0HEutn5VzTD41ut3GQxLPArYBDy0SBV25VhnfRR4AjDD4Nx+YRnbSmrBSocvA5j2MHtSe+Q/AP8a2Ab8MY+GqcVcyGDo298AH66qC3ajrA+w9Hlb0FCb50MM2jxHAv9r6P3PAf83cFYzhO67DCbLWKrcbQzC3NkMguy/ZvDZLeSPGVzX9R3gmwx6uLYDO5YqqwaTm/1X4MvA94G51xa+Gbi+qf87GMwDQHOsX2YQkL4OfLKq5gvcu/K5zNqd9uGKin+INE0ymJJ0C/BLC/zHlNQzL3jBC+qCCy5YesVlOPjggy+tqg0rWqikqZHBRF/XAWvK+3Etqunl+qOqGmnKey3NHjB1XpJXJzmgGZ44O9b34glXS9IY2QMmSeOR5AkZ3K9rr2ao3mnA55baTqMzgGkavJTBvTBmgH/GYEan5Uz5KmnKGcAkaWzCYLjeXQyGIF4F/JeJ1qhnFr1Xg9QFVfUBJnSjPEndYGiStJKaib6c4XgeVXU/g2sE1RIDmCSp8wxgkqS+cAiiJEmSJI1JKz1gSWrVqunOdn35tnX16tVTXT7AmjVrWt/HPvvs0/o+2nbfffe1Wv4jjzzCjh07HK6hsfO6LfVdEn/ApX6aqaqnzl3YSgBbtWoVa9eubaPoH2n7j/H27e3PSLpjx47W93HggQe2Wv6TnvSkVssHOOigg1rfx7OetTv3TeyGSy65pNXyr7/++lbLlxZjAJMkTaEb5lvoNWCSpM4zgEmS+mK6xwlKkiRJ0hSxB0yS1Hn2gEmS+sIAJknqPAOYJKkvDGCSpE5zFkRJUp8YwCRJnWcAkyT1hZNwSJIkSdKYjBTAkhyX5Jokm5O8r+1KSZI0bHYY4ko9pLbZdpK0kCWHICZZDfwh8HPAFuDvk5xfVVe2XTlJksAhiJoutp0kLWaUHrBjgM1VdW1VPQycBZzQbrUkSXqUPWCaMradJC1olEk41gM3Db3eArxk7kpJTgJOap6vSOUkSTI0aQot2XYabjdJ2rOs2CyIVbUR2AiwevVq/1JKkiQtYLjdlMR2k7QHGSWA3QwcNvT60GaZJEljYQ+YpoxtJ0kLGuUasL8HjkxyRJK9gROB89utliRJj/IaME0Z206SFrRkD1hVbU/yTuCLwGrg9Kq6ovWaSZLUMDRpmth2krSYka4Bq6rPA59vuS6SJM1r3AEsyWHAGcDTgAI2VtXHht4/Bfgw8NSqmslg9qmPAa8F7gfeWlWXjbXS6hTbTpIWsmKTcEiS1CPbgVOq6rIk+wOXJvlSVV3ZhLOfB24cWv81wJHN4yXAp5hnxmBJkka5BkySpIlZ6eu/RulNq6pbZnuwqmobcBWDqcUB/gB4L4OesVknAGfUwMXAAUmevqInQpLUC/aASZI6r4UhiOuSbBp6vbGZFvxxkhwOvAi4JMkJwM1V9e0597yc775P64FbVrTWkqSpZwCTJHVeCwFspqo2LLVSkrXAucB7GAxLfD+D4YeSJO0ShyBKkjSPJGsYhK8zq+o84MeBI4BvJ7mewb2dLktyMN73SZI0InvAJEmdN4FZEAN8Griqqj7S1OFy4KChda4HNjSzIJ4PvDPJWQwm37inqhx+KEl6nFYC2M6dO/nhD3/YRtE/smPHjlbLf+ITn9hq+QBPfvKTW9/HPffc02r5++67b6vlw3gaXjfccEPr+9i6dWur5c/MzLRa/vbt21stX1rMBO4D9jLgzcDlSb7VLHt/M7X4fD7PYAr6zQymoX9b6zWUJE0le8AkSZ026syFK7zPrwFZYp3Dh54XcHLL1ZIk9YABTJLUeRPoAZMkqRVOwiFJkiRJY2IPmCSp8+wBkyT1hQFMktR5BjBJUl8YwCRJnWcAkyT1hQFMktRpk5gFUZKktjgJhyRJkiSNiT1gkqTOswdMktQXBjBJUucZwCRJfWEAkyR1ngFMktQXBjBJUucZwCRJfeEkHJIkSZI0JvaASZI6zWnoJUl9YgCTJHWeAUyS1BcGMElS5xnAJEl94TVgkiRJkjQm9oBJkjrPHjBJUl8YwCRJnWcAkyT1hQFMktRpzoIoSeoTA5gkqfMMYJKkvnASDkmSJEkaE3vAJEmdZw+YJKkvWgtgO3fubKtoAJK0Wv5+++3XavkAP/ZjP9b6PvbZZ59Wy1+1qv1O1JmZmdb3sW3bttb30fZxHHjgga2W3/b/OWkxBjBJUl/YAyZJ6jwDmCSpLwxgkqROcxZESVKfOAmHJEmSJI2JPWCSpM6zB0yS1BcGMElS5xnAJEl9YQCTJHWeAUyS1BcGMElS5xnAJEl94SQckiRJkjQm9oBJkjrNaeglSX2yZA9YksOSfDXJlUmuSPLucVRMkqRZsyFspR5Sm2w7SVrMKEMQtwOnVNVRwLHAyUmOardakiQ9atwBbKEGdJLfS3J1ku8k+VySA4a2OTXJ5iTXJHl1e2dDU8C2k6QFLRnAquqWqrqseb4NuApY33bFJEmaNYEesIUa0F8CnldVPwF8DzgVoHnvROC5wHHAJ5OsbuFUaArYdpK0mGVNwpHkcOBFwCWt1EaSpA5YqAFdVRdU1fZmtYuBQ5vnJwBnVdVDVXUdsBk4Ztz1VvfYdpI018iTcCRZC5wLvKeq7p3n/ZOAk1awbpIkAZOdhn6RBvSvAH/RPF/PIJDN2oI9Hnu8xdpOtpukPddIASzJGga/QM6sqvPmW6eqNgIbm/W9wlmStCJamjhjXZJNQ683Nn/HHmOhBnSS32IwTPHMla6Y+mGptpPtJmnPtWQASxLg08BVVfWR9qskSdJjtRDAZqpqw2IrLNSATvJW4HjgVfVoxW4GDhva/NBmmfZAtp0kLWaUa8BeBrwZeGWSbzWP17ZcL0mSJmahBnSS44D3Aq+rqvuHNjkfODHJPkmOAI4EvjHOOqtTbDtJWtCSPWBV9TUgY6iLJEnzmsA1YLMN6MuTfKtZ9n7g48A+wJcGGY2Lq+odVXVFkrOBKxkMTTy5qnaMu9LqBttOkhYz8iQckiRNyrgD2CIN6M8vss0HgQ+2VilJUi8YwCRJnTfJWRAlSVpJBjBJUqe1NAuiJEkTsawbMUuSJEmSdp09YJKkzrMHTJLUFwYwSVLnGcAkSX3RWgBbtard0Y2rV69utfw1a9a0Wj60fwwAT33qU1stf9u2ba2WD/DII4+0vo8dO6Z/tui99mr3+5Rmym1pIgxgksah7b9142j7td0eGJft27e3Wv442n4L/e3qxyckSeo1A5gkqS+chEOSJEmSxsQeMElSpzkNvSSpTwxgkqTOM4BJkvrCACZJ6jwDmCSpLwxgkqTOM4BJkvrCSTgkSZIkaUzsAZMkdZ49YJKkvjCASZI6zVkQJUl9YgCTJHWeAUyS1BdeAyZJkiRJY2IPmCSp8+wBkyT1hQFMktR5BjBJUl8YwCRJneYkHJKkPjGASZI6zwAmSeoLJ+GQJEmSpDGxB0yS1Hn2gEmS+sIAJknqPAOYJKkvDGCSpM4zgEmS+sIAJknqNGdBlCT1iZNwSJIkSdKY2AMmSeo8e8AkSX1hAJMkdZ4BTJLUFwYwSVLnGcAkSX3RWgBL0lbRAKxa1e7lazt27Gi1fIAHH3yw9X20fZ7Wrl3bavkAz3jGM1rfx5o1a1rfx/e+971Wy7/jjjtaLV+aJAOYpHFouz1w4IEHtlo+wMEHH9z6PlavXt36Pm699dZWy5+ZmWm1fFi4re8kHJIkSZI0Jg5BlCR1mtPQS5L6xB4wSVLnzYawlXosJclhSb6a5MokVyR5d7P8wCRfSvL95t+nNMuT5ONJNif5TpKjWz4lkqQpZQCTJHXeuAMYsB04paqOAo4FTk5yFPA+4G+q6kjgb5rXAK8BjmweJwGfWulzIEnqBwOYJElzVNUtVXVZ83wbcBWwHjgB+LNmtT8DXt88PwE4owYuBg5I8vTx1lqSNA28BkyS1HmTvAYsyeHAi4BLgKdV1S3NW1uBpzXP1wM3DW22pVl2C5IkDTGASZI6r4UAti7JpqHXG6tq49yVkqwFzgXeU1X3Dt9ipaoqibODSJKWxQAmSeq0lmZBnKmqDYutkGQNg/B1ZlWd1yy+NcnTq+qWZojhbc3ym4HDhjY/tFkmSdJjjHwNWJLVSb6Z5K/arJAkSXNNYBbEAJ8Grqqqjwy9dT7wlub5W4D/d2j5LzezIR4L3DM0VFF7KNtOkuaznB6wdzO4CPlJLdVFkqSueBnwZuDyJN9qlr0f+BBwdpJ/A9wAvKF57/PAa4HNwP3A28ZaW3WVbSdJjzNSAEtyKPALwAeBf99qjSRJmmPck3BU1deALPD2q+ZZv4CTW62UpoptJ0kLGbUH7KPAe4H926uKJEnzm+QsiNIu+ii2nSTNY8lrwJIcD9xWVZcusd5JSTbNmVVKkqTdNoEbMUu7bJS2k+0mac81Sg/Yy4DXJXktsC/wpCR/XlVvGl6pmb53I4DT8kqSVoqhSVNoybaT7SZpz7VkD1hVnVpVh1bV4cCJwFfmhi9JkiQN2HaStBjvAyZJ6jx7wCRJfbGsAFZVfwv8bSs1kSRpAQYwTSvbTpLmsgdMktR5BjBJUl8YwCRJnWcAkyT1xZKTcEiSJEmSVoY9YJKkTnMaeklSnxjAJEmdZwCTJPWFAUyS1HkGMElSX7QSwJKwalW7l5clabX8cdi5c2fr+1i9enWr5R999NGtlg/whje8ofV9rFu3rvV9nHvuua2W/4UvfKHV8u+4445Wy5ckaTFtty0B9t9//1bL/8mf/MlWywc4/vjjW9/Hvvvu2/o+2m7XXHjhha2WD7B169Z5l9sDJknqPHvAJEl9YQCTJHWeAUyS1BcGMElSpzkLoiSpTwxgkqTOM4BJkvrCGzFLkiRJ0pjYAyZJ6jx7wCRJfWEAkyR1ngFMktQXBjBJUucZwCRJfWEAkyR1mrMgSpL6xEk4JEmSJGlM7AGTJHWePWCSpL4wgEmSOs8AJknqCwOYJKnzDGCSpL4wgEmSOs8AJknqCyfhkCRJkqQxsQdMktRpTkMvSeoTA5gkqfMMYJKkvjCASZI6zwAmSeoLA5gkqfMMYJKkvnASDkmSJEkaE3vAJEmdZw+YJKkv7AGTJHXa7CyIK/lYSpLTk9yW5LtDy16Y5OIk30qyKckxzfIk+XiSzUm+k+ToFk+HJGnKGcAkSZ037gAG/Clw3Jxlvwv8dlW9EPgvzWuA1wBHNo+TgE+txDFLkvrJACZJ0hxVdRFw59zFwJOa508GftA8PwE4owYuBg5I8vTx1FSSNG2m9hqwvfZqt+p77713q+UD7Lvvvq3v46677mq1/IMOOqjV8gFe8YpXtL6P1atXt76Pr33ta62Wv23btlbL37FjR6vlS4tp4RqwdUk2Db3eWFUbl9jmPcAXk3yYwReYP9UsXw/cNLTelmbZLStUV0nAqlXt9xusXbu21fKf//znt1o+wJve9KbW99H2eQK44447Wi3/29/+dqvlA2zdunXe5VMbwCRJe44WAthMVW1Y5ja/BvxGVZ2b5A3Ap4GfXemKSZL6zSGIkqTOm8A1YPN5C3Be8/z/AY5pnt8MHDa03qHNMkmSHscAJknqtEnMgriAHwD/tHn+SuD7zfPzgV9uZkM8Frinqhx+KEmal0MQJUmaI8lngVcwuFZsC3Aa8HbgY0n2Ah5kMOMhwOeB1wKbgfuBt429wpKkqWEAkyR13rhvxFxVb1zgrZ+cZ90CTm63RpKkvjCASZI6b9wBTJKkthjAJEmdZwCTJPWFAUyS1HkGMElSX4w0C2KSA5Kck+TqJFcleWnbFZMkSZpWtp0kLWTUHrCPAV+oqn+ZZG9gvxbrJEnSj+zm1PHSpNh2kjSvJQNYkicDPw28FaCqHgYebrdakiQ9ygCmaWLbSdJiRhmCeARwO/CZJN9M8idJnthyvSRJ+pGO3IhZGpVtJ0kLGiWA7QUcDXyqql4E/BB439yVkpyUZFOSTf5xkyStJAOYpsySbafhdtMkKihpckYJYFuALVV1SfP6HAa/VB6jqjZW1Yaq2pBkJesoSZI0TZZsOw23m8ZeO0kTtWQAq6qtwE1JntMsehVwZau1kiRpiD1gmia2nSQtZtRZEN8FnNnM4nMt8Lb2qiRJ0qMMTZpStp0kzWukAFZV3wLsIpckTYQBTNPGtpOkhYx0I2ZJkiRJ0u4bdQiiJEkTYw+YJKkvDGCSpM4zgEmS+sIAJknqPAOYJKkvDGCSpE5zFkRJUp84CYckSZIkjYk9YJKkzrMHTJLUF1MbwPbdd99Wy1+zZk2r5QPMzMy0vo+DDz641fIfeuihVssHePDBB1vfx9q1a1vfx913391q+W0fw+rVq1stX1qMAUzSOH4PPPzww62WP46239VXX936Pvbbb7/W93Hrrbe2Wv442pcLmdoAJknacxjAJEl9YQCTJHWeAUyS1BdOwiFJkiRJY2IPmCSp05yGXpLUJwYwSVLnGcAkSX1hAJMkdZ4BTJLUFwYwSVLnGcAkSX3hJBySJEmSNCb2gEmSOs8eMElSXxjAJEmd5iyIkqQ+MYBJkjrPACZJ6guvAZMkSZKkMbEHTJLUefaASZL6wh4wSVLnzV4HtlKPpSQ5PcltSb47Z/m7klyd5Iokvzu0/NQkm5Nck+TVLZwCSVJP2AMmSeq0CU3C8afAJ4AzZhck+RngBOAFVfVQkoOa5UcBJwLPBQ4Bvpzk2VW1Y9yVliR1nz1gkqTOG3cPWFVdBNw5Z/GvAR+qqoeadW5rlp8AnFVVD1XVdcBm4JiVO3pJUp8YwCRJGs2zgZcnuSTJhUle3CxfD9w0tN6WZpkkSY/jEERJUue1MARxXZJNQ683VtXGJbbZCzgQOBZ4MXB2kmetdMUkSf1mAJMkdV4LAWymqjYsc5stwHk1qMw3kuwE1gE3A4cNrXdos0ySpMdxCKIkqfPGfQ3YAv4S+BmAJM8G9gZmgPOBE5Psk+QI4EjgG7t/1JKkPrIHTJLUaZOYBTHJZ4FXMBiquAU4DTgdOL2Zmv5h4C1Nb9gVSc4GrgS2Ayc7A6IkaSEGMEmS5qiqNy7w1psWWP+DwAfbq5EkqS8MYJKkzpvAfcAkSWqFAUyS1HkGMElSX0xtANu5c+dUlz8uN954Y6vlX3TRRa2WD/D7v//7re9j//33b30fF154Yavl33rrra2W/8gjj7RavrQYA5ikcbTN7r333lbL//rXv95q+QD33Xdf6/vYa6/2I8SVV17Zavl33nlnq+UvZmoDmCRpz2EAkyT1hdPQS5IkSdKY2AMmSeq0SUxDL0lSWwxgkqTOM4BJkvrCACZJ6jwDmCSpL7wGTJIkSZLGxB4wSVLn2QMmSeoLA5gkqfMMYJKkvhhpCGKS30hyRZLvJvlskn3brpgkSfDoLIgr+ZDaZttJ0kKWDGBJ1gO/DmyoqucBq4ET266YJEmzDGCaJradJC1m1Ek49gKekGQvYD/gB+1VSZIkaerZdpI0ryUDWFXdDHwYuBG4Bbinqi6Yu16Sk5JsSrLJbxclSSvJHjBNk1HaTsPtpknUUdLkjDIE8SnACcARwCHAE5O8ae56VbWxqjZU1YYkK19TSdIeywCmaTJK22m43TSJOkqanFGGIP4scF1V3V5VjwDnAT/VbrUkSXqUAUxTxraTpAWNMg39jcCxSfYDHgBeBdhdLkkaC0OTppBtJ0kLGuUasEuAc4DLgMubbTa2XC9JkqSpZNtJ0mJGuhFzVZ0GnNZyXSRJmpc9YJo2tp0kLWSkACZJ0iQZwCRJfWEAkyR1ngFMktQXBjBJUucZwCRJfTHKNPSSJEmSpBVgD5gkqdOchl6S1CcGMElS5xnAJEl90UoAqyp27tzZRtE/smPHjlbLf/DBB1stH9o/BoBHHnmk1fKvu+66VssHOOOMM1rfx9577936PsbxMyX1lQFM0jh+DzzwwAOtln/ttde2Wj7A1q1bW9/HqlXtX8V0//33t1r+JNtl9oBJkjrPACZJ6gsn4ZAkSZKkMbEHTJLUefaASZL6wgAmSeo0Z0GUJPWJAUyS1HkGMElSX3gNmCRJkiSNiQFMktR5s8MQV+qxlCSnJ7ktyXfnee+UJJVkXfM6ST6eZHOS7yQ5uoVTIEnqCQOYJKnzxh3AgD8Fjpu7MMlhwM8DNw4tfg1wZPM4CfjUbh+wJKm3DGCSpM4bdwCrqouAO+d56w+A9wLDhZwAnFEDFwMHJHn6Shy3JKl/nIRDktRpXZkFMckJwM1V9e0kw2+tB24aer2lWXbLGKsnSZoSBjBJ0p5oXZJNQ683VtXGhVZOsh/wfgbDDyVJ2mUGMElS57XQAzZTVRuWsf6PA0cAs71fhwKXJTkGuBk4bGjdQ5tlkiQ9jgFMktR5kx6CWFWXAwfNvk5yPbChqmaSnA+8M8lZwEuAe6rK4YeSpHkZwCRJnTfuAJbks8ArGAxV3AKcVlWfXmD1zwOvBTYD9wNvG0slJUlTyQAmSeq8cQewqnrjEu8fPvS8gJPbrpMkqR+chl6SJEmSxsQeMElSp3VlGnpJklaCAUyS1HkGMElSXxjAJEmdZwCTJPWFAUyS1HkGMElSXzgJhyRJkiSNiT1gkqTOswdMktQXBjBJUqc5C6IkqU8MYJKkzjOASZL6oq0ANrN9+/YblrH+OmBmOTu4++67l1WhMVj2MXTQso9h27ZtLVXlUbfffvtyN9kjP4sxeOakKyBJPTUDLKfdBN38O7FcnTuGnTt3LneTZR3DAw88sNzyl20X9tG5z2EXdfE45m07tRLAquqpy1k/yaaq2tBGXcbFY+iOPhxHH45BWkn2gKnPlttugn78nfAYuqEPxwDTdRwOQZQkdZ4BTJLUFwYwSVLnGcAkSX3RlQC2cdIVWAEeQ3f04Tj6cAzSinAWRGleffg74TF0Qx+OAaboOOIfNUlSl+2999518MEHr2iZN91006XTcq2AJKlfutIDJknSgvyyUJLUFwYwSVLnGcAkSX2xapI7T3JckmuSbE7yvknWZVclOSzJV5NcmeSKJO+edJ12VZLVSb6Z5K8mXZddkeSAJOckuTrJVUleOuk6LVeS32h+jr6b5LNJ9p10naQumL0ObKUe0rSy7dQd095uAttOkzKxAJZkNfCHwGuAo4A3JjlqUvXZDduBU6rqKOBY4OQpPQ6AdwNXTboSu+FjwBeq6h8DL2DKjiXJeuDXgQ1V9TxgNXDiZGsldYMBTLLt1EHT3m4C204TMckesGOAzVV1bVU9DJwFnDDB+uySqrqlqi5rnm9j8IO7frK1Wr4khwK/APzJpOuyK5I8Gfhp4NMAVfVwVd090Urtmr2AJyTZC9gP+MGE6yNJ6g7bTh0x7e0msO00SZMMYOuBm4Zeb2HK/vPNleRw4EXAJROuyq74KPBeYOeE67GrjgBuBz7TDAf4kyRPnHSllqOqbgY+DNwI3ALcU1UXTLZW0uStdO+XPWCaYraduuOjTHe7CWw7TcxErwHrkyRrgXOB91TVvZOuz3IkOR64raounXRddsNewNHAp6rqRcAPgakaG5/kKQy+yTwCOAR4YpI3TbZWUjcYwKT+mda2U0/aTWDbaWImGcBuBg4ben1os2zqJFnD4BfImVV13qTrswteBrwuyfUMhjO8MsmfT7ZKy7YF2FJVs9+gncPgl8o0+Vnguqq6vaoeAc4DfmrCdZI6wQAmAbaduqIP7Saw7TQxkwxgfw8cmeSIJHszuGDu/AnWZ5ckCYOxs1dV1UcmXZ9dUVWnVtWhVXU4g8/hK1XV+W8PhlXVVuCmJM9pFr0KuHKCVdoVNwLHJtmv+bl6FVN2MazUFgOYBNh26oQ+tJvAttMkTew+YFW1Pck7gS8ymLHk9Kq6YlL12Q0vA94MXJ7kW82y91fV5ydXpT3Wu4Azmz9K1wJvm3B9lqWqLklyDnAZgxmivglsnGytJEldYdtJLbDtNAHxm0BJUpetWbOmDjjggBUtc2Zm5tKq2rCihUqSNIKJ9YBJkjQKhw1KkvrEACZJ6jwDmCSpL5yGXpIkSZLGxB4wSVLn2QMmSeoLA5gkqfMMYJKkvjCASZI6zwAmSeoLA5gkqdOcBVGS1CdOwiFJkiRJY2IAkyR13mwv2Eo9lpLk9CS3Jfnu0LLfS3J1ku8k+VySA4beOzXJ5iTXJHl1O2dBktQHBjBJUueNO4ABfwocN2fZl4DnVdVPAN8DTgVIchRwIvDcZptPJlm9UscuSeoXA5gkqfPGHcCq6iLgzjnLLqiq7c3Li4FDm+cnAGdV1UNVdR2wGThm5Y5ektQnTsIhSeq8FibhWJdk09DrjVW1cRnb/wrwF83z9QwC2awtzTJJkh7HACZJ2hPNVNWGXdkwyW8B24EzV7ZKkqQ9gQFMktRpXZqGPslbgeOBV9WjlboZOGxotUObZZIkPY7XgEmSOm8Ck3A8TpLjgPcCr6uq+4feOh84Mck+SY4AjgS+sdsHLUnqJXvAJEmdN+4esCSfBV7B4FqxLcBpDGY93Af4UhKAi6vqHVV1RZKzgSsZDE08uap2jLXCkqSpka4M65AkaT6rVq2qNWvWrGiZDz/88KW7eg2YJEm7wyGIkiRJkjQmDkGUJHWeozUkSX1hAJMkdVqXZkGUJGl3GcAkSZ1nAJMk9YXXgEmSJEnSmNgDJknqPHvAJEl9YQCTJHWeAUyS1BcGMElS5xnAJEl9YQCTJHXdF4F1K1zmzAqXJ0nSSOK3ipIkSZI0Hs6CKEmSJEljYgCTJEmSpDExgEmSJEnSmBjAJEmSJGlMDGCSJEmSNCb/GzuU9GY93E9CAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "recorte7 = trim(Escalagrises3[:,:,0], 540, 345, 10, 10)\n", + "x7=np.arange(0,10,1)\n", + "y7=np.arange(0,10,1)\n", + "y7,x7 = np.meshgrid(x7,y7)\n", + "xdata7 = np.vstack((x7.ravel(),y7.ravel()))\n", + "popt7, pcov7 = curve_fit(gauss2d, xdata7, recorte7.ravel(), p0=[1,0,1,1,1])\n", + "estrella7=gauss2d(xdata7, popt7[0], popt7[1],popt7[2], popt7[3], popt7[4])\n", + "FWHM7=FWHM.append(2*np.sqrt(2*np.log(2))*np.sqrt(popt7[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 7 fotografÃa\")\n", + "plt.imshow(recorte7, plt.get_cmap('gray'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 7 a partir de la gaussiana\")\n", + "plt.imshow(estrella7.reshape(10, 10), plt.get_cmap('gray'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 8 (blanco y negro)" + ] + }, + { + "cell_type": "code", + "execution_count": 311, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3AAAAFXCAYAAADj3KxwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA7BElEQVR4nO3dfZxddX3o+893JpOEPEjASAghCipasac+XIr26RQPHgvUGtvrsdBbBbVNtdrquXqsD+eqbQ89PrS2euzRpoUiPRSxVSxtUaTWlnqPoIELyJMSESQhECMhz8lkZr73j71Gd4aZyfz2Xntmz8rn/Xrt1+xZ+7vW77f27Nn7+92/tX4rMhNJkiRJUv8bmOsOSJIkSZJmxgJOkiRJkuYJCzhJkiRJmics4CRJkiRpnrCAkyRJkqR5wgJOkiRJkuYJCzhJkmoWEWsj4ssRcVdE3BkRb2577Lci4p5q+Qfblr8zIjZFxDcj4ufmpueSpH63YK47IElSA40Ab83MWyJiOXBzRFwPrALWAc/JzIMRcQJARJwOnA88GzgJ+KeIeEZmjs5R/yVJfcoROEmSapaZWzPzlur+buBuYA3wBuD9mXmwemxbtco64FOZeTAzvwNsAs6c/Z5LkvqdI3CSpEY755xzcvv27bVu8+abb74uM8+ZSWxEnAI8D7gJ+BDwMxFxMXAAeFtmfp1WcXdj22qbq2WSJB3GAk6S1Gjbt29n48aNtW4zIn4kIto3uiEzN0wStwz4DPCWzNwVEQuA44EXAj8OfDoinlpr5yRJjWYBJ0lqvMyse5PbM/OM6QIiYohW8XZFZn62WrwZ+Gy2OvS1iBgDVgJbgLVtq59cLZMk6TCeAydJarzMrPV2JBERwCXA3Zn54baHPge8qIp5BrAQ2A5cA5wfEYsi4lTgNOBr9T4LkqQmcAROkqT6/RTwKuAbEXFrtexdwKXApRFxBzAMXFiNxt0ZEZ8G7qI1g+UbnYFSkjQZCzhJUuP14BDKI7X3FSCmePhXp1jnYuDinnVKktQIFnCSpEab6WGPkiTNBxZwkqTGs4CTJDWFk5hIkiRJ0jzhCJwkqfEcgZMkNYUFnCSp8SzgJElNYQEnSWo8CzhJUlNYwEmSGs1ZKCVJTeIkJpIkSZI0TzgCJ0lqPEfgJElNYQEnSWo8CzhJUlNYwEmSGs8CTpLUFBZwkqTGs4CTJDWFk5hIkiRJ0jzhCJwkqdG8jIAkqUks4CRJjWcBJ0lqCg+h1A9ExCkRkRGxoPr9XyLi12ap7f8WEdsj4uHZaK8bEbEqIm6IiN0R8UfVst+OiKsjIua6f5Ieb3wUrq6bpN6Zy3ykn0TEkyNiT0QMdrGNyyLiv3W4bkbE0zttu19ExOcj4sK57kedLOD6UETcHxH7q3/a8dvHZrBe3/yjRcRzI+LfImJnRGyOiP9nmtgnA28FTs/ME2ew7fsj4sV19rfQemA78ITMfGtEnAa8FrgozeykvmQBJ5U72vKRuTYxv8nM72bmsswcnct+zXeZeW5mfnKu+1EnD6HsX7+Qmf9U5wYjYkFmjtS5zWn8NXA1cBZwCvCViLgtM6+ZJPbJwPczc9ss9W1KM3yOngLc1VasPQv4lczc2dveSZI0646mfGROdPJ8VEf8RGaO9ahb6mOOwM0zEfH0iPjX6puk7RFxVbX8hirktuobsl+OiLOqb5t+pzo08S8jYiAi3hER346I70fEpyPi+Bm0+7SI+Odqne0RcUVErJhmlVOAKzJzNDO/DXwFePYk230xcD1wUtXvy6rlL4uIOyPiserQiWdVy/+KVsH391X826eLrx57fkT8f9Uhj38TEVeNH04wxXN0XET8Q0R8LyJ2VPdPruIvAy4E3l61/2Lg+cC72tr7m4h4uPob3RARj9tvSbOn7tE3R+Ck5uUjnWy7Gmn87Yi4r4r/UEQMzGRb1Wjb70TE7cDeiLiSCflNTH4o6cUR8f8C+4CnTtKn50XELVXOcxWweMLjL42IW6t86X9HxI9N89y1r/fzVS61KyIejIj3HSH+7RGxNSIeiohfi7ZR2em2Nf5ambCtH4xMRsSZEbGxWveRiPhwtXxxRPyv6vl+LCK+HhGr2p63Xyv4u7wtIm6vXttXRcTi6rHjYor8cLZZwM0/vw98ETgOOBn4HwCZ+e+rx59TDbdfVf1+InA8rVGj9cBvAS8HfhY4CdgB/OkM2g3gv1frPAtYC7xvmvg/AV4dEUMR8UzgJ4DHfYNXfat3LvBQ1e+LIuIZwJXAW4AnAdfSekNbmJmvAr5L6xvBZZn5weniI2IhrW/eLquehyuBX5zQjYnP0QDwl9XvTwb2Ax+r+nsRcAXwwar9yb6V/DxwGnACcEsVL2kOWcBJtWtUPtLhtqGVU5xB68vcdbROqZjpti4Afh5YkZkXMCG/maK9V9F6/pYDDxzW+VbO8zngr2g9138D/J9tjz8PuBT4DeCJwJ8B10TEoiPsI8Be4NXAiqrPb4iIl08WGBHnAP838GLg6bRGPzva1iQ+AnwkM58APA34dLX8QuBYWs/zE4HX08rfHtc9jvx3eSVwDnAq8GPARdXyKfPD2WYB178+V32DMH779Wr5IVovnJMy80BmfuUI2xkD3puZBzNzP60X9Lszc3NmHqT1on3F+Lc7U8nMTZl5fbWd7wEfpvWmO5V/AF5B68V9D3BJZn79CH0d98vAP1btHQL+EDgG+MkO4l9I61Dhj2bmocz8LPC1Cesf9hxl5vcz8zOZuS8zdwMXH2FfD5OZl2bm7rbn9zkRcexM15dUPws4qWNHTT7SwbYBPpCZj2bmd2kVixcUbOujmflg9XzM1GWZeWdmjlQ5T7sXAkPAn1Q5z98C7fu6HvizzLypGpH8JHCwWm9amfkvmfmNzBzLzNtpfSE+1XPzSuAvq37uY0KBVLitiQ4BT4+IlZm5JzNvbFv+RODp1b7dnJm7JtmPmf5dHsrMR4G/B55brdtVflgnC7j+9fLMXNF2+/Nq+dtpfXvwtWgdMvjaabYB8L3MPND2+1OAq8ffiIG7gVFg1XQbidbMi5+KiC0RsQv4X8DKKWKPB74A/B6tofu1wM9FxG8eoa/jTqLtW6VsHd/9ILCmg/iTgC15eMb14IT1D3uOImJJRPxZRDxQ7esNwIqYwSxQETEYEe+P1iEhu4D7q4cmfa4kSepzR00+UrLtNu05xQO08o6ZbmtiPjIT060zWc7TPkr3FOCt7QU5refkpCM1GhEviIgvV4cP7qRVgE/13Jw0oZ+H9blwWxO9DngGcE91mORLq+V/BVwHfKo6bPODETE0yX7M5O/SPiP6PmBZtW7H+WHdLODmmcx8ODN/PTNPojUE/j9j+pmeJn5V/CBw7oQ348WZueUITf9Bta1/l61h61+l9cY9macCo5l5efUN0WbgU8B5R9q/ykO03mSAH5youxYY7+PEfZoufiuwplo2bu2E9Sdu763AM4EXVPs6fjjITC4R8Cu0DqF4Ma2h/FMK1pXUI47ASfVqaD5Ssu1x7TnFk2nlJDPd1sTnZCZvLtPFTJbzPLnt/oPAxROe8yWZeeUM2v1r4BpgbWYeC3yCqZ+brbQOqx03Me+ablt7gSXjgVVx9KTx3zPz3mwdbnoC8AHgbyNiaTXi+LuZeTqtI7BeSuswzYk6+RuP6yY/rJUF3DwTEf+p7YTJHbRehOMzED3CJCe0TvAJ4OKIeEq1vSdFxLoZNL0c2APsjIg1wH+ZJvZbrU3Hr0TrJOUTaR3mePsM2oHW8cw/HxFnV9+evJXWEP//rh6fuJ/TxX+V1jd6b4qIBdW+njmDfd0PPFZ9e/feGfZ7fN2DwPdpvQH9QcG6knrEAk6qV0PzkZJtj/sv0ZrcYi3wZmD8nL9OtjWT5206XwVGgN+O1jl/v8ThOc+fA6+vRsAiIpZGa0KR5TPY9nLg0cw8EBFn0vrCeiqfBl4TEc+KiCXAxEs3TLetbwGLq34NAf8V+ME5ehHxqxHxpOpoq8eqxWMR8aKI+HdVwbeL1iGVk83Q2cnfpX3dTvPDWlnA9a/xWYjGb1dXy38cuCki9tD69uLNmXlf9dj7gE9Ww+KvnGK7H6nW+2JE7AZuBF4wg/78Lq0TdHcC/wh8dqrA6pjjXwL+M6039VuBO4AZXUgyM79J6xuR/0Hremu/QOuk3uEq5L8D/7Xaz7dNF1+t80u0htwfq+L+gVaRNZU/oXUO3XZaz88XZtLvyuW0DlfYAtxVrS9pDtVdvFnA6ShzNOUjM952m78Dbq62/Y/AJV1s67D8Zgbxh2nLeS4CHqVVrH627fGNwK/TmnhjB7CJH07QcSS/Cfxe9bd6Dz+cPGSyfnwe+Cjw5aqN8VxoPPeaclvZuiTTbwJ/QSuX2gu0z0p5DnBn9br7CHB+ts4hPBH4W1rF293Av9I6rHKiTv4u4/6EzvPDWoUfRDraRMRNwCcy8y/nui+Seu85z3lOXnfddbVuc/Xq1Tdn5hm1blTSvBIRCZyWmZvmui/9LFqXdroDWJSzd/2/RnMETo0XET8bESdWh1BeSGtK2Dn71kSSJKnJIuIXI2JRRBxH61y1v7d4q8+0U7VKDfFMWsPzS4H7gFdk5ta57ZKk2eTRJpI0q36D1jV4R2kdzjjTmcg1AxZwarzM3ABsmOt+SJo7FnCS6paZzjA9hcw8Z6770GQWcJKkxrOAkyQ1hQWcJKnRnDlSktQkfVnARUQODPTX/CqHXxPxyEZHR3veRml8JwlMP/ZpbGyyy3pMbXBwsLiN0v0o7VPp9gEWLCj7dy19DY6MlJ9bXPLcjo2NMTY25uEmOipU14S6HFhF6/pYGzLzI22PvxX4Q+BJmbm9uvDuR2hdYHgfcFFm3jL7Pdd8VM2GKKl5tmfmkyYu7MsCbmBggMWLF/e0jdJkuDTh3rlzZ1E8wMKFC4vih4aGiuI7KSpLi5/SPh06dKgoHmDv3r1F8cuWLStu45hjjimK37dvX1F8J0XlE5/4xKL40tfgjh07iuIBli+fybU/W3bt2lW8fakuczACNwK8NTNvqS6Se3NEXJ+Zd1XF3UuA77bFnwucVt1eAHycmV0TS5LUXA9MtrCrYa6IOCcivhkRmyLiHZM8vigirqoevykiTummPUmSOjHbF/LOzK3jI2iZuZvWhWXXVA//MfB2WiNz49YBl2fLjcCKiFhd65OgvmDuJKlbHRdwETEI/Cmtbw1PBy6IiNMnhL0O2JGZT6f1gfWBTtuTJKlTPSjgVkbExrbb+qnarhLw5wE3RcQ6YEtm3jYhbA3wYNvvm/lhwaeGMHeSVIduDqE8E9iUmfcBRMSnaH2DeFdbzDrgfdX9vwU+FhGRnk0uSZpFPfjY2Z6ZZxwpKCKWAZ8B3kLrsMp30Tp8UkcncydJXevmEMqZfFv4g5jq6us7gbITeSRJmociYohW8XZFZn4WeBpwKnBbRNwPnAzcEhEnAluAtW2rn1wtU7OYO0nqWt9MYlIdfrK+uj/HvZEkNcVcXEagmlXyEuDuzPxw1Y9vACe0xdwPnFHNQnkN8KZqROYFwM7M3Dqrnda80p43STq6dFPAzeTbwvGYzRGxADgW+P5kG8vMDcAGgMHBQQ8TkCTVZg6OPvsp4FXANyLi1mrZuzLz2inir6V1CYFNtC4j8Jqe91BzobbcqT1v8jIC0tGlmwLu68BpEXEqrTeb84FfmRBzDXAh8FXgFcA/ewy3JGm2zfZHT2Z+BZj2cJLMPKXtfgJv7HG3NPfMnSR1reMCLjNHIuJNwHXAIHBpZt4ZEb8HbMzMa2gdPvJXEbEJeJTWG5UkSdJRx9xJUh26OgeuOhTk2gnL3tN2/wDwn7ppQ5KkbjmAoX5h7iSpW30zicls6/VEKZ1sf/HixUXxQ0NDRfF79+4tigcYGxsril+woOwlNTg4WBQPcODAgeJ1SpUme4sWLSqK37NnT1E8wHe+852i+NLntvT1BGV/i9LXklQnCzhJUlMctQWcJOnoMBezUEqS1CsWcJKkxrOAkyQ1RTcX8pYkSZIkzSJH4CRJjecInCSpKSzgJEmNZwEnSWoKCzhJUuNZwEmSmsICTpLUaM5CKUlqEicxkSRJkqR5whE4SVLjOQInSWoKCzhJUuNZwEmSmsICTpLUeBZwkqSmsICTJDWeBZwkqSn6soCbjRnDSrcfEUXxS5cuLYrvZJ2xsbGi+KGhoaJ4gJGRkeJ1em1wcLAo/glPeEJxG8PDw8XrlFi8eHHxOocOHeppfOnrCfrz9SFJOjqU5mb9tn2YnS+X/AKrefqygJMkqS5eRkCS1CQWcJKkxrOAkyQ1hQWcJKnxLOAkSU3hhbwlSZIkaZ5wBE6S1HiOwEmSmsICTpLUeBZwkqSmsICTJDWas1BKkprEAk6S1HgWcJKkpuh4EpOIWBsRX46IuyLizoh48yQxZ0XEzoi4tbq9p7vuSpIkzU/mTpLq0M0I3Ajw1sy8JSKWAzdHxPWZedeEuH/LzJd20Y4kSV1xBE59wtxJUtc6LuAycyuwtbq/OyLuBtYAE9+EJEmaUxZw6gfmTpLqUMs5cBFxCvA84KZJHv6JiLgNeAh4W2beWUeb/W7ZsmXF6yxcuLAovjQhGR0dLYoHGBwcLIov7dPY2FhRPMCiRYuK4kv3AWB4eLgo/uDBg0XxCxaU/+sNDQ0Vxc9GwrpkyZIZxx44cKCHPZGmZwGnftP03CkiehoPMDBQdibQbPSp1GzkTaVtdPJ+6Xvs7Oq6gIuIZcBngLdk5q4JD98CPCUz90TEecDngNOm2M56YH11v9tuSZIEOAul+k8duVN73iTp6NLxJCYAETFE6w3oisz87MTHM3NXZu6p7l8LDEXEysm2lZkbMvOMzDyjmz5JkiT1q7pyJ/Mm6ejV8QhctIbJLgHuzswPTxFzIvBIZmZEnEmrYPx+p21KktQJR+DUD8ydJNWhm0Mofwp4FfCNiLi1WvYu4MkAmfkJ4BXAGyJiBNgPnJ9+ikqSZtlsf/RExFrgcmAVkMCGzPxIRHwI+AVgGPg28JrMfKxa553A64BR4Lcz87pZ7bRmg7mTpK51MwvlV4BpT1bLzI8BH+u0DUmS6jAH+e+k08UD1wPvzMyRiPgA8E7gdyLidOB84NnAScA/RcQzMrN89in1LXMnSXXo6hw4SZLmg/GJTOq6zaC9rZl5S3V/N3A3sCYzv5iZI1XYjcDJ1f11wKcy82BmfgfYBJxZ+xMhSZr3LOAkSSq3MiI2tt2mnA1wmuniXwt8vrq/Bniw7bHN1TJJkg5Ty3XgJEnqVz26jMD2mcz+N9V08RHxblqHWV5Rd8ckSc1mASdJary5mANiquniI+Ii4KXA2W2TU2wB1ratfnK1TJKkw3gIpSSp8Wb7HLippouPiHOAtwMvy8x9batcA5wfEYsi4lRaF27+Wq1PgiSpERyBkyQ13hyMwE01XfxHgUXA9a0ajxsz8/WZeWdEfBq4i9ahlW90BkpJ0mT6soCLCKoPthlZsKB8NwYHB4vXKbF48eLidUr7tGjRoqL4pUuXFsUDHDx4sCh+eHi4KH50tDw/GRgoGzjev39/cRulr6nS56k0Hsr/3iX/Q9BZgrtkyZIZx5a+NqT5bJrp4q+dZp2LgYt71impC6WfvaXxneRlQ0NDRfGln+2l+wDln6WledChQ4eK4gFGRkaOHNRmbGysuI3Sdby0YXf6soCTJKlOJguSpKawgJMkNVqPZqGUJGlOWMBJkhrPAk6S1BTOQilJkiRJ84QjcJKkxnMETpLUFBZwkqTGs4CTJDWFBZwkqfEs4CRJTWEBJ0lqNGehlCQ1iZOYSJIkSdI84QicJKnxHIGTJDWFBZwkqfEs4CRJTWEBJ0lqPAs4SVJT9G0Bt2DBzLs2ODhYvP2IKIofGCg7XXDRokVF8VC+H0uWLOlpPMDw8HBR/O7du4viDx48WBQP5c/TY489VtzGscceWxRf2qddu3YVxXfSRqkDBw70dJ2xsbHi7Ut1sYCTfqg0B4LyPGjhwoVF8YsXLy6Kh/K8prSNkly0U6Wfvfv37y9uY9++fUXxneRmpUpzAt/DD+ckJpIkSZI0T/TtCJwkSXXwMgKSpCbpuoCLiPuB3cAoMJKZZ0x4PICPAOcB+4CLMvOWbtuVJGmmLODUL8ybJHWrrhG4F2Xm9ikeOxc4rbq9APh49VOSpFlhAac+Y94kqWOzcQjlOuDybH163hgRKyJidWZunYW2JUmygNN8Yt4kaVp1TGKSwBcj4uaIWD/J42uAB9t+31wtO0xErI+IjRGx0Q9aSZLUULXnTT3qp6Q+VccI3E9n5paIOAG4PiLuycwbSjeSmRuADQCDg4NWcJKk2vjFoPpI7XlTRPgCl44iXY/AZeaW6uc24GrgzAkhW4C1bb+fXC2TJKnnxmehrPMmdcq8SVK3uirgImJpRCwfvw+8BLhjQtg1wKuj5YXATo/jliTNJgs49QPzJkl16PYQylXA1a0Zb1kA/HVmfiEiXg+QmZ8ArqU1Fe4mWtPhvqbLNiVJkuYj8yZJXeuqgMvM+4DnTLL8E233E3hjN+1IktQNR83UD8ybJNVhNi4j0HPVN1lFFi5cWBS/aNGiovihoaGieIBTTjmlKH758uVF8U94whOK4gH27t1bFP/973+/p/EABw4cKIovfZ4ADh48WBQ/PDxcFN/J66P0dV76ml2woPztYGRkpHgdaS5YwKnpSj4jBgbKz6Ap/dw65phjiuKPO+64oniAJz7xiUXxxx9/fFH84sWLi+IBxsbGiuJ37txZFL99+1SXD5zajh07iuJ37dpV3EZpblb6nux7+OEaUcBJkjQdP/wlSU1hASdJajQnHpEkNUkdF/KWJEmSJM0CR+AkSY3nCJwkqSks4CRJjWcBJ0lqCgs4SVLjWcBJkprCc+AkSY03PpFJXbcjiYi1EfHliLgrIu6MiDdXy4+PiOsj4t7q53HV8oiIj0bEpoi4PSKe3+OnRJI0T1nASZJUvxHgrZl5OvBC4I0RcTrwDuBLmXka8KXqd4BzgdOq23rg47PfZUnSfGABJ0lqtLpH32YyApeZWzPzlur+buBuYA2wDvhkFfZJ4OXV/XXA5dlyI7AiIlbX/FRIkhrAc+AkSY3Xg3PgVkbExrbfN2TmhskCI+IU4HnATcCqzNxaPfQwsKq6vwZ4sG21zdWyrUiS1MYCTpLUeD0o4LZn5hlHCoqIZcBngLdk5q6IaO9TRoSzq0iSivRlARcRtH/IHcmSJUuK21i0aFFR/IIFZU/VmjVriuIBVq1adeSgNk972tOK4levLj8aZ9++fUXx9913X1H8N7/5zaJ4gMcee6wofmxsrLiNkZGRoviBgbKjkUdHR4viO+Gse9IPzcX/Q0QM0SrersjMz1aLH4mI1Zm5tTpEclu1fAuwtm31k6tl0oyU5E2Dg4PF21+4cGFR/PLly4viTzzxxKJ4gFNPPbUo/slPfnJR/IoVK4riAYaHh4viH3744aL473znO0XxnSjNgaA8rynNzUpe3+OanAd5DpwkSTWLVrZxCXB3Zn647aFrgAur+xcCf9e2/NXVbJQvBHa2HWopSdIP9OUInCRJdZnpxCM1+yngVcA3IuLWatm7gPcDn46I1wEPAK+sHrsWOA/YBOwDXjOrvZUkzRsWcJKkxpvtAi4zvwJMdczP2ZPEJ/DGnnZKktQIFnCSpMZr8rkQkqSji+fASZIkSdI84QicJKnxHIGTJDWFBZwkqfEs4CRJTWEBJ0lqtDmahVKSpJ6wgJMkNZ4FnCSpKTqexCQinhkRt7bddkXEWybEnBURO9ti3tN1jyVJkuYhcydJdeh4BC4zvwk8FyAiBoEtwNWThP5bZr6003YkSeqWI3DqB+ZOkupQ1yGUZwPfzswHatqeJEm1sYBTHzJ3ktSRugq484Erp3jsJyLiNuAh4G2ZeedkQRGxHlgPMDAwwNDQ0IwbX7x4cVlvgWXLlhXFL1hQ9lQ96UlPKooHeNrTnlYUf/bZZxfFr169uigeYHh4uCj+tttuK4rft29fUTyU9+nAgQPFbRw6dKgofu/evcVtlBodHS2KL01Yx8bGiuI7XUeaCxZw6kNd5U7teVP1+4wbHhwcLOspsGjRoqL4FStWFMWvWbOmKB7gWc96VlH8s5/97KL4E044oSgeynOOb3/728VtlCrNUfbs2VPcxv79+4viS/Ms843DdV3ARcRC4GXAOyd5+BbgKZm5JyLOAz4HnDbZdjJzA7ABYGhoyE9aSVItnIVS/aaO3Kk9b4oIX+DSUaTjSUzanAvckpmPTHwgM3dl5p7q/rXAUESsrKFNSZKk+crcSVLH6jiE8gKmOAQgIk4EHsnMjIgzaRWM36+hTUmSZswROPUZcydJHeuqgIuIpcB/BH6jbdnrATLzE8ArgDdExAiwHzg//RSVJM0yP3rUL8ydJHWrqwIuM/cCT5yw7BNt9z8GfKybNiRJ6pb5r/qFuZOkbtU1C6UkSX3LAk6S1BR1TGIiSZIkSZoFjsBJkhrNywhIkprEAk6S1HgWcJKkprCAkyQ1ngWcJKkpPAdOkiRJkuaJvhyBiwiOOeaYGccvWFC+G4sXLy6KX7ZsWVH8scceWxQPsHbt2qL4008/vSi+dB+g/Fvrffv2FcXfddddRfEADz74YFH8okWLitvYv39/UfzAQNl3IaOjo0XxAGNjY0Xxpf8XpdvvdB1pLjgCJ/1Q6WcWwNDQUFH80qVLi+JXrlxZFA/wlKc8pSj+R37kR4riTzrppKJ4KM8fIqIoftu2bUXxUJ43lebIAIODg0XxpftdGg/Nft/vywJOkqQ6NfmDXJJ0dLGAkyQ1mrNQSpKaxAJOktR4FnCSpKZwEhNJkiRJmiccgZMkNZ4jcJKkprCAkyQ1ngWcJKkpLOAkSY1nASdJagoLOElSozkLpSSpSZzERJIkSZLmCQs4SVLjjY/C1XU7koi4NCK2RcQdbcueGxE3RsStEbExIs6slkdEfDQiNkXE7RHx/B4+FZKkec4CTpLUeLNdwAGXAedMWPZB4Hcz87nAe6rfAc4FTqtu64GP17HPkqRm6ttz4EZHR2cc28m5DWNjY8XrlHjCE55QvM7SpUuL4hcvXlzcRqmIKIov7VPpPgOsWLGiKH7Hjh3FbZQqfZ4GBsq/Oyl9zfb6NQ69/z+V6jLbr7/MvCEiTpm4GBj/cDgWeKi6vw64PFudvDEiVkTE6szcOju9VROUfg6VKv3cKu3PggXlKemiRYuK4pcsWVIUv2zZsqJ4KH+ejjnmmKL4hQsXFsUDDA4OFsV3kqP0+vWnw/VtASdJUl16UMCtjIiNbb9vyMwNR1jnLcB1EfGHtI6A+clq+Rrgwba4zdUyCzhJ0uNYwEmSVG57Zp5RuM4bgP+cmZ+JiFcClwAvrr9rkqQm8xw4SVKj1X3+WxejeRcCn63u/w1wZnV/C7C2Le7kapkkSY8zowJuitm0jo+I6yPi3urncVOse2EVc29EXFhXxyVJmqk+KeAeAn62uv8fgHur+9cAr65mo3whsNPz3+Y38yZJvTTTEbjLePxsWu8AvpSZpwFfqn4/TEQcD7wXeAGtbxrfO9UbliRJvTIHlxG4Evgq8MyI2BwRrwN+HfijiLgN+ANaM04CXAvcB2wC/hz4zV48B5pVl2HeJKlHZnQO3BSzaa0DzqrufxL4F+B3JsT8HHB9Zj4KEBHX03pDu7Kz7kqSVG4OZqG8YIqH/o9JYhN4Y297pNlk3iSpl7qZxGRV2yEeDwOrJomZamatx4mI9VTfRpZOdypJktTnepY3STq61DILZWZmRHT19WY1/fIGgIULF3rBKElSbbwOofpJ3XlTt9uSNL90MwvlIxGxGqD6uW2SGGfWkiTNqT6ahVJHN/MmSbXopoC7htaUyFQ//26SmOuAl0TEcdVJuC+plkmSNGss4NQHzJsk1WKmlxGYbDat9wP/MSLupXUh0vdXsWdExF8AVCfh/j7w9er2e+Mn5kqSJDWReZOkXprpLJRTzaZ19iSxG4Ffa/v9UuDSjnonSVINHDXTbDJvktRLtUxiUrexsTH2798/4/hjjjmmuI3h4eGi+D179vR0+wA7duwoit+6tew6r6tWTTbh1fRGRkaK4rdv314Uv3v37qJ4KJ+l9NChQ8VtlO73bCSHAwNlRzyXxo+NjRXFg0mx5g9fq2q6ktd4J/8Po6OjRfGln72leRbAo4+WDU4+/PDDxW2UOnDgQFH8tm2TnQo5tZ07dxbFA+zbt68ovjQHgs5yiBK+hx+uLws4SZLq5Ie/JKkpLOAkSY3mxCOSpCbpZhZKSZIkSdIscgROktR4jsBJkprCAk6S1HgWcJKkprCAkyQ1ngWcJKkpLOAkSY1nASdJagonMZEkSZKkecIROElSo3kZAUlSk1jASZIazwJOktQUFnCSpMazgJMkNUVfFnCZyejo6Izjh4eHi9soXWdwcLAo/r777iuKBxgaGiqKX7JkSVH8KaecUhQPsHfv3qL4u+66qyi+k+dp27ZtRfEHDhwobuPgwYNF8SWv19kSEXPdBalvWMCp6Upe4518ZpV+Lu7evbso/pFHHimKB7j33nuL1ymxcuXK4nVKn6cHHnigKP673/1uUTzAjh07iuL3799f3MbIyEhR/NjYWHEb+iEnMZEkSZKkeaIvR+AkSaqTI3CSpKawgJMkNZqzUEqSmsQCTpLUeBZwkqSm8Bw4SZIkSZonHIGTJDWeI3CSpKawgJMkNZ4FnCSpKSzgJEmNZwEnSWqKI54DFxGXRsS2iLijbdmHIuKeiLg9Iq6OiBVTrHt/RHwjIm6NiI019luSpBkZn4Wyzps0HXMnSb00k0lMLgPOmbDseuBHM/PHgG8B75xm/Rdl5nMz84zOuihJkjSvXIa5k6QeOWIBl5k3AI9OWPbFzBypfr0ROLkHfZMkqRaOwGk2mTtJ6qU6LiPwWuDzUzyWwBcj4uaIWF9DW5IkFbOAU58xd5LUsa4mMYmIdwMjwBVThPx0Zm6JiBOA6yPinupbqcm2tR5YDzAwMMDg4OCM+3Ho0KGyjgOjo6NF8RFRFL9ly5aieICFCxcWxe/bt68o/lvf+lZRPMCePXuK4h9++OGi+IceeqgoHmD37t1F8QcPHixuo/T1URrfiZL/CWj9H5WYjX2Q5spsF10RcSnwUmBbZv5o2/LfAt4IjAL/mJlvr5a/E3hdtfy3M/O6We2wZk1duVN73gRlr/GxsbGyTlP+Wbpz586i+M2bNxfFd2LHjh1F8cuXLy9uozQn3b59e1F8J3lTaRt79+4tbmNkZOTIQW1K35P94uxwHRdwEXERrQ+ns3OKZzUzt1Q/t0XE1cCZwKQFXGZuADYALFiwwL+SJKk2c/DhfxnwMeDy8QUR8SJgHfCczDxYJehExOnA+cCzgZOAf4qIZ2Sm36o0TJ25U3veFBHmTdJRpKNDKCPiHODtwMsyc9JhoIhYGhHLx+8DLwHumCxWkqQmmewcKOANwPsz82AVs61avg74VGYezMzvAJtoJe1qEHMnSXWZyWUErgS+CjwzIjZHxOtofau4nNbQ/q0R8Ykq9qSIuLZadRXwlYi4DfgarUNFvtCTvZAkaQo9uozAyojY2HabyblKzwB+JiJuioh/jYgfr5avAR5si9tcLdM8Ze4kqZeOeAhlZl4wyeJLpoh9CDivun8f8JyueidJUg16cAjl9g6meF8AHA+8EPhx4NMR8dS6O6a5Z+4kqZe6msREkqT5oE9OgN8MfLY69+lrETEGrAS2AGvb4k6ulkmS9Dh1XEZAkqS+1ieXEfgc8CKAiHgGsBDYDlwDnB8RiyLiVOA0WofPSZL0OI7ASZJUs+ocqLNonSu3GXgvcClwaUTcAQwDF1ajcXdGxKeBu2hNL/9GZ6CUJE3FAk6S1HizfQjlFOdAAfzqFPEXAxf3rkeSpKawgJMkNVqXhz1KktRXLOAkSY1nASdJagonMZEkSZKkeaIvR+AGBgZYtmzZjOMHBweL2zh06FBR/KOPPloUf8wxxxTFAzzwwANF8Tt27CiKj4iieICRkZGi+AMHDhTF7927tygeYM+ePUXxjz32WHEbo6Nl8weUvp5K46F8BKH0793J/9HixYtnHFv6WpLq5Aicmq7kNV76GQfln1uln9WdGB4eLor/3ve+VxS/aNGioniAsbGxovjS52nXrl1F8Z2sU5rLQflnfOnzpMP1ZQEnSVKdLOAkSU1hASdJajwLOElSU1jASZIazVkoJUlN4iQmkiRJkjRPOAInSWo8R+AkSU1hASdJajwLOElSU1jASZIazwJOktQUFnCSpMazgJMkNYWTmEiSJEnSPOEInCSp0byMgCSpSSzgJEmNZwEnSWqKvizgRkdH2blz54zjFywo343Fixf3NH7Xrl1F8VCeYIyMjBTFDwyUHzE7PDxcFD82NtbT7QMcPHiwKH5wcLC4jVKl+10aD63/i17q5PUhzRcWcNIPdfL/UJpzHDhwoCi+k8/F0nzgscceK4rvJH8ofW4PHTpUFF+6z52sU9onKP/7+Z7cnb4s4CRJqpPJgiSpKfzKXZIkSZLmiSMWcBFxaURsi4g72pa9LyK2RMSt1e28KdY9JyK+GRGbIuIddXZckqSZGJ/EpM6bNB1zJ0m9NJMRuMuAcyZZ/seZ+dzqdu3EByNiEPhT4FzgdOCCiDi9m85KktQJCzjNssswd5LUI0cs4DLzBuDRDrZ9JrApM+/LzGHgU8C6DrYjSVJXLOA0m8ydJPVSN+fAvSkibq8OEzhuksfXAA+2/b65WjapiFgfERsjYqMfjpIkqYFqy53a86ZedFRS/+q0gPs48DTgucBW4I+67UhmbsjMMzLzjIjodnOSJP2AI3DqA7XmTu15Uw19kzSPdHQZgcx8ZPx+RPw58A+ThG0B1rb9fnK1TJKkWWXRpblm7iSpLh2NwEXE6rZffxG4Y5KwrwOnRcSpEbEQOB+4ppP2JEnqlLNQqh+YO0mqyxFH4CLiSuAsYGVEbAbeC5wVEc8FErgf+I0q9iTgLzLzvMwciYg3AdcBg8ClmXlnL3ZCkqTpWHRpNpk7SeqlIxZwmXnBJIsvmSL2IeC8tt+vBR43Ta4kSVJTmTtJ6qWOzoGTJGk+cQROktQUfVnAZSaHDh2acfzBgweL2xgdHS2KHxsbK4qfjT7t27evuI1eGxwcLIofGRkpbuPAgQNF8aV96mSd0r/dwED56ae9TkBLX+PSfGIBJ/1QJ/8PpZ8RJXlcJ9vvpI3Sz97Z+Kwu3e/SfKOTdWbj9aHu9GUBJ0lSnSzgJElNYQEnSWo0Z46UJDVJpxfyliRJU4iISyNiW0Q8bqr4iHhrRGRErKx+j4j4aERsiojbI+L5s99jSdJ8YQEnSWq8ObgO3GXAORMXRsRa4CXAd9sWnwucVt3WAx/veoclSY1lASdJarzZLuAy8wbg0Uke+mPg7bSuBTZuHXB5ttwIrJhw0WdJkn7Ac+AkSY3Xg3PgVkbExrbfN2TmhulWiIh1wJbMvC0i2h9aAzzY9vvmatnWujorSWoOCzhJUuP1oIDbnplnzDQ4IpYA76J1+KQkSR2zgJMkqfeeBpwKjI++nQzcEhFnAluAtW2xJ1fLJEl6HAs4SVKj9cNlBDLzG8AJ479HxP3AGZm5PSKuAd4UEZ8CXgDszEwPn5QkTcoCTpLUeLNdwEXElcBZtM6V2wy8NzMvmSL8WuA8YBOwD3jNrHRSkjQvWcBJkhpvtgu4zLzgCI+f0nY/gTf2uk+SpGboywJuYGCAhQsXzjj+0KFDxW0cOHCgp/FLly4tigcYHR0tih8eHu7p9gEmzJR2RENDQ0XxnfSpNBHrJHEbGxsrXqfflO7DwED5VUVK/n5zfQibjm6+/qTu9Pp/aGRkpHid0hyiNKcpjYfeP0+dbH828ibNLq8DJ0mSJEnzRF+OwEmSVCe/UZYkNYUFnCSp0fphFkpJkupiASdJajwLOElSU3gOnCRJkiTNE47ASZIazxE4SVJTWMBJkhrPAk6S1BQWcJKkxrOAkyQ1xRELuIi4FHgpsC0zf7RadhXwzCpkBfBYZj53knXvB3YDo8BIZp5RS68lSZohZ6HUbDN3ktRLMxmBuwz4GHD5+ILM/OXx+xHxR8DOadZ/UWZu77SDkiRJ88xlmDtJ6pEjFnCZeUNEnDLZYxERwCuB/1BzvyRJqo0jcJpN5k6Seqnbc+B+BngkM++d4vEEvhgRCfxZZm6YakMRsR5YX90v6sTQ0FBRfCeGh4eL4jvpU+l+l/apNB5gcHCwKL40SRobGyuKBzh06FDP2yjdj9HR0Z7GQ/l+zEafBga8EonmBws49ZFacqf2vKkfzcb/XGkbpXnWbPC9SZ3otoC7ALhymsd/OjO3RMQJwPURcU9m3jBZYPUGtQFgwYIFvpolSbUxSVIfqSV3as+bqmJP0lGi46/PI2IB8EvAVVPFZOaW6uc24GrgzE7bkySpU+MTmdR1kzph7iSpDt0c//Ri4J7M3DzZgxGxNCKWj98HXgLc0UV7kiRJ85m5k6SuHbGAi4grga8Cz4yIzRHxuuqh85lwCEBEnBQR11a/rgK+EhG3AV8D/jEzv1Bf1yVJOrK6R98cgdORmDtJ6qWZzEJ5wRTLL5pk2UPAedX9+4DndNk/SZK6ZtGl2WTuJKmXup3ERJKkvmcBJ0lqCgs4SVLjWcBJkprCizhJkiRJ0jzhCJwkqfEcgZMkNYUFnCSp0Zw5UpLUJBZwkqTGs4CTJDWF58BJkiRJ0jzRlyNwY2NjHDhwYMbxixcvLm5j0aJFRfELFpQ9VWNjY0XxUP4NcclzBHDo0KGieIDBwcHidXpteHi4KH5oaKi4jdK/Xyd/714bGCj7fqaTfShZxxEQzSVff5J8H1BT9GUBJ0lSnUzcJElNYQEnSWo8CzhJUlNYwEmSGs1ZKCVJTeIkJpIkSZI0TzgCJ0lqPEfgJElN4QicJKnxxg+jrOt2JBFxaURsi4g72pZ9KCLuiYjbI+LqiFjR9tg7I2JTRHwzIn6uN8+CJKkJLOAkSY032wUccBlwzoRl1wM/mpk/BnwLeCdARJwOnA88u1rnf0ZE/13DRZLUFyzgJEmNN9sFXGbeADw6YdkXM3Ok+vVG4OTq/jrgU5l5MDO/A2wCzqxv7yVJTWIBJ0lSuZURsbHttr5w/dcCn6/urwEebHtsc7VMkqTHcRITSVKj9egyAtsz84xOVoyIdwMjwBX1dkmSdDSwgJMkNV6/zEIZERcBLwXOzh92aguwti3s5GqZJEmP05cFXGZuP3jw4AOTPLQS2D5x4cGDB3vfqSnabnC7HbW9b9++OWt7Kvv375+ztudJu7PV9lN6vH1pSv1QwEXEOcDbgZ/NzPY3y2uAv46IDwMnAacBX5uDLmr+2g5MljeBn2m23dx2j4a2J82d+rWAe9JkyyNiY6eHrHRrrto+Gvf5aG37aNxnabbMdgEXEVcCZ9E6V24z8F5as04uAq6PCIAbM/P1mXlnRHwauIvWoZVvzMzRWe2w5rWp8ibwM822m9vu0dx2XxZwkiTNZ5l5wSSLL5km/mLg4t71SJLUFBZwkqTG64dDKCVJqsN8K+A2HIVtH437fLS2fTTus9RzPZqFUpov/Eyz7aa2e9S2HX6oSZKabOHChblq1apat7l58+abPW9UkjQXvJC3JEmSJM0T8+0QSkmSinm0iSSpKfpuBC4izomIb0bEpoh4xySPL4qIq6rHb4qIU2pqd21EfDki7oqIOyPizZPEnBUROyPi1ur2njrarrZ9f0R8o9ruxkkej4j4aLXft0fE82tq95lt+3NrROyKiLdMiKltvyPi0ojYFhF3tC07PiKuj4h7q5/HTbHuhVXMvRFxYU1tfygi7qme06sjYsUU60779+mg3fdFxJa25/S8Kdad9v+hw7avamv3/oi4dYp1O95nqd+MnwdX103qJ+ZO5k69yJ3mKm+apm1zp3F1f6h1+YE4CHwbeCqwELgNOH1CzG8Cn6junw9cVVPbq4HnV/eXA9+apO2zgH/o0b7fD6yc5vHzgM8DAbwQuKlHz//DwFN6td/AvweeD9zRtuyDwDuq++8APjDJescD91U/j6vuH1dD2y8BFlT3PzBZ2zP5+3TQ7vuAt83g7zHt/0MnbU94/I+A99S9z9689dNtaGgoV69eXesN2DjX++XNW6a5k7lT73Knucqbpmnb3Km69dsI3JnApsy8LzOHgU8B6ybErAM+Wd3/W+DsiNYVUbuRmVsz85bq/m7gbmBNt9ut0Trg8my5EVgREatrbuNs4NuZ+UDN2/2BzLwBeHTC4va/6SeBl0+y6s8B12fmo5m5A7geOKfbtjPzi5k5Uv16I3ByyTY7bXeGZvL/0HHb1f/NK4ErO+ibNG/04sNT6iPmTlMzd+oid5qrvGmqtmfoqMid+q2AWwM82Pb7Zh7/RvCDmOoFtBN4Yp2dqA4teB5w0yQP/0RE3BYRn4+IZ9fYbAJfjIibI2L9JI/P5Lnp1vlM/YLs1X4DrMrMrdX9h4HJpoubjf1/La1v6iZzpL9PJ95UHYJw6RSHPvR6n38GeCQz753i8V7ssySpXuZO5k5zlTvNdt4E5k6Ak5g8TkQsAz4DvCUzd014+BZaQ+R7quNuPwecVlPTP52ZWyLiBOD6iLin+gZgVkTEQuBlwDsnebiX+32YzMyImPWvtyPi3cAIcMUUIXX/fT4O/D6tf/TfpzUc/9outteJC5j+G6Q5fU1KdXLUTOodc6ejL3eag7wJzJ1+oN9G4LYAa9t+P7laNmlMRCwAjgW+X0fjETFE6w3oisz87MTHM3NXZu6p7l8LDEXEyjrazswt1c9twNW0hoDbzeS56ca5wC2Z+cgkfevZflceGT+kofq5bZKYnu1/RFwEvBT4v3KKLG8Gf58imflIZo5m5hjw51Nsr5f7vAD4JeCqafpY6z5Lc8lDKNVg5k7mTrOaO81F3lRty9yp0m8F3NeB0yLi1OpbjfOBaybEXAOMz6LzCuCfp3rxlKiOab0EuDszPzxFzInjx4xHxJm0nr+u3wAjYmlELB+/T+sE0TsmhF0DvDpaXgjsbBs6r8OU3yj0ar/btP9NLwT+bpKY64CXRMRx1ZD5S6plXYmIc4C3Ay/LzH1TxMzk71Pabvsx+L84xfZm8v/QqRcD92Tm5in6V/s+S3PJAk4NZu5k7jRrudNc5U3VtsydxtX9oVbDh+J5tGYx+jbw7mrZ79F6oQAsBv4G2AR8DXhqTe3+NK0h2duBW6vbecDrgddXMW8C7qQ1o82NwE/W1PZTq23eVm1/fL/b2w7gT6vn5RvAGTU+50tpvakc27asJ/tN641uK3CI1nHJr6N1HP6XgHuBfwKOr2LPAP6ibd3XVn/3TcBramp7E61jpcf/5uOzdJ0EXDvd36fLdv+q+jveTuuNZfXEdqf6f+i27Wr5ZeN/37bY2vbZm7d+ui1YsCBXrlxZ6w1nofTWR7fJPiswdwJzJ+gid5qi3Z7nTdO0be5U3aJqUJKkRhoaGsoVK1bUus3t27ffnJln1LpRSZJmwElMJEmN1vZNqSRJ854FnCSp8SzgJElNYQEnSWo8CzhJUlNYwEmSGs8CTpLUFP12GQFJkiRJ0hQcgZMkNZ4jcJKkprCAkyQ1mrNQSpKaxAJOktR4FnCSpKbwHDhJkiRJmiccgZMkNZ4jcJKkprCAkyQ1ngWcJKkpLOAkSY1nASdJagoLOElSozkLpSSpSZzERJIkSZLmCUfgJEmN5wicJKkpLOAkSY1nASdJagoPoZQkNd74eXB13Y4kIi6NiG0RcUfbsuMj4vqIuLf6eVy1PCLioxGxKSJuj4jn9/CpkCTNcxZwkqTGm+0CDrgMOGfCsncAX8rM04AvVb8DnAucVt3WAx+vZaclSY1kASdJUs0y8wbg0QmL1wGfrO5/Enh52/LLs+VGYEVErJ6VjkqS5h3PgZMkNVofXUZgVWZure4/DKyq7q8BHmyL21wt24okSRNYwEmSGq8HBdzKiNjY9vuGzNxQ0J+MiL6oKiVJ84sFnCSp8XpQwG3PzDMK13kkIlZn5tbqEMlt1fItwNq2uJOrZZIkPY7nwEmSGm8OJjGZzDXAhdX9C4G/a1v+6mo2yhcCO9sOtZQk6TCOwEmSVLOIuBI4i9ahlpuB9wLvBz4dEa8DHgBeWYVfC5wHbAL2Aa+Z9Q5LkuaN6JMTuyVJ6omI+AKwsubNbs/MiZcJkCSp5yzgJEmSJGme8Bw4SZIkSZonLOAkSZIkaZ6wgJMkSZKkecICTpIkSZLmCQs4SZIkSZonLOAkSZIkaZ6wgJMkSZKkeeL/B9BDyBuizaGZAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "recorte8 = trim(Escalagrises3[:,:,0], 620, 306, 20, 20)\n", + "x8=np.arange(0,20,1)\n", + "y8=np.arange(0,20,1)\n", + "y8,x8 = np.meshgrid(x8,y8)\n", + "xdata8 = np.vstack((x8.ravel(),y8.ravel()))\n", + "popt8, pcov8 = curve_fit(gauss2d, xdata8, recorte8.ravel(), p0=[1,0,1,1,1])\n", + "estrella8=gauss2d(xdata8, popt8[0], popt8[1],popt8[2], popt8[3], popt8[4])\n", + "FWHM8=FWHM.append(2*np.sqrt(2*np.log(2))*np.sqrt(popt8[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 8 fotografÃa\")\n", + "plt.imshow(recorte8, plt.get_cmap('gray'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 8 a partir de la gaussiana\")\n", + "plt.imshow(estrella8.reshape(20, 20), plt.get_cmap('gray'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 9 (blanco y negro)" + ] + }, + { + "cell_type": "code", + "execution_count": 312, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2AAAAFSCAYAAACUv7wrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAArJ0lEQVR4nO3df7xddX3n+9ebJAQQBGwUIckA1qiD1l8TKerY8UetYBnxzp062Got7UjtxV8d5lKxdwZ778OOt/Vadax2UsXWloeUUezQlkdRq9U6I2jAX/wQjT8gCUGIIkQgQJLP/WOvo5uTnHP2Sc7ae+3F6/l47Ef2Xj++67v22Tnn+17f7/ruVBWSJEmSpPYdNOkKSJIkSdJDhQFMkiRJksbEACZJkiRJY2IAkyRJkqQxMYBJkiRJ0pgYwCRJkiRpTJZPugKSJM3n1FNPre3bty9pmVdfffUVVXXqXOuTrAU+BBwDFLChqt7VrHsdcA6wG/i7qjqvWX4+8BvN8tdX1RVLWmlJUi8YwCRJnbZ9+3Y2bty4pGUmWbXAJruAc6vqmiRHAFcn+QSDQHYG8JSqui/Jo5ryTgLOBJ4IHAd8Msnjqmr3klZckjT1DGCSpM6rqnEfbxuwrXm+I8kNwGrg1cDbquq+Zt1tzS5nABc3y7+TZBNwMvD5sVZcktR53gMmSeq8qlrSB7Aqycahx9lzHTvJCcDTgKuAxwHPSXJVks8keUaz2Wpg89BuW5plkiQ9iD1gkqTOa6EHbHtVrV9ooySHAx8F3lhVdyVZDjwCOAV4BnBJkscsdeUkSf1lAJMkddpQr9VYJVnBIHxdVFWXNou3AJfWoEJfSLIHWAVsBdYO7b6mWSZJ0oM4BFGSpFmSBPgAcENVvWNo1V8Dz2u2eRxwMLAduAw4M8nKJCcC64AvjLXSkqSpYA+YJKnzJtAD9mzglcDXkny5WfZm4ELgwiTXAvcDr2p6w65LcglwPYMZFM9xBkRJ0r4YwCRJnTeBWRA/B2SO1a+YY5+3Am9trVKSpF4wgEmSOm8S94BJktQGA5gkqfMMYJKkvnASDkmSJEkaE3vAJEmdNqlp6CVJaoMBTJLUeQYwSVJfGMAkSZ1nAJMk9YUBTJLUeQYwSVJfOAmHJEmSJI2JPWCSpM6zB0yS1BcGMElSpzkLoiSpTwxgkqTOM4BJkvrCe8AkSZIkaUwMYD2S5IQklWR58/ofk/z7MRw3ST6Y5I4kX2j7eAcqyeOTfDnJjiSvb5a9I8k7J1w1SXOYGYa4VA9J7ZlUe6RrkjwnyY0HWMZ+vXezfwbTLMl1SZ476XosJQNYC5J8N8m9SX409HjPCPtVkseOo44LSfKsJF9oQspXk/zLeTb/l8ALgTVVdfIIZU/6PM8DPl1VR1TVu5M8B3gG8H9OsE6S5mEAkxbvIdgemajZ71tV/VNVPX6SdeqDqnpiVf3jpOuxlKY+FXfYv66qTy5lgUmWV9WupSxzjuM8Avgb4DXApcDLgb9J8piqumMfuxwPfLeq7m67bgsZ8T06Hrh46PWJwL+rqgfaq5mk/WVokg7IQ6k9MhH7836M6z1UN9kDNmZJHpvkM0nuTLI9yV81yz/bbPKV5grVv0vy3CRbkvxOkluBDyY5KMmbknwryfeTXNL8glrouD+d5FPNPtuTXJTkqDk2fxZwa1X996raXVV/CdwO/Jt9lPsbwPuBZzb1/r1m+auTbErygySXJTlurvOcb/tm3S8kubF5z97bvH//vln3a0n+Z5I/SvJ94C3znWuSTwHPA97THP9xwPOB/6NZf3SSv01yewZDKv82yZqF3l9J7bIHTFpafWuPNGWfnOTzSX6YZFuS9yQ5eI5tZ4bonZ3klmb7/zhqWc2+5yT5JvDN+d63oX2+27yHXwXuzj6GByZ5YZKvNz+X9wCZtf7Xk9zQtFGuSHL8HO/d7HLPavbbkeTbSX5znm2XJfn/mp/Pd5K8Ng8eUjpnWU277HOzyvtxz2CSFye5vtl368x7nmRV0+b6YQZtwX9KctDQ+/bzi/i5vCbJN5tt/jhJmnWL+ey1ygA2fv8P8HHgaGAN8F8BqurnmvVPqarDq+qvmtePBh7BoNfmbOB1wEuBfwUcB9wB/PEIxw3wX5p9/jmwFnjLAtvPfv2k2RtV1QcYXJn6fFPvC5I8vznWy4BjgZtoepz2dZ7zbZ9kFfAR4Hzgp4AbGfxCHvazwLeBY4C3zneuVfV84J+A1zbH/8assg4CPsjg/f5nwL3AgsM1JEmaMr1qjzR2A78NrAKeCbyA5gLrPJ4HrAN+AfidmYb+iGW9lEEb5KR53rfZXg78InDU7B6wps1zKfB/Ncf9FvDsofVnAG9mEEAfyaA98+EFzm/GbcDpwMOBs4A/SvL0ObZ9NXAa8FTg6c157m9Zs30A+M2qOoLBz/FTzfJzgS0MzusYBue5r6tlo/xcTmdwa8mTGbQtX9QsX+xnrzUGsPb8dZO8Zx6vbpY/wOCX13FVtbOqPjdPGQB7gAuq6r6qupdB2PndqtpSVfcx+OD8231dRRlWVZuq6hNNObcD72DwS3NfPg8cl+TlSVYkeRXw08Bho5w48CvAhVV1TVPH8xn0kJ2wH9u/GLiuqi5tflG9G7h11v63VNV/rapdVXXvIs/1Qarq+1X10aq6p6p2MAh0I+0rqT32gEn77SHTHqmqq6vqyqY98F3gv81T9ozfq6q7q+prDC7AvnwRZf2XqvpB836M6t1VtXmOfWbaPB+pwW0R7+TBbZ7XNMe8oWkT/T7w1FF6warq76rqWzXwGQbh+zlzbP4y4F3Nz/YO4G0HUNZsDwAnJXl4Vd1RVdcMLT8WOL6qHqjB/XN7/bIe8efytqr6YVXdDHyaQZBc7GevVQaw9ry0qo4aevxps/w8Bgn8CxnM6vLrC5Rze1XtHHp9PPCxmV+kwA0MrgYcM18hSY5JcnHT3XsX8JcMrh7spaq+D5wB/Afge8CpwCcZXJkYxXEMerFmyvsR8H1g9X5sfxyweWhd7aMem4dfLOZcZ0tyWJL/luSmZt/PAkclWTbK/pLaYQCT9ttDpj2S5HHNMLZbm7J/f66yhwy3IW5i0O4YtazNLN58++yrzTO8/fHAu4be8x8w+BnO1b76sSSnJbmyGd73QwZhb6735kH1mF3nRZY12//ebH9TBkNgn9ks/0NgE/DxZljjm+Y4j1F+LsOh9R7g8Gbf/W4fLjUD2JhV1a1V9eqqOg74TeC9mX+modkthc3AabN+mR5SVVsXOPTvN2X9TFU9HHgFe3frD9fzM1X1jKp6BPBK4AnAqFPM38LglwQASR7GYPjgXHWcb/ttDIZGzKzL8OuZ6s56vahzneVc4PHAzzb7zgwpGHV/SS0wgElLq6ftkfcBXwfWNWW/eb6yG2uHnv8zBm2SUcvan18m8+2zbbg+TZtnuH6bGQzfG37PD62q/zXfAZOsBD4KvB04pqqOAi5n7vfmQW2vWXVaqKy7GeqhTPLo4YKr6otVdQbwKOCvgUua5Tuq6tyqegzwEuA/JHnBPuq2Pz/jGQfSPlxSBrAxS/JL+cmkDncw+CDsaV5/D3jMAkX8CfDWme7mJI9sxgQv5AjgR8CdSVazwJTrSZ7WdPc/nMF/ss1VdcUIx4HBeOSzkjy1+Y/6+8BVTVcx7H2e823/d8DPJHlpM6zhHAbj0JfsXPex773ADzO4mfiCRewrqQVLHb4MYFJv2yNHAHcBP0ryBOC3RqjPf2pGvzyRwf1MM/du7U9Zo7xv8/k74IlJ/k3T5nk9D27z/AlwflNXkhyZ5JdGKPdgYCWDCUx2JTmNwT1vc7kEeEOS1RlMUvE7iyjrK805PDXJIQzdY5Xk4CS/kuTIGgyxvIvmM5fk9AwmhglwJ4Pe1D3sbX9+LsP77m/7cEkZwNrzN3nw9258rFn+DOCqJD8CLgPeUFXfbta9Bfjzpmv5ZXOU+65mv48n2QFcyeAG0IX8HoMbKe9k8B/80gW2Pw/YzuBqy7HA/zbCMQCowXS3/4nBFZJtDMZrnzm0yVsYOs/5tq+q7cAvAX/AYFjiScBG4L55qrDYcx32TuBQBud+JfD3i9hXkqSueSi1R/4j8MvADuBP+UmYms9nGAx9+wfg7VX18QMo6y0s/L7NaajN8zYGbZ51wP8cWv8x4P8FLm6G0F3LYLKMhcrdwSDMXcIgbP8yg5/dXP6UwX1dXwW+xKCHaxewe6GyajC52f/NYKjoN4HZ9xa+EvhuU//XMJgHgOZcP8kgIH0eeG9VfXofddufn8uMA2kfLql4JVDTJIMpSbcAvzLHf0xJPfOUpzylrrhi1A740Rx77LFXV9X6JS1U0tTIYKKv7wAryu/jmlfTy/UnVTXSlPdamD1g6rwkL0pyVDM8cWas75UTrpakMXIIoiSNR5JDM/i+ruXNUL0LgI8ttJ9GZwDTNHgmg+/C2A78awYzOi1myldJU84AJkljEwbD9e5gMATxBuA/T7RGPTPvdzVIXVBVb2FCX5QnqRsMTZKWUjPRlzMc70NV3cPgHkG1xB4wSZIkSRqTVnrAkrR+qfLQQw9ttfw9e/Y18+XSeuCBB1o/xvLl7XZyjuOq9EEHtX+dYDDrabvG8Zlq065du9i9e7dXCzV2DhtU342j3SRpIrZX1SNnL5zaIYjr1q1rtfx77rmn1fIBbr311oU3OkCrVrX7Bd/jCJFth22AlStXtn6MHTt2tH6MNo3j8yrNxQAmqQ/6clF5HNq+cD2mvys37Wvh1AYwSdJDhwFMktQX3gMmSZIkSWNiD5gkqfPsAZMk9YUBTJLUeQYwSVJfGMAkSZ3mLIiSpD7xHjBJUufNhLCleiwkydokn05yfZLrkrxh1vpzk1SSVc3rJHl3kk1Jvprk6S29FZKkKWcPmCRJe9sFnFtV1yQ5Arg6ySeq6voka4FfAG4e2v40YF3z+Fngfc2/kiQ9yEg9YElOTXJjc2XvTW1XSpKkYePuAauqbVV1TfN8B3ADsLpZ/UfAecBwQWcAH6qBK4Gjkhy7pG+CpoptJ0lzWTCAJVkG/DGDq3snAS9PclLbFZMkaUYLAWxVko1Dj7PnOnaSE4CnAVclOQPYWlVfmbXZamDz0Ost/CSw6SHGtpOk+YwyBPFkYFNVfRsgycUMrvRd32bFJEma0cIkHNurav1CGyU5HPgo8EYGwxLfzGD4oTQf206S5jRKANvXVb29xrU3Vw/nvIIoSdL+mNQsiElWMAhfF1XVpUl+BjgR+EoSgDXANUlOBrYCa4d2X9Ms00PTgm0n203SQ9eSzYJYVRuqav0oVxQlSeqyDBLWB4AbquodAFX1tap6VFWdUFUnMGhUP72qbgUuA361mQ3xFODOqto2qfqr+2w3SQ9do/SAeVVPkjRRE+gBezbwSuBrSb7cLHtzVV0+x/aXAy8GNgH3AGe1XkN1mW0nSXMaJYB9EViX5EQGvzzOBH651VpJkjRk3AGsqj4HZIFtThh6XsA5LVdL08O2k6Q5LRjAqmpXktcCVwDLgAur6rrWayZJUmMS94BJ+8u2k6T5jPRFzM2Qi7mGXUiS1CoDmKaNbSdJc1mySTgkSZIkSfMbqQdMkqRJmdQ09JIktcEAJknqPAOYJKkvDGCSpM4zgEmS+sJ7wCRJkiRpTOwBkyR1nj1gkqS+aCWAJWHlypVtFP1ju3btarX8I488stXyYTwNihUrVrRa/n333ddq+QAHH3xw68do+30CWL683esdybzfGdv58qX5GMAkjePvUNvtgcMOO6zV8gEOOeSQ1o/Rdjsc4O677261/HG0Yffs2bPP5faASZI6zVkQJUl9YgCTJHWeAUyS1BdOwiFJkiRJY2IPmCSp8+wBkyT1hQFMktR5BjBJUl8YwCRJnWcAkyT1hQFMktRpzoIoSeoTJ+GQJEmSpDGxB0yS1Hn2gEmS+sIAJknqPAOYJKkvDGCSpM4zgEmS+sIAJknqPAOYJKkvnIRDkiRJksbEHjBJUqc5Db0kqU8MYJKkzjOASZL6wgAmSeo8A5gkqS+8B0ySJEmSxsQeMElS59kDJknqCwOYJKnzDGCSpL4wgEmSOs1ZECVJfWIAkyR1ngFMktQXTsIhSZIkSWNiD5gkqfPsAZMk9UUrASwJBx98cBtF/9j999/favlHH310q+UDHHnkka0fo23r1q1r/Rgnn3xy68e48847Wz/Gxo0bWy3/5ptvbrV8G8CaJD9/kpYvb7/f4BGPeESr5T/hCU9otXyAE044ofVj/PCHP2z9GNdee22r5W/durXV8gHuvffefS63B0yS1HkGMElSX3gPmCSp02ZmQVzKx0KSrE3y6STXJ7kuyRua5X+Y5OtJvprkY0mOGtrn/CSbktyY5EXtvSOSpGlmAJMkaW+7gHOr6iTgFOCcJCcBnwCeVFVPBr4BnA/QrDsTeCJwKvDeJMsmUnNJUqcZwCRJnTfuHrCq2lZV1zTPdwA3AKur6uNVtavZ7EpgTfP8DODiqrqvqr4DbALav4FVkjR1vAdMktR5LdwDtirJ8Mw4G6pqw742THIC8DTgqlmrfh34q+b5agaBbMaWZpkkSQ9iAJMkdV4LAWx7Va1faKMkhwMfBd5YVXcNLf9dBsMUL1rqikmS+s0AJknqvEnMgphkBYPwdVFVXTq0/NeA04EX1E8qthVYO7T7mmaZJEkP4j1gkiTNkiTAB4AbquodQ8tPBc4DXlJV9wztchlwZpKVSU4E1gFfGGedJUnTwR4wSVKnjTpxxhJ7NvBK4GtJvtwsezPwbmAl8IlBRuPKqnpNVV2X5BLgegZDE8+pqt3jrrQkqfsWDGBJ1gIfAo4BisGNyu9qu2KSJM0YdwCrqs8B2ceqy+fZ563AW1urlKaGbSdJ8xmlB2zmu1CuSXIEcHWST1TV9S3XTZIkYDL3gEkHwLaTpDktGMCqahuwrXm+I8kNDKbW9ZeIJGksDGCaJradJM1nUZNwzPNdKJIkSZrFtpOk2UaehGOu70IZWn82cHbzfMkqKEmSPWCaRvO1nYbbTZIeWkYKYHN9F8qwqtoAbABYtmyZfyklSUtiQrMgSgdkobbTcLspiR9w6SFklFkQ9/ldKJIkjYsBTNPEtpOk+YxyD9jMd6E8P8mXm8eLW66XJEnStLLtJGlOo8yCONd3oUiSNBb2gGma2HaSNJ+RJ+GQJGlSDGCSpL4wgEmSOs8AJknqCwOYJKnTnAVRktQni/oiZkmSJEnS/rMHTJLUefaASZL6wgAmSeo8A5gkqS+mNoAddFC7oyd3797davkA99xzT+vHOOaYY1ot/7TTTmu1fICzzjqr9WN84xvfaP0YO3bsaLX8zZs3t1r+4HtFpckwgEndNo6/EQcffHDrx1izZk2r5Z9++umtlg/wwhe+sPVjfOtb32r9GH/xF3/Ravl33nlnq+UD3HvvvftcPrUBTJL00GEAkyT1hZNwSJIkSdKY2AMmSeo0p6GXJPWJAUyS1HkGMElSXxjAJEmdZwCTJPWFAUyS1HkGMElSXzgJhyRJkiSNiT1gkqTOswdMktQXBjBJUqc5C6IkqU8MYJKkzjOASZL6wnvAJEmSJGlM7AGTJHWePWCSpL4wgEmSOs8AJknqCwOYJKnTnIRDktQnBjBJUucZwCRJfeEkHJIkSZI0JvaASZI6zx4wSVJfGMAkSZ1nAJMk9YUBTJLUeQYwSVJfeA+YJKnTZmZBXMrHQpKsTfLpJNcnuS7JG5rlj0jyiSTfbP49ulmeJO9OsinJV5M8veW3RZI0pQxgkiTtbRdwblWdBJwCnJPkJOBNwD9U1TrgH5rXAKcB65rH2cD7xl9lSdI0MIBJkjpv3D1gVbWtqq5pnu8AbgBWA2cAf95s9ufAS5vnZwAfqoErgaOSHLvEb4MkqQe8B0yS1Hkt3AO2KsnGodcbqmrDvjZMcgLwNOAq4Jiq2tasuhU4pnm+Gtg8tNuWZtk2JEkaYgCTJHVeCwFse1WtX2ijJIcDHwXeWFV3JRmuUyVxdhBJ0qK0FsB2797dVtEALF/ebnbcuXNnq+UDPPDAA60f49BDD221/DVr1rRaPsAhhxzS+jEe+chHtn6Mgw5yxK+0vyYxC2KSFQzC10VVdWmz+HtJjq2qbc0Qw9ua5VuBtUO7r2mWSVoi4/g7evjhh7da/vHHH99q+QBPfvKTWz/GihUrWj/GT/3UT7Va/jjOYS62CCVJmiWDrq4PADdU1TuGVl0GvKp5/irgfwwt/9VmNsRTgDuHhipKkvRjDkGUJHXaqBNnLLFnA68Evpbky82yNwNvAy5J8hvATcDLmnWXAy8GNgH3AGeNtbaSpKlhAJMkdd64A1hVfQ7IHKtfsI/tCzin1UpJknrBACZJ6rxJ3AMmSVIbvAdMkiRJksbEHjBJUufZAyZJ6gsDmCSp8wxgkqS+MIBJkjptQrMgSpLUCgOYJKnzDGCSpL4YeRKOJMuSfCnJ37ZZIUmSpD6w7SRpXxbTA/YG4Abg4S3VRZKkfbIHTFPKtpOkvYzUA5ZkDfCLwPvbrY4kSXubuQ9sqR5S22w7SZrLqD1g7wTOA46Ya4MkZwNnN88PuGKSJM0wNGkKvZN52k7D7SZJDy0L9oAlOR24raqunm+7qtpQVeurar0BTJK0VJa698swp7aN0nYabjeNsWqSOmCUIYjPBl6S5LvAxcDzk/xlq7WSJEmaXradJM1pwQBWVedX1ZqqOgE4E/hUVb2i9ZpJktSwB0zTxLaTpPn4PWCSpM4zNEmS+mJRAayq/hH4x1ZqIknSHAxgmla2nSTNZg+YJKnzDGCSpL4Y6XvAJEmSJEkHzh4wSVKnOXGGJKlPDGCSpM4zgEmS+sIAJknqPAOYJKkvWglgVcWePXvaKPrHduzY0Wr5K1asaLV8gCStH2P58nYz9ubNm1stH+Caa65p/Rg33nhj68e45ZZbWi2/7c/sOD6vkiTNZdeuXa0fY/v27a2W/8UvfrHV8mE8bdhxtP9uuummVsvfuXNnq+XPxx4wSVLn2QMmSeoLA5gkqfMMYJKkvjCASZI6zVkQJUl9YgCTJHWeAUyS1Bd+EbMkSZIkjYk9YJKkzrMHTJLUFwYwSVLnGcAkSX1hAJMkdZ4BTJLUFwYwSVKnOQuiJKlPnIRDkiRJksbEHjBJUufZAyZJ6gsDmCSp8wxgkqS+MIBJkjrPACZJ6gvvAZMkdd7MRBxL9VhIkguT3Jbk2qFlT01yZZIvJ9mY5ORmeZK8O8mmJF9N8vQW3wpJ0pQzgEmStLc/A06dtewPgN+rqqcC/7l5DXAasK55nA28bzxVlCRNI4cgSpI6bRLT0FfVZ5OcMHsx8PDm+ZHALc3zM4AP1aCSVyY5KsmxVbVtPLWVJE0TA5gkqfNaCGCrkmwcer2hqjYssM8bgSuSvJ3BCJJnNctXA5uHttvSLDOASZL2YgCTJHVeCwFse1WtX+Q+vwX8dlV9NMnLgA8AP7/UFZMk9Zv3gEmSOm/ck3DM4VXApc3z/w6c3DzfCqwd2m5Ns0ySpL0YwCRJGs0twL9qnj8f+Gbz/DLgV5vZEE8B7vT+L0nSXByCKEnqvHFPwpHkw8BzGdwrtgW4AHg18K4ky4GdDGY8BLgceDGwCbgHOGuslZUkTRUDmCSp0yY0C+LL51j1L/axbQHntFsjSVJfGMAkSZ037gAmSVJbvAdMkiRJksaklR6wJBx0ULvZ7vbbb2+1/COOOKLV8gGOPvro1o9xxx13tFr+5z73uVbLB7jxxhtbP8ZNN93U+jG2bNnSavmHH354q+W3/X9amo89YFK3jeP/6P3339/6MbZubXcC08svv7zV8gGuueaa1o/xox/9qPVj3Hzzza2Wf/fdd7da/nwcgihJ6jwDmCSpLwxgkqTOM4BJkvrCACZJ6rRJzIIoSVJbvKlDkiRJksbEHjBJUufZAyZJ6gsDmCSp8wxgkqS+MIBJkjrPACZJ6gsDmCSp8wxgkqS+cBIOSZIkSRqTkQJYkqOSfCTJ15PckOSZbVdMkiT4yTT0S/mQ2mbbSdJcRh2C+C7g76vq3yY5GDisxTpJkvQghiZNIdtOkvZpwQCW5Ejg54BfA6iq+4H7262WJEk/YQDTNLHtJGk+owxBPBG4Hfhgki8leX+Sh83eKMnZSTYm2egfSknSUnIIoqbMgm2n4XbTZKooaVJGCWDLgacD76uqpwF3A2+avVFVbaiq9VW1PskSV1OSJGlqLNh2Gm43TaKCkiZnlAC2BdhSVVc1rz/C4JeKJEljYQ+YpoxtJ0lzWjCAVdWtwOYkj28WvQC4vtVaSZLUcBZETRvbTpLmM+osiK8DLmpm8fk2cFZ7VZIk6cEMTZpCtp0k7dNIAayqvgw4RlmSJGkEtp0kzWXUHjBJkibGHjBJUl8YwCRJnWcAkyT1hQFMktR5BjBJUl8YwCRJnebMhZKkPhnle8AkSZIkSUvAHjBJUufZAyZJ6otWAlhVsXv37jaK/rGdO3e2Wv7DH/7wVssHWLFiRevHuP3221st/3vf+16r5QOsXLmy9WPcddddrR9j2bJlrZZ/zDHHtFp+klbLl+ZjAJPUdtsS2m8PtN1+Bbj55ptbP8aePXtaP8Z9993Xavm7du1qtfz52AMmSeo8A5gkqS8MYJKkzjOASZL6wkk4JEmSJGlM7AGTJHWa09BLkvrEACZJ6jwDmCSpLwxgkqTOM4BJkvrCe8AkSZ03MwxxqR4LSXJhktuSXDtr+euSfD3JdUn+YGj5+Uk2JbkxyYtaeAskST1hD5gkSXv7M+A9wIdmFiR5HnAG8JSqui/Jo5rlJwFnAk8EjgM+meRxVdX+lxZJkqaOPWCSpM4bdw9YVX0W+MGsxb8FvK2q7mu2ua1ZfgZwcVXdV1XfATYBJy/d2UuS+sQAJknqtKUOX00AW5Vk49Dj7BGq8jjgOUmuSvKZJM9olq8GNg9tt6VZJknSXhyCKEnqvBYm4dheVesXuc9y4BHAKcAzgEuSPGapKyZJ6jd7wCRJGs0W4NIa+AKwB1gFbAXWDm23plkmSdJeDGCSpM4b9z1gc/hr4HkASR4HHAxsBy4DzkyyMsmJwDrgCwd+1pKkPnIIoiSp88b9PWBJPgw8l8G9YluAC4ALgQubqenvB15Vg4pdl+QS4HpgF3COMyBKkuZiAJMkddoB9lrt7zFfPseqV8yx/VuBt7ZXI0lSXxjAJEmdN+4AJklSW7wHTJIkSZLGxB4wSVLn2QMmSeoLA5gkqfMMYJKkvjCASZI6zwAmSeoLA5gkqdMmMQuiJEltcRIOSZIkSRoTe8AkSZ1nD5gkqS8MYJKkzjOASZL6orUAtmfPnraKBuCxj31sq+UfdthhrZYPcNttt7V+jPvuu6/V8g8//PBWywe4++67Wz/G/fff3/ox2v5M3X777a2W/8ADD7RavjQfA5ikcdi9e3er5e/cubPV8sd1jHHo8+99e8AkSZ3X5z/EkqSHFifhkCRJkqQxsQdMktRpTkMvSeoTA5gkqfMMYJKkvjCASZI6zwAmSeoL7wGTJEmSpDGxB0yS1Hn2gEmS+sIAJknqPAOYJKkvRhqCmOS3k1yX5NokH05ySNsVkyQJfjIL4lI+pLbZdpI0lwUDWJLVwOuB9VX1JGAZcGbbFZMkaYYBTNPEtpOk+Yw6Ccdy4NAky4HDgFvaq5IkSdLUs+0kaZ8WDGBVtRV4O3AzsA24s6o+Pnu7JGcn2Zhko1cXJUlLyR4wTZNR2k7D7aZJ1FHS5IwyBPFo4AzgROA44GFJXjF7u6raUFXrq2p9kqWvqSTpIcsApmkySttpuN00iTpKmpxRhiD+PPCdqrq9qh4ALgWe1W61JEn6CQOYpoxtJ0lzGmUa+puBU5IcBtwLvACwu1ySNBaGJk0h206S5jTKPWBXAR8BrgG+1uyzoeV6SZIkTSXbTpLmM9IXMVfVBcAFLddFkqR9sgdM08a2k6S5jBTAJEmaJAOYJKkvDGCSpM4zgEmS+sIAJknqPAOYJKkvRpmGXpIkSZK0BOwBkyR1mtPQS5L6xAAmSeo8A5gkqS9aCWAHHXQQD3vYw9oo+seWL283O+7atavV8gF27tw59cfYvXt3q+UDPPDAA60fY+XKla0f45577mm1/IMOandE8Z49e1otX5qPAUxSH/i7TOA9YJKkKTAzDHGpHgtJcmGS25Jcu4915yapJKua10ny7iSbknw1ydNbeAskST1hAJMkaW9/Bpw6e2GStcAvADcPLT4NWNc8zgbeN4b6SZKmlAFMktR54+4Bq6rPAj/Yx6o/As4Dhgs5A/hQDVwJHJXk2KU4b0lS/zgJhySp01qaBXFVko1DrzdU1Yb5dkhyBrC1qr6SZHjVamDz0OstzbJtS1VZSVJ/GMAkSZ3XQgDbXlXrR904yWHAmxkMP5Qkab8ZwCRJWthPAycCM71fa4BrkpwMbAXWDm27plkmSdJeDGCSpM6b9NTNVfU14FEzr5N8F1hfVduTXAa8NsnFwM8Cd1aVww8lSftkAJMkdd64A1iSDwPPZXCv2Bbggqr6wBybXw68GNgE3AOcNZZKSpKmkgFMktR54w5gVfXyBdafMPS8gHParpMkqR8MYJKkTmtpFkRJkibC7wGTJEmSpDGxB0yS1Hn2gEmS+sIAJknqPAOYJKkvDGCSpM4zgEmS+sIAJknqPAOYJKkvnIRDkiRJksbEHjBJUqc5Db0kqU8MYJKkzjOASZL6wgAmSeo8A5gkqS8MYJKkzjOASZL6wkk4JEmSJGlM7AGTJHWePWCSpL4wgEmSOs1ZECVJfWIAkyR1ngFMktQXrQSw3bt3b7/jjjtuWsQuq4DtiznGHXfcsbhKtW/R59BBiz6HnTt3tlSVA7Lo87j33ntbqsp+6+Ln6fhJV0CSemo7sJh2E3Tz78RieQ7d0IdzgG6exz7bTq0EsKp65GK2T7Kxqta3UZdx8Ry6ow/n0YdzkJaSPWDqs8W2m6Affyc8h27owznAdJ2HQxAlSZ1nAJMk9YUBTJLUeQYwSVJfdCWAbZh0BZaA59AdfTiPPpyDtCScBVHapz78nfAcuqEP5wBTdB7xj5okqcsOPvjgevSjH72kZW7evPnqablXQJLUL13pAZMkaU5eLJQk9YUBTJLUeQYwSVJfHDTJgyc5NcmNSTYledMk67K/kqxN8ukk1ye5LskbJl2n/ZVkWZIvJfnbSddlfyQ5KslHknw9yQ1JnjnpOi1Wkt9uPkfXJvlwkkMmXSepC2buA1uqhzStbDt1x7S3m8C206RMLIAlWQb8MXAacBLw8iQnTao+B2AXcG5VnQScApwzpecB8AbghklX4gC8C/j7qnoC8BSm7FySrAZeD6yvqicBy4AzJ1srqRsMYJJtpw6a9nYT2HaaiEn2gJ0MbKqqb1fV/cDFwBkTrM9+qaptVXVN83wHgw/u6snWavGSrAF+EXj/pOuyP5IcCfwc8AGAqrq/qn440Urtn+XAoUmWA4cBt0y4PpKk7rDt1BHT3m4C206TNMkAthrYPPR6C1P2n2+2JCcATwOumnBV9sc7gfOAPROux/46Ebgd+GAzHOD9SR426UotRlVtBd4O3AxsA+6sqo9PtlbS5C1175c9YJpitp26451Md7sJbDtNzETvAeuTJIcDHwXeWFV3Tbo+i5HkdOC2qrp60nU5AMuBpwPvq6qnAXcDUzU2PsnRDK5knggcBzwsySsmWyupGwxgUv9Ma9upJ+0msO00MZMMYFuBtUOv1zTLpk6SFQx+gVxUVZdOuj774dnAS5J8l8Fwhucn+cvJVmnRtgBbqmrmCtpHGPxSmSY/D3ynqm6vqgeAS4FnTbhOUicYwCTAtlNX9KHdBLadJmaSAeyLwLokJyY5mMENc5dNsD77JUkYjJ29oareMen67I+qOr+q1lTVCQx+Dp+qqs5fPRhWVbcCm5M8vln0AuD6CVZpf9wMnJLksOZz9QKm7GZYqS0GMAmw7dQJfWg3gW2nSZrY94BV1a4krwWuYDBjyYVVdd2k6nMAng28Evhaki83y95cVZdPrkoPWa8DLmr+KH0bOGvC9VmUqroqyUeAaxjMEPUlYMNkayVJ6grbTmqBbacJiFcCJUldtmLFijrqqKOWtMzt27dfXVXrl7RQSZJGMLEeMEmSRuGwQUlSnxjAJEmdZwCTJPWF09BLkjRLkguT3Jbk2qFlf5jk60m+muRjSY4aWnd+kk1JbkzyoolUWpI0FQxgkqTOm8AsiH8GnDpr2SeAJ1XVk4FvAOcDJDmJwUxoT2z2eW+SZUt17pKkfjGASZI6b9wBrKo+C/xg1rKPV9Wu5uWVDL6DCQZfAnpxVd1XVd8BNgEnL93ZS5L6xHvAJEmd18I9YKuSbBx6vaGqFjN18a8Df9U8X80gkM3Y0iyTJGkvBjBJUqe1NAvi9v2dhj7J7zL4vpmLlrZKkqSHAgOYJEkjSvJrwOnAC+onqXArsHZoszXNMkmS9uI9YJKkzpvAJBx7SXIqcB7wkqq6Z2jVZcCZSVYmORFYB3zhgE9aktRL9oBJkjpv3N8DluTDwHMZ3Cu2BbiAwayHK4FPJAG4sqpeU1XXJbkEuJ7B0MRzqmr3WCssSZoa8cstJUldtmzZsjr00EOXtMy777776v29B0ySpANhD5gkqfO8WChJ6gvvAZMkSZKkMbEHTJLUaS1NQy9J0kQYwCRJnWcAkyT1hQFMktR5BjBJUl8YwCRJnWcAkyT1hZNwSJIkSdKY2AMmSeo8e8AkSX1hAJMkdZqzIEqS+sQAJknqPAOYJKkvvAdMkiRJksbEHjBJUufZAyZJ6gsDmCSp8wxgkqS+MIBJkjrPACZJ6gsDmCSp664AVi1xmduXuDxJkkYSrypKkiRJ0ng4C6IkSZIkjYkBTJIkSZLGxAAmSZIkSWNiAJMkSZKkMTGASZIkSdKY/P9Qcmc3XpXyGgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "recorte9 = trim(Escalagrises3[:,:,0], 545, 360, 10, 10)\n", + "x9=np.arange(0,10,1)\n", + "y9=np.arange(0,10,1)\n", + "y9,x9 = np.meshgrid(x9,y9)\n", + "xdata9 = np.vstack((x9.ravel(),y9.ravel()))\n", + "popt9, pcov9 = curve_fit(gauss2d, xdata9, recorte9.ravel(), p0=[1,0,1,1,1])\n", + "estrella9=gauss2d(xdata9, popt9[0], popt9[1],popt9[2], popt9[3], popt9[4])\n", + "FWHM9=FWHM.append(2*np.sqrt(2*np.log(2))*np.sqrt(popt9[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 9 fotografÃa\")\n", + "plt.imshow(recorte9, plt.get_cmap('gray'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 9 a partir de la gaussiana\")\n", + "plt.imshow(estrella9.reshape(10, 10), plt.get_cmap('gray'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 10 (blanco y negro)" + ] + }, + { + "cell_type": "code", + "execution_count": 313, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2AAAAFSCAYAAACUv7wrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAqaklEQVR4nO3de7RkdX3n/fenb3JppWWIItCKMUQHTRydVok+iUlIIhgNeWblMTjekwmTDCaaYR7j5ZkhJmNmViZj1Ek0wbsRxRs6JGJER6PLGUGBoEijCYpKQxtoLk03DfTt+/yx94Hqw7lUd59dtc/u92utWl21a9dv/3bV6arfp36XSlUhSZIkSereimlXQJIkSZIOFQYwSZIkSZoQA5gkSZIkTYgBTJIkSZImxAAmSZIkSRNiAJMkSZKkCVk17QpIkrSQ0047rbZs2bKkZV5xxRWfrqrTlrRQSZLGYACTJPXali1buPzyy5e0zCTHLGmBkiSNyQAmSeq9qpp2FSRJWhIGMElS7xnAJElDYQCTJPWeAUySNBQGMElSr1WVAUySNBguQy9JkiRJE2IPmCSp9+wBkyQNhQFMktR7BjBJ0lAYwCRJvWcAkyQNhQFMktR7BjBJ0lC4CIckSZIkTYg9YJKkXnMZeknSkBjAJEm9ZwCTJA2FAUyS1HsGMEnSUBjAJEm9ZwCTJA2Fi3BIkiRJ0oTYAyZJ6j17wCRJQ2EAkyT1mqsgSpKGxAAmSeo9A5gkaSicA7aMJTkxSSVZ1d7+uyT/pgf1ekaSf0yyPckvT7s+i0nyn5NsSfKD9vb6JNcnefS06yZJ0nLQ1zZJ3yT5VJKXHMTjfzrJpgN87HuS/OcDPXZfJHlBkkumXY+DYQBbAkm+m+TuNnDMXP5sjMdVkh+ZRB0Xk+QPk1ydZHeS35/j/n+d5HtJ7kryiSRHL1DcHwB/VlVrq+oTixz395O8/+Bqf+CSPBI4Bzi5qo5tN78deHlVXT+tekna18wwxKW6SENlm6Q/5mrjVNXpVfXeadVpCKrq/Kr6hWnX42AYwJbOc9vAMXN5+cEWOPMt0oRcB7wK+OQc9Xg88JfAi4CHAzuAty5Q1qOAazqo434Z8/l7JHBrVd3cPuaRwPuq6gHPg6TpMYBJ+8U2yZQdyPM14edYU2QA61iSH0nyhSRb22FuH2q3f7Hd5Wvtt1O/OtOtnOT32uFw706yIsmrk3w7ya1JPjzONz1JHpPkc+1jtiQ5P8m6+favqvdW1aeAbXPc/QLgr6vqi1W1HfiPwL9K8uA5jvtt4IeBv27P60FJjktyUZLbklyX5DfafU8DXgv8arvv19rtc+7f3nd4kvcmuT3JtUleNdoV337z93tJvg7clWTVyPO3LcnGJP93u+/PAZ8BjmuP/x6a/xPnjwyheFl7nG1JvpPk3y723EtaWksdvgxgOlQdam2S9thvTnJDkjuTXJHkJxeo53uS/EWSz7Sf+19I8qhxymp7uz6a5P1J7gR+k7nbOPcNzUzy0iT/O8mfJrkV+P056nR4W6/bk2wEnjLr/uOSfCzJLWmmT/zOfOc363EPTfI37eNub6+fsMD+T07y9+3z8pEkH0o7nHGxstq22c/Neq7e314/rH3Obk1yR5KvJnn4yPPznfaY1yd5wcj2L+3H6/LhJO9ry7kmyYaR++dsI3bNANa9PwQuAR4KnAD8D4Cq+qn2/ie23059qL19LHA0TS/SWcBvA78MPBM4Drgd+PMxjhvgv7SP+efAeub4jz2mxwNfm7lRVd8GdgI/OnvHqnoM8H3u//btXuACYFNbl18B/ijJz1bV3wJ/BHyo3feJbTFz7t/edy5wIk3I+3nghXPU9/nALwLrqmo38G3gJ4GjgNcD70/yiKr6LHA6cFN7/JfOUdbNwHOAhwAvA/40yZMXeb4kLbFJB7A0c0E/334gX5PkFbPuPyfNkK1j2ttJ8pY0Xxp93fcJ9dQh1SZpfRX4FzTn8QHgI0kOW6D8F9A8T8cAVwHn70dZZwAfBdYB72TuNs5sTwO+Q9Ob94Y57j8XeEx7eRZw3/yxJCuAv6Z5Po4HTgVemeRZC5zfjBXAu2le20cCdwNzDlVNsgb4OPAemnP/IDAaVMYuaw4voWmfrQf+GU1wvTvJkcBbgNOr6sHA02lej7ks9rr8Ek3bch1w0ay6zdlGHLPuB8wAtnQ+0Sb3mctMr80umj/I46rqnqr60gJlAOwFzq2qe6vqbpo/xNdV1aY2zPw+8CtZpJu6qq6rqs+05dwCvJHmDfNArAW2ztq2FZjz26ZRSdYDzwB+rz3/q4B3AC8+wP2fB/xRVd1eVZto/nPO9paquqF9/qiqj1TVTVW1t/1Q+UfgqYvVvX3sJ6vq29X4As0H17zfnkkajN3AOVV1MnAKcHaSk+G+96lfoPmyacbpwEnt5SzgbZOtrrQP2yT3H/v9VXVrVe2uqv8OPAh47ALlf7LtXbsXeB3wE+3/+XHK+nJVfaJtb9w95vncVFX/oy1zrsc8D3hDVd1WVTewb7vnKcAPVdUfVNXOqvoOzTz2Mxc7aHseH6uqHVW1jSb8zfeanEKzcvpbqmpXVV0IfOUAy5ptF03w+pGq2lNVV1TVne19e4EnJDm8qjZX1ZzTW8Z4Xb5UVRdX1R7gr4Anjjz2gNuIB8MAtnR+uarWjVze3m5/Fc03P19pv0X9tUXKuaWq7hm5/Sjg4zNvosC1wB6ab0rmleThSS5IcmPbFf5+mm9zDsR2mh6gUQ9h7qEBsx0H3Nb+h5zxPZpvag5k/+OAG0buG70+57YkL05y1chz+ATGfC6SnJ7k0jTDIe8Anj3uYyUtnUn3gLUf9le217fRvPfOvA/9Kc17+2hBZ9DMH62quhRYN4lvUaV52Ca5/9j/Ic1Ugq1tnY9a5Nj3tSGqGeJ4G03bY5yy5mqTLGaxx8xu93xv5PqjaKZR3DHymryWRV4PgCRHJPnLNIuZ3Al8keZ9a+U8dbix9n3zvK9O+1nWbH8FfBq4IMlNSf44yeqqugv4VZrQvznJJ5M8bp5zWex1+cHI9R3AYbl/qskBtxEPhgGsY1X1g6r6jao6Dvi3wFuz8CpDs1sGN9B0v46+kR5WVTcucug/asv6sap6CM1QvRzgaVzDyLcFSX6Y5tuFfxjjsTcBR2ffsdmPBGbqP/t8F9t/M82wiRnr5zjmfWWmGbv9duDlwD+rqnXANxjjuUjyIOBjwJ8AD28fe/E4j5W0tDoIYMckuXzkctZ8x05yIvAk4LIkZ9A0RL42a7fj2beRtIn5v2iSpuJQa5OkmQv0KppepIe2n+NbFzn2fe2KJGtphrXdNGZZs5+vcSacLrbPZvZt6zxy5PoNwPWzXo8HV9WzxzjuOTS9RE9rX5OZYahzPTebgeOTjN43WqfFyroLOGJk/5lVp2l71F5fzWiDp9NM+3hxe9+nq+rngUcA36Rpz+3jAF/jmccecBvxYBnAOpbk/8n9ExFvp/mPtre9/U80c5kW8hfAG9o/EpL8UNsAWMyDab4l2prkeOD/XaSeq9vxsiuAVWkmRc58c3E+8NwkP9mOyf0D4MJZvVRzqqa7/P8A/6Ut88eBX6f59gua5+DEdhzzOPt/GHhNmgmfx9P8p1nIkTTP+S3teb6M5tuNcayheVO/Bdid5HSaYUeSJqyDALalqjaMXM6b67htA+xjwCtphiW+FvhPkzpvaSkdgm2SB9P8v72lLec/8cDes9meneT/SjPv6Q+BS9u2yYGUtU8b5wCNtntOoJmHN+MrwLY0C6UcnmRlkickecrcRe3jwTRzte5Is5DKuQvs+2Wans6Xp1nc7Az2Haa3WFlXAWe2r+sGmvn9ACT5mSQ/1r6+d9IMSdzb9pqe0b7G99L8/ezlgQ7kdZlxMG3Eg2IAWzozq/7NXD7ebn8Kzbem22km/r2imjG60Iydfm/b7fm8ecp9c/u4S5JsAy6lmbC5mNcDT6b5FuCTwIWL7P92mv88z6cZ83w3zRKvVDPm9jdp3vRupvlj/3dj1GHG82kWzriJZhLnudUsgAHwkfbfW5NcOcb+f0DzzfL1wGdpJrveO9+Bq2oj8N9p3jz+Cfgx4H+PU+n2zfx3aN78bgf+Nc1rIWmCljp87TuKZn5JVtOEr/OrmfPwGODRNCvFfZemN/7KJMfS9NKPfiN8Avf33EuTZpuk8Wngb2l6x74H3MPiQ/4+QBMgbgP+Jfcv9nUgZc3Vxtlfr2+Pdz3NPPS/mrmjmjlNz6FZgOJ6YAvNvPmjxij3TcDh7WMupTm3OVXVTuBf0XwhfgfNc/I33N/+Wqys/0jz/nl7ez4fGLnvWJq23J00Q1q/0J7jCuDf07QFb6OZU/Zbc1TvQF6XmfM64Dbiwcq4H0RSHyX5LeDMqjrQybySeu6JT3xiXXLJJUta5rHHHntFVW2Y7/52qM17aeakvnKefb4LbKiqLUl+kaZH/tk0DdK3VFXnE7klLZ00P0ezqar+v2nXpe+SXAb8RVW9e9p1WY78wTctK2kmtf8wzbcVJ9GMOx53qVNJy9QUvix8Bs037lcnuard9tqqunie/S+mCV/X0UzyflnnNZSkCUnyTOBbNL1cLwB+nAV6zbQwA5iWmzXAX9IMA7qD5ncd3jrNCknq3qQDWDXLcy84EbuqThy5XsDZHVdLkqblsTRTMo6k+d2yX6mqzdOt0vJlANOyUlXfY0ITJCX1h8PlJXWtql467Tr0VbtQ0ZyLFWn/GcAkSb1nAJMkDYWrIEqSJEnShHTSA5ak868qV6zoNjtO4tvWfX/PrhtdP0+TsGfPnmlXYUmsXDnOD8IfuN27d3daPkBV+SPUmrj9WTpeWo4m0W6SNBVbquqHZm/sbAhi1+HiyCOP7LT8STRmV63qfgToYYcd1vkxurZ9+/ZpV2FJrF27ttPyb7/99k7Ln8T/CWk+BjBJ0jL0vbk2OgdMktR7BjBJ0lAs//FpkiRJkrRM2AMmSeo9e8AkSUNhAJMk9Z4BTJI0FAYwSVKvuQqiJGlIDGCSpN4zgEmShsJFOCRJkiRpQsYKYElOS/KtJNcleXXXlZIkadTMMMSlukhds+0kaT6LDkFMshL4c+DngU3AV5NcVFUbu66cJEngEEQtL7adJC1knB6wpwLXVdV3qmoncAFwRrfVkiTpfvaAaZmx7SRpXuMswnE8cMPI7U3A02bvlOQs4KwlqpckSYCrIGpZWrTtZLtJOnQt2SqIVXUecB5AEj8pJUmS5mG7STp0jRPAbgTWj9w+od0mSdJE2AOmZca2k6R5jTMH7KvASUkenWQNcCZwUbfVkiTpfs4B0zJj20nSvBbtAauq3UleDnwaWAm8q6qu6bxmkiS1DE1aTmw7SVrIWHPAqupi4OKO6yJJ0pwMYFpubDtJms9YP8QsSZIkSTp4S7YKoiRJXXDeliRpSAxgkqTeM4BJkobCACZJ6j0DmCRpKJwDJkmSJEkTYg+YJKn37AGTJA3Fsg1ge/fu7bT8Xbt2dVo+wIoVdkCO4yEPeUjnx+j67wlgz549nZZ/1FFHdVr+HXfc0Wn50kIMYJKGYBJtv5UrV3Z+jEnout00ibbffJZtAJMkHRpcBVGSNCQGMElS7xnAJElD4Rg4SZIkSZoQe8AkSb1nD5gkaSgMYJKk3jOASZKGwgAmSeo9A5gkaSgMYJKkXnMVREnSkLgIhyRJsyRZn+TzSTYmuSbJK9rt/y3JN5N8PcnHk6wbecxrklyX5FtJnjW1ykuSes0AJknqvZlesKW6jGE3cE5VnQycApyd5GTgM8ATqurHgX8AXgPQ3ncm8HjgNOCtSYbxa6iSpCVlAJMk9d6kA1hVba6qK9vr24BrgeOr6pKq2t3udilwQnv9DOCCqrq3qq4HrgOeuuRPhCRp2XMOmCSp96Y5ByzJicCTgMtm3fVrwIfa68fTBLIZm9ptkiTtwwAmSeq9DgLYMUkuH7l9XlWdN3unJGuBjwGvrKo7R7a/jmaY4vlLXTFJ0rAZwCRJh6ItVbVhoR2SrKYJX+dX1YUj218KPAc4te5PhjcC60cefkK7TZKkfTgHTJLUa0s9/2uc3rQkAd4JXFtVbxzZfhrwKuCXqmrHyEMuAs5M8qAkjwZOAr6ypE+EJGkQ7AGTJPXeFOaAPQN4EXB1kqvaba8F3gI8CPhMk9G4tKp+s6quSfJhYCPN0MSzq2rPpCstSeo/A5gkqfcmHcCq6ktA5rjr4gUe8wbgDZ1VSpI0CA5BlCRJkqQJsQdMktR701yGXpKkpWQAkyT1ngFMkjQUBjBJUq+Nu3KhJEnLgQFMktR7BjBJ0lC4CIckSZIkTYg9YJKk3rMHTJI0FJ0EsBUrVrB27douir5P1x/Gq1ev7rR8gJUrV3Z+jD17uv0d0KOPPrrT8gHWr1/f+THuvvvuzo+xcePGTst/2MMe1mn527dv77R8aSEGMEmT0HX776ijjuq0fIB169Z1foxJvCffdtttnZa/bdu2TssH2L1795zb7QGTJPWeAUySNBQGMElSr7kKoiRpSFyEQ5IkSZImxB4wSVLv2QMmSRoKA5gkqfcMYJKkoTCASZJ6zwAmSRoKA5gkqfcMYJKkoXARDkmSJEmaEHvAJEm95jL0kqQhWbQHLMn6JJ9PsjHJNUleMYmKSZI0YyaELdVF6pJtJ0kLGacHbDdwTlVdmeTBwBVJPlNVGzuumyRJgHPAtOzYdpI0r0UDWFVtBja317cluRY4HvBNRJI0EQYwLSe2nSQtZL8W4UhyIvAk4LJOaiNJkjQgtp0kzTb2IhxJ1gIfA15ZVXfOcf9ZwFnt9SWroCRJ9oBpOVqo7TTabpJ0aBkrgCVZTfMGcn5VXTjXPlV1HnAewMqVK/2klCQtCRfO0HK0WNtptN2UxD9w6RCyaABL0531TuDaqnpj91WSJGlfBjAtJ7adJC1knDlgzwBeBPxskqvay7M7rpckSdJyZdtJ0rzGWQXxS4CTuiRJU2MPmJYT206SFjL2IhySJE2LAUySNBQGMElS7xnAJElDYQCTJPWaqyBKkoZkv36IWZIkSZJ04OwBkyT1nj1gkqShMIBJknrPACZJGopOAlgSVqzodnTjjh07Oi1/7dq1nZYPsGbNms6Pcdhhh3Va/lOe8pROywd47nOf2/kxuv57Arjgggs6LX/Tpk2dlt/8rqg0HQYwSStXruz8GOvWreu0/A0bNnRaPsAzn/nMzo9xzz33dH6Mz33uc52W/7Wvfa3T8gG2bt0653Z7wCRJvWcAkyQNhYtwSJIkSdKE2AMmSeo1l6GXJA2JPWCSpN6bCWFLdVlMkvVJPp9kY5Jrkryi3X50ks8k+cf234e225PkLUmuS/L1JE/u+CmRJC1TBjBJUu9NOoABu4Fzqupk4BTg7CQnA68G/ldVnQT8r/Y2wOnASe3lLOBtS/0cSJKGwQAmSeq9SQewqtpcVVe217cB1wLHA2cA7213ey/wy+31M4D3VeNSYF2SRyzx0yBJGgADmCTpUHRMkstHLmfNt2OSE4EnAZcBD6+qze1dPwAe3l4/Hrhh5GGb2m2SJO3DRTgkSb3XwSIcW6pq0R/kSbIW+Bjwyqq6c/T38Kqqkrg6iCRpvxjAJEm9Nq1VEJOspglf51fVhe3mf0ryiKra3A4xvLndfiOwfuThJ7TbJEnah0MQJUm9N4VVEAO8E7i2qt44ctdFwEva6y8B/ufI9he3qyGeAmwdGaooSdJ97AGTJOmBngG8CLg6yVXtttcC/xX4cJJfB74HPK+972Lg2cB1wA7gZROtrSRp2TCASZJ6b9JDEKvqS0DmufvUOfYv4OxOKyVJGgQDmCSp96YxB0ySpC4YwCRJvTatRTgkSeqCAUyS1HsGMEnSULgKoiRJkiRNiD1gkqTeswdMkjQUBjBJUu8ZwCRJQ2EAkyT1ngFMkjQUBjBJUq+5CqIkaUhchEOSJEmSJsQeMElS79kDJkkaCgOYJKn3DGCSpKEwgEmSes8AJkkaik4C2N69e7n33nu7KPo+O3fu7LT8NWvWdFo+wBFHHNH5MdauXdtp+Y973OM6LR/gec97XufHuOuuuzo/xtVXX91p+Zs2beq0fGmaDGCSVqzofumCo48+utPyTz311E7LBzjnnHM6P8add97Z+TG6bptdf/31nZYPsHXr1jm3uwiHJEmSJE2IQxAlSb3mMvSSpCExgEmSes8AJkkaCgOYJKn3DGCSpKFwDpgkSZIkTYg9YJKk3rMHTJI0FAYwSVLvGcAkSUNhAJMk9ZqrIEqShmTsAJZkJXA5cGNVPae7KkmStC8DmJYj206S5rI/i3C8Ari2q4pIkiQNjG0nSQ8wVgBLcgLwi8A7uq2OJEkPNDMMcakuUtdsO0maz7hDEN8EvAp4cHdVkSRpboYmLUNvwraTpDks2gOW5DnAzVV1xSL7nZXk8iSXL1ntJEnCHjAtL+O0nWw3SYeucXrAngH8UpJnA4cBD0ny/qp64ehOVXUecB7AihUr/HSTJC0JQ5OWoUXbTqPtpiT+gUuHkEV7wKrqNVV1QlWdCJwJfG52+JIkSVLDtpOkhfg7YJKk3rMHTJI0FPsVwKrq74C/66QmkiTNwwCm5cq2k6TZ7AGTJPWeAUySNBQGMElS7xnAJElDMdYPMUuSJEmSDp49YJKkXnMZeknSkBjAJEm9ZwCTJA2FQxAlSb030wu2VJfFJHlXkpuTfGNk279IcmmSq5JcnuSp7fYkeUuS65J8PcmTO3wqJEnLXCc9YElYvXp1F0Xf55577um0/Ac96EGdlg+walX3HZBdP08rVnSf4VeuXNn5MY444ojOj3Hbbbd1Wn7XPQT2QOgQ8x7gz4D3jWz7Y+D1VfWpJM9ub/80cDpwUnt5GvC29l9Jy0zXn3W7du3qtHyAe++9t/NjdN2+BNi9e3en5U+zXeMQRElS7036g7KqvpjkxNmbgYe0148CbmqvnwG8r5pKXppkXZJHVNXmydRWkrScGMAkSb3Xkx7YVwKfTvInNEP4n95uPx64YWS/Te02A5gk6QGcAyZJ6rWlnv/Vhrlj2nlcM5ezxqjKbwG/W1Xrgd8F3tnleUuShskeMElS73XQA7alqjbs52NeAryivf4R4B3t9RuB9SP7ndBukyTpAewBkyRpPDcBz2yv/yzwj+31i4AXt6shngJsdf6XJGk+9oBJknpv0nPAknyQZoXDY5JsAs4FfgN4c5JVwD3AzLDFi4FnA9cBO4CXTbSykqRlxQAmSeq9KayC+Px57vqXc+xbwNnd1kiSNBQGMElS7/VkFURJkg6aAUyS1GsjKxdKkrTsuQiHJEmSJE2IPWCSpN6zB0ySNBQGMElS7xnAJElDYQCTJPWeAUySNBQGMElS7xnAJElD4SIckiRJkjQh9oBJknrNZeglSUNiAJMk9Z4BTJI0FAYwSVLvGcAkSUNhAJMk9Z4BTJI0FC7CIUmSJEkTYg+YJKn37AGTJA2FAUyS1GuugihJGhIDmCSp9wxgkqShcA6YJEmSJE1IJz1gSVi9enUXRd9n7dq1nZY/Cdu3b+/8GLt27eq0/K9+9audlg/w5je/ufNjbNu2rfNjbN68udPyd+zY0Wn5e/fu7bR8aSH2gEnas2dP58e49dZbOy3/s5/9bKflA9x1112dH+Oee+7p/Bhf/vKXOy3/zjvv7LT8hTgEUZLUewYwSdJQGMAkSb1nAJMkDYUBTJLUa66CKEkaEhfhkCRJkqQJsQdMktR79oBJkobCACZJ6j0DmCRpKAxgkqTeM4BJkobCACZJ6j0DmCRpKMZahCPJuiQfTfLNJNcm+YmuKyZJkrRc2XaSNJ9xe8DeDPxtVf1KkjXAER3WSZKk+7gMvZYp206S5rRoAEtyFPBTwEsBqmonsLPbakmSdD8DmJYT206SFjLOEMRHA7cA707y90nekeTIjuslSdJ9ZnrBluoidcy2k6R5jRPAVgFPBt5WVU8C7gJePXunJGcluTzJ5X64SZKWkgFMy8yibafRdtM0KihpesYJYJuATVV1WXv7ozRvKvuoqvOqakNVbUiylHWUJElaThZtO422myZeO0lTtWgAq6ofADckeWy76VRgY6e1kiRphD1gWk5sO0layLirIP42cH67is93gJd1VyVJku5naNIyZdtJ0pzGCmBVdRVgF7kkaSoMYFpubDtJms9YP8QsSZIkSTp4BjBJUu9Neg5YkncluTnJN2Zt/+0k30xyTZI/Htn+miTXJflWkmd18BRIkgZi3DlgkiRNzRSGIL4H+DPgfTMbkvwMcAbwxKq6N8nD2u0nA2cCjweOAz6b5Eeras+kKy1J6j97wCRJvTfpHrCq+iJw26zNvwX816q6t93n5nb7GcAFVXVvVV0PXAc8denOXpI0JAYwSVKvLXX4OojetB8FfjLJZUm+kOQp7fbjgRtG9tvUbpMk6QEcgihJOhQdk+TykdvnVdV5izxmFXA0cArwFODDSX64qwpKkobJACZJ6r0O5oBtqar9XSJ8E3BhNZX5SpK9wDHAjcD6kf1OaLdJkvQAnQSwPXv2sHXr1i6Kvs/hhx/eafl79nQ/d3r16tWdH2PXrl2dlv/Nb36z0/IBduzY0fkx7rnnns6PsWnTpk7L37lzZ6fl+ztMmqae/P19AvgZ4PNJfhRYA2wBLgI+kOSNNItwnAR8ZVqVlIZq7969nR+j6/brlVde2Wn5AN/+9rc7P8YkXos77rij0/LvuuuuTstfiD1gkqTem3QAS/JB4KdphipuAs4F3gW8q12afifwkrY37JokHwY2AruBs10BUZI0HwOYJKn3Jh3Aqur589z1wnn2fwPwhu5qJEkaCldBlCRJkqQJsQdMktRrB7l0vCRJvWIAkyT1ngFMkjQUBjBJUu8ZwCRJQ2EAkyT1ngFMkjQULsIhSZIkSRNiD5gkqffsAZMkDYUBTJLUa66CKEkaEgOYJKn3DGCSpKFwDpgkSZIkTYg9YJKk3rMHTJI0FAYwSVLvGcAkSUNhAJMk9ZqLcEiShsQAJknqPQOYJGkoXIRDkiRJkibEHjBJUu/ZAyZJGgoDmCSp9wxgkqShMIBJknrPACZJGgoDmCSp11wFUZI0JC7CIUmSJEkTYg+YJKn37AGTJA2FAUyS1HsGMEnSUHQWwHbv3t1V0QDs3bu30/J37NjRafkAa9as6fwYq1ev7rT87du3d1o+wMaNGzs/xsqVKzs/RtcNyLvvvrvT8rv+PyctxAAmaRK6br9u3bq10/IBtm3b1vkxJmHPnj2dlj/NzxV7wCRJvWcAkyQNhYtwSJIkSdKE2AMmSeo1l6GXJA2JAUyS1HsGMEnSUBjAJEm9ZwCTJA2Fc8AkSZIkaULsAZMk9Z49YJKkoTCASZJ6zwAmSRqKsYYgJvndJNck+UaSDyY5rOuKSZIE96+CuJQXqWu2nSTNZ9EAluR44HeADVX1BGAlcGbXFZMkaYYBTMuJbSdJCxl3EY5VwOFJVgFHADd1VyVJkqRlz7aTpDktGsCq6kbgT4DvA5uBrVV1yez9kpyV5PIkly99NSVJhzJ7wLScjNN2st0kHbrGGYL4UOAM4NHAccCRSV44e7+qOq+qNlTVhqWvpiTpUGYA03IyTtvJdpN06BpnCOLPAddX1S1VtQu4EHh6t9WSJOl+kw5gSd6V5OYk35jjvnOSVJJj2ttJ8pYk1yX5epInd/AUaHmx7SRpXuMEsO8DpyQ5IkmAU4Fru62WJEmNKa2C+B7gtNkbk6wHfoHms3HG6cBJ7eUs4G0HfdJa7mw7SZrXOHPALgM+ClwJXN0+5ryO6yVJ0tRU1ReB2+a460+BVwGjKe4M4H3VuBRYl+QRE6imesq2k6SFjPVDzFV1LnBux3WRJGlOHczbOmbW4gfnVdWCDeQkZwA3VtXXmk6N+xwP3DBye1O7bfNSVVbLj20nSfMZK4BJkjRNHQSwLfuz+EGSI4DX0gw/lCTpgBnAJEm914OVCx9Ds6LdTO/XCcCVSZ4K3AisH9n3hHabJEkPYACTJPXetANYVV0NPGzmdpLvAhuqakuSi4CXJ7kAeBrNbz45/FCSNKdxVkGUJOmQkuSDwJeBxybZlOTXF9j9YuA7wHXA24F/N4EqSpKWKXvAJEm9No0fT66q5y9y/4kj1ws4u+s6SZKGwQAmSeq9aQ9BlCRpqXQSwJKwevXqLoq+z4oV3Y6e3L59e6flT8pRRx3VaflHHHFEp+UD7Nmzp/Nj7Nq1q/NjdP03O4nnSZoWA5ikIdi7d+8gjqGDYw+YJKn3DGCSpKFwEQ5JkiRJmhB7wCRJvWcPmCRpKAxgkqRem8YqiJIkdcUAJknqPQOYJGkonAMmSZIkSRNiD5gkqffsAZMkDYUBTJLUewYwSdJQGMAkSb1nAJMkDYUBTJLUa66CKEkaEhfhkCRJkqQJsQdMktR79oBJkobCACZJ6j0DmCRpKAxgkqTeM4BJkobCACZJ6j0DmCRpKFyEQ5IkSZImxB4wSVKvuQy9JGlIDGCSpN4zgEmShsIAJknqPQOYJGkoDGCSpN4zgEmShsJFOCRJkiRpQuwBkyT1nj1gkqShMIBJknrNVRAlSUNiAJMk9Z4BTJI0FJ0EsKrasnPnzu/tx0OOAbbszzF27ty5f5Xq3n6fwyTccsst+7N7L8/hAAzhPPp4Do+adgUkaaC2APvTboJ+fk7sL8+hH4ZwDtDP85iz7dRVAPuh/dk/yeVVtaGLukyK59AfQziPIZyDtJTsAdOQ7W+7CYbxOeE59MMQzgGW13k4BFGS1HsGMEnSUBjAJEm9ZwCTJA1FXwLYedOuwBLwHPpjCOcxhHOQloSrIEpzGsLnhOfQD0M4B1hG5xE/1CRJfbZmzZo69thjl7TMG2644YrlMldAkjQsfekBkyRpXn5ZKEkaCgOYJKn3DGCSpKFYMc2DJzktybeSXJfk1dOsy4FKsj7J55NsTHJNkldMu04HKsnKJH+f5G+mXZcDkWRdko8m+WaSa5P8xLTrtL+S/G77d/SNJB9Mcti06yT1wcw8sKW6SMuVbaf+WO7tJrDtNC1TC2BJVgJ/DpwOnAw8P8nJ06rPQdgNnFNVJwOnAGcv0/MAeAVw7bQrcRDeDPxtVT0OeCLL7FySHA/8DrChqp4ArATOnG6tpH6YdABL8q4kNyf5xsi2/9Y2Ur6e5ONJ1o3c95q2QfytJM/q5lnQoc62U+8s93YT2Haaimn2gD0VuK6qvlNVO4ELgDOmWJ8DUlWbq+rK9vo2mj/c46dbq/2X5ATgF4F3TLsuByLJUcBPAe8EqKqdVXXHVCt1YFYBhydZBRwB3DTl+kiHqvcAp83a9hngCVX148A/AK8BaBuOZwKPbx/z1rahLC012049sdzbTWDbaZqmGcCOB24Yub2JZfafb7YkJwJPAi6bclUOxJuAVwF7p1yPA/Vo4Bbg3e1wgHckOXLaldofVXUj8CfA94HNwNaqumS6tZKmb6l7v8bpAauqLwK3zdp2SVXtbm9eCpzQXj8DuKCq7q2q64HraBrK0lKz7dQfb2J5t5vAttPUTHUO2JAkWQt8DHhlVd057frsjyTPAW6uqiumXZeDsAp4MvC2qnoScBewrMbGJ3koTUPu0cBxwJFJXjjdWkn90MM5YL8GfKq9PrhGsTQJy7XtNJB2E9h2mpppBrAbgfUjt09oty07SVbTvIGcX1UXTrs+B+AZwC8l+S7NcIafTfL+6VZpv20CNlXVzDdoH6V5U1lOfg64vqpuqapdwIXA06dcJ6kXOghgxyS5fORy1rh1SfI6mjks53d1vtI8bDv1wxDaTWDbaWqmGcC+CpyU5NFJ1tCMn79oivU5IElCM3b22qp647TrcyCq6jVVdUJVnUjzOnyuqnr/7cGoqvoBcEOSx7abTgU2TrFKB+L7wClJjmj/rk5lmU2GlbrSQQDbUlUbRi7njVOPJC8FngO8oO7vShtMo1i9Z9upB4bQbgLbTtM0td8Bq6rdSV4OfJpmxZJ3VdU106rPQXgG8CLg6iRXtdteW1UXT69Kh6zfBs5vP5S+A7xsyvXZL1V1WZKPAlfSfLv+98BYjUJJ3UtyGs2cj2dW1Y6Ruy4CPpDkjTRDYE4CvjKFKmrgbDupA7adpiBLNBZekqROrF69utatW7ekZW7ZsuWKqtow3/1JPgj8NHAM8E/AuTSrHj4IuLXd7dKq+s12/9fRzAvbTTOf5VOzy5QkCQxgkqSeW7Vq1ZIHsFtvvXXBACZJUlemNgRRkqRx+WWhJGkoXIZekiRJkibEHjBJUu/ZAyZJGgoDmCSp9wxgkqShMIBJknrPACZJGgoDmCSp10Z+PFmSpGXPRTgkSZIkaULsAZMk9Z49YJKkoTCASZJ6zwAmSRoKA5gkqfcMYJKkoTCASZJ6zwAmSRoKF+GQJEmSpAmxB0yS1GsuQy9JGhIDmCSp9wxgkqShMIBJknrPACZJGgoDmCSp9wxgkqShcBEOSZIkSZoQe8AkSb1nD5gkaSgMYJKkXnMVREnSkBjAJEm9ZwCTJA2Fc8AkSZIkaULsAZMk9Z49YJKkoTCASZJ6zwAmSRoKA5gkqfcMYJKkoTCASZL67tPAMUtc5pYlLk+SpLHEbxUlSZIkaTJcBVGSJEmSJsQAJkmSJEkTYgCTJEmSpAkxgEmSJEnShBjAJEmSJGlC/n/TWdd9eG1W7QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "recorte10 = trim(Escalagrises3[:,:,0], 615, 394, 10, 10)\n", + "x10=np.arange(0,10,1)\n", + "y10=np.arange(0,10,1)\n", + "y10,x10 = np.meshgrid(x10,y10)\n", + "xdata10 = np.vstack((x10.ravel(),y10.ravel()))\n", + "popt10, pcov10 = curve_fit(gauss2d, xdata10, recorte10.ravel(), p0=[1,0,1,1,1])\n", + "estrella10=gauss2d(xdata10, popt10[0], popt10[1],popt10[2], popt10[3], popt10[4])\n", + "FWHM10=FWHM.append(2*np.sqrt(2*np.log(2))*np.sqrt(popt10[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 10 fotografÃa\")\n", + "plt.imshow(recorte10, plt.get_cmap('gray'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 10 a partir de la gaussiana\")\n", + "plt.imshow(estrella10.reshape(10, 10), plt.get_cmap('gray'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Histograma (blanco y negro)" + ] + }, + { + "cell_type": "code", + "execution_count": 447, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Datos de FWHM de las estrellas a blanco y negro :\n", + "Desviación : 2.506520397288835\n", + "Media : 4.2231882458162096\n", + "Mediana : 3.1419657079162633\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAU6UlEQVR4nO3df7DldX3f8efLZSOo/Gjh1uD+cFUYUuJE0DsE0LYUQoqCbJtgC1UjDMlOjVZsbQw4HZjQTkedRJMUI12BgMogiEaXH0opkhFQ0QUXBBbrjt2GRZRlUX7JDxff/eN8tzl799x7z2Xv95zd+30+Zs7s98fnfL/ve2bvfZ3vr88nVYUkqbteNO4CJEnjZRBIUscZBJLUcQaBJHWcQSBJHbfHuAuYqwMOOKBWrFgx7jIkabdyxx13PFJVE4PW7XZBsGLFCtauXTvuMiRpt5Lk/063zlNDktRxBoEkdZxBIEkdZxBIUscZBJLUcQaBJHVc60GQZFGS7ya5dsC6Fye5MsmGJLcnWdF2PZKk7Y3iiOAsYP00684EflpVBwEfBz4ygnokSX1aDYIkS4ETgYumabISuKyZvho4LknarEmStL22nyz+c+CDwN7TrF8CPABQVVuTPAbsDzzS3yjJKmAVwPLly19wMSvOvu4Fv3dnbfzwiWPbtyTNpLUjgiQnAQ9X1R07u62qWl1Vk1U1OTExsKsMSdIL1OapoTcCJyfZCHwOODbJZ6e0eRBYBpBkD2BfYEuLNUmSpmgtCKrqnKpaWlUrgFOBr1XVO6Y0WwO8q5k+pWnjIMqSNEIj7300yfnA2qpaA1wMfCbJBuBReoEhSRqhkQRBVf0t8LfN9Ll9y58B3jaKGiRJg/lksSR1nEEgSR1nEEhSxxkEktRxBoEkdZxBIEkdZxBIUscZBJLUcQaBJHWcQSBJHWcQSFLHGQSS1HEGgSR1nEEgSR1nEEhSxxkEktRxbQ5ev2eSbye5K8m9Sf5kQJvTk2xOsq55/X5b9UiSBmtzhLJngWOr6skki4Fbk3ylqr41pd2VVfXeFuuQJM2gtSBoBqF/spld3LwcmF6SdjGtXiNIsijJOuBh4Maqun1As99NcneSq5Msa7MeSdKOWg2Cqnq+qg4DlgJHJHntlCbXACuq6jeAG4HLBm0nyaoka5Os3bx5c5slS1LnjOSuoar6GXAzcMKU5Vuq6tlm9iLgDdO8f3VVTVbV5MTERKu1SlLXtHnX0ESS/ZrpvYDjgfuntDmwb/ZkYH1b9UiSBmvzrqEDgcuSLKIXOFdV1bVJzgfWVtUa4H1JTga2Ao8Cp7dYjyRpgDbvGrobOHzA8nP7ps8BzmmrBknS7HyyWJI6ziCQpI4zCCSp4wwCSeo4g0CSOs4gkKSOMwgkqeMMAknqOINAkjrOIJCkjjMIJKnjDAJJ6jiDQJI6ziCQpI4zCCSp4wwCSeo4g0CSOq7NMYv3TPLtJHcluTfJnwxo8+IkVybZkOT2JCvaqkeSNFibRwTPAsdW1euAw4ATkhw5pc2ZwE+r6iDg48BHWqxHkjRAa0FQPU82s4ubV01pthK4rJm+GjguSdqqSZK0o9YGrwdIsgi4AzgI+ERV3T6lyRLgAYCq2prkMWB/4JEp21kFrAJYvnx5myW3ZsXZ141lvxs/fOJY9itp99HqxeKqer6qDgOWAkckee0L3M7qqpqsqsmJiYl5rVGSum4kdw1V1c+Am4ETpqx6EFgGkGQPYF9gyyhqkiT1tHnX0ESS/ZrpvYDjgfunNFsDvKuZPgX4WlVNvY4gSWpRm9cIDgQua64TvAi4qqquTXI+sLaq1gAXA59JsgF4FDi1xXokSQO0FgRVdTdw+IDl5/ZNPwO8ra0aJEmz88liSeo4g0CSOs4gkKSOMwgkqeMMAknqOINAkjrOIJCkjjMIJKnjDAJJ6rhZgyDJR5Psk2RxkpuSbE7yjlEUJ0lq3zBHBL9dVY8DJwEb6Y0t8EdtFiVJGp1hgmBbf0QnAp+vqsdarEeSNGLDdDp3bZL7gaeBdyeZAJ5ptyxJ0qjMekRQVWcDRwOTVfUL4Cl6Yw1LkhaAYbuhfgXwW0n27Fv26RbqkSSN2KxBkOQ84BjgUOB64M3ArRgEkrQgDHOx+BTgOODHVXUG8Dp6YwtLkhaAYYLg6ar6JbA1yT7AwzQDzs8kybIkNye5L8m9Sc4a0OaYJI8lWde8zh20LUlSe4a5RrC2GYT+U8AdwJPAN4d431bgA1V1Z5K9gTuS3FhV901pd0tVnTSXoiVJ82fWIKiqP2wmL0zyVWCfZjzi2d73EPBQM/1EkvXAEmBqEEiSxmjaIEjy+pnWVdWdw+4kyQp6A9nfPmD1UUnuAn4E/KequnfA+1cBqwCWL18+7G4lSUOY6Yjgz2ZYV8Cxw+wgycuALwDvb7qq6Hcn8MqqejLJW4AvAQfvsLOq1cBqgMnJyRpmv5Kk4UwbBFX1z3d240kW0wuBy6vqiwP28Xjf9PVJ/irJAVX1yM7uW5I0nJlODf3OTG8c9Id9yvsDXAysr6qPTdPmV4GfVFUlOYLeXUxbZq1akjRvZjo19NYZ1hUwYxAAbwTeCXwvybpm2YeA5QBVdSG9ZxTenWQrvb6MTq0qT/1I0gjNdGrojJ3ZcFXdCmSWNhcAF+zMfiRJO2eYgWlenuTiJF9p5g9Ncmb7pUmSRmGYJ4svBW6g1/EcwP8G3t9SPZKkERsmCA6oqquAXwJU1Vbg+VarkiSNzDBB8FSS/eldICbJkYCjlEnSAjFMX0P/EVgDvCbJbcAEvbt9JEkLwIxBkGQR8M+a1yH07gL6fjNSmSRpAZjx1FBVPQ+cVlVbq+reqrrHEJCkhWWYU0O3JbkAuJLeeMUAzKXTOUnSrmuYIDis+ff8vmVDdzonSdq1DRMEZ1bVD/sXJHl1S/VIkkZsmNtHrx6w7PPzXYgkaTxm6n3014BfB/ad0hPpPsCebRcmSRqNmU4NHQKcBOzH9j2RPgH8QYs1SZJGaKbeR78MfDnJUVU1zGD1kqTd0DDXCP5Vkn2SLE5yU5LNSd7RemWSpJEYJgh+uxlS8iRgI3AQ8EdtFiVJGp1hgmBx8++JwOeryg7nJGkBGSYIrklyP/AG4KYkE8Azs70pybIkNye5L8m9Sc4a0CZJ/jLJhiR3J3n93H8ESdLOmDUIqups4Ghgsuln6OfAyiG2vRX4QFUdChwJvCfJoVPavBk4uHmtAj45h9olSfNgmKEqXwL8IX//R/oVwORs76uqh7b1R1RVTwDrgSVTmq0EPl093wL2S3LgHOqXJO2kYU4N/TXwHL2jAoAHgf86l50kWQEcDtw+ZdUS4IG++U3sGBYkWZVkbZK1mzdvnsuuJUmzGCYIXlNVHwV+AVBVP6c3LsFQkrwM+ALw/ubuozmrqtVVNVlVkxMTEy9kE5KkaQwTBM8l2Yu/H6ryNcCzw2w8yWJ6IXB5VX1xQJMHgWV980ubZZKkERkmCM4DvgosS3I5cBPwwdnelCTAxcD6qvrYNM3WAL/X3D10JPBYVT00XOmSpPkwazfUVXVjkjvp3fkT4KyqemSIbb8ReCfwvSTrmmUfApY3270QuB54C7CB3t1IZ8z1B5Ak7ZxhxiOgqrYA181lw1V1K7NcS6iqAt4zl+1KkubXMKeGJEkLmEEgSR03VBAkeVOSM5rpiSSvarcsSdKoDPNk8XnAHwPnNIsWA59tsyhJ0ugMNR4BcDLwFEBV/QjYu82iJEmjM9QDZc3dPdseKHtpuyVJkkZpmCC4Ksn/oNch3B8A/wv4VLtlSZJGZZgHyv40yfHA4/QGtD+3qm5svTJJ0kgM+0DZjYB//CVpAZo2CJI8QXNdYJCq2qeViiRJIzVtEFTV3gBJ/gvwEPAZel1GvB1w8BhJWiCGuVh8clX9VVU9UVWPV9UnGW6oSknSbmCYIHgqyduTLEryoiRvp3mmQJK0+xsmCP4t8K+BnzSvtzXLJEkLwDC3j27EU0GStGDZ+6gkdZxBIEkd11oQJLkkycNJ7plm/TFJHkuyrnmd21YtkqTpDdMN9X/um37xHLZ9KXDCLG1uqarDmtf5c9i2JGmeTBsESf44yVHAKX2Lvznshqvq68CjO1GbJGkEZjoiuJ/eraKvTnJLkk8B+yc5ZB73f1SSu5J8JcmvT9coyaoka5Os3bx58zzuXpI0UxD8DPgQsAE4BviLZvnZSb4xD/u+E3hlVb0O+O/Al6ZrWFWrq2qyqiYnJibmYdeSpG1mCoJ/AVwHvAb4GPCbwFNVdUZVHb2zO266q3iymb4eWJzkgJ3driRpbqYNgqr6UFUdB2yk1+HcImAiya1JrtnZHSf51SRppo9oatmys9uVJM3NMOMR3FBVa4G1Sd5dVW8a5pt7kivonVI6IMkm4Dx6A99TVRfSuwj97iRbgaeBU5shMSVJIzRMFxMf7Js9vVn2yBDvO22W9RcAF8y2HUlSu+b0QFlV3dVWIZKk8bCLCUnqOINAkjrOIJCkjjMIJKnjDAJJ6jiDQJI6ziCQpI4zCCSp4wwCSeo4g0CSOs4gkKSOMwgkqeMMAknqOINAkjrOIJCkjjMIJKnjWguCJJckeTjJPdOsT5K/TLIhyd1JXt9WLZKk6bV5RHApcMIM698MHNy8VgGfbLEWSdI0WguCqvo68OgMTVYCn66ebwH7JTmwrXokSYPNOnh9i5YAD/TNb2qWPTS1YZJV9I4aWL58+UiKWyhWnH3d2Pa98cMnjmW/XfyZNToL8f/XbnGxuKpWV9VkVU1OTEyMuxxJWlDGGQQPAsv65pc2yyRJIzTOIFgD/F5z99CRwGNVtcNpIUlSu1q7RpDkCuAY4IAkm4DzgMUAVXUhcD3wFmAD8HPgjLZqkSRNr7UgqKrTZllfwHva2r8kaTi7xcViSVJ7DAJJ6jiDQJI6ziCQpI4zCCSp4wwCSeo4g0CSOs4gkKSOMwgkqeMMAknqOINAkjrOIJCkjjMIJKnjDAJJ6jiDQJI6ziCQpI4zCCSp41oNgiQnJPl+kg1Jzh6w/vQkm5Osa16/32Y9kqQdtTlm8SLgE8DxwCbgO0nWVNV9U5peWVXvbasOSdLM2jwiOALYUFU/rKrngM8BK1vcnyTpBWgzCJYAD/TNb2qWTfW7Se5OcnWSZYM2lGRVkrVJ1m7evLmNWiWps8Z9sfgaYEVV/QZwI3DZoEZVtbqqJqtqcmJiYqQFStJC12YQPAj0f8Nf2iz7/6pqS1U928xeBLyhxXokSQO0GQTfAQ5O8qokvwKcCqzpb5DkwL7Zk4H1LdYjSRqgtbuGqmprkvcCNwCLgEuq6t4k5wNrq2oN8L4kJwNbgUeB09uqR5I0WGtBAFBV1wPXT1l2bt/0OcA5bdYgSZrZuC8WS5LGzCCQpI4zCCSp4wwCSeo4g0CSOs4gkKSOMwgkqeMMAknqOINAkjrOIJCkjjMIJKnjDAJJ6jiDQJI6ziCQpI4zCCSp4wwCSeo4g0CSOq7VIEhyQpLvJ9mQ5OwB61+c5Mpm/e1JVrRZjyRpR60FQZJFwCeANwOHAqclOXRKszOBn1bVQcDHgY+0VY8kabA2jwiOADZU1Q+r6jngc8DKKW1WApc101cDxyVJizVJkqZoc/D6JcADffObgN+crk1VbU3yGLA/8Eh/oySrgFXN7JNJvj/E/g+Yup2OG/nnkV37+K6Vz2MX/5ln4+/M9na5z2Mn/3+9croVbQbBvKmq1cDqubwnydqqmmyppN2On8f2/Dx25GeyvS59Hm2eGnoQWNY3v7RZNrBNkj2AfYEtLdYkSZqizSD4DnBwklcl+RXgVGDNlDZrgHc106cAX6uqarEmSdIUrZ0aas75vxe4AVgEXFJV9yY5H1hbVWuAi4HPJNkAPEovLObLnE4ldYCfx/b8PHbkZ7K9znwe8Qu4JHWbTxZLUscZBJLUcQsqCJIsS3JzkvuS3JvkrHHXtCtIsijJd5NcO+5adgVJ9ktydZL7k6xPctS4axqnJP+h+X25J8kVSfYcd02jluSSJA8nuadv2T9McmOSHzT//oNx1timBRUEwFbgA1V1KHAk8J4B3Vp00VnA+nEXsQv5C+CrVfVrwOvo8GeTZAnwPmCyql5L78aO+bxpY3dxKXDClGVnAzdV1cHATc38grSggqCqHqqqO5vpJ+j9gi8Zb1XjlWQpcCJw0bhr2RUk2Rf4p/TuWKOqnquqn421qPHbA9ireZbnJcCPxlzPyFXV1+ndudivvwucy4B/OcqaRmlBBUG/pifTw4Hbx1zKuP058EHgl2OuY1fxKmAz8NfN6bKLkrx03EWNS1U9CPwp8HfAQ8BjVfU/x1vVLuPlVfVQM/1j4OXjLKZNCzIIkrwM+ALw/qp6fNz1jEuSk4CHq+qOcdeyC9kDeD3wyao6HHiKBXzIP5vmvPdKegH5CuClSd4x3qp2Pc2Drgv2XvsFFwRJFtMLgcur6ovjrmfM3gicnGQjvd5fj03y2fGWNHabgE1Vte1I8Wp6wdBVvwX8n6raXFW/AL4IHD3mmnYVP0lyIEDz78Njrqc1CyoImi6sLwbWV9XHxl3PuFXVOVW1tKpW0LsA+LWq6vS3var6MfBAkkOaRccB942xpHH7O+DIJC9pfn+Oo8MXz6fo7wLnXcCXx1hLqxZUEND7BvxOet981zWvt4y7KO1y/j1weZK7gcOA/zbecsanOTK6GrgT+B69vwmd6VphmyRXAN8EDkmyKcmZwIeB45P8gN6R04fHWWOb7GJCkjpuoR0RSJLmyCCQpI4zCCSp4wwCSeo4g0CSOs4gkKZI8nzf7cfrkqxIcszU3luTXJrklCQrk3ypb/k5zah72+bfmmRNM70xyS1TtrOuv9dLadQMAmlHT1fVYX2vjbO0/wa93m63OQp4PMk/auaPbtpss3eSZQBJ/vF8FS29UAaBtJOqajO9P/wHNYuW0OvmZFtXDUcDt/W95Srg3zTTpwFXjKJOaToGgbSjvfpOC/1N3/J/0n/KCDi5b91twNFN1xU/AL7VzO9Bb8yD7/S1/QLwO830W4Fr2vpBpGHsMe4CpF3Q01V12IDlt1TVSdtmklzat+4b9L75L6LXVcG3gXPpdYV+f1U909d2C/DTJKfS69fn5/NavTRHHhFI8+M2ekFwNPDNZmCkPYFj2P76wDZXAp/A00LaBRgE0vxYT68//zcB322WrQP+HdtfH9jmb4CPAjeMojhpJgaBNA+agUtuB7Y0/fpD7xTRqxlwRFBVT1TVR6rquRGWKQ1k76OS1HEeEUhSxxkEktRxBoEkdZxBIEkdZxBIUscZBJLUcQaBJHXc/wOulMON2M/N3wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "FWHM = np.array(FWHM)\n", + "sigmaBN = FWHM.std()\n", + "mediaBN = FWHM.mean()\n", + "medianaBN = np.median(FWHM)\n", + "print(\"Datos de FWHM de las estrellas a blanco y negro :\")\n", + "print(\"Desviación :\", sigmaBN)\n", + "print(\"Media :\", mediaBN)\n", + "print(\"Mediana :\", medianaBN)\n", + "plt.hist(FWHM)\n", + "plt.xlabel('FHWM')\n", + "plt.ylabel('# de estrellas')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* Repita el mismo ejercicio sobre cada una de las bandas R,G,B separadamente\n", + "y comente si observa diferencias en los resultados" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Para la banda R\n", + "* ## Estrella 1 (Rojo)" + ] + }, + { + "cell_type": "code", + "execution_count": 353, + "metadata": {}, + "outputs": [], + "source": [ + "FWHMR=[]" + ] + }, + { + "cell_type": "code", + "execution_count": 354, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3oAAAFSCAYAAACkM60KAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA0iElEQVR4nO3de7xcVZnn/+/35EogEJIDCEkwNAPYQIswRxqk7VZRG2g0TF8UWvE6pu3B69Cjgj1eZkabX7eteGkvaUFgpKERUbFFhVYR7REwRC5CVCJySQiScAnhksvJeX5/7HWgclJ1qk6tql1n1/m8X696nVO79tr7qb2raq9nr7XXdkQIAAAAANA/BnodAAAAAACgs0j0AAAAAKDPkOgBAAAAQJ8h0QMAAACAPkOiBwAAAAB9hkQPAAAAAPrM9F4HAABAOxZ7emxW528RtEEj342IEzq+YAAASkSiBwCopM0K/Zl27fhyv6BNgx1fKAAAJSPRAwBUksX1BwAANEKiBwCorAG78wvtfG9QAABKR6IHAKgkWvQAAGiMRA8AUFkDXWjQo0UPANAPOBkKAAAAAH2GFj0AQGVxthIAgPpI9AAAlWS5O4OxAADQB0j0AACVRYseAAD1kegBACrJ6tJgLAAA9AFOhgIAAABAn6FFDwBQWZytBACgPhI9AEA1WTKDsQAAUBeJHgCgkixa9AAAaIREDwBQWQzGAgBAfZwMBQAAAIA+Q4seAKCyOFsJAEB9JHoAgEoq7qNH300AAOoh0QMAVBYtegAA1McxsgNsL7Edtqen59fa/q8lrNe2v2T7Eds3dnt9uWwfYvtm25tsvyNN+7jtc9tc3t/ZflcnY5zAui+w/X96sN7bbb+ohfmea/v/dT8iAMBk0av6yGRj+4W2f5m5jLa23dh9UGWt1jm6tO5LbJ/So3X35Htj+3Hbv9PCfK+w/a+tLLOvEj3bd9t+Km2o0cdnWigXtv9TGTE2Y/t/277N9rDtDzWZ/Q8kvUzSoog4uoVl9/p9vkfSDyJibkR8yvYLJT1f0v+Y6IJs7yXpdZK+kJ6/yPZIzX5fa/vDHY2+Q8Z8Th9ISeNurZSNiMMi4toW5rtV0qO2X5EbLzBZFV03O/8Ack3B+khPjd1uEfGjiDiklzH1g1brHJ1m+7mSjpD0jfT8Dba313yX7rL912XH1Yr0WXyipi76cdvTWikbEbtFxF0tzPdNSYel7TSuvkr0klekDTX6eFvuAks+K7NaRUL0rRbmfbakuyPiie6G1FyL2+jZkm6veX6ApFdHxLY2VvkGSVdFxFM10+4f3e8qkuA39+psUAtekeJ8nqQjJZ3VhXVcLOmvurBcYNIY6MID6JCpVB/piXa2Rz+0tE0BfyXp4oiImmk/qanj/Zmkv7d9ZG/Ca+qIFOcfSXq1pDd1YR2XSFrWbKYpc0yz/Z9s/9D2RtsbRps8bV+XZrklZd+vTq1Da2y/1/YDkr5ke8D2+2z/2vZDti+zPb+F9R5o+/upzAbbF9ue12j+iLgwIr4taVOT5b5Z0hclHZvi/nCa/hbbq20/bPtK2/s1ep/jzZ9ee7ntX6Zt9tm0/f5reu0Ntv/D9idsPyTpQ+O9V9vfl/RiSZ9J6z9Y0ksk/bf0+p62/832ehddUf/N9qJxNsGJkn44znb8jaT/J+nQmvfzSdv32X7M9k2pRXH0tQ+lfXqRi66lt9seqnn9SNsr02v/Kml2zWsTjb02zgckfVdFwje6vFem9T/qovvA79a8drftl6b/Z9k+1/b96XGu7Vk1i79W0vFjpgF9ZUDu+APopn6rj6RlH237J+m4tc72Z2zPbDDvaNfGZenYtc7237S6rFT2DNt3SrpzvO1WU+butA1vlfSE6yR7tl9m+xdpv3xG2vHHwPabbK9Kx/nv2n52s+2Syr0xldvkoiWq4QlY29Ns/2PaP7+x/Tbv2BW34bJc1Mt+PGZ5T7d02j7J9h2p7NrRbW57MNVbHnVRF/yR7YGa7TZa52hlv7zV9p1pnn+yi9GyJvrZU/M63s8krZJUWz/6ioteUhttX2f7sJrXLkjxfCu9/xtsH1jzesN930bstXGulvQf2rGON169u3Z/7eGiTrre9j22/3Z0vyTXSvqTZjFMmURP0v+WdLWkPSUtkvRpSYqIP0yvH5HOFIz2eX2WpPkqWqGWSXq7pFNUZOf7SXpE0j+1sF5L+rtU5nclLZb0odw3ExHnSXqrnjnD8UHbL0nrepWkfSXdI+nSNP9O73O8+W0PSrpcRUvTAkm/lPSCMWH8vqS7JO0j6SPjvdeIeImkH0l6W1r/r8Ysa0DSl1Rs7/0lPSVpvG4uv5diqsv2QZKOk3R9zeSfqviyzZf0L5K+Ynt2zeuvTO9/nqQrR9effsi+Lun/prJfUXE2qd3Ya+NcpOIHbXV6frCKszTvkrSXpKskfdP1D5jvl3RMek9HSDpa0t+OvhgRayVtk0T3FfQlum6iovqqPpJsl/RuSYOSjpV0vNKJ3HG8WNJBkl4u6b2jCUWLyzpFRR3k0HG221inqagYz4uI4doXUp3nChXH0EFJv1ZRhxh9famksyX9qYpj849UHKtb8aCkkyXtLumNkj5h+6gG875FRZ3geZKOSu+z3WWNdZ6kv4qIuZIOl/T9NP1MSWtUvK99VLzPqFO+lf1ysopLcp6rom75x2l6y58927uq6PE1Xh3v+ZIOlrSiZvK3VXye9pa0UkWvplqnSvqwiu/dahX11qb7fiKx14nzOZJeqGfqeA3r3XV8WtIekn5HxXf9dSr2+ahVkpbY3n28GPox0ft6OpMw+nhLmr5NxY/kfhGxOSJ+PM4yJGlE0gcjYkvqHvhWSe+PiDURsUXFTv7zemeFakXE6oi4Ji1nvaSPq9hh3fAaSedHxMoU41kqWvyWtDH/SZJuj4gr0g/ipyQ9MKb8/RHx6YgYjoinct5rRDwUEV+NiCcjYpOKL+B4Zedp57OM+6V9/pikX0m6QdLT+zkivpzWMxwR/yhplnZMgn4cEVdFxHYVSd0RafoxkmZIOjcitkXE5SqSxnZjl4rP6SZJ96n44f5gmv5qSd9K23GbpI9J2kU7J9lSsf/+V0Q8mLb3hyWdPmaeTWlbAQDKNWXqIxFxU0Rcn46vd6u4fr7Zsj8cEU9ExG0qTpaeNoFl/V1EPDzm8o1mPhUR9zUoM1rnuTwde8/VjnWet6Z1rkp1oo9Kel4rrXoR8a2I+HUUfqgiyX9hg9lfJemTad8+IumcjGWNtU3SobZ3j4hHImJlzfR9JT071XF+FBE7JXot7pdzIuLRiLhX0g+UWrIm+Nmbl/6OreMdk75HmyTdqKKedmdNfOdHxKaa78QRtveoKf+1iLgx7b+L9Uwr27j7vs3vzUrbT6hIxq6V9Nk0vaV6uotr+k6VdFZ6T3dL+kftWMcb3T7zxgukHxO9UyJiXs3jn9P096jIym900S2uWX/Z9RGxueb5syV9bfQHW8XO267i7EdDtvexfWlqJn9M0pdVnDHohv1UnB2QJEXE45IekrSwjfn3U5GEjL4WKs741Lqv9knOe7U9x/YXUvP0Y5KukzTPjS9gfUTS3DHT7k/7fHcVH/ynJF1Ys46/cdHlYWPah3uMia/2R/1JSbPTgXM/SWvH/PA9vd3aiF0qPqdzJb1I0nNq4hi7T0ZUbOd6+3CHedP/+42ZZ66kR8eJA6g0rtHDJDZl6iO2D3bR/e+BtOyPtrDs2jrE08evFpd1nyZuvDL16jy18z9b0idrtvnDKvZho/rV02yfaPv61FXvURWJRaNts0McY2Oe4LLG+rM0/z0uug4fm6b/g4oWp6tddAd9X4P30cp+GVuP2i2Vnchn79H0d2wd7/r0PZqropX7sBTDaJfXc1x0Z35M0t2pzHh1vNFB8Mbd921+b45Ky3+1ipbnXWvW1Uo9fVBFA8PYOl7tfKPb59HxApkyx7SIeCAi3hIR+6m4yPOzHn9kq7FnM+6TdOKYH+3ZUXSPG89H07J+LyUgr5W6dhHI/Sp+jCQ93fy9QFKjGMebf52KLiWjr7n2eTJ2G+W81zNVtK79fio72hWjUflbVTTb1xURG1V0z3xFiv+FKg6ur5K0Z0TMk7SxxfjWSVqYtsGo/TNir43zh5IuUNFyJ+28T6yim0C9fbjDvCmm+2vKLpQ0U+N0fwCqzF3otknXTXRbn9ZHPifpF5IOSss+u4VlL675v/b41cqy6nUtbGa8Mutq46k59o66T0W3x9ptvktEjHsbIxfXyH9VxTF+n1T3uEqNt80Oda8xMTVb1hOS5tTM/6zaBUfETyNiqYqujV+XdFmavikizoyI31FxCct/t318ndja2cejWv7sRTHA4K81fh3vtyq2xejI4n8paamkl6o4ib8kTW+1jjfevm/re5NaXS+T9BNJH0iTW62nb9AzLf+j9h8z3++qGJDxsfHimDKJnu2/8DMDZDyiYqeNpOe/VdEHdjyfl/SR0WZ623u56LPdzFxJj0vamCre495KwPYMF9eNDUiabnt2k5ahWpdIeqPt56UfhI9KuiE1+Uo7v8/x5v+WpN+zfUpq1TpDxRmUjr3XOmWfUnFLgPl6pitjI1dpnKZzF7crOFXPjPI5V9KwpPUqtusHVPRxb8VPUtl3pP3zpyquh2s39rHOlfQy20eo+OH9E9vH256hIoncomJgmbEukfS36bM4qOKH5Ms1r/+RpO+n7gFAX2IwFlRNn9ZH5kp6TNLjLq5LamXo+/+ZesQcpuLao9Fr69pZVivbbTzfUjFc/Z+mOs87tGOd5/OSzkqxjg6U8RctLHemistE1ksatn2iimsSG7lM0jttL3Qx4Md7J7CsW9J7eF7abx8afcH2TNuvsb1H6p74mNJnzvbJLgYIsooT4Nv1zOexVjv7pbbsROqHzep4CyT9F+1Yx9uionVsjlJLX4ua7fucuq1UdL99S0q8m9XTJUlRXEJ0mYrv+dz0Xf/v2rmO9+1mK+/HRO+b3vG+NV9L058v6Qbbj6sYaOOd8cy9Kj4k6UIXTfKvarDcT6ZyV7voH3y9iubYZj6sogl3o4oP0xVN5v9nFUnDaSoG23hKO193VVdE/Luk/6niLMc6SQeqSHZGfUg173O8+SNig6S/kPT3Kr44h6q46HW8pGGi77XWuSquRdugYtt+p8n8F0k6yfYuNdP2G93vKpq456voDy0VI1t+R8W1e/dI2qwWu35ExFYVF2C/QUV3jVdrx/c20djHLn99ej8fiIhfqjhb9Om0vFeoGKJ7a52i/0fFPrlV0m0qLj6uvYn7a1QcnIC+RYseJrGpVB/5GxWtKptSuVZu5vxDFV0GvyfpYxFxdcayPqTm262hmjrPOSrqPAepGC1x9PWvSfr/JF2auu/9XMWgKc2Wu0lF4nCZiqT+L1Xsu0b+WcV1d7dK+pmKhGdY0vZmy4pikLv/JenfVVy7Nvbaz9Ml3Z3if6ueqR8dlMo8ruLE9mcj4gd1Ymtnv4ya6GdvuaTXjOlJdWxNHW+VioT37em1i1TU7dZKukM7DsQ3rmb7vo3Yxy7/NhWX9PyPFurptd6uopX2LhX78l8knV/z+mlK95Iej2Pn6y2BnbgY0nWNpNc0+AEone2PSnowIs7tdSxlsX2vpNdGxHVN5nuupC9ExLHjzQdU2f7Tpsd7d5nX8eW+7YmHboqIoeZzApgoFwNP/EbSjBgz+iV2lFrtPh8RLd3KoZ/Y/hdJl0XE13sdSxlSPXu7ikFx7m0y7ysknR4RTU9qcNNINGT7j1WMXPmUiqZqawJnSbotIs7udQxlsr2XiuGP7242b0TcqmL4Y6BvWf3ZLQXA1JR6Kb1YRavePiouBfnauIX6VET8Za9jKNnhKnqbjR3hficR8U1J32xloRwjMZ5jVVwQO9qF8JSY2FDG6BAX94y5U9Knm53pAaYSum4C6CNW0VXwERVdN1fpmYE80Kds/5mK21G8t8GlOu0vm66bAIAqWjJtRrx/zryOL3fZ4xvougkAqDy6bgIAKosWOAAA6qPrJgAAAAD0mVJb9AYXzI8li8fec3sCOtHNdGR7/jJyDbR6W7wG3IH8PHc7RL1brEx4IZnl++RUfu7+HMgsP5K3L+9es1YbHn6kT3YGqoYPHvrd4OCCWLL//r0OA0AH3X3vvdqw4aGuH8JKTfSWLF6kn37vqvYXsHVzdgzx1KbsZeTyLnPzFjBrTn4QTzyaVTy2PJkfQ27i7v6o4nn2bnkLmJ35edicty+ff9Kf560faJNF1030vyX7768VP76212EA6KChP3hRKevhGj0AQGUN0KYHAEBdXKMHAAAAAH2GFj0AQCWZ+94BANBQVoue7RNs/9L2atvv61RQAAC0YqALD6CbqDsBKEvbxzTb0yT9k6QTJR0q6TTbh3YqMAAAmnEXHkC3UHcCUKacrptHS1odEXdJku1LJS2VdEcnAgMAYDzFqJukZqgU6k4ASpPTS2WhpPtqnq9J03Zge5ntFbZXrH/o4YzVAQAAVNrE604bHiotOAD9peuXI0TE8ogYioihvRbM7/bqAABTCF030Y92qDsNLuh1OAAqKqfr5lpJi2ueL0rTAAAoBYkZKoa6E4DS5LTo/VTSQbYPsD1T0qmSruxMWAAANEeLHiqGuhOA0rTdohcRw7bfJum7kqZJOj8ibu9YZAAANGEGY0GFUHcCUKasa/Qi4qqIODgiDoyIj3QqKAAAJiPbi23/wPYdtm+3/c4xr59pO2wPpue2/al0z7RbbR/Vm8gxWVB3AlCWnGv0AADomR51tRyWdGZErLQ9V9JNtq+JiDtsL5b0ckn31sx/oqSD0uP3JX0u/QUAoKvKTfS2Dys2rm+//NYt+TGMDOeVnzErP4Ztm/OXkSk2P5G3gG0d2Be5Zu+av4yBafnLyI4hc/Bbd33wXGDSKvvTHxHrJK1L/2+yvUrF8Ph3SPqEpPdI+kZNkaWSLoqIkHS97Xm2903LAQCga2jRAwBUVpcu0Ru0vaLm+fKIWL7zur1E0pGSbrC9VNLaiLhlzHWDje6bRqIHAOgqEj0AQGW5O503N0TE0LjrtXeT9FVJ71LRnfNsFd02AQCYFOjzBQDABNieoSLJuzgirpB0oKQDJN1i+24V90ZbaftZ4r5pAIAeIdEDAFRSN+6h16x90EW/zPMkrYqIj0tSRNwWEXtHxJKIWKKie+ZREfGAinukvS6NvnmMpI1cnwcAKANdNwEAldWDUTePk3S6pNts35ymnR0RVzWY/ypJJ0laLelJSW/seoQAAIhEDwBQYQMlZ3oR8WM1yS9Tq97o/yHpjC6HBQDATui6CQAAAAB9hhY9AEBFuVujbgIAUHkkegCASmpl8BQAAKYqEj0AQDW5azdMBwCg8kj0AACVRZ4HAEB9DMYCAAAAAH2GFj0AQGUN0KYHAEBdJHoAgEpiMBYAABoj0QMAVBaDsQAAUB+JHgCgssjzAACor9xEb2S79ORj7ZefvWt2CN79WXkLGMgfvyYefzSv/D13ZMfgWbvkxTCyPT+GXXbLW8DAtPwYpmV+BWIkOwaNZC5je+a+mDs/r3zuNgQAAEDHUUMDAFSWadMDAKAuEj0AQCVZ0gB5HgAAdZHoAQAqizwPAID6SPQAAJVFogcAQH1tjyxie7HtH9i+w/bttt/ZycAAAAD6CXUnAGXKadEblnRmRKy0PVfSTbaviYj8ISEBAGgBg7GgYqg7AShN24leRKyTtC79v8n2KkkLJfFjBQAoBTdMR5VQdwJQpo5co2d7iaQjJd3QieUBANCMlXH9AdBj1J0AdFv2MdL2bpK+KuldEbHT3dBtL7O9wvaK9Y9szF0dAABApU2o7rThofIDBNAXshI92zNU/FBdHBFX1JsnIpZHxFBEDO215x45qwMAYAfuwgPopgnXnQYXlBsggL7RdtdN25Z0nqRVEfHxzoUEAEBrzEV6qBDqTgDKlNOid5yk0yW9xPbN6XFSh+ICAKApWvRQMdSdAJQmZ9TNH4tjIgCgR0jMUDXUnQCUiQHLAAAAAKDPdOT2CgAAlM7mGj0AABooN9EbmCbN3rXUVY4VT+40ivHEjGzPD2L7cFZx7z4/O4R47OG8GPZenB2Dp8/IW8DsudkxaOtT+cvIFMNb8xaQ+R48kjkabie+E0CbBsjzAJQkRkbyFtCR42XkFXcHOvMNTMsLgRN0paFFDwBQWSbTAwCgLhI9AEAlWRInhgEAqI/BWAAAAACgz9CiBwCoJtOiBwBAIyR6AIDK4qJ+AADqI9EDAFQWeR4AAPWR6AEAKosWPQAA6mMwFgAAAADoM7ToAQAqidsrAADQGIkeAKCaLA2Q6QEAUBeJHgCgssjzAACoj0QPAFBRZjAWAAAaYDAWAAAAAOgztOgBACrJkszpSgAA6iLRAwBUk7mPHgAAjZDoAQAqizwPAID6pl6iN7I9r/z24fwYtjyZGUPme5CkgWlZxePOn2WHEJnvw/suyY5Bs3bJKh6Pb8yPIfMz6b0X560/RvLKA1OI7cWSLpK0j6SQtDwiPmn7HyS9QtJWSb+W9MaIeDSVOUvSmyVtl/SOiPhuL2IHprLIrf9J0uYn8mJ4/JEOxJBXh/Rue+THsOu8rOIxY3Z2CB6g334r2EoAgMqy3fFHE8OSzoyIQyUdI+kM24dKukbS4RHxXEm/knRWiu9QSadKOkzSCZI+azvvTBsAAC0g0QMAVJbd+cd4ImJdRKxM/2+StErSwoi4OiJGu3xcL2lR+n+ppEsjYktE/EbSaklHd2NbAABQa+p13QQA9AVLGujhRXq2l0g6UtINY156k6R/Tf8vVJH4jVqTpgEA0FUkegCAamqhBa5Ng7ZX1DxfHhHLd1i1vZukr0p6V0Q8VjP9/Sq6d17clcgAAGhRdqKXrjVYIWltRJycHxIAAD21ISKGGr1oe4aKJO/iiLiiZvobJJ0s6fiIiDR5raTaEZMWpWmYwqg7AShDJ67Re6eKaxQAAChV2YOxuJjhPEmrIuLjNdNPkPQeSa+MiNph8a6UdKrtWbYPkHSQpBs7viFQNdSdAHRdVqJne5GkP5H0xc6EAwBA68oejEXScZJOl/QS2zenx0mSPiNprqRr0rTPS1JE3C7pMkl3SPqOpDMiogPjvKOqqDsBKEtu181zVZzBnJsfCgAArbPKv2F6RPw4rXqsq8Yp8xFJH+laUKiac0XdCUAJ2m7Rs32ypAcj4qYm8y2zvcL2ivUPd+BGkQAASJItD3T+AXRLW3WnDQ+VFB2AfpPTdfM4Sa+0fbekS1V0Y/ny2JkiYnlEDEXE0F7z98xYHQAAQKVNvO40uKDsGAH0ibYTvYg4KyIWRcQSSadK+n5EvLZjkQEA0EQPrtED2kbdCUCZuI8eAKCyennDdAAAJrOOJHoRca2kazuxLAAAWtGLwViATqHuBKDbaNEDAFRWs/veAQAwVXXihukAAAAAgEmkWi16EfnL2Lolr/xwZnlJ8eTjeQvYvi07Bj2+Mav45i+clx3ClgfyYtj9Dw/PjsEvPzlvAdNnZsegLU/llZ+3d175GbPyynfiewm0g8FTgCkjco81WzOPtZJG7rk9q3xc9ZUOxHBfVvlpRz8/Owa/9M/zyi9YmB2DBjLrLlNEtRI9AABq0HUTAID6SPQAAJVFngcAQH1cowcAAAAAfYYWPQBAJRW3V6BJDwCAekj0AADVZMn0SwEAoC4SPQBARZkWPQAAGiDRAwBU1wCJHgAA9dDpBQAAAAD6DC16AIDqousmAAB1kegBAKrJjLoJAEAjJHoAgOriGj0AAOoi0QMAVJTpugkAQAMMxgIAAAAAfYYWPQBAJdmS6boJAEBdJHoAgOqi6yYAAHWR6AEAKosWPQAA6is/0RuY1n7Z7cP56x/JXMa2rfkxbN2cV364AzH8+hdZxf/133+VHcKNm/K2w9sfeCI7hucc+8Ks8l7yu9kxxKZH8hYwLeM7JSmyv1eRWR7IQIseMDXESF75zU/mx3DjtVnF/+PT38kO4epH8uo+Z6y8NzuGfQ44OKu899grO4aYPjMvhily7GAwFgAAAADoM3TdBABUk8199AAAaIBEDwBQWVOl+w0AABNFogcAqC5a9AAAqCvrGj3b82xfbvsXtlfZPrZTgQEAAPQb6k4AypLbovdJSd+JiD+3PVPSnA7EBABAcxajbqKKqDsBKEXbiZ7tPST9oaQ3SFJEbJXUgXH/AQBojRk7GhVC3QlAmXIOkQdIWi/pS7Z/ZvuLtnftUFwAADRnd/4BdA91JwClyUn0pks6StLnIuJISU9Iet/YmWwvs73C9or1D2feGBoAgFG2PND5B9BFE687bXio7BgB9ImcRG+NpDURcUN6frmKH68dRMTyiBiKiKG95u+ZsToAAIBKm3jdaXBBqQEC6B9tJ3oR8YCk+2wfkiYdL+mOjkQFAEAr6LqJCqHuBKBMuaNuvl3SxWnUqLskvTE/JAAAWkRXS1QPdScApchK9CLiZklDnQkFAIDWFQ1wJHqoFupOAMqS26IHAEDv0KIHAEBd3IEIAAAAAPpMtVr0OtFFZ8asvPLbOnBf02nT8soP54egiKzim0fyynfCli0j+QvJ3A7Z+1KSps/IKu7Zebdgim1bsspnb0OgbQyeAqBVHThWDW/LKv7E9vx6y0PD27PKb96cV16SNJxZEaXeUJpqJXoAANTgGj0AAOoj0QMAVJPFNXoAADRAogcAqCxa9AAAqI/BWAAAaJHtxbZ/YPsO27fbfmeaPt/2NbbvTH/3TNNt+1O2V9u+1fZRvX0HAICpgkQPAFBdA+78Y3zDks6MiEMlHSPpDNuHSnqfpO9FxEGSvpeeS9KJkg5Kj2WSPteNzQAAwFgkegCAarK78xhHRKyLiJXp/02SVklaKGmppAvTbBdKOiX9v1TSRVG4XtI82/t2YWsAALADrtEDAFSWezgYi+0lko6UdIOkfSJiXXrpAUn7pP8XSrqvptiaNG2dAADoIhI9AAB2NGh7Rc3z5RGxvHYG27tJ+qqkd0XEY7WDwkRE2OZGUQCAniLRAwBUV3dG3dwQEUONV+kZKpK8iyPiijT5t7b3jYh1qWvmg2n6WkmLa4ovStMAAOgqrtEDAFTT6H30ShyMxUXT3XmSVkXEx2teulLS69P/r5f0jZrpr0ujbx4jaWNNF08AALqGFj0AQGX14D56x0k6XdJttm9O086WdI6ky2y/WdI9kl6VXrtK0kmSVkt6UtIbS40WADBlkegBACqqpdshdFRE/LhYcV3H15k/JJ3R1aAAAKiDrpsAAAAA0Gdo0QMAVFf5XTcBAKgEEj0AQDVZJHoAADRAogcAqC4SPQAA6io30bOlgWmlrrLjZszMX8bM2Xnl3YFLKw85PKv46X+wJDuEB+/ZmFV+8XEHZMegXeZkFY8nH88OwbN2yVvAjMzP0/bhvPJUtNEzlga41ByYGjKPNTMzj7WSdOQLsoq//HV3ZYfwwl/l3YZzlxc9PzsGH3BY3gKmd6AujZZwhAQAAACAPkPXTQBAddGiDABAXSR6AIBqYjAWAAAaItEDAFQXiR4AAHVlXaNn+922b7f9c9uX2M4cFQIAgFalwVg6/QC6iLoTgLK0fUSzvVDSOyQNRcThkqZJOrVTgQEAAPQT6k4AypTbdXO6pF1sb5M0R9L9+SEBANAium6ieqg7AShF2y16EbFW0sck3StpnaSNEXF1pwIDAGBco4OxdPoBdAl1JwBlyum6uaekpZIOkLSfpF1tv7bOfMtsr7C9Yv1Dj7QfKQAAY5HooULaqjtteKjsMAH0iZyrzl8q6TcRsT4itkm6QtILxs4UEcsjYigihvZasGfG6gAAqMVgLKicidedBheUHiSA/pBzRLtX0jG259i2pOMlrepMWAAAAH2HuhOA0rQ9GEtE3GD7ckkrJQ1L+pmk5Z0KDACApuhqiQqh7gSgTFmjbkbEByV9sEOxAADQutHBWIAKoe4EoCy5t1cAAKB3SPQAAKiLq84BAAAAoM+U3KJneVrGKnPKdkh0YBnZ55+nb80PYt7eWcXnvOOvskNY8sCavAXstW92DNp9flZxz9olP4Zp0/LKx0hW8azvZLGEzPJAeyzLjJIJTAm53/WYNSc7hoGD/3NeDMvy6y1znnwsq7zn58fgPQbzFjB9Zn4M9OZoSe8zJwAA2sXBHgCAukj0AADVxGAsAAA0RKIHAKguEj0AAOri4gYAAAAA6DO06AEAKsoSg7EAAFAXiR4AoLrougkAQF0kegCAamIwFgAAGiLRAwBUF4keAAB1cXEDAAAAAPQZWvQAABXFYCwAADRCogcAqC66bgIAUBeJHgCgmhiMBQCAhkj0AAAVRddNAAAa4QgJAAAAAH2GFj0AQHXRdRMAgLpI9AAA1UWiBwBAXdVK9Nz7nqaeMSt7GTGyvQORZJqZ9z78nKHsEGL+Pnkx7LZHdgzanrkv5u6ZH0Om2PJkVnnPnJ0XAPVs9AqDsQBokaflV3ljzu55Mcyakx2DYyRvAQPTsmPQQN62NNdWl4YtDQAAAAB9plotegAAPI1RNwEAaIREDwBQXXTdBACgLhI9AEB1kegBAFBX0z4vts+3/aDtn9dMm2/7Gtt3pr+9H5ECADC1WMUgXZ1+AJmoOwGYDFo5ol0g6YQx094n6XsRcZCk76XnAAAAoO4EYBJomuhFxHWSHh4zeamkC9P/F0o6pbNhAQDQjKWBLjyarbV+a83zbF9v+2bbK2wfnabb9qdsr7Z9q+2jurhBMElQdwIwGbTbR2WfiFiX/n9AUsMbotlelg56K9Y/PPY3DwCADL3punmBdm6t+XtJH46I50n6QHouSSdKOig9lkn6XCfeNiqpvbrThofKiQ5A38m+GCEiQlKM8/ryiBiKiKG95s/PXR0AAM+wO/9ookFrTUgavZvyHpLuT/8vlXRRFK6XNM/2vh1696ioCdWdBheUGBmAftLuqJu/tb1vRKxLB6wHOxkUAABNuWv30Ru0vaLm+fKIWN6kzLskfdf2x1ScRH1Bmr5Q0n01861J09YJUw11JwClavcIeaWk16f/Xy/pG50JBwCAntsw2pqSHs2SPEn6a0nvjojFkt4t6bzuhogKou4EoFSt3F7hEkk/kXSI7TW23yzpHEkvs32npJem5wAAlKsHXTcbeL2kK9L/X5F0dPp/raTFNfMtStPQx6g7AZgMmnbdjIjTGrx0fIdjAQBgYibPfe/ul/RHkq6V9BJJd6bpV0p6m+1LJf2+pI01A3KgT1F3AjAZtHuNHgAAvdd+C1zGKn2JpBepuJZvjaQPSnqLpE/ani5ps4oRNiXpKkknSVot6UlJbyw9YADAlESiBwCopu4NxjKucVpr/nOdeUPSGd2NCACAnZWf6OV0s5k5O3/9w1uzisdjj+bHMHNWVnEPLm4+U1MNR3VuzchIdgRetEtmDMPZMcTwtuxlVF7uvsz8KAEAUAUemJa3gNzywATRogcAqK4edN0EAKAKSPQAANU1eQZjAQBgUiHRAwBUky0N0KIHAEA9nAoFAAAAgD5Dix4AoLrougkAQF0kegCA6mIwFgAA6iLRAwBUlGnRAwCgARI9AEA1WQzGAgBAA5wKBQAAAIA+Q4seAKC6uEYPAIC6SPQAANXFNXoAANRFogcAqCZumA4AQEMkegCA6qJFDwCAujhCAgAAAECfoUUPAFBdDMYCAEBdJHoAgIrihukAADRSbqI3fYY8f9+2i8dTm/JjGN6aVdy7zcuPYSCzYrJ9W34MuWIkfxGZ+yJ3X04a02f2dv0d2JdAT3DDdAAAGqJFDwBQXbToAQBQF0dIAAAAAOgztOgBAKqLwVgAAKiLRA8AUFHOv+YZAIA+1fQIaft82w/a/nnNtH+w/Qvbt9r+mu15XY0SAICxrKJFr9MPIBN1JwCTQSunQi+QdMKYaddIOjwinivpV5LO6nBcAAAAVXWBqDsB6LGmiV5EXCfp4THTro6I4fT0ekmLuhAbAADj80DnH0Am6k4AJoNOHNHeJOnbjV60vcz2Ctsr1m94qAOrAwBAKm6YTtdNVBJ1JwBdl5Xo2X6/pGFJFzeaJyKWR8RQRAztNbggZ3UAAOxoYKDzD6CLqDsBKEvbo27afoOkkyUdHxHRsYgAAGjF6GAsQEVQdwJQprYSPdsnSHqPpD+KiCc7GxIAAEB/oe4EoGxNEz3bl0h6kaRB22skfVDFSFGzJF3j4mzq9RHx1i7GCQDAGGbwFExK1J0ATAZNE72IOK3O5PO6EAsAABND101MQtSdAEwGbV+jBwBAz9GiBwBAXSR6AIBqsqUBWvQAAKin3ERvZLviqU3tl3/i0ewQ4vG8ZXju/OwY5LzNHhs35Iewe+b72D7cfJ5mMWQOYx4D07Jj0Mj2vPLTZ2aH4GmZX8PcFo2R3H3JwHEAAACTDS16AIDqousmAAB1kegBAKqLwVgAAKiLRA8AUFHcXgEAgEZI9AAAlWVa9AAAqItToQAAAADQZ2jRAwBUk0XXTQAAGiDRAwBUFNfoAQDQCIkeAKC6uGE6AAB1kegBAKqLFj0AAOriCAkAwATYPt/2g7Z/Pmb6223/wvbttv++ZvpZtlfb/qXtPy4/YgDAVESLHgCgmqxe3TD9AkmfkXTR06HYL5a0VNIREbHF9t5p+qGSTpV0mKT9JP277YMjYnvpUQMAphRa9AAAFZUGY+n0o4mIuE7Sw2Mm/7WkcyJiS5rnwTR9qaRLI2JLRPxG0mpJR3duGwAAUB+JHgCguuzOP9pzsKQX2r7B9g9tPz9NXyjpvpr51qRpAAB0FV03AQDY0aDtFTXPl0fE8iZlpkuaL+kYSc+XdJnt3+lWgAAANEOiBwCoru6MurkhIoYmWGaNpCsiIiTdaHtE0qCktZIW18y3KE0DAKCr6LoJAKgmu7iPXqcf7fm6pBcXYflgSTMlbZB0paRTbc+yfYCkgyTdmP/mAQAYX7kteh6QZsxuv/zMOfkhzM3MbXfZLTuGrG0gyTGSH8NIB5bRawPTshfh6TMyY+jAV2gg8zOZG8O23M8CN6xGD/XgPnq2L5H0IhVdPNdI+qCk8yWdn265sFXS61Pr3u22L5N0h6RhSWcw4iYAoAx03QQAVFcPbq8QEac1eOm1Deb/iKSPdC8iAAB2RtdNAAAAAOgztOgBACrKPem6CQBAFTQ9Qto+3/aD6bqDsa+daTtsD3YnPAAAxjF57qMHPI26E4DJoJVToRdIOmHsRNuLJb1c0r0djgkAgOasokWv0w8g3wWi7gSgx5oe0SLiOkkP13npE5LeIyk6HRQAAM25GLW20w8gE3UnAJNBW0c020slrY2IWzocDwAAQN+h7gSgbBMejMX2HElnq+h60Mr8yyQtk6T9Fy+a6OoAAGjIXFOHCsirOy3uYmQA+lk7LXoHSjpA0i2275a0SNJK28+qN3NELI+IoYgY2mvBgvYjBQBgLK7RQzW0X3capO4EoD0TbtGLiNsk7T36PP1gDUXEhg7GBQDA+CxGyUQlUHcC0Aut3F7hEkk/kXSI7TW239z9sAAAaMa06GFSou4EYDJo2qIXEac1eX1Jx6IBAACoOOpOACaDCXfdBABg0qDrJgAAdZHoAQCqi/veAQBQF4keAKCabFr0AABooNRE76abb9kwsMde94wzy6CkXo9ARQyTI4Zer58YWo/h2WUFAgBTzU0/u3mDd51H3Wnyx9Dr9RNDtWIope5UaqIXEXuN97rtFRExVFY8xDB5Y+j1+olhcsUANMQomehz1J2qEUOv108MxFAPXTcBANVF100AAOoi0QMAVBiJHgAA9Uy2RG95rwMQMYzqdQy9Xr9EDKMmQwxAHQzGAmhy/EYTQ+/XLxHDKGJIHBG9jgEAgAkbeu7h8dNvXdbx5Q7sf9hNk+HaCgAAcky2Fj0AAFpHix4AAHWR6AEAKoxEDwCAeibNuNS2T7D9S9urbb+vB+tfbPsHtu+wfbvtd5YdQ4pjmu2f2f63Hq1/nu3Lbf/C9irbx/YghnenffBz25fYnl3COs+3/aDtn9dMm2/7Gtt3pr979iCGf0j74lbbX7M9r+wYal4703bYHuxmDEDLrGdumt7JB1AB1Jt2iIW6E3Un6k51TIpEz/Y0Sf8k6URJh0o6zfahJYcxLOnMiDhU0jGSzuhBDJL0TkmrerDeUZ+U9J2IeI6kI8qOxfZCSe+QNBQRh0uaJunUElZ9gaQTxkx7n6TvRcRBkr6XnpcdwzWSDo+I50r6laSzehCDbC+W9HJJ93Z5/cDEuAsPYJKj3rQT6k7UnWpRd0omRaIn6WhJqyPirojYKulSSUvLDCAi1kXEyvT/JhVf0oVlxmB7kaQ/kfTFMtdbs/49JP2hpPMkKSK2RsSjPQhluqRdbE+XNEfS/d1eYURcJ+nhMZOXSrow/X+hpFPKjiEiro6I4fT0ekmLyo4h+YSk90hi9CYA6D3qTQl1p6dRd3pmGnWnZLIkegsl3VfzfI168GMxyvYSSUdKuqHkVZ+r4gMxUvJ6Rx0gab2kL6UuEF+0vWuZAUTEWkkfU3H2Y52kjRFxdZkx1NgnItal/x+QtE+P4hj1JknfLnultpdKWhsRt5S9bqA5mvQwJVFvesa5ou5E3amxKV13miyJ3qRhezdJX5X0roh4rMT1nizpwYi4qax11jFd0lGSPhcRR0p6Qt1vct9B6su9VMUP536SdrX92jJjqCeK+5D07IyM7fer6CZzccnrnSPpbEkfKHO9QGu6cH0e1+gBE9KrelNaN3UnUXdqhLrT5En01kpaXPN8UZpWKtszVPxYXRwRV5S8+uMkvdL23Sq6YLzE9pdLjmGNpDURMXpG7nIVP15leqmk30TE+ojYJukKSS8oOYZRv7W9rySlvw/2Igjbb5B0sqTXRPk3vjxQxYHjlvTZXCRppe1nlRwHUB+JHqYm6k0F6k4F6k5jUHcqTJZE76eSDrJ9gO2ZKi4gvbLMAGxbRf/qVRHx8TLXLUkRcVZELIqIJSre//cjotSzMRHxgKT7bB+SJh0v6Y4yY1DR7eAY23PSPjlevbvA+kpJr0//v17SN8oOwPYJKrqkvDIinix7/RFxW0TsHRFL0mdzjaSj0mcFmATouokpacrXmyTqTjWoO9Wg7vSMSZHopQsm3ybpuyo+mJdFxO0lh3GcpNNVnA26OT1OKjmGyeDtki62fauk50n6aJkrT2fELpe0UtJtKj6jy7u9XtuXSPqJpENsr7H9ZknnSHqZ7TtVnC07pwcxfEbSXEnXpM/k53sQAwBgEqHeNOlQd6LuNCnrTi6/NRMAgHxDR/xe/PTqzp8sHnjWgTdFxFDHFwwAQImm9zoAAADaR1dLAADqIdEDAFQTg6cAANDQpLhGDwAAAADQObToAQCqixY9AADqItEDAFQYiR4AAPWQ6AEAKsu06AEAUBeJHgCgukj0AACoi8FYAAAAAKDP0KIHAKgoi2v0AACoj0QPAFBddN0EAKAuEj0AQDVZJHoAADRAogcAqDASPQAA6mEwFgAAAADoMyR6AIDqsjv/aLpKn2/7Qds/r/PambbD9mB6btufsr3a9q22j+rCVgAAYCckegCA6nIXHs1dIOmEnUKxF0t6uaR7ayafKOmg9Fgm6XMTeXsAALSLRA8AUFHdyPKaZ3oRcZ2kh+u89AlJ75EUNdOWSrooCtdLmmd73wm+UQAAJozBWAAA1TVJRt20vVTS2oi4xTvGtFDSfTXP16Rp60oMDwAwBZHoAQCwo0HbK2qeL4+I5Y1mtj1H0tkqum0CADApkOgBAKqpe/fR2xARQxOY/0BJB0gabc1bJGml7aMlrZW0uGbeRWkaAABdxTV6AIAK681oLLUi4raI2DsilkTEEhXdM4+KiAckXSnpdWn0zWMkbYwIum0CALqORA8AUF29ub3CJZJ+IukQ22tsv3mc2a+SdJek1ZL+WdJ/68TbBgCgGbpuAgAwARFxWpPXl9T8H5LO6HZMAACMRaIHAKio1lrgAACYikj0AAAVRqIHAEA9JHoAgOqiRQ8AgLpcXD4AAEC12P6OpMEuLHpDRJzQheUCAFAaEj0AAAAA6DPcXgEAAAAA+gyJHgAAAAD0GRI9AAAAAOgzJHoAAAAA0GdI9AAAAACgz/z/Tu0UICeXcgsAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "recorteR1 = trim(imagen[:,:,0], 210, 237, 15, 15)\n", + "poptR1, pcovR1 = curve_fit(gauss2d, xdata1, recorteR1.ravel(), p0=[1,1,1,1,1])\n", + "estrellaR1=gauss2d(xdata1, poptR1[0], poptR1[1],poptR1[2], poptR1[3], poptR1[4])\n", + "FWHMR1=FWHMR.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptR1[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 1 fotografÃa (Banda Rojo)\")\n", + "plt.imshow(recorteR1, plt.get_cmap('Reds'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 1 a partir de la gaussiana (Banda Rojo)\")\n", + "plt.imshow(estrellaR1.reshape(15, 15), plt.get_cmap('Reds'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 2 (Rojo)" + ] + }, + { + "cell_type": "code", + "execution_count": 355, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3oAAAFVCAYAAAC5Np2yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABGtklEQVR4nO3de5xlV1nn/++3uqsv6e6k0+kkJN0NQQg64ZLANDEMMnIZERiZ4DgiqBgdhuhMcGAmjkKcGcCfKKIC4gUNEoEZIEa5RY0KYgCZMYEkhIQkMERISHc66XQufUlfq+r5/bF3kdOVs55TtavOZZ/+vF+v86qqvc7ee529T5291llrP48jQgAAAACA8TEx7AoAAAAAAJYWHT0AAAAAGDN09AAAAABgzNDRAwAAAIAxQ0cPAAAAAMbM8mFXAACAJrZ4eRzU0keO3qWZv42IFy35hgEAGCA6egCAVjqo0I9ozZJv94+0d+OSbxQAgAGjowcAaCWL+w8AACjhGgkAaK0Je8kfGdtbbF9t+1bbt9h+XUfZz9v+Wr387R3L32j7dttft/2DfTwcAAB8ByN6AADM35SkiyPiBtvrJF1v+9OSTpV0vqSzI+KQ7VMkyfZZkl4h6cmSTpf0d7afFBHTQ6o/AOAYQUcPANBKw5i6GRE7JO2of99r+zZJmyS9RtLbIuJQXbazXuV8SZfXy79l+3ZJ50r6xwFXHQBwjGHqJgCgtSa89A9JG21f1/G4sNu+bZ8h6emSrpX0JEnPsX2t7c/Zfmb9tE2S7upYbVu9DACAvmJEDwDQWn36tnJXRGzNnmB7raSPSnp9ROyxvVzSBknnSXqmpCtsf1d/qgcAQG909AAArWT1Dp7Sl/3ak6o6eR+KiI/Vi7dJ+lhEhKQv2p6RtFHSdklbOlbfXC8DAKCvmLoJAMA82bak90m6LSLe0VH0CUnPq5/zJEkrJO2SdKWkV9heafvxks6U9MWBVhoAcExiRA8A0FpD+Lby2ZJeJelm2zfWyy6RdJmky2x/VdJhSRfUo3u32L5C0q2qInZeRMRNAMAguLoOAQDQLqd5eVywfO2Sb/c3pnZf3+sePQAARh0jegCA1uL+AwAAuuMaCQAAAABjhhE9AEA7WfIQom4CANAGdPQAAK1kMS0FAIASOnoAgNaaYEAPAICu6OgBAFqLET0AALrjGgkAAAAAY4YRPQBAK1nSBMFYAADoio4eAKC1mJYCAEB3XCOXgO0zbIft5fXfn7X9HwawX9v+E9sP2v5iv/e3WLa/2/aNtvfa/s/1snfYflfD7f267dcvZR0XsO/32/7VIez3FtvPncfznmb7//a/RsDwVCN6S/8A2mpY7ZFRY/s5tr++yG00OnZzz0GbzbfN0ad9f8T2y4a076H839jeZ/u75vG8l9r+0/lsc6w6erbvsH2gPlCzj9+bx3ph+4mDqGOPepxSv7Hvtr3b9v+x/b3JKt8n6QckbY6Ic+ex/WG/zl+UdHVErIuId9t+jqRnSvpvC92Q7ZMl/ZSkP6r/fq7tmY7zvt32W5a09ktkzvv0nrrTuHY+60bEkyPis/N43k2SHrL90sXWFxhlE314AIt1DLZHhmrucYuIf4iI7x5mncbBfNscS8320ySdLemT9d8/bXu643/pm7b/46DrNR/1e/HhjrboO2wvm8+6EbE2Ir45j+f9haQn18cpNY7XtJfWB2r28drFbnCA38qslfQlSf9c0gZJH5D0V0kn4HGS7oiIhwdUv6J5HqPHSbql4+/HS/qxiDjSYJc/LemqiDjQsezu2fOuqhP86mF9GzQPL63reY6kp0t6Yx/28SFJP9uH7QIAejuW2iND0eR4jMNI2zHgZyV9KCKiY9k/drTxfkTS220/fTjV6+nsup7fL+nHJP37PuzjI5Iu7PWkcezodWX7ibY/V38ztWt2yNP25+unfKXuff9YPTq0zfYv2b5H0p/YnrD9Btv/ZPt+21fY3jCP/T7B9t/X6+yy/SHb67s9NyK+GRHviIgdETEdEZdKWiHpUd9K2X61pD+W9Ky63m+pl7/G9u22H7B9pe3TS68ze35d9kLbX6+P2R/Ux+8/1GU/XX/D907b90t6c/Zabf+9pOdJ+r16/0+S9HxJ/6kuP9H2X9q+z9VU1L+0vTk5tC+W9LlSYUR8S9L/lXRWx+v5Hdt32d5j+3pXI4qzZW+uz+kHXU0tvcX21o7yp9u+oS77U0mrOsoWWvfOet4j6W9Vdfhmt/dv6v0/5Gr6wD/rKLvD9r+qf19p+12uvnG9u/59ZcfmPyvpBXOWAWNlQl7yB9BP49Yeqbd9ru1/rK9bO2z/nu0VhefOTm28sL527bD9C/PdVr3uRba/Iekb2XHrWOeO+hjeJOlhd+ns2f4B21+rz8vvSUd/GNj+97Zvq6/zf2v7cYVDPXe7P1Ovt9fVSFTxC1jby2z/dn1+vmX7tT56Km5xW67aZV+Ys73vjHTafontW+t1t88ec9sb63bLQ67agv9ge6LjuM22OeZzXn7O9jfq5/y+XUXLWsh7r9arjfdlSbdJ6mwf/ZmrWVK7bX/e9pM7yt5f1+ev6td/re0ndJQXz32DunfW83ZJ/0dHt/Gydnfn+TrBVZv0Ptt32v7vs+el9llJ/7pXHY6Zjp6k/0/SpySdKGmzpN+VpIj4l3X52fU3BbNzXh+j6lusx6nqMf+8pJep6p2fLulBSb8/j/1a0q/X6/wzSVskvXk+FbZ9jqoP1tvnlkXE+yT9nB75huNNtp9f7+vlkk6TdKeky0uvM3u+7Y2S/lzVSNNJkr4u6V/Mqcb3SvqmpFMlvTV7rRHxfEn/IOm19f7/35xtTUj6E1XH+7GSDkjKprk8ta5TV7bPlPRsSdd0LP6Sqn+2DZI+LOnPbK/qKP839etfL+nK2f3XH2SfkPS/6nX/TNW3SU3r3lnPzao+0G6v/36Sqm9pXi/pZElXSfoLd79g/rKk8+rXdLakcyX999nCiNgu6YgKF2ag7bhHDy01Vu2R2rSk/yJpo6RnSXqB6i9yE8+TdKakF0r6pdkOxTy39TJVbZCzkuM21ytVNYzXR8TUnNe3UdLHVF1DN0r6J1VtiNny8yVdIunfqro2/4Oqa/V87JT0Q5KOl/Qzkt5p+xmF575GVZvgHEnPqF9n023N9T5JPxsR6yQ9RdLf18svlrRN1es6VdXrjC7rz+e8/JCqW3Kepqpt+YP18nm/92yvUTXjK2vjPVPSkyRd17H4r1W9n06RdIOqWU2dXiHpLar+725X1W7tee4XUvcu9fweSc/RI228Yru7i9+VdIKk71L1v/5Tqs75rNsknWH7+KwO49jR+0T9TcLs4zX18iOqPiRPj4iDEfGFZBuSNCPpTRFxqJ4e+HOSfjkitkXEIVUn+d+5xxSAiLg9Ij5db+c+Se9QdcJS9Yn7X5LeEhG7ez2/9hOSLouIG+o6vlHViN8ZDZ7/Ekm3RMTH6g/Ed0u6Z876d0fE70bEVEQcaPpaJSki7o+Ij0bE/ojYq+ofMFt3vaS9c5adXp/zPZL+n6RrJX3nPEfE/673MxURvy1ppY7uBH0hIq6KiGlVx/7sevl5kiYlvSsijkTEn6vqNDatu1S9T/dKukvVB/eb6uU/Jumv6uN4RNJvSVqtR3eyper8/UpE7KyP91skvWrOc/bWxwoYS9yjhxF2zLRHIuL6iLimvr7eoer++V7bfktEPBwRN6v6svSVC9jWr0fEA3Nu3+jl3RFxV2Gd2TbPn9fX3nfp6DbPz9X7vK1uE/2apHM8j1G9iPiriPinqHxOVSf/OYWnv1zS79Tn9kFJb1vEtuY6Iuks28dHxIMRcUPH8tMkPa5u4/xDRDyqozfP8/K2iHgoIr4t6WrVI1kLfO+tr3/ObeOdV/8f7ZX0RVXvyW901O+yiNjb8T9xtu0TOtb/eER8sT5/H9Ijo2zpuW/4f3OD7YdVdcY+K+kP6uXzaqe7uqfvFZLeWL+mOyT9to5u480en/VZRcbxmvayiFjf8XhvvfwXVfXKv+hqWlyv+bL3RcTBjr8fJ+njsx/Yqk7etKpvP4psn2r78nqYfI+k/63qG4NsndWS/kLSNRHx6z3q2el0Vd8OSJIiYp+k+yVtavD801V1QmbLQtU3Pp3u6vyjyWvtWPc4239UD0/vkfR5SetdvoH1QUnr5iy7uz7nx6t64x9QdV/B7D5+wdWUh931OTxhTv06P9T3S1pVXzhPl7R9zgffd45bg7pL1ft0naTnSvqejnrMPSczqo5zt3N41HPr30+f85x1kh5K6gG0lvswmseIHpbQMdMesf0kV9P/7qm3/Wu9tq2j2xDfuX7Nc1t3aeGydbq1eTqf/zhJv9NxzB9QdQ5L7avvsP1i29fUU/UeUtWxKB2bo+oxt84L3NZcP1I//05XU4efVS//TVUjTp9yNR30DYXXMZ/zMrcdtbZedyHvvYfqn3PbeNfU/0frVI1yP7muw+yU17e5ms68R9Id9TpZG2/2ftP03Dds2z6j3v6PqRp5XtOxr/m00zeqGmCY28brfN7s8Xkoq8g4dvS6ioh7IuI1EXG6qps8/8B5ZKu532bcJenFcz60V0U1PS7za/W2nlp3QH5SKt8E4up+qk+o6lQtNJDG3ao+jGa3tUbVtMtSHbPn71A1pWS2zJ1/1+YeowW91jkuVjW69r31urNTMUrr36Rq2L6r+lvHD0t6aV3/56i6uL5c0okRsV7S7nnWb4ekTfUxmPXYRdS9s56fk/R+VSN30qPPiVVNE+h2Do96bl2nuzvW3aRqqs2iQkwDAJbOmLZH3iPpa5LOrLd9Sbbt2paO3zuvX/PZVrephb1k6+zorE/HtXfWXaqmPXYe89URkaYxqo/hR1Vd40+t2x5XqXxsjmp7zalTr209LOm4juc/pnPDEfGliDhf1dTGT0i6ol6+NyIujojvUnULy3+1/YIudWtyjmfN+70XVYDBf1LexrtX1bGYjSz+45LOl/SvVH2Jf0a9fL5tvOzcN2rb1qOuV0j6R0n/s14833b6Lj0y8j/rsXOe989UBWTck9XjmOno2f5RPxIg40FVJ22m/vteVXNgM38o6a2zw/S2T3Y1Z7uXdZL2SdpdN7yLqQRsT6q6L+6ApAvq0ZyF+Iikn7F9Tv2B8GuSrq2HfKVHv87s+X8l6am2X1aPal2k6huUzLxfa2HdA6pSAmzQI1MZS65SMnTuKjLYK/RIlM91kqYk3Sdpue3/qWqO+3z8Y73uf7Y9afvfqrofrmnd53qXpB+wfbaqD95/bfsF9fvhYkmHVAWWmesjkv57/V7cqOqD5H93lH+/pL+vpwcAY4lgLGibMW2PrJO0R9I+V/clzSf0/f+oZ8Q8WdW9R7P31jXZ1nyOW+avVIWr/7d1m+c/6+g2zx9KemNd19lAGT86j+2uUHWbyH2Spmy/WNU9iSVXSHqd7U2uAn780gK29ZX6NZzjKv7Am2cLbK+w/RO2T6inJ+5R/Z6z/UOuAgRZ1Rfg03rk/dipyXnpXHch7cNebbyTJP2wjm7jHVI1Onac6pG+eep17hfTtpWq6bevqTvevdrpkqSobiG6QtX/+br6f/2/6tFtvL/utfNx7Oj9hY/OW/PxevkzJV1re5+qQBuvi0dyVbxZ0gdcDcm/vLDd36nX+5Sr+cHXqBqO7eUtqoZwd6t6M30see6/UHUj6wtVdRpmX8O85l9HxN9J+h+qvuXYIekJqjo7s96sjteZPT8idkn6UUlvV/WPc5aqm16zTsNCXutc71J1L9ouVcf2b3o8/4OSXuJqWsms02ePmaoh7g2q5kNLVWTLv1F1796dkg5qnlM/IuKwqhuwf1rVdI0f09GvbaF1n7v9++rX8z8j4uuqvi363Xp7L1UVovtwl1V/VdU5uUnSzapuPu5M4v4Tqi5OwNhi6iZG2LHUHvkFVaMqeyW9V4902jKfUzVl8DOSfisiPrWIbb1ZvY9bUUeb522q2jxnqoqWOFv+cUm/IelyV9P3vqoqaEqv7e5V1XG4QlWn/sdVnbuS96q67+4mSV9W1eGZkjTda1tRBbn7FUl/p+retbn3fr5K0h11/X9Oj7SPzqzX2afqi+0/iIiru9StyXmZtdD24aWSfmLOTKpndbTxblPV4f35uuyDqtp22yXdqqMD8aV6nfsGdZ+7/ZtV3dLz3+bRTu/086pGab+p6lx+WNJlHeWvVJ1LOuN49P2WwKO4Cum6TdJPFD4ABs72r0naGRHvGnZdBsX2tyX9ZER8vsfznibpjyLiWdnzgDZ73LLl8YbV65d8u//p4fuvj4itvZ8JYKFcBZ74lqTJmBP9EkerR+3+MCLmlcphnNj+sKQrIuITw67LINTt7GlVQXG+3eO5L5X0qojo+aUGSSNRZPsHVUWuPKBqqNpawLck/RYRlwy7DoNk+2RV4Y/v6PXciLhJVfhjAADQAvUspeepGtU7VdWtIB9PVxpTEfHjw67DgD1F1WyzuRHuHyUi/kJVkKSexnHqJpbOs1TdEDs7hfBlsbBQxlgirnLGfEPS7/b6pgc4ljB1E8AYsaqpgg+qmrp5mx4J5IExZftHVKWj+KXCrTrNt83UTQBAG52xbDJ++bj1S77dC/ftYuomAKD1mLoJAGgtRuAAAOiOjh4AoLXo5wEA0N2iOnq2X6QqzO8ySX8cEW/Lnr/xpJPijMdu6V6YXa2z2aUz0z1qWeCmzYOmFe0hm0Kb1TVbL52Wm5Ul+0sPW9NjOgbTh3u9hIllQ9hpabWmx7v7enfctV27HniQ9jYAzMOC204bT4ozHvvYgdQNwGDc8e1va9eu+/vedmrc0bO9TNLvS/oBVWH3v2T7yoi4tbTOGY/doi997u+6F04kcWGmk+i7B/YmlUy2uSxpeGfrZWUzPaIEz2SdsiQXaVbXqSNJWXI/50yyv+xcND02mQXnhR9BvV7DcScMdp/TyRcg6XrJe7iw3jNf8iPldYA+spi6iXZp1nZ6rK77wmcHVEMAg7D1+547kP0sJurmuZJuj4hv1hFiLpd0/tJUCwCA3ibkJX8AfUTbCcDALKajt0nSXR1/b6uXHcX2hbavs33dffffv4jdAQDwCPchtQIjhOizhbeddtF2AtBM3/PoRcSlEbE1IraefNJJ/d4dAOAYMtGHBzBsR7WdNtJ2AtDMYq5p2yV1RlbZXC8DAADAo9F2AjAwi4m6+SVJZ9p+vKoPqVdI+vF0jZlpad+D3cuyACCr1pTLVqwul/UjyEe2zYkeh9PJup4sl2UBV7J9ZtXJgrFkQWWSAC+RbTMxceoZ5W3u2VUsm/nGl8sbPbCvWOTNTyyXrT+1vM3M8hV5eRY0KFt3efK+yAKuHDmYrJec36wuk6u6L28ahAdYAsy0RMssvO0EAA017uhFxJTt10r6W1Uhgi+LiFuWrGYAACSqqJt09dAetJ0ADNKi8uhFxFWSrlqiugAAsCB089A2tJ0ADMqiOnoAAAwTHT0AALrj5hoAAAAAGDOM6AEAWosRPQAAuqOjBwBoLROMBQCArtrR0cvC9mdpGbKZqdk2m6ZlyNIS9JLts+l2m77GhmkSmor9u8uFSToHTSapAGaStBuTK5PKZCkwFjHTOVu3admyZH+RHJtsm41SPdDQxnBYvPsAAChpR0cPAIAuuNEcAIDuuEYCAAAAwJhhRA8A0FrcogcAQHd09AAArWXu0gMAoCumbgIAWsl9eqT7tLfYvtr2rbZvsf26OeUX2w7bG+u/bfvdtm+3fZPtZyzFawcAoBdG9AAAmL8pSRdHxA2210m63vanI+JW21skvVDStzue/2JJZ9aP75X0nvonAAB9NTodvaYh/ScavgQn+8tC+mfh96enm9Wl13YHnO6gKaepLspi74PlwpnyMfXKcgqFSFIveMWqedXr0XVJ0lws69O/UtNUH01TKCxLcjaUXiM3SWGIBv3ui4gdknbUv++1fZukTZJulfROSb8o6ZMdq5wv6YMREZKusb3e9mn1dgAA6JvR6egBALBAE0P8nsH2GZKeLula2+dL2h4RX5mTxH2TpLs6/t5WL6OjBwDoKzp6AICWcr+CsWy0fV3H35dGxKVH7dleK+mjkl6vajrnJaqmbQIAMBLo6AEAWmk+wVMa2hURW4v7tSdVdfI+FBEfs/1USY+XNDuat1nSDbbPlbRd0paO1TfXywAA6CuibgIAME+uenLvk3RbRLxDkiLi5og4JSLOiIgzVE3PfEZE3CPpSkk/VUffPE/Sbu7PAwAMAiN6AIB28lBiAT1b0qsk3Wz7xnrZJRFxVeH5V0l6iaTbJe2X9DN9ryEAAKKjBwBosSFE3fxCr93Wo3qzv4eki/pcLQAAHmXwHb1SCP4shcDUkXJZ0/DzTWUpFHrVJXuN2bqDfo1ZmgQ3fMtMJ6kJHn6gXLZ6Xbls7fpikSeSNAFZeoE0fUbyGpyk5OglS9swSorHJgZaDaDTxMC7egDGWfXdzLHJpEsaO4zoAQBaqY/BWAAAaD2CsQAAAADAmGFEDwDQWsw0AgCgOzp6AIDWop8HAEB3dPQAAK1lunoAAHRFRw8A0EqWNEE/DwCArgbf0XMh/svypCpZ+PkjBxe+L6lHCoGkLAux30vTMPqL2WdJ9hozTcP3ZMd7+cpikZdPltdzeb1Uw/Mbh5P3WpY6Q5Ink5QO2fnNtpsd07Qy2etP1iulVziGQ1EDAEZT4zQJfbmmDfo62ewbsH7UkpQNw7Wojp7tOyTtVdU8nIqIrUtRKQAA5oMmBNqGthOAQVmKEb3nRcSuJdgOAAALQkcPLUXbCUDfcY8eAKC1CMYCAEB3i02YHpI+Zft62xd2e4LtC21fZ/u6+x54YJG7AwAAaLWFtZ123T/g6gEYF4sd0fu+iNhu+xRJn7b9tYj4fOcTIuJSSZdK0tazn0rUBgDAkuE+f7TQwtpOz3g6bScAjSxqRC8ittc/d0r6uKRzl6JSAAD0YlUXsaV+AP1E2wnAoDQe0bO9RtJEROytf3+hpF/psZK0bNnCdzaVhJifOlwuW5a9vKQsu9Jn28zq0ksSRj+mjjTf7iBNNDi3UvqeiDRtQZ7SoMTZOSylEJCkI4fKZdNZXgJJWXqFbJ+Zhqs1bsmWXiLpFTBEDOihTRq1nY5x/UmT0Idt9mN/jSWfjOk0iKZlZdkrJ/VC/y1m6uapkj5en6Tlkj4cEX+zJLUCAGAeaCigZWg7ARiYxh29iPimpLOXsC4AAABji7YTgEEivQIAoLUYzwMAoDs6egCAVrLo6AEAUEJHDwDQTjb36AEAUEBHDwDQWhP08wAA6GqwHT1PSJOrupdlqQmy8PNZqHwnceQnsrKG4fd7mZ5KNpts98De5vscpF4pBkqylBvZNhsel1h/SrlwJtlfVtbL8iS9QppCoqHs/Z39X2Tv737UEwBwTGucPqFaOSlLrlmjtF4/ZG2AbMJ7P9bLDlmyt16YzTE/jOgBAFrLDOkBANAVHT0AQCtZPXL/AgBwDKOjBwBoJ9PRAwCghI4eAKC1uE8DAIDusrsuAQAAAAAtxIgeAKC1GNADAKC7wXf0SqHds5DvmSxsfbbNLKR/ZqZh2Hr1SKGQpZdomLYgsm1mmqZJaJp+YLJ8Dn2k/BpizwPlbU6Uz69Xrk7qsrJclun12pdPJusmAYZnyik50vdb0/+nFOkVMHqYugmMvjSFQs/UAw3Xza7LaSqhhmmWsmt5P1IvZJ99jdOLJW3jrCw7R2l7pEdbJXmN2XuK68IjGNEDALQSUTcBACjjHj0AAAAAGDOM6AEA2snSBEN6AAB0RUcPANBa9PMAAOiOjh4AoKXMTfcAABTQ0QMAtJLVpwCzAACMAS6RAAAAADBmBjuiNzMt7d/dvey4E8rrNc0XNp3kIMtyzC1LDkvT3CSSnJTHkUPlsocLx0xK8wim+eISMX2gXHhgX7lsd5LXbn+y3nFry3VJynT8hmKRjz+pvF5yXJyc+8hyyCT5/iRJBx/Oy0smsn/RJC9Pj/dio/2VjhtT5zAsJl8SMCqa58rrkUcuy0HcOOdd1j5MyrL1sjZnUpc0x3Iia1Om7djsOp+t17Qszc1XLur5BD7754WpmwCA1uJaDwBAd3T0AACtxYgeAADd0dEDALQW/TwAALojGAsAAAAAjBlG9AAArWRJEwzpAQDQFR09AEA7mambAACU9Ozo2b5M0g9J2hkRT6mXbZD0p5LOkHSHpJdHxIM992aXw7o2DdsazcLSpmFw+7FNSbG3nH4g9iUpFLLQ/dNJyN4shUQm219Wz4NJWoZsm1kI5Gy97PUd2l8uW1YO9ZsGec622Su9wtokfUgWWtkN34vZak3f38AIIhgLRtGStp3GQnJ17ZVeoB9pEqbKKa2Upbs6mLQDDpXbQHHkYHm9pB2XieWTxTKvWFlecdWaZL0kLddkss2sXbGsXM+e0hvMkpRlyVrH2jVjPvfovV/Si+Yse4Okz0TEmZI+U/8NAMBA2Uv/yPfnLbavtn2r7Vtsv65e/pu2v2b7Jtsft72+Y5032r7d9tdt/2BfDwhGxftF2wnAkPXs6EXE5yXNHYo6X9IH6t8/IOllS1stAABG0pSkiyPiLEnnSbrI9lmSPi3pKRHxNEn/T9IbJakue4WkJ6tq+P+B7SSDMMYBbScAo6Bp1M1TI2JH/fs9kk4tPdH2hbavs33dffeXpy4CALAQ1uBH9CJiR0TcUP++V9JtkjZFxKciYnau2DWSNte/ny/p8og4FBHfknS7pHP7cDgw+pq1nXbdP5jaARg7i06vEBGhZDpsRFwaEVsjYuvJJ21Y7O4AAKjY8sTSPyRtnG1k148Lu+/eZ0h6uqRr5xT9e0l/Xf++SdJdHWXb6mU4hi2o7bTxpAHWDMA4aRp1817bp0XEDtunSdq5lJUCAGA++nRf/a6I2Jrv12slfVTS6yNiT8fyX1Y1vfNDfakZ2oy2E4CBajqid6WkC+rfL5D0yaWpDgAAo832pKpO3oci4mMdy39aVaTFn6hHbCRpu6QtHatvrpfh2EPbCcBAzSe9wkckPVfVVJZtkt4k6W2SrrD9akl3Snr5vPYWUQ6Fm6UmcNIfzcqUpzsoykL9JiFk43ASPldS7N9XLszSFmT6kbZgb1KXpCz2Z+kHjhSLfOpjyutlaQkmV5Trsrxc5iS9gvbvLZclxzN6pFcYeDDfLNRxVtYjRUj37aVJKYC+GnTCdFexud8n6baIeEfH8hdJ+kVJ3x8RnR+GV0r6sO13SDpd0pmSvjjAKmMIlrTtNEIi+7xvXNYrvUKWJqHctlDSJossXdK+h8rr7U2yYWTth6bpp7LPt6wNtLqcQiFtV2Vla9YXi7wyScuQ6R3muFlZ9nZLdzd+qRd6dvQi4pWFohcscV0AAJi32WAsA/ZsSa+SdLPtG+tll0h6t6SVkj5dNxauiYifi4hbbF8h6VZV3z5eFBHNEmehNWg7ARgFTe/RAwBg6Ab9DWxEfEHdB+mvStZ5q6S39q1SAAB0QUcPANBO80iHAADAsWrR6RUAAAAAAKOFET0AQGuN483zAAAsBTp6AIDWop8HAEB3g+3oxYxUCmk7kVQlC727fLJZXZY1fOlZ+PmJJGy/JGVh/bOyLN1BFpY3S+fw0APFotiXrLc7S71QDi08c6gcAnliuhyAzhuSkMQNj2dMJccsScugbL3kNUh5+gVn78U0fUhDS556gfQKGI4q6iY9PWA0NEyhkKWCkvJ215FD5V0eLLdlYveu8jYfvK9cdv+95bLd5dQLsXdPeb0k/VRq1apikdceX15vw8ZiUWw4ubzNqfJ5iBPK23SWYGox6RWy7U5kbadj65rBiB4AoJ3cn+9CAAAYB1wiAQAAAGDMMKIHAGgpM3UTAIACOnoAgPaaoKMHAEA3dPQAAO3FiB4AAF3R0QMAtJOJugkAQMmA0ytIMdM9xK6z0PVNUyFk4XybSkO25pykX4gsNcPucioEHSynH4jdD5XX21UOLTyzq7y/w/eU0ytM7yuHOZ45Ug7Lu/pwObTy8pPL4YqzkMRp0++4teWyySS9QpbOoVdqjSx8dPaeyt7DTcMNEqYQAFAQkaVJaFhWaPtJytMnSNJU+Vofhw+Wy/Ykbaf77ymX7dhW3uY928vr3VdOyzDzUDm9wsyBJL1C8kXWsjVJe2XDieWyfeW6+HCSriI5v1n7dlFtp6w8a8tE1gosv44sWVRbv1RkRA8A0F7cowcAQFd09AAALWXu0QMAoICOHgCglWzJjOgBANAVHT0AQHsxogcAQFdEZQAAAACAMcOIHgCgtZi6CQBAd4Pt6E1MyCuPK9QkCRObScLuKknZkIXkbezA3rQ49pVTE+hQOU1C4xQK3/52eZPfvLdYdv+3y9t84IHycdt3pJxCYGqmHLR2067yNh+zuZxe4bgkvUIaInfjqeXCdSeUy7K0DL1CBB/aXywKFf4nJLlpapE07HAfUjYAw8LUTWCAmqZeSK47WeoFSZpO2nn7y6kCtOf+ctnOHcWiuPuuctmdSbvqznLaqofv21csO3Cg3HbKLslr1kwWy447tdzeXLk/aY9MJ3VZXm6PxMrVxTIlZV5Wfg2SpJmkDZS1uyI5cMfYJYMRPQBAO9mkVwAAoICv7wEAAABgzDCiBwBoLTN1EwCArujoAQDai6mbAAB0RUcPANBOFsFYAAAooKMHAGgtAsUCANBdz46e7csk/ZCknRHxlHrZmyW9RtJ99dMuiYireu7NllasXHgtsxQKTc2UQ8imZUcOFYtifzl8riQpS6+wt1wW+x8ur/fAA8WiQ3feVyzb9vVyGOA7HiyH3r3n8FSx7KGpcojkqSTs8s4kTcIT95ZTZJy5rPxN/nGTScjeiYYtw8kkBUhWpjy1ho8kaUCSbXoy+V/K0jJkoayzQ0OLGgDmZUnbTm2RpVBI0yskbS5JkV0js3bXnofK692/s7ze9u3FogPfKKem2nFX+Tq/c3e57bh/unxssvkKxy8vpxd4zMPldtXGpD22akXSllmTpJjKUlOtScpWJ9uU8vZKls4jbT2lLau8Pi00n5bb+yW9qMvyd0bEOfVjfD6oAADtYS/9A1i894u2E4Ah6zmiFxGft33GAOoCAMD82TLBWDCCaDsBGAWLmYv1Wts32b7M9olLViMAAOaLET20C20nAAPTtKP3HklPkHSOpB2Sfrv0RNsX2r7O9nX33V++nwwAgAWb8NI/gP5o1nbadf+Aqgdg3DTq6EXEvRExHREzkt4r6dzkuZdGxNaI2HrySRua1hMAAKC1GredNp40uEoCGCuN0ivYPi0idtR//rCkry5dlQAA6K2aackIHNqBthOAQZtPeoWPSHqupI22t0l6k6Tn2j5HVYzSOyT97Lz2ZkvLC6Fbp8rhc3X4YLnsuHXz2vWjqpKEpo9D5fQCaRjg7DVIUhIiWFmI4IPJ699XXu/Ig+W0DA/sKYf63XWknELh3iPl139wJgtZW/a1A+UwwMuSRtz6u/YUyzZvKoc5XnZikuogCx+8GAfK5ykN9LusHD45JspladM3DXOdrFca/2922oGlwVRLjKAlbTv1QWSh6ftRloXJ75FeIW1bZe21JG2VHnywWHT43vJ6999Tvpbf/WC5rbYjSSO183D59S9PPt5OWVFuws/sLJ+LlSvKbYfJk8ptoGUbHyqW+eGkjXPoQLFM0+X2piQ5Ta+QNVgwaz5RN1/ZZfH7+lAXAAAWgOApGE20nQCMgkZTNwEAGAVM3QQAoLvFpFcAAAAAAIwgRvQAAO1kcY8eAAAFdPQAAK3F1E0AALqjowcAaC9G9AAA6Gp0OnpZaP5lSTWnyiFrs5C8caScXkBZWaaUOmJWEkI4dpdD/fq444pl0/vL4Xzv3p6EAT5cPm7bk1C/WQqFrGwqCbu8KmmobTtUDr17/H3l9BHrbrm7WLZhXfl4xrpyug6vTUI1r1pdLpOk6SR8dLZqlpIjC1m87sSkLuVjGkmZix8X5FcAAGSytAw9wuQ3bOel18j95bQMU7vLZbv3lPf3wFT5+vmtg1l6hfLrz9IrHE4O6ZqJcgiOk/aWX8Pxu8vHbNmB5HgeStKAZedoOjm3Uv7eaJrq4xgzOh09AAAWwqRXAACghI4eAKC1zNRNAAC6oqMHAGgvRvQAAOiKjh4AoJ1IrwAAQBEJ0wEAmCfbW2xfbftW27fYfl29fIPtT9v+Rv3zxHq5bb/b9u22b7L9jOG+AgDAsYKOHgCgtWwv+aOHKUkXR8RZks6TdJHtsyS9QdJnIuJMSZ+p/5akF0s6s35cKOk9/TgOAADMNdipmxHS4ULqgiNJaNbMTBJ6NSubWNZsf4uR7NNJKNw40iP8bGl3yZSm6ST0bJYmYd90+Zjumy6vF0lo5b1J5oGpJELu5iRlweEkXHEkIZCdpUHIHEzCDkvSsuT9lqXdSMo8laQBSdIkZOlKnIUyLq3HPVIYGg986mZE7JC0o/59r+3bJG2SdL6k59ZP+4Ckz0r6pXr5ByMiJF1je73t0+rtAOilaYj9LG1X0j6MqXLZdNIGOtKwXXUoeX2Ho/z5dijZZlaX6aytNpW0gZq2t7OyYUhTLyRlLW3rcI8eAKC9+nPx3Wj7uo6/L42ISx+9a58h6emSrpV0akfn7R5Jp9a/b5J0V8dq2+pldPQAAH1FRw8A0E5Wvzp6uyJia7pre62kj0p6fUTs6ZzyGRFhm4y9AICh4h49AAAWwPakqk7ehyLiY/Xie22fVpefJmlnvXy7pC0dq2+ulwEA0Fd09AAA7WUv/SPdnS3pfZJui4h3dBRdKemC+vcLJH2yY/lP1dE3z5O0m/vzAACDwNRNAEBLWUoCWfXJsyW9StLNtm+sl10i6W2SrrD9akl3Snp5XXaVpJdIul3Sfkk/M9DaAgCOWXT0AADtNeBIaBHxBVV3B3bzgi7PD0kX9bVSAAB0MdiO3sy0dHBf97IsfO6qteWyqcOLq1M3E80OiydXpOWRhdhftbpclqRX8IpyXSeXl7/pXtnwW/CmKRSaykIS94NXrWq2YnZuJWl1+T3slcm5z9KALF+Z1Cd5D2dl2f/h8tL7u50hhzEG+heMBcCSSv5Pe/0PZ22y9BqZrDc5Wd7kyvJ6K1eU97fqYLlddcKyclmSDUrLk0NzQtLGW5208bLXMLGyfFyyY5a2gbIyD+EOsuz9NobXE+7RAwAAAIAxw9RNAEB7jeE3sAAALAU6egCAlhpKMBYAAFqBjh4AoL0Y0QMAoCu+CgUAAACAMcOIHgCgnYi6CQBA0WA7ejGjOLS/a5FXJGHtlychXY8cbFQVJ/d1RJYmoZzpIA/zK0lZGP0kvYKz0LTr1xeLNp66plh2ygMHimWPWzldLNs3XY4DvDdJvZBxEnb5CavKb9FTV5TfF8efUn7tPv74cmWyc78mSfPR69zPlI9pqmnI4kySkiQOld8XOlJYbyaJDQ30Gx09YDQ0DVvfK8R+liZhRZJmaPVx5bK15ev55IZy2Ykn7i2WnXKg3ECcSdJPbZwsX0MnksN24vJyG2BjknrrxBPLx2xyQ7ntpDVJWXasm6aCkvL3RlrGdWFWz6mbtrfYvtr2rbZvsf26evkG25+2/Y3654n9ry4AALPqYCxL/QAWibYTgFEwnyvalKSLI+IsSedJusj2WZLeIOkzEXGmpM/UfwMAMDj20j+AxaPtBGDoenb0ImJHRNxQ/75X0m2SNkk6X9IH6qd9QNLL+lRHAACA1qDtBGAULOgePdtnSHq6pGslnRoRO+qieySdWljnQkkXStJjT39M44oCAHAUgrGgBRbddtqyZQC1BDCO5n0zgu21kj4q6fURsaezLCJC6n6naURcGhFbI2LryRvWL6auAAAcjambGGFL0nbaeNIAagpgHM1rRM/2pKoPqg9FxMfqxffaPi0idtg+TdLOflUSAIC5LKcRlIFhou0EYNh6dvRsW9L7JN0WEe/oKLpS0gWS3lb//GTPvXlCXlkIwZpdrKcbhqZPGwDlsuz73GYJBGpZeoV1J5TLDiYh7zduLBatfuIpxbIn7i+H2Nede4pFy5ODc+ehqWLZviT1wtPWlFMabF5ZLnvKE9cXy1Y/setsmMoJybHOlNILSPm5laT9+4pFkazrLG1D9n8xXT4XpRQnkhQPNmhzJOkagL5jBA4jaEnbTn3g5P8mb+f0IYVCj/REnkzC868qh/yPpF3lE8vBTpefVh5BPWFvuT22eaZ85FbfX04Ftv9I+VqefbqtS9JPnXJKOd3B6seWX59POblcdmIysrymnLbKSeoF90qvkL030s9+rguz5jOi92xJr5J0s+0b62WXqPqQusL2qyXdKenlfakhAABAu9B2AjB0PTt6EfEFlbvGL1ja6gAAME8EY8GIou0EYBQsKOomAAAjhY4eAABd0dEDALSUe9yLDQDAsYuOHgCgvRjRAwCgK74KBQAAAIAxM9gRPVvqFUq1i3j4ofImJ8vh99Nwvlk9kvUWlXrhuLXlskPN0it4crJYNvHYzcWyDSvL6529+aFi2Rl33F8se2h3Ocz+gQPlcP/r1pXP4WnfVQ6BvPopZxTLdNppxaLsmKWyNBe9nLKpWOTjN5TXK6UjkeQspcPkqvJ65bXy92gJU+cwLARjAQasYUj77DrR6xqyLLlmr15XLsuuraeU2wg6WE6FsCrKLb2Nq8ttmRPu21ssO5yku5pIDunkuvJ1fsVj1hfLlm8qp95y0nbSSeX1tK7cVkvPUXZupfy9kbXxSb3wHUzdBAC0Fx09AAC6oqMHAGgpgrEAAFDCFRIAAAAAxgwjegCA9mLqJgAAXdHRAwC0E8FYAAAooqMHAGgp7tEDAKBksB29I4cVO7/dtcgnnV5eb6ocelYryuFlsxDz/dDze+UkHH5kYe2zspMfU67PuiRlw+YtxaJVD+8rlq3cubNYdsru3cWymCqnV3D2jfzmcooIb35seb3smE1Pl8tmkrJVSTqDtcmxluT1J5fL1iTrpuGDs/Qhy8plq8rHxlnakeWF0NGl5cAgMKIHjIbsf7FpuispvcY4u9Yff1KxKJJ2pWeSZFlJeqYV68ppBFacXm4fHXfoULku2TE9rpx+SSeU2xXeWG6P6DHlVFDakKRlSFJZOGunL++VXiFpy6SpF7guzOKrUAAAAAAYM0zdBAC0F9/cAgDQFR09AEA7EYwFAIAiOnoAgJYiGAsAACV09AAA7cWIHgAAXfFVKAAAAACMmcGO6B3cr/j6jd3LnlkOg+uVSQjZzETTb3qTwzIzUy7rGSJ4ZVKWhKg/JQl3u68csjdNFZClGDiShB1eUw5lHA/cX17vyJFy2YnlsLxZ+ghtSEIEZ8fz0IFyWfLa05QNq5OyHtuNwweT9cphlzVRfr85kvdpsl76Hp4svH+zsNlAvzGiByypLKR/knhAaZKp7DqRhdCXpOVZmyxpV607sVydZHexLAn5v7rcHvWJG8vr7S+nrfKhpA2QTU1fkb32JG3TCUmba33SFj+h/Pq85vjyNrNUZ73azel7IzuL2XuxXJams2gppm4CANrJ4osGAAAK6OgBAFrKi5i5AQDAeKOjBwBoL0b0AADoiiskAAAAAIwZRvQAAO01hjfPAwCwFOjoAQDaySRMBwCgZLAdvVXHSWc+tXtZFkI1C5WfhZE/+HC5LEuT0FBkofAl6cDectlUEtZ/5epyWRbyP0sVkKVlOJikH0jOk9euK6+XpXpYn4T6zdJA3HdPuSxJA6GTkpQNWeqF7LUfXw5JLEmaTN7D2Xaz1CLZ/0Umaxhn9zuV3t/Z/yDQb4zoASOiWUj7nukVsnQHk+WED+knQ3YdTK7XsWpNeb0sbUHWtpiaKpdlwaay47IqSQORpUI4rlzmLI3UiiSFwvKknj3TK2RpObK2DNeFWT2/CrW9xfbVtm+1fYvt19XL32x7u+0b68dL+l9dAAA6eGLpH712aV9me6ftr3YsO8f2NfX18Drb59bLbfvdtm+3fZPtZ/TxaGBE0HYCMArmM6I3JeniiLjB9jpJ19v+dF32zoj4rf5VDwCAkfN+Sb8n6YMdy94u6S0R8dd14/3tkp4r6cWSzqwf3yvpPfVPjDfaTgCGrmdHLyJ2SNpR/77X9m2SNvW7YgAA9DSEKToR8XnbZ8xdLGl23tMJku6ufz9f0gcjIiRdY3u97dPqayvGFG0nAKNgQXex1xe2p0u6tl702noqymW2Tyysc2E9jeW6+x5M7gsDAGAhZoOxLPWjmddL+k3bd0n6LUlvrJdvknRXx/O2iQb/MWXRbadd9w+qqgDGzLyvaLbXSvqopNdHxB5V00+eIOkcVd9a/Xa39SLi0ojYGhFbTz7xhMXXGACAWfbSP6SNs43s+nHhPGryHyX9l4jYIum/SHpfP1822mFJ2k4bewT7AoCCeUXdtD2p6oPqQxHxMUmKiHs7yt8r6S/7UkMAAAZrV0RsXeA6F0h6Xf37n0n64/r37ZK2dDxvc70MY462E4Bh69nRs21V30zeFhHv6FjeeY/BD0v6arf1j97bpCZO3tK9LAvNmkoGJbMUCl76kPDuEWY+sjQJSfoBZ2H0k7DEMZGE881koY7XJaOyWTqHLL1Cr9DKTSRpJ9IQwdk5Snh1EnJZUkwdabTdxpqmUADaZnTez3dL+n5Jn5X0fEnfqJdfqWqq3uWqgrDs5v688bekbacR4uSe2HKiA2mBdwrNWbVh+q00pUO5Ps5C/mfpFdIUCkn6rSyNVPb5tiw5LlmbenJleXdJWXqss2OWpVfo1f5LP9+b3Z+dvYfH0XxG9J4t6VWSbrZ9Y73sEkmvtH2Oqv/tOyT9bB/qBwBAd3aeZ6pvu/VHVEXU3Gh7m6Q3SXqNpN+xvVzSQUmz0z2vkvQSSbdL2i/pZwZeYQwDbScAQzefqJtfUPdu81VLXx0AABZgCCN6EfHKQtE/7/LckHRRf2uEUUPbCcAomNc9egAAjKRjbBoOAADzNTI3NwAAAAAAlgYjegCAlvIoBWMBAGCk0NEDALSTNZRgLAAAtAEdPQBAe3GPHgAAXQ22ozexXFp7YveyLAddlmMkW29ZMqWnR867oiw3X5ZHRJJWHlcsSpsqWQ66JI+Ksxx7k0k+lCzP3FSSK6+p/fvKZQ3z2mV59HT8Sc22mb32yR55IA8fLJf1I49gU02mwdHQxjAxdRMYCX3LsZemUkuuP2lZstGJclsuzWvcMFeyIj865cpkr6HZ60tz82Vt3Kwdk5X1+vzOypPze6zlystwhQQAAACAMcPUTQBAOw0pYToAAG1ARw8A0F5M3QQAoCs6egCA9uJeDAAAuqKjBwBoKfLoAQBQwhUSAAAAAMbMYEf07HJ41ump8nozh5KyhmkSsjCxTVMv9ODlk+Vdqpx6QYf2L31dVq4vF84k5+JIkmIgCR8cWWjhJCSxm6ZXSDgLO5yILKxyr202TaGQbTd9n2YhibOwy0yDQ4uQMB1ov57TrxuOSaSrJfvMrteRtB2bplBomF0hzcvVOPVCw1QITfeXJxcjhcISYOomAKC9mLoJAEBXdPQAAO3Ft7oAAHTFV6EAAAAAMGYY0QMAtJR73x8LAMAxio4eAKCdLKZuAgBQQEcPANBeBGMBAKCrwXb0YkY6dKBcVpKlUMjWyxoAWTqHbJtN15MU2etIQtp6zQnpdptI65KZKJw/SZoqp8HwdBJ2OLMySTtxJEu7kaV6yN5rST2zskWkwGia7qFxqOPMTNM4z8AwmBE9oAWyUPiRpR6oVk4Ks+tgsl52jczaclldJ7Im9aCvrdlrb3hc0vXSXA8N1yOFwlLgq1AAAAAAGDNM3QQAtBfBWAAA6IqOHgCgnQjGAgBAER09AEBLmWAsAAAU0NEDALQXI3oAAHTFV6EAAAAAMGZ6jujZXiXp85JW1s//84h4k+3HS7pc0kmSrpf0qog4nG5sZkY63DwMffcKNuyrZjfwTzdMPdCDlyWHO6tP09eYrJeG9M9SSCTrxeFyiogsFUIc2FcsS7+rT0IZp9tMUllocmW5LEkREYcPlteT5CxNRNNz3zQIRY80IEVThX/vptsDlgJTNzGClrTtNOYWE0I/T1qQbTdZM6tPr1QQS71eU41TIaQbXfJtkj6h/+ZzhTwk6fkRcbakcyS9yPZ5kn5D0jsj4omSHpT06r7VEgCAuWxpog8PYPFoOwEYup4dvajMDo9M1o+Q9HxJf14v/4Ckl/WjggAAFHli6R/AItF2AjAK5nVFs73M9o2Sdkr6tKR/kvRQRMzO8dsmaVNh3QttX2f7uvseeGAJqgwAQM1e+gewBJas7bTr/oHUF8D4mVdHLyKmI+IcSZslnSvpe+a7g4i4NCK2RsTWkzdsaFZLAACAFlmyttPGk/pVRQBjbkHpFSLiIdtXS3qWpPW2l9ffTG2WtL0fFQQAoDvy6GH00XYCMCw9r5C2T7a9vv59taQfkHSbpKsl/bv6aRdI+mSf6ggAQFe2l/wBLBZtJwCjYD4jeqdJ+oDtZao6hldExF/avlXS5bZ/VdKXJb2v55bsckj8LER7Kay7JC1fUS7Lws8nofkb6xVmPttnlnrhSBK6v+m32TNJXZPXEdl6WdqC7LXvSe7dzM7vTDndgY4k75mVyXrZa8j0Wi87v21IoSCV3zODDhsNzLIY0cOoWrq2E4qafjHTl7QMTTc5aH34MosvyEZXz95ORNwk6eldln9T1ZxzAAAA1Gg7ARgFfRjWAgBgELhHDwCAEjp6AID2IsE5AABd0dEDALQXI3oAAHRFRw8A0E4WCc4BACjgq1AAAAAAGDODHdGzpZWru5dNHSmuFofL6QWcha3PQvpn93VE0v/N9pelHpDyVAHLyuH5Y8+uRtt0Fpo/m+6UhebPUhoc2l8uy9IdHDxQrsqhclkqq2fCyyeT0qysh+x9k2k6La1pupKGaTeA4SAYC4CF609ahnYgFcKxhambAID2otECAEBXdPQAAO3FiB4AAF3R0QMAtJNNegUAAAr4KhQAgAWwfZntnba/Omf5z9v+mu1bbL+9Y/kbbd9u++u2f3DwNQYAHIsY0QMAtNdwpm6+X9LvSfrgd6phP0/S+ZLOjohDtk+pl58l6RWSnizpdEl/Z/tJEdEsYhQAAPPEiB4AoL3spX/0EBGfl/TAnMX/UdLbIuJQ/Zyd9fLzJV0eEYci4luSbpd07tIdAAAAuhvsiN7MtLTvwQWvlqZQyL7NPVJOy5CGmM80rUuv+hycKm/2hFPK6zW9P2U6+TI5q2cWfn/1umKR1zT8TmEySUmx8rjy/iZXltdrmnYi06/UA1l90nNfTteRph2ZKb8PNV0oI+ohhqZv6RU22r6u4+9LI+LSHus8SdJzbL9V0kFJvxARX5K0SdI1Hc/bVi8D0DKkJkDbMHUTANBe/Wl47YqIrQtcZ7mkDZLOk/RMSVfY/q4lrxkAAPPE1E0AABZvm6SPReWLkmYkbZS0XdKWjudtrpcBANBXdPQAAO1kVVM3l/rRzCckPU+SbD9J0gpJuyRdKekVtlfafrykMyV9cdGvHQCAHpi6CQBoKef33PZrr/ZHJD1X1b182yS9SdJlki6rUy4clnRBRISkW2xfIelWSVOSLiLiJgBgEOjoAQBaaxjBESLilYWinyw8/62S3tq/GgEA8GhM3QQAAACAMTPYEb2JZdLq4wtlybey/Qif3XSbWXqFxRhO0t8Fc9NpUsnr88Yk0njT4zKE6VyNZSkrZhqmAemH4nufcNMYopZ8dgIAMGhM3QQAtJNFHkcAAAro6AEAWqpvCdMBAGg9OnoAgPZiRA8AgK74KhQAAAAAxgwjegCA9mpT4CUAAAaIjh4AoJ1spm4CAFAw0I7e9V+5edfEqWfcWf+5UdKuQe6/h1GqD3Xpjrp0N+y6PG6I+8axjmAsGHPXf/nGXV6zfhTbTqNUF2m06kNduqMujxhI22mgHb2IOHn2d9vXRcTWQe4/M0r1oS7dUZfuRqkuwMAxoocxN6ptp1GqizRa9aEu3VGXweOrUAAAAAAYM9yjBwBoMUb0AADoZpgdvUuHuO9uRqk+1KU76tLdKNUFGCCCseCYM0qf96NUF2m06kNduqMuA+aIGHYdAABYsK1Pe0p86ao/W/LtTmw56/pj4d4NAMB4Y+omAKDFGNEDAKAbgrEAAAAAwJgZSkfP9otsf9327bbfMIw6dNTlDts3277R9nVD2P9ltnfa/mrHsg22P237G/XPE4dYlzfb3l4fnxttv2RAddli+2rbt9q+xfbr6uUDPzZJXQZ+bGyvsv1F21+p6/KWevnjbV9b/0/9qe0V/a4LMHTWI0nTl/IBjCDaTt/Z98i0m5L6DKN9MDLtph71oe00QAPv6NleJun3Jb1Y0lmSXmn7rEHXY47nRcQ5Q7on4/2SXjRn2RskfSYizpT0mfrvYdVFkt5ZH59zIuKqAdVlStLFEXGWpPMkXVS/T4ZxbEp1kQZ/bA5Jen5EnC3pHEkvsn2epN+o6/JESQ9KevUA6gIMn/vwAEYMbaejvF+j024q1UcafPtglNpNWX0k2k4DM4wRvXMl3R4R34yIw5Iul3T+EOoxEiLi85IemLP4fEkfqH//gKSXDbEuQxEROyLihvr3vZJuk7RJQzg2SV0GLir76j8n60dIer6kP6+XD+w9AwwfPT0cE2g71Uap3ZTUZ+BGqd3Uoz4Ddyy3nYbR0dsk6a6Ov7dpSCe+FpI+Zft62xcOsR6dTo2IHfXv90g6dZiVkfRa2zfV0xMGNh1ilu0zJD1d0rUa8rGZUxdpCMfG9jLbN0raKenTkv5J0kMRMVU/Zdj/U8CA9GHaJlM3MZpoO+VGrd0kDbHtNErtpi71kWg7DQzBWKTvi4hnqJoOcZHtfznsCnWKKv/FMHNgvEfSE1QNde+Q9NuD3LnttZI+Kun1EbGns2zQx6ZLXYZybCJiOiLOkbRZ1be83zOI/QIAUBvZttMItJukIbadRqndVKgPbacBGkZHb7ukLR1/b66XDUVEbK9/7pT0cVUnf9jutX2aJNU/dw6rIhFxb/3PMSPpvRrg8bE9qerD4UMR8bF68VCOTbe6DPPY1Pt/SNLVkp4lab3t2XQpQ/2fAgaKET0cG2g75Uam3SQNr30wSu2mUn1oOw3WMDp6X5J0Zh3pZoWkV0i6cgj1kO01ttfN/i7phZK+mq81EFdKuqD+/QJJnxxWRWY/HGo/rAEdH9uW9D5Jt0XEOzqKBn5sSnUZxrGxfbLt9fXvqyX9gKp571dL+nf104b6ngEGi3v0cEyg7ZQbmXaTNLT2wci0m7L60HYarIEnTI+IKduvlfS3kpZJuiwibhl0PWqnSvp49V7Uckkfjoi/GWQFbH9E0nMlbbS9TdKbJL1N0hW2Xy3pTkkvH2Jdnmv7HFVD/XdI+tlB1EXSsyW9StLN9ZxqSbpEwzk2pbq8cgjH5jRJH6gjsE1IuiIi/tL2rZIut/2rkr6s6sMVGH+MwOEYQNvpEaPUbkrqM4y20yi1m7L60HYaIFfTdQEAaJetZz81vvSppf8CduIxT7h+SOl2AABYMgMf0QMAYOkwogcAQDd09AAA7UTwFAAAiujoAQDai44eAABd0dEDALQYHT0AALohYToAAAAAjBlG9AAArWWmbgIA0BUdPQBAe9HRAwCgKzp6AICWsrhHDwCA7ujoAQDaixE9AAC6IhgLAAAAAIwZRvQAAO1kMaIHAEABHT0AQIvR0QMAoBs6egCA9mJEDwCArujoAQDai34eAABdEYwFAAAAAMYMI3oAgJYijx4AACV09AAA7cU9egAAdEVHDwDQTqRXAACgiHv0AAAAAGDM0NEDALSY+/DosUf7Mts7bX+1S9nFtsP2xvpv23637dtt32T7GYt8wQAAzAsdPQBAe9lL/+jt/ZJe9OiqeIukF0r6dsfiF0s6s35cKOk9i37NAADMAx09AEBL9aGTN4+OXkR8XtIDXYreKekXJUXHsvMlfTAq10hab/u0pXj1AABk6OgBAFqsL1M3N9q+ruNxYc9a2OdL2h4RX5lTtEnSXR1/b6uXAQDQV0TdBADgaLsiYut8n2z7OEmXqJq2CQDASKCjBwBopeu/fOPfeu2JG/uw6V0LfP4TJD1e0ldcTf3cLOkG2+dK2i5pS8dzN9fLAADoKzp6AIBWiohHBUQZhoi4WdIps3/bvkPS1ojYZftKSa+1fbmk75W0OyJ2DKemAIBjCffoAQCwALY/IukfJX237W22X508/SpJ35R0u6T3SvpPA6giAAByRPR+FgAAAACgNRjRAwAAAIAxQ0cPAAAAAMYMHT0AAAAAGDN09AAAAABgzNDRAwAAAIAxQ0cPAAAAAMYMHT0AAAAAGDP/P32MvLiSrAeYAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "recorteR2 = trim(imagen[:,:,0], 645, 535, 35, 35)\n", + "poptR2, pcovR2 = curve_fit(gauss2d, xdata2, recorteR2.ravel(), p0=[1,0,1,1,1])\n", + "estrellaR2=gauss2d(xdata2, poptR2[0], poptR2[1],poptR2[2], poptR2[3], poptR2[4])\n", + "FWHMR2=FWHMR.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptR2[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 2 fotografÃa (Banda Rojo)\")\n", + "plt.imshow(recorteR2, plt.get_cmap('Reds'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 2 a partir de la gaussiana (Banda Rojo)\")\n", + "plt.imshow(estrellaR2.reshape(35, 35), plt.get_cmap('Reds'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 3 (Rojo)" + ] + }, + { + "cell_type": "code", + "execution_count": 356, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3oAAAFSCAYAAACkM60KAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA2m0lEQVR4nO3de7xcZX3v8e935waRS4AdEZJA0BO1AbmdDYVybBG8AKLhtKcKVQT1mNqDCh5aFewR7SmWoxbxUm1TQeRIoRTBYkWFKoicChoiAiEiUZAkBEMIhHDNZf/OH+sZMpnMbc+aWbPX7M/79VqvPbNmPWv9Zq3ZM89vPc96liNCAAAAAIDBMdTvAAAAAAAA3UWiBwAAAAADhkQPAAAAAAYMiR4AAAAADBgSPQAAAAAYMCR6AAAAADBgJvc7AAAAOjHHk+M5df8WQWs1+r2IOK7rKwYAoEAkegCAUnpOoT/Si7q+3n/QhuGurxQAgIKR6AEASsni+gMAABoh0QMAlNaQ3f2Vdr83KAAAhSPRAwCUEi16AAA0RqIHACitoR406NGiBwAYBJwMBQAAAIABQ4seAKC0OFsJAEB9JHoAgFKy3JvBWAAAGAAkegCA0qJFDwCA+kj0AAClZPVoMBYAAAYAJ0MBAAAAYMDQogcAKC3OVgIAUB+JHgCgnCyZwVgAAKiLRA8AUEoWLXoAADRCogcAKC0GYwEAoD5OhgIAAADAgKFFDwBQWpytBACgPhI9AEApZffRo+8mAAD1cDIUAFBaQz2YmrE9x/ZNtu+1vdT2mVWvvd/2L9L8T1XNP8f2ctv32X5DV944AAAtkOh1ge25tsP25PT8Ztv/vYDt2vZXbT9u+ye93l5etl9h+07bG2x/IM270PZFHa7vb2yf1c0Yx7DtS23/dR+2u9T20W0sd6Dt/+h9RMCEs1nS2RExX9IRks6wPd/2ayQtkHRQROwv6TOSZHu+pJMl7S/pOElfsj2pP6Fj0PWrPjLe2H617ftyrqOjfVd7DMqs3TpHj7Z9he2T+rTtvvzf2H7K9kvbWO5Ntv+5nXUOVKJn+0Hbz6YdVZm+2Ea5sP2fioixlXSm+FHbT9r+ue0FTRb/L5JeJ2l2RBzexrr7/T4/JOmmiNg5Ij5v+9WSDpP0F2Ndke2Zkt4h6R/S86Ntj1Yd91W2P9HV6Luk5nP6SEoad2qnbETsHxE3t7HcXZKesP2mvPEC41XWdbP7UzMRsToilqTHGyQtkzRL0p9JuiAink+vrUlFFki6MiKej4gHJC2X1PL7GuU2AesjfVW73yLiRxHxin7GNAjarXN0m+0DJR0k6V/T89Ntb6n6X/q17T8rOq52pM/i01V10QvbPbkXETtFxK/bWO5bkvZP+6mpgUr0kjelHVWZ3pd3hQWflTlT0l4RsYukhZK+bnuvBsvuK+nBiHi6sOgaaHMf7StpadXz/SS9NSI2dbDJ0yVdHxHPVs17uHLclSXB7+7X2aA2vCnFebCkQySd04NtXC7pT3uwXmDcKLrrZjXbc5X9/94u6eWSXm37dts/tH1YWmyWpBVVxVameRh8E6k+0hed7I9BaGmbAP5U0uUREVXzflxVx/sjSZ+yfUh/wmvpoBTnH0h6q6R39WAbVyj7v2xqEBO9umz/p/Tju9722kqTp+1b0iI/T9n3W1Pr0ErbH7b9iKSv2h6y/RHbv7L9mO2rbO/exnZfZvsHqcxa25fbntFo+Yi4KyI2V55KmiJpTp31vlvSVyQdmeL+RJr/HmfXgqyzfZ3tvRu9z2bLp9de7+yakvW2v5T2339Pr51u+//Z/qztxyR9vNl7tf0DSa+R9MW0/ZdLOkbS/0iv72b739LZw8fT49lNdu3xkn7YZD8+IOk/JM2vej+fs70inZ28w1mLYuW1j6djepmzrqVLbY9UvX6I7SXptX+WtEPVa2ONvTrORyR9T1nCV1nfm9P2n3DWfeB3ql570PZr0+Npti+y/XCaLrI9rWr1N0s6tmYeMFCG5K5PkoZtL66atvsxddYK/w1JZ0XEk8oGN9tdWXfOv5B0lc1IMdjeoNVH0roPt/3j9Lu12vYXbU9tsGyla+PC9Nu12vaft7uuVPYM2/dLur/Zfqsq82Dah3dJetp1kj3br3N2je16Z62vrnn9XbaXpd/579net9G+qyn3zlRug7OWqIYnYG1Psv236fg8YPt93rYrbsN1OauX3VqzvhdaOm2f4Oza4g3OWpr+PM0fTvWWJ5zVBX9ke6hqv1XqHO0cl/favj8t83eV78CxfvbUuo73M2W9KarrR//irJfUetu32N6/6rVLUzzfTu//dtsvq3q94bHvIPbqOJdL+n/ato7XrN5dfbx2dVYnfdT2b2z/ZeW4JDdLemOrGCZMoifpf0u6QdJukmZL+oIkRcTvp9cPSmcKKn1eX6LsR3tfZRnz+yWdpCw731vS45L+ro3tWtLfpDK/o+xL8uNNC2T/cM8pO0t8s6TFtctExMWS3qutZzjOs31M2tZbJO0l6TeSrmz0Ppstb3tY0tXKWpr2kHSfpN+rCeN3Jf1a0p6Szm/2XiPiGEk/kvS+tP1f1qxrSNJXle3vfSQ9K6lZN5dXpZjqsj1P0lGSbqua/VNl/2y7S/onSf9ie4eq19+c3v8MSddVtp++yL4p6f+msv+i7GxSp7FXxzlb2Rfa8vT85crO0pwlaaak6yV9y/V/MD+qrFJ5sLIuDodL+svKixGxStImSXRfwUDqYdfNtRExUjUt2ma79hRlSd7lEXFNmr1S0jWR+YmkUUnDklZp28rx7DQPE9dA1UeSLZI+qOwzf6SkY5VO5DbxGknzJL1e0ocrCUWb6zpJWR1kfpP9VusUZRXjGVUJbOV9Dku6Rtlv6LCkXymrQ1ReXyDpXEl/qOy3+UfKfqvbsUbSiZJ2kfROSZ+1fWiDZd+jrE5wsKRD0/vsdF21Lpb0pxGxs6QDJP0gzT9b2ffXTGX1uXOVJfa12jkuJyq7JOdAZXXLyuBTbX/2bL9IWY+vZnW8w5T1oqj+PH5H2efpxZKWKOvVVO1kSZ9Q9n+3XFm9teWxH0vsdeJ8paRXa2sdr2G9u44vSNpV0kuV/a+/Q9kxr1gmaa7tXZrFMIiJ3jfTmYTK9J40f5OyL8m9I+K5iLi1yTqk7Ef6vHRdxbPKkqqPRsTKdA3GxyX9N7foAhARyyPixrSeRyVdqOyANStzoqSdJZ0g6YaIGG0Ra8XbJF0SEUtSjOcoa/Gb28HyJ0haGhHXpC/Ez0t6pKb8wxHxhYjYHBHPdvJeq97zYxHxjYh4Jl33cn6LsjMkbaiZt3c65k9K+qWyH6YXjnNEfD1tZ3NE/K2kado2Cbo1Iq6PiC3KkrqD0vwjlJ3JvCgiNkXE1cqSxk5jl7LP6QZlXbrWSDovzX+rpG+n/bhJ2YAOO2r7JFvKjt9fRcSatL8/IenUmmU2pH0FoAvSGeqLJS2LiAurXvqmsopr5YTNVElrlZ00OtlZC/x+yioi437wLHTFhKmPRMQdEXFb+n19UNn1861+Bz8REU9HxN3KTpaeMoZ1/U1ErIttL99o5fMRsaJBmUqd5+r023uRtq3zvDdtc1mqE31S0sFuo1UvIr4dEb9KJ4F+qCzJf3WDxd8i6XPp2D4u6YIc66q1SdJ827tExOORrjVO8/eStG+q4/woIrZL9No8LhdExBMR8ZCkm5Rassb42ZuR/tbW8Y5I/0cblH2H/l9J91fFd0lEbKj6nzjI9q5V5a+NiJ+k43e5trayNT32HdZtl9h+WlkydrOkL6X5bdXTnV3Td7Kkc9J7elDS32rbOl5l/8xoFsggJnonRcSMqukf0/wPKcvKf+KsW1yr/rKPRsRzVc/3lXRt5Qtb2cHbouzsR0O297R9ZWomf1LS15WdMWgq/bN9R9Lrbb+51fLJ3srODlTW8ZSkx9T4epBmy++tqutK0j/9ypry1deddPxeU9nptv8hNU8/KekWSTPc+ALWx5X9+FR7OB3zXZR98J+V9LWqbfy5sy4P69Mx3LUmvuov9Wck7ZB+OPeWtKrmi++F/dZB7FL2Od1Z0tGSXlkVR+0xGVW2n+sdw22WTY/3rllmZ0lPNIkDKLU+XKN3lLIf22OcjSJ8p+0TJF0i6aW271F2hva0VBlbKukqSfdK+q6kM9LJJAy+CVMfsf3y1Pr3SFr3J9tYd3Ud4oXfrzbXtUJj16xMvTpP9fL7Svpc1T5fp+wYtrze1vbxtm9LXfWeUJZYNNo328RRG/MY11Xrj9Lyv3HWdfjINP/TylqcbnDWHfQjDd5HO8elth61Uyo7ls/eE+lvbR3vtvR/tLOyVu79UwyVLq8XOOvO/KSkB1OZZnW8yiB4TY99h/83h6b1v1VZy/OLqrbVTj19WFkDQ20dr3q5yv55olkgg5jo1RURj0TEeyJib2UXeX7JzUe2qj2bsULS8TVf2jtE1j2umU+mdb0qJSBvV02/7xYmS3pZy6UyDyv7MpL0QvP3HmrcTajZ8quVdSmpvObq50ntPsrzXs9W1rr2u6lspStGo/J3KWu2rysi1ivrnvmmFP+rlf24vkXSbhExQ9L6NuNbLWlW2gcV++SIvTrOH0q6VGkodm1/TKysm0C9Y7jNsimmh6vKzlLWqpBriGlgvHIPum22MermrRHhiDgwIg5O0/URsTEi3h4RB0TEoRHxg6oy50fEyyLiFanCjAlsQOsjX5b0C0nz0rrPbWPd1V2aq3+/2llXva6FrTQrs7o6nqrf3ooVyro9Vu/zHSOi6W2MnF0j/w1lv/F7prrH9Wq8b7ape9XE1GpdT0uaXrX8S6pXHBE/jYgFyro2flPZCSilFqOzI+Klyi5h+Z+2j60TWyfHuKLtz15kAwz+Ss3reL9Vti8qI4v/ibIRjl+r7CT+3DS/3Tpes2Pf0f9NOtF3laQfS/pYmt1uPX2ttrb8V+xTs9zvKBuQ8clmcUyYRM/2H3vrABmPKztolS4Iv1XWB7aZv5d0fqWZ3vZMtzfU8M6SnpK0PlW8G95KwPYr09maHW1Psf12ZUlDwwtSa1wh6Z22D05fCJ+UdHtq8pW2f5/Nlv+2pFfZPim1ap2h7AxKV95rg7LPKrslwO7a2pWxkevVpOnc2UAJJ2vrKJ87K7v/1aOSJtv+mLI+7u34cSr7gXRc/lDbDo8+1thrXSTpdbYPUvbF+0bbxzq7DuhsSc8rG1im1hWS/jJ9FoeVfZF8ver1P5D0g9Q9ABhIPRqMBeiZAa2P7CzpSUlPObsuqZ2h7/9X6hGzv7JrjyrX1nWyrnb2WzPfVjZc/R+mOs8HtG2d5+8lnZNirQyU8cdtrHeqsstEHpW02fbxyq5JbOQqSWfanuVswI8Pj2FdP0/v4WBn4w98vPKC7am232Z719Q98Umlz5ztE50NEGRlJ8C3aOvnsVonx6W67Fjqh63qeHtI+q/ato73vLLWselKLX1tanXs89Rtpaz77XtS4t2qni5JSr0+rlL2f75z+l//n9q+jtfyxOEgJnrf8rb3rbk2zT9M0u22n1J2zcSZsfVeFR+X9DVnTfJvabDez6VyNzjrH3ybsubYVj6hrAl3vbIP0zVNlnWKZY2yf+Qzld1+YEmTMi+IiH+X9L+UneVYrezM28lVi3xcVe+z2fIRsVbSH0v6lLJ/nPnKLnptljSM5b3WukjZtWhrle3b77ZY/jJJJ9jesWre3pXjrqyJe3dl/aGlbGTL7yq7du83kp5Tm10/ImKjsguwT1fWXeOt2va9jTX22vU/mt7PxyLiPmVni76Q1vcmZUN0b6xT9K+VHZO7JN2t7OLj6pu4v03ZjxMwsIpu0QPGYCLVR/5cWavKBkn/qK1JWzM/VNZl8PuSPhMRN+RY18fVer81VFXnuUBZnWeestESK69fK+n/SLrSWfe9e5QNmtJqvRuUJQ5XKUvq/0TZsWvkH5Vdd3eXpJ8pS3g2S9rSal2RDXL3V5L+Xdm1a7XXfp4q6cEU/3u1tX40L5V5StmJ7S9FxE11YuvkuFSMtX64SNLbanpSHVlVx1um7HP5/vTaZcrqdquUdZOvHoivqVbHvoPYa9d/t7JLev6ijXp6tfcra6X9tbJj+U/KLhGoOEXpXtLNOLa/3hLYjrMhXVdKeluDL4DC2f6kpDURcVG/YymK7YckvT0ibmmx3IGS/iEijmy2HFBm+0yaHB/ecUbX1/u+px+7IyJGWi8JYKycDTzxgKQpUTP6JbaVWu3+PiLaupXDILH9T5Kuiohv9juWIqR69hZlg+I81GLZN0k6NSJantTgppFoyPYblI1c+ayypmprDGdJei0izu13DEWyPVPZ8McPtlo2Iu5SNvwxMLCsweyWAmBiSr2UXqOsVW9PZZeCXNu00ICKiD/pdwwFO0BZb7PaEe63ExHfkvStdlbKbySaOVLZBbGVLoQnxdiGMkaXOLtnzP2SvtDqTA8wkdB1E8AAsbKugo8r67q5TFsH8sCAsv1Hym5H8eEGl+p0vm66bgIAymjupCnx0ekzur7ehU+tpesmAKD06LoJACgtWuAAAKiPrpsAAAAAMGAKbdEb3n23mDt7785X4C6cunXO3LYbXV3zrqMb+6Gje41uE0QXYhgH8h6L0S35Y8i7jslTc5bP9zXw4EMrtHbtYwPygUDZ8MHDoBse3iPm7rNPv8MA0EUPPvRQIXWnQhO9ubP31k//7arOVzB5Sv4gpu7YeplmNj6XP4a8Ffsp0/LHsGVTvvJDk/LHkNdovft5jnUd+Y5FPPVE7hDimSdzlR+aObv1Qs3s9pLWyzRx2O8fk2/7QIcsum5i8M3dZx8tvvXmfocBoItG/svRhWyHa/QAAKU1RJseAAB1cY0eAAAAAAwYWvQAAKVk7nsHAEBDuVr0bB9n+z7by21/pFtBAQDQjqEeTEAvUXcCUJSOf9NsT5L0d5KOlzRf0im253crMAAAWnEPJqBXqDsBKFKerpuHS1oeEb+WJNtXSlog6d5uBAYAQDPZqJukZigV6k4ACpOnl8osSSuqnq9M87Zhe6HtxbYXP7ru8RybAwAAKLWx153WPlZYcAAGS88vR4iIRRExEhEjM3ffrdebAwBMIHTdxCDapu40vEe/wwFQUnm6bq6SNKfq+ew0DwCAQpCYoWSoOwEoTJ4WvZ9Kmmd7P9tTJZ0s6bruhAUAQGu06KFkqDsBKEzHLXoRsdn2+yR9T9IkSZdExNKuRQYAQAtmMBaUCHUnAEXKdcP0iLhe0vVdigUAAGCgUXcCUJRciR4AAP1CV0sAABorNtGbNFnaZbjz8s89lT+Gjc/lXEHkj2HylJwhjOaPIW/1aPLU/CHk3Q9bNuePYfOmfOUnd+FfKOfxjOefyVXez27IVV6j3fg8Ap3p+dDRAACUFC16AIDS4hI9AADqI9EDAJSW6bwJAEBd9HoBAAAAgAFDix4AoJQYjAUAgMZI9AAApUWiBwBAfSR6AIDSGiLTAwCgLq7RAwAAAIABQ4seAKCkzKibAAA0QKIHACglBmMBAKAxum4CAMrJ2Q3Tuz013aQ9x/ZNtu+1vdT2mTWvn207bA+n57b9edvLbd9l+9De7RAAALaiRQ8AUFp9aNHbLOnsiFhie2dJd9i+MSLutT1H0uslPVS1/PGS5qXpdyV9Of0FAKCnaNEDAKBNEbE6IpakxxskLZM0K738WUkfkhRVRRZIuiwyt0maYXuvImMGAExMtOgBAEprqDdtesO2F1c9XxQRi2oXsj1X0iGSbre9QNKqiPi5t+3/OUvSiqrnK9O81V2PGgCAKiR6AIBS6uFgLGsjYqTptu2dJH1D0lnKunOeq6zbJgAA4wKJHgCgtFoNntKbbXqKsiTv8oi4xvarJO0nqdKaN1vSEtuHS1olaU5V8dlpHgAAPcU1egCA0nIPpqbbyzK5iyUti4gLJSki7o6IF0fE3IiYq6x75qER8Yik6yS9I42+eYSk9RFBt00AQM8V26IXIW18tvPy7kZeuiVn8c35Q9j0fL7y3dgPk6fkK795Y/4YYjRf+W4ci9Gcn4ehSblD8LQd85WfMi1fAJNyfha4kxkmlqMknSrpbtt3pnnnRsT1DZa/XtIJkpZLekbSO3seIQAAousmAKDEXPCJhoi4VS3ObqRWvcrjkHRGj8MCAGA7JHoAgFKypCEalAEAqItEDwBQWuR5AADUR6IHACgtEj0AAOrreFQP23Ns32T7XttLbZ/ZzcAAAAAGCXUnAEXK06K3WdLZEbHE9s6S7rB9Y0Tc26XYAABoqujBWICcqDsBKEzHiV66D9Dq9HiD7WWSZkniywoAUIh+3DAd6BR1JwBF6so1erbnSjpE0u3dWB8AAK1YOa4/APqMuhOAXsv9G2l7J0nfkHRWRDxZ5/WFthfbXvzoY4/l3RwAAECpjanutJa6E4DO5Er0bE9R9kV1eURcU2+ZiFgUESMRMTJzjz3ybA4AgG24BxPQS2OuOw1TdwLQmY67btq2pIslLYuIC7sXEgAA7TEX6aFEqDsBKFKeFr2jJJ0q6Rjbd6bphC7FBQBAS7TooWSoOwEoTJ5RN28Vv4kAgD4hMUPZUHcCUCQGLAMAAACAAdOV2ysAAFA4m2v0AABooNhELyKbOjXUhQbITaP515HXtOn5yk/qwmEbmpSv/LNP5Y9hyrR85Ue7cSy35CrtvO9BUkzfJd8K8saQ9/+Kejb6aIjPHzAhRJ76oyRFN+oM+b5w3I16LDAGtOgBAErLZHoAANRFogcAKCVLoucmAAD10YYMAAAAAAOGFj0AQDmZFj0AABoh0QMAlBajbgIAUB+JHgCgtMjzAACoj0QPAFBatOgBAFAfg7EAAAAAwIChRQ8AUErcXgEAgMZI9AAA5WRpiEwPAIC6SPQAAKVFngcAQH0kegCAkjKDsQAA0ACDsQAAAADAgKFFDwBQSpZkTlcCAFAXiR4AoJzMffQAAGiERA8AUFrkeQAA1FdsojdpkjR9l87Lb3w2fwxbNuUrP2WH3CHE2pX5yv/y57lj0L4vz1V8aK+X5g7BO+6cq3x05fMwJV/5zTk/T5IckW8FWzbnK/98zv04OpqvPABgoMXolvwr2bAuXwyPPJA7BO+xV74YZrwkfwyTc9ZbMKFwdQMAoLRsd31qsb05tm+yfa/tpbbPTPM/bfsXtu+yfa3tGVVlzrG93PZ9tt/Q2z0CAECGRA8AUFp296cWNks6OyLmSzpC0hm250u6UdIBEXGgpF9KOieLz/MlnSxpf0nHSfqS7Um92RsAAGxFogcAKCVLGrK7PjUTEasjYkl6vEHSMkmzIuKGiKj0o75N0uz0eIGkKyPi+Yh4QNJySYf3Yn8AAFCNwVgAAOXUXgtcJ4ZtL656vigiFm23eXuupEMk3V7z0rsk/XN6PEtZ4lexMs0DAKCncid6qQvKYkmrIuLE/CEBANBXayNipNkCtneS9A1JZ0XEk1XzP6qse+flvQ0RZUbdCUARutGid6ayris5htMEAGDs+nEfPdtTlCV5l0fENVXzT5d0oqRjI14YTneVpDlVxWeneZjYqDsB6Llc1+jZni3pjZK+0p1wAABoX9GDsTjLLC+WtCwiLqyaf5ykD0l6c0Q8U1XkOkkn255mez9J8yT9pNv7AeVB3QlAUfK26F2k7Ict3w3RAAAYI6svN0w/StKpku62fWead66kz0uaJunG1Mp4W0S8NyKW2r5K0r3KunSeERFduKkYSuwiUXcCUICOEz3bJ0paExF32D66yXILJS2UpH3mzG60GAAAY2PLQ8VmehFxq7Ics9b1TcqcL+n8ngWF0uis7jSn0WIA0FSerptHSXqz7QclXSnpGNtfr10oIhZFxEhEjMwc3iPH5gAAAEqNuhOAwnSc6EXEORExOyLmKrsZ7A8i4u1diwwAgBb6cMN0oGPUnQAUifvoAQBKq9UNzgEAmKi6kuhFxM2Sbu7GugAAaEefBmMBuoK6E4Beo0UPAFBa/biPHgAAZZDrPnoAAAAAgPGn2Ba9LZulDY91Xn7y1Pwx7LRbvvIRuUPY8qX/k6v8BRf/OHcM7z8s360udr3qmtwxxOaN+Vaw8bncMeQ21IVzJd34XOeR9z3QooJ+YfAUoByeezr3Kkav/nKu8v/x1/+cO4Yj//jgXOUnnXth7hhi1xfnKk8viImFrpsAgNKi0gIAQH0kegCA0iLPAwCgPq7RAwAAAIABQ4seAKCUstsr0KQHAEA9JHoAgHKyZPqlAABQF4keAKCkTIseAAANkOgBAMpriEQPAIB66PQCAAAAAAOGFj0AQHnRdRMAgLpI9AAA5WRG3QQAoBESPQBAeXGNHgAAdZHoAQBKynTdBACgAQZjAQAAAIABQ4seAKCUbMl03QQAoC4SPQBAedF1EwCAukj0AAClRYseAAD1FZvojY4qnnmy4+LeeY/8MUyakn8dOT2/cl2u8qs2bs4dw28e2pCr/IGjW3LHoByfBUmKZ5/KHYKnTMu3gqk75I5Bk/v8mcz9P0FFG31Eix4w/nWhzhC/+lWu8pevWZ87hlcufiBX+T02Ppc7Br7xMBYMxgIAAAAAA4aumwCAcrK5jx4AAA2Q6AEASst03QQAoC4SPQBAedGiBwBAXbmu0bM9w/bVtn9he5ntI7sVGAAAwKCh7gSgKHlb9D4n6bsR8d9sT5U0vQsxAQDQmsWomygj6k4ACtFxomd7V0m/L+l0SYqIjZI2dicsAABaM2NHo0SoOwEoUp6fyP0kPSrpq7Z/Zvsrtl/UpbgAAGjN7v4E9A51JwCFyZPoTZZ0qKQvR8Qhkp6W9JHahWwvtL3Y9uJH1z2eY3MAAFSx5aHuT8036Tm2b7J9r+2lts9M83e3faPt+9Pf3dJ82/687eW277J9aAF7BuPX2OtOax8rOkYAAyJPordS0sqIuD09v1rZl9c2ImJRRIxExMjM3XfLsTkAAPpus6SzI2K+pCMknWF7vrLK+vcjYp6k72tr5f14SfPStFDSl4sPGePI2OtOw3sUGiCAwdFxohcRj0haYfsVadaxku7tSlQAALSj4K6bEbE6IpakxxskLZM0S9ICSV9Li31N0knp8QJJl0XmNkkzbO/Vgz2BEqDuBKBIeUfdfL+ky9OoUb+W9M78IQEA0Kbe3Edv2PbiqueLImJR7UK250o6RNLtkvaMiNXppUck7Zkez5K0oqrYyjRvtTBRUXcCUIhciV5E3ClppDuhAADQvqwBrieJ3tqIaPrbZnsnSd+QdFZEPFkdR0SE7ehFYCg/6k4AipK3RQ8AgP7pTYteU7anKEvyLo+Ia9Ls39reKyJWp66Za9L8VZLmVBWfneYBANBT3IEIAIA2OWu6u1jSsoi4sOql6ySdlh6fJulfq+a/I42+eYSk9VVdPAEA6JliW/SmTJVf8tLOyz+7IXcI8fgjucp75pzWC7Ww4xkLc5X/5NoLWy/Uwi5vPDL3OnKbPDVXcU+ekj+GoZznOrrRbWx0NF/5LZvyld+cs3zkjB/oWF/ue3eUpFMl3W37zjTvXEkXSLrK9rsl/UbSW9Jr10s6QdJySc+I67EwEU2bnnsVPvW9ucp/cfbs/DEcdFi+8rvkH0G1R93VMaDougkAKK2iKz0RcaukRhs9ts7yIemMngYFAEAdJHoAgHKy+nKNHgAAZUCiBwAoLboxAQBQH4OxAAAAAMCAoUUPAFBedN0EAKAuEj0AQDm5L6NuAgBQCiR6AIDSMi16AADUxTV6AAAAADBgaNEDAJQXXTcBAKiLRA8AUE7cRw8AgIZI9AAApcV99AAAqI9EDwBQUqZFDwCABhiMBQAAAAAGDC16AIDyousmAAB1kegBAMrJItEDAKABEj0AQHmR6AEAUFexid6WLdLT6zsvv+n53CF4Us63vG51/hjmHZKr/IzLLs0fw/Rd861gpxm5Yxi9/458K3D+S0y92575yueOoAuGJuUr34X9CPSHpSE+v8B45ynTcq9jaN5IvhXs96rcMWjSlHzlJ0/NHwMwBvxCAgAAAMCAoesmAKC86LoJAEBdJHoAgHJiMBYAABoi0QMAlBeJHgAAdeW6Rs/2B20vtX2P7Sts79CtwAAAaC4NxtLtCegh6k4AitLxL5rtWZI+IGkkIg6QNEnSyd0KDAAAYJBQdwJQpLxdNydL2tH2JknTJT2cPyQAANpE102UD3UnAIXouEUvIlZJ+oykhyStlrQ+Im7oVmAAADRVGYyl2xPQI9SdABQpT9fN3SQtkLSfpL0lvcj22+sst9D2YtuLH123rvNIAQCoRaKHEumo7rT2saLDBDAg8lx1/lpJD0TEoxGxSdI1kn6vdqGIWBQRIxExMnP33XNsDgCAagzGgtIZe91peI/CgwQwGPL8oj0k6Qjb021b0rGSlnUnLAAAgIFD3QlAYToejCUibrd9taQlkjZL+pmkRd0KDACAluhqiRKh7gSgSLlG3YyI8ySd16VYAABoX2UwFqBEqDsBKEre2ysAANA/JHoAANTFVecAAAAAMGCKbdHLO3T11B26E0MeEflDGO3C+8hraFK+8s8/kz+EPefmW0GM5o5B06bnK593P0rSls35yve7RaPf28eEZVlmlExgQvDkKflWkLc8UEL8QgIAyqsP99GzfYntNbbvqZp3sO3bbN+Z7n92eJpv25+3vdz2XbYP7eHeAADgBSR6AIByqgzGUvwN0y+VdFzNvE9J+kREHCzpY+m5JB0vaV6aFkr6chfeOQAALZHoAQDKqw+JXkTcImld7WxJu6THu0p6OD1eIOmyyNwmaYbtvbr07gEAaIhRNwEAyO8sSd+z/RllJ1F/L82fJWlF1XIr07zVhUYHAJhwaNEDAJSUpaGh7k/ScLrOrjItbCOYP5P0wYiYI+mDki7u5TsHAKAVWvQAAOXVm1Ff10bEyBjLnCbpzPT4XyR9JT1eJWlO1XKz0zwAAHqKFj0AQDn1bzCWeh6W9Afp8TGS7k+Pr5P0jjT65hGS1kcE3TYBAD1Hix4AoLz6cB9H21dIOlpZF8+Vks6T9B5Jn7M9WdJzykbYlKTrJZ0gabmkZyS9s/CAAQATEokeAABjEBGnNHjpP9dZNiSd0duIAADYHokeAKCkXBk8BQAA1CDRAwCUVx+6bgIAUAYkegCAcqoMxgIAALZDogcAKCm6bgIA0Ai/kAAAAAAwYGjRAwCUF103AQCoi0QPAFBeJHoAANRVfKI3NKk/ZSu2bMpXfvPG/DEoZ8Vk2o75Q4jIV37jc/ljmL5LvvKjW/LHMHlK/nXkFaP93X43/q+AfmAwFgAAGuIaPQAAAAAYMHTdBACUFKNuAgDQCIkeAKC86LoJAEBdJHoAgPIi0QMAoK6WfV5sX2J7je17qubtbvtG2/env7v1NkwAAGpYkoe6PwE5UXcCMB6084t2qaTjauZ9RNL3I2KepO+n5wAAAKDuBGAcaJnoRcQtktbVzF4g6Wvp8dckndTdsAAAaMXSUA8mICfqTgDGg06v0dszIlanx49I2rPRgrYXSlooSfvMntXh5gAAqIOuliiPzupOc+YUEBqAQZT7FzIiQlLDu29HxKKIGImIkZl77J53cwAAbGV3fwJ6bEx1p+E9CowMwCDptEXvt7b3iojVtveStKabQQEA0JK5jx5KhboTgEJ1+gt5naTT0uPTJP1rd8IBAAAYSNSdABSqndsrXCHpx5JeYXul7XdLukDS62zfL+m16TkAAMWi6ybGIepOAMaDll03I+KUBi8d2+VYAAAYGwZjwThE3QnAeNDpNXoAAPQfLXAAANRFogcAKCcGYwEAoKFyJXqjW/Kv49mn8oXw6IrcIXjajvnKz9wndwyaPCX/OvLasilf+U0b88eQ9zPVjdaE0dF85Sfl/DeelPOzQIsKAADAuFOuRA8AgGqcaAAAoC4SPQBAeTEYCwAAdZHoAQDKyZaGaNEDAKAeToUCAAAAwIChRQ8AUF503QQAoC4SPQBAeTEYCwAAdZHoAQBKyrToAQDQAIkeAKCcLAZjAQCgAU6FAgAwBrYvsb3G9j01899v+xe2l9r+VNX8c2wvt32f7TcUHzEAYCKiRQ8AUF79uUbvUklflHTZ1jD8GkkLJB0UEc/bfnGaP1/SyZL2l7S3pH+3/fKI2FJ41ACACYUWPQBAeXmo+1MLEXGLpHU1s/9M0gUR8XxaZk2av0DSlRHxfEQ8IGm5pMO7twMAAKiPRA8AUE6VG6Z3e+rMyyW92vbttn9o+7A0f5akFVXLrUzzAADoKbpuAgDKqzejbg7bXlz1fFFELGpRZrKk3SUdIekwSVfZfmkvggMAoB0kegAAbGttRIyMscxKSddEREj6ie1RScOSVkmaU7Xc7DQPAICeousmAKC87O5PnfmmpNdkIfnlkqZKWivpOkkn255mez9J8yT9JP8bBwCgOVr0AAAl1Z8bptu+QtLRyrp4rpR0nqRLJF2SbrmwUdJpqXVvqe2rJN0rabOkMxhxEwBQhGITvdFR6bmnOy8/NCl3CLHx2Xwr2LQxdwyaskP+deSVt3I01IXK1ZbN+cqPdqGutDnyle/CZzL3+8g9vHzOfQD0S59umB4RpzR46e0Nlj9f0vm9iwgAgO3RogcAKK8+tOgBAFAG/EICAAAAwIChRQ8AUF65uy4DADCYSPQAACXl7lwvDADAAGr5C2n7Ettr0khilXmftv0L23fZvtb2jJ5GCQBALWs83V4BeAF1JwDjQTunQi+VdFzNvBslHRARB0r6paRzuhwXAABAWV0q6k4A+qxlohcRt0haVzPvhoiojI1/m6TZPYgNAIDmPNT9CciJuhOA8aAbv2jvkvSdRi/aXmh7se3Fj657vAubAwBAym6YTtdNlFL7dae1jxUYFoBBkivRs/1RSZslXd5omYhYFBEjETEyc/fd8mwOAIBtDQ11fwJ6aMx1p+E9igsOwEDpeNRN26dLOlHSsRERXYsIAIB2VAZjAUqCuhOAInWU6Nk+TtKHJP1BRDzT3ZAAAAAGC3UnAEVrmejZvkLS0ZKGba+UdJ6ykaKmSbrR2dnU2yLivT2MEwCAGmbwFIxL1J0AjActE72IOKXO7It7EAsAAGND102MQ9SdAIwHHV+jBwBA39GiBwBAXSR6AIBysqUhWvQAAKin2ERvdIvi6fUdF/eOO+UOwVN3zLeCPffNH8OUaflW0I3hv0e35Cw/mj+GKVP7H8OknP8C3eg2lvd95B24bfOm/m4fAAAAXUeLHgCgvOi6CQBAXSR6AIDyYjAWAADqItEDAJQUt1cAAKAREj0AQGmZFj0AAOriVCgAAAAADBha9AAA5WTRdRMAgAZI9AAAJcU1egAANEKiBwAoL26YDgBAXSR6AIDyokUPAIC6+IUEAAAAgAFDix4AoJwsbpgOAEADJHoAgJJiMBYAABoh0QMAlBctegAA1MWpUAAAAAAYMLToAQDKi66bAADURaIHACgnm/voAQDQQLGJ3tCQvMP0HOUn5Y9hyrRcxT1pHOTGMdr/dUzdIX8Mea+tmTwlfwx5P1PduD5odEv+dZR5+0AefWjRs32JpBMlrYmIA2peO1vSZyTNjIi1ti3pc5JOkPSMpNMjYknRMQMAJh76vAAAysvu/tTapZKO2z4Uz5H0ekkPVc0+XtK8NC2U9OXc7xkAgDaQ6AEAMAYRcYukdXVe+qykD0mKqnkLJF0WmdskzbC9VwFhAgAmuHHQDxEAgE6Mn/vo2V4gaVVE/NzbtgrOkrSi6vnKNG91geEBACaglr+Qti+xvcb2PXVeO9t22B7uTXgAADTRm66bw7YXV00Lm4fg6ZLOlfSxIt4yxj/qTgDGg3Za9C6V9EVJl1XPbHAtAgAAxbB61aK3NiJGxrD8yyTtJ6nSmjdb0hLbh0taJWlO1bKz0zwMtktF3QlAn7X8hRzjtQgAABTE0tBQ96cxioi7I+LFETE3IuYq6555aEQ8Iuk6Se9w5ghJ6yOCbpsDjroTgPGgo1Oh1dcidDkeAADGNdtXSPqxpFfYXmn73U0Wv17SryUtl/SPkv5HASFiHKLuBKBoYx6MpepahNe3ufxCZUNKa59ZDDQGAOget3c7hK6KiFNavD636nFIOqPXMWF8y1V3mjOnxdIAUF8nLXrV1yI8qK3XIryk3sIRsSgiRiJiZObuu3UeKQAAtTzU/Qnovs7rTsN7FBgmgEEy5ha9iLhb0osrz9MX1khErO1iXAAANGe1e4NzoK+oOwHoh3ZurzCWaxEAACiIadHDuETdCcB40LJFbyzXIgAAAEx01J0AjAdj7roJAMC4QddNAADqItEDAJRXB/e9AwBgIiDRAwCUk02LHgAADRSa6N1x971rh+Ye+JsmiwxL6vcIVMQwPmLo9/aJof0Y9i0qEACYaO742Z1r/aIZ1J3Gfwz93j4xlCuGQupOhSZ6ETGz2eu2F0fESFHxEMP4jaHf2yeG8RUD0BCjZGLAUXcqRwz93j4xEEM9dN0EAJQXXTcBAKiLRA8AUGIkegAA1DPeEr1F/Q5AxFDR7xj6vX2JGCrGQwxAHQzGAmh8fEcTQ/+3LxFDBTEkjoh+xwAAwJiNHHhA/PTbV3V9vUP77H/HeLi2AgCAPMZbix4AAO2jRQ8AgLpI9AAAJUaiBwBAPeNmXGrbx9m+z/Zy2x/pw/bn2L7J9r22l9o+s+gYUhyTbP/M9r/1afszbF9t+xe2l9k+sg8xfDAdg3tsX2F7hwK2eYntNbbvqZq3u+0bbd+f/u7Whxg+nY7FXbavtT2j6BiqXjvbdtge7mUMQNusrTdN7+YElAD1pm1ioe5E3Ym6Ux3jItGzPUnS30k6XtJ8SafYnl9wGJslnR0R8yUdIemMPsQgSWdKWtaH7VZ8TtJ3I+KVkg4qOhbbsyR9QNJIRBwgaZKkkwvY9KWSjquZ9xFJ34+IeZK+n54XHcONkg6IiAMl/VLSOX2IQbbnSHq9pId6vH1gbNyDCRjnqDdth7oTdadq1J2ScZHoSTpc0vKI+HVEbJR0paQFRQYQEasjYkl6vEHZP+msImOwPVvSGyV9pcjtVm1/V0m/L+liSYqIjRHxRB9CmSxpR9uTJU2X9HCvNxgRt0haVzN7gaSvpcdfk3RS0TFExA0RsTk9vU3S7KJjSD4r6UOSGL0JAPqPelNC3ekF1J22zqPulIyXRG+WpBVVz1eqD18WFbbnSjpE0u0Fb/oiZR+I0YK3W7GfpEclfTV1gfiK7RcVGUBErJL0GWVnP1ZLWh8RNxQZQ5U9I2J1evyIpD37FEfFuyR9p+iN2l4gaVVE/LzobQOt0aSHCYl601YXiboTdafGJnTdabwkeuOG7Z0kfUPSWRHxZIHbPVHSmoi4o6ht1jFZ0qGSvhwRh0h6Wr1vct9G6su9QNkX596SXmT77UXGUE9k9yHp2xkZ2x9V1k3m8oK3O13SuZI+VuR2gfb04Po8rtEDxqRf9aa0bepOou7UCHWn8ZPorZI0p+r57DSvULanKPuyujwiril480dJerPtB5V1wTjG9tcLjmGlpJURUTkjd7WyL68ivVbSAxHxaERsknSNpN8rOIaK39reS5LS3zX9CML26ZJOlPS2KP7Gly9T9sPx8/TZnC1pie2XFBwHUB+JHiYm6k0Z6k4Z6k41qDtlxkui91NJ82zvZ3uqsgtIrysyANtW1r96WURcWOS2JSkizomI2RExV9n7/0FEFHo2JiIekbTC9ivSrGMl3VtkDMq6HRxhe3o6JseqfxdYXyfptPT4NEn/WnQAto9T1iXlzRHxTNHbj4i7I+LFETE3fTZXSjo0fVaAcYCum5iQJny9SaLuVIW6UxXqTluNi0QvXTD5PknfU/bBvCoilhYcxlGSTlV2NujONJ1QcAzjwfslXW77LkkHS/pkkRtPZ8SulrRE0t3KPqOLer1d21dI+rGkV9heafvdki6Q9Drb9ys7W3ZBH2L4oqSdJd2YPpN/34cYAADjCPWmcYe6E3WncVl3cvGtmQAA5Ddy0Kvipzd0/2Tx0EtedkdEjHR9xQAAFGhyvwMAAKBzdLUEAKAeEj0AQDkxeAoAAA2Ni2v0AAAAAADdQ4seAKC8aNEDAKAuEj0AQImR6AEAUA+JHgCgtEyLHgAAdZHoAQDKi0QPAIC6GIwFAAAAAAYMiR4AoKTco6nFVu1LbK+xfU/VvE/b/oXtu2xfa3tG1Wvn2F5u+z7bb8j9tgEAaAOJHgCgvCr30uvm1Nqlko6rmXejpAMi4kBJv5R0Thae50s6WdL+qcyXbE/q1tsHAKAREj0AQDlZfUn0IuIWSetq5t0QEZvT09skzU6PF0i6MiKej4gHJC2XdHjX9gEAAA2Q6AEASqz4rptteJek76THsyStqHptZZoHAEBPMeomAADbGra9uOr5oohY1E5B2x+VtFnS5T2JDACANpHoAQDKqze3V1gbESNjD8WnSzpR0rEREWn2KklzqhabneYBANBTdN0EAJTXOOm5afs4SR+S9OaIeKbqpesknWx7mu39JM2T9JPOtgIAQPto0QMAlFTXrqkb21btKyQdrayL50pJ5ykbZXOapBudtTLeFhHvjYiltq+SdK+yLp1nRMSWwoMGAEw4JHoAgPLqTdfNpiLilDqzL26y/PmSzu9dRAAAbI+umwAAAAAwYGjRAwCUU+U+egAAYDskegCAEiPRAwCgHhI9AEB50aIHAEBdXKMHAAAAAAOGFj0AQEmZFj0AABog0QMAlBiJHgAA9ZDoAQDKixY9AADqckT0OwYAAMbM9nclDfdg1Wsj4rgerBcAgMKQ6AEAAADAgGHUTQAAAAAYMCR6AAAAADBgSPQAAAAAYMCQ6AEAAADAgCHRAwAAAIAB8/8BicMJ6MjqXjsAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "recorteR3 = trim(imagen[:,:,0], 560, 320, 15, 15)\n", + "poptR3, pcovR3 = curve_fit(gauss2d, xdata3, recorteR3.ravel(), p0=[1,1,1,1,1])\n", + "estrellaR3=gauss2d(xdata3, poptR3[0], poptR3[1],poptR3[2], poptR3[3], poptR3[4])\n", + "FWHMR3=FWHMR.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptR3[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 3 fotografÃa (Banda Rojo)\")\n", + "plt.imshow(recorteR3, plt.get_cmap('Reds'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 3 a partir de la gaussiana (Banda Rojo)\")\n", + "plt.imshow(estrellaR3.reshape(15, 15), plt.get_cmap('Reds'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 4 (Rojo)" + ] + }, + { + "cell_type": "code", + "execution_count": 357, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3oAAAFSCAYAAACkM60KAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA1+ElEQVR4nO3df7xcdX3n8ff75hdJSAjJ5Wd+GKBRiyg/NiJKq1TUomLjbq3C+gvLmq1FKy67VLD+3NW6bZeqa2ubKoIrC1JERWsrVKU8cAENyK8QlAhIEgL5BUmAQHKTz/5xzpDJZebO3PmeOTNn8no+HvPIvWfO95zPnJnc+XzO93u+xxEhAAAAAMDgGOp1AAAAAACAYlHoAQAAAMCAodADAAAAgAFDoQcAAAAAA4ZCDwAAAAAGDIUeAAAAAAyYib0OAACATsz3xHhaxd8iaKN2/yAiTit8wwAAlIhCDwBQSU8r9PuaXvh2/17bhgvfKAAAJaPQAwBUksX1BwAANEOhBwCorCG7+I0WPxoUAIDSUegBACqJHj0AAJqj0AMAVNZQFzr06NEDAAwCToYCAAAAwIChRw8AUFmcrQQAoDEKPQBAJVnuzmQsAAAMAAo9AEBl0aMHAEBjFHoAgEqyujQZCwAAA4CToQAAAAAwYOjRAwBUFmcrAQBojEIPAFBNlsxkLAAANEShBwCoJIsePQAAmqHQAwBUFpOxAADQGCdDAQAAAGDA0KMHAKgszlYCANAYhR4AoJKy++gxdhMAgEYo9AAAlUWPHgAAjfEdWQDbC22H7Yn579fb/k8l7Heq7e/a3mL7H7u9v1S2T7Z9n+0nbL85X3a17XM73N7lte2Uraz3uMF+n7B9ZBvrvcn2N8qICQDQH3qVj/Qb22+3fW3iNh60/ZoO2p1ie03KvvtFuzlHl/b9E9vH92jfHb33iftckB/vCW2s+wHb/7Od7Q5UoZe/MdvzA1V7fLGNdmH7N8qIsV22X5XH9T/GWO0tkg6RNCci/qDF9vb6498jn5L0xYjYPyK+bfvtknZGxOfGuyHbL5F0rKTv5L+fZXtX3ft+v+33FRp9QfL34ck8zrW2L2rnP7Yk5cfu/jbW+66kF+XHCRhI2dDN4h9Aqn0wH+mZRvlNRFwWEa/rZVyDoN2co2i23yRpW0T8PP/9E7Z31v1fWmn798uOq5W6z2Itzgdtf7idthHxUH68d7Wx+j9Iervtg1utOFCFXu5N+YGqPd6fusGyiyPbkyR9XtItLVZ9nqRfRsRI96MaW5vH6HmSVtT9fqCkszvc5X+WdFlERN2ym2rvu6Tfl/QXvTob1IZj8zhfJeltkv6wC/u4XNLSLmwX6BtDXXgABdmX8pGe6OR49PiEN9rzR5L+z6hl36jL8c6V9HXbh5QeWXtm5XG+RdJHbb+2yI1HxNOS/lnSu1qtu898p9n+Ddv/lg9z3Fgb1mb7hnyVO/Lq+221bnfbf2r7EUlftT1k+8O2f2V7k+0rbc9uY79H2f5R3maj7ctsz2rR7DxJ10q6d4ztflLSxyS9LY/77DzGP7P9a9vrbX/N9gF5k9rrfDxf/+Ut1pftd+XPbbL90fqu7PzsylW2v257q6SzbJ9o+ybbj9teZ/uLtifn6/9K0pGSvpvvf4qy/wBndHicXi/p35o9mZ8FWinpN+tezz/afiT/DNxg+0V1z11i+29s/5PtbbZvsX1U3fOvtX1v3vaLyjoTas918h7X4lwl6SeSjqvb3nttr7K92fY1tg+ve+7Zs722D8jfsw35+/Rntuv/T18v6Y3txAFU1ZBc+APopkHLR/Jtv9H2z21vtb3a9ifGWLf2mi7M43jQ2Qifltvynh6Ts20/JOlHapzfnGX7xrp2Yfsc2/dJuq9JXO+sy3k+Muq5jo553rbWbpvte2z/+zHWnWr7UtuPOeu1Ot91w0DH2pazvOzrDY5VbRjvWc5GO22z/UDtmDf7PNYdt1rO0c778m7bD+Xb+Ujd803zwwbHYLKkV2vsHO8HkrZJOipvc6Dt7+X50GP5z/Pqtnm97f/ubDjoNtvX2h6ue36s977t2BvEuVxZB8dx+baa5t0N3q/DneWAm53lhO8dtfnr1UaOt88UepL+u7I/VgdKmifpf0tSRLwyf/7Y/ExB7QN+qKTZynqhlkr6gKQ3K+uBOVzSY5L+po39WtKf521+U9J8SZ9ourL9PGW9O58aa6MR8XFJn9GeMxxfkXRW/vgdZUXV/pJqQ0Vqr3NWvv5NY61v+2hJfyvp7ZIOk3SApLmjwlgi6SpJsyRdJmmXpA9JGpb0ckmnSvrjPN6jJD2kPWc4nxn90tXmcbI9XdIRkn7R7PjYfqmk50taXrf4nyUtknSwpNvymOudIemTyj4jqyR9Ot/WsKSrJf1Z/tp+JenkTmJvEOcLJf12vj/ZfnW+rbcqO+6/lnRFk+b/W9n7cqSyz+W7JL2n7vmVkhbantlOLEDVMHQTFTVQ+UjuSWXfQbOUJZ/v89jX0B+q7Pt0rqR3S1pm+wXj2Nar8tfwu2qc3zTyZkkvk3T06CfynOdLkt6p7PjMUfbe1HR6zKUsZ/htZd/Xn1TWE3VYk3U/Lmmhsu/110p6R8K2npXnTV+Q9PqImCHpFZJuz59u+HlsoJ335bckvUBZ/vcx27WT7U3zwwYWSdodEQ2vc3TmjZImS7onXzwk6avK/o8skLRde/Lfmv+oLEc6OG/7X/PttXrvxxP76FhPknSM8hxPY+fpo10haU0e01skfSbPEWtWKruEaUyDWOh9O6+6a49aBbxT2Qfg8Ih4OiJuHGMbkrRb0scj4pmI2K6sG/kjEbEmL1I+IektbjEEICJWRcR1+XY2SLpI2R+KZr4g6aMR8UTrl/ocb5d0UUTcn7e/QNIZY8Q41vpvkfTdiLgxInYo6z2MUe1viohvR8TuiNgeEbdGxM0RMRIRD0r6+xav9VnjPE6z8n+3jVp+Uv6eb5P0U2Xd/s+euYuIiyNiW937d6zrejAlfSsifpoPhb1Me3rZ3iBpRURcFRE7JX1O0iMdxl5zm+0nlf1HvV5ZUS1l78nFEXFbHucFkl5ue2F9Y2fX9J0h6YL8NT0o6X8p+0NVUzs+s1rEAgAo3j6Tj0TE9RFxV54P3Kns0oFW34MfzWP5N0n/pOwEZ7vb+kREPJkfj3b9eURsbtLmLZK+FxE35Mf0o8qOe01Hxzx/Pf8YEQ/nr+cbyvKSE5us/lZJn4mIx/JC5wsJ2xptt6RjbE+NiHURUbuUpq3PY5vvyyfzfPAOSXcoL0TGmR/O0nPzO0l6q+3HJT0h6Rplx+nxfPubIuKbEfFURGxTdqJ+9Pa/GhG/zN//K7Unxxvzve8wt91oe7ukm5Tld9/Ol7eVp9uer6xD4U/z9+R2SV/W3kM1tykr+Mc0iIXemyNiVt3jH/Ll5ys7m/VT2ytst7omakNkY2BrnifpW7U/2MoS9F3KJkNpyvYhtq9wNunGVklfV3ZWoNG6b5I0o+4s3ngdrqwHqObXym6h0SzGsdY/XNLq2hMR8ZSkTaPar67/xfbz8+7yR/LX+hk1ea2jjec4SXo8/3fGqOU35+/5DGVnC1+UxyDbE2x/1tmQh62SHszb1O/jkbqfn1J2pkV67rGI+t/HGXvNCfn236bsDOP0un09+57kfwg26bm9qcOSJum571/9erXj83iLWIDK4ho99LF9Jh+x/TLbP86Hzm1RVhiN9T34WEQ8Wff7r5V9/7W7rdUav7HajP6ef1J75zwdHXPp2ctgbq9re4yaH5u94hgd8zi39az89bxN2bFc5+wylRfmT7f1eWzzfWmYR40zP3xMz83vJOnK/P/RdGVDNt9l+z/n259m+++dDYncqmw47yzvPdFduzneXu99h7ntcL798ySdoixfq+2rnTz9cEmb86K1ft3ROd6WFnHsO99pEfFIRLw3Ig5XNpHH33rsma1G916tVtblXf9He7+IWNti15/Jt/XiiJiprBu+2eCgUyUtzj9Mjyj7T3mu7e+0en25h5X9MapZIGlE0qMNXk+r9depruva9lRl3dn1Rm/zS8rG8S/KX+uFav5aR2v7OOX/CX+lbGhmQxHxqKRvSnpTvug/Khtq+hplZ0AW5svbiW+dsiEuWQPb9b+PJ/ZRMUZEXKnsjM/H8sV7vSf5cIs5kkZ/zjZqz1m4mgWj1vtNSQ9GxNZWsQBV5C4M22ToJrptQPOR/6usl2V+RBwg6e/G2LYkHZh/v9UsUPb91+62osnPYxlrvdHf89O0d87T0TF3Nvz1HyS9X9kM6bMk3a3mx2av3GtUTK229aSkaXVtD63fcET8ICJeq+yykHvzbY3n8zje97jeePLDVdnL9egT3PWv5UFll+PUcrzzlA0ZfVm+/dpw3k5yvNHvfUe5bUTsioiLJD2tPUM9x8q76z0sabbtGaPWHZ3j3dEqjn2m0LP9B95zYeZjyv7D17pmH1U2VnYsfyfp0/l/NNk+yPaSNnY9Q1k385b8Q/vfxlj3o8qKl+PyxzXK/iO+p3mTvVwu6UO2j7C9v/ZcwzciaYOy13tkm+tfJelNtl/h7KLTT6j1B3uGpK2SnsjPFI3n9gbjOU6S9H2N0XVue46kf689s3zOkPSMsrM005T39LXpn5TdquA/5N3rf6K9/4CON/bRPivpvbYPVfaevMf2cc4mrPmMpFvyP2rPimz63SuVfSZn5J/L/6LsDG3Nq5T9IQQGFpOxoGoGNB+ZoawH4mnbJyo7udrKJ21Ptv3bkk6XVLsf8Hi31Si/Ga+rJJ1u+7fynOdT2jtH7vSYT1f2/m7I271HWS9cM1dKusDZ5CJzlRV17W7rdkmvdHY/tgOUDQtUvu4htpfkxfUzyj4Hu/Pnxvo81uvkPa5v21Z+GNnlQv+qsXO8eZJO09453nZlE/LMVnatY7tavfcpua2U5Xjn295PY+fdz4qI1ZL+n6Q/t72fs1tlna0OcrxBLPRqszrWHt/Kl79U0i22a2N7Pxh77g3yCUmX5l3hb22y3c/n7a51dg3YzcqG3LXySWXD9LYoKxiubrZiZNdaPVJ7KPvQPhkRm9vYjyRdrOy6tBskPaDsLMIH8m0/pWzM8k/y13lSi/VX5D9foexsxxOS1iv7A9HMf1X2H3+bsi+E8QxBbfs45ZYpu4dIfVb28tr7rmxYxYba65H0NWXd3muVXbx7c7uBRcRGSX+g7D/rJmUXCv8kIfbR279L2Xvw3yLiX5V9wX5T2XE/SvnMpA18QNkZvPsl3ajsbNvFdc+fqWwsOTCw6NFDH9uX8pE/lvSpPJ6PKStYxvKIsqLiYWXXxP9RRNRm9hzXtprkN+OS5zznKPseXZfHVj8ZSEfHPCLuUXb9/E3KivgXa+/8YbRP5ft9QFmxc5XyvKvVtiLiOmV5152SbpX0vbrtDik7GfywpM3KioRawTLW57HeeN/jeuPND/9ee885IO2ZZf4JST9T9to/mT/3OUlTlY12ulnSv7QbWBvvfUpuK2X/1x6T9F6NkXc3cKay0WcPS/qWsut0/1WS8qLxDZIubbVzx163IQMay888PK6s6/qBHocjSbL9f5WN2f52r2Mpg7NbJ+yS9LyIeKjFum+S9M6IaJYoAJW3YMLE+NOpswrf7vuf3HRrRCwufMMAZPsUSV+PiHktVt3n2X6fpDMioq2J7QaJ7Z9Ien/kN00fdLaPlPRLSZOiRXFm+wPKhtCe32q73DQSTeXFwg+VDdn8K0l3ac8kJj0XEeMZNjAIjlF29ueRVitGxHclfbfrEQE9ZA3msBQA+yZnt0o4Ulmv3SJl1541m35/oEXEya3XGijHSPp1qyJPkiKi2S0wnoPvSIxlibIu44eV/cE5o50PIIpn+/cl/VjZVLs7eh0P0C8YuglggExWNmxxm7KbwX9He26/hAFl+78ouyTpw4Vvm7wdAFBFCydMio9Mm1X4dpc+sZGhmwCAymPoJgCgsuiBAwCgMYZuAgAAAMCAKbVHb3jOnFi4YH7rFZsqYJhp8iYKiMGpp6ALOIW9e6T1Ot2OIfVYFjHsePeuxA0UcByGJiSGkBjDUNr5ngcfWq2NmzbTr4Ke4IOHQTc8PCcWLljQ6zAAFOjBhx7Sxo2buv4VVmqht3DBfP3s+ms730A0un/jOO1O3EYRMUxIPOxDBbxt2zaltXcBncGJxzJ2jnVLvzZtfyKtfWqRJsnTZqRtYPLUtPZT0tq/9Hd+N23/QIcshm5i8C1csEDLb7y+12FAEvNaFMPJHR7Vt/i3TillP1yjBwCorCH69AAAaIhr9AAAAABgwNCjBwCoJHPfOwAAmkrq0bN9mu1f2F5lu/Cb/AEAMJahLjyAbiJ3AlCWjr/TbE+Q9DeSXi/paEln2j66qMAAAGjFXXgA3ULuBKBMKUM3T5S0KiLulyTbV0haIumeIgIDAGAs2ayblGaoFHInAKVJGaUyV9Lqut/X5Mv2Ynup7eW2l2/YlDilPwAAQHWNP3faSO4EoDNdvxwhIpZFxOKIWHzQnDnd3h0AYB/C0E0Mor1yp2FyJwCdSRm6uVbS/Lrf5+XLAAAoBYUZKobcCUBpUnr0fiZpke0jbE+WdIaka4oJCwCA1sru0bM93/aPbd9je4XtD456/jzbYXs4/922v5DPsHin7RMKeeGoKnInAKXpuEcvIkZsv1/SDyRNkHRxRKwoLDIAAFpw+ZOxjEg6LyJusz1D0q22r4uIe2zPl/Q6SQ/Vrf96SYvyx8skfSn/F/sgcicAZUq6YXpEfF/S9wuKBQCAvhYR6ySty3/eZnulssk07pH015LOl/SduiZLJH0tIkLSzbZn2T4s3w72QeROAMrCvWEBAJXUjWGbef/gcG3Gw/yxtOH+7YWSjpd0i+0lktZGxB2jVmtrlkUAAIqW1KM3brY8aUqpuxwtRnambWBkR3oQqdsYeTI5hNi+LW0DEycnx+DEbRTyWUp9HUUMG5u0X1r7KVPT2qd+FnbvTmsPJOjS2cqNEbF4rBVs7y/pm5LOVTac80JlwzYB9KEo5Lsq0pr3QwyFSMt9YqiAv9xO20YPhv33RLmFHgAABerFd7XtScqKvMsi4mrbL5Z0hKQ78uRhnqTbbJ8oZlkEAPQIhR4AoLJc8g0WnFVyX5G0MiIukqSIuEvSwXXrPChpcURstH2NpPfbvkLZJCxbuD4PAFAGCj0AANp3sqR3SrrL9u35sgvzCTYa+b6kN0haJekpSe/peoQAAIhCDwBQUe3c965oEXFjq91GxMK6n0PSOV0OCwCA56DQAwBU1r5xOT0AAONHoQcAqKwhKj0AABriPnoAAAAAMGDo0QMAVJRLn3UTAICqoNADAFRSLyZjAQCgKij0AADV5N7cMB0AgCqg0AMAVBZ1HgAAjTEZCwAAAAAMGHr0AACVNUSfHgAADVHoAQAqiclYAABojkIPAFBZTMYCAEBjFHoAgMqizgMAoLFyC70IxcjOztvvHkmPYWRHWvtdu9Jj2LE9qXk881RyCLH2V8nbSI5h2syk9p45OzkGT52e1D7p81yT+H56x9S0/Q9NSGsPAMAYIqKIjaS174cccqSAGJJfRwGnxyYmlg8TJqXHkLiNSMx9PFSN+Szp0QMAVJbp0wMAoCEKPQBAJVnSEHUeAAANUegBACqLOg8AgMYo9AAAlUWhBwBAYx1fSWh7vu0f277H9grbHywyMAAAgEFC7gSgTCk9eiOSzouI22zPkHSr7esi4p6CYgMAYExMxoKKIXcCUJqOC72IWCdpXf7zNtsrJc2VxB8rAEApuGE6qoTcCUCZCrlGz/ZCScdLuqWI7QEA0IqVcP0B0GPkTgC6Lfk70vb+kr4p6dyI2Nrg+aW2l9tevmHTptTdAQAAVNq4cqeN5E4AOpNU6NmepOwP1WURcXWjdSJiWUQsjojFB82Zk7I7AAD24i48gG4ad+40TO4EoDMdD920bUlfkbQyIi4qLiQAANpjLtJDhZA7AShTSo/eyZLeKenVtm/PH28oKC4AAFqiRw8VQ+4EoDQps27eKL4TAQA9QmGGqiF3AlAmJiwDAAAAgAFTyO0VAAAonc01egAANFFuobd7l/TEYx03j6e2pMewa1da+ylT02MY2ZHUPLZuTo/hsQ1p7bc8nh7D7rT3Ig4+LDmEmDk7eRvJUj9T+01Pau6D56ftH+ihIeo8oP9FpG9j18609ju2p8ewfVtS83hsfXIIsf2JtA0MTUiOwTMOTGs/s4CZZKfun9Z+4pSk5lGRk4z06AEAKstUegAANEShBwCoJEuqyElVAABKx2QsAAAAADBg6NEDAFST6dEDAKAZCj0AQGUx6yYAAI1R6AEAKos6DwCAxij0AACVRY8eAACNMRkLAAAAAAwYevQAAJXE7RUAAGiOQg8AUE2Whqj0AABoiEIPAFBZ1HkAADRGoQcAqCgzGQsAAE0wGQsAAAAADBgKPQBAJVmSh4p/jLlPe77tH9u+x/YK2x/Ml/+l7Xtt32n7W7Zn1bW5wPYq27+w/bvdPCYAANRQ6AEAqsnZffSKfrQwIum8iDha0kmSzrF9tKTrJB0TES+R9EtJF0hS/twZkl4k6TRJf2t7QpeOCAAAz6LQAwBUll38YywRsS4ibst/3iZppaS5EXFtRIzkq90saV7+8xJJV0TEMxHxgKRVkk7sxrEAAKBeyZOxhBS7O2++c0dxoXTIQ+m1cTyzPW0DWzYmx6ChtBPKsfHR9Bgefjit/YGrk0PwwqPSNjD/yPQYps9Maz/n8LQAdo20XmdMkdgeqCbbCyUdL+mWUU/9oaRv5D/PVVb41azJlwGVEZH4d373rvQgdj6d1Dy2bU4OIR5ckbaBXya2lxTrE/OvSZOSY9CCI5Kax6IXJ4cwdHhi/jY9MZ9PrgfKyZ2YdRMAUFldmnVz2Pbyut+XRcSyUfvdX9I3JZ0bEVvrln9E2fDOy7oRGAAA7aLQAwBUVpfurrAxIhY336cnKSvyLouIq+uWnyXpdEmnxp4ukLWS5tc1n5cvAwCgq7hGDwBQSZY0ZBf+GHOfWRfiVyStjIiL6pafJul8Sb8XEU/VNblG0hm2p9g+QtIiST8t+lgAADAaPXoAgGpqY/KULjhZ0jsl3WX79nzZhZK+IGmKpOvy4aQ3R8QfRcQK21dKukfZkM5zIqKAC5YAABhbcqGXTxO9XNLaiDg9PSQAAPpTRNyorDNxtO+P0ebTkj7dtaBQOeROAMpQRI/eB5VNL502dSAAAOPUpclYgG4jdwLQdUnX6NmeJ+mNkr5cTDgAALSv7PvoAanInQCUJbVH73PKLj6fkR4KAADtsyjMUEmfE7kTgBJ03KNn+3RJ6yPi1hbrLbW93PbyDZse63R3AADszZaHin8A3dJR7rRxU0nRARg0KUM3T5b0e7YflHSFpFfb/vrolSJiWUQsjojFB805MGF3AAAAlTb+3Gl4TtkxAhgQHRd6EXFBRMyLiIWSzpD0o4h4R2GRAQDQAtfooUrInQCUifvoAQAqq9UNzgEA2FcVUuhFxPWSri9iWwAAtIPJWFBl5E4Auo0ePQBAZXEfPQAAGku6jx4AAAAAoP+U26PnIWnSfp03nzE7PYahCYntC6iNd21Ma7/p0eQQ4rafJbXfev2dyTGs+NXjSe0PmjklOYYFx/0iqf3kk45LjkHHnpjWfvoBSc2d+pmOSGsPdIrJU4BypP6d370rPYYdTyc1j4fvTw4hbr0pqf32H/00OYaHf7U5qf1++6Wn/of+u18ltZ84MpIcQ0yfmdTek6emBTBhUlr7klInhm4CACqLoZsAADRGoQcAqCzqPAAAGuMaPQAAAAAYMPToAQAqKbu9Al16AAA0QqEHAKgmZ3N8AQCA56LQAwBUlOnRAwCgCQo9AEB1DVHoAQDQCINeAAAAAGDA0KMHAKguhm4CANAQhR4AoJrMrJsAADRDoQcAqC6u0QMAoCEKPQBARZmhmwAANMFkLAAAAAAwYOjRAwBUki2ZoZsAADREoQcAqC6GbgIA0BCFHgCgsujRAwCgsfILvZQv5UlT0vc/siOpeWzZnBxCrF+dtoFtW5NjeObeXye1/96KR5Nj+H9bn07bwPrkEHT2trTPw/FHzU0PYlPisTw48TM5azitPdBL9OgBJYi05rt3pUewIzVnWJscw667701qf9utDyfHcPO27UntD5yYPj3HKc+kvZ9Hzv9lcgw66jeTmvvAQ9P2H1PT2peEyVgAAAAAYMAwdBMAUE0299EDAKAJCj0AQGWZoZsAADREoQcAqC569AAAaCjpGj3bs2xfZfte2yttv7yowAAAAAYNuROAsqT26H1e0r9ExFtsT5Y0rYCYAABozWLWTVQRuROAUnRc6Nk+QNIrJZ0lSRGxQ1LaXPUAAIyDmTsaFULuBKBMKV+RR0jaIOmrtn9u+8u2pxcUFwAArdnFP4DuIXcCUJqUQm+ipBMkfSkijpf0pKQPj17J9lLby20v37Ap/WbjAABIkmx5qPgH0EXjz502bio7RgADIqXQWyNpTUTckv9+lbI/XnuJiGURsTgiFh80Z3bC7gAAACpt/LnT8JxSAwQwODou9CLiEUmrbb8gX3SqpHsKiQoAgHYwdBMVQu4EoEyps25+QNJl+axR90t6T3pIAAC0iaGWqB5yJwClSCr0IuJ2SYuLCQUAgPZlHXAUeqgWcicAZUnt0QMAoHfo0QMAoCHuQAQAAAAAA6ZaPXojBdxTdNfO3sewe1da+6EJySEMTU576ycOyHCpJ3btTtvAU0+lB7Fta1Lz2LIxbf/7H5DWPiKtPdCx8idPsT1f0tckHSIpJC2LiM/bni3pG5IWSnpQ0lsj4jFnY0s/L+kNkp6SdFZE3FZq0EDPFfA9sWskrf2OZ5JDGNm6Pan9YyOJ+Z+kB55Oy2Mfn5ieQ56wNTEXLiJ32pn4fkZi/pec+5STO9GjBwCoLNuFP1oYkXReRBwt6SRJ59g+Wtm90H4YEYsk/VB77o32ekmL8sdSSV/qxnEAAGA0Cj0AQDVZ2TV6RT/GEBHraj1yEbFN0kpJcyUtkXRpvtqlkt6c/7xE0tcic7OkWbYPK/5gAACwt2oN3QQAoE6XZt0ctr287vdlEbGswb4XSjpe0i2SDomIdflTjygb2illReDqumZr8mXrBABAF1HoAQCwt40RMeb097b3l/RNSedGxNb6gjMiwjYXrwIAeopCDwBQXT24vYLtScqKvMsi4up88aO2D4uIdfnQzPX58rWS5tc1n5cvAwCgq7hGDwBQTXZ3HmPu0pb0FUkrI+KiuqeukfTu/Od3S/pO3fJ3OXOSpC11QzwBAOgaevQAAJXl8nv0Tpb0Tkl32b49X3ahpM9KutL22ZJ+Lemt+XPfV3ZrhVXKbq/wnlKjBQDssyj0AABoU0TcqGy+z0ZObbB+SDqnq0EBANAAhR4AoLpKvmE6AABVQaEHAKim2n30AADAc1DoAQAqq0v30QMAoPIo9AAAFWV69AAAaILbKwAAAADAgKFHDwBQXQzdBACgIQo9AEA1WRR6AAA0QaEHAKguCj0AABqqVqEXkb6JkZ0FBJJoytS09tOnJ4cwac7+Se0XTpmcHMMN2p68jVRHHJp4LIeH04OYMCGt/fYn0trv3JHWvoD/l0BnLA1xqTnQ95z+/9ST0vKOmHFAcgxT5s5Oan/E/g8nx3DK7t1J7acV8Ddz3tw+yJ2mzUxrPyGxBEo+yVjOSUq+IQEAAABgwFSrRw8AgHoM3QQAoCEKPQBANTEZCwAATVHoAQCqi0IPAICGkq7Rs/0h2yts3237ctv7FRUYAABjyydjKfoBdBG5E4CydPyNZnuupD+RtDgijpE0QdIZRQUGAAAwSMidAJQpdejmRElTbe+UNE1S+ryxAAC0i6GbqB5yJwCl6LhHLyLWSvorSQ9JWidpS0RcW1RgAACMqTYZS9EPoEvInQCUKWXo5oGSlkg6QtLhkqbbfkeD9ZbaXm57+YZNmzuPFACA0Sj0UCEd5U4bN5UdJoABkXLV+WskPRARGyJip6SrJb1i9EoRsSwiFkfE4oPmzE7YHQAA9ZiMBZUz/txpeE7pQQIYDCnfaA9JOsn2NNuWdKqklcWEBQAAMHDInQCUpuPJWCLiFttXSbpN0oikn0taVlRgAAC0xFBLVAi5E4AyJc26GREfl/TxgmIBAKB9tclYgAohdwJQltTbKwAA0DsUegAANMRV5wAAAAAwYMrv0XNCbTlxUvruE9tHcgSSps1Maz9ze3oM8+YlNT/ulVuTQ5hzR9o9YmfOmJwcw0Gnn5jU3i86NjkGzTggrf3MxNlsJyUeR3pU0COWZWbJBEqQ+Hd+aEJ6CJOnprU/bGFyCD7uhKT2R+8cSY5h4X2PJrUfmpqeS099yVFJ7f3CY5Jj8OxD0jaQWlOk1DMlYugmAKC6ONEAAEBDFHoAgGpiMhYAAJqi0AMAVBeFHgAADVVjgCkAAAAAoG306AEAKsoSk7EAANAQhR4AoLoYugkAQEMUegCAamIyFgAAmqLQAwBUF4UeAAANcXEDAAAAAAwYevQAABXFZCwAADRDoQcAqC6GbgIA0BCFHgCgmpiMBQCApij0AAAVxdBNAACa4RsSAAAAAAYMPXoAgOpi6CYAAA1R6AEAqotCDwCAhkou9Cw5YbTopCnpIQylvWQXkVTMnJ3UPNIjkBe9MKn9lMPnJ8dw1Mkbk9p70qTkGLRwUVr7OYcmh+AZB6a1nzknLYChCYntGQGOHmEyFqAcqf/PUr9nJGnyfmkhHJyet+w+9uVpMQwfnBzD/i/bkLaBCQXkTofNS2rueb+RHIJnJOY+ExNritTPdEnfXWRoAACMg+2Lba+3fXfdsuNs32z7dtvLbZ+YL7ftL9heZftO2yf0LnIAwL6EQg8AUFH5rJtFP1q7RNJpo5b9haRPRsRxkj6W/y5Jr5e0KH8slfSlIl45AACtUOgBAKrLLv7RQkTcIGnz6MWSZuY/HyDp4fznJZK+FpmbJc2yfVhBrx4AgKaYjAUAUF39c43euZJ+YPuvlJ1EfUW+fK6k1XXrrcmXrSs1OgDAPqdlj16TaxFm277O9n35v2mzSQAAMF5WNsFX0Q9pOL/OrvZY2kY075P0oYiYL+lDkr7SxVeOPkfuBKAftDN08xI991qED0v6YUQskvTD/HcAAAbBxohYXPdY1kabd0u6Ov/5HyWdmP+8VlL9dH/z8mUYbJeI3AlAj7Us9Jpci7BE0qX5z5dKenOxYQEA0IqloS48OvOwpFflP79a0n35z9dIelc+++ZJkrZEBMM2Bxy5E4B+0Ok1eofUfVE9IumQZivmQ16WStKCeXM73B0AAA2k3Ju1013al0s6RdkQzzWSPi7pvZI+b3uipKeVf+9J+r6kN0haJekpSe8pPWD0i85yp/np938DsG9KnowlIsJ203t450NelknS4uOOLeJe3wAAZHowGUtEnNnkqX/XYN2QdE53I0LVjCt3OuF4cicAHem00HvU9mERsS6fJnp9kUEBANCS3e5974B+QO4EoFSdfkNeo+zCc+X/fqeYcAAAAAYSuROAUrVze4XLJd0k6QW219g+W9JnJb3W9n2SXpP/DgBAuXpww3SgFXInAP2g5dDNMa5FOLXgWAAAGJ8eTMYCtELuBKAfJE/GAgBAz9ADBwBAQxR6AIBqYjIWAACaKrnQCyl2l7vL0Tq/GW5m0n7JIXj6AYkxTE6OIXbtTNvAhEnJMTg1hie2JMeQrIDjoKn7p7WfMj2t/e6RtPaiRwUABpkTe85jaEJ6EBOnpLWfNjM5hKF5i5Lax/DhyTHo6SfT2hfwXnhqYt6xX2LeI0mTE/PxiYn5W0VGk9CjBwCorop82QIAUDYKPQBAdTEZCwAADVHoAQCqyU4fjg8AwIDiVCgAAAAADBh69AAA1cXQTQAAGqLQAwBUF5OxAADQEIUeAKCiTI8eAABNUOgBAKrJYjIWAACa4FQoAAAAAAwYevQAANXFNXoAADREoQcAqC6u0QMAoCEKPQBANXHDdAAAmqLQAwBUFz16AAA0xDckAAAAAAwYevQAANXFZCwAADREoQcAqChumA4AQDPVKvRGdhawjR1p7ScUcMgmTkpq7qEJ6TEcMJzWfsrU9Bh270prv9/05BBix9NJ7V3EcUi1M+01FPKZBnqBG6YDleACet4jNfeZtF9yDBpK+74sJGeYMTt9G6lS34vEPLiQGBJPEhbxmS4DGR4AoLro0QMAoCG+IQEAAABgwNCjBwCorooMnwEAoGwUegCAirI0xMAUAAAaafkNafti2+tt31237C9t32v7Ttvfsj2rq1ECADCalfXoFf0AEpE7AegH7ZwKvUTSaaOWXSfpmIh4iaRfSrqg4LgAAACq6hKROwHosZaFXkTcIGnzqGXXRsRI/uvNkuZ1ITYAAMbmoeIfQCJyJwD9oIhvtD+U9M/NnrS91PZy28s3bNrcbDUAAMapC8M2GbqJcrSfO23cVGJYAAZJUqFn+yOSRiRd1mydiFgWEYsjYvFBc/rgJo8AgMExNFT8A+iicedOw3PKCw7AQOl41k3bZ0k6XdKpERGFRQQAQDtqk7EAFUHuBKBMHRV6tk+TdL6kV0XEU8WGBAAAMFjInQCUrWWhZ/tySadIGra9RtLHlc0UNUXSdc7Opt4cEX/UxTgBABjFTJ6CvkTuBKAftCz0IuLMBou/0oVYAAAYH4Zuog+ROwHoBx1fowcAQM/RowcAQEMUegCAarKlIXr0AABopPxCL3Z33nbH9vTd73wmqb0nTUmOQZOnprWfWMDbNmlyUvNCjsPQhLT2++2fHEJyipjyea5tIvEzGVvT7rHkAw5Kag8AQLc58dYnEQWcFEoeQTApPYZ+mKw1ech8Ee9F2ja8jwz7p0cPAFBdDN0EAKAhCj0AQHXtI2dlAQAYL06FAgAqKr+9QtGPVnu1L7a93vbdo5Z/wPa9tlfY/ou65RfYXmX7F7Z/twsHAgCA56BHDwBQWT26zuISSV+U9LW6OH5H0hJJx0bEM7YPzpcfLekMSS+SdLikf7X9/IjYVXrUAIB9Cj16AACMQ0TcIGnzqMXvk/TZiHgmX2d9vnyJpCsi4pmIeEDSKkknlhYsAGCfRaEHAKgmqydDN5t4vqTftn2L7X+z/dJ8+VxJq+vWW5MvAwCgqxi6CQCoKHdr1s1h28vrfl8WEctatJkoabakkyS9VNKVto/sRnAAALSDQg8AUF3duWH6xohYPM42ayRdHREh6ae2d0salrRW0vy69eblywAA6CqGbgIAqqt/hm5+W9LvSJLt50uaLGmjpGsknWF7iu0jJC2S9NP0Fw4AwNjo0QMAYBxsXy7pFGVDPNdI+rikiyVdnN9yYYekd+e9eytsXynpHkkjks5hxk0AQBko9AAA1WT15IbpEXFmk6fe0WT9T0v6dPciAgDguSj0AAAV1bXJWAAAqDwKPQBAdfXmhukAAPQ9ToUCAAAAwIChRw8AUF0M3QQAoCEKPQBANdnduo8eAACVV36hl3L2tYAzt540JW0Dk6cmx6CJk9K3kcgzD+p1CNKECWnt++FMfuxO3oRTt7E70tpPSfxMDyW+j0CKfvg7AKDvuYjrefvgmuDsri29VcixRCno0QMAVBcJBwAADXEqFAAAAAAGDD16AICK4j56AAA00/Ib0vbFttfbvrvBc+fZDtvD3QkPAIAx2MU/gETkTgD6QTunQi+RdNrohbbnS3qdpIcKjgkAgNasrEev6AeQ7hKROwHosZbfaBFxg6TNDZ76a0nnS+r99D8AgH2QpaGh4h9AInInAP2go28020skrY2IOwqOBwAAYOCQOwEo27gnY7E9TdKFyoYetLP+UklLJWnBvLnj3R0AAE1xPydUQVLuNH9+FyMDMMg66dE7StIRku6w/aCkeZJus31oo5UjYllELI6IxQfNmd15pAAAjMY1eqiGznOn4TklhglgkIy7Ry8i7pJ0cO33/A/W4ojYWGBcAACMzWKWTFQCuROAXmjn9gqXS7pJ0gtsr7F9dvfDAgCgFdOjh75E7gSgH7Ts0YuIM1s8v7CwaAAAACqO3AlAPxj30E0AAPoGQzcBAGiIQg8AUF3c9w4AgIYo9AAA1WTTowcAQBOlFnq33nHXxqHh+b8eY5VhSb2egYoY+iOGXu+fGNqP4XllBQIA+5pbf377Rk+fRe7U/zH0ev/EUK0YSsmdSi30IuKgsZ63vTwiFpcVDzH0bwy93j8x9FcMQFPMkokBR+5UjRh6vX9iIIZGGLoJAKguhm4CANAQhR4AoMIo9AAAaKTfCr1lvQ5AxFDT6xh6vX+JGGr6IQagASZjAdQff6OJoff7l4ihhhhyjohexwAAwLgtfskx8bN/urLw7Q4teNGt/XBtBQAAKfqtRw8AgPbRowcAQEMUegCACqPQAwCgkb6Zl9r2abZ/YXuV7Q/3YP/zbf/Y9j22V9j+YNkx5HFMsP1z29/r0f5n2b7K9r22V9p+eQ9i+FD+Htxt+3Lb+5Wwz4ttr7d9d92y2bavs31f/u+BPYjhL/P34k7b37I9q+wY6p47z3bYHu5mDEDbrD03TS/yAVQAedNesZA7kTuROzXQF4We7QmS/kbS6yUdLelM20eXHMaIpPMi4mhJJ0k6pwcxSNIHJa3swX5rPi/pXyLihZKOLTsW23Ml/YmkxRFxjKQJks4oYdeXSDpt1LIPS/phRCyS9MP897JjuE7SMRHxEkm/lHRBD2KQ7fmSXifpoS7vHxgfd+EB9DnypucgdyJ3qkfulOuLQk/SiZJWRcT9EbFD0hWSlpQZQESsi4jb8p+3KftPOrfMGGzPk/RGSV8uc791+z9A0islfUWSImJHRDzeg1AmSppqe6KkaZIe7vYOI+IGSZtHLV4i6dL850slvbnsGCLi2ogYyX+9WdK8smPI/bWk8yUxexMA9B55U47c6VnkTnuWkTvl+qXQmytpdd3va9SDPxY1thdKOl7SLSXv+nPKPhC7S95vzRGSNkj6aj4E4su2p5cZQESslfRXys5+rJO0JSKuLTOGOodExLr850ckHdKjOGr+UNI/l71T20skrY2IO8reN9AaXXrYJ5E37fE5kTuROzW3T+dO/VLo9Q3b+0v6pqRzI2Jrifs9XdL6iLi1rH02MFHSCZK+FBHHS3pS3e9y30s+lnuJsj+ch0uabvsdZcbQSGT3IenZGRnbH1E2TOaykvc7TdKFkj5W5n6B9nTh+jyu0QPGpVd5U75vcieROzVD7tQ/hd5aSfPrfp+XLyuV7UnK/lhdFhFXl7z7kyX9nu0HlQ3BeLXtr5ccwxpJayKidkbuKmV/vMr0GkkPRMSGiNgp6WpJryg5hppHbR8mSfm/63sRhO2zJJ0u6e1R/o0vj1L2xXFH/tmcJ+k224eWHAfQGIUe9k3kTRlypwy50yjkTpl+KfR+JmmR7SNsT1Z2Aek1ZQZg28rGV6+MiIvK3LckRcQFETEvIhYqe/0/iohSz8ZExCOSVtt+Qb7oVEn3lBmDsmEHJ9melr8np6p3F1hfI+nd+c/vlvSdsgOwfZqyISm/FxFPlb3/iLgrIg6OiIX5Z3ONpBPyzwrQBxi6iX3SPp83SeROdcid6pA77dEXhV5+weT7Jf1A2QfzyohYUXIYJ0t6p7KzQbfnjzeUHEM/+ICky2zfKek4SZ8pc+f5GbGrJN0m6S5ln9Fl3d6v7csl3STpBbbX2D5b0mclvdb2fcrOln22BzF8UdIMSdfln8m/60EMAIA+Qt7Ud8idyJ36Mndy+b2ZAACkW3zsi+Nn1xZ/snjo0KNujYjFhW8YAIASTex1AAAAdI6hlgAANEKhBwCoJiZPAQCgqb64Rg8AAAAAUBx69AAA1UWPHgAADVHoAQAqjEIPAIBGGLoJAKgs24U/2tjnxbbX2767wXPn2Q7bw/nvtv0F26ts32m77BspAwD2URR6AIDqqk3IUuSjtUsknfbcUDxf0uuU3by45vWSFuWPpZK+lPyaAQBoA4UeAADjEBE3SNrc4Km/lnS+pPob1C6R9LXI3Cxplu3DSggTALCPo9ADAFSUu/TQsO3ldY+lLSOxl0haGxF3jHpqrqTVdb+vyZcBANBVTMYCAKiu7sy6uTEiFrcfgqdJulDZsE0AAPoChR4AoJqsfrm9wlGSjpB0Rz6ZyzxJt9k+UdJaSfPr1p2XLwMAoKsYugkAqLCuDN0cl4i4KyIOjoiFEbFQ2fDMEyLiEUnXSHpXPvvmSZK2RMS6jl8uAABtotADAGAcbF8u6SZJL7C9xvbZY6z+fUn3S1ol6R8k/XEJIQIAwNBNAECF9WDoZkSc2eL5hXU/h6Rzuh0TAACjUegBAKqrLy7RAwCg/1DoAQAqqrNr6gAA2BdQ6AEAqqs/Zt0EAKDvMBkLAAAAAAwYevQAANXUP/fRAwCg71DoAQAqjEIPAIBGKPQAANVFjx4AAA1xjR4AAAAADBh69AAAFWV69AAAaIJCDwBQYRR6AAA0QqEHAKguevQAAGjIEdHrGAAAGDfb/yJpuAub3hgRp3VhuwAAlIZCDwAAAAAGDLNuAgAAAMCAodADAAAAgAFDoQcAAAAAA4ZCDwAAAAAGDIUeAAAAAAyY/w9x9lmMGZpxfQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "recorteR4 = trim(imagen[:,:,0], 442, 370, 15, 15)\n", + "poptR4, pcovR4 = curve_fit(gauss2d, xdata4, recorteR4.ravel(), p0=[1,0,1,1,1])\n", + "estrellaR4=gauss2d(xdata4, poptR4[0], poptR4[1],poptR4[2], poptR4[3], poptR4[4])\n", + "FWHMR4=FWHMR.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptR4[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 4 fotografÃa (Banda Rojo)\")\n", + "plt.imshow(recorteR4, plt.get_cmap('Reds'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 4 a partir de la gaussiana (Banda Rojo)\")\n", + "plt.imshow(estrellaR4.reshape(15, 15), plt.get_cmap('Reds'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 5 (Rojo)" + ] + }, + { + "cell_type": "code", + "execution_count": 358, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3oAAAFSCAYAAACkM60KAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAzM0lEQVR4nO3de5wcZZ3v8e93JhcSEhIgXJNgkAVWQG4nsiiroqiLisY9soqrXNQ1qyIrHnYRdBVxXyhn14OX1XXNCoIrCyIXxTuIshw8gIS7EJTINSFIJtwChEAyv/NHVZPOUD3d00939VTn8369+jUz1fVU/foy3b9fPU895YgQAAAAAKB/DPQ6AAAAAABAZ1HoAQAAAECfodADAAAAgD5DoQcAAAAAfYZCDwAAAAD6DIUeAAAAAPSZCb0OAACAdsz1hHhGnb9E0JCGfx4Rh3Z8wwAAlIhCDwBQSc8o9HZt3vHtfkOrZ3V8owAAlIxCDwBQSRbnHwAA0AiFHgCgsgbszm+086NBAQAoHYUeAKCS6NEDAKAxCj0AQGUNdKFDjx49AEA/4GAoAAAAAPQZevQAAJXF0UoAAIpR6AEAKslydyZjAQCgD1DoAQAqix49AACKUegBACrJ6tJkLAAA9AEOhgIAAABAn6FHDwBQWRytBACgGIUeAKCaLJnJWAAAKEShBwCoJIsePQAAGqHQAwBUFpOxAABQjIOhAAAAANBn6NEDAFQWRysBAChGoQcAqKTsOnqM3QQAoAiFHgCgsujRAwCgGN+RHWB7nu2wPSH/+0rbf1PCfqfY/qHtx21/r9v7S2X7INt32X7S9tvyZRfbPr7N7Z1X207ZynqNC/b7pO0Xt7DeW2x/t4yYAADjQ6/ykfHG9rttX5a4jXttv66NdgfbXpay7/Gi1ZyjS/v+te39erTvtl77xH3ulD/fgy2se5zt/93Kdvuq0MtfmDX5E1W7fbWFdmH7T8qIsZmCxzDaB9XhkraTtHVE/FWT7W704d8jn5X01YiYFhHft/1uSc9FxJfGuiHbe0vaR9IP8r+Psb2+7nm72/aHOhp9h+Svw1N5nMttn9HKP7Yk5c/d3S2s90NJe+bPE9CXsqGbnb8BqTbBfKRnivKbiDg3It7Qy7j6Qas5R6fZfouk1RFxU/73Z2w/V/deXGL77WXH1Uzde7EW5722T2qlbUTcnz/f61tY/T8kvdv2ts1W7KtCL/eW/Imq3T6SusEeFEf1j2G0D6oXSfp9RKwrK7BGWnyOXiTp9rq/t5T0/jZ3+beSzo2IqFt2Te15k/R2Sf/cq6NBLdgnj/PVkt4p6X1d2Md5khZ2YbvAuDHQhRvQIZtSPtIT7TwfPT7gjdZ8UNJ/jlj23boc73hJ37G9XemRtWZmHufhkj5l+/Wd3HhEPCPpp5KOarbuJvOdZvtPbP93PsxxqDaszfZV+Sq35NX3O2vd7rY/bvshSd+yPWD7JNt/sL3K9gW2t2phv7vY/mXeZsj2ubZnduDxnCrp05Lemcf9/jzGf7R9n+2HbX/b9oy8Se1xPpav//Im68v2Ufl9q2x/qr4rOz+6cqHt79h+QtIxtg+wfY3tx2yvsP1V25Py9f8g6cWSfpjvf7Kyf4Aj2nye3ijpvxvdmR8FWiLpJXWP53u2H8rfA1fZ3rPuvrNtf832j22vtn2d7V3q7n+97Tvztl9V1plQu6/t1zgilkr6taR967b3AdtLbT9i+1LbO9bd9/zRXtsz8tdsZf46/aPt+v/pKyW9uZU4gKoakDt+A7qp3/KRfNtvtn2T7SdsP2D7M6OsW3tMn8jjuNfZCJ+m2/KGHpP3275f0i9VnN8cY/vqunZh+1jbd0m6q0FcR9blPJ8ccV9bz3nettZute07bP/lKOtOsX2O7Ued9Vqd6LphoKNty1le9p2C56o2jPcYZ6OdVtu+p/acN3o/1j1vtZyjldflaNv359v5ZN39DfPDgudgkqTXavQc7+eSVkvaJW+zpe0f5fnQo/nvc+q2eaXtf3I2HHS17ctsz6q7f7TXvuXYC+JcrKyDY998Ww3z7oLXa0dnOeAjznLCD4zY/JVqIcfbZAo9Sf8k6TJlvUhzJP2rJEXEq/L798mPFNTe4NtL2kpZL9RCScdJepuyHpgdJT0q6Wst7NeSPp+3eYmkuZI+06TNufmb9TLb+xStEBGnSPqcNhzhOFPSMfntNcqKqmmSakNFao9zZr7+NaOtb3sPSf8m6d2SdpA0Q9LsEWEskHShpJmSzpW0XtLHJM2S9HJJh0j6cB7vLpLu14ajg2vbfZ5sby5pZ0m/K7o/X+dlknaTtLhu8U8l7SppW0k35jHXO0LSqcreI0slnZZva5akiyX9Y/7Y/iDpoHZiL4jzTyW9Mt+fbL8239Y7lD3v90k6v0Hzf1X2urxY2fvyKEnvrbt/iaR5trdoJRagahi6iYrqq3wk95Sy76CZypLPD3n0c+i3V/Z9OlvS0ZIW2d59DNt6df4Y/kLF+U2Rt0n6M0l7jLwjz3m+LulIZc/P1spem5p2n3Mpyxleqez7+lRlPVE7NFj3FEnzlH2vv17SexK29bw8b/qKpDdGxHRJr5B0c3534fuxQCuvy59L2l1Z/vdp27WD7Q3zwwK7ShqOiMLzHJ15s6RJku7IFw9I+pay/5GdJK3Rhvy35q+V5Ujb5m3/Pt9es9d+LLGPjPVASXspz/E0ep4+0vmSluUxHS7pc3mOWLNE2SlMo+rHQu/7edVdu9Uq4OeUvQF2jIhnIuLqUbYhScOSTomItRGxRlk38icjYllepHxG0uFuMgQgIpZGxOX5dlZKOkPZB0Uj71b2T/4iSb+S9HO3fsTt3ZLOiIi7I+JJSSdLOmKUGEdb/3BJP4yIqyPiWWW9hzGi/TUR8f2IGI6INRFxQ0RcGxHrIuJeSd9o8lifN8bnaWb+c/WI5Qfmr/lqSb9R1u3//JG7iDgrIlbXvX77uK4HU9IlEfGbfCjsudrQy/YmSbdHxIUR8ZykL0l6qM3Ya260/ZSyf9QrlRXVUvaanBURN+Zxnizp5bbn1Td2dk7fEZJOzh/TvZL+j7IPqpra8zOzSSwAgM7bZPKRiLgyIm7L84FblZ060Ox78FN5LP8t6cfKDnC2uq3PRMRT+fPRqs9HxCMN2hwu6UcRcVX+nH5K2fNe09Zznj+e70XEg/nj+a6yvOSABqu/Q9LnIuLRvND5SsK2RhqWtJftKRGxIiJqp9K09H5s8XU5Nc8Hb5F0i/JCZIz54Uy9ML+TpHfYfkzSk5IuVfY8PZZvf1VEXBQRT0fEamUH6kdu/1sR8fv89b9AG3K8UV/7NnPbIdtrJF2jLL/7fr68pTzd9lxlHQofz1+TmyV9UxsP1VytrOAfVT8Wem+LiJl1t//Il5+o7GjWb2zfbrvZOVErIxsDW/MiSZfUPrCVJejrlU2G0pDt7Wyf72zSjSckfUfZUYFCEfHr/J/k6Yj4vKTHlB29acWOynqAau5TdgmNRjGOtv6Okh6oi+tpSatGtH+g/g/bu+Xd5Q/lj/VzGuWxjmg7lufpsfzn9BHLr81f8+nKjhbumccg24O2T3c25OEJSffmber38VDd708rO9IivfC5iPq/x/oa5/bPt/9OZUcYN6/b1/OvSf5BsEov7E2dJWmiXvj61a9Xe34eaxILUFmco4dxbJPJR2z/me1f5b1/jysrjEb7Hnw0Ip6q+/s+Zd9/rW7rAY3daG1Gfs8/pY1znraec+n502Burmu7lxo/NxvFMTLmMW7refnjeaey53KFs9NU/jS/u6X3Y4uvS2EeNcb88FG9ML+TpAvy/6PNlQ3ZPMr23+bbn2r7G86GRD6hbDjvTG880V2rOd5Gr32bue2sfPsnSDpYWb5W21crefqOkh7Ji9b6dUfmeI83iWPT+U6LiIci4gMRsaOyiTz+zaPPbDWy9+oBZV3e9R/am0XE8ia7/ly+rZdGxBbKuuHHMjgoxrD+g8o+jGp2krRO0h/1wsfTbP0Vquu6tj1FWXf2yNjqfV3SnZJ2zR/rJ8YQe8vPU/5P+AdlQzMLRcQfJV0k6S35or9WNtT0dcqOgMzLl7cS3wplQ1yyBrbr/x5L7CNijIi4QNkRn0/nizd6TfLhFltLGvk+G9KGo3A1O41Y7yWS7o2IJ5rFAlSRuzBsk6Gb6LY+zUf+S1kvy9yImCHp35tse8v8+61mJ2Xff61uKxr8PprR1hv5PT9VG+c8bT3ntl+kbIbEjyibIX2mpN+q8XOzUe41IqZm23pK0tS6ttvXbzgifh4Rr1d2Wsid+bbG8n4c62tcbyz54dLs4XrkAe76x3KvstNxajneCcqGjP5Zvv3acN52cryRr31buW1ErI+IMyQ9ow1DPUfLu+s9KGkr29NHrDsyx7ulWRybTKFn+6+84cTMR5X9w9e6Zv+obKzsaP5d0mn5P5psb2N7QQu7nq6sm/nx/E37D6PEuJOza81Nsr2Z7X9QdlTg1y3sR8q60T9me2fb07ThHL51klYqe7wvbnH9CyW9xfYrnJ10+hk1f2NPl/SEpCfzI0VjubxBy89T7icapevc9taS/lIbZvmcLmmtsqM0U5X39LXox8ouVfA/8+71v9PGH6BjjX2k0yV9wPb2yl6T99re19mENZ+TdF3+ofa8yKbfvUDZe3J6/r78X8qO0Na8WtkHIdC3mIwFVdOn+ch0ZT0Qz9g+QNnB1WZOzbf/SkmHSapdD3is2yrKb8bqQkmH2f7zPOf5rDbOkdt9zjdX9vquzNu9V1kvXCMXSDrZ2eQis5UVda1u62ZJr8pfuxnKhgUqX3c72wvy4nqtsvfBcH7faO/Heu28xvVtW8oPIztd6BcaPcebI+lQbZzjrVE2Ic9Wys51bFWz1z4lt5WyHO9E25tp9Lz7eRHxgKT/J+nz+f/f3spmqR9zjtePhV5tVsfa7ZJ8+cskXWe7Nrb3o7Hh2iCfkXSOs67wdzTY7pfzdpc5OwfsWmVD7po5VdkwvceVFQwXj7LudGVHDh5VVrUfquwI0sghk42cpey8tKsk3aPsKMJx0vNDL0+T9Ov8cR7YZP3b89/PV3a040lJDyv7gGjk75X9469WdqRoLBfsHsvzJEmLlF1DpD4re3ntdVc2rGJl7fFI+raybu/lyk7evbbVwCJiSNJfKftnXaXsROH6L7uxxj5y+7cpew3+ISJ+oWx8+EXKnvddlM9MWuA4ZUfw7pZ0tbKjbWfV3f8uZWPJgb5Fjx7GsU0pH/mwpM/m8XxaWcEymofybT+o7Jz4D0bEne1sq0F+MyZ5znOssu/RFXls9ZOBtPWcR8Qdys6fv0ZZEf9SjX7w/rP5fu9RVuxcqDzvaratiLhcWd51q6QbJP2obrsDyg4GPyjpEWVFQq1gGe39WG+sr3G9seaH39DGcw5IG2aZf1LS9coe+6n5fV+SNEXZaKdrJf2s1cBaeO1Tclsp+197VNIHNEreXeBdykafPSjpEmXn6f5CkvKi8U2Szmm2c8dGlyEDiuVHHh5T1nV9T4/DkSTZ/i9lY7a/3+tYyuDs0gnrJb0oIu5vsu5bJB0ZEY0SBaDydhqcEB+fMrPj2/3IU6tuiIj5Hd8wANk+WNJ3ImJOk1U3ebY/JOmIiGhpYrt+YvvXkj4S+UXT+53tF0v6vaSJ0aQ4s32csiG0JzbbLheNREN5sXCFsiGbX5B0mzZMYtJzETGWYQP9YC9lR38earZiRPxQ0g+7HhHQQ1Z/DksBsGlydqmEFyvrtdtV2blnjabf72sRcVDztfrKXpLua1bkSVJENLoExgvwHYnRLFDWZfygsg+cI1p5A6LzbL9d2fTWH8/HrwMQQzcB9JVJyoYtrlZ2MfgfaMPll9CnbP8vZackndTxbZO3AwCqaN7gxPjk1Jkd3+7CJ4cYugkAqDyGbgIAKoseOAAAijF0EwAAAAD6TKk9erO23irmzU2YZOnZZ9KDSB2qOnlKegxOrK/Xr2u+TjNRdImUMRjswFsn9fV8rgOnqk2anNh+s/QY1q9Pa5/aozEwmNT83vuXaWjVKvpV0BO88dDvZs3aOubttFOvwwDQQffef7+GhrqfO5Va6M2bO0fXX3Zp2+1j+V3JMURicTAwb8/kGLTZ5mntH1+ZHEKsfTqpvWdskx7Dst+ntX9o1CsMtMRz/ySt/ezdkmPQU4+ntR9IPHAwdUZS85e95g1p+wfaZJU/dNP2XGXX5dxO2YWFF0XEl+vuP0HZLMXbRMRQfq3PLyu75tHTko6JiBvLjRpVNm+nnbT46it7HQaADpr/5weXsh/O0QMAVNZA+X166ySdEBE32p4u6Qbbl0fEHXkR+AZJ9Ueh3qhs1uJdlV1g+etq7eLWAAAk4Rw9AABaFBEraj1yEbFa0hJJs/O7vyjpRGU9fTULJH07MtdKmplfKwsAgK6iRw8AUEnu3nXvZtleXPf3oohY9ML9e56k/SRdZ3uBpOURcUs2WvN5syU9UPf3snzZio5HDQBAnaRCz/ahys49GJT0zYg4vSNRAQDQgi4NSxlqdh0929MkXSTpeGXDOT+hbNgmMCpyJwBlafs70vagpK8pO/9gD0nvsr1HpwIDAKAZd+HWdJ/2RGVF3rkRcbGkXSTtLOkW2/dKmiPpRtvbS1ouaW5d8zn5MmyCyJ0AlCnlYOgBkpZGxN0R8ayk85WdiwAAQNdls26647dR95mNyzxT0pKIOEOSIuK2iNg2IuZFxDxlwzP3j4iHJF0q6ShnDpT0eEQwbHPTRe4EoDQphV6j8w42Ynuh7cW2F69ctSphdwAA9NxBko6U9FrbN+e3N42y/k8k3S1pqaT/kPThEmLE+DX23GmI3AlAe7o+GUt+AvsiSZq/796JVysHAGCDsi+uEBFXN9tt3qtX+z0kHdvlsNBnNsqd9t+P3AlAW1IKPc47AAD0VOlX0QPSkDsBKE3K0M3rJe1qe2fbkyQdoexcBAAAStGLyViABOROAErTdo9eRKyz/RFJP1c2RfBZEXF7xyIDAKAJN5k8BRhPyJ0AlCnpHL2I+ImyE80BAADQBLkTgLJ0fTIWAAC6gaGWAAA0Vm6h9+wziuV3td08rr8yOQS/+q3J20g2PJzW/IHfJYcwMG/PtA1EByYBm7pFUnPvuk96DOvXJzWPVenn0Hvy1MQNJP4bP7smrX0n3gtAm1JONAcAoJ/RowcAqCxO0QMAoBiFHgCgsszgTQAACjHqBQAAAAD6DD16AIBKYjIWAAAao9ADAFQWhR4AAMUo9AAAlTVApQcAQCHO0QMAAACAPkOPHgCgosysmwAANEChBwCoJCZjAQCgMQo9AEA1mQumAwDQCIUeAKCyqPMAACjGZCwAAAAA0Gfo0QMAVNYAfXoAABSi0AMAVBKTsQAA0BiFHgCgspiMBQCAYhR6AIDKos4DAKBYuYVeDCvWrmm7uV92cHII3nK7pPbxxFB6DNO2Sms/ZVpyDBoYBzX+4GBa+4HE9p3YRidiSLV+XVr7wXHwXgAAAEBHkeEBACrL9OkBAFCIQg8AUEmWNECdBwBAIQo9AEBlUecBAFCMQg8AUFkUegAAFBtot6HtubZ/ZfsO27fb/mgnAwMAAOgn5E4AypTSo7dO0gkRcaPt6ZJusH15RNzRodgAABgVk7GgYsidAJSm7UIvIlZIWpH/vtr2EkmzJfFhBQAoBRdMR5WQOwEoU0fO0bM9T9J+kq7rxPYAAGjGSjj/AOgxcicA3Zb8HWl7mqSLJB0fEU8U3L/Q9mLbi1c+9oK7AQAANiljyp2GVpUfIIC+kFTo2Z6o7IPq3Ii4uGidiFgUEfMjYv42M7dI2R0AABtxF25AN405d5q1dbkBAugbbQ/dtG1JZ0paEhFndC4kAABaY07SQ4WQOwEoU0qP3kGSjpT0Wts357c3dSguAACaokcPFUPuBKA0KbNuXi2+EwEAPUJhhqohdwJQJiYsAwAAAIA+05HLKwAAUDqbc/QAAGig3EJvOKS1a9pvv+3cDsQwnNZ+9aPpMUxNnH104qTkEOLJR5Lae/LU5BiSDQwmb8KDif8Ckfh+khTr1yW190Bix3zq/0REWnsgwQB1HtB1kfo534HvyuTvqk4cFErMOzgwhbLRowcAqCxT6QEAUIhCDwBQSVZnDtIDANCPmIwFAAAAAPoMPXoAgGoyPXoAADRCoQcAqCwmNwAAoBiFHgCgsqjzAAAoRqEHAKgsevQAACjGZCwAAAAA0Gfo0QMAVBKXVwAAoDEKPQBANVkaoNIDAKAQhR4AoLKo8wAAKMY5egCAirLszt9G3aM91/avbN9h+3bbH82X/4vtO23favsS2zPr2pxse6nt39n+i+4+JwAAZCj0AABo3TpJJ0TEHpIOlHSs7T0kXS5pr4jYW9LvJZ0sSfl9R0jaU9Khkv7N9mBPIgcAbFIo9AAAlWRJHuj8bTQRsSIibsx/Xy1piaTZEXFZRKzLV7tW0pz89wWSzo+ItRFxj6Slkg7owtMBAMBGOEcPAFBN7tp19GbZXlz396KIWPSC3dvzJO0n6boRd71P0nfz32crK/xqluXLAADoKgo9AEBldWkylqGImD/6fj1N0kWSjo+IJ+qWf1LZ8M5zuxIZAAAtKrfQGxyUt9iq7eYx9GB6DFOfaL5Olw3fdVPaBoYeSg9i28QDyltukx7D4MS09hMmpcfQbJxWMzGcHsOaJ9NCmJj2PDj5eYzE9kC12J6orMg7NyIurlt+jKTDJB0SEbV/jOWS5tY1n5MvA0qx4a2Y4Lm1ae2feiw5hFj9aFJ7T52WHIOmtZ/DSlJMmpIcggc46wqt490CAKisHsy6aUlnSloSEWfULT9U0omS3hoRT9c1uVTSEbYn295Z0q6SftPxJwIAgBEYugkAqKweXEfvIElHSrrN9s35sk9I+oqkyZIuz4vFayPigxFxu+0LJN2hbEjnsRGxvvSoAQCbHAo9AEAlWdJAyZVeRFyd73qkn4zS5jRJp3UtKAAAClDoAQCqyT3p0QMAoBKSz9GzPWj7Jts/6kRAAAAA/YzcCUAZOtGj91FlF4zdogPbAgCgZV26jh7QbeROALouqUfP9hxJb5b0zc6EAwBA6+zO34BuIncCUJbUHr0vKZtOenp6KAAAtM6iMEMlfUnkTgBK0HaPnu3DJD0cETc0WW+h7cW2F6989PF2dwcAwMZseaDzN6Bb2sqdhlaVFB2AfpMydPMgSW+1fa+k8yW91vZ3Rq4UEYsiYn5EzN9myxkJuwMAAKi0sedOs7YuO0YAfaLtQi8iTo6IORExT9IRkn4ZEe/pWGQAADTBOXqoEnInAGXiOnoAgMoq+4LpAABURUcKvYi4UtKVndgWAACtYDIWVBm5E4Buo0cPAFBZXEcPAIBiSdfRAwAAAACMP+X26E2YKG+9Q9vN457bk0OIdc+mbeB3tybHsOyL/5XUfpvdtkmOYfLCv0lqH5OnJMfgqdPSNpD6WkrSQNqxjhgeTo9h/XNp7SdOSo8BqCImTwGaG16fvo0nhtJC+PF/Joew9oqrk9pP2nu35BgGDn9fUnvPTo9BA5PTt4FNBkM3AQCVxdBNAACKUegBACqLOg8AgGKcowcAAAAAfYYePQBAJWWXV6BLDwCAIhR6AIBqsmTGpQAAUIhCDwBQUaZHDwCABij0AADVNUChBwBAEQa9AAAAAECfoUcPAFBdDN0EAKAQhR4AoJrMrJsAADRCoQcAqC7O0QMAoBCFHgCgoszQTQAAGmAyFgAAAADoM/ToAQAqyZbM0E0AAApR6AEAqouhmwAAFKLQAwBUFj16AAAUK73Qi+Hh9htPm5EewKMrk5qvueSnySF8/rYHk9q/c8WTyTG86qg1aRtYkx6Dpm+Z1v65Z5NDiNQNDAwmx6CpWyQ194SJafufODmtvTnVFz1Ejx4wuvXrkjcxvOKepPZDZ12aHMMpix9Ian/0/70vOYYD9to3qb23m5ccQ0yYlBYDn5mbFDI0AAAAAOgzDN0EAFSTzXX0AABogEIPAFBZDEMCAKAYhR4AoLro0QMAoFDSOXq2Z9q+0PadtpfYfnmnAgMAAOg35E4AypLao/dlST+LiMNtT5I0tQMxAQDQnMWsm6gicicApWi70LM9Q9KrJB0jSRHxrKT0+e4BAGgRV/dAlZA7AShTylfkzpJWSvqW7Ztsf9P25h2KCwCA5uzO34DuIXcCUJqUQm+CpP0lfT0i9pP0lKSTRq5ke6HtxbYXr1z1aMLuAACoY8sDnb8BXTT23GloVdkxAugTKYXeMknLIuK6/O8LlX14bSQiFkXE/IiYv83WWybsDgAAoNLGnjvN2rrUAAH0j7YLvYh4SNIDtnfPFx0i6Y6ORAUAQCsYuokKIXcCUKbUWTePk3RuPmvU3ZLemx4SAAAtYqglqofcCUApkgq9iLhZ0vzOhAIAQOuyDjgKPVQLuROAsqT26AEA0Dv06AEAUIgrEAEAAABAnym3R294WFq7pu3mnrpFcgix/J6k9gOTet8JutcuM9M3Mmv7tPYDg+kxpG5jeH16DM8lXqd28pTkEDxxctoGJm7W2/YMnUPPMHkK0FQH/kec+F03bccZyTEcOH1lUvsdtk3/vta0xDyUzyuUrPdVCwAAbeIcPQAAilHoAQCqyeIcPQAAGqDQAwBUFj16AAAUYzIWAAAAAOgzFHoAgOoacOdvo7A91/avbN9h+3bbH82Xb2X7ctt35T+3zJfb9ldsL7V9q+39S3hWAACg0AMAVJTdndvo1kk6ISL2kHSgpGNt7yHpJElXRMSukq7I/5akN0raNb8tlPT1bjwVAACMxDl6AIDKcsmTsUTECkkr8t9X214iabakBZIOzlc7R9KVkj6eL/92RISka23PtL1Dvh0AALqGHj0AADY2y/biutvCopVsz5O0n6TrJG1XV7w9JGm7/PfZkh6oa7YsXwYAQFfRowcAqK7uzLo5FBHzR9+tp0m6SNLxEfFE/eyfERG2oxuBAQDQKgo9AEA19eg6erYnKivyzo2Ii/PFf6wNybS9g6SH8+XLJc2taz4nXwYAQFcxdBMAUFm2O35rsj9LOlPSkog4o+6uSyUdnf9+tKQf1C0/Kp9980BJj3N+HgCgDPToAQAqqvnlELrgIElHSrrN9s35sk9IOl3SBbbfL+k+Se/I7/uJpDdJWirpaUnvLTVaAMAmi0IPAIAWRcTVygaNFjmkYP2QdGxXgwIAoACFHgCgurozGQsAAJVHoQcAqCaLQg8AgAYo9AAA1UWhBwBAoXILvYEBecrmpe5ypJg+I6n95L88LDmGLzy7Lqn9lL85uvlKTQzM3T15G6li7dNpGxhenx7EwGD6NlJNmJTWftLkpOaetFna/s3kvegVSwO8/4BRDaanet5+56T2mx334eQY3vOaG5Lae27aY5CkgZcckLaBCWnf15KazgwM1OMbEgAAAAD6DEM3AQDVxdFtAAAKUegBAKqJyVgAAGiIQg8AUF0UegAAFEo6R8/2x2zfbvu3ts+znTirAwAArconY+n0DegicicAZWn7G832bEl/J2l+ROwlaVDSEZ0KDAAAoJ+QOwEoU+rQzQmSpth+TtJUSQ+mhwQAQIsYuonqIXcCUIq2e/QiYrmkL0i6X9IKSY9HxGWdCgwAgFHVJmPp9A3oEnInAGVKGbq5paQFknaWtKOkzW2/p2C9hbYX21688pFH248UAICRKPRQIW3lTkOryg4TQJ9IOev8dZLuiYiVEfGcpIslvWLkShGxKCLmR8T8bbbaMmF3AADUYzIWVM7Yc6dZW5ceJID+kPKNdr+kA21PtW1Jh0ha0pmwAAAA+g65E4DStD0ZS0RcZ/tCSTdKWifpJkmLOhUYAABNMdQSFULuBKBMSbNuRsQpkk7pUCwAALSuNhkLUCHkTgDKknp5BQAAeodCDwCAQpx1DgAAAAB9ptwevWfXanjZXW03H9j5pekxbD4jrf2OOyWHMOWEj6VtYGAwOYZYvy5tA0924FIZgxOTmnvzLdJjmLhZWnt34FhJDKe1f+aptN0nttf659LaA22yLDNLJjAqdyJnSMydBvZ7TXIM2usFk5OOzWAHUt7JU3sfAzAGvOMAANXF0E0AAApR6AEAqonJWAAAaIhCDwBQXRR6AAAU4uQGAAAAAOgz9OgBACrKEpOxAABQiEIPAFBdDN0EAKAQhR4AoJqYjAUAgIYo9AAA1UWhBwBAIU5uAAAAAIA+Q48eAKCimIwFAIBGKPQAANXF0E0AAApR6AEAqonJWAAAaIhCDwBQUQzdBACgEb4hAQAAAKDP0KMHAKguhm4CAFCIQg8AUF0UegAAFCq30Ju0mQbm7t5++8lTkkPwrB3TNpDavhMeH0rehBPPa4lpWybHkMzjYORxJ84P8mBa+4i09sPDae1Foo0eYTIWoBQeTEsXY7Np6UFM3jytfQc+K8znDSpmHGTKAAAAAIBOYugmAKCimHUTAIBGKPQAANXFUCoAAApR6AEAqotCDwCAQk3HvNg+y/bDtn9bt2wr25fbviv/OQ5m5gAAbFKsbFKmTt+AROROAMaDVr7RzpZ06IhlJ0m6IiJ2lXRF/jcAAADInQCMA00LvYi4StIjIxYvkHRO/vs5kt7W2bAAAGjG0kAXbkAicicA40G75+htFxEr8t8fkrRdoxVtL5S0UJJ2mr1Dm7sDAKAAQy1RHe3lTnPnlhAagH6U/A0ZESGp4RWbI2JRRMyPiPnbbLVV6u4AANjA7vwN6LIx5U6zti4xMgD9pN0evT/a3iEiVtjeQdLDnQwKAICmzHX0UCnkTgBK1e435KWSjs5/P1rSDzoTDgAAQF8idwJQqlYur3CepGsk7W57me33Szpd0utt3yXpdfnfAACUi6GbGIfInQCMB02HbkbEuxrcdUiHYwEAYGyYjAXjELkTgPGAb0gAQHX1oEevwcWw97V9re2bbS+2fUC+3La/Ynup7Vtt79/FZwMAgOdR6AEAqqk2GUunb82drRdeDPufJZ0aEftK+nT+tyS9UdKu+W2hpK934qEDANBMu7NutseWJm7Wfvu1azoXS5s8dUb6RobXJTWP1Y8mhxDDw0ntPdiBt86ESWntI+0xdGQbnTifJ/V5SLXu2bT2nNOETUxEXGV73sjFkrbIf58h6cH89wWSvp1Pp3+t7Zm1mRfLiRboPXfie4LvGmDMyi30AADopO4kf7NsL677e1FELGrS5nhJP7f9BWWjZV6RL58t6YG69Zblyyj0AABdRaEHAKiu7kzGMhQR88fY5kOSPhYRF9l+h6Qzlc2sCABAT3COHgCgmmxpoAu39hwt6eL89+9JOiD/fbmkuXXrzcmXAQDQVRR6AACke1DSq/PfXyvprvz3SyUdlc++eaCkxzk/DwBQBoZuAgCqqwfX0csvhn2wsnP5lkk6RdIHJH3Z9gRJzyibYVOSfiLpTZKWSnpa0ntLDxgAsEmi0AMAVFcPZuIb5WLY/6Ng3ZB0bHcjAgDghSj0AAAV5Z706AEAUAUUegCAarJSJk8BAKCvcSgUAAAAAPoMPXoAgOrqwTl6AABUAYUeAKC6OEcPAIBCFHoAgGpy0gXOAQDoaxR6AIDqokcPAIBCfEMCAAAAQJ+hRw8AUF1MxgIAQCEKPQBARXHBdAAAGim30LOlwcH22z/zTHoIEyYmb6PnZsxK3oQ3m5a2gZTXsVPWrknfRgyntZ8wKT0GElWgPVwwHQCAhujRAwBUFwdKAAAoxDckAAAAAPQZevQAANXFZCwAABSi0AMAVJSlAQamAABQpOk3pO2zbD9s+7d1y/7F9p22b7V9ie2ZXY0SAICRrKxHr9M3IBG5E4DxoJVDoWdLOnTEsssl7RURe0v6vaSTOxwXAABAVZ0tcicAPda00IuIqyQ9MmLZZRGxLv/zWklzuhAbAACj80Dnb0AicicA40EnvtHeJ+mnje60vdD2YtuLV656pNFqAACMUReGbTJ0E+VoPXcaWlViWAD6SVKhZ/uTktZJOrfROhGxKCLmR8T8bbbeKmV3AABsbGCg8zegi8acO83aurzgAPSVtmfdtH2MpMMkHRIR0bGIAABoRW0yFqAiyJ0AlKmtQs/2oZJOlPTqiHi6syEBAAD0F3InAGVrWujZPk/SwZJm2V4m6RRlM0VNlnS5s6Op10bEB7sYJwAAI5jJUzAukTsBGA+aFnoR8a6CxWd2IRYAAMaGoZsYh8idAIwHbZ+jBwBAz9GjBwBAIQo9AEA12dIAPXoAABQpt9AbGJQ3n9l2845MTzWY+JDXr2u+TjPDadvwFh2YannS1LT2655NjyF1GzGcHEIkvp7jIsVMfD+Jid8AAAD6Dj16AIDqYugmAACFKPQAANXFZCwAABSi0AMAVBSXVwAAoBEKPQBAZZkePQAACnEoFAAAAAD6DD16AIBqshi6CQBAAxR6AICK4hw9AAAaodADAFQXF0wHAKAQhR4AoLro0QMAoBDfkAAAAADQZ+jRAwBUk8UF0wEAaIBCDwBQUUzGAgBAIxR6AIDqokcPAIBCHAoFAAAAgD5Djx4AoLoYugkAQCEKPQBANdlcRw8AgAZKLvRCsX5d+83XrE4PYeqMtPbr1yeHEM88ldTek6Ykx6Bnn05rv3ZNegwTJqa1j+H0GMaD4YT/CUla91xa+5T/SUmKSGsPpKBHDwCAQvToAQCqi8lYAAAoxKFQAAAAAOgz9OgBACqK6+gBANBI029I22fZftj2bwvuO8F22J7VnfAAABiF3fkbkIjcCcB40Mqh0LMlHTpyoe25kt4g6f4OxwQAQHNW1qPX6RuQ7myROwHosabfaBFxlaRHCu76oqQTJTHlHgCgBywNDHT+BiQidwIwHrT1jWZ7gaTlEXFLh+MBAGBcazQsz/Zxtu+0fbvtf65bfrLtpbZ/Z/svyo8Y4wG5E4CyjXkyFttTJX1C2dCDVtZfKGmhJO00d85YdwcAQEPuzTl1Z0v6qqRv18XxGkkLJO0TEWttb5sv30PSEZL2lLSjpF/Y3i0i0i/KispIy53mdjEyAP2snR69XSTtLOkW2/dKmiPpRtvbF60cEYsiYn5EzN9m1tbtRwoAwEg9OEevwbC8D0k6PSLW5us8nC9fIOn8iFgbEfdIWirpgM49AagIcicApRtzj15E3CZp29rf+QfW/IgY6mBcAACMzurWLJmzbC+u+3tRRCxq0mY3Sa+0fZqkZyT9fURcL2m2pGvr1luWL8MmhNwJQC80LfRsnyfpYGVffMsknRIRZ3Y7MAAARte16+gNRcT8MbaZIGkrSQdKepmkC2y/uOORoRLInQCMB00LvYh4V5P753UsGgAAqmmZpIsjIiT9xvawpFmSlkuqP8lqTr4MfYzcCcB4wDzSAIDqGj8XTP++pNdkIXk3SZMkDUm6VNIRtifb3lnSrpJ+k/7AAQAY3ZjP0QMAYNzowXXvioblSTpL0ln5JReelXR03rt3u+0LJN0haZ2kY5lxEwBQBgo9AEA1pfXAtW2UYXnvabD+aZJO615EAAC8UKmF3g033TI0sMWs+0ZZZZayoS69RAzjI4Ze758YWo/hRWUFAgCbmhtuunnIm88kdxr/MfR6/8RQrRhKyZ1KLfQiYpvR7re9uI2ZzjqKGMZHDL3ePzGMrxiAhroz6yYwbpA7VSOGXu+fGIihCEM3AQDV1YOhmwAAVAGFHgCgwij0AAAoMt4KvUW9DkDEUNPrGHq9f4kYasZDDECB3kzGAowz4+Ezmhh6v3+JGGqIIeds9mcAAKpl/t57xfU/vqDj2x3Yac8bxsO5FQAApBhvPXoAALSOHj0AAApR6AEAKoxCDwCAIuNmXmrbh9r+ne2ltk/qwf7n2v6V7Tts3277o2XHkMcxaPsm2z/q0f5n2r7Q9p22l9h+eQ9i+Fj+GvzW9nm2Nythn2fZftj2b+uWbWX7ctt35T+37EEM/5K/FrfavsT2zLJjqLvvBNthe1Y3YwBaZm24aHonb0AFkDdtFAu5E7kTuVOBcVHo2R6U9DVJb5S0h6R32d6j5DDWSTohIvaQdKCkY3sQgyR9VNKSHuy35suSfhYRfyppn7JjsT1b0t9Jmh8Re0kalHRECbs+W9KhI5adJOmKiNhV0hX532XHcLmkvSJib0m/l3RyD2KQ7bmS3iDp/i7vHxgbd+EGjHPkTS9A7kTuVI/cKTcuCj1JB0haGhF3R8Szks6XtKDMACJiRUTcmP++Wtk/6ewyY7A9R9KbJX2zzP3W7X+GpFdJOlOSIuLZiHisB6FMkDTF9gRJUyU92O0dRsRVkh4ZsXiBpHPy38+R9LayY4iIyyJiXf7ntZLmlB1D7ouSTpTE7E0A0HvkTTlyp+eRO21YRu6UGy+F3mxJD9T9vUw9+LCosT1P0n6Srit5119S9oYYLnm/NTtLWinpW/kQiG/a3rzMACJiuaQvKDv6sULS4xFxWZkx1NkuIlbkvz8kabsexVHzPkk/LXunthdIWh4Rt5S9b6A5uvSwSSJv2uBLIncid2psk86dxkuhN27YnibpIknHR8QTJe73MEkPR8QNZe2zwARJ+0v6ekTsJ+kpdb/LfSP5WO4Fyj44d5S0ue33lBlDkciuQ9KzIzK2P6lsmMy5Je93qqRPSPp0mfsFWtOF8/M4Rw8Yk17lTfm+yZ1E7tQIudP4KfSWS5pb9/ecfFmpbE9U9mF1bkRcXPLuD5L0Vtv3KhuC8Vrb3yk5hmWSlkVE7Yjchco+vMr0Okn3RMTKiHhO0sWSXlFyDDV/tL2DJOU/H+5FELaPkXSYpHdH+Re+3EXZF8ct+XtzjqQbbW9fchxAMQo9bJrImzLkThlypxHInTLjpdC7XtKutne2PUnZCaSXlhmAbSsbX70kIs4oc9+SFBEnR8SciJin7PH/MiJKPRoTEQ9JesD27vmiQyTdUWYMyoYdHGh7av6aHKLenWB9qaSj89+PlvSDsgOwfaiyISlvjYiny95/RNwWEdtGxLz8vblM0v75ewUYBxi6iU3SJp83SeROdcid6pA7bTAuCr38hMmPSPq5sjfmBRFxe8lhHCTpSGVHg27Ob28qOYbx4DhJ59q+VdK+kj5X5s7zI2IXSrpR0m3K3qOLur1f2+dJukbS7raX2X6/pNMlvd72XcqOlp3egxi+Kmm6pMvz9+S/9yAGAMA4Qt407pA7kTuNy9zJ5fdmAgCQbv4+L43rL+v8weKB7Xe5ISLmd3zDAACUaEKvAwAAoH0MtQQAoAiFHgCgmpg8BQCAhsbFOXoAAAAAgM6hRw8AUF306AEAUIhCDwBQYRR6AAAUodADAFSW6dEDAKAQhR4AoLoo9AAAKMRkLAAAAADQZ+jRAwBUlMU5egAAFKPQAwBUF0M3AQAoRKEHAKgmi0IPAIAGKPQAABVGoQcAQBEmYwEAAACAPkOPHgCguhi6CQBAIQo9AEB1UecBAFCIQg8AUFFcXgEAgEYo9AAA1cXQTQAACjEZCwAAAAD0GXr0AADVxHX0AABoiEIPAFBhFHoAABSh0AMAVBc9egAAFOIcPQAAAADoM/ToAQAqyvToAQDQAIUeAKDCKPQAAChCoQcAqC569AAAKOSI6HUMAACMme2fSZrVhU0PRcShXdguAAClodADAAAAgD7DrJsAAAAA0Gco9AAAAACgz1DoAQAAAECfodADAAAAgD5DoQcAAAAAfeb/AxOXusrspVSXAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "recorteR5 = trim(imagen[:,:,0], 320, 455, 15, 15)\n", + "poptR5, pcovR5 = curve_fit(gauss2d, xdata5, recorteR5.ravel(), p0=[1,1,1,1,1])\n", + "estrellaR5=gauss2d(xdata5, poptR5[0], poptR5[1],poptR5[2], poptR5[3], poptR5[4])\n", + "FWHMR5=FWHMR.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptR5[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 5 fotografÃa (Banda Rojo)\")\n", + "plt.imshow(recorteR5, plt.get_cmap('Reds'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 5 a partir de la gaussiana (Banda Rojo)\")\n", + "plt.imshow(estrellaR5.reshape(15, 15), plt.get_cmap('Reds'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 6 (Rojo)" + ] + }, + { + "cell_type": "code", + "execution_count": 359, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3QAAAFSCAYAAAC6+p25AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAwlElEQVR4nO3de7xtdV3v/9d7be4X3cBGEvbWjR60wBv8toR5rBQz7/jrolhpmkeqg4odytQ6qed3NH9mhlZapGb+Io2UjIq8lLfsCApIIpC5BZQNW2Fzl/uGz++PMZbMvZhzrbkWa8w15tqv5+MxH2utMcf8fr9jjjXn+HzG9zu+I1WFJEmSJGn6zKx0AyRJkiRJS2NCJ0mSJElTyoROkiRJkqaUCZ0kSZIkTSkTOkmSJEmaUiZ0kiRJkjSldlnpBkiSNJ8N2aVuZ3lvsbONez5RVU9f1kIlSVoBJnSSpF67neKn2XtZy/xTbl63rAVKkrRCTOgkSb0WvD5AkqRRTOgkSb03kyxvgcs7glOSpBVjQidJ6jV76CRJGs2ETpLUezPL3EFnD50kabXwpKckSZIkTSl76CRJvefZR0mShjOhkyT1WsjyT4oiSdIqYUInSeo9e+gkSRrOhE6S1Guhg0lRJElaJTzpKUmSJElTyh46SVLvefZRkqThTOgkSf0WiJOiSJI0lAmdJKnXgj10kiSNYkInSeo9J0WRJGk4T3pKkiRJ0pSyh06S1HuefZQkaTgTOklSrzX3oXPMpSRJw5jQSZJ6zx46SZKG8xi5CEk2Jqkku7R/fzbJf5tAvUny50muT/Klruu7v5I8MskFSW5O8qp22TuSnLLE8n43yauXs42LqPsDSf73CtR7UZIfH2O9xyT5P923SJLUFysVj/RNkicl+fr9LGNJ793cfTDNxo05Oqr7Q0met0J1r8jnJsn3kjxsjPWek+SvxylzKhO6JJcnua19Q2YffzTG6yrJf5lEG8eR5KQklyW5JcklSR4xYtX/CvwEsL6qjh6j3JXeztcAn6mqfavqXUmeBDwe+I3FFpTkQODFwJ+2f/94knsG9vuVSd60rK1fJnP+T7/TJof7jPPaqjqiqj47xnpfBW5I8pz7216pr5ohl8v7kJbDThiPrKi571tV/WtVPXIl27QajBtzLLckjwEeC/xd+/dLktw98Fm6NMmvTrpd42j/F28ZiEXfkWTNOK+tqn2q6tIx1vt74Ij2fZrXVCZ0ree0b8js4xX3t8BJnmVpzwi8DHgWsA/wbGDbiNUfClxeVbdMqHkjjfkePRS4aODvQ4EXVNVdS6jyJcBZVXXbwLKrZvc7TbL7spU6uzOG57TtfBxwJPC6Duo4DfjlDsqVemNmmR8LSbIhyWeSXNyevT5p4LlXJvmPdvnbBpa/LsnmJF9P8pP3f6s1JXameGRFLOX9WA09ZzuBXwZOq6oaWPbFgRjvp4G3JTlyZZq3oMe27fwx4AXAL3VQx4eAExZaaZoTuqGS/Jckn0tyY5Jts12VST7frvLvbTb9gra3Z0uS30zyHeDPk8wkeW2Sbya5NsnpSfYfo96HJ/l0+5ptSU5LsnbEujPAG4Bfq6qLq/HNqrpuyLovA94LPKFt95va5S9vA4frkpyZ5OBR2znf+u1zT2sDkBuTvLt9//5b+9xLkvxbkj9Ici3wxvm2NcmngScDf9TW/wjgKcB/b5/fL8k/JLkmzRDSf0iyfp639hnA50Y9WVWXAf8HOHxge96Z5IokNyU5L00P4exzb2z36QfTDAm9KMmmgeePTHJ++9xfA3sMPLfYtg+28zvAJ2gSu9nyntvWf0Oabv8fGnju8iRPbX/fPckpSa5qH6ck2X2g+M8Cx85ZJq0qM2RZH2PYDpxcVYcDxwAnJjk8yZOB42gO5EcAbwdIcjhwPHAE8HTg3RnzbK1Wp9UWj7TrH53ki+1xa2uSP0qy24h1Z4ckntAeu7Ym+fVxy2pfe2KSbwDfmO99G3jN5e17+FXglgxJ6pL8RJoTMjem6U3NnOd/KU0v5fVJPpHkoSPe6rnlvrR93c1pepZGnmhNsibJ77f757Ikr8iOQ2hHlpUmLvvCnPK+33OZ5JlpTkTdnKbn6Nfb5evauOWGNLHgv7b7f27MMc5++ZUk32jX+eOkmbVqMf97rYVivK8AlwCD8dHfpBn1dGOSzyc5YuC5D7Tt+cd2+89J8vCB50fu+yW0fbCdm4F/Y8cYb764e3B/PTBNTHpNkm8l+e3Z/dL6LM3JlnmtuoQO+H+ATwL7AeuBPwSoqh9tn39sm/nPjkn9AWB/ml6lE4BXAs+jybYPBq4H/niMegP8bvuaHwI2AG8cse769vGoNInHZUneNGcH0rb7fcCvcO8ZizckeUpb1/OBBwPfAj48ajvnWz/JOuAjND1HBwBfB35kTjN+GLgUOAh483zbWlVPAf4VeEVb/3/OKWsG+HOa9/shwG3AfMNTHt22aagkhwFPBM4eWPxlmg/V/sBfAX+TZI+B55/bbv9a4MzZ+tsvrI8B/1/72r+hOTu01LYPtnM9zRfX5vbvR9CcdXk1cCBwFvD3GX5g/C2agPJxNEMTjgZ+e/bJqroSuAtw2IlWpZUYcllVW6vq/Pb3m2mCikOAXwXeWlV3tM9d3b7kOODDVXVHe6JpM81nVTuvVRWPtO4Gfg1YBzwBOJb2hO08ngwcBjwN+M3ZxGHMsp5HE4McPs/7NtcLaQLgtVW1ffCJNuY5g+YYug74Jk0MMfv8ccDrgZ+iOTb/K82xehxX0/RuPgB4KfAHSY4ase7LaWKCxwFHtdu51LLmeh/wy1W1L/Ao4NPt8pOBLTTbdRDNdtaQ14+zX55NcynNY2hiy9kRCWP/7yXZm2YE13wx3uOBRwDnDiz+J5r/pwcB59OMUhp0PPAmms/dZpq4dcF9v5i2D2nnDwJP4t4Yb2TcPcQfAg8EHkbzWX8xzT6fdQmwMckD5mvDNCd0H2vPDMw+Xt4uv4vmy/Dgqrq9qr4wTxkA9wBvaA/Ct9EkT79VVVvaA/YbgZ/JAl33VbW5qj7VlnMN8A6aHTPMbK/O02gSlifTfAG9bIG2zvp54P1VdX7bxtfR9OBtXML6zwQuqqoz2i++dwHfmfP6q6rqD6tqe1Xdtsht3UFVXVtVH62qW9sg6c0LvHYtcPOcZQe3+/wm4D+Bc4Dv7+eq+su2nu1V9fvA7uyY7Hyhqs6qqrtpkrfHtsuPAXYFTqmqu6rqIzTJ4VLbDs3/6c3AFTRf0G9ol78A+Mf2fbyL5iz/ntw3mYZm//2vqrq6fb/fBLxozjo3t++VpGXWflceSfNd8wjgSe2Z38+1AQc0yd4VAy/b0i7T6rfTxCNVdV5Vnd0eXy+nub59oePgm6rqlqq6kOak6AsXUdbvVtV1teNlFwt5V1VdMeI1szHPR9pj7ynsGPP8SlvnJW1M9BbgcRmjl66q/rHt3ayq+hxNMv+kEas/H3hnu2+vB956P8qa6y7g8CQPqKrrZ09MtcsfDDy0jXH+taruk9CNuV/eWlU3VNW3gc/Q9kwt8n9vbftzbox3TPs5uhn4Ek2c9o2B9r2/qm4e+Ew8NskDB17/t1X1pXb/nca9vWbz7vslxrbnJ7mFJun6LPDudvlYcXqaURzHA69rt+ly4PfZMcabfX/WzteQaU7onldVawcef9Yufw1Nlv2lNMPZFhrPek1V3T7w90OBv539YqbZSXfTnM0YKclBST6cpnv7JuAvac4ADDP7JfO29gNxOc0H5pkLtHXWwTTZPgBV9T3gWkYHD/OtfzADQUj74d4y5/WDQcpit3UHSfZK8qdtt/JNwOeBtRk9NOl6YN85y65q9/kDaP7BbwP+YqCOX08zVOHGdh8+cE77Br+8bwX2aA+QBwNXzvmC+/77toS2Q/N/ui/w48APDrRj7j65h+Z9HrYPd1i3/f3gOevsC9wwTzukqdbBNXTrkpw78Bh6jUKaiYw+Cry6qm6iud3P/jQngH4DOD3xJnk7uZ0mHknyiDTD9r7Tlv2WecqeNRhDfP/4NWZZV7B4871mWMwzuP5DgXcOvOfX0ezDBU/OJHlGkrPbIXY30LyHo96bHdoxt82LLGuun27X/1Z70ukJ7fLfo+lB+mSaYZyvHbEd4+yXuXHUPu1rF/O/d0P7c26Md3b7OdqXptf6iLYNs0NV35pmGPJNwOXta+aL8WYno5t33y8xtj2qLf8FND3Jew/UNU6cvo6mI2FujDe43uz7c8N8DZnmhG6oqvpOVb28qg6mudjy3Zl/Jqm5ZyeuAJ4x58t5j2qGtc3nLW1Zj24TjV+AkRdqfB24c07dw7q9R7mK5ksH+H639QHAqDbOt/5W7j1DRxuYzL0ubG7bFrOtc51M01v2w+1rZ4dQjHr9V2nOiA9VVTfSDKt8Ttv+J9EcRJ8P7FdVa4Ebx2zfVuCQOcHZQ+5H2wfb+TngA7TX23DffRKa7v1h+3CHdds2XTXw2kOA3Zhn2II0zbLMwy3bIZfbqmrTwOPU+9abXWmSudOq6ox28RbgjPbM+ZdoelXW0Xx2Nwy8fD2jv5O1E1il8ch7gP8ADmvLfv08Zc8a/FwMHr/GKWsxsdE4r9k62J6BY++sK2iGKw6+53tW1by3B0pzDftHaY7xB7Wxx1mMfm92iL3mtGmhsm4B9hpY/wcGC66qL1fVcTRDEj8GnN4uv7mqTq6qh9FcevI/khw7pG1L2cezxv7fq2aiv28yf4z3XZr3YnYm75+jGd7+VJqT9Rvb5ePGePPt+yXFtu2x4HTgi8DvtIvHjdO3cW9P/qyHzFnvh2gmRrxpvnasuoQuyc/m3okqrqfZOfe0f3+XZozqfP4EePNs93qSA9OMqV7IvsD3gBvbAHvkFP1VdSvw18BrkuzbtvcE4B/GqAea8dwvTfK49oP/FuCc9swa3Hc751v/H4FHJ3le20t1Is0ZkWXZ1hGvvY1mqv39uXcI4ihnMU+Xd3v2/HjunVVzX5rJDK4BdknyOzRj0Mfxxfa1r0qya5KfYsdrYBbb9rlOAX4iyWNpvmCfleTYNmg8GbiDZoKXuT4E/Hb7v7iO5gvjLwee/zHg0223vrQqTXpSlPZg/z7gkqp6x8BTH6MZljZ7LexuNAflM4Hj00xidCjNNR69v2+ourNK45F9gZuA76W5bmicKeX/Z5oRLkfQXBs0e+3bUsoa532bzz/STAP/U23M8yp2jHn+BHhd29bZCSt+doxyd6O5vOMaYHuSZ9AMYx3ldOCkJIekmXjjNxdR1r+32/C4NPMDvHH2iSS7Jfn5JA9shxXeRPs/l+TZaSbqCc2J7ru59/9x0FL2y+BrFxMfLhTjHQD83+wY491B09u1F23P3ZgW2vf3J7aFZtjsy9sEe6E4HYBqLv05neZzvm/7Wf8f3DfG+6eFKp/mhO7vs+N9X/62Xf544Jwk36M5wJ5U997r4Y3AX6TpSn/+iHLf2b7uk2nG755N0426kDfRdL3eSPNPc8b8q/MKmn+cq2gSib8C3j9GPVTVPwP/k+asxVbg4TRJzaw3MrCd861fVduAnwXeRvMBOZzm4tP5koPFbuugU2iuFdtG895+fIH1Pwg8M8meA8sOnt3vNF3T+9OMV4ZmJsmP01xb9y3gdsYcslFVd9JcCP0SmmEWL2DHbVts2+eWf027Pb9TVV+nOfvzh215z6GZ+vrOIS/93zT75KvAhTQXAQ/e7PznaQ5C0qq1AveheyLNdQxPSXJB+3gmzff0w5J8jeYi919sz9BeRHNgvpjmu+HE9mCt1W9nikd+naaX5Gbgz7g3OZvP52iG+v0L8Paq+uT9KOuNLPy+jTQQ87yVJuY5jGZ2wtnn/xb4f4EPpxl29zWayUsWKvdmmgThdJrk/edo9t0of0ZzXdxXga/QJDbbgbsXKquayeb+F/DPNNeWzb0280XA5W37f4V746PD2td8j2Y/v7uqPjOkbUvZL7MW+793KvDzbZI56wkDMd4lNIntK9vnPkgT211J8107OCHevBba90to+9zyL6S5FOc3xojTB72Sptf1Upp9Offz90LaezHPJ3Xf6yG1E0szs9UW4OdHfNAnLslbgKur6pSVbsukJPk28AtV9fkF1nsM8KdV9YT51pOm2UPW7FK/uefaZS3zFbdce15VbVp4TUlLkWYCiMuAXWvObJPaUdsL9ydVNdYtElaTJH8FnF5VH1vptkxCG2ffTTM5zbcXWPc5wIuqasGTF950UaS5Ae45NMMJf4NmzPDYZz26VlWvX+k2TFKSA2mmFb58oXWr6qs00wpLq1aY7uEkkjSoHXX0ZJpeuoNoLuH423lftEpV1c+tdBsm7FE0o8fmzih/H1X198Dfj1Oox0hBkxB8k3uH/j2vFjdFsJZJminQvwH84UJnbqSdyQoMuZSkroRmiN/1NEMuL+HeCTW0SiX5aZrbPPzmiEtsll62Qy4lSX22cc2u9Vt7rV3WMk/43jaHXEqSVgWHXEqSes9eNUmShnPIpSRJkiRNqU566Nbtv19tXH9wF0XfKx3nojXs1hzLbPtd3dcxs6bb8td0XD7APatk5u+ZjjvEZ7r9TFz+7SvYdu119pNoRfiPp9Vs3boDauNDHrLSzZC0zM77ygXbqurAruvpJMLcuP5gvnTmh7oo+vuyxz6dll+3f6/T8gG4/rvd17Hnvp0Wn33367R8gLr1ps7rmITsvbbbCvbs9jPx+Kc8vdPypVGCQy61um18yEM49wufXelmSFpm2XvttyZRj9fQSZJ6b8Y+OkmShvIaOkmSJEmaUvbQSZJ6Ld47TpKkkUzoJEm953ASSZKGM6GTJPWeHXSSJA1nQidJ6rVmlktTOkmShnEUiyRJkiRNqbESuiRPT/L1JJuTvLbrRkmSNCjL/JC6ZuwkaVIWTOiSrAH+GHgGcDjwwiSHd90wSZJmmdBpmhg7SZqkcXrojgY2V9WlVXUn8GHguG6bJUnSvUzoNGWMnSRNzDgJ3SHAFQN/b2mX7SDJCUnOTXLuNddev1ztkySJJMv6kDq2YOy0Q9y07dqJNk7S6rJsk6JU1alVtamqNh14wH7LVawkSdKqs0PctO6AlW6OpCk2zm0LrgQ2DPy9vl0mSVLnHCapKWTsJGlixumh+zJwWJJDk+wGHA+c2W2zJEm618wyP6SOGTtJmpgFe+iqanuSVwCfANYA76+qizpvmSRJLS970zQxdpI0SeMMuaSqzgLO6rgtkiQNFQddasoYO0maFEeeSJIkSdKUGquHTpKkleKkKJIkjWZCJ0nqPRM6SZKGM6GTJPXejBmdJElDeQ2dJEmSJE0pe+gkST0XZ7mUJGmEbhK6zJA99umk6Fl1w9Wdlj8Re+zdfR277d5t+XVPt+UD2We/zuvgnru7r6PjG2nVjdd0Wj53b++2fGkEJ0WRBFBV3VfS9bHu7ru6LR8mc+POXXbrvIrMrOm8jtXCHjpJUr/FG4tLkjSKCZ0kqffM5yRJGs5JUSRJkiRpStlDJ0nqvRn76CRJGsqETpLUa06KIknSaA65lCT1XrK8j4Xry4Ykn0lycZKLkpw05/mTk1SSde3fSfKuJJuTfDXJUd28E5Ik7cgeOklS761AD9124OSqOj/JvsB5ST5VVRcn2QA8Dfj2wPrPAA5rHz8MvKf9KUlSp+yhkyRpjqraWlXnt7/fDFwCHNI+/QfAa4DBm2IdB3ywGmcDa5M8eJJtliTtnOyhkyT1Xpa/j25dknMH/j61qk4dWneyETgSOCfJccCVVfXv2XHs5iHAFQN/b2mXbV3WVkuSNIcJnSSp1wLMLP+Yy21VtWnBupN9gI8Cr6YZhvl6muGWkiT1ggmdJKn3VmKWyyS70iRzp1XVGUkeDRwKzPbOrQfOT3I0cCWwYeDl69tlkiR1ymvoJEm9l2V+LFhfk7G9D7ikqt4BUFUXVtWDqmpjVW2kGVZ5VFV9BzgTeHE72+UxwI1V5XBLSVLn7KGTJOm+ngi8CLgwyQXtstdX1Vkj1j8LeCawGbgVeGnnLZQkCRM6SdIU6GBSlHlV1RdYoDOv7aWb/b2AEztuliRJ92FCJ0nqvXFuBi5J0s7IhE6S1GvBC74lSRrFY6QkSZIkTSl76CRJveeIS0mShjOhkyT1XryITpKkoUzoJEm9ZzonSdJwJnSSpF4b92bgkiTtjJwURZIkSZKmlD10kqR+S7yGTpKkEaY2ocu++3Vaft1xa6flN5VU91V886udln/Ppz/eafkA7Lln51XkKc/qvI6ZQx/VbQV3b++2/An8v0qjzJjPSdp+Z+dV1HVbuy3/P8/rtHwA9ti78ypmDjuq8zpq3/07LT9rpjYNuo/VsyWSpFUrZnSSJA1lQidJ6rUAjriUJGk4J0WRJEmSpCllD50kqd9iD50kSaOY0EmSes9ZLiVJGs6ETpLUe+ZzkiQNZ0InSeo9e+gkSRrOSVEkSZIkaUrZQydJ6jVvWyBJ0mgL9tAl2ZDkM0kuTnJRkpMm0TBJkgAIzCTL+pC6ZOwkaZLG6aHbDpxcVecn2Rc4L8mnqurijtsmSRJgD52mjrGTpIlZMKGrqq3A1vb3m5NcAhwC+KUkSZqAOCmKpoqxk6RJWtSkKEk2AkcC53TSGkmSpFXE2ElS18aeFCXJPsBHgVdX1U1Dnj8BOAHgIYccvGwNlCTt3ALEOZk1heaLnXaImzZsWIHWSVotxjpEJtmV5gvptKo6Y9g6VXVqVW2qqk0HHrD/crZRkrQzS3MfuuV8SF1bKHbaIW5ad8DkGyhp1Viwhy7Nke99wCVV9Y7umyRJ0o7MwTRNjJ0kTdI4PXRPBF4EPCXJBe3jmR23S5IkaVoZO0mamHFmufwCzSUMkiStCIdJapoYO0mapLEnRZEkaaWYz0mSNJwJnSSp1wLMmNFJkjSUCZ0kqd9iD50kSaN4Zx9JkiRJmlL20EmSes9JUSRJGs6ETpLUe+ZzkiQN111CV/d0VjQAd9/VafF1/Xc7LR8gu+7ReR31b5/ptPzfP+UTnZYPsHH37s87/MyBD+q8Dh7+2E6Lzx57d1o+M47Q1soIk0/okmwAPggcBBRwalW9M8nvAc8B7gS+Cby0qm5oX/M64GXA3cCrqqr7L0ipJ+qejuM+gNtu7ryKe878QKflf/ktH+m0fIAfWLdn53U85G2/3nkdM094VrcVrNmn2/InyAhNktRvCZlZ3scYtgMnV9XhwDHAiUkOBz4FPKqqHgP8J/C6pok5HDgeOAJ4OvDuJGs6eDckSdqBCZ0kSXNU1daqOr/9/WbgEuCQqvpkVW1vVzsbWN/+fhzw4aq6o6ouAzYDR0+63ZKknY8JnSSp95LlfSyu7mwEjgTOmfPULwH/1P5+CHDFwHNb2mWSJHXKSVEkSb3XwY3F1yU5d+DvU6vq1LkrJdkH+Cjw6qq6aWD5b9EMyzxtuRsmSdJimNBJknqto0lRtlXVpnnrTXalSeZOq6ozBpa/BHg2cGxVVbv4SmDDwMvXt8skSeqUQy4lSb2XZFkfY9QX4H3AJVX1joHlTwdeAzy3qm4deMmZwPFJdk9yKHAY8KVlfRMkSRrCHjpJku7ricCLgAuTXNAuez3wLmB34FNtYnh2Vf1KVV2U5HTgYpqhmCdW1d2Tb7YkaWdjQidJ6rclTGRyf1XVF5qa7+OseV7zZuDNnTVKkqQhTOgkSb03zjBJSZJ2RiZ0kqTeM5+TJGk4J0WRJEmSpCllD50kqdea2xbYRSdJ0jAmdJKkfgvE8SSSJA1lQidJ6rnx7h0nSdLOyIROktR/MyZ0kiQN4yAWSZIkSZpS9tBJkvrPIZeSJA1lQidJ6rc4y6UkSaOY0EmS+s9r6CRJGsqETpLUc3HIpSRJIzgpiiRJkiRNKXvoJEm9lkAccilJ0lAmdJKk/nPIpSRJQ5nQSZJ6zx46SZKGm9qErq77brcVbP5at+UDdcBBndex/dIrOi3/stvv6rT8SdXx03fc3nkdVHVb/q67d1t+vORWK8geOkl33dF5FfX1r3da/l9cfUOn5QNsuvW2zut46RWXdV4HR2/vtPjqOi6bICM0SZIkSZpSU9tDJ0naSSTeh06SpBFM6CRJvReHXEqSNJQJnSSp/+yhkyRpKK+hkyRJkqQpZQ+dJKnfgrNcSpI0ggmdJKn3vGuGJEnDmdBJkvrPHjpJkoYaO6FLsgY4F7iyqp7dXZMkSRqQECdF0RQydpI0CYsZxHIScElXDZEkSVpljJ0kdW6shC7JeuBZwHu7bY4kSUMky/uQOmbsJGlSxh1yeQrwGmDf7poiSdIIDrnU9DkFYydJE7BgD12SZwNXV9V5C6x3QpJzk5x7zbXXLVsDJUk7t6ZTLcv6kLo0Tuy0Q9y07doJtk7SajPOkMsnAs9NcjnwYeApSf5y7kpVdWpVbaqqTQcesP8yN1OStFObyfI+pG4tGDvtEDetO2Al2ihplVgwoauq11XV+qraCBwPfLqqfqHzlkmSJE0hYydJk+R96CRJPedEJpIkjbKohK6qPgt8tpOWSJI0gte9aVoZO0nqmj10kqR+C173JknSCIu5sbgkSSti0rNcJtmQ5DNJLk5yUZKT2uX7J/lUkm+0P/drlyfJu5JsTvLVJEd1/JZIkgSY0EmSNMx24OSqOhw4BjgxyeHAa4F/qarDgH9p/wZ4BnBY+zgBeM/kmyxJ2hmZ0EmS+m/Cty2oqq1VdX77+83AJcAhwHHAX7Sr/QXwvPb344APVuNsYG2SBy/zuyBJ0n14DZ0kqd/SySyX65KcO/D3qVV16vDqsxE4EjgHOKiqtrZPfQc4qP39EOCKgZdtaZdtRZKkDpnQSZJ6L8s/Kcq2qtq0YL3JPsBHgVdX1U2D199VVSWp5W6YJEmL0V1Cl25Hc2b/gxZe6X6YyBG67um8il0e/YOdlv+0/b7WafkAj3jAXp3XkR96TOd11E3XdlvBHh2/T/fc3W35Us8k2ZUmmTutqs5oF383yYOrams7pPLqdvmVwIaBl69vl0k7h0ncWmSPvTuvYubYn+y0/N+77JpOywfY7Qce2HkdPO4J3dex6+6dFr+abofjNXSSpP6bHXa5XI8Fq0uA9wGXVNU7Bp46E/jF9vdfBP5uYPmL29kujwFuHBiaKUlSZxxyKUnqt5W5D90TgRcBFya5oF32euCtwOlJXgZ8C3h++9xZwDOBzcCtwEsn2lpJ0k7LhE6S1HuTHhpTVV+gSSWHOXbI+gWc2GmjJEkawoROktRz491qQJKknZHX0EmSJEnSlLKHTpLUf6toNjJJkpaTCZ0kqd+CCZ0kSSOY0EmS+s+ETpKkoUzoJEk9F5jxkm9JkobxCClJkiRJU8oeOklS/znkUpKkoUzoJEn95qQokiSNZEInSeo/EzpJkoYyoZMk9ZyTokiSNIpHSEmSJEmaUvbQSZL6zyGXkiQNZUInSeo3J0WRJGkkEzpJUv+Z0EmSNJQJnSSp55wURZKkUTxCSpIkSdKUsodOktR/DrmUJGkoEzpJUr85KYokSSOZ0EmS+s+ETpKkobyGTpIkSZKmVDc9dOl+RrKs29Bp+Rz6Q92WD2Tf/bqvY8MjOy3/uAMP6rR8ANYf2nkVM0c8ofM66rvf6raCO2/vtvy7t3dbvjRCCHGWS6nXMoFe9Npjn87rmPmvz+20/L2P+OFOywdg1906ryIPPLDzOthl9+7rWCUccilJ6j+HXEqSNJQJnSSp35wURZKkkUzoJEn9Z0InSdJQXpQgSZIkSVPKHjpJUs91P9GWJEnTyoROktR/DrmUJGkoEzpJUr85KYokSSOZ0EmS+s+ETpKkoca6KCHJ2iQfSfIfSS5J0v1dmCVJkqaUsZOkSRm3h+6dwMer6meS7Abs1WGbJEka4KQomkrGTpImYsGELskDgR8FXgJQVXcCd3bbLEmSBjjkUlPE2EnSJI1zyvNQ4Brgz5N8Jcl7k+zdcbskSWrMToqynA+pW8ZOkiZmnIRuF+Ao4D1VdSRwC/DauSslOSHJuUnOvebaa5e5mZKknVc75HI5HwvVmLw/ydVJvjaw7HFJzk5yQXu8O7pdniTvSrI5yVeTHNXhm6HpsGDstEPctM24SdLSjZPQbQG2VNU57d8fofmS2kFVnVpVm6pq04EHHLCcbZQkadI+ADx9zrK3AW+qqscBv9P+DfAM4LD2cQLwnsk0UT22YOy0Q9y0zrhJ0tItmNBV1XeAK5I8sl10LHBxp62SJGnQhIdcVtXngevmLgYe0P7+QOCq9vfjgA9W42xgbZIHL9OWawoZO0mapHFnuXwlcFo7S9OlwEu7a5IkSXP047q3VwOfSPJ2mhOiP9IuPwS4YmC9Le2yrRNtnfrG2EnSRIyV0FXVBcCmbpsiSdIQs5OiLK91Sc4d+PvUqjp1gdf8KvBrVfXRJM8H3gc8dbkbptXB2EnSpIzbQydJ0mqyraoWG2z/InBS+/vfAO9tf78S2DCw3vp2mSRJnfNOrZKknpv8LJcjXAX8WPv7U4BvtL+fCby4ne3yGODGqnK4pSRpIuyhkyT134SvoUvyIeDHaYZmbgHeALwceGeSXYDbaWa0BDgLeCawGbgVr5WSJE2QCZ0kqf8mnNBV1QtHPPV/DVm3gBO7bZEkScOZ0EmS+i1AvEJAkqRhPEJKkiRJ0pSyh06S1HOBmV7ch06SpN7pMKHr9uBbt9/Safl50IaFV7q/dey2Z+d1sHu3deRpoy4zWUYza7qvY9fdOq8i+x/Uafl1x22dln8/ZgaU7j+HXEo7vazpvh+i9l7bafnZ6wGdlj8xE4jNMuFrp6eZPXSSpP7zwC5J0lAmdJKkfkvsIZYkaQSPkJIkSZI0peyhkyT1n0MuJUkayoROktR/TooiSdJQJnSSpP6zh06SpKFM6CRJ/eakKJIkjeQRUpIkSZKmlD10kqT+c8ilJElDmdBJkvrPSVEkSRrKhE6S1G8JzNhDJ0nSMJ7ylCRJkqQpZQ+dJKn/HHIpSdJQJnSSpP5zUhRJkoYyoZMk9VzsoZMkaQQTOklSvwUnRZEkaQRPeUqSJEnSlLKHTpLUf15DJ0nSUCZ0kqT+8xo6SZKGMqGTJPWbNxaXJGkkEzpJUv/ZQydJ0lAeISVJkiRpStlDJ0nqPydFkSRpKBM6SVLPeWNxSZJG6S6h6/gC9nu+9oVOy8+B6zstH4Bddu2+jltu6LT4uuWmTssH4I7buq9j7YGdV5EHrOu2/DU3d1o+M2u6LV8axRuLS5qQzHR98siTU1p+9tBJkvrPHjpJkobyCClJkiRJU8oeOklS/zkpiiRJQ5nQSZJ6LtD5dS2SJE0nEzpJUr8Fe+gkSRrBU56SJEmSNKVM6CRJ/ZeZ5X0sVF3y/iRXJ/nanOWvTPIfSS5K8raB5a9LsjnJ15P8ZAfvgCRJQznkUpLUc1mJIZcfAP4I+OD3W5E8GTgOeGxV3ZHkQe3yw4HjgSOAg4F/TvKIqrp70o2WJO18xuqhS/Jr7dnIryX5UJI9um6YJEnfNzOzvI8FVNXngevmLP5V4K1VdUe7ztXt8uOAD1fVHVV1GbAZOHr5Nl7TyNhJ0qQseFRLcgjwKmBTVT0KWENzJlKSpO7NToqynA9Yl+TcgccJY7TkEcCTkpyT5HNJHt8uPwS4YmC9Le0y7aSMnSRN0rhDLncB9kxyF7AXcFV3TZIkqXPbqmrTIl+zC7A/cAzweOD0JA9b9pZptTB2kjQRC/bQVdWVwNuBbwNbgRur6pNz10tywuyZzmuunTtKRZKkpcrEJ0UZYQtwRjW+BNwDrAOuBDYMrLe+Xaad1Dix0w5x07ZrV6KZklaJcYZc7kdzfcChNBd7753kF+auV1WnVtWmqtp04AH7L39LJUk7r+UfcrkUHwOe3DQnjwB2A7YBZwLHJ9k9yaHAYcCX7v9Ga1qNEzvtEDetO2AlmilplRjnNOVTgcuq6pqqugs4A/iRbpslSdKAyd+24EPAF4FHJtmS5GXA+4GHtbcy+DDwi21v3UXA6cDFwMeBE53hcqdn7CRpYsa5hu7bwDFJ9gJuA44Fzu20VZIkzUpgZrK3LaiqF4546j4jVNr13wy8ubsWacoYO0mamHGuoTsH+AhwPnBh+5pTO26XJEnSVDJ2kjRJY81yWVVvAN7QcVskSRpu6ROZSCvC2EnSpIx72wJJklbO0icykSRpVTOhkyT1XOyhkyRpBBM6SVLvxR46SZKG8pSnJEmSJE0pe+gkSf0WHHIpSdIIJnSSpJ7zGjpJkkbpLqG7557Oigbgiks7Lb46Lb21+56dV5Fddu28js7NrOm8iuy6e+d1TGI7pFVrwjcWlyRpWthDJ0nqP3voJEkayiOkJEmSJE0pe+gkSf0WvLG4JEkjmNBJknrOSVEkSRrFhE6S1H/20EmSNJSnPCVJkiRpStlDJ0nqP4dcSpI0lAmdJKnfEu9DJ0nSCCZ0kqT+s4dOkqShTOgkSf3npCiSJA3lKU9JkiRJmlL20EmSes770EmSNIoJnSSp/xxyKUnSUCZ0kqR+C/bQSZI0ggmdJKnnAjMmdJIkDeMRUpIkSZKmlD10kqTei9fQSZI0lAmdJKn/vIZOkqShTOgkSf0WnOVSkqQRTOgkST3nfegkSRrFI6QkSZIkTSl76CRJ/eeQS0mShjKhkyT1n/ehkyRpKBM6SVK/JfbQSZI0QicJ3Xn/fuG2mYMO/dYiXrIO2NZFWybIbeiP1bAdfdyGh650AyRpNTrvKxdsy95rFxM3QT+PE4vlNvTDatgG6Od2TCR26iShq6oDF7N+knOralMXbZkUt6E/VsN2rIZtkJbVhGe5TPJ+4NnA1VX1qDnPnQy8HTiwqraluev5O4FnArcCL6mq8yfaYE21xcZNsDqOE25DP6yGbYDVsx1L4UUJkqT+mx12uVyPhX0AePp9m5ENwNOAbw8sfgZwWPs4AXjP/d5eSZLGZEInSZoCWebH/Krq88B1Q576A+A1QA0sOw74YDXOBtYmefCiN1GSpCXoy6Qop650A5aB29Afq2E7VsM2SMukH5OiJDkOuLKq/j07tucQ4IqBv7e0y7ZOsHna+ayG44Tb0A+rYRtg9WzHovUioauqqd8BbkN/rIbtWA3bIPXcuiTnDvx96nyfuyR7Aa+nGW4prbjVcJxwG/phNWwDrJ7tWIpeJHSSJM1r+Xvoti3y4vmHA4cCs71z64HzkxwNXAlsGFh3fbtMkqTOeQ2dJGkKTPYaurmq6sKqelBVbayqjTTDKo+qqu8AZwIvTuMY4MaqcrilJGkiVjShS/L0JF9PsjnJa1eyLUuVZEOSzyS5OMlFSU5a6TYtVZI1Sb6S5B9Wui1LkWRtko8k+Y8klyR5wkq3abGS/Fr7f/S1JB9KssdKt0lacWHis1wm+RDwReCRSbYkedk8q58FXApsBv4M+O/LsNXSUMZO/THtcRMYO60WKzbkMska4I+Bn6A50/nlJGdW1cUr1aYl2g6cXFXnJ9kXOC/Jp6ZwOwBOAi4BHrDSDVmidwIfr6qfSbIbsNdKN2gxkhwCvAo4vKpuS3I6cDzN9OnSzm3Cc6JU1QsXeH7jwO8FnNh1myRjp96Z9rgJjJ1WhZXsoTsa2FxVl1bVncCHaaZ+nipVtXX2BrJVdTPNB/uQlW3V4iVZDzwLeO9Kt2UpkjwQ+FHgfQBVdWdV3bCijVqaXYA9k+xC86V61Qq3R5LUH8ZOPTHtcRMYO60mK5nQjZrmeWol2QgcCZyzwk1ZilNo7q10zwq3Y6kOBa4B/rwd/vDeJHuvdKMWo6quBN5Oc8PirTTX4XxyZVsl9cXKXkMn9YSxU3+cwnTHTWDstGo4KcoySbIP8FHg1VV100q3ZzGSPBu4uqrOW+m23A+7AEcB76mqI4FbgKm6tiDJfjRnWg8FDgb2TvILK9sqqQ+W+fq5HtzTTtL0xk6rJG4CY6dVYyUTulUzzXOSXWm+kE6rqjNWuj1L8ETguUkupxm+8ZQkf7myTVq0LcCWqpo9w/cRmi+pafJU4LKquqaq7gLOAH5khdsk9YMJnQTGTn2xGuImMHZaNVYyofsycFiSQ9uLMI+nmfp5qqS5IdH7gEuq6h0r3Z6lqKrXVdX69iL/44FPV9VUnd1opw6/Iskj20XHAtN2cfW3gWOS7NX+Xx1Lc12BJIdcSmDs1AurIW4CY6fVZMVmuayq7UleAXwCWAO8v6ouWqn23A9PBF4EXJjkgnbZ66vqrJVr0k7rlcBp7UHuUuClK9yeRamqc5J8BDifZgawrwCnrmyrJEl9YeykDhg7rQJpZluWJKmfNj320fXlT/7dspY58wMPP6+qNi1roZIkrYAV66GTJGl8DpOUJGkYEzpJUr85kYkkSSN52wJJkiRJmlL20EmS+s8eOkmShjKhkyRNARM6SZKGMaGTJPVe7KGTJGkoEzpJUv+Z0EmSNJSTokiSJEnSlLKHTpLUc8Fr6CRJGs6ETpLUfw65lCRpKBM6SVK/BRM6SZJGMKGTJE0BEzpJkoZxUhRJkiRJmlL20EmS+s8hl5IkDWVCJ0nqP/M5SZKGMqGTJPWcty2QJGkUEzpJUv855FKSpKGcFEWSJEmSppQ9dJKkfvM+dJIkjWRCJ0maAiZ0kiQNY0InSeo/e+gkSRrKa+gkSZIkaUrZQydJ6rnYQydJ0ggmdJKkKWBCJ0nSMCZ0kqT+s4dOkqShUlUr3QZJkkZK8nFg3TIXu62qnr7MZUqSNHEmdJIkSZI0pZzlUpIkSZKmlAmdJEmSJE0pEzpJkiRJmlImdJIkSZI0pUzoJEmSJGlK/f+bpeDkABrP2gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "recorteR6 = trim(imagen[:,:,0], 535, 335, 10, 10)\n", + "poptR6, pcovR6 = curve_fit(gauss2d, xdata6, recorteR6.ravel(), p0=[1,0,1,1,1])\n", + "estrellaR6=gauss2d(xdata6, poptR6[0], poptR6[1],poptR6[2], poptR6[3], poptR6[4])\n", + "FWHMR6=FWHMR.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptR6[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 6 fotografÃa (Banda Rojo)\")\n", + "plt.imshow(recorteR6, plt.get_cmap('Reds'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 6 a partir de la gaussiana (Banda Rojo)\")\n", + "plt.imshow(estrellaR6.reshape(10, 10), plt.get_cmap('Reds'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 7 (Rojo)" + ] + }, + { + "cell_type": "code", + "execution_count": 360, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3QAAAFSCAYAAAC6+p25AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAwQElEQVR4nO3de7xtdV3v/9d7bUCuuoVNKuyNUGEFKuLZEWaWt0pMxV8XL+W1kuyHtw6lYh0v53c0f2aGVlqUaJ5IIsGypNSTtzwnUEAEAU1SlA0bYaPcFdjwOX+MsWTuxZxrzbWYY64x134992M+9ppjjvEd3zHmZXw+4/sd35GqQpIkSZI0e+ZWuwKSJEmSpJUxoZMkSZKkGWVCJ0mSJEkzyoROkiRJkmaUCZ0kSZIkzSgTOkmSJEmaUbusdgUkSVrMpuxS32Wyt9jZxl0fqaonTbRQSZJWgQmdJKnXvkvxC+w10TL/nJs2TLRASZJWiQmdJKnXgtcHSJI0igmdJKn35pLJFjjZHpySJK0aEzpJUq/ZQidJ0mgmdJKk3pubcAOdLXSSpLXCk56SJEmSNKNsoZMk9Z5nHyVJGs6ETpLUayGTHxRFkqQ1woROktR7ttBJkjScCZ0kqddCB4OiSJK0RnjSU5IkSZJmlC10kqTe8+yjJEnDmdBJkvotEAdFkSRpKBM6SVKvBVvoJEkaxYROktR7DooiSdJwnvSUJEmSpBllC50kqfc8+yhJ0nAmdJKkXmvuQ2efS0mShjGhkyT1ni10kiQN5zFyGZIcnKSS7NI+/2SSX5/CepPkPUm+neSzXa/v3kryQ0kuSHJTkpe1096W5KQVlvf7SV4xyTouY93vTfI/VmG9Fyd57BjzPTzJ/+m+RpKkvliteKRvkjwmyZfvZRkr2ncL34NZNm7M0dG635/k6au07lX53iS5Ocn3jzHfU5P87ThlzmRCl+TyJN9pd8j840/GWK6S/OA06rhEPQ5aUPeb27qdMGKRnwB+GthYVUeNUf5qb+crgU9U1T5V9Y4kjwF+FPid5RaUZH/gecCft88fm+Sugf12ZZI3TLT2E7Lgc3p1mxzuPc6yVXV4VX1yjPkuBK5P8tR7W1+pr5oul5N9SJOwE8Yjq2rhfquqf6uqH1rNOq0F48Yck5bk4cARwD+0z1+Q5M6Bz+JXk/zmtOs1jvazeMtALPq2JOvGWbaq9q6qr44x3z8Ch7f7aVEzmdC1ntrukPnHS+5tgdM6y1JV3xisO/Aw4C7gjBGLPBi4vKpumUb9FjPmPnowcPHA80OAZ1bVHStY5QuAs6rqOwPTrhrYdz8B/Npqnd0Zw1Pbej4COBI4sYN1nAr8RgflSr0xN+GHNEE7UzyyKlayP9ZCy9lO4DeAU6uqBqb9+8Dn8ReAtyQ5cnWqt6Qj2nr+FPBM4Fc7WMf7geOWmmnNHdeS/GCSTyW5Icm2+abKJJ9uZ/lCm00/s23t2ZLkVUmuBt6TZC7Jq5P8Z5LrkpyeZN8x1vsDST7eLrMtyalJ1o9Z7ecBn66qy4eU+2vAXwKPauv9hnb6i5JcluRbST6U5IBR27nY/O1rP5Pky+0+e2e7/369fe0FSf53kj9Kch3w+sW2NcnHgccBf9Ku/yHA44H/t339/kn+Kcm1abqQ/lOSjYvsm2OAT416saq+Bvwf4LCB7Xl7kiuS3JjkvDQthPOvvb59T9+XpkvoxUk2D7x+ZJLz29f+Fth94LXl1n2wnlcDH6FJ7ObLe1q7/uvTNPv/yMBrlyd5Yvv3fZKclOSq9nFSkvsMFP9J4AkLpklryhyZ6EPq2lqLR9qyj0ry7+1xa2uSP0my24h557skHtceu7Ym+e1xy2qXPT7JV4CvLLbfBpa5vN2HFwK3ZEhSl+Snk3ypfV/+BHb8QUjyq0kubY/zH0ny4HF2XJIXtsvdlKZlaeSJ1iTrkvxh+/58LclLsmMX2pFlpYnLPrOgvO+1XCZ5cpJL2mWvnN/nSTa0ccv1aWLBf0syN7Df5mOOcd6XFyf5SjvPnybNqFUr+OwtFeN9HrgUGIyP/i5Nr6cbknw6yeEDr723rc+H2+0/J8kPDLw+8r2/N9+bqroM+N/sGOMtFncPvl/3SxOTXpvk60l+b/59aX0S+Lml6rDmEjrg/wM+Ctwf2Aj8MUBV/WT7+hFt5j/fJ/WBwL40rUrHAS8Fnk6TbR8AfBv40zHWG+D322V+BNgEvH7JhZovwfOAvxr2elW9G3gxd5+xeF2Sx7fregbwIODrwGmjtnOx+ZNsAD5A03K0H/Bl4McXVOPHgK8CDwDeuNi2VtXjgX8DXtKu/z8WlDUHvIdmfx8EfAdYrHvKw9o6DZXkUODRwNkDkz9H86XaF/gb4O+S7D7w+tPa7V8PfGh+/e0P1t8D/7Nd9u9ozg6ttO6D9dxI88N1Wfv8ITRnXV4B7A+cBfxjhh8Yfxc4ut2mI4CjgN+bf7GqrgTuAOx2ojVpNbpcJtmU5BNtYHRxkpcPvPbSNii4OMlbBqaf2B7Av5zkZzvZGZolayoead0J/BawAXgU8ATaE7aLeBxwKPAzwKvmE4cxy3o6TQxy2CL7baFn0wTA66tq+4Jt3ACcSXMM3QD8J00MMf/6scBrgJ+nOTb/G82xehzXAE8B7gu8EPijJI8cMe+LaGKCRwCPbLdzpWUt9G7gN6pqH+ChwMfb6ScAW2i26wE021lDlh/nfXkKzaU0D6eJLed/78b+7CXZi6YH12Ix3o8CDwHOHZj8zzSfp+8DzqfppTToWcAbaL53l9HErUu+98up+5B6/jDwGO6O8UbG3UP8MXA/4PtpvuvPo3nP510KHJzkvovVYZYTur9vzwzMP17UTr+D5sfwgKr6blV9ZpEyoOla8Lqquq3t1vdi4HeraktV3UbzZv5ilmi6r6rLqupjbTnXAm+jeWOW8hM0X6wPjDHvvF8BTqmq89s6nkjTgnfwCuZ/MnBxVZ3Z/vC9A7h6wfJXVdUfV9X2qvrOvdhWquq6qjqjqm6tqptovmiLLbseuGnBtAPa9/xG4D+Ac4Dvvc9V9dfterZX1R8C92HHZOczVXVWVd1Jk7wd0U4/GtgVOKmq7qiqD9AkhyutOzSf05uAK2h+oF/XTn8m8OF2P94BvBXYg3sm09C8f/+9qq5p9/cbgOcumOemdl9JmoztwAlVdRjNb8PxSQ5L8jjgWJqg8nCa7y5JDqMJJA4HngS8M2NeT6GZt9PEI1V1XlWd3R5fL6e5vn2pst9QVbdU1UU0J0WfvYyyfr+qvrXgsoulvKOqrhixzHzM84H22HsSO8Y8L27XeWkbE70JeETGaKWrqg9X1X9W41M0yfxjRsz+DODt7Xv7beDN96Kshe4ADkty36r6dlWdPzD9QcCD2xjn36rqHgndmO/Lm6vq+qr6BvAJ2papZX721rf/L4zxjm6/RzcBn6WJ074yUL9Tquqmge/EEUnuN7D8B6vqs+37dyp3t5ot+t6v8HtzfpJbaJKuTwLvbKePFae3x4hnASe223Q58IfsGOPN75/1i1VklhO6p1fV+oHHX7TTX0mTZX+2PXu6VH/Wa6vquwPPHwx8cP6HmeZNupPmR26kJA9Iclqa5u0bgb+mOQOwlOcDZ1TVzWPMO+8AmmwfgHbZ64ADVzD/ATTJxvxrRXMGZ9AVg0/uxbaSZM8kf942K98IfBpYv0jg821gnwXTrmrf8/vSfMC/w8AZxSS/naarwg3te3i/BfUb/PG+Fdi9PUAeAFy54Afue/ttBXWH5nO6D/BY4IcH6rHwPbmLZj8Pew93mLf9+4AF8+wDXL9IPaSZNu1r6Kpq63wg1J7AuZTm+/mbNMHMbe1r17SLHAuc1gYDX6M5U7vkIFZaE3aaeCTJQ9J027u6LftNY5Q9GEN87/g1ZllXsHyLLTMs5hmc/8HA2wf2+bdo3sNR8dX3JDkmydltF7vraRKIUftmh3osrPMyy1roF9r5v56my++j2ul/QPO79NE03ThfPWI7xnlfFsZRe7fLLuezd337/8IY7+z2e7QPTav14W0d5ruqvjlNN+QbgcvbZRaL8eYHo1v0vV/h9+aRbfnPpGlJ3mtgXePE6RtoGhIWxniD883vn+sXq8gsJ3RDVdXVVfWiqjqA5mLLd2bxkaQWnp24AjhmwY/z7tV0a1vMm9qyHtYmGs+BxS/USLIH8Ess3r1hmKtofnTmy9mLprvkqDouNv9Wmq4g869l8Hlr4T5a9rYOOIGmtezH2mXnu1CMWv5Cmub2oarqBppulU9t6/8YmoPoM4D7V9V64IYx67cVOLDdB/MOuhd1H6znp4D30p7N557vSWia94e9hzvM29bpqoFlDwR2Y5FuC9Isy4S7Wy53lMv2rOqRNL0BHgI8Js21GZ9quwRBcwAeDMq2MEYQqLVrjcYj7wK+BBzalv2apcqmObbNGzx+jVPWsC6BS1lsma2D9Rk49s67gqa74uA+36OqFr09UJpr2M+gOcY/oI09zmL0vtkh9lpQp6XKugXYc2D+Bw4WXFWfq6pjabok/j1wejv9pqo6oaq+n+bSk/+a5AlD6raS93je2J+9agb6+08Wj/G+SbMv5kfy/mWak2dPpDlZf3A7fdwYb7H3fkWxbduKejrw78Br28njxunbuLslf95BC+b7EZqBEW9crB5rLqFL8ku5e6CKb9O8OXe1z79J00d1MX8GvHG+eT3J/mn6VC9lH+Bm4IY2wB5niP7/p63jJ8aYd9D7gRcmeUT7xX8TcE7dfRHzwu1cbP4PAw9L8vS2lep4mjMii1nJtg4u+x2aofb35e4uiKOcxSJN3mluA/As7h5Vcx+arlLXArskeS1NH/Rx/Hu77MuS7Jrk59nxDPty677QScBPJzmC5gf255I8IcmuNMnibTQDvCz0fuD32s/iBpofjL8eeP2ngI/PtxhIa1EHg6JsSHLuwGPoKGLtb8wZwCvaA+ouNNc5HU3z23f6gpNAErBm45F9gBuBm9NcNzTOkPL/re3hcjjNtUHz176tpKxx9ttiPkwzDPzPtzHPy9gx5vkz4MS2rvMDVvzSGOXuRnN5x7XA9iTH0FwzOMrpwMuTHJhm4I1XLaOsL7Tb8Ig04wO8fv6FJLsl+ZUk92u7Fd5I+5lL8pQ0A/WE5kT3ndz9eRy0kvdlcNnlfPaWivH2o/lsDsZ4t9G0du1J23I3pqXe+3sT20LTbfZFbYK9VJwOQDWX/pxO8z3fp/2u/1fuGeP981Irn+WE7h+z431TPthO/1HgnCQ30wx48fK6+14Prwf+Kk1T+jNGlPv2drmPpum/ezZNM+pS3kDT9HoDzYfmzDGWeT7wP4f1YV5MVf0v4L/RBBlbgR+gSWrmvZ6B7Vxs/qraRnNW7i00X5DDaC4+XSw5WMm2zjuJ5lqxbTT79l+WmP99wJPbs4fzDph/32mapvel6a8MzUiS/0Jzbd3Xge8yZpeNqrqd5kLoF9B0s3gmO27bcuu+sPxr2+15bVV9mebszx+35T2VZujr24cs+j9o3pMLgYtoLgIevNn5r9AchKQ1q4MWum1VtXngcfLCdbYnW86gGVZ7/rdgC3Bme1b2szQB0QaaM6qDZ3s3MrrXhNaWnSke+W2aVpKbgL/g7uRsMZ+i6er3r8Bbq+qj96Ks17P0fhtpIOZ5M03McyjN6ITzr38Q+P+B09J0u/sizeAlS5V7E02CcDpNYvzLNO/dKH9Bc13chcDnaRKb7cCdS5VVzWBz/x34XzTXli28NvO5wOVt/V/M3fHRoe0yN9OcwH5nVQ1L4Ffyvsxb7mfvZOBXFpwUe9RAjHcpTWL70va199HEdlcCl7DjgHiLWuq9X0HdF5Z/Ec2lOL8zRpw+6KU0ra5fpXkv/wY4ZeD1Z9Pei3kxWWYuoTUuzVCpW4BfGfFFn7okbwKuqaqTVrsu05LkG8BzqurTS8z3cODPq+pRi80nzbKD1u1Sr9pj/UTLfMkt151XVZtHvd4GGH8FfKuqXjEw/cU0g1y8Ns1otf9K00XmMJoD8VE010/8K02XpTsnWnFpRqTpqvw1YNdaMNqkdtS2wv1ZVY11i4S1JMnfAKdX1d+vdl2moY2z76QZnOYbS8z7VOC5VbXkyQtvuijSDK99Dk13wt+h6TM89lmPrlXVa1a7DtOUZH+aYYUvX2reqrqQZlhhac0Kq9Kd5NE0Z7ovSnJBO+01NGdOT0nyReB24Pltq8bFSU6nOWu8HTjeZE7SMG2vo8fRtNI9gOYSjg8uutAaVVW/vNp1mLKH0vQeWzii/D1U1T8C/zhOoSZ0giYh+BuaftuX0IzYtZwhgjUhaQZY+Bjwx0uduZF2JssdyOTeqmaI+VFrfc6IZd5Ie88jSVpEaLr4/S3NyfQPc/eAGlqjkvwCTTfTV424xGblZdvlUpLUZwev27V+d8/1Ey3zuJu3LdrlUpKkWWELnSSp96bdQidJ0qyY5VEuJUmSJGmn1kkL3Yb99q2DNy28N/WMmcZthTKFfHr7Hd2Wf9cUBq66/budr6K+c2vn61jR7VGXIfe7f6flX37V1Wz79g22k2hV+MHTWrZhw3518EEHrXY1JE3YeZ+/YFtV7d/1ejpJ6A7etJHPfWysQVlWrutkaN0UeqPutsfS89xb397aafF143Wdlg9QV/xH9+v44uc7Xwd3Dbt/5+TMHbPsW/Isy1HPHHrfZalzwS6XWtsOPuggzv3MJ1e7GpImLHut//o01uM1dJKk3puzjU6SpKG8hk6SJEmSZpQtdJKkXkvscilJ0igmdJKk3rM7iSRJw5nQSZJ6zwY6SZKGM6GTJPVaM8qlKZ0kScPYi0WSJEmSZtRYCV2SJyX5cpLLkry660pJkjQoE35IXTN2kjQtSyZ0SdYBfwocAxwGPDvJYV1XTJKkeSZ0miXGTpKmaZwWuqOAy6rqq1V1O3AacGy31ZIk6W4mdJoxxk6SpmachO5A4IqB51vaaTtIclySc5Oce+1135pU/SRJIslEH1LHloyddoibtl031cpJWlsmNihKVZ1cVZuravP+++07qWIlSZLWnB3ipg37rXZ1JM2wcW5bcCWwaeD5xnaaJEmds5ukZpCxk6SpGaeF7nPAoUkOSbIb8CzgQ91WS5Kku81N+CF1zNhJ0tQs2UJXVduTvAT4CLAOOKWqLu68ZpIktbzsTbPE2EnSNI3T5ZKqOgs4q+O6SJI0VOx0qRlj7CRpWux5IkmSJEkzaqwWOkmSVouDokiSNJoJnSSp90zoJEkazoROktR7c2Z0kiQN5TV0kiRJkjSjbKGTJPVcHOVSkqQRukno5uZgj306KXpe5tZ1Wn599+ZOywfg21u7X8c++3Vb/vY7ui0fYPe9Ol9Fjjiq+3VsPLTb8vd7UKfls+t9ui1fGsFBUSRJGs0WOklSv8Ubi0uSNIoJnSSp98znJEkazkFRJEmSJGlG2UInSeq9OdvoJEkayoROktRrDooiSdJoJnSSpN5zUBRJkoYzoZMk9Z75nCRJwzkoiiRJkiTNKBM6SVLvZcL/llxfsinJJ5JckuTiJC9f8PoJSSrJhvZ5krwjyWVJLkzyyI52hSRJO7DLpSSp1wLMTb/P5XbghKo6P8k+wHlJPlZVlyTZBPwM8I2B+Y8BDm0fPwa8q/1fkqRO2UInSeq9TPixlKraWlXnt3/fBFwKHNi+/EfAK4EaWORY4H3VOBtYn+RBK91eSZLGZUInSeq9DhK6DUnOHXgcN3LdycHAkcA5SY4FrqyqLyyY7UDgioHnW7g7AZQkqTN2uZQk7Yy2VdXmpWZKsjdwBvAKmm6Yr6HpbilJUi+Y0EmSem+cgUwmvs5kV5pk7tSqOjPJw4BDgC+kuTHeRuD8JEcBVwKbBhbf2E6TJKlTJnSSpN6b9o3F02Rs7wYuraq3AVTVRcD3DcxzObC5qrYl+RDwkiSn0QyGckNVbZ1urSVJOyMTOklSr4VVueD70cBzgYuSXNBOe01VnTVi/rOAJwOXAbcCL+y8hpIkYUInSdI9VNVnWGJAzKo6eODvAo7vuFqSJN2DCZ0kqfemfwWdJEmzwYROktR7mfZFdJIkzQgTOklS75nOSZI0nAmdJKnXBm4GLkmSFliFgcMkSZIkSZNgC50kqd8Sr6GTJGmEjhK6QGa88e+7t3a+itp2VefrWAshUA74/u7Xsdf6ztfBfffrtvwbr+u2/Kpuy5cWMbcWfswkSeqALXSSpN6LGZ0kSUOZ0EmSei2APS4lSRpuxvtFSpIkSdLOyxY6SVK/xRY6SZJGMaGTJPWeo1xKkjScCZ0kqffM5yRJGs6ETpLUe7bQSZI0nIOiSJIkSdKMsoVOktRr3rZAkqTRlmyhS7IpySeSXJLk4iQvn0bFJEkCIDCXTPQhdcnYSdI0jdNCtx04oarOT7IPcF6Sj1XVJR3XTZIkwBY6zRxjJ0lTs2RCV1Vbga3t3zcluRQ4EPBHSZI0BXFQFM0UYydJ07SsQVGSHAwcCZzTSW0kSZLWEGMnSV0be1CUJHsDZwCvqKobh7x+HHAcwEGbNk6sgpKknVuAOCazZtBisdOOcdOmVaidpLVirENkkl1pfpBOraozh81TVSdX1eaq2rz/hg2TrKMkaWeW5j50k3xIXVsqdtoxbtpv+hWUtGYs2UKX5sj3buDSqnpb91WSJGlH5mCaJcZOkqZpnBa6RwPPBR6f5IL28eSO6yVJkjSrjJ0kTc04o1x+huYSBkmSVoXdJDVLjJ0kTdPYg6JIkrRazOckSRrOhE6S1GsB5szoJEkayoROktRvsYVOkqRRvLOPJEmSJM0oW+gkSb3noCiSJA1nQidJ6j3zOUmShusooSuou7open4Nd3ZbPndt77Z8oO66s/t1bL280/Jz//07LR+AXe/T/Tp22bXzVWRuXaflV6elS6snmNBJWhumEfsxjXXUFKKOdR23O2XtXHlmC50kqd8SMmdGJ0nSMGsnNZUkSZKknYwtdJKk3rPLpSRJw9lCJ0nqvblkoo+lJNmU5BNJLklycZKXt9P/IMmXklyY5INJ1g8sc2KSy5J8OcnPdrc3JEm6mwmdJKnX5gdFmeRjDNuBE6rqMOBo4PgkhwEfAx5aVQ8H/gM4EaB97VnA4cCTgHcm6XYkJEmSMKGTJM2AJBN9LKWqtlbV+e3fNwGXAgdW1Ueran4Y5LOBje3fxwKnVdVtVfU14DLgqInvCEmSFjChkyRpEUkOBo4Ezlnw0q8C/9z+fSBwxcBrW9ppkiR1ykFRJEn9Nn43yeXYkOTcgecnV9XJ91h1sjdwBvCKqrpxYPrv0nTLPHXiNZMkaRlM6CRJvTdON8ll2lZVm5dY5640ydypVXXmwPQXAE8BnlD1vbvrXglsGlh8YztNkqRO2eVSktR70x4UJU0G+W7g0qp628D0JwGvBJ5WVbcOLPIh4FlJ7pPkEOBQ4LOT3AeSJA1jC50kSff0aOC5wEVJLminvQZ4B3Af4GNtq+HZVfXiqro4yenAJTRdMY+vqjunX21J0s7GhE6S1GvNbQume2fxqvpMu+qFzlpkmTcCb+ysUpIkDWFCJ0nqt0C8QECSpKFM6CRJPTfeveMkSdoZmdBJkvpvzoROkqRh7MQiSZIkSTPKFjpJUv/Z5VKSpKFM6CRJ/Zbpj3IpSdKsMKGTJPWf19BJkjSUCZ0kqedil0tJkkZwUBRJkiRJmlG20EmSei2B2OVSkqShTOgkSf1nl0tJkoYyoZMk9Z4tdJIkDddNQlfAXXd1UvTd6+i4/Lnuc93sed/O18H227ot/+Ybui0fqC+d3/06but4PwH5L4/ptvz139dp+VR1W760GFvoJE1Bbb+j2xXcOoW46Ztf73wd3HVn56vI9x3U7Qr22bfb8qfIQVEkSZIkaUbZ5VKS1G+J96GTJGkEEzpJUu/FLpeSJA1lQidJ6j9b6CRJGspr6CRJkiRpRtlCJ0nqt+Aol5IkjWBCJ0nqvdifRJKkoUzoJEn9ZwudJElDjZ3QJVkHnAtcWVVP6a5KkiQNSIiDomgGGTtJmobldGJ5OXBpVxWRJElaY4ydJHVurIQuyUbg54C/7LY6kiQNkUz2IXXM2EnStIzb5fIk4JXAPt1VRZKkEexyqdlzEsZOkqZgyRa6JE8Brqmq85aY77gk5yY599rrrptYBSVJO7emUS0TfUhdGid22iFu2mbcJGnlxuly+WjgaUkuB04DHp/krxfOVFUnV9Xmqtq8/377TbiakqSd2lwm+5C6tWTstEPctMG4SdLKLZnQVdWJVbWxqg4GngV8vKqe03nNJEmSZpCxk6Rp8j50kqSecyATSZJGWVZCV1WfBD7ZSU0kSRrB6940q4ydJHXNFjpJUr8Fr3uTJGkEEzpJUu/ZQidJ0nBj3VhckiRJktQ/ttBJkvrPLpeSJA1lQidJ6rc4yqUkSaPY5VKS1HuZy0QfS64v2ZTkE0kuSXJxkpe30/dN8rEkX2n/v387PUnekeSyJBcmeWTHu0SSJKDLFrq6q7Oip1L+NKxb1/06bruz0+Lv+vg/dFo+wLlv+WDn67jq9ts7X8fTfvnsTsvPr76s0/LZ3v0+knpkO3BCVZ2fZB/gvCQfA14A/GtVvTnJq4FXA68CjgEObR8/Bryr/V/ShFRV9yu57ZZOi7/rcx/rtHyA7/z5ezpfx50339b5Ovb+9Wd2Wv7cE5/RafnTZAudJKn/5rtdTuqxhKraWlXnt3/fBFwKHAgcC/xVO9tfAU9v/z4WeF81zgbWJ3nQhPeCJEn34DV0kqR+W+X70CU5GDgSOAd4QFVtbV+6GnhA+/eBwBUDi21pp21FkqQOmdBJknqvg/vQbUhy7sDzk6vq5CHr3Rs4A3hFVd04WI+qqiRT6AMmSdJoJnSSpJ5LFy1026pq86JrTXalSeZOraoz28nfTPKgqtradqm8pp1+JbBpYPGN7TRJkjrlNXSSJC2Qpinu3cClVfW2gZc+BDy//fv5wD8MTH9eO9rl0cANA10zJUnqjC10kqT+m/596B4NPBe4KMkF7bTXAG8GTk/ya8DXgflh0s4CngxcBtwKvHCqtZUk7bRM6CRJ/RamntBV1WfaNQ/zhCHzF3B8p5WSJGkIEzpJUv9Nv4VOkqSZYEInSeq5wJyXfEuSNIxHSEmSJEmaUbbQSZL6zy6XkiQNZUInSeq3VRgURZKkWWFCJ0nqPxM6SZKGMqGTJPWcg6JIkjSKR0hJkiRJmlG20EmS+s8ul5IkDWVCJ0nqNwdFkSRpJBM6SVL/mdBJkjSUCZ0kqeccFEWSpFE8QkqSJEnSjLKFTpLUf3a5lCRpKBM6SVK/OSiKJEkjmdBJkvrPhE6SpKG8hk6SJEmSZlRHLXQFdVc3Rc+7685uy99+W7flA9xyY+eryIYDul3BFVd0Wz7w3m9e3/k6puGnL7u60/L32veBnZbPLrt2W740QghxlEtJXceWALfd2mnx9e+f7rR8gD/46H90vo5v3rG983W8/ZB/7bT8XR/1s52WP012uZQk9Z9dLiVJGsqETpLUbw6KIknSSCZ0kqT+M6GTJGkoL0qQJEmSpBllC50kqecCDooiSdJQJnSSpP6zy6UkSUOZ0EmS+s1BUSRJGsmETpLUfyZ0kiQNNdZFCUnWJ/lAki8luTTJo7qumCRJ0qwydpI0LeO20L0d+Jeq+sUkuwF7dlgnSZIGOCiKZpKxk6SpWDKhS3I/4CeBFwBU1e3A7d1WS5KkAXa51AwxdpI0TeOc8jwEuBZ4T5LPJ/nLJHt1XC9Jkhrzg6JM8iF1y9hJ0tSMk9DtAjwSeFdVHQncArx64UxJjktybpJzr9123YSrKUnaebVdLif5kLq1ZOxk3CRpUsY5qm0BtlTVOe3zD9D8SO2gqk6uqs1VtXn/DftNso6SJEmzZMnYybhJ0qQsmdBV1dXAFUl+qJ30BOCSTmslSdIgu1xqhhg7SZqmcUe5fClwajtK01eBF3ZXJUmSFjAJ0+wxdpI0FWMldFV1AbC526pIkjTE/KAo0gwxdpI0LV4ZLkmSJEkzyoROktRz0x/lMskpSa5J8sWBaY9IcnaSC9rRCY9qpyfJO5JcluTCJPcYOEySpK6Y0EmS+m/6g6K8F3jSgmlvAd5QVY8AXts+BzgGOLR9HAe8axKbLEnSOEzoJEn9N+WErqo+DXxr4WTgvu3f9wOuav8+FnhfNc4G1id50IS2XJKkRY07yqUkSasjQCZ+/nFDknMHnp9cVScvscwrgI8keSvNCdEfb6cfCFwxMN+WdtrWCdVVkqSRTOgkSTujbVW13BEIfxP4rao6I8kzgHcDT5x81SRJGp9dLiVJPReYm/BjZZ4PnNn+/XfAUe3fVwKbBubb2E6TJKlz3bXQVXVWNAC33NBp8XXjdZ2WD8B99+18FZ1vxx57dFs+sOsU7j91R9efV2D3g/fvdgU3bOu2/Du3d1u+tJjJd7lciauAnwI+CTwe+Eo7/UPAS5KcBvwYcENV2d1Smrgp3I9y3a6dFp8DD+y0fIAn3n+vztdx0/Y7O1/Hugdv7LT87LZ7p+VPk10uJUn9N+Ubiyd5P/BYmmvttgCvA14EvD3JLsB3aUa0BDgLeDJwGXAr8MKpVlaStFMzoZMk9Vsy1r3jJqmqnj3ipf8yZN4Cju+2RpIkDdeLPiySJEmSpOWzhU6S1H9T7nIpSdKsMKGTJPVfPwZFkSSpd0zoJEn9ZwudJElDmdBJkvptFQZFkSRpVniElCRJkqQZZQudJKn/7HIpSdJQJnSSpP5zUBRJkoYyoZMk9VsCc7bQSZI0jKc8JUmSJGlG2UInSeo/u1xKkjSUCZ0kqf8cFEWSpKFM6CRJPRdb6CRJGsGETpLUb8FBUSRJGsFTnpIkSZI0o2yhkyT1n9fQSZI0lAmdJKn/vIZOkqShTOgkSf3mjcUlSRrJhE6S1H+20EmSNJRHSEmSJEmaUbbQSZL6z0FRJEkayoROktRz3lhckqRRZjehW7drt+XPreu2/CnJAT/Ybfm/+IJOywd42/XXd76OO669qfN1zP3iL3dafh54SKfls8tu3ZYvjeKNxSXBdFrq99i70+LzxF/stHyAH1+/X+fr4I7bO19FHvmT3a5gr/Xdlj9Fs5vQSZJ2HrbQSZI0lEdISZIkSZpRttBJkvrPQVEkSRrKhE6S1HOBOTuUSJI0jAmdJKnfgi10kiSN4ClPSZIkSZpRttBJkvrPUS4lSRrKhE6S1HOxy6UkSSOMdcozyW8luTjJF5O8P8nuXVdMkqTvmZub7EPqmLGTpGlZ8qiW5EDgZcDmqnoosA54VtcVkyQJuHtQlEk+pA4ZO0mapnFPU+4C7JFkF2BP4KruqiRJkjTzjJ0kTcWSCV1VXQm8FfgGsBW4oao+unC+JMclOTfJudduu27yNZUk7aTSDIoyyYfUoXFiJ+MmSZMyTpfL+wPHAocABwB7JXnOwvmq6uSq2lxVm/ffsN/kaypJ2nlNuctlklOSXJPkiwumvzTJl9pro94yMP3EJJcl+XKSn+1gD2iGjBM7GTdJmpRxTlM+EfhaVV1bVXcAZwI/3m21JEkaMP0WuvcCT9qhCsnjaIL0I6rqcJoWGJIcRnN91OHtMu9Msm6CW6/ZY+wkaWrGOap9Azg6yZ5JAjwBuLTbakmS1EpgbsKPJVTVp4FvLZj8m8Cbq+q2dp5r2unHAqdV1W1V9TXgMuCoye0AzSBjJ0lTM841dOcAHwDOBy5qlzm543pJktQ3DwEek+ScJJ9K8qPt9AOBKwbm29JO007K2EnSNI11Y/Gqeh3wuo7rIknScJMfyGRDknMHnp9cVUsF3LsA+wJHAz8KnJ7k+yddMa0Nxk6SpmWshE6SpFU1+XvHbauqzctcZgtwZlUV8NkkdwEbgCuBTQPzbWynSZLUOcduliT1XG9uW/D3wOMAkjwE2A3YBnwIeFaS+yQ5BDgU+Oy9325JkpZmC50kqfcy+Ra6pdb3fuCxNF0zt9B0nTsFOKW9lcHtwPPb1rqLk5wOXAJsB46vqjunWmFJ0k7LhE6SpAWq6tkjXrrHfVjb+d8IvLG7GkmSNJwJnSSp30IXg6JIkrQmmNBJknouJnSSJI3QXULX9fUO67rNRbP3+k7LB2BuXffr6DgImtv0Q52WDzB34ls7X8e6227tfB3Zfa9uV1B3dVu+tJrGuBm4pLVtGtfS1q67d1p+HnhIp+UD5Gce2Pk6qO5XwW736bb8XTouf4psoZMk9Z8tdJIkDeURUpIkSZJmlC10kqR+C91345ckaUaZ0EmSes5BUSRJGsWETpLUf7bQSZI0lKc8JUmSJGlG2UInSeo/u1xKkjSUCZ0kqd8S70MnSdIIJnSSpP6zhU6SpKFM6CRJ/eegKJIkDeUpT0mSJEmaUbbQSZJ6zvvQSZI0igmdJKn/7HIpSdJQJnSSpH4LttBJkjSCCZ0kqecCcyZ0kiQN4xFSkiRJkmaULXSSpN6L19BJkjSUCZ0kqf+8hk6SpKFM6CRJ/RYc5VKSpBFM6CRJPed96CRJGsUjpCRJkiTNKFvoJEn9Z5dLSZKGMqGTJPWf96GTJGkoEzpJUr8lttBJkjRCJwndeRdcuG3u/g/6+jIW2QBs66IuU+Q29Mda2I4+bsODV7sCkrQWnff5C7Zlr/XLiZugn8eJ5XIb+mEtbAP0czumEjt1ktBV1f7LmT/JuVW1uYu6TIvb0B9rYTvWwjZIE+Uol1rDlhs3wdo4TrgN/bAWtgHWznashF0uJUn9Z5dLSZKGMqGTJM0AEzpJkobpS0J38mpXYALchv5YC9uxFrZBmhAHRZGGWAvHCbehH9bCNsDa2Y5lS1Wtdh0kSRpp88MfWp/78OkTLXPuoMPP21mvtZAkrS19aaGTJGk0W+gkSRrKhE6SNANM6CRJGmZVx4FO8qQkX05yWZJXr2ZdVirJpiSfSHJJkouTvHy167RSSdYl+XySf1rtuqxEkvVJPpDkS0kuTfKo1a7TciX5rfZz9MUk70+y+2rXSVp14e6bi0/qsdQqk1OSXJPki0NeOyFJJdnQPk+Sd7THsguTPHLyO0FqGDv1x6zHTWDstFasWkKXZB3wp8AxwGHAs5Mctlr1uRe2AydU1WHA0cDxM7odAC8HLl3tStwLbwf+pap+GDiCGduWJAcCLwM2V9VDgXXAs1a3VlJPZMKPpb0XeNI9qpFsAn4G+MbA5GOAQ9vHccC7lrVt0piMnXpn1uMmMHZaE1azhe4o4LKq+mpV3Q6cBhy7ivVZkaraWlXnt3/fRPNFOHB1a7V8STYCPwf85WrXZSWS3A/4SeDdAFV1e1Vdv6qVWpldgD2S7ALsCVy1yvWRdkpV9WngW0Ne+iPglcDgiGLHAu+rxtnA+iQPmkI1tfMxduqJWY+bwNhpLVnNhO5A4IqB51uYsS/zQkkOBo4EzlnlqqzESTRByl2rXI+VOgS4FnhP2/3hL5PstdqVWo6quhJ4K82Z/63ADVX10dWtldQX02+iu0cNkmOBK6vqCwteWnPHM/XWmvuszXDsdBKzHTeBsdOasarX0K0lSfYGzgBeUVU3rnZ9liPJU4Brquq81a7LvbAL8EjgXVV1JHALMFPXFiS5P82Z1kOAA4C9kjxndWsl9cGEr59rrqHbkOTcgcdxi9Yg2RN4DfDaaWyxtDOY1dhpjcRNYOy0ZqxmQnclsGng+cZ22sxJsivND9KpVXXmatdnBR4NPC3J5TTdNx6f5K9Xt0rLtgXYUlXzZ/g+QPMjNUueCHytqq6tqjuAM4EfX+U6Sf0w+YRuW1VtHngsdUPaH6AJGL7Q/lZuBM5P8kDW0PFMvbdmPmszHjuthbgJjJ3WjNVM6D4HHJrkkCS70VzA+KFVrM+KJAlN3+NLq+ptq12flaiqE6tqY1UdTPM+fLyqZursRlVdDVyR5IfaSU8ALlnFKq3EN4Cjk+zZfq6ewIxdnCx1Z3W7XFbVRVX1fVV1cPtbuQV4ZPvb8yHgee1ol0fTdPnZuvJtlUYyduqBtRA3gbHTWrJq96Grqu1JXgJ8hGZEmlOq6uLVqs+98GjgucBFSS5op72mqs5avSrttF4KnNoe5L4KvHCV67MsVXVOkg8A59OMAPZ5YKlWA0kdSPJ+4LE0XTO3AK+rqnePmP0s4MnAZcCtzNhvj2aHsZM6YOy0BqSqlp5LkqRVsvmIh9XnPvoPEy1z7oE/cF5VbZ5ooZIkrYJVa6GTJGl8KxuZUpKktc6ETpLUb3cPZCJJkhbwtgWSJEmSNKNsoZMk9Z8tdJIkDWVCJ0maASZ0kiQNY0InSeq92EInSdJQJnSSpP4zoZMkaSgHRZEkSZKkGWULnSSp54LX0EmSNJwJnSSp/+xyKUnSUCZ0kqR+CyZ0kiSNYEInSZoBJnSSJA3joCiSJEmSNKNsoZMk9Z9dLiVJGsqETpLUf+ZzkiQNZUInSeo5b1sgSdIoJnSSpP6zy6UkSUM5KIokSZIkzShb6CRJ/eZ96CRJGsmETpI0A0zoJEkaxoROktR/ttBJkjSU19BJkiRJ0oyyhU6S1HOxhU6SpBFM6CRJM8CETpKkYUzoJEn9ZwudJElDpapWuw6SJI2U5F+ADRMudltVPWnCZUqSNHUmdJIkSZI0oxzlUpIkSZJmlAmdJEmSJM0oEzpJkiRJmlEmdJIkSZI0o0zoJEmSJGlG/V9iN5c9vshZaAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "recorteR7 = trim(imagen[:,:,0], 540, 345, 10, 10)\n", + "poptR7, pcovR7 = curve_fit(gauss2d, xdata7, recorteR7.ravel(), p0=[1,2,1,1,1])\n", + "estrellaR7=gauss2d(xdata7, poptR7[0], poptR7[1],poptR7[2], poptR7[3], poptR7[4])\n", + "FWHMR7=FWHMR.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptR7[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 7 fotografÃa (Banda Rojo)\")\n", + "plt.imshow(recorteR7, plt.get_cmap('Reds'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 7 a partir de la gaussiana (Banda Rojo)\")\n", + "plt.imshow(estrellaR7.reshape(10, 10), plt.get_cmap('Reds'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 8 (Rojo)" + ] + }, + { + "cell_type": "code", + "execution_count": 361, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAFSCAYAAACqthEgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA/bUlEQVR4nO3de5hkVXno/+/bPTcuA8MwgDAzXFQ0ogKSEc2JJng0CsSI8XgMJFFQk1GjJ5qfHuMlx1ti4iUaNSYSFAIYg2gUQyJeSKIhJqJcAshNGRFkBgSGgRlgGJiefn9/7N1Q01R116qu6q6u+n7mqWeqd717r7Xr+q691l47MhNJkiRJ0vAZmesKSJIkSZLmhg1CSZIkSRpSNgglSZIkaUjZIJQkSZKkIWWDUJIkSZKGlA1CSZIkSRpSC+a6ApIk9dLqWJDb6O4lljYy/o3MPLarG5UkaQ7YIJQkDbRtJP+L3bq6zb/h3hVd3aAkSXPEBqEkaaAFnh8hSVIrNgglSQNvJKK7G+zuCFRJkuaMDUJJ0kCzh1CSpNZsEEqSBt5IlzsI7SGUJA0KD5pKkiRJ0pCyh1CSNPA8+ilJUnM2CCVJAy2I7k8qI0nSgLBBKEkaePYQSpLUnA1CSdJAC3owqYwkSQPCg6aSJEmSNKTsIZQkDTyPfkqS1JwNQknSYAsIJ5WRJKkpG4SSpIEW2EMoSVIrNgglSQPPSWUkSWrOg6aSJEmSNKTsIZQkDTyPfkqS1JwNQknSQKuuQ+iYUUmSmrFBKEkaePYQSpLUnL+RsyQiDo6IjIgF9d/fjojfmaWy/yQiNkbEz2ajvJmIiP0i4qKIuDciPlIv+/2IOC86mDc+Il4TER/rekXbK/s9EfF3c1Du1yLi5Dbi9ouI6yJi8WzUS5LUH+YyJ+knEXFgRNwXEaMz2MaZEfEnHa6bEfH4TsvuF+3mHT0q+88i4k1zVHbHr/0My70mIo5pI+7wiPivdrY5dA3CiLgpIh6ovwAmbp9sY72++dBGxJER8R8RsTki1kfE/5si9kDgzcBhmfmYNrZ9U0Q8r5v1LbQW2AjskZlvjohDgVcBp2RmlmwoIhYBfwR8uP574gdw4nW/PSL+OiIWdnsnZqr+cd5W13NjRHw5IvZvZ93MPC4zz2oj7nbgW1TPuTSwqiGj3b1J3TBsOclcm5zjZOZPM3P3zNwxl/Wa79rNO7otIvYBXgH8Tf33MREx3vBZ2hAR753terVj0mf/Z3Xjcvd21s3MJ2fmt9uIuwq4JyJ+bbrYoWsQ1n6t/gKYuL1hphucOMo2S/4euAhYDvwy8HsR8aIWsQcCd2XmHbNVuVbafI4OAq5taPw9CfjNzNzcQZEnANdn5oZJy5dl5u7AU4FfAF7fwbZnwxvqej4e2B348x6U8TngNT3YrtRXRrp8k7pomHKSOdHJ8xEVP+797RTggsx8oGHZrROfJeBZwKsj4sVzUbk2/FpdzyOBpwFv70EZbeV5vtEbRMTjI+Lf66NcGyPi3Hr5RXXIlXVL/jfqoxDrI+IP66GYfxsRIxHxtoj4cUTcFRFfiIjlbZT7uIj4t3qdjRHxuYhYNsUqBwOfy8wdmflj4DvAk5ts93nAhcABdb3PrJe/qO5uvqfuiXpSvfyzVA3If6rj3zpVfP3YURHx31EN8fxiRJw70X3e4jnaKyL+OSLujIi76/ur6vgzgZOBt9blPw84CnhHQ3lfrI+kbI5qaOmj9rvBccC/t3qwbiRfCBzWsP2J1+/eiLg2In694bFTIuI7EfHndd1/EhHHNTx+SP3+uTciLgRWTHo9SureWM97gK9QfWFMbOt/RMQl9bYuiYj/0fDYw0N/6vfkH0XEzRFxR0ScHRF7Nmz+e8BjI+KgduoizVcjRFdvUq8NWk7Sybaj6gn9/Yi4sY7/cNSNtOm2FVUPzB9GxFXA/RFxDpNynGg+dPb9EfGfwFbgsU3q9LSIuLz+rT8XWDLp8RdGxBVR5Uz/FRGHT/HcNa73q1HlU1si4paIeM808W+NiNsi4taI+J1o6DWealsT75VJ23q45zQijo6IS+t1b4+Ij9bLl0TE39XP9z117rFfw/M2kXe087q8JSKuqt/b50bEkvqxvaJFjtjCdHneT4D/Yuc87+P1c7IlIi6LiGc3PPae+nNydv36XhMRaxoeb/nad1D3xnr+DPgGO+d5U+Xeja/X4oj4WP0+uLW+33gq0LeB58Y0pwfZINzZHwPfBPYCVgF/CZCZv1Q/fkR91OHc+u/HUB0RO4hq2N3/AV5MdYTsAOBu4K/aKDeAP6vXeRKwGnjPFPEfA14REQsj4olUvVz/MjkoM/+F6sMycbTklIh4AnAO8CZgH+ACqi/HRZn5cuCnPHK08kNTxUc1JPM84Mz6eTgH+HV2Nvk5GgH+tv77QOAB4JN1fU+hOpLxobr8R+0T8DXgUGBf4PI6vpWnAj9s9WBEHAC8ALi4YfGPgWcDewLvBf4udh6q+Yx6myuADwGnRzx8buPfA5fVj/0xVeO207o31nNv4CXAuvrv5cBXgU8AewMfBb5ax012Sn17DtUP2+7UzzdAZo7V2z2inbpI85FDRjVPDVRO0uG2ocor1lAdID6B6jSSdrd1EvCrVCODTmJSjtOivJdTPX9LgZt3qnyV93wF+CzVc/1F4H81PP404AyqHpm9qYYynj9dMl67n2r447K6zq+LFj1bEXEs8P8Bz6MaRXRMp9tq4uPAxzNzD+BxwBfq5SdT5UarqfbttVQ53KOqx/Svy8uAY4FDgMOp8hSYIkdsYbo871DgF9k5z7uEquG1nCpv++JEg7T2IuDzVM/d+RPlT/fad1D3xnquosrXJ/K8lrl3k9XfCTyz3qcjgKOpTpcCoB4ltx144lR1GNYG4VfqFvfE7Xfr5dupXsgDMnNbZn5nmu2MA+/OzAfr7urXAu/MzPWZ+SDVB+ClMc1Qhcxcl5kX1tu5kyrB/+UpVvln4KVUb7brgdMz85Jp6jrhN4Cv1uVtpxqGuAvwPzqIfybVTLWfyMztmfll4PuT1t/pOcrMuzLzS5m5NTPvBd4/zb7uJDPPyMx7G57fI2LnHq9Gy4B7myzfGBH3ABuovjT/oWH7X8zMWzNzvP6RvYHqwzXh5sz8dH2+wVnA/sB+UZ2r+XTg/9X7ehHwTzOoO8AnImIz1TmVK6h+3KH6cr8hMz+bmWOZeQ7V+6DZGPHfAj6amTdm5n1UwxFOnPSevLd+riRJs29ocpIOtg3wwczclJk/pWp8nlSwrU9k5i2ThhRO58zMvKb+fd0+6bFnAguBj9V5zz9QNTAmrAX+JjO/V/eYngU8WK83pcz8dmb+oM4/rqJqELR6bl4G/G1dz61ManAVbmuy7cDjI2JFZt6XmRc3LN8beHy9b5dl5pYm+9Hu63JrZm6iypWOrNctzRGX8eg874D6c7QF+BHVSKiHPzuZ+Xd1OWOZ+RFgMTs3lr6TmRfUed5neeSA+ZSvfYf57Vci4l7gFuAO4N318pJc/beA92XmHfXz/V6qgxqNps3zhrVB+OLMXNZw+3S9/K1URza+X3fTvmqKbQDcmZnbGv4+CDhv4ksduA7YAew31Uaimu3x81Gd/LoF+DsmDTdsiF0OfB14H1VX9WrgBRHxe9PUdcIBNBzxysxxqjfiyg7iDwA2ZO402cstk9bf6TmKiF0j4m+iGsK4heq8g2XRxgxfETEaER+IavjLFuCm+qGmzxXV0dClTZavyMxlwK7Af1J100+U8Yp4ZKjHPcBTJm3/4Zla6y9hqHrdDgDuzsz7G2Ifft46qDvA72fmnlRHzyaOEMOk16ShrGav4eTYm6ka8Y3vyaXAPVPUQ5r3PIdQfWxocpKSbTdozCtupvpda3dbk3OSdky1TrO8p/E39iDgzY0NfKrn5IDpCo2IZ0TEt+ohh5upGvStnpsDJtVzpzoXbmuyVwNPAK6PaljoC+vln6XKlz5fD038UDSZlK/N16Vx1vutVHlUJzliszzv1vpztAdVI+gBqgP4E/V7S1QzrG+uX589aZHn1XVbUh9EmfK17zC/fXFmLqXq4f25hnqU5OrN8rzJ77dp8zx/1xpk5s8y83cz8wCq7v6/jqln8Zo86+UtwHGTvtiX5KMnNZnsT+ttPbV+A/82tDxJ5bHAjsw8uz66sZ6qa/v46favdivVFxZQnTRN9WU1UcfJ+zRV/G3AyoYhk9SPNZq8vTdTHYl5Rr2vE0Nf2hmE9ZtUw0WeR/UBPniada+i+lJrqj5ieCbwzIhYEdV5dJ8G3gDsXTcar26zbrcBe0XEbg3LDpxB3Rvr+QPgT4C/qp/rnV6ThrKavc8mxx4IjAG3w8Mn2j8euHK6ekjzVXR5uKhDRjUbBjQnKdn2hMa84kCq37V2tzX5OWlntvKpYprlPY2/9bcA75/0nO+a1Uie6fw91RDF1fXB4FNp/dzcxiMHieHRuddU27qf6oA4UB2wphqWCEBm3pDV8Np9gQ8C/xARu9W9Yu/NzMOoeqpeSDUsdbJOXuMJpTnidHneZqrn4tfqfX021YGWlwF71Xne5jbrN91r33F+m5n/TpWPTkweOF2u3qhZnjfxGSEiVgKLmGJoLdgg3ElE/O945ATQu6ne0OP137fT5OTiSU4F3l83LIiIfSLihDaKXgrcB2yuX7j/O0Xsj6pNx29GdcL4Y6i6lq9qoxyoxoL/akQ8tz6y82aq4QwT1ymZvJ9TxX+X6mjjGyJiQb2vjcMrW+3rA1TT4C7nke7xdiyty76L6svsT6eJv4ApuuujGtP/cqqjQXcBu1G95nfWj7+SqodwWpl5M3Ap8N6ozq98FjsP4Syt+2RnUR3VfRHVfj2hfg8siIjfoDph+p+brHcO8AdRTXize13uuVmdOwjV63VTXX9pYDmpjOabAc1JSrY94f9GNWHHauCNwMQ5k51sq53nbSrfpTqo+vtRnTP5EnbOez4NvLbuoYuI2C2qCV6ajVaabCmwKTO3RcTRVAeSW/kC8MqIeFJE7ApMvtTHVNv6EVWv16/Wed0fUQ2bBCAifjsi9ql7pe6pF49HxHMi4ql1A3IL1RDScR6tk9elcd2SHHG6PG934ETgmobtj1HleQsi4l3AHm3WbbrXfib5LVTDoX8lIo5g+ly90TnAH9Wf7xXAu6h6ZSf8MvBvWQ0bb2lYG4QTM0xN3M6rlz8d+F5E3Ed1ZOWNmXlj/dh7gLOiGgLwshbb/Xi93jejGhN8MdUkJNN5L9XJ0pupJgv5cqvAerz2S4A/oPqBuIKqF6utC2Nm5g+pjtb8JdW5ab9GdYL1Q3XIn1G9se6JiLdMFV+v8xKq4QX31HH/TPWmbeVjVOOgN1I9P19vp961s6m6wjcA17LzScLN/BPwc1FNHtPonvo1vp3q5PcXZeVa4CNUH/rbqU5W/s+C+v0m1eu9ieqL4OwZ1H0n9XP9capzFO+iOjL3ZqoG5luBF2bmxiarnkE1zOMi4CfANh45FxGqseenltRFmo9mu4cwIlZHNWTr2qiG+71x0uNvjmpWwBX13xERn4iIdVHNvndUb54J9aFhykna3naDf6SasO2Kep3TZ7CtnXKcNuJ30pD3nEL1W/8bjeVm5qXA71JNJnI31SQhp7S5+d8D3le/Vu/ikclcmtXja1QTy32rLmMip5jIv1puq+41+z3gMzwyl0LjrKPHAtfU77uPAyfWI6oeQzXnwhaq4cf/TpVfTNbJ6zLhY5TliGcDx0fELg3LJmbWv48q71pOletANeT161SN4pupcqK2hhVP99p3UPfJ27+z3p93tZGrN/oTqg6Jq4AfUE1a2Pj5ayvPiyy71rc0pYj4HnBqZv7tXNcFICLWAodl5pvmui6zJaopyT+TmWdPE7cv1Rf60yaddyINlANHF+Qf7rKsq9t8w/13XZaZa1o9HtXsxPtn5uV178BlVOeLXFv3dHyG6pyRn8/MjRFxPNXBmuOpkvaPZ2Y7ybs0sCIigUMzc91c16WfRXVJgquBxQ0jgIZCRPwpcEdmfmyu6zJbIuKnwG9nNYHhVHGHU01y9AvTbXM2L1yqARQRv0w1Lnkj1VGIwyk8KtJLmXnaXNdhNtVDRx5L1Rs4payuw/ik6eKk+S6Y/eEwmXkb1TknZOa9EXEd1YQA1wJ/QdWz/48Nq5wAnF1PWHBxRCyLiP3r7UjSTqK6TvIFVKehfBD4p2FrDAJk5jumjxocEbEP1TmfN00Xm9UMs9M2BmF4h4yqe55INSHJPVRDGF9qAjM36h6/n1H1+k03Pbk0VHowZHRFVBdvnritbVV2RBwMPI1q+N8JVDPVTZ7IaSU7D11aT+vZnyXpNVSXKvgx1XwOr5vb6qjXIuLpVJdD+8usLsPSNfYQakbqHrih6oXrV3WPX7snR0tDI3ozEczGqYaMPlx2NanBl6guMDwGvAN4frcrIw2izHQGpxYy89i5roNmV1bX91zWi23bIJQkDby5uFREPTvcl4DPZeaXI+KpwCHAlVHNXL4KuLyeBXADO08dv4rmU4xLktRVDhmVJKnLomrxnQ5cl5kfheqaopm5b2YenJkHUw0LPSozf0Y1G+Qr6tlGnwlsdvi9JGk29GUP4Yrly/Pg1b0+daJwdtXSyVhHOmhrD8SMr6X70MFh+9LndnxHeRml68RoYQEdvNZj28viFywsix/t4OtgvNkliJq76ZYNbNy0yeE/mhNz8Mb7RarrnP4gIq6ol70jMy9oEX8B1Qyj64CtwCt7XkMNjBUr9s6DDzxw+kBJ88pl/33Fxszcp9fl9GWD8ODVK7nk6+dNHzihk4ZUtp/IdhS/ZLeyeICxwsmhShstI6WNlg7KKH2eRgsbLQCLd5k+ptHWLcVFZOE6scvuZQV00Egdv3P99EENRvZZNX1Qoz06+L7Zdn/boU9/QTvXQ5a6L5j9IaOZ+R2maYfWvYQT9xN4fY+rpQF18IEHcul3vj3X1ZDUZbHbsptno5y+bBBKktRNPZhURpKkgTCjcwgj4tiI+GFErIuItzV5fHFEnFs//r166m1JkqShZO4kqd903CCMiFHgr4DjgMOAkyLisElhrwbuzszHU12I94OdlidJUieiy9cgnIsZSzUYzJ0k9aOZ9BAeDazLzBsz8yHg88Dkk4ROAM6q7/8D8Nx65jVJkmbNSJdvUofMnST1nZn8rq0Ebmn4e329rGlMZo4Bm4G9m20sItZGxKURcemdd22aQbUkSdpZdPkmdahrudNOedPGu3pUXUnDoG8OdGbmaZm5JjPX7LP38rmujiRpQFSzjEZXb9Jc2ylvWtH0WLsktWUmDcINwOqGv1fVy5rGRMQCYE/Aw1iSJGkYmTtJ6jszaRBeAhwaEYdExCLgROD8STHnAyfX918K/Ft9rSVJkmaNQ0bVJ8ydJPWdjq9DmJljEfEG4BvAKHBGZl4TEe8DLs3M84HTgc9GxDpgE9UXnyRJs8pGnPqBuZOkfjSjC9Nn5gXABZOWvavh/jbgf8+kjJ7J8d5uf7x8+7ntvsIVyg4YxpLdyrYP1XztBfLBbWWbH91eFA/AwkVl8Z281iOjZUVsf6goPnZZWhQPMHLI4WUrlO732INl8QCLlrQfG31zyrKGkA1C9Yt5nTtJGkgzahBKkjQfOGu/JEnNechekiRJkoaUPYSSpIHmRDCSJLVmg1CSNPAcDiNJUnM2CCVJA89TCCVJas4GoSRp4IWDRiVJaspRNJIkSZI0pOwhlCQNNCeVkSSpNRuEkqSBZ4NQkqTmbBBKkgbeiC1CSZKa8hxCSZIkSRpS9hBKkgZcOMuoJEkt9G+DMEo6L8d7vH0gC8vYdl9ZPMCWTWXxCxeVxS9aUhYPMLqwLH42LvY1vqMoPDdvLC9jyW5l8YV14qGtZfFQ/novXFwWP17+OYqS99SIAxI0N5xURpKk1vq3QShJUjeEF6aXJKkVG4SSpIFne1CSpOYcwyVJkiRJQ8oeQknSwBuxj1CSpKZsEEqSBpqTykiS1JoNQknSwHNSGUmSmrNBKEkaeLYHJUlqzkllJEmSJGlIddwgjIjVEfGtiLg2Iq6JiDc2iTkmIjZHxBX17V0zq64kSeWiy/+kTpg7SepHMxkyOga8OTMvj4ilwGURcWFmXjsp7j8y84UzKEeSpI4FMGIbTv3B3ElS3+m4hzAzb8vMy+v79wLXASu7VTFJkrolunyTOmHuJKkfdWVSmYg4GHga8L0mD/9CRFwJ3Aq8JTOv6UaZ/S4fuL98pR3bCwsZLwvf/mDZ9oGIsmMGMVr4lupk6r/tD5XF79hRXEQsXFS2woLFZfHjY2XxUL7fI6Nl8Zll8UBu3dx+8Hj56yB1i4049Rtzp51lB79BHRRSukJPqrGzwm+nDvKmcJplTWPGDcKI2B34EvCmzNwy6eHLgYMy876IOB74CnBoi+2sBdYCHLjygJlWS5IkqS91I3faKW9avbq3FZY00GY0y2hELKT6QvtcZn558uOZuSUz76vvXwAsjIgVzbaVmadl5prMXLPP3stnUi1JknbipDLqF93KnXbKm1bs3fN6SxpcM5llNIDTgesy86MtYh5TxxERR9fl3dVpmZIkdSKiu7fpy2s+m2REfDgiro+IqyLivIhY1rDO2yNiXUT8MCJe0LMnQ3PG3ElSP5rJkNFfBF4O/CAirqiXvQM4ECAzTwVeCrwuIsaAB4ATc1YGiUuSVAnm5KK7TWeTBC4E3p6ZYxHxQeDtwB9GxGHAicCTgQOAf4mIJ2SmJ98OFnMnSX2n4wZhZn6Hac6EzcxPAp/stAxJkuajzLwNuK2+f29EXAeszMxvNoRdTJX8A5wAfD4zHwR+EhHrgKOB785itdVj5k6S+tEcHDSVJGl29eCyEysi4tKG29qWZbeeTfJVwNfq+yuBWxoeW4+XI5AkzYKuXHZCkqR+1oNp1zdm5po2ym06m2REvJNqWOnnul0xSZJK2CCUJA28uZgXtNVskhFxCvBC4LkN54ZtABqvHbCqXiZJUk85ZFSSNNC6PVy0ncZlq9kkI+JY4K3AizJza8Mq5wMnRsTiiDiE6rpz3+9wlyVJaps9hJIkdV+r2SQ/ASwGLqyHsV6cma/NzGsi4gvAtVRDSV/vDKOSpNlgg1CSNNgienEO4ZSmmE3yginWeT/w/p5VSpKkJgajQdjJ5XlyvLdljD1UFg8wMloUnqVl3HVrWTzArnuUxS/ZrbyMUuMPlMXvVrgPQO4oOzAfpZ+kRbsUrgBsf7Asflvhe3zBwrJ4gG33tx87XlgfqYtG5uIkQmmIFV86sTQvAxgv7EQvjZ+Nyz9G4dlbhbkiQJau08EBtNk+6KbuGowGoSRJUwhbhJIkNWWDUJI00IKODnhLkjQUnGVUkiRJkoaUPYSSpMEW9hBKktSKDUJJ0sBzwgNJkpqzQShJGni2ByVJas4GoSRp4NlDKElSc04qI0mSJElDyh5CSdJA87ITkiS1ZoNQkjTYAkZsEUqS1JQNQknSwLM9KElSczYIJUkDLpxURpKkFvq3QTi+oyB2rLfbB3J8vGz7CxaVxXdi65ay+G1bi4vIBx8oio/d9yorYPEuZfEApXVatqK4iPHbbylbYY/lReGxx95l24fi92y5heWrjBasY0IuSfNWcR5U+pu1Y3tZPMD2h8rixx4si9/RQX5Z+ltXmi92kl8uXFwWP1rePMjCeSo9SNdf+rdBKElSFwQQzqktSVJTNgglSYMtPBotSVIrM24QRsRNwL3ADmAsM9dMejyAjwPHA1uBUzLz8pmWK0lSu2wPql+YN0nqN93qIXxOZm5s8dhxwKH17RnAp+r/JUmShpF5k6S+MRtDRk8Azs7MBC6OiGURsX9m3jYLZUuS5JBRzSfmTZJmVTdOs0/gmxFxWUSsbfL4SqBxysb19TJJkmZFRHdv0gyYN0nqK93oIXxWZm6IiH2BCyPi+sy8qHQj9ZfiWoADVx7QhWpJklTNMjpiK079o/t50+rV3a6jpCEy4x7CzNxQ/38HcB5w9KSQDUDjN9Wqetnk7ZyWmWsyc80+e5dd002SpJa63Dto21Iz0ZO8aUUH17aVpNqMGoQRsVtELJ24DzwfuHpS2PnAK6LyTGCz4+AlSdKwMW+S1I9mOmR0P+C8+mT9BcDfZ+bXI+K1AJl5KnAB1dTJ66imT37lDMuUJKmIk8qoT5g3Seo7M2oQZuaNwBFNlp/acD+B18+kHEmSZsL2oPqBeZOkfjQbl53ovczyVR58oGyFB+4vi99lt7J4IG+6rmyFjXeUbf/uVpc8ai323KusjH33Lytg3/IT4WNB2ds27727vIxlK8riF+9SVsDYQ2XxQI5tLyyj8D370LayeCAWLmo/uIPPqdQNgQ1CqVF28n2c42Xxpb9z2wp/s4DccldZ/KbCkbf3bymLB1iwsCx+j7J5M2Lv8okXY9c9y1ZYtKS4jOL9jtHyMtQzg9EglCSplQhixBahJEnNdOM6hJIkSZKkecgeQknSwHPIqCRJzdkglCQNPC9ML0lSczYIJUkDzUllJElqzQahJGngeR1CSZKac1IZSZIkSRpS9hBKkgZbOGRUkqRWbBBKkgaeQ0YlSWrOBqEkaeDZHpQkqTnPIZQkqcsiYnVEfCsiro2IayLijfXy5RFxYUTcUP+/V708IuITEbEuIq6KiKPmdg8kScOif3sICw7n5rb7y7e/9d6y+PEdReG5cUPZ9gHuuK2sjCv/uyj+gR+W12l09yVF8YsOf0JRfCcpT+66e1kZy/YpL6TU4l16X0avuzjsQtGAqi47Mevv7zHgzZl5eUQsBS6LiAuBU4B/zcwPRMTbgLcBfwgcBxxa354BfKr+X+q+HC9fZ8dYWfxDDxSFd5I35bqryuJvuK6sgDvvLIsHWLSoKDxWH1gUn086oigegIMOKwqPkb3KyxgZLQrPKOuTcth/b9lDKEkabAEx0t3bdDLztsy8vL5/L3AdsBI4ATirDjsLeHF9/wTg7KxcDCyLiP27+0RIkvRo/dtDKElSV8ScHl2OiIOBpwHfA/bLzInhID8D9qvvrwRuaVhtfb2sbOiIJEmFbBBKkgbfSNcbhCsi4tKGv0/LzNMmB0XE7sCXgDdl5pbGhmlmZkRktysmSVIJG4SSJJXbmJlrpgqIiIVUjcHPZeaX68W3R8T+mXlbPST0jnr5BmB1w+qr6mWSJPWU5xBKkgZfRHdv0xYXAZwOXJeZH2146Hzg5Pr+ycA/Nix/RT3b6DOBzQ1DSyVJ6hl7CCVJgy3mZIa6XwReDvwgIq6ol70D+ADwhYh4NXAz8LL6sQuA44F1wFbglbNaW0nS0LJBKEkafN0/h3BKmfkdqiteNPPcJvEJvL6nlZIkqQkbhJKkAdfeME9JkoaR5xBKkiRJ0pDquEEYEU+MiCsablsi4k2TYo6JiM0NMe+acY0lSSoQATESXb1JnTB3ktSPOh4ympk/BI4EiIhRqumxz2sS+h+Z+cJOy5EkacYcMqo+YO4kqR916xzC5wI/zsybu7Q9SZK6xl499SFzJ0l9oVsNwhOBc1o89gsRcSVwK/CWzLymWVBErAXWAhy4cn8Ye6j90u+7p6SuAOSWTWUr7NheFn9P4faBvOYHRfFXnHt5UfxN2x4sigdYVHhU/efX3VkUv9+uuxbFA8RTnlYUn9vuLy+jMD537Cjb/oJZOH13waLel5HZ+zKkbrCHUP1nRrnTTnnT6lVkyfdxJ9/dhXlQPnBfWfz6G4riAfLSi4vit3z7qqL4W9aX7QPAkiWjRfGrj7ilKH7xeFm+AZC77lEUH4vLczMWLC6LHyl7nvwO760ZZ6URsQh4EfDFJg9fDhyUmUcAfwl8pdV2MvO0zFyTmWv2Wb58ptWSJEnqS93InXbKm1as6FldJQ2+bnRTHAdcnpm3T34gM7dk5n31/QuAhRHht5YkafZEVNch7OZNmhlzJ0l9oxtDRk+ixZCHiHgMcHtmZkQcTdUAvasLZUqS1LZwuJH6i7mTpL4xowZhROwG/ArwmoZlrwXIzFOBlwKvi4gx4AHgxCwa5C5JUhfYq6c+Ye4kqd/MqEGYmfcDe09admrD/U8Cn5xJGZIkSYPC3ElSv+nWLKOSJPWnwBnqJElqwQahJGngxSxc6UWSpPnIBqEkafDZQyhJUlM2CCVJgy2CcFIZSZKachCNJEmSJA0pewglSYPPIaOSJDXVnw3C8R3k1nvbDs+xsfIytt5XFr95U1n8fe3Xf8K2H60vir9o8/1F8T/Ztr0oHmBBYRK15JayTuf9brmlKB6Ax/9cWfyircVF5EjZRyPGd5QVMLKkLB6IkdGyFXYUvt6dzLphkq35wiGj0iNyvHydHYW/c/ffUxZ/a3k+sO2qHxfFX/Kjslzu8vu2FcUD7LWg7Lf02WNlr8UTD7yxKB4gHv+kshUec1BxGZTmQXhpzX7Snw1CSZK6JALCgxeSJDVlg1CSNPjsIZQkqSknlZEkSZKkIWUPoSRpwIXnu0qS1IINQknSwPMcQkmSmrNBKEkabIHnEEqS1IINQknSwLOHUJKk5pxURpIkSZKGlD2EkqTB55BRSZKaskEoSRps4SyjkiS1YoNQkjTwwh5CSZKa6s8GYQQsWNh++KLFxUXkgt7uet5+W/E6D955b1H87Q/tKIrfnlkU38k694+PF8XvuLtsnwEW3Hl72Qp77FVcBj1+f8yKkdGy+OjglOKSMuyhkaT5K8t+3xkbK4t/8IGyeGBsS9k6dxfW6eYHtxfFA9y3o+y3d8v9ZXXK+7cWxQPEgw+WlVGYywEE5Tmm+scAZL2SJE3DAxKSJDVlg1CSNNi8DqEkSS3ZIJQkDTyvQyhJUnNtnTQUEWdExB0RcXXDsuURcWFE3FD/3/RErYg4uY65ISJO7lbFJUlqT1Q9hN28SVMwb5I0n7Q7i8SZwLGTlr0N+NfMPBT41/rvnUTEcuDdwDOAo4F3t/oClCRJGhBnYt4kaZ5oq0GYmRcBmyYtPgE4q75/FvDiJqu+ALgwMzdl5t3AhTz6C1KSpN6auBZht27SFMybJM0nMzmHcL/MnLi2ws+A/ZrErARuafh7fb3sUSJiLbAW4MADHjODakmS1CCwEad+0Lu8afWqLlZT0rDp4MJjj5aZCTO7AElmnpaZazJzzT7LHR0hSeqiWe4hbHEO2ZERcXFEXBERl0bE0fXyiIhPRMS6iLgqIo7q4TOhPtD1vGnFii7VTNIwmkmD8PaI2B+g/v+OJjEbgNUNf6+ql0mSNEsCRka6e5vemTx6qN+HgPdm5pHAu+q/AY4DDq1va4FPdWOv1XfMmyT1pZk0CM8HJma/Ohn4xyYx3wCeHxF71SdFP79eJknSwGpxDlkCe9T39wRure+fAJydlYuBZRMNBw0U8yZJfandy06cA3wXeGJErI+IVwMfAH4lIm4Anlf/TUSsiYjPAGTmJuCPgUvq2/vqZZIkzZ7+mFTmTcCHI+IW4M+Bt9fL2z5vTPODeZOk+aStSWUy86QWDz23SeylwO80/H0GcEZHtZMkaaZ6M6nMioi4tOHv0zLztGnWeR3wB5n5pYh4GXA6VcNAA8a8SdJ8MpNZRntnZJTYZWnb4bnt/vIyFi0pi99zeVn8gvKndvE+7e8zwFG7LyqKv/y+h4riARYVDiref9HCovjRPXcrKwDgwQfK4hfvUlxELCx7f8TCsteiI9GVOaC6u/3Rgve5szxqLnX//bcxM9cUrnMy8Mb6/heBz9T3PW9Ms6yDz0N7584+YtHisvg9lpXFA4sPKJuE8KAf3l0U/8yl5fP+LB0te57237csR4m9C/NRgN3L8sso+W1/eKUe5yjqKV89SdKAm5NJZZq5Ffjl+v7/BG6o758PvKKebfSZwOaGyxNIktRT/dlDKEnSPFafQ3YM1dDS9cC7gd8FPh4RC4Bt1NeQAy4AjgfWAVuBV856hSVJQ8sGoSRp8M3ykOUpziH7+SaxCby+tzWSJKk5G4SSpMHWm0llJEkaCDYIJUmDzwahJElN2SCUJA24mMlEMJIkDTR/ISVJkiRpSNlDKEkafA4ZlSSpKRuEkqTB5qQykiS1ZINQkjT4bBBKktSU5xBKkiRJ0pDq3x7CkdH2Y5fsVr79Xfcoix/fURQeTzq8bPvAkq1bi+Kfd+e9RfGrb9xcFA+w2+Kyt8ihz1hdFB+HPbkoHoD9V5WVscvu5WUsXFQWX/J+BYgOjsXkeG/jO6mTvS6aB4IgnGVUekQn392jZflA7L6sKD5XHVIUD7DwaYcVxR/+0FhR/CE/3VQUD7B4cVk+sPTIg4ri4wlPKooHiOX7l62wcHFxGcV5EOYP/aR/G4SSJHWLBy8kSWrKBqEkabA5qYwkSS3ZIJQkDT4bhJIkNeVJFZIkSZI0pOwhlCQNuAAnlZEkqSkbhJKkweeQUUmSmrJBKEkabE4qI0lSSzYIJUmDzwahJElNTXtSRUScERF3RMTVDcs+HBHXR8RVEXFeRCxrse5NEfGDiLgiIi7tYr0lSZL6krmTpPmknbPszwSOnbTsQuApmXk48CPg7VOs/5zMPDIz13RWRUmSZqKeVKabN2lqZ2LuJGmemPZXLTMvAjZNWvbNzByr/7wYWNWDukmS1B0R3b1JUzB3kjSfdOMw56uAr7V4LIFvRsRlEbG2C2VJklRmYlIZG4TqH+ZOkvrGjCaViYh3AmPA51qEPCszN0TEvsCFEXF9fdSs2bbWAmsBDlx5AIzvaL8eCxeVVRxgQdmuZ44XxcehRxTFA7DtgaLwPZcuLYo/ev36ongA9t67KDz2X1m2/cf9XFk8wK57lMUvWlJeRuk6MQBDyExyNbC8DqH6R7dyp53yptWriYLv8OzkN2t0YVn8kt2LwmPVoWXbB9jRfq4IsGSffYviF2+6qygegIVlz1Psv7ps+wc/sSweiL33L1uhk7xpZLQs3pyjr3T8CxkRpwAvBH4rM7NZTGZuqP+/AzgPOLrV9jLztMxck5lr9tl7eafVkiRJ6kvdzJ12yptWlB28laRGHTUII+JY4K3AizJza4uY3SJi6cR94PnA1c1iJUnqKYeMao6ZO0nqV+1cduIc4LvAEyNifUS8GvgksJRqKMMVEXFqHXtARFxQr7of8J2IuBL4PvDVzPx6T/ZCkqSp2CDULDJ3kjSfTHsiXWae1GTx6S1ibwWOr+/fCHRwIp0kSV00MamMNEvMnSTNJ55lL0mSJElDakazjEqS1P+cZVSSpFZsEEqSBp9DRiVJasoGoSRp8NkglCSpKRuEkqTBFkAnF+KWJGkI+AspSZIkSUPKHkJJ0oALGHHIqCRJzfRng3BsO3n3z4riey322q8oPrdsKi9k6Z5F4bH/qrLt77d/WTzAwkVl8bvuXhaf42XxAAsK37a77lFcRIyOlq1Quh8jhdsHGFlYFl9apx0dfI62b2s/dnxH+falbnHIqPSITs6pHS387V20pCg89tynbPtAHFpWRu67uqyAbfeXxQMU5g+x27Ky+N3L4gFYsltZ/ILC3A+Kv2PD87r7Sn82CCVJ6iaTD0mSmrJBKEkabOF1CCVJasVfSEmSJEkaUjYIJUmDL6K7t2mLizMi4o6IuHrS8v8TEddHxDUR8aGG5W+PiHUR8cOIeEEPngFJkppyyKgkafDN/qQyZwKfBM5+uAoRzwFOAI7IzAcjYt96+WHAicCTgQOAf4mIJ2SmMzFJknrOHkJJ0uCb5R7CzLwImDzd9OuAD2Tmg3XMHfXyE4DPZ+aDmfkTYB1wdPd2XpKk1mwQSpIG28SkMt28deYJwLMj4nsR8e8R8fR6+Urgloa49fUySZJ6ziGjkiSVWxERlzb8fVpmnjbNOguA5cAzgacDX4iIx/aqgpIktcMGoSRp8HX/OoQbM3NN4TrrgS9nZgLfj4hxYAWwAWi8YvaqepkkST3nkFFJ0uCLke7eOvMV4DkAEfEEYBGwETgfODEiFkfEIcChwPdnvtOSJE3PHkJJ0mCLgJGu9xBOU2ScAxxDNbR0PfBu4AzgjPpSFA8BJ9e9hddExBeAa4Ex4PXOMCpJmi392SAcXUDsuaLt8BzbXl7GA/cVhefWLUXxsXy/oniAHBktW2Hx4rL4HR3kFwsWlq9TYtc9ileJ0nXGHiouI1lUFF+canbSw9Dr/vzMHhcgDY/MPKnFQ7/dIv79wPt7VyPpEdHBEOos/RFaUPY72tHv4mhZGhu7LC2LH+/kuEzhcztamPuVPq8Ao4W5XGk+Cr0Ylq9Z1J8NQkmSumn2r0MoSdK8YINQkjT4PHotSVJT0x4yjYgzIuKO+pyHiWXviYgNEXFFfTu+xbrHRsQPI2JdRLytmxWXJKk90S+TymhImDtJmk/a+VU7Ezi2yfK/yMwj69sFkx+MiFHgr4DjgMOAkyLisJlUVpKkYkE1qUw3b9LUzsTcSdI8MW2DMDMvAjZ1sO2jgXWZeWNmPgR8Hjihg+1IkiTNG+ZOkuaTmYx7eUNEXFUPi9iryeMrgVsa/l5fL5MkaXZFdPcmdcbcSVLf6bRB+CngccCRwG3AR2ZakYhYGxGXRsSld27q5KCaJEkteA6h5l5Xc6ed8qaNd3WhepKGVUe/apl5e2buyMxx4NNUQxwm2wCsbvh7Vb2s1TZPy8w1mblmn+XLO6mWJEmPFm2eF+g5hOqhbudOO+VNK/bufoUlDY2OGoQRsX/Dn78OXN0k7BLg0Ig4JCIWAScC53dSniRJM2IPoeaYuZOkfjXtdQgj4hzgGGBFRKwH3g0cExFHAgncBLymjj0A+ExmHp+ZYxHxBuAbwChwRmZe04udkCRJ6hfmTpLmk2kbhJl5UpPFp7eIvRU4vuHvC4BHTassSdKsciIYzSJzJ0nzybQNQkmS5rdwmKckSS30Z4MwAkYXth++YHF5GaOFuz4yWhQeu+5Rtv0OymDX3cvix7aXxXdifEdZ/KIl5WWUrtPJfhfuRxb2PsTIeFF8VUiPE9qOelBK6mQPjebIxIXpJXUsCn8jsnSaioK872GleVMW/vZmlsV3ovRg1UgnuUBpjuIBtGHTnw1CSZK6yR5CSZKa8hdSkiRJkoaUPYSSpMHnpDKSJDVlg1CSNOCiw/NuJEkafDYIJUmDLbCHUJKkFjxkKkmSJElDyh5CSdLgc5ZRSZKaskEoSRpw4ZBRSZJasEEoSRp8TiojSVJTNgglSYPNSWUkSWrJQ6aSJEmSNKT6s4cwE8Yeaj9+dGF5GQuXFIXHnmXxPLS1LL4TiwrrtOse5WWM7yiL33Z/WfzIaFl8J+uMFO4DlO/3aB9+lEp7RDqZdKOkCDtoNGfCSWWkWRbFv0HlPxKZpesU5g+ZhdvvwCyMXih+LTR0+jCLlSSpy0yIJElqygahJGnw2UMoSVJTNgglSYMtAkbsIZQkqRkPmUqSJEnSkLKHUJI0+BwyKklSUzYIJUmDz0llJElqygahJGnAedkJSZJasUEoSRp4XodLkqTmpm0QRsQZwAuBOzLzKfWyc4En1iHLgHsy88gm694E3AvsAMYyc01Xai1JktSnzJ0kzSft9BCeCXwSOHtiQWb+xsT9iPgIsHmK9Z+TmRs7raAkSTMSOGRUs+1MzJ0kzRPTNggz86KIOLjZY1GNwXkZ8D+7XC9JkrrEcwg1u8ydJM0nMz2H8NnA7Zl5Q4vHE/hmRCTwN5l5WnubTcjx9msx9mD7sRNGF5bFL1xcFJ7bHyrbPsD4jrL4BYuKwmNhWTxQXKcs3YeR0bJ4IEbL1kk62O/C841itPCjNNLBR6/0HKjSOpXGA+wYKwj2HC7NIS9Mr/7Ro9xp+PT83GDPPdaQmOkh05OAc6Z4/FmZeRRwHPD6iPilVoERsTYiLo2IS+/cdPcMqyVJUoMY6e5tuuIizoiIOyLi6iaPvTkiMiJW1H9HRHwiItZFxFURcVQPngH1j67kTjvlTRvv6kU9JQ2JjhuEEbEAeAlwbquYzNxQ/38HcB5w9BSxp2Xmmsxcs8/yvTqtliRJ/eBM4NjJCyNiNfB84KcNi48DDq1va4FPzUL9NAe6mTvtlDet2LsX1ZU0JGbSQ/g84PrMXN/swYjYLSKWTtyn+gF81JFSSZJ6KqiGfnXzNo3MvAjY1OShvwDeSjUscMIJwNlZuRhYFhH7d2HP1X/MnST1nWkbhBFxDvBd4IkRsT4iXl0/dCKThjxExAERcUH9537AdyLiSuD7wFcz8+vdq7okSe2IXgwZXTExXK++rZ22FhEnABsy88pJD60Ebmn4e329TPOUuZOk+aSdWUZParH8lCbLbgWOr+/fCBwxw/pJkjRz3Z8cYmPJ9eEiYlfgHVQ9Phpw5k6S5pOZzjIqSZKm9zjgEODKembEVcDlEXE0sAFY3RC7ql4mSVLP2SCUJA2+Ob4OYWb+ANh34u+IuAlYk5kbI+J84A0R8XngGcDmzLxtbmoqSRo2NgglSYMtYtavQ1ifQ3YM1bmG64F3Z+bpLcIvoBoyuA7YCrxyViopSRI2CCVJw2CWewhbnUPW8PjBDfcTeH2v6yRJUjM2CCVJg6/7k8pIkjQQ5vakCkmSJEnSnLGHUJI04GLOJ5WRJKlf9WeDMEZg4ZL247dvKy4itz9YFB/jO4rLKLZgUVF4LCyLZ3RhWTyUJ1ELx8vLKLVgcVF4xPbyMkqHl/Vjsjle+FqMdLAPowVfIQ7Z01zy/SdJUlP92SCUJKlbgv48aCNJUh+wQShJGnDRWQ+4JElDwF9ISZIkSRpS9hBKkgZeeA6hJElN2SCUJA0+zyGUJKkpG4SSpMEWOMuoJEkt2CCUJA04r0MoSVIr/kJKkiRJ0pCyh1CSNPgcMipJUlM2CCVJg8/rEEqS1JQNQknSYIuwh1CSpBb6skF42VVXbxw54NCbmzy0Atg42/WZ47KHcZ+HtexB3+eDerx9SRpKl/33FRtjt2XN8ibwN82yB7fcYSh7VnKnvmwQZuY+zZZHxKWZuWa26zOXZQ/jPg9r2cO4z9KscZZRDbBWeRP4m2bZg1vuMJfdbX3ZIJQkqascMipJUlM2CCVJQ8AGoSRJzcy3BuFpQ1j2MO7zsJY9jPsszQInldFQ8zfNsge13GEuu6siM+e6DpIk9cyaw5+Sl3z1C13d5siBT75sUM4dkSQNt/nWQyhJUjl7CCVJasoGoSRpCNgglCSpmb6bhzsijo2IH0bEuoh4W5PHF0fEufXj34uIg7tU7uqI+FZEXBsR10TEG5vEHBMRmyPiivr2rm6UXW/7poj4Qb3dS5s8HhHxiXq/r4qIo7pU7hMb9ueKiNgSEW+aFNO1/Y6IMyLijoi4umHZ8oi4MCJuqP/fq8W6J9cxN0TEyV0q+8MRcX39nJ4XEctarDvl69NBue+JiA0Nz+nxLdad8vPQYdnnNpR7U0Rc0WLdjvdZ6ivBIxen79ZN6iPmTuZOvcid5ipvmqJsc6deycy+uQGjwI+BxwKLgCuBwybF/B5wan3/RODcLpW9P3BUfX8p8KMmZR8D/HOP9v0mYMUUjx8PfI0qtXkm8L0ePf8/Aw7q1X4DvwQcBVzdsOxDwNvq+28DPthkveXAjfX/e9X39+pC2c8HFtT3P9is7HZenw7KfQ/wljZejyk/D52UPenxjwDv6vY+e/PWT7efP/zJOb7h+q7egEvner+8ecs0dzJ36l3uNFd50xRlmzv16NZvPYRHA+sy88bMfAj4PHDCpJgTgLPq+/8APDdi5odrM/O2zLy8vn8vcB2wcqbb7aITgLOzcjGwLCL273IZzwV+nJk3d3m7D8vMi4BNkxY3vqZnAS9usuoLgAszc1Nm3g1cCBw707Iz85uZOVb/eTGwqmSbnZbbpnY+Dx2XXX9uXgac00HdJEn9wdypNXOnGeROc5U3tSq7TeZOHei3BuFK4JaGv9fz6C+Wh2PqN+RmYO9uVqIeSvE04HtNHv6FiLgyIr4WEU/uYrEJfDMiLouItU0eb+e5makTaf0G79V+A+yXmbfV938G7NckZjb2/1VURxKbme716cQb6iEXZ7QY6tHrfX42cHtm3tDi8V7sszRHoss3qW+YO5k7zVXuNNt5E5g79US/NQjnXETsDnwJeFNmbpn08OVUQwKOAP4S+EoXi35WZh4FHAe8PiJ+qYvbnlZELAJeBHyxycO93O+dZNXfPuvXQomIdwJjwOdahHT79fkU8DjgSOA2quEHs+0kpj7CNafvSal7unz+oOcQSjsxdxq+3GkO8iYwd+qZfmsQbgBWN/y9ql7WNCYiFgB7And1o/CIWEj1hfa5zPzy5Mczc0tm3lffvwBYGBErulF2Zm6o/78DOI+qy7tRO8/NTBwHXJ6ZtzepW8/2u3b7xBCO+v87msT0bP8j4hTghcBv1V+qj9LG61MkM2/PzB2ZOQ58usX2ernPC4CXAOdOUceu7rM0p2wQanCZO5k7zWruNBd5U70tc6ce6bcG4SXAoRFxSH3U5UTg/Ekx5wMTsyS9FPi3Vm/GEvWY4NOB6zLzoy1iHjMx5j4ijqZ6/mb8hRoRu0XE0on7VCfsXj0p7HzgFVF5JrC5YahAN7Q84tGr/W7Q+JqeDPxjk5hvAM+PiL3qIQLPr5fNSEQcC7wVeFFmbm0R087rU1pu4zkMv95ie+18Hjr1POD6zFzfon5d32dpbjlkVAPL3MncadZyp7nKm+ptmTv1SF9dhzAzxyLiDVRv1lHgjMy8JiLeRzWj2/lUXzyfjYh1VCd8ntil4n8ReDnwg3hkKtl3AAfWdTuV6kv0dRExBjwAnNiNL1Sqcd/n1d8bC4C/z8yvR8RrG8q+gGq2rHXAVuCVXSgXePhN+yvAaxqWNZbdtf2OiHOoZt5aERHrgXcDHwC+EBGvBm6mOlmXiFgDvDYzfyczN0XEH1N90AHel5lFJxu3KPvtwGLgwvr5vzgzXxsRBwCfyczjafH6zLDcYyLiSKohHjdRP/eN5bb6PMx0nzPzdJqc89DNfZYkzQ5zJ3MnepQ7zVXeNEXZ5k49Et35TEqS1J/WHPHUvOSbzQ6ed27kMY+7LDPXdHWjkiTNgb7qIZQkqTcc5ilJUjM2CCVJg82JYCRJaqnfJpWRJEmSJM0SewglSYPPHkJJkpqyQShJGgI2CCVJasYho5KkgRcRXb21Ud4ZEXFHRFzdsOzDEXF9RFwVEedFxLKGx94eEesi4ocR8YLePAuSJD2aDUJJ0uCbmFimW7fpnQkcO2nZhcBTMvNw4EdU1/MiIg6jur7Vk+t1/joiRru165IkTcUGoSRJXZaZF1FdALxx2Tczc6z+82JgVX3/BODzmflgZv6E6iLaR89aZSVJQ80GoSRpwEUPbqyIiEsbbmsLK/Uq4Gv1/ZXALQ2Pra+XSZLUc04qI0kafN2fZXRjZq7prCrxTmAM+Fx3qyRJUjkbhJKkwRb0zWUnIuIU4IXAczMz68UbgNUNYavqZZIk9ZxDRiVJQ6DrQ0bLaxBxLPBW4EWZubXhofOBEyNicUQcAhwKfL+jQiRJKmQPoSRJXRYR5wDHUJ1ruB54N9WsoouBC+tLV1ycma/NzGsi4gvAtVRDSV+fmTvmpuaSpGFjg1CSNPhmechoZp7UZPHpU8S/H3h/72okSVJzNgglSYOvP04hlCSp79gglCQNuM7P+5MkadDZIJQkDb4+mWVUkqR+4yyjkiRJkjSk7CGUJA22ProOoSRJ/cYGoSRpCNgglCSpGRuEkqTBZw+hJElNeQ6hJEmSJA0pewglSQMu7CGUJKkFG4SSpCFgg1CSpGZsEEqSBp89hJIkNRWZOdd1kCSpZyLi68CKLm92Y2Ye2+VtSpI062wQSpIkSdKQcpZRSZIkSRpSNgglSZIkaUjZIJQkSZKkIWWDUJIkSZKGlA1CSZIkSRpS/z/IvAAtLIfz0wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "recorteR8 = trim(imagen[:,:,0], 620, 306, 20, 20)\n", + "poptR8, pcovR8 = curve_fit(gauss2d, xdata8, recorteR8.ravel(), p0=[1,0,1,1,1])\n", + "estrellaR8=gauss2d(xdata8, poptR8[0], poptR8[1],poptR8[2], poptR8[3], poptR8[4])\n", + "FWHMR8=FWHMR.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptR8[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 8 fotografÃa (Banda Rojo)\")\n", + "plt.imshow(recorteR8, plt.get_cmap('Reds'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 8 a partir de la gaussiana (Banda Rojo)\")\n", + "plt.imshow(estrellaR8.reshape(20, 20), plt.get_cmap('Reds'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 9 (Rojo)" + ] + }, + { + "cell_type": "code", + "execution_count": 362, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3QAAAFSCAYAAAC6+p25AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAxDElEQVR4nO3de/xldV3v8dd7LqBcBGFIZWZwiIMaqKhnvOWxVCovqXjqlFhaWkeqg4ZFqVAn9ZxjecoMrTTJS3kkOahomOSlvOUpUEBCYTRHRRkYgkG5yEWY4XP+WOsne37s/fvtGX5r77V/83o+Hvsxv7322t/1XXvt2ev7WZ/v97tSVUiSJEmSZs+KaVdAkiRJkrR7DOgkSZIkaUYZ0EmSJEnSjDKgkyRJkqQZZUAnSZIkSTPKgE6SJEmSZtSqaVdAkqSFrM+quo2lvcXONu78aFU9bUkLlSRpCgzoJEm9dhvFT7Pvkpb5Vm5as6QFSpI0JQZ0kqReC44PkCRpFAM6SVLvrUiWtsCl7cEpSdLUGNBJknrNDJ0kSaMZ0EmSem/FEifozNBJkpYLL3pKkiRJ0owyQydJ6j2vPkqSNJwBnSSp10KWflIUSZKWCQM6SVLvmaGTJGk4AzpJUq+FDiZFkSRpmfCipyRJkiTNKDN0kqTe8+qjJEnDGdBJkvotECdFkSRpKAM6SVKvBTN0kiSNYkAnSeo9J0WRJGk4L3pKkiRJ0owyQydJ6j2vPkqSNJwBnSSp15r70NnnUpKkYbzoKUnqvRVL/FhMkvVJPpnksiSXJjlp4LWXJvlyu/wPB5afkmRzkq8keeo932tJkhZnQLcLkmxIUklWtc8/leS/TmC7SfLOJN9J8rmut3dPJXlwkouT3JTk19tlb0hy2m6W9wdJXraUddyFbf9Vkv81he1emuRJY6z38CT/3H2NpD3OduDkqjoKeBxwYpKjkjwZOA44pqqOBl4PkOQo4HjgaOBpwJuTrJxO1bXcTas90jdJnpjkK/ewjN367OYfg1k2bpujo22/J8lzprTtqfy/SfLdJD84xnrPSvJ/xylzJgO6JJcnubX9QOYefzbG+yrJf5hEHReT5IeTfK4Nei5J8p8WWP0/AT8OrKuqx4xR9rT38+XAJ6tq/6p6U5InAo8GfntXC0pyCPALwFvb509KcufAcb8yyWuWtPZLZN739Oo2ONxvnPdW1dFV9akx1rsEuD7Js+5pfaW+arpcLu1jMVW1taouav++CdgErAV+DXhdVX2vfe2a9i3HAWdW1feq6hvAZmDR32vNtj2wPTJV8z+3qvqnqnrwNOu0HIzb5lhqSR4OHAP8bfv8hUl2DPxf+nqSX5t0vcbRfhdvHmiLvmHci3hVtV9VfX2M9T4EHN1+TguayYCu9az2A5l7vOSeFjipqyxJDgI+BPwRcCDwh8CHktx3xFseCFxeVTdPon4LGfMzeiBw6cDzw4HnVtUdu7HJFwLnVtWtA8uumjvuNMHuL0/r6s4YntXW8xHAI4FTOtjGGcCvdFCu1BuT7nI5KMkGmv+/5wMPAp6Y5Pwkn07y6Ha1tcAVA2/b0i7T8rcntUemYnc+j+WQOdsD/ApwRlXVwLJ/GWjj/TTwh0keOZ3qLeqYtp4/CjwX+KUOtvEe4ITFVprlgG6oJP+hPcnekGTbXKoyyWfaVf61jaaf22Z7tiR5RZKrgXcmWZHklUm+luS6JGe1P3iLbfeIJJ9o37MtyRlJDhyx+g8DV1fVe6tqR1W9G7gW+Kkh5f4y8Dbg8W29X9Muf3GasRrfTnJOkkNH7edC67ev/USaMR83JHlz+/n91/a1Fyb5f0n+JMl1wKsX2tcknwCeDPxZu/0HAU8B/lv7+n2T/F2Sa9N0If27JOsW+GifDnx61IvtlfB/Bo4a2J83JrkiyY1JLkyTIZx77dXtMX1XezXy0iQbB15/ZJKL2tf+L3Cvgdd2te6D9bwa+ChNYDdX3rPb7V+fJu3/QwOvXZ7kx9q/905yWpKr2sdpSfYeKP5TwLHzlknLygqypA9gTZILBh5DT5hpsurvB15WVTfSTCZ2EE03zN8GzkqcsUV3t9zaI23Zj0nyL+15a2uSP0uy14h157okntCeu7Ym+a1xy2rfe2KSrwJfXehzG3jP5e1neAlwc4YEdUl+PM0Y2BvSZFMz7/VfSrKpPc9/NMkDR3x288t9Ufu+m9JklkZeaE2yMskft8fnG0lekp270I4sK0277LPzyvt+5jLJM9KM/b0pTebot9rla9p2y/Vp2oL/lGTFwOc21+YY57j8apKvtuv8+dxv4C5+92DxNt4XaHpHDLaP3pum19MNST6T5OiB1/6qrc+H2/0/P8kRA6+PPPa7UffBem4G/h87t/EWancPHq8D0rRJr03yzSS/O3dcWp8CfnKxOiy7gA74n8DHgPsC64A/BaiqH2lfP6aN/Of6pN6f5uT8QJoI+KXAc2ii7UOB7wB/PsZ2A/xB+54fAtYDr15k/fnPHzp/pap6O/Cr3HXF4lVJntJu62eBBwDfBM4ctZ8LrZ9kDfA+mszRwcBXaH7gBz0W+DpwP+C1C+1rVT0F+CfgJe32/21eWSuAd9J83ocBtwILdU95WFunoZIcCTwBOG9g8edp/lMdBPwN8N4k9xp4/dnt/h8InDO3/fYH64PA/2nf+16aq0O7W/fBeq6j+eHa3D5/EM1Vl5cBhwDn0lwVHXZi/B2axuMjaLomPAb43bkXq+pK4A7AbidaljrqcrmtqjYOPE6/23aT1TTB3BlVdXa7eAtwdjU+B9wJrAGupPktnLOuXaY917Jqj7R2AL9B851/PHAs7QXbBTwZOBL4CeAVc4HDmGU9h6YNctQCn9t8z6NpAB9YVdt32rGmzXM2zTl0DfA1mjbE3OvHAafSBLSH0LRn3rPI/s25BngmcB/gRcCfJHnUiHVfTNMmeATwqHY/d7es+d4O/EpV7U9zHD/RLj+Z5vfrEJr23KlADXn/OMflmTRDaR5O07acmwRq7O9ekn1penAt1MZ7NE2viAsGFv89zffpB4CLaHopDToeeA3N/7vNNO3WRY/9rtR9SD0fAjyRu9p4I9vdQ/wpcADwgzT/13+B5pjP2QRsSHKfheowywHdB9srA3OPF7fL76D5MTy0qm6rqs8uUAY0J+NXteMebqUJnn6nqra0YyReDfyXYVd5BlXV5qr6eFvOtcAbaA7MMP8CHJrkeUlWJ/lF4Ahgn3F2HPh54B1VdVFbx1NoMngbdmP9ZwCXVtXZ7Q/fm4Cr573/qqr606raXlW37uK+7qSqrquq91fVLe24lNcu8t4DgZvmLTu0PeY3Av9G0w3q+8e5qt7dbmd7Vf0xsDc7Bzufrapzq2oHTfB2TLv8ccBq4LSquqOq3kcTHO5u3aH5nt5E0xXrGuBV7fLnAh9uP8c7aCZWuDd3D6ahOX7/o6quaT/v1wAvmLfOTe1nJWkJtFec3w5sqqo3DLz0QZoG6tyFmb2AbTQXh45Pk1E/nKbB0ftJrLQk9pj2SFVdWFXntefXy2nGty92HnxNVd1cVV+kuSj6vF0o6w+q6tvzhl0s5k1VdcWI98y1ed7XnntPY+c2z6+229zUtol+H3hExsjSVdWHq+pr7cWeT9ME808csfrPAm9sj+13gNfdg7LmuwM4Ksl9quo71Y4Fbpc/AHhg28b5p6q6W0A35nF5XVVdX1XfAj5Jm5naxe/ege2/89t4j2v/H91E8xv6f4CvDtTvHVV108D/iWOSHDDw/g9U1efa43cGd2XNFjz2u9m2vSjJzTRB16eAN7fLx2qnpxlzdzxwSrtPlwN/zM5tvLnP58CFKjLLAd1zqurAgcdftstfThNlfy5Nd7bF+rNeW1W3DTx/IPCBuR9mmoO0g+ZqxkhJ7pfkzDa9fSPwbporAHdTVdfRDKD/TeDfaWZE+weaKyfjOJQm2p8r77vAdYwer7HQ+ocyMO6j/c89vx6D40J2aV/nS7JPkre2aeUbgc8AB2b0QNLvAPvPW3ZVe8zvQ/MFvxX464Ft/Faargo3tMfwgHn1G/zxvgW4V3uCPBS4ct4P3Pc/t92oOzTf0/2BJwEPGajH/GNyJ83nPOwY7rRu+/eh89bZH7h+gXpIM20KY+ieQHNSfUqaWXsvTvIM4B3ADyb5Es0V119sG12XAmcBlwEfAU5sLxpp+dtj2iNJHpSm297Vbdm/P6rsAYNtiO+fv8Ys6wp23ULvGdbmGVz/gcAbBz7zb9Mcw0XHwyZ5epLz2i5219MEEKM+m53qMb/Ou1jWfD/drv/NNF1+H98u/yOaDNLH0nTjfOWI/RjnuMxvR+3XvndX2ofXt//Ob+Od1/4/2p8ma310W4e5rqqvS9MN+Ubg8vY9C7Xx5iajW/DY72bb9lFt+c+lySTvO7Ctcdrpa2gSCfPbeIPrzX0+1y9UkVkO6Iaqqqur6sVVdSjNYMs3Z+GZpOZfnbgCePq8H+d7VdOtbSG/35b1sDbQeD5378YwWM9PV9Wjq+ogmkbDQxj/au5VND86wPfT1gczunvPQutvpekKMvdaBp/PVXfe813a13lOpsmWPbZ971wXilHvv4Qm3T5UVd1A063yWW39n0hzEv1Z4L5VdSBww5j12wqsbT+DOYfdg7oP1vPTwF/RTnHO3Y9JaNL7w47hTuu2dbpq4L1rabIE92jqZqmvssTdLcec5fKzVZWqenhVPaJ9nFtVt1fV86vqoVX1qKr6xMB7XltVR1TVg6vq77v8TNR/y7Q98hbgy8CRbdmnLlR2a7Ar8uD5a5yyhnUJXMxC79k6WJ+Bc++cK2i6Kw5+5veuqgVvD5RmDPv7ac7x92vbHucy+rPZqe01r06LlXUzAxnUJPcfLLiqPl9Vx9F0SfwgzYUm2gzQyVX1gzRDT34zybFD6rY7x3jO2N+9aib6+xoLt/H+neazmJvJ++doLkD8GM3F+g3t8nHbeAsd+91q27YX9M6iyXb/Xrt43Hb6Nu7K5M85bN56P0QzMeKNC9Vj2QV0SX4md01U8R2ag3Nn+/zfafqoLuQvgNfOpdeTHJKmT/Vi9ge+C9zQNrAXnKI/zeQbq9P0iX09cEVVfXSM7UDTn/tFSR7R/sf/feD8NlULd9/Phdb/MPCwJM9ps1Qn0lwRWbJ9HfLeW2mm2j+Iu7ogjnIuC6S800xYcDx3zaq5P839o64FViX5PZo+6OP4l/a9v94em59i52nHd7Xu850G/HiSY2h+YH8yybFpxumcDHyPZoKX+d4D/G77XVxD84Px7oHXfxT4RJvWl5alDiZFkTq1TNsj+wM3At9NM25onCnl/3vbw+VomrFBc2PfdqescT63hXyYZhr4n2rbPL/Ozm2evwBOaes6N2HFz4xR7l40wzuuBbYneTrNmMFRzgJOSrI2zcQbr9iFsv613YdHpJkf4NVzLyTZK8nPJzmg7VZ4I+13Lskz00zUE5oL3Tu46/s4aHeOy+B7d6V9uFgb72DgP7NzG+97NNmufWgzd2Na7Njfk7YtNN1mX9wG2Iu10wFoe3GcRfP/fP/2//pvcvc23qIXCGc5oPtQdr7vywfa5Y8Gzk/yXZoxDSfVXfd6eDXw12lS6T87otw3tu/7WJr+u+fRpFEX8xqa1OsNNF+asxdenZfTROZX0PRp/s9jbAOAqvoH4L/TXLXYStPf/fiBVV7NwH4utH5VbQN+hmaq4utoZou8gOY/zCi7uq+DTqMZK7aN5rP9yCLrvwt4RpJ7Dyw7dO6406SmD6LprwzNTJIfoRlb903gNsbsslFVt9MMhH4hTTeL57Lzvu1q3eeXf227P79XVV+hufrzp215z6KZ+vr2IW/9XzTH5BLgizSDgAdvdv7zNCchadmadIZO2gV7Unvkt2iyJDcBf8ldwdlCPk3T1e8fgddX1cfuQVmvZvHPbaSBNs/raNo8R9LMTjj3+geA/w2c2Xa7+xLN5CWLlXsTTYBwFk3w/nM0x26Uv6QZF3cJ8AWawGY7sGOxsqqZbO5/0HSN/SoDcwi0XgBc3tb/V7mrfXRk+57v0lzAfnNVfXJI3XbnuMzZ1e/e6cDPz+sZ9fiBNt4mmsD2pe1r76Jp211J0719cEK8BS127Hej7vPL/yLNUJzfHqOdPuilNFnXr9Mcy7+h6do/53m092JeSOru4yG1B0szVeoW4OdH/EefuCS/D1xTVadNuy6TkuRbwPOr6jOLrPdw4K1V9fiF1pNm2WErV9Ur7n3gkpb5kpuvu7CqNi6+pqTdkWYCiG8Aq2vebJPaWZuF+4uqGusWCctJkr8BzqqqD067LpPQtrN30ExO861F1n0W8IKqWvTihTddFEmeSjNT5K00KeawC1c9ulZVp067DpOU5BCaaYUvX2zdqrqEZlphadkKs92dRJIGtb2OnkyTpbsfzRCODyz4pmWqqn5u2nWYsIfS9B6bP6P83VTVh4APjVOo50hBExB8jbu6/j2ndm2KYC2RNPdc+Srwp4tduZH2JHa5lLSMhKaL33doulxu4q4JNbRMJflpmts8vGLEEJvdL9sul5KkPtuwcnX9zj4HLmmZJ3x3m10uJUnLgl0uJUm9Z1ZNkqTh7HIpSZIkSTOqkwzdmjUH14bDDlt8xXvi1u92W/6q1d2WD7Bqr+63seOObsvPBC6b3znsNilLvY0d3W9j5WwnxC/fchXbvv0d8ySaCr94Ws4m0m6SNHEXfuHibVV1SNfb6aSFueGww7jgs5/qoujv23HpsPsvL50cvNi9tZdgG2vWLb7SPXX9Nd2WP4HAt267ufNtcMuNnW8i91nT7Qaq28D30c8adQsVqVvBLpda3ibRblI/TGTuiuUyP0bHSYNMICmRfQ/8ZucbwTF0kqQZsMIcnSRJQzmGTpIkSZJmlBk6SVKvxXvHSZI0kgGdJKn37E4iSdJwBnSSpN4zQSdJ0nAGdJKkXmtmuTSkkyRpGHuxSJIkSdKMGiugS/K0JF9JsjnJK7uulCRJg7LED6lrtp0kTcqiAV2SlcCfA08HjgKel+SorismSdIcAzrNEttOkiZpnAzdY4DNVfX1qrodOBM4rttqSZJ0FwM6zRjbTpImZpyAbi1wxcDzLe2ynSQ5IckFSS64dtt1S1U/SZJIsqQPqWOLtp1sN0laKks2KUpVnV5VG6tq4yFrDl6qYiVJkpYd202Slso4ty24Elg/8Hxdu0ySpM7ZTVIzyLaTpIkZJ0P3eeDIJIcn2Qs4Hjin22pJknSXFUv8kDpm20nSxCyaoauq7UleAnwUWAm8o6ou7bxmkiS1HPamWWLbSdIkjdPlkqo6Fzi347pIkjRU7HSpGWPbSdKk2PNEkiRJkmbUWBk6SZKmxUlRJEkazYBOktR7BnSSJA1nQCdJ6r0VRnSSJA3lGDpJkiRJmlFm6CRJPRdnuZQkaYRuArq6k7r9tk6KnpN779Np+XXtlZ2WD0BmP0Gavbs9DgDcuaP7beyYwDbqzo6L77Z8qtvipVGcFEXSpNSO7d1u4PZbuy0f4I7bu9/GipXdb2Pve3dafK3aq9PyJ8kMnSSp3+KNxSVJGsWATpLUe8ZzkiQNN/t9/iRJWmJJ1if5ZJLLklya5KR5r5+cpJKsaZ8nyZuSbE5ySZJHTafmkqQ9jRk6SVLvrZh8jm47cHJVXZRkf+DCJB+vqsuSrAd+AvjWwPpPB45sH48F3tL+K0lSp8zQSZJ6LR08FlNVW6vqovbvm4BNwNr25T8BXs7OUwUdB7yrGucBByZ5wG7usiRJYzNDJ0nqvWlOipJkA/BI4PwkxwFXVtW/ZudKrQWuGHi+pV22dVL1lCTtmQzoJEm910E8tybJBQPPT6+q0++23WQ/4P3Ay2i6YZ5K091SkqReMKCTJO2JtlXVxoVWSLKaJpg7o6rOTvIw4HBgLju3DrgoyWOAK4H1A29f1y6TJKlTBnSSpN7LhCdFSROxvR3YVFVvAKiqLwI/MLDO5cDGqtqW5BzgJUnOpJkM5YaqsrulJKlzBnSSpF4LsGLyY+ieALwA+GKSi9tlp1bVuSPWPxd4BrAZuAV4Uec1lCQJAzpJ0gyYdDxXVZ9dbLNVtWHg7wJO7LhakiTdjQGdJKn3pjjJpSRJveZ96CRJkiRpRpmhkyT13qQnRZEkaVYY0EmSem+aNxaXJKnPDOgkSb0WHB8gSdIoniMlSZIkaUaZoZMk9Z49LiVJGs6ATpLUe3EQnSRJQxnQSZJ6z3BOkqThDOgkSb0WDOgkSRrFSVEkSZIkaUaZoZMk9VviGDpJkkboJqCrgttv66To71t9r27Lv+3qbssHuPn67rexY0enxd/5xX/utHyAHed8oPNtrDjk4M63kR//yU7LX3HEMZ2Wb583TdMKv3/SHq/u7LZNA8AtN3Za/J1fvajT8gH4t0u638ZBh3S+iRzzxG7Lv+/9Oy1/kszQSZJ6L0Z0kiQNZUAnSeq1APa4lCRpOCdFkSRJkqQZZYZOktRvMUMnSdIoBnSSpN5zlktJkoYzoJMk9Z7xnCRJwxnQSZJ6zwydJEnDOSmKJEmSJM0oM3SSpF7ztgWSJI22aIYuyfokn0xyWZJLk5w0iYpJkgRAYEWypA+pS7adJE3SOBm67cDJVXVRkv2BC5N8vKou67hukiQBZug0c2w7SZqYRQO6qtoKbG3/vinJJmAt4I+SJGkC4qQomim2nSRN0i5NipJkA/BI4PxOaiNJkrSM2HaS1LWxJ0VJsh/wfuBlVXXjkNdPAE4AOGzd2iWroCRpzxYgzsmsGbRQ22mndtP69VOonaTlYqxTZJLVND9IZ1TV2cPWqarTq2pjVW085OCDlrKOkqQ9WZr70C3lQ+raYm2nndpNaw6efAUlLRuLZujSnPneDmyqqjd0XyVJknZmDKZZYttJ0iSNk6F7AvAC4ClJLm4fz+i4XpIkSbPKtpOkiRlnlsvP0gxhkCRpKuwmqVli20nSJI09KYokSdNiPCdJ0nAGdJKkXguwwohOkqShDOgkSf0WM3SSJI3inX0kSZIkaUaZoZMk9Z6TokiSNJwZOklS7yVL+1h8e1mf5JNJLktyaZKT2uV/lOTLSS5J8oEkBw6855Qkm5N8JclTO/swJEkaMLsZujt3dFv+6r26LR9gn/t0vom64t86Lf+Wt76z0/IBfvvcTZ1v46n33bfzbTzrgAM6Lb8Of1in5VPdFi+NEqYyhm47cHJVXZRkf+DCJB8HPg6cUlXbk/xv4BTgFUmOAo4HjgYOBf4hyYOqquOTlbQH2X5H55uoq7/Rafk7/vr0TssH+KcPfqnzbRx56H6db2Ptqbd1Wn6e9NOdlj9JZugkSf2WkBVL+1hMVW2tqovav28CNgFrq+pjVbW9Xe08YF3793HAmVX1var6BrAZeMySfxaSJM1jQCdJ0gKSbAAeCZw/76VfAv6+/XstcMXAa1vaZZIkdWp2u1xKkvYYHXS5XJPkgoHnp1fV3fpCJdkPeD/wsqq6cWD579B0yzxjyWsmSdIuMKCTJPVeBzcW31ZVGxdaIclqmmDujKo6e2D5C4FnAsdW1dzo0iuB9QNvX9cukySpU3a5lCT12tykKBOe5TLA24FNVfWGgeVPA14OPLuqbhl4yznA8Un2TnI4cCTwuSX8GCRJGsoMnSSp96ZwH7onAC8Avpjk4nbZqcCbgL2Bj7d1Oq+qfrWqLk1yFnAZTVfME53hUpI0CQZ0kiTNU1WfpUkOznfuAu95LfDaziolSdIQBnSSpH4bs5ukJEl7IgM6SVLvTaHLpSRJM8GATpLUe8ZzkiQN5yyXkiRJkjSjzNBJknqtuW2BKTpJkoYxoJMk9Vsg9ieRJGkoAzpJUs/FDJ0kSSMY0EmS+m+FAZ0kScPYiUWSJEmSZpQZOklS/9nlUpKkoQzoJEn9Fme5lCRpFAM6SVL/OYZOkqShDOgkST0Xu1xKkjSCk6JIkiRJ0owyQydJ6rUEYpdLSZKGMqCTJPWfXS4lSRrKgE6S1Htm6CRJGq67gK7rk++OO7ot/177dls+kJXdx9P13Rs6Lf+KL2/rtPxJueyW73W+jWfdfnu3G6g7uy2f6rh8aQFm6KReq5rAOaLz8xzUjd/utPzvXHxFp+UDvHfbjZ1v46k7dnS+jUO3bul2A13HEhPkpCiSJEmSNKPscilJ6rfE+9BJkjSCAZ0kqfdil0tJkoYyoJMk9Z8ZOkmShnIMnSRJkiTNKDN0kqR+C85yKUnSCAZ0kqTei/1JJEkayoBOktR/ZugkSRpq7IAuyUrgAuDKqnpmd1WSJGlAQpwURTPItpOkSdiVTiwnAZu6qogkSdIyY9tJUufGCuiSrAN+Enhbt9WRJGmIZGkfUsdsO0malHG7XJ4GvBzYv7uqSJI0gl0uNXtOw7aTpAlYNEOX5JnANVV14SLrnZDkgiQXXHvdt5esgpKkPVuTVMuSPqQujdN22qndtO26CdZO0nIzTpfLJwDPTnI5cCbwlCTvnr9SVZ1eVRurauMhBx+0xNWUJO3RVmRpH1K3Fm077dRuWnPwNOooaZlYNKCrqlOqal1VbQCOBz5RVc/vvGaSJEkzyLaTpEnyPnSSpJ5zIhNJkkbZpYCuqj4FfKqTmkiSNILj3jSrbDtJ6tqu3IdOkqTJCxMfQ5dkfZJPJrksyaVJTmqXH5Tk40m+2v5733Z5krwpyeYklyR5VLcfiiRJDQM6SVLvTWGWy+3AyVV1FPA44MQkRwGvBP6xqo4E/rF9DvB04Mj2cQLwlqX+DCRJGsaATpKkeapqa1Vd1P59E7AJWAscB/x1u9pfA89p/z4OeFc1zgMOTPKAydZakrQnclIUSVL/TfFWA0k2AI8EzgfuV1Vb25euBu7X/r0WuGLgbVvaZVuRJKlDBnSSpH5LJ7NcrklywcDz06vq9LtvOvsB7wdeVlU3DnbXrKpKUktdMUmSdoUBnSSp97L0GbptVbVxwW0mq2mCuTOq6ux28b8neUBVbW27VF7TLr8SWD/w9nXtMkmSOtVdQJduh+dl/4M6LZ8d27stH6g77+x8G3zvtk6LX39kx8cBeNp3bul8G8c84D6dbyNHPKjbDdx2c7fl1wS+r1JPpEnFvR3YVFVvGHjpHOAXgde1//7twPKXJDkTeCxww0DXTGnZm8StRWrFys63kUPWdVr+wU9f8DrSknjFLd23YQ85ovv2Xx78sG43sHrvbsufIDN0kqT+m/x96J4AvAD4YpKL22Wn0gRyZyX5ZeCbwM+2r50LPAPYDNwCvGiitZUk7bEM6CRJ/TZ3H7oJqqrPtlse5tgh6xdwYqeVkiRpCAM6SVLvTaI7lyRJs8iATpLUc5nqbQskSeozbywuSZIkSTPKDJ0kqf/scilJ0lAGdJKkfgsGdJIkjWBAJ0nqPwM6SZKGMqCTJPVcYIVDviVJGsYzpCRJkiTNKDN0kqT+s8ulJElDGdBJkvrNSVEkSRrJgE6S1H8GdJIkDWVAJ0nqOSdFkSRpFM+QkiRJkjSjzNBJkvrPLpeSJA1lQCdJ6jcnRZEkaSQDOklS/xnQSZI0lAGdJKnnnBRFkqRRPENKkiRJ0owyQydJ6j+7XEqSNJQBnSSp35wURZKkkQzoJEn9Z0AnSdJQjqGTJEmSpBnVXYZux47OigZg/4M6LT63f6/T8gHqhms73wYH36/T4vf5qad2Wj7AMx/9rc63kYcc3fk2OOKoTouv667utHy239Ft+dIIIcRZLiWtXN35JrJmbaflrzj+hE7LBzjsicd2vg32O6DzTax4YLftJvbep9vyJ8gul5Kk/rPLpSRJQxnQSZL6zUlRJEkayYBOktR/BnSSJA3loARJkiRJmlFm6CRJPRdwUhRJkoYyoJMk9Z9dLiVJGsqATpLUb06KIknSSAZ0kqT+M6CTJGmosQYlJDkwyfuSfDnJpiSP77pikiRJs8q2k6RJGTdD90bgI1X1X5LsBSyfW6tLknrOSVE0k2w7SZqIRQO6JAcAPwK8EKCqbgdu77ZakiQNsMulZohtJ0mTNM4lz8OBa4F3JvlCkrcl2bfjekmS1JibFGUpH1K3bDtJmphxArpVwKOAt1TVI4GbgVfOXynJCUkuSHLBtdd9e4mrKUnac7VdLpfyIXVr0bbTTu2mbddNo46SlolxzmpbgC1VdX77/H00P1I7qarTq2pjVW085OCDlrKOkiRNVJJ3JLkmyZcGlj0iyXlJLm4b4o9plyfJm5JsTnJJkrudI7XHWbTttFO7ac3BE6+gpOVj0YCuqq4Grkjy4HbRscBlndZKkqRBk+9y+VfA0+Yt+0PgNVX1COD32ucATweObB8nAG9Zil3W7LLtJGmSxp3l8qXAGe0sTV8HXtRdlSRJmmfC496q6jNJNsxfDNyn/fsA4Kr27+OAd1VVAee109U/oKq2Tqa26inbTpImYqyArqouBjZ2WxVJkoaYmxRl+l4GfDTJ62l6uPxwu3wtcMXAelvaZQZ0ezDbTpImxZHhkqQ90Zq5CSnaxwljvOfXgN+oqvXAbwBv77aKkiQtbtwul5IkTUknNxbfVlW7mj35ReCk9u/3Am9r/74SWD+w3rp2mSRJnTNDJ0nqv37ch+4q4Efbv58CfLX9+xzgF9rZLh8H3OD4OUnSpJihkyT134TH0CV5D/Akmq6ZW4BXAS8G3phkFXAbzYyWAOcCzwA2A7fg5BeSpAkyoJMk9VuATLZDSVU9b8RL/3HIugWc2G2NJEkazi6XkiRJkjSjzNBJknousKIXty2QJKl3ugvouj757nXvbsu/7eZuywe447bON5H7b+h2A+sf1G35QG65sftt3GdN59uo22/ttvwrv9Zp+VS3xUsLmnCXS0n9k6Wf7fZu6l77dVp+Dj2y0/IBcr8NnW+DFSu738bK1R2Xv3zyWstnTyRJy1c/biwuSVLvGNBJkvotndyHTpKkZcEzpCRJkiTNKDN0kqT+s8ulJElDGdBJkvrPSVEkSRrKgE6S1H9m6CRJGsqATpLUb06KIknSSJ4hJUmSJGlGmaGTJPWfXS4lSRrKgE6S1H9OiiJJ0lAGdJKkfktghRk6SZKG8ZKnJEmSJM0oM3SSpP6zy6UkSUMZ0EmS+s9JUSRJGsqATpLUczFDJ0nSCAZ0kqR+C06KIknSCF7ylCRJkqQZZYZOktR/jqGTJGkoAzpJUv85hk6SpKEM6CRJ/eaNxSVJGsmATpLUf2boJEkayjOkJEmSJM0oM3SSpP5zUhRJkoYyoJMk9Zw3FpckaZRuAroEVu3dSdFz6luXdVv+Tdd3Wj7AirVHdL4NVq7utPi69aZOywfI/gd1vg1Wdfs5AbD99k6Lzw+s77R8Vk/gM5KG8cbikiYkKzq+eLTXvbotH6jqtg0+KbFnxtjM0EmS+s8MnSRJQ3mGlCRJkqQZZYZOktR/dr2RJGkoAzpJUs8Fuh7XIknSjDKgkyT1WzBDJ0nSCF7ylCRJkqQZZYZOktR/znIpSdJQniElST2XpsvlUj4W22LyjiTXJPnSvOUvTfLlJJcm+cOB5ack2ZzkK0me2sGHIEnSUGMFdEl+oz15fSnJe5J0f1dESZLmrFixtI/F/RXwtMEFSZ4MHAccU1VHA69vlx8FHA8c3b7nzUlWLuHeawbZdpI0KYue1ZKsBX4d2FhVDwVW0py4JEnq3tykKBPM0FXVZ4Bvz1v8a8Drqup77TrXtMuPA86squ9V1TeAzcBjlmz/NXNsO0mapHG7XK4C7p1kFbAPcFV3VZIkqZceBDwxyflJPp3k0e3ytcAVA+ttaZdpz2bbSdJELBrQVdWVNN1KvgVsBW6oqo/NXy/JCUkuSHLBtdvmX9SUJGl3pZkUZSkfsGbunNU+ThijIquAg4DHAb8NnJV4PwXd3Thtp53bTddNo5qSlolxulzel6Y7yeHAocC+SZ4/f72qOr2qNlbVxkPWHLT0NZUk7bmWvsvltrlzVvs4fYxabAHOrsbngDuBNcCVwPqB9da1y7SHGqfttHO76eBpVFPSMjFOl8sfA75RVddW1R3A2cAPd1stSZIGLH2Gbnd8EHgyQJIHAXsB24BzgOOT7J3kcOBI4HP3fKc1w2w7SZqYce5D9y3gcUn2AW4FjgUu6LRWkiTNSWDFZHs2JnkP8CSarplbgFcB7wDe0d7K4HbgF6uqgEuTnAVcBmwHTqyqHROtsPrGtpOkiVk0oKuq85O8D7iI5kT1BWCcrimSJM2kqnreiJfuNuSgXf+1wGu7q5FmiW0nSZM0ToaOqnoVzdVJSZImb/e7SUpTYdtJ0qSMFdBJkjRVTiYpSdJQBnSSpJ6LGTpJkkYwoJMk9Z63e5MkaTgveUqSJEnSjDJDJ0nqt2CXS0mSRjCgkyT1nGPoJEkapZuA7s474babOyn6++64vdPis9fenZYPwKoJbKPj/ciKlZ2WD8Cq1d1vo+PvE0DutW+3G9jr3t2Wv8LrP5qiCd9YXJJmlWOO9zy20CRJ/WeGTpKkoTxDSpIkSdKMMkMnSeq34I3FJUkawYBOktRzTooiSdIoBnSSpP4zQydJ0lBe8pQkSZKkGWWGTpLUf3a5lCRpKAM6SVK/Jd6HTpKkEQzoJEn9Z4ZOkqShDOgkSf3npCiSJA3lJU9JkiRJmlFm6CRJPed96CRJGsWATpLUf3a5lCRpKAM6SVK/BTN0kiSNYEAnSeq5wAoDOkmShvEMKUmSJEkzygydJKn34hg6SZKGMqCTJPWfY+gkSRrKgE6S1G/BWS4lSRrBgE6S1HPeh06SpFE8Q0qSJEnSjDJDJ0nqP7tcSpI0lAGdJKn/vA+dJElDGdBJkvotMUMnSdIInQR0F17ypW0rHnDEN3fhLWuAbV3UZYLch/5YDvvRx3144LQrIEnL0YVfuHhb9j1wV9pN0M/zxK5yH/phOewD9HM/JtJ26iSgq6pDdmX9JBdU1cYu6jIp7kN/LIf9WA77IC0pZ7nUMrar7SZYHucJ96EflsM+wPLZj91hl0tJUv/Z5VKSpKEM6CRJM8CATpKkYfrSh+X0aVdgCbgP/bEc9mM57IO0RHLXxChL9Vhsi8k7klyT5EtDXjs5SSVZ0z5Pkjcl2ZzkkiSP6uBDkOZbDucJ96EflsM+wPLZj12Wqpp2HSRJGmnjwx9an//wWUta5orDjr5wobEWSX4E+C7wrqp66MDy9cDbgIcA/7GqtiV5BvBS4BnAY4E3VtVjl7TCkiSN0JcMnSRJo004Q1dVnwG+PeSlPwFeDgxeDT2OJvCrqjoPODDJA5ZityVJWowBnSRpBmSJH7tRg+Q44Mqq+td5L60Frhh4vqVdJklS56Ya0CV5WpKvtOMOXjnNuuyuJOuTfDLJZUkuTXLStOu0u5KsTPKFJH837brsjiQHJnlfki8n2ZTk8dOu065K8hvt9+hLSd6T5F7TrpM0daGLDN2aJBcMPE5YsArJPsCpwO9NYI+lkWw79cest5vAttNyMbWALslK4M+BpwNHAc9LctS06nMPbAdOrqqjgMcBJ87ofgCcBGyadiXugTcCH6mqhwDHMGP7kmQt8OvAxnbMzkrg+OnWSuqJpU/QbauqjQOPxQbTHwEcDvxrksuBdcBFSe4PXAmsH1h3XbtMWlK2nXpn1ttNYNtpWZhmhu4xwOaq+npV3Q6cSTMOYaZU1daquqj9+yaa/wgz19UmyTrgJ2kG+8+cJAcAPwK8HaCqbq+q66daqd2zCrh3klXAPsBVU66PJKCqvlhVP1BVG6pqA023ykdV1dXAOcAvtLNdPg64oaq2TrO+WrZsO/XErLebwLbTcjLNgG7ZjTlIsgF4JHD+lKuyO06jGeh/55TrsbsOB64F3tl2f3hbkn2nXaldUVVXAq8HvgVspWkUfmy6tZL6YrJj6JK8B/gX4MFJtiT55QVWPxf4OrAZ+Evgv+3y7knjse3UH6cx2+0msO20bDgpyhJJsh/wfuBlVXXjtOuzK5I8E7imqi6cdl3ugVXAo4C3VNUjgZuBmRpbkOS+NFdaDwcOBfZN8vzp1krqgyUePzfeLJfPq6oHVNXqqlpXVW+f9/qGqtrW/l1VdWJVHVFVD6uqCzr6IKRlZVbbTsuk3QS2nZaNaQZ0y2bMQZLVND9IZ1TV2dOuz254AvDsdlzImcBTkrx7ulXaZVuALVU1d4XvfTQ/UrPkx4BvVNW1VXUHcDbww1Ouk9QPEw7opJ6y7dQPy6HdBLadlo1pBnSfB45McniSvWgGMJ4zxfrsliSh6Xu8qareMO367I6qOqW9Ar2B5jh8oqpm6upGO47liiQPbhcdC1w2xSrtjm8Bj0uyT/u9OpYZG5wsdWeyXS6lnrLt1APLod0Etp2Wk1XT2nBVbU/yEuCjNDPSvKOqLp1Wfe6BJwAvAL6Y5OJ22alVde70qrTHeilwRnuS+zrwoinXZ5dU1flJ3gdcRDMD2BeAxWbekyTtIWw7qQO2nZaBVNW06yBJ0kgbj3lYff5jf7ukZa64/xEXVtXGJS1UkqQpmFqGTpKk8dlNUpKkYQzoJEn95kQmkiSN5G0LJEmSJGlGmaGTJPWfGTpJkoYyoJMkzQADOkmShjGgkyT1XszQSZI0lAGdJKn/DOgkSRrKSVEkSZIkaUaZoZMk9VxwDJ0kScMZ0EmS+s8ul5IkDWVAJ0nqt2BAJ0nSCAZ0kqQZYEAnSdIwTooiSZIkSTPKDJ0kqf/scilJ0lAGdJKk/jOekyRpKAM6SVLPedsCSZJGMaCTJPWfXS4lSRrKSVEkSZIkaUaZoZMk9Zv3oZMkaSQDOknSDDCgkyRpGAM6SVL/maGTJGkox9BJkiRJ0owyQydJ6rmYoZMkaQQDOknSDDCgkyRpGAM6SVL/maGTJGmoVNW06yBJ0khJPgKsWeJit1XV05a4TEmSJs6ATpIkSZJmlLNcSpIkSdKMMqCTJEmSpBllQCdJkiRJM8qATpIkSZJmlAGdJEmSJM2o/w8NByRgyDWfugAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "recorteR9 = trim(imagen[:,:,0], 545, 360, 10, 10)\n", + "poptR9, pcovR9 = curve_fit(gauss2d, xdata9, recorteR9.ravel(), p0=[1,0,1,1,1])\n", + "estrellaR9=gauss2d(xdata9, poptR9[0], poptR9[1],poptR9[2], poptR9[3], poptR9[4])\n", + "FWHMR9=FWHMR.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptR9[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 9 fotografÃa (Banda Rojo)\")\n", + "plt.imshow(recorteR9, plt.get_cmap('Reds'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 9 a partir de la gaussiana (Banda Rojo)\")\n", + "plt.imshow(estrellaR9.reshape(10, 10), plt.get_cmap('Reds'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 10 (Rojo)" + ] + }, + { + "cell_type": "code", + "execution_count": 363, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3cAAAFSCAYAAABRzSa6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAvoklEQVR4nO3de7wcdX3/8ff75AIJBAIEFXIxaME2XpA0IkoVFS+gaPy1VqGiaP2ZqqDgj/5QtBUv1fZnrRe8losiQgUEpKgUoVW0tHIJCMhFawQlIUFIgCTcQkI+vz++35PsOew5M+dkZ3d2zuv5eOwje2Znv/Od2d3M5zPfyzgiBAAAAADobwO9rgAAAAAAYNuR3AEAAABAA5DcAQAAAEADkNwBAAAAQAOQ3AEAAABAA5DcAQAAAEADTO51BQAAGM1cT45H1dnb9qzW5h9GxCEdLRQAgB4juQMA1NqjCv2Zduhomf+s9bM6WiAAADVAcgcAqDWLMQQAAJRBcgcAqL0Bu7MFdraXJwAAtUByBwCoNVruAAAoh+QOAFB7Ax1uuKPlDgDQRFwMBQAAAIAGoOUOAFB7XIkEAKAYyR0AoNYsd35CFQAAGojkDgBQe7TcAQBQjOQOAFBrVgUTqgAA0EBcDAUAAACABqDlDgBQe1yJBACgGMkdAKDeLJkJVQAAKERyBwCoNYuWOwAAyiC5AwDUHhOqAABQjIuhAAAAANAAtNwBAGqPK5EAABQjuQMA1Fq6zx39MgEAKEJyBwCoPVruAAAoxvlyFLbn2w7bk/PfV9j+3zWo14G2f237Qduv73V9itj+O9urbd+d/55r+w7be42jrN1t/9L2tM7XtHDbQ74PXdzum21fVnLdC2wfWnWdAADdU9d4pG5s/5vto7bh/S+xvWKc7z3D9t+Nd9t1MZaYo4JtL7C91D249822fPbbuN0P2T6t5LrX2H5m0Xp9kdzZ/q3tR3IyM/j4Uon3he0/6EYdi9j+hO1f2N5k+6NtXv8L27+z/ZDti2zvOkpxH5f0pYjYMSIuKtjuR22ftW21Hz/b8yQdL2lBRDwlLz5V0jERccc4ivygpDMi4pFc/hW2H83fibW2f2r72Z2pfefYfpvtx3M919m+0fZhZd4bEWdHxCtLbur/Ser7kwvQKnXL7OwDGA/ikfpoF99ExKER8c1e1akJxhhzdNonJH0mIkJ6wu/tfts/sD23R3UbUf4ubsz1fMD2f9t+QZn3RsSnIqLshZrPKOUAo+qL5C57bU5mBh/HbGuBXW6BWSbpBEk/aFOPZ0r6Z0lvkfRkSQ9L+sooZT1V0i0V1HFMSh6/eZLWRMQ9+T3zJJ0ZEU84DiW2t52koyQNT1aPiYgdJe0q6QpJ3xpr2V3ys1zPmUqf7zm2Z3ZyAxFxjaSdbC/qZLlArw10+AFsA+KRHhvP8ep2rxuMje09JL1U0kXDXnptjp32kPR7SV/sctXKOjfXc5akH0v6TgXbuFjSS20/ZbSV+v4cZ/sPbP8kt9qstn1uXv7TvMqNOZN+02CTq+0POHUR/IbtAdsftP0b22tsn1fmKpXtp9v+UX7PattnjxaoR8Q3I+LfJK1v8/KbJX0vIn4aEQ9K+ltJf2p7Rpvt/kbS0yR9L+/Xdrb3tH2x7ftsL7P9zrzuIZI+JOlNed0b8/K26+fXptn+Zr5CcpvtE9zSTJ2vonzA9k2SHrI9ueX4rbd9q+3/ldd9uaTLJe2Zt3+G0nfubG/tWvL2vJ31tm+3/VejHPbnS3ogIto2m0fE45LOkbSgpb772/5ZvpKyyvaXbE9teT1sv8upm+sDtr9sp+4AtifZ/kz+fG+X9Jphn8VY6t5az81KCegOkvbOZe1s+0zb9zpdMf0b2wP5tbfZvrJluy+0fW3+zl9r+4XDNnHF8LoC/W5A7ugD6LSJFo/kbX/B9nKnHinX2X7RKPU8w/bXbF+ez5s/sf3UMmU5tYycb/ss2+skvUvt45st3VXzufO/bH/O9hpJH21Tp2m5XvfbvlXS84a9vqfTcId7nYaTvG+k/Rv2vl1sfz+/7/78fM4o6y+0/fN8XL5j+1znLp5FZTnFZS8fdqzOys+3z8dsTY5xrrX95Jbjc3ve5h2239yyvDXmKPpczsvxy3rbt7jl4rJHiA9H8ApJ10fEo+1ezMvP19AY7zX5uK3Ldfxoy2uDXZmPsn1n/m18uOX1os9+LHVvrecmSWdLmm1791zWaHH3kBZo26/Lx/GB/H3+o2HH4DpJrxqtDn2f3Ck14V4maRdJc5Qz+oh4cX5933xl7dz891OUWnieKmmJpPdKer2kgyTtKel+SV8usV1L+vv8nj+SNFdt/uMo6ZmSbhz8IyJ+I+kxSfsMXzEini7pTm29crhBKaFZkevyBkmfsv2yiLhU0qeUryZExL65mLbr59dOkjRfKYF8haQj29T3CKXkYWb+Ev9G0osk7SzpY5LOsr1HRPy7pEMlrczbf1ubsu6RdJiknSS9XdLnbC8c4Tg9W9KvRnhNTknbmyVd1bL4cUnvV7qS8gJJB0t6z7C3Hqb0o36OpDdq64/mnfm1/SQtUjpW4617az0n5fU3SvpdXvxFpeP3NKXv4lvzOsPfu6vS1daTJe0m6bOSfmB7t5bVbpO07/D3Av2KbpnoExMqHsmulfRcpf34F0nfsb39KOW/Wek4zZJ0g1IQXLasxUrB/UxJp6t9fDPc8yXdrtQK+ck2r58k6en58Sql3kGSJKcLrN9TOh6zleKH42yPGlhnA5K+ofTZzpP0iKS23Xdz7PJdSWco7fu3JbUmEqXLauMopdhirlLM8C5Jj9jeQSmOODQiZkh6odLn0U7R5/I6pbhyplLLUmvd2saHI2ynKMabLulNGhrjPaQUL81Uikvf7SfORfEnkp6h9Pl9pCVZGvGzH0fdW+s5NddpjdJvWBo97m597z5Kn/9xknaXdIlSY87UltUKY7x+Su4uylns4GMw692o9IXfMyIejYgrRylDkjZLOikiNuRxW++S9OGIWJETpY9KeoMLmu8jYllEXJ7LuVcpyD5onPu2o6S1w5atldT2Slkrp77HB0r6QN7/GySdpvTFGs/6b5T0qYi4P7eQndymmJMjYvnguLeI+E5ErIyIzfmk9WtJ+xfVPb/3BxHxm0h+onRiHOnK30y1v9J4su0H8mvHKP0IB8u/LiKuiohNEfFbpe4mwz+nf4iIByLiTqWm9Ofm5W+U9Pm8r/cpnTzHW3dJOiDX81GlftNHRsQ9Odk7XNKJEbE+1/OflLrFDPcaSb+OiG/lffq2pF9Kem3LOuuVjhUAoPOIR7Zu+6yIWJPPR/8kaTulQHokP8itghskfVjSC3JcUqasn0XERTnWeKTk/qyMiC/mMtu9542SPhkR90XEcg2NeZ4nafeI+HhEPBYRtyvNGXB40UbzflwQEQ9HxHqlxHKkz+QApdnrT46IjRFxoaRrxlnWcBuVkro/iIjHc0y0Lr+2WdKzbE+LiFUR0Xa4T4nP5cqIuCRS76lvqSXxGGN8OFPtY7yLcuy0VqnR4R9byr8iIn6Ry79JKTEafmw+FhGPRMSNSon6YP1G++zHE9u+MdfzEaXGgTdExKYxxulvUvqNXB4RG5VixWlKyfegwhivn5K710fEzJbHqXn5CUpXra7JzZh/WVDOvTG0yfepkr47+J+0Ukb8uNJVnhHZfrLtc2zf5dRF4CylK1Hj8aBS60+rndT+Sz7cnpLuyz/4Qb9Tuso0nvX3lLS85bXW522X2X6r7RtajuGzVPJY2D7U9lW5qfoBSa8e5b33q/0J5n0RMVPpB3CYpPNtPyeXv49TF4a78+f0qTbl393y/GGlk5v0xGPxu5bnY627JF2V67mL0tWtwURwlqQpw8of6TPcc3g92qw7Q9IDo9QD6DuMuUONEI9s3fZfOw1PWJvrvHPBtrecUyN1+7xP6bxWpqx28UiRoveMdp5/qtKwkgdaPpMPqeDzkFIrk+1/dhpmsU7STyXNzBdz29Xhrog0icjweo+xrOG+JemHSmP8V9r+tO0pEfGQUiLxLkmrnCYq+cMR9qXocxkeQ23vrUNvxhIfjhTjvT7HTtsrXcD/ifOYM9vPt/1jpy6ra/P+dCrGG2tse16u55Ml3Szpj1u2UzZOHxLjRRrGs1xjjPH6/hwXEXdHxDsjYk9JfyXpKx59RqoY9vdypWbp1v+ot4+Iuwo2/alc1rMjYiel7ovj7exzi1qudNh+mtKVkf8p8d6Vknb10P7w8yQN1n/4/hatv0qpO8mgdrMSbSnTqb/8qUo/uN3yF/tmlTgWThOkXKB0ZeLJ+b2XjPLemzRy1xDlqyv/qTRYfHCmp68qtWztnT+nD5WpW7ZKQ/d/3jbUvbWeD0p6t6S32N5P0mptveLbuq1238GVw9Zrt+4fqaVbDdDv3OEumXTLRBUmWjziNPbqBKUWkF3yeXBtwba3nFNtD06EtrJkWcOP1/C/2ylaZ8TzvNLnccewz2NGRLy6xHaPV2rden7+TAa75rY7NquUxme1vtZap6KyHpI0vWX9LZNt5JbAj0XEAqXWn8OUW4wi4ocR8QqliUp+qRTLDTHOz3jwvWOND4tivMdzq+bjSl0tpdRN9GJJcyNiZ0lfK1O3bLQYb9yxbUSsVupm/dHcjbMo7m41JMbL34m5GmOM1/fJne0/99aBpfcr/ZA3579/rzSGaTRfk/TJ/EHK6T5qi0tseobSFa61tmdL+r8F9Zzi1Ed5QNJkp0Gug1ddzpb0WtsvcuoH/XFJFw7L8tvKTcn/Lenvc5nPkfQObZ1R8veS5jtPzlFi/fMkneg0gHe20hd7NDsoHfN7836+XenqRhlTlU4a90ra5HR/ttGm371G6WrVSK2Scpp6doG2ziY6Q9I6SQ/mq1LvLlk3KR2L99meY3sXpdswjLfuQ0Tq5nmapI/krgznKX0PZ+Tv4v/RE2cFlVICuY/TVNWTbb8p7+/3W9Y5SNK/ld5LoA8woQrqbgLGIzMkbVI6D062/RE9sdVvuFfb/hOnMUSfUOrRsnycZQ2Jb8apNeaZozTucdA1ktY7TXozzWmStWfZfl77ooaYodQ97wGnsfInjbLuz5QSlmPyeX2xhnb/KyrrBkmH5891yPwAtl9q+9n5812ndCF5s1Nr7+L8GW9Q+v5s1hON53MZNNb48HJJCz3CmE0ni5V6P93WUr/7IuJR2/tL+ouSdZNG/+y3JbZVRPxKqcX0hBJx9/A6vcb2wbanKCX2G/L7lY/NHysdqxH1U3I3ODvk4OO7efnzJF1t+0Gl7P3Y3C9aSv3Vv5mbVN84QrlfyO+7zPZ6pYGazy9Rn49JWqh0BeMHki4sWP9UpR/nEUr9zB9RHlOV+zm/S+k/1XuUvqzDJ/0YzRFKk6CsVBqUe1KkyUykrVOxrrF9fYn1P6406PMOSf+uNHh5w0gbjohblcaH/UzpP9pnS/qvMpXOJ4v3KX2Z71f6UV48yvqPKQ04Hj7Jy5cGvxdKXRD+JtJMYJL017nc9Uqfwbkq71SlH+eNkq5Xy2c81rqP4PNKJ7rnKP2n8pDSwO8rla5GfX34GyJijdKVt+OVBuueIOmwfKVI+aTzYKRbIgCNQcsdaoR4JPmhpEuVWvV+pzSevKgb5L8oJSf3KQWpg+fz8ZTVLr4Zq4/l7d2hNG5+y62U8oXXw5TG4d+h1MvmNKVuiUU+rzRUZLXS53jpSCvm2OZPlQL+B5SOyfe1NfYqKutvlSYFuT/vz7+0vPYUpThunVJC9JO8jwNKF5FXKn0WB6n9xe/xfC6D+zWm+DAifi/pR0oT57T6Xv5NrVMab3hUbB0f+B5JH8+/l48oxWRljfbZjzu2bfGPkpbYfpJGj7u3yEnhkUqTMa1Wmk/htfk7ovz3FRGxcrQNe2gXX2Ao2++WdHhEjHdwdkc5TSv7n5L2i/IDqvua07iNIyPiCTMrtVn3AkmnR8Ql1dcM6I55kybHB6bN7GiZxzy05rqI4H6QQJc43Q5pRUT8Ta/rUne2r5b0tYj4Rq/r0k22F0j6pqT9Y4IkKLY/LmlORBSN0R38XrwjIm4ebT1u6IghnPoHP03pasXeSi1EZafcrVykmcDaDvptsGcqXVkqFBF/VnFdgK6z+qubCQCMhe2DlG4DsFrpdhHP0SitfU2VW8zKdHttBNtWGlpTap6EiCjTkk9yhyeYqnS7gL2UugecI+krvazQRGb7IqUk+897XBWgp+hKCaDBnqHUpXAHpeEZb4iIVb2tErrgeqXut0XzW4wJ3TIBALU2f9KU+PD0mR0tc8mDq+mWCQBoHFruAAC1R8sdAADFGMYAAAAAAA1QScvdrN12i/nz2t37uoOi3e04Oqkhl4krP05dMDCpeJ1+UPVnsU23+in22zuXa/WaNQ35YaDf8MVDk82atVvMnzeveEUAfeW6n9+wOiJ27+Y2K0nu5s+bq2uvuKyKord6rOJZ8Cc1pMfqow9XW343Eq/pZe+XWXOPPlht+dtNr7T4572k9D3agY6y6JaJZps/b56WXnlFr6sBoMO8w8zfdXubDclgAABNNkDbHQAAhRhzBwAAAAANQMsdAKDWbLplAgBQBskdAKD26GYCAEAxkjsAQO3RcAcAQDGSOwBAraXZMknvAAAoQk8XAACGsT3X9o9t32r7FtvHDnv9eNthe1b+27ZPtr3M9k22F/am5gCAiaxUcmf7ENu/yietD1ZdKQAAWrnDjxI2STo+IhZIOkDS0bYXSCnxk/RKSXe2rH+opL3zY4mkr45zV9EQxE4AeqEwubM9SdKXlU5cCyQdMXiCAwCgG7qd3EXEqoi4Pj9fL+k2SbPzy5+TdIKkaHnLYklnRnKVpJm29xjv/qK/ETsB6JUyLXf7S1oWEbdHxGOSzlE6iQEA0BUVJHezbC9teSwZcdv2fEn7Sbra9mJJd0XEjcNWmy1pecvfK7Q1GcTEQ+wEoCfKTKjS7oT1/OEr5RPjEkmaN3dORyoHAIAkufMTqqyOiEUltrujpAskHafUVfNDSl0ygdEUxk5D46a53asZgEbr2IQqEXFKRCyKiEW777Zbp4oFAKAnbE9RSuzOjogLJT1d0l6SbrT9W0lzJF1v+ymS7pLUGqHPycuAtobETbOImwB0RpnkjhMWAKBnOt0ls0wboFNT4emSbouIz0pSRPwiIp4UEfMjYr5Sa8zCiLhb0sWS3ppnzTxA0tqIWNWB3Ud/InYC0BNlkrtrJe1tey/bUyUdrnQSAwCgKwY6/CjhQElvkfQy2zfkx6tHWf8SSbdLWibpVEnvGcv+oXGInQD0ROGYu4jYZPsYST+UNEnS1yPilsprBgBA1u17mEfElSpo5Mutd4PPQ9LRFVcLfYLYCUCvlJlQRRFxidJVSQAAus5l704H1ASxE4Be6NiEKgAAAACA3inVcgcAQK+UnQQFAICJjuQOAFB7JHcAABQjuQMA1N4A2R0AAIUYcwcAAAAADUDLHQCg5sxsmQAAlFBNcmdJkyrOG11xo+Pk7aotX5I2bah+GwOTKi6/C42/jz5Y/Ta6cROtqdtXW/5Da6stf/Pj1ZYPjIAJVQA0RWze3I2NVL+Nbqg4hnW3b6DaJbTcAQDqzd2/iTkAAP2I5A4AUHvkdgAAFGNCFQAAAABoAFruAAC1N0DbHQAAhUjuAAC1xoQqAACUQ3IHAKg9JlQBAKAYyR0AoPbI7QAAKMaEKgAAAADQALTcAQBqz7TdAQBQiOQOAFBrljRAbgcAQCGSOwBA7ZHbAQBQjOQOAFB7JHcAABRjQhUAAAAAaABa7gAAtceEKgAAFCO5AwDUHjcxBwCgGMkdAKDWLMYQAABQBudLAAAAAGgAWu4AALVHr0wAAIqR3AEAas8MugMAoBDJHQCg9kjtAAAoRnIHAKg1i+QOAIAymFAFAAAAABqAljsAQL3ZjLkDAKCEapK7zZulh9dVUvQWVZ/oNz1WbfndMnlKpcXH+vsqLV+S4o5fVL4N7Tyr8k0MPGP/SsuP+++utHxt2lht+cAoBsjtAHRBPL6p2g088mC15UuKhx6ofBse6ELnvx1mVlp8bL9DpeX3Ci13AIDaM9kdAACFSO4AALVmVd9ZAwCAJmBCFQAAAABoAFruAAD1ZlruAAAog+QOAFB7zJYJAEAxkjsAQO2R2wEAUIzkDgBQe7TcAQBQjAlVAAAYxvZc2z+2favtW2wfm5f/o+1f2r7J9ndtz2x5z4m2l9n+le1X9azyAIAJi+QOAFBrg7dC6OSjhE2Sjo+IBZIOkHS07QWSLpf0rIh4jqT/kXSiJOXXDpf0TEmHSPqK7UkdPxgAAIyiMLkb6eolAABdYWnA7uijSESsiojr8/P1km6TNDsiLouITXm1qyTNyc8XSzonIjZExB2Slknav+PHAn2B2AlAr5QZczd49fJ62zMkXWf78oi4teK6AQAgqZIJVWbZXtry9ykRcUr7bXu+pP0kXT3spb+UdG5+Plsp2Ru0Ii/DxETsBKAnCpO7iFglaVV+vt72bUonLP6DAgB0gauYUGV1RCwq3LK9o6QLJB0XEetaln9YKYA/u9MVQ/8jdgLQK2OaLXOUq5cAADSK7SlKid3ZEXFhy/K3STpM0sEREXnxXZLmtrx9Tl6GCY7YCUA3lZ5QZaSrly2vL7G91PbSe9es6WQdAQATmCV5oLOPwm2mpsLTJd0WEZ9tWX6IpBMkvS4iHm55y8WSDre9ne29JO0t6ZoOHgb0odFipyFx02riJgCdUSq5G+nqZauIOCUiFkXEot13262TdQQATGRO97nr5KOEAyW9RdLLbN+QH6+W9CVJMyRdnpd9TZIi4hZJ5yl1u7tU0tER8XglxwN9oSh2GhI3zSJuAtAZhd0yR7p6CQBAt3T7HuYRcaVSo+Fwl4zynk9K+mRllULfIHYC0CtlWu5GunoJAACAJyJ2AtATZWbLHOnqJQAAXVHBbJlAZYidAPTKmGbLBACgF8jtAAAoRnIHAKg1SxoguwMAoBDJHQCg3kzLHQAAZZS+zx0AAAAAoL5ouQMA1B4TqgAAUIzkDgBQe+R2AAAUqya5i5A2b66k6C2m7Vht+Y89Um35krRpY/Xb2Lih0uLjPy6otHxJuuuL51a+jZ123q7ybcz4+ImVlu+dZ1VavqLi3zQwAovkDoAUVceWkvTI+kqL33ztZZWWL0mPX1R9bDaww7TKt+E//YtKyx945gsrLb9XaLkDANSbLQ+Q3QEAUIQJVQAAAACgAWi5AwDUHt0yAQAoRnIHAKg9bmIOAEAxkjsAQK0xoQoAAOWQ3AEAao/73AEAUIwJVQAAAACgAWi5AwDUm+mWCQBAGSR3AIDao1smAADFSO4AALVHbgcAQDHG3AEAAABAA9ByBwCotXQrBJruAAAoQnIHAKg3S6afCQAAhUjuAAA1Z1ruAAAogeQOAFB/AyR3AAAUoaMLAAAAADQALXcAgPqjWyYAAIVI7gAA9WZmywQAoAySOwBA/THmDgCAQiR3AICaM90yAQAogQlVAAAAAKABaLkDANSaLZlumQAAFCK5AwDUH90yAQAoRHIHAKg9Wu4AAChWTXLnAWnqdpUUvWUTU6otPx5aW2n5khQbHq58G3p4XaXFb772mkrLl6RP3bSy8m1M6UKrwOeu+kml5ftVf1Zp+UBP0XIHIDZXv4n191Va/qbzzq20fEk69szqY7O521XfPvSBGTOq3cDTnlNt+T3ChCoAAAAA0AB0ywQA1JvNfe4AACiB5A4AUHumWyYAAIVI7gAA9UfLHQAAhRhzBwAAAAANQHIHAKg3K9/JvIOPok3ac23/2Pattm+xfWxevqvty23/Ov+7S15u2yfbXmb7JtsLqz0oAAA8EckdAKD2PNDZRwmbJB0fEQskHSDpaNsLJH1Q0n9ExN6S/iP/LUmHSto7P5ZI+mqHDwEAAIVI7gAA9dfllruIWBUR1+fn6yXdJmm2pMWSvplX+6ak1+fniyWdGclVkmba3qPDRwEAgFGVTu5sT7L9c9vfr7JCAAAMYcsDnX2MbfOeL2k/SVdLenJErMov3S3pyfn5bEnLW962Ii/DBEbsBKDbxtJyd6zSlUsAAPrdLNtLWx5L2q1ke0dJF0g6LiLWtb4WESEpulBX9C9iJwBdVSq5sz1H0msknVZtdQAAaKPz3TJXR8SilscpT9ykpygldmdHxIV58e8Hu1vmf+/Jy++SNLfl7XPyMkxQxE4AeqFsy93nJZ0gaXN1VQEAYAQD7uyjgNNd00+XdFtEfLblpYslHZWfHyXpX1uWvzXPmnmApLUt3TcxMX1exE4AuqwwubN9mKR7IuK6gvWWDHZvuXfNmo5VEAAwsaXGNnf0UcKBkt4i6WW2b8iPV0v6B0mvsP1rSS/Pf0vSJZJul7RM0qmS3tPxA4G+USZ2GhI3rSZuAtAZk0usc6Ck1+WT2vaSdrJ9VkQc2bpS7tJyiiQteu6+jEEAAHTOGCdB2VYRcaXSHfbaObjN+iHp6EorhX5SGDsNiZsW7kfcBKAjClvuIuLEiJgTEfMlHS7pR8MTOwAAACTETgB6pUzLHQAAPVTu3nQAAEx0Y0ruIuIKSVdUUhMAAEZQcpwcUDvETgC6iZY7AEC9WV0fcwcAQD8iuQMA1B4tdwAAFCt7nzsAAAAAQI3RcgcAqD+6ZQIAUIjkDgBQb2a2TAAAyiC5AwDUnmm5AwCgUEXJXUibNlZT9OAWIiotXxsfrbZ8SYrNlW/CO86sfBtNsLHq75Mk7zGn4g1UPYSW4BoA0HAV9xLw1OrbVWZMqn5KjW5sQ1OmVFt+Q3uE0HIHAKi/hp6EAQDoJJI7AEC9cZ87AABKIbkDANQe97kDAKAYyR0AoOZMyx0AACVwE3MAAAAAaABa7gAA9Ue3TAAACpHcAQDqzSK5AwCgBJI7AED9kdwBAFCI5A4AUHOWBhgiDgBAEc6WAAAAANAAtNwBAOqPbpkAABQiuQMA1BsTqgAAUArJHQCg/kjuAAAoRHIHAKg5JlQBAKAMzpYAAAAA0AC03AEA6o9umQAAFCK5AwDUGxOqAABQCskdAKD+SO4AAChEcgcAqDkmVAEAoAzOlgAAAADQALTcAQDqj26ZAAAUIrkDANQbE6oAAFAKyR0AoP5I7gAAKMSYOwAAAABogGpa7iKkxzdVUvQWGx6qtvwu8HbTq9/IlO0qLX7g4FdWWr4kffqOeyvfxtSnzKx8G9pzbrXl77RrteVPmlRt+cAILMvMlgnA1f8/4BnVnksnvenISsuXpL/feUbl29C0aZVvwq98fbUbmLZjteX3CN0yAQD1R7dMAAAKkdwBAOqNCVUAACiF5A4AUH8kdwAAFGIQAwAAAAA0AMkdAKDmLA0MdPZRtEX767bvsX1zy7Ln2r7K9g22l9rePy+37ZNtL7N9k+2FFR4MAABGRHIHAKg/u7OPYmdIOmTYsk9L+lhEPFfSR/LfknSopL3zY4mkr3ZilwEAGCuSOwBAvQ1OqNLF5C4ifirpvuGLJe2Un+8saWV+vljSmZFcJWmm7T06s/MAAJTHhCoAgPqrx4Qqx0n6oe3PKF0cfWFePlvS8pb1VuRlq7paOwDAhFeq5c72TNvn2/6l7dtsv6DqigEAUKFZedzc4GNJife8W9L7I2KupPdLOr3aKqKfETsB6IWyLXdfkHRpRLzB9lRJ0yusEwAALVxqEpQxWh0Ri8b4nqMkHZuff0fSafn5XZLmtqw3Jy/DxEbsBKDrCs+WtneW9GLlK5QR8VhEPFBxvQAA2Kr7E6q0s1LSQfn5yyT9Oj+/WNJb86yZB0haGxF0yZzAiJ0A9EqZlru9JN0r6Ru295V0naRjI+KhSmsGAIC0dUKVbm7S/raklyh131wh6SRJ75T0BduTJT2qNDOmJF0i6dWSlkl6WNLbu1pZ1BGxE4CeKJPcTZa0UNJ7I+Jq21+Q9EFJf9u6Uh6vsESS5s3es9P1BABMWJV0yxxVRBwxwkt/3GbdkHR0tTVCnymMnYbETXPnti0EAMaqzNlyhaQVEXF1/vt8pf+whoiIUyJiUUQs2n23XTtZRwAAgH5SGDsNiZtm7db1CgJopsLkLiLulrTc9jPyooMl3VpprQAAaFWPMXdAKcROAHql7GyZ75V0dp7t6XYxngAA0E0kZOg/xE4Auq5UchcRN0ga65TRAABsux5MqAJsK2InAL3Q3RHqAAAAAIBKlO2WCQBAj3R/tkwAAPoRyR0AoP7olgkAQCGSOwBA/ZHcAQBQiOQOAFBvlmS6ZQIAUISzJQAAAAA0AC13AICaszRAt0wAAIpUk9wNDEjTdqyk6C02P15t+d2w6bHqtzFlu0qL98IXV1q+JO1w3IzKt6HpFX9fJQ3svbDaDcTmasunWxx6ie8fMOG5C7PmxvbVxgMDzz2o0vIlSftUHG9I3ZnBePpO1ZY/dVq15fcILXcAgPpjQhUAAAqR3AEA6s3c5w4AgDI4WwIAAABAA9ByBwCoP7plAgBQiOQOAFB/TKgCAEAhkjsAQP3RcgcAQCGSOwBAvTGhCgAApXC2BAAAAIAGoOUOAFB/dMsEAKAQyR0AoP6YUAUAgEIkdwCAerOlAVruAAAowqVQAAAAAGgAWu4AAPVHt0wAAAqR3AEA6o8JVQAAKERyBwCoOdNyBwBACSR3AIB6s5hQBQCAErgUCgAAAAANQMsdAKD+GHMHAEAhkjsAQP0x5g4AgEIkdwCAeuMm5gAAlEJyBwCoP1ruAAAoxNkSAAAAABqAljsAQP0xoQoAAIVI7gAANcdNzAEAKKOa5M6WJk+tpOgtHnu02vKnzai2fEnatLH6bWzcUGnxnr5zpeVLkp/7ksq30QhTtqu2/AGCa/QINzEH0CWeVG27R0zbqdLyJUnb71j9Nrqh4ot6bmiPEFruAAD1R8sdAACFOFsCAAAAQAOQ3AEA6s/u7KNwc/667Xts3zxs+Xtt/9L2LbY/3bL8RNvLbP/K9qsqOAIAABSiWyYAoObcizGfZ0j6kqQzt9TCfqmkxZL2jYgNtp+Uly+QdLikZ0raU9K/294nIh7vdqUBABMbLXcAgHqzut5yFxE/lXTfsMXvlvQPEbEhr3NPXr5Y0jkRsSEi7pC0TNL+Hdt/AABKIrkDAKCcfSS9yPbVtn9i+3l5+WxJy1vWW5GXAQDQVXTLBADUX+dny5xle2nL36dExCkF75ksaVdJB0h6nqTzbD+t0xUDAGC8SO4AADVXrivlGK2OiEVjfM8KSRdGREi6xvZmSbMk3SVpbst6c/IyAAC6qtSlUNvvzzOD3Wz727a3r7piAABsMTDQ2cf4XCTppZJkex9JUyWtlnSxpMNtb2d7L0l7S7pm23ca/YzYCUAvFJ7hbM+W9D5JiyLiWZImKc0KBgBA9XowoYrtb0v6maRn2F5h+x2Svi7pafn2COdIOiqSWySdJ+lWSZdKOpqZMic2YicAvVK2W+ZkSdNsb5Q0XdLK6qoEAEBvRcQRI7x05Ajrf1LSJ6urEfoQsROAritsuYuIuyR9RtKdklZJWhsRlw1fz/YS20ttL7139ZrO1xQAMEE5TajSyQdQoTKxE3ETgCqU6Za5i9I9fPZSujnrDrafcOUyIk6JiEURsWj3Wbt1vqYAgImry90ygW1RJnYibgJQhTKXL18u6Y6IuDciNkq6UNILq60WAAAtaLlDfyF2AtATZcbc3SnpANvTJT0i6WBJS0d/CwAAHWJLA7S2oa8QOwHoiTJj7q6WdL6k6yX9Ir+n6EavAAAAExKxE4BeKTVbZkScJOmkiusCAEB7dKVEnyF2AtALZW+FAABA7zAJCgAAhUjuAAA1Z1ruAAAogeQOAFB7puUOAIBCXAoFAAAAgAag5Q4AUG8W3TIBACiB5A4AUHOMuQMAoIxqkrvNIT32aCVFb7HpsWrL337HasvvlofXVVv+hoeqLV+SJk+tfhsDk6rfRkS15XdjH4Be4SbmABqgK+OHTTwwkdFyBwCoP1ruAAAoxNkSAAAAABqAljsAQL1Z3MQcAIASSO4AADXHhCoAAJRBcgcAqD9a7gAAKMSlUAAAAABoAFruAAD1R7dMAAAKkdwBAOrN5j53AACUQHIHAKg/Wu4AAChEcgcAqD8mVAEAoBCXQgEAAACgAWi5AwDUHPe5AwCgDJI7AED90S0TAIBCJHcAgHqzaLkDAKAEkjsAQM1ZGiC5AwCgCGdLAAAAAGgAWu4AALVnxtwBAFCI5A4AUH+MuQMAoBDJHQCg3ixmywQAoASSOwBAzXGfOwAAyuBsCQAAAAANQMsdAKD+6JYJAEAhkjsAQP1xnzsAAAqR3AEA6s2m5Q4AgBIqSe6uu/Gm1QO7zf7dGN4yS9LqKurSRexDfTRhP+q4D0/tdQUAoImu+/kNq73DzLHETVI9zxNjxT7UQxP2QarnfnQ9dqokuYuI3ceyvu2lEbGoirp0C/tQH03YjybsA9BRzJaJBhtr3CQ14zzBPtRDE/ZBas5+bCvOlgCA+hvsmtmpR+Hm/HXb99i+uc1rx9sO27Py37Z9su1ltm+yvbCCIwAAQCGSOwBAH3CHH4XOkHTIE2phz5X0Skl3tiw+VNLe+bFE0lfHtm8AAHRGXZK7U3pdgQ5gH+qjCfvRhH0AOqTDrXYlWu4i4qeS7mvz0ucknSApWpYtlnRmJFdJmml7j07sOTCKJpwn2Id6aMI+SM3Zj21Si+QuIvr+w2Af6qMJ+9GEfQCaxvZiSXdFxI3DXpotaXnL3yvyMqAyTThPsA/10IR9kJqzH9uKWyEAAOqv87dCmGV7acvfp4wWGNieLulDSl0yAQCoJZI7AEAf6Hhyt3qMs6o9XdJekm50SjTnSLre9v6S7pI0t2XdOXkZAABd1dNumbYPsf2rPMPYB3tZl/GyPdf2j23favsW28f2uk7jZXuS7Z/b/n6v6zIetmfaPt/2L23fZvsFva7TWNl+f/4e3Wz727a373WdgJ6zuj7mbriI+EVEPCki5kfEfKWulwsj4m5JF0t6a5418wBJayNiVScPATCI2Kk++j1ukoidmqhnyZ3tSZK+rDTL2AJJR9he0Kv6bINNko6PiAWSDpB0dJ/uhyQdK+m2XldiG3xB0qUR8YeS9lWf7Yvt2ZLeJ2lRRDxL0iRJh/e2VkBNdHmyTNvflvQzSc+wvcL2O0ZZ/RJJt0taJulUSe8Z6+4BZRA71U6/x00SsVPj9LLlbn9JyyLi9oh4TNI5SjOO9ZWIWBUR1+fn65V+FH03kN72HEmvkXRar+syHrZ3lvRiSadLUkQ8FhEP9LRS4zNZ0jTbkyVNl7Syx/UBJqSIOCIi9oiIKRExJyJOH/b6/IhYnZ9HRBwdEU+PiGdHxNL2pQLbjNipJvo9bpKInZqql8ld42YXsz1f0n6Sru5xVcbj80rTe2/ucT3Gay9J90r6Ru4icZrtHXpdqbGIiLskfUbp/lmrlLp2XdbbWgF10fX73AF1ROxUH59Xf8dNErFTI9XiVghNYHtHSRdIOi4i1vW6PmNh+zBJ90TEdb2uyzaYLGmhpK9GxH6SHpLUV2MRbO+idAV2L0l7StrB9pG9rRVQB92/zx2A6vVr7NSQuEkidmqkXiZ3jZldzPYUpf+czo6IC3tdn3E4UNLrbP9WqYvHy2yf1dsqjdkKSSsiYvDK3/lK/2H1k5dLuiMi7o2IjZIulPTCHtcJqAeSO0AidqqLJsRNErFTI/UyubtW0t6297I9VWnw48U9rM+4OM2Jfbqk2yLis72uz3hExIl5TMl8pc/hRxHRV1c98ox1y20/Iy86WNKtPazSeNwp6QDb0/P36mD12cBmoDp0ywRE7FQLTYibJGKnpurZfe4iYpPtYyT9UGlmm69HxC29qs82OFDSWyT9wvYNedmHIuKS3lVpwnqvpLPzCe92SW/vcX3GJCKutn2+pOuVZhL7uaQRb6oMAJhYiJ1QAWKnhnFE9LoOAACMaNG+z45rL/vXjpY58JSnXzfGm5gDAFB7PWu5AwCgPLpSAgBQhOQOAFBvTIICAEAp3AoBAAAAABqAljsAQP3RcgcAQCGSOwBAHyC5AwCgCMkdAKD2TMsdAACFSO4AAPVHcgcAQCEmVAEAAACABqDlDgBQcxZj7gAAKEZyBwCoP7plAgBQiOQOAFBvFskdAAAlkNwBAPoAyR0AAEWYUAUAAAAAGoCWOwBA/dEtEwCAQiR3AID6I7cDAKAQyR0AoOa4FQIAAGWQ3AEA6o9umQAAFGJCFQAAAABoAFruAAD1xn3uAAAoheQOANAHSO4AAChCcgcAqD9a7gAAKMSYOwAAAABoAFruAAA1Z1ruAAAogeQOANAHSO4AAChCcgcAqD9a7gAAKOSI6HUdAAAYke1LJc3qcLGrI+KQDpcJAEBPkdwBAAAAQAMwWyYAAAAANADJHQAAAAA0AMkdAAAAADQAyR0AAAAANADJHQAAAAA0wP8H1yNmSteUYEgAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "recorteR10 = trim(imagen[:,:,0], 615, 394, 10, 10)\n", + "poptR10, pcovR10 = curve_fit(gauss2d, xdata10, recorteR10.ravel(), p0=[1,0,1,1,1])\n", + "estrellaR10=gauss2d(xdata10, poptR10[0], poptR10[1],poptR10[2], poptR10[3], poptR10[4])\n", + "FWHMR10=FWHMR.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptR10[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 10 fotografÃa (Banda Rojo)\")\n", + "plt.imshow(recorteR10, plt.get_cmap('Reds'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 10 a partir de la gaussiana (Banda Rojo)\")\n", + "plt.imshow(estrellaR10.reshape(10, 10), plt.get_cmap('Reds'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Histograma (Banda Rojo)" + ] + }, + { + "cell_type": "code", + "execution_count": 446, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Datos de FWHM de las estrellas para la Banda rojo :\n", + "Desviación : 2.329889939974896\n", + "Media : 4.021186556528661\n", + "Mediana : 2.9192045463592478\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEGCAYAAABvtY4XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAARkElEQVR4nO3de5BkZX3G8e8juxFFECMTSoHNeiuUWAXqFuGmUVCDgpBYxmDUUopyEyUJJpaKVkoqlz/QMlasijHiDRMRRYSIN5R4iQqILogKAmrMekV38QYCisAvf/RZ6V13Z3qm58zpffl+qrq6+3TPOQ9Tsw+n3z7nPakqJEntucfQASRJ/bDgJalRFrwkNcqCl6RGWfCS1KhVQwcYt9dee9XatWuHjiFJO43LL7/8hqqa295rM1Xwa9euZcOGDUPHkKSdRpJv7eg1h2gkqVEWvCQ1yoKXpEZZ8JLUKAtekhplwUtSo3o9TDLJRuAm4A7g9qpa1+f2JEl3WYnj4J9QVTeswHYkSWMcopGkRvW9B1/Ax5IU8KaqOmPbNyRZD6wHWLNmzZI3tPbUDy35Z6ex8fRjBtmuJC2k7z34I6rq0cBTgJOTPG7bN1TVGVW1rqrWzc1tdzoFSdIS9FrwVfW97n4TcD5wcJ/bkyTdpbeCT7Jbkt23PAaeDFzV1/YkSVvrcwx+b+D8JFu2866qurDH7UmSxvRW8FX1TeDAvtYvSZqfh0lKUqMseElqlAUvSY2y4CWpURa8JDXKgpekRlnwktQoC16SGmXBS1KjLHhJapQFL0mNsuAlqVEWvCQ1yoKXpEZZ8JLUKAtekhplwUtSoyx4SWqUBS9JjbLgJalRFrwkNcqCl6RGWfCS1CgLXpIaZcFLUqMseElqlAUvSY2y4CWpURa8JDXKgpekRlnwktQoC16SGtV7wSfZJckXk3yw721Jku6yEnvwpwDXrMB2JEljei34JPsCxwBv6XM7kqTf1Pce/L8ALwPu3NEbkqxPsiHJhs2bN/ccR5LuPnor+CTHApuq6vL53ldVZ1TVuqpaNzc311ccSbrb6XMP/nDguCQbgXcDRyZ5Z4/bkySN6a3gq+oVVbVvVa0FTgA+UVXP6Wt7kqSteRy8JDVq1UpspKo+BXxqJbYlSRpxD16SGmXBS1KjLHhJapQFL0mNsuAlqVEWvCQ1yoKXpEZZ8JLUKAtekhplwUtSoyx4SWqUBS9JjbLgJalRFrwkNcqCl6RGWfCS1CgLXpIaZcFLUqMseElq1IIFn+Q1SfZIsjrJx5NsTvKclQgnSVq6Sfbgn1xVNwLHAhuBhwIv7TOUJGl6kxT8qu7+GOC9VfWzHvNIkpbJqoXfwgeTXAvcCrwwyRzwi35jSZKmteAefFWdChwGrKuqXwE3A8f3HUySNJ1J9uABHgg8McmuY8v+o4c8kqRlsmDBJzkNeDxwAPBh4CnAZ7HgJWmmTfIl6zOAo4AfVNWJwIHAfXtNJUma2iQFf2tV3QncnmQPYBOwX7+xJEnTmmQMfkOSPYE3A5cDPwcu7TOUJGl6CxZ8Vb2oe/jvSS4E9qiqL/cbS5I0rR0WfJJHz/daVV3RTyRJ0nKYbw/+n+d5rYAjlzmLJGkZ7bDgq+oJ06y4O2b+08A9u+2cW1WnTbNOSdLk5huiefp8P1hV5y2w7l8CR1bVz5OsBj6b5CNV9bkl5JQkLdJ8QzRPm+e1AuYt+KoqRkfcAKzubrWodJKkJZtviObEaVeeZBdGh1Y+FHhDVV027TolSZOZ5IIfeyd5a5KPdM8PSHLSJCuvqjuq6iBgX+DgJI/czvrXJ9mQZMPmzZsXGV+StCOTnMl6JvBRRhOOAXwNePFiNlJVPwU+CRy9ndfOqKp1VbVubm5uMauVJM1jkoLfq6rOAe4EqKrbgTsW+qEkc90ZsCS5F/Ak4NqlR5UkLcYkUxXcnOT+dF+QJjkEmOSqTg8A3tGNw98DOKeqPrjkpJKkRZmk4P8WuAB4SJKLgTlGM0zOq5vO4FHTxZMkLdW8Bd/tff9Bd9sfCHBdd2UnSdIMm3cMvqruAJ5VVbdX1dVVdZXlLkk7h0mGaC5O8q/AexhdjxUAJxuTpNk2ScEf1N3/w9gyJxuTpBk3ScGfVFXfHF+Q5ME95ZEkLZNJjoM/dzvL3rvcQSRJy2u+2SQfDvwecN9tZpbcA9i172CSpOnMN0SzP3AssCdbzyx5E/CCHjNJkpbBfLNJvh94f5JDq8qLbEvSTmaSMfg/TrJHktVJPp5kc5Ln9J5MkjSVSQr+yVV1I6Phmo2M5nZ/aZ+hJEnTm6TgV3f3xwDvrapJJhqTJA1skuPgP5DkWuBW4IVJ5oBf9BtLkjStBffgq+pU4DBgXTcPzS3A8X0HkyRNZ5JL9t0beBHwxm7RA4F1fYaSJE1vkjH4twO3MdqLB/ge8E+9JZIkLYtJCv4hVfUa4FcAVXULo3nhJUkzbJKCv627puqWS/Y9BPhlr6kkSVOb5Cia04ALgf2SnAUcDjy/z1CSpOktWPBVdVGSK4BDGA3NnFJVN/SeTJI0lUn24KmqHwEf6jmLJGkZTTIGL0naCVnwktSoiQo+yRFJTuwezyV5UL+xJEnTmuRM1tOAlwOv6BatBt7ZZyhJ0vQmmg8eOA64GaCqvg/s3mcoSdL0JjrRqaqKu0502q3fSJKk5TBJwZ+T5E3AnkleAPw38OZ+Y0mSpjXJiU6vTfIk4EZGF+J+VVVd1HsySdJUJj3R6SLAUpekncgOCz7JTXTj7ttTVXv0kkiStCx2WPBVtTtAkn8Ergf+k9FcNM8GHrAi6SRJSzbJl6zHVdW/VdVNVXVjVb0RL9knSTNvkoK/Ocmzk+yS5B5Jnk13TPx8kuyX5JNJvprk6iSnTB9XkjSpSQr+z4BnAj/sbn/SLVvI7cBLquoARlMNn5zkgKUGlSQtziSHSW5kCUMyVXU9o7F7quqmJNcA+wBfXey6JEmLN9FhktNKshZ4FHDZdl5bD6wHWLNmzUrEWVZrTx1umvyNpx8z2LYlzb7epwtOch/gfcCLq+rGbV+vqjOqal1VrZubm+s7jiTdbfRa8ElWMyr3s6rqvD63JUna2iTTBf/d2ON7TrriJAHeClxTVa9bWjxJ0lLtsOCTvDzJocAzxhZfuoh1Hw48FzgyyZXd7alLzClJWqT5vmS9ltEhkQ9O8pnu+f2T7F9V1y204qr6LKMzXyVJA5hviOanwCuBbwCPB17fLT81ySX9xpIkTWu+Pfg/BF4FPAR4HfBl4OaqOnElgkmSprPDPfiqemVVHQVsZDTR2C7AXJLPJvnACuWTJC3RJCc6fbSqNgAbkrywqo5IslffwSRJ01nwMMmqetnY0+d3y27oK5AkaXks6kSnqvpSX0EkScur96kKJEnDsOAlqVEWvCQ1yoKXpEZZ8JLUKAtekhplwUtSoyx4SWqUBS9JjbLgJalRFrwkNcqCl6RGWfCS1CgLXpIaZcFLUqMseElqlAUvSY2y4CWpURa8JDXKgpekRlnwktQoC16SGmXBS1KjLHhJapQFL0mNsuAlqVG9FXyStyXZlOSqvrYhSdqxPvfgzwSO7nH9kqR59FbwVfVp4Md9rV+SNL9VQwdIsh5YD7BmzZqB02gSa0/90NARVtzG048ZOoJWwFB/2339fQ3+JWtVnVFV66pq3dzc3NBxJKkZgxe8JKkfFrwkNarPwyTPBi4F9k/y3SQn9bUtSdJv6u1L1qp6Vl/rliQtzCEaSWqUBS9JjbLgJalRFrwkNcqCl6RGWfCS1CgLXpIaZcFLUqMseElqlAUvSY2y4CWpURa8JDXKgpekRlnwktQoC16SGmXBS1KjLHhJapQFL0mNsuAlqVEWvCQ1yoKXpEZZ8JLUKAtekhplwUtSoyx4SWqUBS9JjbLgJalRFrwkNcqCl6RGWfCS1CgLXpIaZcFLUqMseElqVK8Fn+ToJNcl+UaSU/vcliRpa70VfJJdgDcATwEOAJ6V5IC+tidJ2lqfe/AHA9+oqm9W1W3Au4Hje9yeJGnMqh7XvQ/wnbHn3wV+f9s3JVkPrO+e/jzJdfOscy/ghmVLuHwGyZVXz/uyv6vJLZhpgd91X3bK39UAZjETLCLXlH9fv7ujF/os+IlU1RnAGZO8N8mGqlrXc6RFm8Vcs5gJZjPXLGaC2cxlpsnNQq4+h2i+B+w39nzfbpkkaQX0WfBfAB6W5EFJfgs4Abigx+1Jksb0NkRTVbcn+Uvgo8AuwNuq6uopVzvRUM4AZjHXLGaC2cw1i5lgNnOZaXKD50pVDZ1BktQDz2SVpEZZ8JLUqJ2i4JPsl+STSb6a5Ookp8xApl2TfD7Jl7pMfz90pnFJdknyxSQfHDoLQJKNSb6S5MokG4bOs0WSPZOcm+TaJNckOXTgPPt3v6MttxuTvHjITF2uv+n+zq9KcnaSXYfOBJDklC7T1UP+npK8LcmmJFeNLfvtJBcl+Xp3f7+VzrVTFDxwO/CSqjoAOAQ4eQamPfglcGRVHQgcBByd5JBhI23lFOCaoUNs4wlVddDQxwZv4/XAhVX1cOBABv6dVdV13e/oIOAxwC3A+UNmSrIP8NfAuqp6JKODJk4YMhNAkkcCL2B01vyBwLFJHjpQnDOBo7dZdirw8ap6GPDx7vmK2ikKvqqur6orusc3MfpHuM/Amaqqft49Xd3dZuIb6yT7AscAbxk6yyxLcl/gccBbAarqtqr66aChtnYU8L9V9a2hgzA64u5eSVYB9wa+P3AegEcAl1XVLVV1O/A/wNOHCFJVnwZ+vM3i44F3dI/fAfzRSmaCnaTgxyVZCzwKuGzgKFuGQa4ENgEXVdXgmTr/ArwMuHPgHOMK+FiSy7vpKWbBg4DNwNu74ay3JNlt6FBjTgDOHjpEVX0PeC3wbeB64GdV9bFhUwFwFfDYJPdPcm/gqWx9cuXQ9q6q67vHPwD2XukAO1XBJ7kP8D7gxVV149B5quqO7qP0vsDB3UfGQSU5FthUVZcPnWUbR1TVoxnNLnpykscNHYjRXumjgTdW1aOAmxngY/T2dCcHHge8dway3I/R3uiDgAcCuyV5zrCpoKquAV4NfAy4ELgSuGPITDtSo+PRV/wT/k5T8ElWMyr3s6rqvKHzjOs+1n+S3xyDG8LhwHFJNjKawfPIJO8cNtKv9wKpqk2MxpQPHjYRMJoA77tjn7zOZVT4s+ApwBVV9cOhgwBPBP6vqjZX1a+A84DDBs4EQFW9taoeU1WPA34CfG3oTGN+mOQBAN39ppUOsFMUfJIwGie9pqpeN3QegCRzSfbsHt8LeBJw7aChgKp6RVXtW1VrGX3E/0RVDbq3lWS3JLtveQw8mdHH60FV1Q+A7yTZv1t0FPDVASONexYzMDzT+TZwSJJ7d/8Wj2JGvsBP8jvd/RpG4+/vGjbRVi4Antc9fh7w/pUOMPhskhM6HHgu8JVuzBvglVX14eEi8QDgHd2FTe4BnFNVM3FI4gzaGzh/1A2sAt5VVRcOG+nX/go4qxsS+SZw4sB5tvxP8EnAnw+dBaCqLktyLnAFoyPavsgMnIbfeV+S+wO/Ak4e6kvyJGcDjwf2SvJd4DTgdOCcJCcB3wKeueK5nKpAktq0UwzRSJIWz4KXpEZZ8JLUKAtekhplwUtSoyx43W0kuWObmRrXJnn8tjNuJjkzyTOSHJ/kv8aWvyLJN8aePy3JBd3jjUk+s816rhyfXVBaaRa87k5u3TJTY3fbuMD7L2E0e+kWhwI3bjm5htHZnJeMvb57kv0AkjxiuUJLS2XBSztQVZsZFfqWKWj3YTRdxpbT9A8DLh77kXOAP+0ez9KZqLqbsuB1d3KvseGZ8TnWHzs+dMNokq8tLgYO66Yz+Drwue75KkZzkH9h7L3v467pap8GfKCv/xBpEjvLVAXScri1m/1zW5+pqmO3PEly5thrlzDaU98FuBT4PPAqRlNWX1tVvxh774+AnyQ5gdFcLbcsa3ppkdyDl+Z3MaOCPwy4tLvgzK6M5h25ZDvvfw/wBhye0Qyw4KX5XcNoDvQjGE2yBaN5x/+CrcfftzgfeA3w0ZUIJ83Hgpfm0V2o4TLgR91c6DAaqnkw29mDr6qbqurVVXXbCsaUtsvZJCWpUe7BS1KjLHhJapQFL0mNsuAlqVEWvCQ1yoKXpEZZ8JLUqP8HD2Ny9kXnBRAAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "FWHMR = np.array(FWHMR)\n", + "sigmaR = FWHMR.std()\n", + "mediaR = FWHMR.mean()\n", + "medianaR = np.median(FWHMR)\n", + "print(\"Datos de FWHM de las estrellas para la Banda rojo :\")\n", + "print(\"Desviación :\", sigmaR)\n", + "print(\"Media :\", mediaR)\n", + "print(\"Mediana :\", medianaR)\n", + "plt.hist(FWHMR)\n", + "plt.xlabel('FHWM')\n", + "plt.ylabel('# de estrellas')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Para la banda G\n", + "* ## Estrella 1 (Verde)" + ] + }, + { + "cell_type": "code", + "execution_count": 411, + "metadata": {}, + "outputs": [], + "source": [ + "FWHMG=[]" + ] + }, + { + "cell_type": "code", + "execution_count": 412, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA38AAAFSCAYAAABCGmZOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA22klEQVR4nO3dfbxcZXnv/+937yQkgUCAHRCSQChGKlB5aETUWlF8AIqGX09LoYqoHFNbVPDQQwXPKdhzsJxqFa1VGwWBUw5IESytVEBFqa0BIQgIUYmAJCGQhIcA8pBk7+v3x1oDk52996yZe2bWrD2fd17zysyada91zZqZPfe17ofliBAAAAAAYHIbKDsAAAAAAEDnkfwBAAAAQB8g+QMAAACAPkDyBwAAAAB9gOQPAAAAAPoAyR8AAAAA9IEpZQcAAEArPDQ9tGmk/Rt+evP1EXFU+zcMAEC5SP4AANW0aUR6zW7t3+531gy1f6MAAJSP5A8AUF122REAAFAZJH8AgGqyGLkOAEATSP4AANVFyx8AAIVxzhQAUF3uwG2i3dnzbd9k+17b99g+bdTzZ9gO20P5Y9v+vO2Vtu+yfWh7XjgAAM2j5Q8AgOK2SDojIpbbniXpdts3RsS9tudLepukh+rWP1rSwvz2Gklfyv8HAKDraPkDAFSUs26f7b5NICLWRsTy/P7TklZImps//VlJZ0qKuiKLJV0amWWSZtveo+2HAgCAAmj5AwBUU+cmfBmyfVvd46URsXSb3dsLJB0i6RbbiyWtiYg7vXUCOVfSqrrHq/Nla9seNQAADZD8AQCqqzMTvmyIiEUT79Y7SPqGpNOVdQU9W1mXTwAAehbJHwCgukqY7NP2VGWJ32URcbXt35K0j6Raq988ScttHyZpjaT5dcXn5csAAOg6xvwBAFCQs+zuQkkrIuIzkhQRd0fEbhGxICIWKOvaeWhEPCLpWknvyWf9PFzSxoigyycAoBS0/AEAqsmSBrre9Pd6SSdJutv2T/JlZ0fEdeOsf52kYyStlPSspPd1PEIAAMZB8gcAqK4u534R8cNGe81b/2r3Q9KpHQ4LAIBCSP4AANXVmQlfAACYlEj+AADVRe4HAEBhTPgCAAAAAH2Alj8AQDWVM+ELAACVRfIHAKgucj8AAAoj+QMAVJSZ8AUAgCYw5q9JthfYDttT8sfft/1fu7Bf2/6a7Sds39rp/aWyvZ/tn9h+2vZH8mWfsX1Bi9v7a9untzPGJvZ9se3/Xca+JzL6s9hg3XfY/no34gIAdEdZdZJeY/sNtn+euI2Wjl0zv8W9zvY9to8oad+X2z6upH335PfG9hG2Vxdc98O2/0+RdSub/Nl+0PZztp+pu32hQLmw/fJuxNiI7f9l+27bW2yf22D135H0VknzIuKwAtsu+3WeKemmiJgVEZ+3/QZJr5b035vdkO05kt4j6R/yx0fYHql739fY/kRbo28D29+2/VdjLF9s+5Fu/lBExL9IOsD2q7q1T6DjamP+2n0DmtSHdZJSjT5uEfHvEbFfmTFNBhFxQER8v9v7zesmB0n65/zxe20P132X7rf9p92OqxHbP7P9/jGWn2b7ti6H8xVJ77K9W6MVK5v85d4RETvU3T6UusEun7lZqSxJ+laBdfeW9GBE/LqzITVW8BjtLemeusf7SPqjiNjcwi7fK+m6iHiubtnDtfddWWJ8SllnjCZwiaR329v0SztJ0mURsaXohtr0ubxc0pI2bAfoHe7ADWhNP9VJStHK8ZgMLXJ94E+U1YuibtmP6up5/0XS39g+pJzwxnWJssaJ0U7Knyss9XMaEc9L+rdx4tlK1ZO/Mdl+ue0f2N5oe0Otu5vtm/NV7szPJPxRrUnV9l/YfkTS12wP2P6Y7V/afsz2lbZ3KbDffW1/Ly+zwfZltmePt35EXBIR/ybp6QbbPUXSVyW9No/7E/nyD9heaftx29fa3nO81znR+vlzb7P98/yYfTE/fv81f+69tv/D9mdtPybp3Ileq+3vSXqTpC/k+3+FpDdL+rP8+Z1t/6vt9c66sf6r7XkTHIKjJf1gguP4gKT/lLR/3ev5nO1Vtp+yfXve8lh77tz8Pb3UWbfUe2wvqnv+ENvL8+e+Lml63XPNxP5NSbtKqt/3zpKOlXTpRJ8zv9SN5BTbD0n6nu1B25/Oj/f9kn6vfme2d7J9oe21zlpD/7ftwbpVvj+6DFB5dvtvQBtNtjpJvu3DbP/I9pP5b84XbE8bZ93a79kS2w/n6/950W3lZU+1fZ+k+yY6bnVlHsyP4V2Sfu0xKta23+qs5Wajs1Zaj3r+/bZX5L/119veu9Fxycu9Ly/3tLMWqz+ZYN1B23+bvz8P2P6Qt+7GO+62nNXNfjhqey+2iNo+xva9edk1tWNueyivuzzprD7477YH6o7bW5p4Xz5o+758nb+3sz+gzX721Lied4ekFZJeWbf/f3LWi2qj7ZttH1D33MV5PN/KX/8ttvete37c977J2P+vpN+p/2zY3l/SqyRdbns7Z/W2h2w/avvLtmfk6431XZ+Rx/6E7XuV9ZhT3bb3tP0NZ3XQB5wPq6rzfRWo503K5E/S/5J0g6SdJc2T9HeSFBG/mz9/UH42oTYG6mWSdlHWWrVE0oclHSfpjZL2lPSEpL8vsF9L+uu8zCslzZd0buqLiYgLJX1QL50FOcf2m/N9HS9pD0m/knRFvv42r3Oi9W0PSbpK0lnKkpWfS3rdqDBeI+l+SbtLOm+i1xoRb5b075I+lO//F6O2NSDpa8qO916SnpM0UfeY38pjGpPthZJeL2lZ3eIfSzpY2fv6/yT9k+3pdc+/M3/9syVdW9t//oftm8q+0LtI+idlZ5yajj1vqbxSW5+FOV7SzyLiThX7nL1R2fF9u6QPKEscD5G0SNIfjFr3YklbJL08X+dtkur7sK+QtMD2jmPFC1QSLX/ofZOqTpIblvRRSUOSXivpSOUneCfwJkkLlf02/UUtySi4reOU1UP2n+C4jXaisorw7NE9bfJ6z9WS/ke+318qq0fUnl8s6WxJvy9pjrI6zeUNXl/NOmW/1TtKep+kz9o+dJx1P6As8TlY0qH562x1W6NdKOlPImKWpAMlfS9ffoak1cpe1+7KXmeMUb7I+3KssgTlVcrqN2/Plxf+7NneXlnvsInqea+W9ApJ9V0p/03Z52k3ScslXTaq2AmSPqHse7dSWd214XvfTOwRsVrSTcpa+mpOUtZbbYOk8/O4D1ZWN5sr6S/r1h39XT9H0r757e2STq47BgOS/kXSnfl2jpR0uu23121vhbLusxOqevL3zfxsQ+32gXz5ZmUHcs+IeD4ifjjBNiRpRNI5EfFCXmH/oKSPR8TqiHhB2Zv+B27QJBsRKyPixnw76yV9Rtkf6054l6SLImJ5HuNZyloGF7Sw/jGS7omIq/M/kJ+X9Mio8g9HxN9FxJaIeC7ltUbEYxHxjYh4NiKeVvaFnKjsbG17JnLP/D1/StIvJN0i6cX3OSL+Md/Ploj4W0nbSaofD/DDiLguIoaVJXq1L8vhkqZKuiAiNkfEVcoSyVZjv0TZZ6eWeL5HL3UFKPI5Ozcifp1/Lo/P41oVEY8r++MkSbK9u7L38fR8/XWSPqvsj19N7RjOniBeAEBr+qZOEhG3R8Sy/Df2QWVj8htt+xP579Pdyk6intjEtv46Ih4fNfyjkc/nv5djlanVe67Kh6NcoK3rPR/M97kirxd9UtLBLtD6FxHfiohfRuYHyhL/N4yz+vGSPpe/t08oSxZa3dZomyXtb3vHiHgiIpbXLd9D0t55PeffI2Kb5K/g+3J+RDwZEQ8pS4IOzss289mbnf8/up53eP49elrSrcrqavfVxXdRRDxd9504yPZOdeWviYhb8/fvslpsavDet/C9uUR58pcnaO+SdEneCrpE0kfzz+7Tyj5H9fWy0d/14yWdl6+/Sll9vObVkuZExF9FxKaIuF/ZOL/R9bz6YzCmqid/x0XE7LrbV/LlZyrL3G911qVvm8GYo6yPrK9szd6Srqn9AVeWSQ8rO0MyLtu7274ib15/StI/Kjur0Al7Kmu9kyRFxDOSHlN2NqDZ9feUtKruuVB2VqjeqvoHKa/V9kzb/2D7V3nZmyXN9tZdFOs9IWnWqGUP5+/5jsr+cDynuv7Vtv/cWVeJjfl7uNOo+Or/yD8raXr+Q7qnpDWj/hC+eNyajT3/kd8g6bi8y8FhyloipWKfs/rjvueox7+qu7+3sqR1bd32/kHZGbGa2jF8cqxYgcqxmPAFvaRv6iS2X+Gs6+Aj+bY/WWDbo3+/akNVimxrlZo3UZmx6j316+8t6XN1x/xxZe/heHWsF9k+2vYyZ10qn1SWbIx3bEb/ro+uazWzrdH+S77+r5x1O35tvvxTylrCbnDWlfRj47yOIu/L6LrUDnnZZj57T+b/j67nLcu/R7OUtZAdkMdQ6y57vrOu0E9JejAvM1E9b4f8/oTvfQvfm6sl7WH7cElHSJqpbNzsnPz+7XWfo2/ny2tGf9cb1fNqDR+17Z2trf8OzJK0cYJYJVU/+RtTRDwSER+IiD2VDSL9oieeTWv0GY9Vko4e9Ud8ekSsabDrT+bb+q08KXm3OteJ6GFlHwRJLzab7yppvBgnWn+tsq4otedc/zg3+hilvNYzlLXCvSYvW+vCMV75u5Q1m48pIjYqS6jekcf/BmU/tsdL2jkiZiv7MhSJb62kufkxqNkrIXZJulRZi9+7JV0fEY/my4t8zuqP+1pl3Q/GimuVpBckDdVta8eIOKBunVcqmzToqQliBaqFbp/ocZO0TvIlST+TtDDf9tkFtj369+vhJrY1VrfERiYqs9Xvaf6bXx/fKmVdJuuP+YyI+M+Jdmh7O0nfkPRpSbvn9Y/rNP6x2ar+NSqmRtv6tbLkorb+y+o3HBE/jojFyk4Cf1PZMBTlrWVnRMRvKBsC899sHzlGbK28xzWFP3uRTWT4S01cz3tU2bF4R77ojyUtlvQWZSf3F+TLi9bzJnrvm/reRMSzyoZOvUdZC+AVEbFJ2Yn/5yQdUPcZ2imyCWxeLD5RbNq2nvfAqM/krIg4pm6dVyrrFjqhSZn82f5DvzQJxxPKDu5I/vhRSb/RYBNflnRerXnf9hxn/b8bmSXpGUkbbc9Vg8sa2J7qrDvggKQptqdP0Po12uWS3mf74PwPxCcl3ZI3zUvbvs6J1v+WpN+yfVze+nWqsrMsbXutY5R9TtKTzgatn9Ng/es0QZO77R2UNXvXZhedpWzs23plx/UvlfWXL+JHedmP5O/P7ytrrWs1dilL/t6irG//JXXLm/2cXZnHNc/ZxDEvnq2LiLXKuoP8re0dnU0QsK/t+uP2RmV95IHJgwlf0OMmaZ1klqSnJD1j+zclFZmG/3866z1zgLLxa7Wxeq1sq8hxm8i3lF3+6Pfzes9HtHW958uSzspjlbMJ1f6wwHanKRtmsl7SFttHKxvjOJ4rJZ1me66zSUX+oolt3Zm/hoPz9+3c2hO2p9l+l+2d8q6NTyn/zNk+1tkkRFZ2YnxYL30e67XyvtSXbaaO2Kiet6uk/09b1/NeUNaDbabyFsGCGr33rdRvL5H0R8paWy+RpIgYUdYt87POL7+Qv89vH3cr2efhLGeTC85TNt635lZJTzubIGZG3vp5oLPxkDWF6nlVT/7+xVtfU+eafPmrJd1i+xllk3mclveNlbIvxyV5k+nx42z3c3m5G5z1NV6mbKBxI59QNmB3o7IP19UN1v+KskTiREkfz++fNGGJXER8R9L/VHYmZK2ywaH1/X7PVd3rnGj9yAal/qGkv1H2Rdpf2aDaF9r4WutdIGmGsrMiy5Q1g0/kUknHOJ8hKbdn7X1X1iy+i7J+1pJ0fb7NX+TPPa+CXUbyszW/r+zyEo8r+zLXv7ZmY1eeYP+npO2Vfa5qmv2cfUXZa7tT2eDm0cf8Pcp+LO5VVsG4Slm//poTlV8rEZg0BjpwA1rTT3WSP1fW+vJ0Xm68SVfq/UBZd8PvSvp0RNyQsK1z1fi4jauu3nO+snrPQkn/Uff8NZL+j6QrnHX9+6myiVkabfdpZcnElcp+h/9YW//uj/YVZSdu75J0h7IkaIuk4Ubbimwyvb+S9B1lY+FGjyU9SdKDefwf1Et1pIV5mWeUnfD+YkTcNEZsrbwvNc1+9pYqu0Zd/dm319bV81YoS4JrydClyup3a5TVeeon/JtQo/e+hdilbAjQRkmrI+LHdcv/Qtlnfln+PnxHW88/MdonlL2uB5R9Lv5vXdzDyibYOTh/foOyKwHsJEn5CYBjVOASE45tx3iizzkbsLpa0rvG+YPQdbY/KWldRFxQdixVZPsdkk6KiKZ/JIFe5aHpocUL2r/hi35+e0QsarwigEacTSz3gKSp0cT1bftR3rr35YgodFmJycT2/5N0ZUR8s+xYqsj2hyXNj4gzG63LhS8hScqboW9Rdqbvvyvr31z4TEqnRcTZZcdQZRHxL8qmCAYmD7ppAqiwvEfTm5S18uyubCjJNRMWmqQi4o/LjqHKIuLviq5LBxfUvFbZgNsNygbUHhfNTakMAN3HhC8AqsvKuvo9oazb5wptfR04oO1o+YMkKSLOVfsu/goA3UHLH9DT8nHvfFHHkM8U+eqGKwJtRPIHAKgu+q8AAFAYP5sAAAAA0Ae62vI3NDQUe+29V+MVxxFjXoak2W2UP7upE3PugTZ0cxqJtGPZjuOYOtHsZOlD4sT304lHYiTxvVz1q1V6bMNjk+XtQJVYdPvEpDc0NBR7L2i97gSg9/zqwYe0YcOGUn7Aupr87bX3XvrhLTe3XH7zyKbkGNqxjVTTBrZLKz+YVl6SntvybFL54TbM1jwcw0nlByZJ+jdlYFpS+WmJ5Z8feT6p/JGvm+j6tUCHTY4/A8C49l6wl/7jltGXcANQZa9/ze+Utm/G/AEAqmuA7A8AgKIY8wcAAAAAfYCWPwBAdTHmDwCAwpJa/mwfZfvntlfa/li7ggIAoKFOXOCdXBIdRt0JQJlabvmzPSjp7yW9VdJqST+2fW1E3Nuu4AAAGJ+TZ8sdS/lzQmOyou4EoGwpLX+HSVoZEfdHxCZJV0ha3J6wAABozHbbb0AHUXcCUKqU5G+upFV1j1fny7Zie4nt22zftmHDhoTdAQAAVFrTdaf166k7AWifjs/2GRFLI2JRRCwaGhrq9O4AAH3Ebv8NKFt93WnOHOpOANonZbbPNZLm1z2ely8DAKDjLGmgA9nacNu3CLyIuhOAUqW0/P1Y0kLb+9ieJukESde2JywAABowY/5QOdSdAJSq5Za/iNhi+0OSrpc0KOmiiLinbZEBANAAyRqqhLoTgLIlXeQ9Iq6TdF2bYgEAAJjUqDsBKFNS8gcAQHnopgkAQDO6mvyNaFjPbnmm5fLDsSU5hoi0y/fa6ROkbkl9HW2YjWDLyKak8iMaSY4h+b0YmJocQy9Irby24zMJVBW5HwAAxdHyBwCoJIsxfwAANIPkDwBQTSb5AwCgGfQXAwCgINvzbd9k+17b99g+LV/+Kds/s32X7Wtsz64rc5btlbZ/bvvtpQUPAOh7JH8AgMpyB/41sEXSGRGxv6TDJZ1qe39JN0o6MCJeJekXks6SpPy5EyQdIOkoSV+0PdihwwEAwIRI/gAAldXti7xHxNqIWJ7ff1rSCklzI+KGiBdn81omaV5+f7GkKyLihYh4QNJKSYd15GAAANAAY/4AAJXVoSF/Q7Zvq3u8NCKWbrtvL5B0iKRbRj31fklfz+/PVZYM1qzOlwEA0HUkfwAAbG1DRCyaaAXbO0j6hqTTI+KpuuUfV9Y19LLOhggAQPNI/gAAlWRZAyXM9ml7qrLE77KIuLpu+XslHSvpyHjpQqZrJM2vKz4vXwYAQNcx5g8AUFndHvPnbIULJa2IiM/ULT9K0pmS3hkRz9YVuVbSCba3s72PpIWSbm37gQAAoABa/gAA1VTOdf5eL+kkSXfb/km+7GxJn5e0naQb85iWRcQHI+Ie21dKuldZd9BTI2K420EDACCR/AEAKqzbuV9E/FAa83oQ101Q5jxJ53UsKAAACqLbJwAAAAD0AVr+AACVZJXS7RMAgMoi+QMAVBbJHwAAxZH8AQAqqvHsnAAA4CUkfwCAaipntk8AACqrq8lfRGjzyKaWy09xerjTp85MKj/Qhjlynh95Pqn8k5seS45hysDUpPIjMZIeQxvez1QDHkwqH4rGKzXaRqRtI/W9mDm4fVL5dnwnAADodam/122pMyRuw2NOVtzdbXDSrlzl174BAGgRdQgAAIoj+QMAVBKzfQIA0BySPwBAZZH8AQBQHMkfAKCyBkj+AAAorOWZGmzPt32T7Xtt32P7tHYGBgAAMJlQdwJQtpSWvy2SzoiI5bZnSbrd9o0RcW+bYgMAYHxmwhdUDnUnAKVqOfmLiLWS1ub3n7a9QtJcSfwBAwB0nLnIOyqGuhOAsrVlzJ/tBZIOkXRLO7YHAEAR7bhmFVAG6k4AypB8dWbbO0j6hqTTI+KpMZ5fYvs227c9tuHx1N0BAABUWjN1p/XrN3Q/QACTVlLyZ3uqsj9el0XE1WOtExFLI2JRRCzadWiXlN0BALAV222/AZ3UbN1pzpyh7gYIYFJruduns1/ICyWtiIjPtC8kAACKIVlDlVB3AlC2lJa/10s6SdKbbf8kvx3TprgAAGjIbv8N6CDqTgBKlTLb5w8lRtoDAMqRJWv8DKE6qDsBKFvyhC8AAAAAgN7Xlks9AADQfUzQAgBAM7qe/KVck2lEkbz/F4afTyofMZIew8gLSeU3j2xOjuHR5x5JKj9jyszkGKY47eO307TZyTEMx3BS+akD05JjGPRg2gYSP5JbEivPkRoAkIDkD+gPEWl1wGhDHXJLYv1rS6TX30YS66EDqXUOSVMHpiaVH2xD+jFgOi+2ipY/AEBlkfsBAFAcyR8AoLJo+QMAoDjaTAEAAACgD9DyBwCoJC71AABAc0j+AACVRfIHAEBxJH8AgMoi9wMAoDiSPwBARXGdPwAAmsGELwAAAADQB2j5AwBUFi1/AAAUR/IHAKgkZvsEAKA5JH8AgMoi9wMAoDiSPwBAZdHyBwBAcUz4AgAAAAB9gJY/AEB10fIHAEBhJH8AgIriOn8AADSD5A8AUE2m4Q8AgGZ0PflLOUs7oPJ/5Uc0kr6NGE4qv3lkc3IMA04b7rnmmdXJMWwa2ZRU/mUzX5Ycw4wpM5PKT3H6V2j64PSk8jtM3TGp/CDngAAAPS4USeU3jbyQHMMzmzcmlX/k2bVtiOGZpPKzt5udHMPuM/ZIKr/9lFnJMUwZmJpUPrUeXGXU+gAAlWQx2ycAAM3o37QXAFB5ttt+a7C/+bZvsn2v7Xtsn5Yv38X2jbbvy//fOV9u25+3vdL2XbYP7cJhAQBgTCR/AIDK6nbyJ2mLpDMiYn9Jh0s61fb+kj4m6bsRsVDSd/PHknS0pIX5bYmkL3XiOAAAUATJHwCgsuz23yYSEWsjYnl+/2lJKyTNlbRY0iX5apdIOi6/v1jSpZFZJmm27bQBMwAAtCg5+bM9aPsO2//ajoAAACjZkO3b6m5LxlrJ9gJJh0i6RdLuEVGbzeERSbvn9+dKWlVXbHW+DH2MuhOAsrRjwpfTlJ35TJtyEACAZhTrptmKDRGxaOJdewdJ35B0ekQ8VR9HRITttKkJMdlRdwJQiqSWP9vzJP2epK+2JxwAAIqpzfbZ5TF/sj1VWeJ3WURcnS9+tNadM/9/Xb58jaT5dcXn5cvQp6g7AShTarfPCySdKbXh4ncAADSphNk+LelCSSsi4jN1T10r6eT8/smS/rlu+XvyWT8Pl7Sxrnso+tMFou4EoCQtJ3+2j5W0LiJub7Dektq4icc3PN7q7gAA2EYJLX+vl3SSpDfb/kl+O0bS+ZLeavs+SW/JH0vSdZLul7RS0lck/VlHDgQqoZW60/r1G7oUHYB+kDLm7/WS3pn/6E2XtKPtf4yId9evFBFLJS2VpIMOfRVjIAAAlRURP1TW43QsR46xfkg6taNBoUqarjv99qJDqTsBaJuWW/4i4qyImBcRCySdIOl7o/94AQDQMR24zENn5o8BMtSdAJStHbN9AgBQig7N9gkAwKTUluQvIr4v6fvt2BYAAEVYHbvUA9Bx1J0AlIGWPwBAZZH8AQBQXOqlHgAAAAAAFdDVlj/LGkjIN+3yc9WRSL8sz+aRzUnlN428kBzDU5ueSir/1bu+lRzDmic2JpV/88sXJsfwtr3fmFR+1tQdkmN4fvi5pPLTB2ekBZD4tQoxER3KQ8Mf0PuySW/TjMRwUvnntvw6OYa7H7srqfzV992UHMPKx9Mum3bYnnOTY3jHvm9NKr/fTq9MjmHQg2kb6IGcoix0+wQAVJPp9gkAQDNI/gAA1UXyBwBAYf3b5gkAAAAAfYSWPwBAZdHtEwCA4kj+AACVZEkD5H4AABRG8gcAqCgu8g4AQDNI/gAA1WRpgOQPAIDCmPAFAAAAAPoALX8AgEqymPAFAIBmkPwBACqL7isAABRH8gcAqCzG/AEAUBzJHwCgkuj2CQBAc+gxAwAAAAB9gJY/AEBFmW6fAAA0geQPAFBNptsnAADNIPkDAFSSxdgFAACa0d3kz5Jd7k91xEhaeUVyDJtHNpdaXpJWPbM6qfw1Ny5LjmH43seSyj9+zMbkGF6zx0FJ5XfZbufkGLbEllLLD8ZgUvk2fCWAltHtE+h97ag7DcdwUvmNm55MjmHZ2juSyn/9Oz9KjuHpe9cllb//tfsmx7Bg9tyk8nvtsHdyDNOnzEwqPxBpn8kq9zrhpCkAAAAA9AG6fQIAKqvKZ18BAOg2kj8AQCVZdPsEAKAZJH8AgMoi9QMAoLikMX+2Z9u+yvbPbK+w/dp2BQYAADDZUHcCUKbUlr/PSfp2RPyB7WmS0qbeAQCgMC7yjkqi7gSgNC0nf7Z3kvS7kt4rSRGxSdKm9oQFAMDEbMb8oVqoOwEoW0q3z30krZf0Ndt32P6q7e3bFBcAAA3ZbvsN6CDqTgBKlZL8TZF0qKQvRcQhkn4t6WOjV7K9xPZttm97bH3aRb0BAKg3YLf9BnRQ03Wn9es3dDtGAJNYSvK3WtLqiLglf3yVsj9oW4mIpRGxKCIW7Tpn14TdAQAAVFrTdac5c4a6GiCAya3l5C8iHpG0yvZ++aIjJd3blqgAAGjAHboBnULdCUDZUmf7/LCky/LZqu6X9L70kAAAKIZumqgg6k4ASpOU/EXETyQtak8oAAA0gzF6qB7qTgDKlNryBwBAKWwxOycAAE1ImfAFAAAAAFARXW75s+zW882IkTbGUp5eOFM9kngsh7cMpwcRacU3b96SHELqcWiHgYTvhCQNejCp/EjiG5H4NgJJ6PYJoIh2/N5vGkmrdzz/wubkGPRsWgybNqXHsCXxOLTjvaDu0Tpa/gAAlVXGbJ+2L7K9zvZP65YdbHuZ7Z/k12c7LF9u25+3vdL2Xba3mdYfAIBuIfkDAFSSVdpF3i+WdNSoZX8j6RMRcbCkv8wfS9LRkhbmtyWSvtSGlw4AQEuY8AUAUFlldPuMiJttLxi9WNKO+f2dJD2c318s6dKICEnLbM+2vUdErO1OtAAAvITkDwCAdKdLut72p5X1qnldvnyupFV1663Ol5H8AQC6jm6fAICKsuz23yQN5eP2arclBYL5U0kfjYj5kj4q6cJOvnIAAFpByx8AoJKsjp3B3BARzV6E+2RJp+X3/0nSV/P7ayTNr1tvXr4MAICuo+UPAFBN+UXeO9Dy14qHJb0xv/9mSffl96+V9J581s/DJW1kvB8AoCy0/AEA0ATbl0s6Qln30NWSzpH0AUmfsz1F0vPKZvaUpOskHSNppaRnJb2v6wEDAJAj+QMAVFZJs32eOM5Tvz3GuiHp1M5GBABAMSR/AIBKql3nDwAAFEPyBwCorIQxegAA9B2SPwBARVkDIvkDAKAoZvsEAAAAgD5Ayx8AoLLo9gkAQHEkfwCASrKZ8AUAgGaQ/AEAKsuM+QMAoLCuJ39JP9Quf4jiQKTHMNVT08oPpJWXpL1n7ZVU/qgjX50cw5oDHksqf9jCBckxTBuYllT+hZEXkmNIfT8HEr8XqRNmUPVGmej2CfS+dpykSf2t23HaTskxLNr9wKTyRx/xaHIMD/3mhqTyB+8zPzmG39z5FUnlZ0yZmRzDANOWtIwjBwAAAAB9gG6fAIBKssyYPwAAmkDyBwCoLNOBBQCAwkj+AACVRcsfAADFJZ0ytf1R2/fY/qnty21Pb1dgAAA0YrvtN6CTqDsBKFPLyZ/tuZI+ImlRRBwoaVDSCe0KDAAAYDKh7gSgbKndPqdImmF7s6SZkh5ODwkAgMac/wMqhroTgNK03PIXEWskfVrSQ5LWStoYETe0KzAAACbkbMxfu29Ap1B3AlC2lG6fO0taLGkfSXtK2t72u8dYb4nt22zf9tj6tIt6AwBQjzF/qJJW6k7r16dd1BsA6qVM+PIWSQ9ExPqI2CzpakmvG71SRCyNiEURsWjXObsm7A4AgJdY0kAH/gEd1HTdac6coa4HCWDySvmVe0jS4bZnOjtVeqSkFe0JCwAAYNKh7gSgVC1P+BIRt9i+StJySVsk3SFpabsCAwBgYnTTRLVQdwJQtqTZPiPiHEnntCkWAACaQvKHqqHuBKBMqZd6AACgNANc6gEAgMIY2Q4AAAAAfaDrLX+haLlsOy7maw8mlR/0SHIMUwbSDvt2g9OTY9hj5p5J5T/y24uTY3j0uXVJ5Yemp8+AtvP0nZPKTx2YmhxD6vsZ0fp3SpI8kHgOiIYXlMSi2ydQBe34ng4orf62/ZRZyTEcMnRIUvldF+2SHMNTm55KKj80I73utNcOeyeVnz44MzmGAafVXfr5t4NunwCAasov8g4AAIoh+QMAVJTb0iMEAIB+QfIHAKgkK73rDwAA/YRfTQAAAADoA7T8AQAqq58H7QMA0CySPwBAZTHmDwCA4kj+AAAVZWb7BACgCSR/AIBKsmj5AwCgGUz4AgAAAAB9gJY/AEBl0e0TAIDiSP4AANVkyVznDwCAwkj+AAAVZcb8AQDQBJI/AEAlWXT7BACgGfSXAQAAAIA+QMsfAKCyTMsfAACFkfwBACprgDF/AAAU1nfJX+rkAO2YWW7Ag0nlpzj9bUs9W/7ynRYmxzA0Yyip/IzBGckxKPE47DBlh+QQpg1ul1Q+FEnlUz+PovKNkljltPzZvkjSsZLWRcSBdcs/LOlUScOSvhURZ+bLz5J0Sr78IxFxfdeDBipuIHGkUupvrSTtOn23pPKzpu2UHMNIDCeVH2xDHXLaQNqxnDIwNTmGAWZ6blnfJX8AACS6WNIXJF1aW2D7TZIWSzooIl6wvVu+fH9JJ0g6QNKekr5j+xURiTU4AABaQPIHAKgol3Kdv4i42faCUYv/VNL5EfFCvs66fPliSVfkyx+wvVLSYZJ+1K14AQCooc0UAFBZA3Lbby16haQ32L7F9g9svzpfPlfSqrr1VufLAADoOlr+AACVZHdszN+Q7dvqHi+NiKUNykyRtIukwyW9WtKVtn+jE8EBANCqhsnfWAPbbe8i6euSFkh6UNLxEfFE58IEAGBbqZN4jWNDRCxqssxqSVdHREi61faIpCFJayTNr1tvXr4Mkxh1JwC9qki3z4slHTVq2cckfTciFkr6bv4YAIB+9U1Jb5Ik26+QNE3SBknXSjrB9na295G0UNKtZQWJrrlY1J0A9KCGyV9E3Czp8VGLF0u6JL9/iaTj2hsWAACNWHb7bw33al+ubMKW/Wyvtn2KpIsk/Ybtn0q6QtLJkblH0pWS7pX0bUmnMtPn5EfdCUCvanXM3+4RsTa//4ik3cdb0fYSSUskad78eS3uDgCAbZVxkfeIOHGcp949zvrnSTqvcxGhIlqqO83fa/54qwFA05Jn+8zHN4x7lemIWBoRiyJi0a5zdk3dHQAAkmoXeR9o+w3otGbqTnPmDHUxMgCTXau/co/a3kOS8v/XNVgfAIA2c0f+AR1C3QlA6VpN/q6VdHJ+/2RJ/9yecAAAACYl6k4ASlfkUg+XSzpC2XWPVks6R9L5yq5hdIqkX0k6vpNBAgAwlg5d5w9IQt0JQK9qmPxNMLD9yDbHAgBAU+imiV5E3QlAr2p1tk8AAEpHyx8AAMWR/AEAKskq51IPAABUVZeTv1DESMulBwemJkcwnHht3c0jm5JjGPRgUvmdt0uf9nkk8TikvI81s6bumFR+ROkxpGpHl7OBxKnlB532NY7xZxsHAKAnpLbyD0T6ZVymDkxLKj+lDfVYReJvdht6S6TWfVLrPUhDyx8AoJpsun0CANAEkj8AQGW55SsWAQDQf0j+AACVRcsfAADFccoUAAAAAPoALX8AgEqyuM4fAADNIPkDAFSUNUC3TwAACiP5AwBUFi1/AAAUR/IHAKgsJnwBAKA4JnwBAAAAgD5Ayx8AoJKyCV84hwkAQFEkfwCAijLdPgEAaALJHwCgsgaY8AUAgMJI/gAA1WQmfAEAoBkMlgAAAACAPkDLHwCgkrIJX2j5AwCgKJI/AEBl0e0TAIDiupr8DXpQO0zdseXyW0a2JMcwEiNJ5acNTk+OYSCxt+2I0l6DJNnl9/idkhjDcKR/HlLfi3Ycx9RtpL6G9OMYieWBVplLPQAopB0ninqip0EPhIBqo+UPAFBZA7T8AQBQGKdMAQAAAKAP0PIHAKgkJnwBAKA5JH8AgMpiwhcAAIpr2O3T9kW219n+ad2yT9n+me27bF9je3ZHowQAYBvuyD8gFXUnAL2qyJi/iyUdNWrZjZIOjIhXSfqFpLPaHBcAAEBVXSzqTgB6UMPkLyJulvT4qGU3RLw4P/wySfM6EBsAABOy3fYbkIq6E4Be1Y4xf++X9PXxnrS9RNISSZq/1/w27A4AgGzCl9TrXAIloe4EoBRJv5q2Py5pi6TLxlsnIpZGxKKIWDRnzlDK7gAAeIlp+UP1UHcCUKaWW/5sv1fSsZKOjIhoW0QAABTCBC2oFupOAMrWUvJn+yhJZ0p6Y0Q8296QAAAAJhfqTgB6QcPkz/blko6QNGR7taRzlM1QtZ2kG/MuMssi4oMdjBMAgG3QTRO9iLoTgF7VMPmLiBPHWHxhB2IBAKApdPtEL6LuBKBXtWO2TwAAus4i+QMAoBkkfwCA6qLbJwAAhXU1+RuJ0KbhF1ou/9xw+vjoTcPPJ5WfOXVWcgypY1Q2b2n9GNZsNzgjqXy0ocIVSpvobLANH98BDyaWT7/GWOp1ylJfw/DwlsYrAXiR7YuUzdi4LiIOHPXcGZI+LWlORGxw9gf/c5KOkfSspPdGxPJuxwwAgJR4nT8AAMrjjvwr4GJJR20TjT1f0tskPVS3+GhJC/PbEklfSn7ZAAC0iOQPAFBZZVzkPSJulvT4GE99VtlU/vXdGhZLujQyyyTNtr1HO147AADNYswfAKCyemXCF9uLJa2JiDtHJZBzJa2qe7w6X7a2i+EBACCJ5A8AUGEdSv6GbN9W93hpRCwdNwZ7pqSzlXX5BACgZ5H8AQCwtQ0RsaiJ9feVtI+kWqvfPEnLbR8maY2k+XXrzsuXAQDQdSR/AIBKstJnT26HiLhb0m61x7YflLQon+3zWkkfsn2FpNdI2hgRdPkEAJSCCV8AABVVzmyfti+X9CNJ+9lebfuUCVa/TtL9klZK+oqkP2vHKwcAoBW0/AEAKquMCV8i4sQGzy+oux+STu10TAAAFEHyBwCoJvdGt08AAKqCbp8AAAAA0Ado+QMAVFavXOcPAIAqIPkDAFRSr8z2CQBAVZD8AQAqqtjsnAAAIMOYPwAAAADoA7T8AQAqi5Y/AACKI/kDAFQWY/4AACiuq8mfZU0ZmNpy+akxLTmGgcSzxNsNTE+OYcpA+Tl3dt3h1g04vcdwagweGEyOIbXVoB3HwYm9r9sRA1BVtPwBAFBc+VkIAAAtsEj+AABoBk0GAAAAANAHaPkDAFSUGfMHAEATGrb82b7I9jrbPx3juTNsh+2hzoQHAMBE3IEbkIa6E4BeVaTb58WSjhq90PZ8SW+T9FCbYwIAoDFns322+wa0wcWi7gSgBzVM/iLiZkmPj/HUZyWdKSltykYAAFrkDvwDUlF3AtCrWprwxfZiSWsi4s42xwMAADDpUHcC0AuanvDF9kxJZyvrtlBk/SWSlkjS/L3mN7s7AADGRUsdqoC6E4Be0UrL376S9pF0p+0HJc2TtNz2y8ZaOSKWRsSiiFg0NMTYZgBAe1jtH+/HmD90SMt1pzlzqDsBaJ+mW/4i4m5Ju9Ue53/EFkXEhjbGBQBAQ7T8oQqoOwHoFUUu9XC5pB9J2s/2atundD4sAAAaY8IX9CLqTgB6VcOWv4g4scHzC9oWDQAAQMVRdwLQq5ru9gkAQK9gjB4AAMWR/AEAKotumgAAFEfyBwCopNpsnwAAoJiuJn93LL9jw/ZTZ/1qglWGJJU98xUx9EYMZe+fGIrHsHe3AgGAfrP89js2zJiyPXWn3o+h7P0TQ7ViKK3u1NXkLyLmTPS87dsiYlG34iGG3o2h7P0TQ2/FAIyHbp+Y7Kg7VSOGsvdPDMRQFN0+AQAVRvIHAEBRJH8AgMoi9QMAoLheS/6Wlh2AiKGm7BjK3r9EDDW9EAMwJiZ8AXribzQxlL9/iRhqiGECjoiyYwAAoGkHHfqquP4/vtX27e4xc6/be3WsBgAAKXqt5Q8AgCbQ8gcAQFEkfwCAyiL1AwCguIGyA6ixfZTtn9teaftjJex/vu2bbN9r+x7bp3U7hjyOQdt32P7XkvY/2/ZVtn9me4Xt15YQw0fz9+Cnti+3Pb0L+7zI9jrbP61btovtG23fl/+/cwkxfCp/L+6yfY3t2d2Ooe65M2yH7aFOxgAU5w7dgN5HvWmrWKg7UXei7lRQTyR/tgcl/b2koyXtL+lE2/t3OYwtks6IiP0lHS7p1BJikKTTJK0oYb81n5P07Yj4TUkHdTsW23MlfUTSoog4UNKgpBO6sOuLJR01atnHJH03IhZK+m7+uNsx3CjpwIh4laRfSDqrhBhke76kt0l6qMP7Bwqzswlf2n0Deh31pm1Qd6LuVI+60wR6IvmTdJiklRFxf0RsknSFpMXdDCAi1kbE8vz+08q+uHO7GYPteZJ+T9JXu7nfuv3vJOl3JV0oSRGxKSKeLCGUKZJm2J4iaaakhzu9w4i4WdLjoxYvlnRJfv8SScd1O4aIuCEituQPl0ma1+0Ycp+VdKYkZogCgPJRb8pRd3oRdaeXllF3mkCvJH9zJa2qe7xaJfwBqbG9QNIhkm7p8q4vUPYhGenyfmv2kbRe0tfy7hNftb19NwOIiDWSPq3sLMlaSRsj4oZuxlBn94hYm99/RNLuJcVR835J/9btndpeLGlNRNzZ7X0DAMZEveklF4i6E3Wn8VF3GqVXkr+eYXsHSd+QdHpEPNXF/R4raV1E3N6tfY5hiqRDJX0pIg6R9Gt1vrl+K3nf8MXK/pjuKWl72+/uZgxjieyaKKWdubH9cWVdbC7r8n5nSjpb0l92c79AUe7APwDFlVVvyvdN3UnUncZD3WlsvZL8rZE0v+7xvHxZV9mequwP2GURcXWXd/96Se+0/aCy7htvtv2PXY5htaTVEVE7c3eVsj9o3fQWSQ9ExPqI2Czpakmv63IMNY/a3kOS8v/XlRGE7fdKOlbSu6L7F+bcV9mPyZ35Z3OepOW2X9blOIAxkfyhT1FvylB3ylB3GoW60/h6Jfn7saSFtvexPU3ZINVruxmAs1H+F0paERGf6ea+JSkizoqIeRGxQNnr/15EdPWsTUQ8ImmV7f3yRUdKurebMSjrsnC47Zn5e3KkyhvEfa2kk/P7J0v6524HYPsoZd1Z3hkRz3Z7/xFxd0TsFhEL8s/makmH5p8VAEA5+r7eJFF3qkPdqQ51p4n1RPKXD8r8kKTrlX1Yr4yIe7ocxuslnaTsrNFP8tsxXY6hF3xY0mW275J0sKRPdnPn+ZmzqyQtl3S3ss/o0k7v1/blkn4kaT/bq22fIul8SW+1fZ+ys2rnlxDDFyTNknRj/pn8cgkxAAB6CPWmnkPdibpTZepO7n5LKAAA6Q7+7YPiu//Z/jkNhqa/7PaIWDTe87YvUtadaF0+rbpsf0rSOyRtkvRLSe+rzfhn+yxJp0galvSRiLi+7UEDAFBAT7T8AQBQIRer4HWl8uuenSDpgLzMF/NrtAEA0HUkfwCAiurEdC+NJ3xp8rpSiyVdEREvRMQDklYqu0YbAABdR/IHAEB71V9XqqeuxwYA6G9Tyg4AAIDWdeTSDEO2b6t7vDQiCk2eUNZ1pQAAKILkDwBQSVaHUj9pw0QTvoyn7rpSR9ZdV6onrscGAIBEt08AQIXZbvutxTjGu67UtZJOsL2d7X0kLZR0a/ILBwCgBbT8AQAqrENtfxPtMbum0xHKuoeulnSOstk9t1N2XSlJWhYRH4yIe2xfqeyiz1sknRoRw10PGgAAkfwBANCUiDhxjMUXTrD+eZLO61xEAAAUQ/IHAKis7rf7AQBQXSR/AIAKI/0DAKAokj8AQEW1PkELAAD9iNk+AQAAAKAPkPwBAAAAQB+g2ycAoJKyi7zT7RMAgKJI/gAAFUbyBwBAUSR/AIDKIvUDAKA4kj8AQGUx2ycAAMUx4QsAAAAA9AFa/gAAFWXR8RMAgOJI/gAAlUXqBwBAcSR/AIAKI/0DAKAoxvwBAAAAQB+g5Q8AUE1mtk8AAJpByx8AAAAA9AFa/gAAlZTN9UnLHwAARTkiyo4BAICm2f62pKEObHpDRBzVge0CAFAqkj8AAAAA6AOM+QMAAACAPkDyBwAAAAB9gOQPAAAAAPoAyR8AAAAA9AGSPwAAAADoA/8/KL3g4i5MKzQAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "recorteG1 = trim(imagen[:,:,1], 210, 237, 15, 15)\n", + "poptG1, pcovG1 = curve_fit(gauss2d, xdata1, recorteG1.ravel(), p0=[1,1,1,1,1])\n", + "estrellaG1=gauss2d(xdata1, poptG1[0], poptG1[1],poptG1[2], poptG1[3], poptG1[4])\n", + "FWHMG1=FWHMG.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptG1[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 1 fotografÃa (Banda Verde)\")\n", + "plt.imshow(recorteG1, plt.get_cmap('Greens'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 1 a partir de la gaussiana (Banda Verde)\")\n", + "plt.imshow(estrellaG1.reshape(15, 15), plt.get_cmap('Greens'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 2 (Verde)" + ] + }, + { + "cell_type": "code", + "execution_count": 413, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA38AAAFSCAYAAABCGmZOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABKLUlEQVR4nO3de5wkZXn3/+/VPcc97zILwu7CKmISMLqYFTVqgnhCfiZL8iQGEhGNEc0DBvKQGOU5iP5iYkyiiTGaYCDA8yMQoqAk4gEVQ0wCCgjIQePKcZeFZWHPp9mZuX5/VA30DnNf3V3Tp5r5vPfVr52uu6vqrurqrvvuuuu6zN0FAAAAAJjdKt2uAAAAAACg/ej8AQAAAMAcQOcPAAAAAOYAOn8AAAAAMAfQ+QMAAACAOYDOHwAAAADMAX3drgAAAEXYyJBrdKL1C9554KvufnLrFwwAQHfR+QMAlNPohPSyQ1u/3K9vHGn9QgEA6D46fwCA8jLrdg0AACgNOn8AgHIycec6AABNoPMHACgvrvwBANAwOn8AgPKi7wcAQMMYMAMAAAAAcwBX/gAAJWUM+wQAoAl0/gAA5UTAFwAAmkLnDwBQXlz5AwCgYXT+AADlRd8PAICGMWAGAAAAAOYArvwBAMrJJFW49AcAQKPo/AEAyou+HwAADaPzBwAoLwK+AADQMDp/AIDyou8HAEDDCPgCAAAAAHMAV/4AAOVEwBcAAJpC5w8AUF70/QAAaBjDPgEAJWVZwJdWP6I1mq0ysxvN7F4zu8fMzq0pe6+Z/SCf/rGa6R8ws/Vm9kMze2MbdwgAACE6f00ys9Vm5mbWlz//lpn9VgfWa2b292a21cy+0+71zZSZ/YSZ3WFmO83sd/JpHzezvyi4vD82s/NaWccm1n2pmf1hN9YdmXos1nntL5jZP3aiXsAsNybpfHc/VtLLJZ1tZsea2WskrZP0Ync/TtKfSZKZHSvpNEnHSTpZ0qfNrNqdqmO26VabpNeY2avN7IczXEahfdfMubjX5T9cndildV9pZqd2ad09+bkxsxPNbEODr32vmf1JI68tbefPzB40s71mtqvm8akG5nMze34n6linHofmB/qjZrbdzP7dzF4WzPIqSa+XtNLdT2hg+d3ezvdJutHdF7r7J83s1ZJeKun3m12QmS2X9DZJf5s/P9HMJmre941m9qGW1r4FzOwrZvbhaaavM7PHOnmicPd/lnScmb2oU+sE2m7ynr9WPwLuvsndb8//3inpPkkrJP22pI+6+/68bHM+yzpJV7n7fnd/QNJ6SXW/w1Euc7BN0lVT95u7/5u7/0Q36zQbuPtx7v6tTq83b5u8WNIX8+dvN7Pxms/S/Wb2252uVz35SI/fnGb6uWZ2a4er81lJv2Fmh9Z7YWk7f7lfcPcFNY9zZrrADjbIF0j6rqSfkbRM0mWSvmRmCxKvP0rSg+6+u0P1S2pwHx0l6Z6a58+V9GvufqDAKt8u6Xp331sz7dHJ911Zx/id3frFKHCZpLeaPWsc2RmSrnD3sUYX1KLj8kpJZ7VgOUDvsDY8Gl212WpJx0u6RdILJL3azG4xs381s5fmL1sh6ZGa2Tbk0zD7zKU2SVcU2R+z4YrcHPBuZe0ir5n2nzXtvP8m6WNmdnx3qpd0mbKLE1OdkZc1bKbHqbvvk/TlRH0OUvbO37TM7Pn5yXe7mW2ZHO5mZjflL7kz/yXh1yYvqZrZH5jZY5L+3swqZvZ+M/uxmT1pZleb2bIG1nu0mX0zn2eLmV1hZkume6273+/uH89/RR5394skDUh61i9XZvZOSX8n6RV5vT+UT3+XZfeRPGVm15nZEantjF6fl73BsvtRtpvZp/P991t52dvzXwE/YWZPSrow2lYz+6ak10j6VL7+F0g6SdJ/z8uXmtm/mNkTlg1j/RczWxns2jdJ+tdUYf5r+n9IOrZme/7SzB4xsx1mdptlVx4nyy7M39PLLRuWeo+Zra0pP97Mbs/L/lHSUE1ZM3X/gqRDJNWue6mkN0u6PDrO7JlhJO80s4clfdPMqmb2Z/n+vl/S/1O7MjNbbGYXm9kmy66G/qEdPLzsW1PnAUqvPff8jZjZrTWPZ/1okjeKPy/pPHffoSyA2jJlQ0F/X9LVZmSgx+xrk+TLPsHM/tPMtuXnnE+Z2UDitZPns7Msu7K4ycx+r9Fl5fOebWY/kvSjaL/VzPNgvg/vkrTbpmlYm9nrLbtys92yq7Q2pfw3zey+/Fz/VTM7KrGrpy73Hfl8Oy27YvXu4LVVM/vz/P15wMzOsYOH8SaXZVnb7NtTlvf0FVEzO8Wye5N35m2C38unj+Rtl22WtQf/zcwqNfvtdU28L+8xsx/lr/nrye+8Zo69XL123veUjbL4qZr1/5Nlo6i2m9lNZnZcTdmleX2+lG//LWZ2dE158r1vsu7/V9Krao8Ny4b6v0jSlWY2aFm77WEze9zM/sbMhvPXTfdZH87rvtXM7lU2Yk41yz7CzD5vWRv0Actvq6rxLTXQzpuVnT9J/6+kr0laKmmlpL+SJHf/ubz8xfmvCZP3QD1H2Un7KGVXRt4r6VRJPy/pCElbJf11A+s1SX+cz/NTklZJurCRCpvZGmVftOunlrn7xZLeo2d+BfmgmZ2Ur+stkg6X9JCkq1LbGb3ezEYkfU7SB5R1Vn4o6WenVONlku6XdJikj0Tb6u4nSfo3Sefk6/+vKcuqSPp7Zfv7SEl7JUXDY346r9O0zOwYSa+UdHPN5O9KWqPsff0HSf9kZkM15b+Yb/8SSddNrj//YvuCsg/0Mkn/pOwXp6brnl+pvFoH/wrzFkk/cPc71dhx9vPK9u8bJb1LWcfxeElrJf3KlNdequx+pOfnr3mDpNox7PdJWm1mi6arL1BK7bnyt8Xd19Y8LjpolWb9yjp+V7j7NfnkDZKu8cx3JE1IGpG0Udn346SV+TTMHbOqTZIbl/S7yo7xV0h6rfIfeAOvkXSMsnPTH0x2Mhpc1qnK2iHHBvttqtOVNYSXTB1pk7d7rpH0v/L1/lhZO2KyfJ2kCyT9sqTlyto0V9bZvkmblZ2rF0l6h6RPmNlLEq99l7KOzxpJL8m3s+iyprpY0rvdfaGkF0r6Zj79fGXfV8uVtekukOTTzN/I+/JmZR2UFylr30wGtGr42DOz+cpGh0XtvJcqG11RO5Tyy8qOp0Ml3S7piimznSbpQ8o+d+uVtV3rvvfN1N3dN0i6UdmVvklnKButtkXSR/N6r1HWNlsh6f/UvHbqZ/2Dko7OH2+UdGbNPqhI+mdJd+bLea2k8+zgIGL3KRs+G3P3Uj4kPShpl6RtNY935WWXS7pI2f1xU+dzSc+veX6ipFFJQzXT7pP02prnh0s6oOyX3dX5Mvrysm9J+q1EHU+V9L0GtmWRpO9L+kDwmrdL+nbN84slfazm+YK8jqsT25l8vbLOyX/WlJmyYUq/VbPuh+tsw0HbOnW/KOuY/GFi3jWStgbLPiDpJ6e8ZxP5e74j39ZrJA0Ey9iq7EQhZR/ir9eUHStpb/73z0l6VJLVlP/HDOr+qryeQ/nzf5f0u00cZ8+rKf+mpPfUPH/D5LGo7At8v6ThmvLTld13Ofm8P3/9ka3+PPLg0Y2Hlg263npM6x/Srcl1Zt+Pl0v6iynT3yPpw/nfL8i/Q01ZoJc7JQ0qa+DcL6na7X3Ho8XH4hxrk0wzz3mSrk2UTdax9jz+MUkXN7KsfN6TGthvG6a8H78Z1Pdtkm6ueW7KOkST7Z4vS3pnTXlF0h5JRwXb15dY1xcknZso+6ayDtrk89c1uixNaRdO3S+SHlY2nHLRlNd8WNm9dc+fZvkPSnpdE+/Lq2qeXy3p/c0ee8o6Mj7lmH+7sh+zt0namZf/lWraZlOWsSR/zeL8+aWS/q6m/BRlP7zXfe+bqXte/lZJP6w5Th6W9Ev5cndLOrrmta+Q9EDNMTv1s36/pJNrnp+l/LhW9uPHw1PW/QFJf1/z/BhJ46m6Tj7KfuXvVHdfUvP4bD79fcp2+ncsG9L3rJsxp3jCs7Gyk46SdG1+GXubsi/ecWUN7CQzO8zMrsovr++Q9P8p+1UhmmdYWU/+Znf/4zr1rHWEsqt3kiR33yXpSaXvJYlef4Rq7knx7AiaGl2o9p6VQttaM+88M/tbM3son/cmSUssHQFvq6SFU6Y9mr/ni5R96PeqZny1mf1ePlRie/4eLp5Sv8dq/t4jaciyYRZHSNqY74NJT++3Zuvu7t+WtEXSqfmQgxOUXYmUGjvOavf7EVOeP1Tz91HKOnebapb3t8p+EZs0uQ+3TVdXoHRMHQ/4ouwX4jMknWRZROM7zOwUSZdIep6Z3a1sVMGZnrlHWaPoXklfkXS2u4+3bZ+gm+ZMm8TMXmDZ0MHH8mX/Ub1l69nnr8lbVRpZ1iNqXjTPdO2e2tcfJekva/b5U8rew7r365rZm8zsZsuGVG5T1vFI7Zup5/Wpba1mljXVf8tf/5Blw45fkU//U2VXwr5m2VDS9ye2o5H3ZWpbakE+bzPH3rb8/6ntvJvzz9FCZVfIjsvrMDlc9qOWDYXeoazTKsXtvMn7V8P3vsDn5hpJh5vZy5V16OZJ+pKyK6vzJN1Wcxx9JZ8+aepnvV4774jJZeXLu0AHfw8slLQ9qKukWTrs090fc/d3ufsRyn71+LTF0bR8yvNHJL1pypf4kLvXG6rzR/myfjrvlLxVU8aQ1zKzQWW/4mzI69mMR5UdCJPLmq9syGaqjtHrNykbijJZZrXPc1P3UVPbOsX5yu4jeFk+7+QQjtT8dyn7JX1a7r5dWYfqF/L6v1rZyfYtkpa6+xJlH4ZG6rdJ0op8H0w6cgZ1l7Jffd+mbB991d0fz6c3cpzV7vdNOnj4WG29HlF25W+kZlmLPAs5P+mnlAUN2hHUFSiX9gz7THL3b7u7ufuL3H1N/rje3Ufd/a3u/kJ3f4m7f7Nmno+4+9Hu/hPu/uVWbj563yxtk3xG0g8kHZMv+4Jo2bmp569Hm1jW1H3SiGieg86n+Tm/tn6PKLsiV7vPh939P6IV5vvw88pSvRyWtz+uV3rfHNT+mlKnesvaraxzMfn659Qu2N2/6+7rlP0I/AVlP0LJ3Xe6+/nu/jxlt8D8DzN77TR1K/IeT2r42PMskOGPFbfzHle2L34hn/TryiIpv07Zj/ur8+mNtvOi976pz42771F269TblP0weJW7jyr74X+vpONqjqHFngWweXr2qG56djvvgSnH5EJ3P6XmNT+lbKRJaFZ2/szsV+2ZIBxble3cifz545KeV2cRfyPpI5bfwGlmy/Px3/UsVDbsY7uZrVCQ1sCye0Y+p+zAONPdJ1KvTbhS0jvMbE3+BfFHkm5x9wfz8qnbGb3+S5J+2sxOza9+na3sV5ZIw9uamHevpG2W3bT+wTqvv17ZvQ7Tsizwwml6JrroQmXDBZ6Q1Gdm/0fZMJZG/Gc+7++YWb+Z/bIODsvebN2lrPP3OmVj+y+rmd7scXZ1Xq+VlgWOefrXOnffpOyekj83s0WWBQg42sxq99vPKxvKAsweHU7yDjRrlrZJFiq77WKXmf2kslQn9fxvy0bPHKfs/rXJe/WKLKuR/Rb5krL0R7+ct3t+Rwe3e/5G0gfyusqygGq/2sByB5QN8X5C0piZvUnZLRopV0s618xWWBZU5A+aWNad+TassSymwYWTBWY2YGa/YWaLPYuyvkP5MWdmb7YsCJEp+2F8XM8cj7WKvC+18zbTRqzXzjtE2VDK2nbefmUj2OYpvyLYoHrvfZH27WWSfk3Z1dbLJCn/DH1W2X2ah+bbscIOvkdvqquVHXdL8++M99aUfUfSTssCxAznVz9faM9ElpYabOeVvfP3z3ZwTp1r8+kvlXSLme1SFszjXHe/Py+7UNJl+SXTtySW+5f5fF8zs53KAok0ku/mQ8pu2N2u7OC6Jnjtzyq7UfYNyjoSk9vw6mCep7n71yX9b2W/hGxSdnPoaTUvuVA12xm93rObUn9V2Rj8J5XdA3ersg9WK7Z1qr+QNKzsV5GblV0Gj1wu6RTLIyTljpjcZ8ouiy+T9Bt52VfzZf5XXrZPDQ4ZyX+t+WVl482fUvZhrt22ZuuuvIP9H5LmKzuuJjV7nH1W2bbdqezm5qn7/G3KThb3KmtgfE7ZvSGTTleeKxGYNSpteADFzKU2ye8pu/qyU9m5KRV0pda/Khtu+A1Jf+buX5vBsi5U/f2WVNPu+aiyds8xyu7Jnyy/VtKfSLrKsqF/dysLzFJvuTuVdSauVnYe/nUdfN6f6rPKfri9S9L3lHWCxpTdtxUuy7Ngeh+W9HVJP5J0UORPZVehHszr/x4900Y6Jp9nl7IfvD/t7jdOU7ci78ukZtuIFynLUVf769sratp59ynrBE92hi5X1r7bqKzNUxvwL1TvvS9Qdym7BWi7svvzvlsz/Q+UHfM35+/D15WIoFuz7ockPaDsuPi/NfUeV/YZXZOXb1GWCWCxJOU/AJyiBlJMmPvUK46Y6yyLKLRB0m8kvhA6zsz+SNJmd/+LbteljMzsFySd4e5NnySBXmUjQ651q1u/4Et+eJu7r63/QgD1WJYP8wFJ/d5Eftu5KL+69zfuflTdF88yZvYPkq529y90uy5lZGbvlbTK3d9X77UkvoQkKb8MfYuyIR+/r2x8c8O/pLSbu1/Q7TqUmbv/s7Kb+IHZg2GaAEosH9H0GmVXeQ5TdivJteFMs5S7/3q361Bm7v5Xjb6WAS6Y9AplN9xuUXZD7ame5akDgN7V4YAvANBCpmyo31Zlwz7v08F54ICW48ofJEnufqEaTP4KAD2DK39AT8vve+eDOo08UuRL674QaCE6fwCA8mL8CgAADeO0CQAAAABzwIyu/JnZycpCEFcl/Z27fzR6/cjIiB951JHRSxLSEUknCuX9nMn4g5mMXGh9ZNVwie2I5MrAjenV2dUV6+zvLF7wWCsy1yMPPaIntzzJkYHOMzHsE6VTpO101OoibScAveqhBx/Wli1bunICK9z5M7OqpL+W9HplaQG+a2bXufu9qXmOPOpI/fst/zZtWdRYnQhyje6f2JeuY9BTiRrj0Xw2g0Z8lDO1aGN93MeTZRMT6YjK0dqiIzHa/mi/RYpuey+plw93uG9B69c5bU7WTPSZKfpZS8332p+N8tcCbUbfDyVSpO101Ooj9e+3TE3hBqDMXvmyV3Vt3TO5HHGCpPXufn+eGPsqSetaUy0AABpQsdY/gPah7QSgq2bS+Vsh6ZGa5xvyaQAAAHg22k4Auqrt0T7N7CxJZ0nSqiNXtXt1AIC5hHv+MAvRdgLQLjO58rdRUu030sp82kHc/SJ3X+vua0dGRmawOgAAarQjwTt9SbRX022n5ctpOwFonZlc+fuupGPM7LnKvrhOk/Tr0QwTGteesV3TFwa/3g5UBpJl/UFZvSAcRUTLrBcMJg4yky4bmxhNllWj/nsleHuDSKATQRCZcQ+CyBSMLrpk8JBk2e7U8SLp8T2PJssOBPvskKH0iXS4Oj9ZFqlU+sPyKDBR1aqFyqLgLGPh+5SerxKsr8+mP55oK6N7TNaGK3/lD0GFHtZ02wkAWqlw58/dx8zsHElfVRau+BJ3v6dlNQMAoA46fygT2k4Aum1G9/y5+/WSrm9RXQAAAGY12k4AuqntAV8AAGgX4r0AANA4On8AgFIySZU29P7Sdz0DAFBudP4AAOVk7bnnDwCA2YrOHwCgtOj8AQDQuFJ0/qLIa9FpP0q9EC2zaIqIKEVCfUF6BRVMWRGkXvBgD3Q60t2+8b3JsomJdMqCviCVRbR9UTqDaD6bSVKDMA1G8F4UXGVc13RZJShLf55ofAMAAJRBKTp/AAA8W3vy/AEAMFvR+QMAlBZ9PwAAGkfnDwBQSibu+QMAoBl0/gAA5US0TwAAmpKOiAIAAAAAmDW48gcAKK0ZReEFAGCO6Z3OXxAKPwr3XwnC/cerK5Y+IUoFMFFwmfWWOx5sf/H1petqBS8IFx1+tW9sT7Is2i/9lf5kWTVI5xCVRaJUHtUgrchMFD1Oo5QNCrY/So9SSRwXNL3RTQz7BNAsD9MvYTp8184evdP5AwCgSbRHAABoHPf8AQAAAMAcwJU/AEApmUwVLv0BANAwrvwBAErLzFr+qLO+VWZ2o5nda2b3mNm5U8rPNzM3s5H8uZnZJ81svZndZWYvaePuAAAgxJU/AEA5dSfP35ik8939djNbKOk2M7vB3e81s1WS3iDp4ZrXv0nSMfnjZZI+k/8PAEDHceUPAFBaZq1/RNx9k7vfnv+9U9J9klbkxZ+Q9D7poDDF6yRd7pmbJS0xs8NbvR8AAGhEh6/8BWfWIOzueBBif2Kid8L1RmkJsheky+MUEuntbwdXen1Ff2WP0kfsn0ineuivDCTLBqtDwfrS9axa+rCPUitMROkxZvAejQfLrfbO4R2mBwHmIjNbLel4SbeY2TpJG939zinfkyskPVLzfEM+bVOn6gnMVu1I2VC3LTdXtWG3kD6iOxj2CQAoJVPbGg8jZnZrzfOL3P2ig9ZttkDS5yWdp2wo6AXKhnwCANCz6PwBAEqrTZ2/Le6+Nlhnv7KO3xXufo2Z/bSk50qavOq3UtLtZnaCpI2SVtXMvjKfBgBAx9H5AwCUVP3onC1fY7bCiyXd5+4flyR3/76kQ2te86Ckte6+xcyuk3SOmV2lLNDLdndnyCcAoCvo/AEAyqk70T5fKekMSd83szvyaRe4+/WJ118v6RRJ6yXtkfSOttcQAIAEOn8AADTI3b8tBRGlstesrvnbJZ3d5moBANAQOn8AgNIiWBwAAI3reOcvFYK/aKqDCT8QrCudXiBqL5hF8xVvaRRN2dCOsMMz2Y4iiqYJiNIyFN2C6P0NUz0EZVmwv7RKwZSa49F7XzjtRnq+SrCNqboQFhvd0sZonwB6RNF0DkXPTeF8hevSWeG3Yqfvkw5qU++95fu9PWbU+ctvat8paVzSWBQdDQCAVqNxgLKh7QSgm1px5e817r6lBcsBAKApFTp/KCfaTgC6othYNAAAAABAqcy08+eSvmZmt5nZWa2oEAAADbHs9pVWP4A2o+0EoGtmOuzzVe6+0cwOlXSDmf3A3W+qfUH+xXaWJK1ctXKGqwMAIGNdSPIOtEBTbadVR67qRh0BzFIzuvLn7hvz/zdLulbSCdO85iJ3X+vuaw9ZfshMVgcAwEGsDf+Admq27bR8+UinqwhgFit85c/M5kuquPvO/O83SPpwOI+kSiLMfhTSPooEOx6kT6gEy6xYNb3QKKR/kCZgJqJgt9E2dlxQ0dR7W080X5Qiomjo5EpwQBV9H+qFlA63seDxZgV3gAdt2zAhR2K/kegBABpTpO00GxRN1yB1PmVDNF9Y1uGUFOEPVcGIiKjtEP/4VWx9MxJmu+KHuqJmMuzzMEnX5ju/T9I/uPtXWlIrAAAaQAMAJUPbCUBXFe78ufv9kl7cwroAANAUOn8oE9pOALqtFXn+AADoCvp+AAA0js4fAKCUstQM9P4AAGgUSd4BAAAAYA7gyh8AoKTI8wcAQDM63vlLhZGNwstG4f4rwcXLqFEQNReiNBBFQ/JK0kSUtiAIEXxgYrTwOjtpIkpZEIjSIETLLLq+4b55ybI4VHO6rF5dKtXgozaDENhJ4bEffdaKhMYm2QO6h84f0Bs6neogW2eUDio4Z4cpG6K2WtAmKZgioqjwmy/I6VQJ5rQovVRQVolySBVcn1SvTRKskfNCiCt/AIDS4hwPAEDj6PwBAEqLX3gBAGgcAV8AAAAAYA7gyh8AoJRI9QAAQHPo/AEASovOHwAAjaPzBwAoLfp+AAA0rsOdP0uGda0UDNtfDdIyFA1ZG7EgtOy4j4fzRmGQozQQByYO1K1XKxVNoVB0vr5K+jAc01iyLNovUfqIvkp/siw6nmJxGOd4uel5x4PjIkrZEIVyjkTvYDtCVQMzQ54/oAyi80e9c0vUdopSgRVNFTURtOXCsoLpvIqeW6M2QJiWISpTuq1S9fR8XnR9dTY92g7SQBRHwBcAAAAAmAMY9gkAKC1+xQUAoHF0/gAApUS0TwAAmkPnDwBQWvT9AABoHJ0/AEBpceUPAIDGEfAFAAAAAOYArvwBAMqLK38AADSso50/l2sskZttqDqcnG90YjRZFuUAifK4jAfLjER5VaIcL5K0f3xfsmzv2N5k2a6xncmySnDxNhoOFc0XibYxynM4PpEuG6gOFKpLZLAymCzbO7YnPV81PV+UHzA6LiRp14EdybIoB2CcjyddFmWcrAR5FfssXVZJbH/RYwmYOfL8AZ1UNF9dWBYsU4rbHVHevahNMjGRziE85kFZkF84ni9dVq/tmBK1HaKy/qAt02fpsomg7VAN8gOGXY06X99RHkByABbHlT8AQDkZF/4AAGgGP9kDAAAAwBxA5w8AUEqmbJhOqx/hOs1WmdmNZnavmd1jZufm0//UzH5gZneZ2bVmtqRmng+Y2Xoz+6GZvbGtOwUAgACdPwBAaXW68ydpTNL57n6spJdLOtvMjpV0g6QXuvuLJP2XpA/k9TtW0mmSjpN0sqRPmwU35AAA0EZ0/gAApdXpzp+7b3L32/O/d0q6T9IKd/+a+9MRH26WtDL/e52kq9x9v7s/IGm9pBPasjMAAKiDgC8AgNJqU8CXETO7teb5Re5+0bPXbaslHS/plilFvynpH/O/VyjrDE7akE8DAKDj6nb+zOwSSW+WtNndX5hPW6bsxLZa0oOS3uLuW+suS+nQ9WFI+yica5DOoWgI4DAObOBAEAJYkvYEKQb2jadTPURpEsaDoP5RqotIFK44TJ8RlEWhnPuCFBiRapCWwPvS64vCAxc9DuvGKw4UDYHtBVcZfWY8CqmdnKfY5wXoYVvcfW30AjNbIOnzks5z9x010/+nsqGhV7S3iuhlrWw7dVrRdA51FposqpfqIGzLhSkb0m2yA0G6r31BmyQqGx3fny4L1le0rRalcxiopFNoDQQprYaqQ0FZOiVbf7A+D5pOffW6IUE7p2gaiEh07M+mNBCN7J1Lld2nUOv9kr7h7sdI+kb+HACAzmnDkM9GTvBm1q+s43eFu19TM/3tyhr8v+HPtCI2SlpVM/vKfBpmt0tF2wlAD6rb+XP3myQ9NWXyOkmX5X9fJunU1lYLAIBYl6J9mqSLJd3n7h+vmX6ypPdJ+kV3rx3mcZ2k08xs0MyeK+kYSd9p9b5Ab6HtBKBXFb3n7zB335T//Zikw1pUHwAAGtaFoTivlHSGpO+b2R35tAskfVLSoKQb8jrd7O7vcfd7zOxqSfcqGw56tnt43wFmL9pOALpuxgFf3N3NLDlI1szOknSWJK08cmXqZQAANK3TnT93/7amvxPl+mCej0j6SNsqhdJppu206shVqZcBQNOKpnp43MwOl6T8/82pF7r7Re6+1t3XjowcUnB1AAAApVao7bR8+UjHKghg9iva+btO0pn532dK+mJrqgMAQIMsS/XQ6gfQJrSdAHRdI6kerpR0orK8RxskfVDSRyVdbWbvlPSQpLc0sjJXOqRtFOrWglivFoS6DcMHByFio7pEZfVSPYRhgMeLhQGOwgfvGUunj9hzYHeh+fYH9RyLUlIEt7gsGVyULBuopsMHDwXhikcnFiTL6oWVTs4XvA+DQV0kqRIcp+0QpWwIIhlr3NLzVcnogB40m8JvY/ZoZdupLKI0ENF5N0o/JMXthyidw/4gLcPusXQbaPeBXcmyXWFZeplRioio7Ri1f/sr/cmyeX3ptAzz+9PtowX985NlY/3ptBrz+9Lz9SvdPqqfkSHdTYm/+4s1WKL9PZvU7fy5++mJote2uC4AADTM1FhqBqDTaDsB6FUzDvgCAEC30PkDAKBxRe/5AwAAAACUCFf+AAClxYU/AAAaR+cPAFBOxrBPAACaQecPAFBedP4AAGhYZzt/7hpLhLQdrR/vdVoWzFcNNs8tHQY2Hcy2Tl3qhIitVtLh/m0iPW+UBiIKO/zUvq3Jssd2b0mWPbEnPd/2/el0FfvG0ntudDwdqnnVonSqh4UD85Jly4YXJ8tGhpcly8Yngnd4KF1kfQuTZZU6x+9gtejxHaQ5ieYrejtvkAcilQaCDBAAUC4efNdHKRsKLzM6twSpHKT4nB2l0IraRzsObE+WbQ3aTk/tD8r2bUuW7RzdkyzbP5Zu40WG+9IpFBYNptM5LBtaEpQtTZbVe59S5velWyuVOu1mq6TbMlH7vxIcb0VHi0THcNlGoHDlDwBQWmU76QIA0E10/gAApWSSKvT9AABoGJ0/AEBJkeQdAIBm0PkDAJSTSRU6fwAANIwk7wAAAAAwB3DlDwBQSiYCvgAA0IyOdv5cLtf04eKLhpAN1+fTr2smKpZO11B33uBCa5QqYMfojqBsZ7LsoR2bkmUPbnsiXbY9HQJ51850uOK9e9Mhl8fH0+/FoyPplA0Lh9O5F45emg5JvH/R9ClF6hmoDiTLBivpsMr9lf5wuRPhsRiFQQ4uzhds80bhkaMQ3/VSmQDdwPAVoHOic0SqfSdJE1FZnfbfmKfP53vG022SXWPp9tGT+55Klj22+/Fk2cZdm9Pz7UqngXhy795k2Z4DxdorCwbS7ZWReek0WYcvSO+X0Yl02oko1UHUhq0G7eaoTJIqni6veNQ+SrdXiqYymU1tIK78AQBKi3v+AABoHJ0/AEApMewTAIDmMGIGAAAAAOYArvwBAErKGPYJAEAT6PwBAMrJGPYJAEAz6PwBAErJxL0LAAA0o6OdP7OK+irp0LTBjMmiKJ1DlD4iCh18YCJdFoXsj0LkStK+8X3Jsr1j6TDAUTqHLXvToYWjdA53b0ingdi4MT3fk9vSddm/L9j+0fR7sXh5OtXDyNJFybLth6f32ejh6fVVK+nm4lA1nVpiuG84WdZXJ9VDFAa5P2i9ehAGOQpWHF0LiT4zURoIoBcx7BPooCDcf5QKIGo71Uv1NTqeTiO1L2g7bd+fTpO1Ze+WZNnDQZqsH29Nt48e3pZOk7Vj+65k2f796TZnNLJheDidfuqxxfOTZbtHi6Vz6LN0l2Gwmq5LlCYrKqu3zokgDUTUlqkG2xj1N2YTWnoAAAAAMAcw7BMAUFrc8wcAQOPo/AEASsnEsE8AAJpB5w8AUFp0/QAAaBz3/AEAAADAHMCVPwBASZHkHQCAZtTt/JnZJZLeLGmzu78wn3ahpHdJmox5e4G7X193WUqHbY1C/U7UCQNcRBR2OCrbH4QcHgtSREjSniAk8a4Du5NlT+7dlix7ZMfjybIfbXkyPd8jm5Nljz2ULtPj6W3Q/mLv0/bNQajmlenwyFFI4sHBdOqFhQPpdCOLBhYE8y1Mr69OuOJIvTDXKVZJN3orQYqIomkggrkKzAPMnBn3/KE3tbLtVFR0jvSC39vRXNEyo3NLvTZelEZr73iUJiud6uHxPUH7aMdTybIHnkyn13ri8fR8UZqsfUGarOjrbf5wOjXVsj3pNFnRcTHUl+4WLBiYlyxbGLSdFvSny4brpEjrD1JIVBW0V6JjP9inc+Vs0siwz0slnTzN9E+4+5r80bYvLwAAUsys5Q+gBS4VbScAPahu58/db5KU/jkDAIAuqZi1/BExs1VmdqOZ3Wtm95jZufn0ZWZ2g5n9KP9/aT7dzOyTZrbezO4ys5d0YLegy2g7AehVMwn4ck5+Irtk8iQHAMAsNybpfHc/VtLLJZ1tZsdKer+kb7j7MZK+kT+XpDdJOiZ/nCXpM52vMnoIbScAXVW08/cZSUdLWiNpk6Q/T73QzM4ys1vN7NYng3vQAABohrXpEXH3Te5+e/73Tkn3SVohaZ2ky/KXXSbp1PzvdZIu98zNkpaY2eEz2W6UVqG20xNPbOlQ9QDMBYU6f+7+uLuPe3YH72clnRC89iJ3X+vuaw8ZOaRoPQEAeJY2DfscmWx454+zplu3ma2WdLykWyQd5u6b8qLHJB2W/71C0iM1s23Ip2GOKdp2Wr58pHOVBDDrFUr1YGaH15zkfknS3a2rEgAAjWhbqoct7r42XLPZAkmfl3Seu++oDRTj7m5mhMHFQWg7AegFjaR6uFLSicp+Cd0g6YOSTjSzNcqi/j4o6d3tq2KcQmGgmg51W7EiYetjUSjjMR8L543SRIyOp8PdPrEnHVr4sd3pFBHbtqZDCz+1PV2mLfvSZQXTOYR2B/vt8T3Joq1L02kgDtmZnu+pxenQ0DtH0/szev/2T6TLJKli6YvsFgw0G68EKVDCMMdRXdJpIEKpUN00cdElZupKdE4z61fW8bvC3a/JJz8+2bjPh3VO5szZKGlVzewr82mYxXqh7VRUnAaiWPqIqKxeuqMDQRtw31i6vbJ7LH0+37ov3QaK2lVbnwrSR2zZlizb8WTQ5toZpAkLxuftXpze9vEg1cHAQDoV1mPz0ukcnrMg3ebafSDd5opSddRrN0cpQsJUJm347S38XARFvRhBum7nz91Pn2byxW2oCwAAPc2yM/nFku5z94/XFF0n6UxJH83//2LN9HPM7CpJL5O0vebqD2Yp2k4AelWhYZ8AAPSCLiR5f6WkMyR938zuyKddoKzTd7WZvVPSQ5LekpddL+kUSesl7ZH0jo7WFgCAGnT+AACl1emun7t/O1jta6d5vUs6u62VAgCgQXT+AAClZOrKlT8AAEqLzh8AoLTo/AEA0LiiSd4BAAAAACXSM1f+ohCqUWj6KA3EeBBCNgodXC/scEqfxbtzIljurgPpELqRJ/ekw+s+8cS2ZNnoo0HY4T1x6N1Civ44H6SB2Pr4tmTZ5gXpcMWPLV2ULDtqf3q/RO/RvL7hZJkk9VfSoZX7NZAsG5tIb3/V0sfwUDW9/dFbER37hVNEAG1jPRlGG5it4jQQxeaLwvlLcdvpQHCO3DeWTsG050C6bOfeIH3E7nTZzt3p9pieClJohakegu+38fQ+3TGYbnMsC1JE7Nif3i+7R9PbF6XCCtvbE3F7eyJK9VA4z1SxlCRRWq6y6ZnOHwAAzTAxfAUAgGbQ+QMAlFOXkrwDAFBW/GgKAAAAAHMAV/4AAKVFtE8AABpH5w8AUErk+QMAoDl0/gAApcU9fwAANK6jnT+XNJZIvzAehOuNl1ksDGzF0rc7Fk31UE+1kt7dUX32BuGK94+l99toUKaJoiFyA+1og0X1HEuXTQTzjU+kj5nR8WB/jo8WKpuJ6BiOjtMoNHaUsiEuSxyjtL3RNaYKByDQG7wN7QrVSRMRtQGD+kTtgLD9MJ4+t3rQJonaK1HKhrgNlN6GKIXC+Hg0X7BfCqZIiN6H4ukaMBMEfAEAAACAOYBhnwCA0mLYJwAAjaPzBwAoJTMCvgAA0Aw6fwCA0jLu+QMAoGF0/gAApcWwTwAAGkfAFwAAAACYAzqb6sEndGB8+rQFUbjXgcpgsuxAEM62qGgY0UyGGFWDdA4Dlf5Cy+yvpkPzDw8OJMu2zg/Wt/NAuiwILaxKsG+isiiUcV/w+0Rfepn9fen9MtSXPuwH+9L7rC9M1ZFenyQNBsdwf/DeRylAqq1O2VBHeplceUF3mIx7/oBeEX0Wg9N8vav3leA6RXSui87ZA0Hbqb8/XTY4kD5f9w+myw4MB83tIPVCuE+DZQ4NpNsy/QPBfEH7KGqntqs9wsiO9mDYJwCgtIwBLAAANIzOHwCgtLjyBwBA4+j8AQBKi2FBAAA0jvEyAAAAADAHcOUPAFBKlv8DAACNofMHACgn454/AACa0dlUD3KN+fRpBKqWrkoUQnY0ih8cKPprcRSWtt69JwOVdOjdgWq67NB5S5Nlz1mwJ1m2eWRJsmzbjt3Jsj2jQfqMbaPpsigNRJTOYShIk7AknSJh8fLFybKlyxYmyw6dPz9ZtmggXbagP102r284WSZJEwr2TSA63oqmbBj3sWTZgYl0mo9USgr3YtsGtAL3/AGdUzQVVlwWn8uqQcqGoWq6jTDcN5QsWzgwL1m2bF66bNuiYL49C5JlWybS58nx+UFTPPh661+Q3r6li9N1WbgwvQ1Lh9NtmWifDQdtoIFqsRQRUp3jpmAbKNqp7Ur11mvq7jkzW2VmN5rZvWZ2j5mdm09fZmY3mNmP8v/TPRQAAFrMlOUAa/U/YKZoOwHoVY2c5cYkne/ux0p6uaSzzexYSe+X9A13P0bSN/LnAAAAcx1tJwA9qW7nz903ufvt+d87Jd0naYWkdZIuy192maRT21RHAACmYTJr/QOYKdpOAHpVU/f8mdlqScdLukXSYe6+KS96TNJhiXnOknSWJK1YdUThigIAMBWdNfS6mbadVh25qgO1BDBXNHxzg5ktkPR5See5+47aMnd3afrIK+5+kbuvdfe1y0aWzaiyAADUqsha/gBapRVtp+XLRzpQUwBzRUOdPzPrV/bldYW7X5NPftzMDs/LD5e0uT1VBAAAKBfaTgB6Ud1hn5aNqblY0n3u/vGaousknSnpo/n/X6y7LJn6bPqQr9HQnbEgNH299aX0BaGDPUofEUS1T23bpGolHdJ2Xl86jcCy4XRKgyMXBakeDk2nczhwIL1PN1TTvwnsnLczWabtBdNAHJ7e9sVBuOJVK5Yny1YsT19lXjaUDkk82JdOudEXpCPpD0IZS3EKhT5Ll0XpHCaCFAsTnk7XkUq3Ikm7DuxKlqWMB+sC2snEsE/0pla2ndqhaNh6LzhfFJa/Xrj/VJohSRoMUj0sHEi3H0bmLUmWrViYPg/uGNmfLPOg6Tg4mG5b7N27L1kWfb/Nn5dO9bBkaTrd1WGHpNuUKxam54vaolEqrMFK+j2K3lupTnq1wikbWq9s56FGrvy9UtIZkk4yszvyxynKvrheb2Y/kvS6/DkAAJ2RJ3lv9aPuas0uMbPNZnZ3zbQ1ZnZzfo681cxOyKebmX3SzNab2V1m9pI27hH0DtpOAHpS3St/7v5tpTvKr21tdQAAaJR1K/HupZI+Jenymmkfk/Qhd/9y3sj/mKQTJb1J0jH542WSPpP/j1mMthOAXtVUtE8AAHqFKR4W1C7uflMewfGgyZIW5X8vlvRo/vc6SZfnwT1uNrMlZnZ4TcRHAAA6hs4fAAAzd56kr5rZnym7peJn8+krJD1S87oN+TQ6fwCAjuv8T6YAALRIm5K8j+T37U0+zmqgKr8t6XfdfZWk31UW7AMAgJ7ClT8AQGm16Z6/Le6+tsl5zpR0bv73P0n6u/zvjZJqs3SvzKcBANBxHe38mUyVOiF9p7NvPJ3OoBqE348aBdF8Ra+HhikiFIe7He9Lh8tfPLgoWbZ8XjpE8HHL0yGJ5w+kww4vWpwO2bvtqXSqh5270u/T+Hg6LUEUrviQkXRo4ZVBOofVi9PzReGK5/Wl69JfTe+zeqGqh6vzkmUL+tPhqKPPSxQiOUw7EmTdiMJmp5QtxDFmk8aic3bIo5J+XtK3JJ0k6Uf59OsknWNmVykL9LKd+/3QCdF3s0d5CaJlhutLN54qHpTVOX9GbafhvvS5ddFA0HYaPiRZtndRlM4hvd+G+9LtygUL0/Uc3Z9OkxW9h4ND6TbJ8oXpdsVRQftoxYJDk2WHDKXbXNG+HupLp9fqr6S3QYqPjUqUzqF3zgs9iSt/AIBSMrXtyl+8XrMrlUXyHDGzDZI+KOldkv7SzPok7ZM0OVT0ekmnSFovaY+kd3S8wgAA5Oj8AQDQBHc/PVH0M9O81iWd3d4aAQDQGDp/AIDS6qFhnwAA9Dw6fwCAcrL4PiMAAHAwOn8AgJKyrtzzBwBAWdH5AwCUkolhnwAANKOjnb9xH9P20a3Tli3sT4eJHZsYS5b1VdMh7aNQr9Gvxa4ovH6ySBMexNBXHJo/CrG/ZCAdllfpaL6qVtKVPSRId/C8JUuSZY8ftjtZ9uTevcmyA+PpVBZR4+3Q+em0E0cuWposG5m3JFm2eHBhsmzZUHqZ0fuwqD94jxS/vwNBGOuIBTlJoqFw/UFdorDKqXQW9dJcAABmieB8XfGgXRWck+qdQ/qCttNwNZ1GYFHQrjwwnG5XRmm7BoK6LB5Mp3PYuijddto7lq5L9NPWvP50XZYNpxuHh85Lp7l4zvzlybIo1UOUsip6j6L3VorbJFE7JxwRwg+GXPkDAJQX+ZwAAGgcnT8AQGlFiX4BAMDB6PwBAErJxJU/AACaQYxsAAAAAJgDuPIHACgpI88fAABNoPMHACgt7vkDAKBxHe38jU4c0KN7Nk5bdvSidIjcgSA0fSQKhR+pBGF+J5RO51AvXHGRMPqSdOjwocmygepAsqzP0m/vooFdybL5/emwvFV7Ilk21Jde374glPGy4fT6otDJz5k/kixbOJBOEbFoIEj1MJgOZbwoSvUQpeOQtGcsHeZ5zNP7ZmziQLKsElzxGNRQer7gcxEts1qZ/v0lyTa6xYx7/oBWK/6dHqTXCs4tUdtIitMBDAVpBCb64/RbyfUF9Rmqps+ty4IUWrtG9yTLRsfT5/nIYF+6/bdoIJ16IWoDLR5YEpSlU2fM70uvbzDYZ1E7VYrbxlF7JTqGC5fNonMNV/4AAKXFjw8AADSOmyUAAAAAYA7gyh8AoKRsVg3FAQCg3ej8AQBKi4AvAAA0js4fAKCUsiTv3L0AAECj6PwBAErKCPgCAEATOtr566/067Dh5zQ9X5+lw/x6kHohLPN0Ooe4LsEuq/MDdH8QrtiD9BJRuP+F/emQvdUw1UM6ZO+yoaXJshULDkuWjQb1nPD0exGFHY5C+UYW9EdhjtPbPu7jybIdo9sL1UWKw0MreO+jNCdhCOTgYCx6pSR1HEbHLgCg90T3yhZtHylYZsWD9dU5J1WDpupAJahr0FyLtr8vkdZIkob70qkl9oylUz3sH9+fLBubSLc7Iv1BPYf60m2OeX3pFFrDQdm8arH5olQdUTtVqtOWiRrd3AseqtsKNLNVZnajmd1rZveY2bn59AvNbKOZ3ZE/Tml/dQEAeIaZtfwBzBRtJwC9qpErf2OSznf3281soaTbzOyGvOwT7v5n7aseAABpDPtEj6LtBKAn1e38ufsmSZvyv3ea2X2SVrS7YgAA1MOVOvQi2k4AelVTN/+Y2WpJx0u6JZ90jpndZWaXmNm0N4qZ2VlmdquZ3bp1y9aZ1RYAgJwpS/XQ6gfQSjNtOz3xxJZOVRXAHNBw58/MFkj6vKTz3H2HpM9IOlrSGmW/bv35dPO5+0Xuvtbd1y4dSQcSAQAAmE1a0XZavnykU9UFMAc0FO3TzPqVfXld4e7XSJK7P15T/llJ/9KWGgIAMB0CtKCH0XYC0Ivqdv4sO7NeLOk+d/94zfTD8zHtkvRLku6ut6yqVbV4YMn0FakT7jVZv+ZGrj4tiDpcWLVOyPuiqR48SJNg1fSGRI2igWq6LgPj6bIonO/4xFiyLEr1EKVzqAahjCPz++cny4aq6VDN0b6uBKkV4lQOnUfia8wVRc8BQDu1su3US4oHWErPF6Utqiv4+A9EqSeCc2TUVhsMzvXzgxRTUfsoSjEV7e9oG6L0CgOVgWRZ1JbpD+Yrms6hXjqvqDxq40b7LSybIz8mNtKyfqWkMyR938zuyKddIOl0M1ujLEnZg5Le3Yb6AQCQNFdO1igd2k4AelIj0T6/rel/srm+9dUBAAAoN9pOAHpVsTF1AAB0mYk8fwAANIPOHwCgpEwVhn0CANAwOn8AgNLiyh8AAI2j8wcAKC0CvgAA0DhiZAMA0AQzu8TMNpvZ3VOmv9fMfmBm95jZx2qmf8DM1pvZD83sjZ2vMQAAmY5e+atYVfP7F01bFuVXG5s4kCyL8uNFiv5WHOeBi/vSUR6USJQjLyqrVtNvb5THZjjIgzfm6Vw17sXei2iZRfM/RvkIF/YvTJYVzUc4VE2vT5L2jO0qtNxOYwgdyiQL+NKVz8+lkj4l6fKn62L2GknrJL3Y3feb2aH59GMlnSbpOElHSPq6mb3APUjuBXRRdDW96Hk+zD0bnHel4ufIMJ9bJcqfl847OFAZTJaNB22ZKJdf0X0a7ZdoG6K8ilFOvni+dFlUl3rvbXTcFM3lB678AQBKy2TW+kc97n6TpKemTP5tSR919/35azbn09dJusrd97v7A5LWSzqhdfsAAIDG0fkDAJRWRdbyR0EvkPRqM7vFzP7VzF6aT18h6ZGa123IpwEA0HEEfAEAlJO1LeDLiJndWvP8Ine/qM48fZKWSXq5pJdKutrMnteOygEAUBSdPwAADrbF3dc2Oc8GSdd4dgPPd8xsQtKIpI2SVtW8bmU+DQCAjmPYJwCglLKAL63/V9AXJL1GkszsBZIGJG2RdJ2k08xs0MyeK+kYSd+Z8cYDAFAAV/4AAKXVjTx/ZnalpBOVDQ/dIOmDki6RdEme/mFU0pn5VcB7zOxqSfdKGpN0NpE+AQDd0tHOn0mqJC42TkTn7+DkbsUi5IaKpo+oJwqFG12D7Q/aCVGY3KIpIqLtb8cyI1FKimh90XxRyo3oV/9oG+qFK25LqOrgoIlTkgTHYaGGNCGV0S3WlVQP7n56ouitidd/RNJH2lcjoDPCH1uC03x0/gzTQEiqBMuN6hOeP4P5Kp4+R0bn1gml2xZROoei7aMoOFWYIiFKERF8n0btmKLLrPfjXTtSNnTjB8New5U/AEBpVTiRAwDQMO75AwAAAIA5gCt/AIBSmgz4AgAAGkPnDwBQWty/AQBA4+j8AQBKakapGQAAmHO45w8AAAAA5oCOXvlzucYmRqctmwhjBBcLkVv0F+E43H80X71w/1FZet4wRURBcTqHdGqJsYmxZNl4MF+UliEyWB0stMyioZOLHjP1ti9KrxC9v2Fo5WB99UJnJwWftWCmYusCWoBhn0BvaEcaiGy50fksSMEUpkoKUj1EaZSC/GLhdoTt2GLCb77CKTCilA3Fllm0LvUUTeUBhn0CAEoqyh0LAACejc4fAKCcjF94AQBoBp0/AEBJEfAFAIBmMF4GAAAAAOYArvwBAEqLYZ8AADSOzh8AoLQY9gkAQOPqdv7MbEjSTZIG89d/zt0/aGbPlXSVpEMk3SbpDHefPo9DzuVhOoCUKPVA4ZD2wa/FXjAtQT1RVLpoO6oF2zZxyooo1UN6+6sWpXpIl0UpIkYT6T+kONVBpGjaiegqQrTMeqGq+yz9Uev0lYuiaTCAXmOi84fe1Mq202xQNA1Eu9bpBdtHUWXD+dqw+UW/+aK0ZO1IHxHXZQapHhj1UVgjLev9kk5y9xdLWiPpZDN7uaQ/kfQJd3++pK2S3tm2WgIAMB2z1j+AmaPtBKAn1e38eWZX/rQ/f7ikkyR9Lp9+maRT21FBAACAMqHtBKBXNTSmzsyqZnaHpM2SbpD0Y0nb3J8e57dB0oq21BAAgGlZW/4BrUDbCUAvaqjz5+7j7r5G0kpJJ0j6yUZXYGZnmdmtZnbrk088VayWAABMw8xa/gBaoVVtpyee2NKuKgKYg5qKpuHu2yTdKOkVkpaYPR3FYqWkjYl5LnL3te6+9pDly2ZSVwAADsKVP/S6mbadli8f6UxFAcwJdTt/ZrbczJbkfw9Ler2k+5R9kf1K/rIzJX2xTXUEAGBadP7Qi2g7AehVjeT5O1zSZWZWVdZZvNrd/8XM7pV0lZn9oaTvSbq4/qIsmdIgDJEbRc+NUiQ0d2HzaeNFz/11UkRUKundHdX1QJAKoWiqi6iBE21+lHph3NNzRvMdmDiQLIvSMkRlUWqJ/kp/siwSbUO9BmM0lKxw2OVAO9KVJD+GZI4AgKla2Haa3eoNtXZPn2Sic2/UrgzbQGGKiGiZgWAbCis4RL0dP3C160czhuG3R93On7vfJen4aabfr2wMOwAAHWeicYDeRNsJQK9q5MofAAA9iGGaAAA0g84fAKC06PwBANA4On8AgHIyhn0CANCMYtFCAAAAAAClwpU/AEBpMewTAIDGdbTzV5Elw+yP+3hyvnGlw/ZHKRKiNAhhioSwLmn1GiFF63rA06kQKh4ts1h6AVc6TUAUcrmosSDVQ5QGIhKmDglE6RxmolLwInvRVB5FUz1Eey11XBTd18BMEe0TmP0Kf8Z76dRUku+ptqSBKMm2zyVc+QMAlBTRPgEAaAb3/AEAAADAHMCVPwBAaXHlDwCAxtH5AwCUFveTAADQODp/AIDS4sofAACN454/AEApmSZDvrT2X931ml1iZpvN7O5pys43Mzezkfy5mdknzWy9md1lZi9p/Z4AAKAxHb3yN+ET2ju2Z9qy6HQbht8PhvyMeTpFxMR4uixSsWqhutStz0Q6NP9gZajwOlOiVADjQdlEkAYiep+qwX5b0L+w0Hx9ibQhktRn6UO7aAqMSJQeo55KJV3XKD1I4dDRQbqO8TDNx/RlDLvDHHSppE9Jurx2opmtkvQGSQ/XTH6TpGPyx8skfSb/H0AbteXc1EvpI9qA8/ncwJU/AEBJmcxa/6jH3W+S9NQ0RZ+Q9D4d3ERcJ+lyz9wsaYmZHd6KrQcAoFl0/gAAJWZteGjEzG6teZxVtxZm6yRtdPc7pxStkPRIzfMN+TQAADqOgC8AgHKytg1T2uLuaxuuhtk8SRcoG/IJAEDPovMHACitHon2ebSk50q6M++MrpR0u5mdIGmjpFU1r12ZTwMAoOMY9gkAwAy4+/fd/VB3X+3uq5UN7XyJuz8m6TpJb8ujfr5c0nZ339TN+gIA5i46fwCA0upSqocrJf2npJ8wsw1m9s7g5ddLul/SekmflfTfW7HdAAAU0dFhn2amgerg9GXBCTdM9VC0LpViQ4VmUpeJYBvDBkeYmqDokKdi8xVdXzTfwv7FwXzFWBuOmYkgBUa9FBFROoc49cJ4MF+4ypZL79OeGHaHOcjUWHTOVnP30+uUr6752yWd3e46AWg/UiFgNuCePwBAafXIPX8AAJQCnT8AQGnR+QMAoHHc8wcAAAAAcwBX/gAApcU9OAAANI7OHwCgtBj2CQBA4+j8AQBKqVvRPgEAKKuOdv7uuP3OLUsHRx7Kn45I2tLJ9dfRS/WhLtOjLtPrdl2O6uK6AWBWu/22720Z7pvfi22nXqqL1Fv1oS7Toy7P6FrbqaOdP3dfPvm3md3q7ms7uf5IL9WHukyPukyvl+oCdBrDPjHb9WrbqZfqIvVWfajL9KhLb2DYJwCgxOj8AQDQKDp/AIDSousHAEDjutn5u6iL655OL9WHukyPukyvl+oCdBQBXzDH9NL3fS/VReqt+lCX6VGXHmDu3u06AADQtBe/5EX+1X//UsuXe/i8I2+bq/eCAABmN4Z9AgBKjCt/AAA0is4fAKC06PoBANC4SjdWamYnm9kPzWy9mb2/G3WoqcuDZvZ9M7vDzG7twvovMbPNZnZ3zbRlZnaDmf0o/39pF+tyoZltzPfPHWZ2SofqssrMbjSze83sHjM7N5/e8X0T1KXj+8bMhszsO2Z2Z16XD+XTn2tmt+SfqX80s4F21wXoPmvTA+g9tJ2eXnfPtJuC+nSjfdAz7aY69aHt1GUd7/yZWVXSX0t6k6RjJZ1uZsd2uh5TvMbd13TpHo9LJZ08Zdr7JX3D3Y+R9I38ebfqIkmfyPfPGne/vkN1GZN0vrsfK+nlks7Oj5Nu7JtUXaTO75v9kk5y9xdLWiPpZDN7uaQ/yevyfElbJb2zA3UBusosC/jS6gfQa2g7HeRS9U67KVUfqfPtg15qN0X1kWg7dVU3rvydIGm9u9/v7qOSrpK0rgv16AnufpOkp6ZMXifpsvzvyySd2sW6dIW7b3L32/O/d0q6T9IKdWHfBHXpOM/syp/25w+XdJKkz+XTO3bMAAA6grZTrpfaTUF9Oq6X2k116tNxtJ0O1o3O3wpJj9Q836AuHQw5l/Q1M7vNzM7qYj1qHebum/K/H5N0WDcrI+kcM7srH9rQsaEUk8xstaTjJd2iLu+bKXWRurBvzKxqZndI2izpBkk/lrTN3cfyl3T7MwUAaC3aTrFeazdJXWw79VK7aZr6SLSduqor9/z1mFe5+0uUDaU428x+rtsVquVZLo5u5uP4jKSjlV0m3yTpzzu5cjNbIOnzks5z9x21ZZ3eN9PUpSv7xt3H3X2NpJXKfg3+yU6sF+hF1oZ/AOrq2bZTD7SbpC62nXqp3ZSoD22nLutG52+jpFU1z1fm07rC3Tfm/2+WdK2yA6LbHjezwyUp/39ztyri7o/nH5gJSZ9VB/ePmfUr+8K4wt2vySd3Zd9MV5du7pt8/dsk3SjpFZKWmNlk9N6ufqaATqLzhzmCtlOsZ9pNUvfaB73UbkrVh7ZT93Wj8/ddScfkEXYGJJ0m6bou1ENmNt/MFk7+LekNku6O5+qI6ySdmf99pqQvdqsik18YuV9Sh/aPZVEXLpZ0n7t/vKao4/smVZdu7BszW25mS/K/hyW9Xtk4+hsl/Ur+sq4eMwCAlqPtFOuZdpPUtfZBz7SbovrQduq+juf5c/cxMztH0lclVSVd4u73dLoeucMkXZtHd+uT9A/u/pVOVsDMrpR0oqQRM9sg6YOSPirpajN7p6SHJL2li3U50czWKBsm8KCkd3eiLpJeKekMSd/Px2hL0gXqzr5J1eX0LuybwyVdlkd+q0i62t3/xczulXSVmf2hpO8p+8IFAMwCtJ2e0UvtpqA+3Wg79VK7KaoPbacus2z4LwAA5bLmZ17s3/iPr7V8uSNDz7mtS6l/AABoKwK+AAAAAMAc0PFhnwAAtAYBWgAAaAZX/gAAAABgDuDKHwCgxLjyBwBAo+j8AQBKyUTXDwCAZtD5AwCUVh5uHgAANIDOHwCgxOj8AQDQKAK+AAAAAMAcwJU/AEBpcd0PAIDGceUPAFBi1oZHnTWaXWJmm83s7pppf2pmPzCzu8zsWjNbUlP2ATNbb2Y/NLM3znybAQAohs4fAKCkTGatfzTgUkknT5l2g6QXuvuLJP2XpA9IkpkdK+k0Scfl83zazKqt2gMAADSDzh8AAE1w95skPTVl2tfcfSx/erOklfnf6yRd5e773f0BSeslndCxygIAUIPOHwAArfWbkr6c/71C0iM1ZRvyaQAAdBwBXwAApZTdodeWkC8jZnZrzfOL3P2ihupk9j8ljUm6oh0VAwBgJuj8AQBKrC2dvy3uvrbpmpi9XdKbJb3W3T2fvFHSqpqXrcynAQDQcQz7BACUVudjfSbqYXaypPdJ+kV331NTdJ2k08xs0MyeK+kYSd8puBoAAGaEK38AgNJqMDpnq9d5paQTlQ0P3SDpg8qiew5KuiGv083u/h53v8fMrpZ0r7LhoGe7+3jHKw0AgOj8AQDQFHc/fZrJFwev/4ikj7SvRgAANIbOHwCgpGYyUBMAgLmHzh8AoLTo+gEA0Dg6fwCAEqP7BwBAo4j2CQAAAABzAFf+AADlZN2J9gkAQFlx5Q8AAAAA5gCu/AEASimL9cmVPwAAGmXu3u06AADQNDP7iqSRNix6i7uf3IblAgDQVXT+AAAAAGAO4J4/AAAAAJgD6PwBAAAAwBxA5w8AAAAA5gA6fwAAAAAwB9D5AwAAAIA54P8Hw31raFqhAv0AAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "recorteG2 = trim(imagen[:,:,1], 645, 535, 35, 35)\n", + "poptG2, pcovG2 = curve_fit(gauss2d, xdata2, recorteG2.ravel(), p0=[1,0,1,1,1])\n", + "estrellaG2=gauss2d(xdata2, poptG2[0], poptG2[1],poptG2[2], poptG2[3], poptG2[4])\n", + "FWHMG2=FWHMG.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptG2[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 2 fotografÃa (Banda Verde)\")\n", + "plt.imshow(recorteG2, plt.get_cmap('Greens'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 2 a partir de la gaussiana (Banda Verde)\")\n", + "plt.imshow(estrellaG2.reshape(35, 35), plt.get_cmap('Greens'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 3 (Verde)" + ] + }, + { + "cell_type": "code", + "execution_count": 414, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA38AAAFSCAYAAABCGmZOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA4HklEQVR4nO3de7wkdX3n/9f7zHAVFGEQgRnBGDRBo0jGW8xFJavomoy/7K6LiXdXkl1iMOuuEfPbqPmtWTfJelsTsxMhwIbgEkVDEm943ySCARQU0Ei8wOAgjBdEUZiZ8/n9UXW05zDnnO5TfbpPzXk959GP6a6qb9Wnq6tPfz/1/da3UlVIkiRJkvZtM9MOQJIkSZK08kz+JEmSJGkNMPmTJEmSpDXA5E+SJEmS1gCTP0mSJElaA0z+JEmSJGkNWD/tACRJWo5sOLC4e3b8K75j5/ur6tS9bjPZBJwPHAUUsLWq3tTOewlwBrAb+Nuqenk7/SzgRe3036iq948/aEmSlmbyJ0nqp7tn4TH3G/96P3jzhkXm7gJeVlVXJTkUuDLJpTTJ4BbgEVV1V5L7ASQ5ETgNeChwDPDBJA+uqt3jD1ySpMWZ/EmS+iuZ6OaqajuwvX1+R5LrgWOBFwOvq6q72nm3tkW2AG9vp38pyQ3Ao4FPTDRwSZLwmj9JUl+F5lds3I9hN58cDzwSuBx4MPAzSS5P8rEkj2oXOxa4aaDYtnaaJEkTZ8ufJKm/Vqblb0OSKwZeb62qrXtuNocA7wReWlXfTrIeOBx4LPAo4KIkP7ISwUmStFwmf5Kk/lqZXp87qmrzgptM9qNJ/C6oqovbyduAi6uqgE8mmQU2ADcDmwaKb2ynSZI0cXb7lCRpSEkCnA1cX1WvH5j1buCJ7TIPBvYHdgCXAKclOSDJA4ETgE9ONGhJklq2/EmSeioTH/AFeDzwHOAzST7dTnslcA5wTpLPAncDz2tbAa9NchFwHc1IoWc40qckaVrS/DZJktQvOeyA4mfuP/4V/82NVy7W7VOSpL6y5U+S1F+Tb/mTJKm3TP4kSf1l7idJ0tAc8EWSJEmS1gBb/iRJ/RRgxqY/SZKGZfInSeovcz9JkoZm8idJ6i8HfJEkaWgmf5Kk/jL3kyRpaA74IkmSJElrgC1/kqR+csAXSZJGYvInSeovcz9JkoZm8idJ6qk44IskSSPwmr8RJTk+SSVZ377+aJJ/N4HtJsmfJflmkk+u9Pa6SvKQJJ9OckeS32invT7JG5e5vv+W5KXjjHGEbZ+b5L9OY9uLmX8sLrHsLyT5P5OIS5I0GdOqk6w2SX4myec7rmNZ+26U3+LVLsm1SZ4wpW1fmOQZU9r2qvzeJHlCkm1DLvuSJP99mGV7m/wl+XKS7yX5zsDjLUOUqyQ/OokYl5LkI0luS/LtJFcn2bLI4j8N/AtgY1U9eoh1T/t9vhz4SFUdWlVvTvIzwKOA/zzqipIcCTwX+F/t6yckmR343G9O8pqxRj8GSd6X5Hf3Mn1Lklsm+UNRVX8NPDTJwye1TWnFzV3zN+6HNKI1WCeZqvn7rar+b1U9ZJox7Quq6qFV9dFJb7etmzwC+Kv29fOT7B74Ln0xyb+fdFxLSfK5JC/cy/Qzk1wx4XD+FPiVJPdbasHeJn+tX6iqQwYev951hRM+c3MmcHRV3Rs4HfjzJEcvsOxxwJer6rsTi24BQ+6j44BrB14/EPi3VbVzGZt8PvCeqvrewLSvzn3uNInxi6Z1xmgR5wHPTu7RL+05wAVVtWvYFY3puLyQ5jiT9h1ZgYe0PGupTjIVy9kf+0KL3BrwqzT1ohqY9omBet6/An4/ySOnE96CzqNpnJjvOe28oXU9Tqvq+8B7F4hnD31P/vYqyY8m+ViS25PsmOvuluTj7SJXt2cS/u1ck2qS30pyC/BnSWaSvCLJPyf5epKLkhw+xHYflOTDbZkdSS5IcthCy1fVNQMJQAH7AZv2st4XAW8DHtfG/Zp2+ouT3JDkG0kuSXLMQu9zseXbeU9O8vl2n/1xu//+XTvv+Un+PskbknwdePVi7zXJh4EnAm9pt/9g4EnAf2jn3zfJ37RnGL/ZPt+4yK59KvCxRfbjl4B/AE4ceD9vSnJTewbzyjQtj3PzXt1+puen6ZZ6bZLNA/MfmeSqdt7/AQ4cmDdK7O8GjgAGt31f4OnA+YsdZ/lhN5IXJbkR+HCSdUn+sN3fXwT+5eDGktwnydlJtqdpDf2vSdYNLPLR+WWk3kvG/5DGaF+rk7TrfnSSTyT5Vvub85Yk+y+w7Nzv2elJvtou/5+GXVdb9owkXwC+sNh+Gyjz5XYfXgN8N3upWCf5F2labm5P00qbefNfmOT69rf+/UmOW2jfzSv3grbcHWlarH51kWXXJfkf7efzpSS/nj278S64rjR1s7+bt74ftIgmeVqS69qyN8/t8yQb2rrLt9LUB/9vkpmB/fbzI3wuv5bkC+0yf5Q0f0BHPfZYup73KeB64McHtv+XaXpR3Z7k40keOjDv3Daev23f/+VJHjQwf8HPfsTY/zfw04PHRpITgYcDFyY5IE297cYkX0vyJ0kOapfb23f9oDb2bya5jqbHHAPrPibJO9PUQb+U9rKqAR9liHrePpn8Af8f8AHgvsBG4H8CVNXPtvMf0Z5NmLsG6v7A4TStVacDLwGeAfwccAzwTeCPhthugP/Wlvlxmj+ar160QPMF/D5wOc2Hdo9m4qo6G/g1fngW5FVJntRu65nA0cBXgLcv9D4XWz7JBuAdwFk0ycrngZ+aF8ZjgC8CRwGvXey9VtWTgP8L/Hq7/X+at64Z4M9o9vcDgO8Bi3WP+Yk2pr1KcgLweOCygcn/CJxE87n+BfCXSQ4cmP+L7fs/DLhkbvvtH7Z303yhDwf+kuaM08ixty2VF7HnWZhnAp+rqqsZ7jj7OZr9+xTgxTSJ4yOBzcC/nrfsucAu4EfbZZ4MDPZhvx44Psm99xav1Eu2/Gn126fqJK3dwG8CG4DHAafQnuBdxBOBE2h+m35rLskYcl3PoKmHnLjIfpvvWTQV4cPm97Rp6z0XA/9vu91/pqlHzM3fArwS+CXgSJo6zYVLvL85t9L8Vt8beAHwhiQnL7Dsi2kSn5OAk9v3udx1zXc28KtVdSjwMODD7fSXAdto3tdRNO+z9lJ+mM/l6TQJysNp6jdPaacPfewluRdN77DF6nmPAh7Mnsfje2mOp/sBVwEXzCt2GvAamu/dDTR11yU/+1Fir6ptwEdoWvrmPIemt9oO4HVt3CfR1M2OBX5nYNn53/VXAQ9qH08BnjewD2aAvwaubtdzCvDSJE8ZWN/1NN1nF1dVvXwAXwa+A3xr4PHidt75wFaa6+PmlyvgRwdePwG4GzhwYNr1wCkDr48GdtKMjnp8u4717byPAv9ugRifAXxqiPeyH82X/z8usszzgb8beH028PsDrw9pYzx+gfe54PI0ycknBuYFuGnufbXbvnGJ97DHe52/X2gSk/+6QNmTgG8usu6dwI/N+8xm28/82+17vRjYf5F1fJPmhwKaL/EHB+adCHyvff6zwFeBDMz/hw6x/3Qb54Ht678HfnOE4+xHBuZ/GPi1gddPnjsWaf6A3wUcNDD/WTTXXQ4eZwU8YNzfRx8+pvHg8AOKZ58w/gdcMe335qNfD9ZYnWQvZV4KvGuBeXMxDv6O/z5w9jDrass+aYj9tm3e5/HCReJ9LnDZwOvQJERz9Z73Ai8amD8D3Akct8j7W7/Att4NnLnAvA/TJGhzr39+2HUxr144f78AN9J0p7z3vGV+l+bauh/dy/q/DPz8CJ/LTw+8vgh4xajHHk0iU/OO+efTnMz+FnBHO/9/MlA3m7eOw9pl7tO+Phd428D8p9GceF/ysx8l9nb+s4HPDxwnNwL/T7ve7wIPGlj2ccCXBo7Z+d/1LwKnDrw+nfa4pjn5ceO8bZ8F/NnA6xOA3QvFOvfoe8vfM6rqsIHHn7bTX06z0z+ZpkvfPS7GnOe2avrKzjkOeFfbjP0tmj+8u2kq2AtKclSSt7fN698G/pzmrMKiqmpnVb0XeHKSX1xq+dYxNK13c+v4DvB1mi/RqMsfQ5Pszc0rmi/CoJsGXyz3vbZlD07yv5J8pS37ceCw7NlFcdA3gUPnTftq+5nfm+ZL/z0G+lcn+U9tV4nb28/wPvPiu2Xg+Z3AgWm6WRwD3Nzugzk/2G+jxl5VfwfsAJ7Rdjl4NE1LJAx3nA3u92Pmvf7KwPPjaH6wtw+s73/RnBGbM7cPv7W3WKXeCQ74otVkzdRJkjy4bSW8pV337w2x7vm/X3OXqgyzrpsY3WJl9lbvGVz+OOBNA/v8GzSf4UJ1rB9I8tQkl6XpUvktmsRjoX0z/3d9fl1rlHXN96/a5b+Sptvx49rpf0DTEvaBNF1JX7HA+xjmc5lflzqkLTvKsfet9v/59bzL2u/RoTQtZA9tY5jrLvu6NF2hv02TtMLi9bxD2ueLfvbL+N5cDByd5LE0Cd3BwN/StKweDFw5cBy9r50+Z/53fal63jFz62rX90r2/DtwKHD7IrEC+2i3z6q6papeXFXH0Jz1+OMsPppWzXt9E/DUeX/ED6yqm5fY9O+16/qJNil5NqN1IlpP09Q7jK/SHAjAD5rNjwAWinGx5bfTdEWZm5fB1635+6jLe30Z8BDgMW3ZuS4cC5W/hqbZfK+q6naahOoX2vh/hubH9pnAfavqMJovwzDxbQeObffBnAd0iB2as77PpdlH76+qr7XThznOBvf7dva8/mIwrptoWv42DKzr3lX10IFlfpxm0KBvLxKr1C92+9Qqt4/WSd4KfA44oV33K4dY9/zfr6+OsK75+2QYi5XZ4/e0/c0fjO8mmha5wX1+UFX9w2IbTHIA8E7gD4Gj2vrHe1h43+xR/5oX01Lr+i5NcjG3/P0HV1xV/1hVW2hOAr+bpmWOqrqjql5WVT9CcwnMf0xyyl5iW85nPGfoY6+agQz/mcXreV+j2Re/0E76ZWALTUvpfWhaXxkyvqU++5G+N1V1J82lU8+l6fL59qq6m+bE//eAhw4cQ/epZgCbHxRfLDbuWc/70rxj8tCqetrAMj9O0y10Uftk8pfk3+SHg3B8k2bnzravvwb8yBKr+BPgtWkv4ExyZIYb8vhQmm4ftyc5lkVua5Dkx9ozOgcl2S/Js2kSiY8NsR1o+p6/IMlJ7R+I3wMur6ovt/Pnv8/Flv9b4CeSPKNt/TqD5izLWN7rAmW/B3wrzUXrr1pi+ffQXOuwV0kOoenbPTe66KE03QVuA9Yn+R2a/vLD+ERb9jfaz+WXaFrrlhs7NMnfz9P07T9vYPqox9lFbVwb0wwc84OzdVW1neaakv+R5N5pBgh4UJLB/fZzNF1ZpH2HA75oldtH6ySH0lx28Z0kPwYMMwz/f0nTe+ahNNevzV2rt5x1DbPfFvO3NLc/+qW23vMb7Fnv+RPgrDZW0gyo9m+GWO/+wAE09Y9dSZ5Kc4nGQi4CzkxybJpBRX5rhHVd3b6Hk9KMafDquRlJ9k/yK0nuU80o69+mPeaSPD3NIEShOTG+mx8ej4OW87kMlh2ljrhUPe8Imq6Ug/W8u2h6sB1M2yI4pKU+++XUb88D/i1Na+t5AFU1S3P7hTekvf1C+zk/ZcG1NMfDWWkGF9xIc73vnE8Cd6QZIOagtvXzYWmuh5wzVD2v78nfX2fPe+q8q53+KODyJN+hGczjzKr6Yjvv1cB5bZPpMxdY75vach9IcgfNQCKPGSKe19BcsHs7zcF18SLLpo3lVpov9pk0t0K4aojtUFUfBP4LzZmQ7TRn504bWOTVDLzPxZav5qLUf0PTB//rNNfAXUHzxRrHe53vjcBBNGdFLqNpBl/M+cDT0o6Q1Dpm7nOnaRY/HPiVdt7723X+Uzvv+wzZZaQ9W/NLNP3Nv0HzZR58b6PGTptg/wNwL5rjas6ox9mf0ry3q2kubp6/z59L82NxHU0F4x0014bMeRbtvRKlfcbMCjyk5VlLdZL/RNP6cgfNb9NCg64M+hhNd8MPAX9YVR/osK5Xs/R+W9BAved1NPWeE2iuyZ+b/y7gvwNvT9P177M010Eutd47aJKJi2h+h3+ZPX/35/tTmhO31wCfokmCdtFct7XouqoZTO93gQ8CXwD2GPmTphXqy238v8YP60gntGW+Q3PC+4+r6iN7iW05n8ucUeuIW2nuUTd49u1xA/W862mOy7lk6Hya+t3NNHWewQH/FrXUZ7+M2KG5BOh2muvz/nFg+m/RHPOXtZ/DB2l6jy3kNTTv60s0x8X/Hoh7N80AOye183fQ3AngPgDtCYCnMcQtJrLnpU3SD0YU2gb8ygJ/ECYuye8Bt1bVG6cdSx8l+QXgOVU18o+ktFplw4HFluPHv+JzPn9lVW1eekFJS0lyPE1ldb8a4f62a1HbuvcnVXXckgvvY5L8BXBRVb172rH0UZKXAJuq6uVLLeuNLwVA2wx9OU2Xxv9McxZw6DMpK62qXjntGPqsqv6aZohgad9hN01JPdb2aHoiTSvPUTSXkrxr0UL7qKr65WnH0GdV9T+HXdYOLprzOJoLbnfQXFD7jGruUydJq5cDvkjqr9B09fsmTbfP69nzPnDS2NnyJwCq6tUscfNXSVp1bPmTVrX2une/qHvRjhT5qCUXlMbI5E+S1F/2X5EkaWj+bEqSJEnSGjDRlr8jNhxemx6waekFFzKGTgPpmO/Wsu4zes+1dJEx7Iiu72Ic/TdWxziz3aKYrb3dGmfECDqOuLtuZl238ulW/itfvpEdO3bYpUeTF+z2qX3ehg0b6rjjH7D0gpJ6Y5p1p4kmf5sesIkP/P3y7zHdtZIKsN/M/p3K76ydnWOgc2W/+8e2u3Z3Kj8zhkbjron0OBLx6pi8fX939zFx7t692O0Ul3bo/vfpVn6/buUf/5if7lRe6sTcT/u4445/AH9/+fxbuEnqs2nWnbzmT5LUXzNmf5IkDctr/iRJGlKSTUk+kuS6JNcmOXPe/JclqSQb2tdJ8uYkNyS5JsnJ04lckiRb/iRJfTb5a/52AS+rqquSHApcmeTSqrouySbgycCNA8s/FTihfTwGeGv7vyRJE9ep5S/JqUk+357RfMW4gpIkaUkrcYP3JXLJqtpeVVe1z++guSnzse3sNwAvZ8+RpLYA51fjMuCwJEd3eNfqOetOkqZp2clfknXAH9Gc1TwReFaSE8cVmCRJiwvJ+B/AhiRXDDxO3+vWk+OBRwKXJ9kC3FxVV89b7FjgpoHX2/hhsqg1xrqTpGnr0u3z0cANVfVFgCRvpznDed04ApMkaSlZgW6fBTuqavMS2z0EeCfwUpquoK+k6fIpLca6k6Sp6tLtc6izmUlOnzt7+vUdX++wOUmSpi/JfjSJ3wVVdTHwIOCBwNVJvgxsBK5Kcn/gZmDwBrcb22lam0auO912246JBSdp37fio31W1daq2lxVm4/YcMRKb06StIYk438svr0EOBu4vqpeD1BVn6mq+1XV8VV1PE2F/uSqugW4BHhuO+rnY4Hbq2r7Su4T9d9g3enIIzdMOxxJ+5Au3T49mylJmpoAMyvQ7XP34rMfDzwH+EyST7fTXllV71lg+fcATwNuAO4EXjCWINVX1p0kTVWX5O8fgROSPJDmD9dpwC+PJSpJkpaSlbnmbzFV9XcsMSZo2/o397yAM1Y4LPWHdSdJU7Xs5K+qdiX5deD9wDrgnKq6dmyRSZK0hEknf1IX1p0kTVunm7y33VwW6uoiSZKkAdadJE1Tp+RPkqTpiS1/kiSNYKLJ30zWca/9Dl12+bt2f79zDDtrZ+d1dDWTdZ3KN5eQdJPFL1lZ0rqZ7ofOTMfBZmeZ7RzD7tldncqv6/hZQvf3sWu22zHd9Xs1W90/B2m5zP0kSRqeLX+SpF4KXvMnSdIoTP4kSf00hdE+JUnqsxW/ybskSZIkafps+ZMk9VbX65clSVpLTP4kSb1lt09JkoZn8idJ6i1zP0mShuc1f5IkSZK0BtjyJ0nqpRBmbPqTJGloJn+SpN7ymj9JkoZn8idJ6ifv8ydJ0khM/iRJvWXuJ0nS8BzwRZIkSZLWAFv+JEm9FOz2KUnSKEz+JEm9ZfInSdLwTP4kST0Vkz9JkkZg8idJ6idH+5QkaSQTTf6KWXbO3r3s8qH7j3zVbLfyVOcYdtauTuXHUdmZybpO5XfPdnsPAJVu4w3trt3dY+h4PIzjmNx/Zv9O5bt+lus6lh/HPpAkSdLKs+VPktRbNvxJkjQ8kz9JUi852qckSaMx+ZMk9ZbJnyRJwzP5kyT11ozJnyRJQ1v2iBtJNiX5SJLrklyb5MxxBiZJkrQvse4kadq6tPztAl5WVVclORS4MsmlVXXdmGKTJGlhccAX9Y51J0lTtezkr6q2A9vb53ckuR44FvAPmCRpxcWbvKtnrDtJmraxXPOX5HjgkcDl41ifJEnD8D6T6ivrTpKmodtdtoEkhwDvBF5aVd/ey/zTk1yR5IodO77edXOSJE3NQtdsJfmDJJ9Lck2SdyU5bKDMWUluSPL5JE+ZWvBaNUapO912247JByhpn9Up+UuyH80frwuq6uK9LVNVW6tqc1Vt3rDhiC6bkyRpD0nG/ljC3DVbJwKPBc5IciJwKfCwqno48E/AWW18JwKnAQ8FTgX+OMm6Fdod6oFR605HHrlhsgFK2qd1Ge0zwNnA9VX1+vGFJEnScCad/FXV9qq6qn1+B3A9cGxVfaCqdrWLXQZsbJ9vAd5eVXdV1ZeAG4BHr8jO0Kpn3UnStHVp+Xs88BzgSUk+3T6eNqa4JElaUjL+x/DbXvCarRcC722fHwvcNDBvWztNa5N1J0lT1WW0z78Dr7SXJE1Hk6ytyM/QhiRXDLzeWlVb99z23q/ZSvLbNF1DL1iJwNRv1p0kTdtYRvuUJGkfsqOqNi80c6FrtpI8H3g6cEpVVTv5ZmDTQPGN7TRJkiau82ifkiRNx/iv91uqJXGha7aSnAq8HPjFqrpzoMglwGlJDkjyQOAE4JNj3xWSJA1hoi1/RbF7dtfSCy5gZgwDpO2u3Z3KF7X0QktYn267fRz7YSbd8v67dn+/cwwHrDuwU/lxfBZdrZvp/hXav2P5rseTPZDUZ1O4yfvcNVufSfLpdtorgTcDBwCXtjFdVlW/VlXXJrmI5ibeu4Azqjr+EElr0A8b05dZfgx1hq73FZ3C3yvpHuz2KUnqrUnXpRa5Zus9i5R5LfDaFQtKkqQhmfxJknrLM+mSJA3Pa/4kSZIkaQ2w5U+S1EsreKsHSZL2SSZ/kqTeMvmTJGl4Jn+SpN4y95MkaXgmf5Kknlr6vnySJOmHHPBFkiRJktYAW/4kSb1ly58kScMz+ZMk9ZKjfUqSNBqTP0lSb5n7SZI0PJM/SVJv2fInSdLwHPBFkiRJktYAW/4kSf1ly58kSUMz+ZMk9ZT3+ZMkaRQmf5KkfooNf5IkjWKiyd8MMxyw7sBll985u7NzDLO1u1P59TP7dY7hO7u+3an8tu/c1DmG+x10VKfyhx1weOcYuhwLAJm9u3MMXY+HmarOMVS6rWOW2U7ld3bcj0X3fSBJ2nfNVrffKYA7d32nU/lv3vX1zjHce//7dCp/yPp7d45h3YztNurGI0iS1EvB0T4lSRqFyZ8kqbdM/iRJGp7JnySpt0z+JEkansmfJKm3zP0kSRpe55u8J1mX5FNJ/mYcAUmSJO3LrDtJmpZxtPydCVwPdB/CSJKkYcX7/Km3rDtJmopOLX9JNgL/EnjbeMKRJGk4c6N9jvshrSTrTpKmqWvL3xuBlwOHdg9FkqTRmKyph96IdSdJU7Lslr8kTwduraorl1ju9CRXJLlix47uN9iUJGmOLX/qk+XUnW67bceEopO0FnTp9vl44BeTfBl4O/CkJH8+f6Gq2lpVm6tq84YNR3TYnCRJUq+NXHc68sgNk45R0j5s2clfVZ1VVRur6njgNODDVfXssUUmSdJi0tzqYdwPaaVYd5I0bd7nT5LUW3bTlCRpeGNJ/qrqo8BHx7EuSZKGEbxGT/1l3UnSNNjyJ0nqLZM/SZKG1+k+f5IkrSVJNiX5SJLrklyb5Mx2+uFJLk3yhfb/+7bTk+TNSW5Ick2Sk6f7DiRJa9lEW/521yzf3fWdZZdfn+7hHrj+4E7lq6pzDOddf2Gn8q+54B2dY3jWqT/dqfwbn/A7nWPYNburY/mdnWMoun2e4zgm181MtwF+Jp4DUn9NoeFvF/CyqroqyaHAlUkuBZ4PfKiqXpfkFcArgN8Cngqc0D4eA7y1/V9aM+6evavzOj5w0/s6lf+dv/qLzjE852d/qlP5//DwX+0cwyG5d6fy9paQtT5JUj9l8vf5q6rtVXVV+/wO4HrgWGALcF672HnAM9rnW4Dzq3EZcFiSo1dgb0iStCSv+ZMk9dfKnMXekOSKgddbq2rrPTed44FHApcDR1XV9nbWLcBR7fNjgZsGim1rp21HkqQJM/mTJGlPO6pq82ILJDkEeCfw0qr69mCLYVVVku7XCEiSNGYmf5Kk3prG9StJ9qNJ/C6oqovbyV9LcnRVbW+7dd7aTr8Z2DRQfGM7TZKkifOaP0lSLwWYyfgfi26zyTbPBq6vqtcPzLoEeF77/HnAXw1Mf2476udjgdsHuodKkjRRtvxJknpqKjd5fzzwHOAzST7dTnsl8DrgoiQvAr4CPLOd9x7gacANwJ3ACyYarSRJA0z+JEn9FJiZcPJXVX/XbHmvTtnL8gWcsaJBSZI0JLt9SpIkSdIaYMufJKmXgjcsliRpFCZ/kqTesvuKJEnDM/mTJPXWpK/5kySpz0z+JEm9ZLdPSZJGY48ZSZIkSVoDbPmTJPVU7PYpSdIITP4kSf0Uu31KkjQKkz9JUi8Fr12QJGkUE03+ilm+v/vOZZc/eP0hnWNYT7ezxDMz6zrHcPMd3+hUfvbabuUBvnDSbd1iqNnOMdy1+3udyt89e1fnGGbS7fNct6778bCuYwzT3n46fqekLuz2Ka1+s7W78zqu3XFDp/L//P7rOsfwsePv36n86Q/b2TkGqStPmkqSJEnSGmC3T0lSb3nNnyRJwzP5kyT1UrDbpyRJozD5kyT1lqmfJEnD63TNX5LDkrwjyeeSXJ/kceMKTJIkaV9j3UnSNHVt+XsT8L6q+tdJ9gcOHkNMkiQNwZu8q5esO0mammUnf0nuA/ws8HyAqrobuHs8YUmStLjEa/7UL9adJE1bl26fDwRuA/4syaeSvC3JvcYUlyRJS0oy9oe0gqw7SZqqLsnfeuBk4K1V9Ujgu8Ar5i+U5PQkVyS54hs7ut+cXJKkOTPJ2B/SChq57nTbbTsmHaOkfViX5G8bsK2qLm9fv4PmD9oeqmprVW2uqs2Hbzi8w+YkSZJ6beS605FHbphogJL2bctO/qrqFuCmJA9pJ50CXDeWqCRJWkJW6CGtFOtOkqat62ifLwEuaEer+iLwgu4hSZI0HLtpqoesO0mamk7JX1V9Gtg8nlAkSRqF1+ipf6w7SZqmri1/kiRNRYKjc0qSNIIuA75IkiRJknpioi1/67OeIw6437LL37X7+51juGPntzqVP2z/IzrH8MKH/VKn8l8/887OMTztR3+yU/miOsewbqbb4TdTuzrHkI7DO3QtDzBbsx3L7+5Ufne6lZ8dw7EgLZfdPqXVb/+ZAzqv45d/7F91Kr/xjUd1juGkDT/RqfzB6w/pHIO9HdSV3T4lSb1lNUiSpOGZ/EmSeinY8idJ0ihM/iRJvWXyJ0nS8BzwRZKkESQ5J8mtST47MO2kJJcl+XSSK5I8up2eJG9OckOSa5KcPL3IJUlrncmfJKmnQjL+xxDOBU6dN+33gddU1UnA77SvAZ4KnNA+TgfeOo53LknScpj8SZJ6KTQ/YuN+LKWqPg58Y/5k4N7t8/sAX22fbwHOr8ZlwGFJjh71vUqSNA5e8ydJ6qfVdZP3lwLvT/KHNDnkT7XTjwVuGlhuWztt+0SjkyQJW/4kSZpvQ3vd3tzj9CHK/HvgN6tqE/CbwNkrG6IkSaOz5U+S1FsrNNrnjqraPGKZ5wFnts//Enhb+/xmYNPAchvbaZIkTZwtf5KkXpq7z9+4H8v0VeDn2udPAr7QPr8EeG476udjgduryi6fkqSpsOVPktRb07jmL8mFwBNouoduA14FvBh4U5L1wPdpRvYEeA/wNOAG4E7gBRMPWJKklsmfJKmnwgyTT/6q6lkLzPrJvSxbwBkrG5EkScOx26ckSZIkrQG2/EmSemsV3epBkqRVz+RPktRLyYqN9ilJ0j7J5E+S1FuZwjV/kiT11USTv1lm+d7uO5ddfvfsrs4xzGRdp/Lf3vmtzjEce69NSy+0iDc+8RWdYzhg3UGdyh+07uDOMdx8542dys+M4ZLVe+13SKfy62a7HU/jkHTbD10rz1a9NU12+5RWv/Uz+3Vex3GHPKhT+V8+4bjOMazrWIdcF9tcNH0O+CJJkiRJa4CnICRJvRQ63ZRdkqQ1x+RPktRbsQOLJElDM/mTJPWWLX+SJA2v0ynTJL+Z5Nokn01yYZIDxxWYJElLSTL2h7SSrDtJmqZlJ39JjgV+A9hcVQ8D1gGnjSswSZKkfYl1J0nT1rXb53rgoCQ7gYOBr3YPSZKkpaX9J/WMdSdJU7Pslr+quhn4Q+BGYDtwe1V9YFyBSZK0qDTX/I37Ia0U606Spq1Lt8/7AluABwLHAPdK8uy9LHd6kiuSXPH1276+/EglSZrHa/7UJ8upO912245JhylpH9ZlwJefB75UVbdV1U7gYuCn5i9UVVuranNVbT7iyCM6bE6SpB8KMLMC/6QVNHLd6cgjN0w8SEn7ri6/cjcCj01ycJpTpacA148nLEmSpH2OdSdJU7XsAV+q6vIk7wCuAnYBnwK2jiswSZIWZzdN9Yt1J0nT1mm0z6p6FfCqMcUiSdJITP7UN9adJE1T11s9SJI0NTPe6kGSpKF5ZbskSZIkrQG9avlbP7Nf53V0viHwGLoYVc12XkdXSbe8f+fszs4x3Hf/bqO/ztJ9P+43s3+38ul+TO6u3Z3K2+1Na1Xw+JfWivUz3aqs6/tV5ZVWjN8ESVI/tTd5lyRJwzH5kyT1VLr35pAkaQ0x+ZMk9VKAmY5d2CVJWkv81ZQkSZKkNcCWP0lSbzngiyRJwzP5kyT1ltf8SZI0PJM/SVJPxdE+JUkagcmfJKmXgi1/kiSNwgFfJEmSJGkNMPmTJPXWTDL2x1KSnJPk1iSfnTf9JUk+l+TaJL8/MP2sJDck+XySp6zAbpAkaSh2+5Qk9VMg07nP37nAW4DzfxBK8kRgC/CIqroryf3a6ScCpwEPBY4BPpjkwVW1e+JRS5LWPFv+JEk9lRX5t5Sq+jjwjXmT/z3wuqq6q13m1nb6FuDtVXVXVX0JuAF49Pj2gSRJwzP5kyT1UphOt88FPBj4mSSXJ/lYkke1048FbhpYbls7TZKkibPbpyRJe9qQ5IqB11urausSZdYDhwOPBR4FXJTkR1YqQEmSlsPkT5LUW1mZ+/ztqKrNI5bZBlxcVQV8MskssAG4Gdg0sNzGdpokSRNnt09JUm/NkLE/lundwBMBkjwY2B/YAVwCnJbkgCQPBE4APtn9nUuSNLoJt/yFdVn+JmfGMKrb7o4DrO2e3dU5hq5nqveb2b9zDF3tmt3ZeR0HrjuoU/munyXAuqzrVH6mY3mAojqvo4vuoyV6k21NR1ixlr/Ft5tcCDyBpnvoNuBVwDnAOe3tH+4Gnte2Al6b5CLgOmAXcIYjfUqSpsVun5IkjaCqnrXArGcvsPxrgdeuXESSJA3H5E+S1FOZ1n3+JEnqJZM/SVJvdbhGT5KkNcfkT5LUS8l0rvmTJKmvluwvk+ScJLe2F7HPTTs8yaVJvtD+f9+VDVOSpHvKCvyTurLuJGm1GuZiiXOBU+dNewXwoao6AfhQ+1qSJEnWnSStUksmf1X1ceAb8yZvAc5rn58HPGO8YUmStJSQjP8hdWXdSdJqtdxr/o6qqu3t81uAoxZaMMnpwOkAGzdtXObmJEm6Jwd8UY8sq+606QGbJhCapLWi8xjZ7U1sF7xLdVVtrarNVbX5iCOP6Lo5SZKAuZu8z4z9Ia20UepORx65YYKRSdrXLfdX7mtJjgZo/791fCFJkjSMlRjuxZZErRjrTpKmbrnJ3yXA89rnzwP+ajzhSJIk7ZOsO0mauiWv+UtyIfAEYEOSbcCrgNcBFyV5EfAV4JkrGaQkSXvjAC1ajaw7SVqtlkz+qupZC8w6ZcyxSJI0ErtpajWy7iRptVruaJ+SJE2dLX+SJA3P5E+S1EvBWz1IkjSKXiV/szXbeR07Z+/uVP72u7/ZOYb9Z/bvVP7e+9+3cwzrM/2Pfnft7lR+V+3sHMMs3Y6p9QuP1D18DB2P63VZN9XydruTJEnqh+lnAJIkLUdit09JkkZg8idJ6q0s+45FkiStPSZ/kqTesuVPkqThecpUkiRJktYAW/4kSb0UHHBIkqRRmPxJknoqzNjtU5KkoZn8SZJ6y5Y/SZKGZ/InSeotB3yRJGl4DvgiSZIkSWuALX+SpF5qBnzxHKYkScMy+ZMk9VTs9ilJ0ghM/iRJvTXjgC+SJA3N5E+S1E9xwBdJkkbhxRKSJEmStAbY8idJ6qVmwBdb/iRJGpYtf5Kk3koy9scQ2zwnya1JPruXeS9LUkk2tK+T5M1JbkhyTZKTV2A3SJI0lIm2/FUVO2fvXnb5mXTPVXfN7uxUfvfs7s4xVKrzOrrqerZ8HGfbZ6vbvpyt2c4xzHQ8/7GbMRwPHd9H12ueZqrr8Tj941lrVaZ1q4dzgbcA5+8RTbIJeDJw48DkpwIntI/HAG9t/5ckaeJs+ZMk9dZMMvbHUqrq48A39jLrDcDL2fOMyBbg/GpcBhyW5OhxvHdJkkZl8idJ0p42JLli4HH6UgWSbAFurqqr5806Frhp4PW2dpokSRPngC+SpF5awQFfdlTV5qHjSA4GXknT5VOSpFXL5E+S1Fur5D5/DwIeCFzdxrMRuCrJo4GbgU0Dy25sp0mSNHFLdvvc26hmSf4gyefakcveleSwFY1SkqR7yIr8G1VVfaaq7ldVx1fV8TRdO0+uqluAS4DntqN+Pha4vaq2j3U3aNWx7iRptRrmmr9zgVPnTbsUeFhVPRz4J+CsMcclSdKqlORC4BPAQ5JsS/KiRRZ/D/BF4AbgT4H/MIEQNX3nYt1J0iq0ZLfPqvp4kuPnTfvAwMvLgH895rgkSVrSNLp9VtWzlph//MDzAs5Y6Zi0ulh3krRajeOavxcC/2ehme0oaacDbNzkAGeSpPEI3e/VKU3J0HWnTQ/YtNBikjSyTr+aSX4b2AVcsNAyVbW1qjZX1ebDNxzRZXOSJP1Qmpa/cT+klTRq3enIIzdMLjhJ+7xlt/wleT7wdOCUtluLJEkTtLwBWqRpse4kadqWlfwlORV4OfBzVXXneEOSJEnat1h3krQaLJn8taOaPQHYkGQb8CqaEaoOAC5tu8hcVlW/toJxSpJ0D3bT1Gpk3UnSajXMaJ97G9Xs7BWIRZKkkdjtU6uRdSdJq9U4RvuUJGnigsmfJEmjMPmTJPWX3T4lSRrahJO/YnftWnbpsF/nCPafOaBT+cMP7D7k8n7p9j66lge6V5jGUOFan46HX3WPoes9wsZxvdFuug341nXAuFl2d9t+p9KSJEmaFFv+JEk95a0eJEkahcmfJKm3HO1TkqThmfxJknrLlj9JkoZn8idJ6i2TP0mShtdttAtJkiRJUi/Y8idJ6qXgNX+SJI3C5E+S1FOO9ilJ0ihM/iRJvWXyJ0nS8Ez+JEn9FLt9SpI0Cgd8kSRJkqQ1wJY/SVJv2e1TkqThmfxJknrJ0T4lSRqNyZ8kqacc7VOSpFF4zZ8kSZIkrQG2/EmSesuWP0mShmfyJ0nqLa/5kyRpeBNP/mayrkPZ7r1U16XbW17XIf5VpapT8f2yX/cYOlba1tH9s5jp2vN5DBXP2ZrtvI5O26fr9rsdS1IXtvxJkjQ8W/4kSb0UTP4kSRqFA75IkiRJ0hpgy58kqafiNX+SJI1gyZa/JOckuTXJZ/cy72VJKsmGlQlPkqTFZAUeS2xxL7+LSf4gyeeSXJPkXUkOG5h3VpIbknw+yVO6v2etdtadJK1Ww3T7PBc4df7EJJuAJwM3jjkmSZKWlma0z3E/hnAu9/xdvBR4WFU9HPgn4CyAJCcCpwEPbcv8cbKvjBymRZyLdSdJq9CSyV9VfRz4xl5mvQF4OQ71J0makqzAv6Xs7Xexqj5QVbval5cBG9vnW4C3V9VdVfUl4Abg0ePbA1qNrDtJWq2WNeBLki3AzVV19ZjjkSSp714IvLd9fixw08C8be00rTHWnSStBiMP+JLkYOCVNN0Whln+dOB0gGM3+XsnSRqfFbrVw4YkVwy83lpVW4eKJ/ltYBdwwUoEpn7qUnfa9IBNKxiZpLVmOaN9Pgh4IHB1e23ERuCqJI+uqlvmL9z+YG4FeMTJD7ebgyRpLLJyo33uqKrNI8eTPB94OnBKVc393t0MDNbeN7bTtLYsu+70k5tPtu4kaWxGTv6q6jPA/eZeJ/kysLmqdowxLkmSlrRabvKe5FSaa7l+rqruHJh1CfAXSV4PHAOcAHxyCiFqiqw7SVothrnVw4XAJ4CHJNmW5EUrH5YkSUubxoAvC/wuvgU4FLg0yaeT/AlAVV0LXARcB7wPOKOqdq/U/tDqYN1J0mq1ZMtfVT1rifnHjy0aSZJWuQV+F89eZPnXAq9duYi02lh3krRaLeeaP0mSVoUVuuZPkqR9ksmfJKm3Vss1f5Ik9YHJnySpl1ZwtE9JkvZJE03+rvnUZ3YcffCmryyyyAZg2iNfGcPqiGHa2zeG4WM4blKBSNJac9WVn9px0Pp7WXda/TFMe/vG0K8YplZ3mmjyV1VHLjY/yRXLubfSOBnD6ohh2ts3htUVg7QQu31qX2fdqR8xTHv7xmAMw7LbpySpx0z+JEkalsmfJKm3TP0kSRreakv+tk47AIxhzrRjmPb2wRjmrIYYpL1ywBdpVfyNNobpbx+MYY4xLCJVNe0YJEka2SNOfni9/+//duzrPfrgB1y5Wq/VkCSpi9XW8idJ0ghs+ZMkaVgmf5Kk3jL1kyRpeDPTDmBOklOTfD7JDUleMYXtb0rykSTXJbk2yZmTjqGNY12STyX5mylt/7Ak70jyuSTXJ3ncFGL4zfYz+GySC5McOIFtnpPk1iSfHZh2eJJLk3yh/f++U4jhD9rP4pok70py2KRjGJj3siSVZMNKxiANLyv0kFY/6017xGLdybqTdachrYrkL8k64I+ApwInAs9KcuKEw9gFvKyqTgQeC5wxhRgAzgSun8J257wJeF9V/RjwiEnHkuRY4DeAzVX1MGAdcNoENn0ucOq8aa8APlRVJwAfal9POoZLgYdV1cOBfwLOmkIMJNkEPBm4cYW3Lw0taQZ8GfdDWu2sN92DdSfrToOsOy1iVSR/wKOBG6rqi1V1N/B2YMskA6iq7VV1Vfv8Dpov7rGTjCHJRuBfAm+b5HYHtn8f4GeBswGq6u6q+tYUQlkPHJRkPXAw8NWV3mBVfRz4xrzJW4Dz2ufnAc+YdAxV9YGq2tW+vAzYOOkYWm8AXg44QpQkTZ/1ppZ1px+w7vTDadadFrFakr9jgZsGXm9jCn9A5iQ5HngkcPmEN/1GmoNkdsLbnfNA4Dbgz9ruE29Lcq9JBlBVNwN/SHOWZDtwe1V9YJIxDDiqqra3z28BjppSHHNeCLx30htNsgW4uaqunvS2JUl7Zb3ph96IdSfrTguz7jTPakn+Vo0khwDvBF5aVd+e4HafDtxaVVdOapt7sR44GXhrVT0S+C4r31y/h7Zv+BaaP6bHAPdK8uxJxrA31dwTZWpnbpL8Nk0XmwsmvN2DgVcCvzPJ7UrDygr8kzS8adWb2m1bd8K600KsO+3dakn+bgY2Dbze2E6bqCT70fwBu6CqLp7w5h8P/GKSL9N033hSkj+fcAzbgG1VNXfm7h00f9Am6eeBL1XVbVW1E7gY+KkJxzDna0mOBmj/v3UaQSR5PvB04Fdq8jfmfBDNj8nV7bG5Ebgqyf0nHIe0VyZ/WqOsNzWsOzWsO81j3WlhqyX5+0fghCQPTLI/zUWql0wygDRX+Z8NXF9Vr5/ktgGq6qyq2lhVx9O8/w9X1UTP2lTVLcBNSR7STjoFuG6SMdB0WXhskoPbz+QUpncR9yXA89rnzwP+atIBJDmVpjvLL1bVnZPeflV9pqruV1XHt8fmNuDk9liRJE3Hmq83gXWnAdadBlh3WtyqSP7aizJ/HXg/zcF6UVVdO+EwHg88h+as0afbx9MmHMNq8BLggiTXACcBvzfJjbdnzt4BXAV8huYY3brS201yIfAJ4CFJtiV5EfA64F8k+QLNWbXXTSGGtwCHApe2x+SfTCEGSdIqYr1p1bHuZN2pN3WnTL4lVJKk7k76yUfUh/5h/GMabDjw/ldW1eaxr1iSpClbFS1/kiRJkqSVtX7aAUiStDwO0CJJ0ihs+ZMkSZKkNcCWP0lSj9nyJ0nSsEz+JEm9FEz9JEkahcmfJKm3mltaSZKkYZj8SZJ6zORPkqRhOeCLJEmSJK0BtvxJknrLdj9JkoZn8idJ6jHTP0mShmW3T0lST4Vk/I8lt5qck+TWJJ8dmHZ4kkuTfKH9/77t9CR5c5IbklyT5OQV3CGSJC3K5E+SpNGcC5w6b9orgA9V1QnAh9rXAE8FTmgfpwNvnVCMkiTdg8mfJEkjqKqPA9+YN3kLcF77/DzgGQPTz6/GZcBhSY6eSKCSJM3jNX+SpF5qbvK+Itf8bUhyxcDrrVW1dYkyR1XV9vb5LcBR7fNjgZsGltvWTtuOJEkTZvInSeqxFUn+dlTV5uUWrqpKUuMMSJKkcbDbpySpt7ICj2X62lx3zvb/W9vpNwObBpbb2E6TJGniTP4kSb01jdE+F3AJ8Lz2+fOAvxqY/tx21M/HArcPdA+VJGmi7PYpSdIIklwIPIHm2sBtwKuA1wEXJXkR8BXgme3i7wGeBtwA3Am8YOIBS5LUMvmTJPVUx46ay1RVz1pg1il7WbaAM1Y2IkmShmPyJ0nqrcmnfpIk9ZfJnySpx0z/JEkalgO+SJIkSdIaYMufJKmfQpfROSVJWnNs+ZMkSZKkNcCWP0lSLzVjfdryJ0nSsNKMQi1JUr8keR+wYQVWvaOqTl2B9UqSNFUmf5IkSZK0BnjNnyRJkiStASZ/kiRJkrQGmPxJkiRJ0hpg8idJkiRJa4DJnyRJkiStAf8/J81g+5XTujcAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "recorteG3 = trim(imagen[:,:,1], 560, 320, 15, 15)\n", + "poptG3, pcovG3 = curve_fit(gauss2d, xdata3, recorteG3.ravel(), p0=[1,1,1,1,1])\n", + "estrellaG3=gauss2d(xdata3, poptG3[0], poptG3[1],poptG3[2], poptG3[3], poptG3[4])\n", + "FWHMG3=FWHMG.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptG3[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 3 fotografÃa (Banda Verde)\")\n", + "plt.imshow(recorteG3, plt.get_cmap('Greens'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 3 a partir de la gaussiana (Banda Verde)\")\n", + "plt.imshow(estrellaG3.reshape(15, 15), plt.get_cmap('Greens'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 4 (Verde)" + ] + }, + { + "cell_type": "code", + "execution_count": 415, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA34AAAFSCAYAAACt2A1wAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA3k0lEQVR4nO3de5xddX3v//d7ZnKFQCATbkkgQMEWqAqNgGKrFS+IaDyn1saDCOoprUULHvqzgqcCnoP1tNbbsWpjQaBSkAIqKiqUqvy0BAzhTkAj14QEMuEWbkkm8zl/rLXJzjCXNfu791577Xk989iPzF57fdf67MvM/nzW97u+yxEhAAAAAED36ik7AAAAAABAa1H4AQAAAECXo/ADAAAAgC5H4QcAAAAAXY7CDwAAAAC6HIUfAAAAAHS5vrIDAACgEe6fHto81PwNb9zy44g4pvkbBgCgPBR+AIBq2jwkHbFb87f772v6m79RAADKReEHAKguu+wIAACoBAo/AEA1WZypDgBAQXxlAgCqy27+bczdeYHtn9i+2/Zdtk8d9vjptsN2f37ftr9ke5Xt220f1sJXAwCAUdHjBwCorvaP9ByUdHpErLA9S9LNtq+NiLttL5D0ZkkP1a3/VkkH5LcjJH01/x8AgLaixw8AgIIiYm1ErMh/3ihppaR5+cOfl/QxSVHXZLGkiyKzTNJs23u2M2YAACR6/AAAlTX+0MyW7t1eKOlQSTfaXixpTUTc5u1jmifp4br7q/Nla9sVJwAAEoUfAKCqWje5S7/t5XX3l0bE0u12be8o6QpJpykb/nmmsmGeAAB0JAo/AEB1tabHbyAiFo2+S09RVvRdHBFX2v5dSftKqvX2zZe0wvbhktZIWlDXfH6+DACAtuIcPwBAdbkFt7F2l1V250laGRGfk6SIuCMidouIhRGxUNlwzsMiYp2kqyS9L5/d80hJT0UEwzwBAG1Hjx8AAMUdJekESXfYvjVfdmZEXD3K+ldLOlbSKknPSXp/yyMEAGAEFH4AgGqypJ72Tu4SET/XOP2Cea9f7eeQdEqLwwIAYFwUfgCA6ipvUk8AACqFwg8AUF0lXs4BAIAqofADAFQXdR8AAIUwqycAAAAAdDl6/AAA1VTC5C4AAFQVhR8AoLqo+wAAKITCDwBQUWZyFwAACuIcvwbYXmg7bPfl939q+7+3Yb8zbH/P9lO2/63V+0tl+yjbv7b9jO135suutH1ag9u7pLaddmvXezxRtl9ve3XBdT9i+/+0OiYAQHuUlY90GtvH274mcRsP2H5jA+0Kfw93ujxf26+kff/C9qEl7buh977VbJ9k++cF1/0H2x8ab71KF375G/V8/kGt3b5coF3Y/q12xFiU7dflcf3vMVZ7l6TdJc2JiD8eZ3vbfRmU5FOSvhwRO0bEd2wfL2lLRHxhohuy/XJJr5D03fz+Sba31r3v9xX5wLeb7Xtsf2CE5afaXt7mcL4u6Xjbu7V5v0Br1M7xa/YNmKBJmI+UZqT8JiIujog3lxlXN8jztfvavV/bb5e0MSJuye+fbXtL3e/SStt/1O64xmJ7uu0nbb9hhMc+b/vyNof0WUln2p461kqVLvxyb88/qLXbh1M32O5iyfYUSV+UdOM4q+4j6VcRMdj6qMZW8DXaR9Jddfd3kfTBBnf5Z5IujoioW3ZD7X2X9EeS/q6so0VjuFDS+0ZYfkL+WGGpn8uIeEHSD0eJB6gmt+AGNGYy5SOlaOT1KPkAOIr5c0n/MmzZt+pyvNMkfdP27m2PbBR5TvUtDcupbPdKeo/an+OtlXSPpHeMtV43FH4jsv1btn+WD4scsP2tfPn1+Sq35UcR/qTWTW/7r22vk/QN2z22P277N7Y32L7M9q4F9ru/7f/I2wzYvtj27HGanS7pGmVv2GjbPUfSJyX9SR73B/MY/6ftB20/Zvsi2zvnTWrP88l8/VePs75svy9/bIPtv6nv+s6Pvlxu+5u2n5Z0ku3Dbd+QH/FYa/vLtSMNtn8jaT9J38v3P01Zj+WSBl+nt0r62WgP5keJVkr6nbrn82+21+WfgettH1z32AW2/9H2D2xvtH2j7f3rHn+Ts966p/Kjtq57bCKx/4uk19rep679QZJeLukS29Nsf9b2Q7Yftf012zPy9Ub6XM7IY3/C9t2SXlW/M9t72b7C9nrb99v+y2Hx/FTS20Z7HYHKsZt/A5qo2/KRfNtvs32L7adtP2z77DHWrT2nM/M4HnA2AmjcbXlb794HbT8k6T80cn6z3ZC4vM0ptn8t6dejxHVCXc7ziWGPNfSa521r7Tbavtv2fxlj3Rm2L8y/01fa/pjrho2OtS1nedk3R3itasN+T3I2Gmpjng8cny8f8fNY97r9Vv5zkfflxDx/Gah/DT1GfjjCazBV0hs0do73Y0kbJe2ft9nF9vfzXOeJ/Of5ddv8qe3/5Wz46Ebb19jur3t8rPe+cOzKirs/sj2zbtlblNVXP7S9s+3z8u2ssf2/nRWGtffnF856BzdIOtv2HNtX5a/5TbXnWxfbb9u+1vbjtu+1/e5h8fxU4+R4XVv4Sfpfyv547SJpvqT/K0kR8Qf546/IjyTUPvB7SNpVWS/VyZI+Iumdkl4naS9JT0j6xwL7taS/zdv8jqQFks4edeWsIPiAsmGRo4qIsyR9WtuOgJwn6aT89ofKiqwdJdWGltSe5+x8/RvGWt9ZMfIVScdL2lPSzpLmDQtjsaTLJc2WdLGkrZI+Kqlf0qslHS3pL/J495f0kLYdAd00/Kmr4OtkewdJ+0q6d7TXx/arJB0oqX745A8lHSBpN0kr8pjrLZF0jrLPyCpJ5+bb6pd0paT/mT+330g6qpHYI2K1pJ8o6+GrOUHS1RExIOkzedyvlPRbyl7zT9atO/xzeZayPwT7K/vjcmLda9Aj6XuSbsu3c7Sk02y/pW57K5UNmQW6Az1+6HxdlY/knlXW0zFbWaL5IY99Dv4eyr5P5yn73lpq+2UT2Nbr8ufwFo2c34zknZKOkHTQ8AfynOeryr6P95I0R9l7U9Poay5lOcPvK8ujzlHWU7XnKOueJWmhspzsTZLem7CtF+V505ckvTUiZkl6jaRb84dH/DyOoMj78lpJL1OWb3zSdu3g+6j54QgOkDSU50sjPRfbfpukqZLuzhf3SPqGst+RvSU9r235b81/k/R+ZTngVEl/lW9vvPe+cOwR8Z+S1kr6r3WLT5D0r/novAskDSrL7w6V9GZJ9efgHiHpPmWncZ2r7DP2grI8/AP5rfY67CDpWkn/mj+nJZK+kj+fmnFzvG4o/L6TV+W125/my7co+0DsFREvRMR4J0cOSTorIjZFxPPKup0/ERGr86LlbEnv8jhdsRGxKiKuzbezXtLnlP3hGM2XJP1NRDwz/lN9ieMlfS4i7svbnyFpyRgxjrX+uyR9LyJ+HhGblRUfMaz9DRHxnYgYiojnI+LmiFgWEYMR8YCkfxrnub5ogq/T7Pz/jcOWH5m/5xsl3aSsd+3FI3sRcX5EbKx7/17huh5OSd+OiJvyX86LlRVfknSspLsi4vKI2CLpC5LWNRi7lB0ROkF6sTg7XtKFtq3sS/2jEfF4RGxUVtwvqWs7/HP5bknn5us/rOzzU/MqSXMj4lMRsTkfp//1YdvbqOwLBADQXJMmH4mIn0bEHXk+cLukS8bZtvJtb4qIn0n6gbLvs6LbOjsins1fj6L+Nv+uHKnNuyR9PyKuz1/Tv1H2utc09Jrnz+ffIuKR/Pl8S1lecvgoq79b0qcj4om88Kn/Tp/otoYbknSI7RkRsTYiaqfeFPo8FnxfzsnzwduUHXR+Rd52IvnhbL00v5Okd9t+UtIzkq5S9jo9mW9/Q0RcERHP5bnTuSNs/xsR8av8/b9M23K8Md/7BnLbi5QP97S9k7JOkgudDUs9VtJp+Wf3MUmf1/Y52SMR8X/zPHSzstOWPpmvf6e2Hy56nKQHIuIbeWy3SLpCUv2cHxu1LWceUTcUfu+MiNl1t6/nyz+m7GjXTbbv8ggTbAyzPrLxujX7SPp27Q+4sip6q7KqfFS2d7d9ad6l+7Skbyo7ajDSum+XNCu2HeWbqL0kPVh3/0Fll+gYLcax1t9L0sO1ByLiOUkbhrV/uP6O7QPz7vV1+XP9tEZ5rsNN5HWS9GT+/6xhy5fl7/ksZUcTD85jkO1e259xNkTiaUkP5G3q97Gu7ufnlPWASi99LaL+/gRjl7Lewz1tHynp9ZJmKvvSm5v/fHPd5+xH+fKa4Z/L7WLT9u/nPpL2qk88JJ2p7T8PsyQ9NUasQHVYTO6CTjJp8hHbR9j+ibOhdk8pK5TG+h58IiKerbv/oLLvs6LbelgTN1ab4d/zz2r7nKeh11x68bSZW+vaHqLRX5vh3+nD86yJbOtF+fP5E2Wv5Vpnp7X8dv5woc9jwfdlxDxqgvnhE3ppfidJl+W/RzsoG+X0Ptt/lm9/pu1/cjZc82llw39nOx9GOVZsGue9byC3/RdJf2h7L2VF5W/yomwfSVOUvf619++flPXW1dS/33OV5eRj5XhHDMvxjleW/9bM0raceUTdUPiNKCLWRcSfRsReyiYG+YrHnjlreO/Ww8q6yOv/iE+PiDXj7PrT+bZ+NyJ2UtZtP1omcbSkRfmHa52yX9LTbH93vOeXe0TZB6Fmb2Vdyo+O8HzGW3+t6rq6nZ1nNmdY++Hb/Kqy8wAOyJ/rmSo+UKrw65T/Uv5G2ZDIEUXEo8qOfLw9X/TflB11eaOyHq6F+fIi8a1VNiQma5D1zC2oe3wi73GtiL5c2RGhEyRdGlmv6oCy4QkH133Gdo7sROYXm48Vm7L3sOZhSfcP+8zOiohj69b5HWVH5YDuwFBPdLguzUf+VVkvzIKI2FnS18bYtiTtkg9Vq9lbWU5SdFsxys9jGWu94d/zM7V9ztPQa+5suOzXJX1Y2QzssyXdqdFfm+1yr2ExjbetZ5UdPK6pLwAUET+OiDcpGzZ4T76tiXweJ/oe15tIfrgqe7oefnpR/XN5QNnpO7Uc73RlQ0yPyLdfG/7bSI43/L2fUG4bEQ9K+v+V/X7VT9z3sKRNkvrrPkM7RcTB9c3rfl6vLCcfK8f72bDP5I4RUT+j/bg5XtcWfrb/2NtO9HxC2Ytb68p9VNl46rF8TdK5+S+ebM+1vbjArmcp65Z+Kv8Q/39jrPs32nZ+1yuV/YJ9XdmY5CIukfRR2/va3lHbzgEcVPYBGtL2z3Os9S+X9Hbbr3F2EuvZGv8XaJakpyU9kx9JmsjlFCbyOknS1Rqjq932HEn/RdtmEZ2l7Bdug7I/jJ+eQGw/kHSw7f/qbFjHX+qlR1QmEruU/SH4E2Xd+BdKUkQMKXu/P+/8Egu253n7c/KGu0zSGc5ObJ6v7DyEmpskbXQ2KcCMvNfzEGfnP9a8TtkfT6A7MLkLOlyX5iOzJD0eES/YPlzZwdbxnGN7qu3fVzZsrXY94olua6T8ZqIul3Sc7dfmOc+ntH1O3OhrvoOy93d93u79ynrpRlP/nT5PWZFXdFu3SvoD23s7O43ljNoDznp7F+fF9iZln4Oh/LGxPo/1GnmP69sWyg/zA+H/rrFzvPmSjtH2Od7zyib42VXZuZJFjffeN5LbXqjsvTtK+XwSkc2yeY2kf7C9k7MJg/a3PeLzjIitykaInZ33aB6kunkcJH1f0oHOJqaZkt9e5W3nVUoFcrxuKPxqs0bWbt/Ol79K0o22a2ODT41t1yY5W9n42yf90hlxar6Yt7vG2Tlky5SdhDmecyQdpmw43Q+UvYkjiuz8s3W1m7IP8bMR8XiB/UjS+cq6mK+XdL+yE0I/km/7OWVjnn+RP88jx1n/rvznS5UdDXlG0mPK/mCM5q+U/SHYqOwLYiJDVgu/Trmlyq5BV5+Vvbr2visbhrFe2wqhi5R1ka9RdjLwsqKBRTbpyh8rm3hlg7ITj3+RELuUveZPSVodEb+sW/7Xyo52LcuHFPy7sqNYozlH2fO6X9kflBenP87/aByn7Ev7fmU9iv+s/Jw+29OVjTe/UEC36GnBDWjMZMpH/kLSp/J4PqmsgBnLOmVFxiPKEuM/j4jazKET2tYo+c2E5DnPKcp6tdbmsdVPLtLQax4Rd0v6B0k3KCvqf1fb5w/DfSrf7/3Kvv8vV553jbetiLhWWd51u6SblRUGNT2S/oey1/txZQVBrYAZ6/NYb6Lvcb2J5of/pO0nwZO2zWL/jKRfKnvu5+SPfUHSDGV5zjJlp8kUUuC9byS3vULZhEzX5QVfzfu0bVKaJ5S9v2NNzvNhZUNS1ymbGOYbdXFvVDY5zBJl7+s6Sf9H0jRJcjbpz0GSvjNWoI7tLosGZPIewSeVdXXfX3I4kiTb/6pszPd3yo6limx/RNmQjY+VHQvQDO6fHlq8sPkbPv/emyNiUfM3DEw+tl8v6ZsRMX+cVSc92x+StCQiCk2U101s/0LSh/Pz4zBBtv9B2fmFXxlrPS5qiRc5O7n7OmVDPD8r6Q5tmxSldBExkWEGGCYiRpuyGagmhmYCqLC8l2Y/Zb16Byg7d234ZQkmhYg4avy1MJqIOL3IegxqQb3FyrqPH1H2B2hJ0CUMoJMxuQuA6pqqbJjjRmUXp/+usmsqAy1Bjx9eFBH/XdtfWBIAOhs9fkBHi4ifavuZK5HLZ4Qca/IXoKko/AAA1cW4FQAACuErEwAAAAC6XFt7/Pr758Te++w9/ootlH7CWjNOeUsbmtSMgU1DTXkeqdJiaMbph5EYg5vwbqRuw8lD3dLaP/TgQ9owsIHxdmg/i6Ge6Hr9/f2xz8JycycAzfXgAw9pYGCg7V9gbS389t5nb12/7GcNt48Rry85wW0kFguphYKUnuj3uDc5hk1DLyS1b0bBMxRbk9pvjcHkGLYMbUlq39uE96LPab+GfT1Tk9qnPofXvfoNSe2BJNR96HL7LNxbv7jx52WHAaCJjjritaXsl3P8AADV1UPlBwBAEZzjBwAAAABdjh4/AEB1cY4fAACFJPX42T7G9r22V9n+eLOCAgBgXK24eDt1JFqM3AlAWRru8bPdK+kfJb1J0mpJv7R9VUTc3azgAAAYnZswq+1LdcKcx+hO5E4AypTS43e4pFURcV9EbJZ0qaTFzQkLAIDx2W76DWghcicApUkp/OZJerju/up82XZsn2x7ue3lAwMbEnYHAABQaRPOndavH2hbcAC6W8tn9YyIpRGxKCIW9ffPafXuAACTiN38G1C2+txp7tz+ssMB0CVSZvVcI2lB3f35+TIAAFrOknpaUKltbfoWgReROwEoTUqP3y8lHWB7X9tTJS2RdFVzwgIAYBzmHD9UDrkTgNI03OMXEYO2Pyzpx5J6JZ0fEXc1LTIAAMZBoYYqIXcCUKakC7hHxNWSrm5SLAAAAF2N3AlAWZIKPwAAysPQTAAAimpr4WdbfT3l1pqDQ4NJ7bdGWvtsG2lTB2we2tSEGNKeR08TJoS107bR1zM1OYZel3/so69nSlL7KU5rvynx8xRc7holou4D0C4Rad93fF9mrPQ/3Bz0a0zLL+cAAEArWO2f3MX2Ats/sX237btsn5ov/3vb99i+3fa3bc+ua3OG7VW277X9lpa+KAAAjILCDwBQTeXM6jko6fSIOEjSkZJOsX2QpGslHRIRL5f0K0lnSFL+2BJJB0s6RtJXbPe26BUBAGBUFH4AABQUEWsjYkX+80ZJKyXNi4hrIl4cQ79M2fXZJGmxpEsjYlNE3C9plaTD2x03AAAUfgCAynIL/hXet71Q0qGSbhz20Ack/TD/eZ6kh+seW50vAwCgrcqf2QIAgAa16AT/ftvL6+4vjYilw/a7o6QrJJ0WEU/XLf+EsuGgF7ciMAAAGkXhBwCorBZN7DYQEYtG36enKCv6Lo6IK+uWnyTpOElHx7bp/9ZIWlDXfH6+DACAtmKoJwAABTnrYjxP0sqI+Fzd8mMkfUzSOyLiubomV0laYnua7X0lHSDppnbGDACARI8fAKCiLKun/ddyOkrSCZLusH1rvuxMSV+SNE3Stfnw02UR8ecRcZftyyTdrWwI6CkRiRdzBQCgARR+AIDKavdFfCPi59KIM8BcPUabcyWd27KgAAAogMIPAFBNbn/hBwBAVVH4AQAqi7oPAIBimNwFAAAAALocPX4AgEqyGOoJAEBRFH4AgMqi8AMAoBgKPwBARZnCDwCAgij8AADVxKyeAAAU1tbCLyK0dWiw4fZbm3DN22ZsI9Xg0Oa09tH4a1jzzJaNydtINb13elL7qb3TmhBFWtIYMZQcwdbE93PQW5La28zxBADobBGR1l5p7SVpKPE7f6gJOWgznkeq1LyhtwlzSzpxGz2TNPehxw8AUFl0+AEAUAyFHwCgkpjVEwCA4ij8AACVReEHAEAxFH4AgMrqofADAKCQhs9stL3A9k9s3237LtunNjMwAACAbkLuBKBMKT1+g5JOj4gVtmdJutn2tRFxd5NiAwBgdGZyF1QOuROA0jRc+EXEWklr85832l4paZ4k/ngBAFrOXMAdFUPuBKBMTTnHz/ZCSYdKurEZ2wMAoAgnXosTKAu5E4B2S756oe0dJV0h6bSIeHqEx0+2vdz28oGBDam7AwAAqLSJ5E7r1w+0P0AAXSmp8LM9Rdkfrosj4sqR1omIpRGxKCIW9ffPSdkdAADbsd30G9BKE82d5s7tb2+AALpWw0M9nX07nidpZUR8rnkhAQBQDIUaqoTcCUCZUnr8jpJ0gqQ32L41vx3bpLgAABiX3fwb0ELkTgBKkzKr588lzqoHAJQjK9T4GkJ1kDsBKFPy5C4AAAAAgM7WlMs5AADQfkzGAgBAUW0t/IYUemHohYbbb97aeNsXY4ihpPZ9PekvWWoMzw8+lxzDs4PPJMbwfHIMoUhqv+OUHZNjmNY7PXkbqXoSO95n9M1Maj+zL/11BMpC4QdMDqk5w2AMJsewZeumpPabEnLgms2JMTTjb+a03hlJ7af2TEuOYWrP1ORtpOhxNQdN0uMHAKgs6j4AAIqh8AMAVBY9fgAAFFPNfkoAAAAAQGH0+AEAKonLOQAAUByFHwCgsij8AAAohsIPAFBZ1H0AABRD4QcAqCiu4wcAQFFM7gIAAAAAXY4ePwBAZdHjBwBAMRR+AIBKYlZPAACKo/ADAFQWdR8AAMVQ+AEAKosePwAAimFyFwAAAADocvT4AQCqix4/AAAKofADAFQU1/EDAKAohnoCAKrJtZk9m3sbc5f2Ats/sX237btsn5ov39X2tbZ/nf+/S77ctr9ke5Xt220f1voXBgCAl2pzj18oYqjh1ltjaxNjaVT60eXBoS1J7Z8dfCY5hr6eKUntH9/0SHIMA88PJLWfNXVWcgx7zNw9qf3sqbskx7DTtJ2T2s/o2yGp/VDC7yQwCQ1KOj0iVtieJelm29dKOknSdRHxGdsfl/RxSX8t6a2SDshvR0j6av4/MGk043tmKDEH3Lz1heQYNmxan9T+4WceTo7hseceS2o/pSc99d9rh72S2s/fcUFyDLOmzE5qP61nWlL7SKwHIpKaN4wePwBAJVnZrJ7Nvo0lItZGxIr8542SVkqaJ2mxpAvz1S6U9M7858WSLorMMkmzbe/Z/FcDAICxcY4fAKCyyjzHz/ZCSYdKulHS7hGxNn9onaTacIJ5kuoP86/Ol60VAABtROEHAKisFhV+/baX191fGhFLh+13R0lXSDotIp6ujyMiwnZJA3kAABgZhR8AoLJa1OE3EBGLRt+npygr+i6OiCvzxY/a3jMi1uZDOWsn4qyRVH9Cy/x8GQAAbZV8jp/tXtu32P5+MwICAKBTOevaO0/Syoj4XN1DV0k6Mf/5REnfrVv+vnx2zyMlPVU3JBSTFLkTgDI0o8fvVGUnt+/UhG0BAFBMgclYWuAoSSdIusP2rfmyMyV9RtJltj8o6UFJ784fu1rSsZJWSXpO0vvbGi06FbkTgLZLKvxsz5f0NknnSvofTYkIAIACarN6tlNE/FyjX9fn6BHWD0mntDQoVAq5E4CypPb4fUHSxySlX1ANAIAJKnNWT6BBXxC5E4ASNHyOn+3jJD0WETePs97JtpfbXr5h/YZGdwcAwEu0+zp+QIpGcqf16wfaFB2AbpcyuctRkt5h+wFJl0p6g+1vDl8pIpZGxKKIWDRn7pyE3QEAAFTahHOnuXP72x0jgC7VcOEXEWdExPyIWChpiaT/iIj3Ni0yAADG4uxyDs2+Aa1C7gSgTFzHDwBQWQzNBACgmKYUfhHxU0k/bca2AAAowuKcPFQXuROAdqPHDwBQWRR+AAAUkzK5CwAAAACgAtra42dZfT1TGm4/vRkxOK3W9ajX7S3u+cFnk9o/tfmp5BhWP7Mmqf3ydXcmx3Dro48mtd9p2rTkGA7dfUFS+0P6D0yO4YDZByS1391pv8apvxNSJLYHGkeHH9D5ognfE4NDW5Lab9ySnjvd+8Q9Se1/dP9/Jsdwy+pHktpPndp4Hl7z+oX7J7V/w95HJcdw4M6/ndS+r/TcqRwM9QQAVJMZ6gkAQFEUfgCA6qLwAwCgkGr2UwIAAAAACqPHDwBQWQz1BACgGAo/AEAlWVIPdR8AAIVQ+AEAKooLuAMAUBSFHwCgmiz1UPgBAFAIk7sAAAAAQJejxw8AUEkWk7sAAFAUhR8AoLIYtgIAQDEUfgCAyuIcPwAAiqHwAwBUEkM9AQAojlEyAAAAANDl6PEDAFSUGeoJAEBBFH4AgGoyQz0BACiKwg8AUEkW5ysAAFBU2ws/q/Gjs71OD3drDCa1f2HrC8kxbNzydFL7zVs3J8fwmycfSmr/gxV3Jsdwz/duT9vAzPTPw+PHvzap/YKddk+OYePmtM/DzlN2Tmo/o2+HpPZAmRjqCbReRKRuIDmGwcT87anNTybHcMfAvUntr7t1ZXIMv1pxX9oGmpA7bToqLQ/dd/a85Bjm7TA/qf2M3pmJEUxJbF8ODpYCAAAAQJdjqCcAoLI4xw8AgGIo/AAAlWQx1BMAgKIo/AAAlUXZBwBAMUnn+Nmebfty2/fYXmn71c0KDAAAoNuQOwEoS2qP3xcl/Sgi3mV7qqTUKXIAACiIC7ijksidAJSi4cLP9s6S/kDSSZIUEZslpV9nAACAAmzO8UO1kDsBKFPKUM99Ja2X9A3bt9j+Z9tcEAwA0Da2m34DWojcCUBpUgq/PkmHSfpqRBwq6VlJHx++ku2TbS+3vXzDwIaE3QEAsL0eu+k3oIUmnDutXz/Q7hgBdKmUwm+1pNURcWN+/3Jlf8y2ExFLI2JRRCya0z8nYXcAAACVNuHcae7c/rYGCKB7NVz4RcQ6SQ/bflm+6GhJdzclKgAAxuEW3YBWIXcCUKbUWT0/IunifFaq+yS9Pz0kAACKYWgmKojcCUApkgq/iLhV0qLmhAIAwERwTh6qh9wJQFlSe/wAACiFLWbhBACgoJTJXQAAmHRsn2/7Mdt31i17pe1ltm/NZ2M8PF9u21+yvcr27bZfMpEHAADtUKkev60x2IRtbE1qP5TYXpJCkdS+x+n1+rTeqUnt+/p6k2NINjiUvIkXnk+7bu6mwfTr7j4/+HxS+2cGn0lqP7V3elL7SPs4A0lKGup5gaQvS7qobtnfSTonIn5o+9j8/uslvVXSAfntCElfzf8HJo1O+JoYHErPITdufjap/RNPbkyOQeueS2u/Q3rqv/HptBie2ZyW90jp72fqZzI1ly8LPX4AgMoqY1bPiLhe0uPDF0vaKf95Z0mP5D8vlnRRZJZJmm17zwk/UQAAElWqxw8AgBqrZT1+/baX191fGhFLx2lzmqQf2/6ssoOqr8mXz5P0cN16q/Nla5sUKwAAhVD4AQAqq0WF30BETHTWxQ9J+mhEXGH73ZLOk/TG5ocGAEBjGOoJAEC6EyVdmf/8b5IOz39eI2lB3Xrz82UAALQVhR8AoKIsu/m3Bj0i6XX5z2+Q9Ov856skvS+f3fNISU9FBMM8AQBtx1BPAEAlWeUcvbR9ibIZO/ttr5Z0lqQ/lfRF232SXpB0cr761ZKOlbRK0nOS3t/2gAEAEIUfAKCqSrqAe0S8Z5SHfm+EdUPSKa2NCACA8THUEwAAAAC6HD1+AIDKKukC7gAAVA6FHwCgklp4HT8AALoOhR8AoLLKOMcPAIAqovADAFSU1SMKPwAAimByFwAAAADocvT4AQAqi6GeAAAUQ+EHAKgkm8ldAAAoisIPAFBZ5hw/AAAKmXSFX8RQ2SGox71J7af2Tk2OYZfpOyW13333XZNjuPNls5PaT58xLTmG/XbvT2q/87S011GSenvSPg9bhjYntU//nYjE9kDjGOoJdL5m/JbaadNSzOibmRzD/Fl7JLXfb795yTE898KmpPbTpqXnkPsu2C2p/R47zE2OYXrv9KT2qd8dVT3oyOQuAAAAANDlJl2PHwCgO1jmHD8AAAqi8AMAVJYZuAIAQCEUfgCAyqLHDwCAYpIOldr+qO27bN9p+xLbaWdaAgAwAbabfgNaidwJQFkaLvxsz5P0l5IWRcQhknolLWlWYAAAAN2E3AlAmVKHevZJmmF7i6SZkh5JDwkAgPE5/wdUDLkTgFI03OMXEWskfVbSQ5LWSnoqIq5pVmAAAIzJ2Tl+zb4BrULuBKBMKUM9d5G0WNK+kvaStIPt946w3sm2l9tevmFgQ+ORAgAwDOf4oUoayZ3Wrx9od5gAulTK5C5vlHR/RKyPiC2SrpT0muErRcTSiFgUEYvm9M9J2B0AANtYUk8L/gEtNOHcae7c/rYHCaA7pXzDPSTpSNsznR0iPVrSyuaEBQAA0HXInQCUpuHJXSLiRtuXS1ohaVDSLZKWNiswAADGxtBMVAu5E4AyJc3qGRFnSTqrSbEAADAhFH6oGnInAGVJvZwDAACl6eFyDgAAFMJZ7AAAAADQ5drc45d2sd0e9yZH0NcBpe703ulJ7Qf7tiTHsMcOuye1P2a/g5NjmDNjRlL7WVOnJsfwpn1fldR+v532TY5hRt/MpPbTeqYltbdTfynocUE5LIZ6Au2Q+nvmJvQz9DktZZ09dZfkGF4595Ck9ltemZ6//e78PZPaT+9LT/0P3f3ApPb777Rfcgwz+3ZMat/bhJqiihjqCQCopvwC7gAAYHwUfgCAikobRQIAwGRC4QcAqCRL6kkeqgwAwOTANyYAAAAAdDl6/AAAlcXkLgAAFEPhBwCoLM7xAwCgGAo/AEBFmVk9AQAoiMIPAFBJFj1+AAAUxeQuAAAAANDl6PEDAFQWQz0BACiGwg8AUE2WzHX8AAAohMIPAFBR5hw/AAAKovADAFSSxVBPAACKYowMAAATYPt824/ZvnPY8o/Yvsf2Xbb/rm75GbZX2b7X9lvaHzEAAPT4AQAqzOX0+F0g6cuSLqqL4w8lLZb0iojYZHu3fPlBkpZIOljSXpL+3faBEbG17VEDACY1evwAAJXVIzf9Np6IuF7S48MWf0jSZyJiU77OY/nyxZIujYhNEXG/pFWSDm/eKwAAQDFt7fGz0o7O9jUh3KEOmAFuRu/MskPQnjP3SGq/67RdkmN4+dzfSWrf5/TPQ/+M/qT2O/bNSo5hau+0pPbTe2ckx5CCU6xQltTvlDH0215ed39pRCwdp82Bkn7f9rmSXpD0VxHxS0nzJC2rW291vgyYNJoxCVPqd/7Mvh2TY1g4a7+k9rOmpOcMv7fb00nt+3p6k2OYPTUtB9x12pzkGKb1Tk9q3+O016GqE4sx1BMAgO0NRMSiCbbpk7SrpCMlvUrSZbbTskQAAJqIwg8AUFHupOv4rZZ0ZUSEpJtsD0nql7RG0oK69ebnywAAaKuO+cYEAGCiyjjHbxTfkfSHkmT7QElTJQ1IukrSEtvTbO8r6QBJN6U/cwAAJoYePwBAJdnlzOpp+xJJr1d2LuBqSWdJOl/S+fklHjZLOjHv/bvL9mWS7pY0KOkUZvQEAJRh3MLP9vmSjpP0WEQcki/bVdK3JC2U9ICkd0fEE60LEwCAlyrjBPuIeM8oD713lPXPlXRu6yJCpyF3AtCJigz1vEDSMcOWfVzSdRFxgKTr8vsAAAAgdwLQgcYt/Ea5XtFiSRfmP18o6Z3NDQsAgPFYdvNvQCpyJwCdqNFz/HaPiLX5z+sk7T7airZPlnSyJC3Ye36DuwMA4KUSJmMB2q3B3GnBaKsBwIQkz+qZn7weYzy+NCIWRcSi/v60i2UDAFCTXcC9p+k3oNUmkjvNnUvuBKA5Gv2Ge9T2npKU//9Y80ICAKAIt+Qf0CLkTgBK1Wjhd5WkE/OfT5T03eaEAwAA0JXInQCUqsjlHEa6XtFnJF1m+4OSHpT07lYGCQDASJiMBZ2I3AlAJxq38BvjekVHNzkWAAAmhKGZ6ETkTgA6UaOzegIAUDp6/AAAKIbCDwBQSRaXcwAAoKhJV/ilDgvq65nSpEga1+ve5G1M65mW1L6nCTFs2vpCUvsXEttL6b0FPU2Y+n1K4mdqSs/UpPaDMZjUXiTeAIAxNKNn3olXIEv9rpSkWVN2Tmo/vXdGcgx7zCz/Ozs1F57i9Fy6tyethOlJ/DylfqbLGqwy6Qo/AECXsBnqCQBAQRR+AIDKSu0FAABgsqDwAwBUFj1+AAAUw6FSAAAAAOhy9PgBACrJ4jp+AAAUReEHAKgoq4ehngAAFELhBwCoLHr8AAAohsIPAFBZTO4CAEAxTO4CAAAAAF2OHj8AQCVlk7tw/BIAgCIo/AAAFWWGegIAUBCFHwCgsnqY3AUAgEIo/AAA1WQmdwEAoChOjgAAAACALkePHwCgkrLJXejxAwCgCAo/AEBlMdQTAIBi2lr4hUJDMdRw+62xNTmGocRt9Lg3OYbUbUzpTR+ha6dto7cJr0Nfz5Sk9lN7pyXHsDUGk9r3uvxjJ1uGNie1T/0sAOUxl3MAJomexO+qZowOSI2hOTlDNGEbaVJfy2bkHekxTM6DhuVnrQAANKhnkn55AwAwURwqBQAAAIAuR48fAKCSmNwFAIDiKPwAAJU1Wc/TAABgosYd6mn7fNuP2b6zbtnf277H9u22v217dkujBADgJdySf0AqcicAnajIOX4XSDpm2LJrJR0SES+X9CtJZzQ5LgAAgKq6QOROADrMuIVfRFwv6fFhy66JeHEe/GWS5rcgNgAAxmS76TcgFbkTgE7UjHP8PiDpW6M9aPtkSSdL0oK9+RsHAGgOS+phcmpU0wRypwXtiglAl0v6xrT9CUmDki4ebZ2IWBoRiyJi0Zz+OSm7AwBgG9Pjh+qZaO40d25/+4ID0NUa7vGzfZKk4yQdHRHRtIgAACiEyVhQLeROAMrUUOFn+xhJH5P0uoh4rrkhAQAAdBdyJwBlK3I5h0sk3SDpZbZX2/6gpC9LmiXpWtu32v5ai+MEAOAlyhjqOdJU/XWPnW47bPfn9237S7ZX5dP4H9aClwEdhtwJQCcat8cvIt4zwuLzWhALAAATUtJQzwuUJfEXbReLvUDSmyU9VLf4rZIOyG9HSPpq/j+6GLkTgE7EdGgAgEqyWnMJ9/GMNFV/7vPKhvLVn7u1WNJFkVkmabbtPZvw9AEAmJBmXM4BAIBytGYWzn7by+vuL42IpWOH4cWS1kTEbcOGi86T9HDd/dX5srXNChYAgCLaXviFGp/EasvQ5qZEkNQ6hpIj6OuZmtS+x+kdteG059Hj3uQYep328ZuS+DpKaZ/HZhkc2pLU/vnBZ5Paz+jbIal96u8U0IEGImJR0ZVtz5R0prJhngA6UDMu1ZI6tJxZiDNcNqc89PgBACqqYy7nsL+kfSXVevvmS1ph+3BJayTVX4F7fr4MAIC2ovADAFRWJxw5jog7JO1Wu2/7AUmLImLA9lWSPmz7UmWTujwVEQzzBAC0HZO7AAAqq4zJXUaZqn80V0u6T9IqSV+X9BfNeN4AAEwUPX4AgMoqY6jnKFP11z++sO7nkHRKq2MCAGA89PgBAAAAQJejxw8AUElWZ5zjBwBAFVD4AQAqqmNm9QQAoONR+AEAKovCDwCAYij8AADVZIZ6AgBQFJO7AAAAAECXo8cPAFBZDPUEAKAYCj8AQCUxqycAAMVR+AEAKopZPQEAKIpz/AAAAACgy9HjBwCoLHr8AAAohsIPAFBZnOMHAEAxbS/8Uo7O9jThyO5QYvveninJMfS4/BG2vS6/5k99HTrhSH8okrfR29ub1H5qz7Sk9lN6pia172HEOErUCX8HAKAIDlShbOVn/wAANMCi8AMAoCgO1QMAAABAl6PHDwBQUWboFAAABY3b42f7fNuP2b5zhMdOtx22+1sTHgAAY3ELbkAacicAnajIUM8LJB0zfKHtBZLeLOmhJscEAMD4nE2W0Owb0AQXiNwJQIcZt/CLiOslPT7CQ5+X9DGpCdMaAgDQALfgH5CK3AlAJ2pochfbiyWtiYjbmhwPAABA1yF3AlC2CU/uYnumpDOVDVUosv7Jkk6WpAV7z5/o7gAAGBU9dKiCtNxpQQsjAzCZNNLjt7+kfSXdZvsBSfMlrbC9x0grR8TSiFgUEYvm9M9pPFIAAOpYzT+/j3P80CIN505z5zIHDIDmmHCPX0TcIWm32v38D9iiiBhoYlwAAIyLHj9UAbkTgE5Q5HIOl0i6QdLLbK+2/cHWhwUAwPiY3AWdiNwJQCcat8cvIt4zzuMLmxYNAABAxZE7AehEEx7qCQBAp+CcPAAAiqHwAwBUFkMzAQAohsIPAFBJtVk9AQDA+Npa+N264raB2dPmPDjGKv2Syp7hihg6I4ay908MxWPYp12BAMBks+LmWwZm9O1A7tT5MZS9f2KoVgyl5E5tLfwiYu5Yj9teHhGL2hUPMXRuDGXvnxg6KwZgNAz1RLcjd6pGDGXvnxiIoQiGegIAKozCDwCAIij8AACVRdkHAEAxnVb4LS07ABFDTdkxlL1/iRhqOiEGYERM7gJ0xN9oYih//xIx1BDDKBwRZccAAMCEveKwl8ePf/GDpm93z5l739yJ52YAAJCi03r8AACYAHr8AAAogsIPAFBZlH0AABTTU3YANbaPsX2v7VW2P17C/hfY/ontu23fZfvUdseQx9Fr+xbb3y9p/7NtX277Htsrbb+6hBg+mr8Hd9q+xPb0NuzzfNuP2b6zbtmutq+1/ev8/11KiOHv8/fidtvftj273THUPXa67bDd38oYgOLcohvQ+cibtouF3IncidypgI4o/Gz3SvpHSW+VdJCk99g+qM1hDEo6PSIOknSkpFNKiEGSTpW0soT91nxR0o8i4rclvaLdsdieJ+kvJS2KiEMk9Upa0oZdXyDpmGHLPi7puog4QNJ1+f12x3CtpEMi4uWSfiXpjBJikO0Fkt4s6aEW7x8ozM4md2n2Deh05E0vQe5E7lSP3GkUHVH4STpc0qqIuC8iNku6VNLidgYQEWsjYkX+80Zlv7Tz2hmD7fmS3ibpn9u537r97yzpDySdJ0kRsTkiniwhlD5JM2z3SZop6ZFW7zAirpf0+LDFiyVdmP98oaR3tjuGiLgmIgbzu8skzW93DLnPS/qYJGaDAoDykTflyJ1eRO60bRm50yg6pfCbJ+nhuvurVcIfjxrbCyUdKunGNu/6C8o+IENt3m/NvpLWS/pGPmTin23v0M4AImKNpM8qOzqyVtJTEXFNO2Oos3tErM1/Xidp95LiqPmApB+2e6e2F0taExG3tXvfQCea6NAi22fkw/Hutf2WUoJGtyFv2uYLIncidxoduVOdTin8OobtHSVdIem0iHi6jfs9TtJjEXFzu/Y5gj5Jh0n6akQcKulZtb6Lfjv5WPDFyv6Q7iVpB9vvbWcMI4nsuielHbGx/Qllw2oubvN+Z0o6U9In27lfoCi34F8BF6jg0KJ86NsSSQfnbb6SD9MDukJZeVO+b3InkTuNhtzppTql8FsjaUHd/fn5srayPUXZH6+LI+LKNu/+KEnvsP2AsiEbb7D9zTbHsFrS6oioHbG7XNkfs3Z6o6T7I2J9RGyRdKWk17Q5hppHbe8pSfn/j5URhO2TJB0n6fho/4U391f2RXJb/tmcL2mF7T3aHAcwojIKvwkOLVos6dKI2BQR90tapWyYHpCCvClD7pQhdxqG3GlknVL4/VLSAbb3tT1V2dHRq9oZgLMz+s+TtDIiPtfOfUtSRJwREfMjYqGy5/8fEdHWozURsU7Sw7Zfli86WtLd7YxB2TCFI23PzN+To1XeCdtXSTox//lESd9tdwC2j1E2hOUdEfFcu/cfEXdExG4RsTD/bK6WdFj+WQG6Vb/t5XW3kyfYvn5oUUcNyUPXmPR5k0TuVIfcqQ650+g6ovDLj5J+WNKPlX1QL4uIu9ocxlGSTlB2tOjW/HZsm2PoBB+RdLHt2yW9UtKn27nz/IjZ5ZJWSLpD2Wd0aav3a/sSSTdIepnt1bY/KOkzkt5k+9fKjqZ9poQYvixplqRr88/k10qIAZhsBiJiUd2t8N+gsoYWYXIhb+o45E7kTpXIndz+3k8AANK98vdeEdf9Z/PnL+ifvsfNEbForHXyySy+n0+dXlt2kqQ/k3R07Siz7TMkKSL+Nr//Y0lnR8QNTQ8cAIAxdESPHwAAVTbG0KKrJC2xPc32vpIOkHRTGTECACa3vrIDAACgMYVn4WzuXrNhPa9Xdi7gaklnKZvFc5qyoUWStCwi/jwi7rJ9mbJzfgYlnRIRW9seNABg0qPwAwBgAiLiPSMsPm+M9c+VdG7rIgIAYHwUfgCACmt/jx8AAFVE4QcAqCSLsg8AgKIo/AAAlZWfTwcAAMZB4QcAqDAKPwAAiuByDgAAAADQ5ejxAwBUFv19AAAUQ+EHAKgwSj8AAIqg8AMAVJSZ3AUAgII4xw8AAAAAuhyFHwAAAAB0OYZ6AgAqKbuAO0M9AQAogsIPAFBhFH4AABRB4QcAqCzKPgAAiqHwAwBUFrN6AgBQDJO7AAAAAECXo8cPAFBRFoM9AQAohsIPAFBZlH0AABRD4QcAqDBKPwAAiuAcPwAAAADocvT4AQCqyczqCQBAUfT4AQAAAECXo8cPAFBJ2Zye9PgBAFCEI6LsGAAAmDDbP5LU34JND0TEMS3YLgAApaHwAwAAAIAuxzl+AAAAANDlKPwAAAAAoMtR+AEAAABAl6PwAwAAAIAuR+EHAAAAAF3u/wGSJDNzPhOA8AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "recorteG4 = trim(imagen[:,:,1], 442, 370, 15, 15)\n", + "poptG4, pcovG4 = curve_fit(gauss2d, xdata4, recorteG4.ravel(), p0=[1,0,1,1,1])\n", + "estrellaG4=gauss2d(xdata4, poptG4[0], poptG4[1],poptG4[2], poptG4[3], poptG4[4])\n", + "FWHMG4=FWHMG.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptG4[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 4 fotografÃa (Banda Verde)\")\n", + "plt.imshow(recorteG4, plt.get_cmap('Greens'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 4 a partir de la gaussiana (Banda Verde)\")\n", + "plt.imshow(estrellaG4.reshape(15, 15), plt.get_cmap('Greens'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 5 (Verde)" + ] + }, + { + "cell_type": "code", + "execution_count": 416, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA34AAAFSCAYAAACt2A1wAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA1jElEQVR4nO3de7xdZX3n8e/3nNwhEMgJtyQQRKQFCuqEi9IKilZUNM7UWiwiqFNGi1YcZhjBqYAzWKf1VqfVNgqCFUEEVOqlQqnIaAkY7lclyiUJQXIIl3BLcnJ+88d6Dtk5nHP2OvvZt7XzefPaL/ZZez1r/fYle/9+63nWsxwRAgAAAAD0rr5OBwAAAAAAaC0KPwAAAADocRR+AAAAANDjKPwAAAAAoMdR+AEAAABAj6PwAwAAAIAeN6XTAQAA0AgPzAhtHG7+htdv+nFEHNP8DQMA0DkUfgCAato4LB22S/O3+6+rB5q/UQAAOovCDwBQXXanIwAAoBIo/AAA1WRxpjoAACVR+AEAqosePwAASqHwAwBUF3UfAAClMEgGAAAAAHocPX4AgIoyQz0BACiJwg8AUE1M7gIAQGkUfgCA6qLHDwCAUij8AADVRd0HAEApDJIBAAAAgB5Hjx8AoJosqY8uPwAAyqDwAwBUF3UfAAClUPgBAKqLyV0AACiFwg8AUF3UfQAAlMLkLgAAAADQ4+jxAwBUE5O7AABQGoUfAKC6qPsAACiFwg8AUFFmchcAAEriHL8G2F5kO2xPSX9fa/s/t2G/M23/s+0nbX+71fvLZfsI2/fZftr229OyK2yf2uD2Lh7ZTru16z2eLNtH2V5Vct0P2/4/rY4JANAencpHuo3t421flbmNB2y/voF2pX+Hu13K117SoX3/3PYrOrTvht77VrN9ku2flVz3s7Y/WG+9Shd+6Y16Ln1QR25/V6Jd2H5pO2KsZ4znMNEX1zsk7SppbkT8cZ3tbvVj0CGflPR3EbF9RHzX9vGSNkXEFya7IdsHSTpY0vfS3yfZ3lzzuv2mzAe+3Wzfa/t9Yyz/iO3lbQ7nK5KOt71Lm/cLtMbIOX7NvgGTtA3mIx0zVn4TERdFxB92Mq5ekPK137R7v7bfKml9RNyS/j7b9qaaz+I9tv+o3XFNxPYM20/Yft0Yj33e9mVtDukzks60PW2ilSpd+CVvTR/UkduHcjfYgWKp9jlM9MW1l6RfRcRQuwIbT8nXaC9Jd9X8vZOk9ze4y/8i6aKIiJpl14+8bpL+SNJfd+po0QQulPSeMZafkB4rLfdzGRHPS/rROPEA1eQW3IDGbEv5SEc08np0+AA4yvmApH8atexbNTneqZK+YXvXtkc2jpRTfUujcirb/ZLepfbneGsk3SvpbROt1wuF35hsv9T2T9OwyEHb30rLr0ur3JaOIvzJSDe97f9h+xFJX7PdZ/tjtn9t+zHbl9reucR+97H9b6nNoO2LbM9pwvM5R9InJP1Jivv9Kcb/aftB24/a/rrtHVOTkef5RFr/VXXWl+33pMces/2XtV3f6ejLZba/YfspSSfZPtT29emIxxrbfzdypMH2ryW9RNI/p/1PV9FjeVyDr9ObJP10vAfTUaJ7JP1uzfP5tu1H0mfgOtsH1Dx2ge2/t/0D2+tt32B7n5rH3+Cit+7JdNTWNY9NJvZ/kvT7tveqab+/pIMkXWx7uu3P2H7I9m9t/4PtmWm9sT6XM1Psj9u+W9IhtTuzvYfty22vtX2/7b8YFc+1kt4y3usIVI7d/BvQRL2Wj6Rtv8X2Lbafsr3S9tkTrDvynM5McTzgYgRQ3W15S+/e+20/JOnfNHZ+s9WQuNTmFNv3SbpvnLhOqMl5Pj7qsYZe89R2pN1623fb/o8TrDvT9oXpN/0e26e7ZtjoRNtykZd9Y4zXamTY70kuRkOtT/nA8Wn5mJ/Hmtftpel+mfflxJS/DNa+hp4gPxzjNZgm6XWaOMf7saT1kvZJbXay/f2U6zye7i+o2ea1tv+Xi+Gj621fZXug5vGJ3vvSsaso7v7I9qyaZW9UUV/9yPaOts9L21lt+3+7KAxH3p+fu+gdfEzS2bbn2r4yveY3jjzfmth+x/bVttfZ/qXtd46K51rVyfF6tvCT9L8kXaWil2mBpP8rSRHxmvT4welIwsgHfjdJO6vopTpZ0oclvV3SkZL2kPS4pL8vsV9L+qvU5nclLZR0dp02F6UP71W2Dx5rhYg4S9KntOUIyHmSTkq316oosraXNDK0ZOR5zknrXz/R+i6KkS9JOl7S7pJ2lDR/VBhLJF0maY6kiyRtlvRRSQOSXiXpaEl/nuLdR9JD2nL0cEOjr5Pt7STtLemXYz2e1jlE0ssk1Q6f/JGkfSXtIunmFHOt4ySdo+IzskLSuWlbA5KukPQ/03P7taQjGok9IlZJ+omKHr4RJ0j6YUQMSvp0ivvlkl6q4jX/RM26oz+XZ6n4IthHxZfLiTWvQZ+kf5Z0W9rO0ZJOtf3Gmu3do2LILNAb6PFD9+upfCR5RkVPxxwVieYHPfE5+Lup+D2dr+J3a6nt/SaxrSPTc3ijxs5vxvJ2SYdJ2n/0Aynn+bKK3+M9JM1V8d6MaPQ1l4qc4Q9U5FHnqOip2n2cdc+StEhFTvYGSe/O2NYLUt70RUlviojZkl4t6db08JifxzGUeV9+X9J+KvKNT9geOfg+bn44hn0lDad8aaznYttvkTRN0t1pcZ+kr6n4N7KnpOe0Jf8d8aeS3qsiB5wm6b+l7dV770vHHhH/LmmNpP9Us/gESd9Mo/MukDSkIr97haQ/lFR7Du5hkn6j4jSuc1V8xp5XkYe/L91GXoftJF0t6ZvpOR0n6Uvp+Yyom+P1QuH33VSVj9z+LC3fpOIDsUdEPB8R9U6OHJZ0VkRsiIjnVHQ7fzwiVqWi5WxJ73CdrtiIWBERV6ftrJX0ORVfHOM5XsU/+r1UFAg/dvkjcsdL+lxE/CYinpZ0hqTjJohxovXfIemfI+JnEbFRRfERo9pfHxHfjYjhiHguIm6KiGURMRQRD0j6xzrP9QWTfJ3mpP+vH7X88PSer5d0o4retReO7EXE+RGxvub9O9g1PZySvhMRN6Z/nBepKL4k6c2S7oqIyyJik6QvSHqkwdil4ojQCdILxdnxki60bRU/6h+NiHURsV5FcX9cTdvRn8t3Sjo3rb9SxRf7iEMkzYuIT0bExjRO/yujtrdexQ8IAKC5tpl8JCKujYg7Uj5wu6SL62xbkv4yxfJTST9Q8XtWdltnR8Qz6fUo66/Sb+VYbd4h6fsRcV16Tf9Sxes+oqHXPD2fb0fEw+n5fEtFXnLoOKu/U9KnIuLxVPjU/qZPdlujDUs60PbMiFgTESOn3pT6PJZ8X85J+eBtKg46H5zaTiY/nKMX53eS9E7bT0h6WtKVKl6nJ9L2H4uIyyPi2ZQ7nTvG9r8WEb9K7/+l2pLjTfjeN5Dbfl1puKftHVR0klzoYljqmyWdmj67j0r6vLbOyR6OiP+b8tCNKk5b+kRa/05tPVz0WEkPRMTXUmy3SLpcUu2cH+u1JWceUy8Ufm+PiDk1t6+k5aerONp1o+27PMYEG6OsjWK87oi9JH1n5AtcRRW9WUVVPi7bu9q+JHXpPiXpGyqOGowpIn6e/tE8GxF/JekJFUd3ythD0oM1fz+o4hId48U40fp7SFpZE9ezkh4b1X5l7R+2X5a61x9Jz/VTmuC5jmo7mdfpifT/2aOWL0vv+WwVRxMPSDHIdr/tT7sYIvGUpAdSm9p9PFJz/1kVPaDSi1+LqP17su+xit7D3W0fLukoSbNU/OjNS/dvqvmc/UtaPmL053Kr2LT1+7mXpD1qEw9JZ2rrz8NsSU9OECtQHRaTu6CbbDP5iO3DbP8k9Q4+qaJQmuh38PGIeKbm7wdV/J6V3dZKTd5EbUb/zj+jrXOehl5z6YXTZm6taXugxn9tRv+mj86zJrOtF6Tn8ycqXss1Lk5r+Z30cKnPY8n3Zcw8apL54eN6cX4nSZemf0fbqRjl9B7b/yVtf5btf3QxXPMpFcN/5zgNo5woNtV57xvIbf9J0mtt76GiqPx1Ksr2kjRVxes/8v79o4reuhG17/c8FTn5RDneYaNyvONV5L8jZmtLzjymXij8xhQRj0TEn0XEHiomBvmSJ545a3Tv1koVXeS1X+IzImJ1nV1/Km3r9yJiBxXd9pPJJGIS6z+s4oMwYk8VXcq/1YufT73116imq9vFeWZzx4it1pdVnEi6b3quZ04i9tKvU/pH+WsVQyLHFBG/VXHk461p0Z+qOOryehU9XIvS8jLxrVExJKZoUPTMLax5fFLvcSqiL1NxROgESZdE0as6qGJ4wgE1n7EdoziR+YXmE8Wm4j0csVLS/aM+s7Mj4s016/yuiqNyQG9gqCe6XI/mI99U0QuzMCJ2lPQPdba9UxqqNmJPFTlJ2W3FOPcnMtF6o3/nZ2nrnKeh19zF+fxfkfQhFTOwz5F0p8Z/bbbKvUbFVG9bz6g4eDyitgBQRPw4It6gYtjgvWlbk/k8TvY9rjWZ/HBF8XQ9+vSi2ufygIrTd0ZyvNNUDDE9LG1/ZPhvIzne6Pd+UrltRDwo6f+p+PdVO3HfSkkbJA3UfIZ2iIgDapvX3F+rIiefKMf76ajP5PYRUTujfd0cr2cLP9t/7C0nej6u4sUd6cr9rYrx1BP5B0nnpn94sj3P9pISu56tolv6yfQh/u8TxLini2vdTXMxLex/V3FU4ecl9iMV3e4ftb237e215RzAIRUfoGFt/TwnWv8ySW+1/WoXJ7Gerfr/gGZLekrS0+lI0mQup1D6dUp+qAm62m3PlfQftWUW0dkq/sE9puKL8VOTiO0Hkg6w/Z9cDOv4C734iMpkYpeKL4I/UdGNf6EkRcSwii/izztdYsH2fG99Tt5ol0o6w8WJzQtUnIcw4kZJ611MCjAz9Xoe6OL8xxFHqvjyBHoDk7ugy/VoPjJb0rqIeN72oSoOttZzTtr+H6gYtjZyPeLJbmus/GayLpN0rO3fTznPJ7V1Ttzoa76divd3bWr3XhW9dOOp/U2fr6LIK7utWyW9Jr13O6o4fUdp3V1tL0nF9gYVn4Ph9NhEn8dajbzHtW1L5YfpQPi/auIcb4GkY7R1jvecigl+dlZxrmRZ9d77RnLbC1W8d0cozScRxSybV0n6rO0dXEwYtI/tMZ9nRGxWMULs7NSjub9q5nGQ9H1JL3MxMc3UdDvEW86rlErkeL1Q+I3MGjly+05afoikG2yPjA3+SGy5NsnZKsbfPuEXz4gz4m9Tu6tcnEO2TMVJmPWcI+mVKobT/UDFmzie2SqOLDwuabWKD/WbImL0EMvxnK+ii/k6SferOCH0w9ILvUznSvp5ep6H11n/rnT/EhVHQ56W9KiKL4zx/DcVXwTrVRQw35pg3dEm8zpJ0lIV16CrzcpeNfK+qxiGsVZbCqGvq+giX63iZOBlZQOLYtKVP1Yx8cpjKk48rv3xm2zsUvGaPylpVUT8omb5/1BxtGuZiyEF/6riKNZ4zlHxvO5X8YXywvTH6UvjWBXj2O9X0aP4VaVz+mzPUDHe/EIBvaKvBTegMdtSPvLnkj6Z4vmEigJmIo+kbT+sIjH+QETc28i2xslvJiXlPKeo6NVak2KrnVykodc8Iu6W9FlJ16so6n9PEx/M/2Ta7/0qfv8vU8q76m0rIq5WkXfdLukmFYXBiD5J/1XF671ORUEwUsBM9HmsNdn3uNZk88N/1NaT4ElbZrF/WtIvVDz3c9JjX5A0U0Wes0zFaTKllHjvG8ltL1cxIdM1qeAb8R5tmZTmcRXv70ST83xIxZDUR1RMDPO1mrjXq5gc5jgV7+sjkv6PpOmS5GLSn/0lfXeiQB1bXRYNKKQewSdUdHXf3+FwJEm2v6lizPd3Ox1LFdn+sIohG6d3OhagGTwwI7RkUfM3fP4vb4qIxc3fMLDtsX2UpG9ExII6q27zbH9Q0nERUWqivF5i++eSPpTOj8Mk2f6sivMLvzTRelzUEi+w/VZJ16gY4vkZSXdoy6QoHRcRkxlmgFEiYrwpm4FqYmgmgApLvTQvUdGrt6+Kc9dGX5ZgmxARR9RfC+OJiNPKrMegFtRaoqL7+GEVX0DHBV3CALoZk7sAqK5pKoY5rldxcfrvqbimMtAS9PjhBRHxn7X1hSUBoLvR4wd0tYi4VlvPXIkkzQg50eQvQFNR+AEAqotxKwAAlMJPJgAAAAD0uLb2+A0MzI0999qz/orjGIqhJkSRd8pav/NfMmeeRLI5NmfHkKvP+ccMcp/H5uH812FKX9772YzPw/CYl8+ZjLzPdF/m8Z+HHnxIg4OPMd4O7Wcx1BM9b2BgIPZa1HjuBKD7PPjAQxocHGz7D1hbC78999pT1y27tuH2j28YzI4ht9iYM23n7Bim9E3Nav/M0PrsGHLnbJk5ZbvsGJ7a+HhW+ycy20vSvBm7ZrXfYdpO2TE8v/nZrPa57+X0/hlZ7V9z+FFZ7YEs1H3ocXst2lM/v+FnnQ4DQBMdcdjvd2S/nOMHAKiuPio/AADK4Bw/AAAAAOhx9PgBAKqLc/wAACglq8fP9jG2f2l7he2PNSsoAADqasXF26kj0WLkTgA6peEeP9v9kv5e0hskrZL0C9tXRsTdzQoOAIDxWW5Bj1/edEnA+MidAHRSTo/foZJWRMRvImKjpEskLWlOWAAA1Ge76bc6+1to+ye277Z9l+2PpOV/Y/te27fb/o7tOTVtzki9O7+0/cbWviLocuROADomp/CbL2llzd+r0rKt2D7Z9nLbywcHH8vYHQAAHTck6bSI2F/S4ZJOsb2/pKslHRgRB0n6laQzJCk9dpykAyQdI+lLqdcH26ZJ505r1+ZfygoApDbM6hkRSyNicUQsHhiY2+rdAQC2IXbzbxOJiDURcXO6v17SPZLmR8RVETGUVlsmaUG6v0TSJRGxISLul7RCRa8PMK7a3GnevIFOhwOgR+TM6rla0sKavxekZQAAtJwl9bXgHL/NZfdvL5L0Ckk3jHrofZK+le7PV1EIjhizhwfbDHInAB2TU/j9QtK+tvdW8aV1nKQ/bUpUAADUY7VkchdJA7aX1/y9NCKWbrVre3tJl0s6NSKeqln+cRXDQS9qRWCoPHInAB3TcOEXEUO2PyTpx5L6JZ0fEXc1LTIAAOpoUeE3GBGLJ9jnVBVF30URcUXN8pMkHSvp6IgYmRyUHh68gNwJQCdlXcA9In4o6YdNigUAgK7motI8T9I9EfG5muXHSDpd0pER8WxNkyslfdP25yTtIWlfSTe2MWR0GXInAJ2SVfgBANA5rbmOXx1HSDpB0h22b03LzpT0RUnTJV2dYloWER+IiLtsXyrpbhVDQE+JiLKnEQIA0DRtLfyGYkjrNqxtuP2vn1qRHcN+c343q30zLuy7OfM3/9HnHsmOYfdZC+qvNIHNL0xe17ipfdOy2u8yc7fsGJw5se0zQ+uzY+jLjKEvc2b4TcObstoHl7tGB7W77ouIn6mYV2a0cXtwIuJcSee2LCgAAEqgxw8AUElWy87xAwCg51D4AQCqqXWzegIA0HNafgF3AAAAAEBn0eMHAKgsj3m6HQAAGI3CDwBQWQz1BACgHAo/AEBlUfcBAFAO5/gBAAAAQI+jxw8AUEmW1UeXHwAApVD4AQAqi3P8AAAoh8IPAFBNXMcPAIDSKPwAAJVF3QcAQDlM7gIAAAAAPY4ePwBAJVkM9QQAoCwKPwBAZVH4AQBQDoUfAKCiTOEHAEBJFH4AgGpiVk8AAEpra+EXEdo4vLHh9nvPfkl2DDP7t8tq//SmJ7NjmN4/M6v9lL6p2TEMx3BW+z7nzwsUiqz2Vn7Cl/s8mhFDruHYnNW+z/1NigQAgBeLyPu97xYcaELV0eMHAKgs8jAAAMqh8AMAVBKzegIAUB6FHwCgsij8AAAoh8IPAFBZfRR+AACU0vDMFrYX2v6J7btt32X7I80MDAAAoJeQOwHopJwevyFJp0XEzbZnS7rJ9tURcXeTYgMAYHxmchdUDrkTgI5puPCLiDWS1qT7623fI2m+JL68AAAtZy7gjoohdwLQSU05x8/2IkmvkHRDM7YHAEAZ3XAtTaAR5E4A2i37Kty2t5d0uaRTI+KpMR4/2fZy28vXPbYud3cAAACVNpncae3awfYHCKAnZRV+tqeq+OK6KCKuGGudiFgaEYsjYvHOc3fO2R0AAFux3fQb0EqTzZ3mzRtob4AAelbDQz1d/DqeJ+meiPhc80ICAKAcCjVUCbkTgE7K6fE7QtIJkl5n+9Z0e3OT4gIAoC67+TeghcidAHRMzqyeP5M4qx4A0BlFocbPEKqD3AlAJ2VP7gIAAAAA6G5NuZwDAADtx2QsAACU1dbCb1jD2rB5Q8PtZ8/YITuGzTGU1f7Zzc9mx2DndbQOx3B2DE9teiKr/Yz+mdkx5Op3/se3GdvINRSbOrr/3OugRZPiABpB4QdMLCL/W3pYeXnH5uG83EuShmNzVvvc3EvKzxn63Z8dA995yNH5rBcAgAaRAwEAUA6FHwCgsjj6DQBAOUzuAgAAAAA9jh4/AEAlcTkHAADKo/ADAFQWhR8AAOVQ+AEAKou6DwCAcij8AAAVxXX8AAAoi8ldAAAAAKDH0eMHAKgsevwAACiHwg8AUEnM6gkAQHkUfgCAyqLuAwCgHAo/AEBl0eMHAEA5TO4CAEBJthfa/ontu23fZfsjafnOtq+2fV/6/05puW1/0fYK27fbfmVnnwEAYFtF4QcAqK7iRL/m3iY2JOm0iNhf0uGSTrG9v6SPSbomIvaVdE36W5LeJGnfdDtZ0pdb8TIAAFAPhR8AoKKK6/g1+zaRiFgTETen++sl3SNpvqQlki5Mq10o6e3p/hJJX4/CMklzbO/eghcDAIAJcY4fAKCaSnXQtXD39iJJr5B0g6RdI2JNeugRSbum+/MlraxptiotWyMAANqorYVfn/o0vX96w+0Hn1+bHUPO/iVp0/Cm7BhWPv1gVvsnNjyRHcNOM3bKaj976g7ZMcyeOjt7G7lyc8ZoQgwReVsZjs1Z7d3XDa8C0FUGbC+v+XtpRCytXcH29pIul3RqRDxV21MYEWGbfxjoCsMazt7G85ufy2r/2POPZsewbsNjWe1nTZmVHcOuM/M667ebkp/39Gem7kyItW2jxw8AUElWy5KYwYhYPO5+7akqir6LIuKKtPi3tnePiDVpKOdIprta0sKa5gvSMgAA2opz/AAAldXuc/xcrHCepHsi4nM1D10p6cR0/0RJ36tZ/p40u+fhkp6sGRIKAEDb0OMHAKisDgxbOkLSCZLusH1rWnampE9LutT2+yU9KOmd6bEfSnqzpBWSnpX03rZGCwBAQuEHAKisdtd9EfEzjX968NFjrB+STmlpUAAAlJA91NN2v+1bbH+/GQEBAAD0MnInAJ3QjB6/j6i4jlH+NI8AAJRV4pw8oEuROwFou6weP9sLJL1F0lebEw4AAOWMzOrZzsldgFzkTgA6JbfH7wuSTpfU+QuyAQC2ORRqqKAviNwJQAc03ONn+1hJj0bETXXWO9n2ctvL1z22rtHdAQDwIvT4oUoayZ3Wrh1sU3QAel3OUM8jJL3N9gOSLpH0OtvfGL1SRCyNiMURsXjnuTtn7A4AAKDSJp07zZs30O4YAfSohgu/iDgjIhZExCJJx0n6t4h4d9MiAwBgIi4u59DsG9Aq5E4AOonr+AEAKouhmQAAlNOUwi8irpV0bTO2BQBAGRbn5KG6yJ0AtBs9fgCAyqLwAwCgnKzr+AEAAAAAul9be/z63KfZU3douP1TG1dmx/Dc0LNZ7R96Oj+Gz/7797La7z13p+wY3n3AG7PaT3H+R2da37Ss9lMz20vScBd0eoeGO7z/6Oj+gRx0+KHXRUgRjX9PDw1vyo7hkWdXZ7X/7q9/kB3Dj351V1b739llXnYMJxxwbFb7A3Y6KDuGWVO2z2pv8aW5Let81gsAQCPMUE8AAMqi8AMAVBeFHwAApXCOHwAAAAD0OHr8AACVxVBPAADKofADAFSSJfVR9wEAUAqFHwCgoriAOwAAZVH4AQCqyVIfhR8AAKUwuQsAAAAA9Dh6/AAAlWQxuQsAAGVR+AEAKothKwAAlEPhBwCoLM7xAwCgHAo/AEAlMdQTAIDyGCUDAAAAAD2OHj8AQEWZoZ4AAJRE4QcAqCYz1BMAgLIo/AAAlWRxvgIAAGW1tfALhTYNb2q4/dS+qdkxPL7hiaz23773p9kx/PsF/y+r/YNHvTQ7hj/a78is9s8OPZcdw47T5mS13xybs2PI3UZfE9JOZ26jry+vx6MZzwHoFIZ6YlsQiobbDsVQ9v5XP7Mqq/23fnFjdgx3XHFzVvubXr5rdgy/t8uirPYv3eFl2THM7J+VtwHzm78t490HAAAAgB7HUE8AQGVxjh8AAOVQ+AEAKsliqCcAAGVR+AEAKouyDwCAcrLO8bM9x/Zltu+1fY/tVzUrMAAAgF5D7gSgU3J7/P5W0r9ExDtsT5OUOdUQAABlcQF3VBK5E4COaLjws72jpNdIOkmSImKjpI3NCQsAgInZnOOHaiF3AtBJOUM995a0VtLXbN9i+6u2t2tSXAAA1GW76TeghcidAHRMTuE3RdIrJX05Il4h6RlJHxu9ku2TbS+3vXzd4LqM3QEAsLU+u+k3oIUmnTsNDg62O0YAPSqn8FslaVVE3JD+vkzFl9lWImJpRCyOiMU7D+ycsTsAAIBKm3TuNDAw0NYAAfSuhgu/iHhE0krb+6VFR0u6uylRAQBQh1t0A1qF3AlAJ+XO6vlhSRelWal+I+m9+SEBAFAOQzNRQeROADoiq/CLiFslLW5OKAAATAbn5KF6yJ0AdEpujx8AAB1hi1k4AQAoKWdyFwAAAABABbS1xy8itHHzhobbT+ufnh3DxuEuuE5qf94R6r0W7Z4dwuxps7PaT+ufmh1DNxypH47NWe37nH/spN/9HW3vzOdgpsNABzHUE5hYM/6FTM/Mv2bv0IRLFe4+K6v53Dl5eY8kbT81L4Zm5AxADoZ6AgAqi7IPAIByOPQAAKgkqzMXcLd9vu1Hbd9Zs+zltpfZvjVdePvQtNy2v2h7he3bbb/omm0AALQDhR8AoLI6UfhJukDSMaOW/bWkcyLi5ZI+kf6WpDdJ2jfdTpb05WY8bwAAJovCDwCASYiI6yStG71Y0g7p/o6SHk73l0j6ehSWSZpjO/9EbQAAJolz/AAAFeVWTRI1YHt5zd9LI2JpnTanSvqx7c+oOKj66rR8vqSVNeutSsvWNClWAABKofADAFSS1bJhK4MRMdkLbH9Q0kcj4nLb75R0nqTXNz80AAAaw1BPAEA1pQu4N/vWoBMlXZHuf1vSoen+akkLa9ZbkJYBANBWFH4AAOR7WNKR6f7rJN2X7l8p6T1pds/DJT0ZEQzzBAC0HUM9AQCV1YkLuNu+WNJRKs4FXCXpLEl/JulvbU+R9LyKGTwl6YeS3ixphaRnJb237QEDACAKPwBARY1cx6/dIuJd4zz0H8ZYNySd0tqIAACoj8IPAFBZLZrVEwCAnkPhBwCoKKtPFH4AAJTB5C4AAAAA0OPo8QMAVBZDPQEAKIfCDwBQSXZnJncBAKCKKPwAAJVlzvEDAKCUthZ+tjWtf3rD7fuG809JnOL+rPZvfelh2TE8+YENWe1POPDI+ivVsdus3bLa92e+jpLU1wWnmBYzrWdoQs45pW9qVvvc9yI3cSbxRicx1BPbgpzv2Sl907L3v9f2i7Laf+iwY7JjOGzPBVnt99whL++RpMW7vDKr/fT+mdkx2J3PnVBdfHoAAAAAoMcx1BMAUEmWOccPAICSKPwAAJVlBq4AAFAKhR8AoLLo8QMAoJysQ6W2P2r7Ltt32r7Y9oxmBQYAQD22m34DWoncCUCnNFz42Z4v6S8kLY6IAyX1SzquWYEBAAD0EnInAJ2UO9RziqSZtjdJmiXp4fyQAACoz+k/oGLInQB0RMM9fhGxWtJnJD0kaY2kJyPiqmYFBgDAhFyc49fsG9Aq5E4AOilnqOdOkpZI2lvSHpK2s/3uMdY72fZy28vXDa5rPFIAAEbhHD9USSO50+DgYLvDBNCjciZ3eb2k+yNibURsknSFpFePXikilkbE4ohYvPPAzhm7AwBgC0vqa8F/QAtNOncaGBhoe5AAelPOL9xDkg63PcvFIdKjJd3TnLAAAAB6DrkTgI5peHKXiLjB9mWSbpY0JOkWSUubFRgAABNjaCaqhdwJQCdlzeoZEWdJOqtJsQAAMCkUfqgacicAnZJ7OQcAADqmj8s5AABQCmexAwAAAECPa2uP33AMa/2mpxpuv8uM3bJjmL/dgqz2c2fMzY7hr488KKt9My5YPHd63ixhQzGUHUOf8447TPHU7Bim9OX9E3ATjp1sznwth4Y3ZceQY1jDHd0/tl0WQz3R++y8z/mUJqR6O2XmDEft8drsGA7Z5ZCs9tP7pmfHsN3U2R2PITd3wraNoZ4AgGpKF3AHAAD1UfgBACrKTRkBAQDAtoDCDwBQSRbDngAAKItfTAAAAADocfT4AQAqi8ldAAAoh8IPAFBZnOMHAEA5FH4AgIoys3oCAFAShR8AoJIsevwAACiLyV0AAAAAoMfR4wcAqCyGegIAUA6FHwCgmiyZ6/gBAFAKhR8AoKLMOX4AAJRE4QcAqCSLoZ4AAJTFGBkAAAAA6HH0+AEAKsv0+AEAUAqFHwCgsvo4xw8AgFLaWvhN8RTNnT6v4fZT+6Zlx7D91Nkdbd8Mzw09m72N3KPk0zw9O4Zc3XCkvxkR9Dnvn2FoOLN9HibXQKdY3fE9AHSzvibMfJubf+0wdU52DNtP3SGrvZtwdlPua8nvJTqNc/wAAAAAoMcx1BMAUFHmOn4AAJRE4QcAqCzO8QMAoBwKPwBAJdmc4wcAQFl1x8jYPt/2o7bvrFm2s+2rbd+X/r9Ta8MEAODF3IL/gFzkTgC6UZmTIy6QdMyoZR+TdE1E7CvpmvQ3AAA9b6ykPi3/sO17bd9l+69rlp9he4XtX9p+Y/sjRgdcIHInAF2mbuEXEddJWjdq8RJJF6b7F0p6e3PDAgCgHstu/q2ECzQqqbf9WhW/jQdHxAGSPpOW7y/pOEkHpDZfst3fxBcBXYjcCUA3anQ6tF0jYk26/4ikXcdb0fbJtpfbXv7Y4GMN7g4AgBfrk5t+q2ecpP6Dkj4dERvSOo+m5UskXRIRGyLifkkrJB3avFcAFdJQ7rR27WB7ogPQ87LnwY6I0ATXgI6IpRGxOCIWzx2Ym7s7AAAkjVzAva/pN0kDI0l3up1cIpyXSfoD2zfY/qntQ9Ly+ZJW1qy3Ki3DNmwyudO8eQNtjAxAL2t0Vs/f2t49ItbY3l3So3VbAADQVC2bjGUwIhZPss0USTtLOlzSIZIutf2SpkeGKiN3AtBRjfb4XSnpxHT/REnfa044AABU0ipJV0ThRknDkgYkrZa0sGa9BWkZtj3kTgA6qszlHC6WdL2k/Wyvsv1+SZ+W9Abb90l6ffobAIC26tDkLmP5rqTXppheJmmapEEVyf5xtqfb3lvSvpJuzH/m6GbkTgC6Ud2hnhHxrnEeOrrJsQAAMCmduO5eSuqPUnEu4CpJZ0k6X9L56RIPGyWdmM7jusv2pZLuljQk6ZSI2Nz2oNFW5E4AulGj5/gBANBxGT10DZsgqX/3OOufK+nc1kUEAEB9FH4AgEqyVOryCwAAoN2Fn60pfY3vctPwxiYG05jp/TOytzEcw1ntN/j57BiKEUiN6+/LvhKI+p338Rtuwmip3NfBTXkdMq/lnNl+M6POAAAT6HPmb11ue0mZv5QARI8fAKCq8iZjAQBgm0LhBwCoLDd8VSIAALYtFH4AgMqixw8AgHI4VAoAAAAAPY4ePwBAJVmduY4fAABVROEHAKgoq4+hngAAlELhBwCoLHr8AAAoh8IPAFBZTO4CAEA5TO4CAAAAAD2OHj8AQCUVk7tw/BIAgDIo/AAAFWWGegIAUBKFHwCgsvqY3AUAgFIo/AAA1WQmdwEAoCxOjgAAAACAHkePHwCgkorJXejxAwCgDAo/AEBlMdQTAIBy2lr4WVJfxujSjbExO4Y+V39064z+mdnbmNY/Pav9FE/NjiHX5hjK3kYo8trHcHYMNsdfgMaYyzkAAFASGScAoLL66PEDAKAUDpUCAAAAQI+jxw8AUElM7gIAQHkUfgCAymJyFwAAyqk71NP2+bYftX1nzbK/sX2v7dttf8f2nJZGCQDAi7gl/wG5yJ0AdKMy5/hdIOmYUcuulnRgRBwk6VeSzmhyXAAAAFV1gcidAHSZuoVfRFwnad2oZVdFvDCX/jJJC1oQGwAAE7Ld9BuQi9wJQDdqxjl+75P0rfEetH2ypJMlacFCvuMAAM2Re21YoINK504L91zYrpgA9LisX0zbH5c0JOmi8daJiKURsTgiFg/Mm5uzOwAAtjA9fqieyeZO8+YNtC84AD2t4R4/2ydJOlbS0RERTYsIAIBSmIwF1ULuBKCTGir8bB8j6XRJR0bEs80NCQAAoLeQOwHotLqFn+2LJR0lacD2KklnqZiJarqkq9OwmGUR8YEWxgkAwIswNBPdiNwJQDeqW/hFxLvGWHxeC2IBAGBSGOqJbkTuBKAbNWNWTwAA2s6i8AMAoCwKPwBAdTHUEwCAUtpa+PW5TzOmzGp8A0P1V6kfQ39W++HYnB3DsIaz2s+asn12DFP7pmW1D+VPRjY0vKnjMWS/n56aHUOu3M9TRF57AAAAdD96/AAAFcXlHAAAKIvCDwBQWczqCQBAORR+AIDKoscPAIByKPwAAJVF4QcAQDl9nQ4AAAAAANBa9PgBACrJ4hw/AADKovADAFQUs3oCAFAWhR8AoLIo/AAAKIfCDwBQTWaoJwAAZTG5CwAAAAD0OAo/AEBluQX/1d2nfb7tR23fOcZjp9kO2wPpb9v+ou0Vtm+3/coWvAwAANRF4QcAqKSRWT2bfSvhAknHvCgee6GkP5T0UM3iN0naN91OlvTl3OcNAEAjKPwAABXViv6++oVfRFwnad0YD31e0umSombZEklfj8IySXNs796MZw8AwGRQ+AEAkMn2EkmrI+K2UQ/Nl7Sy5u9VaRkAAG3FrJ4AgMpq0eUcBmwvr/l7aUQsHTcGe5akM1UM8wQAoCtR+AEAKqtFl3MYjIjFk1h/H0l7S7otxbNA0s22D5W0WtLCmnUXpGUAALRVWwu/CGk4hhtuv2H4+ewYZvTPymo/rMbjH7FpeGNW+6l90zoew+bYnB1Dn/NGGkdE/ZUqIPcztXl4qKP77413AVXVDRdwj4g7JO0y8rftByQtjohB21dK+pDtSyQdJunJiFjTmUgBANsyzvEDAFSS1bHLOVws6XpJ+9leZfv9E6z+Q0m/kbRC0lck/XkTnjoAAJPGUE8AACYhIt5V5/FFNfdD0imtjgkAgHoo/AAAFVX6unsAAGzz6g71tH2+7Udt3znGY6fZDtsDrQkPAICJuAU3IA+5E4BuVOYcvwskHTN6oe2FKqaufqjJMQEAUJ+LWT2bfQOa4AKROwHoMnULv4i4TtK6MR76vKTTxaR+AIAO6cTkLkA95E4AulFDs3raXiJpdUTc1uR4AAAAeg65E4BOm/TkLrZnSTpTxVCFMuufLOlkSVq458I6awMAUB49dKgCcicA3aCRHr99JO0t6bZ0kdoFkm62vdtYK0fE0ohYHBGLBwY4jxkA0BxW88/v4xw/tEjDudO8eeROAJpj0j1+EXGHpF1G/k5fYIsjYrCJcQEAUBc9fqgCcicA3aDM5RwulnS9pP1sr7L9/taHBQBAfUzugm5E7gSgG9Xt8YuId9V5fFHTogEAAKg4cicA3WjSQz0BAOgWnJMHAEA5FH4AgMpiaCYAAOVQ+AEAKmlkVk8AAFBfWwu/W26+ZXC7qbMfnGCVAUmdnuGKGLojhk7vnxjKx7BXuwIBgG3NzTfdMjhzynbkTt0fQ6f3TwzViqEjuVNbC7+ImDfR47aXR8TidsVDDN0bQ6f3TwzdFQMwHoZ6oteRO1Ujhk7vnxiIoQyGegIAKozCDwCAMij8AACVRdkHAEA53Vb4Le10ACKGEZ2OodP7l4hhRDfEAIyJyV2ArviOJobO718ihhHEMA5HRKdjAABg0g5+5UHx45//oOnb3X3Wnjd147kZAADk6LYePwAAJoEePwAAyqDwAwBUFmUfAADl9HU6gBG2j7H9S9srbH+sA/tfaPsntu+2fZftj7Q7hhRHv+1bbH+/Q/ufY/sy2/favsf2qzoQw0fTe3Cn7Yttz2jDPs+3/ajtO2uW7Wz7atv3pf/v1IEY/ia9F7fb/o7tOe2Ooeax02yH7YFWxgCU5xbdgO5H3rRVLORO5E7kTiV0ReFnu1/S30t6k6T9Jb3L9v5tDmNI0mkRsb+kwyWd0oEYJOkjku7pwH5H/K2kf4mI35F0cLtjsT1f0l9IWhwRB0rql3RcG3Z9gaRjRi37mKRrImJfSdekv9sdw9WSDoyIgyT9StIZHYhBthdK+kNJD7V4/0BpdjG5S7NvQLcjb3oRcidyp1rkTuPoisJP0qGSVkTEbyJio6RLJC1pZwARsSYibk7316v4Rzu/nTHYXiDpLZK+2s791ux/R0mvkXSeJEXExoh4ogOhTJE00/YUSbMkPdzqHUbEdZLWjVq8RNKF6f6Fkt7e7hgi4qqIGEp/LpO0oN0xJJ+XdLokZoMCgM4jb0rInV5A7rRlGbnTOLql8JsvaWXN36vUgS+PEbYXSXqFpBvavOsvqPiADLd5vyP2lrRW0tfSkImv2t6unQFExGpJn1FxdGSNpCcj4qp2xlBj14hYk+4/ImnXDsUx4n2SftTundpeIml1RNzW7n0DAMZE3rTFF0TuRO40PnKnGt1S+HUN29tLulzSqRHxVBv3e6ykRyPipnbtcwxTJL1S0pcj4hWSnlHru+i3ksaCL1HxRbqHpO1sv7udMYwliuuedOyIje2PqxhWc1Gb9ztL0pmSPtHO/QJluQX/ASivU3lT2je5k8idxkPu9GLdUvitlrSw5u8FaVlb2Z6q4svrooi4os27P0LS22w/oGLIxutsf6PNMayStCoiRo7YXabiy6ydXi/p/ohYGxGbJF0h6dVtjmHEb23vLknp/492IgjbJ0k6VtLx0f4Lb+6j4ofktvTZXCDpZtu7tTkOYEwUfthGkTcVyJ0K5E6jkDuNrVsKv19I2tf23ranqTgh9cp2BuDijP7zJN0TEZ9r574lKSLOiIgFEbFIxfP/t4ho69GaiHhE0krb+6VFR0u6u50xqBimcLjtWek9OVqdO2H7SkknpvsnSvpeuwOwfYyKISxvi4hn273/iLgjInaJiEXps7lK0ivTZwUA0BnbfN4kkTvVIHeqQe40vq4o/NIJmB+S9GMVH9RLI+KuNodxhKQTVBwtujXd3tzmGLrBhyVdZPt2SS+X9Kl27jwdMbtM0s2S7lDxGV3a6v3avljS9ZL2s73K9vslfVrSG2zfp+Jo2qc7EMPfSZot6er0mfyHDsQAAOgi5E1dh9yJ3KkSuZPb3/sJAEC+l/+Hg+Oaf2/+/AUDM3a7KSIWN33DAAB0UFf0+AEAAAAAWmdKpwMAAKAxTMYCAEBZ9PgBAAAAQI+jxw8AUGH0+AEAUAaFHwCgkizKPgAAyqLwAwBUVnHJKgAAUA+FHwCgwij8AAAog8ldAAAAAKDH0eMHAKgs+vsAACiHwg8AUGGUfgAAlEHhBwCoKDO5CwAAJXGOHwAAAAD0OAo/AAAAAOhxDPUEAFRScQF3hnoCAFAGhR8AoMIo/AAAKIOhngCAynILbnX3aZ9v+1Hbd9Ys+xvb99q+3fZ3bM+peewM2yts/9L2G3OfMwAAjaDwAwBUlu2m30q4QNIxo5ZdLenAiDhI0q8knZHi21/ScZIOSG2+ZLu/Wc8fAICyKPwAAJiEiLhO0rpRy66KiKH05zJJC9L9JZIuiYgNEXG/pBWSDm1bsAAAJBR+AICKasVAz6acM/g+ST9K9+dLWlnz2Kq0DACAtmJyFwBAZbVoapcB28tr/l4aEUtLxWN/XNKQpItaEhkAAA2i8AMAVFhLSr/BiFg86UjskyQdK+noiIi0eLWkhTWrLUjLAABoK4Z6AgCQyfYxkk6X9LaIeLbmoSslHWd7uu29Je0r6cZOxAgA2LbR4wcAqCar7Cyczd2tfbGko1QMCV0l6SwVs3hOl3R1imlZRHwgIu6yfamku1UMAT0lIja3PWgAwDaPwg8AgEmIiHeNsfi8CdY/V9K5rYsIAID6KPwAAJVUzMHZ/h4/AACqyFvOPwcAoDps/4ukgRZsejAiRl+gHQCASqPwAwAAAIAex6yeAAAAANDjKPwAAAAAoMdR+AEAAABAj6PwAwAAAIAeR+EHAAAAAD3u/wO4bIDtdRuCegAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "recorteG5 = trim(imagen[:,:,1], 320, 455, 15, 15)\n", + "poptG5, pcovG5 = curve_fit(gauss2d, xdata5, recorteG5.ravel(), p0=[1,1,1,1,1])\n", + "estrellaG5=gauss2d(xdata5, poptG5[0], poptG5[1],poptG5[2], poptG5[3], poptG5[4])\n", + "FWHMG5=FWHMG.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptG5[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 5 fotografÃa (Banda Verde)\")\n", + "plt.imshow(recorteG5, plt.get_cmap('Greens'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 5 a partir de la gaussiana (Banda Verde)\")\n", + "plt.imshow(estrellaG5.reshape(15, 15), plt.get_cmap('Greens'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 6 (Verde)" + ] + }, + { + "cell_type": "code", + "execution_count": 417, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3gAAAFVCAYAAAC9w02PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAybElEQVR4nO3debwldX3n/9f7djf7JjQaoFsgiiZgVJgWUaNxS1xigr/MJMHENUaSDBr0R2LE+c2o+cWMYxy3LCZEcEmIhCg6JDFuUWM0ggKKCkgkrM0iNLKJCnT3Z/6ounq49r23bnPqnrqnX89+1KPPqarzrU/VOeee76e+3/pWqgpJkiRJ0so3M+kAJEmSJEnjYYInSZIkSVPCBE+SJEmSpoQJniRJkiRNCRM8SZIkSZoSJniSJEmSNCVM8CRJmiPJ+iSfSnJxkouSnDiy7GVJvt7Of+PI/JOTXJbk0iRPm0zkkqQd3epJByBJ0gBtBk6qqguS7Amcn+TjwAOAY4FHVNVdSe4PkORw4DjgCOBA4BNJHlJVWyYUvyRpB2ULniRJc1TV9VV1Qfv4DuAS4CDgt4A3VNVd7bIb25ccC5xRVXdV1RXAZcDRyx+5JGlHZwueJGnQsnaX4u6t4y30jns+WlVP77T95BDgSOBc4I+Axyd5PfA94Heq6os0yd85Iy/b2M6TJGlZmeBJkobt7q3w6PuPt8xPXPtjSc4bmXNKVZ0yd7UkewAfAF5eVbcnWQ3sCxwDPAo4M8mPjjc4SZK2nwmeJGn4knGXuKmqNiy8yayhSe5Or6qz2tkbgbOqqoAvJNkKrAWuBdaPvHxdO0+SpGXlNXiSpGELza/VOKfFNpkEOBW4pKrePLLoQ8CT2nUeAuwEbALOBo5LsnOSQ4HDgC9s9z5LkrSdbMGTJA3f+FvwFvM44HnAV5N8uZ33auA04LQkXwPuBl7QtuZdlORM4GKaEThPcARNSdIkpPldkiRpmLL3TsXjfmS8hf7TNecv1kVTkqSVyC6akiRJkjQl7KIpSRq4TKKLpiRJK5IJniRp2GYHWZEkSYsywZMkDZ8teJIkdWKCJ0kaPvM7SZI6sdOLJEmSJE0JW/AkScMWYMYmPEmSujDBkyQNn/mdJEmdmOBJkobPQVYkSerEBE+SNHzmd5IkdeIgK5IkSZI0JWzBkyQNm4OsSJLUmQmeJGn4zO8kSerEBE+SNHBxkBVJkjryGrx5JDkkSSVZ3T7/dJJfX4btJsm7ktyS5At9b+++SvLQJF9OckeS327nvTnJW7ezvP+Z5OXjjHEJ2353kj+YxLYXMvezuMi6P5fkb5cjLklS/yZVHxmaJI9Pcul9LGO7jt1SfoeHLslFSZ44oW2/L8mzJ7TtQX5vkjwxycaO674syf/qsu7gE7wkVyb5bpJvj0x/0uF1leTByxFjF0lOTHJFkjuTXJLkIfOs+pPATwPrquroDuVOej9fCXyqqvasqrcneTzwKOB3l1pQkv2B5wN/0T5/YpKtI+/7tUleN9boxyDJR5L8/jbmH5vkhuX8QaiqvweOSPLw5dqm1LvZa/DGOUlLtAPWRyZq7nGrqn+tqodOMqZpUFVHVNWnl3u7bb3kEcD/aZ+/MMmWke/S5Ul+a7njWkySryf5tW3MPzHJecsczl8Cv5rk/outOPgEr/VzVbXHyPTS+1rgcla62zMGLwZ+FtgDeBawaZ7VDwaurKo7lym8eXU8RgcDF408PxT45aq6Zzs2+ULgw1X13ZF5182+7zTJ74sndfZnAe8Bnpv8UB+y5wGnV9XmrgWN6XP5PuD4MZQjDUfGPEnbZ0eqj0zE9hyPaWhZ2wH8Bk2dqEbmfX6kjvefgTcmOXIy4c3rPTSND3M9r13W2X39nFbV94B/mieee1kpCd42JXlwkn9JcluSTbNd05J8pl3lwvaswC/PNoEm+b0kNwDvSjKT5FVJ/iPJzUnOTLJvh+0+KMkn29dsSnJ6kn3mWXcGeA3wiqq6uBr/UVXf2sa6LwbeCTymjft17fyXJLksybeSnJ3kwPn2c6H122U/k+TS9pj9WXv8fr1d9sIkn0vyliQ3A69daF+TfBJ4EvAn7fYfAjwZ+K/t8vsl+YckN6XpcvoPSdYtcGifAfzLfAur6grg34DDR/bnbUmuSXJ7kvPTtCDOLntt+56+N00X0ouSbBhZfmSSC9plfwvsMrJsKbF/CNgPGN32/Wh+ON+70OcsP+j28eIkVwOfTLIqyZva4305zQ8xI2XvneTUJNenadX8gySrRlb59NzXSCteMt5JGqNpq4+06x+d5PNJbm1/b/4kyU7zrDv7W3Z8kuva9X+na1nta09I8g3gGwsdt5HXXNkew68Ad2YbleckP52mBea2NK2tmbP819K0Yt6S5KNJDp7nUM8t90Xt6+5I0/L0GwusuyrJ/27fnyuSvDT37nI7b1lp6mWfnVPe91s2kzwzycXta6+dPeZJ1rb1llvT1AX/tX3/Z4/bU5fwvvxmkm+06/xp0vwBXcpnr7VYHe9LwCXAj49s/+/S9IS6LclnkhwxsuzdbTz/2O7/uUkeNLJ83vd+ibH/FfCTo5+NJIcDDwfel2TnNHW2q5N8M8mfJ9m1XW9b3/Vd29hvSXIxTa83Rso+MMkH0tQ/r0h7+dOIT9OhjreiEzzg/wc+BtwPWAf8MUBVPaFd/oj2zMDsNUk/AuxL0+p0PPAy4NnATwEHArcAf9phuwH+Z/uaHwfWA6+dZ9117fSwNInIFUleN/tFG1VVpwK/yQ/OaLwmyZPbbf0ScABwFXDGfPu50PpJ1gLvB06mSUguBR47J4xHA5cDDwBev9C+VtWTgX8FXtpu/9/nlDUDvIvmeD8Q+C6wUHeWn2hj2qYkhwGPA84Zmf1F4JE07+vfAH+XZJeR5T/f7v8+wNmz22//gH2I5ou7L/B3NGePlhx72+J4Jvc+o/JLwNer6kK6fc5+iub4Pg14CU1yeCSwAfgvc9Z9N7AZeHC7zs8Ao/3KLwEOSbLXtuKVViRb8DRsU1UfaW0BXgGsBR4DPIX2BO4CngQcRvO79HuziUTHsp5NUwc5fIHjNtdzaCq7+8ztLdPWec4C/r92u/9BU4eYXX4s8GrgF4D9aeoz71tk/2bdSPM7vRfwIuAtSY6aZ92X0CQ3jwSOavdze8ua61TgN6pqT+BhwCfb+ScBG2n26wE0+1nbeH2X9+VZNEnIw2nqNk9r53f+7CXZnaaH10J1vEcBDwFGuz3+E83n6f7ABcDpc152HPA6mu/dZTT11kXf+6XEXlUbgU/RtNjNeh5Nj7NNwBvauB9JUy87CPgfI+vO/a6/BnhQOz0NeMHIMZgB/h64sC3nKcDLkzxtpLxLaLq6LqyqBj0BVwLfBm4dmV7SLnsvcArN9WpzX1fAg0eePxG4G9hlZN4lwFNGnh8A3EMzuughbRmr22WfBn59nhifDXxpnmWPbcv5R5ok4xDg32f3YRvrvxD47MjzU4E3jjzfo43xkHn2c971aRKQz48sC3DN7H612756kffjXvs697jQJB9/MM9rHwncskDZ9wA/Nuc929q+57e3+3oWsNMCZdxC84MAzZf1EyPLDge+2z5+AnAdkJHl/3YfYv/JNs5d2uefozlL2vVz9qMjyz8J/ObI85+Z/SzS/KG+C9h1ZPlzaK6DnH2+pl3/gX1/P52clmNi352L5x423gnOm/R+Oa2siR2sPrKN178c+OA8y2ZjHP0NfyNwapey2tc+ucNx2zjn/fi1BeJ9PnDOyPPQJD2zdZ5/Al48snwG+A5w8AL7t3qebX0IOHGeZZ+kScJmnz+1a1nMqRPOPS7A1TRdH/eas87v01zr9uBtlH8l8NQlvC8/OfL8TOBV2/HZO6gta/Qz/0Kak9W3Ane0y/+YkXrZnDL2adfZu33+buCdI8ufSXNifdH3fimxt8ufC1w68jm5Gvh/2nLvBB40su5jgCtGPrNzv+uXA08feX487eea5gTH1XO2fTLwrpHnhwFb5ot1dlopLXjPrqp9Rqa/bOe/kubgfiFN97sfughyjpuq6b8662Dgg22z8600f2C30FSi55XkAUnOaJvDbwf+muYMwbbMXk/2xqq6taqupBlE5JmLxDrrQJpWOACq6tvAzTRflqWufyBNQje7rGg+8KOuGX2yxH29lyS7JfmLJFe1r/0MsE/u3Z1w1C3AnnPmXde+53vRfLm/y0if5yS/k6Zrw23te7j3nPhuGHn8HWCXNN0iDgSubY/BrO8ft6XGXlWfpbmO4dltF4GjaVoUodvnbPS4Hzjn+VUjjw+mSeCuHynvL2jObs2aPYa3bitWacUJDrKiodhh6iNJHpKmm98Nbdl/uEDZs+b+ds1eUtKlrGtYuoVes606z+j6BwNvGznm36J5D+erX31fkmckOSdN98dbaY7hfMdm7m/63HrWUsqa6z+361+VpovwY9r5f0TTovWxNN0+XzXPfnR5X+bWo/ZoX7uUz96t7f9z63jntN+jPWlauo5oY5jt2vqGNN2Wb6dJTGHhOt4e7eMF3/vtqNueBRyQ5BiapG03mhMl+7ePzx/5HH2knT9r7nd9sTregbNlteW9mnv/HdgTuG2BWIEV3kWzqm6oqpdU1YE0ZzD+LAuPVFVznl8DPGPOH+tdquraRTb9h21ZP9EmHs9l/k4/l9Jk76PbnhvHQq6jecOB7zdz7wfMF+NC619P0z1jdllGn88T21L2da6TgIcCj25fO9vlYr7Xf4WmmXubquo2mqTp59r4H0/zo/pLwP2qah+aD32X+K4HDmqPwawH3ofYoTmD+3yaY/TRqvpmO7/L52z0uF9P011gW3FdQ9OCt3akrL2q6oiRdX6cZqCe2xeIVVpZ7KKpAZvS+sg7gK8Dh7Vlv3qBsmfN/e26bgllLaVu1OU19/otbX/vR+O7hqZlbfSY71pV/7bQBpPsDHwAeBPwgLbu8WHmPzb3qnvNiWmxsu6kSSBm1/+R0YKr6otVdSzNSd4P0bSwUVV3VNVJVfWjNJeq/L9JnrKN2LbnPZ7V+bNXzcCB/8HCdbxv0hyLn2tn/QpwLE2L5940rah0jG+x935Jdduq+g7NJU7Pp+meeUZV3U1zYv+7wBEjn6G9qxk05vsvXyg2friOd8Wcz+SeVTV6EubHabpwLmhFJ3hJfjE/GPjiFpqDuLV9/k3gRxcp4s+B16e9cDLJ/m2f7MXsSdNN47YkB7HALQHaD8XfAq9Msmcb7/HAP3TYDjT9wV+U5JHtH4I/BM5tz7zBD+/nQuv/I/ATSZ7dtmKdQHPGZCz7Os9rvwvcmuZi8dcssv6Haa4/2KYke9D0t54dtXNPmub9m4DVSf4HTR/2Lj7fvva3k6xJ8gs0rW7bGzs0Cd5Tafrbv2dk/lI/Z2e2ca1LM1jL98+8VdX1NNd5/O8ke6W5MP9BSUaP20/RdD2RpoeDrGjAprQ+sifN5RHfTvJjQJch7P972wPmCJrryWavnduesroct4X8I81tg36hrfP8Nveu8/w5cHIbK2kGMPvFDuXuBOxMU/fYnOQZNJdSzOdM4MQkB6UZyOP3llDWhe0+PDLN+AKvnV2QZKckv5pk72pGLr+d9jOX5FlpBv4JzYnvLfzg8zhqe96X0dcupX64WB1vP5puj6N1vLtoeqHtRtuy19Fi7/321G3fA/wyTavpewCqaivNrQvekvbWBe37/LR5S2k+DyenGcxvHc31t7O+ANyRZlCWXdtWzIeluT5xVqc63kpJ8P4+977vzAfb+Y8Czk3ybZoBNE6sqsvbZa8F3tM2cf7SPOW+rX3dx5LcQTN4x6M7xPM6mgtlb6P5EJ21yPovpfkgXUeTWPwNcFqH7VBVnwD+O81ZjetpLso8bmSV1zKynwutX83FoL9I0y/+Zppr0s6j+QKNa19HvRXYleYMxzk0zdYLeS/wzLSjD7UOnH3faZqx9wV+tV320bbMf2+XfY+OXTzaMy+/QNMH/Fs0X9rRfVtq7LRJ9L8Bu9N8rmYt9XP2lzT7diHNRcVzj/nzaX4ULqapSLyf5nqNWc+hvZegNDVmxjxJ22dHqo/8Dk0ryh00v0vzDXQy6l9ougb+M/CmqvrYfSjrtSx+3OY1Uud5A02d5zCa6+Nnl38Q+F/AGWm66X2NZjCUxcq9gyZhOJPmN/hXuPdv/lx/SXNi9ivAl2gSnc0011EtWFY1g9f9PvAJ4BvAvUbUpGlNurKN/zf5Qf3osPY136Z5n/+sqj61jdi2532ZtdTP3ik093AbPcP2mJE63iU0ie5swvNemrrdtTT1ndEB9ha02Hu/HbFDc6nObTTXy31xZP7v0Xzmz2nfh0/Q9ACbz+to9usKms/FX43EvYVmUJtHtss30YyuvzdAm+Q/kw63Z8i9L0HSjiTNaD0bgV+d54u/7JL8IXBjVb110rGsREl+DnheVS35x1AaqqzdpTj2kPEWetql51fVhsVXlLSYJIfQVEjX1BLu/bojalvp/ryqDl505SmT5G+AM6vqQ5OOZSVK8jJgfVW9crF1vTHkDqZtNj6Xpvvh79L0Oe58VqRvVfXqScewklXV39MMsStND7tVSlqh2l5JT6JprXkAzSUfH1zwRVOqqn5l0jGsZFX1x13XtaPKjucxNBe6bqK5kPXZ1dzHTZKGy0FWJK1MoemWdwtNF81LuPd90qSxswVvB1NVr2X+m6BK0jDZgicNVnsNul/SbWgHt3nUoitKY2SCJ0kaPvubSJLUiT+ZkiRJkjQlemnB22/tvrX+gesXX/E+SM/ddbbWtm4XsvK20fdxmlmGcwRbt3nrlnHrfzTZ9HysVqXfBvmrr7qKTZtutguOll+wi6am2tq1a+vgQx64+IqSVpQLzv/Spqraf7m320uNcP0D1/Oxz/V7n+WdVu3ca/l3bel/3JE77/l279vo+zjtNNNv+bA878WW2tL7NnZdvVuv5e+xZu9ey3/8o+e9P6nUP/M7TbGDD3kgnzt37i3OJK10u67e/apJbNdr8CRJwzdjhidJUhdegydJ0hxJ1if5VJKLk1yU5MQ5y09KUknWts+T5O1JLkvylSRHTSZySdKOzhY8SdLwLf81eJuBk6rqgiR7Aucn+XhVXZxkPfAzwNUj6z8DOKydHg28o/1fkqRlZQueJGnYxn2T8w65YlVdX1UXtI/voLk58UHt4rcAr+TeozMdC7y3GucA+yQ5YHt3WZKk7WULniRp4DL2EYEL1iY5b2TWKVV1yja3nhwCHAmcm+RY4NqqunBOTAcB14w839jOu36sgUuStAgTPEnS4PWQ4G2qqg0dtrsH8AHg5TTdNl9N0z1TkqRBsoumJEnbkGQNTXJ3elWdBTwIOBS4MMmVwDrggiQ/AlwLjN4Adl07T5KkZdUpwUvy9CSXtqODvarvoCRJGpWMd1p8ewlwKnBJVb0ZoKq+WlX3r6pDquoQmm6YR1XVDcDZwPPb0TSPAW6rKrtn7sCsO0malEW7aCZZBfwp8NM0P2ZfTHJ2VV3cd3CSJAWYGXMXzS2Lr/I44HnAV5N8uZ336qr68Dzrfxh4JnAZ8B3gRfc5SK1Y1p0kTVKXa/COBi6rqssBkpxBM1qYf6QkSf3L+K/BW0xVfZZFxttsW/FmHxdwQs9haeWw7iRpYrp00ZxvZLB7SXJ8kvOSnHfzppvHFZ8kSSQZ6yT1bNG602i96aabNi1rcJKm29gGWamqU6pqQ1Vt2G/tfuMqVpIkaeqM1pv233/tpMORNEW6dNF0ZDBJ0gTZ6qYVx7qTpInp0oL3ReCwJIcm2Qk4jma0MEmSlsVyj6Ip3UfWnSRNzKIteFW1OclLgY8Cq4DTquqi3iOTJIlmpBNb8LSSWHeSNEldumjSDgs939DQkiT1ZwKjaEr3lXUnSZMytkFWJEmSJEmT1akFT5KkScrCt6STJEktEzxJ0uDZRVOSpG5M8CRJg2d+J0lSN16DJ0mSJElTwhY8SdKghTBjE54kSZ30k+AlrJrpN3e84+5bey1/K1t7LR9gJv03oFb1ux/LcZzWrNq5922s7vk4AWzteRu3331Lr+Vvqc29li8txGvwJFVV79vou16zpbb0Wj6wLENSrUr/bUTLUU+eVrbgSZKGzfvgSZLUmQmeJGnwzO8kSerGtk9JkiRJmhK24EmSBi3YRVOSpK5M8CRJg2eCJ0lSNyZ4kqSBiwmeJEkdmeBJkobNUTQlSerMQVYkSZIkaUrYgidJGjwb8CRJ6sYET5I0aI6iKUlSdyZ4kqTBM8GTJKkbEzxJ0uDNmOBJktSJg6xIkiRJ0pSwBU+SNGxxkBVJkroywZMkDVq80bkkSZ2Z4EmSBi+Y4EmS1IXX4EmSJEnSlLAFT5I0eHbRlCSpGxM8SdLgmeBJktSNXTQlSYOXjHdafHtZn+RTSS5OclGSE9v5f5Tk60m+kuSDSfYZec3JSS5LcmmSp/V2MCRJWoAJniRp0JqkLGOdOtgMnFRVhwPHACckORz4OPCwqno48O/AyU2MORw4DjgCeDrwZ0lW9XA4JElakAmeJElzVNX1VXVB+/gO4BLgoKr6WFVtblc7B1jXPj4WOKOq7qqqK4DLgKOXO25JkrwGT5I0cJO9D16SQ4AjgXPnLPo14G/bxwfRJHyzNrbzJElaVis2wdtl1a69ln/31rt7LR+gUr1vY+OdV/da/rk3nN9r+QAzy1Cxe+wBj+59Gwfutm7xle6DrbW11/KlSeohwVub5LyR56dU1Snb2O4ewAeAl1fV7SPz/xtNN87Txx2YpG3b8v3G8/7cdvctvZZ/1bev6LV8gJ1mdup9Gw/c49Det7H7mj17LX/VFPeiX7EJniRpx9HDeZ5NVbVh4W1mDU1yd3pVnTUy/4XAs4CnVNXsmbprgfUjL1/XzpMkaVl5DZ4kafCWe5CVNCudClxSVW8emf904JXAz1fVd0ZecjZwXJKdkxwKHAZ8YawHQZKkDmzBkyTphz0OeB7w1SRfbue9Gng7sDPw8TZRPKeqfrOqLkpyJnAxTdfNE6pqy/KHLUna0ZngSZIGbfY2Ccupqj4LbGujH17gNa8HXt9bUJIkdWCCJ0kavEmOoilJ0kpigidJGjzzO0mSujHBkyQN3GTvgydJ0kriKJqSJEmSNCVswZMkDZ4teJIkdbNoC16S9Uk+leTiJBclOXE5ApMkCX4wiuZy3gdPui+sO0mapC4teJuBk6rqgiR7Aucn+XhVXdxzbJIkAQ6yohXHupOkiVk0wauq64Hr28d3JLkEOIjmZq6SJPXOVjetJNadJE3SkgZZSXIIcCRwbi/RSJIkTRHrTpKWW+dBVpLsAXwAeHlV3b6N5ccDxwOsW79ubAFKkmQfTa1EC9WdRutN6x+4fgLRSZpWnVrwkqyh+QN1elWdta11quqUqtpQVRv223+/ccYoSdqhjXeAFbt7ajksVncarTftv//a5Q9Q0tRatAUvzS/hqcAlVfXm/kOSJGlEbMDTymLdSdIkdWnBexzwPODJSb7cTs/sOS5JkqSVyrqTpInpMormZwHPnUqSJiI4iqZWFutOkiap8yArkiRNigmeJEndmOBJkgbPBE+SpG5M8CRJg2d+J0lSN0u60bkkSZIkabhswZMkDZv3rpMkqTMTPEnSoDmKpiRJ3fWU4BVVW/spurWFfsu/457bey0fYM3Mmt63ccGNF/Za/u+++696LR9gzz127X0bf/r8/XrfxkG7P7DX8ndKv+dr4ojfmiATPGnYtvZc7wP43pbv9r6Nf772E72W/9oPndFr+QD323ev3rfxpmce3/s2jlp7dK/lz8xM75VqtuBJkgbPBE+SpG6mN3WVJEmSpB2MLXiSpGGLt0mQJKkrEzxJ0uDZRVOSpG5M8CRJgxa8TYIkSV2Z4EmSBs8ET5KkbhxkRZIkSZKmhC14kqTBswFPkqRuTPAkScMWu2hKktSVCZ4kafhM8CRJ6sRr8CRJkiRpStiCJ0kaPLtoSpLUjS14kqRBCzCT8U6LbjNZn+RTSS5OclGSE9v5+yb5eJJvtP/fr52fJG9PclmSryQ5qteDIknSPEzwJEkD19zofJxTB5uBk6rqcOAY4IQkhwOvAv65qg4D/rl9DvAM4LB2Oh54x7iPgiRJXdhFU5I0bIGZZe6iWVXXA9e3j+9IcglwEHAs8MR2tfcAnwZ+r53/3qoq4Jwk+yQ5oC1HkqRlYwueJGlHtDbJeSPT8fOtmOQQ4EjgXOABI0nbDcAD2scHAdeMvGxjO0+SpGVlC54kadBCL4OsbKqqDYtuO9kD+ADw8qq6fTSOqqokNe7AJEm6L0zwJEmDN4nuJknW0CR3p1fVWe3sb852vUxyAHBjO/9aYP3Iy9e18yRJWlZ20ZQkDd5MMtZpMWma6k4FLqmqN48sOht4Qfv4BcD/GZn//HY0zWOA27z+TpI0CbbgSZIGracumot5HPA84KtJvtzOezXwBuDMJC8GrgJ+qV32YeCZwGXAd4AXLWu0kiS1TPAkSZqjqj5Lk1tuy1O2sX4BJ/QalCRJHZjgSZIGrlu3SkmSZIInSRq6TKSLpiRJK5IJniRp0IIjgkmS1NWKTfDuvOeOXsu/7s7+R7fee+e9e9/G5bdu7LX8e756U6/lA3xrjzW9b+N7W77X+zaqtvZa/syqnXotH1tQNEF20ZS0uTb3vo2Lbrqs1/Kv+PjXey0f4Ir1e/S+jY1P6L+e/Ij9+n6/d+65/MnxpKgkSZIkTYkV24InSdpxeA2eJEndmOBJkgYt2EVTkqSuTPAkSYNneidJUjdegydJkiRJU8IWPEnSwHmjc0mSujLBkyQNWuI1eJIkdWWCJ0kaPEfRlCSpm84JXpJVwHnAtVX1rP5CkiTp3mzB00pk3UnSJCxlkJUTgUv6CkSSJGnKWHeStOw6JXhJ1gE/C7yz33AkSbq39DBJfbPuJGlSunbRfCvwSmDP/kKRJGnb7KKpFeitWHeSNAGLtuAleRZwY1Wdv8h6xyc5L8l5N99089gClCTt6JrbJIxzkvrUpe40Wm+66aZNyxidpGnXpYvm44CfT3IlcAbw5CR/PXelqjqlqjZU1Yb99t9vzGFKknZUSTOK5jgnqWeL1p1G60377792EjFKmlKLJnhVdXJVrauqQ4DjgE9W1XN7j0ySJGkFsu4kaZK8D54kafDsVilJUjdLSvCq6tPAp3uJRJKkeZjeaaWy7iRpudmCJ0katGALniRJXZngSZIGzwRPkqRuOt3oXJIkSZI0fLbgSZIGzlsbSJLUlQmeJGnQgt1NJEnqygRPkjRs7Y3OJUnS4npK8ELS7/nW3dfs2Wv5W2prr+UDbF2GbTxs/wf3Wv4BT3hQr+UDHHjgfr1v48F7978f377njl7L36PX0qGW4fMqSVqZsgw3M9lpZufet/HUgx/fa/lff9mmXssHuP/uu/e+jZ/Y72G9b2N11vRa/jSfOLQFT5I0eI6iKUlSNyZ4kqRB8z54kiR1Z4InSRq8ae5KI0nSOJngSZIGLswsw/U9kiRNA0eeliRpjiSnJbkxyddG5j0yyTlJvpzkvCRHt/OT5O1JLkvylSRHTS5ySdKOzgRPkjR4ScY6dfBu4Olz5r0ReF1VPRL4H+1zgGcAh7XT8cA7xrHPkiRtD7toSpIGLVn+QVaq6jNJDpk7G9irfbw3cF37+FjgvVVVwDlJ9klyQFVdvzzRSpL0AyZ4kqTBW457bHXwcuCjSd5E0wPmse38g4BrRtbb2M4zwZMkLTu7aEqSBq+HLppr2+voZqfjO4TxW8Arqmo98Arg1D73WZKk7WELniRpR7SpqjYs8TUvAE5sH/8d8M728bXA+pH11rXzJEladrbgSZIGLYSZjHfaTtcBP9U+fjLwjfbx2cDz29E0jwFu8/o7SdKk2IInSRq8LPP5yCTvA55I05VzI/Aa4CXA25KsBr5HM2ImwIeBZwKXAd8BXrSswUqSNMIET5I0eBMYRfM58yz6T9tYt4AT+o1IkqRuTPAkSYPX8d51kiTt8LwGT5IkSZKmhC14kqRBS/tPkiQtzgRPkjRsWf5r8CRJWqlM8CRJg+c1eJIkdWOCJ0katAAzXjIuSVIn/mJKkiRJ0pSwBU+SNHCxi6YkSR2Z4EmSBs8ET5KkbkzwJEmDN+NtEiRJ6sRr8CRJkiRpSvTWgtf3TWn32WnfXstfv8f6XssH2GXVLr1v4wkHrO21/L94fr/vA8DaXfrdB4BD93pw79u4+Xs39Vr+t++5o9fyt9aWXsuX5hPsoikN3XJ8R3dehnrTUWs39Fr+W574oF7LB1g9038Hvb3W7NP7NlbPrOl9G9PKLpqSpGHzRueSJHVmgidJGrj03itEkqRpYYInSRq0ADPxknFJkrrwF1OSJEmSpoQteJKkwXOQFUmSujHBkyQNntfgSZLUjQmeJGng4iiakiR1ZIInSRq0YAueJElddRpkJck+Sd6f5OtJLknymL4DkyRJWqmsO0malK4teG8DPlJV/yXJTsBuPcYkSdK92EVTK5B1J0kTsWiCl2Rv4AnACwGq6m7g7n7DkiSpFYj3wdMKYt1J0iR1+cU8FLgJeFeSLyV5Z5Lde45LkqRWxv5P6pl1J0kT0yXBWw0cBbyjqo4E7gReNXelJMcnOS/JeTffdPOYw5Qk7ahC00VznJPUs0XrTqP1pptu2jSJGCVNqS4J3kZgY1Wd2z5/P80frXupqlOqakNVbdhv//3GGaMkSdJKsmjdabTetP/+a5c9QEnTa9EEr6puAK5J8tB21lOAi3uNSpKkEUnGOkl9su4kaZK6jqL5MuD0dhSoy4EX9ReSJEn3NuN1c1p5rDtJmohOCV5VfRnY0G8okiT9sICtblpxrDtJmhTHnZYkSZKkKdG1i6YkSRMS74MnSVJHJniSpMHzGjxJkroxwZMkDVriNXiSJHVlnxdJ0uBlzP8W3V5yWpIbk3xtzvyXJfl6kouSvHFk/slJLktyaZKn9XAIJEnqxBY8SZJ+2LuBPwHeOzsjyZOAY4FHVNVdSe7fzj8cOA44AjgQ+ESSh1TVlmWPWpK0w7MFT5I0cOO9yXmX7p5V9RngW3Nm/xbwhqq6q13nxnb+scAZVXVXVV0BXAYcPb79lySpu15a8AKdusDcF3dvuavX8vfeaZ9eywdYlf4bUFfPrOm1/KPvf0yv5QPMLMN5iOUYoW+vNXv1Wv5WtvZavqMYapIGMsjKQ4DHJ3k98D3gd6rqi8BBwDkj621s50kao1VZ1fs2dl29e6/l77J6t17LXy7LUzcbxN/9FckumpKkQWtudD72ysTaJOeNPD+lqk5Z5DWrgX2BY4BHAWcm+dFxByZJ0n1hgidJGrhuA6Ms0aaq2rDE12wEzqqqAr6QZCuwFrgWWD+y3rp2niRJy84+V5IkdfMh4EkASR4C7ARsAs4Gjkuyc5JDgcOAL0wqSEnSjs0WPEnS4C33tRhJ3gc8kaYr50bgNcBpwGntrRPuBl7QtuZdlORM4GJgM3CCI2hKkibFBE+SNHh9D9w1V1U9Z55Fz51n/dcDr+8vIkmSujHBkyQNnqOpSZLUjQmeJGnQwmBukyBJ0uA5yIokSZIkTQlb8CRJw5bYRVOSpI5M8CRJgxc7nEiS1IkJniRp8GzBkySpG0+JSpIkSdKUsAVPkjRoYfnvgydJ0kplgidJGrgwYxdNSZI6McGTJA2eLXiSJHVjgidJGjwHWZEkqRsHWZEkSZKkKWELniRp0JpBVjwfKUlSFyZ4kqSBi100JUnqyARPkjR4Mw6yIklSJyZ4kqRhi4OsSJLUlRc1SJIkSdKUsAVPkjRozSArtuBJktSFCZ4kafDsoilJUjcrNsG76tv/0Wv5e+20d6/lA+y8qv8esndt+W6v5X9n8529lg9wz9Z7et/GLqt26X0be6zZq9fyt9TmXsu3BUWTE2+TIGlZzMS/NVr5VmyCJ0nacczYgidJUieeppAkSZKkKWELniRp0BxkRZKk7kzwJEmD5yArkiR1Y4InSRq42IInSVJHXoMnSZIkSVPCFjxJ0uDZRVOSpG5M8CRJgxZgxg4nkiR10ukXM8krklyU5GtJ3pek/7tCS5IEkKYFb5yT1DfrTpImZdEEL8lBwG8DG6rqYcAq4Li+A5MkqZGx/5P6ZN1J0iR17fOyGtg1yWpgN+C6/kKSJEla8aw7SZqIRRO8qroWeBNwNXA9cFtVfWzuekmOT3JekvM23XTz+COVJO2w7KKplaRL3Wm03nTTTZsmEaakKdWli+b9gGOBQ4EDgd2TPHfuelV1SlVtqKoNa/ffb/yRSpJ2WMvdRTPJaUluTPK1bSw7KUklWds+T5K3J7ksyVeSHNXDIdAK0qXuNFpv2n//tZMIU9KU6tJF86nAFVV1U1XdA5wFPLbfsCRJaoTlT/CAdwNP/6FYkvXAz9C0zMx6BnBYOx0PvOO+7rNWPOtOkiamS4J3NXBMkt3S9Gt5CnBJv2FJkjQiGe+0iKr6DPCtbSx6C/BKoEbmHQu8txrnAPskOWAcu60Vy7qTpInpcg3eucD7gQuAr7avOaXnuCRJGpQkxwLXVtWFcxYdBFwz8nxjO087KOtOkiap043Oq+o1wGt6jkWSpG3o5dYGa5OcN/L8lKqatwKeZDfg1TTdM6VFWXeSNCmdEjxJkiaph5EvN1XVhiWs/yCaATMubGNZB1yQ5GjgWmD9yLrr2nmSJC07EzxJ0uBN+ubkVfVV4P6zz5NcSXMT601JzgZemuQM4NE0Q+JfP5lIJUk7uq43OpckaWImcJuE9wGfBx6aZGOSFy+w+oeBy4HLgL8E/us49lmSpO1hC54kSXNU1XMWWX7IyOMCTug7JkmSujDBkyQNWujlGjxJkqaSCZ4kaeB6GUVTkqSp1EuCV8BWtvZR9Pfd8J1v9lr+crjfzv3n16uyqvdt9G0m/V8qumZmp963MdPze7G5NvdavjRJJniSJHVjC54kadhiF01JkrpyFE1JkiRJmhK24EmSBs8umpIkdWOCJ0kaNEfRlCSpOxM8SdLAOYqmJEldeQ2eJEmSJE0JW/AkSYNnC54kSd2Y4EmSBs9r8CRJ6sYET5I0eLbgSZLUjQmeJGnQggmeJEldOciKJEmSJE0JW/AkSQMXr8GTJKkjEzxJ0gpggidJUhcmeJKkYYujaEqS1JUJniRp8BxkRZKkbhxkRZIkSZKmhC14kqTBswVPkqRuTPAkSYMWR9GUJKkzEzxJ0uDZgidJUjcmeJKkwTPBkySpGwdZkSRJkqQpYQueJGnwvAZPkqRuTPAkSYNnF01JkroxwZMkDZqjaEqS1F0vCd6FF1y4ae0uD7hqCS9ZC2zqI5Zl5D4MxzTsxxD34eBJByBJ0+iC87+0adfVuy+l3gTD/J1YKvdhGKZhH2CY+zGRulMvCV5V7b+U9ZOcV1Ub+ohlubgPwzEN+zEN+yCNk100Nc2WWm+C6fidcB+GYRr2AaZnP8bBLpqSpBXABE+SpC5M8CRJg2d6J0lSN0NJ8E6ZdABj4D4MxzTsxzTsgzQ2DrIi/ZBp+J1wH4ZhGvYBpmc/7rNU1aRjkCRpXo846uH10c/941jLPGC3B57vtRqSpGk0M+kAJElaXMY8LbK15LQkNyb52si8P0ry9SRfSfLBJPuMLDs5yWVJLk3ytDHssCRJ22WiCV6Sp7c/hpcledUkY9leSdYn+VSSi5NclOTESce0vZKsSvKlJP8w6Vi2R5J9kry/rYBdkuQxk45pqZK8ov0cfS3J+5LsMumYpCFY3vQOgHcDT58z7+PAw6rq4cC/AycDJDkcOA44on3NnyVZtR27KS3KutNwrPR6E1h3mlYTS/DaH78/BZ4BHA48p/2RXGk2AydV1eHAMcAJK3Q/AE4ELpl0EPfB24CPVNWPAY9ghe1LkoOA3wY2VNXDgFU0lUZpBzfu9G7xFK+qPgN8a868j1XV5vbpOcC69vGxwBlVdVdVXQFcBhy9ffsqzc+60+Cs9HoTWHeaSpNswTsauKyqLq+qu4EzaH4kV5Squr6qLmgf30HzxThoslEtXZJ1wM8C75x0LNsjyd7AE4BTAarq7qq6daJBbZ/VwK5JVgO7AddNOB5p4pJmkJVxTmPwa8A/tY8PAq4ZWbaRFfg7oBXButNArPR6E1h3mmaTTPCm7gcxySHAkcC5Ew5le7wVeCWwdcJxbK9DgZuAd7XdJd6ZZPdJB7UUVXUt8CbgauB64Laq+thko5Km1tok541Mx3d9YZL/RtMCcXp/4UnbZN1pON7Kyq43gXWnqeUgK2OSZA/gA8DLq+r2ScezFEmeBdxYVedPOpb7YDVwFPCOqjoSuBNYUdcmJLkfzZnYQ4EDgd2TPHeyUUlTa1NVbRiZOg2vneSFwLOAX60fDEN9LbB+ZLV17TxJC1ipdacpqTeBdaepNckEb2p+EJOsofkDdXpVnTXpeLbD44CfT3IlTXePJyf568mGtGQbgY1VNXsG8P00f7RWkqcCV1TVTVV1D3AW8NgJxyQNQsb8b7tiSJ5Oc8b+56vqOyOLzgaOS7JzkkOBw4Av3Oedln6YdadhmIZ6E1h3mlqTTPC+CByW5NAkO9FcEHn2BOPZLmku5jgVuKSq3jzpeLZHVZ1cVeuq6hCa9+GTVbWizn5U1Q3ANUke2s56CnDxBEPaHlcDxyTZrf1cPYUVdrGz1JflTvCSvA/4PPDQJBuTvBj4E2BP4ONJvpzkzwGq6iLgTJq/OR8BTqiqLX0dC+3QrDsNwDTUm8C60zRbPakNV9XmJC8FPkoz4s1p7Y/kSvM44HnAV5N8uZ336qr68ORC2mG9DDi9/dG7HHjRhONZkqo6N8n7gQtoru/5EtCp25ik8aqq52xj9qkLrP964PX9RSRZd1IvrDtNofzgEgJJkobnkf/pEfWJz310rGXuv+sB51fVhrEWKknSAEysBU+SpK7GdGsDSZKmnqNoSpIkSdKUsAVPkjRw2z/ypSRJOxpb8CRJkiRpStiCJ0laAWzBkySpCxM8SdKgBdM7SZK6MsGTJA2eo2hKktSNCZ4kaQUwwZMkqQsHWZEkSZKkKWELniRp8Gy/kySpGxM8SdIKYIonSVIXJniSpIGLg6xIktSR1+BJkiRJ0pQwwZMkSZKkKWEXTUnSoDU3OreLpiRJXZjgSZJWABM8SZK6MMGTJA2e6Z0kSd2Y4EmSBs9RNCVJ6sZBViRJkiRpStiCJ0kauGAnTUmSujHBkyQNnumdJEndmOBJklYAUzxJkrrwGjxJkiRJmhK24EmShi2OoilJUle24EmSJEnSlLAFT5I0aM0YmrbgSZLURapq0jFIkjSvJB8B1o652E1V9fQxlylJ0sSZ4EmSJEnSlPAaPEmSJEmaEiZ4kiRJkjQlTPAkSZIkaUqY4EmSJEnSlDDBkyRJkqQp8X8ByhMbowcHQ9UAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "recorteG6 = trim(imagen[:,:,1], 535, 335, 10, 10)\n", + "poptG6, pcovG6 = curve_fit(gauss2d, xdata6, recorteG6.ravel(), p0=[1,0,1,1,1])\n", + "estrellaG6=gauss2d(xdata6, poptG6[0], poptG6[1],poptG6[2], poptG6[3], poptG6[4])\n", + "FWHMG6=FWHMG.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptG6[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 6 fotografÃa (Banda Verde)\")\n", + "plt.imshow(recorteG6, plt.get_cmap('Greens'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 6 a partir de la gaussiana (Banda Verde)\")\n", + "plt.imshow(estrellaG6.reshape(10, 10), plt.get_cmap('Greens'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 7 (Verde)" + ] + }, + { + "cell_type": "code", + "execution_count": 418, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3gAAAFSCAYAAACgxn03AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAx3klEQVR4nO3de9xldV33/9d7hvNZHERhEFDRBPPUiJhpKiZoJlZ3huUxkw54/FEm3r87tV92m3mblmVNgkpxQ6RoVOQpNTMDHcATIDUBwiAKo5wUBGbm8/tjrUs2F3Nd17qGva69rj2vJ4/14Nrr8F2ftfbes7+f9f2u70pVIUmSJEla/lZMOgBJkiRJ0niY4EmSJEnSlDDBkyRJkqQpYYInSZIkSVPCBE+SJEmSpoQJniRJkiRNiR0mHYAkSfPJql2KO7aMt9Bb7vxYVR073kIlSZo8EzxJ0rDdsQUef7/xlvnJa1aNt0BJkobBBE+SNHzJpCOQJGlZMMGTJA1b8I5xSZI6MsGTJA2fLXiSJHVigidJGj7zO0mSOrHTiyRJkiRNCVvwJEkDF7toSpLUkQmeJGnYHGRFkqTO/MmUJA1fMt5pwd3loCSfTnJJkouTvHpk2SuTfL2d/7aR+ScnWZ/ksiTH9HQmJEmaly14kqThW/oempuAk6rqwiR7Ahck+QSwP3Ac8Kiquj3J/QCSHA4cDxwBHAB8MslDq2rzkkcuSdqu2YInSdIsVXVtVV3Y/n0LcClwIPAbwFur6vZ22XXtJscBZ1bV7VV1BbAeOHLpI5ckbe9M8CRJwxZgRcY7LWb3ySHAY4DzgYcCT0pyfpJ/TfK4drUDgatHNtvQzpMkaUnZRVOSNHzj76K5Ksm6kddrq2rtPXab7AF8CHhNVd2cZAdgX+Ao4HHAWUkeNPboJEnaRiZ4kqThG/9jEjZW1Zr5d5kdaZK706vq7Hb2BuDsqirgC0m2AKuAa4CDRjZf3c6TJGlJ2UVTkjR8GfO00O6SAKcAl1bVO0YWfQR4arvOQ4GdgI3AOcDxSXZOcihwGPCFbT9gSZK2jS14kiTd0xOBFwJfTfKldt4bgFOBU5N8DbgDeHHbmndxkrOAS2hG4DzRETQlSZOQ5ndJkqRhyr47F09fPd5C/+7yCxbqoilJ0nJkC54kafiW/jl4kiQtSyZ4kqSBSx+DrEiSNJUcZGUOSQ5JUu2Q2CT5TJJfXYL9Jsn7ktyQZPA36Cd5WJIvJbklyavaee9I8s5tLO9/J3nNOGNcxL7fn+T3J7Hv+cz+LC6w7s8k+duliEuS1L9J1UeGJsmTklx2L8vYpnO3mN/hoUtycZKnTGjfZyR57oT2PcjvTZKnJNnQcd1XJvnDLusOPsFLcmWS25J8b2R6d4ftKslDliLGBeJ44KzYv9fGdtIcm/wE8FPA6qo6skP5kz7O1wGfrqo9q+pPkjyJ5tlQv73YgpLsB7wI+Mv29VOSbBk5b9ckefNYox+DJB9N8ntbmX9ckm8t5Q9CVf0DcESSRy7VPqXeTfhB5xJsl/WRiZp93qrq36rqYZOMaRpU1RFV9Zml3m9bL3kU8Pft65ck2TzyWbw8yW8sdVwLSfL1JL+ylfmvnvUs1aXwV8AvJ7nfQisOPsFr/UxV7TEyveLeFrhUle6qumo0duBHgS00z1bamoOBK6vq+0sR33w6nqODgYtHXh8K/GJV3bkNu3wJcG5V3TYy75sj5+4ngJdN6urPPD4AvKAdVn3UC2men7Wpa0Fj+lyeAZwwhnKk4VjixyRIc9ie6iMTsS3nYxpa1rYDv0ZTJxod3fE/Rj6PPw+8LcljJhPenD5A0/gw2wvbZZ3d289pVf0A+Oc54rmb5ZLgbVWShyT51yQ3Jdk40zUtyWfbVb7cXhX4xZkm0CS/k+RbwPuSrEjy+iT/neQ7Sc5Ksm+H/T44yafabTYmOT3JPh3DfhHw2aq6civlvgx4L/CENu43t/NfnmR9ku8mOSfJAXMd53zrt8uekeSy9pz9eXv+frVd9pIk/57kj5N8B3jTfMea5FM0z4N6d7v/hwJPA36zXX6fJP+Y5Po0XU7/Mcl8Q+E9E/jXuRZW1RXA54HDR47nXUmuTnJzkgvStCDOLHtT+56elqYL6cVJ1owsf0ySC9tlfwvsMrJsMbF/BLgvMLrv+wDPBk6b73OWu7p9vCzJVcCnkqxM8vb2fF8O/PTozpLsneSUJNemadX8/SQrR1b5zOxtpGUvGe8kjdG01Ufaso9M8h9Jbmx/b96dZKc51p35LTshyTfb9X+ra1ntticm+S/gv+Y7byPbXNmew68A389WKs9JfipNC8xNaVpbM2v5ryS5tP2d/1iSg7ucuCQvbbe7JU3L06/Ns+7KJP+nfX+uSPKK3L3L7ZxlpamXfW5WeT9s2UzyrCSXtNteM3POk6xq6y03pqkL/luSFSPn7emLeF9+Pcl/tev8WdL8A7oNn72F6ngXAZcCDx/Z/9+l6Ql1U5LPJjliZNn723j+qT3+85M8eGT5nO/9ImP/a+AnRj8bSQ4HHgmckebZp29PclWSbyf5iyS7tutt7bu+axv7DUkuoen1xkjZByT5UJr65xVpb38a8Rk61PGWdYIH/H/Ax4H7AKuBPwWoqie3yx/VXhmYuSfp/sC+NK1OJwCvBJ4L/CRwAHAD8Gcd9hvgf7fbPBw4CHjTghs1X4oXMUfGX1WnAL/OXVc03pjkae2+ngc8APgGcOZcxznf+klWAR8ETqZJSC4DfnxWGI8HLgf2B94y37FW1dOAfwNe0e7/P2eVtQJ4H835fiBwGzBfd5YfbWPaqiSH0Tyb6ryR2V8EHk3zvv5f4O+S7DKy/Dnt8e9D8yDid7dl7USTmP11u+3f0Vw9WnTsbYvjWdz9isrzgK9X1Zfp9jn7SZrzewzwcprk8DHAGuB/zFr3/TTP2XpIu84zgNF+5ZcChyTZa2vxSsuSLXgatqmqj7Q2A68FVgFPAI6mvYA7j6cCh9H8Lv3OTCLRsazn0tRBDp/nvM32fJrK7j6ze8u0dZ6zgf+33e9/09QhZpYfR/Nsy58D9qOpz5yxwPHNuI7md3ov4KXAHyd57BzrvpwmuXk08Nj2OLe1rNlOAX6tqvYEHgF8qp1/ErCB5rj2pznOrT0Xrcv78myaJOSRNHWbY9r5nT97SXan6eE1Xx3vccBDgdFuj/9M83m6H3AhcPqszY4H3kzzvVtPU29d8L1fTOxVtQH4NE2L3YwX0vQ42wi8tY370TT1sgOB3x1Zd/Z3/Y3Ag9vpGODFI+dgBfAPwJfbco4GXpPkmJHyLqXp6jq/qhr0BFwJfA+4cWR6ebvsNGAtzf1qs7cr4CEjr59C81DaXUbmXQocPfL6AcCdNKOLHtKWsUO77DPAr84R43OBizocy5PaY9ljnnVeAnxu5PUpwNtGXu/RxnjIHMc55/o0/5j/x8iyAFfPHFe776sWOIa7Hevs80KTfPz+HNs+GrhhnrLvBH5k1nu2pX3Pb26P9Wxgp3nKuIHmBwGaL+snR5YdDtzW/v1k4JvQPAuynff5exH7T7Rx7tK+/nfgtYv4nD1oZPmngF8fef2Mmc8izT/UtwO7jix/Ps19kDOvd2zXf+C4v49OTpOY2Hfn4gWHjXeCdZM+LqflNbGd1Ue2ss1rgA/PsWwmxtHf8LcBp3Qpq932aR3O24ZZ78evzBPvi4DzRl6HJumZqfP8M/CykeUrgFuBg+c5vh3m2NdHgFfPsexTNEnYzOundy2LWXXC2ecFuIqm6+Nes9b5PZp73R6ylfKvBJ6+iPflJ0ZenwW8frGfPZpkpWZ95l9Cc7H6RuCWdvmfMlIvm1XGPu06e7ev3w+8d2T5s2gurC/43i8m9nb5C4DLRj4nVwE/25b7feDBI+s+Abhi5DM7+7t+OXDsyOsTaD/XNBc4rpq175OB9428PgzYPFesM9NyacF7blXtMzL9VTv/dTQn9wtput/d4ybIWa6vpv/qjIOBD7fNzjfS/AO7maYSPack+yc5s20Ovxn4G5orBAt5MfChqvpeh3VnHEDTCgdAu+13aL4si13/AJqEbmZZ0XzgR109+uJeHCtJdkvyl0m+0W77WWCf3L074agbgD1nzftm+57vRfPlvo2RK45Jfqvt2nBT+x7uPSu+b438fSuwS5puEQcA17TnYMYPz9tiY6+qzwEbgee2XQSOpGlRhG6fs9HzfsCs198Y+ftgmgTu2pHy/pLm6taMmXN449ZilZad4CArGortpj6S5KFpuvl9qy37DzqUPfu3a+aWki5lXc3izbfN1uo8o+sfDLxr5Jx/l+Y9nKt+9UNJnpnkvDTdH2+kSS7mOjezf9Nn17MWU9ZsP9+u/400XYSf0M7/I5oWrY+n6fb5+jmOo8v7MrsetUe77WI+eze2/59dxzuv/R7tSdPSdUQbw0zX1rem6bZ8M01iCvPX8fZo/573vd+G783ZwAOSHEWTtO0G/BNNC+luwAUjn6OPtvNnzP6uL1THO2CmrLa8N3D3fwf2BG6aJ1ZgmXfRrKpvVdXLq+oAmisYf575R6qqWa+vBp456x/rXarqmgV2/QdtWT/aJh4vYIFOP21/3F9gkTdk0rQyHTxSzu403SvninG+9a+l6Toysyyjr1uzz9Gij3XEScDDgMe32850uZhr+6/QNHNvVVXdRJM0/Uwb/5NoflSfB9ynqvah+dB3ie9a4MD2HMx44L2IHZoruC+iOUcfq6pvt/O7fM5Gz/u1NN0FthbX1TQteKtGytqrqo4YWefhNAP13DxPrNLyYhdNDdiU1kfeA3wdOKwt+w0Llc09f7u+uYiyZp+TLubb5m6/pe3v/Wh8V9O0rI2e812r6vPz7TDJzjQD07wd2L+te5zL3OfmbnWvWTEtVNb3aRKImfXvP1pwVX2xqo6jucj7EZoWNqrqlqo6qaoeRHOryv+T5OitxLYt7/GMzp+9agYO/G/mr+N9m+Zc/Ew765eA42haPPemaUWlY3wLvfeL+t5U1a00tzi9iKZ75plVdQfNhf3bgCNGPkN7VzNozA83ny827lnHu2LWZ3LPqnrWyDoPp+nCOa9lneAl+YXcNfDFDTQncUv7+tvAgxYo4i+At6S9cTLJfm2f7IXsSdO14aYkB9LtkQA/28b46Q7rjjoDeGmSR7f/EPwBcH7ddVP07OOcb/1/An40yXPbVqwTaa6YzGdbjnV029uAG9PcLP7GBdY/l+b+g61KsgdNf+uZUTv3pGnevx7YIcnv0vRh7+I/2m1flWTHJD9H0+q2rbFDk+A9naa//egP52I/Z2e1ca1OM1jLD6+8VdW1NPd5/J8ke6W5Mf/BSUbP20/SdD2RpoeDrGjAprQ+sifN7RHfS/IjQJch7P9X2wPmCJr7yWbunduWsrqct/n8E81jg36urfO8irvXef4COLmNlTQDmP1Ch3J3AnamqXtsSvJMmlsp5nIW8OokB6YZyON3FlHWl9tjeHSa8QXeNLMgyU5JfjnJ3tWMXH4z7WcuybPTDPwTmgvfm7nr8zhqW96X0W0X89lbqI53X5rP5mgd73aaXmi70bbsdbTQe78t35sPAL9I02r6AYCq2kLz6II/TvvogvZ9PmbOUprPw8lpBvNbTXP/7YwvALekGZRl17YV8xFp7k+c0amOt1wSvH/I3Z/b8uF2/uOA85N8j2YAjVdX1eXtsjcBH2ibOJ83R7nvarf7eJJbaAbveHyHeN5Mc6PsTTQforM7bPNi4K9ndQlcUFV9EvhfNFc1rqW5KfP4kVXexMhxzrd+NTeD/gJNv/jv0NyTto7mCzSXbTnWGe8EdqW5wnEeTbP1fE4DntVeXZxxwMz7TtOMvS/wy+2yj7Vl/me77Ad07OLRXnn5OZo+4N+l+dKOHttiY6dNoj8P7E7zuZqx2M/ZX9Ec25dpbiqefc5fRPOjcAnNj/QHae7XmPF82mcJSlNjxZgnadtsT/WR36JpRbmF5ndproFORv0rTdfAfwHeXlUfvxdlvYmFz9ucRuo8b6Wp8xxGc3/8zPIPA38InJmmm97XaAZDWajcW2gShrNofoN/ibv/5s/2VzQXZr8CXEST6GyiuY9q3rKqGbzu94BPAv8F3G1ETZrWpCvb+H+du+pHh7XbfI/mgvafV9XWEvpteV9mLPazt5bmGW6jV9ieMFLHu5Qm0Z1JeE6jqdtdQ1PfGR1gb14LvffbEDs0t+rcRHO/3BdH5v8OzWf+vPZ9+CRND7C5vJnmuK6g+Vz89Ujcm2kGtXl0u3wjzej6ewO0Sf6z6NAbMIvMNzRF0ozWswH45Tm++EsuyR8A11XVOycdy3KU5GeAF1bVon8MpaHKql2K4w4Zb6GnXnZBVa1ZeEVJC0lyCE2FdMdaxLNft0dtK91fVNXBC648ZZL8X+CsqvrIpGNZjpK8Ejioql630Lo+GHI70zYbn0/T/fC3afocd74q0reqesOkY1jOquofaIbYlaaH3SolLVNtr6Sn0rTW7E9zy8eH591oSlXVL006huWsqv6067p2VNn+PIHmRteNNDeyPrea57hJ0nA5yIqk5Sk03fJuoOmieSl3f06aNHa24G1nqupNdHgIqiQNii140mC196D7Jd2KdgTGxy24ojRGJniSpOGzv4kkSZ34kylJkiRJU6KXFrz7rrpvPfDggxZecdD672mwFH0ZNtfmXsuvbXou6eJs2nJn7/u4ffN8T4oYj77P1O477t5r+dd84xq++50b7IKjpRfsoqmptmrVqjr4kAcuvKKkZeXCCy7aWFX7LfV+e0nwHnjwQXz685/so+i79PxjvyIrey0fYMUSNKB+f9PNvZb/g839j8+y8QfX976P9Tf9d+/72FJbe8bo+By1/1G9lv+cn/z5XsuX5mV+pyl28CEP5N/Pn/2IM0nL3a477P6NSezXe/AkScO3wgxPkqQuvAdPkiRJkqaELXiSpOHzHjxJkjoxwZMkDZsPJ5ckqTMTPEnSwIWMuQWv//F/JUmaDBM8SdLgmeBJktSNg6xIkiRJ0pTolOAlOTbJZUnWJ3l930FJkjQqGe8k9c26k6RJWbCLZpKVwJ8BPwVsAL6Y5JyquqTv4CRJCrBizFnZ5rGWJt2ddSdJk9SlBe9IYH1VXV5VdwBnAsf1G5YkSa009+CNc5J6Zt1J0sR0SfAOBK4eeb2hnXc3SU5Isi7Juo3Xf2dc8UmSZIKn5WbButNoven66zcuaXCSptvYBlmpqrVVtaaq1qza777jKlaSJGnqjNab9ttv1aTDkTRFujwm4RrgoJHXq9t5kiQtAVvdtOxYd5I0MV1a8L4IHJbk0CQ7AccD5/QbliRJd1nqUTSTHJTk00kuSXJxklfPWn5Skkqyqn2dJH/Sjpj4lSSP7edMaJmw7iRpYhZswauqTUleAXwMWAmcWlUX9x6ZJEk0o2hOoAVvE3BSVV2YZE/ggiSfqKpLkhwEPAO4amT9ZwKHtdPjgfe0/9d2yLqTpEnq0kWTqjoXOLfnWCRJuqcsfYJXVdcC17Z/35LkUppBMi4B/hh4HfD3I5scB5xWVQWcl2SfJA9oy9F2yLqTpEkZ2yArkiQtI6tmRjBspxPmWjHJIcBjgPOTHAdcU1VfnrVapxGnJUnqW6cWPEmSJimMvQVvY1WtWXC/yR7Ah4DX0HTbfANN90xJkgbJBE+SNHiTGEUzyY40yd3pVXV2kh8FDgW+3MazGrgwyZE4aqIkaSBM8CRJg7fU+V2aDO4U4NKqegdAVX0VuN/IOlcCa6pqY5JzgFckOZNmcJWbvP9OkjQJJniSJN3TE4EXAl9N8qV23hvagTO25lzgWcB64Fbgpb1HKEnSVpjgSZIGLYQVSz+K5udg/hv/quqQkb8LOLHnsCRJWlAvCV5YwU4rd+mj6B9akX4HAL198w96LR/g1s239r6PXVbu1mv5m7Zs6rV86GVwhXt40F6H9r6PVbvs12v5e+24T6/lr8zKXsuX5jOJe/AkSVqObMGTJA3bBJ6DJ0nScmWCJ0kaPPM7SZK68UHnkiRJkjQlbMGTJA1asIumJEldmeBJkgbPBE+SpG5M8CRJAxcTPEmSOjLBkyQNm6NoSpLUmYOsSJIkSdKUsAVPkjR4NuBJktSNCZ4kadAcRVOSpO5M8CRJg2eCJ0lSNyZ4kqTBW2GCJ0lSJw6yIkmSJElTwhY8SdKwxUFWJEnqygRPkjRo8UHnkiR1ZoInSRq8YIInSVIX3oMnSZIkSVPCFjxJ0uDZRVOSpG5M8CRJg2eCJ0lSNyZ4kqTBM7+TJKkbEzxJ0qAltuBJktSVg6xIkiRJ0pSwBU+SNHA+B0+SpK56SfASWJF+Gwerqtfy79xyR6/lA9x8542972P32qPX8ostvZYPcJ+d9+19H7vtsHvv+9h9h716Lf/WTd/rtXz6/cpJ8zLBkySpG1vwJEmDZ34nSVI3JniSpMGzBU+SpG4cZEWSJEmSpoQteJKkQfMxCZIkdWeCJ0kaPBM8SZK6McGTJA2e+Z0kSd2Y4EmSBs7n4EmS1JWDrEiSNEuSg5J8OsklSS5O8up2/h8l+XqSryT5cJJ9RrY5Ocn6JJclOWZiwUuStmsmeJKkwUsy1qmDTcBJVXU4cBRwYpLDgU8Aj6iqRwL/CZzcxnc4cDxwBHAs8OdJVvZwKiRJmteCCd5cVzElSVoKM6NoLmWCV1XXVtWF7d+3AJcCB1bVx6tqU7vaecDq9u/jgDOr6vaqugJYDxw59pOhZcG6k6RJ6nIP3sxVzAuT7AlckOQTVXVJz7FJkgRMdpCVJIcAjwHOn7XoV4C/bf8+kCbhm7Ghnaftk3UnSROzYIJXVdcC17Z/35LkUpofLf+RkiQtiR4GWVmVZN3I67VVtXYr+90D+BDwmqq6eWT+/6SpxJ8+7sC0/Fl3kjRJixpFc56rmJIkLScbq2rNfCsk2ZEmuTu9qs4emf8S4NnA0VVV7exrgINGNl/dztN2zrqTpKXWeZCVua5ijiw/Icm6JOuuv37jOGOUJG3vmhvxxjctuLsEOAW4tKreMTL/WOB1wHOq6taRTc4Bjk+yc5JDgcOAL4z1HGjZma/uZL1JUl86JXhzXcUcVVVrq2pNVa3Zb79V44xRkrRdG+8AKx27ez4ReCHwtCRfaqdnAe8G9gQ+0c77C4Cquhg4i6YL3keBE6tqcy+nQ8vCQnUn602S+rJgF825rmJKkrQkujW6jVVVfa7Z8z2cO882bwHe0ltQWjasO0mapC4teHNdxZQkSdI9WXeSNDFdRtGc6yqmJEm9C72Moin1xrqTpEla1CiakiRNggmeJEndmOBJkgbPBE+SpG5M8CRJg2d+J0lSN52fgydJkiRJGjZb8CRJw9b92XWSJG33TPAkSYPmKJqSJHXXS4JXBVXVR9E/tLk291z+pl7Lb/bR7zEAfOf2jb2Wv+eOe/ZaPsCOK3bsfR8rsrL3ffRtC1t6Lb/o9zstzccET9JS6Lv+2vdvNcCWJahfLoW+62YrpvhONVvwJEmDZ4InSVI305u6SpIkSdJ2xhY8SdKwxcckSJLUlQmeJGnw7KIpSVI3JniSpEELPiZBkqSuTPAkSYNngidJUjcOsiJJkiRJU8IWPEnS4NmAJ0lSNyZ4kqRhi100JUnqygRPkjR8JniSJHXiPXiSJEmSNCVswZMkDZ5dNCVJ6sYET5I0aAFWmN9JktSJCZ4kaeB80LkkSV2Z4EmShi2wwgRPkqROHGRFkiRJkqaELXiSpEELDrIiSVJXJniSpMGzu4kkSd2Y4EmSBs978CRJ6sYET5I0aHbRlCSpO3u9SJIkSdKUsAVPkjRwsYumJEkdmeBJkoYtdtGUJKkrEzxJ0qAF7yeQJKmr3hK8ovoqui1/S6/lr8jKXssH2GXlLr3vo2+33HlL7/u44ubLe9/HHZvv7H0fD7/Pw3st/z4779tr+dIkLXUXzSQHAacB+wMFrK2qdyXZF/hb4BDgSuB5VXVDmibGdwHPAm4FXlJVFy5p0JLutc21udfyb930vV7LB7j+B9/ufR9bej5PAPvtsn+v5e++4569lj9JXhSVJOmeNgEnVdXhwFHAiUkOB14P/EtVHQb8S/sa4JnAYe10AvCepQ9ZkiQTPEnSMpBkrNNCquramRa4qroFuBQ4EDgO+EC72geA57Z/HwecVo3zgH2SPGDMp0GSpAV5D54kadDCZB90nuQQ4DHA+cD+VXVtu+hbNF04oUn+rh7ZbEM771okSVpCJniSpMHrIb1blWTdyOu1VbX2HvtN9gA+BLymqm4ebf2rqkrS7w3nkiQtkgmeJGl7tLGq1sy3QpIdaZK706vq7Hb2t5M8oKqubbtgXtfOvwY4aGTz1e08SZKWlPfgSZIGrnnQ+TinBffYNNWdAlxaVe8YWXQO8OL27xcDfz8y/0VpHAXcNNKVU5KkJWMLniRp0JKJ3IP3ROCFwFeTfKmd9wbgrcBZSV4GfAN4XrvsXJpHJKyneUzCS5c0WkmSWiZ4kqTB6zLy5ThV1eeY+9a/o7eyfgEn9hqUJEkddE7wkqwE1gHXVNWz+wtJkqS7m+QomtK2su4kaRIWcw/eq2meAyRJkqSFWXeStOQ6JXhJVgM/Dby333AkSbq79DBJfbPuJGlSunbRfCfwOmDP/kKRJGnr7KKpZeidWHeSNAELtuAleTZwXVVdsMB6JyRZl2Tdxo0bxxagJGl7t/SPSZDujS51p9F60/XXW2+SND5dumg+EXhOkiuBM4GnJfmb2StV1dqqWlNVa1atWjXmMCVJ26ukGUVznJPUswXrTqP1pv32s94kaXwWTPCq6uSqWl1VhwDHA5+qqhf0HpkkSdIyZN1J0iT5HDxJ0uDZrVKSpG4WleBV1WeAz/QSiSRJczC903Jl3UnSUrMFT5I0aMEWPEmSujLBkyQNngmeJEnddHrQuSRJkiRp+GzBkyQNnI82kCSpKxM8SdKgBbubSJLUlQmeJGnY2gedS5KkhfWW4BXVV9Ft+cvfiiW4Jr15y+Zey1933bpeywf4w499pPd9fPv6G3rfx2886+hey//Fhx3Xa/mbttzZa/mSJM1nS23pfR+3b76t1/K//J2Lei0f4N0Xfrj3fdx8++297+M3H3tMr+U/+YCn9lr+JNmCJ0kaPEfRlCSpGxM8SdKg+Rw8SZK6M8GTJA2e9+BJktSNCZ4kaeDCCkzwJEnqwpGnJUmSJGlK2IInSRo8u2hKktSNCZ4kadASB1mRJKkrEzxJ0uDFe/AkSerEBE+SNHh20ZQkqRsHWZEkSZKkKWELniRp0EK8B0+SpI5M8CRJgxc7nEiS1IkJniRp8GzBkySpGxM8SdLgOciKJEnd2OdFkiRJkqaELXiSpEFL+58kSVqYLXiSpGFLcw/eOKcFd5mcmuS6JF8bmffoJOcl+VKSdUmObOcnyZ8kWZ/kK0ke2+PZkCRpXiZ4kqTBSzLWqYP3A8fOmvc24M1V9Wjgd9vXAM8EDmunE4D3jOOYJUnaFnbRlCQNWoAVS3w9sqo+m+SQ2bOBvdq/9wa+2f59HHBaVRVwXpJ9kjygqq5dmmglSbqLCZ4kSd28BvhYkrfT9ID58Xb+gcDVI+ttaOeZ4EmSlpxdNCVJAzfe7pltF81V7X10M9MJHQL5DeC1VXUQ8FrglD6PWpKkbWELniRp8Hp4Dt7GqlqzyG1eDLy6/fvvgPe2f18DHDSy3up2niRJS84WPEnS4K0gY5220TeBn2z/fhrwX+3f5wAvakfTPAq4yfvvJEmTYgueJEmzJDkDeApNV84NwBuBlwPvSrID8AOaETMBzgWeBawHbgVeuuQBS5LU6inBK5rBxPqzpTb3Wv6mLXf2Wj7AbZtv630fe++0T6/lX3Fj/72Qvv7xi3vfB7f3+3kCWP+Ejb2Wv+eOey280r2wYsXKXsuX5hJ66aI5r6p6/hyLfmwr6xZwYr8RSSr6rVsC3LHl9l7L//w3v9hr+QDnnP7p3vfBd/s9TwAP/O29ey3/x/ZbbC/95cMWPEnSsLUPOpckSQszwZMkDVzItt83J0nSdsUET5I0aAFWxDHBJEnqwl9MSZIkSZoStuBJkgZvqQdZkSRpuTLBkyQNnvfgSZLUjQmeJGng4iiakiR1ZIInSRq0YAueJElddRpkJck+ST6Y5OtJLk3yhL4DkyRJWq6sO0malK4teO8CPlpV/yPJTsBuPcYkSdLd2EVTy5B1J0kTsWCCl2Rv4MnASwCq6g7gjn7DkiSpFYjPwdMyYt1J0iR1+cU8FLgeeF+Si5K8N8nuPcclSVIrY/9P6pl1J0kT0yXB2wF4LPCeqnoM8H3g9bNXSnJCknVJ1m3c+J0xhylJ2l6FpovmOCepZwvWnUbrTddfv3ESMUqaUl0SvA3Ahqo6v339QZp/tO6mqtZW1ZqqWrNq1X3HGaMkSdJysmDdabTetN9+q5Y8QEnTa8EEr6q+BVyd5GHtrKOBS3qNSpKkEUnGOkl9su4kaZK6jqL5SuD0dhSoy4GX9heSJEl3t8L75rT8WHeSNBGdEryq+hKwpt9QJEm6p4Ctblp2rDtJmhTHnZYkSZKkKdG1i6YkSRMSn4MnSVJHJniSpMHzHjxJkroxwZMkDVriPXiSJHVlgidJGrzYgidJUife1CBJkiRJU8IWPEnSwPlwckmSulq2Cd6W2jzpEO61fXde1fs+rrvtW72Wv/MOO/VaPgB77tj/Pu7o//N0wJ579lr+9+68pdfyt2zZ0mv50nwcZEXSUnTVXpGVvZa/es/791o+wP2POLD3fdzy/Vt738eD73O/XsvfaeUS1GEnZNkmeJKk7UPzoHPvKJAkqQsTPEnSwMVBViRJ6shLopIkSZI0JWzBkyQNnoOsSJLUjQmeJGnw7KIpSVI3JniSpMGzBU+SpG5M8CRJgxZ8TIIkSV05yIokSZIkTQkTPEnSsCVkzNPCu8ypSa5L8rVZ81+Z5OtJLk7ytpH5JydZn+SyJMf0cBYkSerELpqSpMHL0l+PfD/wbuC0H8aQPBU4DnhUVd2e5H7t/MOB44EjgAOATyZ5aFVtXuqgJUmyBU+SNHhL3YJXVZ8Fvjtr9m8Ab62q29t1rmvnHwecWVW3V9UVwHrgyPEdvSRJ3ZngSZLUzUOBJyU5P8m/JnlcO/9A4OqR9Ta08yRJWnJ20ZQkDVro5Tl4q5KsG3m9tqrWLrDNDsC+wFHA44Czkjxo3IFJknRvmOBJkgYurBj/c/A2VtWaRW6zATi7qgr4QpItwCrgGuCgkfVWt/MkSVpydtGUJA1exvzfNvoI8FSAJA8FdgI2AucAxyfZOcmhwGHAF+79UUuStHi24EmSBq/LwChj3t8ZwFNounJuAN4InAqc2j464Q7gxW1r3sVJzgIuATYBJzqCpiRpUkzwJEmapaqeP8eiF8yx/luAt/QXkSRJ3ZjgSZIGrRlkxTsKJEnqwgRPkjRw3Z5dJ0mSTPAkScvAivE/JkGSpKlkgidJGrYs/SArkiQtV97UIEmSJElTwhY8SdKgNYOs2IInSVIXJniSpMGzi6YkSd2Y4E25++92QK/lP/vQZ/RaPsANr7i5931svPXW3vfxsw85ptfyV+1yv17L32GF/1xoUuJjEiQtSUv+Lit37bX8Jx/wpF7LB/jTF+zV+z5u33x77/t41H0f2Wv5e+zQ/3maFGtskqTBW2ELniRJnXhJVJIkSZKmhC14kqRBc5AVSZK6M8GTJA2eg6xIktSNCZ4kaeBiC54kSR15D54kSZIkTQlb8CRJg2cXTUmSujHBkyQNWoAVdjiRJKmTTr+YSV6b5OIkX0tyRpJd+g5MkiQA0rTgjXOS+mbdSdKkLJjgJTkQeBWwpqoeAawEju87MEmSGhn7f1KfrDtJmqSufV52AHZNsgOwG/DN/kKSJEla9qw7SZqIBRO8qroGeDtwFXAtcFNVfXz2eklOSLIuybqNG78z/kglSdstu2hqOelSdxqtN11//cZJhClpSnXponkf4DjgUOAAYPckL5i9XlWtrao1VbVm1ar7jj9SSdJ2yy6aWk661J1G60377bdqEmFKmlJdumg+Hbiiqq6vqjuBs4Ef7zcsSZIawQRPy451J0kT0+UxCVcBRyXZDbgNOBpY12tUkiSNslullhfrTpImpss9eOcDHwQuBL7abrO257gkSZKWJetOkiap04POq+qNwBt7jkWSpK2wW6WWH+tOkialU4InSdIkOfKlJEndmOBJkgbPFjxJkroxwZMkDZ4JniRJ3XR5TIIkSZIkaRmwBU+SNGjBe/AkSerKBE+SNHCOoilJUlc9JXjp/Wrrip57l+6wYsdey4eluadkRVb2Wv4Bux3Ua/kAr3rUCb3v4/Ytt/e+j11W7tL7PqRpZYInaSla8ndcsVOv5e+/24G9lg/wlJ3v2/s+lkLf70Xf5U+SLXiSpGGLXTQlSerKQVYkSZolyalJrkvyta0sOylJJVnVvk6SP0myPslXkjx26SOWJKlhgidJGryM+b8O3g8ce484koOAZwBXjcx+JnBYO50AvOdeH7AkSdvIBE+SNGgzo2iOc1pIVX0W+O5WFv0x8DqgRuYdB5xWjfOAfZI8YAyHLknSonkPniRp4HoZRXNVknUjr9dW1dp5o0iOA66pqi/PShIPBK4eeb2hnXftuIKVJKkrEzxJ0vZoY1Wt6bpykt2AN9B0z5QkabBM8CRJgzeAxyQ8GDgUmGm9Ww1cmORI4Bpg9Jkxq9t5kiQtORM8SdLgTfoxCVX1VeB+M6+TXAmsqaqNSc4BXpHkTODxwE1VZfdMSdJEOMiKJGnwlnoUzSRnAP8BPCzJhiQvm2f1c4HLgfXAXwG/OY5jliRpW9iCJ0katLD0XTSr6vkLLD9k5O8CTuw7JkmSurAFT5IkSZKmhC14kqSB6/bsOkmSZIInSVoWTPAkSerCBE+SNGyZ/CiakiQtFyZ4kqTBG8Bz8CRJWhYcZEWSJEmSpoQteJKkwbMFT5KkbkzwJEmDFkfRlCSpMxM8SdLg2YInSVI3JniSpMEzwZMkqRsHWZEkSZKkKWELniRp8LwHT5KkbkzwJEmDZxdNSZK6McGTJA2ao2hKktRdLwneRRdetHGPHff6xiI2WQVs7COWJeQxDMc0HMcQj+HgSQcgSdPowgsu2rjrDrsvpt4Ew/ydWCyPYRim4RhgmMcxkbpTLwleVe23mPWTrKuqNX3EslQ8huGYhuOYhmOQxskumppmi603wXT8TngMwzANxwDTcxzjYBdNSdIyYIInSVIXJniSpMEzvZMkqZuhJHhrJx3AGHgMwzENxzENxyCNjYOsSPcwDb8THsMwTMMxwPQcx72Wqpp0DJIkzelRj31kfezf/2msZT5gtwde4L0akqRpNJQWPEmS5mELniRJXZjgSZIGz/ROkqRuVkxy50mOTXJZkvVJXj/JWLZVkoOSfDrJJUkuTvLqSce0rZKsTHJRkn+cdCzbIsk+ST6Y5OtJLk3yhEnHtFhJXtt+jr6W5Iwku0w6Jmny0sMkLU/WnYZjudebwLrTtJpYgpdkJfBnwDOBw4HnJzl8UvHcC5uAk6rqcOAo4MRlehwArwYunXQQ98K7gI9W1Y8Aj2KZHUuSA4FXAWuq6hHASuD4yUYlTV7SDLIyzklajqw7Dc5yrzeBdaepNMkWvCOB9VV1eVXdAZwJHDfBeLZJVV1bVRe2f99C88U4cLJRLV6S1cBPA++ddCzbIsnewJOBUwCq6o6qunGiQW2bHYBdk+wA7AZ8c8LxSJKGw7rTQCz3ehNYd5pmk0zwDgSuHnm9gWX25Z4tySHAY4DzJxzKtngn8Dpgy4Tj2FaHAtcD72u7S7w3ye6TDmoxquoa4O3AVcC1wE1V9fHJRiVJGhDrTsPxTpZ3vQmsO02tid6DN02S7AF8CHhNVd086XgWI8mzgeuq6oJJx3Iv7AA8FnhPVT0G+D6wrO5NSHIfmiuxhwIHALsnecFko5KGIWP+T9LkLde605TUm8C609SaZIJ3DXDQyOvV7bxlJ8mONP9AnV5VZ086nm3wROA5Sa6k6e7xtCR/M9mQFm0DsKGqZq4AfpDmH63l5OnAFVV1fVXdCZwN/PiEY5IGwQRPAqw7DcU01JvAutPUmmSC90XgsCSHJtmJ5obIcyYYzzZJc7f+KcClVfWOScezLarq5KpaXVWH0LwPn6qqZXX1o6q+BVyd5GHtrKOBSyYY0ra4CjgqyW7t5+poltnNzpKkXll3GoBpqDeBdadpNrHn4FXVpiSvAD5GM+LNqVV18aTiuReeCLwQ+GqSL7Xz3lBV504upO3WK4HT2x+9y4GXTjieRamq85N8ELiQZoSxi4C1k41KkjQU1p3UA+tOUyhVNekYJEma06N/7FH1L58f7z3zq3a5/wVVtWashUqSNAAOsiJJkiRJU8IET5I0cOMeYmXhQVaSnJrkuiRfG5n3R0m+nuQrST6cZJ+RZScnWZ/ksiTH9HMeJElamAmeJEn39H7g2FnzPgE8oqoeCfwncDJAksNpBlo4ot3mz5OsXLpQJUm6iwmeJGkZyJin+VXVZ4Hvzpr38ara1L48j2aIemiewXRmVd1eVVcA64Ejt/FAJUm6V0zwJEmDNu7UbkxPwfsV4J/bvw8Erh5ZtqGdJ0nSkpvYYxIkSeqqebzRWK1Ksm7k9dqq6jS0dpL/STMc9+njDkqSpHvLBE+StAyMPcHbuC2PSUjyEuDZwNF113OGrgEOGlltdTtPkqQlZxdNSZI6SHIs8DrgOVV168iic4Djk+yc5FDgMOALk4hRkiRb8CRJgzf29ruF9pecATyFpivnBuCNNKNm7gx8ou0yel5V/XpVXZzkLOASmq6bJ1bV5iUOWZIkwARPkrQsLG2KV1XP38rsU+ZZ/y3AW/qLSJKkbkzwJEkDlz4GWZEkaSp5D54kSZIkTQkTPEmSJEmaEnbRlCQNWvNwcrtoSpLUhQmeJGkZMMGTJKkLEzxJ0uCZ3kmS1I0JniRp8BxFU5KkbhxkRZIkSZKmhC14kqSBC3bSlCSpGxM8SdLgmd5JktSNCZ4kaRkwxZMkqQvvwZMkSZKkKWELniRp2OIompIkdWULniRJkiRNCVvwJEmD1oyhaQueJEldpKomHYMkSXNK8lFg1ZiL3VhVx465TEmSJs4ET5IkSZKmhPfgSZIkSdKUMMGTJEmSpClhgidJkiRJU8IET5IkSZKmhAmeJEmSJE2J/x8d4y+sC/6wFQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "recorteG7 = trim(imagen[:,:,1], 540, 345, 10, 10)\n", + "poptG7, pcovG7 = curve_fit(gauss2d, xdata7, recorteG7.ravel(), p0=[1,2,1,1,1])\n", + "estrellaG7=gauss2d(xdata7, poptG7[0], poptG7[1],poptG7[2], poptG7[3], poptG7[4])\n", + "FWHMG7=FWHMG.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptG7[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 7 fotografÃa (Banda Verde)\")\n", + "plt.imshow(recorteG7, plt.get_cmap('Greens'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 7 a partir de la gaussiana (Banda Verde)\")\n", + "plt.imshow(estrellaG7.reshape(10, 10), plt.get_cmap('Greens'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 8 (Verde)" + ] + }, + { + "cell_type": "code", + "execution_count": 419, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4gAAAFSCAYAAACwivGuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABC7ElEQVR4nO3de5xkZX3g/8+3e27cB6aH6wwMKrrBC8hOEKOJuBoFYhzjL2sgq4KaECPuan4ao2bXW2JiTDTRmGgwsECCKEYxbBYveEmIiaBAALnKqCAzDOCADPeZ6e7v/nFOS9FUd5+nurq6uvrznle9puqc7znPc6qqq75PPc95TmQmkiRJkiQNzXcFJEmSJEn9wQaiJEmSJAmwgShJkiRJqtlAlCRJkiQBNhAlSZIkSTUbiJIkSZIkAJbMdwUkSZpLMbIi2THe3Z3ev/PLmXlcd3cqSdL8s4EoSRpsO8bhWft2d59f3TzS3R1KktQfHGIqSRp8Ed29zVhcrI2Ib0TE9RFxXUS8qWXdf4+IG+vlH2xZ/o6I2BgRN0XEi+fomZAkaVr2IEqSBlswHz+HjgJvycwrI2IP4IqIuBjYD9gAHJGZ2yNiX4CIOBw4EXgqcCDw1Yh4cmaO9bzmkqRFzQaiJGnwNej166bM3AJsqe/fHxE3AAcBvwl8IDO31+vuqjfZAHy6Xv7DiNgIHA18q6cVlyQteg4xlSQNvujyraToiHXAM4HLgCcDPx8Rl0XEv0TEz9ZhBwG3tWy2qV4mSVJP2YMoSVK5kYi4vOXx6Zl5+uSgiNgd+Bzw5sy8LyKWAPsAxwA/C5wfEU/oSY0lSWrABqIkacA1m1im0NbMXD9tqRFLqRqH52bm5+vFm4DPZ2YC346IcWAE2Aysbdl8Tb1MkqSecoipJGmwTUxS083bTEVGBHAGcENmfrhl1ReA59cxTwaWAVuBC4ETI2J5RBwKHAZ8u+NjliSpQ/YgSpIGX48nqQGeA7wK+G5EXFUveydwJnBmRFwL7ABOrnsTr4uI84HrqWZAPc0ZTCVJ8yGq7yVJkgZTrFyePO+A7u70wluvmGmIqSRJC5FDTCVJkiRJgENMJUmDLoChng8xlSRpQbKBKEkafLYPJUlqxAaiJGnw9X6SGkmSFiQbiJKkwWf7UJKkRpykRpIkSZIE2IMoSRp0TlIjSVJjNhAlSYPP9qEkSY3YQJQkDbhwkhpJkhryHMQ5EhHrIiIjYkn9+J8j4jd6VPYfRsTWiLijF+XNRkTsFxGXRMT9EfGhetn/iIgLIsozuoj4rYj4i65XtFnZ74mIv5+PsmdSvxef1CDuGRHx772okyRp7s1nPtJPIuLgiHggIoZnsY+zIuIPO9y20fdwv4uIL0bEyfNU9h9HxJvnqeyOX/u5NPnve4bYX46IzzTZ78A3ECPiloh4uP5QmLh9rMF2ffOHHBFHRsS/RsS2iNgUEf9rmtiDgbcAh2fm/g32fUtEvLCb9S10KrAV2DMz3xIRhwGvBU7JzCzZUUQsA/4n8Kf144k/monX/c6I+OuIWNrtg5iNiPhERJzTZvkREbE9IvbpVV0y8xrg3oj45V6VKc25iXMQu3mTCi22fGS+Tc5vMvNHmbl7Zo7NZ70Wusw8PjPP7nW5EbEaeDXwN/XjYyNivOVvaXNEvLfX9ZpJRHwpIt7XZvmGiLijScOuWzLz/wBPjYhnzBQ78A3E2i/XHwoTtzfOdoe9fEGBTwGXAPsAzwPeEBEvnSL2YODuzLyrV5WbSsPn6BDg+pbG4M8Av56Z2zoocgNwY2ZunrR8ZWbuDjwdeDZwWgf7nktnAy+PiN0mLX8V8E+ZeU/THXXpfXku8Ftd2I/UP6LLN6kziykfmRedPB9RWSw58UJ1CnBRZj7csuz2ib8l4LnA6yLiZfNRuWmcDbyyzai4VwHnZuZo0x116W/9PKrOmWkt6j+GiHhSRPxL/UvY1olu14i4pA65uv5V4tfqXyo2RcTvRTV0839HxFBEvD0ivh8Rd0fE+U16eyLiiRHx9XqbrRFxbkSsnGaTdVRvorHM/D7wTeCpbfb7QuBi4MC63mfVy18aEddFxL1RDS35mXr531E1KP9PHf+26eLrdUdFxH9ENST0sxHxmai73Kd4jvaOiH+KiB9HxE/q+2vq+LOAk4G31eW/EDgKeGdLeZ+tf2HZFtVQ1Mcdd4vjgX+ZamXdaL4YOLxl/xOv3/0RcX1E/ErLulMi4psR8Wd13X8YEce3rD+0fv/cHxEXAyOTXo9Gdc/MbwGbgf+vZdth4NeBc+rHr42IG+p6fDkiDmmJzYg4LSJuBm6ul/1uRGyJiNsj4rWT6rW8PqYfRdWr+omI2KUl5J+BF0TE8qmeS2nBiejuTeqiQctHOtl3/V32PyLiB3X8n0bdaJtpX1H1Fv5eRFwDPBgR5zEpv4n2Q23fHxH/BjwEPKFNnZ4ZEVfW3/OfAVZMWv+SiLgqqnzp36NBz0y93S9FlUvdFxG3RcR7Zoh/W8t3+m9ES6/ydPuaeK9M2tdPe1Yj4uiIuLze9s6I+HC9fEVE/H39fN8bEd+JiP1anrffKHhd3hoR19Tv7c9ExIp63d4xRX44hZlyvB8C/85jc7yP1M/JfRFxRUT8fMu699R/J+fUr+91EbG+Zf2Ur31h3b8ArAJay94beAlwTkzzt9vynn1dRPwI+HpEDEeVw22NiB8Av9RaWETsFRFn1O+XzVGddtY6rPqfJ2/TzqJuIAJ/AHwF2BtYA/wlQGb+Qr3+iPqXiYnxuvtT/Wp2CFXr+78DL6P6Fe1A4CfAXzUoN4A/rrf5GWAt8J5p4v8CeHVELI2Ip1D1gn11clBmfpXqD2jiF5VTIuLJVL8WvBlYDVxE9YG5LDNfBfyIR3/R/OB08VEN4bwAOKt+Hs4DfoXHmvwcDQH/u358MPAw8LG6vqdQ9VZ9sC7/cccEfBE4DNgXuLKOn8rTgZumWhkRBwIvBi5tWfx9qj/avYD3An8fEQe0rH9Wvc8R4IPAGRE/zQ4/BVxRr/sDqsZup3U/h2roxIQXAkuBiyJiA1Wj+eVUr8m/Uj33rV5W1/XwiDgOeCvwi3X5k4cQfwB4MnAk8CTgIOBdEyvrHtidwFOmqa+0sNiDqP42UPlIh/uGKqdYT/Vj8QaqU06a7uskqsR3ZWaexKT8ZoryXkX1/O0B3PqYylc5zxeAv6N6rj/LY3/IfSZwJtWIm1VUQx8vjGY/rj5I9Z2/sq7zb8cUPV/1d/r/T/Vd/iTg2E731cZHgI9k5p7AE4Hz6+UnU+VFa6mO7fVU+dvjqsfMr8srgOOAQ4FnUPUEwjT54RRmyvEOA57DY3O871DlOvtQ5WyfnWig1l4KfJrqubtwovyZXvuSutc9nufz2BzvFVQj3q6m2d/u86ie3xcDv0nVuHwm1d/Kr06KPQsYpXqvPBN4EdB6zvENwLqI2LNdfVsrPtA34BbgAeDelttv1uvOAU4H1rTZLoEntTw+FtgBrGhZdgPwgpbHB1Al1kuofmVLYEm97p+B35iiji8D/mOaY/g5YGP9gifw3mlijwU2tTz+X8D5LY+HqHqrjm15fl7YJB74hfp+tKz/JvCHUz1Hbep3JPCTlsdnTWxfP34P8PdTbLuyPv69plh/M3Bcy+OJ12DidU+qX5f2nKZ+VwEb6vunABtb1u1a72N/qg+EUWC3lvWfmkXdD67fO2vqx+dSfWhD1dB83aTX5CHgkJb36n9pWX8m8IGWx0+uY55E9WH+IPDElvXPBn44qT6bgV+Yy79Nb956dWOf5ckrD+vuDS6f7+PytrBuLLJ8pIN956Tv8DcAX2uyr/q5fW2b57s1v2n3PLxvmvr8AnA7j815/p1Hc56PA38waZubgOdNc3xPmmLdXwB/PsW6M4E/bnn8pKb7YlJOOPl5oRou/F5gZFLMa+tjfUab/Td+/9RlvbLl8QeBT0yx7ZG05Idt1u8E/tOkv4Nxqr+j++rn5PPAsmn28ROqH1ugyje/2rLucODhJq99B3V/bl3PFfXjfwN+p77f5G/3CS3rvw68vuXxi+qYJcB+wHZgl5b1JwHfaHm8tI4/eKr6Zuai6UF8WWaubLl9sl7+NqqE+dt11/Jrp9kHwI8z85GWx4cAF9Td7/dSvchjVC/QlKKaufPTddfvfcDfM2l4YkvsPsCXgPdRdW+vBV4cEW+Yoa4TDqTlV7HMHAduo+o1Ko0/ENic9Tusdtuk7R/zHEXErhHxNxFxa32slwAro8EsYnU3+gfqbvf7qD5oYIrniuoPf482y0cycyVVA+/fgC+3lPHqeHR4yL3A0ybt/6czwWbmQ/Xd3al/5cnMB1tif/q8ldY9M39E9dy8MiJ2p/qQnZi45hDgIy11vIfqfdv6Gra+DgdOetz6q+jq+nm4omV/X6qXt9qD6sNMWvgCJ6lRv1g0+UjJvltM/u46sGBfk/ORJqbbpl3O0/p9egjwlonnvH7e107UeToR8ayI+EY9RHEbVQ/dVM/N5O/0x9S5cF+TvY7qR+QboxpG+pJ6+d9R5UqfjmpY6wejzQR/DV+X1hn1H6LKoTrJD9vleLfXf0d7Uv0Q/zDVOX8T9XtrVKfnbKtfn72YIser67YiqiHI0772pXXPzG9STcj4soh4InA0VacCNPvbbZrjHULVANzSsr+/oRrJNmHiOby3XV0nLJYGYluZeUdm/mZmHkg1ROCvY/qZwnLS49uA4yd92K/Ix0+SMtkf1ft6ev2mfiVTD1p6AjCWmedk5mhmbqLqDj9hpuOr3U71hgGgHh65lqqHqN0xTRe/BTioZYgl9bpWk/f3Fqqhis+qj3ViuEyTDOvXqYaYvJDqj3rdDNteQ/VB11ZW3fxnAcdExEhU5/F9EngjsKpuRF7bsG5bgL3jsRPLHDyLukP1ofYqqmEMP8zMK+rltwG/Nel9tktmtl6OovV538JjX5fWem2l+gB9asu+9srqBO+qghEHAcuYZiiHtOA4xFR9bEDzkZJ9T5j83XV7wb4mPyeTH7czXUy7nKf1+/Q24P2TnvNdM3PyKSDtfIpqSOPazNwL+ARTPzdbqIYdT5icd023rwepfhQGmJjf4Kc/CGfmzVkNx90X+BPgHyJit8zcmZnvzczDqXqNX8Jjh0hO6OQ1nlCaH86U422jei5+uT7Wn6f64eUVwN51jretYf1meu07yW0nTiV6JfDlzLyzXt7kb7dpjncbVQ/iSMu+9szM1vOEfwa4JTPvm6aui7uBGBH/NR49qfQnVC/AeP34TtqcsDzJJ4D31w0NImJ1VOeLzWQPqmEm2+pk/Henif1etev49ahOZN0f+DWqP5Qmzgd+KSJeUP/68xaqN89E42LycU4X/y2qXzXeGBFL6mM9usGxPkx16YR9gHc3rPfEttuBu6k+4P5ohviLqMZptxXVeQGvovrF6G5gN6rX/Mf1+tdQ9SDOKDNvBS4H3hvV+ZnPpf5Q6rDuAJ+j+kN/Ly2/gFG9z94R9SQ3UZ2A/F+n2c/5wCkRcXhE7ErLc173CH8S+POI2Lfe30ER8eKW7Z8HfD0ztzeos7QwOEmN+tiA5iMl+57wu1FNALIWeBMwcc5lJ/tq8rxN51tUQ2n/R1TnXL6cx+Y8nwReX/fgRUTsFtWEMe1GMk22B3BPZj4SEUdT/ag8lfOB10TEz9Tf6ZMvLTLdvr5H1Sv2S3VO9z+Bn54jGRGvjIjVdW5wb714PCKeHxFPrxuU91ENeRzn8Tp5XVq3LckPZ8rxdgdOBK5r2f8oVY63JCLeBUx/3t2jZnrtO8ltz6HqNPhNHp/jlfztnl/Xa01Uk928fWJFZm6hOpf5QxGxZ/13+sSIaH3enkd16tK0FksDcWIWq4nbBfXynwUui4gHqH59eVNm/qBe9x7g7LqL9hVT7Pcj9XZfiYj7qU6MfVaD+ryX6gTsbcD/pRoz3Vbdwn858DtUXxpXUfVyNbpYZ2beRPVrxV9S9R79MtVJ2zvqkD8G/md9nG+dLr7e5uVUQxLureP+iaohNJW/AHap93Up1fCUps6h6jrfDFzPY088buf/AP8pqsloWt1bv8Z3Up1v99KsXA98iOqD4E6qE6D/raB+v071et9D9eHQei3D0rpTD1f9HNUvhee2LL+A6pe9T0c1lOFaqsmIptrPF6me969TnSvy9Ukhv1cvv7Te31d57IQ0/43qA0saHENdvkmdWUz5SON9t/hHqsnfrqq3OWMW+3pMftMg/jFacp5TqL7nf6213My8nCrZ/xjV87GRRydgmckbgPfVr9W7eHRymHb1+CLwUeAbdRkT+cRE7jXlvupetTcAf0uVjzwItM5qehxwXf2++whwYj3aan/gH6gahzdQzR76d22q18nrMuEvKMsPzwFOiMfOuj4xa/8DVDnXPlQ5DFRDZL9E1Ui+FXiEhsOQZ3rtO6g7mXkLVWfLblR/qxNK/3Y/SXVsV1NNgDj5OX811Siw66nel/9AdV7jhJOoryU5nXjs8FqpTERcRnXC8f+e77oARMSpwOGZ+eb5rstCFNUU3X+Tmc+e77pI3RIjK5IN67q70zNvuiIz188cKKmJiEjgsMzcON916WdRXXrsWmB5FlxDbxBExB8Bd2XmX8x3XRaiiPhl4FWZOdUPTY/G2kBUibqb+iaqX00mepqeUHdrS1LfidW7dL+BeMaNNhClLrKBOLWortF8EdUpK2cD45n5snmtlAaaA2VU6ilU3dr3Up2f+Ks2DiX1PSepkbRw/RZwF9W1m8eA357f6mjQLZnvCmhhyczTqa7VJEkLhxPLSH0tM/0jnUJmHjffddDiYgNRkjT4HC8jSVIjfmVKkiRJkoA+7UFcNbIqDz5k8nVA51fpVD7DUd72Lp0wKItrVa68hNItykeUDBX+rjHe9tI90yt9LYYKh6918sqN51hRfBQ+T528Z0ue29tuvY27t97jECL1XuAQUw20kZGRPGTdwTMHSlpQrrziP7Zm5upel9uXDcSDD1nLN771tbktpLABMF6Y0u+6ZLeieICd4ztmDmoxNl44u3EHCdJ4ljWuxgpnXB6O4aJ4gOXDu8wc1GL72MPFZewc31kUv3xo+cxBLTpptN6/c1tR/IrhXYviO3nPPlLw3P7iczyFQvPI9qEG2CHrDubfLvvmfFdDUpftsmS3W+ej3L5sIEqS1FVDthAlSWpiVucgRsRxEXFTRGyMiLe3Wb88Ij5Tr78sItbNpjxJkqSFzNxJUr/ruIEYEcPAXwHHA4cDJ0XE4ZPCXgf8JDOfBPw58CedlidJUsciunuTOmDuJGkhmE0P4tHAxsz8QWbuAD4NbJgUswE4u77/D8ALIvxmlST1UJML35feZioyYm1EfCMiro+I6yLiTZPWvyUiMiJG6scRER+te42uiYijZn/g6kPmTpL63mwaiAcBt7U83lQvaxuTmaPANmBVu51FxKkRcXlEXL51692zqJYkSa2CiO7eGhgF3pKZhwPHAKdN9BRFxFrgRcCPWuKPBw6rb6cCH+/mM6C+0bXcqTVv+vGPt85RdSUtRn1zHcTMPD0z12fm+pGRtm1ISZI60usGYmZuycwr6/v3AzfwaEPgz4G38dgr3mwAzsnKpcDKiDigq0+CBkpr3rR69ch8V0fSAJlNA3Ez0HqxwjX1srYxEbEE2Auwe1CStNCNTPTe1LdTpwqsJxl5JnBZRGwANmfm1ZPCmvQsaeEzd5LU92ZzmYvvAIdFxKFUH2YnAr8+KeZC4GTgW8CvAl/P0iuQS5I0S3NwBtfWzFw/c7mxO/A54M1Uw07fSTW8VIuTuZOkvtdxAzEzRyPijcCXgWHgzMy8LiLeB1yemRcCZwB/FxEbgXuoPgglSeqZAIa63EIca1JuxFKqxuG5mfn5iHg6cChwdT1MdQ1wZUQcTbOeJS1w5k6SFoLZ9CCSmRcBF01a9q6W+48A/3U2ZcyVcfrvx7ix8dGi+NEsi18ay4riAYaaTNfXYmeOF5dRKovLKE8My497Z1H88qEVRfEAI8v3K4ofyyYpbEt84fsPYDhKPkKchE/zJGg6sUz3iqwKPAO4ITM/DJCZ3wX2bYm5BVifmVsj4kLgjRHxaeBZwLbM3NLTSqsnFnLuJGlxmFUDUZKkhWAerhLwHOBVwHcj4qp62TvrxkE7FwEnABuBh4DXzHkNJUlqwwaiJEldlpnfZIZu88xc13I/gdPmuFqSJM3IBqIkacA1vnahJEmLng1ESdLAs30oSVIzNhAlSQMtmJdzECVJWpBsIEqSBts8zGIqSdJCNTTfFZAkSZIk9Qd7ECVJAy+8DqckSY3YQJQkDTyHmEqS1IwNREnSwLN9KElSM56DKEmSJEkC7EGUJA24IBiyC1GSpEb6toE41xMKDBXuf5wsit8xtr0oHmD7ePk2JZbkePlGhUlV6fPaifHC49g+9nBxGUui8E8jy94fO8d3lO0fGBpeURQ/HMPFZZRaEs0HIfTivSFNxXMQpf6Whd+jHZVRmMv1Qi8m0PLzT6X6toEoSVJXeB1ESZIas4EoSRp4tg8lSWrGSWokSZIkSYA9iJKkARc4xFSSpKZsIEqSBp4NREmSmrGBKEkacGEDUZKkhmwgSpIGm7OYSpLUmJPUSJIkSZKAWTQQI2JtRHwjIq6PiOsi4k1tYo6NiG0RcVV9e9fsqitJUrmI7t6kTpg7SVoIZjPEdBR4S2ZeGRF7AFdExMWZef2kuH/NzJfMohxJkjrmLKbqI+ZOkvpexw3EzNwCbKnv3x8RNwAHAZM/5CRJmlc2ENUPzJ0kLQRdmaQmItYBzwQua7P62RFxNXA78NbMvK4bZfa77WMPF28zlqNzUJNH7czyEcVDHWwz10YLn6dOntdlQ8uL4oeHyv6UxnO8KB7Kj3s4hovLKLVjfEfj2HFyDmsiTW/IBqL6zKDnTplln/nZwXdEFn6XdlBC8RalgsLPpg4+yyLLtimuE/4IN2hm3UCMiN2BzwFvzsz7Jq2+EjgkMx+IiBOALwCHTbGfU4FTAdYevGa21ZIkSepL3cidHps3rZ3bCktaVGbVPRQRS6k+4M7NzM9PXp+Z92XmA/X9i4ClETHSbl+ZeXpmrs/M9atGVs2mWpIkParLE9T4Q7lmo1u5U2vetHp129RKkjrScQ9iVH3JZwA3ZOaHp4jZH7gzMzMijqZqkN7daZmSJJUKwuFP6gvmTpIWgtkMMX0O8CrguxFxVb3sncDBAJn5CeBXgd+OiFHgYeDELB2ULknSLHVyTo00B8ydJPW92cxi+k2Y/hs3Mz8GfKzTMiRJkgaFuZOkhaArs5hKktTPHGIqSVIz/XcNA0mSuiwiunprUN7aiPhGRFwfEddFxJvq5X8aETdGxDURcUFErGzZ5h0RsTEiboqIF8/dsyFJ0tRsIEqSBt48zGI6CrwlMw8HjgFOi4jDgYuBp2XmM4DvAe+o6heHAycCTwWOA/46ogcXM5UkaRIbiJKkgVY16nrbg5iZWzLzyvr+/cANwEGZ+ZXMHK3DLgUmLvy7Afh0Zm7PzB8CG4Gju/5kSJI0AxuIkiTNoYhYBzwTuGzSqtcCX6zvHwTc1rJuU71MkqSecpIaSdKAm5PrII5ExOUtj0/PzNMfV3LE7lQXRX9zZt7Xsvz3qYahntvtikmSNBt920BMml/yZzzHy/ffwTYlto8/UrzNWI4Vxe8Y21FcRqmlQ0sL45cVxQ9FeSf2KDuL4pcOLS8uY5yy90fpiUJLovxPb/Sno9Ia6sFls3aON38Pehkvzac5aCBuzcz1M5S5lKpxeG5mfr5l+SnAS4AXtFzfbjOwtmXzNfUyqS+U5loleVy1/7IcCMrzptIyOvreKvysGSoczDfcwanJQ4XbdJKbFb7czizd5xxiKkkaeL2epCaq7OcM4IbM/HDL8uOAtwEvzcyHWja5EDgxIpZHxKHAYcC3u/kcSJLURN/2IEqS1C3z8Gv1c4BXAd+NiKvqZe8EPgosBy6u63RpZr4+M6+LiPOB66mGnp6W2UGXiiRJs2QDUZKkLsvMbwLtWqUXTbPN+4H3z1mlJElqwAaiJGmgTVzmQpIkzcwGoiRp4NlAlCSpGRuIkqSBZ/tQkqRmbCBKkgbcnFwHUZKkgeRlLiRJkiRJgD2IkqRFwB5ESZKasYEoSRpozmIqSVJzNhAlSQPP9qEkSc3YQJQkDTx7ECVJaqYvG4gJjOd48/iC2EfLyDmN3z62vSgeYCzHiuIfGn2wMP6honiAJUNlb5E9l+5VFL9saFlRPJS/Frsv3bO4jAd33l8Uv8uSXYvilw/vUhQP5e/z8Sibg2rp0NKieIClBa+FCbok9YeSHGtC6XfQaI6WxY/vLIoH2DFelms9MvZwUfzODuo0VPjdu2J4RVH8sqGy+GqbslxrSQf5wFAMl21QlsqZQ/RYXzYQJUnqKpMLSZIasYEoSRpwXgdRkqSmZt1AjIhbgPuBMWA0M9dPWh/AR4ATgIeAUzLzytmWK0lSI2EHovqHeZOkftetHsTnZ+bWKdYdDxxW354FfLz+X5IkaTEyb5LUt3oxxHQDcE5mJnBpRKyMiAMyc0sPypYkLXKBExxoQTFvkjSvyqZaai+Br0TEFRFxapv1BwG3tTzeVC+TJKknIqKrN2kWzJsk9bVu9CA+NzM3R8S+wMURcWNmXlK6k/pD8lSANWvXdKFakiRVbNSpj3Q9b1p78Npu11HSIjbrHsTM3Fz/fxdwAXD0pJDNQOsn15p62eT9nJ6Z6zNz/arVq2ZbLUmSfiqiuzepU3ORN61ePTJX1ZW0CM2qgRgRu0XEHhP3gRcB104KuxB4dVSOAbY5jl6SJC025k2SFoLZDjHdD7igHrqzBPhUZn4pIl4PkJmfAC6imqp5I9V0za+ZZZmSJDXneYPqH+ZNkvrerBqImfkD4Ig2yz/Rcj+B02ZTjiRJnXIWU/UL8yZJC0EvLnMx55Is3mYsR4viR8fL4h8afbAoHuDW+39UFL9tx7ai+K0P/6QoHmDvFXsWxe+7y+qi+NWF8QArhncpig/KE8MVS8rKWBJLi+LHc7woHsrf5+PjO8vic6woHmAohou3keaDDUQNskyo2pUN4zvKm8q+I3aO7yiKf2DnfUXxAHdvn+pSku1tfbgs/sHRh4riAZYOlaXWey/fuyh+ZEV53rRyWVkZK4pLgCVDZZ+xQ1F2llsnuZw6NxANREmSpmMDUZKkZrpxHURJkiRJ0gCwB1GSNNi8NIUkSY3ZQJQkDTyHmEqS1IwNREnSQAu8zIUkSU3ZQJQkDTwbiJIkNeMkNZIkSZIkwB5ESdIiYAeiJEnN2IMoSRpsUQ0x7eZtxiIj1kbENyLi+oi4LiLeVC/fJyIujoib6//3rpdHRHw0IjZGxDURcdQcPyuSJLVlA1GSNPgiunub2Sjwlsw8HDgGOC0iDgfeDnwtMw8DvlY/BjgeOKy+nQp8vNtPgSRJTdhAlCSpyzJzS2ZeWd+/H7gBOAjYAJxdh50NvKy+vwE4JyuXAisj4oDe1lqSpL49BzHJHG8cvWN8e3EJO8bKthkvqA/Arff/qCge4PvbbimKv/rOHxbFb7z7nqJ4gL133aUo/qj91xTF/+f9nlEUD7BqxT5F8UPLy38HWZbLiuLHKXt/DHfw20xQdhJVxHBxGaWGCurkKWCaT3Mwi+lIRFze8vj0zDx9irLXAc8ELgP2y8wt9ao7gP3q+wcBt7VstqletgWpgSSbxxbmNACjubMo/qHRB4ritzx0e1E8wE33fq8o/rqt3y+Kv+OBsmMA2HXp0qL4w/Y+sCj+aSNPKYoHWLdHWfyq5eX5w1BhzjEUZXlQZvP39wRnr+5cnzYQJUnqjgCGup8nbM3M9TOWHbE78DngzZl5X2vCkpkZEeVZjyRJc8gGoiRpwDWbWKbrpUYspWocnpuZn68X3xkRB2TmlnoI6V318s3A2pbN19TLJEnqKc9BlCQNtoChiK7eZiyyapGeAdyQmR9uWXUhcHJ9/2TgH1uWv7qezfQYYFvLUFRJknrGHkRJkrrvOcCrgO9GxFX1sncCHwDOj4jXAbcCr6jXXQScAGwEHgJe09PaSpJUs4EoSRpoQe8nK8jMbzL13EwvaBOfwGlzWilJkhqwgShJGnieTyFJUjM2ECVJA6/JeYOSJMkGoiRpwM3HEFNJkhYqR91IkiRJkoBZNBAj4ikRcVXL7b6IePOkmGMjYltLzLtmXWNJkop09xIXDldVp8ydJC0EHQ8xzcybgCMBImKY6oK+F7QJ/dfMfEmn5UiSNCvhEFP1B3MnSQtBt85BfAHw/cy8tUv7kySpKwLPp1BfMneS1Je61UA8EThvinXPjoirgduBt2bmde2CIuJU4FSANWsPYjzHGhf+yOjDZbUFHhp7qCi+pD4Atz+4pSge4Mo7flAU/6V/v6oo/q477ymKBxhevrQofvPTy8rYa/keRfEAy1ctL4rfZckuxWUsG1pWFL98aEVZAR10ZgzHcFH8OFkUP9RBpSJMu7UwOCxUfWhWuVNr3rT24LVFBY/neFlNgdHx0aL4+3ZsK4q/5f7ydvIlP/puUfx3br6lKP7HP763KB5g113KcpTvP/EnRfGdjIbYY2lZrrV7YTzA0sK8KbMsp4nCHEizM+vsLiKWAS8FPttm9ZXAIZl5BPCXwBem2k9mnp6Z6zNz/aqRVbOtliRJUl/qRu7UmjeNjIzMWV0lLT7d+Pn/eODKzLxz8orMvC8zH6jvXwQsjQg/xSRJPRURXb1Js2TuJKlvdWOI6UlMMUQiIvYH7szMjIijqRqkd3ehTEmSGgkcYqq+Y+4kqW/NqoEYEbsBvwj8Vsuy1wNk5ieAXwV+OyJGgYeBEzOz7MQoSZJmyeah+oW5k6R+N6sGYmY+CKyatOwTLfc/BnxsNmVIkiQNCnMnSf2uW7OYSpLUp7y4vSRJTdlAlCQNtAjPQZQkqSkbiJKkgefMo5IkNWMDUZI08OxBlCSpmW5cB1GSJEmSNADsQZQkDbTAy1xIktRUXzYQk2TH+I7G8WM5VlzG9rFHiuIf3PlQUfydD95TFA9w0x13FcXfdfXmsgIe2FkWD4wVZlUbd9ulKP77T7q9rADgSSsPLYoveS9N2Dle9lyNU3aJqqWdpKuFQ+SGCsuIDupUto0puuaPQ0w16LLge6gkdsJYjhbFPzj6YFH87Q+U5UAA12+5syj+hu/9qCh+7Nb7iuIB2GtZUXjp+dHf32efoniAp+z9xKL4/Xcty5EBdlmyW1F8aQOkk/dsJ3mNKn3ZQJQkqXu8zIUkSU3ZQJQkDbQIZzGVJKkpJ6mRJEmSJAH2IEqSFgGHmEqS1IwNREnSwLN5KElSMzYQJUkDLbAHUZKkpmwgSpIGng1ESZKacZIaSZIkSRJgD6IkaeCFl7mQJKkhexAlSQMtqL7sunmbscyIMyPiroi4tmXZkRFxaURcFRGXR8TR9fKIiI9GxMaIuCYijurKgUuS1AEbiJKkwRYQEV29NXAWcNykZR8E3puZRwLvqh8DHA8cVt9OBT7ejcOWJKkTfTvEdCiat11LYn+6TWHbOBkviv/JI/cVxQM88vD2sg22jxWXUSzLwh9+pOwY7n3kkbICgG07thXF77vr6uIysvTAC+PHi/cPQ6UT9WdZGdnBCLySvz0H+GkxycxLImLd5MXAnvX9vYDb6/sbgHMyM4FLI2JlRByQmVt6U1tpZqXfi+NZljdtH9tRFA+wc8doUfzYQ4VlPLCzLB6Ku14e2V5Wp0dGy44ZYCzLtinPgTrRizLUqb5tIEqS1C19Movpm4EvR8SfUaWRP1cvPwi4rSVuU73MBqIkqeccYipJGmgT10Hs5g0Yqc8jnLid2qAqvw38TmauBX4HOGMOD1uSpI7YgyhJGnhzMIvp1sxcX7jNycCb6vufBf62vr8ZWNsSt6ZeJklSzzXqQZxiNrZ9IuLiiLi5/n/vKbY9uY65OSJO7lbFJUlqJhjq8q1DtwPPq+//F+Dm+v6FwKvr2UyPAbZ5/uHCZt4kaSFrOsT0LB4/G9vbga9l5mHA1+rHjxER+wDvBp4FHA28e6oPREmSBkVEnAd8C3hKRGyKiNcBvwl8KCKuBv6IasZSgIuAHwAbgU8Cb5iHKqu7zsK8SdIC1WiI6RSzsW0Ajq3vnw38M/B7k2JeDFycmfcARMTFVB+Y53VWXUmSys3BENNpZeZJU6z6z21iEzhtbmukXjJvkrSQzeYcxP1ahsDcAezXJmaqmdkepz7B/1SAg9a2DZEkqVhE38xiqsVtzvKmtQevbRciSR3pyiym9a+fs7qgSWaenpnrM3P9qpF9ulEtSZIAiC7/k2aj23nTyMhIl2omSbNrIN4ZEQcA1P/f1SbGmdkkSfMuIrp6kzpg3iRpQZhNA/FCqim7qf//xzYxXwZeFBF71ydZv6heJkmStJiYN0laEJpe5qLdbGwfAH4xIm4GXlg/JiLWR8TfAtQnWf8B8J369r6JE68lSeqFYOYL35fepOmYN0layJrOYjrVbGwvaBN7OfAbLY/PBM7sqHaSJHVBdOeUe6kR8yZJC9lsZjGdMxHBkqGljeOHY7i4jCVDZYe+25LdiuJ3XbqiKB5gr5V7lG2wrjB+0wNl8QDLy57b/UbKLte0etddi+IBxnKsKH5pNH8vTVgSffinkWXzGYwXzn8w1Ml0CXakaIGw10+anaHCXGv58PKi+FUr9iqKBxjZZ8+i+NUHlE2C+OMOPjeW7V523KtXryyK32/3smMG2LUwh+0kByqfvMvP5H7Wh1mwJEnd5cQykiQ145gbSZIkSRJgD6IkacB57UJJkpqzgShJGmzhOYiSJDVlA1GSNPA8B1GSpGZsIEqSBloAQ55yL0lSI35jSpIkSZIAexAlSQMvHGIqSVJDNhAlSQPPBqIkSc3YQJQkDbwhL3MhSVIjnoMoSZIkSQL6uAexZMa5pUPLive/fHhFUXySRfFPX/3koniA0fHRovgdz95ZFL/ptruK4gF227XseXr6YQcXxR+xb/nztP+u+xXFLxteXlzGisL3R/kMiWXvJ4Dx4i1KyyjvYclsXkb5EUvdETjEVIMvCj7Dh6K8f2BJlKWMuy/doyj+4D3WFMUD/NyarUXxpddD3fqT+4riAZYtL8tJn3Hg/kXxP7Pq0KJ4gJEVq4riS3NkgOEYLoov/UwueX9r9vq2gShJUldEeWIoSdJiZQNRkjTgwl+fJUlqyAaiJGmgBZ0NqZMkaTHyG1OSJEmSBNiDKElaBJykRpKkZmwgSpIGnucgSpLUjA1ESdKAC2cxlSSpIRuIkqSBFtiDKElSUzNOUhMRZ0bEXRFxbcuyP42IGyPimoi4ICJWTrHtLRHx3Yi4KiIu72K9JUmS+pK5k6SFrMkspmcBx01adjHwtMx8BvA94B3TbP/8zDwyM9d3VkVJkmZnKKKrN2kGZ2HuJGmBmrGBmJmXAPdMWvaVzBytH14KrJmDukmSNHsBEUNdvc1YZJsepHr5f697ka6LiA+2LH9HRGyMiJsi4sVz8Cyoh8ydJC1k3bgO4muBL06xLoGvRMQVEXFqF8qSJKlQdP1fA2cxqQcpIp4PbACOyMynAn9WLz8cOBF4ar3NX0fEcBefAPUfcydJfWtWk9RExO8Do8C5U4Q8NzM3R8S+wMURcWP9q1q7fZ0KnAqwZu1BjDPeuB7DHXyPlm4zns3rA3DonuuK4gHGxseK4vdesWdR/B3r7pk5aJJ9Css4ZK8DiuLX7bGuKB5gj6W7F8WvGF5RXMZQ6XuqB0POsvA9mGRZAR0cQzd+YZLmWkDPh4Vm5iURsW7S4t8GPpCZ2+uYu+rlG4BP18t/GBEbgaOBb/WqvuqdbuVOrXnT2oPXFtVhqINP7yVDS4vi91y6V1H82t3LjgEgDij7uz5g99VF8T955L6ieIDlw8uK4g/afb+i+IP3OLgoHmCfFauK4pcNLS8uY6jByIpWThzW3zrO7yLiFOAlwH/LzLaZaGZurv+/C7iA6guvrcw8PTPXZ+b6VavL3siSJC0ATwZ+PiIui4h/iYifrZcfBNzWErepXqYB083cqTVvGhkZmaMaS1qMOmogRsRxwNuAl2bmQ1PE7BYRe0zcB14EXNsuVpKkuRQRXb0BIxFxecutyVDAJcA+wDHA7wLnRzjjzWJh7iRpoZhxiGlEnAccS/VluAl4N9XMW8uphj4AXJqZr4+IA4G/zcwTgP2AC+r1S4BPZeaX5uQoJEmaxlD3hzNt7WCGyU3A5+ueo29HxDgwAmwGWsfXramXaYEyd5K0kM3YQMzMk9osPmOK2NuBE+r7PwCOmFXtJEmapQD6pKPuC8DzgW9ExJOBZcBW4ELgUxHxYeBA4DDg2/NVSc2euZOkhWxWk9RIkqTHm6IH6UzgzPrSFzuAk+vexOsi4nzgeqrJS07LzLJZyyRJ6hIbiJKkAReNrl3YTVP0IAG8cor49wPvn7saSZLUjA1ESdLAm4NzECVJGkg2ECVJAy2ib85BlCSp79lAlCQNPC/KLElSM709KUOSJEmS1LfsQZQkDbhwiKkkSQ31ZQMxMxkd39k4fjzHi8tYPry8MH51UfwDOx8oigd48srDiuIP2v3AovhOnqfhKHuLrFhS9rzuumS3oniA3ZfsXhS/29I9issYKuxcH47hsv0XxgPEUFmCW82eXxBPWTzAeNFM/OX7l7rFSWo06IqGUXcwq++SwpRx2fCKoviRFfsWxQMsLyxjv132K4rfPr69KB7K84HSPGivZXsVxQOsGN61KH7p0LLiMkrzmtJh//7I11t92UCUJKlbAnp+mQtJkhYqG4iSpAEXTlIjSVJD/qQqSZIkSQLsQZQkLQKevyJJUjM2ECVJA88hppIkNWMDUZI08OxBlCSpGRuIkqSBFniZC0mSmnKSGkmSJEkSYA+iJGnQRTjEVJKkhmwgSpIGXjhgRpKkRmwgSpIGnj2IkiQ105cNxIghlg/v0jh+PMeKyxgd31kUv3N8R1H8nsv2KooHGI7hovhlw8uK4sdzvCgeyuu0ZGhpUfyyobJjAFg2vLwovpPjLp3PonwK/fJkdSjntgckyTndvyRpbkQU/gjSwcf9UGmOUvj9PhTl33GlOccehblZdpA/lOYDpXnWcOExQ/nzNNzBiIvS4/ZHu/7Wlw1ESZK6JfA6iJIkNWUDUZI04IIhf62WJKmRGfuQI+LMiLgrIq5tWfaeiNgcEVfVtxOm2Pa4iLgpIjZGxNu7WXFJkpqKLv+TpmPuJGkhazLI+CzguDbL/zwzj6xvF01eGRHDwF8BxwOHAydFxOGzqawkSZ2I+lIX3bpJMzgLcydJC9SMDcTMvAS4p4N9Hw1szMwfZOYO4NPAhg72I0mStGCYO0layGYzLeIbI+KaehjF3m3WHwTc1vJ4U71MkqSeqSapGerqTeqQuZOkvtfpt9zHgScCRwJbgA/NtiIRcWpEXB4Rl9/947tnuztJkmrdHV7qEFN1qKu5U2ve9OMfb+1C9SSp0lEDMTPvzMyxrC4Q80mqIRGTbQbWtjxeUy+bap+nZ+b6zFy/avWqTqolSVJb3e0/tIGoct3OnVrzptWrR7pfYUmLVkcNxIg4oOXhrwDXtgn7DnBYRBwaEcuAE4ELOylPkqSOhZPUaP6ZO0laKGa8DmJEnAccC4xExCbg3cCxEXEkkMAtwG/VsQcCf5uZJ2TmaES8EfgyMAycmZnXzcVBSJIk9QtzJ0kL2YwNxMw8qc3iM6aIvR04oeXxRcDjpnGWJKlXqklq7PVT75g7SVrIZmwgSpK00DksVJKkZvqygRjAcAw3jl8S5YcxFGWnX5YmF8Md1CmWlpWxYnhF2f57kCCN5VhR/JJYWlzG0sJtxhkvLmM8y7YZKj6dNwvjIaN8mxKd9LCkObcWhOj5pSki4kzgJcBdmfm0SeveAvwZsDozt0b14fwRql6kh4BTMvPKnlZYi0pH+UDhV9BQQR4HsLSD76Dh4cIyCr/beyEK89HyfKP89e4kHyjNq9XffDUlSQNvKKKrtwbOAo6bvDAi1gIvAn7Usvh44LD6dirV5RAkSZoXNhAlSeqyzLwEuKfNqj8H3sZj+2M2AOdk5VJg5aQZLyVJ6pm+HGIqSVK3zNEkNSMRcXnL49Mz8/Rp6xGxAdicmVdPGvJ1EHBby+NN9bIt3aqsJElN2UCUJA28OTgHe2tmri8of1fgnVTDSyVJ6ls2ECVJAy764TIXTwQOBSZ6D9cAV0bE0cBmYG1L7Jp6mSRJPec5iJIkzbHM/G5m7puZ6zJzHdUw0qMy8w7gQuDVUTkG2JaZDi+VJM0LexAlSQOv19dBjIjzgGOpzlXcBLw7M9teKJ3qougnABupLnPxmp5UUpKkNmwgSpIGWtDZtcNmIzNPmmH9upb7CZw213WSJKkJG4iSpMEWve9BlCRpobKBKEkacH0xSY0kSQuCk9RIkiRJkoA+7UFMYCxHG8cPxXBxGUtiaVn8cFn8jvHtRfFQfhxLh8p+EY/o5PeALIoezvGi+I5+1S8dKpblZQwNQG9DL3pMyspY+M+pFi6HmEqzU/w3VJY+EB3kclHYzzFcfAiFB9GB/vuu9vNSfdpAlCSpmxxiKklSMzYQJUkDLbCBKElSUzYQJUmDzyFTkiQ14iQ1kiRJkiTAHkRJ0sDzMheSJDVlA1GSNPCclU+SpGZsIEqSBp49iJIkNWMDUZI08GwgSpLUzIwNxIg4E3gJcFdmPq1e9hngKXXISuDezDyyzba3APcDY8BoZq7vSq0lSZL6lLmTpIWsSQ/iWcDHgHMmFmTmr03cj4gPAdum2f75mbm10wpKkjQbgecgqufOwtxJ0gI1YwMxMy+JiHXt1kX1jfsK4L90uV6SJHWJs5iqt8ydJC1ksz0H8eeBOzPz5inWJ/CViEjgbzLz9FmW19Z4jpVvVJgrLImypypzvKyADgwPldVpuPAYoPw4Rhktih/qIGkbjuGi+E4Sw9JtIsouKVoaD+V1GuqgjLlkeq75ZANRfaQvcqe51ote+9K/68yc0/33gqMh1AuzbSCeBJw3zfrnZubmiNgXuDgibszMS9oFRsSpwKkAa9aumWW1JEmqhUmV+kpXcqfWvGntwWvnpqaSFqWOuxgiYgnwcuAzU8Vk5ub6/7uAC4Cjp4k9PTPXZ+b6VatXdVotSZKkvtTN3Kk1b1q9emQuqitpkZrNGLQXAjdm5qZ2KyNit4jYY+I+8CLg2lmUJ0lSR6LL/6QOmTtJ6nszNhAj4jzgW8BTImJTRLyuXnUik4ZIRMSBEXFR/XA/4JsRcTXwbeD/ZuaXuld1SZJmNjGLaTdv0nTMnSQtZE1mMT1piuWntFl2O3BCff8HwBGzrJ8kSbNkr596y9xJ0kLWX9McSpIkSZLmzWxnMZUkqe/ZgyhJUjM2ECVJA8/zBiVJasYGoiRp4NmDKElSMzYQJUkDLbCBKElSU05SI0mSJEkC7EGUJA08r10oSVJTfdlADIIlsbRx/GjuLC5jbHy0KH48xssK6CAZGS7s0F0SZS/fUAwXxUMHx10Y3onhwuOGseIyhkqHo/Vh8plkUbxD8DTYfH9Li50/FEnNOMRUkjTYokoMu3mbsciIMyPiroi4tmXZn0bEjRFxTURcEBErW9a9IyI2RsRNEfHiuXkiJEmamQ1ESdLAiy7/a+As4LhJyy4GnpaZzwC+B7wDICIOB04Enlpv89cRHQz5kCSpC2wgSpLUZZl5CXDPpGVfycyJ8xsuBdbU9zcAn87M7Zn5Q2AjcHTPKitJUgsbiJKkgTcPPYgzeS3wxfr+QcBtLes21cskSeq5vpykRpKkbom5mcV0JCIub3l8emae3qg+Eb8PjALndrtSkiTNlg1ESdLAm4NZerdm5vriekScArwEeEFmTkw1vBlY2xK2pl4mSVLPOcRUkjTw+mGIaUQcB7wNeGlmPtSy6kLgxIhYHhGHAocB3571QUuS1AF7ECVJ6rKIOA84lmoo6ibg3VSzli4HLq6HvF6ama/PzOsi4nzgeqqhp6dlZvkFXCVJ6gIbiJKkgdfrC2Rn5kltFp8xTfz7gffPXY0kSWrGBqIkaeDNwTmIkiQNJBuIkqSBNkezmEqSNJD6soF41ZVXbd1r+T63tlk1AmztdX3muezFeMyLtexBP+ZD5nj/krQoXXnFf2zdZclu7fIm8DvNsge33MVQ9rzkTn3ZQMzM1e2WR8TlnUwr3g3zVfZiPObFWvZiPGapVxxiqkE2Vd4EfqdZ9uCWu5jLnmt92UCUJKm7bCBKktSEDURJ0sCzeShJUjMLrYF4+iIsezEe82ItezEes9QTTlKjRczvNMse1HIXc9lzKjJzvusgSdKcOeKoZ+SX/+3/dnWfB+x68BWDeu6JJGlxW2g9iJIkdcAeREmSmrCBKEkaeDYPJUlqZmi+KzBZRBwXETdFxMaIeHub9csj4jP1+ssiYl2Xyl0bEd+IiOsj4rqIeFObmGMjYltEXFXf3tWNsut93xIR3633e3mb9RERH62P+5qIOKpL5T6l5Xiuioj7IuLNk2K6dtwRcWZE3BUR17Ys2yciLo6Im+v/955i25PrmJsj4uQulf2nEXFj/ZxeEBErp9h22teng3LfExGbW57TE6bYdtq/hw7L/kxLubdExFVTbNvxMUv9JebgJvUPcydzp7nIneYrb5qmbHOnXsnMvrkBw8D3gScAy4CrgcMnxbwB+ER9/0TgM10q+wDgqPr+HsD32pR9LPBPc3TstwAj06w/AfgiVWZyDHDZHD3/dwCHzNVxA78AHAVc27Lsg8Db6/tvB/6kzXb7AD+o/9+7vr93F8p+EbCkvv8n7cpu8vp0UO57gLc2eD2m/XvopOxJ6z8EvKvbx+zNWz/djjjqGXnnw5u7egMun+/j8uYt09zJ3Gnucqf5ypumKdvcqUe3futBPBrYmJk/yMwdwKeBDZNiNgBn1/f/AXhBxOynp8vMLZl5ZX3/fuAG4KDZ7reLNgDnZOVSYGVEHNDlMl4AfD8zb+3yfn8qMy8B7pm0uPU1PRt4WZtNXwxcnJn3ZOZPgIuB42ZbdmZ+JTNH64eXAmtK9tlpuQ01+XvouOz67+YVwHkd1E2S1B/MnaZm7jSL3Gm+8qapym7I3KkL+q2BeBBwW8vjTTz+g+anMfUbdBuwqpuVqIdePBO4rM3qZ0fE1RHxxYh4aheLTeArEXFFRJzaZn2T52a2TmTqN/xcHTfAfpm5pb5/B7Bfm5heHP9rqX5pbGem16cTb6yHaJw5xdCQuT7mnwfuzMybp1g/F8csSeoucydzp/nKnXqdN4G5U0/0WwNx3kXE7sDngDdn5n2TVl9JNYTgCOAvgS90sejnZuZRwPHAaRHxC13c94wiYhnwUuCzbVbP5XE/Rlb98z2/9kpE/D4wCpw7RUi3X5+PA08EjgS2UA1X6LWTmP4XsHl9T0rdFF3+J+lR5k6LL3eah7wJzJ16pt8aiJuBtS2P19TL2sZExBJgL+DubhQeEUupPuDOzczPT16fmfdl5gP1/YuApREx0o2yM3Nz/f9dwAVUXeStmjw3s3E8cGVm3tmmbnN23LU7J4Z81P/f1SZmzo4/Ik4BXgL8t/pD9nEavD5FMvPOzBzLzHHgk1Psby6PeQnwcuAz09Sxq8cszScbiBpg5k7mTj3NneYjb6r3Ze7UI/3WQPwOcFhEHFr/KnMicOGkmAuBiVmYfhX4+lRvzhL1mOIzgBsy88NTxOw/MWY/Io6mev5m/QEbEbtFxB4T96lOAL52UtiFwKujcgywrWVoQTdM+YvIXB13i9bX9GTgH9vEfBl4UUTsXQ8peFG9bFYi4jjgbcBLM/OhKWKavD6l5baeA/ErU+yvyd9Dp14I3JiZm6aoX9ePWZI0J8ydzJ16ljvNV95U78vcqVeazmbTqxvVjFPfo5qB6PfrZe+jeiMCrKDqyt8IfBt4QpfKfS5V9/w1wFX17QTg9cDr65g3AtdRzYh0KfBzXSr7CfU+r673P3HcrWUH8Ff18/JdYH0Xn/PdqD609mpZNifHTfVBugXYSTUu/HVU50F8DbgZ+CqwTx27Hvjblm1fW7/uG4HXdKnsjVRj1Sde84lZ3g4ELpru9ZlluX9Xv47XUH1wHTC53Kn+HmZbdr38rInXtyW2a8fszVs/3Y446hn544e3dPWGs5h666Nbu+8KzJ3A3AlmkTtNUe6c503TlG3u1KNb1AckSdJAOvI/H5Ff+/evdHWfIyv2vyIz13d1p5Ik9YF+G2IqSZIkSZonS+a7ApIkzS0nlpEkqSl7ECVJkiRJgD2IkqRFwR5ESZKasIEoSRpogc1DSZKasoEoSRp49eXIJEnSDGwgSpIWARuIkiQ14SQ1kiRJkiTAHkRJ0iJg/6EkSc3YQJQkLQI2ESVJasIGoiRpwIWT1EiS1JDnIEqS1GURcWZE3BUR17Ys2yciLo6Im+v/966XR0R8NCI2RsQ1EXHU/NVckrTY2UCUJKn7zgKOm7Ts7cDXMvMw4Gv1Y4DjgcPq26nAx3tUR0mSHscGoiRpoAUQXf43k8y8BLhn0uINwNn1/bOBl7UsPycrlwIrI+KArhy8JEmFPAdRkrQIdP0cxJGIuLzl8emZefoM2+yXmVvq+3cA+9X3DwJua4nbVC/bgiRJPWYDUZI08OZgipqtmbm+040zMyMiu1khSZK6wQaiJGng9ckspndGxAGZuaUeQnpXvXwzsLYlbk29TJKknvMcREmSeuNC4OT6/snAP7Ysf3U9m+kxwLaWoaiSJPWUPYiSpAEXzMkg0+lKjDgPOJbqXMVNwLuBDwDnR8TrgFuBV9ThFwEnABuBh4DX9LSykiS1sIEoSRp4vR5gmpknTbHqBW1iEzhtbmskSVIzNhAlSYtAX5yDKElS3/McREmSJEkSYA+iJGnQRd/MYipJUt+zB1GSJEmSBNiDKEkacNUcpvYgSpLURFSTp0mSNJgi4kvASJd3uzUzj+vyPiVJmnc2ECVJkiRJgOcgSpIkSZJqNhAlSZIkSYANREmSJElSzQaiJEmSJAmwgShJkiRJqv0/bv4SHDk+68EAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "recorteG8 = trim(imagen[:,:,1], 620, 306, 20, 20)\n", + "poptG8, pcovG8 = curve_fit(gauss2d, xdata8, recorteG8.ravel(), p0=[1,1,1,1,1])\n", + "estrellaG8=gauss2d(xdata8, poptG8[0], poptG8[1],poptG8[2], poptG8[3], poptG8[4])\n", + "FWHMG8=FWHMG.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptG8[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 8 fotografÃa (Banda Verde)\")\n", + "plt.imshow(recorteG8, plt.get_cmap('Greens'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 8 a partir de la gaussiana (Banda Verde)\")\n", + "plt.imshow(estrellaG8.reshape(20, 20), plt.get_cmap('Greens'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 9 (Verde)" + ] + }, + { + "cell_type": "code", + "execution_count": 420, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3gAAAFSCAYAAACgxn03AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAxcUlEQVR4nO3debwkdX3v/9d7Fhg2AZmRADMCKsaA+x2Na6JiIhoTTG4WTNRojMT8UNFrrhHv70bNLybexOuWxYSI2w1XQhQNiSaocYtJQAFFBVyIIAyLMCqbIDAzn98fVUd7DnPOqTNzqrtOz+vJox+crqr+1qequ6e/n/oulapCkiRJkrT8rZh0AJIkSZKkpWGCJ0mSJElTwgRPkiRJkqaECZ4kSZIkTQkTPEmSJEmaEiZ4kiRJkjQlVk06AEmS5pO1a4o7ty1tobfcdU5VHbe0hUqSNHkmeJKkYbtzG/z4vZa2zI9dvXZpC5QkaRhM8CRJw5dMOgJJkpYFEzxJ0rAFR4xLktSRCZ4kafhswZMkqRMTPEnS8JnfSZLUiZ1eJEmSJGlK2IInSRq42EVTkqSOTPAkScPmJCuSJHVmgidJGj5b8CRJ6sQET5I0fOZ3kiR1YqcXSZIkSZoStuBJkoYtwAqb8CRJ6sIET5I0fOZ3kiR1YoInSRo+J1mRJKkTEzxJ0vCZ30mS1ImTrEiSJEnSlLAFT5I0bE6yIklSZyZ4kqThM7+TJKkTEzxJ0sDFSVYkSerIMXhzSHJEkkqyqn3+ySS/OYb9Jsk7k3w3yWf73t+uSvKjSb6Q5JYkL2mXvTHJm3eyvD9K8tKljHER+35Xkj+YxL7nM/uzuMC2P5vkb8cRlySpf5OqjwxNkscn+eoulrFT524xv8NDl+TiJE+Y0L7fm+QZE9r3IL83SZ6QZFPHbV+c5H912XbwCV6SK5LcnuTWkcefdXhdJbnfOGJcSJLHJPlsmwR9Mcnj5tn8ccBPAeur6pEdyp70cb4C+ERV7VdVb03yeOARwH9fbEFJ1gHPAf6qff6EJNtG3verk7x2SaNfAkn+Ocnv72D58UmuG+cPQlX9A3BMkgePa59S72bG4C3lQ1qk3bA+MlGzz1tV/WtV/egkY5oGVXVMVX1y3Ptt6yUPAf6+ff7cJFtHvkvfSPLb445rIUm+kuQ3drD85CTnjzmcvwZ+Lcm9Ftpw8Ale62erat+Rx4t2tcBxVbqT3BP4B+BPgAOAPwb+IcmBc7zkcOCKqvreOOKbT8dzdDhw8cjzI4Ffqaq7dmKXzwU+XFW3jyy7ZuZ9p0l+nz+pqz/zeDfwrORufcieDZxeVVu6FrREn8v3AicuQTnScGSJH9LO2Z3qIxOxM+djGlrWdgO/RVMnqpFl/zFSx/uvwB8nedhkwpvTu2kaH2Z7druus139nFbV94F/miOe7SyXBG+HktwvyaeS3JRk80zXtCSfbje5qL0q8CszTaBJfjfJdcA7k6xI8sok/5nk20nObP8BXGi/903y8fY1m5OcnuSAOTZ/DHBdVf1dVW2tqr8BbgB+YQflPh94O/DoNu7XtstfkOSyJN9JcnaSQ+c6zvm2b9f9dJKvtufsL9rz95vtuucm+bckb0rybeA18x1rko8DTwT+rN3//YEnAf9Pu/7AJP+Y5IY0XU7/Mcn6eU7tU4FPzbWyqi4H/h04euR43pLkqiQ3J7kgTQvizLrXtO/pe9qrlRcn2Tiy/mFJLmzX/S2wZmTdYmL/IHAQMLrvA4GnA++Z73OWH3b7eH6SK4GPJ1mZ5A3t+f4G8DOjO0uyf5LTklybplXzD5KsHNnkk7NfIy17ydI+pCU0bfWRtuxHJvmPJDe2vzd/lmSPObad+S07Mck17fa/07Ws9rUnJfk68PX5ztvIa65oz+EXge9lB5XnJD+VpgXmpjStrZm1/jeSXNr+zp+T5PA5zt3scp/Xvu6WNC1PvzXPtiuT/O/2/bk8yYuyfZfbOctKUy/7zKzyftCymeRpSS5pX3v1zDlPsratt9yYpi74r0lWjJy3Jy/ifXlhkq+32/x50vwDusjPHixcx/s8cCnwYyP7/7s0PaFuSvLpJMeMrHtXG8+H2uM/L8l9R9bP+d4vMvb/Azxu9LOR5GjgwcB7k+yZps52ZZJvJfnLJHu12+3ou75XG/t3k1xC0+uNkbIPTfL+NPXPy9MOfxrxSTrU8ZZ1ggf8f8BHgAOB9cCfAlTVT7TrH9JeGZgZk/QjwD1pWp1OBF4MPAP4SeBQ4LvAn3fYb4A/al/zY8AG4DULbD/7+QNnb1RVpwEv5IdXNF6d5Entvn4ZOAT4JnDGXMc53/ZJ1gLvA06hSUi+SvMP/qgfB74BHAy8br5jraonAf8KvKjd/9dmlbUCeCfN+b43cDswX3eWB7Ux7VCSo4DHAueOLP4c8FCa9/X/An+XZM3I+p9rj/8A4OyZ/bf/gH2Q5ot7T+DvaK4eLTr2tsXxTLa/ovLLwFeq6iK6fc5+kub8PgV4AU1y+DBgI/CLs7Z9F7AFuF+7zU8Do/3KLwWOSHKPHcUrLUu24GnYpqo+0toKvAxYCzwaOJb2Au48nggcRfO79LsziUTHsp5BUwc5ep7zNtszaSq7B8zuLdPWec4C/t92v/9JU4eYWX888CqaBHcdTX3mvQsc34zraX6n7wE8D3hTkofPse0LaJKbhwIPb49zZ8ua7TTgt6pqP5r38ePt8pcDm2iO62Ca46wdvL7L+/J0miTkwTR1m6e0yzt/9pLsQ9PDa7463iOA+wOj3R7/iebzdC/gQuD0WS87AXgtzffuMpp664Lv/WJir6pNwCdoWuxmPJumx9lm4PVt3A+lqZcdBvzeyLazv+uvBu7bPp4C/PrIOVhB08p+UVvOscBLkzxlpLxLabq6zq+qBv0ArgBuBW4cebygXfce4FSa8WqzX1fA/UaePwG4E1gzsuxS4NiR54cAd9HMLnpEW8aqdt0ngd+cI8ZnAJ+fY91BbczPBFa3b+Q24K/m2P65wGdGnp8G/PHI833bGI+Y4zjn3J4mAfmPkXUBrpo5rnbfVy7wfmx3rLPPC03y8QdzvPahwHfnKfsu4AGz3rNt7fm7uT3Ws4A95injuzQ/CNB8WT82su5o4Pb2758ArgEysv7fdyH2x7Vxrmmf/xvwskV8zu4zsv7jwAtHnv/0zGeR5h/qO4C9RtY/k2Yc5Mzz1e329+77++nDxzge3HPP4llHLe0Dzp/0cflYXg92s/rIDl7/UuADc6ybiXH0N/yPgdO6lNW+9kkdztumWe/Hb8wT73OAc0eehybpmanz/BPw/JH1K4DbgMPnOb5Vc+zrg8DJc6z7OE0SNvP8yV3LYladcPZ5Aa6k6fp4j1nb/D7NWLf77aD8K4AnL+J9edzI8zOBV+7EZ++wtqzRz/xzaS5W3wjc0q7/U0bqZbPKOKDdZv/2+buAt4+sfxrNhfUF3/vFxN6ufxbw1ZHPyZXAz7flfg+478i2jwYuH/nMzv6ufwM4buT5ibSfa5oLHFfO2vcpwDtHnh8FbJ0r1pnHcmnBe0ZVHTDy+Ot2+StoTu5n03S/u9sgyFluqKb/6ozDgQ+0zc430vwDu5WmEj2nJAcnOaNtDr8Z+BuaKwR3U1XfBo4H/hvwLeA44GM0H7QuDqVphZsp71bg2zRflsVufyhNQjezrnYQx1WjTxZzrLMl2TvJXyX5ZvvaTwMHZPvuhKO+C+w3a9k17Xt+D5ov9+2M9HlO8jtt14ab2vdw/1nxXTfy923AmrZbxKHA1e05mPGD87bY2KvqM8Bm4BltF4FH0rQoQrfP2eh5P3TW82+O/H04zQ/ztSPl/RXN1a0ZM+fwxh3FKi07wUlWNBS7TX0kyf3TdPO7ri37D+cqe8Ts366ZISVdyrqKxZvvNTuq84xufzjwlpFz/h2a93Cu+tUPJHlqknPTdH+8kSa5mOvczP5Nn13PWkxZs/3Xdvtvpuki/Oh2+Z/QtGh9JE23z1fOcRxd3pfZ9ah929cupn54Y/v/2XW8c9vv0X40LV3HtDHMdG19fZpuyzfTJKYwfx1v3/bved/7najbngUckuRRNEnb3sCHaFpI9wYuGPkc/XO7fMbs7/pCdbxDZ8pqy3sV2/87sB9w0zyxAsu8i2ZVXVdVL6iqQ2muYPxF5p+pqmY9vwp46qx/rNdU1dUL7PoP27Ie1CYez2KeTj9V9amqekRV3ZOmWfcBQNdbIFxD84YDP2jmPgiYK8b5tr+WpuvIzLqMPp8Jd9bzRR3rLC8HfhT48fa1M10u5nr9F2mauXeoqm6iSZp+to3/8TQ/qr8MHFhVB9B86LvEdy1wWHsOZtx7F2KH5gruc2jO0TlV9a12eZfP2eh5v5amu8CO4rqKpgVv7UhZ96iqY0a2+TGaiXpunidWaXmxi6YGbErrI28DvgIc1Zb9qvnKbs3+7bpmEWXNPiddzPea7X5L29/70fiuomlZGz3ne1XVv8+3wyR7Au8H3gAc3NY9Pszc52a7utesmBYq63s0CcTM9j8yWnBVfa6qjqe5yPtBmhY2quqWqnp5Vd2HZqjKf0ty7A5i25n3eEbnz141Ewf+J/PX8b5Fcy5+tl30qzQXJJ5Mc/H+iHZ51zrefO/9Yr83t9EMcXoOzffmjKq6k+bC/u3AMSOfof2rmTTmBy+fLzbuXse7fNZncr+qetrINj9G04VzXss6wUvyS/nhxBffpTmJ29rn3wLus0ARfwm8Lu3AySTr2j7ZC9mPppvGTUkOY4FbAqSZzGN1OybqDcBVVXVOh/1A0x/8eUke2v5D8IfAeVV1Rbt+9nHOt/2HgAcleUbbinUSzRWTJTvWHbz2duDGNIPFX73A9h+mGX+wQ0n2pelvPTNr5340zfs3AKuS/B5NH/Yu/qN97Uva9+YXaFrddjZ2aBK8J9P0t3/3yPLFfs7ObONan2aylh9ceauqa2nGefzvJPdIMzD/vklGz9tP0nQ9kaaHk6xowKa0PrIfzfCIW5M8AOgyhf3/TNMD5hia8WQzY+d2pqwu520+H6K5bdAvtHWel7B9necvgVPaWEkzgdkvdSh3D2BPmrrHliRPpRlKMZczgZOTHJZmIo/fXURZF7XH8NA08wu8ZmZFkj2S/FqS/auZufxm2s9ckqenmfgnNBe+t/LDz+OonXlfRl+7mPrhQnW8g2i6PY7W8e6g6YW2N23LXkcLvfc7U7d9N/ArNK2m7waoqm00ty54U9pbF7Tv81PmLKX5PJySZjK/9TTjb2d8FrglzaQse7WtmA9MMz5xRqc63nJJ8P4h29935gPt8kcA5yW5lWYCjZOr6hvtutcA726bOH95jnLf0r7uI0luoZm848c7xPNamoGyN9F8iM5aYPtX0GT5V9H0q//5DvsAoKo+BvxPmqsa19IMyjxhZJPXMHKc821fzWDQX6LpF/9tmjFp59N8geay2GMd9WZgL5pjP5em2Xo+7wGelnb2odahM+87TTP2PYFfa9ed05b5tXbd9+nYxaO98vILNH3Av0PzpR09tsXGTptE/zuwD83nasZiP2d/TXNsF9EMKp59zp9D86NwCU1F4n00n6sZz6S9l6A0NVYs8UPaObtTfeR3aFpRbqH5XZpropNRn6LpGvgvwBuq6iO7UNZrWPi8zWmkzvN6mjrPUTTj42fWfwD4X8AZabrpfZlmMpSFyr2FJmE4k+Y3+FfZ/jd/tr+muTD7ReDzNInOFppxVPOWVc3kdb9P05X268B2M2rStCZd0cb/Qn5YPzqqfc2tNBe0/6KqPrGD2HbmfZmx2M/eqTT3cBu9wvbokTrepTSJ7kzC8x6aut3VNPWd0Qn25rXQe78TsUMzVOcmmvFynxtZ/rs0n/lz2/fhYzQ9wObyWprjupzmc/F/RuLeSjOpzUPb9ZtpZtffH6BN8p9Gh9szZPshSNqdpJmtZxPwa3N88ccuyR8C11fVmycdy3KU5GeBZ1fVon8MpaHK2jXF8UcsbaHv+OoFVbVx4Q0lLSTJETQV0tW1iHu/7o7aVrq/rKrDF9x4yiT5v8CZVfXBSceyHCV5MbChql6x0LbeGHI30zYbn0fT/fC/0/Q57nxVpG9V9apJx7CcVdU/0EyxK00Pu1VKWqbaXklPpGmtOZhmyMcH5n3RlKqqX510DMtZVf1p123tqLL7eTTNQNfNNANZn1HNfdwkabicZEXS8hSabnnfpemieSnb3ydNWnK24O1mquo1zH8TVEkaHlvwpMFqx6D7Jd2BdgbGRyy4obSETPAkScNnfxNJkjrxJ1OSJEmSpkQvLXhr166tw4+498Ib7oI7ts43s/+uWzGG7kAr038D6tba2mv5GUOPjNrhrVuW1rYxzCa7Mit730efrrpyE9/Z/B274Gj8gl00NdXGUW/SMDh5/XCM42flwgs+v7mq1vW/p+31kmEcfsS9+bfzZt+qY2ldfsvXey1/r5V7LbzRLjpgj3v2vo9bt9zSa/mrxpCkfn9r/3PA3Lntzt73se/q/Xotv+9k+7jHPb3X8qV5jTm/S7KB5j5MB9PctPrUqnrLyPqX09woel1VbW7v7fQWmnsU3QY8t6ouHG/UWq7GUW/SMGyr/i9aT4u+6zUZQ4a316p9vtn7TnbAMXiSpOFbMfYWvC3Ay6vqwiT7ARck+WhVXdImfz8NXDmy/VNpbqZ7FM0Nqt9GtxtVS5K0pByDJ0nSLFV17UwLXFXdQjO1+WHt6jcBr6Bp2ZtxPPCeapwLHJDkkHHGLEkS2IInSVoOlr4rzdok5488P7WqTt3xrnME8DDgvCTHA1dX1UWzuvccBlw18nxTu+zaJY1akqQFmOBJkoatn5uTb66qjQvuOtkXeD/wUppum6+i6Z4pSdIgmeBJkgYuSz4YvstEdklW0yR3p1fVWUkeBBwJzLTerQcuTPJI4Gpgw8jL17fLJEkaKxM8SdLgjTvBa2fFPA24tKreCFBVXwLuNbLNFcDGdhbNs4EXJTmDZnKVm6rK7pmSpLEzwZMk6e4eCzwb+FKSL7TLXlVVH55j+w/T3CLhMprbJDyv9wglSdqBTglekuNo7u+zEnh7Vb2+16gkSRox7vucV9VnWGDkX1UdMfJ3ASf1HJaWEetOkiZlwQQvyUrgz4GfopkV7HNJzq6qS/oOTpKkACuWOMPbuqSlSduz7iRpkrrcB++RwGVV9Y2quhM4g+Z+P5Ik9S/NGLylfEg9s+4kaWK6JHhz3dtnO0lOTHJ+kvNvuGHzUsUnSZIJnpabBetO1psk9aVLgtdJVZ1aVRurauO6dWuXqlhJkqSpY71JUl+6TLLivX0kSRNkq5uWHetOkiamSwve54CjkhyZZA/gBODsfsOSJOmHkqV9SD2z7iRpYhZswauqLUleBJxDM9XvO6rq4t4jkySJZhZNW/C0nFh3kjRJne6D197Yda6bu0qS1J+Y4Gn5se4kaVKWbJIVSZIkSdJkdWrBkyRpkoIteJIkdWGCJ0kaPLtoSpLUjQmeJGnwzO8kSerGMXiSJEmSNCVswZMkDVoIK2zCkySpk14SvKpiy7a7+ij6B/ZYsUev5d9y1829lg+wIv03oN7V8/uwavV+vZYPsKW29L6PrbW1931sq20976F6Lr3f8qX5OAZPUlX/v0N91wfu3HZHr+UDvdfBYTx12D1Wrum1/FVT3M41vUcmSZoO3gdPkqTOTPAkSYNnfidJUjdOsiJJkiRJU8IWPEnSoAW7aEqS1JUJniRp8EzwJEnqxgRPkjRwMcGTJKkjEzxJ0rA5i6YkSZ05yYokSZIkTQlb8CRJg2cDniRJ3ZjgSZIGzVk0JUnqzgRPkjR4JniSJHVjgidJGrwVJniSJHXiJCuSJEmSNCVswZMkDVucZEWSpK5M8CRJgxZvdC5JUmcmeJKkwQsmeJIkdeEYPEmSJEmaErbgSZIGzy6akiR1Y4InSRo8EzxJkrqxi6YkafCSpX0svL9sSPKJJJckuTjJye3yP0nylSRfTPKBJAeMvOaUJJcl+WqSp/R2MiRJmocJniRp0JqkLEv66GAL8PKqOhp4FHBSkqOBjwIPrKoHA18DTmlizNHACcAxwHHAXyRZ2cPpkCRpXiZ4kiTNUlXXVtWF7d+3AJcCh1XVR6pqS7vZucD69u/jgTOq6o6quhy4DHjkuOOWJMkxeJKkgevlPnhrk5w/8vzUqjp1h3tPjgAeBpw3a9VvAH/b/n0YTcI3Y1O7TJKkseolwSuKLdvu6qPoH1i9YnWv5X9/6/d7LR8gd93c+z769vWbvtb7Ps654jO972PtXvv3vo9j7/34Xstfv8+9ey1fmqQeErzNVbWxw373Bd4PvLSqbh5Z/j9ounGevtSBSdqxbbW1933ctuXWXsv/z5v7rzd97cav976Pg9Yc1Ps+HnTQg3ot/8A91/Va/iTZgidJGrxJTKKZZDVNcnd6VZ01svy5wNOBY6uq2sVXAxtGXr6+XSZJ0lg5Bk+SNHjjnmQlzUanAZdW1RtHlh8HvAL4uaq6beQlZwMnJNkzyZHAUcBnl/QkSJLUgS14kiTd3WOBZwNfSvKFdtmrgLcCewIfbRPFc6vqhVV1cZIzgUtoum6eVDWG/mSSJM1igidJGrSZ2ySMU1V9BtjRTj88z2teB7yut6AkSerABE+SNHjjTvAkSVquTPAkSYNnfidJUjcmeJKkgevlPniSJE0lZ9GUJEmSpClhC54kafBswZMkqZsFW/CSbEjyiSSXJLk4ycnjCEySJPjhLJrjvA+etCusO0mapC4teFuAl1fVhUn2Ay5I8tGquqTn2CRJApxkRcuOdSdJE7NggldV1wLXtn/fkuRS4DCam7lKktQ7W920nFh3kjRJi5pkJckRwMOA83qJRpIkaYpYd5I0bp0nWUmyL/B+4KVVdfMO1p8InAiwfsP6JQtQkiT7aGo5mq/uNFpv2nDvDROITtK06tSCl2Q1zT9Qp1fVWTvapqpOraqNVbVx7bqDljJGSdJubWknWLG7p8ZhobrTaL1p3bq14w9Q0tRasAUvzS/hacClVfXG/kOSJGlEbMDT8mLdSdIkdWnBeyzwbOBJSb7QPp7Wc1ySJEnLlXUnSRPTZRbNzwBeO5UkTURwFk0tL9adJE1S50lWJEmaFBM8SZK6McGTJA2eCZ4kSd2Y4EmSBs/8TpKkbhZ1o3NJkiRJ0nDZgidJGjbvXSdJUmcmeJKkQXMWTUmSulu2Cd622tZr+SuzstfyAfZauVfv+7jh+9f3Wv6pF32o1/IBPvDOj/a+j3sec0jv+1h3woG9lr9+nw29li9NkgmeNGxV1fs+ttSW3vdx3e1X91r+X170vl7LB/j7T53f+z7ud59De9/Hq5/8q72W/+iDH9dr+ZO0bBM8SdLuwwRPkqRunGRFkiRJkqaELXiSpGGLt0mQJKkrEzxJ0uDZRVOSpG5M8CRJgxa8TYIkSV2Z4EmSBs8ET5KkbpxkRZIkSZKmhC14kqTBswFPkqRuTPAkScMWu2hKktSVCZ4kafhM8CRJ6sQxeJIkSZI0JWzBkyQNnl00JUnqxhY8SdKgBViRpX0suM9kQ5JPJLkkycVJTm6X3zPJR5N8vf3/ge3yJHlrksuSfDHJw3s9KZIkzcEET5I0cM2Nzpfy0cEW4OVVdTTwKOCkJEcDrwT+paqOAv6lfQ7wVOCo9nEi8LalPguSJHVhF01J0rAFVoy5i2ZVXQtc2/59S5JLgcOA44EntJu9G/gk8Lvt8vdUVQHnJjkgySFtOZIkjY0teJIkzSPJEcDDgPOAg0eStuuAg9u/DwOuGnnZpnaZJEljZQueJGnQQi+TrKxNcv7I81Or6tS77TvZF3g/8NKqunk0jqqqJLXUgUmStCtM8CRJg9dDd5PNVbVxvg2SrKZJ7k6vqrPaxd+a6XqZ5BDg+nb51cCGkZevb5dJkjRWdtGUJA3eimRJHwtJ01R3GnBpVb1xZNXZwK+3f/868Pcjy5/Tzqb5KOAmx99JkibBFjxJ0qD11EVzIY8Fng18KckX2mWvAl4PnJnk+cA3gV9u130YeBpwGXAb8LyxRitJUssET5KkWarqMzS55Y4cu4PtCzip16AkSerABE+SNHDdulVKkiQTPEnS0GUiXTQlSVqWTPAkSYMWnBFMkqSuekvwkn5/jrfW1l7L33Plml7Lb/axZ+/7uPWu7/Va/hXX3tBr+QDcfFfvu/jOt2/ufR9btvX7md1W23otX5oku2hKKvq/7eStd93aa/mXXn1dr+UD3PTZTb3v4ytbtvS+j+sfs7nX8rdW/8cwKV4UlSRJkqQpYRdNSdLgOQZPkqRuTPAkSYMW7KIpSVJXJniSpMEzvZMkqRvH4EmSJEnSlLAFT5I0cN7oXJKkrkzwJEmDljgGT5KkrkzwJEmD5yyakiR10znBS7ISOB+4uqqe3l9IkiRtzxY8LUfWnSRNwmImWTkZuLSvQCRJkqaMdSdJY9cpwUuyHvgZ4O39hiNJ0vbSw0Pqm3UnSZPStYvmm4FXAPv1F4okSTtmF00tQ2/GupOkCViwBS/J04Hrq+qCBbY7Mcn5Sc7/9uZvL1mAkqTdXXObhKV8SH3qUncarTfdcMPmMUYnadp16aL5WODnklwBnAE8KcnfzN6oqk6tqo1VtfGgtQctcZiSpN1V0syiuZQPqWcL1p1G603r1q2dRIySptSCCV5VnVJV66vqCOAE4ONV9azeI5MkSVqGrDtJmiTvgydJGjy7VUqS1M2iEryq+iTwyV4ikSRpDqZ3Wq6sO0kaN1vwJEmDFmzBkySpKxM8SdLgmeBJktRNpxudS5IkSZKGzxY8SdLAeWsDSZK6MsGTJA1asLuJJEldmeBJkoatvdG5JElaWE8JXkj6vd66z6p9ey1/z5Vrei0fYFtt7X0fVdVr+fc99F69lg9w7ePv0/s+jrr/ht73cfg9+t3H1p4/T0W/nyVJkuazIit738faNet6Lf/pD3xwr+UDbP2Vbb3v435jqP8ddcD9ei1/9Yo9ei1/kmzBkyQNnrNoSpLUjQmeJGnQvA+eJEndmeBJkgbPMXiSJHVjgidJGriwAhM8SZK6cOZpSZIkSZoStuBJkgbPLpqSJHVjC54kadCSZpKVpXwsvM+8I8n1Sb48suyhSc5N8oUk5yd5ZLs8Sd6a5LIkX0zy8B5PhyRJ8zLBkyQNXpb4vw7eBRw3a9kfA6+tqocCv9c+B3gqcFT7OBF421IcsyRJO8MumpKkwRt3F82q+nSSI2YvBu7R/r0/cE379/HAe6qqgHOTHJDkkKq6djzRSpL0QyZ4kiR181LgnCRvoOkB85h2+WHAVSPbbWqXmeBJksbOLpqSpEELSzv+rh2Dt7YdRzfzOLFDKL8NvKyqNgAvA07r87glSdoZtuBJkgYvS389cnNVbVzka34dOLn9+++At7d/Xw1sGNlufbtMkqSxswVPkjR4455Fcw7XAD/Z/v0k4Ovt32cDz2ln03wUcJPj7yRJk2ILniRp8MY9yUqS9wJPoOnKuQl4NfAC4C1JVgHfp5kxE+DDwNOAy4DbgOeNNVhJkkaY4EmSNEtVPXOOVf9lB9sWcFK/EUmS1I0JniRp0BZx7zpJknZ7JniSpGELuzJuTpKk3YoJniRp8MY9Bk+SpOXKBE+SNGgBVjjpsyRJnfiLKUmSJElTwhY8SdLAxS6akiR1ZIInSRo8EzxJkroxwZMkDd4Kb5MgSVInjsGTJEmSpCmxbFvw9l19j17L//7W23stH+CWu27qfR8H7Ll/r+X/4gMe12v5AI9Zf1Tv+7j/gfftfR+H73d4r+XfetctvZa/bdu2XsuX5hLsoikN3Ti+o6vGUG1du+ZevZb/K/f/+V7LB3jShsf2vo99Vu3T+z4O3Wd9r+XvsWJNr+VP0rJN8CRJuwlvdC5JUmcmeJKkgQtxDJ4kSZ2Y4EmSBi3AijhkXJKkLvzFlCRJkqQpYQueJGnwnGRFkqRuTPAkSYPnGDxJkroxwZMkDVycRVOSpI5M8CRJgxZswZMkqatOk6wkOSDJ+5J8JcmlSR7dd2CSJEnLlXUnSZPStQXvLcA/V9UvJtkD2LvHmCRJ2o5dNLUMWXeSNBELJnhJ9gd+AnguQFXdCdzZb1iSJLUC8T54WkasO0mapC6/mEcCNwDvTPL5JG9Psk/PcUmS1MqS/yf1zLqTpInpkuCtAh4OvK2qHgZ8D3jl7I2SnJjk/CTnf3vz5iUOU5K0uwpNF82lfEg9W7DuNFpvuuEG602Slk6XBG8TsKmqzmufv4/mH63tVNWpVbWxqjYetHbtUsYoSZK0nCxYdxqtN61bZ71J0tJZMMGrquuAq5L8aLvoWOCSXqOSJGlEkiV9SH2y7iRpkrrOovli4PR2FqhvAM/rLyRJkra3wnFzWn6sO0maiE4JXlV9AdjYbyiSJN1dwFY3LTvWnSRNivNOS5IkSdKU6NpFU5KkCYn3wZMkqSMTPEnS4DkGT5KkbkzwJEmDljgGT5KkrkzwJEmDF1vwJEnqxEENkiRJkjQlbMGTJA2cNyeXJKmrXhK80P+A+FUrVvdafm29rdfyAe7adlfv+1i7Zl2v5a9bc69eywe4c+2dve/jHqv3730f29jWa/k33P6tXsuH6rl8aW7jnmQlyTuApwPXV9UDR5a/GDgJ2Ap8qKpe0S4/BXh+u/wlVXXOWAOWdgMrxjCb7pqVe/da/iF7b+i1fICD1xzS+z7GMbPxqvTbDrUiK3stf5JswZMkDVpzo/Oxjyh4F/BnwHt+EEfyROB44CFVdUeSe7XLjwZOAI4BDgU+luT+VbV13EFLkuQYPEnSwGXJ/1tIVX0a+M6sxb8NvL6q7mi3ub5dfjxwRlXdUVWXA5cBj1y645ckqTsTPEnS7mhtkvNHHid2eM39gccnOS/Jp5I8ol1+GHDVyHab2mWSJI2dXTQlSYPXwyQrm6tq4yJfswq4J/Ao4BHAmUnus9SBSZK0K0zwJEmDN5D74G0CzqqqAj6bZBuwFrgaGJ05YX27TJKksbOLpiRp8JIs6WMnfRB4YhvP/YE9gM3A2cAJSfZMciRwFPDZXT9qSZIWzxY8SdKgjePWO3fbZ/Je4Ak0Y/U2Aa8G3gG8I8mXgTuBX29b8y5OciZwCbAFOMkZNCVJk2KCJ0nSLFX1zDlWPWuO7V8HvK6/iCRJ6sYET5I0bLvWrVKSpN2KCZ4kafDikHFJkjoxwZMkDZ4teJIkdeMlUUmSJEmaErbgSZIGLQzmPniSJA2eCZ4kaeDCCrtoSpLUiQmeJGnwbMGTJKkbEzxJ0uA5yYokSd04yYokSZIkTQlb8CRJg9ZMsuL1SEmSujDBkyQNXOyiKUlSRyZ4kqTBW+EkK5IkdWKCJ0katjjJiiRJXTmoQZIkSZKmhC14kqRBayZZsQVPkqQuTPAkSYNnF01JkrrpMcHr98f4+tuv6bX827bc1mv5AAftubb3fazIyl7Lv3PbHb2WD7Bm1d6972NV+r/Wcde2O3st/6A1/X6eVq7wepAmJd4mQdJYrEi//9asZnWv5QOwcgz7GAMv7O08a2ySpMFb4Q+9JEmdeElUkiRJkqaELXiSpEFzkhVJkrozwZMkDZ5jMSRJ6sYET5I0cLEFT5KkjhyDJ0mSJElTwhY8SdLg2UVTkqRuTPAkSYMWYIUdTiRJ6qTTL2aSlyW5OMmXk7w3yZq+A5MkCYA0LXhL+ZD6Zt1J0qQsmOAlOQx4CbCxqh4IrARO6DswSZIaWfL/pD5Zd5I0SV37vKwC9kqyCtgbuKa/kCRJkpY9606SJmLBBK+qrgbeAFwJXAvcVFUfmb1dkhOTnJ/k/M2bv730kUqSdlt20dRy0qXuNFpvuuGGzZMIU9KU6tJF80DgeOBI4FBgnyTPmr1dVZ1aVRurauPatQctfaSSpN2WXTS1nHSpO43Wm9atWzuJMCVNqS5dNJ8MXF5VN1TVXcBZwGP6DUuSpEYwwdOyY91J0sR0uU3ClcCjkuwN3A4cC5zfa1SSJI2yW6WWF+tOkiamyxi884D3ARcCX2pfc2rPcUmSJC1L1p0kTVKnWTSr6tVV9YCqemBVPbuq7ug7MEmSGkvdQXPh1sAk70hyfZIv72Ddy5NUkrXt8yR5a5LLknwxycN7OAlaZqw7SZqUrrdJkCRpYiYwi+a7gON2EMcG4KdpuuDNeCpwVPs4EXjbLh+wJEk7yQRPkjR4427Bq6pPA9/Zwao3Aa8AamTZ8cB7qnEucECSQ5biuCVJWqwuk6xIkjRRQ5j5MsnxwNVVddGsVsDDgKtGnm9ql107xvAkSQJM8CRJu6e1SUZnNTy1quacBKOdDfFVNN0zJUkaLBM8SdKgBbqOm1uMzVW1cRHb35fmptUzrXfrgQuTPBK4Gtgwsu36dpkkSWNngidJGrjJ35y8qr4E3GvmeZIrgI1VtTnJ2cCLkpwB/DhwU1XZPVOSNBG9JHjbKO7c9v0+iv6BrbW11/JXr1jda/kAK1f0n1+vWrFHr+WvyMpey2/20f9cQFtrS+/7WN3ze7GKfj+z43gfpLmMO8FL8l7gCTRdOTcBr66q0+bY/MPA04DLgNuA540lSEnLTg+9EaS7sQVPkjRsGX+lqKqeucD6I0b+LuCkvmOSJKkLL8lLkiRJ0pSwBU+SNHiTHoMnSdJyYYInSRq0nmbRlCRpKpngSZIGbvKzaEqStFw4Bk+SJEmSpoQteJKkwbMFT5KkbkzwJEmD5xg8SZK6McGTJA2eLXiSJHVjgidJGrRggidJUldOsiJJkiRJU8IWPEnSwMUxeJIkdWSCJ0laBkzwJEnqwgRPkjRscRZNSZK6MsGTJA2ek6xIktSNk6xIkiRJ0pSwBU+SNHi24EmS1I0JniRp0OIsmpIkdWaCJ0kaPFvwJEnqxgRPkjR4JniSJHXjJCuSJEmSNCVswZMkDZ5j8CRJ6sYET5I0eHbRlCSpGxM8SdKgOYumJEnd9ZLgXXThRZsPWnPwNxfxkrXA5j5iGSOPYTim4TiGeAyHTzoASZpGF17w+c17rdpnMfUmGObvxGJ5DMMwDccAwzyOidSdeknwqmrdYrZPcn5VbewjlnHxGIZjGo5jGo5BWkp20dQ0W2y9Cabjd8JjGIZpOAaYnuNYCnbRlCQtAyZ4kiR1YYInSRo80ztJkroZSoJ36qQDWAIew3BMw3FMwzFIS8ZJVqS7mYbfCY9hGKbhGGB6jmOXpaomHYMkSXN6yMMfXOf824eWtMxD9r73BY7VkCRNo6G04EmSNA9b8CRJ6sIET5I0eKZ3kiR1s2KSO09yXJKvJrksySsnGcvOSrIhySeSXJLk4iQnTzqmnZVkZZLPJ/nHSceyM5IckOR9Sb6S5NIkj550TIuV5GXt5+jLSd6bZM2kY5ImLz08pOXJutNwLPd6E1h3mlYTS/CSrAT+HHgqcDTwzCRHTyqeXbAFeHlVHQ08CjhpmR4HwMnApZMOYhe8BfjnqnoA8BCW2bEkOQx4CbCxqh4IrAROmGxU0uQlzSQrS/mQliPrToOz3OtNYN1pKk2yBe+RwGVV9Y2quhM4Azh+gvHslKq6tqoubP++heaLcdhko1q8JOuBnwHePulYdkaS/YGfAE4DqKo7q+rGiQa1c1YBeyVZBewNXDPheCRJw2HdaSCWe70JrDtNs0kmeIcBV40838Qy+3LPluQI4GHAeRMOZWe8GXgFsG3CceysI4EbgHe23SXenmSfSQe1GFV1NfAG4ErgWuCmqvrIZKOSdk9J3pHk+iRfHln2J203pi8m+UCSA0bWndJ2mftqkqdMJGjtDqw7DcebWd71JrDuNLUmOgZvmiTZF3g/8NKqunnS8SxGkqcD11fVBZOOZResAh4OvK2qHgZ8D1hWYxOSHEhzJfZI4FBgnyTPmmxU0jBkif/r4F3AcbOWfRR4YFU9GPgacApA27XsBOCY9jV/0XalkzSP5Vp3mpJ6E1h3mlqTTPCuBjaMPF/fLlt2kqym+Qfq9Ko6a9Lx7ITHAj+X5Aqa7h5PSvI3kw1p0TYBm6pq5grg+2j+0VpOngxcXlU3VNVdwFnAYyYckzQI407wqurTwHdmLftIVW1pn55L87sFTeXijKq6o6ouBy6j6UonLTXrTsMwDfUmsO40tSaZ4H0OOCrJkUn2oLn6efYE49kpaUbrnwZcWlVvnHQ8O6OqTqmq9VV1BM378PGqWlZXP6rqOuCqJD/aLjoWuGSCIe2MK4FHJdm7/VwdyzIb7CztRn4D+Kf276nrNqfBsu40ANNQbwLrTtNsYvfBq6otSV4EnEMz4807quriScWzCx4LPBv4UpIvtMteVVUfnlxIu60XA6e3P3rfAJ434XgWparOS/I+4EKaGcY+D5w62aikqbU2yfkjz0+tqk7ftyT/g+Y7enovkUlzsO6kHlh3mkKpqknHIEnSnB76Xx5S//LvSztmfu2aH7mgqjbOt007+cM/tlNvzyx7LvBbwLFVdVu77BSAqvqj9vk5wGuq6j+WNGhJkjpwkhVJkjpIchzNrHk/N5Pctc4GTkiyZ5IjgaOAz04iRkmSJtZFU5KkbjrPfLl0e0zeCzyBpivnJuDVNLNm7gl8tL1Z+rlV9cKqujjJmTRjV7YAJ1XV1rEGLElSywRPkqRZquqZO1h82jzbvw54XX8RSZLUjQmeJGkZGG8LniRJy5UJniRp0ILpnSRJXZngSZIGrx3zJkmSFmCCJ0laBkzwJEnqwtskSJIkSdKUsAVPkjR4tt9JktSNCZ4kaRkwxZMkqQsTPEnSwMVJViRJ6sgxeJIkSZI0JUzwJEmSJGlK2EVTkjRozY3O7aIpSVIXJniSpGXABE+SpC5M8CRJg2d6J0lSNyZ4kqTBcxZNSZK6cZIVSZIkSZoStuBJkgYu2ElTkqRuTPAkSYNneidJUjcmeJKkZcAUT5KkLhyDJ0mSJElTwhY8SdKwxVk0JUnqyhY8SZIkSZoStuBJkgatmUPTFjxJkrpIVU06BkmS5pTkn4G1S1zs5qo6bonLlCRp4kzwJEmSJGlKOAZPkiRJkqaECZ4kSZIkTQkTPEmSJEmaEiZ4kiRJkjQlTPAkSZIkaUr8/1486DHlti5RAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "recorteG9 = trim(imagen[:,:,1], 545, 360, 10, 10)\n", + "poptG9, pcovG9 = curve_fit(gauss2d, xdata9, recorteG9.ravel(), p0=[1,0,2,1,1])\n", + "estrellaG9=gauss2d(xdata9, poptG9[0], poptG9[1],poptG9[2], poptG9[3], poptG9[4])\n", + "FWHMG9=FWHMG.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptG9[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 9 fotografÃa (Banda Verde)\")\n", + "plt.imshow(recorteG9, plt.get_cmap('Greens'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 9 a partir de la gaussiana (Banda Verde)\")\n", + "plt.imshow(estrellaG9.reshape(10, 10), plt.get_cmap('Greens'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 10 (Verde)" + ] + }, + { + "cell_type": "code", + "execution_count": 421, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3wAAAFSCAYAAACpLd1NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAyMklEQVR4nO3debhcVZnv8d/vJIQEiERMVEgCQUUUEAUjoNi2igMoGq/XRhwY1CuNjWPTjYJ9xaGxvbbtQNtqR0VQkUFAG1tawFZUVMAQQYWoHUFIIEjCLFOG894/1jqkclLnVJ2d2lWr6nw/56nnObVr19pr17Tfd69hOyIEAAAAABg8Q72uAAAAAACgHiR8AAAAADCgSPgAAAAAYECR8AEAAADAgCLhAwAAAIABRcIHAAAAAANqaq8rAADAeDx7emjtcGcLvW/dxRFxcGcLBQCgPCR8AICyrR2W9n9sZ8v8/i2zO1sgAABlIuEDAJTP7nUNAADoSyR8AICyWYw4BwCgIhI+AED5aOEDAKASEj4AQPnI9wAAqIROMgAAAAAwoGjhAwAUznTpBACgIhI+AEDZmLQFAIDKSPgAAOWjhQ8AgEpI+AAA5SPfAwCgEjrJAAAAAMCAooUPAFA2SxqiiQ8AgCpI+AAA5SPfAwCgEhI+AED5mLQFAIBKSPgAAOUj3wMAoBImbQEAAACAAUULHwCgbEzaAgBAZSR8AIDyke8BAFAJCR8AoHBm0hYAACpiDF9me4HtsD0137/M9v8poF4H2v4f23+2/ape16cV2/9oe43t2/L9+bZvtL1rhbLm2P6t7Rmdr2nLbW/yeSiJ7dNt/2Ob615le8+66wQA6JxSY5LS2P4v20dtwfOfb3tlxee2fSwume032L6kR9vew/YSu/tn9Lbkva9bu99321vnOHlOq3WLS/hs/9H2gznBGbl9to3nhe0ndaOOrdj+iO1f215v+4NNHn+97Zts32/727Z3GKe4D0v6bERsFxHfbrHdD9r++pbVvjrbO0s6XtIeEfH4vPiLkt4eETdWKPJ9kk6PiAdz+ZfZfih/Ju6x/WPbT+tM7TvD9gH5fd2uyWO/tP32LlfpE0qfIaB/jYzh6+QNaAMxSTmaxTgRcUhEnNGrOg2CiDgzIl7So81/RNInIiKkzb5vd9n+ru35PapbU7YPz/X0qOVTbd9u+9Bu1SUiHpZ0mlK8PK7iEr7sFTnBGbltcZDc5Zaa5ZJOkPTdJvXYU9K/SzpC0uMkPSDpc+OUtYuk62qo44S0+frtLOmOiLg9P2dnSV+NiM1ehza2t7WkoySNTmDfHhHbSdpB0mWSvjbRsusUEVdIWinpNY3Lbe8laQ9JZ02kPNtTtrBKF0p6ge3Ht1wTKJk7fGu1udQ74Ye2r7d9ne13jXr8+BzUz873bftU28tt/8r2vh3Ya5SBmKTHqrxeJfbQwUa2d5T0AknfHvXQK3Kct6OkP0n61y5XrZVvS5ol6S9HLT9YUkj6XrsF5ePGluZi35B0VI6bx1RqwteU7SfZ/lFu3Vlj+5y8/Md5lWvzWYHXjjTV2n6vU/fCr9gesv0+23+wfYftc9s5k2X7ibZ/kJ+zxvaZtmeNtX5EnBER/yXpviYPv0HSdyLixxHxZ0n/V9Krbc9sst0/SHqCpO/k/dra9k62L7R9Zw4s3prXPVjSSZJem9e9Ni9vun5+bIbtM/JZlGW2T3BD83Y+g/Fe27+SdH8+ezHy+t2XA6H/ldd9kaRLJe2Ut3+60ufrTG/skvKmvJ37bN9g+6/Hedn3l3R3RDRtbo+IDZLOVkqiRuq7n+2f277b9irbn7U9reHxsH2sUxfZu23/28gZGttTbH8iv783SHr5qPdiInU/Q9KRo5YdKemiiLjD9lNsX5rfk9/ZPqxhO6fb/rzti2zfr5Ss7WN7ad72OZKmj6rbobavyfv0M9t7N7xOD0m6WtJLx6kvUD67s7fW1ks6PiL2kHSApONs75Gq4vmSXiLp5ob1D5G0W74dI+nzndx9lGeyxSR525+xvcL2vbavtv0X49TzdNtfyMe7+/JrtUs7ZTm15p1n++u275V0rJrHOI90fbN9tO2f2v6U7TskfbBJnWbket1l+3pJzxr1+E62z7e92mk4yjvH2r9Rz3u07f/Mz7sr/z9vnPX3der1c5/tb9o+x7l7aKuynGKzF416rb6e/5+eX7M7ckzwC9uPa3h9bsjbvNH2GxqWXz6B9+Vc21/N5Vxne2HD401jxDG8WNLSHKdsJi8/T5vGeS/Pr9u9uY4fbHhsgVOcd5Ttm/N34/0Nj7d679uqe67XuWoe530jItY79fb6WX4PrrX9/IbtXGb7FNs/VTrB8gTbL3bqmnmPUw+C0a2Hb3aKQe+yfXHj9yjHyXcpHafG1FcJn1LT7yWSHi1pnnLWHxHPy48/PZ99Oyfff7xSS9AuSgfgd0h6lVJWvpPSC/RvbWzXkv4pP+epkuaryQ9Jm/aUdO3InYj4g6S1kp48esWIeKJSQDFydvFhpSRnZa7LayR91PYLI+J7kj4q6Zy87tNzMU3Xz4+dLGmBUlL5YklvbFLf1yklP7MiYr2kP0j6C0nbS/qQpK/b3jEivq8U8Nyat390k7Jul3SopEdJepOkT3nss+BPk/S7MR6TUyL3BklXNCzeIOk9kmZLerakgyT9zainHqr0Jd9b0mHamAi9NT+2j6SFGtVCN8G6f03S85y7ITidvXm9pDNsb6uUGH9D0mMlHS7pc86BZPZ6SadIminpKqWzSV9T+ix/U9L/bngd9lFqzv9rSY9ROlN7oTc907NM0tMF9LMut/BFxKqIWJr/v0/pezQ3P/wppRaTaHjKIqUeDZFb+mc5ncHG4JpUMUn2C0nPUNqPb0j6pu3pY6wrpeP0R5SOy9dIOnMCZS1SCvhnSfqymsc4o+0v6Qal1spTmjx+sqQn5ttLlXoSSXrkWP0dpddjrlIM8W7b7ZwwHZL0FaX3dmdJD0pq2vU3xy/fknS60r6fJakxuWi7rCaOUorP5ivFBMdKejDHHqdKOiQiZkp6jtL70Uyr9+WVSrHlLKVeRI11axojjrGdVnHeNpJeq03jvPuVEqtZSrHp27z5/BbPlbS70vv3AdtPzcvHfO8r1P0MSa9xnmPC9vaSXqEU581Vak3/R6XX8O8kne9Nx9kdofQbMFPSPZIukPQPSt+TP0g6sOF1WKR0suPVkuZI+ok27y3WMs4rNeH7ds6KR24jrVLrlL4AO0XEQxFx+ThlSNKwpJMj4uE8DuxYSe+PiJU5efqg0hs2brN/RCyPiEtzOaslfVKbN+W2azulN7fRPUpv+rhyAnGgpPfm/b9G0pe0+VmGdtc/TNJHI+KufIbg1CbFnBoRK0bG0UXENyPi1ogYzgex/5G0X6u65+d+NyL+kAOiHykdKMc6OzhLzc9Gnmr77vzY25W+lCPlXx0RV0TE+oj4o1LyM/p9+lhE3B0RN0v6odKPmpRei0/nfb1T6WBaqe4RsUKpu+kRedFBkrZW+gE4VNIfI+IruZ6/lHS+pL9qKOI/IuKnETGc67dVrtu6iDhP6cd4xDGS/j0iroyIDXksw8Pa9EzPfUqvJ4AKbC9QOhl0ZT743hIR145aba6kFQ33V2pjgoj+Rkyycdtfj4g78vHrX5SObbuPU/53c+vhw5LeL+nZIydD2yjr5xHx7RxvPNjm/twaEf+ay2z2nMMknRIRd+ZjdWPc8yxJcyLiwxGxNiJuUJqH4PBWG837cX5EPJBPEJ2isd+TA5RmyT81H9cvUDq5W6Ws0dYpJXpPyjHB1RFxb35sWNJetmfkE1pNhwu18b5cHhEXRepp9TU1JBoTjBFnqXmc9+0c592j1Bjxzw3lXxYRv87l/0op8Rn92nwoIh7Mv9HXNtRvvPd+QnWPiJ8qdTcdSdQPk/T7HGe/UalH10W5rEslLZH0soYiTo+I6yI1pBwi6bqIOC8i1kn6tKTbGtY9VtI/RcSyvP5HJT2jsZVPbcR5pSZ8r4qIWQ23L+blJyid2boqNyO/uUU5q2PTpuJdJH1r5EdbKSPeoHQmaEy2H2f7bNu3OHUt+LpSFl7Fn5VaiRo9Ss0/9KPtJOnO/AMw4iaNHVS0Wn8nbRqgNP7fdJntI72x++DdkvZSm6+F7UNsX+HUlfFupQ//WM+9S80POO+MiFmSZiglT+c5d2G0/WSnrg+35ffpo03Kb/wSPaB0sJM2fy1u2oK6S+nsz0jCd4Sks/MXeRdJ+zcGD0pnQBvH2DXWYyel4LKxJaGxbrtIOn5UefPz80bMlHT3OHUFymbVMWnLbKfZ4UZuxzTddJqA6XxJ71bq5nmSpA90ac9RBmKSjdv+u9y17J5c5+1bbPuR41mkLqN3Kh+f2iirWUzSSqvnjHes30VpWErj8fQktXg/pNQaZfvfnSa/uVfSj5Va+ZuNw292XH+kThMsa7SvSbpY0tm2b7X9cdtbRcT9Sq1lx0pa5TQZylPG2JdW78voOGq6Nw7dmUiMOFac96oc501XOrH/I+d5CGzv7zS2erXte/L+dCrOm2h8+1VtbEA5It+X0ufor0Z9jp6rNCZxxOg4r/F7EqMe30XSZxrKulPpd6cx9m8Z55Wa8DUVEbdFxFsjYielLmyf8/izYMWo+yuUmrMbf7inR8QtLTb90VzW0yLiUUrZe1uDQJq4Tg1nQ2w/Qensye/beO6tknbwpn3rd5Y0Uv/R+9tq/VVK3VBGNJsJ6ZEy89mELyp9AR+Tv5C/URuvhVMXw/OVZo18XH7uReM891cau0uJ8lmTnygNRh+ZXerzkn4rabf8Pp3UTt2yVdp0/3fegrpLqXl+nu0XKDXDn5GXr5D0o1Gfwe0i4m2NuzeqXnPtTQYd7dzw/wqlM1aN5W0TEY3N/U9VQ5cdoC91vkvnmohY2HBbvNkm7a2Uvvtn5rPwT5S0q9LYrD8q/X4uzcHILdr0N2SeNv7WYgBNtpjEaSzXCUqtGY/Ox8J7Wmz7ke9EPnmyg6Rb2yxr9Os1+n4zrdYZ81iv9H7cOOr9mBkRL1Nrxyu1gu2f35ORbr3NXptmx/XGOrUq635J2zSs/8gJ49xi+KFIY4+fo3Ri/Mj82MUR8WKlxOO3SvHcJiq+xyPPnWiM2CrO25B/dzcoJUxS6mJ6oaT5EbG9pC+0U7dsvDivSnz7NUkH2X62UqvtSHflFZK+NupztG1EfKxx98aqV/5cNNZzhaS/HlXejIj4WcM6LeO8vkr4bP+VNw5cvUvpBRvO9/+kNBZtPF+QdEp+Y+V0nbdFbWx6ptJZsHuc+ub+fYt6buXU33lI0lSnQbQjZ2bOlPQK23/h1Kf6w5IuGNUK11Rugv6ZpH/KZe4t6S3aOJPlnyQtcJ7xp431z5V0otMA4blKH/TxbKv0mq/O+/kmpTMg7ZimdBBZLWm97UO0MVFr5iqlM1pjdonKX7I9tHEW05mS7pX053zm6m1jPbeJcyW90/Y824/WplPcTrTuymfTzlPqh39TRCzJD/2npCfbPiJ/Tray/Sxv7GM+2s+VWhXemdd9tTbtYvBFScfms162va3ToOaZUhrALemZSuMGgf7V5Ulb8kH3y5KWRcQnJSl3JXpsRCyIiAVK3Tb3jYjblIKQI/P38ABJ90TEqtpeD/TcJIxJZiodj1bncj6gzVsHR3uZ7ec6jVv7iKQrcmxSpaxNYpyKGuOeeUrjKEdcJek+p4l1ZjhN5raX7Wc1L2oTM5XG2t3tNPHOyeOs+3OlJObtTpPhLdKmx/VWZV0j6fD8vm4y54DtF9h+Wn5/71Xq4jns1Cq8KL/HDyt9foa1uSrvy4iJxoiXStrXY4wBzb+li5TGyC5rqN+dEfGQ7f2U5jxo13jv/YTj20hDhy5X6lZ6aT4OSCnGfoXtl+bP0HTbz/fYk/h8V9Ketl/t1FL6Tm3a6+sLud575rptb/uRYUD5N2AHbTrWcTOlJnwjs1KO3L6Vlz9LaQzFn5UOru+K1MdaSn3fz3Bq8jysSZmS9Jn8vEts36f04uzfRn0+JGlfpbMc31VqvRnPF5W+rK9T6rP+oHL3vkh9po9V+pG9XenDO3pikfG8TmmilVuVBv2eHGnCFClN6CFJd9he2sb6H1YKWG6U9H2lBOXhsTYcEddL+helH6s/KQ24/Wk7lc4Hj3cqfeHuUvqSXjjO+muVBjSPnkjmsyOfC6WzK/8QafYxKQ2Mfb1SV5QvSjpH7fuiUjeIayUtVcN7PNG6NzhDqSl+pJl/pKyXKI0JuFWp68H/U0ooN5Nfh1dLOlqpGf+1o+q2RGnCmc/mui3P6454haTLIuLWNuoLlGuow7fWDlT63X6hUzefa2yPd6b/IqXJIpYr/Z5M5HcdZSMmSS5WmnL+90rd4R5S6y6U31BKWO5UOvk4ckyvUlazGGeiPpS3d6PSWPxHLu0UaUzaoUpj52+UtEZp3oPt2yj300pDTdYovY9jTs3fcFx/i1I3vDcqnQweib9alfV/lXob3JX35xsNjz1eKZa7VylJ+lHexyFJf6sUd9ypNO6t2UnxKu/LyH5NKEaMiD9J+oHS5DyNvpO/U/cqjV88KjaON/wbSR/O35cPKMVl7Rrvva8a3zaL81bkfTpJKYFcoXRSpumRJyLWKM3j8DFJdyjN9PzThse/pRQnnu3Uxfc3SuP+Rrxe0hmRxsmOyZt2IcZkZvttkg6PiKqDvzvKaUajn0jaJ9ofsI0Gtq+U9JaI+E2v6wJU5dnTQ4sWdLbQ0353dUQsbL0igCqcLs+0MiL+odd1KV0+Vn8hIr7S67p0k9MM5WdI2i9ISCbMacjRtZKeF/ka2GPhopSTmNN0s09QOqOxm1K/8Xan/q1dpNnHmg4qRnsiop2zxUDZ2r92HgAUz/ZfKl2SYI3SxG17awIX7B4UuWWtnS6zaCK36rUVJ5PwTW7TlC5dsKtSt4KzJX2ulxUCgKbI9wAMjt2VuiNuq9QV/DWM+UWdSPgmsYi4Se1PugIAvUMLH9BXIuLoXtehVHlW4M1mBgbqQsIHAChfqVOMAQBQOA6hAAAAADCgamnhmz17duyyYOfWK26B4Wh2+ZDOcRcGjERb1xAtfxt168Z70Q11vxdDmtJ6pS1w8003a82aNYPxZqC/WHTpxEDrRtwEoPuWXv3LNRExp9f1qCXh22XBzvrplZfXUfQjHt7wUK3lD23RdT3bU3fSKknrhtfWvo26bTU0rddV6Ii1w+NeImWLbTt1Zq3lP3f/59VaPjAu8j0MsG7ETQC6b8bUbW/qdR0kxvABAPrBEBkfAABVMIYPAAAAAAYULXwAgPIxhg8AgEpI+AAAZbMYwwcAQEUkfACAwlnucAtf/89fDABAe0j4AADFI+EDAKAaJm0BAAAAgAHVVsJn+2Dbv7O93Pb76q4UAACN7M7egLoROwEoRcsunbanSPo3SS+WtFLSL2xfGBHX1105AAAsaajDWdqGjpYGbIrYCUBJ2mnh20/S8oi4ISLWSjpb0qJ6qwUAQOY0hq+TN6BmxE4AitFOwjdX0oqG+yvzsk3YPsb2EttLVq9e06n6AQBAwod+0zJ2Im4C0C0dm7QlIhZHxMKIWDhnzuxOFQsAADBwiJsAdEs7l2W4RdL8hvvz8jIAALqAVjn0HWInAMVop4XvF5J2s72r7WmSDpd0Yb3VAgBgI2bpRJ8hdgJQjJYtfBGx3vbbJV0saYqk0yLiutprBgCA0iydtPChnxA7AShJO106FREXSbqo5roAALA5k/Ch/xA7AShFxyZtAQAAAACUpa0WPgAAesmihQ8AgCpI+AAAxaNLJwAA1ZDwAQCKR74HAEA1jOEDAAAAgAFFCx8AoGiWNUQTHwAAlfRtwmfX2zg55Cm1li9JwzFc+zbqForat/Hwhodq30Y3xgcN1dyg/tCGB2otf1j9/3lF/2IMH4BB0I3YLwYgvpS6EetPno6OfZvwAQAmCa7DBwBAZSR8AIDike8BAFDN5GnLBAAAAIBJhhY+AEDRLLp0AgBQFQkfAKB4JHwAAFRDl04AQOEsu7O3llu059v+oe3rbV9n+115+T/b/q3tX9n+lu1ZDc850fZy27+z/dL6Xg8AANpHwgcAKFuepbObCZ+k9ZKOj4g9JB0g6Tjbe0i6VNJeEbG3pN9LOlGS8mOHS9pT0sGSPmd34fo+AAC0QMIHAMAoEbEqIpbm/++TtEzS3Ii4JCLW59WukDQv/79I0tkR8XBE3ChpuaT9ul1vAABGYwwfAKB4NQzhm217ScP9xRGxuPm2vUDSPpKuHPXQmyWdk/+fq5QAjliZlwEA0FMkfACAotU0S+eaiFjYctv2dpLOl/TuiLi3Yfn7lbp9ntnpigEA0EkkfACA4vVilk7bWykle2dGxAUNy4+WdKikgyIi8uJbJM1vePq8vAwAgJ5iDB8AoHhDdkdvrThlmF+WtCwiPtmw/GBJJ0h6ZUQ80PCUCyUdbntr27tK2k3SVR19EQAAqIAWPgAANnegpCMk/dr2NXnZSZJOlbS1pEtzq+MVEXFsRFxn+1xJ1yt19TwuIjZ0v9oAAGyKhA8AUDbXMmnLuCLi8rTlzVw0znNOkXRKbZUCAKACEj4AQNGstq+dBwAARiHhAwAUz00b2wAAQCtM2gIAAAAAA4oWPgBA8ejSCQBANSR8AIDikfABAFANCR8AoHjkewAAVEPCBwAomk0LHwAAVTFpCwAAAAAMKFr4AACF4zp8AABUVUvCNxzDenjDQ3UU3TUburCNiOHat1H3tavuX39freVL0so/r6h9GzOmzqh9GwtmPrHW8h9Yf3+t5Q9HN74VQHMkfAC6YcPw+lrLf3DDA7WWL0l/Xndv7duY4im1b2PbrWbWWv7WU+qP/UpBCx8AoHjkewAAVEPCBwAoHi18AABUw6QtAAAAADCgaOEDABSNyzIAAFAdCR8AoHgkfAAAVEPCBwAoHvkeAADVkPABAArHdfgAAKiKSVsAAAAAYEDRwgcAKB4tfAAAVNOyhc/2fNs/tH297etsv6sbFQMAQNo4S2cnb0CdiJ0AlKSdFr71ko6PiKW2Z0q62valEXF9zXUDAEASk7ag7xA7AShGy4QvIlZJWpX/v8/2MklzJfGjBQDoClrl0E+InQCUZEKTttheIGkfSVfWUhsAAIABQuwEoNfaTvhsbyfpfEnvjoh7mzx+jO0ltpfcseaOTtYRADDZpYF8nbsBXTBe7NQYN61evaY3FQQwKbSV8NneSukH68yIuKDZOhGxOCIWRsTCx8x+TCfrCACY1Do7YQvdQ9ENrWKnxrhpzpzZ3a8ggEmj5Rg+pyPjlyUti4hP1l8lAAAa0CiHPkPsBKAk7bTwHSjpCEkvtH1Nvr2s5noBAAD0K2InAMVoZ5bOyyVxbhUA0BMWs3SivxA7AShJO9fhAwCgp0j4AACohoQPAFA8Ej4AAKoh4QMAFI98DwCAaiZ04XUAAAAAQP+ghQ8AUDaunQcAQGUkfACAojFLJwAA1dWW8EUM11W0JGnq0LRay187/FCt5UvSuuF1XdjG2lrLv+pPV9ZaviSdetVFtW9j5ozptW/jvfsfXmv5u2y3oNbypai5fGBs3U74bM+X9FVJj1P68C+OiM/Y3kHSOZIWSPqjpMMi4q58oe3PSHqZpAckHR0RS7taaWDADdccW0rSgxseqLX8pWt+UWv5kvTN332/9m3MnFZvHC5Jr939FbWW/+Tt96i1/JIwhg8AUDznbp2durVhvaTjI2IPSQdIOs72HpLeJ+m/I2I3Sf+d70vSIZJ2y7djJH2+068BAABVkPABADBKRKwaaaGLiPskLZM0V9IiSWfk1c6Q9Kr8/yJJX43kCkmzbO/Y3VoDALA5xvABAMrm3l6WwfYCSftIulLS4yJiVX7oNqUun1JKBlc0PG1lXrZKAAD0EAkfAKB4NYzhm217ScP9xRGxuMl2t5N0vqR3R8S9jfWIiLDN4FYAQNFI+AAARbNquSzDmohYOO527a2Ukr0zI+KCvPhPtneMiFW5y+btefktkuY3PH1eXgYAQE8xhg8AULxuT9qSZ938sqRlEfHJhoculHRU/v8oSf/RsPxIJwdIuqeh6ycAAD1DCx8AAJs7UNIRkn5t+5q87CRJH5N0ru23SLpJ0mH5sYuULsmwXOmyDG/qam0BABgDCR8AoHjdnrQlIi5XuuZ7Mwc1WT8kHVdrpQAAqICEDwBQNnf/wusAAAwKEj4AQPlI+AAAqIRJWwAAAABgQNHCBwAoHl06AQCohoQPAFA0Sxoi3wMAoBISPgBA4Wq58DoAAJMCCR8AoGyWhkj4AACohElbAAAAAGBA0cIHACiaxaQtAABURcIHACge3VEAAKiGhA8AUDzG8AEAUA0JHwCgaHTpBACgOnrJAAAAAMCAooUPAFA406UTAICKSPgAAGUzXToBAKiKhA8AUDSL8QcAAFRVS8JnWVOG6s0lp9Zc/gPr19daviSt3fBQ7dt4YMMDtZZ/5apf1Vq+JF3+tctr34YeM732Tbxwl6fUWv4uT1pQa/lAL9GlE0DEcO3buHft3bWWf9ayS2otX5JO//i3at9GN+KmRx//qFrL33nPBbWWXxJOmgIAAADAgKJLJwCgeIzhAwCgGhI+AEDRLLp0AgBQFQkfAKB4pHsAAFTDGD4AAAAAGFC08AEACseF1wEAqIqEDwBQNJsxfAAAVEXCBwAoHrN0AgBQTdsJn+0pkpZIuiUiDq2vSgAAbIoWPvQjYicAJZjIpC3vkrSsrooAAAAMGGInAD3XVsJne56kl0v6Ur3VAQBgU67hBtSN2AlAKdrt0vlpSSdImllfVQAAaI4unehDnxaxE4ACtGzhs32opNsj4uoW6x1je4ntJWvWrOlYBQEAk126LEMnb0Cd2omdGuOm1auJmwDUp50unQdKeqXtP0o6W9ILbX999EoRsTgiFkbEwtmzZ3e4mgCAycpOs3R28gbUrGXs1Bg3zZlD3ASgPi0Tvog4MSLmRcQCSYdL+kFEvLH2mgEAAPQhYicAJeE6fACA4tENEwCAaiaU8EXEZZIuq6UmAACMgXQP/YrYCUCv0cIHACiaRQsfAABVTeTC6wAA9ES3Z+m0fZrt223/pmHZM2xfYfuaPLvifnm5bZ9qe7ntX9net8aXAgCACSHhAwBgc6dLOnjUso9L+lBEPEPSB/J9STpE0m75doykz3enigAAtEaXTgBA4bp/KYWI+LHtBaMXS3pU/n97Sbfm/xdJ+mpEhKQrbM+yvWNErOpObQEAGBsJHwCgaFYt3VFm217ScH9xRCxu8Zx3S7rY9idylZ6Tl8+VtKJhvZV5GQkfAKDnSPgAAGXLF17vsDURsXCCz3mbpPdExPm2D5P0ZUkv6nTFAADopFoSvlBoOIbrKHrjNiJqLX9DrK+1fEkaVr2vkSRtPbR17duo3br6Xyfdu7b2Tey43Zxay6+/yxuzJGLSO0rSu/L/35T0pfz/LZLmN6w3Ly8D0GeGXO/0FtOmTKm1fEnSNl1oz+nCNqZNqXcbnkRxDZO2AACK1+1ZOsdwq6S/zP+/UNL/5P8vlHRknq3zAEn3MH4PAFAKunQCAIrWi+vw2T5L0vOVxvqtlHSypLdK+oztqZIeUpqRU5IukvQyScslPSDpTV2tLAAA4yDhAwAUrwezdL5ujIee2WTdkHRcvTUCAKAaEj4AQOGsoUk01gIAgE5iDB8AAAAADCha+AAAxet2l04AAAYFCR8AoGh29ydtAQBgUJDwAQCKN5mulwQAQCeR8AEAikeXTgAAqmHSFgAAAAAYULTwAQCKZpkxfAAAVETCBwAonumQAgBAJSR8AIDi0cIHAEA1JHwAgOIxaQsAANXQRwYAAAAABhQtfACAojn/AQCAiSPhAwCUzYzhAwCgKhI+AEDxGMMHAEA1JHwAgKJZ0hBDzgEAqIQjKAAAAAAMKFr4AACFM106AQCoiIQPAFA8Ej4AAKoh4QMAFG+IyzIAAFAJY/gAAAAAYEDV0sIXCq0bXltH0QNl+pRtat/GkOvN6V+0y4G1li9Jq//+gdq3scOMGbVvY5eZO9da/tZT6t0HLnyNXrHo0glAcs0xjSTN3Gr7Wst/w1MPrbV8SdrhfdvWvo3ttqo/bnrJzi+otfzpNcdNJaFLJwCgbFx4HQCAykj4AACFMy3MAABURMIHACiaVX/3dAAABhVHUAAAAAAYULTwAQCKx6QtAABUQ8IHACgeY/gAAKiGhA8AUDgzSycAABWR8AEAimbRwgcAQFVtTdpie5bt82z/1vYy28+uu2IAAAD9itgJQCnabeH7jKTvRcRrbE+TtE2NdQIAYBN06UQfInYCUISWCZ/t7SU9T9LRkhQRayWtrbdaAABklsx1+NBHiJ0AlKSdI+iuklZL+ortX9r+ku1ta64XAACZO/4H1IzYCUAx2kn4pkraV9LnI2IfSfdLet/olWwfY3uJ7SV3rL6jw9UEAExWVurS2clby23ap9m+3fZvRi1/Rx6TdZ3tjzcsP9H2ctu/s/3Szr8K6DMtY6fGuGn16jW9qCOASaKdhG+lpJURcWW+f57Sj9gmImJxRCyMiIWPmfOYTtYRAIBuO13SwY0LbL9A0iJJT4+IPSV9Ii/fQ9LhkvbMz/mc7SldrS1K0zJ2aoyb5syZ3fUKApg8WiZ8EXGbpBW2d8+LDpJ0fa21AgCgge2O3lqJiB9LunPU4rdJ+lhEPJzXuT0vXyTp7Ih4OCJulLRc0n6d23v0G2InACVpd5bOd0g6M88ydYOkN9VXJQAANjVUxri7J0v6C9unSHpI0t9FxC8kzZV0RcN6K/MyTG7ETgCK0FbCFxHXSFpYb1UAANicpbZa5SZotu0lDfcXR8TiFs+ZKmkHSQdIepakc20/odMVw2AgdgJQinZb+AAAGCRrImKiwfhKSRdEREi6yvawpNmSbpE0v2G9eXkZAAA9x4WNAACFs+yhjt4q+rakF0iS7SdLmiZpjaQLJR1ue2vbu0raTdJVW77fAABsOVr4AADF6/YYPttnSXq+UtfPlZJOlnSapNPypRrWSjoqt/ZdZ/tcpUk51ks6LiI2dLXCAACMgYQPAFA0u5YxfOOKiNeN8dAbx1j/FEmn1FcjAACqIeEDABTPZczSCQBA32EMHwAAAAAMKFr4AACFa+9i6QAAYHO1JHxDmqIZU7eto+hHrB9eV2v5WzCLW9uGuzCmf6jm/XjKrKfWWr4kvXXv7WrfxrQp02rfxk7bzKu1/Kmu9/wNATd6qZALrwPoobpjGkmaPmVGreXvtcPetZYvSU981JNq30Y33osZU7aptfxpU6bXWn5JaOEDABQtXXidEQgAAFRBwgcAKJyZtAUAgIo4ZQoAAAAAA4oWPgBA8RhDCgBANSR8AIDi0aUTAIBqSPgAAMWjhQ8AgGpI+AAARbO4LAMAAFUxaQsAAAAADCha+AAAZbPp0gkAQEUkfACA4pkOKQAAVELCBwAoHi18AABUwylTAAAAABhQtPABAIpmcR0+AACqIuEDABTOGqJLJwAAlZDwAQCKRwsfAADVkPABAIrHpC0AAFTDpC0AAAAAMKBo4QMAFC1N2sL5SQAAqiDhAwAUznTpBACgIhI+AEDxhpi0BQCASkj4AABlM5O2AABQFYMiAAAAAGBA0cIHAChamrSFFj4AAKog4QMAFI8unQAAVFNLwmdLUzyljqIfsV7rai1/2tC0WsuXpPXD62vfxnAM11r+9Knb1Fq+JD1p+91r30bU/DpJ9bdQbFXzZ5YWFvSOuSwDgK6YMlRvW8h01x83bT1lRu3b6Iahmn/3J9OJRFr4AADFG5pEB2YAADqJU6YAAAAAMKBo4QMAFI1JWwAAqI6EDwBQvMk01gIAgE4i4QMAFM608AEAUBFj+AAAAABgQJHwAQCKZ7ujtza2d5rt223/psljx9sO27Pzfds+1fZy27+yvW8NLwEAAJWQ8AEAimal6zF18q8Np0s6eLO62PMlvUTSzQ2LD5G0W74dI+nzW7rPAAB0SltHPdvvsX2d7d/YPsv29LorBgCAJMndb+GLiB9LurPJQ5+SdIKkaFi2SNJXI7lC0izbO3Zi19G/iJ0AlKJlwmd7rqR3SloYEXtJmiLp8LorBgBA4o7/SZpte0nD7ZiWtbAXSbolIq4d9dBcSSsa7q/MyzBJETsBKEm7s3ROlTTD9jpJ20i6tb4qAQBQuzURsbDdlW1vI+kkpe6cQDuInQAUoWULX0TcIukTSuMVVkm6JyIuGb2e7WNGzpSuXr2m8zUFAExa3e7S2cQTJe0q6Vrbf5Q0T9JS24+XdIuk+Q3rzsvLMEm1EzsRNwHolna6dD5aaXzCrpJ2krSt7TeOXi8iFkfEwohYOGfO7M7XFAAwadXQpXNCIuLXEfHYiFgQEQuUum3uGxG3SbpQ0pF5ts4DlIL7VR19AdBX2omdiJsAdEs7k7a8SNKNEbE6ItZJukDSc+qtFgAAidX9hM/2WZJ+Lml32yttv2Wc1S+SdIOk5ZK+KOlvOrDb6G/ETgCK0c4YvpslHZDHLzwo6SBJS2qtFQAAjap1w6wsIl7X4vEFDf+HpOPqrhP6CrETgGK0M4bvSknnSVoq6df5OYtrrhcAAEBfInYCUJK2ZumMiJMlnVxzXQAAaKLauDugl4idAJSi3csyAADQMxVn1gQAYNIj4QMAFI8WPgAAqiHhAwAUj4QPAIBq2rksAwAAAACgD9HCBwAomsUYPgAAqiLhAwAUjlk6AQCoqpaELyK0fnh9HUV3zbSh6V3YRu2b0EMbHqi1/HXDa2stX+rO2J0hT6l9G6GotXy77g8UATd6h4QPwCAYqv1YDWyOFj4AQNlMl04AAKriNAMAAAAADCha+AAAxaNLJwAA1ZDwAQCKxiydAABUR8IHACgcs3QCAFAVY/gAAAAAYEDRwgcAKB4tfAAAVEPCBwAoHmP4AACohoQPAFA8WvgAAKiGhA8AUDSLhA8AgKqYtAUAAAAABhQtfACAwpkxfAAAVETCBwDoAyR8AABUQcIHACibmaUTAICqSPgAAMVj0hYAAKph0hYAAAAAGFC08AEAikcLHwAA1ZDwAQCKZmbpBACgMhI+AEDxaOEDAKAaEj4AQPFI+AAAqIZJWwAAAABgQNHCBwAoHmP4AACohoQPAFA8unQCAFANCR8AoGjM0gkAQHW1JHy/XHrNmpnTtr9pAk+ZLWlNHXXpIvahHIOwHyXuwy69rgAADKKlV/9yzYyp204kbpLKPE5MFPtQhkHYB6nM/Sgidqol4YuIORNZ3/aSiFhYR126hX0oxyDsxyDsA9BJ3e7Safs0SYdKuj0i9srL/lnSKyStlfQHSW+KiLvzYydKeoukDZLeGREXd7XC6GsTjZukwThOsA9lGIR9kAZnP+rALJ0AgD7gDt9aOl3SwaOWXSppr4jYW9LvJZ0oSbb3kHS4pD3zcz5ne0ql3QQAoMNI+AAAxet2uhcRP5Z056hll0TE+nz3Cknz8v+LJJ0dEQ9HxI2Slkvar9KOAgDQYaVM2rK41xXoAPahHIOwH4OwD0DHFDhpy5slnZP/n6uUAI5YmZcBdRqE4wT7UIZB2AdpcPaj44pI+CKi798g9qEcg7Afg7APQOFm217ScH9xu9872++XtF7SmbXUDGjDIBwn2IcyDMI+SIOzH3UoIuEDAGB8HW/hW1NlcL/to5UmczkoIiIvvkXS/IbV5uVlAAD0HGP4AADF6/qULc3qYB8s6QRJr4yIBxoeulDS4ba3tr2rpN0kXVVxMwAAdFRPEz7bB9v+ne3ltt/Xy7pUZXu+7R/avt72dbbf1es6VWV7iu1f2v7PXtelCtuzbJ9n+7e2l9l+dq/rNFG235M/R7+xfZbt6b2uE9B7nU73Wqd8ts+S9HNJu9teafstkj4raaakS21fY/sLkhQR10k6V9L1kr4n6biI2NCJPQdGI3YqR7/HTRKx02ThjT1SurzhNGX17yW9WGmA+y8kvS4iru9JhSqyvaOkHSNiqe2Zkq6W9Kp+2w9Jsv23khZKelREHNrr+kyU7TMk/SQivmR7mqRtRq6R1Q9sz5V0uaQ9IuJB2+dKuigiTu9tzYDeesYznx6X/PS/Olrm42bMvZrrNaHfEDuVpd/jJonYabLoZQvffpKWR8QNEbFW0tlKU1v3lYhYFRFL8//3SVqmPpydzfY8SS+X9KVe16UK29tLep6kL0tSRKztpx+sBlMlzbA9VdI2km7tcX0AAOUgdipEv8dNErHTZNLLhG+upBUN9/t+GmvbCyTtI+nKHlelik8rjU0Z7nE9qtpV0mpJX8ndK75ke9teV2oiIuIWSZ+QdLOkVZLuiYhLelsrAEBBiJ3K8Wn1d9wkETtNGkza0iG2t5N0vqR3R8S9va7PRNg+VNLtEXF1r+uyBaZK2lfS5yNiH0n3S+qrsQ22H610pnZXSTtJ2tb2G3tbK6AM7vAfgN7r19hpQOImidhp0uhlwjcw01jb3krpB+vMiLig1/Wp4EBJr7T9R6XuIS+0/fXeVmnCVkpaGREjZwjPU/oR6ycvknRjRKyOiHWSLpD0nB7XCSgCCR8gidipFIMQN0nETpNGLxO+X0jazfaueZDo4UpTW/cV21bq+7wsIj7Z6/pUEREnRsS8iFig9D78ICL66uxIRNwmaYXt3fOig5RmzOsnN0s6wPY2+XN1kNK4BgAAJGKnIgxC3CQRO00mPbvwekSst/12SRdLmiLptDy1db85UNIRkn5t+5q87KSIuKh3VZq03iHpzHwQvEHSm3pcnwmJiCttnydpqaT1kn4paXFvawUAKAWxE2pA7DQJ9OyyDAAAtOMZz3x6/PfPOjsGf/b0x3NZBgDApMCkLQAAAAAwoHrWpRMAgPYw0QoAAFXRwgcAAAAAA4oWPgBAH6CFDwCAKkj4AABFs0j3AACoioQPAFC8dHklAAAwUSR8AIA+QMIHAEAVTNoCAAAAAAOKFj4AQPFo3wMAoBoSPgBAHyDlAwCgChI+AEDhzKQtAABUxBg+AAAAABhQJHwAAAAAMKDo0gkAKFq68DpdOgEAqIKEDwDQB0j4AACogoQPAFA80j0AAKoh4QMAFI9ZOgEAqIZJWwAAAABgQNHCBwAonEWnTgAAqiHhAwAUj3QPAIBqSPgAAH2AlA8AgCoYwwcAAAAAA4oWPgBA2cwsnQAAVEULHwAAAAAMKFr4AABFS3N00sIHAEAVjohe1wEAgDHZ/p6k2R0udk1EHNzhMgEAKA4JHwAAAAAMKMbwAQAAAMCAIuEDAAAAgAFFwgcAAAAAA4qEDwAAAAAGFAkfAAAAAAyo/w8LTJHuPffQMgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "recorteG10 = trim(imagen[:,:,1], 615, 394, 10, 10)\n", + "poptG10, pcovG10 = curve_fit(gauss2d, xdata10, recorteG10.ravel(), p0=[1,0,1,1,1])\n", + "estrellaG10=gauss2d(xdata10, poptG10[0], poptG10[1],poptG10[2], poptG10[3], poptG10[4])\n", + "FWHMG10=FWHMG.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptG10[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 10 fotografÃa (Banda Verde)\")\n", + "plt.imshow(recorteG10, plt.get_cmap('Greens'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 10 a partir de la gaussiana (Banda Verde)\")\n", + "plt.imshow(estrellaG10.reshape(10, 10), plt.get_cmap('Greens'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Histograma (Banda Verde)" + ] + }, + { + "cell_type": "code", + "execution_count": 445, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Datos de FWHM de las estrellas para la Banda verde :\n", + "Desviación : 2.525571326812283\n", + "Media : 4.24280156594701\n", + "Mediana : 3.1827269210351594\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAU5klEQVR4nO3df7DldX3f8efLZSOo/Ejh1uD+cFUYUuJE0DsE0LYUQoqCbJtgC1UjDMlOjVZsbQw4HZjQTgedRJMUI1mBgMogiEaXH0opkhFQ0QUXBBbrjt2GRZRlUX7JDxff/eN8t569nHvvuez9nrN7v8/HzJn9/vic7/d9z+y9r/P99fmkqpAkddeLxl2AJGm8DAJJ6jiDQJI6ziCQpI4zCCSp43YbdwFztd9++9WKFSvGXYYk7VJuv/32h6tqYtC6XS4IVqxYwdq1a8ddhiTtUpL83+nWeWpIkjrOIJCkjjMIJKnjDAJJ6jiDQJI6ziCQpI5rPQiSLErynSTXDFj34iRXJNmQ5LYkK9quR5K0vVEcEZwBrJ9m3enAT6rqAOBjwIdHUI8kqU+rQZBkKXA8cOE0TVYClzbTVwHHJEmbNUmSttf2k8V/AXwQ2HOa9UuA+wGqamuSR4F9gYf7GyVZBawCWL58+QsuZsWZ177g9+6ojecdP7Z9S9JMWjsiSHIC8FBV3b6j26qq1VU1WVWTExMDu8qQJL1AbZ4aeiNwYpKNwGeBo5N8ZkqbB4BlAEl2A/YGtrRYkyRpitaCoKrOqqqlVbUCOBn4alW9Y0qzNcC7mumTmjYOoixJIzTy3keTnAusrao1wEXAp5NsAB6hFxiSpBEaSRBU1d8Df99Mn923/GngbaOoQZI0mE8WS1LHGQSS1HEGgSR1nEEgSR1nEEhSxxkEktRxBoEkdZxBIEkdZxBIUscZBJLUcQaBJHWcQSBJHWcQSFLHGQSS1HEGgSR1nEEgSR3X5uD1uyf5VpI7k9yT5E8HtDk1yeYk65rXH7RVjyRpsDZHKHsGOLqqnkiyGLglyZer6ptT2l1RVe9tsQ5J0gxaC4JmEPonmtnFzcuB6SVpJ9PqNYIki5KsAx4Cbqiq2wY0+70kdyW5KsmyNuuRJD1fq0FQVc9V1SHAUuCwJK+d0uRqYEVV/SZwA3DpoO0kWZVkbZK1mzdvbrNkSeqckdw1VFU/BW4CjpuyfEtVPdPMXgi8YZr3r66qyaqanJiYaLVWSeqaNu8amkiyTzO9B3AscN+UNvv3zZ4IrG+rHknSYG3eNbQ/cGmSRfQC58qquibJucDaqloDvC/JicBW4BHg1BbrkSQN0OZdQ3cBhw5Yfnbf9FnAWW3VIEmanU8WS1LHGQSS1HEGgSR1nEEgSR1nEEhSxxkEktRxBoEkdZxBIEkdZxBIUscZBJLUcQaBJHWcQSBJHWcQSFLHGQSS1HEGgSR1nEEgSR1nEEhSx7U5ZvHuSb6V5M4k9yT50wFtXpzkiiQbktyWZEVb9UiSBmvziOAZ4Oiqeh1wCHBcksOntDkd+ElVHQB8DPhwi/VIkgZoLQiq54lmdnHzqinNVgKXNtNXAcckSVs1SZKer7XB6wGSLAJuBw4APl5Vt01psgS4H6CqtiZ5FNgXeHjKdlYBqwCWL1/eZsmtWXHmtWPZ78bzjh/LfiXtOlq9WFxVz1XVIcBS4LAkr32B21ldVZNVNTkxMTGvNUpS143krqGq+ilwE3DclFUPAMsAkuwG7A1sGUVNkqSeNu8amkiyTzO9B3AscN+UZmuAdzXTJwFfraqp1xEkSS1q8xrB/sClzXWCFwFXVtU1Sc4F1lbVGuAi4NNJNgCPACe3WI8kaYDWgqCq7gIOHbD87L7pp4G3tVWDJGl2PlksSR1nEEhSxxkEktRxBoEkdZxBIEkdZxBIUscZBJLUcQaBJHWcQSBJHTdrECT5SJK9kixOcmOSzUneMYriJEntG+aI4Heq6jHgBGAjvbEF/rjNoiRJozNMEGzrj+h44HNV9WiL9UiSRmyYTueuSXIf8BTw7iQTwNPtliVJGpVZjwiq6kzgSGCyqn4OPElvrGFJ0gIwbDfUrwB+O8nufcs+1UI9kqQRmzUIkpwDHAUcDFwHvBm4BYNAkhaEYS4WnwQcA/yoqk4DXkdvbGFJ0gIwTBA8VVW/ALYm2Qt4iGbA+ZkkWZbkpiT3JrknyRkD2hyV5NEk65rX2YO2JUlqzzDXCNY2g9B/ErgdeAL4xhDv2wp8oKruSLIncHuSG6rq3intbq6qE+ZStCRp/swaBFX1R83kBUm+AuzVjEc82/seBB5sph9Psh5YAkwNAknSGE0bBEleP9O6qrpj2J0kWUFvIPvbBqw+IsmdwA+B/1xV9wx4/ypgFcDy5cuH3a0kaQgzHRH8+QzrCjh6mB0keRnweeD9TVcV/e4AXllVTyR5C/BF4MDn7axqNbAaYHJysobZryRpONMGQVX9ix3deJLF9ELgsqr6woB9PNY3fV2Sv06yX1U9vKP7liQNZ6ZTQ7870xsH/WGf8v4AFwHrq+qj07T5NeDHVVVJDqN3F9OWWauWJM2bmU4NvXWGdQXMGATAG4F3At9Nsq5Z9iFgOUBVXUDvGYV3J9lKry+jk6vKUz+SNEIznRo6bUc2XFW3AJmlzfnA+TuyH0nSjhlmYJqXJ7koyZeb+YOTnN5+aZKkURjmyeJLgOvpdTwH8L+B97dUjyRpxIYJgv2q6krgFwBVtRV4rtWqJEkjM0wQPJlkX3oXiElyOOAoZZK0QAzT19B/AtYAr0lyKzBB724fSdICMGMQJFkE/PPmdRC9u4C+14xUJklaAGY8NVRVzwGnVNXWqrqnqu42BCRpYRnm1NCtSc4HrqA3XjEAc+l0TpK08xomCA5p/j23b9nQnc5JknZuwwTB6VX1g/4FSV7dUj2SpBEb5vbRqwYs+9x8FyJJGo+Zeh/9deA3gL2n9ES6F7B724VJkkZjplNDBwEnAPuwfU+kjwN/2GJNkqQRmqn30S8BX0pyRFUNM1i9JGkXNMw1gn+dZK8ki5PcmGRzkne0XpkkaSSGCYLfaYaUPAHYCBwA/HGbRUmSRmeYIFjc/Hs88LmqssM5SVpAhgmCq5PcB7wBuDHJBPD0bG9KsizJTUnuTXJPkjMGtEmSv0qyIcldSV4/9x9BkrQjZg2CqjoTOBKYbPoZ+hmwcohtbwU+UFUHA4cD70ly8JQ2bwYObF6rgE/MoXZJ0jwYZqjKlwB/xC//SL8CmJztfVX14Lb+iKrqcWA9sGRKs5XAp6rnm8A+SfafQ/2SpB00zKmhvwWepXdUAPAA8N/mspMkK4BDgdumrFoC3N83v4nnhwVJViVZm2Tt5s2b57JrSdIshgmC11TVR4CfA1TVz+iNSzCUJC8DPg+8v7n7aM6qanVVTVbV5MTExAvZhCRpGsMEwbNJ9uCXQ1W+BnhmmI0nWUwvBC6rqi8MaPIAsKxvfmmzTJI0IsMEwTnAV4BlSS4DbgQ+ONubkgS4CFhfVR+dptka4Pebu4cOBx6tqgeHK12SNB9m7Ya6qm5Icge9O38CnFFVDw+x7TcC7wS+m2Rds+xDwPJmuxcA1wFvATbQuxvptLn+AJKkHTPMeARU1Rbg2rlsuKpuYZZrCVVVwHvmsl1J0vwa5tSQJGkBMwgkqeOGCoIkb0pyWjM9keRV7ZYlSRqVYZ4sPgf4E+CsZtFi4DNtFiVJGp2hxiMATgSeBKiqHwJ7tlmUJGl0hnqgrLm7Z9sDZS9ttyRJ0igNEwRXJvkbeh3C/SHwv4BPtluWJGlUhnmg7M+SHAs8Rm9A+7Or6obWK5MkjcSwD5TdAPjHX5IWoGmDIMnjNNcFBqmqvVqpSJI0UtMGQVXtCZDkvwIPAp+m12XE2wEHj5GkBWKYi8UnVtVfV9XjVfVYVX2C4YaqlCTtAoYJgieTvD3JoiQvSvJ2mmcKJEm7vmGC4N8B/wb4cfN6W7NMkrQADHP76EY8FSRJC5a9j0pSxxkEktRxrQVBkouTPJTk7mnWH5Xk0STrmtfZbdUiSZreMN1Q/5e+6RfPYduXAMfN0ubmqjqkeZ07h21LkubJtEGQ5E+SHAGc1Lf4G8NuuKq+BjyyA7VJkkZgpiOC++jdKvrqJDcn+SSwb5KD5nH/RyS5M8mXk/zGdI2SrEqyNsnazZs3z+PuJUkzBcFPgQ8BG4CjgL9slp+Z5OvzsO87gFdW1euA/wF8cbqGVbW6qiaranJiYmIedi1J2mamIPiXwLXAa4CPAr8FPFlVp1XVkTu646a7iiea6euAxUn229HtSpLmZtogqKoPVdUxwEZ6Hc4tAiaS3JLk6h3dcZJfS5Jm+rCmli07ul1J0twMMx7B9VW1Flib5N1V9aZhvrknuZzeKaX9kmwCzqE38D1VdQG9i9DvTrIVeAo4uRkSU5I0QsN0MfHBvtlTm2UPD/G+U2ZZfz5w/mzbkSS1a04PlFXVnW0VIkkaD7uYkKSOMwgkqeMMAknqOINAkjrOIJCkjjMIJKnjDAJJ6jiDQJI6ziCQpI4zCCSp4wwCSeo4g0CSOs4gkKSOMwgkqeMMAknqOINAkjqutSBIcnGSh5LcPc36JPmrJBuS3JXk9W3VIkmaXptHBJcAx82w/s3Agc1rFfCJFmuRJE2jtSCoqq8Bj8zQZCXwqer5JrBPkv3bqkeSNNisg9e3aAlwf9/8pmbZg1MbJllF76iB5cuXj6S4hWLFmdeObd8bzzt+LPvt4s+s0VmI/792iYvFVbW6qiaranJiYmLc5UjSgjLOIHgAWNY3v7RZJkkaoXEGwRrg95u7hw4HHq2q550WkiS1q7VrBEkuB44C9kuyCTgHWAxQVRcA1wFvATYAPwNOa6sWSdL0WguCqjpllvUFvKet/UuShrNLXCyWJLXHIJCkjjMIJKnjDAJJ6jiDQJI6ziCQpI4zCCSp4wwCSeo4g0CSOs4gkKSOMwgkqeMMAknqOINAkjrOIJCkjjMIJKnjDAJJ6jiDQJI6rtUgSHJcku8l2ZDkzAHrT02yOcm65vUHbdYjSXq+NscsXgR8HDgW2AR8O8maqrp3StMrquq9bdUhSZpZm0cEhwEbquoHVfUs8FlgZYv7kyS9AG0GwRLg/r75Tc2yqX4vyV1JrkqybNCGkqxKsjbJ2s2bN7dRqyR11rgvFl8NrKiq3wRuAC4d1KiqVlfVZFVNTkxMjLRASVro2gyCB4D+b/hLm2X/X1VtqapnmtkLgTe0WI8kaYA2g+DbwIFJXpXkV4CTgTX9DZLs3zd7IrC+xXokSQO0dtdQVW1N8l7gemARcHFV3ZPkXGBtVa0B3pfkRGAr8Ahwalv1SJIGay0IAKrqOuC6KcvO7ps+CzirzRokSTMb98ViSdKYGQSS1HEGgSR1nEEgSR1nEEhSxxkEktRxBoEkdZxBIEkdZxBIUscZBJLUcQaBJHWcQSBJHWcQSFLHGQSS1HEGgSR1nEEgSR1nEEhSx7UaBEmOS/K9JBuSnDlg/YuTXNGsvy3JijbrkSQ9X2tBkGQR8HHgzcDBwClJDp7S7HTgJ1V1APAx4MNt1SNJGqzNI4LDgA1V9YOqehb4LLBySpuVwKXN9FXAMUnSYk2SpCnaHLx+CXB/3/wm4Lema1NVW5M8CuwLPNzfKMkqYFUz+0SS7w2x//2mbqfjRv55ZOc+vmvl89jJf+bp+LuyvZ3289jB/1+vnG5Fm0Ewb6pqNbB6Lu9JsraqJlsqaZfj57E9P49f8rPYXhc/jzZPDT0ALOubX9osG9gmyW7A3sCWFmuSJE3RZhB8GzgwyauS/ApwMrBmSps1wLua6ZOAr1ZVtViTJGmK1k4NNef83wtcDywCLq6qe5KcC6ytqjXARcCnk2wAHqEXFvNlTqeSOsDPY3t+Hr/kZ7G9zn0e8Qu4JHWbTxZLUscZBJLUcQsuCJIsS3JTknuT3JPkjHHXNG5JFiX5TpJrxl3LuCXZJ8lVSe5Lsj7JEeOuaZyS/Mfm9+TuJJcn2X3cNY1SkouTPJTk7r5l/yjJDUm+3/z7q+OscRQWXBAAW4EPVNXBwOHAewZ0bdE1ZwDrx13ETuIvga9U1a8Dr6PDn0uSJcD7gMmqei29mzrm84aNXcElwHFTlp0J3FhVBwI3NvML2oILgqp6sKruaKYfp/eLvmS8VY1PkqXA8cCF465l3JLsDfwzenerUVXPVtVPx1rU+O0G7NE8x/MS4Idjrmekqupr9O5Y7Nff9c2lwL8aZU3jsOCCoF/Tm+mhwG1jLmWc/gL4IPCLMdexM3gVsBn42+ZU2YVJXjruosalqh4A/gz4B+BB4NGq+p/jrWqn8PKqerCZ/hHw8nEWMwoLNgiSvAz4PPD+qnps3PWMQ5ITgIeq6vZx17KT2A14PfCJqjoUeJIOHPZPpzn3vZJeQL4CeGmSd4y3qp1L84Drgr/HfkEGQZLF9ELgsqr6wrjrGaM3Aicm2Uiv99ejk3xmvCWN1SZgU1VtO0K8il4wdNVvA/+nqjZX1c+BLwBHjrmmncGPk+wP0Pz70Jjrad2CC4KmG+uLgPVV9dFx1zNOVXVWVS2tqhX0LgJ+tao6+42vqn4E3J/koGbRMcC9Yyxp3P4BODzJS5rfm2Po8MXzPv1d37wL+NIYaxmJBRcE9L4Fv5Pet991zest4y5KO43/AFyW5C7gEOC/j7ec8WmOjK4C7gC+S+/vQae6V0hyOfAN4KAkm5KcDpwHHJvk+/SOms4bZ42jYBcTktRxC/GIQJI0BwaBJHWcQSBJHWcQSFLHGQSS1HEGgTRFkuf6bj1el2RFkqOm9t6a5JIkJyVZmeSLfcvPakbd2zb/1iRrmumNSW6esp11/b1fSqNmEEjP91RVHdL32jhL+6/T6+l2myOAx5L842b+yKbNNnsmWQaQ5J/MV9HSC2UQSDuoqjbT+8N/QLNoCb0uTrZ113AkcGvfW64E/m0zfQpw+SjqlKZjEEjPt0ffaaG/61v+T/tPGQEn9q27FTiy6b7i+8A3m/nd6I178O2+tp8HfreZfitwdVs/iDSM3cZdgLQTeqqqDhmw/OaqOmHbTJJL+tZ9nd43/0X0uiz4FnA2vW7Q76uqp/vabgF+kuRken37/Gxeq5fmyCMCaX7cSi8IjgS+0QyKtDtwFNtfH9jmCuDjeFpIOwGDQJof6+n16f8m4DvNsnXAv2f76wPb/B3wEeD6URQnzcQgkOZBM4DJbcCWpm9/6J0iejUDjgiq6vGq+nBVPTvCMqWB7H1UkjrOIwJJ6jiDQJI6ziCQpI4zCCSp4wwCSeo4g0CSOs4gkKSO+3/RdsONip3qzwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "FWHMG = np.array(FWHMG)\n", + "sigmaG = FWHMG.std()\n", + "mediaG = FWHMG.mean()\n", + "medianaG = np.median(FWHMG)\n", + "print(\"Datos de FWHM de las estrellas para la Banda verde :\")\n", + "print(\"Desviación :\", sigmaG)\n", + "print(\"Media :\", mediaG)\n", + "print(\"Mediana :\", medianaG)\n", + "plt.hist(FWHMG)\n", + "plt.xlabel('FHWM')\n", + "plt.ylabel('# de estrellas')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Para la banda B\n", + "* ## Estrella 1 (Azul)" + ] + }, + { + "cell_type": "code", + "execution_count": 426, + "metadata": {}, + "outputs": [], + "source": [ + "FWHMB=[]" + ] + }, + { + "cell_type": "code", + "execution_count": 427, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3oAAAFSCAYAAACkM60KAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA1uUlEQVR4nO3debxcdZnn8e/33mwEAgFuQEgCQSdiAy2LkUYdN3ABGg3jdNPQLqCMaXtw66YHQWdanG5tpnUUbbeJiuBIw9AIiooKjQvabdAQAdmEqGASglmAsISE3Nxn/jjnQuWm6lbd+p06Vafu551XvVL31FmeOrU9z/n9zu84IgQAAAAA6B8D3Q4AAAAAAFAsCj0AAAAA6DMUegAAAADQZyj0AAAAAKDPUOgBAAAAQJ+h0AMAAACAPjOl2wEAANCOwd0PjBh+svD1xpPrvxcRxxe+YgAASkShBwCopBh+UtMPPqXw9W655TNDha8UAICSUegBACrKkjkDAQCAeij0AADVZEl2t6MAAKAnUegBAKqLFj0AAOqi0AMAVBctegAA1MWhUAAAAADoM7ToAQAqisFYAABohEIPAFBddN0EAKAuCj0AQDVZtOgBANAAhR4AoKJMix4AAA1wKBQAAAAA+gwtegCA6qLrJgAAdVHoAQCqi66bAADURaEHAKgoLq8AAEAjFHoAgGqyaNEDAKABDoUCAAAAQJ+hRQ8AUF103QQAoC4KPQBARXGOHgAAjVDoAQCqa4Bz9AAAqIdDoQWwvcB22J6S//1D2/+lhO3a9pdtP2z7Z53eXirbB9u+xfZjtt+dT/u47QvbXN8/2H5vkTFOYNsX2/77bmy7kdr3ne3X2f5/3Y4JAFCebuUjvcb2S23/KnEdbe27sa9Bldm+w/YrurTty2yf3KVt99znxvZ9tl+V33+X7f/VynJ9VejlO+FJ24/X3D7dwnJh+z+UEWMztv/O9i9tD9s+v8ns/1HSqyXNi4ijW1h3t5/nOZJ+EBGzIuJTtl8q6YWS/ttEV2R7jqS3SPo/+d+vsD1S87qvsf2hQqMvWP5F8rDt6UWvOyK+KelQ288vet1Az7CyrptF34BEkzAf6aqx+y0ifhwRB3czpn4QEYdGxA/L3m6euxwu6Rv532fY3l7zWfqN7b8sO65W5Q0xv7F9Z4c28QVJb7S9T7MZ+/EX7XURsVvN7Z2pKyz5qMxKZQXRt1uY90BJ90XEE50NqbkW99GBku6o+fsgSX8WEdva2OQZkq6NiCdrpj0w+rorK4LP7NbRoGZsL5D0Ukkh6fUd2sxlkpZ0aN1Ab7CLvwHFmEz5SFe0sz/6oaVtEvgLSZdGRNRM+2lNjvefJf2j7SO7E15TL5O0j6Rn235h0SuPiC2SvqOswWNc/Vjo1WX7P9j+ke1NtjeMdmuzfWM+y635UYI/y1uHVtt+n+0HJX3Z9oDtc23/2vZG21fY3quF7T7H9vfzZTbYvtT27EbzR8QlEfEdSY81We+Zkr4o6UV53B/Kp7/d9krbD9m+xvb+jZ7nePPnj73G9q/yffbZfP+Ndg08w/a/2f6E7Y2Szh/vudr+vqRXSvp0vv3nSjpW0n/NH9/T9rdsr89bub5le944u+AEST8aZz/+VtK/Szqk5vl80vYq24/avjlvURx97Pz8Nf2Ks66ld9heVPP4kbZX5I/9P0kzah6baOxS9uFcJuliSafXrGt/73gEeLPtqInxqzXzNuse8kNJf9wkDqDCTIseKqff8pF83Ufb/qntR2yvtf1p29MazDv627XE9gP5/H/T6rryZc+yfa+ke8fbbzXL3Jfvw9skPVHvd9P2q23fnb8un1bWZ6D28bfZviv/nf+e7QOb7Zd8ubfmyz3mrJXnL8aZd9D2/85fn9/afqd37IrbcF3O8rKfjFnf0y2dtk+0fWe+7JrRfW57KM9bHnGWC/7Yzr4IvWN3wVZel3fYvjef5zN2duRsou89Nc/xfiHpLkl/ULP9f7H9YP763Wj70JrHLs7j+Xb+/G+y/Zyaxxu+9m3ELmV53TckXasdc7zRnH30tsX2fTUx/n3NvDu8h+v4oVrI8SbTL9rfSbpO0p6S5kn6J0mKiJfljx+eHykYPa/pWZL2UtYKtUTSuySdLOnlkvaX9LCkz7SwXUv6h3yZP5A0X9L5qU8mIr4k6R165gjHB20fm2/rFEn7Sbpf0uX5/Ds9z/Hmtz0k6UpJ50naW9KvJL14TBh/JOk3kvaV9OHxnmtEHCvpx5LemW//njHrGpD0ZWX7+wBJT0oar5vLH+Yx1WV7oaSXKCumRv1c0hHKXtd/lvQvtmfUPP76/PnPlnTN6PbzL7KvS/q/+bL/ouxoUruxS1mhd2l+e63tfSUpIh6oPQIs6eo8pnbcJWmB7d3bXB7ofbTooXr6Kh/JbZf0V5KGJL1I0nHKD+SO45WSFkp6jaT3jRYULa7rZGU5yCHj7LexTlOWGM+OiOHaB/Kc5ypJ/z3f7q+V5RCjjy+W9H5Jb5A0R1k+c1mT5zdqnaSTJO0u6a2SPmH7qAbzvl1ZkXOEpKPy59nuusb6kqS/iIhZkg6T9P18+tmSVit7Xvsqe55RZ/lWXpeTlJ2S83xlueVr8+ktv/ds76qsx9d4Od4LJT1X0vKayd9R9n7aR9IKZflVrVMlfUjZ526lsry16Ws/kdjz9c2U9Cd6Jsc7dbQgjojaVsk9Jd2k1t9HY92lrHvruPqx0Pt6fiRh9Pb2fPo2ZV+S+0fEloj4yTjrkKQRSR+MiK1598B3SPpARKyOiK3KXuQ/qXdUqFZErIyI6/P1rJf0cWVfzp3wRkkXRcSKPMbzlLX4LWhj/hMl3RERV+VfiJ+S9OCY5R+IiH+KiOGIeDLluUbExoj4WkRsjojHlH0Ax1t2tnY+yrh//po/KukeZR+gp1/niPhqvp3hiPjfkqZLqu3D/5OIuDYitisr6kY/QMdImirpwojYFhFXKisa24rd9n9U9l68IiJuVval8ud15nufpOdJets4+2E8o/tndpvLAwDaN2nykYi4OSKW5b+v9yk7f77Zuj8UEU9ExC+VHSw9bQLr+oeIeGjM6RvNfCoiVjVYZjTnuTI/neRC7ZjzvCPf5l15TvQRSUe00qoXEd+OiF9H5kfKivyXNpj9FEmfzF/bhyVdkLCusbZJOsT27hHxcESsqJm+n6QD8xznxxGxU6HX4utyQUQ8EhG/k/QDZQXrRN97s/P/x+Z4x+Sfo8ck/UxZnnZvTXwXRcRjNZ+Jw23vUbP81RHxs/z1u3Q0NjV57dv43LxB0lZlr823leWP9VrePpU/xw+Ms67xPCZpj2Yz9WOhd3JEzK65fSGffo6yqvxnzrrlNUue10fWB3bUgZKuHv3CVlZJb1d29KMh2/vavjxvJn9U0leVHTHohP2VtcpJkiLicUkbJc1tY/79Ja2qeSyUHfGptar2j5Tnanum7f9j+/582RslzbY92GCRhyXNGjPtgfw1313ZF8WTki6p2cbfOOvysCl/DfcYE1/tl/pmSTPyH879Ja0Z88X39H5rI/bTJV0XERvyv/9ZNU37+TpPkPQeZe/nifyQ1RrdP4+0uTzQ++i6id41afIR28911v3vwXzdH2lh3bU5xP3KfmtbXdcqTdx4y9TLeWrnP1DSJ2v2+UPKXsNG+dXTbJ9ge5mzbpGPKCssGu2bHeIYG/ME1zXWf87nv99Z1+EX5dM/qqyF6zpn3UHPbfA8WnldxuZRu+XLTuS990j+/9gcb1n+OZqlrJX70DyG0S6vFzjrzvyopPvyZcbL8XbL74/72rfxuTld2YH84fxz+zXtnOP9haRXSPrziBgZZ13jmSVpU7OZJs0vWkQ8GBFvj4j9lZ3k+VmPP7LV2KMZqySdMOZLe0ZErGmy6Y/k6/rDvAB5k8b0+y7QA8q+jCQ93fy9t6RGMY43/1plXUpGH3Pt37mx+yjluZ6trHXtj/JlR7tiNFr+NmXN9nVFxCZlBdTr8vhfquzH9RRJe0bEbGUfkFbiWytpbr4PRh3QTuy2d8ljeHn+Zfmgsq4Qh9s+PJ/nYGUF6ikRUfsl/4SkmTV/P6tJ3H+gbLCeR5s9QaCSOtFtk66b6LA+zUc+J+luSQvzdb+/hXXPr7l/gLKcpNV11eta2Mx4y6ytjSf/va+Nb5Wybo+1+3yXiPj38TbobFTtr0n6mKR989zjWjXeNzvkXmNiarauHXIE2zvkCBHx84hYrKxr49clXZFPfywizo6IZys7heWvbR9XJ7Z2XuNRLb/3Ihtg8NcaP8f7vbJ98bp80p9LWizpVcoO4i/Ip7ea44332rccu7PxGY6V9KaaHO9PJJ3orIvoaD76d5IWj8nP2snxbm325CZNoWf7T/3MABkPK3vRRqvo30t6dpNVfF7Sh0eb6W3PcdZnu5lZkh6XtMn2XDW5lIDtqc7OGxuQNMX2jHFahsa6TNJbbR+RfyF8RNJNeRO7tPPzHG/+b0v6Q9sn561aZ6n5m25Cz7XOsk9KesTZSeUfbDL/tRq/e+Ruyvpjj47yOUvSsKT1yvbr3yrr496Kn+bLvjt/fd4gqfZyFhOJ/WRlR14PUdZt4AhlH9YfS3qLs/PpvqGsW87Y7jy3SHqZ7QOcdUc4r0ncL1fWZx3oX7TooWL6NB+ZJelRSY/bfp6kVoa+/x95j5hDlZ1vNnpuXTvramW/jefbyi5J9IY853m3dsx5Pi/pvDxW2d7D9p+2sN5pyk4TWS9pOO+t85px5r9C0ntsz3U24Mf7JrCuW/PncET+up0/+oDtabbfaHuPvHvio8rfc7ZPcjZAkJUdAN+uZ96Ptdp5XWqXnUh+2CzH21vSf9KOOd5WZb3SZipv6WtRs9d+IrG/WdmpQwfrmRzvucp6xJ1me76y1/gtsfNYFbcoKwj3yov09zaJu6Ucrx9/0b7pHUe0uTqf/kJJN9l+XNlAG++JiN/kj50v6RJnTfKnNFjvJ/PlrnPWP3iZshOBm/mQshNqNyl7M13VZP4vKCsaTlPWb/dJZW+cpiLiXyX9D2VHOdZKeo6yYmfU+ap5nuPNn3cr/FNJ/6jsg3OIspNetxb4XGtdKGkXSRuU7dvvNpn/K8o+ELvUTHt6xEpl3UD2UnYeoiR9L1/nPfljW9Ri14+IeEpZn+szlHXX+DPt+NwmEvvpkr4cEb/Lj+o+GBEPKhu85Y3KCsiDlZ1g/XjN81FEXK/sh/A2STdL+laT0E9Tfp1BoG/RoofeNZnykb9R1qryWL5cowFRav1IWZfBGyR9LCKuS1jX+Wq+3xqqyXkuUJbzLJT0bzWPXy3pf0m63Fn3vduVDZrSbL2PKSscrlBW1P+5steukS8oO7frNkm/UFbwDEva3mxdeeHwPyX9q7Jz18YeLH6zpPvy+N+hZ/Kjhfkyjys7sP3ZiPhBndjaeV1GTfS9t1TZdeJqv5BfVJMT3aWs4H1X/thXlOV2ayTdqR0H4htXs9d+grGfrmz/PTgmx/t8/thxyrpYX1nzvTBarP5fZcX6fcreAw33b17In6ia05Mazhs7n28J7MTZULurJb2xwRdA6Wx/RNK6iLiw27H0Gtuvk/TmiJjwDx5QFQN7zI/pL/7rwte75bt/fXNELGo+J4CJcjbg228lTY0xo19iR3mr3ecjoqVLOfQT2/+s7Fy3r3c7ll5j+12S5kfEOc3m5aKRaMj2a5WNXPmksqZqawJHSTotIt7f7Rh6VUR8U9I3ux0H0FmmqyWAvpH3UnqlshadfZWdCnL1uAv1qYjYaTRyZCLin1qdl19IjOdFyk6I3aDshNeUESABoHh03QTQP6ysq+DDyrpu3iXpb7saESqNFj00FBHnq7iLqQJAsSxa9ICKyQd844hKHRGxWdk5nEAhKPQAABVF100AABrhFxIAAAAA+kypLXpDQ0NxwIEL2l5+pIARQkfavf58gVJPASniFJKRxF1ZxGCtPdFvoweCGEh+P6StIHXk3VX336+NGzf0wJ7EpMQ5dehzQ0NDcWBC7gSg99x//33asKHzuVOphd4BBy7Qjf/+s7aX37ItvUrb/NT25HWkmjqY9rpOn5LeEJu6H7ZtT6/0kguc5AikgdQgCjBjaqPrz7ZmWuL7Ycu2tPfCa15+TNLyQBK6bqLPHXjgAv3bTcu7HQaAAr3kj8q5gg+/kACA6ip51E3b823/wPadtu+w/Z58+kdt3237NttX255ds8x5tlfa/lV+2RoAADqOQg8AgNYNSzo7Ig6RdIyks2wfIul6SYdFxPMl3SPpPEnKHztV0qGSjpf0WdtpzfgAALSAQg8AUE3OR90s+jaOiFgbESvy+48pu87V3Ii4LiKG89mWSZqX318s6fKI2BoRv5W0UtLRHdkfAADUSCr0bB+fd0VZafvcooICAKAlXbxguu0Fko6UdNOYh94m6Tv5/bmSVtU8tjqfhkmK3AlAWdoejCXvevIZSa9W9sP1c9vXRMSdRQUHAMB4UkedbWDIdu3oF0sjYumY7e4m6WuS3hsRj9ZM/4Cy7p2XdiIwVBu5E4AypYy6ebSklRHxG0myfbmyLip8WQEAOs7qWKG3ISIaDolme6qyIu/SiLiqZvoZkk6SdFw8c92SNZLm1yw+L5+GyYncCUBpUrputtQdxfYS28ttL9+wfn3C5gAA6C5nleWXJN0VER+vmX68pHMkvT4iNtcsco2kU21Pt32QpIWS2r/OEKpuwrnT+g3kTgDa0/HBWCJiaUQsiohFQ3PmdHpzAIDJwh26je8lkt4s6Vjbt+S3EyV9WtIsSdfn0z4vSRFxh6QrlLXYfFfSWRHR/Qu6oqfV5k5zhsidALQnpesm3VEAAF3kTnXdbCgifqL65eC14yzzYUkf7lhQqBJyJwClSWnR+7mkhbYPsj1N2XWCrikmLAAAmrNd+A3oIHInAKVpu0UvIoZtv1PS9yQNSroo76ICAEApKMxQJeROAMqU0nVTEXGtxumuAgAAgGeQOwEoS1KhBwBAN9GiBwBAfaUWettHQo9tGW57+W3DI8kxDI9E85nGMTiQnlRsSx5vLX0/PJW4LxN3oyQpEnfllMH0QWMHeiBJTI2ggLckUE2tjZIJAHrm0pYp60hbfqSAGFIVcXAsdQ1FpF4c5GsNLXoAgEpyF0bdBACgKij0AACVRaEHAEB9Hb9gOgAAAACgXLToAQAqixY9AADqo9ADAFQWhR4AAPVR6AEAqolRNwEAaIhz9AAAAACgz9CiBwCoLLpuAgBQH4UeAKCSuI4eAACNUegBACqLQg8AgPoo9AAA1UWdBwBAXQzGAgAAAAB9hhY9AEA1ma6bAAA0QqEHAKgsCj0AAOqj0AMAVBaFHgAA9VHoAQAqicsrAADQWKmFXoS0bXik7eUHBtJ/0HefnvaUCwhBj28ZTlr+oce3JccwZTBtHJ6ISI5h2pS0GIp4LQYTVzJSwH5IXcP2kbQ17Jb8mSDRBgB01kjib10Rv9fbtqetI/X3Wkp/HoMF/GYPDqatY0oBCVxiGjtpDhLSogcAqK7J8VsNAMCEUegBAKqJUTcBAGiIQg8AUFkUegAA1EehBwCoLAo9AADqa/tURtvzbf/A9p2277D9niIDAwAA6CfkTgDKlNKiNyzp7IhYYXuWpJttXx8RdxYUGwAA46NBD9VC7gSgNG0XehGxVtLa/P5jtu+SNFcSX1YAgFLQdRNVQu4EoEyFnKNne4GkIyXdVMT6AABoxuaC6agucicAnZZ4uUHJ9m6SvibpvRHxaJ3Hl9hebnv5QxvXp24OAACg0iaSO63fQO4EoD1JhZ7tqcq+qC6NiKvqzRMRSyNiUUQs2mvvOSmbAwBgB6OtekXegE6aaO40Z4jcCUB72u666ezX8EuS7oqIjxcXEgAAraEwQ5WQOwEoU0qL3kskvVnSsbZvyW8nFhQXAADNuQM3oHPInQCUJmXUzZ+In0QAQBfRoocqIXcCUKbkwVgAAJgsGl3w2vZetq+3fW/+/575dNv+lO2Vtm+zfVR3nwEAYLKg0AMAVJO7MhjL6AWvD5F0jKSzbB8i6VxJN0TEQkk35H9L0gmSFua3JZI+14ldAQDAWIVcR69VtjRlsP3asogeOttHImn5zdu2J8fwxNa0daQuL0kPPP5Y0vK7Tk1/60wdSDvOsNfMackxTJ86mLT8btPTlpekwalpb+zBgbTlNz+V9n4aibTPFNAuq5jfhYkY54LXiyW9Ip/tEkk/lPS+fPpXIiIkLbM92/Z++XqASWEkMfeSpOHEdWwpIH97fMtw0vKbC8jfUvPYaVPS23h2m5GWA84sIHeanvg8EsoRSdU5baDUQg8AgOJ093IIYy54vW9N8fagpH3z+3MlrapZbHU+jUIPANBRFHoAgMrqUJ03ZHt5zd9LI2Lpjtvd8YLXtQVnRIRtmroBAF1FoQcAwI42RMSiRg82uOD170e7ZNreT9K6fPoaSfNrFp+XTwMAoKMYjAUAUFllD8YyzgWvr5F0en7/dEnfqJn+lnz0zWMkbeL8PABAGWjRAwBUk8sfjEXPXPD6l7Zvyae9X9IFkq6wfaak+yWdkj92raQTJa2UtFnSW0uNFgAwaVHoAQAqyZIGEkednagmF7w+rs78IemsjgYFAEAdFHoAgMqqyAjXAACUjnP0AAAAAKDP0KIHAKisqly0FgCAslHoAQCqqTuDsQAAUAkUegCASrJo0QMAoBEKPQBARTW/7h0AAJMVg7EAAAAAQJ+hRQ8AUFk06AEAUB+FHgCgsui6CQBAfRR6AIBqYtRNAAAaKr3Qi4iEpdN/0YdHRpKW3zqctrwkbdm2PWn5pwqIIdXdGx/vdgg6YPddktex78wZSctv3TaYHMOT29Jez712nZq0/EjSZxIA0O/Scrdifme2JuZODz+xLTmGVQ9vTlr+ro2PJcewaUvafpi/x7TkGJ631+5Jyz9rdlruJUmDu6TlPqm9QQYrcpCRFj0AQCVxeQUAABqj0AMAVBZ1HgAA9VHoAQAqixY9AADqo9ADAFQWdR4AAPUlXzDd9qDtX9j+VhEBAQAA9DNyJwBlKKJF7z2S7pKUNgQPAAATYbpuorLInQB0XFKLnu15kv5Y0heLCQcAgNZko24WfwM6idwJQFlSW/QulHSOpFnpoQAAMBGmRQ9VdKHInQCUoO0WPdsnSVoXETc3mW+J7eW2l2/csL7dzQEAsBNa9FAl7eRO68mdALQppevmSyS93vZ9ki6XdKztr46dKSKWRsSiiFi099CchM0BAABU2oRzpznkTgDa1HahFxHnRcS8iFgg6VRJ34+INxUWGQAATdgu/AZ0CrkTgDJxHT0AQDXR1RIAgIYKKfQi4oeSfljEugAAaEU26iaVHqqJ3AlAp9GiBwCoLAo9AADqS7qOHgAAAACg95TaohchbR+JlDUkx/DU9rR1PDU8khzD1m1p69i4ZWtyDKse3ZK0/KU/+V1yDJs2pcVwxB/skxzD6w9LG81sn5kzkmOYlfh+GEhs0Nhl2mDS8pH+sQTaRoMe0Hmp3/NpuV/mycTfyt8n5j2S9K170i518YMVDyTHsGnTk0nLH3TQXskxvOEF+yUt/7KpQ8kxzJialrtMGUz78Uj9TJSVOtF1EwBQWXTdBACgPgo9AEA1MeomAAANcY4eAAAAAPQZWvQAAJVkcYFzAAAaodADAFQWdR4AAPVR6AEAKmuASg8AgLoo9AAAlUWdBwBAfQzGAgAAAAB9hkIPAFBJdnYdvaJvzbfri2yvs317zbQjbC+zfYvt5baPzqfb9qdsr7R9m+2jOrhLAAB4GoUeAKCyBlz8rQUXSzp+zLR/lPShiDhC0t/mf0vSCZIW5rclkj5XwNMGAKApztEDAFRWNy6vEBE32l4wdrKk3fP7e0h6IL+/WNJXIiIkLbM92/Z+EbG2nGgBAJMVhR4AoLI6VOcN2V5e8/fSiFjaZJn3Svqe7Y8p6y3z4nz6XEmrauZbnU+j0AMAdBSFHgAAO9oQEYsmuMxfSvqriPia7VMkfUnSq4oPDQCA1nCOHgCgkizJHfjXptMlXZXf/xdJR+f310iaXzPfvHwaAAAdRaEHAKisLg3GUs8Dkl6e3z9W0r35/WskvSUfffMYSZs4Pw8AUAa6bgIAqqnFyyEUv1lfJukVys7lWy3pg5LeLumTtqdI2qJshE1JulbSiZJWStos6a2lBwwAmJRKL/QiYdmRlIVH15G4kq3bRpJjeHzbcNLyT27fnhzD3eueTFr+1n9dlhyDNq5qPs84Ht74iuQQjjpg9+YzjWPOLjOSY9ic+n54ajBp+elTaNhHdXWhzlNEnNbgoRfUmTckndXZiIDeVkT+tnVbWu7zwBNpeY8krfj1xqTl71l2S3IMWn9f0uKbNh6THMJB+85KWv7IfWYnxzC0PS0fH4m03Clt6fKQ4QEAAABAn6HrJgCgkixpoBtNegAAVACFHgCgsqjzAACoj0IPAFBZ3RiMBQCAKkg6R8/2bNtX2r7b9l22X1RUYAAAAP2G3AlAWVJb9D4p6bsR8Se2p0maWUBMAAA0ZdN1E5VE7gSgFG0Xerb3kPQySWdIUkQ8JempYsICAKA5BmNBlZA7AShTStfNgyStl/Rl27+w/UXbuxYUFwAATbkDN6CDyJ0AlCal0Jsi6ShJn4uIIyU9IencsTPZXmJ7ue3lD21cn7A5AAB2ZLvwG9BBE86d1m8gdwLQnpRCb7Wk1RFxU/73lcq+vHYQEUsjYlFELNpr7zkJmwMAAKi0CedOc4bInQC0p+1CLyIelLTK9sH5pOMk3VlIVAAANJFdML34G9Ap5E4AypQ66ua7JF2ajxr1G0lvTQ8JAIAW0NUS1UTuBKAUSYVeRNwiaVExoQAAMDHUeagacicAZUlt0QMAoGto0QMAoL6UwVgAAAAAAD2o3BY9S4MpZ7qPRHoIiQd/pwymHz3uiwPQI9u7HYG2D6fHkPqWGi7gPZlqe2IMqc+g+3sAk9XoYCwA0ExE+q9V8iqKyJ0SgyhmP/DLXxV03QQAVBZdNwEAqI9CDwBQWZR5AADUR6EHAKgkWxqgRQ8AgLoYjAUAAAAA+gwtegCAyqJBDwCA+ij0AACVxWAsAADUR6EHAKgs6jwAAOrjHD0AAAAA6DO06AEAKskyo24CANAAhR4AoJpM100AABqh0AMAVBaDsQAAUB+FHgCgsjjRHACA+viNBAAAAIA+Q4seAKCSLLpuAgDQCIUeAKCyBqjzAACoi0IPAFBZFHoAANRXaqFnSYNd/lWeNiXttMSnhkeSY9htatpu3zK8PTmG5+8/M2n5w457cXIMv3/w0aTln/e8fZJj2GuXtNdie6S/H3YZmJq0fOp7OvUTSZ6NbrHpuglUQRGp3/TE37r9d03LeyTp8GfvnbT8w390ZHIMmx45OGn5gxKfgyQdMW9W0vK7zUgvP6YMpr0fJstBQgZjAQAAAIA+Q6EHAKisARd/a8b2RbbX2b59zPR32b7b9h22/7Fm+nm2V9r+le3XFr8XAADYGefoAQAqq0s9Ny+W9GlJX3kmDr9S0mJJh0fEVtv75NMPkXSqpEMl7S/pX20/NyLS++ADADAOCj0AQCVZ0kAXKr2IuNH2gjGT/1LSBRGxNZ9nXT59saTL8+m/tb1S0tGSflpWvACAySmp66btv8q7qNxu+zLbM4oKDACAZgY6cGvTcyW91PZNtn9k+4X59LmSVtXMtzqfhkmK3AlAWdr+TbM9V9K7JS2KiMMkDSrrngIAQJUN2V5ec1vSwjJTJO0l6RhJ/03SFWZIUIxB7gSgTKldN6dI2sX2NkkzJT2QHhIAAK3pUCm1ISIWTXCZ1ZKuioiQ9DPbI5KGJK2RNL9mvnn5NExe5E4AStF2i15ErJH0MUm/k7RW0qaIuK6owAAAGI9tDXTg1qavS3plHtdzJU2TtEHSNZJOtT3d9kGSFkr6WfqzRxWROwEoU0rXzT2VnWR+kLKRxHa1/aY68y0Z7f6yceOG9iMFAGCM7KLpxd6ab9OXKRtM5WDbq22fKekiSc/OL7lwuaTTI3OHpCsk3Snpu5LOYsTNyaud3Gn9hvVlhwmgT6R03XyVpN9GxHpJsn2VpBdL+mrtTBGxVNJSSTr8yBdEwvYAANhBK9e9K1pEnNbgoZ0S9nz+D0v6cOciQoVMOHd6wQsWkTsBaEvKqJu/k3SM7Zn5CefHSbqrmLAAAAD6DrkTgNK03aIXETfZvlLSCknDkn6h/OgTAACd1q3r6AHtIncCUKakUTcj4oOSPlhQLAAATAh1HqqG3AlAWVIvrwAAQHe4O+foAQBQBSnn6AEAAAAAelCpLXq2NHWw/dpycCB94KlIXMVIAWNfbU9cyZCmJ8cwe/q0pOX/8tUHJcfwwKPbkpafu0fac5Ck/WbukrT87OlTk2OYMW0wafmUz5QkDdAkggqzeP8CnZbaRXqwgN+ZXRJ/K/fdPT13Oum5Q0nLP3uv9Bge2TKctPyCPdNjOHTvPZKWnz0zPXeaNiUt93Himzp5+aSlW0fXTQBAJWWDsXQ7CgAAehOFHgCgsij0AACoj0IPAFBZqd1nAADoVwzGAgAAAAB9hhY9AEAlcY4eAACNUegBAKrJXDAdAIBGKPQAAJU1QKUHAEBdFHoAgEqi6yYAAI0xGAsAAAAA9Bla9AAAlUXPTQAA6qPQAwBUlDUgKj0AAOqh0AMAVJJFix4AAI1Q6AEAqskMxgIAQCMMxgIAAAAAfYYWPQBAZXEdPQAA6qPQAwBUEufoAQDQWOmFXsr5FIMD6T1Nt49E0vIzpqbHMLx9MHkd3XbEPnsmr+M5ewwnLT9zavp+HEw8wWfXGekfoamDaTFMSXwOtIigynj/Ap3nxM9ZEefSTk/8zd9z12nJMUybkpYD7r/7jOQYUvPY1P0oSbsl5j67Tk+PITV3miznd3OOHgAAAAD0GbpuAgAqiwY9AADqo9ADAFSSRbcUAAAaodADAFST088dAgCgXzU9GGr7ItvrbN9eM20v29fbvjf/P31kDgAAJsgduAGpyJ0A9IJWer1cLOn4MdPOlXRDRCyUdEP+NwAAAMidAPSApoVeRNwo6aExkxdLuiS/f4mkk4sNCwCA8VnZ5RWKvgGpyJ0A9IJ2z2PfNyLW5vcflLRvoxltL7G93PbyjRs2tLk5AAB2RtdNVEhbudP6DevLiQ5A30kesCwiQlLDqzdGxNKIWBQRi/YeGkrdHAAAT7OLvwGdNpHcac7QnBIjA9BP2h118/e294uItbb3k7SuyKAAAGjOjLqJKiF3AlCqdlv0rpF0en7/dEnfKCYcAACAvkTuBKBUrVxe4TJJP5V0sO3Vts+UdIGkV9u+V9Kr8r8BACjN6AXTi74BqcidAPSCpl03I+K0Bg8dV3AsAABMSDe6btq+SNJJktZFxGFjHjtb0sckzYmIDc4C/KSkEyVtlnRGRKwoO2aUi9wJQC/g4CUAoLK6NOrmxdr5GmmyPV/SayT9rmbyCZIW5rclkj43gacHAEDbKPQAANXkrEWv6FszDa6RJkmfkHSOdhxNcbGkr0RmmaTZ+UAcAAB0VLujbnZFET10UlexbXvD0ZBbNn1KWn296/T0l214JO15bE9cXpJ2nzk1eR2ppg6mvSMGB9LflKnrmDqY9n4aibTXkkEPAcn2YklrIuLWMcXiXEmrav5enU9bK2CSGCjgtzI185k5bTA5hmmJ+dusGen5W2r6VUTeMiUxd5rSA7nTZBmxuVKFHgAAo0YHY+mAIdvLa/5eGhFLG8Zhz5T0fmXdNgEA6AkUegCAyurQUdkNEbFoAvM/R9JBkkZb8+ZJWmH7aElrJM2vmXdePg0AgI7iHD0AQGV1aTCWHUTELyNin4hYEBELlHXPPCoiHlR27bS3OHOMpE0RQbdNAEDHUegBADABDa6R1si1kn4jaaWkL0j6ryWECAAAXTcBANXVjfPpx7lG2ujjC2ruh6SzOh0TAABjUegBACopG4xlcoycBgDARFHoAQAqa5KMkA0AwIRR6AEAKsoyLXoAANTFYCwAAAAA0Gdo0QMAVBZdNwEAqI9CDwBQSQzGAgBAYxR6AIBqMi16AAA0QqEHAKgsCj0AAOpjMBYAAAAA6DO06AEAKovLKwAAUB+FHgCgkixpgDoPAIC6Si30Bm3NnN7+Jp8aHkmOYetI2jqmT0nv7ToSkbR84uKSpCmJ2dFgAcnV9h7I0JL3QwHPITWGgcTltw93//0ItIsWPWBySP2tK+J83tQYphaRPCVyATsidQ1FvBZFPI/JgBY9AEBl8VsPAEB9DMYCAAAAAH2GFj0AQGXRdRMAgPoo9AAAlcRgLAAANNa066bti2yvs317zbSP2r7b9m22r7Y9u6NRAgCwE3fkH5CK3AlAL2jlHL2LJR0/Ztr1kg6LiOdLukfSeQXHBQAAUFUXi9wJQJc1LfQi4kZJD42Zdl1EDOd/LpM0rwOxAQDQmLNRN4u+AanInQD0giJG3XybpO80etD2EtvLbS9fv2F9AZsDACDjDtyAEpA7Aei4pELP9gckDUu6tNE8EbE0IhZFxKI5Q3NSNgcAwNOywVhc+A3oJHInAGVpe9RN22dIOknScRERhUUEAECLKMtQJeROAMrUVqFn+3hJ50h6eURsLjYkAACA/kLuBKBsrVxe4TJJP5V0sO3Vts+U9GlJsyRdb/sW25/vcJwAAOyMk/TQg8idAPSCpi16EXFanclf6kAsAABMCNe9Qy8idwLQC9o+Rw8AgG5j7BQAAOqj0AMAVBZ1HgAA9ZVa6G2P0ONbhpvP2MDmre0vO2rr8EjS8jOnDSbHMGUw7fKFTzyVvh92SX4e6enV1MSrOPbCMOhTBtJjGEhcx9TBtOULeDsBANDTXEDOkPhzKw5NoWy06AEAqou8CQCAuij0AACVlA2SSaUHAEA9FHoAgGoyg7EAANAIhR4AoLKo8wAAqC9xOAwAAAAAQK+hRQ8AUF006QEAUBeFHgCgosxgLAAANEDXTQBAZdnF35pv0xfZXmf79pppH7V9t+3bbF9te3bNY+fZXmn7V7Zf25EdAQDAGBR6AIBKcoduLbhY0vFjpl0v6bCIeL6keySdJ0m2D5F0qqRD82U+a3twwk8WAIAJotADAGACIuJGSQ+NmXZdRAznfy6TNC+/v1jS5RGxNSJ+K2mlpKNLCxYAMGlR6AEAqqszTXpDtpfX3JZMMKq3SfpOfn+upFU1j63OpwEA0FEMxgIAqKwODcayISIWtbOg7Q9IGpZ0abEhAQAwMRR6AIDKamXwlLLYPkPSSZKOi4jIJ6+RNL9mtnn5NAAAOoqumwAAJLJ9vKRzJL0+IjbXPHSNpFNtT7d9kKSFkn7WjRgBAJMLLXoAgMrqRoOe7cskvULZuXyrJX1Q2Sib0yVd76yZcVlEvCMi7rB9haQ7lXXpPCsitnchbADAJEOhBwCopglcD6FIEXFanclfGmf+D0v6cOciAgBgZ6UXegMJP8qDKQvnpk1J6606NXF5SZo6mLqO9Jdt5OnTR9pTxGvRC6YkPo+BAvZD6jlGI2kvJVBpHRqMBQCAyqNFDwBQSVZvDcYCAEAvYTAWAAAAAOgztOgBACqLBj0AAOpr2qJn+yLb62zfXuexs22H7aHOhAcAwDjcgRuQiNwJQC9opevmxZKOHzvR9nxJr5H0u4JjAgCgJe7AP6AAF4vcCUCXNS30IuJGSQ/VeegTyi4Oy5h/AICusIu/AanInQD0grYGY7G9WNKaiLi14HgAAAD6DrkTgLJNeDAW2zMlvV9Z14NW5l8iaYkkzZt/wEQ3BwBAQzTAoQpScqf5B5A7AWhPOy16z5F0kKRbbd8naZ6kFbafVW/miFgaEYsiYtHeQ5x3DAAoEIOxoBrazp3mDM0pMUwA/WTCLXoR8UtJ+4z+nX9hLYqIDQXGBQDAuLK6jMoMvY/cCUA3tHJ5hcsk/VTSwbZX2z6z82EBANBEBwZiYTAWFIHcCUAvaNqiFxGnNXl8QWHRAAAAVBy5E4BeMOGumwAA9Aoa4AAAqI9CDwBQXVR6AADURaEHAKgoMxgLAAANlFro3fqLFRv23m3q/ePMMiSp2yNQEUNvxNDt7RND6zEcWFYgADDZrFhx84Zdpprcqfdj6Pb2iaFaMZSSO5Va6EXEuBeDsb08IhaVFQ8x9G4M3d4+MfRWDEAjjJKJfkfuVI0Yur19YiCGeui6CQCoJK5vDgBAYxR6AIDqotIDAKCuXiv0lnY7ABHDqG7H0O3tS8QwqhdiAOpiMBagJ76jiaH725eIYRQx5BwR3Y4BAIAJe/4RL4hv3vDvha93wdCMm3vh3AoAAFL0WoseAAAtYzAWAADqo9ADAFQWdR4AAPUNdDuAUbaPt/0r2yttn9uF7c+3/QPbd9q+w/Z7yo4hj2PQ9i9sf6tL259t+0rbd9u+y/aLuhDDX+Wvwe22L7M9o4RtXmR7ne3ba6btZft62/fm/+/ZhRg+mr8Wt9m+2vbssmOoeexs22F7qJMxAC1z1qJX9A2oAvKmHWIhdyJ3IneqoycKPduDkj4j6QRJh0g6zfYhJYcxLOnsiDhE0jGSzupCDJL0Hkl3dWG7oz4p6bsR8TxJh5cdi+25kt4taVFEHCZpUNKpJWz6YknHj5l2rqQbImKhpBvyv8uO4XpJh0XE8yXdI+m8LsQg2/MlvUbS7zq8fWCC3IEb0NvIm3ZC7kTuVIvcKdcThZ6koyWtjIjfRMRTki6XtLjMACJibUSsyO8/puxDOrfMGGzPk/THkr5Y5nZrtr+HpJdJ+pIkRcRTEfFIF0KZImkX21MkzZT0QKc3GBE3SnpozOTFki7J718i6eSyY4iI6yJiOP9zmaR5ZceQ+4SkcyQxehMAdB95U47c6WnkTs9MI3fK9UqhN1fSqpq/V6sLXxajbC+QdKSkm0re9IXK3hAjJW931EGS1kv6ct4F4ou2dy0zgIhYI+ljyo5+rJW0KSKuKzOGGvtGxNr8/oOS9u1SHKPeJuk7ZW/U9mJJayLi1rK3DYzHousmJi3ypmdcKHIncqfGJnXu1CuFXs+wvZukr0l6b0Q8WuJ2T5K0LiJuLmubdUyRdJSkz0XEkZKeUOeb3HeQ9+VerOyLc39Ju9p+U5kx1BPZdUi6dkTG9geUdZO5tOTtzpT0fkl/W+Z2gVbRcRPorm7lTfm2yZ1E7tQIuVPvFHprJM2v+XtePq1Utqcq+7K6NCKuKnnzL5H0etv3KeuCcaztr5Ycw2pJqyNi9Ijclcq+vMr0Kkm/jYj1EbFN0lWSXlxyDKN+b3s/Scr/X9eNIGyfIekkSW+M8i98+RxlPxy35u/NeZJW2H5WyXEAddGih0mKvClD7pQhdxqD3CnTK4XezyUttH2Q7WnKTiC9pswAbFtZ/+q7IuLjZW5bkiLivIiYFxELlD3/70dEqUdjIuJBSatsH5xPOk7SnWXGoKzbwTG2Z+avyXHq3gnW10g6Pb9/uqRvlB2A7eOVdUl5fURsLnv7EfHLiNgnIhbk783Vko7K3ytA17kD/4AKmPR5k0TuVIPcqQa50zN6otDLT5h8p6TvKXtjXhERd5QcxkskvVnZ0aBb8tuJJcfQC94l6VLbt0k6QtJHytx4fkTsSkkrJP1S2Xt0aae3a/syST+VdLDt1bbPlHSBpFfbvlfZ0bILuhDDpyXNknR9/p78fBdiAAD0EPKmnkPuRO7Uk7mTy2/NBAAg3eFHviC+96Nlha93vz2m3RwRiwpfMQAAJZrS7QAAAGgXHS0BAKivJ7puAgAwUZ0YiKWVwVhsX2R7ne3ba6btZft62/fm/++ZT7ftT9leafs222UP0gAAmKQo9AAAmJiLJR0/Ztq5km6IiIWSbtAzw6ufIGlhflsi6XMlxQgAmOQo9AAAldWNUTcj4kZJD42ZvFjSJfn9SySdXDP9K5FZJmn26NDjAAB0EoUeAKC6eueK6ftGxNr8/oOS9s3vz5W0qma+1fk0AAA6isFYAACV1aHBWIZsL6/5e2lEtDxUeUSEbYa0BgB0FYUeAKCyWhk8pQ0b2ri8wu9t7xcRa/Oumevy6Wskza+Zb14+DQCAjqLrJgAA6a6RdHp+/3RJ36iZ/pZ89M1jJG2q6eIJAEDH0KIHAKio1gZPKXyr9mWSXqGsi+dqSR+UdIGkK2yfKel+Safks18r6URJKyVtlvTW0gMGAExKFHoAgEqyOtZ1c1wRcVqDh46rM29IOquzEQEAsDO6bgIAAABAn6FFDwBQWd1o0QMAoApo0QMAAACAPkOLHgCgsroxGAsAAFVAoQcAqCbTdRMAgEYo9AAAleT8BgAAdkahBwCoLio9AADqYjAWAAAAAOgztOgBACqLwVgAAKiPQg8AUFkMxgIAQH0UegCAyqLOAwCgPs7RAwAAAIA+Q4seAKC6aNIDAKAuCj0AQGUxGAsAAPVR6AEAKsliMBYAABpxRHQ7BgAAJsz2dyUNdWDVGyLi+A6sFwCA0lDoAQAAAECfYdRNAAAAAOgzFHoAAAAA0Gco9AAAAACgz1DoAQAAAECfodADAAAAgD7z/wFwIjJ3J7vXiAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "recorteB1 = trim(imagen[:,:,2], 210, 237, 15, 15)\n", + "poptB1, pcovB1 = curve_fit(gauss2d, xdata1, recorteB1.ravel(), p0=[1,0,1,1,1])\n", + "estrellaB1=gauss2d(xdata1, poptB1[0], poptB1[1],poptB1[2], poptB1[3], poptB1[4])\n", + "FWHMB1=FWHMB.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptB1[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 1 fotografÃa (Banda Azul)\")\n", + "plt.imshow(recorteB1, plt.get_cmap('Blues'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 1 a partir de la gaussiana (Banda Azul)\")\n", + "plt.imshow(estrellaB1.reshape(15, 15), plt.get_cmap('Blues'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 2 (Azul)" + ] + }, + { + "cell_type": "code", + "execution_count": 428, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3oAAAFWCAYAAAA/ou8cAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABIjklEQVR4nO3de5xld1nn+++3Ll19SSedTjcx5AoYcIJKIxFhEETwAhycoKOR6GBQjoFzwIGROQp4ZgDHCzoCyujAhAkmzIRAJNzEqEREkBkTTEIMJAFJYmISOul0Op3upK9V9cwfaxXZXdm/Z1et2rdV/XnntV+pXr+91vqttXfVen57/fbzOCIEAAAAAFg9JkbdAQAAAABAfzHQAwAAAIBVhoEeAAAAAKwyDPQAAAAAYJVhoAcAAAAAqwwDPQAAAABYZRjoAQCwRLZPtf052zfbvsn26+vlH7F9Q/24w/YN9fIzbO/vaHvfSA8AAHDUmBp1BwAAaJFZSW+MiOttb5R0ne2rIuKnF55g+52SHupY57aI2DbkfgIAjnIM9AAAWKKI2C5pe/3zXtu3SDpZ0s2SZNuSzpX0gpF1EgAAMXUTAIBGbJ8h6emSrulY/FxJ90XENzqWPcH2l21/3vZzh9lHAMDRizt6AIBWmjz29IjZ/X3fbuy//yZJBzoWXRgRF3Y+x/Yxkq6Q9IaI2NPRdJ6kyzr+vV3SaRHxgO1nSPqE7acuWgcAgL5joAcAaKWY3a+Zp5zb9+0euOGPDkTE2aV229OqBnmXRsTHOpZPSfoJSc/4Vh8jDko6WP98ne3bJD1Z0rV97zgAAB0Y6AEAWsqSh/sNhPo7eBdJuiUi3rWo+YckfS0i7u54/lZJuyJizvYTJZ0p6fahdRgAcNRioAcAaCdLsoe91+dIeoWkryyUUJD0loi4UtLLdeS0TUl6nqRft31Y0ryk10TErmF1FgBw9GKgBwBoryHf0YuIL6oaYnZre2WXZVeomuYJAMBQMdADALTX8O/oAQDQCpRXAAAAAIBVhjt6AICWGn4yFgAA2oKBHgCgvZi6CQBAVwz0AADtZHFHDwCAAgZ6AICWMnf0AAAo4KNQAAAAAFhluKMHAGgvpm4CANAVAz0AQHsxdRMAgK4Y6AEAWoryCgAAlDDQAwC0k8UdPQAACvgoFAAAAABWGe7oAQDai6mbAAB0xUAPANBSfEcPAIASBnoAgPaa4Dt6AAB0w0ehfWD7DNthe6r+99/Y/r+HsF/b/mPbD9r+0qD3t1K2n2L7Btt7bf/betm7bP9+w+39tu039LOPy9j3xbZ/YxT7Lul839n+MdsfGXWfAADDM6p4ZNzYfq7tr69wG43O3eLXoM1s32T7+SPa92W2XzaifY/d743tO2z/UP3zL9n+naWst6oGevVJ2G/74Y7HHy5hvbD97cPoY49+PK5+Y3/T9kO2/5ft70tW+X5JPyzplIh45hK2P+rj/BVJn4uIjRHxHtvPlfS9kv6/5W7I9lZJPyfpv9X/fr7t+Y7X/R7bb+9r7/us/kPyoO2Zfm87Iv5U0lNtf3e/tw2MDauautnvB7BCR2E8MlKLz1tE/G1EPGWUfVoNIuKpEfE3w95vHbs8TdIn63+/0vZcx+/S7bb/n2H3a6nqGzG32755QLt4v6Sftf24Xk9cjVe0H4uIYzoer1vpBof4qcwxkv5e0jMkbZZ0iaQ/s31M4fmnS7ojIh4ZUv+KlniOTpd0U8e/nyDppyPicINdvlLSlRGxv2PZNxded1WD4FeN6tOgXmyfIem5kkLSvxrQbi6TdMGAtg2MB7v/D6A/jqZ4ZCSanI/VcKftKPBqSZdGRHQs+7uOGO9fS/pd208fTfd6ep6kx0l6ou3v7ffGI+KApD9XdcMjtRoHel3Z/nbbn68/mdq5MK3N9hfqp/xD/SnBT9d3h+62/au275X0x7YnbL/J9m22H7B9ue3NS9jvk2z/db3OTtuX2t7U7bkRcXtEvCsitkfEXERcKGmNpMd8KmX7VZL+u6Rn1/1+e738F23fanuX7U/ZfnzpOLPn120/Yvvr9Tn7r/X5W5ga+Mr6E753235A0tuyY7X915J+UNIf1vt/sqQXSPp/6/bjbX/a9v31Xa5P2z4lObUvlvT5UmNE/JOk/y3prI7j+QPbd9neY/s6V3cUF9reVr+mH3Q1tfQm22d3tD/d9vV120ckre1oW27fpeqX82pJF0s6v2Nbj/eRnwDvsx0dffyfHc/tNT3kbyT9Xz36AbSYuaOH1llt8Ui97Wfa/jvbu21vt/2HttcUnrtw7brA1R3D7bb//VK3Va/7WtvfkPSN7Lx1rHNHfQ5vlPRIt+um7R+2/bX6dflDVXMGOtt/wfYt9XX+L22fXjjVi7f78/V6e13d5Xl18txJ2++sX59/sv06HzkVt7gtV3HZFxdt71t3Om2/xPbN9br3LJxz21vquGW3q1jwb+3qD6GPnC64lNflNba/UT/nj+zqk7PlvPdqvWK8L0u6RdK/6Nj/n9i+t379vmD7qR1tF9f9+bP6+K+x/aSO9uJr36DvUhXXfVLSlToyxluI2RceB2zf0dHH3+h47hHv4S7+RkuI8Y6mK9p/kvQZScdLOkXSf5GkiHhe3f60+pOChe81fZuqT7FOV3VX5JckvUzSD0h6vKQHJf3REvZrSb9dr/MvJJ0q6W1L6bDtbar+sN66uC0iLpL0Gj36Ccdbbb+g3te5kk6SdKekD5eOM3u+7S2SPirpzZJOkPR1Sf9yUTe+T9Ltkk6U9JvZsUbECyT9raTX1fv/x0XbmpD0x6rO92mS9kvKprl8V92nrmyfKek5qgZTC/5e0jZVr+uHJP2J7bUd7f+qPv5Nkj61sP/6D9knJP2Pet0/UfVpUtO+S9VA79L68aO2T5SkiPjWXcn6U6uP131q4hZJZ9g+tuH6wPjjjh7aZ1XFI7U5Sf9O0hZJz5b0QtUf5CZ+UNKZkn5E0q8uDCiWuK2XqYpBzkrO22LnqQqMN0XE7KLj2yLpY5L+/3q/t6mKIRbaz5H0Fkk/IWmrqnjmsh7Ht2CHpJdKOlbSz0t6t+3vKTz3F1UNcrZJ+p76OJtua7GLJL06IjZK+k5Jf10vf6Oku1Ud14mqjjO6rL+U1+Wlqr6S892qYssfrZcv+b1ne4OqGV9ZjPe9kp4s6dqOxX+u6v30OEnXq4qvOr1c0ttV/d7dqipu7fnaL6fv9fbWS/pJPRrjvXxhQBwRnXclj5d0jZb+PlrsFlXTW1OrcaD3ifqThIXHL9bLD6v6I/n4iDgQEV9MtiFJ85LeGhEH6+mBr5H0axFxd0QcVPUi/2S3T4U6RcStEXFVvZ37Jb1L1R/nVB2c/w9Jb4+Ih3o9v/azkj4QEdfXfXyzqjt+ZzR4/ksk3RQRH6v/IL5H0r2L1v9mRPyXiJiNiP1Nj1WSIuKBiLgiIvZFxF5Vv4DZupsk7V207PH1a75H0j+q+gX61uscEf+z3s9sRLxT0oyO/HTyixFxZUTMqTr3C79Az5I0Len3I+JwRHxU1aCxUd9tf7+q9+LlEXGdqj8qP9Pleb8q6Tsk/UJyHjIL52dTw/UBAM0dNfFIRFwXEVfX19c7VH1/vte23x4Rj0TEV1R9WHreMrb12xGxa9HXN3p5T0TcVVhnIeb5aP11kt/XkTHPa+p93lLHRL8ladtS7upFxJ9FxG1R+byqQf5zC08/V9If1K/tg5LesYJtLXZY0lm2j42IByPi+o7lJ0k6vY5x/jYiHjPQW+Lr8o6I2B0R/yzpc6oGrMt9722q/784xntW/Xu0V9KXVL0nv9HRvw9ExN6O34mn2T6uY/2PR8SX6tfv0oW+qcdr3+D35ickHVT12vyZqvix252399TH+GvJtjJ7JR3X60mrcaD3sojY1PF4f738V1SNyr/kalper+D5/qjmwC44XdLHF/5gqxpJz6n69KPI9om2P1zfJt8j6X+q+sQgW2edpD+VdHVE/HaPfnZ6vKq7cpKkiHhY0gOSTm7w/MdLuqujLVR94tPprs5/NDnWjnXX2/5vtu+s1/2CpE22JwurPChp46Jl36xf82NV/aHYr+p7BQv7+Peupjw8VL+Gxy3qX+cf9X2S1tYXzsdLumfRH75vnbcGfT9f0mciYmf97w+p49Z+vc0XS3q9qvfzci5knRbOz+6G6wPjj6mbGF9HTTxi+8mupv/dW2/7t3ptW0fGEHequtYudVt3afmydbrFPJ3PP13SH3Sc812qXsNSfPUttl9s+2pX0yJ3qxpYlM7NEf1Y3Odlbmuxf10//05XU4efXS//z6rucH3G1XTQNxWOYymvy+I46ph63eW893bX/18c411d/x5tVHWX+6l1HxamvL7D1XTmPZLuqNfJYryF75umr32D35vzVX2QP1v/3l6hx8Z4r5b0fEk/ExHzybYyGyX1vBF01FzRIuLeiPjFiHi8qi95/lfnma0Wf5pxl6QXL/qjvTYi7umx69+qt/Vd9QDk32jRvO9OrjIwfkLVoKo4j7vgm6r+GC1sa4OqaZelPmbP365qSslCmzv/XVt8jpZ1rIu8UdXdte+r112YilFa/0ZVt+27qj91/JCkH6v7/1xVF9dzJR0fEZtU/YIspX/bJZ1cn4MFpzXpe33RPFfSD9R/LO9VNRXiabafVj/nKaoGqOdGROcf+Uckre/497f16Pe/UJWsZ0+vAwRaaRDTNpm6iQFbpfHIeyV9TdKZ9bbfkm27dmrHz6epikmWuq1uUwt7ydbZ3tmf+nrf2b+7VE177Dzn6yLif2c7rM/hFZJ+T9KJdexxpcrn5ojYa1Gfem3riBjB9hExQkT8fUSco2pq4yckXV4v3xsRb4yIJ6r6Cssv235hl741eY0XLPm9F1WCwduUx3j3qToXP1Yv+hlJ50j6IVUf4p9RL19qjJe99kvuu6v8DC+Q9G86YryflPQSV1NEF+LR/yTpnEXxWZMY7x96HdxRM9Cz/VN+NEHGg6petIVR9H2SnthjE++T9JsLt+ltb3U1Z7uXjZIelvSQ7ZOVlBKwPa3qe3H7JZ3fYJR/maSft72t/oPwW5KuqW+xS489zuz5fybpu2y/rL6r9Vr1ftMt+VgL6+6XtNvVl8rf2uP5VyqfHnmMqvnYC1k+N0qalXS/pCnb/1HVHPel+Lt63X9re9r2T0jqLGexnL6/TNUnr2epmjawTdUv699K+jlXU2Q+qWpazuLpPDdIep7t01xNR3hzj37/gKo568DqxR09tMwqjUc2Stoj6WHb3yFpKanv/0M9I+apqr5vtvDduibbWsp5y/yZqpJEP1HHPP9WR8Y875P05rqvsn2c7Z9awnbXqPqayP2SZuvZOj+SPP9ySa+3fbKrhB+/uoxt/UN9DNtc5R9420KD7TW2f9b2cfX0xD2q33O2X+oqQZBVfQA+p0ffj52avC6d6y4nPuwV450g6cd1ZIx3UNWstPWq7/QtUa/Xfjl9f4Wqrw49RY/GeE9W9WHJebZPVfUa/1w8NlfFDaoGhJvrQfobevR7STHearyi/amPzGjz8Xr590q6xvbDqhJtvD4ibq/b3ibpEle35M8tbPcP6vU+42p+8NWqvgjcy9tVfaH2IVVvpo8lz/2Xqr7I+iOqBg0Lx7Ck+dcR8VeS/oOqTzm2S3qSqsHOgrep4ziz59fTCn9K0u+q+sU5S9WXXg/26VgX+31J6yTtVHVu/6LH8z+o6hdiXceyb2WsVDUNZLOq7yFK0l/W2/zHuu2Aljj1IyIOqZpz/UpV0zV+Wkce23L6fr6kP46If64/1b03Iu5VlbzlZ1UNIJ+i6gvWD3ccjyLiKlUXwhslXSfp0z26fp7qOoPAqsUdPYyvoyke+feq7qrsVVXjq5QQpdPnVU0Z/Kyk34uIz6xgW29T7/NW1BHzvENVzHOmpP/V0f5xSb8j6cOupu99VVXSlF7b3atq4HC5qkH9z6h67Urer+q7XTdK+rKqAc+spLle26oHDr8u6a9UfXdt8YfFr5B0R93/1+jR+OjMep2HVX2w/V8j4nNd+tbkdVmw3PjwQlV14jr/ID+7Iya6RdWA95fqtg+qiu3ukXSzjkzEl+r12i+z7+erOn/3Lorx3le3vVDVFOuPdvxOLQxW/4eqwfodqt4DxfNbD+Rfoo6vJxWfG4/9viXwGK5S7d4t6WcLfwCGzvZvSdoREb8/6r6MG9s/JukVEbHsCx7QFhPHnRoz//KX+77dA3/xy9dFxNm9nwlguVwlfPsnSdOxKPsljlTftXtfRCyplMNqYvtDqr7r9olR92Xc2P4lSadGxK/0ei5FI1Fk+0dVZa7cr+pWtbWMT0kGLSLeMuo+jKuI+FNVX6AHVjEz1RLAqlHPUvpBVXd0TlT1VZCPpyutUhHxmGzkqETEf1nqc7lCIvNsVV+I3anqC68ryQAJAP3H1E0Aq4dVTRV8UNXUzVsk/ceR9gitxh09FEXE27TEYqoAMHQWd/SAlqkTvvGJShcRsU/VdziBvmCgBwBoKaZuAgBQwhUSAAAAAFaZFd3Rs/0iVWl+JyX994h4R/b8LVu2xOmnn7Hs/WR5QeeTrKFuOjMgWS3bYs/8pQNIcBrJRoedULXpV1uOhsSvkxPDnaXS9Jxm76eSu/75Tj2wcyfTcDAafKcOLTOs2AnA+Lrzzju0cwixU+OBnu1JSX8k6YdVpd3/e9ufioibS+ucfvoZ+l/XXLvsfc3Pl4PP/Yfnim0TSQCQxd1uuF7STUlSVsoiC8yzzc7OlWuYziUdyvra9NwczQO9XmVKjlk73FnS2WufdXWuwRvxhc9bSvkmYECYuokWGWbsBGB8Pef7hlPBZyVXyGdKujUibq8LSn9Y0jn96RYAAEtA1k20C7ETgKFZyUDvZEl3dfz77noZAAAAHovYCcDQDHw+me0LJF0gSaeedtqgdwcAOFqYrJtYnYidAPTDSq6Q90g6tePfp9TLjhARF0bE2RFx9tYtW1ewOwAAFhny1E3bp9r+nO2bbd9k+/X18rfZvsf2DfXjJR3rvNn2rba/bvtHB3xGMN6InQAMzUru6P29pDNtP0HVH6mXS/qZbIW5CD1yYLZ7Y3JtnZkqj0eztl7JUZrIttkrIUdmIsmAcjhJuJKtl+4vacuS38ymST6aHf+WjTPFtr37Dxfbdu49VGzLztmx66aLbetnJottmamJ/DOTg4fL/ckyck5NltuyhCuzc+W2LOFKk740zm4L9EGWIGpAZiW9MSKut71R0nW2r6rb3h0Rv7eof2epuj4+VdLjJf2V7SdHRDmTGFazZcdOANBU44FeRMzafp2kv1SVIvgDEXFT33oGAEDCGv5ALyK2S9pe/7zX9i3Kv2N1jqQPR8RBSf9k+1ZVCTn+buCdxdghdgIwTCv6jl5EXCnpyj71BQCAcbDFdmc++wsj4sLFT7J9hqSnS7pG0nMkvc72z0m6VtVdvwdVDQKv7liN5BtHOWInAMPCt9gBAO3kAT2knQvfj6of3QZ5x0i6QtIbImKPpPdKepKkbaru+L1zEIcMAMBSDbeKMwAAfeNRfEdPtqdVDfIujYiPSVJE3NfR/n5Jn67/uaTkGwAA9Bt39AAArWW7748e+7OkiyTdEhHv6lh+UsfTflzSV+ufPyXp5bZn6gQcZ0r6Ul9PAgAAXXBHDwDQWiO4o/ccSa+Q9BXbN9TL3iLpPNvbJIWkOyS9WpIi4ibbl0u6WVXGzteScRMAMAyreqDXsPJAWkIhKz2womoOScr7bJ/pJpvtbiBlKTL7D5VjnqyEQFZaYjLKbdl62XkZwQyxVBbgptUeypUeNJlss1R6YdzOCzBIEfFFdS8IVEyuERG/Kek3B9YpAH2zklJZq9kopslj5Vb1QA8AsLoRfAAA0B0DPQBAOz2aJRMAACzCQA8A0EoeUdZNAADagIEeAKC1GOgBANAd5RUAAAAAYJXhjh4AoLW4owcAQHfjM9BLstlmKfZLKd9XomkJhaZlECRpPknnmx1/8/31fZONA65HDs4W27Isx9lrP+Hyzeqm75ns9Z2cHEyw2fR1ynqTnrf0nBJQY/ww0AOOXoMohTDs6gpNdzf8v3z9PzH8/R688RnoAQCwHGTdBACgiO/oAQAAAMAqwx09AEBrMfUHAIDuGOgBAFqJOnoAAJQx0AMAtBYDPQAAumOgBwBoL8Z5AAB0NfyBXuminGRtnc3KHTTM9jrXdMVktaxEQo9V0+OYG3Kq38wgYqqDs/PFtunJcr6gNVPltqyfU0kJgSxVc/Y6uEcdhLSiQ1qzI93sUPV6fwMA0G9NSygMIMwbSDmHpgbRk2yGRHboWYiTTbrodT6ZsbFy3NEDALSTCQQAAChhoAcAaC0GegAAdMdADwDQWgz0AADojoEeAKCVKK8AAEBZOZsFAAAAAKCVuKMHAGgvbugBANDVUAd6ljVRmGYznySKnU9S188mqVmztK3ZdJ9BzQTKjiMzO9f/HPtNpzsN4tQ0PC15yYJE9r7ISnnMJvUV5np0Zu10+eZ5+r5Icxanuywq/Q726ksUVhujbNM42pB1E2iFlZQlyFYdRCmEoe+v0VrN47E0/k3j5vI2s2Nw0tPex9Ds7HBdeNSKBnq275C0V9KcpNmIOLsfnQIAYCm4oKNtiJ0ADEs/7uj9YETs7MN2AABYFgZ6aCliJwADRzIWAAAAAFhlVjrQC0mfsX2d7Qv60SEAAJbMA3gAg0XsBGAoVjp18/sj4h7bj5N0le2vRcQXOp9Q/xG7QJJOOfW0Fe4OAIBHMXUTLbSs2OnU04idADSzojt6EXFP/f8dkj4u6ZldnnNhRJwdEWdv2bJ1JbsDAOBbbA/kAQzScmOnrcROABpqfEfP9gZJExGxt/75RyT9eq/1ylnoyxfXuSS96qHZcumBiSTl/WSPZLDFliy97ArSzGcZ9uea1h9I9X+bWdr+fL1yW57KuNHu0nOdbXM+aZxPSi9IkpLyCtma2T4nGs4xy0qZZK8hZRQAYGWaxk5tMIhyBlLzkgZNr+dNyytk28xWHEh5haQxi7nSik7pNrM1sxJSPeKYhqs2La+2Gq1k6uaJkj5en7ApSR+KiL/oS68AAFiCo+2ijdYjdgIwNI0HehFxu6Sn9bEvAAAsCwM9tAmxE4Bh6kcdPQAARoNxHgAAXTHQAwC0Fnf0AADojoLpAAAAALDKcEcPANBO5o4eAAAlQx3o2dJkIa9rJOnps4y1WQmFPE1subVpuv9esgz8WSrY2V6p+8dENDw72es0H+XyGfMNy06sXTNZbMteh2x32XtGKr/vq53m6zbSMA1yk/TQTV93YKWs3tm5AfTPIEoopNedHrLrchYjzDUsr5CVu2oaPwyivELTUghZqJKWLGu43kSPo89asxJTlF54FFM3AQAtNfyC6bZPtf052zfbvsn26+vl/9n212zfaPvjtjfVy8+wvd/2DfXjfYM/LwAAMHUTANBiI/gAdlbSGyPietsbJV1n+ypJV0l6c0TM2v4dSW+W9Kv1OrdFxLah9xQAcFTjjh4AAEsUEdsj4vr6572SbpF0ckR8JiJm66ddLemUUfURAACJgR4AoMWGPXVz0b7PkPR0SdcsavoFSX/e8e8n2P6y7c/bfu6KDxoAgCVg6iYAoJ08sKmbW2xf2/HvCyPiwiN2bR8j6QpJb4iIPR3Lf03V9M5L60XbJZ0WEQ/YfoakT9h+auc6AAAMAgM9AEArWXlGtxXYGRFnF/drT6sa5F0aER/rWP5KSS+V9MKoU7tFxEFJB+ufr7N9m6QnS7p28XYBAOinsRnoNf1Udiorr5Bsc7LhDrM0wL1SBDdNvds09XDTjMUrSXXcRNN0/4eTshNZ7Dc1l6UWbvq+yNuz92mayjlpzPraNPRtXHoBGJFhJ2NxNbfzIkm3RMS7Opa/SNKvSPqBiNjXsXyrpF0RMWf7iZLOlHT7cHsNDF7TEgq9Li153FVeLyuFkLXNZuvNlUs+ZZWwslIPgyiv0LQUQlYKamqy/G2vSL4INpG8fmnpKfWISZIzR+mFR43NQA8AgBZ4jqRXSPqK7RvqZW+R9B5JM5KuqgOCqyPiNZKeJ+nXbR+WNC/pNRGxa+i9BgAcdRjoAQBaa9ifskbEF9X9w/QrC8+/QtU0TwAAhoqBHgCgnQaXjAUAgNZjoAcAaCWrvd+bAABg0BjoAQBaanl17wAAOJpQMB0AAAAAVhnu6AEAWosbegAAdDfUgd7cfOiRg3Nd29atmSyul9W1mE7qemQ1yA43rIWS9WU2W1HSgcPdj12SDs2W+5NNTcr6k9WZy/aXHmNW1y2pW5LVO1k3VX7tm9Zuy+q9ZLL34fqkbTorTCPpgYcPFduyOjFTyXaz90VWty8rW7Nmqnzepqe7tzWtPQj0A1M3gf7KYoDskty0Hlyv63zTmndZTDabxIBZ7JTGjg3r9vWqw1uSXcubxhVZ7LQm6Wi2Xra/nrL6fEnMGdkuk/O9Gi8n3NEDALQTWTcBACjiO3oAAAAAsMpwRw8A0EqUVwAAoIyBHgCgtRjnAQDQHQM9AEBrcUcPAIDuGOgBAFqLcR4AAN31HOjZ/oCkl0raERHfWS/bLOkjks6QdIekcyPiwd7bKqeDTdPEJo1Zat1MVgkhTYObtGUlCyTp4OEsnW+5bTI7/oZpgPccmi2vN5+UXkjy0k65nNsnC8YOZceerJiVz1iflGzI4sI8RXCz1Mm9ZKmlo2GO4Cxb9XxWBiM7jEJjwwoYALBq9TN2GoRBlFDIttm09ICUx3lNy0hlbQcblsJK25K4qmkcm5VRWjORlElIyihlbbPpeuVjmIkk72OyzZ6SVZ2d0iwgTV+KcuM4zyxZyhm+WNKLFi17k6TPRsSZkj5b/xsAgOFxdYHt9wPog4tF7ARgxHoO9CLiC5J2LVp8jqRL6p8vkfSy/nYLAIBclXWz/w9gpYidAIyDpt/ROzEittc/3yvpxD71BwCAJeIOHFqF2AnAUK24YHpUk7KLE1dtX2D7WtvXPrBz50p3BwDAt3BHD220nNjp/p33D7FnAFaTpgO9+2yfJEn1/3eUnhgRF0bE2RFx9glbtjTcHQAAQKs1ip22btk6tA4CWF2aDvQ+Jen8+ufzJX2yP90BAGDpSMaCFiF2AjBUSymvcJmk50vaYvtuSW+V9A5Jl9t+laQ7JZ27lJ1FlNO3Z9lls8tu4yypiSxFcJYKfyUpgg8kpRemJ8sHuS9JA/zQoUPFtp37y227D5S3mZVzSCoTpMHTCevLb8Psk4iZpITChqnyNjfOl9uy99NsUgZiZrrcFykvHzII2VtxIvnNyMqHDP0ggF6Yaokx1c/YaZzk8VF5vaytV+yUlVDISiFkJa0OJOvtO1Ru23PocLHt4cPlslX7Z5OSDUlskVmTBF3rGsZHx66ZLratX1PeZuMKUz3+gOfxf7k1K6+QxUCr8YO+ngO9iDiv0PTCPvcFAIAlq7Jurr4LM9qP2AnAOGiadRMAgJFjoAcAQHcrzroJAAAAABgv3NEDALQWN/QAAOiOgR4AoLWYugkAQHcM9AAA7UTWTQAAioY60Isop7TNMrdnqXenp8pfM+yVsrdkIokc5tK0rI12V++z3Lb3UDll7+6D5TIJ9+w9WGz75wfLbbseKW/z4QPlvjR18uZ1xba1yeu7brrcdsKG8lt7y/o1xbYkc7SOW1tOO9xLVn4he+2z91R2J6NppuOsBEjpjEbjvQEABiUrhZBd65r+Rc/KT2Wle7LrjiQdni2XHziUtO3PyiQcLJdJeOBAOQbalZSmuv+R8jb3JGWrDiTHkMnio2PXlmOOLD46YW05PjphfqbYlr2CWWicxdtVe/kYJ5IaCtlms32m78SGjaOedcIdPQBAK1kUOAcAoISBHgCgtRjnAQDQHQM9AEBr9Zr6AwDA0YqBHgCgtRjnAQDQHQXTAQAAAGCV4Y4eAKCV7NFnNAMAYFwNfaBXyr57aK6cmnSy4XU8Sx+cyVIEZ3qVc8gOI1v13n0Him0P7Cun8/3H+/cX2+7Y8XCxbccD+4ptB5LyCnNz5RTBWSx23wnri23rk5IGmzeWU/1uSdpmNzd7fbNj2Ki89MKaJA1ytuHsPTXV8BeDwBirSVaeBMDyZWUZslglC53mksbZJP6TpMNJbHHgcLnt4aQ01f37yyWmvpmUprprd7ltx55y25795VjtQFIGIjOTlJg6LikjtTWJj07dVD6f2WuYfVc6+xs92eMP+ETSnpVXyNbL3sMTY1wmoSnu6AEAWqutF18AAAaNgR4AoLUY5wEA0B3JWAAAWCLbp9r+nO2bbd9k+/X18s22r7L9jfr/x9fLbfs9tm+1faPt7xntEQAAjhYM9AAArWRJHsB/PcxKemNEnCXpWZJea/ssSW+S9NmIOFPSZ+t/S9KLJZ1ZPy6Q9N4BnAoAAB6DgR4AoLUm3P9HJiK2R8T19c97Jd0i6WRJ50i6pH7aJZJeVv98jqQPRuVqSZtsn9T/MwEAwJH4jh4AoJ3skSZjsX2GpKdLukbSiRGxvW66V9KJ9c8nS7qrY7W762XbBQDAAA11oGdL04U089mlOruQH57NUsGWt3nwcDmdbZZ6NUt3v6IUwXPl/mQlFP75wXI639vv21tuu+PBYtvOe8tt+/aWSy9ortzPzH2bNxXbNm7aWGzbtGldse3xJx7TqC9ZyYINU+VflynnN8c3zEw26k+WsjhLgZ39zjRdDxhHA3rLbrF9bce/L4yIC4/cr4+RdIWkN0TEns7fnYgIO8n9DbRUXnqh3JbGTj1KUx1K4rwslnvwwKFi232PlGOnf9pVLml1d1J+asfuckmrhx4q7+/gwXIZiOx8z8yUY5LjjltbbHs4KZN1OHktsvhgZrIcA2Vta6bKr60kTc2V9zmdxGvzyXGkszay2ClbLWkbNe7oAQBwpJ0RcXap0fa0qkHepRHxsXrxfbZPiojt9dTMHfXyeySd2rH6KfUyAAAGiu/oAQBayaruevf7ke6z+lj7Ikm3RMS7Opo+Jen8+ufzJX2yY/nP1dk3nyXpoY4pngAADAx39AAArTWC2cbPkfQKSV+xfUO97C2S3iHpctuvknSnpHPrtislvUTSrZL2Sfr5ofYWAHDUYqAHAGitYX+vNCK+qPJXMl7Y5fkh6bUD7RQAAF0wdRMAAAAAVhnu6AEAWskeydRNAABaoedAz/YHJL1U0o6I+M562dsk/aKk++unvSUiruy9rXI61CwValaWIPvifLbNzGyyvyzNb9ZPSdp7qJzSdt9sue3+R8plC3bsKafs/ea9Dxfbtv/zjmLb4bv+sdimR3aX2zLJ6/TIA8eV2zaV6wofPKXcNpmk3Z2ZLpc6OHZtue2EdeXXYd1UXj4he99M9qrQXFS+IZ91Zzb5tShUP6nWKxxCkv0ZGLheyVOAUehn7JTJ0u+n6zXdX9aWNGbxWBZzSdLhpHTVvqS8wkOHytfse/cmbbvL5RW+ufORYtuOHeW2vbvL8djBA+U4LjOzdqbY9sgjG4pts7Plc5bFIxvWlAOETUnsdMz0dLFtZjqfWLgmCUqykh3zE+W2iKz8VLkvTS81pd/RYYVOS5m6ebGkF3VZ/u6I2FY/VvSHCgCAJjyAB9AHF4vYCcCI9byjFxFfsH3GEPoCAMCyDDsZC7AUxE4AxsFKkrG8zvaNtj9g+/i+9QgAAGB1InYCMDRNB3rvlfQkSdskbZf0ztITbV9g+1rb1z6wc2fD3QEAcKSqYHr/H8CANIqd7t95f+lpAJBqNNCLiPsiYi4i5iW9X9Izk+deGBFnR8TZJ2zZ0rSfAAAcyZYH8AAGoWnstHXL1uF1EsCq0migZ7sz3eGPS/pqf7oDAMDSLZRY6OcDGARiJwDDtpTyCpdJer6kLbbvlvRWSc+3vU1VdtA7JL16KTuLaJaKfTZJrbt+pjxWTXdVzi6byvqfpXqVpMPz5RTCjxwul1fY+XA5DfDOveU0wLt37yv35aHdxbbGJRQy2YnL9jdXPi971pfTB2/YuK683qa15bYD5TfGI0ka5+Nn8tc+K68wNVl+D08mKYKztvkkfXAWx2Zv4YmhJQMGlo47cBhH/Yydmmpa+iZdLyuhkKyYhHE9Y6es/EJWmmrPwf7HVbt27S+27d75ULHtkQd3F9u0b0+5LTmnB9cdW2ybTWLKySTmWLeuXArh+GPWFNt2byy3bV5bjp2y+F7qUUIhfS+W2wYRyQyiLEO/LCXr5nldFl80gL4AAAC0HrETgHHQc6AHAMA4WkjGAgAAHouBHgCgtZi6CQBAdwz0AACtxTAPAIDuGOgBAFrJlia4owcAQFdNC6YDAAAAAMbU2NzRS9O6J9+2P5ykZs3SsjZty0z2yAqQpV99+FA5/Wz2ifW+A+UUug89UE71q113l9vGyYGHi01z95eP4cEN5RIKmzaVSy/sPaGccvnhg+XX6ND6vF5H9p6ammy2XpaWeE3D3+wsPTaT5DCOuKEHLF80rL2QVl5o2NirK9l1MC1bdSgpy5CUXti3rxwHPPJwufTCI3sfKbbpofvLbft2l9syh8t92TddLnew7phyDLRvX7ntkeSc7T9cPteHktcojzl6lEloWj8kkb+Fy63j/F3xsRnoAQCwXON8gQUAYJQY6AEAWotxHgAA3fEdPQAAAABYZbijBwBoJctk3QQAoICBHgCgnczUTQAAShjoAQBai2QsAAB0N9SBXkg6PNc9zWrDigZputNhp0LtVZZhLu1Peb1e6WdLJiaSr2DO5+UAWiFJLTxfeJ/1kr0vsrZDDffXS/aempxoVnpharJ8HNlbbTJZDxgVvmgO9Ff/k9b3SFu/gu0ml7q8PFHWNlu+ns/NJrHTbLksQxav6PDBcltmKtnmoXLb7OFymYT02JOTnZU6y2LYXrF/HuPn6zbZ5mosI8U1EgAAAABWGaZuAgBayWLqJgAAJQz0AACtNcE4DwCArhjoAQBai4EeAADdMdADALSSzdRNAABKSMYCAAAAAKvMcO/oRTnte5Z+dWZ6stg237QuQ2IiTbFf3l+2niRNJu0zk+Ux92QyNylLeT+9ZrrYtn/NumJb41S/wzZRfl9MJOdzaqp8ztZMldebSdab6jF/bLrh65ttNnu/TaTbTMorJPsrHSM3VDBKTN0E+msQv1LZNleyv2zd7NqaXbOnkjhgcqocd2iqHHNpak2ztsz02qStvM3sGNJjT+LNJMTJY5UeL35e8ipfFxWmbgIAWouLPQAA3THQAwC0ktV7JgUAAEcrBnoAgNbii+YAAHTHNRIAAAAAVhnu6AEAWmsUMzdtf0DSSyXtiIjvrJd9RNJT6qdskrQ7IrbZPkPSLZK+XrddHRGvGW6PAQBHIwZ6AIBWsj2q7+hdLOkPJX1wYUFE/PTCz7bfKemhjuffFhHbhtU5AACkJQz0bJ+q6mJ2oqSQdGFE/IHtzZI+IukMSXdIOjciHsy2FRE6PDffta1pGtyDDcsrZClds7ghS/WaHYMkTWelEJLctCdsKL9MJ2wsp9fddMLGYtueLacV27R/b7ltfq7cNgjrjyu3bS0fw7HHH1ts27ChnHZ407ryud6QlPmYmUxSLqv6xem3ptss/Q5K0lzy+1Rqmy9vDhi4UYzzIuIL9Z26x3B1kThX0guG2imMlX7GTgPqX7EtknJX+TabNfb6Hc5iq6w01frppG2mfK1ft65cJmH9hply2zHri237Dj2u2Na4vMK6cpyzbuOGYtv6DeW4MTv2Dck5y871molyW68P6vJYvdkf/7RkQ8P1xtlSvqM3K+mNEXGWpGdJeq3tsyS9SdJnI+JMSZ+t/w0AwNBMuP+PFXqupPsi4hsdy55g+8u2P2/7uSveA9qA2AnAyPUc6EXE9oi4vv55r6rvGpws6RxJl9RPu0TSywbURwAAhmmL7Ws7HhcsY93zJF3W8e/tkk6LiKdL+mVJH7Jd/igeqwKxE4BxsKzv6NVTVZ4u6RpJJ0bE9rrpXlXTEwAAGIoB1tHbGRFnL3cl21OSfkLSMxaWRcRBSQfrn6+zfZukJ0u6tk99xZgjdgIwKksur2D7GElXSHpDROzpbItqQnfXSd22L1j4VHTXrp0r6iwAAJ3s/j9W4IckfS0i7n60f95qe7L++YmSzpR0+4r2gtboR+x0/877h9BTAKvRkgZ6tqdV/aG6NCI+Vi++z/ZJdftJknZ0WzciLoyIsyPi7M2bt/SjzwAASAP4ft5SvqNn+zJJfyfpKbbvtv2quunlOnLapiQ9T9KNtm+Q9FFJr4mIXX07Bxhb/Yqdtm7ZOpwOA1h1lpJ105IuknRLRLyro+lTks6X9I76/58cSA8BABgjEXFeYfkruyy7QlWwj6MIsROAcbCU7+g9R9IrJH2l/kRSkt6i6o/U5fUnmXeqSiedsl0sI5BNl2me6re80exT2+w7HxMu96VXeYV1k0lq2qly2YLNScr/EzaWU/1u3VpOr/vwnvInhLsOf3uxTQ/dV247uK/clpVl2Hxyue3YE4pNW04q3yF+3OPKx358kh55KimBkb2fshIgknRotlyDIHvfTCT9yX4v5pMyCVl5hayfUvfXcK7h7yfQD04TYgMj07fYqak8rmq2XtqW9CW5lPWMnbL2tVPl0kbHrU1ipw3lMgK7krhq3+Z1xbbZ7Dqf9PPg/mOKbZk1a8tlGY45rrzNE04ol4HIYsrN68vn7LgkTl2XHHsWc0k94qM0ji+3DeKKMc6VF3oO9CLiiyqflxf2tzsAACxNlYxl1L0AHovYCcA4WFbWTQAAxgkDPQAAumOgBwBorWxKNQAAR7Mll1cAAAAAALQDd/QAAK3Ed/QAAChjoAcAaKeVFzgHAGDVGvpAb6LBx6/7DpVT808VyjVIPVL9Jv3I0r3OR9aW7FDSdLLdLP3s2unyMW5KUtqedEK5xMBckmI/S9m7d3e5LMPs4dlim5JzM7OunM5346ZyiuAtW8opgrduLrdtXFdOETydvC+yLMBTzmdBz0yV27P3RakciZS/T6eT/WWaVEogzsYoZeVwgNUu+45q09JU6f6Stiy+y9qyOE6S1iTXsw1T5RjouDXla/23bSzHK3sPJiUU5pISW8lxrF9fjqsOHiz3JXsNZ2aSYz8uKb11fDk++rasbWNSXiE51xumy/3MYhypV3mFZm1Ny4c0VfodHdaVizt6AIBWYuomAABlJGMBAAAAgFWGO3oAgNZi5iYAAN0x0AMAtJQ1wbdEAQDoioEeAKCVLO7oAQBQwkAPANBOJhkLAAAlQx3ozUdoXyGN7PokTWxWtqBpqt/MxHySYj/Z5lyP+gpZCuGZyXJ5heOSc/NtG8tlEg7MllMEr51O9rdxbbHtob3lcgcHD5bLYGSylMQbN5ZTEm/aUE4fvHljue2YmfKxn7ChfK6zFMFrk/IYkjSTlMjIUkc3TS2clYJwsr+sZMNUoS9ZHwEA4yf7q51FMlk5h+xSkF2vSteWBVkK/uzaummmHD8c2FCOVw5nJRSSvm5IYrXdxx4qth083Cx2mkniuGPXl8sdbE3io1M2ldu+LVlvc1KWKysRlsU/Uh43Z69FXkKhWczS1kiHO3oAgNaijh4AAN0x0AMAtBLf0QMAoIyBHgCgtbijBwBAdxRMBwAAAIBVhjt6AIDW4oYeAADdMdADALSSxbQUAABKhjrQm50P7Xq4e4rZLMXqdJYrPpGl7M1KIWRlGdyw9IKUpx6eSj6W3rKunNI2yQKsw8kxTib7yz4hz45x/6HupTN6OW59OS3vMWvLKYI3rE1KIawppx3etK683qZkf1mq5vXJ/qS8REj2XpxNXuA8fXC5LS3LkLy+pRTX3FHByLh5qmwA3aUlFJLiC0l4lMZj8z1ivCw+nJsvX3uz6+7jolxGKouP1q8p9+WE9Ul5hf3lOO7AbF6aq2TtVLmfxyXxUVZGamsSj2UlFI5Zk5SfSspATPcqr5C8b7K2NI5P9rcaryfc0QMAtNbquywDANAfzHoBAAAAgFWGO3oAgFayKK8AAEAJAz0AQGsxzAMAoDsGegCA1uKGHgAA3THQAwC0lFdlljQAAPphqAO96Qlr67HdU8xOFVK3S9KaJPVulj730Ox8sa1ZMts8zW/vdZOSDmm5gyS97IYk1W+SCvcJm8qlEA7Mlc/bw0kJhYNJiuCIcttxSbmD7GxPTpRbj01S/W6eKac5no3ysWclMHq9nzbM5OUXSrJyB1lb9p7JwuKp5HdtLnkNAQDjJf8QJPl73qwpjWMiuZhPRf5hzXwSd80n16Wsr9kep5PYYv1UObY4fu3hYtuB2bli26GsTlYiu16vmyrHHBuny8ewcU1S0iqJq9YlJaZmppvF91J+jFkJhTymLu8vL72QtY3vB449Ry22T7X9Ods3277J9uvr5W+zfY/tG+rHSwbfXQAAKgsF0/v9AFaK2AnAOFjKHb1ZSW+MiOttb5R0ne2r6rZ3R8TvDa57AACUjfMnqTiqETsBGLmeA72I2C5pe/3zXtu3SDp50B0DAKAXhnkYR8ROAMbBsmap2D5D0tMlXVMvep3tG21/wPbxhXUusH2t7Wt37dq5st4CALDA1R29fj+Aflpp7HT/zvuH1VUAq8ySB3q2j5F0haQ3RMQeSe+V9CRJ21R9avXObutFxIURcXZEnL1585aV9xgAAKAF+hE7bd2ydVjdBbDKLCnrpu1pVX+oLo2Ij0lSRNzX0f5+SZ8eSA8BAOhiIRkLMI6InQCMWs+Bnqt5LBdJuiUi3tWx/KR6Drok/bikr/ba1sSEtWGm+y6nG5ZQyDKzZglrs3T/TSWZXiXlJSSkclr/bLvrp8spbbMUwVPJRmeSshTrk5S9Wfr9rG0ymSqVtWXnJUstPJOkal7rcls2pWttkj54FJqWUADahqmWGEf9jJ3GSfb7NpFEXVkFhaxUkCSVE/4rr9uQyHaZXSOz+OG4uXJPDyVlq7KyTpmshMDayXIMtCYrZ5YcX1omIVsvacvj4jxWzV7DrO1ou2Ys5TfkOZJeIekFi9IB/67tr9i+UdIPSvp3g+woAACLeQCPnvusvlu1w/ZXO5YV0+bbfrPtW21/3faPrvig0QbETgBGbilZN7+o7te+K/vfHQAAxt7Fkv5Q0gcXLX9M2nzbZ0l6uaSnSnq8pL+y/eSIKFdQRusROwEYB+M13wwAgGWw+//oJSK+IGnXErt4jqQPR8TBiPgnSbdKembjAwYAYIkY6AEAWqlKxuK+P1agW9r8kyXd1fGcu0U9NQDAEDDQAwC01oDu6G1ZqGFWPy5YQleWlDYfAIBhWVJ5BQAAxo/lld2BK9kZEWcvZ4Ukbf49kk7teOop9TIAAAaKO3oAAKyQ7ZM6/tmZNv9Tkl5ue8b2EySdKelLw+4fAODoM9Q7epMT1rHruu8yq5V38HA5OVlWDS+rzTfbMN9Zvr983Dyf1kpJarsltfKy/kxNlltn5sv7m51O6uElL9Th+Wa1YA4m9WWyOoGZbL11a8ptWV2aTPYaSdJsct561V8cpjHqCrAkoyiJZPsySc9XNcXzbklvlfR829tU/Vm+Q9KrJSkibrJ9uaSbJc1Kei0ZNzFqeS2xJLLIgo6GdW9XdMshqdGW9Ser3ZfVdlszldTDm2sWO803rOucvYbp8SVt08n5zGLq7Jxl6/WqoTiR1tFr9sc/WyvbZFvr7zF1EwDQSgvJWIYtIs7rsvii5Pm/Kek3B9cjAAAei4EeAKCdllgOAQCAoxEDPQBAazHQAwCgO5KxAAAAAMAqwx09AEBrDai8AgAArcdADwDQStZ4Za0FAGCcDH2gV06H2iy9bPN+lNuyUg8rkaWYzfoT0+UZtlnK3mx/mWybWfrgUFIGIkkfvDHpS5Z6N0utm6XkXZOkD87S52av0VSPcz2I9MmZ7LylWa75whNahjt6wPA0rcqQrdczc27DLxll17Pskj01kZRJyMp2pSUUyvvL4qNM03ilaemFbL2mbVmsJkmTyTGm76mG661G3NEDALTW0XbRBgBgqUjGAgAAAACrDHf0AACtxdRNAAC6Y6AHAGglkrEAAFDGQA8A0FLmjh4AAAV8Rw8AAAAAVpmh3tGLkA7Nzndvy9brsc2SNPVqMt9nPish0DANbtWfJKVtkrI3S03bVFZCIUsDfLjw+lXrNdtmJisR0fS1b3o+s3S9K3hbNC6FkL2fmmYibFoGAhgJk3UT6Lfs2pLFQE1LKMz3KK+VpdjPJFUSZJfvc0w2jI+mm8ZATa+7DcsrpKWpGsbNTcsgrCS+HUQJhaYlrcYZUzcBAK21+i7LAAD0BwM9AEArVclYGOoBANANAz0AQGsxzAMAoDuSsQAAAADAKsMdPQBAe3FLDwCArhjoAQBaizp6AAB013OgZ3utpC9Imqmf/9GIeKvtJ0j6sKQTJF0n6RURcSjbVih0eK6cnn+YstAgS/ealV7oJcsim6V0XTNZnmGbpezNchTMJseRpdjPjqFpyYbZ5D2RvRZZRuKsL5mm6Xp77W0qeQ2bvhebpiVu+g4unW8qMmCUyMWCcdTP2GmcDLv0gpRfs5JLa16CKWmLpLNZfBTZcWT7Kzel0rOWxZvJak1joKbr9SpnkJeYSldtvM/VZinf0Tso6QUR8TRJ2yS9yPazJP2OpHdHxLdLelDSqwbWSwAAuvAAHkAfEDsBGLmeA72oPFz/c7p+hKQXSPpovfwSSS8bRAcBAADahNgJwDhYUtZN25O2b5C0Q9JVkm6TtDsiZuun3C3p5IH0EACAEm7pYUwROwEYtSUN9CJiLiK2STpF0jMlfcdSd2D7AtvX2r72gZ07m/USAIBFqnFZ//8D+qFfsdP9O+8fVBcBrHLLqqMXEbslfU7SsyVtsr2QzOUUSfcU1rkwIs6OiLNP2LJlJX0FAOBRrr6Q3+8H0E8rjZ22btk6nI4CWHV6DvRsb7W9qf55naQflnSLqj9aP1k/7XxJnxxQHwEA6IqZmxhHxE4AxsFS6uidJOkS25OqBoaXR8Snbd8s6cO2f0PSlyVdtJQdTpRSwmfp95NU+VMNU8ynV/Nkf9NJLt8stXAvxfOiPPVudvhZultNlpvmkwoY81kuY5VXzFIZ7z9UblwzgEqPWeWF6clmr0Ovd2FWCqFp2Y1M07dinh6bEBgAlqivsVMbDKL0QrVyutNGK06mfS1vMSsFkR3jsKsQ5WUJklII6XoN+9Jwf4Pa59GmZxgdETdKenqX5bermnMOAMBocD3HGCJ2AjAOBnC/BACAYSB5CgAAJQz0AACtxQwdAAC6Y6AHAGglkqcAAFC2rPIKAAAAAIDxxx09AEB7cUsPAICuhjrQm7A1M9X9JuLsXDn57OG5ctr+iYnyTcksbX2afj6tIJCkz+3xZZEsxX6W6vfhg7PFtqyEQiQJfZslJG5eQiJNO5y0zWW1EBLzDfuZlblYiey1zzT9/lF2+E1LKKykfAgwKCRjAcbfytLdN41lGpZLSmPHZM1V8IXhpq/TIMoyVOu2/5yOGnf0AACtRRwAAEB3fEcPAIBlsP0B2ztsf7Vj2X+2/TXbN9r+uO1N9fIzbO+3fUP9eN/IOg4AOKow0AMAtJYH8FiCiyW9aNGyqyR9Z0R8t6R/lPTmjrbbImJb/XjNMg8RAIBGGOgBANppEKO8JYz0IuILknYtWvaZiFj4QvXVkk5ZyaEBALBSDPQAAK3lAfzXB78g6c87/v0E21+2/Xnbz+3HDgAA6IVkLACAVrIGloxli+1rO/59YURcuKQ+2b8maVbSpfWi7ZJOi4gHbD9D0idsPzUi9vS3ywAAHGmoA735CO07NNe1LctYm6W8z67xWcmG2SRtf5bSP0uT3yvgyPpzcL5cQqJUkkLKyytk5pITfvBwuS/p65T0ZXKq3LZ+pvw2zKoSZK/F1GT5nKXpmBuXj+jxhKSv2TFm7/2mr322Vva+KL1FyXqIVWhnRJy93JVsv1LSSyW9MOo/JhFxUNLB+ufrbN8m6cmSri1tB8Cjmpb9ya5NeRzQrC+ZYRcnGsRleRDXesonDB539AAArTUuYYLtF0n6FUk/EBH7OpZvlbQrIuZsP1HSmZJuH1E3AQBHEQZ6AID2GsFIz/Zlkp6vaorn3ZLeqirL5oykq+pPqa+uM2w+T9Kv2z4saV7SayJiV9cNAwDQRwz0AACt1afkKcsSEed1WXxR4blXSLpisD0CAOCxGOgBAFqLr3gAANAd5RUAAAAAYJXhjh4AoLW4oQcAQHdDHejZ1trpya5tWYr5wXSm3DQ1mZQJWME8oSy97uG5ckmDpNqDomHS3vlso4mmh5+lK163pvt7QsqDuKZlN5rKzliv85K9v7PtZqU+5pI1V/I+LcnONzAyvC2Bo9Zg0vP3vxjCavgzRSmEduKOHgCglazRJGMBAKANGOgBANrJJGMBAKCEZCwAAAAAsMpwRw8A0Frc0AMAoDsGegCA9mKkBwBAVwz0AAAtZZKxAABQMNSB3g3XX7fzuHWTd9b/3CJp5zD338M49Ye+dEdfuht1X04f4b4BYFW7/vrrdq6b9jjGTuPUF2m8+kNfuqMvjxpK7DTUgV5EbF342fa1EXH2MPefGaf+0Jfu6Et349QXYNjIuonVblxjp3HqizRe/aEv3dGX4WPqJgCglSy+ogcAQAkDPQBAezHSAwCgq1EO9C4c4b67Gaf+0Jfu6Et349QXYKhIxoKjzDj9vR+nvkjj1R/60h19GTJHxKj7AADAsn33tmfEn372f/d9u2dsWXvd0fDdDQDA6sbUTQBAa5GMBQCA7iZGsVPbL7L9ddu32n7TKPrQ0Zc7bH/F9g22rx3B/j9ge4ftr3Ys22z7KtvfqP9//Aj78jbb99Tn5wbbLxlSX061/TnbN9u+yfbr6+VDPzdJX4Z+bmyvtf0l2/9Q9+Xt9fIn2L6m/p36iO01g+4LMA48gAcwjoidvrXvsYmbkv6MIj4Ym7ipR3+InYZo6AM925OS/kjSiyWdJek822cNux+L/GBEbBvRVJ2LJb1o0bI3SfpsRJwp6bP1v0fVF0l6d31+tkXElUPqy6ykN0bEWZKeJem19ftkFOem1Bdp+OfmoKQXRMTTJG2T9CLbz5L0O3Vfvl3Sg5JeNYS+AKPl6o5evx/AuCF2OsLFGp+4qdQfafjxwTjFTVl/JGKnoRnFHb1nSro1Im6PiEOSPizpnBH0YyxExBck7Vq0+BxJl9Q/XyLpZSPsy0hExPaIuL7+ea+kWySdrBGcm6QvQxeVh+t/TtePkPQCSR+tlw/tPQOMHvf0cFQgdqqNU9yU9Gfoxilu6tGfoTuaY6dRDPROlnRXx7/v1ohe+FpI+ozt62xfMMJ+dDoxIrbXP98r6cRRdkbS62zfWE9PGNp0iAW2z5D0dEnXaMTnZlFfpBGcG9uTtm+QtEPSVZJuk7Q7Imbrp4z6dwoA0F/ETrlxi5ukEcZO4xQ3demPROw0NCP5jt6Y+f6I+B5V0yFea/t5o+5Qp6jSoo4yNep7JT1J1a3u7ZLeOcyd2z5G0hWS3hARezrbhn1uuvRlJOcmIuYiYpukU1R9yvsdw9gvMG4spm4CIzK2sdMYxE3SCGOncYqbCv0hdhqiUQz07pF0ase/T6mXjURE3FP/f4ekj6t68UftPtsnSVL9/x2j6khE3Ff/csxLer+GeH5sT6v643BpRHysXjySc9OtL6M8N/X+d0v6nKRnS9pkeyGL7kh/p4BhYuImjhLETrmxiZuk0cUH4xQ3lfpD7DRcoxjo/b2kM+tMN2skvVzSp0bQD9neYHvjws+SfkTSV/O1huJTks6vfz5f0idH1ZGFPw61H9eQzo9tS7pI0i0R8a6OpqGfm1JfRnFubG+1van+eZ2kH1Y17/1zkn6yftpI3zPAMHFHD0cJYqfc2MRN0sjig7GJm7L+EDsN19Dr6EXErO3XSfpLSZOSPhARNw27H7UTJX28ei9qStKHIuIvhtkB25dJer6kLbbvlvRWSe+QdLntV0m6U9K5I+zL821vU3Wr/w5Jrx5GXyQ9R9IrJH2lnlMtSW/RaM5NqS/njeDcnCTpkjoD24SkyyPi07ZvlvRh278h6cuq/rgCq565B4ejALHTo8Ypbkr6M4rYaZzipqw/xE5D5Gq6LgAA7fK0pz8j/vJvru77dk/atOa6EZXbAQCgb4Z+Rw8AgL7hhh4AAF0x0AMAtBbjPAAAumOgBwBoJZKnAABQRh09AAAAAFhluKMHAGgtsm4CANAdAz0AQHsxzgMAoCsGegCA1mKcBwBAdwz0AACtRTIWAAC6IxkLAAAAAKwy3NEDALSUScYCAEABd/QAAK1kPVpLr5+Pnvu1P2B7h+2vdizbbPsq29+o/398vdy232P7Vts32v6egZ0QAAA6MNADAGB5Lpb0okXL3iTpsxFxpqTP1v+WpBdLOrN+XCDpvUPqIwDgKMdADwDQWqO4oxcRX5C0a9HicyRdUv98iaSXdSz/YFSulrTJ9kl9OXgAABIM9AAAWLkTI2J7/fO9kk6sfz5Z0l0dz7u7XgYAwECRjAUA0FoDSsayxfa1Hf++MCIuXOrKERG2YwD9AgBgyRjoAQDaaYlTLRvYGRFnL3Od+2yfFBHb66mZO+rl90g6teN5p9TLAAAYKKZuAgBayQN6NPQpSefXP58v6ZMdy3+uzr75LEkPdUzxBABgYLijBwBorxGU0bN9maTnq5riebekt0p6h6TLbb9K0p2Szq2ffqWkl0i6VdI+ST8/9A4DAI5KDPQAAFiGiDiv0PTCLs8NSa8dbI8AAHgsBnoAgNYaUDIWAABaj4EeAKC1BpSMBQCA1mOgBwBoLcZ5AAB0R9ZNAAAAAFhluKMHAGgvbukBANAVAz0AQGuRjAUAgO4Y6AEAWskiGQsAACWuSvwAANAutv9C0pYBbHpnRLxoANsFAGBoGOgBAAAAwCpD1k0AAAAAWGUY6AEAAADAKsNADwAAAABWGQZ6AAAAALDKMNADAAAAgFXm/wAyAnuJFUVl0QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "recorteB2 = trim(imagen[:,:,2], 645, 535, 35, 35)\n", + "poptB2, pcovB2 = curve_fit(gauss2d, xdata2, recorteB2.ravel(), p0=[1,0,1,1,1])\n", + "estrellaB2=gauss2d(xdata2, poptB2[0], poptB2[1],poptB2[2], poptB2[3], poptB2[4])\n", + "FWHMB2=FWHMB.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptB2[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 2 fotografÃa (Banda Azul)\")\n", + "plt.imshow(recorteB2, plt.get_cmap('Blues'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 2 a partir de la gaussiana (Banda Azul)\")\n", + "plt.imshow(estrellaB2.reshape(35, 35), plt.get_cmap('Blues'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 3 (Azul)" + ] + }, + { + "cell_type": "code", + "execution_count": 429, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3oAAAFSCAYAAACkM60KAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA2sElEQVR4nO3debxkd1nv+8+3h0wkEEiHGNKddMSABmSywSBHRYIYEGiuRzEIGJBLxBMmxYuA9wjcc1BUDpMgnlYgcIhBhCBRUYjI4ECCSRiTgEQIpEPHpCGEQKbu3s/9Y60N1Tu1x1XDXrs/737Vq6tWreGpWrWrnmf9fuu3UlVIkiRJktaOddMOQJIkSZI0WhZ6kiRJkrTGWOhJkiRJ0hpjoSdJkiRJa4yFniRJkiStMRZ6kiRJkrTGbJh2AJIkrcT6O59QtfeWka+3brn+A1V12shXLEnSBFnoSZJ6qfbewsH3fuLI13vrp964aeQrlSRpwiz0JEk9FYhnIEiSNIyFniSpnwIk045CkqRVyUJPktRftuhJkjSUhZ4kqb9s0ZMkaSgPhUqSJEnSGmOLniSppxyMRZKk+VjoSZL6y66bkiQNZaEnSeqnYIueJEnzsNCTJPVUbNGTJGkeHgqVJGmJkmxJ8uEklye5LMnz5jz/giSVZFP7OElen+TKJJ9J8qDpRC5JOtDYoidJ6q/Jd93cC7ygqi5NcgRwSZILquryJFuARwFfHZj/0cBJ7e1HgTe1/0uSNFa26EmS+isZ/W0BVbWrqi5t798EXAEc1z79GuCFQA0ssh14ezUuBI5McuzI3wdJkuawRU+S1FPTvbxCkq3AA4GLkmwHrqmqT2f/YvE44OqBxzvbabsmFack6cBkoSdJ6qcwrsFYNiW5eODxjqrasd+mk8OB9wDPp+nO+RKabpuSJK0KFnqSJO1vd1Vtm+/JJBtpirxzquq8JD8MnAjMtuZtBi5N8hDgGmDLwOKb22mSJI2VhZ4kqb8m3HUzTSX3ZuCKqno1QFV9Frj7wDxXAduqaneS84FnJ3knzSAsN1aV3TYlSWNnoSdJ6qmpnKP3MOCpwGeTfKqd9pKqev88878feAxwJXAz8PSxRyhJEhZ6kqQ+WzfZC6ZX1T/TnB240DxbB+4XcNaYw5Ik6Q68vMIIJNnaXiB3Q/v4I0n+7wlsN0nemuSGJJ8Y9/a6SnLvJJ9KclOS57bTXp3ktStc3+8lef4oY1zGts9O8j+nse35DH7ukjwuyV9MOyZJ0uRMKx9ZbZL8eJIvdFzHit67ufugz5JcluThU9r2uUmeMKVtr7q/myRXJXlke/85SX5/KcutqUKvfRNuSfLtgdsblrBcJfmBScS4mCQfTnJ9km8l+XQ7ZPd8/gvw08DmqnrIEtY97df5QuDDVXVEVb0+yY8DDwb+n+WuKMnRwC8D/7t9/PAkMwP7/ZokLx9p9CPWfpHckOTgUa+7qv4auE+S+4163dKqEZqum6O+SR0dgPnIVM1936rqn6rq3tOMaS2oqvtU1Ucmvd02d7k/8L728dOS7Bv4W/pSkl+bdFxL1TbEfCnJ5WPaxJ8CT05y98VmXIu/aI+rqsMHbs/uusIJH5V5HnBsVd0ZOBN4xwIX1z0BuKqqvjOx6OaxxPfoBOCygccnAr9YVXtWsMmnAe+vqlsGpn1tdr/TFMHPmNbRoMW019/6cZoLKz9+TJs5l+YzJK1dE75gurQMB1I+MhUreT/WQkvbAeBXaUY1roFpHx/I8f4r8AdJHjid8Bb1EzQDdH1/kgePeuVVdSvwdzQNHgtai4XeUEl+IMlHk9yYZPdst7YkH2tn+XR7lOAX29ahnUl+K8m1wFuTrEvyoiT/keTrSd6V5G5L2O49k/xju8zuJOckOXK++avqM1W1d/YhsJH9h+aeXe8zgD8DHtrG/fJ2+jOTXJnkG0nOT3KP+V7nQvO3zz0qyRfa9+yP2/dvtmvg05L8S5LXJPk68LKFXmuSfwR+CnhDu/17AY8A/lv7/F2T/E179PCG9v7mBd7aRwMfXeB9/DLwr8DJA6/ndUmubo9OXpKmRXH2uZe1+/TtabqWXpZk28DzD0xyafvcXwCHDDy33Nih+eO8EDgbOGNgXffI/keAb05SAzG+Y2DexbqHfAT42UXikHostuipd9ZaPtKu+yFJPp7km0l2JXlDkoPmmXf2t+vMJF9r5//Npa6rXfasJF8EvrjQ+zawzFXte/gZ4DvDfjeT/HSSz7f75Q2w/7m4SX4lyRXt7/wHkpww33s3Z7mnt8vdlKaV51cXmHd9kv/V7p8vJ3l29u+KO++60uRl/zxnfd9t6UzymCSXt8teM/ueJ9nU5i3fTJML/lPSfBFm/+6CS9kvz0ryxXaeNybNkbPlfvZYPMf7JHAF8EMD2//LJNe2++9jSe4z8NzZbTx/277+i5Lcc+D5eff9CmKHJq97H81gXIM53mzOPnu7Nc0ozbMx/s+Beff7DA/xEZaQ4x1Iv2j/A/ggcFea6xj9EUBV/UT7/P3bIwWz5zV9H3A3mlaoM4HnAE8AfhK4B3AD8MYlbDfA77XL/BDNl+TLFlyg+YO7FbiIZkdePHeeqnoz8Cy+d4TjpUke0W7ricCxwFeAd873OheaP8km4N3Ai4GjgC8APzYnjB8FvgQcA7xioddaVY8A/gl4drv9f5+zrnXAW2ne7+OBW4CFurn8cBvTUElOohkd78KByf8GPIBmv/458JdJDhl4/vHt6z8SOH92++0X2V8B/6dd9i9pjiatNHZoCr1z2tvPJDkGoKq+NngEGHhvG9NKXAFsTXLnFS4vrX626Kl/1lQ+0toH/DqwCXgocCrtgdwF/BRwEvAo4LdmC4olrusJNDnIyQu8b3M9iSYxPnKggJ19nZuA84D/t93uf9DkELPPbwdeAvwccDRNPnPuIq9v1nXAY4E704y6+5okD5pn3mfSFDkPAB7Uvs6VrmuuNwO/WlVHAPcF/rGd/gJgJ83rOobmddaQ5ZeyXx5Lc0rO/Whyy59ppy/5s5fkTjQ9vhbK8R4M3Iv9P49/R/N5ujtwKU1+Neh04OU0f3dX0uSti+775cTeru8w4Of5Xo53+mxBXFWDrZJ3pfm7WurnaK4raLq3LmgtFnp/1R5JmL09s52+h+ZL8h5VdWs7ctpCZoCXVtVtbffAZwG/XVU7q+o2mp3888OOCg2qqiur6oJ2PdcDr6b5cl5omccCR9AMyf3BqppZJNZZTwbeUlWXtjG+mKbFb+sK5n8McFlVndd+Ib4euHbO8l+rqj+qqr1VdctKXuvAa/56Vb2nqm6uqpto/gAXWvZI4KY50+7R7vNvAf9O8wf03f1cVe9ot7O3qv4XcDAw2If/n6vq/VW1j6aom/0DOoXmSOZrq2pPVb2bpmhcUexJ/gvNZ/FdVXUJzZfKLw2Z77eAHwR+ZYH3YSGz78+RK1xekrRyB0w+UlWXVNWF7e/rVTTnzy/2+//yqvpONdehfCtNIbbUdf1eVX1jzukbi3l9VV09zzKzOc+729NJXsv+Oc+z2m1e0eZEvws8YCmtelX1t1X1H9X4KE2R/+PzzP5E4HXtvr0BeGWHdc21Bzg5yZ2r6oaqunRg+rHACW2O809VdYdCb4n75ZVV9c2q+irwYZqCdbmfvSPb/+fmeKe0f0c3AZ+gydO+OBDfW6rqpoG/ifsnucvA8u+tqk+0+++c2dhYZN+v4O/m54DbaPbN39Lkj8Na3l7fvsbfXmBdC7kJuMtiM63FQu8JVXXkwO1P2+kvpKnKP5GmW95iyfP11fSBnXUC8N7ZL2yaSnofzdGPeSU5Jsk722bybwHvoDlisKD2j+3vgEclWeo5XPegaZWbXce3ga8Dx61g/nsAVw88VzRHfAZdPfhgpa+1XfawJP87yVfaZT8GHJlk/TyL3EDz4zPoa+0+vzPNF8UtwNsGtvGbabo83Njuw7vMiW/wS/1m4JD2h/MewDVzvvi++76tIPYzaH4wd7eP/5yBpv12nY+mOT/iCcv8IRs0+/58c4XLS6ufXTe1eh0w+UiSe7Wtf9e26/7dJax7MIf4Cs1v7VLXdTXLt9Ayw3KewflPAF438J5/g2YfzpdffVeSRye5ME23yG/SFBbzvTf7xTE35mWua67/2s7/lTRdhx/aTv9DmhauD6bpDvqieV7HUvbL3Dzq8HbZ5Xz2vtn+PzfHu7D9OzqCppX7Pm0Ms11eX5mmO/O3gKvaZRbK8Q5v7y+471fwd3MGzYH8ve3f7Xu4Y473q8DDgV+a7+DJEhwB3LjYTAfML1pVXVtVz6yqe9Cc5PnHWXhkq7lHM64GHj3nS/uQqrpmkU3/bruuH24LkKfAwtdgmmMDcM9F52p8jebLCPhu8/dRwHwxLjT/LpouJbPPZfBxa+571OW1voCmde1H22Vnu2LMt/xnaJrth6qqG2kKqMe18f84zY/rE4G7VtWRNH8gS4lvF3Bc+x7MOn4lsSc5tI3hJ9svy2tpukLcP8n923nuTVOgPrGqBr/kvwMcNvD4+xaJ+4doBuv51mIvUOqlcXTbtOumxmyN5iNvAj4PnNSu+yVLWPfg+X7H0+QkS13XsK6Fi1lomV2D8bS/94PxXU3T7XHwPT+0qv51oQ2mGVX7PcCrgGPa3OP9zP/e7Jd7zYlpsXXtlyMk2S9HqKp/q6rtNF0b/wp4Vzv9pqp6QVV9P80pLL+R5NQhsa1kH89a8mevmgEG/4OFc7z/pHkvHtdO+iVgO/BImoP4W9vpS83xFtr3S449zfgMjwCeMpDj/TzwmDRdRGfz0f8BbJ+Tn60kx/v0Yi/ugCn0kvxCvjdAxg00O222iv5P4PsXWcWfAK+YbaZPcnSWNtTwEcC3gRuTHMcClxJI8oPt0ZpDk2xM8hSaomHeE1LnOBd4epIHtF8Ivwtc1Daxwx1f50Lz/y3ww0me0LZqncXiH7olv9Z5lr0F+Gaak8pfusj872fh7pGH0/THnh3l8whgL3A9sCHJ79D0cV+Kj7fLPrfdLz8HDF7OYjmxP4HmyOvJNN0GHkDzx/pPwC+nOZ/ufTTdcuZ25/kU8BNJjk/THeHFi8T9kzR91qW1yxY99cwazUeOAL4FfDvJDwJLGfr+v6fpEXMfmvPNZs+tW8m6lvK+LeRvaS5J9HNtzvNc9s95/gR4cRsrSe6S5BeWsN6DaE4TuR7Ym6a3zqMWmP9dwPOSHJdmwI/fWsa6Pt2+hgekGX/gZbNPJDkoyZOT3KXtnvgt2s9cksemGSAoNAfA9/G9z+OgleyXwWWXkx8uluMdBfxf7J/j3UbTK+0w2pa+JVps3y8n9qfSnDp0b76X492Lpkfck5JsodnHv1x3HKviUzQF4d3aIv35i8S9pBxvLf6i/XX2H9Hmve30BwMXJfk2zUAbz6uqL7XPvQx4W5om+SfOs97Xtct9ME3/4AtpTgRezMtpTqi9kebDdN4C86aN5TqaP+Tn0Vx+4NIFlvmuqvoH4L/THOXYRXPk7fSBWV7GwOtcaP62W+EvAH9A84dzMs1Jr7eN6LXO9VrgUGA3zXv794vM/3aaP4hDB6Z9d8RKmm4gd6M5DxHgA+06/7197laW2PWjqm6n6XP9NJruGr/I/q9tObGfAby1qr7aHtW9tqqupRm85ck0BeS9aU6w/vbA66GqLqD5IfwMcAnwN4uE/iTa6wxKa5Ytelq9DqR85DdpWlVuornG13wDogz6KE2XwQ8Br6qqD3ZY18tY/H2b10DO80qanOck4F8Gnn8v8PvAO9N03/sczaApi633JprC4V00Rf0v0ey7+fwpzbldnwE+SVPw7AX2LbautnD4/4B/oDl3be7B4qcCV7XxP4vv5Ucntct8m+bA9h9X1YeHxLaS/TJrufnhDprrxA1+IT90ICe6guZz+Zz2ubfT5HbXAJez/0B8C1ps3y8z9jNo3r9r5+R4f9I+dypNF+t3D3wvzBar/4emWL+K5jMw7/vbFvKPYeD0pHnnrTuebyndQZqhdncCT57nC2DikvwucF1VvXbasaw2SR4HPLWqlv2DJ/XFurtsqYN/7DdGvt5b//43LqmqbYvPKWm50gz49mVgY80Z/VL7a1vt/qSqlnQph7UkyZ/TnOv2V9OOZbVJ8hxgS1W9cLF5vWik5pXkZ2hGrryFpqk6LOMoybhV1UumHcNqVVV/Dfz1tOOQxit2tZS0ZrS9lH6KpkXnGJpTQd674EJrVFXdYTRyNarqj5Y6r7+QWshDaU6I3U1zwmuXESAlafTsuilp7QhNV8EbaLpuXgH8zlQjUq/Zoqd5VdXLWORiqpI0NcEWPaln2gHfPKIyRFXdTHMOpzQSFnqSpJ6y66YkSfPxF1KSJEmS1piJtugdddSm2nz8ygcOGsWpE+nYW2DGUUpHZjWcCtN1d47i49D1M7V+Xbc3suvyX/3KVezevXsV7E0dkFbDF4k0Rps2baoTTtg67TAkjdBXJpQ7TbTQ23z8CXzwoysftHFDx4QUYMP6buu4dc+wa0guz9593dbRNTEH2Dcz3eICYF3HdYzir6Pj28Att+/rHMPte7t9Hu50SLc/47vdaWOn5R92iqcTaIrsuqk17oQTtvIvF1087TAkjdDDfnQyV/DxHD1JUn/ZoidJ0lAeCpUkSZKkNcYWPUlSP8VRNyVJmk+nX8gkpyX5QpIrk7xoVEFJkrQkXjBdPWPuJGlSVtyil2Q98Ebgp4GdwL8lOb+qLh9VcJIkLSQWZuoRcydJk9SlRe8hwJVV9aWquh14J7B9NGFJkrSw0BR6o75JY2TuJGliuhR6xwFXDzze2U7bT5Izk1yc5OJvfH13h81JkiT12rJzp+t3Xz+x4CStLWM/i72qdlTVtqradrejNo17c5KkA0XGdJOmbDB3OnrT0dMOR1JPdRl18xpgy8Djze00SZImwK6W6h1zJ0kT06VF79+Ak5KcmOQg4HTg/NGEJUnS4jxHTz1j7iRpYlbcoldVe5M8G/gAsB54S1VdNrLIJElahIWZ+sTcSdIkdbpgelW9H3j/iGKRJGlVS7IFeDtwDFDAjqp6XZI/BB4H3A78B/D0qvpmu8yLgWcA+4DnVtUHphG7VgdzJ0mTMvbBWCRJGpcpdN3cC7ygqk4GTgHOSnIycAFw36q6H/DvwIvb+E6m6Z53H+A04I/ba6lJkjRWnVr0lr2xdeEuh21c8fLfuXVv5xhu3TPTafm9M9U5hvXrunU16h4B0LG708b13Y8RbNww/eMMe/Z1+zys67gvofv+3NfxM3nz7fs6LT9TI/lESss3hVEyq2oXsKu9f1OSK4DjquqDA7NdCPx8e3878M6qug34cpIraa6l9vEJhi1JOgBNtNCTJGlUMuVRN5NsBR4IXDTnqV8B/qK9fxxN4Tdr6HXTJEkaNQs9SVJvjanQ25Tk4oHHO6pqx5ztHg68B3h+VX1rYPpv03TvPGccgUmStFQWepIk7W93VW2b78kkG2mKvHOq6ryB6U8DHgucWvXdPs1eN02SNBXTP0lKkqQVmvRgLGlmeDNwRVW9emD6acALgcdX1c0Di5wPnJ7k4CQnAicBnxj5GyFJ0hy26EmSemsK5+g9DHgq8Nkkn2qnvQR4PXAwcEEb04VV9ayquizJu4DLabp0nlVV3UZAkiRpCSz0JEn9NJ1RN/95nq3Oe120qnoF8IqxBSVJ0hB23ZQkSZKkNcYWPUlSb03z8gqSJK1mFnqSpF6a9nX0JElazSz0JEm9ZaEnSdJwFnqSpP6yzpMkaSgHY5EkSZKkNcYWPUlSP8Wum5IkzcdCT5LUWxZ6kiQNZ6EnSeotCz1Jkoaz0JMk9ZKXV5AkaX4TLfRmCm7bs2/lKxjB73lVdVp+Zqbb8gB7Oq5jFHnNhnXdVrJn30z3ILq+ju67gn0dPw+jSDE3ru+2lvUd92XXz0Ic9lCSJGnVsUVPktRfHmeQJGkoCz1JUj856qYkSfOy0JMk9ZaFniRJw1noSZJ6y0JPkqTh1q10wSRbknw4yeVJLkvyvFEGJkmStJaYO0mapC4tenuBF1TVpUmOAC5JckFVXT6i2CRJWpgNeuoXcydJE7PiQq+qdgG72vs3JbkCOA7wy0qSNBF23VSfmDtJmqSRnKOXZCvwQOCiUaxPkqTFJF4wXf1l7iRp3FZ8jt6sJIcD7wGeX1XfGvL8mUkuTnLx13df33VzkiRJvbac3Ol6cydJK9Sp0EuykeaL6pyqOm/YPFW1o6q2VdW2ozYd3WVzkiTtZ7ZVb5Q3aZyWmzsdbe4kaYVW3HUzza/hm4ErqurVowtJkqSlsTBTn5g7SZqkLi16DwOeCjwiyafa22NGFJckSYvLGG7S+Jg7SZqYLqNu/jP+JEqSpsgWPfWJuZOkSeo8GIskSZIkaXUZyeUVJEmauNiiJ0nSfCZa6BXF7XtnJrnJO7h9X3Vavqrb8gAb13dLTNav657YrOu4jlv3dN+PGzt++vbOdN8XXXPErvuy0a1hvWsMnRNl82xNSej+NyypH2Y6/ubPjCB/W9fxC6dr7iUtly16kqSe8nIIkiTNx0JPktRb1nmSJA3nYCySJC1Rki1JPpzk8iSXJXleO/1uSS5I8sX2/7u205Pk9UmuTPKZJA+a7iuQJB0oLPQkSb2VZOS3RewFXlBVJwOnAGclORl4EfChqjoJ+FD7GODRwEnt7UzgTeN4HyRJmstCT5LUT2m6bo76tpCq2lVVl7b3bwKuAI4DtgNva2d7G/CE9v524O3VuBA4Msmxo38zJEnan+foSZJ6KYxtFLtNSS4eeLyjqnbcYfvJVuCBwEXAMVW1q33qWuCY9v5xwNUDi+1sp+1CkqQxstCTJPXWmAZj2V1V2xbebg4H3gM8v6q+Ndjls6oqSfex3CVJ6sCum5IkLUOSjTRF3jlVdV47+T9nu2S2/1/XTr8G2DKw+OZ2miRJY2WhJ0nqrUkPxpJmhjcDV1TVqweeOh84o71/BvC+gem/3I6+eQpw40AXT0mSxsaum5KkflrC4Clj8DDgqcBnk3yqnfYS4JXAu5I8A/gK8MT2ufcDjwGuBG4Gnj7RaCVJBywLPUlSLwWWcjmEkaqqf243PcypQ+Yv4KyxBiVJ0hAWepKknlrSde8kSTogeY6eJEmSJK0xtuhJknrLBj1Jkoaz0JMk9ZZdNyVJGs5CT5LUT9MZdVOSpF6YaKGXhIM3rl/x8nv2znSOYe++buvYuL77aY03fGdPp+W/9q1bOsdw9J0O7rT8UUd0Wx7g4A3d3sv1qc4xdLVvXfcYim6fyZmZbjHctmdfp+WbQQUlSRqua+4F3XOnb3z79s4xHHFot7R50whyp4M65k46sNiiJ0nqpWlcXkGSpL6w0JMk9ZZ1niRJw1noSZJ6yxY9SZKGs9CTJPWWdZ4kScN1PqMzyfokn0zyN6MISJIkaS0zd5I0CaNo0XsecAVw5xGsS5KkpYldN9Vb5k6Sxq5Ti16SzcDPAn82mnAkSVqaZtTN0d+kcTJ3kjQpXVv0Xgu8EDiieyiSJC1HbNFTH70WcydJE7DiFr0kjwWuq6pLFpnvzCQXJ7n469dfv9LNSZJ0B7boqU9Wkjtdv9vcSdLKdOm6+TDg8UmuAt4JPCLJO+bOVFU7qmpbVW076uijO2xOkiSp15adOx29ydxJ0sqsuNCrqhdX1eaq2gqcDvxjVT1lZJFJkrSIJCO/SeNi7iRpkryOniSpn+xqKUnSvEZS6FXVR4CPjGJdkiQtRTPqppWe+sncSdK42aInSeotCz1JkobrdB09SZIkSdLqM9EWvZmZ4qZb9qx4+XXruh+5vdPB3V5yVXWO4exP7uy0/BvP/pfOMfzMo+/fafk/+rkf7hzD3n3d3svb9810jmF9x9aA9SP4TG4YwTq62Li+2/GeYIuKpscGPWn8uuY+N9++r3MMf/35XZ2W//13frZzDI/7qR/otPwLf/L7O8ew6fCDOi0/ilxa/WHXTUlSb9l1U5Kk4Sz0JEn95KibkiTNy3P0JEmSJGmNsUVPktRLwQucS5I0Hws9SVJvWedJkjSchZ4kqbfWWelJkjSUhZ4kqbes8yRJGs7BWCRJWoYkb0lyXZLPDUx7QJILk3wqycVJHtJOT5LXJ7kyyWeSPGh6kUuSDiQWepKkXkqa6+iN+rYEZwOnzZn2B8DLq+oBwO+0jwEeDZzU3s4E3jSK1y5J0mLsuilJ6q11U+i6WVUfS7J17mTgzu39uwBfa+9vB95eVQVcmOTIJMdW1a7JRCtJOlBZ6EmSemtMl1fYlOTigcc7qmrHIss8H/hAklfR9Jb5sXb6ccDVA/PtbKdZ6EmSxspCT5LUW2MajGV3VW1b5jK/Bvx6Vb0nyROBNwOPHH1okiQtjefoSZLU3RnAee39vwQe0t6/BtgyMN/mdpokSWNloSdJ6qUAGcO/Ffoa8JPt/UcAX2zvnw/8cjv65inAjZ6fJ0maBLtuSpJ6axqDsSQ5F3g4zbl8O4GXAs8EXpdkA3ArzQibAO8HHgNcCdwMPH3iAUuSDkgWepKkflr65RBGqqqeNM9TPzJk3gLOGm9EkiTd0UQLvX0zxbdv27fi5Q8/eH3nGDZs6JYU1AiSil033tptBV/6ZOcYrt71/Z2Wn6nqHMN3bl/5ZwFgz96ZzjEcvLFb7+XD1nf/TB60oVsMMx13xYb13T7TU8izpe/y8yetfnv2dc8ZPnXNtzstf90/faB7DMcf2Wn5237shM4xSMvhOXqSJEmStMbYdVOS1EsB1tmkJ0nSUBZ6kqTess6TJGk4Cz1JUm9NYzAWSZL6oNM5ekmOTPLuJJ9PckWSh44qMEmSpLXG3EnSpHRt0Xsd8PdV9fNJDgIOG0FMkiQtKrHrpnrJ3EnSRKy40EtyF+AngKcBVNXtwO2jCUuSpMU5GIv6xNxJ0iR16bp5InA98NYkn0zyZ0nuNKK4JElaVMZwk8bI3EnSxHQp9DYADwLeVFUPBL4DvGjuTEnOTHJxkotv+PruDpuTJGl/SUZ+k8Zo2bnT9buvn3SMktaILoXeTmBnVV3UPn43zZfXfqpqR1Vtq6ptdz1qU4fNSZIk9dqyc6ejNx090QAlrR0rLvSq6lrg6iT3biedClw+kqgkSVpEc8H00d+kcTF3kjRJXUfdfA5wTjtq1JeAp3cPSZKkJbCrpfrJ3EnSRHQq9KrqU8C20YQiSdLyWOepb8ydJE1K1xY9SZKmxhY9SZKG6zIYiyRJkiRpFZpoi97G9es45s4Hr3j5W/bs6xzDDd/Z02n5ow4/qHMMZz74+E7Lf/2ZT+0cw8/e7+6dlq/qHAIb13c7Ej8z0/1Iftc1jKI1YWam25u5Z99Mp+X3dvyzmhnFh0FagdnBWCSNV9ffujsdtL5zDM/8kS2dlj/+D5/fOYYfPe4unZY/8rCNnWOwE4OWw66bkqTesuumJEnDWehJknrLMk+SpOEs9CRJvZTAOlv0JEkaysFYJEmSJGmNsUVPktRbNuhJkjSchZ4kqbccjEWSpOEs9CRJvWWdJ0nScJ6jJ0mSJElrjC16kqReCnHUTUmS5mGhJ0nqp9h1U5Kk+VjoSZJ6y8FYJEkaznP0JEm9tW4Mt8UkeUuS65J8bs705yT5fJLLkvzBwPQXJ7kyyReS/EynFyxJ0hLZoidJ0vKcDbwBePvshCQ/BWwH7l9VtyW5ezv9ZOB04D7APYB/SHKvqto38aglSQcUW/QkSb0Umq6bo74tpqo+BnxjzuRfA15ZVbe181zXTt8OvLOqbquqLwNXAg8Z2ZsgSdI8LPQkSb21LqO/rdC9gB9PclGSjyZ5cDv9OODqgfl2ttMkSRoru25KknqrQ2G2kE1JLh54vKOqdiyyzAbgbsApwIOBdyX5/rFEJ0nSEky00Jup4ju37V3x8nv2VecY1nXMCr7+7ds7x3DMnQ/utPxrnnDfzjEcetD6TssfcWj3j84137il0/Ib1ndvkD78kG6vY+Pemc4xdLW+66iDDlqonkrGNurm7qratsxldgLnVVUBn0gyA2wCrgG2DMy3uZ0mHTAO3tj99/pexx7eafmtRx/WOYaNHfOOgzZ0fx8caVjLYddNSZK6+yvgpwCS3As4CNgNnA+cnuTgJCcCJwGfmFaQkqQDh103JUm9NaaumwtKci7wcJounjuBlwJvAd7SXnLhduCMtnXvsiTvAi4H9gJnOeKmJGkSLPQkSb01jV5MVfWkeZ56yjzzvwJ4xfgikiTpjiz0JEm9FGCd56tIkjRUp3P0kvx6ksuSfC7JuUkOGVVgkiQtZt0YbtI4mTtJmpQV/6YlOQ54LrCtqu4LrAdOH1VgkiRJa4m5k6RJ6tp1cwNwaJI9wGHA17qHJEnS0thzUz1k7iRpIlbcoldV1wCvAr4K7AJurKoPjiowSZIWkoR1Y7hJ42LuJGmSunTdvCuwHTgRuAdwpyR3GHEsyZlJLk5y8dd3X7/ySCVJmqO5aPpob9K4rCR3ut7cSdIKdTnv/JHAl6vq+qraA5wH/NjcmapqR1Vtq6ptR206usPmJEna37qM/iaN0bJzp6PNnSStUJdC76vAKUkOSxLgVOCK0YQlSZK05pg7SZqYFQ/GUlUXJXk3cCmwF/gksGNUgUmStBCvo6e+MXeSNEmdRt2sqpcCLx1RLJIkLYt1nvrG3EnSpHS9vIIkSdPhOXWSJM2ryzl6kiRJkqRVaOIteuu7HH4dQR+djZ3X0N3efTPTDqHzeS179nZ/DUfe6aBOy3f6LLUO2dDtWMfBG7sfK9m7rzot323p7oJNKpoeP3/S6pcR5G8Hb1w/1eWlPrLrpiSpl5rBWKYdhSRJq5OFniSptyz0JEkazkJPktRbo+gSJknSWuRgLJIkSZK0xtiiJ0nqJc/RkyRpfhZ6kqR+ihdMlyRpPhZ6kqTe6nqpGEmS1ioLPUlSL9l1U5Kk+TkYiyRJkiStMbboSZJ6y56bkiQNZ6EnSeqpsA4rPUmShrHQkyT1UrBFT5Kk+VjoSZL6KQ7GIknSfByMRZIkSZLWGFv0JEm95XX0JEkazkJPktRLnqMnSdL8JlroJbC+wwkVG0dwMsaevTOdlr+t4/IAVd2WP3hj9x63XY+C793X/X044pDpH2fYuL7b+9Dl8zxrpuPnYepMtDVF02jRS/IW4LHAdVV13znPvQB4FXB0Ve1OEuB1wGOAm4GnVdWlk45ZknTg8Rw9SZKW52zgtLkTk2wBHgV8dWDyo4GT2tuZwJsmEJ8kSRZ6kqT+SkZ/W0xVfQz4xpCnXgO8EBhsp98OvL0aFwJHJjl2BC9dkqQFTb/vnCRJKxBWz9HKJNuBa6rq09m/WjwOuHrg8c522q4JhidJOgBZ6EmS+imQ8ZyjtynJxQOPd1TVjnnDSA4DXkLTbVOSpFVh0YOhSd6S5LoknxuYdrckFyT5Yvv/XccbpiRJd5Qx3IDdVbVt4DZvkde6J3Ai8OkkVwGbgUuTfB9wDbBlYN7N7TStYeZOklaDpfR6OZs7nnT+IuBDVXUS8KH2sSRJB5yq+mxV3b2qtlbVVprumQ+qqmuB84FfTuMU4Maqstvm2nc25k6SpmzRQm+ek863A29r778NeMJow5IkaWGhubzCqG+Lbjc5F/g4cO8kO5M8Y4HZ3w98CbgS+FPgv43gpWuVM3eStBqs9By9YwaOSF4LHDPfjEnOpBlSms1bjl/h5iRJuqNpXMaxqp60yPNbB+4XcNa4Y1IvrCh32nK8uZOklek8YFn7IzbvJZ+rasfseQ5HbdrUdXOSJH3XNC6vIHW1nNzp6E1HTzAySWvJSlv0/jPJsVW1q70e0HWjDEqSpMVlXKNuSuNg7iRpolbaonc+cEZ7/wzgfaMJR5IkaU0yd5I0UUu5vMKwk85fCfx0ki8Cj2wfS5I0MbMXTB/1TerK3EnSarBo180FTjo/dcSxSJK0LHbd1Gpk7iRpNVjpOXqSJE2dZZ4kScNZ6EmS+im26EmSNJ+JF3rr1q38R3lmZt6RiJfs9n3d1nHjzXs6x7BhfbezQDZu6H4WSccQRmLvvplOy4/g40DXM3JGEUPXz/WG9d0S3aVcIHohptmSJEmrjy16kqRemh2MRZIk3ZGFniSpt+y6KUnScBZ6kqTessyTJGk4e71IkiRJ0hpji54kqbfsuSlJ0nAWepKkXmoGY7HSkyRpGAs9SVJv2aInSdJwFnqSpJ4KsUVPkqShHIxFkiRJktYYW/QkSb1l101Jkoaz0JMk9ZKDsUiSND8LPUlSP8UWPUmS5mOhJ0nqLQs9SZKGczAWSZIkSVpjbNGTJPWWl1eQJGk4Cz1JUi8FWGedJ0nSUBMt9Kpg776a5CbvYO++mU7Lz0w3/JFZ3/HElj0jODFmX8c3cxS7YmYV7NCuMXTeFXbgVo/ZoidJ0nC26EmSesvBWCRJGs5j+ZIkSZK0xtiiJ0nqLbtuSpI0nIWeJKmXHIxFkqT5Ldp1M8lbklyX5HMD0/4wyeeTfCbJe5McOdYoJUm6g4zl36JbXebvYpIXJ7kyyReS/Mx43gutJuZOklaDpZyjdzZw2pxpFwD3rar7Af8OvHjEcUmStFqdzRJ/F5OcDJwO3Kdd5o+TrJ9cqJqSszF3kjRlixZ6VfUx4Btzpn2wqva2Dy8ENo8hNkmS5pdm1M1R3xazzN/F7cA7q+q2qvoycCXwkJG9B1qVzJ0krQajGHXzV4C/m+/JJGcmuTjJxd/4+u4RbE6SpEbGcBuBwd/F44CrB57b2U7TgW3JudP1u6+fYFiS1pJOhV6S3wb2AufMN09V7aiqbVW17W5HbeqyOUmSvqsZjCUjvwGbZpPs9nbmkmNawu+iDmzLzZ2O3nT05IKTtKaseNTNJE8DHgucWlU1sogkSVqiMQ26ubuqti13oXl+F68BtgzMtrmdpgOQuZOkSVpRi16S04AXAo+vqptHG5IkSf2ywO/i+cDpSQ5OciJwEvCJacSo6TJ3kjRpi7boJTkXeDhNV5adwEtpRoo6GLggTTeXC6vqWWOMU5KkO5rCdfSW87tYVZcleRdwOU13vbOqat/ko9YkmTtJWg0WLfSq6klDJr95DLFIkrQsS7nu3agt93exql4BvGJ8EWm1MXeStBqs+Bw9SZKmbSmXQ5Ak6UBkoSdJ6i3rPEmShptooVcFt++dWfHyB23oftm/Qw9a32n5Deu7x7C+Y2ZyUNcVjMCGdd1jOLjj/tw3ggHL1ndsDhhFa8JMx3V0fRv2zXRbgePGSZIkrT626EmS+mv6x70kSVqVLPQkSb0UpjMYiyRJfWChJ0nqpzgYiyRJ87HQkyT1lnWeJEnDdR9ZRJIkSZK0qtiiJ0nqL5v0JEkaykJPktRTcTAWSZLmYaEnSeotB2ORJGk4Cz1JUi8Fe25KkjQfB2ORJEmSpDXGFj1JUn/ZpCdJ0lAWepKk3nIwFkmShrPQkyT1loOxSJI0nOfoSZIkSdIaY4ueJKm3bNCTJGk4Cz1JUj95fQVJkuY10UJv3To4eOPKe4uO4vd8w/puvVUP2Tj9rGLvvpnO65ip6rT8QRu69/pdt67be5luLwGA9R1jGIWZEbyOPm9f6sLBWCRJGs4WPUlSLwUHY5EkaT4OxiJJkiRJa4wtepKk3rJBT5Kk4RZt0UvyliTXJfnckOdekKSSbBpPeJIkLSBjuEkdmTtJWg2W0nXzbOC0uROTbAEeBXx1xDFJkrQkGcM/aQTOxtxJ0pQtWuhV1ceAbwx56jXACwHH7JMkTUUy+pvUlbmTpNVgRYOxJNkOXFNVnx5xPJIkSWuOuZOkSVv2YCxJDgNeQtP1YCnznwmcCbB5y/HL3ZwkSfOyAU590CV32nK8uZOklVlJi949gROBTye5CtgMXJrk+4bNXFU7qmpbVW07apPnHUuSRsjBWNQPK86djt509ATDlLSWLLvQq6rPVtXdq2prVW0FdgIPqqprRx6dJEnzaOqyyQ/GMmxExSR3S3JBki+2/9+1nZ4kr09yZZLPJHnQ+N4RrVbmTpKmYSmXVzgX+Dhw7yQ7kzxj/GFJkrSIMQzEssTBWM7mjiMqvgj4UFWdBHyofQzwaOCk9nYm8KZRvHStbuZOklaDRc/Rq6onLfL81pFFI0nSKldVH0uydc7k7cDD2/tvAz4C/FY7/e1VVcCFSY5McmxV7ZpQuJoCcydJq8GyB2ORJGm1GNMpdZuSXDzweEdV7VhkmWMGirdrgWPa+8cBVw/Mt7OdZqEnSRorCz1JUn+Np9LbXVXbVrpwVVUSr5MmSZoqCz1JUk8tbfCUCfnP2S6ZSY4FrmunXwNsGZhvcztNkqSxmmih9+lPXrr7mDsf9JUFZtkE7J5UPMawqmOY9vaNYekxnDCpQKRV7HzgDOCV7f/vG5j+7CTvBH4UuNHz87Qcl156ye5DN8bcafXHMO3tG0O/YphI7jTRQq+qFrwYTJKLu3SXGQVjWB0xTHv7xrC6YpDms8RRMke8zZxLM/DKpiQ7gZfSFHjvakdX/ArwxHb29wOPAa4EbgaePvGA1WvmTv2IYdrbNwZjGMaum5KkXprW9c0XGFHx1CHzFnDWeCOSJOmOLPQkSf21ak7RkyRpdVlthd5iw1dPgjE0ph3DtLcPxjBrNcQgDbWKBmORpmU1fEcbw/S3D8YwyxhaaXqVSJLUL/d7wI/UX3/oX0e+3q2bDrlkNZxbIUlSF6utRU+SpCWbxmAskiT1gYWeJKm3rPMkSRpu3bQDmJXktCRfSHJlkhdNYftbknw4yeVJLkvyvEnH0MaxPsknk/zNlLZ/ZJJ3J/l8kiuSPHQKMfx6uw8+l+TcJIdMYJtvSXJdks8NTLtbkguSfLH9/65TiOEP233xmSTvTXLkpGMYeO4FSSrJpnHGIC1Zmha9Ud+kPjBv2i8WcydzJ3OnIVZFoZdkPfBG4NHAycCTkpw84TD2Ai+oqpOBU4CzphADwPOAK6aw3VmvA/6+qn4QuP+kY0lyHPBcYFtV3RdYD5w+gU2fDZw2Z9qLgA9V1UnAh9rHk47hAuC+VXU/4N+BF08hBpJsAR4FfHXM25eWKWO4SaubedMdmDuZOw0yd2qtikIPeAhwZVV9qapuB94JbJ9kAFW1q6oube/fRPNHetwkY0iyGfhZ4M8mud2B7d8F+AngzQBVdXtVfXMKoWwADk2yATgM+Nq4N1hVHwO+MWfyduBt7f23AU+YdAxV9cGq2ts+vBDYPOkYWq8BXgg4epMkTZ95U8vc6bvMnb43zdyptVoKveOAqwce72QKXxazkmwFHghcNOFNv5bmAzEz4e3OOhG4Hnhr2wXiz5LcaZIBVNU1wKtojn7sAm6sqg9OMoYBx1TVrvb+tcAxU4pj1q8AfzfpjSbZDlxTVZ+e9LalhQS7buqAZd70Pa/F3MncaX4HdO60Wgq9VSPJ4cB7gOdX1bcmuN3HAtdV1SWT2uYQG4AHAW+qqgcC32H8Te77aftyb6f54rwHcKckT5lkDMNUcx2SqR2RSfLbNN1kzpnwdg8DXgL8ziS3Ky2VHTel6ZpW3tRu29wJc6f5mDutnkLvGmDLwOPN7bSJSrKR5svqnKo6b8Kbfxjw+CRX0XTBeESSd0w4hp3AzqqaPSL3bpovr0l6JPDlqrq+qvYA5wE/NuEYZv1nkmMB2v+vm0YQSZ4GPBZ4ck3+wpf3pPnh+HT72dwMXJrk+yYchzSULXo6QJk3NcydGuZOc5g7NVZLofdvwElJTkxyEM0JpOdPMoAkoelffUVVvXqS2waoqhdX1eaq2krz+v+xqiZ6NKaqrgWuTnLvdtKpwOWTjIGm28EpSQ5r98mpTO8E6/OBM9r7ZwDvm3QASU6j6ZLy+Kq6edLbr6rPVtXdq2pr+9ncCTyo/axIU5cx/JN64IDPm8DcaYC50wBzp+9ZFYVee8Lks4EP0Hww31VVl004jIcBT6U5GvSp9vaYCcewGjwHOCfJZ4AHAL87yY23R8TeDVwKfJbmM7pj3NtNci7wceDeSXYmeQbwSuCnk3yR5mjZK6cQwxuAI4AL2s/kn0whBknSKmLetOqYO5k7rcrcKZNvzZQkqbv7P/BH6gMfvXDk6z32LgddUlXbRr5iSZImaMO0A5AkaaXsaClJ0nAWepKkXnLwFEmS5rcqztGTJEmSJI2OLXqSpN5ylExJkoaz0JMk9Zd1niRJQ1noSZJ6yzpPkqThLPQkSb3lYCySJA3nYCySJEmStMbYoidJ6qk4GIskSfOw0JMk9VKw66YkSfOx66YkSZIkrTG26EmSessWPUmShrNFT5IkSZLWGFv0JEm95WAskiQNZ6EnSeqn2HVTkqT52HVTktRLGdNt0e0mv57ksiSfS3JukkOSnJjkoiRXJvmLJAeN8rVKkrRcFnqSpP6acKWX5DjgucC2qrovsB44Hfh94DVV9QPADcAzRvciJUlaPgs9SZKWZwNwaJINwGHALuARwLvb598GPGE6oUmS1PAcPUlSb41pMJZNSS4eeLyjqnYAVNU1SV4FfBW4BfggcAnwzara286/EzhuHIFJkrRUFnqSpN4a02Asu6tq2/Dt5a7AduBE4JvAXwKnjSUKSZI6sNCTJPXWFAbdfCTw5aq6HiDJecDDgCOTbGhb9TYD10w+NEmSvsdz9CRJWrqvAqckOSxJgFOBy4EPAz/fznMG8L4pxSdJEmChJ0nqswmPullVF9EMunIp8Fma39EdwG8Bv5HkSuAo4M0je42SJK2AXTclSb01psFYFlRVLwVeOmfyl4CHTDwYSZLmYaEnSeqlMLbBWCRJ6r1U1bRjkCRp2ZL8PbBpDKveXVWOpClJ6jULPUmSJElaYxyMRZIkSZLWGAs9SZIkSVpjLPQkSZIkaY2x0JMkSZKkNcZCT5IkSZLWmP8fVnASEMqutIAAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "recorteB3 = trim(imagen[:,:,2], 560, 320, 15, 15)\n", + "poptB3, pcovB3 = curve_fit(gauss2d, xdata3, recorteB3.ravel(), p0=[1,1,1,1,1])\n", + "estrellaB3=gauss2d(xdata3, poptB3[0], poptB3[1],poptB3[2], poptB3[3], poptB3[4])\n", + "FWHMB3=FWHMB.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptB3[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 3 fotografÃa (Banda Azul)\")\n", + "plt.imshow(recorteB3, plt.get_cmap('Blues'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 3 a partir de la gaussiana (Banda Azul)\")\n", + "plt.imshow(estrellaB3.reshape(15, 15), plt.get_cmap('Blues'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 4 (Azul)" + ] + }, + { + "cell_type": "code", + "execution_count": 430, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3oAAAFSCAYAAACkM60KAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAztUlEQVR4nO3de5wkdXnv8e93Znf2xsICsyKwKyCuJGii6AZRTtSIJnhdkxgD8YKXZE8MGjWc4xE9iuYcjScxRo1XoghGAkG8EeMFQoIcPYBZEJCLysp1cZEdEFgX2N2Zec4fVc32zlZP9/Svurqr5/PeV712urouT1f3TD9P/X71K0eEAAAAAADDY6TfAQAAAAAAykWhBwAAAABDhkIPAAAAAIYMhR4AAAAADBkKPQAAAAAYMhR6AAAAADBkFvQ7AAAAujG69yERkw+Vvt14aMu3I+L40jcMAECFKPQAALUUkw9p0REvL327D1/98fHSNwoAQMUo9AAANWXJXIEAAEARCj0AQD1Zkt3vKAAAGEgUegCA+qJFDwCAQhR6AID6okUPAIBCnAoFAAAAgCFDix4AoKYYjAUAgFYo9AAA9UXXTQAAClHoAQDqyaJFDwCAFij0AAA1ZVr0AABogVOhAAAAADBkaNEDANQXXTcBAChEoQcAqC+6bgIAUIhCDwBQU9xeAQCAVij0AAD1ZNGiBwBAC5wKBQAAAIAhQ4seAKC+6LoJAEAhCj0AQE1xjR4AAK1Q6AEA6muEa/QAACjCqdAS2D7UdthekD++xPYfV7DfJbb/xfb9tr/Y6/2lsn2s7Zts/9L2S/N5X7b9li63d05jO1Wr6j2eC9u32n5u/vObbP+ffscEAKhOv/KRQWP7FbYvTNzGI9+pc1zv2bY3pex7UOT52mP7tO/v2T6qT/vu6r3vpfz3+nH5z39r+w2drDdUhV7+xjyUfzAb08c6WO+RgzcobD8rj+t/z7LYyyQdIGn/iPiDNtvb7Y9/n/ylpI9FxF4R8VXbr5C0MyI+PNcN2f51SU+S9LX88WtsTzW97zd3+kvQD87cbPuGHu3iHyS9wvajerR9oP+srOtm2ROQaB7mI31TlN9ExNkR8dv9jGsY5PnazVXv1/aLJW2NiB/kj99je2fT79KNtn+/6rg6ZXuvPM5v9mgXH5T0Dttj7RYcxm+0F+cfzMb0xtQNVl0c2V4o6SOSrmiz6CGSfhIRk72PanYdHqNDJF3f9HhfSa/vcpf/VdLZERFN8y5rvO+Sfl/SX/frbFAHninpUZIea/s3yt54RDws6ZuSXl32toGBYpc/AeWYT/lIX3RzPPp8whud+VNJ/zhj3j835XhvkfQF2wdUHllnfl/SdknPs/3osjceEZsl/UjSS9otO4yFXiHbj7P9nbyb44Ttf87nX5ovck1eff9ho9nd9v+wfZekz9kesf122z+1fY/t82zv18F+D7f97/k6E7bPtr2izWqnSLpQ2ZvYarvvlfRuSX+Yx/36PMb/afs223fb/rztffJVGq/zvnz5p7dZXrZfnT93j+13efeuge+xfb7tL9h+QNJrbB9t+zLb99nebPtjjbMNtn8q6bGS/iXf/yJlLZIndHmcni/pO62ezM8C3SjpV5tezxdt35V/Bi61/YSm5860/XHb/2p7q+0rbB/e9PzzbP8oX/djytoSGs918x6fpKw18hv5z41tPd27nwF+2PatTTH+76Zl23UPuUTSC9vEAdSYadFD7QxbPpJv+4W2f2D7Adt32H7PLMs2XtM78jhuddbDp+22vKv17vW2b5f07yrOb15j+7tN64Xtk23fJOmmFnG9qinneeeM57o65vm6jfW22r7B9u/OsuwS22fZ/oWzVqu3NX/Pz7YtZ3nZFwqOVaMb72uc9STaavuWxjFv9XlsOm6N7oKdvC8n2b493847m55vmR8WHIMxSc/R7DnetyVtlXR4vs6+tr9ue0t+7L5ue1XTNi+x/b+cdQfdavtC2+NNz8/23ncce5OTJH1K0rWSXtm0rUbO3pi2276kKcY/blp2t89wgUvUQY43n77R/peyP1b7Slol6e8lKSKemT//pPxMQeMD/mhJ+ylrhVov6U2SXirpWZIOkvQLSR/vYL+W9Ff5Or8qabWk97Rc2D5E0uuUdXNsKSJOk/R+7TrD8VlJr8mn31JWVO0lqdFVpPE6V+TLXzbb8raPlPQJSa+QdKCkfSQdPCOMdZLOl7RC0tmSpiS9VdK4pKdLOk7Sn+XxHi7pdu06w7l95ktXh8fJ9jJJh0n6cavj46yV7PGSNjTN/qakNcpa0q7KY252gqT3KvuMbJT0vnxb45K+LOl/5q/tp5KO7Sb2fHtLlRW5Z+fTCY0/GhHR3Cq5r7KzqOe02lYbNyrr3goML1r0UD9DlY/ktinrQbJCWfL5Bs9+Df2jlX2fHqwsKT7d9hFz2Naz8tfwOyrOb4q8VNLTJB0584k85/mkpFcpOz77K3tvGro95lKWM/ymsjzqvcpaog5ssexpkg5VlpM9T01FQhfbekSeN31U0vMjYrmkZ0i6On+68PNYoJP35b9IOkJZ/vdu242T7S3zwwJrJE1HROGJbGdeKGlMUuPylxFJn1P2O/IYSQ9pV/7b8EeSXqssBxyT9N/y7bV77+cSe+P35tnaleM90rMqIppbJQ+SdLN6nOMNY6H31bzqbkx/ks/fqewDcFBEPBwRs1XJkjQt6bSI2B4RDylrRn5nRGzKi5T3SHqZ23QBiIiNEXFRvp0tkj6k7A9FKx+V9K6I+GX7l7qHV0j6UETcnK9/qrIiolWMsy3/Mkn/EhHfjYgdyloPY8b6l0XEVyNiOiIeiogrI+LyiJiMiFslfbrNa33EHI/Tivz/rTPmH5O/51slfV9Zs/8jZ+4i4oyI2Nr0/j3JTS2Ykr4SEd/Pu8KeLenJ+fwXSLo+Is6PiJ2SPizpri5jl6TfU9akf6Gkf5W0UMVnZT6av8Z3FjzXia3KvgwAANWbN/lIRFwSET/M84FrlSWv7b7/35XH8h1l34Uvn8O23hMR2/Lj0am/ioh7W6zzMklfj4hL82P6LmXHvaGrY56/ni9GxM/y1/PPyvKSo1ss/nJJ74+IX+SFzkcTtjXTtKQn2l4SEZsjonEpTUefxw7fl/fm+eA1kq5RXojMMT9coT3zO0l6ue37JP1S0gXKjtN9+fbviYgvRcSDEbFV2Yn6mdv/XET8JH//z9OuHG/W976L3PZVkq6NiBsknSvpCZ5xGZHtEUn/JOmSiPj0LNuazVbtyodbGsZC76URsaJp+od8/tuUnc36vu3rbb+uzXa2RHadU8Mhkr7S+IOtrJKeUjYYSku2D7B9ru07nXVx/IKyswJFy75Y0vKms3hzdZCk25oe36bsFhqtYpxt+YMk3dF4IiIelHTPjPXvaH5g+/F5c/ld+Wt9v1q81pnmcpwk3Zf/v3zG/Mvz93y5srOFT8hjkO1R2x9w1uXhAUm35us07+Oupp8fVNbCKe15LKL58Rxjl7Kzl+flfzQelvQlNXXfzLf5X5WdEfqjiJjecxMdWS7p/i7XBeqBrpsYXPMmH7H9NNv/kXedu19ZYTTb9+AvImJb0+PblH3XdrqtOzR3s60z83t+m3bPebo65pIal8Fc3bTuE9X62OwWx8yY57itR+Sv5w+VHcvNzi5T+ZX86Y4+jx2+L4V51Bzzw19oz/xOyvKmFRGxTFmXzVfnuZJsL7X9aWfdLx9Q1p13he3RdrGpzXvfRW77auU9xiLiTmVdUE+ascz78tf457Nsp53l2pUPtzRvvtEi4q6I+JOIOEjZQB6f8OwjW81svbpDWZN38x/txfmbOJv359v6tYjYW1kzfKu+QcdJWpt/mO5S9kv5Fttfa/f6cj9T9seo4TGSJiX9vOD1tFt+s5qarm0vUdac3WzmNj+prB//mvy1vkOtX+tMHR+n/Jfwp8q6ZhaKiJ8rK6BenM/6I2VdTZ+rrJXr0Hx+J/FtVtbFJVvBdvPjucTurM/4cyS9sul9fpmkF+RdRGX7N5V1pVgXEQ80rb5N0tKmx+0u8P1VZWfUgOHUi26bdN1Ejw1pPvJPylpZVkfEPsquT5rtl2nfvDthw2OU5SSdbita/Dyb2Zab+T2/VLvnPF0d87wb3z9IeqOyEdJXSLpOrY/NbrnXjJjabWvWHCEivh0Rz1N2Oc6P8m3N5fM41/e42Vzyw43Zy/XMy4WaX8utyi7HaeR4pyjrMvq0fPuN7rzd5Hgz3/uOY7f9DGVdT09t+t15mqQ/8q5rJU+QdKKkl0XWS6yhJznevCn0bP+Bd12Y+Qtlv/CNlpKfK+sPPZtPSXpf/osm2yttr+tg18uVNTPfn39o//ssy75LWfHy5Hy6QNkv4ms72I+UNaO/1fZhtvfSrmv4JiVtUfZ6H9vh8udLerHtZzi7fuw9av8Ls1zSA5J+mZ8pmsvtDeZynKRsEJOWTee295f0u9o1yudyZd0l71H2i/T+OcT2r8qa3n8v/0X9c+3+CziX2F8l6SfK/iA9OZ8eL2mTpBNtr1bWpeDVEfGTGeterawg3M/ZKE5vaRP3s5T9IQSGFy16qJkhzUeWS7o3Ih62fbSyk6vtvNf2WH5y80WSGvcDnuu2ivKbuTpf0ots/5c85/lL7Z4jd3vMlyl7f7fk671WWStcK+cpKxL2zd+j5pFa223raknPtP0YZ5elnNp4Im/NXZcX19uVfQ6m8+dm+zw26+Y9bl63o/wwssuF/k2z53irJB2v3XO8h5QNyLOfsmsdO9XuvZ9LbnuSpIuUXQf65Hx6oqQlkp7vrAvn3ytr7d8yY92rJf1e3jr5OLUflb6jHG8Yv9Eaozo2pq/k839D0hW2G3173xy77g3yHkln5U3hL2+x3Y/k613o7Bqwy5VV6e28V9JTlHWh+1dlg3oUiuz6sbsak7IP7baIuLeD/UjSGcquS7tU0i2SHlZ2AXGj6+X7JH0vf53HtFn++vznc5Wd7filpLuV/YFo5b8p+8XfquwLYS5dUDs+TrnTld0nrrn4fGTESmXdKrY0Xo+kzyvrGnKnsot3L+80sIiYkPQHkj6grFBcI+l7XcZ+kqRPNL/P+Xv9qfy545R1BTm/6TPc+EP2j8rO3tyq7Pq+lsfX9mJl1xae1enrBGqJFj0MrvmUj/yZpL/M43m3soJlNncpKyp+pqyb259GRGNkzzltq0V+Myd5znOyslarzXlszYOBdHXM8+u0/lbSZcqK+F/T7vnDTH+Z7/cWZcXO+crzrnbbioiLlOUF10q6UtLXm7Y7IukvlB3ve5UVCY2CZbbPY7O5vsfN5pofflrZifFmf9iU4/2nstf+3vy5DysrpiaUvTff6jSwDt77jmLP866XS/r7GTneLcryt5OU9SzbV9J3m/4uNIq1v5O0Q9l7e5b2HDCweV8HKismv9ru9Tl2uw0ZUCxv8btPWdP1LX0OR5Jk+5+U9dn+ar9jGTS236Sse8Xb+h0L0Csj+6yORc/4i9K3+/C3/uLKiFhb+oYByPazJX0hIla1WXTes/0GSSdEREcD2w0T29+T9MbIb5qOXWz/raSfRsQn2i3LTSPRkrOLsS9W1mXzg5J+qF2DmPRdRMyl28C8EhGthkcGhojpaglgaOQtNY9V1mq3Rtm1ZzNvEzAvRMSx7ZeanyLilE6XpdDDbNYpa262svvRnRA0AQMYJHS1BDA8xpR1WzxMWS+qc5Xd0xjoCoUeWoqIP5b0x/2OAwAKWbToATUTEZdo95ElkYuI2zT7YC3AnFDoAQBqiq6bAAC0wjckAAAAAAyZSlv09h8fj9WPOaT9gkPOHd9fsuUGkk1OpV1qN1JCDKmX1pRxteD0dP8vOXTigRhNfTMSV7/9tlt1z8QEF0qhP7hGD0NufHw8Djnk0H6HAaBEt912qyYqyJ0qLfRWP+YQXXzpFV2vX8b3eWpxUEZZsCAxMR8pocq655c7ktZftCC9MXgscRs7Jovu5zk327ZPJm8j1eKFo0nrL1+c9muc+nl61rFHJ60PJKHrJobcIYccqu9dsaHfYQAo0bFPq+YOPlyjBwCoL1r0AAAoxKlQAAAAABgytOgBAOrJjLoJAEArSd+Qto+3/WPbG22/vaygAADoiF3+BPQQuROAqnRd6NkelfRxSc+XdKSkE20fWVZgAAC0Y7v0qc3+Vtv+D9s32L7e9pvz+fvZvsj2Tfn/++bzbfujeVJ/re2nVHBYMKDInQBUKaVF72hJGyPi5ojYIelcSevKCQsAgNlZ1Rd6kiYlnRIRR0o6RtLJeaL+dkkXR8QaSRfnj6UsoV+TT+slfbIHhwL1Qe4EoDIphd7Bku5oerwpn7cb2+ttb7C94Z6JiYTdAQDQXxGxOSKuyn/eKulGZd996ySdlS92lqSX5j+vk/T5yFwuaYXtA6uNGgNkzrnTloktlQUHYLj0/Cr2iDg9ItZGxNr9x8d7vTsAwHzhHk3SeCPJzqf1hbu3D5V0lKQrJB0QEZvzp+6SdED+c0eJPdCsOXdaOb6y3+EAqKmUUTfvlLS66fGqfB4AABXoqKtlNyYiYta72dreS9KXJL0lIh5ojiMiwnb0IjDUHrkTgMqktOj9p6Q1tg+zPSbpBEkXlBMWAADt9eEaPdleqKzIOzsivpzP/nmjS2b+/935fBJ7NCN3AlCZrgu9iJiU9EZJ31Z2jcJ5EXF9WYEBANBOH0bdtKTPSroxIj7U9NQFkk7Kfz5J0tea5r86H33zGEn3N3XxxDxD7gSgSkk3TI+Ib0j6RkmxAAAw6I6V9CpJP7R9dT7vHZI+IOk826+XdJukl+fPfUPSCyRtlPSgpNdWGi0GDrkTgKokFXoAAPRTj67RaykivqvGkC17Oq5g+ZB0ck+DAgCgQKWF3oitxWOjVe5yD1PTadfHT05NJ8cwmRjDzp1TyTGkynKX/lpawmdpbEHPB55ta+FoWqK6aGHacfjlw5NJ6w/CZwHz1K5RMgEAwAy06AEAasm9G3UTAIDao9ADANQWhR4AAMX6328NAAAAAFAqWvQAALVFix4AAMUo9AAAtUWhBwBAMQo9AEA9MeomAAAtcY0eAAAAAAwZWvQAALVF100AAIpR6AEAaon76AEA0BqFHgCgtij0AAAoRqEHAKgv6jwAAAoxGAsAAAAADBla9AAA9WS6bgIA0AqFHgCgtij0AAAoRqEHAKgtCj0AAIpR6AEAaonbKwAA0FqlhV6ENDk1nbR+qsnptI2UkVLsmOz+GJSxviTtTNzGzsnkELRzKu29WLpoNDmGsdG08YimEj9PkvTwzrT34sEdU8kxpCjj9xIAgEEXiV94ZXxfDsJXbmouXMb5OU7ydYYWPQBAffFdDwBAIQo9AEA9MeomAAAtUegBAGqLQg8AgGIUegCA2qLQAwCgWNcjUdhebfs/bN9g+3rbby4zMAAAgGFC7gSgSiktepOSTomIq2wvl3Sl7Ysi4oaSYgMAYHY06KFeyJ0AVKbrQi8iNkvanP+81faNkg6WxB8rAEAl6LqJOiF3AlClUq7Rs32opKMkXVHG9gAAaMfmhumoL3InAL2WdrdoSbb3kvQlSW+JiAcKnl9ve4PtDfdMbEndHQAAQK3NJXfaQu4EoEtJhZ7thcr+UJ0dEV8uWiYiTo+ItRGxdv/xlSm7AwBgN41WvTInoJfmmjutJHcC0KWuu246+zb8rKQbI+JD5YUEAEBnKMxQJ+ROAKqU0qJ3rKRXSXqO7avz6QUlxQUAQHvuwQT0DrkTgMqkjLr5XfGVCADoI1r0UCfkTgCqlDwYCwAAAABgsJRyewUAACpnWvQAAGil0kJvOkIP7pjqev2HEtZtSE0KFoz0P6nYOTWdvI3U3GjrQ5PJMaS+jr2XLEyOYe8lab8CIyV8HrbvTDsOk9ORtP7yxZzvQT1Z6X/LAMwP04nflVL6920Z+dvkVFoMZaSxC0fTOgQuGE0PIjGEeXOSkAwPAFBT3A4BAIBWKPQAALVFnQcAQDEGYwEAAACAIUOLHgCgtui6CQBAMQo9AEA9ma6bAAC0QtdNAEAtWdnIt2VPbfdrn2H7btvXNc17su3LbV9te4Pto/P5tv1R2xttX2v7Kb07IgAA7EKhBwCoLbv8qQNnSjp+xry/lvTeiHiypHfnjyXp+ZLW5NN6SZ8s4WUDANAWhR4AAHMQEZdKunfmbEl75z/vI+ln+c/rJH0+MpdLWmH7wGoiBQDMZ1yjBwCorQEajOUtkr5t+4PKTqI+I59/sKQ7mpbblM/bXGl0AIB5hxY9AEA99aDbZl43jufX2TWm9R1E8wZJb42I1ZLeKumzPXzlAAC0RYseAKCWrJ616E1ExNo5rnOSpDfnP39R0mfyn++UtLppuVX5PAAAeooWPQBATVl2+VOXfibpWfnPz5F0U/7zBZJenY++eYyk+yOCbpsAgJ6jRQ8AgDmwfY6kZyvr4rlJ0mmS/kTSR2wvkPSwshE2Jekbkl4gaaOkByW9tvKAAQDzEoUeAKC2+jEWS0Sc2OKppxYsG5JO7m1EAADsiUIPAFBbAzTqJgAAA4VCDwBQT53f4BwAgHmn8kIvouo9ztx/WgALRtPHr3l453TS+g/tmEqOYd9lY0nr3/3A9uQYbnlgW9L6j96xODkGe0nS+vvtlXYcJWn54v6eb9k+mfZ5BACg16an0/K3nVPp33W/3J6Wf923bUdyDNsSYxgdST87tveStLxlxdKFyTEsGRtNWj81na9LbxJa9AAAtdTD2ysAAFB7FHoAgNqizgMAoBiFHgCgtmjRAwCgGIUeAKC2qPMAACiWPLKI7VHbP7D99TICAgAAGGbkTgCqUEaL3psl3Shp7xK2BQBAZ0zXTdQWuROAnktq0bO9StILJX2mnHAAAOhMNupm+RPQS+ROAKqS2qL3YUlvk7Q8PRQAAObCtOihjj4scicAFei6Rc/2iyTdHRFXtlluve0NtjfcMzHR7e4AANgDLXqok25ypy0TWyqKDsCwSem6eaykl9i+VdK5kp5j+wszF4qI0yNibUSs3X98PGF3AAAAtTbn3Gnl+MqqYwQwJLou9CLi1IhYFRGHSjpB0r9HxCtLiwwAgDZslz4BvULuBKBK3EcPAFBPdLUEAKClUgq9iLhE0iVlbAsAgE5ko25S6aGeyJ0A9BotegCA2qLQAwCgWNJ99AAAAAAAg6fSFj1bWryw+9qyjBO3Y6NptW0ZMWzfOZ20/kM7ppJjeGjHQ0nr/9st6bfK+L8/SdvGgSuWJsfwwiekjQT7K/vvnRzDiqULk9ZfOJr2oZyajqT1I211IAkNesD8MJ34ZVNG7nTXfQ8nrf/dO+5JjuHK2x9IWn/5krScQ5KOO3zfpPWfeMA+yTGMjqT98V+8cDRp/bp899B1EwBQW3TdBACgGIUeAKCeGHUTAICWuEYPAAAAAIYMLXoAgFqyuME5AACtUOgBAGqLOg8AgGIUegCA2hqh0gMAoBCFHgCgtqjzAAAoxmAsAAAAADBkaNEDANSSzX30AABohUIPAFBbI9R5AAAUotADANQWLXoAABSj0AMA1BZ1HgAAxRiMBQAAAACGDC16AIBasiSLJj0AAIpQ6AEAaovBWAAAKEahBwCoJ5vBWAAAaKHSQs+yRhK+lMdG0y8pjMT1tz08mRzDtu1p29g+NZ0cw88ffDhp/W/94GfJMVx97hfTNrDPAckxjL3hpUnrH7Z2WXIM27anJapLF6X9Gi+gSQQ1Rp0HDL6I1OxLmppO28aDO6aSY/jxvQ8krX/u/7s9OYarL/9J0vrLVixPjuGh33lC0voH77UkOYZ9li5MWn9sQdrnaaQmlw0wGAsAAAAADBm6bgIAaslSUi8RAACGGYUeAKC2qPMAAChGoQcAqC0GYwEAoFjSNXq2V9g+3/aPbN9o++llBQYAwCCyfYbtu21fN2P+m/Lvw+tt/3XT/FNtb7T9Y9u/U33EGCTkTgCqktqi9xFJ34qIl9kek7S0hJgAAGjL7lvXzTMlfUzS53fF4t+StE7SkyJiu+1H5fOPlHSCpCdIOkjSv9l+fESkDwGIuiJ3AlCJrgs92/tIeqak10hSROyQtKOcsAAAaK8fg7FExKW2D50x+w2SPhAR2/Nl7s7nr5N0bj7/FtsbJR0t6bKq4sXgIHcCUKWUrpuHSdoi6XO2f2D7M7bTbyoGAECH3INJ0rjtDU3T+g5Cebyk37R9he3v2P6NfP7Bku5oWm5TPg/zE7kTgMqkFHoLJD1F0icj4ihJ2yS9feZCttc3viwnJrYk7A4AgN3ZLn2SNBERa5um0zsIZYGk/SQdI+m/SzrPjBSDPc05d9pC7gSgSymF3iZJmyLiivzx+cr+eO0mIk5vfFmOj69M2B0AAANrk6QvR+b7kqYljUu6U9LqpuVW5fMwP805d1pJ7gSgS10XehFxl6Q7bB+RzzpO0g2lRAUAQBvZDdPLn7r0VUm/JUm2Hy9pTNKEpAsknWB7ke3DJK2R9P3U1456IncCUKXUUTffJOnsfNSomyW9Nj0kAAA6sKurZcW79TmSnq3sWr5Nkk6TdIakM/JbLuyQdFJEhKTrbZ+nLJmflHQyI27Oe+ROACqRVOhFxNWS1pYTCgAAc9OPq+Ai4sQWT72yxfLvk/S+3kWEOiF3AlCV1BY9AAD6hvFOAAAoljIYCwAAAABgANWqRW9yOpK3MR1p25hKD0GpL2N0AM5gT5VxIJKD2Jm8ifu3pd2nduuOyeQYxhaknm9Ji2HZolr9GQAe0RiMBcDwS806JkvIW+59KC3v2Lx5a3IMuvWapNW37Zd+G8/Nvzgsaf0Hd6ZfpjxVQk0wH5DhAQBqi66bAAAUo9ADANQWZR4AAMUo9AAAtWRLI7ToAQBQiMFYAAAAAGDI0KIHAKgtGvQAAChGoQcAqC0GYwEAoBiFHgCgtqjzAAAoxjV6AAAAADBkaNEDANSSZUbdBACgBQo9AEA9ma6bAAC0QqEHAKgtBmMBAKAYhR4AoLa40BwAgGJ8RwIAAADAkKFFDwBQSxZdNwEAaIVCDwBQWyPUeQAAFKLQAwDUFoUeAADFKi30QqGp6eh6/enoft2GnZPTydvotzLuG7V4dDRp/QNXLkuO4YePPSpp/WV7p8dwyHjaNsZG0y9zTf1Y75xK/70A6sim6yYwX6TmPmML0r+vVy9fkrT+rx6xMjmGh7c9O2n9vfZJz52OPHifpPWXL0ovPxaM8re/EwzGAgAAAABDhq6bAIDaousmAADFKPQAALVFz00AAIpR6AEAaskq55plAACGUdI1erbfavt629fZPsf24rICAwCgnZEeTEAvkTsBqErX32m2D5b055LWRsQTJY1KOqGswAAAAIYJuROAKqV23VwgaYntnZKWSvpZekgAAHSGnpuoIXInAJXoukUvIu6U9EFJt0vaLOn+iLiwrMAAAJiNbY30YAJ6hdwJQJVSum7uK2mdpMMkHSRpme1XFiy33vYG2xvumZjoPlIAAGbIbppe7gT0Sje505aJLVWHCWBIpFx3/lxJt0TElojYKenLkp4xc6GIOD0i1kbE2v3HxxN2BwDA7kZc/gT00Jxzp5XjKysPEsBwSCn0bpd0jO2lti3pOEk3lhMWAADA0CF3AlCZrgdjiYgrbJ8v6SpJk5J+IOn0sgIDAGA23EcPdUPuBKBKSaNuRsRpkk4rKRYAAOaEOg91Q+4EoCqpt1cAAKA/uKYOAICWUq7RAwAAAAAMoMpb9FK62ZRxLcbCBYm17eR0cgyLEmOYXJhen+8zvTBp/ef8SvoIqssWPzVp/f32WpQcw/PXpL2ORy1PjyH1c536azFKkwhqzOLzCww6l5C/jTiS1l+2aDQ5hsftv1fS+q97+urkGG44fL+k9ZeXcBye+ugVSevvX0LuNDaalgvPl+u76boJAKilbDCWfkcBAMBgotADANQWhR4AAMUo9AAAtVVGlzAAAIYRg7EAADAHts+wfbft6wqeO8V22B7PH9v2R21vtH2t7adUHzEAYD6i0AMA1FLjGr2ypw6cKen4PeKxV0v6bUm3N81+vqQ1+bRe0icTXzYAAB2h0AMA1JOzUWfLntqJiEsl3Vvw1N9Jepuk5uEB10n6fGQul7TC9oElvHoAAGbFNXoAgNoalCGyba+TdGdEXDPjusGDJd3R9HhTPm9zheEBAOYhCj0AQC318PYK47Y3ND0+PSJObxmHvVTSO5R12wQAYCBQ6AEAsLuJiFg7h+UPl3SYpEZr3ipJV9k+WtKdkprvkrwqnwcAQE9R6AEAamsQem5GxA8lParx2PatktZGxITtCyS90fa5kp4m6f6IoNsmAKDnKPQAADVljaj6Ss/2OZKerayL5yZJp0XEZ1ss/g1JL5C0UdKDkl5bSZAAgHmPQg8AUEtWf1r0IuLENs8f2vRzSDq51zEBADAThR4AoJ46v+8dAADzDvfRAwAAAIAhQ4seAKC2BuU+egAADBoKPQBALfXrGj0AAOqg0kLPctLZ14Wj6TFMR1pWUMbZ46lIW3/xdAkHItEzDt4veRtHHbBP0voLR9J7Hq9YujBp/UUlfCjHRtM+U4sTY0j8OKqEtwHoGi16wPwwmnhBbup3pSSt3HtR0vpPHds3OYYjV+6dtH7qcZSkpYvSyoe9FqW/FwsXpCUfI/PkAm9SNAAAAAAYMnTdBADUFg16AAAUo9ADANSSRbcUAABaodADANSTJdOkBwBAobYnQ22fYftu29c1zdvP9kW2b8r/T7+6FACAOXIPJiAVuROAQdBJr5czJR0/Y97bJV0cEWskXZw/BgAAALkTgAHQttCLiEsl3Ttj9jpJZ+U/nyXppeWGBQDA7Kzs9gplT0AqcicAg6Db69gPiIjN+c93STqg1YK219veYHvDxMSWLncHAMCe6LqJGukqd9pC7gSgS8kDlkVEaJZ7LkfE6RGxNiLWjo+vTN0dAACPsMufgF6bS+60ktwJQJe6HXXz57YPjIjNtg+UdHeZQQEA0J4ZdRN1Qu4EoFLdtuhdIOmk/OeTJH2tnHAAAACGErkTgEp1cnuFcyRdJukI25tsv17SByQ9z/ZNkp6bPwYAoDKNG6aXPQGpyJ0ADIK2XTcj4sQWTx1XciwAAMwJXTcxiMidAAyCbq/RAwCg7yjzAAAoRqEHAKgn06IHAEArlRZ6odDUdMvRhNsq4/s8dROjI+lBjI2mbWN00WhyDKkWL0uPIfEwaPvkdHIMOxK3sX3nVHIMS8fG0tZP/DykHgPTpgIA6LHUkzoLSkidljptI2ML0q8Cnk7Io6VyTo6l5sJl5NIlbGJeoEUPAFBLjcFYAADAnij0AAC1RddNAACKUegBAGqLMg8AgGL0egEAAACAIUOLHgCgtui5CQBAMQo9AEAtZYOxUOkBAFCEQg8AUFu06AEAUIxCDwBQU+Y+jgAAtMBgLAAAAAAwZGjRAwDUFl03AQAoRqEHAKglBmMBAKA1Cj0AQD2ZFj0AAFqh0AMA1BaFHgAAxRiMBQAAAACGDC16AIDa4vYKAAAUo9ADANSSJY1Q5wEAUKjyQi8S1t0xOZ2+/5QAJI2WkFUsGE3rMTsykvgiJC1IPJaLFqT3+l28MG0bozumkmNI/TxMp25A0tR02ja270x7L7nGCXVGix6ATriEL7sFo2nbGC0hfysh7UiWeijLeC/QGVr0AAC1Rb4AAEAxBmMBAAAAgCFDoQcAqC334F/bfdpn2L7b9nVN8/7G9o9sX2v7K7ZXND13qu2Ntn9s+3d6cyQAANgdhR4AoJYag7GUPXXgTEnHz5h3kaQnRsSvS/qJpFMlyfaRkk6Q9IR8nU/YHi3nCAAA0FrbQm+uZy4BAKhGL9rz2ld6EXGppHtnzLswIibzh5dLWpX/vE7SuRGxPSJukbRR0tHlHQMMInInAIOgkxa9M9XhmUsAAIbAuO0NTdP6Oa7/OknfzH8+WNIdTc9tyudhuJ0pcicAfdZ21M2IuNT2oTPmXdj08HJJLys5LgAAZueejbo5ERFru1nR9jslTUo6u9yQUCfkTgAGQRnX6DWfudyD7fWNs6L3TEyUsDsAADLuwdR1LPZrJL1I0isiHrnb1Z2SVjcttiqfh/mt49xpy8SWCsMCMEySCr1OzlxGxOkRsTYi1u4/Pp6yOwAAHpENxuLSp65isY+X9DZJL4mIB5ueukDSCbYX2T5M0hpJ30997aivueZOK8dXVhccgKHS9Q3Tm85cHtd05hIAgMr0437pts+R9Gxl1/JtknSasuutFkm6yFmxeHlE/GlEXG/7PEk3KEvuT46IqT6EjQFA7gSgSl0Vek1nLp8148wlAABDLSJOLJj92VmWf5+k9/UuItQBuROAqnVye4VzJF0m6Qjbm2y/XtLHJC1Xdubyatuf6nGcAADsaZAu0gNy5E4ABkEno27O6cwlAABV6eS+d0DVyJ0ADIKur9EDAKDfenR7BQAAao9CDwBQW9R5AAAUq7zQm04YZGr7zum+7l+SFo6m33pw0cK0bSwcSY9hajrtOCwYTU+vloyNJsaQfhyc2BywYzL9M5n6XmzbPpm0/rJFnO8BAKDXUnOObBslBIJ5gwwPAFBfJD0AABSi0AMA1FI2SCaVHgAARSj0AAD1ZLoxAQDQCoUeAKC2qPMAACiWPpoFAAAAAGCg0KIHAKgvmvQAAChEoQcAqCkzGAsAAC1Q6AEAaovBWAAAKEahBwCoJYuemwAAtMJgLAAAAAAwZGjRAwDUF016AAAUotADANQWg7EAAFCMQg8AUFsMxgIAQDGu0QMAAACAIUOLHgCgtmjQAwCgGIUeAKCeuL8CAAAtVV7ojSRcUDFSyhd62kYWjKYHkXIMyrLvsrGk9SPSY9i2fSpp/TKO4qIFab2XxxLXl6TpxINZxnsB1BWDsQAAUIwWPQBALVkMxgIAQCsMxgIAAAAAQ4YWPQBAbdGgBwBAsbYterbPsH237esKnjvFdtge7014AADMwj2YgETkTgAGQSddN8+UdPzMmbZXS/ptSbeXHBMAAB1xD/4BJThT5E4A+qxtoRcRl0q6t+Cpv5P0NkmM+QcA6Au7/AlIRe4EYBB0NRiL7XWS7oyIa0qOBwAAYOiQOwGo2pwHY7G9VNI7lHU96GT59ZLWS9Kq1Y+Z6+4AAGiJBjjUQUrutPox5E4AutNNi97hkg6TdI3tWyWtknSV7UcXLRwRp0fE2ohYu/841x0DAErEYCyoh65zp5XjKysME8AwmXOLXkT8UNKjGo/zP1hrI2KixLgAAJhVVpdRmWHwkTsB6IdObq9wjqTLJB1he5Pt1/c+LAAA2ujBQCwMxoIykDsBGARtW/Qi4sQ2zx9aWjQAAAA1R+4EYBDMuesmAACDggY4AACKUegBAOqLSg8AgEIUegCAmjKDsQAA0EKlhd41P7hqYuXyhbfNssi4pH6PQEUMgxFDv/dPDJ3HcEhVgQDAfHPVVVdOLFlocqfBj6Hf+yeGesVQSe5UaaEXEbPeDMb2hohYW1U8xDC4MfR7/8QwWDEArTBKJoYduVM9Yuj3/omBGIp0c8N0AAD6rhf3Su+kbrR9hu27bV/XNG8/2xfZvin/f998vm1/1PZG29fafkoZrx0AgHYo9AAA9dWPSk86U9LxM+a9XdLFEbFG0sX5Y0l6vqQ1+bRe0ifn+hIBAOjGoBV6p/c7ABFDQ79j6Pf+JWJoGIQYgELuwb92IuJSSffOmL1O0ln5z2dJemnT/M9H5nJJK2wfWM6rByQNxt9oYuj//iViaCCGnCOi3zEAADBnv/7kp8a/XPz/St/uoeOLr2x3bYXtQyV9PSKemD++LyJW5D9b0i8iYoXtr0v6QER8N3/uYkn/IyI2lB44AABNuL0CAKC2ejQYy7jt5kLs9Ijo+OxsRIRtzqICAPqKQg8AUFs9GnRzoovR0n5u+8CI2Jx3zbw7n3+npNVNy63K5wEA0FMDc42e7eNt/zgfmezt7dcoff+rbf+H7RtsX2/7zVXHkMcxavsHeXeffux/he3zbf/I9o22n96HGN6avwfX2T7H9uIK9tnxKHoVx/A3+Xtxre2v2F5RdQxNz51iO2yP9zIGoGPOWvTKnrp0gaST8p9PkvS1pvmvzkffPEbS/RGxOel1AyJvmhELuRO5E7lTgYEo9GyPSvq4stHJjpR0ou0jKw5jUtIpEXGkpGMkndyHGCTpzZJu7MN+Gz4i6VsR8SuSnlR1LLYPlvTnktbm176MSjqhgl2fqc5H0asyhoskPTEifl3STySd2ocYZHu1pN+WdHuP9w/MUfXDbto+R9Jlko6wvcn26yV9QNLzbN8k6bn5Y0n6hqSbJW2U9A+S/iz1FQPkTXsgdyJ3akbulBuIQk/S0ZI2RsTNEbFD0rnKRiqrTERsjoir8p+3KvslPbjKGGyvkvRCSZ+pcr9N+99H0jMlfVaSImJHRNzXh1AWSFpie4GkpZJ+1usdznEUvcpiiIgLI2Iyf3i5sm5flcaQ+ztJb5PEdUeY9yLixIg4MCIWRsSqiPhsRNwTEcdFxJqIeG5E3JsvGxFxckQcHhG/xiAsKAl5U47c6RHkTrvmkTvlBqXQO1jSHU2PN6kPfywa8tHUjpJ0RcW7/rCyD8R0xfttOEzSFkmfy7tAfMb2sioDiIg7JX1Q2dmPzcq6OV1YZQxNDmjqYnWXpAP6FEfD6yR9s+qd2l4n6c6IuKbqfQOzsQaq6yZQJfKmXT4scidyp9bmde40KIXewLC9l6QvSXpLRDxQ4X5fJOnuiLiyqn0WWCDpKZI+GRFHSdqm3je57ybvy71O2R/OgyQts/3KKmMoEtl9SPp2Rsb2O5V1kzm74v0ulfQOSe+ucr9Ap/pzv3QADf3Km/J9kzuJ3KkVcqfBKfQGYlQy2wuV/bE6OyK+XPHuj5X0Etu3KuuC8RzbX6g4hk2SNkVE44zc+cr+eFXpuZJuiYgtEbFT0pclPaPiGBp+7vzGxt59FL1K2X6NpBdJekVUf+PLw5V9cVyTfzZXSbrK9qMrjgMoRIse5inypgy5U4bcaQZyp8ygFHr/KWmN7cNsjym7gPSCKgOwbWX9q2+MiA9VuW9JiohT82s9DlX2+v89Iio9GxMRd0m6w/YR+azjJN1QZQzKuh0cY3tp/p4cp/5dYN1qFL3K2D5eWZeUl0TEg1XvPyJ+GBGPiohD88/mJklPyT8rQN+5B/+AGpj3eZNE7tSE3KkJudMuA1Ho5RdMvlHSt5V9MM+LiOsrDuNYSa9Sdjbo6nx6QcUxDII3STrb9rWSnizp/VXuPD8jdr6kqyT9UNlntOMbFXdrjqPoVRnDxyQtl3RR/pn8VB9iAAAMEPKmgUPuRO40kLmTq2/NBAAg3ZOOemp8+zuXl77dA/cZu7KLG6YDADBQFvQ7AAAAukVHSwAAilHoAQBqicFTAABobSCu0QMAAAAAlIcWPQBAbTFKJgAAxSj0AAD1RZ0HAEAhCj0AQG1R5wEAUIxCDwBQWwzGAgBAMQZjAQAAAIAhQ4seAKCmzGAsAAC0QKEHAKgli66bAAC0QtdNAAAAABgytOgBAGqLFj0AAIrRogcAAAAAQ4YWPQBAbTEYCwAAxSj0AAD1ZLpuAgDQCoUeAKCWnE8AAGBPFHoAgPqi0gMAoBCDsQAAAADAkKFFDwBQWwzGAgBAMQo9AEBtMRgLAADFKPQAALVFnQcAQDGu0QMAAACAIUOLHgCgvmjSAwCgEIUeAKC2GIwFAIBiFHoAgFqyGIwFAIBWHBH9jgEAgDmz/S1J4z3Y9EREHN+D7QIAUBkKPQAAAAAYMoy6CQAAAABDhkIPAAAAAIYMhR4AAAAADBkKPQAAAAAYMhR6AAAAADBk/j+oo/zbnQEg8wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "recorteB4 = trim(imagen[:,:,2], 442, 370, 15, 15)\n", + "poptB4, pcovB4 = curve_fit(gauss2d, xdata4, recorteB4.ravel(), p0=[1,0,1,1,1])\n", + "estrellaB4=gauss2d(xdata4, poptB4[0], poptB4[1],poptB4[2], poptB4[3], poptB4[4])\n", + "FWHMB4=FWHMB.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptB4[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 4 fotografÃa (Banda Azul)\")\n", + "plt.imshow(recorteB4, plt.get_cmap('Blues'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 4 a partir de la gaussiana (Banda Azul)\")\n", + "plt.imshow(estrellaB4.reshape(15, 15), plt.get_cmap('Blues'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 5 (Azul)" + ] + }, + { + "cell_type": "code", + "execution_count": 431, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3oAAAFSCAYAAACkM60KAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA0jElEQVR4nO3de7xcdXnv8e9371xIwiXAjhGSCKjIKeK1EVFataJtUDSe1gvUS1BaWotWrS0FPfXSHiyntdZab00VwSMFKaJS6wUOihw9gA3IHZTINTGYbK7hlmRnP+ePtYZMdtbsufxm1sya/XnnNa/MrFmXZ9bMnnme9fut33JECAAAAAAwPEb6HQAAAAAAoLso9AAAAABgyFDoAQAAAMCQodADAAAAgCFDoQcAAAAAQ4ZCDwAAAACGzKx+BwAAQCdG9zwgYuKxrq83Htv0vYhY0fUVAwBQIgo9AEAlxcRjmnvIG7u+3sev+cxY11cKAEDJKPQAABVlyZyBAABAEQo9AEA1WZLd7ygAABhIFHoAgOqiRQ8AgEIUegCA6qJFDwCAQhwKBQAAAIAhQ4seAKCiGIwFAIBGKPQAANVF100AAApR6AEAqsmiRQ8AgAYo9AAAFWVa9AAAaIBDoQAAAAAwZGjRAwBUF103AQAoRKEHAKguum4CAFCIQg8AUFFcXgEAgEYo9AAA1WTRogcAQAMcCgUAAACAIUOLHgCguui6CQBAIQo9AEBFcY4eAACNUOgBAKprhHP0AAAowqHQLrB9oO2wPSt/fKntPyhhu/Ns/4ftB23/e6+3l8r2kbZvtf2w7dfl0y6w/d4O13dObT1lK+s9boftO2y/Ir//btv/q98xAQDK0698ZNDYfrPtixLX8cRvapvLvcz2upRtD4o8X3tqn7b9Y9vP69O2O3rveyn/u356fv8fbL+zleWGqtDL35jH8g9m7fbpFpZ7Yuf1W8FrmO6L6vWSFkvaNyLe0GS9O33598lfS/p0ROweEd+w/WZJ2yLik+2uyPazJT1H0jfzx8fb3l63325r9Y+gH5y5zfZNPdrEv0p6s+0n9Wj9QP9ZWdfNbt+ARDMwH+mbovwmIs6OiN/uZ1zDIM/Xbit7u7ZfI2lzRPw0f/wR29vqPos32/69suNqle3d8zi/06NNfFzSB2zPaTbjMP6ivSb/YNZu70pdYR+Ko/rXMN0X1QGSfh4RE2UF1kiL++gASTfWPd5b0gkdbvKPJJ0dEVE37fLafpP0e5L+rl9Hg1rwEklPkvRU2y/o9soj4nFJ35H0tm6vGxgodvdvQHfMpHykLzrZH30+4I3W/LGk/z1l2lfrcrz3SvqK7cWlR9aa35O0RdIrbT+52yuPiA2SbpH02mbzDmOhV8j2023/MO/mOG77q/n0y/JZrs2r7zfVmt1t/6XteyR9yfaI7VNs/8L2vbbPs71PC9t9mu3v58uM2z7b9sIuvJ6PSvqQpDflcZ+Qx/g/bN9pe6PtL9veK1+k9jofyOd/UZP5Zftt+XP32v4r79w18CO2z7f9FdsPSTre9uG2L7f9gO0Ntj9dO9pg+xeSnirpP/Ltz1XWInlsh/vpaEk/bPRkfhToZkm/Vvd6/t32Pfln4DLbz6x77kzbn7H9n7Y3277S9tPqnn+l7VvyZT+trC2h9lwn7/EqZa2R387v19b1Iu98BPhx23fUxfg/6+Zt1j3kUkmvbhIHUGGmRQ+VM2z5SL7uV9v+qe2HbN9t+yPTzFt7TR/I47jDWQ+fpuvyjta7E2zfJen7Ks5vjrf9o7rlwvZJtm+VdGuDuN5al/N8cMpzHe3zfNnacptt32T7v08z7zzbZ9m+31mr1cn1v/PTrctZXvaVgn1V68Z7vLOeRJtt317b540+j3X7rdZdsJX3ZZXtu/L1fLDu+Yb5YcE+mCPp5Zo+x/uepM2SnpYvs7ftb9nelO+7b9leWrfOS23/jbPuoJttX2R7rO756d77lmOvs0rS5yVdJ+ktdeuq5ey12xbbl9bF+Ad18+70GS5wqVrI8WbSL9rfSLpIWSvSUkn/LEkR8ZL8+efkRwpqH/AnS9pHWSvUiZLeLel1kl4qaX9J90v6TAvbtaS/zZf5NUnLJH2kyTJn5x/Wi2w/p2iGiPiwpI9pxxGOL0o6Pr/9lrKiandJta4itde5MJ//8unmt32opM9KerOk/STtJWnJlDBWSjpf0kJJZ0vaLul9ksYkvUjSUZL+JI/3aZLu0o6jg1s63U+2F0g6SNLPip7P53mBpGdIWlM3+TuSDlbWknZ1HnO9YyV9VNlnZK2k0/J1jUm6QNL/yF/bLyQd2Uns+frmKytyz85vx9a+NCKivlVyb0lXSjqn0bqauFlZ91ZgeNGih+oZqnwk94iyHiQLlSWf7/T059A/Wdnv6RJlSfFq24e0sa6X5q/hd1Sc3xR5naQXSjp06hN5zvM5SW9Vtn/2Vfbe1HS6z6UsZ/hNZXnUR5W1RO3XYN4PSzpQWU72StUVCR2s6wl53vQpSUdHxB6SXizpmvzpws9jgVbel9+QdIiy/O9DtmsH2xvmhwUOljQZEYUHsp15taQ5kmqnv4xI+pKyv5GnSHpMO/Lfmt+X9HZlOeAcSX+er6/Ze99O7LJ9gKSXaUeO90TPqoiob5XcX9Jt6nGON4yF3jfyqrt2+8N8+jZlH4D9I+LxiJiuSpakSUkfjogtEfGYsmbkD0bEurxI+Yik17tJF4CIWBsRF+fr2STpE8q+KBp5s7I/8gMk/UDS99z6Ebc3S/pERNwWEQ9LOlVZEdEoxunmf72k/4iIH0XEVmWthzFl+csj4hsRMRkRj0XEVRFxRURMRMQdkv6lyWt9Qpv7aWH+/+Yp04/I3/PNkn6irNn/iSN3EXFGRGyue/+e47oWTElfj4if5F1hz5b03Hz6qyTdGBHnR8Q2SZ+UdE+HsUvS7ypr0r9I0n9Kmq3iozKfyl/jBwuea8VmZT8GAIDyzZh8JCIujYjr83zgOmXJa7Pf/7/KY/mhst/CN7axro9ExCP5/mjV30bEfQ2Web2kb0XEZfk+/Stl+72mo32ev55/j4hf5q/nq8ryksMbzP5GSR+LiPvzQudTCeuaalLSYbbnRcSGiKidStPS57HF9+WjeT54raRrlRcibeaHC7VrfidJb7T9gKSHJV2obD89kK//3oj4WkQ8GhGblR2on7r+L0XEz/P3/zztyPGmfe87yG3fKum6iLhJ0rmSnukppxHZHpH0b5IujYh/mWZd09msHflwQ8NY6L0uIhbW3f41n36ysqNZP7F9o+13NFnPpsjOc6o5QNLXa1/Yyirp7coGQ2nI9mLb59pe76yL41eUHRUoFBE/zv9IHo2Iv5X0gLKjN63YX9KddY/vVHYJjUYxTjf//pLurovrUUn3Tln+7voHtp+RN5ffk7/Wj2ma1zpl2Xb20wP5/3tMmX5F/p7voexo4TPzGGR71Pbpzro8PCTpjnyZ+m3cU3f/UWUtnNKu+yLqH7f7His7enle/qXxuKSvqa77Zr7OP1J2ROj3I2Jy11W0ZA9JD3a4LFANdN3E4Jox+YjtF9r+Qd7696Cywmi638H7I+KRusd3KvutbXVdd6t90y0z9Xf+Ee2c83S0zyXVToO5pm7Zw9R43+wUx9SY21zXE/LX8yZl+3KDs9NU/lv+dEufxxbfl8I8qs388H7tmt9JWd60MCIWKOuy+bY8V5Lt+bb/xVn3y4eUdeddaHu0WWxq8t53kNu+TXmPsYhYr6wL6qop85yWv8Y/nWY9zeyhHflwQzPmFy0i7omIP4yI/ZUN5PFZTz+y1dTWq7uVNXnXf2nvlr+J0/lYvq5nRcSeyprh2+kbFG3M/0tlX0Y1T5E0IelX2vX1NJt/g+qarm3PU9acPTW2ep9TdnLowflr/UAbsbe8n/I/wl8o65pZKCJ+payAek0+6feVdTV9hbJWrgPz6a3Et0FZF5dsAdv1j9uJ3Vmf8ZdLekv+pXGPsqNJr8q7iMr2byrrSrEyIh6qW/wRSfPrHjc7wffXlB1RA4ZTL7pt0nUTPTak+ci/KWtlWRYReyk7P2m6de+ddyeseYqynKTVdUWD+9OZbr6pv/PztXPO09E+z7vx/aukdykbIX2hpBvUeN/slHtNianZuqbNESLiexHxSmWn49ySr6udz2O773G9dvLDtdnL9dTThepfyx3KTsep5XjvV9Zl9IX5+mvdeTvJ8aa+9y3HbvvFyrqenlqX471Q0u97x7mSx0o6TtLrI+slVtOTHG/GFHq23+AdJ2ber+wPvtZS8itl/aGn83lJp+V/aLK9yPbKFja9h7Jm5gfzD+1fTBPjU5xda26O7d1s/4WyowY/bmE7UtaM/j7bB9neXTvO4ZuQtEnZ631qi/OfL+k1tl/s7Pyxj6j5H8wekh6S9HB+pKidyxu0vJ9y39Y0Tee295X037VjlM89lHWXvFfZH9LH2ojtP5U1vf9u/of6p9r5D7Cd2N8q6efKvpCem9+eIWmdpONsL1PWpeBtEfHzKcteo6wg3MfZKE7vbRL3S5V9EQLDixY9VMyQ5iN7SLovIh63fbiyg6vNfDRf/29KOkZS7XrA7a6rKL9p1/mSjrH9G3nO89faOUfudJ8vUPb+bsqXe7uyVrhGzlNWJOydv0f1I7U2W9c1kl6Sv3d7KTsdR/m8i22vzIvrLco+B5P5c9N9Hut18h7XL9tSfhjZ6UL/R9PneEslrdDOOd5jygbk2UfZuY6tavbet5PbrpJ0sbLzQJ+b3w6TNE/S0c66cP6zstb+TVOWvUbS7+atk09X81HpW8rxhvEXrTaqY+329Xz6CyRdabvWt/c9sePaIB+RdJazpvA3NljvP+XLXeTsHLArlFXpzXxU0vOVdaH7T2WDejSyh7IjB/dLWq/sQ3x0REztMtnIGcrOS7tM0u2SHld2AnGt6+Vpkn6cv84jmsx/Y37/XGVHOx6WtFHZF0Qjf67sD3+zsiNFX51m3qna2U+StFrZdeLqi88nRqxU1q1iU+31SPqysq4h65WdvHtFq4FFxLikN0g6XVmheLB2/rFrJ/ZVkj6bH0F74qbsR2SVspN8F0s6v+4zXPsi+9/Kjt7coez8vob71/Zuys4tPKvV1wlUEi16GFwzKR/5E0l/ncfzIWUFy3Tuydf9S2Xd3P44Im7pZF0N8pu25DnPScparTbksdUPBtLRPs/P0/oHSZcrK+KfpekP3v91vt3blRU75yvPu5qtKyIuVpYXXCfpKknfqlvviKQ/U7a/71NWJNQKluk+j/XafY/rtZsf/ouyA+P13lSX4/2Xstf+0fy5TyorpsaVvTffbTWwFt77lmLP8643SvrnKTne7cryt1XKepbtLelHdd8LtWLtHyVtVfbenqVdBwys39Z+yorJbzR7fY6dLkMGFMtb/B5Q1nR9e5/DkSTZ/jdlfba/0e9YBo3tdyvrXnFyv2MBemVkr2Ux98V/1vX1Pv7dP7sqIpZ3fcUAZPtlkr4SEUubzDrj2X6npGMjoqWB7YaJ7R9LelfkF03HDrb/QdIvIuKzzeblopFoyPZrJF2irMvmxyVdrx2DmPRdRLTTbWBGiYhGwyMDQ8R0tQQwNPKWmqcqa7U7WNm5Z1MvEzAjRMSRzeeamSLi/a3OS6GH6axU1txsZdejOzZoAgYwSOhqCWB4zFHWbfEgZb2ozlV2TWOgIxR6aCgi/kDSH/Q7DgAoZNGiB1RMRFyqnUeWRC4i7tT0g7UAbeEXEgBQUS591E3by5xdS+omZ9ecek8+/e9t32L7Ottfd92FpW2fanut7Z/Z/p3e7hMAADIUegAAtG5C0vsj4lBJR0g6yfahyobUPiwinq3sEiqnSlL+3LGSnqls5MLPeueL+AIA0BOldt0cGxuLAw44sOPlt23v/+lho6Pp54OkrmH7ZPp+SF3DaBfOi0l9HZNdOF1wdCTtdcxKXF6Stvf5tMeRxPfyzjvv0L3j45wohf4o+Ry9iNigbAhuRcRm2zdLWhIRF9XNdoWk1+f3V0o6NyK2SLrd9lpJhysbbAFoKjV3AjB47rzzDo2XkDuVWugdcMCB+vGVazpefuND013CrTWTicXFPrvPSY4htbh4+PGJ5Bi2bS+6Fmbrdt8t/aPzwCPbkpZ/bOv25BgWLpidtPzeC9I/D49uSXs/U+v+ubPSGvZfeuThaQEAKXpzjt6Y7fofq9URsXqXTdsHSnqepCunPPUO7bjW0hLtfN3Odfk0oCWpuROAwXPkC8u5gg+DsQAAqqs3LXrjza6jl19b9GuS3hsRD9VN/6Cy7p0NL3YLAEAZKPQAAGiD7dnKiryzI+KCuunHSzpG0lF1l6JZL2lZ3eJL82kAAPQUg7EAAKrJfRl105K+KOnmiPhE3fQVkk6W9NqIeLRukQslHWt7ru2DlF0E+Sdd3xcAAEyRVOjZXpEPF73W9indCgoAgJbY3b9N70hJb5X0ctvX5LdXSfq0pD0kXZxP+7wkRcSNks6TdJOk70o6KSLSTzBGZZE7AShLx1038+GhPyPplcpOLv8v2xdGxE3dCg4AgOm4/FE3f6TiwZO/Pc0yp0k6rWdBoTLInQCUKaVF73BJayPitojYKulcZcNIAwDQc1ZW6HX7BvQQuROA0qQUeksk3V33uHDIaNsn2l5je82m8U0JmwMAAKg0cicApen5YCwRsToilkfE8kVji3q9OQDATOEe3YA+I3cC0A0pl1dgyGgAQB/R1RKVQ+4EoDQpLXr/Jelg2wfZniPpWGXDSAMAUArO0UPFkDsBKE3HLXoRMWH7XZK+J2lU0hn5MNIAAJSCwgxVQu4EoEwpXTcVEd/WNENKAwAAYAdyJwBlSSr0AADoJ1r0AAAoVmqhNzEZunfzlo6X/9UDjyfHsN/euyUtv237ZHIME9vTlt/0UOf7sGbRnnOTlp+cjOQY5s5OG/R13pzR5BhSbX5sW79DSE50tyZ+picj/bMAdIRRMgEAaIgWPQBAJZlRNwEAaIhCDwBQWRR6AAAU6/kF0wEAAAAA5aJFDwBQWbToAQBQjEIPAFBZFHoAABSj0AMAVBOjbgIA0BDn6AEAAADAkKFFDwBQWXTdBACgGIUeAKCSuI4eAACNUegBACqLQg8AgGIUegCA6qLOAwCgEIOxAAAAAMCQoUUPAFBNpusmAACNUOgBACqLQg8AgGIUegCAyqLQAwCgGIUeAKCSuLwCAACNlVroRUjbJ6Pj5cf2nJscw9xZaePPjG/emhzDvNlpMUxG5/uwJuV9kKTZo/1PrkZH+h9DN3LMycT3IvW9nDUA7yUAYHBFYt6R+DPVlRi6cVAoNe3gwBTKRoseAKC6yJsAAChEoQcAqCZG3QQAoCEKPQBAZVHoAQBQjEIPAFBZFHoAABTreFQQ28ts/8D2TbZvtP2ebgYGAAAwTMidAJQppUVvQtL7I+Jq23tIusr2xRFxU5diAwBgejTooVrInQCUpuNCLyI2SNqQ399s+2ZJSyTxZQUAKAVdN1El5E4AytSVc/RsHyjpeZKu7Mb6AABoxuaC6agucicAvZZ25W5JtneX9DVJ742IhwqeP9H2Gttr7rt3U+rmAAAAKq2d3GnTOLkTgM4kFXq2Zyv7ojo7Ii4omiciVkfE8ohYvs++i1I2BwDATmqtet28Ab3Ubu60aIzcCUBnOu666ezX8IuSbo6IT3QvJAAAWkNhhiohdwJQppQWvSMlvVXSy21fk99e1aW4AABozj24Tbe5BsPj297H9sW2b83/3zufbtufsr3W9nW2n9/dHYCKIXcCUJqUUTd/JAa2BgD0UR9a9AqHx5d0vKRLIuJ026dIOkXSX0o6WtLB+e2Fkj6X/48ZiNwJQJmSB2MBAGCmiIgNEXF1fn+zpNrw+CslnZXPdpak1+X3V0r6cmSukLTQ9n7lRg0AmIm6cnkFAABK55616I3ZXlP3eHVErN5l8zsPj784v0aaJN0jaXF+f4mku+sWW5dP2yAAAHqo1EIvIrRlYrLj5efPGU2O4bFtnW9fkh7dMpEcw/bJtNcxsT2SY3jg0W1Jy+85L/2jM5KYoHUjvxtNXMnEZPp70Y11pIigFxGqyerO90CB8YhYPu22pwyPX19wRkTY7u8fNpCb7MJvzNbtabnT1oTcryY19xkdSf+ymDs7rSPc7NH0jnTdeB2YOWjRAwBUVH8uh9BgePxf2d4vIjbkXTM35tPXS1pWt/jSfBoAAD3FOXoAgMqyu3+bfnsNh8e/UNKq/P4qSd+sm/62fPTNIyQ9WNfFEwCAnqFFDwCA1tWGx7/e9jX5tA9IOl3SebZPkHSnpDfmz31b0qskrZX0qKS3lxotAGDGotADAFRW2V03mwyPf1TB/CHppJ4GBQBAAQo9AEA1tdDVEgCAmYpCDwBQSZY0wgh0AAAUotADAFQWLXoAABRj1E0AAAAAGDK06AEAKqsf19EDAKAKKPQAANXEYCwAADREoQcAqCSLFj0AABqh0AMAVJQp9AAAaIDBWAAAAABgyNCiBwCoLBr0AAAoRqEHAKgsum4CAFCMQg8AUE2MugkAQEPlFnqWRkc6/1V+8LGJ5BAmtk8mLf/Ilu3JMdzz8ONpMWxL3w9Ldp+ftHzK+1izYO5o8jqSDUCSODkZScunLS2NOHH7qQEAABoKpf1ObJ1Iy3sk6f5HtyUtv/HBtLxHksYf25K0/N5z5yTHsHiv3ZKW32f39BjmzkobXmOkC/kbqoMWPQBAJXF5BQAAGqPQAwBUFnUeAADFKPQAAJVFix4AAMUo9AAAlUWdBwBAseQLptsetf1T29/qRkAAAADDjNwJQBm60aL3Hkk3S9qzC+sCAKA1pusmKovcCUDPJbXo2V4q6dWSvtCdcAAAaE026mb3b0AvkTsBKEtqi94nJZ0saY/0UAAAaIdp0UMVfVLkTgBK0HGLnu1jJG2MiKuazHei7TW219x373inmwMAYBe06KFKOsmdxsc3lRQdgGGT0nXzSEmvtX2HpHMlvdz2V6bOFBGrI2J5RCzfZ9+xhM0BAABUWtu509jYorJjBDAkOi70IuLUiFgaEQdKOlbS9yPiLV2LDACAJmx3/Qb0CrkTgDJxHT0AQDXR1RIAgIa6UuhFxKWSLu3GugAAaEU26iaVHqqJ3AlAr9GiBwCoLAo9AACKJV1HDwAAAAAweEpt0Ruxtdvs0Y6Xv+/hrckxPLx1Imn5W+7bnBzDGT+4I2n5A/ffMzmGd7xgWdLyC+Z2/j7WzJ2VdpxhYnskx5DaFhCRHkP6GtKMJO4EGlTQT3z+MBNMJvzWPLJ1e/L27xh/JGn5L121LjmG69fem7T805+yMDmGt79gadLyz5q1V3IMsxfMTlp+JDnzQZXQdRMAUFl03QQAoBiFHgCgmhh1EwCAhjhHDwAAAACGDC16AIBKsrjAOQAAjVDoAQAqizoPAIBiFHoAgMoaodIDAKAQhR4AoLKo8wAAKMZgLAAAtMH2GbY32r6hbtpzbV9h+xrba2wfnk+37U/ZXmv7OtvP71/kAICZhEIPAFBJdnYdvW7fWnCmpBVTpv2dpI9GxHMlfSh/LElHSzo4v50o6XPdeO0AADRD100AQGWN9KHrZkRcZvvAqZMl7Znf30vSL/P7KyV9OSJC0hW2F9reLyI2lBMtAGCmotADAFTWAF1e4b2Svmf748p6y7w4n75E0t11863Lp1HoAQB6iq6bAIDKyrpvdvcmaSw/z652O7GFUN4p6X0RsUzS+yR9sYcvGwCApmjRAwBgZ+MRsbzNZVZJek9+/98lfSG/v17Ssrr5lubTAADoKVr0AACVZEnuwb8O/VLSS/P7L5d0a37/Qklvy0ffPELSg5yfBwAoAy16AIDK6sdgLLbPkfQyZV0810n6sKQ/lPRPtmdJelzZCJuS9G1Jr5K0VtKjkt5eesAAgBmJQg8AUE2tXw6hqyLiuAZP/XrBvCHppN5GBADArkot9CKkrROTHS/fjR/0B7dsS1r+61ffkxzD9Rd8I2n5DUf8VnIMb3refknLp7yP3TIZkbyO7YkvYzI9BI0kfq5T/yxG+tEkAnTJ4Ay6CfRGKO23Zsu27ckx3HjvQ0nL/5//+4vkGO6/8vtJy9/17COTY3jOsj2bzzSNp4/tnhzDnvPSUvfRkfTEZYBGO0YTnKMHAAAAAEOGrpsAgEqy0lvEAQAYVhR6AIDKos4DAKAYhR4AoLI4VwQAgGJJ5+jZXmj7fNu32L7Z9ou6FRgAAMCwIXcCUJbUFr1/kvTdiHi97TmS5nchJgAAmrLpuolKIncCUIqOCz3be0l6iaTjJSkitkra2p2wAABojsFYUCXkTgDKlNJ18yBJmyR9yfZPbX/B9oIuxQUAQFPuwQ3oIXInAKVJKfRmSXq+pM9FxPMkPSLplKkz2T7R9hrba+69d1PC5gAA2Jntrt+AHmo/d9pE7gSgMymF3jpJ6yLiyvzx+cq+vHYSEasjYnlELN9330UJmwMAAKi09nOnReROADrTcaEXEfdIutv2IfmkoyTd1JWoAABoIrtgevdvQK+QOwEoU+qom++WdHY+atRtkt6eHhIAAC2gqyWqidwJQCmSCr2IuEbS8u6EAgBAe6jzUDXkTgDKktqiBwBA39CiBwBAsZTBWAAAAAAAA6jUFr3JCG2ZmOx4+dEunCX/yMRE0vJbE+J/wva0GBY/ec/kEHYbTavxu3EUfRAGPZiMfkeQ/rmeNZq2/OwB+CwAnagNxgIMs9TrO3bjO3r+7LTfifm7z0uO4f69FictP68LMew+J/X3MjkEoC103QQAVBYHGgAAKEahBwCoLMo8AACKUegBACrJlkZo0QMAoBCDsQAAAADAkKFFDwBQWTToAQBQjEIPAFBZDMYCAEAxCj0AQGVR5wEAUIxz9AAAAABgyNCiBwCoJMuMugkAQAMUegCAajJdNwEAaIRCDwBQWQzGAgBAMQo9AEBlcaI5AADF+I0EAAAAgCFDix4AoJIsum4CANAIhR4AoLJGqPMAAChEoQcAqCwKPQAAipVa6FlpP8rd+EFPvebSi58xlhzDY296Q9Lyv3fE0uQYnjR/t6TlF8wdTY5hEMZFn4xIWr4b1/BK/VzPHk071Xb2aFoA/X8XMVPZdN3EzJDyMZ8/J/33+lljC5OWf8srn54cww2HPilp+acv3j05hsP32ztp+QVz09Pu0cSkge/MmYXBWAAAAABgyNB1EwBQWXTdBACgGIUeAKCy6IUEAEAxum4CACopO+/bXb813a59hu2Ntm+YMv3dtm+xfaPtv6ubfqrttbZ/Zvt3ur8nAADYVVKhZ/t9+Q/aDbbPsZ02wgcAAG0Y6cGtBWdKWlE/wfZvSVop6TkR8UxJH8+nHyrpWEnPzJf5rO0ujGaFqiJ3AlCWjgs920sk/amk5RFxmKRRZT9mAAAMrYi4TNJ9Uya/U9LpEbEln2djPn2lpHMjYktE3C5praTDSwsWA4XcCUCZUrtuzpI0z/YsSfMl/TI9JAAAWpNdYqG7tw49Q9Jv2r7S9g9tvyCfvkTS3XXzrcunYeYidwJQio4HY4mI9bY/LukuSY9JuigiLupaZAAATMMtnlPXgTHba+oer46I1U2WmSVpH0lHSHqBpPNsP7UXwaG6yJ0AlCml6+beyrqkHCRpf0kLbL+lYL4Tba+xvea++8Y7jxQAgCl61KI3HhHL627Nijwpa6m7IDI/kTQpaUzSeknL6uZbmk/DDNRJ7jS+aVPZYQIYEildN18h6faI2BQR2yRdIOnFU2eKiNW1H8t99hlL2BwAADsbcfdvHfqGpN+SJNvPkDRH0rikCyUda3uu7YMkHSzpJ8kvHFXVdu40tmhR6UECGA4p19G7S9IRtucr635wlKQ10y8CAEC12T5H0suUdfFcJ+nDks6QdEZ+yYWtklZFREi60fZ5km6SNCHppIjY3p/IMQDInQCUJuUcvSttny/pamU/Xj+V1Er3FgAAktWuo1e2iDiuwVO7dMHL5z9N0mm9iwhVQe4EoEwpLXqKiA8rO5IJAEDp+lDnAUnInQCUJanQAwCgb9LOqQMAYKilXkcPAAAAADBgSm3RC0nbtkfHyy/ea7fkGObMSqttDx3bMzmG4561f9Lyo104hL3nvLS3PuV9fEKkrWPE6ccpZo2m7ctuNCak7smtE5OJy6dtfzLxfQRSuCt/hcBgS/ndnzdnNHn7++8zL2n5Nxy2X3IMxzzjSUnLz52dvh/2XjA7afkFc9Nj6EYOiJmDrpsAgErKBmPpdxQAAAwmCj0AQGVR6AEAUIxCDwBQWWbYTQAACjEYCwAAAAAMGVr0AACVxDl6AAA0RqEHAKgmc8F0AAAaodADAFTWCJUeAACFKPQAAJVE100AABpjMBYAAAAAGDK06AEAKouemwAAFKPQAwBUlDUiKj0AAIpQ6AEAKsmiRQ8AgEYo9AAA1WQGYwEAoBEGYwEAAACAIUOLHgCgsriOHgAAxSj0AACVxDl6AAA0VmqhNzpi7TWv803OHk3/RZ8/Z7Svy3fDtu2RvA4nZkdzZpFdSV1qTUhdReLHYTLSP09Av9Cih2GXHdDo/HM+uwtpS0ruJnUnd5qcTPut6sZXxezRtDOeRrtwUnFq/oaZhXP0AAAAAGDI0HUTAFBZHNwGAKAYhR4AoJIsuqUAANAIhR4AoJrM+SoAADTS9GCo7TNsb7R9Q920fWxfbPvW/P+9exsmAAC7cg9uQCpyJwCDoJVeL2dKWjFl2imSLomIgyVdkj8GAAAAuROAAdC00IuIyyTdN2XySkln5ffPkvS67oYFAMD0rOzyCt2+AanInQAMgk7PY18cERvy+/dIWtxoRtsn2l5je82945s63BwAALui6yYqpKPcaRO5E4AOJQ9YFhGhaS7ZHBGrI2J5RCzfd2xR6uYAAHiC3f0b0Gvt5E6LyJ0AdKjTUTd/ZXu/iNhgez9JG7sZFAAAzZlRN1El5E4AStVpi96Fklbl91dJ+mZ3wgEAABhK5E4AStXK5RXOkXS5pENsr7N9gqTTJb3S9q2SXpE/BgCgNLULpnf7BqQidwIwCJp23YyI4xo8dVSXYwEAoC103cQgIncCMAg6PUcPAIC+o8wDAKAYhR4AoJpMix4AAI2UXujNGu38DIht2xuORFyaubNH+x2CJiYnkteRjezcuZT3sWZ0pP8JWuJu6MoJPbP6vB8mJtOWN20qADCwunEwZNZo2jpGR9Lzt9Tf60E4JsSBKZSN884BAJXUr8FYbJ9he6PtGwqee7/tsD2WP7btT9lea/s6289Pec0AALSKQg8AUFm2u35rwZmSVhTEskzSb0u6q27y0ZIOzm8nSvpc8osGAKAFFHoAgMpyD27NRMRlku4reOofJZ0sqb6T2UpJX47MFZIW5hfLBgCgpyj0AABIZHulpPURce2Up5ZIurvu8bp8GgAAPcWomwCAyurR2AZjttfUPV4dEasbx+D5kj6grNsmAAADgUIPAFBJ2WAsPan0xiNieRvzP03SQZKuzc/xWyrpatuHS1ovaVndvEvzaQAA9BSFHgCgsgZhtPKIuF7Sk2qPbd8haXlEjNu+UNK7bJ8r6YWSHoyIDf2JFAAwk3COHgCgotyTf023ap8j6XJJh9heZ/uEaWb/tqTbJK2V9K+S/qQbrxwAgGZo0QMAoA0RcVyT5w+sux+STup1TAAATEWhBwCorEHougkAwCCi0AMAVFIPB2MBAKDyKPQAANVkWvQAAGiEQg8AUFkUegAAFGPUTQAAAAAYMrToAQAqq5XLIQAAMBNR6AEAKsmSRqjzAAAoVGqhZ0ujCb/KW7ZtT45hZAiygrmz0nvczp09mrT8rAHYj9u2TyavYzLSlu/GfnDfTzJK3AlAH9GiBwy+bvzO9f2nEqggWvQAAJVF8gcAQDEGYwEAAACAIUOLHgCgsui6CQBAMQo9AEAlMRgLAACNNe26afsM2xtt31A37e9t32L7Ottft72wp1ECALAL9+QfkIrcCcAgaOUcvTMlrZgy7WJJh0XEsyX9XNKpXY4LAACgqs4UuROAPmta6EXEZZLumzLtooiYyB9eIWlpD2IDAKAxZ6NudvsGpCJ3AjAIujHq5jskfafRk7ZPtL3G9pp7x8e7sDkAADLuwQ0oQcu506bxTSWGBWCYJBV6tj8oaULS2Y3miYjVEbE8IpbvOzaWsjkAAJ6QDcbirt+AXmo3d1o0tqi84AAMlY5H3bR9vKRjJB0VEdG1iAAAaBFlGaqE3AlAmToq9GyvkHSypJdGxKPdDQkAAGC4kDsBKFsrl1c4R9Llkg6xvc72CZI+LWkPSRfbvsb253scJwAAu+IkPQwgcicAg6Bpi15EHFcw+Ys9iAUAgLZw3TsMInInAIOg43P0AADoN8ZOAQCgGIUeAKCyqPMAAChWaqE3YmvenNEyN7mLWaNpacHkZPogWdu2p61jwW7pb9vcWWmXUNzehf2QuorJiebzNI+h+oOeJX8mq78LAAAAMAUtegCA6qJJDwCAQhR6AIBKygbJpNIDAKAIhR4AoJrMYCwAADRCoQcAqCzqPAAAiqWNyAEAAAAAGDi06AEAqosmPQAAClHoAQAqygzGAgBAAxR6AIDKYjAWAACKUegBACrJoucmAACNMBgLAAAAAAwZWvQAANVFkx4AAIUo9AAAlcVgLAAAFKPQAwBUFoOxAABQjHP0AABog+0zbG+0fUPdtL+3fYvt62x/3fbCuudOtb3W9s9s/05fggYAzDgUegCAynIPbi04U9KKKdMulnRYRDxb0s8lnSpJtg+VdKykZ+bLfNb2aPuvFACA9lDoAQCqqRdVXguVXkRcJum+KdMuioiJ/OEVkpbm91dKOjcitkTE7ZLWSjq8k5cLAEA7KnWO3taJyeR1zBpJO5A6GckhaNv2tNcxd1Z6fb4lcV9ObE/fEbNGOblGkiYTP1TbU5ePtOVDXfijADrUo8FYxmyvqXu8OiJWt7H8OyR9Nb+/RFnhV7MunwYAQE9VqtADAKDG6tlgLOMRsbyTBW1/UNKEpLO7GxIAAO2h0AMAoAtsHy/pGElHRTzRVL5e0rK62Zbm0wAA6CnO0QMAVFafBmPZNQ57haSTJb02Ih6te+pCScfanmv7IEkHS/pJh5sBAKBlTQu9omGk6557v+2wPdab8AAAmEYfKj3b50i6XNIhttfZPkHSpyXtIeli29fY/rwkRcSNks6TdJOk70o6KSK2d+GVY4CROwEYBK103TxT2Q/Yl+sn2l4m6bcl3dX9sAAAaK5Hg7FMKyKOK5j8xWnmP03Sab2LCAPoTJE7Aeizpi16RcNI5/5RWTcVhtwDAPSF3f0bkIrcCcAg6OgcPdsrJa2PiGu7HA8AAMDQIXcCULa2R920PV/SB5R1PWhl/hMlnShJy57ylHY3BwBAQzTAoQrInQD0Qyctek+TdJCka23foWyo6KttP7lo5ohYHRHLI2L52NiiziMFAGCqQRl2E5hex7nTInInAB1qu0UvIq6X9KTa4/wLa3lEjHcxLgAAppXVZVRmGHzkTgD6oZXLKxQNIw0AQH/1YCAWBmNBN5A7ARgETVv0GgwjXf/8gV2LBgAAoOLInQAMgra7bgIAMChogAMAoBiFHgCguqj0AAAoRKEHAKgoMxgLAAANlFro/fTqq8Z3nzty5zSzjEnq9whUxDAYMfR7+8TQegwHlBUIAMw0V1991fi82SZ3GvwY+r19YqhWDKXkTqUWehEx7cVgbK+JiOVlxUMMgxtDv7dPDIMVA9AIo2Ri2JE7VSOGfm+fGIihCF03AQCVxPXNAQBojEIPAFBdVHoAABQatEJvdb8DEDHU9DuGfm9fIoaaQYgBKMRgLMBAfEcTQ/+3LxFDDTHkHBH9jgEAgLY9+7m/Hv9xyf/r+noPHNvtqkE4twIAgBSD1qIHAEDLGIwFAIBiFHoAgMqizgMAoNhIvwOosb3C9s9sr7V9Sh+2v8z2D2zfZPtG2+8pO4Y8jlHbP7X9rT5tf6Ht823fYvtm2y/qQwzvy9+DG2yfY3u3ErZ5hu2Ntm+om7aP7Ytt35r/v3cfYvj7/L24zvbXbS8sO4a6595vO2yP9TIGoGXOWvS6fQOqgLxpp1jIncidyJ0KDEShZ3tU0mckHS3pUEnH2T605DAmJL0/Ig6VdISkk/oQgyS9R9LNfdhuzT9J+m5E/DdJzyk7FttLJP2ppOURcZikUUnHlrDpMyWtmDLtFEmXRMTBki7JH5cdw8WSDouIZ0v6uaRT+xCDbC+T9NuS7urx9oE2uQc3YLCRN+2C3IncqR65U24gCj1Jh0taGxG3RcRWSedKWllmABGxISKuzu9vVvZHuqTMGGwvlfRqSV8oc7t1299L0kskfVGSImJrRDzQh1BmSZpne5ak+ZJ+2esNRsRlku6bMnmlpLPy+2dJel3ZMUTERRExkT+8QtLSsmPI/aOkkyUxehMA9B95U47c6QnkTjumkTvlBqXQWyLp7rrH69SHL4sa2wdKep6kK0ve9CeVfSAmS95uzUGSNkn6Ut4F4gu2F5QZQESsl/RxZUc/Nkh6MCIuKjOGOosjYkN+/x5Ji/sUR807JH2n7I3aXilpfURcW/a2gelYdN3EjEXetMMnRe5E7tTYjM6dBqXQGxi2d5f0NUnvjYiHStzuMZI2RsRVZW2zwCxJz5f0uYh4nqRH1Psm953kfblXKvvi3F/SAttvKTOGIpFdh6RvR2Rsf1BZN5mzS97ufEkfkPShMrcLtIqOm0B/9StvyrdN7iRyp0bInQan0FsvaVnd46X5tFLZnq3sy+rsiLig5M0fKem1tu9Q1gXj5ba/UnIM6ySti4jaEbnzlX15lekVkm6PiE0RsU3SBZJeXHIMNb+yvZ8k5f9v7EcQto+XdIykN0f5F758mrIfjmvzz+ZSSVfbfnLJcQCFaNHDDEXelCF3ypA7TUHulBmUQu+/JB1s+yDbc5SdQHphmQHYtrL+1TdHxCfK3LYkRcSpEbE0Ig5U9vq/HxGlHo2JiHsk3W37kHzSUZJuKjMGZd0OjrA9P39PjlL/TrC+UNKq/P4qSd8sOwDbK5R1SXltRDxa9vYj4vqIeFJEHJh/NtdJen7+WQH6zj34B1TAjM+bJHKnOuROdciddhiIQi8/YfJdkr6n7IN5XkTcWHIYR0p6q7KjQdfkt1eVHMMgeLeks21fJ+m5kj5W5sbzI2LnS7pa0vXKPqOre71d2+dIulzSIbbX2T5B0umSXmn7VmVHy07vQwyflrSHpIvzz+Tn+xADAGCAkDcNHHIncqeBzJ1cfmsmAADpnvO8X4/v/fCKrq93v73mXBURy7u+YgAASjSr3wEAANApOloCAFCMQg8AUEkMngIAQGMDcY4eAAAAAKB7aNEDAFQWo2QCAFCMQg8AUF3UeQAAFKLQAwBUFnUeAADFKPQAAJXFYCwAABRjMBYAAAAAGDK06AEAKsoMxgIAQAO06AEAKsnacS29bt6abtc+w/ZG2zfUTdvH9sW2b83/3zufbtufsr3W9nW2n9+zHQIAQB0KPQAA2nOmpBVTpp0i6ZKIOFjSJfljSTpa0sH57URJnyspRgDADEehBwCorH606EXEZZLumzJ5paSz8vtnSXpd3fQvR+YKSQtt79eVFw8AwDQo9AAASLc4Ijbk9++RtDi/v0TS3XXzrcunAQDQUwzGAgCorB4NxjJme03d49URsbrVhSMibEcP4gIAoGUUegCAamqxq2UHxiNieZvL/Mr2fhGxIe+auTGfvl7Ssrr5lubTAADoKbpuAgAqyT26dehCSavy+6skfbNu+tvy0TePkPRgXRdPAAB6hhY9AEB19eEyerbPkfQyZV0810n6sKTTJZ1n+wRJd0p6Yz77tyW9StJaSY9KenvpAQMAZiQKPQAA2hARxzV46qiCeUPSSb2NCACAXVHoAQAqq0eDsQAAUHkUegCAyurRYCwAAFQehR4AoLKo8wAAKMaomwAAAAAwZGjRAwBUF016AAAUotADAFQWg7EAAFCMQg8AUEkWg7EAANCIs0v8AABQLba/K2msB6sej4gVPVgvAAClodADAAAAgCHDqJsAAAAAMGQo9AAAAABgyFDoAQAAAMCQodADAAAAgCFDoQcAAAAAQ+b/A368RM6TTNF1AAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "recorteB5 = trim(imagen[:,:,2], 320, 455, 15, 15)\n", + "poptB5, pcovB5 = curve_fit(gauss2d, xdata5, recorteB5.ravel(), p0=[1,0,1,1,1])\n", + "estrellaB5=gauss2d(xdata5, poptB5[0], poptB5[1],poptB5[2], poptB5[3], poptB5[4])\n", + "FWHMB5=FWHMB.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptB5[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 5 fotografÃa (Banda Azul)\")\n", + "plt.imshow(recorteB5, plt.get_cmap('Blues'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 5 a partir de la gaussiana (Banda Azul)\")\n", + "plt.imshow(estrellaB5.reshape(15, 15), plt.get_cmap('Blues'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 6 (Azul)" + ] + }, + { + "cell_type": "code", + "execution_count": 432, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3QAAAFSCAYAAAC6+p25AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAxJklEQVR4nO3de9xldV33/9d7ZmAAOTNowCBQN1ponhoVM02lDEnFX3cZlormHdmNx+xnYr879Pe7NStvU7LspsTDHWHkoTAptTxlBQaIByAVBWVgCEYQkPMMn98fa12w52Lv69rXzLX2Xvua13Me6zH7Wnvt7/qsffx+1vewUlVIkiRJkmbPqmkHIEmSJEnaPiZ0kiRJkjSjTOgkSZIkaUaZ0EmSJEnSjDKhkyRJkqQZZUInSZIkSTNqzbQDkCRpIav3Pqxqy+3LWmbdfv3Hq+rYZS1UkqQpMKGTJPVabbmdtQ997rKWecfFf7xuWQuUJGlKTOgkST0XiCMEJEkaxoROktRvAZJpRyFJUi+Z0EmS+s8WOkmShjKhkyT1ny10kiQN5SlPSZIkSZpRttBJknrOSVEkSRrFhE6S1H92uZQkaSgTOklSvwVb6CRJGsGETpLUc7GFTpKkETzlKUmSJEkzyhY6SVL/2eVSkqShTOgkSf1nl0tJkoYyoZMk9ZyXLZAkaRQTOklSvwVb6CRJGsFTnpIkSZI0o2yhkyT1n10uJUkayoROktRzjqGTJGkUfyElSf23Ksu7LCLJoUk+neTSJJckeeW8+1+TpJKsa/9OktOSXJ7ky0ke09EzIUnSNkzoliDJ4e0P+Jr2788k+W8T2G+SvCfJjUm+0PX+dlSShya5OMktSV7RrntbkrdvZ3m/m+RVyxnjEvb93iT/cxr7HmXwfZfkWUn+atoxSSvQFuA1VXUUcDRwcpKjoEn2gKcD3xnY/hnAke1yEvCuyYarncm06iN9k+RJSb62g2Vs13M3/zWYZe1Jq6dMad9nJXnOlPbdu89NkiuT/FR7++VJfm+cx81kQtce7O1Jvj+wvHOMx1WS/zKJGMeR5JVJrkhya5LLkjxkxKY/Afw0sL6qHjdGudM+ztcCn66qvarqtCRPAh4L/N9LLSjJgcALgf/d/v2UJPcMvO5XJ3njska/zNovjBuTrF3usqvqo8DDkjxiucuWeiM0XS6Xc1lEVW2qqova27cAlwGHtHf/Ic33XA085Hjg/dU4D9g3yUHL+TSof3bC+shUzX/equqfq+qh04xpJaiqh1XVZya937bu8kjgb9u/X5Rk68Bn6VtJfn3ScY2rbXD5VpJLO9rFnwG/nOSBi204kwld61lVtefA8rIdLXCSZ1naMwIvAX4W2BN4JrB5xOaHAVdW1a0TCm+kMZ+jw4BLBv4+AvjFqrp7O3b5IuDcqrp9YN01c687TbL7kmmd3VlMksOBJ9FU/J7d0W7OomkRkFauZHkXWJfkgoFl5Geo/Rw/Gjg/yfHA1VX1pXmbHQJcNfD3Ru5LALWy7Uz1kanYnudjJbSc7QR+DTizqgZPjv3bQB3vvwK/n+TR0wlvUU8GHgj8YJLHLnfhVXUH8Pc0DRsLmuWEbqgk/yXJZ5PclGTzXHe0JJ9rN/lSm/X/YtvaszHJbyW5FnhPklVJXpfkm0m+m+TsJPuPsd8fSvKp9jGbk5yZZN8R264CTgVeXVWXtmd0v1lVNwzZ9iXAnwNPaON+Y7v+V9OM1bghyTlJDh51nAtt39739CRfa5+zP2mfv7kufS9K8i9J/jDJd4E3LHSsST4FPBV4Z7v/hwBPA/57e/9+Sf4uyfVtq9XfJVm/wFP7DOCzo+6sqiuAfwWOGjiedyS5KsnNSS5M00I4d98b2tf0/Wm6hF6SZMPA/Y9OclF7318Buw3ct9TYofkQnge8FzhxoKyDs+0Z3duS1ECMfzGw7WLdOj5D80MsrVDpooVuc1VtGFhOH7rnZE/gQ8CraLphvh74nUkduWbXSquPtNs/Lsm/Jflekk1J3plk1xHbzv12nZTkmnb73xy3rPaxJyf5BvCNhZ63gcdc2T6HXwZuHfa7meSnk/xH+7q8k6YPwOD9v5KmlfLGJB9PctiIp3p+uS9uH3dLmlabX1tg29VJ/lf7+lyR5GXZtgvtyLLS1Ms+P6+8e1sukxyXZuzvLWl6Mf1mu35dW2/5Xpq64D+3r//8bn7jvC4vTfKNdps/TpqzZEt577UWq+N9kaZ3xI8M7P+vk1zbvn6fS/Kwgfve28bzsfb4z0/yQwP3j3zttyN2aOp1fwucy7Z1vLk6+9xyR5IrB2L8nwPbbvMeHuIzjFHHW3EJHfD/AZ8A9gPWA38EUFVPbu9/ZJv5z407+gFgf5pWpZOAlwPPAX4SOBi4EfjjMfYb4Hfbx/wIcCjwhhHbrm+Xh6dJPK5I8sa5D9agqno38FLuO2NxapKntft6LnAQ8G3gA6OOc6Ht0wzo/yBwCnAA8DXgx+eF8XjgW8CDgDctdKxV9TTgn4GXtfv/+ryyVgHvoXm+HwzcDizUPeVH25iGSnIk8ESapGnOvwOPonld/xL46yS7Ddz/7Pb49wXOmdt/+4X1N8D/aR/71zRnh7Y3dmgSujPb5WeSPAigqu5tZWzPQn2kjWl7XAYcnmTv7Xy81H/L30I3xi6zC00yd2ZVfRj4IZoeB19qf5zXAxcl+QHgaprvwjnr23Xaea2o+khrK/BqYB3wBOAY2hO2C3gqzdjSpwO/NZc4jFnWc2jqIEct8LzN9zyaCvC+VbVl8I62zvNh4P9p9/tNmjrE3P3H05y0+TngQJr6zFmLHN+c62haN/cGXgz8YUZPjvSrNMnMo4DHtMe5vWXN927g16pqL+DhwKfa9a+h6TlwIE197vVs2218zjivyzNphtI8gqZu+TPt+rHfe0keQPN9ulAd77HAQ4ALBlb/Pc376YHARTT1q0EnAG+k+dxdTlNvXfS1X0rsbXl7AD/PfXW8E+YS36oabGXcDzif8d9H811G0y11QbOc0P1Ne2ZgbvnVdv3dNF+GB1fVHVX1+QXKALgHOLWq7my79b0U+O2q2lhVd9K8mD+fRZruq+ryqvpkW871wNtovoSHmWvVeTpNwvJUmi+glywS65xfBs6oqovaGE+hacE7fDu2Pw64pKo+3H7xnQZcO+/x11TVH1XVlqq6fYnHuo2q+m5VfaiqbmvHpbxpkcfuC9wyb93B7Wt+M/B1mg/Kva9zVf1Fu58tVfW/gLXAYB/7z1fVuVW1lSZ5m/ugHA3sAry9qu6uqg/SJIfbFXuSn6B5L55dVRfSfHn80pDtfgv4YeBXFngeFjL3/Oy7nY+XNE97xvndwGVV9TaAqvpKVT2wqg6vqsNpKkePqapraU4OvTCNo4GbqmrTtOLXRO009ZGqurCqzmt/X6+kGd++2O//G6vq1qr6Cs1J0ectoazfraobatthF4s5raquGvGYuTrPB6sZBvJ2tq3zvLTd52VtnejNwKMyRitdVX2sbd2sqvosTTL/pBGbPxd4R/va3gi8ZQfKmu9u4Kgke1fVjdWOBW7XHwQc1tZx/rmq7pfQjfm6vKWqvldV3wE+TZOYLvW9t2/7//w63tHt5+gW4As09bRvDMR3RlXdMvCZeGSSfQYe/5Gq+kL7+p05FxuLvPbbUbf9OeBOmtfmYzT1x2Etaae1x/jbC5S1kFuAfRbbaJYTuudU1b4Dy5+1619Lk2V/IU13usUqyddX00d1zmHAR+a+mGky4600ZzNGSvKgJB9om7dvBv6C5gzAMHNfMr/ffiCupPnAHLdIrHMOpmllA6Cqvg98l9HjNRba/mAGxn20H+75Tb+D40KWeqzbSLJHkv+d5NvtYz9HM3nA6hEPuRHYa966a9rXfG+aL4TbgfcN7OM303RVuKl9DfeZF9/gl/dtwG7tD+TBNGNjBr/g7n3etiP2E4FPVNXcWIS/ZKBJvi3zGcArad7PS/nBGjT3/HxvOx8v9d+EJ0WhOXP7AuBpaWbtvTjJQt/R59L0ZLicZiD7Yq0WWjl2mvpIkoek6bZ3bVv2mxcoe85gHeLbNL+145Z1FUu30GOG1XkGtz8MeMfAc34DzWu46HjYJM9Icl6a7ozfo3kORz0328QxP+YlljXff223/3aaLr9PaNf/Ac330yfSdON83YjjGOd1mV+P2rN97FLee99r/59fxzuv/RztRdNq/bA2hrmuqm9J0w35ZuDK9jEL1fH2bG8v+NpvR932RJoT9lvaz+2HuH8d79eApwC/VFX3LFDWQvYCblpso1lO6Iaqqmur6ler6mCawZZ/koVnkpp/duIq4Bnzvpx3q6rFus68uS3rR9tE4/nM65c94GvAXfP2PazZe5RraL50gHubrQ9gdPeehbbfxH1n6ObOSs8fFzY/tqUc63yvoWkte3z72LkuFKMe/2Wa5vahquommkTpWW38T6L5EX0usF9V7UvzQRgnvk3AIe1zMOfB2xN7kt3bGH6y/VK8lqYLwyOTPLLd5qE0iehzq2rwy/xWYI+Bv39gkbh/hGbSnJsXO0BpJi13d8sxulxW1eerKlX1iKp6VLucO2+bw+dO2LRn0k+uqh+qqh+tqguGl6ydxQqtj7wL+A/gyLbs1y9Q9pzBrsgPpqmTjFvWUupG4zxm02A87e/9YHxX0XRXHHzOd6+qf11oh2lmsf4Q8FbgQW3d41xGPzfb1L3mxbRYWdvUEdJ0+b5XVf17VR1P0yXxb4Cz2/W3VNVrquoHaYae/EaSY4bEtj2v8Zyx33vVTPT3TRau4/0nzXPxrHbVL9HMKPxTNCfrD2/Xj1vHW+i1Hzv2NPMnPA14/kAd7+eB43LftUmfRNPt+vh59bPtqePNn4TrflZcQpfkF3LfRBU30rw4c1nxfwI/uEgRfwq8aa55PcmBafpUL2Yv4PvATUkOYYEp+qvqNuCvgNcm2auN9yTg78bYDzT9cF+c5FHtB//NwPntmTW4/3EutP3HgB9N8py2lepkFn9zjX2sIx57O/C9NIO7T11k+3NZuFvjnjT9pedm1dyLZuKC64E1SX6Hpg/6OP6tfewrkuyS5OeAwctELCX259CcST2Kprn/UTQfyn+m6Za1N81A2t+u+3fDuRh4cpIHp+lGcMoicf8kTZ9yaeWafAudtENWaH1kL+Bm4PtJfhgYZ0r5/9H2cHkYzXiwubFv21PWOM/bQj5Gc6mfn2vrPK9g2zrPnwKntLGSZJ8kvzBGubvSDO+4HtjS9r55+gLbnw28MskhaSbe+K0llPWl9hgelWZ+gDfM3ZFk1yS/nGSftlvhzbTvuSTPTDNRT2hOdG/lvvfjoO15XQYfu5T64WJ1vAOA/4tt63h30vQy24O25W5Mi732S4n9BTRDfh7KfXW8h9D0cHtemmuVng28sO4/l8TFNInf/m0y/qpF4h6rjjfLv2ofzbYzyHykXf9Ymqmlv08zpuGVVfWt9r43AO9L05T+3BHlvqN93CfS9N89j2ZA7mLeSDOw9SaaN82HF9n+ZTRvnGtoEom/BM4YYz9U1T8C/4PmrMUmmoH6Jwxs8gYGjnOh7duzy78A/D7NB+QomsGndy7jsQ56O7A7zZTI5wH/sMj276d54+8+sO7eGSJpum/sTzNOEODjbZlfb++7gzG7bFTVXTR9ol9E083iF9n22JYS+4nAe6rqO+1Z2murGWfzzjbWx9F8Efzh4Pu4jeOTND94XwYuZPFE/3m01+mTVqwpTIoijWlnqo/8Jk0ryS00XYtHTUwy6LM0Xf3+CXhrVX1iB8p6A4s/byMN1HneQlPnORL4l4H7PwL8HvCBNN3uvkozecli5d5CkyCcTZO8/xLNazfKn9GMvfoy8EWaxGYLsHWxstoE4f8F/pFmbNn8k8IvAK5s438p99WPjmwf832a1/lPqurTQ2LbntdlzlLfe6fTXGdt8Ev5CQN1ostoEtuXt/e9n6ZudzVwKdtOiLegxV77JcZ+Is3zd+28Ot6ftvcdQ9M1+oMD3wtzSen/oUnKr6R5D4x8ftuE/TgGhhWN3LbuPx5SO7E0M1ttBH55xAd94pK8Gbiuqt4+7Vj6JsmzgBdU1ZJ/2KRZsWqfQ2vtj//GspZ5xz/8xoVVtWHxLSVtjzQTr10B7FLzZpvUttpWuD+tqrEukbCSJPlLmrFofzPtWPomycuBQ6vqtYtt60UXRZKfoZkp8naaJuawhLMeXauq1087hr6qqo8CH512HFK3YjdJSStG2+voqTQtNA+iGcLxkQUftEJV1f1m/1ajqv5o3G39hRQ01xn5Jk1XwmexYzMuStLys8ulpJUjNF38bqTpcnkZ8DtTjUgzzRY6UVVvYIGLJ0rSVAVb6KQZ00685tmTIdrJaB477Ti0cpjQSZJ6zi6XkiSN4i+kJEmSJM2oTlroDjhgXa1/cLcT9azqeAzEPROY/XMS++j6eZrEUJR7JjER6wT2sarj0yerO34xvv3tK9m8ebPdZzQdjnvTCrZu3bo67LDDpx2GJmClzC3vN/J4Lrrows1VdWDX++kkoVv/4MP4xGe7nSRx7S7d1o5vv2trp+UD3HZn9/vYrePnae0uqzstH+COu7t/niaRNO6xa7fP1Z67dduD+omPd4Z3TZFdLrWCHXbY4fzL+RdMOwxNwEq5XFg8yTaW3XfJtyexH8fQSZL6z8qDJElDecpTkiRJkmaULXSSpH6Ls1xKkjSKCZ0kqf/scilJ0lAmdJKk3nMAviRJw5nQSZJ6LZjQSZI0ioMSJEmSJGlGjZXQJTk2ydeSXJ7kdV0HJUnSvdLBInXMupOkSVm0y2WS1cAfAz8NbAT+Pck5VXVp18FJkgSxy6VminUnSZM0Tgvd44DLq+pbVXUX8AHg+G7DkiTpPkmWdZE6Zt1J0sSMk9AdAlw18PfGdt02kpyU5IIkF9zw3c3LFZ8kSSZ0mjWL1p0G603Xb75+osFJWlmWbVKUqjq9qjZU1Yb9D1i3XMVKkiStOIP1pgPXHTjtcCTNsHEuW3A1cOjA3+vbdZIkTYStapox1p0kTcw4LXT/DhyZ5IgkuwInAOd0G5YkSS1nudTsse4kaWIWbaGrqi1JXgZ8HFgNnFFVl3QemSRJQJzlUjPGupOkSRqnyyVVdS5wbsexSJI0lAmdZo11J0mTsmyTokiSJEmSJmusFjpJkqbJFjpJkoYzoZMk9Z4JnSRJw5nQSZL6zZkpJUkayTF0kiRJkjSjbKGTJPWeXS4lSRpuZhO662++s9Pyt2ytTssHuKe638fdW+/ptPzb7traafmTMonX+7Y7t3Ra/k233d1p+Xd1/F6SRpnGdeiSHAq8H3gQUMDpVfWOJH8APAu4C/gm8OKq+l77mFOAlwBbgVdU1ccnGrS0wtVE6k3d7uPuLRP4LZ3A1+XaNd138lu9qtsDWUknCu1yKUnqvSTLuoxhC/CaqjoKOBo4OclRwCeBh1fVI4CvA6e08R0FnAA8DDgW+JMkqzt4KiRJ2oYJnSSp/7LMyyKqalNVXdTevgW4DDikqj5RVXPN7ecB69vbxwMfqKo7q+oK4HLgcTt0zJIkjcGETpK0M1qX5IKB5aRRGyY5HHg0cP68u34F+Pv29iHAVQP3bWzXSZLUqZkdQydJ2kmkk7EOm6tqw6K7TvYEPgS8qqpuHlj/2zTdMs9c7sAkSVoKEzpJUu9NY/B6kl1okrkzq+rDA+tfBDwTOKbum6XhauDQgYevb9dJktQpu1xKknpv0pOipNno3cBlVfW2gfXHAq8Fnl1Vtw085BzghCRrkxwBHAl8YVmfBEmShrCFTpLUa9O4bAHwROAFwFeSXNyuez1wGrAW+GQb03lV9dKquiTJ2cClNF0xT66qlXFdF0lSr5nQSZI0T1V9nuHzYZ67wGPeBLyps6AkSRrChE6S1H8r5/qvkiQtKxM6SVK/dTPLpSRJK4IJnSSp90zoJEkazoROktR7JnSSJA3nZQskSZIkaUbZQidJ6j8b6CRJGsqETpLUe3a5lCRpOBM6SVKvJVO5sLgkSTPBMXSSJEmSNKNsoZMk9Z4tdJIkDWdCJ0nqPRM6SZKGM6GTJPWf+ZwkSUOZ0EmSes8WOkmShnNSFEmSJEmaUbbQSZL6LbbQSZI0yswmdLvvurrT8m+/a2un5QNsvafzXXDdLXd2Wv6nrvhup+UDrFndfUXuJw7dr/N9PGiv3Trfh7QSBTCfk/qtqjrfx513d19xuvamOzot/1vfvbXT8gHWrum+A94RBzyg832s22ttp+Xvumbl/LDMbEInSdpZeGFxSZJGMaGTJPWe+ZwkScM5KYokSZIkzShb6CRJvWeXS0mShjOhkyT1W+xyKUnSKCZ0kqReC7BqlRmdJEnDmNBJknrPFjpJkoZzUhRJkiRJmlG20EmSes9JUSRJGm7RFrokhyb5dJJLk1yS5JWTCEySJODeSVGWc5G6ZN1J0iSN00K3BXhNVV2UZC/gwiSfrKpLO45NkiSCLXSaOdadJE3MogldVW0CNrW3b0lyGXAI4JeSJGkCYkKnmWLdSdIkLWlSlCSHA48Gzu8kGkmSpBXEupOkro2d0CXZE/gQ8KqqunnI/ScluSDJBTd8d/NyxihJ2sk5hk6zaKG602C96frN108nQEkrwlgJXZJdaL6QzqyqDw/bpqpOr6oNVbVh/wPWLWeMkqSdXJJlXaSuLVZ3Gqw3HbjuwMkHKGnFWHQMXZpfvncDl1XV27oPSZKkAbaqacZYd5I0SeO00D0ReAHwtCQXt8txHcclSdLUjJp2Psn+ST6Z5Bvt//u165PktCSXJ/lyksdM9wg0ZdadJE3MOLNcfp5m1mhJkiZuSpctGDrtPPAi4J+q6i1JXge8Dvgt4BnAke3yeOBd7f/aCVl3kjRJS5rlUpKkaZj0pChVtamqLmpv3wLMTTt/PPC+drP3Ac9pbx8PvL8a5wH7JjloeZ8FSZLub5wLi0uSNFXTnMhk3rTzD2qvMQZwLfCg9vYhwFUDD9vYrtuEJEkdMqGTJPVeB/ncuiQXDPx9elWdfv/9bjvt/GBiWVWVpJY9MkmSlsCETpK0M9pcVRsW2mDEtPP/meSgqtrUdqm8rl1/NXDowMPXt+skSeqUY+gkSf2WyV+HboFp588BTmxvnwj87cD6F7azXR4N3DTQNVOSpM7YQidJ6rVmlsuJ73Zu2vmvJLm4Xfd64C3A2UleAnwbeG5737nAccDlwG3AiycarSRppzWzCd2Wrd0OW7j1zq2dlg+wZlX3NZTzr7mx0/J/708/02n5AHvsvWfn+/iB//7jne/joH1277T83Xdd3Wn5q7yys6ZmvFa15bTItPPHDNm+gJM7DUrqsXsmMJr05ju2dL6Pc7/+n52W/9azLu60fIC99tmj83387i89svN9PPGIdZ2Wv8vqlVOvmdmETpK08/B8giRJwzmGTpIkSZJmlC10kqTem+Z16CRJ6jMTOklSv8Uul5IkjWJCJ0nqtWaWSzM6SZKGMaGTJPWeCZ0kScM5KYokSZIkzShb6CRJvWcDnSRJw5nQSZJ6zy6XkiQNZ0InSeo3Z7mUJGkkx9BJkiRJ0oyyhU6S1GshdrmUJGkEEzpJUu+Zz0mSNJwJnSSp91aZ0UmSNJQJnSSp98znJEkazklRJEmSJGlG2UInSeq1xOvQSZI0igmdJKn3VpnPSZI0lAmdJKn3bKGTJGk4EzpJUu+Zz0mSNJyTokiSJEnSjLKFTpLUawGCTXSSJA1jQidJ6j0nRZEkaTgTOklSvyVOiiJJ0ggzm9DddtfWTsvfdMvtnZYPsO/aXTvfx+XX39HtDq78UrflA7et3aPzfdx+99Gd76PrFoa1u3Q7JNb6tKbJ95/Ub1XV+T7u3nJP5/u45NpbOy3/xvM/1Wn5ADcecGjn+7jyuId0vo/H39Pte2oCb9mJcVIUSZIkSZpRM9tCJ0naOQRYZROdJElDmdBJknrPfE6SpOFM6CRJveekKJIkDecYOkmSJEmaUbbQSZJ6LbHLpSRJo5jQSZJ6z0lRJEkazi6XkqTeyzIvi+4vOSPJdUm+OrDuUUnOS3JxkguSPK5dnySnJbk8yZeTPGZ5jlqSpMWNndAlWZ3ki0n+rsuAJEmaL8myLmN4L3DsvHW/D7yxqh4F/E77N8AzgCPb5STgXctxzJp91p0kTcJSWuheCVzWVSCSJPVFVX0OuGH+amDv9vY+wDXt7eOB91fjPGDfJAdNJlL1nHUnSZ0bK6FLsh74WeDPuw1HkqRtNRcWX95lO70K+IMkVwFvBU5p1x8CXDWw3cZ2nXZi1p0kTcq4LXRvB14L3NNdKJIkDbHM3S3bLpfr2nFwc8tJY0Ty68Crq+pQ4NXAu7s8bM28t2PdSdIELDrLZZJnAtdV1YVJnrLAdifRjB1g/aEPXq74JEnq4rIFm6tqwxIfcyJNFzqAv+a+lpergUMHtlvfrtNOapy602C96dAHW2+StP3GaaF7IvDsJFcCHwCeluQv5m9UVadX1Yaq2rD/AeuWOUxJ0s5sCpOiDHMN8JPt7acB32hvnwO8sJ3t8mjgpqratGNHrBm3aN1psN504LoDpxGjpBVi0Ra6qjqFdpxAe5bpN6vq+d2GJUnS9CQ5C3gKTdfMjcCpwK8C70iyBriDtnUFOBc4DrgcuA148cQDVq9Yd5I0SV5YXJLUa3OTokxSVT1vxF0/NmTbAk7uNiJJkoZbUkJXVZ8BPtNJJJIkjbAD3SSlqbLuJKlrttBJknrPdE6SpOFM6CRJvZbAKlvoJEkaatzr0EmSJEmSesYWOklS79lAJ0nScCZ0kqTec1IUSZKGM6GTJPWe+ZwkScPNbEK3x66rOy1/zQQuetRcuqhbj17/gE7L/+jjn9Zp+QDrHrh35/s4cr89O9/HrXdu7bT8PXe7p9PyJ/B2lSTNqElMXLTH2m7rfgA/+8PrOi3/qv/W/fXl99lj18738fiD9+t8H7ut6Xaqj5V0onBmEzpJ0s4hxFkuJUkawYROktRvWVlnUiVJWk4mdJKk3nNSFEmShjOhkyT1nhdNlSRpOH8jJUmSJGlG2UInSeq1YJdLSZJGMaGTJPXeBK4kI0nSTDKhkyT1ngmdJEnDmdBJknotsculJEmjOCmKJEmSJM0oW+gkSb1nl0tJkoYzoZMk9Z49LiVJGs6ETpLUawFWmdFJkjSUCZ0kqfcc8C1J0nD+RkqSJEnSjLKFTpLUe/a4lCRpOBM6SVKvJXEMnSRJI5jQSZJ6z3xOkqThTOgkSb3ndegkSRrOSVEkSZIkaUbZQidJ6jWvQydJ0mgmdJKk3jOfkyRpOBM6SVK/xTF0kiSN4hg6SZIkSZpRnbTQZQJnU39g3906Lf/m2+/utHyANau7z6ef/IADOy3/tJce3Wn5AOt2X9v5Ph68/x6d7+N7t3b7nrp7yz2dll/VafHSgsJkm+iSnAE8E7iuqh4+sP7lwMnAVuBjVfXadv0pwEva9a+oqo9PNGBpylZNoBl9z7Xddyx7/IP377T8I4/fq9PyAVZP4LU4YM9dO9/H2l26rSdnBfXlt8ulJKnXmklRJr7b9wLvBN5/bxzJU4HjgUdW1Z1JHtiuPwo4AXgYcDDwj0keUlVbJx61JGmnY5dLSVLvrcryLoupqs8BN8xb/evAW6rqznab69r1xwMfqKo7q+oK4HLgcct28JIkLcCETpLUe0mWddlODwGelOT8JJ9N8th2/SHAVQPbbWzXSZLUObtcSpJ2RuuSXDDw9+lVdfoij1kD7A8cDTwWODvJD3YVoCRJ4zChkyT1Wkdj6DZX1YYlPmYj8OGqKuALSe4B1gFXA4cObLe+XSdJUufscilJ6rc0sycv57Kd/gZ4KkCShwC7ApuBc4ATkqxNcgRwJPCFHT5uSZLGYAudJKn3Vk14eukkZwFPoemauRE4FTgDOCPJV4G7gBPb1rpLkpwNXApsAU52hktJ0qSY0EmSem0aly2oqueNuOv5I7Z/E/Cm7iKSJGm4sbpcJtk3yQeT/EeSy5I8oevAJEmSZpV1J0mTMm4L3TuAf6iqn0+yK7BHhzFJkrSNCfe4lJaDdSdJE7FoQpdkH+DJwIsAquoumrEDkiRNQFiFGZ1mh3UnSZM0TpfLI4Drgfck+WKSP0/ygI7jkiQJaMbQ9WSWS2lc1p0kTcw4Cd0a4DHAu6rq0cCtwOvmb5TkpCQXJLngu5s3L3OYkqSdVppJUZZzkTq2aN1psN50/ebrpxGjpBVinIRuI7Cxqs5v//4gzZfUNqrq9KraUFUbDli3bjljlCRJmiWL1p0G600Hrjtw4gFKWjkWTeiq6lrgqiQPbVcdQ3OtHUmSJmJVsqyL1CXrTpImadxZLl8OnNnO0vQt4MXdhSRJ0n3mxtBJM8a6k6SJGCuhq6qLgQ3dhiJJ0nC2qmnWWHeSNCljXVhckiRJktQ/43a5lCRpamygkyRpOBM6SVKvBbuTSJI0igmdJKnfArGJTpKkoUzoJEm9ZzonSdJw9mKRJEmSpBllC50kqdeCly2QJGmUzhK6rsc73HHX1k7L32v3XTotH2CX1d1XUFav6nYfG9bv32n5AB0fQrOPCexkj7WrOy1/7S7dlm99WtPk20/SLmu671i27wN27bT8vSdQv5yEruuXMJm62UphC50kqfc8oSBJ0nAmdJKknouzXEqSNIKTokiSJEnSjLKFTpLUa15YXJKk0UzoJEm9Z5dLSZKGM6GTJPWe6ZwkScOZ0EmS+i220EmSNIrDEiRJkiRpRtlCJ0nqNSdFkSRpNBM6SVLv2eVSkqThTOgkSb1nOidJ0nD2YpEkSZKkGWULnSSp9+xxKUnScCZ0kqReayZFMaOTJGkYEzpJUu/ZQidJ0nAmdJKknguxhU6SpKGcFEWSpHmSnJHkuiRfHXLfa5JUknXt30lyWpLLk3w5yWMmH7EkaWdlQidJ6r1keZcxvBc49v5x5FDg6cB3BlY/AziyXU4C3rWjxytJ0rhM6CRJvTY3KcpyLoupqs8BNwy56w+B1wI1sO544P3VOA/YN8lBy3DokiQtyjF0kqR+G79VbSnWJblg4O/Tq+r0BcNIjgeurqovZduADgGuGvh7Y7tu03IFK0nSKCZ0kqTe6yCh21xVG8bff/YAXk/T3VKSpN4woZMkaXE/BBwBzLXOrQcuSvI44Grg0IFt17frJEnqnAmdJKn3pn3Zgqr6CvDAub+TXAlsqKrNSc4BXpbkA8DjgZuqyu6WkqSJMKGTJPVagFUTzueSnAU8hWas3Ubg1Kp694jNzwWOAy4HbgNePJEgJUmio4QuhDUd//peufm2TsvffdfVnZYPsDrdTzJ699ZafKMdcNudWzotH2DrPd0eA8Cua7p/LfbefZdOy1+7S7fHsKqDQUzSuCbdQldVz1vk/sMHbhdwctcxSere6o7rr12Xr52TLXSSpN7zfIIkScN5HTpJkiRJmlG20EmSem/ak6JIktRXJnSSpF6bxqQokiTNChM6SVLPxRY6SZJGcAydJEmSJM0oW+gkSf0WZ7mUJGkUEzpJUu+Zz0mSNNxYXS6TvDrJJUm+muSsJLt1HZgkSTA3KUqWdZG6Zt1J0qQsmtAlOQR4BbChqh4OrAZO6DowSZLmZJkXqUvWnSRN0riToqwBdk+yBtgDuKa7kCRJkmaedSdJE7FoQldVVwNvBb4DbAJuqqpPzN8uyUlJLkhywebN1y9/pJKknZdNdJoh49SdButN11tvkrQDxulyuR9wPHAEcDDwgCTPn79dVZ1eVRuqasO6dQcuf6SSpJ1Wlvmf1KVx6k6D9aYDrTdJ2gHjdLn8KeCKqrq+qu4GPgz8eLdhSZJ0n2R5F6lj1p0kTcw4Cd13gKOT7JEkwDHAZd2GJUnSfexxqRlj3UnSxIwzhu584IPARcBX2sec3nFckiRJM8m6k6RJGuvC4lV1KnBqx7FIkjSczWqaMdadJE3KWAmdJEnT0nSTNKOTJGkYEzpJUr85kYkkSSOZ0EmSes98TpKk4caZ5VKSJEmS1EO20EmS+s8mOkmShjKhkyT1XJwURZKkETpJ6Ipia1UXRd9r8613dlr+OtZ2Wj7AmlXdV1BWdbyPVROYqWAr3b6XAHZZ3X3v49UdvxZb7+n2eaoJvA7SKE6KIknScLbQSZJ6LdjjUpKkUZwURZIkSZJmlC10kqT+s4lOkqShTOgkSb3npCiSJA1nQidJ6j0nRZEkaTjH0EmSJEnSjLKFTpLUezbQSZI0nAmdJKnfvG6BJEkj2eVSktR7WeZ/i+4vOSPJdUm+OrDuD5L8R5IvJ/lIkn0H7jslyeVJvpbkZ7p5FiRJuj8TOklSr4VmUpTlXMbwXuDYees+CTy8qh4BfB04BSDJUcAJwMPax/xJktXLc/SSJC3MhE6SpHmq6nPADfPWfaKqtrR/ngesb28fD3ygqu6sqiuAy4HHTSxYSdJOzYROktR7WeYFWJfkgoHlpCWG9CvA37e3DwGuGrhvY7tOkqTOOSmKJKn/ln9SlM1VtWF7Hpjkt4EtwJnLG5IkSUtnQidJ6r1xJjKZhCQvAp4JHFNV1a6+Gjh0YLP17TpJkjpnl0tJUu9NYVKUITHkWOC1wLOr6raBu84BTkiyNskRwJHAF3b0mCVJGoctdJIkzZPkLOApNGPtNgKn0sxquRb4ZJqs8LyqemlVXZLkbOBSmq6YJ1fV1ulELkna2ZjQSZJ6b9IdLqvqeUNWv3uB7d8EvKm7iCRJGs6ETpLUf/0YQidJUu+Y0EmSeq251IAZnSRJw5jQSZL6bQcmMpEkaaVzlktJkiRJmlG20EmSes8GOkmShjOhkyT1nxmdJElDmdBJknouTooiSdIInSR0X/riRZvX7bnLt5fwkHXA5i5imSCPoT9WwnH08RgOm3YAkrQSXXTRhZt33yVLqTdBP38nlspj6IeVcAzQz+OYSN2pk4Suqg5cyvZJLqiqDV3EMikeQ3+shONYCccgLSdnudRKttR6E6yM3wmPoR9WwjHAyjmO7WGXS0lSrwWH0EmSNIoJnSSp/8zoJEkaqi8J3enTDmAZeAz9sRKOYyUcg7RsnBRFup+V8DvhMfTDSjgGWDnHsWSpqmnHIEnSSI941I/VR//pX5e1zMPX7XbhzjrWQpK0svSlhU6SpJGcFEWSpOFM6CRJvWc+J0nScKumufMkxyb5WpLLk7xumrFsrySHJvl0kkuTXJLkldOOaXslWZ3ki0n+btqxbI8k+yb5YJL/SHJZkidMO6alSvLq9n301SRnJdlt2jFJU5emhW45F2lWWXfqj1mvN4F1p5ViagldktXAHwPPAI4CnpfkqGnFswO2AK+pqqOAo4GTZ/Q4AF4JXDbtIHbAO4B/qKofBh7JjB1LkkOAVwAbqurhwGrghOlGJfVFlnmRZo91p96Z9XoTWHdaEabZQvc44PKq+lZV3QV8ADh+ivFsl6raVFUXtbdvofkgHDLdqJYuyXrgZ4E/n3Ys2yPJPsCTgXcDVNVdVfW9qQa1fdYAuydZA+wBXDPleCRJ/WHdqSdmvd4E1p1WkmkmdIcAVw38vZEZ+zDPl+Rw4NHA+VMOZXu8HXgtcM+U49heRwDXA+9puz/8eZIHTDuopaiqq4G3At8BNgE3VdUnphuVNH3BLpdSy7pTf7yd2a43gXWnFWOqY+hWkiR7Ah8CXlVVN087nqVI8kzguqq6cNqx7IA1wGOAd1XVo4FbgZkaW5BkP5ozrUcABwMPSPL86UYl9YMdLqWVZ1brTiuk3gTWnVaMaSZ0VwOHDvy9vl03c5LsQvOFdGZVfXja8WyHJwLPTnIlTfeNpyX5i+mGtGQbgY1VNXeG74M0X1Kz5KeAK6rq+qq6G/gw8ONTjknqBVvoJMC6U1+shHoTWHdaMaaZ0P07cGSSI5LsSjOA8ZwpxrNdkoSm7/FlVfW2acezParqlKpaX1WH07wOn6qqmTq7UVXXAlcleWi76hjg0imGtD2+AxydZI/2fXUMMzY4WepKlvmfNKOsO/XASqg3gXWnlWRq16Grqi1JXgZ8nGZGmjOq6pJpxbMDngi8APhKkovbda+vqnOnF9JO6+XAme2P3LeAF085niWpqvOTfBC4iGYGsC8Cp083KklSX1h3UgesO60AqappxyBJ0kiPfPSP1cc/e96ylnnQPrteWFUblrVQSZKmYGotdJIkjctOkpIkDWdCJ0nqNScykSRpNC9bIEmSJEkzyhY6SVLvOTOlJEnDmdBJkvrPfE6SpKFM6CRJvWc+J0nScCZ0kqTec1IUSZKGc1IUSZIkSZpRJnSSpJ7Lsv9bdI/JGUmuS/LVgXX7J/lkkm+0/+/Xrk+S05JcnuTLSR7T4ZMhSdI2TOgkSb0W7rsW3XItY3gvcOy8da8D/qmqjgT+qf0b4BnAke1yEvCuZThsSZLGYkInSdI8VfU54IZ5q48H3tfefh/wnIH176/GecC+SQ6aSKCSpJ2ek6JIknqvJ5OiPKiqNrW3rwUe1N4+BLhqYLuN7bpNSJLUMRM6SdLOaF2SCwb+Pr2qTh/3wVVVSaqDuCRJWhITOklS740zkckSba6qDUt8zH8mOaiqNrVdKq9r118NHDqw3fp2nSRJnXMMnSSp35Z5QpQd6L55DnBie/tE4G8H1r+wne3yaOCmga6ZkiR1yhY6SVKvpV0mus/kLOApNF0zNwKnAm8Bzk7yEuDbwHPbzc8FjgMuB24DXjzhcCVJOzETOklS/004o6uq542465gh2xZwcrcRSZI0nF0uJUmSJGlG2UInSeq9DiZFkSRpRTChkyT1Xk+uQydJUu+Y0EmSes98TpKk4RxDJ0mSJEkzyhY6SVL/2UQnSdJQJnSSpN5zUhRJkoYzoZMk9VpwUhRJkkZJcz1USZL6Kck/AOuWudjNVXXsMpcpSdLEmdBJkiRJ0oxylktJkiRJmlEmdJIkSZI0o0zoJEmSJGlGmdBJkiRJ0owyoZMkSZKkGfX/AwWK1K+Y+CQoAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "recorteB6 = trim(imagen[:,:,2], 535, 335, 10, 10)\n", + "poptB6, pcovB6 = curve_fit(gauss2d, xdata6, recorteB6.ravel(), p0=[1,0,1,1,1])\n", + "estrellaB6=gauss2d(xdata6, poptB6[0], poptB6[1],poptB6[2], poptB6[3], poptB6[4])\n", + "FWHMB6=FWHMB.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptB6[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 6 fotografÃa (Banda Azul)\")\n", + "plt.imshow(recorteB6, plt.get_cmap('Blues'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 6 a partir de la gaussiana (Banda Azul)\")\n", + "plt.imshow(estrellaB6.reshape(10, 10), plt.get_cmap('Blues'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 7 (Azul)" + ] + }, + { + "cell_type": "code", + "execution_count": 433, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3QAAAFSCAYAAAC6+p25AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAv3ElEQVR4nO3de7wlV13n/c+3O/cL6UCHkKSbdGQCGkQuRiYIyE0lIBIeRQwKBHCMOAGDxgcBnxF4ZlBGGQRUcCI30QgiCRg13Ea5iJJAJ4RL0iARAumQmG4IuZBrd//mj6qT7D7sfc4+p0/tXfv0592v/eqza1etWlW1L+tXa9WvUlVIkiRJkmbPmmlXQJIkSZK0PAZ0kiRJkjSjDOgkSZIkaUYZ0EmSJEnSjDKgkyRJkqQZZUAnSZIkSTNqn2lXQJKkhay9x7FVO25d0TLr1m0fqqqTV7RQSZKmwIBOktRrteNW9n/AM1a0zNsu/ZP1K1qgJElTYkAnSeq5QLxCQJKkYQzoJEn9FiCZdi0kSeolAzpJUv/ZQydJ0lAGdJKk/rOHTpKkoTzlKUmSJEkzyh46SVLPmRRFkqRRDOgkSf3nkEtJkoYyoJMk9Vuwh06SpBEM6CRJPRd76CRJGsFTnpIkSZI0o+yhkyT1n0MuJUkayoBOktR/DrmUJGkoAzpJUs952wJJkkYxoJMk9Vuwh06SpBE85SlJkiRJM8oeOklS/znkUpKkoQzoJEk95zV0kiSNYkAnSeq/NV5DJ0nSMJ7yXIIkm5JUkn3a5x9L8l8msN4keXuS65N8uuv17akkD0hyaZKbkvxaO+11SV6/zPJ+L8mLV7KOS1j3O5L8j2mse5TB912Sn07y19OukyRpcqbVHumbJI9O8uU9LGNZ+27+MZhlSS5L8tgprftdSZ42pXX37nOT5MokP97+/aIk/3Oc5WYyoGs39tYkNw88/niM5SrJf5pEHRepx33n1f3mtm5njVjkUcBPABuq6uFjlD/t7XwJ8NGqOrSq3pjk0cCPAP/vUgtKcgTwHOB/t88fm2TXwH67OsmrVrT2K6z9wrg+yf4rXXZV/R3wwCQ/tNJlS70RmiGXK/mQVsBe2B6Zqvn7rar+uaoeMM06rQZV9cCq+tik19u2XR4M/G37/LlJdg68F7+a5FcnXa9xtR0uX01yeUer+DPgF5Pce7EZZ/lX7aer6pCBxwv3tMBJnWWpqm8M1h14ELALOHfEIscCV1bVdydRv4WMuY+OBS4beH4c8PNVdecyVvlc4IKqunVg2jcH9t2jgF+a1tmdxSTZBDwaKOCpHa3mXcDpHZUt9UOysg9p5exN7ZGpWM7+WA09Z3uBXwHOqaoamPapgffjzwK/n+Sh06neon4MuDfwfUl+ZKULr6rbgA/QdGwsaJYDuqGS/KckH09yQ5Ltc8PRknyineVzbdT/821vz9Ykv5XkWuDtSdYkeWmSf0/yrSTvSXLPMdZ7vyT/1C6zPck5SdaNWe3nAJ+oqiuHlPtLwFuAR7T1flU7/ZeTXJHk20nOT3L0qO1caP72tZ9M8uV2n72p3X9zQ/qem+Rfkvxhkm8Br1xoW5P8E/A44I/b9d8feDzwX9vXD0/y90m2tb1Wf59kwwL75knAx0e9WFVfA/4VOGFge96Q5KokNya5OE0P4dxrr2yP6TvTDAm9LMmJA68/NMkl7Wt/DRww8NpS6w7Nsb0QeAdw2kBZR887I3pLkhqo418OzLvYsI6PAT+1SD2kGRZ76DRzVlt7pC374Uk+leQ7Sa5J8sdJ9hsx79xv1+lJvtnO/5vjltUue0aSrwBfWWi/DSxzZbsPPw98d9jvZpKfSPKl9rj8Mc0YgMHXn59kS/s7/6Ekx46z45I8r13upjS9Nr+ywLxrk/yv9vh8LckLs/sQ2pFlpWmXfXJeeXf1XCZ5cpLL22WvntvnSda37ZbvpGkL/nPSfBlm92F+4xyXFyT5SjvPnyTNWbJlvPcWa+N9FtgC/MDA+v8mybXt8ftEkgcOvPaOtj7/0G7/RUnuN/D6yGO/zM/NaTS9ixewextvrs0+97gtyZUDdfwfA/Pu9h4e4mOM0cZbjb9q/x34MHA4sAH4I4Cq+rH29Qe3kf/cdUf3Ae5J06t0OvAi4GnAY4CjgeuBPxljvQF+r13mB4CNwCsXXaj5EDwH+PNhr1fVW4EXcPcZi1ckeXy7rmcARwFfB949ajsXmj/JeuC9wMuAewFfBn50XjX+M/BV4Ejg1Qtta1U9Hvhn4IXt+v9tXllrgLfT7O/7ArcCCw1PeVBbp6GSHA88kiZomvMZ4CE0x/WvgL9JcsDA609tt38dcP7c+tsvrPcDf9Eu+zc0Z4eWW3doju057eOJSY4EqKpvzjsr+r62TsuxBdiU5B7LXF7qP3voNHtWVXuktRP4dWA98AjgCbQnbBfwOOB44CeB35oLHMYs62k0bZATFthv8z2TpgG8rqp2zNvG9cB5wP/XrvffadoQc6+fArwc+BngCJr2zLsW2b451wFPAe4BPA/4wyQPGzHvL9MEMw8BHtZu53LLmu+twK9U1aHADwL/1E4/C9hKs11H0mxnDVl+nOPyFJpLaX6Ipm35xHb62O+9JAfTjOBaqI33I8D9gc0Dkz9A8366N3AJTftq0KnAq2g+d1fQtFsXPfZLqXtb3kHA07m7jXfqXOBbVYO9jIcDFzH++2i+LTTDUhc0ywHd+9szA3OPX26n30nzZXh0Vd1WVZ9coAxohha8oqpub4f1vQD47araWlW30xzMpw87yzOoqq6oqo+05WwDXkfzJbyYR9F8sN47xrxzfhF4W1Vd0tbxZTQ9eJuWMf+Tgcuq6rz2i++NwLXzlv9mVf1RVe2oqlv3YFupqm9V1blVdUtV3UTzQVto2XXATfOmHd0e8xuBf6P5oNx1nKvqL9v17Kiq/wXsDwyOsf9kVV1QVTtpgre5D8pJwL7A66vqzqp6L01wuKy6J3kUzXvxPVV1Mc2Xxy8Mme+3gO8Hnr/AfljI3P5Zt8zlJUnLt9e0R6rq4qq6sP19vZLm+vbFyn5VVX23qr5Ac1L0mUso6/eq6tvzLrtYzBur6qoRy8y1ed7bXgbyenZv87ygXeeWtk30u8BDxumlq6p/qKp/r8bHaYL5R4+Y/RnAG9pjez3wmj0oa747gROS3KOqrq+qSwamHwUc27Zx/rmqviegG/O4vKaqvlNV3wA+ShOYLvW9t679f34b76T2c3QT8GmadtpXBur3tqq6aeAz8eAkhw0s/76q+nR7/M6ZqxuLHPtlfG5+Brid5tj8A037cVhP2hvbbfztBcpayE3AYYvNNMsB3dOqat3A48/a6S+hibI/nWY43WKN5G3VjFGdcyzwvrkvZprIeCfNl9xISY5M8u62e/tG4C9pzgAs5jTg3Kq6eYx55xxN08sGQLvst4BjljH/0cBVA68VzRmcQVcNPtmDbSXJQUn+d5Kvt8t+AliXZO2IRa4HDp037ZvtMb8HzRfCrQycUUzym2mGKtzQHsPD5tVv8Mv7FuCA9gfyaODqeV9wd+23ZdT9NODDVbW9ff5XDHTJt2U+CTiT5v28lB+sQXP75zvLXF7qP4dcqr/2mvZIkvunGbZ3bVv2745R9mAb4us0v7XjlnUVS7fQMsPaPIPzHwu8YWCff5vmGI5qX90lyZOSXJhmOON3aAKIUftmt3rMr/MSy5rvZ9v5v55myO8j2ul/QNNj9eE0wzhfOmI7xjku89tRh7TLLuW99532//ltvAvbz9GhNL3WD2zrMDdU9TVphiHfCFzZLrNQG++Q9u8Fj/0yPjen0Zyw39F+bs/le9t4vwI8FviFqtq1QFkLORS4YbGZVt2vWlVdW1W/XFVH01xs+aYsnElq/tmJq4AnzftyPqCqrl5k1b/blvWgNtB4FvPGZc+X5EDg51h4eMMw36T50pkr52Ca4ZKj6rjQ/NfQDAWZey2Dz1vz99GSt3XAWTS9Zf+5XXZuCMWo5T9P090+VFXdQBMo/XRb/0fT/Ig+Azi8qtbRfBDGqd81wDHtPphz3+XUvT22zwAe034pXkszhOHBSR7czvMAmmP/jKoa/DL/LnDQwPP7LFLvH6BJmnPjYhsozaSVHm7pkEtNwCptj7wZ+BJwfFv2yxcrm2bo2pz70rRJxi1r2JDAxSy0zDWD9Wl/7wfrdxXNcMXBfX5gVf3rQitMk8X6XOC1wJFt2+MCRu+b3dpe8+q0WFm7tRGS7NZGqKrPVNUpNEMS3w+8p51+U1WdVVXfR3PpyW8kecKQui3nGM8Z+71XTaK/f2fhNt5/0OyLn24n/QJwCvDjNCfrN7XTx23jLXTsx657mvwJjweeNdDGezrw5DRDO+fao/8dOGVe+2w5bbzPLbZxqy6gS/JzuTtRxfU0B2cuKv4P4PsWKeJPgVfPda8nOSLNmOrFHArcDNyQ5BjGS9H//7R1/OgY8w56F/C8JA9pP/i/C1xUd1/EPH87F5r/H4AHJXla20t1Bou/uZazrYPL3gp8J83F3a9YZP4LWHhY4yE046XnsmoeCuwAtgH7JPkdmjHo4/hUu+yvJdk3yc8Ag7eJWErdn0ZzJvUEmu7+h9B8KP8ZeE6a693+lmY4zfxhOJcCP5YmnfRhNENkF/IYmjHl0uplD51mzCptjxwK3AjcnOT7gXFSyv+3doTLA2muB5u79m05ZY2z3xbyDzS3+vmZts3za+ze5vlT4GVtXUlyWJKfG6Pc/Wgu79gG7GhH3/zkAvO/BzgzyTFpEm/81hLK+ly7DQ9Jkx/glXMvJNkvyS8mOawdVngj7XsuyVPSJOoJzYnundz9fhy0nOMyuOxS3nuLtfHuRfPeHGzj3U4zyuwg2p67MS127JdS92fTXPLzAO5u492fZoTbM5NspDnGz6nvzSVxKU3gd882GH/xIvUeq403y79qf5fdM8i8r53+I8BFSW6mSXhxZlV9tX3tlcCfp+lKf8aIct/QLvfhNON3L6S5IHcxr6K5sPUGmjfNeWMscxrwF8PGMC+kqv4P8N9ozlpcA9yPJqiZ80oGtnOh+dvhgD8H/D7NB+QEmotPb1+gCsvZ1jmvBw4EttPs2w8uMv87ad74Bw5MuytDJM3wjXvSXCcI8KG2zH9rX7uNMYdsVNUdNGOin0szzOLn2X3bllL304C3V5MS+tq5B00SlV+kCRQfQHOh880D20NVfYTmB+/zwMXA3y9S9WfS3qdPWrUm3EOXZGOSj6bJFndZkjPnvX5Wmmxvc2djk+SNabIJfz7jJzDQ7Nub2iO/SdNLchPNPbJGJSYZ9HGaoX7/CLy2qj68B2W9ksX320gDbZ7X0LR5jgf+ZeD19wH/E3h3mmF3X6RJXrJYuTfRBAjvoQmMf4Hm2I3yZzTXXn0e+CxNYLMD2LlYWW2A8P8D/4fm2rL5J4WfDVzZ1v8F3N0+Or5d5maaE9hvqqphAfxyjsucpb73zqa5z9rgl/JdGSJphhlvo0kQBE2b8Os0I8wuZ/eEeAta7Ngvse6n0ey/a+e18f60fe0JtNejDnwvzAWlf0ETlF9J8x4YuX/bgP3JjDGSL0uMJbTKpUlhuxX4xREf9IlL8rvAdVX1+mnXpW+S/DTw7Kpa8g+bNCvWHLax9v/R31jRMm/74G9cXFUnjno9yVHAUVV1SZJDaU6uPK2qLm/Pvr6FJpnRD1fV9iRPpml0PJmm0f2Gqhqn8S2tSmkSr30N2LfmZZvU7tpeuD+tqrFukbCaJPkrmmvR3j/tuvRNkhcBG6vqJYvN600XRZIn0mSKvJWmizks4axH16rq5dOuQ19V1d8BfzftekjdysSHSVbVNTQjGqiqm5JsoUmMcDnwhzTX6v7twCKnAO9sezguTLIuyVFtOZJ0l3bU0eNoemiOpLmE430LLrRKVdX3ZP9Wo6r+aNx5Z3nIpVbOI2guTN1Oc+HpnmRclKSVt/JDLtcn2TzwOH30qrMJeCjN8LlTaLLhzr9I/Rh2H969lTEy40naK4VmiN/1NEMutwC/M9UaaabZQyeq6pWMcdNRSZqK0EUP3faFhlzeteom8dK5NBeu76DJ+LZQsgNJQJt4zZSyQ1TVLTTXWEorwoBOktRzkx9yCZBkX5pg7pyqOi/Jg4DjgM+11/BvAC5J8nCai/QHU2BvYPStZCRJWjEOuZQkaZ4269pbgS1V9TqAqvpCVd27qjZV1SaaYZUPa7ObnU9zS5IkOQm4wevnJEmT0EkP3b3utb42HrvXJepZskxgJMKujrOY7trVfZbUO3d2v47bdu7sfB1dO2S/bjvcr77qG1z/7e0On9F0TP5m4I+kSf/9hSSXttNeXlUXjJj/ApoMl1cAt9Dcb0say/r16+vYYzdNuxqSVtgll1y8vaqO6Ho9nbQANx57LB/5eLdJEtPxj/uaCbQd1kyggXL7jmH3jFw5N956Z6flA/zHDQvdEm9lbPn2jZ2vY23H/eGPvG+33xc/+8RHdVq+tKDJZ7n8JItc/9P20s39XcAZHVdLq9Sxx27iXy7aPO1qSFphB+6br09iPV5DJ0nqv8n30EmSNBO8hk6SJEmSZpQ9dJKkfst0slxKkjQLDOgkSf3nkEtJkoYyoJMk9V7XibAkSZpVBnSSpF4LBnSSJI3iRQmSJEmSNKPGCuiSnJzky0muSPLSrislSdJd0sFD6phtJ0mTsuiQyyRrgT8BfgLYCnwmyflVdXnXlZMkCeKQS80U206SJmmcHrqHA1dU1Ver6g7g3cAp3VZLkqS7JVnRh9Qx206SJmacgO4Y4KqB51vbabtJcnqSzUk2f2v79pWqnyRJBnSaNYu2nQbbTdu2b5to5SStLiuWFKWqzq6qE6vqxHutX79SxUqSJK06g+2mI9YfMe3qSJph49y24Gpg48DzDe00SZImwl41zRjbTpImZpweus8Axyc5Lsl+wKnA+d1WS5KkllkuNXtsO0mamEV76KpqR5IXAh8C1gJvq6rLOq+ZJElAzHKpGWPbSdIkjTPkkqq6ALig47pIkjSUAZ1mjW0nSZOyYklRJEmSJEmTNVYPnSRJ02QPnSRJwxnQSZJ6z4BOkqThDOgkSf1mZkpJkkbyGjpJkiRJmlH20EmSes8hl5IkDddJQLcm4YB913ZR9N3rWNPtj/ttd+7stHyAm2/f0fk6Dtqv2+OwWhx/+CGdr2P9wft3Wv6hB3R7fmZtx585aRTvQydJ0mj20EmSes+ATpKk4QzoJEn9ZzwnSdJQJkWRJEmSpBllD50kqd/ikEtJkkYxoJMk9Z4BnSRJwxnQSZJ6z4BOkqThDOgkSb3mbQskSRrNpCiSJEmSNKPsoZMk9Z8ddJIkDWVAJ0nqN7NcSpI0kkMuJUm9l2RFH2Osb2OSjya5PMllSc5sp/9Bki8l+XyS9yVZN7DMy5JckeTLSZ7Y3d6QJOluBnSSpN6bdEAH7ADOqqoTgJOAM5KcAHwE+MGq+iHg34CXtfU7ATgVeCBwMvCmJGs72BWSJO3GgE6SpHmq6pqquqT9+yZgC3BMVX24qna0s10IbGj/PgV4d1XdXlVfA64AHj7pekuS9j4GdJKk/ssKP2B9ks0Dj9NHrjrZBDwUuGjeS88HPtD+fQxw1cBrW9tpkiR1yqQokqTe6yApyvaqOnGM9R4CnAu8uKpuHJj+2zTDMs9Z6YpJkrQUBnSSpF5bwnVvK73efWmCuXOq6ryB6c8FngI8oaqqnXw1sHFg8Q3tNEmSOuWQS0mS5kkTQb4V2FJVrxuYfjLwEuCpVXXLwCLnA6cm2T/JccDxwKcnWWdJ0t7JHjpJUu9NoYfukcCzgS8kubSd9nLgjcD+wEfaOl1YVS+oqsuSvAe4nGYo5hlVtXPSlZYk7X0M6CRJvTfpgK6qPslc+pTdXbDAMq8GXt1ZpSRJGsKATpLUf5O/hE6SpJlgQCdJ6r1pJEWRJGkWmBRFkiRJkmaUPXSSpH6LPXSSJI3SSUAXYN99Zrvz7/Y7d3W+jptu3dH5Om69o9ska3fs6H4/3ePA7s87HLjf2s7Xse6gfTst/7u3d3us77rbljRhAYznJK0G5Y9pb6ymE4X20EmSem46NxaXJGkWGNBJknrPeE6SpOFme1ykJEmSJO3F7KGTJPWeQy4lSRrOgE6S1G9xyKUkSaMY0EmSei3AmjVGdJIkDWNAJ0nqPXvoJEkazqQokiRJkjSj7KGTJPWeSVEkSRpu0R66JBuTfDTJ5UkuS3LmJComSRJwV1KUlXxIXbLtJGmSxumh2wGcVVWXJDkUuDjJR6rq8o7rJkkSwR46zRzbTpImZtGArqquAa5p/74pyRbgGMAvJUnSBMSATjPFtpOkSVpSUpQkm4CHAhd1UhtJkqRVxLaTpK6NHdAlOQQ4F3hxVd045PXTk2xOsnnb9m0rWUdJ0l7Oa+g0ixZqO9lukrRSxgrokuxL84V0TlWdN2yeqjq7qk6sqhOPWH/EStZRkrSXS7KiD6lri7WdbDdJWimLXkOX5pfvrcCWqnpd91WSJGmAvWqaMbadJE3SOD10jwSeDTw+yaXt48kd10uSJGlW2XaSNDHjZLn8JE3WaEmSJs7bFmjW2HaSNEnj3IdOkqSpMp6TJGk4AzpJUu/ZQydJ0nAGdJKk3jOekyRpuCXdWFySJEmS1B/20EmS+i0OuZQkaRQDOklSrzVZLqddC0mS+qmTgK6Aquqi6Lvs3NVt+ZMwiQbKdTfe3mn5B+/f/TmBfdd2v6P2Xdv96OOuexi6/kwUs/+Z06yKPXSSJmJXx7+ld+7c1Wn5ADt2ro7f6306bv9Nou03KfbQSZJ6z3hOkqThVk9oKkmSJEl7GQM6SVLvJVnRxxjr25jko0kuT3JZkjPb6fdM8pEkX2n/P7ydniRvTHJFks8neVjHu0SSJMCATpLUd2mGXK7kYww7gLOq6gTgJOCMJCcALwX+saqOB/6xfQ7wJOD49nE68OYV3guSJA1lQCdJ6rUmy+Vke+iq6pqquqT9+yZgC3AMcArw5+1sfw48rf37FOCd1bgQWJfkqJXdE5IkfS+TokiSem+aWS6TbAIeClwEHFlV17QvXQsc2f59DHDVwGJb22nXIElShwzoJEl7o/VJNg88P7uqzp4/U5JDgHOBF1fVjYOBZVVVktWRH1ySNLMM6CRJvddBB932qjpx4XVmX5pg7pyqOq+d/B9Jjqqqa9ohlde1068GNg4svqGdJklSp7yGTpLUe1PIchngrcCWqnrdwEvnA6e1f58G/O3A9Oe02S5PAm4YGJopSVJn7KGTJPXb+JkpV9IjgWcDX0hyaTvt5cBrgPck+SXg68Az2tcuAJ4MXAHcAjxvorWVJO21DOgkSZqnqj5Jk2BzmCcMmb+AMzqtlCRJQxjQSZJ6LYw3TFKSpL2RAZ0kqfeM5yRJGs6ATpLUe2uM6CRJGsqATpLUe8ZzkiQN520LJEmSJGlG2UMnSeq1BJOiSJI0ggGdJKn31hjPSZI0lAGdJKn37KGTJGk4AzpJUu8Zz0mSNJxJUSRJkiRpRtlDJ0nqtQDBLjpJkoYxoJMk9Z5JUSRJGs6ATpLUb4lJUSRJGqGzgG5XdVVyozouf+0ETgfvt0/3lzDetnNnp+XvuLXjAwFce8utna9jV9dvKOAB97xHp+UftP/aTsufwC6SRjKek7Sr68YlcNud3babvnXzHZ2WD3Ddjbd3vo5JtAmOuMf+nZa//tD9Oi1/kkyKIkmSJEkzyiGXkqReC7DGLjpJkoYyoJMk9Z7xnCRJwxnQSZJ6z6QokiQN5zV0kiRJkjSj7KGTJPVa4pBLSZJGMaCTJPWeSVEkSRrOgE6S1HuGc5IkDTd2QJdkLbAZuLqqntJdlSRJ2p1JUTSLbDtJmoSlJEU5E9jSVUUkSZJWGdtOkjo3VkCXZAPwU8Bbuq2OJEm7a24svrIPqWu2nSRNyrhDLl8PvAQ4tLuqSJI0ROKQS82i12PbSdIELNpDl+QpwHVVdfEi852eZHOSzdu3b1uxCkqSNHfrgpV6SF0ap+002G7aZrtJ0h4YZ8jlI4GnJrkSeDfw+CR/OX+mqjq7qk6sqhPXrz9ihaspSdqbpe2lW6mH1LFF206D7aYjbDdJ2gOLBnRV9bKq2lBVm4BTgX+qqmd1XjNJkqQZZNtJ0iR5HzpJUq/NJUWRJEnfa0kBXVV9DPhYJzWRJGkEh0lqVtl2ktQ1e+gkSb1nOCdJ0nAGdJKkXktgjT10kiQNNdaNxSVJ2pskeVuS65J8cWDaQ5JcmOTSNt38w9vpSfLGJFck+XySh02v5pKkvY0BnSSp96ZwH7p3ACfPm/b7wKuq6iHA77TPAZ4EHN8+TgfevAKbLEnSWBxyKUnqvUknRamqTyTZNH8ycI/278OAb7Z/nwK8s6oKuDDJuiRHVdU1k6mtJGlvZkAnSeq9nlxC92LgQ0leSzPC5Ufb6ccAVw3Mt7WdZkAnSepcZwFdc6KyO92WPhmTOON8246dnZb/mauv77R8gL/+2Fc7X8d3b76983X87E/cv9Pyf/6E+3Ra/s5dq+FTJ91lfZLNA8/PrqqzF1nmV4Ffr6pzkzwDeCvw453VUNJuJvE7dMOtOzot/5Pf2N5p+QB/9tErO1/Hjh27Ol/H8x+3qdPyf+J+R3Za/iTZQydJ6rWQLrJcbq+qE5e4zGnAme3ffwO8pf37amDjwHwb2mmSJHXOpCiSpH5b4YQoexAbfhN4TPv344GvtH+fDzynzXZ5EnCD189JkibFHjpJUu9NOilKkncBj6UZmrkVeAXwy8AbkuwD3EaT0RLgAuDJwBXALcDzJlpZSdJezYBOktR7kx5OUlXPHPHSDw+Zt4Azuq2RJEnDOeRSkiRJkmaUPXSSpF4Lkx9yKUnSrDCgkyT13hrjOUmShjKgkyT1ngGdJEnDGdBJknqtudWAEZ0kScOYFEWSJEmSZpQ9dJKk3nPIpSRJwxnQSZJ6zxGXkiQNZ0AnSeq1AGuM6CRJGsqATpLUe17wLUnScP5GSpIkSdKMsodOktR7jriUJGk4AzpJUq8l8Ro6SZJGMKCTJPWe8ZwkScMZ0EmSes/70EmSNJxJUSRJkiRpRtlDJ0nqNe9DJ0nSaAZ0kqTeM56TJGk4AzpJUr/Fa+gkSRrFa+gkSZIkaUZ11kOXjsfH7Nq5q9Py7+y4fIA7dnS/jsP226/T8v992y2dlg9w5b/8a+frmIStD9vQafkH7Le20/K7/kxLCwm+/6Q+q6rO17FzAuu4+bYdnZb/ocu/1Wn5AJ/9m/d3vg523NH5Kj5wxGmdln/SMffqtPxJcsilJKnXmqQo066FJEn9ZEAnSeo9AzpJkoYzoJMk9Z5DfiVJGs6kKJIkSZI0o+yhkyT1mtfQSZI0mgGdJKnf4o3FJUkaxYBOktR7a4zoJEkayoBOktRrDrmUJGm0sZKiJFmX5L1JvpRkS5JHdF0xSZKkWWXbSdKkjNtD9wbgg1X19CT7AQd1WCdJknbjiEvNINtOkiZi0YAuyWHAjwHPBaiqO4A7uq2WJElzwhqM6DQ7bDtJmqRxhlweB2wD3p7ks0nekuTgjuslSRLQXEOXrOxD6phtJ0kTM05Atw/wMODNVfVQ4LvAS+fPlOT0JJuTbN6+fdsKV1OStNdKkxRlJR+LrjJ5W5Lrknxx3vQXtddEXZbk9wemvyzJFUm+nOSJK78TNGMWbTsNtpu22W6StAfGCei2Alur6qL2+XtpvqR2U1VnV9WJVXXi+vVHrGQdJUmatHcAJw9OSPI44BTgwVX1QOC17fQTgFOBB7bLvCnJ2onWVn2zaNtpsN10hO0mSXtg0YCuqq4FrkrygHbSE4DLO62VJEkD1iQr+lhMVX0C+Pa8yb8KvKaqbm/nua6dfgrw7qq6vaq+BlwBPHzltl6zxraTpEkaN8vli4Bz2ixNXwWe112VJEm629w1dD1wf+DRSV4N3Ab8ZlV9BjgGuHBgvq3tNO3dbDtJmoixArqquhQ4sduqSJI03Di9aku0PsnmgednV9XZiyyzD3BP4CTgR4D3JPm+la6YVgfbTpImZdweOkmSVpPtVbXUxvZW4LyqKuDTSXYB64GrgY0D821op0mS1LlxkqJIkjRVPbltwfuBxzX1yf2B/YDtwPnAqUn2T3IccDzw6T3eaEmSxmAPnSSp18Lkzz4meRfwWJqhmVuBVwBvA97W3srgDuC0trfusiTvoUl6sQM4o6p2TrjKkqS9lAGdJKnfAplwVpSqeuaIl541Yv5XA6/urkaSJA1nQCdJ6r1+JLmUJKl/vIZOkiRJkmaUPXSSpF4Lndy2QJKkVaGzgG5Nx7+9O3ZVt+Xv7LZ8gIP3X9v5Oq7v+ECsv8f+nZY/MTd9q/NV7Ldvtx3i3719R6fl76ruPxPSKIZzUr9N4jrXSZzY2Xdtt+s46vADOy0fYJ/7Pbjzdezc0X3ep6MOP6jT8rs+1pNkD50kqffsoJMkaTgDOklSz2XiWS4lSZoVJkWRJEmSpBllD50kqdemcWNxSZJmhQGdJKn3HHIpSdJwBnSSpN4znJMkaTgDOklSv8UeOkmSRvGyBEmSJEmaUfbQSZJ6zaQokiSNZkAnSeo9h1xKkjScAZ0kqfcM5yRJGs5RLJIkSZI0o+yhkyT1niMuJUkazoBOktRrTVIUIzpJkoYxoJMk9Z49dJIkDWdAJ0nquRB76CRJGsqkKJIkSZI0o+yhkyT1nkMuJUkazoBOktRrJkWRJGk0AzpJUr/FHjpJkkYxoJMk9Z4BnSRJw5kURZIkSZJmlD10kqTe87YFkiQNZ0AnSeq1AGuM5yRJGmpmA7qur6dYLY2HI9cd0Gn5T/+BIzstH+CmF/5c5+v4zs23d76OX3jIUZ2Wf8+D9+u0/H1Wy4dCM8keOklrJ/A7tO6gfTst/+dPuE+n5QPc51ce1fk6du6qztfxmPveq9PyD++43TRJMxvQSZL2HiZFkSRpOJOiSJIkSdKMsodOktR7DrmUJGk4AzpJUq+ZFEWSpNEccilJ6rms+L9F15i8Lcl1Sb445LWzklSS9e3zJHljkiuSfD7JwzrYCZIkDWVAJ0nS93oHcPL8iUk2Aj8JfGNg8pOA49vH6cCbJ1A/SZIAAzpJUt+lyXK5ko/FVNUngG8PeekPgZcAgzm7TwHeWY0LgXVJur1PiSRJLQM6SVLvZYUfy6pDcgpwdVV9bt5LxwBXDTzf2k6TJKlzYyVFSfLrwH+hOSP5BeB5VXVblxWTJAnmkqKseFaU9Uk2Dzw/u6rOHlmH5CDg5TTDLaVF2XaSNCmL9tAlOQb4NeDEqvpBYC1watcVkyRpTgc9dNur6sSBx8hgrnU/4Djgc0muBDYAlyS5D3A1sHFg3g3tNO2lbDtJmqRxh1zuAxyYZB/gIOCb3VVJkqR+qaovVNW9q2pTVW2iGVb5sKq6FjgfeE6b7fIk4Iaqumaa9VUv2HaSNBGLBnRVdTXwWpqMXtfQ/FB9eP58SU5PsjnJ5u3bt618TSVJe68JX0SX5F3Ap4AHJNma5JcWmP0C4KvAFcCfAf91qZun1WWcttNgu2mb7SZJe2CcIZeH02TwOg44Gjg4ybPmz1dVZ88NXVm//oiVr6kkaa816fvQVdUzq+qoqtq3qjZU1Vvnvb6pqra3f1dVnVFV96uqB1XV5uGlam8xTttpsN10hO0mSXtgnCGXPw58raq2VdWdwHnAj3ZbLUmS7jbp2xZIe8i2k6SJGSeg+wZwUpKDkgR4ArCl22pJknS3Pty2QFoC206SJmaca+guAt4LXEKTdncNsFg2MEmSpL2SbSdJkzTWfeiq6hXAKzquiyRJw9mtphlj20nSpIwV0EmSNC3NMEkjOkmShjGgkyT1m4lMJEkayYBOktR7xnOSJA03TpZLSZIkSVIP2UMnSeo/u+gkSRrKgE6S1HMxKYokSSN0EtAFSMdXsK/tuPx91q6O0agH7Nvtftp4zwM7LR/grEcd1/k6bt+xq/N17LdPt++pfdZ2e6xtTmuaTIoiac0EvgcOOaDbvo7j7n1wp+UDHLnugM7XUVWdr+Pg/bs9Fgftt7bT8ifJHjpJUq8FTyhIkjTK6uiGkiRJkqS9kD10kqT+s4tOkqShDOgkSb1nUhRJkoYzoJMk9Z5JUSRJGs5r6CRJkiRpRtlDJ0nqPTvoJEkazoBOktRv3rdAkqSRDOgkSb1nUhRJkoYzoJMk9VowKYokSaOYFEWSJEmSZpQ9dJKk3rODTpKk4QzoJEn9Z0QnSdJQBnSSpN4zKYokScMZ0EmSes+kKJIkDWdSFEmSJEmaUfbQSZJ6zw46SZKGM6CTJPWfEZ0kSUMZ0EmSei2YFEWSpFEM6CRJ/RaTokiSNIpJUSRJkiRpRtlDJ0nqPTvoJEkazh46SVL/ZYUfi60ueVuS65J8cWDaHyT5UpLPJ3lfknUDr70syRVJvpzkiXu+wZIkjceATpLUc1nxf2N4B3DyvGkfAX6wqn4I+DfgZQBJTgBOBR7YLvOmJGtXauslSVpIJ0MuL7nk4u0H7puvL2GR9cD2LuoyQW5Df6yG7ejjNhw77QpIk1JVn0iyad60Dw88vRB4evv3KcC7q+p24GtJrgAeDnxqEnXV7FtGuwn6+TuxVG5DP6yGbYB+bsdE2k6dBHRVdcRS5k+yuapO7KIuk+I29Mdq2I7VsA3SSuogy+X6JJsHnp9dVWcvYfnnA3/d/n0MTYA3Z2s7TRrLUttNsDp+J9yGflgN2wCrZzuWw6QokqReG/Oyt6Xavtwf/iS/DewAzlnZKkmStHQGdJKk/utJmsskzwWeAjyhqqqdfDWwcWC2De00SZI615ekKEsZ5tJXbkN/rIbtWA3bIK2YKSRF+d46JCcDLwGeWlW3DLx0PnBqkv2THAccD3x6jzdaWthq+J1wG/phNWwDrJ7tWLLcfYJRkqT++aGH/HD93T/+64qWuWn9ARcvNOQyybuAx9JcZP8fwCtoslruD3yrne3CqnpBO/9v01xXtwN4cVV9YEUrLEnSCA65lCT1XgdJURZUVc8cMvmtC8z/auDV3dVIkqThDOgkSb3Xk0voJEnqnaleQ5fk5CRfTnJFkpdOsy7LlWRjko8muTzJZUnOnHadlivJ2iSfTfL3067LciRZl+S9Sb6UZEuSR0y7TkuV5Nfb99EXk7wryQHTrpM0dWl66FbyIc0q2079MevtJrDttFpMLaBLshb4E+BJwAnAM5OcMK367IEdwFlVdQJwEnDGjG4HwJnAlmlXYg+8AfhgVX0/8GBmbFuSHAP8GnBiVf0gsBY4dbq1kvoiK/yQZo9tp96Z9XYT2HZaFabZQ/dw4Iqq+mpV3QG8GzhlivVZlqq6pqouaf++ieaDMHM3lE2yAfgp4C3TrstyJDkM+DHaa1yq6o6q+s5UK7U8+wAHJtkHOAj45pTrI0nqD9tOPTHr7Saw7bSaTDOgOwa4auD5Vmbswzxfkk3AQ4GLplyV5Xg9TTruXVOux3IdB2wD3t4Of3hLkoOnXamlqKqrgdcC3wCuAW6oqg9Pt1bS9AWHXEot20798Xpmu90Etp1Wjb7ch27mJTkEOJcmXfWN067PUiR5CnBdVV087brsgX2AhwFvrqqHAt8FZuragiSH05xpPQ44Gjg4ybOmWyupHxxwKa0+s9p2WiXtJrDttGpMM6C7Gtg48HxDO23mJNmX5gvpnKo6b9r1WYZHAk9NciXN8I3HJ/nL6VZpybYCW6tq7gzfe2m+pGbJjwNfq6ptVXUncB7wo1Ouk9QL9tBJgG2nvlgN7Saw7bRqTDOg+wxwfJLjkuxHcwHj+VOsz7IkCc3Y4y1V9bpp12c5quplVbWhqjbRHId/qqqZOrtRVdcCVyV5QDvpCcDlU6zScnwDOCnJQe376gnM2MXJUleywv+kGWXbqQdWQ7sJbDutJlO7D11V7UjyQuBDNBlp3lZVl02rPnvgkcCzgS8kubSd9vKqumB6VdprvQg4p/2R+yrwvCnXZ0mq6qIk7wUuockA9lng7OnWSpLUF7ad1AHbTqtAqmradZAkaaQHP/SH60Mfv3BFyzzqsP0urqoTV7RQSZKmYGo9dJIkjctBkpIkDWdAJ0nqNROZSJI0mrctkCRJkqQZZQ+dJKn3zEwpSdJwBnSSpP4znpMkaSgDOklS7xnPSZI0nAGdJKn3TIoiSdJwJkWRJEmSpBllD50kqediUhRJkkYwoJMk9VpwyKUkSaM45FKSJEmSZpQ9dJKk3rOHTpKk4eyhkyRJkqQZZQ+dJKn3TIoiSdJwBnSSpH6LQy4lSRrFgE6S1GtpH5Ik6XsZ0EmS+s+ITpKkoUyKIkmSJEkzyh46SVLvmRRFkqThDOgkSb1nUhRJkoYzoJMk9Z7xnCRJw3kNnSRJkiTNKHvoJEn9ZxedJElDGdBJknrPpCiSJA1nQCdJ6rVgUhRJkkZJVU27DpIkjZTkg8D6FS52e1WdvMJlSpI0cQZ0kiRJkjSjzHIpSZIkSTPKgE6SJEmSZpQBnSRJkiTNKAM6SZIkSZpRBnSSJEmSNKP+L3Dzh/nmAnauAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "recorteB7 = trim(imagen[:,:,2], 540, 345, 10, 10)\n", + "poptB7, pcovB7 = curve_fit(gauss2d, xdata7, recorteB7.ravel(), p0=[1,0,1,1,1])\n", + "estrellaB7=gauss2d(xdata7, poptB7[0], poptB7[1],poptB7[2], poptB7[3], poptB7[4])\n", + "FWHMB7=FWHMB.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptB7[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 7 fotografÃa (Banda Azul)\")\n", + "plt.imshow(recorteB7, plt.get_cmap('Blues'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 7 a partir de la gaussiana (Banda Azul)\")\n", + "plt.imshow(estrellaB7.reshape(10, 10), plt.get_cmap('Blues'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 8 (Azul)" + ] + }, + { + "cell_type": "code", + "execution_count": 434, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAFSCAYAAACqthEgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA/IElEQVR4nO3de7xcdX3v//d7X5JACATYEQMkIIpUvBA1RW294MGjQFHU41GwVVDbSKu/6q96vNQepfbYm9WqpUcaC0UUERVRtKhQa4u2hRowIlcJFCQhBAKSACGXvffn/LHWhsmwZu/5rlkze/aa1zOPeWTvNd+1vt+1ZvbM57O+3/VdjggBAAAAAAbP0Gw3AAAAAAAwO0gIAQAAAGBAkRACAAAAwIAiIQQAAACAAUVCCAAAAAADioQQAAAAAAbUyGw3AACAbhre+5CI8Ucq3WY8cu/3IuK4SjcKAMAsICEEANRajD+i+Ue8vtJtbl/7t2OVbhAAgFlCQggAqDlL5goJAACKkBACAOrNkuzZbgUAAH2JhBAAUH/0EAIAUIiEEABQf/QQAgBQiFOmAAAAADCg6CEEANQck8oAANAKCSEAoP4YMgoAQCESQgBAvVn0EAIA0AIJIQCg5kwPIQAALXDKFAAAAAAGFD2EAID6Y8goAACFSAgBAPXHkFEAAAqREAIAao7bTgAA0AoJIQCg3ix6CAEAaIFTpgAAAAAwoOghBADUH0NGAQAoREIIAKg5riEEAKAVEkIAQP0NcQ0hAABFOGXaQ7YPtR22R/Lf/8X2b/eo7v9je7Ptu3tRXydsH2D7CtsP2v5Evuz3bV9sp88MYfvttj9VeUPbq/sM21+cjbpbsX2u7f+T//ws2/8+220CAPTObMYj/cT2ctsP2R7uYBuPfqeWWDdsP6Vs3f3C9ndsnzpLdf+Z7XfPUt2lX/tuafxbtv1K2xe2s95AJoS2b7f9SP4hMPU4s431+uYP1/YK2z+0vcX2etv/e5qyyyW9R9KREfHENrZ9u+2XVdneRKskbZa0d0S8x/bhkt4q6bSIiJQN2Z4n6Y8kfTz/fepLcOp132T7/9oerXonqpJ/4IzbXlr1tiPiWkkP2H5l1dsG+oaVDRmt8gFUYNDikdnWHN9ExC8iYq+ImJjNds11EXF8RHy+1/XaXiLpzZL+Lv/9GNuTDX9LG2z/ca/blSJP4H5pe37V246Ib0l6uu1nzVR2kL/VXpl/CEw93tnpBqfOtPXIlyRdIWk/SS+R9Hu2X9Wi7HJJ90XEPb1qXCttHqNDJN3QkPw9TdIbI2JLiSpPknRTRGxoWr44IvaS9ExJL5D0jhLb7jrbCyX9D0lbJP1Wl6o5X9Lbu7RtoD/Y1T6A6gxSPDIryhwPZwY5Tp4LTpN0aUQ80rDsrqm/JUkvlPQ226+ejcbNxPahkl4kKSR162/mAmUdLdPijd7E9lNs/2t+pmvzVFer7SvyIj/Nzzq8IT8Tsd72+/OhmP9ge8j2B2zfavs+21+xvV8b9T7Z9j/n62y2fb7txdOscqik8yNiIiJulfQjSU8v2O7LJF0u6cC83efmy19l+3rbD+RnJ56WL/+CsgTyW3n5901XPn/uObZ/4myI51dtX+jHhiQWHaN9bX/b9r35WZFv2z44L3+upFMlvS+v/2WSniPpDxvq+6rtu/PX6Arbj9vvBsdL+tdWT+ZJ8uWSjmzY/tTr96DtG2y/puG502z/yPZf5W3/L9vHNzz/pPz986DtyyWNNb0eKW2XsmTwAUkfzY9L47YeaDgL9rCzM8aHTrWxqex0Z5P/RdKx3Tg7BfQH00OIOadu8UiZbeffXb9v+7a8/MedJ2kzbctZb+D7bV8r6WHbF6gpvnHx0NmP2f43SdskHVbQpmfbvib/nr9Q0oKm50+0vTb/jv53t9E7k6/3G3kstdX2nbbPmKH8+2xvtH2X7d9u/J6fbltT75WmbT3ac2r7aNtr8nU32f5kvnyB7S/mx/sB2z+2fUDDcZsaptjO6/Je29fm7+0LbS/In9vXLeLDFmaK8f5L0r9r9xjv0/kx2Wr7atsvanjujPzv5Lz89b3e9sqG51u+9iXaLmW9m1dKOlcNMZ7tqZh96rHNdjS08YsNZXd7Dxf4F0m/MUM7SAgL/ImkyyTtK+lgSX8jSRHx4vz5o/IzD1Njcp+o7KzYIcoy8P9P0quVnSU7UNIvJf1tG/Va0p/l6zxN0jJJZ0xT/lOS3mx71PYRynq5/qm5UET8k7I/mKkzJqfZfqqyMwbvlrRE0qXKPiDnRcSbJP1Cj52x/Mvpyjsbknmxsjfzfnm512h3zcdoSNI/5L8vl/SIpDPz9p6mrMfqL/P6H7dPkr4j6XBJT5B0TV6+lWdKurnVk7YPlPQKZX+QU25VdsZmH0l/LOmL3n245vPybY5J+ktJZ9uPdhl8SdLV+XN/oqYkLrHtyte/QNKXJf2K7edOPRERixvOgn1a0g8lNfeEzijvPd0l6YjUdYE5gx5CzD21ikdKblvKYoqVyk4On6TsEpJ2t3WKsmB4cUScoqb4pkV9b1J2/BZJumO3xmcxzzckfUHZsf6qshO3U88/W9I5ykbd7K9sKOMlbu+E68PKEoTFeZt/1y16tmwfJ+kPJL1M0lMkHVN2WwU+LenTEbG3pCdL+kq+/FRlcdEyZft2urL47XHN08yvy+slHSfpSZKepaynT5omPmxhphjvcEm/rt1jvB9LWqHs9fuSpK9OJaS5VymLuRZLumSq/ple+xJtl7LX6Pz88YqpBDsiHu3lzGO8i/M2lXGjpENt7z1doUFOCL+Rn+GYevxOvnyXshfzwIjYHhE/mmYbkjQp6SMRsSPvsj5d0ociYn1E7FD2R/C6aTJ3SVJErIuIy/Pt3Cvpk8o+xFv5tqTXKXvD3STp7Ij48QxtnfIGSf+Y17dL0l9J2kPSr5Uo/3xls9V+JiJ2RcTXJf1n0/q7HaOIuC8iLoqIbRHxoKSPzbCvu4mIcyLiwYbje5TtfVoUXyzpwYLlm20/oCyBeljS1xq2/9X8j3Ey/6K9RdLRDeveERGfy685+LykpZIOcHat5q9K+t/5vl4h6Vtl255v76WSvhQRmyR9X9mHR3O5N0h6o6T/kb8+ZTyo7FgBAHprYOKREtuWpL+IiPsj4hfKks9TErb1mYi4s2lI4UzOjYjrI2K84Dv1+ZJGJX0qj3m+pizBmLJK0t9FxFV5j+nnJe3I15tWRPxLRPwsjz2uVXYyuNWxeb2kf8jbuU1NCVfitprtkvQU22MR8VBEXNmwfH9JT8n37eqI2FqwH+2+LndFxP3K4qQV+bqp8eFiPT7GOzD/O9oq6eeSrlLWaz3Vvi/m9YxHxCckzdfuJ8R/FBGX5jHeFyQdlS+f9rVPbbvtFyr7+/5KRFytrDPijQXl3i/pV/TYiZBUU8dn8XSFBjkhfHXewzL1+Fy+/H3Kzm78Z95VPNMLcG9EbG/4/RBJF099sCvLzCckHTDdRpzNrPllZxfAbpX0RTUNN2wou5+k7yobRrhA2dmXV9j+vRnaOuVANZz1iohJSXdKOqhE+QMlbYjYbbKXO5vW3+0Y2d7T9t/ZviPf1yskLXYbs3zZHrb9586GwGyVdHv+VOGxUnZGdFHB8rGIWCxpT0n/Jul7DXW82Y8N93hA0jOatv/oTK35B7Ek7aX8DGxEPNxQ9tHjVqLtb5J0Y0SszX8/X9Ib3TABTn428kxJr8k/eMtapGxoKlBPDBlF/xqYeCRl2w0aY4o7lH3Xtrut5nikHdOtUxTzNPYiHiLpPY0JvrJjcuBMldp+nu0f5EMOtyhL6FsdmwOb2rlbmxO31extkp4q6SZnw0JPzJd/QVms9GVnw1T/0gUT8rX5ujTOeL9NWQxVJj4sivHuyv+O9laWBD2i7OT9VPvea/tGZ8NVH1DW61kY4+VtW5CfRJn2tS/R9lMlXRYRm/Pfv6THXxp0vKR3KfuMSDmp0Wjq+DwwXSG+1ZpExN0R8TsRcaCyLv//6+ln8mqe9fJOScc3fbgviMdPatLsT/NtPTN/E/+Wsi+CIodJmoiI8/IzHOuVdSWfMNP+5e5S9qElScqHOy7TY8MNm/dpuvIbJR2UL5uyrGn95u29R9nZmOfl+zo1/KWdcVhvVDZk5GXK/ogPnWHda5V9sBXK/8DOlfR822O2D5H0OUnvlLR/njRe12bbNkra19lEMFOWd9D2N0s6zNk1h3crO8s2pvx1tv0EZcMX3hERP2lY72Flia7yctPOLGv7IEnzNM2wC2BOq3q4aBtDRm0vywOyG/Jg/l358jPyQGlt/jihYZ0P2l5n+2bbr+jiEcEcUNN4JGXbUxpjiuXKYpJ2t9V8TNqZqXy6MkUxT+P3/J2SPtZ0zPeMiAvaqPdLyoYoLouIfSSdpdbHZqOyYcRTmuOu6bbVHCMMK7scSJIUEbdENrz2CZL+QtLXbC/Me8X+OCKOVDZC7EQVjFpSudd4Smp8OFOMt0XZsXhlvq8vUnai5fWS9s1jvC1ttm+m177tttveI2/DSxpivP9f2aixo/IyRyhLZF8fEY0J/26vn7Kh4tN5mqTbi3pzG5EQNrH9P/3YRaC/VPamnsx/36SCC4ybnCXpY3liIdtLbJ/URtWLJD0kaUseoP+vacr+PNu03+jsovEnKhvWeW0b9UjZePDfsH1sfnbnPcqGNEzdj655P6cr/x/Kzji+0/ZIvq+Nwytb7esjym53sJ+kj7TZ7ql1d0i6T9kfxJ/OUP5STd9lP19ZT9zd+TYXKnvN782ff4uyHsIZRcQdktZI+mNn11e+UPmHUGrbbb9A2dj9o5UNpViRt+NLyq7VGFE2zPWLEfGVptV/qmya4RXOxsWfMUPTXyLpnyMbUgTUU+97CMclvScPnp4v6R22pyY2+OuIWJE/LpWk/LmTlU3GcZyy4L/0vdEw99U0HknZ9pT/5WzCjmXKekumrpkss612jtt0/kPZ3/bvO7tm8rXaPeb5nKTT8x46217obIKXopFKzRZJuj8itts+WgXDBxt8RdJbbD/N9p6Smm/1Md22fq6s1+s38pjuj5QNm5Qk2f4t20vy0WAP5Isnbb/U9jPzz6WtyoaQTurxyrwujeumxIczxXh7Kftcvb5h++PKYrwR2x+WNO21dQ1meu1T2v5qZbHzkXosxnuasrkg3uzser9vKhvy3TxUfK2kFzu7h+Y+kj44Q7tfomz+imkNckI4NcvU1OPifPmvSrrK9kPKzq68KyJuy587Q9LnnQ0DeH2L7X46X+8y2w8qu5D1eW2054+VXTC9RdI/Svp6q4J5lv9aZWcTfqnszXGdpLZujhkRNys7Y/M3yu7390plF1nvzIv8maQ/yvfzvdOVz9d5rbIhBg/k5b6tLPFp5VPKrkHcrOz4fLeddufOU9ZFv0HSDdr9QuEi31I2GUvzcI0H8td4k7IL4F8VmRskfULZH/4mZRcs/1tC+96o7PW+X9mHwXkl236qpG9Gdg3A3VMPZe+vE5VdhP0iSe9ueh8vj4ifKxu+80/Krn+c6bqT31QWOAD11eMewojYGBHX5D8/qGy4Xqth+VI2euDLkV1381+S1mnmk2uoh0GKR9redoNvKpusbW2+ztkdbGu3+KaN8rtpiHlOU/Y9/4bGeiNijaTfUXYpxy+V/R2f1ubmf0/SR/PX6sN6bDKXonZ8R9JnJP0gr2MqnpiKvVpuK+81+z1Jf6/H5lFonHX0OEnX5++7T0s6OR9N9URlJ6K3Kvs8+1dlw0iblXldpnxKafHheZJOyHvcpjw6Q6eymGs/ZXGOlA15/a6ypPgOSdvV5rDimV77xLafquwa0F80xXhn5m09Wllv4183fjbk7bhc2UmRa5X9XXx7hqafovw+jdNxpN3nG5iR7asknRUR/zDbbZEk26skHRkR757ttvQbZ9Nh/11EvGC22wJ0y9A+y2L+r/1Bpdvc/t0/uDoiVs5cUnJ2r6krlPXy/4GygGKrshEF74mIXzq7GfmVEfHFfJ2zJX0nsokLgIHkbKr9wyNi3Wy3pZ85uxXYdZLmR8T4bLenl2z/qaR7IuJTs92WfmP7lZLeFBGtTho9apB7CFER2y+x/cR8yOipynqvUnr9uioiVpMMFouIa0kGUX/uxpDRMWf36pp6FN74Nx+ydJGkd+e9KZ9VNhx8hbJrUj7Rm2MAoE5sv8b2fNv7KrvW71uDlgxKUkT8IclgsYj4VjvJoJTdLgDo1BHKhiMslHSbpNdFxMbZbRIANKj+3oGbZ+ohzK/PuUjZTbu/LkmR3UJm6vnP6bHhPhu0+8QQB6vEfUUBDIy3K5sUb0LZ8M12Z5oHHoeEEB2LiNWSVs92OwCgkNXuRDDVVWlb2bVON0bEJxuWL204YfYaZcO8pOxary/Z/qSy6c0P1+Pv6QoMlIio/ExOXUTEcbPdBtQHCSEAoObc84RQ0q8rm8H4Z7bX5sv+UNIptlcomzHydmVn+RUR19v+irIJp8aV3U5mosdtBgAMIBJCAAAqlk8VXtS7cek063xM0se61igAAAr0ZUK4/9hYLF9+aNvlo637jPbWUInrVfpxwtc6HNvJEgd2sujOOtNIfbnLvNap+5F6nIaH0t+zKW268xd36P77NjP8B7Oj+msIgb4xNjYWhxxy6Gw3A0DFrrnm6s0RsaTb9fRlQrh8+aH6wb9d1Xb5ycn06HoicZ3UGhYtSD+0O8fTspDU3S4TD6Ue29TjWiYJWTCadq/mh3akT7q1fWfaSK3h4bThaGXesw9tT9uPhYnvwTLv2W0Jx+mElzKZKWZR74eMAj1zyCGH6t+uWjPbzQBQsT1GfUcv6unLhBAAgErRQwgAQKGOTpnaPs72zbbX2f5AwfPzbV+YP39VfnNeAACAgUTsBKDflE4IbQ9L+ltJx0s6UtnMaUc2FXubpF9GxFMk/bWyG2cCANA77sqN6YFkxE4A+lEn32pHS1oXEbdFxE5JX5Z0UlOZkyR9Pv/5a5KOze/NBABA79jVPoByiJ0A9J1OEsKDJN3Z8Pv6fFlhmYgYl7RF0v5FG7O9yvYa22s2b763g2YBALA725U+gJIqi50a46Z7iZsAdKBvxr1ExOqIWBkRK8fGuj67KgBgQFgkhKifxrhpCXETgA50khBukLSs4feD82WFZWyPSNpH0n0d1AkAADBXETsB6DudJIQ/lnS47SfZnifpZEmXNJW5RNKp+c+vk/TPEf14+3UAQG25Cw+gHGInAH2n9H0II2Lc9jslfU/SsKRzIuJ62x+VtCYiLpF0tqQv2F4n6X5lH3wAAPQQwzzRH4idAPSjjm5MHxGXSrq0admHG37eLul/dlJHt3T7VNvEZHoNuybS1kmtY95IeodwahA1MTmZVL7EYdK8ke6fKB0e6m7wuHD+cPI6i/ccTSo/nnhwJ0ucgN5zXvv7MURAjllEQoh+MZdjp34ziB2nfJahGzpKCAEAmAsIogAAKNY3s4wCAAAAAHqLHkIAQO3RQwgAQDESQgBAvTEzKAAALZEQAgBqzcwyCgBASySEAIDaIyEEAKAYk8oAAAAAwICihxAAUHv0EAIAUIyEEABQeySEAAAUIyEEANQbs4wCANAS1xACAAAAwICihxAAUHsMGQUAoFjfJoQpX91lvuitSCqfVlravmsycQ1p286J5HVSDJWIh4YSV5pIPFAjJdq0K7GSbTvSj+vocFrDUndjfDL1HSXNS/xrnT+SNgBgMtLbNDLcfh1l3n9AFbgPIdB7kfidUuIrKDk2S21TL6R+NrnEPvTi44/P2LmtbxNCAACqQrACAEAxEkIAQP2RDwIAUIhJZQAAAABgQNFDCACoNzNkFACAVkgIAQC1R0IIAEAxEkIAQO2REAIAUIyEEABQa9x2AgCA1phUBgAAAAAGVOmE0PYy2z+wfYPt622/q6DMMba32F6bPz7cWXMBACjBFT+AEoidAPSjToaMjkt6T0RcY3uRpKttXx4RNzSV+2FEnNhBPQAAlDcLs4zaXibpPEkHSApJqyPi07Y/LumVknZKulXSWyLiAduHSrpR0s35Jq6MiNN72mj0ArETgL5TOiGMiI2SNuY/P2j7RkkHSWr+UAMAYFbNwjWEhYG/pMslfTAixm3/haQPSnp/vs6tEbGi1w1F7xA7AehHlUwqk5/ZfLakqwqefoHtn0q6S9J7I+L6KurstcnJSCr/8K6J5Dp2jU8mr5Mk0vZBkoaH0oKoxMOk8RJtSmySJkvUMToynFR+pMvHSZLGE1ca6cEVwtsT3udl9hmoSq8TwlaBf0Rc1lDsSkmv62nD0DfmWuwUid+lqZ/5qduXpInESnrRptTPGiutjqHUIEjpcdNQqc/LtP1goq/+0nHIaHsvSRdJendEbG16+hpJh0TEUZL+RtI3ptnOKttrbK+5b/O9nTYLAIC+ME3g/1ZJ32n4/Um2f2L7X22/qFftQ+9VETs1xk33EjcB6EBHCaHtUWUfaOdHxNebn4+IrRHxUP7zpZJGbY8VbSsiVkfEyohYuf/Ykk6aBQDA7qqfVGZsKhjPH6sKq20R+Nv+kLJhpefnizZKWh4Rz5b0B5K+ZHvvqnYf/aOq2KkxblpC3ASgA6WHjDrr6z1b0o0R8ckWZZ4oaVNEhO2jlSWg95WtEwCAMrowPGlzRKycoc7CwN/2aZJOlHRs5GPSImKHpB35z1fbvlXSUyWtqbrhmD3ETgD6USfXEP66pDdJ+pnttfmyP5S0XJIi4ixl10b8ru1xSY9IOnnqyw8AgF6we39j+laBv+3jJL1P0ksiYlvD8iWS7o+ICduHSTpc0m09bTR6gdgJQN/pZJbRH2mGuzFFxJmSzixbBwAAc1SrwP8zkuZLujxPUqduL/FiSR+1vUvSpKTTI+L+nrcaXUXsBKAfVTLLKAAA/WwWZhltFfhf2qL8RcqGlwIA0FMkhACA2mOKcwAAipEQAgDqj3wQAIBCJIQAgNqjhxAAgGId35geAAAAADA30UMIAKg300MIAEArfZsQTibccWd8YrKr25ekicTy23aMp60gKfUuQxOJO/HIzom0CiQND6UFUSPDqeXTO6m370p7vUcT2yRJuxJf8JHE4zR/JH2/dyW+z3clvp/KxMs7El6LSW6jhVlilXt/A3U1mRoEKf0zPDVGGS/RpvHE7+rU79Eyxyn1wyY1zioT04wmxlolQhQNJe7HkNKOLSf1uqtvE0IAAKrR+xvTAwAwV5AQAgBqj3wQAIBiTCoDAAAAAAOKHkIAQO0xZBQAgGIkhACAejNDRgEAaIWEEABQa1b6DHgAAAwKEkIAQO3RQwgAQDEmlQEAAACAAUUPIQCg9phUBgCAYiSEAIB6Y1IZAABaIiEEANSaRQ8hAACtkBACAGrOJIQAALTQlwlhKDQZ0Xb5yfaLPmp8YjKpfGodO8fTti9JE4mVbNs10dXykjQ6nBZE7TN/NKn8vJHuz2u09x5pbZKkbY/sSlsh0v6UhhakB6ep78Ehpa0wOpz+WkwmvD+IxwGgO0JSJMVN6YFTaoySGgc9sis9btq2Yzyp/I7EOnYlxopS+miE1Dhoj3nDSeUlac/EdeaPpscD8xLnqXTyrYDS37OcCGxfXyaEAABUibgAAIBiJIQAgNrjTDEAAMU6Tght3y7pQUkTksYjYmXT85b0aUknSNom6bSIuKbTegEAaAuzjKKPEDcB6DdV9RC+NCI2t3jueEmH54/nSfps/j8AAMAgIm4C0Dd6MWT0JEnnRXa185W2F9teGhEbe1A3AGDAcdsJzDHETQB6qoopHkPSZbavtr2q4PmDJN3Z8Pv6fBkAAD1hV/sAOkDcBKCvVNFD+MKI2GD7CZIut31TRFyRupH8Q3GVJB28bHkFzQIAIEMPIfpI5XHTsuXETQDK67iHMCI25P/fI+liSUc3FdkgaVnD7wfny5q3szoiVkbEyv3HxjptFgAAj6KHEP2iG3HT2NiSbjUXwADoKCG0vdD2oqmfJb1c0nVNxS6R9GZnni9pC+PgAQDAoCFuAtCPOh0yeoCki/OhOCOSvhQR37V9uiRFxFmSLlU2dfI6ZdMnv6XDOgEAaJ8ZMoq+QdwEoO90lBBGxG2SjipYflbDzyHpHZ3UAwBAWdkso7PdCoC4CUB/6sVtJ7ou++xMs2sibZ3xybTyj+ycSCovSeu2PJRU/v5tu5LK37U1rbwk7bdn2lvkoL3nJZU/cK89kspL0l6j3X/b7jk/rY7hobRoczzx/SdJk4nv89Q6Ut/jkjRElI05wfQQovZSviJKfNwnx03bEuOgLYkxjSTd9/DOpPJ3b3skqfzWneNJ5SVpOPGzZmyPtLhp6cL0uGl8z9Gk8ouUVl5KjwdSP5JTjyvS1CIhBABgOsQSAAAUq+I+hAAAAACAOYgeQgBA7TFkFACAYvQQAgDqreJ7ELaTW9peZvsHtm+wfb3td+XL97N9ue1b8v/3zZfb9mdsr7N9re3ndPegAACQISEEANRaNsuoK320YVzSeyLiSEnPl/QO20dK+oCk70fE4ZK+n/8uScdLOjx/rJL02YoPAwAAhUgIAQC11+uEMCI2RsQ1+c8PSrpR0kGSTpL0+bzY5yW9Ov/5JEnnReZKSYttL634MAAA8DgkhAAAdJHtQyU9W9JVkg6IiI35U3cru1G5lCWLdzastj5fBgBAVzGpDACg9rowp8yY7TUNv6+OiNWPr9d7SbpI0rsjYmtj72JEhO0Sd4QDAKA6JIQAgNrrwiyjmyNi5Qx1jipLBs+PiK/nizfZXhoRG/MhoffkyzdIWtaw+sH5MgAAuoohowCAepudWUYt6WxJN0bEJxueukTSqfnPp0r6ZsPyN+ezjT5f0paGoaUAAHQNPYQAAFTv1yW9SdLPbK/Nl/2hpD+X9BXbb5N0h6TX589dKukESeskbZP0lp62FgAwsPo2IYyEqyq275pM3v6O8bR1xifSyt+65aGk8pJ03d3bksrfsGFLUvmN9zycVF6SFiwYTir/1IMXJ5V/0ZPTX7sD9lyQVn4orbwkzRtJa9dkpB2nXujFjbi51zfmAqvtW0VUJiJ+pOyOF0WOLSgfkt7R1Uah1iYTAqeJyfRLV3fsmkgq/9D28aTyd23dnlRekn56z9ak8tfflRab3VuiTfNG0gbfHbz/wqTyK5ftSiovSU+LvZPKjwynDyAcHU77jB0eSoubylxtPaS0lXr9PdFP+jYhBACgKgP8PQ8AwLRICAEAtTdERggAQCESQgBA7ZEPAgBQjFlGAQAAAGBA0UMIAKi17FYRdBECAFCEhBAAUHtD5IMAABQiIQQA1B49hAAAFCMhBADUHvkgAADFmFQGAAAAAAZU6YTQ9hG21zY8ttp+d1OZY2xvaSjz4Y5bDABAAktyxf+AMoidAPSj0kNGI+JmSSskyfawpA2SLi4o+sOIOLFsPQAAdIpJZdAPiJ0A9KOqriE8VtKtEXFHRdsDAKAaNpPKoB8ROwHoC1UlhCdLuqDFcy+w/VNJd0l6b0RcX1TI9ipJqyTpoIOXa8f4ZNuV70woO2X7zomk8rsm0uq49b7tSeUl6YYNW5LK/+iHP08qv+OuXySVlyQNp71F7nrG05PKL9pjNKm8JP3qwWkjnfeZNy+5jgWjkVR+fDKtfHqLpKHEgDaU1qYyAXOkVQHMGvJB9KGOYqfGuGnZsuVJn8cTid9ZkpLiMkl6aPt4UvnbtjycVF6SrrrtgaTy1918b1L5++9N274kjc5Li2s2LNsvqXyZ7929E9u05/zh5Dr2GE2LzeYNp5UvNcqDD/62dTypjO15kl4l6asFT18j6ZCIOErS30j6RqvtRMTqiFgZESv3HxvrtFkAAAB9qYrYqTFuGluypGttBVB/VcwyerykayJiU/MTEbE1Ih7Kf75U0qhtsj0AQM9YWQ97lQ+gQ8ROAPpGFQnhKWox5MH2E52PQ7N9dF7ffRXUCQBA2+xqH0CHiJ0A9I2OriG0vVDSf5f09oZlp0tSRJwl6XWSftf2uKRHJJ0cwVVHAIDeYlIZ9AtiJwD9pqOEMCIelrR/07KzGn4+U9KZndQBAABQF8ROAPpNVbOMAgDQlxjmCQBAaySEAIDaYyIYAACKkRACAGqPdBAAgGIkhACA2mNSGQAAilVx2wkAAAAAwBxEDyEAoNayG9PPdisAAOhPfZkQToa0c3yy7fK7JtovW3adB3eMJ5W/56FdSeUl6Y71W5PK77jhqrQKenAbo7t/vkdS+VueOpZcx7OW7plUfvvERHIdE5OJfxqJx7bM6LXUSTEmE1/uMvEyN8bCnGAzZBS1Fkr7PJ4sEQ+MT6St8+DOtLjpF7/ckVReku64Ky1uuvPWDWkVbFyXVl6S5qXFKDH5tKTyB4wtTCovSfcemNamQ/ZOKy9JE4lBR/p7kM/wburLhBAAgCqRDwIAUIyEEABQe/QQAgBQjEllAAAAAGBA0UMIAKg1JpUBAKA1EkIAQO0xZBQAgGIkhACA2iMdBACgGAkhAKDW7PTbtgAAMCiYVAYAAAAABhQ9hACA2qODEACAYiSEAIDa6/WkMrbPkXSipHsi4hn5sgslHZEXWSzpgYhYYftQSTdKujl/7sqIOL2nDQYADCwSQgBA7c1CD+G5ks6UdN7Ugoh4w2Pt8SckbWkof2tErOhV4wAAmNKXCaElDSd8eQ+XuMHUZCSWV9oKD2zbmVaBpEce2ZW2QiTuRC/s2JZUfNv28eQq7n4w7TgdundyFclSex96EZvWpQ5gLoqIK/Kev8dx9oHxekn/raeNAnJlwofJxJXGEwOt7eOTSeUlaceOxBjikYcTyz+YVl6SJtLatGP7jrTy4xNJ5SVp10Taa5EaI0tKjJLTy6O7+jIhBACgKpb7bZbRF0naFBG3NCx7ku2fSNoq6Y8i4oez0zQAwKAhIQQA1Ju7MmR0zPaaht9XR8TqNtc9RdIFDb9vlLQ8Iu6z/VxJ37D99IjYWlVjAQBohYQQAFB7XZhUZnNErCzRjhFJr5X03KllEbFD0o7856tt3yrpqZLWFG4EAIAKtXUfQtvn2L7H9nUNy/azfbntW/L/922x7ql5mVtsn1pVwwEAaNdQxY8OvEzSTRGxfmqB7SW2h/OfD5N0uKTbOqsGs4m4CcBc0u732rmSjmta9gFJ34+IwyV9P/99N7b3k/QRSc+TdLSkj7T6AAQAoC5sXyDpPyQdYXu97bflT52s3YeLStKLJV1re62kr0k6PSLu71lj0Q3nirgJwBzR1pDRFrOlnSTpmPznz0v6F0nvbyrzCkmXT32x2b5c2Qdk85chAABdYfX+PoQRcUqL5acVLLtI0kXdbhN6h7gJwFzSyTWEB0TExvznuyUdUFDmIEl3Nvy+Pl/2OLZXSVolSQcdvKyDZgEAsLsSdycCqta1uGnZsuUVNhPAoOnwUohMRIQ6vKVIRKyOiJURsXK//ZdU0SwAACRlCWGVD6ATVcdN+y8hbgJQXicJ4SbbSyUp//+egjIbJDV29x2cLwMAoCfsbMholQ+gBOImAH2pk4TwEklTs1+dKumbBWW+J+nltvfNL4p+eb4MAABgkBA3AehL7d52omi2tD+X9N9t36JsGu0/z8uutP33kpRfFP0nkn6cPz7KzGkAgF5jyCh6ibgJwFzS7iyjhbOlSTq2oOwaSb/d8Ps5ks4p1ToAACrAKE/0EnETgLmkk1lGu8aW5o20P5p1+67J5DqGE0/x7jWadqjmJ7R/yqJF89NW2KdogrJpbNmUVr6EkbEnJpVftOdoch3jE2nX4c8bTn8tRobT3h+p76ehEl0MqWtEYgQcJaY3SNkNJ+8BUA1LGiIjRI1Zad8RZXq5U7/n9hgZTiq/f4l4YL/99kgqf/cTnpBU/uHJiaTykqT5aW1aPLY4qfx+eyXGipL2np/2WowmxkBS+q19+EzuL32ZEAIAUKVKptQGAKCG+I4EAAAAgAFFDyEAoPYYnQQAQDESQgBArdnmehUAAFogIQQA1B75IAAAxUgIAQC1x70DAQAoxqQyAAAAADCg6CEEANQa9yEEAKA1EkIAQO2RDwIAUIyEEABQb+YaQgAAWuEaQgAAAAAYUH3ZQ2hLQwmnc0eG00/9jiauE5FW/qiD9koqL0k7JyaTyj/88K8mld94x6ak8pI0PDqcVP4pv3JQUvkjlu6dVF6SnrTf/KTy84fTz3uMJK4z3IPuh9RroMYno0steUxKmxiyh9lk8QZEvaV8xqbEWFPmj6R9Ly6anxZiPnn/BUnlJWn9sn2Tyk8mfi/etzRt+5I0MpIWNy0/KC0OevqBi5LKS9LShXsklV+QGPtJ6XF1akxggoiu6suEEACAqmSTysx2KwAA6E8khACA2iMhBACgGAkhAKD2GG4EAEAxJpUBAAAAgAFFDyEAoNa4hhAAgNZICAEA9WZmuQUAoBUSQgBA7aXetgUAgEFBQggAqDWGjAIA0NqMk8rYPsf2Pbava1j2cds32b7W9sW2F7dY93bbP7O91vaaCtsNAADQl4idAMwl7cwyeq6k45qWXS7pGRHxLEk/l/TBadZ/aUSsiIiV5ZoIAEBn7GofwAzOFbETgDlixoQwIq6QdH/TsssiYjz/9UpJB3ehbQAAVMAaqvgBTIfYCcBcUsV9CN8q6TstngtJl9m+2vaqCuoCACCJRQ8h+g6xE4C+0dGkMrY/JGlc0vktirwwIjbYfoKky23flJ81K9rWKkmrJOmgZcs1ORltt2OkxGwBw12eYeDJ+y5MXmfbrsmk8vOGD0wqf+fyfZLKS9KiBaNJ5ZeNpe330w7YI6m8JC3ZY0FS+ZHh9PMeo8Np74/Ut9NwiYhyMtr/m5DSg1ZiXNSWmVQG/aOq2Kkxblq2fLmc8KFfJgaaN5L2XbrXgrQQ87C990oqL0mTh6WVX7r3vKTy9z68K60CpccPyxfPTyp/+H7p8eWShWl17Dl/OLmOeYmxVmocVOYjPOVvYtCV7iG0fZqkEyX9ZkRxpBoRG/L/75F0saSjW20vIlZHxMqIWLn//mNlmwUAANCXqoydGuOmsbElXWoxgEFQKiG0fZyk90l6VURsa1Fmoe1FUz9Lermk64rKAgDQTUN2pQ8gFbETgH7Vzm0nLpD0H5KOsL3e9tsknSlpkbKhDGttn5WXPdD2pfmqB0j6ke2fSvpPSf8YEd/tyl4AANDCbFxD2OK2A2fY3pB/b661fULDcx+0vc72zbZf0ZUDgZ4hdgIwl8w4wDsiTilYfHaLsndJOiH/+TZJR3XUOgAAKjALvXrnKksAzmta/tcR8VeNC2wfKelkSU+XdKCkf7L91IiY6EVDUT1iJwBzSRWzjAIAgAZFtx2YxkmSvhwROyLivySt0zTX3AMAUCUSQgBA7XVhyOiY7TUNj3ZvD/BO29fmQ0r3zZcdJOnOhjLr82UAAHRdR7edAACg31ldOfu5OSJWJq7zWUl/ouw+c38i6RPK7kcHAMCsISEEANSb++N+VBGxaepn25+T9O381w2SljUUPThfBgBA1zFkFABQe674UaoN9tKGX1+jx24ncImkk23Pt/0kSYcrm2ESAICuo4cQAICK5bcdOEbZtYbrJX1E0jG2VygbMnq7pLdLUkRcb/srkm6QNC7pHcwwCgDoFRJCAECtWb2/7UTKbQfy8h+T9LHutQgAgGJ9mRBGSNt3TbZdfjIiuY4Fo8NdLT9vJH007hP2nJ9U/nkHjSeVL3GYNG84bT/mJ5bfY17acS2zzqIF6W/zoaG04HE4sXyZ92xqQJsa/5Z5f0wkrFRm+0BVZv8KQqC7Ut7jI4nfWVJ6XLOwxHdvqqeN7J1U/qCFeySV3zaeFmdJ6d/Ve88bTSpfJqZZtEdaHakxryQND3c3RumDy8BrrS8TQgAAqkQwAQBAMRJCAEDNuS9mGQUAoB8xyygAAAAADCh6CAEAtdalG9MDAFALJIQAgNpjyCgAAMVICAEAtUc6CABAMRJCAEC9mR5CAABa4bIKAAAAABhQ9BACAGqNSWUAAGiNhBAAUHsMGQUAoBgJIQCg9kgHAQAo1pcJ4dCQtNeC9ps2MRnJdewcn0wqv2sirfye89MP7VDiGezhoe6HOKl1pJafPzqcVF6SRofTBn9NpL89pMT31GTia+cSbUrc7WSTUeZAAQD6QcrXkEucIkn97k017PS4af5oWpv23iOtjjLxZarU4zpvJP11SD1OZeoYSYz/UmNeRnl0V18mhAAAVIlYAgCAYiSEAIBayyaVISMEAKDIjH3Cts+xfY/t6xqWnWF7g+21+eOEFuseZ/tm2+tsf6DKhgMA0C672gcwHWInAHNJO4OEz5V0XMHyv46IFfnj0uYnbQ9L+ltJx0s6UtIpto/spLEAAKRz5f+AGZwrYicAc8SMCWFEXCHp/hLbPlrSuoi4LSJ2SvqypJNKbAcAAGDOIHYCMJd0MmXUO21fmw+L2Lfg+YMk3dnw+/p8GQAAPcWQUfQJYicAfadsQvhZSU+WtELSRkmf6LQhtlfZXmN7zX2bN3e6OQAAJD02qUyVD6CESmOnxrhp8+Z7K2gegEFVKiGMiE0RMRERk5I+p2yIQ7MNkpY1/H5wvqzVNldHxMqIWLn/2FiZZgEA8HgV9w7SQ4gyqo6dGuOmsbEl1TcYwMAolRDaXtrw62skXVdQ7MeSDrf9JNvzJJ0s6ZIy9QEA0AkSQsw2YicA/WrG+xDavkDSMZLGbK+X9BFJx9heISkk3S7p7XnZAyX9fUScEBHjtt8p6XuShiWdExHXd2MnAAAA+gWxE4C5ZMaEMCJOKVh8douyd0k6oeH3SyU9blplAAB6iVtFoJeInQDMJTMmhAAAzGWWNEQ+CABAob5MCC1rOOHbe2Q4/Zs+NThIDiZKXGSSss+SNH+0k7uGdIcT9zt1nyVp3kjafkdEch2pr19qHWWaFNHdiHaoxHt2ssyOALOAHkLUmZX2/TukEp/did/X85z2XT1UIh4YTYwHJia7/12dKnW3y8RNI8OJr0WJj8vUGIJrsftLXyaEAABUieADAIBi/dfFBAAAAADoCXoIAQC1x5BRAACKkRACAGqNSWUAAGiNhBAAUHOmhxAAgBa4hhAAAAAABhQ9hACAejOzjAIA0AoJIQCg9sgHAQAoxpBRAECtZZPKuNLHjHXa59i+x/Z1Dcs+bvsm29favtj24nz5obYfsb02f5zVtYMBAEATEkIAQO254kcbzpV0XNOyyyU9IyKeJennkj7Y8NytEbEif5yeun8AAJRFQggAQMUi4gpJ9zctuywixvNfr5R0cM8bBgBAk768hjAUGp+YbLv8cIkbTI2OpOXCqeUf3j4+c6Emw4m7MTw63NXtS9JkpJWfSFyhzGuXusrEgF491ItJNIYTKmFSD8yq6t9/Y7bXNPy+OiJWJ6z/VkkXNvz+JNs/kbRV0h9FxA+raCRQxCU+kIeU9v0eiX90oyWClJGhtDalxjQRiSso/dim7nWZ79LUNpW5b2uZ9xT6R18mhAAAVKkL9yHcHBErS7XF/pCkcUnn54s2SloeEffZfq6kb9h+ekRsraitAAC0REIIAKi9fjl5bfs0SSdKOjby7oeI2CFpR/7z1bZvlfRUSWtabQcAgKqQEAIAaq8f8kHbx0l6n6SXRMS2huVLJN0fERO2D5N0uKTbZqmZAIABQ0IIAEDFbF8g6Rhl1xqul/QRZbOKzpd0eX69zZX5jKIvlvRR27skTUo6PSLuL9wwAAAVIyEEANRfj7sII+KUgsVntyh7kaSLutsiAACKkRACAGotu3dgPwwaBQCg/5AQAgDqzf0zqQwAAP2GhBAAUHvkgwAAFJsxIbR9jrIpsu+JiGfkyy6UdEReZLGkByJiRcG6t0t6UNKEpPGy92wCAACYK4idAMwl7fQQnivpTEnnTS2IiDdM/Wz7E5K2TLP+SyNic9kGAgDQMboI0VvnitgJwBwxY0IYEVfYPrToOWfzZr9e0n+ruF0AAFTETCqDniJ2AjCXdHoN4YskbYqIW1o8H5Iusx2S/i4iVre7YSfMADAZbRd9bPuJ64wOdz+YSNlnKb1NI8NDSeUlaTLSDtSuibTyZY5q6n4MJe6DlN6uoaHU1y79tUidFGOIWTSAR/HngD7Stdipm1JjlNS/uSjxXR2J39aJX9Xqx6EFvfgsS32tMfd1mhCeIumCaZ5/YURssP0EZTfivSkirigqaHuVpFWSdPCy5R02CwCAjNWPYR0GWCWxU2PctGw5cROA8tK7KXK2RyS9VtKFrcpExIb8/3skXSzp6GnKro6IlRGxcv+xsbLNAgAA6EtVxk6NcdOSsSXdaC6AAVE6IZT0Mkk3RcT6oidtL7S9aOpnSS+XdF0H9QEAUI4rfgDlEDsB6DszJoS2L5D0H5KOsL3e9tvyp05W05AH2wfavjT/9QBJP7L9U0n/KekfI+K71TUdAID2uOJ/wHSInQDMJe3MMnpKi+WnFSy7S9IJ+c+3STqqw/YBANAx5khALxE7AZhLOhkyCgAAAACYwzqdZRQAgL5HByEAAMVICAEA9cZEMAAAtERCCACoPSaCAQCgGAkhAKDWLCaVAQCgFSaVAQAAAIABRQ8hAKD26CAEAKBYXyaEljU63P7X966JSK5jfGIyqfxkpIUTw0Pp4cdI4pimlGMklWtT6n5bace1jJHE/U58qSWlH6t+DDYnI+3vYogxdagz3t5AX3OJ7yC+toBq9GVCCABAlZhUBgCAYiSEAIDaoycBAIBiTCoDAAAAAAOKHkIAQO3RQQgAQDESQgBA/ZERAgBQiIQQAFBrFpPKAADQCgkhAKDezKQyAAC0wqQyAAAAADCg6CEEANQeHYQAABQjIQQA1B8ZIQAAhUgIAQA1ZyaVAQCghb5MCNf+5OrNi/ccuaPgqTFJm3vdnlmuexD3eVDrrvs+H9Ll7QPAQLrmmqs37zHqorhJ4juNuutb7yDU3ZPYqS8TwohYUrTc9pqIWNnr9sxm3YO4z4Na9yDuM9ArzDKKOmsVN0l8p1F3fesd5LqrxiyjAIBacxceM9Zpn2P7HtvXNSzbz/bltm/J/983X27bn7G9zva1tp9TyY4DANAGEkIAQP31OiOUzpV0XNOyD0j6fkQcLun7+e+SdLykw/PHKkmfTd4/AABKmmsJ4eoBrHsQ93lQ6x7EfQZ6whX/m0lEXCHp/qbFJ0n6fP7z5yW9umH5eZG5UtJi20ur2XOA7zTqrm29g1x3pRwRs90GAAC65lkrnhvf+v6/V7rNQ8cWXD3TtSO2D5X07Yh4Rv77AxGxOP/Zkn4ZEYttf1vSn0fEj/Lnvi/p/RGxptJGAwBQoC8nlQEAoEpdmFRmzHZjwrY6Ito+WxwRYZszsgCAWUdCCACovS5MMrq5xOxym2wvjYiN+ZDQe/LlGyQtayh3cL4MAICu67trCG0fZ/vmfLa1DxQ8P9/2hfnzV+VDcqqod5ntH9i+wfb1tt9VUOYY21tsr80fH66i7nzbt9v+Wb7dxw0T6tYsdLaPaNiftba32n53U5nK9jtl5r2CdU/Ny9xi+9SK6v647ZvyY3qx7cUt1p329SlR7xm2NzQc0xNarDvt30PJui9sqPd222tbrFt6n4G+4qyHsMpHSZdImvrsOlXSNxuWvzn/nH++pC0RsbGjfcZAIXYidupG7DRbcdM0dRM7dUtE9M1D0rCkWyUdJmmepJ9KOrKpzO9JOiv/+WRJF1ZU91JJz8l/XiTp5wV1H6PsepBu7Pvtksamef4ESd9RdqL7+ZKu6tLxv1vSId3ab0kvlvQcSdc1LPtLSR/If/6ApL8oWG8/Sbfl/++b/7xvBXW/XNJI/vNfFNXdzutTot4zJL23jddj2r+HMnU3Pf8JSR+uep958OinxzNXPCfuvH9HpQ9Ja6arU9IFkjZK2iVpvaS3Sdpf2eyit0j6J0n75WUt6W/zv/efSVo528eMx9x5EDsRO3UrdpqtuGmauomduvTotx7CoyWti4jbImKnpC8rm32tUeMsbV+TdKzd+dUhEbExIq7Jf35Q0o2SDup0uxXqxSx0x0q6NSLuqHi7j4q0mfcavULS5RFxf0T8UtLlevyU7sl1R8RlETGe/3qlsqFalWqxz+1o5++hdN35383rlQWuACoUEadExNKIGI2IgyPi7Ii4LyKOjYjDI+JlEXF/XjYi4h0R8eSIeGYwmQzSEDu1RuzUQew0W3FTq7rbROxUQr8lhAdJurPh9/V6/AfLo2XyN+QWZWddK5MPpXi2pKsKnn6B7Z/a/o7tp1dYbUi6zPbVtlcVPN/OsenUyWr9Bu/WfkvSAfHY8Ki7JR1QUKYX+/9WZWcSi8z0+pTxznzIxTkthnp0e59fJGlTRNzS4vlu7DPQc1bfDBkFuoHYidhptmKnXsdNErFTV/RbQjjrbO8l6SJJ746IrU1PX6NsSMBRkv5G0jcqrPqFEfEcZTcofoftF1e47RnZnifpVZK+WvB0N/d7N5H1t/d85j3bH5I0Lun8FkWqfn0+K+nJklYoG1b2iQ63V8Ypmv4M16y+J4Eq9f6+9MDgIHYavNhpFuImidipa/otIWxnprVHy9gekbSPpPuqqNz2qLIPtPMj4uvNz0fE1oh4KP/5UkmjtseqqDsiNuT/3yPpYmVd3o26PQvd8ZKuiYhNBW3r2n7nNk0N4fDuM+816tr+2z5N0omSfjP/UH2cNl6fJBGxKSImImJS0udabK+b+zwi6bWSLpymjZXuMzCb6CFEjRE7ETv1NHaajbgp3xaxU5f0W0L4Y0mH235SftblZGWzrzVqnKXtdZL+udWbMUU+JvhsSTdGxCdblHni1Jh720crO34df6DaXmh70dTPyi7Yva6pWLdnoWt5xqNb+92g1cx7jb4n6eW2982HCLw8X9YR28dJep+kV0XEthZl2nl9UuttvIbhNS22187fQ1kvk3RTRKxv0b7K9xmYTa74H9BHiJ2InXoWO81W3JRvi9ipW6IPZrZpfCibEernymYI+lC+7KPK3niStEBZ1/w6Sf8p6bCK6n2hsu72ayWtzR8nSDpd0ul5mXdKul7ZjEVXSvq1iuo+LN/mT/PtT+13Y91dm4VO0kJlH1L7NCzryn4rbea9lZL+vmHdt+av+zpJb6mo7nXKxppPveZTs7AdKOnS6V6fDuv9Qv46Xqvsg2ppc72t/h46rTtffu7U69tQtrJ95sGjnx7PWvGc2PjAzkofmmGWUR48evko+q4QsZNE7CR1EDu1qLfrcdM0dRM7denhfAcAAKilo5793Pjev15Z6TaX7jPv6ki/MT0AAH1nZLYbAABAtzHIEwCAYiSEAIBaYyIYAABa67dJZQAAAAAAPUIPIQCg9pgZFACAYiSEAID6Ix8EAKAQCSEAoPbIBwEAKEZCCACoPSaVAQCgGJPKAAAAAMCAoocQAFBzZlIZAABaICEEANSaxZBRAABaYcgoAAAAAAwoeggBALVHDyEAAMXoIQQAAACAAUUPIQCg9phUBgCAYiSEAIB6M0NGAQBohYQQAFBrzh8AAODxSAgBAPVHRggAQCEmlQEAAACAAUUPIQCg9phUBgCAYiSEAIDaY1IZAACKkRACAGqPfBAAgGJcQwgAAAAAA4oeQgBA/dFFCABAIRJCAEDtMakMAADFSAgBALVmMakMAACtOCJmuw0AAHSN7e9KGqt4s5sj4riKtwkAQM+REAIAAADAgGKWUQAAAAAYUCSEAAAAADCgSAgBAAAAYECREAIAAADAgCIhBAAAAIAB9f8AAZw0tkHP9YwAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "recorteB8 = trim(imagen[:,:,2], 620, 306, 20, 20)\n", + "poptB8, pcovB8 = curve_fit(gauss2d, xdata8, recorteB8.ravel(), p0=[1,1,1,1,1])\n", + "estrellaB8=gauss2d(xdata8, poptB8[0], poptB8[1],poptB8[2], poptB8[3], poptB8[4])\n", + "FWHMB8=FWHMB.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptB8[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 8 fotografÃa (Banda Azul)\")\n", + "plt.imshow(recorteB8, plt.get_cmap('Blues'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 8 a partir de la gaussiana (Banda Azul)\")\n", + "plt.imshow(estrellaB8.reshape(20, 20), plt.get_cmap('Blues'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 9 (Azul)" + ] + }, + { + "cell_type": "code", + "execution_count": 435, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3QAAAFSCAYAAAC6+p25AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAxS0lEQVR4nO3de7xtdV3v/9d7X7gJssGNCHtvAQsprBTbEmqWSSWaiaeLQalo/iI7aFr2U7HfSf39juUpj6mVdigveSQ45CUxyUvmJUtQQEJha5KibC6yNyKgXDf78/tjjAVzL+Zaa67FGnOOufbruR/zseccc4zv+I4x5prz8xnf7/iOVBWSJEmSpOmzatIVkCRJkiQtjQmdJEmSJE0pEzpJkiRJmlImdJIkSZI0pUzoJEmSJGlKmdBJkiRJ0pRaM+kKSJI0n9UPPKxqx23LWmbdtu0jVXXCshYqSdIEmNBJknqtdtzGnkc9c1nLvP2Sv1i/rAVKkjQhJnSSpJ4LxCsEJEkaxoROktRvAZJJ10KSpF4yoZMk9Z8tdJIkDWVCJ0nqP1voJEkaylOekiRJkjSlbKGTJPWcg6JIkjQXEzpJUv/Z5VKSpKFM6CRJ/RZsoZMkaQ4mdJKknostdJIkzcFTnpIkSZI0pWyhkyT1n10uJUkayoROktR/drmUJGkoEzpJUs952wJJkuZiQidJ6rdgC50kSXPwlKckSZIkTSlb6CRJ/WeXS0mShjKhkyT1nNfQSZI0FxM6SVL/rfIaOkmShvGU5yIkOTxJJVnTvv5kkv9rDOtNknckuTHJ57pe3/2V5KgklyS5Jclvt9PekOSNSyzvj5K8ZDnruIh1vzPJf5/Euucy+LlL8vNJ/s+k6yRJGp9JxSN9k+QJSb5yP8tY0r6bfQymWZLLkjxxQus+K8kzJrTu3v3dJLkyyU+3z1+U5H+MstxUJnTtxt6W5LsDjz8fYblK8v3jqONCkjwuyefapOfSJD8+z+w/DvwMsLGqjh2h7Elv58uAT1TVflX15iRPAB4D/N+LLSjJQcBzgP/Vvn5ikp0Dx/3qJK9Z1tovs/YL48Ykey532VX1QeARSX5kucuWeiM0XS6X8yEtg90wHpmo2futqv6lqo6aZJ1Wgqp6RFV9ctzrbWOXRwIfaF8/N8ndA39LX0vyW+Ou16jaBpevJbm8o1X8FfBrSR680IzT/Kv281W178Djhfe3wHGdZUlyIPBB4E+AdcAfAx9McsAcixwGXFlV3xtH/eYz4j46DLhs4PURwK9U1V1LWOVzgfOq6raBadfMHHeaZPf5kzq7s5AkhwNPAAp4ekerOQs4taOypX5IlvchLZ/dKR6ZiKXsj5XQcrYb+E3gzKqqgWmfHYjxfhH44yTHTKZ6C/oJ4MHAw5I8ZrkLr6rbgX+kadiY1zQndEMl+f4kn0pyU5LtM93Rkny6neXf26z/V9rWnq1JXp7kOuAdSVYleUWS/0xyQ5Jz2i+8hdb7fUn+uV1me5Izk6ybY/bHAddV1d9V1d1V9W5gG/ALQ8p9PvDXwGPber+mnf4bSa5I8u0k5yY5dK7tnG/+9r2fTfKVdp+9pd1/M136npvkX5P8aZIbgFfPt61J/hn4KeDP2/U/HHgS8F/b9w9I8g9JtrWtVv+QZOM8u/YpwKfmerOqvg78G3D0wPa8KclVSW5OclGaFsKZ917dHtN3tWcjL0uyeeD9Y5Jc3L73f4C9Bt5bbN2h+SM8H3gncMpAWYdm1zO6tyapgTq+e2Dehbp1fBL4uQXqIU2x2EKnqbPS4pG27GOTfDbJd5Jcm+TPk+wxx7wzv12nJrmmnf/3Ri2rXfa0JF8FvjrffhtY5sp2H14KfG/Y72aSn0ny5fa4/DlNH4DB9389yZb2d/4jSQ6bY9/NLvd57XK3pGm1+c155l2d5H+2x+frSV6YXbvQzllWmrjsM7PKu6flMslTk1zeLnv1zD5Psr6NW76TJhb8l6T5Msyu3fxGOS4vSPLVdp6/SJqzZIv87MHCMd4XgC3ADw6s/++SXNcev08necTAe+9s6/OhdvsvSPJ9A+/PeeyXUHdo4roPAOexa4w3E7PPPG5PcuVAHf/7wLy7fIaH+CQjxHgr8Vft/wM+ChwAbAT+DKCqfqJ9/5Ft5j9z3dFDgANpWpVOBV4EPAP4SeBQ4EbgL0ZYb4A/apf5QWAT8OoF5p/9+odmz1RVbwNewL1nLF6V5Entup4JHAJ8Azh7ru2cb/4k64H3AKcDDwK+QvMFP+jHgK8BBwOvnW9bq+pJwL8AL2zX/x+zyloFvINmfz8UuA2Yr3vKD7d1GirJkcDjaZKmGZ8HHkVzXP8W+Lskew28//R2+9cB586sv/3C+nvgf7fL/h3N2aGl1h2ahO7M9vHkJAcDVNU1g2d0gfe3dVqKLcDhSR64xOWl/rOFTtNnRcUjrbuB3wHWA48Fjqc9YTuPnwKOBH4WePlM4jBiWc+giUGOnme/zXYyTQC8rqp27LJhTczzPuD/adf7nzQxxMz7JwKvpEloD6KJZ85aYPtmXA88DXgg8DzgT5M8eo55f4MmmXkU8Oh2O5da1mxvA36zqvajOY7/3E5/KbCVZrsOptnOGrL8KMflaTSX0vwITWz55Hb6yJ+9JA+g6cE1X4z3GODhwIUDk/+R5vP0YOBimvhq0EnAa2j+7q6giVsXPPaLqXtb3j7AL3FvjHfSTOJbVYOtjAcAFzD652i2LTTdUuc1zQnd37dnBmYev9FOv4vmy/DQqrq9qj4zTxkAO4FXVdUdbbe+FwC/X1Vbq+oOmoP5S8PO8gyqqiuq6mNtOduAN9B8CQ/zWeDQJCcnWZvkFOD7gH1G2XDg14C3V9XFbR1Pp2nBO3wJ8z8VuKyq3td+8b0ZuG7W8tdU1Z9V1Y6qum2R27qLqrqhqt5bVbdW1S00f2jzLbsOuGXWtEPbY34z8B80fyj3HOeqene7nh1V9T+BPYHBPvafqarzqupumuRt5g/lOGAt8Maququq3kOTHC6p7mmuQzgMOKeqLqL58vjVIfO9HPgB4Nfn2Q/zmdk/65a4vKRZkmxK8on2TPdlSV486/2Xtmeq17evk+TNaXpCXLqI4EvTb7eJR6rqoqo6v/19vZLm+vaFfv9fU1Xfq6ov0pwUPXkRZf1RVX171mUXC3lzVV01xzIzMc972stA3siuMc8L2nVuaWOiPwQelRFa6arqQ1X1n9X4FE0y/4Q5Zn8m8Kb22N4IvO5+lDXbXcDRSR5YVTdW1cUD0w8BDmtjnH+pqvskdCMel9dV1Xeq6pvAJ2gS08V+9ta1/8+O8Y5r/45uAT5HE6d9daB+b6+qWwb+Jh6ZZP+B5d9fVZ9rj9+ZM3VjgWO/hNj2F4A7aI7Nh2jix2EtaW9ut/H35ylrPrcA+y800zQndM+oqnUDj79qp7+MJsv+XPsjvFCQvK2aPqozDgPeP/PFTJMZ301zNmNOSQ5Ocnaa5u2bgXfTnAG4j6q6ATgR+F3gW8AJwD/RnDkZxaE0rWwz5X0XuAHYsIT5DwWuGnivhtTjqsEXi9nW2ZLsk+R/JflGu+yngXVJVs+xyI3AfrOmXdMe8wfSfCHcBvzNwDp+L01XhZvaY7j/rPoNfnnfCuzV/kAeClw96wvunv22hLqfAny0qra3r/+WgSb5tsynAC+m+Twv5gdr0Mz++c4Sl5f6b/xdLncAL62qo2lO9pyW5Ghokj2a1oZvDsz/FJqzxkfStK68dTk3X72228QjSR6eptvedW3ZfzhX2QMGY4hv0PzWjlrWVSzefMsMi3kG5z8MeNPAPv82zTGcK766R5KnJDk/TXfG79AkEHPtm13qMbvOiyxrtl9s5/9Gmi6/j22n/wlNi9VH03TjfMUc2zHKcZkdR+3bLruY+PA77f+zY7zz27+j/WharR/R1mGmq+rr0nRDvhm4sl1mvhhv3/b5vMd+CbHtKTQn7He0f7fv5b4x3m8CTwR+tap2zlPWfPYDblpopmlO6Iaqquuq6jeq6lCaiy3fkvlHkpp9duIq4Cmzvpz3qqqrF1j1H7Zl/XCbaDyL+3ZjGKznp6rqMVV1IPBsmhaaUW9JcA3Nlw5wT7P1g4C56jjf/NfSdAWZeS+Dr2eqO+v1orZ1lpfStJb9WLvsTBeKuZa/lKa5faiquokmUfr5tv5PoPkRfSZwQFWto/lDGKV+1wIb2n0w46FLqXuSvds6/GT7pXgdTReGRyZ5ZDvPUTSJ6DOravDL/Hvsenb0IQvU+wdpBs25eaENlKbScne3HKHLZVVdO3Nmu5oW+S3cG9T9Kc33zOB344nAu9oz6ufTnOw5ZFn3g6bKCo1H3gp8GTiyLfuV85Xd2jTw/KE0McmoZQ3rEriQ+Za5drA+7e/9YP2uoumuOLjP966qf5tvhWlGsX4v8Hrg4Db2OI+5980usdesOi1U1i4xQpJdYoSq+nxVnUjTJfHvgXPa6bdU1Uur6mE0l578bpLjh9RtKcd4xsifvWoG+vtP5o/xvkWzL36+nfSrNN+1P01zsv7wdvqoMd58x37kuqcZP+FJwLMGYrxfAp6ae3ttPIGm2/WJs+KzpcR4/77Qxq24hC7JL+fegSpupDk4M1nxt4CHLVDEXwKvnWleT3JQmj7VC9kP+C5wU5INLDBEf5rBN9amue7p9cBVVfWREdYDTT/c5yV5VPuH/4fABW3TONx3O+eb/0PADyd5RttKdRoLf7gWta1Dlr0N+E6ai7tftcD85zF/t8Z9afpLz4yquR/NmfVtwJokf0DTB30Un22X/e322PwCMHibiMXU/Rk0Z1KPpmnufxTNH+W/AM9pj/sHaLrTzO6GcwnwE0kemqYbwekL1PsnafqUSyvX8rfQrU9y4cBjzpFi03RPPwa4oP09uLqqZv/AbmDXs+xbGeGsvlauFRqP7AfcDHw3yQ8Aowwp/9/S9HB5BM31YDPXvi2lrFH223w+RHOrn19oY57fZteY5y+B09u6kmT/JL88Qrl70FzesQ3Ykab3zc/OM/85wIuTbEgz8MbLF1HWv7fb8Kg04wO8euaNJHsk+bUk+7fdCm+m/cwleVqagXpCc6L7bu79PA5aynEZXHYx8eFCMd6DgP/CrjHeHTS9zPahbbkb0ULHfjF1fzbNJT9HcW+M93Ca7/2T0/TiOAd4Tt13LIlLaBK/A9tk/CUL1HukGG+aE7oPZtcRZN7fTn8MzY/ud2kGvHhxVX2tfe/VwN+kaUp/5hzlvqld7qNp+u+eT3NB7kJeQ3Nh6000H5r3LTD/y4DtNAHAITQf2JFU1T8B/43mrMW1NP3dTxqY5dUMbOd887fdAX+ZZqjiG2gSkAtp/mDmsthtHfRGYG+abT8f+PAC87+L5oO/98C0e0aIpOm+cSDNdYIAH2nL/I/2vdsZsctGVd1J0yf6uTTdLH6FXbdtMXU/BXhHVX2zPUt7XVVdRzOIyq/RJIpH0Vzo/N2B7aGqPkbzg3cpcBHwDwtU/WTa+/RJK9byt9Btr6rNA48zhq82+9J8d76E5oTPK4E/GNdmayrsTvHI79G0ktxCc4+suQYmGfQpmq5+HwdeX1UfvR9lvZqF99ucBmKe19HEPEcC/zrw/vuB/wGcnabb3ZdoulMvVO4tNAnCOTTJ+6/SHLu5/BXNtVeXAl+gSWx2AHcvVFabIPy/NF1jv8rAGAKtZwNXtvV/AffGR0e2y3yX5gT2W6rqE0PqtpTjMmOxn70zaO6zNtgS9tiBmGgLTWL7ova9d9HEdlcDl7PrgHjzWujYL7Lup9Dsv+tmxXh/2b53PE3X6PcMfC/MJKX/myYpv5LmMzDn/m0T9qcycFnRnPPWfa+H1G4szRC2W4Ffm+MPfeyS/CFwfVW9cdJ16ZskPw88u6oW/cMmTYtV+2+qPR/3u8ta5u0f/t2LqmrzfPMkWUtzQuUjVfWGJD9ME5Te2s6ykab72LE0wcAnq+qsdtmvAE+sqmuXteLSlGhbtr8OrK1Zo01qV20r3F9W1Ui3SFhJkvwtzbVofz/puvRNkhcBm6rqZQvN600XRZIn04wUeRtNE3NYxFmPrlXVKyddh76qqg/S3BRWWsHCiAOZLN8amzPGbwO2VNUbAKoZpe/BA/NcCWyuqu1JzgVemORsmlaUm0zmJA3T9jr6KZoWmoNpLuF4/7wLrVBVdZ/Rv9Woqj8bdd5p7nKp5fNYmgtTt9NceHp/RlyUpOU3/vvQPZ6m69KTklzSPp46z/zn0dyv8wqabkoL3ZtL0u4rNK36N9J0udyCXbl1P9jlUpLUa6vWPbT2/PEFe5wsyu0fetGCXS4lSZoGdrmUJPXc+LtcSpI0LfyFlCRJkqQp1UkL3fr16+uwww7vouh73H7XUm+4PprRLrG4f1av6n4lO3Z226V2DLuJcfQKHkfH49Vd76yOy7/6qm/y7Ru2j+OQS/c1ji9laULGETdpNCvhQqRxbIPfyKP5wsUXba+qg7peTycJ3WGHHc6/XnBhF0Xf46vXfbfT8vdY033j5X57dd/j9cbv3dlp+WtWd7+f7rjr7s7X0XHeC8AD9lzdafnpOOD9Lz/7+E7Ll+Zll0utYOOImzSanR0HBDvHcJZ6HDHNOBK6VR03fIyhXYV99lj1je7X4jV0kqRpYAudJElDecpTkiRJkqaULXSSpH6Lo1xKkjQXEzpJUv/Z5VKSpKFM6CRJvdf1oD+SJE0rEzpJUq8FEzpJkubiRQmSJEmSNKVGSuiSnJDkK0muSPKKrislSdI90sFD6pixk6RxWbDLZZLVwF8APwNsBT6f5NyqurzrykmSBLHLpaaKsZOkcRqlhe5Y4Iqq+lpV3QmcDZzYbbUkSbpXkmV9SB0zdpI0NqMkdBuAqwZeb22n7SLJqUkuTHLhtu3blqt+kiSZ0GnaLBg7GTdJWi7LNihKVZ1RVZuravNB6w9armIlSZJWHOMmSctllNsWXA1sGni9sZ0mSdJY2KqmKWPsJGlsRmmh+zxwZJIjkuwBnASc2221JElqOcqlpo+xk6SxWbCFrqp2JHkh8BFgNfD2qrqs85pJkgTEUS41ZYydJI3TKF0uqarzgPM6roskSUOZ0GnaGDtJGpdlGxRFkiRJkjReI7XQSZI0SbbQSZI0nAmdJKn3TOgkSRrOhE6S1G+OTClJ0py8hk6SJEmSppQtdJKk3rPLpSRJw3WS0O0suP3Ou7so+h6rOv5tv+nWu7pdAXDnjp2dr2PH3d2uY9UYgqxx7Ke7d1bn61i7eroD0jHsImko70MnCcbzW337Xd3Gr9+7fUen5QPcdlf3cdM4Ypr99uq23WnvPVZ3Wv442UInSeo9EzpJkoYzoZMk9Z/5nCRJQzkoiiRJkiRNKVvoJEn9FrtcSpI0FxM6SVLvmdBJkjScXS4lSb2XZFkfI6xvU5JPJLk8yWVJXtxO/5MkX05yaZL3J1k3sMzpSa5I8pUkT+5ub0iSdC8TOklSr83ctmCcCR2wA3hpVR0NHAecluRo4GPAD1XVjwD/AZwO0L53EvAI4ATgLUlWzpjYkqTeMqGTJGmWqrq2qi5un98CbAE2VNVHq2rmRlLnAxvb5ycCZ1fVHVX1deAK4Nhx11uStPsxoZMk9V+W+QHrk1w48Dh1zlUnhwPHABfMeuvXgX9sn28Arhp4b2s7TZKkTjkoiiSp37oZ5XJ7VW1ecNXJvsB7gZdU1c0D03+fplvmmctdMUmSFsOETpLUe5MY5TLJWppk7syqet/A9OcCTwOOr6pqJ18NbBpYfGM7TZKkTtnlUpLUexMY5TLA24AtVfWGgeknAC8Dnl5Vtw4sci5wUpI9kxwBHAl8bll3giRJQ9hCJ0nSfT0eeDbwxSSXtNNeCbwZ2BP4WJsYnl9VL6iqy5KcA1xO0xXztKq6e/zVliTtbkzoJEn9N+Yel1X1mTnWet48y7wWeG1nlZIkaQgTOklS703iGjpJkqaBCZ0kqdcWcTNwSZJ2Ow6KIkmSJElTyhY6SVLv2UInSdJwJnSSpN4zoZMkaTgTOklS/5nPSZI0lAmdJKn3bKGTJGk4B0WRJEmSpCllC50kqd9iC50kSXPpJKHbWcXtd93dRdH3WL2q2x/3W+/a0Wn5ADt3VufruOPunZ2Wf9n2mzstH+BDl23rfB0H779X5+s44fvXd1r+pnV7d1q+NCkBzOekfqvqPqa5c0e3MQ3A9lvu7LT8S669sdPyAS697nudr+OhB+zR+Tp+7NAHdVr+hgO6j/3GxRY6SVLPeWNxSZLmYkInSeo98zlJkoZzUBRJkiRJmlK20EmSes8ul5IkDWdCJ0nqt9jlUpKkuZjQSZJ6LcCqjkc2liRpWpnQSZJ6zxY6SZKGc1AUSZIkSZpSttBJknrPQVEkSRpuwRa6JJuSfCLJ5UkuS/LicVRMkiTgnkFRlvMhdcnYSdI4jdJCtwN4aVVdnGQ/4KIkH6uqyzuumyRJBFvoNHWMnSSNzYIJXVVdC1zbPr8lyRZgA+CXkiRpDGJCp6li7CRpnBY1KEqSw4FjgAs6qY0kSdIKYuwkqWsjJ3RJ9gXeC7ykqm4e8v6pSS5McuENN2xfzjpKknZzXkOnaTRf7DQYN23bvm0yFZS0IoyU0CVZS/OFdGZVvW/YPFV1RlVtrqrND3rQ+uWsoyRpN5dkWR9S1xaKnQbjpoPWHzT+CkpaMRa8hi7NL9/bgC1V9YbuqyRJ0gBb1TRljJ0kjdMoLXSPB54NPCnJJe3jqR3XS5IkaVoZO0kam1FGufwMzajRkiSNnbct0LQxdpI0TqPch06SpIkyn5MkaTgTOklS79lCJ0nScCZ0kqTeM5+TJGm4Rd1YXJIkSZLUHyZ0kqR+y/jvQ5dkU5JPJLk8yWVJXtxOPzDJx5J8tf3/gHZ6krw5yRVJLk3y6I73iiRJgAmdJKnnmlEul/cxgh3AS6vqaOA44LQkRwOvAD5eVUcCH29fAzwFOLJ9nAq8dXn3giRJw03tNXRV3Za/Jt3numtWd39RyLbb7uq0/Hd+9qpOywf413e/v/N17HPUMZ2v4yGnHNtp+ZvW7d1p+dLkjNaqtpyq6lrg2vb5LUm2ABuAE4EntrP9DfBJ4OXt9HdVVQHnJ1mX5JC2HGnF29lxXAZw+113d76Ob3z7e52W/5ZPXtlp+QCf/9evdL6Oh37/hs7X8fJf/MFOy1+3z4M7LX+cpjahkyTtPiY5KEqSw4FjgAuAgweStOuAg9vnG4DBM1xb22kmdJKkTpnQSZJ2R+uTXDjw+oyqOmP2TEn2Bd4LvKSqbh5sKayqSjKGdglJkuZmQidJ6r0Oulxur6rNC6xzLU0yd2ZVva+d/K2ZrpRJDgGub6dfDWwaWHxjO02SpE45KIokqd+WeUCUUXLDNBnk24AtVfWGgbfOBU5pn58CfGBg+nPa0S6PA27y+jlJ0jjYQidJ6rVmlMuxX0T3eODZwBeTXNJOeyXwOuCcJM8HvgE8s33vPOCpwBXArcDzxlpbSdJuy4ROktR7Exjl8jM0ueQwxw+Zv4DTOq2UJElD2OVSkiRJkqaULXSSpN6b5G0LJEnqMxM6SVLvTeAaOkmSpoIJnSSp30YcmVKSpN2R19BJkiRJ0pSyhU6S1GshdrmUJGkOJnSSpN4zn5MkaTgTOklS760yo5MkaSgTOklS75nPSZI0nIOiSJIkSdKUsoVOktRrifehkyRpLiZ0kqTeW2U+J0nSUCZ0kqTes4VOkqThTOgkSb1nPidJ0nAOiiJJkiRJU8oWOklSrwUINtFJkjSMCZ0kqfccFEWSpOFM6CRJ/ZY4KIokSXPoJKFLYO3qbi/P21nVafl7re3+8sI91nS/jjvuvrvT8q+++uZOywfgjls7X8Wt37mp83VIWjrzOanfquO4DGDnzu7XcdOdd3Va/jXXdB831X9e3Pk6rttzj87X8a1bvr/T8neM4fM0Lg6KIkmSJElTyi6XkqReC7DKJjpJkoYyoZMk9Z75nCRJw5nQSZJ6z0FRJEkazmvoJEmSJGlK2UInSeq1xC6XkiTNxYROktR7DooiSdJwJnSSpN4znZMkabiRE7okq4ELgaur6mndVUmSpF05KIqmkbGTpHFYzKAoLwa2dFURSZKkFcbYSVLnRkrokmwEfg74626rI0nSrpobiy/vQ+qasZOkcRm1y+UbgZcB+3VXFUmShkjscqlp9EaMnSSNwYItdEmeBlxfVRctMN+pSS5McuEN27cvWwUlSZq5dcFyPaQujRI7DcZN27ZvG2PtJK00o3S5fDzw9CRXAmcDT0ry7tkzVdUZVbW5qjY/aP36Za6mJGl3lraVbrkeI6zv7UmuT/KlgWmPSnJ+kkvaQPzYdnqSvDnJFUkuTfLoDneFpsOCsdNg3HTQ+oMmUUdJK8SCCV1VnV5VG6vqcOAk4J+r6lmd10ySpMl5J3DCrGl/DLymqh4F/EH7GuApwJHt41TgreOpovrK2EnSOHkfOklSr80MijJOVfXpJIfPngw8sH2+P3BN+/xE4F1VVcD5SdYlOaSqrh1PbSVJu7NFJXRV9Ungk53URJKkOfRkUJSXAB9J8nqaHi6Pa6dvAK4amG9rO82ETsZOkjq3mPvQSZI0EVnmB7B+ZkCK9nHqCNX4LeB3qmoT8DvA25Zp8yRJWjK7XEqSei2BVcvfQre9qjYvcplTaG4UDfB33Ht/sauBTQPzbWynSZLUOVvoJEkazTXAT7bPnwR8tX1+LvCcdrTL44CbvH5OkjQuttBJknpv3JfQJTkLeCJN18ytwKuA3wDelGQNcDvNiJYA5wFPBa4AbgWeN97aSpJ2ZyZ0kqTeG/egKFV18hxv/eiQeQs4rdsaSZI0nAmdJKn3+jHIpSRJ/dNJQhfC6o5vGrTvXt3momtXd3954R07dna+jq4dtmld5+u4cfMTO1/HkT/wkO7X8aB9Oi2/g0EjdmE8LUmayzha0deu6T42e+h+3f5WP+FHN3ZaPsAFezy983UcPob47xEH7dtp+XutXTlDidhCJ0nqtZDOT1hIkjStTOgkSf0Wu1xKkjQXEzpJUu+Ne1AUSZKmhQmdJKn3Vs6VDpIkLS9/IyVJkiRpStlCJ0nqtWCXS0mS5mJCJ0nqvY7vhCNJ0tQyoZMk9Z4JnSRJw5nQSZJ6LbHLpSRJc3FQFEmSJEmaUrbQSZJ6zy6XkiQNZ0InSeo9e1xKkjScCZ0kqdcCrDKjkyRpKBM6SVLvecG3JEnD+RspSZIkSVPKFjpJUu/Z41KSpOFM6CRJvZbEa+gkSZqDCZ0kqffM5yRJGs6ETpLUe96HTpKk4RwURZIkSZKmlC10kqRe8z50kiTNzYROktR75nOSJA1nQidJ6rd4DZ0kSXPxGjpJkiRJmlLdtNAFVnV8OnXdPms7Lf+W23d0Wj7AHTt2dr6O9Xvv2Wn5z9z8kE7LBzju+w7sfB0//JB9O1/Hw9Y9oNPyu/487axOi5fmFWyik/psHK3oe61d3fk6Djlg707Lf8GxD+20fIBnPOKgztexbs89Ol/Hoeu6PRYP2HPldFRcOVsiSVqRmkFRJl0LSZL6yYROktR7JnSSJA1nQidJ6r04zKUkSUM5KIokSZIkTSlb6CRJveY1dJIkzc2ETpLUb/HG4pIkzcUul5Kk3luVLOtjIUnenuT6JF+aNf1FSb6c5LIkfzww/fQkVyT5SpInd7ALJEkayhY6SVKvTajL5TuBPwfedU89kp8CTgQeWVV3JHlwO/1o4CTgEcChwD8leXhV3T32WkuSdjsjtdAlWZfkPe1ZyS1JHtt1xSRJmpSq+jTw7VmTfwt4XVXd0c5zfTv9RODsqrqjqr4OXAEcO7bKqpeMnSSNy6hdLt8EfLiqfgB4JLCluypJkrSrZHkfwPokFw48Th2hGg8HnpDkgiSfSvKYdvoG4KqB+ba207R7M3aSNBYLdrlMsj/wE8BzAarqTuDObqslSdKMsIpl73O5vao2L3KZNcCBwHHAY4BzkjxsuSum6WfsJGmcRmmhOwLYBrwjyReS/HWSB3RcL0mSgOYaug5a6JZiK/C+anwO2AmsB64GNg3Mt7Gdpt2XsZOksRkloVsDPBp4a1UdA3wPeMXsmZKcOtN15YZt25a5mpKk3VaaQVGW87FEfw/8FECShwN7ANuBc4GTkuyZ5AjgSOBz93u7Nc0WjJ0G46Zt242bJC3dKAndVmBrVV3Qvn4PzZfULqrqjKraXFWbH3TQQctZR0mSxirJWcBngaOSbE3yfODtwMPaWxmcDZzSttZdBpwDXA58GDjNES53ewvGToNx00HrjZskLd2C19BV1XVJrkpyVFV9BTie5kdLkqSxGOXeccupqk6e461nzTH/a4HXdlcjTRNjJ0njNOp96F4EnJlkD+BrwPO6q5IkSfeauYZOmjLGTpLGYqSErqouARY7GpgkScti3C100v1l7CRpXEa9D50kSZIkqWdG7XIpSdLE2EAnSdJwJnSSpF4LdieRJGkuJnSSpH4LxCY6SZKGMqGTJPWe6ZwkScPZi0WSJEmSppQtdJKkXgvetkCSpLl0ktA1P75dlHyv1au7bVwcx/UaVdX5Oh70gD07Lf/AffbotHyARz+k81Ww317dn9vY2fHxvvWOuzst33Bak+TnT+q3ccRNa8bQr2zdPms7LX/vtd1vxMYD9+58Hau7DvSBPTveV2s7ziXGyRY6SVLv2UAnSdJwJnSSpJ6Lo1xKkjSHldPWKEmSJEm7GVvoJEm95o3FJUmamwmdJKn37HIpSdJwJnSSpN4znZMkaTgTOklSv8UWOkmS5uJlCZIkSZI0pWyhkyT1moOiSJI0NxM6SVLv2eVSkqThTOgkSb1nOidJ0nD2YpEkSZKkKWULnSSp9+xxKUnScCZ0kqReawZFMaOTJGkYEzpJUu/ZQidJ0nAmdJKknguxhU6SpKEcFEWSJEmSppQtdJKk3rPLpSRJw5nQSZJ6zUFRJEmamwmdJKnfYgudJElzMaGTJPWeCZ0kScM5KIokSZIkTSkTOklS72WZ/y24vuTtSa5P8qUh7700SSVZ375OkjcnuSLJpUke3cEukCRpKBM6SVKvBViV5X2M4J3ACfepS7IJ+FngmwOTnwIc2T5OBd56PzdZkqSRdXYN3aqOL3i47qY7Oi3/zh07Oy0f4OD99+p8HWtWd3scbr+r+/3U8SYAsHZ19+c2bu/4M7Xnmm63YfWIUbDUhXHfWLyqPp3k8CFv/SnwMuADA9NOBN5VVQWcn2RdkkOq6toxVFXabawaw+/Q2o5XsWZV98NXVOdrGI+uD3dW0MXZDooiSeq9PvzuJjkRuLqq/n1WILABuGrg9dZ2mgmdJKlzJnSSpN3R+iQXDrw+o6rOmGvmJPsAr6TpbilJUm+Y0EmSeq+DLpfbq2rzIub/PuAIYKZ1biNwcZJjgauBTQPzbmynSZLUORM6SVKvzQyKMklV9UXgwTOvk1wJbK6q7UnOBV6Y5Gzgx4CbvH5OkjQujnIpSeq55b5pwUi3LTgL+CxwVJKtSZ4/z+znAV8DrgD+Cvivy7HVkiSNwhY6SZJmqaqTF3j/8IHnBZzWdZ0kSRrGhE6S1G/pxyiXkiT1kQmdJKn3zOckSRpupGvokvxOksuSfCnJWUm6vyO2JEnMDIqSZX1IXTN2kjQuCyZ0STYAv00zmtcPAauBk7qumCRJM7LMD6lLxk6SxmnUUS7XAHsnWQPsA1zTXZUkSZKmnrGTpLFYMKGrqquB1wPfBK6lub/OR2fPl+TUJBcmuXD79m3LX1NJ0u7LJjpNkVFip8G4aZtxk6T7YZQulwcAJwJHAIcCD0jyrNnzVdUZVbW5qjavX3/Q8tdUkrTbGvd96KT7Y5TYaTBuOsi4SdL9MEqXy58Gvl5V26rqLuB9wOO6rZYkSfdKlvchdczYSdLYjJLQfRM4Lsk+SQIcD2zptlqSJN3LHpeaMsZOksZmlGvoLgDeA1wMfLFd5oyO6yVJkjSVjJ0kjdNINxavqlcBr+q4LpIkDWezmqaMsZOkcRkpoZMkaVKabpJmdJIkDWNCJ0nqNwcykSRpTiZ0kqTeM5+TJGm4UUa5lCRJkiT1kC10kqT+s4lOkqShTOgkST0XB0WRJGkOnSR0O6u47a67uyj63nXsrE7LX72q++BhjzXd93hdu7rb7Vg9hpEK1nS8DQB33d3t5wlgr46P986O99MqO2hrghwURdI4pOMvG7/L1AVb6CRJvRbscSlJ0lw85y5JkiRJU8oWOklS/9lEJ0nSUCZ0kqTec1AUSZKGM6GTJPWeAwlIkjSc19BJkiRJ0pSyhU6S1Hs20EmSNJwJnSSp37xvgSRJczKhkyT1noOiSJI0nAmdJKnXgoOiSJI0FwdFkSRJkqQpZQudJKn3bKCTJGk4EzpJUv+Z0UmSNJQJnSSp9xwURZKk4byGTpLUe8nyPhZeX96e5PokXxqY9idJvpzk0iTvT7Ju4L3Tk1yR5CtJntzJTpAkaQgTOkmS7uudwAmzpn0M+KGq+hHgP4DTAZIcDZwEPKJd5i1JVo+vqpKk3ZkJnSSp97LMj4VU1aeBb8+a9tGq2tG+PB/Y2D4/ETi7qu6oqq8DVwDHLmlDJUlaJBM6SVL/jTujW9ivA//YPt8AXDXw3tZ2miRJnXNQFElSrzU52LIPirI+yYUDr8+oqjNGqk/y+8AO4MzlrpQkSYtlQidJ6rcRBzJZpO1VtXnRVUmeCzwNOL6qqp18NbBpYLaN7TRJkjpnl0tJkkaQ5ATgZcDTq+rWgbfOBU5KsmeSI4Ajgc9Noo6SpN2PLXSSpN4b913okpwFPJGma+ZW4FU0o1ruCXwsTZPh+VX1gqq6LMk5wOU0XTFPq6q7x1xlSdJuyoROktR/Y87oqurkIZPfNs/8rwVe212NJEkazoROktRz6WJQFEmSVoROErp//8LF29fvu/Ybi1hkPbC9i7qMkdvQHythO/q4DYdNugKStBJdfPFF2/dem8XETdDP34nFchv6YSVsA/RzO8YSO3WS0FXVQYuZP8mFSxltrE/chv5YCduxErZBWk4djHIp9cZi4yZYGb8TbkM/rIRtgJWzHUthl0tJUq8t373AJUlaeUzoJEn9Z0YnSdJQfUnozph0BZaB29AfK2E7VsI2SMvGQVGk+1gJvxNuQz+shG2AlbMdi5aqmnQdJEma04886kfrgx//t2Ut8/D1e120u15rIUlaWfrSQidJ0pwcFEWSpOFM6CRJvWc+J0nScKsmufIkJyT5SpIrkrxiknVZqiSbknwiyeVJLkvy4knXaamSrE7yhST/MOm6LEWSdUnek+TLSbYkeeyk67RYSX6n/Rx9KclZSfaadJ2kiUvTQrecD2laGTv1x7THTWDstFJMLKFLshr4C+ApwNHAyUmOnlR97ocdwEur6mjgOOC0Kd0OgBcDWyZdifvhTcCHq+oHgEcyZduSZAPw28DmqvohYDVw0mRrJfVFlvkhTR9jp96Z9rgJjJ1WhEm20B0LXFFVX6uqO4GzgRMnWJ8lqaprq+ri9vktNH8IGyZbq8VLshH4OeCvJ12XpUiyP/ATwNsAqurOqvrORCu1NGuAvZOsAfYBrplwfSRJ/WHs1BPTHjeBsdNKMsmEbgNw1cDrrUzZH/NsSQ4HjgEumHBVluKNwMuAnROux1IdAWwD3tF2f/jrJA+YdKUWo6quBl4PfBO4Fripqj462VpJkxfscim1jJ36441Md9wExk4rxkSvoVtJkuwLvBd4SVXdPOn6LEaSpwHXV9VFk67L/bAGeDTw1qo6BvgeMFXXFiQ5gOZM6xHAocADkjxrsrWS+sEOl9LKM62x0wqJm8DYacWYZEJ3NbBp4PXGdtrUSbKW5gvpzKp636TrswSPB56e5Eqa7htPSvLuyVZp0bYCW6tq5gzfe2i+pKbJTwNfr6ptVXUX8D7gcROuk9QLttBJgLFTX6yEuAmMnVaMSSZ0nweOTHJEkj1oLmA8d4L1WZIkoel7vKWq3jDp+ixFVZ1eVRur6nCa4/DPVTVVZzeq6jrgqiRHtZOOBy6fYJWW4pvAcUn2aT9XxzNlFydLXcky/5OmlLFTD6yEuAmMnVaSid2Hrqp2JHkh8BGaEWneXlWXTao+98PjgWcDX0xySTvtlVV13uSqtNt6EXBm+yP3NeB5E67PolTVBUneA1xMMwLYF4AzJlsrSVJfGDupA8ZOK0CqatJ1kCRpTo885kfrI586f1nLPGT/PS6qqs3LWqgkSRMwsRY6SZJGZSdJSZKGM6GTJPWaA5lIkjQ3b1sgSZIkSVPKFjpJUu85MqUkScOZ0EmS+s98TpKkoUzoJEm9Zz4nSdJwJnSSpN5zUBRJkoZzUBRJkiRJmlK20EmSei4OiiJJ0hxM6CRJvRbscilJ0lzscilJkiRJU8oWOklS79lCJ0nScLbQSZIkSdKUsoVOktR7DooiSdJwJnSSpH6LXS4lSZqLXS4lSb2WDh4LrjN5e5Lrk3xpYNqBST6W5Kvt/we005PkzUmuSHJpkkcvy4ZLkjQCEzpJUv+NO6ODdwInzJr2CuDjVXUk8PH2NcBTgCPbx6nAWxe9fZIkLZEJnSRJs1TVp4Fvz5p8IvA37fO/AZ4xMP1d1TgfWJfkkLFUVJK02/MaOklS73UwKMr6JBcOvD6jqs5YYJmDq+ra9vl1wMHt8w3AVQPzbW2nXYskSR0zoZMk9V4Hg6Jsr6rNS124qipJLWeFJElaCrtcSpJ6b/yX0A31rZmulO3/17fTrwY2Dcy3sZ0mSVLnTOgkSRrNucAp7fNTgA8MTH9OO9rlccBNA10zJUnqlF0uJUn9N+b70CU5C3gizbV2W4FXAa8DzknyfOAbwDPb2c8DngpcAdwKPG+8tZUk7c5M6CRJvdfBoCjzqqqT53jr+CHzFnBatzWSJGk4EzpJUq+FTgZFkSRpRUhzYlGSpH5K8mFg/TIXu72qZt84XJKkqWNCJ0mSJElTylEuJUmSJGlKmdBJkiRJ0pQyoZMkSZKkKWVCJ0mSJElTyoROkiRJkqbU/w+yaL4TdvJCrQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "recorteB9 = trim(imagen[:,:,2], 545, 360, 10, 10)\n", + "poptB9, pcovB9 = curve_fit(gauss2d, xdata9, recorteB9.ravel(), p0=[1,1,1,1,1])\n", + "estrellaB9=gauss2d(xdata9, poptB9[0], poptB9[1],poptB9[2], poptB9[3], poptB9[4])\n", + "FWHMB9=FWHMB.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptB9[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 9 fotografÃa (Banda Azul)\")\n", + "plt.imshow(recorteB9, plt.get_cmap('Blues'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 9 a partir de la gaussiana (Banda Azul)\")\n", + "plt.imshow(estrellaB9.reshape(10, 10), plt.get_cmap('Blues'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 10 (Azul)" + ] + }, + { + "cell_type": "code", + "execution_count": 436, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3cAAAFSCAYAAABRzSa6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAxeElEQVR4nO3debwkdX3v/9d7ZthBRhxC2ARM0BvccUSiWTQmEYwGf/l5Dbih8ReuCbjF/Iya3BiTa24eiTcxRGMu7kYU1xiMRCXG5ZoIOiAugMYJqAyMwogsyjozn/tH1YGew5nTfWa6uuv0vJ7zqMd0V1d/61vVfbo+n/p+61upKiRJkiRJy9uKaVdAkiRJkrTzTO4kSZIkaQaY3EmSJEnSDDC5kyRJkqQZYHInSZIkSTPA5E6SJEmSZsCqaVdAkqTFrLzXEVWbbx1rmXXrdR+vqhPGWqgkSVNmcidJ6rXafCt7POBpYy3ztkvesGasBUqS1AMmd5KkngvEqwgkSRrGo6Ukqd8CJOOdhq0yOTzJp5JcluTSJC+a9/pLk1SSNe3zJDkzyfokX0lybDc7Q5Kk7bPlTpLUf5NvudsMvLSqLk6yH3BRkvOr6rIkhwO/DHxnYPkTgaPb6VHAG9v/JUmaGFvuJEn9N+GWu6raWFUXt49vBi4HDm1f/ivgZUANvOUk4J3VuABYneTgse4DSZKGMLmTJGkRSY4EHg5cmOQk4Oqq+vK8xQ4Frhp4voG7k0FJkibCbpmSpJ7rZECVNUnWDTw/q6rOuseak32BDwIvpumq+UqaLpmSJPWOyZ0kqf9G6Eq5RJuqau3iq8xuNInd2VX1oSQPBo4CvpymPocBFyc5DrgaOHzg7Ye18yRJmhiTO0lSv4WJD6iSJnt7C3B5Vf0lQFV9FfixgWW+Baytqk1JzgXOSHIOzUAqN1bVxolWWpK0yzO5kyT13GiDoIzZY4BnAV9Nckk775VVdd52lj8PeCKwHrgFeG7nNZQkaR6TO0mS5qmqz9G0GS62zJEDjws4veNqSZK0KJM7SVL/Tf4+d5IkLTsmd5Kk/pt8t0xJkpYdkztJUs91cisESZJmjsmdJKnfgi13kiSNwFOhkiRJkjQDbLmTJPWf3TIlSRrK5E6S1HNecydJ0ihM7iRJ/bfCa+4kSRrGU6GLSHJkkkqyqn3+6ST/Xw/q9Zgk30zywyRPmXZ9hknyP5JsSvLd9vnhSa5MctQOlHVgkq8n2Wv8NR267m2+D32Q5LFJNgw8/0KSB06zTpKk8eprPNI3Sf45yak78f5tjqlLfO/bk/yPHV13XyR5RpJPTGndxyRZl0x+BK2d+ey7kuQ5ST7XPt6jjX8PHPa+ZZHcJflWklvbZGZuev0I76skPzmJOg6T5E+SfDXJ5iR/tMDrT0/y7SQ/SvLhJAcsUtwfA6+vqn2r6sND1vtHSd61c7XfcUnuC7wUOKaqfryd/SbgjKq6cgeKfDnw9qq6tS3/00lua78TNyb5bJIHj6f249f+eFSS3+toFa+l+X5IsyM03TLHOUk7wHikPxaKb6rqxKp6x7TqNAuq6uyq+uUprf5PgNdWVcE9/t5+kOSjSQ6fUt2GapOxSvLr4y67qm4H3koTBy9qOR3hntwmM3PTGTtb4IRbYNYDLwM+ukA9Hgj8b+BZwEHALcDfLlLWEcClHdRxSUbcf/cFvl9V17bvuS/wzqq6x34YYX17AKcC85PVM6pqX+AA4NPA3y+17Ak6FbgeeHZH5Z8LPC7Jjw9dUlpOkvFO0o4zHpmyHdlffep1o3tKcjDwOODD8156chvjHQx8D/ibCVdtKbqO8d4NnNrGw9u1nJK7BSX5ySSfaVttNiV5bzv/s+0iX24z/l+fa3JN8nttF8G3JVmR5OVJ/jPJ95O8b5SzVEl+Ism/tu/ZlOTsJKu3t3xVvaOq/hm4eYGXnwF8pKo+W1U/BP478GtJ9ltgvf8J3A/4SLtdeyQ5JMm5Sa5Psj7Jb7bLngC8Evj1dtkvt/MXXL59ba8k72jPkFye5GXZttvft9r99xXgR0lWDey/m5NcluT/aZf9ReB84JB2/W+n+c6dnbu7ljy3Xc/NSa5I8t8W2e2PAm6oqgWbzatqC3AOcMxAfY9L8vkkNyTZmOT1SXYfeL2SPD9NN9cbkrwhaSK/JCuTvLb9fK8AfmXeZ7GUupNkH+CpwOnA0UnWDrz2+mx7JviuM6qZd8Y3i3T9qKrbgIuAJyxWF2l5iS136r1dLR5p1/3XSa5KclOSi5L87CL1fHuSv0tyfnvc/EySI0YpK00r3QeSvCvJTcDzWTi+uau7appWlH9L8ldJvg/80QJ12qut1w+SXAY8ct7rhyT5YJLr0lxO8sLtbd+89907yT+17/tB+/iwRZY/NsmX2v3y/iTvnTvODysrTVz2i/P21bvax3u2++z7bYzzxSQHDeyfK9p1XpnkGQPzP7eEz+V9Sd7ZlnPpvNhmwfhwO34JuLiNY+6hnf8Bto3xfqXdbze1dfyjgdeOTBM/nZrkO+3fxu8PvD7ss19K3Wm/yz8PnAY8IQMn2ZPMxexz09Z2P8/VcdXAsnd9hxfYBxuAHwDHL1aXWTjC/QnwCeDewGG0GX1V/Vz7+kPbM2vvbZ//OE0LzxE0H8ALgKfQfCCH0Oy0N4yw3gD/s33PTwGHs8APx4geCHx57klV/SdwB3D/+QtW1U8A3+HuM4e30yQ0G9q6PBX40yS/UFUfA/4UeG+77EPbYhZcvn3tVcCRNAnkLwHPXKC+p9AkOqurajPwn8DPAvsDrwbeleTgqvoX4ETgmnb9z1mgrGuBJwH3Ap4L/FWSY7eznx4MfGM7r5EmaXsGcMHA7C3AS4A1wE8Djwd+e95bn0TzR/0Q4GncnRj9Zvvaw4G1NPtqR+sO8GvAD4H3Ax+nOcMDQFWdMXcWGPgZmu/hPy5S1mIuBx46dClpObHlTv23S8UjrS8CD6PZjncD70+y5yLlP4NmP60BLgHOXkJZJ9EE96uBt7BwfDPfo4AraFohX7PA668CfqKdnsDAcTnJCuAjNPvjUJr44cVJRjl5ugJ4G81ne1/gVmDB7rtt7PIPwNtptv09wGAiMXJZCziVJjY7HLgPTVJ8a5qTzWcCJ1bVfsCjaT6PhQz7XH6VJq5cTdN7aLBuC8aH21nPsBhvb+DX2TbG+xFNK9lqmrj0t3LPsSh+BngAzef3h0l+qp2/3c9+B+pOW491VfVBmjjsGXMvVNWTB2K8/wp8F/jkImUtZmiMt5ySuw+3Zx3mprnWpjtpvvCHVNVtVfW5RcoA2Aq8qqpub6/bej7w+1W1oU2U/gh4aoY031fV+qo6vy3nOuAvaX6Qd8S+wI3z5t0ILHimbFCavsePAX6v3f5LgDeznSbhEZZ/GvCnVfWD9gzBmQsUc2ZVXTV33VtVvb+qrqmqre1B65vAccPq3r73o1X1n9X4DM2BcXtn/laz8JnGM5Pc0L52Bs0f4Vz5F1XVBVW1uaq+RdPdZP7n9GdVdUNVfQf4FM2PGDT74nXttl5Pc/Dc0bpD88Px3raF8d3AyUl2G1wgzYWyHwZeUFVfWqSsxdxMs68kSeNnPHL3ut9VVd9vj7H/C9iDJpDeno+2rYK3A78P/HQbl4xS1uer6sNtrHHriNtzTVX9TVvmQu95GvCaqrq+qq5i25jnkcCBVfXHVXVHVV1BM2bAycNW2m7HB6vqlqq6mSax3N5ncjzN6PVnVtWdVfUh4As7WNZ8d9IkdT9ZVVvamOim9rWtwIOS7FVVG6tqwct9RvhcPldV57Wxzd8zkHgsMT5czcIx3ofbGO9GmkaHvxgo/9NV9dW2/K/QJMbz982rq+rWqvoyTaI+V7/FPvsdiW2fTRPb0f5/jzg8yf2BdwBPa9e5I4bGeMspuXtKVa0emN7Uzn8ZzVmrL7TNwb8xpJzratsm3yOAf5j7kabJiLfQnOXZriQHJTknydVpugi8i+ZM1I74IU3rz6B7sfCXfL5DgOvbP/g536Y5y7Qjyx8CDH7hFvrybTMvybOTXDKwDx/EiPsiyYlJLkjTRfQG4ImLvPcHLHyAeWFVrQb2omlJ+0CSh7Tl37/twvDd9nP60wXK/+7A41toDm5wz33x7R2te3vwehx3n6X8R2BPBrp6toneB4B3V9U5C5Uzov2AG3bi/VL/2C1T/WE8cve6fzfN5Qk3tnXef8i67zqmVtPt83qaY+0oZe1IMDzsPYsd54+guazkhoHP5JUM+TygaWVK8r/TDExzE/BZYHWSldupw9VVzSAi8+u9xLLm+3uankLnJLkmyZ8n2a2qfkTTCvZ8YGOagUr+y3a2ZdjnMj+G2jN3X3qzlPhwezHeU9oYb0+aE/ifmevymORRST6Vpsvqje32jCvGG7nuSR4DHEXTgglNcvfgJA8bWGZ/mtjvD0Y48bOYoTHesj/CVdV3q+o3q+oQ4L8Bf5vFR6Sqec+vommWHvyh3rOqrh6y6j9ty3pwVd2Lpvvijvb1uZSBMx1J7kdzZuQ/RnjvNcAB2bY//H2BufrP395hy2+k6U4yZ6FRie4qM00f4zfR/MHdp/0D/Boj7Is0F4R+kGaEx4Pa9563yHu/wva7htCeXfk/NBeLz4309Ebg68DR7ef0ylHq1trIttt/352o+7No/t4+kub6iitofqgGuwH8DXAT8Afz3nsLsPfA82GDpfwUA91qpGVv3F0y7ZapDuxq8Uiaa69eRtMCcu/2OHjjkHXfdUxNMjcQ2jUjljV/f81/vpBhy2z3OE/zeVw57/PYr6qeOMJ6X0rTuvWo9jOZ65q70L7ZCByabPPDNFinYWX9iO3ECG1L4Kur6hiarpdPom1RqqqPV9Uv0QxU8nWaWG4bO/gZz713qfHhsBhvS9uquYWmqyU0SdS5wOFVtT/wd6PUrbVYjLfUup/avnZJG+NdODB/rovvu4FPVdVZA+/7Ufv/WGO8ZZ/cJfmvufvC0h/Q/CFvbZ9/j+bascX8HfCa9oMkzX3UThph1fvRnOG6McmhwP8/pJ67pemjvAJYleYi17mzLmcDT07ys2n6Qf8x8KF5rWsLapt1/x34n22ZDwGex90jSn4POLL9Yo2y/PuAV6S5gPdQmi/2Yvah2efXtdv5XJqzG6PYneagcR2wOcmJ3J2ULeQLNGerttcqSZKfprnYdq57wX40CdMP27NSvzVi3aDZFy9McliSe7Pt8LNLrfupNN1FHzYw/b/AE5PcJ81gLD8PPKOqts577yXA09MM8HICi3THaL9jj6AZyEaaHbbcqed2wXhkP2AzzXFwVZI/5J6tfvM9McnPpLnO7E+AC9q4ZEfK2ia+2UGDMc9hNNc9zvkCcHOaQW/2ao/BD0ryyIWL2sZ+NNfG3ZBmUJxXLbLs52kSljPSDFJ3Ett2/xtW1iW0l3mkGczkrvEBkjwuyYPbz/cmmm6aW9O09p7Ufsa303x/5scec+te6ucyZ6nx4fnAsdnONZtpnERzTevlA/W7vqpuS3Ic8PQR6waLf/Yj172t79Norpt92MD0AprYbRVNV9p9gBcNvreabtRXA89sv1+/QXMN4ILav+8D2Pa6w3tYTke4+SPN/EM7/5HAhUl+SJO9v6jtFw1Nf/V3tE2qT9tOuX/dvu8TSW6m2WGPGqE+rwaOpTmD8VHgQ0OWfxPNH+cpNP3Mb6VpzaHt5/x8mh/Va2m+rPMH/VjMKTSDoFxDc1Huq6oZzASawTsAvp/k4hGW/2OawVauBP6Fppvg7dtbcVVdBvwvmh+n79FcEPtvo1S6PVi8kOYP7Ac0f5TnLrL8HTQXHM8f5OWukSZpuiD8QTUjgQH8blvuzTSfwXsZ3ZtoujN8GbiYgc94KXVPcjxN9443tGd256ZzaVoZT2mn+9GcwZz7jr+yLeJFwJNpmuGfwT2HCR70ZODTVXXNErZT6j9b7tQfxiONjwMfo2nV+zZwG8O7Qb6bJjm5nuZE5NzxfEfKWii+WapXt+u7kua6+btupdReQ/YkmkD9SmATzRgF+49Q7utoLhXZRPM5fmx7C7axza/RnGi/gWaf/BN3x17DyvrvNAnBD9rteffAaz9OE8fdRJMQfabdxhXA79DEgdfTnDRe6OT3jnwuc9u1pPiwqr4H/CvNwDmDPtL+Td1EkySdOnB94G8Df9z+vfwhTUw2qsU++6XU/Sk0f0PvHIzxaO5Jtwo4geZv7XjgBwO/G3MDrvwmzQmZ79MMaPTvi9T56cA7qrlmdbuybRdfaVtJfgs4uap29OLssUoz4Mj/AR5eo19QvctIciHwvKr62rTrIo3Liv0Prz0e/TtjLfO2j/3ORVW1dviSksYhze2QNlTV/EsPNE97LP+7qnrbtOsySUmOoRlw5LgyQdlGmsuBvgz8XLX3jt4eb+iobaQZ5vV+NGcrjqbp6z3qkLuda5uwF7zoV1BVo5zllZaZ2JVS0sxK8vM0twHYRNND5yEs0to3q9oWs1G6ve5y2ta6keJfkzvNtzvN7QKOoukecA7wt9OskCTZlVLSDHsATZfCfWgGXHtqVW2cbpW0XJncaRtV9W1GHxBFkroXbLmTlrmqes6069BX7QiKZw1dUBqByZ0kqefslilJ0ig8WkqSJEnSDOik5W7NmjV13yOO7KLou2zteBCd7PD9P0dXI91/c+ds7XoVExjLaMUETkFMYkymrj+L3VZ2+539zre/xaZNm7zwSdPhNXeaYWvWrKkjOo6bJE3exRdftKmqDpzkOjtJ7u57xJH82wVf7KLou9xyx5ZOy185gUBiywQyils73k+TSIr22K377G5r51kw3HrnQvcHHZ8D99u90/J/7tHHDV9I6ordMjXDjjjiSP7twnXTroakMdtrt3x70uv0mjtJUv/ZcidJ0lCeCpUkSZKkGWDLnSSp3+JomZIkjcLkTpLUf3bLlCRpKJM7SVLvxeROkqShTO4kSb0WTO4kSRqFFzFIkjRPksOTfCrJZUkuTfKidv5fJPl6kq8k+Yckqwfe84ok65N8I8kTplZ5SdIua6TkLskJ7cFqfZKXd10pSZLukg6m4TYDL62qY4DjgdOTHAOcDzyoqh4C/AfwCoD2tZOBBwInAH+bZOXObbiWM2MnSdMwNLlrD05vAE4EjgFOaQ9ikiRNQEjGOw1TVRur6uL28c3A5cChVfWJqtrcLnYBcFj7+CTgnKq6vaquBNYDx419V2hZMHaSNC2jtNwdB6yvqiuq6g7gHJqDmCRJEzHp5G7euo8EHg5cOO+l3wD+uX18KHDVwGsb2nnaNRk7SZqKUZK7kQ5YSU5Lsi7Juk2brhtX/SRJ6iK5WzN3zGqn07az3n2BDwIvrqqbBub/Pk3XzbMnsf1adobGToNx03XGTZLGZGyjZVbVWcBZAMc+Ym2Nq1xJkjqwqarWLrZAkt1oEruzq+pDA/OfAzwJeHxVzR3vrgYOH3j7Ye08aUGDcdMjjJskjckoLXcesCRJUzXpbplpFnoLcHlV/eXA/BOAlwG/WlW3DLzlXODkJHskOQo4GvjCWHeClhNjJ0lTMUrL3ReBo9uD1dU0o4E9vdNaSZI0Z/QRLsfpMcCzgK8muaSd90rgTGAP4Pw2Sbygqp5fVZcmeR9wGU13zdOrasvEa62+MHaSNBVDk7uq2pzkDODjwErgrVV1aec1kyQJCEsfBGVnVdXnWDilPG+R97wGeE1nldKyYewkaVpGuuauqs5jkQOaJEldmnRyJ+0sYydJ0zDSTcwlSZIkSf02ttEyJUnqii13kiQNZ3InSeo9kztJkoYzuZMk9dt0RsuUJGnZ8Zo7SZIkSZoBttxJknrPbpmSJA3XWXJX1VXJjRUzcKDfurXjnUT3n8PmCWzDHbdu7nwdk/g6rVrR7Up+dHu390veMoHPWlrINO5zJ2nXVB0HTpM4ls7K4Xplx3FTx8VPjS13kqTeM7mTJGk4kztJUv+Z20mSNJQDqkiSJEnSDLDlTpLUb7FbpiRJozC5kyT1nsmdJEnDmdxJknrP5E6SpOFM7iRJveatECRJGo0DqkiSJEnSDLDlTpLUfzbcSZI0lMmdJKnfHC1TkqSRmNxJknrP5E6SpOFM7iRJvWdyJ0nScA6oIkmSJEkzwJY7SVL/2XAnSdJQJneSpN6zW6YkScOZ3EmSei3xJuaSJI3Ca+4kSZIkaQbYcidJ6j1b7iRJGs7kTpLUeyZ3kiQNZ3InSeo/cztJkoYyuZMk9Z4td5IkDeeAKpIkSZI0A2y5kyT1W2y5kyRpFJ0kd1uruPWOLV0Ufbeuj/PVcfnAlq3dr6Sq23XccvvmTssHuOamWztfx24rum/Evu8Be3da/p23dftZbO34uyRtTwBzO0ldxzQAd2ze2mn5N3d8rAa48ZY7O1/HJE64rd57t07L32/P2WzjslumJKnncteNzMc1DV1jcniSTyW5LMmlSV7Uzj8gyflJvtn+f+92fpKcmWR9kq8kObbjnSJJ0j2Y3EmSei8Z7zSCzcBLq+oY4Hjg9CTHAC8HPllVRwOfbJ8DnAgc3U6nAW8c8y6QJGkokztJkuapqo1VdXH7+GbgcuBQ4CTgHe1i7wCe0j4+CXhnNS4AVic5eLK1liTt6mazs6kkaaZ0cH3HmiTrBp6fVVVnbWfdRwIPBy4EDqqqje1L3wUOah8fClw18LYN7byNSJI0ISZ3kqR+G70r5VJsqqq1Q1ed7At8EHhxVd00mGRWVSVxpCFJUm+Y3EmSei3AihWTHy4zyW40id3ZVfWhdvb3khxcVRvbbpfXtvOvBg4fePth7TxJkibGa+4kSb036QFV0jTRvQW4vKr+cuClc4FT28enAv84MP/Z7aiZxwM3DnTflCRpImy5kyTpnh4DPAv4apJL2nmvBP4MeF+S5wHfBp7WvnYe8ERgPXAL8NyJ1laSJEzuJEnLwCRumDuoqj5H0yN0IY9fYPkCTu+0UpIkDTG0W+b2buQqSdJEjLlL5oTzRO2CjJ0kTcsoLXdzN3K9OMl+wEVJzq+qyzqumyRJhMm33Ek7ydhJ0lQMTe7aC8I3to9vTjJ3I1d/oCRJExCTOy0rxk6SpmVJo2XOu5GrJEmSFmHsJGmSRk7u5t/IdYHXT0uyLsm672/aNM46SpJ2cV5zp+VosdhpMG66btN106mgpJkzUnK3nRu5bqOqzqqqtVW19j5r1oyzjpKkXVySsU5S14bFToNx04FrDpx8BSXNpKHX3C1yI1dJkrpna5uWGWMnSdMySsvd3I1cfyHJJe30xI7rJUmStFwZO0mailFGy1zsRq6SJHXKWyFouTF2kjQto9znTpKkqTK3kyRpOJM7SVLv2XInSdJwJneSpN4zt5Mkabgl3cRckiRJktRPttxJkvotdsuUJGkUJneSpF5rRsucdi0kSeq/zpK7rVVdFQ3AqhXd9ii95c4tnZYPcNsd3a/jjs1bOy1/3TXXd1o+wFmf/lbn69h99+7Pc5zx2KM6Lf/BB+3fafkd/0lLi4gtd5LYsrX7A9FNt27utPwvXtV93PSeizd2vo69dl/Z+TpOfcShnZb/wIPv1Wn502LLnSSp98ztJEkazgFVJEmSJGkG2HInSeo9u2VKkjScyZ0kqd9it0xJkkZhcidJ6rVmtEyzO0mShjG5kyT1nsmdJEnDOaCKJEmSJM0AW+4kSb1nw50kScOZ3EmSes9umZIkDWdyJ0nqN0fLlCRpJF5zJ0mSJEkzwJY7SVKvhdgtU5KkEZjcSZJ6z9xOkqThTO4kSb23wuxOkqShTO4kSb1nbidJ0nAOqCJJ0jxJ3prk2iRfG5j3sCQXJLkkybokx7Xzk+TMJOuTfCXJsdOruSRpV2ZyJ0nqtaS5z904pxG8HThh3rw/B15dVQ8D/rB9DnAicHQ7nQa8cRzbLUnSUtktU5LUeysm3C2zqj6b5Mj5s4F7tY/3B65pH58EvLOqCrggyeokB1fVxsnUVpKkhsmdJKn3enIrhBcDH0/yWpqeL49u5x8KXDWw3IZ2nsmdJGmi7JYpSeq9pmvm+CZgTXvd3Nx02gjV+C3gJVV1OPAS4C0dbrIkSUtmy50kaVe0qarWLvE9pwIvah+/H3hz+/hq4PCB5Q5r50mSNFG23EmSei1AxvxvB10D/Hz7+BeAb7aPzwWe3Y6aeTxwo9fbSZKmwZY7SVLvTXpAlSTvAR5L031zA/Aq4DeBv06yCriNZmRMgPOAJwLrgVuA5062tpIkNUzuJEn9NvrtC8amqk7ZzkuPWGDZAk7vtkaSJA3XSXIXwm4ru+3xuWpltwf6zVu2dlo+wB2bu1/Hj27f3Gn5n73ixk7LB7j4/f/Y+TrY9z6dr+KhR9670/IffND+nZYvTVM/BsuUNE1bq/t13HTrnZ2W/+6Lrhm+0E766N+8rfN1sO8Bna9i9Uu3d45tPI44YJ9Oy58Wr7mTJEmSpBlgt0xJUq8FWGHTnSRJQ5ncSZJ6z9xOkqThTO4kSb036QFVJElajrzmTpIkSZJmgC13kqReS+yWKUnSKEzuJEm954AqkiQNZ3InSeo9UztJkoYbOblLshJYB1xdVU/qrkqSJG3LAVW0HBk7SZq0pQyo8iLg8q4qIkmSNGOMnSRN1EjJXZLDgF8B3txtdSRJ2lZzE/PxTlLXjJ0kTcOo3TJfB7wM2K+7qkiStIDEbplajl6HsZOkCRvacpfkScC1VXXRkOVOS7IuybpNm64bWwUlSZq7HcK4JqlLo8ROg3HTdcZNksZklG6ZjwF+Ncm3gHOAX0jyrvkLVdVZVbW2qtauWXPgmKspSdqVpW29G9ckdWxo7DQYNx1o3CRpTIYmd1X1iqo6rKqOBE4G/rWqntl5zSRJkpYhYydJ0+J97iRJvTY3oIokSVrckpK7qvo08OlOaiJJ0nbYlVLLlbGTpEmy5U6S1HumdpIkDWdyJ0nqtQRW2HInSdJQI93EXJIkSZLUb7bcSZJ6z4Y7SZKGM7mTJPWeA6pIkjScyZ0kqffM7SRJGq6T5K4otmytLoq+y4qOb3p055Zu6w+wtbpfx+6rur2scvME9hN33t79Om7e1PkqDr7X7p2W33Xwa2wtSZp1XfcS2GP3lZ2WD8De+8/EOvberdsYdlbjGlvuJEm9FuJomZIkjcDkTpLUb7FbpiRJozC5kyT1ngOqSJI0nMmdJKn3vCmrJEnDebyUJEmSpBlgy50kqdeC3TIlSRqFyZ0kqfc6vvuNJEkzwW6ZkqTeW5HxTsMkeWuSa5N8bd78FyT5epJLk/z5wPxXJFmf5BtJnjD+PSBJ0nC23EmSei2ZSrfMtwOvB955dz3yOOAk4KFVdXuSH2vnHwOcDDwQOAT4lyT3r6otk660JGnXZsudJEnzVNVngevnzf4t4M+q6vZ2mWvb+ScB51TV7VV1JbAeOG5ilZUkqWVyJ0nqvUl3y9yO+wM/m+TCJJ9J8sh2/qHAVQPLbWjnSZI0UXbLlCT1Xge9MtckWTfw/KyqOmvIe1YBBwDHA48E3pfkfmOvmSRJO8jkTpLUawFWjD+721RVa5f4ng3Ah6qqgC8k2QqsAa4GDh9Y7rB2niRJE2W3TElS760Y87SDPgw8DiDJ/YHdgU3AucDJSfZIchRwNPCFHV+NJEk7xpY7SZLmSfIe4LE03Tc3AK8C3gq8tb09wh3AqW0r3qVJ3gdcBmwGTnekTEnSNJjcSZJ6b9J3QqiqU7bz0jO3s/xrgNd0VyNJkoYzuZMk9VqSLq65kyRp5pjcSZJ6z9xOkqThTO4kSb23E/emkyRpl+FomZIkSZI0A2y5kyT1Wkf3uZMkaeaY3EmSes/cTpKk4UzuJEn9Fq+5kyRpFF5zJ0mSJEkzoLOWuy1VXRXdrmBrp8VP4izx3nt033C6suPteOqDD+p2BcAdL3le5+vYf+/dO1/HQ3/sXp2Wv8eqbs/VxH5xmqLg90/a1a2cQHC2eu/dOi3/OY84tNPyAe79u8/sfB1779Z9+9BJD+g2xtxvr9nswDibWyVJmhnNgCrTroUkSf1ncidJ6j2TO0mShjO5kyT1nt2CJUkazgFVJEmSJGkG2HInSeo1r7mTJGk0JneSpH6LNzGXJGkUJneSpN5bYXYnSdJQJneSpF6zW6YkSaMZaUCVJKuTfCDJ15NcnuSnu66YJEnScmXsJGkaRm25+2vgY1X11CS7A3t3WCdJkrZhr0wtQ8ZOkiZuaHKXZH/g54DnAFTVHcAd3VZLkqQ5YQVmd1o+jJ0kTcso3TKPAq4D3pbkS0nenGSfjuslSRLQXHOXjHeSOmbsJGkqRknuVgHHAm+sqocDPwJePn+hJKclWZdk3fc3bRpzNSVJu6w0A6qMc5I6NjR2Goybrtt03TTqKGkGjZLcbQA2VNWF7fMP0PxgbaOqzqqqtVW19j5r1oyzjpIkScvJ0NhpMG46cM2BE6+gpNk0NLmrqu8CVyV5QDvr8cBlndZKkqQBK5KxTlKXjJ0kTcuoo2W+ADi7He3pCuC53VVJkqS7zV1zJy0zxk6SJm6k5K6qLgHWdlsVSZIWZmublhtjJ0nTMNJNzCVJkiRJ/TZqt0xJkqbGhjtJkoYzuZMk9Vqwm4kkSaMwuZMk9VsgNt1JkjSUyZ0kqfdM7SRJGs6eLpIkSZI0A0zuJEm9FiZ/E/Mkb01ybZKvLfDaS5NUkjXt8yQ5M8n6JF9Jcuz494IkScN10i1zRcLeu6/soui73L55a6flT+L6jqrqfB1dDzF3vwP26bR8gN945GGdr2P3Fd1+XwEOutcenZa/amW352q85EnTNIWv39uB1wPv3KYeyeHALwPfGZh9InB0Oz0KeGP7v6QxWjGBH4L99uz2iqUHH7J/p+UDHDmB2GwS9x7db69uP4uuc5VpseVOktR7yXinYarqs8D1C7z0V8DLgMGzcycB76zGBcDqJAePYbMlSVoSB1SRJPVcuuhNsSbJuoHnZ1XVWYvWIjkJuLqqvjyvPocCVw0839DO2ziuykqSNAqTO0nSrmhTVa0ddeEkewOvpOmSKUlSL5ncSZJ6rSc3Mf8J4ChgrtXuMODiJMcBVwOHDyx7WDtPkqSJMrmTJPXetG9iXlVfBX5s7nmSbwFrq2pTknOBM5KcQzOQyo1VZZdMSdLE9eBkqCRJi8uYp6HrS94DfB54QJINSZ63yOLnAVcA64E3Ab+9xM2TJGksbLmTJPVbJt9yV1WnDHn9yIHHBZzedZ0kSRrGljtJkiRJmgG23EmSeq0nA6pIktR7JneSpN6b9oAqkiQtByZ3kqTeM7WTJGk4e7pIkiRJ0gyw5U6S1Hv2ypQkaTiTO0lSrzUDqpjdSZI0jMmdJKn3bLmTJGk4kztJUs+F2HInSdJQDqgiSZIkSTPAljtJUu/ZLVOSpOFM7iRJveaAKpIkjcbkTpLUb7HlTpKkUZjcSZJ6z+ROkqThHFBFkiRJkmaALXeSpN7zVgiSJA1ncidJ6rUAK8ztJEkaqpPkLsCqld32+LxzS3Va/j57rOy0fIDb79za+To2b+12P+21e/f76aj77Nv5Oqq63U/NOrotf49V3f7Nec2TpsmWO0mZwIFoVcdhzX577dbtCoB995yNtpsVHX/eK2b0rOFsfPqSpJnmyQVJkoZzQBVJkiRJmgG23EmSes9umZIkDWdyJ0nqNQdUkSRpNCZ3kqSeiy13kiSNwGvuJEmSJGkG2HInSeq3OFqmJEmjMLmTJPWeuZ0kScON1C0zyUuSXJrka0nek2TPrismSRLMDaiSsU5S14ydJE3D0OQuyaHAC4G1VfUgYCVwctcVkyRpTsY8SV0ydpI0LaMOqLIK2CvJKmBv4JruqiRJkrTsGTtJmrihyV1VXQ28FvgOsBG4sao+MX+5JKclWZdk3XWbrht/TSVJuy6b7rSMjBI7GTdJ6sIo3TLvDZwEHAUcAuyT5Jnzl6uqs6pqbVWtPXDNgeOvqSRpl5Ux/5O6NErsZNwkqQujdMv8ReDKqrququ4EPgQ8uttqSZJ0t2S8k9QxYydJUzFKcvcd4PgkeycJ8Hjg8m6rJUnS3SbdKzPJW5Ncm+RrA/P+IsnXk3wlyT8kWT3w2iuSrE/yjSRP2OkN1nJn7CRpKka55u5C4APAxcBX2/ec1XG9JEmaprcDJ8ybdz7woKp6CPAfwCsAkhxDMxLiA9v3/G2SlZOrqvrG2EnStIx0E/OqehXwqo7rIknSwibclbKqPpvkyHnzBgfEuAB4avv4JOCcqroduDLJeuA44POTqKv6ydhJ0jSMlNxJkjQtTVfKsWd3a5KsG3h+VlUtpWXlN4D3to8PpUn25mxo50mSNFEmd5KkfutmEJRNVbV2R96Y5PeBzcDZ462SJEk7x+ROktR7fRngMslzgCcBj6+qamdfDRw+sNhh7TxJkiZqlNEyJUna5SU5AXgZ8KtVdcvAS+cCJyfZI8lRwNHAF6ZRR0nSrs2WO0lS/0246S7Je4DH0lybt4FmYIxXAHsA5zej23NBVT2/qi5N8j7gMprumqdX1ZbJ1liSJJM7SVLvpYsBVRZVVacsMPstiyz/GuA13dVIkqThOknuCti8ZWsXRU/Mnrt1f4uiSazj5ts2d1r+rXd0f3J6EiHdypXd91DesrWGL7QTVqzodk9NOriWBnUwoIok3UM6/rFZOZHfMn8wd2W23EmSei0YqkiSNAoHVJEkSZKkGWDLnSSp/2y6kyRpKJM7SVLvec2nJEnDmdxJknrPAVUkSRrOa+4kSZIkaQbYcidJ6j0b7iRJGs7kTpLUb94LQZKkkZjcSZJ6zwFVJEkazuROktRrwQFVJEkahQOqSJIkSdIMsOVOktR7NtxJkjScyZ0kqf/M7iRJGsrkTpLUew6oIknScCZ3kqTec0AVSZKGc0AVSZIkSZoBttxJknrPhjtJkoYzuZMk9Z/ZnSRJQ5ncSZJ6LTigiiRJozC5kyT1WxxQRZKkUTigiiRJkiTNAFvuJEm9Z8OdJEnDmdxJkvrP7E6SpKFM7iRJPRcHVJEkaQSdJHdfuviiTfvtufLbS3jLGmBTF3WZILehP2ZhO/q4DUdMuwKSNIsuvviiTXvtlqXETdDP48RSuQ39MAvbAP3cjonHTp0kd1V14FKWT7KuqtZ2UZdJcRv6Yxa2Yxa2QRonR8vULFtq3ASzcZxwG/phFrYBZmc7dpbdMiVJvRa85E6SpFGY3EmS+s/sTpKkofqS3J017QqMgdvQH7OwHbOwDdLYOKCKdA+zcJxwG/phFrYBZmc7dkqqatp1kCRpux7ysEfURz7572Mt88g1e17ktRmSpFmzYtoVkCRpmGS80/D15a1Jrk3ytYF5ByQ5P8k32//v3c5PkjOTrE/ylSTHdrcnJEnaPpM7SVLvZczTCN4OnDBv3suBT1bV0cAn2+cAJwJHt9NpwBuXun2SJI3DVJO7JCck+UZ7tvPlw9/RP0kOT/KpJJcluTTJi6Zdpx2VZGWSLyX5p2nXZUckWZ3kA0m+nuTyJD897TotVZKXtN+jryV5T5I9p10naerG3Go3SstdVX0WuH7e7JOAd7SP3wE8ZWD+O6txAbA6ycFj2XZpHmOn/ljucRMYO82iqSV3SVYCb6A543kMcEqSY6ZVn52wGXhpVR0DHA+cvky3A+BFwOXTrsRO+GvgY1X1X4CHssy2JcmhwAuBtVX1IGAlcPJ0ayX1xRTa7u7poKra2D7+LnBQ+/hQ4KqB5Ta086SxMnbqneUeN4Gx08yZZsvdccD6qrqiqu4AzqE5+7msVNXGqrq4fXwzzR/FsjuoJzkM+BXgzdOuy45Isj/wc8BbAKrqjqq6YaqV2jGrgL2SrAL2Bq6Zcn2kWbUmybqB6bSlvLma0cgckUyTZuzUE8s9bgJjp1k1zeRu5s50JjkSeDhw4ZSrsiNeB7wM2Drleuyoo4DrgLe1XSTenGSfaVdqKarqauC1wHeAjcCNVfWJ6dZKmr7QSbfMTVW1dmAaZQjt7811t2z/v7adfzVw+MByh7XzpHEzduqP17G84yYwdppJDqgyJkn2BT4IvLiqbpp2fZYiyZOAa6vqomnXZSesAo4F3lhVDwd+xN2DHSwL7ch7J9H82B4C7JPkmdOtldQPveiUCecCp7aPTwX+cWD+s9tRM4+nCS42LlSApLst19hpRuImMHaaSdNM7mbmTGeS3Wh+nM6uqg9Nuz474DHAryb5Fk0Xj19I8q7pVmnJNgAbqmruzN8HaH6wlpNfBK6squuq6k7gQ8Cjp1wnqRemcCuE9wCfBx6QZEOS5wF/BvxSkm/S/L3+Wbv4ecAVwHrgTcBvd7ALJDB26otZiJvA2GkmrZriur8IHJ3kKJofppOBp0+xPjskSWj6Kl9eVX857frsiKp6BfAKgCSPBX63qpbVWY+q+m6Sq5I8oKq+ATweuGza9Vqi7wDHJ9kbuJVmG9ZNt0pSP2Rn2tt2QFWdsp2XHr/AsgWc3m2NJMDYqRdmIW4CY6dZNbXkrqo2JzkD+DjNyDZvrapLp1WfnfAY4FnAV5Nc0s57ZVWdN70q7bJeAJydZHeas+jPnXJ9lqSqLkzyAeBimpHEvgSMch2QJGkXYOykDhg7zZg0JxwlSeqnhz78EfXxz1ww1jIP3n/3i6pq7VgLlSRpyqbZLVOSpJFMtlOmJEnLk8mdJKnXRh0ERZKkXZ23QpAkSZKkGWDLnSSp9yY9WqYkScuRyZ0kqf/M7SRJGsrkTpLUe+Z2kiQNZ3InSeo9B1SRJGk4B1SRJEmSpBlgy50kqefigCqSJI3A5E6S1GvBbpmSJI3CbpmSJEmSNANsuZMk9Z4td5IkDWfLnSRJkiTNAFvuJEm954AqkiQNZ3InSeq32C1TkqRRmNxJknot7SRJkhZncidJ6j+zO0mShnJAFUmSJEmaAbbcSZJ6zwFVJEkazuROktR7DqgiSdJwJneSpN4zt5MkaTivuZMkSZKkGWDLnSSp/2y6kyRpKJM7SVLvOaCKJEnDmdxJknotOKCKJEmjSFVNuw6SJG1Xko8Ba8Zc7KaqOmHMZUqSNFUmd5IkSZI0AxwtU5IkSZJmgMmdJEmSJM0AkztJkiRJmgEmd5IkSZI0A0zuJEmSJGkG/F+BvL/AyFOtMAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "recorteB10 = trim(imagen[:,:,2], 615, 394, 10, 10)\n", + "poptB10, pcovB10 = curve_fit(gauss2d, xdata10, recorteB10.ravel(), p0=[1,0,1,1,1])\n", + "estrellaB10=gauss2d(xdata10, poptB10[0], poptB10[1],poptB10[2], poptB10[3], poptB10[4])\n", + "FWHMB10=FWHMB.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptB10[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 10 fotografÃa (Banda Azul)\")\n", + "plt.imshow(recorteB10, plt.get_cmap('Blues'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 10 a partir de la gaussiana (Banda Azul)\")\n", + "plt.imshow(estrellaB10.reshape(10, 10), plt.get_cmap('Blues'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Histograma (Banda Azul)" + ] + }, + { + "cell_type": "code", + "execution_count": 444, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Datos de FWHM de las estrellas para la Banda azul :\n", + "Desviación : 2.699911640184987\n", + "Media : 4.508060549859931\n", + "Mediana : 3.4823388160938347\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAVS0lEQVR4nO3de7SldX3f8ffHYSKoXFo4NTgXR4VFSlwCehYBtC2FkKLgTJtgC1UjlGRWjVZsbQzYLlihXV1oU01SjHQEAioLQbwNFyVTJEtARQccEBiMs+w0DKIMg3KTi4Pf/rGfaTaHfc7ZM2eevYfzvF9r7TXP5bef5/uwDudzntvvl6pCktRdLxp3AZKk8TIIJKnjDAJJ6jiDQJI6ziCQpI7bbdwFbK/99tuvli1bNu4yJOkF5bbbbnuoqiYGrXvBBcGyZctYu3btuMuQpBeUJP93unVeGpKkjjMIJKnjDAJJ6jiDQJI6ziCQpI4zCCSp41oPgiQLknw3yTUD1r04yRVJNiS5NcmytuuRJD3XKM4IzgDWT7PudOCnVXUA8DHgwyOoR5LUp9UgSLIYOAG4cJomK4BLm+mrgGOTpM2aJEnP1fabxX8KfBDYc5r1i4D7AKpqa5JHgH2Bh/obJVkJrARYunTpDhez7Mxrd/i7c7XxvBPGtm9JmklrZwRJTgQerKrb5rqtqlpVVZNVNTkxMbCrDEnSDmrz0tAbgeVJNgKfBY5J8pkpbe4HlgAk2Q3YG9jSYk2SpClaC4KqOquqFlfVMuBk4GtV9Y4pzVYD72qmT2raOIiyJI3QyHsfTXIusLaqVgMXAZ9OsgF4mF5gSJJGaCRBUFV/Dfx1M3123/KngLeNogZJ0mC+WSxJHWcQSFLHGQSS1HEGgSR1nEEgSR1nEEhSxxkEktRxBoEkdZxBIEkdZxBIUscZBJLUcQaBJHWcQSBJHWcQSFLHGQSS1HEGgSR1XJuD1++e5NtJ7khyd5I/HtDm1CSbk6xrPr/XVj2SpMHaHKHsaeCYqno8yULg5iRfqapvTWl3RVW9t8U6JEkzaC0ImkHoH29mFzYfB6aXpF1Mq/cIkixIsg54EFhTVbcOaPY7Se5MclWSJW3WI0l6vlaDoKqerapDgcXA4UleO6XJ1cCyqnodsAa4dNB2kqxMsjbJ2s2bN7dZsiR1zkieGqqqnwE3AsdPWb6lqp5uZi8E3jDN91dV1WRVTU5MTLRaqyR1TZtPDU0k2aeZ3gM4Drh3Spv9+2aXA+vbqkeSNFibTw3tD1yaZAG9wLmyqq5Jci6wtqpWA+9LshzYCjwMnNpiPZKkAdp8auhO4LABy8/umz4LOKutGiRJs/PNYknqOINAkjrOIJCkjjMIJKnjDAJJ6jiDQJI6ziCQpI4zCCSp4wwCSeo4g0CSOs4gkKSOMwgkqeMMAknqOINAkjrOIJCkjjMIJKnjDAJJ6rg2xyzePcm3k9yR5O4kfzygzYuTXJFkQ5Jbkyxrqx5J0mBtnhE8DRxTVYcAhwLHJzliSpvTgZ9W1QHAx4APt1iPJGmA1oKgeh5vZhc2n5rSbAVwaTN9FXBskrRVkyTp+VobvB4gyQLgNuAA4ONVdeuUJouA+wCqamuSR4B9gYembGclsBJg6dKlbZbcmmVnXjuW/W4874Sx7FfSC0erN4ur6tmqOhRYDBye5LU7uJ1VVTVZVZMTExM7tUZJ6rqRPDVUVT8DbgSOn7LqfmAJQJLdgL2BLaOoSZLU0+ZTQxNJ9mmm9wCOA+6d0mw18K5m+iTga1U19T6CJKlFbd4j2B+4tLlP8CLgyqq6Jsm5wNqqWg1cBHw6yQbgYeDkFuuRJA3QWhBU1Z3AYQOWn903/RTwtrZqkCTNzjeLJanjDAJJ6jiDQJI6ziCQpI4zCCSp4wwCSeo4g0CSOs4gkKSOMwgkqeNmDYIkH0myV5KFSW5IsjnJO0ZRnCSpfcOcEfxWVT0KnAhspDe2wB+2WZQkaXSGCYJt/RGdAHyuqh5psR5J0ogN0+ncNUnuBZ4E3p1kAniq3bIkSaMy6xlBVZ0JHAVMVtUvgCfojTUsSZoHhu2G+hXAbybZvW/Zp1qoR5I0YrMGQZJzgKOBg4HrgDcDN2MQSNK8MMzN4pOAY4EfV9VpwCH0xhaWJM0DwwTBk1X1S2Brkr2AB2kGnJ9JkiVJbkxyT5K7k5wxoM3RSR5Jsq75nD1oW5Kk9gxzj2BtMwj9J4HbgMeBbw7xva3AB6rq9iR7ArclWVNV90xpd1NVnbg9RUuSdp5Zg6Cq/qCZvCDJV4G9mvGIZ/veA8ADzfRjSdYDi4CpQSBJGqNpgyDJ62daV1W3D7uTJMvoDWR/64DVRya5A/gR8B+r6u4B318JrARYunTpsLuVJA1hpjOC/zHDugKOGWYHSV4GfB54f9NVRb/bgVdW1eNJ3gJ8CTjweTurWgWsApicnKxh9itJGs60QVBV/3SuG0+ykF4IXFZVXxiwj0f7pq9L8hdJ9quqh+a6b0nScGa6NPTbM31x0C/2Kd8PcBGwvqo+Ok2bXwV+UlWV5HB6TzFtmbVqSdJOM9OlobfOsK6AGYMAeCPwTuB7SdY1yz4ELAWoqgvovaPw7iRb6fVldHJVeelHkkZopktDp81lw1V1M5BZ2pwPnD+X/UiS5maYgWlenuSiJF9p5g9Ocnr7pUmSRmGYN4svAa6n1/EcwN8A72+pHknSiA0TBPtV1ZXALwGqaivwbKtVSZJGZpggeCLJvvRuEJPkCMBRyiRpnhimr6H/AKwGXpPkFmCC3tM+kqR5YMYgSLIA+CfN5yB6TwF9vxmpTJI0D8x4aaiqngVOqaqtVXV3Vd1lCEjS/DLMpaFbkpwPXEFvvGIAtqfTOUnSrmuYIDi0+ffcvmVDdzonSdq1DRMEp1fVD/sXJHl1S/VIkkZsmMdHrxqw7HM7uxBJ0njM1PvorwG/Duw9pSfSvYDd2y5MkjQaM10aOgg4EdiH5/ZE+hjw+y3WJEkaoZl6H/0y8OUkR1bVMIPVS5JegIa5R/AvkuyVZGGSG5JsTvKO1iuTJI3EMEHwW82QkicCG4EDgD9ssyhJ0ugMEwQLm39PAD5XVXY4J0nzyDBBcHWSe4E3ADckmQCemu1LSZYkuTHJPUnuTnLGgDZJ8udJNiS5M8nrt/8QJElzMWsQVNWZwFHAZNPP0M+BFUNseyvwgao6GDgCeE+Sg6e0eTNwYPNZCXxiO2qXJO0EwwxV+RLgD/i7X9KvACZn+15VPbCtP6KqegxYDyya0mwF8Knq+RawT5L9t6N+SdIcDXNp6C+BZ+idFQDcD/zX7dlJkmXAYcCtU1YtAu7rm9/E88OCJCuTrE2ydvPmzduza0nSLIYJgtdU1UeAXwBU1c/pjUswlCQvAz4PvL95+mi7VdWqqpqsqsmJiYkd2YQkaRrDBMEzSfbg74aqfA3w9DAbT7KQXghcVlVfGNDkfmBJ3/ziZpkkaUSGCYJzgK8CS5JcBtwAfHC2LyUJcBGwvqo+Ok2z1cDvNk8PHQE8UlUPDFe6JGlnmLUb6qpak+R2ek/+BDijqh4aYttvBN4JfC/JumbZh4ClzXYvAK4D3gJsoPc00mnbewCSpLkZZjwCqmoLcO32bLiqbmaWewlVVcB7tme7kqSda5hLQ5KkecwgkKSOGyoIkrwpyWnN9ESSV7VbliRpVIZ5s/gc4I+As5pFC4HPtFmUJGl0hhqPAFgOPAFQVT8C9myzKEnS6Az1QlnzdM+2F8pe2m5JkqRRGiYIrkzyv+h1CPf7wP8GPtluWZKkURnmhbI/SXIc8Ci9Ae3Prqo1rVcmSRqJYV8oWwP4y1+S5qFpgyDJYzT3BQapqr1aqUiSNFLTBkFV7QmQ5L8ADwCfptdlxNsBB4+RpHlimJvFy6vqL6rqsap6tKo+wXBDVUqSXgCGCYInkrw9yYIkL0rydpp3CiRJL3zDBMG/Bv4l8JPm87ZmmSRpHhjm8dGNeClIkuYtex+VpI4zCCSp41oLgiQXJ3kwyV3TrD86ySNJ1jWfs9uqRZI0vWG6of7PfdMv3o5tXwIcP0ubm6rq0OZz7nZsW5K0k0wbBEn+KMmRwEl9i7857Iar6uvAw3OoTZI0AjOdEdxL71HRVye5KckngX2THLQT939kkjuSfCXJr0/XKMnKJGuTrN28efNO3L0kaaYg+BnwIWADcDTwZ83yM5N8Yyfs+3bglVV1CPA/gS9N17CqVlXVZFVNTkxM7IRdS5K2mSkI/hlwLfAa4KPAbwBPVNVpVXXUXHfcdFfxeDN9HbAwyX5z3a4kaftMGwRV9aGqOhbYSK/DuQXARJKbk1w91x0n+dUkaaYPb2rZMtftSpK2zzDjEVxfVWuBtUneXVVvGuYv9ySX07uktF+STcA59Aa+p6ouoHcT+t1JtgJPAic3Q2JKkkZomC4mPtg3e2qz7KEhvnfKLOvPB86fbTuSpHZt1wtlVXVHW4VIksbDLiYkqeMMAknqOINAkjrOIJCkjjMIJKnjDAJJ6jiDQJI6ziCQpI4zCCSp4wwCSeo4g0CSOs4gkKSOMwgkqeMMAknqOINAkjrOIJCkjmstCJJcnOTBJHdNsz5J/jzJhiR3Jnl9W7VIkqbX5hnBJcDxM6x/M3Bg81kJfKLFWiRJ02gtCKrq68DDMzRZAXyqer4F7JNk/7bqkSQNNuvg9S1aBNzXN7+pWfbA1IZJVtI7a2Dp0qUjKW6+WHbmtWPb98bzThjLfrt4zBqd+fjz9YK4WVxVq6pqsqomJyYmxl2OJM0r4wyC+4ElffOLm2WSpBEaZxCsBn63eXroCOCRqnreZSFJUrtau0eQ5HLgaGC/JJuAc4CFAFV1AXAd8BZgA/Bz4LS2apEkTa+1IKiqU2ZZX8B72tq/JGk4L4ibxZKk9hgEktRxBoEkdZxBIEkdZxBIUscZBJLUcQaBJHWcQSBJHWcQSFLHGQSS1HEGgSR1nEEgSR1nEEhSxxkEktRxBoEkdZxBIEkdZxBIUse1GgRJjk/y/SQbkpw5YP2pSTYnWdd8fq/NeiRJz9fmmMULgI8DxwGbgO8kWV1V90xpekVVvbetOiRJM2vzjOBwYENV/bCqngE+C6xocX+SpB3QZhAsAu7rm9/ULJvqd5LcmeSqJEsGbSjJyiRrk6zdvHlzG7VKUmeN+2bx1cCyqnodsAa4dFCjqlpVVZNVNTkxMTHSAiVpvmszCO4H+v/CX9ws+/+qaktVPd3MXgi8ocV6JEkDtBkE3wEOTPKqJL8CnAys7m+QZP++2eXA+hbrkSQN0NpTQ1W1Ncl7geuBBcDFVXV3knOBtVW1GnhfkuXAVuBh4NS26pEkDdZaEABU1XXAdVOWnd03fRZwVps1SJJmNu6bxZKkMTMIJKnjDAJJ6jiDQJI6ziCQpI4zCCSp4wwCSeo4g0CSOs4gkKSOMwgkqeMMAknqOINAkjrOIJCkjjMIJKnjDAJJ6jiDQJI6ziCQpI5rNQiSHJ/k+0k2JDlzwPoXJ7miWX9rkmVt1iNJer7WgiDJAuDjwJuBg4FTkhw8pdnpwE+r6gDgY8CH26pHkjRYm2cEhwMbquqHVfUM8FlgxZQ2K4BLm+mrgGOTpMWaJElTtDl4/SLgvr75TcBvTNemqrYmeQTYF3iov1GSlcDKZvbxJN+fZp/7Tf1uh+xyx57Rnt/tEsc/4mPeZpc49jHp1LFP+fna3mN/5XQr2gyCnaaqVgGrZmuXZG1VTY6gpF1Ol48dun38HrvHPldtXhq6H1jSN7+4WTawTZLdgL2BLS3WJEmaos0g+A5wYJJXJfkV4GRg9ZQ2q4F3NdMnAV+rqmqxJknSFK1dGmqu+b8XuB5YAFxcVXcnORdYW1WrgYuATyfZADxMLyzmYtbLR/NYl48dun38Hns37bRjj3+AS1K3+WaxJHWcQSBJHTcvgiDJkiQ3Jrknyd1Jzhh3TaOWZEGS7ya5Zty1jFKSfZJcleTeJOuTHDnumkYlyb9vft7vSnJ5kt3HXVObklyc5MEkd/Ut+/tJ1iT5QfPv3xtnjW2Z5tj/e/Nzf2eSLybZZ0e3Py+CANgKfKCqDgaOAN4zoDuL+e4MYP24ixiDPwO+WlW/BhxCR/4bJFkEvA+YrKrX0nsgY64PW+zqLgGOn7LsTOCGqjoQuKGZn48u4fnHvgZ4bVW9Dvgb4Kwd3fi8CIKqeqCqbm+mH6P3y2DReKsanSSLgROAC8ddyygl2Rv4x/SePqOqnqmqn421qNHaDdijeQfnJcCPxlxPq6rq6/SeLuzX303NpcA/H2VNozLo2Kvqr6pqazP7LXrvau2QeREE/ZoeTA8Dbh1zKaP0p8AHgV+OuY5RexWwGfjL5rLYhUleOu6iRqGq7gf+BPhb4AHgkar6q/FWNRYvr6oHmukfAy8fZzFj9G+Ar+zol+dVECR5GfB54P1V9ei46xmFJCcCD1bVbeOuZQx2A14PfKKqDgOeYP5eGniO5lr4Cnph+ArgpUneMd6qxqt5GbVzz8Mn+U/0Lo9ftqPbmDdBkGQhvRC4rKq+MO56RuiNwPIkG+n18HpMks+Mt6SR2QRsqqptZ39X0QuGLvhN4P9U1eaq+gXwBeCoMdc0Dj9Jsj9A8++DY65npJKcCpwIvH0uvTLMiyBouq6+CFhfVR8ddz2jVFVnVdXiqlpG72bh16qqE38ZVtWPgfuSHNQsOha4Z4wljdLfAkckeUnz838sHblRPkV/NzXvAr48xlpGKsnx9C4JL6+qn89lW/MiCOj9VfxOen8Nr2s+bxl3URqJfwdcluRO4FDgv423nNFozoKuAm4Hvkfv/+V53d1CksuBbwIHJdmU5HTgPOC4JD+gd5Z03jhrbMs0x34+sCewpvmdd8EOb98uJiSp2+bLGYEkaQcZBJLUcQaBJHWcQSBJHWcQSFLHGQTSFEme7XsMeV2SZUmOntqza5JLkpyUZEWSL/UtP6sZdW/b/FuTrG6mNya5acp21vX3KimNmkEgPd+TVXVo32fjLO2/Qa/X222OBB5N8g+a+aOaNtvsmWQJQJJ/uLOKlnaUQSDNUVVtpveL/4Bm0SJ63Z1s6/LhKOCWvq9cCfyrZvoU4PJR1ClNxyCQnm+PvstCX+xb/o/6LxkBy/vW3QIc1XR38QN63QIf1XQRfQjwnb62nwd+u5l+K3B1WwciDWO3cRcg7YKerKpDByy/qapO3DaT5JK+dd+g95f/AnpdAXwbOJtel+j3VtVTfW23AD9NcjK9/oHm1E+MNFeeEUg7xy30guAo4JvNAEm7A0fz3PsD21wBfBwvC2kXYBBIO8d6euMCvAn4brNsHfBvee79gW2+CHwEuH4UxUkzMQiknaDpC/5WYEszPgD0LhG9mgFnBFX1WFV9uKqeGWGZ0kD2PipJHecZgSR1nEEgSR1nEEhSxxkEktRxBoEkdZxBIEkdZxBIUsf9P1tu9QzAdBq2AAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "FWHMB = np.array(FWHMB)\n", + "sigmaB = FWHMB.std()\n", + "mediaB = FWHMB.mean()\n", + "medianaB = np.median(FWHMB)\n", + "print(\"Datos de FWHM de las estrellas para la Banda azul :\")\n", + "print(\"Desviación :\", sigmaB)\n", + "print(\"Media :\", mediaB)\n", + "print(\"Mediana :\", medianaB)\n", + "plt.hist(FWHMB)\n", + "plt.xlabel('FHWM')\n", + "plt.ylabel('# de estrellas')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Para quienes ya \"dominaron\" el ejercicio inicial\n", + "\n", + "* Como ejercicio final, repita los ajustes realizados inicialmente, esta vez teniendo\n", + "en cuenta la incertidumbre de los datos, para ver si surge algún cambio en los resultados.\n", + "Encuentre una forma de programar sus rutinas de modo que sean fácilmente reutilizables;\n", + "con una buena implementación, este nuevo ajuste debe ser cuestión de un par de minutos\n", + "con pocos o ningún paso manual.\n", + "\n", + "# Repitiendo todos los análisis ahora con incertidumbre :\n", + "\n", + "* Se añade la incertidumbre al fit mediante el valor de sigma, incluyendo el array dado por la aplicacion de la funcion error ya definida al inicio, para cada pixel, repitiendo todos los calculos para las 10 estrellas BN y cada una de sus bandas R,G y B." + ] + }, + { + "cell_type": "code", + "execution_count": 816, + "metadata": {}, + "outputs": [], + "source": [ + "# Lsitas de valores de FWHM teniendo en cuenta las incertidumbres\n", + "FWHM_I=[]\n", + "FWHMR_I=[]\n", + "FWHMG_I=[]\n", + "FWHMB_I=[]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 1 con incertidumbre (blanco y negro)" + ] + }, + { + "cell_type": "code", + "execution_count": 817, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4oAAAFSCAYAAAC0fyGTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAyWklEQVR4nO3de7wdZX3v8e93Z292AgESjHJJwqWItuAFOBFRalXwEhSNr57WYtXipaa0qOChB0WPBW21HLXe6q1BEKwckCJoalFBpaKWoAEBIUFI5ZKEYAgJISGQ7Mvv/DGzdO1N9vWZWWs9O5/367Vee62ZeWZ+a9asPc9vPc8844gQAAAAAAANXe0OAAAAAADQWUgUAQAAAABDkCgCAAAAAIYgUQQAAAAADEGiCAAAAAAYgkQRAAAAADBEd7sDAABgMhYuXBgbNmyofL033XTT9yJiYeUrBgAgIySKAIAsbdiwQcuXL698vbbnVL5SAAAyQ6IIAMhWRLQ7BAAApiQSRQBAtkgUAQCoB4kiACBbJIoAANSDRBEAkKWIIFEEAKAm3B4DAAAAADAELYoAgGzRoggAQD1IFAEA2SJRBACgHiSKAIBskSgCAFAPEkUAQLZIFAEAqAeD2QAAAAAAhqBFEQCQJW6PAQBAfWhRBABkq5EsVvkYje35tq+zvcL2HbZPHzb/TNthe0752rY/a3uV7dtsH13j7gAAoDK0KAIAstWGFsV+SWdGxM2295R0k+1rI2KF7fmSXiHp/qblT5R0WPl4vqQvln8BAOhotCgCALLV6hbFiFgXETeXz7dIWilpbjn7U5LOktS8kkWSvhqFZZJm2d6/8h0BAEDFSBQBAJgE2wdLOkrSjbYXSVobEbcOW2yupNVNr9fod4klAAAdi66nAIBs1dT1dI7t5U2vl0TEkuYFbM+U9A1JZ6jojvp+Fd1OAQCYEkgUAQBZqnHU0w0RsWCkmbZ7VCSJl0TElbafLekQSbfalqR5km62fYyktZLmNxWfV04DAKCjkSgCALLV6sFsXGSCF0haGRGfLGP4paSnNS1zr6QFEbHB9lJJ77R9mYpBbDZHxLqWBg0AwCRwjeIuwPbB5XDt3eXr/7T9ly3Yrm1/xfYm2z+re3upbD/T9i22t9h+dzntk7Y/3ebQAHSO4yS9WdLx5f+LW2y/apTlr5b0a0mrJJ0v6W9aECMy1a7zdaex/SLbv0pcx6T23fDPIGflLXxe0u446mD7O7ZP6YA4DrS91fa0Eeafa/trNW279v8P2X8JclL+yryvpIGmyRdFxDvHKBeSDouIVTWGNy62/17S6yT9gaR/iIhzR1n8DyW9XNK8iHhsHOtu9/s8S9J1EXFkGc+LJD1P0vFtigfAGFrdohgRP5HkMZY5uOl5SDqt5rBQsV3wfN1Ww/dbRPxY0jPbG1X+IuKIdsdQl4g4sR3bLf83/GVEfL+M435JM9sRSyuQKLbeaxoHV1Vsd0dEf5XrHMUqFQnVqeNY9iBJ944nSazbOPfRQZIua3p9iKQ/i4i++iIDkKIN91HErmNXOl+3xWT2R4v3ISAp/+NusvHT9bRD2H667R/Z3mx7g+2vl9OvLxe5tWza/jPbL7G9xvZ7bT8o6Su2u2y/z/Z/237Y9uW29xnHdg+1/cOyzAbbl9ieNdLyEXFxRHxH0pYx1vt2SV+W9IIy7g+V099he5XtjbaX2j5gpPc52vLlvFfY/lW5z75Q7r+/LOe9xfZPbX/K9sOSzh3tvdr+oaSXSvpcuf1nqGhJ/Jty/mzb37b9UNmV9tu25421fwHUp457KJJ4YixT7XxdrvsY2zfYfsT2Otufs73bCMs2umYutv1AufzfjnddZdnTbN8t6e7R9ltTmXvLfXibpMe8k26htl9u+87yc/mchrX8236b7ZXlOfx7tg8aa7+U5d5altti+9e2/2qUZafZ/qfy87nH9js9tCvxiOsq6y0/Gba+sP308vmrbK8oy65t7HPbc8o6ySMu6ko/tt3VtN9eNoHP5VTbd5fLfN4uRuea6LFn+wjb15bx/Mb2+8vpvbY/XR43D5TPe8t5je/KmbbXlzG+dZRt/LbbZWPf2f5E+fneY/vEpmX3cXEp1APl/G82zTvJxSUEj9j+L9vPaZo3/Li7VNKBkv69PFbP8pO7ix/i4v/DFtvXSprTtL4hx/VOPqNzbf+b7a+V5X9p+xm2zy73yWrbw0fXPtT2z2w/avtbLv+XNMX1dtv3S/phOX1C3wMSxc7x95KukTRbxah4/yxJEfFH5fznRsTMiPh6+Xo/SfuoaAVbLOldKrqYvFjSAZI2Sfr8OLZrSf9YlvkDFaPznZv6ZiLiAhW/Yt5Qxn2O7ePLbb1e0v6S7lPZgrez9zna8rbnSLpC0tmSniLpV5JeOCyM56u4NmhfSR8Z7b1GxPGSfizpneX27xq2ri5JX1Gxvw+U9LikzyXsIgAVIFFEG0yp83VpQNJ7VFRqXyDpBI19Pe1LJR2m4rYw721Udse5rtepOEcfPsp+G+4Nkl4tadbwlpGyTnClpP9Tbve/VVxP3Ji/SMUtbP5Y0lNVnO8vHeP9NayXdJKkvSS9VdKnbB89wrLvkHSipCMlHV2+z8mua7gLJP1VROwp6VkqK/6SzlRxf9anqqjvvF/Szv6RjedzOUnFJTfPUVH3emU5fdzHnu09JX1f0nfL5Z8u6Qfl7A9IOlbF/nmupGNUfGYN+0naW8W9Zt8u6fO2Z+9sOzvxfBV1wTmSPibpgkaiK+lfJe0u6QgVA499qoz1KEkXSvorFXXJf5G0tJG8lpqPuzdIul9Fb4OZEfGxncTx/yTdVMbx95Imeh3la8p4Z0v6haTvqaiDzpX04TLGZn8h6W0q6sn9kj47bP6LVXxmr5zM94BEsfW+Wf5q0Xi8o5zep+IkckBEPFFeBzOaQUnnRMT2iHhcRVL2gYhYExHbVXyB/8RjXIwdEasi4tpyPQ9J+qSKg6oOb5R0YUTcXMZ4tooWx4MnsfyrJN0REVeWJ4zPSnpwWPkHIuKfI6I/Ih5Pea8R8XBEfCMitkXEFhWJZ137CQDQfrvM+ToiboqIZeX58l4VldGx1v2hiHgsilF/v6KiQj3edf1jRGws98d4fTYiVo9QplEnuCKKy0U+raF1glPLba4s6wwflXTkWK0p5fv5j4j47yj8SMWPBC8aYfHXS/pM+dluknRewrqG65N0uO29ImJTRNzcNH1/SQdFRF9E/Dh28ovXOD+X8yLikSiuu7tORUI30WPvJEkPRsQ/ld+PLRFxYznvjZI+HBHry/V8SMXgYM3v8cPl+7ha0laN/1rV+yLi/IgYkHRxuU/2tb2/iuT91HK/9ZX7Xip+uPmXiLgxIgYi4mJJ21Uksw2jHXdD2D5QRaL9wXJfXS/p38cZf8OPI+J75XH6byoSuvPK4/oySQcPa83914i4PYrLvD4o6fUeOrDOueX3tPG/Z0LfAxLF1ntdRMxqepxfTj9LxS82P3MxStXbxljPQxHxRNPrgyRd1TihSVqp4tejfUdbie19bV/mohvDo5K+pqZm8oodoKJVUJIUEVslPaziV5KJLn+ApNVN80LFL2rNVje/SHmvtne3/S+27yvLXi9plkcY5QpAawQtiqjPLnO+Lru3fdv2g+W6PzqOdTefY+9TcV4e77pWa+JGK7OzOkHz8gdJ+kzTPt+o4jMcqf7xW7ZPtL3MRTfKR1QkpSPtmyFxDI95gusa7n+Wy99Xdm18QTn94yquR73GRXfW943wPsbzuTQn19tUDtIywWNvvooW3Z0ZUq9T03FTejiGthb/NoZx+G3sEbGtfDqzjGdjmbgPd5CkM5t/ECqXb45pIsfqAZI2xdCxOe4baeER/Kbp+eMq7us70PRaGrpPhn8PezT0s0n6HpAodoiIeDAi3hERB6hoAv+Cy37pIxUZ9nq1pBOHndSmR8RYN3b+aLmuZ0fEXpLepDFG9EvwgIqDVJJkew8VTf0jxTja8utUdPlpzHPz69LwfZTyXs9U8avW88uyja4yde0rAONAoohWm6Ln6y9KulPFyKN7qeieNta65zc9P1DFOXu865rMF220Muua4ynrBM3xrVbRbbN5n8+IiP8abYNlF8RvSPqEpH0jYpaKW96MtG+G1E2GxTTWuh5T0T2ysfx+zSuOiJ9HxCIVXSe/KenycvqWiDgzIn5P0msl/S/bJ+wktsl8xg0TOfZWS/q9EeYNqddp6HFTl9WS9vHOr6lcLekjw46L3SOiuTvm8ONurONwdllfbTiw6fnwz3iaihbDFMO/h32SNjRNa453wt8DEsUOYftP/bvBUTap+GAHy9e/0chfuoYvSfpIo/nY9lPLvshj2VNF0/5m23Ml/e8x4uyxPV3FsdNte/oEWtUulfRW20eW/zA/KunGKLpASE9+n6Mt/x+Snm37dWV3ndNU9G2v7L3upOzjkh5xcaHwORMoC6AmJIpotSl6vt5T0qOSttr+fUl/PY54Plj2tjlCxfV2jWsLJ7Ou8ey30fyHpCNs/3FZJ3i3htYJviTp7DJW2d7b9p+OY727SeqV9JCkfhcDpAwfTKTZ5ZJOtz23TEzeO4F13Vq+hyPLz+3cxgzbu9l+o+29o+iC+KjKY87FYCxPL5PjzSpapwf1ZJP5XJrLjvfY+7ak/W2f4WLwmj1tP7+cd6mk/1Me83Mk/Z2K1snaRMQ6Sd9R8YPO7PJ70fix/3xJp9p+vgt72H61i+ssRzLisRoR90laLulD5Wf2hyquOWy4S9L0chs9Kq7P7N3JqibiTbYPt727imsYr2hqgRxuwt8DEsXWa4yU1HhcVU5/nqQbbW+VtFTS6RHx63LeuZIuLpuKXz/Cej9TlrvG9hZJy1Rc2DuWD6m44Hqzin+0V46x/PkqEqY3qLgo+XEN7V8+oiiGGf+gil/U1kk6VNLJTYucq6b3OdryEbFB0p+quGD5YUmHq/hybq/wvTb7tKQZKn6lWabiIm0AbVRHkkiiiCa70vn6byX9uYoRUs/X75K+0fxIRZfHH0j6RERck7CuczX2fhtRU53gPBV1gsMk/bRp/lWS/q+ky1x0nbxdxXVrY613i4qk83IVPwr8uYrPbiTnq7ju8DYVA5FcrWKAkYGx1hXFIHofVjEQzN2Shl/7+mZJ95bxn6riej+V7/X7KhK5GyR9ISKu20lsk/lcGsZ97JXv8+UqEqQHy/fy0nL2P6ioq90m6ZeSbi6n1e3NKlra7lQxoNAZZazLVQxA9DkVn8kqSW8ZY13/qCLZfcRNo/02+XMV3+eNKhoVvtqYERGbVQwg9GUVveMe05Mvm5qof5V0kYp9PV3FMbZTk/kemJMipgIXQ0GvkfTGEf5BAphinvvc58Y111wz9oITtN9++90UEQsqXzEwBbgYUO4eST2R8X3lWqFsNfxSRIzrVhxAp6FFEdmy/Urbs8puqY2+9svaHBaAFqJFEUCnsD3Dxf0Ou8sumudIumqsckCnIlFEzl6gYmStDSq6OLwuJjbUNoDMkSgC6CBW0U1zk4qupytVXIcHZGnUe/YAnSwizlV1NxsGkCESO6C1ygHlGPF7J6K4LcPz2h0HUBUSRQBAtkgUAQCoB11PAQAAAABDtLRF0XYUt3mZnK6u9Ly2inWkGhzc2e1tWldekqZNG++tD3cu5XOsah1TpSWh3cdD6rEwMDCgwcFBuiGh5bimELsC2xzkwBQUER1fd2p1oqienp5Jl58xY0ZyDDNnzkxeR6qtW7cmld+2bVtyDHvvvXdS+d7e1PuDpicoVSTMnVDJfPzxtPF3Uo+H1O/EI488klQeSNEJ32EAAKYirlEEAGSLRBEAgHq0vx8mAAAAAKCj0KIIAMgWLYoAANQjqUXR9kLbv7K9yvb7qgoKAIDxaAxoU+UDqBN1JwC5mHSLou1pkj4v6eWS1kj6ue2lEbGiquAAABgJiR1yQ90JQE5SWhSPkbQqIn4dETskXSZpUTVhAQAwNloUkRnqTgCykZIozpW0uun1mnLaELYX215uezknYAAAsAubcN2pZZEBwDC1D2YTEUskLZGkrq4uMkUAQGX4ARJTUXPdyTYHOYC2SEkU10qa3/R6XjkNAICWIFFEZqg7AchGStfTn0s6zPYhtneTdLKkpdWEBQDA2LhGEZmh7gQgG5NuUYyIftvvlPQ9SdMkXRgRd1QWGQAAoyCxQ26oOwHISdI1ihFxtaSrK4oFAABgSqPuBCAXtQ9mAwBAXWhRBACgHi1NFLu7u/WUpzxl0uV7enqSY+jqSrksUxocHEyOobe3N3kdqaZPn55Uvru7/b8xDAwMJK+jv7+/gkjSpB5TVRyTQK5IFAEAqEf7a/sAAEwSiSIAAPUgUQQAZItEEQCAeqT1wwQAAAAATDm0KAIAssTtMQAAqA+JIgAgWySKAADUg0QRAJAtEkUAAOrBNYoAAAAAgCFoUQQAZIsWRQAA6kGiCADIFokiAAD1IFEEAGSJUU8BAKgPiSIAIFskigAA1IPBbAAAGCfb821fZ3uF7Ttsn15O/7jtO23fZvsq27Oaypxte5XtX9l+ZduCBwBgAkgUAQDZanQ/rfIxhn5JZ0bE4ZKOlXSa7cMlXSvpWRHxHEl3STpbksp5J0s6QtJCSV+wPa2m3QEAQGVIFAEA2Wp1ohgR6yLi5vL5FkkrJc2NiGsior9cbJmkeeXzRZIui4jtEXGPpFWSjqllZwAAUCGuUQQAZKud1yjaPljSUZJuHDbrbZK+Xj6fqyJxbFhTTgMAoKORKAIAslTjqKdzbC9ver0kIpY0L2B7pqRvSDojIh5tmv4BFd1TL6kjMAAAWqWliaJt9fb2Trp8X19fcgybNm1KKj8wMJAcw5577plUfu7c9B+jd+zYkVS+qyu913JqDIODg8kxpH6eVeyH1HV0d6d9jTvhOwF0mA0RsWCkmbZ7VCSJl0TElU3T3yLpJEknxO8y2LWS5jcVn1dOA5AZ220tX8U6qvhxLXUdjFadD65RBABkq9XXKLqopV0gaWVEfLJp+kJJZ0l6bURsayqyVNLJtnttHyLpMEk/q3xHAABQMbqeAgCy1YZfpo+T9GZJv7R9Sznt/ZI+K6lX0rXlL/7LIuLUiLjD9uWSVqjoknpaRNAMDwDoeCSKAIBstTpRjIifSNpZ36+rRynzEUkfqS0oAABqQKIIAMgW17oAAFCPSV+jaHu+7etsr7B9h+3TqwwMAABgKqHuBCAnKS2K/ZLOjIibbe8p6Sbb10bEiopiAwBgRDXeHgOoC3UnANmYdKIYEeskrSufb7G9UsVNhPlnBwBoCRJF5IS6E4CcVHKNou2DJR0l6cYq1gcAwHiQKCJX1J0AdLrkRNH2TBU3Hj4jIh7dyfzFkhZL0rRp01I3BwAAkLWJ1J0AoF2SEkXbPSr+0V0SEVfubJmIWCJpiST19vby0y8AoDK0KCI3E6072eYgB9AWk04UXdxR+AJJKyPik9WFBADA+JAoIifUnQDkZNK3x5B0nKQ3Szre9i3l41UVxQUAwKgao55W/QBqRN0JQDZSRj39iSRXGAsAABNCYoecUHcCkJOUFkUAAAAAwBRUye0xAABoB1oUAQCoR8sTxcHBwUmXLa4BT7P77rsnle/uTt9lM2bMSCrf1ZXeEHzAAQcklX/00SeN5j1hu+22W1L5lGOpobe3N6l8X19fcgyppk+fnlQ+9XPYsmVLUnkgBYkigPGo4hZtqefL1DqHlF4H7O/vT45h+/btSeWrqDtVUQfE2GhRBABki0QRAIB6kCgCALLEKKUAANSHwWwAAAAAAEPQoggAyBYtigAA1INEEQCQLRJFAADqQaIIAMgWiSIAAPUgUQQAZItEEQCAejCYDQAAAABgCFoUAQBZ4vYYAADUh0QRAJAtEkUAAOpBoggAyBaJIgAA9SBRBABki0QRAIB6MJgNAAAAAGAIWhQBANmiRREAgHqQKAIAssSopwAA1IdEEQCQLRJFAADq0dJEMSI0ODiYVD5VV1faZZk9PT3JMXR3p+321PKSkj4HSZo/f35yDKnv46GHHkqOYdu2bUnlU/ejJO3YsSOp/MMPP5xUvq+vL6k8AAB1S62/zZgxIzmGOXPmJJXfb7/9kmPYY489kso/8sgjyTGsW7cuqfzGjRuTY9i+fXtSeX5kHB9aFAEA2eJkDwBAPUgUAQDZIlEEAKAeJIoAgGyRKAIAUA8SRQBAlhj1FACA+qRdGSzJ9jTbv7D97SoCAgAAmMqoOwHIQRUtiqdLWilprwrWBQDAuNGiiExRdwLQ8ZJaFG3Pk/RqSV+uJhwAAMav0f20ygdQJ+pOAHKR2qL4aUlnSdozPRQAACaGxA4Z+rSoOwHIwKRbFG2fJGl9RNw0xnKLbS+3vbyKm5MDANBAiyJyMpm6U4tCA4AnSel6epyk19q+V9Jlko63/bXhC0XEkohYEBELurqSx84BAADI1YTrTq0OEAAaJp25RcTZETEvIg6WdLKkH0bEmyqLDACAUdTRmjhWi6Lt+bavs73C9h22Ty+n72P7Wtt3l39nl9Nt+7O2V9m+zfbRLdg16FDUnQDkhCY+AEC22tD1tF/SmRFxuKRjJZ1m+3BJ75P0g4g4TNIPyteSdKKkw8rHYklfrGM/AABQtSpuj6GI+E9J/1nFugAAGK9WX1MYEeskrSufb7G9UtJcSYskvaRc7GIV58T3ltO/GkWgy2zPsr1/uR7swqg7Aeh0lSSKAAC0QzsHn7F9sKSjJN0oad+m5O9BSfuWz+dKWt1UbE05jUQRANDRSBQBABhqzrDRJpdExJLmBWzPlPQNSWdExKO2fzsvIsI2w6cCALK2yyWK06ZNSyrf3Z2+y3p7e5PKT58+PTmGPfdMu33TiSeemBzD7Nmzk8rffvvtyTEsX5428vjWrVuTY9hjjz2Sym/bti05hhTNFWSg1WpqUdww2miTtntUJImXRMSV5eTfNLqU2t5f0vpy+lpJ85uKzyunAbuMKs4TPT09SeVnzZqVHMOzn/3spPLHHXdccgz77rvv2AuN4q677kqO4ac//WlS+RUrViTH0N/f39byuwoGswEAZKlNo55a0gWSVkbEJ5tmLZV0Svn8FEnfapr+F+Xop8dK2sz1iQCAHOxyLYoAgKmjDdcoHifpzZJ+afuWctr7JZ0n6XLbb5d0n6TXl/OulvQqSaskbZP01pZGCwDAJJEoAgAwThHxE0kj9aM7YSfLh6TTag0KAIAakCgCALLVzlFPAQCYykgUAQDZIlEEAKAeJIoAgCyNZ/AZAAAwOSSKAIBskSgCAFAPbo8BAAAAABiCFkUAQLZoUQQAoB4kigCAbJEoAgBQDxJFAEC2SBQBAKgHiSIAIEuMegoAQH0YzAYAAAAAMAQtigCAbNGiCABAPUgUAQDZIlEEAKAeJIoAgGyRKAIAUI+WJ4oDAwOTLjtt2rTk7Xd1pV2WmVpeknp7e5PKT58+PTmGuXPnJpV/9atfnRzDgQcemFT+hz/8YXIMd955Z1L5TZs2JceQekx1d6d9jVPL204qD6QgUQR2Dal1wFmzZiXHcMQRRySVf81rXpMcw6GHHppU/oYbbkiO4cEHH0wqf//99yfHsGXLlqTyKfmItOucexjMBgAAAAAwBF1PAQBZ4vYYAADUh0QRAJAtEkUAAOpBoggAyBaJIgAA9Ui6RtH2LNtX2L7T9krbL6gqMAAAgKmGuhOAXKS2KH5G0ncj4k9s7yZp9wpiAgBgXGhRRIaoOwHIwqQTRdt7S/ojSW+RpIjYIWlHNWEBADA2EkXkhLoTgJykdD09RNJDkr5i+xe2v2x7j4riAgBgVI1RT6t+ADWi7gQgGymJYrekoyV9MSKOkvSYpPcNX8j2YtvLbS8fHBxM2BwAAEORKCIzE647tTpAAGhISRTXSFoTETeWr69Q8c9viIhYEhELImJBV1fS2DkAAAA5m3DdqaXRAUCTSWduEfGgpNW2n1lOOkHSikqiAgBgHGhRRE6oOwHISeqop++SdEk5atevJb01PSQAAMaHxA4Zou4EIAtJiWJE3CKJbhEAgLYgUURuqDsByEVqiyIAAG1BV1EAAOrD6DIAAAAAgCFa2qIYEUq5RcZUGTV1KtwmpBM+i56enuR12K4gkjSpLSL9/f1J5TthHwCTRYsisGtIPVdVUW+ZNm1aUvnddtstOYbe3t62x9AJdUC0Bl1PAQDZIlEEAKAeJIoAgGyRKAIAUA8SRQBAtkgUAQCoB52MAQAAAABD0KIIAMgSt8cAAKA+JIoAgGyRKAIAUA8SRQBAtkgUAQCoB9coAgAAAACGoEURAJAtWhQBAKgHiSIAIFskigAA1INEEQCQJUY9BQCgPlyjCADIViNZrPIxFtsX2l5v+/amaUfaXmb7FtvLbR9TTrftz9peZfs220fXuDsAAKgMiSIAABNzkaSFw6Z9TNKHIuJISX9XvpakEyUdVj4WS/pia0IEACANXU8BANlqR9fTiLje9sHDJ0vaq3y+t6QHyueLJH01ikCX2Z5le/+IWNeaaAEAmBwSRQBAtmpKFOfYXt70eklELBmjzBmSvmf7Eyp667ywnD5X0uqm5daU00gUAQAdjUQRAJCtmhLFDRGxYIJl/lrSeyLiG7ZfL+kCSS+rPjQAAFqj5Yliykm9v78/efuDg4NJ5Xt6epJjeOKJJ5LKd3enf2xr165NKn/NNdckx7DffvsllV+5cmVyDNu3b08qX8Xx0NfX19byQK46bNTTUySdXj7/N0lfLp+vlTS/abl55TQAE5BaB9y8eXNyDHfeeWdS+e9+97vJMRxwwAFJ5VPfgyTde++9SeW3bduWHMPAwEBS+Q46d3Q0BrMBACDdA5JeXD4/XtLd5fOlkv6iHP30WEmbuT4RAJADup4CALLVjl+FbV8q6SUqrmVcI+kcSe+Q9Bnb3ZKeUDHCqSRdLelVklZJ2ibprS0PGACASSBRBABkq02jnr5hhFn/YyfLhqTT6o0IAIDqkSgCALLFdSYAANQj6RpF2++xfYft221fant6VYEBADCWxoA2VT6AOlF3ApCLSSeKtudKerekBRHxLEnTJJ1cVWAAAABTCXUnADlJ7XraLWmG7T5Ju6sY9Q0AgNrRAohMUXcCkIVJtyhGxFpJn5B0v6R1Kob8Tr+5HgAA40TXU+SEuhOAnKR0PZ0taZGkQyQdIGkP22/ayXKLbS+3vTz1ZvcAADQjUUROJlN3anWMANCQMpjNyyTdExEPRUSfpCslvXD4QhGxJCIWRMSCrq6ksXMAABiCRBGZmXDdqeURAkApJXO7X9Kxtne3bUknSFpZTVgAAABTDnUnANmY9GA2EXGj7Ssk3SypX9IvJC2pKjAAAMZCCyByQt0JQE6SRj2NiHMknVNRLAAAjBtdRZEj6k4AcpF6ewwAANqGRBEAgHowugwAAAAAYIisWhQHBgbavo7t27cnx9DT05NU/vHHH0+OIXUdS5cuTY5h9uzZSeU3bdqUHMPmzZuTyldxPDzxxBNJ5YvxECavr68vqTwtOmgnjj+g81XxPe3v708qv3HjxuQYbr311rbHMHPmzLbHsHr16qTyW7duTY6BW+61RlaJIgAAzUgUAQCoB4kiACBbJIoAANSDRBEAkCVGPQUAoD4MZgMAAAAAGIIWRQBAtmhRBACgHiSKAIBskSgCAFAPEkUAQLZIFAEAqAeJIgAgWySKAADUg8FsAAAAAABD0KIIAMgSt8cAAKA+JIoAgGyRKAIAUA8SRQBAtkgUAQCoB4kiACBbJIoAANSDwWwAAAAAAEPQoggAyBYtigAA1INEEQCQJUY9BQCgPi1PFAcHB9tStip9fX1tX0d3d/rH1t/fn1T+7rvvTo5h9uzZSeUff/zx5BhSbd26NXkdO3bsSCrf1ZXWg3xgYCCpPNBOJIrAriG1DlhFnWHdunVJ5Tdt2pQcw7Rp05LKV1GPTd2XqfUeqTNygl0B1ygCAAAAAIag6ykAIFu0KAIAUA8SRQBAtkgUAQCoB4kiACBbJIoAANRjzGsUbV9oe73t25um7WP7Wtt3l3/TRiUBAGCCGqOeVv0AUlF3AjAVjGcwm4skLRw27X2SfhARh0n6QfkaAAAA1J0ATAFjJooRcb2kjcMmL5J0cfn8YkmvqzYsAADGRosiOhF1JwBTwWSvUdw3Iho3k3lQ0r4jLWh7saTFUvr93gAAaEZih4xMqu4EAO2SPJhNRITtEc/UEbFE0hJJ6unp4YwOAKgMiSJyNJG602jLAUCdJpso/sb2/hGxzvb+ktZXGRQAAONBooiMUHcCkJXJ9gVdKumU8vkpkr5VTTgAAHS2nY1oWU5/l+07bd9h+2NN08+2vcr2r2y/svURo0NQdwKQlTFbFG1fKuklkubYXiPpHEnnSbrc9tsl3Sfp9XUGCQDAcG0cfOYiSZ+T9NXGBNsvVTFYyXMjYrvtp5XTD5d0sqQjJB0g6fu2nxERAy2PGi1D3QnAVDBmohgRbxhh1gkVxwIAwIS0I1GMiOttHzxs8l9LOi8itpfLNLoVLpJ0WTn9HturJB0j6YZWxYvWo+4EYCpgGFIAQLY66PYYz5D0Its32v6R7eeV0+dKWt203JpyGgAAHS151FMAANqlphbFObaXN71eUo5COZpuSftIOlbS81R0Mfy9OoIDAKAVWp4optxLsa+vL3n7PT09SeVnzJiRHMPAQNqlKQ888EByDN3daR+97eQYHn300aTyqe+hCoODg21fRxXfCwBDbIiIBRMss0bSlVFkrj+zPShpjqS1kuY3LTevnAZgAlJ/FOrv70+OIfV8/cQTTyTHkFr/quLHtdT9wGjV+aDrKQAgWx3U9fSbkl4qSbafIWk3SRtUjHR5su1e24dIOkzSz9LfOQAA9Wp/kwwAAJPQrlFPRxjR8kJJF5a3zNgh6ZSydfEO25dLWiGpX9JpjHgKAMgBiSIAIFttGvV0pBEt3zTC8h+R9JH6IgIAoHp0PQUAAAAADEGLIgAgWwyKAABAPUgUAQDZIlEEAKAeJIoAgCy1azAbAAB2BSSKAIBskSgCAFAPBrMBAAAAAAxBiyIAIFu0KAIAUA8SRQBAtkgUAQCoB4kiACBbJIoAANSDRBEAkCVGPQUAoD4MZgMAAAAAGIIWRQBAtmhRBACgHiSKAIBskSgCAFCPliaK/f39Wr9+/aTLT58+PTmGnp6epPLbtm1LjqG/vz+pfFdXeo/hwcHBtscwMDCQfQyp+7ETYqhiPwLtQqIIoFWqOOcDOaFFEQCQLRJFAADqQVMCAAAAAGAIWhQBAFni9hgAANSHRBEAkC0SRQAA6jFm11PbF9peb/v2pmkft32n7dtsX2V7Vq1RAgCwE41WxSofQCrqTgCmgvFco3iRpIXDpl0r6VkR8RxJd0k6u+K4AAAAcnWRqDsByNyYiWJEXC9p47Bp10RE4x4PyyTNqyE2AABGRYsiOhF1JwBTQRXXKL5N0tdHmml7saTFFWwHAIAhSOyQKepOADpeUqJo+wOS+iVdMtIyEbFE0pJyec7oAIBK0AKIHFF3ApCLSSeKtt8i6SRJJwRnagBAG3D6QU6oOwHIyaQSRdsLJZ0l6cURsa3akAAAAKYW6k4AcjNmomj7UkkvkTTH9hpJ56gYqatX0rW2JWlZRJxaY5wAADwJjTLoRNSdAEwFYyaKEfGGnUy+oIZYAACYEBJFdCLqTgCmgipGPQUAoC1IFAEAqAeJIgAgS4x6CgBAfVqaKHZ1dWnGjBmTLj9r1qzkGFK2L0mPPvpocgyDg4NJ5ffaa6/kGFLfR1dXV3IMAwMDSeVT96OU3hrR398/9kJjSN0PqTHMnDkzqTwAAACmHloUAQDZokURAIB6kCgCALJFoggAQD1IFAEA2SJRBACgHiSKAIBskSgCAFCP9BFJAAAAAABTCi2KAIAscXsMAADqQ6IIAMgWiSIAAPUgUQQAZItEEQCAepAoAgCyRaIIAEA9GMwGAAAAADAELYoAgGzRoggAQD1oUQQAZKkx6mnVj7HYvtD2etu372TembbD9pzytW1/1vYq27fZPrqGXQEAQOVIFAEA2WpHoijpIkkLh0+0PV/SKyTd3zT5REmHlY/Fkr6Y/KYBAGgBEkUAACYgIq6XtHEnsz4l6SxJzdnmIklfjcIySbNs79+CMAEASMI1igCAbNV0jeIc28ubXi+JiCWjFbC9SNLaiLjVdvOsuZJWN71eU05bV1WwAADUgUQRAJCtmhLFDRGxYLwL295d0vtVdDsFAGBKaGmiGBHq6+ubdPnt27dXGM3kPPbYY8nr2LFjR1L5rq70HsOp6+jv7297DFVIfR8DAwPJMQwODrY1BkaNRM465Pg9VNIhkhqtifMk3Wz7GElrJc1vWnZeOQ0AgI5GiyIAIEsTGHym7jh+Kelpjde275W0ICI22F4q6Z22L5P0fEmbI4JupwCAjtf+Jh0AADJi+1JJN0h6pu01tt8+yuJXS/q1pFWSzpf0Ny0IEQCAZLQoAgCy1Y4WxYh4wxjzD256HpJOqzsmAACqNmaL4kRuLAwAQCu16T6KwKioOwGYCsbT9fQijf/GwgAAtAyJIjrURaLuBCBzYyaKE7yxMAAALUOiiE5E3QnAVDCpwWyabyxccTwAAABTDnUnALmZ8GA2E72xsO3FkhZPdDsAAIyGFkDkgroTgBxNZtTTEW8sHBEPDl84IpZIWiJJXV1dnNEBAJUhUUQmJl13ss1BDqAtJpwojnZj4QrjAgBgTCSKyAF1JwA5Gs/tMSZyY2EAAFqGwWzQiag7AZgKxmxRnMiNhQEAAHZ11J0ATAWTuUYRAICOQAsgAAD1IFEEAGSJrqIAANSHRBEAkC0SRQAA6tHSRDEiNuzYseO+URaZI2nEEcA2bGjJ4GCjxtAio8awcePGtsewC2x/l4nhiSeeSI3hoOqiAQAMs0HSpOtOLUIM7d8+MeQVQxZ1p1Ynik8dbb7t5RGxoFXxEEPnxtDu7RNDZ8UAjIQWRUx11J3yiKHd2ycGYqgDXU8BANkiUQQAoB4kigCAbJEoAgBQj05LFJe0OwARQ0O7Y2j39iViaOiEGIAnYdRTQFJn/I8mhvZvXyKGBmKoiDnJAgBytNtuu8V+++1X+XpXr15901S4tgQAgBSd1qIIAMC48WMnAAD1IFEEAGSLRBEAgHp0tTuABtsLbf/K9irb72vD9ufbvs72Ctt32D691TGUcUyz/Qvb327T9mfZvsL2nbZX2n5BG2J4T/kZ3G77UtvTW7DNC22vt31707R9bF9r++7y7+w2xPDx8rO4zfZVtme1OoameWfaDttz6owBmIjGdYpVPoAcUG8aEgt1J+pO1J1q0BGJou1pkj4v6URJh0t6g+3DWxxGv6QzI+JwScdKOq0NMUjS6ZJWtmG7DZ+R9N2I+H1Jz211LLbnSnq3pAUR8SxJ0ySd3IJNXyRp4bBp75P0g4g4TNIPytetjuFaSc+KiOdIukvS2W2IQbbnS3qFpPtr3j4wISSK2BVRb3oS6k7UnZpRd6pIRySKko6RtCoifh0ROyRdJmlRKwOIiHURcXP5fIuKL/ncVsZge56kV0v6ciu327T9vSX9kaQLJCkidkTEI20IpVvSDNvdknaX9EDdG4yI6yVtHDZ5kaSLy+cXS3pdq2OIiGsior98uUzSvFbHUPqUpLMkUYsGgPaj3lSi7vRb1J1+N426U0U6JVGcK2l10+s1asM/mwbbB0s6StKNLd70p1UcUIMt3m7DIZIekvSVsgvHl23v0coAImKtpE+o+PVlnaTNEXFNK2Nosm9ErCufPyhp3zbF0fA2Sd9p9UZtL5K0NiJubfW2gdHU0ZpIiyIyQb3pdz4t6k7UnUZG3SlBpySKHcP2TEnfkHRGRDzawu2eJGl9RNzUqm3uRLekoyV9MSKOkvSY6u8yMETZl32Rin+8B0jaw/abWhnDzkRRe2xbDdL2B1R087mkxdvdXdL7Jf1dK7cLjBeJItBe7ao3ldum7iTqTiOh7pSuUxLFtZLmN72eV05rKds9Kv7ZXRIRV7Z488dJeq3te1V0ITne9tdaHMMaSWsiovGL4BUq/vm10ssk3RMRD0VEn6QrJb2wxTE0/Mb2/pJU/l3fjiBsv0XSSZLeGK2vxR6q4sRza3lszpN0s+3qb14HTAKJInZR1JsK1J0K1J2Goe5UjU5JFH8u6TDbh9jeTcUFuEtbGYBtq+hfvjIiPtnKbUtSRJwdEfMi4mAV7/+HEdHSX4Mi4kFJq20/s5x0gqQVrYxBRbeJY23vXn4mJ6h9F6gvlXRK+fwUSd9qdQC2F6roUvPaiNjW6u1HxC8j4mkRcXB5bK6RdHR5rABtR6KIXdQuX2+SqDs1oe7UhLpTdToiUYzigtN3SvqeigP78oi4o8VhHCfpzSp+jbqlfLyqxTF0gndJusT2bZKOlPTRVm68/EXuCkk3S/qlimN0Sd3btX2ppBskPdP2Gttvl3SepJfbvlvFr3XntSGGz0naU9K15TH5pTbEAADoINSbOg51J+pOU7LuZH49BQDkqKenJ2bNmlX5ejds2HBTRCyofMUAAGSku90BAAAwGXQVBQCgPiSKAIBskSgCAFCPjrhGEQAAAADQOWhRBABkixZFAADqQaIIAMgWiSIAAPUgUQQAZItEEQCAepAoAgCyxKinAADUh8FsAAAAAABD0KIIAMgWLYoAANSDRBEAkC0SRQAA6kGiCADIFokiAAD14BpFAEC2GgPaVPkYi+0Lba+3fXvTtI/bvtP2bbavsj2rad7ZtlfZ/pXtV9azJwAAqBaJIgAAE3ORpIXDpl0r6VkR8RxJd0k6W5JsHy7pZElHlGW+YHta60IFAGBySBQBAFmqozVxPC2KEXG9pI3Dpl0TEf3ly2WS5pXPF0m6LCK2R8Q9klZJOqa6vQAAQD24RhEAkK0OvUbxbZK+Xj6fqyJxbFhTTgMAoKORKAIAslVTojjH9vKm10siYsl4Ctr+gKR+SZfUERgAAK1CoggAyFZNieKGiFgw0UK23yLpJEknxO8CWytpftNi88ppAAB0NK5RBAAgke2Fks6S9NqI2NY0a6mkk2332j5E0mGSftaOGAEAmAhaFAEA2WrHNYq2L5X0EhVdVNdIOkfFKKe9kq61LUnLIuLUiLjD9uWSVqjoknpaRAy0PGgAACbIHToQAAAAo7Id3d3V/97Z399/02S6ngIAMJXQoggAyBY/dgIAUA+uUQQAAAAADEGLIgAgW7QoAgBQDxJFAEC2SBQBAKgHiSIAIFskigAA1INEEQCQq+9JmlPDejfUsE4AALLC7TEAAAAAAEMw6ikAAAAAYAgSRQAAAADAECSKAAAAAIAhSBQBAAAAAEOQKAIAAAAAhvj/TlbphduXOfQAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "Err_BN1=error(xdata1, popt1[0], popt1[1],popt1[2], popt1[3], popt1[4], recorte1.ravel(), inc=1)\n", + "popt1Err, pcov1Err = curve_fit(gauss2d, xdata1, recorte1.ravel(), p0=[3,3,3,1,1],sigma=Err_BN1)\n", + "estrella1Err=gauss2d(xdata1, popt1Err[0], popt1Err[1],popt1Err[2], popt1Err[3], popt1Err[4])\n", + "FWHM1Err=FWHM_I.append(2*np.sqrt(2*np.log(2))*np.sqrt(popt1Err[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 1 fotografÃa\")\n", + "plt.imshow(recorte1, plt.get_cmap('gray'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 1 a partir de la gaussiana con incertidumbre\")\n", + "plt.imshow(estrella1Err.reshape(15, 15), plt.get_cmap('gray'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 818, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAFSCAYAAADLrjNiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAz/0lEQVR4nO3debglVX3v//enu5kFWm1CZBDQoAnO2irRDBpNRIPBX35egiMON1wTx8Rco2YwxmtunsQYNRoTnI0ojlGMxiHGISaCAuIAaERQmRRaRgWB7v7eP1Yd2H04w+7Tu86pffr96mc/vU/t2qtWVe296/uttWpVqgpJkiRJkoZuzUpXQJIkSZKkcZjASpIkSZKmggmsJEmSJGkqmMBKkiRJkqaCCawkSZIkaSqYwEqSJEmSpsK6la6AJEkLWbvPIVWbr59omXX95R+vqqMmWqgkSeqdCawkadBq8/XsdtdjJ1rmT8563YaJFihJkpaFCawkaeAC8YoXSZJkAitJGroAyUrXQpIkDYAJrCRp+GyBlSRJmMBKkqaBLbCSJAlvoyNJkiRJmhK2wEqSBs5BnCRJUmMCK0kaPrsQS5IkTGAlSUMXbIGVJEmACawkafBiC6wkSQIcxEmSJEmSNCVsgZUkDZ9diCVJEiawkqRpYBdiSZKECawkafC8jY4kSWpMYCVJwxZsgZUkSYCDOEmSJEmSpoQtsJKk4bMLsSRJwgRWkjR4XgMrSZIaE1hJ0vCt8RpYSZLkNbALSnJokkqyrvv7M0n+5wDq9eAk30ryoySPWen6LCbJ/0myKcn3u78PTnJBksOWUNZ+Sb6RZI/J13TRZW/zeRiCJA9JctHI319McreVrJMkLaehHquHJsm/Jjl+B96/zfFmO9/71iT/Z6nLHookT0jyiRVa9hFJTk+Wf0S7Hdn3fUnylCSf757v1sWG+61wnX4xyTdXsg4zkvxDkj9Z4PVK8jM9LHdZPitTkcAm+U6S67uEbebx2jHe18vOWYokL0vytSSbk/zZHK8/Psl3k/w4yQeT3G6B4v4ceG1V3aaqPrjIcv8syTt2rPZLl+SOwPOBI6rqp7vJbwCeVVUXLKHIFwJvrarru/I/k+Qn3Wfi6iSfS3KPydR+8rovdiX5w54W8Qra50NaPULrQjzJhybOY/VwzHXsr6pHVtXbVqpOq0FVnVRVv7ZCi38Z8IqqKrjV9+3KJB9JcvAK1W1RXcJZSX5r0mVX1Q3Am2kx4oqpqv+oqrsu93JHk/mRujyjql623HVZLtN0FH90l7DNPJ61owUuc0vaecALgI/MUY+7Af8IPAnYH7gO+PsFyjoEOLuHOm6XMbffHYEfVtVl3XvuCLy9qm61HcZY3m7A8cDshPxZVXUb4HbAZ4B/2t6yl9HxwBXAk3sq/xTgoUl+etE5pWmSTPahvnisXmFL2V5D6lmkW0tyB+ChwAdnvfToLv65A/AD4O+WuWrbo+/4553A8V2suNOY9u9ukrVLed80JbBzSvIzST7btb5tSvLubvrnulm+0p2d+q2ZZu0kf5jWnfUtSdYkeWGSbyf5YZL3jHNGNcmdk/x7955NSU5Ksn6++avqbVX1r8C1c7z8BODDVfW5qvoR8CfAbybZe47lfhu4E/Dhbr12S3JAklOSXJHkvCS/3c17FPBi4Le6eb/STZ9z/u61PZK8rTubd26SF2TbLqrf6bbfV4EfJ1k3sv2uTXJOkv+vm/fhwCeBA7rlv5X2mTspt3T1emq3nGuTnJ/kfy2w2R8IXFVVc3ZNqKotwMnAESP1fUCSLyS5KsmlSV6bZNeR1yvJM9K6ZF+V5HVJi26TrE3yim7/ng/8+qx9sT11J8lewGOBZwKHJ9k48tprs22rxc1n/zOrdSILdMWqqp8AZwCPWKgu0nSJLbBTbmc7VnfLfnWSC5Nck+SMJL+4QD3fmtbl75PdMeWzSQ4Zp6y01tb3JXlHkmuAZzD3sf/mrtVpLTb/meRvk/wQ+LM56rRHV68rk5wD3H/W6wckeX+Sy9MuC3rOfOs36323TfIv3fuu7J4ftMD8903y5W67vDfJu2eOgYuVlRazPHzWtnpH93z3bpv9sDv+fynJ/iPb5/xumRckecLI9M+PlLfYfnlPkrd35Zw967g/Z+w0j18FzuyO8bfSTX8f28Y/v95tt2u6Ov7ZyGuHpsUWxyf5Xvfd+KOR1xfb99tTd7rP8i8DJwCPyMhJ9iQz8ezMY2u3nWfquG5k3ps/w3Nsg4uAK4Ej56nD2iQvHqn3GelarJM8qNv/V3f/P2jWMl/WfV+uTfKJJBvmWcZDcuuY+Q+SfLUr+91Jdh95/ZgkZ3X76NtpcTtJ9k3yprS49eK0S/HWdq/N/u6+G/gH4Oe77XdVN982sWKS/92Vd0mSp82q9zbbdY7PeSX53bRY+dpue9w5yX91dX9PRmLr7j0v7j5X35n5/ozU6/VJPprkx7RGl+3+LVkNR/GXAZ8AbgscRHf2qap+qXv9Xt1Z4Hd3f/80raXuENoX6dnAY2hfrANoH/7XjbHcAP+3e8/PAQczxwFgTHcDvjLzR1V9G7gRuMvsGavqzsD3uOUs9w20pO2iri6PBf4iya9U1ceAvwDe3c17r66YOefvXnsJcCgtSf5V4Ilz1PdxtGRufVVtBr4N/CKwL/BS4B1J7lBV/wY8ErikW/5T5ijrMuBoYB/gqcDfJrnvPNvpHsC81xZ0X54nAKeOTN4C/B6wAfh54GHA785669G0H+d7AsdyS/L3291r9wE20rbVUusO8JvAj4D3Ah+nnY0EoKqeNdNiAfwC7XP4oQXKWsi5wL0WnUuaJrbATrud6ljd+RJwb9p6vBN472jwOocn0LbTBuAs4KTtKOsYWgKzHngTcx/7Z3sgcD6tNfnlc7z+EuDO3eMRjByzkqwBPkzbHgfSjq3PSzLOydM1wFto+/aOwPXAnF3Nu+P6PwNvpa37u4DRZGnssuZwPC1uORi4PS3xvz7tZPNrgEdW1d7Ag2j7Yy6L7ZffoMVc62k9pEbrNmfsNM9yFot/9gR+i23jnx/TWjvX02K238mtx035BeCutP33p0l+rps+775fQt3p6nF6Vb2fFqPcnNBU1aNH4p//AXwf+NQCZS1kofjn92nx66NocdvTgOvSToR9hLbPbw+8EvhIktuPvPfxtDjvp4BdgT/YjjodCxwFHEaLM58CrYEFeDvwv2n76JeA73TveSuwGfgZWgz6a8Bo4j763X0i7bP7hW47rp9dgS4x/gNaXH848PDZ84zhEcD9aCcIXgCc2C37YODutG0746dpv2MH0j47JyYZ7Vr9eNpvzt7Af7GE35JpSmA/mHaGbOYx02p4E+2H64Cq+klVfX6BMgC2Ai+pqhu66yifAfxRVV3UJYN/Bjw2izTJV9V5VfXJrpzLaR/4X17iut0GuHrWtKtpO3ZB3dmjBwN/2K3/WcAbmaeLxhjzHwv8RVVd2Z3Nes0cxbymqi6cuQ61qt5bVZdU1dYu+PgW8IDF6t699yNV9e1qPksLcOY7S72euc+Kv6Y743Qt8Czaj+lM+WdU1alVtbmqvkPr/jV7P/1lVV1VVd8DPk07GEHbFq/q1vUKWhC01LpD+xK/u2spfidwXJJdRmdIG4Dgg8Czq+rLC5S1kGtp20qSlpvH6luW/Y6q+mF3/PkbYDdasjCfj3StuzcAf0RrUTl4zLK+UFUf7I7D14+5PpdU1d91Zc71nmOBl1fVFVV1IdvGA/cH9quqP6+qG6vqfNr4FsctttBuPd5fVddV1bW0QHa+fXIk7Y4Zr6mqm6rqA8AXl1jWbDfREpafqaotXbxwTffaVuDuSfaoqkuras7LtsbYL5+vqo92x/1/YiS52s7YaT1zxz8f7OKfq2nJyV+PlP+ZqvpaV/5Xacn/7G3z0qq6vqq+QksgZuq30L5fStz3ZFrcQ/f/rWLUJHcB3gYc2y1zKRaKf/4n8MdV9c0ubvtKVf2Qltx/q6r+qduP7wK+ATx65L1vqar/7r4n7+GWOHEcr+m21RW0RG3mvU8H3tz9Pm2tqour6htpvQAeBTyvqn5c7RK8v2Xb79Zi393Zju3W4etV9WOWdhLvr6rqmu678HXgE1V1flVdDfwrLdEe9Sfd7+5naScIjh157UNV9Z9VtZV2cma7f0umKYF9TFWtH3m8oZv+AtoZ1i+mdc942gJlAFxe23bBOAT455mDLe3szRbaWY15Jdk/ycld0/41tOsy5+xSMIYf0c4GjdqHuX+sZjsAuKL74Z7xXdpZjKXMfwAw+sMx14/INtOSPLnrAjGzDe/OmNsiySOTnJrWnfkq2pd2vvdeydyBwnOqnXHag9Yi+r4k9+zKv0tal6Lvd/vpL+Yo//sjz6+jBSlw623x3aXWvQtCHsotZ9Q/BOzOSLfkLpl9H/DOqjp5rnLGtDdw1Q68XxoeuxBPC4/Vtyz7D9IuM7m6q/O+iyz75uNNtS7KV9COQ+OUtZSAf7H3LHQMPIR2edBVI/vkxSyyP6C1Fib5x7TBsK4BPgesz9zXwh0AXFzVBi6aXe/tLGu2f6L1hjo5rVvlXyXZpQvwf4t20uTStMGRfnaedVlsv8yOL3bPLZdQbU/sNF/885gu/tmddgL/s+m65yZ5YJJPd90yr+7WZ1Lxz9h1T/JgWuvjTFzzTuAeSe49Ms++tLjoj8c4ubWQheKfg2ktx7MdwKz149Zx9HzbaRzzvXe++hwC7EL77M1s33+ktf7O2N7v+4L7c0w/GHl+/Rx/j26TK7vv0ejyDhj5e7QuS/otmfqjeFV9v6p+u6oOAP4X8PdZeDTDmvX3hbRuIqMH3N2r6uJFFv0XXVn3qKp9aM3oS+2XdjYjZ+WS3Il2Fu+/x3jvJcDtsu01OHcEZuo/e30Xm/9SWveuGXONaHdzmWnXNbyB9sN5++6H9OuMsS3SLrR/P23k3P279350gfd+lfm7atGdwfoP2iAcM6MEvp52Ju3wbj+9eJy6dS5l2/W/4w7U/Um079uH067pOp92wBntlvN3wDXAH89673XAniN/LzZA088x0s1NmnqT7j5sF+Jlt7Mdq9OuhXwBrdXhtt0x4upFln3z8SbJzMCEl4xZ1uztNfvvuSw2z7zHQNr+uGDW/ti7qh41xnKfT2ulfGC3T2a6kc+1bS4FDky2+dKO1mmxsn7MPMfPrkX3pVV1BK2b8NF0LYNV9fGq+lXa4EjfoMU521jiPp557/bGTovFP1uqtU5voXULhpYongIcXFX70q6TnET8s711P7577awu/jltZPpMd/R3Ap+uqhNH3jeTAE0q/rmQ1iV6tktoSdSo0bi4L/PV50LgBmDDyHdrn6oavUXi9n7fF/ouwwLfkyW6bVpX/NHlXTLy9+wTUtv9WzL1CWyS/5FbLti/krZRtnZ//4B2LedC/gF4efeFJO0+o8eMsei9aWdjr05yIK0P+0L13CXtuog1wLq0wQNmzhCeBDw67f5Re9Fug/KBWa2kc+q6WfwX8H+7Mu9J65YwM1LvD4BDux+IceZ/D/CitIERDqT9QC1kL9o2v7xbz6fSzsSNY1fawf9yYHOSR3JL4jmXL9LOrM7XukySn6cNYjDT3WdvWlL4o+4M6u+MWTdo2+I5SQ5Kclu2HZ59e+t+PK1r871HHv8/8Kgkt08bAOqXgSd0XSpGnQU8Pm0AgqNYoHtU9xm7H23wLGn1sAV2qu2Ex+q9adewXd6V86fcuvV2tkcl+YW06z5fBpzaHbOXUtY2x/4lGo0HDqJdhzzji8C1aQNt7dEdn+6e5P5zF7WNvWktNlelXX/4kgXm/QItKXtW2qCRx7BtV9XFyjqL7nKdtAGUbh7LIslDk9yj27/X0LoUb01rtT+m28c30D4/s4/LM8ve3v0yY3tjp08C980811CnOYZ2jfm5I/W7oqp+kna95ePHrBssvO/HrntX32Np17Hfe+TxbFpcs47W7Xsv4Lmj763W5f9i4Ind5+tpzJ3wzSzrQNpJn1PnmeWNwMuSHN5tr3umXef6UeAuabfIWpd2m58jgH+Zb1kT8ibgqUkeljZI3YFJfraqLqVdkvY3SfbpXrtzkoW6xv8AOCizBlIa8R7gKWn3Et6Tub8nv5nWo+FnaHnBjnppkl27Ez1H08Z/mcuSfkum6Sg+e5Syf+6m3x84LcmPaGeantv1n4bWx/ttaU3Sx85RJsCru/d9Ism1tA/+A8eoz0uB+9LOtn0E+MAi87+B9iP7ONq1LdfTWuXo+pM/g3ZwvIz2ozN7oKGFPI428NIltMEOXlJtACW45QPzwyRnjjH/n9MGeLoA+Ddal9Yb5ltwVZ0D/A3tIPMDWl/2/xyn0t1B/zm0L9aVtB/XUxaY/0bahe2zB5a6eQRfWpegP642iiS0i9YfT+vi9QbaaG3jegOte9FXgDMZ2cfbU/ckR9LO7r2ua4WYeZxCay1+XPe4E+1s+8xn/MVdEc+lXYtxFW3ggw8uUOdHA5+pqksWmEeaPrbATguP1c3HgY/RWme/C/yExbv9vZMWWF5BOxE5c6xbSllzHfu310u75V1AC6hvvkVdtWs6j6YlIxcAm2gJwr5jlPsq2iU/m2j78WPzzdgd93+TFlBfRdsm/8ItccliZf0JLem5slufd4689tO0GOcaWtL32W4d19AG/LmEti9+mblPfi9lv8ys13bFTlX1A+DfaYN1jfpw9526hpYIHl+3XK/7u8Cfd9+XP6XFK+NaaN9vT90fQ/sOvX00/qHds3UdbXCjx9Gudb5y5HdjZpCn36addPohbRC1/1qgzo8H3lbtGvK5vJK2DT5B215vAvaodh3s0bTW/B/SWtWPrqpNCyxrh1XVF+kGAKX9Pn2WW1qCn0xrKDmH9tl9H603wHz+ndZw8/0kt6p3FxO/qpvvvO7/UX9LG5DuB7TrkE9ix3y/q/clXVnPqKpvzDXjUn9Lsu1lBdK2kvwOcFxVLXXQi4lKG+ToP4D71PgDVew0kpwGPL2qvr7SdZEmZc2+B9duD/r9iZb5k4/9/hlVtXHxOaX+pd1m7qKqmn0JiWbpjnP/UFVvWem6LKckR9CSiweUwfs20i7r+grwS9UGPdIqN9U3v9XkpQ2DfifambXDaWekxh2Svnddl5I5B1MQVNU4LRLSlIndfqWdVNd18pu0lpkn0G5FMm+r7WrVtXyO00V7p9O1uhob7kRMYDXbrrTRzg6jddc5Gfj7layQJNntV9pp3ZXW9XMv2gCIj+2uE5S0kzKB1Taq6ruMPwiTJPUv2AKrVa2qnrLSdRiqbmTaExedUdJOwwRWkjRwdiGWJEmNEYEkSZIkaSr00gK7YcOGuuMhh/ZR9M229jwAW5Z8n/Px1Vj3Gd8xW/texDKMg7dmGU6zLMd4fn3vi13W9vuZ/d53v8OmTZu8EFErw2tgtYpt2LChDuk5bpK0/M4884xNVbXfStdjteklgb3jIYfyn6d+qY+ib3bdjVt6LX/tMgRLW5Yha7q+5+20HInfbrv0n8Fu7T3Th+tvmus+6JOz397z3b96Mn7pQQ9YfCapL3Yh1ip2yCGH8p+nnb7S1ZA0YXvsku+udB1WIyMCSdLwJZN9LLq4HJzk00nOSXJ2kud20/86yTeSfDXJPydZP/KeFyU5L8k3kzyiv40hSdLOywRWkqRb2ww8v6qOAI4EnpnkCOCTwN2r6p7AfwMvAuheOw64G3AU8PdJ1q5IzSVJWsVMYCVJw5ZuFOJJPhZRVZdW1Znd82uBc4EDq+oTVbW5m+1U4KDu+THAyVV1Q1VdAJwH2O9ekqQJ8zY6kqThm/y4BBuSjF50eGJ3v8k5Fp1DgfsAp8166WnAu7vnB9IS2hkXddMkSdIEmcBKkgYvk09gN1XVxjGWexvg/cDzquqakel/ROtmfNKkKyZJkuZnAitJGrTQSwK7+HKTXWjJ60lV9YGR6U8BjgYeVnXzWOwXAwePvP2gbpokSZogr4GVJGmWtIz5TcC5VfXKkelHAS8AfqOqrht5yynAcUl2S3IYcDjwxeWssyRJO4OxEtgkR3W3BTgvyQv7rpQkSTdLD4/FPRh4EvArSc7qHo8CXgvsDXyym/YPAFV1NvAe4BzgY8Azq6rfG3Fr0IydJKkfi3Yh7m4D8DrgV2mDUnwpySlVdU7flZMkCbLsXYir6vPMnep+dIH3vBx4eW+V0tQwdpKk/ozTAvsA4LyqOr+qbgROpt0uQJKkZZFkog+pZ8ZOktSTcRLYA4ELR/6e89YASU5IcnqS0zdtunxS9ZMkyQRW02bR2Gk0brrcuEmSxjaxQZyq6sSq2lhVGzds2G9SxUqSJK06o3HTfsZNkjS2cW6j460BJEkrylZTTRljJ0nqyTgtsF8CDk9yWJJdgeNotwuQJKl/KzMKsbQjjJ0kqSeLtsBW1eYkzwI+DqwF3tzdLkCSpN5lBUYhlnaEsZMk9WecLsRU1UdZ4NYBkiT1yQRW08bYSZL6MbFBnCRJkiRJ6tNYLbCSJK0kW2AlSRKYwEqSpoAJrCRJAhNYSdLQOXKwJEnqeA2sJEmSJGkq2AIrSRo8uxBLkiToMYGt6qvkZs0qCGa2bu15I9H/fti8DOtw4/Wbe1/Gcnyc1q3pdyE/vmFLr+VvWYZ9Lc3F+8BKWi7Vc+C0HMfS1XK4Xttz3NRz8eqRLbCSpMEzgZUkSWACK0maBuavkiQJB3GSJEmSJE0JW2AlScMWuxBLkqTGBFaSNHgmsJIkCUxgJUlTwARWkiSBCawkaeC8jY4kSZrhIE6SJEmSpKlgC6wkafhsgJUkSZjASpKGzlGIJUlSxwRWkjR4JrCSJAlMYCVJU8AEVpIkgYM4SZIkSZKmhC2wkqThswFWkiRhAitJmgJ2IZYkSWACK0kauCQmsJIkCfAaWEmSJEnSlLAFVpI0eLbASpIksAVWkjQFZroRT+oxxvIOTvLpJOckOTvJc7vpt0vyySTf6v6/bTc9SV6T5LwkX01y3543iSRJOyUTWEnS8GXCj8VtBp5fVUcARwLPTHIE8ELgU1V1OPCp7m+ARwKHd48TgNfvyOpKkqS5mcBKkgZvuVtgq+rSqjqze34tcC5wIHAM8LZutrcBj+meHwO8vZpTgfVJ7jDhzSBJ0k7PBFaSpAUkORS4D3AasH9VXdq99H1g/+75gcCFI2+7qJsmSZImyEGcJEnDll4GcdqQ5PSRv0+sqhNvtejkNsD7gedV1TWj9aiqSlKTrpgkSZpfLwns1iquv3FLH0Xfou8BKZchJNmytf+FVPW7jOtu2Nxr+QCXXHN978vYZU3/nRHueLs9ey3/pp/0uy+29vxZkuYToIdBiDdV1cYFl5vsQkteT6qqD3STf5DkDlV1addF+LJu+sXAwSNvP6ibJmlC+o5pAG7cvLXX8q+5vv+46errbup9GcsxMPz6vXbttfx9drcdb1rZhViSNHCTvf51zFGIA7wJOLeqXjny0inA8d3z44EPjUx/cjca8ZHA1SNdjSVJ0oR46kGSNHgrcBvYBwNPAr6W5Kxu2ouBvwTek+TpwHeBY7vXPgo8CjgPuA546rLWVpKknYQJrCRJs1TV55n/YpWHzTF/Ac/stVKSJMkEVpI0fD0M4iRJkqaQCawkadiyIl2IJUnSAJnASpIGLcCaNWawkiTJBFaSNAVsgZUkSeBtdCRJkiRJU8IWWEnS4DmIkyRJgjFaYJMcnOTTSc5JcnaS5y5HxSRJAm4exGmSD6lPxk6S1J9xWmA3A8+vqjOT7A2ckeSTVXVOz3WTJIlgC6ymjrGTJPVk0QS2qi4FLu2eX5vkXOBAwB9hSdIyiAmspoqxkyT1Z7sGcUpyKHAf4LReaiNJkrSKGDtJ0mSNncAmuQ3wfuB5VXXNHK+fkOT0JKf/cNOmSdZRkrST8xpYTaOFYqfRuOnyTZevTAUlaQqNlcAm2YX2A3xSVX1grnmq6sSq2lhVG2+/YcMk6yhJ2sklmehD6ttisdNo3LTfhv2Wv4KSNKUWvQY27Uj/JuDcqnpl/1WSJGmEraaaMsZOktSfcVpgHww8CfiVJGd1j0f1XC9JkqRpZewkST0ZZxTiz9PuYiBJ0rLzNjqaNsZOktSfce4DK0nSijJ/lSRJYAIrSZoCtsBKkiQwgZUkTQHzV0mSBNtxH1hJkiRJklaSLbCSpGGLXYglSVJjAitJGrQ2CvFK10KSJA1Bbwns1qq+igZg3Zp+ez9fd9OWXssH+MmN/S/jxs1bey3/9Euu6LV8gBM/853el7Hrrv2fy3nWQw7rtfx77L9vr+X3/JWWFhBbYCWxZWv/B6Jrrt/ca/lfvLD/uOldZ1zS+zL2WIa46cn3O6DX8u9+QL9xk/pjC6wkafDMXyVJEjiIkyRJkiRpStgCK0kaPLsQS5IkMIGVJA1d7EIsSZIaE1hJ0qC1UYjNYCVJkgmsJGkKmMBKkiRwECdJkiRJ0pSwBVaSNHg2wEqSJDCBlSRNAbsQS5IkMIGVJA2doxBLkqSO18BKkiRJkqaCCawkadBCSCb7WHSZyZuTXJbk6yPT7p3k1CRnJTk9yQO66UnymiTnJflqkvv2uDkkSdqpmcBKkgYvmexjDG8Fjpo17a+Al1bVvYE/7f4GeCRwePc4AXj9BFZZkiTNwWtgJUmDt2aZL4Ktqs8lOXT2ZGCf7vm+wCXd82OAt1dVAacmWZ/kDlV16fLUVpKknYcJrCRp8HrIXzckOX3k7xOr6sRF3vM84ONJXkHrwfSgbvqBwIUj813UTTOBlSRpwkxgJUk7o01VtXE73/M7wO9V1fuTHAu8CXj45KsmSZLm4zWwkqRBa9etLu8gTvM4HvhA9/y9wAO65xcDB4/Md1A3TZIkTZgJrCRp8NZkso8lugT45e75rwDf6p6fAjy5G434SOBqr3+VJKkfdiGWJA3eDrSaLnV57wIeQrtW9iLgJcBvA69Osg74CW3EYYCPAo8CzgOuA566rJWVJGknYgIrSRq8Zc5fqarHzfPS/eaYt4Bn9lsjSZIEdiGWJEmSJE0JW2AlSYMWICxzE6wkSRokE1hJ0uDtwMBLkiRpFTGBlSQN247d+kaSJK0ivSSwIeyytt/La9et7TeY2bxla6/lA9y4uf9l/PiGzb2W/7nzr+61fIAz3/uh3pfBbW7f+yLudehtey3/Hvvv22v50koyf5W0ZWv1voyrr7up1/JPOv2SXssH+NfXvqX3ZbDX+t4Xse/zn9Br+Yfebq9ey1d/HMRJkiRJkjQV7EIsSRq0AGtsgpUkSZjASpKmgPmrJEkCE1hJ0hRwECdJkgReAytJkiRJmhK2wEqSBi2xC7EkSWpMYCVJg+cgTpIkCUxgJUlTwPRVkiTBdiSwSdYCpwMXV9XR/VVJkqRtOYiTppGxkyRN3vYM4vRc4Ny+KiJJkrTKGDtJ0oSNlcAmOQj4deCN/VZHkqRtBViTyT6kvhk7SVI/xu1C/CrgBcDe/VVFkqQ5JHYh1jR6FcZOkjRxi7bAJjkauKyqzlhkvhOSnJ7k9E2bLp9YBSVJmrmVzqQeUp/GiZ1G46bLjZskaWzjdCF+MPAbSb4DnAz8SpJ3zJ6pqk6sqo1VtXHDhv0mXE1J0s4sXSvspB5SzxaNnUbjpv2MmyRpbIsmsFX1oqo6qKoOBY4D/r2qnth7zSRJkqaQsZMk9cf7wEqSBm1mECdJkqTtSmCr6jPAZ3qpiSRJ87Dbr6aVsZMkTZYtsJKkwTN9lSRJYAIrSRq4BNbYAitJkhhvFGJJkiRJklacLbCSpMGzAVaSJIEJrCRpCjiIkyRJAhNYSdIUMH+VJEnQUwJbFFu2Vh9F32xNzzcFvGlLv/UH2Fr9L2PXdf1e5rx5GbYTN93Q/zKu3dT7Iu6wz669lt93gG/+IElaScvRE6PvRey+69p+FwCw577LsIz1vS9i93X97gx79kwvW2AlSYMW4ijEkiQJMIGVJA1d7EIsSZIaE1hJ0uDZ1UuSJIH3gZUkTYE1E34sJsmbk1yW5Ouzpj87yTeSnJ3kr0amvyjJeUm+meQRO7a2kiRpPrbASpJ0a28FXgu8fWZCkocCxwD3qqobkvxUN/0I4DjgbsABwL8luUtVbVn2WkuStMrZAitJGrTQuhBP8rGYqvoccMWsyb8D/GVV3dDNc1k3/Rjg5Kq6oaouAM4DHjCxDSBJkm5mAitJGrw1mexjie4C/GKS05J8Nsn9u+kHAheOzHdRN02SJE2YXYglSYPXw62/NyQ5feTvE6vqxEXesw64HXAkcH/gPUnuNPGaSZKkeZnASpIGLellFOJNVbVxO99zEfCBqirgi0m2AhuAi4GDR+Y7qJsmSZImzC7EkiSN54PAQwGS3AXYFdgEnAIcl2S3JIcBhwNfXKlKSpK0mtkCK0kavB66EC8oybuAh9C6Gl8EvAR4M/Dm7tY6NwLHd62xZyd5D3AOsBl4piMQS5LUDxNYSdLgTb4H8cKq6nHzvPTEeeZ/OfDy/mokSZLABFaSNHAB1ix3BitJkgbJBFaSNHgO2CBJksCYQJIkSZI0JWyBlSQNnj2IJUkSmMBKkgYuidfASpIkwARWkjQFzF8lSRKYwEqSpsBy3wdWkiQNk4M4SZIkSZKmgi2wkqRB8z6wkiRphgmsJGnwzF8lSRKYwEqShi5eAytJkhqvgZUkSZIkTYXeWmC3VPVVdLeArb0Wvxxn+/fcrf8G8LU9r8dj77F/vwsAbvy9p/e+jH333LX3Zdzrp/bptfzd1vV7Pir24dQKCn7+pJ3dcsRm6/fqNx54yv0O7LV8gPW//4Tel7HHLv23gf3mz/YbY+69ux1Rp5V7TpI0aG0Qp5WuhSRJGgITWEnS4JnASpIkMIGVJE0Bu7BLkiRwECdJkiRJ0pSwBVaSNGheAytJkmaYwEqShi1gD2JJkgQmsJKkKbDGDFaSJGECK0kaOLsQS5KkGWMN4pRkfZL3JflGknOT/HzfFZMkSZpWxk6S1I9xW2BfDXysqh6bZFdgzx7rJEnSNuxBrClk7CRJPVg0gU2yL/BLwFMAqupG4MZ+qyVJ0oywBjNYTQ9jJ0nqzzhdiA8DLgfekuTLSd6YZK+e6yVJEtCugU0m+5B6ZuwkST0ZJ4FdB9wXeH1V3Qf4MfDC2TMlOSHJ6UlO/+GmTROupiRpp5U2iNMkH1LPFo2dRuOmyzddvhJ1lKSpNE4CexFwUVWd1v39PtqP8jaq6sSq2lhVG2+/YcMk6yhJkjRNFo2dRuOm/Tbst+wVlKRptWgCW1XfBy5Mctdu0sOAc3qtlSRJI9YkE31IfTJ2kqT+jDsK8bOBk7pR9M4HntpflSRJusXMNbDSlDF2kqQejJXAVtVZwMZ+qyJJ0txsNdW0MXaSpH6Mcw2sJEmSJEkrbtwuxJIkrRgbYCVJEpjASpIGLthdSJIkNcYEkqRhCySZ6GPRRSZvTnJZkq/P8drzk1SSDd3fSfKaJOcl+WqSW91qTpIkTYYJrCRp8DLhxxjeChx1q3okBwO/BnxvZPIjgcO7xwnA67dn3SRJ0vhMYCVJmqWqPgdcMcdLfwu8AKiRaccAb6/mVGB9kjssQzUlSdrpeA2sJGnQwjBuo5PkGODiqvrKrG7IBwIXjvx9UTft0mWsniRJO4VeEtg1CXvuuraPom92w+atvZY/zjVSO6qqFp9pR/W8Hne63V69lg/wtPsf1Psydl3T7+cVYP99duu1/HVr++1QMYD8QTuxHj5+G5KcPvL3iVV14rzLT/YEXkzrPixpBaxd0/+BaJ/d+23buceB+/ZaPsBht+8/NluOOHnvnvfFXrv1H/upH7bASpIGr4dYaVNVbdyO+e8MHAbMtL4eBJyZ5AHAxcDBI/Me1E2TJEkTZgIrSRq48UYO7lNVfQ34qZm/k3wH2FhVm5KcAjwrycnAA4Grq8ruw5Ik9cBBnCRJmiXJu4AvAHdNclGSpy8w+0eB84HzgDcAv7sMVZQkaadkC6wkadDC8p9trarHLfL6oSPPC3hm33WSJEkmsJKkKbDSXYglSdIwmMBKkgbP9FWSJIEJrCRp6GILrCRJahzESZIkSZI0FWyBlSQN2koM4iRJkobJBFaSNHh2IZYkSWACK0maAqavkiQJ7JUlSZIkSZoStsBKkgbPHsSSJAlMYCVJA9cGcTKDlSRJJrCSpClgC6wkSQITWEnS4IXYAitJknAQJ0mSJEnSlLAFVpI0eHYhliRJYAIrSRo4B3GSJEkzTGAlScMWW2AlSVJjAitJGjwTWEmSBA7iJEmSJEmaErbASpIGz9voSJIkMIGVJA1cgDXmr5IkiZ4S2ADr1vbbO/mmLdVr+XvttrbX8gFuuGlr78vYvLXf7bTHrv1vp8Nuf5vel1HV73Zqy+i3/N3W9fud8xpErSRbYCVlGQ5E63oOa/bZY5d+FwDsvfvqaJ9a0/P+XuOZ0am1Oj7hkqRVzRMokiQJHMRJkiRJkjQlbIGVJA2eXYglSRKYwEqSBs5BnCRJ0gwTWEnSwMUWWEmSBHgNrCRJkiRpStgCK0katjgKsSRJakxgJUmDZ/4qSZJgzC7ESX4vydlJvp7kXUl277tikiTBzCBOmehD6puxkyT1Y9EENsmBwHOAjVV1d2AtcFzfFZMkaUYm/JD6ZOwkSf0ZdxCndcAeSdYBewKX9FclSZKkqWfsJEk9WDSBraqLgVcA3wMuBa6uqk/Mni/JCUlOT3L65Zsun3xNJUk7L5tgNUXGiZ2MmyRpacbpQnxb4BjgMOAAYK8kT5w9X1WdWFUbq2rjfhv2m3xNJUk7rUz436LLS96c5LIkXx+Z9tdJvpHkq0n+Ocn6kddelOS8JN9M8oh+toKmxTixk3GTJC3NOF2IHw5cUFWXV9VNwAeAB/VbLUmSbpFM9jGGtwJHzZr2SeDuVXVP4L+BF7W65Qja9Y13697z90nWTmjVNZ2MnSSpJ+MksN8DjkyyZ5IADwPO7bdakiTdYrl7EFfV54ArZk37RFVt7v48FTioe34McHJV3VBVFwDnAQ9Y0opqtTB2kqSejHMN7GnA+4Azga917zmx53pJktSnDTPXH3aPE7bz/U8D/rV7fiBw4chrF3XTtJMydpKk/qwbZ6aqegnwkp7rIknS3CY/8NKmqtq4lDcm+SNgM3DSZKuk1cTYSZL6MVYCK0nSSmndfocxdHCSpwBHAw+rquomXwwcPDLbQd00SZI0YePeB1aSpJUx4QGcxhzE6dbVSI4CXgD8RlVdN/LSKcBxSXZLchhwOPDFHV1tSZJ0a7bASpIGb7nbX5O8C3gI7VrZi2hdQV8E7AZ8so3Lw6lV9YyqOjvJe4BzaF2Ln1lVW5a5ypIk7RRMYCVJmqWqHjfH5DctMP/LgZf3VyNJkgQmsJKkaTCMS2AlSdIKM4GVJA1cBjOIkyRJWlm9JLAFbN6ytY+il83uu6xdFcu49iebey3/+hv7v8xrOcLWtWv7H89sy9ZafKYdsGZNv1vKBEIraakDL0nS9kjPPzZrl+W3zB9MrW62wEqSBi0YjkmSpMbb6EiSJEmSpoItsJKk4bMJVpIkYQIrSZoCXoMtSZLABFaSNAUcxEmSJIHXwEqSJEmSpoQtsJKkwbMBVpIkgQmsJGnovI+OJEnqmMBKkgbPQZwkSRKYwEqSBi44iJMkSWocxEmSJEmSNBVsgZUkDZ4NsJIkCUxgJUnTwAxWkiRhAitJmgIO4iRJksAEVpI0BRzESZIkgYM4SZIkSZKmhC2wkqTBswFWkiSBCawkaRqYwUqSJExgJUkDFxzESZIkNSawkqRhi4M4SZKkxkGcJEmSJElTwRZYSdLg2QArSZLABFaSNA3MYCVJEiawkqTBi4M4SZIkoKcE9stnnrFp793Xfnc73rIB2NRHXZaR6zAcq2E9hrgOh6x0BSRpNTrzzDM27bFLtidugmEeJ7aX6zAMq2EdYJjrYezUg14S2Krab3vmT3J6VW3soy7LxXUYjtWwHqthHaRJchRirWbbGzfB6jhOuA7DsBrWAVbPemhxdiGWJA1a8BJYSZLUmMBKkobPDFaSJDGcBPbEla7ABLgOw7Ea1mM1rIM0MQ7iJN3KajhOuA7DsBrWAVbPemgRqaqVroMkSfO6573vVx/+1H9NtMxDN+x+xkLXSiV5M3A0cFlV3b2bdjvg3cChwHeAY6vqyiQBXg08CrgOeEpVnTnRCkuSJADWrHQFJElaTDLZxxjeChw1a9oLgU9V1eHAp7q/AR4JHN49TgBeP4l1liRJt2YCK0kavEz4sZiq+hxwxazJxwBv656/DXjMyPS3V3MqsD7JHbZ7JSVJ0qJWNIFNclSSbyY5L8kLF3/H8CQ5OMmnk5yT5Owkz13pOi1VkrVJvpzkX1a6LkuRZH2S9yX5RpJzk/z8StdpeyX5ve5z9PUk70qy+0rXSVpxE2593YFb8uxfVZd2z78P7N89PxC4cGS+i7pp0sQZOw3HtMdNYOyk6bRiCWyStcDraF2vjgAel+SIlarPDtgMPL+qjgCOBJ45pesB8Fzg3JWuxA54NfCxqvpZ4F5M2bokORB4DrCxu+ZuLXDcytZKGoqJt8FuSHL6yOOE7alNtQEkHERCy8rYaXCmPW4CYydNoZVsgX0AcF5VnV9VNwIn07phTZWqunRmsI6qupb2xZ+6M+9JDgJ+HXjjStdlKZLsC/wS8CaAqrqxqq5a0UotzTpgjyTrgD2BS1a4PtJqtamqNo48xhm98gczXYO7/y/rpl8MHDwy30HdNGnSjJ0GYtrjJjB20vRayQR21XW5SnIocB/gtBWuylK8CngBsHWF67FUhwGXA2/puvO8McleK12p7VFVFwOvAL4HXApcXVWfWNlaSSsvDKYL8SnA8d3z44EPjUx/cpojad/dS+cqQNpBxk7D8SqmO24CYydNKQdxmpAktwHeDzyvqq5Z6fpsjyQzt4o4Y6XrsgPWAfcFXl9V9wF+zC0jhE6FJLelnUk/DDgA2CvJE1e2VtIwLPcgTkneBXwBuGuSi5I8HfhL4FeTfAt4ePc3wEeB84HzgDcAv7uDqyvtFKY1dlolcRMYO2lKrVvBZa+aLldJdqH9AJ9UVR9Y6foswYOB30jyKGB3YJ8k76iqafoBuAi4qKpmzuC+jyn7EaYFxBdU1eUAST4APAh4x4rWShqAHWg1XZKqetw8Lz1sjnkLeGa/NZIAY6ehWA1xExg7aUqtZAvsl4DDkxyWZFfaBdenrGB9lqS7gf2bgHOr6pUrXZ+lqKoXVdVBVXUobT/8+7T9CFfV94ELk9y1m/Qw4JwVrNJSfA84Msme3efqYUzZYApSXzLhf9KUMnYagNUQN4Gxk6bXirXAVtXmJM8CPk4bMezNVXX2StVnBzwYeBLwtSRnddNeXFUfXbkq7bSeDZzUHdTPB566wvXZLlV1WpL3AWfSRmj8MjDOwDKSpJ2AsZN6YOykqZPW80mSpGG6133uVx//7KkTLfMO++56RlVtnGihkiSpdyt5DawkSWOx068kSQITWEnSwO3grW8kSdIq4m10JEmSJElTwRZYSdLgOXKwJEkCE1hJ0jQwf5UkSZjASpKmgPmrJEkCE1hJ0hRwECdJkgQO4iRJkiRJmhK2wEqSBi4O4iRJkgATWEnSwAW7EEuSpMYuxJIkSZKkqWALrCRp8GyBlSRJYAusJEmSJGlK2AIrSRo8B3GSJElgAitJGrrYhViSJDUmsJKkQUv3kCRJMoGVJA2fGawkScJBnCRJkiRJU8IWWEnS4DmIkyRJAhNYSdIUcBAnSZIEJrCSpClg/ipJksBrYCVJkiRJU8IWWEnS8NkEK0mSMIGVJE0BB3GSJElgAitJGrjgIE6SJKlJVa10HSRJmleSjwEbJlzspqo6asJlSpKknpnASpIkSZKmgqMQS5IkSZKmggmsJEmSJGkqmMBKkiRJkqaCCawkSZIkaSqYwEqSJEmSpsL/A3vI8Vku0yc9AAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[3.041995114502331]\n" + ] + } + ], + "source": [ + "FWHMBI=[]\n", + "#recorteB10 = trim(imagen[:,:,2], 615, 394, 10, 10)\n", + "E=error(xdata10, poptB10[0], poptB10[1],poptB10[2], poptB10[3], poptB10[4], recorteB10.ravel(), inc=1)\n", + "poptB10I, pcovB10I = curve_fit(gauss2d, xdata10, recorteB10I.ravel(), p0=[2,2,2,2,1],sigma=E)\n", + "estrellaB10I=gauss2d(xdata10, poptB10I[0], poptB10I[1],poptB10I[2], poptB10I[3], poptB10I[4])\n", + "FWHMB10I=FWHMBI.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptB10I[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 10 fotografÃa (Banda Azul)\")\n", + "plt.imshow(recorteB10, plt.get_cmap('Blues'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 10 a partir de la gaussiana (Banda Azul) con incertidumbre\")\n", + "plt.imshow(estrellaB10I.reshape(10, 10), plt.get_cmap('Blues'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()\n", + "print(FWHMBI)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 2 con incertidumbre (blanco y negro)" + ] + }, + { + "cell_type": "code", + "execution_count": 819, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4oAAAFVCAYAAACpehErAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABAs0lEQVR4nO3dfZwlZXnn/+93ZnqGgQEHGEAYRvABNz9MIroENSYb1F8UXXcx+0tcSWKIMaJZzGqW/IySzYLukpgnTFwTkzEQMDEQoqisYSPEsEF3AwqE8KhxohAGBoaBeYJ5nrn2j6rW023XdbrvPnXOqZ7P+/XqV5+u+1Sdu+rU6bqvU1XX5YgQAAAAAACTFo26AwAAAACA8UKgCAAAAACYgkARAAAAADAFgSIAAAAAYAoCRQAAAADAFASKAAAAAIAploy6AwAAlDjrrLNi06ZNA1/u7bff/vmIOGvgCwYAoEMIFAEAnbRp0yZ95StfGfhyFy1atGrgCwUAoGO49BQAAAAAMAVnFAEAnRURo+4CAAALEoEiAKCzCBQBAGgHgSIAoJMigkARAICWcI8iAAAAAGAKzigCADqLM4oAALSDQBEA0FkEigAAtINAEQDQWQSKAAC0g0ARANBZBIoAALSDZDYAAAAAgCk4owgA6CTKYwAA0B7OKAIAOmsyWBzkT8b2Gts32b7P9r2239XT9vO2v1pP/42e6e+zvc7212y/psXNAQDAwHBGEQDQWSM4o7hP0gURcYftwyXdbvtGScdJOlvSCyNit+1jJcn2qZLeJOkFkk6Q9Ne2nx8R+4fdcQAA5oJAEQDQWcMOFCNig6QN9ePttu+XtFrS2yR9MCJ2120b61nOlnR1Pf2bttdJOkPS3w214wAAzBGXngIAUMD2yZJeJOlWSc+X9IO2b7X9t7a/r37aakkP9cy2vp4GAMBY44wiAKCzWjqjuMr2bT1/r42Itb1PsL1C0qckvTsittleIukoSS+V9H2SrrH9nDY6BwDAMBAoAgA6qcWsp5si4vSmRtsTqoLET0TEtfXk9ZKujapDX7Z9QNIqSQ9LWtMz+4n1NAAAxhqXngIAOmsEWU8t6TJJ90fEpT1Nn5H0ivo5z5e0VNImSddJepPtZbafLekUSV8e/JYAAGCwCBQPArZPth31pVGy/b9s/+wQXte2/9j2ZttjPzCy/S9s32l7u+3/WE+71PbvjLhrABoMO1CU9HJJb5b0yvr/xZ22XyfpcknPsX2PpKslnRuVeyVdI+k+SX8l6XwynqLJqI7X48b2D9r+2jyXUbTtpr8HXVaX6jlz1P1og+3/afvcMejHs2w/ZXtxQ/vFtv+0pddu/f9D5z8EXWL7AVUp1HsHCVdExDv7zBeSTomIdS12r6863fvvSvohSYdJukfSf4qIWxtm+QFJPyzpxIh4ehbLH/V6vkfSTRFxWt2fH1R1r9ErR9QfAGMmIr4kyQ3NP9kwzyWSLmmtUxi4g/B4PVLTt1tEfFHSvxhtr7ovIl4w6j60JSJeO4rXrf83/GxE/HXdj3+WtGIUfRkGzigO37+JiBU9P+lBZzaG+K3XCklfkfQvVSVtuFLSX9ZJHWZykqQHZhMktm2W2+gkSff2/P1sSf8+Iva20ysA8zWCM4o4eBxMx+uRKNkeC+FMH7qn6/tdaf8JFMeE7efVKdW32t5k+8/r6TfXT/mH+tT2v7d9pu31tn/J9qOS/tj2Itvvtf1Ptp+wfY3to2bxus+1/Tf1PJtsf8L2ypmeGxHfiIhLI2JDROyvswAu1Qzf+tl+q6Q/kvSyut/vr6e/zfY620/avs72CU3rmT2/bnu17a/V2+z36+33s3XbT9v+37Y/ZPsJSRdn62r7b1TdX/SR+vWfr+pM4n+o24+0/Tnbj9eX0n7O9on9ti+A9rQRJBIoop+Fdryul32G7b+zvcX2Btsfsb204bmTl2aeZ/uR+vm/ONtl1fOeb/vrkr6ebbeeeR6ot+Fdkp72DINe2z9s+6v1+/IRTTvzb/tnbN9fH8M/b/ukhk09fblvqefbbvsbtt+ePHex7d+u359v2n6np15K3LisetzypWnLC9vPqx+/zvZ99bwPT25z26vqMckWV2OlL9pe1LPd/t85vC/vsP31+jm/Z9t126z3vfr5L7B9Y92fx2xfWE9fZvt36v3mkfrxsrpt8rNyge2NdR/fkrzGty67nNx2tn+rfn+/afu1Pc89ytWtUI/U7Z/paXu9q1sIttj+P7a/t6dt+n53laRnSfof9b76Hn/n5eLPdvX/YbvtG1UlNZtc3pT9eob36GLbf2H7T+v577b9fNvvq7fJQ7ZfPW1TPNf2l21vs/1Z1/9Levr1Vtv/LOlv6ulz+hwQKI6P/yrpBklHqsqK998lKSL+Vd3+wvobzT+v/36mqm8JT5J0nqSfl/QGVZeZnCBps6Tfm8XrWtKv1fP8P6qy8108mw7bPk3Vgec7LrGJiMskvUPS39X9vsj2K+vXeqOk4yU9qOpenhnXM3u+7VWSPinpfZKOlvQ1Sd8/rRsvkfQNVZcPXZKta0S8UtIXJb2zfv1/nLasRZL+WNX2fpaknZI+MpvtBKA9BIoYgQV1vK7tl/QLqga1L5P0KtVflCZeoSo506sl/dLkYHeWy3qDqmP0qcl2m+4cSf9a0sqI2Ddt/VZJulbSf65f959U3U882X62pAsl/TtJx6g63l/VZ/0mbZT0eklHSHqLpA/ZfnHDc98m6bWSTpP04no9S5c13WWS3h4Rh0v6btUDf0kXqMq6fIyq8c6Fkmb6Rzab9+X1qm65+V5VY6/X1NNnve/ZPlzSX6u6J/sESc+T9IW6+ZdVlRA6TdILJZ2h6j2b9ExJz1BVa/atkn7P9pEzvc4MXqJqLLhK0m9Iumwy0JX0J5IOlfQCScdK+lDd1xepur/87arGkn8o6brJ4LXWu9+dI+mf9e2rDX5jhn78maTb6378V0lzvY/y39T9PVLS30v6vKox6GpJH6j72OunJP2MqnHyPkkfntb+Q6res9eUfA4IFIfvM/W3FpM/b6un71V1EDkhInbV98FkDki6KCJ2R8ROVUHZL0fE+ojYreoD/KPuc6o5ItZFxI31ch6XdKmqnSpl+whVO/L7I2Jrv+fXfkLS5RFxR93H96k643hywfNfJ+neiLi2PmB8WNKj0+Z/JCL+e0Tsi4idpesqSRHxRER8KiJ2RMR2VYHnrOYFAHTSQXO8jojbI+KW+nj5gKrBaL9lvz8ino6Iu1V9kXrOHJb1axHxZL09ZuvDEfFQwzyTY4JPRnW7yO9o6pjgHfVr3l+PGX5V0mn9zqbU6/OXEfFPUflbVV8S/GDD098o6Xfr93azpA/OY1nT7ZV0qu0jImJzRNzRM/14SSdFxN6I+GLM8I3XLN+XD0bElqjuu7tJVUA3133v9ZIejYjfrj8f2+Pb98b+hKQPRMTGejnvV5UcrHcdP1Cvx/WSntLs71V9MCI+FlWysCvrbXKc7eNVBe/vqLfb3nrbS9UXN38YEbdGdeb9Skm7VQWzk7L9bgrbz1IVaP9Kva1ulvQ/Ztn/SV+MiM/X++lfqAroPljv11dLOnna2dw/iYh7orrN61ckvdFTE+tcXH9OJ//3zOlzQKA4fG+IiJU9Px+rp79H1Tc2X3aVpepn+izn8YjY1fP3SZI+PXlAk3S/qm+PjssWYvs421e7uoxhm6Q/Vc9p8oZ5lqva8W+JiF/r089eJ6g6KyhJioinJD2h6luSuT7/BEkP9bSFqm/Uej3U+0fJuvbMe6jtP7T9YD3vzZJWuiHLFYDhCM4ooj0HzfG6vrztc7YfrZf9q/2WranH2AdVHZdnu6yHNHfZPDONCXqff5Kk3+3Z5k+qeg+bxh/fYvu1tm9xdRnlFlVBadO2mdKP6X2e47Km+//q5z9YX9r4snr6b6o6U3yDq8tZ39uwHrN5X3qD6x2qk7TMcd9bo+qM7kymjOvUs9/UnoipZ4u/1YdZ+FbfI2JH/XBF3Z8n68B9upMkXdD7hVD9/N4+zWVfPUHS5piam+PBpic3eKzn8U5VdX339/wtTd0m0z+HE5r63szrc0CgOCYi4tGIeFtEnKDqFPjvu74uvWmWaX8/JOm10w5qh0REv8LOv1ov63si4ghVWfuaMvqpPh3/GVVBWeN1+g0eUbWTTi7rMFWn+pv6mD1/g6pLfibb3Pt3bfo2mtO6TnOBqm+1XlLPO3mpzGznB9ACAkUM2wI9Xn9U0ldVZR49QtXlaf2Ob2t6Hj9L1TF7tssq+aBl82zo7U89Jujt30OqLtvs3ebLI+L/ZC9Yb8NPSfotScdFxEpJ16t520wZm0zrU79lPa3q8sjJ5z+zd8ER8ZWIOFvVpZOfUVV2R/UZuwsi4jmS/q2k/2T7VTP0reQ9njSXfe8hSc9paJsyrtPU/aYtD0k6yjPfU/mQpEum7ReHRkTv5ZjT97t+++GR9Xh10rN6Hk9/jxerOmM4H9M/h3tV1fCd1NvfOX8OCBTHhO0f87eTo2xW9cYeqP9+TM0fukl/IOmSydPHto+pr0Xu53BVp/a32l4t6f9P+jih6r7AnapqhB1oem6DqyS9xfZp9T/MX5V0a1SXQEjfuZ7Z8/9S0vfYfkN9uc75qq5tz8x6XRvm3Slpi6sbhS+aw7wAWkKgiGFboMfrwyVtk/SU7e+S9HOz6M+v1FfbvEDV/XaT9xaWLGs22y3zl5JeYPvf1WOC/6ipY4I/kPS+uq+y/QzbPzaL5S6VtEzS45L2uUqQMj2ZSK9rJL3L9uo6MPmlOSzrH+p1OM32Ieq5B9D2Uts/YfsZUV2CuE31PucqGcvz6uB4q6qz0zO93yXvS++8sx0/fU7S8bbf7Sp5zeG2X1K3XSXpP9f7/CpJ/0XV2cnWRMQGSf9T1Rc6R9qesD35Zf/HJL3D9ktcOcz2v3Z1n2WTxn01Ih6UdJuk99fv2Q+ouudw0j9KOqR+jQlV92cum2FRc/GTtk+1faiqexg/Gc21euf8OSBQHL7JTEmTP5+up3+fpFttPyXpOknviohv1G0XS7qyPlX8xobl/m493w22t0u6RdWNvf28X9UN11tV/aO9Nnnu96u69vzVqgKmyXWY1fX1UdWc+RVV36htkPRcSW/qecrF6lnP7PkRsUnSj6m6YfkJSaeq+nDuHtC6Tvc7kpar+pbmFlU3aQMYoTaCRAJF9DiYjte/KOnHJW1XNXhuSijT629VXfL4BUm/FRE3zGNZF6v/dmvUMyb4oKoxwSmS/ndP+6cl/bqkq11dOnmPqvvW+i13u6qg8xpVXwr8uKr3rsnHVN13eJeqRCTXq0owsr/fsqJKovcBVYlgvi5p+r2vb5b0QN3/d6i630/1uv61qkDu7yT9fkTcNEPfSt6XSbPe9+r1/GFVAdKj9bq8om7+b6rGandJulvSHfW0tr1Z1Zm2r6pKKPTuuq+3qUpA9BFV78k6ST/dZ1m/pirY3eKebL89flzV5/lJVScVPj7ZENU9wv9BVVWAh1WdYZx+29Rc/YmkK1Rt60NU7WMzKvkcmIMiFgJXqaDXS/qJhn+QABaYF77whXHDDTf0f+IcPfOZz7w9Ik4f+IKBBcBVQrlvSpqIadlHMVV91vAPImJWpTiAccMZRXSW7dfYXllfljp5rf0tI+4WgCHijCKAcWF7uat6h0vqSzQvkvTpfvMB44pAEV32MlWZtTapusThDTG3VNsAOo5AEcAYsarLNDeruvT0flX34QGdlNbsAcZZRFysWRYbBrAwEdgBw1UnlCPj9wyiKsvwfaPuBzAoBIoAgM4iUAQAoB1cegoAAAAAmGJeZxRtn6UqzfNiSX8UER/s8/yir36r0jAzW7SoLNYt/RY6my/rZ1uy1yxt4xv6wdu/v6mkTTtK98WS+Q4cOKADBw5wGRKGjnsK0UXDGjsBGG8RMfZjp+JA0fZiSb+nqlbKeklfsX1dRNzXZ745v9aSJc3dXLFiRWPbgQPN9WWzgXs2X9bWL2jN2ksH9kuXLm1sm5iYKHq9bOBVum0ypcH+OOm3Dk8++eRQXzP7zGTvfTZf0+tt2bKlcR6gbQSK6JLSsRMAjMJ8RuhnSFoXEd+IiD2SrpZ09mC6BQBAf2Q9RccwdgLQGfO59HS1pId6/l4v6SXTn2T7PEnnzeN1AACYEYEdOoaxE4DOaD3raUSslbRW4jp7AACAfhg7ARgH8wkUH5a0pufvE+tpAAAMBWcU0TGMnQB0xnwCxa9IOsX2s1X9k3uTpB/PZli8eLFWrlw5Y1uWCOXpp59ubNu5c2djWxtJUuazzH379jW2Zeu/fPnyomVmShOaZAlySrfNQw891Nh29NFHN7addNJJjW1Zkp9NmzY1tpUmZtm7d2/afvjhhze27dmzp2i52fu0bNmyxrbFixcXvd7u3btnnM5AHaPCPYXooDmPnQBgVIoDxYjYZ/udkj6vKsXz5RFx78B6BgBAHwSK6BLGTgC6ZF73KEbE9ZKuH1BfAACYEwJFdA1jJwBd0f0CdgAAAACAgWo96ykAAG3hjCIAAO0gUAQAdBaBIgAA7SBQBAB0EllPAQBoTycCxazsQlZWImvLllnalpWckPKyBJmsDEIm68981mPQstIRWTmOrDRItg7ZfKX72ihk/Sktm5LN19TGQB0AAGDh6USgCADATPiiAgCAdhAoAgA6i0ARAIB2ECgCADqLQBEAgHYQKAIAOotAEQCAdjRn7gAAAAAAHJQ4owgA6CTKYwAA0J6xCRSzsgRZeYg9e/YMtS9Z2YXSMhb9XjMrEVGqjRIYpeUjVq5c2diWbZfsvd+/f39j2969e2fVr+my9zd7vfnI1j+TvRel262tdQTmg0ARwCANu0RYV/C/9uDEpacAgM6aPKs4yJ+M7TW2b7J9n+17bb9rWvsFtsP2qvpv2/6w7XW277L94hY3BwAAAzM2ZxQBAJirEXzLvU/SBRFxh+3DJd1u+8aIuM/2GkmvlvTPPc9/raRT6p+XSPpo/RsAgLHGGUUAAGYpIjZExB314+2S7pe0um7+kKT3SOqNXs+W9PGo3CJppe3jh9lnAABKcEYRANBZLZ1RXGX7tp6/10bE2ulPsn2ypBdJutX22ZIejoh/mHaP02pJD/X8vb6etmHgvQYAYIAIFAEAndRi1tNNEXF69gTbKyR9StK7VV2OeqGqy04BAFgQCBQBAJ01ikx8tidUBYmfiIhrbX+PpGdLmjybeKKkO2yfIelhSWt6Zj+xngYAwFgbeqDYlLa/tDxEaRrj0rID2Xz9lpn1NZt38eLF/Ts2JKUlMDKHHXZYY9vu3bsb23bt2tXYlg0es/IYpe9DvxIm2XabT1mVYSJlOMbRsANFVx+EyyTdHxGX1n24W9KxPc95QNLpEbHJ9nWS3mn7alVJbLZGBJedAi0rPWa1cawb9vFznEpZjFNfMHfdGKECADAeXi7pzZLutn1nPe3CiLi+4fnXS3qdpHWSdkh6S+s9BABgAAgUAQCdNexvqyPiS5LS0wMRcXLP45B0fsvdAgBg4AgUAQCdxWVNAAC0g0ARANBJLWY9BQDgoFeW0QUAAAAAsGBxRhEA0FmcUQQAoB1jUx4jk5UlWLZs2cD70UYJCKm8DEJpKY9MW+tYIuvLnj17GttKB4j79+9vbMu29XzKWGQlOTJZf0rfw9L5mvqyb9++ouUBg0CgCCxsbZS56MoyM6X/+7L5srasn239H+b/++jNK1Csa0Vtl7Rf0r6IOH0QnQIAYDYYSKBrGDsB6IpBnFF8RURsGsByAACYEwJFdBRjJwBjj2Q2AAAAAIAp5hsohqQbbN9u+7xBdAgAgNmYLI8x6B+gZYydAHTCfC89/YGIeNj2sZJutP3ViLi59wn1P8Hz6sfzfDkAAL6NwA4dNKexEwCMyrzOKEbEw/XvjZI+LemMGZ6zNiJOj4jT28jeCQA4eHFGEV0z17HTsPsHAJOKzyjaPkzSoojYXj9+taQPZPNERFqaoMnExERjW1Yeo420/VlpgfkEwtnZ1qw8SKk2llk6wGprmzbJ9ovS96Hf2fKsPEZpCYxx+eKFKwUwSgR26JKSsdNC1+8YUlqSoo227LjbRumMUqUlMLIxRxvLnA/+9w/HfC49PU7Sp+udf4mkP4uIvxpIrwAAABYexk4AOqM4UIyIb0h64QD7AgDAnPCtMrqEsROALhlEHUUAAIaOewoBAGgPgSIAoLMIFAEAaAeBIgCgswgUAQBox3ikTQQAAAAAjI2hnlGMiMbSBKXpiLNSB1lK3qwtK+ExnxTHWXmFbB2zEiDjpHTbZGcEsu3SRomP7PXmU46itDxGqdJ9v631B9rCGUVg/M2ndETp+LArbaXaKFdROjYuLYHR1v9vjguDw6WnAIDOYkAAAEA7CBQBAJ1E1lMAANrDtWQAAAAAgCk4owgA6CzOKAIA0A4CRQBAZxEoAgDQDgJFAEBnESgCANCOoQeKTSl0Sw/2WdmB0jS/mfmkPy4t9TAxMdG/YwNUmsa5dL6sxMmSJc27aFY2JHvvs32mjf2i32tmqb+z9S9NcV2K8hgYRwSKwHgoLYHRrzxG6diptC077pbOl61DG6XFsrFM1paNx9qYr99YpY2xDMeMuWHkBwAAAACYgktPAQCdRHkMAADaQ6AIAOgsAkUAANpBoAgA6CwCRQAA2kGgCADoLAJFAADaQTIbAAAAAMAUnFEEAHQWZxQBAGjHUAPFRYsW6bDDDpuxbdu2bY3zrVixorEtq8+S1bsprcGXyWroSNLy5csb2w455JDGtkMPPbSxrbSOTqa09tDSpUsb27JakLt3725sy2rzZO/Trl27Gtuyfu7Zs6exrbRmpyQdffTRRfOW1ibKZPNl70VTWxt1joDZIOspMFxt1ErsV6O3tHZhNu7I2rIxQvZ62XyltSAzpXUNs7ZsnJONj7L1a6N2tUSNxWHh0lMAQGdNBouD/MnYXmP7Jtv32b7X9rvq6b9p+6u277L9adsre+Z5n+11tr9m+zXtbhEAAAaDQBEA0FnDDhQl7ZN0QUScKumlks63faqkGyV9d0R8r6R/lPQ+Sarb3iTpBZLOkvT7tstOIQAAMEQEigAAzFJEbIiIO+rH2yXdL2l1RNwQEZPXdN0i6cT68dmSro6I3RHxTUnrJJ0x7H4DADBXJLMBAHTWKO8psX2ypBdJunVa089I+vP68WpVgeOk9fU0AADGGoEiAKCzWgoUV9m+refvtRGxtvcJtldI+pSkd0fEtp7pv6zq8tRPtNExAACGhUARANBJLWY93RQRpzc12p5QFSR+IiKu7Zn+05JeL+lV8e2OPSxpTc/sJ9bTAAAYa30DRduXqzrwbYyI766nHaXqspqTJT0g6Y0RsbnfsiKiMS1vaZrf0lIO/UpZNMlSPGepkaW8zEVWHqPfcpv0SzndJNtuWUrpbNtk2zt7vSz9cZZyOZMts3TQ2S+9dbZ/Z+9T1tbGALkkTXeWMhtYaFz9o7tM0v0RcWnP9LMkvUfSD0XEjp5ZrpP0Z7YvlXSCpFMkfXmIXcYIDHLsNGzZsbx0vvmUhygtSZGVQcvasvFY1pYtMxs7tVEeIzsuZ2WwstJipW3ZftFvHFc6zmljnHewmk0kcYWqTG293ivpCxFxiqQv1H8DADBUI8h6+nJJb5b0Stt31j+vk/QRSYdLurGe9gd1/+6VdI2k+yT9laTzI6K8eBi64goxdgLQcX1Pq0XEzfUN+73OlnRm/fhKSf9L0i8NsmMAAPQz7G+HI+JLkmb6ivz6ZJ5LJF3SWqcwdhg7AVgISu9RPC4iNtSPH5V03ID6AwDArHEZETqEsROATpl3MpuICNuNR2rb50k6r34835cDAOBbCBTRRXMZOwHAqJRlO5Ees328JNW/NzY9MSLWRsTpEXE6gSIAADhIFY2dhtY7AJimNFC8TtK59eNzJX12MN0BAGB22khkwxlKtIixE4BOmU15jKtU3Xy9yvZ6SRdJ+qCka2y/VdKDkt44mxez3ZjmOEsPnB24S8sOZErLPGTpj6XydMxZf7LXLE0NfdhhhxW9XvYeZu/FU0891diWpXHeuXNn0etlsvmyde+X4jnbT9tQmqa8pGwMVwpglAjsMI4GOXYaJ9n/+7bKY5SOc7KSZMuXL29sW7FiRVFbtsxsjFdaHiMrHZeVq3j66acb23bs2NHYlo3VSveLfv+/s/Zs/bP5SscsB+uxZjZZT89paHrVgPsCAMCcHKwHb4w3xk4AFoJ5J7MBAGBUCBQBAGhH6T2KAAAAAIAFijOKAIDO4owiAADtIFAEAHQSWUoBAGgPgSIAoLMIFAEAaMdQA8VFixY1pivO0txmSucrLYGRpXjuVwIh6+uBAwca27K0ylk65iOOOKKx7cgjj2xsy8pjZKmhszTVWfrnjRsbaw6nJTCyVM1btmxpbMtSbWfLzNJG9yvHkZXPyPabbL/I2jJZX0s/F8CoECgCc1dazqCNEhj9ji1Lly5tbMvGQNlYJhsfrVy5srHtGc94RmNbNj7KSnVkY5Ls/1s2rshKYGzfvr2xbevWrY1t2XtYWnKi3zimdAyUtc2nXMfBiGQ2AAAAAIApOEUAAOgsvgEGAKAdBIoAgE4imQ0AAO0hUAQAdBaBIgAA7SBQBAB0FoEiAADtIJkNAAAAAGCKoZ9RbEqfnJVWKP3GuDRd73xKYGRK1yNL45ylf161alVj2zHHHNPYlpXOyPqSpanOtmm2zKwkxWOPPdbYlqVxzvpSmm456+d8XrONfXHYrwe0iTOKwPC0UTojKw8h5ePDbNxx+OGHN7Zl45xs7HTUUUc1tmVlNbK+ZOU/sv9vu3fvbmzLSmBs3ry5sa3fe9EkG1dkpeH6lbjL2rMxSba/Zdu0NG5YyMchLj0FAHTWQj5AAwAwSgSKAIBOIuspAADt4R5FAAAAAMAUnFEEAHQWZxQBAGgHgSIAoLMIFAEAaAeBIgCgswgUAQBox1ADxYjQzp07G9uaZGl3lyxpXoUszW+WUjlbZpY695BDDmls69eepX/OSmBkKZePO+64xraTTjqpse2Zz3xmY1uWGjpL8Zy1Pf7440Vthx56aGNb9h6WloDYu3dvY9uePXsa2/r1J1Oa/rm0BEY2HzCOCBSBwWqjBEZWsqrf8TEbP7RRHiMrH5aNq7KyGlkZsGxsmP1/axpPS9LWrVuLXi97f7NSFdn4aNeuXY1t/cZOWXtp6YzSEhgHK5LZAAAAAACm4NJTAEAnUR4DAID2ECgCADqLQBEAgHYQKAIAOotAEQCAdhAoAgA6i0ARAIB2kMwGAAAAADBF3zOKti+X9HpJGyPiu+tpF0t6m6TJ2gUXRsT1/ZZ14MAB7d69e+aOFJa5KC0DkLVlqXOzMhb9UjxnZS6yUg8rVqxobMvSMWdlLtasWVPUlpXHyN6nTJamOkspnb2HWarmpn1QytNN79ixo2iZUv7+9ksPXSJb/0y2TZuQahqjxBlFjKNBjp3GySjKY2TjrqzUQzZ2WrlyZWPb0Ucf3dh27LHHNrZlY65snJOV+MjGuNl4JRtvZu9TVnIiK3NROnbKlimVlzorLYOW7d8H67FmNqPCKySdNcP0D0XEafVPp/7RAQC6bzLr6aB/gAG4QoydAHRc3zOKEXGz7ZOH0BcAAOaEwA7jiLETgIVgPvcovtP2XbYvt918Th0AgJYM+4yi7TW2b7J9n+17bb+rnn6U7Rttf73+fWQ93bY/bHtdfcx88RA2C8YXYycAnVEaKH5U0nMlnSZpg6Tfbnqi7fNs32b7Nr75BQB03D5JF0TEqZJeKul826dKeq+kL0TEKZK+UP8tSa+VdEr9c56q4ycOTkVjpyH1DQC+Q1GgGBGPRcT+iDgg6WOSzkieuzYiTo+I00l6AQAYpGGfUYyIDRFxR/14u6T7Ja2WdLakK+unXSnpDfXjsyV9PCq3SFpp+/gWNgXGXOnYaXg9BICpigLFaQe5H5F0z2C6AwDA7LUUKK6aPJtT/5w302vX96C9SNKtko6LiA1106OSjqsfr5b0UM9s6+tpOMgwdgLQNbMpj3GVpDNVHTjXS7pI0pm2T5MUkh6Q9PbZvmDJ5adZauRt27Y1tmVpdbOUw1ka5yzlbr8Uz6UlQLIUz4cffnhjW5b+ubQtey9KlZb/yN77zZs3F71elqZ66dKlRW1Sno452xezfSZLY50tM2vLlJTOANrUYpbSTf3O5NheIelTkt4dEdt6r5iJiLDNvRYHsUGPnQr7MDZtpaUzpPw4mJXHyI7nWfmI0tIZxxxzTNF8Wfms7P/bU0891diWbe+snNf27dsb29oYO/UbN5eOx0v3U3yn2WQ9PWeGyZe10BcAAMae7QlVQeInIuLaevJjto+PiA31maON9fSHJfUWpz2xnoYFjLETgIWAUwQAgM4aQdZTqxrw3x8Rl/Y0XSfp3PrxuZI+2zP9p+rspy+VtLXnElUAAMZW3zOKAACMqxFk0365pDdLutv2nfW0CyV9UNI1tt8q6UFJb6zbrpf0OknrJO2Q9Jah9hYAgEIEigCAzhp2oBgRX5LUdJPLq2Z4fkg6v9VOAQDQAgJFAEBnUZ8XAIB2cI8iAAAAAGCKsTmjmKW5zcoAZCl5s5ITWVu/dL1Nsn5KeZrfLFVzVs4gmy8rLZGlcc62aaa0fELp+h177LGNbVnpjCeeeKKxLUtTnW2XHTt2NLZJ0p49e9L2Jtm+mKWc3rVrV9HrZZ+Lpv2bVNMYlRbLYwCYozbKakj52Kn0GJkdz7O20nJlRxxxRGNbNs7J/r9l2yUrgZGtQzYGysqjlY6p+5VGGacSGKXL7PoxamwCRQAA5qrrB2EAAMYVgSIAoLMIFAEAaAeBIgCgswgUAQBoB8lsAAAAAABTcEYRANBZnFEEAKAdBIoAgE4i6ykAAO0ZaqBouzG9bpbGuN8ym2RpddsYXPRL85uVz8hKRGSphbP1L50vU5qqONNvuzXJUjVn695GGud+JVWy7dZGW7aOe/fubWzL9tH9+/fPOJ2BOkaJ/Q/otn6ltUrLIJSOV7Jjfek4YD4lIkrmK21rYzwynzIWbZTAoKTX3HBGEQDQWQSKAAC0g2Q2AAAAAIApOKMIAOgszigCANAOAkUAQGcRKAIA0A4CRQBAJ5H1FACA9nCPIgAAAABgiqGeUVy0aJEOPfTQxrYmTz/9dGNbViKhVFMZAClPK5zNJ+UlMLKSBZnsNXfv3t3YtmfPnsa2rJ/Z+rfxzX7Wl9JyI9m2zrZLtq37rfuuXbuKXjNbbum2ydqyz2HTduOMDkaJ/Q/otuxYJrVzHMyO56VjhGzMlbWVjqtKx3hZW7bu2TbL2rL3aD7vfRtt+E5cegoA6CwO+gAAtINAEQDQWQSKAAC0g0ARANBZBIoAALSDZDYAAAAAgCk4owgA6CTKYwAA0B4CRQBAZxEoAgDQjqGXx2gqZ5Gl5M3ali9fXtSXLCVvViIgm6/fgKV0Hbdt21bU9vjjjze2rVy5srFt6dKljW1HHHFEY9uSJWW7U5bCeuvWrY1tTz75ZGPbE0880di2ffv2xrasjMXOnTsb2/qVN8nSX2dKU05nspIyExMTjW1N6/jUU08V9QMYBAJFYLBKP1OlZSz6vV42RigtA5Edz7MxQjbmOuywwxrbsjFANu7Itk1WOm7Lli2Nbdn6ZcvcsWNHY1tWqqO05Ea/9mH/7z9YS270vUfR9hrbN9m+z/a9tt9VTz/K9o22v17/PrL97gIA8G2Tl58O8geYL8ZOABaC2SSz2Sfpgog4VdJLJZ1v+1RJ75X0hYg4RdIX6r8BAAAOdoydAHRe30AxIjZExB314+2S7pe0WtLZkq6sn3alpDe01EcAAGbEGUWMI8ZOABaCOd1UZvtkSS+SdKuk4yJiQ930qKTjGuY5T9J5Uvk9bAAATEdghy6Y79gJAEZl1pGb7RWSPiXp3RGxzfa32iIibM94tI6ItZLWStIhhxzCER0AMDAEihhngxg7NT0HANo2q0DR9oSqf3SfiIhr68mP2T4+IjbYPl7SxrY6CQDATAgUMa4YOwHour6Boquvvy6TdH9EXNrTdJ2kcyV9sP792X7LOnDgQGMK3Sx1cpayv9/rNcnSLWflMUrnk/I0v1na4SxdcVYGYuPG5uNPViIhk6WbXrFiRWNb9h5mZTw2b97c2Pbggw82tj366KONbVlq6NJyFP1SPGfrn5UjKU03nl3mnb33hx56aGNbk6xMCQAcjAY5dipV+iVK71nPuSwzOyaVjsek8hIY2dgpK3ORlZbIjpHZGDArH5GVecu2dzZuzMZOmzZtamzL1j0rhdVG6QypfEw2n3IsmGo2ZxRfLunNku62fWc97UJV/+Susf1WSQ9KemMrPQQAoAEHfYwpxk4AOq9voBgRX5LU9PXSqwbbHQAAZo9AEeOIsROAhYA0pACATiLrKQAA7elbRxEAAHyb7cttb7R9T8+002zfYvtO27fZPqOebtsftr3O9l22Xzy6ngMAMHsEigCAzpo8qzjIn1m4QtJZ06b9hqT3R8Rpkv5L/bckvVbSKfXPeZI+Ooj1BgCgbVx6CgDorFFcehoRN9dF1KdMlnRE/fgZkh6pH58t6eNRdfQW2ysnyyMMp7cAAJQZeqDYLw3yTI444ojGtiy1bmnq3ExWyqBfiYQsRfDixYsb23bt2tXYlqUkfuSRRxrbsu22devWxrZVq1Y1th122GGNbVl5iGwdHnvssca2rARGVnIjS5mdpdqez4A0W8cs5XT2ecn2p6wtk+2HTUo/S8AgjNE9iu+W9Hnbv6Xqap3vr6evlvRQz/PW19MIFDGWss9UaVs2PppPeYzseJ6VncjKQGTjvKwERjauyspyZSWrsm26c+fOxras/EdWHiMruZZts+x9yMaw2Xsr5ftGtk+1sQ8frLj0FADQWS1derqqvs9w8ue8WXTl5yT9QkSskfQLqmroAQDQWVx6CgDAVJsi4vQ5znOupHfVj/9C0h/Vjx+WtKbneSfW0wAAGGucUQQAdFIbZxPncenRI5J+qH78Sklfrx9fJ+mn6uynL5W0lfsTAQBdwBlFAEBnjeKeEttXSTpT1SWq6yVdJOltkn7X9hJJu1RlOJWk6yW9TtI6STskvWXoHQYAoACBIgCgs0aU9fSchqZ/OcNzQ9L57fYIAIDBI1AEAHQWWeoAAGjHUAPFxYsX66ijjpqxLUu7u2RJczezMgD9ylU0ydIfZ6l8bafLzVInZ+uRlU/IXjNLK5ylTs7Kahx55JGNbStWrGhsy7ZpVl4h2y+yNM7ZNsu2dZbCOkv/nG3Pfv3JUlxnsu2W7ftZqY5sH21qKyl5AwDonuyLmdKSZNlxR8rHXVnphex4no0rM6XH1qx8WFaOI9ve2XbJxhzZuOrJJ58smi/b1tkYZz7lMUr3N75cnBvOKAIAOouDPgAA7SBQBAB00jyzlAIAgASBIgCgswgUAQBoB4EiAKCzCBQBAGhHc4YRAAAAAMBBiTOKAIDO4owiAADtGGqguHTpUq1evXrGtqz0QFbOIJOl1c3KNZTO168cR7bcbN5NmzYVLTNLOb1s2bLGtiyNc5ZyOHufFi9e3NhWmlY5S9WcpcwuLUWSlcDoVx4jS8U9MTFR1JYNkEv302x/atpuDNQxSux/wNyVfm5Ky2OUHnek8rFFdhzMSotl65GVc8jGMsuXL29sKy3VkfUlGzuVjnO2bt1atMy2ymNk+1Qb+/fBeqzhjCIAoJPIegoAQHsIFAEAnUWgCABAO0hmAwAAAACYgjOKAIDO4owiAADtIFAEAHQWgSIAAO0gUAQAdBaBIgAA7RhqoLhnzx498sgjc54vS42cpTjOSgtkaZMzWareLE2zlKdczpabrWOWkjgrj7F06dLGth07djS2ZamTS7d3tg7ZNsuUltXItkuW3rpfCZesXEfpfFla6SxtdOk2PeSQQ2acXrpuAIBuKS0fkB2TsjGOlI8fSo8/2XEwGztl46OsPEZWkiwbO5Zu02xMko2PsvXLythly8zeo2xbS+VjmayNLxfnpm+0ZHuN7Zts32f7XtvvqqdfbPth23fWP69rv7sAAFQmy2MM+geYL8ZOABaC2ZxR3Cfpgoi4w/bhkm63fWPd9qGI+K32ugcAQDMCO4wpxk4AOq9voBgRGyRtqB9vt32/pNVtdwwAgH4IFDGOGDsBWAjmdKOe7ZMlvUjSrfWkd9q+y/blto9smOc827fZvi271hgAgLni0lOMu/mOnYbVTwCYbtaBou0Vkj4l6d0RsU3SRyU9V9Jpqr41++2Z5ouItRFxekSc3i/ZCwAAwEIxiLHTsPoKANPNKuup7QlV/+g+ERHXSlJEPNbT/jFJn2ulhwAANOAMIMYVYycAXdc3UHSVt/gySfdHxKU904+vr8GXpB+RdE+/Ze3fv1+bN2+esS1L5VtayiLTxuCi36W1WRrgbB2XLGl+m7KUxFnJjayvWVv2elk/s/TXpemfM1mK56ysRPYeZX0ZtxIRpSUwgC7hUlGMq0GOnYat9DNVetyZz9gpk61Habmy7FiflfrKSm+1Ua4ta8vGQNlYvLStdMwllZfHKC3jwvHkO83mjOLLJb1Z0t2276ynXSjpHNunSQpJD0h6ewv9AwCgEQd2jCnGTgA6bzZZT78kaabTQdcPvjsAAMwegSLGEWMnAAvB4K/pBAAAAAB02qyS2QAAMI44owgAQDsIFAEAnUQyGwAA2kOgCADoLAJFAADaQaAIAOgsAkUAANox1EBx3759euKJJ2Zsy+rILF++vLEtq8+XKa33k/UzqxUjSYsXLy56zVLZACqrsZP1M2srrQWU1V/M+pnJ6ihu27atsa10HbL6SZJ0xBFHNLaNU83DkkE3A3UAQKa0pqFUPg4ordGc1fbL6gVm46NsnFM67iitBZm1ZeuetZW+Xr8amlk79RCHgzOKAIDOYkAAAEA7CBQBAJ1FoAgAQDsIFAEAnUTWUwAA2lN2YTQAAAcp25fb3mj7nmnTf972V23fa/s3eqa/z/Y621+z/Zrh9xgAgLnjjCIAoLNGdEbxCkkfkfTxyQm2XyHpbEkvjIjdto+tp58q6U2SXiDpBEl/bfv5EZFncQAAYMQ4owgA6KzJy08H+TOL17xZ0pPTJv+cpA9GxO76ORvr6WdLujoidkfENyWtk3TG4LYAAADtGPoZxX6pcIclGwyUltzoJ0stnKU5zvqTrUe/ch1NStM4l7ZlsnXIllma+jqTvQ/90nuXlsDI5sve+9JtM06lOoDZGKN7FJ8v6QdtXyJpl6RfjIivSFot6Zae562vpwGd08bnrd9xp/Q1s+Vmx8HS8hGlY6DSMWdpyZFs3YfdNp/3vnS8MkbHjE7g0lMAQGe1dNBfZfu2nr/XRsTaPvMskXSUpJdK+j5J19h+ThudAwBgGAgUAQCYalNEnD7HedZLujaqyPXLtg9IWiXpYUlrep53Yj0NAICxxj2KAIBOauP+xHmcofyMpFdIku3nS1oqaZOk6yS9yfYy28+WdIqkL89/7QEAaBdnFAEAnTWK+01sXyXpTFWXqK6XdJGkyyVdXpfM2CPp3Prs4r22r5F0n6R9ks4n4ykAoAsIFAEAnTWKQDEizmlo+smG518i6ZL2egQAwOARKAIAOosMdgAAtGOogaJtHXLIITO2laYOzuYrLTmRKS3zIOX9KU1lXGrx4sWNbdk6lpbOyF4vs3v37qJlZu9vabmRrK3f+mXptkvTdJfuT5n57N8AgIPXKL60yY6fbZSPyI7JpePYNspjlK57G23zKXFRuk/xBeLgcEYRANBZDAgAAGgHgSIAoJPmmaUUAAAkCBQBAJ1FoAgAQDsIFAEAnUWgCABAO8hcAQAAAACYgjOKAIDO4owiAADt6Bso2j5E0s2SltXP/2REXGT72ZKulnS0pNslvTki9mTLWrRokZYtWzbnTraRsn8+pQ5KZSmXS9MOl5YHyWQlMLL3b2JiorEt294l+0S/ZZaW8cjeo2y/6LcOe/fubWwrfZ9KDbo0TOnygEEgUMQ4GuTYaSGYz+c0m7e03FU2X2lptTba2igP0ZW2fvjfPxyzicB2S3plRLxQ0mmSzrL9Ukm/LulDEfE8SZslvbW1XgIAMM1k1tNB/wADwNgJQOf1DRSj8lT950T9E5JeKemT9fQrJb2hjQ4CAAB0CWMnAAvBrK7ptL3Y9p2SNkq6UdI/SdoSEfvqp6yXtLph3vNs32b7tmFfYgcAWNg4o4hxNaix01A6CwAzmFUym4jYL+k02yslfVrSd832BSJiraS1kjQxMcERGAAwMAR2GFeDGjvZZicHMBJzynoaEVts3yTpZZJW2l5SfzN2oqSH2+ggAABNCBQx7hg7Aeiqvpee2j6m/jZMtpdL+mFJ90u6SdKP1k87V9JnW+ojAAAz4tJTjCPGTgAWgtmcUTxe0pW2F6sKLK+JiM/Zvk/S1bb/m6S/l3RZvwVFRGP5gaxkQdaWlR3Yt29fY1sb+pXxKO1rVnohu++zNDV0Jutn6TKXLl3a2LZr166i18vaSstjlG7r+cxbel9vaUmZNkrRAMBBaGBjp4Wu3/Fz2OUjSscyw56vjXUvnW/YfcHw9A0UI+IuSS+aYfo3JJ3RRqcAAOiHM4AYV4ydACwEc7pHEQCAcUKgCABAOwgUAQCdRaAIAEA7CBQBAJ1FoAgAQDvIXAEAAAAAmIIzigCAzuKMIgAA7RhqoHjgwAHt3LlzxraJiYnG+bLyCVm5htJSB1lb1pd+pQxK+7p8+fKiZWayvpaWKiltW7KkeTfM9otMaZmHtkqqZO9vpo3yGKXbpimFd2lqb2C+yHoKLHzD/oyXls5YCP+L2liHhbBdDmacUQQAdBaDEAAA2kGgCADoLAJFAADaQTIbAAAAAMAUnFEEAHQWZxQBAGgHgSIAoLMIFAEAaAeBIgCgk8h6CgBAe4YaKC5ZskRHHnnkjG3Zwb60zMWyZcsa20rLLmTlE/oNWLL+LF68uLHtqaeeamwrLZ+QvV62bbJSFtn7tHfv3sa2LVu2NLZl67dnz56i18uWWTronE+JiGy7Zftb6Xufyd7fpn2GgToAYNxwbJo7thmm44wiAKCzGNgAANAOAkUAQGcRKAIA0A4CRQBAZxEoAgDQDgJFAEBnESgCANCORaPuAAAAAABgvBAoAgA6abI8xqB/+rF9ue2Ntu+Zoe0C22F7Vf23bX/Y9jrbd9l+cQubAgCAgRvqpaf79+9vLPWQHZyzEgGlSksLzKcvixY1x+VZSYqsr6XrkfUl00ZJhq1btza2ZftFG9slk5WO6De4zEpgZKU1Ssu4tHE5XtM6cOkfRmlE+98Vkj4i6eO9E22vkfRqSf/cM/m1kk6pf14i6aP1bwAdw/EOBxvOKAIAOmsUZxQj4mZJT87Q9CFJ75HUu5CzJX08KrdIWmn7+EGsOwAAbSKZDQCgs1r6hn+V7dt6/l4bEWuzGWyfLenhiPiHaVcJrJb0UM/f6+tpGwbVWQAA2kCgCADAVJsi4vTZPtn2oZIuVHXZKQAACwKBIgCgs8bknqHnSnq2pMmziSdKusP2GZIelrSm57kn1tMAABhrBIoAgE6a7T2FQ+jH3ZKOnfzb9gOSTo+ITbavk/RO21erSmKzNSK47BQAMPYIFAEAnTWKQNH2VZLOVHUv43pJF0XEZQ1Pv17S6yStk7RD0luG0kkAAOZpqIHigQMHNm3fvv3B+s9Vkja1+Xq7du2ay9Nb788c0JeZ0ZeZjbovJ43wtXGQG0WgGBHn9Gk/uedxSDq/7T5hQdskaWhjpzkYp75I49Uf+jIz+vJtnRg7DTVQjIhjJh/bvm0uyQLaNk79oS8zoy8zG6e+AAAGa1zHTuPUF2m8+kNfZkZfuodLTwEAnTUO9ygCALAQESgCADqLQBEAgHaMMlBMixePwDj1h77MjL7MbJz6AgzNuGQ9BYZonP7fj1NfpPHqD32ZGX3pGHOQBQB00dKlS+O4444b+HLXr19/O/euAAAOdotG3QEAAAAAwHjhHkUAQGdxVQwAAO0YyRlF22fZ/prtdbbfO4o+9PTlAdt3277T9m0jeP3LbW+0fU/PtKNs32j76/XvI0fYl4ttP1xvnzttv25IfVlj+ybb99m+1/a76ulD3zZJX4a+bWwfYvvLtv+h7sv76+nPtn1r/Zn6c9tL2+4LMA4m71Mc5A8wjhg7feu1x2bclPRnFOODsRk39ekPY6cOGXqgaHuxpN+T9FpJp0o6x/apw+7HNK+IiNNGdE/KFZLOmjbtvZK+EBGnSPpC/feo+iJJH6q3z2kRcf2Q+rJP0gURcaqkl0o6v95PRrFtmvoiDX/b7Jb0yoh4oaTTJJ1l+6WSfr3uy/MkbZb01iH0BRg5AkUcDBg7TXGFxmfc1NQfafjjg3EaN2X9kRg7dcYoziieIWldRHwjIvZIulrS2SPox1iIiJslPTlt8tmSrqwfXynpDSPsy0hExIaIuKN+vF3S/ZJWawTbJunL0EXlqfrPifonJL1S0ifr6UPbZwAAQ8HYqTZO46akP0M3TuOmPv0ZOsZO5UYRKK6W9FDP3+s1oh2nFpJusH277fNG2I9ex0XEhvrxo5IGn9Zvbt5p+6768oqhXc4xyfbJkl4k6VaNeNtM64s0gm1je7HtOyVtlHSjpH+StCUi9tVPGfVnChiKNs4mckYRY4qxU27cxk3SCMdO4zRumqE/EmOnziDrqfQDEfFiVZdznG/7X426Q72iGrWMcuTyUUnPVXWqfoOk3x7mi9teIelTkt4dEdt624a9bWboy0i2TUTsj4jTJJ2o6lvm7xrG6wLjiEARGImxHTuNwbhJGuHYaZzGTQ39YezUIaMIFB+WtKbn7xPraSMREQ/XvzdK+rSqnWfUHrN9vCTVvzeOqiMR8Vj94Tog6WMa4vaxPaHqn8snIuLaevJIts1MfRnltqlff4ukmyS9TNJK25NZjEf6mQKGiUARBwnGTrmxGTdJoxsfjNO4qak/jJ26ZRSB4lcknVJnGloq6U2SrhtBP2T7MNuHTz6W9GpJ9+RzDcV1ks6tH58r6bOj6sjkP5faj2hI28e2JV0m6f6IuLSnaejbpqkvo9g2to+xvbJ+vFzSD6u67v8mST9aP22k+wwwTASKOEgwdsqNzbhJGtn4YGzGTVl/GDt1i0dxUKxT4f6OpMWSLo+IS4beiaofz1H1TZhU1ZT8s2H3xfZVks6UtErSY5IukvQZSddIepakByW9MSJav1G6oS9nqro8ICQ9IOntPde6t9mXH5D0RUl3SzpQT75Q1fXtQ902SV/O0ZC3je3vVXXD9WJVX/RcExEfqPflqyUdJenvJf1kROxusy/AqE1MTMSRRw7+9pbHH3/89hhNFmygEWOnb73+2Iybkv6cqeGPD8Zm3NSnP4ydOmQkgSIAAPM1MTERK1euHPhyN23aRKAIADjoLen/FAAAxg+XigIA0B4CRQBAZxEoAgDQDgJFAEBnESgCANAO6igCAAAAAKbgjCIAoLM4owgAQDsIFAEAnUWgCABAOwgUAQCdRNZTAADaQ6AIAOgsAkUAANpBMhsAAAAAwBScUQQAdBZnFAEAaAeBIgCgswgUAQBoB4EiAKCzCBQBAGgH9ygCAAAAAKbgjCIAoJMojwEAQHsIFAEAnUWgCABAOwgUAQCdRaAIAEA7CBQBAJ1FoAgAQDtIZgMAAAAAmIJAEQDQWZMJbQb504/ty21vtH1Pz7TftP1V23fZ/rTtlT1t77O9zvbXbL+mnS0BAMBgESgCADqpjSBxlpeyXiHprGnTbpT03RHxvZL+UdL7JMn2qZLeJOkF9Ty/b3vxoLYBAABtIVAEAHTWKALFiLhZ0pPTpt0QEfvqP2+RdGL9+GxJV0fE7oj4pqR1ks4Y3BYAAKAdJLMBAHTWmCaz+RlJf14/Xq0qcJy0vp4GAMBYI1AEAGCqVbZv6/l7bUSsnc2Mtn9Z0j5Jn2ilZwAADAmBIgCgs1o6o7gpIk6f60y2f1rS6yW9Kr7dsYclrel52on1NAAAxhr3KAIAOmtEyWy+g+2zJL1H0r+NiB09TddJepPtZbafLekUSV+e94oDANAyzigCALrq85JWtbDcTVmj7asknanqEtX1ki5SleV0maQbbUvSLRHxjoi41/Y1ku5TdUnq+RGxv4U+AwAwUB7TRAAAAAAAgBHh0lMAAAAAwBQEigAAAACAKQgUAQAAAABTECgCAAAAAKYgUAQAAAAATEGgCAAAAACYgkARAAAAADAFgSIAAAAAYIr/C8j5kiPAvAXRAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "Err_BN2=error(xdata2, popt2[0], popt2[1],popt2[2], popt2[3], popt2[4], recorte2.ravel(), inc=1)\n", + "popt2E, pcov2E = curve_fit(gauss2d, xdata2, recorte2.ravel(), p0=[1,0,1,1,1], sigma=Err_BN2)\n", + "estrella2E=gauss2d(xdata2, popt2E[0], popt2E[1],popt2E[2], popt2E[3], popt2E[4])\n", + "FWHM2E=FWHM_I.append(2*np.sqrt(2*np.log(2))*np.sqrt(popt2E[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 2 fotografÃa\")\n", + "plt.imshow(recorte2, plt.get_cmap('gray'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 2 a partir de la gaussiana con incertidumbre\")\n", + "plt.imshow(estrella2E.reshape(35, 35), plt.get_cmap('gray'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 3 con incertidumbre (blanco y negro)" + ] + }, + { + "cell_type": "code", + "execution_count": 820, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4oAAAFUCAYAAABiJsKOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA0V0lEQVR4nO3de7wlZ13n+8+3d3fnQoAALSFJtwQx4AkolxMDyCgICglmDM5RBhTkNkY0KnjiQYKjoCPKEQeQQdEIMaAIRG5mECURUXTGBJIIgSREWoGkQydNEy4hJN29u3/zR9WGtXd6977UqrV27f68X6/12mtV1VP1W7Vqr/X86nnqqVQVkiRJkiTN2TDtACRJkiRJa4uJoiRJkiRpHhNFSZIkSdI8JoqSJEmSpHlMFCVJkiRJ85goSpIkSZLmMVGUJGmZkmxL8qEk1ya5JskLR+b9fJJPtdN/Z2T6eUm2J7k+yZOnE7kkSSuzcdoBSJK0Gqeffnrt3r177Ou98sorP1BVpy8yexY4t6quSnJ34MoklwLHAWcBD6uqPUnuC5DkFODpwEOAE4C/TfKgqto/9sAlSRojE0VJ0iDt3r2bj370o2Nf74YNG7YsNq+qdgI72+e3JbkOOBH4KeCVVbWnnberLXIW8PZ2+meSbAdOA/557IFLkjRGdj2VJGkVkpwEPAK4HHgQ8L1JLk/yD0m+u13sRODGkWI72mmSJK1ptihKkgarqvpY7ZYkV4y8Pr+qzh9dIMkxwLuAF1XVV5NsBO4NPBr4buCiJN/WR3CSJE2CiaIkabB6ShR3V9Wpi81MsokmSXxrVb27nbwDeHc1AX0kyQFgC3ATsG2k+NZ2miRJa5pdTyVJg1RVvTwOJUmANwHXVdWrR2a9F/j+dpkHAZuB3cDFwNOTHJHkAcDJwEfGvzckSRovWxQlSYPVU4vioTwWeBbwiSQfa6e9FLgAuCDJJ4G9wLPb1sVrklwEXEszYuo5jngqSRoCE0VJkpapqv4JyCKzn7lImVcAr+gtKEmSemCiKEkarCm0KEqSdFgwUZQkDZaJoiRJ/TBRlCQNlomiJEn9cNRTSZIkSdI8tihKkgZpObezkCRJq2OiKEkaLBNFSZL6YaIoSRosE0VJkvphoihJGiwTRUmS+uFgNpIkSZKkeWxRlCQNli2KkiT1w0RRkjRIjnoqSVJ/TBQlSYNloihJUj+8RvEwkOSkJJVkY/v675P8lwlsN0n+JMmXknyk7+11leTBST6W5LYkv9BOe3WS1045NEmLmGtVHOdDmpZp/V6vNUm+N8n1Hdexqn238DMYsiTXJHn8tOPoQ5K/TvLsNRDHtyb5WpKZRea/PMmf9bTt3r8fTBQnKMlnk9zRHlBzj9cvo1wl+fZJxLiUJB9K8oUkX03y8SRnHWLx/wD8ILC1qk5bxrqn/T5fDHyoqu5eVa9L8r3AdwP/3xRjkiRN2GH4ez1VC/dbVf1jVT14mjGtB1X1kKr6+2nH0YeqOqOq3jzp7bbfDT8wEscNVXVMVe2fdCyTMPizJQP0H6vqb8e5wiQbq2p2nOs8hBcC11bVbJJHAX+b5EFVtfMgy94f+GxV3T6h2Ba1zH10f+DtI68fAPznqtrXX2SSurAFUD06nH6vp2I1+2PC+1AChn/crTZ+WxTXiCTfnuQfknwlye4k72inf7hd5OPtGc3/nOTxSXYk+eUkNwN/kmRDkpck+bckX0xyUZJ7L2O7D0zyd22Z3UnemuTYxZavqqtHDrQCNgHbDrLe5wNvBB7Txv3r7fSfSrI9ya1JLk5ywmLv81DLt/OelOT6dp/9Qbv//ks77zlJ/leS1yT5IvDyQ73XJH8HfD/w+nb7DwKeAPxsO/9eSd7Xnp39Uvt861L7V1J/+uh2auKppay33+t23acl+eckX06yM8nrk2xeZNm5rplnJ/l8u/wvLXddbdlzknwa+PSh9ttImc+2+/Bq4PYcpFtokh9M8qn2c3k9kAXzn5fkuvY3/ANJ7r/YvltQ7rltuduS/HuSnz7EsjNJ/nv7+Xwmyc9lflfiRdfV1lv+acH6vtHSmuQpSa5ty940t8+TbGnrJF9OU1f6xyQbRvbbD6zgc3lBkk+3y/x+krTzVnTsJXlIkkvbeG5J8tJ2+hFJXtseN59vnx/Rzpv7Xzk3ya42xuceYhvf6HY5t++S/G77+X4myRkjy947zaVQn2/nv3dk3plpLjv6cpL/neS7RuYtPO7eBnwr8D/bY/XFuWt38Qek+X64LcmlwJaR9c07rg/yGb08yV8k+bO2/CeSPCjJee0+uTHJkxbsigcm+UiangN/mfa7ZCSu5ye5Afi7dvqK/g9MFNeO/wZcAtwL2Ar8D4Cq+r52/sPapu13tK/vB9ybphXsbODngacCjwNOAL4E/P4ythvgt9sy/xfNj8jLD1mg+UK6E7gc+HvgioXLVNWbgBcA/9zG/bIkT2i39TTgeOBztC14B3ufh1o+yRbgncB5wH2A64HvWRDGo4B/B44DXnGo91pVTwD+Efi5dvv/umBdG4A/odnf3wrcASzZDUlSv0wUNQXr6ve6tR/4RZpK7WOAJ9KeKD2E7wdOBp4E/HK+2R1vOet6Ks1v9CmH2G8LPQP4IeDYhS0jbZ3g3cB/bbf7b8BjR+afBbwU+E/At9D83r9tifc3ZxdwJnAP4LnAa5I8cpFlfwo4A3g48Mj2fa52XQu9Cfjpqro78FDaij9wLrCD5n0dR/M+D/ZFtpzP5UyaS26+i6bu9eR2+rKPvSR3B/4W+Jt2+W8HPtjO/hXg0TT752HAaTSf2Zz7AfcETgSeD/x+knsdbDsH8SiauuAW4HeAN80lusCfAkcDDwHuC7ymjfURwAXAT9PUJf8IuHgueW2NHnfPAG6g6W1wTFX9zkHi+HPgyjaO/was9DrK/9jGey/gX4AP0NRBTwR+o41x1E8Cz6OpJ88Cr1sw/3E0n9mTV/N/YKI4ee9tz1rMPX6qnb6P5kfkhKq6s6r+6RDrADgAvKyq9lTVHTRJ2a9U1Y6q2kPzD/yjWeJi7KraXlWXtuv5AvBqmoPqUGXOBO4OPAW4pKoOLBHrnJ8ALqiqq9oYz6NpcTxpFcs/Bbimqt7d/mC8Drh5QfnPV9X/qKrZqrpjNe915D1/sareVVVfr6rbaBLPZZWV1B8TRfXosPm9rqorq+qy9vfyszSV0aV+4369qm6vqk/QnEh9xgrW9dtVdWu7P5brdVV14yJl5uoE76zmcpHXMr9O8IJ2m9e1dYbfAh6+VGtK+37+qqr+rRr/QHOS4HsXWfxpwO+1n+2XgFd2WNdC+4BTktyjqr5UVVeNTD8euH9V7avm+s67fJEt83N5ZVV9uapuAD5Ek9Ct9Ng7E7i5qv57+/9xW1Vd3s77CeA3qmpXu55fB5614D3+Rvs+3g98DVjutaqfq6o/ruZawTe3++S4JMfTJO8vaPfbvnbfQ3Pi5o+q6vKq2l/NNY97aJLZOYc67uZJ8q00ifavtvvqw8D/XGb8c/6xqj7QHqd/QZPQvbI9rt8OnLSgNfdPq+qT1Vzm9avA0zJ/YJ2Xt/+nc989K/o/MFGcvKdW1bEjjz9up7+Y5ozNR9KMUvW8Jdbzhaq6c+T1/YH3zP2gAdfRnD067lArSXJckren6cbwVeDPGGkmX0z7j/bXwJOS/PBSy7dOoGkVnFvH14Av0pwlWenyJwA3jswrmjNqo24cfbHa99qWPTrJHyX5XFv2w8CxWWSUK0nS4B02v9dt97b3Jbm5XfdvLWPdo7+xn6P5XV7uum5k5Q5V5mB1gtHl7w/83sg+v5XmM1ys/vENSc5IclmabpRfpklKF9s38+JYGPMK17XQ/9Mu/7m2a+Nj2umvArYDl6TpzvqSRd7Hcj6X0eT668AxbdmVHHvbaFp0D2ZevY6R46b1xZrfWvyNGJbhG7FX1dfbp8e08dzaJu4L3R84d/SEULv8aEwrOVZPAL5U88fm+NxiCy/ilpHndwC765sD5cwlq6P7ZOH/4Sbmfzad/g9MFNeIqrq5qn6qqk6gaQL/gxx65LSFZ4tuBM5Y8KN2ZFXdtMSmf6td13dW1T2AZ7KgX/8SNgIPXOayn6c5SAFIcjeapv7FYjzU8jtpuvzMzcvo69bCfdTlvZ5Lc1brUW3Zua4yK9lXksasbFHUhK3T3+s3AJ8CTm7X/dJlrHv0esdvpfnNXu66VvOPdqgyO0fjaesEo/HdSNNtc3SfH1VV//tQG2y7IL4L+F3guKo6Fng/i++beXWTBTEtta7babpHzi1/v9EVV9VHq+osmq6T7wUuaqffVlXnVtW3AT8M/L9JnniQ2FbzGc9ZybF3I/Bti8ybV69j/nHTlxuBe+fg11TeCLxiwXFxdFWNdsdceNwtdRzeq62vzvnWkecLP+MZmhbDLhb+H+4Ddo9MG413xf8HJoprRJIfyzcHR/kSzQc710XkFhb/p5vzh8Ar5pqPk3xLljcU9t1pmva/kuREDnEriCTf0Z4NOyrJpiTPpEmY/mGxMgu8DXhukoe3X5i/BVxeTRcIuOv7PNTyfwV8Z5Kntt11zqHp2z6W97pI2TuAL6e5UPhlKygrqScmipq0dfp7fXfgq8DXknwH8DPLiOdX2942D6G53m7u2sLVrGs5++1Q/gp4SJL/1NYJfoH5dYI/BM5rYyXJPZP82DLWuxk4AvgCMJtmgJSFg4mMugh4YZIT28Tkl1ewro+37+HhSY5k5BrAJJuT/ESSe7ZdEL9Ke8ylGYzl29vk+Cs0rdMH62K8ms9ltOxy60/vA45P8qI0g9fcPc2ou9DU6/5re8xvAX6NpnWyN9WM8vvXNCd07tX+P8yd7P9j4AVJHpXG3ZL8UJrrLBez6LFaVZ+juQ7419vP7D/QXHM451+BI9ttbKK5PvOIg6xqJZ6Z5JQkR9Ncw/jOWvxWHSv+PzBRnLy5kZLmHu9pp383cHmSrwEXAy+sqn9v570ceHPbVPy0Rdb7e225S5LcBlxGc2HvUn6d5oLrr9B80b77EMumjWUXzRfdC2luH3HVIcp8QzXDjP8qzRm1nTRnNp8+ssjLGXmfh1q+qnYDP0ZzwfIXgVNo/jn3jOm9LvRa4CiaszSX0VykLWmK+kgSTRQ14nD6vf4l4MeB22gqz4sNKDPqH2i6PH4Q+N2quqTDul7O0vttUSN1glfS1AlOBv7XyPz3AP8/8PY0XSc/SXPd2lLrvY0m6byI5qTAj9N8dov5Y5rrDq+mGYjk/TQDjOxfal3VDKL3GzQDwXwaWHjt67OAz7bxv4Dmej/a9/q3NIncPwN/UFUfOkhsq/lc5iz72Gvf5w/SJEg3t+/l+9vZv0lTV7sa+ARwVTutb8+iaWn7FM3/xIvaWK+gGYDo9TSfyXbgOUus67dpkt0vZ2S03xE/TvP/fCtNo8Jb5mZU1VdoBhB6I03vuNu562VTK/WnwIU0+/pImmPsoFbzfxB/FLUepBkKegfwE4t8QUpaZx72sIfVJZdcsvSCK3S/+93vyqo6dewrltaBNAPKfQbYVAO+r9wktK2Gf1hVy7oVh7TW2KKowUry5CTHtt1S5/raXzblsCRNkC2KktaKtqvvU5JsbLtovgx4z1LlpLXKRFFD9hiakbV203RxeGqtbKhtSQNnoihpDQlNN80v0XQ9vY7mOjxpkA55zx5pLauql7PEzYYlrW8mdtJktQPKOeL3QVRzW4bvnnYc0riYKEqSBstEUZKkftj1VJIkSZI0z0RbFDds2FAzMzOT3ORdHDhwsFvLLN+GDdPPrcdxBr253c50Y+iq63sYh3Ecz13fx+xst0HnupYHqKrpfxg67HhNoQ4HSTzIpXVoCHWniSaKMzMzbNmyZdXlx1GhvfPOOzuVP/LIIzvHMO3EAGDjxm4f/Thi6LofxpG0d030jjnmmM4xdD2mvvjFL3Yqf8stt3Qqb0Vd0+TxJ0lSP7xGUZI0WCaKkiT1Y/r9KCVJWqVJ3x4jybYkH0pybZJrkrxwwfxzk1SSLe3rJHldku1Jrk7yyB53hyRJY2OLoiRJyzcLnFtVVyW5O3Blkkur6tok24AnATeMLH8GcHL7eBTwhvavJElrWqcWxSSnJ7m+PVP6knEFJUnScky6RbGqdlbVVe3z22huqH1iO/s1wIuB0ZWcBbylGpcBxyY5fuw7QoNh3UnSUKw6UUwyA/w+zdnSU4BnJDllXIFJknQofSSJbaK4JckVI4+zD7b9JCcBjwAuT3IWcFNVfXzBYicCN4683sE3E0sdZqw7SRqSLl1PTwO2V9W/AyR5O82Z02vHEZgkSUvpaTCb3VV16qEWSHIM8C7gRTTdUV9K0+1UOhTrTpIGo0uieLCzpHe57qI9E3s2rI17EEqS1o9pjHqaZBNNkvjWqnp3ku8EHgB8vL3tz1bgqiSnATcB20aKb22n6fC04rqTJE1L75lbVZ1fVadW1akmipKkIUuTCb4JuK6qXg1QVZ+oqvtW1UlVdRJN5f+RVXUzcDHwk+3op48GvlJVO6cVv4ZhtO407VgkHb66tCh6llSSNFVTaFF8LPAs4BNJPtZOe2lVvX+R5d8PPAXYDnwdeG7vEWots+4kaTC6JIofBU5O8gCaL7mnAz8+lqgkSVqGSSeKVfVPQJZY5qSR5wWc03NYGg7rTpIGY9WJYlXNJvk54APADHBBVV0ztsgkSTqE5dzOQlpLrDtJGpIuLYq0XW0W624jSZKkEdadJA1Fp0RRkqRpskVRkqR+TDRRnJ2dZffu3asuf4973KNzDEceeWTndXQ1OzvbqXw7/HonXStXe/bs6RzD/v37O5WfmZnpHMMRRxzRqXzX9wDdP8+ux/QxxxzTqfztt9/eqbzUhYmiJEn9sEVRkjRYJoqSJPXDRFGSNFgmipIk9WPDtAOQJEmSJK0ttihKkgbJ22NIktQfE0VJ0mCZKEqS1A8TRUnSYJkoSpLUDxNFSdJgmShKktQPB7ORJEmSJM1ji6IkabBsUZQkqR8mipKkQXLUU0mS+mOiKEkaLBNFSZL6YaIoSRosE0VJkvrhYDaSJEmSpHlsUZQkDZYtipIk9cNEUZI0WCaKkiT1w0RRkjRIjnoqSVJ/JpoobtiwgaOOOmrV5cdRIUjSqfyGDd0v6zziiCM6lR/Hfti3b1+n8l3fA8Ds7Gyn8ps2beocw8zMTKfy4/gs9u7d26l818+y6+dgRV3T5PEnSVI/HMxGkiRJkjSPXU8lSYNli6IkSf0wUZQkDZaJoiRJ/TBRlCQNlomiJEn9WPU1ikm2JflQkmuTXJPkheMMTJIkaT2x7iRpSLq0KM4C51bVVUnuDlyZ5NKqunZMsUmStChvj6EBsu4kaTBWnShW1U5gZ/v8tiTXAScCftlJkibCRFFDYt1J0pCM5RrFJCcBjwAuH8f6JElaDhNFDZV1J0lrXedEMckxwLuAF1XVVw8y/2zg7PZ5181JkvQNJooaopXUnSRpWlY9mA1Akk00X3Rvrap3H2yZqjq/qk6tqlNNFCVJQ7bYYCRJXpXkU0muTvKeJMeOlDkvyfYk1yd58tSC15qw0rrTZKOTpG/qMuppgDcB11XVq8cXkiRJyzM3oM04H0uYG4zkFODRwDlJTgEuBR5aVd8F/CtwHkA77+nAQ4DTgT9IMtPT7tAaZ91J0pB0aVF8LPAs4AlJPtY+njKmuCRJOqQ+ksSlEsWq2llVV7XPbwOuA06sqkuqarZd7DJga/v8LODtVbWnqj4DbAdO62WHaAisO0kajC6jnv4TYF9SSdLUTPMaxUMMRvI84B3t8xNpEsc5O9ppOgxZd5I0JGMZ9VSSpGnoKVHckuSKkdfnV9X5owssNhhJkl+h6Z761j4CkyRpUkwUJUmab/ehBhFZbDCSJM8BzgSeWN/MYG8Cto0U39pOkyRpTZtoorhhwwaOOOKIVZfft29f5xhmZrqNIbBhQ6eBYgHYu3dvp/Kzs7NLL9TzOu52t7t1jmEcn+e07dmzZ9ohdD6eDhw4MKZIpMmbdNfTxQYjSXI68GLgcVX19ZEiFwN/nuTVwAnAycBHJhiytC50HTl/HPW3rt83/t5qaGxRlCQN1hSuUZwbjOQTST7WTnsp8DrgCODStkJ7WVW9oKquSXIRcC1Nl9Rzqmr/pIOWJGmlTBQlSYO0zNtZjHubiw1G8v5DlHkF8IregpIkqQcmipKkwZrmqKeSJK1n3TtsS5IkSZLWFVsUJUmDZYuiJEn9MFGUJA2WiaIkSf0wUZQkDZaJoiRJ/fAaRUmSJEnSPLYoSpIGaRq3x5Ak6XBhoihJGiwTRUmS+mGiKEkaLBNFSZL6YaIoSRosE0VJkvrhYDaSJEmSpHlsUZQkDZYtipIk9cNEUZI0SI56KklSf0wUJUmDZaIoSVI/Jpoo7t+/n9tuu23V5Y888sjOMWzatKlT+b1793aO4T73uU+n8tu2bescwy233NKp/K5duzrH8LWvfa1T+aOOOqpzDBs3dvsX6FoeYMOGbpcKz8zMdCp/9NFHdyo/OzvbqbzUhYmitPZ1/Z2C7nWn+93vfp1juPXWWzuV71r3Ati3b1/ndUjL5WA2kiRJkqR57HoqSRosWxQlSeqHiaIkabBMFCVJ6oeJoiRpkBz1VJKk/nROFJPMAFcAN1XVmd1DkiRpeUwUNUTWnSQNwTgGs3khcN0Y1iNJknQ4sO4kac3rlCgm2Qr8EPDG8YQjSdLyzXU/HedD6pN1J0lD0bXr6WuBFwN37x6KJEkrY2KnAXot1p0kDcCqWxSTnAnsqqorl1ju7CRXJLnCH3RJ0jjZoqghWU3daUKhSdJddOl6+ljgh5N8Fng78IQkf7Zwoao6v6pOrapTk3TYnCRJ0qCtuO406QAlac6qE8WqOq+qtlbVScDTgb+rqmeOLTJJkg6hj9ZEWxTVJ+tOkobE+yhKkgbLxE6SpH6MJVGsqr8H/n4c65IkablMFDVU1p0krXW2KEqSBstEUZKkfnS6j6IkSZIkaf2ZaIvixo0buc997rPq8nv37u0cw5e//OVO5Tds6J5b/8iP/Ein8j/7sz/bOYb3vve9ncr/5m/+ZucYNm/e3Kn8kUce2TmGriPx7tu3r3MM4ziuu5idne1U3hYdTZPHn7T2HX300Z3XccYZZ3Qq/9M//dOdY/irv/qrTuXf+MY3do5h165dncr7namVsEVRkjRI0xj1NMm2JB9Kcm2Sa5K8sJ1+7ySXJvl0+/de7fQkeV2S7UmuTvLICewaSZI6M1GUJA3WFG6PMQucW1WnAI8GzklyCvAS4INVdTLwwfY1wBnAye3jbOANfewHSZLGzURRkjRYk04Uq2pnVV3VPr8NuA44ETgLeHO72JuBp7bPzwLeUo3LgGOTHN/DrpAkaaxMFCVJmm9LkitGHmcfbKEkJwGPAC4Hjquqne2sm4Hj2ucnAjeOFNvRTpMkaU3z9hiSpMHqaWCG3VV16qEWSHIM8C7gRVX11dGBsaqqkjhihCRp0EwUJUmDtMxrCscuySaaJPGtVfXudvItSY6vqp1t19K5oQlvAraNFN/aTpMkaU2z66kkabCmMOppgDcB11XVq0dmXQw8u33+bOAvR6b/ZDv66aOBr4x0UZUkac2yRVGSNFhTaFF8LPAs4BNJPtZOeynwSuCiJM8HPgc8rZ33fuApwHbg68BzJxqtJEmrZKIoSdIyVdU/AVlk9hMPsnwB5/QalCRJPTBRlCQN1jSuUZQk6XBgoihJGiwTRUmS+mGiKEkapGmNeipJ0uHAUU8lSZIkSfPYoihJGixbFCVJ6oeJoiRpsEwUJUnqh4miJGmwTBQlSerHRBPFDRs2cPTRR6+6/L59+zrH0LVSMY4YtmzZ0qn81q1bO8ewbdu2TuVnZmY6x3CPe9yjU/m73e1unWPo+nmO43jYs2dPp/IbNnS71Hh2drZTeSvqmiaPP2nt27ixe3Wza93nMY95TOcYrr/++k7lN2/e3DkGaZIczEaSJEmSNI9dTyVJg+TtMSRJ6o+JoiRpsEwUJUnqh4miJGmwTBQlSepHp2sUkxyb5J1JPpXkuiTdrxSWJGmZ5rqfjvMh9cm6k6Sh6Nqi+HvA31TVjybZDKx+SFNJkqT1z7qTpEFYdaKY5J7A9wHPAaiqvcDe8YQlSdLSbAHUkFh3kjQkXbqePgD4AvAnSf4lyRuTdL+xnSRJy9BHt1MTT/XMupOkweiSKG4EHgm8oaoeAdwOvGThQknOTnJFkiv279/fYXOSJM1noqiBWXHdadIBStKcLoniDmBHVV3evn4nzZffPFV1flWdWlWnzszMdNicJEnzmShqYFZcd5podJI0YtWJYlXdDNyY5MHtpCcC144lKkmSpHXGupOkIek66unPA29tR+36d+C53UOSJGl5bAHUAFl3kjQInRLFqvoYYLcISdJUmChqaKw7SRqKri2KkiRNhdcUSpLUHxNFSdJgmShKktSPiSaKe/fu5YYbblh1+WOOOaZzDMcdd1yn8jt27Ogcw/ve975O5cexH6688srO6+hqz549ncpv3ry5cwwHDhzoVH4cldSuowF33Q+bNm3qVH7fvn2dykuS1rfbb7+98zq61p1uvvnmzjFcf/31ncrfeuutnWPw5JgmyRZFSdJgWWmSJKkfJoqSpMEyUZQkqR8mipKkwTJRlCSpHxumHYAkSZIkaW2xRVGSNEjeHkOSpP6YKEqSBstEUZKkftj1VJI0WHOtiuN8LCXJBUl2JfnkyLSHJ7ksyceSXJHktHZ6krwuyfYkVyd5ZI+7Q5KksTFRlCQN1jQSReBC4PQF034H+PWqejjwa+1rgDOAk9vH2cAbxvG+JUnqm4miJEkrUFUfBhbeObuAe7TP7wl8vn1+FvCWalwGHJvk+MlEKknS6nmNoiRpsNbQNYovAj6Q5HdpTsJ+Tzv9RODGkeV2tNN2TjQ6SZJWyBZFSdIg9dHttE08t7TXGc49zl5GOD8D/GJVbQN+EXhTn+9dkqS+2aIoSRqsnloUd1fVqSss82zghe3zvwDe2D6/Cdg2stzWdpokSWuaLYqSpMGa0mA2B/N54HHt8ycAn26fXwz8ZDv66aOBr1SV3U4lSWueLYqSJK1AkrcBj6fporoDeBnwU8DvJdkI3EkzwinA+4GnANuBrwPPnXjAkiStgomiJGmwpjGYTVU9Y5FZ//dBli3gnH4jkiRp/EwUJUmDtYZGPZUkaV2ZaKI4MzPDPe95z1WX37x5c+cY9u/f36n88cd3v/3VDTfc0Kn8q171qs4xfO1rX+tU/ktf+lLnGB784Ad3Kn/gwIHOMXTdD7Ozs51j6KrrMd21om1FXdPS8ZpCSROyd+/ezuu49tprO5Xfvn175xi6/uaPYz9Ik2SLoiRpsEwUJUnqh6OeSpIkSZLmsUVRkjRYtihKktQPE0VJ0mCZKEqS1I9OXU+T/GKSa5J8Msnbkhw5rsAkSVrK3IA243xIfbLuJGkoVp0oJjkR+AXg1Kp6KDADPH1cgUmSJK0n1p0kDUnXrqcbgaOS7AOOBj7fPSRJkpZmC6AGyrqTpEFYdYtiVd0E/C5wA7AT+EpVXbJwuSRnJ7kiyRXjuO+dJElz7HqqIVlN3WnSMUrSnC5dT+8FnAU8ADgBuFuSZy5crqrOr6pTq+rUDRu8G4ckaXxMFDUkq6k7TTpGSZrTJXP7AeAzVfWFqtoHvBv4nvGEJUnS0kwUNTDWnSQNRpdE8Qbg0UmOThLgicB14wlLkiRp3bHuJGkwVj2YTVVdnuSdwFXALPAvwPnjCkySpKXYAqghse4kaUg6jXpaVS8DXjamWCRJWja7imqIrDtJGoqut8eQJGlqTBQlSeqHiaIkabBMFCVJ6segEsU9e/ZMfR3juBfkpk2bOq+jq/3793cqf/TRR3eOYdeuXZ3Kz8zMdI7hjjvu6FT+zjvv7BzDWjgeJElay/bt2zfV8tLhaFCJoiRJo2xRlCSpHyaKkqTBMlGUJKkfJoqSpEFy1FNJkvpjoihJGiwTRUmS+rFh2gFIkiRJktYWWxQlSYNli6IkSf0wUZQkDZaJoiRJ/TBRlCQNlomiJEn98BpFSZIkSdI8tihKkgbJ22NIktQfE0VJ0mCZKEqS1A8TRUnSYJkoSpLUDxNFSdJgmShKktQPB7ORJGkFklyQZFeSTy6Y/vNJPpXkmiS/MzL9vCTbk1yf5MmTj1iSpJWzRVGSNFhTalG8EHg98Ja5CUm+HzgLeFhV7Uly33b6KcDTgYcAJwB/m+RBVbV/4lFLkrQCtihKkgZpbtTTcT+Wsd0PA7cumPwzwCurak+7zK52+lnA26tqT1V9BtgOnDa+vSBJUj8m2qJYVczOzq66fJeyczZt2tSp/ObNmzvH0NUdd9wx7RDGsh+++tWvdirf9bME2Lt3b6fy+/d3bxTYsGG652sOHDjQqbzXiGmaejr+tiS5YuT1+VV1/hJlHgR8b5JXAHcCv1RVHwVOBC4bWW5HO02SpDXNrqeSpMHqKVHcXVWnrrDMRuDewKOB7wYuSvJtY49MkqQJseupJEnd7QDeXY2PAAeALcBNwLaR5ba20yRJWtNMFCVJgzWNaxQX8V7g+wGSPAjYDOwGLgaenuSIJA8ATgY+0v2dS5LUL7ueSpIGaxrXyCZ5G/B4mmsZdwAvAy4ALmhvmbEXeHY1wV2T5CLgWmAWOMcRTyVJQ7BkopjkAuBMYFdVPbSddm/gHcBJwGeBp1XVl/oLU5Kk+Tq2AHbZ7jMWmfXMRZZ/BfCK/iLSWmPdSdJ6sJyupxcCpy+Y9hLgg1V1MvDB9rUkSRO1hrqeSqMuxLqTpIFbMlFc5H5RZwFvbp+/GXjqeMOSJEkaJutOktaD1V6jeFxV7Wyf3wwct9iCSc4Gzobp3y9OkrS+2AKoAVlV3UmSpqXzYDZVVUkW/aVub1J8PsDGjRv9RZckjY2JooZoJXWnQy0nSX1abaJ4S5Ljq2pnkuOBXeMMSpKk5TBR1IBYd5I0KKvtC3ox8Oz2+bOBvxxPOJIkSeuSdSdJg7Kc22Mc7H5RrwQuSvJ84HPA0/oMUpKkhRylVGuVdSdJ68GSieIh7hf1xDHHIknSipgoai2y7iRpPeg8mI0kSdNioihJUj9MFCVJg2WiKElSPyaeKB44cGDVZTdu7B7uUUcd1an8fe5zn84x7N27t1P52dnZzjHs2bOn8zq62rRpU6fyRx55ZOcYut7bc9++fZ1jmJmZmWoMXY8nK+qSJEnrjy2KkqTB8kSFJEn9MFGUJA2So55KktQfE0VJ0mCZKEqS1A8TRUnSYJkoSpLUj24jeUiSJEmS1h1bFCVJg2WLoiRJ/TBRlCQNkoPZSJLUHxNFSdJgmShKktQPE0VJ0mCZKEqS1A8Hs5EkSZIkzWOLoiRpsGxRlCSpHyaKkqTBMlGUJKkfJoqSpEFy1FNJkvpjoihJGiwTRUmS+uFgNpIkSZKkeWxRlCQNli2KkiT1Y6KJYhKOOuqoVZcfR4XgiCOO6FR+w4b10Qi7f//+TuXH8Vls2rSpU/mZmZnOMYxjHdOO4cCBA53Kdz0WpGkyUZQkqR+2KEqSBstEUZKkfqyP5jFJkiRJ0tiYKEqSBmnu9hjjfiwlyQVJdiX55EHmnZukkmxpXyfJ65JsT3J1kkf2sCskSRq7JRPFg/0gJnlVkk+1P3rvSXJsr1FKknQQ00gUgQuB0xdOTLINeBJww8jkM4CT28fZwBs6v2mtedadJK0Hy2lRvJC7/iBeCjy0qr4L+FfgvDHHJUnSkqaRKFbVh4FbDzLrNcCLgdGVnAW8pRqXAccmOX4c711r2oVYd5I0cEsmigf7QayqS6pqtn15GbC1h9gkSTqkKbUo3kWSs4CbqurjC2adCNw48npHO03rmHUnSevBOEY9fR7wjjGsR5KktWBLkitGXp9fVecvtnCSo4GX0nQ7lZbDupOkNa9TopjkV4BZ4K2HWOZsmusy1s09CCVJa0NPt8fYXVWnrmD5BwIPAD6eBJqWoquSnAbcBGwbWXZrO02HqZXWnSRpWladKCZ5DnAm8MQ6xC91exb2fIBNmzZ5wytJ0lh06So65jg+Adx37nWSzwKnVtXuJBcDP5fk7cCjgK9U1c7pRKppW03dKcn0D3JJh6VVJYpJTqe5YP9xVfX18YYkSdLyTCNRTPI24PE0XVR3AC+rqjctsvj7gacA24GvA8+dSJBac6w7SRqaJRPFg/0g0ozUdQRwadvN5rKqekGPcUqSdBfTSBSr6hlLzD9p5HkB5/Qdk9YW606S1oMlE8VFfhAXO3MqSZJ0WLPuJGk9GMeop5IkTcVauEZRkqT1yERRkjRYJoqSJPXDRFGSNEhrZdRTSZLWo4kmihs2bODII49cdfk777yzcwxd17Fv376pxzCO/bAW7Nmzp1P5AwcOdI5h//79U4+hHdRg1bren3TTpk2dyo/jf0JaLRNFSZL60a2GKUmSJElad+x6KkkaLFsUJUnqh4miJGmwTBQlSeqHiaIkabBMFCVJ6ofXKEqSJEmS5rFFUZI0SN4eQ5Kk/pgoSpIGy0RRkqR+mChKkgbLRFGSpH6YKEqSBstEUZKkfjiYjSRJkiRpHlsUJUmDZYuiJEn9MFGUJA2So55KktQfE0VJ0mCZKEqS1A8TRUnSYJkoSpLUDwezkSRJkiTNY4uiJGmwbFGUJKkfE00Uq4p9+/atuvz+/fs7x7Bnz55O5bvEv5Zs2NCtMfnOO+/sHMOBAwc6r6OrrsfUOCqpGzdO93zNzMxMp/JJxhSJtHImipIk9cMWRUnSIDnqqSRJ/TFRlCQNlomiJEn9cDAbSZIkSdI8SyaKSS5IsivJJw8y79wklWRLP+FJkrS4ue6n43xIXVl3krQeLKdF8ULg9IUTk2wDngTcMOaYJElaFhNFrVEXYt1J0sAtmShW1YeBWw8y6zXAiwF/VSVJU2GiqLXIupOk9WBV1ygmOQu4qao+PuZ4JEmS1h3rTpKGZsWjniY5GngpTdeJ5Sx/NnA2dL9fmyRJc2wB1FB0qTtJ0rSs5vYYDwQeAHy8vdH2VuCqJKdV1c0LF66q84HzATZv3uwvuiRpbEwUNRCrrjsl8SCXNBUr7npaVZ+oqvtW1UlVdRKwA3jkwb7oJEnq0zSuUTzYiJZJXpXkU0muTvKeJMeOzDsvyfYk1yd5cj97QmuZdSdJQ7Sc22O8Dfhn4MFJdiR5fv9hSZK0tCkNZnMhdx3R8lLgoVX1XcC/AucBJDkFeDrwkLbMHyTxOox1zrqTpPVgya6nVfWMJeafNLZoJEla46rqw0lOWjDtkpGXlwE/2j4/C3h7Ve0BPpNkO3AaTRKhdcq6k6T1YDXXKEqStCb0dI3iliRXjLw+v71mbLmeB7yjfX4iTeI4Z0c7TZKkNc1EUZI0SD2Oerq7qk5dTcEkvwLMAm8db0iSJE2WiaIkabDW0qinSZ4DnAk8sb4Z2E3AtpHFtrbTJEla0yaaKO7bt2/3TTfd9LlDLLIF2D2peIxhTccw7e1PLIY77rhj6jEsYakY7j+pQKSF1kqimOR04MXA46rq6yOzLgb+PMmrgROAk4GPTCFEDdduwLrT2o9h2ts3hmHFMIi600QTxar6lkPNT3LFarv7jIsxrI0Ypr19Y1hbMUhrSTui5eNprmXcAbyMZpTTI4BL2/vkXVZVL6iqa5JcBFxL0yX1nKraP53INUTWnYYRw7S3bwzG0Ae7nkqSBmsaLYqLjGj5pkMs/wrgFf1FJEnS+JkoSpIGa610PZUkab1Za4niSoYf74sxNKYdw7S3D8YwZy3EIN1Fj6OeSkOyFr6jjWH62wdjmGMMYxJ/ZCVJQ7R58+Y67rjjxr7eHTt2XLkeri2RJKmLDdMOQJIkSZK0tqyZRDHJ6UmuT7I9yUumsP1tST6U5Nok1yR54aRjaOOYSfIvSd43pe0fm+SdST6V5Lokj5lCDL/YfgafTPK2JEdOYJsXJNmV5JMj0+6d5NIkn27/3msKMbyq/SyuTvKeJMdOOoaReecmqSRb+oxBWom57qfjfEhDYL1pXizWnaw7WXfqwZpIFJPMAL8PnAGcAjwjySkTDmMWOLeqTgEeDZwzhRgAXghcN4Xtzvk94G+q6juAh006liQnAr8AnFpVDwVmgKdPYNMXAqcvmPYS4INVdTLwwfb1pGO4FHhoVX0X8K80Q/BPOgaSbAOeBNzQ8/alFTFR1OHIetNdWHey7jTKutOYrIlEETgN2F5V/15Ve4G3A2dNMoCq2llVV7XPb6P5Jz9xkjEk2Qr8EPDGSW53ZPv3BL6Pdpj3qtpbVV+eQigbgaOSbASOBj7f9war6sPArQsmnwW8uX3+ZuCpk46hqi6pqtn25WXA1knH0HoNzc3ErUVrTTFR1GHKelPLutM3WHf65jTrTmOyVhLFE4EbR17vYApfNnOSnAQ8Arh8wpt+Lc0BdWDC253zAOALwJ+0XTjemORukwygqm4Cfpfm7MtO4CtVdckkYxhxXFXtbJ/fDIx/1IyVeR7w15PeaJKzgJuq6uOT3rYk6aCsN33Ta7HuZN1pcdadOlgrieKakeQY4F3Ai6rqqxPc7pnArqq6clLbPIiNwCOBN1TVI4Db6b/LwDxtX/azaL54TwDuluSZk4zhYKppZpjaGaEkv0LTzeetE97u0cBLgV+b5Hal5eijNdEWRWllplVvardt3QnrToux7tTdWkkUbwK2jbze2k6bqCSbaL7s3lpV757w5h8L/HCSz9J0IXlCkj+bcAw7gB1VNXdG8J00X36T9APAZ6rqC1W1D3g38D0TjmHOLUmOB2j/7ppGEEmeA5wJ/ERNvhb7QJofno+3x+ZW4Kok95twHNJBmSjqMGW9qWHdqWHdaQHrTuOxVhLFjwInJ3lAks00F+BePMkAkoSmf/l1VfXqSW4boKrOq6qtVXUSzfv/u6qa6NmgqroZuDHJg9tJTwSunWQMNN0mHp3k6PYzeSLTu0D9YuDZ7fNnA3856QCSnE7TpeaHq+rrk95+VX2iqu5bVSe1x+YO4JHtsSJNnYmiDlOHfb0JrDuNsO40wrrT+KyJRLG94PTngA/QHNgXVdU1Ew7jscCzaM5Gfax9PGXCMawFPw+8NcnVwMOB35rkxtszcu8ErgI+QXOMnt/3dpO8Dfhn4MFJdiR5PvBK4AeTfJrmbN0rpxDD64G7A5e2x+QfTiEGac0yUdThyHrTmmPdybrTuqw7xR9FSdIQbdq0qe51r/HfousLX/jClVV16thXLEnSgGycdgCSJK2WJzslSeqHiaIkaZDsKipJUn9MFCVJg2WiKElSP0wUJUmDZaIoSVI/1sSop5IkSZKktcMWRUnSYNmiKElSP0wUJUmDZaIoSVI/TBQlSYPkqKeSJPXHRFGSNFgmipIk9cPBbCRJkiRJ89iiKEkaLFsUJUnqh4miJGmwTBQlSeqHiaIkabBMFCVJ6oeJoiRpkBz1VJKk/jiYjSRJkiRpHlsUJUmDZYuiJEn9MFGUJA2WiaIkSf2w66kkabDmrlMc52MpSS5IsivJJ0em3TvJpUk+3f69Vzs9SV6XZHuSq5M8ssfdIUnS2JgoSpK0MhcCpy+Y9hLgg1V1MvDB9jXAGcDJ7eNs4A0TilGSpE5MFCVJgzWNFsWq+jBw64LJZwFvbp+/GXjqyPS3VOMy4Ngkx4/n3UuS1B+vUZQkDdIauz3GcVW1s31+M3Bc+/xE4MaR5Xa003YiSdIaZqIoSRqsnhLFLUmuGHl9flWdv9zCVVVJ1kwGK0nSapgoSpIGq6dEcXdVnbrCMrckOb6qdrZdS3e1028Cto0st7WdJknSmuY1ipIkdXcx8Oz2+bOBvxyZ/pPt6KePBr4y0kVVkqQ1yxZFSdJgTeMaxSRvAx5P00V1B/Ay4JXARUmeD3wOeFq7+PuBpwDbga8Dz514wJIkrULW0EAAkiQtW4/XAV65iq6nkiStK7YoSpKG6gPAlh7Wu7uHdUqSNCi2KEqSJEmS5nEwG0mSJEnSPCaKkiRJkqR5TBQlSZIkSfOYKEqSJEmS5jFRlCRJkiTNY6IoSZIkSZrn/wB92PSuk9Bl4AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "Err_BN3=error(xdata3, popt3[0], popt3[1],popt3[2], popt3[3], popt3[4], recorte3.ravel(), inc=1)\n", + "popt3E, pcov3E = curve_fit(gauss2d, xdata3, recorte3.ravel(), p0=[2,2,1,1,1],sigma=Err_BN3)\n", + "estrella3E=gauss2d(xdata3, popt3E[0], popt3E[1],popt3E[2], popt3E[3], popt3E[4])\n", + "FWHM3E=FWHM_I.append(2*np.sqrt(2*np.log(2))*np.sqrt(popt3E[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 3 fotografÃa\")\n", + "plt.imshow(recorte3, plt.get_cmap('gray'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 3 a partir de la gaussiana con incertidumbre\")\n", + "plt.imshow(estrella3E.reshape(15, 15), plt.get_cmap('gray'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 4 con incertidumbre (blanco y negro)" + ] + }, + { + "cell_type": "code", + "execution_count": 821, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4oAAAFSCAYAAAC0fyGTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAzSUlEQVR4nO3de5xkZX3n8e+3e64wQAOTcJkZHSRoRI1CJoTIGolEMxp13KxrcL2Amkw0aNBllxWMgtnVuInrbY1mJ0LAlYAEwRCXRIjRsGQBHZDrDJdRLjPDDDMjl7n39OW3f5xTUN1M3+o5p6qe7s/79epXV586zzm/OlVd5/er5zlPOSIEAAAAAEBDT6cDAAAAAAB0FwpFAAAAAMAIFIoAAAAAgBEoFAEAAAAAI1AoAgAAAABGoFAEAAAAAIwwq9MBAADQiuXLl8e2bdsq3+5tt9323YhYXvmGAQDICIUiACBL27Zt0+rVqyvfru2FlW8UAIDMUCgCALIVEZ0OAQCAaYlCEQCQLQpFAADqQaEIAMgWhSIAAPWgUAQAZCkiKBQBAKgJX48BAAAAABiBQhEAkK1Gr2KVP+OxvcT2922vsX2v7bNH3X+O7WjMnOrCl2yvs32X7RNrPBwAAFSGoacAgGx1YOjpoKRzIuJ22wdJus32DRGxxvYSSa+T9GjT+q+XdFz586uSvlr+BgCgq9GjCADIVrt7FCNiU0TcXt7eIWmtpEXl3Z+XdK6k5o2skPT1KNwiqc/2UZUfCAAAKkaPIgAgW52czMb2UkknSLrV9gpJGyPiTtvNqy2StL7p7w3lsk3tihMAgFZQKAIAMNJC26ub/l4VEauaV7C9QNK3JH1YxXDU81UMOwUAYFqgUAQAZKnGr8fYFhHLxrrT9mwVReJlEXG17ZdJOkZSozdxsaTbbZ8kaaOkJU3NF5fLAADoahSKAIBstXvoqYtK8CJJayPic2UMd0v6+aZ1Hpa0LCK22b5W0gdtX6FiEpunI4JhpwCArkehCADIVgeuUTxF0rsk3W37jnLZ+RFx3RjrXyfpDZLWSdot6T21RwgAQAUoFAEA2Wp3oRgRN0nyBOssbbodks6qOSwAACrH12MAAAAAAEagRxEAkK1Ofj0GAADTGYUiACBLNc56CgDAjEehCADIFoUiAAD14BrFGcL2Utthe1b59w9s/14b9jvf9t/bftr239a9v1S2T7H9oO2dtt9SLrva9oc7GxkAYLrr1Lm629h+h+3rE7fxsO3fbKHdqbY3pOy7W5S5zAs6HUcdbN9r+9QuiONVtu8f5/5LbP+3mvbd0mt8KigU26x8UveU/7yNny9Pol3Y/oV2xDhZtl9dxjXeP8BbJR0h6fCI+PcTbG/ECbJD/kTSlyNiQUR82/Y7JA1ExBc6GBOAMTSGn1b5A8zAc3XH7O/cHxGXRcTrOhnXdFDmMj/tdBx1iIiXRMQP2r3f0f/jEfF/I+JF7Y6jXRh62hlvioh/qnKDtmdFxGCV25xgf7MlfVHSrROs+nxJD7QztrFM8hg9X9K9TX8fKul99UUFIAWFHWo0k87VHdHKB8PtPoaAlP/rrtX46VHsIrZ/wfa/lMM0t9n+Zrn8xnKVO8tPNX+3MTTC9n+xvVnSX9vusf1R2z+x/TPbV9o+bBL7Pdb2P5dtttm+zHbfBM3OkXS9pPvG2e4nJX1C0u+Wcb+vjPGPbT9ie4vtr9s+pGzSeJxPlev/2gTry/a7y/t+Zvvjzd3wti+0fZXtb9jeLulM2yfZvtn2U7Y32f6y7Tnl+j+R9AJJf1/uf66KHtHTE44TgJrU0ZtI4YmJTLdzdbnt37b9Y9vbba+3feE46zYe0/llHA+7GH0z4bb8bO/h+2w/Kumftf9z/5m2b2pqF7bPsv2gpAfHiOtdTfnAx0bd19IxL9s22u2wvcb2vx1n3fm2L7X9pO21ts910zDW8bZV5izf2M+xagxDPtP2T8u2DzWO+Vivx6bj9gvl7ck8L2fYfrTczsea7h8zdxrjOPwb2/+vXH+97TPL5Ye4yOO2ls/VH9vuaXp8N9n+bHn8HrL9+nH2MTrfu7Lc9g4Xw1KXNa27xMVlRFvL5//LTfe9t3yunrT9XdvPH3X8nnndeZz/8aY2J9i+vYzjm5LmNd034nW9n+foEttfsf0P5fb/1faRtr9Qxnef7RNGHYpfKV9LT9r+a9vzym1V8t5Dodhd/quKN/RDJS2W9D8lKSJ+vbz/5eUwgsabwJGSDlPRC7ZS0ockvUXSqyUdLelJSX8xif1a0p+WbV4saYmkC8dcufgneq+KYZpjiogLJH1a0jfLuC+SdGb58xsqirIFkhr/sI3H2Veuf/N469s+XtJXJL1D0lGSDpG0aFQYKyRdJalP0mWShiR9RNJCSb8m6TRJf1jGe6ykR1V8irwgIvpHP3RN4TgBqB+FIjpgWp2rS7skvVvFufK3JX3A5XX6YzhSxXl0kaQzJK2y3Rh+N5ltvbp8DL+l/Z/79+ctkn5V0vGj7yjzga9KepeK43O4iuemodVjLkk/kfQqFTnGJyV9w/ZRY6x7gaSlKvKV10p6Z8K2nmH7QElfkvT6iDhI0isl3VHevd/X435M5nn5N5JepCI3+oTtF5fLx8yd9hPr8yX9QxnHz0l6RVOs/1PFY3+Biufi3ZLe09T8VyXdX+7nzyRdZNtjPJ7R3izpivLxXatnc8VeSd+R9IiK52ZRuZ5sr5B0vqTfKWP9v5IuH7Xdt5RxHT/O/3jjsc+R9G1J/1vF//zfSvp3k4y/4W2S/ljFMeiXdLOk28u/r5L0uVHrv0PF/9Gxkl5Ytm1Ifu+hUOyMb5efsjR+fr9cPqDiyTw6IvZGxE3jbEOShiVdEBH9EbFH0vslfSwiNpRFzoWS3uoJhnZExLqIuKHczlYVL8JXj9PkS5I+HhE7J36oz/EOSZ+LiJ+W7c+TdPo4MY63/lsl/X1E3BQR+1T0Xo7O8m6OiG9HxHBE7ImI2yLilogYjIiHJf2vCR7rM1o4TgCAfM2Yc3VE/CAi7i7PlXepSJYnOr99vIzlXyT9HxUJ7mS3dWFE7CqPx2T9aUQ8MUabt0r6TkTcWB7Tj6s47g0tHfPy8fxtRDxWPp5vqujRPGmM1d8m6dMR8WREbFDxHLS6rdGGJb3U9vyI2BQRjctkJvV6nOTz8skyV7pT0p2SXl62nUru9B8k/VNEXB4RAxHxs4i4oyzYTpd0XkTsKLfzP1QU9w2PRMRfRcSQpEtVdAIcMcnjc1NEXFe2/d+N2FUc36Ml/efyNdd8jN6v4nW1NophmZ+W9IrmXkWN/7ob7WRJsyV9oXzsV0n60STjb7imPN57JV0jaW9EfL18XN+UNLpH8csRsT4inpD0KUlvb7ov+b2HQrEz3hIRfU0/f1UuP1fFJ4Y/LLvN3zvBdraWL6SG50u6pnFSk7RWxadA4/6T2T7C9hW2N7oYovkNFZ9c7G/dN0k6aPSnKFNwtIpPdRoeUXGt7Fgxjrf+0ZLWN+6IiN2Sfjaq/frmP2y/0PZ3bG8uH+unNcZjHW0qxwlAewQ9iqjPjDlX2/5V298vh+Y9rSKhHO/89mRE7Gr6+xEV5+TJbmu9pm68NqPzgV0amQ+0dMylZy5xuaOp7Us19rEZEcfomKe4rWeUj+d3VRzLTbb/j+1fLO+e1Otxks/L5qbbu1WM4ppq7rRERc/paAtVFFGjc7rmkWDP7L/M6dSIYRJGxz6vLICWqChA93d93vMlfbHp+XhCxbFsjmkqr9WjJW2MkSeSR8ZaeQyPN93es5+/Rx+P5vie+T8sJb/3UCh2kYjYHBG/HxFHS/oDSV/x+LOnjc5o1qsYltB8YpsXERsn2PWny229LCIOVjFUYqyu/tMkLSvfLDareOP6sO2/m+jxlR5T8UJteJ6kQRX/CPvL0MZbf5OahpbYnq9iuEmz0dv8qoprNY4rH+v5GvuxjjaV4wSgDSgU0W7T9Fz9NyqG6y2JiEMk/eU425akQ8vhkA3PU3G+nuy2Yozb4xlvvU0qCgJJku0DNDIfaOmYlz1LfyXpgypmb++TdI/GPjYj8pJRMU20rV2SDmhqe2TzhiPiuxHxWhW9bPeV25rK63Gqz3GzqeRO61UMgxxtm57t/Wx4nqSJXvep1kt63hi9Zusl/cGo18X8iPh/TetM5aSwSdKiUcNln9d0e8RzbHvEc9yiJU23m/8PpQreeygUu4jtf2+78QbzpIonuDF04nEVY7rH85eSPtXoMrf9c+X464kcJGmnpKdtL5L0n8dZ9+MqxkC/ovy5VsWb1XvGbjLC5ZI+YvsY2wv07DWMg5K2qni8L5jk+ldJepPtV5bjwi/UxG96B0naLmln+WncByYZd6PtZI8TgDagUES7TdNz9UGSnoiIvbZPUjF8cCKftD3H9qskvVHF9VitbGt/5/6pukrSG11MojJHxXWZzTluq8f8QBXP79ay3XtU9AKO5UpJ59k+tHyOPjiFbd0h6ddtP8/FpH3nNe4oe5NXlMV5v4rXwXB533ivx2atPMfNbSebO10m6Tdtv832LNuH235FFEMnr1TxPBxUPhf/UUXPeJ1+qKKA+4ztA23Ps31Ked9fqni+XiI9M9nOuF/lpvH/x29W0ZnxR7Zn2/4djRxafKekl9h+hYtJZy5s7SGNcJbtxS4mpfmYiuGpY5ny/wGFYmc0ZtVs/FxTLv8VSbfa3qniTf3sePb7by6UdGnZXfy2Mbb7xbLd9bZ3SLpFxQW4E/mkpBMlPa3iOoOrx1oxinHlmxs/KrrBd0UxNnoyLlYxdvxGSQ9J2qvi4trGMINPSfrX8nGePMH695a3r1DxJrBT0hYVb6Jj+U8q3hx3qDhpTmUI7aSPE4D61VEkUiiiyUw6V/+hpD8p4/mEioR+PJtVFCWPqSgM3h8RjZlVp7StMc79U1LmA2ep6DXbVMa2oWmVlo55RKxRcR3dzSoKhJdJ+tdxmvxJud+HJP2TigK2fzLbiogbVOQkd0m6TcUELA09Koqqx1QMj3y1ni3Wxns9Npvqc9xs0rlTRDwq6Q0qZtx9QkUB3Lhe8EMqetV+KukmFc/XxVOIY8rKAvVNkn5BxYSFG1T0sCsirpH03yVdUQ6pvUfSmDOtli7UGP/jUcyX8TsqJmF8otzP1U33P6DiNfJPKq5Pnej65sn4GxWTGf1UxZDf8b4vdcr/B+akiOmi7HF8SsXQiIc6HA6Amr385S+P66+/vvLtHnnkkbdFxLKJ1wRmHtunSvpGRCyeYNUZz/YHJJ0eEUx8hyzRo4is2X6T7QPK4RiflXS3pIc7GxWAdqFHEUC3sH2U7VNcfF/di1T0ql0zUTugW004LTDQ5VaoGJpqSatVfHJHpgfMEPy7A+gic1R8dcQxKkY4XaHi+56BLFEoImsR8XuSfq/TcQDoDApFoL0i4gcaObMnShHxiMaf7AbICoUiACBbFIoAANSDaxQBAAAAACO0tUfRdoz8Dsr26/T+q1DFJ+i9vb0djyH1uajiuezpSfuspIrjkLqN4eH9fV1Se/cfEfn/YyE7TD6DmcA2L3JgGsohd2p3oai5c+e2c5fPkVoYpLaX0hP7oaGh5BgOOeSQjseQeiyreC3Nmzcvqf3g4GByDPv27Utqv2vXrqT2AwMDSe337t2b1B5IQaEIAEA9uEYRAJAtCkUAAOrBNYoAAAAAgBHoUQQAZIseRQAA6pHUo2h7ue37ba+z/dGqggIAYDIaE9pU+QPUidwJQC5a7lG03SvpLyS9VtIGST+yfW1ErKkqOAAAxkJhh9yQOwHISUqP4kmS1kXETyNin6QrJK2oJiwAACZGjyIyQ+4EIBspheIiSeub/t5QLhvB9krbq22v5gQMAABmsCnnTm2LDABGqX0ym4hYJWmVJPX09FApAgAqwweQmI6acyfbvMgBdERKobhR0pKmvxeXywAAaAsKRWSG3AlANlKGnv5I0nG2j7E9R9Lpkq6tJiwAACbGNYrIDLkTgGy03KMYEYO2Pyjpu5J6JV0cEfdWFhkAAOOgsENuyJ0A5CTpGsWIuE7SdRXFAgAAMK2ROwHIRe2T2QAAUBd6FAEAqEdbC8WI0N69e9u5y+eYO3duUvuenpTLOguzZ89Oan/ggQcmx5B6HIaGhpJjGBgYSGq/Z8+e5Bj6+/uTt9HpGFKPw4IFC5Lad8MxxMxFoQigXWx3tH1V20iV+r5bxfs27/3tQY8iACBbJAsAANSDQhEAkC0KRQAA6pE+jhIAAAAAMK3QowgAyBJfjwEAQH0oFAEA2aJQBACgHgw9BQBkq9GrWOXPeGwvsf1922ts32v77HL5n9u+z/Zdtq+x3dfU5jzb62zfb/u36j0iAABUg0IRAIDJG5R0TkQcL+lkSWfZPl7SDZJeGhG/JOkBSedJUnnf6ZJeImm5pK/Y7u1I5AAATAGFIgAgW+3uUYyITRFxe3l7h6S1khZFxPURMViudoukxeXtFZKuiIj+iHhI0jpJJ9VyMAAAqBDXKAIAslXTNYoLba9u+ntVRKwavZLtpZJOkHTrqLveK+mb5e1FKgrHhg3lMgAAuhqFIgAgSzXOerotIpaNt4LtBZK+JenDEbG9afnHVAxPvayOwAAAaBcKRQBAtjox66nt2SqKxMsi4uqm5WdKeqOk0+LZwDZKWtLUfHG5DACArsY1igAATJJtS7pI0tqI+FzT8uWSzpX05ojY3dTkWkmn255r+xhJx0n6YTtjBgCgFfQoAgCy1YEexVMkvUvS3bbvKJedL+lLkuZKuqGoJXVLRLw/Iu61faWkNSqGpJ4VEUPtDhoAgKmiUAQAZKvdhWJE3CTJ+7nrunHafErSp2oLCgCAGlAoAgCy1YlrFAEAmAkoFAEAWapx1lMAAGa8thaKtjVrVuu7nD17dnIMVWwj1fz585Paz507NzmGvr6+5G2k2rNnT0fbS9LQUNqlQr29vckxpD6f8+bNS2qfmmiX12MBAFCb1HNNT0/6/I0pOWwV7aVqHkeqwcHBjraX0vO34eHh5BhmAnoUAQDZokcRAIB6UCgCALJFoQgAQD0oFAEA2aJQBACgHhSKAIBsUSgCAFCPlq+Itb3E9vdtr7F9r+2zqwwMAABgOiF3ApCTlB7FQUnnRMTttg+SdJvtGyJiTUWxAQAwJr4eAxkidwKQjZYLxYjYJGlTeXuH7bWSFknizQ4A0BYUisgJuROAnFRyjaLtpZJOkHRrFdsDAGAyKBSRK3InAN0uuVC0vUDStyR9OCK27+f+lZJWpu4HAABgOiB3ApCDpELR9mwVb3SXRcTV+1snIlZJWiVJPT09fPQLAKgMPYrIzVRzJ9u8yAF0RMuFom1LukjS2oj4XHUhAQAwORSKyAm5E4CctPz1GJJOkfQuSa+xfUf584aK4gIAYFyNWU+r/gFqRO4EIBsps57eJMkVxgIAwJRQ2CEn5E4AcpLSowgAAAAAmIYq+XoMAAA6gR5FAADq0dZCsbe3V319fS23P/DAA6sLpkWDg4PJ2+jt7U1qX8VxmD9/flL7BQsWJMfQ05PWob19+3NmFJ+yPXv2JLUfGhpKjiHV3r17k9o/+eSTSe1J1NFJvP6A7lfM4ZMmNWeYO3ducgyp+VcV+du8efOS2lfxnrl79+6k9jt37ux4DAMDA0nth4eHk9rngh5FAEC2KBQBAKgHhSIAIEvMUgoAQH2YzAYAAAAAMAI9igCAbNGjCABAPSgUAQDZolAEAKAeFIoAgGxRKAIAUA8KRQBAtigUAQCoB5PZAAAAAABGoEcRAJAlvh4DAID6UCgCALJFoQgAQD0oFAEA2aJQBACgHhSKAIBsUSgCAFAPJrMBAAAAAIxAjyIAIFv0KAIAUA8KRQBAlpj1FACA+lAoAgCyRaEIAEA92l4o2m65bW9vb4WRtGbfvn3J25g3b15S+wULFiTHMDw8nNS+r68vOYZDDz00qf3u3buTY3j88ceT2m/bti05hieffDKp/VNPPZXUftYsPi8CANQnJfdrmDNnTlL7gw46KDmGo446Kqn94sWLk2M47LDDktoPDAwkx7Bly5ak9hs2bOh4DLt27Upqn3occ/mQkwwRAJCtXE62AADkhkIRAJAtCkUAAOpBoQgAyBaFIgAA9aBQBABkiVlPAQCoT0/qBmz32v6x7e9UERAAAN3K9hLb37e9xva9ts8ulx9m+wbbD5a/Dy2X2/aXbK+zfZftEzv7CNANyJ0A5CC5UJR0tqS1FWwHAIApafQqVvkzgUFJ50TE8ZJOlnSW7eMlfVTS9yLiOEnfK/+WpNdLOq78WSnpq3UcB2SH3AlA10sqFG0vlvTbkr5WTTgAAExeuwvFiNgUEbeXt3eoSPYXSVoh6dJytUslvaW8vULS16Nwi6Q+22lz7CNr5E4AcpF6jeIXJJ0rKf3LaQAAmKKarlFcaHt109+rImLV6JVsL5V0gqRbJR0REZvKuzZLOqK8vUjS+qZmG8plm4SZ6gsidwKQgZYLRdtvlLQlIm6zfeo4661UMdxGPT1VjHQFAKBQU6G4LSKWjbeC7QWSviXpwxGxvfkLxSMibDPLDp6jldwJADolpXI7RdKbbT8s6QpJr7H9jdErRcSqiFgWEcsoFAEAubM9W0WReFlEXF0ufrwxpLT8vaVcvlHSkqbmi8tlmJmmnDu1O0AAaGi5couI8yJicUQslXS6pH+OiHdWFhkAAOOo4/rEiXooXXQdXiRpbUR8rumuayWdUd4+Q9LfNS1/dzn76cmSnm4aoooZhtwJQE74HkUAQLY68D2Kp0h6l6S7bd9RLjtf0mckXWn7fZIekfS28r7rJL1B0jpJuyW9p63RAgDQokoKxYj4gaQfVLEtAAAmq92FYkTcJMlj3H3aftYPSWfVGhSyRO4EoNvRowgAyFYHehQBAJgRmF0GAAAAADBCW3sUh4eHtXfv3nbu8jmGhoaS2g8PDyfHcPDBBye17+vrS47hyCOPTGr/4he/ODmGY445Jqn9rl27kmN48MEHk9qvW7cuOYaHH344qf3AwEBS+9TXdPPXAgDtRo8iUL/U9/kqZr2fO3duUvvDDz88OYYXvvCFSe1/+Zd/OTmGpUuXJrXv7+9PjmHt2rVJ7Xt7e5NjSK0n9u3bl9Q+tZ5Ibd8uDD0FAGRpMrOUAgCA1lAoAgCyRaEIAEA9uEYRAAAAADACPYoAgGzRowgAQD0oFAEA2aJQBACgHhSKAIAsMZkNAAD1oVAEAGSLQhEAgHowmQ0AAAAAYAR6FAEA2aJHEQCAelAoAgCyRaEIAEA9KBQBANmiUAQAoB4UigCALDHrKQAA9WEyGwAAAADACPQoAgCyRY8iAAD1oFAEAGSLQhEAgHpQKAIAskWhCABAPdpeKA4PD7fctr+/P3n/c+bMSWp/0EEHJcdw8MEHJ7WfPXt2cgxHH310UvtTTjklOYZXvepVSe2reD1cffXVSe23bt2aHEPqa+qAAw5Iar9z586k9kAnUSgC3a+nJ31KjNT87dBDD02O4dhjj01qf9JJJyXH8LKXvSyp/e7du5NjSH0uNm/enBzDY489ltT+qaeeSmpvO6l9LpjMBgAAAAAwAkNPAQBZ4usxAACoD4UiACBbFIoAANSDQhEAkC0KRQAA6pF0jaLtPttX2b7P9lrbv1ZVYAAAANMNuROAXKT2KH5R0j9GxFttz5GUNv0iAABTQI8iMkTuBCALLReKtg+R9OuSzpSkiNgnaV81YQEAMDEKReSE3AlATlKGnh4jaaukv7b9Y9tfs31gRXEBADCuxqynVf8ANSJ3ApCNlEJxlqQTJX01Ik6QtEvSR0evZHul7dW2V3MCBgBUiUIRmZly7tTuAAGgIaVQ3CBpQ0TcWv59lYo3vxEiYlVELIuIZbYTdgcAAJC1KedObY0OAJq0XChGxGZJ622/qFx0mqQ1lUQFAMAk0KOInJA7AchJ6qynH5J0WTlr108lvSc9JAAAJofCDhkidwKQhaRCMSLukMSwCABAR1AoIjfkTgBykdqjCABARzBUFACA+qRMZgMAAAAAmIay6lGcM2dO8jZmz56d1H7WrPRD1tOTVp8PDw8nxzAwMJDUfmhoKDmGVKnHUZLmz5+f1L6K1+QBBxyQ1H7BggVJ7ffu3ZvUntmM0Un0KALdr4rzROo5PzX/k9LP1319fckxHH744UntU/MeSTr44IOT2s+bNy85ht7e3qT25C6Tk1WhCABAMwpFAADqQaEIAMgWhSIAAPWgUAQAZItCEQCAejCZDQAAAABgBApFAECWGl+PUfXPRGxfbHuL7Xualr3C9i2277C92vZJ5XLb/pLtdbbvsn1ijYcEAIDKUCgCALLViUJR0iWSlo9a9meSPhkRr5D0ifJvSXq9pOPKn5WSvlrF4wYAoG5cowgAyFYnrlGMiBttLx29WFJjzvhDJD1W3l4h6etRBHqL7T7bR0XEpvZECwBAaygUAQBI92FJ37X9WRWjdV5ZLl8kaX3TehvKZRSKAICuxtBTAEC2ahp6urC8zrDxs3ISoXxA0kciYomkj0i6qM7HDQBA3ehRBABkq6ahp9siYtkU25wh6ezy9t9K+lp5e6OkJU3rLS6XAQDQ1ehRBABkqVOzno7hMUmvLm+/RtKD5e1rJb27nP30ZElPc30iACAH9CgCALLViclsbF8u6VQVQ1Q3SLpA0u9L+qLtWZL2qpjhVJKuk/QGSesk7Zb0nrYHDABACygUAQCYgoh4+xh3/fJ+1g1JZ9UbEQAA1aNQBABkqxM9igAAzAQUigCAbFEoAgBQDwpFAEC2KBQBAKhH2wvFnp7WJ1q1nbz/3t7e5G2kGhwcTGo/MDCQHMPu3buT2j/++OPJMWzevDmpfRXHYdOmtMkHd+zYkRxD6uth3rx5Se1T/yeq+L8EWpE4SymANqni/zT1XJma90jS1q1bk9o/9NBDyTGknvP37NmTHMP69euT2j/11FPJMfT39ye1Hx4eTmo/U849fD0GAAAAAGAEhp4CALI1Uz7VBQCg3SgUAQDZolAEAKAeFIoAgGxRKAIAUI+kaxRtf8T2vbbvsX257bQrbAEAmILGhDZV/gB1IncCkIuWC0XbiyT9kaRlEfFSSb2STq8qMAAAgOmE3AlATlKHns6SNN/2gKQDJD2WHhIAABOjBxCZIncCkIWWexQjYqOkz0p6VNImSU9HxPVVBQYAwEQYeoqckDsByEnK0NNDJa2QdIykoyUdaPud+1lvpe3VtldzAgYAVIlCETlpJXdqd4wA0JAymc1vSnooIrZGxICkqyW9cvRKEbEqIpZFxDLbCbsDAGAkCkVkZsq5U9sjBIBSSqH4qKSTbR/gogI8TdLaasICAACYdsidAGSj5clsIuJW21dJul3SoKQfS1pVVWAAAEyEHkDkhNwJQE6SZj2NiAskXVBRLAAATBpDRZEjcicAuUj9egwAADqGQhEAgHqkXKMIAAAAAJiG2t6jODw83HLboaGh5P339/cnbyPVnj17ktrPmpX+tG3bti2p/Y9//OPkGLZv357UPvU4StKPfvSjpPbr169PjiH1cezevTupfer/FT066CRef0D9Uv/PUnK/htT87Wc/+1lyDA888EBS+97e3uQYHnrooaT2+/btS47hJz/5SVL7Rx55JDmG1BxyYGAgqf1MOfcw9BQAkK2ZcrIGAKDdKBQBANmiUAQAoB4UigCALDHrKQAA9WEyGwAAAADACPQoAgCyRY8iAAD1oFAEAGSLQhEAgHpQKAIAskWhCABAPSgUAQDZolAEAKAeTGYDAAAAABiBHkUAQJb4egwAAOpDoQgAyBaFIgAA9aBQBABki0IRAIB6UCgCALJFoQgAQD2YzAYAAAAAMAI9igCAbNGjCABAPSgUAQBZYtZTAADq0/ZCcXh4uOW2/f39yfvv7e1Nal9FUpIaQxW2bNmS1P7JJ59MjuH+++9Paj80NJQcw9atW5Pa79ixIzmGvXv3djSG1Nc0iTo6idcf0P1Scr+G1Bywirxl3bp1Se23b9+eHMOaNWuS2leRO6Uey9QcVErPfQYGBpLaz5RzD9coAgAAAABGYOgpACBbM+VTXQAA2o1CEQCQLQpFAADqwdBTAEC2GhPaVPkzEdsX295i+55Ryz9k+z7b99r+s6bl59leZ/t+279Vw2EAAKByExaK+zsh2j7M9g22Hyx/H1pvmAAAjFRHkTjJHspLJC1vXmD7NyStkPTyiHiJpM+Wy4+XdLqkl5RtvmK78zOaoVbkTgCmg8n0KF6iUSdESR+V9L2IOE7S98q/AQCY9iLiRklPjFr8AUmfiYj+cp3GtH4rJF0REf0R8ZCkdZJOaluw6JRLRO4EIHMTFopjnBBXSLq0vH2ppLdUGxYAABPrUI/i/rxQ0qts32r7X2z/Srl8kaT1TettKJdhGiN3AjAdtDqZzRERsam8vVnSEWOtaHulpJXl7RZ3BwDAc9U0mc1C26ub/l4VEasmaDNL0mGSTpb0K5KutP2COoJDtlrKnQCgU5JnPY2IsD3mmbo8ua6SpN7eXqanAwBUpqZCcVtELJtimw2Sro4ioB/aHpa0UNJGSUua1ltcLsMMNpXcabz1AKBOrc56+rjtoySp/L1lgvUBAKhcFw09/bak35Ak2y+UNEfSNknXSjrd9lzbx0g6TtIP0x85MkTuBCArrRaK10o6o7x9hqS/qyYcAAC6m+3LJd0s6UW2N9h+n6SLJb2gnOXyCklnROFeSVdKWiPpHyWdFRFDnYodHUXuBCArEw49LU+Ip6q4ZmODpAskfUbF9Rfvk/SIpLfVGSQAAKMl9gCm7PftY9z1zjHW/5SkT9UXEboNuROA6WDCQnGcE+JpFccCAMCUdKJQBCZC7gRgOkiezAYAgE6hUAQAoB4UigCAbFEoAgBQjxlXKKYmFfv27UuOobe3N6n90FD6PAjdcBzmzp2b1H7+/PnJMaSqIknt7+9Par979+6k9qnPA4k6AGA8w8PDydsYHBxMar9r166Ox7Bjx47kGGbPnp3Uvhvylj179iTHkJqHpubSMyX3mXGFIgBg+pgpJ2sAANqNQhEAkKVOzXoKAMBMQKEIAMgWhSIAAPXo6XQAAAAAAIDuQo8iACBb9CgCAFAPCkUAQLYoFAEAqAeFIgAgS0xmAwBAfSgUAQDZolAEAKAeTGYDAAAAABiBHkUAQLboUQQAoB4UigCAbFEoAgBQDwpFAEC2KBQBAKgHhSIAIEvMegoAQH2YzAYAAAAAMAI9igCAbNGjCABAPSgUAQDZolAEAKAebS8Ue3paH+06e/bs5P2nbmNoaCg5hoGBgY7HkPI8SOmPQZL27t2b1L6/vz85hjlz5iS137dvX3IMqebPn5/Ufnh4uKJIgPajUARmhtRzVRV5S2r+VUXeYjt5G6lSn4sq8tjUGDh3TA49igCAbHGyBwCgHkxmAwAAAAAYgR5FAECW+HoMAADqQ6EIAMgWhSIAAPWYcOip7Yttb7F9T9OyP7d9n+27bF9ju6/WKAEA2I9Gr2KVP0AqcicA08FkrlG8RNLyUctukPTSiPglSQ9IOq/iuAAAAHJ1icidAGRuwkIxIm6U9MSoZddHxGD55y2SFtcQGwAA46JHEd2I3AnAdFDFNYrvlfTNse60vVLSyvJ2BbsDAKBAYYdMTTp3AoBOSSoUbX9M0qCky8ZaJyJWSVolSb29vZzRAQCVoAcQOZpq7mSbFzmAjmi5ULR9pqQ3SjotOFMDADqA0w9yQu4EICctFYq2l0s6V9KrI2J3tSEBAABML+ROAHIzYaFo+3JJp0paaHuDpAtUzNQ1V9IN5XWHt0TE+2uMEwCA56BTBt2I3AnAdDBhoRgRb9/P4otqiAUAgCmhUEQ3IncCMB1UMespAAAdQaEIAEA9KBQBAFli1lMAAOrT9kKxp6en5bbz589P3n9vb29S+6GhoeQY9uzZk9R+cHBw4pUmMHfu3KT2AwMDyTGkPo7U4yilvR6lar4bdM6cOUntDz744KT227dvT2rP96MCALrd8PBw8jZSP5iqIofshnNu6nHgA7580KMIAMgWCQcAAPWgUAQAZItCEQCAelAoAgCyRaEIAEA90i7QAgCggxoT2lT5MxHbF9veYvue/dx3ju2wvbD827a/ZHud7btsn1jDYQAAoHIUigAATM0lkpaPXmh7iaTXSXq0afHrJR1X/qyU9NU2xAcAQDIKRQBAluroTZxMj2JE3Cjpif3c9XlJ50pq3sgKSV+Pwi2S+mwfVcXjBwCgTlyjCADIVrdco2h7haSNEXHnqOnrF0la3/T3hnLZpjaGBwDAlFEoAgCyVVOhuND26qa/V0XEqrFWtn2ApPNVDDsFAGBaoFAEAGSrpkJxW0Qsm8L6x0o6RlKjN3GxpNttnyRpo6QlTesuLpcBANDVuEYRAIAEEXF3RPx8RCyNiKUqhpeeGBGbJV0r6d3l7KcnS3o6Ihh2CgDoevQoAgCy1YlrFG1fLulUFUNUN0i6ICIuGmP16yS9QdI6SbslvactQQIAkIhCEQCQpcnOUlrDft8+wf1Lm26HpLPqjgkAgKpRKAIAstUts54CADDdcI0iAAAAAGAEehQBANmiRxEAgHpQKAIAskWhCABAPdpeKA4PD3ekbVX27NmTvI2BgYEKIkmzY8eOToegoaGhpPbd8Hro6Ukfvb13796k9uX3tnVs/6nPI5CCQhFAu3TD+003xICZgx5FAECWOjXrKQAAMwGT2QAAAAAARqBHEQCQLXoUAQCox4Q9irYvtr3F9j37ue8c22F7YT3hAQAwtsbw0yp/gFTkTgCmg8kMPb1E0vLRC20vkfQ6SY9WHBMAAJNCoYgudYnInQBkbsJCMSJulPTEfu76vKRzJXFWBQB0BIUiuhG5E4DpoKXJbGyvkLQxIu6sOB4AAIBph9wJQG6mPJmN7QMkna9i6MRk1l8paWV5e6q7AwBgv+gBRC5ScicA6JRWZj09VtIxku4sC7/Fkm63fVJEbB69ckSskrRKknp7ezmjAwAqQ6GITLScO9nmRQ6gI6ZcKEbE3ZJ+vvG37YclLYuIbRXGBQDAhCgUkQNyJwA5mszXY1wu6WZJL7K9wfb76g8LAICJMZkNuhG5E4DpYMIexYh4+wT3L60sGgAAgMyROwGYDlq5RhEAgK5ADyAAAPWgUAQAZImhogAA1IdCEQCQLQpFAADq0dZCcXh4eNvOnTsfGWeVhZLGnAFs586d1Qc1xRjahBg6v39imHwMz29XIAAwA22T1HLu1CbE0Pn9E0NeMWSRO7W1UIyInxvvfturI2JZu+Ihhu6NodP7J4buigEYCz2KmO7InfKIodP7JwZiqANDTwEA2aJQBACgHhSKAIBsUSgCAFCPbisUV3U6ABFDQ6dj6PT+JWJo6IYYgOdg1lNAUne8RxND5/cvEUMDMVTEnGQBADmaM2dOHHnkkZVvd/369bdNh2tLAABI0W09igAATBofdgIAUA8KRQBAtigUAQCoR0+nA2iwvdz2/bbX2f5oB/a/xPb3ba+xfa/ts9sdQxlHr+0f2/5Oh/bfZ/sq2/fZXmv71zoQw0fK5+Ae25fbnteGfV5se4vte5qWHWb7BtsPlr8P7UAMf14+F3fZvsZ2X7tjaLrvHNthe2GdMQBT0bhOscofIAfkTSNiIXcidyJ3qkFXFIq2eyX9haTXSzpe0tttH9/mMAYlnRMRx0s6WdJZHYhBks6WtLYD+234oqR/jIhflPTydsdie5GkP5K0LCJeKqlX0ult2PUlkpaPWvZRSd+LiOMkfa/8u90x3CDppRHxS5IekHReB2KQ7SWSXifp0Zr3D0wJhSJmIvKm5yB3IndqRu5Uka4oFCWdJGldRPw0IvZJukLSinYGEBGbIuL28vYOFf/ki9oZg+3Fkn5b0tfaud+m/R8i6dclXSRJEbEvIp7qQCizJM23PUvSAZIeq3uHEXGjpCdGLV4h6dLy9qWS3tLuGCLi+ogYLP+8RdLidsdQ+rykcyWRRQNA55E3lcidnkHu9OwycqeKdEuhuEjS+qa/N6gDbzYNtpdKOkHSrW3e9RdUvKCG27zfhmMkbZX01+UQjq/ZPrCdAUTERkmfVfHpyyZJT0fE9e2MockREbGpvL1Z0hEdiqPhvZL+od07tb1C0saIuLPd+wbGU0dvIj2KyAR507O+IHIncqexkTsl6JZCsWvYXiDpW5I+HBHb27jfN0raEhG3tWuf+zFL0omSvhoRJ0japfqHDIxQjmVfoeKN92hJB9p+Zztj2J8osseOZZC2P6ZimM9lbd7vAZLOl/SJdu4XmCwKRaCzOpU3lfsmdxK501jIndJ1S6G4UdKSpr8Xl8vayvZsFW92l0XE1W3e/SmS3mz7YRVDSF5j+xttjmGDpA0R0fhE8CoVb37t9JuSHoqIrRExIOlqSa9scwwNj9s+SpLK31s6EYTtMyW9UdI7ov1Z7LEqTjx3lq/NxZJut139l9cBLaBQxAxF3lQgdyqQO41C7lSNbikUfyTpONvH2J6j4gLca9sZgG2rGF++NiI+1859S1JEnBcRiyNiqYrH/88R0dZPgyJis6T1tl9ULjpN0pp2xqBi2MTJtg8on5PT1LkL1K+VdEZ5+wxJf9fuAGwvVzGk5s0Rsbvd+4+IuyPi5yNiafna3CDpxPK1AnQchSJmqBmfN0nkTk3InZqQO1WnKwrFKC44/aCk76p4YV8ZEfe2OYxTJL1LxadRd5Q/b2hzDN3gQ5Ius32XpFdI+nQ7d15+IneVpNsl3a3iNbqq7v3avlzSzZJeZHuD7fdJ+oyk19p+UMWndZ/pQAxflnSQpBvK1+RfdiAGAEAXIW/qOuRO5E7TMncyn54CAHI0e/bs6Ovrq3y727Ztuy0illW+YQAAMjKr0wEAANAKhooCAFAfCkUAQLYoFAEAqEdXXKMIAAAAAOge9CgCALJFjyIAAPWgRxEAkK1OfD2G7Yttb7F9T9OyP7d9n+27bF9ju6/pvvNsr7N9v+3fqudIAABQLQpFAEC2OvQ9ipdIWj5q2Q2SXhoRvyTpAUnnSZLt41V8v9tLyjZfsd1b1eMHAKAuFIoAgCzVUSROplCMiBslPTFq2fXld9tJ0i2SFpe3V0i6IiL6I+IhSesknVTdUQAAoB4UigAAjLTQ9uqmn5VTbP9eSf9Q3l4kaX3TfRvKZQAAdDUmswEAZKumyWy2RcSyVhra/pikQUmXVRsSAADtRaEIAMhWN816avtMSW+UdFo8G9hGSUuaVltcLgMAoKsx9BQAkK0OTWbzHLaXSzpX0psjYnfTXddKOt32XNvHSDpO0g+THzgAADWjRxEAkK1O9CjavlzSqSquZdwg6QIVs5zOlXSDbUm6JSLeHxH32r5S0hoVQ1LPioihtgcNAMAUuZuG7QAAMFm9vb0xb968yre7e/fu21q9RhEAgOmCHkUAQJZShooCAIDxUSgCALJFoQgAQD0oFAEA2aJQBACgHhSKAIBsUSgCAFAPvh4DAAAAADACPYoAgGzRowgAQD0oFAEAWWLWUwAA6kOhCADIFoUiAAD14BpFAAAAAMAI9CgCALJFjyIAAPWgUAQAZItCEQCAelAoAgCyRaEIAEA9KBQBALn6rqSFNWx3Ww3bBAAgK+bTWAAAAABAM2Y9BQAAAACMQKEIAAAAABiBQhEAAAAAMAKFIgAAAABgBApFAAAAAMAI/x+Q+fnqZg8ongAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "Err_BN4=error(xdata4, popt4[0], popt4[1],popt4[2], popt4[3], popt4[4], recorte4.ravel(), inc=1)\n", + "popt4E, pcov4E = curve_fit(gauss2d, xdata4, recorte4.ravel(), p0=[3,2,2,1,1],sigma=Err_BN4)\n", + "estrella4E=gauss2d(xdata4, popt4E[0], popt4E[1],popt4E[2], popt4E[3], popt4E[4])\n", + "FWHM4E=FWHM_I.append(2*np.sqrt(2*np.log(2))*np.sqrt(popt4E[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 4 fotografÃa\")\n", + "plt.imshow(recorte4, plt.get_cmap('gray'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 4 a partir de la gaussiana con incertidumbre\")\n", + "plt.imshow(estrella4E.reshape(15, 15), plt.get_cmap('gray'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 5 con incertidumbre (blanco y negro)" + ] + }, + { + "cell_type": "code", + "execution_count": 822, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4oAAAFUCAYAAABiJsKOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAxAElEQVR4nO3dfbxcVX3v8e83JycPBEqgEQJJJKhoi7YINyLKtVpBGxUN9lqL1wdQ21SLFr3ccgVbwd5qva3XqqXiTQXBSkFEULS0EPGBYgENyFMISOQpCQkhQhISkpxzcn73j70H5hzOw5xZs2dmnXzer9e8zpw9e+39mz17Zq/fXmuv7YgQAAAAAAA1UzodAAAAAACgu5AoAgAAAACGIFEEAAAAAAxBoggAAAAAGIJEEQAAAAAwBIkiAAAAAGAIEkUAABpke4HtH9q+2/ZK26cNe/1022F7Tvm/bX/R9mrbd9g+qjORAwAwMVM7HQAAABkZkHR6RNxqex9Jt9heHhF3214g6fWSHq6b/w2SDisfL5d0XvkXAICuRqIIAMjS4sWLY9OmTS1f7i233HJNRCwe6bWIWC9pffn8SdurJM2TdLekv5d0hqTv1BVZIulrERGSbrI92/ZB5XIAAOhaJIoAgCxt2rRJK1asaPlya91GG5hvoaQjJd1se4mkdRFxu+362eZJWlP3/9pyGokiAKCrkSgCALJVNNS13Bzb9RnosohYVj+D7b0lfUvSR1R0Rz1LRbdTAAAmBRJFAEC2KkoUN0XEotFetN2rIkm8OCKusP1bkg6VVGtNnC/pVttHS1onaUFd8fnlNAAAuhqJIgAgWxUliqNykQmeL2lVRHyujOFOSQfUzfOgpEURscn2VZI+ZPtSFYPYbOH6RABADkgUAQBZioi2J4qSjpX0bkl32r6tnHZWRFw9yvxXS3qjpNWSnpL03sojBACgBUgUAQBoUETcIMnjzLOw7nlIOrXisAAAaDkSRQBAtjrQoggAwB6BRBEAkC0SRQAAqkGiCADIFokiAADVIFEEAGSLRBEAgGpM6XQAAAAAAIDuQosiACBLHbo9BgAAewQSRQBAtkgUAQCoBokiACBbJIoAAFSDRBEAkC0SRQAAqsFgNgAAAACAIWhRBABkixZFAACqQaIIAMgSo54CAFAdEkUAQLZIFAEAqAbXKO4hbC+0Hbanlv//yPYftWG9M21/1/YW29+sen2pbB9r+z7b22yfWE67wvZHOhsZAGCy69SxutvYfqftaxOX8aDt45so9xrba1PW3S3KuszzOh1HFWyvtP2aLojjVbbvHeP1C23/dUXrbmofnwgSxTYrP9Qd5Ze39ji3gXJh+wXtiHE8I7yHsX7M3ybpQEm/HhF/MM5yhxwgO+SvJJ0bEXtHxLdtv1NSf0R8voMxARhFrftpKx/AHnis7piRjv0RcXFEvL6TcU0GZV3m/k7HUYWIeHFE/Kjd6x3+HY+I/4iIF7U7jnah62lnvDkivt/KBdqeGhEDrVzmOBp9D4dI+kWbYxtRg9voEEkr6/7fT9L7q4sKQAoSO1RoTzpWd0QzJ4Y7sA2B7Pe7ZuOnRbGL2H6B7R+X3TQ32f5GOf36cpbby7OCf1jrGmH7f9neIOmrtqfY/pjtX9r+le3LbO/fwHqfb/sHZZlNti+2PbsF7+eTkj4h6Q/LuN9fxvgXth+yvdH212zvWxapvc/N5fyvGGd+2X5P+dqvbP9lfTO87XNsX27767a3SjrF9tG2b7S92fZ62+fanlbO/0tJz5P03XL901W0iJ5U5XYC0JwqWhNJPDGeyXasLpf9Jts/t73V9hrb54wxb+09nVXG8aCL3jfjLquu9fD9th+W9AONfOw/xfYNdeXC9qm275N03yhxvbuuPvDxYa81tc3LsrVyT9q+2/Zbx5h3pu2LbD9he5XtM1zXjXWsZZV1lq+PsK1q3ZBPsX1/WfaB2jYfbX+s224vKJ838rmcbPvhcjkfr3t91LrTKNvhv9r+z3L+NbZPKafv66Ie91j5Wf2F7Sl17+8G258tt98Dtt8wxjqG1/cuK5f9pItuqYvq5l3g4jKix8rP/9y6195XflZP2L7G9iHDtt/T+53H+I7XlTnS9q1lHN+QNKPutSH79Qif0YW2v2T738rl/8T2XNufL+O7x/aRwzbFy8p96QnbX7U9o1xWS357SBS7y/+WdK2KVqz5kv5BkiLid8rXjyi7EdR+BOZK2l9FK9hSSR+WdKKkV0s6WNITkv6xgfVa0t+UZX5T0gJJ54xT5uLyC3et7SNGmiEizpb0aUnfKOM+X9Ip5eN3VSRle0uqfWFr73N2Of+NY81v+3BJX5L0TkkHSdpX0rxhYSyRdLmk2ZIulrRb0kclzZH0CknHSfrTMt7nS3pYxRnYvSNiVwu2E4AKkSiiAybVsbq0XdJ7VBwr3yTpgy6v0x/FXBXH0XmSTpa0zHat+10jy3p1+R5+TyMf+0dyoqSXSzp8+AtlfeA8Se9WsX1+XcVnU9PsNpekX0p6lYo6xiclfd32QaPMe7akhSrqK6+T9K6EZT3N9ixJX5T0hojYR9IrJd1Wvjzi/jiCRj6X/yrpRSrqRp+w/Zvl9FHrTiPEeoikfyvjeI6kl9bF+g8q3vvzVHwW75H03rriL5d0b7mev5V0vm2P8n6Ge4ukS8v3d5WeqSv2SPqepIdUfDbzyvlke4mksyT9fhnrf0i6ZNhyTyzjOnyM73jtvU+T9G1J/6ziO/9NSf+twfhr3i7pL1Rsg12SbpR0a/n/5ZI+N2z+d6r4Hj1f0gvLsjXJvz0kip3x7fIsS+3xx+X0fhUf5sERsTMibhhjGZI0KOnsiNgVETskfUDSxyNibZnknCPpbR6na0dErI6I5eVyHlOxE756jCLvVPFlO0TSDyVd48bPar5T0uci4v6I2CbpTEknjRHjWPO/TdJ3I+KGiOhT0Xo5vJZ3Y0R8OyIGI2JHRNwSETdFxEBEPCjp/43zXp/WxHYCAORrjzlWR8SPIuLO8lh5h4rK8njHt78sY/mxpH9VUcFtdFnnRMT2cns06m8i4vFRyrxN0vci4vpym/6liu1e09Q2L9/PNyPikfL9fENFi+bRo8z+dkmfjognImKtiuSu2WUNNyjpJbZnRsT6iKhdJtPQ/tjg5/LJsq50u6TbJR1Rlp1I3em/S/p+RFwSEf0R8auIuK1M2E6SdGZEPFku5/+qSO5rHoqIf4qI3ZIuUtEIcGCD2+eGiLi6LPvPtdhVbN+DJf15uc/Vb6MPqNivVkXRLfPTkl5a36qosfe74Y6R1Cvp8+V7v1zSzxqMv+bKcnvvlHSlpJ0R8bXyfX1D0vAWxXMjYk1EPC7pU5LeUfda8m8PiWJnnBgRs+se/1ROP0PFGcOfls3m7xtnOY+VO1LNIZKurB3UJK1ScRZozC+Z7QNtX2p7nYsuml9XceZiRBHxk/KH5KmI+BtJm1WcIWvEwSrO6tQ8pOJa2dFiHGv+gyWtqYvrKUm/GlZ+Tf0/tl9o+3u2N5Tv9dMa470OKzuh7QSgekGLIqqzxxyrbb/c9g/L1sctKiqUYx3fnoiI7XX/P6TimNzostZo4sYqM7w+sF1D6wNNbXPp6Utcbqsr+xKNvm2GxDE85gku62nl+/lDFdtyve1/tf0b5csN7Y8Nfi4b6p4/paIX10TrTgtUtJwON0dFEjW8TlffE+zp9Zd1OtViaMDw2GeUCdACFQnoSNfnHSLpC3Wfx+MqtmV9TBPZVw+WtC6GHkgeGm3mUTxa93zHCP8P3x718T39PSwl//aQKHaRiNgQEX8cEQdL+hNJX/LYo6cNr9GsUdEtof7ANiMi1o2z6k+Xy/qtiPg1FV0lGm3qr8XR6PyPqNhRa54raUDFF2GkGtpY869XXdcS2zNVdDcZHlu98yTdI+mw8r2eNYHYU7cTgBYjUUS7TdJj9b+o6K63ICL2lfTlcZa9X9kdsua5Ko7XjS4rRnk+lrHmW68iIZAk2d5LQ+sDTW3zsmXpnyR9SMXo7bMl3aXRt82QesmwmMZb1nZJe9WVnVu/4Ii4JiJep6KV7Z5yWRPZHyf6GdebSN1pjYpukMNt0jOtnzXPlTTefp9qjaTnjtJqtkbSnwzbL2ZGxH/WzTORg8J6SfOGdZd9bt3zIZ+x7SGfcZMW1D2v/x5KLfjtIVHsIrb/wHbtB+YJFR9wrevEoyr6dI/ly5I+VWsyt/2csv/1ePaRtE3SFtvzJP35GDE+18W9BqfZnmH7z1WcJfpJA+uRiq4OH7V9qO299cw1jAOSHlPxfp/X4PyXS3qz7VeW/cLP0fg/evtI2ippW3k27oMNxl0r29B2AtAeJIpot0l6rN5H0uMRsdP20Sq6D47nk+XyXyXpBBXXYzWzrJGO/RN1uaQTXAyiMk3Fra7q67jNbvNZKj7fx8py71XRCjiayySdaXu/8jP60ASWdZuk3yk/u31VXGqjct4DbS8pk/NdKvaDwfK1sfbHes18xvVlG607XSzpeNtvtz3V9q/bfmkUXScvU/E57FN+Fv9DRct4lX6qIoH7jO1Z5ffh2PK1L6v4vF4sPT3Yzpi3ctPY3/EbVTRm/JntXtu/r6Fdi2+X9GLbL3Ux6Mw5zb2lIU61Pd/FoDQfV9E9dTQT/h6QKHZGbVTN2uPKcvrLJN1se5uKsz6nxTP3vzlH0kVlc/HbR1nuF8py19p+UtJNKi7AHc8nJR0laYuK6wyuGGPefVScWXpCxVmgxSrOTgzv8jmaC1T0Hb9e0gOSdqq4uLbWzeBTkn5Svs9jxpl/Zfn8UhU/AtskbVTxIzqa/6nix/FJFWfjxvpCDTeR7QSgYlUkiSSKqLMnHav/VNJflfF8QkWFfiwbymU/oiIx+EBE3NPMskY59k9IWR84VUWr2foytrV1szS1zSPibhXX0d2oIkH4LY19YvyvyvU+IOn7KhLYXY0sKyKWq6iT3CHpFhUDsNRMUZFUPaKie+Sr9UyyNtb+WG+in3G9hutOEfGwpDdKOr2M9TY9c73gh1W0qt0v6QYVn9cFE4hjwsoE9c2SXqBiwMK1KrrxKiKulPR/JF3qokvtXZJGHWm1dI5G+Y5HMV7G76sYhPHxcj1X1L3+CxX7yPdVXJ863vXNjfgXFYMZ3a+iy+9fjzHvhL8H5qCIyaJscdysomvEAx0OB0DFjjjiiLj22tbfQ3zu3Lm3RMSi8ecE9jy2XyPp6xExf5xZ93i2PyjppIhg4DtkiRZFZM32m23vVXbH+KykOyU92NmoALQLLYoAuoXtg8ouv1Nc3C7kdBUjVwJZGndYYKDLLVHRNdWSVqg4c0dND9hD8HUH0EWmqbh1xKEqejhdquJ+z0CWSBSRtYj4I0l/1Ok4AHQGiSLQXhHxIw0d2ROliHhIYw92A2SFRBEAkC0SRQAAqsE1igAAAACAIdraomg7ht6DcmKmTZvWwmia09/fn7yM1DPgU6d2viF49+7dycvo7e1NKt/T05Mcw8DAQFL5vr6+5Bha8T5SDA6OdLulxpUDgDT/xQaaxOAz2BPYZicHJqEc6k7tThQ1Y8aMpsvPmzcvOYbUSvm6deuSY9i1a6zb/I1vzpw5yTGkbofNmzcnxzB37tyk8vvvv39yDBs2bEgq34r9Yd99900qn3LyRZK2bt2aVD412QZSkCgCAFCNzjdNAQDQJBJFAACqwTWKAAAAAIAhaFEEAGSLFkUAAKqR1KJoe7Hte22vtv2xVgUFAEAjagPatPIBVIm6E4BcNN2iaLtH0j9Kep2ktZJ+ZvuqiLi7VcEBADAaEjvkhroTgJyktCgeLWl1RNwfEX2SLpW0pDVhAQAwPloUkRnqTgCykZIozpO0pu7/teW0IWwvtb3C9oqEdQEAAOSOuhOAbFQ+mE1ELJO0TJKmTJnCqVoAQMvQAojJqL7uZJudHEBHpCSK6yQtqPt/fjkNAIC2IFFEZqg7AchGStfTn0k6zPahtqdJOknSVa0JCwCA8XGNIjJD3QlANppuUYyIAdsfknSNpB5JF0TEypZFBgDAGEjskBvqTgByknSNYkRcLenqFsUCAAAwqVF3ApCLygezAQCgKrQoAgBQjbYmitOmTdO8ec8aBbphhx12WHIMq1atSio/ZUrKZZ2F3t7epPIp27DmgQceSCo/dWr6rrNz586k8uvWdf76/wMOOCB5GX19fUnld+/enVR+5syZSeW3bduWVB5IQaIIAEA1aFEEAGSLRBEAgGqkN48BANAh7R711PYC2z+0fbftlbZPK6f/ne17bN9h+0rbs+vKnGl7te17bf9etVsEAIDWIFEEAKBxA5JOj4jDJR0j6VTbh0taLuklEfHbkn4h6UxJKl87SdKLJS2W9CXbPR2JHACACSBRBABkqYrWxPFaFCNifUTcWj5/UtIqSfMi4tqIGChnu0nFjdQlaYmkSyNiV0Q8IGm1pKMr2SAAALQQ1ygCALLVyWsUbS+UdKSkm4e99D5J3yifz1ORONasLacBANDVSBQBANmqKFGcY3tF3f/LImJZ/Qy295b0LUkfiYitddM/rqJ76sVVBAYAQLuQKAIAMNSmiFg02ou2e1UkiRdHxBV100+RdIKk4+KZDHadpAV1xeeX0wAA6GpcowgAyFYHRj21pPMlrYqIz9VNXyzpDElviYin6opcJekk29NtHyrpMEk/bfmGAACgxWhRBABkqwPXKB4r6d2S7rR9WzntLElflDRd0vIil9RNEfGBiFhp+zJJd6voknpqROxud9AAAEwUiSIAIEuNtABWsM4bJHmEl64eo8ynJH2qsqAAAKgAiSIAIFudHPUUAIDJjGsUAQAAAABD0KIIAMgWLYoAAFSDRBEAkC0SRQAAqkGiCADIFokiAADVIFEEAGSpE6OeAgCwp2hromhbU6c2v8r7778/OYbNmzcnlT/ggAOSY3jyySeTyvf19SXHMGVK2jhGu3d3/jZgg4ODHV9GK2JI1dPTk1S+G94DAABjKe9P2lGcmMKehhZFAEC2qLgBAFANEkUAQLZIFAEAqAaJIgAgWySKAABUg0QRAJAtEkUAAKrR9IgmthfY/qHtu22vtH1aKwMDAACYTKg7AchJSovigKTTI+JW2/tIusX28oi4u0WxAQAwKm6PgQxRdwKQjaYTxYhYL2l9+fxJ26skzZPEjx0AoC1IFJET6k4ActKSaxRtL5R0pKSbW7E8AAAaQaKIXFF3AtDtkhNF23tL+pakj0TE1hFeXyppqSRNncrYOQAAYM82kboTAHRKUuZmu1fFD93FEXHFSPNExDJJyyRp5syZnPoFALQMLYrIzUTrTrbZyQF0RNOJom1LOl/Sqoj4XOtCAgCgMSSKyAl1JwA5afr2GJKOlfRuSa+1fVv5eGOL4gIAYEy1UU9b/QAqRN0JQDZSRj29QZJbGAsAABNCYoecUHcCkJOUFkUAAAAAwCTEMKQAgGzRoggAQDXamija1owZM5ou/9hjjyXH0Nvbm1R+r732So5hYGAgeRmp9t9//6TyO3bsSI5hypS0Bu3+/v7kGFqxjFSp+2Sq3bt3J5UvxmYAOoNEEaheT09PUvlWHOdSYxgcHEyOIbXOkHq8lfjNQ3vRoggAyBaVJgAAqkGiCADIEqOUAgBQHQazAQAAAAAMQYsiACBbtCgCAFANEkUAQLZIFAEAqAaJIgAgWySKAABUg0QRAJAtEkUAAKrBYDYAAAAAgCFoUQQAZInbYwAAUB0SRQBAtkgUAQCoBokiACBbJIoAAFSDRBEAkC0SRQAAqsFgNgAAAACAIWhRBABkixZFAACqQaIIAMgSo54CAFAdEkUAQLZIFAEAqEZbE8WI0M6dO5su/5znPCc5hv7+/qTyU6emb7KFCxcmld9nn32SY3jiiSeSym/evDk5hpR9oVUGBweTyk+Zkn6Zb+o+ZTup/MDAQFJ5AED36unpSV7G3nvvnVR+7ty5yTHst99+SeWfeuqp5Bg2bNiQVD617iWl12OBiaBFEQCQLVoUAQCoBokiACBbJIoAAFSDRBEAkC0SRQAAqkGiCADIEqOeAgBQneSROGz32P657e+1IiAAAIDJjLoTgBy0okXxNEmrJP1aC5YFAEDDaFFEpqg7Aeh6SS2KtudLepOkr7QmHAAAGlfrftrKx1hsL7D9Q9t3215p+7Ry+v62l9u+r/y7Xzndtr9oe7XtO2wf1YbNgi5G3QlALlK7nn5e0hmS0m5GBwBAE9qdKEoakHR6RBwu6RhJp9o+XNLHJF0XEYdJuq78X5LeIOmw8rFU0nlVbAdk5fOi7gQgA00nirZPkLQxIm4ZZ76ltlfYXsGNvQEArdTuRDEi1kfEreXzJ1V0H5wnaYmki8rZLpJ0Yvl8iaSvReEmSbNtH1TBpkAGmqk7tSk0AHiWlBbFYyW9xfaDki6V9FrbXx8+U0Qsi4hFEbFo6lQGWQUATA62F0o6UtLNkg6MiPXlSxskHVg+nydpTV2xteU07JkmXHdqd4AAUNN0ohgRZ0bE/IhYKOkkST+IiHe1LDIAAMZQRWti2aI4p9aaUz6WDl+37b0lfUvSRyJi67C4QhKj7OBZqDsByAlNfACAbFU06ummsVpybPeqSBIvjogrysmP2j4oItaXXUs3ltPXSVpQV3x+OQ0AgK6WfB9FSYqIH0XECa1YFgAAjerAqKeWdL6kVRHxubqXrpJ0cvn8ZEnfqZv+nnL002Mkbanrooo9GHUnAN2OFkUAQLYqalEcy7GS3i3pTtu3ldPOkvQZSZfZfr+khyS9vXztaklvlLRa0lOS3tvWaAEAaBKJIgAADYqIGyR5lJePG2H+kHRqpUEBAFCBtiaKu3fv1pYtW5ouP3v27OQYZs2alVR+3rz0were+ta3JpVfvz6919Ly5cuTyvf39yfHkHq7lN7e3o7H0ApFT7bOmTIlrQd6p+PHnq0DLYpA26X8zk6fPj15/QsWLBh/pjG89rWvTY7hyCOPTCq/du3a5BhS60533HFHcgxbt24df6YxDA5y+040jhZFAECWGrmmEAAANIdEEQCQLRJFAACq0ZJRTwEAAAAAkwctigCAbNGiCABANUgUAQDZIlEEAKAaJIoAgCwxmA0AANUhUQQAZItEEQCAajCYDQAAAABgCFoUAQDZokURAIBqkCgCALJFoggAQDVIFAEA2SJRBACgGiSKAIAsMeopAADVYTAbAAAAAMAQtCgCALJFiyIAANUgUQQAZItEEQCAapAoAgCyRaIIAEA12poo2tb06dObLt/X15ccw/77759U/lWvelVyDCeddFJS+RtvvDE5hh//+MdJ5WfMmJEcw+bNm5PKT52avvtOmzYtqfzAwEByDLt3704qPzg4mFS+v78/qTwVdXQS+x/2BLabLpt6nJOkefPmJZU//vjjk2N485vfnFT+zjvvTI7hwQcfTCr/y1/+MjmGbdu2JZVPrTNgz8JgNgAAAACAIeh6CgDIErfHAACgOiSKAIBskSgCAFANEkUAQLZIFAEAqEbSNYq2Z9u+3PY9tlfZfkWrAgMAAJhsqDsByEVqi+IXJP17RLzN9jRJe7UgJgAAGkKLIjJE3QlAFppOFG3vK+l3JJ0iSRHRJyn9/hUAADSIRBE5oe4EICcpXU8PlfSYpK/a/rntr9ie1aK4AAAYU23U01Y/gApRdwKQjZREcaqkoySdFxFHStou6WPDZ7K91PYK2ytSbywOAEA9EkVkZsJ1p3YHCAA1KYniWklrI+Lm8v/LVfz4DRERyyJiUUQs6unpSVgdAABA1iZcd2prdABQp+lEMSI2SFpj+0XlpOMk3d2SqAAAaAAtisgJdScAOUkd9fTDki4uR+26X9J700MCAKAxJHbIEHUnAFlIShQj4jZJdIsAAHQEiSJyQ90JQC5SWxQBAOgIuooCAFCdlMFsAAAAAACTUFtbFG1r+vTpTZfv60u/J21vb29S+VacvU5dxgMPPJAcw/bt25PKDwwMJMfQDbdLSR2JtxXbIXW/7u/v72j5wcHBpPJACloUsSdI2c9b8R1JPU5t2bIlOYZf/epXSeU3b96cHMPOnTuTyrei3sNvHtqJrqcAgGxRaQIAoBokigCAbJEoAgBQDRJFAEC2SBQBAKgGg9kAAAAAAIagRREAkCVujwEAQHVIFAEA2SJRBACgGiSKAIBskSgCAFANrlEEAAAAAAxBiyIAIFu0KAIAUA0SRQBAtkgUAQCoBokiACBLjHoKAEB1SBQBANkiUQQAoBoMZgMAwATYvsD2Rtt31U17qe2bbN9me4Xto8vptv1F26tt32H7qM5FDgBA40gUAQDZqnU/beWjARdKWjxs2t9K+mREvFTSJ8r/JekNkg4rH0slndeK9w0AQNXoegoAyFYnup5GxPW2Fw6fLOnXyuf7SnqkfL5E0teiCPQm27NtHxQR69sTLQAAzSFRBABkq6JEcY7tFXX/L4uIZeOU+Yika2x/VkVvnVeW0+dJWlM339pyGokiAKCrtTVRjAjt2rWr6fK7d+9OjiF1GT/72c+SYzj//POTyl933XXJMWzYsCGp/MDAQHIMKPT39yeVT/lOSVJfX19SeQYTQadUOOrppohYNMEyH5T00Yj4lu23Szpf0vGtDw2YmJ07dyYv46GHHkoq/93vfjc5hnvvvTep/MaNG5NjWLlyZVL57du3J8fAMRftxDWKAACkO1nSFeXzb0o6uny+TtKCuvnml9MAAOhqJIoAgGx1aDCbkTwi6dXl89dKuq98fpWk95Sjnx4jaQvXJwIAcsA1igCAbHWiG5btSyS9RsW1jGslnS3pjyV9wfZUSTtVjHAqSVdLeqOk1ZKekvTetgcMAEATSBQBANnq0Kin7xjlpf8ywrwh6dRqIwIAoPWSup7a/qjtlbbvsn2J7RmtCgwAgPF0UddToCHUnQDkoulE0fY8SX8maVFEvERSj6STWhUYAADAZELdCUBOUrueTpU003a/pL30zA2GAQCoFC2AyBR1JwBZaLpFMSLWSfqspIdV3Dh4S0Rc26rAAAAYD11PkRPqTgByktL1dD9JSyQdKulgSbNsv2uE+ZbaXmF7RerN7gEAqEeiiJw0U3dqd4wAUJMymM3xkh6IiMciol/FjYZfOXymiFgWEYsiYlFPT0/C6gAAGIpEEZmZcN2p7RECQCklUXxY0jG297JtScdJWtWasAAAACYd6k4AstH0YDYRcbPtyyXdKmlA0s8lLWtVYAAAjIcWQOSEuhOAnCSNehoRZ0s6u0WxAADQMLqKIkfUnQDkIvX2GAAAdAyJIgAA1Ui5RhEAAAAAMAm1tUWxp6dHs2fPbrr8mjVrkmN45JG0+9pu3rw5OYZVq9KuWx8YGEiO4YknnkgqP3369OQYBgcHk8rv2rUrOYbUZaS+B0maOjXta9jb25scQ4pWfCeAZtGiiD1Byn7e39+fvP4NGzYklb/hhhuSY7j11luTyrdiO6TWnXbs2JEcQyvqHUCj6HoKAMgWiSIAANUgUQQAZItEEQCAapAoAgCyxKinAABUh8FsAAAAAABD0KIIAMgWLYoAAFSDRBEAkC0SRQAAqkGiCADIFokiAADVIFEEAGSLRBEAgGowmA0AAAAAYAhaFAEAWeL2GAAAVIdEEQCQLRJFAACqQaIIAMgWiSIAANUgUQQAZItEEQCAajCYDQAAAABgCFoUAQDZokURAIBqkCgCALLEqKcAAFSnrYniwMCAHn300abL79ixIzmGrVu3drR8K8ycOTN5GYODg0nlW/FZpEp9D90Sw8DAQFL5KVPSepCnlgc6iUQRGFsrjlOpx/y+vr7kGFKPVa34rdi9e3dS+W6otwATQQ0RAAAAADAEXU8BANmiRREAgGqQKAIAskWiCABANUgUAQDZIlEEAKAa416jaPsC2xtt31U3bX/by23fV/7dr9owAQAYqjbqaasfQCrqTgAmg0YGs7lQ0uJh0z4m6bqIOEzSdeX/AAAAoO4EYBIYN1GMiOslPT5s8hJJF5XPL5J0YmvDAgBgfLQoohtRdwIwGTR7jeKBEbG+fL5B0oGjzWh7qaSlktTT09Pk6gAAeDYSO2SkqboTAHRK8mA2ERG2Rz1SR8QyScskadq0aRzRAQAtQ6KIHE2k7jTWfABQpWYTxUdtHxQR620fJGljK4MCAKARJIrICHUnAFlpZDCbkVwl6eTy+cmSvtOacAAAACYl6k4AsjJui6LtSyS9RtIc22slnS3pM5Ius/1+SQ9JenuVQQIAMByDz6BbUXcCMBmMmyhGxDtGeem4FscCAMCEkCiiG1F3AjAZJA9mAwBAp5AoAgBQDRJFAEC2SBQBAKhGWxPFwcFB7dq1q+nyM2fObGE0zdm2bVvyMmwnlZ82bVpyDFOmNDuOUaGvry85hv7+/qTyrbgvZ+pnMTg4mBxD6nZI1dvbm1SeijoATG6pv/MDAwMtigRAO9GiCADIFicqAACoRlqzEgAAHVIb9bTVj/HYvsD2Rtt3DZv+Ydv32F5p+2/rpp9pe7Xte23/XgWbAgCAlqNFEQCQrQ61KF4o6VxJX6tNsP27kpZIOiIidtk+oJx+uKSTJL1Y0sGSvm/7hRGxu+1RAwAwAbQoAgAwARFxvaTHh03+oKTPRMSucp6N5fQlki6NiF0R8YCk1ZKObluwAAA0iUQRAJCtirqezrG9ou6xtIFQXijpVbZvtv1j2y8rp8+TtKZuvrXlNAAAuhpdTwEA2aqo6+mmiFg0wTJTJe0v6RhJL5N0me3ntTwyAADahEQRAJClRgefaZO1kq6IIqCf2h6UNEfSOkkL6uabX04DAKCr0fUUAJCtTox6OopvS/pdSbL9QknTJG2SdJWkk2xPt32opMMk/TT9nQMAUC1aFAEAmADbl0h6jYprGddKOlvSBZIuKG+Z0Sfp5LJ1caXtyyTdLWlA0qmMeAoAyAGJIgAgW53oehoR7xjlpXeNMv+nJH2quogAAGg9EkUAQLa66BpFAAAmFRJFAEC2SBQBAKgGiSIAIEtdNuopAACTCqOeAgAAAACGoEURAJAtWhQBAKgGiSIAIFskigAAVKOtiWJEaGBgoOnys2bNSo5h9+78b1+1Y8eO5GVs3749qXxfX19yDKlasT9MmZLW+7q/vz85hsHBweRlAHsqEkUAAKpBiyIAIFskigAAVIPBbAAAAAAAQ9CiCADIErfHAACgOuO2KNq+wPZG23fVTfs72/fYvsP2lbZnVxolAAAjqCWLrXwAqag7AZgMGul6eqGkxcOmLZf0koj4bUm/kHRmi+MCAGBcJIroUheKuhOAzI2bKEbE9ZIeHzbt2oioDV96k6T5FcQGAACQHepOACaDVlyj+D5J32jBcgAAmBBaAJEp6k4Aul5Somj745IGJF08xjxLJS0tn6esDgCAIUgUkZuJ1p0AoFOaThRtnyLpBEnHxRhH6ohYJmmZJPX09HBEBwC0BNcUIjfN1J1ss5MD6IimEkXbiyWdIenVEfFUa0MCAKAxJIrIBXUnALlp5PYYl0i6UdKLbK+1/X5J50raR9Jy27fZ/nLFcQIAAGSBuhOAyWDcFsWIeMcIk8+vIBYAACaEFkV0I+pOACaDVox6CgBAR5AoAgBQDRJFAEC2SBQBAKgGiSIAIEuMegoAQHXamigODg5q69at7Vzls/T39yeV7+npSY5h+vTpSeUff/zx5Bh27NiRVL4btsOUKeOOxTSuqVPzP1eS+h5asR0BAAAwueRfSwYA7LFoUQQAoBokigCAbJEoAgBQDRJFAEC2SBQBAKgGiSIAIFskigAAVINRLAAAAAAAQ9CiCADIErfHAACgOiSKAIBskSgCAFANEkUAQLZIFAEAqAaJIgAgWySKAABUg8FsAAAAAABD0KIIAMgWLYoAAFSDRBEAkCVGPQUAoDokigCAbJEoAgBQDa5RBAAAAAAMQYsiACBbtCgCAFANEkUAQLZIFAEAqEbbE0XbTZedNWtW8vq3bNmSVH7q1PRNNnPmzKTyO3bs6HgM06dPT45hYGAgqfyUKZOj53TqPtXb29vR9ad8p4FUJIoAAFSDFkUAQJYY9RQAgOpMjiYZAAAAAEDL0KIIAMgWLYoAAFRj3BZF2xfY3mj7rhFeO9122J5TTXgAAIyu1v20lQ8gFXUnAJNBI11PL5S0ePhE2wskvV7Swy2OCQCAhpAooktdKOpOADI3bqIYEddLenyEl/5e0hmSOKoCADqiE4niRFqLXPii7dW277B9VAWbAV2GuhOAyaCpwWxsL5G0LiJub3E8AAB0uwvVeGvRGyQdVj6WSjqvDfGhC1F3ApCbCQ9mY3svSWepOBg2Mv9SFQdHAABaplNdRSPietsLR3ip1lr0nbppSyR9LYpAb7I92/ZBEbG+DaGiS1B3ApCjZloUny/pUEm3235Q0nxJt9qeO9LMEbEsIhZFxKLmwwQA4Nm65RrFMVqL5klaU/f/2nIa9izUnQBkZ8ItihFxp6QDav+XP3iLImJTC+MCAGBcFbUozrG9ou7/ZRGxbLSZJ9pahD0PdScAORo3UbR9iaTXqDhwrpV0dkScX3VgAACMp6JEcdMEW3LqW4ukZ1qLjpa0TtKCunnnl9MwiVF3AjAZjJsoRsQ7xnl9YcuiAQAgM2O1Ftm+StKHbF8q6eWStnB94uRH3QnAZDDhrqcAAHSLTgxmM8HWoqslvVHSaklPSXpvW4IEACARiSIAIEsdHPW04daicrTTU6uOCQCAViNRBABkqxOJIgAAe4J2J4qbIuKhMV6fI2nUEcDWr2/LZR1jxvDUU08lr2Dz5s1JMbTJmDHs2LGjo+uXpG3btnU8hjYYN4Yu+CwOqToAANiDbZLUdN2pTYih8+snhrxiyKLu1NZEMSKeM9brtld0+p5BxNAdMXR6/cTQXTEAo6FFEZMddac8Yuj0+omBGKpA11MAQLZIFAEAqAaJIgAgWySKAABUo9sSxWWdDkDEUNPpGDq9fokYarohBuBZOjXqKdBluuE3mhg6v36JGGqIoUXMQRYAkKNp06bF3LlzW77cNWvW3DIZri0BACBFt7UoAgDQME52AgBQDRJFAEC2SBQBAKjGlE4HUGN7se17ba+2/bEOrH+B7R/avtv2StuntTuGMo4e2z+3/b0OrX+27ctt32N7le1XdCCGj5afwV22L7E9ow3rvMD2Rtt31U3b3/Zy2/eVf/frQAx/V34Wd9i+0vbsdsdQ99rptsP2nCpjACaidp1iKx9ADqg3DYmFuhN1J+pOFeiKRNF2j6R/lPQGSYdLeoftw9scxoCk0yPicEnHSDq1AzFI0mmSVnVgvTVfkPTvEfEbko5odyy250n6M0mLIuIlknokndSGVV8oafGwaR+TdF1EHCbpuvL/dsewXNJLIuK3Jf1C0pkdiEG2F0h6vaSHK14/MCEkitgTUW96FupO1J3qUXdqka5IFCUdLWl1RNwfEX2SLpW0pJ0BRMT6iLi1fP6kii/5vHbGYHu+pDdJ+ko711u3/n0l/Y6k8yUpIvoiYnMHQpkqaabtqZL2kvRI1SuMiOslPT5s8hJJF5XPL5J0YrtjiIhrI2Kg/PcmSfPbHUPp7yWdIYlaNAB0HvWmEnWnp1F3emYadacW6ZZEcZ6kNXX/r1UHfmxqbC+UdKSkm9u86s+r2KEG27zemkMlPSbpq2UXjq/YntXOACJinaTPqjj7sl7Sloi4tp0x1DkwItaXzzdIOrBDcdS8T9K/tXultpdIWhcRt7d73cBYqmhNpEURmaDe9IzPi7oTdafRUXdK0C2JYtewvbekb0n6SERsbeN6T5C0MSJuadc6RzBV0lGSzouIIyVtV/VdBoYo+7IvUfHDe7CkWbbf1c4YRhJF7bFjNUjbH1fRzefiNq93L0lnSfpEO9cLNIpEEeisTtWbynVTdxJ1p9FQd0rXLYniOkkL6v6fX05rK9u9Kn7sLo6IK9q8+mMlvcX2gyq6kLzW9tfbHMNaSWsjonZG8HIVP37tdLykByLisYjol3SFpFe2OYaaR20fJEnl342dCML2KZJOkPTOaH8t9vkqDjy3l/vmfEm32m79zeuAJpAoYg9FvalA3alA3WkY6k6t0S2J4s8kHWb7UNvTVFyAe1U7A7BtFf3LV0XE59q5bkmKiDMjYn5ELFTx/n8QEW09GxQRGyStsf2ictJxku5uZwwquk0cY3uv8jM5Tp27QP0qSSeXz0+W9J12B2B7sYouNW+JiKfavf6IuDMiDoiIheW+uVbSUeW+AnQciSL2UHt8vUmi7lSHulMd6k6t0xWJYhQXnH5I0jUqduzLImJlm8M4VtK7VZyNuq18vLHNMXSDD0u62PYdkl4q6dPtXHl5Ru5ySbdKulPFPrqs6vXavkTSjZJeZHut7fdL+oyk19m+T8XZus90IIZzJe0jaXm5T365AzEAALoI9aauQ92JutOkrDuZs6cAgBz19vbG7NmzW77cTZs23RIRi1q+YAAAMjK10wEAANAMuooCAFAdEkUAQLZIFAEAqEZXXKMIAAAAAOgetCgCALJFiyIAANUgUQQAZItEEQCAapAoAgCyRaIIAEA1SBQBAFli1FMAAKrDYDYAAAAAgCFoUQQAZIsWRQAAqkGiCADIFokiAADVIFEEAGSLRBEAgGqQKAIAskWiCABANRjMBgAAAAAwBC2KAIAscXsMAACqQ6IIAMgWiSIAANUgUQQAZItEEQCAapAoAgCyRaIIAEA1GMwGAAAAADAELYoAgGzRoggAQDVIFAEAWWLUUwAAqkOiCADIFokiAADV4BpFAAAAAMAQtCgCALJFiyIAANUgUQQAZItEEQCAapAoAgCyRaIIAEA1SBQBALm6RtKcCpa7qYJlAgCQFXM2FgAAAABQj1FPAQAAAABDkCgCAAAAAIYgUQQAAAAADEGiCAAAAAAYgkQRAAAAADDE/wcL7cyLuZQQKwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "Err_BN5=error(xdata5, popt5[0], popt5[1],popt5[2], popt5[3], popt5[4], recorte5.ravel(), inc=1)\n", + "popt5E, pcov5E = curve_fit(gauss2d, xdata5, recorte5.ravel(), p0=[3,2,2,1,1], sigma=Err_BN5)\n", + "estrella5E=gauss2d(xdata5, popt5E[0], popt5E[1],popt5E[2], popt5E[3], popt5E[4])\n", + "FWHM5E=FWHM_I.append(2*np.sqrt(2*np.log(2))*np.sqrt(popt5E[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 5 fotografÃa\")\n", + "plt.imshow(recorte5, plt.get_cmap('gray'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 5 a partir de la gaussiana con incertidumbre\")\n", + "plt.imshow(estrella5E.reshape(15, 15), plt.get_cmap('gray'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 6 con incertidumbre (blanco y negro)" + ] + }, + { + "cell_type": "code", + "execution_count": 823, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAFUCAYAAAB87/I9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAutklEQVR4nO3de7hkdX3n+/enL6ByEQ0i0LSABpOAI+ogYszFWxSNEZ85kwwm3hOJOSTBhBwjZmY0yZgxxuPtqGQ6Qowjo2EUDaMmglFjnAloQ7wBoh1BurEJNtjQoFya/p4/1tpSbHvfuvdv16q936/nqWdXrctvfdeq2lW/b/0ulapCkiRJkrTyrBp3AJIkSZKk8TAhlCRJkqQVyoRQkiRJklYoE0JJkiRJWqFMCCVJkiRphTIhlCRJkqQVyoRQkqRpkqxP8ukkVya5IskZI+t+K8nX+uVvHFl+VpJNSa5O8szxRC5J0sKsGXcAkiQN0E7gzKq6PMkBwGVJLgYeCpwCHF9VdyY5BCDJscCpwHHA4cAnkzyyqu4ZU/ySJM2LCaEkadBOPvnk2rZt26KWedlll32iqk6eaX1VbQW29vd3JLkKWAe8HHhDVd3Zr7ux3+UU4AP98muSbAJOBP5pUQOXJGmRmRBKkgZt27ZtbNy4cVHLTHLwArY9CngscCnwZ8BPJ3k9cAfwe1X1Bbpk8ZKR3bb0yyRJGjQTQknS4FXVYhd5cJLRLHNDVW2YvlGS/YEPAa+sqluTrAEeDJwEPB44P8nDFzs4SZKWigmhJGnwGiSE26rqhNk2SLKWLhk8r6ou6BdvAS6oLqDPJ9kFHAxcD6wf2f2IfpkkSYPmLKOSpMGrqkW9zSVJgHOAq6rqzSOrPgI8pd/mkcA+wDbgQuDUJPsmORo4Bvj84l4FSZIWny2EkqRBm28St8ieBLwQ+EqSL/bLXgOcC5yb5KvAXcCL+9bCK5KcD1xJN0Pp6c4wKkmaBCaEkiRNU1WfAzLD6hfMsM/rgdc3C0qSpAZMCCVJgzeGFkJJklYEE0JJ0uCZEEqS1IYJoSRp8EwIJUlqw4RQkjR4JoSSJLXhz05IkiRJ0gplC6EkadDG9LMTkiStCCaEkqTBMyGUJKkNE0JJ0uCZEEqS1IYJoSRp8EwIJUlqw0llJEmSJGmFsoVQkjR4thBKktSGCaEkadCcZVSSpHZMCCVJg2dCKElSG44hXEaSHJWkkqzpH38mya8twXGT5C+TfDfJ51sfb28l+bEkX0yyI8lv98venOStYw5NkrQCjOvzemiS/HSSq/eyjD26dtOfg0mW5IokTx53HC0k+dskLx5AHA9LcluS1TOsf12S9zU6dvP3BxPCBpJcm+T7/Qtn6vaOeexXSX50KWKcjyRnJLkmye1JrkryyBk2/Sng54AjqurEeZQ77vN8FfDpqjqgqt6e5KeBxwP/zxhjkjSLqW6ji3WTYEV+Xo/V9OtWVf9YVT82zpiWg6o6rqo+M+44WqiqZ1XVXy31cfv3hqePxHFdVe1fVfcsdSxLYeK/FRmwX6iqTy5mgUnWVNXOxSxzlmP9GvCrwM8DVwEPB747w+ZHAtdW1e1LEdts5nmNjgQ+MPL4aOA/VNXd7SKTtDdM4tTQSvq8Hos9uR5LeQ2lKZP+utvT+G0hXGJJfjTJPyS5Jcm2JH/dL/9sv8mX+m8o/0OSJyfZkuT3k9wA/GWSVUleneRfktyU5PwkD57HcR+R5FP9PtuSnJfkoBm2XQW8FvidqrqyOv9SVTfvZttfBd4NPLGP+w/75S9PsinJzUkuTHL4TOc52/b9umckubq/Zu/qr9+v9etekuR/J3lLkpuA1812rkk+BTwFeEd//EcCTwX+7379g5J8NMl30nWB/WiSI+a6vpLaWezWQZNLzcdy+7zutz8xyT8l2Z5ka5J3JNlnhm2nulSeluTb/fa/N9+y+n1PT/IN4BuzXbeRfa7tr+GXgduzm+6cSX4uydf65+UdQKatf1m6VtLvJvlEkiNnuNTTy31pv9+OJN9M8uuzbLs6yf/bPz/XJPnN3LcL8Ixl9fWWz00r7wctp0meneTKft/rp655koP7Osn2dHWlf+yf//u0Zs3zeXlFkm/027wzSfp1837t9dsfl+TiPp5/TfKafvm+Sd7av26+3d/ft1839b9yZpIb+xhfOssxftBdcuraJXlT//xek+RZI9s+ON0Qpm/36z8ysu456YYLbU/yf5I8emTd9Nfd+4GHAf+rf62+Kj/czfvodO8PO5JcDBw8Ut59Xte7eY5el+R/Jnlfv/9XkjwyyVn9Ndmc5BnTLsUjknw+ya1J/ib9e8lIXL+a5DrgU/3yBf0fmBAuvT8GLgIeBBwB/H8AVfUz/frj+ybpv+4fHwo8mK5V6zTgt4DnAT8LHE73LeA753HcAP+13+cngPXA62bY9oj+9qj+RXlNkj+ceuMZVVXnAK8A/qmP+7VJntof65eAw4Bv0bfI7e48Z9s+ycHAB4GzgB8BrgZ+cloYTwC+CTwUeP1s51pVTwX+EfjN/vhfn1bWKuAv6a73w4DvA3N2H5LUlgmhxmBZfV737gF+h67y+kTgafRfiM7iKcAxwDOA38+93ejmU9bz6D6jj53luk33fLrWzoOmt3T0dYILgP/YH/dfgCeNrD8FeA3w74CH0H3ev3+O85tyI/Ac4EDgpcBbkjxuhm1fDjwLeAzwuP4897Ss6c4Bfr2qDgAeRV/BB84EttCd10PpznN3b2bzeV6eQzdU5tF0da9n9svn/dpLcgDwSeDv+u1/FPj7fvUfACfRXZ/jgRPpnrMphwIPBNbRtW6/M8mDdnec3XgCXV3wYOCNwDlTCS3w34EHAMcBhwBv6WN9LHAu8Ot0dcn/Blw4laT2Rl93zweuo+s9sH9VvXE3cfwP4LI+jj8GFjrO8Rf6eB8E/DPwCbo66Drgj/oYR70IeBldPXkn8PZp63+W7jl75h79H7T45nWl34BrgduA7SO3l/fr3gtsoBtvN32/An505PGTgbuA+40suwp42sjjw4C76br/HtWXsaZf9xng12aI8XnAP8+w7if7cj4GHNSX+/Wpc9jN9i8BPjfy+BzgjSOP9+9jPGqG85xx+/4f4J9G1gXYPHVe/bGvm+P5uM+5Tr8uwHuA/zLDvo8Bvjvu15Q3byv5dvzxx9e2bdsW9QZsHPd5eRv/baV9Xu9m/1cCH55h3VSMPz6y7I3AOfMpq9/3qfO4blumPR8vmyXeFwGXjDwOXZI0VSf4W+BXR9avAr4HHDnL+a2Z4VgfAc6YYd2n6JK2qcdPn29ZTKszTb8udInIrwMHTtvmj4C/Gb1+067b0xfwvPzUyOPzgVfvwWvv+bOs+xfg2SOPn0k3tGjqOf/+6LWiS6BPmqGsz3DfOt+mkXUP6M/nULr/r13Ag3ZTxtnAH09bdjXwszO97qZf09HXC12DwU5gv5H1/wN43+5e19PLo0uyLx5Z9wt070Or+8cH9Mc6aOQavGFk+2Pp3m9Wj8T18JH18/4/mLrZQtjO86rqoJHbX/TLX0X3Bvb5dLNCvWyOcr5TVXeMPD4S+HDf5L2d7gPnHrpvi2aU5KFJPpCu+8GtwPsYad6e5vv93zdW1faqupbum4pnzxHrlMPpWvkAqKrbgJvovvVY6PaH0yWAU+uK7s1/1ObRBws81/tI8oAk/y3Jt/p9PwsclBlmlZK0NGb6ENvTmzRixXxe993SPprkhr7sP5ml7Cmjn7Hfovtcnm9Zm1m42fbZXZ1gdPsjgbeNXPOb6Z7DmeofP5DkWUkuSdf9cTvdNZzp2twnjukxL7Cs6f6vfvtv9V0Sn9gv/zNgE3BRum6or57hPObzvNwwcv97dF/EL/S1t54u8dud+9TrGHnd9G6q+7b+/iCGefhB7FX1vf7u/n08N1fV7sbPHgmcOfW66J+T9dNiWshr9XC6xoLRuTO+NdPGM/jXkfvfB7bVvRPWTP1fj16T6f+Ha7nvc7NX/wcmhEusqm6oqpdX1eF03wC9K7PPVDa95rIZeNa0D6/7VdX1cxz6T/qy/k1VHQi8gGn97kdcTffNw+ixF1KD+jbdixGAJPvRNdHPFONs22+l6w4ztS6jj2eIbSHnOt2ZwI8BT+j3neriMt/9JTVgQqiltkw/r88GvgYc05f9mlnKnrJ+5P7D6D6z51vWnvyzzbbP1tF4+jrBaHyb6VruRq/5/avq/8x2wL7r4IeANwEPraqDgI8z87W5T91kWkxzlXU7XcvW1PaHjhZcVV+oqlPoujx+hK4Fj6raUVVnVtXDgecCv5vkabuJbU+e4ykLee1tppvAaHfuU6/jvq+bVjYDD87uxzxuBl4/7XXxgKoa7UY5/XU31+vwQX19dcrDRu5Pf45X03Xd3BvT/w/vBraNLBuNd8H/ByaESyzJL+beSUq+S/cE7uof/ysz/3NN+XPg9VODQ5M8pO8rPJcD6Jqjb0myjll+YqH/xuWvgVclOaCP9zTgo/M4DnT9lF+a5DH9G+OfAJf231zCD5/nbNt/DPg3SZ6XbiDv6XRdAxblXGfY9/vA9nQDdl+7gH0lNWJCqKW2TD+vDwBuBW5L8uPAb8wjnv/U9545jm483NTYvz0paz7XbTYfA45L8u/6OsFvc986wZ8DZ/WxkuSBSX5xHuXuA+wLfAfYmW6ikumTeow6Hzgjybo+Afn9BZT1pf4cHpPkfoyM0UuyT5JfSfLA6mY+v5X+NZduUpQf7ZPgW+ham3fxw/bkeRndd771p48ChyV5ZbpJZA5I8oR+3fuB/9i/5g8G/jNda2MzVbWVrqvku9JNELg2ydSX+n8BvCLJE9LZL8nPpxsHOZMZX6tV9S1gI/CH/XP2U3TdPqd8Hbhff4y1dOMn991NUQvxgiTHJnkAXffhD9bMP4Gx4P8DE8J2pmYmmrp9uF/+eODSJLcBF9L1Kf9mv+51wF/1Tby/NEO5b+v3uyjJDuASugG2c/lDuoHPt9C9oV4wx/a/Sfem8G3gn+j6Rp87j+NQ3fTd/4nuG7KtwCOAU0c2eR0j5znb9lW1DfhFunELN9H1m94I3LmI5zrqrcD96b51uYRusLSkMVrsZNCEUNOspM/r3wN+GdhBV0meaWKXUf9A11Xx74E3VdVFe1HW65j7us1opE7wBro6wTHA/x5Z/2HgT4EPpOvy+FW6yV/mKncHXXJ5Pl3y/8t0z91M/oJuwqEv000I8nG6MWX3zFVWdZPZ/RHdhCzfAO4z4yjwQuDaPv5XAL/SLz+m3+c2uuf5XVX16d3EtifPy5R5v/b68/w5ukTohv5cntKv/i90dbUvA18BLu+XtfZCupazr9GNS3xlH+tGuomA3kH3nGyiG484m/9Kl9Ruz8jsuiN+me7/+Wa6xoP3Tq2oqlvoJvJ5N11vt9v54eFOC/Xf6ea8uAG4H91rbLf25P8gfjBqkqSbOW0L8CszvBFKWmaOP/74uuiii+becAEOPfTQy6rqhEUtVFpGkhwFXAOsrQn+Xbal0LcC/nlVHTnnxtIA2UKowUvyzCQH9d1Jp/rCXzLmsCQtIVsIJQ1Fkvun+73ANX3XytcCH55rP2moTAg1CZ5IN5PVNrquCc+rqu/Pvouk5cSEUNKAhK575XfpuoxeRTdOTppIa8YdgDSXqnodM/8or6QVwCROWlr9xG7OsL0b/WQ+jx93HNJiMSGUJA2eCaEkSW3YZVSSJEmSVqgmLYSrVq2qNWvaNj7u2rW7n15ZPKtWtc+VV69e3fwYra9T6/JhaZ6L7md92mp9rXbubDsJXD/2yu5DWnKO+9Nyl8QXuLQ8bauqvf1R+uaaZG1r1qzhIQ9pe+6333570/L322+/puUDHHjggc2PcddddzUtv/XzAEvzXCxF0tn6Wt10001Ny7/77rubli/NxoRQkjSBvjXuAObDMYSSpMEzIZQkqQ3HEEqSJEnSCmULoSRp8GwhlCSpDVsIJUmDt9Q/TJ9kfZJPJ7kyyRVJzpi2/swkleTg/nGSvD3JpiRfTvK4RpdCkqRFZQuhJGnQxjTL6E7gzKq6PMkBwGVJLq6qK5OsB54BXDey/bOAY/rbE4Cz+7+SJA2aLYSSpMFb6hbCqtpaVZf393cAVwHr+tVvAV4FjBZ0CvDe6lwCHJTksEW9CJIkNWBCKElaiQ5OsnHkdtpMGyY5CngscGmSU4Drq+pL0zZbB2weebyFexNISZIGa15dRpOcDLwNWA28u6re0DQqSZJGNOgyuq2qTphroyT7Ax8CXknXjfQ1dN1FpVlZd5I0KeZsIUyyGngn3fiIY4HnJzm2dWCSJE1Z6i6jAEnW0iWD51XVBcAjgKOBLyW5FjgCuDzJocD1wPqR3Y/ol2kFsu4kaZLMp8voicCmqvpmVd0FfIBurIQkSUtiDLOMBjgHuKqq3tzH8JWqOqSqjqqqo+i6hT6uqm4ALgRe1M82ehJwS1VtbXZBNHTWnSRNjPl0Gd3duIgfmjmtH39xGsDq1asXJThJksY0y+iTgBcCX0nyxX7Za6rq4zNs/3Hg2cAm4HvAS5tHqCGbs+40Wm+SpHFatJ+dqKoNwAaAffbZx18QliRNrKr6HJA5tjlq5H4BpzcOS8vIaL0pifUmSWMzn4TQcRGSpLEaQwuhtDesO0maGPMZQ/gF4JgkRyfZBziVbqyEJElLYhyTykh7wbqTpIkxZwthVe1M8pvAJ+imTj63qq5oHpkkST2TOE0S606SJsm8xhD2g+hnGkgvSVJTJoSaNNadJE2K+XQZlSRJkiQtQ4s2y6gkSS047k+SpHZMCCVJg2dCKElSGyaEkqTBMyGUJKkNxxBKkiRJ0gplC6EkafBsIZQkqY0mCeGuXbu44447WhT9Aw95yEOalr8UlqKCs2pV20bgtWvXNi0faP5agqU5j9WrVzct/7DDDmta/tatW5uWL83GhFBSkubHWLOmbVvJPvvs07R8WJr3y7vuuqv5MXbu3Nn8GOrYQihJGjRnGZUkqR0TQknS4JkQSpLUhpPKSJIkSdIKZQuhJGnwbCGUJKkNE0JJ0uCZEEqS1IYJoSRp8EwIJUlqw4RQkjRozjIqSVI7TiojSZIkSSuULYSSpMGzhVCSpDZMCCVJg2dCKElSGyaEkqTBMyGUJKkNE0JJ0uCZEEqS1IaTykiSJEnSCmULoSRp0PzZCUmS2jEhlCQNngmhJEltmBBKkgbPhFCSpDYcQyhJkiRJK5QthJKkwbOFUJKkNkwIJUmDZ0IoSVIbJoSSpEFzllFJktoxIZQkDZ4JoSRJbTipjCRJkiStUCaEkqTBm+o2uli3uSRZn+TTSa5MckWSM/rlf5bka0m+nOTDSQ4a2eesJJuSXJ3kme2uhiRJi2diu4zu2LGjafn3v//9m5YPsGvXrubHeNjDHta0/Ec/+tFNywe45557mh/jS1/6UvNjbN68uWn5SZqWL43TGLqM7gTOrKrLkxwAXJbkYuBi4Kyq2pnkT4GzgN9PcixwKnAccDjwySSPrKr2b2DSCrHvvvs2P8a6deualv+IRzyiafkAd955Z/NjfOMb32h+jBtvvLFp+Tt37mxa/iSxhVCSNHhL3UJYVVur6vL+/g7gKmBdVV1UVVO1iEuAI/r7pwAfqKo7q+oaYBNw4qJfCEmSFtnEthBKklaGcc8ymuQo4LHApdNWvQz46/7+OroEccqWfpkkSYNmQihJWokOTrJx5PGGqtowfaMk+wMfAl5ZVbeOLP8Dum6l5zWPVJKkhkwIJUmD16CFcFtVnTDbBknW0iWD51XVBSPLXwI8B3ha3RvY9cD6kd2P6JdJkjRojiGUJA3eGGYZDXAOcFVVvXlk+cnAq4DnVtX3Rna5EDg1yb5JjgaOAT6/qBdBkqQGbCGUJA3eGMYQPgl4IfCVJF/sl70GeDuwL3BxP7PvJVX1iqq6Isn5wJV0XUlPd4ZRSdIkMCGUJA3eUieEVfU5YHe/5fLxWfZ5PfD6ZkFJktSAXUYlSZIkaYWyhVCSNGjj/tkJSZKWszlbCJOsT/LpJFcmuSLJGUsRmCRJU5Z6Uhlpb1h3kjRJ5tNCuBM4s6ouT3IAcFmSi6vqysaxSZIEjGVSGWlvWHeSNDHmTAiraiuwtb+/I8lVwDq6mdQkSWrOhFCTxLqTpEmyoEllkhwFPBa4tEk0kiRJy4h1J0lDN+9JZZLsD3wIeGVV3bqb9acBpwGsWuXkpZKkxWMLoSbRbHWn0XqTJI3TvBLCJGvp3tDOq6oLdrdNVW0ANgCsWbPGT25J0qJwIhhNornqTqP1piS+wCWNzZwJYZIA5wBXVdWb24ckSdJ9mRBqklh3kjRJ5tO380nAC4GnJvlif3t247gkSZImlXUnSRNjPrOMfg7IEsQiSdJu2UKoSWLdSdIkmfekMpIkjYsJoSRJbZgQSpIGz4RQkqQ2TAglSYPmLKOSJLXjDwZKkiRJ0gplC6EkafBsIZQkqQ0TQknS4JkQSpLURpOEMAmrVrXtjbp27dqm5T/wgQ9sWj7A3Xff3fwYxx13XNPyf/d3f7dp+QC33npr82P86Z/+afNjXHvttU3Lb/162rVrV9PypdmYEErD1rreB0tTN3vKU57StPyXvexlTcsHuOmmm5of413velfzY3zuc59rWv5tt93WtHyYnM8uWwglSYM3KR+qkiRNGieVkSRJkqQVyhZCSdKg+bMTkiS1Y0IoSRo8E0JJktowIZQkDZ4JoSRJbZgQSpIGz4RQkqQ2nFRGkiRJklYoWwglSYNnC6EkSW2YEEqSBs1ZRiVJaseEUJI0eCaEkiS14RhCSZIkSVqhbCGUJA2eLYSSJLVhQihJGjwTQkmS2jAhlCQNmpPKSJLUjgmhJGnwTAglSWrDSWUkSZomyfokn05yZZIrkpzRL39wkouTfKP/+6B+eZK8PcmmJF9O8rjxnoEkSfNjQihJGrypbqOLdZuHncCZVXUscBJwepJjgVcDf19VxwB/3z8GeBZwTH87DTh7sa+BJEktmBBKkgZvqRPCqtpaVZf393cAVwHrgFOAv+o3+yvgef39U4D3VucS4KAkhy3yZZAkadE5hlCSNHjjHEOY5CjgscClwEOramu/6gbgof39dcDmkd229Mu2IknSgJkQSpIGrdEsowcn2TjyeENVbZi+UZL9gQ8Br6yqW5OMxlVJnO1GkjTRTAglSSvRtqo6YbYNkqylSwbPq6oL+sX/muSwqtradwm9sV9+PbB+ZPcj+mWSJA2aYwglSYO31GMI0zUFngNcVVVvHll1IfDi/v6Lgb8ZWf6ifrbRk4BbRrqWSpI0WLYQSpIGbwxjCJ8EvBD4SpIv9steA7wBOD/JrwLfAn6pX/dx4NnAJuB7wEuXNFpJkvaQCaEkafCWOiGsqs8BmWH103azfQGnNw1KkqQGJjYhPPDAA5uWf/jhhzctH2DHjh3Nj3HooYc2Lf/II49sWj7AnXfe2fwY++yzT/NjtHb33Xc3LX+cszxKvv6kYRudcKmVfffdt/kx1q9fP/dGe+GJT3xi0/IBbrjhhubHOOSQQ5ofY+3atc2PoY5jCCVJkiRphZrYFkJJ0srQ6GcnJEkSJoSSpAlgQihJUhsmhJKkwTMhlCSpDccQSpIkSdIKZQuhJGnwbCGUJKkNE0JJ0uCZEEqS1IYJoSRp0JxlVJKkduadECZZDWwErq+q57QLSZKk+zIh1CSy7iRpEixkUpkzgKtaBSJJkrTMWHeSNHjzSgiTHAH8PPDutuFIkvTDprqNLtZNas26k6RJMd8uo28FXgUc0C4USZJ2zyROE+itWHeSNAHmbCFM8hzgxqq6bI7tTkuyMcnGXbt2LVqAkiTZQqhJMp+602i9aQlDk6QfMp8WwicBz03ybOB+wIFJ3ldVLxjdqKo2ABsA1q5d66etJGlRmMRpAs1ZdxqtNyXxBS5pbOZsIayqs6rqiKo6CjgV+NT0ZFCSJEkd606SJom/QyhJGjxbCCVJamNBCWFVfQb4TJNIJEmagQmhJpV1J0lDZwuhJGnwTAglSWrDhFCSNHgmhJIktTGvH6aXJEmSJC0/thBKkgbNn52QJKkdE0JJ0uCZEEqS1IYJoSRp8EwIJUlqo0lCWFXs2rWrRdE/cOuttzYtf9Wq5TG88tprr21a/uWXX960fIDNmzc3P8Z1113X/BgHHnhg0/Jbv2Zvu+22puVLkiZX63ofwI4dO5of4wtf+ELT8s8+++ym5UP7OjLA1Vdf3fwYd9xxR9Py/aLxXrYQSpIGzw9uSZLaMCGUJA2eCaEkSW2YEEqSBs1ZRiVJaseEUJI0eCaEkiS1sTxmTpEkSZIkLZgthJKkwbOFUJKkNkwIJUmDZ0IoSVIbJoSSpMEzIZQkqQ0TQknSoDnLqCRJ7TipjCRJ0yQ5N8mNSb46suwxSS5J8sUkG5Oc2C9Pkrcn2ZTky0keN77IJUlaGBNCSdLgTbUSLtZtHt4DnDxt2RuBP6yqxwD/uX8M8CzgmP52GnD2YpyzJElLwS6jkqTBW+ouo1X12SRHTV8MHNjffyDw7f7+KcB7qwvykiQHJTmsqrYuTbSSJO05E0JJ0uA1SAgPTrJx5PGGqtowxz6vBD6R5E10PWx+sl++Dtg8st2WfpkJoSRp8EwIJUmD1yAh3FZVJyxwn98AfqeqPpTkl4BzgKcvdmCSJC0lxxBKkjQ/LwYu6O//T+DE/v71wPqR7Y7ol0mSNHgmhJKkQVvsCWX2orXx28DP9vefCnyjv38h8KJ+ttGTgFscPyhJmhR2GZUkDd5STyqT5P3Ak+nGGm4BXgu8HHhbkjXAHXQzigJ8HHg2sAn4HvDSJQ1WkqS9YEIoSRq8Mcwy+vwZVv3b3WxbwOltI5IkqQ0TQknS4C11QihJ0krhGEJJkiRJWqFsIZQkDZ4thJIktWFCKEkatL2cGVSSJM3ChFCSNHgmhJIkteEYQkmSJElaoZq1ELb+NnfLli1Ny/+RH/mRpuUD3HHHHc2PsW3btqblb9++vWn5ADfddFPzY3z9619vfoxDDjmkafn7779/0/JXrfL7I42PLYTSsC3F/+iOHTuaH+OSSy5pWv6mTZualg+wc+fO5sf4zne+0/wYS1FPVscuo5KkwTMhlCSpDRNCSdLgmRBKktSGCaEkadCcZVSSpHYcFCRJkiRJK5QthJKkwbOFUJKkNkwIJUmDZ0IoSVIbJoSSpMEzIZQkqQ0TQknS4JkQSpLUxrwmlUlyUJIPJvlakquSPLF1YJIkSZPKupOkSTHfFsK3AX9XVf8+yT7AAxrGJEnSD/izE5pQ1p0kTYQ5E8IkDwR+BngJQFXdBdzVNixJku5lQqhJYt1J0iSZT5fRo4HvAH+Z5J+TvDvJfo3jkiTpB6ZaCRfrJjVm3UnSxJhPQrgGeBxwdlU9FrgdePX0jZKclmRjko1+2EqSFpMJoSbMnHWn0XrTOAKUpCnzSQi3AFuq6tL+8Qfp3uTuo6o2VNUJVXVCksWMUZIkaZLMWXcarTcteXSSNGLOhLCqbgA2J/mxftHTgCubRiVJ0ghbCDVJrDtJmiTznWX0t4Dz+lmyvgm8tF1IkiTdyyROE8q6k6SJMK+EsKq+CNilQZI0FiaEmjTWnSRNinn9ML0kSZIkafmZb5dRSZLGxhZCSZLaMCGUJA2eCaEkSW2YEEqSBs+EUJKkNkwIJUmD5iyjkiS146QykiRJkrRC2UIoSRo8WwglSWqjWUK4a9euVkUDsN9++zUt/7vf/W7T8gHuvvvu5se44447mpZ/6623Ni0f4J577ml+jKV4LpbiWrXU+n9amo0JoaSdO3c2P8bNN9/ctPzt27c3LX+pLEXdzPf9pWMLoSRp8KwYSJLUhmMIJUmDNzWxzGLd5pLk3CQ3JvnqtOW/leRrSa5I8saR5Wcl2ZTk6iTPbHAJJElqwhZCSZJ+2HuAdwDvnVqQ5CnAKcDxVXVnkkP65ccCpwLHAYcDn0zyyKpq36dKkqS9ZAuhJGnQFrt1cD4thFX1WWD6YKLfAN5QVXf229zYLz8F+EBV3VlV1wCbgBMX7wpIktSOCaEkafCWOiGcwSOBn05yaZJ/SPL4fvk6YPPIdlv6ZZIkDZ5dRiVJg9dgUpmDk2wcebyhqjbMsc8a4MHAScDjgfOTPHyxA5MkaSmZEEqSBq9BQritqk5Y4D5bgAuqC+bzSXYBBwPXA+tHtjuiXyZJ0uDZZVSSpPn5CPAUgCSPBPYBtgEXAqcm2TfJ0cAxwOfHFaQkSQthC6EkafCW+ncIk7wfeDJd19ItwGuBc4Fz+5+iuAt4cd9aeEWS84ErgZ3A6c4wKkmaFCaEkqRB28uJYPb0mM+fYdULZtj+9cDr20UkSVIbJoSSpMFb6oRQkqSVwjGEkiRJkrRC2UIoSRo8WwglSWrDhFCSNHgmhJIktWFCKEkatHFMKiNJ0kphQihJGjwTQkmS2nBSGUmSJElaoWwhlCQNni2EkiS1YUIoSRo8E0JJktowIZQkDZ4JoSRJbZgQSpIGzVlGJUlqx0llJEmSJGmFsoVQkjR4thBKktSGCaEkafBMCCVJamNiE8Kf+ImfaFr+9u3bm5YPsGvXrubHOPDAA5uWv99++zUtH2Dt2rXNj3H77bc3P8bNN9/ctPzW12kpXq/STEwIJS2F1p91fpZqiCY2IZQkrRwmhJIkteGkMpIkSZK0QtlCKEkaNH92QpKkdkwIJUmDZ0IoSVIbJoSSpMEzIZQkqQ3HEEqSJEnSCmULoSRp8GwhlCSpDRNCSdLgmRBKktTGvLqMJvmdJFck+WqS9ye5X+vAJEmCe2cZXcyb1Jp1J0mTYs6EMMk64LeBE6rqUcBq4NTWgUmSNMWEUJPEupOkSTLfSWXWAPdPsgZ4APDtdiFJkiRNPOtOkibCnAlhVV0PvAm4DtgK3FJVF03fLslpSTYm2bhr167Fj1SStGLZQqhJMp+602i9aRwxStKU+XQZfRBwCnA0cDiwX5IXTN+uqjZU1QlVdcKqVf6ahSRp8ZgQapLMp+40Wm8aR4ySNGU+mdvTgWuq6jtVdTdwAfCTbcOSJOleJoSaMNadJE2M+fzsxHXASUkeAHwfeBpg9wZJ0pIwidMEsu4kaWLMZwzhpcAHgcuBr/T7bGgclyRJ0kSy7iRpkszrh+mr6rXAaxvHIknSbtlCqElj3UnSpJhXQihJ0jiZEEqS1IYJoSRp8EwIJUlqw9+HkCQN3lLPMprk3CQ3JvnqbtadmaSSHNw/TpK3J9mU5MtJHtfgEkiS1IQJoSRJP+w9wMnTFyZZDzyDbhbJKc8CjulvpwFnL0F8kiQtChNCSdKgLXbr4HxaCKvqs8DNu1n1FuBVwGghpwDvrc4lwEFJDluMc5ckqTXHEEqSBq/BGMKDk4z+LtyGqpr1ZwGSnAJcX1VfSjK6ah2weeTxln7Z1sUKVpKkVpolhKtXr25VNAAPfehDm5a/FG6+eXdfPi+ue+65p2n5u3btalo+tD8HgLvvvrv5MVqfx7777tu0/GkVYGlJNUgIt1XVCfPduP+B8dfQdReVJGnZsIVQkjR4A5hl9BHA0cBU6+ARwOVJTgSuB9aPbHtEv0ySpMFzDKEkSXOoqq9U1SFVdVRVHUXXLfRxVXUDcCHwon620ZOAW6rK7qKSpIlgC6EkafCWuoUwyfuBJ9ONNdwCvLaqzplh848DzwY2Ad8DXrokQUqStAhMCCVJgzbfmUEX+ZjPn2P9USP3Czi9dUySJLVgQihJGrwBjCGUJGlZcgyhJEmSJK1QthBKkgbPFkJJktowIZQkDZ4JoSRJbZgQSpIGz4RQkqQ2TAglSYM2jllGJUlaKZxURpIkSZJWKFsIJUmDZwuhJEltmBBKkgbPhFCSpDZMCCVJg2dCKElSGyaEkqTBMyGUJKkNJ5WRJEmSpBXKFkJJ0qD5sxOSJLVjQihJGjwTQkmS2jAhlCQNngmhJEltmBBKkgbPhFCSpDacVEaSJEmSVihbCCVJg2cLoSRJbZgQSpIGzVlGJUlqx4RQkjR4JoSSJLXRJCG85557tt18883fWsAuBwPbFnKMj33sYwsLqr0Fn8MALYdzgOVxHgs+h1tuuaVRKD9wZOsDSNIKtQ1YSL0JVuhn3QB5DsMxxPOYiLpTk4Swqh6ykO2TbKyqE1rEslQ8h+FYDuexHM5BWky2EGo5W2i9CZbH54TnMAzL4Rxg+ZzHONhlVJI0eCaEkiS1YUIoSRo8E0JJktoYSkK4YdwBLALPYTiWw3ksh3OQFoWzjEq7tRw+JzyHYVgO5wDL5zyWXPyQlSQN2T777FOHHnroopa5efPmyxxrIknScFoIJUmakV9eSpLUhgmhJGnwTAglSWpj1TgPnuTkJFcn2ZTk1eOMZU8lWZ/k00muTHJFkjPGHdOeSrI6yT8n+ei4Y9kTSQ5K8sEkX0tyVZInjjumhUryO/3r6KtJ3p/kfuOOSRqCqXGEi3WTJpV1p+GY9HoTWHdSZ2wJYZLVwDuBZwHHAs9Pcuy44tkLO4Ezq+pY4CTg9Ak9D4AzgKvGHcReeBvwd1X148DxTNi5JFkH/DZwQlU9ClgNnDreqKRhMCGUrDsN0KTXm8C6kxhvC+GJwKaq+mZV3QV8ADhljPHskaraWlWX9/d30P0jrRtvVAuX5Ajg54F3jzuWPZHkgcDPAOcAVNVdVbV9rEHtmTXA/ZOsAR4AfHvM8UiShsO600BMer0JrDvpXuNMCNcBm0ceb2HC3gymS3IU8Fjg0jGHsifeCrwK2DXmOPbU0cB3gL/su2+8O8l+4w5qIarqeuBNwHXAVuCWqrpovFFJ47fYrYO2EGqCWXcajrcy2fUmsO6k3ljHEC4nSfYHPgS8sqpuHXc8C5HkOcCNVXXZuGPZC2uAxwFnV9VjgduBiRpbkeRBdN/0Hg0cDuyX5AXjjUoaBhNCafmZ1LrTMqk3gXUn9caZEF4PrB95fES/bOIkWUv3hnZeVV0w7nj2wJOA5ya5lq77yVOTvG+8IS3YFmBLVU19w/hBuje5SfJ04Jqq+k5V3Q1cAPzkmGOSBmGpE8Ik5ya5MclXR5b9WT/xwpeTfDjJQSPrzuon+bg6yTPbXAXJutNALId6E1h3Um+cCeEXgGOSHJ1kH7oBoBeOMZ49kiR0fa+vqqo3jzuePVFVZ1XVEVV1FN3z8KmqmqhvV6rqBmBzkh/rFz0NuHKMIe2J64CTkjygf109jQkb3C21MoYWwvcAJ09bdjHwqKp6NPB14CyAfjKMU4Hj+n3e1U/+IS02604DsBzqTWDdSfcaW0JYVTuB3wQ+QffEnV9VV4wrnr3wJOCFdN8OfbG/PXvcQa1QvwWcl+TLwGOAPxlvOAvTf0P3QeBy4Ct0/58bxhqUtEJV1WeBm6ctu6j/7AK4hK51BrruSh+oqjur6hpgE93kH9Kisu6kBqw7iTiWQpI0ZGvXrq2DDjpoUcvctm3bt4BtI4s2VNV9KhH9ZBcfrW4qc6at+1/AX1fV+5K8A7ikqt7XrzsH+Nuq+uCiBi1JUgNrxh2AJEmzaTQRzLaqOmFPdkzyB3S/o3be4oYkSdLSMyGUJA3eUHqzJHkJ8BzgaXVvUMtmog9J0srjz05IkjQPSU6m+92x51bV90ZWXQicmmTfJEcDxwCfH0eMkiQtlC2EkqTBW+oWwiTvB54MHJxkC/BaullF9wUu7iaz45KqekVVXZHkfLrZ+XYCp1fVPUsasCRJe8hJZSRJg7ZmzZo64IADFrXM7du3X7anYwglSVpObCGUJA2eX15KktSGCaEkadAazTIqSZJwUhlJkiRJWrFsIZQkDZ4thJIktWFCKEkaPBNCSZLaMCGUJA2eCaEkSW2YEEqSBs+EUJKkNpxURpIkSZJWKFsIJUmD5s9OSJLUjgmhJGnwTAglSWrDhFCSNHgmhJIktWFCKEkaPBNCSZLacFIZSZIkSVqhbCGUJA2eLYSSJLVhQihJGjRnGZUkqR0TQknS4JkQSpLUhmMIJUmSJGmFsoVQkjR4thBKktSGCaEkafBMCCVJasOEUJI0eCaEkiS1YUIoSRq6TwAHL3KZ2xa5PEmSJlL81lWSJEmSViZnGZUkSZKkFcqEUJIkSZJWKBNCSZIkSVqhTAglSZIkaYUyIZQkSZKkFer/B/eSbfhndFEeAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "Err_BN6=error(xdata6, popt6[0], popt6[1],popt6[2], popt6[3], popt6[4], recorte6.ravel(), inc=1)\n", + "popt6E, pcov6E = curve_fit(gauss2d, xdata6, recorte6.ravel(), p0=[3,2,2,1,1],sigma=Err_BN6)\n", + "estrella6E=gauss2d(xdata6, popt6E[0], popt6E[1],popt6E[2], popt6E[3], popt6E[4])\n", + "FWHM6E=FWHM_I.append(2*np.sqrt(2*np.log(2))*np.sqrt(popt6E[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 6 fotografÃa\")\n", + "plt.imshow(recorte6, plt.get_cmap('gray'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 6 a partir de la gaussiana con incertidumbre\")\n", + "plt.imshow(estrella6E.reshape(10, 10), plt.get_cmap('gray'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 7 con incertidumbre (blanco y negro)" + ] + }, + { + "cell_type": "code", + "execution_count": 824, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAFSCAYAAACqthEgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAuQ0lEQVR4nO3de7xkZX3n+8+3L4DQKGKLSIOCCZoDJihB1JgLURPRmGDmnDiYeIkmEnMw0RzmGDEzo0nGTI4x3o7RTEdMYjQSRjDhOEQh0WicEUyDRgVEO3JrpIWtAu2FS3f/zh9rbSi2vW/d+9m1au/P+/WqV1ettepZz6qq3fV863nWs1JVSJIkSZJWnzXjroAkSZIkaTwMhJIkSZK0ShkIJUmSJGmVMhBKkiRJ0iplIJQkSZKkVcpAKEmSJEmr1LpxV0CSpLmceuqpNTU1taRlXn755R+pqlOXtFBJkiaQgVCSNGhTU1Ns2bJlSctMsnFJC5QkaUIZCCVJg1dV466CJEkrkoFQkjR4BkJJktowEEqSBs9AKElSGwZCSdKgVZWBUJKkRrzshCRJkiStUvYQSpIGzx5CSZLaMBBKkgbPQChJUhsGQknS4BkIJUlqw0AoSRo8A6EkSW04qYwkSZIkrVIGQknSoE1fdmIpb/NJclSSjyW5KsmVSV4xsu43knyxX/6GkeVnJ9ma5Jokz2j0ckiStKQcMipJGrwxDBndCZxVVVckORi4PMklwMOA04ATququJIcBJDkOOB04HjgC+Ickj66qXctdcUmSFsNAKEkavOUOhFV1M3Bzf39HkquBTcBLgT+sqrv6dbf0TzkNOLdffm2SrcDJwKeWteKSJC2SQ0YlSYO33ENGRyU5Gng8cBnwaODHklyW5ONJntBvtgm4ceRp2/plkiQNmj2EkqTVaGOSLSOPN1fV5pkbJdkAnA+8sqruSLIOOBR4EvAE4Lwkj1qWGkuS1ICBUJI0eA2GjE5V1UlzbZBkPV0YfF9VXdAv3gZcUF2FPp1kN7ARuAk4auTpR/bLJEkaNIeMSpIGbUyzjAY4B7i6qt40supvgZ/st3k0sB8wBVwInJ5k/yTHAMcCn17aV0KSpKVnD6EkafDGMMvoU4AXAJ9P8tl+2WuAdwPvTvIF4G7gRX1v4ZVJzgOuopuh9ExnGJUkTQJ7CFeQJEcnqf4cF5L8U5JfXYb9JsmfJ/lmksH/Ip7kMUk+m2RHkt/sl70pyVvGXDVJA1FVn6yqVNUPVdXj+ttFVXV3VT2/qh5bVSdW1UdHnvP6qvq+qnpMVf39OOuvYRvX9/XQJPmxJNfsYxl79drNfA8mWX9N1FPGXY8Wkvx9khcNoB6PSPKtJGtnWf+6JO9ttO/m/z8YCBtIcl2S7/YfnOnb2xfwvEry/ctRx3nq8YgZdf9WX7ezZnnKjwI/BRxZVScvoPxxH+ergI9V1cFV9bYkP0Y3OcT/PcY6SZrDOGcZ1cq1Cr+vx2rm61ZV/1xVjxlnnVaCqjq+qv5p3PVooaqeWVV/udz77f9vePpIPW6oqg0rdeTHxP8qMmA/W1X/sJQFJllXVTuXssw9qaobgA0j+z0G2Eo3ucKePBK4rqq+3bpu81nga/RI4NyRx8cA/76q7mlXM0n7whCnhlbT9/VY7M3rsVyvoTRq0j93e1t/ewiXWZLv769ddXuSqSR/0y//RL/Jv/a/8P37JKck2Zbkt5NsB/48yZokr07yb0m+nuS8JIcuYL/fl+Sj/XOmkrwvySELrPYLgU9U1XV7KPdXgHcBT+7r/bv98pcm2ZrkG0kuTHLEbMc51/b9up9Ock3/mr2jf/1+tV/3y0n+Z5I3J/k68Lq5jjXJR+kmhHh7v/9HA08F/s9+/YOTfCjJremGwH4oyZELfJ0kNTCOSWWklfZ93Zd9cpJPJbktyc1J3p5kv1m2nR5SeUaSr/bb/4eFltU/98wkXwa+PNfrNvKc6/rX8HPAt7OH4ZxJfirJF/v35e1AZqx/SZKr++/wjyR55EJeuCQv7p+3I8lXkvzaHNuuTfLH/ftzbZKX5/5DgGctq2+3fHJGeff2nCZ5VpKr+ufeNP2aJ9nYt0luS9dW+ucka0Zet6cv4n15WZIv99v8SZL06xb12UtyfJJL+vp8Lclr+uX7J3lL/7n5an9//37d9N/KWUlu6ev44jn2ce9wyenXLskb+/f32iTPHNn20HSnMH21X/+3I+uene50oduS/K8kPzSybubn7v3AI4D/r/+svirfO8z7mHT/P+xIcgndbNPT5d3vc72H9+h1Sf57kvf2z/98kkcnObt/TW5M8tMzXorvS/LpJHck+bv0/5eM1OtXktwAfLRfvqi/AwPh8vt94GLgwXTTkv+/AFX14/36E/ou6b/pHx9Od82rRwJnAL8BPAf4CeAI4JvAnyxgvwH+a/+c/41uevTXzfuk7j+JFwJ77K6vqnOAlwGf6uv92iRP7ff1XODhwPX0PXJ7Os65tk+yEfgAcDbwEOAa4EdmVOOJwFeAhwGvn+tYq+qpwD8DL+/3/6UZZa0B/pzu9X4E8F1g3uFDktoyEGoMVtT3dW8X8Ft0jdcnA0+j/0F0Dj9JN2vuTwO/nfuG0S2krOfQfUcfN8frNtPzgJ8BDpnZ09G3CS4A/mO/33+jmwBqev1pdJM//TvgoXTf9++f5/im3QI8G3gg8GLgzUlOnGXblwLPBB4HnNgf596WNdM5wK9V1cHAY+kb+MBZdJe9eShde+c1wJ7+M1vI+/JsulNlfoiu7fWMfvmCP3tJDgb+Afhwv/33A//Yr/4dumu1Pg44ATiZ7j2bdjjwIGAT8CvAnyR58J72swdPpGsLbgTeAJwzHWiBvwIOBI4HDgPe3Nf18XQTgv0aXVvyvwEXTofU3ujn7nnADXSjBzZU1Rv2UI+/Bi7v6/H7wGLPc/zZvr4PBj4DfISuDboJ+L2+jqNeCLyErp28E3jbjPU/QfeePWOv/g5a/PK62m/AdcC3gNtGbi/t170H2Ex3vt3M5xXw/SOPT6Gbxe6AkWVXA08befxw4B664b9H92Ws69f9E/Crs9TxOcBnFnAsP9Yfy4Y5tvll4JMjj88B3jDyeENfx6NnOc5Zt+//AD41si7AjdPH1e/7hnmO4X7HOvN1Af4C+C+zPPdxwDfH/Zny5m0130444YSamppa0huwZdzH5W38t9X2fb2H57wS+OAs66br+AMjy94AnLOQsvrnPnUBr9u2Ge/HS+ao7wuBS0cehy4kTbcJ/h74lZH1a4DvAI+c4/jWzbKvvwVeMcu6j9KFtunHT19oWcxoM818XeiCyK8BD5yxze8Bfzf6+s143Z6+iPflR0cenwe8erGfPboANdu6fwOeNfL4GXSnFk2/598dfa3oAvSTZinr3r+N/rXbOrLuwP54Dqf7+9oNPHgPZbwT+P0Zy64BfmK2z93M13T080LXYbATOGhk/V8D793T53pmeXQh+5KRdT9L97e7tn98cL+vQ0Zegz8c2f44uv9v1o7U61Ej6xf8dzB9s4ewnedU1SEjtz/rl7+K7j+wT6ebFeol85Rza1XdOfL4kcAH+y7v2+i+cHbR/Vo0qyQPS3JuuuEHdwDvZaR7ew4vAs6vqm8tYNtpR9D18gHQP/frdL96LHb7I+gC4PS6ovvPf9SNow/24VhJcmCS/5bk+v65nwAOySyzSklaHrN9ie3tTRqxar6v+2FpH0qyvS/7DxZQ9uh37PV038sLLetGFm+u5+ypTTC6/SOBt4685t+gew9na3/cK8kzk1yabvjjbcCzmP21uV89ZtZ5kWXN9L/321/fD0l8cr/8j+jOD7043TDUV89yHAt5X7aP3P8O/Xmoi/zsHUUX/Pbkfu06Rj43va/X/Xt/763DAtxb96r6Tn93Q1+fb1TVN/fwnEcCZ01/Lvr35KgZdVrMZ/UIus6C0bkzrp9t41l8beT+d4Gpum/Cmu/2/46+JjP/Dtdz//dmn/4ODITLrKq2V9VLq+oIul+A3pG5Zyqb2XK5EXjmjC+vA6rqpnl2/Qd9WT9YVQ8Ens+McfczJXkA8AvMPfxkT75K92GcLucgui762eo41/Y30w3VmV6X0ce9ma/Roo91xFnAY4An9s+dHuKy0OdLasBAqOW2Qr+v3wl8ETi2L/s185VN13Ce9gi67+yFlrU3f2xzPefm0fr0bYLR+t1I13M3+po/oKr+11w77IcOng+8EXhYVR0CXMTsr8392iYz6jRfWd+m69ma3v7w0YKr6l+q6jS6IY9/S9eDR1XtqKqzqupRwM8B/1eSp+2hbnvzHk9bzGfvRuBRs6y7X7uO+39uWrkRODR7PufxRuD1Mz4XB1bV6DDKmZ+7+T6HD+7bq9MeMXJ/5nu8lm7o5r6Y+Xd4DzA1smy0vov+OzAQLrMkv5D7Jin5Jt0buLt//DVm/+Oa9qfA66dPDk3y0H6s8HwOpuuOvj3JJhZ2iYWf7+v4sQVsO+r9wIuTPK7/j/EPgMvqvpPcZx7nXNv/D+AHkzwn3Ym8Z9INDZjL3hzr6HO/C9yW7oTd1y7iuZIaMRBqua3Q7+uDgTuAbyX5AeDXF1D2f+pHzxxPdz7c9Ll/e1PWQl63ufwP4Pgk/65vE/wm928T/Clwdl9XkjwoyS8soNz9gP2BW4Gd6SYqmTmpx6jzgFck2dQHkN9eRFn/2h/D45IcwMg5ekn2S/JLSR5U3cznd9B/5tJNivL9fQi+na63eTffa2/el9HnLvSz9yHg4UlemW4SmYOTPLFf937gP/af+Y3Af6brbWymqm6mGyr5jnQTBK5PMv2j/p8BL0vyxHQOSvIz6c6DnM2sn9Wquh7YAvxu/579KN2wz2lfAg7o97Ge7vzJ/fdQ1GI8P8lxSQ6kGz78gZr9EhiL/jswELYzPTPR9O2D/fInAJcl+RZwId2Y8q/0614H/GXfxfvcWcp9a/+8i5PsAC6lO8F2Pr9Ld+Lz7XT/oV6wgOe8CPirWmTrqbrpu/8T3S9kNwPfB5w+ssnrGDnOubavqim6Xz3fQDeM9Di6P8K75qjC3hzrtLcAD6D71eVSupOlJY3RUodBA6FmWE3f1/8B+EVgB10jebaJXUZ9nG6o4j8Cb6yqi/ehrNcx/+s2q5E2wR/StQmOBf7nyPoPAv8PcG4/5PELdJO/zFfuDrpweR5dsP5FuvduNn9GN+HQ5+gmBLmI7pyyXfOVVd1kdr9HNyHLl4H7zTgKvAC4rq//y4Bf6pcf2z/nW8CngHdU1Z5+ANib92Xagj97/XH+FF0Q2t4fy0/2q/8LXVvtc8DngSv6Za29gK7n7It05yW+sq/rFrqJgN5O955spTsfcS7/lS7U3paR2XVH/CLd3/M36DoP3jO9oqpup5vI5110o92+zfee7rRYf0U358V24AC6z9ge7c3fQfxi1CRJN8XyNuCXZvmPUNIKc8IJJ9TFF188/4aLcPjhh19eVSctaaHSCpLkaOBaYH1N8HXZlkPfC/inVfXIeTeWBsgeQg1ekmckOaQfTjo9Fv7SMVdL0jKyh1DSUCR5QLrrBa7rh1a+FvjgfM+ThspAqEnwZLqZrKbohiY8p6q+O/dTJK0kBkJJAxK64ZXfpBsyejXdeXLSRFo37gpI86mq17GAi/JKWrkMcdLy6id2c4btPajucgdPGHc9pKViIJQkDZ6BUJKkNhwyKkmSJEmrVJMewiS1Zs1kZ82V8mv02rVrJ7p8gPXr1zffx/777+vlYcbvW9/6VtPy77nnHnbt2uXwIS07z/vTSpfED7i0Mk1V1b5elL65JoFwzZo1bNiwoUXR92rdONi5s/0My7t2zXY9yaVz6KGHNi3/gQ98YNPyAQ477LDm+3jUo/blOrnDcNlllzUt/7rrrmtavjQXA6EkaQJdP+4KLITnEEqSBs9AKElSG5M9rlOSJEmStNfsIZQkDZ49hJIktWEglCQNnoFQkqQ2DISSpEFzllFJktoxEEqSBs9AKElSG04qI0mSJEmr1IICYZJTk1yTZGuSV7eulCRJo6aHjS7VTWrNtpOkSTHvkNEka4E/AX4K2Ab8S5ILq+qq1pWTJAkcMqrJYttJ0iRZSA/hycDWqvpKVd0NnAuc1rZakiTdxx5CTRjbTpImxkImldkE3DjyeBvwxJkbJTkDOKO/vySVkyTJEKcJNG/babTdJEnjtGSzjFbVZmAzwNq1a/3mliRJmsVouymJ7SZJY7OQQHgTcNTI4yP7ZZIkLQt7CDVhbDtJmhgLOYfwX4BjkxyTZD/gdODCttWSJOk+nkOoCWPbSdLEmLeHsKp2Jnk58BFgLfDuqrqyec0kSeoZ4jRJbDtJmiQLOoewqi4CLmpcF0mS9shAqElj20nSpFjQheklSVpNkhyV5GNJrkpyZZJXzFh/VpJKsrF/nCRv6y9C/rkkJ46n5pIkLc6SzTIqSVILYzrvbydwVlVdkeRg4PIkl1TVVUmOAn4auGFk+2cCx/a3JwLvZA+XaJIkaWjsIZQkDd5yTypTVTdX1RX9/R3A1XTXlgN4M/AqYLSg04D3VOdS4JAkD1/SF0GSpAbsIZQkDd44zyFMcjTweOCyJKcBN1XVvyYZ3WxPFyLfBNy8XPWUJGlvGAglSavRxiRbRh5v7i8Ufj9JNgDnA6+kG0b6GrrhopIkrQgGQknS4DXoIZyqqpPm2iDJerow+L6quiDJDwLHANO9g0cCVyQ5GS9ELkmaUE0C4e7du/n2t7/douh77dq1q2n5Bx10UNPyAR70oAc138ftt9/etPwDDjigafmwPEPFrr/++ub72L59e9Pyp6ammpa/c+fOpuVLc1nuIaPpEt85wNVV9aa+Dp8HDhvZ5jrgpKqaSnIh8PIk59JNJnN7VTlcVJI0ePYQSpIGbUyzjD4FeAHw+SSf7Ze9pr+23J5cBDwL2Ap8B3hx8xpKkrQEDISSpMFb7kBYVZ8EMs82R4/cL+DMxtWSJGnJedkJSZIkSVql7CGUJA3eOC87IUnSSmYglCQNnoFQkqQ2DISSpMEzEEqS1IaBUJI0aGOaZVSSpFXBSWUkSZIkaZWyh1CSNHj2EEqS1IaBUJI0eAZCSZLaMBBKkgbPQChJUhsGQknS4BkIJUlqw0llJEmSJGmVsodQkjRoXnZCkqR2DISSpMEzEEqS1IaBUJI0eAZCSZLa8BxCSZIkSVql7CGUJA2ePYSSJLVhIJQkDZ6BUJKkNgyEkqRBc5ZRSZLaMRBKkgbPQChJUhtOKiNJkiRJq5Q9hJKkwbOHUJKkNpoFwt27d7cqGoAkTcs/8MADm5YP8JCHPKT5Pvbff/+m5a9Z076TeWpqqvk+duzY0XwfrY/j0EMPbVp+6785aS4GQkmS2rCHUJI0eAZCSZLaMBBKkgbNWUYlSWrHSWUkSZIkaZWyh1CSNHj2EEqS1IaBUJI0eAZCSZLaMBBKkgbPQChJUhsGQknS4BkIJUlqw0llJEmSJGmVsodQkjRoXnZCkqR25u0hTHJUko8luSrJlUlesRwVkyRp2nQoXKqb1JJtJ0mTZCE9hDuBs6rqiiQHA5cnuaSqrmpcN0mSAM8h1MSx7SRpYszbQ1hVN1fVFf39HcDVwKbWFZMkadpy9xDO1sOT5I+SfDHJ55J8MMkhI885O8nWJNckeUa7V0NDZ9tJ0iRZ1KQySY4GHg9c1qQ2kiQNw3QPz3HAk4AzkxwHXAI8tqp+CPgScDZAv+504HjgVOAdSdaOpeYaFNtOkoZuwYEwyQbgfOCVVXXHHtafkWRLki1LWUFJkpa7h3C2Hp6quriqdvabXQoc2d8/DTi3qu6qqmuBrcDJS/5CaKLM1Xay3SRpKBY0y2iS9XT/ob2vqi7Y0zZVtRnY3G/vyR6SpCUx7olg5ujheQnwN/39TXQBcdo2HCK4qs3XdrLdJGko5g2ESQKcA1xdVW9qXyVJku6vQSDcOKNnZnPfQL+f2Xp4kvwO3bDS9y11xTT5bDtJmiQL6SF8CvAC4PNJPtsve01VXdSsVpIktTVVVSfNtcFsPTxJfhl4NvC0ui+p3gQcNfL0I/tlWp1sO0maGPMGwqr6JJBlqIskSXu03ENGZ+vhSXIq8CrgJ6rqOyNPuRD46yRvAo4AjgU+vYxV1oDYdpI0SRZ0DqEkSeM0hnMI99jDA7wN2B+4pMuMXFpVL6uqK5OcB1xFN5T0zKratdyVliRpsQyEkqTBW+5AOEcPz6xD/qrq9cDrm1VKkqQGDISSpEEb9yyjkiStZIu6ML0kSZIkaeWwh1CSNHj2EEqS1IaBUJI0eAZCSZLaaBYI16xpOxp17dq1Tctfv3590/Kh/TEAPPShD21a/o4dO5qWD3DPPfc038euXZM/GeC6dW1/3+lnVJTGwkAoaTm0/q5bjrZf6/YALE+bYOfOnRNdPkzOd5c9hJKkwZuUL1VJkiaNk8pIkiRJ0iplD6EkadC87IQkSe0YCCVJg2cglCSpDQOhJGnwDISSJLVhIJQkDZ6BUJKkNpxURpIkSZJWKXsIJUmDZw+hJEltGAglSYPmLKOSJLVjIJQkDZ6BUJKkNjyHUJIkSZJWKXsIJUmDZw+hJEltGAglSYNnIJQkqQ0DoSRp0JxURpKkdgyEkqTBMxBKktSGk8pIkiRJ0iplD6EkafDsIZQkqQ0DoSRp8AyEkiS1YSCUJA2egVCSpDYMhJKkQXOWUUmS2nFSGUmSJElapewhlCQNnj2EkiS1YSCUJA2egVCSpDYMhJKkwTMQSpLURrNAmKRV0QCsWdP29Mddu3Y1LR/gzjvvbL6P1q/Thg0bmpYP8IhHPKL5PtavX998H1/60pealv/1r3+9afnSOBkIJS2H1u2BhzzkIU3LB9i0aVPzfbRuXwLcfPPNTcu/9dZbm5YPy9PWXwpOKiNJkiRJq5RDRiVJg+ZlJyRJasdAKEkaPAOhJEltGAglSYNnIJQkqQ3PIZQkaYYkRyX5WJKrklyZ5BX98kOTXJLky/2/D+6XJ8nbkmxN8rkkJ473CCRJWhgDoSRp8KbPI1yq2wLsBM6qquOAJwFnJjkOeDXwj1V1LPCP/WOAZwLH9rczgHcu9WsgSVILBkJJ0uAtdyCsqpur6or+/g7gamATcBrwl/1mfwk8p79/GvCe6lwKHJLk4Uv8MkiStOQ8h1CSNGiNZhndmGTLyOPNVbV5TxsmORp4PHAZ8LCqmr441nbgYf39TcCNI0/b1i9reyEtSZL20YIDYZK1wBbgpqp6drsqSZJ0fw0C4VRVnTTfRkk2AOcDr6yqO5KM1qmSONuNZmXbSdIkWMyQ0VfQDZmRJGnFS7KeLgy+r6ou6Bd/bXooaP/vLf3ym4CjRp5+ZL9Mq5ttJ0mDt6BAmORI4GeAd7WtjiRJ32u5zyFM1xV4DnB1Vb1pZNWFwIv6+y8C/m5k+Qv72UafBNw+MrRUq5BtJ0mTYqFDRt8CvAo4uF1VJEnaszFch/ApwAuAzyf5bL/sNcAfAucl+RXgeuC5/bqLgGcBW4HvAC9e1tpqiN6CbSdJE2DeQJjk2cAtVXV5klPm2O4Muqm2JUlaUssdCKvqk0BmWf20PWxfwJlNK6WJsZC2k+0mSUOxkB7CpwA/l+RZwAHAA5O8t6qeP7pRPzvbZgBPspckLZVGs4xKLc3bdrLdJGko5j2HsKrOrqojq+po4HTgozPDoCRJkjq2nSRNEq9DKEkaPHsIJUlqY1GBsKr+CfinJjWRJGkWBkJNKttOkobOHkJJ0uAZCCVJasNAKEkaPAOhJEltLOjC9JIkSZKklcceQknSoHnZCUmS2jEQSpIGz0AoSVIbBkJJ0uAZCCVJaqNJIEzCmjVtT09M0rT85bB79+7m+1i7dm3T8k888cSm5QM897nPbb6PjRs3Nt/H+eef37T8D3/4w03L//rXv960fEmS5tK6bQlw8MEHNy3/h3/4h5uWD/DzP//zzfdxwAEHNN/Hhz70oablf+xjH2taPsD27dub72Mp2EMoSRo8ewglSWrDQChJGjwDoSRJbRgIJUmD5iyjkiS1YyCUJA2egVCSpDa8ML0kSZIkrVL2EEqSBs8eQkmS2jAQSpIGz0AoSVIbBkJJ0uAZCCVJasNAKEkaNGcZlSSpHSeVkSRJkqRVyh5CSdLg2UMoSVIbBkJJ0uAZCCVJasNAKEkaPAOhJEltGAglSYNnIJQkqQ0nlZEkSZKkVcoeQknSoHnZCUmS2jEQSpIGz0AoSVIbBkJJ0uAZCCVJasNAKEkaPAOhJEltOKmMJEmSJK1S9hBKkgbPHkJJktowEEqSBs1ZRiVJascho5KkwZsOhUt1m0+Sdye5JckXRpY9LsmlST6bZEuSk/vlSfK2JFuTfC7JiQ1fCkmSlpSBUJKk7/UXwKkzlr0B+N2qehzwn/vHAM8Eju1vZwDvXJ4qSpK07yZ2yOi6dW2rvt9++zUtH+CAAw5ovo9vfvObTcs/7LDDmpYPcMoppzTfx9q1a5vv45Of/GTT8nfs2NG0/F27djUtX5rLcg8ZrapPJDl65mLggf39BwFf7e+fBrynukpemuSQJA+vqpuXp7bS6pCk+T4OOuigpuUff/zxTcsHeO5zn9t8Hxs2bGi+j5tuuqlp+ZdffnnT8gG2b9/efB9LYWIDoSRp9WgQCDcm2TLyeHNVbZ7nOa8EPpLkjXQjbH6kX74JuHFku239MgOhJGnwDISSpMFrEAinquqkRT7n14HfqqrzkzwXOAd4+lJXTJKk5eQ5hJKkQVvqCWX2IVy+CLigv//fgZP7+zcBR41sd2S/TJKkwTMQSpK0MF8FfqK//1Tgy/39C4EX9rONPgm43fMHJUmTwiGjkqTBW+5JZZK8HziF7lzDbcBrgZcCb02yDriTbkZRgIuAZwFbge8AL17WykqStA8MhJKkwRvDLKPPm2XVD+9h2wLObFsjSZLaMBBKkgZvuQOhJEmrhYFQkjR4BkJJktpY0KQy/UV2P5Dki0muTvLk1hWTJEmaVLadJE2KhfYQvhX4cFX9H0n2Aw5sWCdJku61j5eKkMbFtpOkiTBvIEzyIODHgV8GqKq7gbvbVkuSpPsYCDVJbDtJmiQLGTJ6DHAr8OdJPpPkXUkOalwvSZLuNZAL00sLZdtJ0sRYSCBcB5wIvLOqHg98G3j1zI2SnJFkS5ItftlKkpaSgVATZt6202i7aRwVlKRpCwmE24BtVXVZ//gDdP/J3U9Vba6qk6rqpCRLWUdJkqRJMm/babTdtOy1k6QR8wbCqtoO3JjkMf2ipwFXNa2VJEkj7CHUJLHtJGmSLHSW0d8A3tfPkvUV4MXtqiRJ0n0McZpQtp0kTYQFBcKq+izgkAZJ0lgYCDVpbDtJmhQLujC9JEmSJGnlWeiQUUmSxsYeQkmS2jAQSpIGz0AoSVIbBkJJ0uAZCCVJasNAKEkaNGcZlSSpHSeVkSRJkqRVyh5CSdLg2UMoSVIbExsIDzjggKblr1+/vmn5AFNTU833cfjhhzct/6677mpaPsCdd97ZfB8bNmxovo/bbrutafmtj2Ht2rVNy5fmYiCUtBxat2u2b9/etHyAz3zmM833ceCBBzbfx7Zt25qWvxzty0kxsYFQkrR6GAglSWrDQChJGjwDoSRJbTipjCRJkiStUvYQSpIGzctOSJLUjoFQkjR4BkJJktowEEqSBs9AKElSGwZCSdLgGQglSWrDSWUkSZIkaZWyh1CSNHj2EEqS1IaBUJI0aM4yKklSOwZCSdLgGQglSWrDcwglSZIkaZWyh1CSNHj2EEqS1IaBUJI0eAZCSZLacMioJGnQpieVWcrbfJK8O8ktSb4wY/lvJPlikiuTvGFk+dlJtia5JskzGrwMkiQ1YQ+hJGnwxtBD+BfA24H3TC9I8pPAacAJVXVXksP65ccBpwPHA0cA/5Dk0VW1a7krLUnSYtlDKEnSDFX1CeAbMxb/OvCHVXVXv80t/fLTgHOr6q6quhbYCpy8bJWVJGkfGAglSYPXYMjoxiRbRm5nLKAajwZ+LMllST6e5An98k3AjSPbbeuXSZI0eA4ZlSQNXoMho1NVddIin7MOOBR4EvAE4Lwkj1rqikmStJwMhJKkwRvILKPbgAuqq8ynk+wGNgI3AUeNbHdkv0ySpMFzyKgkadDGMcvoLP4W+EmAJI8G9gOmgAuB05Psn+QY4Fjg0/t+5JIktWcPoSRJMyR5P3AK3bmG24DXAu8G3t1fiuJu4EV9b+GVSc4DrgJ2Amc6w6gkaVIYCCVJg7fcQ0ar6nmzrHr+LNu/Hnh9uxpJktSGgVCSNHgDOYdQkqQVZ2ID4e7duye6/OVyww03NC3/E5/4RNPyAf74j/+4+T4OPvjg5vv4+Mc/3rT8r33ta03Lv+eee5qWL83FQChpOdpmd9xxR9PyP/WpTzUtH+C2225rvo9169pHiGuuuaZp+d/4xsxLza5eExsIJUmrh4FQkqQ2nGVUkiRJklYpewglSYO2j5eKkCRJczAQSpIGz0AoSVIbBkJJ0uAZCCVJasNzCCVJkiRplbKHUJI0ePYQSpLUhoFQkjR4BkJJktpY0JDRJL+V5MokX0jy/iQHtK6YJElw3yyjS3mTWrPtJGlSzBsIk2wCfhM4qaoeC6wFTm9dMUmSphkINUlsO0maJAudVGYd8IAk64ADga+2q5IkSdLEs+0kaSLMGwir6ibgjcANwM3A7VV18cztkpyRZEuSLf76KklaSvYQapIspO002m4aRx0ladpChow+GDgNOAY4AjgoyfNnbldVm6vqpKo6KcnS11SStGoZCDVJFtJ2Gm03jaOOkjRtIUNGnw5cW1W3VtU9wAXAj7StliRJ9zEQasLYdpI0MRZy2YkbgCclORD4LvA0wOENkqRlYYjTBLLtJGliLOQcwsuADwBXAJ/vn7O5cb0kSZImkm0nSZNkQRemr6rXAq9tXBdJkvbIHkJNGttOkibFggKhJEnjZCCUJKkNA6EkafAMhJIktWEglCQNnoFQkqQ2FnLZCUmSJEnSCmQPoSRp0LzshCRJ7RgIJUmDZyCUJKmNJoGwqti9e3eLou+1a9eupuXfeeedTcuH9scAcM899zQt/9prr21aPsB73vOe5vvYb7/9mu9jOT5T0kplIJS0HP8P3HXXXU3Lv+GGG5qWD3DLLbc030eS5vto3W5q/V5PEnsIJUmDZyCUJKkNJ5WRJEmSpFXKHkJJ0uDZQyhJUhsGQknSoDnLqCRJ7RgIJUmDZyCUJKkNzyGUJEmSpFXKHkJJ0uDZQyhJUhv2EEqSBm/6PMKlus0nybuT3JLkC3tYd1aSSrKxf5wkb0uyNcnnkpzY4CWQJKkJA6EkafCWOxACfwGcOnNhkqOAnwZGry79TODY/nYG8M59PmBJkpaJgVCSNGhLHQYXEgir6hPAN/aw6s3Aq4DRQk4D3lOdS4FDkjx8KY5dkqTWDISSJC1AktOAm6rqX2es2gTcOPJ4W79MkqTBc1IZSdLgNZhUZmOSLSOPN1fV5tk2TnIg8Bq64aKSJK0YBkJJ0uA1CIRTVXXSIrb/PuAY4F+TABwJXJHkZOAm4KiRbY/sl0mSNHgGQknS4I37shNV9XngsOnHSa4DTqqqqSQXAi9Pci7wROD2qrp5PDWVJGlxDISSpMFb7kCY5P3AKXRDS7cBr62qc2bZ/CLgWcBW4DvAi5elkpIkLQEDoSRJM1TV8+ZZf/TI/QLObF0nSZJaMBBKkgZtEdcOlCRJi2QglCQNnoFQkqQ2DISSpMEzEEqS1IaBUJI0eAZCSZLaWDPuCkiSJEmSxsMeQknS4NlDKElSGwZCSdKgOcuoJEntGAglSYNnIJQkqY1WgXBq586d1y9i+43A1GJ2cNttty2qQstg0ccwQIs+hh07djSqyn1uvfXWxT5lVb4Xy+CR466AJK1QU8Bi2k0wzO+JxRrcMezevXuxT1nUMdx5552LLX/R9mIfg3sf9tIQj2Mi2k5NAmFVPXQx2yfZUlUntajLcvEYhmMlHMdKOAZpKdlDqJVsse0mWBnfEx7DMKyEY4CVcxzj4JBRSdLgGQglSWrDQChJGjwDoSRJbQwlEG4edwWWgMcwHCvhOFbCMUhLwllGpT1aCd8THsMwrIRjgJVzHMsufslKkoZsv/32q8MPP3xJy7zxxhsv91wTSZKG00MoSdKs/PFSkqQ2DISSpMEzEEqS1Maace48yalJrkmyNcmrx1mXvZXkqCQfS3JVkiuTvGLcddpbSdYm+UySD427LnsjySFJPpDki0muTvLkcddpsZL8Vv85+kKS9yc5YNx1koZg+jzCpbpJk8q203BMersJbDupM7ZAmGQt8CfAM4HjgOclOW5c9dkHO4Gzquo44EnAmRN6HACvAK4edyX2wVuBD1fVDwAnMGHHkmQT8JvASVX1WGAtcPp4ayUNg4FQsu00QJPebgLbTmK8PYQnA1ur6itVdTdwLnDaGOuzV6rq5qq6or+/g+4PadN4a7V4SY4EfgZ417jrsjeSPAj4ceAcgKq6u6puG2ul9s464AFJ1gEHAl8dc30kScNh22kgJr3dBLaddJ9xBsJNwI0jj7cxYf8ZzJTkaODxwGVjrsreeAvwKmD3mOuxt44BbgX+vB++8a4kB427UotRVTcBbwRuAG4Gbq+qi8dbK2n8lrp30B5CTTDbTsPxFia73QS2ndQb6zmEK0mSDcD5wCur6o5x12cxkjwbuKWqLh93XfbBOuBE4J1V9Xjg28BEnVuR5MF0v/QeAxwBHJTk+eOtlTQMBkJp5ZnUttMKaTeBbSf1xhkIbwKOGnl8ZL9s4iRZT/cf2vuq6oJx12cvPAX4uSTX0Q0/eWqS9463Sou2DdhWVdO/MH6A7j+5SfJ04NqqurWq7gEuAH5kzHWSBsFAKAG2nYZiJbSbwLaTeuMMhP8CHJvkmCT70Z0AeuEY67NXkoRu7PXVVfWmcddnb1TV2VV1ZFUdTfc+fLSqJurXlaraDtyY5DH9oqcBV42xSnvjBuBJSQ7sP1dPY8JO7pZaMRBKgG2nQVgJ7Saw7aT7jO06hFW1M8nLgY/QzQj07qq6clz12QdPAV4AfD7JZ/tlr6mqi8ZXpVXrN4D39V+SXwFePOb6LEpVXZbkA8AVdDOwfQbYPN5aSZKGwraTGrDtJOIvpZKkIVu/fn0dcsghS1rm1NTU5VV10pIWKknSBBpbD6EkSQvhME9JktoxEEqSBs9AKElSG152QpIkSZJWKXsIJUmDZw+hJEltGAglSYNnIJQkqQ0DoSRp8AyEkiS1YSCUJA2as4xKktSOk8pIkiRJ0iplIJQkDd50L+FS3eaT5N1JbknyhZFlf5Tki0k+l+SDSQ4ZWXd2kq1JrknyjDavgiRJS89AKEkavOUOhMBfAKfOWHYJ8Niq+iHgS8DZAEmOA04Hju+f844ka5fq2CVJaslAKEkavOUOhFX1CeAbM5ZdXFU7+4eXAkf2908Dzq2qu6rqWmArcPLSHb0kSe04qYwkafAGOKnMS4C/6e9voguI07b1yyRJGjwDoSRpNdqYZMvI481VtXkhT0zyO8BO4H1NaiZJ0jIyEEqSBq3RZSemquqkxT4pyS8DzwaeVvdV6ibgqJHNjuyXSZI0eJ5DKEkavDFMKvM9kpwKvAr4uar6zsiqC4HTk+yf5BjgWODT+3zQkiQtA3sIJUmDt9znECZ5P3AK3dDSbcBr6WYV3R+4JAnApVX1sqq6Msl5wFV0Q0nPrKpdy1phSZL2UgZ4or4kSfdas2ZNrV+/fknLvPvuuy/fmyGjkiStNA4ZlSRJkqRVyiGjkqTBczSLJEltGAglSYPWaJZRSZKEgVCSNAEMhJIkteE5hJIkSZK0StlDKEkaPHsIJUlqw0AoSRo8A6EkSW0YCCVJg2cglCSpDQOhJGnoPgJsXOIyp5a4PEmSJlL81VWSJEmSVidnGZUkSZKkVcpAKEmSJEmrlIFQkiRJklYpA6EkSZIkrVIGQkmSJElapf5/OWTtfj92KNkAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "Err_BN7=error(xdata7, popt7[0], popt7[1],popt7[2], popt7[3], popt7[4], recorte7.ravel(), inc=1)\n", + "popt7E, pcov7E = curve_fit(gauss2d, xdata7, recorte7.ravel(), p0=[2,1,1,1,1],sigma=Err_BN7)\n", + "estrella7E=gauss2d(xdata7, popt7E[0], popt7E[1],popt7E[2], popt7E[3], popt7E[4])\n", + "FWHM7E=FWHM_I.append(2*np.sqrt(2*np.log(2))*np.sqrt(popt7E[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 7 fotografÃa\")\n", + "plt.imshow(recorte7, plt.get_cmap('gray'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 7 a partir de la gaussiana con incertidumbre\")\n", + "plt.imshow(estrella7E.reshape(10, 10), plt.get_cmap('gray'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 8 con incertidumbre (blanco y negro)" + ] + }, + { + "cell_type": "code", + "execution_count": 825, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5QAAAFTCAYAAABGRENtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA9aUlEQVR4nO3dfZxdZXno/d81k0lCEiRAFANEQUQr9tSXQxFbe4oHa4FasT1WobWC2qa22mofLfWlj1qtrdpqq0ePNq0UsYrYKpYqFql9oZ4WNfAAAr4QESQhEAMhIe+Zmev5Y62RzTAzmXvPXjN71vy+n8/+zJ61r7Xue6299l73te+17hWZiSRJkiRJpQbmugKSJEmSpPnJhFKSJEmS1BUTSkmSJElSV0woJUmSJEldMaGUJEmSJHVl0VxXQJKkJp1xxhm5devWni7z2muvvTIzz+jpQiVJmodMKCVJrbZ161bWr1/f02VGxKqeLlCSpHnKhFKS1Hrec1mSpGaYUEqSWs+EUpKkZjgojyRJkiSpK/ZQSpJazx5KSZKaYUIpSWq1zDShlCSpISaUkqTWM6GUJKkZXkMpSZIkSeqKPZSSpNazh1KSpGaYUEqSWs+EUpKkZphQSpJaz4RSkqRmmFBKklrNUV4lSWqOg/JIkiRJkrpiD6UkqfXsoZQkqRkmlJKk1jOhlCSpGSaUkqTWM6GUJKkZJpSSpNYzoZQkqRkOyiNJkiRJ6oo9lJKkVvO2IZIkNceEUpLUeiaUkiQ1w1Ne9UMRcVxEZEQsqv//t4j4tVkq+48iYmtE3D0b5c1ERBwVEVdHxAMR8d562u9ExGUREXNdP0kPN9ZL2auHNFfm8ljdTyLiMRGxMyIGZ7CMiyLij7qcNyPi8d2W3S8i4osRcd5c16MJEfGRiPh/57oeAPW++rhJXjs/Ir7SULld7+MlTCj7UETcHhF76p1v7PHBaczXN19uEfHUiPiPiNgeERun+kBHxGOA1wEnZeajp7Hs2yPiOb2sb6G1wFbgEZn5uog4EXg5cH7a0pT6kgmlem2hHavn2vhjf2Z+PzNXZObIXNZrvsvMMzPzY3NdjyZk5isz8x2zXe5EP/LU++pts12X2eIpr/3r5zPzn3u5wIhYlJnDvVzmFD4JXAacBhwHfCUibsjMyyeIfQxwb2ZumaW6TWqa2+ixwC0dyeOTgF/OzO3N1k6S1GcW0rF6TnSzPeqzhSIzRxuqlvQwY/vdXNejWzP57rGHcp6JiMdHxL/XvyZujYhL6+lX1yE31L+SvjgiTqt/cfz9+lTSv4mIgYh4Q0R8NyLujYhPR8QR0yj3hIj4l3qerRHxiYhYOcUsxwGfyMyRzPwu8BXgyRMs9znAVcDRdb0vqqc/PyJujoj76196nlRP/zhVAvqPdfwFU8XXrz09Iv6/+hTVv4uIS8e6/yfZRodHxOcj4gcRsa1+fmwdfxFwHnBBXf5zgKcDb+oo7+8i4u76Pbo6Ih623pJmT697J+2h1MG07VjdzbLrntjfiYjb6vg/jYiB6Swrqt7I34+IG4FdEXEJ4479MfGpv++MiP8L7AYednphRDwtIq6r2wOXAkvHvf68iLi+bkv8Z0T82BTbrnO+n6vbGTsi4s6IeNtB4i+IiM0RcVdE/Fp09FpPtayxfWXcsn7YcxsRp0TE+nreeyLiffX0pRHxt/X2vj8ivh4RR3Vst18reF9eHxE31vv2pRGxtH7t8Jik7TTJNlgTEZ+t4++Nune/3vf/ICLuiIgtEXFxRBxWvzb2np8XEd+v6/jmKcr44eme8eDn7HX1cjdHxMs6Yg+JiPfW5W6PiK9ExCH1a6fW+8P9EXFDRJzWMd/4/e7jwE8BH4yOsxbGvcdHRsTl9fv0NeCEjuU9ZL+e4D06PyL+b0T8eV2f2yLiJ+rpd9brNv4U5lURcVW93/97RDy2Y9kZEa+KiFuBW+tpxZ8DE8r55x3Al4DDgWOB/w2Qmf+jfv0pdbf6pfX/jwaOoOpVWwv8NvAC4KeBo4FtwIemUW4Af1LP8yRgDfC2KeL/AnhpRAxFxBOBZwIP+xW3/mX3TOCuut7nR8QTgEuA1wKPBK6gOogszsxfBb5P9avwisx8z1TxEbGY6tfXi+rtcAnwC+OqMX4bDQB/U///GGAP8MG6vucDnwDeU5c/0S/TXwROBB4FXFfHS5pDJpSaZa06Vne5bKiOtydT/fB6NtXlIdNd1rnAzwErM/Ncxh37JynvV6m236HAHQ+pfNUe+BxVg/8I4O+A/9Xx+tOAC4HfAI4E/hK4PCKWHGQdAXYBLwVW1nX+zYh4wUSBEXEG8P8AzwEeT9U73NWyJvB+4P2Z+QiqJOXT9fTzgMOotvORwCup2jYPqx4Hf19eBJwBHA/8GHB+PX3SttPDCqmue/081Xt0HHAM8Kn65fPrx7OpfhRYMcFyngU8ETgdeEt0dCIcxKOptsMxwCuAD0XE4fVrfwb8d+AnqPaPC4DRiDgG+ALwR/X01wOfiYhHdiy3c787H/gP4NX1vvrqCerxIWAvsJrqM/HyCWKm8gzgRqr38pNU2+7Hqfanl1Alsys64n+F6jtpFXA9D2+XvqBe5kndfg5MKPvX5+pfBsYev15PP0D1YT06M/dm5sEu4h0F3pqZ+zJzD9WXyJszc2Nm7qP6onhh5y8hE8nMDZl5Vb2cHwDvozrQTebzwAupvlC+BXw0M79+kLqOeTHwhbq8A1Qf8kOoPuSl8adSndr9gcw8kJmfBb42bv6HbKPMvDczP5OZuzPzAeCdB1nXh8jMCzPzgY7t+5SxX9ckzQ0TSjVkwRyru1g2wLsz877M/D5V8npuwbI+kJl31ttjui7KzJszc7huD3Q6FRgC/qJuD/w90Lmua4G/zMyv1j22HwP21fNNKTP/LTO/kZmjmXkj1Y/Xk22bFwF/U9dzN+MStsJljXcAeHxErMrMnZl5Tcf0I4HH1+t2bWbumGA9pvu+3JWZ9wH/CDy1nrek7XQKVdL6e5m5a9xn5FeA92XmbZm5E3gjcM64ff8P6/baDcANwFMKts/b6/f/CmAn8MSoes5fDrwmMzfV2+g/68/eS4ArMvOK+j25ClgPnNWx3Kn2u4eok+n/BbylXvebgNJrWL+XmX+T1fXDl1Il/m+v37cvAfupkssxX8jMq+v1eTPwzIhY0/H6n9Sf0z10+TkwoexfL8jMlR2Pv6qnX0D1C9LXojrF82C/avwgM/d2/P9Y4LKxgx/wTWAEOGqqhUQ1sumnImJTROwA/pbql46JYo8A/gl4O9XpJGuAn42I3zpIXcccTccvi1ldA3En1S9KpfFHA5vyoS3AO8fN/5BtFBHLIuIv69MedgBXAytjGiPJRcRgRLwrqtOUdgC31y9NuK0kSfPagjlWlyy7Q+fx9g6qY/J0lzX+WD0dU80zUXugsxfzscDrOn8goNomRx+s0Ih4RkT8a1Snb26n+kFgsm1z9Lh6PqTOhcsa7xXAE4BvRXVa6/Pq6R8HrgQ+FdVptu+JiKEJ1mM670vnaPy7qXoQS9tOa4A7cuLr9R7SpqufL+Kh+/6EdZiGe8eVOTbvKqrPwHcnmOexwC+N2y+eRdW7OKZkX30k1fqM/2yUuKfj+R6AzBw/rXOb/LCsOkm/j4fu15116epzYEI5z2Tm3Zn565l5NFV39P+JqUeLG/9T+p3AmeMOgEszc9NBiv7jeln/LatTKV7C5BcePw4YycyL619rNlJ1x581Sfx4d1Ht0MAPL3JeA4zVcfw6TRW/GTimnjZmzUNnf9jyXkd1KsUz6nUdO0VpOhda/zLVaT3PoTqt4riCeSU1JO2h1Cxq6bG6ZNljOo+3j6E6Xk93WeO3yXQ+eFPFTNQeeEzH8zuBd47b5ssy85JplPtJ4HJgTWYeBnyEybfNZqrToMeMb5NMtaxdwLKxwDpZ++Gpl5l5a1anBz8KeDfw9xGxvO6R+8PMPInq7K3nUZ1WO1437/GYkrbTncBjJulxf0ibjuo9GuahSVSvbaU6BfWECV67E/j4uP1ieWa+qyOmZF/9AdX6jP9sjNlV/13WMe2gd0A4iB+WVZ8KewQPfhbhofXt6nNgQjnPRMQvxYMXOW+j2gnGRjG7hwkuQh/nI8A7o74gNyIeGRFnT6PoQ6lODdhen0/+e1PEfqdadPxyVBdXP5rqtNQbp1EOVOf8/1xEnF7/gvY6qu72/6xfH7+eU8X/F9Wvuq+OiEX1up4yjXXdA9xf/4L71mnWe2zefcC9VF8Gf1wwr6SGmFBqNrX0WF2y7DG/F9VgLWuA11Cdntftsqaz3abyX1QN+d+J6prRX+Sh7YG/Al5Z9xBGRCyPaoCcQ6ex7EOB+zJzb0ScQvXj8mQ+DbwsIp4UEcuA8bdqmWpZ3wGW1vUaAv4A+OG1bRHxkoh4ZH2m1v315NGIeHZE/Lc6Ad1BdernRCPgdvO+dM473bbT16gS63fV23lpRPxk/dolwO9GxPF18vPHwKWT9Gb2RL29LgTeFxFHR3W22TOjum7wb4Gfj4ifracvjWqAn0kHHGKKfbU+TfWzwNvqXt2TqK5xHXv9B1QdIi+py3s5Eye6Jc6KiGdFdR3xO4BrMnOyXtWuPgcmlP1rbCSzscdl9fQfB74aETupfsF6TT54X5u3AR+ru6hfNMly31/P96WIeAC4hupC3IP5Q6qL6rdTXZz82ckCszov/xeB36U6kF4P3ER1QfNBZea3qX4V+99Uvxr9PNWF+PvrkD8B/qBez9dPFV/P84tUp4HcX8d9nirpm8xfUF2DuZVq+/zTdOpdu5jq1IVNwC31/JLmUK+TSRNKdVhIx+ppL7vDPwDX1sv+AvDRGSzrIcf+acQ/REd74HyqU/5e3FluZq4Hfp1qAJhtwAYeHHDmYH4LeHv9Xr2FBwfDmageXwQ+APxrXcZYO2GsXTLpsrK6PdlvAX9N1c7YBXSO+noGcHO9370fOCer6+IeDfw9VTL5TeDfqU6DHa+b92XMXzDNtlOdVP081XV+36/X4cX1yxfWdbsa+B5Vz+FvF9SjW68HvkF1Xe19VD28A3XidTbVaP4/oOrB+z2mzqHeT3XN87aI+MAEr7+a6pTUu6kGjfybca//el3GvVSjLv8nM/NJqgT/PqqBh14yWWC3n4PwwKiFJiK+CnwkM8d/gCW10FOe8pS88sore7rM1atXX5uZJ/d0oVKLREQCJ2bmhrmuSz+LaoTSm4AlTfbCSU2yh1KtFxE/HRGPrk95PY9qmOuSXkdJkqSeiIhfiIglUd2y4t3AP5pMaj6bcvhpqSWeSHXKyHLgNuCFmbl5bqskaTZ5No6kPvIbVKc6jlCdfjrdUfClvmRCqdbLzHXAurmuh6S5Y0Ipza7MdHTzSWTmGXNdB6mXTCglSa1nQilJUjNMKCVJrebIrJIkNacvE8qIyIGB/hovKKLszI2RkZHGyyiN76ZB1Y91Gh2d6NZJkxscHCwuo3Q9SutUunyARYvKPq6l++DwcPl4ACXbdnR0lNHRUU+B0oJQ33fvYuAoqnsQrsvM93e8/jrgz4BHZubWqL4U3k91U/ndwPmZed3s11zzUT2iqqT22ZqZj5zrShxMXyaUAwMDLF26tNEyShvnpQnA9u3bi+IBFi9eXBQ/NDRUFN9NkluajJXW6cCBA0XxALt27SqKX7FiRXEZhxxySFH87t27i+K7SXKPPPLIovjSfXDbtm1F8QCHHjqd+z1XduzYUbx8qVfmoIdyGHhdZl5X3xD62oi4KjNvqZPN51Ldf23MmcCJ9eMZwIeZ3n0HJUntdcdcV2A6+qsbUJKkBoyd9tqrxzTK2zzWw5iZD1DdTPyY+uU/By6g6rkcczZwcVauAVZGxOqebgRJkhowo4QyIs6IiG9HxIaIeMMEry+JiEvr178aEcfNpDxJkrrRQEK5KiLWdzzWTlZ2fex7GvDViDgb2JSZN4wLOwa4s+P/jTyYgKpFbDtJapuuT3mNiEHgQ8DPUB34vh4Rl2fmLR1hrwC2ZebjI+Icqpu3vngmFZYkqVQDp7xuzcyTDxYUESuAzwCvpToN9k1Up7tqAbLtJKmNZtJDeQqwITNvy8z9wKeoTtnpdDbwsfr53wOnRzejkUiSNM9ExBBVMvmJzPwscAJwPHBDRNwOHAtcFxGPBjYBazpmP7aepnax7SSpdWaSUE7n9JwfxmTmMLAdmHBkkYhYO3bqkMO7S5J6pdenu07nGFUnAB8FvpmZ76vr8Y3MfFRmHpeZx1EdN5+emXcDlwMvjcqpwPbM3NzYRtFc6VnbqbPd1FBdJWla+maU18xcB6wDGBwcNKOUJPXMHPxQ+ZPArwLfiIjr62lvyswrJom/guqWIRuobhvyssZrqHmts93kbUMkzaWZJJTTOT1nLGZjRCwCDgPunUGZkiQVm+2EMjO/Akx5mmLdSzn2PIFXNVwtzT3bTpJaZyanvH4dODEijo+IxcA5VKfsdLocOK9+/kLgX9LzWSVJs2y2T3mVJmHbSVLrdN1DmZnDEfFq4EpgELgwM2+OiLcD6zPzcqrrRz4eERuA+6i+OCVJkhYc206S2mhG11DW14JcMW7aWzqe7wV+aSZlNKXpAdO6Wf7SpUuL4oeGhorid+3aVRQPMDo6WhS/aFHZLjU4OFgUD7B3797ieUqV/hi8ZMmSovidO3cWxQN873vfK4ov3bal+xOUvRel+5LUS3bwqF/M57aTJE2kbwblkSSpCZ6mKklSc0woJUmtZ0IpSVIzZjIojyRJkiRpAbOHUpLUevZQSpLUDBNKSVLrmVBKktQME0pJUuuZUEqS1AwTSklSqznKqyRJzXFQHkmSJElSV+yhlCS1nj2UkiQ1w4RSktR6JpSSJDXDhFKS1HomlJIkNcOEUpLUeiaUkiQ1oy8TytkYka90+RFRFL98+fKi+G7mGR0dLYofGhoqigcYHh4unqdpg4ODRfGPeMQjisvYv39/8Twlli5dWjzPgQMHGo0v3Z+gP/cPSdLCUNo267flw+z82OUPampaXyaUkiT1ircNkSSpOSaUkqTWM6GUJKkZJpSSpNYzoZQkqRkmlJKk1jOhlCSpGQNzXQFJkiRJ0vxkD6UkqfXsoZQkqRkmlJKkVnOUV0mSmmNCKUlqPRNKSZKa0fU1lBGxJiL+NSJuiYibI+I1E8ScFhHbI+L6+vGWmVVXkiRpfrLtJKmNZtJDOQy8LjOvi4hDgWsj4qrMvGVc3H9k5vNmUI4kSTNiD6X6hG0nSa3TdUKZmZuBzfXzByLim8AxwPgvRUmS5pQJpfqBbSdJbdSTaygj4jjgacBXJ3j5mRFxA3AX8PrMvLkXZfa7FStWFM+zePHiovjSBtLIyEhRPMDg4GBRfGmdRkdHi+IBlixZUhRfug4A+/fvL4rft29fUfyiReUfvaGhoaL42WhAL1u2bNqxe/fubbAm0tRMKNVv2t52iohG4wEGBsqu3JqNOpWajXZTaRndfF/6HbuwzTihjIgVwGeA12bmjnEvXwc8NjN3RsRZwOeAEydZzlpgbf18ptWSJAlwlFf1n160nTrbTZI0l7oelAcgIoaovhA/kZmfHf96Zu7IzJ318yuAoYhYNdGyMnNdZp6cmSfPpE6SJEn9qldtJ9tNkvpF1z2UUXUjfhT4Zma+b5KYRwP3ZGZGxClUCey93ZYpSVI37KFUP7DtJKmNZnLK608Cvwp8IyKur6e9CXgMQGZ+BHgh8JsRMQzsAc5Jj+qSpFk224eeiFgDXAwcBSSwLjPfHxF/Cvw8sB/4LvCyzLy/nueNwCuAEeB3MvPKWa20ZoNtJ0mtM5NRXr8CTHmxY2Z+EPhgt2VIktQLc9Aen/D2EMBVwBszczgi3g28Efj9iDgJOAd4MnA08M8R8YTMLB9NTX3LtpOkNprRNZSSJM0HYwPz9OoxjfI2Z+Z19fMHgG8Cx2TmlzJzuA67Bji2fn428KnM3JeZ3wM2AKf0fENIktRjJpSSJJVbFRHrOx6TjrY5xe0hXg58sX5+DHBnx2sb62mSJPW1ntyHUpKkftXQbUO2Tmd0zcluDxERb6Y6LfYTva6YJEmzyYRSktR6czGmyWS3h4iI84HnAad3DLayCVjTMfux9TRJkvqap7xKklpvtq+hnOz2EBFxBnAB8PzM3N0xy+XAORGxJCKOp7qR/dd6uhEkSWqAPZSSpNabgx7KyW4P8QFgCXBVlXNyTWa+MjNvjohPA7dQnQr7Kkd4lSTNB32ZUEYE9YF2WhYtKl+NwcHB4nlKLF26tHie0jotWbKkKH758uVF8QD79u0rit+/f39R/MhIeXtpYKCsY33Pnj3FZZTuU6XbqTQeyt/vks8QdNfgXrZs2bRjS/cNaT6b4vYQV0wxzzuBdzZWKWkGSo+9pfHdtMuGhoaK4kuP7aXrAOXH0tJ20IEDB4riAYaHhw8e1GF0dLS4jNJ5vLVqu/RlQilJUi/ZeJEkqRkmlJKkVmtolFdJkoQJpSRpATChlCSpGY7yKkmSJEnqij2UkqTWs4dSkqRmmFBKklrPhFKSpGaYUEqSWs+EUpKkZphQSpJazVFeJUlqjoPySJIkSZK6Yg+lJKn17KGUJKkZJpSSpNYzoZQkqRkmlJKk1jOhlCSpGX2bUC5aNP2qDQ4OFi8/IoriBwbKLjddsmRJUTyUr8eyZcsajQfYv39/UfwDDzxQFL9v376ieCjfTvfff39xGYcddlhRfGmdduzYURTfTRml9u7d2+g8o6OjxcuXesWEUnpQaRsIyttBixcvLopfunRpUTyUt2tKyyhpi3ar9Ni7e/fu4jL27NlTFN9N26xUaZvA7/D+5qA8kiRJkqSu9G0PpSRJveBtQyRJas6ME8qIuB14ABgBhjPz5HGvB/B+4CxgN3B+Zl4303IlSZouE0r1C9tNktqmVz2Uz87MrZO8diZwYv14BvDh+q8kSbPChFJ9xnaTpNaYjVNezwYuzupofk1ErIyI1Zm5eRbKliTJhFLzie0mSfNKLwblSeBLEXFtRKyd4PVjgDs7/t9YT3uIiFgbEesjYr0HfkmS1FI9bzc1VE9JmpZe9FA+KzM3RcSjgKsi4luZeXXpQjJzHbAOYHBw0IxSktQz/lCpPtLzdlNEuINLmjMz7qHMzE313y3AZcAp40I2AWs6/j+2niZJUuPGRnnt5UPqlu0mSW0zo4QyIpZHxKFjz4HnAjeNC7sceGlUTgW2ex2AJGk2mVCqH9huktRGMz3l9SjgsmqEaxYBn8zMf4qIVwJk5keAK6iGvt5ANfz1y2ZYpiRJ0nxku0lS68wooczM24CnTDD9Ix3PE3jVTMqRJGkm7FVUP7DdJKmNZuO2IY2rf+krsnjx4qL4JUuWFMUPDQ0VxQMcd9xxRfGHHnpoUfwjHvGIoniAXbt2FcXfe++9jcYD7N27tyi+dDsB7Nu3ryh+//79RfHd7B+l+3npPrtoUfnXwfDwcPE80lwwoVTblRwjBgbKr3gqPW4dcsghRfErV64sigdYtWpVUfwRRxxRFL906dKieIDR0dGi+O3btxfFb9062e1LJ7dt27ai+B07dhSXUdo2K/1O9ju8v7UioZQkaSo2RiRJaoYJpSSp1RxIR5Kk5sz4tiGSJEmSpIXJHkpJUuvZQylJUjNMKCVJrWdCKUlSM0woJUmtZ0IpSVIzvIZSktR6YwPz9OpxMBGxJiL+NSJuiYibI+I19fQjIuKqiLi1/nt4PT0i4gMRsSEiboyIpze8SSRJ6gkTSkmSem8YeF1mngScCrwqIk4C3gB8OTNPBL5c/w9wJnBi/VgLfHj2qyxJUjkTSklSq/W6d3I6PZSZuTkzr6ufPwB8EzgGOBv4WB32MeAF9fOzgYuzcg2wMiJW93hTSJLUc15DKUlqvQauoVwVEes7/l+XmesmCoyI44CnAV8FjsrMzfVLdwNH1c+PAe7smG1jPW0zkiT1MRNKSVLrNZBQbs3Mkw8WFBErgM8Ar83MHRHRWaeMCEcLkiTNa32ZUEYEnQfdg1m2bFlxGUuWLCmKX7SobFMdc8wxRfEARx111MGDOpxwwglF8atXl589tXv37qL42267rSj+29/+dlE8wP33318UPzo6WlzG8PBwUfzAQNnZ4yMjI0Xx3XBUS+lBc/F5iIghqmTyE5n52XryPRGxOjM316e0bqmnbwLWdMx+bD1NmpaSdtPg4GDx8hcvXlwUf+ihhxbFd9NGOf7444viH/OYxxTFH3bYYUXxAAcOHCiKv/vuu4viv/e97xXFd6O0DQTl7ZrStlnJ/j3GdtDs8RpKSZJ6LKrWz0eBb2bm+zpeuhw4r35+HvAPHdNfWo/2eiqwvePUWEmS+lZf9lBKktQr0x1Ip8d+EvhV4BsRcX097U3Au4BPR8QrgDuAF9WvXQGcBWwAdgMvm9XaSpLUJRNKSVLrzXZCmZlfASY7R+v0CeITeFWjlZIkqQEmlJKk1vNaGkmSmmFCKUlqPRNKSZKa4aA8kiRJkqSu2EMpSWo9eyglSWqGCaUkqdXmaJRXSZIWBBNKSVLrmVBKktSMrq+hjIgnRsT1HY8dEfHacTGnRcT2jpi3zLjGkiRJ85BtJ0lt1HUPZWZ+G3gqQEQMApuAyyYI/Y/MfF635UiSNFP2UKof2HaS1Ea9OuX1dOC7mXlHj5YnSVLPmFCqD9l2ktQKvUoozwEumeS1Z0bEDcBdwOsz8+aJgiJiLbAWYGBggKGhoWkXvnTp0rLaAitWrCiKX7SobFM98pGPLIoHOOGEE4riTz/99KL41atXF8UD7N+/vyj+hhtuKIrfvXt3UTyU12nv3r3FZRw4cKAofteuXcVllBoZGSmKL21Aj46OFsV3O480F0wo1Ydm1HbqbDfV/0+74MHBwbKaAkuWLCmKP+yww4rijz766KJ4gCc96UlF8U9+8pOL4h/1qEcVxUN5m+O2224rLqNUaRtl586dxWXs2bOnKL60nWV7o7/NOKGMiMXA84E3TvDydcBjM3NnRJwFfA44caLlZOY6YB3A0NCQR35JUk84yqv6TS/aTp3tpohwB5c0Z7oelKfDmcB1mXnP+Bcyc0dm7qyfXwEMRcSqHpQpSZI0X9l2ktQavTjl9VwmOWUjIh4N3JOZGRGnUCWw9/agTEmSps0eSvUZ206SWmNGCWVELAd+BviNjmmvBMjMjwAvBH4zIoaBPcA56VFdkjTLPPSoX9h2ktQ2M0ooM3MXcOS4aR/peP5B4IMzKUOSpJmyPa5+YdtJUtv0apRXSZL6lgmlJEnN6MWgPJIkSZKkBcgeSklSq3nbEEmSmmNCKUlqPRNKSZKaYUIpSWo9E0pJkpphQilJaj0TSkmSmtGXCWVEcMghh0w7ftGi8tVYunRpUfyKFSuK4g877LCieIA1a9YUxZ900klF8aXrAOWNsN27dxfF33LLLUXxAHfeeWdR/JIlS4rL2LNnT1H8wEDZ+FYjIyNF8QCjo6NF8aWfi9LldzuPJGlulR6zAIaGhorily9fXhR/5JFHHjxonNJ204/8yI8UxR999NFF8VDefoiIovh77rmnKB7K202lbWSAwcHBovjS9S6NB39InE19mVBKktRLNiwkSWqGCaUkqdUc5VWSpOaYUEqSWs+EUpKkZpSfRC9JkiRJEvZQSpIWAHsoJUlqhgmlJKn1TCglSWqGCaUkqfVMKCVJaoYJpSSp1RzlVZKk5jgojyRJkiSpKyaUkqTWG+ul7NXjYCLiwojYEhE3dUx7akRcExHXR8T6iDilnh4R8YGI2BARN0bE0xvcFJIk9ZQJpSSp9WY7oQQuAs4YN+09wB9m5lOBt9T/A5wJnFg/1gIf7sU6S5I0G/r2GsqRkZFpx3Zzbczo6GjxPCUe8YhHFM+zfPnyovilS5cWl1EqIoriS+tUus4AK1euLIrftm1bcRmlSrfTwED5bzml+2zT+zg0/zmVemW297/MvDoijhs/GRg7OBwG3FU/Pxu4OKtKXhMRKyNidWZunp3aSgfX9HFu8eLFRfEAhxxySFH8smXLiuJXrFhRFA/l6126Dt1sp0WLypr73bRRSvcPtUvfJpSSJPVKAwnlqohY3/H/usxcd5B5XgtcGRF/RnWG0E/U048B7uyI21hPM6GUJPU9E0pJksptzcyTC+f5TeB3M/MzEfEi4KPAc3pfNUmSZo/XUEqSWq3X10/OoLfzPOCz9fO/A06pn28C1nTEHVtPkySp700roZxktLojIuKqiLi1/nv4JPOeV8fcGhHn9arikiRNV58klHcBP10//5/ArfXzy4GX1qO9ngps9/rJ+c12k6SFZLo9lBfx8NHq3gB8OTNPBL5c//8QEXEE8FbgGVS/xL51si9QSZKaMge3DbkE+C/giRGxMSJeAfw68N6IuAH4Y6oRXQGuAG4DNgB/BfxWE9tAs+oibDdJWiCmdQ3lJKPVnQ2cVj//GPBvwO+Pi/lZ4KrMvA8gIq6i+oK9pLvqSpJUbg5GeT13kpf++wSxCbyq2RppNtlukrSQzGRQnqM6Tsm5GzhqgpjJRq57mIhYS/1r7eDg4AyqJUmS1HcaazdJ0lzqySivmZkRMaOff+vh1tcBLF682BvWSZJ6xvugqp/0ut0002VJ0kzMZJTXeyJiNUD9d8sEMY5cJ0maU300yqsWNttNklppJgnl5VRDoFP//YcJYq4EnhsRh9cXlT+3niZJ0qwxoVQfsN0kqZWme9uQiUarexfwMxFxK9WNmd9Vx54cEX8NUF9U/g7g6/Xj7WMXmkuSJLWR7SZJC8l0R3mdbLS60yeIXQ/8Wsf/FwIXdlU7SZJ6wF5FzSbbTZIWkp4MytNro6Oj7NmzZ9rxhxxySHEZ+/fvL4rfuXNno8sH2LZtW1H85s1l970+6qiJBpSb2vDwcFH81q1bi+IfeOCBongoHwX4wIEDxWWUrvdsNFYHBsrOUC+NHx0dLYoHG+maP9xXpQd183kYGRkpim+6nQVw7733FsXffffdxWWU2rt3b1H8li0TXUo7ue3btxfFA0VtaihvA0F3bYgSfof3t75MKCVJ6iUbI5IkNcOEUpLUag6kI0lSc2YyyqskSZIkaQGzh1KS1Hr2UEqS1AwTSklS65lQSpLUDBNKSVLrmVBKktQME0pJUuuZUEqS1AwH5ZEkSZIkdcUeSklSq3nbEEmSmmNCKUlqPRNKSZKaYUIpSWo9E0pJkprRlwllZjIyMjLt+P379xeXUTrP4OBgUfxtt91WFA8wNDRUFL9s2bKi+OOOO64oHmDXrl1F8bfccktRfDfbacuWLUXxe/fuLS5j3759RfEl++tsiYi5roLUN0wo1XYl+3g3x6zSdtOOHTuK4u++++6ieIANGzYUxZceF1etWlUUD+Xth+9///uNxgPce++9RfF79uwpLmN4eLgofnR0tLgM9S8H5ZEkSZIkdaUveyglSeoleyglSWqGCaUkqdUc5VWSpOaYUEqSWs+EUpKkZngNpSRJkiSpK/ZQSpJazx5KSZKaYUIpSWo9E0pJkpphQilJaj0TSkmSmnHQaygj4sKI2BIRN3VM+9OI+FZE3BgRl0XEyknmvT0ivhER10fE+h7WW5KkaRkb5bWXD2kqtp0kLSTTGZTnIuCMcdOuAn40M38M+A7wxinmf3ZmPjUzT+6uipIkSfPKRdh2krRAHDShzMyrgfvGTftSZg7X/14DHNtA3SRJ6gl7KDWbbDtJWkh6cduQlwNfnOS1BL4UEddGxNoelCVJUjETSvUZ206SWmNGg/JExJuBYeATk4Q8KzM3RcSjgKsi4lv1r3YTLWstsBZgYGCAwcHBadfjwIEDZRUHRkZGiuIjoih+06ZNRfEAixcvLorfvXt3Ufx3vvOdoniAnTt3FsXffffdRfF33XVXUTzAAw88UBS/b9++4jJK94/S+G6UfCag+hyVmI11kObKbCeBEXEh8DxgS2b+aMf03wZeBYwAX8jMC+rpbwReUU//ncy8clYrrFnTq7ZTZ7sJyvbx0dHRskpTfiwtPVZ3024qbZtt27atKP7QQw8tiofyNum9995bFN/Ndtq6dWtR/K5du4rLGB4ePnhQh9LvZH/I629dJ5QRcT7VwfL0nORdzsxN9d8tEXEZcAowYUKZmeuAdQCLFi1yr5Ek9cwcNEYuAj4IXDw2ISKeDZwNPCUz99UJAxFxEnAO8GTgaOCfI+IJmemvPC3Ty7ZTZ7spImw3SZozXZ3yGhFnABcAz8/MCbvJImJ5RBw69hx4LnDTRLGSJLXJRNfQAb8JvCsz99UxW+rpZwOfysx9mfk9YANVEqEWse0kqa2mc9uQS4D/Ap4YERsj4hVUv7oeSnUqxvUR8ZE69uiIuKKe9SjgKxFxA/A1qlN7/qmRtZAkaRIN3TZkVUSs73hM51q3JwA/FRFfjYh/j4gfr6cfA9zZEbexnqZ5yraTpIXkoKe8Zua5E0z+6CSxdwFn1c9vA54yo9pJktQDDZzyurWLWzosAo4ATgV+HPh0RDyu1xXT3LPtJGkhmdGgPJIkzQd9MqDDRuCz9bVzX4uIUWAVsAlY0xF3bD1NkqS+14vbhkiS1Nf65LYhnwOeDRARTwAWA1uBy4FzImJJRBwPnEh1uqMkSX3PHkpJknqsvobuNKprLTcCbwUuBC6MiJuA/cB5dW/lzRHxaeAWqttJvMoRXiVJ84UJpSSp9Wb7lNdJrqEDeMkk8e8E3tlcjSRJaoYJpSSp1WZ4mqokSZqCCaUkqfVMKCVJaoYJpSSp9UwoJUlqRl8mlAMDA6xYsWLa8YODg8VlHDhwoCj+vvvuK4o/5JBDiuIB7rjjjqL4bdu2FcVHRFE8wPDwcFH83r17i+J37dpVFA+wc+fOovj777+/uIyRkbLxMEr3p9J4KG8Ql77f3XyOli5dOu3Y0n1JkjR9JceI0mMclB+3So/V3di/f39R/A9+8IOi+CVLlhTFA4yOjhbFl26nHTt2FMV3M09pWw7Kj/Gl20n9rS8TSkmSeskeSkmSmmFCKUlqPRNKSZKaYUIpSWo1R3mVJKk5A3NdAUmSJEnS/GQPpSSp9eyhlCSpGSaUkqTWM6GUJKkZJpSSpNYzoZQkqRkmlJKk1jOhlCSpGQ7KI0mSJEnqij2UkqRW87YhkiQ1x4RSktR6JpSSJDWjLxPKkZERtm/fPu34RYvKV2Pp0qWNxu/YsaMoHsobPMPDw0XxAwPlZzjv37+/KH50dLTR5QPs27evKH5wcLC4jFKl610aD9Xnoknd7B/SfGFCKT2om89DaZtj7969RfHdHONK2wP3339/UXw37YfSbXvgwIGi+NJ17mae0jpBebvG7+R26cuEUpKkXrLxIklSM+ySkCRJkiR15aAJZURcGBFbIuKmjmlvi4hNEXF9/ThrknnPiIhvR8SGiHhDLysuSdJ0jA3K08uHNBXbTpIWkun0UF4EnDHB9D/PzKfWjyvGvxgRg8CHgDOBk4BzI+KkmVRWkqRumFBqll2EbSdJC8RBE8rMvBq4r4tlnwJsyMzbMnM/8Cng7C6WI0nSjJhQajbZdpK0kMzkGspXR8SN9Wkdh0/w+jHAnR3/b6ynTSgi1kbE+ohY78FaktRLJpTqEz1rO3W2m5qoqCRNV7cJ5YeBE4CnApuB9860Ipm5LjNPzsyTI2Kmi5MkSeonPW07dbabelA3SepaV7cNycx7xp5HxF8Bn58gbBOwpuP/Y+tpkiTNKnsVNddsO0lqq656KCNidce/vwDcNEHY14ETI+L4iFgMnANc3k15kiR1y1Fe1Q9sO0lqq4P2UEbEJcBpwKqI2Ai8FTgtIp4KJHA78Bt17NHAX2fmWZk5HBGvBq4EBoELM/PmJlZCkqSpmARqNtl2krSQHDShzMxzJ5j80Uli7wLO6vj/CuBhw2JLkiS1lW0nSQtJV9dQSpI0n9hDKUlSM/oyocxMDhw4MO34ffv2FZcxMjJSFD86OloUPxt12r17d3EZTRscHCyKHx4eLi5j7969RfGldepmntL3bmCg/PLlphvEpfu4NJ+YUEoP6ubzUHqMKGnHdbN8KG9DlB57Z+NYXbrepe2NbuaZjf1D7dKXCaUkSb1kQilJUjNMKCVJrebIrJIkNaer24ZIkqTJRcSFEbElIh52a4iIeF1EZESsqv+PiPhARGyIiBsj4umzX2NJkrpjQilJar05uA/lRcAZ4ydGxBrgucD3OyafCZxYP9YCH57xCkuSNEtMKCVJrTfbCWVmXg3cN8FLfw5cQHUvwjFnAxdn5RpgZUSs7sV6S5LUNK+hlCS1XgPXUK6KiPUd/6/LzHVTzRARZwObMvOGiOh86Rjgzo7/N9bTNveqspIkNcWEUpLUeg0klFsz8+TpBkfEMuBNVKe7SpLUGiaUkiQ17wTgeGCsd/JY4LqIOAXYBKzpiD22niZJUt8zoZQktVo/3DYkM78BPGrs/4i4HTg5M7dGxOXAqyPiU8AzgO2Z6emukqR5wYRSktR6s51QRsQlwGlU11puBN6amR+dJPwK4CxgA7AbeNmsVFKSpB4woZQktd5sJ5SZee5BXj+u43kCr2q6TpIkNaEvE8qBgQEWL1487fgDBw4Ul7F3795G45cvX14UDzAyMlIUv3///kaXDzBuJMKDGhoaKorvpk6lDcNuGpKjo6PF8/Sb0nUYGCi/i1DJ+zfXpxxqYXP/k2am6WNvN5/R0jZEaZumNB6a/67pZvmz8V5oYfM+lJIkSZKkrvRlD6UkSb3kL+6SJDXDhFKS1Gr9MMqrJEltZUIpSWo9E0pJkprhNZSSJEmSpK7YQylJaj17KCVJaoYJpSSp9UwoJUlqhgmlJKn1TCglSWrGQRPKiLgQeB6wJTN/tJ52KfDEOmQlcH9mPnWCeW8HHgBGgOHMPLkntZYkaZoc5VWzzbaTpIVkOj2UFwEfBC4em5CZLx57HhHvBbZPMf+zM3NrtxWUJEmaZy7CtpOkBeKgCWVmXh0Rx030WkQE8CLgf/a4XpIk9Yw9lJpNtp0kLSQzvYbyp4B7MvPWSV5P4EsRkcBfZua6yRYUEWuBtfXzokoMDQ0VxXdj//79RfHd1Kl0vUvrVBoPMDg4WBRf2mgbHR0tigc4cOBA42WUrsfIyEij8VC+HrNRp4EB7zyk+cGEUn2kJ22nznZTG3TzGS2dp7SdNRv8blIbzDShPBe4ZIrXn5WZmyLiUcBVEfGtzLx6osD6C3MdwKJFi/x0SZJ6xkab+khP2k6d7aY6+ZSkOdF190JELAJ+Ebh0spjM3FT/3QJcBpzSbXmSJHVrbGCeXj2kbth2ktRGMzlf7TnAtzJz40QvRsTyiDh07DnwXOCmGZQnSZI0n9l2ktQ6B00oI+IS4L+AJ0bExoh4Rf3SOYw7ZSMijo6IK+p/jwK+EhE3AF8DvpCZ/9S7qkuSdHC97p20h1IHY9tJ0kIynVFez51k+vkTTLsLOKt+fhvwlBnWT5KkGTMJ1Gyy7SRpIZnpoDySJPU9E0pJkpphQilJaj0TSkmSmuFN5CRJkiRJXbGHUpLUevZQSpLUDBNKSVKrOTKrJEnNMaGUJLWeCaUkSc3wGkpJkiRJUlf6sodydHSUvXv3Tjt+6dKlxWUsWbKkKH7RorJNNTo6WhQP5b+gl2wjgAMHDhTFAwwODhbP07T9+/cXxQ8NDRWXUfr+dfN+N21goOz3om7WoWQee4g0l9z/JPk9IDWjLxNKSZJ6yYakJEnNMKGUJLWeCaUkSc0woZQktZqjvEqS1BwH5ZEkSZIkdcUeSklS69lDKUlSM+yhlCS13thpr716HExEXBgRWyLipo5pfxoR34qIGyPisohY2fHaGyNiQ0R8OyJ+tpmtIElS75lQSpJab7YTSuAi4Ixx064CfjQzfwz4DvBGgIg4CTgHeHI9z/+JiP67Z5MkSRMwoZQktd5sJ5SZeTVw37hpX8rM4frfa4Bj6+dnA5/KzH2Z+T1gA3BK79ZekqTmmFBKklRuVUSs73isLZz/5cAX6+fHAHd2vLaxniZJUt9zUB5JUqs1dNuQrZl5cjczRsSbgWHgE72tkiRJs8+EUpLUev0yymtEnA88Dzg9H6zUJmBNR9ix9TRJkvpeXyaUmbl13759d0zw0ipg6/iJ+/bta75Sk5Td4nK7Knv37t1zVvZk9uzZM2dlz5NyZ6vsxza8fGlS/ZBQRsQZwAXAT2dm55fl5cAnI+J9wNHAicDX5qCKmr+2AhO1m8BjmmW3t9yFUPa8aDv1a0L5yImmR8T6bk8xmqm5KnshrvNCLXshrrM0W2Y7oYyIS4DTqK613Ai8lWpU1yXAVREBcE1mvjIzb46ITwO3UJ0K+6rMHJnVCmtem6zdBB7TLLu95S7ksvtNXyaUkiTNZ5l57gSTPzpF/DuBdzZXI0mSmmFCKUlqvX445VWSpDaabwnlugVY9kJc54Va9kJcZ6lxDY3yKs0XHtMsu63lLuSy+0p4kJUktdnixYvzqKOO6ukyN27ceK3XzkiSNP96KCVJKuaPp5IkNWNgrisgSZIkSZqf+i6hjIgzIuLbEbEhIt4wwetLIuLS+vWvRsRxPSp3TUT8a0TcEhE3R8RrJog5LSK2R8T19eMtvSi7XvbtEfGNernrJ3g9IuID9XrfGBFP71G5T+xYn+sjYkdEvHZcTM/WOyIujIgtEXFTx7QjIuKqiLi1/nv4JPOeV8fcGhHn9ajsP42Ib9Xb9LKIWDnJvFO+P12U+7aI2NSxTc+aZN4pPw9dln1pR7m3R8T1k8zb9TpL/WbsOspePaR+YtvJtlMTbae5ajdNUbZtp37V64PsDA/Qg8B3gccBi4EbgJPGxfwW8JH6+TnApT0qezXw9Pr5ocB3Jij7NODzDa377cCqKV4/C/giEMCpwFcb2v53A49tar2B/wE8HbipY9p7gDfUz98AvHuC+Y4Abqv/Hl4/P7wHZT8XWFQ/f/dEZU/n/emi3LcBr5/G+zHl56Gbsse9/l7gLb1eZx8++ukxNDSUq1ev7ukDWD/X6+XDR6ZtJ9tOzbWd5qrdNEXZtp369NFvPZSnABsy87bM3A98Cjh7XMzZwMfq538PnB5R3SF6JjJzc2ZeVz9/APgmcMxMl9tDZwMXZ+UaYGVErO5xGacD383MO3q83B/KzKuB+8ZN7nxPPwa8YIJZfxa4KjPvy8xtwFXAGTMtOzO/lJnD9b/XAMeWLLPbcqdpOp+HrsuuPzcvAi7pom7SvNHEwVPqI7adJmfbaQZtp7lqN01W9jTZdpoD/ZZQHgPc2fH/Rh7+xfTDmHqH3g4c2ctK1KeCPA346gQvPzMiboiIL0bEk3tYbAJfiohrI2LtBK9PZ9vM1DlM/gFpar0BjsrMzfXzu4GJhmOcjfV/OdUvmRM52PvTjVfXp4xcOMmpKk2v808B92TmrZO83sQ6S5J6y7aTbae5ajvNdrsJbDv1JUd5HSciVgCfAV6bmTvGvXwd1SkNO+vztj8HnNijop+VmZsi4lHAVRHxrfoXklkREYuB5wNvnODlJtf7ITIzI2LWf/6PiDcDw8AnJgnp9fvzYeAdVF8876A6feLlM1heN85l6l/Y5nSflHrJXkWpObadFl7baQ7aTWDbqW/1Ww/lJmBNx//H1tMmjImIRcBhwL29KDwihqi+ED+RmZ8d/3pm7sjMnfXzK4ChiFjVi7Izc1P9dwtwGVWXfafpbJuZOBO4LjPvmaBuja137Z6xU1Dqv1smiGls/SPifOB5wK/kJK3Oabw/RTLznswcycxR4K8mWV6T67wI+EXg0inq2NN1luaSp7yqxWw72Xaa1bbTXLSb6mXZdupT/ZZQfh04MSKOr3/1OQe4fFzM5cDYKFUvBP5lsp25RH1O9EeBb2bm+yaJefTYNQcRcQrV9pvxF3JELI+IQ8eeU13wfNO4sMuBl0blVGB7x6kOvTDpLy5NrXeHzvf0POAfJoi5EnhuRBxen+Lw3HrajETEGcAFwPMzc/ckMdN5f0rL7byG4xcmWd50Pg/deg7wrczcOEn9er7O0lwyoVSL2Xay7TRrbae5ajfVy7Lt1K96fZDtwUH6LKpRwr4LvLme9naqHRdgKfB3wAbga8DjelTus6i60G8Erq8fZwGvBF5Zx7wauJlqxKhrgJ/oUdmPq5d5Q738sfXuLDuAD9Xb5RvAyT3c5supvuQO65jWyHpTffFuBg5Qndf+CqrrOL4M3Ar8M3BEHXsy8Ncd8768ft83AC/rUdkbqM61H3vPx0bBOxq4Yqr3Z4blfrx+H2+k+qJbPb7cyT4PMy27nn7R2PvbEduzdfbho58eixYtylWrVvX0gaO8+uijx0THCmw7gW0nmEHbaZJyG283TVG2bac+fUS9ASRJaqWhoaFcuXJlT5e5devWazPz5J4uVJKkechBeSRJrdbxS7IkSeoxE0pJUuuZUEqS1AwTSklS65lQSpLUDBNKSVLrmVBKktSMfrttiCRJkiRpnrCHUpLUevZQSpLUDBNKSVKrOcqrJEnNMaGUJLWeCaUkSc0woZQktZ4JpSRJzXBQHkmSJElSV+yhlCS1nj2UkiQ1w4RSktR6JpSSJDXDhFKS1GqO8ipJUnO8hlKSJEmS1BV7KCVJrWcPpSRJzTChlCS1ngmlJEnNMKGUJLWeCaUkSc3wGkpJUuuNDczTq8fBRMSFEbElIm7qmHZERFwVEbfWfw+vp0dEfCAiNkTEjRHx9AY3hSRJPWVCKUlS710EnDFu2huAL2fmicCX6/8BzgROrB9rgQ/PUh0lSZoxE0pJUqv1undyOj2UmXk1cN+4yWcDH6uffwx4Qcf0i7NyDbAyIlb3Zu0lSWqW11BKklqvgWsoV0XE+o7/12XmuoPMc1Rmbq6f3w0cVT8/BrizI25jPW0zkiT1ORNKSVLrNZBQbs3Mk7udOTMzIhwpSJI075lQSpJar09Geb0nIlZn5ub6lNYt9fRNwJqOuGPraZIk9T2voZQkaXZcDpxXPz8P+IeO6S+tR3s9FdjecWqsJEl9zR5KSVLbXZmZq3q8zK1TvRgRlwCnUV1ruRF4K/Au4NMR8QrgDuBFdfgVwFnABmA38LIe11WSpMZEn5wGJEmSJEmaZzzlVZIkSZLUFRNKSZIkSVJXTCglSZIkSV0xoZQkSZIkdcWEUpIkSZLUFRNKSZIkSVJXTCglSZIkSV35/wF2BMdPOIaTbwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "Err_BN8=error(xdata8, popt8[0], popt8[1],popt8[2], popt8[3], popt8[4], recorte8.ravel(), inc=1)\n", + "popt8E, pcov8E = curve_fit(gauss2d, xdata8, recorte8.ravel(), p0=[1,0,1,1,1],sigma=Err_BN8)\n", + "estrella8E=gauss2d(xdata8, popt8E[0], popt8E[1],popt8E[2], popt8E[3], popt8E[4])\n", + "FWHM8E=FWHM_I.append(2*np.sqrt(2*np.log(2))*np.sqrt(popt8E[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 8 fotografÃa\")\n", + "plt.imshow(recorte8, plt.get_cmap('gray'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 8 a partir de la gaussiana con incertidumbre\")\n", + "plt.imshow(estrella8E.reshape(20, 20), plt.get_cmap('gray'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 9 con incertidumbre (blanco y negro)" + ] + }, + { + "cell_type": "code", + "execution_count": 826, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAFTCAYAAABh6sKFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAu+0lEQVR4nO3de7xkZX3n+8+X7qYBQS6nDQrdCokYDxpvBxFjLl5iBGOCM2eSwUQTSUZiDkk0wxwjZjJq5ph4jGPUMTHpKIm3kRDFDJOYCIlG40yANB2jAqLtBbqhEVq5NJcGuvnNH2ttLDa9e+/dvZ+qVb0/79drv7pq1apnPWtVVdfzredZz0pVIUmSJElafg6YdAUkSZIkSZNhIJQkSZKkZcpAKEmSJEnLlIFQkiRJkpYpA6EkSZIkLVMGQkmSJElapgyEkiTNkmRdkk8luSrJlUleNfLYryT5Ur/8LSPLz02yKck1SV4wmZpLkrQ4KyddAUmS9uTUU0+tbdu2LWmZV1xxxSeq6tQ9rLITOKeqNiY5DLgiySXA0cDpwJOr6p4k3wWQ5ETgDOAJwDHA3yZ5XFXtWtKKS5K0xAyEkqRB27ZtGxs2bFjSMpOs2dPjVbUV2Nrf3p7kauBY4BXAm6vqnv6xm/qnnA6c3y//epJNwMnAPy5pxSVJWmIOGZUkDV5VLenfYiQ5DngqcBnwOOAHk1yW5NNJnt6vdiyweeRpW/plkiQNmj2EkqTBW2yIW4A1SUa7HddX1frZKyU5FPgo8Oqquj3JSuAo4BTg6cAFSb57qSsnSdK4GAglSYPXIBBuq6qT9rRCklV0YfBDVXVhv3gLcGF1Fbo8yf3AGuB6YN3I09f2yyRJGjSHjEqSBm2ph4suJFwmCfBe4OqqetvIQ38BPKdf53HAgcA24CLgjCSrkxwPnABcvrRHQpKkpWcPoSRJD/Us4GXAF5J8rl/2OuA84LwkXwTuBX6u7y28MskFwFV0M5Se7QyjkqRpYCCUJA1egyGj823vs0DmePilczznTcCbmlVKkqQGDISSpMEbdyCUJGm5MBBKkgbPQChJUhsGQknS4BkIJUlqw1lGJUmSJGmZsodQkjRoC71UhCRJWjwDoSRp8AyEkiS1YSCUJA2egVCSpDYMhJKkwTMQSpLUhpPKSJIkSdIyZQ+hJGnw7CGUJKkNA6EkadCcZVSSpHYMhJKkwTMQSpLUhucQ7keSHJekkqzs7/99kn83hu0myZ8kuSXJ5a23t6+SfG+SzyXZnuRX+2VvS/L2CVdNkrQMTOr7emiS/GCSa/axjL06drNfg2mW5Mokz550PVpI8tdJfm4A9Xh0kjuSrJjj8Tck+WCjbTf//8FA2ECSbyS5u3/jzPy9awHPqySPHUcd55Pk+5Nc3oemzyf5gT2s/gPA84G1VXXyAsqe9H6+BvhUVR1WVe9M8oPA04H/d4J1krQHM8NGl+pPgmX5fT1Rs49bVf1DVX3vJOu0P6iqJ1TV30+6Hi1U1WlV9b5xb7f/v+FHRupxXVUdWlW7xl2XcZj6X0UG7Mer6m+XssAkK6tq51KWOcd2jgL+B/BK4ELgJcD/SPLdVXXLbp7yGOAbVXVn67rNZ4HH6DHA+SP3jwf+bVXd165mkvaFIU4NLafv64nYm+MxrmMojZr2993e1t8ewjFL8tgkn05yW5JtSf6sX/6ZfpV/6X+h/LdJnp1kS5JfT3Ij8CdJDkjy2iRfTfKtJBf0Xwjzbfd7knyyf862JB9KcsQcq38/cGNV/XlV7aqqDwI3A/96N+X+AvAe4Jl9vd/YL39Fkk1Jvp3koiTHzLWfe1q/f+xHk1zTH7M/6I/fv+sfe3mS/5nk95J8C3jDnvY1ySeB5wDv6rf/OOC5wP/TP35kkr9McnO6IbB/mWTtfMdXUjtL3TtouNRC7G/f133ZJyf5xyS3Jtma5F1JDpxj3ZkhlWcluaFf/z8stKz+uWcn+QrwlT0dt5HnfKM/hp8H7sxuhnMmeX6SL/Wvy7uAzHr855Nc3X+HfyLJY+Y4drPLPbN/3vYkX0vyi3tYd0WS/9K/Pl9P8st58BDgOcvq2y2fnVXeAz2nSV6Y5Kr+udfPHPMka/o2ya3p2kr/kOSAkeP2I4t4XV6Z5Cv9Or+fJP1ji3nvkeQJSS7p6/PNJK/rl69O8vb+fXNDf3t1/9jMZ+WcJDf1dTxzD9t4YLjkzLFL8tb+9f16ktNG1j0q3SlMN/SP/8XIYy9Kd7rQrUn+V5InjTw2+333YeDRdD+u3JHkNXnoMO/j0/3/sD3JJcCakfIe9L7ezWv0hiR/nuSD/fO/kORxSc7tj8nmJD8661B8T7qRALcn+e/p/y8ZqdcvJLkO+GS/fFGfAwPh+P1n4GLgSGAt8F8BquqH+sef3HdJ/1l//5HAUXS9WmcBvwK8GPhh4BjgFuD3F7DdAL/TP+f/BNYBb5hn/dn3nzh7pap6L90vk//Y1/v1SZ7bb+ungEcB19L3yO1uP/e0fpI1wEeAc4H/A7iG7gtw1DOArwFHA2/a075W1XOBfwB+ud/+l2eVdQDwJ3TH+9HA3cC8w4cktWUg1ATsV9/XvV3Ar9E1Xp8JPI/+B9E9eA5wAvCjwK/nO8PoFlLWi+m+o0/cw3Gb7SXAjwFHzO7p6NsEFwL/sd/uV4FnjTx+OvA6ukD8CLrv+w/Ps38zbgJeBDwcOBP4vSRPm2PdVwCnAU8Bntbv596WNdt7gV+sqsPoXsdP9svPAbbQ7dfRdPu5u//MFvK6vIjuVJkn0bW9XtAvX/B7L8lhwN8Cf9Ov/1jg7/qHfwM4he74PBk4me41m/FI4HDgWOAXgN9PcuTutrMbz6BrC64B3gK8dybQAh8ADgGeAHwX8Ht9XZ8KnAf8Il1b8o+Ai2ZCam/0ffcS4Dq60QOHVtVbdlOP/wZc0dfjPwOLPc/xx/v6Hgn8M/AJujboscBv9XUc9bPAz9O1k3cC75z1+A/TvWYv2JvPgYGwnb/of4WY+XtFv/w+ui+LY6pqR1V9dg9lANwPvL6q7qmqu+nC129U1Zaquofug/pvMs9J0VW1qaou6cu5GXgb3Ztnd/4ROCbJS5KsSncy7/fQfcgW4meA86pqY1/Hc+l6EI/bi/VfCFxZVRf2XwzvBG6c9fwbquq/VtXOqrp7kfv6IFX1rar6aFXdVVXb6QLmgp4rSZpKy+b7uqquqKpL++/Lb9A1Ouf7jntjVd1ZVV+g+8H0JYso63eq6tv98Viod1bV5jmeM9Mm+Eh1p3m8nQe3CV7Zb/Pqvs3w28BT5usd6ffnr6rqq9X5NN2PAT84x+o/Bbyjf21vAd68D2XNdh9wYpKHV9UtVbVxZPmjgMdU1X3VnX/5kEC4wNflzVV1a1VdB3yKLrgt9r33Irre6f/Sfz62V9Vl/WM/A/xWVd3Ul/NG4GWz9vG3+v34OHAHsNBzSa+tqj+u7ly+9/XH5Ogkj6IL6a/sj9t9/bGH7geaP6qqy6rrSX8fcA9daJ2xp/fdgyR5NF2g/s3+WH2Gbuj2YvxDVX2if5/+OV1we3P/vj4fOG5W7+wHquqL1Z2e9ZvAT+XBE9y8of+czvzfs6jPgYGwnRdX1REjf3/cL38N3S8wl6ebFern5ynn5qraMXL/McDHZr64gKvpfg06ek+FJDk6yfnphh/cDnyQke7tUVX1LeB04N8D3wROpfsVaMvu1t+NY+h6+WbKuwP4Ft2vHotd/xhg88hjtZt6bB69s5h9nS3JIUn+KMm1/XM/AxyROWaVkjQeZQ+h2lk239f9sLS/THJjX/Zvz1X2iNHv2GvpvpcXWtZmFm9Pz9ldm2B0/ccA7xg55t+mew3nan88IMlpSS5NN/zxVrrwOdexeVA9Ztd5kWXN9n/361/bD0l8Zr/8d4FNwMXphqG+do79WMjrMhqi7wIO7Z+7mPbTOroe2t15ULuOkfdN71v14N7fB+qwAA/Uvaru6m8e2tfn2zX3XBfnjP7w068/WqfFvFePAW6pB8+dce1cK8/hmyO37wa21XcmrJkJpaPHZPbncBUPfm326XNgIByzqrqxql5RVcfQdV3/QfY8U9nslstm4LRZX14HVdX182z6t/uyvq+qHg68lIcOMxmt56er6ulVdRTdrzqPBxZ6SYkb6N6MACR5GF0X/Vx13NP6W+mG6sw8ltH7M9WddX9R+zrLOXS/Uj2jf+7MEJeFPl9SAwZCjdt++n39buBLwAl92a/bU9m9dSO3H033nb3Qsvbmw7an52wdrU/fJhit32a64Zajx/zgqvpfe9pgP3Two8BbgaOr6gjg48x9bB7UNplVp/nKupORHtwkjxwtuKr+qapOpxvy+BfABf3y7VV1TlV9N/ATwL9P8rzd1G1vXuMZi3nvbQa+e47HHtSu48Hvm1Y2A0dl9+c8bgbeNOt9cUhVjQ6jnP2+m+99eGTfXp3x6JHbs1/jFXQ9gPti9ufwPmDbyLLR+i76c2AgHLMkP5nvTFJyC90LeH9//5vM/eGa8YfAm2a6fZM8oh8rPJ/D6Lrkb0tyLPNcYiHJU/vhJw+n+09tc1V9YgHbgW6c8plJntL/x/jbwGXVDV2Ah+7nntb/K+D7kry4H2ZzNt3Y8yXb1908927g1nQn7L5+Ec+V1IiBUOO2n35fHwbcDtyR5PHALy2gPr/Zj555At35cDPn/u1NWQs5bnvyV8ATkvzrvk3wqzy4TfCHwLl9XUlyeJKfXEC5BwKr6Sbk2ZluopLZk3qMugB4VZJj+wDy64so61/6fXhKkoMYOUcvyYFJfibJ4dUNHbyd/j2XblKUx/Yh+Da63ub7eai9eV1Gn7vQ995fAo9K8up0k8gcluQZ/WMfBv5j/55fA/wnut7GZqpqK/DXdD/cHNl/JmZ+1P9j4JVJnpHOw5L8WLrzIOcy53u1qq4FNgBv7F+zH6A7J3DGl4GD+m2sojt/cvVuilqMlyY5MckhdOcYfqTmvgTGoj8HBsJ2ZmYmmvn7WL/86cBlSe4ALgJeVVVf6x97A/C+vov3p+Yo9x398y5Osh24lO4E2/m8ke7E59vo/kO9cJ71X0P3y8NmuvHZ/2oB2wCguum7f5PuF7KtdOcznDGyyhsY2c89rV9V24CfpDtx+FvAiXQfwnv2UIXF7uuotwMH0+37pXQnS0uaoKUOgwZCzbKcvq//A/DTwHa6RvJcE7uM+jTdUMW/A95aVRfvQ1lvYP7jNqeRNsGb6doEJwD/c+TxjwH/P3B+uiGPX6Q7r2y+crfThcsL6ML/T9O9dnP5Y7rzAj9PNyHIx+km+tg1X1nVTWb3W3RDe78CzD439WXAN/r6v5LufDz6ff1busD2j8AfVNWndlO3vXldZiz4vdfv5/PpgtCN/b48p3/4/6Nrq30e+AKwsV/W2svoes6+RDexz6v7um6gmwjoXXSvySbg5fOU9Tt0ofbWjMyuO+Kn6T7P36brPHj/zANVdRvdRD7voRvtdicLP+1qLh8A/pTuWB9E9x7brb35HMQvRk2TdFMsbwF+Zo7/CCXtZ5785CfXxRdfPP+Ki/DIRz7yiqo6aUkLlfYj6SZ2+zqwqqb4umzj0PcC/mFVLegSF9LQ2EOowUvygiRH9MNJZ8bCXzrhakkaI3sIJQ1FkoPTXS9wZT+08vXAx+Z7njRUBkJNg2fSzWS1jW5owotrcVNYS5pyBkJJAxK64ZW30A0ZvZruPDlpKu3xWjjSEFTVG9jzRXkl7ecMcdJ49RO7OcP2blR3uYOnT7oe0lIxEEqSBs9AKElSGw4ZlSRJkqRlqkkPYZLmP+UefPDBTcu///7dXdplad13333Nt7FyZdtO4HH8an/AAe1/t+gu69PWON5TLe3cuZNdu3Y5fEhj53l/2t+No90kaSK2VdW+XpS+uakdMnrCCSc0Lf+uu+5qWj7AjTfe2Hwba9asaVr+OEJt6/APsHr1vl4vdH7bt29vvo2WxvF+leZiIJS0P9hffuQex//Jrbcxpu+Va8exkX01tYFQkrR8GAglSWrDcwglSZIkaZmyh1CSNHj2EEqS1IaBUJI0eAZCSZLacMioJGnQZmYZXcq/+SRZl+RTSa5KcmWSV816/JwklWRNfz9J3plkU5LPJ3lao8MhSdKSsodQkjR4E+gh3AmcU1UbkxwGXJHkkqq6Ksk64EeB60bWPw04of97BvDu/l9JkgbNHkJJkmapqq1VtbG/vR24Gji2f/j3gNcAoyn1dOD91bkUOCLJo8ZZZ0mS9saCAmGSU5Nc0w+FeW3rSkmSNGrcQ0ZHJTkOeCpwWZLTgeur6l9mrXYssHnk/ha+EyC1DNl2kjQt5h0ymmQF8PvA8+m+4P4pyUVVdVXrykmSBE2GjK5JsmHk/vqqWj97pSSHAh8FXk03jPR1dMNFpTnZdpI0TRZyDuHJwKaq+hpAkvPphsb4n5okaSwaBMJtVXXSnlZIsoouDH6oqi5M8n3A8cC/JAFYC2xMcjJwPbBu5Olr+2Vanmw7SZoaCxkyuqBhMEnOSrJh1i+ukiTtkwnNMhrgvcDVVfW2vh5fqKrvqqrjquo4uu/Dp1XVjcBFwM/2s42eAtxWVVubHRQN3bxtJ9tNkoZiyWYZ7YfarAdI4gWjJEnT7FnAy4AvJPlcv+x1VfXxOdb/OPBCYBNwF3Bm8xpqqtlukjQUCwmEDoORJE3UuC87UVWfBTLPOseN3C7g7MbV0vSw7SRpaixkyOg/ASckOT7JgcAZdENjJEkai0nOMirtBdtOkqbGvD2EVbUzyS8DnwBWAOdV1ZXNayZJUs8Qp2li20nSNFnQOYT9ORNznTchSVJTBkJNG9tOkqbFgi5ML0mSJEna/yzZLKOSJLXgeX+SJLVjIJQkDZ6BUJKkNgyEkqTBMxBKktSG5xBKkiRJ0jJlD6EkafDsIZQkqY0mgTAJq1evblH0A3bu3Nm0/MMPP7xp+TCeBs6qVaualn/PPfc0LR/gwAMPbL6N1scJYOXKtr+/JJnq8qU9MRBKGsf3UOv2wCGHHNK0fICDDjqo+TZat8MB7rzzzqblj6MNe//99zffxlKwh1CSNGjOMipJUjsGQknS4BkIJUlqw0llJEmSJGmZsodQkjR49hBKktSGgVCSNHgGQkmS2jAQSpIGz0AoSVIbBkJJ0qA5y6gkSe04qYwkSZIkLVP2EEqSBs8eQkmS2jAQSpIGz0AoSVIbBkJJ0uAZCCVJasNAKEkaPAOhJEltOKmMJEmSJC1T9hBKkgbNy05IktSOgVCSNHgGQkmS2jAQSpIGz0AoSVIbnkMoSZIkScuUPYSSpMGzh1CSpDYMhJKkwTMQSpLUhoFQkjRozjIqSVI7BkJJ0uAZCCVJasNJZSRJkiRpmbKHUJI0ePYQSpLURpNAmIQDDzywRdEPuPfee5uWf+SRRzYtH+Dwww9vvo3WTjjhhObbOPnkk5tv47bbbmu+jQ0bNjQt/7rrrmtavg1yTZLvP0krV7bvx2jd/nv84x/ftHyA4447rvk2br311ubbuPLKK5uWf/311zctH+Duu+9uvo2l4JBRSdLgzUwss1R/80myLsmnklyV5Mokr+qX/26SLyX5fJKPJTli5DnnJtmU5JokL2h3NCRJWjoGQknSoC11GFxgb+NO4JyqOhE4BTg7yYnAJcATq+pJwJeBcwH6x84AngCcCvxBkhUNDockSUvKQChJ0ixVtbWqNva3twNXA8dW1cVVtbNf7VJgbX/7dOD8qrqnqr4ObALaj3eXJGkfOamMJGnwJnkOYZLjgKcCl8166OeBP+tvH0sXEGds6ZdJkjRoBkJJ0uA1CIRrkozO9LS+qtbPXinJocBHgVdX1e0jy3+Dbljph5a6YpIkjZOBUJI0eA0C4baqOmlPKyRZRRcGP1RVF44sfznwIuB59Z2KXQ+sG3n62n6ZJEmD5jmEkqTBm8AsowHeC1xdVW8bWX4q8BrgJ6rqrpGnXASckWR1kuOBE4DLl/QgSJLUgD2EkiQ91LOAlwFfSPK5ftnrgHcCq4FLuszIpVX1yqq6MskFwFV0Q0nPrqpd46+2JEmLYyCUJA3aIi4VsZTb/CyQ3Tz08T08503Am5pVSpKkBuYdMjrXxXklSRqXCVyHUNprtp0kTZOF9BDOXJx3Y5LDgCuSXFJVVzWumyRJwGQvOyHtBdtOkqbGvIGwqrYCW/vb25NcTXdtJf9TkySNhYFQ08S2k6RpsqhZRvdwcV5JkiTNYttJ0tAteFKZuS7OO/L4WcBZ/e0lq6AkSfYQahrtqe002m6SpElaUCCc6+K8o6pqPbAeYMWKFX5zS5KWhBPBaBrN13YabTcl8Q0uaWLmDYRzXZxXkqRxMRBqmth2kjRNFnIO4czFeZ+b5HP93wsb10uSJGla2XaSNDUWMsvoXBfnlSRpLOwh1DSx7SRpmix4UhlJkibFQChJUhsGQknS4BkIJUlqw0AoSRo0ZxmVJKmdRV2YXpIkSZK0/7CHUJI0ePYQSpLUhoFQkjR4BkJJktqY2kB4wAFtR7vu2rWrafkAd911V/NtHH300U3LP+2005qWD3DmmWc238aXv/zl5tvYvn170/I3b97ctPzuOsvSZBgIpWEbx3fEgQce2Hwb69ata1r+j//4jzctH+D5z39+82189atfbb6ND3zgA03Lv+2225qWD3D33Xc338ZSmNpAKElaPgyEkiS14aQykiRJkrRM2UMoSRo0LzshSVI7BkJJ0uAZCCVJasNAKEkaPAOhJEltGAglSYNnIJQkqQ0nlZEkSZKkZcoeQknS4NlDKElSGwZCSdKgOcuoJEntGAglSYNnIJQkqQ3PIZQkSZKkZcoeQknS4NlDKElSGwZCSdLgGQglSWrDQChJGjQnlZEkqR0DoSRp8AyEkiS14aQykiRJkrRM2UMoSRo8ewglSWrDQChJGjwDoSRJbThkVJI0eDMTyyzV33ySrEvyqSRXJbkyyav65UcluSTJV/p/j+yXJ8k7k2xK8vkkT2t8SCRJWhIGQknSoC11GFxgb+NO4JyqOhE4BTg7yYnAa4G/q6oTgL/r7wOcBpzQ/50FvHupj4MkSS0YCCVJmqWqtlbVxv72duBq4FjgdOB9/WrvA17c3z4deH91LgWOSPKo8dZakqTF8xxCSdLgTfIcwiTHAU8FLgOOrqqt/UM3Akf3t48FNo88bUu/bCuSJA2YgVCSNHgNAuGaJBtG7q+vqvWzV0pyKPBR4NVVdXuS0TpVEme7kSRNNQOhJGnwGgTCbVV10p5WSLKKLgx+qKou7Bd/M8mjqmprPyT0pn759cC6kaev7ZdJkjRozQLhrl27WhUNwMqVbbPsjh07mpYPcN999zXfxsEHH9y0/LVr1zYtH+Cggw5qvo1HPOIRzbdxwAGesivtrXEPGU3XFfhe4OqqetvIQxcBPwe8uf/3v48s/+Uk5wPPAG4bGVoqaQmM43v00EMPbVr+Yx7zmKblAzzpSU9qvo3W7XCAo446qmn549iHaeGRkCTpoZ4FvAz4QpLP9cteRxcEL0jyC8C1wE/1j30ceCGwCbgLOHOstZUkaS8ZCCVJg7aIS0Us5TY/C2SOh5+3m/ULOLtppSRJasBAKEkavEnOMipJ0v7MQChJGjwDoSRJbTjLhSRJkiQtU/YQSpIGzx5CSZLaMBBKkgbPQChJUhsGQknSoE1illFJkpaLBQfCJCuADcD1VfWidlWSJOnBDISaRradJE2DxUwq8yrg6lYVkSRJ2s/YdpI0eAsKhEnWAj8GvKdtdSRJeqiZYaNL9Se1ZttJ0rRY6JDRtwOvAQ5rVxVJknbPEKcp9HZsO0maAvP2ECZ5EXBTVV0xz3pnJdmQZINf3JKkpWQPoabJQtpOo+2mMVZNkh5iIT2EzwJ+IskLgYOAhyf5YFW9dHSlqloPrAdYsWKF37aSpCVhiNMUmrftNNpuSuIbXNLEzNtDWFXnVtXaqjoOOAP45OwwKEmSpI5tJ0nTxOsQSpIGzx5CSZLaWFQgrKq/B/6+SU0kSZqDgVDTyraTpKGzh1CSNHgGQkmS2jAQSpIGz0AoSVIbC7owvSRJkiRp/2MPoSRp0LzshCRJ7RgIJUmDZyCUJKkNA6EkafAMhJIktdEkEFYV999/f4uiH7B9+/am5a9atapp+QBJmm9j5cq2mX/z5s1NywfYuHFj821cc801zbdxww03NC2/9Xt2HO9XSZLmsnPnzubb2LZtW9PyL7/88qblQ/u2H4yn/feNb3yjafk7duxoWv40sYdQkjR49hBKktSGgVCSNHgGQkmS2jAQSpIGzVlGJUlqx0AoSRo8A6EkSW14YXpJkiRJWqbsIZQkDZ49hJIktWEglCQNnoFQkqQ2DISSpMEzEEqS1IaBUJI0aM4yKklSO04qI0mSJEnLlD2EkqTBs4dQkqQ2DISSpMEzEEqS1IZDRiVJgzdzHuFS/c0nyXlJbkryxZFlT0lyaZLPJdmQ5OR+eZK8M8mmJJ9P8rSGh0KSpCVlIJQkDd64AyHwp8Cps5a9BXhjVT0F+E/9fYDTgBP6v7OAdy/FPkuSNA4GQkmSZqmqzwDfnr0YeHh/+3Dghv726cD7q3MpcESSR42nppIk7RvPIZQkDdqALjvxauATSd5K94Pq9/fLjwU2j6y3pV+2day1kyRpL9hDKEkavAZDRtf05wHO/J21gGr8EvBrVbUO+DXgvS33WZKkcbCHUJI0eA16CLdV1UmLfM7PAa/qb/858J7+9vXAupH11vbLJEkaPHsIJUmDN4FJZXbnBuCH+9vPBb7S374I+Nl+ttFTgNuqyuGikqSpYA+hJEmzJPkw8Gy6oaVbgNcDrwDekWQlsINuRlGAjwMvBDYBdwFnjr3CkiTtJQOhJGnwxj2pTFW9ZI6H/q/drFvA2W1rJElSGwZCSdKgDWiWUUmS9jsGQknS4BkIJUlqw0llJEmSJGmZatJDmIQDDmibNW+++eam5R922GFNywc48sgjm2/jlltuaVr+Zz/72ablA1xzzTXNt3Httdc238aWLVualn/ooYc2Lb/1Z1raE3sIpWEbx2f03nvvbb6N1t/Vf/3Xf920fICNGzc238Ydd9zRfBubN29uWv6dd97ZtPxp4pBRSdLgGQglSWrDQChJGjwDoSRJbRgIJUmD5iyjkiS140lBkiRJkrRM2UMoSRo8ewglSWrDQChJGjwDoSRJbRgIJUmDZyCUJKkNA6EkafAMhJIktbGgSWWSHJHkI0m+lOTqJM9sXTFJkqRpZdtJ0rRYaA/hO4C/qap/k+RA4JCGdZIk6QFedkJTyraTpKkwbyBMcjjwQ8DLAarqXuDettWSJOk7DISaJradJE2ThQwZPR64GfiTJP+c5D1JHta4XpIkPWCml3Cp/qTGbDtJmhoLCYQrgacB766qpwJ3Aq+dvVKSs5JsSLLBL1tJ0lIyEGrKzNt2Gm03TaKCkjRjIYFwC7Clqi7r73+E7j+5B6mq9VV1UlWdlGQp6yhJkjRN5m07jbabxl47SRoxbyCsqhuBzUm+t1/0POCqprWSJGmEPYSaJradJE2Thc4y+ivAh/pZsr4GnNmuSpIkfYchTlPKtpOkqbCgQFhVnwMc0iBJmggDoaaNbSdJ02JBF6aXJEmSJO1/FjpkVJKkibGHUJKkNgyEkqTBMxBKktSGgVCSNHgGQkmS2jAQSpIGzVlGJUlqx0llJEmSJGmZsodQkjR49hBKktRGk0BYVezatatF0Q/YsWNH0/If/vCHNy0fYNWqVc23cfPNNzct/5vf/GbT8gFWr17dfBu33357822sWLGiaflHH3100/KTNC1f2hMDoaTWbUuA7du3Ny3/q1/9atPyAa677rrm2xjHa3Hvvfc2LX/nzp1Ny58m9hBKkgbPQChJUhsGQknS4BkIJUlqw0llJEmSJGmZsodQkjRoXnZCkqR2DISSpMEzEEqS1IZDRiVJgzfTS7hUf/NJcl6Sm5J8cdbyX0nypSRXJnnLyPJzk2xKck2SFzQ4BJIkNWEPoSRp8CbQQ/inwLuA988sSPIc4HTgyVV1T5Lv6pefCJwBPAE4BvjbJI+rqvbzskuStI/sIZQkaZaq+gzw7VmLfwl4c1Xd069zU7/8dOD8qrqnqr4ObAJOHltlJUnaBwZCSdLgjXvI6BweB/xgksuSfDrJ0/vlxwKbR9bb0i+TJGnwHDIqSRq0RrOMrkmyYeT++qpaP89zVgJHAacATwcuSPLdS10xSZLGyUAoSRq8BoFwW1WdtMjnbAEurK4ylye5H1gDXA+sG1lvbb9MkqTBc8ioJEkL8xfAcwCSPA44ENgGXASckWR1kuOBE4DLJ1VJSZIWwx5CSdLgjXuW0SQfBp5NN7R0C/B64DzgvP5SFPcCP9f3Fl6Z5ALgKmAncLYzjEqSpoWBUJI0eOMOhFX1kjkeeukc678JeFO7GkmS1IaBUJI0aI0mlZEkSRgIJUlTwEAoSVIbTiojSZIkScuUPYSSpMGzh1CSpDYMhJKkwTMQSpLUhoFQkjR4BkJJktowEEqSBs1ZRiVJasdJZSRJkiRpmbKHUJI0ePYQSpLUhoFQkjR4BkJJktpoFgjvv//+VkUD8NjHPrZp+YccckjT8gFuuumm5tu45557mpZ/6KGHNi0f4M4772y+jXvvvbf5Nlq/p26++eam5d93331Ny5f2xEAoaRx27drVtPwdO3Y0LX9c2xgH/98fH3sIJUmDZ8NAkqQ2nFRGkiRJkpYpewglSYPmZSckSWrHQChJGjwDoSRJbRgIJUmDZyCUJKkNzyGUJEmSpGXKHkJJ0uDZQyhJUhsL6iFM8mtJrkzyxSQfTnJQ64pJkjRjZmKZpfqTWrPtJGlazBsIkxwL/CpwUlU9EVgBnNG6YpIkwdKHQQOhWrPtJGmaLHTI6Erg4CT3AYcAN7SrkiRJD2aI0xSy7SRpKszbQ1hV1wNvBa4DtgK3VdXFrSsmSZI0jWw7SZomCxkyeiRwOnA8cAzwsCQv3c16ZyXZkGSDv+RKkpaSQ0Y1TRbSdhptN02ijpI0YyGTyvwI8PWqurmq7gMuBL5/9kpVtb6qTqqqk5IsdT0lScuYgVBTZt6202i7aSI1lKTeQs4hvA44JckhwN3A8wB/zZIkjY0hTlPGtpOkqTFvIKyqy5J8BNgI7AT+GVjfumKSJAH26mnq2HaSNE0WNMtoVb0eeH3jukiSJO0XbDtJmhYLveyEJEkTYw+hJEltGAglSYNnIJQkqQ0DoSRp8AyEkiS1YSCUJA2egVCSpDYWch1CSZIkSdJ+yB5CSdKgedkJSZLaMRBKkgbPQChJUhtNAuEBBxzAwx72sBZFP2DlyrZZdufOnU3LB9ixY8fUb2PXrl1Nywe47777mm9j9erVzbdx1113NS3/gAPajgC///77m5Yv7cm4A2GS84AXATdV1RNnPXYO8FbgEVW1LUmAdwAvBO4CXl5VG8daYUlTwR+3NESeQyhJGryZYaNL9bcAfwqcOnthknXAjwLXjSw+DTih/zsLePc+77AkSWNiIJQkaZaq+gzw7d089HvAa4DRVHk68P7qXAockeRRY6imJEn7zHMIJUmDN4RhVklOB66vqn/pRok+4Fhg88j9Lf2yrWOsniRJe8VAKEkatEazjK5JsmHk/vqqWj/XykkOAV5HN1xUkqT9hoFQkjR4DQLhtqo6aRHrfw9wPDDTO7gW2JjkZOB6YN3Iumv7ZZIkDZ7nEEqSNI+q+kJVfVdVHVdVx9ENC31aVd0IXAT8bDqnALdVlcNFJUlTwR5CSdLgTeCyEx8Gnk03tHQL8Pqqeu8cq3+c7pITm+guO3HmWCopSdISMBBKkgZv3IGwql4yz+PHjdwu4OzWdZIkqQUDoSRp8IYwy6gkSfsjA6EkadAazTIqSZJwUhlJkiRJWrbsIZQkDZ49hJIktWEglCQNnoFQkqQ2DISSpMEzEEqS1IaBUJI0eAZCSZLacFIZSZIkSVqm7CGUJA2al52QJKkdA6EkafAMhJIktWEglCQNnoFQkqQ2DISSpMEzEEqS1IaTykiSJEnSMmUPoSRp8OwhlCSpDQOhJGnQnGVUkqR2DISSpMEzEEqS1EaTQLhr165tt9xyy7WLeMoaYNtitnHLLbcsrlLtLXofBmjR+7Bjx45GVdkni96Pu+++u1FV9toQ30+PmXQFJGk/tQ1YTLsJhvk9sVjuwzDsD/sAw9yPqWg7NQmEVfWIxayfZENVndSiLuPiPgzH/rAf+8M+SEvJHkLtzxbbboL943vCfRiG/WEfYP/Zj0lwyKgkafAMhJIktWEglCQNnoFQkqQ2hhII10+6AkvAfRiO/WE/9od9kJaEs4xKu7U/fE+4D8OwP+wD7D/7MXbxS1aSNGQHHnhgPfKRj1zSMjdv3nyF55pIkjScHkJJkubkj5eSJLVxwCQ3nuTUJNck2ZTktZOsy95Ksi7Jp5JcleTKJK+adJ32VpIVSf45yV9Oui57I8kRST6S5EtJrk7yzEnXabGS/Fr/Pvpikg8nOWjSdZKGYGbY6FL9SdPKttNwTHu7CWw7qTOxQJhkBfD7wGnAicBLkpw4qfrsg53AOVV1InAKcPaU7gfAq4CrJ12JffAO4G+q6vHAk5myfUlyLPCrwElV9URgBXDGZGslDYOBULLtNEDT3m4C205isj2EJwObquprVXUvcD5w+gTrs1eqamtVbexvb6f7IB072VotXpK1wI8B75l0XfZGksOBHwLeC1BV91bVrROt1N5ZCRycZCVwCHDDhOsjDYKBUAJsOw3GtLebwLaTvmOSgfBYYPPI/S1M2X8GsyU5DngqcNmEq7I33g68Brh/wvXYW8cDNwN/0g/feE+Sh026UotRVdcDbwWuA7YCt1XVxZOtlSRpQGw7Dcfbme52E9h2Um+i5xDuT5IcCnwUeHVV3T7p+ixGkhcBN1XVFZOuyz5YCTwNeHdVPRW4E5iqcyuSHEn3S+/xwDHAw5K8dLK1kiZvqXsH7SGUhmFa2077SbsJbDupN8lAeD2wbuT+2n7Z1Emyiu4/tA9V1YWTrs9eeBbwE0m+QTf85LlJPjjZKi3aFmBLVc38wvgRuv/kpsmPAF+vqpur6j7gQuD7J1wnaRAMhBJg22ko9od2E9h2Um+SgfCfgBOSHJ/kQLoTQC+aYH32SpLQjb2+uqreNun67I2qOreq1lbVcXSvwyeraqp+XamqG4HNSb63X/Q84KoJVmlvXAeckuSQ/n31PKbs5G6pFQOhBNh2GoT9od0Etp30HRO7DmFV7Uzyy8An6GYEOq+qrpxUffbBs4CXAV9I8rl+2euq6uOTq9Ky9SvAh/ovya8BZ064PotSVZcl+QiwkW4Gtn8G1k+2VtIwGOIk205qwraTiF+ykqQhW7VqVR155JFLWubNN998RVWdtKSFSpI0hSbWQyhJ0kL546UkSW0YCCVJg+Z5f5IkteNlJyRJgzfuSWWSnJfkpiRfHFn2u0m+lOTzST6W5IiRx85NsinJNUle0OYoSJK09AyEkiQ91J8Cp85adgnwxKp6EvBl4FyAJCfSzTT4hP45f5BkxfiqKknS3jMQSpIGb9w9hFX1GeDbs5ZdXFU7+7uX0l0DDrqLIp9fVfdU1deBTcDJS7f3kiS14zmEkqTBG+A5hD8P/Fl/+1i6gDhjS79MkqTBMxBKkgavQSBck2TDyP31VbWga1cl+Q266119aKkrJUnSuBkIJUmD1miW0W17cx3CJC8HXgQ8r75TqeuBdSOrre2XSZI0eJ5DKEnSAiQ5FXgN8BNVddfIQxcBZyRZneR44ATg8knUUZKkxbKHUJI0eOM+hzDJh4Fn0w0t3QK8nm5W0dXAJUkALq2qV1bVlUkuAK6iG0p6dlXtGmuFJUnaSxngifqSJD1gxYoVdcghhyxpmXfccccVezNkVJKk/Y09hJKkwfPHS0mS2jAQSpIGz0AoSVIbTiojSZIkScuUPYSSpEFrdNkJSZKEgVCSNAUMhJIktWEglCQNnoFQkqQ2DISSpMEzEEqS1IaTykiSJEnSMmUPoSRp8OwhlCSpDQOhJGnQnGVUkqR2DISSpMEzEEqS1IbnEEqSJEnSMmUPoSRp8OwhlCSpDQOhJGnwDISSJLVhIJQkDZ6BUJKkNgyEkqSh+wSwZonL3LbE5UmSNJXir66SJEmStDw5y6gkSZIkLVMGQkmSJElapgyEkiRJkrRMGQglSZIkaZkyEEqSJEnSMvW/ATwo32BBn6iUAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "Err_BN9=error(xdata9, popt9[0], popt9[1],popt9[2], popt9[3], popt9[4], recorte9.ravel(), inc=1)\n", + "popt9E, pcov9E = curve_fit(gauss2d, xdata9, recorte9.ravel(), p0=[1,12,0,1,1], sigma=Err_BN9)\n", + "estrella9E=gauss2d(xdata9, popt9E[0], popt9E[1],popt9E[2], popt9E[3], popt9E[4])\n", + "FWHM9E=FWHM_I.append(2*np.sqrt(2*np.log(2))*np.sqrt(popt9E[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 9 fotografÃa\")\n", + "plt.imshow(recorte9, plt.get_cmap('gray'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 9 a partir de la gaussiana con incertidumbre\")\n", + "plt.imshow(estrella9E.reshape(10, 10), plt.get_cmap('gray'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 10 con incertidumbre (blanco y negro)" + ] + }, + { + "cell_type": "code", + "execution_count": 827, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4gAAAFSCAYAAACwivGuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAuJElEQVR4nO3de7wkdX3n/9d7bnIZ5RKiCIxCFOMPja4uItE1GjURCIZsHvkRjFfcDWsWE3XNGsXNEuOa3Uc28bZGExRvEUVUdEnEiK5G1ySgQEDkYkRRGRiF4TIzMMDcPvtH1YHmeGZOz+FUdfXM6/l49ON0V1d/61vVfbq+7/pWfTtVhSRJkiRJSyZdAUmSJEnSMBgQJUmSJEmAAVGSJEmS1DIgSpIkSZIAA6IkSZIkqWVAlCRJkiQBsGzSFZAkaUeOOeaYWrt27aKWeckll3y+qo5Z1EIlSdoFGBAlSYO2du1aLr744kUtM8kBi1qgJEm7CAOiJGnwqmrSVZAkabdgQJQkDZ4BUZKkfhgQJUmDZ0CUJKkfBkRJ0qBVlQFRkqSe+DMXkiRJkiTAHkRJ0hSwB1GSpH4YECVJg2dAlCSpHwZESdLgGRAlSeqHAVGSNHgGREmS+uEgNZIkSZIkwB5ESdLA+TMXkiT1x4AoSRo8A6IkSf0wIEqSBs+AKElSPwyIkqTBMyBKktQPB6mRJEmSJAH2IEqSpoA9iJIk9cOAKEkaNEcxlSSpPwZESdLgGRAlSeqH1yBOsSSHJqkky9rHf5/k3w+gXk9P8p0kdyT5tUnXZz5J/luStUl+1D5eleS6JIdNum6SpOk31P310CT5XJKXPoDXPyvJ6gW+9oNJ/ttClz0USV6Y5IJJ16MLSZ6R5NuTrgdAkr9M8oc7eL6SPLqD5S74M74zDIiLIMn3k9zVBqKZ27vGeF0nH56FSPLmJFck2ZLkj+Z4/reS/CDJnUk+k2T/HRT3x8C7qmplVX1mnuX+UZKPPLDaL1ySRwCvBY6oqgPbye8FXllV102qXpLub+Y008W6affk/no45tr/V9WxVfWhSdVpV1BVZ1XVL0+6Hl2oqv9bVT/b93KTvCzJ12bV5RVV9ea+69IXA+LieX4biGZur3ygBc4caezJtcDrgM/OUY/HAX8FvBh4GLARePcOynokcGUHddwpY26/RwC3VNVN7WseAXy4qn5iO0iaHAOiFpH76wlbyPbqeRtLwPR/7pIsXcjrDIgdS/LoJF9Jsq49jfHj7fSvtrNc3h7B/M2ZbuMkf9Ce7viBJEuSvD7Jd5PckuSccY4GJnlUki+1r1mb5Kwk+25v/qr6UFV9Dtgwx9MvBP6mqr5aVXcAfwj8epIHz7Hc7wI/A/xNu14PSnJQkvOS3Jrk2iS/3c57DHAa8JvtvJe30+ecv31uzyQfSnJbkquTvG60q709OvwHSb4J3Jlk2cj225DkqiT/tp33ucAXgIPa5X+Q5n/irNx3GtDJ7XI2JPlekv8w37aXtLgWOxyOExDTnGr+5fY748okr5r1/GvbXqUD2sdJ8s72O+ubSZ7c0eZQR3a3/XW77HckuT7J+iSXJHnGDur5wTSn1X2h3Sd+JckjxykrTW/hJ5N8JMl64BXMvf+/99TbNL02/5DkbUluAf5ojjrt2dbrtiRXAU+Z9fxBST6V5OY0l4783vbWb9br9kvyt+3rbmvvH7KD+Z+c5J/b7fKJJB9Pe7rqfGW17ZbnztpWH2nv79Fus1uS3J7kG0keNrJ9vtcu87okLxyZ/rWR8uZ7X85J8uG2nCuTHDny/Jztp+1sg6VJThuZ/5Ikq9rnntbWfV3792kjr/v7NL3i/9C+7oK036tzLON+p1e22+7303znrmu3+x4jz5+Q5LJ23b+bpt1Jkn2SnJlkTZIb0lxqtHRk+41+7j4O/CXw8+1n9fZ2vvudkpzkP7fl3Zjk5bPqfb9Tyud4jyrJf0xzedaGdns8Ksk/tnU/J8mKWWWelub74vsz7/1Ivd6T5PwkdwK/mAX8HxgQu/dm4AJgP+AQ4H8BVNUvtM8/sT2C+fH28YHA/jS9cKcAvwv8GvBM4CDgNuAvxlhugP/evub/A1Yxx5frmB4HXD7zoKq+C2wCHjN7xqp6FPBD7jtCew9wNrC6rctvAH+S5NlV9XfAnwAfb+d9YlvMnPO3z50OHEoTQn8JeNEc9X0B8CvAvlW1Bfgu8AxgH+BNwEeSPLyqvggcC9zYLv9lc5R1E3A88BDgZOBtseEn9W4CPYhbgNdW1RHA0cCpSY6AJjwCv0zzXTfjWODw9nYK8J7FXH/1YrfaX7e+AfwrmvX4KPCJ0Qb2HF5Is50OAC4DztqJsk4APgnsC5zJ3Pv/2Z4KfI+mN/Qtczx/OvCo9vY84N7rF5MsAf6GZnscDDwHeHWS5+1g/WYsAT5A894+ArgLmPNU5Lbh/mnggzTr/jFgNEiNXdYcXkrTdlkF/BRNsL4ryd7AO4Fjq+rBwNNo3o+5zPe+/CpNu2tf4LxZdZuz/bSd5fwnmvbXcTRtppcDG9McJPlsW9+fAt4KfDbJT4289rdo2lgPBVYAv7+dZczlROAY4DDgCcDLAJIcBXwY+M/tuv0C8P32NR+k+Y5/NPAkmu/z0WuCRz93L6LZ7v/Uflb3nV2BNnj+Pk279HDgubPnGcPzgH9Ns795HXBGu+xVwONptu2MA2n+Bw+m+YyckWT01Nvfovl/eTDwjyzg/8CAuHg+0x7dmbnN9HptpvlSOKiq7q6qr+2gDIBtwOlVdU9V3UXzoXxjVa1uw9YfAb+Rebq8q+raqvpCW87NNP+Qz1zguq0E1s2ato7mg7dDbUPq6cAftOt/GfA+4CULnP9E4E+q6raqWk3zhTPbO6vq+nb7UVWfqKobq2pbu2P/DnDUfHVvX/vZqvpuNb5C03jY7hFWSbuGqlpTVZe29zcAV9PsXAHeRrMDH02aJ9Ccnl5VdSGw7w4aUpos99f3LfsjVXVLVW2pqj8HHgTs6Bqvz7a9k/cAb6TpVVk1Zln/VFWfaffFd425PjdW1f9qy5zrNScCb6mqW6vqeu7fJngK8NNV9cdVtamqvkczxsBJ8y20XY9PVdXG9v//LWz/PTma5lcB3llVm6vqXODrCyxrts00oerRVbW1qi6pqvXtc9uAxyfZs/2+mvPSnjHel69V1flVtRX4a+CJI6/dmfbTvwf+S1V9u/0evLyqbqE5YP+dqvrrtg4fA64Bnj/y2g9U1b+07/E5NIF2XO9s63grTRCaee2/A97f/m9tq6obquqaND2wxwGvrqo7q7nE6G3c/3Mx3+duthPbdfhWVd3Jwg7w/GlVrW/fx28BF1TV96pqHfA5miA76g/b74yv0ATwE0ee+99V9Q9VtQ34ORbwf2BAXDy/VlX7jtze205/Hc3Rwa+3Xfcv30EZADdX1d0jjx8JfHpmR0bTSNlKc1Rju5I8LMnZbdf5euAjNEcbFuIOmqNBox7C3Ke3zHYQcGv7pTjjB9zX0NrZ+Q8Crh95bvT+nNOSvKQ9xWBmGz6eMbdFkmOTXJjmdNfbab5UFrodJS1QLX4P4gFJLh65nbK9ZSc5lGbnfFGSE4AbquryWbMdzP2/e1az/e85TZb76/uW/ftpLqNY19Z5n3mWfe9nvJpTWG+l2S+PU9Zc++v5zPea2W2CH4zcfyTNJSS3j7wnpzHP+wGQZK8kf5VmsJ/1wFdpDvrMdT3XQTTfCaMHjO6t006WNdtfA58Hzm5PXfzTJMvbEPKbNAcl1iT5bJLHbmdd5ntffjRyfyOwR+67zGZn2k+raHocZzuI+78v8JPtwNl1WLmdZcxle6/dXn0eCSyn2W4z6/VXNL2XM3b2s7qjz+G4fjxy/645Ho9uk9vaz8Do8g4aeTxalwX9HxgQO1ZVP6qq366qg4D/ALw7Ox4Jbfa5T9fTnEIwujPbo6pumGfRf9KW9XNV9RCabuoscDWuZOSIUpKfoTkC9S9jvPZGYP/c//qHRwAz9Z+9vvPNv4bm1J8Zq+ZY5r1lprk+4r3AK4GfqubUgG8xxrZI8iDgU8CfAQ9rX3v+OK+VtLg6CIhrq+rIkdsZcy03yUqa74FX05ySdBrwX/tab/Vnd9tfp7kW7XU0PQ/7tfu4dfMs+959bvu/sT9w45hlzd5e45zrPd88a7h/O+ARI/evB66b9X48uKqOG2O5r6XpZXtq+57MnGY817ZZAxycZPS50TrNV9adwF4j88+MqE41PZJvquZU96fRXPLykva5z1fVLwEPp+mRey+zLPA9nnntzrafrqc51Xe2G2lCyqjRdl1Xtlef64F7gANGPhcPqarHjcyzs5/VHX0OYQfv8QLt155mPLq8G0cezz5YsdP/BwbEjiX5/3Pfxci30bxp29rHP6a5lm5H/hJ4S/uPSpKfbo9gz+fBNEcS1yU5mOYc7B3Vc3l7TvoSYFmaC6Nnjm6dBTw/ze/P7E3zMxbnzurlm1M1p3z8I/Df2zKfQNPtPzO09Y+BQ9NcKzDO/OcAb0hz0ffBNF9cO7I3zTa/uV3Pk2mOgI1jBc2O9WZgS5Jjac5Tl9SzDgLivJIspwmHZ1Vz2tijaK5zuTzJ92kOVl2a5ECaxs5oA+EQum8AaRHthvvrB9Mc9Li5Lee/8pO9j7Mdl+TfpLnu7s3Ahe1+eyFl3W//v0CjbYJDaK4DnfF1YEOagYT2TDOIyuOTPGXuou7nwTS9NrenuYbu9B3M+080PcWvTDMw3gnc/zTM+cq6DDipfV+PpBl7AYAkv5jk59r3dz3NKafb0vQ6n9C+x/fQfH628ZMW8r7M2Nn20/uANyc5PI0npLnO8HzgMWl+fmVZkt8EjgD+dsx6LNSZwMlJnpNmAKmDkzy2qtbQXC7050ke0j73qCQ7Ou33x8AhmTVQzIhzgJclOSLJXsz9Hv96mt7kR9O0ax+oNyVZ0R4EOB74xHbmW9D/gQFx8cyM2jlz+3Q7/Sk0pyXdQXPx76uqOf8XmnOUP9R2+Z44R5kA72hfd0GSDcCFNBfPzudNwJNpjhR9Fjh3nvnfS/MF9gKa6wruohkmm2rOh34FzY7nJpovnP84Rh1mvIBmYJkbaS7kPr2aAWLgvg/0LUkuHWP+P6Y5des64Is0F7zfs70FV9VVwJ/TfIH/mOZc7H8Yp9LtDvX3aP7xb6O56Pe8cV4rafEsdjgcJyC2vQFnAldX1VvbelxRVQ+tqkOr6lCa76InV9WPaL4bXtI2jI4G1rUNEQ2P++vG54G/o+ld/AFwN/OfWvdRmsbvrTQDaswMFLeQsuba/++sN7XLu46m0f/XM09Uc03d8TTXpF0HrKUJMfuMUe7bgT3b11xIs25zqqpNwK/TNPpvp9kmf8t9bZP5yvpDmoNPt7Xr89GR5w6kaeespzll+SvtOi6hGRTmRpr34pnA78xRvYW8LzPrtbPtp7fStJcuaOt7JrBnNdchHk/Tk3oLTY/m8VW1dpx6LFRVfZ12cEGa/62vcF9P5ktoOgGuotnun6Tpid2eL9H0zv8oyU/Uu5pRhd/ezndt+3fU22gGi/ox8CHuP7jTQvyorfeNbVmvqKpr5ppxof8HGfdIqjRESX4HOKmqFnpBv6SBe+ITn1gXXHDBopZ54IEHXlJVR27v+ST/Bvi/wBXcd2T+tKo6f2Se7wNHVtXaNlC+i2Y0vY3AyVV18aJWWpqgND8Ftbqq/suk6zJ0SS4C/rKqPjDpukgLMdU//qjdT5pRAX+G5ojW4TRHpMYdLlrSlOr7YGY1I1ju8Dqdthdx5n4Bp3ZcLUkD1J6e+G2a3pkX0vzcwnZ7HaWhMyBq2qygGW3qMJpTOc4G3j3JCknqnme7SBqwn6U5vXJvmt/P+w1PMdc0MyBqqlTVDxh/kBlJuwgDojRZVfWySddhqKoZBXnOkZClaWRAlCQNngFRkqR+OIqpJEmSJAnoqAcxSeeHepcs6Tbb9nG0Opn3d0ofsK63Ux+2bt066SosiqVLl84/0wOwZcuWTssHqKruP7TSLDvz24XSNOqj3SRpItZW1U9PuhI7q7NTTLsOP3vvvXen5ffR2F62rPszfPfYY4/Ol9G1O+64Y9JVWBQrV67stPzbbrut0/L7+J+QtseAKEmaQj+YdAUWwmsQJUmDZ0CUJKkf03/+oSRJkiRpUdiDKEkaPHsQJUnqhwFRkjR4BkRJkvphQJQkDZqjmEqS1B8DoiRp8AyIkiT1w0FqJEmSJEnAmAExyTFJvp3k2iSv77pSkiSNmjnNdLFuUtdsO0maVvOeYppkKfAXwC8Bq4FvJDmvqq7qunKSJIGnmGq62HaSNM3G6UE8Cri2qr5XVZuAs4ETuq2WJEn3sQdRU8a2k6SpNc4gNQcD1488Xg08dfZMSU4BTlmkekmSBDiKqabSvG0n202ShmrRRjGtqjOAMwCSuCeXJEnaDttNkoZqnIB4A7Bq5PEh7TRJknphD6KmjG0nSVNrnGsQvwEcnuSwJCuAk4Dzuq2WJEn38RpETRnbTpKm1rw9iFW1Jckrgc8DS4H3V9WVnddMkqSWoU7TxLaTpGk21jWIVXU+cH7HdZEkaU4GRE0b206SptU4p5hKkiRJknYDizaKqSRJXfC6QUmS+mNAlCQNngFRkqR+GBAlSYNnQJQkqR9egyhJkiRJAuxBlCRNAXsQJUnqx9QGxG3btnVa/ubNmzstH2DJEjtwx/GQhzyk82V0/XkC2Lp1a6fl77PPPp2Wf/vtt3davrQjBkRJu4KlS5d2voxdpX3Zdbupj7bftJragChJ2j04iqkkSf0xIEqSBs+AKElSP3aNPmhJkiRJ0gNmD6IkafDsQZQkqR8GREnS4BkQJUnqhwFRkjR4BkRJkvrhNYiSpEGbGcV0MW/zSbIqyZeTXJXkyiSvaqf/zyTXJPlmkk8n2XfkNW9Icm2Sbyd5XndbRJKk7hgQJUn6SVuA11bVEcDRwKlJjgC+ADy+qp4A/AvwBoD2uZOAxwHHAO9O0v0PnkmStMgMiJKkweu7B7Gq1lTVpe39DcDVwMFVdUFVbWlnuxA4pL1/AnB2Vd1TVdcB1wJHLfqGkCSpY16DKEkavEleg5jkUOBJwEWznno58PH2/sE0gXHG6naaJElTxYAoSRq8DgLiAUkuHnl8RlWdMXumJCuBTwGvrqr1I9PfSHMa6lmLXTFJkibJgChJGrwOAuLaqjpyRzMkWU4TDs+qqnNHpr8MOB54Tt1XsRuAVSMvP6SdJknSVPEaREmSZkkS4Ezg6qp668j0Y4DXAb9aVRtHXnIecFKSByU5DDgc+HqfdZYkaTHYgyhJGrRxB5ZZZE8HXgxckeSydtppwDuBBwFfaDIkF1bVK6rqyiTnAFfRnHp6alVt7bvSkiQ9UAZESdLg9R0Qq+prQOZ46vwdvOYtwFs6q5QkST0wIEqSBm+So5hKkrQ78RpESZIkSRJgD6IkaQrYgyhJUj8MiJKkwTMgSpLUDwOiJGnQJjSKqSRJuyUDoiRp8AyIkiT1w0FqJEmSJEmAPYiSpClgD6IkSf3oJCAuWbKElStXdlH0vbpuLCxfvrzT8gGWLl3a+TK2bt3aafn7779/p+UDrFq1qvNl3HXXXZ0v46qrruq0/Ic+9KGdln/HHXd0Wr60IwZESX1YsWJFp+Xvs88+nZYPsN9++3W+jK7blwC33nprp+Vv2LCh0/IBtmzZ0vkyumAPoiRp8AyIkiT1w4AoSRo0RzGVJKk/DlIjSZIkSQLsQZQkTQF7ECVJ6ocBUZI0eAZESZL6YUCUJA2eAVGSpH4YECVJg2dAlCSpHw5SI0mSJEkC7EGUJA2cP3MhSVJ/5u1BTLIqyZeTXJXkyiSv6qNikiTNmAmJi3WTumTbSdI0G6cHcQvw2qq6NMmDgUuSfKGqruq4bpIkAV6DqKlj20nS1Jo3IFbVGmBNe39DkquBgwG/5CRJvTAgaprYdpI0zXZqkJokhwJPAi7qpDaSJEm7ENtOkqbN2IPUJFkJfAp4dVWtn+P5U4BT2vuLVkFJkuxB1DTaUdtptN0kSUMyVkBMspzmC+6sqjp3rnmq6gzgDIClS5e6J5ckLQoHltE0mq/tNNpuSuIHXNJgzBsQ03QHnglcXVVv7b5KkiTdnwFR08S2k6RpNs41iE8HXgw8O8ll7e24juslSZI0rWw7SZpa44xi+jXAiwolSRNjD6KmiW0nSdNs7EFqJEmaFAOiJEn9MCBKkgbPgChJUj8MiJKkQXMUU0mS+jPOIDWSJEmSpN2APYiSpMGzB1GSpH4YECVJg2dAlCSpH50ExCQsWdLt2asbN27stPyVK1d2Wj7AihUrOl/GHnvs0Wn5T3nKUzotH+D5z39+58vo+vMEcPbZZ3da/urVqzstv/ndZ2kyDIiSli5d2vky9t13307LP+qoozotH+AZz3hG58u46667Ol/Gl770pU7Lv/zyyzstH2DdunWdL6ML9iBKkgbPgChJUj8cpEaSJEmSBBgQJUkDN/MzF4t5m0+SVUm+nOSqJFcmeVU7ff8kX0jynfbvfu30JHlnkmuTfDPJkzveLJIkdcKAKEkavL4DIrAFeG1VHQEcDZya5Ajg9cD/qarDgf/TPgY4Fji8vZ0CvGext4EkSX0wIEqSBq/vgFhVa6rq0vb+BuBq4GDgBOBD7WwfAn6tvX8C8OFqXAjsm+Thi7wZJEnqnIPUSJIGb5KD1CQ5FHgScBHwsKpa0z71I+Bh7f2DgetHXra6nbYGSZKmiAFRkrQ7OiDJxSOPz6iqM2bPlGQl8Cng1VW1fvTnXqqqkji8qiRpl2JAlCQNXgc9iGur6sgdzZBkOU04PKuqzm0n/zjJw6tqTXsK6U3t9BuAVSMvP6SdJknSVPEaREnSoE1oFNMAZwJXV9VbR546D3hpe/+lwP8emf6SdjTTo4F1I6eiSpI0NexBlCQN3gSuQXw68GLgiiSXtdNOA/4HcE6Sfwf8ADixfe584DjgWmAjcHKvtZUkaZEYECVJmqWqvgZkO08/Z475Czi100pJktQDA6IkafAmOYqpJEm7EwOiJGnwDIiSJPXDgChJGrRxB5aRJEkPnAFRkjR4BkRJkvrhz1xIkiRJkgB7ECVJU8AeREmS+mFAlCQNngFRkqR+GBAlSYNnQJQkqR8GREnSoDmKqSRJ/XGQGkmSJEkSYA+iJGkK2IMoSVI/DIiSpMEzIEqS1A8DoiRp8AyIkiT1o5OAuG3bNu65554uir7Xpk2bOi1/xYoVnZYPsNdee3W+jJUrV3Za/mMf+9hOywc48cQTO1/GnXfe2fkyrrjiik7LX716daflS5NkQJS0dOnSzpex//77d1r+s5/97E7LB3jNa17T+TJuv/32zpexYcOGTsu/7rrrOi0fYN26dZ0vowsOUiNJkiRJAjzFVJI0cP7MhSRJ/TEgSpIGz4AoSVI/DIiSpMEzIEqS1A+vQZQkSZIkAfYgSpKmgD2IkiT1w4AoSRo8A6IkSf0wIEqSBs1RTCVJ6s/YATHJUuBi4IaqOr67KkmSdH8GRE0j206SptHODFLzKuDqrioiSZK0i7HtJGnqjBUQkxwC/Arwvm6rI0nST5o5zXSxblLXbDtJmlbjnmL6duB1wIO7q4okSXMz1GkKvR3bTpKm0Lw9iEmOB26qqkvmme+UJBcnuXjRaidJEvYgarqM03ay3SRpqMbpQXw68KtJjgP2AB6S5CNV9aLRmarqDOAMgCVLlrj3lSQtCkOdptC8bafRdlMSP+CSBmPeHsSqekNVHVJVhwInAV+aHQ4lSZLUsO0kaZr5O4iSpMGzB1GSpH7sVECsqr8H/r6TmkiStB0GRE0r206Spo09iJKkwTMgSpLUDwOiJGnwDIiSJPVj3kFqJEmSJEm7B3sQJUmD5s9cSJLUHwOiJGnwDIiSJPXDU0wlSYM304u4WLf5JHl/kpuSfGtk2r9KcmGSy5JcnOSodnqSvDPJtUm+meTJHW4KSZI61UkPYhKWL1/eRdH3uvvuuzst/0EPelCn5QMsW9Z9B27X22nJku6PMSxdurTzZey1116dL+PWW2/ttPyue1jswdFu5oPAu4APj0z7U+BNVfW5JMe1j58FHAsc3t6eCryn/StpEfWxH+p6GZs3b+60fOi+7dfXMrZu3dpp+bZrts9TTCVJg9f3jryqvprk0NmTgYe09/cBbmzvnwB8uJpKXphk3yQPr6o1/dRWkqTFY0CUJA3eQI70vhr4fJI/o7lE42nt9IOB60fmW91OMyBKkqaO1yBKkgZtsa8/bMPmAe11hDO3U8aoyu8Ar6mqVcBrgDO7XG9JkibBHkRJ0uB10IO4tqqO3MnXvBR4VXv/E8D72vs3AKtG5juknSZJ0tSxB1GSpPHcCDyzvf9s4Dvt/fOAl7SjmR4NrPP6Q0nStLIHUZI0eH1fg5jkYzQjlB6QZDVwOvDbwDuSLAPuBmZOSz0fOA64FtgInNxrZSVJWkQGREnS4E1gFNMXbOepfz3HvAWc2m2NJEnqhwFRkjR4AxnFVJKkXZ4BUZI0aCMjj0qSpI45SI0kSZIkCbAHUZI0BexBlCSpHwZESdLgGRAlSeqHAVGSNHgGREmS+mFAlCQNngFRkqR+OEiNJEmSJAmwB1GSNHD+zIUkSf0xIEqSBs+AKElSPwyIkqTBMyBKktQPA6IkafAMiJIk9cNBaiRJkiRJgD2IkqQpYA+iJEn9MCBKkgbNUUwlSeqPAVGSNHgGREmS+uE1iJIkSZIkoKMexCQsX768i6LvtXLlyk7L78Mdd9zR+TI2b97cafnf+MY3Oi0f4B3veEfny9iwYUPny1izZk2n5W/cuLHT8rdt29Zp+dKO2IMoaevWrZ0vY+3atZ2W/8UvfrHT8qGfNs3dd9/d+TIuvPDCTstfv359p+VPM08xlSQNngFRkqR+GBAlSYNnQJQkqR8GREnSoDmKqSRJ/XGQGkmSJEkSYA+iJGkK2IMoSVI/DIiSpMEzIEqS1A8DoiRp8AyIkiT1w4AoSRo8A6IkSf0Ya5CaJPsm+WSSa5JcneTnu66YJEnStLLtJGlajduD+A7g76rqN5KsAPbqsE6SJN3Ln7nQlLLtJGkqzRsQk+wD/ALwMoCq2gRs6rZakiTdx4CoaWLbSdI0G+cU08OAm4EPJPnnJO9LsnfH9ZIk6V4zvYiLdZM6ZttJ0tQaJyAuA54MvKeqngTcCbx+9kxJTklycZKL3flKkhaTAVFTZt6202i7aRIVlKTtGScgrgZWV9VF7eNP0nzp3U9VnVFVR1bVkUkWs46SJEnTZN6202i7qffaSdIOzBsQq+pHwPVJfrad9Bzgqk5rJUnSCHsQNU1sO0maZuOOYvq7wFntKFzfA07urkqSJN3HUKcpZdtJ0lQaKyBW1WWAp0BIkibCgKhpY9tJ0rQa5xpESZIkSdJuwIAoSRq8vq9BTPL+JDcl+das6b+b5JokVyb505Hpb0hybZJvJ3leB5tAkqRejHsNoiRJEzOBU0w/CLwL+PDMhCS/CJwAPLGq7kny0Hb6EcBJwOOAg4AvJnlMVW3tu9KSJD1Q9iBKkgav7x7EqvoqcOusyb8D/I+quqed56Z2+gnA2VV1T1VdB1wLHLV4ay9JUn8MiJKkQVvscNgGxANmfqS8vZ0yRlUeAzwjyUVJvpLkKe30g4HrR+Zb3U6TJGnqeIqpJGl3tHYBP1C+DNgfOBp4CnBOkp9Z9JpJkjRBBkRJ0uAN5GcuVgPnVlOZryfZBhwA3ACsGpnvkHaaJElTp5OAuHXrVtatW9dF0ffac889Oy1/69buxxZYvnx558vYvHlzp+Vfc801nZYPsHHjxs6Xcffdd3e+jNWrV3da/qZNmzotfyANdO2mBvL5+wzwi8CXkzwGWAGsBc4DPprkrTSD1BwOfH1SlZR2Vdu2bet8GevXr++0/EsuuaTT8gG+853vdL6MPt6L22+/vdPy77zzzk7Ln2b2IEqSBq/vgJjkY8CzaK5VXA2cDrwfeH/70xebgJe2vYlXJjkHuArYApzqCKaSpGllQJQkDV7fAbGqXrCdp160nfnfAryluxpJktQPRzGVJEmSJAH2IEqSBm7c3y6UJEkPnAFRkjR4BkRJkvphQJQkDZ4BUZKkfhgQJUmDZ0CUJKkfDlIjSZIkSQLsQZQkTQF7ECVJ6ocBUZI0aI5iKklSfwyIkqTBMyBKktQPr0GUJEmSJAH2IEqSpoA9iJIk9cOAKEkaPAOiJEn9MCBKkgbNQWokSeqPAVGSNHgGREmS+uEgNZIkSZIkwB5ESdIUsAdRkqR+GBAlSYNnQJQkqR8GREnS4BkQJUnqhwFRkjRojmIqSVJ/HKRGkiRJkgTYgyhJmgL2IEqS1A8DoiRp8AyIkiT1o7OAuGXLlq6KBmDbtm2dlr9x48ZOywdYsWJF58tYvnx5p+XfcccdnZYPcNVVV3W+jKVLl3a+jK4buHfddVen5Xf9PyftiAFRUh82b97cafm33357p+UDrF+/vvNl9GHr1q2dlu9+ZfvsQZQkDZ47ckmS+uEgNZIkSZIkwB5ESdLA+TMXkiT1x4AoSRo8A6IkSf0wIEqSBs+AKElSP7wGUZIkSZIE2IMoSZoC9iBKktQPA6IkafAMiJIk9WOsU0yTvCbJlUm+leRjSfboumKSJMF9o5gu5k3qmm0nSdNq3oCY5GDg94Ajq+rxwFLgpK4rJknSDAOipoltJ0nTbNxBapYBeyZZBuwF3NhdlSRJkqaebSdJU2negFhVNwB/BvwQWAOsq6oLZs+X5JQkFye5ePGrKUnandmDqGkyTtvJdpOkoRrnFNP9gBOAw4CDgL2TvGj2fFV1RlUdWVVHLn41JUm7s74DYpL3J7kpybfmeO61SSrJAe3jJHlnkmuTfDPJkzvYBJoi47SdbDdJGqpxTjF9LnBdVd1cVZuBc4GndVstSZLuM4EexA8Cx8yemGQV8Ms0PUMzjgUOb2+nAO95wCusaWfbSdLUGicg/hA4OsleSQI8B7i622pJktSYxCimVfVV4NY5nnob8DpgtJATgA9X40Jg3yQPX4x119Sy7SRpao1zDeJFwCeBS4Er2tec0XG9JEkalCQnADdU1eWznjoYuH7k8ep2mnZTtp0kTbNl48xUVacDp3dcF0mS5tTBwDIHzBoc5Iyq2m4DPslewGk0p5dK87LtJGlajRUQJUmapA4C4tqdHBzkUTQDjlzenDHIIcClSY4CbgBWjcx7SDtNkqSpY0CUJA3epH+aoqquAB468zjJ92l+BH1tkvOAVyY5G3gqzU8arJlMTSVJemAMiJKkwes7ICb5GPAsmlNRVwOnV9WZ25n9fOA44FpgI3ByL5WUJKkDBkRJkmapqhfM8/yhI/cLOLXrOkmS1AcDoiRp0HbitwslSdIDZECUJA2eAVGSpH50EhCTsHz58i6KvteSJfP+hOMDcscdd3Rafl/22WefTsvfa6+9Oi0fYOvWrZ0vY/PmzZ0vo+vPbB/bSZoUA6KkXcG2bdt2iWVo12YPoiRp8AyIkiT1o9suDUmSJEnS1LAHUZI0ePYgSpLUDwOiJGnQHMVUkqT+GBAlSYNnQJQkqR9egyhJkiRJAuxBlCRNAXsQJUnqhwFRkjR4BkRJkvphQJQkDZ4BUZKkfhgQJUmD5iimkiT1x0FqJEmSJEmAPYiSpClgD6IkSf0wIEqSBs+AKElSPwyIkqTBMyBKktQPA6IkafAMiJIk9cNBaiRJkiRJgD2IkqSB82cuJEnqjwFRkjR4BkRJkvphQJQkDZ4BUZKkfhgQJUmDZ0CUJKkfDlIjSZIkSQLsQZQkTQF7ECVJ6ocBUZI0aI5iKklSfwyIkqTBMyBKktSPTgJiVa3dtGnTD3biJQcAa3dmGZs2bdq5SnVvp9ehDzfffPPOzD7IdViAXWE9hrgOj5x0BSRpF7UW2Jl2EwxzP7GzXIdh2BXWAYa5HlPZduoqIP70zsyf5OKqOrKLuvTFdRiOXWE9doV1kBaTPYjale1suwl2jf2E6zAMu8I6wK6zHkPgKaaSpMEzIEqS1A8DoiRp8AyIkiT1YygB8YxJV2ARuA7DsSusx66wDtKicBRTaU67wn7CdRiGXWEdYNdZj4mLO11J0pCtWLGiDjzwwEUt8/rrr7/Ea1UkSfpJQ+lBlCRpuzyYKUlSPwyIkqTBMyBKktSPJZNceJJjknw7ybVJXj/JuixUklVJvpzkqiRXJnnVpOu0UEmWJvnnJH876bosRJJ9k3wyyTVJrk7y85Ou085K8pr2c/StJB9Lssek6yQNwcx1iIt1k6aVbafhmPZ2E9h20twmFhCTLAX+AjgWOAJ4QZIjJlWfB2AL8NqqOgI4Gjh1StcD4FXA1ZOuxAPwDuDvquqxwBOZsnVJcjDwe8CRVfV4YClw0mRrJQ1D3wExyfuT3JTkWyPT/mfbiPpmkk8n2XfkuTe0DfZvJ3leN1tBuzvbToMz7e0msO2kOUyyB/Eo4Nqq+l5VbQLOBk6YYH0WpKrWVNWl7f0NNP9YB0+2VjsvySHArwDvm3RdFiLJPsAvAGcCVNWmqrp9opVamGXAnkmWAXsBN064PtLu6oPAMbOmfQF4fFU9AfgX4A0AbcP2JOBx7Wve3TbkpcVm22kgpr3dBLadtH2TDIgHA9ePPF7NlH05zJbkUOBJwEUTrspCvB14HbBtwvVYqMOAm4EPtKd7vC/J3pOu1M6oqhuAPwN+CKwB1lXVBZOtlTR5i917OE4PYlV9Fbh11rQLqmpL+/BC4JD2/gnA2VV1T1VdB1xL05CXFpttp+F4O9PdbgLbTtqOiV6DuCtJshL4FPDqqlo/6frsjCTHAzdV1SWTrssDsAx4MvCeqnoScCcwVddmJNmPpqF5GHAQsHeSF022VtIwDPAaxJcDn2vv73KNdqkP09p22kXaTWDbSdsxyYB4A7Bq5PEh7bSpk2Q5zRfcWVV17qTrswBPB341yfdpTld5dpKPTLZKO201sLqqZo5AfpLmS2+aPBe4rqpurqrNwLnA0yZcJ2kQOgiIByS5eOR2yrh1SfJGmmuozupqfaXtsO00DLtCuwlsO2k7JhkQvwEcnuSwJCtort84b4L1WZAkoTl3++qqeuuk67MQVfWGqjqkqg6leR++VFVTdfSlqn4EXJ/kZ9tJzwGummCVFuKHwNFJ9mo/V89hyi4Wl7rSQUBcW1VHjtzOGKceSV4GHA+8sO7ritxlGu0aPNtOA7ArtJvAtpO2b2K/g1hVW5K8Evg8zYhD76+qKydVnwfg6cCLgSuSXNZOO62qzp9clXZbvwuc1e40vwecPOH67JSquijJJ4FLaXon/hkYq9EqqXtJjqG55uiZVbVx5KnzgI8meSvNKU6HA1+fQBW1i7PtpA7YdtJPyCJdiyFJUieWL19e++6776KWuXbt2kuq6sjtPZ/kY8CzgAOAHwOn04xa+iDglna2C6vqFe38b6S5LnELzfVUn5tdpiRJ08CAKEkatGXLli16QLzlllt2GBAlSdpdTewUU0mSxuXBTEmS+uHPXEiSJEmSAHsQJUlTwB5ESZL6YUCUJA2eAVGSpH4YECVJg2dAlCSpHwZESdKgjfy4vSRJ6piD1EiSJEmSAHsQJUlTwB5ESZL6YUCUJA2eAVGSpH4YECVJg2dAlCSpHwZESdLgGRAlSeqHg9RIkiRJkgB7ECVJA+fPXEiS1B8DoiRp8AyIkiT1w4AoSRo8A6IkSf0wIEqSBs+AKElSPxykRpIkSZIE2IMoSZoC9iBKktQPA6IkadAcxVSSpP4YECVJg2dAlCSpH16DKEmSJEkC7EGUJE0BexAlSeqHAVGSNHgGREmS+mFAlCQNngFRkqR+GBAlSUP3eeCARS5z7SKXJ0nSLiEelZUkSZIkgaOYSpIkSZJaBkRJkiRJEmBAlCRJkiS1DIiSJEmSJMCAKEmSJElq/T+mpj4t7nG6rgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "Err_BN10=error(xdata10, popt10[0], popt10[1],popt10[2], popt10[3], popt10[4], recorte10.ravel(), inc=1)\n", + "popt10E, pcov10E = curve_fit(gauss2d, xdata10, recorte10.ravel(), p0=[2,13,2,1,1], sigma=Err_BN10)\n", + "estrella10E=gauss2d(xdata10, popt10E[0], popt10E[1],popt10E[2], popt10E[3], popt10E[4])\n", + "FWHM10E=FWHM_I.append(2*np.sqrt(2*np.log(2))*np.sqrt(popt10E[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 10 fotografÃa\")\n", + "plt.imshow(recorte10, plt.get_cmap('gray'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 10 a partir de la gaussiana con incertidumbre\")\n", + "plt.imshow(estrella10E.reshape(10, 10), plt.get_cmap('gray'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Histograma con incertidumbres (blanco y negro)" + ] + }, + { + "cell_type": "code", + "execution_count": 828, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Datos de FWHM con incertidumbres de las estrellas a blanco y negro :\n", + "Desviación : 2.5072119906676873\n", + "Media : 4.216826728193483\n", + "Mediana : 3.1229418738608983\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAU50lEQVR4nO3df7DldX3f8efLZSOo/Gjh1uD+cFUYUuJE0DsE0LYUQoqCbJtgC1UjDMlOjVZsbQw4HZjQTkedRJMUI12BgMogiEaXH0opkhFQ0QsuCCzWHbsNiygLKL/kh4vv/nG+2xzunnvvuez9nrN7v8/HzJn9/vic7/d9z+y9r/P99fmkqpAkddeLxl2AJGm8DAJJ6jiDQJI6ziCQpI4zCCSp43YbdwHztd9++9WqVavGXYYk7VJuu+22h6pqYtC6XS4IVq1axdTU1LjLkKRdSpL/O9M6Tw1JUscZBJLUcQaBJHWcQSBJHWcQSFLHGQSS1HGtB0GSJUm+m+TqAetenOTyJBuT3JpkVdv1SJKebxRHBGcAG2ZYdzrw06o6APg48JER1CNJ6tNqECRZDhwPXDBDk9XAJc30lcAxSdJmTZKk52v7yeI/Bz4I7DnD+mXAfQBVtTXJo8C+wEP9jZKsAdYArFy58gUXs+rMa17we3fUpg8fP7Z9S9JsWjsiSHIC8GBV3baj26qqtVU1WVWTExMDu8qQJL1AbZ4aeiNwYpJNwOeAo5N8dlqb+4EVAEl2A/YGHm6xJknSNK0FQVWdVVXLq2oVcDLwtap6x7Rm64B3NdMnNW0cRFmSRmjkvY8mOReYqqp1wIXAZ5JsBB6hFxiSpBEaSRBU1d8Cf9tMn923/GngbaOoQZI0mE8WS1LHGQSS1HEGgSR1nEEgSR1nEEhSxxkEktRxBoEkdZxBIEkdZxBIUscZBJLUcQaBJHWcQSBJHWcQSFLHGQSS1HEGgSR1nEEgSR3X5uD1uyf5dpI7ktyd5E8GtDk1yZYk65vX77dVjyRpsDZHKHsGOLqqnkiyFLg5yVeq6lvT2l1eVe9tsQ5J0ixaC4JmEPonmtmlzcuB6SVpJ9PqNYIkS5KsBx4Erq+qWwc0+90kdya5MsmKNuuRJG2v1SCoqueq6hBgOXBYktdOa3IVsKqqfgO4Hrhk0HaSrEkylWRqy5YtbZYsSZ0zkruGqupnwI3AcdOWP1xVzzSzFwBvmOH9a6tqsqomJyYmWq1VkrqmzbuGJpLs00zvARwL3Dutzf59sycCG9qqR5I0WJt3De0PXJJkCb3AuaKqrk5yLjBVVeuA9yU5EdgKPAKc2mI9kqQB2rxr6E7g0AHLz+6bPgs4q60aJElz88liSeo4g0CSOs4gkKSOMwgkqeMMAknqOINAkjrOIJCkjjMIJKnjDAJJ6jiDQJI6ziCQpI4zCCSp4wwCSeo4g0CSOs4gkKSOMwgkqeMMAknquDbHLN49ybeT3JHk7iR/MqDNi5NcnmRjkluTrGqrHknSYG0eETwDHF1VrwMOAY5Lcvi0NqcDP62qA4CPAx9psR5J0gCtBUH1PNHMLm1eNa3ZauCSZvpK4JgkaasmSdL2Whu8HiDJEuA24ADgE1V167Qmy4D7AKpqa5JHgX2Bh6ZtZw2wBmDlypVtltyaVWdeM5b9bvrw8WPZr6RdR6sXi6vquao6BFgOHJbktS9wO2urarKqJicmJha0RknqupHcNVRVPwNuBI6btup+YAVAkt2AvYGHR1GTJKmnzbuGJpLs00zvARwL3Dut2TrgXc30ScDXqmr6dQRJUovavEawP3BJc53gRcAVVXV1knOBqapaB1wIfCbJRuAR4OQW65EkDdBaEFTVncChA5af3Tf9NPC2tmqQJM3NJ4slqeMMAknqOINAkjrOIJCkjjMIJKnjDAJJ6jiDQJI6ziCQpI4zCCSp4+YMgiQfTbJXkqVJbkiyJck7RlGcJKl9wxwR/HZVPQacAGyiN7bAH7VZlCRpdIYJgm39ER0PfL6qHm2xHknSiA3T6dzVSe4FngLenWQCeLrdsiRJozLnEUFVnQkcCUxW1S+AJ+mNNSxJWgSG7Yb6FcBvJdm9b9mnW6hHkjRicwZBknOAo4CDgWuBNwM3YxBI0qIwzMXik4BjgB9X1WnA6+iNLSxJWgSGCYKnquqXwNYkewEP0gw4P5skK5LcmOSeJHcnOWNAm6OSPJpkffM6e9C2JEntGeYawVQzCP2ngNuAJ4BvDvG+rcAHqur2JHsCtyW5vqrumdbupqo6YT5FS5IWzpxBUFV/2Eyen+SrwF7NeMRzve8B4IFm+vEkG4BlwPQgkCSN0YxBkOT1s62rqtuH3UmSVfQGsr91wOojktwB/Aj4T1V194D3rwHWAKxcuXLY3UqShjDbEcGfzbKugKOH2UGSlwFfAN7fdFXR73bglVX1RJK3AF8CDtxuZ1VrgbUAk5OTNcx+JUnDmTEIquqf7+jGkyylFwKXVtUXB+zjsb7pa5P8VZL9quqhHd23JGk4s50a+p3Z3jjoD/u09we4ENhQVR+boc2vAj+pqkpyGL27mB6es2pJ0oKZ7dTQW2dZV8CsQQC8EXgn8L0k65tlHwJWAlTV+fSeUXh3kq30+jI6uao89SNJIzTbqaHTdmTDVXUzkDnanAectyP7kSTtmGEGpnl5kguTfKWZPzjJ6e2XJkkahWGeLL4YuI5ex3MA/xt4f0v1SJJGbJgg2K+qrgB+CVBVW4HnWq1KkjQywwTBk0n2pXeBmCSHA45SJkmLxDB9Df1HYB3wmiS3ABP07vaRJC0CswZBkiXAP2teB9G7C+j7zUhlkqRFYNZTQ1X1HHBKVW2tqrur6i5DQJIWl2FODd2S5DzgcnrjFQMwn07nJEk7r2GC4JDm33P7lg3d6Zwkaec2TBCcXlU/7F+Q5NUt1SNJGrFhbh+9csCyzy90IZKk8Zit99FfA34d2HtaT6R7Abu3XZgkaTRmOzV0EHACsA/P74n0ceAPWqxJkjRCs/U++mXgy0mOqKphBquXJO2ChrlG8K+S7JVkaZIbkmxJ8o7WK5MkjcQwQfDbzZCSJwCbgAOAP2qzKEnS6AwTBEubf48HPl9VdjgnSYvIMEFwVZJ7gTcANySZAJ6e601JViS5Mck9Se5OcsaANknyl0k2Jrkzyevn/yNIknbEnEFQVWcCRwKTTT9DPwdWD7HtrcAHqupg4HDgPUkOntbmzcCBzWsN8Ml51C5JWgDDDFX5EuAP+fs/0q8AJud6X1U9sK0/oqp6HNgALJvWbDXw6er5FrBPkv3nUb8kaQcNc2ror4Fn6R0VANwP/Nf57CTJKuBQ4NZpq5YB9/XNb2b7sCDJmiRTSaa2bNkyn11LkuYwTBC8pqo+CvwCoKp+Tm9cgqEkeRnwBeD9zd1H81ZVa6tqsqomJyYmXsgmJEkzGCYInk2yB38/VOVrgGeG2XiSpfRC4NKq+uKAJvcDK/rmlzfLJEkjMkwQnAN8FViR5FLgBuCDc70pSYALgQ1V9bEZmq0Dfq+5e+hw4NGqemC40iVJC2HObqir6vokt9O78yfAGVX10BDbfiPwTuB7SdY3yz4ErGy2ez5wLfAWYCO9u5FOm+8PIEnaMcOMR0BVPQxcM58NV9XNzHEtoaoKeM98titJWljDnBqSJC1iBoEkddxQQZDkTUlOa6Ynkryq3bIkSaMyzJPF5wB/DJzVLFoKfLbNoiRJozPUeATAicCTAFX1I2DPNouSJI3OUA+UNXf3bHug7KXtliRJGqVhguCKJP+DXodwfwD8L+BT7ZYlSRqVYR4o+9MkxwKP0RvQ/uyqur71yiRJIzHsA2XXA/7xl6RFaMYgSPI4zXWBQapqr1YqkiSN1IxBUFV7AiT5L8ADwGfodRnxdsDBYyRpkRjmYvGJVfVXVfV4VT1WVZ9kuKEqJUm7gGGC4Mkkb0+yJMmLkryd5pkCSdKub5gg+LfAvwZ+0rze1iyTJC0Cw9w+uglPBUnSomXvo5LUcQaBJHVca0GQ5KIkDya5a4b1RyV5NMn65nV2W7VIkmY2TDfU/7lv+sXz2PbFwHFztLmpqg5pXufOY9uSpAUyYxAk+eMkRwAn9S3+5rAbrqqvA4/sQG2SpBGY7YjgXnq3ir46yU1JPgXsm+SgBdz/EUnuSPKVJL8+U6Mka5JMJZnasmXLAu5ekjRbEPwM+BCwETgK+Itm+ZlJvrEA+74deGVVvQ7478CXZmpYVWurarKqJicmJhZg15KkbWYLgn8BXAO8BvgY8JvAk1V1WlUduaM7brqreKKZvhZYmmS/Hd2uJGl+ZgyCqvpQVR0DbKLX4dwSYCLJzUmu2tEdJ/nVJGmmD2tqeXhHtytJmp9hxiO4rqqmgKkk766qNw3zzT3JZfROKe2XZDNwDr2B76mq8+ldhH53kq3AU8DJzZCYkqQRGqaLiQ/2zZ7aLHtoiPedMsf684Dz5tqOJKld83qgrKruaKsQSdJ42MWEJHWcQSBJHWcQSFLHGQSS1HEGgSR1nEEgSR1nEEhSxxkEktRxBoEkdZxBIEkdZxBIUscZBJLUcQaBJHWcQSBJHWcQSFLHGQSS1HGtBUGSi5I8mOSuGdYnyV8m2ZjkziSvb6sWSdLM2jwiuBg4bpb1bwYObF5rgE+2WIskaQatBUFVfR14ZJYmq4FPV8+3gH2S7N9WPZKkweYcvL5Fy4D7+uY3N8semN4wyRp6Rw2sXLlyJMUtFqvOvGZs+9704ePHst8u/swancX4/2uXuFhcVWurarKqJicmJsZdjiQtKuMMgvuBFX3zy5tlkqQRGmcQrAN+r7l76HDg0ara7rSQJKldrV0jSHIZcBSwX5LNwDnAUoCqOh+4FngLsBH4OXBaW7VIkmbWWhBU1SlzrC/gPW3tX5I0nF3iYrEkqT0GgSR1nEEgSR1nEEhSxxkEktRxBoEkdZxBIEkdZxBIUscZBJLUcQaBJHWcQSBJHWcQSFLHGQSS1HEGgSR1nEEgSR1nEEhSxxkEktRxrQZBkuOSfD/JxiRnDlh/apItSdY3r99vsx5J0vbaHLN4CfAJ4FhgM/CdJOuq6p5pTS+vqve2VYckaXZtHhEcBmysqh9W1bPA54DVLe5PkvQCtBkEy4D7+uY3N8um+90kdya5MsmKQRtKsibJVJKpLVu2tFGrJHXWuC8WXwWsqqrfAK4HLhnUqKrWVtVkVU1OTEyMtEBJWuzaDIL7gf5v+MubZf9fVT1cVc80sxcAb2ixHknSAG0GwXeAA5O8KsmvACcD6/obJNm/b/ZEYEOL9UiSBmjtrqGq2prkvcB1wBLgoqq6O8m5wFRVrQPel+REYCvwCHBqW/VIkgZrLQgAqupa4Nppy87umz4LOKvNGiRJsxv3xWJJ0pgZBJLUcQaBJHWcQSBJHWcQSFLHGQSS1HEGgSR1nEEgSR1nEEhSxxkEktRxBoEkdZxBIEkdZxBIUscZBJLUcQaBJHWcQSBJHWcQSFLHtRoESY5L8v0kG5OcOWD9i5Nc3qy/NcmqNuuRJG2vtSBIsgT4BPBm4GDglCQHT2t2OvDTqjoA+DjwkbbqkSQN1uYRwWHAxqr6YVU9C3wOWD2tzWrgkmb6SuCYJGmxJknSNG0OXr8MuK9vfjPwmzO1qaqtSR4F9gUe6m+UZA2wppl9Isn3h9j/ftO3o9F+Jtn5j+8W/PPYBX7m2fg7s72d6jPZwf9fr5xpRZtBsGCqai2wdj7vSTJVVZMtlbRL8jN5Pj+P5/Pz2F5XPpM2Tw3dD6zom1/eLBvYJsluwN7Awy3WJEmaps0g+A5wYJJXJfkV4GRg3bQ264B3NdMnAV+rqmqxJknSNK2dGmrO+b8XuA5YAlxUVXcnOReYqqp1wIXAZ5JsBB6hFxYLZV6nkjrCz+T5/Dyez89je534TOIXcEnqNp8slqSOMwgkqeMWXRAkWZHkxiT3JLk7yRnjrmlnkGRJku8muXrctewMkuyT5Mok9ybZkOSIcdc0Tkn+Q/P7cleSy5LsPu6aRinJRUkeTHJX37J/mOT6JD9o/v0H46yxTYsuCICtwAeq6mDgcOA9A7q26KIzgA3jLmIn8hfAV6vq14DX0eHPJsky4H3AZFW9lt7NHQt548au4GLguGnLzgRuqKoDgRua+UVp0QVBVT1QVbc304/T+wVfNt6qxivJcuB44IJx17IzSLI38E/p3bVGVT1bVT8ba1HjtxuwR/M8z0uAH425npGqqq/Tu3OxX38XOJcA/3KUNY3SoguCfk1vpocCt465lHH7c+CDwC/HXMfO4lXAFuCvm9NlFyR56biLGpequh/4U+DvgAeAR6vqf463qp3Cy6vqgWb6x8DLx1lMmxZtECR5GfAF4P1V9di46xmXJCcAD1bVbeOuZSeyG/B64JNVdSjwJIv4sH8uzbnv1fQC8hXAS5O8Y7xV7VyaB10X7b32izIIkiylFwKXVtUXx13PmL0RODHJJno9wB6d5LPjLWnsNgObq2rbkeKV9IKhq34L+D9VtaWqfgF8EThyzDXtDH6SZH+A5t8Hx1xPaxZdEDTdWF8IbKiqj427nnGrqrOqanlVraJ3AfBrVdXpb3tV9WPgviQHNYuOAe4ZY0nj9nfA4Ule0vz+HEOHL5736e8C513Al8dYS6sWXRDQ+wb8TnrffNc3r7eMuyjtdP49cGmSO4FDgP823nLGpzkyuhK4Hfgevb8LnehaYZsklwHfBA5KsjnJ6cCHgWOT/IDeUdOHx1ljm+xiQpI6bjEeEUiS5sEgkKSOMwgkqeMMAknqOINAkjrOIJCmSfJc363H65OsSnLU9J5bk1yc5KQkq5N8qW/5Wc2oe9vm35pkXTO9KclN07azvr/XS2nUDAJpe09V1SF9r01ztP8GvZ5utzkCeCzJP2rmj2zabLNnkhUASf7xQhUtvVAGgbSDqmoLvT/8BzSLltHr4mRbNw1HArf0veUK4N8006cAl42iTmkmBoG0vT36Tgv9Td/yf9J/ygg4sW/dLcCRTbcVPwC+1czvRm+8g+/0tf0C8DvN9FuBq9r6QaRh7DbuAqSd0FNVdciA5TdV1QnbZpJc3LfuG/S++S+h11XBt4Gz6XWDfm9VPd3X9mHgp0lOptenz88XtHppnjwikBbGLfSC4Ejgm82gSLsDR/H86wPbXA58Ak8LaSdgEEgLYwO9vvzfBHy3WbYe+Hc8//rANn8DfBS4bhTFSbMxCKQF0AxccivwcNOnP/ROEb2aAUcEVfV4VX2kqp4dYZnSQPY+Kkkd5xGBJHWcQSBJHWcQSFLHGQSS1HEGgSR1nEEgSR1nEEhSx/0/HSLDjTO5iqEAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "FWHM_I = np.array(FWHM_I)\n", + "sigmaBN_I = FWHM_I.std()\n", + "mediaBN_I = FWHM_I.mean()\n", + "medianaBN_I = np.median(FWHM_I)\n", + "print(\"Datos de FWHM con incertidumbres de las estrellas a blanco y negro :\")\n", + "print(\"Desviación :\", sigmaBN_I)\n", + "print(\"Media :\", mediaBN_I)\n", + "print(\"Mediana :\", medianaBN_I)\n", + "plt.hist(FWHM_I)\n", + "plt.xlabel('FHWM')\n", + "plt.ylabel('# de estrellas')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 1 con incertidumbre (Banda Rojo)" + ] + }, + { + "cell_type": "code", + "execution_count": 829, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7UAAAFSCAYAAAAth/gmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA4MUlEQVR4nO3de5hcVZ3v/8+ncwECgRACCCQQRhEFROBExFHHC8oAgvGZiyOjiMiRcQYvePCg4IzizNHh5xXwHgUBZUBEdDiKCoMgckbQcL8qUS5JCEIIhHDN7fv7Y60m1Z3urupeu6p6d71fz1NPd+3rt/beVXt991p7bUeEAAAAAACoo75uBwAAAAAAwFiR1AIAAAAAaoukFgAAAABQWyS1AAAAAIDaIqkFAAAAANQWSS0AAAAAoLYmdzsAAADGYo4nxzOq/rF0y7X+5xFxcOULBgAAbUFSCwCopWcU+mttXvlyv6FVsypfKAAAaBuSWgBALVncQwMAAEhqAQA11mdXv9DqWzQDAIA2IqkFANQSNbUAAEAiqQUA1FhfGypqqakFAKBeuMgNAAAAAKgtamoBALXFlVkAAEBSCwCoJcvt6SgKAADUCkktAKC2qKkFAAAktQCAWrLa1FEUAACoFS5yAwAAAABqi5paAEBtcWUWAACQ1AIA6smS6SgKAICeR1ILAKgli5paAABAUgsAqDE6igIAAFzkBgAAAADUFjW1AIDa4sosAAAgqQUA1FJ6Ti3tjwEA6HUktQCA2qKmFgAAUB6ogO25tsP25Pz+Ktv/swPrte1v237U9m/avb5Stne3fZPtVbY/kId9wfZpY1zev9s+vsoYR7Hus23/ny6s93bbr21hur1t/3f7IwKA8a1b5+jxxvarbf+ucBlj2naD90GdtXoeriPbP7V91DiIY2fbT9ieNMz4U2x/t03r7ujvg+1NbN9he4dOrXPQ+sP2Czq8zpZ/i2x/3vY/tjLthEpqbd9r++n8Reh/fbmF+Tq+Q4dj+99s32p7re1Tmkz+KklvlDQ7IvZvYdnd/pwnSroyIqZHxBm2Xy3pZZL+92gXZHtbSe+U9I38/rW21zfs96W2P1lp9BUZdJw+mBPkLVqZNyL2jIirWpjuFkmP2T68NF5gvErNj6t/oT168BzdVYO3W0T8KiJ272ZME0Gr5+E6iohDIuKcTq83/za8oSGO+yNii4hY1+lYuuBYSVdHxDLpuUqT1fn3cZXt622/pssxbmRQuXuV7d/ZPrqVeUf5W/Q5SSfbntpswgmV1GaH5y9C/+t9pQvs8JXFRUrJ309amHYXSfdGxJPtDam5FrfRLpJub3i/q6S/i4g1Y1jluyRdGhFPNwx7oH+/KyX8x9h+yxiW3QmH5zj3kbSvpJPasI7zJP1DG5YLjBt9bXihrXrpHN0VY9keE6EGFfVT9+OuovjfK+k7g4Z9JpcRt5T0NUkXD1dr3WUPNMT5IUnftF3phbOc7N8l6c3Npu2Z87ftF9j+pe2Vtpfb/l4efnWe5OZ8teHv8tWHJbY/YvtBSd+23Wf7o7b/YPsR2xfantnCep9v+xd5nuW2z7M9Y7jpI+KciPippFVNlnuMpG9JekWO+5N5+HtsL7K9wvYltncc7nOONH0ed1C+8rLS9lfz9vufedy7bP8/21+0/YikU0b6rLZ/Iel1kr6c1/9CSa+X9E95/Na2f2z7Yafm1D+2PXuETXCIpF+OsB3vkfTfkvZo+Dyn215s+/F85evVDeNOyfv03HzF6Xbb8xrG72v7hjzue5I2bRg32tgb43xQ0s+Vktv+5b05r/8xp2YwL24Y99zVTKcmK6fZfiC/TrO9ScPir5J04KBhwITSJ1f+QudNtHN0Xvb+tn+df8uX2f6yh6lt8Ibmucfm3/Nltj/c6rLyvMfZvlvS3SNtt4Z57s3b8BZJT3qIArrtN9q+K++XL0sDvyC23237znzu+7ntXZptlzzf0Xm+Vbb/aHvYC7C2Jzk1QVxu+x7b7/PA5uTDLsuprHLNoOU9V4Nt+1Cnpp+rnFp4fTgPn5XP5Y85lY9+ZbuvYbv1n4db2S/vtX13nuYrdurdbrTHnu09bV+e4/mT7ZPz8GHLAg3flRNsP5RjHLY2zQ1Nb/u3ne3P5f17j+1DGqad6XQL3AN5/I8axh3mdLvZY7b/2/beDeMGH3fnS9pZ0v/Nx+qJ3viWgV2dfh9W2b5c0qyG5Q04rofYR6fY/r7t7+b5b7X9Qtsn5W2y2PZBgzbF823/xqm8+J/OvyUNcR1j+35Jv8jDx/o92FnSn0m6bqjxERGS/kPSTEnb53lGPG7yZ/+w7Vucvrffs91YZv3f+Th4wPa7B8XzJts35s+92C22RonkUkkrJO2dl9X0uGxY74vzsfeYU/l3cAJ7laQ3NYujZ5JaSf8m6TJJW0uaLelLkhQRf5HHvzRfNf5efv88pYNoF6WmAe+X9BZJr5G0o6RHJX2lhfVa0r/neV4saY6kU0o/TEScqXR159c57k/Yfn1e11sl7SDpPkkX5Ok3+pwjTW97lqSLlGoQt5H0O0l/PiiMl0v6o9IX7VMjfdaIeL2kX0l6X17/7wctq0/St5W2986SnpY0UrO0l+SYhmR7N0mvlHRtw+DfKiWPM5V+JL7f+EVXugp0gaQZki7pX7/TCepHSlfSZkr6vqS/Loi9Mc7ZSgn6ovz+hZLOl3S8pG0lXar0Qz9UQehjkg7In+mlkvaX9M/9IyNiqaQ1kmhuhgmJ5scTyoQ6R2frlGovZkl6haQDlS/kjuB1knaTdJCkj3hDk8xWlvUWpfPyHiNst8GOUCoszoiItY0jcjngYqXzyixJf1A6r/aPny/pZEl/pXS++pXS+asVD0k6TKmG52hJX7S93zDTvkfpPLmPpP3y5xzrsgY7U9I/RMR0SXspJymSTpC0ROlzba/0OWOI+VvZL4cp3Wq1t1J56y/z8JaPPdvTJf2XpJ/l6V8g6Yo8esSygNJ3ZStJO0k6RtJXbG891HqG8HKlstYsSZ+RdKb9XJfz35E0TdKekraT9MUc676SzlJqKbaN0m1il3jgBfbG4+4ISfdrQyuOzwwRx39Iuj7H8W+SRnvf7+E53q0l3ahUmdCntE3+NcfY6J2S3q1UNl4r6YxB41+jtM/+svB78BJJfxz83evnVDv7Tkn3SPpT/2A1P27eKulgpRaReyu1bpTtgyV9WOnWxd0kvWHQfE/m9c1Q2j//6BZaPDpdVHyz0v5ZlAc3Oy77550i6f8q/f5vp/Rbfp4H1vjemZcxoomY1P4oZ/r9r/fk4WuUTn47RsQzEXHNCMuQpPWSPhERz+Ymru+V9LGIWBIRzyodQH/jJk0PImJRRFyel/OwpC8ofRna4e2SzoqIG3KMJynV5M4dw/SHSro9Ii7OX7YzJD04aP4HIuJLEbE2Ip4u+awR8UhE/CAinoqIVUpJ8kjzztDGV8p3zPv8cUm/V7ry9dx+jojv5vWsjYjPS9pEAxO+ayLi0nwPx3e04Qt0gKQpkk6LiDURcZFSgjzW2KV0nK6StFjphPyJPPzvJP0kb8c1SvcSbKaNLyhIaf/9a0Q8lLf3JyUdOWiaVXlbAcB40DPn6Ii4PiKuzeece5UKzs2W/cmIeDIiblW6WHrEKJb17xGxYtBtOc2cERGLh5mnvxxwUT4fnaaB5YD35nXemcsJn5a0Tyu1VBHxk4j4Q67h+aVSgfbVw0z+Vkmn5337qKRTC5Y12BpJe9jeMiIejYgbGobvIGmXfN7/VURslNS2uF9OjYjHIuJ+SVcqt8wa5bF3mKQHI+Lz+fuxKiL6a/ealQXW5PFrItWmPaHWL3bfFxHfzOWic/I22d6pU6NDJL03b7c1edtL6SLTNyLiuohYF+ke3WeVylL9RjruBsi1mS+T9C95W12tlASNxq8i4uf5OP2+UvJ5aj6uL5A01wNryb8TEbdFur3vXyS91QOb/56Sv6f9vz1j+h5o6LKsJH3Y9mNK++o0pc++Tmr5uDkjIh6IiBVK22qfPPytkr7d8NlOaZwpIq6KiFsjYn2kvlnOH2LZjXbMcT4t6YeS/ldE3JjHtVJGldJxsYXS/lgdEb+Q9GPl376spbLsRExq3xIRMxpe38zDT1S6uvGbXLX97hGWIUkPR8QzDe93kfTD/hOx0lWDdcrNAYZje3vbFzg1a3lc0nfV0GyiYjsq1bZKkiLiCUmPKF2JGu30OyolXP3jQumqZaPFjW9KPqvtaba/Yfu+PO/VkmZ4+HsIHpU0fdCwB/I+31Lp4H9a6Ue4fx0fzs1DVuZ9uNWg+BpP1k9J2jQXiHaUtHTQCe257TaG2KV0nE6X9FpJL2qIY/A+Wa+0nYfahwOmzf/vOGia6ZIeGyEOoNa4p7Z2euYc7dTE8cdOHQI+rlTYbbbsxvPqc7/pLS5rsUZvpHmGKgc0Tr+LpNMbtvkKpX04XJnjObYPsX2tU1Pax5QS6OG2zYA4Bsc8ymUN9td5+vucmre+Ig//rFKN02VOTZo/OsznaGW/DC5bbJHnHc2xN0eppnwozcoCj8TAmsDnYmjBc7FHxFP53y1yPCvyRYbBdpF0QuPFqzx9Y0yjOVZ3lPRoDOw/5r7hJh7Gnxr+f1rS8tjQCVV/Yt24TQZ/D6do4L6p5HugocuykvS5iJihVBM+T9JnnZt+t3jcDHnMaePv0oDtaPvltq90up1upVLCPtJ36YEc55ZKlV+vbxjXShn1uZhyebdx2sbt11JZtmfO3xHxYES8JyJ2VGoS8VWP3Jvi4CtyiyUdMuhkvGmkJp4j+XRe1ktysvUOqW03bT2g9OWSJNneXKnpx3AxjjT9MqUmYP3j3Pg+G7yNSj7rCUpXDl+e5+1vOjXc/LdIeuFwC4uIlUrNVQ7P8b9aqdD0Vklb5y/hyhbjWyZpp4YmN1JqZjzW2Bvj/KWks5VqZKWN94mVTgZD7cMB0+aYHmiYdydJUzVCM22gztyGpsc0P+6OCXqO/ppSBye75WWf3MKy5zT83/ib3sqyhmoe28xI8yxrjKfhfNRvsVLT3cZtvllEjPg4OadmqD9QOu9tn8/Hl2r4bTOgPDIopmbLelIpMeif/nmNC46I30bEfKVmjz+SdGEevioiToiIP1O6Nel/2T5wiNjGso/7jebYW6x07+VQRiwLtMliSTM99D3AiyV9atBxMS0iGpvkDj7umh2HW+cyar/GMtjgfTxJqSa2xODv4RpJyxuGNcY7pu9BdoukXYdrURLJbZL+nzbcU1rymzXgO62B21FK5eZLJM2JiK0kfb2VZUdqHfMRSS/xhubKrR6XD0ia43zPesO0jb/dL5Z0c7M4eiaptf233tB5z6NKB0T/VYE/afgfi35fl/Sp/uYEtrd1akffzHSl5gMrc5Ix4uNrbE9xus+zT9Jk25s2qfFrdL6ko23vk3/oPy3pukhNYqSNP+dI0/9E+eDMX7bjlO7LqOyzDjHv00qPoZmpDc1xh3OpRmgS4fSInLdpQ2/L05Xui3hYabt+XOnKUit+nef9QN4/f6V0b8BYYx/sNElvtP1SpRPqm2wf6HSfwQlKzXaG+nE8X9I/52NxlqSPK12x6/caSb/IPzbAhERHURPDBD1HT5f0uKQnbL9IUivPWvwXp9Y/eyrdH9p/L+xYltXKdhvJTyTtafuvcjngAxpYDvi6pJNyrLK9le2/bWG5U5Vu/3lY0tpcAzW4o55GF0r6oO2dchL1kVEs6+b8GfbJ++2U/hG2p9p+u+2tcjPUx5WPOaeOjl6QE/mVSrX+jTVJ/cayXxrnbfXY+7GkHWwf79QBz3TbL8/jmpUFKhepR9qfKl182jp/L/ov6H9T0ntzrZ9tb+7UAdFQNZL9hj1WI+I+SQslfTLvs1cpV1hkv1dqWfemXG76Z6VjosQ7bO9he5rSPbcXxfCPFxrr90ARsUSpRcCwj+XMx9WrNLA8O9ay9oWS3tXw2QaXV6cr1cA/Y3t/SX/f6oIjYrWkzysdf1Lrx+V1SrXJJ+bj6LVK+/eChmleo3S8jWgiJrX9vaf1v36Yh79M0nW2n1C6CvHBiPhjHneKpHOcmg68dZjlnp7nu8zpXshrlW6gb+aTSh0brFQ6QVzcZPpvKiVIRyjdZP20hm6DvpGI+C+ltv8/ULoa83ylxK7fKWr4nCNNHxHLJf2tUscAjyj1IrxQKcGq6rM2Ok3p3tHlStv2Z02mP1fSobY3axi2Y/9+V2q6MFOpTb+UOgX4mdKP332SnlGLzV/yF/WvlG60X6F032vjZxtt7IOX/3D+PB+PiN8pXXX7Ul7e4UqdJ6weYtb/o7RPbpF0q6Qb8rB+b1f6sQUmLGpqa6eXztEfVioUrsrzDddZU6NfKhVyr1BqgnhZwbJOUfPtNqyGcsCpSuWA3ZRqjPrH/1DS/yfpAqdmkLcp3WfZbLmrlBLkC5UuYPy90r4bzjeV7pO9RamTn0uVLjSva7asSJ1S/qtSJ0t3q6GfjexISffm+N+rDWWG3fI8Tyhd2P5qRFw5RGxj2S/9Wj728ud8o1KZ4MH8WV6XRzcrC7TLkUo1mHcp9Q1yfI51oVLnXl9W2ieLlDsqGsG/KyVAj7mh1+8Gf6/0fV6hlIid2z8it8z7J6UngixVqrkdfLvcaH1HqRXdg0pPu/jAcBOO9XvQ4Bva+DfkxPz7+KTSsf9tbejMasxl7Ug9t5+m1CHaIm3oGK3fP0n61/wb+nHllgujcJaknW0frhaPy1y+PVxpmy2X9FVJ74yIuyTJ6f7tPZRaUozIsfF978BGnJoFLJH09mF+2DvO9qclPRQRp3U7lk5x6kL+HZE6Shhpur2VOmp4xUjTAXW286TJ8ZHNZlS+3Pc9+cj1ETGv+ZRANZw6aLxH0pQYpidUJLk29usR0dJjU4DxzKml5I2SDsw14BOe09NXvpWb9zeb9vOS/hARX202ba0feoz2sv2XSs0CnlZq3mANfEROV0XEyd2OoZNsb6t0n8i9zaaN1GsdCS0mNGtiNjcCsEFukfU6pRqr7ZVq6n444kxATeRbxPbodhwdtpfSRbymIuKEVhdKUouRvELppvGpku5Q6rVyNI8KQEVsv0zS5ZK+FOmxAABEc2GgB1ipyeX3lC6y/0Qb7tsDUCO2T1fqfG20zxpuvmyaHwMA6mjupCnxsWkzKl/usU8sp/kxAAA1Qk0tAKC2qKkFAADcjgQAAAAAqK2O1tTO2mZmzJ0zu/mEw6miqfT64R4z1UF9rT52dhiu4FpE6XaIoR7XNuqFFM4/QapoSvdnX+H868v25b1Llmr5ikcnyM5A3XDgYaKbNWubmLvzzt0OA0CF7r3/fi1f/ginsAp1NKmdO2e2fnvFpWNfwOpnimOIp1cVL6OUNxvp+dMt2GRaeRBPPlY0ezz7VHkMpRcpPDF+C7zpFmUL2LTweHimbF++7NC/KVs/MEYWzY8x8c3deWctvOaqbocBoELzXvXabocw4XBPLQCgtvqoqwUAoOdxTy0AAAAAoLaoqQUA1JJN82MAAFBYU2v7YNu/s73I9kerCgoAgFb0teEFtBNlJwCo3pjP37YnSfqKpEMk7SHpCNt7VBUYAADNuA0voF0oOwFAe5Q0P95f0qKI+KMk2b5A0nxJd1QRGAAAI0m9H5OGolYoOwFAG5S0tNpJ0uKG90vysAFsH2t7oe2FDz+yomB1AAAAtTb6stPyRzoWHADUVdtvH4qIBRExLyLmbbvNzHavDgDQQ2h+jIloQNlp1jbdDgcAxr2S5sdLJc1peD87DwMAoCNIQlEzlJ0AoA1Kamp/K2k327vanirpbZIuqSYsAACao6YWNUPZCQDaYMxJbUSslfQ+ST+XdKekCyPi9qoCAwCgGduVv5qsb47tK23fYft22x8cNP4E22F7Vn5v22fkx7fcYnu/Nm4OjHOUnQCgPUqaHysiLpV0aUWxAAAw3q2VdEJE3GB7uqTrbV8eEXfYniPpIEn3N0x/iKTd8uvlkr6W/6JHUXYCgOrxnHkAQC21o+lxs+bHEbEsIm7I/69Sqm3r7732i5JOlBQNs8yXdG4k10qaYXuHsX9qAAAwWFFN7aitW6tY+fDY51/9bHkM69eWzT9lk/IY1jxTvoxC8cyTZQtYU8G+KLXp5uXL6JtUvoziGAqvLZlrU+hd3Tz6bc+VtK+k62zPl7Q0Im4e1IR5uEe4LOtUnAAATHSdTWoBAKhQk1tgx2qW7YUN7xdExIKB6/UWkn4g6XilJsknKzU9BgAAHUZSCwCoLbenv+LlETFv2HXaU5QS2vMi4mLbL5G0q6T+WtrZkm6wvb94hAsAAG1Hu0UAAFrklLWeKenOiPiCJEXErRGxXUTMjYi5Sk2M94uIB5Ue1/LO3AvyAZJWRgRNjwEAqBA1tQCAWurSc2VfKelISbfavikPOzn3aDuUSyUdKmmRpKckHd32CAEA6DEktQCA2up0UhsR1zRbba6t7f8/JB3X5rAAAOhpJLUAgNrq60JVLQAAGF+4pxYAAAAAUFvU1AIAasrt6v0YAADUCEktAKCWutRRFAAAGGdIagEA9WTJZLUAAPQ8kloAQG2R0wIAADqKAgAAAADUFjW1AIDa6qOuFgCAnkdSCwCoJTqKAgAAEkktAKDG6CgKAACQ1AIAaoucFgAAdDapXb9Oeurxsc+/6ebFIXjL55UtoK+8b6144rGy+e+7ozgGb7JZWQzr15XHsNkWZQvom1Qew6TCr0CsL45B6wuXsa5wX0yfWTZ/6TYEAAAAClAaBQDUlqmrBQCg55HUAgBqyZL6yGkBAOh5JLUAgNoipwUAACS1AIDaIqkFAABj7vXI9hzbV9q+w/bttj9YZWAAAAATCWUnAGiPkpratZJOiIgbbE+XdL3tyyOivGteAABaQEdRqBnKTgDQBmNOaiNimaRl+f9Vtu+UtJMkfpgBAB1hclrUCGUnAGiPSu6ptT1X0r6SrqtieQAANGMV3EMDdBllJwCoTnF5wPYWkn4g6fiIeHyI8cfaXmh74cOPrixdHQAAQK2Nquy0/JHOBwgANVOU1NqeovSjfF5EXDzUNBGxICLmRcS8bbfeqmR1AAAM4Da8gHYaddlp1jadDRAAamjMzY9tW9KZku6MiC9UFxIAAK0xN9WiRig7AUB7lNTUvlLSkZJeb/um/Dq0orgAAGiKmlrUDGUnAGiDkt6PrxHnfwBAl5CEom4oOwFAe9BxJAAAAACgtip5pA8AAB1nc08tAADocFLbN0nadPOOrnKweGqjnvNHZ/268iDWrS2a3VvOLA4hHl9RFsN2c4pj8OQpZQvYdHpxDFr9dPkyCsXa1WULKPwMXl/YK3kV3wlgjPrIaQF0SKxfX7aASs6XUTa7K2ik2TepLAQuRqINqKkFANSWyWoBAOh5JLUAgFqyJC74AwAAOooCAAAAANQWNbUAgHoyNbUAAICkFgBQY3Q4AgAASGoBALVFTgsAAEhqAQC1RU0tAACgoygAAAAAQG1RUwsAqCUe6QMAACSSWgBAXVnqI6sFAKDnkdQCAGqLnBYAAJDUAgBqynQUBQAA6CgKAAAAAFBf1NQCAGrJksylWQAAeh5JLQCgnsxzagEAAEktAKDGyGkBAEDvJbXr15XNv25teQzPPlUYQ+FnkKS+SUWzx903FocQhZ/DO8wtjkGbbFY0ezyxsjyGwmPS280pW3+sL5sf6CG250g6V9L2kkLSgog43fZnJR0uabWkP0g6OiIey/OcJOkYSeskfSAift6N2IFeFqXlP0l65smyGJ54tIIYysqQ3mKr8hg2n1E0e0zZtDgE93HvCQbiiAAA1Jbtyl9NrJV0QkTsIekAScfZ3kPS5ZL2ioi9Jf1e0kk5vj0kvU3SnpIOlvRV22VXFQEAwAAktQCA2rKrf40kIpZFxA35/1WS7pS0U0RcFhH9TXmulTQ7/z9f0gUR8WxE3CNpkaT927EtAADoVb3X/BgAMCFYUl8Xb6q1PVfSvpKuGzTq3ZK+l//fSSnJ7bckDwMAABUhqQUA1FMLNatjNMv2wob3CyJiwYBV21tI+oGk4yPi8YbhH1NqonxeWyIDAAAbKU5q871BCyUtjYjDykMCAKCrlkfEvOFG2p6ilNCeFxEXNwx/l6TDJB0YEZEHL5XU2Jvb7DwMPYyyEwBUq4p7aj+odE8RAAAd1emOopwmOFPSnRHxhYbhB0s6UdKbI6Kxe9JLJL3N9ia2d5W0m6TfVL4hUDeUnQCgQkVJre3Zkt4k6VvVhAMAQOs63VGUpFdKOlLS623flF+HSvqypOmSLs/Dvi5JEXG7pAsl3SHpZ5KOi4gKni2CuqLsBADVK21+fJrSlenp5aEAANA6q2331A4rIq7Jqx7s0hHm+ZSkT7UtKNTNaaLsBACVGnNNre3DJD0UEdc3me5Y2wttL3x4RQUPnQYAQJJsua/6F9AuYyo7LX+kQ9EBQH2VND9+paQ3275X0gVKTbG+O3iiiFgQEfMiYt62M7cuWB0AAECtjb7sNGubTscIALUz5qQ2Ik6KiNkRMVfS2yT9IiLeUVlkAAA00YV7aoExo+wEAO3Bc2oBALXVRxYKAEDPqySpjYirJF1VxbIAAGhFNzqKAqpC2QkAqkNNLQCgtpo9VxYAAEx8Rc+pBQAAAACgm+pVUxtRvozVz5bNv7Zwfknx1BNlC1i3pjgGPbGyaPZnvnFmcQjPPlgWw5Z/sVdxDD7osLIFTJ5aHIOefbps/hnblc0/ZZOy+av4XgJjQcdOQM+I0nPN6sJzraT1991eNH9c+v0KYlhcNP+k/V9WHIPf8Ddl82+zU3EM6issu2DCqVdSCwBAA5ofAwAAkloAQG2R0wIAAO6pBQAAAADUFjW1AIBaSo/0oaoWAIBeR1ILAKgnS6a9EQAAPY+kFgBQU6amFgAAkNQCAGqsj6QWAIBeR8MtAAAAAEBtUVMLAKgvmh8DANDzSGoBAPVkej8GAAAktQCAOuOeWgAAeh5JLQCgpkzzYwAAQEdRAAAAAID6oqYWAFBLtmSaHwMA0PNIagEA9UXzYwAAeh5JLQCgtqipBQAAnU9q+yaNfd51a8vXv75wGWtWl8ew+pmy+ddWEMMf7iqa/Xv/9fviEH6zqmw7vP/BJ4tjeNErXl00v+e+uDiGWPVo2QImFXynJEXx9yoK5wcKUFML9IZYXzb/M0+Vx/DbXxbNfs2XflYcwuWPlpV9jrvh/uIYtt/1hUXze6tti2OIyVPLYuDcMeHQURQAAAAAoLZofgwAqCeb59QCAACSWgBAfdGEDAAAkNQCAOqLmloAAHpe0T21tmfYvsj2XbbvtP2KqgIDAACYaCg7AUD1SmtqT5f0s4j4G9tTJU2rICYAAJqz6P0YdUTZCQAqNuak1vZWkv5C0rskKSJWS6rgWTMAALTG9OGPGqHsBADtUVIc2FXSw5K+bftG29+yvXlFcQEA0Jxd/QtoH8pOANAGJUntZEn7SfpaROwr6UlJHx08ke1jbS+0vfDhFY8WrA4AgAa23Ff9C2ij0Zedlj/S6RgBoHZKktolkpZExHX5/UVKP9QDRMSCiJgXEfO2nbl1weoAAABqbfRlp1nbdDRAAKijMSe1EfGgpMW2d8+DDpR0RyVRAQDQCpofo0YoOwFAe5T2fvx+Sefl3vv+KOno8pAAAGgRzYVRP5SdAKBiRUltRNwkaV41oQAA0LpUsUpSi3qh7AQA1SutqQUAoHuoqQUAoOfxhD8AAAAAQG3Vq6a2imZmUzYpm39NBc9InzSpbP615SEoomj2Z9aXzV+FZ59dX76Qwu1QvC8lafKUotm9adkjDmPNs0XzF29DYMzo2AlAqyo4VxWWAZ9aV15ueWTtuqL5n3mmbH5J0vrCZVBuQBvUK6kFAKAB99QCAACSWgBAPVncUwsAAEhqAQD1RU0tAACgoygAAFpke47tK23fYft22x/Mw2favtz23fnv1nm4bZ9he5HtW2zv191PAADAxENSCwCorz5X/xrZWkknRMQekg6QdJztPSR9VNIVEbGbpCvye0k6RNJu+XWspK+1YzMAANDLSGoBAPVkt+c1gohYFhE35P9XSbpT0k6S5ks6J092jqS35P/nSzo3kmslzbC9Qxu2BgAAPYt7agEAteUudhRle66kfSVdJ2n7iFiWRz0oafv8/06SFjfMtiQPWyYAAFAJkloAAAaaZXthw/sFEbGgcQLbW0j6gaTjI+Lxxg6rIiJs8yBGAAA6hKQWAFBf7en9eHlEzBt+lZ6ilNCeFxEX58F/sr1DRCzLzYsfysOXSprTMPvsPAwAAFSEe2oBAPXU/5zaDnYU5VQle6akOyPiCw2jLpF0VP7/KEn/2TD8nbkX5AMkrWxopgwAACpATS0AoLa68JzaV0o6UtKttm/Kw06WdKqkC20fI+k+SW/N4y6VdKikRZKeknR0R6MFAKAHkNQCAGqqpUfwVCoirkkrHtKBQ0wfko5ra1AAAPQ4mh8DAAAAAGqLmloAQH11vvkxAAAYZ0hqAQD1ZJHUAgAAkloAQI2R1AIA0PM6m9TaUt+kjq6yclOmli9j6qZl87uCW6F336to9iNfNbc4hIfuW1k0/5xX7locgzabVjR7PPVEcQjeZLOyBUwpPJ7WrS2bn6QCXWOpj64hgN5QeK6ZWniulaT/8aqi2Q96173FIbz6rsVF82/2uv2LY/DcPcsWMLm8LN2Fnu8xzlEaAAAAAADUFs2PAQD1xdV6AAB6HkktAKCe6CgKAACIpBYAUGcktQAA9Lyie2ptf8j27bZvs32+7cIeawAAaFXuKKrqF9BGlJ0AoHpjPnvb3knSByTNi4i9JE2S9LaqAgMAAJhIKDsBQHuUNj+eLGkz22skTZP0QHlIAAC0iObHqB/KTgBQsTHX1EbEUkmfk3S/pGWSVkbEZVUFBgDAiPo7iqr6BbQJZScAaI+S5sdbS5ovaVdJO0ra3PY7hpjuWNsLbS98+JFHxx4pAACDkdSiRsZUdlr+SKfDBIDaKekR4w2S7omIhyNijaSLJf354IkiYkFEzIuIedtus3XB6gAAaERHUaid0ZedZm3T8SABoG5Kzt73SzrA9jTblnSgpDurCQsAAGDCoewEAG0w5o6iIuI62xdJukHSWkk3SlpQVWAAADRFc2HUCGUnAGiPot6PI+ITkj5RUSwAALSuv6MooEYoOwFA9Uof6QMAQPeQ1AIA0PPoEQMAAAAAUFsdrqm1PKlglSXzViQqWEZxvcLk1eVBzNiuaPZpH/iH4hDmPrikbAHb7lAcg7acWTS7N9msPIZJk8rmj/VFsxd9J9MSCucHxsayTG/FQE8o/a7HJtOKY+h7wb5lMbynvNwy7anHi+b31tsXx+CtZpUtYPLU4hiAwbqfJQIAMFY0PwYAoOeR1AIA6omOogAAgEhqAQB1RlILAEDP42YkAAAAAEBtUVMLAKgpS3QUBQBAzyOpBQDUF82PAQDoeSS1AIB6oqMoAAAgkloAQJ2R1AIA0PO4GQkAAAAAUFvU1AIAaoqOogAAAEktAKDOaH4MAEDPI6kFANQTHUUBAACR1AIAaovmxwAAgI6iAAAAAAA1Rk0tAKC+aH4MAEDPI6kFANQXSS0AAD2vXkmtu99a2lM2KV5GrF9XQSSFppZ9Dr9oXnEIMXP7shi22Ko4Bq0r3BfTty6PoVA8+1TR/J66aVkA5BToFjqKAtAiTyov8sa0Lcti2GRacQyOKFtAFf0Q9JVtS9MXAtqAowoAAAAAUFv1qqkFAOA59H4MAABIagEAdUbzYwAAeh5JLQCgvkhqAQDoeU3bbdk+y/ZDtm9rGDbT9uW2785/u99bDgCgt1ipA8GqX0Ahyk4A0FmtnL3PlnTwoGEflXRFROwm6Yr8HgAAAJSdAKCjmia1EXG1pBWDBs+XdE7+/xxJb6k2LAAAmrHU14ZXs7UOXQu3j+1rbd9ke6Ht/fNw2z7D9iLbt9jer40bBOMEZScA6KyxtrPaPiKW5f8flDTsA0dtH5tP8AsfXjH49x0AgALdaX58tjauhfuMpE9GxD6SPp7fS9IhknbLr2Mlfa2Kj41aGlvZafkjnYkOAGqs+OahiAhJwz4JOiIWRMS8iJi37cyZpasDAGADu/pXE8PUwoWkLfP/W0l6IP8/X9K5kVwraYbtHSr69KipUZWdZm3TwcgAoJ7G2vvxn2zvEBHL8sn5oSqDAgCgKbftObWzbC9seL8gIhY0med4ST+3/TmlC8Z/nofvJGlxw3RL8rBlQq+h7AQAbTLW0sAlko7K/x8l6T+rCQcAgK5b3l9Lll/NElpJ+kdJH4qIOZI+JOnM9oaIGqLsBABt0sojfc6X9GtJu9teYvsYSadKeqPtuyW9Ib8HAKCzutD8eBhHSbo4//99Sfvn/5dKmtMw3ew8DBMYZScA6KymzY8j4ohhRh1YcSwAAIzO+Hmu7AOSXiPpKkmvl3R3Hn6JpPfZvkDSyyWtbOgsCBMUZScA6Kyx3lMLAED3jb1mtWCVPl/Sa5XuvV0i6ROS3iPpdNuTJT2j1NOxJF0q6VBJiyQ9JenojgcMAMAER1ILAKin9nUUNaIRauH+xxDThqTj2hsRAAC9rfNJbUlTsamblq9/7eqi2ePxx8pjmLpJ0eyeNaf5RE0N+ySB1qxfXxyBZ29WGMPa4hhi7ZriZdRe6b4sPJQAAKgD900qW0Dp/ACGRU0tAKC+utD8GAAAjC8ktQCA+ho/HUUBAIAuIakFANSTLfVRUwsAQK/jEjcAAAAAoLaoqQUA1BfNjwEA6HkktQCA+qKjKAAAeh5JLQCgpkxNLQAAIKkFANSURUdRAACAjqIAAAAAAPVFTS0AoL64pxYAgJ5HUgsAqC/uqQUAoOeR1AIA6snmnloAAEBSCwCoMWpqAQDoeZQGAAAAAAC1RU0tAKC+6CgKAICeR1ILAKgp0/wYAAB0OKmdPEWeucOYZ4+nV5XHsHZ10ezeYkZ5DH2FhbB1a8pjKBXryxdRuC9K9+W4MXlqd9dfwb4EusKioygAAEBNLQCgxqipBQCg51EaAAAAAADUFjW1AID6oqMoAAB6HkktAKCmXN5HAQAAqL2mpQHbZ9l+yPZtDcM+a/su27fY/qHtGW2NEgCAwaxUU1v1CyhE2QkAOquVS9xnSzp40LDLJe0VEXtL+r2kkyqOCwAAoK7OFmUnAOiYpkltRFwtacWgYZdFxNr89lpJs9sQGwAAI3Nf9S+gEGUnAOisKs7e75b00+FG2j7W9kLbCx9e/kgFqwMAQJLa0PSY5sfoDMpOAFChoqTW9sckrZV03nDTRMSCiJgXEfO2nbVNyeoAABior6/6F9BGlJ0AoHpj7v3Y9rskHSbpwIiIyiICAKAV/R1FATVB2QkA2mNMSa3tgyWdKOk1EfFUtSEBAABMLJSdAKB9mia1ts+X9FpJs2wvkfQJpR77NpF0udNV8msj4r1tjBMAgEFMx04Ylyg7AUBnNU1qI+KIIQaf2YZYAAAYHZofYxyi7AQAnTXme2oBAOg6amoBAOh5JLUAgHqypT5qagEA6HWdTWrXr1M8vWrs8z/5WHEI8UTZMjx9ZnEMctlmj5XLy0PYsvBzrFvbfJpmMRQ+OiP6JhXHoPXryuafPLU4BE8q/BqW1lStL92XdOAJAACA7qGmFgBQXzQ/BgCg55HUAgDqi46iAADoeSS1AICa4pE+AACApBYAUGOmphYAgJ7HJW4AAAAAQG1RUwsAqCeL5scAAICkFgBQV9xTCwAASGoBAHXWxz21AAD0OpJaAEB9UVMLAEDPozQAAAAAAKgtkloAQD1Zkl39q9lq7bNsP2T7tkHD32/7Ltu32/5Mw/CTbC+y/Tvbf1n9hgAAoLfR/BgAUFNd6yjqbElflnTuc5HYr5M0X9JLI+JZ29vl4XtIepukPSXtKOm/bL8wItZ1PGoAACYoamoBAPXVhZraiLha0opBg/9R0qkR8Wye5qE8fL6kCyLi2Yi4R9IiSftXtwEAAABJLQAAA82yvbDhdWwL87xQ0qttX2f7l7ZflofvJGlxw3RL8jAAAFARmh8DAOqrPc2Pl0fEvFHOM1nSTEkHSHqZpAtt/1nlkQEAgI2Q1AIA6skeT8+pXSLp4ogISb+xvV7SLElLJc1pmG52HgYAACrS2aTWfdKUTcc+/9Rp5SFML7yqv9kWxTEUbQNJjvXlMayvYBnd1jepeBGePKUwhgq+Qn2Fx2RpDGtKj4Vxk1SgF42f59T+SNLrJF1p+4WSpkpaLukSSf9h+wtKHUXtJuk33QoSAICJiJpaAEB9tdCxU/Wr9PmSXqt07+0SSZ+QdJaks/JjflZLOirX2t5u+0JJd0haK+k4ej4GAKBaJLUAAIxCRBwxzKh3DDP9pyR9qn0RAQDQ20hqAQA11bXn1AIAgHGkaWnA9lm2H8pNqgaPO8F22J7VnvAAABhBF55TCzRD2QkAOquVS9xnSzp48EDbcyQdJOn+imMCAKA5K9XUVv0Cyp0tyk4A0DFNz94RcbWkFUOM+qKkEyVF1UEBANCcU+/hVb+AQpSdAKCzxnT2tj1f0tKIuLnieAAAACYcyk4A0D6j7ijK9jRJJys1n2ll+mMlHStJO8+ZPdrVAQAwLHMPLGqgrOw0p42RAcDEMJaa2udL2lXSzbbvlTRb0g22nzfUxBGxICLmRcS8bbfZZuyRAgAwGPfUoh7GXnaaRdkJAJoZdU1tRNwqabv+9/nHeV5ELK8wLgAARmbRWzFqgbITALRXK4/0OV/SryXtbnuJ7WPaHxYAAM2YmlqMS5SdAKCzmtbURsQRTcbPrSwaAACAmqPsBACdNermxwAAjBs0PwYAoOeR1AIA6ovnygIA0PNIagEA9WRTUwsAADqb1F5/083L+7ba9r4RJpklqds9ARLD+Iih2+snhtZj2KVTgQBAr7n+xpuWe/MZlJ3GfwzdXj8x1CsGyk4V62hSGxHbjjTe9sKImNepeIhh/MbQ7fUTw/iKARgWvRVjgqPsVI8Yur1+YiCGXkfzYwBAfdH8GACAnkdSCwCoMZJaAAB63XhLahd0OwARQ79ux9Dt9UvE0G88xAAMgY6iAI2P32hi6P76JWLoRww9yBHR7RgAABi1eXvvFb/9yYWVL7dv5z2v514oAADqY7zV1AIA0DpqagEA6HkktQCAGiOpBQCg142bZyHYPtj272wvsv3RLqx/ju0rbd9h+3bbH+x0DDmOSbZvtP3jLq1/hu2LbN9l+07br+hCDB/K++A22+fb3rQD6zzL9kO2b2sYNtP25bbvzn+37kIMn8374hbbP7Q9o9MxNIw7wXbYntXOGICWWammtuoXUAOUmwbEQtmJshNlpx43LpJa25MkfUXSIZL2kHSE7T06HMZaSSdExB6SDpB0XBdikKQPSrqzC+vtd7qkn0XEiyS9tNOx2N5J0gckzYuIvSRNkvS2Dqz6bEkHDxr2UUlXRMRukq7I7zsdw+WS9oqIvSX9XtJJXYhBtudIOkjS/W1ePzA6bsMLGOcoN22EshNlp0aUnXrQuEhqJe0vaVFE/DEiVku6QNL8TgYQEcsi4ob8/yqlH6SdOhmD7dmS3iTpW51cb8P6t5L0F5LOlKSIWB0Rj3UhlMmSNrM9WdI0SQ+0e4URcbWkFYMGz5d0Tv7/HElv6XQMEXFZRKzNb6+VNLvTMWRflHSiJHqWA4Duo9yUUXZ6DmWnDcMoO/Wg8ZLU7iRpccP7JerCD2M/23Ml7Svpug6v+jSlg399h9fbb1dJD0v6dm7G8y3bm3cygIhYKulzSle1lklaGRGXdTKGBttHxLL8/4OStu9SHP3eLemnnV6p7fmSlkbEzZ1eN9AcVbXoSZSbNjhNlJ0oOw2PslOPGC9J7bhhewtJP5B0fEQ83sH1HibpoYi4vlPrHMJkSftJ+lpE7CvpSbW/2cgA+d6L+UoniR0lbW77HZ2MYSiRnn3VtStttj+m1NTrvA6vd5qkkyV9vJPrBVrThvtpuacWGJVulZvyuik7ibLTcCg79ZbxktQulTSn4f3sPKyjbE9R+mE+LyIu7vDqXynpzbbvVWpG9Hrb3+1wDEskLYmI/iutFyn9UHfSGyTdExEPR8QaSRdL+vMOx9DvT7Z3kKT896FuBGH7XZIOk/T26PyDpZ+vdJK8OR+bsyXdYPt5HY4DGBpJLXoT5aaEslNC2WkQyk69Z7wktb+VtJvtXW1PVbq5/ZJOBmDbSvdD3BkRX+jkuiUpIk6KiNkRMVfp8/8iIjp6lS0iHpS02PbuedCBku7oZAxKTWcOsD0t75MD1b3OHy6RdFT+/yhJ/9npAGwfrNSs6s0R8VSn1x8Rt0bEdhExNx+bSyTtl48VYByg+TF6Us+XmyTKTg0oOzWg7NSbxkVSm2/mfp+knyt9CS+MiNs7HMYrJR2pdJXvpvw6tMMxjAfvl3Se7Vsk7SPp051ceb7SeZGkGyTdqnSMLmj3em2fL+nXkna3vcT2MZJOlfRG23crXQU9tQsxfFnSdEmX52Py612IAQAwjlBuGncoO1F2ouzUZe58jTwAAOXmvfQl8dvLqq8E6Hve86+PiHmVLxgAALTF5G4HAADA2NFcGACAXkdSCwCoJzp2AgAAGif31AIAAAAAMBbU1AIA6ouaWgAAeh5JLQCgxkhqAQDodSS1AIDaMjW1AAD0PJJaAEB9kdQCANDz6CgKAAAAAFBb1NQCAGrK4p5aAABAUgsAqC+aHwMA0PNIagEA9WSR1AIAAJJaAECdkdQCANDr6CgKAAAAAFBbJLUAgPqyq381XaXPsv2Q7duGGHeC7bA9K7+37TNsL7J9i+392rAVAADoaSS1AID6chtezZ0t6eCNQrHnSDpI0v0Ngw+RtFt+HSvpa6P5eAAAoDmSWgBATbUjo22e1UbE1ZJWDDHqi5JOlBQNw+ZLOjeSayXNsL3DKD8oAAAYAR1FAQDqa5z0fmx7vqSlEXGzB8a0k6TFDe+X5GHLOhgeAAATGkktAAADzbK9sOH9gohYMNzEtqdJOlmp6TEAAOgwkloAQD217zm1yyNi3iimf76kXSX119LOlnSD7f0lLZU0p2Ha2XkYAACoCPfUAgBqrDs9RTWKiFsjYruImBsRc5WaGO8XEQ9KukTSO3MvyAdIWhkRND0GAKBCJLUAgPrqziN9zpf0a0m7215i+5gRJr9U0h8lLZL0TUn/VMXHBgAAG9D8GACAUYiII5qMn9vwf0g6rt0xAQDQy0hqAQA11VrNKgAAmNhIagEANUZSCwBAryOpBQDUFzW1AAD0PKfbfQAAqBfbP5M0qw2LXh4RB7dhuQAAoA1IagEAAAAAtcUjfQAAAAAAtUVSCwAAAACoLZJaAAAAAEBtkdQCAAAAAGqLpBYAAAAAUFv/Pym0lkvMXDm3AAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "Err_R1=error(xdata1, poptR1[0], poptR1[1],poptR1[2], poptR1[3], poptR1[4], recorteR1.ravel(), inc=1)\n", + "poptR1E, pcovR1E = curve_fit(gauss2d, xdata1, recorteR1.ravel(), p0=[2,3,2,1,1],sigma=Err_R1)\n", + "estrellaR1E=gauss2d(xdata1, poptR1E[0], poptR1E[1],poptR1E[2], poptR1E[3], poptR1E[4])\n", + "FWHMR1E=FWHMR_I.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptR1E[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 1 fotografÃa (Banda Rojo)\")\n", + "plt.imshow(recorteR1, plt.get_cmap('Reds'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 1 a partir de la gaussiana con incertidumbre (Banda Rojo)\")\n", + "plt.imshow(estrellaR1E.reshape(15, 15), plt.get_cmap('Reds'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 2 con incertidumbre (Banda Rojo)" + ] + }, + { + "cell_type": "code", + "execution_count": 830, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7MAAAFVCAYAAAA9nLjZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABKwElEQVR4nO3de7zldV3v8fd7z+y5MQMzw8AIM4OoYB28gWdEPFp5yWt5sDqZVkpGUics6dDxKHWOWFlmpWWWJzxwxFKREpVTlJJhZoUKiiCgScplhoFhmAszzHXP/pw/fr8Nazb7+1l7r70u+7fX6/l4rMfe6/f9Xb6/y1q/73d9v7/vxxEhAAAAAACaZGTQGQAAAAAAYKaozAIAAAAAGofKLAAAAACgcajMAgAAAAAah8osAAAAAKBxFg46AwAAdGKDF8Z+dX9E/m0a/0xEvKzrKwYAAF1FZRYA0Ej7FfoxHdX19f6Zdq/p+koBAEDX0c0YANBIVnUT6/Yr3aa9wfZ1tm+zfavtN7ek/ZLtb9bT390y/W2277D9Ldsv7ca+AwAAWmYBAJiJMUkXRsRXba+QdKPtayWtlXS2pGdExAHbx0uS7dMkvUbSUySdKOnvbT85Ig4PKP8AAMwbVGYBAI01Ynd/pcljuBGxRdKW+v/dtm+XtE7SGyW9KyIO1Glb60XOlnRFPf27tu+QdKakf+1+xgEAGC50MwYANFIPuxmvsX1Dy+u8KbdvnyzpDElfkvRkSd9n+0u2/9H2s+rZ1km6p2WxTfU0AAAwS7TMAgAaa6QHDbMKbYuIjdkstpdL+oSkCyLiIdsLJa2WdJakZ0m60vYTe5A7AABQozILAGisQXQvsj2qqiL7kYi4qp68SdJVERGSvmx7XNIaSZslbWhZfH09DQAAzBLdjAEAmCbblnSppNsj4j0tSZ+S9IJ6nidLWiRpm6SrJb3G9mLbT5B0qqQv9zXTAADMU7TMAgAayXJvBoDKPVfS6yTdYvumetpFki6TdJntb0g6KOmcupX2VttXSrpN1UjI5zOSMQAA3eHqXgsAQLM8zgvj9QuWd329v3d4143tnpkFAACDR8ssAKCRrB4NAAUAABqByiwAoLEY+AEAgOFFOQAAAAAA0Di0zAIAmsmS+z8AFAAAmCOozAIAGsmiexEAAMOMyiwAoLEYAAoAgOFFZRYA0Fi0zAIAMLwoBwAAAAAAGoeWWQBAI1VxZulnDADAsKIyCwBoLLoXAQAwvCgHdIHtk22H7YX1+8/b/rk+bNe2/6/tHba/3OvtzZbt77F9k+3dtn+5nvYe23/Y4fp+x/YF3czjDLb9Idu/NYDt3mr7+dOY7+m2/6X3OQIGp2qZ7f4L89Og7tVzje3vs/2tWa6jo2M3+Rw02XTvx01k+29tnzMH8nGS7T22FxTSL7b9Fz3ads+/H2z/s+0zermNZNt32v7BPm8zPZ+T5v0l2787nfXOq8psfWL21Qdq4vX+aSwXtk/pRx7b5ON42x+zfa/tXfVF/uxkkedJerGk9RFx5jTWP+j9fIuk6yJiRUS8z/b3SXqWpP8+0xXZPk7S6yX9Wf3++bbHW877Ztvv6Gruu2TSdXpfXTFePp1lI+IpEfH5acx3s6Sdtl852/wCc9lID17orSG8Vw/U5OMWEf8UEd8zyDzNB9O9HzdRRLw8Ii7v93YnV7Ai4u6IWB4Rh/udl16ry2e7I+Jr9fuLbR9q+U683faPDTibj9Hyg9REPu+0/dbpLDvD8/lBST9l+/h2M87H+/Yr6wM18XrTbFfYx18Ql0v6iqT/KGm1pMsl/U1S0Xm8pDsj4uE+5a9omsfo8ZJubXn/BEk/ERGHOtjkz0i6JiL2tUy7d+K8q6ron2v7VR2sux9eWefzdElnSHpbD7bxEUk/34P1AsBsDdO9eiA6OR7zocUUzdP0667D/P+CpD+fNO3jLeXYCyT9he21s81fj6ys8/lfJP1P2y/u5sojYr+kv1XVcJWaj5XZKdk+xfY/1r+ibrP98Xr6F+pZvl7/wvATdSvfJtv/w/Z9kv6v7RHbb7X977YftH2l7dXT2O6TbP9Dvcw22x+xvXKqeSPiOxHxnojYEhGHI+ISSYskPeYXVNvnSvo/kp5T5/sd9fQ32r7D9nbbV9s+sbSf2fx12ktsf6s+Zn9aH7+fq9N+pv41+r22H5R0cbavtv9B0gskvb/e/pMlvVDSL9bpq2z/te0HXHWb/mvb65ND+3JJ/1hKjIjvSvoXSae17M8f2b7H9kO2b3TVMjyRdnF9Tj/sqhv0rbY3tqSfYfurddrHJS1pSZtp3lvzeZ+kz6iq1E6s7z/X29/pqpvLf2hJe+RXS9uLbf+hq9aBe+v/F7es/vOSXjRpGjCvjMhdf2Fw5tu9ul73mbb/tf5O32L7/bYXFeadaPU4r/5e32L7V6e7rnrZ821/W9K3s+PWssyd9TG8WdLDnqJgbvvFtr9Zn5f3S0d+UGz/rKuWpB22P2P78YVDPXm9b6iX2237O7aLP8DaXmD7D+rz813bb/KR3caL63JVZvnipPU90mJt+xW2b6uX3TxxzG2vqe/pO12Vk/7J9kjLcZu4H0/nvPyC7W/X8/yJXY1eN5Nrr57/KbavrfNzv+2L6unFMkHLZ+VC21vrPL4h2cYjXWwnjp3t36/P73dtv7xl3tWuHnm7t07/VEvaD7t6vGyn7X+x/fSWtMnX3ccknSTp/9XX6lv82EcDnuDq+2G37WslrWlZ3xHX9RTn6GLbf2n7L+rlb7H9ZNtvq4/JPbZfMulQPMn2l12VGz/t+rukJV/n2r5b0j/U06f1OaivjRcqL8d+RtJuSU+ql1nlpKxZn7PfdFU23237s7Zbj8/rbN9VX2e/Nik/0/6OmiKfN6hqqDq9XteI7V+vt7XVVbn6mEnHbeJ8nuiq7rHdVV3kjZNW/3lJP9QuD0NTmZX0m5I+K2mVpPWS/liSIuL76/Rn1L+GfLx+/zhVv7g+XtJ5kn5J0qsk/YCkEyXtkPQn09iuJf1Ovcx/kLRB0sXTybDt01XdIO+YnBYRl6r6Vedf63y/3fYL6229WtIJku6SdEVpP7P56w/AX6lqMTxW0rck/adJ2Xi2pO9IWivpndm+RsQLJf2TpDfV2/+3SesakfR/VR3vkyTtk5R1O3tanacp2T5V0nMlXd8y+SuqPmyrJX1U0l/aXtKS/p/r/V8p6eqJ7dcf6E+p+gVttaS/lNTa9WOmeW/N53pVFfM76vdPlvQxVb/IHSfpGlVf7FN9qfyapLPqfXqGpDMl/fpEYkRslnRIhQIW0HQ8Mzsvzat7de2wpF9RVfB+jqQXqf4hN/ECSadKeomk/+FHu15OZ12vUnV/Pi05bpO9VlWhcWVEjE3avzWSrlJ1f1kj6d9V3V8n0s+WdJGkH1V13/onVfex6dgq6YclHS3pDZLea/uZhXnfqOp+ebqkZ9b72em6JrtU0s9HxApJT1VdOZF0oaRNqvZrrar9jCmWn855+WFVj1Y9XVW566X19Glfe7ZXSPp7SX9Xz3+KpM/VyWmZQNVn5RhJ6ySdK+lPbK+aajtTeLaqMtcaSe+WdKn9yFDyfy5pmaSnSDpe0nvrvJ4h6TJVPcSOVfVY2NU+8gf21uvutZLu1qO9Nt49RT4+KunGOh+/KWmmz/W+ss7vKklfU9WYMKLqmPxGncdWr5f0s6rKyGOS3jcp/QdUnbOXzvBzcKqk8YjYNFWiKz+k6nvltnrydMqaP6nq2j++XnbiR5nTJH1A0utUXTfHqvp+ndDJd9REXs9S9ZmZ+P77mfr1AklPVNWTpVQmvkLV5+tEVS28v13XTSbcrupazkXEvHlJulPSHkk7W15vrNM+LOkSVc+XTl4uJJ3S8v75kg5KWtIy7XZJL2p5f4KqisJCSSfX61hYp31e0s8V8vgqSV+bxr4cLekWSW9L5vkZSV9seX+ppHe3vF9e5/Hkwn4W51f1Af7XljRLumdiv+pt391mH47Y18nHRdKHJP1WYdnTJe1I1n1I0vdOOmfj9Tl/qN7XqyQtStaxQ9UNXqpuHH/fknaapH31/98v6V5Jbkn/l1nkfeI63V3n83Oqvsgl6X9KurJl3hFJmyU9v2XZH6z//3dJr2iZ96Wqup23bmuzpO/v5eeOF69BvdZ7Qbxn6equvyTdMOh9m88vDdm9eoplLpD0yULaRB5b72/vlnTpdNZVL/vCaRy3TZPOx88m+X29pOtb3ltVAXSiPPC3ks5tSR+RtFfS45P9W1jY1qckvbmQ9g+qKpwT739wuuvSpPLS5OOiqhL185KOnjTPb0j6dOvxm3TcfnAG5+V5Le+vlPTWmV57qip/pbRimaA+5/taj5Wqyv9ZhXU98tmoj90dLWnL6v15nKrP17ikVVOs4wOSfnPStG9J+oHSdTf5mLZeL6oqcGOSjmpJ/6ikv5jqup68PlXlvGtb0l6p6ntoQf1+Rb2tlS3H4F0t85+m6vtmQUu+ntiSPpPPwXMl3Tdp2sX1+ndKelhVBfMtyefydLWUNev8/nrL+1+U9Hf1//9L0hUtaUfV25rW9TspbWLfd9bXVEj6fdVlZFVl2l9smf97NMV3sKofbQ5LWtEy7+9I+lDL+1MlHS4dg4nXfGyZfVVErGx5fbCe/hZVX8BfdtWF82fbrOeBqPprT3i8pE/WTfA7Vd0wD6v6pa7I9lrbV7jqtvKQpL9QS7eIwjJLJf0/VTeP32mTz1YnqmpdlSRFxB5JD6r6xWmm85+oqvI6kRaqbl6t7ml908m+tiy7zPaf1d0SHpL0BUkrXR7xbIeqL55W99bn/GhVrav7VD3LNLGNX627f+yqz+Exk/J3X8v/eyUtqbtCnChpc30MJjxy3DrIu1RdpytUffl+b0s+Jp+TcVXHeapzeMS89f8nTppnhaovHACYS4bmXu2qK+Nfuxrw7yFJv91u3Try/vrId/s013WPZi5bZqryQOv8j5f0Ry3HfLuqc1gqezzC9sttX193M9wp6RUqH5sj8jE5zzNc12Q/Vs9/l6turM+pp/+eqhanz7rqujzlQDfTPC+TyxjL62Vncu1tUFVpnUq7MsGDcWSr+yN5mIZH8h4Re+t/l9f52R4RO6ZY5vGSLpy4LupzsmFSnmZyrZ6oqvLWOk7MXaWZC+5v+X+fpG3x6GBEE2OwtB6TyZ/DUR15bjr9HExVhpWqxoyVEXGUqu7Fr3fdXX6aZc0przE99jP8sKryvup1d/IdtaZe/4WqyrKjLduafB0u1GO/g09Ude3snjRv6/FaIWlXm3zMy8rslCLivoh4Y0ScqOrXtz91PipiTHp/j6SXT7r5LomqK2fmt+t1Pa2uZP20VH4oq+5+8SlVFceZDt5zr6oP08S6jlLVlaCUx2z+LWrpglB3J5n8HOjkYzSjfZ3kQlW/3jy7Xnaia1Rp+ZslPbm0sojYpeoXu1fW+f8+VYWkV6v6BXGlqg/IdPK3RdK6li41UvULYad5b83nP6pqof79etLkc2JVX/5TncMj5q3zdG/LsutUdTOZVQgGYK5yD7oY0814sObpvfoDkr4p6dR63Rdl665taPm/9bt9OuuafEymI1tmS2t+Wu5LE+5R1WLaesyXRkQaHq4+hp9Qdf9bW9+Xr1H52BxRLpmUp3brelhVi+LE/I9rXXFEfCUizlbVPfNTqlpOFRG7I+LCiHiiqkeR/pvtF02Rt07O8YSZXHv3qOq6OZW0TNAj90ha7amf8b1H0jsnXRfLIqK16+3k667ddbiqLqtOaC2LTT7HC1R1952NyZ/DQ5K2tUxrze9MPgd3VFl08QefiLhTVWvvRFSKjsuaeuxneJmq8v6Ejq7fqMYMeI+k/Xq0W/JU1+GYjvwhYWK+1a66zrfO2/pd/R8kfb1dPoamMmv7x/3og9I7VF2A4/X7+1X+cpjwvyW90/XD3LaPc9U/vp0Vqrox7Kov2mIYGtujqp5T3SfpnLpVbiY+JukNtk+vv9h/W9KX6g+E9Nj9zOb/G0lPs/2qunXyfFVdSjLT3tfCsvtUhZNZLentbea/RtWzClNyNarka/To6MkrVH2YHpC00Pb/UtU9bDr+tV72l22P2v5RVc+idJr3yf5Q0ottP0PVDfSHbL+ovh4ulHRAVbfmyT4m6dfra3GNqm4krfHWfkDSP0TEgRnmB2gMBoCaX+bpvXqFqsdf9tj+Xkn/dRr5+Z91S8xTVD0DN/Gsayfrms5xy/yNpKfY/tG6PPDLOrI88L8lva3Oq2wfY/vHp7HeRZIWq7ovj7kaVGjyADytrpT0Ztvr6srT/5jBur5e78PprsbKuHgiwfYi2z9l+5ioois8pPqaczWA0Sl1BX6Xqlb+qc53J+elddnplp3+WtIJti9wNeDTCj8aFqpdmaDrImKLqgrXn7oaoGjU9kQl64OSfsH2s105yvYPTaq8TFa8ViPiLkk3SHpHfc6ep0crepL0b6p61P1Q/Rn9dVXXxGz8tO3T6srfb0j6qyiHlZn25yAiDqp69jkrx66X9DIdWY7ttKz5V5J+2PbzXI3B8hs6sg44m+tXkt4l6S31Z+tjkn7F1WBdy1XVLT4+qVeAIuIeVWXb37G9xNXgYOfqseXYv2238flYmZ0YBW3i9cl6+rMkfcn2HlWD+7w5Ir5Tp10s6XJXXQNeXVjvH9XLfdb2blUDC00nrtw7VA1UsEvVDeGqZN7/pGqAgJeoulgn9uH7kmUeERF/r+qZy0+o+hXmSaoqdBMuVst+ZvNHxDZJP67qWZ0HVT0rcIOqilU39nWyP5S0VNUvXterGtwg82FJr3DVzWvCiRPHTFVXhdWSfqpO+0y9zn+r0/Zrmt1b6i+dH1X13Mh2ST+hI/dtpnmfvP4H6v35XxHxLVW/yv5xvb5XqhoM4eAUi/6WqnNys6pntr5aT5vwU6q+XIF5i5bZxhqme/WvqhqYZbeqAn5pEKZW/6iq9eZzkn4/Ij47i3VdrPbHrailPPAuVeWBUyX9c0v6JyX9rqQrXHVR/IaqgZrarXe3qorxlap+uPhJVeeu5IOqBge7WdXgPdeo+qH5cLt1RTXo5G+oqkB8W9IRIxurGhjnzjr/v6BHyw6n1svsUfXD9p9GxHVT5K2T8zJh2tdevZ8vVlU2uK/elxfUye3KBL3yOlUtlt9U9RzuBXVeb1A1aNf7VZ2TO1SVozK/o6pCvtMto3i3+ElVn+ftqipzH55IqHvk/aKqSB+bVbXUTjnA0gz8uarec/epimLxy6UZO/gc/JmqY9fqJ1rKsV9R9Tl7R532h+qwrBkRt6pqlPqoqvL+Dh15bGZz/UrVdbtD1fm+TNVx+4Kk76oqb/9SYbnXqnqO9l5Jn5T09rpuorpi/Aq1PC5YMvGwLpByNRT9Jkk/Vfgi7zvbvy1pa0T84aDz0i+uhoD/6Yj4Qpv5ni7pzyLiOdl8QJM9fsHCeOvSlV1f7y8+/OCNEbGx/ZxAd9k+WVUBcHRySwaOVLe+/u+IeHzbmYE5yPY/q4ry8bVB56UfbD9RVaPSaLSpgNr+JUkbIuIt7dbb6CDF6C3bL5X0JVXdGv67qv7z16cL9VFEXDToPPST7eNUPf9xZ7t5I+JmVcOrAwDQeHVPrBeoap1dq6pl7pPpQsAcFhHPbT/XvPJUSXe1q8hKUkT88XRXOh+7GaN7nqNq1LyJ7q6vioh9+SLoBdvPUtWd6I8j4u5B5weYK+hmDAwNq+pyuUNVN+PbVT0XCmCOs/3fVIVdm3JE8Fmtm27GAIAmOnnBaPzaspVdX+95e7bRzRgAgAagmzEAoLFoSQUAYHhRmQUANBZ1WQAAhtesKrO2X6ZqGPwFkv5PRLwrm3/NscfGySdtmDoxK5FkPaHHS+Ge2nCnRaBOM9pG1t07y2u2XNqFPEtLtpcetk6P6Tzo6t5uF0YWDGCjpcU6Pd5TL3fnPZu1bfsO6hQAMA0zLjutOTZOPumkvuQNQH/ceffd2rbtQcpOXdBxZdb2Akl/oire1SZJX7F9dUTcVlrm5JM26Cv/+PdTJ44kY1EdTkan37c7yWSyzgVJ5SJbLksbbzOK/nhW8Uxirmd5HTuUpE0VmnQiL8n2snPR6bHJtI033wDt9mHZMf3d5uHkR550ueQaLiz3rFf8WHkZoIcsuhmjWTorO52kG774+T7lEEA/bHze8wedhXljNqMZnynpjoj4TkQclHSFpLO7ky0AANobkbv+AnqIshMAdNFsKrPrJN3T8n5TPe0Its+zfYPtGx548MFZbA4AgEe5B2F5aOlFj8287LSNshMAlPQ8zmxEXBIRGyNi43HHHtvrzQEAhshID17AoB1RdlpD2QkASmZz394sqXU0p/X1NAAAADwWZScA6KLZjGb8FUmn2n6Cqi/i10j6yXSJ8cPSnh1Tp2WDDi05qpy2aGk5rRcDC2XrHGlzOJ0s69FyWjbIU7bNLDvZAFDZQFbJoFKRrTMxsvbk8jof2lZMG//218or3benmOT1p5TTVq4trzOzcFGeng1Uli27MLkuskGeDu1PlkvOb5aX0SVTT+904C+gC+gVjIaZedkJAFDUcWU2IsZsv0nSZ1QNL39ZRNzatZwBAJCoRjOmOovmoOwEAN01qzizEXGNpGu6lBcAAGaEqiyahrITAHQP/QMBAAAAAI0zq5ZZAAAGiZZZAACGF5VZAEBjUZkFAGB4UZkFADSWGQAKAICh1YzKbBbyJQvpkz0SnK2z05A+WUibdrJtdrreTvexwxA7nYq9u8qJSSggjSZhZMaTkE2ji5PMZOGTZvGIebZsp2kLku1FcmyydXYUJojKBAbD4uoDAGCYMQAUAAAAAKBxmtEyCwDAFPhFFgCA4UVlFgDQWDwyCwDA8KIyCwBoLPPULAAAQ4seWgCARnKPXuk27Q22r7N9m+1bbb95UvqFtsP2mvq9bb/P9h22b7b9zG7sOwAAoGUWAICZGJN0YUR81fYKSTfavjYibrO9QdJLJN3dMv/LJZ1av54t6QP1XwAAMEtzpzLbaTiYkQ53wcn2snAwWeiWw4c7y0u79fY5VE6nnIZJKovdO8qJ4+Vj6sXl8DuRhO3xoiXTytdj85KESFrQo49Sp2GiOg2/syCJ91PaRx5axAD1++qLiC2SttT/77Z9u6R1km6T9F5Jb5H06ZZFzpb04YgISdfbXmn7hHo9AABgFuZOZRYAgBka6U1tdo3tG1reXxIRl0yeyfbJks6Q9CXbZ0vaHBFf95E/8KyTdE/L+031NCqzAADMEpVZAEBDuVcDQG2LiI3plu3lkj4h6QJVXY8vUtXFGAAA9AmVWQBAI01nwKaebNceVVWR/UhEXGX7aZKeIGmiVXa9pK/aPlPSZkkbWhZfX08DAACzxGjGAABMk6va6qWSbo+I90hSRNwSEcdHxMkRcbKqrsTPjIj7JF0t6fX1qMZnSdrF87IAAHQHLbMAgGbyQMYfe66k10m6xfZN9bSLIuKawvzXSHqFpDsk7ZX0hp7nEACAIUFlFgDQWAMYzfiL7TZbt85O/B+Szu9xtgAAGEr9r8yWwrdk4WfGDpXTOg1d0qks/E67vGT7mC3b733MQuy4w0vmcBLW5uHt5bSlK8ppy1cWkzyShJjJQtOkoZeSfXASzqmdLOTPXFI8NtHXbACtRgby1CyA+ar6/QmTmTB8mKN4ZhYAAAAA0Dh0MwYANNKgRjMGAABzA5VZAEBj0fMNAIDhRWUWANBY1GUBABheVGYBAI1lqrMAAAwtBoACAAAAADRO/1tmXag/L0yykoUuObR/5tuS2oSfSdKy8CztdBqCZTbbLMn2MdPpzx/Z8V64uJjkhaPl5VxeLtXh+Y2DybWWhV2S5NEkHFB2frP1Zsc0zUy2/8lypdA8hDHAgFjSCA2zAKbQcYidju9pc+le2P0vxk73jpA+6LVZVWZt3ylpt6oi8FhEbOxGpgAAmA6KSWgayk4A0D3daJl9QURs68J6AACYESqzaCjKTgDQBQwABQBoLAaAAgBgeM12AKiQ9FnbN9o+b6oZbJ9n+wbbNzywffssNwcAANBoMys7bXuwz9kDgOaYbcvs8yJis+3jJV1r+5sR8YXWGSLiEkmXSNLGZzxtLj0dDwBoOMYWQQPNrOz0zDMoOwFAwaxaZiNic/13q6RPSjqzG5kCAKAdq7qJdfsF9BJlJwDono5bZm0fJWkkInbX/79E0m+0WUhasGDmGxtLwpOMHSynLch2L0nLSjPZOrO8tJOEYImxQ52vt59GOji3UnpNRBryJg+HU+LsHJbCz0jSoQPltMNZTBtJWWiebJuZDhfruLRe2kVC82CAaJhFk3RUdhpyvQmxk6T1e3s9kXwzZt1ZsrROD0uSRtgedMNsuhmvlfTJ+kJcKOmjEfF3XckVAADTQGEIDUPZCQC6qOPKbER8R9IzupgXAACAeYuyEwB0F6F5AACNRbssAADDi8osAKCRLCqzAAAMMyqzAIBmsnlmFgCAIUYUAgAAAABA4/S3ZdYj0uiSqdOysDZZ6JIszIqTuvpIltZh6JZ2Do8lq03Wu29359vsp3bhaUqycE3ZOjs8LrHy+HLieLK9LK2dhUlonjT8UIey6zv7XGTXdy/yCczSCA2zQKN1HHqnWjhJS+5Zc2m5XkjD73RYNs4e6siWyw5ZsrV26JWDCXQzBgA0lqnNAgAwtKjMAgAaycobIAAAwPxGZRYA0EymMgsAwDBjACgAAAAAQOPQMgsAaCwGAQEAYHhRmQUANBZ1WQAAhlf/K7OlIcGzocIzWciTbJ1ZOJjMeIchT9Qm/E4WmqjDkDeRrTPTaYidTkPXjJbPoQ+V9yEe2l5e50j5/Hrx0iQvi8tpmXb7vnA0WTYZnH68HM4pvd46/TylCM2DuYeWWWDuS8PvtA1b0+Gy2X05DUPXYYi+7F7ei7A9vQi/k5Sd8rA9yXJpeaRNWSXZx+ya4r4wXGiZBQA0EqMZAwAw3BgACgAAAADQOLTMAgCaydIITbMAAAwtKrMAgMaiLgsAwPCiMgsAaCgz0AcAAEOMyiwAoJGsHg3cDQAAGoFiAAAAAACgcfrbMjt+WNq7a+q0ZceUl+s0nubhJEZnFoN1QXJYOo3dJclJehw6UE57uHDMpDTObhpPNRGH95UT9+0pp+1K4r7uTZZbtryclyRNR68uJvnoY8vLJcfFybmPLP5aEg9XkrT/4Ty9ZCT7iCZx69pcix1tr3Tc6OaJQTHxBIG5ovNYsm3irI73IiZsVj5M0rLlsjJnkpfI9i+RlSnTeLELkrj3Wfk3TUvOYRq7tpxU6SyWLjFohwvdjAEAjUW5BACA4UVlFgDQWPzKDgDA8KIyCwBoLOqyAAAMLwaAAgAAAAA0Di2zAIBGsqQRmmYBABhaVGYBAM1kuhkDADDM2lZmbV8m6YclbY2Ip9bTVkv6uKSTJd0p6dURsaPt1uxy6I9OhwOPzoY0T4dQ78U6JcXucuia2JOE38nCvhxOhnvPwg9lsu1l+dyfhPTJ1pkNn58tl+3fgb3ltAXlYeLTAAHZOtuF5lmehJ7KhuV3h9ditlin1zcwBzEAFOairpad5oXk7touNE0vQuyMlcMhKguVuD8pBxwol4Hi0P7yckk5LhMLyyF2vGhxecElRyXLJSEdR5N1ZuWKLBRQO1lYn+ya4r4wVKbzzOyHJL1s0rS3SvpcRJwq6XP1ewAA5jXbG2xfZ/s227fafnM9/fdsf9P2zbY/aXtlyzJvs32H7W/ZfunAMo9++pAoOwFAz7WtzEbEFyRNblI8W9Ll9f+XS3pVd7MFAEB7dvdfbYxJujAiTpN0lqTzbZ8m6VpJT42Ip0v6N0lvq/Ln0yS9RtJTVFVu/tR21tyAeYCyEwD0R6ejGa+NiC31//dJWtul/AAAMC1W/yuzEbElIr5a/79b0u2S1kXEZyNiol/j9ZLW1/+fLemKiDgQEd+VdIekM3twODD3UXYCgC6b9QBQERG2ix3XbZ8n6TxJOmn9utluDgCAii2P9OTZqDW2b2h5f0lEXPLYzftkSWdI+tKkpJ9V9WykJK1TVbmdsKmehiE2o7LThg19yxcANE2nldn7bZ8QEVtsnyBpa2nGugBwiSRtPP3p6fg6AADMRI/G+dgWERvz7Xq5pE9IuiAiHmqZ/muquiJ/pCc5Q5N1VnZ65hmUnQCgoNNuxldLOqf+/xxJn+5OdgAAmNtsj6qqyH4kIq5qmf4zqkaw/amImKiAbJbU2rS2vp6G4UPZCQC6bDqheT4m6fmqul1tkvR2Se+SdKXtcyXdJenV09paRHkY9SysjZM6d5amPFROUTZMfDL8eBxMhl6XFHv3lBOzkDeZXoS82Z3kJUmLvVnomkPFJK99XHm5LKTN6KJyXhaW05yE5tHe3eW05HhGm9A8fR8kPhsmP0trE15q6vXRaIDBGelzCAZXsYAulXR7RLynZfrLJL1F0g9EROuX4dWSPmr7PZJOlHSqpC/3McsYgK6WneaQyL7vO05rF5onC7FTLlsoKZNFFmpvz87ycruTSEpZ+WHfw+W0LIRQJgm/E0vL4XfSclWWdtTKYpIXJyF9ZqPj7/dy3SArsRDqrZnaVmYj4rWFpBd1OS8AAEzbxABQffZcSa+TdIvtm+ppF0l6n6TFkq6tC0TXR8QvRMSttq+UdJuqX1jPj4jOAkuiMSg7AUB/zHoAKAAABqXfv6RHxBc1dWeLa5Jl3inpnT3LFAAAQ4rKLACgmaYXFxYAAMxTnQ4ABQAAAADAwNAyCwBoLAbsAABgeFGZBQA0FnVZAACGV38rszEulYZDH0mykg3bvnC0s7ws6HDXs9AlI0nIF0nKQsJkaVmonCwkTBYKaOf2YlLsSZbblYXtKQ9LP36gPHz+yOHywJ5eva+8vQ6PZ4wlxywJ6aNsuWQfpDx0j7NrMQ091aGuh+0hNA8GoxrNmNosMDd0GH4nCyMo5eWuQwfKm9xfLsvErm3lde54oJz24P3ltF3lsD2x+6HycgeTskX2/bZkSXmx5UeXl1t1bDEpjj2+vM4khFAcs6a8XBacsN3393hSBhrJ1psG4Mm3icahZRYA0Ezuze89AACgGSgGAAAAAAAah5ZZAEBDmW7GAAAMMSqzAIDmyp6bAgAA8xqVWQBAc9EyCwDA0OKZWQAAAABA4/Q5NI8U41MPz+4s7EmnYXSyoeA7NdJ5/d9J6J7IwvrsKofR0f5y6JrYtbO83LbysPTj28rbO3hfOTTP4T3lIfLHD5WHdF96sDws/8LjykPd61A53E/aVrNseTltNAnNk4UCaheWKQs9kF1T2TXc6TCuDP+K+cKE5gG6LSILsdNhWqHsJykPvSNJY+V7fRzcX057KCk7PXhfOW3LpvI679tcXu6Bckif8Z3l0Dzj+8r7l1mwfHE5cfWqctpxO4tJPpiEOkrOb1a+nVXZKUvPyjKR3RfK+5EG9OFeM2fRzRgA0Fw8MwsAwNCiMgsAaCjzzCwAAEOMyiwAoJFsybTMAgAwtHh4DgAAAADQOLTMAgCai27GAAAMLSqzAIDGopsxAADDq7+V2ZERefGyQk6SkCiZZMh2JeF+suHcO7Zvd5oce8phbXSgHGKn4/A7d99dXuV37i+mPXh3eZ3bt5eP255D5fAzY+PlAc/XbSuv83Hry6F5liWhedLh1desLSeuOKacloX0aTe8/IG9xaRQ4TMhyZ2GpUqHrO9BuB9gUGiZBfqo07A9yX0nC9sjpWU57S2HvNFDD5bTtm4pJsW995TT7krKVXeVQx4+/MCeYtq+feWyU3ZLPuqo0WLasrXl8ubik5PySBZ+JymPxGgSJmjx0mSd5X2QJI0nZaCs3BXJgeOWMe/QMgsAaCab0DwAAAwxmmEAAAAAAI1DyywAoLFMN2MAAIYWlVkAQHPRzRgAgKFFZRYA0EwWA0ABADDEqMwCABqLAbgBABhebSuzti+T9MOStkbEU+tpF0t6o6QH6tkuiohr2m7NlhYlw3eXZOF3OjVeHgo9TTt0oJgUe8tDr0uSstA8u8tpsffh8nLbtxeTDtz1QDFt07fKQ8jfuaM8bPt9B8eKaTvHysPrjyXDvW9NQuycsrs8JP+pC8otMstGk+HeRzos/Y4m4aOyNOVhmXwoCSGVrNPZUPhZSJ8sDEJ2aKg1AMC0dLXs1BRZ+J00NE+5XCFJkZQB03LXQzvLyz24tbzc5s3FpH3fLoc13HJP+T6/bVe57LjncPnYZP1Ojl5YDk2zdnf5mB2XbG/JoqQsc1QSnvCYleW05Una0qPKaZI0npRz0rJMVnpKS1Z5fjAnTad0+iFJL5ti+nsj4vT6NX++jAEAzWF3/wXM3odE2QkAeq5ty2xEfMH2yX3ICwAA02fLDACFOYiyEwD0x2z6Db7J9s22L7O9qms5AgBgumiZRbNQdgKALuq0MvsBSU+SdLqkLZL+oDSj7fNs32D7hgceLD/fCQAAMI91Vnba9mCfsgcAzdNRZTYi7o+IwxExLumDks5M5r0kIjZGxMbjjl3daT4BAHisEXf/BfRAx2WnNcf2L5MA0DAdheaxfUJEbKnf/oikb3QvSwAAtFf1CqbyiWag7AQA3Ted0Dwfk/R8SWtsb5L0dknPt326qvGt75T089Pami0tLAz7PVYOT6KD+8tpy1ZMa9OPyUoS1iQOlEPTpGF7sn2QpCQEi7Lh5fcn+7+nvNyhHeWQPtsfKg8Tv+1QeZj8+w+V93//eDbcedk395WHkF+QFFRX3vNQMW39uvIQ+QtWJWFysqHnZ2Nf+Tylg8QvKA+9HyPltLR4n4ZISJYr9ePo7LQD3UFLKuagrpadeiCScHnqRVoWRiVLk/KyVVZeS0IeaseOYtLB+8vLPXhf+V5+745yWW1LEoJw68FyuWph8vV2/KJyEX58W/lcLFlSLjuMHlt+HHDBmp3FNO/ZXUyLlfuKae1Cbzorc2eFj+xaxLwzndGMXzvF5Et7kBcAAGaAAZswN1F2AoD+mM1oxgAAAAAADERHz8wCADAX8MwsAADDi8osAKCZLJ6ZBQBgiFGZBQA0Fi2zAAAMLyqzAIDmomUWAIChNXcqs1lYlwVJNrNhvZPh3ONQOTSNsrRMKezQhGSI8dhVHibey5YV0w7vLQ8Ff+/mZAj5g+XjtjkZJj4Lv5OljSXDpC9JCqObDpTDBB39QDn00Ipb7y2mrV5RPp6xohzqycuTYf6XLC2nSdLhZHj5bNEsnNOBZLj7FauSvJSPaSRpLn5dMAQ+ACCThVFpF5qns3Jeeo/cWw7pM7arnLbrofL2to+V75/f3Z+F5invfxaa52BySJeNlMd3PXZ3eR+Ofqh8zBYkx0wHk3Lz4eT8paF31HkoqE7XmV2n9AKas+ZOZRYAgJkwoXkAABhmVGYBAI1luhkDADC0qMwCAJqLllkAAIZWuVM9AABz2URonm6/sk3aG2xfZ/s227fafnM9fbXta21/u/67qp5u2++zfYftm20/s/cHBgCA4UBlFgCA6RuTdGFEnCbpLEnn2z5N0lslfS4iTpX0ufq9JL1c0qn16zxJH+h/lgEAmJ+ozAIAGst211+ZiNgSEV+t/98t6XZJ6ySdLenyerbLJb2q/v9sSR+OyvWSVto+oQeHAgCAodPfZ2YjysN3HyqHmEmNJ0O6Z2kjCzrb3mwk23QyjHocSoY1zzaXdJc7nAxNnoXY2XO4fEz3HC4vF8lw57uTkdnHklHS1yfhbg4mQ91HMny+sxA6mf1JCABJWpBcb1nIpiTNY9lQ+OV9zEJdOQuRUFqOZxYxMO27Bfd06/bJks6Q9CVJayNiS510n6S19f/rJN3TstimetoWAWgvuy9loV2ykI9J+TDGymmHkzLQoQ7LVQeS/TsY5e+3fck+ZHkZS/Yvkv1Ly9RZ2Slbrl14nU7D72CoMAAUAKC5evNjyhrbN7S8vyQiLjlys14u6ROSLoiIh1pbdCMibFMKAwCgx6jMAgBwpG0RsbGUaHtUVUX2IxFxVT35ftsnRMSWuhvx1nr6ZkkbWhZfX08DAACzxDOzAIBmsqqW2W6/sk1WTbCXSro9It7TknS1pHPq/8+R9OmW6a+vRzU+S9Kulu7IAABgFmiZBQA0V/+f2X6upNdJusX2TfW0iyS9S9KVts+VdJekV9dp10h6haQ7JO2V9Ia+5hYAgHmMyiwAoKEsJYPn9UJEfLHa8JReNMX8Ien8nmYKAIAhRWUWANBcjKYNAMDQ6m9ldvywtH/P1GnZ0OtLlpfTxg7OLk9TGenssHh0UZoeWXiWJUvLaUloHi8q53V0YbnFYnGHrRmdht/pVDacfS94yZLOFszOrSQtLV/DXpyc+yyE1MLFSX6SazhLyz6HC0vXN5UJAEBmFveJrEyW3iOT5UZHy6tcXF5u8aLy9pbsL5erjllQTksiCaaRx7J1Lk0WXJLs38ji8nHJjll6rLPyUbsfI3vxYyU/gM47tMwCAJppYgAoAAAwlKjMAgCai8osAABDi8osAKCh+j8AFAAAmDuozAIAmouWWQAAhhY/aQMAAAAAGoeWWQBAMzEAFAAAQ62/ldkYVxzYO2WSFyUhURYmw4Ef2t9RVpw8ZxVZiJ1ylJx8iHhJykKwJKF5nA1rvnJlMWnN2qOKacdv31dMe/ziw8W0PYfLY8jvTsL2ZJwM2f+kJeVLdO2i8nVx9PHlfffRR5czk537o5IQUe3O/Xj5mKayc98uHFBJEs4qDpSvCx0qLDeexBUAeo3KLDA3ZJ/FNK1NJ8Es7EtWdly6rJx2VLmMMLq6fK9ftWp3Me34feUC4ngSunD1aPkeujA5bCuTMsBxSflo5cpyOWfhys6OWRpeMg0jmJTvpfza6PR6S7fH/aSJ2nYztr3B9nW2b7N9q+0319NX277W9rfrv6t6n10AACbUA0B1+wXMEmUnAOiP6dy1xyRdGBGnSTpL0vm2T5P0Vkmfi4hTJX2ufg8AQP/Y3X8Bs0fZCQD6oG1lNiK2RMRX6/93S7pd0jpJZ0u6vJ7tckmv6lEeAQAAGoOyEwD0x4yembV9sqQzJH1J0tqI2FIn3SdpbWGZ8ySdJ0knnfi4jjMKAMARGAAKDTDrstOGDX3IJQA007QfDrK9XNInJF0QEQ+1pkVESFM/3R4Rl0TExojYeNzqlbPJKwAAR6KbMeawrpSd1hzbh5wCQDNNq2XW9qiqL+OPRMRV9eT7bZ8QEVtsnyBpa68yCQDAZJbTkemBQaLsBAC917Yya9uSLpV0e0S8pyXpaknnSHpX/ffTbbfmEXlxYdjvrEByuMOwJmkhp5yW/S7fWfCZWhaaZ8Ux5bT9SbiUNWuKSUtPOb6YdsrecngW3fVQMSkbJv6uA2PFtD1J2J6nH1UeJn794nLaU09ZWUxbesqUPbcqxyTHOlMKTSPl51aS9u4pJkWyrLOQP9nn4nD5XJTCY0lS7OigXJWE+gF6jpZUzEFdLTv1gJPPTV7O6UH4nTah7TxaDu0SS5JwMUm5yqtXF9MWnrCzmHbM7nJ5bP14+cgtfbAcRnLvofK9PPt2W5GELjzuuHK5YulJ5Zb+kePLZUqvKh8zLU+OdRIiyVnoTSm/NtKQTtwXhsl0WmafK+l1km6xfVM97SJVX8RX2j5X0l2SXt2THAIAADQLZScA6IO2ldmI+KLKP3G8qLvZAQBgmhgACnMUZScA6I8ZjWYMAMCcQmUWAIChRWUWANBQbjM2AgAAmM8oBQAAAAAAGoeWWQBAc9HNGACAodXfyqwtLZj5JuPhneVVjpZDt6TDdmf5SJabVdieZcvLaQc6C83j0fKw5iMnrS+mrV5cXu4Z63cW006+88Fi2s5d5RAt+/aVQ8WsWFE+hyc8cVUxbelTTy6m6YQTiknZMUtlIZLaOX5dMclHJ8Pdl0JZSXIWDmh0SXm58lL5NVpCN08MCgNAAXNI8lnM7hML8tA8WlC+Z3vZ0cW0yO6tax5XTttfDqOzJMolvTVLy2WZY+4vhzw8uP9QMW0kOaSjy8v3+UVry2XKhRvKoQt94onlDR5bDveoFeWymrLwScm5lZRfN1kZP70vcM+Yb2iZBQA0F5VZAACGFpVZAEBDMQAUAADDjFIAAAAAAKBxaJkFADQX3YwBABhaVGYBAM3EAFAAAAw1KrMAgIbimVkAAIZZfyuzhw4qtt49ZZKPTYYDHyuHfNGi8tDkWXiSXmjbPpCEUoksJEqWdlx5eHmvSML9rN9QTFry8J5i2uKtW4tpx+/aVUyLsXJoHmctK+vL4YW8/qTyctkxO3y4nDaepC1JQuEsT461JK88rpx2VLJsOvR8h6EOlpSPjbOQVQsLYQdK04F+oGUW6KPk85Z9FrP71Uib0DzJPcZLk7AvRx9bTIqkXOkYL68zCe23aHn53rroxHJonmUHDpTzkh3TpUmZZOXK8jrXlMsjOr4c1lDHZuXNZHtJiEEtbBeaJ7k20rA93BeGCT9pAwAAAAAah27GAIDm4hd4AACGFpVZAEAzMQAUAABDjcosAKChGAAKAIBhRmUWANBctMwCADC0+EkbAAAAANA4/W2Z3b9X8a2bpk57VnkI9XRY78xIp7/YJ4dlPBmyPQtrIkkLFydpSXiT49eV0/aUw+GkYWay8DSHkiHrjyoPPR/bHywvd+hQOW3V6nJektBDWp0ML58dzwP7ymnJvqfhfpYmaW3WGwf3J8uVh+zXSPl6S0MLJMul1/Bo4frNQi4AvUbLLNBVWTiYyJdMkrJQcm3KTtn9bDwJwbhiVTk7yTojCweThALyqjXl5faUQ/M4K3dk0nCBR5fTjikfF60s74OPSdKWryyvs1R2kNqf+zRsU/bd31kIqTQUEuYsuhkDAJrJ4scUAACGGJVZAEBDeRY9cAAAQNPxkzYAAAAAoHFomQUANBfdjAEAGFpUZgEAzcWAHQAADC0qswCAZrKlEVpmAQAYVv2tzC5ZJp36tKnTsuG3szAr2ZDt+x8up2UhdjoUWRgVSdq3u5w2lgzNvjgZfj0LF5MN956F9NmfhK5JzpOXrygvl4UJWpmE5slCCD1wXzktCSGkY5NwP1nYnmzfjy6HlpIkjSbXcLbeLCxV9rnIZIX/rMtm6frOPoNAr9EyC8wRnYVDycOvSFowWk4bLQcLSr8ZVib3uuR+HUuTcs7KpIyXlS3GxsppmaxcsSQpOywr74OXlUP6OFlOi5IQSQuT89c2NE9ynvghE7W2V4LtDbavs32b7Vttv7mefrHtzbZvql+v6H12AQAYLNuX2d5q+xst0063fX19P7zB9pn1dNt+n+07bN9s+5mDyzn6hbITAPTHdFpmxyRdGBFftb1C0o22r63T3hsRv9+77AEAkBjMAFAfkvR+SR9umfZuSe+IiL+tKyjvlvR8SS+XdGr9erakD9R/Mb9RdgKAPmhbmY2ILZK21P/vtn27pHW9zhgAAG0NoJtxRHzB9smTJ0ua6KN3jKR76//PlvThiAhJ19teafuE+t6KeYqyEwD0x4x+0q5v3mdI+lI96U11t6nLbK8qLHNe3eXqhgd2JM9pAgAwExMDQHX7Ja2ZuG/Vr/OmkZsLJP2e7Xsk/b6kt9XT10m6p2W+TaJSM1RmXXba9mC/sgoAjTPtyqzt5ZI+IemCiHhIVVepJ0k6XdWvj38w1XIRcUlEbIyIjcetOmb2OQYAYILd/Ze0beK+Vb8umUZO/qukX4mIDZJ+RdKlvdxtNENXyk5r2gwwCABDbFqVWdujqr6MPxIRV0lSRNwfEYcjYlzSByWd2btsAgAwp50j6ar6/7/Uo/fEzZI2tMy3vp6GeY6yEwD0XttnZm1b1S/Mt0fEe1qmtz7z8yOSvjHV8kdubVQjx22YOi0b1juV1Mez8DvufjgRtwlRElmInSR0jbMQLMmQ9jGSDAWfyYbJX5G0rmehgLLQPO2G5e9EErLIS5OwPdk5SnjpUWl6jB3qaL0d6zT8DtA0c+d6vlfSD0j6vKQXSvp2Pf1qVd1Kr1A18NMunped/7padppDnDyjXg6SI83wqbZJiyZlhCxsTxoOqJwfZ+FistA8afidJHRjFoIwk4W8ycqNSTknLW+maR2G32lX/ku/3zsLBZVdw2im6Yxm/FxJr5N0i+2b6mkXSXqt7dNVfX/dKenne5A/AACmZksj/S+Y2P6YqpGK19jeJOntkt4o6Y9sL5S0X9LEc7bXSHqFpDsk7ZX0hr5nGINA2QkA+mA6oxl/UVP//HFN97MDAMAMDKBlNiJeW0j6j1PMG5LO722OMNdQdgKA/phOyywAAHMTXcYAABhac+ZhIwAAAAAApouWWQBAQ3kuDQAFAAD6jMosAKCZrIEMAAUAAOYGKrMAgObimVkAAIZWfyuzIwul5aumTstitGYxuLLlFiTdz9rEhC3KYtdmsbQkafGyYlJaHMtitC4ox+hyFoN2NIkXlsVhHUtiyXZq755yWodxX7M4szr62M7Wme37aJs4yQf3l9N6EWe3U5102aQyAQBDr2cxaDt9kiC7N2X3upFyWS6Nw7ooKQdkZc6sXJnuQxZHNylXJPuXlSk7jhebpbUrc2TpxJJFjZZZAEBz8cwsAABDi8osAKCZbJ6ZBQBgiFGZBQA0Fy2zAAAMLSqzAIDm4tkoAACGFj9pAwAAAAAah5ZZAEBDmW7GAAAMsf5WZu3y0N6Hx8rLjR9I0joMsZMNMd5p2J42vHC0vEmVw/bowN7u52XxynLieHIuDiXhaZIQQpGFF0rC77jT0DwJj3RW+I1sSP526+w0/E623vQ6zYazz0IS0GUTDWJxzQJN1/ZRgeye1eF60/tgcr8eT9KSMp4iCU6Uxy0qyw5bun+dlg86DLGTlo/anHvC72AaaJkFADQXLbMAAAwtKrMAgObi13kAAIYWP2kDAAAAABqHllkAQEO5/fPqAABg3qIyCwBoJotuxgAADDEqswCA5mIAKAAAhlZ/K7MxLh3YV04rycLvZMtlhZwsFFC2zk6XkxTZfiRDnvuoY9L1diLNS2akcP4kaawcQsmHk9A8mcVJyKJDWcimLExQdq0l+czSZhE+qdNQQen13WkBf7zTGAHAIJiWWaABsjAqkYWtqRZOErP7YIehebKyXBaeJt2PLDRPh/fd9Lhk+97hcUmX60FeRPgdTA8/aQMAAAAAGoduxgCA5mIAKAAAhhaVWQBAMzEAFAAAQ43KLACgocwAUAAADDFKAQAAAACAxqFlFgDQXHQzBgBgaLWtzNpeIukLkhbX8/9VRLzd9hMkXSHpWEk3SnpdRBxMVzY+Lh3sPITJ1BnssHE5GzTkcIdha9rwguRwZ/npdB+T5dJwMFn4oWS5OJgMWZ+E0Yl9e4ppaTF1pHw803VmQ+uPLi6nJeGF4uD+8nKSnIUY6vTcdzrwTZsQUkVjhY93p+sDuoFuxpiDulp2mudmE34lD2qTrTdZMstPp2F0Ol2uUx2H0UlX2vV1EnoH3TCdUsABSS+MiGdIOl3Sy2yfJel3Jb03Ik6RtEPSuT3LJQAAk9nSSA9ewOxRdgKAPmhbmY3KRDPXaP0KSS+U9Ff19MslvaoXGQQAoMgj3X8Bs0TZCQD6Y1p3bdsLbN8kaaukayX9u6SdETHRH3WTpHWFZc+zfYPtGx7Yvr0LWQYAAJjbulZ22vZgX/ILAE00rcpsRByOiNMlrZd0pqTvne4GIuKSiNgYERuPW726s1wCADAVu/svoAu6VnZac2yvsggAjTej0YwjYqft6yQ9R9JK2wvrXxjXS9rciwwCADA14sxi7qPsBAC907YUYPs42yvr/5dKerGk2yVdJ+m/1LOdI+nTPcojAABTst31FzBblJ0AoD+m0zJ7gqTLbS9QVfm9MiL+2vZtkq6w/VuSvibp0rZrssvhVLLwHqWQIJK0cFE5LQtdkoR16Vi7ECXZNrOwPYeSsC+dtkqMJ3lN9iOy5bKQN9m+P5Q8S52d3/FyqBwdSq6Zxcly2T5k2i2Xnd8mhN+RytdMv0MOABMsWmYxV3Wv7ISiTn986klIn05XOZcQYgcN1LZGFxE3SzpjiunfUfUMCAAAAGqUnQCgP3rQPAkAQD/wzCwAAMOMyiwAoLlG6N4GAMCwojILAGguWmYBABhaVGYBAM1kERcWAIAhxk/aAAAAAIDG6W/LrC0tXjp12tih4mJxsByaxlnIkywcTPacVSR1/Gx7WdgaKQ8zs6Ac2iUe2tbROp2Fdcm65mVhXbJwOAf2ltOyUDn795WzcqCclsrymfDC0SQ1S2sju24ynXah7DTUVYchm4DBYAAoADPXm5A+zUeIHTQR3YwBAM1F4QsAgKFFZRYA0Fy0zAIAMLSozAIAmskmNA8AAEOMn7QBAJgB25fZ3mr7G5Om/5Ltb9q+1fa7W6a/zfYdtr9l+6X9zzEAAPMTLbMAgOYaTDfjD0l6v6QPP5IN+wWSzpb0jIg4YPv4evppkl4j6SmSTpT097afHBGdjVIHAAAeQcssAKC57O6/2oiIL0jaPmnyf5X0rog4UM+ztZ5+tqQrIuJARHxX0h2SzuzeAQAAYHj1t2V2/LC0Z8eMF0vD72S/yh8qh/RJw5NkOs1Lu/zsHyuv9pjjy8t1+rzY4aRRIMtnFrpl6Ypiko/q8HeT0SSc0eJl5e2NLi4v12nIokyvwtZk+UnPfTnUUxqyarx8HepwIY3RZDEwPQvNs8b2DS3vL4mIS9os82RJ32f7nZL2S/rViPiKpHWSrm+Zb1M9DUDDELoGmHvoZgwAwJG2RcTGGS6zUNJqSWdJepakK20/ses5AwAAj6AyCwBorrnTUrJJ0lUREZK+bHtc0hpJmyVtaJlvfT0NAADMEs/MAgCayaq6GXf71ZlPSXqBJNl+sqRFkrZJulrSa2wvtv0ESadK+vKs9x0AANAyCwBoKufPwPdqq/bHJD1f1bO1myS9XdJlki6rw/UclHRO3Up7q+0rJd0maUzS+YxkDABAd1CZBQA01iAGZImI1xaSfrow/zslvbN3OQIAYDjRzRgAAAAA0Dj9bZkdWSAtPbqQlvy63ovQC52uMwvNMxu9CS/Rde60S1+yf16TRKno9LgMoOthx7JwR+MdhpDqheK1P2cG4MEwash3JwAA6D66GQMAmsmaS6MZAwCAPqMyCwBoKNMyCwDAEKMyCwBoLlpmAQAYWvykDQAAAABoHFpmAQDN1aTB3gAAQFdRmQUANJNNN2MAAIZYXyuzN379lm0ja0++q367RtK2fm6/jbmUH/IyNfIytUHn5fED3DaGHQNAYZ678Ws3bfNRK+di2Wku5UWaW/khL1MjL4+i7NQlfa3MRsRxE//bviEiNvZz+5m5lB/yMjXyMrW5lBeg72iZxTw3V8tOcykv0tzKD3mZGnlBL/CTNgAAAACgcXhmFgDQYLTMAgAwrAZZmb1kgNueylzKD3mZGnmZ2lzKC9BHDACFoTOXvu/nUl6kuZUf8jI18oKuc0QMOg8AAMzYxqc/Nb5yzV92fb0jG067kWepAACY+3hmFgAAAADQODwzCwBoMLoZAwAwrAbSMmv7Zba/ZfsO228dRB5a8nKn7Vts32T7hgFs/zLbW21/o2XaatvX2v52/XfVAPNyse3N9fG5yfYr+pSXDbavs32b7Vttv7me3vdjk+Sl78fG9hLbX7b99Tov76inP8H2l+rP1MdtL+p1XoCBs6pnZrv9AuYgyk6PbHvOlJuS/AyifDBnyk1t8kPZCV3V98qs7QWS/kTSyyWdJum1tk/rdz4meUFEnD6gZ6Q+JOllk6a9VdLnIuJUSZ+r3w8qL5L03vr4nB4R1/QpL2OSLoyI0ySdJen8+joZxLEp5UXq/7E5IOmFEfEMSadLepntsyT9bp2XUyTtkHRuH/ICDJ578ALmGMpOR/iQ5k65qZQfqf/lg7lUbsryI1F2QhcNomX2TEl3RMR3IuKgpCsknT2AfMwJEfEFSdsnTT5b0uX1/5dLetUA8zIQEbElIr5a/79b0u2S1mkAxybJS99FZU/9drR+haQXSvqrenrfrhlg8KjNYihQdqrNpXJTkp++m0vlpjb56TvKTvPbICqz6yTd0/J+kwZ0cddC0mdt32j7vAHmo9XaiNhS/3+fpLWDzIykN9m+ue5K07euOxNsnyzpDElf0oCPzaS8SAM4NrYX2L5J0lZJ10r6d0k7I2KsnmXQnykAQHdRdsrNtXKTNMCy01wqN02RH4myE7qI0Yyl50XEM1V13Tnf9vcPOkOtooqdNMj4SR+Q9CRV3TK2SPqDfm7c9nJJn5B0QUQ81JrW72MzRV4Gcmwi4nBEnC5pvapf67+3H9sF5p4ePC/LM7PAdMzZstMcKDdJAyw7zaVyUyE/lJ3QVYOozG6WtKHl/fp62kBExOb671ZJn1R1gQ/a/bZPkKT679ZBZSQi7q+/AMYlfVB9PD62R1V9AX4kIq6qJw/k2EyVl0Eem3r7OyVdJ+k5klbanhidfKCfKaCvqMxiOFB2ys2ZcpM0uPLBXCo3lfJD2QndNojK7FcknVqPILZI0mskXT2AfMj2UbZXTPwv6SWSvpEv1RdXSzqn/v8cSZ8eVEYmvgBrP6I+HR/blnSppNsj4j0tSX0/NqW8DOLY2D7O9sr6/6WSXqzqOZTrJP2XeraBXjNAf/HMLIYCZafcnCk3SQMrH8yZclOWH8pO6La+x5mNiDHbb5L0GUkLJF0WEbf2Ox+1tZI+WX3etFDSRyPi7/qZAdsfk/R8SWtsb5L0dknvknSl7XMl3SXp1QPMy/Ntn66qW8qdkn6+H3mR9FxJr5N0S/2MgyRdpMEcm1JeXjuAY3OCpMvrkS1HJF0ZEX9t+zZJV9j+LUlfU3UDAeY/WlIxBCg7PWoulZuS/Ayi7DSXyk1Zfig7oatcdZ8HAKBZNj7jafGVz3b/h/SRxz3pxgGFagMAADPQ95ZZAAC6h5ZZAACGFZVZAEAzMWATAABDjcosAKC5qMwCADC0qMwCABqMyiwAAMNqEKF5AAAAAACYFVpmAQCNZboZAwAwtKjMAgCai8osAABDi8osAKChLJ6ZBQBgePHMLAAAAACgcWiZBQA0F92MAQAYWlRmAQDNZFGZBQBgiFGZBQA0GJVZAACGFZVZAEBz0TILAMDQYgAoAAAAAEDj0DILAGguGmYBABhaVGYBAA1FnFkAAIYZlVkAQHPxzCwAAEOLyiwAoJkIzQMAwFBjACgAAAAAQONQmQUANJh78GqzRfsy21ttf2OKtAtth+019Xvbfp/tO2zfbPuZs9xhAABQozILAGguu/uv9j4k6WWPzYo3SHqJpLtbJr9c0qn16zxJH5j1PgMAAElUZgEAjdWDiuw0KrMR8QVJ26dIeq+kt0iKlmlnS/pwVK6XtNL2Cd3YewAAhh2VWQBAg/Wkm/Ea2ze0vM5rmwv7bEmbI+Lrk5LWSbqn5f2mehoAAJglRjMGAOBI2yJi43Rntr1M0kWquhgDAIA+oTILAGikG79202e8fNWaHqx62wznf5KkJ0j6uqtuyuslfdX2mZI2S9rQMu/6ehoAAJglKrMAgEaKiMcMwjQIEXGLpOMn3tu+U9LGiNhm+2pJb7J9haRnS9oVEVsGk1MAAOYXnpkFAGAGbH9M0r9K+h7bm2yfm8x+jaTvSLpD0gcl/WIfsggAwFBwRLSfCwAAAACAOYSWWQAAAABA41CZBQAAAAA0DpVZAAAAAEDjUJkFAAAAADQOlVkAAAAAQONQmQUAAAAANA6VWQAAAABA4/x/m1H+VXOfsq8AAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "Err_R2=error(xdata2, poptR2[0], poptR2[1],poptR2[2], poptR2[3], poptR2[4], recorteR2.ravel(), inc=1)\n", + "poptR2E, pcovR2E = curve_fit(gauss2d, xdata2, recorteR2.ravel(), p0=[1,0,1,1,1],sigma=Err_R2)\n", + "estrellaR2E=gauss2d(xdata2, poptR2E[0], poptR2E[1],poptR2E[2], poptR2E[3], poptR2E[4])\n", + "FWHMR2E=FWHMR_I.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptR2E[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 2 fotografÃa (Banda Rojo)\")\n", + "plt.imshow(recorteR2, plt.get_cmap('Reds'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 2 a partir de la gaussiana con incertidumbre (Banda Rojo)\")\n", + "plt.imshow(estrellaR2E.reshape(35, 35), plt.get_cmap('Reds'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 3 con incertidumbre (Banda Rojo)" + ] + }, + { + "cell_type": "code", + "execution_count": 831, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7MAAAFSCAYAAAAgmYhhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA5oUlEQVR4nO3de7wdVX3///f7nCRAuIUQREgCQQ1aVAR+EbF4BS+AaHi031qoKCg1taKCpT8UtIq2qFV/itZrFEQqglRR+VlU8EptBQ0od5FUgSQEIYRLuOZyPt8/1tow2Zzrntl7nznzej4e+3HOnpk189mzZ++9PrPWrHFECAAAAACAOhnodwAAAAAAAEwUySwAAAAAoHZIZgEAAAAAtUMyCwAAAACoHZJZAAAAAEDtkMwCAAAAAGpnWr8DAACgE/M9LR5R9beXW6OhH0bEIZWvGAAAVIpkFgBQS48o9JfauvL1flHr5lS+UgAAUDmSWQBALVlcKwMAQJORzAIAamvArn6l1fdcBgAAXUAyCwCoJVpmAQBoNpJZAEBtDXShYZaWWQAA6oGT2gAAAACA2qFlFgBQW5yRBQCguUhmAQC1ZLk7A0ABAIBaIJkFANQWLbMAADQXySwAoJasLg0ABQAAaoGT2gAAAACA2qFlFgBQW5yRBQCguUhmAQD1ZMkMAAUAQGORzAIAasmiZRYAgCYjmQUA1BYDQAEA0Fyc1AYAAAAA1A4tswCA2uKMLAAAzUUyCwCopXSfWfoZAwDQVCSzAIDaomUWAIDmoh5QAdsLbIftafn5z2z/bQ+2a9tfsX2P7V91e3tl2X667d/aXmf7HXnaJ2yf0eH6Pmz7xCpjnMC2z7b9L33Y7vW2XzKO5fa2/T/djwgA6qFfv9WTje0X2r6p5Do62nft70Gdjff3uI5sf9/2MZMgjt1sP2B7cIT5p9n+Wpe23fXvB9v/bXvfbm5jlG3fYvtlPd7mqO9n27Jvt/2v41nvlEpm8xvzcN5RrcdnxlEubD+tFzGOxfZPbd9l+37bV9tePMriL5D0cknzImL/cay736/zZEk/jYhtI+LTtl8o6bmS/t+Jrsj2TpLeIOmL+flLbA8V3vdVtj9QafQVaTtO78iJ8TbjKRsRz4yIn41juWsk3Wv71WXjBSar1M24+ge6q4G/1X3Vvt8i4r8i4un9jGkqGO/vcR1FxKER8dVeb7c9wYqI2yJim4jY1OtYui3Xz9ZFxG/y89Nsbyh8J95o+y/7HOYTFE5IteK8xfa7x1N2gu/nlyS9zvaTxlpwSiWz2avzjmo93lZ2hT0+g3iCpF0iYjtJSyR9zfYuIyy7u6RbIuLBnkU3gnHuo90lXV94voekv46IDR1s8lhJF0fEw4Vpt7fed6VE/zjbR3Sw7l54dY5zH0n7SjqlC9s4V9LfdWG9wKQx0IUHeqJJv9V90cn+mAotpqifuh93Hcb/Fkn/3jbtG4V67IlK3ys7l42vS2blOP+PpH+y/fIqVx4Rj0j6vlLD1aga87tt+2m2f277PttrbH8jT78sL3J1PsPw17mVb6Xtd9m+Q9JXbA/Yfrft/7V9t+0LbM8ex3afavsnucwa2+fanjXS8hFxTURsbD2VNF3S/GHWe5ykL0t6fo77A3n6m20vt73W9kW2dx3pdY62fJ73Cts35X32ubz//jbPO9ape8Qnbd8t6bTRXqvtn0h6qaTP5O3vKekgSW/N83ew/b18pvue/P+8UXbtoZJ+Psp+/KOk/5G0V+H1fMr2inwm/UqnluHWvNPye3qOUzfo620vKszf1/ZVed43JG1ZmDfR2Itx3iHph0pJbWt9r8nbv9epm8ufFeY9dtbS9ha2z7B9e36cYXuLwup/JungtmnAlDIgV/5A/0y13+q87v1t/zJ/p6+2/RnbM0ZYttXqsSR/r6+2/Y/jXVcue7ztmyXdPNp+K5S5Je/DayQ96GEq5rZfbvt3+X35jLT5B8X2m5xaku6x/UPbu4+079rKvTGXW2f7D7ZHPAFre9D2/5ffnz/afps37zY+4rqc6iy/aFvfYy3Wtg+zfUMuu6q1z23Pyb/p9zrVk/7L9kBhv7V+j8fzvrzF9s15mc/aafS6iR57tp9p+9Icz59sn5qnj1gnKHxWTrJ9Z47xjaNs47Eutq19Z/vj+f39o+1DC8vOdrrk7fY8/zuFeYc7XV52r+3/sb13YV77cXeepN0k/f/5WD3ZT7w0YA+n74d1ti+VNKewvs2O62Heo9Ns/4ftr+Xy19re0/YpeZ+ssP2Ktl3xVNu/cqo3ftf5u6QQ13G2b5P0kzx9XJ+DfGwcpNHrsT+UtE7SU3OZHTxKXTO/Z//sVDdfZ/sS28X983rbt+bj7D1t8Yz7O2qYOJcpNVTtk9c1YPu9eVt3OtWrt2/bb633c1en3GOtUy7y5rbV/0zSq8aKoTHJrKR/lnSJpB0kzZP0b5IUES/K85+Tz4Z8Iz9/sqTZSq2JSyS9XdIRkl4saVdJ90j67Di2a0kfzmX+TOnH7rRRC6QD9BFJVyi9kcval4mIM5XO6vwyx/1+2wflbb1W0i6SbpV0/kivc7Tl8wfgm0othjtKuknSn7eF8TxJf5C0s6TTR3utEXGQpP+S9La8/d+3rWtA0leU9vdukh6WNFq3s2fnmIZle6GkAyVdXpj8a6UP22xJX5f0H7a3LMx/TX79syRd1Np+/kB/R+kM2mxJ/yGp2PVjorEX45ynlJgvz8/3lHSe0hm5nSRdrPTFPtyXynskHZBf03Mk7S/pva2ZEbFK0gZJdCfDlEQ34ylpSv1WZ5skvVOp4v18SQcrn8gdxUslLZT0Cknv8uNdL8ezriOUfp/3GmW/tTtKqdI4q5Ckt17nHEkXKv2+zJH0v0q/r635iyWdKukvlH63/kvpd2w87pR0uKTtJL1R0idt7zfCsm9W+r3cR9J++XV2uq52Z0r6u4jYVtKzlJMTSSdJWqn0unZWep0xTPnxvC+HK11atbdSveuVefq4jz3b20r6kaQf5OWfJunHefaodQKlz8r2kuZKOk7SZ23vMNx2hvE8pTrXHEkflXSm/dhQ8v8uaaakZ0p6kqRP5lj3lXSWUg+xHZUuC7vIm59gLx53R0m6TY/32vjoMHF8XdKVOY5/ljTR63pfnePdQdJvlBoTBpT2yQdzjEVvkPQmpTryRkmfbpv/YqX37JUT/BwslDQUESuHm+nkVZJmSLohTx5PXfNvlI79J+WyrZMye0n6vKTXKx03Oyp9v7Z08h3VivUApc/M8jzp2Px4qaSnSNpmmDhbzlf6fO2q1ML7oZybtNyodCyPLiKmzEPSLZIekHRv4fHmPO8cSUuVri9tLxeSnlZ4/hJJ6yVtWZh2o6SDC893UUoUpklakNcxLc/7maS/HSHGIyT9ZhyvZbrSl/Y/jLLMsZJ+UXh+pqSPFp5vk2NcMMLrHHF5pQ/wLwvzLGlF63Xlbd82xmvY7LW27xdJZ0v6lxHK7iPpnlHWvUHSM9res6H8nt+fX+uFkmaMso57lH7gpfTD8aPCvL0kPZz/f5Gk2yW5MP9/SsTeOk7X5Th/rPRFLkn/JOmCwrIDklZJekmh7Mvy//8r6bDCsq9U6nZe3NYqSS/q5ueOB49+PeZ5MD6+1ezKH5KW9fu1TeWHGvZbPUyZEyV9e4R5rRiLv28flXTmeNaVyx40jv22su39eNMo8b5B0uWF51aqgLbqA9+XdFxh/oCkhyTtPsrrmzbCtr4j6YQR5v1EKeFsPX/ZeNeltvpS+35RSqL+TtJ2bct8UNJ3i/uvbb+9bALvywsKzy+Q9O6JHntKyd9I80asE+T3/OHivlJK/g8YYV2PfTbyvltemDczv54nK32+hiTtMMw6Pi/pn9um3STpxSMdd+37tHi8KCVwGyVtXZj/dUlfG+64bl+fUj3v0sK8Vyt9Dw3m59vmbc0q7IOPFJbfS+n7ZrAQ11MK8yfyOThQ0h1t007L679X0oNKCebJo3wu91GhrpnjfW/h+Vsl/SD//z5J5xfmbZ23Na7jt21e67Xfm4+pkPRx5TqyUp32rYXln65hvoOVTtpskrRtYdkPSzq78HyhpE0j7YPWYyq2zB4REbMKjy/l6ScrfQH/yqkL55vGWM9dkfprt+wu6du5Cf5epR/MTUpn6kZke2fb5zt1W7lf0tdU6BYxkojYEBHfl/QK268Za/lsV6XW1dY6HpB0t9IZp4kuv6tS8tqaF0o/XkUrik86fa257EzbX8zdEu6XdJmkWR55xLN7lL54im7P7/l2Sq2rD0t6bAAD2/+Yu3/cl9/D7dviu6Pw/0OStsxdIXaVtCrvg5bH9lsHsUvpON1W6cv3GYU42t+TIaX9PNx7uNmy+f9d25bZVukLB5iSuGa2thrzW+3UlfF7TgP+3S/pQ+NYd/H39bHv9nGua4UmbrQyw9UHisvvLulThX2+Vuk9HKnu8Rjbh9q+PHczvFfSYRp532wWR3vME1xXu7/My9/q1I31+Xn6x5RanC5x6ro87EA343xf2usY2+SyEzn25islrcMZq05wd2ze6v5YDOPwWOwR8VD+d5scz9qIuGeYMrtLOql1XOT3ZH5bTBM5VndVSt6K48TcOtLCI/hT4f+HJa2Jxwcjao3BUtwn7Z/D6dr8ven0czBcHVZKjRmzImJrpe7Fb3DuLj/Ouuawx5ie+Bl+UKm+r7zuTr6j5uT1n6RUl51e2Fb7cThNT/wO3lXp2FnXtmxxf20r6b4x4mjO73ZE3BERb46IXZXOvn3Oo4+KGG3PV0g6tO3Hd8tIXTlH86G8rmfnJOtoaUIXZU1T7i8/DrcrfZgkSba3VupKMFKMoy2/WoUuCLk7Sft1oO37qMxrPUnp7M3zctlW16iRyl8jac+RVhYR9ymdsXt1jv+FSpWk1yqdQZyl9AEZT3yrJc0tdKmR0hnCTmMvxvlzpRbqj+dJ7e+Jlb78h3sPN1s2x3R7oexcpW4mpW7BAExW7kIXY7oZ99cU/a3+vKTfSVqY133qONZdvP62+N0+nnW175PxGK3M6mI8hd+llhVKLabFfb5VRIx6e7jc3fRbSr9/O+ff5Ys18r7ZrF7SFtNY63pQqUWxtfyTiyuOiF9HxGKl7pnfUWo5VUSsi4iTIuIpSpci/YPtg4eJrZP3uGUix94Kpa6bwxm1TtAlKyTN9vDX+K6QdHrbcTEzIopdb9uPu7GOwx1yXbWlWBdrf48Hlbr7ltH+OdwgaU1hWjHeiXwOlqcQPeIJn4i4Ram1t3VXio7rmnriZ3imUn2/paPjNyI2RcQnJD2ix7slD3ccbtTmJxJay8126jpfXLb4Xf1nkq4eK47GJLO2/8qPXyh9j9IBOJSf/0kjfzm0fEHS6c4Xc9veyeMbin9bpW4M9+WDdsTb0Nh+Rj6zuJXt6baPVjpYR7xAvM15kt5oe5/8xf4hSVfkD4T0xNc52vL/KenZto/IrZPHK3UpqeS1jlD2YaXbycyW9P4xlr9Y6VqFYTnd6uZIPT568rZKH6a7JE2z/T6l62rG45e57Dvy+/IXSteidBp7uzMkvdz2c5R+QF9l+2Db05W+vB5V6tbc7jxJ783H4hylbiTF+629WNJPIuLRCcYD1AYDQE0tU/S3eluly18esP0MSX8/jnj+KbfEPFPpGrjWta6drGs8+200/ynpmbb/ItcH3qHN6wNfkHRKjlW2t7f9V+NY7wxJWyj9Lm90GlSofQCeogsknWB7bk6e3jWBdV2dX8M+TmNlnNaaYXuG7dfZ3j7S3RXuVz7mnAYwelpO4O9TauUf0hN18r4Uy4637vQ9SbvYPtFpwKdtbT8vzxurTlC5iFitlHB9zmmAoum2W0nWlyS9xfbznGxt+1VtyUu7EY/ViLhV6br0D+T37AV6PNGTpN8r9ah7Va4/vVfpmCjjaNt75eTvg5K+GSPfVmbcn4OIWK907fNo9dh5kg7R5vXYTuua35R0uO0XOI3B8kFtngOWOX4l6SOSTs6frfMkvdNpsK5tlHKLb7T1ClBErFCq237Y9pZOg4MdpyfWY78/1sanYjLbGgWt9fh2nv5cSVfYfkBpcJ8TIuIPed5pkr7q1DXgtSOs91O53CW21ykNLPS8EZYt+oDSQAX3Kf0gXDjKss6x3Kn0hXyC0q1rrhrHdhQRP1K65vJbSmdhnqqU0LWcpsLrHG35iFgj6a+UrtW5W+lagWVKiVUVr7XdGZK2UjrjdbnS4AajOUfSYba3KkzbtfW+K3VVmC3pdXneD/M6f5/nPaJxdm/JXzp/oXTdyFpJf63NX9tEY29f/1359bwvIm5SOiv7b3l9r1YaDGH9MEX/Rek9uUbStZKuytNaXqf05QpMWbTM1laTfqv/UWlglnVKFfyRBmEq+rlS682PJX08Ii4psa7TNPZ+G1GhPvARpfrAQkn/XZj/bUn/Kul8py6K1yldRzzWetcpJcYXKJ24+Bul924kX1IaHOwapcF7LlY60bxprHVFGnTyg0oJxM2SNhvZWGlgnFty/G/R43WHhbnMA0ontj8XET8dJrZO3peWcR97+XW+XKlucEd+LS/Ns8eqE3TL65VaLH+n9Jk4Mce6TGnQrs8ovSfLlepRo/mwUkJ+rwujeBf8jdLnea1SMndOa0bukfdWpTt9rFJqqR12gKUJ+Hel3nN3KN3F4h0jLdjB5+CLSvuu6K8L9dhfK33OPpDnnaEO65oRcb1So9TXler792jzfVPm+JXScXuP0vt9ltJ+u0zSH5Xq228fodxRStfR3i7p25Len3MT5cT4MBUuFxxJ62JdYFROQ9GvlPS6Eb7Ie872hyTdGRFn9DuWXnEaAv7oiLhsjOX2lvTFiHj+aMsBdbbb4LR411azKl/v2x68+8qIWDT2kkC1bC9QqgBOb2/JwOZy6+sXImL3MRcGJiHb/610l4/f9DuWXrD9FKVGpekxRgJq++2S5kfEyWOtdyq2zKIitl9pe5ZTF+RW//nLxyjWMxFxasMS2Z2Urv+4ZaxlI90DkUQWU5rV+wGgbM+3/VOne1Jeb/uEwry3O92L83rbHy1MP8XpHno32X7l8GsGMBqnbt2H2Z6Wu+O+X6k1B6iliDiwKYls9ixJt46VyEpSRPzbeBJZKQ1YAIzk+UpdElr3uToiIh4evQi6wfZzJV0q6d8i4rZ+xwNMFn3oFrxR0kkRcVW+9utK25cqjdS4WOl2X4/afpL02P39jlS6B+Oukn5ke89RrrsCMDwrdbn8htK1g/+pdF0ogEnO9j8oDcQ6UpfjztdNN2MAQB0tGJwe75k5q/L1Lnlgzbi7Gdv+rtI1YW+WtLR1vU9h/imSFBEfzs9/KOm0iPhltVEDANA8dDMGANRWlwaAmmN7WeGxZLht5+sb95V0hdKtwl5o+wqn+1Q+Ny82V5sPNrdS47j/JgAAGBvdjAEA2NyasVpm8y0HviXpxIi43+mWJbMlHaA0Iu8FebALAADQJT1NZufM3iEWzNu18xW4goujXLIxuopu2WXXUcV+6Oie6psFUUEMk0DZ92Kogsveyq5j2oyS5ct9Ddxy2wqtWXP3FDkgUDf9OPDyPQy/JenciGjdRmOlpAvzwBa/sj0kaY7SLSLmF4rP0+Y3hQdGNWfOjrFgt936HQaACt1y223UnSrS02R2wbxd9evvXdD5CqZNLx/EjK3GXmY06x8pH0PZ5GV62XtAS9q0oVz5gcHyMZQ1NNx9yye6jnLvRTxwb+kQ4qH7S5Uf2GleuQB2eHKp4s990UHltg90yOr9AFC2LelMSTdGxCcKs76jdL/Hn9reU2ngvDVK97r8uu1PKA0AtVDSr3oaNGptwW67adkvftbvMABUaNELXtLvEKYMuhkDAGproPdtswcq3ej+Wtu/zdNOVbpR/Fm2r5O0XtIxuZX2etsXKI0Iv1HS8YxkDABANUhmAQAYp4j4hUbu3Xz0CGVOl3R614ICAKChSGYBALVk9+U+swAAYJIoNRqS7UNs32R7ue13VxUUAADjMdCFB9BN1J0AoDod/27bHpT0WUmHStpL0lG296oqMAAAxuIuPIBuoe4EANUq0814f0nLI+IPkmT7fEmLlQa5AACgq9JoxqSfqBXqTgBQoTI9quZKWlF4vjJP24ztJbaX2V5219p7SmwOAACg1iZed1pzd8+CA4C66frlQRGxNCIWRcSinWbv0O3NAQAahG7GmIo2qzvN2bHf4QDApFWmm/EqSfMLz+flaQAA9ATJJ2qGuhMAVKhMy+yvJS20vYftGZKOlHRRNWEBADA2WmZRM9SdAKBCHbfMRsRG22+T9ENJg5LOiojrK4sMAIAxmAGgUCPUnQCgWmW6GSsiLpZ0cUWxAAAATGnUnQCgOqWSWQAA+oVuwQAANFtvk9nBadJ2czov/8gD5WNY/0jJFUT5GKZNLxnCUPkYylYBp80oH0LZ/bBpY/kYNm4oV35aBR+hku9nPPpQqfJ+eF2p8hqq4ngEOtP1IfkBAMCkRcssAKC2uGQWAIDmIpkFANSW6WgMAEBj0UMLAAAAAFA7tMwCAGqJAaAAAGg2klkAQG2RzAIA0FwkswCA2hogmwUAoLG4ZhYAAAAAUDu0zAIAasqMZgwAQIORzAIAaokBoAAAaDaSWQBAPVky2SwAAI1FMgsAqC1yWQAAmosBoAAAAAAAtUPLLACgtgZomwUAoLFIZgEAtcQAUAAANBvJLACgthgACgCA5iKZBQDUFrksAADN1dtkNkJa/3Dn5V3FeFWbShbfWD6EDY+WK1/Ffpg2vVz5jevLxxBD5cpX8V4MlTweBgZLh+AttipXfvoW5QIYLHkskE4AAACgD2iZBQDUljmZAgBAY3FrHgBALVnSgKt/jLpNe77tn9q+wfb1tk9om3+S7bA9Jz+37U/bXm77Gtv7dW2HAADQMLTMAgBqqw/tshslnRQRV9neVtKVti+NiBtsz5f0Ckm3FZY/VNLC/HiepM/nvwAAoCRaZgEAteUuPEYTEasj4qr8/zpJN0qam2d/UtLJkqJQZLGkcyK5XNIs27uUeMkAACDrOJkdq6sVAABTme0FkvaVdIXtxZJWRcTVbYvNlbSi8HylHk9+0TDUnQCgWmW6GY/Y1aqi2AAAGFWXBoCaY3tZ4fnSiFi62XbtbSR9S9KJSr+Hpyp1MQZGQ90JACrUcTIbEaslrc7/r7Pd6mrFFzIAoCfcnYtm10TEopG36elKiey5EXGh7WdL2kPS1U4BzZN0le39Ja2SNL9QfF6ehgai7gQA1apkAKhiV6sq1gcAwFis3g/84JStninpxoj4hCRFxLWSnlRY5hZJiyJije2LJL3N9vlKAz/dlxMaNBx1JwAor3Q9oNjVKiLuH2b+EtvLbC+76+67y24OAIB+OlDS6yUdZPu3+XHYKMtfLOkPkpZL+pKkt/YgRkxyE6o7raHuBAAjKdUy297Varhl8nVGSyVp0T57x3DLAADQiV7fmicifjHWZiNiQeH/kHR8l8NCjUy47rTfvtSdAGAEHSezw3W1AgCgl9yli2aBbqDuBADVKtPNeKJdrQAAqFSv7zMLlETdCQAqVGY04zG7WgEA0C0kn6gb6k4AUK1eDwQJAAAAAEBpldyaBwCAnrO5ZhYAgAbrbTIbkR6dGqigIXnDUPl1lLXFzHLlByt42wYGy5V/+IHyMUzfolz5oSrey02lSrvsa5AUM7crt4KyMZT9XJFLoI8GOP6ARogy9ce0gvJBlDx5xsk3oHq0zAIAastkswAANBbJLACglqzSDSUAAKDGGAAKAAAAAFA7tMwCAOrJtMwCANBkJLMAgNpiQBUAAJqLZBYAUFvksgAANBfJLACgtmiZBQCguRgACgAAAABQO7TMAgBqiVvzAADQbCSzAIB6sjRANgsAQGORzAIAaotcFgCA5iKZBQDUlBkACgCABmMAKAAAAABA7dAyCwCoJUsyp2QBAGgsklkAQD2Z+8wCANBkJLMAgNoilwUAoLl6m8wODkozt+u8/PqHy8ewaUO58tO3LB1CrFlZrvzvry4dg3bfs1TxgV2eUjoEb7VtqfJRyfEwvVz5jSWPJ0mOKLeCTRvLlX+05H4cGipXHgAwpUUVvxMPrC0Xw59uLR2Cd9ylXAzbP6l8DIO0QwFFfCIAALVFN2MAAJqLZBYAUFvksgAANBfJLACglixpgGwWAIDGIpkFANSTaZkFAKDJSt+hz/ag7d/Y/l4VAQEAAExl1J0AoBpVtMyeIOlGSSWGKQYAYOIYAAo1Rd0JACpQqmXW9jxJr5L05WrCAQBg/OzqH0A3UXcCgOqUbZk9Q9LJksrdMBQAgAmySD5RS2eIuhMAVKLjllnbh0u6MyKuHGO5JbaX2V5215q7O90cAACbs+WB6h+jb9Lzbf/U9g22r7d9Qp7+Mdu/s32N7W/bnlUoc4rt5bZvsv3K7u4UTGbUnQCgWmW6GR8o6TW2b5F0vqSDbH+tfaGIWBoRiyJi0U5zdiyxOQAA+m6jpJMiYi9JB0g63vZeki6V9KyI2FvS7yWdIkl53pGSninpEEmfsz3Yl8gxGVB3AoAKdZzMRsQpETEvIhYo/VD/JCKOriwyAADG0OtrZiNidURclf9fpzSIz9yIuCQiNubFLpc0L/+/WNL5EfFoRPxR0nJJ+3djX2Dyo+4EANXiPrMAgNoa6M5Fs3NsLys8XxoRS9sXsr1A0r6Srmib9SZJ38j/z1VKbltW5mkAAKCkSpLZiPiZpJ9VsS4AAMajiwNArYmIRaNu295G0rcknRgR9xemv0epK/K5XYkMUwZ1JwAoj5ZZAEBt9eM+s7anKyWy50bEhYXpx0o6XNLBERF58ipJ8wvF5+VpAACgpFL3mQUAoEmcsuczJd0YEZ8oTD9E6XYrr4mIhwpFLpJ0pO0tbO8haaGkX/UyZgAApqretsxu2iitKzHE/LQZ5WPYZody5R872d65TZ/711LlP3LmL0vH8Pbnzht7oVFsf8GFYy80hti4vtwK1j9SOobSBio4H1TFcV1G2dfAjT7RL+MYsKkLDpT0eknX2v5tnnaqpE9L2kLSpbm1+PKIeEtEXG/7Akk3KHU/Pj4iNvU8aqCf1j809jJjGPrWF0qVv+y0r5eO4YVHlxu7bfBdHy8dQ2xbbnTrfvRmAbqJbsYAgNrqdcUsIn6hdLluu4tHKXO6pNO7FhQAAA1FMgsAqC0aGQAAaC6umQUAAAAA1A4tswCAWkq35qFpFgCApiKZBQDUkyXTvwgAgMYimQUA1JRpmQUAoMFIZgEA9TVAMgsAQFPRQQsAAAAAUDu0zAIA6otuxgAANBbJLACgnsxoxgAANBnJLACgvrhmFgCAxiKZBQDUlOlmDABAgzEAFAAAAACgdmiZBQDUki2ZbsYAADQWySwAoL7oZgwAQGORzAIAaouWWQAAmqu3yezQkOKh+zsu7m13LB/D4PTy6yjp0ZVrS5VftX5j6RhuvW1dqfJ7D20qHYNKHAuSFA8/UDoET9+i3ApmbFk6Bk3r8zFZ+jNBMoE+omUWmPwqqDPELbeUKv+NNeXqHJK039XlYthu44bSMQDYHANAAQAAAABqh27GAIB6srnPLAAADUYyCwCoLdPNGACAxiKZBQDUFy2zAAA0VqlrZm3Psv1N27+zfaPt51cVGAAAwFRD3QkAqlO2ZfZTkn4QEf/H9gxJMyuICQCAsVmMZow6ou4EABXpOJm1vb2kF0k6VpIiYr2k9dWEBQDA2MyY/KgR6k4AUK0y1YA9JN0l6Su2f2P7y7a3riguAADGZlf/ALqHuhMAVKhMMjtN0n6SPh8R+0p6UNK72xeyvcT2MtvL7lp7T4nNAQBQYMsD1T+ALpp43WnN3b2OEQBqo0wyu1LSyoi4Ij//ptIX9GYiYmlELIqIRTvN3qHE5gAAAGpt4nWnOTv2NEAAqJOOk9mIuEPSCttPz5MOlnRDJVEBADAedDNGjVB3AoBqlR3N+O2Szs2j8f1B0hvLhwQAwDjRLRj1Q90JACpSKpmNiN9KWlRNKAAAjF9qSCWZRb1QdwKA6pRtmQUAoH9omQUAoLG4Qx8AAAAAoHZ62zI7fYb85Kd0Xv7hdaVDiHvuKFXeO80vHcNWxy8pVf5Daz5ROobtXvX80usobdqMUsU9bXr5GAZKns+poovj0FC58ps2lCu/sWT5KBk/0LHeD9hke76kcyTtLCkkLY2IT9meLekbkhZIukXSayPiHqd+0J+SdJikhyQdGxFX9TRooN9mzCy9ioFj31Gq/Gef+rTSMWjv/cuV32ZW6RC4tALYHC2zAIDasl35YwwbJZ0UEXtJOkDS8bb3UrpX6I8jYqGkH+vxe4ceKmlhfiyR9Plu7AcAAJqIZBYAUE9Wuma26scoImJ1q2U1ItZJulHSXEmLJX01L/ZVSUfk/xdLOieSyyXNsr1L9TsDAIDmYQAoAEBtdanL3RzbywrPl0bE0mG2vUDSvpKukLRzRKzOs+5Q6oYspUR3RaHYyjxttQAAQCkkswAAbG5NRIx66xTb20j6lqQTI+L+YlIdEWE7uhwjAACNRzILAKivPtyax/Z0pUT23Ii4ME/+k+1dImJ17kZ8Z56+SlJx5MB5eRoAACiJa2YBAPVkd+cx6iZtSWdKujEiikPLXyTpmPz/MZK+W5j+BicHSLqv0B0ZAACUQMssAKC23PuW2QMlvV7StbZ/m6edKukjki6wfZykWyW9Ns+7WOm2PMuVbs3zxp5GCwDAFEYyCwDAOEXEL5TGUR7OwcMsH5KO72pQAAA0FMksAKC+ujOaMQAAqAGSWQBAPbXuMwsAABqJZBYAUFtdus8sAACoAZJZAEBNmZZZAAAajFvzAAAAAABqh5ZZAEB90c0YAIDGIpkFANSTRTILAECDkcwCAOqLZBYAgMbqbTK7aZP04H2dl9/waOkQPFjyJa9dXT6GhfuWKj/rnLPLxzBz+3Ir2GZW6RiGbr6y3Apc/pJv77BzufKlI6jAwGC58hXsR6A/LA1w/AKTnadNL7+S3fYqF8ORC8vHMFCuDlnJfgCwGWoBAAAAAIDaoZsxAKC+6GYMAEBjkcwCAOqJAaAAAGg0klkAQH2RzAIA0Filrpm1/U7b19u+zvZ5tresKjAAAEaXB4Cq+gF0EXUnAKhOx7/atudKeoekRRHxLEmDko6sKjAAAICphLoTAFSrbDfjaZK2sr1B0kxJt5cPCQCAcaKbMeqHuhMAVKTjltmIWCXp45Juk7Ra0n0RcUlVgQEAMKrWAFBVP4Auoe4EANUq0814B0mLJe0haVdJW9s+epjlltheZnvZXWvXdh4pAADtSGZRIx3Vndbc3eswAaA2yox08TJJf4yIuyJig6QLJf15+0IRsTQiFkXEop1mzy6xOQAAihgACrUz8brTnB17HiQA1EWZX+3bJB1ge6ZtSzpY0o3VhAUAADDlUHcCgAp1PABURFxh+5uSrpK0UdJvJC2tKjAAAMZEt2DUCHUnAKhWqdGMI+L9kt5fUSwAAIxfawAooEaoOwFAdcremgcAgP4hmQUAoLEY6QIAAAAAUDu9bZkte9uDGVtWE0MZEeVDGKrgdZQ1MFiu/KMPlQ9h5wXlVhBDpWPQFjPLlS+7HyVp08Zy5fvdMtXv7aOxLMuMPgw0ggdLVlnLlgcwKfHJBgDUFydTAABoLJJZAEA9MQAUAACNRjILAKgvklkAABqLi40AAAAAALVDyywAoKYsMQAUAACNRS0AAFBfrVHyq3yMuUmfZftO29cVpu1j+3Lbv7W9zPb+ebptf9r2ctvX2N6vi3sDAIBGIZkFANRTawCoHiezks6WdEjbtI9K+kBE7CPpffm5JB0qaWF+LJH0+QpeOQAAEMksAKDO+pDMRsRlkta2T5a0Xf5/e0m35/8XSzonksslzbK9S0WvHgCARuOaWQAAyjtR0g9tf1zpRPGf5+lzJa0oLLcyT1vd0+gAAJiCaJkFANRUHgCq6oc0J1/32nosGUcwfy/pnRExX9I7JZ3ZzVcOAABomQUA1Fl37jO7JiIWTbDMMZJOyP//h6Qv5/9XSZpfWG5engYAAEqiZRYAUE/9GwBqOLdLenH+/yBJN+f/L5L0hjyq8QGS7osIuhgDAFABWmYBADXVn/vM2j5P0kuUuiOvlPR+SW+W9Cnb0yQ9ojRysSRdLOkwScslPSTpjT0PGACAKYpkFgCACYiIo0aY9f8Ms2xIOr67EQEA0EwkswCA+urONbMAAKAGSGYBAPVFMgsAQGP1PpkdGOxP2ZZNG8qV37i+fAwqWfnaYqvyIUSUK7/+kfIxzNyuXPmhTeVjmDa9/DrKiqH+br+KzxXQD60BoAAAQCMxmjEAAAAAoHboZgwAqKn+jGYMAAAmB5JZAEB90c0YAIDGIpkFANQXySwAAI01Zv8s22fZvtP2dYVps21favvm/HeH7oYJAEAbS/JA9Q+gJOpOANAb4/nVPlvSIW3T3i3pxxGxUNKP83MAAABQdwKAnhgzmY2IyyStbZu8WNJX8/9flXREtWEBADAWSwNdeAAlUXcCgN7o9JrZnSNidf7/Dkk7j7Sg7SWSlkjSbvPmdrg5AACGQbdg1Edndaf583sQGgDUU+laQESEpBhl/tKIWBQRi3bacXbZzQEA8Di7+gfQZROqO83ZsYeRAUC9dNoy+yfbu0TEatu7SLqzyqAAABiTuc8saoW6EwBUrNNawEWSjsn/HyPpu9WEAwAAMCVRdwKAio3n1jznSfqlpKfbXmn7OEkfkfRy2zdLell+DgBAb9HNGJMQdScA6I0xuxlHxFEjzDq44lgAAJgYBoDCJETdCQB6o9NrZgEA6D9aUgEAaCySWQBAPTEAFAAAjVavZHZoU/l1PPxAuRDuWlE6BG+xVbnyO+1WOgZNm15+HWVt2lCu/Ib15WMoe0xV0So0NFSu/GDJj/FgyWOBljEAAAD0Qb2SWQAAijiZAgBAY5HMAgDqiwGgAABoLJJZAEA92dIALbMAADQVp7QBAAAAALVDyywAoL7oZgwAQGORzAIA6osBoAAAaCySWQBATZmWWQAAGoxkFgBQTxYDQAEA0GCc0gYAAAAA1A4tswCA+uKaWQAAGotkFgBQX1wzCwBAY5HMAgDqyeaaWQAAGoxT2gCA+vJA9Y+xNmmfZftO29e1TX+77d/Zvt72RwvTT7G93PZNtl/Zhb0AAEAj0TILAMDEnC3pM5LOaU2w/VJJiyU9JyIetf2kPH0vSUdKeqakXSX9yPaeEbGp51EDADDF0DILAKgvu/rHGCLiMklr2yb/vaSPRMSjeZk78/TFks6PiEcj4o+Slkvav7odAABAc5HMAgBqyt3qZjzH9rLCY8k4gtlT0gttX2H757afm6fPlbSisNzKPA0AAJTU227GQ0PSIw92Xn5gsHQIsf7hcivYsL50DJq+Zfl1lFV2BNCBCs6DbNpYrvxQBb30Nka58hUck6VfR+lbk5TcB0C/WN0aAGpNRCyaYJlpkmZLOkDScyVdYPsplUcGAAAewzWzAID6mjy35lkp6cKICEm/sj0kaY6kVZLmF5abl6cBAICSJk0tAACAGvuOpJdKku09Jc2QtEbSRZKOtL2F7T0kLZT0q34FCQDAVELLLACgvkp3s+9kkz5P0kuUrq1dKen9ks6SdFa+Xc96ScfkVtrrbV8g6QZJGyUdz0jGAABUg2QWAFBTrub6/QmKiKNGmHX0CMufLun07kUEAEAzjVkLGO7m8LY/lm8Mf43tb9ue1dUoAQBoZ/Xl1jzAWKg7AUBvjOeU9tmSDmmbdqmkZ0XE3pJ+L+mUiuMCAACoq7NF3QkAum7MZHa4m8NHxCUR0bqvyuVKozMCANBb3bnPLFAKdScA6I0qfrXfJOn7I820vaR14/m71t5TweYAAJCkLnQxppsxemP8dac1d/cwLACol1LJrO33KI3OeO5Iy0TE0ohYFBGLdpq9Q5nNAQCwuYGB6h9AF0247jRnx94FBwA10/FoxraPlXS4pIPz7QcAAOid1gBQQE1QdwKAanWUzNo+RNLJkl4cEQ9VGxIAAMDUQt0JAKo3ZjI7ws3hT5G0haRLnc6KXx4Rb+linAAAtDEDNmFSou4EAL0xZjI7ws3hz+xCLAAATAzdjDEJUXcCgN7o+JpZAAD6jpZZAAAai2QWAFBPtjRAyywAAE3V22R2aJPiwfs6Lu6ttikdgmdsVW4FO+9ePobpW5RbQRW3jhjaVLL8UPkYps/ofwyDJT8CVXRxLPs6yg6IuXFDf7cPAAAAdICWWQBAfdHNGACAxiKZBQDUFwNAAQDQWCSzAICa4tY8AAA0GcksAKC2TMssAACNxSltAAAAAEDt0DILAKgni27GAAA0GMksAKCmuGYWAIAmI5kFANTXANfMAgDQVCSzAID6omUWAIDGohYAAAAAAKgdWmYBAPVkSdyaBwCAxiKZBQDUFANAAQDQZCSzAID6omUWAIDG4pQ2AAAAAKB2aJkFANQX3YwBAGgsklkAQD3Z3GcWAIAG620yOzAgbzmzRPnB8jFM36JUcQ9Ogvw/hvq/jhlblo+h7LVu06aXj6HsMVXF9XpDm8qvo87bB8qgZRYAgMaaBJkZAAAdYgAoAAAai1PaAABMgO2zbN9p+7ph5p1kO2zPyc9t+9O2l9u+xvZ+vY8YAICpiWQWAFBT+T6zVT/GdrakQ54QjT1f0isk3VaYfKikhfmxRNLnS79sAAAgaRzJ7ETOQAMA0FN29Y8xRMRlktYOM+uTkk6WFIVpiyWdE8nlkmbZ3qWKl47Ji7oTAPTGeE5Bn63xn4EGAKA3rH61zD4xFHuxpFURcXXbrLmSVhSer8zTMLWdLepOANB1Y/5qT/AMNAAAPWJpYKD6hzTH9rLCY8moUdgzJZ0q6X29eNWY/Kg7AUBvdDSacfEMtBlJEgAwtayJiEUTWP6pkvaQ1PpNnCfpKtv7S1olaX5h2Xl5GhqGuhMAVG/CyWzhDPQrxrn8EqVBL7TbXC4TAgBUZzIkBRFxraQntZ7bvkXSoohYY/siSW+zfb6k50m6LyJW9ydS9EuputP8+WMsDQDN1cnFQcUz0Lfo8TPQTx5u4YhYGhGLImLRTrN36DxSAADa9eGaWdvnSfqlpKfbXmn7uFEWv1jSHyQtl/QlSW+t4mWjdjqvO83ZsYdhAkC9TLhldrQz0BXGBQDA6KxxjT5ctYg4aoz5Cwr/h6Tjux0TJjfqTgDQHeO5Nc9EzkADANAjfbvPLDAq6k4A0BtjtsxO5Aw0AABA01F3AoDe6Gg0YwAAJoVJMAAUAADoD5JZAEB9DdAtGACApiKZBQDUk03LLAAADdbTZPbKa29YM7Bg71tHWWSOpH6P7EcMkyOGfm+fGMYfw+69CgQAmubK3/x2jbeeRd1p8sfQ7+0TQ71ioO5UkZ4msxGx02jzbS+LiEW9iocYJm8M/d4+MUyuGIARMfowpjjqTvWIod/bJwZiaCq6GQMA6otuxgAANBbJLACgxkhmAQBoqsmWzC7tdwAihpZ+x9Dv7UvE0DIZYgCGwQBQgCbHdzQx9H/7EjG0EEODOCL6HQMAABO2aO9nxa//84LK1zuw2zOv5FonAAAmv8nWMgsAwPjRMgsAQGORzAIAaoxkFgCAppo09zSwfYjtm2wvt/3uPmx/vu2f2r7B9vW2T+h1DDmOQdu/sf29Pm1/lu1v2v6d7RttP78PMbwzvwfX2T7P9pY92OZZtu+0fV1h2mzbl9q+Of/doQ8xfCy/F9fY/rbtWb2OoTDvJNthe043YwDGzUots1U/gBqg3rRZLNSdqDtRd2qoSZHM2h6U9FlJh0raS9JRtvfqcRgbJZ0UEXtJOkDS8X2IQZJOkHRjH7bb8ilJP4iIZ0h6Tq9jsT1X0jskLYqIZ0kalHRkDzZ9tqRD2qa9W9KPI2KhpB/n572O4VJJz4qIvSX9XtIpfYhBtudLeoWk27q8fWBi3IUHMMlRb3oC6k7UnYqoOzXIpEhmJe0vaXlE/CEi1ks6X9LiXgYQEasj4qr8/zqlL6K5vYzB9jxJr5L05V5ut7D97SW9SNKZkhQR6yPi3j6EMk3SVranSZop6fZubzAiLpO0tm3yYklfzf9/VdIRvY4hIi6JiI356eWS5vU6huyTkk6WxIhxANB/1Jsy6k6Poe70+DTqTg0yWZLZuZJWFJ6vVB++EFtsL5C0r6QrerzpM5QO+qEeb7dlD0l3SfpK7q7zZdtb9zKAiFgl6eNKZ7FWS7ovIi7pZQwFO0fE6vz/HZJ27lMcLW+S9P1eb9T2YkmrIuLqXm8bGBtNs2gk6k2PO0PUnag7jYy60xQ3WZLZScP2NpK+JenEiLi/h9s9XNKdEXFlr7Y5jGmS9pP0+YjYV9KD6n73kM3kaysWK/047Cppa9tH9zKG4US6h1XfzqzZfo9Sl65ze7zdmZJOlfS+Xm4XGJ8uXC/LNbPAhPSr3pS3Td1J1J1GQt2pGSZLMrtK0vzC83l5Wk/Znq70hXxuRFzY480fKOk1tm9R6i50kO2v9TiGlZJWRkTrzOo3lb6ge+llkv4YEXdFxAZJF0r68x7H0PIn27tIUv57Zz+CsH2spMMlvS56f2Popyr9OF6dj815kq6y/eQexwEMj2QWzUS9KaHulFB3akPdqTkmSzL7a0kLbe9he4bSResX9TIA21a63uHGiPhEL7ctSRFxSkTMi4gFSq//JxHR07NqEXGHpBW2n54nHSzphl7GoNRF5gDbM/N7crD6N6jDRZKOyf8fI+m7vQ7A9iFK3adeExEP9Xr7EXFtRDwpIhbkY3OlpP3ysQJMAnQzRiM1vt4kUXcqoO5UQN2pWSZFMpsv0n6bpB8qffguiIjrexzGgZJer3RW77f5cViPY5gM3i7pXNvXSNpH0od6ufF8ZvObkq6SdK3SMbq029u1fZ6kX0p6uu2Vto+T9BFJL7d9s9JZz4/0IYbPSNpW0qX5mPxCH2IAAEwi1JsmHepO1J2oO/WJe9/yDgBAeYue8+z49SXVn/QfePJTr4yIRZWvGAAAVGpavwMAAKBzdAsGAKCpSGYBAPXEgE0AADTapLhmFgAAAACAiaBlFgBQX7TMAgDQWCSzAIAaI5kFAKCpSGYBALVlWmYBAGgsklkAQH2RzAIA0FgMAAUAAAAAqB1aZgEANWVxzSwAAM1FyywAoL5a95qt8jHmJn2W7TttX1eY9jHbv7N9je1v255VmHeK7eW2b7L9yu7sCAAAmodkFgBQT1ZfkllJZ0s6pG3apZKeFRF7S/q9pFMkyfZeko6U9Mxc5nO2ByvaAwAANBrJLACgxtyFx+gi4jJJa9umXRIRG/PTyyXNy/8vlnR+RDwaEX+UtFzS/p29VgAAUEQyCwBAtd4k6fv5/7mSVhTmrczTAABASQwABQCor+7cmmeO7WWF50sjYun4wvF7JG2UdG43AgMAAI8jmQUA1Fd3BjNeExGLJlrI9rGSDpd0cEREnrxK0vzCYvPyNAAAUBLdjAEANdWN62U7y45tHyLpZEmviYiHCrMuknSk7S1s7yFpoaRfdbQRAACwGVpmAQD11Z1uxmNs0udJeolSd+SVkt6vNHrxFpIudYrp8oh4S0Rcb/sCSTcodT8+PiI29TxoAACmIJJZAAAmICKOGmbymaMsf7qk07sXEQAAzUQyCwCop9Z9ZgEAQCORzAIAaoxkFgCApiKZBQDUFy2zAAA0FqMZAwAAAABqh5ZZAEBNmZZZAAAajGQWAFBjJLMAADQVySwAoL5omQUAoLEcEf2OAQCACbP9A0lzurDqNRFxSBfWCwAAKkQyCwAAAACoHUYzBgAAAADUDsksAAAAAKB2SGYBAAAAALVDMgsAAAAAqB2SWQAAAABA7fxf/9XPL4MXFfAAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "Err_R3=error(xdata3, poptR3[0], poptR3[1],poptR3[2], poptR3[3], poptR3[4], recorteR3.ravel(), inc=1)\n", + "poptR3E, pcovR3E = curve_fit(gauss2d, xdata3, recorteR3.ravel(), p0=[8,9,4,1,1],sigma=Err_R3)\n", + "estrellaR3E=gauss2d(xdata3, poptR3E[0], poptR3E[1],poptR3E[2], poptR3E[3], poptR3E[4])\n", + "FWHMR3E=FWHMR_I.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptR3E[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 3 fotografÃa (Banda Rojo)\")\n", + "plt.imshow(recorteR3, plt.get_cmap('Reds'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 3 a partir de la gaussiana con incertidumbre (Banda Rojo)\")\n", + "plt.imshow(estrellaR3E.reshape(15, 15), plt.get_cmap('Reds'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 4 con incertidumbre (Banda Rojo)" + ] + }, + { + "cell_type": "code", + "execution_count": 832, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7MAAAFSCAYAAAAgmYhhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA5dklEQVR4nO3de5wkZX3v8e939sayLCzscN0LiwSNiAKeFVHiJaIGDbqexCgeL6AcORo06iFBwXtO9HCMMWqIJKsgeiQgIioajOCFcEgAXZD7oqzcdpflsrvALte9zO/88VSzvcPMdE8/1d1TU5/369Wvmamup+rXVTVdz6+ep55yRAgAAAAAgCoZ6HcAAAAAAACMF8ksAAAAAKBySGYBAAAAAJVDMgsAAAAAqBySWQAAAABA5ZDMAgAAAAAqZ2q/AwAAoBMLPDWeUPmPl1uroZ9ExFGlLxgAAJSKZBYAUElPKPSnmlX6cv9ZGwdLXygAACgdySwAoJIs7pUBAKDOSGYBAJU1YJe/0PJ7LgMAgC4gmQUAVBItswAA1BvJLACgsga60DBLyywAANXARW0AAAAAQOXQMgsAqCyuyAIAUF8kswCASrLcnQGgAABAJZDMAgAqi5ZZAADqi2QWAFBJVpcGgAIAAJXARW0AAAAAQOXQMgsAqCyuyAIAUF8kswCAarJkBoACAKC2SGYBAJVk0TILAECdkcwCACqLAaAAAKgvLmoDAAAAACqHllkAQGVxRRYAgPoimQUAVFJ6ziz9jAEAqCuSWQBAZdEyCwBAfVEPKIHtRbbD9tTi78ts//cerHem7R/aftj2d7q9vly2j7B9m+1HbL+hmHah7Q92uLxzG8vptV7t4xHW+4jtZ7Qx3+tsf7sXMQFAFfTrXD3R2H6r7Usyl3Gn7Vd2UO7ltlflrHuiaPd8XEW2b7b98gkQx0ts/2aM98+2/TddWndHx/g4lj/D9i229+7WOlqsP2z/Xo/XOeb+HDbv39l+bzvzTqpktjjwHi++YBqv09so1/Md2ortlxVxjfVP+kZJe0qaGxF/1mJ5253E++SvJZ0eETtFxPdtv1XS5oj44ngXZPt5kg6W9IPi7+Nsb23a77e3+0/Qa8V+eLSIc7XtL9ie0k7ZYtvd3sZ8P5T0nGI7AZNS6mZc/gvdVcNzdd+MdO6PiHMi4tX9jGsyaPd8XEUR8ZyIuKzX6x3+Px4R/y8intXrOHrkBEmXR8Qa6anEfFPxfbjR9jW2X9bnGJ+muCA11BTnb2y/s52y49yfn5d0qu3prWacVMls4XXFF0zj9b7cBfY6AbQ9TdKXJF3dYtZ9Jf02IrZ0P6qxtbmN9pV0c9Pfu0o6vsNV/g9J50RENE27srHfJf2ppM/ZPrTD5XfbwUWcL5P0Zknv6sI6zlX6sgQmrYEuvNATdTpX90Un26PPF7xRU1U/7jqM/z2S/u+waZ8r6oY7SzpD0oXtNnb02D1NcX5I0ldtl3rRoUjyb5X0+lbz1ua8bfv3bP970SV3baMLpu3Li1muL64yvLnRDcb2h23fK+nrtgdsf8T272yvs32+7d3aWO/+tn9elFlr+xzbc1oUO0nSJUo7cbTlflrSJyS9uYj7+CLGj9m+y/b9tr9pe5eiSONzPlTM/6IW88v2O4r31tn+uJu6XNj+lO0LbH/L9gZJx9k+zPaVth+yvcb26Y0rKrZ/J+kZkn5YrH+GUsvyMR1up9dI+vfR3oyIX0taLunZTZ/nO7bvLY6By20/p+m9s23/o+1/La40XW17/6b3X2X71qLs6UqNQo33OtnHjThXSPoPSYc0Le/dtlfYXm/7Itv7NL331FVL27sU++yBYj99zHbz//Rlkv64nTiAqhqQS3+hfybbubpY9h/b/rXtDbZX2v7UGPM2PtOpRRx3OvViarksb2uFPd723ZJ+rpHP/cfZvqKpXNg+0fZtkm4bJa63N9UHPjrsvY62eVG2UW6jU5fL/zrGvDNtf8P2g7aX2z7ZTV2Wx1qWU53lWyNsq0aX8+OcenRttH1HY5uPdjw2bbfG+bid/XKs7buL5Xy06f1R606jbIc/sP2fxfwrbR9XTB+1TtDY57Y/X2y/O2y/Zox1DK/vnV8se6NTF+TFTfMucLpl7IFi/5/e9N67in31oO2f2N532PZ76rjzGP/jTWUOtX1tEce3Je3Q9N52x/UI++hs21+x/eNi+f9hey/bXyziu9VPbwB5QXEsPWj767Z3KJaV9d1je6FSnXjEC2FFQ82/SNpNqQdmy++oYp/9pe0biuP12414i/f/qji+7rG9XQPKWMfvWCK5WNJ6Sc8rljWj2Kb3FK8vOtX5n9puTet9ttPtHg8Vx9XwxPUytVGPrU0yK+l/KZ10dpU0X9I/SFJEvLR4/+Di6nDji2ovpYNoX6XWrfdLeoNSS9o+kh6U9I9trNeS/ndR5tmSFkj61Kgzp3/0dyl1yR1VRHxS0mclfbuI+0xJxxWvP1T6J9lJUuNLpfE55xTzXznW/LYPlPQVSW+VtLekXSTNGxbGEkkXSJoj6RxJW5Wu0AxKepGkIyX9eRHv/pLu1rar8U8O/+hqczvZniVpP0lj3UfxAknPlLSsafKPJR0gaQ9J1xYxNztG0qeVjpEVkj5TLGtQ0oWSPlZ8tt9JOqKT2EeI8/clvaRYn2y/oljWm5S2+12Szhul+D8o7ZdnKB2X75DU3NVjuaRFtnduJxagauhmPClNqnN14VGl7+c5ShWz93rs8R72UjrXzJN0rKSl3tbq0c6yXlZ8hj/SyOf+kbxB0gslHTj8jaI+cIaktyttn7lK+6ah020upfPpS5TOZZ+W9C2Pfg/hJyUtUjrnvUrS2zKW9ZSiTvFlSa+JiNmSXizpuuLtEY/HEbSzX/5A0rOU6kafsN242D5q3WmEWPdVqsv8g6TdlS6EN2JtVSd4oVK9aVDS5ySdabc9HPzrleoicyRdpG11xSmSfqRUV1mkdMyeV7y3RNKpkv6kiPX/KfUYa/aGIq4Dx/gfb3z26ZK+r9SauZuk7yj1whuPN2lbXe5JSVcq1QcHleqzXxg2/1uV/o/2V6pTfqzpvZzvnudKun20npXFdn2HpDsk3deYrNbfUW+SdJRSHfl5SnV82T5K0l8q/d8cIGn4vcDj/Y5qxDlQJKCDKuqxkj4q6XClY/NgSYdp++3WKDtN0g+V/r/2UNp+53j7Ft7lxTLGNBmT2e8XGX7j9e5i+malA26fiHgiIq4YYxmSNCTpkxHxZEQ8rtQd4KMRsapIxD4l6Y1u0bUgIlZExKXFch5Q+kcZqw/8lyV9PCIeaf1Rn+atkr4QEbcX5U+RdMwYMY41/xsl/TAiroiITUqtwDGs/JUR8f2IGIqIxyPimoi4KiK2RMSdkv65xWd9yji305zi58Zh0w8v9vlGSb9U+sJ76ipzRJwVERub9t/BbmqJlvS9iPhl8eVyjra1lr5W0s0RcUFEbJb0RUn3dhh7w7W2H1X6R71M6cKBlPbJWRFxbRHnKZJeZHtRc+Hii+4YSacUn+lOSX+nVNloaGyfOS1iAYBeq825OiIui4gbi3PlDUoV+lbniI8Xsfy7pH9VqqS2u6xPRcSjxfZo1/+OiPWjlHmjpB9FxOXFNv240nZv6GibF5/nOxFxT/F5vq10zj5slNnfJOmzEfFgRKxS2gedLmu4IUkH2Z4ZEWsionFLVFvHY5v75dNFXel6SderqKSPs+703yT9NCLOjYjNEbEuIq5rs05wV0R8NSK2SvqG0gXzPdvcPldExMVF2f+rbQnGYUrJ1V8Vx1zzNnqP0nG1vKhXfVbSIW5qndXYx91wh0uaJumLxWe/QNKv2oy/4XvF9n5C0vckPRER3yw+17clDW+ZPT0iVkbEeqUGjrc0vZfz3TNHT6/DStJf2n5I0iNKdc2PF7G1+x315eJ/YL1SonhIMf1Nkr4eETdFxKMalgR38B21TxHn40rb8X9G6hEppXrsX0fE/UWcn9b2x2HD4UqNaKdFxKaI+LnShZHmbbxRbdRhJ2My+4aImNP0+mox/WSlqxq/LJqyW92j+EBxsDfsK+l7jROvUhKyVS2+CGzvafs8p4F+Nkj6ltIVjJHmfZ2k2THsatQ47KN0dazhLqXHL40W41jz7yNpZeONiHhM0rph5Vc2/2H7mbZ/5NSVd4PSF9eIn3W48WwnSQ8VP2cPm35Vsc9nK10xe04Rg2xPsX1a0f1jg6Q7izLN67i36ffHlP7JpKdvi2j+e5yxNzy/WP6bla5Kzmpa11P7pKgordPTW8UHlb7Uh++/5vka2+ehFrEAlcU9s5VVm3O17Rfa/oVTN8yHlSq9Y50jHiwqnA13KZ0b2l3WSo3fWGWGnwMf1fb1gY62ufTU7UzXNZU9SKNvm+3iGB7zOJf1lOLzvFlpW65xut3o94u32zoe29wvI9Yxxll3WqDUAj1cO3WC5ovwjxW/7qT2DI99hyJJW6CUJI/UwrivpC817Y/1StuyOabxHKv7SFpd1MEa7hpt5lHc1/T74yP8PXx7NMf31P9hIee750E9vQ4rSZ+PiDmSdpS0WNLfuugO3uZ3VFv1WA3bbh18R91TxLmz0kWlVzS9N1Ju0bzdmudbGRFDw+YdXo99aIw4JNXovB0R90bEuyNiH6XBg77isUdFHN4KuVKpC0rzyXeHiFjdYtWfLZb13IjYWalbzGjdOo6UtLj4QrtX6cv1g7Z/0OrzFe5R+mdqWChpi9I/6/DP02r+NWrqRmR7plLXombDl3mG0r1DBxSf9VSN/lmHa3s7FSee3yl1+RhRRNwn6buSXldM+m9K3aJfqdQNZ1ExvZ341ih9YacCqVvOgqb3x7OPm2OMiDhfqZvLJ4rJ2+2TovvTXEnDj7O12nbFuGHhsPmeLenOiNjQKhagityFLsZ0M+6vSXqu/helrpkLImIXSf80xrIladfiu79hodK5od1lxSi/j2Ws+YafA3fU9vWBjrZ50UL3VUnvU3oqwxxJN2n0bbNdvWRYTK2W9ahSgtCwV/OCI+InEfEqpdbKW4tljed4HO8+bjaeutNKpS6vw7VTJ+iGlZIWjtL6uFLS/xh2XMyMiP9smqfd41NK+39eUQdrWNj0+3b72PZ2+7hDzXW95v9DKe+75wZJ+43We6GoH96kNKZK457Rjuqahe3+h7X9dpM6PH6LFugPS3qut3VLHim3uEdPd4+kBd5+rJeR6rHXt4qjNsms7T+z3fgSfFDpgGhcDbhP6R6DsfyTpM80ukfY3t3pfoBWZit1F3jY9jxJfzXGvB9XStAOKV4XKX2hvnP0Its5V9KHbO9neydtu6d2i6QHlD7vM9qc/wJJr7P9Yqf7FD6l1gf2bEkbJD1SXNUcz6NxxrOdJOlijdEFwvZcSf9V20ZPnq10f8Q6pS+7z44jtn9VeszNnxRfPH+h7U+E4419uNMkvbv44j1X0jttH+J0w/xnJV0dqcvQU4puJ+crHZOzi+PyfypdqWt4mdK9NcCkxQBQk8skPVfPlrQ+Ip6wfZjSxdVWPm17uu2XSDpa6f7ATpY10rl/vC6QdLTTwEPTle4Tbq4/drrNZynt3weKcu9Uak0dzfmSTrG9a7GPmkfAbrWs6yS91PZCp9uLTmm8UbR4LSkuIDypdBwMFe+NdTw262QfN5dtt+50jqRX2n6T7am259o+pM06QTf8UilROs32LNs72G6MKfJPSvvrOdJTA1SN+RhJjf0/fqVSg8tf2J5m+0+0fTfy65Xqaoc4DXz0qc4+0nZOtD3faSCnjyp1RR5N2/8HkbrJr9AY3eCLY+EPtH09ttO65vlKA7UeWFyM+uSw9zs+fiPdivh32tYoc66kjxWff7CYPtJxeLVS6/HJxf58uVIDVPM4MW3VYydjMtsYLbfx+l4x/QWSrrb9iNKJ5wOx7flgn5L0DaeuAW8aZblfKspd4nRP5lVK3UNb+bRSl9KHlZKiC0ebMdJ9Dvc2XkpdHh4t+r634yylexkuV7pp/AmlG6obXUo+I+k/is95eIv5by5+P0/pi+oRSfcrfdGP5i+V/gE2Kp3Yx9Nduu3tVFgq6a3DrtC9qLHflbp3PND4PJK+qdR9YbWkW5T2X1siYq2kP1NKOtcp3Tz/HxmxD1/+jUr74K8i4qdKFaXvKm33/VWM+DyC9ytdibxd0hVKV9bOanr/LUr33gCTFi2zlVWnc/WfS/rrIp5PKFUsx3KvUuJ0j1Ly8p6IaIyYPK5ljXLuH5eiPnCi0jlmTRHbqqZZOtrmEXGLUiX4SqUk5rna/tw63F8X671D0k+Vkuwn21lWRFyqVCe5QdI1SvfmNQwoJX73KHWFfZm2JZRjHY/NxruPm7Vdd4qIu5XG8TipiPU6bbt/tVWdoHRFEv06Sb+nNMjnKqWeCoqI70n6P5LOc+oWe5PSkyjG8imN8j9eJE1/ojSo0fpiPRc2vf9bpWPkp0r3S7e6374d/6I0QNHtSj0Cx3qe9Hj/D/5ZT7+X9OTi+/DRYr1f17Z6XMd1zYj4sdI9uD9XSqJ/PmyWnONXSsfZQqdbMP5GafDVGyTdqDTA1tO2W7E/X6d0TKxVGjvmHY3vOqfB2w5UGvRrTN6+6zkwsqLl9iGlbjB39DkcSZLtf5F0fkR8v9+x9IJTV4ytkvYtTmhjzfs6SW+PiNEqfEDlLZwyNT48c07py33fo+uuiYjFrecEylW0TnwrIua3mLX2bL9X0jER0dZAk8BEUvS++7WkIyM9U3XSc3pix9ciomVPEdt/J+l3EfGVVvNW+iHF6K4iIfqZUvfizytdYbmznzE1i4jxdOOZDA5Saj2/t9WMEfFDpZHsgEnLmpzdiwA8XdFS8wyl1tcDlFonTx+zEDBBFfebPu1RWJPcQUo9K1qKiJPaXSjJLMayRKkbspW6DBwTNOX3he0/Vepa/eGiawYA0S0YqJHpSl0u91PqKXaetj3WDsAEZvtLSs8rPrb0ZZObAACqaNGUafHRHeeUvtwTHllLN2MAACqAllkAQGXRMgsAQH1xuxEAAAAAoHJ62jI7OHduLFq4oPWMoyqhS3T2IkqIwblNCSU0RQxt6X8MuduyjC7yQ1szF1DCdhiYkhlCZgwDede07rx7pdauW0/7GPqCAw+T3eDg3Fi0cGG/wwBQojvvvltr167jFFaCniazixYu0K8uu6TzBcRIz6kep6HMZZQRw5TMzT5Qwm7buC6vvEto1M/clrF5rEfetunxR/LK5yaikrzj7LwFTJ+ZV35GXvkX/OEf5a0f6JBFN2NMfosWLtSyKy7rdxgoAePUJM5u1Km+xX/w8n6HMGlwzywAoLIGaJsFAKC2uGcWAAAAAFA5tMwCACrJppsxAAB1ltUya/so27+xvcL2R8oKCgCAdgx04QV0E3UnAChPx+dt21Mk/aOk10g6UNJbbB9YVmAAALTiLryAbqHuBADlyulmfJikFRFxuyTZPk/SEkm3lBEYAABjSaMZk36iUqg7AUCJcnpUzZO0sunvVcW07dg+wfYy28seWJf5OBgAAIDqGn/daS11JwAYTddvD4qIpRGxOCIW7z53brdXBwCoEboZYzLaru40SN0JAEaTk8yulrSg6e/5xTQAAHqi18ms7QW2f2H7Fts32/7AsPdPsh22B4u/bfvLxWA/N9h+fikfHFVF3QkASpSTzP5K0gG297M9XdIxki4qJywAAFrrQ8vsFkknRcSBkg6XdGJjAB/bCyS9WtLdTfO/RtIBxesESWd0/mkxCVB3AoASdZzMRsQWSe+T9BNJyyWdHxE3lxUYAACt2C79NZaIWBMR1xa/b1Q6/zXuefx7SSdLiqYiSyR9M5KrJM2xvXfpGwKVQN0JAMqVM5qxIuJiSReXFAsAAJVhe5GkQyVdbXuJpNURcf2whHi0AX/W9CpOTCzUnQCgPFnJLAAA/dLFAZsGbS9r+ntpRCzdbt32TpK+K+mDSl2PT1XqYgwAAHqkt8msLU+b0dNVDhdbNuctYMum/CByl7Hl0ewQ4vGNeQuYOj07Bmcuo5RjKfdzlPGMy2k75JWfMTOvfO6xMDSUVx7I0KUh+ddGxOLR3rQ9TSmRPSciLrT9XEn7SWq0ys6XdK3tw8SAP8CEEKWcq6L1LGOZCDGUwXnfvFFG3Skzhla3lKA6aJkFAFRWr+sjTjWgMyUtj4gvSFJE3Chpj6Z57pS0OCLW2r5I0vtsnyfphZIejgi6GAMAUAKSWQBAZbn3T4Y9QtLbJd1o+7pi2qnFfZAjuVjSayWtkPSYpHd2PUIAAGqCZBYAgDZFxBVqcatuRCxq+j0kndjlsAAAqCWSWQBAJXVxACgAAFABJLMAgMoimQUAoL5IZgEAlTVANgsAQG116akGAAAAAAB0Dy2zAICKcj9GMwYAABMEySwAoJIYAAoAgHojmQUAVJMlk80CAFBbJLMAgMoilwUAoL4YAAoAAAAAUDm0zAIAKmuAtlkAAGqLZBYAUEkMAAUAQL2RzAIAKosBoAAAqC+SWQBAZZHLAgBQX71NZiMUWzZ3Xn5oS34MWzblld+6NT+GTY9nFY8nH8sOIVb/LnsZ2THsuHNWee+8W3YMnjkrq3zW8dyQuT+9aWbe+gem5JUHAKDLYmgobwGl1CEzz/ll1BmGMuuhZXRnmZJZb5g6vYQYpmUVD+eNgesBxtCdKGiZBQBUlmmbBQCgtkhmAQCVZEkD5LIAANQWySwAoLLIZQEAqC+SWQBAZZHMAgBQXx3fvWx7ge1f2L7F9s22P1BmYAAAAJMJdScAKFdOy+wWSSdFxLW2Z0u6xvalEXFLSbEBADAmBoBCxVB3AoASdZzMRsQaSWuK3zfaXi5pniS+kAEAPVHGUyaAXqHuBADlKuWeWduLJB0q6eoylgcAQCtWxr0yQJ9RdwKAfNn1ANs7SfqupA9GxIYR3j/B9jLbyx5Yty53dQAAAJU2rrrTWupOADCarGTW9jSlL+NzIuLCkeaJiKURsTgiFu8+d27O6gAA2I678AK6adx1p0HqTgAwmo67Gdu2pDMlLY+IL5QXEgAA7TE3zaJCqDsBQLlyWmaPkPR2Sa+wfV3xem1JcQEA0BIts6gY6k4AUKKc0YyvEOd9AECfkHyiaqg7AUC5GAgSAAAAAFA5pTyaBwCAnrO5ZxYAgBrrbTI7tFV65MGOi8djD+fHsHVrXvkZM/Nj2LIpq3hsWJ8fw4MP5JV/+KH8GIby9kXssXd2CLHzbtnLyJZ7TO0wK6u491iQt36gjwbIZYEJL4aG8heydXNe+U2P58fw+CNZxWPD2uwQ4tGNeQsYmJIdg2fvmle+jLpXZt1HU2dkFQ8upE4YtMwCACrLZLMAANQWySwAoJIsiYvjAADUFwNAAQAAAAAqh5ZZAEA1mZZZAADqjGQWAFBZjGYMAEB9kcwCACqLXBYAgPoimQUAVBYtswAA1BcDQAEAAAAAKoeWWQBAJfFoHgAA6o1kFgBQTZYGyGYBAKgtklkAQGWRywIAUF8kswCAijIDQAEAUGMMAAUAAAAAqBySWQBAJVmSB8p/jblOe4HtX9i+xfbNtj9QTP9b27favsH292zPaSpziu0Vtn9j+4+6uU0AAKgTklkAQDU5PWe27FcLWySdFBEHSjpc0om2D5R0qaSDIuJ5kn4r6RRJKt47RtJzJB0l6Su2p3RpiwAAUCskswCAyrLLf40lItZExLXF7xslLZc0LyIuiYgtxWxXSZpf/L5E0nkR8WRE3CFphaTDurEtAAComx4PABVSDHVefPOm8kLpkAfy8/948vG8BTy8NjsGDeQ1DMTa+/JjuOeevPK7rswOwYv2z1vAgmfkxzBr57zyc/fJC2DrltbzjCkyywMTzqDtZU1/L42IpcNnsr1I0qGSrh721rskfbv4fZ5SctuwqpgGVEZE5vf80Nb8IDY/mVU8HnkoO4S465a8Bfz2pvwY7s+sf02blh2DFu6XVTx+77nZIQzsk1n/2jGzPp+dD1B3KgujGQMAKqtLoxmvjYjFLda7k6TvSvpgRGxomv5Rpa7I53QjMAAAsA3JLACgsvrxZB7b05QS2XMi4sKm6cdJOlrSkbGtKWu1pAVNxecX0wAAQCbumQUAVJIlDdilv8ZcZ2oKPlPS8oj4QtP0oySdLOn1EfFYU5GLJB1je4bt/SQdIOmXZW8LAADqiJZZAEA1tTFgUxccIentkm60fV0x7VRJX5Y0Q9KlRdfnqyLiPRFxs+3zJd2i1P34xIgo4QZCAACQncwWjxhYJml1RBydHxIAABNTRFyh1Cg83MVjlPmMpM90LShUDnUnAChHGS2zH1B6NEHekKwAAIxTlwaAArqNuhMAlCDrnlnb8yX9saSvlRMOAADt6/VzZoFc1J0AoDy5LbNfVBrwYnZ+KAAAtM8i+UQlfVHUnQCgFB23zNo+WtL9EXFNi/lOsL3M9rIH1j3Y6eoAANieLQ+U/wK6paO609p1PYoOAKonp5vxEZJeb/tOSedJeoXtbw2fKSKWRsTiiFi8+9xdM1YHAABQaeOvOw3O7XWMAFAZHSezEXFKRMyPiEWSjpH084h4W2mRAQDQAvfMokqoOwFAuXjOLACgsgbIPgEAqK1SktmIuEzSZWUsCwCAdjAAFKqMuhMA5KNlFgBQWTxnFgCA+sp6ziwAAAAAAP3Q25ZZD0jTdui8+Ozd8mMYmJJZvoT8f+vavPLr7ssOIa79VVb5DZfdkB3Dzb97KKv87jvPyI5h4SG/ySo//fBDsmPQwYfllZ+1S1Zx5x7TEXnlgU4xYBPQG7nf80Nb82PY9HhW8bj3juwQ4pr/zCr/xC9+mR3DPbflPapphx0y68GS9vwvC7PKT920KTuG2HGnrPLOyEckSVOm5ZWn6lQauhkDACqLbsYAANQXySwAoLLIZQEAqC/umQUAAAAAVA4tswCASkqP5qFpFgCAuiKZBQBUk9O4ggAAoJ5IZgEAFWVaZgEAqDGSWQBAdQ2QzAIAUFd00AIAAAAAVA4tswCA6qKbMQAAtUUyCwCoJjOaMQAAdUYyCwCoLu6ZBQCgtkhmAQAVZboZAwBQYwwABQAAAACoHFpmAQCVZEummzEAALVFMgsAqC66GQMAUFskswCAyqJlFgCA+up9MptT8Zg2I3/9WzZlFY+H12eHEPevzFvAxg3ZMTx5611Z5X90833ZMfznhifyFnB/dgg6fmPe8XDo/vPyg1iXuS33yDwm5wzmlQf6iZZZoAcir/jQ1vwINmXWGe5blR3D1puWZ5X/9a9WZ8dw1YbHssrvMjV/uJyXP5G3P58xf+/sGLT/s7OKe9e98tYfM/PKozQMAAUAAAAAqBy6GQMAqsnmObMAANQYySwAoLJMN2MAAGqLZBYAUF20zAIAUFtZ98zanmP7Atu32l5u+0VlBQYAADDZUHcCgPLktsx+SdK/RcQbbU+XtGMJMQEA0JrFaMaoIupOAFCSjpNZ27tIeqmk4yQpIjZJynvOCQAA42DG5EeFUHcCgHLlVAP2k/SApK/b/rXtr9meVVJcAAC0Zpf/ArqHuhMAlCgnmZ0q6fmSzoiIQyU9Kukjw2eyfYLtZbaXPbBufcbqAABoYssD5b+ALhp/3Wntul7HCACVkZPMrpK0KiKuLv6+QOkLejsRsTQiFkfE4t3n7paxOgAAgEobf91pcG5PAwSAKuk4mY2IeyWttP2sYtKRkm4pJSoAANpBN2NUCHUnAChX7mjG75d0TjEa3+2S3pkfEgAAbaJbMKqHuhMAlCQrmY2I6yQtLicUAADalxpSSWZRLdSdAKA8uS2zAAD0Dy2zAADUFk/oAwCgTbYX2P6F7Vts32z7A8X03Wxfavu24ueuxXTb/rLtFbZvsP20wX4AAEBnqtUyu6WE54pv3dz/GIa25pUfmJIdwsD0vF0/dZJ07Xtk61DeAh57LD+IjRuyisfDa/PWv9MueeUj8soDHevLgE1bJJ0UEdfani3pGtuXSjpO0s8i4jTbH1F63MqHJb1G0gHF64WSzih+AjVSwnkit+705BPZIWx5+PGs8us2b8mO4XdP5NVjd52aX4c89OEn8xZQRt1pc2YMkVn/y677UHcqCy2zAIDKsl36aywRsSYiri1+3yhpuaR5kpZI+kYx2zckvaH4fYmkb0ZylaQ5tvfuwqYAAKB2qtUyCwBAg9XXe2ZtL5J0qKSrJe0ZEWuKt+6VtGfx+zxJK5uKrSqmrREAAMhCMgsAqKwujWY8aHtZ099LI2LpsPXuJOm7kj4YERua44iIsE0fMgAAuoxkFgCA7a2NiFEfnWJ7mlIie05EXFhMvs/23hGxpuhGfH8xfbWkBU3F5xfTAABAJu6ZBQBU14DLf43BqQn2TEnLI+ILTW9dJOnY4vdjJf2gafo7ilGND5f0cFN3ZAAAkIGWWQBANbkvoxkfIentkm60fV0x7VRJp0k63/bxku6S9KbivYslvVbSCkmPSXpnT6MFAGASI5kFAFSWezwAVERcoTT01EiOHGH+kHRiV4MCAKCm6GYMAAAAAKgcWmYBANXV+27GAABggiCZBQBUU5+fMwsAAPqLZBYAUFldes4sAACoAJJZAEBFtX6UDgAAmLwYAAoAAAAAUDm0zAIAqotuxgAA1BbJLACgmiySWQAAaoxkFgBQXSSzAADUVrWS2Yj8RWzZXEIgmWbMzCs/a1Z2CNPm7pRVftGM6dkxXK7Hs5eRa7+9Mrfl4GB+EFOm5JV//JG88ps35ZUv4f8S6IylAYZ+ACY85/+feuq0rPIxe5fsGGbMn5tVfr+dVmfH8LKhoazyM0v4zpw/L68Oqbl521GSNDMzhimZKVD2hVQuxJaFWgAAAAAAoHKq1TILAEAzuhkDAFBbJLMAgGpiACgAAGqNZBYAUF0kswAA1FbWPbO2P2T7Zts32T7X9g5lBQYAwNiKAaDKfgFdRN0JAMrT8Vnb9jxJfyFpcUQcJGmKpGPKCgwAAGAyoe4EAOXK7WY8VdJM25sl7SjpnvyQAABoE92MUT3UnQCgJB23zEbEakmfl3S3pDWSHo6IS8oKDACAMTUGgCr7BXQJdScAKFdON+NdJS2RtJ+kfSTNsv22EeY7wfYy28seWLe+80gBABiOZBYV0lHdae26XocJAJWRM9LFKyXdEREPRMRmSRdKevHwmSJiaUQsjojFu8/dLWN1AAA0YwAoVM74606Dc3seJABURc5Z+25Jh9ve0bYlHSlpeTlhAQAATDrUnQCgRB0PABURV9u+QNK1krZI+rWkpWUFBgBAS3QLRoVQdwKAcmWNZhwRn5T0yZJiAQCgfY0BoIAKoe4EAOXJfTQPAAD9QzILAEBtMdIFAAAAAKByet8y64z8eeq0/NVnlo/sCCTtuHNe+Z0fz49h/vys4oe8dEN2CHOvz3tO/M6zp2fHsPvRh2WV93MOzo5Bs3fJK79z5ijh0zK3Iy1j6BPLMqMPAz2Q+T0/MCU/hOkz88rvtW92CH7eIVnlD3xyU3YMi35zb1b5gZn5demZB++fVd7Pfm52DJ67d94CcnOKnHwGpaKbMQCguriYAgBAbZHMAgCqiQGgAACoNZJZAEB1kcwCAFBbdPgGAAAAAFQOLbMAgIqyxABQAADUFsksAKC66GYMAEBtkcwCAKqJAaAAAKg1klkAQHWRzAIAUFvcbAQAAAAAqBxaZgEAFcUAUAAA1BnJLACguuhmDABAbZHMAgCqiQGgAACoNZJZAEBF0c0YAIA6oxYAAAAAAKgcWmYBANVFN2MAAGqLZBYAUF0kswAA1FaPk1lLzujZPG1GfggDeR/ZZVScdt4tq3jkRyAf8PtZ5WfssyA7hv2PWJtV3tOmZcegRQfklZ+7V3YInr1rXvmd5+YFMDAlszx3K6BPGAAK6I3c/7Pc84wkTd8hL4Q98ustQwe/KC+G3QazY9jpBXl1J00toeq/9/ys4l7wzOwQPDuvLq2pmTlF7jHNuas01EIBABgH22fZvt/2TU3TDrF9le3rbC+zfVgx3ba/bHuF7RtsP79/kQMAMLmQzAIAKqoYzbjsV2tnSzpq2LTPSfp0RBwi6RPF35L0GkkHFK8TJJ1RxicHAAAkswCAKrPLf7UQEZdLWj98sqSdi993kXRP8fsSSd+M5CpJc2zvXdKnBwCg1hgACgBQXd2572jQ9rKmv5dGxNIWZT4o6Se2P690ofjFxfR5klY2zbeqmLampFgBAKitli2zo9wbtJvtS23fVvzMG8EGAIDxstKggmW/pLURsbjp1SqRlaT3SvpQRCyQ9CFJZ3bxk2OCo+4EAL3RTjfjs/X0e4M+IulnEXGApJ8VfwMAUFfHSrqw+P07kg4rfl8tqXkY1fnFNExuZ4u6EwB0XctkdpR7g5ZI+kbx+zckvaHcsAAAaMXSQBdenblH0suK318h6bbi94skvaMY1fhwSQ9HBF2MJznqTgDQG53eM7tn08n4Xkl7jjaj7ROURnDUwvnzOlwdAAAjyHl2eaertM+V9HKle2tXSfqkpHdL+pLtqZKeUHHek3SxpNdKWiHpMUnv7HnAmCg6qzstyH8+KgBMVtkDQEVE2I4x3l8qaakkLT7k4FHnAwBg3Prw4PmIeMsob/2XEeYNSSd2NyJUzbjqTs8/lLoTAIyi02T2Ptt7R8Sa4hED95cZFAAALdntPhcWmAioOwFAyTqtBVykNNiFip8/KCccAACASYm6EwCUrJ1H85wr6UpJz7K9yvbxkk6T9Crbt0l6ZfE3AAC9ZZf/AjJRdwKA3mjZzXiMe4OOLDkWAADGpw8DQAGtUHcCgN7IHgAKAIC+oSUVAIDaIpkFAFQTA0ABAFBrPU5mQ4qh3q5yuIHMq/jTdsgOwbN2yYxhenYMsXVz3gKmTMuOwbkxPPJwdgzZStgOmrlTXvkZs/LKD23JKy9axgBgMnNmD4gYmJIfxNQZeeV33Dk7hIH5B2SVj8F9smPQE4/mlS/h1gzv2Od6iyTNmJlXfmpm/Y1eQRMGLbMAgOqiQgEAQG2RzAIAqosBoAAAqC2SWQBANdn5t44AAIDK4pI2AAAAAKByaJkFAFQX3YwBAKgtklkAQHUxABQAALVFMgsAqCjTMgsAQI2RzAIAqsliACgAAGqMS9oAAAAAgMqhZRYAUF3cMwsAQG2RzAIAqot7ZgEAqC2SWQBANdncMwsAQI2RzAIAqouWWQAAaotaAAAAAACgcmiZBQBUFwNAAQBQWySzAICKMt2MAQCosWols1s2l7CMTXnlp5SwyaZOyyrugSn5MewymFd+xsz8GIa25pXfYVZ2CLHpiazyLmM75Nqc9xlKOaaBfrAYAAqoAJfQgyJy6z7TdsiOQQN558tS6gyzd8tfRq7cfVFGvSN3GZkXQss4plEOarEAgOqiZRYAgNqiFgAAAAAAqBxaZgEA1UVXLwAAaotkFgBQUZYG6GAEAEBdtawF2D7L9v22b2qa9re2b7V9g+3v2Z7T1SgBABjOSi2zZb+ATNSdAKA32rmkfbako4ZNu1TSQRHxPEm/lXRKyXEBAABU1dmi7gQAXdcymY2IyyWtHzbtkojYUvx5laT5XYgNAICxeaD8F5CJuhMA9EYZZ+13SfrxaG/aPsH2MtvLHli3frTZAAAYpy50MaabMXqj/brT2nU9DAsAqiUrmbX9UUlbJJ0z2jwRsTQiFkfE4t3nToAHPQMAJo+BgfJfQBeNu+40OLd3wQFAxXQ8mrHt4yQdLenIiIjSIgIAoB2NAaCAiqDuBADl6iiZtX2UpJMlvSwiHis3JAAAgMmFuhMAlK9lMmv7XEkvlzRoe5WkTyqNwDdD0qVOV8Wvioj3dDFOAACGMQM2YUKi7gQAvdEymY2It4ww+cwuxAIAwPjQzRgTEHUnAOiNju+ZBQCg72iZBQCgtkhmAQDVZEsDtMwCAFBXvU9mY6jzspsez1/95iezynvajOwYNH1mXvmpJey2adOzipeyHQam5JXfYafsELKrwTnHc2MRmcdkbMh7BqF32T2rPAAA3ebMx2ZFlHDhK7snyLT8GCbCINjZt3eUsS/ylmFuUZk0aJkFAFQX3YwBAKgtklkAQHVxdR0AgNrikjYAoKKKR/OU/Wq1Vvss2/fbvmnY9PfbvtX2zbY/1zT9FNsrbP/G9h91YUMAAFBLtMwCACqrT/c9nS3pdEnfbIrjDyUtkXRwRDxpe49i+oGSjpH0HEn7SPqp7WdGxNaeRw0AwCRDyywAAOMQEZdLWj9s8nslnRYRTxbz3F9MXyLpvIh4MiLukLRC0mE9CxYAgEmMZBYAUE1WX7oZj+KZkl5i+2rb/277BcX0eZJWNs23qpgGAAAy0c0YAFBR7tZoxoO2lzX9vTQilrYoM1XSbpIOl/QCSefbfkY3ggMAAAnJLACguga6cs/s2ohYPM4yqyRdGBEh6Ze2hyQNSlotaUHTfPOLaQAAIBPdjAEA1TVxuhl/X9IfSpLtZ0qaLmmtpIskHWN7hu39JB0g6Zf5HxwAANAyCwDAONg+V9LLlbojr5L0SUlnSTqreFzPJknHFq20N9s+X9ItkrZIOpGRjAEAKAfJLACgmiypD4/miYi3jPLW20aZ/zOSPtO9iAAAqCeSWQBARXVtACgAAFABJLMAgOrqQ8ssAACYGLikDQAAAACoHFpmAQDVRTdjAABqi2QWAFBNdreeMwsAACqg98lszlX0Eq7Ae9qMvAVMn5kdg6ZOy19GJu+8e79DkKZMySs/EVpkYih7Ec5dxlDklZ+ReUwPZO5HIMdE+B4AMOG5jPvrJ8A9+umJX/1VyrYESkLLLACguqhUAQBQW1zSBgAAAABUDi2zAICK4jmzAADUWctagO2zbN9v+6YR3jvJdtge7E54AACMwS7/BWSi7gQAvdHOJe2zJR01fKLtBZJeLenukmMCAKA1K7XMlv0C8p0t6k4A0HUtz9oRcbmk9SO89feSTpbU/2HVAAA1ZGlgoPwXkIm6EwD0RkdnbdtLJK2OiOtLjgcAAGDSoe4EAOUb9wBQtneUdKpSN5l25j9B0gmStHD+vPGuDgCAUfG8Q1RBVt1pwYIuRgYA1dZJy+z+kvaTdL3tOyXNl3St7b1GmjkilkbE4ohYvPvc3TqPFACA4bhnFtXQed1pcG4PwwSAahl3y2xE3Chpj8bfxZfy4ohYW2JcAACMzWL0YVQCdScA6I52Hs1zrqQrJT3L9irbx3c/LAAAWjEts5iQqDsBQG+0bJmNiLe0eH9RadEAAABUHHUnAOiNcXczBgBgwqCbMQAAtUUyCwCoLp4LCwBAbZHMAgCqyaZlFgCAGutpMnvN9TeuHRhccNcYswxK6vfIfsQwMWLo9/qJof0Y9u1VIABQN9f8+rq1njWHutPEj6Hf6yeGasVA3akkPU1mI2L3sd63vSwiFvcqHmKYuDH0e/3EMLFiAEbF6MOY5Kg7VSOGfq+fGIihruhmDACoLroZAwBQWySzAIAKI5kFAKCuJloyu7TfAYgYGvodQ7/XLxFDw0SIARgBA0ABmhjf0cTQ//VLxNBADDXiiOh3DAAAjNvi5x0Uv/rX80tf7sDC51zDvU4AAEx8E61lFgCA9tEyCwBAbZHMAgAqjGQWAIC6mjDPNLB9lO3f2F5h+yN9WP8C27+wfYvtm21/oNcxFHFMsf1r2z/q0/rn2L7A9q22l9t+UR9i+FCxD26yfa7tHXqwzrNs32/7pqZpu9m+1PZtxc9d+xDD3xb74gbb37M9p9cxNL13ku2wPdjNGIC2WalltuwXUAHUm7aLhboTdSfqTjU1IZJZ21Mk/aOk10g6UNJbbB/Y4zC2SDopIg6UdLikE/sQgyR9QNLyPqy34UuS/i0ifl/Swb2OxfY8SX8haXFEHCRpiqRjerDqsyUdNWzaRyT9LCIOkPSz4u9ex3CppIMi4nmSfivplD7EINsLJL1a0t1dXj8wPu7CC5jgqDc9DXUn6k7NqDvVyIRIZiUdJmlFRNweEZsknSdpSS8DiIg1EXFt8ftGpS+ieb2MwfZ8SX8s6Wu9XG/T+neR9FJJZ0pSRGyKiIf6EMpUSTNtT5W0o6R7ur3CiLhc0vphk5dI+kbx+zckvaHXMUTEJRGxpfjzKknzex1D4e8lnSyJEeMAoP+oNxWoOz2FutO2adSdamSiJLPzJK1s+nuV+vCF2GB7kaRDJV3d41V/UemgH+rxehv2k/SApK8X3XW+ZntWLwOIiNWSPq90FWuNpIcj4pJextBkz4hYU/x+r6Q9+xRHw7sk/bjXK7W9RNLqiLi+1+sGWqNpFrVEvWmbL4q6E3Wn0VF3muQmSjI7YdjeSdJ3JX0wIjb0cL1HS7o/Iq7p1TpHMFXS8yWdERGHSnpU3e8esp3i3oolSieHfSTNsv22XsYwkkjPsOrblTXbH1Xq0nVOj9e7o6RTJX2il+sF2tOF+2W5ZxYYl37Vm4p1U3cSdafRUHeqh4mSzK6WtKDp7/nFtJ6yPU3pC/mciLiwx6s/QtLrbd+p1F3oFba/1eMYVklaFRGNK6sXKH1B99IrJd0REQ9ExGZJF0p6cY9jaLjP9t6SVPy8vx9B2D5O0tGS3hq9fzD0/konx+uLY3O+pGtt79XjOICRkcyinqg3JdSdEupOw1B3qo+Jksz+StIBtvezPV3ppvWLehmAbSvd77A8Ir7Qy3VLUkScEhHzI2KR0uf/eUT09KpaRNwraaXtZxWTjpR0Sy9jUOoic7jtHYt9cqT6N6jDRZKOLX4/VtIPeh2A7aOUuk+9PiIe6/X6I+LGiNgjIhYVx+YqSc8vjhVgAqCbMWqp9vUmibpTE+pOTag71cuESGaLm7TfJ+knSv9850fEzT0O4whJb1e6qndd8Xptj2OYCN4v6RzbN0g6RNJne7ny4srmBZKulXSj0jG6tNvrtX2upCslPcv2KtvHSzpN0qts36Z01fO0PsRwuqTZki4tjsl/6kMMAIAJhHrThEPdiboTdac+ce9b3gEAyLf44OfGry4p/6L/wF77XxMRi0tfMAAAKNXUfgcAAEDn6BYMAEBdkcwCAKqJAZsAAKi1CXHPLAAAAAAA40HLLACgumiZBQCgtkhmAQAVRjILAEBd0c0YAFBZtkt/tbHOs2zfb/umEd47yXbYHiz+tu0v215h+wbbz+/CZgAAoJZIZgEA1dUYBKrMV2tnSzrq6aF4gaRXS7q7afJrJB1QvE6QdEb2ZwYAAJJIZgEAGJeIuFzS+hHe+ntJJ0tqfoD7EknfjOQqSXNs792DMAEAmPRIZgEAFeUuvTRoe1nT64SWkdhLJK2OiOuHvTVP0sqmv1cV0wAAQCYGgAIAVFd3RjNeGxGL2w/BO0o6VamLMQAA6BGSWQBANVkT5dE8+0vaT9L1xQBS8yVda/swSaslLWiad34xDQAAZKKbMQCgwrrSzXhcIuLGiNgjIhZFxCKlrsTPj4h7JV0k6R3FqMaHS3o4ItZ0/HEBAMBTSGYBABgH2+dKulLSs2yvsn38GLNfLOl2SSskfVXSn/cgRAAAaoFuxgCA6upDN+OIeEuL9xc1/R6STux2TAAA1BHJLACguibELbMAAKAfSGYBABXV2T2uAABgciCZBQBU18QYzRgAAPQBA0ABAAAAACqHllkAQDVNnOfMAgCAPiCZBQBUGMksAAB1RTILAKguWmYBAKgt7pkFAAAAAFQOLbMAgIoyLbMAANQYySwAoMJIZgEAqCuSWQBAddEyCwBAbTki+h0DAADjZvvfJA12YdFrI+KoLiwXAACUiGQWAAAAAFA5jGYMAAAAAKgcklkAAAAAQOWQzAIAAAAAKodkFgAAAABQOSSzAAAAAIDK+f/CGdE8vhYxuAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "Err_R4=error(xdata4, poptR4[0], poptR4[1],poptR4[2], poptR4[3], poptR4[4], recorteR4.ravel(), inc=1)\n", + "poptR4E, pcovR4E = curve_fit(gauss2d, xdata4, recorteR4.ravel(), p0=[1,0,1,1,1], sigma=Err_R4)\n", + "estrellaR4E=gauss2d(xdata4, poptR4E[0], poptR4E[1],poptR4E[2], poptR4E[3], poptR4E[4])\n", + "FWHMR4E=FWHMR_I.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptR4E[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 4 fotografÃa (Banda Rojo)\")\n", + "plt.imshow(recorteR4, plt.get_cmap('Reds'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 4 a partir de la gaussiana con incertidumbre (Banda Rojo)\")\n", + "plt.imshow(estrellaR4E.reshape(15, 15), plt.get_cmap('Reds'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 5 con incertidumbre (Banda Rojo)" + ] + }, + { + "cell_type": "code", + "execution_count": 833, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7MAAAFSCAYAAAAgmYhhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA2sElEQVR4nO3debwkVX3///f73lmYYZkBBllmBgYNogOC8BsJShQiLmjQIZvi1wXciIoG/JEQQeOSXzT+DHGLUYOC4FcECWKCRiO4EL4aQAdEBAYF2WZgkJlh35m5n+8fpy5T09x7u2+f6u5bt17Px6Mft7uqTtWnq+t2nU+dU6cdEQIAAAAAoE6GBh0AAAAAAACTRTILAAAAAKgdklkAAAAAQO2QzAIAAAAAaodkFgAAAABQOySzAAAAAIDamTHoAAAA6MZiz4hHVf3Py63TyPcj4rDKVwwAACpFMgsAqKVHFfpTbVn5ev9VDyyofKUAAKByJLMAgFqyuFcGAIAmI5kFANTWkF39SqvvuQwAAHqAZBYAUEu0zAIA0GwkswCA2hrqQcMsLbMAANQDF7UBAAAAALVDyywAoLa4IgsAQHORzAIAaslybwaAAgAAtUAyCwCoLVpmAQBoLpJZAEAtWT0aAAoAANQCF7UBAAAAALVDyywAoLa4IgsAQHORzAIA6smSGQAKAIDGIpkFANSSRcssAABNRjILAKgtBoACAKC5uKgNAAAAAKgdWmYBALXFFVkAAJqLZBYAUEvpd2bpZwwAQFORzAIAaouWWQAAmot6QAVsL7EdtmcUry+2/bY+bHeO7W/bvs/2v/V6e7lsH2T7BtsP2j6imHa+7eO7XN/Zo+vpt359xmNs90HbT+9guVfZ/kY/YgKAOhjUuXqqsf162xdmruMW2y/potwhtlfnbHuq6PR8XEe2r7V9yBSI44W2fz3B/DNs/32Ptt3VMT6J9c+2fZ3tnXu1jTbbD9u/1+dtTvh5tiz7T7bf2cmy0yqZLQ68R4ovmNHH5zoo1/cPdDxjvIeJTjh/JmlHSdtHxJ+3We9mJ/EB+TtJn4uIrSLi322/XtITEfHpya7I9j6S9pX0H8Xro21vLO23mzr9J+i34nN4qIjzdtuftD3cSdli393UwXLflrRXsZ+AaSl1M67+gd5q4Ll6YMY690fEWRHxskHGNR10ej6uo4jYKyIu7vd2W//HI+L/RMSe/Y6jT46RdElErJGeTMwfL75PHrB9he2DBxzjUxQXpEZKcf7a9ps7KTvJz/MUSSfbntVuwWmVzBZeVXzBjD7enbvCASSA5fcw0QlnN0m/iYgN/QpsPB3uo90kXVt6va2kt3a5yb+QdFZERGnapaP7TdKfSvqE7f26XH+v7VvEebCk10p6Sw+2cbbSlyUwbQ314IG+aNK5eiC62R8DvuCNhqr7cddl/O+Q9L9bpn2iqBtuI+kLks7vtLGjz+4oxfleSV+yXelFhyLJv17Sq9st25jztu3fs/3fRZfcdaNdMG1fUizyy+Iqw2tHu8HY/hvbd0r6iu0h2++z/Vvb622fa3u7Drb7DNs/Ksqss32W7fkVvJ+PSPqgpNcWcb+1iPEDtm+1fZftr9qeVxQZfZ/3Fss/v83ysv2mYt5623/rUpcL2x+2fZ7tr9m+X9LRtg+wfante22vsf250Ssqtn8r6emSvl1sf7ZSy/KRXe6nV0j67/FmRsQvJK2U9OzS+/k323cWx8AltvcqzTvD9r/Y/s/iStPltp9Rmv9S29cXZT+n1Cg0Oq/rzzgibpT0U0nPLa3v7bZvtH237Qts71Ka9+RVS9vzis9sbfE5fcB2+X/6Ykl/1EkcQF0NyZU/MDjT7VxdrPuPbP/C9v22V9n+8ATLjr6nk4s4bnHqxdR2Xd7UCvtW27dJ+pHGPvcfbfsnpXJh+1jbN0i6YZy43liqD7y/ZV5X+7woO1ruAacul388wbJzbJ9p+x7bK22f6FKX5YnW5VRn+doY+2q0y/nRTj26HrB98+g+H+94LO230fNxJ5/LUbZvK9bz/tL8cetO4+yHP7D9P8Xyq2wfXUwft04w+pnbPqXYfzfbfsUE22it751brPsBpy7Iy0rLLna6ZWxt8fl/rjTvLcVndY/t79verWX/PXnceYL/8VKZ/WxfWcTxDUlblOZtdlyP8RmdYfvztr9XrP+ntney/ekivuv91AaQ5xXH0j22v2J7i2JdWd89tndVqhNfPtb8oqHm65K2U+qB2fY7qvjM/sr21cXx+o3ReIv5f10cX3fY3qwBZaLjdyKRfFfS3ZL2KdY1u9indxSPTzvV+Z/cb6XtPtvpdo97i+OqNXG9WB3UYxuTzEr6/yRdqNQauEjSP0tSRLyomL9vcXV19ItqJ6WDaDel1q33SDpCqSVtF0n3SPqXDrZrSf9QlHm2pMWSPtymzFnFl8KFtvcda4GI+JCkj0n6RhH3aZKOLh5/qPRPspWk0S+V0fc5v1j+0omWt71U0uclvV7SzpLmSVrYEsZySedJmi/pLEkbla7QLJD0fEmHSnpXEe8zJN2mTVeyH+t2P9neUtLukia6j+J5kp4paUVp8vck7SHpaZKuLGIuO1LSR5SOkRslfbRY1wJJ50v6QPHefivpoG5iHyPOZ0l6YbE92X5xsa7XKO33WyWdM07xf1b6XJ6udFy+SVK5q8dKSUtsb9NJLEDd0M14WppW5+rCQ0rfz/OVKmbv9MTjPeykdK5ZKOkoSad6U6tHJ+s6uHgPL9fY5/6xHCHp9yUtbZ1R1Ae+IOmNSvtne6XPZlS3+1xK59MXKp3LPiLpax7/HsIPSVqidM57qaQ3ZKzrSUWd4rOSXhERW0t6gaSritljHo9j6ORz+QNJeyrVjT5oe/Ri+7h1pzFi3U2pLvPPknZQuhA+Gmu7OsHvK9WbFkj6hKTT7I6Hg3+1Ul1kvqQLtKmuOCzpO0p1lSVKx+w5xbzlkk6W9CdFrP9HqcdY2RFFXEsn+B8ffe+zJP27UmvmdpL+TakX3mS8Rpvqco9JulSpPrhAqT77yZblX6/0f/QMpTrlB0rzcr57niPppvF6Vhb79U2Sbpb0u9HJav8d9RpJhynVkfdRquPL9mGS/krp/2YPSa33Ak/2O2o0zqEiAV2goh4r6f2SDlQ6NveVdIA232+jZWdK+rbS/9fTlPbfWd68hXdlsY6JRcS0eUi6RdKDku4tPd5ezPuqpFMlLRqjXEj6vdLrQyQ9LmmL0rSVkg4tvd5Z0hNKI0IvKdYxo5h3saS3jRPjEZJ+McF7OEjSHElzJZ0k6U6lk9BYy35Y0tdKr38o6V2l13uOF2MHy39Q0tmleXOLffKS0rYvafN5HC/pWy2fz0tKr7vaT0pfltHy+RwtaUPxmT9QzP9nSR5nHfOLZeYVr8+Q9OXS/FdKur54/iZJl5XmWdLqjM84JN2v9OURSl/us4t5pyl1MxlddqviM1lSPlYlDRefx9LSsn8h6eLS65nF8rsO8v+SB49ePRZ5OE6Zs13lD0krBv3epvNDDTtXj1H205I+Nc68Q4pz2ZalaedK+tt26yq9v6eX5m/2notpR0v6Sct+ffEE8X5Q0jml11tq8/rAuPt8nPe3eoJtXSVp+TjzbpL08tLrt3W6Lj21vvTkfinez71KidGclnV0fDx28LksKs3/maQjxyl7vEp1p5Z5J401T23qBMVnfmNp3twipp3G2c4t2ry+94PSvKWSHimeP1/S2nE+6+9Jemvp9ZCkhyXtNt5x17pPy8eL0oWZO1Sq10n6H0l/P9Zx3bo+pXrel0rz3iNpZen1cyTd27IP3lF6/UpJvy3F1fF3zxj75vUq1StL8T1aHIuPFM9fP8HxfYRK31FFvG8ovf6EpC8Wz0+X9PHSvGe27uvxjt8x5h0iaaSI8zGlizHHl+b/VtIrS69fLumWMT7PFyp9bw6Vlj1b0odLr1+qlPRP+J06HVtmj4iI+aXHl4rpJyolIT8rmrLb3aO4NiIeLb3eTdK3iqbwe5UO2o0qmv/HY3tH2+c4DfRzv6SvKV3BGFNE/DQiHomIhyPiH5QOlhe2iXXULkpXx0bdqvRFPV6MEy2/i6RVpbgelrS+pfyq8gvbz7T9HaeuvPcrtRyP+15byk5mP91b/N26ZfplxWe+tdIVs72KGGR72PbHi+4f9yv906tlG3eWnj+slEhKT90XUX492c+4sH+x/tcqXZXcsrStJz+TiHhQab+3toovUEpWWz+/8nKj++feNrEAtcU9s7XVmHO17d+3/eOiFfc+pXvlJjpH3BMRD5Ve36p0buh0Xas0eROVaT0HPqTN6wNd7XPpyduZriqV3Vvj75vN4miNeZLrelLxfl6rtC/XON1u9KxidkfHY4efy5h1jEnWnRYrJQutOqkTPLn9ok4nbarntNMa+xZOXbQXS7o1xm5h3E3SZ0qfx91K+7Ic02SO1V0k3V7UwUbdOt7C4/hd6fkjY7xu3R/l+J78PyzkfPfco6fWYSXplIiYr3SxYZmkf3TRHbzD76iO6rFq2W9dfEfdUcS5jVKvhheX5o2VW5T3W3m5VREx0rJsaz323gnikNSg83ZE3BkRb4+IXZSuVn3eE4+KGC2vVyl1QSmffLeIiNvbbPpjxbqeExHbKHWLmUxHtpjE8nco/TON2lXpCu/v9NT30275NSp1I7I9R6lrUWtsZV9Qull7j+K9njyJ2DveT8WJ57dKV5bGFBG/k/RNSa8qJv0vpW7RL1HqhrOkmN5JfGuUvrBTgdQtZ3FpflefcSTnKnVz+WAxebPPpOj+tL2k1uNsndIVv9bPr7zcs5Wuht3fLhagjtyDLsZ0Mx6saXqu/rpS18zFETFP0hfbrHvb4rt/1K5K54ZO1xXjPJ/IRMu1ngPnavP6QFf7vOgy+yVJ71b6VYb5kq7R+Ptms3pJS0zt1vWQUoIwaqfyiiPi+xHxUqXWtOuLdU3meJzsZ1w2mbrTKqUur606qRP0wipJu3rsAZBWSfqLluNiTkT8T2mZTo9PKX3+C1u6Ru9aer7ZZ2x7s8+4S+W6Xvn/UMr77rla0u7j7LfR+uE1SmOqjN4zmvMdtdn/sDbfb1KXx2+kWwb/RtJzSt2Sx8ot7tBT3SFpsTcf62Wseuwv28XRmGTW9p/bHv0SvEfpgBi9GvA7pXsMJvJFSR8tvjBle4fifoB2tlbqTnWf7YWS/nqCGHd1+i3WWba3sP3XSldGftrBdqTUPP9e27vb3kqb7qndoNQNZESbv8+Jlj9P0qtsv6C4T+HDan9gb63UffbB4qrmZH4ap+P9VPiu0n0JY7K9vaQ/1qbRk7dW6g6xXunL7mOTiO0/lX7m5k+KL56/1OYnwsnG3urjkt5efPGeLenNtp/rdMP8xyRdHhG3lAtExEalrmcftb11cVz+v0pX6kYdrNTNB5i2GABqepmm5+qtJd0dEY/aPkDp4mo7HynW/0JJhyvdH9jNusY690/WeZIOdxp4aJbSz+yV64/d7vMtlT7ftUW5Nyu1po7nXEkn2d62+IzKI2C3W9dVkl5UfHbzlLrrqlh2R9vLiwsIjykdByPFvImOx7JuPuNy2U7rTmdJeont19ieYXt728/tsE7QCz9TSpQ+bnvL4v9hdEyRLyp9XntJTw5QNeHPSGri//FLlRpc/tL2TNt/onQ/5qhfKtXVnus08NGHu3tLmznW9iKngZzeL+kbEyzb8f9BRKxWusf0gLHmF+WfpXSfdbke221d81ylgVqXFhejPtQyv+vjNyIel/RP2tQoc7akDxTvf0Exfazj8HKl1uMTi8/zEKUGqPI4MR3VY6djMjs6Wu7o41vF9OdJutz2g0pXH46LTb8P9mFJZzp1DXjNOOv9TFHuQtsPSLpMqXtoOx9R6lJ6n1JSdP4Ey26tdIXuHqUrE4cpXeVp7d47ntOVboy/ROmm8UeV7gkY7VLyUUk/Ld7ngW2Wv7Z4fo7SF9WDku5S+qIfz18p/QM8oHRVc6J/+laT2U9Suofl9S1X6J4/+rkrde9YO/p+lO57uVVpv16n9Pl1JCLWSfpzpaRzvdLN8+VKy2Rjb13/r5Q+g7+OiB9I+lulVuU1Sldgjxyn6HuUrkTeJOknSlfWTi/Nf52kf51MLEDd0DJbW006V79L0t8V8XxQqWI5kTuLdd+hlLy8IyKu72Zd45z7J6WoDxyrdI5ZU8S2urRIV/s8Iq5TqgRfqpTEPEcTX7z/u2K7N0v6gVKS/Vgn64qIi5TqJFdLukJp0KJRQ0qJ3x1KXWEP1qaEcqLjsWyyn3FZx3WniLhN6d7NE4pYr9KmAXLa1QkqVyTRr1Iay+M2pc/ntcW8b0n6/yWd49Qt9hqlX6KYyIc1zv94kTT9idK9sXcX2zm/NP83SsfID5RG5d5sZOMufV1pgKKblHoE/v0Ey072/+BflQZVKzux+D58qNjuV7SpHtd1XTMivqd0H+yPlJLoH7UsknP8Suk429X2q5T20Qql/7VfKQ2w9ZT9Vnyer1I6JtYpDTr7ptHvOqfB25YqDfo1IW/e9RwYW9Fye69SN5ibBxyOJMn21yWdGxH/PuhY+sGpK8ZGpcETbmuz7KskvTEixqvwAbW36/CM+Js58ytf77sfWn9FRCxrvyRQraJ14msRsajNoo1n+51KgyiN20sLmKqK3ne/UBo0as2g4+kHp1/s+HJEtO0pYvuflAbc+ny7ZWv9I8XorSIh+qFS9+JTlK6w3DLImMoiYjLdeKaDvZVaz+9st2BEfFtpyHNg2rKmZ/ciAE9VtNQ8Xan1dQ+l1snPTVgImKKK+02f8lNY09zeSj0r2oqIEzpdKcksJrJcqRuylboMHBk05Q+E7T9V6lr9N0XXDACiWzDQILOUulzurtRT7BylrokApjjbn1H6veKjKl83uQkAoI6WDM+M98+dX/l6j3lwHd2MAQCoAVpmAQC1RcssAADNxe1GAAAAAIDa6WvL7ILtt4slizMG6Hv80fwgcrtVz56TH4MzryFs3JAfQ4z1M2mTMFzBoZP7eT5Rwa2js2Znlt8iP4aNG/PK57ZMDQ1nFb/lttVat3497WMYCA48THcLFmwfS3bdddBhAKjQLbfdpnXrqDtVoa/J7JLFi/TzCy/ounzcfkN2DJGZAA0t2Ss7Bm2xZV75+9ZmhxCPPZxV3vN2yI9h9W/yyt854a/TdMSLfy+v/MJnZsegh+7LKz+UeXFk7rys4s/7w5flbR/okkU3Y0x/S3bdVSt+cvGgwwBQoWV/cMigQ5g2uGcWAFBbQ7TNAgDQWNwzCwAAAACoHZJZAEAt2ambcdWPibfpxbZ/bPs629faPq5l/gm2w/aC4rVtf9b2jbavtr1/7/YIAADNkpXM2j7M9q+Lk/T7qgoKAIBODPXg0cYGSSdExFJJB0o61vZSKSW6kl4mqXxD/ysk7VE8jpH0he7fLaYD6k4AUJ2uk1nbw5L+RelEvVTS60ZP6AAA9IN78JhIRKyJiCuL5w9IWilpYTH7U5JOlFQeNn+5pK9Gcpmk+bZ3znjLqDHqTgBQrZyW2QMk3RgRN0XE45LOUTppAwDQc2k0Y1f+6Hj79hJJ+0m63PZySbdHxC9bFlsoaVXp9WptSn7RPNSdAKBCOclsRydo28fYXmF7xdr16zM2BwBAXywYPW8Vj2NaF7C9laRvSjpeqevxyZI+2N8wUUOTrzuto+4EAOPp+U/zRMSpkk6VpGXP3SfaLA4AQMd69MM86yJi2bjbtGcqJbJnRcT5tp8jaXdJv3Rq2V0k6UrbB0i6XdLiUvFFxTRgXJvVnfbfj7oTAIwjp2WWEzQAYKD6fc+sU7Z6mqSVEfFJSYqIX0XE0yJiSUQsUWpt2z8i7pR0gaQ3FaMaHyjpvohYU9HbR/1QdwKACuUksz+XtIft3W3PknSk0kkbAIC+6HcyK+kgSW+U9GLbVxWPV06w/Hcl3STpRklfkvSuSb5FTC/UnQCgQl13M46IDbbfLen7koYlnR4R11YWGQAAbXgSAzZVISJ+ojY5b9E6O/o8JB3b47BQE9SdAKBaWffMRsR3la46AwAAoA3qTgBQnZ4PAAUAQC902C0YAABMU/1NZh9/VHH7DV0Xj59fnB2CD3519jqyjYzkFV/16+wQhpbslbeCqGBwxbnbZBX3Hvvmx7BxY1bxWJ8/bodnz81cQea/8eOP5JWv4lgAupQz8AMAAKg3WmYBALXV51tmAQDAFEIyCwCoLdPRGACAxqKHFgAAAACgdmiZBQDUEgNAAQDQbCSzAIDaIpkFAKC5SGYBALU1RDYLAEBjcc8sAAAAAKB2aJkFANSUGc0YAIAGI5kFANQSA0ABANBsJLMAgHqyZLJZAAAai2QWAFBb5LIAADQXA0ABAAAAAGqHllkAQG0N0TYLAEBjkcwCAGqJAaAAAGg2klkAQG0xABQAAM1FMgsAqC1yWQAAmqu/yWyMKB57pOvift4h2SF42x2zysf96/Jj2Gq7vPJztsqOQUNT4DrG8HBe+aHM8lWso4oYcm3ckFd+eAocCwAAAMAkUYsFANSWaZsFAKCxSGYBALVkSUPksgAANBbJLACgtshlAQBoLpJZAEBtkcwCANBcQ90WtL3Y9o9tX2f7WtvHVRkYAADAdELdCQCqldMyu0HSCRFxpe2tJV1h+6KIuK6i2AAAmBADQKFmqDsBQIW6TmYjYo2kNcXzB2yvlLRQEl/IAIC+MLksaoS6EwBUq5J7Zm0vkbSfpMurWB8AAO1YGffKAANG3QkA8mXXA2xvJembko6PiPvHmH+M7RW2V6y99ymzAQAAGmVSdad16/sfIADURFYya3um0pfxWRFx/ljLRMSpEbEsIpbtMH+bnM0BALAZ9+AB9NKk604Ltu9vgABQI113M7ZtSadJWhkRn6wuJAAAOmNumkWNUHcCgGrltMweJOmNkl5s+6ri8cqK4gIAoC1aZlEz1J0AoEI5oxn/RJz3AQADQvKJuqHuBADVYiBIAAAAAEDtVPLTPAAA9J3NPbMAADRYf5PZkZAee6T78k9bXEEMI3nlH7gnP4a5maM6z5yVHUI8eHdWec+emx1DtqHh7FV4OPNfIDKPJ0mxcUNWeQ9ldrDI/Z+IyCsPZBgilwV6LnK/5ys4V2afq6q48JVZ7+DiG1A9WmYBALVlslkAABqLZBYAUEtWNY0tAACgnhgACgAAAABQO7TMAgDqybTMAgDQZCSzAIDaYkAVAACai2QWAFBb5LIAADQXySwAoLZomQUAoLkYAAoAAAAAUDu0zAIAaomf5gEAoNlIZgEA9WRpiGwWAIDGIpkFANQWuSwAAM1FMgsAqCkzABQAAA3GAFAAAAAAgNqhZRYAUEuWZC7JAgDQWFQDAAD15PQ7s1U/Jtykvdj2j21fZ/ta28cV0//R9vW2r7b9LdvzS2VOsn2j7V/bfnlvdwoAAM1BMgsAqC27+kcbGySdEBFLJR0o6VjbSyVdJGnviNhH0m8knZTi81JJR0raS9Jhkj5ve7g3ewMAgGbpbzfj4WF5m+26Lh7r7siPYe79+evINHLDL/JWsO7O/CCetjCv/LY75McwPDOv/IxZ+THk9lGMkfwYHnkwL4SZefvB2fsxMssD9RERayStKZ4/YHulpIURcWFpscsk/VnxfLmkcyLiMUk3275R0gGSLu1j2GiwiAq+o594LK/8g/dkhxAP3J1V3ltukx2Dtuq+DitJMWtOdggeoh0KKOOeWQBAbfVoNOMFtleUXp8aEaeOse0lkvaTdHnLrLdI+kbxfKFScjtqdTENAABkIpkFANRWj36ZZ11ELJt4u95K0jclHR8R95emv1+pK/JZPYkMAAA8iWQWAFBLljQ0gN+ZtT1TKZE9KyLOL00/WtLhkg6NTX07b5e0uFR8UTENAABkouM9AKCeejD4U7vc2Klf82mSVkbEJ0vTD5N0oqRXR8TDpSIXSDrS9mzbu0vaQ9LPqt4VAAA0UXbLbDEq4wpJt0fE4fkhAQAwZR0k6Y2SfmX7qmLayZI+K2m2pIuK+3gvi4h3RMS1ts+VdJ1S9+NjI2Jj/8PGVELdCQCqUUU34+MkrZRUwTBxAAB0rkcDQI0rIn6i1MO51XcnKPNRSR/tWVCoI+pOAFCBrG7GthdJ+iNJX64mHAAAOjeA35kFslB3AoDq5LbMflrpHqGt80MBAKBzFsknaunTou4EAJXoumXW9uGS7oqIK9osd4ztFbZXrL3nvm43BwDA5mx5qPoH0Ctd1Z3Wre9TdABQPzndjA+S9Grbt0g6R9KLbX+tdaGIODUilkXEsh22nZexOQAAgFqbfN1pwfb9jhEAaqPrZDYiToqIRRGxRNKRkn4UEW+oLDIAANrgnlnUCXUnAKhWFaMZAwAwEENknwAANFYlyWxEXCzp4irWBQBAJxgACnVG3QkA8tEyCwCorX7/ziwAAJg6sn5nFgAAAACAQehvy+yMmfL2O3ddPG6+NjuE2PB43gp+fXV2DKs/9fWs8js8c4fsGGYf87as8jF7TnYMnrtV3gpyP0tJGsq7nhMjI/kxbHwir/zMWfkxAHXEgE1AeyMb89dx/7q8EL5zZnYIj/7gp1nlZ++zR3YMQ6/Jqzt54TOzY9DQ7Px1ANMI3YwBALVFN2MAAJqLZBYAUFvksgAANBf3zAIAAAAAaoeWWQBALaWf5qFpFgCApiKZBQDUkyXTvwgAgMYimQUA1JRpmQUAoMFIZgEA9TVEMgsAQFPRQQsAAAAAUDu0zAIA6otuxgAANBbJLACgnsxoxgAANBnJLACgvrhnFgCAxiKZBQDUlOlmDABAgzEAFAAAAACgdmiZBQDUki2ZbsYAADQWySwAoL7oZgwAQGORzAIAaouWWQAAmqvvyWyMjHRfeKt5+QHcszar+CPf+l52CP/wqzuyyr92zYPZMbzoTY/kreCR/Bi09bZ55Z94PDuEyF3B0HB2DJq7TVZxz5iZt/2Zs/PKm1vvMUC0zAIT27ghexUja27OKr/uK9/JjuFDK1ZllT/qp7dlx3DAc5dllfeOS7JjiBmz8mLgOxPTDLVQAAAAAEDt0M0YAFBPNr8zCwBAg5HMAgBqiy5zAAA0F8ksAKC+aJkFAKCxsu6ZtT3f9nm2r7e90vbzqwoMAABguqHuBADVyW2Z/Yyk/4qIP7M9S9LcCmICAKA9i9GMUUfUnQCgIl0ns7bnSXqRpKMlKSIel5T/WykAAHSIX4ZCnVB3AoBq5VQDdpe0VtJXbP/C9pdtb1lRXAAAtGdX/wB6h7oTAFQoJ5mdIWl/SV+IiP0kPSTpfa0L2T7G9grbK9auvydjcwAAlNjyUPUPoIcmX3dat77fMQJAbeQks6slrY6Iy4vX5yl9QW8mIk6NiGURsWyH7bfN2BwAAECtTb7utGD7vgYIAHXSdTIbEXdKWmV7z2LSoZKuqyQqAAA6QTdj1Ah1JwCoVu5oxu+RdFYxGt9Nkt6cHxIAAB2iWzDqh7oTAFQkK5mNiKskLasmFAAAOpcaUklmUS/UnQCgOrktswAADA4tswAANBa/0AcAAAAAqJ3+tsyOjEiPPdJ1cc/dJjuEuP3mrPJDswbfmL33M+bnr2TBTnnlh4bzY8hdx8jG/BieyPyt+tlzskPwzNl5K5i5xWDL080TA8OATUBbFfyPeIu5WeW33m277BgOvmFdVvldd6ng53y3mpdX3rQhAVUbfGYGAECXuGcWAIDmIpkFANSTxT2zAAA0GMksAKC2aJkFAKC56LwPAAAAAKgdWmYBAPVFN2MAABqLZBYAUE9mNGMAAJqMbsYAgNrykCt/TLg9e7HtH9u+zva1to8rpm9n+yLbNxR/ty2m2/Znbd9o+2rb+/dhtwAA0AgkswAAdG6DpBMiYqmkAyUda3uppPdJ+mFE7CHph8VrSXqFpD2KxzGSvtD/kAEAmJ5IZgEA9TXa1bjKxwQiYk1EXFk8f0DSSkkLJS2XdGax2JmSjiieL5f01UgukzTf9s492BMAADQO98wCAOppwL8za3uJpP0kXS5px4hYU8y6U9KOxfOFklaViq0upq0RAADIQjILAKitHv3O7ALbK0qvT42IU1u2u5Wkb0o6PiLuL8cREWE7ehEYAADYhGQWAFBT7lXL7LqIWDbuVu2ZSonsWRFxfjH5d7Z3jog1RTfiu4rpt0taXCq+qJgGAAAycc8sAAAdcmqCPU3Syoj4ZGnWBZKOKp4fJek/StPfVIxqfKCk+0rdkQEAQAZaZgEA9dX/35k9SNIbJf3K9lXFtJMlfVzSubbfKulWSa8p5n1X0isl3SjpYUlv7mu0AABMYySzAIB6svqezEbET4otj+XQMZYPScf2NCgAABqKZBYAUF/9b5kFAABTRH+T2aEhec6Wfd1kq9h6Xlb52X98eHYMpzy+Iav8nLcd1X6hNoYW75m9jlzx2MN5KxjZmB/E0HD+OnLNmJVXftbsrOKetUXe9s2t9xgUS0Mcf8CEhvOret5p96zys499V3YMrzn4irwV7Pr07BiGnjXuuHCdyT3fq2cjuAO1RS0AAAAAAFA7dDMGANQXrRQAADQWySwAoJ4GMAAUAACYOkhmAQD1RTILAEBjZd0za/u9tq+1fY3ts21njiQDAECnigGgqn4APUTdCQCq0/VZ2/ZCSX8paVlE7C1pWNKRVQUGAAAwnVB3AoBq5XYzniFpju0nJM2VdEd+SAAAdIhuxqgf6k4AUJGuW2Yj4nZJp0i6TdIaSfdFxIVVBQYAwIRGB4Cq+gH0CHUnAKhWTjfjbSUtl7S7pF0kbWn7DWMsd4ztFbZXrL37nu4jBQCgFcksaqSrutO69f0OEwBqI2eki5dIujki1kbEE5LOl/SC1oUi4tSIWBYRy3bYbtuMzQEAUMYAUKidydedFmzf9yABoC5yztq3STrQ9lzblnSopJXVhAUAADDtUHcCgAp1PQBURFxu+zxJV0raIOkXkk6tKjAAANqiWzBqhLoTAFQrazTjiPiQpA9VFAsAAJ0bHQAKqBHqTgBQndyf5gEAYHBIZgEAaCxGugAAAAAA1E5/W2Yff0wjq2/ouvjQ7s/Jj2HLeXnld9k1O4Q5J7w3bwVDw9kxxMYNeSt4sIKfWRqemVXcW26TH8PMLfLKu4LrQTGSV/7Rh/I2n1leG5/IKw90ybLM6MPAhFxFnWFu3vl2aN+Ds2PQsw/MKz+jgirvrLl55YfpEAlUjf8qAEB90c0YAIDGIpkFANQTA0ABANBoJLMAgPoimQUAoLG42QgAAAAAUDu0zAIAasoSA0ABANBYJLMAgPqimzEAAI1FMgsAqCcGgAIAoNFIZgEA9UUyCwBAY3GzEQAAAACgdmiZBQDUFANAAQDQZCSzAID6opsxAACNRTILAKgnBoACAKDRSGYBADVFN2MAAJqMWgAAAAAAoHZomQUA1BfdjAEAaCySWQBAfZHMAgDQWP1NZmdtoaHFe3Zffvac7BC8YJe8FeSWr8J967JX4cz7zGKrbbNjyOYp0Eu+ivv1PJxXPiKv/MhIXnmRTGBAGAAK6AsP51UXY2jL/CBmzc0rX8F3hfm+AaacKZANAAAAAAAwOXQzBgDUFKMZAwDQZCSzAID6otsfAACNRTILAKgvklkAABqrbf8s26fbvsv2NaVp29m+yPYNxd8pMBoQAKBRrDQQXNUPIBN1JwDoj07O2mdIOqxl2vsk/TAi9pD0w+I1AAAAqDsBQF+0TWYj4hJJd7dMXi7pzOL5mZKOqDYsAADasTTUgweQiboTAPRHt/fM7hgRa4rnd0racbwFbR8j6RhJ2nXhzl1uDgCAMdAtGPXRXd1p8eI+hAYA9ZRdC4iIkBQTzD81IpZFxLIdttsud3MAAGxiV/8AemxSdacF2/cxMgCol25bZn9ne+eIWGN7Z0l3VRkUAABtmd+ZRa1QdwKAinVbC7hA0lHF86Mk/Uc14QAAAExL1J0AoGKd/DTP2ZIulbSn7dW23yrp45JeavsGSS8pXgMA0F90M8YURN0JAPqjbTfjiHjdOLMOrTgWAAAmhwGgMAVRdwKA/uj2nlkAAAaPllQAABqLS9oAgHoaHQCq6kfbzfp023fZvqY07bm2L7N9le0Vtg8optv2Z23faPtq2/v3cI8AANAo/W2ZtaWZW3Rf/rFHqoulS547L38lIxuyiscD92SHECMjWeU9XMGhM2NWXvnIew+VrKOKVqHc/ZBrw+N55WkZQ/OcIelzkr5amvYJSR+JiO/ZfmXx+hBJr5C0R/H4fUlfKP4CjeEqzhOcawCMgZZZAEB9DWAAqIi4RNLdrZMlbVM8nyfpjuL5cklfjeQySfOLn2UBAACZuGcWAFBfU2cAqOMlfd/2KUoXil9QTF8oaVVpudXFtDV9jQ4AgGloytQCAACYFFsa6sFDWlDc9zr6OKaDaN4p6b0RsVjSeyWd1su3DgAAaJkFAKDVuohYNskyR0k6rnj+b5K+XDy/XdLi0nKLimkAACATLbMAgPryUPWP7twh6eDi+Ysl3VA8v0DSm4pRjQ+UdF9E0MUYAIAK0DILAKivAYxwavtspZGKF9heLelDkt4u6TO2Z0h6VNJo1+TvSnqlpBslPSzpzX0PGACAaYpkFgBQUx7IAFAR8bpxZv0/Yywbko7tbUQAADQTySwAoJ6s0QGbAABAA3HPLAAAAACgdmiZBQDU1wDumQUAAFMDySwAoL4GcM8sAACYGkhmAQD1ZHPPLAAADUYyCwCoL1pmAQBoLGoBAAAAAIDaoWUWAFBfDAAFAEBjkcwCAGrKdDMGAKDB+pvM2tLwcPflH300P4QZM7PXMXDzFmSvwltslbeCnM+xKo89kr+OGMkrP2NWfgxUxoHuWAwABQBAg9EyCwCoLy4GAQDQWNQCAAAAAAC1Q8ssAKC+GAAKAIDGIpkFANSUpSE6GAEA0FRtawG2T7d9l+1rStP+0fb1tq+2/S3b83saJQAArazUMlv1A8hE3QkA+qOTS9pnSDqsZdpFkvaOiH0k/UbSSRXHBQAAUFdniLoTAPRc22Q2Ii6RdHfLtAsjYkPx8jJJi3oQGwAAE/NQ9Q8gE3UnAOiPKs7ab5H0vfFm2j7G9grbK9auv3u8xQAAmKQedDGmmzH6o/O607r1fQwLAOolK5m1/X5JGySdNd4yEXFqRCyLiGU7bL9dzuYAANjc0FD1D6CHJl13WrB9/4IDgJrpejRj20dLOlzSoRERlUUEAEAnRgeAAmqCuhMAVKurZNb2YZJOlHRwRDxcbUgAAADTC3UnAKhe22TW9tmSDpG0wPZqSR9SGoFvtqSLnK6KXxYR7+hhnAAAtDADNmFKou4EAP3RNpmNiNeNMfm0HsQCAMDk0M0YUxB1JwDoj67vmQUAYOBomQUAoLFIZgEA9WRLQ7TMAgDQVP1NZoeG5S3nd128kmH/hjPf8sYN7ZdpZyRvHd6mgmH6Z83NK7/h8fwYctcRI9khRObnOSWq0ZnHkxhQEwAAADVEyywAoL7oZgwAQGORzAIA6osBoAAAaCySWQBATfHTPAAANBnJLACgtkzLLAAAjcUlbQAAAABA7dAyCwCoJ4tuxgAANBjJLACgprhnFgCAJiOZBQDU1xD3zAIA0FQkswCA+qJlFgCAxqIWAAAAAACoHVpmAQD1ZEn8NA8AAI1FMgsAqCkGgAIAoMlIZgEA9UXLLAAAjcUlbQAAAABA7dAyCwCoL7oZAwDQWCSzAIB6svmdWQAAGqzPyWwoNm7ovvgjD+SHMHdeXvmNG7NDiEcfyirvWXOyY9DjD+eVf+yR/BhmzMwrHyP5MUwFIxn/E5K04Ym88jn/k5IUkVceyEHLLAAAjUXLLACgvhgACgCAxuKSNgAAAACgdmiZBQDUFL8zCwBAk7WtBdg+3fZdtq8ZY94JtsP2gt6EBwDABOzqH0Am6k4A0B+dXNI+Q9JhrRNtL5b0Mkm3VRwTAADtWalltuoHkO8MUXcCgJ5re9aOiEsk3T3GrE9JOlESQ5kCAAbA0tBQ9Q8gE3UnAOiPrs7atpdLuj0ifllxPAAAANMOdScAqN6kk1nbcyWdLOmDHS5/jO0VtlesXbd+spsDAGBctit/dLDNMe+HtP0e29fbvtb2J0rTT7J9o+1f2355D3YDpjjqTgDQG920zD5D0u6Sfmn7FkmLJF1pe6exFo6IUyNiWUQs22HB9t1HCgBAq8HcM3uGWu6HtP2HkpZL2jci9pJ0SjF9qaQjJe1VlPm87eEK9wDqgboTAPTApH+aJyJ+Jelpo6+LL+VlEbGuwrgAAJiYNZDRhyPiEttLWia/U9LHI+KxYpm7iunLJZ1TTL/Z9o2SDpB0ab/ixeBRdwKA3ujkp3nOVjrp7ml7te239j4sAADaca9aZheMdvEsHsd0EMwzJb3Q9uW2/9v284rpCyWtKi23upiGaYy6EwD0R9uW2Yh4XZv5SyqLBgCAwVsXEcsmWWaGpO0kHSjpeZLOtf30yiNDLVB3AoD+mHQ3YwAApowBdDMex2pJ50dESPqZ7RFJCyTdLmlxablFxTQAAJCJH9QDANTX1Pmd2X+X9IeSZPuZkmZJWifpAklH2p5te3dJe0j6Wf4bBwAAtMwCAOrJHkjLbHE/5CFK99aulvQhSadLOr34uZ7HJR1VtNJea/tcSddJ2iDp2IjY2PegAQCYhpzOtX3amL1W0q0TLLJA6Ur2IBHD1Ihh0Nsnhs5j2C0iduhXMMCoZfvsFT+/4OuVr3do9+de0cU9s0BPUHeqTQyD3j4x1CsG6k4V6WvLbLsPzfaKQVcgiGFqxDDo7RPD1IoBGFdnvwsL1BZ1p3rEMOjtEwMxNBXdjAEA9TV1BoACAAB9RjILAKgxklkAAJpqqiWzpw46ABHDqEHHMOjtS8QwairEAIxhMANAAVPMVPiOJobBb18ihlHE0CB9HQAKAICqLNtn7/j5f55b+XqHdt2LAaAAAKiBqdYyCwBA52iZBQCgsUhmAQA1RjILAEBTTZnfNLB9mO1f277R9vsGsP3Ftn9s+zrb19o+rt8xFHEM2/6F7e8MaPvzbZ9n+3rbK20/fwAxvLf4DK6xfbbtLfqwzdNt32X7mtK07WxfZPuG4u+2A4jhH4vP4mrb37I9v98xlOadYDtsL+hlDEDHrNQyW/UDqAHqTZvFQt2JuhN1p4aaEsms7WFJ/yLpFZKWSnqd7aV9DmODpBMiYqmkAyUdO4AYJOk4SSsHsN1Rn5H0XxHxLEn79jsW2wsl/aWkZRGxt6RhSUf2YdNnSDqsZdr7JP0wIvaQ9MPidb9juEjS3hGxj6TfSDppADHI9mJJL5N0W4+3D0yOe/AApjjqTU9B3Ym6Uxl1pwaZEsmspAMk3RgRN0XE45LOkbS8nwFExJqIuLJ4/oDSF9HCfsZge5GkP5L05X5ut7T9eZJeJOk0SYqIxyPi3gGEMkPSHNszJM2VdEevNxgRl0i6u2XycklnFs/PlHREv2OIiAsjYkPx8jJJi/odQ+FTkk6UxIhxADB41JsK1J2eRN1p0zTqTg0yVZLZhZJWlV6v1gC+EEfZXiJpP0mX93nTn1Y66Ef6vN1Ru0taK+krRXedL9vesp8BRMTtkk5Ruoq1RtJ9EXFhP2Mo2TEi1hTP75S044DiGPUWSd/r90ZtL5d0e0T8st/bBtqjaRaNRL1pk0+LuhN1p/FRd5rmpkoyO2XY3krSNyUdHxH393G7h0u6KyKu6Nc2xzBD0v6SvhAR+0l6SL3vHrKZ4t6K5Uonh10kbWn7Df2MYSyRfsNqYFfWbL9fqUvXWX3e7lxJJ0v6YD+3C3SmB/fLcs8sMCmDqjcV26buJOpO46Hu1AxTJZm9XdLi0utFxbS+sj1T6Qv5rIg4v8+bP0jSq23fotRd6MW2v9bnGFZLWh0Ro1dWz1P6gu6nl0i6OSLWRsQTks6X9II+xzDqd7Z3lqTi712DCML20ZIOl/T66P8PQz9D6eT4y+LYXCTpSts79TkOYGwks2gm6k0JdaeEulML6k7NMVWS2Z9L2sP27rZnKd20fkE/A7BtpfsdVkbEJ/u5bUmKiJMiYlFELFF6/z+KiL5eVYuIOyWtsr1nMelQSdf1MwalLjIH2p5bfCaHanCDOlwg6aji+VGS/qPfAdg+TKn71Ksj4uF+bz8ifhURT4uIJcWxuVrS/sWxAkwBdDNGIzW+3iRRdyqh7lRC3alZpkQyW9yk/W5J31f65zs3Iq7tcxgHSXqj0lW9q4rHK/scw1TwHkln2b5a0nMlfayfGy+ubJ4n6UpJv1I6Rk/t9XZtny3pUkl72l5t+62SPi7ppbZvULrq+fEBxPA5SVtLuqg4Jr84gBgAAFMI9aYph7oTdSfqTgPi/re8AwCQb9m+z4mfX1j9Rf+hnZ5xRUQsq3zFAACgUjMGHQAAAN2jWzAAAE1FMgsAqCcGbAIAoNGmxD2zAAAAAABMBi2zAID6omUWAIDGIpkFANQYySwAAE1FMgsAqC3TMgsAQGORzAIA6otkFgCAxmIAKAAAAABA7dAyCwCoKYt7ZgEAaC6SWQBAfdHNGACAxiKZBQDUk0UyCwBAg5HMAgBqjGQWAICmYgAoAAAAAEDt0DILAKgvuhkDANBYJLMAgPoilwUAoLFIZgEANcVP8wAA0GQkswCA+qKbMQAAjcUAUAAAAACA2qFlFgBQT/zOLAAAjUYyCwCoMZJZAACaimQWAFBftMwCANBY3DMLAAAAAKgdWmYBADVlWmYBAGgwklkAQI2RzAIA0FQkswCA+qJlFgCAxnJEDDoGAAAmzfZ/SVrQg1Wvi4jDerBeAABQIZJZAAAAAEDtMJoxAAAAAKB2SGYBAAAAALVDMgsAAAAAqB2SWQAAAABA7ZDMAgAAAABq5/8CDvKffcUHYssAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "Err_R5=error(xdata5, poptR5[0], poptR5[1],poptR5[2], poptR5[3], poptR5[4], recorteR5.ravel(), inc=1)\n", + "poptR5E, pcovR5E= curve_fit(gauss2d, xdata5, recorteR5.ravel(), p0=[3,3,1,1,1], sigma=Err_R5)\n", + "estrellaR5E=gauss2d(xdata5, poptR5E[0], poptR5E[1],poptR5E[2], poptR5E[3], poptR5E[4])\n", + "FWHMR5E=FWHMR_I.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptR5E[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 5 fotografÃa (Banda Rojo)\")\n", + "plt.imshow(recorteR5, plt.get_cmap('Reds'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 5 a partir de la gaussiana con incertidumbre (Banda Rojo)\")\n", + "plt.imshow(estrellaR5E.reshape(15, 15), plt.get_cmap('Reds'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 6 con incertidumbre (Banda Rojo)" + ] + }, + { + "cell_type": "code", + "execution_count": 834, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA60AAAFSCAYAAAAZ/jk6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA0ZElEQVR4nO3de7wdVX338e/3JOGaSAhBCkkkqGAFL+ATEaTewAsgiq9eLNa7VGpFBR8sFWwrtvXy+FBFq1KjoKUiSAEtj0WBKqhUAcNFECI1cktCEMI1cg/5PX+stWHO5uxz9jnZs/faZz7vvPYrZ8/MXmvN7Nkz6zdrzRpHhAAAAAAAKNHIoAsAAAAAAEAnBK0AAAAAgGIRtAIAAAAAikXQCgAAAAAoFkErAAAAAKBYBK0AAAAAgGLNHHQBAAAYzyLPjIfU28ezrdWG8yJi/54mCgAAakHQCgAo2kMK/ZG27GmaX9a6+T1NEAAA1IagFQBQNIt7WQAAaDKCVgBA8Ubs3ibY297GAACgRgStAICi0dIKAECzEbQCAIo30uOGVlpaAQAYHly8BgAAAAAUi5ZWAEDxuMIKAEBzEbQCAIpmufcDMQEAgKFB0AoAKB4trQAANBdBKwCgaFYNAzEBAIChwcVrAAAAAECxaGkFABSPK6wAADQXQSsAoGyWzEBMAAA0FkErAKBoFi2tAAA0GUErAKB4DMQEAEBzcfEaAAAAAFAsWloBAMXjCisAAM1F0AoAKFp6Tiv9gwEAaCqCVgBA8WhpBQCguagHTILtxbbD9sz8/iLbf96HfG37a7bvtn1Z3fltLNvPsn2V7XW2P5Cnfcb2CVNM75O2j+xlGSeR99dt/+MA8r3W9su7WO55tn9af4kAYDgM6lxdGtsvsX39RqYxpW3X/h0Ms27Px8PI9vdsv72AcjzN9u9sz+gw/zjb36gp79qPD7b/2/YedeYxTt432X5ln/Mc9/tsW/b9tv9PN+kOZdCav4AH8wZpvb7QxefC9jP7UcZu2D7C9o2277e93PYuHRb9A0mvkrQwIvbsIt1Br+fRki6MiDkR8XnbL5H0Qkl/NdmEbG8r6W2Svpzfv9z2hsr3vtr2x3pa+h5p209vywHw7G4+GxG7RcRFXSx3taR7bL9uY8sLlCp1D+7tC/Vr4Ll6oNq3W0T8JCKeNcgyTQfdno+HUUQcEBH/2u982wOpiLglImZHxGP9Lkvdcv1sXURcmd8fZ/vRyjFxue0/GnAxn6Ry4alVzptsf7ibz07y+/yKpDfbfupECw5l0Jq9Lm+Q1ut9G5tgP68I5qs6h0p6raTZkg6StLbD4jtKuiki7u9T8TrqchvtKOnayvudJP1pRDw6hSzfIenciHiwMu3W1veuFNAfavsNU0i7H16Xy7m7pD0kHVNDHqdK+osa0gWKMdLjF/qmSefqgZjK9pgOLaAYPsO+302x/O+R9G9t075VqcceKekbtrfb2PLVZG4u5x9L+lvbr+pl4hHxkKTvKTVQjWvanbttP9P2j2zfa3ut7W/l6T/Oi/wiXzH409xqt8r2X9u+TdLXbI/Y/rDt39i+0/YZtud1ke8zbP8wf2at7VNtz+2w7Iikj0r6YERcF8lvIuKuMZY9VNJXJe2dy/2xPP3dtlfYvsv2ObZ36LSe4y2f573a9vV5m30pb78/z/Pe4dSt4bO275R03HjravuHkl4h6Qs5/10k7SvpvXn+1ra/a/sOp+7O37W9cJxNe4CkH3WaGRE3SvqppF0r6/M52ytt32f7cqeW3ta84/J3eopT9+VrbS+pzN/D9hV53rckbVaZN9myV8t5m6TzlILXVnqvz/nf49Q95dmVeY9fhbS9qe0TbN+aXyfY3rSS/EWS9mubBkwrI3JPXxOxvcj2hbavy7/TIyrz3m/7V3n6pyvTj8nH2ettv6amTTEtTLdzdV5+T9s/y8f0Nba/YHuTDsu2WjEOy8f1NbY/1G1a+bOH2/61pF+Pt90qn7kpb8OrJd3vMSrgtl+V9+17nVrF3Tb/XU4tQ3fbPs/2jh02dXu678yfW2f7BtsdL7TanmH7n/L3c6Pt93l0d++OaTnVWS5uS+/xFmjbB+bf9DqnnlofytPn53P6PU71pJ/k77/9fNzN9/Ie27/Oy3zRTqPITWbfy8vvZvuCXJ7f2j42T+9YJ6j8Vo6yfXsu4zvHyePxrrGtbWf7+Pz93mj7gMqy85xuVbs1z/9OZd5BTreF3WP7p7afV5nXvt+dJulpkv5f3leP9pO79O/kdHxYZ/sCSfMr6Y3ar8f4jo6z/e+2v5E/f43tXZyOz7c71Q9f3bYpnmH7Mqd64384H0sq5TrU9i2Sfpind/U7yPvGvhq/HnuepHWSnpE/s7XHqWvm7+wfnOrm62yfb7u6fd5q++a8n32krTxdH6PGKOcypQap3XNaI7b/Jud1u1O9equ27db6Pndwij3ucjpHvrst+YuULgyOa9oFrZL+QdL5kraWtFDSP0tSRLw0z39+vrrxrfz+9yTNU2odPEzS+yW9QdLLJO0g6W5JX+wiX0v6ZP7MsyUtknRch2UX5tdz8o/nRtsfcz5AVkXESUpXaX6Wy/1R2/vmvN4oaXtJN0s6vdN6jrd83tHPVGoB3EbS9ZJe3FaMF0m6QdJ2kj4+3rpGxL6SfiLpfTn//2lLa0TS15S299MkPShpvO5iz81lGpPtnSXtI+mSyuSfK/2o5kn6pqR/t71ZZf7r8/rPlXROK//8w/2O0hWxeZL+XVK1y8Zky14t50KlAHxFfr+LpNOUrrBtK+lcpQP4WAePj0jaK6/T8yXtKelvWjMjYrWkRyXRDQzT0oC6B6+XdFRE7Kr0+zvc9q62XyHpYKVj7G6Sjpck27tKOkTSbpL2l/Qld3E/T4NNq3N19pikDypVsPeWtJ/yBdtxvELSzpJeLemv/USXyW7SeoPS+XnXcbZbuzcpVQ7nRsT66oxcHzhb6fwyX9JvlM6vrfkHSzpW0h8qnbd+onQe68btSq3UT5H0Tkmftf2CDsu+W+l8ubukF+T1nGpa7U6S9BcRMUfSc5SDEElHSVqltF7bKa1njPH5br6Xg5RuiXqeUr2rdQGr633P9hxJ/yXp+3n5Z0r6QZ49bp1A6beylaQFSr0Evmh767HyGcOLlOpc8yV9WtJJ9uNDt/+bpC2UjnFPlfTZXNY9JJ2s1ONrG6Xbuc7x6Avp1f3uTZJu0RO9MD6tJ/umpMtzOf5B0mTvu31dLu/Wkq5UajQYUdomf5/LWPU2Se9SqiOvl/T5tvkvU/rOXjPJ38HOkjZExKqxZjp5raRNJF2XJ3dT1/wzpX3/qfmzrYsvu0o6UdJblfabbZSOYS1TOUa1yrqX0m9mRZ70jvx6haSnK/VE6VQnPl3p97WDUovtJ3Js0rJcaV8eX0QM3UvSTZJ+J+meyuvded4pkpYq3f/Z/rmQ9MzK+5dLekTSZpVpyyXtV3m/vVJAMFPS4pzGzDzvIkl/3qGMb5B0ZYd5L87p/KdS4LRY0v+01mGM5d8h6eLK+5MkfbryfnYu4+IO69lxeaUf6s8q8yxpZWu9ct63TPB9jFrX9u0i6euS/rHDZ3eXdPc4aT8q6ffbvrMN+Tu/L6/r2ZI2GSeNu5VO5FI6QfxXZd6ukh7Mf79U0q2SXJn/040o+01K++m6XM4fKB2wJelvJZ1RWXZE0mpJL6989pX5799IOrCy7GuUuotX81ot6aX9/B3y4tWv10LPiOM3n9fTl6RlkymDpP9QGlvgjNZvs23+MZKOqbw/T9Leg952g3ypYefqMT5/pKRvd5jXKmP1/PZpSSd1k1b+7L5dbLdVbd/Hu8Yp79skXVJ5b6WKZqs+8D1Jh1bmj0h6QNKO46zfzA55fUfSER3m/VApsGy9f2W3aamtvtS+XZSCpb+Q9JS2Zf5e6Tf+zDHSv0lj/ObH+V7+oPL+DEkfnsK+96Zx5nWsE+Tv/MHqtlIK8vfqkNZFGl3fW1GZt0Ven99T+n1tkLT1GGmcKOkf2qZdL+llnfa79m1a3V+UArX1kraszP+mpG+MtV+3p6dUz7ugMu91SsehGfn9nJzX3Mo2+FRl+V2VjjczKuV6emX+ZH4H+0i6rW3acTn9eyTdrxRIHj3O73J3Veqaubx/U3n/Xknfz3//naTTK/O2zHl1tf+2zWut+z15nwqli7TO838g6b2V5Z+lMY7BShdnHpM0p7LsJyV9vfJ+Z0mPddoGrdcwt7S+ISLmVl5fydOPVjrQXubUdetdE6RzR6T+1C07Svp2bjq/R+nE+JjSlbeObG9n+3Sn7ib3SfqGKt0Z2rTuz/x0RNwTETcpXfU5cIKytuyg1FoqSYqI30m6U+kK0mSX30EpSG3NC6WTVNXK6ptJrusotrew/eXcneA+ST+WNHecFom7lQ4wVbfm7/wpShWJByU9PpCA7Q/lbhv35u9wq7by3Vb5+wFJm+UuDDtIWp23Qcvj220KZZfSfjpH6SD7+5VytH8nG5S281jf4ahl8987tC0zR+nAAkxLg7yn1fZipXvSL5W0i6SX2L7UqfvaC/NiCzT6WLlKnY/JTdKYc7VTF8TvOg28d5+kT4yTdkt1n3n82N5lWis1eeN9Zqz6QHX5HSV9rrLN71L6Difcz20fYPuS3D3wHqVt2GnbjCpHe5knmVa7P8rL35x/v3vn6f9XqQXpfKcux2MOONPl99Jex5idPzuZfW+RUnA6lonqBHfG6Fb0x8vQhcfLHhEP5D9n5/LcFRF3j/GZHSUd1dov8neyqK1Mk9lXd1AK0qrjuNzcaeEOflv5+0FJa+OJQYFav+vqNmn/Hc7S6O9mqr+DseqwUmq0mBsRWyp1C36bczf3LuuaY+5jevJv+H6l+r5y2lM5Rs3P6R+lVJedVcmrfT+cqScfg3dQ2nfWtS1b3V5zJN07QTmGOmgdU0TcFhHvjogdlK6mfcnjj0IYbe9XSjqg7SS7WaQumOP5RE7ruTmYeovU8cap65WufFTzbi/HeG5V+tFIkmxvqdQFoFMZx1t+jSpdB3I3kPb7NNvLNpl1bXeU0tWYF+XPtro0dfr81UqVxDFFxL1KV+Bel8v/EqXK0BuVrgjOVfohdFO+NZIWVLrCSOmK31TLXi3nj5RanI/Pk9q/Eysd5Mf6Dkctm8t0a+WzC5S6h2zUow2AUrnHXYNz9+D5tpdVXoeNnbdnSzpL0pERcZ/SSXmeUve8v5J0RtsxA12YpufqEyX9StLOOe1jx0m7ZVHl7+qxvZu0JlNv6OYza6rlqZyXWlYqtYBWt/nmETHuY9dyN9GzlM5/2+Xz8rnqvG1G1UvayjRRWvcrtRC2lv+9asIR8fOIOFipW+V3lFpCFRHrIuKoiHi60i1E/9v2fmOUbSrfcctk9r2VSl0uxzJunaAmKyXN89j34K6U9PG2/WKLiKh2mW3f7ybaD7fOddWWal2s/TueodRNd2O0/w4f1egB16rlnczvYEUqojte2MkXw76nXI/VRtQ19eTf8BZK9f2WKe2/EfFYRHxG0kN6ojvxWPvheo2+YNBabp5Tl/fqstVj9bMl/WKicky7oNX2n/iJG5bvVtrRNuT3v1Xng0DLv0j6uPNN1ba3deq/PpE5St0P7s07Z8fHu+SrV9+SdLTtObm8h0n6bhf5SKnv/Dtt754P4J+QdGne8aUnr+d4y/+npOfafkNubTxcqStIT9a1w2cfVHpMyzylQS7Gc67SvQRjyhXKQ/TEaMVzlH40d0iaafvvlO576cbP8mc/YHuW7T9UuldkqmVvd4KkV9l+vtKJ8rW297M9S+kg9bBSd+R2p0n6m7wvzlfq/lF9XtnLJP0wIh6eZHmAoVHDQExrI2JJ5bW0Pc/82zxL0qkRcXaevErS2ZFcpnR+ma90Aq5WfBaq84XExpum5+o5Sret/M7270v6yy7K87e5ZWU3pXvUWveiTiWtbrbbeP5T0m62/zDXBz6g0fWBf5F0TC6rbG9l+0+6SHcTSZsqnZfXOw3u0z4QTtUZko6wvSAHSX89ibR+kddhd6exLI5rzbC9ie03294q0tMM7lPe55wGEnpmDtTvVWq136Anm8r3Uv1st3Wn70ra3vaRTgMvzbH9ojxvojpBz0XEGqXA6ktOAwXNst0Kpr4i6T22X+RkS9uvbQtS2nXcVyPiZknLJH0sf2d/oCcCOil10d8s5zFL6X7ejR2I8i1OYxZsodRV/Mzo/LiWrn8HEfGI0r3J49VjFyqNg1Ctx061rnmmpINs/4HTGCl/r9Gx3sbsv5L0KaXj4WZK++EHnQbNmq0UW3yrrZVfEbFSqW77SdubOQ3SdaieXI/93kSZD3PQ2hp1rPX6dp7+QkmX2v6d0iA7R0TEDXnecZL+1alJ/40d0v1c/tz5ttcpDfDzog7LVn1MacCAe5UO/GePv7jep3TwulUpWPqm0o3sE4qI/1K6J/Ispasqz1AK3FqOU2U9x1s+ItZK+hOle2nuVOrLv0wpgOrVuladIGlzpStYlygNMjCeUyQdaHvzyrQdWt+7UheDeZLenOedl9P8nzzvIXXZLSUfXP5Q6b6OuyT9qUav22TL3p7+HXl9/i4irle6yvrPOb3XKQ1K8MgYH/1Hpe/kaknXSLoiT2t5s9JBFJi2+j0QU668niRpeb7C3PIdpYEnWgOqbaL0Gz5H0iG5grmT0j06l/V0IwynJp2rP6Q0QMo6pYp8p8GQqn6k1BrzA0nHR8T5G5HWcZp4u3VUqQ98Sqk+sLOk/67M/7ak/yPpdKeuhb9UGjBponTXKQXAZyhdoPgzpe+uk68oDdJ1tdIgOucqXVB+bKK0Ig3++PdKgcKvJY0aSVhpgJqbcvnfoyfqDjvnz/xO6Xv+UkRcOEbZpvK9tHS97+X1fJVS3eC2vC6vyLMnqhPU5a1KLZC/UrpP9shc1mVKg2d9Qek7WaFUjxrPJ5UC73tcGTW74s+Ufs93KQVtp7Rm5B5271V6ssZqpZbXMQc6moR/U+oNd5vSUyM+0GnBKfwOvqy07ar+tFKP/bnS7+xjed4JmmJdMyKuVWp8+qZSff9ujd42G7P/Smm/vVvp+z5Zabv9WNKNSvXt93f43JuU7nO9VdK3JX00xybKAfCBqtzm10nrZlpAUhrCWmkHf3OHA3bf2f6EpNsj4oRBl6VfnIZWf0tE/HiC5Z4n6csRsfd4ywHD7GkzZsZfbz63p2m+7/47L4+IJZ3m56v7P1GqFLZaXI5VqtierDQ4xiOSPhQRrccgfERpBMr1St2JJ7xyjGZyuk/6Rkmz2lsmMFpuTf2XiNhxwoWBAtn+b6Wnalw56LL0g+2nKzUezYoJAk3b75e0KCKOnijdoX7IL3rD6XmClyp1R/grpf7tl4z7oT6KiGMHXYZ+sr2t0v0ZN020bERcrTRsOTBtWf3vFhQRF6vzvT5v6fCZjys9FgzAFOWeVa9Qam3dTqml7dvjfggoWETsM/FS08pzJN08UcAqSRHxz90mOszdg9E7eyuNUtfqpvqGiHhw/I+gDk4jkf5a0j9HxC2DLg9QigE8pxXAYFipq+TdSt2DlyvdtwmgcLb/t9LjzMYcgXuj0qZ7MACgZItnzIqPbDG3p2ke9ru143YPBgAA5aB7MACgeLSOAgDQXHQPBgAAAAAUq5aW1vnzto7FC3eoI+knuOZ4O8Z6PFePrX+0/jxGZtSb/oya05ekDZ0elTVkRmru2DBS72/ipltWau2dd9HehYFgx8N0Nn/+NrH4aU8bdDEA9NjlV161NiK2HXQ5poNaatGLF+6gy845rY6kH+fNZteafjz0u1rTlyTd/dv689h8vGc7bzzP2brW9CUpHriv9jz6wVvOrTeDzev9Tbxw3/1rTR/oxKJ7MKa3xU97mpZdfNGgiwGgx7zl3JsHXYbpgntaAQDFG6GtFQCAxuKeVgAAAABAsWhpBQAUzTxbFQCARiNoBQAUj25BAAA0F0ErAKB4NLQCANBcBK0AgKKl0YMJWwEAaCp6XAEAAAAAitVV0Gp7f9vX215h+8N1FwoAgCr3+AXUjboTAPTOhEGr7RmSvijpAEm7SnqT7V3rLhgAAC0ErRgm1J0AoLe6aWndU9KKiLghIh6RdLqkg+stFgAATyBoxZCh7gQAPdRN0LpA0srK+1V52ii2D7O9zPayO+68u1flAwBAtnv6Amo2Yd1pVL1p7Z19LRwADJueDcQUEUsjYklELNl2m617lSwAAMC0M6reNH+bQRcHAIrWzSNvVktaVHm/ME8DAKB2dOnFEKLuBAA91E1L688l7Wx7J9ubSDpE0jn1FgsAgCeM9PgF1Iy6EwD00IQtrRGx3vb7JJ0naYakkyPi2tpLBgBAxm2oGCbUnQCgt7rpHqyIOFfSuTWXBQCAMZkOwhgy1J0AoHfoJQUAAAAAKFZXLa0AAAwKAzEBANBsBK0AgOIRtAIA0FwErQCA4o0QtQIA0Fjc0woAAAAAKBYtrQCAwpnRgwEAaLB6glaPyJvNriXplrjn9lrT74vNtqw/j002rTf92FBv+pI8e+va89CGx+rPo+YHTca9d9Savh5bX2/6QAcMxARAkiKi/kzqPtc99mi96Uv9ebD1zE1qz8IjM2rPA8ODllYAQNncnzoYAAAoE0ErAKB4xKwAADQXAzEBAAAAAIpFSysAoHgjtLUCANBYBK0AgKIxEBMAAM1G0AoAKB4DMQEA0Fzc0woAKJ57/JowP3uR7QttX2f7WttHtM0/ynbYnp/f2/bnba+wfbXtF2z8WgMAAImWVgAAxrJe0lERcYXtOZIut31BRFxne5GkV0u6pbL8AZJ2zq8XSTox/w8AADYSLa0AgOK5x/8mEhFrIuKK/Pc6ScslLcizPyvpaElR+cjBkk6J5BJJc21v39ONAABAQ9HSCgAomiWN9P6e1vm2l1XeL42IpWPmby+WtIekS20fLGl1RPzCo2+0XSBpZeX9qjxtTU9LDQBAAxG0AgCKV8M4TGsjYsmE+dqzJZ0l6UilLsPHKnUNBgAAfULQCgAo3iAGD7Y9SylgPTUizrb9XEk7SWq1si6UdIXtPSWtlrSo8vGFeRoAANhI3NMKAEAbp6j0JEnLI+IzkhQR10TEUyNicUQsVuoC/IKIuE3SOZLelkcR3kvSvRFB12AAAHqAllYAQPG6GTypx/aR9FZJ19i+Kk87NiLO7bD8uZIOlLRC0gOS3ll7CQEAaAiCVgBA8dznmDUiLtYEvZJza2vr75B0eM3FAgCgkQhaAQBFs7iXBQCAJqMeAAAAAAAoFi2tAIDiDWL0YAAAUAaCVgBA8dzvm1oBAEAxCFoBAMUjZAUAoLkIWgEARbMIWgEAaDIGYgIAAAAAFIuWVgBA2WzuaQUAoMGGNmj1nK1rTT8efqDW9FMmUX8Wv7m61vQ3/PD7taYvSdp889qz8L6vrT2PkZ2eU28Gj62vN/0+7K9AJyPErADWP1J7FnHn6nrT/9WyWtOXJG0xu/YsRnZZUnseMWderel7xtCGQY3EtwUAKJ6JWgEAaCyCVgBA0SyJ3sEAADQXAzEBAAAAAIpFSysAoGympRUAgCYjaAUAFI/RgwEAaC6CVgBA8YhZAQBoLoJWAEDxaGkFAKC5GIgJAAAAAFAsWloBAEXjkTcAADTbhC2tthfZvtD2dbavtX1EPwoGAIAkydKI3dMXUCfqTgDQW920tK6XdFREXGF7jqTLbV8QEdfVXDYAACTR0oqhQ90JAHpowqA1ItZIWpP/Xmd7uaQFkjjwAgD6wAzEhKFC3QkAemtSAzHZXixpD0mX1lIaAACAaYS6EwBsvK4HYrI9W9JZko6MiPvGmH+YpMMk6WkLduhZAQEAzWZJZqx7DKHx6k6j6k2LFg2gdAAwPLqqBtiepXTQPTUizh5rmYhYGhFLImLJttvM62UZAQBN5vSc1l6+gLpNVHcaVW+av03/CwgAQ2TCllans/tJkpZHxGfqLxIAAKMRZ2KYUHcCgN7qpqV1H0lvlbSv7avy68CaywUAADCsqDsBQA91M3rwxUq3FAEAMBB06cUwoe4EAL3V9UBMAAAMCjErAADNRdAKACiaJY0QtQIA0FgErQCAspmWVgAAmown3wEAAAAAikVLKwCgeAzEBABAcxG0AgCKR8wKAEBz1Re0xobakpYkPfZorcnH3b+tNX1J8qzNas8j/vvCWtP/pxPOqzV9SVq8af3XVv5426fWnoee8fxak/dmW9aavka4mwCDYRG0AqWLDTXX+yTpwXW1Z7HhO1+rNf2ffursWtOXpAXbbF57Hov/6eja8xjZ67X1ZjCDtrthQi0UAFA2Wx7p7WviLL3I9oW2r7N9re0j8vT/a/tXtq+2/W3bcyufOcb2CtvX235NfRsEAIBmIWgFAODJ1ks6KiJ2lbSXpMNt7yrpAknPiYjnSfofScdIUp53iKTdJO0v6Uu2Zwyk5AAATDMErQCA4tm9fU0kItZExBX573WSlktaEBHnR8T6vNglkhbmvw+WdHpEPBwRN0paIWnPXm8HAACaiM7cAIDijQzwplbbiyXtIenStlnvkvSt/PcCpSC2ZVWeBgAANhJBKwCgaDUNxDTf9rLK+6URsfRJeduzJZ0l6ciIuK8y/SNKXYhP7XnJAADAKAStAIDi1fCc1rURsWSCPGcpBaynRsTZlenvkHSQpP0iIvLk1ZIWVT6+ME8DAAAbiXtaAQBo4xQlnyRpeUR8pjJ9f0lHS3p9RDxQ+cg5kg6xvantnSTtLOmyfpYZAIDpipZWAEDZuhw8qcf2kfRWSdfYvipPO1bS5yVtKumC3Pp7SUS8JyKutX2GpOuUug0fHhGP9b3UAABMQwStAIDi1dA9eFwRcbHS7bTtzh3nMx+X9PHaCgUAQEMRtAIAijfAwYMBAMCAcU8rAAAAAKBYtLQCAIqWHnlDUysAAE1F0AoAKJsl0y8IAIDGImgFABTOtLQCANBgBK0AgPKNELQCANBUdLgCAAAAABSLllYAQPnoHgwAQGMRtAIAymZGDwYAoMkIWgEA5eOeVgAAGougFQBQONM9GACABmMgJgAAAABAsWhpBQAUzZZM92AAABqLoBUAUD66BwMA0FgErQCA4tHSCgBAcw1t0Bp3/bbeDFb8st70JcU229Wex/obVtaa/o0PPVpr+v3K448efqj2PBRRb/qzNq03fXMLPAaIllYAjz5cfx6/+U2tyX/zjntrTV+S9nqo/u20+NZ665eSpA3ra00+6q6XoaeohQIAAAAAijW0La0AgIaweU4rAAANRtAKACie6R4MAEBjEbQCAMpHSysAAI3FPa0AAAAAgGLR0goAKJvF6MEAADQYQSsAoHg8cQkAgOYiaAUAlI+WVgAAGqvroNX2DEnLJK2OiIPqKxIAABW2zEBMGELUnQCgNybT4eoIScvrKggAAMA0Q90JAHqgq6DV9kJJr5X01XqLAwDAGOzevoCaUXcCgN7ptnvwCZKOljSnvqIAANAB3YMxfE4QdScA6IkJW1ptHyTp9oi4fILlDrO9zPayO+68q2cFBAA0W2ocdU9fQJ26qTuNqjetvbOPpQOA4dNN9+B9JL3e9k2STpe0r+1vtC8UEUsjYklELNl2m3k9LiYAoNFG3NsXUK8J606j6k3ztxlEGQFgaEwYtEbEMRGxMCIWSzpE0g8j4i21lwwAAGAIUXcCgN7iOa0AgMIxeBIAAE02qaA1Ii6SdFEtJQEAoAPuQ8Wwou4EABuPllYAQNks7kMFAKDBunpOKwAAg9Tv0YNtL7J9oe3rbF9r+4g8fZ7tC2z/Ov+/dZ5u25+3vcL21bZfUPMmAQCgMQhaAQB4svWSjoqIXSXtJelw27tK+rCkH0TEzpJ+kN9L0gGSds6vwySd2P8iAwAwPRG0AgDK1+dH3kTEmoi4Iv+9TtJySQskHSzpX/Ni/yrpDfnvgyWdEsklkuba3r7HWwEAgEbinlYAQNk82NGDbS+WtIekSyVtFxFr8qzbJG2X/14gaWXlY6vytDUCAAAbhaAVAFA8934gpvm2l1XeL42IpU/K154t6SxJR0bEfdX7YSMibEevCwYAAEarL2h1vT2PPW+7iRfaCH2phcSG2rOY+dzfrzX9V2/9y1rTl6RdnrJF7Xn42c+rPY+47856M9is5u204bF60wf6a21ELBlvAduzlALWUyPi7Dz5t7a3j4g1ufvv7Xn6akmLKh9fmKcBzdCP3hCbz649C7/6wFrT/6c199SaviRtuv3c2vPQHi+uP4+Zm9aaPI9SGy7c0woAKF+ri3CvXhNmZ0s6SdLyiPhMZdY5kt6e/367pP+oTH9bHkV4L0n3VroRAwCAjUD3YABA2QbznNZ9JL1V0jW2r8rTjpX0KUln2D5U0s2S3pjnnSvpQEkrJD0g6Z19LS0AANMYQSsAoHj97sYVERcrhctj2W+M5UPS4bUWCgCAhiJoBQAUrrvH1AAAgOmJe1oBAAAAAMWipRUAUD5GeQQAoLEIWgEAZbMIWgEAaDCCVgBA+QhaAQBoLIJWAEDhLI0wBAMAAE1FLQAAAAAAUCxaWgEA5aN7MAAAjUXQCgAoGwMxAQDQaAStAIDyEbQCANBYBK0AgMIxEBMAAE1GLQAAAAAAUCxaWgEA5aN7MAAAjUXQCgAoGwMxAQDQaAStAIDyEbQCANBYBK0AgMIxEBMAAE1GLQAAAAAAUCxaWgEA5aN7MAAAjUXQCgAoGwMxAQDQaAStAIDyEbQCANBY3NMKAAAAAChWPS2trn+kR89fVGv62unZ9aYvyXO2rj+PRc+qNf2Dt92u1vQlSQt3qj2Lkd32rj2P+O3N9WbwyEP1pv/Y+nrTBzqwLDN6MFA096E3RGw2u/Y8RvY+qNb0N9/tRbWmL0metWnteWjOvPrzmLlJ/XlgaNA9GABQProHAwDQWAStAICyMRATAACNRtAKACgfQSsAAI3FTUIAAAAAgGLR0goAKFz9g/sBAIByEbQCAMpH92AAABqLoBUAUDYGYgIAoNEIWgEA5SNoBQCgsbq6Scj2XNtn2v6V7eW29667YAAAAMOKuhMA9E63La2fk/T9iPhj25tI2qLGMgEAUMFATBhK1J0AoEcmDFptbyXppZLeIUkR8YikR+otFgAAFXQPxhCh7gQAvdXNpeudJN0h6Wu2r7T9Vdtb1lwuAACS1kBMvXwB9aLuBAA91E3QOlPSCySdGBF7SLpf0ofbF7J9mO1ltpfdceedPS4mAKC5cvfgXr6Aek1YdxpVb1pLvQkAxtPNmXuVpFURcWl+f6bSgXiUiFgaEUsiYsm222zTyzICANBXtk+2fbvtX1am7W77EttX5WBjzzzdtj9ve4Xtq20/6RyJxpmw7jSq3jSfehMAjGfCoDUibpO00vaz8qT9JF1Xa6kAAKjqf/fgr0vav23apyV9LCJ2l/R3+b0kHSBp5/w6TNKJvVhlDC/qTgDQW92OHvx+Safm0e9ukPTO+ooEAECbPt+HGhE/tr24fbKkp+S/t5J0a/77YEmnRERIuiQ/6mT7iFjTn9KiUNSdAKBHugpaI+IqSUvqLQoAAGNoDcTUW/NtL6u8XxoRSyf4zJGSzrN9vFJPpRfn6QskrawstypPI2htMOpOANA73ba0AgAwnayNiMkGFH8p6YMRcZbtN0o6SdIre180AABQRdAKACicSxnx9+2Sjsh//7ukr+a/V0taVFluYZ4GAAB6oIhaAAAA4yrjOa23SnpZ/ntfSb/Of58j6W15FOG9JN3L/awAAPQOLa0AgPL1eSAm26dJernSva+rJH1U0rslfc72TEkPKY0ULEnnSjpQ0gpJD4gBdwAA6CmCVgBA2SzJ/e0YFBFv6jDrf42xbEg6vN4SAQDQXHQPBgAAAAAUi5ZWAEDhLI30t3swAAAoR41Ba70VjHjo/lrT91MXTbzQxuaxyea156FN683Dr+7Ug66HRmbUn8esTWrPwvO2qzX9ePjBWtMvZPRWNFWfuwcDKI/7UB+ILbeqNX1vMafW9PumD8dk93ksA5SNllYAQPmovAAA0FgErQCAsrmY57QCAIABoBYAAAAAACgWLa0AgPLRPRgAgMYiaAUAlI+BmAAAaCyCVgBA+WhpBQCgsQhaAQBlYyAmAAAajVoAAAAAAKBYtLQCAMpH92AAABqLoBUAUD4GYgIAoLEIWgEAZbOlEVpaAQBoKi5dAwAAAACKRUsrAKB8dA8GAKCxCFoBAOVjICYAABqLoBUAUDjT0goAQIMRtAIAymYxEBMAAA3GpWsAAAAAQLFoaQUAlI97WgEAaCyCVgBA+binFQCAxiJoBQCUzeaeVgAAGoygFQBQPlpaAQBoLGoBAAAAAIBi0dIKACgfAzEBANBYBK0AgMKZ7sEAADRYfUFrzYNmbPjlxbWm720X1pq+JGnmrPrzuP+eWpOP+++rNX1J0sMP1p/H3G1rz8JPmV9v+jPW1Zq+RmbUmz7QicVATAD6wnX36jDnUmAqaGkFAJSPllYAABqLWgAAAAAAoFi0tAIAysdATAAANBZBKwCgcJZG6BgEAEBTEbQCAMpm0dIKAECDcekaAAAAAFAsglYAQPk80tvXRNnZJ9u+3fYv26a/3/avbF9r+9OV6cfYXmH7etuvqWELAADQWHQPBgAUzoPoHvx1SV+QdMrjpbBfIelgSc+PiIdtPzVP31XSIZJ2k7SDpP+yvUtEPNbvQgMAMB111dJq+4P5qvIvbZ9me7O6CwYAwONGRnr7mkBE/FjSXW2T/1LSpyLi4bzM7Xn6wZJOj4iHI+JGSSsk7dm7lccwou4EAL0z4Znb9gJJH5C0JCKeI2mG0hVlAADq1xqIqZcvab7tZZXXYV2UZBdJL7F9qe0f2X5hnr5A0srKcqvyNDQUdScA6K1uuwfPlLS57UclbSHp1vqKBABA7dZGxJJJfmampHmS9pL0Qkln2H56z0uG6YK6EwD0yIQtrRGxWtLxkm6RtEbSvRFxfvtytg9rXbG+4872HlUAAEyV+z4QUwerJJ0dyWWSNkiaL2m1pEWV5RbmaWiobupOo+pNa+8cRDEBYGh00z14a6X7dXZSGmBiS9tvaV8uIpZGxJKIWLLtNvN6X1IAQHP1vnvwVHxH0itScbyLpE0krZV0jqRDbG9qeydJO0u6bONXGsOqm7rTqHrT/G0GUUwAGBrdXG5+paQbI+KOiHhU0tmSXlxvsQAAqOj/I29Ok/QzSc+yvcr2oZJOlvT0/Bic0yW9Pbe6XivpDEnXSfq+pMMZObjxqDsBQA91c0/rLZL2sr2FpAcl7SdpWa2lAgCgxZZG+vvIm4h4U4dZT+pplJf/uKSP11ciDBnqTgDQQ93c03qppDMlXSHpmvyZpTWXCwAAYChRdwKA3upq9OCI+Kikj9ZcFgAAxjb1wZOAgaDuBAC90+0jbwAAGJypD54EAACGHEErAKBwpqUVAIAGI2gFABTPtLQCANBYXLoGAAAAABSLllYAQNksugcDANBgBK0AgMJxTysAAE1WX9C6YUNtSUuSVt5Qa/JRa+rZppvXnoVnzqo9j9qNzKg9C8/atPY8+rEewLQ1wj2tAAA0FS2tAIDy0dIKAEBjUQsAAAAAABSLllYAQNksiUfeAADQWAStAIDCMRATAABNRtAKACgfLa0AADQWl64BAAAAAMWipRUAUD66BwMA0FgErQCAstk8pxUAgAYjaAUAlI+WVgAAGougFQBQPgZiAgCgsbh0DQAAAAAoFi2tAIDC8ZxWAACajKAVAFA+ugcDANBYBK0AgLJZtLQCANBgBK0AgMJZGiFoBQCgqagFAAAAAACKRUsrAKB45p5WAAAai6AVAFA+7mkFAKCxCFoBAGWzGD0YAIAGI2gFABSO57QCANBk1AIAAAAAAMWipRUAUD66BwMA0FgErQCA8vGcVgAAGougFQBQNpuWVgAAGqyWoPXyX1yzdmS7nW6exEfmS1pbR1n6iHUox3RYjxLXYcdBFwAApqPLr7xqrbecO5l6k1TmeWKyWIcyTId1kMpcD+pOPVJL0BoR205medvLImJJHWXpF9ahHNNhPabDOgA91efRg22fLOkgSbdHxHPa5h0l6XhJ20bEWtuW9DlJB0p6QNI7IuKKvhYYQ22y9SZpepwnWIcyTId1kKbPemBs3CQEAChfq4twr14T+7qk/Z9cDC+S9GpJt1QmHyBp5/w6TNKJG72+AADgcQStAIAh4B6/xhcRP5Z01xizPivpaElRmXawpFMiuUTSXNvbT3oVAQDAmEoZiGnpoAvQA6xDOabDekyHdQB6pIyBmGwfLGl1RPzCo8uzQNLKyvtVedqaPhYPzTMdzhOsQxmmwzpI02c9MIYigtaIGPqdjHUox3RYj+mwDkDh5tteVnm/dLzfne0tJB2r1DUYGLjpcJ5gHcowHdZBmj7rgbEVEbQCADCu3re0rp3kgB3PkLSTpFYr60JJV9jeU9JqSYsqyy7M0wAAQA9wTysAYAj0957WdhFxTUQ8NSIWR8RipS7AL4iI2ySdI+ltTvaSdG9E0DUYAIAeGWjQant/29fbXmH7w4Msy1TZXmT7QtvX2b7W9hGDLtNU2Z5h+0rb3x10WabC9lzbZ9r+le3ltvcedJkmy/YH8370S9un2d5s0GUCBs7q++jBtk+T9DNJz7K9yvah4yx+rqQbJK2Q9BVJ7+3BWgNjou5UjmGvN0nUnTA8BtY92PYMSV+U9CqlK9Y/t31ORFw3qDJN0XpJR0XEFbbnSLrc9gVDuB6SdISk5ZKeMuiCTNHnJH0/Iv7Y9iaSthh0gSbD9gJJH5C0a0Q8aPsMSYcoPXoDaLY+j8MUEW+aYP7iyt8h6fC6ywRQdyrOsNebJOpOGBKDbGndU9KKiLghIh6RdLrSYwOGSkSsaT1EPiLWKR28Fgy2VJNne6Gk10r66qDLMhW2t5L0UkknSVJEPBIR9wy0UFMzU9LmtmcqnThuHXB5AADloO5UiGGvN0nUnTBcBhm0dnpEwNCyvVjSHpIuHXBRpuIEpWcPbhhwOaZqJ0l3SPpa7qrzVdtbDrpQkxERqyUdL+kWpUdl3BsR5w+2VEApBntPK1AI6k7lOEHDXW+SqDthiDAQU4/Yni3pLElHRsR9gy7PZNg+SNLtEXH5oMuyEWZKeoGkEyNiD0n3Sxqqe31sb610xXwnSTtI2tL2WwZbKqAEPb6ftYBnvgIY3rrTNKk3SdSdMEQGGbROm0cE2J6ldNA9NSLOHnR5pmAfSa+3fZNSV6N9bX9jsEWatFWSVkVE60rtmUoH4mHySkk3RsQdEfGopLMlvXjAZQLKQNAKSNSdSjEd6k0SdScMkUEGrT+XtLPtnfKN34coPTZgqDg9sO8kScsj4jODLs9URMQxEbEwDyxyiKQfRsRQXaXKj51YaftZedJ+koZtQIdbJO1le4u8X+2ndJ8PALoHAxJ1pyJMh3qTRN0Jw2VgowdHxHrb75N0nqQZkk6OiGsHVZ6NsI+kt0q6xvZVedqxEXHu4IrUWO+XdGo+kd8g6Z0DLs+kRMSlts+UdIXSyIpXSlo62FIBAEpB3Qk1oO6EoeA0Uj8AAGVa8vznxs/P/4+epjnye8+4PCKW9DRRAABQi4G1tAIA0D269AIA0FQErQCAsjF4EgAAjcYjbwAAAAAAxaKlFQBQPlpaAQBoLIJWAMAQIGgFAKCpCFoBAMUzLa0AADQWQSsAoHwErQAANBYDMQEAAAAAikVLKwCgcBb3tAIA0FwErQCA8tE9GACAxiJoBQCUzSJoBQCgwQhaAQBDgKAVAICmYiAmAAAAAECxaGkFAJSP7sEAADQWQSsAoHzErAAANBZBKwCgcDzyBgCAJiNoBQCUj+7BAAA0FgMxAQAAAACKRUsrAKBsPKcVAIBGI2gFAAwBglYAAJqKoBUAUD5aWgEAaCzuaQUAAAAAFIuWVgBA4UxLKwAADUbQCgAYAgStAAA0FUErAKB8tLQCANBYjohBlwEAgI5sf1/S/B4nuzYi9u9xmgAAoAYErQAAAACAYjF6MAAAAACgWAStAAAAAIBiEbQCAAAAAIpF0AoAAAAAKBZBKwAAAACgWP8fx3Owk4VmHvMAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "Err_R6=error(xdata6, poptR6[0], poptR6[1],poptR6[2], poptR6[3], poptR6[4], recorteR6.ravel(), inc=1)\n", + "poptR6E, pcovR6E = curve_fit(gauss2d, xdata6, recorteR6.ravel(), p0=[2,2,1,1,1],sigma=Err_R6)\n", + "estrellaR6E=gauss2d(xdata6, poptR6E[0], poptR6E[1],poptR6E[2], poptR6E[3], poptR6E[4])\n", + "FWHMR6E=FWHMR_I.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptR6E[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 6 fotografÃa (Banda Rojo)\")\n", + "plt.imshow(recorteR6, plt.get_cmap('Reds'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 6 a partir de la gaussiana con incertidumbre (Banda Rojo)\")\n", + "plt.imshow(estrellaR6E.reshape(10, 10), plt.get_cmap('Reds'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 7 con incertidumbre (Banda Rojo)" + ] + }, + { + "cell_type": "code", + "execution_count": 835, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA60AAAFSCAYAAAAZ/jk6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA0I0lEQVR4nO3debwlVXnv/8/3dIOM0kDjAN0KKprgiLejGGLiGMUJb0ZNnI1kQIVcco2aQUxizPX6M2o0JkSMMRqVCA43waiJU0wEbRBRQCNRlKFRGplEBJt+fn9UHdl9OMM+3bvOqXPq8+7XfvXZNax6qva0nlqrVqWqkCRJkiSpj6aWOwBJkiRJkuZi0ipJkiRJ6i2TVkmSJElSb5m0SpIkSZJ6y6RVkiRJktRbJq2SJEmSpN5au9wBSJI0n41ZWz9gsrdn28r2j1TV4ydaqCRJ6oRJqySp135A8fPsPdEy/5ob1k+0QEmS1BmTVklSrwWvZZEkachMWiVJvTeVTLbAyfY2liRJHTJplST1mi2tkiQNm0mrJKn3pibc0GpLqyRJK4cnryVJkiRJvWVLqySp9zzDKknScJm0SpJ6LWTyAzFJkqQVw6RVktR7trRKkjRcJq2SpF4LHQzEJEmSVgxPXkuSJEmSesuWVklS73mGVZKk4TJplST1WyAOxCRJ0mCZtEqSei3Y0ipJ0pCZtEqSes+BmCRJGi5PXkuSJEmSesuWVklS73mGVZKk4TJplST1WnOfVvsHS5I0VCatkqTes6VVkqThsh6wCEkOTVJJ1rbPP5nk15Zgu0nyt0muSfK5rre3q5LcJ8l5SW5I8uJ22uuSvH4ny3t1khMnGeMitv32JH+yDNu9IMkjxljuAUn+s/uIJGllWK7f6r5J8vAkX93FMnbq2M18DVaycX+PV6IkH07y7B7Ecbck30uyZo75Jyd5Z0fb7vz7Icl/JDmyy23Ms+1Lkjxmibc57+s5Y9kXJfk/45S7IpPW9gW4qT0g0483jbFeJbnXUsS4QBx3mxH799rYTppjlZ8CHgtsqKqHjFH+cu/nS4BPVNW+VfXGJA8HfgL434stKMlBwLOAv26fPyLJ9pHjdnmSV040+gmZ8T69sk2A9xln3aq6b1V9cozlzgeuTfLkXY1X6qume/BkH+reAH+rl9XM41ZV/15V91nOmFaDcX+PV6KqOqaq/m6ptzszkaqqb1XVPlV161LH0rW2fnZDVX2hfX5ykh+OfKdclOTnlznM2xk58TQd5yVJXjrOuot8Pf8G+NUkd1powRWZtLae3B6Q6ccLd7XApTojOPJi7lNV+wD3B7YDp8+xyt2BS6rqxqWIbz5jHqO7AxeMPD8M+OWq+uFObPI5wJlVddPItCtGjt1PAc9P8tSdKHspPLmN80HAkcDLOtjGu4Bf76BcqTemJvzQkhnSb/Wy2JnjsRpaQLXyrPT33U7G/xvA38+Y9t6R75UTgXcmufOuxteRdW2cvwD8QZLHTrLwqvoB8GGaBqp5rbrf7iT3SvKpJNcl2Zrkve30T7eLfLE9Y/DLbavdZUl+N8mVwN8mmUry0iT/neTqJKclOWCM7d4zycfbdbYmeVeSdWOG/Szg01V1ySzlPh94K/CwNu5XttNfkOTiJN9N8qEkB8+1n/Mt38772SRfbY/ZX7bH79faec9J063hz5NcDZw8374m+TjwSOBN7fbvDTwK+K12/v5J/inJVWm6O/9Tkg3zHJtjgE/NNbOqvgH8J3DEyP68IcmlSa5Pck6alt7peSe3r+k70nRfviDJppH5RyY5t533XmCPkXmLjX00ziuBj9Akr9PlPaXd/rVpuqf8+Mi8H52FTHKHJK9PckX7eH2SO4wU/0ng0TOmSavKFJnoQ8trtf1Wt2U/JMln2+/0LUnelGT3OZadbsU4rv1e35Lkd8Ytq133+CRfA74233EbWeeS9hieD9yYWSrgSR6b5Cvt6/Im2PHDkuR5aVqGrknykSR3H+fAJXluu94NSb6eZM4TrUnWJPn/2tfnG0lemB27e89ZVpo6y2dmlPejFugkT0hyYbvu5dPHPMn69jf92jT1pH9PMjVy3KZ/j8d5XX4jydfaZd6cNKPILfa9l+S+ST7WxvPtJC9vp89ZJxj5rJyU5DttjM+dZxs/6ho7feySvLZ9fb+R5JiRZQ9Ic6naFe38D4zMe1Kay8KuTfKfSR4wMm/m++7dwN2A/9e+V1+S23fpPyzN98MNST4GrB8pb4f39Syv0clJ/jHJO9v1v5Tk3kle1h6TS5P87IxDcc8kn0tTb/xg2u+Skbien+RbwMfb6WN9Dtr3xqOYvx77EeAG4J7tOvtnnrpm+5r9cZq6+Q1JPppk9Pg8M8k32/fZ782IZ+zvqFni3EzTIPWgtqypJL/fbus7aerV+804btOv58Fpco/vpslFXjCj+E8CT1wohlWXtAJ/DHwU2B/YAPwFQFX9dDv/ge3Zjfe2z+8CHEDTOngc8CLgqcDPAAcD1wBvHmO7AV7drvPjwEbg5AVXar7MngXM2j2jqk6lOUvz2TbuVyR5VLutXwLuCnwTeM9c+znf8u0b/X00LYAHAl8FfnJGGA8Fvg7cGXjVfPtaVY8C/h14Ybv9/5pR1hTwtzTH+27ATcB83cXu38Y0qySHA0cDZ41M/jzNh+oA4B+Af0yyx8j8p7T7vw740PT22w/uB2jOiB0A/CMw2mVjsbGPxrmBJgG/uH1+b+DdNGfYDgLOpPkCn+3L4/eAo9p9eiDwEOD3p2dW1eXADwG7gWlVsnvwqrSqfqtbtwK/TVPBfhjwaNoTtvN4JHA48LPA7+a2LpPjlPVUmt/nI+Y5bjM9naZyuK6qts3Yx/XAGTS/L+uB/6b5fZ2efyzwcuDnaH63/p3md2wc3wGeBNwReC7w50kePMeyL6D5vXwQ8OB2P3e2rJlOBX69qvYF7kebhAAnAZfR7NedafazZll/nNflSTSXRD2Apt71uHb62O+9JPsC/wr8S7v8vYB/a2fPWyeg+azsBxwCPB94c5L9Z9vOLB5KU+daD7wGOLV970NTN9oLuC9wJ+DP21iPBN5G0+PrQJrLuT6UHU+kj77vng58i9t6Ybxmljj+ATinjeOPgcVed/vkNt79gS/QNBpM0RyTP2pjHPUs4Hk0deRtwBtnzP8ZmtfscYv8HBwObK+qy2abmcYTgd2BC9vJ49Q1f4XmvX+ndt3pky9HAG8BnknzvjmQ5vt12s58R03HehTNZ+bidtJz2scjgXsA+8wS57T30Hy+DqZpsf3TNjeZdhHNe3l+VbXiHsAlwPeAa0ceL2jnvQM4heb6z5nrFXCvkeePAG4B9hiZdhHw6JHnd6VJCNYCh7ZlrG3nfRL4tTlifCrwhTH25eHtvuwzzzLPAT4z8vxU4DUjz/dpYzx0jv2cc3maD+pnR+YFuHR6v9ptf2uBfdhhX2ceF+DtwJ/Mse6DgGvmKfuHwI/NeM22t6/59e2+ngHsPk8Z19D8kEPzA/GvI/OOAG5q//5p4AogI/P/cxdin36f3tDG+W80X9gAfwCcNrLsFHA58IiRdR/T/v3fwBNGln0cTXfx0W1dDvx0l587Hz6W67Eha+q1ex4w0Qewebn3a7U/GNhv9SzrnAi8f4550zGO/r69Bjh1nLLadR81xnG7bMbr8bx54n0WcNbI89BUNKfrAx8Gnj8yfwr4PnD3efZv7Rzb+gBwwhzzPk6TWE4/f8y4ZTGjvjTzuNAkS78O3HHGMn8EfHD0+M04bo9ZxOvyUyPPTwNeutj3Hk2SN9e8OesE7Wt+0+ixoknyj5qjrB99Ntpjd/HIvL3a/bkLzedrO7D/LGW8BfjjGdO+CvzMXO+7mcd09P1Ck6htA/Yemf8PwDtne1/PLI+mnvexkXlPpvnsrmmf79tua93IMfizkeWPoPm+WTMS1z1G5i/mc3A0cOWMaSe35V8L3EiTSL5kns/lgxipa7bx/v7I898C/qX9+w+B94zM27vd1ljv3xnzpvf92vY9VcBraevINHXa3xpZ/j7M8h1Mc3LmVmDfkWVfDbx95PnhwK1zHYPpx0puaX1qVa0befxNO/0lNF+0n0vT9fJ5C5RzVTX9qafdHXh/23R+Lc0P4600Z97mlOTOSd6TprvJ9cA7GenOMI9nA6dX1ffGWHbawTStpQC0615NcwZpscsfTJOkTs8rmh+pUZeOPtmFfSXJXkn+uu1OcD3waWBd5h5h7BqaL5hRV7Sv+R1pWktvYuTsd5LfabttXNe+hvvNiO/Kkb+/D+zRdmE4GLi8PQbTfnTcdiJ2aN6n+9J8yf7YSBwzX5PtNMd5ttdwh2Xbvw+escy+NF8s0qrkNa0r1mB+q9N0QfynNAPvXQ/86Rhlj/6+/ui7fcyyLmXx5ltntvrA6PJ3B94wcsy/S/MazlX3+JEkxyQ5q+0eeC3wBOY+NjvEMTPmRZY108+3y38zTffTh7XT/y9NC9JH03Q5nnXAmTFfl5l1jH3adRfz3ttIk5zOZqE6wdW1Yyv6j2IYw49ir6rvt3/u08bz3aq6ZpZ17g6cNP2+aF+TjTNiWsx79WCaJG10HJdvzrXwHL498vdNwNa6bVCg6TFSRo/JzM/hbuz42uzs52C2Oiw0jRbrqmpvmm7Bz0rbzX3Muuas7zFu/xm+kaa+T1v2znxHrW/LP4mmLrvbyLZmvg/Xcvvv4INp3js3zFh29HjtC1y3QByr77e7qq6sqhdU1cE0Z9P+MvOPQlgznl8KHDPjR3aParpgzudP27Lu3yZTz4D5L5xKsifwi8zf3Wg2V9B8aKbL2ZumC8BcMc63/BZGug603UBmXqc58xgtel9HnERzNuah7brTXZrmWv984N5zFVZV19GcgXtyG//DaSpDv0RzRnAdzQdhnPi2AIeMdIWB5ozfzsY+GuenaFqcX9tOmvmahOZLfrbXcIdl25iuGFn3EJruIbt0awOprzLhrsF2D15+q/S3+i3AV4DD27JfvlDZNN/700a/28cpa+YxGcd862wZjWfkd2napTQtoKPHfM+qmve2a2030dNpfv/u3P4un8ncx2aHesmMmBYq60aaFsLp5e8yWnBVfb6qjqXpVvkBmpZQquqGqjqpqu5BcwnR/0ry6Fli25nXeNpi3nuX0nS5nM28dYKOXAockNmvwb0UeNWM98VeVTXaZXbm+26h9+H+bV112mhdbOZrvIamm+6umPk5/CGwdWTaaLyL+Rxc3ISYOU/sVHON/Idp67HsQl2T23+G96Kp70/bqfdvVd1aVa8DfsBt3Ylnex9uY8cTBtPLHZCmy/vosqPf1T8OfHGhOFZd0prkF3PbBcvX0LzRtrfPv83cXwLT/gp4VdqLqpMclKb/+kL2pel+cF375hzn9i7/s43xE2MsO+rdwHOTPKj9Av9T4Oy6bXCImfs53/L/DNw/yVPb1sbjabqCzGdn9nV03ZtobtNyAPCKBZY/k+ZaglmluYXM07httOJ9aT40VwFrk/whzXUv4/hsu+6Lk+yW5OdorhXZ2dhnej3w2CQPpPmhfGKSRyfZjeZL6maa7sgzvRv4/fa9uJ6m+8fo/cp+Bvh4Vd28yHikFcOBmFaXVfpbvS/NZSvfS/JjwG+OUfYftC0r96W5Rm36WtSdKWuc4zaffwbum+Tn2vrAi9mxPvBXwMvaWEmyX5JfHKPc3YE70Pwub0szuM/MgXBGnQackOSQNkn63UWU9cV2Hx6UZiyLk6dnJNk9ya8m2a+auxlcT/ueSzOQ0L3aRP06mlb77dzezrwuo+uO+977J+CuSU5MM/DSvkke2s5bqE4wcVW1hSax+ss0AwXtlmQ6mfob4DeSPDSNvZM8cUaSMtOc79Wq+iawGXhl+5r9FLcldAD/RdND7olt/en3ad4Tu+IZSY5ok7w/At5Xc9+uZezPQVXdQnNt8nz12A3A49mxHruzdc33AU9K8lNpxkj5I3bM9Xbl/QvwZ8BL2s/Wu4HfTjNo1j40ucV7Z7TyU1WX0tRtX51kjzSDdD2f29djP7zQxldy0jo96tj04/3t9J8Azk7yPZpBdk6oqq+3804G/i5Nk/4vzVHuG9r1PprkBpoBfh46x7KjXkkzYMB1NF/8Z4yxzrOBv5/RHXVBVfWvNNdEnk5zVuWeNInbtJMZ2c/5lq+qrTRnkF9D04XgCJovi/kSoJ3Z12mvB/akOYN1Fs0gA/N5B/CE9kz3tIOnX3eaLgYHAL/azvtIW+Z/tfN+wJjdUtovl5+jua7ju8Avs+O+LTb2meVf1e7PH1bVV2nOsv5FW96TaQYluGWWVf+E5jU5H/gScG47bdqv0nyJSquWLa0r1pB+q3+HZoCUG2gq8nMNhjTqUzStMf8GvLaqProLZZ3MwsdtTiP1gT+jqQ8cDvzHyPz3A/8HeE+aroVfphkwaaFyb6BJgE+jSf5/hea1m8vf0AzSdT7NIDpn0pxQvnWhsqoZ/PGPaBKFrwE7jCRMM0DNJW38v8FtdYfD23W+R3MC+y+raraTFDvzukwb+73X7udjaeoGV7b78sh29kJ1gq48k6YF8is018me2Ma6mWbwrDfRvCYX09Sj5vNqmsT72oyMmj3iV2g+z9+lSdreMT2j7WH3WzR31ricpuV11oGOFuHvaXrDXUlz14gXz7XgTnwO/prm2I365ZF67OdpPmevbOe9np2sa1bVBTSNT/9AU9+/hh2Pza68f6F5315D83q/jea4fRr4Bk19+0VzrPd0mutcrwDeD7yizU1oE+AnMEav0ywyX9Iql2aI98uAX53jC3vJJflT4DtV9frljmWppBla/RlV9ekFlnsA8NdV9bD5lpNWsrutWVu/u+e6iZb5whuvPqeqNi28pDR5SQ6lqejtNrNlQjtqW1P/qqruvuDCUg8l+Q+au2p8YbljWQpJ7kHTeLTbQif7krwI2FhVL1mo3JXc0qoJSfK4JOvSdB2e7t9+1gKrLZmqevnAEtaDaK7PuGShZavqfBNWrXZh6QdiSrIxySfS3NPxgiQnjMx7UZp7WV6Q5DUj01+W5h50X03yuNlLljSfJHumuZ/q2rYb7StoWmekFamqjh5Kwtq6H/DNcXqSVtVfjJOwQjPKk/Qwmq4E0/eJempV3TT/KupCkp8APgb8RVV9a7njkfpiGbr0bgNOqqpz22uzzklzk/s7A8fS3Ebr5iR3gh/dH+9pNPcwPBj41yT3nue6KEmzC01XyffSXNv3zzTXbUrquST/i2ZA1Lm6Cu982XYPliT12aFrdqvf22vdRMs87ntbF9U9OMkHaa7ZegFwyvT1OCPzXwZQVa9un38EOLmqPju5qCVJGia7B0uSem85B2Jqrz88Ejib5hZcD09ydpr7PP5Eu9gh7Djo22WMcf9KSZK0MLsHS5KGaH2SzSPPT6mqU2Yu1A7lfzpwYlVdn+ZWIAcAR9GMgHtaO+iEJEnqSCdJ6/oDD6hDN25YeME+yxJcQJUlaOje9sNuy9++BIMe3vKDzjdRN32/823s1G3gFyH77d9p+ZdccSVbr7nOm4VoWXTwxtu6UPfg9h6ApwPvqqrp21NcBpzRDjDxuSTbgfU0t14YvUH9Bna8ebo0p/XrD6xD73a35Q5D0oSd84XztlbVQcsdx2rQSdJ66MYNfP5j/6+Lom/TdcK3ZgkaoXffc+FldtU1Wzotvq6/utPyAerS/+p+G19egkHdts92n/LJmTpm0bflW5SH/PJxnZYvzSUs/UBMSQKcClxUVa8bmfUBmvslfiLJvWkGsNtKc6/If0jyOpqBmA4HPrekQWvFOvRud2PzZz653GFImrDsve6byx3DamH3YElS70110dY6v6Npbgj/pSTntdNeTnND9bcl+TJwC/DsttX1giSn0YzAvg043pGDJUmaDJNWSZJmqKrPMHev5GfMsc6rgFd1FpQkSQNl0ipJ6rXsxIi/kiRp9TBplST1nvdnkyRpuExaJUm9Z0OrJEnDZdIqSeq1ZvRg01ZJkobKHleSJEmSpN4aK2lN8vgkX01ycZKXdh2UJEmjMuGH1DXrTpI0OQsmrUnWAG8GjgGOAJ6e5IiuA5MkaZpJq1YS606SNFnjtLQ+BLi4qr5eVbcA7wGO7TYsSZJuY9KqFca6kyRN0DhJ6yHApSPPL2un7SDJcUk2J9l81dXfnVR8kiSRZKIPqWML1p12qDdtvXpJg5OklWZiAzFV1SlVtamqNh104AGTKlaSJGnV2aHetP7A5Q5HknptnFveXA5sHHm+oZ0mSVLn7NKrFci6kyRN0DgtrZ8HDk9yWJLdgacBH+o2LEmSbjM14YfUMetOkjRBC7a0VtW2JC8EPgKsAd5WVRd0HpkkSS0vQ9VKYt1JkiZrnO7BVNWZwJkdxyJJ0qxiB2GtMNadJGly7CUlSZIkSeqtsVpaJUlaLg7EJEnSsJm0SpJ6z6RVkqThMmmVJPXelFmrJEmD5TWtkiRJkqTesqVVktRzcfRgSZIGrJukdWoK9ty3k6KnZWpNp+XXD77XafkAXLOl+23se2C35W/7YbflA+yxd+ebyAMf0v02NhzebfkH3rXT8tntDt2WL83BgZgkSRo2W1olSf0WiFmrJEmDZdIqSeo9c1ZJkobLgZgkSZIkSb1lS6skqfembGuVJGmwTFolSb3mQEySJA2bSaskqfcciEmSpOEyaZUk9Z45qyRJw+VATJIkSZKk3rKlVZLUe7GtVZKkwTJplST1WoApc1ZJkgbLpFWS1HvmrJIkDZdJqySp90xaJUkaLgdikiRJkiT1lkmrJKn3MuF/C24v2ZjkE0kuTHJBkhNmzD8pSSVZ3z5PkjcmuTjJ+Uke3NGhkCRpcOweLEnqvSx9/+BtwElVdW6SfYFzknysqi5MshH4WeBbI8sfAxzePh4KvKX9X5Ik7SJbWiVJvRaaH6tJPhZSVVuq6tz27xuAi4BD2tl/DrwEqJFVjgXeUY2zgHVJ7rqTuyxJkkaYtEqSNI8khwJHAmcnORa4vKq+OGOxQ4BLR55fxm1JriRJ2gV2D5Yk9V4HvYPXJ9k88vyUqjrldttN9gFOB06k6TL8cpquwZIkaYmYtEqSei+Tv6h1a1VtWmCbu9EkrO+qqjOS3B84DPhiG88G4NwkDwEuBzaOrL6hnSZJknaR3YMlSb2XCT8W3F6TlZ4KXFRVrwOoqi9V1Z2q6tCqOpSmC/CDq+pK4EPAs9pRhI8CrquqLZPYd0mShs6WVklSr42baE7Y0cAzgS8lOa+d9vKqOnOO5c8EngBcDHwfeG7nEUqSNBAmrZIkzVBVn2GBXLltbZ3+u4DjOw5LkqRBMmmVJPVb0sU1rZIkaYXoKGkNZIVfLvuD73e+idp6RefbWA3VvBx8j+63sfe6zrfBHQ/stvzrr+62/KqFl5E6MrUavswkSdJOsaVVktR7MWuVJGmwTFolSb0WwN7BkiQN1wrvwytJkiRJWs1saZUk9VtsaZUkachMWiVJvefowZIkDZdJqySp98xZJUkaLpNWSVLv2dIqSdJwORCTJEmSJKm3bGmVJPWat7yRJGnYFmxpTbIxySeSXJjkgiQnLEVgkiQBEJhKJvqQumTdSZIma5yW1m3ASVV1bpJ9gXOSfKyqLuw4NkmSAFtateJYd5KkCVowaa2qLcCW9u8bklwEHAL4xStJWgJxICatKNadJGmyFjUQU5JDgSOBszuJRpIkaRWx7iRJu27sgZiS7AOcDpxYVdfPMv844DiAu23cMLEAJUnDFiCOda8VaL660471po3LEJ0krRxjVQOS7EbzpfuuqjpjtmWq6pSq2lRVmw5av36SMUqShizNfVon+ZC6tlDdacd604FLH6AkrSALtrSm+XU/Fbioql7XfUiSJO3IPFMriXUnSZqscVpajwaeCTwqyXnt4wkdxyVJkrRSWXeSpAkaZ/Tgz9BcUiRJ0rKwS69WEutOkjRZYw/EJEnScjFnlSRpuExaJUm9FmDKrFWSpMEyaZUk9VtsaZUkaci8850kSZIkqbdsaZUk9Z4DMUmSNFwmrZKk3jNnlSRpuDpKWgtqezdFT2/h1m7LZ/u2bssHavut3W9jyyWdlp/9D+q0fAB2u0P321i7W+ebyNSaTsuvTkuXlk8waZW0OixF3Y9bu6/DLok1HbetxaskVxJbWiVJ/ZaQKbNWSZKGylMMkiRJkqTesqVVktR7dg+WJGm4TFolSb03ZdYqSdJgmbRKknrNgZgkSRo2k1ZJUu95n1ZJkobLgZgkSZIkSb1l0ipJ6rc03YMn+Vhwk8nGJJ9IcmGSC5Kc0E7/v0m+kuT8JO9Psm5knZcluTjJV5M8rrPjIUnSwJi0SpJ6L8lEH2PYBpxUVUcARwHHJzkC+Bhwv6p6APBfwMva+I4AngbcF3g88JdJ1nRwKCRJGhyTVklS7y11S2tVbamqc9u/bwAuAg6pqo9W1bZ2sbOADe3fxwLvqaqbq+obwMXAQyZ9HCRJGiKTVkmS5pHkUOBI4OwZs54HfLj9+xDg0pF5l7XTJEnSLnL0YElSrzW3vJn46MHrk2weeX5KVZ1yu20n+wCnAydW1fUj03+PpgvxuyYdmCRJ2pFJqySp3wKZfL+grVW1ad7NJrvRJKzvqqozRqY/B3gS8Oiqqnby5cDGkdU3tNMkSdIusnuwJKnnJjsI0zittmkWOhW4qKpeNzL98cBLgKdU1fdHVvkQ8LQkd0hyGHA48LmJHgZJkgbKllZJUv9NTbx78EKOBp4JfCnJee20lwNvBO4AfKxNfs+qqt+oqguSnAZcSNNt+PiqunWpg5YkaTUyaZUkaYaq+gzN5bQznTnPOq8CXtVZUJIkDZRJqySp/yY/EJMkSVohTFolSf2WTkYPliRJK4RJqySp/5b+mlZJktQTJq2SpJ6L3YMlSRowb3kjSZIkSeotW1olSb2WQOweLEnSYJm0SpL6z+7BkiQNlkmrJKn3bGmVJGm4uklaC9i+vZOib9tGx+VPdZ/PZ687dr4Ntt3cbfnfu67b8oH6yrndb+Pmjo8TkP/x8G7LX3enTsunqtvypfnY0ippCdSt27rdwI3Xdls+UFu+3v02tnV8nICpux7W7QbueGC35WuiHIhJkiRJktRbdg+WJPVb4n1aJUkaMJNWSVLvxe7BkiQNlkmrJKn/bGmVJGmwvKZVkiRJktRbtrRKkvotOHqwJEkDZtIqSeq92C9IkqTBMmmVJPWfLa2SJA3W2ElrkjXAZuDyqnpSdyFJkjQiIQ7EpBXIupMkTcZiOlydAFzUVSCSJEmrjHUnSZqAsZLWJBuAJwJv7TYcSZJmkUz2IXXMupMkTc643YNfD7wE2Le7UCRJmoPdg7XyvB7rTpI0EQu2tCZ5EvCdqjpngeWOS7I5yearrr56YgFKkoataRzNRB9Sl8apO+1Qb9pqvUmS5jNO9+CjgackuQR4D/CoJO+cuVBVnVJVm6pq00EHHjjhMCVJgzaVyT6kbi1Yd9qh3rTeepMkzWfBpLWqXlZVG6rqUOBpwMer6hmdRyZJkrQCWXeSpMnyPq2SpJ5z8CRJkoZsUUlrVX0S+GQnkUiSNAevQ9VKZd1JknadLa2SpH4LXocqSdKAmbRKknrPllZJkoZrnNGDJUmSJElaFra0SpL6z+7BkiQNlkmrJKnf4ujBkiQNmUmrJKn3YkurJEmD1V3SWts7K3pJyl8Ka9Z0v42bb+20+O0f/2Cn5QNsfs37O9/GFbfc0vk2nvIrZ3Vafp734k7LZ1v3x0iSpLlUVfcbufnGTovf/vmPdVo+wI1/8Tedb2Pb927ufBv7/frTOi1/6nFP77R8TZYtrZKk/rN7sCRJg2XSKknqN+/TKknSoHnLG0lS7yWZ6GOM7W1M8okkFya5IMkJ7fQDknwsydfa//dvpyfJG5NcnOT8JA/u+JBIkjQYJq2SpJ5L09I6ycfCtgEnVdURwFHA8UmOAF4K/FtVHQ78W/sc4Bjg8PZxHPCWSR8FSZKGyqRVkqQZqmpLVZ3b/n0DcBFwCHAs8HftYn8HPLX9+1jgHdU4C1iX5K5LG7UkSauT17RKkvpv8gMxrU+yeeT5KVV1yuybzqHAkcDZwJ2raks760rgzu3fhwCXjqx2WTttC5IkaZeYtEqS+i10kbRurapNC2462Qc4HTixqq4fvR62qirJEtyDQ5KkYTNplST13zLc8ibJbjQJ67uq6ox28reT3LWqtrTdf7/TTr8c2Diy+oZ2miRJ2kVe0ypJ6rnA1NRkHwttsWlSPRW4qKpeNzLrQ8Cz27+fDXxwZPqz2lGEjwKuG+lGLEmSdoEtrZIk3d7RwDOBLyU5r532cuDPgNOSPB/4JvBL7bwzgScAFwPfB567pNFKkrSKmbRKkvpvibsHV9VnaK6mnc2jZ1m+gOM7DUqSpIEyaZUk9Vs3AzFJkqQVwqRVktR/Jq2SJA2WSaskqecy1uBJkiRpdbIWIEmSJEnqLVtaJUn9Z/dgSZIGy6RVktRvDsQkSdKgmbRKkvrPpFWSpMEyaZUk9ZwDMUmSNGTWAiRJkiRJvWVLqySp/+weLEnSYJm0SpL6zYGYJEkaNJNWSVL/mbRKkjRYXtMqSZIkSeqtjlpaC2p7N0VP235rt+Vvu7nb8gFuvL7zTWT9wd1u4NJLuy0fePu3r+18G0vhsRdf2Wn5ex9wl07LZ+1u3ZYvzSGEOHqwpKrut3HzTZ0WX5s/22n5AG/41Nc738blt2zrfBtv+LFPdVr+bg9/Yqfla7LsHixJ6j+7B0uSNFgmrZKkfnMgJkmSBs2kVZLUfyatkiQNlhcJSZIkSZJ6y5ZWSVLPBRyISZKkwTJplST1n92DJUkaLJNWSVK/ORCTJEmDZtIqSeo/k1ZJkgZrrIuEkqxL8r4kX0lyUZKHdR2YJEnSSmXdSZImZ9yW1jcA/1JVv5Bkd2CvDmOSJGmEAzFpRbLuJEkTsmDSmmQ/4KeB5wBU1S3ALd2GJUnSCLsHawWx7iRJkzXOqevDgKuAv03yhSRvTbJ3x3FJktSYHohpkg+pW9adJGmCxkla1wIPBt5SVUcCNwIvnblQkuOSbE6y+aqtV084TEnScLXdgyf5kLq1YN3JepMkjW+cX+7LgMuq6uz2+ftovoh3UFWnVNWmqtp00PoDJxmjJEnSSrJg3cl6kySNb8GktaquBC5Ncp920qOBCzuNSpKkUXYP1gpi3UmSJmvc0YNfBLyrHf3u68BzuwtJkqQZTDS18lh3kqQJGStprarzgE3dhiJJ0iymB2KSVhDrTpI0OY5GIUmSJEnqrXG7B0uStEziiL+SJA2YSaskqf/sHixJ0mB56lqS1H9LPHpwkrcl+U6SL49Me1CSs5Kc195f8yHt9CR5Y5KLk5yf5Ha3hZMkSTvPpFWS1G8BMjXZx8LeDjx+xrTXAK+sqgcBf9g+BzgGOLx9HAe8ZQJ7LUmSWiatkiTNUFWfBr47czJwx/bv/YAr2r+PBd5RjbOAdUnuujSRSpK0+nlNqySp5wJTvbim9UTgI0leS3PS9yfb6YcAl44sd1k7bcuSRidJ0irVXdJa1VnRANx4XafF1/VXd1o+AHc8oPNNdL4fe+7ZbfnAbkswAMsPu36/AnscelC3G7hua7fl37qt2/Kl+YzXpXcx1ifZPPL8lKo6ZYF1fhP47ao6PckvAacCj5l0YJKW0drdOy0+h96j0/IBnnyn/TrfxvU3d18nWHOfe3Vafnbvvg6rybGlVZLUf5M/ebW1qjYtcp1nAye0f/8j8Nb278uBjSPLbWinSZKkCfCaVklSv6W9T+skHzvnCuBn2r8fBXyt/ftDwLPaUYSPAq6rKrsGS5I0Iba0SpI0Q5J3A4+g6UZ8GfAK4AXAG5KsBX5AM1IwwJnAE4CLge8Dz13ygCVJWsVMWiVJ/bcE17aPqqqnzzHrf8yybAHHdxuRJEnDZdIqSeq/yQ/EJEmSVgiTVklS/y1xS6skSeoPk1ZJUr9ND8QkSZIGyVqAJEmSJKm3bGmVJPWf3YMlSRosk1ZJUv85EJMkSYNl0ipJ6rcEpmxplSRpqDx1LUmSJEnqLVtaJUn9Z/dgSZIGy6RVktR/DsQkSdJgmbRKknoutrRKkjRgJq2SpH4LDsQkSdKAeepakiRJktRbtrRKkvrPa1olSRosk1ZJUv95TaskSYNl0ipJ6rfEa1olSRowk1ZJUv/Z0ipJ0mBZC5AkSZIk9ZYtrZKk/nMgJkmSBsukVZLUc7F7sCRJA7Zyk9Y1u3Vb/tSabstfIjn4Xt2W/wvP6bR8gNdde23n2/jhVTd0vo2pX/iVTsvPXQ7rtHzW7t5t+dJcggMxSSJT3Z+8qj327rT8POKpnZYPcP8336nzbXDLDzrfRO73sG43sPd+3ZaviVq5SaskaThsaZUkabCsBUiSJEmSesuWVklS/zkQkyRJg2XSKknqucASXMsmSZL6yaRVktRvwZZWSZIGzFPXkiRJkqTesqVVktR/jh4sSdJgmbRKknoudg+WJGnAxjp1neS3k1yQ5MtJ3p1kj64DkyTpR6amJvuQOmbdSZImZ8Ff7iSHAC8GNlXV/YA1wNO6DkySJOC2gZgm+ZA6ZN1JkiZr3NPNa4E9k6wF9gKu6C4kSZKkFc+6kyRNyIJJa1VdDrwW+BawBbiuqj46c7kkxyXZnGTzVVuvnnykkqSBSjMQ0yQfUofGqTtZb5Kk8Y3TPXh/4FjgMOBgYO8kz5i5XFWdUlWbqmrTQesPnHykkqThsnuwVpBx6k7WmyRpfOOcbn4M8I2quqqqfgicAfxkt2FJkjRiiVtak7wtyXeSfHnG9Bcl+Uo7wM5rRqa/LMnFSb6a5HEdHAGtLNadJGmCxrnlzbeAo5LsBdwEPBrY3GlUkiRNS2BqyVtH3w68CXjHbWHkkTStZw+sqpuT3KmdfgTNIDv3pWlV+9ck966qW5c6aPWGdSdJmqBxrmk9G3gfcC7wpXadUzqOS5KkZVNVnwa+O2PybwJ/VlU3t8t8p51+LPCeqrq5qr4BXAw8ZMmCVe9Yd5KkyRqnpZWqegXwio5jkSRpdv0YPOnewMOTvAr4AfA7VfV54BDgrJHlLmunacCsO0nS5IyVtEqStKwmP3jS+iSj3TVPqaqFWsLWAgcARwE/AZyW5B6TDkySJO3IpFWS1HPpoqV1a1VtWuQ6lwFnVFUBn0uyHVgPXA5sHFluQztNkiRNQC/6W0mSNJ8kE33spA8Aj2zjuTewO7AV+BDwtCR3SHIYcDjwuV3fa0mSBLa0SpJ0O0neDTyCphvxZTTXJr4NeFt7G5xbgGe3ra4XJDkNuBDYBhzvyMGSJE2OSaskqd/Ckg/EVFVPn2PWM+ZY/lXAq7qLSJKk4TJplST1XCfXtEqSpBWiu6R18iM97mhNt/l29lnXafkATK3pfhsdV/SmNt6n0/IBpl722s63sebm73e+jeyxd7cbqO3dli8tp6mOf1MkCWDt7p0WnwMP7rR8gBz95M63QVX329jtDt2W3/FrrcmypVWS1H+2tEqSNFjWAiRJkiRJvWVLqySp30L3l5xIkqTeMmmVJPWcAzFJkjRkJq2SpP6zpVWSpMHy1LUkSZIkqbdsaZUk9Z/dgyVJGiyTVklSvyXep1WSpAEzaZUk9Z8trZIkDZZJqySp/xyISZKkwfLUtSRJkiSpt2xplST1nPdplSRpyExaJUn9Z/dgSZIGy6RVktRvwZZWSZIGzKRVktRzgSmTVkmShspagCRJkiSpt2xplST1XrymVZKkwTJplST1n9e0SpI0WCatkqR+C44eLEnSgJm0SpJ6zvu0SpI0ZNYCJEmSJEm9ZUurJKn/7B4sSdJgmbRKkvrP+7RKkjRYJq2SpH5LbGmVJGnAOklazznv/K1T+9/1m4tYZT2wtYtYlpD70B+rYT/6uA93X+4AJGk1OucL523N3usWU2+Cfv5OLJb70A+rYR+gn/th3WlCOklaq+qgxSyfZHNVbeoilqXiPvTHatiP1bAP0kQ5erBWscXWm2B1/E64D/2wGvYBVs9+aHZ2D5Yk9Z/dgyVJGiyTVknSCmDSKknSUPUlaT1luQOYAPehP1bDfqyGfZAmxIGYpFmsht8J96EfVsM+wOrZD80iVbXcMUiSNKdND7hfff6fT5tomVN3u+85XvskSdLK0JeWVkmS5mZLqyRJg2XSKklaAUxaJUkaqmW9h0CSxyf5apKLk7x0OWPZWUk2JvlEkguTXJDkhOWOaWclWZPkC0n+ablj2RlJ1iV5X5KvJLkoycOWO6bFSvLb7fvoy0nenWSP5Y5JWnahaWmd5ENaoaw79cdKrzeBdSetHMuWtCZZA7wZOAY4Anh6kiOWK55dsA04qaqOAI4Cjl+h+wFwAnDRcgexC94A/EtV/RjwQFbYviQ5BHgxsKmq7gesAZ62vFFJPZEJPxbaXPK2JN9J8uVZ5p2UpJKsb58nyRvbJOL8JA/exb2VZmXdqXdWer0JrDtphVjOltaHABdX1der6hbgPcCxyxjPTqmqLVV1bvv3DTQf9kOWN6rFS7IBeCLw1uWOZWck2Q/4aeBUgKq6paquXdagds5aYM8ka4G9gCuWOR5pqN4OPH7mxCQbgZ8FvjUy+Rjg8PZxHPCWJYhPw2TdqSdWer0JrDtpZVnOpPUQ4NKR55exwr6wZkpyKHAkcPYyh7IzXg+8BNi+zHHsrMOAq4C/bbvqvDXJ3ssd1GJU1eXAa2kqw1uA66rqo8sbldQXS9vUWlWfBr47y6w/p/muHB16/1jgHdU4C1iX5K6L3kVpYdad+uP1rOx6E1h30gqyrNe0riZJ9gFOB06squuXO57FSPIk4DtVdc5yx7IL1gIPBt5SVUcCNwIr6lqfJPvTVH4PAw4G9k7yjOWNSuqDCV/P2lzTuj7J5pHHcQtGkRwLXF5VX5wxa9UlEtJSWKl1p1VSbwLrTlpBljNpvRzYOPJ8QzttxUmyG82X7ruq6ozljmcnHA08JcklNF2NHpXkncsb0qJdBlxWVdNnat9H80W8kjwG+EZVXVVVPwTOAH5ymWOS+mHySevWqto08pj3pvRJ9gJeDvzhUuyuNAfrTv2wGupNYN1JK8hyJq2fBw5PcliS3Wkumv7QMsazU5KE5lqAi6rqdcsdz86oqpdV1YaqOpTmdfh4Va2os1RVdSVwaZL7tJMeDVy4jCHtjG8BRyXZq31fPZoVNiCC1J0lHonp9u5Jcyb/i21FdQNwbpK7sIoSCfWedaceWA31JrDupJVl2e7TWlXbkrwQ+AjNSF9vq6oLliueXXA08EzgS0nOa6e9vKrOXL6QButFwLvaH/KvA89d5ngWparOTvI+4FyakRW/AMzb+iNpaVTVl4A7TT9vE9dNVbU1yYeAFyZ5D/BQmmuqtixPpFrNrDupA9adtCKkqhZeSpKkZbLpgfevz3/0gxMtc+ou9zynqjbNNT/Ju4FHAOuBbwOvqKpTR+Zfwm1Ja4A30Yw2/H3guVW1eaIBS5I0YMvW0ipJ0vh2qkvvTquqpy8w/9CRvws4vuuYJEkaKpNWSVK/3TZ4kiRJGiBveSNJkiRJ6i1bWiVJ/WdLqyRJg2XSKklaAUxaJUkaKpNWSVLvxZZWSZIGy6RVktR/Jq2SJA2WAzFJkiRJknrLllZJUs8Fr2mVJGm4TFolSf1n92BJkgbLpFWS1G/BpFWSpAEzaZUkrQAmrZIkDZUDMUmSJEmSesuWVklS/9k9WJKkwTJplST1nzmrJEmDZdIqSeo5b3kjSdKQmbRKkvrP7sGSJA2WAzFJkiRJknrLllZJUr95n1ZJkgbNpFWStAKYtEqSNFQmrZKk/rOlVZKkwfKaVkmSJElSb9nSKknqudjSKknSgJm0SpJWAJNWSZKGyqRVktR/trRKkjRYqarljkGSpDkl+Rdg/YSL3VpVj59wmZIkqQMmrZIkSZKk3nL0YEmSJElSb5m0SpIkSZJ6y6RVkiRJktRbJq2SJEmSpN4yaZUkSZIk9db/D5SkxHqDGijWAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "Err_R7=error(xdata7, poptR7[0], poptR7[1],poptR7[2], poptR7[3], poptR7[4], recorteR7.ravel(), inc=1)\n", + "poptR7E, pcovR7E = curve_fit(gauss2d, xdata7, recorteR7.ravel(), p0=[2,2,1,1,1],sigma=Err_R7)\n", + "estrellaR7E=gauss2d(xdata7, poptR7E[0], poptR7E[1],poptR7E[2], poptR7E[3], poptR7E[4])\n", + "FWHMR7E=FWHMR_I.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptR7E[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 7 fotografÃa (Banda Rojo)\")\n", + "plt.imshow(recorteR7, plt.get_cmap('Reds'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 7 a partir de la gaussiana con incertidumbre (Banda Rojo)\")\n", + "plt.imshow(estrellaR7E.reshape(10, 10), plt.get_cmap('Reds'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 8 con incertidumbre (Banda Rojo)" + ] + }, + { + "cell_type": "code", + "execution_count": 836, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA70AAAFSCAYAAAA+ULjSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABDVUlEQVR4nO3df7wcVX3/8ff73vwiCRCSiwj5Aaj4AxWQRsTWVqxWgapYaxXqD1Br1EKr3y/W+qNff9bWarVqsSIWClhE8AeKikraaqmtoIEC8lMigiQgEAIJEPLj5n6+f8y5ZO9m9949u7N7N7OvZx77yN6Zz8w5Mzu7c86cM2ccEQIAAAAAoIqGpjsDAAAAAAB0C5VeAAAAAEBlUekFAAAAAFQWlV4AAAAAQGVR6QUAAAAAVBaVXgAAAABAZc2Y7gwAANBNSz0jNqvcx/Ot09j3I+LoUlcKAAC6gkovAKDSNiv0h5pX6jo/rwdHSl0hAADoGiq9AIBKs7iXBwCAQUalFwBQeUN2uSsst7c0AADoIiq9AIBKo6UXAIDBRqUXAFB5QyU39NLSCwDAroOL3wAAAACAyqKlFwBQeVzhBQBgcFHpBQBUmuXyB7ICAAC7DCq9AIDKo6UXAIDBRaUXAFBpVhcGsgIAALsMLn4DAAAAACqLll4AQOVxhRcAgMFFpRcAUG2WzEBWAAAMLCq9AIBKs2jpBQBgkFHpBQBUHgNZAQAwuLj4DQAAAACoLFp6AQCVxxVeAAAGF5VeAEClFc/ppX8zAACDikovAKDyaOkFAGBwUQ7oEdsH2A7bM9LfP7T9Jz1K+69tr7P9616k1wnb+9i+zPaDtj+Rpv257YvcxjNHbL/Z9qdKz2hraX/A9r9OQ7rftX1iC3H72L7R9uxe5AsAdgXTeb7uJ7aX2X7I9nAH6zjb9l+3uWzYfkK7afeLVs/JuyLbp9v+f9OdD0lKx+rjmsw7yfaPupRu28d4Rhrn235ZN9OYJO1p+f2b7POsi3uJ7QtaWefAVXpt32b7kbQzx1+ntbBc3/z42j7M9n/Z3mB7zWQ/OLaXSTpV0sER8dgW1n2b7ReUmd9MKyStk7RHRJxq+yBJb5B0UkREzopsz5L0V5I+nv4eL8iMf+532/4n2zPL3ohOpR+ZzSmf62x/3fa+rSwbEcdExDktxN0t6Qcq9jlQWUX35nJf6L5BO19Pt/rzf0T8KiLmR8T26czXrq7Vc/KuKCLeEhEf7nW6jSpi6Vi9tdd56Tbbh0g6VNI3098n2d5e85t4q+23Tm8uG0u/xQ+nfK61/clWL6K1+nlGxLckPTXtp0kNXKU3eUnameOvUzpd4fgV4R75kqTLJC2U9FxJf2r7pU1il0m6LyLu6VXmmmlxH+0v6YaaCu5TJP1xRGxoI8njJN0UEWvrpi+IiPmSni7p2ZJObmPdvXBKyucTJM2X9PddSOM8SW/uwnqBvjJU8gs9M0jn62nRzv5wga8CempXP+7a/O15s6Tz6hp+fjz+myjpDyV9zPYzSslk+Q5N+XyupFepaMgq2/lqoQFnlz1wusH2E2z/Z7oiu268udz2ZSnkmnS14lW2j0pXbf/SRbfhf7E9ZPtdtn9h+z7bF9pe2EK6j7f9H2mZdbbPs71gkkUOUPEF2B4Rv5D0I0lPbbDeF0haKWm/lO+z0/SX2r7e9gPpatlT0vQvqqgkfyvFv3Oy+DTvcNv/66I78ldsX+DUzaPJPtrL9rdt32v7/vR+SYo/W9KJkt6Z0n+BpMMlvacmva/Y/nX6jC6zvdN21zhG0n82m5kuBKyUdHDN+sc/vwdt32D7D2rmnWT7R7b/PuX9l7aPqZl/YDp+HrS9UtJI3eeRk/fafD4g6RuSDqtZ12/a/mla109t/2bNvEevgKZj8q9s3277Htvn2t6zZvVXSHqc7f1byQuwqxqSS31helXtfN3Oul20ovy5i5aedbY/7lQhmGpdLlp1/9L2tZIetn2+6s7/btzN+yO2/1vSJkk7dT20/QzbV6Xz4AWS5tTNf7Htq12UJ/7HLbTOpOV+30VZY6PtO2x/YIr4d9q+y/adtv/ENa3/k61r/FipW9ejLeC2j7C9Ki17t+1PpulzbP9r2t8PpPPyPjX7bfyc3Mrn8g7b16Zj+wLbc9K8vdyk/NRkHyx10Uvs3pTeaWl603JBzWd+ou1fpTy+d5I0Hu3a6x3fs1PTeu+y/fqa2N1sfyKlu8FFeWq3NO/IdDw8YPsa20fVLFd/3H1R0m9LOs01vT/qPuNFti9On9NPJD2+Zn0TjusGn9FJtv/b9j+k/Nzqosx1Ujpe7vHO3dVHbK9Mx/1/uqZMldI62fYtkm5J03K+B1OVZf9X0o0qGonG02xa3kyf2Wdtfyfl9wrbtfvn92zflJY9Tdpxwpvq+J1MRKyW9N+aWJZ9k+3Vttenz2u/uv02/nnumY7Te9Px81eeePHjh5J+f6o8UOmd6MOSLpW0l6Qlkv5RkiLid9L8Q9OVlfG+449VcfV2fxVXGP5M0stUXM3YT9L9kj7bQrqW9LdpmadIWirpA5PEf0rS62zPtP0kFa2V/1YfFBH/puLLcmfK90m2n6jiisjbJe0t6RIVJ7lZEfFaSb/SjivrH5ss3kX34YsknZ32w/mS/kAT1e+jIUn/kv5eJukRSael/J6kouXxYyn9nbZJ0nclHSTpMZKuSvHNPF3Szc1mpi/XiyRdXjP5Fyp+TPeU9EFJ/+qJ3YqfldY5Iuljks60H73X+EuSrkzzPqyiAt9u3mvzuUjSyyWtTn8vlPQdSZ+RtEjSJyV9J8XVOym9nqeigDJfaX9LUkSMpvUe2kpegF0R3ZsrqVLn6zbXLRXn3OUqLhAfpx2tKK2s6wQVBcUFEXGC6s7/TdJ7rYr9t7uk2ydkvigTfENFpWShpK+oaIUan/8MSWepaLlaJOnzki52a+NKPCzpdZIWpDy/1U3ucbR9tKT/K+kFKnpKHdXuuhr4tKRPR8QeKipSF6bpJ6ooNyxVsW1vUVG+2Sl7mvpzeaWkoyUdKOkQFedwaZLy006JFF1Iv63iMzpA0mJJX06zT9Ik5YLkOZKeJOn5kt7nmsaOKTxWxX5YLOmNkj5re6807+8l/Yak31RxfLxT0pjtxSrKNH+dpr9D0tds712z3trj7iRJ/6XUG65J74/PStosaV8V34nc1sVnSbpWxWf5JRX77pkqjqfXqKhwz6+Jf7WK36QRSVdr5/Ldy9I6D875Htiep+I4mKws+0xJT5S0qmbyVOXN41WUcfdSUQb8SFrXiKSvq7g1cERFmfi3apNT/m/UeD6frKJ8PV6W/d20rleq+Jxu145jtN4/qjiuHqfiN/t1kl5fM/9GSQfY3mOyPAxqpfcb6erK+OtNafo2FT8m+0XE5oiY6qb3MUnvj4gtEfGIih+590bEmojYouJAeIWn6M4QEasjYmVaz70qKjHPnWSRb0t6hYofvJsknRkRP50ir+NeJek7Kb1tKn6EdlPxI5Qbf6SKEcA/ExHbIuLrkn5St/yEfRQR90XE1yJiU0Q8qOKLNtm2ThARZ0XEgzX791BPbLmstUDSgw2mr7P9gKS1Kk5+X61Z/1ci4s6IGEuFpVskHVGz7O0R8YV0j9M5Kr6o+7i4d/qZkv5f2tbLJH2rg7xL0mdsb1Bxj/OIikKaVJykb4mIL0bEaEScr+I4eEmDdbxa0icj4taIeEjSuyUdX3dMPpj2FQD0m4E5X7exbkn6u4hYHxG/UlHBPiFjXZ+JiDvS/mjV2RFxfTr3bKubd6SkmZI+lcoEX5VUu60rJH0+Iq5ILd/nSNqSlptURPwwIn6Wzs3XqrjI3mzfvFLSv6R8blJdoTxzXfW2SXqC7ZGIeCgiLq+ZvkjSE9K2XRkRGxtsR6ufy50RsV5FOeKwtGxO+ekIFRWTv4iIh+u+I62UCz6YymzXSLpGrV8Y3ybpQ+nzv0TSQ5KelFrl3iDpbRGxNu2j/0nfvddIuiQiLkmfyUoVFbhja9Y72XE3Qarw/6Gk96Vtv05FeS3HLyPiX1JZ7wIVlbsPpc/tUklbVVSAx30nIi5L2/NeSc+2vbRm/t+m7+kjyvseLEj/15dlj0y/hw+qKHd/UakVWWqpvHlRRPwkioaP87Sj9fVYSddHxFfTfv6UpF/XrLed36irbD+somL6Q0n/lKa/WtJZEXFVyue7Vey3A2oXTp/n8ZLenbbpNkmfUHEhZNz4/lkwWUYGtdL7sohYUPP6Qpr+ThVXMX7iojvvVFeG7o2IzTV/7y/povGTs4oPeLukfSZbiYtRdL/s4ibvjZL+VXVdY2tiF0r6nqQPqeg2tFTSi2z/6RR5Hbefaq7ORsSYpDtUXJXLjd9P0tqICfcZ3FG3/IR9ZHuu7c+n7gkbVdzrtMAt3Nhue9j2R110R9so6bY0q+G+UnHlfvcG00ciYoGkuSq6Wny/Jo3X1XQ5eUDS0+rWX/vl35TezldqKYiIh2tiH91vbeRdkv48IvZUcaV3vDVDqvtMatJq9BnWx96u4kJF7TG5u6QHJskHsMvjnt5d1sCcr3PWXaP2nHu7it/8VtdVf75uxWTLNCoT1J5/9pd0au1FDBX7ZD9NwfazbP8gdW/coOKiRbN9s19dPifkOXNd9d6oolXtJhddmF+cpn9RRVniyy66VH/MDQbJbPFzqX3SxiYVZYzc8tNSFRfpRxvMa6Vc0DAPLbivLs3xZUdUfAd+0WCZ/SX9Ud1x8RwVjQrjco7VvVVsT/13I8fdNe8fkR4d/LN2Wu0+eTStdCFhvSYe17V5yfkePJD+ry/LXp5+D3dX0br+VEl/I7Vc3mz2+U747qTv8qN/t/kbdXha/6tUtHbPq0mrtn7xkKT7tHNZdkTFxbT6Y7Y2bnz/PDBZRjh314iIX0fEmyJiPxXdDv7Jk48AWT+a8B2Sjqk7Qc+JnQdSqvc3aV1Pj6LLzGukpjeNPU7S9og4N13xWqOiO8CxTeLr3aniCyepGBRAxZdtPI/12zRZ/F2SFqdp45ZOXHyn9Z2qosvMs9K2jndFa6XD4B+r6L71AhXdHA6YYtlrVZycGkpX3M5WccVsxMU9GF+QdIqkRalifF2LebtL0l4uuqKMW9ZB3mvz+TMV3X4+m/b1hM+kJq1Gx1l97DJJo0o/6OnK7hNUXMkFKskld22me/P0q+j5Omfd42rPuctU/Oa3uq76fdLKExImi2lUJqg9D94h6SN1+3xuFL2VpvIlSRdLWpouBp+u5vvmLu24SCztXC6ZbF0Pq7ggLunRVqZHu9lGxC1RdAV/jKS/k/RV2/NSy+YHI+JgFT3hXqyiC2a9dj7jcTnlpzskLWvSc2HSckGXrFPR3fjxDebdIemLdcfFvIj4aE1MzrF6r4rtqf9ujBtvnJhbM23Kp5tM4dG0XHR7Xqgd30VpYn5b/h6khpRfaPKy7N2SvqYdvf3aLm+q+O7Ubos1cT+2dfxG4UJJP5b0vjS5vn4xT0Vvifrf4HXa0bNnXH2Z9ymSbosGvStqUemtYfuPvGNQgPtVfLBj6e+71WDQhjqnS/pIqjzJ9t62j2sh6d1VdAHZ4OLehr+YJPbnxar9xy4GI3isiqsn17aQjlTcf/L7tp+frkKeqqJbxf+k+fXbOVn8j1VcGT/F9oy0rbVdgZtt6yOSHkhXwd/fYr7Hl92i4krQXKWrWpO4RJN0u3Bx/8RrVVzxuk/F1adQ8YMpFwMwPK2VjEXE7Sq643zQxf3Oz9HE7sa5ea93joqrsC9VsV1PTMfADNuvUjEY17cbLHe+pP/jYpCt+SndC2quxB6h4oci9yoosEvp9UBWLgaR+YGLAfGut/22uvmnuhioYyT9bdufcTGox7W2D+/SrqiEip6vc9Y97i9cDHC0VNLbVHTFbHddrey3yfxYRWXjz13cw/xyTSwTfEHSW1JLq23PczGoVKMeWfV2l7Q+IjbbPkJFwb6ZCyW93vZTbM+VVP+YqMnW9XNJc1K+Zqq4t/HRey1tv8b23qnX2wNp8pjt59l+eqokb1RRSB/Tztr5XGqXbbX89BMVFZiPpv08x/b4vZlTlQtKl/bXWZI+aXs/F62Rz07lsH+V9BLbL0rT57gYFKvpIF2a5FhNXZK/LukDLlrHD1bNGCupW+5aSa9J6b1BjSvjOY61/RwX97V/WEVLbLPW6dzvwVRl2UUq7u2/Pk3qpLz5HRWP/3l5umDy55p4QaCT41eSPirpTem38HwV39PD0nHwN5KuSN2XH5U+zwtV/F7vnn6z/6+K42bcc1XcxzypQa30jo9OOP66KE1/pqQrbD+k4irg22LHM6I+IOkcF10RXtlkvZ9Oy13qop/95Sqa8qfyQRXN/xtUHHBfbxaYrmK8XNL/UXGiv1pFa2RLD8aOiJtVXJn5RxVXT16iYuCKrSnkbyX9VdrOd0wWn5Z5uYruPg+kuG+r+LI18ykV9wSvU7F/vtdKvpNzVXRpWCvpBk0cgKqRb0l6smtGg0seSJ/x3SoGFXlpugp1g4r7BH6c5j1dRffnVv2xis97vYqT0bkd5H2CtK8/reKe4ftUXEU+VcWP2jslvTgi1jVY9CwV3a4uk/RLFVda/6xm/qtVFP6ASpuGlt5RSaemlp8jJZ2cCl9KFZQXqhg4aNwxKgYeOUjFPV+fK3Hzd2WDdL5ued01vqliAMWr0zJndrCuCef/FuInqCkTnKTiPPiq2nQjYpWkN6kYNOl+FQPanNTi6v9U0ofSZ/U+7RhAqlE+vqtioMcfpDTGz7fjZZOm64ri8Yh/KumftWPcj9rRnI+WdH067j4t6fjUa+yxKsYH2aiiq/x/qjj31mvncxn3KbVYfkoVhZeo6Mn1q7QNr0qzpyoXdMs7JP1MxX3e61W0lA+lyuFxKp7Uca+KltC/0OR1lE+ruAf/ftufaTD/FBVdan+tokffv9TNf1NK4z4VXYP/R535kopy33oVg3W9pllgG9+DMyS92p7Qg+LZ47+JKo63e7XjM2y7vJnKkX+konJ6n4rzUW05uJPjd7zn4mUq7jX/NxUXpL6m4gLN41Xcu9vIn6n4Lt6qYgT8L6k4jsedoGJAsEl54q0XQGdsXyHp9Iio/4GZFrZXSDo4It4+3XnpFReP7PjniDh3irjHqDgxP6PuXjegUpYNz4i/3G1Bqes85eH7royI5a3G2/6mpNMiYqXtr6poDfimpOURsc725yX9cLyLm+2bJR0VEXeVmnFUhu2QdFAUjwJBEy5GHr5O0uxutmYC3WL7S5IujIhvTHdeesHFwGfbJe0fxSB9k8W+RNJrI6LZBc5H9fIB7agg289VMZT6OhWthocor/W2qyLijOnOQy+lrlyPU3H1dlJRPKe41ccQALssa3q7NbkYjfIZKlomj1Mx2M81Ey/ca7EmDnayJk2j0gtksv0HKrqFzlXRovgtKrzYVUXEZN35q+hpKnog/HqqwIj4luqeltIMlV506kkqugbNU9Ht4BW0TEyP1HK7WsWXf6rHdwADpQuDT43Yrn0u4hmNLrKle+a+puJZ56MquvC9sPTcAKj1ZhXdWrer6NHU6hMuAEwj23+ookv3X9bcelkKKr3oSCrkDVRrar9KLbeTPpgbGERucfCpTOum6t6cBsL5mqTzIuLrtp8u6UBJ4628S1Q8w/AIFfdf1Y6SuUSNR2QHJEkRwTjiTUTE0dOdBwD5IuJrKs6bpaPSCwCovF4/ZigNOnKmpBsj4pPSo4N4PKYm5jbtuKf3YhUj4X9ZxYBKG+g1AwBAOaj0AgBQvt9S8Ui0n9m+Ok17T0Rc0iT+EhXPb10taZOk13c9hwAADIi+rPSOLFwYByxd3OVUMketzh3keqiNYVMqMZJ27ja00fySu2/HtuenkbuMhzMTaOOzHt2WFz9jZl78cBs/B2ONHkPY2G13rNW69evpjodp0esDLyJ+NFWyEXFAzfuQdHKXs4WKGhlZFAcsWzbd2QBQsiv/9+p1EbH3dOejCvqy0nvA0sX66fcumjpwXDuVxWi9sN5W/Jx5efGSNJo5sGBuxWwot2LWRhq5+2k4s2ImSbN3y4vftDE7ichcxrvNz0ugjYr42L1rpg6qMbT3ZM91b2CPNn5TNz/ccugzX3Rc/vqBEli9794M9NIBy5Zp1Y9+ON3ZAFAyz1tw+3TnoSr6stILAECZujCQFQAA2EV09OhC20fbvtn2atvvajB/tu0L0vwr0rMKAQAABhJlJwDovbYrvbaHJX1W0jGSDpZ0gu2D68LeKOn+iHiCpH9Q8YBwAAB6xi66N5f5AtpB2QkApkcnLb1HSFodEbemhwd/WVL9TXvHSTonvf+qpOenxzgAANAzQyW/gDZRdgKAadDJuXuxpDtq/l6TpjWMiYhRSRskLWq0MtsrbK+yvere+9Z3kC0AACZyyS+gTaWVnSaUm9bd16XsAkA19M0F64g4IyKWR8TyvRctnO7sAAAqohi92aW+gOk2odw00rA9AQCQdFLpXStpac3fS9K0hjG2Z0jaUxKXIwEAwCCi7AQA06CTSu9PJR1k+0DbsyQdL+niupiLJZ2Y3r9C0n9EtPNQXQAA2kf3ZvQJyk4AMA3afk5vRIzaPkXS9yUNSzorIq63/SFJqyLiYklnSvqi7dWS1qv4cQcAoKeoqKIfUHYCgOnRdqVXkiLiEkmX1E17X837zZL+qJM0uibGurv+sfz1x+aHMhfIu/DrOfPy1i8Vz/rIEFs2561+eFtWvCRp5qy8+HY+66HhvCS2bc2K9267Z8VL0tCBh+QtkLvdo1vy4iVp1pzWY903QwhgAFHpRb/YpctOALCL6qjSCwDAroAnvgAAMLhoegEAAAAAVBYtvQCASmPwKQAABhuVXgBA5dGtCQCAwUWlFwBQedzSCwDA4KLSCwCoPNPBGQCAgUWPLwAAAABAZdHSCwCoNAayAgBgsFHpBQBUHpVeAAAGF5VeAEDlDVHrBQBgYHFPLwAAAACgsmjpBQBUnBm9GQCAAda/lV7nNEKPdXn9kiIzjc0P5cVL0sb1efEzZ+XFz5qTFy9JwzPz4nvxMMyx7VnhsWFdfhpz5uXFZ+ZJWzflxUv5n/fM2XnxY/nfI+ccU0N0LMH0YCArAAAGW/9WegEAKIN7cz0OAAD0Jyq9AIDKo84LAMDgor8hAAAAAKCyaOkFAFTeEG29AAAMLCq9AIBKYyArAAAGG5VeAEDlMZAVAACDi0ovAKDyqPMCADC4GMgKAAAAAFBZbVd6bS+1/QPbN9i+3vbbGsQcZXuD7avT632dZRcAgHwu+R/QDspOADA9OunePCrp1Ii4yvbukq60vTIibqiL+6+IeHEH6QAA0DZLGqKeiv5A2QkApkHbLb0RcVdEXJXePyjpRkmLy8oYAABlcckvoB2UnQBgepQykJXtAyQ9Q9IVDWY/2/Y1ku6U9I6IuL6MNPtdPPJw/kLbt2UmMpYXvm1L3vol2XnXRTyceUi1M6Tqtq158du3ZyfhmbPyFpgxOy9+bDQvXsrf7qHhvPiIvHhJsWlD68Fj+Z8DUBYqqug3lJ0mijbOQe2ctzIT6PL6pexfpzbKTWb4eqDzSq/t+ZK+JuntEbGxbvZVkvaPiIdsHyvpG5IOarKeFZJWSNKyxft1mi0AAIC+VEbZaUK5aenS7mYYAHZxHY3ebHumih/t8yLi6/XzI2JjRDyU3l8iaabtkUbriogzImJ5RCzfe9HCTrIFAMAEvR7IqtmARbY/bvsm29favsj2gppl3m17te2bbb+oe3sD06msstOEctPIoq7nGwB2ZZ2M3mxJZ0q6MSI+2STmsSlOto9I6d3XbpoAALTDLvfVgvEBiw6WdKSkk20fLGmlpKdFxCGSfi7p3UX+fLCk4yU9VdLRkv7JduY9Cuh3lJ0AYHp00r35tyS9VtLPbF+dpr1H0jJJiojTJb1C0lttj0p6RNLx0dZNGwAAtMfq/UPpI+IuSXel9w/avlHS4oi4tCbschXnSUk6TtKXI2KLpF/aXi3pCEk/7mG20X2UnQBgGrRd6Y2IH2mKu+8j4jRJp7WbBgAAu7pJBix6g6QL0vvFKirB49aIUX0rh7ITAEyPUkZvBgCgn3Vh7NIR26tq/j4jIs7YKd0mAxbZfq+KLtDnlZ81AABQi0ovAKDyuvDIjnURsXyKNBsOWGT7JEkvlvT8mm6rayXVDsG7JE0DAAAd6vVtTgAA9JxLfk2ZXpMBi2wfLemdkl4aEZtqFrlY0vG2Z9s+UMUjan7S7vYCAIAdaOkFAFRaqxXVkjUbsOgzkmZLWplany+PiLdExPW2L5R0g4puzydHxPbeZxsAgOqh0gsAQMkmGbDokkmW+Yikj3QtUwAADCgqvQCAarO7cU8vAADYRVSj0tvO4+tirLtpjG7Ni5ekoeGs8MhN47478+Ilae4eefFz5uWnkWvskbz4eZnbICm25/UqdO43adZumQtI2rYlL35z5jE+Y2ZevCRtfrj12LHM/AAlGqLOC/RU9qOFc8tlkjSWeQdAbnwvHo/szOF1MsuKkhS5y7RxkZALi+h31aj0AgAwCVPrBQBgYFHpBQBUmtVWwwUAAKgIHlkEAAAAAKgsWnoBANVmWnoBABhkVHoBAJXHICsAAAwuKr0AgMqjzgsAwOCi0gsAqDxaegEAGFwMZAUAAAAAqCxaegEAlcYjiwAAGGxUegEA1WZpiFovAAADi0ovAKDyqPMCADC4qPQCACrODGQFAMAA699K79j2jNjR7q5fUoyN5a1/xqy8+HZs2pgXv3lTdhKx5ZGseM/fKy+B2bvlxUtSbp4WjGQnMXb3HXkL7LEwK9x7LMpbv5R9zOabmb/IcMYyVDoAYJeVXQ7KPWdt35YXL0nbtubFj27Ji9/eRvky91yXcx6VpJmz8+Kl/DLpjPzyQGSOjcuFSPRa/1Z6AQAogSWZZxUAADCwqPQCAKrNtCoAADDIOq702r5N0oOStksajYjldfMt6dOSjpW0SdJJEXFVp+kCANAq6rzoF5SbAKD3ymrpfV5ErGsy7xhJB6XXsyR9Lv0PAAAwiCg3AUAP9aJ783GSzo2IkHS57QW2942Iu3qQNgAAdG/GroRyEwCUrIyhPULSpbavtL2iwfzFkmqHwl2TpgEA0BN2uS+gA5SbAKDHymjpfU5ErLX9GEkrbd8UEZflriT98K+QpGWL9yshWwAAFKM3D1FTRf8ov9y0dGnZeQSASum4pTci1qb/75F0kaQj6kLWSqr9NV6SptWv54yIWB4Ry/delPfMUwAAmiq5lZf6MzrRlXLTSBvPfgeAAdJRpdf2PNu7j7+X9EJJ19WFXSzpdS4cKWkD96UAAIBBQ7kJAKZHp92b95F0URogZIakL0XE92y/RZIi4nRJl6gYdn+1iqH3X99hmgAAZGEgK/QJyk0AMA06qvRGxK2SDm0w/fSa9yHp5E7SAQCgE9R50Q8oNwHA9OjFI4u6LyJ/kS2P5C3wyMN58bvNy4uXFLfdmLfAunvy1n9/s0cCNuc998pL4zH75iXwmPzBNzwj77CNB+/PT2PBSF787N3yEhjdmhcvKUa3ZaaRecxu3ZwXL8kzZ7Ue3Mb3FCiDRaUXqBXt/B7HWF587nluc+Y5S1JsuDcv/v678xJ4eGNevCQND+fF75lZ3liUP9ir5+6RvUy2GTPz4p25n4AOVaPSCwBAM7Y8RK0XAIBBVcZzegEAAAAA6Eu09AIAKo/uzQAADC4qvQCAyhui1gsAwMCi0gsAqDQGsgIAYLBR6QUAVB7P6QUAYHAxkBUAAAAAoLJo6QUAVJvp3gwAwCCj0gsAqDy6NwMAMLio9AIAKo86LwAAg4t7egEAKJntpbZ/YPsG29fbfluavtD2Stu3pP/3StNt+zO2V9u+1vbh07sFAABUR/+29GZclo/ND+evf9ODefFj27PCY93avPVL0j135aVxzf9mxT9yc36ehufPyYqfdcgTs+LbKdbF3Pl5aSzYOz+RXLN3634a3W6qoikMFVU8sqjnx/eopFMj4irbu0u60vZKSSdJ+veI+Kjtd0l6l6S/lHSMpIPS61mSPpf+B8oXY/nLbN+WF7/1kazwdspNsfravPif35CXwLp1efGSNGtWVriXLsuKjycfkhUvSTrgqVnhHmqjTWxoOCs8nJcGt6igU7T0AgCqzZKHyn1NJSLuioir0vsHJd0oabGk4ySdk8LOkfSy9P44SedG4XJJC2zvW+6OAABgMPVvSy8AAKVwN1oJRmyvqvn7jIg4o2Hq9gGSniHpCkn7RMR4t55fS9onvV8s6Y6axdakaXldgAAAwE6o9AIAqm+o9ErvuohYPlWQ7fmSvibp7RGxsbbyHRFhO8rOGAAAmIjuzQAAdIHtmSoqvOdFxNfT5LvHuy2n/+9J09dKWlqz+JI0DQAAdIhKLwCg+uxyX1MmZ0s6U9KNEfHJmlkXSzoxvT9R0jdrpr8ujeJ8pKQNNd2gAQBAB+jeDACoNk/LyJ+/Jem1kn5m++o07T2SPirpQttvlHS7pFemeZdIOlbSakmbJL2+p7kFAKDCqPQCAKqv/Ht6JxURP1LxtKRGnt8gPiSd3NVMAQAwoKj0AgAqrrUuyQAAoJq4pxcAAAAAUFltV3ptP8n21TWvjbbfXhdzlO0NNTHv6zjHAABksCUPudQX0A7KTgAwPdru3hwRN0s6TJJsD6t4tMJFDUL/KyJe3G46AAB0jO7N6AOUnQBgepR1T+/zJf0iIm4vaX0AAJSG1ln0IcpOANAjZVV6j5d0fpN5z7Z9jaQ7Jb0jIq5vFGR7haQVkrRs8b7S6NbWU3/ogZy8SpJi4/q8BbZvy4t/IHP9kuL6n2XFX33BVVnxt23ekhUvSbMyW0d+Y/W9WfH7zJ2bFS9JftozsuJj88P5aWTGx/bteeuf0YPb6WfM6n4aEd1PAygDLb3oPx2VnSaUm5YuUeT8Hrfz2719NCs8Nm3Mi19zS1a8JMWqy7PiN/7w2qz4O9Y8lBUvSXPmDGfFLz3kV1nxs8fyyhuSFHP3yIr37PyyWXaZYyhvP/Ebjk51XPK2PUvSSyV9pcHsqyTtHxGHSvpHSd9otp6IOCMilkfE8r0XLuw0WwAAAH2pjLLThHLTyEjX8goAVVBGc9Mxkq6KiLvrZ0TExoh4KL2/RNJM2/wyAwB6xy6e01vmC+gMZScA6KEyujefoCbdc2w/VtLdERG2j1BRyb6vhDQBAGiZ6RqH/kLZCQB6qKNKr+15kn5P0ptrpr1FkiLidEmvkPRW26OSHpF0fGTddAIAQAlonUWfoOwEAL3XUaU3Ih6WtKhu2uk170+TdFonaQAAAFQFZScA6L2yRm8GAKA/WYz8CQDAAKPSCwCoPPfgKWEAAKA/UekFAFQfLb0AAAwsKr0AgGqzZQayAgBgYNHhCwAAAABQWbT0AgCqj+7NAAAMrP6s9I5tV2x6sOXwGB3NT2PTQ3nxG9bnxT/Uev7Hbf75mqz4yzY8nBX/y83bsuIlaUZmQXHOHXmdB/a5446seEnSE56cFz9rU3YSMZT31fDY9rwEhubkxUvy0HDeAtszP+92RvqhIoFdBd2bgR1iLH+Z7ZnnuU0b8+LvzC8PbL72F1nxP/15Xlnuqoc2Z8VL0l4z8s6lz9ma91k8eenqrHhJ8uMyy037HpCdhsbmZS7Ao6fRW/1Z6QUAoCS2ZC7QAAAwsKj0AgCqj5ZeAAAGFgNZAQAAAAAqi5ZeAEDFmfvPAQAYYFR6AQCVxz29AAAMLiq9AIBqs7inFwCAAUalFwBQebT0AgAwuBjICgAAAABQWbT0AgCqj+7NAAAMLCq9AIBqM6M3AwAwyKj0AgAqz7T0AgAwsPqz0mtLM2a2Hj5rdnYSMaO7mx5335W9zJZ7H8yKv3vr9qz4bRFZ8e0s8/DYWFb89vvztlmSZtx7d94Ce+yVnYa6fHz0xNBwXrzbuMU/Jw1a2gBg1xV553eNjubFb3kkL17S6Ma8Ze7PzNPtW7ZlxUvSxu15595DHslLIzbl7ydv25qXRmZZTpKs/DJmjmijDMsAhqhVgZI9AABToPADAMDAotILAKg2ntMLAMBAo9ILAKg8urkBADC4WrqJz/ZZtu+xfV3NtIW2V9q+Jf3f8MZJ2yemmFtsn1hWxgEAaI2Llt4yX8AkKDcBQH9pdeSasyUdXTftXZL+PSIOkvTv6e8JbC+U9H5Jz5J0hKT3N/uRBwAAqIizRbkJAPpGS5XeiLhM0vq6ycdJOie9P0fSyxos+iJJKyNifUTcL2mldj4JAADQXePP6i3rBUyCchMA9JdO7undJyLGn8vza0n7NIhZLOmOmr/XpGk7sb1C0gpJWrbfYzvIFgAANSwqqugH3Ss3LV1SYjYBoHraeDDnzqJ4eFZHD+iKiDMiYnlELN97IT15AAAl6nFLb5N7Og+zfbntq22vsn1Emm7bn7G92va1tg/v4p5AHyi93DQyUlLOAKCaOqn03m17X0lK/9/TIGatpKU1fy9J0wAA6BFLQ0PlvqZ2tnbulvoxSR+MiMMkvS/9LUnHSDoovVZI+lwZW42+Q7kJAKZJJ5XeiyWNjyp4oqRvNoj5vqQX2t4rDcTwwjQNAIDKanJPZ0jaI73fU9Kd6f1xks6NwuWSFoxXjlAplJsAYJq0dE+v7fMlHSVpxPYaFSMLflTShbbfKOl2Sa9MscslvSUi/iQi1tv+sKSfplV9KCLqCwEAAHRX+ff0jtheVfP3GRFxxhTLvF3S923/vYqLzr+Zpje7j/MuYZdEuQkA+ktLld6IOKHJrOc3iF0l6U9q/j5L0llt5Q4AgE51ZyCrdRGxPHOZt0r6PxHxNduvlHSmpBeUnTFMP8pNANBfOhm9uXuGhuXddm85PDY/nJ/GrDl58XsuzIufkb9rZ+/d+jZL0uHzZ2XFX/XQ1qx4SZqV2QF+31kzs+KH95yXl4AkbXkkL372btlJeGbe8eGZeZ9FW1zKuHPlrn844zhn9FxMp/44/k6U9Lb0/iuS/jm95z5O9Fgb34fW7mXfYdbsvPg9FuTFS5q9X97Ap/vffH9W/JG75481Nn84bz/tOzI3K96LMsujkjR3fl4aQ8P5abRzTOWsvT9+w7EL63IpGgCA6TYtA1k1cqek56b3vyvplvT+YkmvS6M4HylpQ82jbQAAQIf6s6UXAIBdWJN7Ot8k6dO2Z0jarPSMVUmXSDpW0mpJmyS9vucZBgCgwqj0AgCqr8dd4ya5p/M3GsSGpJO7myMAAAYXlV4AQLV1ZyArAACwi6DSCwCoPiq9AAAMLCq9AICKcyeDTwEAgF0cpQAAAAAAQGXR0gsAqD66NwMAMLCo9AIAqo2BrAAAGGhUegEA1UelFwCAgcU9vQAAAACAyurflt6h4dZj58zLX//cPfLix7Znhfsph+StX9KcTZuy4l9w74NZ8Utv3ZAVL0nzZucdIgc9a2lWvA9+ala8JGnfJXlp7DY/P42Zs/Lic45XSXIb15tirLvx7eSJ1jPsAizLjN4M7NDOb/dwXnnA8xdkxceSA7PiJWnmMw7Oij9k62hW/IG/Wp8VL0mzZ+eVB+Yfuiwr3k/K22ZJ8sh+eQvMmpOdRnY5SJQf0Fv9W+kFAKAsXKABAGBgUekFAFQbA1kBADDQqPQCAKqPSi8AAAOLm5wAAAAAAJVFSy8AoOIsMZAVAAADi0ovAKD66N4MAMDAotILAKg2BrICAGCgUekFAFQflV4AAAbWlDc52T7L9j22r6uZ9nHbN9m+1vZFthc0WfY22z+zfbXtVSXmGwAAoC9RdgKA/tLKyB5nSzq6btpKSU+LiEMk/VzSuydZ/nkRcVhELG8viwAAdCINZFXmC5jc2aLsBAB9Y8ozd0RcJml93bRLI2I0/Xm5pCVdyBsAAOWwy30Bk6DsBAD9pYzL1W+Q9N0m80LSpbavtL2ihLQAAMgzPpAVlV70D8pOANBDHQ1kZfu9kkYlndck5DkRsdb2YySttH1TuvrZaF0rJK2QpGWL95PGtreej5mz8jIuSTPyNj1iLCveBx2aFS9J2vxIVvieu++eFX/EmjVZ8ZKkRYuywr3v4rz1P/7JefGSNHePvPhZc/LTyF3GFejuSEEelcVzetE/yio7TSg3LV0qZ/yGRzvnrOGZefFz5meFe8lBeeuXpO2tlxUlac6ivbPiZ99/X1a8JGlm3n7yvpkN/gc+JS9ekhftm7fAzNnZaWg4s0pBmQM91nYpwPZJkl4s6dUREY1iImJt+v8eSRdJOqLZ+iLijIhYHhHL9160sN1sAQAA9KUyy04Tyk0jeReoAWDQtFXptX20pHdKemlEbGoSM8/27uPvJb1Q0nWNYgEA6Cq6N2OaUXYCgOnTyiOLzpf0Y0lPsr3G9hslnSZpdxXdbq62fXqK3c/2JWnRfST9yPY1kn4i6TsR8b2ubAUAAJOh0oseouwEAP1lyg74EXFCg8lnNom9U9Kx6f2tktq4sRUAgBKND2QF9AhlJwDoL4zsAQAAAACorI5GbwYAoP8xejMAAIOMSi8AoPro3gwAwMCi0gsAqD4qvQAADCwqvQCAarMk070ZAIBBRSkAAAAAAFBZtPQCACrO0hDdmwEAGFT9Wekd3aa4/9dZ8d3mvfbJio+N6/MT2X3PrHDvuyRv/fvsmxcvSTNn5cXPnZ8XH2N58ZI0I/OwnbtHdhIeHs5bIHc7hjLXL0lDM/Pic/O0vY3v0bbNrceObc9fP1AWujcDO7Rzj/tw5rl31pyscO8xkrd+SXpC5iONH7M0L37zw3nxkpRZfvC8BXnx8/PiJUlz5uXFz5ydn0bmb6wZZwE91p+VXgAAykQBCwCAgUWlFwBQbeY5vQAADDJKAQAAAACAyqLSCwCoPrvc15TJ+Szb99i+rm76n9m+yfb1tj9WM/3dtlfbvtn2i7qwBwAAGFh0bwYAVF/vB7I6W9Jpks59NAv28yQdJ+nQiNhi+zFp+sGSjpf0VEn7Sfo320+MCEZ/AwCgBLT0AgCqr8ctvRFxmaT6YfzfKumjEbElxdyTph8n6csRsSUifilptaQjytt4AAAGG5VeAEC1jQ9kVeZLGrG9qua1ooWcPFHSb9u+wvZ/2n5mmr5Y0h01cWvSNAAAUAK6NwMAkG9dRCzPXGaGpIWSjpT0TEkX2n5c6TkDAAATUOkFAFRffzynd42kr0dESPqJ7TFJI5LWSlpaE7ckTQMAACWgezMAoPo8VO6rPd+Q9DxJsv1ESbMkrZN0saTjbc+2faCkgyT9pPONBgAAEi29AICqs6Wh3rb02j5f0lEq7v1dI+n9ks6SdFZ6jNFWSSemVt/rbV8o6QZJo5JOZuRmAADK05+V3uEZ8p4jLYfH6Lb8NB55KCs8Nm3MivfCfbLiJSmGhvMWmD07L357G2WoGTPzl8kxd4/sRZy7zOjW7DRCs7Lis4vT7bQUdbtfRkSXEwAGR0Sc0GTWa5rEf0TSR7qXI2AHt9HdP3JPQjPyzqNtnEnl3DJKZvnBY+1ce8rcjuHMst9wG+Wy3P001Eb1oD9uIQGa6s9KLwAAZer9c3oBAECfoNILAKg+WiEAABhYU176tn2W7XvSPUjj0z5ge63tq9Pr2CbLHm37Zturbb+rzIwDANAa98tAVhgQlJ0AoL+0cuY+W9LRDab/Q0Qcll6X1M+0PSzps5KOkXSwpBNsH9xJZgEAyGYVA1mV+QImd7YoOwFA35iy0hsRl0la38a6j5C0OiJujYitkr4s6bg21gMAALDLoOwEAP2lkz5ap9i+NnXh2avB/MWS7qj5e02aBgBAb9nlvoD2UHYCgGnQbqX3c5IeL+kwSXdJ+kSnGbG9wvYq26vuXd/OxVEAAJrgnl5Mv1LLThPKTevuKyF7AFBdbZ25I+LuiNgeEWOSvqCiO069tZKW1vy9JE1rts4zImJ5RCzfe+HCdrIFAMDOXPL9vNzTizaUXXaaUG4aWVR+hgGgQtqq9Nret+bPP5B0XYOwn0o6yPaBtmdJOl7Sxe2kBwBAR2jpxTSj7AQA02fK5/TaPl/SUZJGbK+R9H5JR9k+TFJIuk3Sm1PsfpL+OSKOjYhR26dI+r6kYUlnRcT13dgIAACAfkHZCQD6y5SV3og4ocHkM5vE3inp2Jq/L5G005D8AAD0FINPoYcoOwFAf5my0gsAwK7NdEkGAGCA9Wel15aGZ7YePmN2fhrDmZs+NJwV7rl75K2/jTQ0d35e/Oi2vPh2jG3Pi581Jz+N3GXa2e7M7YjMViQPjWXFF4l0udDeVktYTp5oacM0sRh8CuiQM88RkTtszIxZefFSflkuMs+9EXnx7ci9IDfUTlkgt4zCRUJUT39WegEAKBMtvQAADCxKAQAAAACAyqKlFwBQfQxkBQDAwKLSCwCoOLd5HxwAAKgCKr0AgGqzaOkFAGCAcekbAAAAAFBZtPQCAKqP0ZsBABhYVHoBABVnujcDADDAqPQCAKqPgawAABhYVHoBANXGQFYAAAw0Ln0DAAAAACqrP1t6I6TRra3HD8/MT2PmnKxw75kXr62b8uLbMSszT3P3yE9jbHte/OaH8+KHhvPi21lmKHMbpPztHu7Dr1Juy1Y7A/3kJEFDG6aNGcgK6DFnn4PyTxIRuctklh8iMtffhh70Qsn+LIAK6sOSOgAAJaPQBwDAwKLSCwCoPlp6AQAYWFR6AQDVZktDtPQCADCouPQNAAAAAKgsWnoBANVH92YAAAYWlV4AQPUxkBUAAAOLSi8AoOJ4ZBEAAIOMSi8AoPJ4TiUAAINrykqv7bMkvVjSPRHxtDTtAklPSiELJD0QEYc1WPY2SQ9K2i5pNCKWl5JrAACAPkXZCQD6SystvWdLOk3SueMTIuJV4+9tf0LShkmWf15ErGs3gwAAdMSiezN67WxRdgKAvjFlpTciLrN9QKN5LvqLvVLS75acLwAASsI9vegtyk4A0F86vaf3tyXdHRG3NJkfki61HZI+HxFntLbakGKs9VyMbmk9dtzwzLz4mbOzwmPb1rz1S9LY9rz4GbOywj0zL15Sdp4idxuGhvPiJXk4b5lQG9udef+fhzO/SkNtfPVy70nMzVNuvCRtH80I5p5KTKMhjj/0jS6VnQZP1+/VZywAoDI6vfR9gqTzJ5n/nIg4XNIxkk62/TvNAm2vsL3K9qp719/fYbYAAKjhoXJfUyVnn2X7HtvXNZh3qu2wPZL+tu3P2F5t+1rbh3dhD6B/lFJ2mlBuWndfN/IJAJXRdqXX9gxJL5d0QbOYiFib/r9H0kWSjpgk9oyIWB4Ry/deuFe72QIAoB+cLeno+om2l0p6oaRf1Uw+RtJB6bVC0ud6kD9MgzLLThPKTSOLupFdAKiMTlp6XyDppohY02im7Xm2dx9/r+Ikv9MVbwAAusoquimW+ZpCRFwmaX2DWf8g6Z0qurCOO07SuVG4XNIC2/uWsOXoP5SdAGAaTFnptX2+pB9LepLtNbbfmGYdr7ruObb3s31J+nMfST+yfY2kn0j6TkR8r7ysAwDQCneje/PIeNfS9FoxZS7s4yStjYhr6mYtlnRHzd9r0jTsoig7AUB/aWX05hOaTD+pwbQ7JR2b3t8q6dAO8wcAQOfKH5BmXc7zU23PlfQeFS13qDjKTgDQXzodvRkAAEzt8ZIOlHRNGnF2iaSrbB8haa2kpTWxS9I0AABQAiq9AIDqm+bn9EbEzyQ9Zvxv27dJWh4R62xfLOkU21+W9CxJGyLirunJKQAA1UOlFwBQbXbPn9Ob7uk8SsW9v2skvT8izmwSfomK7q2rJW2S9PqeZBIAgAFBpRcAUH09bultdk9nzfwDat6HpJO7nScAAAYVlV4AQPWVP5AVAADYRUzvTU4AAAAAAHQRLb0AgIrztA9kBQAApk9/Vno9JM2c03r8ts3ZScS2LVnxHtuenUa2GbOywj0zL17DM/PipfyC4syx/DRyzZidFW5vy08jtytkPxaoxzI/i6E2tmE44yeE7qWYThx/AAAMrP6s9AIAUBarPy9MAQCAnqDSCwCoOLfXkwEAAFQCpQAAAAAAQGXR0gsAqDxzTy8AAAOLSi8AoPq4pxcAgIFFpRcAUG0WozcDADDAqPQCACqO5/QCADDIKAUAAAAAACqLll4AQPXRvRkAgIFFpRcAUH08pxcAgIFFpRcAUG02Lb0AAAywvqz0XnntdeuG9jvo9gazRiSt63V+pjntQdzmQU276tu8f5fXDwAD6cr/vXqd5y1oVG6SOKeRdnXTHYS0KTuVpC8rvRGxd6PptldFxPJe52c60x7EbR7UtAdxm4GeYfRmVFizcpPEOY20q5vuIKeNfH1Z6QUAoFR0bwYAYGBR6QUADAAqvQAADKpdrdJ7xgCmPYjbPKhpD+I2Az3AQFYYaJzTSLuq6Q5y2sjkiJjuPAAA0DXLD3la/PQ7F5a6zqFlT72Se7kAANg17GotvQAA5KOlFwCAgUWlFwAwAKj0AgAwqPruGQ62j7Z9s+3Vtt/VYP5s2xek+VfYPqCkdJfa/oHtG2xfb/ttDWKOsr3B9tXp9b4y0k7rvs32z9J6VzWYb9ufSdt9re3DS0r3STXbc7XtjbbfXhdT2nbbPsv2Pbavq5m20PZK27ek//dqsuyJKeYW2yeWlPbHbd+U9ulFthc0WXbSz6eNdD9ge23NPj22ybKTfh/aTPuCmnRvs311k2Xb3magr1hFS2+ZL6CPUHai7NSNstN0lZsmSZuyE9oXEX3zkjQs6ReSHidplqRrJB1cF/Onkk5P74+XdEFJae8r6fD0fndJP2+Q9lGSvt2lbb9N0sgk84+V9F0VxbcjJV3Rpf3/a0n7d2u7Jf2OpMMlXVcz7WOS3pXev0vS3zVYbqGkW9P/e6X3e5WQ9gslzUjv/65R2q18Pm2k+wFJ72jh85j0+9BO2nXzPyHpfWVvMy9e/fT6jUOeGmNrbyr1JWnVdG8XL14RlJ0oO3Wv7DRd5aZJ0qbsxKvtV7+19B4haXVE3BoRWyV9WdJxdTHHSTonvf+qpOfbnV92j4i7IuKq9P5BSTdKWtzpekt0nKRzo3C5pAW29y05jedL+kVE3F7yeh8VEZdJWl83ufYzPUfSyxos+iJJKyNifUTcL2mlpKM7TTsiLo2I0fTn5ZKW5Kyz3XRb1Mr3oe200/fmlZLObyNvAID+QNmpOcpOHZSdpqvc1CztFlF2QkP9VuldLOmOmr/XaOcfz0dj0pdug6RFZWYidft5hqQrGsx+tu1rbH/X9lNLTDYkXWr7StsrGsxvZd906ng1/xJ3a7slaZ+IuCu9/7WkfRrE9GL736DiinAjU30+7TgldQ86q0m3pG5v829LujsibmkyvxvbDEwTl/wC+gZlJ8pO01V26nW5SaLshDb1W6V32tmeL+lrkt4eERvrZl+lovvKoZL+UdI3Skz6ORFxuKRjJJ1s+3dKXPeUbM+S9FJJX2kwu5vbPUFEhIofjJ6y/V5Jo5LOaxJS9ufzOUmPl3SYpLtUdJXptRM0+ZXKaT0mgfKUfD8v9/QCE1B2Gryy0zSUmyTKTuhAv1V610paWvP3kjStYYztGZL2lHRfGYnbnqniR/u8iPh6/fyI2BgRD6X3l0iaaXukjLQjYm36/x5JF6nonlGrlX3TiWMkXRURdzfIW9e2O7l7vLtR+v+eBjFd237bJ0l6saRXpxPHTlr4fLJExN0RsT0ixiR9ocn6urnNMyS9XNIFk+Sx1G0GphWVXlQXZSfKTj0tO01HuSmti7IT2tZvld6fSjrI9oHp6tnxki6ui7lY0vjoc6+Q9B/NvnA5Uh/9MyXdGBGfbBLz2PF7YGwfoWL/dXzSsD3P9u7j71UMEnBdXdjFkl7nwpGSNtR0aylD0ytX3druGrWf6YmSvtkg5vuSXmh7r9Sd5YVpWkdsHy3pnZJeGhGbmsS08vnkplt7T9EfNFlfK9+Hdr1A0k0RsaZJ/krfZmB60b0ZlUXZibJTz8pO01VuSuui7IS29dVzeiNi1PYpKr6Qw5LOiojrbX9IxUiZF6v4cf2i7dUqbjI/vqTkf0vSayX9zDuGIX+PpGUpb6erOFG81faopEckHV/GSUPFfRgXpd/GGZK+FBHfs/2WmrQvUTEK4WpJmyS9voR0JT36xfw9SW+umVabdmnbbft8FSMajtheI+n9kj4q6ULbb5R0u4oBAmR7uaS3RMSfRMR62x9W8WMmSR+KiKwBDpqk/W5JsyWtTPv/8oh4i+39JP1zRByrJp9Ph+keZfswFd2RblPa97XpNvs+dLrNEXGmGtyDVOY2AwB6g7ITZSd1qew0XeWmSdKm7IS2uZzfHQAA+tPyQ58eP720USNI+4Ye+/grI2J5qSsFAABd0VctvQAAdAddkgEAGFRUegEA1cbgUwAADLR+G8gKAAAAAIDS0NILAKg+WnoBABhYVHoBAAOASi8AAIOK7s0AgMqzXeqrhfTOsn2P7etqpn3c9k22r7V9ke0FNfPebXu17Zttv6g7ewEAgMFEpRcAUH3jg1mV9Zra2ZKOrpu2UtLTIuIQST9X8bxL2T5YxfMfn5qW+Sfbw2VtOgAAg45KLwAAJYuIyyStr5t2aUSMpj8vl7QkvT9O0pcjYktE/FLSaklH9CyzAABUHJVeAEDFuQsvjdheVfNakZmpN0j6bnq/WNIdNfPWpGkAAKAEDGQFAKi+8kdvXhcRy9vLit8raVTSeeVmCQAANEKlFwBQbVbfPLLI9kmSXizp+RERafJaSUtrwpakaQAAoAR0bwYADIDSuzfn58A+WtI7Jb00IjbVzLpY0vG2Z9s+UNJBkn7SViIAAGAntPQCAFAy2+dLOkrFvb9rJL1fxWjNsyWtTI89ujwi3hIR19u+UNINKro9nxwR26cn5wAAVA+VXgBA9fW4e3NEnNBg8pmTxH9E0ke6lyMAAAYXlV4AQPX1xy29AABgGlDpBQBUXPv34QIAgF0flV4AQPX1yejNAACg9xi9GQAAAABQWbT0AgCqrY+e0wsAAHqPSi8AYABQ6QUAYFBR6QUAVB8tvQAADCzu6QUAAAAAVBYtvQCAijMtvQAADDAqvQCAAUClFwCAQUWlFwBQfbT0AgAwsBwR050HAAC6xvb3JI2UvNp1EXF0yesEAABdQKUXAAAAAFBZjN4MAAAAAKgsKr0AAAAAgMqi0gsAAAAAqCwqvQAAAACAyqLSCwAAAACorP8PcKglY22BY6wAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "Err_R8=error(xdata8, poptR8[0], poptR8[1],poptR8[2], poptR8[3], poptR8[4], recorteR8.ravel(), inc=1)\n", + "poptR8E, pcovR8E = curve_fit(gauss2d, xdata8, recorteR8.ravel(), p0=[1,0,1,1,1],sigma=Err_R8)\n", + "estrellaR8E=gauss2d(xdata8, poptR8E[0], poptR8E[1],poptR8E[2], poptR8E[3], poptR8E[4])\n", + "FWHMR8E=FWHMR_I.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptR8E[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 8 fotografÃa (Banda Rojo)\")\n", + "plt.imshow(recorteR8, plt.get_cmap('Reds'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 8 a partir de la gaussiana con incertidumbre (Banda Rojo)\")\n", + "plt.imshow(estrellaR8E.reshape(20, 20), plt.get_cmap('Reds'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 9 con incertidumbre (Banda Rojo)" + ] + }, + { + "cell_type": "code", + "execution_count": 837, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA60AAAFSCAYAAAAZ/jk6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA01klEQVR4nO3deZglZX3//fenZwaRRVkGF2AEJKDBDX3GLWrcdw0+ZtPEJcZIFlQwJETJoiYx8Wd8jBoTIwY1RiOiYuRniEviFqOioIgCGkdFhk0YZJMd5vv8UdVwpunlzMyp7uqu9+u6ztV9arnrW3W2+1v3XXelqpAkSZIkqY+mljoASZIkSZLmYtIqSZIkSeotk1ZJkiRJUm+ZtEqSJEmSesukVZIkSZLUWyatkiRJkqTeWr3UAUiSNJ91WV3XM9nbs21i8yer6ikTLVSSJHXCpFWS1GvXU/wiO0+0zHdw9dqJFihJkjpj0ipJ6rXgtSySJA2ZSaskqfemkskWONnexpIkqUMmrZKkXrOlVZKkYTNplST13tSEG1ptaZUkafnw5LUkSZIkqbdsaZUk9Z5nWCVJGi6TVklSr4VMfiAmSZK0bJi0SpJ6z5ZWSZKGy6RVktRroYOBmCRJ0rLhyWtJkiRJUm+ZtEqSem9qwo+FJFmX5LNJzk5yVpIjR+a9LMl32ulvGJn+qiQbknw3yZO3f68lSRLYPViS1HeBLP5ATDcDR1fV15PsCpye5NPAXYHDgAdU1Q1J7gKQ5BDgOcB9gL2B/0xycFXdstiBS5K00pi0SpJ6LSx+t6Cqugi4qP3/6iTnAPsALwFeX1U3tPMuaVc5DDihnf7DJBuAhwBfXuTQJUlaceweLEnqvalM9rE1kuwPPBA4FTgYeFSSU5N8PsmD28X2ATaOrHZ+O02SJG0nW1olSUO0NslpI8+Pq6rjZi6UZBfgI8BRVXVVktXAHsDDgAcDJya556JELEnSQJm0SpJ6r4NuQZuqav18CyRZQ5Owvr+qTmonnw+cVFUFfDXJZmAtcAGwbmT1fdtpkiRpO9k9WJLUa819WjPRx4LbbEZ+Oh44p6reNDLr34DHtsscDOwAbAJOBp6T5A5JDgAOAr460QMhSdJA2dIqSeq9JTjD+gjg+cC3kpzRTjsWeBfwriTfBm4EXti2up6V5ETgbJqRh49w5GBJkibDltatkGT/JNVe00SSzyX5rUXYbpK8O8nlSXp/5j7JvZKckeTqJC9vp70pyZu3sby/TnLUJGPcim2/J8lfLsF2z0rymDGWu3+SL3UfkTQsVfXFqkpV3b+qDm0fp1TVjVX1vKq6b1U9qKo+M7LO66rqwKq6V1X9x1LGP2RL9VvdN0keleS721nGNh27ma/Bcjbu7/FylOQ/krywB3HcI8lPk6yaY/5rkryvo213/v2Q5H+SPLDLbcyz7XOTPGGRtznv6zlj2Zcl+T/jlLssk9b2BbiuPSDTj7eNsV4l+ZnFiHEhSX4uyVfbxO7MJI+cZ/FHAk8E9q2qh4xR9lLv5zHAZ6tq16p6a5JH0QxY8odbW1CSvYAXAO9onz8myeaR1/2CJK+daPQTMuN9enGbAO8yzrpVdZ+q+twYy50JXJHkmdsbr9RXTffgpRs9WNtmgL/VS2rmcauq/66qey1lTCvBuL/Hy1FVPbWq/nmxtzszkaqq86pql5XYO6Wtn11dVd9on78myU0j34nnJPnFJQ7zdkZOPE3HeW6SV46z7la+nu8Efj3tPc/nsyyT1tYz2wMy/Xjp9ha4WGcEk+wB/F/gb4DdgDcA/zfJ7nOssh9wblVdsxjxzWfMY7QfcNbI8wOAX62qm7Zhk78BnFJV141Mu3D6dadJ6F+c5FnbUPZieGYb56E0t8x4VQfbeD/w2x2UK/XG1IQfWjRD+q1eEttyPFZCC6iWn+X+vtvG+H8H+JcZ0z44Uo89Cnhfkrtub3wd2a2N85eAP03yxEkWXlXXA/9B00A1rxX3253kZ9LcO+/KJJuSfLCd/oV2kW+2Zwx+tW21Oz/JHyW5GHh3kqkkr0zy/SSXJTmx/eFaaLsHJvlMu86mJO9Pstsci/8ccHFVfaiqbqmq9wGXAs+epdwXA/8EPLyN+7Xt9Jck2ZDkJ0lOTrL3XPs53/LtvCcl+W57zP6hPX6/1c77jTTdGv42yWXAa+bb1ySfoRmk5G3t9g8GHgf8Xjt/9yQfT3Jpmu7OH0+y7zyH9qnA5+eaWVU/BL4EHDKyP29JsjHJVUlOT9PSOz3vNe1r+t72zPlZSdaPzH9gkq+38z4I7Dgyb2tjH43zYuCTNMnrdHm/0G7/ijTdU352ZN6tZyHTDOzy5iQXto83J7nDSPGfAx4/Y5q0okyRiT60tFbab3Vb9kOSfLn9Tr8oyduS7DDHstOtGIe33+sXJfmDcctq1z0iyfeA78133EbWObc9hmcC12SWCniSJyb5Tvu6vA22/LAk+c00LUOXJ/lkkv3mOHYzy31Ru97VSX6QZM4TrUlWJfn/2tfnh0lemi27e89ZVpo6yxdnlHdrC3SSpyU5u133guljnmRt+5t+RZp60n8nmRo5btO/x+O8Lr+T5HvtMn+fNCO/beV7jyT3SfLpNp4fJzm2nT5nnWDks3J0kkvaGF80zzZu7Ro7feySvLF9fX+Y5Kkjy+6R5lK1C9v5/zYy7xlpLgu7IsmXktx/ZN7M990HgHvQnAD6aZJjcvsu/Qek+X64OsmnaUZony5vi/f1LK/Ra5J8KMn72vW/leTgJK9qj8nGJE+acSgOTNOj4qokH0v7XTIS14uTnAd8pp0+1uegfW88jvnrsZ8ErgYObNfZPfPUNdvX7C/S1M2vTvKpJKPH5/lJftS+z/54Rjxjf0fNEudpNA1Sh7ZlTSX5k3Zbl6SpV995xnGbfj33TpN7/CRNLvKSGcV/Dnj6QjGsuKQV+AvgU8DuNLcc+DuAqvr5dv4D2rMbH2yf343mnnv7AYcDLwOeBTwa2Bu4HPj7MbYb4K/bdX6W5tYHr1lg+ZnP7ztzoao6nuYszZfbuF+d5HHttn4FuDvwI+CEufZzvuXbN/qHaVoA9wS+S/NDPeqhwA+AuwKvm29fq+pxwH8DL223/78zypoC3k1zvO8BXAfM113sfm1Ms0pyEM2AKV8Zmfw1mg/VHsC/Ah9KsuPI/F9o9383mhE/39aWtQPNyKD/0q77IWC0y8bWxj4a5740CfiG9vnBwAdozrDtBZxC8wU+25fHH9PcE/JQ4AHAQ4A/mZ5ZVRcANwF2A9OKZPfgFWlF/Va3bgFeQVPBfjjweNoTtvN4LM1I008C/ii3dZkcp6xn0fw+HzLPcZvpuTSVw92q6uYtdqypD5xE8/uyFvg+ze/r9PzDaAYjezbN79Z/0/yOjeMS4BnAnYAXAX+b5EFzLPsSmt/LQ4EHtfu5rWXNdDzw21W1K83rOH1N+tE0t7Pai6aucyxQs6w/zuvyDJpLou5PU+96cjt97Pdekl2B/wQ+0S7/M8B/tbPnrRPQfFbuDOwDvBj4+4zfO+ChNHWutTQ9C45Pbh1u/V+AnYD7AHcB/raN9YE0A9T9Nk098h3AydnyRPro++65wHnc1gvjDbPE8a/A6W0cfwFs7XW3z2zj3R34Bk2jwRTNMfnzNsZRLwB+k6aOfDPw1hnzH03zmj15Kz8HBwGbq+r82Wam8XSaUejPbiePU9f8NZr3/l3adadPvhwCvJ1mEMG9aV6P0caVbfmOmo71YTSfmQ3tpN9oH48F7gnsMkuc006g+XztTdNi+1dtbjLtHJr38vyqatk9gHOBnwJXjDxe0s57L3AczfWfM9cr4GdGnj+GZvTHHUemnQM8fuT53WkSgtXA/m0Zq9t5nwN+a44YnwV8Y455e7YxPxdYQ/Nh3Ay8Y47lfwP44sjz44E3jDzfpY1x/zn2c87laT6oXx6ZF2Dj9H612z5vgddji32deVyA9wB/Oce6hwKXz1P2TcC9Z7xmm9vjd1W7rycBO8xTxuU0P+TQ/ED858i8Q4Dr2v9/HrgQyMj8L21H7OfSvE+vbuP8L5ovbIA/BU4cWXaK5p6OjxlZ9wnt/98Hnjay7JNpuouPbusC4OcX83Pow8diPfbNqnrjHfeY6AM4ban3a6U/GNhv9SzrHwV8dI550zGO/r69ATh+nLLadR83xnE7f8br8ZvzxPsC4Csjz0NT0ZyuD/wH8OKR+VPAtcB+8+zf6jm29W/AkXPM+wxNYjn9/AnjlsWM+tLM40KTLP02cKcZy/w58LHR4zfjuD1hK16XR448PxF45Ta89547z7w56wTta37d6LGiSfIfNkdZn2PL+t6GkXk7tftzN5rP12Zg91nKeDvwFzOmfRd49Fzvu5nHdPT9QpOo3QzsPDL/X4H3zfa+nlkeTT3v0yPznknzPbSqfb5ru63dRo7B60eWP4Tm+2bVSFz3HJm/NZ+DR9D01hid9pq2/CuAa2gSyWPm+Vweykhds433T0ae/x7wifb/PwNOGJm3c7utsd6/M+ZN7/sV7XuqgDfS1pFp6rS/N7L8vZjlO5jm5MwtwK4jy/418J6R5wcBt8x1DKYfy7ml9VlVtdvI453t9GNovmi/mqbr5W8uUM6l1fSnnrYf8NG26fwKmh/GW2jOvM0pyV2TnJCmu8lVwPsY6c4wqqouAw4Dfh/4MfAUmjNqs56JmcXeNK2l0+X9FLiM5gzS1i6/N02SOj2vZolj4+iTrdnXmZLslOQdbXeCq4AvALtl7hHGLqf5ghl1Yfua34mmtfQ64NaBBJL8Qdtt48r2NbzzjPguHvn/WmDHtgvD3sAF7TGYdutx24bYoXmf7krzJXvvkThmviabaY7zbK/hFsu2/+89Y5ldab5YpBXJa1qXrcH8VrddED+eZuC9q4C/mqvsEaO/r7d+t49Z1ka23nzrzFYfGF1+P+AtI8f8JzSv4Vx1j1sleWqSr7TdA68Ansbcx2aLOGbGvJVlzfSL7fI/StP99OHt9L+haUH6VJoux7MOODPm6zKzjrFLu+7W1J3W0SSns1moTnBZbdmKfmsMY7g19qq6tv13lzaen1TV5bOssx9w9PT7on1N1s2IaWveq3vTJGmj47j8aK6F5/Djkf+vAzbVbYMCTY+RMnpMZn4O17Dla7Otn4PZ6rDQNFrsVlU703QLfkHabu5j1jVnfY9x+8/wNTT1fdqyt+U7am1b/tE0ddk1I9ua+T5cze2/g/emee9cPWPZ0eO1K3DlAnGsvN/uqrq4ql5SVXvTnE37h8w/CmHNeL4ReOqMH9kdq+mCOZ+/asu6X5tMPY/bdysajfPzVfXgqtqDphn/3ox/I/oLaT40ACTZmeaM8Fwxzrf8RYx0HWi7gcy8TnPmMdqqfZ3haJqzMQ9t153u0jTX+mcCB89VWFVdSXMG7plt/I+iqQz9Cs0Zwd1oPgjjxHcRsM9IVxhozvhta+yjcX6epsX5je2kma9JaL7kZ3sNt1i2jenCkXX3oekesl23NpD6KhPuGmz34KW3Qn+r3w58BzioLfvY+cpurRv5f/S7fZyyZh6Tccy3zkWj8Yz8Lk3bSNMCOnrM71hV8952re0m+hGa37+7tr/LpzD3sdmiXjIjpoXKuoamhXB6+buNFlxVX6uqw2i6Vf4bTUsoVXV1VR1dVfekuYTo95M8fpbYtuU1nrY1772NNF0uZzNvnaAjG4E9Mvs1uBuB1814X+xUVaNdZme+7xZ6H+7e1lWnjdbFZr7Gq2i66W6PmZ/Dm4BNI9NG492az8GGJsTMeWKnqs6lab2dvgvENtc1uf1neCea+v60bXr/VnNN/5uA67mtO/Fs78Ob2fKEwfRye7Rd3keXHf2u/lngmwvFseKS1iS/nNsuWL6c5o22uX3+Y+b+Epj2j8Dr0l5UnWSvtv/6Qnal6X5wZfvmnPf2LmkG/FmT5E40X74bq7kYexwfAF6U5ND2C/yvgFPbNz7cfj/nW/7fgfsleVbb2ngETVeQie3rLOteR3Oblj2AVy+w/Ck01xLMKs0tZJ7DbaMV70rzobkUWJ3kz2iuexnHl9t1X96+Ns+muVZkW2Of6c3AE5M8gOaH8ulJHp9kDc2X1A003ZFn+gDwJ+17cS1N94/R+5U9GvhMVd2wlfFIy4YDMa0sK/S3eleay1Z+muTewO+OEc+fti0r96G5Rm36WtRtKWuc4zaffwfuk+TZbX3g5WxZH/hH4FVtrCS5c5JfHqPcHYA70Pwu35xmcJ+ZA+GMOhE4Msk+bZL0R1tR1jfbfTg0zVgWr5mekWSHJL+e5M7V3M3gKtr3XJqBhH6mTdSvpGm138ztbcvrMrruuO+9jwN3T3JUmoGXdk3y0HbeQnWCiauqi2gSq39IM1DQmiTTydQ7gd9J8tA0dk7y9BlJykxzvler6kfAacBr29fskdyW0AH8L00Puae39ac/oXlPbI/nJTmkTfL+HPhwzX27lrE/B1V1I03vjPnqsfvS9OIYrcdua13zw8AzkjwyzRgpf86Wud72vH8BXg8c0362PgC8Is2gWbvQ5BYfnNHKT1VtpKnb/nWSHdMM0vVibl+PXfDe5ss5aZ0edWz68dF2+oOBU5P8lGaQnSOr6gftvNcA/5ymSf9X5ij3Le16n0pyNc0APw+dY9lRr6UZMOBKmi/+kxZY/hiaszgbaa4V+H/H2AYAVfWfNNdEfoTmrMqBNInbtNcwsp/zLV9Vm4BfprmW5jKavvyn0SRQc9nafR31ZuCONPv+FZpBBubzXuBpSe44Mm3v6dedpovBHsCvt/M+2Zb5v+286xmzW0r75fJsmus6fgL8Klvu29bGPrP8S9v9+bOq+i7NWda/a8t7Js2gBDfOsupf0rwmZwLfAr7eTpv26zRfotKKZUvrsjWk3+o/oBkg5WqaivxcgyGN+jxNa8x/AW+sqk9tR1mvYeHjNqeR+sDraeoDBwH/MzL/o8D/AU5I07Xw2zQDJi1U7tU0CfCJNCcofo3mtZvLO2kG6TqTZhCdU2hOKN+yUFnVDP745zSJwveALUYSpmktP7eN/3e4re5wULvOT2lOYP9DVX12lti25XWZNvZ7r93PJ9LUDS5u9+Wx7eyF6gRdeT5NC+R3aK6TPaqN9TSawbPeRvOabKCpR83nr2kS7ysyMmr2iF+j+Tz/hCZpe+/0jLaH3e/R3FnjApqW13Evr5vLv9D0hruY5q4RL59rwW34HLyD5tiN+tWReuzXaD5nr23nvZltrGtW1Vk0jU//SlPfv5wtj832vH+hed9eTvN6v4vmuH0B+CFNfftlc6z3XJrrXC8EPgq8us1NaBPgpzFymd9cpi+mlYBmCGuaN/ivz/GFveiS/BVwSVW9ealjWSxphlZ/XlV9YYHl7k8zKMjD51tOWs7usWp1/dEdd5tomS+95rLTq2r9wktKk5dkf5qK3pqZLRPaUtua+o9Vtd+CC0s9lOR/aO6q8Y2ljmUxJLknTePRmlog0UzyMmBdVR2zULnL+ia/mowkTwZOpemO8Ic0/du/Mu9Ki6iqjl3qGBZTkr1ors84d6Flq+pMmmHLpRUrLO9uQZLG1/aseixNa+tdaVraPjrvSlKPVdUjFl5qRbkv8KOFElaAqvq7cQu1HiBokp7vc1s31WdV1XXzr6IuJHkwTTegv6uq85Y6Hqkv7B4sDUZoukpeTtM9+Bya6zYl9VyS36e5ndmsI3BvV9l2D5Yk9dn+q9bUH++020TLPPynm+weLEnSMmH3YElS79k6KknScNk9WJIkSZLUW520tK5du2ftf497LLzg9rjup92Wv3pNt+UDrN6h+23cclO35WcRmj82z3artElvY67bcU3QquXdseHc8y9k008ut71LS8I3nlayRak3SVp0p3/jjE1VtddSx7ESdFKL3v8e9+C0L36ui6JvdctZX+q0/Ox5t4UX2t5trN134YW21xWXdFv+IiT3df01nW+Da6/qfBO509puN1DdJvcPfuZzFl5I6kCwe7BWtsWoN6kfFmUsmZUyXk3HDSNZhIaX7LzbjzrfyEAs76YfSdIgTNnWKknSYHlNqyRJkiSpt2xplST1Wry3qiRJg2bSKknqPbsFSZI0XCatkqTes6FVkqThMmmVJPVaM3qwaaskSUNljytJkiRJUm+NlbQmeUqS7ybZkOSVXQclSdKoTPghdc26kyRNzoJJa5JVwN8DTwUOAZ6b5JCuA5MkaZpJq5YT606SNFnjtLQ+BNhQVT+oqhuBE4DDug1LkqTbmLRqmbHuJEkTNE7Sug+wceT5+e20LSQ5PMlpSU67dNNlk4pPkiSSTPQhdWzBupP1Jkka38QGYqqq46pqfVWt32vtnpMqVpIkacWx3iRJ4xvnljcXAOtGnu/bTpMkqXN26dUyZN1JkiZonJbWrwEHJTkgyQ7Ac4CTuw1LkqTbTE34IXXMupMkTdCCLa1VdXOSlwKfBFYB76qqszqPTJKklpehajmx7iRJkzVO92Cq6hTglI5jkSRpVrGDsJYZ606SNDn2kpIkSZIk9dZYLa2SJC0VB2KSJGnYTFolSb1n0ipJ0nCZtEqSem/KrFWSpMHymlZJkmZIsi7JZ5OcneSsJEfOmH90kkqytn2eJG9NsiHJmUketDSRS5K08tjSKknquSzF6ME3A0dX1deT7AqcnuTTVXV2knXAk4DzRpZ/KnBQ+3go8Pb2ryRJ2k7dJK21mbrx+k6KnpY77tRp+XXpBZ2WD0CWf0N37tDt6wDA5lu638Yti7CN2txx8d2WT3VbvDSXpRiIqaouAi5q/786yTnAPsDZwN8CxwAfG1nlMOC9VVXAV5LsluTubTmSlom65eZuN3BTt/VjAG68ofttTK3qfhs77Nhp8bV6h07L12TZ0ipJ6rdAlvCa1iT7Aw8ETk1yGHBBVX0zWwa1D7Bx5Pn57TSTVkmStpNJqySp9zrIWdcmOW3k+XFVddzttpvsAnwEOIqmy/CxNF2DJUnSIjFplSQN0aaqWj/fAknW0CSs76+qk5LcDzgAmG5l3Rf4epKHABcA60ZW37edJkmStpNJqySp96YW+arWNFnp8cA5VfUmgKr6FnCXkWXOBdZX1aYkJwMvTXICzQBMV3o9qyRJk2HSKknqtaUYiAl4BPB84FtJzminHVtVp8yx/CnA04ANwLXAizqPUJKkgTBplST13mIPxFRVX2SBXLmq9h/5v4AjOg5LkqRBMmmVJPXeEg4eLEmSltjyv1GoJEmSJGnFsqVVktR7sa1VkqTBMmmVJPVagClzVkmSBsukVZLUe+askiQNl0mrJKn3TFolSRouB2KSJEmSJPWWLa2SpN5zICZJkobLpFWS1HsxZ5UkabBMWiVJvRa8lkWSpCGzHiBJkiRJ6i1bWiVJvWfvYEmShsukVZLUe/GiVkmSBsukVZLUe6askiQNl0mrJKnXgkmrJElD5kBMkiRJkqTesqVVktRvide0SpI0YN0krVVw4/WdFH2rNTt2W/71F3dbPsA1V3S/jVtu6bT4zd/6UqflA9xy8kc738bUXnt2vo088emdlj914AM6Ld/+mVpKU77/pMGrzd3WaQC49qpOi9/8/TM6LR+A7yzCNnZbhHrToY/qtvw99u60fE2WLa2SpN6LWaskSYNl0ipJ6rUA9g6WJGm4HIhJkiRJktRbtrRKkvottrRKkjRkJq2SpN5z9GBJkobLpFWS1HvmrJIkDZdJqySp92xplSRpuByISZIkSZLUW7a0SpJ6zVveSJI0bAu2tCZZl+SzSc5OclaSIxcjMEmSAAhMJRN9SF2y7iRJkzVOS+vNwNFV9fUkuwKnJ/l0VZ3dcWySJAG2tGrZse4kSRO0YNJaVRcBF7X/X53kHGAfwC9eSdIiiAMxaVmx7iRJk7VVAzEl2R94IHBqJ9FIkiStINadJGn7jT0QU5JdgI8AR1XVVbPMPxw4HOAe++4zsQAlScMWII51r2VovrrTFvWmdeuWIDpJWj7GqgYkWUPzpfv+qjpptmWq6riqWl9V6/fac49JxihJGrI092md5EPq2kJ1py3qTWv3XPwAJWkZWbClNc2v+/HAOVX1pu5DkiRpS+aZWk6sO0nSZI3T0voI4PnA45Kc0T6e1nFckiRJy5V1J0maoHFGD/4izSVFkiQtCbv0ajmx7iRJk+XQFpKk3ksm+1h4e1mX5LNJzk5yVpIj2+l/k+Q7Sc5M8tEku42s86okG5J8N8mTOzsYkiQNjEmrJKnXAkwlE32M4Wbg6Ko6BHgYcESSQ4BPA/etqvsD/wu8CqCd9xzgPsBTgH9IsmryR0OSpOExaZUk9duEW1nHyVmr6qKq+nr7/9XAOcA+VfWpqrq5XewrwL7t/4cBJ1TVDVX1Q2AD8JBJHwpJkobIpFWSpHkk2R94IHDqjFm/CfxH+/8+wMaReee30yRJ0nZacCAmSZKWWgcDMa1NctrI8+Oq6rhZtrsLzb02j6qqq0am/zFNF+L3TzowSZK0JZNWSVLvdTB48KaqWj//NrOGJmF9f1WdNDL9N4BnAI+vqmonXwCsG1l933aaJEnaTss3ad18S7flr9mh2/IBdrpT55uojf/bafnXvuPdnZYP8IennNP5Np68+86db+OZd75zp+XXAffrtHxq4UWkLoROktb5t9k07R4PnFNVbxqZ/hTgGODRVXXtyConA/+a5E3A3sBBwFcXMWRp5bv5ps43UT/+Uaflb37fOzstH+CLH/pm59s44G7d15vWHXt9p+Xnsb/UafmarOWbtEqShiEhU4t+y8tHAM8HvpXkjHbascBbgTsAn267LH+lqn6nqs5KciJwNk234SOqquOzq5IkDYNJqyRJM1TVF2kaeWc6ZZ51Xge8rrOgJEkaKJNWSVLvLXb3YEmS1B8mrZKk3psya5UkabBMWiVJvbYUAzFJkqT+MGmVJPVeB/dplSRJy8TUUgcgSZIkSdJcbGmVJPVb7B4sSdKQmbRKknrP7sGSJA2XSaskqffMWSVJGi6vaZUkSZIk9ZYtrZKkXmtueWNTqyRJQ2XSKknqt0DsFyRJ0mCZtEqSei62tEqSNGAmrZKk/psyaZUkaajscCVJkiRJ6i1bWiVJ/Wf3YEmSBsukVZLUb3H0YEmShsykVZLUf17TKknSYJm0SpJ6LnYPliRpwByISZIkSZLUW7a0SpJ6LYHYPViSpMEyaZUk9Z/dgyVJGiyTVklS79nSKknScHWXtHZdwbjlpm7L33HnbssHsqr7cwb10ys7LX/jdzZ1Wv5iOfvaGzrfxjNvvLHbDdTmbsunOi5fmoctrVKvVS3Cb0Tnv3NQP7280/Kv+saPOi0f4IObrup8G0+4+ebOt7HvBed1u4GucwlNlAMxSZIkSZJ6y+7BkqR+S7xPqyRJA2bSKknqvdg9WJKkwTJplST1ny2tkiQNlte0SpIkSZJ6y5ZWSVK/BUcPliRpwExaJUm9F/sFSZI0WCatkqT+s6VVkqTBGjtpTbIKOA24oKqe0V1IkiSNSIgDMWkZsu4kSZOxNR2ujgTO6SoQSZKkFca6kyRNwFhJa5J9gacD/9RtOJIkzSKZ7EPqmHUnSZqccbsHvxk4Bti1u1AkSZqD3YO1/LwZ606SNBELtrQmeQZwSVWdvsByhyc5Lclpl172k4kFKEkatqZxNBN9SF0ap+60Rb1p02WLGJ0kLT/jdA9+BPALSc4FTgAel+R9MxeqquOqan1Vrd9rzz0mHKYkadCmMtmH1K0F605b1JvW7rkUMUrSsrFg0lpVr6qqfatqf+A5wGeq6nmdRyZJ0hJJsi7JZ5OcneSsJEe20/dI8ukk32v/7t5OT5K3JtmQ5MwkD1raPdBSsu4kSZPl7dolST034UGYxusefDNwdFUdAjwMOCLJIcArgf+qqoOA/2qfAzwVOKh9HA68fdJHQZKkoRr7Pq0AVfU54HOdRCJJ0hwW+zrUqroIuKj9/+ok5wD7AIcBj2kX+2ea38Q/aqe/t6oK+EqS3ZLcvS1HA2bdSZK231YlrZIkLbrQxXWoa5OcNvL8uKo6btbNJ/sDDwROBe46koheDNy1/X8fYOPIaue300xaJUnaTiatkqTe66CldVNVrR9ju7sAHwGOqqqrRuOoqkpSkw5MkiRtyWtaJUmaRZI1NAnr+6vqpHbyj5PcvZ1/d+CSdvoFwLqR1fdtp0mSpO1k0ipJ6r9FvuVNmibV44FzqupNI7NOBl7Y/v9C4GMj01/QjiL8MOBKr2eVJGky7B4sSeq38Uf8naRHAM8HvpXkjHbascDrgROTvBj4EfAr7bxTgKcBG4BrgRctarSSJK1gJq2SpN7L5AdimldVfZFmCKjZPH6W5Qs4otOgJEkaqO6S1nTb8zi77tFp+dxyc7flA7V5c+fb4IbrOy1+3UEdvw7AUy6/tvNtPODud+p8Gznw4G43cP013ZZfi/B+lSQtS4txW6qaWtX5NrLn3p2Wf+cnLTj+23Y75sobO9/GXgfs3vk28rP373YDa3bstnxNlC2tkqT+W/zuwZIkqSdMWiVJ/dbNfVolSdIyYdIqSeq9xeh6KEmS+smkVZLUc+PdpkaSJK1M3qdVkiRJktRbtrRKkvrP7sGSJA2WSaskqd+CSaskSQNm0ipJ6j+TVkmSBsukVZLUc4Eph2CQJGmorAVIkiRJknrLllZJUv/ZPViSpMEyaZUk9ZsDMUmSNGgmrZKk/jNplSRpsExaJUk950BMkiQNmbUASZIkSVJv2dIqSeo/uwdLkjRYJq2SpH5zICZJkgbNpFWS1H8mrZIkDZZJqySp5xyISZKkIbMWIEmSJEnqLVtaJUn9Z/dgSZIGy6RVktRvDsQkSdKgmbRKkvrPpFWSpMHymlZJkiRJUm9119J6yy2dFQ3Arnt0WnxuvKHT8gHqyks73wZ73rXT4nd69pM7LR/gGQ8+r/Nt5N736XwbHHhIp8XXZRd3Wj4339Rt+dIcQoijB0tatabzTWTPvTstf+pXX9Jp+QD7PfJxnW+Dne/U+Sam9uu23sSOO3VbvibK7sGSpP6ze7AkSYNl0ipJ6jcHYpIkadBMWiVJ/WfSKknSYHmRkCRJkiSpt2xplST1XMCBmCRJGiyTVklS/9k9WJKkwTJplST1mwMxSZI0aCatkqT+M2mVJGmwxrpIKMluST6c5DtJzkny8K4DkyRJWq6sO0nS5Izb0voW4BNV9UtJdgB26jAmSZJGOBCTliXrTpI0IQvWApLcGfh54HiAqrqxqq7oOC5Jkm6TTPax4ObyriSXJPn2yLRDk3wlyRlJTkvykHZ6krw1yYYkZyZ5UIdHQsuAdSdJmqxxTl0fAFwKvDvJN5L8U5KdO45LkqTG9EBMi5i0Au8BnjJj2huA11bVocCftc8Bngoc1D4OB94+gb3W8mbdSZImaJykdTXwIODtVfVA4BrglTMXSnJ4e+b5tEsv+8mEw5QkDVfbPXiSjwVU1ReAmT9mBdyp/f/OwIXt/4cB763GV4Ddktx9Qjuv5WnButMW9aZNly1FjJK0bIyTtJ4PnF9Vp7bPP0zzRbyFqjquqtZX1fq99txjkjFKktQHRwF/k2Qj8EbgVe30fYCNI8ud307TcC1Yd9qi3rR2z0UPUJKWkwWT1qq6GNiY5F7tpMcDZ3calSRJoybfPXjtdCtX+zh8jCh+F3hFVa0DXkF7vaI0k3UnSZqscUcPfhnw/nb0ux8AL+ouJEmSZpj8fVo3VdX6rVznhcCR7f8fAv6p/f8CYN3Icvu20zRs1p0kaULGSlqr6gxga3/cJUnaftMDMS29C4FHA58DHgd8r51+MvDSJCcADwWurKqLliRC9YZ1J0manHFbWiVJGowkHwAeQ9ON+Hzg1cBLgLckWQ1cTzNSMMApwNOADcC12KImSdJEmbRKknouY434O0lV9dw5Zv0/syxbwBHdRiRJ0nCZtEqS+q8f3YMlSdISMGmVJPWfSaskSYNl0ipJ6rcAWdzuwZIkqT+sBUiSJEmSesuWVklSzwWm7B4sSdJQdZe0dl3B2OGO3ZZ//TXdlg9w0/WdbyJ327/bDaw7uNvygVx7VffbuNPazrdRN17XbfkXfL/T8qlui5fmZfdgafCyCKOI1467dFp+9j6o0/IBctf9O9/Gonwnr96h2/JX2Xa3nPhqSZL6z4GYJEkaLJNWSVK/ZfHv0ypJkvrDWoAkSZIkqbdsaZUk9Z/dgyVJGiyTVklS/zkQkyRJg2XSKknqP1taJUkaLJNWSVK/ORCTJEmDZi1AkiRJktRbtrRKkvrP7sGSJA2WSaskqf8ciEmSpMEyaZUk9VsCU7a0SpI0VJ66liRJkiT1li2tkqT+s3uwJEmDZdIqSeo/B2KSJGmwTFolST0XW1olSRowk1ZJUr8FB2KSJGnAPHUtSZIkSeotW1olSf3nNa2SJA2WSaskqf+8plWSpMEyaZUk9VviNa2SJA2YSaskqf9saZUkabCsBUiSJEmSesuWVklS/zkQkyRJg2XSKknqudg9WJKkAesmaU1g9R06KXpanXd2t+VffUWn5QNM7XNg59tg1ZpOi6/rru60fIDsukfn22B1t8cJgJtv7LT43GVdp+WzZhGOkTSb4EBMkhZFpjo+QbbDjt2WD1R1WwdfLLGHjUbY0ipJ6j9bWiVJGixrAZIkSZKk3rKlVZLUf3YTkyRpsExaJUk9F+j6OjNJktRbJq2SpH4LtrRKkjRgnrqWJEmSJPWWSaskqf8yNdnHQptL3pXkkiTfnjH9ZUm+k+SsJG8Ymf6qJBuSfDfJkzs4ApIkDZbdgyVJPZel6B78HuBtwHtvjSJ5LHAY8ICquiHJXdrphwDPAe4D7A38Z5KDq+qWxQ5akqSVaKyW1iSvaM8qfzvJB5J0f2dkSZKmTU1N9rGAqvoC8JMZk38XeH1V3dAuc0k7/TDghKq6oap+CGwAHjK5nddyZN1JkiZnwV/uJPsALwfWV9V9gVU0Z5QlSere9EBMk3zA2iSnjTwOHyOSg4FHJTk1yeeTPLidvg+wcWS589tpGijrTpI0WeN2D14N3DHJTcBOwIXdhSRJUuc2VdX6rVxnNbAH8DDgwcCJSe458ci0Ulh3kqQJWbCltaouAN4InAdcBFxZVZ+auVySw6fPWF+6aWaPKkmStlUWfSCmOZwPnFSNrwKbgbXABcC6keX2badpoMapO21Zb7psKcKUpGVjnO7Bu9Ncr3MAzQATOyd53szlquq4qlpfVev3WrvH5COVJA3X5LsHb4t/Ax7bhJODgR2ATcDJwHOS3CHJAcBBwFe3f6e1XI1Td9qy3rTnUoQpScvGOKebnwD8sKouraqbgJOAn+s2LEmSRiz+LW8+AHwZuFeS85O8GHgXcM/2NjgnAC9sW13PAk4EzgY+ARzhyMGDZ91JkiZonGtazwMelmQn4Drg8cBpnUYlSdK0BKYW95Y3VfXcOWbdrqdRu/zrgNd1F5GWGetOkjRB41zTeirwYeDrwLfadY7rOC5JkqRlybqTJE3WWKMHV9WrgVd3HIskSbPb9sGTpCVh3UmSJmfcW95IkrR0tn3wJEmStMyZtEqSei62tEqSNGAmrZKk3ostrZIkDZanriVJkiRJvWVLqySp34LdgyVJGjCTVklSz3lNqyRJQ9ZN0rp5M1x/TSdF3+qmGzstPjvcodPyAVi9CNvoeD8ytarT8gFYvab7bXT8fgLIjjt3u4Ed7tht+VOe49ISmvKaVkkah2MAaCWyFipJ6j9bWiVJGixrAZIkSZKk3rKlVZLUbwHs7iZJ0mCZtEqSes6BmCRJGjKTVklS/9nSKknSYHnqWpIkSZLUW7a0SpL6z+7BkiQNlkmrJKnfEu/TKknSgJm0SpL6z5ZWSZIGy6RVktR/DsQkSdJgeepakiRJktRbtrRKknrO+7RKkjRkJq2SpP6ze7AkSYNl0ipJ6rdgS6skSQNm0ipJ6rnAlEmrJElDZS1AkiRJktRbtrRKknovXtMqSdJgmbRKkvrPa1olSRosk1ZJUr8FRw+WJGnATFolST3nfVolSRoyawGSJEmSpN6ypVWS1H92D5YkabBMWiVJ/ed9WiVJGiyTVklSvyW2tEqSNGCdJK2nn/ntTVN3P/BHW7HKWmBTF7EsIvehP1bCfvRxH/Zb6gAkaSU6/RtnbMrOu21NvQn6+TuxtdyHflgJ+wD93A/rThPSSdJaVXttzfJJTquq9V3Esljch/5YCfuxEvZBmihHD9YKtrX1JlgZvxPuQz+shH2AlbMfmp3dgyVJ/Wf3YEmSBstT15KkZSATfiywteRdSS5J8u1Z5h2dpJKsbZ8nyVuTbEhyZpIHbe/eSpKk2/QlaT1uqQOYAPehP1bCfqyEfZAmJLcNxjSpx8LeAzzldpEk64AnAeeNTH4qcFD7OBx4+3bvsrSwlfA74T70w0rYB1g5+6FZpKqWOgZJkua0/v73ra/9+4kTLXPqHvc5faFrn5LsD3y8qu47Mu3DwF8AHwPWV9WmJO8APldVH2iX+S7wmKq6aKJBS5I0UF7TKknqvx5c05rkMOCCqvpmtoxnH2DjyPPz22kmrZIkTYBJqyRpGZh40ro2yWkjz4+rqjm7liXZCTiWpmuwJElaREt6TWuSpyT5bjt4xSuXMpZtlWRdks8mOTvJWUmOXOqYtlWSVUm+keTjSx3LtkiyW5IPJ/lOknOSPHypY9paSV7Rvo++neQDSXZc6pikJRe6uKZ1U1WtH3ksdC3UgcABwDeTnAvsC3w9yd2AC4B1I8vu206TJs66U38s93oTWHfS8rFkSWuSVcDf0wxgcQjw3CSHLFU82+Fm4OiqOgR4GHDEMt0PgCOBc5Y6iO3wFuATVXVv4AEss31Jsg/wcprr5O4LrAKes7RRST2xuIMH305Vfauq7lJV+1fV/jRdgB9UVRcDJwMvaEcRfhhwpdezqgvWnXpnudebwLqTlomlbGl9CLChqn5QVTcCJwCHLWE826SqLqqqr7f/X03zYd9naaPaekn2BZ4O/NNSx7ItktwZ+HngeICqurGqrljSoLbNauCOSVYDOwEXLnE80iAl+QDwZeBeSc5P8uJ5Fj8F+AGwAXgn8HuLEKKGybpTTyz3ehNYd9LyspTXtM42cMVDlyiWiWhHmnwgcOoSh7It3gwcA+y6xHFsqwOAS4F3J3kAcDpwZFVds7Rhja+qLkjyRppbaVwHfKqqPrXEYUk9sbgDMVXVcxeYv//I/wUc0XVMEtad+uTNLO96E1h30jLSl/u0LntJdgE+AhxVVVctdTxbI8kzgEuq6vSljmU7rAYeBLy9qh4IXAMsq2t9kuxOc8b8AGBvYOckz1vaqKQ+WJL7tErq2HKtO62QehNYd9IyspRJ64oZuCLJGpov3fdX1UlLHc82eATwC+3gIicAj0vyvqUNaaudD5xfVdNnaj9M80W8nDwB+GFVXVpVNwEnAT+3xDFJ/WDSKoF1p75YCfUmsO6kZWQpk9avAQclOSDJDjQXTZ+8hPFskzQ36zseOKeq3rTU8WyLqnpVVe3bdnd7DvCZqlpWZ6nawVA2JrlXO+nxwNlLGNK2OA94WJKd2vfV41lmAyJI3VnikZikfrDu1AMrod4E1p20vCzZNa1VdXOSlwKfpBnp611VddZSxbMdHgE8H/hWkjPaacdW1SlLF9JgvQx4f/tD/gPgRUscz1apqlOTfBj4Os3Iit8AFroNhyRpIKw7qQPWnbQspBk/QpKkflr/gPvV1z71sYmWOXW3A0+vqvUTLVSSJHViKUcPliRpTHbplSRpqExaJUn95uBJkiQNmre8kSRJkiT1li2tkqT+s6VVkqTBMmmVJC0DJq2SJA2VSaskqfdiS6skSYNl0ipJ6j+TVkmSBsuBmCRJkiRJvWVLqySp54LXtEqSNFwmrZKk/rN7sCRJg2XSKknqt2DSKknSgJm0SpKWAZNWSZKGyoGYJEmSJEm9ZUurJKn/7B4sSdJgmbRKkvrPnFWSpMEyaZUk9Zy3vJEkachMWiVJ/Wf3YEmSBsuBmCRJkiRJvWVLqySp37xPqyRJg2bSKklaBkxaJUkaKpNWSVL/2dIqSdJgeU2rJEmSJKm3bGmVJPVcbGmVJGnATFolScuASaskSUNl0ipJ6j9bWiVJGqxU1VLHIEnSnJJ8Alg74WI3VdVTJlymJEnqgEmrJEmSJKm3HD1YkiRJktRbJq2SJEmSpN4yaZUkSZIk9ZZJqyRJkiSpt0xaJUmSJEm99f8DnKX88rKr1U4AAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "Err_R9=error(xdata9, poptR9[0], poptR9[1],poptR9[2], poptR9[3], poptR9[4], recorteR9.ravel(), inc=1)\n", + "poptR9E, pcovR9E = curve_fit(gauss2d, xdata9, recorteR9.ravel(), p0=[4,7,3,1,1],sigma=Err_R9)\n", + "estrellaR9E=gauss2d(xdata9, poptR9E[0], poptR9E[1],poptR9E[2], poptR9E[3], poptR9E[4])\n", + "FWHMR9E=FWHMR_I.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptR9E[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 9 fotografÃa (Banda Rojo)\")\n", + "plt.imshow(recorteR9, plt.get_cmap('Reds'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 9 a partir de la gaussiana con incertidumbre (Banda Rojo)\")\n", + "plt.imshow(estrellaR9E.reshape(10, 10), plt.get_cmap('Reds'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 10 con incertidumbre (Banda Rojo)" + ] + }, + { + "cell_type": "code", + "execution_count": 838, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAFSCAYAAADLrjNiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAy8klEQVR4nO3debwkZX3v8c/3DIusjjJGBQYhBk1w56IhmkSjxi0k5CZeg7tm4Ro1aq65Rs1i1KvJ9Rq3LCYobpG4BI0xkShmUWMiKBBQAY0IKqswIKtsw/zuH08d6Dmcpc+h65zqM5/369WvOd1d/dRT1TVdv189S6WqkCRJkiRp6GbWugKSJEmSJI3DBFaSJEmSNBVMYCVJkiRJU8EEVpIkSZI0FUxgJUmSJElTwQRWkiRJkjQVdlrrCkiStJjN2aluYLK3fNvCtk9V1RMmWqgkSeqdCawkadBuoPhF9phomX/JNZsmWqAkSVoVJrCSpEELjneRJEmNCawkafBmkskWONkeyZIkaZWYwEqSBs0WWEmSNMsEVpI0eDMTboC1BVaSpOnkRW1JkiRJ0lSwBVaSNHhebZUkSWACK0kauJDJT+IkSZKmkgmsJGnwbIGVJElgAitJGrjQwyROkiRpKnlRW5IkSZI0FWyBlSQNnldbJUkSmMBKkoYuECdxkiRJmMBKkgYu2AIrSZIaE1hJ0uA5iZMkSQIvakuSJEmSpoQtsJKkwfNqqyRJAhNYSdLAtfvA2odYkiSZwEqSpoAtsJIkCYwJFpXkwCSVZKfu+WeS/OoA6vWIJN9Icm2Sn1/r+iwlyf9JsiXJJd3zzUnOS3LQCsq6W5KvJdlt8jVdct3bHQ+ruN6nJzlxzGU/kuSJfddJkoZiqOfqoUnyj0mefQc+/6gkF6zws+9J8n9Wuu6hWM75eNok+YkkX1/regAk+Yskv7fI+5Xkh3pY74qP8WWs4/FJPtbnOhZZ93OSfH4N1rvo9zmy3K5djH+3pZadigQ2ybeSXN8lbLOPPx3jc70c4CuR5LVJvpJka5I/mOf9pyX5dpLrknwsyV0XKe41wJ9W1Z5V9bEl1vsHSd5/x2q/ckkOAF4KHFJV9+hefgfwwqo6bwVFvhx4T1Vd35X/mSQ3dMfEVUk+l+QBk6n95HQ/Grd09bw6yRlJjhjns1V1XFU9bsxV/V9g6oMEaVTrQjzZhybPc/VwzHfur6onVtV716pO68Eyz8dTpar+raruu9rrnS+pqqrnVdVrV7suq+R1wB/NPul+/67rfi+3JPlAko1rV735dRehburqeUWSTyf54XE+O+73WVU3Au+ixfqLmooEtvOzXcI2+3jhHS1wlVvSzgFeBnxinnrcD/hL4JnA3YHvA3++SFn3As7soY7LMub+OwC4vKou7T5zAPC+qrrdfhhjfbsCzwbmJuQvrKo9gbsCnwH+arllr5IvdPXcSPt+PzjpH6mq+iKwd5LDJlmutNZmJvxQbzxXr7GV7K/V7lkkwfQfd0k2LHP5hwJ3rqqT5rz1oC4+/EHgLsAfTKaGE/eGrp77ARcCx/awjr8Gnt3F/Aua+vN4kh9K8tmu9W1Lkg91r3+uW+SM7mrBL812DUjy22ndWd+dZCbJy5N8M8nlST48zhXVJPdO8i/dZ7YkOW6xZKSq3ltV/whcM8/bTwf+vqo+V1XXAr8H/EKSveZZ7zdpB/jfd9u1a5J9k3y8uyJyTpJf65Z9AvBK4Je6Zc/oXp93+e693ZK8N8n3kpyd5GUZ6U7RXWH/7SRfBq5LstPI/rsmyVlJ/nu37GOBTwP7dut/D+2YOy63dfV6breea5Kcm+R/LrLbfxS4sqrm7d5RVbcAHwQOGanvw5J8IcmVSS5O8qdJdhl5v5I8L61L9pVJ/ixps8Uk2ZDkjd33ey7wM3O+i+XUfbSe22hJ9h7AwV1Zd07yviSXpV3d/90kM917212dTPLwJF/qjvkvJXn4nFV8Zm5dpWk3Qyb60Ora0c7V3brfmuT8tF43pyb5iUXq+Z60bnaf7s4pn01yr3HKSmttPT7J+5NcDTyP+c/9t3at7s4r/57kzUkuZ56AuYsH3tPFA2cBD53z/r5pw1YuSxsW9KKFtm/O5+6S5B+6z32v+3v/RZY/NMl/dvvlb5J8KF135KXKSotZHjtnX72/+/tO3T67vDv/fynJ3Uf2z7ndOs9L8vSR10fPx0t9Lx/uzu3XJDkzIxeXs0DstMA+2JDklSPLn5pkc/fegjFB952/tvuur0lyYpJNC6xju+6z3b77rSRf7sr+UJI7jbx/ZJLTu23/ZlrMORvPHJsWc12YNoxsw8j+Gz3uPgT8BfBj3bF6Zbfcdl3Ok/zvrryLkvzynHpvN2Rgnu+okjw/Lc67ptsf907yH13dP5yRuLD7zCvTfi++Nfvdj9Tr7UlOSHId8FNZ3v+DJwKfXejNqroa+Djbx7HPzQKxZm77rXxpkku7ffTckff3SYv3r07yReDec7ZzweN3MV0vyA8DDx4p60e67+LK7lj/uZH35n6fv5aWf1zR1W/fkbIvAL4HHL5YHaY+gQVeC5xIu2KxP/AnAFX1k937D+quAn+oe34PWkvdvYCjgd8Afh54JLAvbaf92RjrDfCH3Wd+BNjMyq+Y3A84Y/ZJVX0TuAm4z9wFq+rewHe47Sr3jbSk7YKuLk8GXp/k0VX1SeD1wIe6ZR/UFTPv8t17rwIOpCXJPw08Y576PpWWIG2sqq3AN4GfAO4MvBp4f5J7VtU/0f6zXtSt/znzlHUpcASwN/Bc4M1JDl1gPz0AWHB8RvcD9HRg9MrWLcBvApuAHwMeAzx/zkePoJ2YHwg8BXh89/qvde89BDiMtq9WWvfRem7olr8Z+Hb38p/Q9t8P0o7FZ3XLzP3sXWktA28D9gHeBHwiyT4ji50NPGjuZ6VpZRfidWGHOld3vkQL8O5Ka1X4m9EEYB5Pp+2nTcDpwHHLKOtI4HhaD59jmf/cP9ePAufSWpNfN8/7r6IFvPemnRdvHT+bdoH172n7Yz/aufUlSR4/TzlzzQDvpn23BwDXA/N2Ne/O638LvIe27R8ARhO9scuax7Np593NtPPp84Drk+xBO8c+sar2Ah5O+z7ms9T38nO0mGsjLTEZrdu8sdMC6/lftNjrSbSY45eB748ZEzyNFk/8ALAL8FsLrGM+TwGeABxEi5GeA61xAHgf8L+7bftJ4FvdZ94DbAV+iBY/PQ4YHZM+etw9g7bfv9AdqxvnVqBLjH+LFpMeDDx27jJjeDzw32hJ0cuAY7p1bwbuT9u3s+5B+z+4H+0YOSbJaNfqp9H+v+wF/AfL+3+wVBx7F9rv3Ggcu1SseQ/aMbQf8CvAn3XlQPuNvAG4J+2Y2S75Z/m/UbP13IO2z87pnu9M2w8n0o6z36A1Vt2uS3qXb/wh7di6Jy0O/uCcxZaMY6cpgf1Yl9XPPmZbDW+m/XDtW1U3VNVSg5O3Aa+qqhu7KwjPA36nqi7oksE/AJ6cJbo1VNU5VfXprpzLaD8aj1zhtu0JXDXntato/zkWlXYF7hHAb3fbfzrwTloCtJLlnwK8vqq+110Feds8xbytqs6fHYdaVX9TVRdV1bYu+PgG8LCl6t599hNV9c1qPks7+Be6ArSR+a+Kv627ancN8ELaiWC2/FOr6qSq2lpV36J1/5r7Pf1RVV1ZVd8B/pXbrig9BXhLt61X0P7DrbTuAId39bwBeCPwjKq6tEtojwJeUVXXdPX8Y1o3tbl+BvhGVf1Vt00fAL4G/OzIMtfQ9pUkrTbP1bet+/1VdXn3W/3HwK7AYmMMP9G17t4I/A6tVWrzmGV9oao+1p2Hrx9zey6qqj/pypzvM08BXldVV1TV+WwfDzwUuFtVvaaqbqqqc2nzWxy11Eq77fhIVX2/qq6hJQMLfSeH0+6Y8baqurmqPgp8cYVlzXUzLen7oaq6pYsXru7e2wbcP8luVXVxVc07bGuM7+XzVXVCtR5if8VIUL7M2OlXgd+tqq93MccZVXU548UE766q/6p5Ws3G8LaujlfQEpTZz/4K8K7u/9a2qrqwqr6W1oL9JOAlVXVdteFjb2b742Kp426up3Tb8NWquo6VXYB6Q1Vd3X2PXwVOrKpzq+oq4B9pifao3+t+Mz5Lu0DwlJH3/q6q/r1ab7oHsLz/BxuZP449rYsPt9AuxPzl7BtjxJo3A6/p/n+cAFwL3LeLLX8R+P3uu/gqsN0Y+BX8Rv3WSLz949wWpx5O+338o24//AvwD2x/YWDW02nHzmndb90raL91B44ss2QcO00J7M9X1caRxzu6119Gu8L6xa7Jeu7Vhbkuq6obRp7fC/jb2ZMtLeu/hXZlaEFJ7p7kg2ndI66mjcuct1vGGK6lXVkZtTfzH+Rz7Qtc0f1wz/o27UrMSpbfFzh/5L3Rv+d9Lcmz0rqRzO7D+zPmvkjyxCQndd0IrqT98C302e8xf6DwompX7XajXaU6PskDu/Lvk9al6JLue3r9POVfMvL392n/CeH2++LbI38vt+4AJ3X1vAvtSuzsD9AmYOc55S/0He47tx7zLLsXcOUi9ZCmjmNgp4bn6tvW/Vtd17+rujrfeYl133q+qdZF+Qrab/44Zc13rl7KUp9Z7Bx4L9rwoCtHvpNXssT3AZBk9yR/mTZc5mrgc8DGzD+ecF/gwqqq+eq9zLLm+ivgU7T5KC5K8oYkO3dJ0i/RLppcnOQTWWCymjG+l7nxxZ1y2xCq5cROm2kttnONExMsFOOMY6HPLlSfe9HimYtHtusvaa1ys5Z7rC4ai43puyN/Xz/P89F98r3uGBhd374jz0frstz/BwvFsYd28eGdgLcD/zbbEjpGrHl5td6Qs2a/p7vRLv4sFscu9zfqjV09D6Ttt9lkd1/g/C6pH13XknFs91t3OcuMY6f+PF5Vl1TVr1XVvsD/BP48i89mWHOen0/rJjJ6wr1TVV24xKpf35X1gKram9YVYaUd085k5Kpckh+kXQX5rzE+exFw12w/BucA2uBquP32LrX8xbTuXbM2z7POW8tMG6PzDlrL5z7dgf1VxtgXaQO0P0Jrjbx799kTFvnsl1m4qxbdVcB/o3VpmJ0l8O20q5EHd9/TK8epW+ditt/+A+5A3UfreS3w68AzkzyEdsVttnVidF3zHYMXzVluvmV/hJFubtK0y4S7D9uFePXtaOfqtLFkL6O13NylO0dctcS6bz3fJJmdmPCiMcuau7/mPp/PUssseA6kfR/nzfk+9qqqJ42x3pfSAt8f7b6T2W7k8+2bi4H9koy+N1qnpcq6Dth9ZPnZuyHQtVi9uqoOoXUTPoKuN1pVfaqqfprWxfFrtDhnOyv8jmc/u9zY6XzmjF/sjBMT9GGh+pwP3AhsGjku9q6q+40ss9xjdbHjEBb5jlfoLmldZEfXd9HI87kXU5bz/2CpOPZmWq/Ig2g9AFYcawKX0bpyLxTHrvj4rdZj8cXAW9Nua3kRsDnd3C0j61oyju329T4sM46d+gQ2yf/IbQP2v0c7sGavAHyXNqZwMX8BvK77MSHtPqNHjrHqvWhXY69Ksh9tHMBi9dy5u5oyA+yUNnnA7BXC44CfTbsH1x602+R8dE4r6byqdev5D+APuzIfSOvaMTtT73eBA2cPqjGW/zDwirSJEfaj/bguZg/aPr+s287n0q4ijmMX2sn/MmBr2v1LF5ue/ou0K6sLtS6T5Mdog99nu/vsBVwNXNtdQf31MesGbV+8KMn+aeMJRqf1Xm7dt9N1x3knrWvHLd26Xpdkr+5Y/F/cfrZlaD9c90m7lcNOSX6p295/GFnmkbQuMdK64SRO020HPFfvRQseL+vK+X1u33o715OS/HjauM/X0nrtnL/CsrY796/QaDywP21c26wvAtekTbS1W9okQ/dPm2V1KXvRWm+uTBvD+apFlv0CraX9hd0570i272a7VFmnA0d13+t2c1kk+akkD+i+36tpF5K3pbXaH9l9xzfSjp9t3N5KvpdZy42d3gm8NsnBaR6YNs51nJigD8cCz03ymLQJ1vZL8sNVdTGti+sfJ9m7e+/eSRbr1v1dYP/MmUhpxIeB5yQ5JMnuzP8d/0Jaa/wP0WLaO+rVSXbpkrwjgL9ZYLnl/j84gUW6uOe2OVKup40TXnGs2cWWHwX+oNs3hzAyjp07dvxSVZ+mJaNHAyfTWn5f1v1fexStG/vcsa3QxrE/N8mDuwT99cDJ1YbP0f1O35XtxwHfzjQlsLOz7s4+/rZ7/aHAyUmupXXLfHHXBx1aP/n3pjXrP2WeMgHe2n3uxCTX0HbYj45Rn1cDh9KuVnyCdpAs5h20A/KptLEt19P1He/65D+PdnK8lHZQzZ1oaDFPpTXnX0Sb7OBV1SZQgtv+012e5LQxln8NbYKn84B/ok0KceNCK66qs2jjNb9A+xF6APDv41S6O+m/iPbj9D3awPiPL7L8TbTJAeZOLPWns8cFrUvQ71abRRLawP+n0bp4vYM249243kHrXnQGcBoj3/Fy676At9AClgfSAoPraD9Yn6cNpn/X3A9UG/NyBO2q8+W0q2dHVNUWgO5H89pqt9OR1g1bYKeG5+rmU8Anaa2z36bNfbBU18m/pgXnV9AmnJk9162krPnO/cv16m5959GSkltvUdcFx0fQxkSeR+tJ9E5aF8SlvIU25GcL7Xv85EILduf9X6AlJVfS9sk/cFtcslRZv0drKfxetz1/PfLePWgxztW0Lumf7bZxhnYR+SLad/FI5r/4vZLvZXa7lhs7vYkWb5zY1fdYYLelYoK+dDHGc2njW6+i7bvZVrVn0RKvs2j7/XhaS/ZC/oXW6HBJktvVu4vn3tItd07376g30yZT+y5tjOdx3DGXdPW+qCvreVX1tfkWXO7/g6o6jXYxbe5v1xndb+P3aEnmf6829vyOxpovpHUnvoQWP7975L0VH78j/h+3DQ/5WdrErVtotxd71nz7rcs3fo/Wsnwx7f/n6JjhpwHv7cbHLijbDyuQtpfk14Gjqmqlk15MVJK7Af8GPKTGn6hiqqWNFXtGVT16jGU/AhxbbSC/tC4csGGn+u3dNk60zBded/mpVeX9kjUIabeZu6Cqfnet6zJ0SU4G/qKq3r3kwtLAJHkc8Pyq+vm1rstqSfI+4Jyqes0Sy+1KazT6yWoTgC1oqm8grMlLm8L9B2lXBQ+mXdUbd0r63lWbRXLeyRTWsfvRruwtqap+see6SKsuTFd3IUmT03U//TqtZefptNu5LNhqKw1ZVZ1Ia0nfIaRNWnZf4NNLLdu1uo4V45vAaq5daDPGHUTrrvNBWlcArYEkH6NdSPgfa1wVaU3Z7VfaYd2X1oVyD9owmyd3Yy0lDd8lwKm0LsMTYxdiSdKgHbhh5/qd3TdOtMyjr91iF2JJkqaQLbCSpMGzBVaSJIHDiiRJkiRJU6KXFthN++xTBx6weekF74ia75Zck7ROLvf3vp9WwcyGpZeZBn1/F3fodn9L+9Z3zmfL5Zevk/8YmjYeeFrPNm3apw484IC1roakCTv1P0/fUlV3W+t6rDe9JLAHHrCZL32m5wm2bur5Diob1knv6hu+32/5q5Fc7j72fZWH7YZr+y1/1917Lf6hjxrr3tnSxAW7EGt9O/CAAzjl859Z62pImrDssfHba12H9WidZGmSpPVsxjZYSZKEY2AlSZIkSVPCFlhJ0qAldiGWJEmNLbCSpMGbmfBjKUk2J/nXJGclOTPJi+e8/9IklWRT9zxJ3pbknCRfTnLoHd9qSZI0ly2wkqTBW4MG2K3AS6vqtCR7Aacm+XRVnZVkM/A44Dsjyz8ROLh7/Cjw9u5fSZI0QbbASpIGrc1CnIk+llJVF1fVad3f1wBnA/t1b78ZeBlQIx85EnhfNScBG5Pcc5L7QZIkmcBKkrSoJAcCDwFOTnIkcGFVnTFnsf2A80eeX8BtCa8kSZqQsRLYJE9I8vVubM/L+66UJEmjMuEHsCnJKSOPo+ddb7In8BHgJbRuxa8Efr+HTdQ6Y+wkSf1Ycgxskg3AnwE/Tbui/KUkH6+qs/qunCRJ0MsY2C1Vddii60x2piWvx1XVR5M8ADgIOCOtG/L+wGlJHgZcCGwe+fj+3WvaARk7SVJ/xmmBfRhwTlWdW1U3AR+kjfWRJGlV9NACu/j6WoZ6LHB2Vb0JoKq+UlU/UFUHVtWBtMTk0Kq6BPg48KxuNuLDgauq6uJJbLumkrGTJPVknAR2rHE9SY6e7Yp12eWXT6p+kiSRZKKPMTwCeCbw6CSnd48nLbL8CcC5wDnAO4Dn3+GN1jRbMnbaLm7aYtwkSeOa2G10quoY4BiAwx7y4FpicUmSBquqPs8SjbVdK+zs3wW8oOdqaR3ZLm469CHGTZI0pnESWMf1SJLWzLjdfqUBMXaSpJ6M04X4S8DBSQ5KsgtwFG2sjyRJq2Jmwg+pZ8ZOktSTJVtgq2prkhcCnwI2AO+qqjN7r5kkSZ3xhq1Kw2DsJEn9GWsMbFWdQJugQpKkVRc7EWvKGDtJUj/sSSVJkiRJmgoTm4VYkqQ+OImTJEmaZQIrSRo8E1hJkgQmsJKkKTBjBitJknAMrCRJkiRpStgCK0kauDgLsSRJAvpKYANs6Dk3Ts+Nxzvt2m/5AFtv7H8dMxt6Ln8VGvFvuLb/dazGTSZ3uVO/5V93Vb/lb7ul3/KlBTiJk6T1orZtW42V9L+O1dBzrJ/ViGHVC1tgJUnDltW5xiRJkobPBFaSNHjmr5IkCZzESZIkSZI0JWyBlSQN3oxtsJIkCRNYSdLAOYmTJEmaZQIrSRo8J3GSJElgAitJmgLmr5IkCZzESZIkSZI0JWyBlSQNXmyDlSRJmMBKkgYuwIz5qyRJwgRWkjQFzF8lSRKYwEqSpoAJrCRJAidxkiRJkiRNCVtgJUmD5yROkiQJTGAlSVMg5q+SJAkTWEnSwAXHu0iSpMaYQJIkSZI0FWyBlSQNnj2IJUkSmMBKkqZAHAQrSZIwgZUkTQHTV0mSBCawkqSBCyawkiSpcRInSZIkSdJUsAVWkjRsiWNgJUkS0FcCu20bfP/qXoq+Vd/BzNab+i1/tey0c6/F1zVX9Fo+QJ33ld7XwZ039b6Kmfs+rNfy63uX9Fo+W2/ut3xpETPmr5JWQd2ytd8VXH9tv+UDdd2Vva+j9zgcyJ4bey2/7rRnr+WrP7bASpIGL2awkiQJE1hJ0sCFVbnYL0mSpoCTOEmSJEmSpoItsJKkYYstsJIkqTGBlSQNnrMQS5IksAuxJGkKJJN9LL2+bE7yr0nOSnJmkhd3r/+/JF9L8uUkf5tk48hnXpHknCRfT/L43naGJEk7MBNYSdLgpbsX7KQeY9gKvLSqDgEOB16Q5BDg08D9q+qBwH8Br+jqdwhwFHA/4AnAnyfZ0MOukCRph2YCK0nSHFV1cVWd1v19DXA2sF9VnVhVszeKPAnYv/v7SOCDVXVjVZ0HnAP0e/NnSZJ2QI6BlSQNWk+30dmU5JSR58dU1THzrj85EHgIcPKct34Z+FD39360hHbWBd1rkiRpgpZMYJNsBt4H3B0o2kn+rX1XTJIkAAIzk89gt1TVYUuuOtkT+Ajwkqq6euT136F1Mz5u0hXT9DN2kqT+jNMCOzsO6LQkewGnJvl0VZ3Vc90kSQLW5jY6SXamJa/HVdVHR15/DnAE8Jiqqu7lC4HNIx/fv3tNOyZjJ0nqyZJjYBcaB9R3xSRJaiY7gdM4kzilLXQscHZVvWnk9ScALwN+rqq+P/KRjwNHJdk1yUHAwcAXJ7obNDWMnSSpP8saA7vIOCBJktaTRwDPBL6S5PTutVcCbwN2BT7dJcInVdXzqurMJB8GzqK1vr2gqm5Z/WpraIydJGmyxk5gFxoHNPL+0cDRAAfsv+/EKihJ2rEFyCrPmV9Vn+9WPdcJi3zmdcDrequUps5isdN2cdPmzfN8WpI0n7FCgoXGAY2qqmOq6rCqOuxu++wzyTpKknZkWZP7wEp3yFKx03Zx0ybjJkka1zizEM87DkiSpNVizqlpYuwkSf0ZpwV2dhzQo5Oc3j2e1HO9JEmSppWxkyT1ZMkW2EXGAUmStCrs9qtpYuwkSf1Z1izEkiStBfNXSZIEJrCSpIELMGMGK0mSMIGVJA1dbIGVJEnNKt9ZT5IkSZKklbEFVpI0eE7iJEmSwARWkjQFzF8lSRL0lcBWwbZtvRR9q9327Lf8m67vt3yArTf3v46bb+y1+Prnj/RaPsCFf/Kh3tex95137X0de73mFb2Wnztv6rV8quf/09ICggmsJKi+Y0uA66/ttfhtp5zYa/kAt/zt8b2vY2bXnXtfR5789F7Ln7n/j/davvpjC6wkadgSMmMGK0mSnMRJkiRJkjQlbIGVJA2eXYglSRKYwEqSpsCMGawkScIEVpI0cE7iJEmSZpnASpIGz/vASpIkcBInSZIkSdKUsAVWkjRssQuxJElqTGAlSYNnF2JJkgQmsJKkKWD+KkmSwDGwkiRJkqQpYQusJGnQ2m10bIKVJEkmsJKkoQvE/kKSJAkTWEnS4MUWWEmSBJjASpKmwYwJrCRJchInSZIkSdKUsAVWkjR8diGWJEmYwEqShi7OQixJkhoTWEnS8DkGVpIkYQIrSRq82IVYkiQBTuIkSZIkSZoStsBKkgYtgdiFWJIkYQIrSZoGdiGWJEmYwEqSpoAtsJIkCfpKYDMDu+zaS9G3rmLnfsuv667qtXyAuvH7va+D71/da/HbvvTFXssHeP2XL+p9HTuvQuvOm0/6bK/l5/G/2Gv50pqyBVZSbet/Fdde0Wv5W4//cK/lA7z43Sf1vo59dtrQ+zpeveee/a7g3g/qt3z1xkmcJEmSJElTwS7EkqRhS7wPrCRJAkxgJUlTIHYhliRJ2IVYkjQNZjLZxxKSbE7yr0nOSnJmkhd3r981yaeTfKP79y7d60nytiTnJPlykkN73iOSJO2QTGAlSbq9rcBLq+oQ4HDgBUkOAV4O/HNVHQz8c/cc4InAwd3jaODtq19lSZLWPxNYSdKwhTYOdpKPJVTVxVV1Wvf3NcDZwH7AkcB7u8XeC/x89/eRwPuqOQnYmOSek90RkiTJMbCSpMHLGl5uTXIg8BDgZODuVXVx99YlwN27v/cDzh/52AXdaxcjSZImxgRWkjR8k5/EaVOSU0aeH1NVx9x+tdkT+Ajwkqq6enQyqaqqJDXpikmSpIWNncAm2QCcAlxYVUf0VyVJkkYkZPK30dlSVYctvtrsTEtej6uqj3YvfzfJPavq4q6L8KXd6xcCm0c+vn/3mnZgxk6SNHnL6ZT1YtoYIEmS1rW0ptZjgbOr6k0jb30ceHb397OBvxt5/VndbMSHA1eNdDXWjsvYSZImbKwENsn+wM8A7+y3OpIkzWOVJ3ECHgE8E3h0ktO7x5OAPwJ+Osk3gMd2zwFOAM4FzgHeATx/4vtAU8XYSZL6MW4X4rcALwP26q8qkiQtYPJdiBdVVZ+nzX88n8fMs3wBL+i1Upo2b8HYSZImbskW2CRHAJdW1alLLHd0klOSnHLZ5ZdPrIKSpB1bazTNRB9Sn8aJnbaLm7YYN0nSuMbpQvwI4OeSfAv4IK071fvnLlRVx1TVYVV12N322WfC1ZQk7dBmMtmH1K8lY6ft4qZNxk2SNK4lE9iqekVV7V9VBwJHAf9SVc/ovWaSJElTyNhJkvrjfWAlSQM39sRLkiRpnVtWAltVnwE+00tNJElagONWNa2MnSRpsmyBlSQNW3DcqiRJAkxgJUlTwBZYSZIE481CLEmSJEnSmrMFVpI0fHYhliRJmMBKkoYuzkIsSZIaE1hJ0uDFFlhJkkRvCWzB1pv7KXp2DVW9ls/NN/RbPkBt630V2XNj7+tYD27u+3gCcs/9e15B30PaTSAkSetcz+fSmV36bzvaY6b/KW723mkVptHZsKHf8u3ZM7VsgZUkDZ+BhiRJwgRWkjR03gdWkiR1TGAlSYPnfWAlSRKYwEqSBi+2wEqSJABWYQS2JEmSJEl3nC2wkqThswuxJEnCBFaSNHTBBFaSJAEmsJKkaWACK0mSMIGVJA1eYMYpGyRJkpM4SZIkSZKmhC2wkqThswuxJEnCBFaSNHRO4iRJkjomsJKk4TOBlSRJmMBKkgbPSZwkSVJjRCBJkiRJmgq2wEqShs8uxJIkCRNYSdLQOYmTJEnqmMBKkobPBFaSJGECK0kaPCdxkiRJjRGBJEmSJGkq2AIrSRo+uxBLkiRMYCVJQ+ckTpIkqWMCK0kaPhNYSZKEY2AlSZIkSVOinxbYKrhlay9F3+rG6/otfxVk1937X8nOu/Za/MxjHtdr+QBvOO+y3texyz029r4O9t3cb/l737Xf8jds6Ld8aQEhxFmIJaX/34HsubHX8mee/LReywf4v3usQny5yy69ryI/8+R+V7DbXv2Wr97YhViSNHx2IZYkSZjASpKGzkmcJElSxwRWkjR8JrCSJAkncZIk6XaSvCvJpUm+OvLag5OclOT0JKckeVj3epK8Lck5Sb6c5NC1q7kkSeubCawkaeACMzOTfSztPcAT5rz2BuDVVfVg4Pe75wBPBA7uHkcDb5/EVkuSpNszgZUkDV8y2ccSqupzwBVzXwb27v6+M3BR9/eRwPuqOQnYmOSeE9pySZI0wjGwkqRh62cSp01JThl5fkxVHbPEZ14CfCrJG2kXgB/evb4fcP7Ichd0r108obpKkqSOCawkafgmn8BuqarDlvmZXwd+s6o+kuQpwLHAYyddMUmStLCxuhAn2Zjk+CRfS3J2kh/ru2KSJA3Ms4GPdn//DfCw7u8Lgc0jy+3fvaYdmLGTJPVj3DGwbwU+WVU/DDwIOLu/KkmSNGpNJnGaz0XAI7u/Hw18o/v748CzutmIDweuqiq7D8vYSZJ6sGQX4iR3Bn4SeA5AVd0E3NRvtSRJGrHK94FN8gHgUbSxshcArwJ+DXhrkp2AG2gzDgOcADwJOAf4PvDcVa2sBsfYSZL6M84Y2IOAy4B3J3kQcCrw4qq6rteaSZIEfU3itKiqeuoCb/23eZYt4AX91khTxthJknoyTj+qnYBDgbdX1UOA64CXz10oydHdjd1PuezyuXcekCRppQbThVga15Kx03Zx05bL16KOkjSVxjmLXwBcUFUnd8+Pp/0ob6eqjqmqw6rqsLvtc9dJ1lGSJGmaLBk7bRc3bdpn1SsoSdNqyQS2qi4Bzk9y3+6lxwBn9VorSZJGJZN9SD0ydpKk/ox7H9jfAI5LsgtwLk5QIUlaTSadmj7GTpLUg7ES2Ko6HVjuDd8lSbrj1mASJ+mOMnaSpH44k4UkSZIkaSqM24VYkqQ1EmcOliRJgAmsJGka2IVYkiRhAitJmgYmsJIkCRNYSdLQBYhdiCVJkpM4SZIkSZKmhC2wkqSBC8zYhViSJPWVwM7MwG579lL0rbbd0m/5q2HrTf2vY+ddey0+h/5kr+UD7PGSvXpfB7v3fLwCMwcf2u8Kalu/5duFU2vJ40/a4WUVZiOvO/UbD8w8+JG9lg/AfXqON2B15iXYfe9+y991937LV29sgZUkDZ+TOEmSJExgJUlDF+8DK0mSGiMCSZIkSdJUsAVWkjR8diGWJEmYwEqSpoGTOEmSJExgJUnTwBZYSZKECawkaeicxEmSJHWMCCRJkiRJU8EWWEnS8NmFWJIkYQIrSZoGTuIkSZIwgZUkDV0CM7bASpIkx8BKkiRJkqaELbCSpOGzC7EkScIEVpI0DZzESZIkYQIrSRq82AIrSZIAE1hJ0tAFJ3GSJEmAkzhJkiRJkqaELbCSpOFzDKwkScIEVpI0DRwDK0mSMIGVJA1d4hhYSZIEmMBKkqaBLbCSJAkncZIkSZIkTQlbYCVJw+ckTpIkCRNYSdLgxS7EkiQJ6CuBTWCnXXop+lY33dBv+bvt1W/5AFtv7n8dN9/Ya/HZ/c69lg+QBz+q93WsCzvv2m/5MyYQWiPBSZwkrYps6Ldtp3bbu9fyAbjTnv2vYzX0fOEy9uyZWrbASpKGzxZYSZKEkzhJknQ7Sd6V5NIkX53z+m8k+VqSM5O8YeT1VyQ5J8nXkzx+9WssSdKOwRZYSdLwrX5Xr/cAfwq877Yq5KeAI4EHVdWNSX6ge/0Q4CjgfsC+wD8luU9V3bLalZYkab0zgZUkDVxWfQx2VX0uyYFzXv514I+q6sZumUu7148EPti9fl6Sc4CHAV9YrfpKkrSjsAuxJGnYQmuBneRjZe4D/ESSk5N8NslDu9f3A84fWe6C7jVJkjRhtsBKknZEm5KcMvL8mKo6ZonP7ATcFTgceCjw4SQ/2FcFJUnS7ZnASpKGb/KzEG+pqsOW+ZkLgI9WVQFfTLIN2ARcCGweWW7/7jVJkjRhdiGWJA3chLsPr7wL8ceAnwJIch9gF2AL8HHgqCS7JjkIOBj44h3fbkmSNNdYLbBJfhP4VaCArwDPraob+qyYJEm3WuVJnJJ8AHgUravxBcCrgHcB7+purXMT8OyuNfbMJB8GzgK2Ai9wBmIZO0lSP5ZMYJPsB7wIOKSqru9O0kfRbjEgSVK/ZidxWkVV9dQF3nrGAsu/DnhdfzXSNDF2kqT+jHtJeydgtyQ7AbsDF/VXJUmSpKln7CRJPVgyga2qC4E3At8BLgauqqoT5y6X5OgkpyQ55bItl0++ppKkHVTaJE6TfEg9Gid2Mm6SpJVZ8iye5C60m7QfBOwL7JHkdl2oquqYqjqsqg6726Z9Jl9TSdKOaxiTOEljGSd2Mm6SpJUZ5zL0Y4HzquqyqroZ+Cjw8H6rJUnSCFtgNV2MnSSpJ+PMQvwd4PAkuwPXA48BTln8I5IkTUgCM7aaaqoYO0lST8YZA3sycDxwGm0a+BngmJ7rJUmSNJWMnSSpP2PdB7aqXkW7B54kSavPbr+aMsZOktSPsRJYSZLWlBMvSZIkTGAlSYMXW2AlSRJgAitJmgKxBVaSJDHebXQkSZIkSVpztsBKkoYt2IVYkiQBJrCSpMFzDKwkSWr6SWC3Fdx0Qy9F32rrTf2Wf6c9+y1/tXz/6n7Lv/G6fssH2GmX/tcxs6H/dVT1W/5qbIO0VmYcAytp+q3KeP4YD2h9swVWkjR8tsBKkiScxEmSJEmSNCVsgZUkDVsAb6MjSZIwgZUkDZ6TOEmSpMYEVpI0fLbASpIkHAMrSZIkSZoStsBKkobPLsSSJAkTWEnS0CXeB1aSJAEmsJKkaWALrCRJwgRWkjQNnMRJkiThJE6SJEmSpClhC6wkaeC8D6wkSWpMYCVJw2cXYkmShAmsJGnogi2wkiQJMIGVJA1eYMYEVpIkOYmTJEmSJGlK2AIrSRq8OAZWkiRhAitJmgaOgZUkSZjASpKGLjgLsSRJAkxgJUmD531gJUlSY0QgSZIkSZoKtsBKkobPLsSSJAkTWEnSNPA+sJIkCRNYSdLQJbbASpIkoKcE9tQzvrxlZp/9vr2Mj2wCtvRRl1XkNgzHetiOIW7Dvda6ApK0Hp36n6dvyR4blxM3wTDPE8vlNgzDetgGGOZ2GDv1oJcEtqrutpzlk5xSVYf1UZfV4jYMx3rYjvWwDdJEOQux1rHlxk2wPs4TbsMwrIdtgPWzHVqaEYEkafhmuxFP6rHk6vKuJJcm+eo87700SSXZ1D1PkrclOSfJl5Mc2sMekCRJmMBKkqZCJvxY0nuAJ9yuFslm4HHAd0ZefiJwcPc4Gnj78rZNkiSNaygJ7DFrXYEJcBuGYz1sx3rYBmlCJtz6OkYLbFV9DrhinrfeDLwMqJHXjgTeV81JwMYk95zElkuLWA/nCbdhGNbDNsD62Q4tYRAJbFVN/QHnNgzHetiO9bAN0nqT5Ejgwqo6Y85b+wHnjzy/oHtN6s16OE+4DcOwHrYB1s92aGneRkeSNHyTv43OpiSnjDw/ZrHgJ8nuwCtp3YclSdIaMYGVJE2BiSewW5Y5W+W9gYOAM9KS6f2B05I8DLgQ2Dyy7P7da5IkacLWtAtxkick+Xo3c+PL17IuK5Vkc5J/TXJWkjOTvHit67RSSTYk+c8k/7DWdVmJJBuTHJ/ka0nOTvJja12n5Urym91x9NUkH0hyp7Wuk7TmwqqPgZ2rqr5SVT9QVQdW1YG0bsKHVtUlwMeBZ3WzER8OXFVVF09yF0izjJ2GY9rjJjB20nRaswQ2yQbgz2izNx4CPDXJIWtVnztgK/DSqjoEOBx4wZRuB8CLgbPXuhJ3wFuBT1bVDwMPYsq2Jcl+wIuAw6rq/sAG4Ki1rZU0EKs8CXGSDwBfAO6b5IIkv7LI4icA5wLnAO8Anr/czZPGYew0ONMeN4Gxk6bQWrbAPgw4p6rOraqbgA/SZnKcKlV1cVWd1v19De0//tRN3pFkf+BngHeudV1WIsmdgZ8EjgWoqpuq6so1rdTK7ATslmQnYHfgojWuj7RDqqqnVtU9q2rnqtq/qo6d8/6BVbWl+7uq6gVVde+qekBVnTJ/qdIdZuw0ENMeN4Gxk6bXWiaw627WxiQHAg8BTl7jqqzEW2i3hti2xvVYqYOAy4B3d9153plkj7Wu1HJU1YXAG2n3l7yY1g3xxLWtlTQUq34fWGmIjJ2G4y1Md9wExk6aUoO4jc56kGRP4CPAS6rq6rWuz3IkOQK4tKpOXeu63AE7AYcCb6+qhwDXAVM1NijJXWhX0g8C9gX2SPKMta2VNASrfx9YSf2b1thpncRNYOykKbWWCey6mbUxyc60H+Djquqja12fFXgE8HNJvkXrjvToJO9f2yot2wXABVU1ewX3eNqP8jR5LHBeVV1WVTcDHwUevsZ1kobBBFYCY6ehWA9xExg7aUqtZQL7JeDgJAcl2YU24Prja1ifFUm7n8KxwNlV9aa1rs9KVNUrujFeB9K+h3+pqqm6etXNBHp+kvt2Lz0GOGsNq7QS3wEOT7J7d1w9himbTEHqj12IJYydBmE9xE1g7KTptWb3ga2qrUleCHyKNmPYu6rqzLWqzx3wCOCZwFeSnN699sqqOmHtqrTD+g3guO6kfi7w3DWuz7JU1clJjgdOo83Q+J/AMWtbK0nSUBg7qQfGTpo6qaq1roMkSQs67EEPqC+d+HcTLXPmHvc+taoOm2ihkiSpd2vWAitJ0vjs9itJkkxgJUlD58RLkiSp4210JEmSJElTwRZYSdLw2QIrSZIwgZUkTQUTWEmSZAIrSZoCsQVWkiRhAitJmgYmsJIkCSdxkiRJkiRNCVtgJUkDFxwDK0mSwARWkjQN7EIsSZIwgZUkDV0wgZUkSYAJrCRpKpjASpIkJ3GSJEmSJE0JW2AlScNnF2JJkoQJrCRpGpi/SpIkTGAlSYPnbXQkSVJjAitJGj67EEuSJJzESZIkSZI0JWyBlSQNm/eBlSRJHRNYSdIUMIGVJEkmsJKkaWALrCRJwjGwkiRJkqQpYQusJGngYgusJEkCTGAlSVPBBFaSJJnASpKmgS2wkiQJSFWtdR0kSVpQkk8CmyZc7JaqesKEy5QkST0zgZUkSZIkTQVnIZYkSZIkTQUTWEmSJEnSVDCBlSRJkiRNBRNYSZIkSdJUMIGVJEmSJE2F/w9NAQihRM8aFAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "Err_R10=error(xdata10, poptR10[0], poptR10[1],poptR10[2], poptR10[3], poptR10[4], recorteR10.ravel(), inc=1)\n", + "poptR10E, pcovR10E = curve_fit(gauss2d, xdata10, recorteR10.ravel(), p0=[2,2,1,1,1],sigma=Err_R10)\n", + "estrellaR10E=gauss2d(xdata10, poptR10E[0], poptR10E[1],poptR10E[2], poptR10E[3], poptR10E[4])\n", + "FWHMR10E=FWHMR_I.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptR10E[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 10 fotografÃa (Banda Rojo)\")\n", + "plt.imshow(recorteR10, plt.get_cmap('Reds'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 10 a partir de la gaussiana con incertidumbre (Banda Rojo)\")\n", + "plt.imshow(estrellaR10E.reshape(10, 10), plt.get_cmap('Reds'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Histograma con incertidumbres (Banda Rojo)" + ] + }, + { + "cell_type": "code", + "execution_count": 839, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Datos de FWHM con incertidumbres de las estrellas para la Banda rojo :\n", + "Desviación : 2.344334810725805\n", + "Media : 4.008532518694751\n", + "Mediana : 2.9196546806439647\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEGCAYAAABvtY4XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAQDklEQVR4nO3df4xlZX3H8ffH3a0ogrQyJQpsV9FgqYlgJpZftQhqURBaY1uoGCXETdW22Bp1MY0kbdOgsUaTWuv6C1spiggVsYIUNQoidUFq+VmJ3SqIsmgVRBQXvv3j3g2z6+6dM3PnzL3z7PuVTObec++c58PN7Iczzz3nuakqJEntedSkA0iS+mHBS1KjLHhJapQFL0mNsuAlqVGrJx1grn333bfWrVs36RiStGJcd91191TVzM4em6qCX7duHZs2bZp0DElaMZL8764ec4pGkhplwUtSoyx4SWqUBS9JjbLgJalRFrwkNarX0ySTbAbuAx4CtlbVbJ/jSZIesRznwT+3qu5ZhnEkSXM4RSNJjer7CL6AzyYp4L1VtXHHJyRZD6wHWLt27aIHWrfh04v+2XFsPueEiYwrSfPp+wj+6Kp6FvBC4LVJnrPjE6pqY1XNVtXszMxOl1OQJC1CrwVfVXcOv98NXAw8u8/xJEmP6K3gk+yZZK9tt4EXADf2NZ4kaXt9zsHvB1ycZNs4/1JVl/U4niRpjt4Kvqq+CTyzr/1LkkbzNElJapQFL0mNsuAlqVEWvCQ1yoKXpEZZ8JLUKAtekhplwUtSoyx4SWqUBS9JjbLgJalRFrwkNcqCl6RGWfCS1CgLXpIaZcFLUqMseElqlAUvSY2y4CWpURa8JDXKgpekRlnwktQoC16SGmXBS1KjLHhJapQFL0mNsuAlqVEWvCQ1yoKXpEZZ8JLUKAtekhplwUtSo3ov+CSrknwtyaV9jyVJesRyHMGfCdyyDONIkuboteCTHACcALy/z3EkSb+o7yP4dwJvBB7e1ROSrE+yKcmmLVu29BxHknYfvRV8khOBu6vqulHPq6qNVTVbVbMzMzN9xZGk3U6fR/BHAScl2Qx8FDg2yUd6HE+SNEdvBV9VZ1XVAVW1DjgF+FxVndbXeJKk7XkevCQ1avVyDFJVXwC+sBxjSZIGPIKXpEZZ8JLUKAtekhplwUtSoyx4SWqUBS9JjbLgJalRFrwkNcqCl6RGWfCS1CgLXpIaZcFLUqMseElqlAUvSY2y4CWpURa8JDXKgpekRlnwktQoC16SGjVvwSd5W5K9k6xJcmWSLUlOW45wkqTF63IE/4Kquhc4EdgMPBV4Q5+hJEnj61Lwq4ffTwA+XlU/6jGPJGmJrJ7/KVya5FbgAeDVSWaAn/YbS5I0rnmP4KtqA3AkMFtVPwfuB07uO5gkaTxdjuABngQ8L8kec7b9Uw95JElLZN6CT3I2cAxwCPBvwAuBq7DgJWmqdXmT9aXAccB3q+p04JnA43tNJUkaW5eCf6CqHga2JtkbuBs4sN9YkqRxdZmD35RkH+B9wHXAj4Fr+gwlSRrfvAVfVa8Z3vzHJJcBe1fV1/uNJUka1y4LPsmzRj1WVdf3E0mStBRGHcH/3YjHCjh2ibNIkpbQLgu+qp47zo6H58x/EXj0cJwLq+rscfYpSepu1BTNS0b9YFVdNM++fwYcW1U/TrIGuCrJZ6rqK4vIKUlaoFFTNC8e8VgBIwu+qorBGTcAa4ZftaB0kqRFGzVFc/q4O0+yisGplU8F3l1V1467T0lSN10+8GO/JB9I8pnh/UOSnNFl51X1UFUdChwAPDvJM3ay//VJNiXZtGXLlgXGlyTtSpcrWc8FLmew4BjAfwOvW8ggVfVD4PPA8Tt5bGNVzVbV7MzMzEJ2K0kaoUvB71tVFwAPA1TVVuCh+X4oyczwCliSPAZ4PnDr4qNKkhaiy1IF9yd5AsM3SJMcDnT5VKcnAh8ezsM/Crigqi5ddFJJ0oJ0Kfi/AC4BDkpyNTDDYIXJkYbLGRw2XjxJ0mKNLPjh0fdvD78OBgLcNvxkJ0nSFBs5B19VDwGnVtXWqrqpqm603CVpZegyRXN1kr8HPsbg81gBcLExSZpuXQr+0OH3v5qzzcXGJGnKdSn4M6rqm3M3JHlKT3kkSUuky3nwF+5k28eXOogkaWmNWk3y6cBvAI/fYWXJvYE9+g4mSRrPqCmag4ETgX3YfmXJ+4BX9ZhJkrQERq0m+Ungk0mOqCo/ZFuSVpguc/C/l2TvJGuSXJlkS5LTek8mSRpLl4J/QVXdy2C6ZjODtd3f0GcoSdL4uhT8muH3E4CPV1WXhcYkSRPW5Tz4TyW5FXgAeHWSGeCn/caSJI1r3iP4qtoAHAnMDteh+Qlwct/BJEnj6fKRfY8FXgO8Z7jpScBsn6EkSePrMgf/IeBBBkfxAHcCf9NbIknSkuhS8AdV1duAnwNU1U8YrAsvSZpiXQr+weFnqm77yL6DgJ/1mkqSNLYuZ9GcDVwGHJjkPOAo4JV9hpIkjW/egq+qK5JcDxzOYGrmzKq6p/dkkqSxdDmCp6q+D3y65yySpCXUZQ5ekrQCWfCS1KhOBZ/k6CSnD2/PJHlyv7EkSePqciXr2cCbgLOGm9YAH+kzlCRpfJ3WgwdOAu4HqKrvAHv1GUqSNL5OFzpVVfHIhU579htJkrQUuhT8BUneC+yT5FXAvwPv6zeWJGlcXS50enuS5wP3Mvgg7rdU1RW9J5MkjaXrhU5XAJa6JK0guyz4JPcxnHffmarau5dEkqQlscuCr6q9AJL8NXAX8M8M1qJ5GfDEZUknSVq0Lm+ynlRV/1BV91XVvVX1HvzIPkmael0K/v4kL0uyKsmjkryM4TnxoyQ5MMnnk9yc5KYkZ44fV5LUVZeC/yPgD4DvDb9+f7htPluB11fVIQyWGn5tkkMWG1SStDBdTpPczCKmZKrqLgZz91TVfUluAfYHbl7oviRJC9fpNMlxJVkHHAZcu5PH1gPrAdauXbsccZbUug2TWyZ/8zknTGxsSdOv9+WCkzwO+ATwuqq6d8fHq2pjVc1W1ezMzEzfcSRpt9FrwSdZw6Dcz6uqi/ocS5K0vS7LBf/lnNuP7rrjJAE+ANxSVe9YXDxJ0mLtsuCTvCnJEcBL52y+ZgH7Pgp4OXBskhuGXy9aZE5J0gKNepP1VganRD4lyZeG95+Q5OCqum2+HVfVVQyufJUkTcCoKZofAm8GbgeOAd413L4hyZf7jSVJGteoI/jfAd4CHAS8A/g6cH9Vnb4cwSRJ49nlEXxVvbmqjgM2M1hobBUwk+SqJJ9apnySpEXqcqHT5VW1CdiU5NVVdXSSffsOJkkaz7ynSVbVG+fcfeVw2z19BZIkLY0FXehUVf/ZVxBJ0tLqfakCSdJkWPCS1CgLXpIaZcFLUqMseElqlAUvSY2y4CWpURa8JDXKgpekRlnwktQoC16SGmXBS1KjLHhJapQFL0mNsuAlqVEWvCQ1yoKXpEZZ8JLUKAtekhplwUtSoyx4SWqUBS9JjbLgJalRFrwkNcqCl6RGWfCS1KjeCj7JB5PcneTGvsaQJO1an0fw5wLH97h/SdIIvRV8VX0R+EFf+5ckjbZ60gGSrAfWA6xdu3bCadTFug2fnnSEZbf5nBMmHUHLYFK/2339fk38Tdaq2lhVs1U1OzMzM+k4ktSMiRe8JKkfFrwkNarP0yTPB64BDk5yR5Iz+hpLkvSLenuTtapO7WvfkqT5OUUjSY2y4CWpURa8JDXKgpekRlnwktQoC16SGmXBS1KjLHhJapQFL0mNsuAlqVEWvCQ1yoKXpEZZ8JLUKAtekhplwUtSoyx4SWqUBS9JjbLgJalRFrwkNcqCl6RGWfCS1CgLXpIaZcFLUqMseElqlAUvSY2y4CWpURa8JDXKgpekRlnwktQoC16SGmXBS1KjLHhJapQFL0mN6rXgkxyf5LYktyfZ0OdYkqTt9VbwSVYB7wZeCBwCnJrkkL7GkyRtr88j+GcDt1fVN6vqQeCjwMk9jidJmmN1j/veH/j2nPt3AL+545OSrAfWD+/+OMltHfe/L3DPWAlXuLy109N2+9epo5GvU8fXenfg71M3C3qdxvz9+rVdPdBnwXdSVRuBjQv9uSSbqmq2h0hN8XXqxtepG1+nbqbldepziuZO4MA59w8YbpMkLYM+C/6rwNOSPDnJLwGnAJf0OJ4kaY7epmiqamuSPwEuB1YBH6yqm5ZwiAVP6+ymfJ268XXqxtepm6l4nVJVk84gSeqBV7JKUqMseElq1Ior+CQHJvl8kpuT3JTkzElnmmZJViX5WpJLJ51lWiXZJ8mFSW5NckuSIyadaRol+fPhv7kbk5yfZI9JZ5oGST6Y5O4kN87Z9itJrkjyjeH3X55EthVX8MBW4PVVdQhwOPBal0AY6UzglkmHmHLvAi6rqqcDz8TX6xck2R/4M2C2qp7B4MSJUyabamqcCxy/w7YNwJVV9TTgyuH9ZbfiCr6q7qqq64e372Pwj3H/yaaaTkkOAE4A3j/pLNMqyeOB5wAfAKiqB6vqhxMNNb1WA49Jshp4LPCdCeeZClX1ReAHO2w+Gfjw8PaHgd9dzkzbrLiCnyvJOuAw4NoJR5lW7wTeCDw84RzT7MnAFuBDw6ms9yfZc9Khpk1V3Qm8HfgWcBfwo6r67GRTTbX9ququ4e3vAvtNIsSKLfgkjwM+Abyuqu6ddJ5pk+RE4O6qum7SWabcauBZwHuq6jDgfib05/Q0G84hn8zgf4hPAvZMctpkU60MNTgXfSLno6/Igk+yhkG5n1dVF006z5Q6CjgpyWYGK3kem+Qjk400le4A7qiqbX8FXsig8LW95wH/U1VbqurnwEXAkRPONM2+l+SJAMPvd08ixIor+CRhMF96S1W9Y9J5plVVnVVVB1TVOgZvhn2uqjzi2kFVfRf4dpKDh5uOA26eYKRp9S3g8CSPHf4bPA7fjB7lEuAVw9uvAD45iRArruAZHJm+nMER6Q3DrxdNOpRWtD8FzkvydeBQ4G8nG2f6DP/CuRC4HvgvBt0xFZfjT1qS84FrgIOT3JHkDOAc4PlJvsHgr59zJpLNpQokqU0r8QhektSBBS9JjbLgJalRFrwkNcqCl6RGWfDabSR5aM6ptTckWZfkmB1X2kxybpKXJjk5yb/O2X5Wktvn3H9xkkuGtzcn+dIO+7lh7gqD0nKz4LU7eaCqDp3ztXme53+ZwYql2xwB3JvkV4f3jxw+Z5u9khwIkOTXlyq0tFgWvLQLVbWFQaE/dbhpfwZLZGy7RP9I4Oo5P3IB8IfD26cC5y9HTmlXLHjtTh4zZ3rm4jnbf2vu1A1w0pzHrgaOHC5l8A3gK8P7qxmsHf/VOc/9BPCS4e0XA5/q6z9E6mL1pANIy+iBqjp0J9u/VFUnbruT5Nw5j32ZwZH6KgaXo/8H8BYGy1TfWlU/nfPc7wP/l+QUBuu0/GRJ00sL5BG8NNrVDAr+SOCa4YfM7AEcw/bz79t8DHg3Ts9oCljw0mi3MFj//Gjga8NtNwB/zPbz79tcDLwNuHw5wkmjWPDSCMMPa7gW+P5wHXQYTNU8hZ0cwVfVfVX11qp6cBljSjvlapKS1CiP4CWpURa8JDXKgpekRlnwktQoC16SGmXBS1KjLHhJatT/A6zaxXqA9dpDAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "FWHMR_I = np.array(FWHMR_I)\n", + "sigmaR_I = FWHMR_I.std()\n", + "mediaR_I = FWHMR_I.mean()\n", + "medianaR_I = np.median(FWHMR_I)\n", + "print(\"Datos de FWHM con incertidumbres de las estrellas para la Banda rojo :\")\n", + "print(\"Desviación :\", sigmaR_I)\n", + "print(\"Media :\", mediaR_I)\n", + "print(\"Mediana :\", medianaR_I)\n", + "plt.hist(FWHMR_I)\n", + "plt.xlabel('FHWM')\n", + "plt.ylabel('# de estrellas')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 1 con incertidumbre (Banda Verde)" + ] + }, + { + "cell_type": "code", + "execution_count": 840, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7cAAAFSCAYAAAApcigbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA6JklEQVR4nO3debxdVX3///f73kyEKeANCCQQCtEKDoARUGxVQMQxPDpYaMWxUitW8EtLhfZbcaw/tU5fhxoFwYogVVSqKCBOdQANICCTRASSECRhnjPcz++PtU6yc7jDuXedad+8nnmcR+7Ze6+9P2effc5Zn73WXtsRIQAAAAAA6myg1wEAAAAAAFCK5BYAAAAAUHsktwAAAACA2iO5BQAAAADUHsktAAAAAKD2SG4BAAAAALU3rdcBAAAwGR6aFVo73P4VP7juoog4sv0rBgAAnURyCwCop7XD0kE7tX+931851P6VAgCATiO5BQDUl93rCAAAQJ8guQUA1JPFyBEAAGAjklsAQH3RcgsAADKSWwBAfZHbAgCAjA5dAAAAAIDaI7kFANSUU7fkdj/G2qI93/YPbV9v+zrbJzTNP8l22B7Kz237k7aX2b7G9gEd3CEAAGzR6JYMAKin3gwotV7SSRFxpe1tJV1h+5KIuN72fElHSLq9svxLJS3Mj4MkfTb/DwAA2oyWWwBAfXW55TYiVkXElfnvByXdIGm3PPtjkk6WFJUiiyV9KZLLJM2xvUvb9wMAACC5BQDUmDvwaHXT9gJJ+0u63PZiSSsj4uqmxXaTtLzyfIU2JcMAAKCN6JYMAMDmhmwvrTxfEhFLqgvY3kbS1yWdqNRV+VSlLskAAKBHSG4BAPVkSQMduRfQmohYNOpm7elKie3ZEXG+7WdI2lPS1U7dmudJutL2gZJWSppfKT4vTwMAAG1Gt2QAQH11uVuyU/Z6uqQbIuKjkhQR10bEThGxICIWKHU9PiAi7pR0gaTX5lGTD5Z0f0SsatfLBwAAm9ByCwCor3EGgOqAQyQdK+la27/O006NiAtHWf5CSS+TtEzSI5Le0PEIAQDYQpHcAgDqq8u5bUT8dLyt5tbbxt8h6fgOhwUAAES3ZAAAAADAFEDLLQCgnjo3oBQAAKghklsAQH2R2wIAgIzkFgBQU+7FgFIAAKBPcc3tBNleYDtsT8vPf2T7b7uwXdv+ou17bf+y09srZfuptn9t+0Hbb8/TPmr745Nc37/bPrGdMU5g22fafl8vtj2W5mNxnGVfafur3YgLAPpBr36v+43tP7F9U+E6JrXvJvI71e9sX2f7hb2OoxNsf9f26/ogjt1tP2R7cJT5p9n+coe23fHvB9s/s71/J7cxxrZvtX14L7Y9Ftuvt/3TFpf9D9t/P95ytU1u85v0aP4QNB6faqFc2N67GzGOx/Z7bV9re73t08ZZ/PmSXixpXkQc2MK6e/06T5b0w4jYNiI+aftPJD1H0j9NdEW250p6raTP5ecvtD1ced9X2n53W6NvA9vfs/2eEaYvtn1nN3/sI+J/JO1r+5nd2ibQcY1rbtv9QFttgb/XPdW83yLifyPiqb2MaSqIiH0j4ke9jqMTIuKlEXFWt7fbnHBFxO0RsU1EbOh2LJ1m+5WSHoyIq/Lz02yvq3wn3mD7z3sc5mZsz7J9n+1DR5j3Mdtf63JIH5F0qu0ZYy1U2+Q2e2X+EDQebytdYZfPLi5TSgK/08Kye0i6NSIe7mxI42txH+0h6brK8z0l/VVErJvEJl8v6cKIeLQy7Y7G+66U+L/J9lGTWHcnnSXpNfYT+k0eK+nsiFjf6oradFyeI+m4NqwH6B/uwAOdsCX9XvfEZPbHVGhRRf3U/bibZPxvkfRfTdO+WqnLnijpy7Z3Lo2vXSLiMUlfVWpg2ii3rB+jVM9tWen7HhGrJN0o6VVjLVf35HZEtve2/WPb99te0+iOafsneZGr81mSv8qtgCts/7PtOyV90faA7Xfa/p3tu22fZ3vHFra7l+0f5DJrbJ9te85oy0fEWRHxXUkPjrPeN0n6gqTn5rjfnae/2fYy2/fYvsD2rqO9zrGWz/OOsH1T3mefyfvvb/O81zt1pfiY7bslnTbWa7X9A0kvkvSpvP2nSDpU0lvz/B1sf9v2aqdu1t+2PW+MXfBSST8eYz/+XtLPJe1TeT2fsL3c9gO2r3BqOW7MOy2/p19y6jZ9ne1Flfn7274yz/uqpFmVeROJ/ZuSniSpuu0dJL1C0pfGOs68qSvXm2zfLukHtgdtfyTv71skvby6Mdvb2z7d9iqn1uz3efOuPT9qLgPUnt3+B7pmqv1e53UfaPsXTi0eq2x/yqO0NFS+64+zfUde/h9bXVcue7ztmyXdPNZ+q5S5Ne/DayQ97BEqnLZfbPvG/L58Sk2nfWy/0aml6V7bF9neY7z9ksu9IZd70PYttv9ujGUHnbohrrH9e9tv8+bdzEddl0fo6uhKi7btl9m+Ppdd2djntofy7/p9TnWl/7U9UNlvh0/gfXmL7ZvzMp+205fLRI892/vaviTH8wfbp+bpM21/PB83d+S/Z+Z5jc/KSbbvyjG+YYxtbOyS29h3TvWNe/O+f2ll2R2dLpO7I8//ZmXeK5wuSbvP9s9d6S02wnF3jqTdJf1PPlZP9hMvJdjT6fvhQduXSBqqrG+z43qE9+g02/9t+8u5/LW2n2L7lLxPlts+omlX7GX7l051x295jDpZnt7S5yAfG4dq7LrsRUrfL3vlMjt4jPpmfs/e61Q/f9D2xbar++dY27fl4+xfmuJp+TtKKYH9c9uzK9NeopRDftdj1D09cv7wJKcc5AGnyyz3aortjyvH+022X90Uz480Tl12Sia3kt4r6WJJO0iaJ+n/SVJE/Gme/6x8pqRxDeKTJe2o1Np4nKR/kHSUpBdI2lXSvZI+3cJ2Lenfc5mnSZov6bTSFxMRpyud8flFjvtdTl0E/l3SqyXtIuk2Sefm5Z/wOsdaPn8YvibpFKVk7CZJz2sK4yBJt0jaWdL7x3qtEXGopP+V9La8/d82rWtA0heV9vfukh6VNFYXtWfkmEZke6GkQyRdVpn8K0n7Kb2vX5H037ZnVea/Kr/+OZIuaGw/f7i/qXR2bUdJ/y2p2k2k5dhzS/N52vyM16sl3RgRV6u14+wFSvv3JZLerJQY7y9pkaS/aFr2TEnrJe2dlzlCUvX6kRskLbC93UjxArVEy23dTanf62yDpHcoVcSfK+kw5ZO7Y3iRpIVK39v/7E1dNVtZ11FKv9H7jLHfmh2jVEGc09yLKNcJzpf0r3m7v1P6jW3MXyzpVEl/Jmmu0u/9OeO8voa7lH7HtpP0Bkkfs33AKMu+Wenk9n6SDsivc7Lrana6pL+LiG0lPV05WZF0kqQVSq9rZ6XXGSOUb+V9eYXS5VjPVPrtf0me3vKxZ3tbSd+X9L28/N6SLs2z/0XSwUr751mSDlR6zxqeLGl7SbtJepOkTzudYG/FQUr1riFJH5J0ur3xzN9/SZotaV9JO0n6WI51f0lnSPo7pbrk5yRd4JxwZ9Xj7hhJt2tTr44PjRDHVyRdkeN4r6SJXhf8yhzvDpKuknSRUj1uN0nvyTFWvVbSG5XqyeslfbJp/sY62QQ/BwslDUfEipFmOnm5pBmSrs+TW6lv/rXSsb9TLts4SbOPpM8q9RTcVen9qDbEtPwdFRE/l7Qqv86GYyV9JX93nKmx657N+cOnJT2mtI/fmB+N/bC1pEuU3vedJB0t6TP59TTcoHS8jy4iavmQdKukhyTdV3m8Oc/7kqQlStenNpcLSXtXnr9Q0lpJsyrTbpB0WOX5LpLWKY0uvSCvY1qe9yNJfztKjEdJuqqF1/JlSaeNs8zrJf208vx0SR+qPN8mx7hglNc56vJKH+ZfVOZZ0vLG68rbvn2c+DZ7rc37Rengf98oZfeTdO8Y614n6Y+b3rPh/J4/kF/r+ZJmjLGOe5V+7KX0I/L9yrx9JD2a//5TSXdIcmX+zwtif36Oc1Z+/jNJ75jAcfZHlfk/kPSWyvMjGsei0pfG45K2qsw/Rum658bz6Xn53dv5WeTBo1cP7Tgz9JqF7X9IS3v92qbSQ1vY7/UIZU6U9I1R5jVirP7GfUjS6a2sK5c9tIX9tqLp/XjjGPG+VtJlledWSvgadYLvSnpTZf6ApEck7THG65s2yra+KemEUeb9QCkBbTw/vNV1qanO1LxflJKqv5O0XdMy75H0rer+a9pvh0/gfXl+5fl5kt450WNP6Xd8tHm/k/SyyvOXKF2+1njPH63uK6WTAQePsq6Nn42875ZV5s3Or+fJSp+vYUk7jLCOz0p6b9O0myS9YLTjrnmfVo8XpYRuvaStK/O/IunLIx3XzetTqutdUpn3SqXvocH8fNu8rTmVffDByvL7KH3fDGrkOtlEPgeHSLqzadppef33SXpYKeE8eYzP5X6q1DdzvP9aef5WSd/Lf/+bpHMr87bO22rp+B1h/r9Kujj/vV1+nftrnLqnmvKHvC+b6/QfUP6sSvorSf/btO3PSXpX5fmLJd0yWqwRUfuW26MiYk7l8fk8/WSlL+NfOnU5feMY65Ck1ZH6lTfsIekbubn+PqUfzw1Kb+KobO9s+9zcLP+A0o/g0FhlCuyq1PoqSYqIhyTdrXQ2aqLL76qUzDbmhdIPWdXy6pOS12p7tu3P5e4SD0j6iaQ5HmV0PKXEdNumaXfk93w7pdbXR1Xp+2/7H3NXkfvze7h9U3x3Vv5+RNIsp24wu0pamfdBw8b9NtHYI+KnktZIOsr2XkpnVr+SZ7dynFX3+65Nz2+r/L2HUvK6qrK+zymd+Wpo7MP7RooVqB2LAaXqY4v5vXbq+vhtp4EDH1CqvI237ubv9sZlRq2sa7kmbqwyI9UJqsvvIekTlX1+j9J7OFr9YyPbL7V9We5yeJ+kl2n0fdP8m9dcD5nIupr9eV7+Nqdur8/N0z+sdH31xU5dnd85yuto5X1prmdsk8tO5Nibr5TEjmSzep0qx012d2zeKr8xhhZsjD0iHsl/bpPjuSci7h2hzB6STmocF/k9md8U00SO1V2VkrnqWDO3jbbwKP5Q+ftRSWti02BVjXFcqvuk+XM4XZu/N5P9HIxUj5Wk8/L34dZK3XNf69y9vsX65ojHmJ74GX5Yqc6vvO6Jfkf9l6QXOV3O+BeSfhdpYKxW6p7VfTZX6cTFWHXZg5qOob9ROrHSsK3GqcfWPbkdUUTcGRFvjohdlc7MfcZjj7gYTc+XS3pp0w/xrIhYOc6mP5DX9YycdL1GnevkdofSQSBpY1P+kySNFuNYy69SpbtC7nrSfB1p8z4qea0nSXqqpINy2UY3qtHKXyPpKaOtLCLuV0oYX5nj/xOlCtOrlc4uzpF0f4vxrZK0W6X7jZTOHk42dim1TLxWaR9dFBGNL9tWjrPqfl+l9EMxUlzLlc6eDVXWtV1E7FtZ5mlKZ3UfGCNWoF7ollxrU/T3+rNKg54szOs+tYV1N3+33zGBdTXvk1aMVWaz35r8e1iNb7lSi2p1n28VqfviqHL31K8rjXi6c/5tvlCj75vN6iZNMY23roeVWhwby1crx4qIX0XEYqVK+DeVWlYVEQ9GxEkR8UdKly/9H9uHjRDbZN7jhokce8sl/dEo8zar12nz46ZTlkva0SNfI7xc0vubjovZEVHtqtt83I13HO6Q66sN1XpP83s8qJQ8lWj+HK5TaqBoqMY7kc/BshSiRz0BFBG3KrUGvzJPmkx9s6H5Mzxbqc7fMKHjNyJuU+p2/RqlLsmNxqRW6p7VfbZaqTV+rLrsj5v26TYRUb39z9MkXT3Ga5+aya3tv/Smi67vVdqxw/n5HzT6F0XDf0p6v/OF4bbnOvWtH8+2Sl0e7s8H8Ji3vbE93ek60AFJ05yG3B6t9bLZOZLeYHu//CX/AUmX5w+H9MTXOdby35H0DNtH5dbL47X5WZLi1zpC2Ucl3ed0sf67xln+QqXrHEZkexulfvmN0Zm3VfrwrFbar/+m1I2iFb/IZd+e358/U2ptnWzsUkpuD1e6fuisyvSJHmfn5bjmOV03s/GMcqQR5C6W9B+2t3MaZGUv29X99gKlL05g6mBAqVqbor/X2ypdMvOQ7T+WNO59GSX939xSs6/SNXSNa2Uns65W9ttYvqN067g/y3WCt2vzOsF/SjolxyqnAWX+soX1zpA0U7mC6zRIUfOAPlXnSTrB9m45mfrnCazr6vwa9svv22mNGbZn2P4b29tHuoPDA8rHnNOASHvnhP5+pV4Aw3qiybwv1bKtHnvflrSL7ROdBpDa1vZBed45kv41H/NDSl1RO3IP2IZc1/iu0kmoHfLnopF0fV7SW2wf5GRr2y93um54NKMeqzmhWirp3fk9e742JX6S9FulXncvtz1dqevszBFWNRGvsb1PTgbfI+lrMfptiVr+HETEWqVrp8eqy86TdKQ2r8tOtL7Z8DVJr7D9fKexZN6jzXO+yRy/Z0l6m1IX67Pz62ql7rlR3pfnKw0sNdvpWtrXVRb5tqSnOA2GNT0/nmP7aZVlxq3L1j25bYyw1nh8I09/jqTLbT+kNFjQCRFxS553mqSznJq7m0fgavhELnex7QeVBio6aJRlq96tNOjB/Uo/DuePs/znlQ7cY5QGBnhU6YzIuCLi+5L+r9KZy1VK3RmOrixymiqvc6zlI2KNpL9Uus7nbqXrDJYqnY1p12ut+rikrZTOhl2mNFDCWL4k6WW2t6pM27Xxvit1adhRqeuClAYM+J7SF99tSheut9QVJn8B/ZnSdQL3KPX/r762icbeOBv3c6VrHi6ozJrocfZ5pdd2taQr9cR9/lptGozgXqUvt10q84/REwdPAOptoAMPdMKW9Hv9j0oDvTyYy402qFPVj5Vady6V9JGIuLhgXadp/P02qkqd4INKdYKFSuNFNOZ/Q9L/J+lcpy6Nv1Ea+Gm89T6olCifp/Qb9dfa/Dex2eeVKs7XKA0GdKHSyecN460r0kCW71FKKG6WtNnIyUrv3a05/rdoU/1hYS7zkNLJ7s9ExA9HiG0y70tDy8defp0vVkrq7syv5UV59vuU6mrXSLpWqV7wvgnEMVnHKrVo3qh0He+JOdalSifxP6X0nixTqkuN5d+VEvT7XBklvOKvlT7P9ygld19qzMi99t6qdDeRlUotuSMO2DQB/6U0RsydSnfKePtoC07ic/A5PfE7468qddlfKX3O3p3nfVwTrG9WYrtOqaHqK0p1/nu1+b6ZzPH7daW69qU5qW0Yr+7Z7G1K3afvVNrXX6zE/aDSSaqjlXoh3Km0jxujgO+ilKN8c6xAvfmlhYDkNOz9Ckl/M8qXetfZ/oCkuyLi472OpY6cbh5+bERMuKID9CsPzQotXtD+FZ9x0xURsWj8BYEythdI+r2k6TGBe59viXLr7H9GxB7jLgz0Ids/U7qTyFW9jqWObP+H0vW+nxlruVrfRBntY/slki5XOhv9T0p97y8bs1AXRcSpvY6hziLifyT9T6/jANqKbsTAlJV7a71IqfV2Z6WWu2+MWQjoYxFxyPhLYTQRcVIry9EBCw3PVRqRb41S95ejIt2nFQD6FwNKAVOVlbpo3qvULfkGpetKAWBUtNxCkhQRp6l9N7AHgO6g5RY1lsdk4CAeQaRb0Dyn13EAqBeSWwBAfdH/CAAAZFQLAAAAAAC119WW26Ghodh9j93HX3AUMeKtxia6jt6PDu3CcwoDbeiGNxxl+7Id+7F0oO6p0o/Lhe+nC/fEcOF7ufy25bp7zd1T5e1AnVh0S8aUNzQ0FHssmHzdCUD/ue3W27VmzRp+wDqgq8nt7nvsrp9e/pNJl183vLY4hnaso9SMgbJ7TM8YLL1HtfTo+keKym9owx0LNox6X+zWDEyR9HbawIyi8jMKyz82/FhR+cOed0RReaDI1PgaAEa1x4Ld9bPLm2/TCqDODjno+b0OYcrimlsAQH0NkN0CAICEa24BAAAAALVHyy0AoL645hYAAGRFLbe2j7R9k+1ltt/ZrqAAABiXO/QAOoi6EwB0zqRbbm0PSvq0pBdLWiHpV7YviIjr2xUcAACjc/Fo4yPp/Zj6mKqoOwFAZ5W03B4oaVlE3BIRayWdK2lxe8ICAGB8ttv+ADqIuhMAdFBJcrubpOWV5yvytM3YPs72UttL16xZU7A5AACAWptw3Wn1aupOANCqjo+WHBFLImJRRCwaGhrq9OYAAFsQu/0PoNeqdae5c6k7AUCrSkZLXilpfuX5vDwNAICOs6SBDmSjG9q+RmAj6k4A0EElLbe/krTQ9p62Z0g6WtIF7QkLAIBxmGtuUTvUnQCggybdchsR622/TdJFkgYlnRER17UtMgAAxkEyijqh7gQAnVXSLVkRcaGkC9sUCwAAwJRG3QkAOqcouQUAoHfoRgwAADbpanI7rA16ZP1Dky6/IdYXxxARReXt8gGm15e+jjaMdrJ+eG1R+WENF8dQ/F4MTC+OoR+UVs7bcUwCdUVuCwAAGmi5BQDUksU1twAAYBOSWwBAPZnkFgAAbEJ/RgAAAABA7dFyCwCoLYuWWwAAkNByCwCoLdttf4yzvfm2f2j7etvX2T4hT/+w7RttX2P7G7bnVMqcYnuZ7Ztsv6SzewQAgC0XyS0AoLbs9j/GsV7SSRGxj6SDJR1vex9Jl0h6ekQ8U9JvJZ2S4vM+ko6WtK+kIyV9xvZgZ/YGAABbNpJbAABaFBGrIuLK/PeDkm6QtFtEXByx8T5vl0mal/9eLOnciHg8In4vaZmkA7sdNwAAWwKuuQUA1JJlDXRmtOQh20srz5dExJInbN9eIGl/SZc3zXqjpK/mv3dTSnYbVuRpAACgzUhuAQC11aFbAa2JiEXjbHcbSV+XdGJEPFCZ/i9KXZfP7kRgAABgdCS3AIB66tF9bm1PV0psz46I8yvTXy/pFZIOi4jIk1dKml8pPi9PAwAAbcY1twCA2ur2gFJO2fTpkm6IiI9Wph8p6WRJr4qIRypFLpB0tO2ZtveUtFDSL9u9HwAAAC23AABMxCGSjpV0re1f52mnSvqkpJmSLsmtyZdFxFsi4jrb50m6Xqm78vERsaH7YQMAMPWR3AIAasnqfrfkiPhp3nSzC8co835J7+9YUAAAQBLJLQCgxnpxzS0AAOhPJLcAgJoyyS0AANiI5BYAUE89Gi0ZAAD0p64mtxGhdcNrJ11+msvDnTV9dlH5gTYMMP3Y8GNF5e9be3dxDNMGpheVH47h8hja8H6WGvBgUflQjL/QeOuIsnWUvhezB7cuKt+OzwQAAP2u9Pe6HXWGfuARhx2YQHlOSqKDep9dAAAwSdSRAABAA8ktAKCWejFaMgAA6F8ktwCA2iK5BQAADSS3AIDaGiC5BQAA2aRHgrE93/YPbV9v+zrbJ7QzMAAAgKmEuhMAdFZJy+16SSdFxJW2t5V0he1LIuL6NsUGAMDozIBSqB3qTgDQQZNObiNilaRV+e8Hbd8gaTdJfEEDADrOMtfcolaoOwFAZ7XlmlvbCyTtL+nydqwPAIBWlN5vEegV6k4A0H6Tvua2wfY2kr4u6cSIeGCE+cfZXmp76d1r7indHAAAQK1NpO60evWa7gcIADVVlNzanq705Xx2RJw/0jIRsSQiFkXEoicN7ViyOQAANmO77Q+gkyZad5o7d6i7AQJAjU26W7JTDeB0STdExEfbFxIAAK0hGUWdUHcCgM4qabk9RNKxkg61/ev8eFmb4gIAYFx2+x9AB1F3AoAOKhkt+acSI3kAAHojJaP8DKE+qDsBQGcVDygFAAAAAECvteVWQAAAdB8DQAEAgE26ntyW3JNwWFG8/cc3PFZUPmK4PIbhx4vKrxteVxzDHx69s6j8VtNmF8cwzWWH3/Yz5hTHsCE2FJWfPjCjOIZBD5atoPCQXF+YHERpAEABkltgyxBRVgeMNtQh1xfWv9ZHef1tuLAeOlhY95KkaQNl6xhsQ/oxYDqfYmS03AIAaovcFgAANJDcAgBqi5ZbAADQQJs+AAAAAKD2aLkFANQStwICAABVJLcAgNoiuQUAAA0ktwCA2iK3BQAADSS3AICa4j63AABgEwaUAgAAAADUHi23AIDaouUWAAA0kNwCAGqJ0ZIBAEAVyS0AoLbIbQEAQAPJLQCgtmi5BQAADQwoBQAAAACoPVpuAQD1RcstAADISG4BADXFfW4BAMAmJLcAgHoyDbcAAGCTrie3JWfZB9T7WsywhsvXERuKyq8bXlccw4DLLrde+dCK4hjWDq8tKv/k2U8ujmGrabOLyk9z+Udo1uCsovLbTN+uqPwg57gAAH0uFEXl1w4/XhzDQ+vuLyp/5yOrimN4eP3DReV3mLlDcQw7zSqrf82evm1xDNMK6y6l9WD0L2q1AIBashgtGQAAbEJyCwCoLZJbAADQQJs8AKC2bLf9Mc725tv+oe3rbV9n+4Q8fUfbl9i+Of+/Q55u25+0vcz2NbYP6MJuAQBgi0RyCwCoLbv9j3Gsl3RSROwj6WBJx9veR9I7JV0aEQslXZqfS9JLJS3Mj+MkfbYDuwEAAKgNya3tQdtX2f52OwICAKBfRcSqiLgy//2gpBsk7SZpsaSz8mJnSToq/71Y0pciuUzSHNu7dDdq9BvqTgDQGe245vYEpR/3siFbAQCYiBa6EXd2814gaX9Jl0vaOSIaQ6HeKWnn/PdukpZXiq3I08qHTUWdUXcCgA4oarm1PU/SyyV9oT3hAADQmsZoyR245nbI9tLK47gnbNveRtLXJZ0YEQ9U50VESIX3LcGURd0JADqntOX245JOllR+wyoAACaoQy23ayJi0RjbnK6U2J4dEefnyX+wvUtErMrdju/K01dKml8pPi9Pw5br46LuBAAdMemWW9uvkHRXRFwxznLHNc5+37PmnsluDgCAJ+jBaMmWdLqkGyLio5VZF0h6Xf77dZK+VZn+2jxq8sGS7q90X8YWZjJ1p9Wr13QpOgCov5JuyYdIepXtWyWdK+lQ219uXigilkTEoohYtOPQjgWbAwCg5w6RdKzSb96v8+Nlkj4o6cW2b5Z0eH4uSRdKukXSMkmfl/TWHsSM/jHhutPcuUPdjhEAamvS3ZIj4hRJp0iS7RdK+seIeE17wgIAYByt3bqnrSLip2nLIzpshOVD0vEdDQq1Qd0JADqrHaMlAwDQE70cLRkAAPSXtiS3EfEjST9qx7oAAGiF1dtbAQElqDsBQPvRcgsAqC2SWwAA0FB0n1sAAAAAAPpBV1tuLWugIJ+2e5+LD8dw8TrWDa8rKr92+PHiGB5Y+0BR+S9c853iGFbee39R+UP3XlgcwxF7vKCo/LbTtymO4bENjxaVnzW4VVkAhR+rUJStAChAwy3Q/9K4amU2xPqi8o+uf7g4hqvvvrqo/Ddv/lFxDL+7996i8s/dbffiGF7xR4cXld97+6cWxzA4uHXZCvogp0Bn0C0ZAFBPplsyAADYhOQWAFBfJLcAACCjTR4AAAAAUHu03AIAaotuyQAAoIHkFgBQS5Y0QG4LAAAyklsAQE2ZllsAALARyS0AoJ4sDZDcAgCAjAGlAAAAAAC1R8stAKCWLAaUAgAAm5DcAgBqi+5HAACggeQWAFBbXHMLAAAaSG4BALVEt2QAAFBFjy4AAAAAQO3RcgsAqCnTLRkAAGxEcgsAqCfTLRkAAGxCcgsAqCWLa2sAAMAm3U1uLdm9rYpEDJeVVxTHsG54XU/LS9Lyh1YUlf/GJZcVx7Dh+ruLyt/zsvuLYzhol2cVld9x5g7FMayP9T0tPxiDReXb8JEAJo1uyUD/a0fdabiw/nbf2nuLY/j5yiuKyp97yc+LY3joxtVF5W9//lOKY1gwZ9ei8vO32b04hlmDWxWVH4iyY5JeQ/2Lk94AAAAAgNqjWzIAoLY4ew4AABpIbgEAtWTRLRkAAGxCcgsAqC1SWwAA0FB0za3tOba/ZvtG2zfYfm67AgMAAJhqqDsBQOeUttx+QtL3IuIvbM+QNLsNMQEA0ALTLRl1RN0JADpk0smt7e0l/amk10tSRKyVtLY9YQEAMDaba25RL9SdAKCzSrol7ylptaQv2r7K9hdsb92muAAAGJfttj+ADqLuBAAdVJLcTpN0gKTPRsT+kh6W9M7mhWwfZ3up7aV3r767YHMAAGxuwG77A+igCdedVq9e0+0YAaC2SpLbFZJWRMTl+fnXlL6wNxMRSyJiUUQsetLcJxVsDgAAoNYmXHeaO3eoqwECQJ1NOrmNiDslLbf91DzpMEnXtyUqAADG4Q49gE6h7gQAnVU6WvI/SDo7j/Z3i6Q3lIcEAEBr6EaMGqLuBAAdUpTcRsSvJS1qTygAAEwE18iifqg7AUDnlLbcAgDQE7YY3RgAAGxUMqAUAAAAAAB9ocstt5Y9+Xw6YriNsfROP7Q0DBfuyw3rN5QHEWXF161bXxxC6X5oh4GCz4QkDXqwqPxw4RtR+DYCReiWDKAV7fi9Xzu8rqj8o4+tLY5BD5fVfR597PHiENYPl9UB+6HuhamLbskAgNoitQUAAA0ktwCAWrJouQUAAJtwzS0AoLYG7LY/xmP7DNt32f5NZdp+ti+z/WvbS20fmKfb9idtL7N9je0DOrg7AADYopHcAgAwMWdKOrJp2ockvTsi9pP0b/m5JL1U0sL8OE7SZ7sTIgAAWx66JQMAaso9GaAvIn5ie0HzZEnb5b+3l3RH/nuxpC9FREi6zPYc27tExKruRAsAwJaD5BYAUEtWx7ofDdleWnm+JCKWjFPmREkX2f5IDut5efpukpZXlluRp5HcAgDQZiS3AIB6csdurbYmIhZNsMzfS3pHRHzd9qslnS7p8PaHBgAARsM1twAAlHudpPPz3/8t6cD890pJ8yvLzcvTAABAm5HcAgBqqxejJY/iDkkvyH8fKunm/PcFkl6bR00+WNL9XG8LAEBn0C0ZAFBLvbrPre1zJL1Q6drcFZLeJenNkj5he5qkx5RGRpakCyW9TNIySY9IekPXAwYAYAtBcgsAqK0ejZZ8zCiznj3CsiHp+M5GBAAAJJJbAEBtWQPqfnILAAD6E9fcAgAAAABqj5ZbAEBt9aJbMgAA6E8ktwCAWrJ7M6AUAADoTyS3AIDaMtfcAgCArOvJbVFFxL2/RHggymOY7ull5QfKykvSHtvuXlT+yMOeUxzDyn3vLip/4MIFxTHMGJhRVP7x4ceLYyh9PwcKPxelA/KQWqCX6JYM9L92nIQq/a3bfsb2xTEc+ORnFJU/8kWri2NY8bSyutOivfYojuGpc/YuKj9zcKviGAYKhw3it2Pq6n22CAAAAABAIbolAwBqyTLX3AIAgI1IbgEAtWU6IAEAgIzkFgBQW7TcAgCAhqJT3rbfYfs627+xfY7tWe0KDACA8dhu+wPoJOpOANA5k05ube8m6e2SFkXE0yUNSjq6XYEBAABMJdSdAKCzSrslT5O0le11kmZLuqM8JAAAxuf8D6gZ6k4A0CGTbrmNiJWSPiLpdkmrJN0fERe3KzAAAMbkdM1tux9Ap1B3AoDOKumWvIOkxZL2lLSrpK1tv2aE5Y6zvdT20rtXl914GgCAKq65RZ1Mpu60evWabocJALVVMqDU4ZJ+HxGrI2KdpPMlPa95oYhYEhGLImLRk+Y+qWBzAABsYkkDHfgHdNCE605z5w51PUgAqKuSX/HbJR1se7bTqe7DJN3QnrAAAACmHOpOANBBkx5QKiIut/01SVdKWi/pKklL2hUYAABjoxsx6oW6EwB0VtFoyRHxLknvalMsAABMCMkt6oa6EwB0TumtgAAA6JkBbgUEAAAyRs4AAAAAANRe11tuQzHpsm7DGXp7sKj8oIeLY5g2ULbbZw7OKo5hl9m7FpV/+7MXF8fwh0fvKio/NKt8BMkdZu1QVH76wPTiGErfz4jJf6YkyQOF57hoOEOPWHRLBuqgHZ/TAZXV32ZP27Y4hgPmPruo/NBzyustD6x9oKj8TlvtVBzD/G32KCo/a3Cr4hhs2ucwMrolAwDqydIAyS0AAMhIbgEANeW29OgBAABTA8ktAKCWLGmArmkAACCjVgAAAAAAqD1abgEAtcWAUgAAoIHkFgBQW1xzCwAAGkhuAQA1ZUZLBgAAG5HcAgBqyaLlFgAAbMKAUgAAAACA2qPlFgBQW3RLBgAADSS3AIB6smTucwsAADKSWwBATZlrbgEAwEYktwCAWrLolgwAADahPxcAAAAAoPZouQUA1JZpuQUAABnJLQCgtga45hYAAGRbXHJbOvhIO0bmHPBgUflpLn/bSls79t5+YXEMQ1sNFZXfanCr4hhUuB+2mbZNcQgzBmcWlQ9FUfnS41EkF+gRi5ZbYEsxUHgl3cyBst9aSXrSrJ2Kym83Y05xDMOxoaj8YBvqkDMK9+W0genFMQwwUj5GwZEBAMAE2D7D9l22f9M0/R9s32j7Otsfqkw/xfYy2zfZfkn3IwYAYMuwxbXcAgCmCvfqPrdnSvqUpC9tjMR+kaTFkp4VEY/b3ilP30fS0ZL2lbSrpO/bfkpEYfMLAAB4AlpuAQC1NSC3/TGeiPiJpHuaJv+9pA9GxON5mbvy9MWSzo2IxyPi95KWSTqwfXsAAAA0kNwCAGrJTtfctvsxSU+R9Ce2L7f9Y9vPydN3k7S8styKPA0AALTZuMntSNcW2d7R9iW2b87/79DZMAEAeCJ34J+kIdtLK4/jWghlmqQdJR0s6Z8knWdGu9piUXcCgN5opeX2TElHNk17p6RLI2KhpEvzcwAApoI1EbGo8ljSQpkVks6P5JeShiUNSVopaX5luXl5Gqa2M0XdCQC6btzkdpRrixZLOiv/fZako9obFgAA42l/l+SCxtZvSnqRJNl+iqQZktZIukDS0bZn2t5T0kJJvyx/7ehn1J0AoDcmO1ryzhGxKv99p6SdR1swd+c6TpLmzZ83yc0BAPBErQwA1W62z5H0QqXuyyskvUvSGZLOyN1Q10p6XUSEpOtsnyfpeknrJR3PSMlbrEnVnebvPn+0xQAATYpvBRQRYTvGmL9E0hJJ2u/Z+426HAAAE2GpJ7cCiohjRpn1mlGWf7+k93cuItTNROpOz150AHUnAGjRZGsFf7C9iyTl/+8aZ3kAANqsE8NJMQYUOoa6EwB02GST2wskvS7//TpJ32pPOAAAAFMSdScA6LBxuyWPcm3RB5Vuc/AmSbdJenUngwQAYCTcbQf9iLoTAPTGuMntGNcWHdbmWAAAmBC6EaMfUXcCgN4oHlAKAIBeoeUWAAA0kNwCAGrJ6s2tgAAAQH/qcnIbihiedOnBgenFEWwovL3guuG1xTEMerCo/A4zh4pjGC7cDyXvY8O207crKj+s8hhKtaNL5EDhrUwGXfYxDnGXCQBAfyvtpTGgsrqXJM0o/L2ePjCjOAZF4W92G3q7lNZ9Sus9wFhouQUA1JNNt2QAALARyS0AoLY86TvaAQCAqYbkFgBQW7TcAgCABk55AwAAAABqj5ZbAEAtWdznFgAAbEJyCwCoKWuAbskAACAjuQUA1BYttwAAoIHkFgBQWwwoBQAAGhhQCgAAAABQe7TcAgBqKQ0oxTlaAACQkNwCAGrKdEsGAAAbkdwCAGprgAGlAABARnILAKgnM6AUAADYhIuVAAAAAAC1R8stAKCW0oBStNwCAICE5BYAUFt0SwYAAA1dTW4HPahtpm836fLrh9cXxzAcw0XlZwzOKo5hoLA3+LDKXoMk2b3vkT6tMIYNUX48lL4X7diPpesofQ3l+zEKywOTZW4FBKAl7TgR1hc9RfogBKCf0XILAKitAVpuAQBAxilvAAAAAEDt0XILAKglBpQCAABVJLcAgNpiQCkAANAwbrdk22fYvsv2byrTPmz7RtvX2P6G7TkdjRIAgCdwR/4Bpag7AUBvtHLN7ZmSjmyadomkp0fEMyX9VtIpbY4LAACgrs4UdScA6Lpxk9uI+Imke5qmXRyx8f4hl0ma14HYAAAYk+22P4BS1J0AoDfacc3tGyV9dbSZto+TdJwkzd99fhs2BwBAGlCq9D7PQI9QdwKADiiqFdj+F0nrJZ092jIRsSQiFkXEorlzh0o2BwDAJqblFvVD3QkAOmfSLbe2Xy/pFZIOi4hoW0QAALSEAaBQL9SdAKCzJpXc2j5S0smSXhARj7Q3JAAAgKmFuhMAdN64ya3tcyS9UNKQ7RWS3qU0wt9MSZfkLlyXRcRbOhgnAABPQDdi9CPqTgDQG+MmtxFxzAiTT+9ALAAATAjdktGPqDsBQG+0Y7RkAAC6ziK5BQAAm5DcAgDqi27JAAAg62pyOxyhtRsen3T5RzeUj7+wdsNjReVnT9+2OIbSa8TWrZ/8PmyYObhVUfloQ4UyVDZQ5GAbDt8BDxaWL7/HZul9Oktfw4YN64vKAwAAAP2gvGYOAEBPuCP/xt2qfYbtu2z/ZoR5J9kO20P5uW1/0vYy29fYPqADOwIAAIjkFgBQY7bb/mjBmZKOHCGW+ZKOkHR7ZfJLJS3Mj+Mkfbb4RQMAgBGR3AIAaqsXLbcR8RNJ94ww62NK9zGtXnOxWNKXIrlM0hzbu7TjtQMAgM0xoBQAoLY6NFrykO2lledLImLJmHHYiyWtjIirm1p/d5O0vPJ8RZ62ql3BAgCAhOQWAIDNrYmIRa0ubHu2pFOVuiQDAIAeIbkFANSSVT76fJvsJWlPSY1W23mSrrR9oKSVkuZXlp2XpwEAgDYjuQUA1FRr18h2WkRcK2mnxnPbt0paFBFrbF8g6W22z5V0kKT7I4IuyQAAdAADSgEAaqtHtwI6R9IvJD3V9grbbxpj8Qsl3SJpmaTPS3prO143AAB4IlpuAQD15N50S46IY8aZv6Dyd0g6vtMxAQAAWm4BAAAAAFMALbcAgNrqh2tuAQBAfyC5BQDUUh+NlgwAAPoAyS0AoKb6Y7RkAADQH7jmFgAAAABQe7TcAgBqi5ZbAADQQHILAKgtrrkFAAANXU1uLWvawPRJl58eM4pjGCg8yz9zYFZxDNMGen9OId16cfIGXN6jvTQGDwwWx1Da6tOO/eDCqwPaEQNQV7TcAgCAht5nWQAATIJFcgsAADahyQcAAAAAUHu03AIAaspccwsAADYat+XW9hm277L9mxHmnWQ7bA91JjwAAMbiDjyAMtSdAKA3WumWfKakI5sn2p4v6QhJt7c5JgAAxuc0WnK7H0AbnCnqTgDQdeMmtxHxE0n3jDDrY5JOllQ25C0AAJPkDvwDSlF3AoDemNSAUrYXS1oZEVe3OR4AAIAph7oTAHTehAeUsj1b0qlK3WpaWf44ScdJ0vzd5090cwAAjIqWVtQBdScA6I7JtNzuJWlPSVfbvlXSPElX2n7ySAtHxJKIWBQRi4aGGDsBANAeVvuvt+WaW3TIpOtOc+dSdwKAVk245TYirpW0U+N5/pJeFBFr2hgXAADjouUWdUDdCQC6o5VbAZ0j6ReSnmp7he03dT4sAADGx4BS6EfUnQCgN8ZtuY2IY8aZv6Bt0QAAANQcdScA6I0Jd0sGAKBfcI0sAABoILkFANQW3YgBAEADyS0AoJYaoyUDAABIXU5ur7ryqjVbT9/2tjEWGZLU65EDiaE/Yuj19omh9Rj26FYgALClufKKq9ZsNW1r6k79H0Ovt08M9YqBulOHdDW5jYi5Y823vTQiFnUrHmLo3xh6vX1i6K8YgNHQLRlTHXWnesTQ6+0TAzEgoVsyAKDGSG4BAEBCcgsAqC1SWwAA0NBvye2SXgcgYmjodQy93r5EDA39EAMwIgaUAvriO5oYer99iRgaiGEL5ojodQwAAEzYsw54Zlz0s++0fb27zN79Cq6VAgCgfvqt5RYAgAmg5RYAACQktwCA2iK1BQAADQO9DqDB9pG2b7K9zPY7e7D9+bZ/aPt629fZPqHbMeQ4Bm1fZfvbPdr+HNtfs32j7RtsP7cHMbwjvwe/sX2O7Vld2OYZtu+y/ZvKtB1tX2L75vz/Dj2I4cP5vbjG9jdsz+l2DJV5J9kO20OdjAFonTv0APof9abNYqHuRN2JuhMk9Ulya3tQ0qclvVTSPpKOsb1Pl8NYL+mkiNhH0sGSju9BDJJ0gqQberDdhk9I+l5E/LGkZ3U7Ftu7SXq7pEUR8XRJg5KO7sKmz5R0ZNO0d0q6NCIWSro0P+92DJdIenpEPFPSbyWd0oMYZHu+pCMk3d7h7QMts9OAUu1+AP2OetMTUHei7lRF3WkL1hfJraQDJS2LiFsiYq2kcyUt7mYAEbEqIq7Mfz+o9MW0WzdjsD1P0sslfaGb261sf3tJfyrpdEmKiLURcV8PQpkmaSvb0yTNlnRHpzcYET+RdE/T5MWSzsp/nyXpqG7HEBEXR8T6/PQySfO6HUP2MUknS2IEOgDoPepNGXWnjag7bZpG3WkL1i/J7W6Slleer1APviAbbC+QtL+ky7u86Y8rfQiGu7zdhj0lrZb0xdy95wu2t+5mABGxUtJHlM5yrZJ0f0Rc3M0YKnaOiFX57zsl7dyjOBreKOm73d6o7cWSVkbE1d3eNgBgRNSbNvm4qDtRdxoddactTL8kt33D9jaSvi7pxIh4oIvbfYWkuyLiim5tcwTTJB0g6bMRsb+kh9X57iSbyddmLFb6sdhV0ta2X9PNGEYS6Z5ZPTvzZvtflLqAnd3l7c6WdKqkf+vmdoFWuQP/ALSuV/WmvG3qTqLuNBrqTlumfkluV0qaX3k+L0/rKtvTlb6gz46I87u8+UMkvcr2rUrdiw61/eUux7BC0oqIaJx5/ZrSF3Y3HS7p9xGxOiLWSTpf0vO6HEPDH2zvIkn5/7t6EYTt10t6haS/ie7fmHovpR/Lq/OxOU/Slbaf3OU4gBGR3GILRb0poe6UUHdqQt1py9Uvye2vJC20vaftGUoXwV/QzQCcRhE5XdINEfHRbm5bkiLilIiYFxELlF7/DyKiq2fdIuJOScttPzVPOkzS9d2MQalLzcG2Z+f35DD1bpCICyS9Lv/9Oknf6nYAto9U6m71qoh4pNvbj4hrI2KniFiQj80Vkg7IxwoAoDe2+HqTRN2pgrpTBXWnLVtfJLf5ou+3SbpI6cN4XkRc1+UwDpF0rNJZv1/nx8u6HEM/+AdJZ9u+RtJ+kj7QzY3nM59fk3SlpGuVjtElnd6u7XMk/ULSU22vsP0mSR+U9GLbNyudFf1gD2L4lKRtJV2Sj8n/7EEMAIA+Qr2p71B3ou5E3alPuPst9QAAlNvv2c+KS3/e/jFThmY9+YqIWDTafNtnKHV3uyvfdkO2PyzplZLWSvqdpDc0Rky1fYqkN0naIOntEXFR24MGAAD90XILAECNnKkW76uY7/t5tKR9c5nP5HuUAgCANiO5BQDUVCeGkxp/QKkJ3ldxsaRzI+LxiPi9pGVK9ygFAABtRnILAEB7Ve+r2Ff3IwUAYCqb1usAAACYvI7cumfI9tLK8yUR0dLgLL26ryIAACC5BQDUlNWh1FZaM9aAUqOp3FfxsMp9FfvifqQAAGwJ6JYMAKgt221/TDKO0e6reIGko23PtL2npIWSfln8wgEAwBPQcgsAqLEOtd2OtcV0T8MXKnVfXiHpXUqjI89Uuq+iJF0WEW+JiOtsnyfpeqXuysdHxIauBw0AwBaA5BYAgAmIiGNGmHz6GMu/X9L7OxcRAACQSG4BADXW/XZbAADQr0huAQA1RnoLAAASklsAQE1NfgAoAAAw9TBaMgAAAACg9khuAQAAAAC1R7dkAEAtWZK55hYAAGQktwCAGiO5BQAACcktAKC2SG0BAEADyS0AoLYYLRkAADQwoBQAAAAAoPZouQUA1JRFx2QAANBAcgsAqC1SWwAA0EByCwCoMdJbAACQcM0tAAAAAKD2aLkFANSTGS0ZAABsQsstAAAAAKD2aLkFANRSGiuZllsAAJA4InodAwAAE2b7e5KGOrDqNRFxZAfWCwAAOojkFgAAAABQe1xzCwAAAACoPZJbAAAAAEDtkdwCAAAAAGqP5BYAAAAAUHsktwAAAACA2vv/Afo5yvx445eiAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "Err_G1=error(xdata1, poptG1[0], poptG1[1],poptG1[2], poptG1[3], poptG1[4], recorteG1.ravel(), inc=1)\n", + "poptG1E, pcovG1E = curve_fit(gauss2d, xdata1, recorteG1.ravel(), p0=[1,12,4,1,1],sigma=Err_G1)\n", + "estrellaG1E=gauss2d(xdata1, poptG1E[0], poptG1E[1],poptG1E[2], poptG1E[3], poptG1E[4])\n", + "FWHMG1E=FWHMG_I.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptG1E[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 1 fotografÃa (Banda Verde)\")\n", + "plt.imshow(recorteG1, plt.get_cmap('Greens'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 1 a partir de la gaussiana con incertidumbre (Banda Verde)\")\n", + "plt.imshow(estrellaG1E.reshape(15, 15), plt.get_cmap('Greens'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 2 con incertidumbre (Banda Verde)" + ] + }, + { + "cell_type": "code", + "execution_count": 841, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7cAAAFSCAYAAAApcigbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABNsUlEQVR4nO3de5wkVX3///en57Z3dpdZEHYXUMQkaBTMiho1Ubyh0UBuBhIRLxFNIJH8SIySfL+i0cQYb/HnJWIgQIIgUVRiUCGIMWpAEREFNCKC7LKwLOz9PjOf7x+nerd36PPpmZq+1ezruY9+7HSdrqpT1dVdn9N16nzM3QUAAAAAQJXVel0BAAAAAABmisYtAAAAAKDyaNwCAAAAACqPxi0AAAAAoPJo3AIAAAAAKo/GLQAAAACg8gZ7XQEAAMqw0Tmu3RPtX/CWPV9295Pav2AAANBJNG4BANW0e0J6+iHtX+5/rhlt/0IBAECn0bgFAFSXWa9rAAAA+gSNWwBANZkYOQIAAOxF4xYAUF1cuQUAAAUatwCA6qJtCwAACnToAgAAAABUHlduAQAVZXRLBgAAe9G4BQBUEwNKAQCABjRuAQDVxZVbAABQoHELAKgu2rYAAKBAhy4AAAAAQOVx5RYAUE0mqcalWwAAkNC4BQBUF21bAABQoHELAKguBpQCAAAFGrcAgOqibQsAAAoMKAUAAAAAqDyu3AIAqokBpQAAQAMatwCA6qJtCwAACnRLBgBUlKUBpdr9iNZottLMbjCzO8zsdjN7U0PZH5vZD4vp72mY/lYzu8vMfmRmL+7gDgEA4IBG43aazOwoM3MzGyyef9XM/qAL6zUz+2cz22Bm3+r0+mbKzH7OzG41sy1m9ifFtPeb2QdLLu9vzeycdtZxGuu+2Mze2Yt1RyYfiy1e+3Iz+1Q36gXMcmOSznX3YyU9Q9JZZnasmT1P0smSnuLuT5T0Xkkys2MlnSrpiZJOkvRRMxvoTdUPLL06X/cbM3uOmf1ohssote+mc57qd8WPVs/tdT06wcy+aGZn9EE9jjCzrbnvSDM738z+tUPr7vj3g5l9w8yO7+Q6gnXfY2Yv6MW6I2b2ajP7+hRf+z4z+8NWr6ts47Z4k3YUH4L648NTmM/N7PHdqGOLehxiZpeb2f1mtqk44J8ezPJsSS+UtMLdT5jC8nu9nW+WdIO7L3T3D5nZcyQ9TdKfT3dBZrZM0qskfbx4/lwzm2h439eY2dvbWvs2MLMvmdk7mkw/2cwe6ObJ3t3/XdITzezJ3Von0HH1e27b/Qi4+1p3v6X4e4ukOyUtl/SHkt7t7ruKsnXFLCdLusLdd7n7TyXdJanld/hscgCer3tq8n5z9/9295/rZZ1mA3d/ort/tdf16AR3f4m7X9Lt9U5ucLn7z9x9gbuPd7sunWZmL5e0xd2/Wzw/38z2NHwn3mlmv9Xjau7HzOaY2UYzO7FJ2QfM7NNdrtJ7JZ1nZsPRiyrbuC28vPgQ1B9nz3SBXWxwLJD0bUm/JGmppEsk/YeZLci8/khJ97j7ti7VL2uK++hISbc3PH+spN919z0lVvlqSde4+46GaffX33elhv/rzOyUEsvupEskvdLsUf0cT5d0mbuPTXVBbTouL5d0ZhuWA/QP68Bjqqs2O0rS8ZJukvQESc8xs5vM7L/M7GnFy5ZLuq9httXFtAPNgXS+7oky+2M2XFFF9VT9uCtZ/zdK+pdJ0z7VEMueI+lfzezQmdavXdx9p6RPKV1g2qu4sn6a0nfhlM30fXf3tZJ+KOnXo9dVvXHblJk9vgguNpnZ+np3TDP7WvGS7xW/kvxucRVwtZn9hZk9IOmfzaxmZm8xs5+Y2cNmdqWZLZ3Ceo82s68U86w3s8vMbHGz17r73e7+/uIqwLi7XyBpWNKjfl01s9dJ+idJzyzq/fZi+ust3cf1iJldbWaH57Yzen1R9iJL94NtMrOPFvvvD4qyVxe/VH/AzB6WdH60rWb2FUnPk/ThYv1PkHSipD8qypeY2RfM7CFL3ay/YGYrgl37Ekn/lSssroZ8U9KxDdvzD2Z2n5ltNrPvWLpyXC87v3hPL7XUbfp2M1vVUH68md1SlH1K0pyGsunU/XOSDpbUuO4lkl4m6dLoOLN9XbleZ2Y/k/QVMxsws/cW+/tuSb/WuDIzO8jMLjSztZauZr/T9u/a89XJ8wCV15l7bkfN7OaGx6N+FLLUsPmMpHPcfbPSAI1Llboq/7mkK81a3MCLWXe+LpZ9gpn9j6UrHmvN7MOWudLQ8F1/pqUrw2vN7M+muqxi3rPM7MeSfhztt4Z57in24W2StlmTgNPMXmjp/vFNlq6y26Ty11q60rTBzL5sZkdmdvXk5b6mmG+Lmd1tZm8IXjtgqRviejP7qZmdbft3M88uy5p0dbSGK9pm9lJL981vKc6Xf1ZMHy3O6xstxUr/bWa1hv32gmm8L280sx8Xr/lI/ftgOsde8fonmtl1RX0eNLPziukjZvbB4ri5v/h7pCirf1bONbN1RR1fE6xjb5fc+r6zFG9sKPb9Sxpeu9TSbXL3F+Wfayh7maVb0jaa2TetobdYk+PucklHSPr34lh9sz36VoLHWvp+2GJm10kabVjefsd1k/fofDP7NzP712L+75vZEyyNgbDOUoz4okm74mgz+5al2PHzFsRkxfQpfQ6KY+NExbHslyVtkXR0Mc8SC+LN4j37a0vx+RYzu9bMGvfP6WZ2b3Gc/eWk+kz5O0qpAftbZjavYdqLldqQX7Qg9rTm7YeDLbVBNlu6zfLoSXX7+Ybj/Udm9opJ9fmqWsSys7JxK+mvJV0raYmkFZL+f0ly918pyp9S/FJSvwfxMUpByZFKV7b+WNIpkn5V0uGSNkj6yBTWa5L+tpjnFyStlHT+VCpsZscpnSzvmlzm7hcq/eLzP0W932api8DfSnqFpMMk3Svpitx2Rq8vPgyflvRWpcbYjyT98qRqPF3S3ZIOlfSuaFvd/URJ/y3p7GL9/ztpWTVJ/6y0v4+QtENS1EXtF4s6NWVmx0h6lqQbGyZ/W9JxSu/rJyX9m5nNaSj/9WL7F0u6ur7+4sP9OaVf15ZK+jdJjd1Eplz34krzldr/F69XSPqhu39PUzvOflVp/75Y0uuVGsbHS1ol6bcnvfZipfsBH1+85kWSGu8fuVPSUWa2qFl9gUrqzJXb9e6+quFxwX6rNBtSathe5u5XFZNXS7rKk29JmlAKxNYofT/WrSimIZlV5+vCuKQ/VXr/nynp+Sp+3A08T9IxSt/bf2H7umpOZVmnKJ2jjw3222SnKQWIiyf3Iipigqsk/VWx3p8onWPr5SdLOk/Sb0papnS+v7zF9tWtUzqPLZL0GkkfMLOnZl77eqUft4+T9NRiO8sua7ILJb3B3RdKepKKxoqkc5U+y8uU4p3zJHmT+afyvrxM6XasJyud++uDyU352DOzhZL+U9KXitc/XtL1RfFfKv2Ydpykpyjd7vBXDbM/RtJBSj1FXifpI5Z+YJ+KpyvFXaOS3iPpQrO9P9b9i6R5SuMIHCLpA0Vdj5d0kaQ3KMWSH5d0tRUN7kLjcXeapJ9pX6+O9+jRPinpO0U9/lrSdO8LfnlR3yWSvivpy0px3HJJ7yjq2OhVkl6rFCePSfrQpPK9Mdk0PwfHSJpw99XNCi35NaXvlTuKyVOJN39P6dg/pJi3/iPNsZI+ptRT8HCl96PxQsyUv6Pc/ZuS1hbbWXe6pE8W3x0XK449J7cfPiJpp9I+fm3xqO+H+ZKuU3rfD1Ear+KjxfbU3al0vOe5eyUfku6RtFXSxobH64uySyVdoHR/6uT5XNLjG54/V9JuSXMapt0p6fkNzw+TtEfpl/mjimUMFmVflfQHmTqeIum7U9iWRZK+L+mtwWteLenrDc8vlPSehucLijoeldnO7OuVPsz/01BmSt3o/qBh3T9rsQ37bevk/aJ08L8zM+9xkjYEy94j6ecnvWcTxXu+udjWqyQNB8vYoHSyl9JJ5D8byo6VtKP4+1ck3S/JGsq/OYO6P7uo55zi+Tck/ek0jrPHNZR/RdIbG56/qH4sKn1p7JI0t6H8NKX7nuvPh4rXH9HuzyMPHr14aOmI65XHtP8h3ZxdZ/p+vFTSBydNf6OkdxR/P6H4DjWlAPB7kkaUbs+4W9JAr/ddV9+nA+x83WSecyR9NlNWr2PjOe49ki6cyrKKeU+cwn5bPen9eG1Q31dJurHhuSk1+OoxwRclva6hvCZpu6Qjg+0bzKzrc5LelCn7ilIDtP78BVNdlibFTJP3i1Kj6g2SFk16zTskfb5x/03aby+Yxvvy7IbnV0p6y3SPPaXzeK7sJ5Je2vD8xUq3r9Xf8x2N+0rpx4BnZJa197NR7Lu7GsrmFdvzGKXP14SkJU2W8TFJfz1p2o8k/WruuJu8TxuPF6UG3Zik+Q3ln5T0r82O68nLU4r1rmsoe7nS99BA8Xxhsa7FDfvg3Q2vP1bp+2ZAzWOy6XwOniXpgUnTzi+Wv1HSNqUG55uDz+Vxaog3i/r+VcPzP5L0peLv/6s01kO9bH6xrikdv03K/0rStcXfi4rtPF4tYk9Naj8U+3JyTP83Kj6rkn5X0n9PWvfHJb2t4fkLJd2dq6u7V/7K7Snuvrjh8Yli+puVvoy/ZanL6WuDZUjSQ576ldcdKemzxeX6jUonz3GlNzHLzA41syuKy/KbJf2rGrpQZOaZK+nflU4kf9uino0OV7r6Kkly962SHlb+Xq7o9Yer4Z4wT0fP5F+XGu8ZK7WtDfPOM7OPF90lNkv6mqTFlh9BdIPSl1Cj+4v3fJHS1dcdauj7b2Z/VnQV2VS8hwdNqt8DDX9vlzTHUjeYwyWtKfZB3d79Nt26u/vXJa2XdIqZHa30y+oni+KpHGeN+/3wSc/vbfj7SKXG69qG5X1c6Zevuvo+3NisrkDlmLo+oJRSkHK6pBMtdb+71cxeqnTF4nFm9gOlXiFneHK7UmB7h9LVl7N8Fg6WMgUHzPnaUtfHL1gaOHCzUvDW6vw4+bu9fpvRVJZ1n6YvmqdZTND4+iMl/UPDPn9E6T1seS+5mb3EzG4suhxulPRS5ffN5HPe5DhkOsua7LeK199rqdvrM4vpf690Rf5aS12d35LZjqm8L5PjjAXFvNM59lYqNWKb2S+uU8NxU3jY978qv7cOU7C37u6+vfhzQVGfR9x9Q5N5jpR0bv24KN6TlZPqNJ1j9XClxlzjWDP35l6c8WDD3zuUeuWMNzyX9t8nkz+HQ9r/vSn7OWgWx0rSlcX34Xyl7rmvsqJ7/RTjzabHmB79Gd6mFPOrWPZ0v6P+RdLzLN3O+NuSfuJpYKypxJ6N+2yZ0g8XUSz79EnH0O8r/bBSt1At4tiqN26bcvcH3P317n640i9zH7V4xEWf9Pw+SS+ZdCKe4+6tupL9TbGsXywaXa/UpPtUGhVdNT6n1JDM3neScb/SQVBf1nylbge5OkavX6uG7gpF15PJ95FO3kfT2tZJzlW6V+npxbz1blS5+W9TuhLSlLtvUmowvryo/3OUAqZXKP26uFjSpinWb62k5Q3db6T062HZukvpysSrlPbRl929/mU7leOscb+v1f7dGxvrdZ/Sr2ejDcta5CklSd0vKP2quzmoK1AtnemWnOXuX3d3c/cnu/txxeMad9/t7q909ye5+1Pd/SsN87zL3Y92959z9y+2c/Orbpaerz+mNOjJMcWyz4uWXZj83X7/NJY1eZ9MRTTPfuea4nzYWL/7lK6oNu7zuZ66L2YV+/AzSiOeHlqcm69Rft/sF5tMqlOrZW1TuuJYf31jcCx3/7a7n6wUhH9O6QcoufsWdz/X3R+ndPvS/2dmz29StzLvcd10jr37JD0uU7ZfXKf9j5tOuU/SUmt+j/B9kt416biY5+6NXXUnH3etjsMlRbxa1xj3TH6PB5QaTzMx+XO4R+kCRV1jfafzObgrVdGyPwC5+z1KV4NfXkwqE2/WTf4Mz1OK+eumdfy6+71K3a5fqfTjbv1i0lRiz8Z99pDS1fgolv2vSft0gbs3pv/5BaXeUFmzsnFrZr9j+2663qC0YyeK5w8q/0VR94+S3mXFjeFmtsxS3/pWFip1edhUHMDZtDeW7tn6tNIvR2e4+0TutRmXS3qNmR1XfMn/jaSbig+H9OjtjF7/H5J+0cxOKa5enqX9fyVpZsrbmpl3h6SNlm7Wf1uL11+jdJ9DU5YGdjlV+0ZnXqj04XlI0qCZ/V+lbhRT8T/FvH9iZkNm9pvaP23HdOsupcbtC5TuH7qkYfp0j7Mri3qtsHTfzN5flD2NIHetpPeZ2SJLg6wcbWaN++1Xlb44gdmjMwNKoUtm6fl6odItM1vN7OeV0kS18n+KKzVPVLqHrn6vbJllTWW/Rf5DKXXcbxYxwZ9o/5jgHyW9tairLA0o8ztTWO6wUvf8hySNWRqkaPKAPo2ulPQmM1teNKb+YhrL+l6xDcdZGm/j/HqBmQ2b2e+b2UGeMjhsVnHMWRoQ6fFFg36TUi+AZu93mfelcd6pxk9fkHSYmZ1jaQCphbYvDdXlkv6qOOZHlbqidiQHbF0Ra3xR6UeoJUWcVG90fULSG83s6ZbMN7Nfs3TfcE72WC0aVDdLenvxnj1b+xp+kvS/Sr3ufq34jP6V0jExE6+0lLd8nlIX9U8HPW2m/Dlw991K905HsewKpVzojbHsdOPNuk9LepmZPdvSWDLv0P5tvjLH7yWSzlbqvXRZsV1TiT33KvblVUoDS82zdC/tGQ0v+YKkJ1gaDGuoeDzNzH6h4TUtY9mqN27rI6zVH58tpj9N0k1mtlVpsKA3ufvdRdn5ki6xdLl78ghcdf9QzHetmW1RGqhoKjnt3q406MEmpZPDVcFrf1lpsIEXKR249W14TjDPXu7+n5L+j9Ivl2uVujOc2vCS89WwndHr3X29pN9Rus/nYaX7DG5W+jWmHds62QclzVX6NexGpa56kUslvdRSl7C6w+v7TKlLw1KlrgtSGjDgS0pffPcq3bg+pa4wxRfQbyrdJ/CIUv//xm2bbt3rv8Z9U+meh6sbiqZ7nH1Cadu+J+kWPXqfv0r7BiPYoPTldlhD+Wl69OAJQLXVOvBAJxxI5+s/UxroZYvS93ZuUKdG/6V0ded6Se9192tnsKzz1Xq/ZTXEBO9WigmOURovol7+WUl/J+kKS10af6A08FOr5W5RaihfqXSO+j3tf06c7BNKgfNtSoMBXaP04/N4q2V5GsjyHUoNih9L2m/kZKWrT/cU9X+j9sUPxxTzbFX6sfuj7n5Dk7qVeV/qpnzsFdv5QqVG3QPFtjyvKH6nUqx2m9J94LcU0zrtdKUrmj9Uuo/3nKKuNyv9iP9hpffkLqVYKvK3Sg30jdYwSniD31P6PD+i1Li7tF5Q9Nr7I6VsImuUruQ2HbBpGv5FaYyYB5QyZfxJ7oUlPgcfV9p3jX63IZb9ttLn7O1F2Qc1zXizoW63K12o+qRSzL9B+++bMsfvZ5Ri7euLRm1dq9hzsrOVuk8/oLSv/7mh3luUvmdPVeqF8IDSPq6PAn6YUhvlc1FFzfe7tRCQLA17v1rS72e+1LvOzP5G0jp3/2Cv61JFlpKHn+7u0w50gH5lo3NcJx/V/gVf9KPvuPuq1i8EZsZSruSfShryaeQ+PxAVV2f/0d2PbPlioA+Z2TeUMol8t9d1qSIze5/S/b4fjV5X6STKaB8ze7Gkm5S6QPy5Ut/7G8OZusjdz+t1HarM3f9daSAUYPagGzEwaxW9tZ6ndPX2UKUrd58NZwL6mLs/q/WrkOPu507ldXTAQt0zlUbkW6/U/eUUT3laAaB/dXlAKQBdY0pdNDcodUu+U+m+UgDI4sotJEnufr6mmMAeAPoGV25RYcWYDBzETXhKQfO0XtcDQLXQuAUAVBf9jwAAQIGwAAAAAABQeTO6cmtmJykNwz8g6Z/c/d3R60dHR/2II4+IXpKRH9F5olTu8pn0AZpJ76H2j0wdLrETI2HTeaq5Fru6Zt39HclLHmtl5rrv3vv08PqHOTLQfSa6JaNyysRORx5VJnYC0K/uvednWr9+PSewDijduDWzAUkfUcq/tVrSt83sane/IzfPEUceoW/c9N9Ny6JgfCLIl75rYme+jkFLLGpsRPPZDBopUd73so2R8WxuaWliIp9VIFpb9EmLtj/ab5Gy295PovdWkuYOLmj/OpvmlU+iz0zZz1puvuf/8ouy8wAdR2iACikTOx151BH6xk2T07QCqLJnPf3Zva7CrDWTy0knSLrL3e92992SrpB0cnuqBQDAFNSs/Q+gc4idAKCDZtK4XS7pvobnq4tpAAAAeDRiJwDooI6PlmxmZ0o6U5JWHrGy06sDABxIuOcWsxCxEwCUM5Mrt2skNX7jriim7cfdL3D3Ve6+anR0dAarAwCggXXoAXTOtGOnZcuInQBgqmZy5fbbko4xs8cqfTGfKun3ohkmNK7tY1ubFwa/vg/XhrNlQ0FZq0F+yoiW2WqwqXgQq3zZ2MTubNlA9PtELXh7g5GUJ4JBqsY9GKSq5OjMi0cOzpZtyx0vkh7cfn+2bE+wzw6ekw8U5g7Mz5ZFarWhsDwa+GzABkqVRYM/jYXvU36+WrC+QWt+PNEWQO+YrANXbqs/xB362LRjJwDA1JVu3Lr7mJmdLenLSsPZX+Tut7etZgAAtEDjFlVC7AQAnTWje27d/RpJ17SpLgAAALMasRMAdE7HB5QCAKBTGE8KAADU0bgFAFSSSap1oHWbH3UAAAD0Mxq3AIBqss7ccwsAAKqJxi0AoLJo3AIAgLpKNG6jkSujsCZKzRMts2wKoSiFTmtB+h2VTGkUpObxYA90e6TQneM7smUTE/mUNoNBqqNo+6J0N9F8NpOkN2GapOC9KLnKuK75slpQlv880bgAAABA71WicQsAwKN1Js8tAACoJhq3AIDKom0LAADqaNwCACrJxD23AABgHxq3AIBqYrRkAADQID/iEgAAAAAAFcGVWwBAZc1oFHMAADCr9E/jNkiVEqWDqQXpYOLVlUuvE6WKmSi5zFbLHQ+2v/z68nW1khf0y3YP3Dm2PVsW7Zeh2lC2bCBI9xOVRaJUTwNB2qmZKHucRil9FGx/lD6rljkuaFqgl+iWDKCdPEzdd+DiuxZV0T+NWwAApol4CwAA1HHPLQAAAACg8rhyCwCoJJOpxqVbAABQ4MotAKCyzKztjxbrW2lmN5jZHWZ2u5m9aVL5uWbmZjZaPDcz+5CZ3WVmt5nZUzu4OwAAOKBx5RYAUE29yXM7Julcd7/FzBZK+o6ZXefud5jZSkkvkvSzhte/RNIxxePpkj5W/A8AANqMK7cAgMoya/8j4u5r3f2W4u8tku6UtLwo/oCkN0v7DfN+sqRLPblR0mIzO6zd+wEAAHT9ym0QOQRDr48HKVgmJvpnyPYobU16Qb48TjGU3/5OcOXXV/YqSZReaNdEPhXQUG04WzYyMCdYX76eA5Y/7KPUOxNR+qQZvEfjwXIH+ufwDtNHAQciMztK0vGSbjKzkyWtcffvTfqeXC7pvobnq4tpa7tVT2C26kTanpax3IGqA7uF9ELoBLolAwAqydSx4GjUzG5ueH6Bu1+w37rNFkj6jKRzlLoqn6fUJRkAAPQIjVsAQGV1qHG73t1XBescUmrYXubuV5nZL0p6rKT6VdsVkm4xsxMkrZG0smH2FcU0AADQZjRuAQAV1Xp047avMa3wQkl3uvv7Jcndvy/pkIbX3CNplbuvN7OrJZ1tZlcoDSS1yd3pkgwAQAfQuAUAVFNvRkt+lqTTJX3fzG4tpp3n7tdkXn+NpJdKukvSdkmv6XgNAQA4QNG4BQBgitz961IwYl16zVENf7ukszpcLQAAIBq3AIAKY7BNAABQ1/XGbS5FS9lUOBO+J1hXPv1MFA+ZRfOVj6TKpvTpxLD0M9mOMsqmkYnS9pTdguj9DVMBBWVpsNS8WsmU0uPRe186LVN+vlqwjbm6kDYBvdLB0ZIB9Imy6X7KnpvC+UrXpbvCb8Vuj1MQ1KbVe8v3O8qYUeO2GDRji6RxSWPR6JIAALQbwQ+qhtgJADqnHVdun+fu69uwHAAApqVG4xbVROwEAB1Qrq8kAAAAAAB9ZKaNW5d0rZl9x8zObEeFAACYEku3j7X7AXQYsRMAdMhMuyU/293XmNkhkq4zsx+6+9caX1B8cZ8pSStWrpjh6gAASEzGPbeoomnFTiuPWNmLOgJAJc3oyq27ryn+Xyfps5JOaPKaC9x9lbuvOnjZwTNZHQAA+7EO/AM6abqx07Jlo92uIgBUVukrt2Y2X1LN3bcUf79I0jvCeSTVMmlYopQn0Ujh40F6nVqwzJoN5BcapXwJ0sjMRDQYerSNXRdUNPfethLNF6UQKju0fi04oMq+D61SDoTbWPJ4s5I7wIPYPUzYlNlvJAICgKkpEzvNBmXT+UjdT+kTzReWdTllUfhDXNCjJYod4h/3yq1vRsJsiPwQieZm0i35UEmfLQ6uQUmfdPcvtaVWAABMAQEOKobYCQA6qHTj1t3vlvSUNtYFAIBpoXGLKiF2AoDOakeeWwAAeoK2LQAAqKNxCwCopJS6h9YtAABIOjM6EgAAAAAAXcSVWwBARZHnFgAA7NP1xm1umPFo+PEoHUwtuPgcBT1ROBSlCSo7ZLskTURpbYIh5PdM7C69zm6aiFLaBKI0OdEyy65v7uC8bFk8lH++rFVdagPBR20GKRKywmM/+qyVSZ1AMiD0Do1boD90OxVOWmeULjA4Z4cpfaJYLYhJSqYQKiv85gty/tWCOS1KPxiU1aIcgyXXJ7WKSYI1cl44oHHlFgBQWcQwAACgjsYtAKCy+IUeAADUMaAUAAAAAKDyuHILAKgkUgEBAIBGNG4BAJVF4xYAANTRuAUAVBZtWwAAUNflxq1lh/2ulUzrMhCk7Sk7pHnEgqHHx308nDcaJj9KE7RnYk/LerVT2RQ7ZecbrOUPwzGNZcui/RKlFxqsDWXLouMpFg/zHy83P+94cFxEKX2iof4j0TvYiVQGwMyQ5xaoguj80ercEsVOUarIsqkEJ4JYLiwrme6x7Lk1igHCtD1RmfKxyoDn5/Oy62ux6dF2kCYIOQwoBQAAAACoPLolAwAqi1/hAQBAHY1bAEAlMVoyAABoROMWAFBZtG0BAEAdjVsAQGVx5RYAANQxoBQAAAAAoPK4cgsAqC6u3AIAgEJXG7cu11gmN+mcgbnZ+XZP7M6WRTmwojxm48EyI1FesSjHmSTtGt+ZLdsxtiNbtnVsS7asFlx8j7rrRfNFom2M8vyOT+TLhgeGS9UlMlIbyZbtGNuen28gP1+UHzc6LiRp657N2bIoB26cjy5fFmVcrgV5hQctX1bLbH/ZYwmYOfLcAt1UNl9rWBYsU4rjjijvbBSTTEyMZcvGPCjLxLCt58uXtYodc6LYISobCmKZQcuXTQSxw0CQHzdsarT4+o7y4JIDFzlcuQUAVJNx4RYAAOzDJRcAAAAAQOXRuAUAVJIpdSNr9yNcp9lKM7vBzO4ws9vN7E3F9L83sx+a2W1m9lkzW9wwz1vN7C4z+5GZvbijOwUAgAMYjVsAQGV1u3EraUzSue5+rKRnSDrLzI6VdJ2kJ7n7kyX9r6S3FvU7VtKpkp4o6SRJHzULbogDAACl0bgFAFRWtxu37r7W3W8p/t4i6U5Jy939Wve9I8rcKGlF8ffJkq5w913u/lNJd0k6oSM7AwCAAxwDSgEAKqtDA0qNmtnNDc8vcPcLHr1uO0rS8ZJumlT0WkmfKv5ertTYrVtdTAMAAG3WsnFrZhdJepmkde7+pGLaUqUT91GS7pH0Cnff0HJZyqc2CVOeRMN9B+l+yg4RH44THtgTDBEvSduDFDQ7x/OpgKI0OuNB0pcoFVIkGs4+TK8UlEVD/Q8GKZIiA0HaGh/Mry8aPr7scdhyPPtA2RQJXnKV0WfGo5QL2XnKfV6APrbe3VdFLzCzBZI+I+kcd9/cMP0vlbouX9bZKqKftTN26ray6X5aLDRb1CoVThjLhSl98jHZniAd5M4gJonKdo/vypcF6ysbq0XpfoZr+RSLw0HKwzkDc4KyfMrOoWB9HoROg62aIUGcUzZNUCQ69kkTVB1TefcvVrpPqNFbJF3v7sdIur54DgBA93SgS/JUAhgzG1Jq2F7m7lc1TH+1UoPm931flLRG0sqG2VcU0zC7XSxiJwDoupaNW3f/mqRHJk0+WdIlxd+XSDqlvdUCACDWo9GSTdKFku509/c3TD9J0psl/bq7N3bTuVrSqWY2YmaPlXSMpG+1e1+gvxA7AUBvlL3n9lB3X1v8/YCkQ9tUHwAApqwHXcWeJel0Sd83s1uLaedJ+pCkEUnXFXW60d3f6O63m9mVku5Q6q58lnt4XwxmL2InAOiwGQ8o5e5uZtlO6mZ2pqQzJWnFEStyLwMAYNq63bh196+r+Z1g1wTzvEvSuzpWKVTOdGKnlUeszL0MADBJ2VRAD5rZYZJU/L8u90J3v8DdV7n7qtHRg0uuDgAAoNJKxU7Llo12rYIAUHVlG7dXSzqj+PsMSZ9vT3UAAJgiS6mA2v0AOoTYCQA6bCqpgC6X9FylvH+rJb1N0rslXWlmr5N0r6RXTGVlrvyQ59FQ6BaMBW7BUOjh8PLBEOJRXaKyVqmAwmHix8sNEx8NL799LJ9eaPuebaXm2xXUcyxKWRTcYrZ4ZFG2bHggP7z8nGA4+90TC7JlrdIOZOcL3oeRoC6SVAuO006IUvoEI91r3PLzDZDxB32I9AzoR+2MnaoiShMUnXej9HRSHD9E6X52BWl7to3lY6Bte7Zmy7aGZfllRimExoJ0RpGh2lC2bN5gPm3P/KF8fLQwKBsbytdz/uD8bNmQ8vFR64w9+WZK/N1fLmCJ2huojpaNW3c/LVP0/DbXBQCAKTNNLXUP0G3ETgDQGzMeUAoAgF6hcQsAAOrK3nMLAAAAAEDf4MotAKCyuHALAADqaNwCAKrJ6JYMAAD2oXELAKguGrcAAKDQ3catu8Yy6XJ2tx4PvCkL5hsINs8tP0x4uUHZWw8hPlDLp4Oxify8UZqgaFj6R3ZuyJY9sG19tuyh7fn5Nu3KpzPaOZbfc7vH80P5r1yUTwW0cHhetmzp3IOyZaNzl2bLxqNh9+fki2xwYbas1uL4HRkoe3wHabCi+creTh/kCcqlCSJDEABUiwff9VFKn9LLjM4tQaofKT5nRykWo/hoy57N2bJHdj6SL9uVj48e2bkxv77d27Nlu8byMV5k7mA+xc6ikXxKn6VzFgdlS7JlS7xcdDx/MB+t1FrEzVbLxzJR/F8LjreyvX2iY5geRP2FK7cAgMoiqAAAAHU0bgEAlWSSarRtAQBAgcYtAKCijCu3AABgLxq3AIBqMqlG4xYAABRKjjoDAAAAAED/4MotAKCSTAwoBQAA9ulq49blcjVPJ9JqKPhS6/Pm65qJmuXT+bScN7hQHqWS2bw7P2T95t1bsmX3bl6bLbtn40P5sk2bsmVbt+SHs9+xIz8k//h4/r24fzSf0mfh3HxunqOX5Ies37WoecqpVoYHhrNlI7X8sPtDtaFwuRPhsRgNkx90rigZ00fD50cpIFqlugJ6ge5HQPdE54hcfCdJE1FZi/hvzPPn8+3j+Zhk61g+Plq/8+Fs2QPbHsyWrdm6Lj/f1nyaoId37MiWbd9TLl5ZOJKPSQ6eOzdbtnxBPkXS7ol8WqIoFU4Uww4EcXNUJkk1z5fXPIqP8vFK2VRXxEDVwZVbAEBlcc8tAACoo3ELAKgkuiUDAIBG9OgCAAAAAFQeV24BABVldEsGAAB70bgFAFST0S0ZAADsQ+MWAFBJJu6tAQAA+3S1cWtW02Atn2olmDFbFKX7idILRUPL75nIl0UpXaIh1CVp5/jObNmOsfww8VG6n/U78kPPR+l+frA6nyZozZr8fA9vzNdl185g+3fn34uDluVTAY0uWZQt23RYfp/tPiy/voFaPhyeM5BPPTR3MD+0/mCLVEDRMPlDQXTuwTD50WD20bWs6DMTpQkC+hHdkoEuCtLBRKliotipVSrI3eP5NIM7g9hp0658GsX1O9Zny34WpFH8yYZ8fPSzjfk0ils2b8uW7Qxip6hnyty5+VRAiw6any3btju/vvHgfRq0fJNhZCBflyiNYlTWap0TQZqgKJYZCI7TqL2B6iCSBQAAAABUHt2SAQCVxT23AACgjsYtAKCSTHRLBgAA+9C4BQBUFk1bAABQxz23AAAAAIDK48otAKCijG7JAABgr5aNWzO7SNLLJK1z9ycV086X9HpJ9THRz3P3a1ouS/lhvaOh4CdaDBNfRjQsfVS2KxiSfixIISRJ24Mh67fuyQ8T//COjdmy+zY/mC378fqH8/Pdty5b9sC9+TI9mN8G7Sr3Pm1aFwzlv2JrtixKOzAykk/Ns3A4n45q0fCCYL6F+fW1GM4+0ioNQo7V8kF9LUghVDZNUDBXiXmAmTPjnlv0p3bGTmVF50gv+b0dzRUtMzq3tIrxojSLO8ajNIr5VEAPbg/io82PZMt++nA+/eJDD+bni9IoxqmAskWaPzefunDp9nwaxei4mDOYbxYsGJ6XLVsYxE4LhvJlc1uk0BwKUgwNKIhXomM/2KecTWaHqXRLvljSSU2mf8DdjyseHftyBgAgx8za/gDa4GIROwFA17Vs3Lr71yTlf44CAKBHamZtf0TMbKWZ3WBmd5jZ7Wb2pmL6UjO7zsx+XPy/pJhuZvYhM7vLzG4zs6d2Ybegx4idAKA3ZjKg1NnFifqi+kkcAIBZbkzSue5+rKRnSDrLzI6V9BZJ17v7MZKuL55L0kskHVM8zpT0se5XGX2E2AkAOqhs4/Zjko6WdJyktZLel3uhmZ1pZjeb2c0PB/eAAgAwHdahR8Td17r7LcXfWyTdKWm5pJMlXVK87BJJpxR/nyzpUk9ulLTYzA6byXajskrFTg89tL5L1QOA6ivVuHX3B9193NMIAZ+QdELw2gvcfZW7rzp49OCy9QQA4FG63S25kZkdJel4STdJOtTd1xZFD0g6tPh7uaT7GmZbXUzDAaZs7LRs2Wj3KgkAFVcqFZCZHdZwEv8NST9oX5UAAJiKjqUCGjWzmxueX+DuF+y3ZrMFkj4j6Rx339w4EJW7u5kxjDj2Q+wEAJ03lVRAl0t6rtLJfrWkt0l6rpkdpzQq/D2S3tC5KsYpdoYH8kOh16xMWpNYNNT9mI+F80ZphHaP54dDf2h7fuj5B7blUwht3JAfev6RTfkyrd+ZLyuZ7ie0LdhvD27PFm1Ykk8TdPCW/HyPHJRPHbBld35/Ru/frol8mSTVLN9JwoKOkOO1IEVWOAx+VJd8mqBQLpUDITx6xEydGt14vbuvyq/XhpQatpe5+1XF5AfrjZei23E9p9oaSSsbZl9RTMMs1g+xU1lxmqBy6YWislbp8PYEMeDOsXy8sm0sfz7fsDMfA0Vx1YZH8umF1j28KVu2aX1+Pm0J0kgG/Su3HZTf9vEgFc7wcD5V4gPz8ul+HrMgH3Nt25OPuaJUTq3i5iiFVJjqqgO/LYafi6CIEfi7r2Xj1t1PazL5wg7UBQCAvmYpUrlQ0p3u/v6GoqslnSHp3cX/n2+YfraZXSHp6ZI2NVy9wyxF7AQAvVGqWzIAAP2gQ92SI8+SdLqk75vZrcW085QatVea2esk3SvpFUXZNZJeKukuSdslvaartQUA4ABC4xYAUFndbtq6+9eD1T6/yetd0lkdrRQAAJBE4xYAUFGmnly5BQAAfYrGLQCgsmjcAgCAulJ5bgEAAAAA6Cd9c+U2GmI7Sl0SpQkaD4YYj4aWbzUsfc6gxbtzIlju1j35IdYjD2/PD7/+0EMbs2W77w9SAW2Ph2YvpezFlSBN0IYHN2bL1i3ID2f/wJJF2bIjd+X3S/QezRucmy2TpKFafuj9IQ1ny8Ym8ts/YPljeM5AfvujtyI69kunEAI6xkizAHRRnCao3HxRuhcpjp32BOfInWP5FH3b9+TLtuwI0gtty5dt3ppPIaRHghSLYSqg4PttPL9PN4/kY46lQQqhzbvy+2Xb7ny8GaVKDOPtiTjenohSAZXOQ1guZVWUthH9pW8atwAATIeJ7kcAAGAfGrcAgGoyceUWAADsxY/eAAAAAIDK48otAKCyGC0ZAADU0bgFAFQSeW4BAEAjGrcAgMrinlsAAFDX1catSxrLpOcZD4Zzj5dZbpjwmuVvNy6bCqiVgVp+d0f12REMZ79rLL/fdgdlmig7hHqgEzFmVM+xfNlEMN/4RP6Y2T0e7M/x3aXKZiI6hqPjNEqdEKX0icsyxyhtC/SMqcYBCPQH70BcoRZphKIYMKhPFAeE8cN4/tzqQUwSxStRSp84BspvQ5RiZ3w8mi/YLyVT6ETvQ/l0PkAeA0oBAAAAACqPbskAgMqiWzIAAKijcQsAqCQzBpQCAAD70LgFAFSWcc8tAAAo0LgFAFQW3ZIBAEAdA0oBAAAAACqvu6mAfEJ7xpuntYmGAx+ujWTL9gTDnZcVdXObSRe4gSDdz3BtqNQyhwbyqVvmjgxnyzbMD9a3ZU++LBh6XrVg30Rl0VD3g8HvL4P5ZQ4N5vfLnMH8YT8ymN9ng2Eqp/z6JGkkOIaHgvc+ShE10O6UPi3kl8mVM/SGybjnFugX0WcxOM236n1RC67DROe66Jw9HMROQ0P5spHh/Pl6aCRftmduEG4HqXnCfRosc85wPpYZGg7mC+KjKE7tVDxCzxyUQbdkAEBlGR2QAABAgcYtAKCyuHILAADqaNwCACqLbmsAAKCO/lwAAAAAgMrjyi0AoJKs+AcAACDRuAUAVJVxzy0AANinu6mA5Brz5mlmBixflWiI8d3R+PKBsr/2R8OWt7r3a7iWH5p9eCBfdsi8JdmyxyzYni1bN7o4W7Zx87Zs2fbdQXqljbvzZVGaoCjdz5wgjc7ifAqdg5YdlC1bsnRhtuyQ+fOzZYuG82ULhvJl8wbnZsskaULBvglEx1vZlD7jPpYt2zORTwOVS1nkXm7bgHbgnluge8qmSozL4nPZQJDSZ85APkaYOzgnW7ZweF62bOm8fNnGRfmyJdvyMcL6IG3lxPwgFA++3oYW5LdvyUELsmULFwbbMDcfy0T7bG4QAw0PlEshJLU4bkrGQNFO7VQqUHRXyyPDzFaa2Q1mdoeZ3W5mbyqmLzWz68zsx8X/+RYYAABtZko5MNv9D5gpYicA6I2pnMXHJJ3r7sdKeoaks8zsWElvkXS9ux8j6friOQAAwIGO2AkAeqBl49bd17r7LcXfWyTdKWm5pJMlXVK87BJJp3SojgAANGEya/8DmCliJwDojWndc2tmR0k6XtJNkg5197VF0QOSDs3Mc6akMyVp+crDS1cUAIDJaIyi3800dlp5xMou1BIAZocp31xkZgskfUbSOe6+ubHM3V1qPrKTu1/g7qvcfdXS0aUzqiwAAI1qsrY/gHZpR+y0bNloF2oKALPDlBq3Zjak9OV8mbtfVUx+0MwOK8oPk7SuM1UEAACoFmInAOi+lt2SLfX5ulDSne7+/oaiqyWdIendxf+fb7ksmQat+ZDgUdeysSB1Sav15QwGQ8t7lF4oyHqS27a6gVp+yPN5g/kh5JfOzae8OWJRkArokHy6nz178vt09UD+N48t87Zky7SpZJqgw/LbflAwnP3K5cuyZcuX5XsJLJ2TH7J+ZDCfkmkwSFc1FAx1L8UpdgYtXxal+5kIUvBMeD7tQC4dlyRt3bM1W5YzHqwL6CQT3ZLRn9oZO3VC2bQmXnK+KG1Lq3QwuTR0kjQSpAJaOJyPH0bnLc6WLV+YPw9uHt2VLZsIUh6OjORji50788uMvt/mz8unAlq8JJ8O8dCD8zHl8oX5+aJYNEqVOFLLv0fReyu1SL9ZOqVP+3Ee6i9TuXL7LEmnSzrRzG4tHi9V+mJ+oZn9WNILiucAAHSHSTWztj9artbsIjNbZ2Y/aJh2nJndWJwjbzazE4rpZmYfMrO7zOw2M3tqB/cI+gexEwD0QMsrt+7+deV/6Hh+e6sDAMBUWekrUDN0saQPS7q0Ydp7JL3d3b9YNGLeI+m5kl4i6Zji8XRJHyv+xyxG7AQAvTGt0ZIBAOgXprjbWqe4+9eKEXD3myxpUfH3QZLuL/4+WdKlxeBBN5rZYjM7rGHEXAAA0CY0bgEAmLlzJH3ZzN6rdMvPLxfTl0u6r+F1q4tpNG4BAGiz7v/kDQBAm5hZ2x+SRov7ZuuPM6dQlT+U9KfuvlLSnyoNJgQAALqIK7cAgMrq0D2369191TTnOUPSm4q//03SPxV/r5G0suF1K4ppAACgzbrauDWZai2GfG9m53g+3c1AkJ4lCnqi+cpezw5TCCkeDn18MJ9O5aCRRdmyZfN2ZsueuCw/vPz84fyw9IsOyg/pvvGRfCqgLVvz79P4eD5tTTSc/cGj+aHnVwTpfo46KD9fNJz9vMF8XYYG8vusVSqDuQPzsmULhvLpCqLPSzSEfpiWKsjKFKVVyGEIfPTO1EY37pL7Jf2qpK9KOlHSj4vpV0s628yuUBpIahP326Ibou/mdAt4iWWG68sHTzUPylqcP6PYae5APrXfouEgdpp7cLZsx6J87DQ+kT+Bzh3Mx5ULF+Xjqt278mkUo/dwZE4+Jlm2MB9XHBnER8sXHJItO3hOPuaK9vWcwfx7NFTLb4MUHxu1KN1P/5wX0ANcuQUAVJKpY1du4/WaXa40EvKoma2W9DZJr5f0D2Y2KGmnpHpX5mskvVTSXZK2S3pN1ysMAMABgsYtAADT4O6nZYp+qclrXdJZna0RAACQaNwCACqsj7olAwCAHqNxCwCoJovv8wMAAAcWGrcAgIqyntxzCwAA+hONWwBAJZnolgwAAPbpauN23Me0afeGpmULh/LDiI9NjGXLBgfyKU+iocCjX/tdUfqVbJEmPMixojh1S5SCZfFwfth25Ud710AtX9mDg3Q4j1u8OFv24KHbsmUP79iRLdsznk91FAWnh8zPD59/xKIl2bLReYuzZQeNLMyWLZ2TX2b0PiwaCt4jxe/vcJDmIGJBzqqoq+ZQUJdo2P1cuqNWaZAAALNEcL6ueRBXBeekVueQwSB2mjuYT7O3aGJPtmzP3HxcGaV1HA7qsmRO8/hWkjYsysdOO8bydYl+ups3lK/L0rn54PCQefk0SIcGZVEqoCilYZSuKXpvpTgmieKcsEcPP4jOely5BQBUFvkMAQBAHY1bAEBl1bjnFgAAFGjcAgAqycSVWwAAsA85FAAAAAAAlceVWwBARRl5bgEAwF40bgEAlcU9twAAoK6rjdvdE3t0//Y1TcuOXpQfzn04SF0SiVKlRGrBMPATyqf7aTWcfZk0K5J0yNxDsmXDA8PZskHLv72Lhrdmy+YP5YdtH7CHsmVzBvPr2xkMdb90bn59B43kj4vHzB/Nli0czqcQWjQcpAIayQ91vyhKBRSla5K0fSyfBmDM8/tmLEhlUAuuWI1oTn6+4HMRLXOg1vz9DYfcBzrIjHtugXYr/50epF8Mzi1RbCTF6WLmBGlmJobi9IzZ9QX1mTOQP7cumZNPabltTz5V4u7x/Hk+MjKYj/8WDOVjp8Uj+XjloOHFQVl+++YP5lMBjQT7LIpTJWmgZLwSHcOlyzjXVAZXbgEAlcWPKwAAoI6blQAAAAAAlceVWwBARRldxQAAwF40bgEAlcWAUgAAoI7GLQCgkkzxQDUAAODAQuMWAFBRxoBSAABgr642bodqQzp07mOmPd+g5YeB9yA1T1jm+XQ/cV2CXdbiAsJQMJy9B+mHonQwC4fyaW0GwlRA+SHdl85Zki1bvuDQbNnuoJ4Tnn8votQ80VDvkQVD+WHpo20f9/Fs2ebdm0rVRYrTByh476M0WFH6qCjdT9krXbnjMDp2AQD9J7pXvWx8pGCZNQ/W1+KcNBCEqsO1oK5BuBZt/2Am7Z0kzR3Mpx6KUuzsGt+VLRubyMcdkaGgnnMG8zHHvMF8mqC5Qdm8gXLzRamcojhVitNEhek+GYvhgNYyyjWzlWZ2g5ndYWa3m9mbiunnm9kaM7u1eLy089UFAGAfM2v7A5gpYicA6I2pXLkdk3Suu99iZgslfcfMrivKPuDu7+1c9QAAyKNbMvoUsRMA9EDLxq27r5W0tvh7i5ndKWl5pysGAEArXGlFPyJ2AoDemNbNd2Z2lKTjJd1UTDrbzG4zs4vMrOmNmmZ2ppndbGY3b1i/YWa1BQCgYEqpgNr9ANppprHTQw+t71ZVAaDypty4NbMFkj4j6Rx33yzpY5KOlnSc0q+T72s2n7tf4O6r3H3VktH8QEUAAACzSTtip2XLRrtVXQCovCmNlmxmQ0pfzpe5+1WS5O4PNpR/QtIXOlJDAACaYQAo9DFiJwDovpaNW0uRw4WS7nT39zdMP6y4p0SSfkPSD1ota8AGdNDw4uYVaTEceLZ+0+tZvVcwKn1pAy1SopRNBeRBGh0byG9IFPQND+TrMjyeL4uGex+fGMuWRamAonQ/A8FQ95H5Q/OzZXMG8kP5R/s6GpI+TvXTfWXT/QBVU/YcAHRSO2OnflJ+ALf8fFFau5aCj/9wNFtwjoxitZHgXD8/SEEYpXSM4qNItN+i9DvDtfyeiWKZoWC+sul+WqV7jMqjGDc6TsMyfiydFabScniWpNMlfd/Mbi2mnSfpNDM7TilJ5z2S3tCB+gEAkEUwgj5F7AQAPTCV0ZK/ruY/uV3T/uoAAABUG7ETAPRGuT6fAAD0mIk8twAAYB8atwCAijLV6JYMAAAKNG4BAJXFlVsAAFBH4xYAUFkMKAUAAOrIoQAAwDSY2UVmts7MfjBp+h+b2Q/N7HYze0/D9Lea2V1m9iMze3H3awwAwIGhq1duazag+UOLmpZF+UWj/GBRfthI2d/64zyo8W8FUR6wSJQDLSobGMi/vVEet7lBHtgxz+eydS/3XkTLLJv/OMrHu3BoYbasbD7eOQP59UnS9rGtpZbbbXTxRJWkAaV68vm5WNKHJV26ty5mz5N0sqSnuPsuMzukmH6spFMlPVHS4ZL+08ye4O7jXa81MAVRb4iy5/kw93qLPK9lz5FWC/KZen6ZUU774dpItmw8iGXGg4972X0a7ZdoG6L8uFFO2ni+fFlUl1bvbXTclM1li9mvf6JqAACmxWTW/kcr7v41SY9MmvyHkt7t7ruK16wrpp8s6Qp33+XuP5V0l6QT2rcPAABAHY1bAEBl1WRtf5T0BEnPMbObzOy/zOxpxfTlku5reN3qYhoAAGgzBpQCAFSTdWxAqVEzu7nh+QXufkGLeQYlLZX0DElPk3SlmT2uE5UDAADN0bgFAGB/69191TTnWS3pKk830H3LzCYkjUpaI2llw+tWFNMAAECb0S0ZAFBJaUCp9v8r6XOSnidJZvYEScOS1ku6WtKpZjZiZo+VdIykb8144wEAwKNw5RYAUFm9yHNrZpdLeq5S9+XVkt4m6SJJFxXpgXZLOqO4inu7mV0p6Q5JY5LOYqRkAAA6o6uNW5NUy1wsnojikyB4sXIjqIfKphdqJRoqPbqGPhTEQdEw6mVTCEXb34llRqKURdH6ovmilEzRVZtoG1oNZ186lUE41H1+mXHKquA4LNVQYMh99Ir1JBWQu5+WKXpl5vXvkvSuztUI6I7wx6TgNB+dP8M0QZJqwXKj+oTnz2C+mufPkdG5dUL52CJK91M2PooGvwtT6EQphILv0yiOKbvMVj9OdiKlTy9+EEV3ceUWAFBZNQIVAABQ4J5bAAAAAEDlceUWAFBJ9QGlAAAAJBq3AIAK4/4pAABQR+MWAFBRM0rdAwAAZhnuuQUAAAAAVF5Xr9y6XGMTu5uWTYRjyJcbQr3sL/pxOphovlbpYKKy/LxhCqGS4nQ/+dRDYxNj2bLxYL4obU9kZGCk1DLLDq1f9phptX1R+p3o/Q2H3g/W1yq1QlbwWQtmKrcuoA3olgz0h06kCUrLjc5nQYq+MJVekAooSrMX5J+MtiNKBVRW+M1XOkVSlNKn3DLL1qWVsqmeMPvRLRkAUElR7nQAAHDgoXELAKgm4xd6AACwD41bAEBFMaAUAADYh/5cAAAAAIDK48otAKCy6JYMAADqaNwCACqLbskAAKCuZePWzOZI+pqkkeL1n3b3t5nZYyVdIelgSd+RdLq7N8/zU3B5mC4mJ0pNUzrlSfBrv5dMW9NKNKpntB0DJWO3OKVRlAoov/0DFqUCypdFKYR2Z9JDSXEqnEjZtETRVaBoma1SGQxa/qPW7StPZdMkAf3GROMW/amdsdNsUDZNUKfW6SXjo6iy4Xwd2Pyy33xR2spOpBeK6zKDVED02kHGVFoOuySd6O5PkXScpJPM7BmS/k7SB9z98ZI2SHpdx2oJAEAzZu1/ADNH7AQAPdCycevJ1uLpUPFwSSdK+nQx/RJJp3SiggAAAFVC7AQAvTGlPp9mNmBmt0paJ+k6ST+RtNF9bz/U1ZKWd6SGAAA0ZR35B7QDsRMAdN+UGrfuPu7ux0laIekEST8/1RWY2ZlmdrOZ3fzwQ4+UqyUAAE2YWdsfQDu0K3Z66KH1naoiAMw60xqtx903SrpB0jMlLTbbO0rOCklrMvNc4O6r3H3VwcuWzqSuAADshyu36HczjZ2WLRvtTkUBYBZo2bg1s2Vmtrj4e66kF0q6U+mL+reLl50h6fMdqiMAAE3RuEU/InYCgN6YSp7bwyRdYmYDSo3hK939C2Z2h6QrzOydkr4r6cLWi7JsyptwCPVodPUohc70LkzvNV42tmmRQqhWy+/uqK57glQ5ZVMhRQFctPlRap5xz88ZzbdnYk+2LErbE5VFqYeGakPZski0Da0C4qirY+lh+QOdSGeV/RiSWQgAJmtj7DS7tboVwD1/konOvVFcGcZAYQqhaJmBYBtKK3kLRbd/wJvJ+rhNBGW0bNy6+22Sjm8y/W6le0gAAOg6E8EP+hOxEwD0xlSu3AIA0IfoRgwAAPahcQsAqCwatwAAoI7GLQCgmoxuyQAAYJ9yoxEBAAAAANBHuHILAKgsuiUDAIC6rjZua7JsGpZxH8/ON658WpcohU6UJidMoRPWJa9VkFW2rns8nyqn5tEyy6WfceXTyERD8pc1FqQCitIERcLUUoEo3c9M1Ep2kiib6qlsKqBor+WOi7L7GpgpRksGZr/Sn/F+OjVV5HuqEz8W8h2NbuPKLQCgohgtGQAA7MM9twAAAACAyuPKLQCgsrhyCwAA6mjcAgAqi/u5AABAHY1bAEBlceUWAADUcc8tAKCSTPUhpdr7r+V6zS4ys3Vm9oMmZeeamZvZaPHczOxDZnaXmd1mZk9t/54AAABSl6/cTviEdoxtb1oWhRNhepagS9qY51MITYznyyI1GyhVl5b1mcinbhmpzSm9zpwoVcx4UDYRpAmK3qeBYL8tGFpYar7BTFopSRq0/KFdNkVSJEqf1Eqtlq9rlD6qdGqBIJ3TeJgGqnkZ3UJxALpY0oclXdo40cxWSnqRpJ81TH6JpGOKx9Mlfaz4H0AHdeTc1E/phTqA8zlmA67cAgAqymTW/kcr7v41SY80KfqApDdr/xD4ZEmXenKjpMVmdlg7th4AAOyPxi0AoMKsAw+NmtnNDY8zW9bC7GRJa9z9e5OKlku6r+H56mIaAABoMwaUAgBUk3WsG916d1815WqYzZN0nlKXZAAA0CM0bgEAldUnoyUfLemxkr5XNLZXSLrFzE6QtEbSyobXriimAQCANqNbMgAAM+Du33f3Q9z9KHc/Sqnr8VPd/QFJV0t6VTFq8jMkbXL3tb2sLwAAsxWNWwBAZfUoFdDlkv5H0s+Z2Woze13w8msk3S3pLkmfkPRH7dhuAADwaF3tlmxmGh4YaV4WBBRhKqCydamV68o2k7pMBNsYBlRh6pqyXfLKzVd2fdF8C4cOCuYrxzpwzEwEKZJapRCK0v3EqXnGg/nCVbZdfp/2RbdQHIBMUxvduN3c/bQW5Uc1/O2Szup0nQB0HqlygP7HPbcAgMrqk3tuAQBAH6BxCwCoLBq3AACgjntuAQAAAACVx5VbAEBlcQ8cAACoo3ELAKgsuiUDAIA6GrcAgErq1WjJAACgP3W1cXvrLd9bv2Rk9N7i6aik9d1cfwv9VB/q0hx1aa7XdTmyh+sGgFntlu98d/3cwfn9GDv1U12k/qoPdWmOuuxD7NQhXW3cuvuy+t9mdrO7r+rm+iP9VB/q0hx1aa6f6gJ0G92SMdv1a+zUT3WR+qs+1KU56oJuoFsyAKDCaNwCAICExi0AoLJo2gIAgLpeNm4v6OG6m+mn+lCX5qhLc/1UF6CrGFAKB5h++r7vp7pI/VUf6tIcdUHHmbv3ug4AAEzbU576ZP/yN/6j7cs9bN4R3+FeLAAAqoduyQCACuPKLQAASGjcAgAqi6YtAACoq/VipWZ2kpn9yMzuMrO39KIODXW5x8y+b2a3mtnNPVj/RWa2zsx+0DBtqZldZ2Y/Lv5f0sO6nG9ma4r9c6uZvbRLdVlpZjeY2R1mdruZvamY3vV9E9Sl6/vGzOaY2bfM7HtFXd5eTH+smd1UfKY+ZWbDna4L0HvWoQfQf4id9q67b+KmoD69iA/6Jm5qUR9iJ3RU1xu3ZjYg6SOSXiLpWEmnmdmx3a7HJM9z9+N6dI/VxZJOmjTtLZKud/djJF1fPO9VXSTpA8X+Oc7dr+lSXcYknevux0p6hqSziuOkF/smVxep+/tml6QT3f0pko6TdJKZPUPS3xV1ebykDZJe14W6AD1llgaUavcD6DfETvu5WP0TN+XqI3U/PuinuCmqj0TshA7qxZXbEyTd5e53u/tuSVdIOrkH9egL7v41SY9MmnyypEuKvy+RdEoP69IT7r7W3W8p/t4i6U5Jy9WDfRPUpes82Vo8HSoeLulESZ8upnftmAEAdAWxU6Gf4qagPl3XT3FTi/p0HbHTgaUXjdvlku5reL5aPTrYCy7pWjP7jpmd2cN6NDrU3dcWfz8g6dBeVkbS2WZ2W9H1pmtdferM7ChJx0u6ST3eN5PqIvVg35jZgJndKmmdpOsk/UTSRncfK17S688UAKC9iJ1i/RY3ST2MnfopbmpSH4nYCR3Uk3tu+8yz3f2pSl19zjKzX+l1hRp5ytXUy3xNH5N0tFI3jrWS3tfNlZvZAkmfkXSOu29uLOv2vmlSl57sG3cfd/fjJK1Q+jX/57uxXqAfWQf+AWipb2OnPoibpB7GTv0UN2XqQ+yEjupF43aNpJUNz1cU03rC3dcU/6+T9FmlA77XHjSzwySp+H9dryri7g8WXwgTkj6hLu4fMxtS+kK8zN2vKib3ZN80q0sv902x/o2SbpD0TEmLzaw++nlPP1NAN9G4xQGC2CnWN3GT1Lv4oJ/iplx9iJ3Qab1o3H5b0jHFCGXDkk6VdHUP6iEzm29mC+t/S3qRpB/Ec3XF1ZLOKP4+Q9Lne1WR+hdi4TfUpf1jaVSXCyXd6e7vbyjq+r7J1aUX+8bMlpnZ4uLvuZJeqHQfyw2Sfrt4WU+PGQBA2xE7xfombpJ6Fh/0TdwU1YfYCZ3W9Ty37j5mZmdL+rKkAUkXufvt3a5H4VBJny1GxxyU9El3/1I3K2Bml0t6rqRRM1st6W2S3i3pSjN7naR7Jb2ih3V5rpkdp9SN5R5Jb+hGXSQ9S9Lpkr5f3CMhSeepN/smV5fTerBvDpN0STFyZk3Sle7+BTO7Q9IVZvZOSd9VOqEAAGYBYqd9+iluCurTi9ipn+KmqD7ETugoS93vAQColuN+6Sl+/TevbftyR+c85js9Sg0HAABmgAGlAAAAAACV1/VuyQAAtAcDQAEAgH24cgsAAAAAqDyu3AIAKowrtwAAIKFxCwCoJBNNWwAAsA+NWwBAZRXpSAAAAGjcAgCqjMYtAABIGFAKAAAAAFB5XLkFAFQW120BAEAdV24BABVmHXi0WKPZRWa2zsx+0DDt783sh2Z2m5l91swWN5S91czuMrMfmdmLZ77NAACgGRq3AICKMpm1/zEFF0s6adK06yQ9yd2fLOl/Jb1VkszsWEmnSnpiMc9HzWygXXsAAADsQ+MWAIBpcPevSXpk0rRr3X2seHqjpBXF3ydLusLdd7n7TyXdJemErlUWAIADCI1bAADa67WSvlj8vVzSfQ1lq4tpAACgzRhQCgBQSekO2Y4MKTVqZjc3PL/A3S+YUp3M/lLSmKTLOlExAACQR+MWAFBhHWncrnf3VdOuidmrJb1M0vPd3YvJayStbHjZimIaAABoM7olAwAqq/tjJWfqYXaSpDdL+nV3395QdLWkU81sxMweK+kYSd8quRoAABDgyi0AoLKmOLpxu9d5uaTnKnVfXi3pbUqjI49Iuq6o043u/kZ3v93MrpR0h1J35bPcfbzrlQYA4ABA4xYAgGlw99OaTL4weP27JL2rczUCAAASjVsAQGXNpCMxAACYbWjcAgAqi6YtAACoo3ELAKgwmrcAACBhtGQAAAAAQOVx5RYAUE3Wm9GSAQBAf+LKLQAAAACg8rhyCwCopDRWMlduAQBAYu7e6zoAADBtZvYlSaMdWPR6dz+pA8sFAAAdROMWAAAAAFB53HMLAAAAAKg8GrcAAAAAgMqjcQsAAAAAqDwatwAAAACAyqNxCwAAAACovP8HJTibMcP5CBQAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "Err_G2=error(xdata2, poptG2[0], poptG2[1],poptG2[2], poptG2[3], poptG2[4], recorteG2.ravel(), inc=1)\n", + "poptG2E, pcovG2E = curve_fit(gauss2d, xdata2, recorteG2.ravel(), p0=[1,0,1,1,1],sigma=Err_G2)\n", + "estrellaG2E=gauss2d(xdata2, poptG2E[0], poptG2E[1],poptG2E[2], poptG2E[3], poptG2E[4])\n", + "FWHMG2E=FWHMG_I.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptG2E[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 2 fotografÃa (Banda Verde)\")\n", + "plt.imshow(recorteG2, plt.get_cmap('Greens'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 2 a partir de la gaussiana con incertidumbre (Banda Verde)\")\n", + "plt.imshow(estrellaG2E.reshape(35, 35), plt.get_cmap('Greens'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 3 con incertidumbre (Banda Verde)" + ] + }, + { + "cell_type": "code", + "execution_count": 842, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7cAAAFSCAYAAAApcigbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA6RElEQVR4nO3de5wcVZ3///d7JgkhXAxhAkISCGJ0BVTgGwEXV1G8AKLh4e66sMtNWLOusIJf9scC7lfQVdefuop+VTQKAiuCLKKyLgqIt/UCGkBAbpJFIAlBEu4IQjLz+f5xTmcqnemZnq6+TGVezzz6ke6qOlWfrq7pPp86p045IgQAAAAAQJX19ToAAAAAAADKIrkFAAAAAFQeyS0AAAAAoPJIbgEAAAAAlUdyCwAAAACoPJJbAAAAAEDlTel1AAAAtMID00PPDbV/xU+uvSoiDmr/igEAQCeR3AIAqum5IWnf7dq/3u+vHGj/SgEAQKeR3AIAqsvudQQAAGCCILkFAFSTxcgRAABgPZJbAEB10XILAAAyklsAQHWR2wIAgIwOXQAAAACAyqPlFgBQUaZbMgAAWI/kFgBQTQwoBQAACkhuAQDVRcstAADISG4BANVFbgsAADI6dAEAAAAAKo+WWwBANVlSH023AAAgIbkFAFQXuS0AAMhIbgEA1cWAUgAAICO5BQBUF7ktAADIGFAKAAAAAFB5tNwCAKqJAaUAAEAByS0AoLrIbQEAQEZyCwCoKDOgFAAAWI9rbsfJ9nzbYXtKfv0j23/bhe3a9ldsP2r7l53eXlm2X2z717aftP2ePO2Tts9ucX3/avvkdsY4jm2fb/tDvdj2aOqPxTGWfYvtr3cjLgCYCHr1ez3R2P4z23eVXEdL+248v1MTne3bbB/Q6zg6wfZ3bR8zAeLYyfZTtvsbzD/L9lc7tO2Ofz/Y/pntvTq5jVG2fa/t1/di26Oxfaztnza57L/Z/vuxlqtscps/pGfyH0Ht8dkmyoXtF3YjxrHY/qHt1bafsH2z7UWjLP4qSW+QNDci9mli3b1+n6dK+mFEbBURn7H9Z5JeIen/G++KbM+WdLSkL+bXB9geKnzuK21/oK3Rt4Ht79n+4AjTF9l+sJs/9hHxn5J2t/2ybm0T6LjaNbftfqCtJuHvdU/V77eI+O+IeHEvY9oURMTuEfGjXsfRCRFxcERc0O3t1idcEXF/RGwZEYPdjqXTbL9F0pMRcVN+fZbttYXvxDts/3mPw9yA7em2H7P9uhHmfcr2ZV0O6ROSzrA9bbSFKpvcZm/JfwS1x4llV9jls4snSdohIraWtFjSV23v0GDZnSXdGxF/6Fp0DTS5j3aWdFvh9S6S/ioi1rawyWMlXRkRzxSmPVD73JUS/+NtH9bCujvpAklH2hv1mzxK0kURsa7ZFbXpuLxY6TgDNh3uwAOdMJl+r3uilf2xKbSoonqqfty1GP+7JP173bSvF+qyJyt9r2xfNr52iYg/Svq6UgPTerll/Qilem7Tyn7uEbFK0p2S3jraclVPbkdk+4W2f2z7cdtrat0xbf8kL3JzPkvyV7kVcIXtf7L9oKSv2O6zfZrt/7H9sO1Lbc9qYru72v5BLrPG9kW2ZzZaPiJuKSQ4IWmqpHkjrPd4SV+W9Moc9wfy9HfaXmb7EdtX2N6x0fscbfk8742278r77PN5//1tnnesU1eKT9l+WNJZo71X2z+Q9FpJn83bf5Gk10l6d56/je3v5LPgj+bnc0fZtQdL+vEo+/F3kn4uabfC+/m07eX5LPsNTi3HtXln5c/0Qqdu07fZXliYv5ftG/O8r0uaXpg3nti/JWlbScVtbyPpUEkXjnacebgr1/G275f0A9v9tj+R9/c9kt5c3Jjt59k+1/Yqp9bsD3nDrj0/qi8DVJ7d/ge6ZlP7vc7r3sf2L5xaPFbZ/qwbtDQUvusX234gL/+Pza4rlz3B9t2S7h5tvxXK3Jv34S2S/uARKpy232D7zvy5fFZ1p31sH+fU0vSo7ats79xo39WVe0cu96Tte2z/3SjL9jt1Q1xj+3e2T/SG3cwbrssjdHV0oUXb9iG2b89lV9b2ue2B/Lv+mFNd6b9t9xX22+vH8bm8y/bdeZnP2enLZbzHnu3dbV+T4/m97TPy9M1sn52Pmwfy883yvNrfyim2H8oxvmOUbazvklvbd071jUfzvj+4sOwsp8vkHsjzv1WYd6jTJWmP2f65C73FRjjuLpa0k6T/zMfqqd74UoJdnL4fnrR9jaSBwvo2OK5H+IzOsv0ftr+ay99q+0W2T8/7ZLntN9btil1t/9Kp7vhtj1Iny9Ob+jvIx8brNHpd9ipJT0raNZfZxqPUN/Nn9i9O9fMnbV9tu7h/jrJ9Xz7O3lcXT9PfUUoJ7J/bnlGY9ialHPK7HqXu6ZHzh22dcpAnnC6z3LUutj8pHO932X57XTw/0hh12U0yuZX0L5KulrSNpLmS/q8kRcSr8/yX5zMltWsQny9pllJr42JJ/yDpMEmvkbSjpEclfa6J7VrSv+YyL1H64Ttr1ALpYP2jpOuVPrCl9ctExLlKZ3x+keM+06mLwL9KerukHSTdJ+mSRu9ztOXzH8Nlkk5XSsbukvSndWHsK+keSdtL+vBo7zUiXifpvyWdmLf/27p19Un6itL+3knSM5JG66L20hzTiGwvkLS/pOsKk38laU+lz/Vrkv7D9vTC/Lfm9z9T0hW17ec/7m8pnV2bJek/JBW7iTQde25pvlQbnvF6u6Q7I+JmNXecvUZp/75J0juVEuO9JC2U9Bd1y54vaZ2kF+Zl3iipeP3IHZLm2956pHiBSqLltuo2qd/rbFDSe5Uq4q+UdKDyyd1RvFbSAqXv7X/ycFfNZtZ1mNJv9G6j7Ld6RyhVEGfW9yLKdYLLJf1z3u7/KP3G1uYvknSGpLdJmq30e3/xGO+v5iGl37GtJb1D0qds791g2XcqndzeU9Le+X22uq5650r6u4jYStIeysmKpFMkrVB6X9srvc8YoXwzn8uhSpdjvUzpt/9NeXrTx57trSR9X9L38vIvlHRtnv0+Sfsp7Z+XS9pH6TOreb6k50maI+l4SZ9zOsHejH2V6l0Dkj4m6Vx7/Zm/f5c0Q9LukraT9Kkc616SzpP0d0p1yS9KusI54c6Kx90Rku7XcK+Oj40Qx9ck3ZDj+BdJ470u+C053m0k3STpKqV63BxJH8wxFh0t6TilevI6SZ+pm7++TjbOv4MFkoYiYsVIM528WdI0Sbfnyc3UN/9a6djfLpetnaTZTdI5Sj0Fd1T6PIoNMU1/R0XEzyWtyu+z5ihJX8vfHedr9Lpnff7wOUl/VNrHx+VHbT9sIekapc99O0mHS/p8fj81dygd741FRCUfku6V9JSkxwqPd+Z5F0paonR9an25kPTCwusDJD0naXph2h2SDiy83kHSWqXRpefndUzJ834k6W8bxHiYpJuaeC9Tlb7A//coyxwr6aeF1+dK+ljh9ZY5xvkN3mfD5ZX+mH9RmGdJy2vvK2/7/jHewwbvtX6/KB38H2pQdk9Jj46y7rWS/qTuMxvKn/kT+b1eLmnaKOt4VOnHXko/It8vzNtN0jP5+aslPSDJhfk/LxH7q3Kc0/Prn0l67ziOsxcU5v9A0rsKr99YOxaVvjSelbR5Yf4RStc9F4+zkLRTu/8eefDoxUOzNgsduaD9D2lpr9/bpvTQJPu9HqHMyZK+2WBeLcbib9zHJJ3bzLpy2dc1sd9W1H0ex40S79GSriu8tlLCV6sTfFfS8YX5fZKelrTzKO9vSoNtfUvSSQ3m/UApAa29fn2z61Jdnal+vyglVX8naeu6ZT4o6dvF/Ve3314/js/lVYXXl0o6bbzHntLveKN5/yPpkMLrNyldvlb7zJ8p7iulkwH7NVjX+r+NvO+WFebNyO/n+Up/X0OSthlhHedI+pe6aXdJek2j465+nxaPF6WEbp2kLQrzvybpqyMd1/XrU6rrXVOY9xal76H+/HqrvK2ZhX3w0cLyuyl93/Rr5DrZeP4O9pf0YN20s/L6H5P0B6WE89RR/i73VKG+meP958Lrd0v6Xn7+fkmXFOZtkbfV1PE7wvx/lnR1fr51fp97aYy6p+ryh7wv6+v0H1H+W5X0V5L+u27bX5R0ZuH1GyTd0yjWiKh8y+1hETGz8PhSnn6q0pfxL526nB43yjokaXWkfuU1O0v6Zm6uf0zpx3NQ6UNsyPb2ti/JzfJPSPqqCl0oGomItRHxXUlvtD1qP/KCHZVaX2vreErSw0pno8a7/I5KyWxtXij9kBUtL75o9b3msjNsfzF3l3hC0k8kzXSD0fGUEtOt6qY9kD/zrZVaX59Roe+/7X/MXUUez5/h8+rie7Dw/GlJ0526wewoaWXeBzXr99t4Y4+In0paI+kw27sqnVn9Wp7dzHFW3O871r2+r/B8Z6VK16rC+r6odOarprYPHxspVqByLAaUqo5J83vt1PXxO04DBz6hVHkba9313+21y4yaWddyjd9oZUaqExSX31nSpwv7/BGlz7BR/WM92wfbvi53OXxM0iFqvG/qf/Pq6yHjWVe9P8/L3+fU7fWVefrHJS2TdLVTV+fTGryPZj6X+nrGlrnseI69eUpJ7Eg2qNepcNxkD8eGrfLrY2jC+tgj4un8dMsczyMR8egIZXaWdErtuMifyby6mMZzrO6olMwVx5q5r9HCDfy+8PwZSWtieLCq2jguxX1S/3c4VRt+Nq3+HYxUj5WkS/P34RZK3XOPdu5e32R9c8RjTBv/Df9Bqc6vvO7xfkf9u6TXOl3O+BeS/ifSwFjN1D2L+2y20omL0eqy+9YdQ3+jdGKlZiuNUY+tenI7ooh4MCLeGRE7Kp2Z+7xHH3Ex6l4vl3Rw3Q/x9IhYOcamP5LX9dKcdB2p8XVym6K6vuejeEDpIJC0vil/W0mNYhxt+VUqdFfIXU/qryOt30dl3uspkl4sad9cttaNqlH5WyS9qNHKIuJxpYTxLTn+P1OqML1d6eziTEmPNxnfKklzCt1vpHT2sNXYpdQycbTSProqImpfts0cZ8X9vkobXuNVjGu50tmzgcK6to6I3QvLvETprO4To8QKVAvdkittE/29Pkdp0JMFed1nNLHu+u/2B8axrvp90ozRymzwW5N/D4vxLVdqUS3u880jdV9sKHdP/YbSiKfb59/mK9V432xQN6mLaax1/UGpxbG2fLFyrIj4VUQsUqqEf0upZVUR8WREnBIRL1C6fOl/2z5whNha+YxrxnPsLZf0ggbzNqjXacPjplOWS5rlka8RXi7pw3XHxYyIKHbVrT/uxjoOt8n11Zpivaf+M+5XSp7KqP87XKvUQFFTjHc8fwfLUohueAIoIu5Vag1+S57USn2zpv5veIZSnb9mXMdvRNyn1O36SKUuybXGpGbqnsV9tlqpNX60uuyP6/bplhFRvP3PSyTdPMp73zSTW9t/6eGLrh9V2rFD+fXv1fiLouYLkj7sfGG47dlubtj/rZS6PDyeD+CGt71xumD6YNub255q+0ilA/fHTWxHSv3632F7z/wl/xFJ1+c/Dmnj9zna8v8l6aW2D8utlydow7Mkpd5rg7LPSHrM6WL9M8dY/kql6xxGZHtLpX75tdGZt1L641ktaYrt9yt1o2jGL3LZ9+TP5W1Kra2txi6l5Pb1StcPXVCYPt7j7NIc11yn62bWn1GONILc1ZL+zfbWToOs7Gq7uN9eo/TFCWw6GFCq0jbR3+utlC6Zecr2n0ga876Mkv5PbqnZXekautq1sq2sq5n9Npr/Urp13NtyneA92rBO8AVJp+dY5TSgzF82sd5pkjZTruA6DVJUP6BP0aWSTrI9JydT/zSOdd2c38OeTuNtnFWbYXua7b+x/bxId3B4QvmYcxoQ6YU5oX9cqRfAkDbWyudSLNts/ek7knawfbLTAFJb2d43z7tY0j/nY35AqStqR+4BW5PrGt9VOgm1Tf57qCVdX5L0Ltv7OtnC9pudrhtupOGxmhOqpZI+kD+zV2k48ZOk3yr1unuz7alKXWc3G2FV43Gk7d1yMvhBSZdF49sSNf13EBHPKV07PVpddq6kg7RhXXa89c2ayyQdavtVTmPJfFAb5nytHL8XSDpRqYv1Rfl9NVP3XC/vy8uVBpaa4XQt7TGFRb4j6UVOg2FNzY9X2H5JYZkx67JVT25rI6zVHt/M018h6XrbTykNFnRSRNyT550l6QKn5u76EbhqPp3LXW37SaWBivZtsGzRB5QGPXhc6cfh8lGWdY7lIaUv55OUbpVzYxPbUUR8X9L/UTpzuUrpDPLhhUXOUuF9jrZ8RKyR9JdK1/k8rHSdwVKlszHteK/1zpa0udLZsOuUBkoYzYWSDrG9eWHajrXPXalLwyylrgtSGjDge0pffPcpXbjeVFeY/AX0NqXrBB5R6v9ffG/jjb12Nu7nStc8XFGYNd7j7EtK7+1mSTdq431+tIYHI3hU6cuteKuKI7Tx4AlAtfV14IFOmEy/1/+oNNDLk0rf240GdSr6sVLrzrWSPhERV5dY11kae781VKgTfFSpTrBAabyI2vxvSvr/JV3i1KXxN0rXIY+13ieVEuVLlX6j/lob/ibW+5JSxfkWpcGArlQ6+Tw41roiDWT5QaWE4m5JG4ycrNT6dG+O/10arj8syGWeUjrZ/fmI+OEIsbXyudQ0fezl9/kGpaTuwfxeXptnf0iprnaLpFuV6gUfGkccrTpKqUXzTqW/iZNzrEuVTuJ/VukzWaZUlxrNvyol6I+5MEp4wV8r/T0/opTcXVibkXvtvVvpbiIrlVpyRxywaRz+XWmMmAeV7pTxnkYLtvB38EWlfVf0V4W67K+U/s4+kOedrXHWNwux3abUUPU1pTr/o9pw37Ry/H5Dqa59bU5qa8aqe9Y7Uan79INK+/orhbifVDpJdbhSL4QHlfZxbRTwHZRylG+NFqhjg0sLAclp2PsVkv6mwZd619n+iKSHIuLsXsdSRU43Dz8qIsZd0QEmKg9MDy2a3/4Vn3fXDRGxcOwFgXJsz5f0O0lTYxz3Pp+McuvsFyJi5zEXBiYg2z9TupPITb2OpYps/5vS9b6fH225St9EGe1j+01Ktzd4RqmLjLXhrXV6KiLO6HUMVRYR/ynpP3sdB9BWdCMGNlm5t9ZrlVpvt1dqufvmqIWACSwi9h97KTQSEac0sxwdsFDzSqUR+dYodX85LNJ9WgFg4urygFK259n+oe3bnUb3Palu/im2I18DV7t/4WdsL7N9i5u/Dycw2Vmpi+ajSt2S71C6rhQAGqLlFpKkiDhLY9zAHgAmnO633K6TdEpE3JgHSrnB9jURcbvteUrXC91fWP5gpev4FihdO3aOmrsmFJNAHpOB7gcjiHQLmlf0Og4A1ULLLQCguro8oFRErKoNJJQHv7hDw/c1/JTSbciKg1ksknRhJNcp3adwtME2AABAi0huAQDY0IDtpYXH4pEWyoMB7aU02u8iSSsjov7+e3O04WjtKzScDAMAgDbqarfkbQdmxbyd5o29YCNt6Ljjkvl8tHSv9I3XUobbsCPKvot29KGaGON0l4tiKEa6/d04Iyg5Ynl/X3+58i5X/r5779eaNWvoVofuszrVLXnNWKMlO91f+xtKt8FYJ+kMjX7PTqAlAwMDsfP8nXodBoA2ou7UOV1NbuftNE9X/2zU++6OqmwlXJKm9k0rVX5trC0dg0onM+U/tsGG96RuTl8bGv3Lnihox4mGKJmc/nGw/Jhbzw2OdjvhsW017Xnlyk8tV37/fV9VqjxQSg+qBranKiW2F0XE5bZfKmkXSTc7JdtzJd1oex+l+y8Wz+rOzdOApuw8fyf97Pr627QCqDLqTp3DgFIAgOrq625265S9nivpjoj4pCRFxK2Stissc6+khRGxxvYVkk60fYnSQFKPR8SqrgYNAMAkQXILAEDz9pd0lKRbbf86TzsjIq5ssPyVkg6RtEzS05Le0fEIAQCYpEhuAQDV1eVbAUXETzVGZ+iImF94HpJO6HBYAABAJUdLtn2Q7bvyzelPa1dQAACMyR16AB1E3QkAOqflllvb/ZI+J+kNSrc2+JXtKyLi9nYFBwBAY5Y70HI7MUZyx6aIuhMAdFaZltt9JC2LiHsi4jlJlyjdrB4AgK6w3fYH0EHUnQCgg8okt03dmN72YttLbS99eM3DJTYHAABQaeOuO61evaZrwQFA1ZW/WekYImJJRCyMiIXbDmzb6c0BACYRu/0PoNeKdafZswd6HQ4AVEaZ0ZK5MT0AoGcsqa8D2ehg29cIrEfdCQA6qEzL7a8kLbC9i+1pkg6XdEV7wgIAYAzmmltUDnUnAOiglltuI2Kd7RMlXSWpX9J5EXFb2yIDAGAMJKOoEupOANBZZbolKyKulHRlm2IBAADYpFF3AoDOKZXcAgDQO3QjBgAAw7qa3Pa5X1tM3arl8s8O/rF0DGtjbel1lNXn/lLlI6J0DFa5CmF/X/lDp6/kYN1DGiodw+DQulLl+0t+llL597FuqNwxXfbvaijKfw5Aq8htAQBADS23AIBKsrjmFgAADCO5BQBUk0luAQDAsHL9QgEAAAAAmABouQUAVFbZ8QMAAMCmg+QWAFBZdEsGAAA1JLcAgMoitwUAADVccwsAAAAAqDxabgEAlWRZfTTdAgCAjOQWAFBZXHMLAABqSG4BANXEfW4BAEAByS0AoLLIbQEAQA0DSgEAAAAAKo+WWwBAJVl0SwYAAMNIbgEAlUVyCwAAakhuAQAVZZJbAACwHsktAKCaGC0ZAAAUdDW5DQ1p7dBzLZe3yldiIobKlVeUjmFtrCtVvh2VuT73lyo/OFTuPUhSuNx4ZoMxWD6GksdDO47JaX3TSpUv+1n2lyzfjn0AAAAAlEXLLQCgsmi4BQAANSS3AIBKYrRkAABQxH1uAQCVZbvtjzG2N8/2D23fbvs22yfl6R+3faftW2x/0/bMQpnTbS+zfZftN3V2jwAAMHmR3AIAKqvPbvtjDOsknRIRu0naT9IJtneTdI2kPSLiZZJ+K+l0ScrzDpe0u6SDJH3eLnmhOwAAGFHLyW2js9cAAGyqImJVRNyYnz8p6Q5JcyLi6oj1owVeJ2lufr5I0iUR8WxE/E7SMkn7dDtuTAzUnQCgs8pcc1s7e32j7a0k3WD7moi4vU2xAQDQmHs7oJTt+ZL2knR93azjJH09P5+jlOzWrMjTMDlRdwKADmo5uY2IVZJW5edP2r5D6QebL2gAQMdZY18j26IB20sLr5dExJINtm1vKekbkk6OiCcK09+nlMBc1InAUG3UnQCgs9oyWvIoZ68BAOiYDt1neU1ELGy4TXuqUmJ7UURcXph+rKRDJR0YEbWboq+UNK9QfG6ehkmOuhMAtF/pAaUanb0uzF9se6ntpWvWPFx2cwAA9IxTU/G5ku6IiE8Wph8k6VRJb42IpwtFrpB0uO3NbO8iaYGkX3YzZkw846k7rV69pvsBAkBFlUpuG529LoqIJRGxMCIWDgxsW2ZzAABsoNu3ApK0v6SjJL3O9q/z4xBJn5W0laRr8rQvSFJE3CbpUqVup9+TdEJEDHZsh2DCG2/dafbsge4GCAAV1nK35EZnrwEA6JYOXXPbUET8VBqxL/SVo5T5sKQPdywoVAZ1JwDorDItt43OXgMA0BV2+x9AB1F3AoAOKjNacqOz1wAAdFxKRvkZQnVQdwKAzio9oBQAAAAAAL3WllsBAQDQfR27zy0AAKigria3odDg0LqWy/e5v3QMgyUHqQzF2AuNYYrL7fZ27Ic+l2u0f3bwj6Vj2Kx/eqny7fgsyurvK/8nNK1k+bLHEz3kUGUkt8DkMHzr6BbLt6HOUPa+2nxfAZ1Hyy0AoLKoKwIAgBqSWwBAZdESAgAAahhQCgAAAABQebTcAgAqiVsBAQCAIpJbAEBlkdwCAIAaklsAQGWR2wIAgBqSWwBARXGfWwAAMIwBpQAAAAAAlUfLLQCgsmi5BQAANSS3AIBKYrRkAABQRHILAKgsclsAAFBDcgsAqCxabgEAQA0DSgEAAAAAKo+WWwBAddFyCwAAMpJbAEBFcZ9bAAAwjOQWAFBNpuEWAAAM62py26c+bdY/veXya4fWlo5hKAZLlZ/SN7V0DE+te6JU+RVPLS8dw3abb1+q/MzNZpWOocyxIEkeeq50DGWPh76I0jGEy61jSEOlyq8tuR9D5fcBAGDTNRTlfqck6el1T5Uq//Czq0vH8Lxp25Qqv9WUrUvH0N9HuxQwGv5CAACVZDFaMgAAGEZyCwCoLJJbAABQQ3ILAKgsklsAAFBDcgsAqCxyWwAAUNNXdgW2+23fZPs77QgIAABgU0bdCQA6ox0ttydJukNS+SHgAABolrnPLSqLuhMAdECpllvbcyW9WdKX2xMOAADNqY2W3O4H0EnUnQCgc8q23J4t6VRJW5UPBQCA8SEZRQWdLepOANARLbfc2j5U0kMRccMYyy22vdT20jVrHm51cwAAbISWW1RJK3Wn1avXdCk6AKi+Mt2S95f0Vtv3SrpE0utsf7V+oYhYEhELI2LhwMC2JTYHAEBv2Z5n+4e2b7d9m+2T8vRZtq+xfXf+f5s83bY/Y3uZ7Vts793bd4AeG3fdafbsgW7HCACV1XJyGxGnR8TciJgv6XBJP4iII9sWGQAAo3G6FVC7H2NYJ+mUiNhN0n6STrC9m6TTJF0bEQskXZtfS9LBkhbkx2JJ53RgT6AiqDsBQGeVvhUQAAC90u1uyRGxKiJuzM+fVBrxdo6kRZIuyItdIOmw/HyRpAsjuU7STNs7dGBXAAAw6bXjVkCKiB9J+lE71gUAQDOsjl0jO2B7aeH1kohYstH27fmS9pJ0vaTtI2JVnvWgpO3z8zmSlheKrcjTVgmTGnUnAGi/tiS3AAD0QoeS2zURsXCM7W4p6RuSTo6IJ4pxRETYjk4EBgAAGqNbMgAA42B7qlJie1FEXJ4n/77W3Tj//1CevlLSvELxuXkaAABos6623A7GkP6w7qmWy09x+XCnT5lRqnxE+ZPxF9xxcanyH7jostIxHHHQq0qVP/uA95eOYd3QupLl15aOIVTu82zHMdnf19sOFH3mHBeqq9t37nFqoj1X0h0R8cnCrCskHSPpo/n/bxemn2j7Ekn7Snq80H0ZmBSeG3q29DquvP87pcq/77KLSsdw3IGvLlX+xJe/q3QMW3rrUuW53Rk2dXRLBgBUk3tSUdtf0lGSbrX96zztDKWk9lLbx0u6T9Lb87wrJR0iaZmkpyW9o6vRAgAwiZDcAgCqq8vJbUT8VFKjjR44wvIh6YSOBgUAACRxzS0AAAAAYBNAyy0AoLK4fgwAANSQ3AIAKsmS+shtAQBARnILAKgo03ILAADWI7kFAFSTpT6SWwAAkDGgFAAAAACg8mi5BQBUksWAUgAAYBjJLQCgsuh+BAAAakhuAQCVxTW3AACghuQWAFBJdEsGAABF9OgCAAAAAFQeLbcAgIoy3ZIBAMB6JLcAgGoy3ZIBAMAwklsAQCVZXFsDAACGdTW5DQ3pj4NPt1x+xpQtS8cwReXO8vf19ZeOYeWTj5QqP3RbufKSdPeeq8vFEEOlY3h28JlS5Z8berZ0DH0u93n295c/HvpLxtDr7bvk3xRQBt2SgYlvKAZLr+Ouh+8tVX7FD+8uHcPPX7xTqfJ//9J1pWMAMDpOegMAAAAAKo9uyQCAyuKaWwAAUENyCwCoJItuyQAAYBjJLQCgskhtAQBATalrbm3PtH2Z7Ttt32H7le0KDAAAYFND3QkAOqdsy+2nJX0vIv7C9jRJM9oQEwAATTDdklFF1J0AoENaTm5tP0/SqyUdK0kR8Zyk59oTFgAAo7O55hbVQt0JADqrTLfkXSStlvQV2zfZ/rLtLdoUFwAAY7Ld9gfQQdSdAKCDyiS3UyTtLemciNhL0h8knVa/kO3FtpfaXvrImkdKbA4AgA312W1/AB007rrT6tVruh0jAFRWmeR2haQVEXF9fn2Z0hf2BiJiSUQsjIiFswZmldgcAABApY277jR79kBXAwSAKms5uY2IByUtt/3iPOlASbe3JSoAAMbgDj2ATqHuBACdVXa05H+QdFEe7e8eSe8oHxIAAM2hGzEqiLoTAHRIqeQ2In4taWF7QgEAYDy4RhbVQ90JADqnbMstAAA9YYvRjQEAwHplBpQCAAAAAGBC6GrL7RRP0babbddy+WcH/1g6hifXPlaq/Mxp25aO4bg93laq/MMnPV06hkNe+L9KlQ9F6Rj6+8odfn2xrnQMLjl8TNnykjQUQyXLD5YqP+hy5YfacCwArepFt2Tb50k6VNJDEbFHnranpC9Imi5pnaR3R8QvnZqWPy3pEElPSzo2Im7setBAD03rm156HUe+5C9Lld/1/84rHcNLt929VPnNp5S/pTG9VYDR0XILAKisHo2WfL6kg+qmfUzSByJiT0nvz68l6WBJC/JjsaRzxvcOAQBAs7jmFgBQSVZvWm4j4ie259dPlrR1fv48SQ/k54skXRgRIek62zNt7xARq7oTLQAAkwfJLQCgsibQaMknS7rK9ieUekX9aZ4+R9LywnIr8jSSWwAA2oxuyQAAbGjA9tLCY3ETZf5e0nsjYp6k90o6t7MhAgCAerTcAgAqyp0aXGVNRIz3PqTHSDopP/8PSV/Oz1dKKo5kMzdPAwAAbUbLLQCgkqz0I9buR4sekPSa/Px1ku7Oz6+QdLST/SQ9zvW2AAB0Bi23AIBqcm9ui2H7YkkHKHVfXiHpTEnvlPRp21Mk/VFpZGRJulLpNkDLlG4F9I6uBwwAwCRBcgsAwDhExBENZm10A/E8SvIJnY0IAABIJLcAgAqbQKMlAwCAHiO5BQBUUq/ucwsAACYmklsAQGX14ppbAAAwMZHcAgAqyuoTyS0AAEi4FRAAAAAAoPJouQUAVBbdkgEAQA3JLQCgkmwGlAIAAMNIbgEAlWWuuQUAAFlXk9shDemZwadbLj84tK50DH3uL1X+ibWPlY5hzhbzSpU/+7WnlY5hs/7NS5XfvH9G6RhWPn1/qfJ9bbhkfIupW5Yq3z9U7nhqB7vcfiibHJBaoJfolgxMfFP6ylc3d9pil1Lld3xBubqXJPW73PvoL1kHBTA2BpQCAAAAAFQe3ZIBAJVkmWtuAQDAeiS3AIDKMh2QAABARnILAKgsWm4BAEBNqVPett9r+zbbv7F9se3p7QoMAICx2G77A+gk6k4A0DktJ7e250h6j6SFEbGHpH5Jh7crMAAAgE0JdScA6Kyy3ZKnSNrc9lpJMyQ9UD4kAADG5vwPqBjqTgDQIS233EbESkmfkHS/pFWSHo+Iq9sVGAAAo3K65rbdD6BTqDsBQGeV6Za8jaRFknaRtKOkLWwfOcJyi20vtb304dUPtx4pAAB1uOYWVdJK3Wn16jXdDhMAKqvMgFKvl/S7iFgdEWslXS7pT+sXioglEbEwIhZuO3vbEpsDAGCYJfV14B/QQeOuO82ePdD1IAGgqsr8it8vaT/bM5xOdR8o6Y72hAUAALDJoe4EAB3U8oBSEXG97csk3ShpnaSbJC1pV2AAAIyObsSoFupOANBZpUZLjogzJZ3ZplgAABgXkltUDXUnAOicsrcCAgCgZ/q4FRAAAMgYOQMAAAAAUHmVarmd0je19Dpc9ix/G7rARQyVXkdZdrnzGmuH1paOYZtp5UbPHlL5/Ti1b1q58i5/TA7GYKnydMvEZGVx/AOTRX9fuSprf7WqvABaxF86AKCaLPWR3AIAgIzkFgBQUS7fGwcAAGwySG4BAJVkSX0lL7EAAACbDmoFAAAAAIDKo+UWAFBZDCgFAABqSG4BAJXFNbcAAKCGbskAgIqy+tz+x5hbtc+z/ZDt39RN/wfbd9q+zfbHCtNPt73M9l2239SBHQEAAETLLQCgoqyetdyeL+mzki5cH4v9WkmLJL08Ip61vV2evpukwyXtLmlHSd+3/aKIkje4BgAAG6HlFgCAcYiIn0h6pG7y30v6aEQ8m5d5KE9fJOmSiHg2In4naZmkfboWLAAAkwjJLQCgsjrULXnA9tLCY3ETobxI0p/Zvt72j22/Ik+fI2l5YbkVeRoAAGgzuiUDAKrJkjtzn9s1EbFwnGWmSJolaT9Jr5B0qe0XtD0yAADQEMktAKCiPJFGS14h6fKICEm/tD0kaUDSSknzCsvNzdMAAECb0S0ZAFBJVse6JbfiW5JeK0m2XyRpmqQ1kq6QdLjtzWzvImmBpF+WfvMAAGAjtNwCADAOti+WdIDStbkrJJ0p6TxJ5+XbAz0n6Zjcinub7Usl3S5pnaQTGCkZAIDOILkFAFSWW29pbVlEHNFg1pENlv+wpA93LiIAACCR3AIAKqxv4lxzCwAAeqzLya3V79Y32deGUTEHS/YGGxxaVzqGsi0NU/umlY6hrHVDa0uvY3r/5qXKl/0sJanf/aXK95UsL0mhKL2OMsqPNktygd6wetNyCwAAJiYGlAIAAAAAVB7dkgEAFeVO3ecWAABUEMktAKCyuOYWAADUkNwCACrJ5ppbAAAwbMz+XLbPs/1Qvndfbdos29fYvjv/v01nwwQAYGPuwD+gLOpOANAbzVysdL6kg+qmnSbp2ohYIOna/BoAAADUnQCgJ8ZMbiPiJ5IeqZu8SNIF+fkFkg5rb1gAAIzFstv/AMqi7gQAvdHqNbfbR8Sq/PxBSds3WtD2YkmLJWnuvLktbg4AgI0xoBQqpKW607yd5nUhNADYNJS+h0JEhKQYZf6SiFgYEQu3nb1t2c0BACBJsiS7r+0PoNPGU3eaPXugi5EBQLW1+iv+e9s7SFL+/6H2hQQAQDM6MZwULcHoGOpOANBhrSa3V0g6Jj8/RtK32xMOAADAJom6EwB02JjX3Nq+WNIBkgZsr5B0pqSPSrrU9vGS7pP09k4GCQDASBgAChMRdScA6I0xk9uIOKLBrAPbHAsAAONCN2JMRNSdAKA3Wh0tGQCAnqPlFgAA1JDcAgAqyeJWQAAAYFilktuhGCq9jrVDz5Uq//hzj5aOYVrftFLlt562TekYprj3H/1gDJYqvy7Wlo5hSOWOqSmN7+TQfAwlj+t+9/e0PN1CAQAAMBH0PsMBAKAVNt2SAQDAeiS3AIDKcst3tAMAAJsaklsAQGXRcgsAAGo45Q0AAAAAqDxabgEAlWQxoBkAABhGcgsAqCirj27JAAAgI7kFAFQWLbcAAKCG5BYAUFkMKAUAAGoYUAoAAAAAUHm03AIAKikNKMU5WgAAkJDcAgAqynRLBgAA65HcAgAqq48BpQAAQEZ/LgBANTkNKNXux5ibtc+z/ZDt34ww7xTbYXsgv7btz9heZvsW23t3YE8AAACR3AIAMF7nSzqofqLteZLeKOn+wuSDJS3Ij8WSzulCfAAATEoktwCASkoDSrX/31gi4ieSHhlh1qcknSopCtMWSbowkuskzbS9QxvePgAAqMM1twCAypooA0rZXiRpZUTcXBfTHEnLC69X5GmruhgeAACTQleT24jQ2qHnWi7f5/INzeuG1pYqPzg0WDqGcIy9UIc10zrRyfKSNBTl9uVQDJWOoa9k54VBteF4KPk+ylbu+6Ls8dj74xmTlTt1K6AB20sLr5dExJKGUdgzJJ2h1CUZAAD0CC23AIDK6utMy+2aiFg4juV3lbSLpFqr7VxJN9reR9JKSfMKy87N0wAAQJtxzS0AACVExK0RsV1EzI+I+Updj/eOiAclXSHp6Dxq8n6SHo8IuiQDANABJLcAgErq1YBSti+W9AtJL7a9wvbxoyx+paR7JC2T9CVJ727DWwcAACOgWzIAoLJ6MaBURBwxxvz5hech6YROxwQAAJpouR3pZvW2P277znxD+m/antnRKAEA2Egn2m0nxujLqDbqTgDQG810Sz5fG9+s/hpJe0TEyyT9VtLpbY4LAACgqs4XdScA6Loxk9uRblYfEVdHxLr88jql0R8BAOgq221/AGVRdwKA3mjHNbfHSfp6o5m2F0taLElz581pw+YAAEgDSpW9VzXQI03XnebtNK/RYgCAOqVqBbbfJ2mdpIsaLRMRSyJiYUQsnDWwbZnNAQAwzLTconrGW3eaPXuge8EBQMW13HJr+1hJh0o6MI8GCQBAFzEAFKqFuhMAdFZLya3tgySdKuk1EfF0e0MCAADYtFB3AoDOGzO5zTerP0DSgO0Vks5UGuFvM0nX5C5c10XEuzoYJwAAG6EbMSYi6k4A0BtjJrcNblZ/bgdiAQBgXOiWjImIuhMA9EY7RksGAKDrLJJbAAAwjOQWAFBddEsGAABZl5Pb0OD6+5ePnzW1dATT+jYrVX7W9PJD8k91ufdRtryk8hXCNlQop7jk4RflYyh7j8x2XO83qHIDZpYdcHNIg+W2X6o0AAAA0B603AIAKopbAQEAgGEktwCAymK0ZAAAUENyCwCoLFpuAQBADcktAKCySG4BAEBNudF0AAAAAACYAGi5BQBUksU1twAAYBjJLQCgohgtGQAADCO5BQBUFsktAACoIbkFAFST6ZYMAACGMaAUAAAAAKDyaLkFAFQW3ZIBAEANyS0AoJIYLRkAABSR3AIAKorRkgEAwDCuuQUAAAAAVB4ttwCAyqLlFgAA1JDcAgAqi2tuAQBATdeT2z73lyhbvhd1v8u95f4S8U8oEaWKT/XU8jGUrJT2q/xn0Ve2Z34bKtZDMVR6HaW2r7LbL3csAWXQcgsAAGpouQUAVJJFcgsAAIYxoBQAAAAAoPJIbgEAFWXZ7X+MuVX7PNsP2f5NYdrHbd9p+xbb37Q9szDvdNvLbN9l+02d2RcAAGDM5HakH/HCvFNsh+2BzoQHAMBo3IHHmM6XdFDdtGsk7RERL5P0W0mnS5Lt3SQdLmn3XObz9qYyeAMaoe4EAL3RTMvt+dr4R1y250l6o6T72xwTAABjs3rSchsRP5H0SN20qyNiXX55naS5+fkiSZdExLMR8TtJyyTt076dgAnqfFF3AoCuGzO5HelHPPuUpFPFUKkAgB5xB/5JGrC9tPBYPM6wjpP03fx8jqTlhXkr8jRswqg7AUBvtDRasu1FklZGxM3cYxAAsIlZExELWylo+32S1km6qL0hoeqoOwFA5407ubU9Q9IZSt1qmll+saTFkjRnHierAQDtM5FuBWT7WEmHSjowYv3NxFdKmldYbG6ehkmkTN1p3k7zxlgaAFDTymjJu0raRdLNtu9V+qG+0fbzR1o4IpZExMKIWLjtwKzWIwUAoMA9Gi15xFjsg5S6m741Ip4uzLpC0uG2N7O9i6QFkn5Z+s2jalquO82ezbhTANCscbfcRsStkrarvc5f0gsjYk0b4wIAYEy9aLm1fbGkA5SuzV0h6Uyl0ZE3k3RNTpCvi4h3RcRtti+VdLtSd+UTImKw60Gjp6g7AUB3jJncjvQjHhHndjowAADG0ovkNiKOGGFyw9/FiPiwpA93LiJMNNSdAKA3xkxuG/yIF+fPb1s0AAAAFUfdCQB6o6XRkgEAmAgYdRYAANSQ3AIAKmsijZYMAAB6i+QWAFBJtdGSAQAApC4nt7fcdOuaHWbMu2+URQYk9XrkQGKYGDH0evvE0HwMO3crEACYbG684aY1m0/ZgrrTxI+h19snhmrFQN2pQ7qa3EbE7NHm214aEQu7FQ8xTNwYer19YphYMQCN0C0ZmzrqTtWIodfbJwZiQEK3ZABAhZHcAgCAhOQWAFBZpLYAAKBmoiW3S3odgIihptcx9Hr7EjHUTIQYgBExoBQwIb6jiaH325eIoYYYJjFHRK9jAABg3F6+98viqp/9V9vXu8OMnW7gWikAAKpnorXcAgAwDrTcAgCAhOQWAFBZpLYAAKCmr9cB1Ng+yPZdtpfZPq0H259n+4e2b7d9m+2Tuh1DjqPf9k22v9Oj7c+0fZntO23fYfuVPYjhvfkz+I3ti21P78I2z7P9kO3fFKbNsn2N7bvz/9v0IIaP58/iFtvftD2z2zEU5p1iO2wPdDIGoHnu0AOY+Kg3bRALdSfqTtSdIGmCJLe2+yV9TtLBknaTdITt3bocxjpJp0TEbpL2k3RCD2KQpJMk3dGD7dZ8WtL3IuJPJL2827HYniPpPZIWRsQekvolHd6FTZ8v6aC6aadJujYiFki6Nr/udgzXSNojIl4m6beSTu9BDLI9T9IbJd3f4e0DTbPTgFLtfgATHfWmjVB3ou5URN1pEpsQya2kfSQti4h7IuI5SZdIWtTNACJiVUTcmJ8/qfTFNKebMdieK+nNkr7cze0Wtv88Sa+WdK4kRcRzEfFYD0KZImlz21MkzZD0QKc3GBE/kfRI3eRFki7Izy+QdFi3Y4iIqyNiXX55naS53Y4h+5SkUyUxAh0A9B71poy603rUnYanUXeaxCZKcjtH0vLC6xXqwRdkje35kvaSdH2XN3220h/BUJe3W7OLpNWSvpK793zZ9hbdDCAiVkr6hNJZrlWSHo+Iq7sZQ8H2EbEqP39Q0vY9iqPmOEnf7fZGbS+StDIibu72tgEAI6LeNOxsUXei7tQYdadJZqIktxOG7S0lfUPSyRHxRBe3e6ikhyLihm5tcwRTJO0t6ZyI2EvSH9T57iQbyNdmLFL6sdhR0ha2j+xmDCOJdM+snp15s/0+pS5gF3V5uzMknSHp/d3cLtAsd+AfgOb1qt6Ut03dSdSdGqHuNDlNlOR2paR5hddz87Susj1V6Qv6ooi4vMub31/SW23fq9S96HW2v9rlGFZIWhERtTOvlyl9YXfT6yX9LiJWR8RaSZdL+tMux1Dze9s7SFL+/6FeBGH7WEmHSvqb6P6NqXdV+rG8OR+bcyXdaPv5XY4DGBHJLSYp6k0JdaeEulMd6k6T10RJbn8laYHtXWxPU7oI/opuBuA0isi5ku6IiE92c9uSFBGnR8TciJiv9P5/EBFdPesWEQ9KWm77xXnSgZJu72YMSl1q9rM9I38mB6p3g0RcIemY/PwYSd/udgC2D1LqbvXWiHi629uPiFsjYruImJ+PzRWS9s7HCgCgNyZ9vUmi7lRA3amAutPkNiGS23zR94mSrlL6Y7w0Im7rchj7SzpK6azfr/PjkC7HMBH8g6SLbN8iaU9JH+nmxvOZz8sk3SjpVqVjdEmnt2v7Ykm/kPRi2ytsHy/po5LeYPtupbOiH+1BDJ+VtJWka/Ix+YUexAAAmECoN0041J2oO1F3miDc/ZZ6AADK2/N/vTyu/Xn7x0wZmP78GyJiYdtXDAAAOmpCtNwCAAAAAFDGlF4HAABAaxgACgAADKPlFgAAAABQebTcAgAqjJZbAACQkNwCACrJIrUFAADDSG4BAJWVbukIAABAcgsAqDSSWwAAkDCgFAAAAACg8mi5BQBUFu22AACghpZbAECFuQOPMbZon2f7Idu/KUybZfsa23fn/7fJ0237M7aX2b7F9t5teuMAAKAOyS0AoKIsu/2PJpwv6aC6aadJujYiFki6Nr+WpIMlLciPxZLOactbBwAAGyG5BQBgHCLiJ5IeqZu8SNIF+fkFkg4rTL8wkuskzbS9Q1cCBQBgkiG5BQCgvO0jYlV+/qCk7fPzOZKWF5ZbkacBAIA2Y0ApAEAlpStkOzKk1IDtpYXXSyJiSbOFIyJsRwfiAgAAoyC5BQBUWEeS2zURsXCcZX5ve4eIWJW7HT+Up6+UNK+w3Nw8DQAAtBndkgEAldX9sZIbukLSMfn5MZK+XZh+dB41eT9Jjxe6LwMAgDai5RYAUFlNjm7c7m1eLOkApe7LKySdKemjki61fbyk+yS9PS9+paRDJC2T9LSkd3Q9YAAAJgmSWwAAxiEijmgw68ARlg1JJ3Q2IgAAIJHcAgAqq2RHYgAAsEkhuQUAVBapLQAAqCG5BQBUGOktAABIGC0ZAAAAAFB5tNwCAKrJvRktGQAATEy03AIAAAAAKo+WWwBAJaWxkmm5BQAAidMt+AAAqBbb35M00IFVr4mIgzqwXgAA0EEktwAAAACAyuOaWwAAAABA5ZHcAgAAAAAqj+QWAAAAAFB5JLcAAAAAgMojuQUAAAAAVN7/A2LcJMCK5D2uAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "Err_G3=error(xdata3, poptG3[0], poptG3[1],poptG3[2], poptG3[3], poptG3[4], recorteG3.ravel(), inc=1)\n", + "poptG3E, pcovG3E = curve_fit(gauss2d, xdata3, recorteG3.ravel(), p0=[4,4,2,1,1],sigma=Err_G3)\n", + "estrellaG3E=gauss2d(xdata3, poptG3E[0], poptG3E[1],poptG3E[2], poptG3E[3], poptG3E[4])\n", + "FWHMG3E=FWHMG_I.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptG3E[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 3 fotografÃa (Banda Verde)\")\n", + "plt.imshow(recorteG3, plt.get_cmap('Greens'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 3 a partir de la gaussiana con incertidumbre (Banda Verde)\")\n", + "plt.imshow(estrellaG3E.reshape(15, 15), plt.get_cmap('Greens'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 4 con incertidumbre (Banda Verde)" + ] + }, + { + "cell_type": "code", + "execution_count": 843, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7kAAAFSCAYAAAA3uxioAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA7G0lEQVR4nO3deZxdVZ3v/e+3qjJCJJCKAZJAAFEbnLAjoNgtigPiEG8/txXbAZRu1EYFL89jA9qifS997W4fp6bFGwUBpaERUWnFRhyQVhk6RFAmFZmSECBhDFOm+t0/1j5k16mqU1VnnaH2yeed13mlzt577f07e+9zzvqdtfbajggBAAAAANAL+rodAAAAAAAArUKSCwAAAADoGSS5AAAAAICeQZILAAAAAOgZJLkAAAAAgJ5BkgsAAAAA6BkD3Q4AAIBmeHBmaNNQ61e8YfNlEXF461cMAAA6gSQXAFBNm4akg57Z+vX+aM1g61cKAAA6hSQXAFBddrcjAAAAUwzX5AIAqslK32KtfjTapL3Y9k9t32z7JtvH180/0XbYHiye2/YXbd9m+9e2X9yS1w4AAMZESy4AoLo635K7RdKJEbHS9hxJ19m+PCJutr1Y0msl3V1a/vWS9i0eB0k6o/gfAAC0CS25AIDqchseDUTE2ohYWfy9QdItkhYWsz8n6aOSolRkmaRzI7la0lzbu+W8ZAAA0BhJLgAATbC9RNIBkq6xvUzSmoi4oW6xhZJWlZ6v1rakGAAAtAHdlQEAFeV2dVcetL2i9Hx5RCwftmV7R0nfknSCUhfmU5S6KgMAgC4jyQUAVFNt4KnWWx8RS8fcrD1NKcE9LyIutv18SXtJusEp6V4kaaXtAyWtkbS4VHxRMQ0AALQJSS4AoLo6PPCUUxZ7pqRbIuKzkhQRv5H0zNIyd0paGhHrbV8i6YO2L1AacOqRiFjb0aABANjOkOQCAKqr87fJPUTSuyT9xvb1xbRTIuLSMZa/VNIRkm6T9ISk97Q9QgAAtnMkuQAATFBE/FzjpNYRsaT0d0g6rs1hAQCAEpJcAEA1WVJf55tyAQDA1EaSCwCoLnJcAABQhyQXAFBdHR54CgAATH0kuQCA6iLHBQAAddpzh0EAAAAAALqAllwAQDUx8BQAABgFSS4AoLrIcQEAQB2SXABARZmBpwAAwAhck9sE20tsh+2B4vkVtv+yA9udZfvfbT9i+5vt3l4u24fY/r3tx2y/pZh2se0Tmlzf+bX1dFqnjvFk2T7U9uoJLvsh2//Q7pgAoJu69R091dh+h+0fZq7jTtuvbqLchL+bprqiDrN3t+NoB9s32T50CsTxJ7Z/22D+2bb/V5u23dQ5nrG9+bZvtT2rU9ssbXvYZ+NUMpljbPta2/uPt1ylk9zixHyy+ACqPU6fQLmw/axOxDhRtl9RxNXoAP93SQskzYuIPx9nfVPhRP47SadHxI4R8R3b75C0OSI+P9kV2X6BpBdK+m7x/GjbW0vH/XbbH2hp9C1QfJC9d5Tpx9te0eFwviLpHbaf2eHtAu1Ruya31Q+0xHb4Hd01o33nR8R5EfHabsbVC4o6zO3djqMdImL/iLii09utf49HxH9GxHM6HUeXnCTp7Ih4Unr6R7inis/HR2xfafv5XY5xGNsH237c9o6jzPuV7Q92OKTPKOUYDVU6yS28qfgAqj2yd3SnE0Pb0yR9QdI14yy6p6TfRcSW9kfV2AT30Z6Sbio931nSMU1u8n2SzouIKE27qnbcJf0/kv7R9gFNrr9dzpH07lGmv6uYN2G552VEPCXpB2PEA1ST2/BAK21P39Fd0cz+mIotOeh9VT/vcuO3PUPSUZK+UTfrg0VddhdJV0j6es52Wi0irpa0Wqmx7Wm2nydpP0nnT2Z9tvszQ7pE0itt79pooV5Ickdl+1m2f1b8KrLe9r8V068sFrmh+NXkbbVuNbb/xva9kr5mu8/2Sbb/YPsB2xfa3mUC293H9k+KMuttn2d77jjFTpT0Q0m3NljvpyR9QtLbiriPKWL8uO27bN9v+1zbOxVFaq/z4WL5l46zvGy/u5j3gO2/dakLh+1P2r7I9jdsPyrpaNsH2r7K9sO219o+3fb0Yvk/SNpb0r8X25+h9OY4ssn99HpJPxtrZkT8StItkv6o9Hq+afve0i9j+5fmnW37X2x/3/YG29fY3qc0/zVOrbCPFC0PLs2bTOxfl/Ry23uWyu8n6QWSzrc9w/ZnbN9t+z7bX3bRhWWM83JWEftDtm+W9JLyxmzvbvtbttfZvsP2h+viuULSG8baj0Dl2K1/oO167Tu6WPcbnFo1HrW9yvYnGyxbe02nFHHc6dTbadx1eVur7TG275b0E43+nX+07Z+XyoXt42z/XtLvx4jrXaV6wMfq5jW1z4uytXIbbN9s+781WHaW7XOK77lbbH/Upa7PjdblVFf5Rul5fdf1o516fm0oviPfUUwf9Xws7bdnFX9P5LgcVXynry/vQzeoM42xH15u+5fF8qtsH11M38mp/rauOFYft91Xen0/d6pXPFS8xtc32EZ9Pe/CYt0bnLoyLy0tu9jpkrN1xfE/vTTvvcWxesj2ZR5e5xl23rnBe7xU5gDbK4s4/k3SzNK8Yef1KMfobNtfsv2DYv2/sL2r7c8X8d3qkQ0iLynOpYdsf832zGJdLfvsKRwk6eGIGLUrf0RslXSBUuJYe20Nz5vitb/f6fLAh53qti7m9Rfnwnrbt6uu/mf7PcVx2+D0vnhfg9hHa7R5t6RLI+IB28+1fbntB23/1vZbS9s52/YZti+1/bhSgjrmMS7KvNH29cVr+qVTj87afnpK0nWSXtcg3t5NciX9T6UvpZ0lLZL0z5IUEX9azH9h8aty7YNsV6VfUPaUdKykD0l6i6RXSNpd0kOS/mUC27Wk/12U+SNJiyV9csyF0wfBezVOs3tEnCrp7yX9WxH3mZKOLh6vVEood5RU+9Cpvc65xfJXNVreKfH6kqR3SNpN0k6SFtaFsUzSRZLmSjpP0lZJH5E0KOmlkg6T9NdFvPtIulvbfsXfWP/SNcH9ZHsHSXtJanS9xkskPVtSuQvwDyTtK+mZklYWMZcdKelTSufIbZJOK9Y1KOliSR8vXtsfJB3STOzFB9lPlVpua96l9KGwXtKni7hfJOlZSvv8E6Vl68/LUyXtUzxep/SLYG0f9En6d0k3FOs5TNIJtssfArcodfsGegMtuVXVU9/RhceVKn1zlSqTH3DjcSR2VfqOWaj0Wb7cdq3L5kTW9YriNbxOo3/nj+YtShXt/epnFPWAM5S+o3aXNE/p2NQ0u8+l9D36J0p1i09J+obt3cZY9lRJS5TqKa+R9M6MdT2tqEt8UdLrI2KOpJdJur6YPer5OIqJHJeXS3qO0nfwJ2zXfnwfs840Sqx7KtVh/lnSfKU6Qi3Wf1Z67XsrHYt3S3pPqfhBSvWlQUn/KOnMWtIzAW9WSrLmKrWW1eqI/ZK+J+kupWOzsFhOtpdJOkXSnxWx/qdGtuy9pYhrvwbv8dprny7pO0qNBLtI+qZSb73JeKu21eE2SrpKqR44qFSP/Wzd8u9Qeh/to1Qn+3hpXqs+eyTp+Wpcl51exHJ1afJEzps3KjV6vEDptdfqfX9VzDtA0lLVtcRKur+Y/wylc+hztl88Rnhfl/SnthcXsfZJ+gtJ5xTvrcsl/atSnftISV8qPlNq/kKpnj1H0rVqcIyLHyHOUurFOU/S/5F0iVODWc349dmIqOxD0p2SHpP0cOnxV8W8cyUtl7RolHIh6Vml54dK2iRpZmnaLZIOKz3fTdJmpRGplxTrGCjmXSHpL8eI8S2SftXgNXxX0tuKv8+W9L8aLPtJSd8oPf+xpL8uPX/OWDFOYPlPSDq/NG92sU9eXdr2leMcjxMkfbvu+Ly69Lyp/aT0YRp1x+doSVuKY76hmP/PkjzGOuYWy+xU2tdfLc0/QtKtxd/vlnR1aZ6Vumk0e4zfKem3xd99Ssn/fyvW+7ikfUrLvlTSHQ3Oy9slHV56fqyk1cXfB0m6u27bJ0v6Wun5vpK2tuP9yINHpx/aZUbonfu2/iGt6PZr64WHtrPv6FHKfl7S58aYd2jxHbZDadqFkv52vHWVXt/epfnDXnMx7WhJP6/br69qEO8nJF1Qer6DhtcDxtznY7y+1Q22db2kZWPMu13S60rP/3Ki69LIetLT+6V4PQ8rVaZn1a1jwufjBI7LotL8ayUdOUbZE1SqM9XNO3m0eZL6i2OyX2na+yRdUTrmt5XmzS5i2nWM7dyp4fW8H5Xm7SfpyeLvl0paN8ax/oGkY0rP+yQ9IWnPsc67+n1aPl+UfrC5R6X6nKRfqnjvqe68rl+f0vv0K6V5H5J0S+n585VaU8v74P2l50dI+kMprgl/9ox1jpaW/ZhK77Fi2hXF/npYKSF/pLz+8c6b4rW/vPT8QkknFX//pO61vVZ1nxN16/6OpOMbbPtHkk4p/n5NcU5Mk/Q2Sf9Zt+z/kXRq6ZicW5o33jE+Q9L/rFvfbyW9ovT8NElnNdrfvdCS+5aImFt6fKWY/lGlJOJapy4XIwb/qbMuUvN3zZ6Svl00kz+sdFJvVRr4aUy2F9i+wPYap26931D69WW0Zd8kaU7U/Yo1Cbsr/apWc5fSB/lYMTZafndJq2ozIuIJSQ/UlV9VfmL72ba/59Ql+FGlluZRX2u9yewnpTe+lH79Kbu6OOZzlH5p27+IodZF49NFd5JHlT7EVLeNe0t/P6HUsi2N3BdRfj7J2KXUKryb7YOVPjBnS/q+0i+esyVdVzrP/qOYXlN/Xg6LTcOP556Sdq+tq1jfKRp+PsxR+gAFqs9i4Kmpb7v5jrZ9kO2fOnXnfETS+8dad+GhiHi89Pwupc/4ia5rlSavUZn6777HNbwe0NQ+lySny6GuL5V9nsbeN/Xfc/V1j8ms62nF63mb0r5c63S50nOL2RM6Hyd4XEatW0yyzrRYqcW63qBSUlFflyv3vHt6+0VdTtpWvxlPfewznbp6L5Z0V4w+Jsyekr5QOh4PKu3LckyTOVd3l7SmqHvV3DXWwmO4r/T3k6M8r98f9fWq3UvPW/LZU3hII+uykvThiJgraZZSy+pFte65EzxvJlSfVd1+tP1621c7dTF+WCnBb/ReOkfbeia+Sylh36y0Tw6qq3++Q6luXlOOY7xjvKekE+vWt1jDj8scbcsPRtULSe6oIuLeiPiriNhd6VeuL7nxaI1R93yVUpeW8pfzzIhYM86m/75Y1/Mj4hlKrXhj1ZoOk7S0OHHvVfrwPcH2d8d7fYV7lE6Emj2Ufhm+b5TXM97ya1XqluR0Xei8uvL16zxD6RqlfYvXeoom3tlvwvup+GL6g1IXklFFxH2SviXpTcWkv1DqXv1qpW49S4rpE4lvrdKbKRVI3XwWl+ZP5hjXvmQuUmohrn0obJK0XunDdv/SObZTpMEHni7eKDalY1izSqkVuHzOzomII0rL/JFSd2agN9BduZJ69Dv6X5W6eC6OiJ0kfbnBuiVp56KbX80eSt/TE11XjPF3I42Wq//um63h9YCm9nnR9fYrkj6odHeIuZJu1Nj7Zlh9pC6m8db1uNKPxzXDBqaJiMsi4jVKrW+3FuuazPk42WNcNpk60yqlrrP11iu1GtbX5cY773OtkrSHRx94aZWk99WdF7Mi4pelZSZ6fkrp+C+s62JdrusMO8YeZ/ChCaqvV91Tet6qzx5J+rUa12WHIuI/lS6hq42MnlPXHrPOWHT9/ZbSSMULivfSpeOs+2JJi2y/Uql7+jnF9FWSfla3T3aMiPJdT8r7cbxjvErSaXXrmx0R5W7w49ZnezbJtf3ntmsfkg8p7dyh4vl9StcyNPJlSacVH6hyuq/Vsglseo5S96xHbC+U9P81WPZvte16zBcpfXB+RcOvrWjkfEkfsb2X07DetWt2tyh1IRjS8NfZaPmLJL3J9sucrgn4pMZ/E82R9Kikx4pfQydzC5/J7CcpvfFeMdZM2/OUugDXRnOeo9Tt4wGlD8O/n0Rs35e0v+0/Kz7QP6zhX5STjV1KHwRvU+omdY6UPsyUjvfnXNzWx/ZCD7+Gtt6Fkk62vXNxfn+oNO9aSRucBkiY5dSa/Tyn65VrXqHUtQjoDQw8VUk9+h09R9KDEfGU7QOVfmwdz6dsT7f9J0otON9scl2jfedP1kWS3ug04NF0peuQy/XEZvf5DkrHd11R7j1Kra9jKX/PLVRKaCe6ruuVrhvcw2lgzZNrM5xa8ZcVPyxsVDoPhop5jc7HsmaOcbnsROtM50l6te232h6wPc/2iyINTHSh0nGYUxyL/6GRo/W22rVKicmnbe9ge6bt2lglX1Y6XvtLqg2M1fA2l2r8Hr9KqQHmw7an2f4zSQeW5t+gVEd7kdMAUZ9s7iUNc5ztRU4DSH1MUqPeG82+D6S0H+cW5/WobL9Uqat4uT7bbF37QqX9uMj2zkq3L6qZLmmG0ntpi9MAZQ1vOVY0Ol0k6WtKLfu1cXC+J+nZTgPXTSseL/G269HrjXeMvyLp/U49J1ycc2+wPUeSiuP+x0rXAY+pF5Lc2ui9tce3i+kvkXSN7ceUvpiOj233Ofuk0oXSD7s0+ledLxTlfmh7g9JF4AdNIJ5PSXqxUpfQ7yv96jGqiNhQ/Hp4b0Tcq9Sq93hEPDiB7UjpouyvK42qeIekp1QkPUXr4WmSflG8zoPHWf6m4u8LlD7IHlO6IL1+wKiy/1fpA36D0gk5mW7XE95PheVK93gt10BfWjvuSt1F1mlb0neuUteHNZJu1vCL+BuKNCDUnysNCvWA0nWsv8iIXUr7/BGla07+qzT9b5R+sbvaqRvKj5SulR7Lp5Re1x1Kg2Q8Pcx88eX3RqXK2B1Kv/h+Vaklu/ahcIQmeesiYErra8MDrbQ9fUf/taS/K+L5hFIFs5F7lRKqe5SSmvdHRG0E50mta4zv/Ekp6gHHKbVWri1iK48C29Q+j4ibJf3/ShXb+5SuifxFgyJ/V2z3DqXvxItU1EXGW1dEXK5UF/m10uir3yutt08pIbxHqUvtK7QtYWh0PpZN9hiXTbjOFBF3K31fn1jEer22DbLzIaXWzNsl/VzpeJ01iTgmrahfvElpgMy7lY7P24p535b0D5IuKOoxNyrdEaORT2qM93jR0+3PlK69fbDYzsWl+b9TOkd+pDRK+LCRlpv0r0p1qtuVeg42uh92s589tdd2tkYOpnZ6qT77dUkfj4hag0ROXfsrki5T+mFgpYbvxw1KjTgXKr3X/6J4XeM5R6knwbl163qt0oBT9yh9tv2DUhI9wgSO8QqlQbNOL2K7rVi25k1K16GXW9xH8PDu0EDi1NL7sFL3iDu6HI4kyfa/SrowIr7T7ViqyPaHlLpYfbTbsQCt4MGZoWVLWr/is357XUQsHX9BoDm2D1UaIGnROItu92x/QGnwpjF7cwFVYbs2AvUBEfFkt+OpItvXKA12dmOj5Sp9U2a0ltMgGz9W6qb8GUm/0bYBm7ouIibTLQh1ImKsWyIA1UT3YqDnON0OaG+l1tp9lVozT29YCKiIiFgn6bnjLogxRcSEWs7pmIWyZUrdDO5R+mI5MmjqBzCVMfAU0GumK91+ZIPSLVC+K+lLXY0IQOXQkounRcRfKt2PDgCqgZZcVFBEXKHhIwijEBF3qfHAVAAwLpJcAEB10R8JAADUoXoAAAAAAOgZHW3JHRycF3vsucf4C7ZR/gWmrbhENa97XSs65w215HXkyouhFZcLR2YMbsHRyF2Hs7tr5pW/+6679cD6B+gzis6z6K6Mnjc4OBh7Lulu3QlAa911591av349X2Bt1NEkd48999CVV/+s6fIx6n25J7mOzMQoNymS8pOaPvdnx7Bx6Kms8q1I7oZia1b5rbElO4bNQ5uzyve34FgMOO9tONA3Pat87mt4xUtflVUeyEIVAT1uzyV76BfXtOJWoACmikMOenm3Q+h5XJMLAKiuPrJcAAAwHNfkAgAAAAB6Bi25AIDq4ppcAABQJ6sl1/bhtn9r+zbbJ7UqKAAAxuU2PYA2ou4EAO3XdEuu7X5J/yLpNZJWS/ov25dExM2tCg4AgLG5BaOLjzQVxp5Hb6LuBACdkdOSe6Ck2yLi9ojYJOkCSctaExYAAOOz3fIH0EbUnQCgA3KS3IWSVpWery6mDWP7WNsrbK9Yv/6BjM0BAABU2qTrTuvWre9YcADQK9o+unJELI+IpRGxdHBwXrs3BwDYjtitfwDdVq47zZ8/2O1wAKByckZXXiNpcen5omIaAABtZ0l9bchKt7Z8jcDTqDsBQAfktOT+l6R9be9le7qkIyVd0pqwAAAYh7kmF5VD3QkAOqDpltyI2GL7g5Iuk9Qv6ayIuKllkQEAMA6SUlQJdScA6Iyc7sqKiEslXdqiWAAAAHoadScAaL+sJBcAgO6hezEAABipo0mubQ30dTev3jK0Jav81sgrn9aRN6zJpqGNLYgh73X0tWBgbjtvHQN907Nj6Hf3f+cZ6JuWVX6a88pvzDyfQpFVHsjR6RzX9mJJ50paICkkLY+IL9j+J0lvkrRJ0h8kvSciHi7KnCzpGKUxrT4cEZd1NmoArRCR933H92Vi5X9w8wMnxtP2WwgBANAOVlcGntoi6cSI2E/SwZKOs72fpMslPS8iXiDpd5JOVopvP6XBhfaXdLikL9nub88eAQAAEkkuAKCqujC6ckSsjYiVxd8bJN0iaWFE/DDi6S4yVyvdGkaSlkm6ICI2RsQdkm6TdGBb9gcAAJBEkgsAQFNsL5F0gKRr6ma9V9IPir8XSlpVmre6mAYAANqk+xckAgDQpFZc2zWKQdsrSs+XR8TyYdu1d5T0LUknRMSjpekfU+rSfF47AgMAAOMjyQUAVFabBh9ZHxFLG2xzmlKCe15EXFyafrSkN0o6LLaNULNG0uJS8UXFNAAA0CZ0VwYAVJbd+kfj7dmSzpR0S0R8tjT9cEkflfTmiHiiVOQSSUfanmF7L0n7Srq21fsBAABsQ0suAAATd4ikd0n6je3ri2mnSPqipBmSLi9al6+OiPdHxE22L5R0s1I35uMiMu8jBwAAGiLJBQBUkmX1dfheiRHxc2nUC4EvbVDmNEmntS0oAAAwDEkuAKCy2nRNLgAAqDCSXABANZkkFwAAjESSCwCoLHJcAABQj9GVAQAAAAA9g5ZcAEAlWXRXBgAAI5HkAgAqiyQXAADUI8kFAFSUSXIBAMAIJLkAgGpidGUAADCKjia5EaGtQ1uaLr81tmbH0Ip15NoytCmvfDS/D2se27whex25ZvbPzCo/vX9GC6LIqyBHDGVHsDXzeG7x5qzyNuPPAQCmtojIK6+88pI0lPmdP9SCOmgrXkeu3HpDfwvGvXXmOvqo+/Q8WnIBAJVFQy4AAKhHkgsAqCRGVwYAAKMhyQUAVBZJLgAAqEeSCwCorD6SXAAAUKfpq65tL7b9U9s3277J9vGtDAwAAKCXUHcCgM7IacndIunEiFhpe46k62xfHhE3tyg2AADGZgaeQuVQdwKADmg6yY2ItZLWFn9vsH2LpIWS+KAGALSdZa7JRaVQdwKAzmjJNbm2l0g6QNI1rVgfAAAT4cx7XQPdQt0JANon+07ItneU9C1JJ0TEo6PMP9b2Ctsr1q9/IHdzAAAAlTaZutO6des7HyAAVFxWkmt7mtKH9HkRcfFoy0TE8ohYGhFLBwfn5WwOAIBhbLf8AbTTZOtO8+cPdjZAAOgBTXdXdqoJnCnploj4bOtCAgBgYkhKUSXUnQCgM3Jacg+R9C5Jr7J9ffE4okVxAQAwLrv1D6CNqDsBQAfkjK78c4kRPwAA3ZGSUr6GUB3UnQCgM7IHngIAAAAAYKpoyS2EAADoPAaKAgAAI3U0yR1S6Kmhp5ouv2lr82WfjiGGssoP9OXvstwYntzyRHYMj295LDOGJ7NjCEVW+R2n7Zgdw4z+mdnryNWX2aFi1sDsrPKzB/L3I9AtJLnA9iG3zrA1tmTHsGloU175FtRjN2auoxWfmTP6Z+WV78uve03rm5a9jhx9pjPsVEdLLgCgsshxAQBAPZJcAEBl0ZILAADq0dYOAAAAAOgZtOQCACqJWwgBAIDRkOQCACqLJBcAANQjyQUAVBY5LgAAqEeSCwCoKO6TCwAARmLgKQAAAABAz6AlFwBQWbTkAgCAeiS5AIBKYnRlAAAwGpJcAEBlkeMCAIB6JLkAgMqiJRcAANRj4CkAAAAAQM+gJRcAUF205AIAgDokuQCAiuI+uQAAYCS6KwMAqsm1EZZb+2i4SXux7Z/avtn2TbaPL6bvYvty278v/t+5mG7bX7R9m+1f235x+3cMAADbtw635IYihpouvTW2tjCWZuW3GmwZ2pxV/vEtj2XHMNA3Lav8gxvvyY5h/ZPrs8rPmT4nO4ZdZy/IKj93+s7ZMTxjxk5Z5WcN7JBVfijjPQlsh7ZIOjEiVtqeI+k625dLOlrSjyPi07ZPknSSpL+R9HpJ+xaPgySdUfwPbDda8T0zlFkH3Lj1qewYHtyYV2+5+7G7s2NY9+S6rPID7s+OYfcdds8qv2jHxdkxzJk2N6v8jL4ZWeUjMx+IyCqOCaAlFwBQSVYaXbnVj0YiYm1ErCz+3iDpFkkLJS2TdE6x2DmS3lL8vUzSuZFcLWmu7d1avzcAAEAN1+QCACqrTdfkDtpeUXq+PCKWj7LtJZIOkHSNpAURsbaYda+kWjeRhZJWlYqtLqatFQAAaAuSXABAZbUpyV0fEUvH2e6Okr4l6YSIeLQcR0SEbTqjAQDQJSS5AIDK6sbgyranKSW450XExcXk+2zvFhFri+7I9xfT10gqX4C2qJgGAADaJPuaXNv9tn9l+3utCAgAgKnKqcn2TEm3RMRnS7MukXRU8fdRkr5bmv7uYpTlgyU9UurWjO0UdScAaK9WtOQerzTwxjNasC4AACZmAgNFtcEhkt4l6Te2ry+mnSLp05IutH2MpLskvbWYd6mkIyTdJukJSe/paLSYqqg7AUAbZSW5thdJeoOk0yT9j5ZEBADABNRGV+6kiPi5xr6X3GGjLB+SjmtrUKgU6k4A0H65Lbmfl/RRSfk3LAUAYJK60JIL5Pq8qDsBQFs1fU2u7TdKuj8irhtnuWNtr7C94oF1DzS7OQAARuj0fXKBHM3UndatW9+h6ACgd+QMPHWIpDfbvlPSBZJeZfsb9QtFxPKIWBoRS+fNn5exOQAAgEqbdN1p/vzBTscIAJXXdJIbESdHxKKIWCLpSEk/iYh3tiwyAAAacbqFUKsfQLtQdwKAzuA+uQCAyqJ7MQAAqNeSJDcirpB0RSvWBQDARFhcQ4vqou4EAO1DSy4AoLJIcgEAQL2cgacAAAAAAJhSOtqSa1kDfdOaLj+zFTE4L6+38lsNntzyeFb5RzY9kh3D6sfWZJVfce+N2TFcf999WeWfMWNGdgwHLFicVf55g8/OjmHfuftmlV/gvLdx7ntCiszyQPNoyAW2D1uGNmeVf2zzo9kx3PrQLVnlf3jnVdkxrFx9T1b5adPyq/6HLtknq/yr9jgkO4Zn7/TcrPIDXa87od3orgwAqCbTXRkAAIxEkgsAqC6SXAAAUIe2dgAAAABAz6AlFwBQWXRXBgAA9UhyAQCVZEl95LgAAKAOSS4AoKJMSy4AABiBJBcAUE2W+khyAQBAHQaeAgAAAAD0DFpyAQCVZDHwFAAAGIkkFwBQWXRHAgAA9UhyAQCVxTW5AACgHkkuAKCS6K4MAABGQ08vAAAAAEDPoCUXAFBRprsyAAAYgSQXAFBNprsyAAAYiSQXAFBJFtfcAACAkTqe5FrN/+re7/xwt8aWrPJPbX0qO4YNmx/NKr9p66bsGP7w8N1Z5b+/8sbsGG7991/nrWB2/vnw4DtenlV+8TMWZMewYVPe+bDTtJ2yys8a2CGrPNBNdFcG2i8iMssPZcewNbZmlX9k08PZMdz4wO+yyl/+q5uzY/jdytvzVtCCutPGQ/LqoXvNXZgdw+6z89Yxq392ZgTTMsuj3fgRHAAAAADQM+iuDACoLK7JBQAA9UhyAQCVZNFdGQAAjESSCwCoLFJcAABQL+uaXNtzbV9k+1bbt9h+aasCAwAA6DXUnQCg/XJbcr8g6T8i4r/bni4pd6gyAAAmyHRXRhVRdwKANms6ybW9k6Q/lXS0JEXEJkn597YBAGACbK7JRbVQdwKAzsjprryXpHWSvmb7V7a/apsbbgIAOsZ2yx9AG1F3AoAOyElyByS9WNIZEXGApMclnVS/kO1jba+wveKB9Q9kbA4AgOH67JY/gDaadN1p3br1nY4RACovJ8ldLWl1RFxTPL9I6YN7mIhYHhFLI2LpvMF5GZsDAACotEnXnebPH+xogADQC5pOciPiXkmrbD+nmHSYpJtbEhUAAONwmx5Au1B3AoDOyB1d+UOSzitGB7xd0nvyQwIAYGLoXowKou4EAG2WleRGxPWSlrYmFAAAJoNraFE91J0AoP1yrskFAKBr7O6Mrmz7LNv3276xNO1Ftq+2fX0xYNCBxXTb/qLt22z/2vaI6y8BAEBrkeQCADA5Z0s6vG7aP0r6VES8SNIniueS9HpJ+xaPYyWd0ZkQAQDYfuVek9tRW2NLC9axNav8UGZ5SQpFVvk+5/82MaN/elb5gYH+7BiybRnKXsVTT27KKr9xS155SXpyy5NZ5R/b8lhW+en9M7PKR97pDGTpRnfliLjS9pL6yZKeUfy9k6R7ir+XSTo3IkLS1bbn2t4tItZ2Jlqg+1rxNZFbd9o8tDk7hkc35n3fPvTwhuwYdO8TeeVn51f9H33k8azyj23Kq/dI+fX53HMy93xE+1UqyQUAoGwKXZF7gqTLbH9GqZfUy4rpCyWtKi23uphGkgsAQJvQXRkAUElWaslt9UPSYHFdbe1x7ATC+YCkj0TEYkkfkXRmG186AABogJZcAEBltam78vqImOzot0dJOr74+5uSvlr8vUbS4tJyi4ppAACgTWjJBQAg3z2SXlH8/SpJvy/+vkTSu4tRlg+W9AjX4wIA0F605AIAKmpit/xp+Vbt8yUdqtStebWkUyX9laQv2B6Q9JTSSMqSdKmkIyTdJukJSe/peMAAAGxnSHIBAJVkdac7UkS8fYxZfzzKsiHpuPZGBAAAykhyAQDVZHWlJRcAAExtXJMLAAAAAOgZtOQCACqrTaMrAwCACiPJBQBUUu0+uQAAAGUkuQCAyuKaXAAAUI8kFwBQUVafSHIBAMBwDDwFAAAAAOgZtOQCACqL7soAAKAeSS4AoJJsBp4CAAAjkeQCACrLXJMLAADqbHdJbsRQt0NQn/uzyk/vn54dw84zn5FVfsGCXbJjuPE5c7PKz5w1IzuGvRcMZpXfaUbefpSk/r6882Hz0Kas8vnvicgsDzSP7srA1NeKd6mdN4zMrIHZ2THs8YzdssrvvffC7BieeGpjVvkZM/LrkHvvsSCr/ILZ87JjmNk/M6t87ncHP7BOfQw8BQAAAADoGdtdSy4AoDdY5ppcAAAwAkkuAKCyTIckAABQhyQXAFBZtOQCAIB6WT+B2/6I7Zts32j7fNt5V4EDADAJtlv+ANqJuhMAtF/TSa7thZI+LGlpRDxPUr+kI1sVGAAAQC+h7gQAnZHbXXlA0izbmyXNlnRPfkgAAIzPxT+gYqg7AUCbNd2SGxFrJH1G0t2S1kp6JCJ+2KrAAABoyOma3FY/gHah7gQAnZHTXXlnScsk7SVpd0k72H7nKMsda3uF7RUPrH+g+UgBAKjDNbmokmbqTuvWre90mABQeTkDT71a0h0RsS4iNku6WNLL6heKiOURsTQils4bnJexOQAAtrGkvjb8A9po0nWn+fMHOx4kAFRdzrf53ZIOtj3b6afvwyTd0pqwAAAAeg51JwDogKYHnoqIa2xfJGmlpC2SfiVpeasCAwCgMboXo1qoOwFAZ2SNrhwRp0o6tUWxAAAwKSS5qBrqTgDQfrm3EAIAoGv6uIUQAACowwgbAAAAAICe0eGWXMsZv7r3uT87goEpkNbP7J+ZVX7LwObsGHbdYUFW+cP33j87hnmzZmWVnzN9enYMr9nrJVnl937GXtkxzBqYnVV+Rt+MrPJ27puCljR0h0V3ZaATct9nbkGbyoDzqqw7z9glO4YXDObVfd72ok3ZMTx/0W5Z5Wf059elD1jw7Kzyz9rpWdkxzBrYIat8fwtyCkxtdFcGAFSTpT6SXAAAUIckFwBQUXm9gwAAQG8iyQUAVJIl9WV3twcAAL2G2gEAAAAAoGfQkgsAqCwGngIAAPVIcgEAlcU1uQAAoB5JLgCgoszoygAAYASSXABAJVm05AIAgJEYeAoAAAAA0DNoyQUAVBbdlQEAQD2SXABANVky98kFAAB1SHIBABVlrskFAAAj8BM4AKCSrNRdudWPcbdrn2X7fts31k3/kO1bbd9k+x9L00+2fZvt39p+Xev3BAAAKKMlFwCAyTlb0umSzq1NsP1KScskvTAiNtp+ZjF9P0lHStpf0u6SfmT72RGxteNRAwCwnaAlFwBQWbZb/hhPRFwp6cG6yR+Q9OmI2Fgsc38xfZmkCyJiY0TcIek2SQe2bg8AAIB6JLkAgMrqk1v+aNKzJf2J7Wts/8z2S4rpCyWtKi23upgGAADapKPdlS1N6FfysQy0INyhKTAS56z+2d0OQbvN3jWr/C4zds6O4QXz/yir/IDzz4fBWYNZ5XccmJMdw/T+GVnlZ/bPyo4hB3dwQbfkfqc0MGh7Ren58ohYPk6ZAUm7SDpY0kskXWh773YEB1RNKwaIy/3On9W/Q3YMS+bkvaXnTMuvM/zxMx/NKj/Q158dw07T52aVnzcjr+4l5dd9+py3Hxj0cOrjmlwAAIZbHxFLJ1lmtaSLIyIkXWt7SNKgpDWSFpeWW1RMAwAAbdL9Zk0AAJpi2X0tfzTpO5JeKUm2ny1puqT1ki6RdKTtGbb3krSvpGvzXzsAABgLLbkAgMrKuIa2abbPl3SoUrfm1ZJOlXSWpLOK2wptknRU0ap7k+0LJd0saYuk4xhZGQCA9iLJBQBUkt22a3Ibioi3jzHrnWMsf5qk09oXEQAAKBu3X9ZoN723vYvty23/vvg/fxQiAAAmyW34B+Si7gQA3TWRi4/OlnR43bSTJP04IvaV9OPiOQAAAKg7AUBXjZvkjnHT+2WSzin+PkfSW1obFgAA47Hs1j+AXNSdAKC7mr0md0FErC3+vlfSgrEWtH2spGMlafEei5rcHAAAI3Vj4CmgSU3WnRaPtRgAYAzZtxAqRo+MBvOXR8TSiFg6OJh/82cAACTJ0lS6hRAwYZOpO82fT90JACar2W/z+2zvJknF//e3LiQAACaiHcNO0TKMtqHuBAAd0mySe4mko4q/j5L03daEAwAA0JOoOwFAh4x7Te4YN73/tKQLbR8j6S5Jb21nkAAAjIaBojAVUXcCgO4aN8ltcNP7w1ocCwAAk0L3YkxF1J0AoLuaHV0ZAICuoyUXAADUI8kFAFSSxS2EAADASNtdkpvbtW2gb1qLImlev/uz1zGjb0ZW+b4WxLBx61NZ5Z/KLC/ltwL1teB2I9Myz6lpfdOzym+JLVnlRZIBAGigFT0unHnXy9zvSkmaM22nrPIz+2dlx7Dr7O5/Z+fWhac5vy7d35eXwvRlnk+55zSdkNpvu0tyAQA9wqa7MgAAGIEkFwBQWbmtOwAAoPeQ5AIAKouWXAAAUI+fwAEAAAAAPYOWXABAJVncJxcAAIxEkgsAqCirj+7KAACgDkkuAKCyaMkFAAD1SHIBAJXFwFMAAKAeA08BAAAAAHoGLbkAgEpKA0/xWy0AABiOJBcAUFGmuzIAABiBJBcAUFl9DDwFAADqkOQCAKrJDDwFAABG4mImAAAAAEDPoCUXAFBJaeApWnIBAMBwJLkAgMqiuzIAAKjX0SQ3FBqKoabLb42t2TEMZa6jz/3ZMeSuY1p/fi9zO28d/S3YDwN907LKT++fkR3D1tiSVb7f3f+daPPQpqzyuecC0D3mFkLAdqIv87uqFb0+cmNoTZ0hWrCOPLn7shX1jvwY+IG013W/hg4AQJP6qKgAAIA6/AQOAAAAAOgZtOQCACqJgacAAMBoSHIBAJXFdVUAAKDeuN2VbZ9l+37bN5am/ZPtW23/2va3bc9ta5QAAIzgtvwDclF3AoDumsg1uWdLOrxu2uWSnhcRL5D0O0kntzguAACAqjpb1J0AoGvGTXIj4kpJD9ZN+2HE0/deuVrSojbEBgBAQ7Zb/gByUXcCgO5qxTW575X0b2PNtH2spGMlafEefJ4DAFrDkvq4SQCqaRJ1p8WdigkAekZW7cD2xyRtkXTeWMtExPKIWBoRS+cNzsvZHAAA25iWXFTPZOtO8+cPdi44AOgRTbfk2j5a0hslHRYR0bKIAACYEAaKQrVQdwKAzmiqJdf24ZI+KunNEfFEa0MCAGDqGm3k3NK8E22H7cHiuW1/0fZtxai6L+58xJgKqDsBQOdM5BZC50u6StJzbK+2fYyk0yXNkXS57ettf7nNcQIAMEKXuiufrZEj58r2YkmvlXR3afLrJe1bPI6VdEb2i8aUR90JALpr3O7KEfH2USaf2YZYAACYlG50V46IK20vGWXW55Ra6r5bmrZM0rlF19Srbc+1vVtErO1AqOgS6k4A0F2tGF0ZAICOs7qT5I7G9jJJayLihrrW4IWSVpWery6mkeQCANAmJLkAgOpqz2jIg7ZXlJ4vj4jlY4fg2ZJOUeqqDAAAuqzjSW6o+cEENw9takkEWaVjKDuCgb7pWeX7nH9fyHDe6+hzf3YM/c47/aZl7kcp73xslS1Dm7PKP7nl8azyswZ2yCqf+54CpqD1EbF0EsvvI2kvSbVW3EWSVto+UNIaSeUbnS4qpgHooFbcHiy358hU6XnSbdyqDZ1ASy4AoKKmxi2EIuI3kp5Ze277TklLI2K97UskfdD2BZIOkvQI1+MCANBeJLkAgMrqRotAMXLuoUrdmldLOjUixhpU6FJJR0i6TdITkt7TkSABANiOkeQCACqrS6MrjzZybnn+ktLfIem4dscEAAC2IckFAFTWVOiuDAAAppb8EYwAAAAAAJgiaMkFAFSSxSidAABgJJJcAEBFTY3RlQEAwNRCkgsAqCySXAAAUI8kFwBQTaa7MgAAGImBpwAAAAAAPYOWXABAZdFdGQAA1CPJBQBUEqMrAwCA0ZDkAgAqitGVAQDASFyTCwAAAADoGbTkAgAqi5ZcAABQjyQXAFBZXJMLAADqdTzJzfnVva8Fv9gPZZbv75uWHUOfu99LvN/d/30jdz9MhRacUGSvo7+/P6v89L4ZWeWn9U3PKt/HVQ/ooqnwOQAAE8GPckDndD/TAQCgCRZJLgAAGIkmGAAAAABAz6AlFwBQUab7HwAAGGHcllzbZ9m+3/aNo8w70XbYHmxPeAAANOI2PIA81J0AoLsm0l35bEmH10+0vVjSayXd3eKYAAAYn9NALq1+AC1wtqg7AUDXjJvkRsSVkh4cZdbnJH1UasHwsgAANMFt+Afkou4EAN3V1MBTtpdJWhMRN7Q4HgAAgJ5D3QkAOmfSA0/Zni3pFKXuNhNZ/lhJx0rS4j0WTXZzAACMiZZXVEFe3WlxGyMDgN7UTEvuPpL2knSD7TslLZK00vauoy0cEcsjYmlELJ03OK/5SAEAKLFafz0u1+SiTZquO82fz/hUADBZk27JjYjfSHpm7XnxYb00Ita3MC4AAMZFSy6qgLoTAHTWRG4hdL6kqyQ9x/Zq28e0PywAAMbHwFOYiqg7AUB3jduSGxFvH2f+kpZFAwAAUHHUnQCguybdXRkAgKmCa2gBAEA9klwAQGXRvRgAANQjyQUAVFJtdGUAAICyjia516+8Yf3cGfPuarDIoKRujzRIDFMjhm5vnxgmHsOenQoEALY3K6/71fpZAztQd5r6MXR7+8RQrRioO7VZR5PciJjfaL7tFRGxtFPxEMPUjaHb2yeGqRUDMBa6K6PXUXeqRgzd3j4xEAOGo7syAKDCSHIBAMBwJLkAgMoixQUAAPWmWpK7vNsBiBhquh1Dt7cvEUPNVIgBGBUDTwFT4jOaGLq/fYkYaogBckR0OwYAACbthS9+QVz2i++3fL27zd7jOq6lAgCguqZaSy4AAJNASy4AABiOJBcAUFmkuAAAoF5ftwOosX247d/avs32SV3Y/mLbP7V9s+2bbB/f6RiKOPpt/8r297q0/bm2L7J9q+1bbL+0CzF8pDgGN9o+3/bMDmzzLNv3276xNG0X25fb/n3x/85diOGfimPxa9vftj230zGU5p1oO2wPtjMGYOLcpgcw9VFvGhYLdSfqTtSdMMyUSHJt90v6F0mvl7SfpLfb3q/DYWyRdGJE7CfpYEnHdSEGSTpe0i1d2G7NFyT9R0Q8V9ILOx2L7YWSPixpaUQ8T1K/pCM7sOmzJR1eN+0kST+OiH0l/bh43ukYLpf0vIh4gaTfSTq5CzHI9mJJr5V0d5u3D0yYnQaeavUDmOqoN41A3Ym6Uxl1J0yNJFfSgZJui4jbI2KTpAskLetkABGxNiJWFn9vUPqAWtjJGGwvkvQGSV/t5HZL299J0p9KOlOSImJTRDzchVAGJM2yPSBptqR72r3BiLhS0oN1k5dJOqf4+xxJb+l0DBHxw4jYUjy9WtKiTsdQ+Jykj0pipDoA6D7qTQXqTk+j7rRtGnUnTJkkd6GkVaXnq9WFD8oa20skHSDpmg5v+vNKb4ahDm+3Zi9J6yR9rej281XbO3QygIhYI+kzSr96rZX0SET8sJMxlCyIiLXF3/dKWtClOGreK+kHnd6o7WWS1kTEDZ3eNjAVTbZ7nO2Tiy6lv7X9uq4EjV5DvWmbz4u6E3WnsVF32k5NlSR3yrC9o6RvSTohIh7t4HbfKOn+iLiuU9scxYCkF0s6IyIOkPS42t/NZJji2o1lSl8au0vawfY7OxnDaCLda6trv8TZ/phS17DzOrzd2ZJOkfSJTm4XmCi34d8EnK0Jdo8rum8eKWn/osyXiq6mQE/oVr2p2DZ1J1F3Ggt1p+3bVEly10haXHq+qJjWUbanKX1QnxcRF3d484dIerPtO5W6Hb3K9jc6HMNqSasjovZL7EVKH9yd9GpJd0TEuojYLOliSS/rcAw199neTZKK/+/vRhC2j5b0RknviM7f2HofpS/NG4pzc5GklbZ37XAcwKi6keROsnvcMkkXRMTGiLhD0m1KXU2BHNSbEupOCXWnOtSdMFWS3P+StK/tvWxPV/rV+5JOBuA02siZkm6JiM92ctuSFBEnR8SiiFii9Pp/EhEd/RUuIu6VtMr2c4pJh0m6uZMxKHW1Odj27OKYHKbuDSZxiaSjir+PkvTdTgdg+3ClblhvjognOr39iPhNRDwzIpYU5+ZqSS8uzhWgVw3aXlF6HDvJ8uXucVOqWyl6xnZfb5KoO5VQdyqh7gRpiiS5xa/fH5R0mdKb8sKIuKnDYRwi6V1KvwJeXzyO6HAMU8GHJJ1n+9eSXiTp7zu58eKX0IskrZT0G6VzdHm7t2v7fElXSXqO7dW2j5H0aUmvsf17pV9JP92FGE6XNEfS5cU5+eUuxABsb9ZHxNLSY8KfQd3qHoftC/WmKYe6E3Un6k5TjDvfgg8AQL4X/fEL48e/bP3YKoMzd70uIpY2WqYYaOd7xe06atOOlvQ+SYfVWg9snyxJEfG/i+eXSfpkRFzV8sABAICkKdKSCwBAlTXoHneJpCNtz7C9l6R9JV3bjRgBANheDHQ7AAAAmjPh0ZBbu9XUNe1QpWt3V0s6VWk05RlK3eMk6eqIeH9E3GT7QqVr9LZIOi4itnY8aAAAtiMkuQAATEJEvH2UyWc2WP40Sae1LyIAAFBGkgsAqLDOt+QCAICpjSQXAFBJFikuAAAYiSQXAFBZxfWvAAAATyPJBQBUGEkuAAAYjlsIAQAAAAB6Bi25AIDKoh0XAADUI8kFAFQYaS4AABiOJBcAUFFm4CkAADAC1+QCAAAAAHoGSS4AAAAAoGfQXRkAUEmWZK7JBQAAdUhyAQAVRpILAACGI8kFAFQWKS4AAKhHkgsAqCxGVwYAAPUYeAoAAAAA0DNoyQUAVJRFh2UAAFCPJBcAUFmkuAAAoB5JLgCgwkhzAQDAcFyTCwAAAADoGbTkAgCqyYyuDAAARqIlFwAAAADQM2jJBQBUUhpbmZZcAAAwnCOi2zEAADBptv9D0mAbVr0+Ig5vw3oBAEAHkOQCAAAAAHoG1+QCAAAAAHoGSS4AAAAAoGeQ5AIAAAAAegZJLgAAAACgZ5DkAgAAAAB6xv8Fd/ERkIBR0x0AAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "Err_G4=error(xdata4, poptG4[0], poptG4[1],poptG4[2], poptG4[3], poptG4[4], recorteG4.ravel(), inc=1)\n", + "poptG4E, pcovG4E = curve_fit(gauss2d, xdata4, recorteG4.ravel(), p0=[3,5,4,1,1], sigma=Err_G4)\n", + "estrellaG4E=gauss2d(xdata4, poptG4E[0], poptG4E[1],poptG4E[2], poptG4E[3], poptG4E[4])\n", + "FWHMG4E=FWHMG_I.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptG4E[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 4 fotografÃa (Banda Verde)\")\n", + "plt.imshow(recorteG4, plt.get_cmap('Greens'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 4 a partir de la gaussiana con incertidumbre (Banda Verde)\")\n", + "plt.imshow(estrellaG4E.reshape(15, 15), plt.get_cmap('Greens'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 5 con incertidumbre (Banda Verde)" + ] + }, + { + "cell_type": "code", + "execution_count": 844, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7cAAAFSCAYAAAApcigbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA4LklEQVR4nO3debxddX3v//f7nMwQCHDClIRBRW6B4tAIKFqo2BItGm7vrWIRQWmpiuPPlgr2OvRee7nqdWit+ouCYEUQEaqtWqEqpQ5AAwIyqRGEJATIYRYw0/ncP77fnbOyc8b93cNZJ69nHvuRvdda37U+e+119vp+9ve7vssRIQAAAAAA6qyv1wEAAAAAAFCK5BYAAAAAUHsktwAAAACA2iO5BQAAAADUHsktAAAAAKD2ZvQ6AAAAWuGBOaGNQ+1f8RObvhMRy9q/YgAA0EkktwCAeto4JB25Z/vX+29rB9q/UgAA0GkktwCA+rJ7HQEAAJgiSG4BAPVkMXIEAADYimoBAAAAAKD2aLkFANQX3ZIBAEBGcgsAqC9yWwAAkJHcAgBqyrTcAgCArbjmFgAAAABQe7TcAgDqidGSAQBABcktAKC+6JYMAAAyklsAQH2R2wIAgIzkFgBQT5bUR3YLAAASrlYCAAAAANQeLbcAgPqi4RYAAGQktwCA+mJAKQAAkJHcAgDqi9wWAABkJLcAgHpiQCkAAFDBgFIAAAAAgNqj5RYAUF803AIAgIzkFgBQU2ZAKQAAsBXdkltg+wDbYXtGfn217T/twnbn2v5n24/Z/mqnt1fK9tG2f2H717ZPzNMut/3OFtd3cWM93datz3iybB9re80El32b7f/T6ZiArmlcc9vuB6aFXp2rpxrbJ9u+snAdv7L9shbKTfgcNdXluswzeh1HJ9i+zfaxUyCOl9j+2RjzL7D9vzq07ZaO8Umsf7bt223v06ltjLP9sP2sXmx7LLY/YPtLE1z2a7ZfPt5ytU5u84H4dP7CaTw+NYFyU+YDHuE9jHUC+u+S9pK0R0T88Tjr3eak3iN/I+lTEbFzRPyT7ZMlbYqIT0x2RbYPl/QcSV/Pr0+zvaWy3+6y/ea2Rt8Gtu+0/cYRpr/D9souh/M5SSfb3rPL2wU6xx14oK12wHN1z4x07o+IiyLiD3oZ13SQ6zJ39TqOToiIQyPi6m5vt/lvPCL+IyIO7nYcXXKGpGsiYp20NVHfmL9PnrB9g+1jehzjNmwvsr3Z9jNHmHeF7Y92OaT/I2ncHzdqndxmr8xfOI3HW0tX2IOEsPoexjoB7S/p5xGxuVuBjWaC+2h/SbdVXu8m6fQWN/nnki6KiKhM+3Fjv0n6b5I+bPt5La6/Uy6U9PoRpp+S501Y6XEZEb+R9O1R4gGATtqRztU90cr+6PEP4NhB1f24azH+N0n6x6ZpH8512F0kfUbS5bb7S+Nrl4hYK+m7SnXWrWzvLukV6n499npJu9heOtZy0yG5HZHtZ9n+99yFd9D2V/L0a/IiN+dfS17T6DZj+69s3y/pC7b7bL/H9i9tP2T70vxhjrfdZ9r+Xi4zaPsi2wva8H4+KOl9kl6T4z49x/jXtu+x/aDtL9reNRdpvM9H8/IvHGd52X59nveQ7f/hSheN3G3gMttfsv24pNNsH2H7x7Yftb3O9qdsz8rL/1LSMyT9c97+bKWW55Na3E8vl/Tvo82MiJ9IukPSb1Xez1dt35+PgWtsH1qZd4Htf7D9zfyL2XXVX6Zs/75Tq+tjuYXBlXmTif0fJb3Y9v6V8odIOlzSxU7dVD5q+17bD9j+rO25ebmRjsu5OfZHbN8u6QXVjdne16nbxnrbd9t+e1M8V0v6w9H2I1A7dvsf6Jrpdq7O6/5D2z+x/bjt1bY/MMayjfd0To7jV069nMZdl4dbaU+3fa+k72nkc/9ptn9QKRe2z7T9C0m/GCWuUyr1gfc2zWtpn+eyjXJPOHXR/K9jLDvX9oX5fHeH7bNc6eI81rrc1NXR23dRP82px9cT+Vx5cp4+4vFY2W/Pys8n8rmcms/tg9V96DHqTqPshxfb/lFefrXt0/L0XZ3qcevzZ/XXtvsq7+8HTvWLR/J7HLU7p7ev712a1/2EU5flpZVllzhdYrY+f/6fqsx7Y/6sHrH9HW9b99nmuPMYf+OVMs+zfWOO4yuS5lTmbXNcj/AZXWD707a/ndf/Q9t72/5Eju9Ob98g8oJ8LD1i+wu25+R1FX332N5PqU583Ujzc8PNlyXtrtRDc9zvqPyZ/YXtW/Lx+pVGvHn+X+bj6z439SAc6/gdwYVqSm6V6vK3R8RPPUa90yPnDgc6/Y09YfsqSQNNsR1VOd5v9vbd5a/WOPXYaZvcSvqfkq5Uai1cLOnvJSkifjfPf07+9bXxxbW30kG1v1LXgbdJOlHSMZL2lfSIpH+YwHYt6X/nMr8laYmkD4xT5qJ8UFxp+zkjLRAR75f0t5K+kuM+T9Jp+fF7Sn80O0tqfMk03ueCvPyPx1reKeH6tKSTJe0jaVdJi5rCWC7pMkkLJF0kaYukdykdmC+UdJykt+R4nynpXg3/0r2h1f1keydJB0oa6zqMF0h6tqRqV99vSzpI0p6SbswxV50k6YNKx8gqSR/K6xqQdLmkv87v7ZeSjm4l9ohYI+n72vaL4RRJ34qIQUnn5rifK+lZSvv8fZVlm4/L90t6Zn4cL+nUyj7ok/TPkm7O6zlO0jttH19Z3x1K3buB6YFuyXU3rc7V2ZNKPWQWKFXC3uyxx4vYW+lcs0jpO32F7UbXzIms65j8Ho7XyOf+kZwo6UhJhzTPyPWBzyidq/aVtIfSZ9PQ6j6X0vn0JUp1jA9K+pJHvwbx/ZIOUKqv/L6k1xWsa6tcp/g7SS+PiPmSXiTppjx7xONxBBP5XF4s6WClc/H7bDd+fB+17jRCrPsr1WX+XtJCpbpCI9a/V3rvz1D6LF4v6Q2V4kcq1ZsGJH1Y0nn2hH+9e5WkS/L7+4aG64r9kv5F0j1Kn82ivJxsL5d0jqQ/yrH+h6SLm9Z7Yo7rkDH+xhvvfZakf1JqJNhd0leVeulNxqs1XJfbIOnHSvXBAaX67Mealj9Z6e/omUp1s7+uzCv57vltSXeN1vMy79fXS7pb0gONyRr/O+rVkpYp1ZEPV6rjy/YySX+h9HdzkKTma4kn8x11haQB2y+uTDtF0oUTrHc25w5flnSD0mfwP7VtPXaRpG8qdT3ePb+Hr9leWFnf+PXYiKjtQ9KvJP1a0qOVx5/leV+UtELS4hHKhaRnVV4fK2mjpDmVaXdIOq7yeh9Jm5RGmD4gr2NGnne1pD8dJcYTJf1kjPdwtKS5kuZJOlvS/UonpZGW/YCkL1Vef1fSWyqvDx4txgks/z5JF1fmzcv75GWVbV8zzufxTklXNH0+L6u8bmk/Kf3BRNPnc5qkzfkzfyLP/3tJHmUdC/Iyu+bXF0j6fGX+KyTdmZ+/XtK1lXmWtKbgM36dpJ/l531KSf9/zet9UtIzK8u+UNLdYxyXd0laVnl9hqQ1+fmRku5t2vbZkr5QeX2QpC2d/LvkwaNbD+0xO/T6Z7f/Ia3s9XubTg/tYOfqEcp+QtLHR5l3bD6X7VSZdqmk/zHeuirv7xmV+du85zztNEk/aNqvLx0j3vdJuqTyeidtWx8YdZ+P8v7WjLGtmyQtH2XeXZKOr7z+04muS9vXl7bul/x+HlVKlOY2rWPCx+MEPpfFlfnXSzpplLLvVKXu1DTv7JHmSerPn8khlWl/Lunqyme+qjJvXo5p71G28yttW9/7t8q8QyQ9nZ+/UNL6UT7rb0s6vfK6T9JTkvYf7bhr3qfV40Xph5r7VKnXSfqRpP810nHdvD6let7nKvPeJumOyuvflvRo0z54U+X1KyT9shLXhL97Rtg3J6tSr6zE95t8LD6dn588xvF9oirfUTne11Vef1jSZ/Pz8yWdW5n37OZ9PdrxO8r8z0takZ8flPfFnhqn3qmm3EHSftr+++7Lyn+rkv5K0j82re87kk6tvP4zSd8bLdaImBYttydGxILK43N5+llKycP1Tl0qthvUp8n6SNckNuwv6YrcLP6o0kG8Rbm7wGhs72X7EttrcxP8l9TU5F4VET+MiKcj4qmI+N9KB/lLxom1YV+lX88a7lH64h4txrGW31fS6kpcT0l6qKn86uoL28+2/S9OXX8fV2pZHvW9NpWdzH56NP8/v2n6tfkzn6/0i9qhOQbZ7rd9bu4u8rjSl4CatnF/5flTSi3Z0vb7IqqvJ/sZK7UC72P7KKUvyHlKv0wtzM9vqBxn/5qnNzQfl9vEpm0/z/0l7dtYV17fOdr2eJgv6bExYgWATthhztW2j7T9/dzK+5jStXZjnSMeiYgnK6/vUfqun+i6VmvyxirTfA58UtvWB1ra55LkdPnTTZWyh2n0fdN8vmuug0xmXVvl9/MapX25zunypP+SZ0/oeJzg5zJiHWOSdaclSi3UzQYkzdT2dbpqj7ut2891Omm4njOe5tjnOHXpXiLpnhi5BXJ/SZ+sfB4PK+3LakyTOVb3lbQ218Ea7hlt4VE8UHn+9Aivm/dHc/1q38rrku+eR7R9HVaSPhoRC5TqgkslfcS5+/gEv6MmVI9V035r4TvqQkl/7NTt+RRJ34mIBzWxemc1jn018vddw/55O9X1vVjph4OG+RrOC0Y0HZLbEUXE/RHxZxGxr9KvWZ/22KMuRtPr1UpdVqon4zmRLq4ey9/mdf12ROyi1Go3mY5uMYnl71M6EBoav4g8oO3fz3jLr1Ol25HTdZ97jBBb1Wck3SnpoPxez5lE7BPeT/mP4JdKvzyNKCIekPQ1Sa/Mk/5EqSvEy5S67RyQp08kvnVKX+CpQOrGs6Qyf1KfcT6pXKbUInyK0i/iGyUNKn25Hlo5xnaNNLjA1uJjxab0GTasVmr1rR6z8yPiFZVlfkup+wgwPdAtudam6bn6y0pdOZdExK6SPjvOunfLXWUb9lM6X090XTHK87GMtVzzOXCetq0PtLTPcxfbz0l6q9JdHxZIulWj75tt6iVNMY23rieVEoaGvasrjojvRMTvK1Wa78zrmszxONnPuGoydafVSl1kmw0qtRI21+nGO+5LrZa0n0ceGGi1pD9vOi7mRsSPKstM9PiU0ue/qKkrdbXOs81nbHubz7hFzfWr+yqvS757bpF04Cj7TZHcKumHGr6etOQ7aqy6ojT54/cHSj9WLM9xXJinT6TeWd1v6zTy913DaqWW2+r6doqIcyvLjFuPnbbJre0/tt34UnxEaecO5dcPKF2jMJbPSvpQ/gKV7YX5eoLxzFfqfvVY7jv+l2PEuJ/TvWBn2Z5j+y+Vfjn54QS2I6VrGd7ldHH2zhq+JnezUreRIW37Psda/jJJr7T9IqfrHD6g8f+I5kt6XNKv86+ek7kVz4T3U/YtpesaRmR7D6Wuvo3RmecrXV/xkNKX399OIrZvSjrU9h/lL6K3a9sT42Rjl9IXwWuUukFdKEkRMaR0Qv248+15nIZdP37UtaTuamfb3i0f32+rzLte0hNOAx7MdWq9PszpeuSGY5S6DgHTAwNK1do0PVfPl/RwRPzG9hFKP7aO54N5/S+RdILS9YWtrGukc/9kXSbpBKeBjGYp3davWl9sdZ/vpPT5rs/l3qDU2jqa6vlukVIiO9F13STpd/Nnt6tSV0nlZfeyvTxXsDcoHQdDed5Yx2NVK59xtexE604XSXqZ7VfbnmF7D9vPjYgtSvvnQ7bn58/i/1Nq3euk65USlHNt75T/HhpjknxW6fM6VFJjwKsxb1upsf/Gf6zUAPN22zNt/5GkIyrzb1aqqz03tyh+oLW3tI0zbS92GhjqvZK+MsayE/47iDT+yqqm+LeRj4UXa9t67GTrmg2XKg3edEj+cer9TfMndfzm1vMvKt2KZ4HSdbbSxOqd1fXcozQ2TuP77sUabpSS0vH7StvH53XNsX1s5W9SmkA9djokt43ReBuPK/L0F0i6zvavlX6deEcM35/sA0oXQj9q+9WjrPeTudyVtp+QdK1S3/LxfFDS85W6fn5TqUvqaOYr/YL3iNKvbcuUfgVq7g48mvOVLrS/Ruki9N8oJzu5tfBDkn6Y3+dR4yx/W35+idIX168lPaj0xT+av1D6g3hCKUkb60ug2WT2k5SugTnZ3qbm+cLG567UHWS9hpO9Lyp1dVgr6Xalz29CIg309MdKgz09pHR9QbUSM9nYpbTPH1O6luQ/K9P/SukL71qnbif/pnQt9Gg+qPS+7lYa9GLrsPL5ZHeC0oATdyv9svt5pZZr5S//SQ/dDkxpfR14oBN2pHP1WyT9TY7nfUoVzbHcn9d9n1Iy86aIuLOVdY1y7p+UXB84U6l1Z12ObU1lkZb2eUTcLun/KiUtDyhd8zjWj/l/k7d7t9K58TLlOsl464qIq5TqJLcoDV7zL5X19iklgvcptUYdo+EEc6zjsWqyn3HVhOtOEXGv0nn73TnWmzQ8mM7blFov71JqWfuyUj2vY3I945VKA2Deq/T5vCbPu0Ip+bkk12duVbrTxVg+oFH+xnMPtz9Surb24bydyyvzf650jPyb0qjf24yc3KIvK9Wt7lLqMTjWPVUn+3fw/2v7UYfPyt+HT+btfiEvJ7VW15QkRcS3la6j/Z5SHfN7TYu0cvx+UamV9SuRB4kdr945ij9R2k8PKyXdX6zEvVqpdfgcpTr9aqWkvjEK+Ask/TrSLYFG5W27sgOJU8vuo0rdZu7ucTiSJNtflnRpRPxTr2OpI9tvU+qCclavYwHawQvnhpYf0P4Vn3fnDREx5n30gHawfazSYCqLx1l0h2f7zUqDMo3aiwuYqpxuifkTpUGo1vU6njqy/TVJ50XEt8ZartY3UUZ72X6l0ojKlvRRST/V8EBMPRcRk+n2gyYRMdotDQAAmFKcbuvzDKXW2YOUWi8/NWYhYIrKrZ3b3XoLExcRE7oVFB2wULVcqZvOfUonkpOCpn0AUxkDSgHT1SylLppPKHWr/LqkT/c0IgBTHi232Coi/lTpPnIAUA8MAIUai4irte2IwMjy4DNjDTgFANshuQUA1Bf9jwAAQEZyCwCoJ4uWWwAAsFVXk9uBgT1iv/2b7yM8cZtjcxuiKLuEtH/k+y9Pigsv6toSW4pjKNXn8uaS0vexZah8P8zoK/s823E8DI14C73JKDum+wqbvu69514NDj5EhgEAHTAwMBD7H9B63QnA1HPPr+7V4OAgdacO6Gpyu9/+++maa69uufwjGwaLYyhNqBbM2r04hhl9M4vKP7n5ieIYSseJmjtjp+IYHt/4SFH5RwvLS9LCOXsVld9l1m7FMfxmy1NF5Us/y9n9c4rK/+5RxxaVB4pQNcA0t/8B++mH17XjFp4Apoqjj3xxr0OYtuiWDACorz6yWwAAkJDcAgDqi2tuAQBAxjiTAIB66sQ9bsfJlW0vsf1927fbvs32O/L0j9i+0/Yttq+wvaBS5mzbq2z/zPbx7Xr7AABgW0XJre1l+WS9yvZ72hUUAABT1GZJ746IQyQdJelM24dIukrSYRFxuKSfSzpbkvK8kyQdKmmZpE/b7u9J5JgSqDsBQOe0nNzmk/M/SHq5pEMkvTafxAEA6ALLbv9jLBGxLiJuzM+fkHSHpEURcWXE1iH9r5W0OD9fLumSiNgQEXdLWiXpiI7sDkx51J0AoLNKWm6PkLQqIu6KiI2SLlE6iQMA0BUdSm4HbK+sPM4YZdsHSHqepOuaZr1R0rfz80WSVlfmrcnTsGOi7gQAHVQyoNRIJ+wjmxfKlYIzJGnJfksKNgcAwLY6NJ7UYEQsHXu73lnS1yS9MyIer0x/r1LX5Ys6EhnqjroTAHRQxweUiogVEbE0IpYODOzR6c0BANBRtmcqJbYXRcTllemnSTpB0skxfAPqtZKq2cniPA0YVbXutHDhQK/DAYDaKEluOWEDAHrGkvrstj/G3Gbqt3yepDsi4mOV6csknSXpVRHxVKXINySdZHu27QMlHSTp+nbvC9QGdScA6KCSbsn/KemgfLJeqzQa5J+0JSoAAMZjjTsAVAccLekUST+1fVOedo6kv5M0W9JVOaZrI+JNEXGb7Usl3a7UXfnMiNjS7aAxZVB3AoAOajm5jYjNtt8q6TuS+iWdHxG3tS0yAADG0e3kNiJ+oJHvhvutMcp8SNKHOhYUaoO6EwB0VknLrSLiWxrjhA4AQOeMf+seYKqh7gQAndPxAaUAAAAAAOi0opbbydocm/XwhvUtl//l46uKYzh4wW8VlY/xFxnXlsLLrR58+v7iGPaZt7io/JbYXBzDzL5ZReX3nLt3cQwu/H3nyc1PFMfQVxhDn/uLym8a2lRUPtryVwG0hoZbAADQ0NXkFgCAdrF6MqAUAACYokhuAQD11JvRkgEAwBRFcgsAqC2POHAxAADYETGgFAAAAACg9mi5BQDUFt2SAQBAA8ktAKC2yG0BAEADyS0AoJYsq4/sFgAAZCS3AIDaolsyAABoYEApAAAAAEDt0XILAKgn7nMLAAAqSG4BALVFbgsAABpIbgEAtWTRcgsAAIZxzS0AAAAAoPZouQUA1BYttwAAoIHkFgBQUya5BQAAW5HcAgDqidGSAQBARVeT24jQxqGNLZc/cP4zimOY279TUflfb3qsOIbZ/XOLys/om1kcw1AMFZXvc/nl2qEoKm+VV2pL30c7Yig1FFuKyve5v02RAN1HbgtMfRFl5/upgh/TgKmPAaUAAAAAALVHt2QAQC1xKyAAAFBFcgsAqC2SWwAA0EByCwCorT6SWwAAkLV8za3tJba/b/t227fZfkc7AwMAYExOA0q1+wF0CnUnAOiskpbbzZLeHRE32p4v6QbbV0XE7W2KDQAAYDqh7gQAHdRychsR6ySty8+fsH2HpEWS+IIGAHScZa65Ra1QdwKAzmrLNbe2D5D0PEnXtWN9AABMxFS41zTQCupOANB+xcmt7Z0lfU3SOyPi8RHmnyHpDEnad8k+pZsDAGArWm5RR5OpOy3Zb0mXowOA+mp5QClJsj1T6cv5ooi4fKRlImJFRCyNiKW777F7yeYAANiG7bY/gE6abN1p4cKB7gYIADVWMlqyJZ0n6Y6I+Fj7QgIAAJh+qDsBQGeVtNweLekUSS+1fVN+vKJNcQEAMC5uBYSaoe4EAB1UMlryDyRG8gAA9EZKRjkNoT6oOwFAZ7VltGQAALqPa2QBAMAwklsAQG2R3AIAgIauJrdDGtKGLRtaLj9/zi7FMWyJzUXln9ryVHEMdtEg1RqKoeIYHt/0aFH5Of1zi2Mo1e/yw7cd6yi1OTb1dPul9wmNNsUBAJiatsSWnpaXpKGhsvpbad1LkmYU1hn63F8cAz/oAWPrfc0eAIAWUc8DAAANJLcAgNqiFQMAADSQ3AIAaonRkgEAQFX5BQgAAAAAAPQYLbcAgNqi5RYAADSQ3AIAaovcFgAANJDcAgBqyrTcAgCArUhuAQC1RXILAAAaGFAKAAAAAFB7tNwCAGqJWwEBAIAqWm4BALWVEtz2PsbenpfY/r7t223fZvsdefrutq+y/Yv8/255um3/ne1Vtm+x/fzO7xUAAHZMJLcAgNqy3fbHODZLendEHCLpKEln2j5E0nskfTciDpL03fxakl4u6aD8OEPSZzqxHwAAAMktAKDOutx0GxHrIuLG/PwJSXdIWiRpuaQL82IXSjoxP18u6YuRXCtpge19OrAnAADY4ZHcAgCwrQHbKyuPM0ZayPYBkp4n6TpJe0XEujzrfkl75eeLJK2uFFuTpwEAgDZjQCkAQE117D63gxGxdMwt2ztL+pqkd0bE49U4IiJsRycCAwAAoyO5BQDU0wQGgOrIZu2ZSontRRFxeZ78gO19ImJd7nb8YJ6+VtKSSvHFeRoAAGizria3ferT7P7ZLZcf/M364hhKti9Jm4Y2Fcew+tf3FJV/dMOjxTHsNme3ovLzZ+5SHMP8mfOL11GqtF7cjqaZiLK1DMWWovLumwp7AZg8q/u3AnLa4HmS7oiIj1VmfUPSqZLOzf9/vTL9rbYvkXSkpMcq3ZeBjttSeI6QpA1bni4q/1Ab6m8Pb3ioqPy8GfOKY9hz7t5F5XeaUV7v6S+sunP7NEx3tNwCAGqrBxW1oyWdIumntm/K085RSmovtX26pHskvTrP+5akV0haJekpSW/oarQAAOxASG4BAJigiPiBRu/0cdwIy4ekMzsaFAAAkERyCwCoMbrYAQCABpJbAEBtkdsCAICG4uTWdr+klZLWRsQJ5SEBADAB7titgICOou4EAJ3R14Z1vEPSHW1YDwAAwI6AuhMAdEBRcmt7saQ/lPT59oQDAMDENG4F1O4H0EnUnQCgc0q7JX9C0lmSen/DUgDADodkFDX0CVF3AoCOaLnl1vYJkh6MiBvGWe4M2yttr3z4oYdb3RwAANuh5RZ10krdaf36wS5FBwD1V9It+WhJr7L9K0mXSHqp7S81LxQRKyJiaUQs3X2P3Qs2BwBAhdNoye1+AB006brTwoUD3Y4RAGqr5eQ2Is6OiMURcYCkkyR9LyJe17bIAAAAphHqTgDQWdznFgBQW3QjBgAADW1JbiPiaklXt2NdAABMhMU1sqgv6k4A0H603AIAaovkFgAANJDcAgBqi9wWAAA0dDW57XOf5s/cpeXyj29cXRzD05ufKip/76/LY/i/P/p6UfkD99itOIbXHXp8UfkZLj90ZvXNKio/s7C8JA1Ngd93QkM93n70dPsAgNFFSBGtf09vHtpUHMMDT68rKv/1X36zOIZv/vzWovIHDexRHMOph72yqPyhux1eHMO8GTsXlbf4RRDTW+9r9gAAtMJ0SwYAAMNIbgEA9UVyCwAAMpJbAEBt0XILAAAaSG4BALVkSX3ktgAAIOvrdQAAAAAAAJSi5RYAUFOmWzIAANiK5BYAUE+W+khuAQBARnILAKgliwGlAADAMK65BQAAAADUHi23AIDa4hdaAADQQHILAKgtrrkFAAANJLcAgFrimlsAAFBFcgsAqCnTcgsAALbiciUAAAAAQO3RcgsAqCfTLRkAAAwjuQUA1JJF9yMAADCsq8ltKLRpaFPL5Wf2zSyO4ZENjxaV/+qd/14cw48u+I+i8vcc+6ziGP7bwccUlX9q89PFMew6a0FR+S2xpTiG0nX0taFq7cJ19PWVtVy14z0AvcI1t9gRhKLlsltic/H21z65tqj8JSuvK47h5stuKCp//eELi2P47T33Lyr/rF2eXRzD3P55ZSsw53xMb7TcAgBqi27JAACggZ9vAAAAAAC1R8stAKCWLLolAwCAYSS3AIDaIrUFAAANRd2SbS+wfZntO23fYfuF7QoMAICxWX1u/wPoJOpOANA5pS23n5T0rxHx323PklQ4hBsAABNj0y0ZtUTdCQA6pOXk1vaukn5X0mmSFBEbJW1sT1gAAADTC3UnAOiskm7JB0paL+kLtn9i+/O2d2peyPYZtlfaXvnw4MMFmwMAYFu22/4AOmjSdafBwcHuRwkANVWS3M6Q9HxJn4mI50l6UtJ7mheKiBURsTQilu4+sHvB5gAA2BbX3KJmJl13GhgY6HaMAFBbJcntGklrIuK6/PoypS9sAAA6zh16AB1E3QkAOqjl5DYi7pe02vbBedJxkm5vS1QAAADTDHUnAOis0tGS3ybpojza312S3lAeEgAAE0M3YtQQdScA6JCi5DYibpK0tD2hAAAwGVwji/qh7gQAnVPacgsAQE/YYnRjAACwFcktAKC2aLkFAAANXU1uI0Ibt2xoufys/tnFMWwcmgL3Su8vq4ztf8A+xSHMnzW/qPys/pnFMUyFFpeh2FJUvs8lA44n/e7vaXkXvgczvix2MLbPl3SCpAcj4rA87bmSPitpjqTNkt4SEdc7fdF9UtIrJD0l6bSIuLEngWMHVf4dPaew/jV/l+1u5Tt5+8wrKr7Hgl2KQ9h5VlkM7agzABgbf2UAgNrq0a2ALpC0rGnahyV9MCKeK+l9+bUkvVzSQflxhqTPTO4dAgCAiaJbMgCglqzedEuOiGtsH9A8WVKjaWhXSffl58slfTEiQtK1thfY3ici1nUnWgAAdhwktwCA2upQcjtge2Xl9YqIWDFOmXdK+o7tjyr1inpRnr5I0urKcmvyNJJbAADajOQWAFBT7tS1+4MRMdlbtbxZ0rsi4mu2Xy3pPEkva39oAABgNFxzCwBAuVMlXZ6ff1XSEfn5WklLKsstztMAAECbkdwCAGrJSiexdj9adJ+kY/Lzl0r6RX7+DUmvd3KUpMe43hYAgM6gWzIAoJ7cm1uK2b5Y0rFK1+aukfR+SX8m6ZO2Z0j6jdLIyJL0LaXbAK1SuhXQG7oeMAAAOwiSWwBAbfVotOTXjjLrd0ZYNiSd2dmIAACARHILAKipXt0KCAAATE1ccwsAAAAAqD1abgEAtdWLa24BAMDURHILAKgpq08ktwAAICG5BQDUFi23AACggeQWAFBLNgNKAQCAYQwoBQAAAACoPVpuAQC1Za65BQAAWVeTW9ua1T+75fJ9Q+UNzTPcX1T+lc86sjiGx960oaj8KYcdUxzD3vP2LirfX7gfJalvCnQciIiyFbShXj2jb2ZR+dLPojQ5ILlAL3HNLXYEJd+zpecYSdpv5/2Lyr/1iJcXx3DkksVF5RfN37M4hiP2XFpUfnb/3OIY7N7XnYCpjJZbAEAtWeaaWwAAsBU//wAAAAAAao+WWwBAbZnfaAEAQEZyCwCoLbolAwCAhqKfvG2/y/Zttm+1fbHtOe0KDACA8dhu+wPoJOpOANA5LSe3thdJerukpRFxmKR+SSe1KzAAAMbiDv0DOoW6EwB0VunFSjMkzbU9Q9I8SfeVhwQAADBtUXcCgA5pObmNiLWSPirpXknrJD0WEVc2L2f7DNsrba98ePDh1iMFAKDK6Zrbdj+ATmml7jQ4ONjtMAGgtkq6Je8mabmkAyXtK2kn269rXi4iVkTE0ohYuvvA7q1HCgBAE665RZ20UncaGBjodpgAUFsl3ZJfJunuiFgfEZskXS7pRe0JCwCAsVlSXwf+AR1E3QkAOqjkVkD3SjrK9jxJT0s6TtLKtkQFAMC4aGlF7VB3AoAOKrnm9jpJl0m6UdJP87pWtCkuAACAaYW6EwB0VknLrSLi/ZLe36ZYAACYFFpuUTfUnQCgc4qSWwAAeqmP+9ICAICM5BYAUEsWLbcAAGBYV5PboRjSE5seb7n8nnP2Lo5h0U6Li8rvMWeP4hg+fMzhReXdhpaKPWaX3Vpgc2wujqHPZaOSzvDM4hhm9JX9CbgNI6tuKdyXm4c2FcdQYkhDPd0+dmD5PrfAdGaX/Ygzow1VvV1nld3K8Zh9ji2OYenCpUXlZ/XNKo5hp5nzi8rP7ptdHENp3QmY7vgLAQAAAADUHt2SAQA15bb0ZAEAANMDyS0AoJYsuugBAIBhJLcAgNpiQCkAANDAT94AAAAAgNqj5RYAUFtccwsAABpIbgEANWVuBQQAALYiuQUA1JJFyy0AABhGcgsAqC1abgEAQAMDSgEAAAAAao+WWwBAPVky97kFAAAZyS0AoKbMNbcAAGArklsAQC1ZXHMLAACGkdwCAGrLJLcAACDjYiUAAAAAQO3RcgsAqK0+rrkFAABZV5PbGZ6hPWYvbLn8zL5ZxTHsPHN+T8u3w9ObnypeR2lXvlmeXRxDqanQHbEdEfS57M8wNFRYvgwD+qBXrKnxPQBMZX1tGFG8tP41Y2Z5dXPnmbsUrqH8u6J0X7bjswAwNlpuAQA1ZW4FBAAAtiK5BQDUFt2SAQBAAz95AwAAAABqj5ZbAEAt2VxzCwAAho3bcmv7fNsP2r61Mm1321fZ/kX+f7fOhgkAwPbcgX/jbnOE82Ke/jbbd9q+zfaHK9PPtr3K9s9sH9+B3YAphroTAPTGRLolXyBpWdO090j6bkQcJOm7+TUAAF1k2e1/TMAFajov2v49ScslPSciDpX00Tz9EEknSTo0l/m07f427gRMTReIuhMAdN24yW1EXCPp4abJyyVdmJ9fKOnE9oYFAMDUNMp58c2Szo2IDXmZB/P05ZIuiYgNEXG3pFWSjuhasOgJ6k4A0ButDii1V0Ssy8/vl7TXaAvaPsP2StsrHxp8qMXNAQCwvT657Q9JA43zVn6cMYFQni3pJbavs/3vtl+Qpy+StLqy3Jo8DTuelupO69cPdic6AJgGigeUioiwHWPMXyFphSQ99/nPGXU5AAAmw1Kn7nM7GBFLJ1lmhqTdJR0l6QWSLrX9jLZHhmlhMnWn31n6fOpOADBBrdYKHrC9jyTl/x8cZ3kAANqsE8NJtTz68hpJl0dyvaQhSQOS1kpaUllucZ6GHQ91JwDosFaT229IOjU/P1XS19sTDgAAE9ejAaVG8k+Sfi/H9GxJsyQNKp0vT7I92/aBkg6SdH35O0cNUXcCgA4bt1uy7YslHat0DdIaSe+XdK5Sl6vTJd0j6dWdDBIAgKlilPPi+ZLOz7d+2Sjp1IgISbfZvlTS7ZI2SzozIrb0JnJ0C3UnAOiNcZPbiHjtKLOOa3MsAABMSkE34paNcV583SjLf0jShzoXEaYa6k4A0BvFA0oBANArBd2IAQDANENyCwCoJUuNW/cAAAB0Obm1NaOv9U1uGtrYxmBaM7t/TvE6hmKoqPwG/6Y4hnQpWOv6+8pvv9HvssNvqA2XrZXuB7dlP/SXraCw/BYu/0NdlQ0ABWCC+kpvudWZW3YBwHb4tgEAAAAA1B7dkgEAtWV+owUAABnJLQCgtuiWDAAAGkhuAQC1ZPXmVkAAAGBqIrkFANSU1UfLLQAAyLhYCQAAAABQe7TcAgBqi27JAACggeQWAFBbDCgFAAAaSG4BALWUBpTi6hoAAJBQKwAAAAAA1B4ttwCAmjLdkgEAwFYktwCA2upjQCkAAJCR3AIA6skMKAUAAIaR3AIAaikNKEVyCwAAEgaUAgAAAADUHi23AIDaolsyAABo6Gpya0l9BY3FG2NjcQx9rn9j9Zz+ucXrmNU/u6j8DM8sjqHUlthcvI5QlJWPoeIYbH5jAlpj7nMLAAC2olYNAKitPlpuAQBARnILAKglBpQCAABV9OcCAAAAANQeLbcAgNpiQCkAANAwbsut7fNtP2j71sq0j9i+0/Yttq+wvaCjUQIAsB135B9QiroTAPTGRLolXyBpWdO0qyQdFhGHS/q5pLPbHBcAAOOy3fYH0AYXiLoTAHTduMltRFwj6eGmaVdGbL0Py7WSFncgNgAARtW4vVy7/wGlqDsBQG+04yz+RknfHm2m7TNsr7S9cnD9Q23YHAAAQK1NuO60fv1gF8MCgHorSm5tv1fSZkkXjbZMRKyIiKURsXRg4R4lmwMAYJjploz6mWzdaeHCge4FBwA11/JoybZPk3SCpOMiItoWEQAAE8IAUKgX6k4A0FktJbe2l0k6S9IxEfFUe0MCAGBiaGlFXVB3AoDOm8itgC6W9GNJB9teY/t0SZ+SNF/SVbZvsv3ZDscJAMB2uBUQpiLqTgDQG+O23EbEa0eYfF4HYgEAAKg96k4A0BstX3MLAEAvWaKlFQAAbEVyCwCoL665BQAAWVeT2z73ac6Mea2vYPP4i4wfQ39R+aHYUhzDkIaKys+bsXNxDDP7ZhWVD5UP8rh5aFPPYyj+PD2zOIZSpcdTRFl5oHe4RhYAAAwrus8tAAAAAABTAd2SAQC1xa2AAABAA8ktAKC26JYMAAAaSG4BALVFcgsAABpIbgEAtWTRLRkAAAxjQCkAAAAAQO3RcgsAqCluBQQAAIaR3AIAaovkFgAANJDcAgDqyVxzCwAAhpHcAgBqi5ZbAADQwIBSAABMgu3zbT9o+9YR5r3bdtgeyK9t++9sr7J9i+3ndz9iAAB2DCS3AIBaatwKqN2PCbhA0rLt4rGXSPoDSfdWJr9c0kH5cYakz5S+bwAAMDKSWwBATbkj/8YTEddIeniEWR+XdJakqExbLumLkVwraYHtfdrx7gEAwLa45hYAUFsduuZ2wPbKyusVEbFizDjs5ZLWRsTNTa2/iyStrrxek6eta1ewAAAgIbkFANRWh0ZLHoyIpZOIYZ6kc5S6JAMAgB4huQUAoMwzJR0oqdFqu1jSjbaPkLRW0pLKsovzNAAA0GZdTW4jpKEYarn8hqHfFMcwp39eUfkhtR5/w6ahjUXlZ/bN6nkMW2JLcQx9LrvkOyLGX6gGSo+pLUObe7r96fEpoK6mwq2AIuKnkvZsvLb9K0lLI2LQ9jckvdX2JZKOlPRYRNAlGQCADmBAKQBALVmdGVJq3O3aF0v6saSDba+xffoYi39L0l2SVkn6nKS3tOGtAwCAEdAtGQBQUxO+dU9bRcRrx5l/QOV5SDqz0zEBAABabgEAAAAA08C4ya3t820/aPvWEea923bYHuhMeAAAjMUdeABlqDsBQG9MpOX2AknLmifaXqJ024N72xwTAADjc7oVULsfQBtcIOpOANB14ya3EXGNpIdHmPVxSWeJwVIBAD3SiwGlgPFQdwKA3mhpQCnbyyWtjYib+ZUbANArJKOoC+pOANB5k05ubc+TdI5St5qJLH+GpDMkacl+S8ZZGgAAYHqh7gQA3dHKaMnPlHSgpJvzjeoXS7rR9t4jLRwRKyJiaUQsHRhg7AQAQHtY7b/elhY1dEjLdaeFC6k7AcBETbrlNiJ+KmnPxuv8Jb00IgbbGBcAAOOiWzLqgLoTAHTHRG4FdLGkH0s62PYa26d3PiwAAMbHgFKYiqg7AUBvjNtyGxGvHWf+AW2LBgCASaAbMaYi6k4A0ButXHMLAAAAAMCU0tKtgAAAmAroRgwAABpIbgEAtdQYLRkAAEDqcnL7kxt/MrjTzPn3jLHIgKRejxxIDFMjhl5vnxgmHsP+3QoEaEbLLaa7G2/4yeDcGTtRd5r6MfR6+8RQrxioO3VIV5PbiFg41nzbKyNiabfiIYapG0Ovt08MUysGYHQkt5jeqDvVI4Zeb58YiAEJA0oBAAAAAGqPa24BALVFuy0AAGiYasntil4HIGJo6HUMvd6+RAwNUyEGYEQMKAVMie9oYuj99iViaCCGHZgjotcxAAAwac95/uHxnR9+q+3r3Wfekhu4VgoAgPrhmlsAAAAAQO1NtW7JAABMGJ2SAQBAw5RpubW9zPbPbK+y/Z4ebH+J7e/bvt32bbbf0e0Ychz9tn9i+196tP0Fti+zfaftO2y/sAcxvCt/Brfavtj2nC5s83zbD9q+tTJtd9tX2f5F/n+3HsTwkfxZ3GL7CtsLuh1DZd67bYftgU7GAEycO/QApj7qTdvEQt2JuhN1J0iaIsmt7X5J/yDp5ZIOkfRa24d0OYzNkt4dEYdIOkrSmT2IQZLeIemOHmy34ZOS/jUi/ouk53Q7FtuLJL1d0tKIOExSv6STurDpCyQta5r2HknfjYiDJH03v+52DFdJOiwiDpf0c0ln9yAG2V4i6Q8k3dvh7QMTZqcBpdr9AKY66k3boe5E3amKutMObEokt5KOkLQqIu6KiI2SLpG0vJsBRMS6iLgxP39C6YtpUTdjsL1Y0h9K+nw3t1vZ/q6SflfSeZIUERsj4tEehDJD0lzbMyTNk3RfpzcYEddIerhp8nJJF+bnF0o6sdsxRMSVEbE5v7xW0uJux5B9XNJZkhiBDgB6j3pTRt1pK+pOw9OoO+3Apkpyu0jS6srrNerBF2SD7QMkPU/SdV3e9CeU/giGurzdhgMlrZf0hdy95/O2d+pmABGxVtJHlX7lWifpsYi4spsxVOwVEevy8/sl7dWjOBreKOnb3d6o7eWS1kbEzd3eNgBgRNSbhn1C1J2oO42OutMOZqokt1OG7Z0lfU3SOyPi8S5u9wRJD0bEDd3a5ghmSHq+pM9ExPMkPanOdyfZRr42Y7nSyWJfSTvZfl03YxhJpHtm9eyXN9vvVeoCdlGXtztP0jmS3tfN7QIT5Q78AzBxvao35W1TdxJ1p9FQd9oxTZXkdq2kJZXXi/O0rrI9U+kL+qKIuLzLmz9a0qts/0qpe9FLbX+pyzGskbQmIhq/vF6m9IXdTS+TdHdErI+ITZIul/SiLsfQ8IDtfSQp//9gL4KwfZqkEySdHN2/MfUzlU6WN+djc7GkG23v3eU4gBGR3GIHRb0poe6UUHdqQt1pxzVVktv/lHSQ7QNtz1K6CP4b3QzAaRSR8yTdEREf6+a2JSkizo6IxRFxgNL7/15EdPVXt4i4X9Jq2wfnScdJur2bMSh1qTnK9rz8mRyn3g0S8Q1Jp+bnp0r6ercDsL1MqbvVqyLiqW5vPyJ+GhF7RsQB+dhcI+n5+VgBAPTGDl9vkqg7VVB3qqDutGObEsltvuj7rZK+o/THeGlE3NblMI6WdIrSr3435ccruhzDVPA2SRfZvkXScyX9bTc3nn/5vEzSjZJ+qnSMruj0dm1fLOnHkg62vcb26ZLOlfT7tn+h9KvouT2I4VOS5ku6Kh+Tn+1BDMCUxWjJ2BFRb5pyqDtRd6LuNEW4+y31AACUe+7vPCe++6P2j5kyMGfvGyJiadtXDAAAOmpKtNwCAAAAAFBiRq8DAACgNQwABQAAhpHcAgBqjOQWAAAkJLcAgFqySG0BAMAwrrkFAAAAANQeLbcAgNri1j0AAKCB5BYAUGMktwAAICG5BQDUFqktAABo4JpbAAAAAEDt0XILAKgx2m4BAEBCcgsAqCkzoBQAANiKbskAAAAAgNqj5RYAUEuWZLolAwCAjJZbAAAAAEDt0XILAKgxWm4BAEBCcgsAqC1SWwAA0EC3ZABAbdlu+2MC2zzf9oO2b61M+4jtO23fYvsK2wsq8862vcr2z2wf35k9AQAASG4BADXlDj3GdYGkZU3TrpJ0WEQcLunnks6WJNuHSDpJ0qG5zKdt97fwZgEAwDhIbgEAmISIuEbSw03TroyIzfnltZIW5+fLJV0SERsi4m5JqyQd0bVgAQDYgZDcAgBqq0PttgO2V1YeZ0wyrDdK+nZ+vkjS6sq8NXkaAABoMwaUAgDUWEeGlBqMiKWtFLT9XkmbJV3U3pAAAMB4SG4BAPVkTWgAqG6xfZqkEyQdFxGRJ6+VtKSy2OI8DQAAtBndkgEAKGR7maSzJL0qIp6qzPqGpJNsz7Z9oKSDJF3fixgBAJjuaLkFAGASbF8s6Vila3PXSHq/0ujIsyVdlVuTr42IN0XEbbYvlXS7UnflMyNiS28iBwBgevNwzykAAOrD9r9KGujAqgcjovlWPwAAYIojuQUAAAAA1B7X3AIAAAAAao/kFgAAAABQeyS3AAAAAIDaI7kFAAAAANQeyS0AAAAAoPZIbgEAAAAAtff/AF2WOB1X8PuXAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "Err_G5=error(xdata5, poptG5[0], poptG5[1],poptG5[2], poptG5[3], poptG5[4], recorteG5.ravel(), inc=1)\n", + "poptG5E, pcovG5E = curve_fit(gauss2d, xdata5, recorteG5.ravel(), p0=[2,2,2,1,1],sigma=Err_G5)\n", + "estrellaG5E=gauss2d(xdata5, poptG5E[0], poptG5E[1],poptG5E[2], poptG5E[3], poptG5E[4])\n", + "FWHMG5E=FWHMG_I.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptG5E[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 5 fotografÃa (Banda Verde)\")\n", + "plt.imshow(recorteG5, plt.get_cmap('Greens'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 5 a partir de la gaussiana con incertidumbre (Banda Verde)\")\n", + "plt.imshow(estrellaG5E.reshape(15, 15), plt.get_cmap('Greens'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 6 con incertidumbre (Banda Verde)" + ] + }, + { + "cell_type": "code", + "execution_count": 845, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7EAAAFSCAYAAAAkbFhcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA0uklEQVR4nO3debxdVX338e/33kyEhDGRQhIIhagFB6ARUJxxAETDy7YWWkCRSm1BwYeWCh1AK20faxV9VGoUVBRBimipRQHnOoCGWYjUMCYhSMIYBglJfs8fa51k53CHc5Oz7tn73s87r/PKOXvvs/Zv77PvOeu319prOyIEAAAAAEAT9PU6AAAAAAAAOkUSCwAAAABoDJJYAAAAAEBjkMQCAAAAABqDJBYAAAAA0BgksQAAAACAxpjQ6wAAABiKZ0wJrVnf3UJXP3NlRBzS3UIBAMBoIIkFANTbmvXSAc/pbpnfWT6juwUCAIDRQhILAKg/u9cRAACAmiCJBQDUm8UIDgAAYAOSWABA/dESCwAAMpJYAED9kcMCAICMDloAAAAAgMagJRYAUHOmOzEAANiAJBYAUG8M7AQAACpIYgEA9UdLLAAAyEhiAQD1Rw4LAAAyOmgBAAAAABqDllgAQL1ZUh9NsQAAICGJBQDUHzksAADISGIBAPXHwE4AACAjiQUA1B85LAAAyBjYCQAAAADQGLTEAgDqjYGdAABABUksAKD+yGEBAEBGEgsAqDkzsBMAANiAa2IHYXuu7bA9Ib/+ge0/G4X12vbnbT9s++el17elbD/P9o22V9t+b572UdvnbGZ5/2z7lG7GOIJ1f8H2h3qx7qG0H4vDLPtm218djbgAoA569XtdN7ZfYfv2LSxjs/bdSH6n6s72rbZf3es4SrD9Ldtvr0Ecu9p+3Hb/IPPPsv3lQusu/v1g+ye29y25jiHWfbft1/Vi3UOx/Q7bP+5w2X+z/RfDLVf7JDZ/GE/lg731+GQH7wvbe45GjJ2wfbLtu2w/YXux7ecOsujLJb1e0uyI2L+Dcnu9nadJ+n5ETI+IT9h+haSXSPrrkRZke6akYyV9Jr9+te31lc99ue0PdDX6LrD9bdsfHGD6Atv3j+aPekT8l6S9bb9otNYJFNe6JrabD3TdOPy97qn2/RYR/xMRz+tlTGNBROwdET/odRwlRMShEfHF0V5ve2IVEfdGxLSIWDfasZRm+82SVkfEDfn1WbafqXwnLrb9Bz0OcxO2p9h+xPZrB5j3MduXjnJIH5F0hu1JQy1U+yQ2e3M+2FuPk7a0wNFMLPIZn+MlvUnSNEmHS1o1yOK7Sbo7Ip4YpfAG1eE+2k3SrZXXu0v644h4ZjNW+Q5JV0TEU5Vp97U+d6UE/3jbR2xG2SV9UdLR9rP6Ox4j6cKIWNtpQV06Li+SdEIXygHqw11+oJTx9HvdE5uzP8ZCCymap+nH3WbG/25JX2qb9tVKXfYUSV+2vdOWxtctEfFbSV9VakjaILeUH6VUz+3Yln7uEbFC0q8kvWWo5ZqSxA7I9p62f2j7UdurWt0obf8oL3JTPuvxx7lVb5ntv7F9v6TP2+6z/X7bd9h+0PYltnfoYL172P5efs8q2xfa3m6QZfsknSnpfRFxWyR3RMRDAyx7vKTPSXppjvsDefq7bC+x/ZDty23vMth2DrV8nvcG27fnffbpvP/+LM97h1MXiI/ZflDSWUNtq+3vSXqNpE/m9T9X0msl/WWev73tb9pe6dQ9+pu2Zw+xaw+V9MPBZkbEXZJ+KmmvyvZ83PZS24/Zvs6pJbg176z8mV7g1N35VtvzK/P3tX19nvdVSVMq80YS+zck7Sipuu7tlSo/Fwx1nHljF6zjbd8r6Xu2+21/JO/vO5UqU6qUva3t82yvcGqd/pA37ZLzg/b3AI1nd/eBUTXWfq/z8vvb/plTC8YK25/0IC0Hle/6E2zfl5f/q07Lyu890favJf16qP1Wec/deR/eLOkJD1CxtP1627/Kn8sn1XaKx/Y7nVqOHrZ9pe3dBtnV7eUel9+32vadtv98iGX7nboPrnJqAT/Jm3YPH7QsD9BF0ZUWatuH2b4tv3d5a5/bnpF/1x9xqiv9T/78N2k17PBzebftX+dlPmWnL5iRHHt5+b1tX53j+Y3tM/L0ybbPycfNffn55Dyv9bdyqu0HcozHDbGODV1pW/vOqb7xcN73h1aW3cHp8rb78vxvVOYd7nQp2SO2f+pK768BjruLJO0q6b/ysXqan30JwO5O3w+rbV8taUalvE2O6wE+o7Ns/4ftL+f332L7ubZPz/tkqe03tO2KPWz/3Knu+J8eok6Wp3f0d5CPjddq6LrslZJWS9ojv2d7D1HfzJ/ZPzrVz1fbvsp2df8cY/uefJz9bVs8HX9HKSWqf2B7amXaG5VyxW95iLqnB84fdnTKQR5zujxyj7bYnl853m+3/ba2eH6gYeqyjU5iJf2jpKskbS9ptqT/J0kR8co8/8X5zEfrGsHfkbSDUuvhCZLeI+kISa+StIukhyV9qoP1WtI/5/f8nqQ5ks4aZNnZ+fGC/Id0l+0POH9ZVkXEeUpncH6W4z7TqWn/nyW9TdLOku6RdPFg2znU8vmgv1TS6UpJ1+2SXtYWxgGS7pS0k6Szh9rWiHitpP+RdFJe//+2ldUn6fNK+3tXSU9JGqpr2QtzTAOyPU/SQZKuqUz+haR9lD7Xr0j6D9tTKvPfkrd/O0mXt9af/4i/oXS2bAdJ/yGp2r2j49hzy/El2vQM1tsk/SoiblJnx9mrlPbvGyW9SykB3lfSfEl/2LbsFyStlbRnXuYNkqrXdyyWNNf2NgPFCzQSLbFNN6Z+r7N1kt6nVOF+qaSDlU/iDuE1kuYpfW//jTd2seykrCOUfqP3GmK/tTtKqSK4XXuvoFwnuEzS3+X13qH0G9uav0DSGZLeKmmm0u/9RcNsX8sDSr9j20g6TtLHbO83yLLvUjqJvY+k/fJ2bm5Z7c6T9OcRMV3SC5STEkmnSlqmtF07KW1nDPD+Tj6Xw5Uuo3qR0m//G/P0jo8929MlfUfSt/Pye0r6bp79t5IOVNo/L5a0v9Jn1vI7kraVNEupF8GnnE6kd+IApXrXDEkflnSeveEs35ckTZW0t6TnSPpYjnVfSedL+nOluuRnJF3unFhn1ePuKEn3amMvjQ8PEMdXJF2X4/hHSSO9bvfNOd7tJd0g6UqletwsSR/MMVYdK+mdSvXktZI+0TZ/Q51shH8H8yStj4hlA8108iZJkyTdlid3Ut/8E6Vj/zn5va2TMXtJOlep598uSp9HtcGl4++oiPippBV5O1uOkfSV/N3xBQ1d92zPHz4l6bdK+/id+dHaD1tLulrpc3+OpCMlfTpvT8tipeN9cBFR64ekuyU9LumRyuNded4FkhYqXT/a/r6QtGfl9aslrZE0pTJtsaSDK693lvSM0qjNc3MZE/K8H0j6s0FiPELSDYPMe1ku57+VEqm5kv63tQ0DLP8OST+uvD5P0ocrr6flGOcOsp2DLq/0R/uzyjxLWtrarrzue4f5PDbZ1vb9onSQf2iQ9+4j6eEhyn5G0vPbPrP1+TN/LG/rZZImDVHGw0o/6lL6sfhOZd5ekp7Kz18p6T5Jrsz/6RbE/vIc55T8+idKZ/M7Pc5+tzL/e5LeXXn9htaxqPTl8LSkrSrzj1K6Lrn1emJeftfSf588eIzGQztMDh09r7sPaVGvt2usPTTOfq8HeP8pkr4+yLxWjNXfuA9LOq+TsvJ7X9vBflvW9nm8c4h4j5V0TeW1lRK7Vp3gW5KOr8zvk/SkpN2G2L4Jg6zrG5JOHmTe95QSzdbr13ValtrqTO37RSl5+nNJ27Qt80FJ/1ndf2377XUj+FxeXnl9iaT3b8axd9QQ8+6QdFjl9RuVLjtrfeZPVfeVUtJ/4CBl/UCb1vmWVOZNzdvzO0p/X+slbT9AGedK+se2abdLetVgx137Pq0eL0qJ21pJW1fmf0XSlwc6rtvLU6rrXV2Z92al76H+/Hp6Xtd2lX3wL5Xl91L6vunXwHWykfwdHCTp/rZpZ+XyH5H0hFJiedoQf5f7qFLfzPH+XeX1X0r6dn7+D5IurszbOq+ro+N3gPl/J+mq/HybvJ37api6p9ryh7wv2+v0/6T8tyrpjyX9T9u6PyPpzMrr10u6c7BYI6IxLbFHRMR2lcdn8/TTlL50f+7UVfSdQ5QhSSsj9ftu2U3S13Mz+yNKP5LrlD6sQdneyfbFuTn9MUlfVqXrQ5vW9Z0fjohHIuJupQ/qsGFibdlFqTVVkhQRj0t6UOns0kiX30UpaW3NC6UfrKql1Rcj3NZN2J5q+zO5m8Njkn4kaTsPMhqdUgI6vW3affkz30apUvGUKn3zbf9V7uLxaP4Mt22L7/7K8yclTXHqvrKLpOV5H7Rs2G8jjT0ifqx03dQRtvdQOlP6lTy7k+Osut93aXt9T+X5bkpJ6opKeZ9ROpPV0tqHjwwUK9A4FgM7Nce4+b126rL4TacB/B5TqqQN9/vY/t3eujyok7KWauSGes9AdYLq8rtJ+nhlnz+k9BkOVv/YwPahtq/JXQUfUdqHg+2b9t+89nrISMpq9wd5+Xucuqu+NE//V0lLJF3l1EX5/YNsRyefS3s9Y1p+70iOvTlKyepANqnXqXLcZA/Gpq3sG2LowIbYI+LJ/HRajuehiHh4gPfsJunU1nGRP5M5bTGN5FjdRSlpq44Fc89gCw/iN5XnT0laFRsHjWr9XVf3Sfvf4URt+tls7t/BQPVYSbokfx9urdSt9ljnbvEd1jcHPMb07L/hJ5Tq/Mplj/Q76kuSXuN0GeIfSroj0gBVndQ9q/tsptIJiqHqsge0HUN/qnQCpWW6hqnHNiWJHVBE3B8R74qIXZTOtH3aQ49wGG2vl0o6tO0Hd0pELB9m1f+Uy3phTq6O1uAd1G5XOitSXXd7HEO5T+nDlrShCX5HSYPFONTyK1TpZpC7jLRf59ke20i2td2pkp4n6YD83lb3p8Hef7OkQUeBjIhHlRLDN+f4X6FUMXqb0tnC7SQ92mF8KyTNqnSbkdLZwM2NXUotDccq7aMrI6L1pdrJcVbd7yuUfhAGimup0tmwGZWytomIvSvL/J7SWdrHhogVaBa6EzfaGP29Pldp8JF5uewzhii7pf27/b4RlDWSukMn79nktyb/HlbjW6rUQlrd51tF6nY4qNyt9GtKI4zulH+br9Dg+2aTuklbTMOV9YRSC2Jr+WolWBHxi4hYoFTZ/oZSS6kiYnVEnBoRv6t02dH/sX3wALFtzmfcMpJjb6mk3x1k3ib1Om163JSyVNIOHvga3qWSzm47LqZGRLWLbftxN9xxuH2ur7ZU6z3tn3G/UpK0Jdr/Dp/RpgO4VeMdyd/BkhSiBz3Rk0+OfUu5LqvNq2+2tP8NT1Wq87eM6PiNiHuUuksfrdSVuNVo1Ends7rPViq1rg9Vl/1h2z6dFhHV2+r8nqSbhtj2Ziextv/IGy9+flhpB67Pr3+jwb8QWv5d0tnOF2jbnunU930405W6KjyaD9RBbyeTz2x9VdJptqfneE+Q9M0O1iOlfvfH2d4nf5n/k6Rr8x+B9OztHGr5/5b0QttH5NbIE7XpWY8t2tZB3vuUpEecLpo/c5jlr1C6DmFAtqcp9ZtvjYY8XemPZKWkCbb/Qan7Qyd+lt/7XtsTbb9VqfV0c2OXUhL7OqXre75YmT7S4+ySHNdsp+taNpwhjjRi21WS/s32Nk6Dnexhu7rfXqX0BQmMHQzs1Ghj9Pd6utKlLo/bfr6kYe9rKOnvc8vL3krXuLWuZd2csjrZb0P5b6Vbsr011wneq03rBP8u6fQcq5wGdvmjDsqdJGmyckXWabCg9oF1qi6RdLLtWTlp+psRlHVT3oZ9nMbDOKs1w/Yk239qe9tId0x4TPmYcxqYaM+cuD+q1Kq/Xs+2OZ9L9b2d1p++KWln26c4DeQ03fYBed5Fkv4uH/MzlLqQFrmHakuua3xL6WTT9rme1EquPivp3bYPcLK17Tc5Xdc7mEGP1Zw4LZL0gfyZvVwbEzwpdemfktcxUanL6+QBihqJo23vlZO+D0q6NAa/3U/HfwcRsUbp2uah6rKzJR2iTeuyI61vtlwq6XDbL3ca6+WD2jS325zj94uSTlLqGn1h3q5O6p4b5H15mdIAT1OdrnV9e2WRb0p6rtOgVBPz4yW2f6+yzLB12aYksa0RzVqPr+fpL5F0re3HlQbtOTki7szzzpL0Radm6vYRr1o+nt93le3VSgMGHTDIslUfUBp84FGlH4HLhln+JKUvsvuUkqevKF0UP6yI+I6kv1c6E7lCqRvCkZVFzlJlO4daPiJWSfojpetwHlS6DmCR0tmVbm1r1TmStlI6u3WN0oAFQ7lA0mG2t6pM26X1uSt1RdhBqcuBlC7c/7bSF9w9SheQd9SFJX/RvFWpH/9DSv3zq9s20thbZ9d+qnRNwuWVWSM9zj6rtG03Sbpez97nx2rjoAAPK32J7VyZf5SePYgB0Gx9XX6glPH0e/1XSgOurFb63h5scKWqHyq11nxX0kci4qotKOssDb/fBlWpE/yLUp1gntJ4Dq35X5f0fyVd7NQV8ZdKAzANV+5qpYT4EqXfqD/Rpr+J7T6rVEG+WWlQniuUTjKvG66sSANKflApcfi1pE1GKlZqTbo7x/9ubaw/zMvveVzpc/50RHx/gNg253Np6fjYy9v5eqXk7f68La/Jsz+kVFe7WdItSvWCD40gjs11jFIL5a+UrrM9Jce6SOlk/SeVPpMlSnWpofyzUiL+iCujclf8idLf80NKSdwFrRm5F95fKt29Y7lSy+yAAyeNwJeUxnC5X+nOFO8dbMHN+Dv4jNK+q/rjSl32F0p/Zx/I887RCOubldhuVWqQ+opSnf9hbbpvNuf4/ZpSXfu7OXltGa7u2e4kpW7P9yvt689X4l6tdDLqSKXv2vuV9nFr1O2dlXKUbwwVqGOTSwIxnjiNuLhM0p8O8uU96mz/k6QHIuKcXsfSRE432T4mIkZcoQHqyjOmhBbM7W6h599+XUTMH35BYMvZnivpLkkTYwT3Dh+Pcmvrv0fEbsMuDNSQ7Z8o3bnjhl7H0kS2/03petxPD7Vco29CjJGz/UZJ1yp1Xfhrpb7x1wz5plEUEWf0OoYmi4j/kvRfvY4D6Cq6AANjVu599Rql1tidlFrivj7km4Aai4iDhl8Kg4mIUztZjk5V489LlUbAW6XUbeWISPc5BYD6YmAnYKyyUtfKh5W6Ey9Wuu4TAAZFS+w4ExFnafAbvQNAPdESiwbLYyZwEA8gD6j1kl7HAaBZaIkFANTfKA/sZHuO7e/bvs3pvqYnt80/1Xbk0UKVR+n8hO0ltm+2vV8XthoAAAyAllgAAJ5traRTI+L6fOuI62xfHRG32Z6jNLLivZXlD1Ua8XSe0iib56qz0XMBAMAIFUlid5yxQ8zZdc7wC24BF+5atj4Gul1Y89ZRej/1jUJj/voBb93WbeVH6XbhfdXvsuek7r3nHq1a9SDd4TD6rFHvTpxvLbAiP19te7GkWUq3F/iYpNMk/WflLQskXRBpyP9rbG9ne+e2WxQAA5oxY0bsNnfXXocBoMuuv+6GVRExs9dxjEVFar1zdp2jq34y5P1pt9ik/i29z/HQnl5XfqyjJ555vPg6Su+nSX1ly5dG57NYN+g9rrtnqwlTi5Y/beK2Rct/xQGD3rsbKK+Hp0/y7VH2VbrP6QJJyyPipraThLO06X2ql+VpJLEY1m5zd9VPrm2/xSmApttqwtb39DqGsYruxACA+uvrehY7w/aiyuuFEbGwfSHb05Ru/n6KUhfjM5S6EgMAgB4hiQUAjEerImL+UAvYnqiUwF4YEZfZfqGk3SW1WmFnS7re9v6SlkuqXkczO08DAABdRhILAKi/Ub4m1ilLPU/S4oj4qCRFxC2SnlNZ5m5J8yNile3LJZ1k+2KlAZ0e5XpYAADKIIkFANSb1YtrYg+SdIykW2zfmKedERFXDLL8FZIOk7RE0pOSjiseIQAA4xRJLACg5tz1kdaHG488In6sYVLniJhbeR6STtzyyAAAwHBIYgEAtTfaSSwAAKiv8jf5BAAAAACgSzpKYm0fYvt220tsv790UAAAVNndfQClUXcCgHKG7U5su1/SpyS9Xunm7b+wfXlE3FY6OAAALKmvy5nnuq6WBmyKuhMAlNVJS+z+kpZExJ0RsUbSxZIWlA0LAIDM6ZrYbj6Awqg7AUBBnSSxsyQtrbxelqdtwvYJthfZXvTgqge7FR8AACSxaJph607VetPKlatGNTgAaLquDewUEQsjYn5EzN9xxo7dKhYAAGDMqdabZs6c0etwAKBROrnFznJJcyqvZ+dpAACMAlpP0TjUnQCgoE5aYn8haZ7t3W1PknSkpMvLhgUAwEaMToyGoe4EAAUN2xIbEWttnyTpSkn9ks6PiFuLRwYAgNLoxLTEokmoOwFAWZ10J1ZEXCHpisKxAADwbCaJRfNQdwKAcro2sBMAAAAAAKV11BILAEAvWbTEAgCAhCQWAFB7dCcGAAAtJLEAgNojhwUAAC1cEwsAAAAAaAxaYgEAtWZZfTTFAgCArEwSa6u/r2x+vHrNI0XLX6/1RcuXpD6XbwiPKLsdo7GfJvZPLr6OCYX3kyStL7yOx9Y8XLT8dbG2aPnAULgmFkBEFF/H+lhXtPy1o/BbOhoD4ZWu50tSv/uLrwPNRUssAKDeuE8sAACoIIkFANQeOSwAAGhhYCcAAAAAQGPQEgsAqDWL7sQAAGAjklgAQO2RxAIAgBaSWABAzZkkFgAAbEASCwCoN0YnBgAAFQzsBAAAAABoDFpiAQC1R0MsAABoIYkFANQaoxMDAIAqklgAQO2RxAIAgBaSWABA7fWRxAIAgIyBnQAAAAAAjUFLLACg3szATgAAYCOSWABArVnmmlgAALAB3YkBALXnLv8bdn32HNvft32b7Vttn5yn/6vtX9m+2fbXbW9Xec/ptpfYvt32G8vtDQAAxjeSWAAAnm2tpFMjYi9JB0o60fZekq6W9IKIeJGk/5V0uiTleUdK2lvSIZI+bbu/J5EDADDGkcQCAGrPdlcfw4mIFRFxfX6+WtJiSbMi4qqIWJsXu0bS7Px8gaSLI+LpiLhL0hJJ+3d9RwAAAK6JBQDUXy+vibU9V9K+kq5tm/VOSV/Nz2cpJbUty/I0AADQZSSxAIDaK5DDzrC9qPJ6YUQsfPZ6PU3S1ySdEhGPVab/rVKX4wu7HhkAABgSSSwAoNbsIi2xqyJi/tDr9USlBPbCiLisMv0dkg6XdHBERJ68XNKcyttn52kAAKDLuCYWAIA2TlnzeZIWR8RHK9MPkXSapLdExJOVt1wu6Ujbk23vLmmepJ+PZswAAIwXtMQCAGquJ/eJPUjSMZJusX1jnnaGpE9Imizp6hzTNRHx7oi41fYlkm5T6mZ8YkSsG+2gAQAYDxqbxE7p36po+WvWrylaviSFY/iFttCyJ+4tWv61919XtHxJ6huFyuvLdj6g+Dp2mTp7+IW2wPpYX7R8oJdGO4mNiB9LA95Q9ooh3nO2pLOLBQWMc+s2DAxeziNrHixa/h2PLSlaviRN7p9cfB27T9+j+DqmTdimaPn9fY1Ng6AGJ7EAgPGjh4MTAwCAmiGJBQDUXi9vsQMAAOqFgZ0AAAAAAI1BSywAoNYK3WIHAAA0FEksAKD2SGIBAEALSSwAoPbIYQEAQAtJLACg5npyn1gAAFBTDOwEAAAAAGgMWmIBALVHSywAAGgZtiXW9hzb37d9m+1bbZ88GoEBACBtHJ24mw+gJOpOAFBWJy2xayWdGhHX254u6TrbV0fEbYVjAwBAEgM7oXGoOwFAQcMmsRGxQtKK/Hy17cWSZkniixgAMCpoPUWTUHcCgLJGNLCT7bmS9pV0bZFoAAAAxhDqTgDQfR0P7GR7mqSvSTolIh4bYP4Jkk6QpNlzZnctQAAA6E+MJhqq7lStN83ZdU4PogOA5uqoJdb2RKUv4Qsj4rKBlomIhRExPyLm7zhzx27GCAAY17o7qBNdkzEahqs7VetNM2fOGP0AAaDBhm2Jdfq1P0/S4oj4aPmQAACoMA2xaBbqTgBQVictsQdJOkbSa23fmB+HFY4LAACgqag7AUBBnYxO/GNJnAMHAPSExejEaBbqTgBQVscDOwEA0CsksQAAoIUkFgBQeySxAACghSQWAFB75LAAAKClo1vsAAAAAABQB7TEAgDqjXu7AgCACpJYAECtMToxAACoKpTEhiLWlyk6W6ey5a9+5rGi5UvSxL6Jxddx/QM3FS3/r7/wpaLlS9L0aVsVX8enjt2x+Dpmbb1r0fInuew5KXO3CPQQSSxQb+sL1/sk6al1TxZfx1VLry5a/pmXXVy0fEnaYYdtiq/jI4efUHwdL5l5QNHy+9xftHyURUssAKD2SGIBAEALAzsBAAAAABqDllgAQL2ZW+wAAICNSGIBALVHd2IAANBCEgsAqDWLW+wAAICNSGIBALVHEgsAAFoY2AkAAAAA0Bi0xAIAao+GWAAA0EJLLACg3py6E3fzMewq7Tm2v2/7Ntu32j45T9/B9tW2f53/3z5Pt+1P2F5i+2bb+xXeKwAAjFsksQCA+rO7+xjeWkmnRsRekg6UdKLtvSS9X9J3I2KepO/m15J0qKR5+XGCpHO7vQsAAEBCEgsAQJuIWBER1+fnqyUtljRL0gJJX8yLfVHSEfn5AkkXRHKNpO1s7zy6UQMAMD5wTSwAoPZ6OTqx7bmS9pV0raSdImJFnnW/pJ3y81mSllbetixPWyEAANBVJLEAgFqzpL7u57AzbC+qvF4YEQuftW57mqSvSTolIh6rJtMREbaj65EBAIAhkcQCAGqus8GYRmhVRMwfcq32RKUE9sKIuCxP/o3tnSNiRe4u/ECevlzSnMrbZ+dpAACgy7gmFgBQb5b67K4+hl1lyprPk7Q4Ij5amXW5pLfn52+X9J+V6cfmUYoPlPRopdsxAADoIlpiAQB4toMkHSPpFts35mlnSPoXSZfYPl7SPZLeluddIekwSUskPSnpuFGNFgCAcYQkFgBQa9boD+wUET/Oqx7IwQMsH5JOLBoUAACQRBILAGgArn0BAAAtJLEAgNrr5DpWAAAwPpDEAgBqrRfdiQEAQH3RQwsAAAAA0Bi0xAIAaq6z2+IAAIDxgSQWAFBvpjsxAADYiCQWAFBrFte+AACAjRqbxD7xzOqi5d/3xPKi5UvStpO3Lb6OOx9ZVrT8Z25ZWbR8SXpo2sTi6/jtut8WX0fE+qLl9/VPKlq+aAlDD9GdGMDa9c8UX8dtq+4oWv6y7/+6aPmStGz21sXXsfw15evJ+80sW29Cs3FyGwAAAADQGI1tiQUAjB9cEwsAAFpIYgEAtWbRnRgAAGxEEgsAqD1SWAAA0MI1sQAAAACAxqAlFgBQc6Y7MQAA2IAkFgBQazbXxAIAgI1IYgEAtcfoxAAAoKXjJNZ2v6RFkpZHxOHlQgIAYFO0xKKJqDsBQBkjGdjpZEmLSwUCAAAwxlB3AoACOkpibc+W9CZJnysbDgAAm3KBB1AadScAKKfT7sTnSDpN0vRyoQAAMDC6E6OBzhF1JwAoYtiWWNuHS3ogIq4bZrkTbC+yvejBlQ92LUAAwHiXbrHTzQdQUid1p2q9aeXKVaMYHQA0XyfdiQ+S9Bbbd0u6WNJrbX+5faGIWBgR8yNi/o4zd+xymACA8cpOoxN38wEUNmzdqVpvmjlzRi9iBIDGGjaJjYjTI2J2RMyVdKSk70XE0cUjAwAAaCDqTgBQFveJBQDUHl2AAQBAy4iS2Ij4gaQfFIkEAIBBkMKiqag7AUD30RILAKg1i5ZYAACwEUksAKD2SGIBAEBLJ6MTAwAAAABQC7TEAgBqjtviAACAjUhiAQC1ZtFtCAAAbEQSCwCoN4uWWAAAsEGhJNayy54333ri9KLlr4v1RcuXpPWjsI4XzNyzaPk7v3KPouVL0i677Fh8HXtuW347Hn9mddHypxUtXYpROF4BAM3kUbgR1uT+KcXX8frdXl60/F+/56Gi5UvSzKlTi6/jRTu+sPg6Jnpi0fI5OdpstMQCAGqP0YkBAEALSSwAoNa4TywAAKhirAwAQO3Z7uqjg/Wdb/sB27+sTNvH9jW2b7S9yPb+ebptf8L2Ets3296v4K4AAGDcI4kFANSc1dflRwe+IOmQtmkflvSBiNhH0j/k15J0qKR5+XGCpHO7sdUAAGBgJLEAALSJiB9Jah+BJSRtk59vK+m+/HyBpAsiuUbSdrZ3Hp1IAQAYf7gmFgBQewVGkZxhe1Hl9cKIWDjMe06RdKXtjyidBH5Znj5L0tLKcsvytBVdihUAAFSQxAIAas0uMrDTqoiYP8L3/IWk90XE12y/TdJ5kl7X7cAAAMDQ6E4MAKg9d/nfZnq7pMvy8/+QtH9+vlzSnMpys/M0AABQAEksAKD2Rnt04kHcJ+lV+flrJf06P79c0rF5lOIDJT0aEXQlBgCgELoTAwDQxvZFkl6tdO3sMklnSnqXpI/bniDpt0ojEUvSFZIOk7RE0pOSjhv1gAEAGEdIYgEAtWa5xDWxQ4qIowaZ9fsDLBuSTiwbEQAAaCGJBQDUnrn6BQAAZCSxAIDaG+2WWAAAUF8ksQCA2itwn1gAANBQ9M8CAAAAADQGLbEAgFrbwnu7AgCAMYYkFgBQb+aaWAAAsBFJLACg9rgmFgAAtJDEAgBqzZL6GMIBAABk1AoAAAAAAI1BSywAoOZMd2IAALABSSwAoPZIYgEAQAtJLACg9vq4xQ4AAMi4JhYAAAAA0BjFWmJL35h+u0k7FC1/zrQ5RcuXpCn9U4qv45U7zyha/meOLfs5SNKMKWW3QZJ232bP4ut48Lcri5b/+DOri5a/PtYVLR8YjEV3YqDuRuNvdHL/VsXX8fsz9y9a/kdfPa9o+ZI0oa98R8ttJm5ffB0T+iYWXweai+7EAIB6s9RHEgsAADKSWABAzbl47x4AANAcJLEAgFqzpD4zhAMAAEioFQAAAAAAGoOWWABA7TGwEwAAaCGJBQDUHtfEAgCAFpJYAEDNmdGJAQDABiSxAIBas2iJBQAAG3U0sJPt7WxfavtXthfbfmnpwAAAAJqKuhMAlNNpS+zHJX07Iv7Q9iRJUwvGBADAJuhOjAai7gQAhQybxNreVtIrJb1DkiJijaQ1ZcMCACCzZO4Tiwah7gQAZXVSK9hd0kpJn7d9g+3P2d66cFwAAGTu+j+gMOpOAFBQJ0nsBEn7STo3IvaV9ISk97cvZPsE24tsL3pw5YNdDhMAMF5ZqTtxNx9AYcPWnar1ppUrV/UiRgBorE6S2GWSlkXEtfn1pUpfzJuIiIURMT8i5u84c8duxggAANAkw9adqvWmmTNnjHqAANBkwyaxEXG/pKW2n5cnHSzptqJRAQBQYburD6Ak6k4AUFanoxO/R9KFeXS9OyUdVy4kAAA21cd1rGge6k4AUEhHSWxE3ChpftlQAAB4Nku0nqJxqDsBQDncswAAAAAA0BiddicGAKBHzH1iAQDABtQKAAC11yd39TEc2+fbfsD2L9umv8f2r2zfavvDlemn215i+3bbbyywCwAAQEZLLACg1uyeXBP7BUmflHTBxjj8GkkLJL04Ip62/Zw8fS9JR0raW9Iukr5j+7kRsW60gwYAYDygJRYAUHvu8r/hRMSPJD3UNvkvJP1LRDydl3kgT18g6eKIeDoi7pK0RNL+3dt6AABQRRILABiPZtheVHmc0MF7nivpFbavtf1D2y/J02dJWlpZblmeBgAACqA7MQCg5lyiO/GqiBjp7U8mSNpB0oGSXiLpEtu/2+3AAADA0IoksZY66q61Jdase7po+dtO2q5o+ZLU7/LnECb0TSxa/v7PObBo+ZLUNwodBkZj5NNtJm5TtPz1Wl+0fEaHRS91MhjTKFgm6bKICEk/t71e0gxJyyXNqSw3O08D0EX97i++jqkTphUtf6v+qUXLl5QGEihsdOpmtfjeR01RKwUA1JqVTqJ087GZviHpNZJk+7mSJklaJelySUfanmx7d0nzJP18izccAAAMiO7EAICa62wwpq6u0b5I0quVrp1dJulMSedLOj/fdmeNpLfnVtlbbV8i6TZJayWdyMjEAACUQxILAECbiDhqkFlHD7L82ZLOLhcRAABoIYkFANQe10YBAIAWklgAQO2NdndiAABQXySxAIDaoyUWAAC0kMQCAGrNqs0tdgAAQA1wix0AAAAAQGPQEgsAqDeb7sQAAGADklgAQO2ZjkMAACAjiQUA1B4tsQAAoIVT2wAAAACAxqAlFgBQaxb3iQUAABuRxAIAas7qozsxAADISGIBALVHSywAAGghiQUA1B4DOwEAgBYGdgIAAAAANAYtsQCAWksDO3HOFQAAJCSxAICaM92JAQDABiSxAIDa62NgJwAAkJHEAgDqzQzsBAAANuIiIwAAAABAY9ASCwCotTSwEy2xAAAgIYkFANQe3YkBAEBLY5PYex6/o2j520zatmj5kjS5v3xv7qfXPVW0/CfXPlG0fEl6Zv0zxdcxpX9K8XVMm7hN0fLXxdqi5dMSht4xt9gBMCr6XPi7pnT5wDjR2CQWADB+9NESCwAAMk4HAQAAAAAag5ZYAECtMbATAACoIokFANQeAzsBAIAWklgAQM2ZllgAALAB18QCAAAAABqDllgAQO3RnRgAALSQxAIAas2S+ug4BAAAso5qBbbfZ/tW27+0fZHtKaUDAwBAkuTUEtvNB1AadScAKGfYJNb2LEnvlTQ/Il4gqV/SkaUDAwAgcdf/ASVRdwKAsjrtnzVB0la2J0iaKum+ciEBAAA0HnUnAChk2CQ2IpZL+oikeyWtkPRoRFzVvpztE2wvsr1o1coHux8pAGDcGu3uxLbPt/2A7V8OMO9U22F7Rn5t25+wvcT2zbb3K7AL0CCd1J2q9aaVK1f1IkwAaKxOuhNvL2mBpN0l7SJpa9tHty8XEQsjYn5EzJ8xc8fuRwoAGLd60J34C5IOeVYc9hxJb1BKTloOlTQvP06QdO4WbzAarZO6U7XeNHPmjF6ECQCN1Ul34tdJuisiVkbEM5Iuk/SysmEBAJBYo5/ERsSPJD00wKyPSTpNUlSmLZB0QSTXSNrO9s5d2HQ0F3UnACiokyT2XkkH2p7q1AfrYEmLy4YFAECF3d3HZoXgBZKWR8RNbbNmSVpaeb0sT8P4Rd0JAAoa9j6xEXGt7UslXS9praQbJC0sHRgAAAXNsL2o8nphRAz622Z7qqQzlLoSA0Oi7gQAZQ2bxEpSRJwp6czCsQAAMIAit8VZFRHzR7D8HkrXN96UB4aaLel62/tLWi5pTmXZ2XkaxjHqTgBQTkdJLAAAvdTJiMIlRcQtkp7Tem37bqV7gK6yfbmkk2xfLOkApZFoV/QmUgAAxr5O7xMLAEDPjPbATrYvkvQzSc+zvcz28UMsfoWkOyUtkfRZSX/ZjW0GAAADoyUWAFB7BboTDykijhpm/tzK85B0YumYAABAQkssAAAAAKAxaIkFANSa1ftrYgEAQH2QxAIAaq7I6MQAAKChiiSxIWm91pcoeoP7n/xN0fJHw/aTy59D6Hd/8XWU1ufyvd4n9k0qvo6+wp/F2lhbtHygl0hiAQBACy2xAIB6M92JAQDARgzsBAAAAABoDFpiAQC1R3diAADQQhILAKg1RicGAABVJLEAgJpjdGIAALAR18QCAAAAABqDllgAQO3REgsAAFpIYgEAtcc1sQAAoIUkFgBQe7TEAgCAFpJYAECtWSSxAABgIwZ2AgAAAAA0Bi2xAICaM9fEAgCADUhiAQANQBILAAASklgAQL2Z0YkBAMBGJLEAgNpjYCcAANDCwE4AAAAAgMagJRYAUHu0xAIAgBaSWABArZnRiQEAQAVJLACg9miJBQAALSSxAIDaI4kFAAAtDOwEAAAAAGgMWmIBALXHNbEAAKCFJBYAUHt0JwYAAC0ksQCAWmN0YgAAUFUkib3p+ptWzZiy0z0jeMsMSatKxDKK2Ib6GAvbUcdt2K3XAQDAWHT9dTes2mrC1iOpN0n1/J0YKbahHsbCNkj13A7qToUUSWIjYuZIlre9KCLml4hltLAN9TEWtmMsbAPQTXQnxlg20nqTNDZ+J9iGehgL2yCNne1AZ+hODABoAJJYAACQkMQCAGqPFBYAALTUJYld2OsAuoBtqI+xsB1jYRuArmFgJ+BZxsLvBNtQD2NhG6Sxsx3ogCOi1zEAADCoF+/3orjyJ//d1TJ3nrrrdUNdO2X7fEmHS3ogIl6Qp/2rpDdLWiPpDknHRcQjed7pko6XtE7SeyPiyq4GDAAANujrdQAAAAzPXX4M6wuSDmmbdrWkF0TEiyT9r6TTJcn2XpKOlLR3fs+nbfdv1mYCAIBhkcQCAGpvtFPYiPiRpIfapl0VEWvzy2skzc7PF0i6OCKejoi7JC2RtP9mbSgAABhWT5NY24fYvt32Etvv72Usm8v2HNvft32b7Vttn9zrmDaX7X7bN9j+Zq9j2Ry2t7N9qe1f2V5s+6W9jmmkbL8vH0e/tH2R7Sm9jgnovW6nsF25vvadkr6Vn8+StLQyb1meBnQddaf6aHq9SaLuhObqWRKbu1p9StKhkvaSdFTuktU0ayWdGhF7STpQ0okN3Q5JOlnS4l4HsQU+LunbEfF8SS9Ww7bF9ixJ75U0P1+D16/URREY1+w0sFM3H5Jm2F5UeZzQeTz+W6Xv/gtLbTMwEOpOtdP0epNE3QkN1cuW2P0lLYmIOyNijaSLlbpkNUpErIiI6/Pz1Up//I07A297tqQ3Sfpcr2PZHLa3lfRKSedJUkSsaQ240jATJG1le4KkqZLu63E8wFi1KiLmVx4djWpp+x1KAz79aWwcGXG5pDmVxWbnaUC3UXeqiabXmyTqTmi2XiaxY677le25kvaVdG2PQ9kc50g6TdL6HsexuXaXtFLS53PXns/Z3rrXQY1ERCyX9BFJ90paIenRiLiqt1EBaLF9iNL35Fsi4snKrMslHWl7su3dJc2T9PNexIgxj7pTfZyjZtebJOpOaDAGduoS29MkfU3SKRHxWK/jGQnbrdtIXNfrWLbABEn7STo3IvaV9ISkRl0rZHt7pTPqu0vaRdLWto/ubVRAPbjL/4Zdn32RpJ9Jep7tZbaPl/RJSdMlXW37Rtv/LkkRcaukSyTdJunbkk6MiHWl9gUwVjS17jRG6k0SdSc02IQernvMdL+yPVHpS/jCiLis1/FshoMkvcX2YZKmSNrG9pcjoklfAsskLYuI1pncS9WwL2JJr5N0V0SslCTbl0l6maQv9zQqoAY6STy7KSKOGmDyeUMsf7aks8tFBEii7lQXY6HeJFF3QoP1siX2F5Lm2d7d9iSli7Av72E8m8VphJDzJC2OiI/2Op7NERGnR8TsiJir9Dl8r2lfxBFxv6Sltp+XJx2s1CrSJPdKOtD21HxcHayGDbAAACiKulMNjIV6k0TdCc3Ws5bYiFhr+yRJVyqNJHZ+7pLVNAdJOkbSLbZvzNPOiIgrehfSuPUeSRfmH/Y7JR3X43hGJCKutX2ppOuVRm68QVJHg80AAMY+6k4ogLoTGskbB1cEAKB+9vn9F8d3f9rdcTpmTPmd6yJiflcLBQAAo4KBnQAAAAAAjdHLgZ0AAOhAZyMKAwCA8YGWWAAAAABAY9ASCwBoAFpiAQBAQhILAKg1ixQWAABsRBILAKi9dPs/AAAAklgAQCOQxAIAgISBnQAAAAAAjUFLLACg9miHBQAALSSxAIAGII0FAAAJSSwAoObMwE4AAGADrokFAAAAADQGSSwAAAAAoDHoTgwAqDVLMtfEAgCAjCQWANAAJLEAACAhiQUA1B4pLAAAaCGJBQDUHqMTAwCAFgZ2AgAAAAA0Bi2xAICas+hQDAAAWkhiAQC1RwoLAABaSGIBAA1AGgsAABKuiQUAAAAANAYtsQCAejOjEwMAgI1oiQUAAAAANAYtsQCAWktjE9MSCwAAEkdEr2MAAGBQtr8taUaXi10VEYd0uUwAADAKSGIBAAAAAI3BNbEAAAAAgMYgiQUAAAAANAZJLAAAAACgMUhiAQAAAACNQRILAAAAAGiM/w+cSs2XPkOu3gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "Err_G6=error(xdata6, poptG6[0], poptG6[1],poptG6[2], poptG6[3], poptG6[4], recorteG6.ravel(), inc=1)\n", + "poptG6E, pcovG6E = curve_fit(gauss2d, xdata6, recorteG6.ravel(), p0=[2,2,2,1,1],sigma=Err_G6)\n", + "estrellaG6E=gauss2d(xdata6, poptG6E[0], poptG6E[1],poptG6E[2], poptG6E[3], poptG6E[4])\n", + "FWHMG6E=FWHMG_I.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptG6E[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 6 fotografÃa (Banda Verde)\")\n", + "plt.imshow(recorteG6, plt.get_cmap('Greens'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 6 a partir de la gaussiana con incertidumbre (Banda Verde)\")\n", + "plt.imshow(estrellaG6E.reshape(10, 10), plt.get_cmap('Greens'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 7 con incertidumbre (Banda Verde)" + ] + }, + { + "cell_type": "code", + "execution_count": 846, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7MAAAFVCAYAAAA9nLjZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA2MklEQVR4nO3debwkdX3v/9d7hn0TcHCBGRYVTTCud0SMGheMW1S8yY3BRFwj0WAEfxgj5N6ISUyM8br9TEyI4BKJhggakqCIUWOMAWVRFNA4EXUGUBhlUxCYmc/9o+pAT89Z+sycOl195vWcRz+mu5Zvfau6Ttf3U9+lUlVIkiRJkjRJlo07A5IkSZIkzZfBrCRJkiRp4hjMSpIkSZImjsGsJEmSJGniGMxKkiRJkiaOwawkSZIkaeIYzEqSNCTJqiSfTXJFksuTHD8w73eSfKOd/paB6SclWZPkm0meNp6cS5K0/dhh3BmQJKmHNgAnVtUlSfYELk5yPnBv4CjgYVV1e5J7ASQ5DDgaeDCwP/DpJA+sqo1jyr8kSUueNbOSJA2pqmur6pL2/S3AlcABwCuBN1fV7e2869pVjgI+UlW3V9VVwBrg8MXPuSRJ2w9rZiVJvZYVuxR3bFrYRG+587yqevpI208OBh4BXAj8OfD4JG8Cfgq8tqq+TBPoXjCw2rp2miRJ6ojBrCSp3+7YBI++18Km+emrfybJRQNTTq2qU4cXS7IHcBZwQlXdnGQHYF/gCOBRwJlJ7rewmZMkSaMwmJUk9V+y0Cmur6rVs28yO9IEsmdU1dnt5HXA2VVVwJeSbAJWAFcDqwZWX9lOkyRJHbHPrCSp30JztVrI11ybTAKcBlxZVW8bmPVx4EntMg8EdgLWA+cARyfZOckhwKHAl7Z6nyVJ0pysmZUk9d/C18zO5bHAMcDXknylnXYycDpwepKvA3cAL2praS9PciZwBc1IyMc5krEkSd1Kcw2WJKmfco+disfeZ2ET/cTai+dqZixJkvrNZsaSJEmSpIljM2NJUs9lHM2MJUlSzxnMSpL6bWoAKEmSpAEGs5Kk/rNmVpIkDTGYlST1n7GsJEkaYsMtSZIkSdLEsWZWktRvAZZZNStJkjZnMCtJ6j9jWUmSNMRgVpLUfw4AJUmShhjMSpL6z1hWkiQNcQAoSZIkSdLEsWZWktRvDgAlSZKmYTArSeo/Y1lJkjTEYFaS1HNxAChJkrQF+8zOIMnBSSrJDu3nzyX5zUXYbpK8L8kNSb7U9fa2VZIHJflKkluSvLqd9rYk79jK9P40yQkLmcd5bPv9Sf54HNuezfC5OMeyz07y94uRL0kap3Fdp/smyeOTfHMb09iqYzef61PfJbk8yRPHnY8uJPlEkhf1IB8HJvlxkuUzzD8lyYc62vai/j4k2TnJFUnuu1jbHNp+JXnAOLY9m/l8x0nOSvKMuZbrfTCb5DtJbmtP/qnXu0dYrxdf4sAf7uCrkpw4wyqPA34RWFlVh4+Q/rj383XAZ6tqz6p6V5LHA48Cfne+CSXZD3gh8Nft5ycm2TRw3K5O8sYFzf0CSPLJJH84zfSjknx/MS/yVfVPwIOTPHSxtil1bqrP7EK+tGC2w+v0WA0ft6r696p60DjztBRU1YOr6nPjzkcXquoZVfWBxd5u+9vwlIF8fK+q9qiqjYudlzE4Fvh8VV0Ld1WY3NH+vtyS5OIkTxhzHjeT5IAkG5Lcf5p5H0vy1kXO0p8Bc1Yy9T6YbT27PfmnXq/a1gQXK8AY+MPdo6r2AB4CbALOmmGVg4DvVNVPFiN/sxnxGB0EXD7w+RDg16rqzq3Y5IuBc6vqtoFp1wwcu8cBL0vy3K1Iu0sfAF6QbNEO8hjgjKraMGpCC3RefpjmR1RaOrLALy207ek6PRZbczyWQo2pJs+kn3cLlP9XAH87NO0t7W/MXsB7gLNnqqUeh6q6GvhXmvLrXZLsCzyTprw7sm09jlX1JWCvJKtnW25SgtlpJXlAkn9LclOS9VPNK5N8vl3kq+0dkF9ra/nWJfm9JN8H3pdkWZLXJ/nvJD9Mcmb7hc213fsn+Uy7zvokZyTZe8Rsv5DmTs13pkn3ZcB7gce0+X5jO/3lSdYk+VGSc5LsP9N+zrZ8O++pSb7ZHrO/bI/fb7bzXpzkP5K8PckPgVNm29cknwGeBLy73f4DgScDv93O3yfJPye5Pk2z6X9OsnKWY/MM4N9mmllVVwFfBA4b2J93Jlmb5Ob2LtfjB+ad0n6nH2zvgl0++AeR5BFJLmnn/T2wy8C8+eT948A9gcFt7wM8C/jgbOdZ7m6i9bIk3wM+k2R5kre2x/vbwC8NbizJPZKcluTaNLXVfzz0Y/i54XWkiZcs7EuLYqldp9u0D0/yn0lubH+H351kpxmWnfqNPzbJNe3yrx01rXbd45J8C/jWbMdtYJ3vtMfwMuAnmaZAmeQXk3yj/V7ezdAtniQvTXJle/07L8lBoxy4JC9p17slybeT/NYsyy5P8n/b7+eqJK/K5s3GZ0wrTXnlC0Pp3VVjneSZaZp43tJeJ1/bTl/RXs9vTFNG+vckywaO21Pm8b28Ism32mX+Iml+WOZ77iV5cJLz2/z8IMnJ7fSdk7yjPW+uad/v3M6b+ls5Mcl1bR5fMss27mpiO3Xs0pQzbmiP/TMGlt03TXe3a9r5Hx+Y96w0XctuTPLFDLQCm+a8+zBwIPBP7bn6umzZNeCQNL8PtyQ5H1gxkN5m5/U039EpSf4hyYfa9b+W5IFJTmqPydokTx06FPdP8qU0ZcZ/zCxlsXb61v4dHAjcD7hwuvlVVcDfAfsC927XmfW8aff9tUkuS/N3+/dJBsutv9ueB9ckeelQfn4pyaXtfq9Ncsos2f8AQ8EscDRwRVV9Lcn+aZr/Xt+eO68e2M4pST7afic3Ay+e7Ttu1zmiPZduTPLVbNnU/3PMUaad6GAW+CPgU8A+wErg/weoql9o5z+svdM61YfwPjQnzkE0NVe/AzwXeAKwP3AD8BcjbDfAn7br/CywCjhlzpWS0Fwkp72zUVWn0dzJ+c82329I8uR2W88D7gt8F/jITPs52/JJVgAfBU6iCb6+Cfz8UDYeDXyb5o/rTbPta1U9Gfh34FXt9v9rKK1lwPtojveBwG3AbE3PHtLmaVpJDgUeC1wwMPnLwMNpvte/A/5h8I8beE67/3sD50xtP81F6eM0d832Bf4B+JWtyXtbk3wmzXc75XnAN6rqq4x2nj2B5vg+DXg5TSD8CGA18L+Gln0/sAF4QLvMU4HBfiBXAgcn2Wu6/EoTyZrZSbWkrtOtjcBraApljwGOpL2JO4snAYfS/F7/Xu5uejlKWs+luTYfNstxG/Z8mgLg3sOtg9qywNnA/263+98019ap+UcBJwO/DOxHc53/8Bz7N+U6muvXXsBLgLcneeQMy76c5ib2w4FHtvu5tWkNOw34raraE/g52uAEOBFYR7Nf96bZz5pm/VG+l2fRdKt6KM01/2nt9JHPvSR7Ap8GPtku/wCamjGA3weOoDk+DwMOp/nOptwHuAdwAPAy4C/S3EgfxaNpylsrgLcAp7XnPjTlot2ABwP3At7e5vURwOnAb9GUIf8aOCdtgN0aPO+eD3yPu1ttvGWafPwdcHGbjz8C5tuv99ltfvcBLgXOoym/HQD8YZvHQS8EXkpTPt4AvGto/l1lsW38O3gI8O2ZWualqYB4IXAV8IOpycx93jwPeDpNK8iH0rRoJMnTgdfSdFM8FHjK0Ho/abe3N83388rM3MrxY8CKJI8bmHYM8IE0N37+CfgqzTE+EjghydMGlj2KJtbYGziDWb7jJAcA/0LTlHjfdh/OStPtcMqVNOf/zKqq1y/gO8CPgRsHXi9v530QOJWmf+nwegU8YODzE4E7gF0Gpl0JHDnw+b7AnTSjPB/cprFDO+9zwG/OkMfnApeOsC+Pb/dlj1mWeTHwhYHPp9E0S5j6vEebx4Nn2M8Zl6c5kf9zYF6AtVP71W77e3Psw2b7OnxcaAKtP55h3YcDN8yS9p3Azwx9Z5va7/zmdl/PBnaaJY0baC7y0PwIfHpg3mHAbe37XwCuATIw/4vbkPfHtfncpf38H8Br5nGe3W9g/meAVwx8furUuUhz8b0d2HVg/vNp+i1Pfd6xXf7Ahf579OVrHC/23bl4waEL+4KLxr1fS+XFdnadnmadE4CPzTBvKo+D17a3AKeNkla77pNHOG7rhr6Pl86S3xcCFwx8Dk2AN1UW+ATwsoH5y4BbgYNm2b8dZtjWx4HjZ5j3GZqAc+rzU0ZNi6Gy0vBxoQmifgvYa2iZPwT+cfD4DR23p8zje3ncwOczgdfP99yjuX7PNO+/gWcOfH4aTTe0qe/8tsFjRRP8HzFDWnf9bbTHbs3AvN3a/bkPzd/XJmCfadJ4D/BHQ9O+CTxhpvNu+JgOni80FQUbgN0H5v8d8KHpzuvh9GjKeOcPzHs2zd/u8vbznu229h44Bm8eWP4wmt+b5UxfFhv572CaY/UbDPyNtdPeD/yU5vfxtvb9b8ySxmbnTbvvLxj4/Bbgr9r3pw/t2wMZ+p0YSvsdwNtn2fZ7gVPb94e2x+leNDdBvje07EnA+wa+k88PzJvrO/494G+H0jsPeNHA55cDn5nteE9Kzexzq2rvgdfftNNfR/Mj/KU0TUhfOksaANdX1U8HPh8EfKyt2r6R5qK5kbbKfyZJ7p3kI2martwMfIihavMZvAg4q6p+PMKyU/anqV0FoF33hzR3ROa7/P40wevUvKK5gA1aO/hhG/aVJLsl+esk323X/Tywd2buH3ADzY/PoGva73wvmrs8tzFwx7xtcnFl2+TiRpq7lIP5+/7A+1uBXdI0b9kfuLo9BlPuOm7zzXtVfQFYDzw3Tcf5w2n+YGG082zwuO8/9Pm7A+8PoglWrx1I769pfmSmTB3DG6fLqzRxggNA9d92c51O05Txn9MM8Hcz8CcjpD38mz7VXWiUtNYyf7OtM11ZYHD5g4B3DhzzH9F8hzOVO+6S5BlJLkjTZPZGmn52Mx2b4WvdcPljPmkN+5V2+e+2TRwf007/c2AN8Kk0TZdfP8N+jPK9DJcv9mjXnc+5t4omaJ3OZuU5Bs6b1g9r85q/u/IwgrvyXlW3tm/3aPPzo6q6YZp1DgJOnDov2u9k1VCe5nOu7k9TSTA4Rsx3Z1p4Bj8YeH8bsL7uHlxqavyVwWMy/He4I5t/Nwvyd8D05VmAt1bV3jQ3EFYDf562ifeI58205xyzlxtJ8ugkn03TNPgmmlags/0tfQD41bal4zHAeVV1Hc0x2X/oHDiZ2cuzs33HB7XbGUzvcTQ3VabsyRzl2UkJZqdVVd+vqpdX1f40d+D+MrOPjFhDn9cCzxi6AO9STQfo2fxJm9ZD2iDrBczRcC3JrsCvMs/O0zS1hwcNpLM7TfOOmfI42/LX0jTzmpqXwc+t4WM0730dcCLwIODR7bpTzaNmWv8ymrtJ06qqm2gCxGe3+X88TUHpeTR3EfcGbhoxf9cCBww0q4HmDtLW5h2aGogX0hyj86pq6kd2lPNs8LhfS3OBmC5fa2lqZlcMpLVXVT14YJmfpbl7e/MseZUmi82MJ9ISvU6/B/gGcGib9slzpc2Wv+nXzCOt4WMyitnW2ewa014HB/O3lqbGdPCY71pVX5xtg21z07OAtwL3bq/J5zLzsdmsTDKUp7nS+glNQDC1/H0GE66qL1fVUTQ3ej9OU3NKVd1SVSdW1f1ouiH9f0mOnCZvW/MdT5nPubeWpm/ldDYrz7H5edOVtcC+mb6P71rgTUPnxW5VNdj0dvi8m+s83Kctp04ZLO8Mf8fLaZr7bovhv8M7aSoipgzmd6v+DlqXAYdkhgGQqvF1mlZ8U/1Bt6W8PVu5EZqy8znAqqq6B/BXc6T9BZrg/ag2H1O/iWuBq4aOyZ5V9czB3RvK12zf8VqamtnB9HavqjcPLPOzNM2aZzTRwWySX83dg/LcQHMAN7Wff8DMPxBT/gp4U9oO3Un2S9NGfi570jRluClNe+9RHkPzP9s8fnaEZQd9GHhJkoe3P+5/AlxYdw9MMbyfsy3/L8BDkjy3/QM7jqZZyWy2Zl8H170NuDFNJ/s3zLH8uTT9FaaVZA+aTuhToyfvSdN84XpghyR/QNO3ZhT/2a776iQ7JvllmtrUrc07NMHsU2iaRAwWhuZ7np3Z5mtlmv4vd905rmaI908B/zfJXmkGR7l/Nh/e/Qk0zWOkpcMBoCbSEr1O70nT9eXHSX4GeOUIaf+fNC1+HkzT/3Oqr+vWpDXKcZvNv9A8wu2X27LAq9m8LPBXwEltXkkz6OCvjpDuTsDONNfkDW2N0/AAPIPOBI5P8ziQvWmaHI6a1lfbfXh4W3t0ytSMJDsl+Y0k96jmyQo3055zaQYwekAbwN9EU8u/iS1tzfcyuO6o594/A/dNckKaAZ/2TPLodt6Hgf/dnvMrgD+gqa3rTFvG+ATNTad92vLR1M38vwFe0dbyJcnuaQYWmq4GcsqM52pVfRe4CHhj+509jrayovVfNK3pfinJjjT9hXeeJqn5eEGSw5LsRtPk/KM182OCtvbvgKpaR9MCYMZHbLbn1ePYvEy7teXtM2kGW5rat+Ey6540Ne4/TXI48Otz5L9oyrR/RtMq8p/aWV8Cbkkz0NeuaQZx+7kkj5ohnbm+4w8Bz07ytDatXZI8MZsPuDpnmXZSgtmpkdCmXh9rpz8KuDDJj2nuOBxfVd9u551C01n5xiTPmyHdd7brfSrJLTQDCz16hmUHvZFmsIKbaC4KZ4+wzoto7j7M6w5rVX0a+D80dyivBe5PE9BNOYWB/Zxt+apaT3PX+S00TY8PoznJbp8lC1uzr1PeAexKc9frApoBDmbzQeCZae6OT9l/6nunaZqwL01fBGja1X+S5gfvuzT9D0Zq4lJVd9B06n8xzd2nX2PzfZtv3mlvGHwR2J3mvJoy3/Psb2j27avAJWx5zF9Ic6G/gqbg9VE2b5LxfLYc9ECabMsW+KWFtj1dp19LUxi8heb3eqZBmAb9G03h9l9pmhp+ahvSOoW5j9uMBsoCb6YpCxxKU0M0Nf9jNIXYj6Rp7vh1moGa5kr3FprA+Eyaa9Ovs/m1cNjf0NycvYxm8J5zaW4yb5wrrWoGnPxDmsGTvkVTkzToGOA7bf5fwd3lhkPbdX5Mc1P7L6tqupsXW/O9TBn53Gv38xdpCvjfb/flSe3sP6Ypo10GfI2mPDDnMzcXwDE0NZbfoOmHe0Kb14tobta/m+Y7WUM7ANEs/pQmIL8xA6N4D/h1mr/nH9EEYB+cmtG2xvttmv6bV9PU1A53jZuvv6Xpu/p9midYvHqmBbf272DAX7PlqMCva38ff0Jz7r+Pu8trW13erqpP0JRbP0PzvXxmaJHfBv6w/Q39A9qWCnP4IE0t6t9X1e3tdjbSDHz2cJrBq9bTfD/3mCWd2b7jtTS1vyfT3LhaSxPELwNog+QfV/OInhllnrGVlpA0o5Kto+mAPt8a404k+RPguqp6x7jzMomSPBs4pqrmXcCR+iordimOOnhhEz39mxdX1azPrpO2VZKDaQp9O9Y8njm+PWprX/+qqg6ac2Gp59K0jryUZgC7a8edn0mU5CyawfLOnW25iX6oseYvzfDZF9I0of1dmjbzF8y60iKqqpPHnYdJVlX/xN3NQaSlwabB0pLTtsJ6Ek0N1b1pam0+NutK0oRoazMPG3c+JllV/crcS9nYanv0GJqR89bTNGt5bjXPSZWk/nIAKGmpCU3TyhtoarCupGkCKUkjs2Z2O1NVpzDCg+MlqVesmdUEasdS8OSdRjWPhJl24BhJGpXBrCSp/2xHJEmShlg8kCRJkiRNnE5qZu+54p514EGr5l6w17pvFbQY7Y42zvj4rIVRW/Us9/nZsOnOzrdx+8bZnk60MLo+UrvvuPvcC22Dq797NT/64Q02l9PiCzYz1pK2YsWKOujgA8edDUkL7JKLL11fVfuNOx9LWSfB7IEHreKzX/x0F0nfreOCzbIs7zR9gGWLUDH+kw03d5r+Tzd2P3bU+p9e3/k21tz0351vY1NN91z2hXPEvY/oNP3nPGGkQeWkbhjLagk76OAD+Y8Lhx+VKmnS7brD7t8ddx6WOvvMSpL6b5nRrCRJ2px9ZiVJkiRJE8dgVpLUf8nCvubcXFYl+WySK5JcnuT4ofknJqkkK9rPSfKuJGuSXJbkkR0dCUmS1LKZsSSp38I4+sxuAE6sqkuS7AlcnOT8qroiySrgqcD3BpZ/BnBo+3o08J72f0mS1BFrZiVJPReShX3NpaqurapL2ve3AFcCB7Sz3w68js0HKT8K+GA1LgD2TnLfBT0MkiRpM9bMSpJ6b5QAdD7m86isJAcDjwAuTHIUcHVVfXUoTwcAawc+r2unXbuNWZUkSTMYqWY2ydOTfLPtC/T6rjMlSVLHViS5aOB17HQLJdkDOAs4gabp8cnAHyxeNjWpLDtJUvfmrJlNshz4C+AXae40fznJOVV1RdeZkyQJOnm0+PqqWj37NrMjTSB7RlWdneQhwCHAVK3sSuCSJIcDVwOrBlZf2U7TdsiykyQtjlFqZg8H1lTVt6vqDuAjNH2DJEnqXIBlyYK+5txmE62eBlxZVW8DqKqvVdW9qurgqjqYJkh5ZFV9HzgHeGE7qvERwE1VZRPj7ZdlJ0laBKP0mZ2uH5AjNEqSFkcWvs/sCB4LHAN8LclX2mknV9W5Myx/LvBMYA1wK/CSznOoPrPsJEmLYMEGgGr7Gx0LsHLVyoVKVpKkRQ9mq+oLzPFAoLZ2dup9Acd1nC0tIYPlplUHrppjaUnSdEZpZjxSP6CqOrWqVlfV6hX73XOh8idJkjRp5iw7DZab9ttvxaJmTpKWilGC2S8DhyY5JMlOwNE0fYMkSVoEi/+cWWkbWXaSpEUwZzPjqtqQ5FXAecBy4PSqurzznEmS1DL+1CSx7CRJi2OkPrPtgBczDXohSVJnwlgGgJK2iWUnSeregg0AJUlSJ8YzmrEkSeq5UfrMSpIkSZLUK9bMSpJ6L7M/JUeSJG2HDGYlSb1nM2NJkjTMYFaS1HvGspIkaZh9ZiVJkiRJE8eaWUlSr4WwzKpZSZI0pJNgNixjp+W7dJH0XZal20rl2zf+tNP0AW7deGvn29hl+W6dpr9h04ZO04fFGfjlfnsd0vk2VuyyX6fp77Xj3p2mvzzLO01fmo19ZiVJ0jBrZiVJ/eZzZiVJ0jQMZiVJvWcsK0mShjkAlCRJkiRp4lgzK0nqtWAzY0mStCWDWUlS7xnMSpKkYQazkqSei8GsJEnagsGsJKnfHM1YkiRNwwGgJEmSJEkTx5pZSVLvWTErSZKGGcxKknrN0YwlSdJ0DGYlSb1nMCtJkoYZzEqSem+ZwawkSRriAFCSJEmSpIljzawkqd/iAFCSJGlLBrOSpF4Lsc+sJEnagsGsJKn3gsGsJEnanH1mJUmSJEkTx5pZSVLv2cxYkiQNM5iVJPWewawkSRpmMCtJ6j1jWUmSNMxgVpLUa4k1s5IkaUsOACVJkiRJmjgGs5KknmueM7uQrzm3mKxK8tkkVyS5PMnx7fQ/T/KNJJcl+ViSvQfWOSnJmiTfTPK07o6HJEmCjpoZJ7As3cbJVdVp+nduuqPT9AFuvvPGzrexe+3RafrFpk7TB9hn530738ZuO+ze+TZ232GvTtO/dcOPO02fbv/kpFmNoZnxBuDEqrokyZ7AxUnOB84HTqqqDUn+DDgJ+L0khwFHAw8G9gc+neSBVbVxsTMuSdL2wppZSVLvNf1mF+41l6q6tqouad/fAlwJHFBVn6qqDe1iFwAr2/dHAR+pqtur6ipgDXD4Qh8HSZJ0NweAkiT13jgHgEpyMPAI4MKhWS8F/r59fwBNcDtlXTtNkiR1xGBWkrQ9WpHkooHPp1bVqcMLJdkDOAs4oapuHpj++zRNkc/oPKeSJGlaBrOSpF7r6NE866tq9ezbzY40gewZVXX2wPQXA88Cjqy7B3C4Glg1sPrKdpokSeqIfWYlSb03htGMA5wGXFlVbxuY/nTgdcBzqurWgVXOAY5OsnOSQ4BDgS8t6EGQJEmbsWZWktR7Y+gy+1jgGOBrSb7STjsZeBewM3B+GxRfUFWvqKrLk5wJXEHT/Pg4RzKWJKlbBrOSpJ4brTZ1IVXVF4DpNnruLOu8CXhTZ5mSJEmbsZmxJEmSJGniWDMrSeq9cT6aR5Ik9dOcNbNJViX5bJIrklye5PjFyJgkSXD3aMaLOQCUtC0sO0nS4hilZnYDcGJVXZJkT+DiJOdX1RUd502SJGAsA0BJ28KykyQtgjmD2aq6Fri2fX9LkiuBA2hGbJQkqXPWpmqSWHaSpMUxrwGgkhwMPAK4sJPcSJIkLSGWnSSpOyMPAJVkD+As4ISqunma+ccCxwKsOnDVgmVQkiTbGWsSzVZ2stwkSdtupJrZJDvS/BifUVVnT7dMVZ1aVauravV++61YyDxKkrZrCzv4k02WtRjmKjtZbpKkbTdnzWyaq/5pwJVV9bbusyRJ0oBYMavJYtlJkhbHKDWzjwWOAZ6c5Cvt65kd50uSJGlSWXaSpEUwymjGXwC8Jy5JGovgaMaaLJadJGlxjDwAlCRJ42IwK0mShhnMSpJ6z2BWkiQNM5iVJPWesawkSRo20qN5JEmSJEnqE2tmJUn95rNhJUnSNAxmJUm95mjGkiRpOp0Es1VQVV0kfZeNtbHj9Dd0mn6zjW73AeCHt6/vNP09d9yz0/QBdly2Y+fbWJblnW+ja5vY1Gn6Rbd/09JsDGYlLYauy69dX6thccqXi2F5x70hl0LZT9bMSpImgMGsJEka5gBQkiRJkqSJY82sJKnf4qN5JEnSlgxmJUm9ZzNjSZI0zGBWktRrwUfzSJKkLRnMSpJ6z2BWkiQNcwAoSZIkSdLEsWZWktR7VsxKkqRhBrOSpH6LzYwlSdKWDGYlSf1nMCtJkobYZ1aSJEmSNHGsmZUk9Z7NjCVJ0jCDWUlSrwVYZiwrSZKGGMxKknou1sxKkqQtGMxKkvotsMxgVpIkDXEAKEmSJEnSxDGYlST1WmgGgFrI15zbTFYl+WySK5JcnuT4dvq+Sc5P8q32/33a6UnyriRrklyW5JHdHhVJkmQwK0nqvWUL/BrBBuDEqjoMOAI4LslhwOuBf62qQ4F/bT8DPAM4tH0dC7xnG3ZXkiSNwD6zkqTeW+w+s1V1LXBt+/6WJFcCBwBHAU9sF/sA8Dng99rpH6yqAi5IsneS+7bpSJKkDhjMSpJ6baqZ8di2nxwMPAK4ELj3QID6feDe7fsDgLUDq61rpxnMSpLUEYNZSdL2aEWSiwY+n1pVpw4vlGQP4CzghKq6eTCorqpKUt1nVZIkTcdgVpLUc+mimfH6qlo961aTHWkC2TOq6ux28g+mmg8nuS9wXTv9amDVwOor22mSJKkjDgAlSeq3jGU04wCnAVdW1dsGZp0DvKh9/yLgHwemv7Ad1fgI4Cb7y0qS1C1rZiVJvRbGcuf1scAxwNeSfKWddjLwZuDMJC8Dvgs8r513LvBMYA1wK/CSRc2tJEnboc6C2aLbbkTFpk7TX5blnaYPsMvyXTrfRtduufOWzrdx1c3f7nwbd2y8s/Nt/Ow+P9tp+vvsvG+n6UvjNIbRjL9AE0dP58hpli/guE4zJalzG2tjp+n/ZMPNnaYPcP1tP+h8G10fJ4B77XqfTtPfY8e9Ok1fi8NmxpIkSZKkiWMzY0lS743z0TySJKmfDGYlSb0WFr+ZsSRJ6j+DWUlS7xnKSpKkYfaZlSRJkiRNHGtmJUk9F5sZS5KkLRjMSpJ6LbHPrCRJ2pLBrCSp9xzNWJIkDRs5mE2yHLgIuLqqntVdliRJ2pw1s5pElp0kqVvzGQDqeODKrjIiSZK0xFh2kqQOjRTMJlkJ/BLw3m6zI0nS5tLBS+qaZSdJ6t6ozYzfAbwO2LO7rEiSND2bGWsCvQPLTpLUqTlrZpM8C7iuqi6eY7ljk1yU5KL169cvWAYlSdu75tE8C/mSujRK2Wmw3HT99ZabJGlrjNLM+LHAc5J8B/gI8OQkHxpeqKpOrarVVbV6xYoVC5xNSdL2KmlGM17Il9SxOctOg+Wm/faz3CRJW2POYLaqTqqqlVV1MHA08JmqekHnOZMkSZpAlp0kaXH4nFlJUu/ZNFiSJA2bVzBbVZ8DPtdJTiRJmoGhrCaVZSdJ6o41s5KkXgvWzEqSpC0ZzEqSes9gVpIkDRtlNGNJkiRJknrFmllJUs/5OB1JkrQlg1lJUq8FmxFJkqQtGcxKkvotWDMrSZK20FkwW1RXSbfpT75li1DXsHHTxk7Tv+i6izpNH+DPzvt459v4wfU3dL6NVz7zyE7T/7UHHdVp+hs23dlp+pIkzWZTbep8Gz/deGun6V9yffflpndd/I+db+PWO7ovE/z26qd1mv4T939yp+lrcVgzK0nqPUczliRJwwxmJUm95nNmJUnSdAxmJUm9Z59ZSZI0zGBWktRzYRkGs5IkaXM+7UCSJEmSNHGsmZUk9Z7NjCVJ0jCDWUlSryUOACVJkrZkMCtJ6r3YZ1aSJA0xmJUk9Z7NjCVJ0jAHgJIkSZIkTRyDWUlSr4WwLAv7mnObyelJrkvy9YFpD09yQZKvJLkoyeHt9CR5V5I1SS5L8sgOD4ckSWoZzEqSeq950uzCvUbwfuDpQ9PeAryxqh4O/EH7GeAZwKHt61jgPQuxz5IkaXb2mZUk9d5ij2ZcVZ9PcvDwZGCv9v09gGva90cBH6yqAi5IsneS+1bVtYuTW0mStk8Gs5Kk3uvJAFAnAOcleStNy6afb6cfAKwdWG5dO81gVpKkDtnMWJK0PVrR9nudeh07wjqvBF5TVauA1wCndZtFSZI0G2tmJUm9lvbfAltfVavnuc6LgOPb9/8AvLd9fzWwamC5le00SZLUIWtmJUn9FhZ9NOMZXAM8oX3/ZOBb7ftzgBe2oxofAdxkf1lJkrpnzawkqfcWu89skg8DT6RpjrwOeAPwcuCdSXYAfkozcjHAucAzgTXArcBLFjWzkiRtpwxmJUm9FmDZIjckqqrnzzDrf0yzbAHHdZsjSZI0zGbGkiRJkqSJY82sJKnn0pdH80iSpB4xmJUk9Z7BrCRJGmYwK0nqvWUL/2geSZI04ewzK0mSJEmaOB3VzBbN4I7d2VQbO01/w6Y7O00f4LaNt3W+jXvstHen6V9149Wdpg/wjU9d3vk2uL3b8wlgzWPWd5r+njvu1Wn6y5Yt7zR9aSbBZsaSoOi2bAlw+8afdpr+F66+qNP0AT75oc91vg1u7r6cfL999+k0/Uft96hO09fisJmxJKnfAssMZiVJ0hCDWUlSz4XYZ1aSJA0xmJUk9VqAZXGIB0mStDlLB5IkSZKkiWPNrCSp9xwASpIkDTOYlST1nn1mJUnSMINZSVLPxdGMJUnSFgxmJUm9FqyZlSRJWxppAKgkeyf5aJJvJLkyyWO6zpgkSdKksuwkSd0btWb2ncAnq+p/JdkJ2K3DPEmStBmbGWsCWXaSpI7NGcwmuQfwC8CLAarqDuCObrMlSVIrEJ8zqwli2UmSFscopYNDgOuB9yW5NMl7k+zecb4kSWplwf9JHbPsJEmLYJRgdgfgkcB7quoRwE+A1w8vlOTYJBcluWj9+h8ucDYlSdur0DQzXsiX1LE5y06D5abrr18/jjxK0sQbJZhdB6yrqgvbzx+l+YHeTFWdWlWrq2r1ihX3XMg8SpIkTZI5y06D5ab99lux6BmUpKVgzmC2qr4PrE3yoHbSkcAVneZKkqQBSRb0JXXJspMkLY5RRzP+HeCMdjS+bwMv6S5LkiRtbpn9XDV5LDtJUsdGCmar6ivA6m6zIknSlgLWpmriWHaSpO75rANJkiRJ0sQZtZmxJEljEp8zK0mStmAwK0nqPfvMSpKkYQazkqReS+wzK0mStmQwK0nqvVgzK0mShtgJSZIkSZI0cayZlST1XGxmLEmStjCxweym2jjuLGyzfXde0fk2rrvt+52mv/MOO3WaPgB77tj9Nu7o/nzaf889O03/x3fe0mn6mzZt6jR9aTYOACVpMbobLF/WbdH4wL3u02n6APd+6MrOt/GT237a+TYesM+9O01/p+U7d5q+FsfEBrOSpO1DwEfzSJKkLRjMSpJ6Lg4AJUmStuCtbkmSJEnSxDGYlST1XpIFfY2wvdOTXJfk60PTfyfJN5JcnuQtA9NPSrImyTeTPK2DQyBJkobYzFiS1HtjaGb8fuDdwAfvykPyJOAo4GFVdXuSe7XTDwOOBh4M7A98OskDq5bASIWSJPWYNbOSpN5b7JrZqvo88KOhya8E3lxVt7fLXNdOPwr4SFXdXlVXAWuAwxdu7yVJ0nQMZiVJvRaaR/Ms5GsrPRB4fJILk/xbkke10w8A1g4st66dJkmSOmQzY0nS9mhFkosGPp9aVafOsc4OwL7AEcCjgDOT3K+rDEqSpNkZzEqS+m3EpsHztL6qVs9znXXA2VVVwJeSbAJWAFcDqwaWW9lOkyRJHbKZsSSp9xa2kfFWX/o+DjwJIMkDgZ2A9cA5wNFJdk5yCHAo8KVt32tJkjQba2YlSb3XQc3sXNv7MPBEmubI64A3AKcDp7eP67kDeFFbS3t5kjOBK4ANwHGOZCxJUvcMZiVJGlJVz59h1gtmWP5NwJu6y5EkSRpmMCtJ6rUwlufMSpKknjOYlST1XFi2yM2MJUlS/xnMSpJ6z5pZSZI0zGBWktR7iz0AlCRJ6j8fzSNJkiRJmjjWzEqSeq0ZAMp7r5IkaXMGs5KknovNjCVJ0hYMZiVJvbfMAaAkSdIQg1lJUr/FAaAkSdKW7IQkSZIkSZo41sxKknqtGQDKmllJkrQ5g1lJUu/ZzFiSJA0zmF3i7rPb/p2m/6xDntpp+gA3vOrmzrex/tZbO9/G/3zA0zpNf8Uu9+o0/R2W+XOhcYmP5pG0KC00dl2+W6fpP2nlEztNH2DfF+zd+Tbu3LSh8208dMVDO01/jx327DR9LQ5Lp5Kk3ltmzawkSRrirW5JkiRJ0sSxZlaS1GsOACVJkqZjMCtJ6j0HgJIkScMMZiVJPRdrZiVJ0hbsMytJkiRJmjjWzEqSes9mxpIkadhINbNJXpPk8iRfT/LhJLt0nTFJkqAZAGrZAv+TumbZSZK6N+cVPckBwKuB1VX1c8By4OiuMyZJEgBpamYX8iV1ybKTJC2OUZsZ7wDsmuROYDfgmu6yJEnSIAeA0kSy7CRJHZuzZraqrgbeCnwPuBa4qao+1XXGJEmSJpFlJ0laHKM0M94HOAo4BNgf2D3JC6ZZ7tgkFyW5aP36Hy58TiVJ2y2bGWuSjFJ2Giw3XX/9+nFkU5Im3iijYDwFuKqqrq+qO4GzgZ8fXqiqTq2q1VW1esWKey50PiVJ27Es8D+pY3OWnQbLTfvtt2IsmZSkSTdKn9nvAUck2Q24DTgSuKjTXEmS1AoYgGrSWHaSpEUwZzBbVRcm+ShwCbABuBQ4teuMSZJ0F5sGa4JYdpKkxTHSaMZV9QbgDR3nRZIkaUmw7CRJ3Rv10TySJI2J/VwlSdKWDGYlSb3nCMSSJGmYwawkqfesmZUkScMMZiVJvWcwK0mSho3ynFlJkiRJknrFYFaS1Guh6TO7kK85t5mcnuS6JF+fZt6JSSrJivZzkrwryZoklyV55MIfBUmSNMxgVpLUc1nwfyN4P/D0LXKSrAKeCnxvYPIzgEPb17HAe7Z5lyVJ0pw66jM72p3vbbGs4zh8h2U7dpo+LE4fsGVZ3mn6+++2qtP0AV79sGM738btm27vfBu7LN+l821IS9Vi95mtqs8nOXiaWW8HXgf848C0o4APVlUBFyTZO8l9q+raRciqtN1YjFHNd1y2U6fp32fXAzpNH2DfA1Z0vo3F0PV30XX6WhwOACVJ6rf049E8SY4Crq6qrw7l5wBg7cDnde00g1lJkjpkMCtJ2h6tSHLRwOdTq+rUmRZOshtwMk0TY0mS1AMGs5Kk3uugmfH6qlo9j+XvDxwCTNXKrgQuSXI4cDUw2OdiZTtNkiR1yGBWktRrU6MZj1NVfQ2419TnJN8BVlfV+iTnAK9K8hHg0cBN9peVJKl7jmYsSeq5xR/NOMmHgf8EHpRkXZKXzbL4ucC3gTXA3wC/vRB7LUmSZmfNrCRJQ6rq+XPMP3jgfQHHdZ0nSZK0OYNZSVLvLfajeSRJUv8ZzEqSem/cfWYlSVL/GMxKknrPmllJkjTMYFaS1GvBYFaSJG3J0YwlSZIkSRPHmllJUs/FPrOSJGkLBrOSpAlgMCtJkjZnMCtJ6rc4mrEkSdqSwawkqfccAEqSJA1zAChJkiRJ0sSxZlaS1HvWzEqSpGEGs5KkXoujGUuSpGkYzEqSes+aWUmSNMxgVpLUewazkiRpmANASZIkSZImjjWzkqTes8+sJEkaZjArSeo9mxlLkqRhBrOSpF5zNGNJkjSdToLZSy+5dP0eO+713XmssgJY30VeFpH70B9LYT/6uA8HjTsDkrQUXXLxpet33WH3+ZSboJ/XiflyH/phKewD9HM/LDt1rJNgtqr2m8/ySS6qqtVd5GWxuA/9sRT2Yynsg7SQbGaspWy+5SZYGtcJ96EflsI+wNLZD82PzYwlSRPAYFaSJG3OYFaS1HuGspIkaVhfgtlTx52BBeA+9MdS2I+lsA/SgnEAKGkLS+E64T70w1LYB1g6+6F5SFWNOw+SJM3oYY98aJ33H/+yoGned7cDL7ZvlSRJk60vNbOSJM3CmllJkrS5ZePceJKnJ/lmkjVJXj/OvGytJKuSfDbJFUkuT3L8uPO0tZIsT3Jpkn8ed162RpK9k3w0yTeSXJnkMePO03wleU17Hn09yYeT7DLuPEl9kAV+SZPKslN/THq5CSw7afKNLZhNshz4C+AZwGHA85McNq78bIMNwIlVdRhwBHDchO4HwPHAlePOxDZ4J/DJqvoZ4GFM2L4kOQB4NbC6qn4OWA4cPd5cSX2w0KGs4awmk2Wn3pn0chNYdtKEG2fN7OHAmqr6dlXdAXwEOGqM+dkqVXVtVV3Svr+F5kfggPHmav6SrAR+CXjvuPOyNZLcA/gF4DSAqrqjqm4ca6a2zg7Arkl2AHYDrhlzfqSxS5oBoBbyJU0oy049MenlJrDspKVhnMHsAcDagc/rmLAfsmFJDgYeAVw45qxsjXcArwM2jTkfW+sQ4HrgfW2Tn/cm2X3cmZqPqroaeCvwPeBa4Kaq+tR4cyVJ6hHLTv3xDia73ASWnbQEjLXP7FKSZA/gLOCEqrp53PmZjyTPAq6rqovHnZdtsAPwSOA9VfUI4CfARPUlSrIPzR32Q4D9gd2TvGC8uZIkqRuTWnZaIuUmsOykJWCcwezVwKqBzyvbaRMnyY40P8ZnVNXZ487PVngs8Jwk36FpsvTkJB8ab5bmbR2wrqqm7ux+lOYHepI8Bbiqqq6vqjuBs4GfH3OepF7IAv+TJpRlp35YCuUmsOykJWCcweyXgUOTHJJkJ5rO2ueMMT9bJU3nq9OAK6vqbePOz9aoqpOqamVVHUzzPXymqibqrlZVfR9Ym+RB7aQjgSvGmKWt8T3giCS7tefVkUzYQAxSVwxmJcCyUy8shXITWHbS0jC258xW1YYkrwLOoxl57PSqunxc+dkGjwWOAb6W5CvttJOr6tzxZWm79TvAGe0F/tvAS8acn3mpqguTfBS4hGakx0uBU8ebK0lSX1h2UgcsO2miparGnQdJkmb08P/xsPr0f5y3oGnut+t9L66q1QuaqCRJWlRjq5mVJGlUPk5HkiQNczRjSZKGJDk9yXVJvj4w7c+TfCPJZUk+lmTvgXknJVmT5JtJnjaWTEuStJ0xmJUk9dxCD/80Ui3v+4GnD007H/i5qnoo8F/ASQBJDqMZBObB7Tp/mWT5Qu29JEmansGsJElDqurzwI+Gpn2qqja0Hy+geSwKNM84/EhV3V5VVwFrgMMXLbOSJG2nDGYlSRMgC/zaZi8FPtG+PwBYOzBvXTtNkiR1yAGgJEm9tmDh5+ZWJLlo4POpVTXS4xyS/D7NIyDOWPhsSZKkURnMSpJ6r4PRjNdvzaN5krwYeBZwZN39bLurgVUDi61sp0mSpA7ZzFiSNAHG38w4ydOB1wHPqapbB2adAxydZOckhwCHAl/aqo1IkqSRWTMrSdKQJB8GnkjTHHkd8Aaa0Yt3Bs5va4ovqKpXVNXlSc4ErqBpfnxcVW0cT84lSdp+GMxKknqvgz6zs6qq508z+bRZln8T8KbuciRJkoYZzEqSJsBih7OSJKnvDGYlST2XLgaAkiRJE84BoCRJkiRJE8dgVpIkSZI0cWxmLEnqteZhOjYzliRJmzOYlSRNAINZSZK0OYNZSVLvGcpKkqRhBrOSpN5zNGNJkjTMAaAkSZIkSRPHmllJUs8FGxpLkqRhBrOSpN4zlJUkScMMZiVJE8BwVpIkbc4+s5IkSZKkiWPNrCSp3+JoxpIkaUvWzEqSJEmSJo41s5KkXmvGMrZmVpIkbS5VNe48SJI0oySfBFYscLLrq+rpC5ymJElaRAazkiRJkqSJY59ZSZIkSdLEMZiVJEmSJE0cg1lJkiRJ0sQxmJUkSZIkTRyDWUmSJEnSxPl/RnNtj1ZHBu8AAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "Err_G7=error(xdata7, poptG7[0], poptG7[1],poptG7[2], poptG7[3], poptG7[4], recorteG7.ravel(), inc=1)\n", + "poptG7E, pcovG7E = curve_fit(gauss2d, xdata7, recorteG7.ravel(), p0=[2,2,1,1,1],sigma=Err_G7)\n", + "estrellaG7E=gauss2d(xdata7, poptG7E[0], poptG7E[1],poptG7E[2], poptG7E[3], poptG7E[4])\n", + "FWHMG7E=FWHMG_I.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptG7E[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 7 fotografÃa (Banda Verde)\")\n", + "plt.imshow(recorteG7, plt.get_cmap('Greens'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 7 a partir de la gaussiana con incertidumbre (Banda Verde)\")\n", + "plt.imshow(estrellaG7E.reshape(10, 10), plt.get_cmap('Greens'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 8 con incertidumbre (Banda Verde)" + ] + }, + { + "cell_type": "code", + "execution_count": 847, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8MAAAFSCAYAAADW0A35AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABHaUlEQVR4nO3de5wkVXn4/88zszful50FYXcBo2iCF5CsiNEoBqNAjGsSk0AigprgBRPND2PU5Os1JsZEjcYowUAAg1wSJSEJXogxIaigQAC5iKwIssvCutzvuzvz/P6oGujt7Znp09M909Pzee+rX9td9VSdU9U1XefUOXUqMhNJkiRJkuaTodnOgCRJkiRJM83KsCRJkiRp3rEyLEmSJEmad6wMS5IkSZLmHSvDkiRJkqR5x8qwJEmSJGneWTDbGZAkqZdiZEmyaay7K31g81cz84jurlSSJM0kK8OSpMG2aQyet0d31/mf60Ymmx0RK4EzgT2BBE7JzE/W834POBEYBf4jM99ZT3838IZ6+u9n5le7m2lJktTIyrAkafBFzHSKW4CTMvPKiNgJuCIiLqKqHK8GDszMxyJijyp7cQBwNPAMYG/gPyPiaZk5OtMZlyRpvrAyLEkabMGMj5CRmeuB9fX7ByLiBmA58LvARzLzsXrehnqR1cA59fQfRcQa4BDg2zObc0mS5g8H0JIkDb6I7r5gJCIub3idMHHSsR/wHOAy4GnAz0fEZRHxPxHx3DpsOXBbw2Jr62mSJKlHbBmWJA2+7veS3piZq6ZMNmJH4IvA2zPz/ohYAOwOHAo8FzgvIn6q67mTJElTsmVYkqQeiIiFVBXhszLzS/XktcCXsvIdYAwYAdYBKxsWX1FPkyRJPWJlWJI04LrcRbqNwbgiIoBTgRsy8+MNs/4FeEkd8zRgEbARuAA4OiIWR8STgf2B73R3P0iSpEZ2k5YkDbZZGEALeAFwLPC9iLiqnvYe4DTgtIi4FtgEHJeZCVwXEecB11ONRH2iI0lLktRbUZ2DJUkaTLHr4uRFe3V3pf926xXt3DMsSZL6ly3DkqTBN+OPGZYkSf3Oe4YlSZIkSfOOLcOSpMEWwJBNw5IkaWtWhiVJg8+6sCRJamJlWJI0+Np4HJIkSZpfrAxLkgafdWFJktTEAbQkSZIkSfOOLcOSpMHmAFqSJKkFK8OSpMFnXViSJDWxMixJGnDhAFqSJGkb3jPcIxGxX0RkRCyoP/93RPzODKX9pxGxMSLumIn0piMi9oyIiyPigYj4WD3t9yPi/Ijy0mtEvDEi/rrrGW0v7fdHxD/ORtpTqY/Fp7YR9+yI+NZM5EmSZtNsnqf7SUTsExEPRsTwNNZxekT8aYfLtnV+6ncR8eWIOG6289ELEXFyRPy/2c4HQH2s/tQE846PiEt6lG7Hx/g00vxmRDxnJtNsSPuWiHjpbKQ9mZLvOCI+FhFvnipu4CvD9Zf5SP3HM/76dBvL9c2Pc0QcFBH/GxH3RcTayX6QImIf4CTggMx8Uhvrnu2D/QRgI7BzZp4UEfsDrweOz8wsWVFELAL+BPjL+vN4QWf8e78zIj4TEQu7vRHTUZ9kzmwx/cCIeCwidp+pvGTmNcC9EfHLM5Wm1HPj9wx386WumW/n6dnWfN7PzB9n5o6ZOTqb+ZrrMvPIzDxjtvPRC5n5psz80Eyn2+oCVX2s3jzTeZlpdTnsgcz8v/rz+yNic8Nv5A0R8WuznM2tRMSSiLg3In6hxbxPRMQ/z3CW/gp4T10/mNDAV4Zrv1z/8Yy/3jrdFY5fSZ4hXwAuBnYHXgy8JSJeOUHsPsBdmblhpjI3kTb30b7A9Q0V358Bfisz7+sgydXA9zNzXdP0XTNzR+BZwPOBEztYdy+dAfxqROzQNP1Y4N8z8+52V9Sl4/Is4I1dWI/UP6LLL3XbfDpPz4pO9kdU5ktZUX1irh93XfrteRPw+aZp547/RgJvB/4xIvbsQlpdkZmPAucCr22cXvc6OYaqvNu26e7HzFwPfB+Y9Ld4zh5o3RART42I/6mv5G6MiHPr6RfXIVfXV19+MyIOq6/2/lFU3Y//ISKGIuJdEfHDiLgrIs5rpxUvIp4SEf9VL7MxIs6KiF0nWWQ/4KzMHM3MHwKXAM9osd6XAhcBe9f5Pr2e/sqIuK6+WvPfEfEz9fTPU1We/62Of+dk8fW8gyPi/6Lq1vxPEXFu1N1GJthHu0XEv0fETyLinvr9ijr+dOA44J11+i8FDgbe05DeP0XEHfV3dHFEbLPdDY4E/meimfUFgouAAxrWP/79PRAR10fErzTMOz4iLomIv6rz/qOIOLJh/pPr4+eBiLgIGGn6PtrKe2Z+G1gH/FrDssPAbwFn1p9fX18FvCcivhoR+zbEZkScGBE3ATfV0/4wItZHxO0R8fqmfC2ut+nHUbWWnxwR2zWE/DdweEQsnmhfSnNORHdfmhGDdp7uZN31b/zvR8TNdfxfRl1RmGpdUbUC/1FEXAM8FBFn03Tej9bdxT8cEd8EHga26ZIaEc+JiCvr89+5wJKm+a+IiKuiKkd8KyKePcm+a1zul6IqY9wfEbdFxPuniH9nw7nud6Kht8Bk6xo/VprW9XiLeUQcEhGX18veGREfr6cviYh/rPf3vRHx3agrI9HQitnm9/KOiLimPrbPjYgl9bzdYoJy0wT7YGVEfKmOvyvqXhX1sf8nEXFrRGyIiDMjYpd63vh3flxUZYGNEfHHk6Rxemxb1jupXu/6iHhdQ+x2UXVPvbXetkuiLmNExKH18XBvRFwdEYc1LNd83H0e+Hng09HQW6TpO14aERfU39N3gKc0rG+r47rFd3R8VN2QP1Hn5+aI+Ll6+m31tjV3ex+JiIvq4/5/YuqyWKd/B4uAX2DyMu1XgQfGt3mq46be9g/V2/xARHwtIkYa5h9bf2d3NR8LUf09fLvejvUR8emYuLX1DODXImL7hmkvp6pzfjkidomIU+v1rIvq1s7hOp3G7+Qu4P2Tfcf1Mj9dfyd3R8SNEfEbTfn5b+CXJtqPMM8rw8CHgK8BuwErgL8ByMwX1fMPrK/AnFt/fhLVVd99qbr3/h7wKqqrwHsD9wB/20a6Afx5vczPACuB908S/9fAayNiYUQ8nap18z+bgzLzP6kqhLfX+T4+Ip4GnE11BWkZcCHVSXBRZh4L/Jgnrsh/dLL4+sA/Hzi93g9nA7/C1pr30RDwD/XnfYBHgE/X+T2eqhXyo3X622wT8GVgf2AP4Mo6fiLPAm6caGZE7E31B3lpw+QfUv3Y7gJ8gOoq214N859Xr3ME+ChwasTjJeEvAFfU8z5EVbHvNO9nsvWVtJcCC4ELI2I11QWCX6X6Tv6Xat83elWd1wMi4gjgHcAv1uk3d4P/CPA04CDgqcBy4L3jM+uW9c3A0yfJrzS32DI8Vw3UebrDdUN1rl1FdcF4NdXtRO2u6xiqwuCumXkMTef9CdI7lmr/7QTculXmq7LAv1BVVnYH/omtL+Y+BziNqofRUuDvgAuivQusD1GdC3et8/zmiHhVq8D6XPf/UZ3jngoc1um6Wvgk8MnM3Jmq8H1ePf04qvLCSqptexNVuWab7DH19/IbwBHAk4FnA8fX0ycsN22TSFWJ+Heq72g/qvP5OfXs4+vXS6guaOzYYj0vpDrXHw68NxoaP6bwJKr9sBx4A/C3EbFbPe+vgJ8Ffo7q+HgnMBYRy4H/AP60nv4O4IsRsaxhvY3H3fFU5Z23TtJb5G+BR4G9qP4mXt8iZjLPA66h+i6/QLXvnkt1PL2GqiK+Y0P8b1P9Jo0AV7Ftue5VPFEWm87fwf7AWGaubTUzKr8ELAKurye3c9z8FvA6qnLpIqrvgIg4APgs1f7fu85v4wWYUeAP6u1+PtXx8pZWecvMbwHrqcqs444FvpCZW6jqEFuo9vFzgJcBjV3hnwfcDOwJfJhJvuOoelReRPXd7QEcDXym3p5xNwAHtsprY6YH+gXcAjwI3Nvw+t163pnAKcCKFssl8NSGz4cBm4AlDdNuAA5v+LwXVSViAdWPUgIL6nn/DfzOBHl8FfB/k2zDzwFr6oMngQ9MEnsYsLbh8/8Dzmv4PETVCnlYw/55aTvxwIvq99Ew/xLgTyfaRy3ydxBwT8Pn08eXrz+/H/jHCZbdtd7+XSaYfxNwRMPn8e9g/HtP4FtU9ydPlL+rgNX1++OBNQ3ztq/X8SSqH5otwA4N878wjbzvUx87K+rPZ1GdiKGqVL+h6Tt5GNi34Vj9hYb5pwEfafj8tDrmqVQn6IeApzTMfz7wo6b8rANe1Mu/TV++ZurF7ouT1+zf3RdcPtvbNSgv5tl5uoN1Z9O57S3A19tZV71vX99ifzee91vthw9Okp8XAbezdVngWzxRFvgs8KGmZW4EXjzJ9j11gnl/DXxignmnAX/e8Pmp7a6LprJS836h6vL+AWCkKeb19bY+u8X62z5+6rRe0/D5o8DJEyx7EA3lpqZ5zwd+Mv7dNc37OvCWhs9Pb3Hsr2iY/x3g6AnSOZ2ty3qPNKYJbAAOpSqfPEJ1kap5HX8EfL5p2leB4yY67lrtU54ozwzX2/PTDfP+DLik1XHdvD6qMt5NDfOeVcfv2TDtLuCghn1wTsO8HakqiSsb8tVYFiv6O2iKewFwR9O091P9vt1LVY4bBd45yTq2Om7qbf+Ths9vAb5Sv39v07btUKf10gnW/Xbg/EnS/hPga/X7nanKrM+hquA+BmzXEHsM8I2G7+THDfOm+o5/E/jfprT/Dnhfw+dfBG6ebH/Pl5bhV2Xmrg2vz9XT30lVOfhOVN2Cp7qi9JOs+sOP2xc4v+42cC/VSXeU6sueUFQjKJ9Tdw+4H/hHmrrYNsTuDnwF+CBVN6SVwMsjouUVmRb2puGqbmaOAbdRXc0rjd8bWJf10VW7rWn5rfZRRGwfEX9Xd724n+oEs2u0MWplRAxHxEei6t52P9XJAybYV1RX/HdqMX0kM3elqsx+k+rHdzyN1zZ0YbkXeGbT+h8fkTszH67f7kjdwpCZDzXEPr7fSvOemT+m2jevqa9Cvoq6izTVcfbJhjzeTXXcNn6Hjd/D3k2fG6/qL6v3wxUN6/tKPb3RTlQ/uNLcFziAVv+bN+fpknU3aP5N37tgXc3n6XZMtkyrskDjeWZf4KTxfV7v95XjeZ5MRDwvIr4RVVfP+6haXifaN83nuq3yXLiuZm+gupD8/ai6Qr+inv55qjLEOVF1zf5otBiUs83vpfGJHw9TlS1Ky00rgVuzanFrtlV5rn6/gK2P/ZZ5aMNdTWmOLztC9TfwwxbL7Av8etNx8UKqC1TjSo7VZVTbM1F5px13Nrx/BCAzm6c17pPH08rMB6nKY3u3ms80/g6YuDx7Xv37uANVj4XXRsQboe3jZqLve6u/pbpse9f454h4WlTdru+o1/1nTP639HngJXWPzFcDP8xqILB9qXo9rm/YJ39H1ao7rnEfTvUd7ws8r2kf/zZVo9W4Kcuz86Uy3FJm3pGZv5uZe1N1Y/hMTD4yZTZ9vg04sukEviS3HcCp2Z/V63pWVl1wXsPEHe9+ChjNzDMzc0tWXSbOAY6aavtqt1MdLEDVtYLqj3E8j83bNFn8emB5PW3cyqblm9d3EtXVyOfV2zreta2d0uRvUXUHeylVd5z9plj2GqqTV0uZ+QjVlb1DI2Ikqns9Pge8FVhaV5ivbTNv64HdYutBr/aZRt6hus/iWKruZj/KzCvq6bcBb2w6zrbLqivK45vXlLfG76UxXxupftyf0bCuXbIajKHKYNWVaRGTdDmX5hy7Sc9JA3qeLln3uObf9NsL1tW8T5o/tzJZTKuyQON55jbgw037fPvMbL69p5UvABdQtbbtApzMxPtmPVt35Wwuj0y2roeoLgwDj3c3fvyicGbelFWX8j2AvwD+OSJ2yMzNmfmBzDyAqjfAK2gaLKjWyXc8rqTcdBuwT7QeaGir8hxP9Gi7s0Vst2yk6tL6lBbzbqNqGW48LnbIzI80xJQcqz+h2p6JyjvjjRWN965O+ZSVKTyeVt1wsTtP/C3C1vmdzt/BmiqJmKjhisy8harn4PjTP6ZT3t6q3BjV/b5LG+Z/lmogqv3rdb9nsvVm5q1UXdxfQ1WuPaOedRtVy/BIwz7ZOTMbx1do3IdTfce3Af/TtI93zMzGxyn9DHD1JNs+vyvDEfHr8cTN5fdQfQFj9ec7aTFoRJOTgQ/XlSoiYllU93dOZSeqLmH31Qf6H04S+4Nq1fFbUQ2G8CSqbgHXtJEOVPe5/FJEHF5fvTyJ6kAcr0g1b+dk8d+muqL+1ohYUG/rIW1s6yNUj+vZHXhfm/keX/YxqqtT21OdXCZzIdV9YS1FdZ/GsVRXxu6i6gaSVH9sRDUAxDPbyVj9h3458IGo7qd+IU/8IHWSd4AvUv2Rf4CtR9w7GXh31ANwRTX4wK9Psp7zgOMj4oD6B+3xfV639H8O+ERE7FGvb3lEvLxh+RcD/5WZj7WRZ2lucACtOWlAz9Ml6x73h1ENkLMSeBvViK2drqud/TaZb1MVUH8/qnukf5WtywKfA95Ut8xGROwQ1WBWrVq6mu0E3J2Zj0bEIVQXlidyHvC6iPiZ+lzX/Dirydb1A2BJna+FVN06H7+XMyJeExHL6nPmvfXksYh4SUQ8q64830/VhXOMbXXyvTQu22656TtUFZmP1Pt5SUS8oJ53NvAHUQ32uSNVOeTcCVqRu6LeX6cBH4+IvaPqJff8uvz1j8AvR8TL6+lLIuKwmGRwMCY5VrN6FNiXqAZZ2j6q+0SPa5j/E6qGnNfU6b2e1pX0EkdFxAujum/+Q8ClmTlRa3bHfweZuYlqzIHJyrQrqO45v66eNJ3y9j8Dr2jYtg+ydR1xJ6rj/cGI+Glgymf3UpVj30rV5fuservWU40B8bGI2Ln+vXxKRLTczqm+Y6r75Z8W1eBfC+vXc2Pre99fTHXRYELzpTI8Pmri+Ov8evpzgcsi4kGqq4dvyyeeXfZ+4Iyomt2bRyYb98l6ua9FxANUAzM9r438fIBqEIz7qAYT+NJEgZl5P9VN6H9AVRC4iqr1sq0Hf2fmjVRXZv6G6ordL1MNnLGpDvlz4E/q7XzHZPH1Mr9K1X3o3jru36kqfRP5a2C7el2XUnUla9eZVN0h1lENEHDp5OH8G/DTUXXLaHRv/R3fSXV/zSuzcj3wMaoT+51U94t8syB/v0X1fd9N9aPT+Kzg0ryPd0v5ItWV7rMapp9PdWX6nKi6p1xLNVDaROv5MtV+/y+qq4v/1RTyR/X0S+v1/SdbD5b121QFSGlwDHX5pW6bT+fpttfd4F+pBmy8ql7m1Gmsa6vzfhvxW2koCxxPdf77zcZ0M/Ny4HepBu+5h+p8c3ybq38L8MH6u3ovTwxc1SofXwY+BXyjTmP8PDteJplwXVk9vvEtwN9TnacfAhoHKzoCuK4+7j5JdS/tI1Qti/9MVTG4gWq03+bH30Bn38u4v6bNclNdWfhlqntof1xvw2/Ws0+r83Yx8COqFtvfK8hHp94BfA/4LtXx8RfAUF1pXE3VqvgTqla9P2TyX9RPAq+OanTkT7WY/1aqrr53UPX8+4em+b9bp3EX1eju32J6vkBV3rubapCw10wUOM2/A6i6Dx/bNO03x38jqfbvN6mONZhGeTszr6N67OgXqC6u3MPWfw/voCrzPkBVyT+3eR0tfJGq5fzrdSV43Gt5YuCve6j+nvbadvHHTfgdZ+YDVANwHU3VQn8H1fG2GCCqAXEPoBrwb0KRW93yIZWJiMuoBn1o/gGaFRFxAnBAZr59tvMyF0U17P/fZebzZzsvUrfEyJJk9X7dXelpN16Rmau6u1JpWxGRVN0T18x2XvpZ3Rp0LbC4l62f0kyJ6jFTb83qflsVioiPUd2v/JnJ4mbygfQaAHVXhhuprjz9NtXjAEpae3sqM0+Z7TzMZZl5DVXruTQ47NosDaSI+BWqW6S2p2oR+jcrwhoUmfmCqaM0kcw8qZ04O3up1NOpbkS/l+p+4lc3dX+QpP7jAFrSIHoj1WN9fkg1pkk79zJK0uNsGVaRuuXV1ldJc4stw5qjMtODdwKZecRs50HS3GZlWJI0+OwHJUmSmlg8kCRJkiTNO33ZMrx0ZGnus2/zs9NnV+mY28NRfp2hdGTvLM5VufIUSpco7/01VHgNZ6zlIwAnV/pdDBV2wezkmxvL0aL4KNxPnRyzJfv2tltv466Nd9vdTzMvsJu0BtrIyEjuu98+s50NSV125RX/tzEzl812PgZZX1aG99l3Jd/49td7m0hhZWessPqy/YIdiuIBNo9tmjqowehY4YCJHRQGx7KsIjlaOIjjcAwXxQMsHt6uKP6x0UeK09g8trkofvHQ4qL4TiroD2y+ryh+yfD2RfGdHLOPFuzbX3yBt3ZpFlkX1gDbd799+OZll8x2NiR12XYLdrh1tvMw6PqyMixJUlcNWRuWJElbm9Y9wxFxRETcGBFrIuJdLeYvjohz6/mXRcR+00lPkqS5ICJWRsQ3IuL6iLguIt7WNP+kiMiIGKk/R0R8qj5fXhMRB89OztVrlp0kqX90XBmOiGHgb4EjgQOAYyLigKawNwD3ZOZTgU9QPRBdkqSZFdHd19S2ACdl5gHAocCJ4+fIiFgJvAz4cUP8kcD+9esE4LPd3Hz1B8tOktRfptMyfAiwJjNvzsxNwDnA6qaY1cAZ9ft/Bg6PcBQTSdIMih68ppCZ6zPzyvr9A8ANwPJ69ieAd7L1WHqrgTOzcimwa0Ts1ekmq29ZdpKkPjKdyvBy4LaGz2t54kS/TUxmbgHuA5a2WllEnBARl0fE5Rs33jWNbEmS1CiI6O6rKPWqm+tzgMsiYjWwLjOvbgpr55yqua9rZafGctNPfrKxR9mVpMHWN88ZzsxTMnNVZq4aGWlZX5YkqSM9qAyPjFdE6tcJE6S7I/BF4O1UXaffA7x3prZbg6ux3LRs2chsZ0eS5qTpjCa9Dmh8GPCKelqrmLURsQDYBbDZV5I0123MzFWTBUTEQqqK8FmZ+aWIeBbwZODqukK9ArgyIg6hvXOq5j7LTpLUR6bTMvxdYP+IeHJELAKOBi5oirkAOK5+/2rgvzILH/ArSdI0zfT4WfU9nqcCN2TmxwEy83uZuUdm7peZ+1F1kT04M++gOl++th5V+lDgvsxc36v9oVlj2UmS+kjHLcOZuSUi3gp8FRgGTsvM6yLig8DlmXkBVUHg8xGxBrib6kdfkqQZE8BQl8cfGp065AXAscD3IuKqetp7MvPCCeIvBI4C1gAPA6+bdibVdyw7SVJ/mU43aeqT+oVN097b8P5R4Nenk0avjNF/F1lHx7YUxW/JsviFsagoHmConWFTG2zOseI0SmVxGuWF4PLt3lwUv3hoSVE8wMjiPYviR7ON4npjfOHxBzAcJT8hDoaqWRIUD3o1XZl5CVMc9HXr8Pj7BE7scbbUB+Zy2UmSBs20KsOSJM0FPplGkiQ165vRpCVJkiRJmim2DEuSBlz5s4ElSdLgszIsSRp41oUlSVIzK8OSpIEWeM+wJEnalpVhSdJgm4XRpCVJUv9zAC1JkiRJ0rxjy7AkaeCFz7mWJElNrAxLkgae3aQlSVIzK8OSpIFnXViSJDXznmFJkiRJ0rxjy7AkaaAFwZBNw5IkqUnfVoZ7PdjJUOH6x8ii+E2jjxXFAzw2Vr5MiQU5Vr5QYQGydL92YqxwOx4bfaQ4jQVR+KeRZcfH5rFNZesHhoaXFMUPx3BxGqUWRPudS2bi2JAm4j3DUn/LwvNoR2kUluVmwkwM7ufvnzSxvq0MS5LUFT5nWJIktWBlWJI08KwLS5KkZg6gJUmSJEmad2wZliQNtMBu0pIkaVtWhiVJA8/KsCRJamZlWJI04MLKsCRJ2oaVYUnSYHM0aUmS1IIDaEmSJEmS5p2OK8MRsTIivhER10fEdRHxthYxh0XEfRFxVf167/SyK0lSuYjuvqROWHaSpP4ynW7SW4CTMvPKiNgJuCIiLsrM65vi/jczXzGNdCRJ6pijSauPWHaSpD7ScWU4M9cD6+v3D0TEDcByoPkHXZKkWWVlWP3AspMk9ZeuDKAVEfsBzwEuazH7+RFxNXA78I7MvK4bafa7x0YfKV5mNLf0ICdP2JzlveKHOlim17YU7qdO9uuiocVF8cNDZX9KYzlWFA/l2z0cw8VplNo0tqnt2DGyhzmRJjdkZVh9ZtDLTpllv/nZwTkiC8+lHaRQvESpoPC3qYPfssiyZYrzhBccNXdNuzIcETsCXwTenpn3N82+Etg3Mx+MiKOAfwH2n2A9JwAnAKzcZ8V0syVJktSXulF22rrctLK3GZakATWtZr+IWEj1Y35WZn6peX5m3p+ZD9bvLwQWRsRIq3Vl5imZuSozVy0dWTqdbEmS9IQuD55lA4imo1tlp8Zy07JlLYtWkqQpdNwyHFV/iFOBGzLz4xPEPAm4MzMzIg6hqnzf1WmakiSVCsIufOoLlp0kqb9Mp5v0C4Bjge9FxFX1tPcA+wBk5snAq4E3R8QW4BHg6Cy9iUSSpGnq5B44qQcsO0lSH5nOaNKXwOSli8z8NPDpTtOQJEkaFJadJKm/9N9QwZIkdVlEdPXVRnorI+IbEXF9RFwXEW+rp/9lRHw/Iq6JiPMjYteGZd4dEWsi4saIeHnv9oYkSQIrw5KkeWCmK8PAFuCkzDwAOBQ4MSIOAC4CnpmZzwZ+ALy7zt8BwNHAM4AjgM9EzMDz0SRJmsesDEuSBt5Mjyadmesz88r6/QPADcDyzPxa5uMPDb8UGH+W4GrgnMx8LDN/BKwBDun2fpAkSU+Y9nOGJUnqZ1UFdvYG0IqI/YDnAJc1zXo9cG79fjlV5Xjc2nqaJEnqESvDkiSVG4mIyxs+n5KZpzQHRcSOVM+UfXtm3t8w/Y+pulKf1fOcSpKklqwMS5IGXE+eM7wxM1dNmmrEQqqK8FmZ+aWG6ccDrwAOb3hkzjpgZcPiK+ppkiSpR/q2Mpy0/0i9sRwrX38Hy5R4bOzR4mVGc7QoftPopuI0Si0cWlgYv6gofijKb1vfwuai+IVDi4vTGKPs+Cgd5WZBlP/pbXn8NsM2zcBjKTePtX8M+phMzaaZ7iYdVYKnAjdk5scbph8BvBN4cWY+3LDIBcAXIuLjwN7A/sB3ZjDLmkc6+T0uKZdVaZSdR0cLz7sAY4XlptL4mThvDRWOk9dJuWm4sMzRSRqFh8es3roiNerbyrAkSd0yC+WuFwDHAt+LiKvqae8BPgUsBi6qC4OXZuabMvO6iDgPuJ6q+/SJmYUld0mSVMTKsCRp4M10K0RmXgK0SvTCSZb5MPDhnmVKkiRtxUcrSZIkSZLmHVuGJUkDbbYfrSRJkvqTlWFJ0sCzMixJkppZGZYkDTzrwpIkqZmVYUnSgOvJc4YlSdIc5wBakiRJkqR5x5ZhSdLAs2VYkiQ1szIsSRpojiYtSZJasTIsSRp41oUlSVIzK8OSpIFny7AkSWrWl5XhBMZyrP34gtgn0siexj82+lhRPMBojhbFP7zlocL4h4viARYMlR0iOy/cpSh+0dCiongo/y52XLhzcRoPbX6gKH67BdsXxS8e3q4oHsqP87EoGx9v4dDConiAhQXfhZURSeoPpedRKD8HbcktRfGbxzYVxXeyzCOF5aDNubkoHmCocGzaJcNLiuI7KT+UlrUWdFAeGIrhsgUKD0HLEOqVvqwMS5LUVRakJElSEyvDkqQB53OGJUnStqZdGY6IW4AHgFFgS2auapofwCeBo4CHgeMz88rppitJUlvChmH1D8tNktQ/utUy/JLM3DjBvCOB/evX84DP1v9LkiTNR5abJKkPzEQ36dXAmZmZwKURsWtE7JWZ62cgbUnSPBc4+IrmFMtNkjRDyoa8ay2Br0XEFRFxQov5y4HbGj6vradJkjQjIqKrL2kaLDdJUp/oRsvwCzNzXUTsAVwUEd/PzItLV1KfEE4AWLFyRReyJUlSxQqs+kjXy00r91nZ7TxK0rww7ZbhzFxX/78BOB84pClkHdD4K72inta8nlMyc1Vmrlq6bOl0syVJ0uMiuvuSOtWLctOyZSO9yq4kDbRpVYYjYoeI2Gn8PfAy4NqmsAuA10blUOA+73uRJEnzjeUmSeov0+0mvSdwft39bAHwhcz8SkS8CSAzTwYupHo8wBqqRwS8bpppSpLUPu/zVf+w3CRJfWRaleHMvBk4sMX0kxveJ3DidNKRJKlTjiatfmG5SZL6y0w8WqnnkixeZjS3FMVvGSuLf3jLQ0XxALc+8OOi+Ps23VcUv/GRe4riAXZbsnNR/B7bLSuKX1YYD7BkeLui+KC8ELxkQVkaC2JhUfxYjhXFQ/lxPja2uSw+R4viAYZiuHgZaTZYGdYgy4SqDt1mfEflprJzxKaxx4riH9x8f1E8wF2PTvSo5tY2FsY/tPnhoniABUNl58XdFu9eFN9JuWm3RWVpLClOARYMlf3GDkXZnZqdlOWkdgxEZViSpMlYGZYkSc268ZxhSZIkSZLmFFuGJUmDzcchSZKkFqwMS5IGnt2kJUlSMyvDkqSBFvhoJUmStC0rw5KkgWdlWJIkNXMALUmSJEnSvGNlWJI08CK6+5o6vVgZEd+IiOsj4rqIeFs9ffeIuCgibqr/362eHhHxqYhYExHXRMTBvd0jkiTJyrAkabBF1U26m682bAFOyswDgEOBEyPiAOBdwNczc3/g6/VngCOB/evXCcBnu70bJEnS1qwMS5IG3ww3DWfm+sy8sn7/AHADsBxYDZxRh50BvKp+vxo4MyuXArtGxF5d3guSJKmBlWFJksqNRMTlDa8TJgqMiP2A5wCXAXtm5vp61h3AnvX75cBtDYutradJkqQe6dPRpJPMsbajN409VpzCptGyZcYK8gNw6wM/LooH+OF9txTFX33nj4ri19x1d1E8wG7bb1cUf/CTVhTF/+yezy6KB1i6ZPei+KHF5dd8FuWiovgxyo6P4Q6uQwVlo+FGDBenUWqoIE+O5avZ1IPRpDdm5qo20t0R+CLw9sy8vzEfmZkRkd3OmOanpP1DqaSMNW5Lbi6Kf2TLQ0Xxdzy8fuqgJjfcc2NR/PUbf1gUf8eDDxbFA2y3cGFR/P67l3UAecbSpxfFA/zUzmXxSxcvK05jqLDMUfqbnFn+U+lTBNSOPq0MS5LUHQEMzUKZKCIWUlWEz8rML9WT74yIvTJzfd0NekM9fR2wsmHxFfU0SZLUI3aTliQNuO4OntVOa0NUQacCN2TmxxtmXQAcV78/DvjXhumvrUeVPhS4r6E7tSRJ6gFbhiVJgy1gaOa7y70AOBb4XkRcVU97D/AR4LyIeANwK/Ab9bwLgaOANcDDwOtmNLeSJM1DVoYlSeqyzLyEiW+VP7xFfAIn9jRTkiRpK1aGJUkDLXAgFUmStC0rw5KkgecAGZIkqZmVYUnSwJuFe4YlSVKfszIsSRpodpOWJEmt2HNMkiRJkjTvdFwZjoinR8RVDa/7I+LtTTGHRcR9DTHvnXaOJUkqEgxFd19SJyw7SVJ/6bibdGbeCBwEEBHDwDrg/Bah/5uZr+g0HUmSpiXsJq3+YNlJkvpLt+4ZPhz4YWbe2qX1SZLUFYH3BKkvWXaSpFnWrcrw0cDZE8x7fkRcDdwOvCMzr2sVFBEnACcArFi5nLEcbTvxR7c8UpZb4OHRh4viS/IDcPtD64viAa684+ai+K9866qi+A133l0UDzC8eGFR/LpnlaWxy+KdiuIBFi9dXBS/3YLtitNYNLSoKH7x0JKyBDpopBqO4aL4MbIofqiDTEVYxdDcYNdm9aFplZ0ay00r91lZlPBYjpXlFNgytqUo/v5N9xXF3/JA+TWBS267tij+uzfdUhS/YcM9RfEA221XVkb54VPK0yi1y6Kdi+J3WlheNltYWG4azrIyTSflJqkd0y7JRsQi4JXAP7WYfSWwb2YeCPwN8C8TrSczT8nMVZm5aunI0ulmS5IkqS91o+zUWG4aGRnpWV4laZB1o1nnSODKzLyzeUZm3p+ZD9bvLwQWRoS/2JKkGRURXX1J02TZSZL6QDe6SR/DBN18IuJJwJ2ZmRFxCFXl+64upClJUlsCu0mr71h2kqQ+MK3KcETsAPwi8MaGaW8CyMyTgVcDb46ILcAjwNGZWXYjoyRJ02RVWP3CspMk9Y9pVYYz8yFgadO0kxvefxr49HTSkCRJGhSWnSSpf3RrNGlJkvpU2E1akiRtw8qwJGmgRXjPsCRJ2paVYUnSwHMEaEmS1MzKsCRp4NkyLEmSmnXjOcOSJEmSJM0ptgxLkgZa4KOVJEnStvqyMpwkm8Y2tR0/mqPFaTw2+mhR/EObHy6Kv/Ohu4viAW68Y0NR/Iar15Ul8ODmsnhgtLAEuWaH7Yrif/jU28sSAJ6665OL4kuOpXGbx8r21Rhlj4Bc2EnRvLCb51BhGtFBnsqWsTqi2WM3aQ26LDgPlcSOG80tRfEPbXmoKH7dA3cWxQNcv75smRt+8OOi+NFb7iuKB2DnRUXhpb9NP1q6dOqgJj+z+z1F8U/afq/iNLZbsGNRfOkx2Mkx20m5RvNPX1aGJUnqHh+tJEmStmVlWJI00CIcTVqSJG3LAbQkSZIkSfOOLcOSpIFnN2lJktTMyrAkaeBZFZYkSc2sDEuSBlpgy7AkSdqWlWFJ0sCzMixJkpo5gJYkSZIkad6xMixJGnBBRHdfU6YYcVpEbIiIaxumHRQRl0bEVRFxeUQcUk+PiPhURKyJiGsi4uAe7gxJklSzMixJGmhBdbLr5qsNpwNHNE37KPCBzDwIeG/9GeBIYP/6dQLw2bItlCRJnfCeYUnSYAvaas3tpsy8OCL2a54M7Fy/3wW4vX6/GjgzMxO4NCJ2jYi9MnP9zORWkqT5qW8rw0PRfqN1SezjyxQ2iidjRfH3PHp/UTzAo488VrbAY6PFaRTLsvBHHi3bhnsffbQsAeC+TfcVxe+x/bLiNLJ0wwvjx4rXD0OlD4fJsjSyg7pCyd+ewxdJvB34akT8FVUD88/V05cDtzXEra2nWRlW3yg9L45lWblp09jmoniAzZu2FMWPPrypLIGHytYPQOGFt0cfK9vuhzeX76ctY2XlxSwsP9QLlS8j9QG7SUuSBt5QRFdfwEh93+/464Q2svFm4A8ycyXwB8CpvdxmSZI0ub5tGZYkqRt69JzhjZm5qnCZ44C31e//Cfj7+v06YGVD3Ip6miRJ6iFbhiVJA2+mR5OewO3Ai+v3vwDcVL+/AHhtPar0ocB93i8sSVLvtVUZnuAREbtHxEURcVP9/24TLHtcHXNTRBzXrYxLktSeYKjLrylTjDgb+Dbw9IhYGxFvAH4X+FhEXA38GdXI0QAXAjcDa4DPAW/pxV7QzLHcJElzQ7stw6ez7SMi3gV8PTP3B75ef95KROwOvA94HnAI8L6JfvwlSRoUmXlMZu6VmQszc0VmnpqZl2Tmz2bmgZn5vMy8oo7NzDwxM5+Smc/KzMtnO/+attOx3CRJfa+tynBmXgzc3TR5NXBG/f4M4FUtFn05cFFm3p2Z9wAXse3JQZKknuqTbtKaJyw3SdLcMJ0BtPZsuKfpDmDPFjETPS5iG/VInCcALF/ZMkSSpGIRPRlASyrVs3LTyn1WtgqRJE2hKwNoZfVAsmk9YCwzT8nMVZm5aunI7t3IliRJAESX/0nT0e1y08jISJdyJknzy3Qqw3dGxF4A9f8bWsT4uAhJ0qyzm7T6gOUmSeoz06kMX0D1zETq//+1RcxXgZdFxG71ABAvq6dJkiTNJ5abJKnPtPtopVaPiPgI8IsRcRPw0vozEbEqIv4eIDPvBj4EfLd+fbCeJknSjAiCoejuS5qM5SZJmhvaGkArM4+ZYNbhLWIvB36n4fNpwGkd5U6SpC6I7gyRIbXFcpMkzQ3TGU26ZyKCBUML244fjuHiNBYMlW36Dgt2KIrffuGSoniAXXbdqWyB/Qrj1z5YFg+wuGzf7jlS9jjEZdtvXxQPMJqjRfELo/1jadyC6MM/jSwba2WscGyWoU6GcrGBTHOErbnS9AwVlrUWDy8uil+6ZJeieICR3Xcuit9j76VF8RuGy383Fm5Xtt177LFrUfxeOxaW/YAdFpaVtUrLyEAHYyn4m6z+0IclfkmSustBryRJUjP7jUmSJEmS5h1bhiVJA81nA0uSpFasDEuSBlt4z7AkSdqWlWFJ0sDznmFJktTMyrAkaaAFMOQQGZIkqYmlA0mSJEnSvGPLsCRpwIXdpCVJ0jasDEuSBp6VYUmS1MzKsCRp4A35aCVJktTEe4YlSZIkSfNO37YMl4z8uXBoUfH6Fw8vKYpPsij+WcueVhQPsGVsS1H8pudvLopfe9uGoniAHbYv20/P2n+fovgD9yjfT0/afs+i+EXDi4vTWFJ4fJSPVFt2PAGMFS9RmkZ5y1lm+2mUb7HUHYHdpDX4ouA3fCjK20IWRFmRcceFOxXF77PTiqJ4gJ9bsbEovvR54xvvub8oHmDR4rIy6TP3KivTHDDylKJ4gJElI0XxS4a3K05jKIaL4kt/k0uOb6lE31aGJUnqiigvBEuSpMFnZViSNODCVgVJkrQNK8OSpIEWdNYtVJIkDTZLB5IkSZKkeceWYUnSwHMALUmS1MzKsCRp4HnPsCRJamZlWJI04MLRpCVJ0jasDEuSBlpgy7AkSdrWlANoRcRpEbEhIq5tmPaXEfH9iLgmIs6PiF0nWPaWiPheRFwVEZd3Md+SJEl9ybKTJM0N7YwmfTpwRNO0i4BnZuazgR8A755k+Zdk5kGZuaqzLEqSND1DEV19SVM4HctOktT3pqwMZ+bFwN1N076WmVvqj5cCK3qQN0mSpi8gYqirrymTbNEyWE//vbp18LqI+GjD9HdHxJqIuDEiXt6DvaAZZNlJkuaGbjxn+PXAlyeYl8DXIuKKiDihC2lJklQouv6vDafT1DIYES8BVgMHZuYzgL+qpx8AHA08o17mMxEx3MUdoP5j2UmS+sC0BtCKiD8GtgBnTRDywsxcFxF7ABdFxPfrq6Wt1nUCcALAipXLGWOs7XwMd1BmKF1mLNvPD8CTd96vKB5gdGy0KH63JTsXxd+x391TBzXZvTCNfXfZqyh+v532K4oH2GnhjkXxS4aXFKcxVHpMzUC3ySw8BpMsS6CDbejG1TSp1wJmvGtzZl4cEfs1TX4z8JHMfKyO2VBPXw2cU0//UUSsAQ4Bvj1T+dXM6VbZqbHctHKflUV5GOrg13vB0MKi+J0X7lIUv3LHsm0AiL3K/q732nFZUfw9j95fFA+weHhRUfxeO+5RFL/fTvsWxQMsXTJSFL9oaHFxGqXlagc1VL/ouCwbEccDrwB+OzNblrozc139/wbgfKqTe0uZeUpmrsrMVUuXLe00W5IkzYSRiLi84dVOC97TgJ+PiMsi4n8i4rn19OXAbQ1xa+tpGjDdLDs1lptGRsoqO5KkSkctwxFxBPBO4MWZ+fAEMTsAQ5n5QP3+ZcAHO86pJEkdiu63DG/sYHCjBcDuwKHAc4HzIuKnup0x9SfLTpLUf9p5tNLZVF21nh4RayPiDcCngZ2ouu9cFREn17F7R8SF9aJ7ApdExNXAd4D/yMyv9GQrJEmaxBDR1VeH1gJfysp3gDFgBFgHNPYRXVFP0xxl2UmS5oYpW4Yz85gWk0+dIPZ24Kj6/c3AgdPKnSRJ0xT0pGW4E/8CvAT4RkQ8DVgEbAQuAL4QER8H9gb2p6oIaY6y7CRJc8O0BtCSJEnbqlsGD6O6t3gt8D7gNOC0+nFLm4Dj6vtGr4uI84DrqQZWOjEzy0ZUlCRJxawMS5IGXLT1bOBumqBlEOA1E8R/GPhw73IkSZKaWRmWJA28adznK0mSBpSVYUnSQIvom3uGJUlSH7EyLEkaeGHLsCRJajKzN1FJkiRJktQHbBmWJA24sJu0JEnaRl9WhjOTLWOb244fy7HiNBYPLy6MX1YU/+DmB4viAZ626/5F8ct33LsovpP9NBxlh8iSBWX7dfsFOxTFA+y4YMei+B0W7lScxlBhp4nhGC5bf2E8QAyVFearJ7YUxFMWDzBW9PSX8vVL3eIAWhp0RbcCdDC6+oLCIuOi4SVF8SNL9iiKB1hcmMae2+1ZFP/Y2GNF8VBeHigtB+28cOeieIDtCtNYOLSoOI3Sck3prSte0FSv9GVlWJKkbgmY8UcrSZKk/mdlWJI04MIBtCRJ0ja8VC5JkiRJmndsGZYkDTzvN5MkSc2sDEuSBp7dpCVJUjMrw5KkgWfLsCRJamZlWJI00AIfrSRJkrblAFqSJEmSpHnHlmFJ0mCLsJu0JEnahpVhSdLACztCSZKkJlaGJUkDz5ZhSZLUrC8rwxFDLB7eru34sRwtTmPL2Oai+M1jm4rid160S1E8wHAMF8UvGl5UFD+WY0XxUJ6nBUMLi+IXDZVtA8Ci4cVF8Z1sd+lYO+WPbSkvmA9lb1u2kuzp+iVJvRFReMGng5/7odIySuH5fSjKz3GlZY6dCstm2Un5odCCKCuKDxduc0dpFH7XUF4O8gKl+kVfVoYlSeqWwOcMS5KkbVkZliQNuGDIVghJktRkyj4pEXFaRGyIiGsbpr0/ItZFxFX166gJlj0iIm6MiDUR8a5uZlySpHZFl/9Jk7HsJElzQzs3aJwOHNFi+icy86D6dWHzzIgYBv4WOBI4ADgmIg6YTmYlSepE1I9X6tZLmsLpWHaSpL43ZWU4My8G7u5g3YcAazLz5szcBJwDrO5gPZIkSXOGZSdJmhumMzztWyPimror0G4t5i8Hbmv4vLaeJknSjKkG0Brq6kvqkGUnSeojnZ7RPws8BTgIWA98bLoZiYgTIuLyiLj8rp/cNd3VSZJU624XabtJq0NdLTs1lpt+8pONXcieJM0/HVWGM/POzBzN6gFsn6Pq1tNsHbCy4fOKetpE6zwlM1dl5qqly5Z2ki1JklrqbruwlWGV63bZqbHctGzZSPczLEnzQEeV4YjYq+HjrwDXtgj7LrB/RDw5IhYBRwMXdJKeJEkdCwfQ0uyz7CRJ/WfK5wxHxNnAYcBIRKwF3gccFhEHAQncAryxjt0b+PvMPCozt0TEW4GvAsPAaZl5XS82QpIkqV9YdpKkuWHKynBmHtNi8qkTxN4OHNXw+UJgm0cHSJI0U6oBtGzN1cyx7CRJc4NDYkqSBt5Md5OuRwveEBHbdIWNiJMiIiNipP4cEfGpiFhTjzR8cA92gSRJajJly/BsCGA4htuOXxDlmzEUZdcBSu8RG+4gT7GwLI0lw0vK1j8D97mN5mhR/IJYWJzGwsJlxhgrTmMsy5YZKr6ulIXxkFG+TIlOWs7SxjbNCTEbj0M6Hfg0cOZWOYlYCbwM+HHD5COB/evX86hGHX7ejORS81JH5YHCU9BQQTkOYGEH56Dh4cI0Cs/tMyEKy6Pl5Y3y77uT8kBpuVrqFx65kqSBNxTR1ddUMvNi4O4Wsz4BvJOtqxargTOzcimwa9NgS5IkqQesDEuSNAMiYjWwLjOvbpq1HLit4fPaepokSeqhvuwmLUlSt/RoAK2RiLi84fMpmXnKhHmI2B54D1UXaUmS1AesDEuSBl4PxkzYmJmrCuKfAjwZuLrOywrgyog4BFgHrGyIXVFPkyRJPWRlWJI04GLWH62Umd8D9hj/HBG3AKsyc2NEXAC8NSLOoRo4677MXD87OZUkaf7wnmFJkrosIs4Gvg08PSLWRsQbJgm/ELgZWAN8DnjLDGRRkqR5z5ZhSdLAm4lHyzXKzGOmmL9fw/sETux1niRJ0tasDEuSBlrQ2bM5JUnSYLMyLEkabDHzLcOSJKn/WRmWJA242R9AS5Ik9R/7jUmSJEmS5p2+bBlOYDS3tB0/FMPFaSyIhWXxw2Xxm8YeK4qH8u1YOFTW0hHRybWPLIoezrGi+I5aa0q7O2Z5GkMD0Io0Ey1hZWnM/X2quctu0tL0FP8NlRUfiA7KclHYpjNcvAmFG9GB/jtX+3up+aUvK8OSJHWT3aQlSVIzK8OSpIEWWBmWJEnbsjIsSRp8dvuTJElNHEBLkiRJkjTv2DIsSRpwPlpJkiRty8qwJGngOTqqJElqZmVYkjTwbBmWJEnNrAxLkgaelWFJktRsyspwRJwGvALYkJnPrKedCzy9DtkVuDczD2qx7C3AA8AosCUzV3Ul15IkSX3KspMkzQ3ttAyfDnwaOHN8Qmb+5vj7iPgYcN8ky78kMzd2mkFJkqYj8J5hzbjTsewkSX1vyspwZl4cEfu1mhdV6eI3gF/ocr4kSeoSR5PWzLLsJElzw3TvGf554M7MvGmC+Ql8LSIS+LvMPGWa6bU0lqPlCxWWixZE2a7KHCtLoAPDQ2V5Gi7cBijfji1sKYof6qCAOhzDRfGdFIJLl4koe2R3aTyU52mogzR6yaqIZpOVYfWRvig79dpM9MYo/bvOzJ6ufybYy0XqrulWho8Bzp5k/gszc11E7AFcFBHfz8yLWwVGxAnACQArVq6YZrYkSaqFBUj1la6UnRrLTSv3WdmbnErSgOu46SgiFgC/Cpw7UUxmrqv/3wCcDxwySewpmbkqM1ctXba002xJkiT1pW6WnRrLTcuWjfQiu5I08KbTj/KlwPczc22rmRGxQ0TsNP4eeBlw7TTSkySpI9Hlf1KHLDtJUh+ZsjIcEWcD3waeHhFrI+IN9ayjaermExF7R8SF9cc9gUsi4mrgO8B/ZOZXupd1SZKmNj6adDdf0mQsO0nS3NDOaNLHTDD9+BbTbgeOqt/fDBw4zfxJkjRNtuZqZll2kqS5ob+Gm5UkSZIkaQZMdzRpSZL6ni3DkiSpmZVhSdLA8z5fSZLUzMqwJGng2TIsSZKaWRmWJA20wMqwJEnalgNoSZIkSZLmHVuGJUkDzmcDS5KkbfVlZTgIFsTCtuO35ObiNEbHthTFj8VYWQIdFLyGCxvqF0TZ1zcUw0Xx0MF2F4Z3Yrhwu2G0OI2h0i6VfVjQTrIo3m6kGmwe39J850UxSc3sJi1JGmxRFYK7+ZoyyYjTImJDRFzbMO0vI+L7EXFNRJwfEbs2zHt3RKyJiBsj4uW92RGSJKmRlWFJ0sCLLv9rw+nAEU3TLgKemZnPBn4AvBsgIg4AjgaeUS/zmYgOuvJIkqQiVoYlSeqyzLwYuLtp2tcyc/wenUuBFfX71cA5mflYZv4IWAMcMmOZlSRpnurLe4YlSeqmHtwTPxIRlzd8PiUzTylY/vXAufX75VSV43Fr62mSJKmHrAxLkgZa9GY06Y2Zuaqj/ET8MbAFOKu7WZIkSSWsDEuSBl6/jJYeEccDrwAOz8zxId/XASsbwlbU0yRJUg95z7AkaeDNwgBa2+Yh4gjgncArM/PhhlkXAEdHxOKIeDKwP/CdaW+0JEmalC3DkiR1WUScDRxGdW/xWuB9VKNHLwYuqrttX5qZb8rM6yLiPOB6qu7TJ2Zm+QPSJUlSESvDkqSB14N7hieVmce0mHzqJPEfBj7cuxxJkqRmVoYlSQOvX+4ZliRJ/cPKsCRpoPVoNGlJkjTH9WVl+Korr9q4y+Ldb20xawTYONP5meW05+M2z9e0B32b9+3x+iVpXrryiv/buN2CHVqVm8BzmmkPbrrzIW3LTj3Wl5XhzFzWanpEXN7pcx2na7bSno/bPF/Tno/bLM0Uu0lrkE1UbgLPaaY9uOnO57TVPX1ZGZYkqbusDEuSpK1ZGZYkDTyrwpIkqdlcqwyfMg/Tno/bPF/Tno/bLM0IB9DSPOY5zbQHNd35nLa6JDJztvMgSVLPHHjws/Or3/yPrq5zr+33ucJ7xSRJmtvmWsuwJEkdsGVYkiRtzcqwJGngWRWWJEnNhmY7A80i4oiIuDEi1kTEu1rMXxwR59bzL4uI/bqU7sqI+EZEXB8R10XE21rEHBYR90XEVfXrvd1Iu173LRHxvXq9l7eYHxHxqXq7r4mIg7uU7tMbtueqiLg/It7eFNO17Y6I0yJiQ0Rc2zBt94i4KCJuqv/fbYJlj6tjboqI47qU9l9GxPfrfXp+ROw6wbKTfj8dpPv+iFjXsE+PmmDZSf8eOkz73IZ0b4mIqyZYtuNtlvpL9OAl9Q/LTpadelF2mq1y0yRpW3ZS92Vm37yAYeCHwE8Bi4CrgQOaYt4CnFy/Pxo4t0tp7wUcXL/fCfhBi7QPA/69R9t+CzAyyfyjgC9TlcIOBS7r0f6/A9i3V9sNvAg4GLi2YdpHgXfV798F/EWL5XYHbq7/361+v1sX0n4ZsKB+/xet0m7n++kg3fcD72jj+5j076GTtJvmfwx4b7e32ZevfnodePCz885H1nX1BVw+29vly1emZSfLTr0rO81WuWmStC07+er6q99ahg8B1mTmzZm5CTgHWN0Usxo4o37/z8DhEdMfJjQz12fmlfX7B4AbgOXTXW8XrQbOzMqlwK4RsVeX0zgc+GFm3trl9T4uMy8G7m6a3PidngG8qsWiLwcuysy7M/Me4CLgiOmmnZlfy8wt9cdLgRUl6+w03Ta18/fQcdr1381vAGd3kDdJUn+w7DQxy07TKDvNVrlporTbZNlJRfqtMrwcuK3h81q2/VF9PKb+Y7wPWNrNTNTdh54DXNZi9vMj4uqI+HJEPKOLySbwtYi4IiJOaDG/nX0zXUcz8R93r7YbYM/MXF+/vwPYs0XMTGz/66muILcy1ffTibfW3YxOm6B7U6+3+eeBOzPzpgnm92KbJUndZdnJstNslZ1mutwElp3UZf1WGZ51EbEj8EXg7Zl5f9PsK6m6wRwI/A3wL11M+oWZeTBwJHBiRLyoi+ueUkQsAl4J/FOL2b3c7q1kZlL9kMyoiPhjYAtw1gQh3f5+Pgs8BTgIWE/V5WamHcPkVzZn9ZiUuim6/E/SEyw7zb+y0yyUm8Cyk3qg3yrD64CVDZ9X1NNaxkTEAmAX4K5uJB4RC6l+zM/KzC81z8/M+zPzwfr9hcDCiBjpRtqZua7+fwNwPlU3j0bt7JvpOBK4MjPvbJG3nm137c7xbkv1/xtaxPRs+yPieOAVwG/XJ5RttPH9FMnMOzNzNDPHgM9NsL5ebvMC4FeBcyfJY1e3WZpNVoY1wCw7WXaa0bLTbJSb6nVZdlLX9Vtl+LvA/hHx5Ppq29HABU0xFwDjo+G9Gvivif4QS9T3AJwK3JCZH58g5knj99hExCFU+2/aJ5OI2CEidhp/TzU4wbVNYRcAr43KocB9Dd1jumHCK1292u4Gjd/pccC/toj5KvCyiNit7hbzsnratETEEcA7gVdm5sMTxLTz/ZSm23jP0q9MsL52/h469VLg+5m5doL8dX2bJUk9YdnJstOMlZ1mq9xUr8uyk7qur54znJlbIuKtVH+ow8BpmXldRHyQauTOC6h+dD8fEWuobm4/ukvJvwA4FvhePDFc+nuAfeq8nUx1AnlzRGwBHgGO7sbJhOo+j/Pr38wFwBcy8ysR8aaGtC+kGhVxDfAw8LoupAs8/gf7i8AbG6Y1pt217Y6Is6lGWByJiLXA+4CPAOdFxBuAW6kGJiAiVgFvyszfycy7I+JDVD9yAB/MzKKBFSZI+93AYuCiev9fmplvioi9gb/PzKOY4PuZZrqHRcRBVN2abqHe943pTvT3MN1tzsxTaXGPUze3WZI0Myw7WXaiR2Wn2So3TZK2ZSd1XXTn90iSpP500M8emF//1te6us6RJU+6IjNXdXWlkiRpRvVbN2lJkiRJknqur7pJS5LUfQ56JUmStmXLsCRJkiRp3rFlWJI0D9gyLEmStmZlWJI00AKrwpIkaVtWhiVJA69+1IUkSdLjrAxLkuYBK8OSJGlrDqAlSZIkSZp3bBmWJA0824UlSVIzK8OSpHnA6rAkSdqa3aQlSQMuiOjua8oUI06LiA0RcW3DtN0j4qKIuKn+f7d6ekTEpyJiTURcExEH93BnSJKkmpVhSZK673TgiKZp7wK+npn7A1+vPwMcCexfv04APjtDeZQkaV6zMixJUpdl5sXA3U2TVwNn1O/PAF7VMP3MrFwK7BoRe81IRiVJmse8Z1iSNNACiP64Z3jPzFxfv78D2LN+vxy4rSFubT1tPZIkqWesDEuS5oGuV4ZHIuLyhs+nZOYp7S6cmRkR2e1MSZKk9lkZliQNvB60C2/MzFWFy9wZEXtl5vq6G/SGevo6YGVD3Ip6miRJ6iHvGZYkDbyZHk16AhcAx9XvjwP+tWH6a+tRpQ8F7mvoTi1JknrElmFJkrosIs4GDqPqTr0WeB/wEeC8iHgDcCvwG3X4hcBRwBrgYeB1M55hSZLmISvDkqQBF/Sko/QkMvOYCWYd3iI2gRN7myNJktTMyrAkaeD1xVjSkiSpr1gZliTNA1aHJUnS1hxAS5IkSZI079gyLEkabMF0RoCWJEkDypZhSZIkSdK8Y8uwJGmgVWNJ2zIsSZK2FtUTHSRJGkwR8RVgpMur3ZiZR3R5nZIkaQZZGZYkSZIkzTveMyxJkiRJmnesDEuSJEmS5h0rw5IkSZKkecfKsCRJkiRp3rEyLEmSJEmad/5/lh6UEr+3aT0AAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "Err_G8=error(xdata8, poptG8[0], poptG8[1],poptG8[2], poptG8[3], poptG8[4], recorteG8.ravel(), inc=1)\n", + "poptG8E, pcovG8E = curve_fit(gauss2d, xdata8, recorteG8.ravel(), p0=[3,3,3,1,1],sigma=Err_G8)\n", + "estrellaG8E=gauss2d(xdata8, poptG8E[0], poptG8E[1],poptG8E[2], poptG8E[3], poptG8E[4])\n", + "FWHMG8E=FWHMG_I.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptG8E[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 8 fotografÃa (Banda Verde)\")\n", + "plt.imshow(recorteG8, plt.get_cmap('Greens'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 8 a partir de la gaussiana con incertidumbre (Banda Verde)\")\n", + "plt.imshow(estrellaG8E.reshape(20, 20), plt.get_cmap('Greens'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 9 con incertidumbre (Banda Verde)" + ] + }, + { + "cell_type": "code", + "execution_count": 848, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7EAAAFSCAYAAAAkbFhcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA1EklEQVR4nO3de7wdVX3///f7JIFwD3AChSQQxKAFL8A3AgpWBS+AKPx6sdACila0xQp+6ZcK7beildqftYr+VGoqqFQEEdGiRQHv9QIa7kJEUm5JCJJwSxAwl/P5/bHWTiabc9nnZK+zZ855PfPYj5w9M3vNZ2bP3nt9Zq1Z44gQAAAAAABN0NfrAAAAAAAA6BRJLAAAAACgMUhiAQAAAACNQRILAAAAAGgMklgAAAAAQGOQxAIAAAAAGmNqrwMAAGA47p8eWjPQ3UJXr70mIo7sbqEAAGA8kMQCAOptzYB08C7dLfM7y/q7WyAAABgvJLEAgPqzex0BAACoCZJYAEC9WYzgAAAANiCJBQDUHy2xAAAgI4kFANQfOSwAAMjooAUAAAAAaAxaYgEANWe6EwMAgA1IYgEA9cbATgAAoIIkFgBQf7TEAgCAjCQWAFB/5LAAACCjgxYAAAAAoDFoiQUA1Jsl9dEUCwAAEpJYAED9kcMCAICMJBYAUH8M7AQAADKSWABA/ZHDAgCAjIGdAAAAAACNQUssAKDeGNgJAABUkMQCAOqPHBYAAGQksQCAmjMDOwEAgA24JnYItufaDttT8/Mf2P6LcVivbX/O9mO2f156fZvL9vNs32J7te1352kftX3+GMv7kO0zuhnjKNb9edsf7MW6h9N+LI6w7Btsf3k84gKAOujV73Xd2H657bs2s4wx7bvR/E7Vne07bL+y13GUYPtbtt9cgzj2sP2k7SlDzD/X9hcLrbv494Ptn9g+oOQ6hln3fbZf3Yt1D8f2W2z/uMNl/9X2X460XO2T2PxmPJ0P9tbjkx28Lmw/dzxiHIntl9n+eU70brN92DCLHybpNZJmR8RBHZTd6+08S9L3I2K7iPiE7ZdLeomk/zPagmzPlHSypM/k56+0PVB535fZfn9Xo+8C29+2/YFBph9r+6Hx/FGPiG9I2s/2i8ZrnUBxrWtiu/lA103C3+ueat9vEfHfEfG8XsY0EUTEfhHxg17HUUJEHBURXxjv9bYnVhHxQERsGxHrxzuW0my/QdLqiLg5Pz/X9trKd+Ii23/U4zA3YXu67cdtHz7IvI/ZvmKcQ/qIpHNsbzHcQrVPYrM35IO99XjX5hY4XomF7Z0kfUPSv0iaIenDkr5he8chXrKnpPsi4rfjEd9wOtxHe0q6o/J8L0l/GhFrx7DKt0i6OiKerkx7sPW+KyX4b7N93BjKLukLkk60n9Xf8SRJl0TEuk4L6tJxeamkU7tQDlAf7vIDpUym3+ueGMv+mAgtpGieph93Y4z/nZL+o23alyt12TMkfdH2rpsbX7dExDOSvqzUkLRBbik/Qame27HNfd8jYrmkX0l643DLNSWJHZTt59r+oe0nbK9sdaO0/aO8yK35rMef5la9pbb/1vZDkj5nu8/2e23/j+1HbF+ef8RGWu/etr+XX7PS9iW2Zwyx+MskPRQRX4mI9RHxRUkrJP3hIOW+TdJnJb00x/3+PP3tthfbftT2VbZ3H2o7h1s+z3ut7bvyPvt03n9/kee9xakLxMdsPyLp3OG21fb3JL1K0ifz+veRdLikv8rzd7T9TdsrnLpHf9P27GF27VGSfjjUzIi4V9JPJe1b2Z6P215ie5XtG51aglvzzs3v6cX5rPodtudX5h9g+6Y878uSplfmjSb2r0vaWVJ13TtKOkbSxcMdZ97YBettth+Q9D3bU2x/JO/veyS9vroy2zvYvtD2cqfW6Q960y45P2h/DdB4dncfGFcT7fc6l32Q7Z85tWAst/1JD9FyUPmuP9X2g3n5v+m0rPza02zfLenu4fZb5TX35X14m6TfepCKpe3X2P5Vfl8+qbZTPLbf6tRy9Jjta2zvOcS+ay/3lPy61bbvsf2OYZad4tR9cKXte22/y5t2Dx+yLA/SRdGVFmrbR9u+M792WWuf2+7Pv+uPO9WV/tt2X2W/vXoU78s7bd+dl/mUnb5gRnnsyfZ+tq/L8fzG9jl5+pa2z8/HzYP57y3zvNZn5UzbD+cYTxlmHRu60rb2nVN947G874+qLLuT0+VtD+b5X6/MO8bpUrLHbf/Uld5fgxx3l0raQ+mE0JO2z/KzLwHYy+n7YbXt6yT1V8rb5Lge5D061/ZXbH8xv/522/vYPjvvkyW2X9u2K/Z26nGxyvZ/epg6WZ7e0ecgHxuHa/i67DWSVkvaO79mRw9T38zv2T861c9X277WdnX/nGT7/nyc/V1bPB1/Ryklqn9ke+vKtNcp5Yrf8jB1Tw+eP+zslIOscro8cu+22J5fOd7vsv2mtnh+oBHqso1OYiX9o6RrJe0oabak/0+SIuIP8vwX5zMfrWsEf0/STkqth6dK+mtJx0l6haTdJT0m6VMdrNeSPpRf8/uS5kg6d4Tl25+/oH2hiLhQ6QzOz3Lc73Nq2v+QpDdJ2k3S/ZIuG2o7h1s+H/RXSDpbKem6S+lHu+pgSfdI2lXSecNta0QcLum/Jb0rr//XbWX1Sfqc0v7eQ9LTkobrWvbCHNOgbM+TdKik6yuTfyFpf6X39UuSvmJ7emX+G/P2z5B0VWv9+UP8daWzZTtJ+oqkaveOjmPPLceXa9MzWG+S9KuIuFWdHWevUNq/r5P0dqUE+ABJ8yX9cduyn5e0TtJz8zKvlVS9vmORpLm2tx8sXqCRaIltugn1e52tl/QepQr3SyUdoXwSdxivkjRP6Xv7b72xi2UnZR2n9Bu97zD7rd0JShXBGe29gnKd4EpJf5/X+z9Kv7Gt+cdKOkcpiZ+p9Ht/6Qjb1/Kw0u/Y9pJOkfQx2wcOsezblU5i7y/pwLydYy2r3YWS3hER2ym9j9/L08+UtFRpu3ZV2s4Y5PWdvC/HKF1G9SKl3/7X5ekdH3u2t5P0HUnfzss/V9J38+y/k3SI0v55saSDlN6zlt+TtIOkWZLeJulT7rz3wMFK9a5+pZ4HF9obzvL9h6StJe0naRdJH8uxHiDpIknvUKpLfkbSVc6JdVY97k6Q9IA29tL48CBxfEnSjTmOf5Q02ut235Dj3VHSzZKuUarHzZL0gRxj1cmS3qpUT14n6RNt8zfUyUb5OZgnaSAilg4208nrJW0h6c48uZP65p8pHfu75Ne2TsbsK+kCpZ5/uyu9H9UGl46/oyLip5KWa9OTdidJ+lL+7vi8hq97tucPn5L0jNI+fmt+tPbDNpKuU3rfd5F0vKRP5+1pWaR0vA8tImr9kHSfpCclPV55vD3Pu1jSAqXrR9tfF5KeW3n+SklrJE2vTFsk6YjK890krVUatXluLmNqnvcDSX8xRIzHSbp5iHk755hPkDRN6YM5IOkzQyz/Fkk/rjy/UNKHK8+3zTHOHWI7h1xe6UP7s8o8S1rS2q687gdGeD822db2/aJ0kH9wiNfuL+mxYcpeK+n5be/ZQN5/q/K2Xilpi2HKeEzpR11KPxbfqczbV9LT+e8/kPSgJFfm/3QzYj8sxzk9P/+JpPeM4jh7TmX+9yS9s/L8ta1jUenL4XeStqrMP0HpuuTW82l5+T1Kfz558BiPh3baMnTivO4+pIW93q6J9tAk+70e5PVnSPraEPNaMVZ/4z4s6cJOysqvPbyD/ba07f146zDxnizp+spzKyV2rTrBtyS9rTK/T9JTkvYcZvumDrGur0s6fYh531NKNFvPX91pWWqrM7XvF6Xk6R2Stm9b5gOS/rO6/9r226tH8b4cVnl+uaT3juHYO2GYef8j6ejK89cpXXbWes+fru4rpaT/kCHK+oE2rfMtrszbOm/P7yl9vgYk7ThIGRdI+se2aXdJesVQx137Pq0eL0qJ2zpJ21Tmf0nSFwc7rtvLU6rrXVeZ9wal76Ep+fl2eV0zKvvgnyvL76v0fTNFg9fJRvM5OFSpN0d12rm5/Mcl/VYpsTxrmM/l/qrUN3O8f195/leSvp3//gdJl1XmbZPX1dHxO8j8v5d0bf57+7ydB2iEuqfa8oe8L9vr9P+k/FmV9KeS/rtt3Z+R9L7K89dIumeoWCOiMS2xx0XEjMrj3/P0s5S+dH/u1FX0rcOUIUkrIvX7btlT0tdyM/vjSj+S65XerCHZ3tX2Zbk5fZWkL6rS9aEqIh6RdKyk/y3pN5KOVDrbNuhZmkHsrtSa2irvSUmPKJ1dGu3yuyslra15MUgcS6pPRrOt7WxvbfszuZvDKkk/kjTDQ4xGp5SAbtc27cH8nm+v1Jr6tCp9823/Te7i8UR+D3doi++hyt9PSZru1H1ld0nL8j5o2bDfRht7RPxY0kpJx9neW+lM6Zfy7E6Os+p+373t+f2Vv/dUqlwtr5T3GaUzWS2tffj4YLECjWMxsFNzTJrfa6cui990GsBvlVIlbaTfx/bv9tblQZ2UtUSjN9xrBqsTVJffU9LHK/v8UaX3cKj6xwa2j7J9fe4q+LikozX0vmn/zWuvh4ymrHZ/lJe/36m76kvz9H+RtFjStU5dlN87xHZ08r601zO2za8dTf1pjlKyOphN6nWqHDfZI7FpK/uGGDqwIfaIeCr/uW2O59GIeGyQ1+wp6czWcZHfkzltMY3mWN1dKWmrjgVz/1ALD+E3lb+flrQyNg4a1RpnpbpP2j+H07TpezPWz8Fg9VhJujx/H26j1K32ZOdu8R3WNwc9xvTsz/Bvler8ymWP9jvqPyS9yukyxD+W9D+RBqjqpO5Z3WczlU5QDFeXPbjtGPpzpRMoLdtphHpsU5LYQUXEQxHx9ojYXelM26c9/AiH0fZ8iaSj2n5wp0fEshFW/U+5rBfm5OpEDdNBLSJ+GBEviYidlJrmny+p09vnPKj0Zkva0AS/s6ShYhxu+eWqdDPIXUbar/Ns30ej2tY2Z0p6nqSD82tb3Z+Gev1tkvYZqrCIeEIpMXxDjv/lShWjNymdLZwh6YkO41suaVal24yUzgaONXYptTScrLSPromI1pdqJ8dZdb8vV/pBGCyuJUpnw/orZW0fEftVlvl9pbO0q4aJFWgWuhM32gT9vb5AafCRebnsc4YrO2v/bn9wFGW175NODPeaTX5r8u9hNb4lSi2k1X2+VaRuh0PK3Uq/qjTC6K75t/lqDb1vNqmbtMU0Ulm/VWpBbC1frQQrIn4REccqVba/rtRSqohYHRFnRsRzlC47+t+2jxgktrG8xy2jOfaWSHrOEPM2qddp0+OmlCWSdvLg1/AukXRe23GxdURUu9i2H3cjHYc75vpqS7Xe0/4eT1FKkjZH++dwrVJDREs13tF8DhanED3kiZ6IuE+pdfcNedJY6pst7Z/hrZXq/C2jOn4j4n6l7tInKn3/tRqNOql7VvfZCqXW9eHqsj9s26fbRkT1tjq/L+nWYba92Ums7T/xxoufH1PagQP5+W809BdCy79JOs/5Am3bM536vo9kO6WuCk/kA3XY28k4DSA0zekaxY9IWhLpwu5OXCrpFNv75y/zf5J0Q/4QSM/ezuGW/y9JL7R9XG6NPE2bnvXY7G0d5LVPS3rc6aL5942w/NVK1yEMyva2Sv3mW6Mhb6f0IVkhaartf1Dq/tCJn+XXvju/N3+o1Ho61tillMS+Wun6ni9Upo/2OLs8xzXb6bqWDWeII43Ydq2kf7W9vdNgJ3vbru63Vyh9QQITBwM7NdoE/b3eTulSlydtP1/SiPc1lPR/c8vLfkrXuLWuZR1LWZ3st+H8l9It2f4w1wnerU3rBP8m6ewcq5wGdvmTDsrdQtKWyhVZp8GC2gfWqbpc0um2Z+Wk6W9HUdateRv2dxoP49zWDNtb2P5z2ztEumPCKuVjzmlgoufmxP0JpVb9AT3bWN6X6ms7Pfa+KWk322c4DeS0ne2D87xLJf19Pub7lbqQFrmHakuua3xL6WTTjvkz0Uqu/l3SO20f7GQb2693uq53KEMeqzlxWijp/fk9O0wbEzxJ+rVSL7rX256m1OV1y0GKGo0Tbe+bk74PSLoihr7dT8efg4hYo9R7Y7i67GylXh7Vuuxo65stV0g6xvZhTmO9fECb5nZjOX6/IOldSl2jL8nb1Undc4O8L69UGuBpa6drXd9cWeSbkvZxGpRqWn68xPbvV5YZsS7blCS2NaJZ6/G1PP0lkm6w/aTSoD2nR8Q9ed65kr7g1EzdPuJVy8fz6661vVppwKCDh1i26v1Kgw88ofQjcOUIy5+ldIZnidJ1Bv9PB+uQJEXEdyT9X6UzkcuVuiEcX1nkXFW2c7jlI2KlpD9Rug7nEaXrABYqnV0Zymi3tep8SVspbfv1SgMWDOdiSUfb3qoybffW+67UFWEnpS4HUrpw/9tKX3D3K11A3lEXlvxF84dK/fgfVeqfX9220cbeOrv2U6VrEq6qzBrtcfbvStt2q6Sb9Ox9frI2DgrwmNKX2G6V+Sfo2YMYAM3W1+UHSplMv9d/ozTgymql7+2hBleq+qFSa813JX0kIq7djLLO1cj7bUiVOsE/K9UJ5imN59Ca/zVJ/6+ky5y6Iv5SaQCmkcpdrZQQX670G/Vn2vQ3sd2/K1WQb1MalOdqpZPM60cqK9KAkh9QShzulrTJSMVKrUn35fjfqY31h3n5NU8qndT+dER8f5DYxvK+tHR87OXtfI1S8vZQ3pZX5dkfVKqr3SbpdqV6wQdHEcdYnaTUQvkrpetsz8ixLlQ6Wf9JpfdksVJdajgfUkrEH3dlVO6KP1P6PD+qlMRd3JqRe+H9ldLdO5Yptcx2ekneUP5DaQyXh5TuTPHuoRYcw+fgM0r7rupPK3XZXyh9zt6f552vUdY3K7HdodQg9SWlOv9j2nTfjOX4/apSXfu7OXltGanu2e5dSt2eH1La15+rxL1a6WTU8Uq9Ch5S2setUbd3U8pRvj5coI5NLgnEZOI0nPxSSX8+xJf3uLP9T5Iejojzex1LEzndZPukiBh1hQaoK/dPDx07t7uFXnTXjRExf+QFgc1ne66keyVNi1HcO3wyyq2t/xYRe464MFBDtn+idOeOm3sdSxPZ/lel63E/Pdxyjb4JMUbP9usk3aDUdeH/KPWNv37YF42jiDin1zE0WUR8Q9I3eh0H0FV0AQYmrNz76lVKrbG7KrXEfW3YFwE1FhGHjrwUhhIRZ3ayHJ2qJp+XKo2At1Kp28pxke5zCgD1xcBOwERlpa6Vjyl1J16kdN0nAAyJlthJJiLO1fA3egeA+qElFg2Wx0zgIB5EpFu7vKTXcQBoFpJYAED90W8IAABkVAsAAGhje47t79u+0/Ydtk9vm3+m7ci3vFC+1cQnbC+2fZvtA3sTOQAAE1+Rltj+/v7Yc+4eIy+4GX63fri7wmy+vnHoujbF5RvC1w9526vu8Dj0jopBb93WXQPjMEr3FE8pvo6SljywVI+ufJTucBh/Vi+6E6+TdGZE3JTvf3ij7esi4k7bc5RuD/BAZfmjlG7bMU/pVhEXqLNbwADjUm9CPXBTkPoYj5+Vm268eWVEzCy/psmnSBa159w99JMb2m/V1V33rr67aPlbTdlq5IU204wtdiq+jifXrS5a/tRxSMSfWV9+3Kk1A2uKr2PbacPdB3zzlT6hcORhxxQtHxjWOOew+f54y/Pfq20vkjRL6R55H1O6n+h/Vl5yrKSLI9237nrbM2zv1nafPWBQ41FvQj0MRPkT8xNF6XqNxyGL3WrqNvcXX8kkxTWxAID66+t6ZaPf9sLK8wURsWCwBfM9Pg+QdIPtYyUti4hb2ypAsyQtqTxfmqeRxAIA0GUksQCAyWhlRMwfaSHb20r6qqQzlLoYn6PUlRgAAPQISSwAoP56cIsd29OUEthLIuJK2y+UtJekVivsbEk32T5I0jJJcyovn52nAQCALmN0YgBAvbnAY6RVpiz1QkmLIuKjkhQRt0fELhExNyLmKnUZPjAiHpJ0laST8yjFh0h6guthAQAog5ZYAEDNuesDcHQwQOihkk6SdLvtW/K0cyLi6iGWv1rS0ZIWS3pK0imbHSQAABgUSSwAoPbGO4mNiB9rhDbb3Brb+jsknbb5kQEAgJHQnRgAAAAA0BgdJbG2j7R9l+3Ftt9bOigAAKrs7j6A0qg7AUA5I3Yntj1F0qckvUZpEItf2L4qIu4sHRwAAJbU1+XMc31XSwM2Rd0JAMrqpCX2IEmLI+KeiFgj6TJJx5YNCwCAzOma2G4+gMKoOwFAQZ0ksbMkLak8X5qnbcL2qbYX2l64YsXKbsUHAABJLJpmxLoT9SYAGLuuDewUEQsiYn5EzJ85s79bxQIAAEw41JsAYOw6ucXOMklzKs9n52kAAIwDWk/RONSdAKCgTlpifyFpnu29bG8h6XhJV5UNCwCAjRidGA1D3QkAChqxJTYi1tl+l6RrJE2RdFFE3FE8MgAAlEYnpiUWTULdCQDK6qQ7sSLiaklXF44FAIBnM0ksmoe6EwCU07WBnQAAAAAAKK2jllgAAHrJoiUWAAAkJLEAgNqjOzEAAGghiQUA1B45LAAAaOGaWAAAAABAY9ASCwCoNcvqoykWAABkRZLYiNC6gbUlit5gi74tipa/eu2qouVLUp/LN4SvLfw+TJ22XdHyJWldrCu+jvWxvvg6BmKg8BqicOllyweGwzWxACLK/w6Vrg+sGfhd0fIlae3AmuLrmOIpxdexxZTpRcufSlteo/HuAQDqjfvEAgCACpJYAEDtkcMCAIAWBnYCAAAAADQGLbEAgFqz6E4MAAA2IokFANQeSSwAAGghiQUA1JxJYgEAwAYksQCAemN0YgAAUMHATgAAAACAxqAlFgBQezTEAgCAFpJYAECtMToxAACoIokFANQeSSwAAGghiQUA1F4fSSwAAMgY2AkAAAAA0Bi0xAIA6s0M7AQAADYiiQUA1JplrokFAAAbkMQCAGrPIokFAAAJ18QCAAAAABqDJBYAUHu2u/roYH1zbH/f9p2277B9ep7+L7Z/Zfs221+zPaPymrNtL7Z9l+3XldsbAABMbiSxAIDaG+8kVtI6SWdGxL6SDpF0mu19JV0n6QUR8SJJv5Z0do5vX0nHS9pP0pGSPm17SoFdAQDApEcSCwCoPbu7j5FExPKIuCn/vVrSIkmzIuLaiFiXF7te0uz897GSLouI30XEvZIWSzqo2/sBAAAwsBMAoOZS4tn1gZ36bS+sPF8QEQsGX7/nSjpA0g1ts94q6cv571lKSW3L0jwNAAB0GUksAGAyWhkR80dayPa2kr4q6YyIWFWZ/ndKXY4vKRciAAAYDEksAKDmenOfWNvTlBLYSyLiysr0t0g6RtIRERF58jJJcyovn52nAQCALiuSxIZC6wbWlih6g2l904qW/8z6Z4qWL0leu2rkhWru7id+XXwd19z34+Lr6N9qh+LrOGKPlxctf/Y2exQtH+il8U5inVZ4oaRFEfHRyvQjJZ0l6RUR8VTlJVdJ+pLtj0raXdI8ST8fx5CBCW8g1hdfx1Prnixa/uJVdxUtX5J+/fjdxdfRP72/+DpeuPMLi5a/45Yzi5aPsmiJBQDUXg8aYg+VdJKk223fkqedI+kTkraUdF1OrK+PiHdGxB22L5d0p1I349MixqHGDQDAJEQSCwCovfFuiY2IH0sabKVXD/Oa8ySdVywoAAAgiVvsAAAAAAAahJZYAECtFbrFDgAAaCiSWABA7ZHEAgCAFpJYAEDtkcMCAIAWklgAQM315j6xAACgnhjYCQAAAADQGLTEAgBqj5ZYAADQMmJLrO05tr9v+07bd9g+fTwCAwBA2jg6cTcfQEnUnQCgrE5aYtdJOjMibrK9naQbbV8XEXcWjg0AAEkM7ITGoe4EAAWNmMRGxHJJy/Pfq20vkjRLEl/EAIBxQespmoS6EwCUNaqBnWzPlXSApBuKRAMAADCBUHcCgO7reGAn29tK+qqkMyJi1SDzT5V0qiTNnjO7awECAEB/YjTRcHWnar1pzh5zehAdADRXRy2xtqcpfQlfEhFXDrZMRCyIiPkRMb9/5s7djBEAMKl1d1AnuiZjPIxUd6rWm2bO7B//AAGgwUZsiXX6tb9Q0qKI+Gj5kAAAqDANsWgW6k4AUFYnLbGHSjpJ0uG2b8mPowvHBQAA0FTUnQCgoE5GJ/6xJM6BAwB6wmJ0YjQLdScAKKvjgZ0AAOgVklgAANBCEgsAqD2SWAAA0EISCwCoPXJYAADQ0tEtdgAAAAAAqANaYgEA9ca9XQEAQAVJLACg1hidGAAAVDU2iR2IgaLlT/GUouVL0lZTtiq+jhXPPFy0/AW3/lfR8iXpa5+7rvg6dtpvt+LrmHn8jkXLn73NnKLlA71EEgvUW0QUX8e6WFd8HQ89vaxo+RfcckXR8iXpqh8uLL6O5z5nVvF1nPuaPyta/kt3Paxo+SirsUksAGDyIIkFAAAtDOwEAAAAAGgMWmIBAPVmbrEDAAA2IokFANQe3YkBAEALSSwAoNYsbrEDAAA2IokFANQeSSwAAGhhYCcAAAAAQGPQEgsAqD0aYgEAQAtJLACg3kx3YgAAsBFJLACg/khiAQBAxjWxAAAAAIDGIIkFANSe7a4+OljfHNvft32n7Ttsn56n72T7Ott35/93zNNt+xO2F9u+zfaBhXcJAACTFkksAKDWLKnP3X10YJ2kMyNiX0mHSDrN9r6S3ivpuxExT9J383NJOkrSvPw4VdIF3d0LAACghSQWAFBz3W2F7aQlNiKWR8RN+e/VkhZJmiXpWElfyIt9QdJx+e9jJV0cyfWSZtjercs7AgAAiIGdAAB1Z6mv+wM79dteWHm+ICIWDLp6e66kAyTdIGnXiFieZz0kadf89yxJSyovW5qnLRcAAOgqklgAwGS0MiLmj7SQ7W0lfVXSGRGxqtqKGxFhOwrGCAAABkESCwCoNas394m1PU0pgb0kIq7Mk39je7eIWJ67Cz+cpy+TNKfy8tl5GgAA6DKuiQUA1F5flx8jccqaL5S0KCI+Wpl1laQ357/fLOk/K9NPzqMUHyLpiUq3YwAA0EW0xAIAaq/ANbEjOVTSSZJut31LnnaOpH+WdLntt0m6X9Kb8ryrJR0tabGkpySdMq7RAgAwiZDEAgBqrRfdiSPix3nVgzlikOVD0mlFgwIAAJLoTgwAAAAAaBBaYgEANededCcGAAA1RRILAKg392Z0YgAAUE8ksQCAWrO49gUAAGxULIm1y1Y51sf6ouVvOWV60fLTOrYsvo4n1/62aPn3LV9RtHxJ0qq1xVfx6COriq9j3UDZY3YgBoqWD/QS3YkBhKL4Op5c+2TR8u968DdFy5ekVb8of4vqXw+Ur3M8fOjKouWXziVQFie3AQAAAACNQXdiAEDtcU0sAABoIYkFANSaRXdiAACwEUksAKD2SGEBAEAL18QCAAAAABqDllgAQM2Z7sQAAGADklgAQK3ZXBMLAAA2IokFANQeoxMDAICWjpNY21MkLZS0LCKOKRcSAACboiUWTUTdCQDKGM3ATqdLWlQqEAAAgAmGuhMAFNBREmt7tqTXS/ps2XAAANiUCzyA0qg7AUA5nXYnPl/SWZK2KxcKAACDozsxGuh8UXcCgCJGbIm1fYykhyPixhGWO9X2QtsLH1n5SNcCBABMdukWO918ACV1Uneq1ptWrFg5jtEBQPN10p34UElvtH2fpMskHW77i+0LRcSCiJgfEfN37t+5y2ECACYrO41O3M0HUNiIdadqvWnmzP5exAgAjTViEhsRZ0fE7IiYK+l4Sd+LiBOLRwYAANBA1J0AoCzuEwsAqD26AAMAgJZRJbER8QNJPygSCQAAQyCFRVNRdwKA7qMlFgBQaxYtsQAAYCOSWABA7ZHEAgCAlk5GJwYAAAAAoBZoiQUA1By3xQEAABuRxAIAas2i2xAAANiIJBYAUG8WLbEAAGCDQkmsZZc9b77N1G2Llr/llOlFy5ekgVhffB0RUbT8vXffpWj5krT85c8pvo55+8wpvo49ty+7jvWFj6dQ2WMJAIDh9HlK8XX0T59ZtPw3vODFRcuXpIHjB4qvY97uuxZfx/N2nFe0/Gl904qWj7JoiQUA1B6jEwMAgBaSWABArXGfWAAAUEUSCwCoPa6JBQAALSSxAICas/pEEgsAABLuWgAAAAAAaAySWABA7dnu6qOD9V1k+2Hbv6xM29/29bZvsb3Q9kF5um1/wvZi27fZPrDgrgAAYNIjiQUA1JqdBnbq5qMDn5d0ZNu0D0t6f0TsL+kf8nNJOkrSvPw4VdIF3dhuAAAwOJJYAEDtucv/RhIRP5L0aPtkSdvnv3eQ9GD++1hJF0dyvaQZtnfr0qYDAIA2DOwEAKi9moxOfIaka2x/ROkk8Mvy9FmSllSWW5qnLR/X6AAAmCRoiQUATEb9+brW1uPUDl7zl5LeExFzJL1H0oVlQwQAAIOhJRYAUGtWx9exjsbKiJg/yte8WdLp+e+vSPps/nuZpDmV5WbnaQAAoABaYgEAtZfuFNu9xxg9KOkV+e/DJd2d/75K0sl5lOJDJD0REXQlBgCgEFpiAQC1V6Aldli2L5X0SqVux0slvU/S2yV93PZUSc8ojUQsSVdLOlrSYklPSTplXIMFAGCSIYkFANTeeA/sFBEnDDHrfw2ybEg6rWxEAACghe7EAAAAAIDGoCUWAFBrnd7bFQAATA4ksQCAevP4XxMLAADqiyQWAFB7431NLAAAqC+SWABArVlSH0M4AACAjFoBAAAAAKAxaIkFANSc6U4MAAA2IIkFANQeSSwAAGghiQUA1F4ft9gBAAAZ18QCAAAAABqjsS2x207bvmj5z6x/umj5krR67RPF1zFjyx2Klv/Hzz+saPmS9LLZ84qvY58d9y6+jj2327No+U+uXV20/IGBgaLlA0Ox6E4M1N14fEanjkO1tX/6LkXLf9M+xxUtX5IOn3No8XVsM22b4uvYbevZRcvfom960fJRVmOTWADAJGGpjyQWAABkJLEAgJqzzDWxAAAgI4kFANSaJfWZIRwAAEBCrQAAAAAA0Bi0xAIAao+BnQAAQAtJLACg9rgmFgAAtJDEAgBqzoxODAAANiCJBQDUmkVLLAAA2KijgZ1sz7B9he1f2V5k+6WlAwMAAGgq6k4AUE6nLbEfl/TtiPhj21tI2rpgTAAAbILuxGgg6k4AUMiISaztHST9gaS3SFJErJG0pmxYAABklsx9YtEg1J0AoKxOagV7SVoh6XO2b7b9WdvbFI4LAIDMXf8HFEbdCQAK6iSJnSrpQEkXRMQBkn4r6b3tC9k+1fZC2wsfWbmyy2ECACYrK3Un7uYDKGzEulO13rRiBfUmABiNTpLYpZKWRsQN+fkVSl/Mm4iIBRExPyLm79zf380YAQAAmmTEulO13jRzJvUmABiNEZPYiHhI0hLbz8uTjpB0Z9GoAACosN3VB1ASdScAKKvT0Yn/WtIleXS9eySdUi4kAAA21cd1rGge6k4AUEhHSWxE3CJpftlQAAB4Nku0nqJxqDsBQDncswAAAAAA0BiddicGAKBHzH1iAQDABiSxAIDa45pYAADQQhILAKg1m2tiAQDARiSxAIDaMy2xAAAg4yIjAAAAAEBjkMQCAGrOsrv7GHGN9kW2H7b9y7bpf237V7bvsP3hyvSzbS+2fZft1xXYCQAAICvSndgqPwjH1L5pRcuP9U8VLV+S1g6sLb6O/ukzi5Y/c/ouRcuXpDX9a4qvY/tpOxRfx4AGipa/4unfFC1fisLlA0PrwcBOn5f0SUkXtybYfpWkYyW9OCJ+Z3uXPH1fScdL2k/S7pK+Y3ufiFg/3kEDE1nfOIxSPn3K1kXL323rOUXLl6Rdp+9WfB3jMWL8VJe96rHPU4qWj7K4JhYAUGvW+FSYqiLiR7bntk3+S0n/HBG/y8s8nKcfK+myPP1e24slHSTpZ+MVLwAAkwndiQEANeeu/xujfSS93PYNtn9o+yV5+ixJSyrLLc3TAABAAbTEAgAmo37bCyvPF0TEghFeM1XSTpIOkfQSSZfbfk6pAAEAwOBIYgEAtVfgPrErI2L+KF+zVNKVERGSfm57QFK/pGWSqhe6zc7TAABAAXQnBgDUXk26E39d0qskyfY+kraQtFLSVZKOt72l7b0kzZP0883fagAAMBhaYgEAtVegJXak9V0q6ZVK3Y6XSnqfpIskXZRvu7NG0ptzq+wdti+XdKekdZJOY2RiAADKIYkFANTaeNy2rV1EnDDErBOHWP48SeeViwgAALTQnRgAAAAA0Bi0xAIA6s0e9+7EAACgvkhiAQC1ZzoOAQCAjCQWAFB7tMQCAIAWTm0DAAAAABqDllgAQK1Z2px7uwIAgAmGJBYAUHNWH92JAQBARhILAKg9WmIBAEALSSwAoPYY2AkAALQwsBMAAAAAoDFoiQUA1Foa2IlzrgAAICGJBQDUnOlODAAANiCJBQDUXh8DOwEAgIwkFgBQb2ZgJwAAsBEXGQEAAAAAGoOWWABAraWBnWiJBQAACUksAKD26E4MAABaCiaxZSscDz/9YNHyn1r3VNHyJWnnLfuLr6PPU4qWv2bgd0XLl6TpU7cuvo6pLn8+Z+3AmqLl7zy97PE0pY9zXugVc4sdAOOiz2W/a6ZpWtHyJUlTxmEd44CTlxgOtVIAQO31UZkBAAAZp7YBAAAAAI1BSywAoNYY2AkAAFSRxAIAao9rowAAQAtJLACg5kxLLAAA2IBrYgEAAAAAjUFLLACg9uhODAAAWkhiAQC1Zkl9dBwCAABZR7UC2++xfYftX9q+1Pb00oEBACBJcmqJ7eYDKI26EwCUM2ISa3uWpHdLmh8RL5A0RdLxpQMDACBx1/8BJVF3AoCyOu2fNVXSVranStpa0oPlQgIAAGg86k4AUMiISWxELJP0EUkPSFou6YmIuLZ9Odun2l5oe+HKlY90P1IAwKRFd2I0SSd1p2q9acWKlb0IEwAaq5PuxDtKOlbSXpJ2l7SN7RPbl4uIBRExPyLm9/fv3P1IAQCTFt2J0SSd1J2q9aaZM/t7ESYANFYn3YlfLeneiFgREWslXSnpZWXDAgAgsUhi0TjUnQCgoE5usfOApENsby3paUlHSFpYNCoAAKroAoxmoe4EAAV1ck3sDZKukHSTpNvzaxYUjgsAAKCRqDsBQFkdjU4cEe+LiOdHxAsi4qSI+F3pwAAASLrdmXjkVl3bF9l+2PYvB5l3pu2w3Z+f2/YnbC+2fZvtAwvsBDQMdScAKKfTW+wAANAzPRid+POSjhwkjjmSXqvUXbTlKEnz8uNUSRds9gYDAIAhkcQCAGpvvFtiI+JHkh4dZNbHJJ0lKSrTjpV0cSTXS5phe7dubDcAAHi2TgZ2AgCgp+oworDtYyUti4hb21pzZ0laUnm+NE9bPo7hAQAwaZDEAgAmo37b1dFiF0TEkAPv5FFmz1HqSgwAAHqIJBYAUGuWOr2OdTRWRsT8USy/t6S9JLVaYWdLusn2QZKWSZpTWXZ2ngYAAAogiQUA1Fxn17GWFBG3S9ql9dz2fZLmR8RK21dJepftyyQdLOmJiKArMQAAhRRJYgcUWjPwTImiN1gf64uWP61vWtHyJWlKX/lzCFP7tihafp+nFC0/raP8+GPrY13xdUwr/F5MVdljdjzeB2Ao453E2r5U0iuVuh0vlfS+iLhwiMWvlnS0pMWSnpJ0yrgECaBxCvQqASYlWmIBAPXm8a/4RcQJI8yfW/k7JJ1WOiYAAJDQtAIAAAAAaAxaYgEAtdfra2IBAEB9kMQCAGqt0OjEAACgoUhiAQA11/vRiQEAQH1wTSwAAAAAoDFoiQUA1B4tsQAAoIUkFgBQe1wTCwAAWkhiAQC1R0ssAABoIYkFANSaRRILAAA2YmAnAAAAAEBj0BILAKg5c00sAADYgCQWANAAJLEAACAhiQUA1JsZnRgAAGxEEgsAqD0GdgIAAC0M7AQAAAAAaAxaYgEAtUdLLAAAaCGJBQDUmhmdGAAAVJDEAgBqj5ZYAADQQhILAKg9klgAANDCwE4AAAAAgMagJRYAUHtcEwsAAFpIYgEAtUd3YgAA0EISCwCoNUYnBgAAVUWS2FtvunXlztN3vX8UL+mXtLJELOOIbaiPibAdddyGPXsdAABMRDfdePPKraZuM5p6k1TP34nRYhvqYSJsg1TP7aDuVEiRJDYiZo5medsLI2J+iVjGC9tQHxNhOybCNgDdRHdiTGSjrTdJE+N3gm2oh4mwDdLE2Q50hu7EAIAGIIkFAAAJSSwAoPZIYQEAQEtdktgFvQ6gC9iG+pgI2zERtgHoGgZ2Ap5lIvxOsA31MBG2QZo424EOOCJ6HQMAAEN68YEvimt+8l9dLXO3rfe4kWunAABoprq0xAIAMAxaYgEAQEISCwCoPVJYAADQ0tfLlds+0vZdthfbfm8vYxkr23Nsf9/2nbbvsH16r2MaK9tTbN9s+5u9jmUsbM+wfYXtX9leZPulvY5ptGy/Jx9Hv7R9qe3pvY4J6D0XeADNRN2pPppeb5KoO6G5epbE2p4i6VOSjpK0r6QTbO/bq3g2wzpJZ0bEvpIOkXRaQ7dDkk6XtKjXQWyGj0v6dkQ8X9KL1bBtsT1L0rslzY+IF0iaIun43kYF9J6dBnbq5gNoIupOtdP0epNE3QkN1cuW2IMkLY6IeyJijaTLJB3bw3jGJCKWR8RN+e/VSh/+Wb2NavRsz5b0ekmf7XUsY2F7B0l/IOlCSYqINRHxeE+DGpupkrayPVXS1pIe7HE8AID6oO5UE02vN0nUndBsvUxiZ0laUnm+VA37Amtne66kAyTd0ONQxuJ8SWdJGuhxHGO1l6QVkj6Xu/Z81vY2vQ5qNCJimaSPSHpA0nJJT0TEtb2NCpicbF9k+2Hbv6xM+5fc5e4221+zPaMy7+zcvfMu26/rSdCYDKg71cf5ana9SaLuhAbr6TWxE4ntbSV9VdIZEbGq1/GMhu1jJD0cETf2OpbNMFXSgZIuiIgDJP1WUqOuFbK9o9IZ9b0k7S5pG9sn9jYqoB7c5X8d+LykI9umXSfpBRHxIkm/lnS2JOVukMdL2i+/5tO52yeAYTS17jRB6k0SdSc0WC+T2GWS5lSez87TGsf2NKUv4Usi4spexzMGh0p6o+37lLomHW77i70NadSWSloaEa0zuVcofTE3yasl3RsRKyJiraQrJb2sxzEBtTDeSWxE/EjSo23Tro2Idfnp9Uq/W1KqQF0WEb+LiHslLVbq9gl0G3WnepgI9SaJuhMarJdJ7C8kzbO9l+0tlM5iX9XDeMbEaYSQCyUtioiP9jqesYiIsyNidkTMVXofvhcRjTqLFREPSVpi+3l50hGS7uxhSGPxgKRDbG+dj6sj1LABFoBJ5K2SvpX/nnBdPFFb1J1qYCLUmyTqTmi2nt0nNiLW2X6XpGuURhK7KCLu6FU8m+FQSSdJut32LXnaORFxde9CmrT+WtIl+Yf9Hkmn9DieUYmIG2xfIekmpZEbb5a0oLdRARNWv+2FlecLIqKjz5vtv1P6jF5SJDJgCNSdUAB1JzSSI6LXMQAAMKT9/9eL47s/7e44Hf3Tf+/GiJg/3DJ5wJlv5ts2tKa9RdI7JB0REU/laWdLUkR8KD+/RtK5EfGzrgYNAAAkMbATAAAdsX2k0mikb2wlsNlVko63vaXtvSTNk/TzXsQIAMBk0LPuxAAAdKbjEYW7t0b7UkmvVOp2vFTS+5RGI95S0nXp0itdHxHvjIg7bF+udC3ZOkmnRcT6cQ0YAIBJhCQWAIA2EXHCIJMvHGb58ySdVy4iAADQQhILAGiA8W2JBQAA9UUSCwCoNYsUFgAAbEQSCwCovXwNKgAAAEksAKAJSGIBAEDCLXYAAAAAAI1BSywAoPZohwUAAC0ksQCABiCNBQAACUksAKDmzMBOAABgA66JBQAAAAA0BkksAAAAAKAx6E4MAKg1SzLXxAIAgIwkFgDQACSxAAAgIYkFANQeKSwAAGghiQUA1B6jEwMAgBYGdgIAAAAANAYtsQCAmrPoUAwAAFpIYgEAtUcKCwAAWkhiAQANQBoLAAASrokFAAAAADQGLbEAgHozoxMDAICNaIkFAAAAADQGLbEAgFpLYxPTEgsAABJHRK9jAABgSLa/Lam/y8WujIgju1wmAAAYBySxAAAAAIDG4JpYAAAAAEBjkMQCAAAAABqDJBYAAAAA0BgksQAAAACAxiCJBQAAAAA0xv8PPrUI8iLgNFgAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "Err_G9=error(xdata9, poptG9[0], poptG9[1],poptG9[2], poptG9[3], poptG9[4], recorteG9.ravel(), inc=1)\n", + "poptG9E, pcovG9E = curve_fit(gauss2d, xdata9, recorteG9.ravel(), p0=[5,6,6,1,1],sigma=Err_G9)\n", + "estrellaG9E=gauss2d(xdata9, poptG9E[0], poptG9E[1],poptG9E[2], poptG9E[3], poptG9E[4])\n", + "FWHMG9E=FWHMG_I.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptG9E[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 9 fotografÃa (Banda Verde)\")\n", + "plt.imshow(recorteG9, plt.get_cmap('Greens'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 9 a partir de la gaussiana con incertidumbre (Banda Verde)\")\n", + "plt.imshow(estrellaG9E.reshape(10, 10), plt.get_cmap('Greens'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 10 con incertidumbre (Banda Verde)" + ] + }, + { + "cell_type": "code", + "execution_count": 849, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7UAAAFSCAYAAAAth/gmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA1aUlEQVR4nO3de5wcZZ3v8e93EkICRBASFZJAEFAXUQEjoJx1VbyAonFdl8Ubwnrk4MKqe3ARcV28HDyePa66HFc0CoKCIAK6rEaBXa+4AoaIykU0cpFAgIRbkAC5zO/88TxDKp2u6Z5JV3fVzOedV78yU1391FPdPVW/Xz2XckQIAAAAAIAmGhp0BQAAAAAAGC+SWgAAAABAY5HUAgAAAAAai6QWAAAAANBYJLUAAAAAgMYiqQUAAAAANNbUQVcAAIDReNb00Nrh3hb68LrLIuLQ3hYKAAAGgaQWAFBva4elA5/S2zL/485ZvS0QAAAMCkktAKD+7EHXAAAA1BRJLQCg3ixmgAAAAKVIagEA9UdLLQAAKEFSCwCoP3JaAABQgg5dAAAAAIDGoqUWAFBzpvsxAAAoRVILAKg3JooCAACjIKkFANQfLbUAAKAESS0AoP7IaQEAQAk6dAEAAAAAGouWWgBAvVnSEE21AACgPZJaAED9kdMCAIASJLUAgPpjoigAAFCCpBYAUH/ktAAAoAQTRQEAAAAAGouWWgBAvTFRFAAAGAVJLQCg/shpAQBACZJaAEDNmYmiAABAKcbUZrbn2w7bU/PvP7T932tQr4Nt/872H22/ftD16cT2/7K9yvbd+fd5tm+1vfs4yppt+ze2Z/S+ph23vcn3oU5sn237f3W57jW2n111nYCJJh+7fmD7Rts32H5Py/Mn5mPErPy7bZ9ue5ntX9nefzA1n/jqer6uG9vftf32LXj9S2wvH+druz5P1Zntt9i+fND1qILtP7V986DrIUm2P2/7Q6M8H7b3rGC74/6Oj2Ebr7L9rSq3Mcq2j7Z95SC23Ynt22y/vIv1nmr7Jttbd1q3dklt3slHcxI38vhsF6+r5As/HrY/ZvvXttfb/nCb599s+3bbj9j+lu0dRynuo5I+GxHbRcS3Omz3w7bP3bLaj5/tXSWdKGnviHhaXvxFSSdExK3jKPJkSWdHxKO5/B/afix/Jx6y/WPbz+lN7XvD9kH5c92uzXO/sH1Cn6v0SaXvENBcI2Nqe/nobL2kEyNib0kHSTre9t5SSnglvVLSHwrrHyZpr/w4VtIZPXwHaonzdX20O/9HxGERcc6g6jQRRMR5EfHKQdejChHxk4h4Zr+32y7RiojjIuJj/a5Ln5wm6RMjv+Tj3yP5eLnK9vm2dxhc9TZn+2TbP26zfJbttbb36VddIuIeST9QOq+OqnZJbfbanMSNPLY4Eehzi9sySSdJ+k6bejxb0hckvU3SUyWtkfS5UcraTdINFdRxTLp8/3aVdF9E3Jtfs6ukr0TEZu9DF9vbWtLbJbUm6SdExHaSdpT0Q0lfHWvZVYqIqyQtl/TG4vJ8ANhb0vljKc/2lC2s0qWSXmr7aR3XBOrMPX50EBErImJp/vlhSTdJmpOf/rTSMT4KL1modLyLfBzYwfbO497f5uB8PWDjeb/6/B4Dkpr/vRtrTGb7BZK2z+eEouflWPbpkp4s6cO9qWHPnCvpRd68l+WRkn4dEdd3W1CPPvPzJP2PTivVNalty/aetn+UW+lW2f56Xj5yNeGX+crHX410KbD9fqeusF+2PZSvPvze9n22L+zmqqvtPWx/P79mle3zRruqEhHnRMR3JT3c5um3SPr3iPhxRPxR0ockvcH2zDbb/b3SF/7f835tbXsX25favt+pm9s787qHSjpF0l/ldX+Zl7ddPz83w/Y5th9wato/yYVuGPkq/Ptt/0rSI7anFt6/h5265f15Xvflkq6QtEve/tlK36/zvLGL2DF5Ow/bvsX2aF/QAyU9GBFtu4VExAZJFygliiP1PcD2z2w/aHuF7c/anlZ4Pmwf59Sd+0Hb/2qngXq2p9j+ZP58b5H0mpbPYix1P0fSUS3LjpK0OCLus/0s21fkz+Rm20cUtnO27TNsL7b9iFJCup/tpXnbX5c0vaVuh9u+Lu/Tf9l+buF9ekzStZJeNUp9gfqze/sY06Y9X9J+kq62vVDSnRHxy5bV5ki6o/D7cm1MgiedyXa+ztv+F9t32F5t+1rbfzpKPc926nJ5RT62/8j2bt2U5dQqe5Htc22vlnSc2p//n+iW7dQ69lPbn7Z9n9oE0U4xwdlOMcGNkl7Q8vwuti+2vdJpWNG7y/av5XVPtv3t/LoH8s9zR1l/f6eeTQ/b/obtrzt3Ze5Ullu6NLrQgm17en7P7svny5/bfmrh/bklb/NW228pLL+yUF6nz+VC21/J5dxge0Hh+bbxU8l7MMX2KYX1r3XqISLbL8p1fyj//6LC637o1Pvgp/l1lzsPkWizjZd485jvfU7DJx7K7/v0wvMLnWKN1bleh+bl29s+0ynuutNpGNqUwvtX/N59XdLnJb0wf1cfzOud7UJ3ddt/n8u7y/Zft9T7ie91yWcUtv/GKdZ7OL8fezjFR6vzZzStpcxTnI4Xt4189oV6tcZkY/k7OEzSj8qejIjVSo0PxVj2GJfEm954rDzR9r35PTqm8PxOTjH/atvXSNqjZT9Lv78t9Vou6ftKF/SKjpL0lVxWaezp9vnD25x6vdxn+4Mt9ep0vL9a0tNdOEa206ikVtLHJF2udFVjrqT/J0kR8eL8/PPyleKv59+fptSit5tSs/XfSnq9pD+TtIukByT9axfbtaT/nV/zJ5LmafxXVZ4t6YlgKCJ+L2mtpGe0rhgReyh1bxu5Ev64UiK3PNfljZI+bvtlEfE9SR+X9PW87vNyMW3Xz8+dKmm+UuL8CklvbVPfNykleDtExHpJv5f0p5K2l/QRSefa3jki/kPpj/euvP2j25R1r6TDJT1J0jGSPu3ycWfPkVQ61iMfkN4iqXj1a4Okv5M0S9ILJR0i6W9aXnq40on6uZKO0MZk7535uf0kLVBLS+sY6/5VSS8unICGJL1Z0jm2t1VK/r8m6SlKV70+59ytMXuzUneVmZKukfStXOaOkr4h6S8K78N+ks5SuoK1k1KrwqXedOzBTZKeJ6DJet9SO8v2ksKjbdcmp6EEF0t6r1KX5FMk/WMVuzjBTKrzdfZzSfsq7cfXJH2jmBS08Ral92mWpOuUWiO6LWuhpIsk7SDpTLU//7c6UNItSq3Op7V5/lSlIHgPpXPjE+Nx83ns35XejzlK59f32u7mgumQpC8rfba7SnpUUttu6vnc/k1JZyvt+/mSislf12W18Xal2GWe0vnyOEmP5vPy6ZIOi4iZkl6k9Hm00+lzeZ1S3LWDUrJSrFvb+KlkO/9TKf56tVLc8deS1uRA/zu5vjtJ+pSk79jeqfDaNyvFKU+RNE3S+0q20c4Rkg6VtLtSnHS0lBoNlJKZv8/79mJJt+XXnK10bNxTKYZ6paTiGPfi9+6tSu/7z/J3dYfWCuRk+X1KcelekjqOu2zjVZKerzR05CRJi/K250naR+m9HfE0pb/BOUrfkUW2i92yizHZf2lsfwedYtknKx3nirFsp3jzaUrfoTmS3iHpX3M5UjpGPiZpZ6XvzCYXBDS2Y9Q5KiS1+T3ZV9LXuow9n8gflI6ZZ+TydsmvKV7YGvV4n/OPZeoQy9Y1qf1WzvxHHiOti+uUDmS7RMRjEdFp8POwpFMj4vE8LvM4SR+MiOU5QfywpDe6Q9N4RCyLiCtyOSuVDiJ/Ns59207SQy3LHlL6YxlVTpIOlvT+vP/XSfqSNm8V7Hb9IyR9PCIeyFdlTm9TzOkRccfIuNaI+EZE3BURwzkY+Z2kAzrVPb/2OxHx+9w970dKAU/Zlewd1P7K+en5yt7Dkk5QOjGMlH9tRFwVEesj4jalP7LWz+kTEfFgRPxBqY/+vnn5EZI+k/f1fqWgaFx1j4g7lLpGjxwMDpG0tdKJ6HBJt0XEl3M9f6EUMP9loYh/i4ifRsRwrt9WuW7rIuIipYPSiGMlfSEiro6IDZHGTz2udCAf8bDS+wlgo1URsaDwWNS6gu2tlP4+z4uIS5SC/d2VWhlvUzopL3Xq3n+nUsA0Ym5eNtFxvt647XMj4r58bP9npeP+aGMWv5NbgR+X9EGl1qt5XZb1s4j4Vj4XP9rl/twVEf8vl9nuNUdIOi0i7s/nsWJM8AJJsyPioxGxNiJuUZoz48hOG837cXFErInUlf80lX8mByndmeP0fM67ROni7njKarVOKZjeM58vr43UUial798+tmdEGnrQdthXF5/LlRGxOFJvsq+qEISPMX7675L+ISJuznHHLyPiPqUk4XcR8dVch/Ml/UbSawuv/XJE/DZ/xhdqY5zTjdNzHe9XSt5GXvsOSWflv63hiLgzIn7j1NL9aknvjYhHIg0/+7Q2/V50+t61OiLvw/UR8YjGd1HqnyJidf4cr5d0eUTcEhEPSfquUvJd9KF8zPiRUqx2ROG5Ykz2HI3t72AHtY9ll+ZYdpXSxZkvjDzRRby5TtJH89/HYkl/lPRMp9bxv5D0j/mzuF4pMVWh7LEco74p6ane2BPgKEnfzcfVbmLPYv7wRknfLhzvPqT0Nzeim+N9x1i2rknt6yNih8Lji3n5SUpXYa9x6tbRegWi1cpI3S9H7CbpmyMnX6UWrA1KV49KOc28dYFTt4rVSn3N23bn6MIfla6+FD1J7b/0rXaRdH8+kI+4XeVd3Dqtv4s27S5X/LntMttHFbobPKh0xaur98L2Ybavcup2+6DSgbDstQ+ofeDw7khX9mYoJYgXjXR5sP0Mp65Id+fP6eNtyr+78PMapaBF2vy9uH0L6i5teoXrbZIuiIiRIO/AYhCodLW+OOa1WI9dlLo6FsfuFeu2m6QTW8qbl183YqakB0epK1BvVt8nirJtpRawmyLiU5IUEb+OiKdExPyImK/UC2b/iLhbqVXmKCcHSXooIlZU9ZbUCOfrjdt+n1O3wYdynbfvsO0njvWRujffr3zs7qKsdufrTjq9ZrTz4G5Kw4uK55pT1OHzkCTb29j+glPXw9WSfqw05rzd+MR257wn6jTGslp9VdJlki5w6tb6T7a3yonTXykF1itsf8f2s0r2pdPn0hpjTPfGIVhjiZ/mKbXsttpFLfGJNo8Dy+KcbpS9tqw+uyldeF9R2K8vKLUSjxjrd3XUeKxL9xR+frTN78X35IH8HShurxhDFesy1r+Dslh2/xzLTldqwfzJSItpF/HmfZFaLkeMfE6zlS4IjRbLdn2Miog1Sr0Dj8rnw7codz1Wd7FnayxbPN49Ium+wvPdHO87xrJ1TWrbioi7I+KdEbGLUpP35zz6DIrR8vsdSt1Liifg6RHR6Wr6x3NZz4mIJyl1YRjboKyNblDhyp3tpytdKfltF6+9S9KO3nQ8z67a2BrQur+d1l+hTZv/i60MI54o06kv+xeVWkh3yn+Q16uL98KpS8LFSrPxPjW/dvEor/2Vyrt4KV8p/IlSd4SRmQnPULpiuVf+nE7ppm7ZCm26/7tuQd0l6RJJc22/VNIbtPFq2R2SftTyHdwuIt5V3L2Wes3JB5TN6pbLO62lvG3y1dsRf6JCFzqgkXrf/biTg5UuSL0sB6LX2X71KOsvVupit0zpONk69GFSmWzna6exaScptfA8OZ8nHuqw7SfOOU7d3HeUdFeXZbW+X62/t9NpndLzoNLncWvL5zEzIkb7mxhxolJr0IH5Mxnpgt7uvWl3zivWqVNZj0japrD+ExeMc8vWRyLNaP4ipQvjR+XnLouIVyh12/yN0t/wJsb5GY+8dqzx0x1qGQ+Z3aWUABQV47qqlNXnDqUWulmF78WTIqJ4K8GxfldH+x5Ko3zG4/Rkpy7oxe3dVfi99QLLWP4OOsWy65R6UO6u1FNgPPHmiJVK3cDLYtnxfH/Pyeu/Qimp/Pe8vJvYszWWLR7vtlHqNTFi1ON9vjC0pzrEso1Kam3/pTdOCPCA0hs20nx9j9LY0NF8XtJp+eAip/ugLuxi0zOVrtg+ZHuO0piC0eq5Vb7iMiRpqtPkBCNXEc+T9Fqn+4Ntq3S7lUtaWlPbitQd6L8k/e9c5nOVuoSMzBB8j6T5TmNfuln/QkkfcJp4YY7SwXY02yq95yvzfh6jdKWxG9OUgoGVktbbPkwbk9F2rlG6+lo60YrtFyoNrh/pJjRT0mpJf8xXWd9V9to2LpT0bttzncYmnLwFdR+5CnWR0tif2yNiSX7q25Ke4TRgfqv8eIHtPykp6mdKB6l353XfoE27K31R0nG2D3Syre3XjFzIyN/D5yuN4wWaq88TRUXElRHhiHhuROybH4tb1pkfEavyzxERx0fEHhHxnMLf/KQ0Cc/XM5WO1StzOf+ozVt5W73a9n9zGkf6MUlX5fP2eMra5Pw/TsWYYK7SOLcR10h62GnylxlOExnt4zS7ayczlVrHHnQaE3rqKOv+TKmF5gSnyWUWatNzXqeyrpN0ZP5cN5kfw/ZLbT8nf76rlbpxDju17i/Mn/HjSt+fYW1uPJ/LiLHGT1+S9DHbe+Vz+3Odxs0uVooh3pzfn79SioO+3WU9xutMScfYPsRpUp85tp+Ve6NcLumfbT8pP7eH7dG6hN+jdNF/WsnzF0o62vbeOflp9xm/wanVfk+luHZLfcT2tJz4Ha7UQtnOWP8OFmuU7vH5u3iM0nf6Fo0j3hwRqcv7JZI+nN+bvVUYF6/xfX9/otQ6ukipx+HavHzU2LONiyQdXjjefVSb5qCdjvcHKA3dG7XVvq5J7chsvyOPb+blL1CaffKPSl293hOpP7uU+l+f49R0fUSbMiXpX/LrLrf9sNLA7AO7qM9HJO2vdEXjO0pfmtF8UekL+ialcTKPKndFjdS//zilk+W9Sl+ysVzRf5PS5E53KfV3PzXSJE3Sxj/C+2wv7WL9jyp1n7tV0n8ofekeL9twRNwo6Z+VTjr3KI0t+Gk3lc5BwLuVDlYPKA28v3SU9dcqTT7QOnnVZ0e+F0pdif4h0syVUppY4M1KXcO+qDTLXre+qNQt6ZeSlqrwGY+17gXnKF1RHemuMVLWK5XGX9yl1NXn/ygdxDaT34c3KE3WcL9SF6li3ZYoTXL12Vy3ZXndEa+V9MOIKF51BJpnqMcP9Arn6+QySd9TasW9XWmylk7dLr+mFLDfr3TxceR8N56y2p3/x+ojeXu3KiUqT9wyLwfMhyuNsbxVaSzgl5S6L3byGaUhQ6uUPsfvla1YOOe9QymYfqtSwjYSm3Qq60NKLYoP5P35WuG5pynFOauVujf+KO/jkNLETHcpfRZ/pvYXxcfzuYzs11jjp08pxRyX5/qeKWlGpHG1hyu1WN+n1PJ2+MjFtapExDXKkxYp/W39SBtbjI9SSsZuVHrfL1Jq8S7zfaXGiLttb1bvHNN9Jq+3LP9f9GmlCdvuUYqzztOWuTvX+65c1nER8Zt2K4717yDSbeEest167PplPjY+oJR4/nmksezjjTdHnKDUFflupRj6y4Xnxvz9jYhQimFbY9lOsWdrOTdIOl7p73FFfk3x7iadjvdvUUp8R+XYZNgCJjPb75J0ZESMd1KNnrI9W+kq0X7R/UQYKLB9taR3xBjuKQbUjWdNDy2c39tCz7r52ohY0HlFoPecbnu3PCL+YdB1qbt8Hvt8RHy548pAzdh+paS/iYjXD7ouTWT7KUoXUfaLTedd2Eyjb4KMLeM0lfzTla4c7qV05a/bqfErF2mGtbaTNaA7EdFNywZQb+O4tyyAZspdV29WagV7i9KtZUpbd4E6i4jLlVrcMQ6RZtQuG6K3CZLayW2a0ix1uyt187lA0ucGWSEAaIucFpgsnqnU/XJbpXGGb4zJMZM4gC1AUjuJ5QHX3U70BACDQ0stJpCIOHrQdairSPeM3uy+0QAwGpJaAED9MbkTAAAoQZgAAAAAAGisSlpqZ82aFbvNb71Xcm8NR7tbiPWO+zCAK7q6V3r9t1G1fnwW/VD1ZzGkKZ1X2gJ/uP0PWrVq1cT4MNAsFt2PMaH1I24C0H9Lr/3FqoiYPeh6TAaVJLW7zd9VP736yiqKfsLjG0ad1XmLDW3R/cu7U3ViLknrhtd2Xqnmthoquz93s6wdLr0FcE9sO7Xsnte98d8OfHGl5QOjIqfFBNaPuAlA/82Yuu3tg67DZMGYWgBA/Q2R1QIAgPYYUwsAAAAAaCxaagEA9ceYWgAAUIKkFgBQbxZjagEAQCmSWgBAzVnucUtt8+eFBwAAI0hqAQC1R1ILAADKMFEUAAAAAKCxukpqbR9q+2bby2yfXHWlAAAosnv7AKpG7AQA/dOx+7HtKZL+VdIrJC2X9HPbl0bEjVVXDgAASxrqcSa6oaelAZsidgKA/uqmpfYAScsi4paIWCvpAkkLq60WAACZ05jaXj6AihE7AUAfdZPUzpF0R+H35XnZJmwfa3uJ7SUrV67qVf0AACCpRdN0jJ2ImwCgd3o2UVRELIqIBRGxYPbsWb0qFgAAYMIhbgKA3unmlj53SppX+H1uXgYAQB/QuorGIXYCgD7qpqX255L2sr277WmSjpR0abXVAgBgI2Y/RsMQOwFAH3VsqY2I9bZPkHSZpCmSzoqIGyqvGQAASrMf01KLJiF2AoD+6qb7sSJisaTFFdcFAIDNmaQWzUPsBAD907OJogAAAAAA6LeuWmoBABgki5ZaAADQHkktAKD26H4MAADKkNQCAGqPnBYAAJRhTC0AAAAAoLFoqQUA1JplDdFUCwAASjQ2qbWrbWQe8pRKy5ek4RiufBtVC0Xl23h8w2OVb6Mf4/WGKu4Y8diGNZWWP6zmf1/RXIypBTAR9CP2iwkQX0r9iPXpsDqRNDapBQBMEtynFgAAjIKkFgBQe+S0AACgDO3uAAAAAIDGIqkFANSalbof9/LRcZv2PNs/sH2j7Rtsvycv/7+2f2P7V7a/aXuHwms+YHuZ7Zttv6qyNwQAAGyCpBYAUHv9TmolrZd0YkTsLekgScfb3lvSFZL2iYjnSvqtpA/k+u0t6UhJz5Z0qKTP2X2YcRAAAJDUAgDqrrcJbTdJbUSsiIil+eeHJd0kaU5EXB4R6/NqV0mam39eKOmCiHg8Im6VtEzSAT1/KwAAwGaYKAoAUG8Dnv3Y9nxJ+0m6uuWpv5b09fzzHKUkd8TyvAwAAFSMpBYAMBnNsr2k8PuiiFjUupLt7SRdLOm9EbG6sPyDSl2Uz6u8pgAAYFQktQCA2qugoXZVRCwYfZveSimhPS8iLiksP1rS4ZIOiYjIi++UNK/w8rl5GQAAqBhjagEAtTag2Y8t6UxJN0XEpwrLD5V0kqTXRcSawksulXSk7a1t7y5pL0nX9PJ9AAAA7dFSCwCovQGMqT1Y0tsk/dr2dXnZKZJOl7S1pCtyna6KiOMi4gbbF0q6Ualb8vERsaHflQYAYDIiqQUA1N5Qn5PaiLhSqZG41eJRXnOapNMqqxQAAGiL7scAAAAAgMaipRYAUG+uZKIoAAAwQZDUAgBqzepucicAADA5kdQCAGrPbYe3AgAAMKYWAAAAANBgtNQCAGqP7scAAKAMSS0AoPZIagEAQBmSWgBA7ZHTAgCAMiS1AIBas2mpBQAA5ZgoCgAAAADQWLTUAgBqjvvUAgCAcpUktcMxrMc3PFZF0X2zoQ/biBiufBtV39vxkfUPV1q+JC3/4x2Vb2PG1BmVb2P+zD0qLX/N+kcqLX84+vFXAbRHUgugH9YPr6+0/Mc2rKm0fEn647rVlW9jiqdUvo1tt5pZaflbT6k+9kP/0FILAKg9cloAAFCGpBYAUHu01AIAgDJMFAUAAAAAaCxaagEAtcYtfQAAwGhIagEAtUdSCwAAypDUAgBqj5wWAACUIakFANQc96kFAADlmCgKAAAAANBYtNQCAGqPlloAAFCmY0ut7Xm2f2D7Rts32H5PPyoGAIC0cfbjXj6AKhE7AUB/ddNSu17SiRGx1PZMSdfaviIibqy4bgAASGKiKDQOsRMA9FHHpDYiVkhakX9+2PZNkuZI4sAMAOgLWlfRJMROANBfY5ooyvZ8SftJurqS2gAAAEwgxE4AUL2uk1rb20m6WNJ7I2J1m+ePtb3E9pL7Vt3XyzoCACa7NLC2dw+gD0aLnYpx08qVqwZTQQCYILpKam1vpXRQPi8iLmm3TkQsiogFEbFgp1k79bKOAIBJrbeTRNGVGf3QKXYqxk2zZ8/qfwUBYALpOKbW6ex/pqSbIuJT1VcJAIACGlfRMMROANBf3bTUHizpbZJeZvu6/Hh1xfUCAABoKmInAOijbmY/vlIS18gBAANhMfsxmoXYCQD6q5v71AIAMFAktQAAoAxJLQCg9khqAQBAGZJaAEDtkdMCAIAyXd+nFgAAAACAuqGlFgBQb9xbFgAAjIKWWgBArY3MftzLR8dt2vNs/8D2jbZvsP2evHxH21fY/l3+/8l5uW2fbnuZ7V/Z3r/adwUAAIyorKU2YriqoiVJU4emVVr+2uHHKi1fktYNr+vDNtZWWv4191xdafmSdPo1iyvfxswZ0yvfxvsPPLLS8nfbbn6l5UtRcflAuQG01K6XdGJELLU9U9K1tq+QdLSk/4yIT9g+WdLJkt4v6TBJe+XHgZLOyP8D6JHhimNLSXp0wyOVlr905c8rLV+SLvrtf1a+je233rrybfzlMw6vtPxnbL93peWjv2ipBQDUXr9baiNiRUQszT8/LOkmSXMkLZR0Tl7tHEmvzz8vlPSVSK6StIPtnXv8NgAAgDZIagEAGIXt+ZL2k3S1pKdGxIr81N2Snpp/niPpjsLLludlAACgYkwUBQCoN1dyS59ZtpcUfl8UEYs227S9naSLJb03IlYXW3kjImzTLx8AgAEjqQUA1F4FY2pXRcSCDtvcSimhPS8iLsmL77G9c0SsyN2L783L75Q0r/DyuXkZAACoGN2PAQC1ZvV2PG2Xsx9b0pmSboqITxWeulTS2/PPb5f0b4XlR+VZkA+S9FChmzIAAKgQLbUAgNobwOzHB0t6m6Rf274uLztF0ickXWj7HZJul3REfm6xpFdLWiZpjaRj+lpbAAAmMZJaAABaRMSVSrfIbeeQNuuHpOMrrRQAAGiLpBYAUHv9b6gFAABNQVILAKg3D6T7MQAAaAiSWgBA/ZHUAgCAEsx+DAAAAABoLFpqAQC1R/djAABQhqQWAFBrljRETgsAAEqQ1AIAas601AIAgFIktQCAerM0RFILAABKMFEUAAAAAKCxaKkFANSaxURRAACgHEktAKD26FYEAADKkNQCAGqPMbUAAKAMSS0AoNbofgwAAEZDjy4AAAAAQGPRUgsAqDnT/RgAAJQiqQUA1JvpfgwAAMqR1AIAas1irAwAAChXSVJrWVOGqs2Xp1Zc/pr16ystX5LWbnis8m2s2bCm0vKvXvGrSsuXpCu/emXl29BO0yvfxMt2e1al5e+25/xKywcGie7HAIZjuPJtrF77YKXln3vjZZWWL0nnfvLfKt+GZs+ofBM7nrh9peXvut38SstHf3HxGwAAAADQWHQ/BgDUHmNqAQBAGZJaAECtWXQ/BgAA5UhqAQC1R0oLAADKMKYWAAAAANBYtNQCAGrOdD8GAAClSGoBALVmM6YWAACUI6kFANQesx8DAIAyXSe1tqdIWiLpzog4vLoqAQCwKVpq0UTETgDQH2OZKOo9km6qqiIAAAATDLETAPRBV0mt7bmSXiPpS9VWBwCATbmCB1A1YicA6J9uux9/RtJJkmZWVxUAANqj+zEa6DMidgKAvujYUmv7cEn3RsS1HdY71vYS20tWrVrVswoCACa7dEufXj6AKnUTOxXjppUriZsAYEt00/34YEmvs32bpAskvcz2ua0rRcSiiFgQEQtmzZrV42oCACYrO81+3MsHULGOsVMxbpo9m7gJALZEx6Q2Ij4QEXMjYr6kIyV9PyLeWnnNAAAAGojYCQD6i/vUAgBqjy7DAACgzJiS2oj4oaQfVlITAABKkNKiqYidAKB6Y7lPLQAAfWep7xNF2T7L9r22ry8s29f2VbavyxP8HJCX2/bptpfZ/pXt/at7NwAAQCuSWgBA7Q1g9uOzJR3asuyfJH0kIvaV9I/5d0k6TNJe+XGspDN6sc8AAKA7JLUAALSIiB9Lur91saQn5Z+3l3RX/nmhpK9EcpWkHWzv3J+aAgAAJooCANRcJbfhmWV7SeH3RRGxqMNr3ivpMtufVLoo/KK8fI6kOwrrLc/LVvSorgAAYBQktQCAWrMq6Va0KiIWjPE175L0dxFxse0jJJ0p6eW9rxoAABgLuh8DAOrNku2ePsbp7ZIuyT9/Q9IB+ec7Jc0rrDc3LwMAAH1QSUttKDQcw1UUvXEbEZWWvyHWV1q+JA2r2vdIkrYe2rrybVRuXfXvk1avrXwTO283u9LyK+ie2bqFissHau8uSX+mdHuWl0n6XV5+qaQTbF8g6UBJD0UEXY+BBhpyte0906f2oZPkNn3YxrbVb2Pq0JRKyzdxzYRC92MAQO11OWNxz9g+X9JLlMbeLpd0qqR3SvoX21MlPaY007EkLZb0aknLJK2RdExfKwsAwCRHUgsAqLWR+9T2U0S8qeSp57dZNyQdX22NAABAGZJaAEDtVd+9HgAANBVJLQCg5qwhxj4BAIASzH4MAAAAAGgsWmoBALVH92MAAFCGpBYAUGt2/yeKAgAAzUFSCwCoPe4nCAAAypDUAgBqj+7HAACgDBNFAQAAAAAai5ZaAECtWWZMLQAAKEVSCwCoPdOxCAAAlCCpBQDUHi21AACgDEktAKD2mCgKAACUoT8XAAAAAKCxaKkFANSa8z8AAIB2SGoBAPVmxtQCAIByJLUAgNpjTC0AAChDUgsAqDVLGmIKCAAAUIIoAQAAAADQWLTUAgBqznQ/BgAApUhqAQC1R1ILAADKkNQCAGpviFv6AACAEoypBQAAAAA0ViUttaHQuuG1VRQ9oUyfsk3l2xhytdctXr7bwZWWL0kr/35N5dvYccaMyrex28xdKy1/6ynV7oNpKcOAWHQ/BlB9TCNJM7favtLy37r3ayotX5Jmnbxd5duYOa36GPYV815SafnTK46b0F90PwYA1JulIZJaAABQgqQWAFBzpqcAAAAoRVILAKg1qz/dDgEAQDMRJQAAAAAAGouWWgBA7TFRFAAAKENSCwCoPcbUAgCAMiS1AICaM7MfAwCAUiS1AIBas2ipBQAA5bqaKMr2DrYvsv0b2zfZfmHVFQMAAGgqYicA6J9uW2r/RdL3IuKNtqdJ2qbCOgEAsAm6H6OBiJ0AoE86JrW2t5f0YklHS1JErJW0ttpqAQCQWTL3qUWDEDsBQH91EyXsLmmlpC/b/oXtL9netuJ6AQCQuef/gIoROwFAH3WT1E6VtL+kMyJiP0mPSDq5dSXbx9peYnvJfSvv63E1AQCTlZW6H/fy0XGb9lm277V9fcvyv81jJG+w/U+F5R+wvcz2zbZf1ft3AQ3TMXYqxk0rV64aRB0BYMLoJqldLml5RFydf79I6UC9iYhYFBELImLBTrN36mUdAQDot7MlHVpcYPulkhZKel5EPFvSJ/PyvSUdKenZ+TWfsz2lr7VF3XSMnYpx0+zZs/peQQCYSDomtRFxt6Q7bD8zLzpE0o2V1goAgALbPX10EhE/lnR/y+J3SfpERDye17k3L18o6YKIeDwibpW0TNIBvdt7NA2xEwD0V7ezH/+tpPPy7H23SDqmuioBALCpod6Pg51le0nh90URsajDa54h6U9tnybpMUnvi4ifS5oj6arCesvzMkxuxE4A0CddJbURcZ2kBdVWBQCAzVnqqnV1jFZFxFjPa1Ml7SjpIEkvkHSh7af3umKYGIidAKB/uEcCAADdWS7pkkiukTQsaZakOyXNK6w3Ny8DAAB9QFILAKg5yx7q6WOcviXppZJk+xmSpklaJelSSUfa3tr27pL2knTNlu83AADoRrdjagEAGJgKxtSOyvb5kl6iNPZ2uaRTJZ0l6ax8m5+1kt4eESHpBtsXKk0EtF7S8RGxoa8VBgBgEiOpBQDUml3JmNpRRcSbSp56a8n6p0k6rboaAQCAMiS1AIDac59bagEAQHMwphYAAAAA0Fi01AIAas59734MAACao5KkdkhTNGPqtlUU/YT1w+sqLX8LZsfs2nAf5hEZqng/nrXDn1RaviS987nbVb6NaVOmVb6NXbaZW2n5U13tNSqSCgxSvyeKAlA/Vcc0kjRjyjaVlr/PjvtWWr4k7fmkZ1S+jYnwWUybMr3S8tFftNQCAGrN6s+FRgAA0EwktQCAmjMTRQEAgFJc+gYAAAAANBYttQCA2mNMNwAAKENSCwCoPbofAwCAMiS1AIDao6UWAACUIakFANSaxS19AABAOSaKAgAAAAA0Fi21AIB6s+l+DAAASpHUAgBqz3QsAgAAJUhqAQC1R0stAAAow6VvAAAAAEBj0VILAKg1i/vUAgCAciS1AICas4bofgwAAEqQ1AIAao+WWgAAUIakFgBQe0wUBQAAyjBRFAAAAACgsWipBQDUWpooimuwAACgPZJaAEDNme7HAACgFEktAKD2hpgoCgAAlCCpBQDUm5koCgAAlGOQEgAAAACgsWipBQDUWpooipZaAADQHkktAKD26H4MAADKVJLU2tIUT6mi6Ces17pKy582NK3S8iVp/fD6yrcxHMOVlj996jaVli9Je27/zMq3ERW/T1L1LU1bVfydpaUMg2Nu6QOgL6YMVdveM8PVx03Tp8yofBv9MFTxcZ+LpRMLLbUAgNobIvgAAAAluPQNAAAAAGgsWmoBALXGRFEAAGA0JLUAgNpj7BMAAChDUgsAqDnTUgsAAEoxphYAAAAA0FgktQCA2rPd00cX2zvL9r22r2/z3Im2w/as/Lttn257me1f2d6/grcAAACUIKkFANSale5X2Mt/XThb0qGb1cWeJ+mVkv5QWHyYpL3y41hJZ2zpPgMAgO51dWa3/Xe2b7B9ve3zbU+vumIAAEiS3P+W2oj4saT72zz1aUknSYrCsoWSvhLJVZJ2sL1zL3YdzUXsBAD90zGptT1H0rslLYiIfSRNkXRk1RUDACBxz/9JmmV7SeFxbMda2Asl3RkRv2x5ao6kOwq/L8/LMEkROwFAf3U7+/FUSTNsr5O0jaS7qqsSAACVWxURC7pd2fY2kk5R6noMdIPYCQD6pGNLbUTcKemTSuOHVkh6KCIub13P9rEjV7xXrlzV+5oCACatfnc/bmMPSbtL+qXt2yTNlbTU9tMk3SlpXmHduXkZJqluYifiJgDonW66Hz9ZabzQ7pJ2kbSt7be2rhcRiyJiQUQsmD17Vu9rCgCYtCrofjwmEfHriHhKRMyPiPlKXYz3j4i7JV0q6ag8C/JBSgnMip6+AWiUbmIn4iYA6J1uJop6uaRbI2JlRKyTdImkF1VbLQAAEqv/Sa3t8yX9TNIzbS+3/Y5RVl8s6RZJyyR9UdLf9GC30WzETgDQR92Mqf2DpIPyeKJHJR0iaUmltQIAoGh8XYbHLSLe1OH5+YWfQ9LxVdcJjULsBAB91M2Y2qslXSRpqaRf59csqrheAAAAjUTsBAD91dXsxxFxqqRTK64LAABtjG8cLDBIxE4A0D/d3tIHAICBGeeMxQAAYBIgqQUA1B4ttQAAoAxJLQCg9khqAQBAmW5u6QMAAAAAQC3RUgsAqDWLMbUAAKAcSS0AoOaY/RgAAJSrJKmNCK0fXl9F0X0zbWh6H7ZR+Sb02IY1lZa/bnhtpeVL/RlLN+QplW8jFJWWb1f9hSKpwOCQ1AKYCIYqP1cDkxMttQCAejPdjwEAQDkuFwEAAAAAGouWWgBA7dH9GAAAlCGpBQDUGrMfAwCA0ZDUAgBqjtmPAQBAOcbUAgAAAAAai5ZaAEDt0VILAADKkNQCAGqPMbUAAKAMSS0AoPZoqQUAAGVIagEAtWaR1AIAgHJMFAUAAAAAaCxaagEANWfG1AIAgFIktQCABiCpBQAA7ZHUAgDqzcx+DAAAypHUAgBqj4miAABAGSaKAgAAAAA0Fi21AIDao6UWAACUIakFANSamf0YAACMgqQWAFB7tNQCAIAyJLUAgNojqQUAAGWYKAoAAAAA0Fi01AIAao8xtQAAoAxJLQCg9uh+DAAAypDUAgBqjdmPAQDAaCpJan+x9LpVM6dtf/sYXjJL0qoq6tJH7EN9TIT9qOM+7DboCgDARLT02l+smjF127HETVI9zxNjxT7Uw0TYB6me+0Hs1CeVJLURMXss69teEhELqqhLv7AP9TER9mMi7APQS/3ufmz7LEmHS7o3IvbJy/6vpNdKWivp95KOiYgH83MfkPQOSRskvTsiLutrhdFoY42bpIlxnmAf6mEi7IM0cfYD48PsxwCABnCPHx2dLenQlmVXSNonIp4r6beSPiBJtveWdKSkZ+fXfM72lHHtJgAAGDOSWgBA7fU7pY2IH0u6v2XZ5RGxPv96laS5+eeFki6IiMcj4lZJyyQdMK4dBQAAY1aXiaIWDboCPcA+1MdE2I+JsA9Az9Rwoqi/lvT1/PMcpSR3xPK8DKjSRDhPsA/1MBH2QZo4+4FxqEVSGxGN/xKyD/UxEfZjIuwDUHOzbC8p/L6o27872x+UtF7SeZXUDOjCRDhPsA/1MBH2QZo4+4HxqUVSCwDA6HreUrtqPBOK2D5aaQKpQyIi8uI7Jc0rrDY3LwMAAH3AmFoAQO31fZqodnWwD5V0kqTXRcSawlOXSjrS9ta2d5e0l6RrxrkZAAAwRgNNam0favtm28tsnzzIuoyX7Xm2f2D7Rts32H7PoOs0Xran2P6F7W8Pui7jYXsH2xfZ/o3tm2y/cNB1Givbf5e/R9fbPt/29EHXCRi8Xqe0ndNa2+dL+pmkZ9pebvsdkj4raaakK2xfZ/vzkhQRN0i6UNKNkr4n6fiI2NCLPQdaETvVR9PjJonYCROHN/ae6vOG0+0OfivpFUqTavxc0psi4saBVGicbO8saeeIWGp7pqRrJb2+afshSbb/p6QFkp4UEYcPuj5jZfscST+JiC/ZniZpm5F7SDaB7TmSrpS0d0Q8avtCSYsj4uzB1gwYrH2f/7y4/Kff7WmZT50x51ruZ4imIXaql6bHTRKxEyaOQbbUHiBpWUTcEhFrJV2gdFuERomIFRGxNP/8sKSb1MBZL23PlfQaSV8adF3Gw/b2kl4s6UxJioi1TTooF0yVNMP2VEnbSLprwPUBANQHsVNNND1ukoidMLEMMqmdI+mOwu+NvwWC7fmS9pN09YCrMh6fURorNjzgeozX7pJWSvpy7gr0JdvbDrpSYxERd0r6pKQ/SFoh6aGIuHywtQIA1AixU318Rs2OmyRiJ0wgTBTVI7a3k3SxpPdGxOpB12csbB8u6d6IuHbQddkCUyXtL+mMiNhP0iOSGjXWyPaTla647y5pF0nb2n7rYGsF1IN7/A/A4DU1dpogcZNE7IQJZJBJ7YS5BYLtrZQOyudFxCWDrs84HCzpdbZvU+rK9DLb5w62SmO2XNLyiBi50nuR0oG6SV4u6daIWBkR6yRdIulFA64TUAsktYAkYqe6mAhxk0TshAlkkEntzyXtZXv3PDD9SKXbIjSKbSuNRbgpIj416PqMR0R8ICLmRsR8pc/h+xHRqKtcEXG3pDtsPzMvOkRpJtIm+YOkg2xvk79XhyiNMwIAQCJ2qoWJEDdJxE6YWKYOasMRsd72CZIukzRF0ln5tghNc7Ckt0n6te3r8rJTImLx4Ko0af2tpPPyif4WSccMuD5jEhFX275I0lJJ6yX9QtKiwdYKAFAXxE6oALETJoSB3dIHAIBu7Pv858V//ldv5/2YNf1p3NIHAIAJgomiAAAAAACNNbDuxwAAdIfJnQAAQDlaagEAAAAAjUVLLQCgAWipBQAA7ZHUAgBqzSKlBQAA5UhqAQC1l24/CAAAsDmSWgBAA5DUAgCA9pgoCgAAAADQWLTUAgBqj3ZaAABQhqQWANAApLUAAKA9kloAQM2ZiaIAAEApxtQCAAAAABqLpBYAAAAA0Fh0PwYA1JolmTG1AACgBEktAKABSGoBAEB7JLUAgNojpQUAAGVIagEAtcfsxwAAoAwTRQEAAAAAGouWWgBAzVl0QAYAAGVIagEAtUdKCwAAypDUAgAagLQWAAC0x5haAAAAAEBj0VILAKg3M/sxAAAoR0stAAAAAKCxaKkFANRamvuYlloAANCeI2LQdQAAoJTt70ma1eNiV0XEoT0uEwAADABJLQAAAACgsRhTCwAAAABoLJJaAAAAAEBjkdQCAAAAABqLpBYAAAAA0FgktQAAAACAxvr/6vk4syU3YQEAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "Err_G10=error(xdata10, poptG10[0], poptG10[1],poptG10[2], poptG10[3], poptG10[4], recorteG10.ravel(), inc=1)\n", + "poptG10E, pcovG10E = curve_fit(gauss2d, xdata10, recorteG10.ravel(), p0=[1,1,1,1,1],sigma=Err_G10)\n", + "estrellaG10E=gauss2d(xdata10, poptG10E[0], poptG10E[1],poptG10E[2], poptG10E[3], poptG10E[4])\n", + "FWHMG10E=FWHMG_I.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptG10E[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 10 fotografÃa (Banda Verde)\")\n", + "plt.imshow(recorteG10, plt.get_cmap('Greens'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 10 a partir de la gaussiana con incertidumbre (Banda Verde)\")\n", + "plt.imshow(estrellaG10E.reshape(10, 10), plt.get_cmap('Greens'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Histograma con incertidumbres (Banda Verde)" + ] + }, + { + "cell_type": "code", + "execution_count": 850, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Datos de FWHM con incertidumbres de las estrellas para la Banda verde :\n", + "Desviación : 2.525343798913612\n", + "Media : 4.246485293065105\n", + "Mediana : 3.173731685005169\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAU50lEQVR4nO3df7DldX3f8efLZSOo/Ejh1uD+cFUYUuJE0DsE0LYUQoqCbJtgC1UjDMlOjVZsbQw4HZjQTkedRJMUI1mBgMogiEaXH0opkhFQ0QsuCCzWHbsNiyjLovySHy6++8f5bjlczr33XPZ+z1nu9/mYObPfH5/z/b7vmb33db6/Pp9UFZKk7nrRuAuQJI2XQSBJHWcQSFLHGQSS1HEGgSR13C7jLmC+9tlnn1q1atW4y5CkF5RbbrnlgaqaGLTuBRcEq1atYmpqatxlSNILSpL/O9M6Tw1JUscZBJLUcQaBJHWcQSBJHWcQSFLHGQSS1HGtB0GSJUm+m+TKAetenOTSJBuT3JxkVdv1SJKebRRHBKcBG2ZYdyrw06raD/g48JER1CNJ6tNqECRZDhwLnDdDk9XARc305cBRSdJmTZKkZ2v7yeK/AD4I7D7D+mXAPQBVtS3JQ8DewAP9jZKsAdYArFy58nkXs+r0q573e3fUpg8fO7Z9S9JsWjsiSHIccH9V3bKj26qqtVU1WVWTExMDu8qQJD1PbZ4aeiNwfJJNwOeAI5N8dlqbe4EVAEl2AfYEtrZYkyRpmtaCoKrOqKrlVbUKOBH4WlW9Y1qzdcC7mukTmjYOoixJIzTy3keTnA1MVdU64HzgM0k2Ag/SCwxJ0giNJAiq6u+Bv2+mz+xb/gTwtlHUIEkazCeLJanjDAJJ6jiDQJI6ziCQpI4zCCSp4wwCSeo4g0CSOs4gkKSOMwgkqeMMAknqOINAkjrOIJCkjjMIJKnjDAJJ6jiDQJI6ziCQpI5rc/D6XZN8O8ltSe5M8qcD2pycZEuS9c3rD9qqR5I0WJsjlD0JHFlVjyZZCtyY5CtV9a1p7S6tqve2WIckaRatBUEzCP2jzezS5uXA9JK0k2n1GkGSJUnWA/cD11bVzQOa/V6S25NcnmRFm/VIkp6r1SCoqqer6iBgOXBIktdOa3IFsKqqfhO4Frho0HaSrEkylWRqy5YtbZYsSZ0zkruGqupnwPXAMdOWb62qJ5vZ84A3zPD+tVU1WVWTExMTrdYqSV3T5l1DE0n2aqZ3A44G7p7WZt++2eOBDW3VI0karM27hvYFLkqyhF7gXFZVVyY5G5iqqnXA+5IcD2wDHgRObrEeSdIAbd41dDtw8IDlZ/ZNnwGc0VYNkqS5+WSxJHWcQSBJHWcQSFLHGQSS1HEGgSR1nEEgSR1nEEhSxxkEktRxBoEkdZxBIEkdZxBIUscZBJLUcQaBJHWcQSBJHWcQSFLHGQSS1HEGgSR1XJtjFu+a5NtJbktyZ5I/HdDmxUkuTbIxyc1JVrVVjyRpsDaPCJ4Ejqyq1wEHAcckOXRam1OBn1bVfsDHgY+0WI8kaYDWgqB6Hm1mlzavmtZsNXBRM305cFSStFWTJOm5Whu8HiDJEuAWYD/gE1V187Qmy4B7AKpqW5KHgL2BB6ZtZw2wBmDlypVtltyaVadfNZb9bvrwsWPZr6QXjlYvFlfV01V1ELAcOCTJa5/ndtZW1WRVTU5MTCxojZLUdSO5a6iqfgZcDxwzbdW9wAqAJLsAewJbR1GTJKmnzbuGJpLs1UzvBhwN3D2t2TrgXc30CcDXqmr6dQRJUovavEawL3BRc53gRcBlVXVlkrOBqapaB5wPfCbJRuBB4MQW65EkDdBaEFTV7cDBA5af2Tf9BPC2tmqQJM3NJ4slqeMMAknqOINAkjrOIJCkjjMIJKnjDAJJ6jiDQJI6ziCQpI4zCCSp4+YMgiQfTbJHkqVJrkuyJck7RlGcJKl9wxwR/E5VPQwcB2yiN7bAH7dZlCRpdIYJgu39ER0LfL6qHmqxHknSiA3T6dyVSe4GHgfenWQCeKLdsiRJozLnEUFVnQ4cDkxW1S+Ax+iNNSxJWgSG7Yb6FcBvJ9m1b9mnW6hHkjRicwZBkrOAI4ADgauBNwM3YhBI0qIwzMXiE4CjgB9X1SnA6+iNLSxJWgSGCYLHq+qXwLYkewD30ww4P5skK5Jcn+SuJHcmOW1AmyOSPJRkffM6c9C2JEntGeYawVQzCP2ngFuAR4FvDvG+bcAHqurWJLsDtyS5tqrumtbuhqo6bj5FS5IWzpxBUFV/1Eyem+SrwB7NeMRzve8+4L5m+pEkG4BlwPQgkCSN0YxBkOT1s62rqluH3UmSVfQGsr95wOrDktwG/Aj4z1V154D3rwHWAKxcuXLY3UqShjDbEcGfz7KugCOH2UGSlwFfAN7fdFXR71bglVX1aJK3AF8C9n/OzqrWAmsBJicna5j9SpKGM2MQVNW/2NGNJ1lKLwQurqovDtjHw33TVyf56yT7VNUDO7pvSdJwZjs19LuzvXHQH/Zp7w9wPrChqj42Q5tfA35SVZXkEHp3MW2ds2pJ0oKZ7dTQW2dZV8CsQQC8EXgn8L0k65tlHwJWAlTVufSeUXh3km30+jI6sao89SNJIzTbqaFTdmTDVXUjkDnanAOcsyP7kSTtmGEGpnl5kvOTfKWZPzDJqe2XJkkahWGeLL4QuIZex3MA/xt4f0v1SJJGbJgg2KeqLgN+CVBV24CnW61KkjQywwTBY0n2pneBmCSHAo5SJkmLxDB9Df0nYB3wmiQ3ARP07vaRJC0CswZBkiXAP29eB9C7C+j7zUhlkqRFYNZTQ1X1NHBSVW2rqjur6g5DQJIWl2FODd2U5BzgUnrjFQMwn07nJEk7r2GC4KDm37P7lg3d6Zwkaec2TBCcWlU/7F+Q5NUt1SNJGrFhbh+9fMCyzy90IZKk8Zit99FfB34D2HNaT6R7ALu2XZgkaTRmOzV0AHAcsBfP7on0EeAPW6xJkjRCs/U++mXgy0kOq6phBquXJL0ADXON4F8n2SPJ0iTXJdmS5B2tVyZJGolhguB3miEljwM2AfsBf9xmUZKk0RkmCJY2/x4LfL6q7HBOkhaRYYLgiiR3A28ArksyATwx15uSrEhyfZK7ktyZ5LQBbZLkr5JsTHJ7ktfP/0eQJO2IOYOgqk4HDgcmm36Gfg6sHmLb24APVNWBwKHAe5IcOK3Nm4H9m9ca4JPzqF2StACGGaryJcAf8cwf6VcAk3O9r6ru294fUVU9AmwAlk1rthr4dPV8C9gryb7zqF+StIOGOTX0t8BT9I4KAO4F/tt8dpJkFXAwcPO0VcuAe/rmN/PcsCDJmiRTSaa2bNkyn11LkuYwTBC8pqo+CvwCoKp+Tm9cgqEkeRnwBeD9zd1H81ZVa6tqsqomJyYmns8mJEkzGCYInkqyG88MVfka4MlhNp5kKb0QuLiqvjigyb3Air755c0ySdKIDBMEZwFfBVYkuRi4DvjgXG9KEuB8YENVfWyGZuuA32/uHjoUeKiq7huudEnSQpizG+qqujbJrfTu/AlwWlU9MMS23wi8E/hekvXNsg8BK5vtngtcDbwF2EjvbqRT5vsDSJJ2zDDjEVBVW4Gr5rPhqrqROa4lVFUB75nPdiVJC2uYU0OSpEXMIJCkjhsqCJK8KckpzfREkle1W5YkaVSGebL4LOBPgDOaRUuBz7ZZlCRpdIYajwA4HngMoKp+BOzeZlGSpNEZ6oGy5u6e7Q+UvbTdkiRJozRMEFyW5G/odQj3h8D/Aj7VblmSpFEZ5oGyP0tyNPAwvQHtz6yqa1uvTJI0EsM+UHYt4B9/SVqEZgyCJI/QXBcYpKr2aKUiSdJIzRgEVbU7QJL/CtwHfIZelxFvBxw8RpIWiWEuFh9fVX9dVY9U1cNV9UmGG6pSkvQCMEwQPJbk7UmWJHlRkrfTPFMgSXrhGyYI/h3wb4CfNK+3NcskSYvAMLePbsJTQZK0aNn7qCR1nEEgSR3XWhAkuSDJ/UnumGH9EUkeSrK+eZ3ZVi2SpJkN0w31f+mbfvE8tn0hcMwcbW6oqoOa19nz2LYkaYHMGARJ/iTJYcAJfYu/OeyGq+rrwIM7UJskaQRmOyK4m96toq9OckOSTwF7JzlgAfd/WJLbknwlyW/M1CjJmiRTSaa2bNmygLuXJM0WBD8DPgRsBI4A/rJZfnqSbyzAvm8FXllVrwP+B/ClmRpW1dqqmqyqyYmJiQXYtSRpu9mC4F8CVwGvAT4G/BbwWFWdUlWH7+iOm+4qHm2mrwaWJtlnR7crSZqfGYOgqj5UVUcBm+h1OLcEmEhyY5IrdnTHSX4tSZrpQ5patu7odiVJ8zPMeATXVNUUMJXk3VX1pmG+uSe5hN4ppX2SbAbOojfwPVV1Lr2L0O9Osg14HDixGRJTkjRCw3Qx8cG+2ZObZQ8M8b6T5lh/DnDOXNuRJLVrXg+UVdVtbRUiSRoPu5iQpI4zCCSp4wwCSeo4g0CSOs4gkKSOMwgkqeMMAknqOINAkjrOIJCkjjMIJKnjDAJJ6jiDQJI6ziCQpI4zCCSp4wwCSeo4g0CSOq61IEhyQZL7k9wxw/ok+askG5PcnuT1bdUiSZpZm0cEFwLHzLL+zcD+zWsN8MkWa5EkzaC1IKiqrwMPztJkNfDp6vkWsFeSfduqR5I02JyD17doGXBP3/zmZtl90xsmWUPvqIGVK1eOpLjFYtXpV41t35s+fOxY9tvFn1mjsxj/f70gLhZX1dqqmqyqyYmJiXGXI0mLyjiD4F5gRd/88maZJGmExhkE64Dfb+4eOhR4qKqec1pIktSu1q4RJLkEOALYJ8lm4CxgKUBVnQtcDbwF2Aj8HDilrVokSTNrLQiq6qQ51hfwnrb2L0kazgviYrEkqT0GgSR1nEEgSR1nEEhSxxkEktRxBoEkdZxBIEkdZxBIUscZBJLUcQaBJHWcQSBJHWcQSFLHGQSS1HEGgSR1nEEgSR1nEEhSxxkEktRxrQZBkmOSfD/JxiSnD1h/cpItSdY3rz9osx5J0nO1OWbxEuATwNHAZuA7SdZV1V3Tml5aVe9tqw5J0uzaPCI4BNhYVT+sqqeAzwGrW9yfJOl5aDMIlgH39M1vbpZN93tJbk9yeZIVgzaUZE2SqSRTW7ZsaaNWSeqscV8svgJYVVW/CVwLXDSoUVWtrarJqpqcmJgYaYGStNi1GQT3Av3f8Jc3y/6/qtpaVU82s+cBb2ixHknSAG0GwXeA/ZO8KsmvACcC6/obJNm3b/Z4YEOL9UiSBmjtrqGq2pbkvcA1wBLggqq6M8nZwFRVrQPel+R4YBvwIHByW/VIkgZrLQgAqupq4Oppy87smz4DOKPNGiRJsxv3xWJJ0pgZBJLUcQaBJHWcQSBJHWcQSFLHGQSS1HEGgSR1nEEgSR1nEEhSxxkEktRxBoEkdZxBIEkdZxBIUscZBJLUcQaBJHWcQSBJHWcQSFLHtRoESY5J8v0kG5OcPmD9i5Nc2qy/OcmqNuuRJD1Xa0GQZAnwCeDNwIHASUkOnNbsVOCnVbUf8HHgI23VI0karM0jgkOAjVX1w6p6CvgcsHpam9XARc305cBRSdJiTZKkadocvH4ZcE/f/Gbgt2ZqU1XbkjwE7A080N8oyRpgTTP7aJLvD1nDPtO31WEj/yyycx/ftfJ57OQ/82z8XXnGTvtZ7OD/r1fOtKLNIFgwVbUWWDvf9yWZqqrJFkp6wfGzeDY/j2fz83hGFz+LNk8N3Qus6Jtf3iwb2CbJLsCewNYWa5IkTdNmEHwH2D/Jq5L8CnAisG5am3XAu5rpE4CvVVW1WJMkaZrWTg015/zfC1wDLAEuqKo7k5wNTFXVOuB84DNJNgIP0guLhTTv00mLmJ/Fs/l5PJufxzM691nEL+CS1G0+WSxJHWcQSFLHLbogSLIiyfVJ7kpyZ5LTxl3TziDJkiTfTXLluGsZtyR7Jbk8yd1JNiQ5bNw1jUuS/9j8ntyR5JIku467plFKckGS+5Pc0bfsHyW5NskPmn9/dZw1jsKiCwJgG/CBqjoQOBR4z4CuLbroNGDDuIvYSfwl8NWq+nXgdXT0c0myDHgfMFlVr6V3U8dC37Cxs7sQOGbastOB66pqf+C6Zn5RW3RBUFX3VdWtzfQj9H7Jl423qvFKshw4Fjhv3LWMW5I9gX9G7441quqpqvrZWIsar12A3ZrneF4C/GjM9YxUVX2d3h2L/fq7vrkI+FejrGkcFl0Q9Gt6Mz0YuHnMpYzbXwAfBH455jp2Bq8CtgB/25wqOy/JS8dd1DhU1b3AnwH/ANwHPFRV/3O8Ve0UXl5V9zXTPwZePs5iRmHRBkGSlwFfAN5fVQ+Pu55xSXIccH9V3TLuWnYSuwCvBz5ZVQcDj9GBQ/9BmnPfq+mF4yuAlyZ5x3ir2rk0D7gu+nvsF2UQJFlKLwQurqovjrueMXsjcHySTfR6gD0yyWfHW9JYbQY2V9X2o8TL6QVDF/028H+qaktV/QL4InD4mGvaGfwkyb4Azb/3j7me1i26IGi6sT4f2FBVHxt3PeNWVWdU1fKqWkXvQuDXqqqz3/qq6sfAPUkOaBYdBdw1xpLG6R+AQ5O8pPm9OYqOXjifpr/rm3cBXx5jLSOx6IKA3jfgd9L75ru+eb1l3EVpp/IfgIuT3A4cBPz38ZYzHs1R0eXArcD36P096FT3CkkuAb4JHJBkc5JTgQ8DRyf5Ab2jpg+Ps8ZRsIsJSeq4xXhEIEmaB4NAkjrOIJCkjjMIJKnjDAJJ6jiDQJomydN9tx6vT7IqyRHTe25NcmGSE5KsTvKlvuVnNKPubZ9/a5J1zfSmJDdM2876/t4vpVEzCKTneryqDup7bZqj/Tfo9XS73WHAw0n+cTN/eNNmu92TrABI8k8Wqmjp+TIIpB1UVVvo/eHfr1m0jF4XJ9u7azgcuKnvLZcB/7aZPgm4ZBR1SjMxCKTn2q3vtNDf9S3/p/2njIDj+9bdBBzedF3xA+Bbzfwu9MY8+E5f2y8Av9tMvxW4oq0fRBrGLuMuQNoJPV5VBw1YfkNVHbd9JsmFfeu+Qe+b/xJ6XRZ8GziTXjfod1fVE31ttwI/TXIivb59fr6g1Uvz5BGBtDBuohcEhwPfbAZF2hU4gmdfH9juUuATeFpIOwGDQFoYG+j16f8m4LvNsvXAv+fZ1we2+zvgo8A1oyhOmo1BIC2AZgCTm4GtTd/+0DtF9GoGHBFU1SNV9ZGqemqEZUoD2fuoJHWcRwSS1HEGgSR1nEEgSR1nEEhSxxkEktRxBoEkdZxBIEkd9/8AkjfDjbksgLsAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "FWHMG_I = np.array(FWHMG_I )\n", + "sigmaG_I = FWHMG_I .std()\n", + "mediaG_I = FWHMG_I .mean()\n", + "medianaG_I = np.median(FWHMG_I )\n", + "print(\"Datos de FWHM con incertidumbres de las estrellas para la Banda verde :\")\n", + "print(\"Desviación :\", sigmaG_I )\n", + "print(\"Media :\", mediaG_I )\n", + "print(\"Mediana :\", medianaG_I )\n", + "plt.hist(FWHMG_I )\n", + "plt.xlabel('FHWM')\n", + "plt.ylabel('# de estrellas')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 1 con incertidumbre (Banda Azul)" + ] + }, + { + "cell_type": "code", + "execution_count": 851, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7MAAAFSCAYAAAAgmYhhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA560lEQVR4nO3de7xcVX338e/3nIRAuAVIQEgCQUUsUAUaAbVeqQqKwsu2CCqi8khtsaKlj4I+rWgfLE+1itYrCoKKUERUVFQoXtAqaEDuoKQKJCGYhPs15OT8nj/WOjA5OZc5Z+2ZOfvszzuveWXOnn35zcyemd9vr7XXdkQIAAAAAIA66et1AAAAAAAATBTFLAAAAACgdihmAQAAAAC1QzELAAAAAKgdilkAAAAAQO1QzAIAAAAAamdGrwMAAGAy+rfaJWLg0crXG4+u/mFEHFT5igEAQKUoZgEAtRQDj2rW7odXvt7Hrvn03MpXCgAAKkcxCwCoKUvmbBkAAJqKYhYAUE+WZPc6CgAA0CMUswCA+qJlFgCAxqKYBQDUFy2zAAA0Foe0AQAAAAC1Q8ssAKCmGAAKAIAmo5gFANQX3YwBAGgsilkAQD1ZtMwCANBgFLMAgJoyLbMAADQYh7QBAAAAALVDyywAoL7oZgwAQGNRzAIA6otuxgAANBbFLACgprg0DwAATUYxCwCoJ4uWWQAAGoxD2gAAAACA2qFlFgBQX3QzBgCgsShmAQA1xTmzAAA0GcUsAKC++jhnFgCApuKQdgVsL7Idtmfkv39i+391Ybu2/SXb99r+Vae3V8r27ravsf2g7XfmaR+zfdok1/evtt9VZYwT2PZZtv9vL7Y9mtb9zvarbf9nr2MCgKmiV7/VU43tF9j+beE6JvXaDX8P6sz2jbZf3Os4OsH2920fPQXi2Nn2Q7b7R3n8ZNtf7dC2O/79YPu/be/TyW2Mse3bbP9FL7Y9mvzd8PR8/99t/207y02rYja/MY/mHX/o9qk2lnvixes12/9i+3rbA7ZPHmf2P5f0MkkLImK/Ntbd6+f5Hkk/jogtI+KTtl8g6TmS/vdEV2R7nqQ3Sfp8/vvFtgdb3vcVtj9YafQVy1+U99qeVfW6I+I7kva0/ayq1w1MGVbqZlz1DR3VwN/qnhr+ukXEzyJi917GNB1ExJ4R8ZNex9EJEXFwRJzd7e0OL7Ai4o6I2CIi1nc7lk6z/WpJD0bEb/LfJ9te1/KdeLPtv+xxmKOyvUWO8/sd2sRHJb3P9ibjzTgdf7VfnXf8ods7SlfY5SOIS5WKvu+1Me8ukm6LiIc7G9L42nyNdpF0Y8vfu0p6XUSsm8Qm3yzp4oh4tGXanUPvu1Khf4ztwyax7o6zvUjSCySFpNd0aDPnSjq2Q+sGpga7+hu6oUm/1T0xmddjOrSYon7qvt9NMv63S/rKsGn/2ZLHvkvSV23vUBpfh/ylpLWSXmb7KVWvPCJWSrpFbeTI07GYHZHtp9v+qe37ba8Z6oJp+/I8y7X5CMPrcivfctvvtX2XpC/Z7rN9ou3/sX237fNtb9vGdp9m+0d5mTW2z7E9Z7T5I+LsiPi+pAfHWe8xkr4o6bk57g/m6W+zvdT2PbYvsr3TaM9zrPnzYy+3/dv8mn0mv35D3VjfnLtHfNz23ZJOHuu52v6RpJdI+lTe/jMkvVTS3+XHt7H9Xdurc2vld20vGOMlOFjST8d4Hf8g6ReS9mh5Pp+wvcz2A7avyi3DQ4+dnN/TLzt1g77R9uKWx/exfXV+7D8lbdry2ERjl1Kr8hWSzpL0RFce2zt5w9aKR2xHS4xfbZl3vO5aP5H0qnHiAGrMtMxOM9Pttzqvez/bv7R9n+2Vtj/lUVobWr7Xj7V9Z57/H9tdV172ONu3Srp1rNetZZnb8mt4naSHR/pNsf0y27fk9+VTSv0iWh9/q1NL0r22f2h7l/Fel7zcW/JyD9r+ve2/GWPefqeuh2ts/8H2O7xht/FR1+WUs/x82PpauzS+0vZNedkVQ6+57bn5N/0+pzzpZ3b6knBLK2Kb78vbbd+a5/m0nY6cTXTfs72n7UtzPH+0/b48fZbt0/J+c2e+Pys/NvRZOcH2qhzjW8bYxhNdbIdeO9sfze/vH2wf3DLvtk6nvN2ZH/9Wy2OHOJ1edp/tX7ilt9gI+925knaW9J28r77HG58asKvT98ODti+VNLdlfRvs1yO8Ryfb/rrtr+blr7f9DNsn5ddkme2XD3spnmb7V05547edv0ta4jrG9h2SfpSnt/U5yPvGSzV2HvtDpe+Xp+VltvEYuWZ+z/7FKTd/0PYltltfn6Ns3573s/cPi6ft76gWR0v6nKTrJL2xZV2v84Z57FrbP2mJ8X+1zLvR53KYn6iNPLZJv9r/IukSSdtIWiDpPyQpIl6YH392PhoydJ7hUyRtq9SaeKykv5d0mKQXSdpJ0r2SPt3Gdi3pX/MyfyJpoaSTS59MRJyhdFTnlznuD9h+ad7W4ZJ2lHS7pPPy/Bs9z7Hmzx+ACySdJGk7Sb+V9LxhYewv6feSdpB0yljPNSJeKulnkt6Rt/+7Yevqk/Qlpdd7Z0mPShqr29mf5phGZHs3Sc9XKhiH/FrS3krv69ckfd32pi2PvyY//zmSLhrafv5Af0vpCNq2kr6udERqsrFLqZg9J99e4XzkLSLubG2tkPTNHNNk3Cxpke2tJrk8MPXRMjvdTKvf6my9pHcrJd7PlXSg8oHcMbxE0m6SXi7pvX6y62U76zpM6fd5jzFet+GOVEoa50TEQOsDOR+4UNL/ydv9H6Xf16HHD5X0PkmvlTRP6bf+3HGe35BVkg6RtJWkt0j6uO19R5n3bUoHsveWtG9+npNd13BnSPqbiNhS0l7KxYmkEyQtV3peOyg9zxhh+Xbel0OUTq16llLe9Yo8ve19z/aWkv5L0g/y/E+XdFl++P2SDlB6fZ4taT+l92zIUyRtLWm+pGMkfdr2NiNtZwT7K+VccyX9m6Qz7Ce+LL8iabakPSVtL+njOdZ9JJ0p6W+U8sjPS7rIG55a1brfHSnpDj3Za+PfRojja5KuynH8i1oaA9r06hzvNpJ+I+mHSjncfEkfyjG2epOktyrlyAOSPjns8RcpvWevmODnYDdJgxGxfKQHnbxK0iaSbsqT28k1X6+072+flx06KLOHpM9KOkppv9lO6ft1yIS+o3KR/mI9mce+aeixiGhtXd5JqU5o9/tguJuV9uUxTcdi9lv5yMLQ7W15+jqlHWCniHgsIsY6EiBJg5I+EBFrc1fWt0t6f0Qsj4i1Sl80f+VxuhZExNKIuDSvZ7Wkjynt/J3wBklnRsTVOcaTlFpuF01i/ldKujEiLsw/bJ+UdNew5e+MiP+IiIGIeLTkuUbE3RHxjYh4JCIeVCqOx1p2jjY+Ir5Tfs8fkPQ7SVdKeuJ9joiv5u0MRMS/S5olqfW8oZ9HxMX53Iyv6MkP0AGSZko6LSLWRcQFSoXxpGK3/edK++L5EXGVUmLw+hHme6+kZyp9kU7G0OszZ5LLA0CnNOa3OiKuiogr8m/PbUoJ83jr/mBEPBwR1yslsEdOYF3/GhH3DDsNZzyfjIhloywzlA9ckE8LOk0b5gNvz9u8OecLH5a092itUq0i4nsR8T+R/FTpQMYLRpn9cEmfyO/tvZJOLVjXcOsk7WF7q4i4NyKubpm+o6Rd8u//zyJio2K2zffl1Ii4LyLukPRjpaJzovveIZLuioh/z5+PByPiyvzYGyR9KCJW5fV8UKl4aX2OH8rP42JJD2nDHGgst0fEF3J+dHZ+TXawvaPSAYa359dtXX7tpXRw6fMRcWVErI90Du5apZxqyFj73QZs76x0MOCf8mt1uaTvtBn/kJ9FxA/zfvp1paLz1Lxfn6fUADCnZf6vRMQNkU7n+ydJh3vDwahOzp/Toe+edj8HczRyr47Dbd+n9N5cJOnDEXGf1Hau+aWI+F2O53zlfUzSX0n6bkRcnr8X/0npu1N53RP9jjpK0nURcZPS67anhw1k5dSD4WuSfhIRww8StOtBtZHDTsdi9rCImNNy+0Ke/h6lo1+/cupCOl6BsDoiHmv5exdJ3xz64VU6WrBe6UjdqGzvYPs8p24rD0j6qlq6RVRsJ6XWVUlSRDwk6W6lI04TnX8nSctaHgulo5OtlrX+UfJcbc+2/fncBeIBSZdLmuNRRrBTOtq+5bBpd+b3fCulnf9RpS/doW38Y+7+cX9+D7ceFl/rj/MjkjbNCdBOklYM+wF74nWbROxHS7okItbkv7+mYUcXnbrwHK+0P08kIWk19PrcN8nlgamPbsZ11ZjfaqeujN+1fVde94fbWHfr7+vtSr9D7a5rmSZurGVGygda599F0idaXvN7lN7D0XKPJ9g+2PYVTl1m71MqnEd7bTaIY3jME1zXcH+Z57/dqRvrc/P0jyidH32JU9flE0d5Hu28L8NzjC3yshPZ9xYqHQAfyQY5nVr2m+zu2LDV/YkY2vBE7BHxSL67RY7nnnxwYbhdJJ3QetAqz98a00T21Z0k3RsbjhNz+2gzj+KPLfcflbQmnhxcaijXan1Nhn8OZ2rD92ayn4ORclgpNXLMiYjNlboXv8m5u3ybueaI+5g2/gw/rJTvK697ot9RQ70LFRErlLpLD28lPyU/x3eOsZ7xbKk2ctjG/GpHxF0R8baI2Empy8NnPPaoiMOPvC2TdPCwH99N85s4lg/ndf1pLrLeqGHnmlToTqUPkyTJ9uZKXQlGi3Gs+VeqpQuCbWvDLgnSxq9RyXM9QekI4f552aGuUaMtf52kZ4y2soi4X6lIfHWO/wVKSdLhkraJiDmS7m8zvpWS5ufXYMjOk4nd9mY5hhflL427lLp2PNv2s/M8uysV4YdHROsX5cNKXXmGjHfC/Z8oDRD2wHhPEKilTnQxpptxT03T3+rPKg1kslte9/vaWPfClvs7K/1et7uukbrBjmesZVa2xpN/C1vjW6bURbf1Nd8sIn4x1gadupt+Q2nU0h3y7/LFGv212SAvGRbTeOva4PfTwwasiYhfR8ShSt0zv6XUqqXc8nlCRDxV6VSkf7B94AixTeY9HjKRfW+ZpKeO8tgGOZ023G86ZZmkbT3yOb7LJJ0ybL+YHRGtXU6H73fj7Yfb5Fx1SGsuNvw97ldqeS0x/HO4TtKalmmt8U7kc7A0hehRD/jkFtLvK+exmnie3Gr4Z3i2Ur4/pO391/bzlLpJn9SSx+4v6fV+8tzmI5R6k/xVbDjI62Ty2GvHe3KNKWZt/7WfPFH6XqUdcKiJ/Y8a/cthyOcknTLUXcD2PKf+8ePZUqm7wP15px3zMjS2Zzqdx9knaYbtTcdo4RvuXElvsb13/mL/sKQr8wdC2vh5jjX/9yT9qe3D8s55nMbf6Sb0XEdY9lFJ9zmdYP+Bcea/WGN35d1C0hF6cvTkLZXOd1it9Lr+s9J5Ne34ZV72nfn9ea3SuSiTif0wpVaCPZS6f+yt9GH9mdIRuK0kfVupm9zw7nXXSHqh03XXtlbqFj6WFyl9EQLTFy2z08o0/a3eUtIDkh6y/UxJ7Vw78Z9yS8yeSufADZ3rOpl1tfO6jeV7St0IX5vzgXdqw3zgc0qJ7Z6SZHtr23/dxno3UTrdZ7WkAaceScMH4Gl1vqTjbc/PxdN7J7Cua/Nz2Du/bycPPWB7E9tvsL11TrwfUN7nnAYwenou4O9X+v0e1MYm8760LtvuvvddSTvafpfTgE9b2t4/P3aupP+T9/m5kv5ZqZW3YyKNOPt9pYNO2+TPxVCR9QVJb7e9v5PNbb/K6bzf0Yy6r0bE7ZKWSPpgfs/+XE8WelI6vWzTvI2ZSucLl1768I2298jF34ckXRCjXyao7c9BRDyudO7zWHnsAkkHacM8diJ5cqsLJB1i+8+dxoH5kDasASey/x4t6VJtmMfuJWkzSQc7dTf+D6XeN6uHLXuNpNfm77anK527PZa28tjp+Ks9NAra0O2befpzJF1pe6gf+vER8fv82MmSznbqGnD4KOv9RF7uEtsPKg0stP8o87b6oNJABfcr/SBcOM78X1DaWY9UOpn/UW14zsOoIuK/lPrBf0PpKMzTlAq6ISer5XmONX/uAvvXSif636200y5ROt+hqufa6jSlD8Iapdf2B+PM/2VJr3Rq6RzyxEjASt1BtlU6h0RKJ/n/QOnL7nZJj6nN7i35S+e1SpcDukfS67Thc5tI7EcrndNwR26BuCsi7lI6if8NSkXy7koDVzzU8nwUEZcqJTTXKQ2A8N1xQj9SGw9mAEwvtMzWVZN+q/9RaVyEB/Nyow3C1OqnSq03l0n6aERcUrCukzX+6zaqlnzgVKV8YDdJ/93y+Dcl/T9J5zl1UbxB6TzK8db7oFJhfL7SgYvXK713o/mC0nmw1ykN3nOx0oHm9eOtK9Kgkx9SKiBuVct4GtlRkm7L8b9dT+YOu+VlHlI6sP2ZiPjxCLFN5n0Z0va+l5/ny5SKuLvyc3lJfvj/KuVp10m6XtLVeVqnHaXUYnmL0iBc78qxLlEatOtTSu/JUqU8aiz/qlSQ3+eWUbxbvF7p83yPUjH35aEHco+8v1O60scKpVbAEQdYmoCvKF114i6lq1iM2mV2Ep+Dz2vj74zXteR9v1b6nH0wP3aaJpYnt8Z2o1Kj1NeU8v17teFr09b+mw8EHS7pP1pz2EhXEPmKUo57qNIAWz9v+X4fKkg/LulxpYMWZyt3VR5lWzsq1R7fGu/5OTY+jx3YiNOJ3MslvWGUL/Kus/1hSasi4rRexzLVOF2M+6iImHDiAtRF39YLY9bz/qHy9T72g3+4KiIWjz8nUC2nARj/IGnmsPMbMUxuff1cRLR1GSBgqrH930pX+fhNr2OZamz/u6T/iYjPjDdvrS9SjM6y/QqlEYEfVer2Ym14qZueioj39TqGqSoivqOJj/IH1IzpFgw0RO6J9RKl1tkdlFrmvjnmQsAUFhHPH3+uZoqIE9qdlywAY3mu0qh5a5S6tJSMrAsA1aObMdAUVupyea9SN+Oblc4LBdBgtMxiVBFxsqq7aDwAVMuiZRbTSh6AkSMqI8iXhHlOr+MAMLVQzAIAaopuxgAANBlZAAAAAACgdrraMjt37tzYeZdFk15+sIKRlwdHujpYl5WeklXFKV2DhS9lFYNgT4l+VFMgiL7i/aFsBaUjmi+7/XbdffeaKfBKopE4xxXT3Ny5c2OXgtwJwNRz++23ac0acqcqdLWY3XmXRbr8F7+a9PKPrSuvRB95fLRrHXfPzP6yfXfWjPIG9dLXYd368mq2uIgrjkDqKw2iApvO7C9afpPC/eGxdWX7wstfdEDR8kARuhljmttll0X67yuX9DoMABV6/v5c/a0qnDMLAKgvWmYBAGgsDmkDANAm2wtt/9j2TbZvtH18nv4R27fYvs72N23PaVnmJNtLbf82X78bAABUgGIWAFBPzqMZV30b24CkEyJiD0kHSDrO9h6SLpW0V0Q8S9LvJJ2UQvQeko6QtKekgyR9xnbZuQUAAEBSYTFr+6B8pHmp7ROrCgoAgLbY1d/GEBErI+LqfP9BSTdLmh8Rl0TEQJ7tCkkL8v1DJZ0XEWsj4g+SlkraryOvBWqB3AkAqjPpYjYfWf60pIMl7SHpyHwEGgCArrBd+W0C214kaR9JVw576K2Svp/vz5e0rOWx5XkaGojcCQCqVdIyu5+kpRHx+4h4XNJ5SkegAQDoOKtjxexc20tabsdutG17C0nfkPSuiHigZfr7lboin9OllwH1Qu4EABUqGc14pKPN+w+fKScBx0rSwoU7F2wOAICuWBMRo143wfZMpUL2nIi4sGX6myUdIunAePICziskLWxZfEGehmaaeO60M7kTAIym4wNARcTpEbE4IhbPnTev05sDADSFO3Qba5Op6fYMSTdHxMdaph8k6T2SXhMRj7QscpGkI2zPsr2rpN0kTf6C62iE1txp3lxyJwAYTUnLLEebAQA9NLFzXCvyfElHSbre9jV52vskfVLSLEmX5piuiIi3R8SNts+XdJNS9+PjImJ9t4PGlEHuBAAVKilmfy1pt3ykeYXSpQdeX0lUAAC0odvFbET8XCO33148xjKnSDqlY0GhTsidAKBCky5mI2LA9jsk/VBSv6QzI+LGyiIDAGAcPWiZBSaN3AkAqlXSMquIuFhjHI0GAADAk8idAKA6RcUsAAC9RMssAADN1dVidv1g6MHHBia9/LqBweIYBgZj/JnG0N9XnjitKx76o/x1eLzwtSx8GSVJUfhSzugvH4y7bwokwqURVLBLAvXUxujDACBJT14tq2QdZcsPVhBDqSoOAJauoYrUiwOZGELLLACgltyb0YwBAMAUQTELAKgtilkAAJqrvJ8mAAAAAABdRsssAKC2aJkFAKC5KGYBALVFMQsAQHNRzAIA6onRjAEAaDTOmQUAAAAA1A4tswCA2qKbMQAAzUUxCwCoJa4zCwBAs1HMAgBqi2IWAIDmopgFANQXtSwAAI3FAFAAAAAAgNqhZRYAUE+mmzEAAE1GMQsAqC2KWQAAmotiFgBQWxSzAAA0F8UsAKCWuDQPAADN1tViNkJaNzA46eX7+sqTlq1mlT3lCkLQQ48NFC1/z0PrimOY0V829ldEFMewyYyyGKp4L/oLVzJYwetQuob1g2Vr2KL4M0ExAQDorMHC37oqfq8H1petY6DwOUjl+VcVv9kz+svWUZp7pXWULc+B0OmDllkAQH2RjwAA0FgUswCAemI0YwAAGo1iFgBQWxSzAAA0F8UsAKC2KGYBAGiuSZ8+bXuh7R/bvsn2jbaPrzIwAACA6YTcCQCqVdIyOyDphIi42vaWkq6yfWlE3FRRbAAAjI2GWdQLuRMAVGjSxWxErJS0Mt9/0PbNkuZL4gsZANAVdDNGnZA7AUC1Kjln1vYiSftIurKK9QEAMB7bFLOoLXInAChXeMlhyfYWkr4h6V0R8cAIjx9re4ntJffcvbp0cwAAALU2kdxp9RpyJwAYTVExa3um0pfxORFx4UjzRMTpEbE4IhZvu928ks0BALCBodbZKm9AJ000d5o3l9wJAEYz6W7GTr/4Z0i6OSI+Vl1IAAC0h+ITdULuBADVKmmZfb6koyS91PY1+fbKiuICAGB87sAN6BxyJwCoUMloxj8XP/sAgB6iZRZ1Qu4EANUqHgAKAAAAAIBuo5gFANSTuz8AlO2Ftn9s+ybbN9o+Pk/f1valtm/N/2+Tp9v2J20vtX2d7X278MoAANAIlVxntl22NKN/8vVzFb3J1g9G0fKPrFtfHMPDa8vWUbq8JN350INFy28+s3zXmdlXdixl29mbFMcwa2Z/0fJbzCpbXpL6Z5bt2P19Zcs/8njZ/jQYZZ8pYLKsan4XJmhA0gkRcbXtLSVdZftSSW+WdFlEnGr7REknSnqvpIMl7ZZv+0v6bP4faIzBwtxLkgYK1/FYBfnbQ48NFC3/aOHvrVSex24yo7wda/NZZTng5hXkTqXPo6AckcQpLlMJLbMAgJqqvlV2vAQlIlZGxNX5/oOSbpY0X9Khks7Os50t6bB8/1BJX47kCklzbO/YgRcDAIDG6WrLLAAAVerQwfG5tpe0/H16RJy+8ba9SNI+kq6UtENErMwP3SVph3x/vqRlLYstz9NWCgAAFKGYBQBgQ2siYvFYM9jeQtI3JL0rIh5obdGNiLBN/3sAADqMYhYAUFu9OG/J9kylQvaciLgwT/6j7R0jYmXuRrwqT18haWHL4gvyNAAAUIhzZgEA9eTUzbjq25ibTNXzGZJujoiPtTx0kaSj8/2jJX27Zfqb8qjGB0i6v6U7MgAAKEDLLACgliypr3A070l4vqSjJF1v+5o87X2STpV0vu1jJN0u6fD82MWSXilpqaRHJL2lq9ECADCNUcwCAGqr272MI+LnSnX0SA4cYf6QdFxHgwIAoKHoZgwAAAAAqB1aZgEAtcWF6wEAaC6KWQBAPbUxYBMAAJi+KGYBALVk0TILAECTUcwCAGrKFLMAADQYA0ABAAAAAGqHllkAQG3RMAsAQHNRzAIAaotuxgAANBfFLACgnhjNGACARut6MRsRBUuXZy0Dg4NFy68dKFtekh5bt75o+ccriKHULXc/1OsQtPNWmxWvY4fZmxYtv3Zdf3EMj64rez+33Xxm0fKDRZ9JAMB0V5a7VfM7U5r73PfwuuIY7rj3kaLlb777weIY7n+sLIfcec6s4hieue1WRcs/ZevyGLbarCz3Ke3V08+B1CmDllkAQC1xaR4AAJqNYhYAUFvUsgAANBfFLACgtmiZBQCguShmAQC1RS0LAEBz9ZWuwHa/7d/Y/m4VAQEAAExn5E4AUI0qWmaPl3SzpLKhzQAAmAjTzRi1Re4EABUoapm1vUDSqyR9sZpwAABoTxrNuPob0EnkTgBQndKW2dMkvUfSluWhAAAwEaZlFnV0msidAKASk26ZtX2IpFURcdU48x1re4ntJXevWT3ZzQEAsBFaZlEnk8mdVpM7AcCoSroZP1/Sa2zfJuk8SS+1/dXhM0XE6RGxOCIWbzd3XsHmAAAAam3CudM8cicAGNWki9mIOCkiFkTEIklHSPpRRLyxssgAABiH7cpvQKeQOwFAtbjOLACgnugWDABAo1VSzEbETyT9pIp1AQDQjjSaMdUs6oncCQDK0TILAKgtilkAAJqr6DqzAAAAAAD0QldbZiOk9YNRsobiGB5fX7aOxwcGi2NYu65sHXc/trY4hmUPPFa0/Dk/v6M4hvvvL4th7z/ZvjiG1+xVNkrk9rM3LY5hy8L9oa+wYWqzTfqLlo/yjyUwaTTMAp1X+j1flvsljzy+vmj5uwrzHkn63q1ripb/8dUrimO4775Hi5bfdddti2P4y8U7Fi3/wplzi2OYNbMsd5nRX/bjUfqZIHWqDt2MAQC1RTdjAACai2IWAFBPjGYMAECjcc4sAAAAAKB2aJkFANSSZboZAwDQYBSzAIDaopYFAKC5KGYBALXVRzULAEBjUcwCAGqLWhYAgOZiACgAAAAAQO1QzAIAaslO15mt+jb+dn2m7VW2b2iZtrftK2xfY3uJ7f3ydNv+pO2ltq+zvW8HXxIAABqFYhYAUFt9rv7WhrMkHTRs2r9J+mBE7C3pn/PfknSwpN3y7VhJn63gaQMAAHHOLACgxnpxaZ6IuNz2ouGTJW2V728t6c58/1BJX46IkHSF7Tm2d4yIld2JFgCA6YtiFgBQW1NoAKh3Sfqh7Y8q9Xp6Xp4+X9KylvmW52kUswAAFKKbMQAAG5qbz3sduh3bxjJ/K+ndEbFQ0rslndHZEAEAAC2zAIBasiSrI02zayJi8QSXOVrS8fn+1yV9Md9fIWlhy3wL8jQAAFCIllkAQG31aACokdwp6UX5/ksl3ZrvXyTpTXlU4wMk3c/5sgAAVIOWWQBAPbV5KZ3qN+tzJb1YqTvyckkfkPQ2SZ+wPUPSY0ojF0vSxZJeKWmppEckvaXrAQMAME11vZiNgmUHSxYeWkfhStauGyyO4aF1A0XLP7p+fXEMt6x6tGj5a//riuIYdPey8ecZw713v7g4hH133mr8mcYwb7NNi2N4pHR/eLy/aPlZM+iggfrqxQBQEXHkKA/92QjzhqTjOhsRMLVVkb+tXVeW+9z5cFneI0lXLV1TtPxvf3lNcQxafVvR4g/c89ziEJ76lC2Llt9n+znFMWy3RVk+HlGWO2HqIIsFAAAAANQO3YwBALVkSX1T6No8AACguyhmAQC1RS0LAEBzUcwCAGqrFwNAAQCAqaHonFnbc2xfYPsW2zfbLj+rHAAAYJoidwKA6pS2zH5C0g8i4q9sbyJpdgUxAQAwLptuxqglcicAqMiki1nbW0t6oaQ3S1JEPC7p8WrCAgBgfAwAhTohdwKAapV0M95V0mpJX7L9G9tftL15RXEBADAud+AGdBC5EwBUqKSYnSFpX0mfjYh9JD0s6cThM9k+1vYS20vuuXt1weYAANiQ7cpvQAdNOHdavYbcCQBGU1LMLpe0PCKuzH9foPQFvYGIOD0iFkfE4m23m1ewOQAAgFqbcO40by65EwCMZtLFbETcJWmZ7d3zpAMl3VRJVAAAjMOS+lz9DegUcicAqFbpaMZ/L+mcPBrf7yW9pTwkAADaQLdg1BO5EwBUpKiYjYhrJC2uJhQAACaGWhZ1Q+4EANUpbZkFAKBnaJkFAKC5SgaAAgAAAACgJ7rbMmupv2R0jcEoD6HwIP6M/vJWgGnRkDC4vtcRaP1AeQylu9RABftkqfWFMZQ+g96/AmiqoQGgAKAbovQHr4rcqTCIKH4SFbwOQIXoZgwAqC26GQMA0FwUswCA2qKUBQCguShmAQC1ZEt9tMwCANBYDAAFAAAAAKgdWmYBALVFwywAAM1FMQsAqC0GgAIAoLkoZgEAtUUtCwBAc3HOLAAAAACgdmiZBQDUkmVGMwYAoMEoZgEA9WS6GQMA0GQUswCA2mIAKAAAmotiFgBQWwz8AABAc5EHAAAAAABqh5ZZAEAtWXQzBgCgyShmAQC11UctCwBAY1HMAgBqi2IWAIDm6moxa0n9Pc48NplRdprw4wODxTFsMbPsZX9sYH1xDM/aaXbR8nsd+LziGP541wNFyz/zmdsXx7DtZmXvxfoo3x8265tZtHzpPl36iaSWQK/YdDMG6qCK1G/WzP6i5XecvVlxDPs8bbui5e87YN/iGO6/75lFy+/61LLnIEnPnr9F0fJbzCovP2b0F+Y+/HRMGwwABQAAAACoHboZAwBqi27GAAA0Fy2zAIDaSl2Nq72Nv02faXuV7RuGTf9727fYvtH2v7VMP8n2Utu/tf2K6l8FAACaiZZZAEAtWVJfb058OkvSpyR9+YlY7JdIOlTSsyNire3t8/Q9JB0haU9JO0n6L9vPiIjywQ8AAGi4opZZ2+/OR6BvsH2u7U2rCgwAgPH0deA2noi4XNI9wyb/raRTI2JtnmdVnn6opPMiYm1E/EHSUkn7Tea5YnogdwKA6ky6mLU9X9I7JS2OiL0k9SsdfQYAoM7m2l7Scju2jWWeIekFtq+0/VPbz8nT50ta1jLf8jwNDUTuBADVKu1mPEPSZrbXSZot6c7ykAAAaE+HehmviYjFE1xmhqRtJR0g6TmSzrf91Mojw3RA7gQAFZl0y2xErJD0UUl3SFop6f6IuKSqwAAAGItt9XXgNknLJV0Yya8kDUqaK2mFpIUt8y3I09BA5E4AUK2SbsbbKJ0LtKvSoBab237jCPMdO9RV6+6710w+UgAAhunFaMaj+Jakl6SY/AxJm0haI+kiSUfYnmV7V0m7SfpV8RNHLU0md1q9ZnW3wwSA2igZAOovJP0hIlZHxDpJF0p63vCZIuL0iFgcEYu3225uweYAANhQn6u/jcf2uZJ+KWl328ttHyPpTElPzZfrOU/S0bmV9kZJ50u6SdIPJB3HSMaNNuHcad7ceV0PEgDqouSc2TskHWB7tqRHJR0oaUklUQEAMEVFxJGjPLRRC1ue/xRJp3QuItQIuRMAVGjSxWxEXGn7AklXSxqQ9BtJp1cVGAAAY+nhdWaBSSF3AoBqFY1mHBEfkPSBimIBAGBCqGVRN+ROAFCd0kvzAADQG22e4woAAKankgGgAAAAAADoia62zNrSzP7J18/9fVEcQxSuYrA8BK0vXMlczSqOYc6sTYqW/9uX7Vocw50PrCtafv7WZc9BknacvVnR8nNmzSyOYdNN+ouWL/lMSVIfTVuoMYv9F+i00u78/RX8zmw2s+y37ilbb1ocwyHPKLsqx6JtyvO3Bx4rGwx9523Kc6c9t9u6aPk5m5fnTpvMKNsfXLhTFy9ftDRa0c0YAFBLaQCoXkcBAAB6hWIWAFBbFLMAADQXxSwAoLZKu3oBAID6YgAoAAAAAEDt0DILAKglzpkFAKDZKGYBAPXk8lFWAQBAfVHMAgBqq49qFgCAxqKYBQDUEt2MAQBoNgaAAgAAAADUDi2zAIDaopcxAADNRTELAKgpq09UswAANBXFLACglixaZgEAaDKKWQBAPZkBoAAAaDIGgAIAAAAA1A4tswCA2uI6swAANBfFLACgljhnFgCAZut6MVtyflN/X3mv6PWDUbT8pjPLYxhY31+8jl7be/ttitfxtK0HipafPbP8dewvPOFu803LP0Iz+8timFH4HGjZQp2x/wKd58LPWRXnts8q/M3fZvPyGGb2b1G0/I5bbVYcQ2keu8mM8jx2i8LcZ/NZ5flbae7EeAvTB+fMAgAAAABqh27GAIDaomEWAIDmopgFANSSRfciAACajGIWAFBPLj+XDwAA1Ne4B7Vtn2l7le0bWqZta/tS27fm/8tHAwIAYILcgRtQitwJALqjnR5aZ0k6aNi0EyVdFhG7Sbos/w0AAAByJwDoinGL2Yi4XNI9wyYfKunsfP9sSYdVGxYAAGOz0qV5qr4BpcidAKA7Jjt2xg4RsTLfv0vSDqPNaPtY20tsL7l7zZpJbg4AgI3RzRg1MqncafWa1d2JDgBqqHggyIgISaNewTkiTo+IxRGxeLu5c0s3BwDAE+zqb0CnTSR3mjd3XhcjA4B6mexoxn+0vWNErLS9o6RVVQYFAMD4zGjGqBNyJwCo2GRbZi+SdHS+f7Skb1cTDgAAwLRE7gQAFWvn0jznSvqlpN1tL7d9jKRTJb3M9q2S/iL/DQBA11jpR6zqG1CK3AkAumPcbsYRceQoDx1YcSwAAExIL7oZ2z5T0iGSVkXEXsMeO0HSRyXNi4g1TgF+QtIrJT0i6c0RcXW3Y0Z3kTsBQHdwEBoAUFs9Gs34LG18DVHZXijp5ZLuaJl8sKTd8u1YSZ+dwNMDAABjoJgFANSTU8ts1bfxjHINUUn6uKT3aMNRag+V9OVIrpA0Jw/+AwAACk12NOOeqKI3Wekq1q0fdST9ts2aUXYMYfNZ5W/bwGDZ81hfuLwkbTV7ZvE6Ss3sL9sj+vvKd8rSdczsL9ufBqPsvWQwWUCyfaikFRFx7bCCeL6kZS1/L8/TVgpoiL4KfitLM5/NZvYXx1D6e7vlpoPFMZRmX/0V/Gj3F+ZOM6ZA7sRI+NNHrYpZAACGDA0A1QFzbS9p+fv0iDh91Djs2ZLep9TFGAAAdAnFLACgtjp0dH1NRCyewPxPk7SrpKFW2QWSrra9n6QVkha2zLsgTwMAAIU4ZxYAUFs9GgBqAxFxfURsHxGLImKRUlfifSPiLqVri77JyQGS7o8IuhgDAFABilkAACZglGuIjuZiSb+XtFTSFyT9XRdCBACgEehmDACorV6M4THGNUSHHl/Ucj8kHdfpmAAAaCKKWQBALaUBoBiREgCApqKYBQDUFldXAACguShmAQA1ZZmWWQAAGosBoAAAAAAAtUPLLACgtuhmDABAc1HMAgBqiQGgAABoNopZAEA9mZZZAACajGIWAFBbFLMAADQXA0ABAAAAAGqHllkAQG1xaR4AAJqLYhYAUEuW1EctCwBAY3W1mO23NXvW5Df5+MBgcQxrB8vWMWtGec/swYii5QsXlyTNKMwA+ytIINdPgSy0+HWo4DmUxtBXuPz6gd7vj8Bk0TILNEPpb10V59eXxjCziuSpkCt4IUrXUMV7UcXzwPRAyywAoLbIZwAAaC4GgAIAAAAA1A4tswCA2qKbMQAAzUUxCwCoJQaAAgCg2cbtZmz7TNurbN/QMu0jtm+xfZ3tb9qe09EoAQDYiDvyDyhF7gQA3dHOObNnSTpo2LRLJe0VEc+S9DtJJ1UcFwAAQF2dJXInAOi4cYvZiLhc0j3Dpl0SEQP5zyskLehAbAAAjM5pNOOqb0ApcicA6I4qRjN+q6Tvj/ag7WNtL7G9ZPWa1RVsDgCAxB24AV1A7gQAFSgqZm2/X9KApHNGmyciTo+IxRGxeN7ceSWbAwDgCWkAKFd+AzqJ3AkAqjPp0Yxtv1nSIZIOjIioLCIAANpE6Yk6IXcCgGpNqpi1fZCk90h6UUQ8Um1IAAAA0wu5EwBUr51L85wr6ZeSdre93PYxkj4laUtJl9q+xvbnOhwnAAAb46RZTEHkTgDQHeO2zEbEkSNMPqMDsQAAMCFcFxZTEbkTAHTHpM+ZBQCg1xivCQCA5qKYBQDUFrUsAADN1dVidn2EHnpsYPwZR/HI2skvO2TtwGDR8rM36S+OYUZ/2eV9H368/HXYrPh5lKeQMwuvcjwVLqExo688hr7CdczsL1u+gt0JAIApzRXkDIU/t+LwG1A9WmYBAPVFbggAQGNRzAIAaikNPkw1CwBAU1HMAgDqyQwABQBAk1HMAgBqi1oWAIDmKhyCBwAAAACA7qNlFgBQXzTNAgDQWBSzAICaMgNAAQDQYHQzBgDUll39bfxt+kzbq2zf0DLtI7ZvsX2d7W/antPy2Em2l9r+re1XdOSFAACggShmAQC15A7d2nCWpIOGTbtU0l4R8SxJv5N0kiTZ3kPSEZL2zMt8xnb/hJ8sAADYCMUsAAATEBGXS7pn2LRLImIg/3mFpAX5/qGSzouItRHxB0lLJe3XtWABAJjGKGYBAPXVmabZubaXtNyOnWBUb5X0/Xx/vqRlLY8tz9MAAEAhBoACANRWhwaAWhMRiyezoO33SxqQdE61IQEAgOEoZgEAtdXOgE3dYvvNkg6RdGBERJ68QtLCltkW5GkAAKAQ3YwBAChk+yBJ75H0moh4pOWhiyQdYXuW7V0l7SbpV72IEQCA6YaWWQBAbfWiYdb2uZJerHRu7XJJH1AavXiWpEudmouviIi3R8SNts+XdJNS9+PjImJ9D8IGAGDaoZgFANTTBK6lU6WIOHKEyWeMMf8pkk7pXEQAADRT14vZvoLEo79k4WyTGWU9q2cWLi9JM/tL11H+tg0+cTrX5FTxXkwFMwqfR18Fr0PpOX+DZW8lUGsdGgAKAADUAC2zAIBasqbWAFAAAKC7GAAKAAAAAFA7tMwCAGqLhlkAAJpr3JZZ22faXmX7hhEeO8F22J7bmfAAABiDO3ADCpE7AUB3tNPN+CxJBw2faHuhpJdLuqPimAAAaIs78A+owFkidwKAjhu3mI2IyyXdM8JDH1e6QDxjqQIAesKu/gaUIncCgO6Y1ABQtg+VtCIirq04HgAAgGmH3AkAqjfhAaBsz5b0PqVuMu3Mf6ykYyVpwcKdJ7o5AABGRUMq6qAkd1q4M7kTAIxmMi2zT5O0q6Rrbd8maYGkq20/ZaSZI+L0iFgcEYu3m8tYBwCACjEAFOph0rnTvLnzuhgmANTLhFtmI+J6SdsP/Z2/lBdHxJoK4wIAYEyp9qT6xNRH7gQAndHOpXnOlfRLSbvbXm77mM6HBQDAODow+BMDQKEK5E4A0B3jtsxGxJHjPL6osmgAAABqjtwJALpjwt2MAQCYKmhIBQCguShmAQD1RTULAEBjUcwCAGrKDAAFAECDdbWYvfY3V6/ZbouZt48xy1xJvR7ZjximRgy93j4xtB/DLt0KBACa5uqrr1qz2UyTO039GHq9fWKoVwzkThXpajEbEWNeLM32kohY3K14iGHqxtDr7RPD1IoBGA2jD2O6I3eqRwy93j4xEENT0c0YAFBLFqfMAgDQZBSzAID6opoFAKCxploxe3qvAxAxDOl1DL3evkQMQ6ZCDMCIGAAKmBLf0cTQ++1LxDCEGBrEEdHrGAAAmLBn7f1n8Z3LflH5ehfN3fQqznUCAGDqm2otswAAtI0BoAAAaC6KWQBAbVHLAgDQXH29DmCI7YNs/9b2Utsn9mD7C23/2PZNtm+0fXy3Y8hx9Nv+je3v9mj7c2xfYPsW2zfbfm4PYnh3fg9usH2u7U27sM0zba+yfUPLtG1tX2r71vz/Nj2I4SP5vbjO9jdtz+l2DC2PnWA7bM/tZAxA25xaZqu+AXVA3rRBLORO5E7kTg01JYpZ2/2SPi3pYEl7SDrS9h5dDmNA0gkRsYekAyQd14MYJOl4STf3YLtDPiHpBxHxTEnP7nYstudLeqekxRGxl6R+SUd0YdNnSTpo2LQTJV0WEbtJuiz/3e0YLpW0V0Q8S9LvJJ3Ugxhke6Gkl0u6o8PbBybIHbgBUxt500bIncidWpE7NciUKGYl7SdpaUT8PiIel3SepEO7GUBErIyIq/P9B5W+iOZ3MwbbCyS9StIXu7ndlu1vLemFks6QpIh4PCLu60EoMyRtZnuGpNmS7uz0BiPickn3DJt8qKSz8/2zJR3W7Rgi4pKIGMh/XiFpQbdjyD4u6T2SGDEOAHqPvCkjd3oCudOT08idGmSqFLPzJS1r+Xu5evCFOMT2Ikn7SLqyy5s+TWmnH+zydofsKmm1pC/l7jpftL15NwOIiBWSPqp0FGulpPsj4pJuxtBih4hYme/fJWmHHsUx5K2Svt/tjdo+VNKKiLi229sGxmLRzRiNRd70pNNE7kTuNDpyp2luqhSzU4btLSR9Q9K7IuKBLm73EEmrIuKqbm1zBDMk7SvpsxGxj6SH1fnuIRvI51YcqvTjsJOkzW2/sZsxjCTSNax6dmTN9vuVunSd0+Xtzpb0Pkn/3M3tAu2ikzHQW73Km/K2yZ1E7jQacqdmmCrF7ApJC1v+XpCndZXtmUpfyOdExIVd3vzzJb3G9m1K3YVeavurXY5huaTlETF0ZPUCpS/obvoLSX+IiNURsU7ShZKe1+UYhvzR9o6SlP9f1YsgbL9Z0iGS3hDdvzD005R+HK/N++YCSVfbfkqX4wBGRMssGoq8KSF3SsidhiF3ao6pUsz+WtJutne1vYnSSesXdTMA21Y63+HmiPhYN7ctSRFxUkQsiIhFSs//RxHR1aNqEXGXpGW2d8+TDpR0UzdjUOoic4Dt2fk9OVC9G9ThIklH5/tHS/p2twOwfZBS96nXRMQj3d5+RFwfEdtHxKK8by6XtG/eV4Cecwf+ATXQ+LxJIndqQe7UgtypWaZEMZtP0n6HpB8qffjOj4gbuxzG8yUdpXRU75p8e2WXY5gK/l7SObavk7S3pA93c+P5yOYFkq6WdL3SPnp6p7dr+1xJv5S0u+3lto+RdKqkl9m+Vemo56k9iOFTkraUdGneJz/XgxgAAFMIedOUQ+5E7kTu1CPufss7AADlnr3Pn8UPf3pF5evdcetNroqIxZWvGAAAVGpGrwMAAGCy6BQMAEBzTYluxgAATFQnBn9qZwAo22faXmX7hpZp29q+1Pat+f9t8nTb/qTtpbavs93tgWEAAJi2KGYBAJiYsyQdNGzaiZIui4jdJF2mJy/NcbCk3fLtWEmf7VKMAABMexSzAIDa6sVoxhFxuaR7hk0+VNLZ+f7Zkg5rmf7lSK6QNGfoshUAAKAMxSwAoL7cgdvk7BARK/P9uyTtkO/Pl7SsZb7leRoAACjEAFAAgNrq0ABQc20vafn79Iho+zIXERG2uVQAAAAdRjELAKitdgZsmoQ1k7g0zx9t7xgRK3M34lV5+gpJC1vmW5CnAQCAQnQzBgCg3EWSjs73j5b07Zbpb8qjGh8g6f6W7sgAAKAALbMAgJpqb8CmyrdqnyvpxUrdkZdL+oCkUyWdb/sYSbdLOjzPfrGkV0paKukRSW/pesAAAExTFLMAgFqyOtbNeEwRceQoDx04wrwh6bjORgQAQDPRzRgAAAAAUDu0zAIAaqsXLbMAAGBqoGUWAAAAAFA7tMwCAGqrFwNAAQCAqYFiFgBQT6abMQAATUYxCwCoJecbAABoJopZAEB9Uc0CANBYDAAFAAAAAKgdWmYBALXFAFAAADQXxSwAoLYYAAoAgOaimAUA1Ba1LAAAzcU5swAAAACA2qFlFgBQXzTNAgDQWBSzAIDaYgAoAACai2IWAFBLFgNAAQDQZI6IXscAAMCE2f6BpLkdWPWaiDioA+sFAAAVopgFAAAAANQOoxkDAAAAAGqHYhYAAAAAUDsUswAAAACA2qGYBQAAAADUDsUsAAAAAKB2/j+iMdZn2twJKAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "Err_B1=error(xdata1, poptB1[0], poptB1[1],poptB1[2], poptB1[3], poptB1[4], recorteB1.ravel(), inc=1)\n", + "poptB1E, pcovB1E = curve_fit(gauss2d, xdata1, recorteB1.ravel(), p0=[3,3,2,1,1],sigma=Err_B1)\n", + "estrellaB1E=gauss2d(xdata1, poptB1E[0], poptB1E[1],poptB1E[2], poptB1E[3], poptB1E[4])\n", + "FWHMB1E=FWHMB_I.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptB1E[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 1 fotografÃa (Banda Azul)\")\n", + "plt.imshow(recorteB1, plt.get_cmap('Blues'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 1 a partir de la gaussiana con incertidumbre (Banda Azul)\")\n", + "plt.imshow(estrellaB1E.reshape(15, 15), plt.get_cmap('Blues'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 2 con incertidumbre (Banda Azul)" + ] + }, + { + "cell_type": "code", + "execution_count": 852, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7MAAAFWCAYAAAC7CMp3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABMsUlEQVR4nO3de7xkZXXn/+/3XPpKQ9N0i8jVKJrBTMTIGBOj8TJJ1DGjcTIoySBJnCC/0V904vwSNZMRnZiYmXiJMdHgYESjKBFvMUQljpeYRCIgQQGNYEDA5tI0DQ19Pees3x97H6g+nGfVOfvUbZ/6vHnVi9P11N77qV27qtZT+9lrOSIEAAAAAECbTAy7AwAAAAAALBeDWQAAAABA6zCYBQAAAAC0DoNZAAAAAEDrMJgFAAAAALQOg1kAAAAAQOswmAUAYIlsH2/7C7avtX2N7VfW93/E9lX17UbbV9X3n2R7b0fbu4f6BAAAWEWmht0BAABaZEbSqyPiStubJF1h+9KIeNH8A2y/RdI9HcvcEBGnDrifAACsegxmAQBYoojYLml7/fdu29dJOlbStZJk25JOl/TMoXUSAIAxwTRjAAAasH2SpCdIuqzj7qdKuj0ivtNx3yNtf932l2w/dZB9BABgNePMLACglSYPPzFiZm/P1xt777xG0r6Ou86LiPM6H2P7MEkXS3pVRNzb0XSGpAs7/r1d0gkRcZftJ0r6hO3HLVgGAAA0wGAWANBKMbNXax97es/Xu++qP94XEaeV2m1PqxrIfjAiPtZx/5SkF0p64gN9jNgvaX/99xW2b5D0GEmX97zjAACMGQazAICWsuTBXi1TXxN7vqTrIuKtC5r/raRvRcQtHY/fJmlnRMza/gFJJ0v67sA6DADAKsZgFgDQTpZkD3qrT5F0pqRvzJffkfS6iLhE0ot16BRjSXqapDfaPihpTtI5EbFzUJ0FAGA1YzALAGivAZ+ZjYivqBpGL9b2S4vcd7GqKckAAKDHGMwCANpr8GdmAQDAiKA0DwAAAACgdTgzCwBoqcEngAIAAKODwSwAoL2YZgwAwNhiMAsAaCeLM7MAAIwxBrMAgJYyZ2YBABhj/KQNAAAAAGgdzswCANqLacYAAIwtBrMAgPZimjEAAGOLwSwAoKUozQMAwDhjMAsAaCeLM7MAAIwxftIGAAAAALQOZ2YBAO3FNGMAAMYWg1kAQEtxzSwAAOOMwSwAoL0muGYWAIBxxU/aPWD7JNthe6r+9xdt/+cBbNe2/8z23bb/sd/bWynbj7V9le3dtn+tvu+ttt/ecH2/Z/tVvezjMrb9Ptu/M4xtl3Qed7Z/1vZHht0nABgVw/quHjW2n2r72ytcR6N9t/A1aDPb19h++rD70Q+2/9r2WSPQjxNs32d7stB+ru0/79O2+/75YPvvbD+hn9tItn2j7X87jG2X1J8Nj67/fovt/2cpy62qwWz9wuytD/z52zuXsNwDO2+YbD/M9oW2v2/7nvog/9FkkZ+Q9FOSjouIJy1h/cN+nr8h6QsRsSki3mH7qZL+jaT/b7krsr1N0ksk/Wn976fbnut43W+1/Yae9r7H6g/Ku22v7fW6I+IvJT3O9g/3et3AyLCqaca9vqGvxvC7eqgW7reI+NuIeOww+7QaRMTjIuKLw+5HP0TEcyLigkFvd+EAKyK+FxGHRcTsoPvSb7Z/VtLuiPh6/e9zbR/s+Ey8zvZ/GHI3i2wfVvfzr/u0iT+Q9Drba7o9cDV+a/9sfeDP316x0hUO8BfEwyR9TdITJW2RdIGkv7J9WOHxJ0q6MSLuH1D/ipa4j06UdE3Hvx8p6UURcbDBJn9J0iURsbfjvu/Pv+6qBvovtf2CBuvuO9snSXqqpJD07/u0mQslnd2ndQOjwe79DYMwTt/VQ9Fkf6yGM6Zon7Yfdw37f46kDyy47yMdceyrJP257aNX2r8++Q+S9kv6KdsP7/XKI2K7pG9pCTHyahzMLsr2o21/qf4Vdcf8FEzbX64f8k/1Lwwvqs/y3WL7N23fJunPbE/Yfo3tG2zfZfsi21uWsN1H2f6/9TI7bH/Q9ubFHhsR342It0bE9oiYjYjzJK2R9JBfUG2/VNL/kfRjdb/fUN//q7avt73T9qdsP6L0PLPH120/bfvb9T77k3r/zU9j/aX61+i32b5L0rnZc7X9fyU9Q9I76+0/RtIzJf2Xuv1I25+2fWd9tvLTto9Ldu1zJH2p1BgR/yLp7yWd0vF8/tD2zbbvtX2FqzPD823n1q/p+11Ng77G9mkd7U+wfWXd9hFJ6zraltt3qTqr/FVJ75P0wFQe24/woWcr9tiOjj7+ecdju03X+qKkf9elH0CLmTOzq8xq+66u1/0k2/9ge5ft7bbf6cLZho7P9bNdnfndbvu/LXVd9bIvt/0dSd/J9lvHMjfW+/BqSfcv9p1i+6dsf6t+Xd6pal5EZ/uvuDqTdLftz9o+sbCrF673l+vldtv+ru2XJY+ddDX1cIftf7H9Ch86bby4Llcxy1cWrK9zSuNzbV9bL3vr/D63vbX+Tt/lKk76W7v6kHDHWcQlvi7n2P5O/Zg/tqtfzpZz7NWPf5ztS+v+3G77dfX9a22/vT5uvl//vbZum3+vvNr2HXUffznZxgNTbOf3ne0/qF/ff7H9nI7HbnF1ydv36/ZPdLQ9z9XlZbts/707ZostctxdKOkESX9ZH6u/4YdeGvBIV58Pu21fKmlrx/oOOa4XeY3Otf0Xtv+8Xv4bth9j+7X1PrnZ9k8v2BWPsv2PruLGT7r+LOno10ttf0/S/63vX9L7oD42nqk8jv2spN2SHlUvc6STWLN+zf6nq9h8t+3P2e7cP2favqk+zn5rQX+W/BnV4SxJ75Z0taT/1LGuF/nQOHa/7S929PE/dzz2Ie/LBb6oJcSx4/St/T8lfU7SkZKOk/RHkhQRT6vbH1//GjJ/neHDVf3ieqKqs1v/r6QXSPpJSY+QdLekP17Cdi3p9+pl/pWk4yWdu5QO2z5V1Rfk9QvbIuJ8Vb/q/EPd79fbfma9rdMlHSPpJkkfLj3P7PH1G+Cjkl4r6ShJ35b04wu68aOSvivpaElvyp5rRDxT0t9KekW9/X9esK4JSX+man+fIGmvpGza2b+u+7Qo2ydLeoqqAeO8r0k6VdXr+iFJf2F7XUf7v6+f/2ZJn5rffv2G/oSqX9C2SPoLVb9INe27VA1mP1jffsb1L28R8cDZ5fqXuY/XfWriOkkn2T684fLA6OPM7Gqzqr6ra7OS/quqwPvHJD1L9Q+5iWdIOlnST0v6TT849XIp63qBqu/nU5L9ttAZqoLGzRExs+D5bZX0MUn/vd7uDaq+X+fbny/pdZJeKGmbqu/6C7s8v3l3SHqepMMl/bKkt9n+kcJjf1XVD9mnSvqR+nk2XddC50t6WURskvRDqgcnkl4t6RZVz+toVc8zFll+Ka/L81RdWvXDquKun6nvX/KxZ3uTpL+R9Jn68Y+W9Pm6+bckPVnV/nm8pCepes3mPVzSEZKOlfRSSX9s+8jFtrOIH1UVc22V9L8knW8/8GH5AUkbJD1O0sMkva3u6xMkvVfSy1TFkX8q6VM+9NKqzuPuDEnf04OzNv7XIv34kKQr6n78T3WcDFiin637e6Skr0v6rKoY7lhJb6z72Oklkn5FVYw8I+kdC9p/UtVr9jPLfB+cLGkuIm5ZrNGVf6fqc+Xa+u6lxJq/oOrYf1i97PyPMqdIepekM1UdN0ep+nydt6zPqHqQ/nQ9GMe+ZL4tIjrPLj9C1ThhqZ8HC12n6lhOrcbB7CfqXxbmb79a339Q1QHwiIjYFxHZLwGSNCfp9RGxv57Keo6k34qIWyJiv6oPmp93l6kFEXF9RFxar+dOSW9VdfCn6gHIByS9ISLu6fb42i9Kem9EXFn38bWqztye1ODxz5V0TUR8rP5ie4ek2xYs//2I+KOImImIvU2fqyRFxF0RcXFE7ImI3aoGx9mym1X9YtXpEfVrfq+kf5Z0maQHXueI+PN6OzMR8RZJa3XoL+lfiYhL6mszPqAH30BPljQt6e0RcTAiPqpqYNyo77Z/QtWxeFFEXKEqMPiFRR73m5J+UNUHaRPz+2dzw+UBoF/G5rs6Iq6IiK/W3z03qgqYu637DRFxf0R8Q1UAe8Yy1vV7EbFzwWU43bwjIm4uLDMfD3y0vizo7To0Hjin3uZ1dbzwu5JOLZ2V6hQRfxURN0TlS6p+yHhq4eGnS/rD+rW9W9KbV7CuhQ5KOsX24RFxd0Rc2XH/MZJOrL///zYiHjKYXeLr8uaI2BUR35P0BVWDzuUee8+TdFtEvKV+f+yOiMvqtl+U9MaIuKNezxtUDV46n+Mb6+dxiaT7VJhNsIibIuI9dXx0Qb1PjrZ9jKofGM6p99vBet9L1Y9LfxoRl0U1g+ECVdNSn9yx3uy4O4TtE1T9GPDb9b76sqS/XGL/5/1tRHy2Pk7/QtWg8831cf1hVScANnc8/gMR8c2oLuf7bUmn+9BkVOfW79P5z56lvg8266ExrOr171L12nxK0u9GxC5pybHmn0XEP9f9uUj1MSbp5yV9OiK+XH8u/raqz07V617uZ9SZkq6OiGtV7bfHeUEiK1czGD4k6YsRsfBHgqXarSXEsKtxMPuCiNjccXtPff9vqPr16x9dTSHtNkC4MyL2dfz7REkfn//iVfVrwayqX+qKbB9t+8Oupq3cK+nP1TEtorDMelVv0K9GxO916WenR6g6uypJioj7JN2l6hen5T7+EZJu7mgLVb9Odrq58x9NnmvHshts/2k9BeJeSV+WtNmFDHaqfm3ftOC+79ev+eGqDv69qj5057fx3+rpH/fUr+ERC/rX+eW8R9K6OgB6hKRbF3yBPbDfGvT9LEmfi4gd9b8/pAW/LrqawvNKVcfzcgKSTvP7Z1fD5YHRxzTjthqb72pXUxk/bfu2et2/223dOvT79SZV30NLXdfNWr5smcXigc7HnyjpDzv2+U5Vr2Ep9niA7efY/qqrKbO7VA2cS/vmkH4s7PMy17XQf6gff5Oraaw/Vt//v1Wdcf+cq6nLryk8j6W8LgtjjMPqZZdz7B2v6gfwxRwS06njuKndFYeedX+gD0vwQN8jYk/952F1f3bWPy4sdKKkV3f+aFU/vrNPyzlWHyHp7jg0T8xNpQcX3N7x915JO+LB5FLzsVbnPln4PpzWoa9N0/fBYjGsVJ3k2BwRG1VNL36J6+nyS4w1Fz3G9ND38P2q4n3V617uZ9T87EJFxK2qpksvPEv+pvo5/lqynm42aQkx7Nh8a0fEbRHxqxHxCFVTHv7EeVbEhb+83SzpOQu+fNfVL2Lmd+t1/et6kPWftOBak06upl98QtXAsXjtSMH3Vb2Z5te1UdVUglIfs8dvV8cUBNvWoVMSpIfuo2U91wVereoXwh+tl52fGlVa/mpJjymtLKpfyD+kakqJXF0f+xuqftk9MiI2S7pnif3bLunYeh/MO6FJ3+vg53RJP1l/aNymamrH420/vn7MY1UNwk+PiM4PyvtVTeWZ1+2C+3+lKkHYvd2eINBK/ZhizDTjoVql39XvUpXI5OR63a/L1l07vuPvE1R9Xy91XYtNg+0mW2Z7Z3/q78LO/t2saopu5z5fHxF/n22w3ocXq8paenT9vXyJyvvmkLhkQZ+6reuQ708vSFgTEV+LiOermp75CVVntVSf+Xx1RPyAqkuRft32sxbpW5PXeN5yjr2bJf1Aoe2QmE6HHjf9crOkLV78Gt+bJb1pwXGxISI6p5wuPO66HYdH1rHqvM5YbOFrPKnqzOtKLHwfHpS0o+O+zv4u531wfdVFF3/wqc+Q/rXqOFbLj5M7LXwPb1AV789b8vFr+8dVTZN+bUcc+6OSfsEPXtv8YlWzSX4+Dk3y2iSO/aduT25sBrO2/6MfvFD6blUH4Pwp9ttV/nCY925Jb3I9XcD2Nlfz47vZpGq6wD31QVssQ2N7WtV1qnslnRURc6XHFlwo6Zdtn1p/sP+upMvqN4T00OeZPf6vJP1r2y+oD86Xq/tBt+TnWlh2r6Rdri6wf32Xx1+ifCrvYZJerAezJ29Sdb3DnZKmbP8PVdfVLMU/1Mv+mu1p2y9UdS1Kk76/QNVZglNUTf84VdWb9W9V/QJ3uKRPqpomt3B63VWSnuaq7toRqqaFZ35S1QchsHpxZnZVWaXf1Zsk3SvpPts/KGkptRN/uz4T8zhV18DNX+vaZF1L2W+Zv1I1jfCFdTzwazo0Hni3qsD2cZJk+wjb/3EJ612j6nKfOyXNuJqRtDABT6eLJL3S9rH14Ok3l7Guf6qfw6mucmWcO99ge43tX7R9RB1436v6mHOVwOjR9QD+HlXf34u93k1el85llxo7fVrSMbZf5Srh0yY/WBbqQkn/vT7mt0r6H6rO8vZNVBln/1rVj05H1jHS/CDrPZLOsf2jrmy0/e9cXfdbUjxWI+ImSZdLekP9mv2EHhzoSdXlZevqbUyrul54paUP/5PtU+rB3xslfTTKZYKW/D6IiAOqrn3O4tjjJD1bh8axy4mTO31U0vNs/4SrPDBv1KFjwOUcv2dJulSHxrE/JGm9pOe4mm78R6pm39y5YNmrJL2w/mx7tKprtzNLimNX47f2fBa0+dvH6/v/jaTLbM/PQ39lRHy3bjtX0gWupgacXljvH9bLfc72blWJhZZSV+4NqhIV3KPqC+FjyWN/XNX1ED+t6mCdfw5LuuYjIv5G1Tz4i1X9CvMoVQO6eeeq43lmj6+nwP5HVRf636XqoL1c1fUOvXiuC71d1Rthh6p9+5kuj3+/pOe6OtM574FMwKqmg2xRdQ2JVF3k/xlVH3Y3SdqnJU5vqT90XqiqHNBOSS/Soc9tOX0/S9U1Dd+rz0DcFhG3qbqI/xdVDZIfqypxxX0dz0cRcamqgOZqVQkQPt2l62foockMgNWFM7NtNU7f1f9NVV6E3aoC/FISpk5fUnX25vOS/iAiPreCdZ2r7vutqCMeeLOqeOBkSX/X0f5xSb8v6cOupih+U9V1lN3Wu1vVwPgiVT9c/IKq167kPaqug71aVfKeS1T90DzbbV1RJZ18o6oBxHfUkU+jdqakG+v+n6MHY4eT62XuU/XD9p9ExBcW6VuT12Xeko+9+nn+lKpB3G31c3lG3fw7quK0qyV9Q9KV9X39dqaqM5bfUpWE61V1Xy9XlbTrnapek+tVxVGZ31M1IN/ljizeHX5B1ft5p6rB3PvnG+oZef9FVaWPW1WdBVw0wdIyfEBV1YnbVFWxKE6ZbfA++FMdek2zJL2oI+77mqr32RvqtrdreXFyZ9+uUXVS6kOq4v27dei+WdLxW/8QdLqkP+qMYaOqIPIBVTHu81Ul2PpKx2fj/ID0bZIOqPrR4gLVU5UL2zpG1djjE92en+Oh17EDD+HqQu5bJP1i4YN84Gz/rqQ7IuLtw+7LqHFVjPvMiFh24AK0xcQRx8faH//1nq9332d+/YqIOK37I4HecpWA8V8kTS+4vhEL1Gdf3x0RSyoDBIwa23+nqsrH14fdl1Fj+y2SboiIP+n22FYXKUZ/2f4ZVRmB96qa9mIdWupmqCLidcPuw6iKiL/U8rP8AS1jpgUDY6KeifUMVWdnj1Z1Zu7j6ULACIuIp3R/1HiKiFcv9bFEAcj8mKqseTtUTWlZSWZdAOg9phkD48KqplzerWqa8XWqrgsFMMY4M4uiiDhXSywaDwADZ3FmFqtKnYCRX1QWUZeE+TfD7geA0cJgFgDQUkwzBgBgnBEFAAAAAABaZ0VnZm0/W1Ua/ElJ/yci3pw9fuvWrXHiiScteztZvuW5JBuzm87USRbL1tg1L3QfEkdHstJBJ6pueqnZOCTUnpwY7Kyxpvs0O55Kbv7eTbprxw6mxWE4uMYVLTOo2AnA6Lrpphu1g9ipJxoPZm1PSvpjVfWubpH0NdufiohrS8uceOJJ+rvLLl/2tubmygH23oOl2sXSRBLkZGMLN1wu6aYkKSuDlA0+stXOzJZrtc8mHcr62nTfjPNgtluJq8PWDXZGf/baZ12dbXAgPutpSynhCPQJ04zRIoOMnQCMrqf8KNXfemUlUcCTJF0fEd+NiAOSPqyqUC4AAINBNmO0C7ETAPTQSgazx0q6uePft9T3AQAA4KGInQCgh/o+99H22ZLOlqTjTzih35sDAIwLk80YqxOxEwAszUqigFslHd/x7+Pq+w4REedFxGkRcdq2rdtWsDkAABYY8DRj28fb/oLta21fY/uV9f3n2r7V9lX17bkdy7zW9vW2v237Z/q8RzDaiJ0AoIdWcmb2a5JOtv1IVR/EL5b0C9kCsxG6f9/M4o1J/LB2qjzmztq6JWRqIltntyRAmYkk69LBJMlTtly6vaQtS7g1kyYWavb8t25aW2zbvfdgsW3H7gPFtmyfHb5+uti2Ye1ksS0zNZH/LrT/YLk/WabjqclyW5bkaWa23JYleWrSl8ZZw4EeyJLS9cmMpFdHxJW2N0m6wvalddvbIuIPFvTvFFXfj4+T9AhJf2P7MRFRzl6I1WzZsRMAoKzxYDYiZmy/QtJnVaWXf29EXNOzngEAkLAGP5iNiO2Sttd/77Z9nfJrHp8v6cMRsV/Sv9i+XlUSoH/oe2cxcoidAKC3VnTNbERcIumSHvUFAIDWsH2SpCdIukzSUyS9wvZLJF2u6uzt3aoGul/tWIyEP2OO2AkAeofMGQCAdnKfbtJW25d33M5+yKbtwyRdLOlVEXGvpHdJepSkU1WduX1LP54yAAB4UN+zGQMA0B/u1zTjHRFRrGhve1rVQPaDEfExSYqI2zva3yPp0/U/l5TwBwAALB9nZgEArWW757cu27Ok8yVdFxFv7bj/mI6H/Zykb9Z/f0rSi22vrZP+nCzpH3u6EwAAGFOcmQUAtNYQshk/RdKZkr5h+6r6vtdJOsP2qZJC0o2SXiZJEXGN7YskXasqE/LLyWQMAEBvrOrBbMOqNWn5naxszYoqASXlUrJtpqtstrm+lDTK7D1Qjuuy8jNZWaLJKLdly2X7ZfAxcy4L4tNKQeUqQZpM1lkq2zNq+wXop4j4ihYvJldM6BMRb5L0pr51CkDPrKTM4mo2hB8OgSVZ1YNZAMDqRoAFAMD4YjALAGinB7MPAwCAMcRgFgDQSu5fNmMAANACDGYBAK3FYBYAgPFFaR4AAAAAQOtwZhYA0FqcmQUAYHyNzmA2yYSelWcplQtZiabld5qW0JGkuSQVfPb8m2+v56tsHFTev3+m2JZlyM9e+wmXJx00PWay13dysj8BddPXKetNut/SfcqgAaOHwSwwvvpRRmfQlXmabm7wn3y93zF8fqMXRmcwCwDAcpDNGACAscY1swAAAACA1uHMLACgtZimBgDA+GIwCwBoJerMAgAw3hjMAgBai8EsAADji8EsAKC9GMsCADC2Bj+YLQUeScbvmaxUTsNM4bNNF0wWy8rrdFk0fR6zA04Tn+lH3Lh/Zq7YNj1ZzlG2ZqrclvVzKik/k6X5z14Hd6mhk1YDSus9pasdqG7HNwAAvda0/E4fwry+lAJqqh89yWa6ZE89C3GyyTPd9iczb7AUnJkFALSTCXYAABhnDGYBAK3FYBYAgPHFYBYA0FoMZgEAGF8MZgEArURpHgAAxls5gw4AAAAAACOKM7MAgPbixCwAAGNroINZy5ooTAmbS5KMzyVlT2aStN5Zyu9salq/Zq1lzyMzM9v7+ixNp+b1Y9c03C15uZtEdlxkZaBmkto8s106s266PAkiPS7SfPfpJotK78FufYnCYiNUqQDjhmzGQCuspKRNtmjTtWb9abq9xiWEGi3VPB5L4980bi6vM3sOTnra/Tk02zt8L4yXFQ1mbd8oabekWUkzEXFaLzoFAMBSELSgbYidAKB3enFm9hkRsaMH6wEAYFkYzKKliJ0AoAdIAAUAAAAAaJ2VDmZD0udsX2H77F50CACAJXMfbkB/ETsBQI+sdJrxT0TErbYfJulS29+KiC93PqD+oD5bko47/oQVbg4AgAcxzRgttKzY6fgTiJ0AoGRFZ2Yj4tb6/3dI+rikJy3ymPMi4rSIOG3r1m0r2RwAAA+w3Zcb0E/LjZ22ETsBQFHjM7O2N0qaiIjd9d8/LemN3ZYrVzApBxCzSWruAzPlsjUTSbmUyS6JxIstWWryFZQoyaqzzDatXZPq/Tqzki/5cuW2PA1+o82l+zpb51zSOJeU7ZEkJaV5siWzbU40nA+ZlcHKXkNK8ADAyjSNndqgcWmaLos1LYfT9Pu8aWmebJ19CLlySXiQxVxpNcB0ndmSWfnBLnFMw0WbluZEO61kmvHRkj5eHxRTkj4UEZ/pSa8AAFgCAhO0DLETAPRQ48FsRHxX0uN72BcAAJaFwSzahNgJAHqrF3VmAQAYDsayAACMLQazAIDW4swsAADja6V1ZgEAAAAAGDjOzAIA2smcmQUAYJwNdDBrS5OFnOCRlDbJsp1n5XfyFOPl1qalYrrJqrdkacRnupV9GRHRcO9kr9NclEsvzTUsWbRuzWSxLXsdss1lx4xUPu6rjebLNtIwhX6T0gJNX3dgpazulR0A9E4/yu90W2PT7+UsRkhL7TUsldi0n02/QbOPvrT8TvKhmcUq2WftZBZzJOuc6PLss9asPCFle8YL04wBAC1l2b2/pVu0j7f9BdvX2r7G9ivr+/+37W/Zvtr2x21vru8/yfZe21fVt3f3f78AADAemGYMAGitIfyQPiPp1RFxpe1Nkq6wfamkSyW9NiJmbP++pNdK+s16mRsi4tSB9xQAgFWOM7MAACxRRGyPiCvrv3dLuk7SsRHxuYiYqR/2VUnHDauPAACMCwazAIDWGvQ04wXbPknSEyRdtqDpVyT9dce/H2n767a/ZPupK37SAABAEtOMAQBt5b5NM95q+/KOf58XEecdsmn7MEkXS3pVRNzbcf9vqZqK/MH6ru2SToiIu2w/UdInbD+ucxkAANAMg1kAQCtZeabMFdgREacVt2tPqxrIfjAiPtZx/y9Jep6kZ0WdMjMi9kvaX/99he0bJD1G0uUL1wsAAJZnZAazTX9dn2qcRrzZBvN07l1SjDdNL9+HVPiZpttrqmmpmINJyaIsvp2azcoyNT0u8vbsOM1292zSmPW1aXjfuGwPMCSDTgDlah7y+ZKui4i3dtz/bEm/IeknI2JPx/3bJO2MiFnbPyDpZEnfHWyvgf7LviKy749uXy39KKOTtc00XC5ry8oE9aU0TxJzZGV0stI8U5PlKxMjuWixXAxRii6f32lMkuw5yvaMl5EZzAIA0AJPkXSmpG/Yvqq+73WS3iFpraRL66DnqxFxjqSnSXqj7YOS5iSdExE7B95rAABWIQazAIDWGvSv5RHxFS1+UuSSwuMvVjUlGQAA9BiDWQBAO/UvARQAAGgBBrMAgFayuI4JAIBxxmAWANBSy6sLCwAAVpck/xgAAAAAAKOJM7MAgNbixCwAAONroIPZ2bnQ/ftnF21bv6ZciSqr+zSd1L3KanQenJ1Llis2pX2ZyRaUtO/g4s9dkg7MlPuTTaPL+pPVYc22lz7HrO5pUtcrqwe2fqr82jetbZrVQ8tkx+GGpG06K9wm6a77DhTbsjpqU8l6s+Miq2ub1eBdM1Xeb9PTi7c1rc0L9ALTjIHeymKA7Cu5ab3Ubt/zTWvCZjHZTBIDZrFTGjs2rUHbcMdl3+VN44osdlqTdDRbLt1e9iSkdP5oFnOm9WuT/c3XSTtxZhYA0E5kMwYAYKxxzSwAAAAAoHU4MwsAaCVK8wAAMN4YzAIAWouxLAAA44vBLACgtTgzCwDA+GIwCwBoLcayAACMr66DWdvvlfQ8SXdExA/V922R9BFJJ0m6UdLpEXF393WVU4mnKcaTxiwteyaropOmUE/asnI3krT/YJYKvtw2mT3/hink7z0wU15uLinbk+Q0n3I5n1gWcB7InnuyYFZ6aUNS7ieLffP08s3S7neTlSWIhvnls0oHc1kJpexpFBobVk8CgFWrl7FTP/Sj/E62zqZla6Q8zmtagjBr29+wjGLWl/2z5XU2jWOzsjZrJpISO0kJvqxtJmlbO11syuOYZJ1dJYs626VZQJq+FOVGZggN11KOovdJevaC+14j6fMRcbKkz9f/BgBgcFwFEb2+AT3wPhE7AUDfdR3MRsSXJe1ccPfzJV1Q/32BpBf0tlsAAOSqbMa9vwErRewEAIPR9JrZoyNie/33bZKO7lF/AABYIs6kolWInQCgx1YwWb0S1UUSxYnkts+2fbnty+/asWOlmwMA4AGcmUUbLSd2unPHnQPsGQC0S9PB7O22j5Gk+v93lB4YEedFxGkRcdpRW7c23BwAAECrNYqdtm3dNrAOAkDbNB3MfkrSWfXfZ0n6ZG+6AwDA0pEACi1C7AQAPbaU0jwXSnq6pK22b5H0eklvlnSR7ZdKuknS6UvZWES59EeWmTwLLRpn2E5k6eWzMiorSS+/LynbMz1ZfpJ7khTy9xw4UGzbsbfctmtfkkI+ST2fVLVJA8SjNpQPw+zXlrVJ+Z2NU+V1bport2XH00xSQmjtdLkvUl56qh+yQ3EieWdkpacG/iSAbpgWjBHVy9hplOTxUXm5rK1b7JSWvElioKwc4r5kuT0Hym33HjhYbLv/YLnk4Z6ZrDRPuZ/ZrlmTBF3rG8ZHRyQ1dtYncU5azmk6DQ7LbeoW/5dbs9I8WQzEj5nt1HUwGxFnFJqe1eO+AACwZFU2Y4IPjB5iJwAYjKbZjAEAGDoGswAAjK8VZzMGAAAAAGDQODMLAGgtTswCADC+GMwCAFqLacYAAIwvBrMAgHYimzEAAGNtoIPZiHI69KzqR5a2fXqqfNlvt3TvJRNJdDSbpvRutLl6m+W23QfK6d537S+X2Ll19/5i2/fuLrftvL+8zvv2lfvS1LFb1hfb1iWv7/ok3ftRG8uH9tYNa4ptWXr5I9aVU9Z3k5XuyV777JjKzkg1LUuVlY8q7dFovDUAQL9kZXTSUioNt5eVLszKvmXfO5J0cKZcuuZA0rY3K7Gzv1xi56595RhoZ1LW8M77y+u8Nyl5uC95DpksPjp8XTnmyOKjPTPl+OiodWuLbU2PmSzertrLz3Eiqb+TrTbbZvo8GjYye6j/ODMLAGglywQKAACMMQazAIDWYiwLAMD4YjALAGitbtPUAADA6sVgFgDQWoxlAQAYX+UrqwEAAAAAGFGcmQUAtJJNpkgAAMbZwAezpcztB2bLaa0nG8YqWer5TJZePtOtFFD2NLJFb9uzr9h2155yKvh/vnNvse3GO+4rtt1x155i276kNM/sbDm9fBZv3n7UhmLbhqQczpZN5TTxW5O2mS3NXt/sOWxSXrZnTZJCP1txdkxNNXxjEPxjNclKWwFYvqykTxarZKHTbNI4k8R/knQwiS32HSy33ZeUNdyxt1yeMCtrePOuctudu8tle+7ZU27bl5QQyqxbUy6/c/j6ckyyLYmPjt9c3p/Za5jlLsg+oye7fIBPJO1ZaZ5suewYnqDETitxZhYA0FoEGAAAjC8GswCA1mIsCwDA+CIBFAAAS2T7eNtfsH2t7Wtsv7K+f4vtS21/p/7/kfX9tv0O29fbvtr2jwz3GQAAsHowmAUAtJIluQ//dTEj6dURcYqkJ0t6ue1TJL1G0ucj4mRJn6//LUnPkXRyfTtb0rv6sCsAABhLDGYBAK014d7fMhGxPSKurP/eLek6ScdKer6kC+qHXSDpBfXfz5f0/qh8VdJm28f0fk8AADB+uGYWANBO9lATQNk+SdITJF0m6eiI2F433Sbp6PrvYyXd3LHYLfV92wUAAFZkoINZW5oulCjJwpEsWDk4k6URL69z/8FyKvQsbXdWKmVF6eVny/3Jyu987+5ymvjv3r673Hbj3cW2HbeV2/bsLpft0Wy5n5nbt2wutm3avKnYtnnz+mLbI44+rFFfsnI3G6fKb5cp55McNq4tp9DPZOnus/IJ2Xum6XLAKOrTIbvV9uUd/z4vIs47dLs+TNLFkl4VEfd2vnciIuykbgTQUnnZnnJbGjt1KWt4IInzslhu1/5yOZzb7i/HTjcmcdXNO+4vtt2xq1wO8Z57yuvcv79cQijb32vXlmOSI45YV2y7LymxeDB5LbL4YO1kOQbK2tZMlV9bSZqaLW9zOonX5pLnkc6+yWKnbLGkDf3HmVkAAA61IyJOKzXanlY1kP1gRHysvvt228dExPZ6GvEd9f23Sjq+Y/Hj6vsAAMAKcc0sAKCVrGr2Qq9v6Tar0xPnS7ouIt7a0fQpSWfVf58l6ZMd97+kzmr8ZEn3dExHBgAAK8CZWQBAaw1hZvxTJJ0p6Ru2r6rve52kN0u6yPZLJd0k6fS67RJJz5V0vaQ9kn55oL0FAGAVYzALAGitQV/nHRFfUfkSqWct8viQ9PK+dgoAgDHFNGMAAAAAQOtwZhYA0Er2UKYZAwCAEdF1MGv7vZKeJ+mOiPih+r5zJf2qpDvrh70uIi7pvq5yKu0sjXZW0iZL1pGtMzOTbC9LEZ/1U5J2HyinQ98zU2678/5yyZs77i2ne//+bfcV27Z/745i28Gb/7nYpvt3ldsyyet0/11HlNs2H1Ns239cuW0ySdm+drpcJufwdeW2o9aXX4f1U3npney4mUzzxGfKEyuy7swkb4tC5axqucJTSCoHAH3XLWETMAy9jJ0yWemWdLmm28vaksYsHstiLkk6mJQ93JOW5il/Z9+2u9y2/e5yiZ3vZ6V57ii33XdPuW3f3n3FtszadWuLbfffv7HYNjNT3mdZPLJxTTlA2JzETpvWTBfb1s7kE0TXJEFJVu5pbqLcFpGVLiz3pelXTek9SujUO0uZZvw+Sc9e5P63RcSp9W1FH8YAADThPtyAHnifiJ0AoO+6npmNiC/bPmkAfQEAYFkGnQAKWApiJwAYjJUkgHqF7attv9f2kT3rEQAAwOpE7AQAPdR0MPsuSY+SdKqk7ZLeUnqg7bNtX2778rt27Gi4OQAADmVJE+79DeiTRrHTnTvuLD0MAMZeo8FsRNweEbMRMSfpPZKelDz2vIg4LSJOO2rr1qb9BADgULbchxvQD01jp21btw2ukwDQMo0Gs7Y708j+nKRv9qY7AAAs3Xx5nl7egH4gdgKA3ltKaZ4LJT1d0lbbt0h6vaSn2z5VVWbpGyW9bCkbi2hWxmMmScu+YW15PJ5uqpyZPJX1P0sTLkkH58rp5+8/WC7Ns+O+cgr5HbvLKd137dpT7ss9u4ptjcvvZLIdl21vtrxf7t1QTj2/cdP68nKb15Xb9pUPjPuTEgBHrs1f+6w0z9Rk+RieTNLLZ21zSer5LFbPDuEJEsljBHEmFaOol7FTU03LpqXLZeV3kgWz75ZuVRSz0j17kzIz9+7vfVy1c2e5bM+uHfcU2+6/e1exTXvuLbcl+3T/+sOLbTNJTDmZxBzr15fL6Gw5rFwKaNem8uuwZV257fA1+Yuflt9peEz1I5LpR0kfLN1Sshmfscjd5/ehLwAAAK1H7AQAg9F1MAsAwCiaTwAFAADGE4NZAEBrMc0YAIDxxWAWANBaDGUBABhfDGYBAK1kSxOcmQUAYGw1Ks0DAAAAAMAwjcyZ2bQkSJLh42BStidL6d20LTPZJRNJlrr7vgPl1OXZmYc9+8rp1++5q5wmXjtvKbeNkn33FZtm7yw/h7s3lsvvbN5cLtuz+6hyuv779pdfowMb8lpP2TE1Ndlsuaxk1ZqG7+ystAITOjGKODELLF80rNuTVu3JyqFkZXu6xFzZ9+CBuaSc3oFySZ89SdmePXvKccD995XL9ty/+/5im+65s9y2Z1e5LXOw3Jc902uKbesPK8dAe/aU2+7bX94vew+W9/WBpCxlHnN0KbHTtPZUIj++y63kbhiukRnMAgCwXAQRAACMLwazAIDWYiwLAMD44ppZAAAAAEDrcGYWANBKlslmDADAGGMwCwBoJzPNGACAccZgFgDQWiSAAgBgfA10MBuSDs4unqK7YTWcNFX2oNNodyvpM5v2p7xct9TlJRMTySXRSTr71kjS0s8VjrNusuMiazvQcHvdZMfU5ESzsj1Tk+XnkR1qk8lywLCQ+AHord4XPOlS8mQF602+6vLSdlnbTPn7fHYmiZ1myqVrsnhFB/eX2zJTyToPlNtmDpbLEqXPPdnZWZnMLIbtFvvnMX6+bJN1UoKwnYgDAAAAAACtwzRjAEArWUwzBgBgnDGYBQC01gRjWQAAxhaDWQBAazGYBQBgfDGYBQC0ks00YwAAxhkJoAAAAAAArTPYM7NRLhmSpe5eOz1ZbJtrWtMnMZGWZylvL1tOkiaT9rWT5d8VJpN5dFm5lOk108W2vWvWF9sap4kftInycTGR7M+pqfI+WzNVXm5tstxUl7mO0w1f32y12fE2ka4zKc2TbK/0HDkxhmFimjHQW/14S2XrXMn2smWz79bsO3sqiQMmp8pxh6bKMZem1jRry2TLTZfbsueQPvck3kxCnDxW6fLi5+US82UxPphmDABoLQIaAADGF4NZAEArWd1nxAAAgNWLwSwAoLVI/AAAwPgiDgAAAAAAtA5nZgEArTWMWca23yvpeZLuiIgfqu/7iKTH1g/ZLGlXRJxq+yRJ10n6dt321Yg4Z7A9BgBgdWIwCwBoJdvDumb2fZLeKen983dExIvm/7b9Fkn3dDz+hog4dVCdAwBgXHQdzNo+XtUX9tGSQtJ5EfGHtrdI+oikkyTdKOn0iLg7W1dE6ODs3KJtTVOo729YmidLB57FRlma8Ow5SNJ0VkYnyWt+1Mbyy3TUpnXFts1HbSq23bv1hGKb9u4ut83Nltv6YcMR5bZt5edw+JGHF9s2biynrN+8vryvNyYlotZOJun6Vb1xeq3pOkvvQUmaTd5Ppba58uqAvhvGWDYivlyfcX0IV18Sp0t65kA7hZHSy9ipT/0rtkVSKjEtsdOwsdt7OIutsrKGG6aTtrXl7/r168sldjZsXFtuO2xDsW3PgYcV2xqX5llfjnPWb9pYbNuwsRw3Zs99Y7LPsn29ZqLc1u3HyDxWb/bhn5b7abgchmsp18zOSHp1RJwi6cmSXm77FEmvkfT5iDhZ0ufrfwMAMDAT7v1thZ4q6faI+E7HfY+0/XXbX7L91BVvAW1A7AQAA9B1MBsR2yPiyvrv3aqu/TlW0vMlXVA/7AJJL+hTHwEAGKStti/vuJ29jGXPkHRhx7+3SzohIp4g6dclfch2+ZQKVgViJwAYjGVdM1tPq3qCpMskHR0R2+um21RNpQEAYCD6WGd2R0ScttyFbE9JeqGkJ87fFxH7Je2v/77C9g2SHiPp8h71FSOO2AkA+mfJpXlsHybpYkmvioh7O9uiusBi0YssbJ89/+v2zp07VtRZAAA62b2/rcC/lfStiLjlwf55m+3J+u8fkHSypO+uaCtojV7ETnfuuHMAPQWAdlrSYNb2tKoP4w9GxMfqu2+3fUzdfoykOxZbNiLOi4jTIuK0LVu29qLPAABIfbhedinXzNq+UNI/SHqs7Vtsv7RuerEOnWIsSU+TdLXtqyR9VNI5EbGzZ/sAI6tXsdO2rdsG02EAaKGlZDO2pPMlXRcRb+1o+pSksyS9uf7/J/vSQwAARkhEnFG4/5cWue9iVQMajBFiJwAYjKVcM/sUSWdK+kb9y7IkvU7VB/FF9S/SN6kqRZCyXSxBk03tytLEd9teSfbre3YN1oTLfelWmmf9ZJLWfKpc8mZLUi7mqE3lNPHbtpVTs993b/mX3p0HH11s0z23l9v27ym3ZSV9thxbbjv8qGLT1mPKZ/of9rDycz8ySa0/lZRPyo6nrHyUJB2YKdevyY6biaQ/2ftiLimxk5XmyfopLf4azjZ8fwK94LSYAjA0PYudmsrjqmbLZW+3LHZKvsq6xk5TSfmddVPlsnhHrEtip43lEjQ7k7hqz5b1xbaZ7Hs+6ef+vYcV2zJr1pVL+hx2RHmdRx1VLiGUxZRbNpT32RFJnLo+ee5ZzCV1iY/SY7Hc1o9vDKr2DFfXwWxEfEXl1/5Zve0OAABLUyWAGnYvgIcidgKAwVhWNmMAAEYJg1kAAMYXg1kAQGtl0/8BAMDqtuTSPAAAAAAAjArOzAIAWolrZgEAGG8MZgEA7WSySAIAMM4GPpidaPAz+p4D5bIuWcr2bEtZuu8sVfhcZG3JBiVNJ+vNUpevmy4/x81JOvRjjiqXp5lNyrNk6d537yqX9Jk5OFNsU7Jv1q4vp4LftLmcXn7r1nJ6+W1bym2b1pfTy08nx0WWQX7K+Yz9tVPl9uy4KJWykvLjdDrZXqZJlR3GEhimrBwIsNpl14w3LWuYbi/tS7kti/2yOE6SpifL8crGqXIMdMSa8nf9wzeV45Xd+5PyO7NJecbkeWzYUI6r9u8v9yV7DdeuTZ77EUnZxiPL8dHDs7ZNSWmeZF9vnC73M4txpG6leZq1ZcdpP75OSu9Rvrl6hzOzAIBWYpoxAADjjQRQAAAAAIDW4cwsAKC1mGUMAMD4YjALAGgpa4IrjwAAGFsMZgEArWRxZhYAgHHGYBYA0E4mARQAAONsoIPZuQjtKaQg35CkGM9K3mRxTJMyQJI0MZeUZ0nWOdulNk+Wfn7tZLk0zxHJvnn4pnLK+n0z5fTy66aT7W1aV2y7Z3e5VM7+/eUSSpksnf2mTeV09ps3llPPb9lUbjtsbfm5H7WxvK+z9PLrktJKkrQ2Ka+0Jimj0zQtfVZGyMn2snI/U4W+ZH0EAIye7FM7i2SyUkDZV0H2fVX6bpmXlW/Jvls3ry3HD/s2luOVg1n5naSvG5NYbdfhB4pt+w82i52y2OGIjeXnvi2Jj47bXG57eLLclqSkY1ZeMnsOUh43Z69FXn6nWcxCpDO6ODMLAGgt6swCADC+GMwCAFqJa2YBABhvDGYBAK3FmVkAAMZXPlkdAAAAAIARxJlZAEBrcWIWAIDxxWAWANBKFtOLAAAYZwMdzM7MhXbet3h68iw993RWZySRpXvPyuhkJX3csGyPlKetn0pOL2xdX06HnmSQ18HkOU4m28vOdGTPce+BxcsudXPEhnJK98PWTRfbNq5LyuisKZfK2by+vNzmZHtZmv8NyfakvLxUdizOJC9wnnq+3JaW9Ele31J5BM6MYWjcvMwCgMWl5XeSwj1JeJTGY3NdYrwsPpydK3/3Zt+7D4tyCcIsPtqwptyXozYkpXn2luO4fTN5WceSdVPlfh6RxEdZCcJtSTyWld85bE1SujApBTndrTRPctxkbWkcn2yP75N24swsAKC1CD0AABhfzNACAAAAALQOZ2YBAK1kUZoHAIBxxmAWANBaDGUBABhfDGYBAK3FiVkAAMYXg1kAQEuZ7JMAAIyxgQ5mpyesbYcvnp58qlD2Q5LWJGnbs9TrB2bmim3NEqHnKeK7L5uUA0pL5SSpyTcmaeKTNOqP3Fwuo7Nvtrzf7kvK7+xP0stHlNuOSErlZHt7cqLceniSJn7L2nKK/JkoP/esfFK342nj2rx0T0lWKidry46ZLPSfSt5rs8lrCAAYLfkPPcnnebOmNI6J5Mt8KvIfpOaSuGsu+V7K+pptcTqJLTZMlWOLI9cdLLbtm5ktth3Iaiwmsu/r9VPlmGPTdPk5bFqTlENM4qr1SXnCtdPN4nspf45Z+Z08pi5vLy/bk7Xxo+owdR2Z2T7e9hdsX2v7GtuvrO8/1/attq+qb8/tf3cBAKhY1ZdYr2/AShE7AcBgLOXM7IykV0fElbY3SbrC9qV129si4g/61z0AAMr4RRwjitgJAAag62A2IrZL2l7/vdv2dZKO7XfHAADohqEsRhGxEwAMxrJmVNk+SdITJF1W3/UK21fbfq/tIwvLnG37ctuX79y5Y2W9BQBgnqszs72+Ab200tjpzh13DqqrANA6Sx7M2j5M0sWSXhUR90p6l6RHSTpV1a+Pb1lsuYg4LyJOi4jTtmzZuvIeAwAAtEAvYqdtW7cNqrsA0DpLymZse1rVh/EHI+JjkhQRt3e0v0fSp/vSQwAAFjGfAAoYRcROANB/XQezruZcnS/puoh4a8f9x9TXhEjSz0n6Zrd1TUxYG9cuvsnphuV3sqzeWbLzrFRMU0mWcEl5+SGpXBImW++G6XI69Cy9/FSy0rVJSaMNSbr3rHRL1jaZTOvL2rL9kqWlX5uk+V/ncls2/XBdknp+GJqW3wHahmnBGEW9jJ1GSfZ+m0iirqz6TlZmTpLKxWKU1/xJZJvMviOz+OGI2XJPDyQlD7OSgJms/My6yXIMtCYrhZk8v7TETrZc0pbHxXmsmr2GWRvfGavPUj4FniLpTEnPXJBK/n/Z/obtqyU9Q9J/7WdHAQBYyH24dd1mda3jHba/2XFfseSK7dfavt72t23/zIqfNNqA2AkABmAp2Yy/osW/3y/pfXcAABh575P0TknvX3D/Q0qu2D5F0oslPU7SIyT9je3HRMTsIDqK4SB2AoDBGK25kQAALIPd+1s3EfFlSTuX2MXnS/pwROyPiH+RdL2kJzV+wgAA4AEMZgEArVQlgHLPbyuwWMmVYyXd3PGYW0S9UQAAeoLBLACgtfp0ZnbrfI3P+nb2ErqypJIrAACgd5ZUmgcAgNFjeWVnUkt2RMRpy1kgKblyq6TjOx56XH0fAABYIc7MAgCwQraP6fhnZ8mVT0l6se21th8p6WRJ/zjo/gEAsBoN9Mzs5IR1+PrFN5nVkt1/sJz0MasWm9WunWmYRzLfXv7bwFxaSyypfZrUks36MzVZbl07V97ezHRSLzZ5oQ7ONauVtj+pv5bV0c1ky61fU27L6rZlstdIkmaS/datPvEgjVBXgCUZRslA2xdKerqq6ci3SHq9pKfbPlXVx/KNkl4mSRFxje2LJF0raUbSy8lkjGHLa20mkUUWdDSsC7+i0ypJDdOsP1lt26z26ZqppF7sbLPYaS6ynVqWvYbp80vappP9mcXU2T7LlutWY3girTPb7MM/WypbJfVpRxfTjAEArTSfAGrQIuKMRe4+P3n8myS9qX89AgBgPDGYBQC00xJL6QAAgNWJwSwAoLUYzAIAML5IAAUAAAAAaB3OzAIAWqtPpXkAAEALMJgFALSSNVrZwAEAwGANfDBbTqXdLDV5836U27IyQSuRpSfP+hPT5dngWbr3bHuZbJ1Z6vlQUkIoST2/KelLlrY9S8uepXNfk6Sez1KvZ6/RVJd93Y/U+5lsv6UVErgAES3DmVlgcJpW9MmW65qRvOEFcdn3WfaVPTWRlNjJSj6m5XfK28vio0zTeKVp2Z5suaZtWawmSZPJc0yPqYbLoZ04MwsAaC0CEwAAxhcJoAAAAAAArcOZWQBAazHNGACA8cVgFgDQSiSAAgBgvDGYBQC0lDkzCwDAGOOaWQAAAABA6wz0zGyEdGBmbvG2bLku6yxJ03Ync9PmsvIzDVOoV/1J0qEn6d6ztOZNZeV3shTyBwuvX7Vcs3VmsvJCTV/7pvszS/W+gsOicRmd7HhqmuG1aQkhYChMNmOg17LvliwGalp+Z65LacasPEsmqbAju3wuZ7JhfDTdNAZq+r3bsDRPWtawYdzctITOSuLbfpTfaVoOEcPFNGMAQGsRegAAML4YzAIAWqlKAMVwFgCAccVgFgDQWgxlAQAYXySAAgAAAAC0DmdmAQDtxalZAADGFoNZAEBrUWcWAIDx1XUwa3udpC9LWls//qMR8Xrbj5T0YUlHSbpC0pkRcSBbVyh0cLZc2mWQsvAnSxWele3pJstAnqUDXzNZng2epXvP8qLMJM8jK8+SPYem5X5mkmMiey2ybPZZXzJNU71329pU8ho2PRabprRvegSX9jfVfDBM5H/CKOpl7DRKBl22R8q/s5Kv1rx8X9IWSWez+Ciy55Ftr9yUSvdaFm8mizWNgZou160UTl6eMF208TbRPku5Zna/pGdGxOMlnSrp2bafLOn3Jb0tIh4t6W5JL+1bLwEAWIT7cAN6gNgJAAag62A2KvfV/5yubyHpmZI+Wt9/gaQX9KODAAAAbULsBACDsaRsxrYnbV8l6Q5Jl0q6QdKuiJipH3KLpGP70kMAAEo4NYsRRewEAP23pMFsRMxGxKmSjpP0JEk/uNQN2D7b9uW2L79rx45mvQQAYIFq7Nn7/4Be6FXsdOeOO/vVRQBovWXVmY2IXZK+IOnHJG22PZ9A6jhJtxaWOS8iTouI047aunUlfQUA4EGukoD0+gb00kpjp21btw2mowDQQl0Hs7a32d5c/71e0k9Juk7VB/PP1w87S9In+9RHAAAWxSxjjCJiJwAYjKXUmT1G0gW2J1UNfi+KiE/bvlbSh23/jqSvSzp/KRucKJUTyUq3JGVWphqWJ0kjlmR700ke+CwtfTfF/aI8bXv29LNU6ZosN80l1ZPmsjz4Ki+YpcHfe6DcuKYPlZCzqj3Tk81eh25HYVZGp2nJpkzTQzEvrUCYDwBL1NPYqQ36UbanWjjdaKMFJ9O+lteYlRHKnuOgK9jlJW2SMjrpcg370nB7/domVp+uQ4WIuFrSExa5/7uqrgEBAGA4iFkwgoidAGAw+nDeCwCAQSBhEwAA44zBLACgtZhNBgDA+GIwCwBoJRI2AQAw3pZVmgcAAAAAgFHAmVkAQHtxahYAgLE10MHshK21U4ufDJ6ZLScuPzhbLvkyMVE+uZyVPElLl6TVZ5LU610u3srKs2Rp4u/bP1Nsy8rvRJIMvlky++blh9KU9UnbbFZHJzHXsJ9ZiaSVyF77TNPrAbOn37T8zkpKTwH9QgIoYPStrFRK01imYam9NHZMllwFF/A3fZ36UdKnWrb9+xT9x5lZAEBrEesAADC+uGYWAIBlsP1e23fY/mbHff/b9rdsX23747Y31/efZHuv7avq27uH1nEAAFYZBrMAgNZyH25L8D5Jz15w36WSfigifljSP0t6bUfbDRFxan07Z5lPEQAAFDCYBQC0Uz9GsksYzUbElyXtXHDf5yJiPsHBVyUdt5KnBgAAumMwCwBoLffhvx74FUl/3fHvR9r+uu0v2X5qLzYAAABIAAUAaCmrbwmgttq+vOPf50XEeUvqk/1bkmYkfbC+a7ukEyLiLttPlPQJ24+LiHt722UAAMbPQAezcxHac2B20bYs23lWLiWLY7JyPzNJyZesHExWYqVbUJX1Z/9cufxQqZyRlJfmycwmO3z/wXJf0tcp6cvkVLltw9ryYZhVtMlei6nJ8j5LU/k3Lj3U5QFJX7PnmB37TV/7bKnsuCgdomSTxSq0IyJOW+5Ctn9J0vMkPSvqD5OI2C9pf/33FbZvkPQYSZeX1gPgQU1LxmXfTXkc0KwvmUEXtuvH13I/vuspvYNe4MwsAKC1RiUUsv1sSb8h6ScjYk/H/dsk7YyIWds/IOlkSd8dUjcBAFhVGMwCANprCKNZ2xdKerqq6ci3SHq9quzFayVdWp9t+Gqdufhpkt5o+6CkOUnnRMTORVcMAACWhcEsAKC1epSwaVki4oxF7j6/8NiLJV3c3x4BADCeGMwCAFqLS64AABhflOYBAAAAALQOZ2YBAK3FiVkAAMbXQAeztrVuenLRtqw8SX86U26amkxKzKxgTluWmv3gbLkcTlIpSNEw4ftcttJE06efpbpfv2bxY0LKA9WmJZuayvZYt/2SHd/ZerMyUbPJkis5Tkuy/Q0MDYclMLb6U9ql94V0VsPHFGV0MKo4MwsAaCVrOAmgAADAaGAwCwBoJ5MACgCAcUYCKAAAAABA63BmFgDQWpyYBQBgfDGYBQC0F6NZAADGFoNZAEBLmQRQAACMsYEOZq+68oodR6yfvKn+51ZJOwa5/S5GqT/0ZXH0ZXHD7suJQ9w2AKxqV155xY710x7F2GmU+iKNVn/oy+Loy4OInXpkoIPZiNg2/7ftyyPitEFuPzNK/aEvi6MvixulvgCDRjZjrHajGjuNUl+k0eoPfVkcfUE/MM0YANBKFpfMAgAwzhjMAgDai9EsAABja5iD2fOGuO3FjFJ/6Mvi6MviRqkvwECRAApjZpQ+70epL9Jo9Ye+LI6+oOccEcPuAwAAy/bDpz4x/vLzf9/z9Z60dd0VXEsFAMDoY5oxAKC1SAAFAMD4mhjGRm0/2/a3bV9v+zXD6ENHX260/Q3bV9m+fAjbf6/tO2x/s+O+LbYvtf2d+v9HDrEv59q+td4/V9l+7oD6crztL9i+1vY1tl9Z3z/wfZP0ZeD7xvY62/9o+5/qvryhvv+Rti+r31Mfsb2m330BRoH7cANGEbHTA9sembgp6c8w4oORiZu69IfYCT018MGs7UlJfyzpOZJOkXSG7VMG3Y8FnhERpw5pWtn7JD17wX2vkfT5iDhZ0ufrfw+rL5L0tnr/nBoRlwyoLzOSXh0Rp0h6sqSX18fJMPZNqS/S4PfNfknPjIjHSzpV0rNtP1nS79d9ebSkuyW9dAB9AYbL1ZnZXt+AUUPsdIj3aXTiplJ/pMHHB6MUN2X9kYid0EPDODP7JEnXR8R3I+KApA9Lev4Q+jESIuLLknYuuPv5ki6o/75A0guG2JehiIjtEXFl/fduSddJOlZD2DdJXwYuKvfV/5yubyHpmZI+Wt8/sGMGGD7OzWIsEDvVRiluSvozcKMUN3Xpz8ARO61uwxjMHivp5o5/36IhHdy1kPQ521fYPnuI/eh0dERsr/++TdLRw+yMpFfYvrqeSjOwqTvzbJ8k6QmSLtOQ982CvkhD2De2J21fJekOSZdKukHSroiYqR8y7PcUAKC3iJ1yoxY3SUOMnUYpblqkPxKxE3poKNfMjpifiIgfUTV15+W2nzbsDnWKKt30MFNOv0vSo1RNy9gu6S2D3LjtwyRdLOlVEXFvZ9ug980ifRnKvomI2Yg4VdJxqn6t/8FBbBcYNRbTjIEhGdnYaQTiJmmIsdMoxU2F/hA7oaeGMZi9VdLxHf8+rr5vKCLi1vr/d0j6uKoDfNhut32MJNX/v2NYHYmI2+sPgDlJ79EA94/taVUfgB+MiI/Vdw9l3yzWl2Hum3r7uyR9QdKPSdpsez47+VDfU8AgMckYY4LYKTcycZM0vPhglOKmUn+IndBrwxjMfk3SyXUGsTWSXizpU0Poh2xvtL1p/m9JPy3pm/lSA/EpSWfVf58l6ZPD6sj8B2Dt5zSg/WPbks6XdF1EvLWjaeD7ptSXYewb29tsb67/Xi/pp1Rdh/IFST9fP2yoxwwwSJyZxZggdsqNTNwkDS0+GJm4KesPsRN6beB1ZiNixvYrJH1W0qSk90bENYPuR+1oSR+v3m+akvShiPjMIDtg+0JJT5e01fYtkl4v6c2SLrL9Ukk3STp9iH15uu1TVU1LuVHSywbRF0lPkXSmpG/U1zhI0us0nH1T6ssZQ9g3x0i6oM5sOSHpooj4tO1rJX3Y9u9I+rqqLxBg1TPnUjEGiJ0eNEpxU9KfYcROoxQ3Zf0hdkJPuZo+DwBAuzz+CU+Mz37xqz1f7zGb11wxpFJtAABgGQZ+ZhYAgJ7hxCwAAGOLwSwAoLUYywIAML4YzAIAWomETQAAjDfqzAIAAAAAWoczswCA1iKbMQAA44vBLACgvRjLAgAwthjMAgBai7EsAADji8EsAKC1SAAFAMD4IgEUAAAAAKB1ODMLAGgpkwAKAIAxxplZAEArWQ/Wmu3lret27ffavsP2Nzvu22L7Utvfqf9/ZH2/bb/D9vW2r7b9I33bIQAAjBkGswAALM/7JD17wX2vkfT5iDhZ0ufrf0vScySdXN/OlvSuAfURAIBVj8EsAKC1hnFmNiK+LGnngrufL+mC+u8LJL2g4/73R+WrkjbbPqYnTx4AgDHHYBYAgJU7OiK213/fJuno+u9jJd3c8bhb6vsAAMAKkQAKANBafUoAtdX25R3/Pi8izlvqwhERtqMP/QIAAB0YzAIA2mmJ04Ib2BERpy1zmdttHxMR2+tpxHfU998q6fiOxx1X3wcAAFaIacYAgFZyn24NfUrSWfXfZ0n6ZMf9L6mzGj9Z0j0d05EBAMAKcGYWANBeQygza/tCSU9XNR35Fkmvl/RmSRfZfqmkmySdXj/8EknPlXS9pD2SfnngHQYAYJViMAsAwDJExBmFpmct8tiQ9PL+9ggAgPHEYBYA0Fp9SgAFAABagMEsAKC1+pQACgAAtACDWQBAazGWBQBgfJHNGAAAAADQOpyZBQC0F6dmAQAYWwxmAQCtRQIoAADGF4NZAEArWSSAAgBgnLkqgQcAQLvY/oykrX1Y9Y6IeHYf1gsAAHqIwSwAAAAAoHXIZgwAAAAAaB0GswAAAACA1mEwCwAAAABoHQazAAAAAIDWYTALAAAAAGid/x9NixA4dFxXfwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "Err_B2=error(xdata2, poptB2[0], poptB2[1],poptB2[2], poptB2[3], poptB2[4], recorteB2.ravel(), inc=1)\n", + "poptB2E, pcovB2E = curve_fit(gauss2d, xdata2, recorteB2.ravel(), p0=[4,4,4,1,1], sigma= Err_B2)\n", + "estrellaB2E=gauss2d(xdata2, poptB2E[0], poptB2E[1],poptB2E[2], poptB2E[3], poptB2E[4])\n", + "FWHMB2E=FWHMB_I.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptB2E[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 2 fotografÃa (Banda Azul)\")\n", + "plt.imshow(recorteB2, plt.get_cmap('Blues'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 2 a partir de la gaussiana con incertidumbre (Banda Azul)\")\n", + "plt.imshow(estrellaB2E.reshape(35, 35), plt.get_cmap('Blues'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 3 con incertidumbre (Banda Azul)" + ] + }, + { + "cell_type": "code", + "execution_count": 853, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7MAAAFSCAYAAAAgmYhhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA6xElEQVR4nO3deZxcZZ3v8e+3Ows7ATogJIEwGpkBVGAioIzjggsgGl6Og6AiImPGuTiiw1wUvA7oXBzujCO4a0YQUAQRUdFBhcEFdQQNYQeXjCxJCCbNLlvS3b/7x/MUVHd6qa5zqqpP1+edV71Sdeosv6o6XfX7nec5z3FECAAAAACAKunpdAAAAAAAAEwWxSwAAAAAoHIoZgEAAAAAlUMxCwAAAACoHIpZAAAAAEDlUMwCAAAAACpnRqcDAACgGb3b7BYx8ETp640n1v8gIg4pfcUAAKBUFLMAgEqKgSc0e48jS1/vkzd+pq/0lQIAgNJRzAIAKsqSOVsGAIBuRTELAKgmS7I7HQUAAOgQDmkDAKrLPeXfxtucvcD2j2zfbvs22yeOeP4k22G7Lz+27U/aXmn7Ztv7tfDdAACgq9AyCwCorva3zA5IOikiVtjeWtL1tq+KiNttL5D0akn31M1/qKRF+XaApM/l/wEAQEG0zAIA0KCIWBsRK/L9RyXdIWlefvosSSdLirpFlki6IJJrJc2xvXM7YwYAYLqiZRYAUFEtGwCqz/byusfLImLZJlu3F0raV9J1tpdIWhMRN3l4a/E8SavqHq/O09aWHjUAAF2GYhYAUF2t6WbcHxGLx9+st5L0DUnvVep6fKpSF2MAANAmFLMAgGqyOnJpHtszlQrZCyPiMtvPk7S7pFqr7HxJK2zvL2mNpAV1i8/P0wAAQEEUswCAinLbB4ByqlbPkXRHRHxckiLiFkk71s1zl6TFEdFv+3JJ77Z9sdLATw9HBF2MAQAoAcUsAACNO0jSMZJusX1jnnZqRFwxxvxXSDpM0kpJj0s6ruURAgDQJShmAQDV1eZuxhHxM6UOzuPNs7Dufkg6ocVhAQDQlShmAQDV1f7rzAIAgCmCYhYAUFEtuzQPAACoAIpZAEA1WbTMAgDQxTikDQAAAACoHFpmAQDVRTdjAAC6FsUsAKCiOGcWAIBuRjELAKiuHs6ZBQCgW3FIuwS2F9oO2zPy4x/b/ps2bNe2v2T7Qdu/bPX2irK9h+0bbT9q+z152sdtn93k+v7F9nvLjHES2z7P9v/txLbHUr/f2X6d7a91OiYAmCo69Vs91dh+ie3fFFxHU+/dyM+gymzfZvtlnY6jFWx/z/axUyCOXW3/0XbvGM+fbvsrLdp2y78fbP/c9r6t3MY4277L9is7se2x5O+G5+T7/2777xpZbloVs/mDeSLv+LXbpxtY7uk3r9Ns/8j2etuP2L7J9pJxZv8LSa+SND8i9m9g3Z1+nSdL+lFEbB0Rn7T9EkkvlPS/J7si23MlvU3SF/Ljl9keqvvc19j+cKnRlyx/UT5oe3bZ646I70jay/bzy143MGVYqZtx2Te0VBf+VnfUyPctIn4aEXt0MqbpICL2iogfdzqOVoiIQyPi/HZvd2SBFRH3RMRWETHY7lhazfbrJD0aETfkx6fb3lj3nXiH7b/qcJhjsr1VjvN7LdrExySdanvWRDNOx1/t1+Udv3Z7d9EVtvkI4omSdo6IbSQtlfQV2zuPMe9uku6KiMfaFt0YGnyPdpN0W93j3SW9KSI2NrHJt0u6IiKeqJt2b+1zVyr0j7d9RBPrbjnbCyW9RFJIen2LNnOR0j4ETF92+Te0Qzf9VndEM+/HdGgxRfVUfb9rMv53SfryiGlfq8tj36v0vbJT0fha5K8kPSXpVbafVfbKI2KtpF+rgRx5Ohazo7L9HNs/sf2w7f5aF0zb1+RZbspHGN6UW/lW236/7fskfcl2j+0P2P4f2/fbvsT29g1s99m2f5iX6bd9oe05Y80fETdHxEDtoaSZkhaMst7jJX1R0oty3B/O099pe6XtB2xfbnuXsV7nePPn515t+zf5Pftsfv9q3Vjf7tQ94izb90s6fbzXavuHkl4u6dN5+8+V9ApJ/ys/v53t7+Yj3Q/m+/PHeWsPlfSTcd7HOyX9t6Q9617PJ2yvykfSr3dqGa49d3r+TC9w6gZ9m+3Fdc/va3tFfu5rkjare26ysUupVflaSedJerorj+1dPLy14nHbURfjV+rmnai71o8lvXaCOIAKMy2z08x0+63O697f9i9sP2R7re1Pe4zWhrrv9aW2783z/2Oj68rLnmD7d5J+N977VrfMXfk9vFnSY6P9pth+le1f58/l00r9Iuqff4dTS9KDtn9ge7ex3rsRyx2Xl3vU9u9t/+048/Y6dT3st32n7Xd7eLfxMdfllLP8bMT66rs0Hmb79rzsmtp7brsv/6Y/5JQn/dROXxKua0Vs8HN5l+3f5Xk+Y6cjZ5Pd92zvZfuqHM8fbJ+ap8+2fXbeb+7N92fn52p/KyfZXpdjPG6cbTzdxbb23tn+WP5877R9aN282zud8nZvfv5bdc8d7nR62UO2/9t1vcVG2e8ukrSrpO/kffVkb3pqwO5O3w+P2r5KUl/d+obt16N8Rqfb/rrtr+Tlb7H9XNun5Pdkle1Xj3grnm37l05547edv0vq4jre9j2SfpinN/R3kPeNV2j8PPYHkh6V9Oy8zHYeJ9fMn9k/O+Xmj9q+0nb9+3OM7bvzfvbBEfE0/B1V51hJn5d0s6S31q3rTR6exz5l+8d1Mf5N3byb/F2O8GM1kMd206/2P0u6UtJ2kuZL+pQkRcRf5udfkI+G1M4zfJak7ZVaE5dK+ntJR0h6qaRdJD0o6TMNbNeS/iUv82dKP3anj7tA2kGflHSd0ge5fOQ8EXGO0lGdX+S4T7P9irytIyXtLOluSReP9TrHmz//AVwq6RRJO0j6jaQXjwjjAEm/l7STpDPGe60R8QpJP5X07rz9345YV4+kLym937tKekLSeN3OnpdjGpXtRZIOUioYa34laR+lz/Wrkr5ue7O651+fX/8cSZfXtp//oL+ldARte0lfVzoi1WzsUipmL8y31zgfeYuIe+tbKyR9M8fUjDskLbS9TZPLA1MfLbPTzbT6rc4GJb1PKfF+kaSDlQ/kjuPlkhZJerWk9/uZrpeNrOsIpd/nPcd530Y6WilpnFNXpNdeZ5+kyyT9n7zd/1H6fa09v0TSqZLeIGmu0m/9RRO8vpp1kg6XtI2k4ySdZXu/MeZ9p9KB7H0k7ZdfZ7PrGukcSX8bEVtL2lu5OJF0kqTVSq9rJ6XXGaMs38jncrjSqVXPV8q7XpOnN7zv2d5a0n9J+n6e/zmSrs5Pf1DSgUrvzwsk7a/0mdU8S9K2kuZJOl7SZ2xvN9p2RnGAUs7VJ+lfJZ1jP/1l+WVJW0jaS9KOks7Kse4r6VxJf6uUR35B0uUefmpV/X53tKR79EyvjX8dJY6vSro+x/HPqmsMaNDrcrzbSbpB0g+Ucrh5kj6SY6z3NknvUMqRByR9csTzL1X6zF4zyb+DRZKGImL1aE86ea2kWZJuz5MbyTXfrLTv75iXrR2U2VPS5yQdo7Tf7KD0/Vozqe+oXKS/TM/ksW+rPRcR9a3LuyjVCY1+H4x0h9K+PK7pWMx+Kx9ZqN3emadvVNoBdomIJyNivCMBkjQk6bSIeCp3ZX2XpA9GxOqIeErpi+aNnqBrQUSsjIir8nrWS/q40s4/3jKHS9pa0mGSroyIoQlirXmLpHMjYkWO8RSlltuFTcx/mKTbIuKy/MP2SUn3jVj+3oj4VEQMRMQTzbzWutd8f0R8IyIej4hHlYrj8Zado3TEqt4u+TN/RNJvlRKMpz/niPhK3s5ARPy7pNmS6s8b+llEXJHPzfiynvkDOlDpqPvZEbExIi5VKoybit32Xyjti5dExPVKicGbR5nv/ZL+VOmLtBm192dOk8sDQKt0zW91RFwfEdfm3567lBLmiX4bPxwRj0XELUoJ7NGTWNe/RMQDI07DmcgnI2LVGMvU8oFL82lBZ2t4PvCuvM07cr7wUUn7jNUqVS8i/jMi/ieSnygdyHjJGLMfKekT+bN9UNKZBdY10kZJe9reJiIejIgVddN3lrRb/v3/aURsUsw2+LmcGREPRcQ9kn6kVHROdt87XNJ9EfHv+e/j0Yi4Lj/3FkkfiYh1eT0fVipe6l/jR/LruELSHzU8BxrP3RHxHzk/Oj+/Jzs5da0/VNK78vu2Mb/3Ujq49IWIuC4iBiOdg/uUUk5VM95+N4ztXZUOBnwov1fXSPpOg/HX/DQifpD3068rFZ1n5v36YqUGgDl18385Im6NdDrfhyQd6eGDUZ2e/05r3z2N/h3M0aY5rPL6H1L6bC6X9NGIeEhqONf8UkT8NsdzifI+JumNkr4bEdfk78UPKX13Kq97st9Rx0i6OSJuV3rf9vKIgaycejB8VdKPI2LkQYJGPaoGctjpWMweERFz6m7/kaefrHT065dOXUgnKhDWR8STdY93k/TN2g+v0tGCQaUjdWOyvZPti526rTwi6Suq6xYxlvyF8D1Jr7bd6DmVuyi1rtbW8UdJ9ysdcZrs/LtIWlX3XCgdnay3qv5Bs681L7uF7S/kLhCPSLpG0hyPMYKd0tH2rUdMuzd/5tso7fxPKH3p1rbxj7n7x8P5M9x2RHz1P86PS9osJ0C7SFoz4gfs6fetidiPVUp8+vPjr2rE0UWnLjwnKu3Pk0lI6tXen4eaXB6Y+uhmXFVd81vt1JXxu7bvy+v+aAPrrv99vVvpd6jRda3S5I23zGj5QP38u0n6RN17/oDSZzhW7vE024favtapy+xDSoXzWO/NsDhGxjzJdY30V3n+u526sb4oT/83SSslXenUdfkDY7yORj6XkTnGVnnZyex7C5QOgI9mWE6nuv0muz+Gt7o/HUMDno49Ih7Pd7fK8TyQDy6MtJukk+oPWuX562OazL66i6QHY/g4MXePNfMY/lB3/wlJ/fHM4FK1XKv+PRn5dzhTwz+bZv8ORsthpdTIMScitlTqXvw25+7yDeaao+5j2vRv+DGlfF953ZP9jqr1LlRErFHqLj2ylfyM/BrfM856JrK1Gshhu+ZXOyLui4h3RsQuSl0ePuvxR0UceeRtlaRDR/z4bpY/xPF8NK/rebnIeqtGnGsygRnK/eUbcK/SH5MkyfaWSl0JxopxvPnXqq4Lgm1reJcEadP3qMhrPUnpCOEBedla16ixlr9Z0nPHWllEPKxUJL4ux/8SpSTpSEnbRcQcSQ83GN9aSfPye1CzazOx2948x/DS/KVxn1LXjhfYfkGeZw+lIvzIiKj/onxMqStPzUQn3P+Z0gBhj0z0AoFKakUXY7oZd9Q0/a3+nNJAJovyuk9tYN3159/uqvR73ei6RusGO5HxlllbH0/+LayPb5VSF93693zziPjv8Tbo1N30G0qjlu6Uf5ev0NjvzbC8ZERME61r2O+nRwxYExG/ioglSt0zv6XUqqXc8nlSRPyJ0qlI/2D74FFia+YzrpnMvrdK0p+M8dywnE7D95tWWSVpe49+ju8qSWeM2C+2iIj6Lqcj97uJ9sPtcq5aU5+LjfyMe5VaXosY+Xe4UVJ/3bT6eCfzd7AyhegxD/jkFtLvKeexmnyeXG/k3/AWSvl+TcP7r+0XK3WTPqUujz1A0pv9zLnNRyn1JnljDB/ktZk89qaJXlzXFLO2/9rPnCj9oNIOWGti/4PG/nKo+bykM5y7C9ie68aG4t9aqbvAw3mnHfMyNLb/NB9Z3Nz2TNtvVdpZxzxBfISLJB1ne5/8xf5RSdflPwhp09c53vz/Kel5to/IO+cJmnina/i1jrHsE5IecjrB/rQJ5r9C43fl3UrSUXpm9OStlc53WC9phu1/UjqvphG/yMu+J38ub1A6F6WZ2I9QaiXYU6n7xz5Kf6w/VToCt42kbyt1kxvZve5GSX/pdN21bZW6hY/npUpfhMD0RcvstDJNf6u3lvSIpD/a/lNJjVw78UO5JWYvpXPgaue6NrOuRt638fynUjfCN+R84D0ang98Ximx3UuSbG9r+68bWO8spdN91ksacOqRNHIAnnqXSDrR9rxcPL1/Euu6Kb+GfZzGyji99oTtWbbfYnvbnHg/orzPOQ1g9JxcwD+s9Ps9WnfyZj6X+mUbzZ2+K2ln2+91GvBpa9sH5OcukvR/8j7fJ+mflFp5WybSiLPfUzrotF3+e6gVWf8h6V22D3Cype3XOp33O5Yx99WIuFvpvPQP58/sL/RMoSel08s2y9uYqXS+cNFLH77V9p65+PuIpEtj7MsENfx3EBEblM59Hi+PnS/pEA3PYyeTJ9e7VNLhtv/CaRyYj2h4DTiZ/fdYSVdpeB67t6TNJR3q1N34U0q9b9aPWPZGSW/I323PUTp3ezwN5bHT8Ve7Ngpa7fbNPP2Fkq6zXeuHfmJE/D4/d7qk8526Bhw5xno/kZe70vajSgMLHTDGvPU+rDRQwcNKPwiXjTOvcyzrlL6QT1S6dM2KcZZ5WkT8l1I/+G8oHYV5tlJBV3O66l7nePPnLrB/rXSi//1KO+1ypfMdynitI52t9IfQr/Tefn+C+S+QdJhTS2fN0yMBK3UH2V7pHBIpneT/faUvu7slPakGu7fkL503KF0O6AFJb9Lw1zaZ2I9VOqfhntwCcV9E3Kd0Ev9blIrkPZQGrvhj3etRRFyllNDcrDQAwncnCP1obTqYATC90DJbVd30W/2PSuMiPKqU4I81CFO9nyi13lwt6WMRcWWBdZ2uid+3MdXlA2cq5QOLJP287vlvSvp/ki526qJ4q9J5lBOt91GlwvgSpQMXb1b67MbyH0rnwd6sNHjPFUoHmgcnWlekQSc/olRA/E5142lkx0i6K8f/Lj2TOyzKy/xR6cD2ZyPiR6PE1sznUtPwvpdf56uUirj78mt5eX76/yrlaTdLukXSijyt1Y5RarH8tdLfxHtzrMuVBu36tNJnslIpjxrPvygV5A+5bhTvOm9W+nt+QKmYu6D2RO6R97+UrvSxRqkVcNQBlibhy0pXnbhP6SoWY3aZbeLv4Asafk6zJL2pLu/7ldLf2Yfzc2drcnlyfWy3KTVKfVUp339Qw9+bhvbffCDoSEmfqs9hI11B5MtKOe4SpQG2flb3/V4rSM+StEHpoMX5yl2Vx9jWzkq1x7cmen2OTc9jBzbhdCL3aklvGeOLvO1sf1TSuog4u9OxTDVOF+M+JiImnbgAVdGz7YKY/eJ/KH29T37/H66PiMUTzwmUy2kAxjslzRxxfiNGyK2vn4+Ihi4DBEw1tn+udJWPGzody1Rj+98l/U9EfHaieSt9kWK0lu3XKI0I/IRStxdr+KVuOioiTu10DFNVRHxHkx/lD6gY0y0Y6BK5J9bLlVpnd1JqmfvmuAsBU1hEHDTxXN0pIk5qdF6yAIznRUqj5vUrdWkpMrIuAJSPbsZAt7BSl8sHlboZ36F0XiiALkbLLMYUEadrgovGA0DHWLTMYlrJAzByRGUU+ZIwL+x0HACmFopZAEBF0c0YAIBuRhYAAAAAAKictrbM7rBDX8zftflB58o4lckFe+8MMfpzaabCqWlFP84ydoei+1RvT7E3sujy99x9l/r7+6fAp4muNBW+SIAW6uvri912W9jpMACU6G5yp9K0tZidv+tuuvInzQ+GO6Ng0i1JM3qLrePJjaNdK3tyBgaLraNo8SFJg0OdLaAkqafgOsr4Bij4NuiJDWNdO7txGwaK7Q9bblbsz3j7LWcWWv6gAzmFCR1EN2NMc7vttlA/v255p8MAUKKDDuDqb2XhnFkAQHXRMgsAQNfikDYAAAAAoHJomQUAVJMZzRgAgG5WKAuwfYjt39heafsDZQUFAEBD7PJvQAuROwFAeZouZm33SvqMpEMl7SnpaNt7lhUYAAATsV36bYLtLbD9I9u3277N9ol5+r/Z/rXtm21/0/acumVOyYXLb2y/prXvCKYycicAKFeRltn9Ja2MiN9HxAZJF0taUk5YAACMz2p/MStpQNJJEbGnpAMlnZCLkask7R0Rz5f0W0mnKMW3p6SjJO0l6RBJn80FDboTuRMAlKhIMTtP0qq6x6vztGFsL7W93PbyB+7vL7A5AAA6KyLWRsSKfP9RSXdImhcRV0bEQJ7tWknz8/0lki6OiKci4k5JK5UKGnSnSedO6/vXty04AKialo+cERHLImJxRCzefoe+Vm8OANAt3KJbo5u3F0raV9J1I556h6Tv5fsNFS9AvfrcaW7f3E6HAwBTVpHRjNdIWlD3eH6eBgBAGzTULbgZfbaX1z1eFhHLhm3Z3krSNyS9NyIeqZv+QaWuyBe2IjBUHrkTAJSoSDH7K0mLbO+u9EV8lKQ3lxIVAAANaFEx2x8Ri8fZ5kylQvbCiLisbvrbJR0u6eCIiDyZ4gX1yJ0AoERNF7MRMWD73ZJ+IKlX0rkRcVtpkQEAMIEWFbPjbc+SzpF0R0R8vG76IZJOlvTSiHi8bpHLJX3V9scl7SJpkaRftjFkTCHkTgBQriIts4qIKyRdUVIsAABMdQdJOkbSLbZvzNNOlfRJSbMlXZUL7Gsj4l0RcZvtSyTdrtT9+ISIGGx/2JgqyJ0AoDyFilkAADqp3S2zEfEzjT5M1JjFSUScIemMlgUFAECXamsxO6PH2naLmU0v/9iTAxPPNIEnNw4VWn5gKCaeaQK9PcWSr+IRSCqYAM7sLT4Q9swZLR9Me0IbB4vtDz0FP0up+Oc5WHCffHxDsUaioShljwQmb5KjDwMAgOmFllkAQCW5daMZAwCACqCYBQBUFsUsAADdq/P9PAEAAAAAmCRaZgEAlUXLLAAA3YtiFgBQWRSzAAB0L4pZAEA1MZoxAABdjXNmAQAAAACVQ8ssAKCy6GYMAED3opgFAFQS15kFAKC7UcwCACqLYhYAgO5FMQsAqC5qWQAAuhYDQAEAAAAAKoeWWQBANZluxgAAdDOKWQBAZVHMAgDQvShmAQCVRTELAED3opgFAFQSl+YBAKC7tbWYHQrpqY2Dza+ghJwlIgotPzRUbHlJ2lhwHWXkbjN6iq1k4+BQ8SCKvo7iH4UGC+4PZaTRM3uLraW34GdZdF8ww8kCAACgA2iZBQBUF8dSAADoWhSzAIBqYjRjAAC6GsUsAKCyKGYBAOheFLMAgMqimAUAoHv1NLug7QW2f2T7dtu32T6xzMAAAACmE3InAChXkZbZAUknRcQK21tLut72VRFxe0mxAQAwPhpmUS3kTgBQoqaL2YhYK2ltvv+o7TskzZPEFzIAoC3oZowqIXcCgHKVcs6s7YWS9pV0XRnrAwBgIrYpZlFZ5E4AUFzT58zW2N5K0jckvTciHhnl+aW2l9tefn//+qKbAwAAqLTJ5E7ryZ0AYEyFilnbM5W+jC+MiMtGmycilkXE4ohYvEPf3CKbAwBgmFrrbJk3oJUmmzvNJXcCgDE13c3Y6Rf/HEl3RMTHywsJAIDGUHyiSsidAKBcRVpmD5J0jKRX2L4x3w4rKS4AACbmFtyA1iF3AoASFRnN+GfiZx8A0EHtbpm1vUDSBZJ2khSSlkXEJ2xvL+lrkhZKukvSkRHxYG6J+4SkwyQ9LuntEbGirUFjyiB3AoByFR4ACgCALlK7Tuiekg6UdILtPSV9QNLVEbFI0tX5sSQdKmlRvi2V9Ln2hwwAwPREMQsAqCa3fwCoiFhba1mNiEcl1a4TukTS+Xm28yUdke8vkXRBJNdKmmN75xa8GwAAdJ1SrjPbqFBow8BQOze5iQ2DUWj5iGLLS9LM3mI9jHp7ivdQ6im4jic3Fv8cZxbc+waGin8WRXsoFv0sk2LHlIrGULibJh3m0CFW8b/hQtsffp3QnSJibX7qPqVuyFIqdFfVLbY6T1srAA0bKvibP1RC/lb097KM/A3AcG0tZgEAKE/LLqXTZ3t53eNlEbFs2JZHXCe0Po6ICNvFM2cAADAuilkAQGW1qGW2PyIWj73NUa8T+gfbO0fE2tyNeF2evkbSgrrF5+dpAACgIM6ZBQCgQeNcJ/RyScfm+8dK+nbd9Lc5OVDSw3XdkQEAQAG0zAIAKqvdl+bRM9cJvcX2jXnaqZLOlHSJ7eMl3S3pyPzcFUqX5VmpdGme49oaLQAA0xjFLACgmtz+AaAmuE7owaPMH5JOaGlQAAB0KYpZAEAlWcVHZgcAANVFMQsAqKxOXpoHAAB0FgNAAQAAAAAqh5ZZAEBldWAAKAAAMEVQzAIAqqkDA0ABAICpg2IWAFBJFi2zAAB0M4pZAEBFmWIWAIAuxgBQAAAAAIDKoWUWAFBZNMwCANC9KGYBAJVFN2MAALoXxSwAoJoYzRgAgK7W1mLWtmbP7G16+Y0DQ4VjGBgsto6ZvcVPM37wsY2Flr/3kScKxzB3y9mFlt9h62LLS9LsGcXey15H4RiKGuwpHkOo2D45NFQshqc2DhZaPqLznwMAYOoqmntJ0gN/3FBo+fWPFltekrbZvFjavOM2JeROBfJoYDqiZRYAUElcmgcAgO5GMQsAqCxqWQAAuhfFLACgsmiZBQCge1HMAgAqi1oWAIDuVXg0I9u9tm+w/d0yAgIAAJjOyJ0AoBxltMyeKOkOSduUsC4AABpjuhmjssidAKAEhVpmbc+X9FpJXywnHAAAGpNGMy7/BrQSuRMAlKdoy+zZkk6WtHXxUAAAmAzTMosqOlvkTgBQiqZbZm0fLmldRFw/wXxLbS+3vfz+9eub3RwAAJugZRZV0kzutL6f3AkAxlKkm/FBkl5v+y5JF0t6he2vjJwpIpZFxOKIWLzD3LkFNgcAAFBpk86d5vaROwHAWJouZiPilIiYHxELJR0l6YcR8dbSIgMAYAK2S78BrULuBADl4jqzAIBqolswAABdrZRiNiJ+LOnHZawLAIBGpNGMqWZRTeROAFAcLbMAgMqimAUAoHsVus4sAAAAAACd0NaW2aGh0KNPbGx6+Z6e4kfgt5xd7CVHROEYzrthdaHlP3PezwvH8JpDX1Bo+U+94XmFYxgYLPZebhgcKhxDb8FWnd4S9skZJayjiJm9xY5pWbSMoXNomAVar2ju89hTg4VjuOy2ewstf+aXVxSO4bWv3KPQ8h86eFHhGHbcpthvdhm5NDCV0M0YAFBZdDMGAKB7UcwCAKqJ0YwBAOhqnDMLAMAk2D7X9jrbt9ZN28f2tbZvtL3c9v55um1/0vZK2zfb3q9zkQMAML1QzAIAKsmy7PJvDThP0iEjpv2rpA9HxD6S/ik/lqRDJS3Kt6WSPlfGawcAABSzAIAKs8u/TSQirpH0wMjJkrbJ97eVVButZomkCyK5VtIc2zuX8+oBAOhunDMLAKisntacNNtne3nd42URsWyCZd4r6Qe2P6Z0oPjFefo8Savq5ludp60tKVYAALoWxSwAoLJaNABUf0QsnuQyfyfpfRHxDdtHSjpH0ivLDw0AANTQzRgAgOKOlXRZvv91Sfvn+2skLaibb36eBgAACqKYBQBUUjrHtSMDQI3mXkkvzfdfIel3+f7lkt6WRzU+UNLDEUEXYwAASkA3YwBAZfV04Dqzti+S9DKlc2tXSzpN0jslfcL2DElPKo1cLElXSDpM0kpJj0s6ru0BAwAwTVHMAgAqq0BLatMi4ugxnvrzUeYNSSe0NiIAALoTxSwAoLI6UMsCAIApgnNmAQAAAACVQ8ssAKCSLMmiaRYAgG5FMQsAqKxODAAFAACmBopZAEA1FbuUDgAAqLi2FrODQ6E/PjXY9PJbze4tHMOMGcUSnyghcVr78JPFVvD7GwrHsGrtnxRafiiicAyPbWh+X5CkjQNDhWOYPbPYaeNb9BbfJ2fNKBbDUMGPYkZvsX2aWgKdxP4HTH0DRX+oJN3+h8cLLf/w8h8Xj+E5cwstv6GEvAXAcAwABQAAAACoHLoZAwAqyZJ6aJoFAKBrUcwCACqLWhYAgO5FMQsAqCwGgAIAoHsVOmfW9hzbl9r+te07bL+orMAAAACmG3InAChP0ZbZT0j6fkS80fYsSVuUEBMAABOy6WaMSiJ3AoCSNF3M2t5W0l9KerskRcQGSRvKCQsAgIkxABSqhNwJAMpVpJvx7pLWS/qS7Rtsf9H2liXFBQDAhNyCG9BC5E4AUKIixewMSftJ+lxE7CvpMUkfGDmT7aW2l9te/uD9/QU2BwDAcLZLvwEtNOncaX3/+nbHCACVUaSYXS1pdURclx9fqvQFPUxELIuIxRGxeLsd+gpsDgAAoNImnTvN7Zvb1gABoEqaLmYj4j5Jq2zvkScdLOn2UqICAGACltTj8m9Aq5A7AUC5io5m/PeSLsyj8f1e0nHFQwIAoAF0C0Y1kTsBQEkKFbMRcaOkxeWEAgDA5FDLomrInQCgPEVbZgEA6BhaZgEA6F5FBoACAAAAAKAj2toyO7O3RzttM7vp5Z/YOFg4hgcf21ho+R22mlU4hqUv3LXQ8ve/85jCMbz2+TsWWj6icAia2VusRWVoqHiLTNE1lNEqNDRU7M3cODhUaPmBgn9WQ2XsDEATagNAAWitor91W87qLRzD0sULCi3/7I+/r3AMf/6sbQstv92WMwvHQGcUYDi6GQMAKotuxgAAdC+KWQBAZVHKAgDQvShmAQCVZEs9tMwCANC1GAAKAAAAAFA5tMwCACqLhlkAALoXxSwAoLIYAAoAgO5FMQsAqCxqWQAAuhfnzAIAMAm2z7W9zvatI6b/ve1f277N9r/WTT/F9krbv7H9mvZHDADA9ETLLACgkix3ajTj8yR9WtIFT8div1zSEkkviIinbO+Yp+8p6ShJe0naRdJ/2X5uRAy2PWoAAKYZWmYBANXk1M247NtEIuIaSQ+MmPx3ks6MiKfyPOvy9CWSLo6IpyLiTkkrJe1f2nsAAEAXo5gFAFSW7dJvTXqupJfYvs72T2y/ME+fJ2lV3Xyr8zQAAFAQ3YwBAJXVoiOyfbaX1z1eFhHLJlhmhqTtJR0o6YWSLrH9J60JDwAASBSzAACM1B8Riye5zGpJl0VESPql7SFJfZLWSFpQN9/8PA0AABREN2MAQCVZU6qb8bckvVwppudKmiWpX9Llko6yPdv27pIWSfpl4RcPAABomQUAVFdPBwYztn2RpJcpdUdeLek0SedKOjdfrmeDpGNzK+1tti+RdLukAUknMJIxAADloJgFAFRWJ4rZiDh6jKfeOsb8Z0g6o3URAQDQndpazA5F6LGnBppefuNgFI6hp2Dmc/8fNxSOYadtZhda/qwj9i4cw+azegstv/XmxXedNQ88UWj5Gb3Fe8lvtVmx1zFzYKhwDEX1Fr3OZkcu0wkUly6lww4MTHWzZxb/vV70rK0KLb9b3xaFY5hZMO+YNaP4+8B3HjAc58wCAAAAACqHbsYAgMrqRDdjAAAwNVDMAgAqix53AAB0L4pZAEAlWVIP1SwAAF2r0Dmztt9n+zbbt9q+yPZmZQUGAMBEelpwA1qJ3AkAytP077bteZLeI2lxROwtqVfSUWUFBgAAMJ2QOwFAuYp2M54haXPbGyVtIene4iEBANAYehmjgsidAKAkTbfMRsQaSR+TdI+ktZIejogrywoMAIDx2FZPC25Aq5A7AUC5inQz3k7SEkm7S9pF0pa23zrKfEttL7e9/P7+9c1HCgDACHb5N6BVmsmd1pM7AcCYiox18UpJd0bE+ojYKOkySS8eOVNELIuIxRGxeIe+uQU2BwDAcD0u/wa00KRzp7nkTgAwpiLF7D2SDrS9hW1LOljSHeWEBQAAMO2QOwFAiZoeACoirrN9qaQVkgYk3SBpWVmBAQAwHq4zi6ohdwKAchUazTgiTpN0WkmxAAAwKdSyqBpyJwAoT9FL8wAA0Bmc4woAQFcrcs4sAAAAAAAd0faW2d4ih9FL6E82s/AaihsYHOp0CIXPM9s4UPw1zNlyVqHlC+1L2WYzih3PmT2z+PGggcEotHyxpYuzaBpD57D/AVOfS8jfZs/s7ejyAKYmuhkDACopDQDV6SgAAECnUMwCACqLYhYAgO5FMQsAqKwyui8CAIBqYgAoAAAAAEDl0DILAKgkzpkFAKC7UcwCAKrJpQxyDwAAKopiFgBQWUUvMwYAAKqLYhYAUEl0MwYAoLsxABQAAAAAoHJomQUAVBa9jAEA6F4UswCAirJ6RDULAEC3opgFAFSSRcssAADdjGIWAFBNZgAoAAC6GQNAAQAwCbbPtb3O9q2jPHeS7bDdlx/b9idtr7R9s+392h8xAADTE8UsAKCyeuzSbw04T9IhIyfaXiDp1ZLuqZt8qKRF+bZU0ucKv2gAACCJYhYAUFG1c2bLvk0kIq6R9MAoT50l6WRJUTdtiaQLIrlW0hzbOxd/9QAAoK3nzNpSb4ETnGaWcHLUxoGhQss/VXB5SYqYeJ7xzJ5Z/BhEg60PYxoYLP4+bL1Z50/Zntlb7H0osj/XDBXcHzqOcxbRQUW/y8pie4mkNRFxk4fHNE/SqrrHq/O0tW0MDwCAaanz1QQAAFNLn+3ldY+XRcSysWa2vYWkU5W6GAMAgDahmAUAVFaLGmb7I2LxJOZ/tqTdJdVaZedLWmF7f0lrJC2om3d+ngYAAAqimAUAVJI1NQZ+iIhbJO1Ye2z7LkmLI6Lf9uWS3m37YkkHSHo4IuhiDABACShmAQDVZMkdOGfW9kWSXqbUHXm1pNMi4pwxZr9C0mGSVkp6XNJxbQkSAIAuMGExa/tcSYdLWhcRe+dp20v6mqSFku6SdGREPNi6MAEA2FQnhn+KiKMneH5h3f2QdEKrY8LUQu4EAO3RSA+t87Tp9fQ+IOnqiFgk6er8GAAAAOROANAWExazY1xPb4mk8/P98yUdUW5YAACMz0qX5in7BhRF7gQA7dHs2Bk71Q1gcZ+kncaa0fZS28ttL7+/v7/JzQEAsCm34Aa0SFO50/r+9e2JDgAqqPBAkPl8oBjn+WURsTgiFu/Q11d0cwAAPM0u/wa02mRyp7l9c9sYGQBUS7OjGf/B9s4Rsdb2zpLWlRkUAAATc0dGMwaaRO4EACVrtmX2cknH5vvHSvp2OeEAAABMS+ROAFCyCYvZfD29X0jaw/Zq28dLOlPSq2z/TtIr82MAANrGSj9iZd+AosidAKA9JuxmPM719A4uORYAACaFbsaYisidAKA9mj1nFgCAjqOUBQCge1HMAgCqybTMAgDQzdpezPb0NJ94DA2NOYp9wzYMFlvHw49vLBzDjN5iZ2XNnFH8rK6CIZRiYHCo0PIl7A4qeoZcGTEU3a9n9BZL5nsKFgOUEgAAAOgEWmYBAJVUGwAKAAB0J4pZAEBl0c0YAIDuRTELAKgsSlkAALoXPbQAAAAAAJVDyywAoLLoZQwAQPeimAUAVFIaAIpqFgCAbkUxCwCoLFpmAQDoXhSzAICKskzLLAAAXYsBoAAAAAAAlUPLLACgsuhmDABA96KYBQBUEgNAAQDQ3ShmAQDVZFpmAQDoZhSzAIDKopgFAKB7MQAUAAAAAKByaJkFAFQWl+YBAKB7UcwCACrJknqoZQEA6FptLWYjpIHBaOcmNzEwOFRo+aHOhl+a3oInmm0s4US1wYJvZhkfxdAU+ECLxlD4o+BkA1QYLbMAAHQvWmYBAJXFAFAAAHQv2mQAAAAAAJVDMQsAqCy34N+E27TPtb3O9q110/7N9q9t32z7m7bn1D13iu2Vtn9j+zWteScAAOg+FLMAgEqqDQBV9q0B50k6ZMS0qyTtHRHPl/RbSadIku09JR0laa+8zGdt95bzDgAA0N0mLGYnewQaAID2aEW77MTVbERcI+mBEdOujIiB/PBaSfPz/SWSLo6IpyLiTkkrJe1f3nuAqYjcCQDao5GW2fPU4BFoAACmgT7by+tuSye5/DskfS/fnydpVd1zq/M0TG/nidwJAFpuwtGMI+Ia2wtHTLuy7uG1kt5YclwAAIzPLRvNuD8iFjezoO0PShqQdGG5IaFKyJ0AoD3KOGe2/gj0JmwvrR3dfuD+/hI2BwBA4hbcmo7FfrukwyW9JSJqF5BeI2lB3Wzz8zR0t4Zzp/X969sYFgBUS6FitpEj0BGxLCIWR8Ti7XfoK7I5AACelgaAcum3pmKxD5F0sqTXR8TjdU9dLuko27Nt7y5pkaRfFn3tqK7J5k5z++a2LzgAqJgJuxmPpe4I9MF1R6ABAGib1vQynmCb9kWSXqZ0bu1qSacpnf84W9JVTgXxtRHxroi4zfYlkm5XKmBOiIjBDoSNKYDcCQDK1VQxW3cE+qUjjkADADCtRcTRo0w+Z5z5z5B0RusiQhWQOwFA+Rq5NM9Fkn4haQ/bq20fL+nTkrZWOgJ9o+3PtzhOAAA2NZVOmgUycicAaI9GRjOe1BFoAADapZHrwgLtRu4EAO3R9DmzAAB0WosuzQMAACqAYhYAUFnUsgAAdK+2FrMR0oaBoaaXnzWj+GVxN5/VW2j5Gb3FY+gtmH3NKrqCEszoKR7D7IKf52AJA0H2FmzWKaNVaKjgOoq+DYNDxVbAeJwAAADoBFpmAQDV1fljewAAoEMoZgEAlZQGH6aaBQCgW1HMAgCqyQwABQBAN6OYBQBUFrUsAADdq/hoRgAAAAAAtBktswCA6qJpFgCArkUxCwCoKDMAFAAAXYxiFgBQWQwABQBA96KYBQBUkkUvYwAAuhkDQAEAAAAAKoeWWQBAddE0CwBA16KYBQBUFgNAAQDQvShmAQCVxQBQAAB0L86ZBQAAAABUDi2zAIDKomEWAIDuRTELAKgmrs0DAEBXa2sx29MjzZ7ZfM/mMnKWGb3FelZvNrPzmdPA4FDhdQxFFFp+1oziPdR7eoq9ly72EiRJvQVjKMNQCa+jytsHimAAKAAAuhctswCASrIYAAoAgG7GAFAAAAAAgMqhZRYAUFk0zAIA0L0mbJm1fa7tdbZvHeW5k2yH7b7WhAcAwDjcghtQELkTALRHI92Mz5N0yMiJthdIerWke0qOCQCAhrgF/4ASnCdyJwBouQmL2Yi4RtIDozx1lqSTJTEWKgCgI+zyb0BR5E4A0B5NDQBle4mkNRFxU8nxAAAATDvkTgBQvkkPAGV7C0mnKnWTaWT+pZKWStL8BbtOdnMAAIyJhlRUQZHcacGu5E4AMJZmWmafLWl3STfZvkvSfEkrbD9rtJkjYllELI6IxTv0MdYBAKBEHRgAarTBfWxvb/sq27/L/2+Xp9v2J22vtH2z7f3KeeGomKZzp7l9c9sYJgBUy6SL2Yi4JSJ2jIiFEbFQ0mpJ+0XEfaVHBwDAGFLt2ZEBoM7TpoP7fEDS1RGxSNLV+bEkHSppUb4tlfS5Ml47qoXcCQBao5FL81wk6ReS9rC92vbxrQ8LAIAJtGDwp0YGgBpjcJ8lks7P98+XdETd9AsiuVbSHNs7l/L6MWWROwFAe0x4zmxEHD3B8wtLiwYAgM7rs7287vGyiFg2wTI7RcTafP8+STvl+/Mkraqbb3WetlaYtsidAKA9Jj0AFAAAU0WLBoDqj4jFzS4cEWGbS68AANBiTV2aBwCAKaEDA0CN4Q+17sP5/3V5+hpJC+rmm5+nAQCAgihmAQAV1Yrhn5quZi+XdGy+f6ykb9dNf1se1fhASQ/XdUcGAAAFtLWb8U03rOjfaZtZd48zS5+k/nbFQwxTOoZOb58YGo9ht3YFAkwFeXCflymdW7ta0mmSzpR0SR7o525JR+bZr5B0mKSVkh6XdFzbA0alrVhxff/mM03uNPVj6PT2iaFaMZA7laStxWxEjHuxNNvLi5ynVAZimBoxdHr7xDC1YgDG0sjow2UbZ3Cfg0eZNySd0NqIMJ2RO1Ujhk5vnxiIoVsxABQAoJKKneIKAACqjmIWAFBdVLMAAHStqVbMTnQdv3YghqTTMXR6+xIx1EyFGIBRFRiwCZgupsJ3NDF0fvsSMdQQQxdxOp0HAIBqef4+fx7fufq/S1/vwr7NrudcJwAApr6p1jILAEDDOjEAFAAAmBooZgEAlUUtCwBA9+rpdAA1tg+x/RvbK21/oAPbX2D7R7Zvt32b7RPbHUOOo9f2Dba/26Htz7F9qe1f277D9os6EMP78mdwq+2LbG/Whm2ea3ud7Vvrpm1v+yrbv8v/b9eBGP4tfxY32/6m7TntjqHuuZNsh+2+VsYANMypZbbsG1AF5E3DYiF3Incid+pSU6KYtd0r6TOSDpW0p6Sjbe/Z5jAGJJ0UEXtKOlDSCR2IQZJOlHRHB7Zb8wlJ34+IP5X0gnbHYnuepPdIWhwRe0vqlXRUGzZ9nqRDRkz7gKSrI2KRpKvz43bHcJWkvSPi+ZJ+K+mUDsQg2wskvVrSPS3ePjBJbsENmNrImzZB7kTuVI/cqYtMiWJW0v6SVkbE7yNig6SLJS1pZwARsTYiVuT7jyp9Ec1rZwy250t6raQvtnO7ddvfVtJfSjpHkiJiQ0Q81IFQZkja3PYMSVtIurfVG4yIayQ9MGLyEknn5/vnSzqi3TFExJURMZAfXitpfrtjyM6SdLIkRowDgM4jb8rInZ5G7vTMNHKnLjJVitl5klbVPV6tDnwh1theKGlfSde1edNnK+30Q23ebs3uktZL+lLurvNF21u2M4CIWCPpY0pHsdZKejgirmxnDHV2ioi1+f59knbqUBw175D0vXZv1PYSSWsi4qZ2bxsYj0U3Y3Qt8qZnnC1yJ3KnsZE7TXNTpZidMmxvJekbkt4bEY+0cbuHS1oXEde3a5ujmCFpP0mfi4h9JT2m1ncPGSafW7FE6cdhF0lb2n5rO2MYTaRrWHXsyJrtDyp16bqwzdvdQtKpkv6pndsFGkUnY6CzOpU35W2TO4ncaSzkTt1hqhSzayQtqHs8P09rK9szlb6QL4yIy9q8+YMkvd72XUrdhV5h+yttjmG1pNURUTuyeqnSF3Q7vVLSnRGxPiI2SrpM0ovbHEPNH2zvLEn5/3WdCML22yUdLukt0f4LQz9b6cfxprxvzpe0wvaz2hwHMCpaZtGlyJsScqeE3GkEcqfuMVWK2V9JWmR7d9uzlE5av7ydAdi20vkOd0TEx9u5bUmKiFMiYn5ELFR6/T+MiLYeVYuI+yStsr1HnnSwpNvbGYNSF5kDbW+RP5OD1blBHS6XdGy+f6ykb7c7ANuHKHWfen1EPN7u7UfELRGxY0QszPvmakn75X0F6Di34B9QAV2fN0nkTnXIneqQO3WXKVHM5pO03y3pB0p/fJdExG1tDuMgSccoHdW7Md8Oa3MMU8HfS7rQ9s2S9pH00XZuPB/ZvFTSCkm3KO2jy1q9XdsXSfqFpD1sr7Z9vKQzJb3K9u+Ujnqe2YEYPi1pa0lX5X3y8x2IAQAwhZA3TTnkTuRO5E4d4va3vAMAUNwL9v3z+MFPri19vTtvO+v6iFhc+ooBAECpZnQ6AAAAmkWnYAAAuhfFLACgkhiwCQCA7jYlzpkFAAAAAGAyaJkFAFQWow8DANC9KGYBANVFLQsAQNeimAUAVBa1LAAA3YtiFgBQWQwABQBA92IAKAAAAABA5dAyCwCoKDMAFAAAXYxiFgBQSRbdjAEA6GZ0MwYAAAAAVA4tswCAyqJlFgCA7kXLLAAAAACgcmiZBQBUFgNAAQDQvWiZBQBUk1M347JvE27Wfp/t22zfavsi25vZ3t32dbZX2v6a7VmtfwMAAOhuFLMAgEpyi27jbtOeJ+k9khZHxN6SeiUdJen/STorIp4j6UFJx5f1OgEAwOgoZgEA1dXuajaZIWlz2zMkbSFpraRXSLo0P3++pCMKvjIAADABilkAABoUEWskfUzSPUpF7MOSrpf0UEQM5NlWS5rXmQgBAOgeFLMAgMpyC/5J6rO9vO629Ont2dtJWiJpd0m7SNpS0iEdefEAAHQ5RjMGAFRWi64z2x8Ri8d47pWS7oyI9Wn7vkzSQZLm2J6RW2fnS1rTksgAAMDTaJkFAFRWB06ZvUfSgba3sG1JB0u6XdKPJL0xz3OspG+X8PIAAMA4KGYBAGhQRFynNNDTCkm3KP2OLpP0fkn/YHulpB0kndOxIAEA6BJ0MwYAVFdruhmPKyJOk3TaiMm/l7R/+6MBAKB7UcwCACrLnahmAQDAlEAxCwCoJKtlA0ABAIAKcER0OgYAACbN9vcl9bVg1f0RweV2AACY4ihmAQAAAACVw2jGAAAAAIDKoZgFAAAAAFQOxSwAAAAAoHIoZgEAAAAAlUMxCwAAAAConP8PEquVTNW/sFIAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "Err_B3=error(xdata3, poptB3[0], poptB3[1],poptB3[2], poptB3[3], poptB3[4], recorteB3.ravel(), inc=1)\n", + "poptB3E, pcovB3E = curve_fit(gauss2d, xdata3, recorteB3.ravel(), p0=[4,4,5,1,1],sigma=Err_B3)\n", + "estrellaB3E=gauss2d(xdata3, poptB3E[0], poptB3E[1],poptB3E[2], poptB3E[3], poptB3E[4])\n", + "FWHMB3E=FWHMB_I.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptB3E[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 3 fotografÃa (Banda Azul)\")\n", + "plt.imshow(recorteB3, plt.get_cmap('Blues'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 3 a partir de la gaussiana con incertidumbre (Banda Azul)\")\n", + "plt.imshow(estrellaB3E.reshape(15, 15), plt.get_cmap('Blues'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 4 con incertidumbre (Banda Azul)" + ] + }, + { + "cell_type": "code", + "execution_count": 854, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7MAAAFSCAYAAAAgmYhhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA3SklEQVR4nO3de7xcdX3v//c7OzcSAgF2REzCRYxY8AIaEaUVK2jxGtpjKVQFLy2txWttOaJVsL+jx2M9Fi2KJxYEK4KIqGi9UVqltIANV7mopNwSCJJwDYFcdvbn98d3DZns7L1nZn/XzOy11+uZxzwye82stT6zZs2sz2e+3/VdjggBAAAAAFAl0/odAAAAAAAAnaKYBQAAAABUDsUsAAAAAKByKGYBAAAAAJVDMQsAAAAAqByKWQAAAABA5UzvdwAAAEzEwC77RAw9Wfpy48m1P46Io0tfMAAAKBXFLACgkmLoSc064NjSl7vxhi8Mlr5QAABQOopZAEBFWTJnywAAUFcUswCAarIku99RAACAPqGYBQBUFy2zAADUFsUsAKC6aJkFAKC2+EkbAAAAAFA5tMwCACqKAaAAAKgzilkAQHXRzRgAgNqimAUAVJNFyywAADVGMQsAqCjTMgsAQI3xkzYAAAAAoHJomQUAVBfdjAEAqC2KWQBAddHNGACA2qKYBQBUFJfmAQCgzihmAQDVZNEyCwBAjfGTNgAAAACgcmiZBQBUF92MAQCoLYpZAEBFcc4sAAB1RjELAKiuaZwzCwBAXfGTdgls72s7bE8v/v6p7T/pwXp3sv0924/a/ma315fL9uG2b7f9uO1jimmX2H7/BJd3QWM5vdar97gTtu+yfVRx/z22/0+/YwKAyaJfx+rJxvabbf8kcxlPHW86nO8VtlfnrHuyKHKZZ/Y7jm6wfYvtV0yCOH7H9q/Gefxc2/+rS+ue0D7ewfJn2b7V9l7dWkeL9YftZ/Vj3aMZ5fv5W7Zf0868U6qYLXa8J4svmMbtzDbmm1RvqCTZPqKIa7wP6Zsk7Slpj4j4wxbL224n6ZO/lXRmROwcEd+x/WZJWyLijE4XZPv5kl4g6bvF32+zvbXpfb/D9rtKjb5ETu6wfWuXVvFlSW+2/bQuLR/oPyt1My77hq6q4bG6b0Y79kfE+RHx6n7GNRUUucwd/Y6jGyLioIj4aa/XO/IzHhH/HhEH9DqOHjlJ0hURsUZ6qjDfXHwfrrd9re0j+hzjmGzvZ3vY9lldWsX/kdTW9+pUPGq/ofiCadzenbvAXheAtmdI+pyka1o8dR9Jv46Ioe5HNb42t9E+km5p+ns3Se+c4Cr/TNL5ERFN065qvO+S/oekT9s+ZILL77aXS3qapGfafnHZC4+IjZJ+KOmEspcNTCp2+Tf0Qp2O1X0xke3R5x+8UVNV3+8mGP+fS/qnEdM+XeSwu0g6S9Iltgdy4+uSEyQ9LOmPbM8qe+ER8XNJu9he2uq5U7GYHZXtZ9n+WdEld53tbxTTryiecmPxa8gfNbrB2P6ftu+X9BXb02x/yPZ/237Q9kW2d29jvfvb/tdinnW2z7c9v8VsH5T0E0m/HGe5H5f0MaWd6HHb7yxi/Bvbd9t+wPZXbe9azNJ4nY8Uz39pi+fL9gnFYw/a/qi378Z6uu2LbX/N9mOS3mb7UNtX2X7E9hrbZ9qeWTz/vyU9U9L3ivXPUmpZPm6C2+k1kn421oMRcb2k2yT9VtPr+abt+4t94ArbBzU9dq7tL9j+5+IXsWts79/0+Kts/7KY90ylNqHGYxN5j09UalX+QXG/sayXevvWio2272qK8X81PbdVd62fSnpdiziACjMts1PMVDtWF8t+ne3rbT9me5Xt08d5buM1fbiI4y6nXkwtl+VtrbDvtH2PpH/V6Mf+t9m+smm+sH2y7dsl3T5GXG9tygc+MuKxCW3zYt7GfOudulz+/jjP3cn2ebYftn2b7VOaj4HjLcspZ/naKNuq0aXxbU69pdbbvrOxzcfaH5u227OK++28LyfavqdYzkeaHh8zdxpjO/y27f8snr/K9tuK6bs65XFri/fqb+z0hdZ4z21/pth+d3qcLpzeMd+7qFj2eqcuyEubnrvY6ZSxtcX7f2bTY+8o3quHbf/Y9j4jtt9T+53H+Yw3zXOI7euKOL4haXbTY9vt16O8R+fa/qLtHxbL/w/bT7d9RhHfL71jA8iLi33pYdtfsT27WFbWd4/tvZVy4lF/CCsaar4uaXelHpgtv6OK9+yvbN9U7K/faMRbPP7Xxf51n+13jIin7e+o4vlWKmb/RtIWSW9oeuwUb5/HbrF9blOMRzU9d7vP5Sh+qjby2Dodtf8/pYPObpIWSfoHSYqIlxePv6D4dbjxRfV0pZ1oH6WuAO+RdIykIyQ9Q+nXiC+0sV5L+t/FPL8labGk08d8cvqgv0OpS+6YIuI0SZ+U9I0i7rMlva24/a7Sh2RnSY0vlcbrnF88/6rxnm/7QElflPRmSXtJ2lXSwhFhLJN0saT5ks6XtFXSByQNSnqppCMl/UUR7/6S7tG2X+M3jXzpanM72Z4raT9J451H8WJJz5a0omnyDyUtUWoRva6Iudlxkj6utI+slPSJYlmDki5R+tAOSvpvSYdPJPZieXOUCvnzi9txjQNXRDS3Lu+m9EV3wVjLauE2pa7YwNRFy+xUM6WO1YUNSonffKXE7F0ef7yHpysdaxYq/di53Hajq2U7yzqieA2/p9GP/aM5RtJLJB048oEiHzhL0luVts8eSu9Nw0S3uZSOp7+jlGN8XNLXPPY5hKdJ2lcpX3mVpLdkLOspRU7xeUmviYh5kl4m6Ybi4VH3x1G08778tqQDlHKjj9lu/Ng+Zu40Sqz7KOUy/yBpgaSDm2L9B6XX/kyl9+IESW9vmv0lSnnToKRPSzq7KEra8UZJFxav71JtyxUHJH1f0t1K783C4nmyvUzShyX9QRHrv2vHfOaYIq4Dx/mMN177TEnfUWrN3F3SN5V64XXiWG3L5TZJukopHxxUymc/O+L5b1b6HO2vlFP+TdNjOd89z5N0x1g9K4vteoKkOyX9pjFZrb+jjpV0tFKO/HylHF+2j5b0V0qfmyWSRp4L3Ol31G8rfR4ulHSRmhplIuLTTXnsb0laK+kboy6ltbby2KlYzH7H6deqxu1Pi+lblHa4Z0TExoi4cpxlSNKwpNMiYlNEPKnUHeAjEbG6KMROl/Qmt+haEBErI+KyYjlrlT4o4/WB/7ykj0bE461f6g7eLOmzEXFHMf+pSoXSWDGO9/w3SfpeRFwZEZuVWoFjxPxXRcR3ImI4Ip6MiGsj4uqIGIqIuyT9vxav9Skdbqf5xf/rR0w/rHjP10v6udIX3lO/MkfEORGxvun9e4GbWqIlfTsifl58uZyvdJCQpNdKuiUiLo6ILZLOkHT/BGOX0hf7JqUD5D9LmqHRf3n6fPEaPzLKY+1Yr3RgA4DJpjbH6oj4aUT8ojhW3qSU0Lc6Nn60iOVnSseJYztY1ukRsaHYHu363xHx0BjzvEnS9yPiimKbflRpuzdMaJsXr+ebEXFf8Xq+oXTMPnSMpx8r6ZMR8XBErFZ6Dya6rJGGJT3X9k4RsSYiGqdEtbU/tvm+fLzIlW6UdKOKJL3D3OmPJf1LRFwQEVsi4sGIuKEofo6TdGqR59wl6f8q/QDRcHdEfDkitko6T6mhYs82t8+VEfGDYt5/0rYC41Cl4uqvi32ueRv9udJ+dVuRV31S0sHNrbMaf78b6TClfOmM4rVfLOm/2oy/4dvF9t4o6duSNkbEV4vX9Q1JI1tmz4yIVRHxkFIDx/FNj+V898zXjjmsJP2V7UckPa6Ua360iK3d76jPF5+BhyR9T9vy2GMlfSUibo6IDRpRBE/gO+pEST+MiIeVWpCP9ogxWmzvpPTjw+ci4ofjLGs867Ut5x/TVCxmj4mI+U23LxfTT1H6VePnTl0k3jHOMiRpbbGzN+wj6duNA6/SrwVb1eKLwPaeti+0fa9Td9yvKf0CNNpz3yBpXoz4NaoDz1D6dazhbqXLL40V43jPf4akVY0HIuIJSQ+OmH9V8x+2n237+05deR9T+uIa9bWO1Ml2kvRI8f+8EdOvLt7zeUq/mB1UxCDbA7Y/VXT/eEzSXcU8zeu4v+n+E0ot1dKO2yKa/+4wdil9CVxUHLg2SvqWmn7VKpb5Z5JeIemPI2J4x0W0ZZ6kRyc4L1ANdDOuqtocq22/xPa/OXXDfFQp6R3vGPFwkXA23K10HGp3WavUufHmGXkM3KDt84EJbXNJcjqd6YameZ+rsbfNdnGMjLnDZT2leD1/pLQt1zidbvSc4uG29sc235dRc4wOc6fFSi3QIw0qFXojc7rmHnXNP8I/UdzdWe0ZGfvsokhbrFQkj9bCuI+kzzW9Hw8pbcvmmDrZV58h6d4iB2u4e6wnj+E3TfefHOXvkdujOb6nPoeFnO+eh7VjDitJn4mI+ZLmSFoq6e9cdAdv8zuqrTxWI7ZbJ99RRZH6hyp6N0bq7XGP0g8tzc6W9KuIyLmyxjxty/nHVJujdkTcHxF/GhHPUBo86Isef1TEka2Qq5S6oDQffGdHxL0tVv3JYlnPi4hdlLrFjNWt40hJS4svtPuVvlzfb/u7rV5f4T6lD1PD3pKGlD6sI19Pq+evUVM3omLn3WPE/COXeZbSuUNLitf6YY39WkdqezsVB57/VuryMaqI+I1Skdjox//HSt2ij1Jqrdy3mN5OfGuUvrDTDKlbzuKmx9uO3fYiSa+U9Jam9/lNkl7r1J1Ztn9HqWvTsoh4rGn2DUpfcA1PbxH3byn9+gtMTd3oYkw3476aosfqryt1zVwcEbtK+tI4y5ak3Zy6vjbsrXS8bndZMcb98Yz3vJHHwDnaPh+Y0DYvWui+LOndSldlmC/pZo29bbbLS0bE1GpZ4x4/I+LHEfEqpdbKXxbL6mR/7PQ9btZJ7rRKqcvrSOu0rRW5YW9Jrfb7XKsk7T1G6+MqSX82Yr/YKSL+s+k57e6fUnr/FxY5WMPeTfe3e49tt8qR2tGc6zV/DqW8756bJO03Vu+FSG6W9B/a1nOvk++okbb7DGv77SZ1tv/+vtIAVV9s+g5snBIhSbL9IaUcfeQgr13JY2tTzNr+w6KQkNIvIqFt3WR+o3SOwXi+JOkTje4Rthc4nQ/Qyjyl7gKP2l4o6a/Hee5Hld78g4vbpUpfqG8fe5btXCDpA07DZe+sbefUDin1WR/W9q9zvOdfLOkNtl/mdJ7C6Wr9oZkn6TFJjxe/anZyaZxOtpOUBk4aswuE7T2UPnCNrkLzlLr2Pqj0QfpkB7H9s6SDbP9B8cXzXm3/Aewk9rdK+rXSeTMHF7dnS1ot6Xjbi5XOPzghIn49Yt4blIre3Ysv6fe3iPsIpXNrgKmLltkpZYoeq+dJeigiNto+VDu2YIzm47ZnFj9uvl7p/MCJLGu0Y3+nLpb0eqeBh2YqnSfc/EGZ6Dafq/T+ri3me7tSa+pYLpJ0qu3diveoeQTsVsu6QdLLbe/tdHrRqY0HihavZcUPCJuU9oPh4rHx9sdmE3mPm+dtN3c6X9JRto+1Pd32HrYPLrqiXqT0Pswr3ou/VGq966afKxVKn7I91/Zs240xRb6k9H4dJElOA1SNexlJjf8Zv0qpweW9tmfY/gNt3438RqVc7WCngY9On9hL2s7Jthc5DeT0EY1/7mfbn4NI3eRXapxu8MW+8NvaPo/tJE9udpHSQK0HFj9GnTbi8U723xMlnaN03u/Bxe1wpVP3nle0JL9X0u/Hjt3Hb1A6nXGG0yBib2oRd1t57FQ8ajdGy23cvl1Mf7Gka2w/rnTgeV9suz7Y6ZLOc+oacOwYy/1cMd9PnM7JvFrppPVWPi7phUrdPf9ZaSChUUU6z+H+xk2py8OGou97O85ROpfhCqWTxjcqnZDe6FLyCUn/UbzOw1o8/5bi/oVKX1SPS3pA6Yt+LH+l9AFYr3Rg76S7dNvbqbBc6TqqzQX2UyMBK3XvWNt4PZK+qtSt4l5Jtyq9f22JiHVKXSo+pVQML1H6tWwisZ8o6YvN73PxXn+peOxIpS4pFzftw40vsn9S+rK+S+l82zG3b/FF/lql82KAqYuW2aqq07H6LyT9bRHPx5QSy/Hcr1Q43adUvPx5RDRGTO5oWWMc+ztS5AMnK7XerCliax5Jf0LbPCJuVTqv8yqlIuZ52v7YOtLfFuu9U9K/KBXZm9pZVkRcpnTMvEnStUqDFjVMUyr87lPqCnuEthWU4+2PzTp9j5u1nTtFxD1Kx/YPFrHeoG3nr75HqeXrDklXKr1f53QQR8eKIvoNkp6l1NV0tVJPBUXEt5WuFXqhU7fYm5WuRDGe0zXGZzzS+C1/oDSo0UPFei5pevzXSvvIvyidL93qfPt2fF0p37pDqUfgeNc97fRz8P+0/TnNktQYCXhDsd6vFM+TOs+TnxLpnNUzlEY4X1n836yt/bcooo9UOm+5OY+9VtKPlPLYP1Ia8Ou2pu/3LxWL+KhSz4KHi9fz9bFidhrI9fFIl+gZl7fveg6Mrmi5fUSpG8ydfQ5HkmT760rnnn6n37FMNrbfo9Rd5JR+xwJ0y7RdF8esl/1l6cvd+KO/vDYiWl7bDiib7VdI+lpELGrx1Nqz/S5Jx0VEWwNNApOJ0yUqr5d0ZESs6Xc8k43tb0k6OyJ+0Oq5lb5IMbrLaZCLy5W6F39G0i+0beCkvouITrrx1EpEjHX5AGAKMd2CgZpwuszOM5VaX5cotU6eOe5MwCQVacTjHS6FhSQi2r7sEsUsxrNMqWurla7XelzQlA9gMqFbMFAXM5W6XO6n1FPsQklf7GdAAPqPYhZjiog/kfQn/Y4DAEZl0TKLKSUifqrtR+xFISLu1vgDRAGoIYpZAEBF0c0YAIA6IwsAAAAAAFROT1tm9xgcjMV779P6iVOc277G8ZgLyDa0Ne/U12klxJB7qlsZZ+8OD/f/FGBnboiB3Dcjc/Z77r5LD65bx4mL6A/OmcUUNzg4GPvss2+/wwBQorvvvkvryJ1K0dNidvHe++jyK66Z8Pxl5Cy5BVAZpc/0zOJjWgmV5IOPb86af9b0/Eb9mZnL2Dw02nXLO7Nh01D2MnLNnjGQNf+82Xkf49z96YjDx7zmN9B9dDPGFLfPPvvqP65Z0e8wAJTo8Jdw9beycM4sAKC6aJkFAKC2+EkbAAAAAFA5tMwCAKrJjGYMAECdZWUBto+2/SvbK21/qKygAABoi13+bdzVebHtf7N9q+1bbL+vmL677cts3178v1sx3bY/Xxwnb7L9wh5sFUxi5E4AUJ4JF7O2ByR9QdJrJB0o6XjbB5YVGAAArdgu/dbCkKQPRsSBkg6TdHJx7PuQpMsjYomky4u/pXSMXFLcTpJ0Vje2A6qB3AkAypXTMnuopJURcUdEbJZ0oaRl5YQFAMD4rN4XsxGxJiKuK+6vl3SbpIVKx7/ziqedJ+mY4v4ySV+N5GpJ823vVf7WQEWQOwFAiXKK2YWSVjX9vbqYth3bJ9leYXvFg+vWZawOAIDJw/a+kg6RdI2kPSNiTfHQ/ZL2LO63daxEbXScO61dt7ZnwQFA1XR95IyIWB4RSyNi6R6Dg91eHQCgLtylmzTYKCSK20k7rNreWdK3JL0/Ih5rfiwiQuVclhw11Zw7LRhc0O9wAGDSyhnN+F5Ji5v+XlRMAwCgB9o6x3Ui1kXEmFe0tz1DqZA9PyIuKSb/xvZeEbGm6Eb8QDGdYyWasT8AQIlyWmb/S9IS2/vZninpOEmXlhMWAACt9fqcWacnnC3ptoj4bNNDl0o6sbh/oqTvNk0/oRjV+DBJjzZ1R0b9kDsBQIkm3DIbEUO23y3px5IGJJ0TEbeUFhkAAC10qWV2PIdLequkX9i+oZj2YUmfknSR7XdKulvSscVjP5D0WkkrJT0h6e09jRaTCrkTAJQrp5uxIuIHSgdqAACmvIi4Uo0za3d05CjPD0kndzUoVAq5EwCUJ6uYBQCgn/rQMgsAACaJnhaz02zNnjnQy1XuYOtw3gCTQ1uHs2MYyoxhy5at2THkSo0N/TWnhH1p5vSuD+jd0oyBvGR81oy87fD4xqGs+SfDvoCa2jb6MAAAqCFaZgEAleTujWYMAAAqgGIWAFBZFLMAANRX//tYAgAAAADQIVpmAQCVRcssAAD1RTELAKgsilkAAOqLYhYAUE2MZgwAQK1xziwAAAAAoHJomQUAVBbdjAEAqC+KWQBAJXGdWQAA6o1iFgBQWRSzAADUF8UsAKC6qGUBAKgtBoACAAAAAFQOLbMAgGoy3YwBAKgzilkAQGVRzAIAUF8UswCAyqKYBQCgvihmAQCVxKV5AACot54WsxHS0NbhrPlzDQ3nLaSMtGnz0MS3QRnzS9KWzGVsGcoOQVu25r0Xc2YNZMcwcyBvDLStmfuTJG3ckvdePLF5a3YMOcr4XAIAMNlF5gGvhJRhUsjNhcv4DZIfMtFAyywAoLrIZwAAqC2KWQBANTGaMQAAtUYxCwCoLIpZAADqi2IWAFBZFLMAANTXhEe/sb3Y9r/ZvtX2LbbfV2ZgAAAAUwm5EwCUK6dldkjSByPiOtvzJF1r+7KIuLWk2AAAGB8Ns6gWcicAKNGEi9mIWCNpTXF/ve3bJC2UxBcyAKAn6GaMKiF3AoBylXLOrO19JR0i6ZoylgcAQCu2KWZRWeROAJBvwufMNtjeWdK3JL0/Ih4b5fGTbK+wveLBdWtzVwcAAFBpneROa8mdAGBMWcWs7RlKX8bnR8Qloz0nIpZHxNKIWLrH4IKc1QEAsJ1G62yZN6CbOs2dFpA7AcCYJtzN2OmIf7ak2yLis+WFBABAeyg+USXkTgBQrpyW2cMlvVXSK23fUNxeW1JcAAC05i7cgO4hdwKAEuWMZnylOOwDAPqIlllUCbkTAJQrewAoAAAAAAB6rZRL8wAA0HOmZRYAgDrraTE7HKEnNm+d8PxPZszbkJv4TJ/W/8Rpy9bh7GXk5n/rnxzKjiH3deyy04zsGHbZKe8jMK2E/WHTlrztMDQcWfPPm81vWqgmK/+7DEA9DGceK6X84+2Wofz8LTeGMr4zZwzkdeycMZAfRGYI/BA6hZDFAgAqikvpAABQZxSzAIDKopYFAKC+GAAKAAAAAFA5tMwCACqLbsYAANQXxSwAoJpMN2MAAOqMbsYAgEqy0ojiZd9artc+x/YDtm9umnaw7att32B7he1Di+m2/XnbK23fZPuF3dsiAADUC8UsAKCy7PJvbThX0tEjpn1a0scj4mBJHyv+lqTXSFpS3E6SdFYJLxsAAIhiFgCAjkTEFZIeGjlZ0i7F/V0l3VfcXybpq5FcLWm+7b16EykAAFMb58wCACqrSwNADdpe0fT38ohY3mKe90v6se3PKP1Q/LJi+kJJq5qet7qYtqakWAEAqC2KWQBANXVvAKh1EbG0w3neJekDEfEt28dKOlvSUeWHBgAAGuhmDACoJCu1zJZ9m6ATJV1S3P+mpEOL+/dKWtz0vEXFNAAAkIliFgBQUeUXshnF7H2Sjijuv1LS7cX9SyWdUIxqfJikRyOCLsYAAJSAbsYAAHTA9gWSXqF0bu1qSadJ+lNJn7M9XdJGpZGLJekHkl4raaWkJyS9vecBAwAwRVHMAgAqq0vnzI4rIo4f46EXjfLckHRydyMCAKCeKGYBAJXVpdGMAQBABVDMAgCqqXujGQMAgAroeTEb0es1jlx/XgDTB/LHzNq4ZThr/ic3b82OYbe5M7Pmf+CxTdkx3PnYhqz5n755dnYM9k5Z8+++c952lKR5s/v7m9Kmobz9EQCAbhsezsvfNm/NP9Zt2DiUNf8jT2zJjuHxzBjKyGN32Skvb5k/Z0Z2DDvNHMiaP3cz0Cto8qBlFgBQSY1L8wAAgHqimAUAVBa1LAAA9UUxCwCoLFpmAQCoL4pZAEBlUcsCAFBf2WeB2x6wfb3t75cREAAAwFRG7gQA5SijZfZ9km6TtEsJywIAoD2mmzEqi9wJAEqQ1TJre5Gk10n6x3LCAQCgPWk04/JvQDeROwFAeXJbZs+QdIqkefmhAADQCdMyiyo6Q+ROAFCKCbfM2n69pAci4toWzzvJ9grbKx5ct26iqwMAYAe0zKJKJpI7rV23tkfRAUD15HQzPlzSG23fJelCSa+0/bWRT4qI5RGxNCKW7jE4mLE6AACASus4d1owuKDXMQJAZUy4mI2IUyNiUUTsK+k4Sf8aEW8pLTIAAFqwXfoN6BZyJwAoF9eZBQBUE92CAQCotVKK2Yj4qaSflrEsAADakUYzpppFNZE7AUA+WmYBAJVFMQsAQH1lXWcWAAAAAIB+6GnLrC3NnjHx+rmMH+BnDuTV72XEsGnLcNb8T27emh3Dk5ufzJr/X+7Mv8zSv/86bxl7zZ+THcPrDsobYfs5e+ySHcP8OTOy5p8xkLdTbh2OrPkjb3YgCw2zwOQXJRwohjOXUUbutOaRjVnzX7nqwewYrlu1Pmv+eTvl5RySdOT+u2XN/9w9d82OYWBa3pf/7BkDWfNz7Jk86GYMAKgsuhkDAFBfFLMAgGpiNGMAAGqNc2YBAAAAAJVDyywAoJIs080YAIAao5gFAFQWtSwAAPVFMQsAqKxpVLMAANQWxSwAoLKoZQEAqC8GgAIAAAAAVA4tswCASrK5ziwAAHVGMQsAqKxp1LIAANQWxSwAoLJomQUAoL4oZgEAlUUtCwBAfTEAFAAAAACgcmiZBQBUkiVZNM0CAFBXFLMAgMpiACgAAOqLYhYAUE02A0ABAFBjPS1mLWtaRuIxcyD/FN/InH/DxqHsGDZsylvGpq3D2TH85omNWfP/6Pr7smO44cJv5i1g1z2zY5j5rmOy5t9v6dzsGDZsykvG58zK+xhPp2kLFUYtC9TD0HBeBvfEpq3ZMfzyofVZ81/4n6uyY7jxml9nzb/zbrtkx/Dkqw/Mmn/hzjtlx7DrnBlZ88+cnrc/TeMUl0mDAaAAAAAAAJVDN2MAQCVZyurtAwAAqo1iFgBQWdSyAADUF92MAQCV5WIQqDJvbazzHNsP2L55xPT32P6l7Vtsf7pp+qm2V9r+le3f68JmAACglrKKWdvzbV9cHLxvs/3SsgIDAGCSOlfS0c0TbP+upGWSXhARB0n6TDH9QEnHSTqomOeLtgd6Gi0mFXInAChPbjfjz0n6UUS8yfZMSXNKiAkAgJbs/nQzjogrbO87YvK7JH0qIjYVz3mgmL5M0oXF9Dttr5R0qKSrehUvJh1yJwAoyYRbZm3vKunlks6WpIjYHBGPlBQXAAAtTbNLv03QsyX9ju1rbP/M9ouL6QslNV+PY3UxDTVE7gQA5crpZryfpLWSvmL7etv/aDv/opsAALTJXbhJGrS9oul2UhuhTJe0u6TDJP21pIvczgm4qBtyJwAoUU4xO13SCyWdFRGHSNog6UMjn2T7pEZCsG7d2ozVAQCwvS4NALUuIpY23Za3EcpqSZdE8nNJw5IGJd0raXHT8xYV01BPHedOa8mdAGBMOcXsakmrI+Ka4u+Llb6gtxMRyxsJweDggozVAQAwaX1H0u9Kku1nS5opaZ2kSyUdZ3uW7f0kLZH0834Fib7rOHdaQO4EAGOa8ABQEXG/7VW2D4iIX0k6UtKt5YUGAMDYLGlaHzry2r5A0iuUuiOvlnSapHMknVNcrmezpBMjIiTdYvsipePjkKSTI2Jr76PGZEDuBADlyh3N+D2Szi9G47tD0tvzQwIAoA1tXhe2bBFx/BgPvWWM539C0ie6FxEqhtwJAEqSVcxGxA2SlpYTCgAAnWGIJVQNuRMAlCe3ZRYAgL5hwGAAAOorZwAoAAAAAAD6olIts0PDkb2M4chbxtb8EJT7MgYmQUvE1jI2RHYQW7IX8eiGzVnzr988lB3DzOm5vynlxTB3VqW+BoCn9GsAKAB9kJl2lJFDPvhEXt6xZs1j2THorhuzZn98/eLWT2phzcP7Zs3/xJb8MfC2lvB+YmogiwUAVBbdjAEAqC+KWQBAZVHKAgBQXxSzAIBKsqVptMwCAFBbDAAFAAAAAKgcWmYBAJVFwywAAPVFMQsAqCwGgAIAoL4oZgEAlUUtCwBAfXHOLAAAAACgcmiZBQBUkmVGMwYAoMYoZgEA1WS6GQMAUGcUswCAymIAKAAA6otiFgBQWQz8AABAfZEHAAAAAAAqh5ZZAEAlWXQzBgCgzihmAQCVNY1aFgCA2qKYBQBUFsUsAAD11dNiNhTaOhwTnn84Jj5vw5ah4exl9FsZ11WcPTCQNf9eC+Zmx/CLZx6SNf/cXfJj2GcwbxkzB/JPO8/drbdszf9cAFVk080YqIvcj/rM6fnH68W7zM6a/znPXpAdw8YNR2TNv/Ou+bnTgQt3zZp/3qz88mOAXzJRYAAoAAAAAEDl0M0YAFBZ/DgPAEB9UcwCACqLXsYAANQXxSwAoJKscsYQAAAA1ZR1zqztD9i+xfbNti+wnXdmPAAAHZjWhRvQTeROAFCeCR+3bS+U9F5JSyPiuZIGJB1XVmAAAABTCbkTAJQrt5vxdEk72d4iaY6k+/JDAgCgPfQyRgWROwFASSbcMhsR90r6jKR7JK2R9GhE/KSswAAAGI9tTevCDegWcicAKFdON+PdJC2TtJ+kZ0iaa/stozzvJNsrbK94cN26iUcKAMAIdvk3oFsmkjutXbe212ECQGXkjHVxlKQ7I2JtRGyRdImkl418UkQsj4ilEbF0j8HBjNUBALC9aS7/BnRRx7nTgsEFPQ8SAKoip5i9R9JhtufYtqQjJd1WTlgAAABTDrkTAJRowgNARcQ1ti+WdJ2kIUnXS1peVmAAAIyH68yiasidAKBcWaMZR8Rpkk4rKRYAADpCLYuqIXcCgPLkXpoHAID+4BxXAABqLeecWQAAAAAA+qLnLbM5XcLKODdqxvTM+n1oODuGWZkxDM3I/w1i1+EZWfO/8jn5I1PPnf2irPl333lWdgyvWZL3Op42Lz+G3P0692MxQNMWKsxi/wUmO5eQv+Ueq+bOGsiOYcke87Lmf/vLFmfHcOuzds+af5fZ+an/i/bcNWv+3XeemR1Dbi7NeAtTB92MAQCVlAaA6ncUAACgXyhmAQCVRTELAEB9UcwCACqrjO6LAACgmhgACgCADtg+x/YDtm8e5bEP2g7bg8Xftv152ytt32T7hb2PGACAqYliFgBQSY1zZsu+teFcSUfvEI+9WNKrJd3TNPk1kpYUt5MknZX5sgEAQIFiFgBQTU6jeZd9ayUirpD00CgP/b2kUyRF07Rlkr4aydWS5tveq4RXDwBA7XHOLACgsrp0eYVB2yua/l4eEcvHm8H2Mkn3RsSNI87jXShpVdPfq4tpa8oKFgCAuqKYBQBUUhcvzbMuIpa2HYc9R9KHlboYAwCAHqGYBQAgz/6S9pPUaJVdJOk624dKulfS4qbnLiqmAQCATBSzAIDKmgxX5omIX0h6WuNv23dJWhoR62xfKundti+U9BJJj0YEXYwBACgBxSwAoKKsaep9NWv7AkmvUDq3drWk0yLi7DGe/gNJr5W0UtITkt7ekyABAKgBilkAQCVZ/WmZjYjjWzy+b9P9kHRyt2MCAKCOKGYBANXU/nVhAQDAFMR1ZgEAAAAAlUPLLACgsrp0nVkAAFABFLMAgErq1zmzAABgcuhpMWs561f0GQP5MQxHXuZTRivA1sibf/ZwCRsi08sW7p69jEP23DVr/hnT8nvJz58zI2v+WSXslDMH8vap2ZkxZO6OKuFtACaMllmgHgYyT5DPPVZK0tN2mZU1/04z83On5y7Iy51yt6MkzZ2dVz7sPCv/vZiemTtNY8CFKYM0FAAAAABQOXQzBgBUFg2zAADUF8UsAKCSLLoXAQBQZxSzAIBqsmSaZgEAqK2WP2rbPsf2A7Zvbpq2u+3LbN9e/L9bd8MEAGBH7sINyEXuBAC90U4PrXMlHT1i2ockXR4RSyRdXvwNAAAAcicA6ImWxWxEXCHpoRGTl0k6r7h/nqRjyg0LAIDxWenSPGXfgFzkTgDQGxMdO2PPiFhT3L9f0p5jPdH2SbZX2F6xbt3aCa4OAIAd0c0YFTKh3GktuRMAjCl7IMiICEkxzuPLI2JpRCwdHFyQuzoAAJ5il38Duq2T3GkBuRMAjGmioxn/xvZeEbHG9l6SHigzKAAAWjOjGaNKyJ0AoGQTbZm9VNKJxf0TJX23nHAAAACmJHInAChZO5fmuUDSVZIOsL3a9jslfUrSq2zfLumo4m8AAHrGSgexsm9ALnInAOiNlt2MI+L4MR46suRYAADoCN2MMRmROwFAb0z0nFkAAPqOUhYAgPqimAUAVJNpmQUAoM56WsyGQluHxxyJvqUycpbcRQxMyw9i5kDeMgZmDWTHkGv23PwYMjeDNg0NZ8ewOXMZm7ZszY5hzsyZefNn7g+528C0jQEAuiz3h6vpJZwQPzfzeDtrRn4Qwxl5dFmmD+S9jjJy6RIWgSmCllkAQCU1BoACAAD1RDELAKgsuhkDAFBfFLMAgMqilAUAoL7ooQUAAAAAqBxaZgEAlUUvYwAA6otiFgBQSWkAKKpZAADqimIWAFBZtMwCAFBfFLMAgIoy1zkGAKDGGAAKAAAAAFA5tMwCACqLbsYAANQXxSwAoJIYAAoAgHqjmAUAVJNpmQUAoM4oZgEAlUUxCwBAfTEAFAAAAACgcmiZBQBUFpfmAQCgvihmAQCVZEnTqGUBAKitnhezkTHv5qHh/PXnBCBpoITMafpAXu/uadMyX4Sk6Znbctb0/B7qs2fkLWNg89bsGHL3h+HcBUjaOpy3jE1b8t5LzjlEldEyC6Ad00rI3zwJcsgS0o5suXmDSTxQIlpmAQCVRU4EAEB9MQAUAAAdsH2O7Qds39w07e9s/9L2Tba/bXt+02On2l5p+1e2f68vQQMAMAVRzAIAKstd+NeGcyUdPWLaZZKeGxHPl/RrSadKku0DJR0n6aBini/aHijr9QMAUGcUswCASmoMAFX2rZWIuELSQyOm/SQihoo/r5a0qLi/TNKFEbEpIu6UtFLSoWVtAwAA6qxlMdtpdyoAAHqjG+2ypZyE+w5JPyzuL5S0qumx1cU0TGHkTgDQG+20zJ6rNrtTAQAwBQzaXtF0O6ndGW1/RNKQpPO7Fx4q4FyROwFA17UczTgirrC974hpP2n682pJbyo5LgAAxueujWa8LiKWdjqT7bdJer2kIyOeuoDGvZIWNz1tUTENUxi5EwD0RhnnzDZ3p9qB7ZMav24/uG5dCasDACBxF24TisM+WtIpkt4YEU80PXSppONsz7K9n6Qlkn4+wdVg6mg7d1q7bm0PwwKAaskqZtvpThURyyNiaUQs3WNwMGd1AAA8JQ0A5dJvLddrXyDpKkkH2F5t+52SzpQ0T9Jltm+w/SVJiohbJF0k6VZJP5J0ckRs7dImQQV0mjstGFzQu+AAoGJadjMeyxjdqQAA6Jnu9DIeX0QcP8rks8d5/ickfaJ7EaEqyJ0AoFwTKmabulMdMaI7FQAAAEYgdwKA8rVzaZ62u1MBANBTk+WkWaAJuRMA9EY7oxl31J0KAIBeKem6sECpyJ0AoDcmfM4sAAD91qVL8wAAgAqgmAUAVBa1LAAA9dXzYnY4Y/C+TVuG+7p+SZoxkH9p3lkz8pYxY1p+DFuH87bD9IH8FHKnmQOZMeRvB2c262weyt8nc9+LDZuGsuafO4vftAAAaCU3Zygnhn5HAEwuZLEAgOoisQMAoLYoZgEAlZQGH6aaBQCgrihmAQDVZLrcAQBQZxSzAIDKopYFAKC+8kfQAQAAAACgx2iZBQBUF02zAADUFsUsAKCizABQAADUGMUsAKCyGAAKAID6opgFAFSSRS9jAADqjAGgAAAAAACVQ8ssAKC6aJoFAKC2KGYBAJXFAFAAANQXxSwAoLIYAAoAgPrinFkAAAAAQOXQMgsAqCwaZgEAqC+KWQBANXFtHgAAaq3nxey0jBOcppWStOQtZPpAfhA526Asu82dmTV/RH4MGzZtzZq/jK04a3peT/uZmfNL0nDmxizjvQCqigGgAACoL1pmAQCVZDEAFAAAdcYAUAAAAACAyqFlFgBQWTTMAgBQXy1bZm2fY/sB2zeP8tgHbYftwe6EBwDAONyFG5CJ3AkAeqOdbsbnSjp65ETbiyW9WtI9JccEAEBb3IV/QAnOFbkTAHRdy2I2Iq6Q9NAoD/29pFMkMZYqAKAv7PJvQC5yJwDojQkNAGV7maR7I+LGkuMBAACYcsidAKB8HQ8AZXuOpA8rdZNp5/knSTpJkhYt3rvT1QEAMCYaUlEFObnT4r3JnQBgLBNpmd1f0n6SbrR9l6RFkq6z/fTRnhwRyyNiaUQs3WOQsQ4AACViAChUw4RzpwWDC3oYJgBUS8ctsxHxC0lPa/xdfCkvjYh1JcYFAMC4Uu1J9YnJj9wJALqjnUvzXCDpKkkH2F5t+53dDwsAgBa6MPgTA0ChDOROANAbLVtmI+L4Fo/vW1o0AAAAFUfuBAC90XE3YwAAJgsaUgEAqC+KWQBAdVHNAgBQWxSzAICKMgNAAQBQYz0tZm+8/rp1C+bNuHucpwxK6vfIfsQwOWLo9/qJof0Y9ulVIABQN9ddd+26nWaY3Gnyx9Dv9RNDtWIgdypJT4vZiBj3Ymm2V0TE0l7FQwyTN4Z+r58YJlcMwFgYfRhTHblTNWLo9/qJgRjqquWleQAAmIzcpVvL9drn2H7A9s1N03a3fZnt24v/dyum2/bnba+0fZPtF5bx2gEAAMUsAKDK+lHNSudKOnrEtA9Jujwilki6vPhbkl4jaUlxO0nSWZ2+RAAAMLrJVswu73cAIoaGfsfQ7/VLxNAwGWIARuUu/GslIq6Q9NCIycsknVfcP0/SMU3TvxrJ1ZLm296rnFcPSJoc39HE0P/1S8TQQAw14ojodwwAAHTs+Qe/KL53+X+Wvtx9B2ffre0H7lgeEdslJrb3lfT9iHhu8fcjETG/uG9JD0fEfNvfl/SpiLiyeOxySf8zIlaUHjgAADXDpXkAAJXVpQGg1uUM3BERYZtfigEA6LLJ1s0YAIC29eeU2VH9ptF9uPj/gWL6vZIWNz1vUTENAABkmjTFrO2jbf+qGPHxQ63nKH39i23/m+1bbd9i+329jqGIY8D29UXXtH6sf77ti23/0vZttl/ahxg+ULwHN9u+wPbsHqyz7dFJexzD3xXvxU22v217fq9jaHrsg7bD9mA3YwDa5tQyW/Ztgi6VdGJx/0RJ322afkIxqvFhkh6NiDVZrxsQedOIWMidyJ3InWpqUhSztgckfUFp1McDJR1v+8AehzEk6YMRcaCkwySd3IcYJOl9km7rw3obPifpRxHxHEkv6HUsthdKeq+kpcW5aAOSjuvBqs9V+6OT9jKGyyQ9NyKeL+nXkk7tQwyyvVjSqyXd0+X1Ax3qfdus7QskXSXpANurbb9T0qckvcr27ZKOKv6WpB9IukPSSklflvQXua8YIG/aAbkTuVMzcqcamRTFrKRDJa2MiDsiYrOkC5VGgOyZiFgTEdcV99crfREt7GUMthdJep2kf+zlepvWv6ukl0s6W5IiYnNEPNKHUKZL2sn2dElzJN3X7RV2ODppz2KIiJ9ExFDx59VKXRR7GkPh7yWdIonzAFF7EXF8ROwVETMiYlFEnB0RD0bEkRGxJCKOioiHiudGRJwcEftHxPMY+AklIW8qkDs9hdxp2zRypxqZLMXsQkmrmv5erT58ITYUo1QeIumaHq/6DKWdfrjH623YT9JaSV8puuv8o+25vQwgIu6V9BmlX7HWKHXJ+0kvY2iyZ1N3wPsl7dmnOBreIemHvV6p7WWS7o2IG3u9bmA81qTqZgz0EnnTNmeI3IncaWzkTlPcZClmJw3bO0v6lqT3R8RjPVzv6yU9EBHX9mqdo5gu6YWSzoqIQyRtUPe7h2ynOLdimdLB4RmS5tp+Sy9jGE2ka1j17Zc12x9R6tJ1fo/XO0fShyV9rJfrBdo1iQaAAmqpX3lTsW5yJ5E7jYXcqR4mSzE7KUZ7tD1D6Qv5/Ii4pMerP1zSG23fpdRd6JW2v9bjGFZLWh0RjV9WL1b6gu6loyTdGRFrI2KLpEskvazHMTSMNTppT9l+m6TXS3pz9P7C0PsrHRxvLPbNRZKus/30HscBjIqWWdQUeVNC7pSQO41A7lQfk6WY/S9JS2zvZ3um0knrl/YyANtWOt/htoj4bC/XLUkRcWpx7tW+Sq//XyOip7+qRcT9klbZPqCYdKSkW3sZg1IXmcNszynekyPVv0EdxhqdtGdsH63UfeqNEfFEr9cfEb+IiKdFxL7Fvrla0guLfQXoO3fhH1ABtc+bJHKnJuROTcid6mVSFLPFSdrvlvRjpQ/fRRFxS4/DOFzSW5V+1buhuL22xzFMBu+RdL7tmyQdLOmTvVx58cvmxZKuk/QLpX10ebfX2+HopL2M4UxJ8yRdVuyTX+pDDACASYS8adIhdyJ3InfqE/e+5R0AgHwvOORF8eOfXV36cvfadea1EbG09AUDAIBSTe93AAAATBSdggEAqC+KWQBAJTFgEwAA9TYpzpkFAAAAAKATtMwCACqL0YcBAKgvilkAQHVRywIAUFsUswCAyqKWBQCgvihmAQCVxQBQAADUFwNAAQAAAAAqh5ZZAEBFmQGgAACoMYpZAEAlWXQzBgCgzuhmDAAAAACoHFpmAQCVRcssAAD1RcssAAAAAKByaJkFAFQWA0ABAFBfFLMAgGoy3YwBAKgzilkAQCW5uAEAgHqimAUAVBfVLAAAtcUAUAAAAACAyqFlFgBQWQwABQBAfVHMAgAqiwGgAACoL4pZAEBlUcsCAFBfnDMLAAAAAKgcWmYBANVF0ywAALVFMQsAqCwGgAIAoL4oZgEAlWQxABQAAHXmiOh3DAAAdMz2jyQNdmHR6yLi6C4sFwAAlIhiFgAAAABQOYxmDAAAAACoHIpZAAAAAEDlUMwCAAAAACqHYhYAAAAAUDkUswAAAACAyvn/AdT3hOc3PssbAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "Err_B4=error(xdata4, poptB4[0], poptB4[1],poptB4[2], poptB4[3], poptB4[4], recorteB4.ravel(), inc=1)\n", + "poptB4E, pcovB4E = curve_fit(gauss2d, xdata4, recorteB4.ravel(), p0=[2,2,2,1,1],sigma=Err_B4)\n", + "estrellaB4E=gauss2d(xdata4, poptB4E[0], poptB4E[1],poptB4E[2], poptB4E[3], poptB4E[4])\n", + "FWHMB4E=FWHMB_I.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptB4E[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 4 fotografÃa (Banda Azul)\")\n", + "plt.imshow(recorteB4, plt.get_cmap('Blues'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 4 a partir de la gaussiana con incertidumbre (Banda Azul)\")\n", + "plt.imshow(estrellaB4E.reshape(15, 15), plt.get_cmap('Blues'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 5 con incertidumbre (Banda Azul)" + ] + }, + { + "cell_type": "code", + "execution_count": 855, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7MAAAFSCAYAAAAgmYhhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA4h0lEQVR4nO3de7wdZX3v8e9371y5BtiIkISLihzBC2hElHqpqI1WjW0tQlVAaWktXmvliNZbz9F61GPVoniiIFgRRARFiwrFC9UCNiByV1JuCQZICJdwS7Kzf+ePZ1aysrMva61n1lp79nzeec0ra8+ay2/NmjXz/OZ55hlHhAAAAAAAqJKBfgcAAAAAAEC7SGYBAAAAAJVDMgsAAAAAqBySWQAAAABA5ZDMAgAAAAAqh2QWAAAAAFA5M/odAAAAnRjcaZ+I4cdKX248tvrHEbG49AUDAIBSkcwCACophh/T7AOOLH25j1/zxaHSFwoAAEpHMgsAqChL5m4ZAADqimQWAFBNlmT3OwoAANAnJLMAgOqiZhYAgNoimQUAVBc1swAA1BaXtAEAAAAAlUPNLACgougACgCAOiOZBQBUF82MAQCoLZJZAEA1WdTMAgBQYySzAICKMjWzAADUGJe0AQAAAACVQ80sAKC6aGYMAEBtkcwCAKqLZsYAANQWySwAoKJ4NA8AAHVGMgsAqCaLmlkAAGqMS9oAAAAAgMqhZhYAUF00MwYAoLZIZgEAFcU9swAA1BnJLACguga4ZxYAgLriknYJbO9rO2zPKP7+me2/7MF659r+vu0HbX+72+vLZftw27fYftj264px59t+d4fLO7uxnF7r1XfcDtu3235Z8fodtv9Pv2MCgKmiX+fqqcb2G21fnLmMzeebNud7ie2VOeueKoqyzJP6HUc32L7B9kumQBwvtP3bCd4/w/b/7tK6O9rH21j+bNs32t6zW+uYZP1h+yn9WPdYxjg+f8f2K1uZd1ols8WO91hxgGkMp7Qw35T5Qsf4DBOdcF4vaQ9Ju0XEn0+y3K12kj75R0mnRMQOEfFd22+UtDEiPtfugmw/U9KzJH2v+Ps425uattuttt9WavQlcnKr7Ru7tIqvSHqj7Sd0aflA/1mpmXHZA7qqhufqvhnr3B8RZ0XEK/oZ13RQlGVu7Xcc3RARB0XEz3q93tG/8Yj4j4g4oNdx9MgJki6LiFXS5sR8Q3E8WWf7Ktsv7nOM47K9n+0R26d2aRX/R1JLFyqm41n7NcUBpjG8PXeBfUgAmz/DRCecfST9LiKGexXYeFrcRvtIuqHp710kHd/hKv9a0lkREU3jLm9sN0l/JulTtg/pcPnd9iJJT5D0JNvPLXvhEfG4pB9KOqbsZQNTil3+gF6o07m6LzrZHn2+4I2aqvp+12H8fyPpX0eN+1RRht1J0qmSzrc9mBtflxwj6X5Jb7A9u+yFR8SvJO1ke9Fk007HZHZMtp9i++dFk9w1tr9VjL+smOQ3xdWQNzSawdj+n7bvlvQ12wO232/7v23fZ/tc27u2sN4n2/5JMc8a22fZnlfC5/mYpA8r7UQP2z6+iPEfbN9h+17bX7e9czFL43M+UEz//Emml+1jivfus/0hb92M9aO2z7P9DdsPSTrO9qG2L7f9gO1Vtk+xPauY/r8lPUnS94v1z1aqWT6qw+30Skk/H+/NiPi1pJskPa3p83zb9t3FPnCZ7YOa3jvD9hdt/1txRexK209uev/ltm8u5j1FqU6o8V4n3/GxSrXKFxWvG8t6vreurXjc9u1NMf7vpmkna671M0l/PEkcQIWZmtlpZrqdq4tl/7HtX9t+yPYK2x+dYNrGZ/pAEcftTq2YJl2Wt9TCHm/7Tkk/0djn/uNs/6JpvrB9ou1bJN0yTlxvbioPfHDUex1t82LexnzrnJpc/skE0861fabt+23fZPuk5nPgRMtyKrN8Y4xt1WjSeJxTa6l1tm9rbPPx9sem7faU4nUr38uxtu8slvPBpvfHLTuNsx3+wPZ/FtOvsH1cMX5np3Lc6uK7+gc7HdAa37ntzxTb7zZP0ITT25b3zi2Wvc6pCfKipmkXOt0ytrr4/k9peu+txXd1v+0f295n1PbbvN95gt940zyH2L66iONbkuY0vbfVfj3Gd3SG7S/Z/mGx/F/afqLtzxXx3extK0CeW+xL99v+mu05xbKyjj2291YqE1851vtFRc03Je2q1AJz0mNU8Z39ve1ri/31W414i/ffV+xfv7f91lHxtHyMKqa3UjL7D5I2SnpN03sneety7EbbZzTF+LKmabf6XY7hZ2qhHFuns/b/knSxUm3gAkn/IkkR8aLi/WcVV1cbB6onKu1E+yg1BXiHpNdJerGkvZSuRnyxhfVa0j8V8zxN0kJJH51knrOKg8LFtp811gQR8RFJn5D0rSLu0yQdVwx/qPQj2UFS46DS+Jzziukvn2h62wdK+pKkN0raU9LOkuaPCmOJpPMkzZN0lqRNkt4jaUjS8yUdIelvi3ifLOlObbmSvb7T7WR7e0n7SZroPornSnqqpGVNo38oaX+lGtGri5ibHSXpY0r7yHJJHy+WNSTpfKUf7ZCk/5Z0eCexF8vbTimRP6sYjmqcuCKiuXZ5F6UD3dnjLWsSNyk1xQamL2pmp5tpda4uPKJU8JunVDB7myfu7+GJSuea+UoXO5fabjS1bGVZLy4+wx9p7HP/WF4n6XmSDhz9RlEeOFXSm5W2z25K301Dp9tcSufTFyqVMT4m6Rse/x7Cj0jaV6m88nJJb8pY1mZFmeILkl4ZETtKeoGka4q3x9wfx9DK9/IHkg5QKht92HbjYvu4ZacxYt1HqSzzL5J2l3RwU6z/ovTZn6T0XRwj6S1Nsz9Pqdw0JOlTkk4rkpJWvFbSOcXnu1BbyoqDkn4g6Q6l72Z+MZ1sL5H0AUl/WsT6H9q2PPO6Iq4DJ/iNNz77LEnfVarN3FXSt5Va4bXjSG0py62XdLlSeXBIqTz72VHTv1Hpd/RkpTLlPzS9l3PseYakW8drWVls12Mk3SbpnsZoTX6MOlLSYqUy8jOVyviyvVjS3yv9bvaXNPpe4HaPUX+g9Hs4R9K5aqqUiYhPNZVjnyZptaRvjbmUybVUjp2Oyex3na5WNYa/KsZvVNrh9oqIxyPiFxMsQ5JGJH0kItZHxGNKzQE+GBEri0Tso5Je70maFkTE8oi4pFjOaqUfykRt4N+odEDYR9JPJf3YrV8dfqOkz0bErRHxsKSTlRKl8WKcaPrXS/p+RPwiIjYo1QLHqPkvj4jvRsRIRDwWEVdFxBURMRwRt0v6f5N81s3a3E7ziv/XjRp/WPGdr5P0K6UD3uarzBFxekSsa/r+nuWmmmhJF0TEr4qDy1lKJwlJepWkGyLivIjYKOlzku7uMHYpHdjXK50g/03STI195ekLxWf84BjvtWKd0okNAKaa2pyrI+JnEXFdca68VqlAP9m58UNFLD9XOk8c2cayPhoRjxTbo1X/FBFrx5nn9ZJ+EBGXFdv0Q0rbvaGjbV58nm9HxO+Lz/MtpXP2oeNMfqSkT0TE/RGxUukc2emyRhuR9HTbcyNiVUQ0bolqaX9s8Xv5WFFW+o2k36gopLdZdvoLSf8eEWdHxMaIuC8irimSn6MknVyUc26X9H+VLkA03BERX4mITZLOVKqo2KPF7fOLiLiomPdftSXBOFQpuXpfsc81b6O/UdqvbirKVZ+QdHBz7awm3u9GO0ypvPS54rOfJ+m/Woy/4YJiez8u6QJJj0fE14vP9S1Jo2tmT4mIFRGxVqmC4+im93KOPfO0bRlWkv7e9gOSHlYqa36oiK3VY9QXit/AWknf15Zy7JGSvhYR10fEIxqVBHdwjDpW0g8j4n6lGuTFHtVHi+25ShcfPh8RP5xgWRNZpy1l/nFNx2T2dRExr2n4SjH+JKWrGr9yaiLx1gmWIUmri529YR9JFzROvEpXCzZpkgOB7T1sn2P7LqfmuN9QugI0poj4ZXGwezQi/knSA0pXGluxl9LVsYY7lB6/NF6ME02/l6QVTXE9Kum+UfOvaP7D9lNt/8CpKe9DSgeucT/rqHnb2U4PFP/vOGr8FcV3vqPSFbODihhke9D2J4vmHw9Jur2Yp3kddze9flSpplradltE89/tfsdKB4FzixPX45K+o6arWsUy/1rSSyT9RUSMbLuIluwo6cEO5wWqgWbGVVWbc7Xt59n+aVGL+6BSoXeic8T9RYGz4Q6l81Cry1qh9k00z+hz4CPaujzQ0TaXJKfbma5pmvfpGn/bbBXH6JjbXNZmxed5g9K2XOV0u9H/KN5uaX9s8XsZs4zRZtlpoVIN9GhDSone6DJdc4u65ovwjxYvd1BrRsc+p0jSFiolyWPVMO4j6fNN38dapW3ZHFM7++peku4qymANd4w38TjuaXr92Bh/j94ezfFt/h0Wco4992vbMqwkfSYi5knaTtIiSZ920Ry8xWNUS+VYjdpu7RyjiiT1z1W0bozU2uNOpQstzU6T9NuIyHmyxo7aUuYfV23O2hFxd0T8VUTspdR50Jc8ca+Io2shVyg1QWk++c6JiLsmWfUnimU9IyJ2UmoW0047tmhj+t8r/Zga9pY0rPRjHf15Jpt+lZqaERU7725jxNbsVEk3S9q/+KwfaCP2lrdTceL5b6UmH2OKiHuUksRGO/6/UGoW/TKl2sp9i/GtxLdK6YCdZkjNchY2vd9y7LYXSHqppDcVJ667la56v8qpObNsv1CpadOSiHioafZHlA5wDU+cJO6nKV39BaanbjQxpplxX03Tc/U3lZpmLoyInSV9eZJl71I0fW3YW+l83eqyYpzXE5loutHnwO20dXmgo21e1NB9RdLblZ7KME/S9Rp/22xVLhkV02TLmvD8GRE/joiXK9VW3lwsq539sd3vuFk7ZacVSk1eR1ujLbXIDXtLmmy/z7VC0t7j1D6ukPTXo/aLuRHxn03TtLp/Sun7n1+UwRr2bnq91Xdse7IyUiuay3rNv0Mp79hzraT9xmu9EMn1kn6pLS33co5RW/2GtfV2k9rbf/9EqYOqLzWVYxu3REiSbL9fqYw+upPXrpRja5PM2v7zIpGQ0hWR0JZmMvco3WMwkS9L+nijeYTt3Z3uB5jMjkrNBR60PV/S+yaIcW+nZ7HOsj3H9vuUroz8soX1SKlZwHucusveQVvuqR1WarM+oq0/50TTnyfpNbZf4HSfwkc1+Y9mR0kPSXq4uKrZzqNxWt5OhYs0QRMI27sp/eAaTYV2VGrae5/SD+kTbcT2b5IOsv2nxYHnndr6B9hO7G+W9Dul+2YOLoanSlop6WjbC5XuPzgmIn43at5rlJLeXYuD9LsnifvFSvfWANMXNbPTyjQ9V+8oaW1EPG77UG1bgzGWjxXLf6GkVyvdH9jJssY697frPEmvdup4aJbSY/aafyidbvPtlb7f1cV8b1GqTR3PuZJOtr1L8R0194A92bKukfSi4rvbWem2KhXT7mF7SXEBYb3SfjBSvDfR/tisk++4ed5Wy05nSXqZ7SNtz7C9m+2Di6ao5yp9DzsW38XfKdXeddOvlBKlT9revvg9NPoU+bLS93WQJDl1UDXhYyQ18W/8cqUKl3fanmn7T7V1M/LfKJXVDnbq+OijnX2krZxoe4FTR04f1MT3frb8O4jUTH65JmgGX+wLf6Cty7HtlJObnavUUeuBxcWoj4x6v53991hJpyvd93twMRyudOveM5xqkt8p6U9i2+bj1yjdzjjTqROx108Sd0vl2Ol41m70ltsYLijGP1fSlbYfVrr68K7Y8nywj0o606lpwJHjLPfzxXwXO92TeYXSTeuT+ZikZys19/w3pY6ExrOj0hW6+5Wupi1WusozunnveE5XupfhMqWbxh9XuiG90aTk45J+WXzOwyaZ/obi9TlKB6qHJd2rdKAfz98r/QDWKV3VbOeG73a2kyQtVXqOanOCvbknYKXmHasbn0fS15WaVdwl6Ual768lEbFGqUnFJ5WS4f21daGlndiPlfSl4mrv5kHpIHisUscPe0g6r2kfbhzI/lXpYH270v22427f4kD+KqX7YoDpi5rZqqrTufpvJf1jEc+HlQqWE7m7WPbvlZKXv4mImztZ1jjn/rYU5YETlWpvVhWxNfek39E2j4gble7rvFwpiXmGJr54/4/Fem+T9O9KSfb6VpYVEZconTOvlXSVUqdFDQNKid/vlZrCvlhbEsqJ9sdm7X7HzVouO0XEnUrn9vcWsV6jLfevvkOp5utWSb9Q+r5ObyOOthVJ9GskPUWpqelKpSbbiogLlJ4Veo5Ts9jrlZ5EMZGPapzfeKT+W/5UqVOjtcV6zm96/3dK+8i/K90vPdn99q34plJ561alFoETPfe03d/B/9PW9zRLUqMn4EeK9X6tmE5qv5y8WaR7Vj+n1MP58uL/Zi3tv0USfYTSfcvN5dirJP1IqRz7BqUOv25qOr5/uVjEh5RaFtxffJ5vjhezU0euD0d6RM+EvHXTc2BsTjW3Dyg1g7mtz+FIkmx/U+ne0+/2O5apxvY7lJqLnNTvWIBuGdh5Ycx+wd+VvtzHf/R3V0XEpM+2A8pm+yWSvhERCyaZtPZsv03SURHRUkeTwFTi9IjKX0s6IiJW9Tueqcb2dySdFhEXTTZtpR9SjO6y/RpJlyo1L/6MpOu0peOkvouIdprx1EpEjPf4AGAaMc2CgZpweszOk5RqX/dXqp08ZcKZgCkqUo/H2zwKC0lEtPzYJZJZTGSJUtNWKz2v9aigKh/AVEKzYKAuZik1udxPqaXYOZK+1M+AAPQfySzGFRF/Kekv+x0HAIzJomYW00pE/Exb99iLQkTcoYk7iAJQQySzAICKopkxAAB1RikAAAAAAFA5Pa2ZHRoain322bfj+Tdu6v/tmoOD+fdn5S5h00j+dshdwmAJ96nlfo6REm7fHRzI+xwzMueXpE19vg15IPO7vOOO23XfmjXcuIj+4J5ZTHO5ZScAU88dd9yuNZSdStHTZHafffbVL69c1vH89z400SNOWzOSmUDtusOs7BhyE6iHHx/OjmHjprGe+d26Hebk7zoPPLIxa/7HNmzKjmHe9jOz5t9l+/z94dH1ed9n7rWN2TPyGmi8+PBxn/kNdF+PmxnbXqj03Oo9lK4LLo2Iz9v+tNLzFjcoPY/wLRHxQDHPyZKOl7RJ0jsj4sc9DRqVllt2AjD1HP48nv5WFpoZAwCqyy5/mNiwpPdGxIGSDpN0ou0DJV0i6ekR8UxJv5N0cgrPB0o6StJBkhZL+pLtwS5tDQAAaoVkFgCAFkXEqoi4uni9TtJNkuZHxMUR0WhmcYW29Ei7RNI5EbE+Im6TtFwSzRkAACgBvRkDAKrJXevNeMh2c7vOpRGxdNvVe19Jh0i6ctRbb5X0reL1fKXktmFlMQ4AAGTKKgXYXmz7t7aX235/WUEBANCS7jQzXhMRi5qGsRLZHSR9R9K7I+KhpvEfVGqKfFavNgGqhbITAJSn45rZ4p6fL0p6udKV5v+yfWFE3FhWcAAATMR96M3Y9kylRPasiDi/afxxkl4t6YiIzd2U3yVpYdPsC4pxqCHKTgBQrpya2UMlLY+IWyNig6RzlO4NAgCg66yUzJY9TLjONMFpkm6KiM82jV8s6SRJr42IR5tmuVDSUbZn295P0v6SflX2tkBlUHYCgBLlJLPzJa1o+nvM+4Bsn2B7me1lq9eszlgdAAB9d7ikN0t6qe1riuFVkk6RtKOkS4pxX5akiLhB0rmSbpT0I0knRkT+c8VQVZSdAKBEXe8AqrjXaKkkPec5izKfiAkAQMHF0EMR8Ytx1nrRBPN8XNLHuxYUph3KTgDQmpxklvuAAAB9NHmzYGCKoewEACXKaWb8X5L2t72f7VlKD4W/sJywAACYXK/vmQUyUXYCgBJ1XDMbEcO23y7px5IGJZ1e3BsEAEBPkHyiSig7AUC5su6ZjYiLNMF9QgAAANiCshMAlKfrHUABANAt1MwCAFBfPU1mh0dC961b3/H89zzweHYMe+4yJ2v+jZtGsmMYznwow+qHOt+GDbvvNDtr/pGR/M4VZ8/MuWVbmjtrMDuGXOse29jvELIL8xsy9+mRoKNN9EkfejMGAABTBzWzAIBKMr0ZAwBQaySzAIDKIpkFAKC+8tp5AgAAAADQB9TMAgAqi5pZAADqi2QWAFBZJLMAANQXySwAoJrozRgAgFrjnlkAAAAAQOVQMwsAqCyaGQMAUF8kswCASuI5swAA1BvJLACgskhmAQCoL5JZAEB1kcsCAFBbdAAFAAAAAKgcamYBANVkmhkDAFBnJLMAgMoimQUAoL5IZgEAlUUyCwBAfZHMAgAqiUfzAABQbz1NZiOkTSPR8fxDO83OjmH2jLw+r9as25Adw9yZeTGMROfbsCHne5CkmYP9L0AODvQ/hjLK0SOZ30XudzljCnyXAICpKzLLHZmnqVJiKOPCV26xg4tvQPmomQUAVBdlQwAAaotkFgBQTfRmDABArZHMAgAqi2QWAID6IpkFAFQWySwAAPXVcU9Ethfa/qntG23fYPtdZQYGAAAwnVB2AoBy5dTMDkt6b0RcbXtHSVfZviQibiwpNgAAJkbFLKqFshMAlKjjZDYiVklaVbxeZ/smSfMlcUAGAPQEzYxRJZSdAKBcpdwza3tfSYdIurKM5QEAMBnbJLOoLMpOAJCv43tmG2zvIOk7kt4dEQ+N8f4JtpfZXrb2vtW5qwMAAKi0dspOq9dQdgKA8WQls7ZnKh2Mz4qI88eaJiKWRsSiiFi0626756wOAICtNGpnyxyAbmq37LT7EGUnABhPx82Mnc74p0m6KSI+W15IAAC0huQTVULZCQDKlVMze7ikN0t6qe1riuFVJcUFAMDk3IUB6B7KTgBQopzejH8hTvsAgD6iZhZVQtkJAMqV3QEUAAB1YXuh7Z/avtH2DbbfVYzf1fYltm8p/t+lGG/bX7C93Pa1tp/d308AAMD0QTILAKgm96UDqGFJ742IAyUdJulE2wdKer+kSyNif0mXFn9L0isl7V8MJ0g6tRubAgCAOirlObOtigitHx7peP7tZg1mx/DYxs7XL0mPrh/OjmHTSN7nGN4U2TE88OjGrPl3mpu/6wxkNg8so3XhYOZChkfyv4sylpEjghZvqCarnONAOyJilaRVxet1tm+SNF/SEkkvKSY7U9LPJP3PYvzXIyIkXWF7nu09i+UAXbephHPMxk15Zaf1mWUvKf9cOWMg/2Axe0ZeHdDMzPklabCEzwFMJz1NZgEAKE/XHqUzZHtZ099LI2LpNmu395V0iKQrJe3RlKDeLWmP4vV8SSuaZltZjCOZBQAgE8ksAKCyulQzuyYiFk28Xu+g9KzQd0fEQ81JdUSE7f42uQAAoAa4ZxYAgDbYnqmUyJ4VEecXo++xvWfx/p6S7i3G3yVpYdPsC4pxAAAgE8ksAKCyet0BlNMEp0m6KSI+2/TWhZKOLV4fK+l7TeOPKXo1PkzSg9wvCwBAOWhmDACoJve+AyhJh0t6s6TrbF9TjPuApE9KOtf28ZLukHRk8d5Fkl4labmkRyW9pafRAgAwjZHMAgAqyZIGetyzZ0T8olj1WI4YY/qQdGJXgwIAoKZIZgEAldWHmlkAADBFcM8sAAAAAKByqJkFAFRWl54zCwAAKoBkFgBQTf3pAAoAAEwRJLMAgEqyqJkFAKDOSGYBABU1+XNhAQDA9EUHUAAAAACAyqFmFgBQWVTMAgBQXySzAIDKopkxAAD1RTILAKgmejMGAKDWepvMWhoc6Lzk8eBjw9khDG8ayZr/kfWbsmO4++HH82LYmL8d5u+wXdb8Od9jw/azB7OXkW0KFIRHRiJr/ry5pQFnrj83AADAuEJ554mNw3nlHkm6/9GNWfPf80BeuUeSVj+2Pmv+XefMyo5hj53n5MWw/czsGObMzCs7DZRQfgOmEmpmAQCVxKN5AACoN5JZAEBlkcsCAFBfJLMAgMqiZhYAgPoimQUAVBa5LAAA9TWQuwDbg7Z/bfsHZQQEAAAwnVF2AoBylFEz+y5JN0naqYRlAQDQGtPMGJVF2QkASpBVM2t7gaQ/lvTVcsIBAKA1qTfj8gegmyg7AUB5cmtmPyfpJEk75ocCAEA7TM0squhzouwEAKXouGbW9qsl3RsRV00y3Qm2l9letva+NZ2uDgCAbVAziyrppOy0Zs3qHkUHANWT08z4cEmvtX27pHMkvdT2N0ZPFBFLI2JRRCzadbehjNUBAABUWttlp6Gh3XsdIwBURsfJbEScHBELImJfSUdJ+klEvKm0yAAAmITt0gegWyg7AUC5eM4sAKCaaBYMAECtlZLMRsTPJP2sjGUBANCK1Jsx2SyqibITAOSjZhYAUFkkswAA1FfWc2YBAAAAAOiHntbMDtiaM3Ow4/nXPrwhO4aHNwxnzX/z2nXZMZz+09uz5t93r52yY3jrcxdmzb/97M6/x4bZM/KupQxviuwYcut0IvJjyF9CnoHMjUDFGPqJ/Q91MJJxrnlkw6bs9d++5pGs+U9ftjI7huuW5z3e8Sl7z8uO4S2HLsia/xl75ccwczCv7DSQe9IHphiaGQMAKotmxgAA1BfJLACgmujNGACAWuOeWQAAAABA5VAzCwCoJMs0MwYAoMZIZgEAlUUuCwBAfZHMAgAqa4BsFgCA2iKZBQBUFrksAAD1RQdQAAAAAIDKoWYWAFBJNs+ZBQCgzqiZBQBU1oDLHyZj+3Tb99q+vmncwbavsH2N7WW2Dy3G2/YXbC+3fa3tZ3dvawAAUC8kswCAyrJd+tCCMyQtHjXuU5I+FhEHS/pw8bckvVLS/sVwgqRTy/jcAACAZBYAUGGpqXG5w2Qi4jJJa0ePlrRT8XpnSb8vXi+R9PVIrpA0z/ae5Xx6AADqjXtmAQDI925JP7b9GaULxS8oxs+XtKJpupXFuFU9jQ4AgGmImlkAQCVZkrvwT9JQcd9rYzihhXDeJuk9EbFQ0nskndbFjw4AAETNLACgwlrpsKkDayJiUZvzHCvpXcXrb0v6avH6LkkLm6ZbUIwDAACZqJkFAFRTFzp/ynjUz+8lvbh4/VJJtxSvL5R0TNGr8WGSHowImhgDAFCCntbMRkgbhkc6nr+M5wk+uH5j1vwXXH13dgzXnf/drPlXHfaH2TG84ZC8/kdyvseyjERkL2NT5scYyQ9BA5n7de7PYqBLVVtAL/TjMbO2z5b0EqXmyCslfUTSX0n6vO0Zkh5X6rlYki6S9CpJyyU9KuktPQ8YlRbKO9es37gpO4ab1q7Lmv8nv7w1O4a1V1yaNf+dz3jB5BNN4uC9d86af/+hHbNjGJmbV3SPEspOPN8bUwnNjAEAaENEHD3OW88ZY9qQdGJ3IwIAoJ5IZgEAlWTlt2wAAADVRTILAKgsclkAAOqLZBYAUFncuwUAQH1l9WZse57t82zfbPsm288vKzAAAIDphrITAJQnt2b285J+FBGvtz1L0nYlxAQAwKRsmhmjkig7AUBJOk5mbe8s6UWSjpOkiNggaUM5YQEAMDk6gEKVUHYCgHLlNDPeT9JqSV+z/WvbX7W9fUlxAQAwKXdhALqIshMAlCgnmZ0h6dmSTo2IQyQ9Iun9oyeyfYLtZbaX3Xff6ozVAQCwNdulD0AXtV92Wk3ZCQDGk5PMrpS0MiKuLP4+T+kAvZWIWBoRiyJi0W677Z6xOgAAgEprv+y0O2UnABhPx8lsRNwtaYXtA4pRR0i6sZSoAACYhCUNuPwB6BbKTgBQrtzejN8h6ayiN75bJb0lPyQAAFpAs2BUE2UnAChJVjIbEddIWlROKAAAtIdcFlVD2QkAypNbMwsAQN9QMwsAQH3ldAAFAAAAAEBf9LRmdiRC64dHOp5/sISeOR4ZHs6af0NG/JttyothjyfulB3CnMG86xhl1IZMhY5WRqLfEeTv1zMG8+afOQX2BaATjQ6ggOks9/nHZRyjt5+Zd57Yfse52TGs3WWvrPl32HmH7Bh2mJV7vswOAcAoNDMGAFQWF1MAAKgvklkAQGWRygIAUF8kswCASrKlAWpmAQCoLTqAAgAAAABUDjWzAIDKomIWAID6IpkFAFQWHUABAFBfJLMAgMoilwUAoL64ZxYAAAAAUDnUzAIAKskyvRkDAFBjJLMAgGoyzYwBAKgzklkAQGXRARQAAPVFMgsAqCw6fgAAoL4oBwAAAAAAKoeaWQBAJVk0MwYAoM5IZgEAlTVALgsAQG2RzAIAKotkFgCA+uppMmvlFTzKKLTkPpPwBU8dyo7hsTf8edb8f3bYguwYnrDdnKz5t589mB3DVHimxkhE1vxlPOMyd7+eOZh36/vMwbwA+v8toq5smhmjHgYyThTbzco/Xx80tHPW/Me84inZMVx/0B5Z8z/5Cdtnx/C8vXbNmn+HOfnF7sHMQgPHTEw3dAAFAAAAAKgcmhkDACqLZsYAANQXySwAoLJoMQcAQH2RzAIAKin1w0A2CwBAXWXdM2v7PbZvsH297bNt5/UqBABAGwa6MADdRNkJAMrT8Xnb9nxJ75S0KCKeLmlQ0lFlBQYAwFRk+3Tb99q+ftT4d9i+uUhUPtU0/mTby23/1vYf9T5iTBWUnQCgXLnNjGdImmt7o6TtJP0+PyQAAFrTp1bGZ0g6RdLXt8ThP5S0RNKzImK97ScU4w9USlYOkrSXpH+3/dSI2NTzqDFVUHYCgJJ0XDMbEXdJ+oykOyWtkvRgRFxcVmAAAEzEtga6MEwmIi6TtHbU6LdJ+mRErC+mubcYv0TSORGxPiJuk7Rc0qHlbQVUCWUnAChXTjPjXZRO0vspXW3e3vabxpjuBNvLbC9bu3ZN55ECADCKXf4gaahx3iqGE1oI5amSXmj7Sts/t/3cYvx8SSuapltZjEMNdVJ2WrNmda/DBIDKyOnr4mWSbouI1RGxUdL5kl4weqKIWBoRiyJi0a67DmWsDgCArQ24/EHSmsZ5qxiWthDKDEm7SjpM0vsknWvT1TK20XbZaWho954HCQBVkZPM3inpMNvbFSfsIyTdVE5YAABUykpJ50fyK0kjkoYk3SVpYdN0C4pxqCfKTgBQopx7Zq+UdJ6kqyVdVyyrlavXAABkazxnttf3zI7ju5L+UJJsP1XSLElrJF0o6Sjbs23vJ2l/Sb/K/vCoJMpOAFCurN6MI+Ijkj5SUiwAALSlHw15bZ8t6SVK99auVDoPni7p9OJxPRskHRsRIekG2+dKulHSsKQT6cm43ig7AUB5ch/NAwBAf2y5x7WnIuLocd7apiOfYvqPS/p49yICAKCecu6ZBQAAAACgL3paMxuSNm6KjuffY+c52THMmpGXvx84tFN2DEc/Y6+s+QdLqIrYaW7eV5/zPW4WecsYcP61mBmDeduyjEqh3C25YXgkc/689Y9kfo9ADpfyKwSmtpzT/txZg9nr32uXuVnz/8nTnpgdw+In5/XqPGdm/nbYZfuZWfNvV8J3UUYZEJhOaGYMAKik1AFUv6MAAAD9QjILAKgsklkAAOqLZBYAUFnuR3fGAABgSqADKAAAAABA5VAzCwCoJO6ZBQCg3khmAQDVZIlWxgAA1BfJLACgsgbIZgEAqC2SWQBAJdHMGACAeqMDKAAAAABA5VAzCwCoLFoZAwBQXySzAICKsgZENgsAQF2RzAIAKsmiZhYAgDojmQUAVJPpAAoAgDqjAygAAAAAQOVQMwsAqCyeMwsAQH2RzAIAKol7ZgEAqLeeJrODA9bOcztf5czB/FLLdrMG+zp/GTZuiuxlOLMEOGsGJUippFqh3EVk7g4jkb8/Af1CzSymu3TRpvP9fGYJxZadMspukjS3hLLTyEjeuWqghBvsZ2QuY7CEGHLLb8B0wz2zAAAAAIDKoZkxAKCyqKQAAKC+SGYBAJVk0bwIAIA6I5kFAFSTuX8MAIA6m/Situ3Tbd9r+/qmcbvavsT2LcX/u3Q3TAAAtuUuDEAuyk4A0ButtNA6Q9LiUePeL+nSiNhf0qXF3wAAAKDsBAA9MWkyGxGXSVo7avQSSWcWr8+U9LpywwIAYGJWejRP2QOQi7ITAPRGp31n7BERq4rXd0vaY7wJbZ9ge5ntZfetWd3h6gAA2BbNjFEhHZWdVlN2AoBxZXcEGREhadwnWUfE0ohYFBGLdhvaPXd1AABsZpc/AN3WTtlpd8pOADCuTnszvsf2nhGxyvaeku4tMygAACZnejNGlVB2AoCSdVoze6GkY4vXx0r6XjnhAAAATEuUnQCgZK08mudsSZdLOsD2StvHS/qkpJfbvkXSy4q/AQDoGSudxMoegFyUnQCgNyZtZhwRR4/z1hElxwIAQFtoZoypiLITAPRGp/fMAgDQd6SyAADUF8ksAKCaTM0sAAB11vNkdsZg53ckbdw0bi/2PTN75mC/Q9DwyHD2MtJTATqX8z02DA70vxCauRlKucFuRp+3w/BI3vymbgwApqwyLvjMGMxbxuBAfvkt93w9Fa57cfENKB81swCASmp0AAUAAOqJcgAAoLJslz60sM7Tbd9r+/ox3nuv7bA9VPxt21+wvdz2tbaf3YXNAABALZHMAgAqy10YWnCGpMXbxGIvlPQKSXc2jX6lpP2L4QRJp7bx8QAAwARIZgEAaENEXCZp7Rhv/bOkkyQ13923RNLXI7lC0jzbe/YgTAAApj3umQUAVFaX+lMZsr2s6e+lEbF04ji8RNJdEfGbUU2V50ta0fT3ymLcqrKCBQCgrkhmAQCVlDqA6ko2uyYiFrUch72dpA8oNTEGAAA9QjILAKisKfKkiydL2k9So1Z2gaSrbR8q6S5JC5umXVCMAwAAmUhmAQAV5SnxnOOIuE7SExp/275d0qKIWGP7Qklvt32OpOdJejAiaGIMAEAJ6AAKAIA22D5b0uWSDrC90vbxE0x+kaRbJS2X9BVJf9uDEAEAqAVqZgEAldWPZsYRcfQk7+/b9DokndjtmAAAqCOSWQBAJXWxAygAAFABJLMAgGrylOkACgAA9AHJLACgskhmAQCoLzqAAgAAAABUDjWzAIDKmgqP5gEAAP1BMgsAqCRLGiCXBQCgtnqazNrSYEbJY/3GTdkxDEyDks/sGfmtw2fPHMyaf8YU2I4bN41kL2Mk8uYvYzu47zf9ZW4EoI+omQWmvjLOc30/VQKYkqiZBQBUFgVcAADqiw6gAAAAAACVQ80sAKCyaGYMAEB9kcwCACqJDqAAAKi3SZsZ2z7d9r22r28a92nbN9u+1vYFtud1NUoAALbhrvwDclF2AoDeaOWe2TMkLR417hJJT4+IZ0r6naSTS44LAACgqs4QZScA6LpJk9mIuEzS2lHjLo6I4eLPKyQt6EJsAACMz6k347IHIBdlJwDojTJ6M36rpB+O96btE2wvs73svjVrSlgdAACJuzAAPdBy2Wn1mtU9DAsAqiUrmbX9QUnDks4ab5qIWBoRiyJi0W5DQzmrAwBgs9QBlEsfgG5qt+y0+9DuvQsOACqm496MbR8n6dWSjoiIKC0iAABaROqJKqHsBADl6iiZtb1Y0kmSXhwRj5YbEgAAwPRC2QkAytfKo3nOlnS5pANsr7R9vKRTJO0o6RLb19j+cpfjBABgW9w0iymIshMA9MakNbMRcfQYo0/rQiwAALSF58JiKqLsBAC90fE9swAA9Bv9NQEAUF8kswCAyiKXBQCgvnqazA7YmjtrsJer3MaMwbyiz8hIfueDGzflLWP7Oflf2+wZeY8Y3lTCdshdxMjw5NNMHkP1O5PM3iervwkAAABQQ9TMAgCqi6pZAABqi2QWAFBJqfNhslkAAOqKZBYAUE2mAygAAOqMZBYAUFnksgAA1FdeL0AAAAAAAPQBNbMAgOqiahYAgNoimQUAVJTpAAoAgBojmQUAVBYdQAEAUF8kswCASrJoZQwAQJ3RARQAAAAAoHKomQUAVBdVswAA1BbJLACgsugACgCA+iKZBQBUFh1AAQBQX9wzCwBAG2yfbvte29c3jfu07ZttX2v7Atvzmt472fZy27+1/Ud9CRoAgGmIZBYAUFnuwtCCMyQtHjXuEklPj4hnSvqdpJMlyfaBko6SdFAxz5dsD7b/SQEAwGgkswCAaupGJttCNhsRl0laO2rcxRExXPx5haQFxeslks6JiPURcZuk5ZIO7eTjAgCArVXqntkNwyPZy5gxkHdBfCSyQ9DGTXmfY/aM/GsQ6zO35fCm/A0xY5Cb3SRpJHOn2pQ7f+TNHyrhRwF0aIp2APVWSd8qXs9XSm4bVhbjAABApkolswAANFhd6wBqyPaypr+XRsTSlmKyPyhpWNJZXYkMAABsRjILAMDW1kTEonZnsn2cpFdLOiJic5OHuyQtbJpsQTEOAABk4p5ZAEBl9akDqG3jsBdLOknSayPi0aa3LpR0lO3ZtveTtL+kX3W4GgAA0GTSZHasRxA0vfde22F7qDvhAQAwgT5ks7bPlnS5pANsr7R9vKRTJO0o6RLb19j+siRFxA2SzpV0o6QfSToxIjaV8MkxhVF2AoDeaKWZ8RlKJ+mvN4+0vVDSKyTdWX5YAABMrh8dQEXE0WOMPm2C6T8u6ePdiwhT0Bmi7AQAXTdpzexYjyAo/LNSkyq6MgUA9IVd/gDkouwEAL3R0T2ztpdIuisiflNyPAAAANMOZScAKF/bvRnb3k7SB5SaybQy/QmSTpCkhXvv3e7qAAAYFxWpqALKTgDQHZ3UzD5Z0n6SfmP7dqXHDFxt+4ljTRwRSyNiUUQsGhravfNIAQAYbap0ZwxMrOOy0+6UnQBgXG3XzEbEdZKe0Pi7OCgviog1JcYFAMCEUu5J9ompj7ITAHRHK4/mGesRBAAA9FcXOn+iAyiUgbITAPTGpDWz4zyCoPn9fUuLBgAAoOIoOwFAb7TdzBgAgKmCilQAAOqLZBYAUF1kswAA1BbJLACgokwHUAAA1FhPk9lfX33Vmh1mD9wxwSRDkvrdsx8xTI0Y+r1+Ymg9hn16FQgA1M3VV1+1Zu5MU3aa+jH0e/3EUK0YKDuVpKfJbERM+LA028siYlGv4iGGqRtDv9dPDFMrBmA89D6M6Y6yUzVi6Pf6iYEY6opmxgCASrK4ZRYAgDojmQUAVBfZLAAAtTXVktml/Q5AxNDQ7xj6vX6JGBqmQgzAmOgACpgSx2hi6P/6JWJoIIYacUT0OwYAANr2zIOfE9+/9D9LX+6+Q3Ou4l4nAACmvqlWMwsAQMvoAAoAgPoimQUAVBa5LAAA9TXQ7wAabC+2/Vvby22/vw/rX2j7p7ZvtH2D7Xf1OoYijkHbv7b9gz6tf57t82zfbPsm28/vQwzvKb6D622fbXtOD9Z5uu17bV/fNG5X25fYvqX4f5c+xPDp4ru41vYFtuf1Ooam995rO2wPdTMGoGVONbNlD0AVUG7aKhbKTpSdKDvV1JRIZm0PSvqipFdKOlDS0bYP7HEYw5LeGxEHSjpM0ol9iEGS3iXppj6st+Hzkn4UEf9D0rN6HYvt+ZLeKWlRRDxd0qCko3qw6jMkLR417v2SLo2I/SVdWvzd6xgukfT0iHimpN9JOrkPMcj2QkmvkHRnl9cPtMldGICpjXLTNig7UXZqRtmpRqZEMivpUEnLI+LWiNgg6RxJS3oZQESsioiri9frlA5E83sZg+0Fkv5Y0ld7ud6m9e8s6UWSTpOkiNgQEQ/0IZQZkubaniFpO0m/7/YKI+IySWtHjV4i6czi9ZmSXtfrGCLi4ogYLv68QtKCXsdQ+GdJJ0mixzgA6D/KTQXKTptRdtoyjrJTjUyVZHa+pBVNf69UHw6IDbb3lXSIpCt7vOrPKe30Iz1eb8N+klZL+lrRXOertrfvZQARcZekzyhdxVol6cGIuLiXMTTZIyJWFa/vlrRHn+JoeKukH/Z6pbaXSLorIn7T63UDE7FoZozaoty0xedE2Ymy0/goO01zUyWZnTJs7yDpO5LeHREP9XC9r5Z0b0Rc1at1jmGGpGdLOjUiDpH0iLrfPGQrxb0VS5RODntJ2t72m3oZw1giPcOqb1fWbH9QqUnXWT1e73aSPiDpw71cL9AqGhkD/dWvclOxbspOouw0HspO9TBVktm7JC1s+ntBMa6nbM9UOiCfFRHn93j1h0t6re3blZoLvdT2N3ocw0pJKyOicWX1PKUDdC+9TNJtEbE6IjZKOl/SC3ocQ8M9tveUpOL/e/sRhO3jJL1a0huj9w+GfrLSyfE3xb65QNLVtp/Y4ziAMVEzi5qi3JRQdkooO41C2ak+pkoy+1+S9re9n+1ZSjetX9jLAGxb6X6HmyLis71ctyRFxMkRsSAi9lX6/D+JiJ5eVYuIuyWtsH1AMeoISTf2MgalJjKH2d6u+E6OUP86dbhQ0rHF62Mlfa/XAdherNR86rUR8Wiv1x8R10XEEyJi32LfXCnp2cW+AvSdu/APqIDal5skyk5NKDs1oexUL1MimS1u0n67pB8r/fjOjYgbehzG4ZLerHRV75pieFWPY5gK3iHpLNvXSjpY0id6ufLiyuZ5kq6WdJ3SPrq02+u1fbakyyUdYHul7eMlfVLSy23fonTV85N9iOEUSTtKuqTYJ7/chxgAAFMI5aYph7ITZSfKTn3i3te8AwCQ71mHPCd+/PMrSl/unjvPuioiFpW+YAAAUKoZ/Q4AAIBO0SgYAID6IpkFAFQSHTYBAFBvU+KeWQAAAAAA2kHNLACgsuh9GACA+iKZBQBUF7ksAAC1RTILAKgsclkAAOqLZBYAUFl0AAUAQH3RARQAAAAAoHKomQUAVJTpAAoAgBojmQUAVJJFM2MAAOqMZsYAALTB9um277V9fdO4XW1fYvuW4v9divG2/QXby21fa/vZ/YscAIDphWQWAFBZdvlDC86QtHjUuPdLujQi9pd0afG3JL1S0v7FcIKkU8v43AAAgGQWAIC2RMRlktaOGr1E0pnF6zMlva5p/NcjuULSPNt79iRQAACmOe6ZBQBUVpc6gBqyvazp76URsXSSefaIiFXF67sl7VG8ni9pRdN0K4txqwQAALKQzAIAqqn1ZsHtWhMRizqdOSLCdpQZEAAA2BbNjAEAleQuDR26p9F8uPj/3mL8XZIWNk23oBgHAAAykcwCAKpr6mSzF0o6tnh9rKTvNY0/pujV+DBJDzY1RwYAABloZgwAQBtsny3pJUr31q6U9BFJn5R0ru3jJd0h6chi8oskvUrSckmPSnpLzwMGAGCaIpkFAFRWlzqAmlBEHD3OW0eMMW1IOrG7EQEAUE8kswCAyupSB1AAAKACSGYBAJVFLgsAQH3RARQAAAAAoHKomQUAVBdVswAA1BbJLACgsvrRARQAAJgaSGYBAJVk0QEUAAB15vTUAAAAqsX2jyQNdWHRayJicReWCwAASkQyCwAAAACoHHozBgAAAABUDsksAAAAAKBySGYBAAAAAJVDMgsAAAAAqBySWQAAAABA5fx/nr7Zh7Ga2wIAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "Err_B5=error(xdata5, poptB5[0], poptB5[1],poptB5[2], poptB5[3], poptB5[4], recorteB5.ravel(), inc=1)\n", + "poptB5E, pcovB5E = curve_fit(gauss2d, xdata5, recorteB5.ravel(), p0=[2,0,1,1,1], sigma=Err_B5)\n", + "estrellaB5E=gauss2d(xdata5, poptB5E[0], poptB5E[1],poptB5E[2], poptB5E[3], poptB5E[4])\n", + "FWHMB5E=FWHMB_I.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptB5E[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 5 fotografÃa (Banda Azul)\")\n", + "plt.imshow(recorteB5, plt.get_cmap('Blues'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 5 a partir de la gaussiana con incertidumbre (Banda Azul)\")\n", + "plt.imshow(estrellaB5E.reshape(15, 15), plt.get_cmap('Blues'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 6 con incertidumbre (Banda Azul)" + ] + }, + { + "cell_type": "code", + "execution_count": 856, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA60AAAFSCAYAAAAZ/jk6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA1LklEQVR4nO3de7xcVXn/8e83Vy4BAh5ESMJFjbbBCmgE6l2oCojGl20RrIhopbRY0dIfFWwL2KLWegHqNQoqiiAiWrQoUBXRtqABkVtEo1wSCJLDJUQCIQnP74+1hswZzmXOyeyZNWd/3nnNK2f27Fn72TN7Ztaz12U7IgQAAAAAQImm9DoAAAAAAABGQtIKAAAAACgWSSsAAAAAoFgkrQAAAACAYpG0AgAAAACKRdIKAAAAACjWtF4HAADAaKZuu1vEhkc6WmY8suqyiDioo4UCAIBKkLQCAIoWGx7RzGcf1tEyH73+kwMdLRAAAFSGpBUAUDhLZjQLAAB1RdIKACibJdm9jgIAAPQISSsAoHy0tAIAUFskrQCA8tHSCgBAbXHqGgAAAABQLFpaAQCFYyImAADqjKQVAFA+ugcDAFBbJK0AgLJZtLQCAFBjJK0AgMKZllYAAGqMU9cAAAAAgGLR0goAKB/dgwEAqC2SVgBA+egeDABAbZG0AgAKxyVvAACoM5JWAEDZLFpaAQCoMU5dAwAAAACKRUsrAKB8dA8GAKC2SFoBAIVjTCsAAHVG0goAKN8UxrQCAFBXnLoeB9u72w7b0/L9K23/ZRe2a9tfsP2A7Z9Wvb3NZfvZtq+3vcb2u/Kyj9k+Y4LlfdD2uzsZ4zi2/UXb/9qLbY+k+biz/VrbX+t1TMBkY3ue7R/avsX2zbaPb3n8hPx7MJDv2/ZZtpfZvsH283oTOXr1W10a2y+xfetmljGh1671Pehn+fP/8l7HUQXb37V9VAFx7Gr797anjvD4qba/UtG2K/9+sP0/tvepchujbPt223/Si22PJH83PDP//VHbf93O8/oyac1vwCP5AG/cPtHG8554kUpg+3jbt9l+2PZS288aYdUXS3qlpLkRsW8b5fZ6P0+U9MOI2CYizrL9EkkvkPT/xluQ7R0lvUXSZ/P9l9t+vOl9v8v2aR2NvsPyF+IDtmd2uuyI+LakPW0/t9NlA8WwUvfgTt7GtkHSCRGxQNL+ko6zvUBKCa2kV0m6s2n9gyXNz7djJH26g69AX6rhb3VPtb5uEfHjiHh2L2OaDCJiz4i4stdxVCEiDo6IL3V7u62JVETcGRGzImJjt2Opmu3XSloTET/P90+1vb7pO3Gp7T/tcZgjsj0rx/ndijbxEUkn254x1op9mbRmr80HeOP2zs0tsJtnBPNZnbdLeo2kWZIOlTQ4wuq7Sbo9Ih7uUngjavM12k3SzU3395D0xohYP4FNvlXSpRHxSNOyuxvvu1JC/3bbr59A2ZWzvbukl0gKSa+raDPnK1WSgcnL7uxtDBGxMiKuy3+vkbRU0pz88MeVTs5F01MWSTo3kqslzba9c0dfg/5Up9/qnpjI6zEZWkDRf/r9uJtg/MdK+nLLsq811WPfLekrtnfa3Pgq8qeS1kl6pe2ndbrwiFgp6Zdqo47cz0nrsGw/0/aPbK+2PdjoOmn7qrzKL/IZgzfmVrsVtv/B9j2SvmB7iu332v6N7ftsX2h7hza2+wzbP8jPGbR9nu3ZI6w7RdIpkt4TEbfkSs5vIuL+YdZ9u6TPS/rjHPdpefk7nLqh3W/7Etu7jLSfo62fH3uV7Vvza/ap/Po1up++1albw8dt3yfp1NH21fYPJL1C0ify9p8l6QBJf5Mf3972d2yvyq2P37E9d5SX9mBJPxrpwYi4TdL/SlrQtD9n2l5u+yHb1zq19DYeOzW/p+c6dV++2fbCpsf3sX1dfuxrkrZoemy8sUuplfhqSV+U9EQXHNu7eGjrw1rb0RTjV5rWHaub1ZVKFSpgknIvWlo3bT2dfNpH0jW2F0m6KyJ+0bLaHEnLm+6v0KYkFy0m2291Xn9f2/9n+0HbK21/wiO0HjR9rx9j++68/t+3W1Z+7nG2fy3p16O9bk3PuT2/hjdIeni43xTbr7T9y/y+fEKpn0Pz429zahl6wPZltncb4aVuLffo/Lw1tn9r+69GWXeqU5fBQacW7nd6aHfvEctyqrP8pKW85q6Ihzh1+V/j1FPr7/Pygfyb/qBTPenH+f0f0irY5vtyrO1f53U+aaezZOM59vL6e9q+IsfzO9sn5+UzbZ+Rj5u7898z82ONz8oJtu/NMR49yjae6BrbeO1sfyS/v7fZPrhp3R2chqrdnR//VtNjhzoNC3vQ9v+6qffXMMfd+ZJ2lfTtfKye6Cd36d/D6fthje0rJA00lTfkuB7mPTrV9tdtfyU//0bbz7J9Un5Nltt+VctL8QzbP3WqN/6n83dJU1xvt32npB/k5W19DvKxcYBGr8deJmmNpGfk52zvUeqa+T37F6e6+RrblzsPU8mPH2n7jnycva8lnra/o5ocJekzkm6Q9Oamst7oofXYdbavbIrxL5vWfdLnssWVaqMeO+mSVkn/IulySdtLmivpPyQpIl6aH98rn91ojAN8mqQdlFoHj5H0t5JeL+llknaR9ICkT7axXUv6YH7OH0qaJ+nUEdadm2/PyR+e22yfZj+5JhURZyudpfm/HPcptg/I2zpM0s6S7pB0wUj7Odr6+UC/SNJJkp4i6VZJL2wJYz9Jv5W0k6TTR9vXiDhA0o8lvTNv/1ctZU2R9AWl13tXSY9IGq272B/lmIZle76kFyklhg0/k7S30vv6VUlft71F0+Ovy/s/W9Ilje3nD+63lM6I7SDp60pnmCYau5SS1vPy7dXOZ9Ii4onW4nym7Zs5polYKml329tO8PlA+Trf0jpge0nTbdjeCrZnSfqG0tnwDZJOlvTP3drtSWxS/VZnGyW9R6mC/ceSDlQ+YTuKVyh1KX+VpH/wpi6T7ZT1eqXf5wWjvG6tjlCqHM6OiA3ND+T6wMWS/jFv9zdKv6+NxxcpHf9vkLSj0m/9+WPsX8O9Sq3U20o6WtLHPfK473conbDeW9Lz8n5OtKxWZ0v6q4jYRtJzlJMQSSconWjaUamuc7KG9qRoaOd9OVRpSNRzlepdr87L2z72bG8j6b8lfS+v/0xJ388Pv09pyMLekvaStK/Se9bwNEnbKZ00e7ukT9refrjtDGM/pTrXgKQPSzrbfqJrypclbSVpT0lPVepxIqexmudI+iuleuRnJV3ioUOimo+7I5SGVjR6YXx4mDi+KunaHMe/qOmkf5tem+PdXtLPJV2mVIebI+n9OcZmb5H0NqU68gZJZ7U8/jKl9+zV4/wczJf0eESsGO5BJ6+RNEPSLXlxO3XNNykd+0/Nz22cfFmgNDTlSKXj5ilK32EN4/qOysn4y7WpHvuWxmMR0dxavItSntDu90GrpUrH8qj6OWn9Vj5T0Li9Iy9fr/RG7xIRj0bEaJm9JD0u6ZSIWJe7oB4r6X0RsSIi1il9ofyZx+gSEBHLIuKKXM4qSR9TOsiH0ziAXqWUlL1C6QP99jFibfgLSedExHU5xpOUWmJ3n8D6h0i6OSIuzj9gZ0m6p+X5d0fEf0TEhoh4ZJz7OkRE3BcR34iItbnL3eljPHe20hmoZrvk9/whSb+SdI2kJ97niPhK3s6GiPiopJmSmsf1/CQiLs1jJ76sTR+U/SVNl3RGRKyPiIuUEuAJxW77xUrH4oURca1SBeBNw6z3D5L+QOkLcyIar8/sCT4fqKPBiFjYdFvcuoLt6UoJ63kRcbHSmfA9lFqzblf6Lr/OqcvUXUqV0Ia5eVnd1ea3OiKujYir82/P7UoV47F+G0+LiIcj4kaliuoR4yjrgxFxfwwdPjOWsyJi+QjPadQHLoo0nOcMDa0PHJu3uTTXFz4gae+RWpmaRcR/5VbqiIgfKZ2weMkIqx8m6cz83j4g6UObUVar9ZIW2N42Ih6IPAQgL99Z0m759//HEfGkpLXN9+VDEfFgRNwp6YdKyeV4j71DJd0TER/Nn481EXFNfuwvJL0/Iu7N5ZymlKQ07+P7835cKun3GloHGs0dEfG5XD/6Un5NdnIa6nCwpGPz67Y+v/ZSOon02Yi4JiI2Rhoju06pTtUw2nE3hO1dlZL+f8qv1VWSvt1m/A0/jojL8nH6daXk8kP5uL5A6UT/7Kb1vxwRN0UahvdPkg7z0EmhTs2f08Z3T7ufg9l6ch1WufwHld6bSyR9ICIelNqua34hIn6V47lQ+RiT9GeSvhMRV+XvxX9S+u5ULnu831FHSrohIm5Ret32dMuEUvkk3lclXRkRrScD2rVGbdRh+zlpfX1EzG66fS4vP1HpbNZPnbp+jpUIrIqIR5vu7ybpm40fWKXsf6PSmbcR2d7J9gVO3U0ekvQVNXVnaNH40H44f7HdrnTgHDJGrA27KLWWSpIi4veS7tPIXdFGW38XNXVpy1/SrWeEmru8jXdfh7C9le3P5q4LD0m6Smns17AzximdPd+mZdnd+T3fVukgf0Tpy7Wxjb936raxOr+H27XE1/wjvFbSFrmis4tSt7/mH6onXrcJxH6UpMsjojH+6atqOVvo1PXmeKXjeTwVj2aN1+fBCT4fKF+Xuwfn1oWzJS2NiI9JUkTcGBFPjYjdI2J3pe/K50XEPUoVj7fkM+f7S1odaaxO3dXmt9qpC+J3bN+Ty/7AKGU3NP++3qH0O9RuWcs1fqM9Z7j6QPP6u0k6s+k1v1/pPRyzG7ztg21f7dTV9UGl13Ck12ZIHK0xj7OsVn+a17/DqfvpH+fl/y5pmaTLnbocv3eE/WjnfWmtY8zKzx3PsTdP6UT3cIbU6dR03GT3xdBW9CdiaMMTsUfE2vznrBzP/fkkQqvdJJ3QfHIqr98c03iO1V0kPRBD53G5Y6SVR/C7pr8fUTpJubHpvjT0NWn9HE7X0Pdmop+D4eqwUmrMmB0RWyudDH2Lczf3Nuuawx5jevJn+GGl+r5y2eP9jmr0FlRE3KXUzbm11fv0vI/vGqWcsWyjNuqw/Zy0Disi7omId0TELkpdFT7l0WchbD2TtlzSwS0/slvkN2s0H8hl/VFOpt6slrEgTW6V9FjLtofrhjKSu5U+NJIk21srdQEYKcbR1l+ppq4DuaLWOk6zNbbx7GurE5TO+O2Xn9vo0jTS82+QNOJMjRGxWikZfG2O/yVKlaHDJG0fEbMlrW4zvpWS5uTXoGHXicRue8scw8vyl8M9Sl0y9rK9V17n2UrJ9mER0fyF+LBSF5yGsQa+/6HSRF0PjbWDQF/qdNfgNiZiUuoWeaSkA5zGal1ve7QTi5cqdY9aJulzGrtbaK1N0t/qTytNKDI/l33yKGU3NLfO76r0e91uWeOpN7TznJXN8eTfwub4lit1rW1+zbeMiP8dbYNO3US/oTRL6E75d/lSjfzaDKmXtMQ0VllDfj/dMnFMRPwsIhYpdav8llIrlXJL5gkR8XSlIUR/Z/vAYWKbyHvcMJ5jb7mkp4/w2JA6nYYeN1VZLmkHDz8Gd7mk01uOi60iormraOtxN9ZxuH2uqzY018Va3+OpSi2pm6P1c7heQydca453PJ+DZSlEj3hiJ58M+65yPVbjryc3a/0Mb6VU329o+/i1/UKl7s0nNdVj95P0Jm8ae3y4Uu+QP4uhk61OpB7bOk/Ek0y6pNX2n3vTgOUHlA60RtP47zTyl0DDZySd7tzMb3tHp/7rY9lGqZl/dT44R7y8Sz579TVJJ9reJsd7jKTvtLEdKfUZP9r23vkL/AOSrskHvvTk/Rxt/f+S9Ee2X58PwuM09sHV9r6O8NxHJD3oNND9lDHWv1Sjd8GdJelwbZqteBul8QirJE2z/c9K417a8X/5ue+yPd32G5TGikwk9tcrnfVfoNRtY2+lD+WPlc6obSvpP5W6t7V2i7te0kudrlu2nVJ37tG8TOkLD5i8utzSGhE/iQhHxHMjYu98u7Rlnd0bPSkiOS4inhERfxQRSyp6JSaFSfpbvY2khyT93vYfSGrn2oP/lFtW9lQao9YYizqRstp53UbzX0rd/96Q6wPv0tD6wGeUKrB7SpLt7Wz/eRvlzlAaprNK0ganHkatE+E0u1DS8bbn5CTpH8ZR1i/yPuztNJfFqY0HbM+w/Re2t8sV7IeUjzmniYSemRP11Uq/34/rySbyvjQ/t92603ck7Wz73U4TL21je7/82PmS/jEf8wNKY+wruYZpQ+418l2lk0vb5zpSI5n6nKRjbe/nZGvbr3EalzuSEY/ViLhD0hJJp+X37MXalNBJaVjYFnkb05XG827uJQXfbHtBTvLeL+miGPnyO21/DiLiMaWxyaPVY+dKOkhD67HjqSc3u0jSobZf7DRPy/s1NNcbz/F7lKQrNLQe+xxJW0o62Kmb8H8o9aZZ1fLc6yW9IX+3PVNjD39sqx7bz0lrY9axxu2befkLlGZ4bPQTPz4ifpsfO1XSl5ya9A8bodwz8/Mut71GaYKf/UZYt9lpShMGrFb64r94jPXfqfTldbdSsvRVpYHsY4qI/1bqp/4NpbMqz1BK3BpOVdN+jrZ+rnD9udKA+/uUDs4lSuMROrWvzc5QOuAHlV7b742x/rmSDnFquWx4YuZdpW4cOyiN8ZDSYPvvKX2p3SHpUbXZLSV/ubxB6TI790t6o4bu23hiP0ppzMGduUXhntyF8BM51n2VzqR9vPk4znFcoVRxuUFpIoKxTmYcoSdPKgBMLt1vaUVn1Om3+u+V5i1Yo1SRH2kypGY/UmqN+b6kj0TE5ZtR1qka+3UbUVN94ENK9YH5kv6n6fFvSvo3SRc4dS28SWmc41jlrlFKgC9UOkHxJqX3biSfUxqneoPSJDqXKp1Q3jhWWZEmf3y/UqLwazXNd5EdKen2HP+x2lR3mJ+f83ul9/lTEfHDYWKbyPvS0Paxl/fzlUrJ2j15X16RH/5XpXraDZJulHRdXla1I5VaIH+pNBnWu3OsS5Qmz/qE0nuyTKkeNZoPKiXeD7pp1uwmb1L6PN+vlLSd23gg97D7G6Ura9yl1Ko37ERH4/Blpas83KN01YgRu7pO4HPwWQ0dcyxJb2yq9/1M6XN2Wn7sDI2vntwc281KjU9fVarvP6Chr01bx28+4XOYpP9orsNGumLHl5XquIuUJrr6SdP3eyPx/LhSL5XfKfUoPG+kmJ3GSy9Q6vkwKseTx5mjxpwGVK+Q9BcjfGF3ne0PSLo3Is7odSylcbpo9ZERMe4KCtAvpmw3L2a+8O86Wuaj3/u7ayNi4dhrAp3nNBHibZKmt4w/RIvcmvqZiGjr8jpAaWz/j9JVNX7e61hKY/ujkn4TEZ8aa92+vsgvOsP2q5Vm4H1EqbuKNfQSMj0VESf3OoZSRcS3Nf5Z9YA+47a69ALof7ln1SuUWlt3Umpp++aoTwIKFhEvGnuteoqIE9pdl1oApHStpt8odUV4rTZvJlsA6Dy6BwN1YaWukg8odQ9eKq6NDNQeLa1QRJyqkS+uDgC9ZdHSikklT4TI2ZNh5AmwXtDrOACUhaQVAFA4ugcDAFBn1AIAAAAAAMWqpKX1KU8ZiLm7VjvJ25SKxyQ93oVZlbuxjapfp24MDXu8GxNcd2EbUyo+RTS14jfjjjtu1+DgIN3Z0BuMQ8UkNjAwELvttnuvw0AXTJZrdvCN3J7rrrt2MCJ27HUck0ElSevcXXfT5T+qdvLZmdOrzQAeeWykawp3ztp11W9ji4pfp5nTp1ZaviQ9ur7616kbifFWM6p9rWZtUW1v/xftx9VB0EN0D8Yktttuu+t/rlnS6zDQBZPlUpPmRGJbtpzuO3odw2TBmFYAQPmoIAEAUFucugYAAAAAFIuWVgBA2czswQAA1BlJKwCgfHQPBgCgtkhaAQDFY9IPAADqi6QVAFA0i6QVAIA6Y5AQAAAAAKBYbSWttg+yfavtZbbfW3VQAAA8wRXcgIpRdwKAzhmze7DtqZI+KemVklZI+pntSyLilqqDAwBAMt2D0VeoOwFAZ7XT0rqvpGUR8duIeEzSBZIWVRsWAACb2O7oDagYdScA6KB2ktY5kpY33V+Rlw1h+xjbS2wvuf++wU7FBwAASSv6zZh1p+Z606rBVV0NDgD6TccmYoqIxRGxMCIW7vCUgU4VCwAAMOk015t2HNix1+EAQNHaueTNXZLmNd2fm5cBANAVtI6iz1B3AoAOaqel9WeS5tvew/YMSYdLuqTasAAAyJg9GP2HuhMAdNCYLa0RscH2OyVdJmmqpHMi4ubKIwMAQJKZPRh9hroTAHRWO92DFRGXSrq04lgAABgWSSv6DXUnAOicjk3EBAAAAABAp7XV0goAQC/R0goAQH2RtAIAikfSCgBAfZG0AgDKxoy/AADUGmNaAQAAAADFoqUVAFA8ugcDAFBffZu0rnpoXaXlb9gYlZYvSY9H9dtYv/HxSstf+9jGSsvvlm6832vXbai0/NVr11da/mMVH0vASLhOKwBJiq7Um6rdxvoNXfgt7cLX5cxp1XfWnDql2h3hd6W/0D0YAFA82x29tbG9ebZ/aPsW2zfbPj4v/3fbv7R9g+1v2p7d9JyTbC+zfavtV1f3agAAUC8krQCA8rnDt7FtkHRCRCyQtL+k42wvkHSFpOdExHMl/UrSSZKUHztc0p6SDpL0KdtTN3OvAQCASFoBAHiSiFgZEdflv9dIWippTkRcHhGNvv5XS5qb/14k6YKIWBcRt0laJmnfbscNAMBk1LdjWgEANeHejj2yvbukfSRd0/LQ2yR9Lf89RymJbViRlwEAgM1E0goAKF4FSeuA7SVN9xdHxOJhtjtL0jckvTsiHmpa/j6lLsTndTowAAAwFEkrAKB4FSStgxGxcIxtTldKWM+LiIublr9V0qGSDoxN05neJWle09Pn5mUAAGAzMaYVAFC0xiVvujx7sCWdLWlpRHysaflBkk6U9LqIWNv0lEskHW57pu09JM2X9NOOvhAAANQULa0AADzZiyQdKelG29fnZSdLOkvSTElX5OT36og4NiJutn2hpFuUug0fFxGT40LWAAD0GEkrAKB8XZ6HKSJ+MsJWLx3lOadLOr2yoAAAqCmSVgBA2Xo8ezAAAOgtklYAQPFIWgEAqC+SVgBA8UhaAQCoL2YPBgAAAAAUi5ZWAED5aGgFAKC2SFoBAMWjezAAAPVF0goAKJptklYAAGqMMa0AAAAAgGLR0goAKB4trQAA1BdJKwCgeCStAADUF0krAKB85KwAANQWSSsAoHi0tAIAUF9MxAQAAAAAKBYtrQCAspmWVgAA6qxvk9YtZ0yttPxHHttYafmStPHxyjehe9esq7T8H9x2X6XlS9K0qdVXVl88b/vKt7HTNltUvg1gMrIkclagbBFR+TbWra++4nTP6kcrLf+39z1cafmSNHNa9R0pnz4wq/JtDMyaUWn506fxw9JP+jZpBQDUhWlpBQCgxkhaAQDFI2cFAKC+mIgJAAAAAFAsWloBAMWjezAAAPVF0goAKJvpHgwAQJ2RtAIAimZJU6aQtQIAUFckrQCA4tHSCgBAfTEREwAAAACgWLS0AgCKx0RMAADU15gtrbbn2f6h7Vts32z7+G4EBgCApCcmYurkDagSdScA6Kx2Wlo3SDohIq6zvY2ka21fERG3VBwbAACyaGlF36HuBAAdNGbSGhErJa3Mf6+xvVTSHEl88QIAusAkregr1J0AoLPGNRGT7d0l7SPpmkqiAQAAmESoOwHA5ms7abU9S9I3JL07Ih4a5vFjbC+xveT++wY7GSMAoOYY04p+NFrdqbnetGpwVW8CBIA+0VbSanu60pfueRFx8XDrRMTiiFgYEQt3eMpAJ2MEANSc7Y7egKqNVXdqrjftOLBj9wMEgD4y5phWp1/3syUtjYiPVR8SAABNaB1Fn6HuBACd1U5L64skHSnpANvX59shFccFAADQr6g7AUAHtTN78E+UrjgAAEDX9eKSN7bnSTpX0k6SQtLiiDjT9g6SviZpd0m3SzosIh7ILWtnSjpE0lpJb42I67oaNIpB3QkAOmtcswcDANALPZiIqXGdzQWS9pd0nO0Fkt4r6fsRMV/S9/N9STpY0vx8O0bSpzv8EgAAUFskrQCA4nV7IqaIWNloKY2INZIa19lcJOlLebUvSXp9/nuRpHMjuVrSbNs7d/hlAACglsbsHgwAQK/1ciKmluts7hQRK/ND9yh1H5ZSQru86Wkr8rKVAgAAm4WkFQBQRwO2lzTdXxwRi1tXar3OZnMrbUSE7ag+VAAA6o2kFQBQNlcyEdNgRCwcdbPDX2fzd7Z3joiVufvvvXn5XZLmNT19bl4GAAA2E2NaAQBFS7MHd3ciplGus3mJpKPy30dJ+s+m5W9xsr+k1U3diAEAwGbo25bWDRur7ZH18LqNlZYvSdOmVD9I65q7H6i0/H/7zJWVli9JW207q/JtPO1vXlj5NnbebstKy99yxtRKy5/Sy0GFqLn2Jk/qsMZ1Nm+0fX1edrKkD0m60PbbJd0h6bD82KVKl7tZpnTJm6O7Gi3QY493oaP8Q49uqHwbl/7qd5WW/+Hzqr8S1nbbV19v+uCb9qp8Gy9++kCl5U+bSr2mn/Rt0goAqI9u56xjXGfzwGHWD0nHVRoUAAA1RfdgAAAAAECxaGkFABSvB92DAQBAIUhaAQBla3PyJAAAMDmRtAIAipZmDyZrBQCgrkhaAQDFI2kFAKC+mIgJAAAAAFAsWloBAMWjoRUAgPoiaQUAFI/uwQAA1BdJKwCgbMweDABArTGmFQAAAABQLFpaAQBFs0z3YAAAaoykFQBQPHJWAADqi6QVAFC8KWStAADUFkkrAKB45KwAANQXEzEBAAAAAIpFSysAoGg212kFAKDOSFoBAMWbQs4KAEBtkbQCAIpHSysAAPVF0goAKB45KwAA9cVETAAAAACAYtHSCgAomiVZNLUCAFBXJK0AgOIxERMAAPVF0goAKJvNREwAANRY3yatax/bWGn5K9c8Umn5kjR75ozKt7Fs1aPVbuD2X1RbvqS1M7eqfBuPrN+/8m1U3VI0c3q1Q9TJGdBLHH9A2SKi8m2s3/B45du4+Z6HKy1/9c+urLR8SVo9sGvl21h+6LMr38aGjdUeU104ZNFBTMQEAAAAAChW37a0AgDqwZKm0NQKAEBtkbQCAIpHzgoAQH2RtAIAisdETAAA1BdjWgEAAAAAxaKlFQBQNJvuwQAA1BlJKwCgeEzEBABAfZG0AgCKR8oKAEB9tT2m1fZU2z+3/Z0qAwIAoJXtjt7a2N45tu+1fVPTsr1tX237ettLbO+bl9v2WbaX2b7B9vMqfCnQR6g7AUBnjGcipuMlLa0qEAAACvJFSQe1LPuwpNMiYm9J/5zvS9LBkubn2zGSPt2dENEHqDsBQAe0lbTanivpNZI+X204AAAMZUlT3NnbWCLiKkn3ty6WtG3+eztJd+e/F0k6N5KrJc22vXNHdh59i7oTAHROu2Naz5B0oqRtqgsFAIBhtNmltwveLeky2x9ROun7wrx8jqTlTeutyMtWdjU6lOYMUXcCgI4Ys6XV9qGS7o2Ia8dY75g8xmfJ/fcNdixAAAAal73p1E3SQOM3K9+OaSOMv5b0noiYJ+k9ks6ucJfRx9qpOzXXm1YNrupidADQf9ppaX2RpNfZPkTSFpK2tf2ViHhz80oRsVjSYknaa5/nR8cjBQDUVgUtrYMRsXCczzlKaYyiJH1dm7p93iVpXtN6c/My1NeYdafmetPzn7+QehMAjGLMltaIOCki5kbE7pIOl/SD1oQVAIAauFvSy/LfB0j6df77EklvybMI7y9pdUTQNbjGqDsBQGdxnVYAQNEaEzF1dZv2+ZJertSNeIWkUyS9Q9KZtqdJelRppmBJulTSIZKWSVor6ejuRgsAwOQ2rqQ1Iq6UdGUlkQAAMIJuT8QUEUeM8NDzh1k3JB1XbUToV9SdAGDz0dIKACheEXMHAwCAniBpBQAUzZamlHHJGwAA0ANjTsQEAAAAAECv0NIKACgeDa0AANQXSSsAoHjdnogJAACUg6QVAFA8clYAAOqrb5PWrWZMrbT8aV24KGC6SkK19pm7daXlf3u/AyotX5IGnrpt5duYv/2syrfx8LqNlZY/a4vHKy2/C4crAKBPdWOytK1nVlv3k6TX/uFApeWv+Ms3V1q+JG0/a2bl29h35+0r38bM6dVOvcPJ0P7St0krAKAeLDN7MAAANUbSCgAomzkjDgBAnZG0AgCKx0RMAADUF0krAKB4XFQcAID6oh4AAAAAACgWLa0AgKJZdA8GAKDOSFoBAMXrwlXIAABAoUhaAQDFI2kFAKC+SFoBAEWz6R4MAECdMRETAAAAAKBYtLQCAIpH92AAAOqLpBUAUDx6BwMAUF8krQCAolnSFLJWAABqi6QVAFA8JmAAAKC+qAcAAAAAAIpFSysAoHj0DgYAoL5IWgEARbPNmFYAAGqMpBUAUDxyVgAA6oukFQBQPK7TCgBAfTEREwAAAACgWLS0AgCKxnVaAQCoN5JWAEDxyFkBAKgvklYAQNnMmFYAAOqMMa0AAAAAgGJV0tLqLpwVf9rsLSot/6FH1ldaviRNm1r9OYOXbr1jpeWfdez+lZYvSQNbzqx8G7vusFXl23jw4WqPqfUbHq+0/IhKiwdGZdHUCpRsShe6Q2w9s/oOgi+Yt0Ol5T9z0TaVli9JU7vwXuwwa0bl25g5rdp6shl30ldoaQUAFC1NxNTZ25jbtM+xfa/tm1qW/63tX9q+2faHm5afZHuZ7Vttv7rjLwIAADXGmFYAQPF6MKb1i5I+IencxgLbr5C0SNJeEbHO9lPz8gWSDpe0p6RdJP237WdFxMauRw0AwCRESysAoHi2O3obS0RcJen+lsV/LelDEbEur3NvXr5I0gURsS4ibpO0TNK+ndt7AADqjaQVAID2PEvSS2xfY/tHtl+Ql8+RtLxpvRV5GQAA6AC6BwMAitYY09phA7aXNN1fHBGLx3jONEk7SNpf0gskXWj76R2PDAAADEHSCgAom9Os9B02GBELx/mcFZIujoiQ9FPbj0sakHSXpHlN683NywAAQAfQPRgAULwpdkdvE/QtSa+QJNvPkjRD0qCkSyQdbnum7T0kzZf0083fawAAINHSCgAoXEXdg0ffpn2+pJcrdSNeIekUSedIOidfBucxSUflVtebbV8o6RZJGyQdx8zBAAB0TltJq+3Zkj4v6TmSQtLbIuL/KowLAICeiYgjRnjozSOsf7qk06uLCP2GuhMAdE67La1nSvpeRPyZ7RmStqowJgAAhqhgTCtQNepOANAhYyattreT9FJJb5WkiHhMqVsUAABdYE0RWSv6B3UnAOisdiZi2kPSKklfsP1z25+3vXXFcQEAICmNabU7ewMqRt0JADqonaR1mqTnSfp0ROwj6WFJ721dyfYxtpfYXnLf4GCHwwQA1JbTREydvAEVG7Pu1FxvWjW4qhcxAkDfaCdpXSFpRURck+9fpPRFPERELI6IhRGx8CkDA52MEQAAoJ+MWXdqrjftOLBj1wMEgH4yZtIaEfdIWm772XnRgUrT+gMA0BWFXKcVaAt1JwDorHZnD/5bSefl2e9+K+no6kICAGCTxphWoM9QdwKADmkraY2I6yUtrDYUAACGR+so+g11JwDonHbGtAIAAAAA0BPtdg8GAKBnaGgFAKC+SFoBAEWz6BYEAECdkbQCAMpmyTS1AgBQWyStAIDikbICAFBf9LgCAAAAABSLllYAQNEsLnkDAECdVZa0Vj3+6NHHNlZa/jZbTq+0fEmaPrX6StjUKdVuY+HcHSotX5Iq3oW0jS5sZKuZUystf+b0assnZ0AvcfgBmD6t+g6Cs7eeUWn523ahftkNVdcvpe7UzdA/aGkFABSPkyYAANQXSSsAoHBm9mAAAGqMiZgAAAAAAMWipRUAUDSLM6wAANQZSSsAoHh0DwYAoL5IWgEAxSNlBQCgvkhaAQBlMy2tAADUGcOEAAAAAADFoqUVAFA0JmICAKDeSFoBAMWjezAAAPVF0goAKB4pKwAA9UWPKwAAAABAsWhpBQAUj97BAADUF0krAKBoaSImslYAAOqKpBUAUDxaWgEAqC+SVgBA4SzT0goAQG0xERMAAC1sn2P7Xts3DfPYCbbD9kC+b9tn2V5m+wbbz+t+xAAATF4krQCA4tmdvbXhi5IOenIcnifpVZLubFp8sKT5+XaMpE9v7v4CAIBNSFoBAEVrTMTUydtYIuIqSfcP89DHJZ0oKZqWLZJ0biRXS5pte+cO7DoAABBjWgEApWu/dbTaMOxFku6KiF94aEBzJC1vur8iL1vZxfAAAJi0SFoBAMWrIGkdsL2k6f7iiFg88va9laSTlboGAwCALiJpBQDU0WBELBzH+s+QtIekRivrXEnX2d5X0l2S5jWtOzcvAwAAHUDSCgAoXq8veRMRN0p6auO+7dslLYyIQduXSHqn7Qsk7SdpdUTQNRgAgA4haQUAFM2SpnQ5Z7V9vqSXK3UjXiHplIg4e4TVL5V0iKRlktZKOrorQQIAUBOVJK2WNa3iGsbtg2srLX/LGVMrLV+Sprr6yZvXb4yxV9oMa9dtqLR8Sdr4eLX7IEkzplX/Xmy75fRKy585vdp9mFLCTDiorW63tEbEEWM8vnvT3yHpuKpjAlC9qRXXX6suH5isaGkFABSPcyYAANQX12kFAAAAABSLllYAQPF6PRETAADoHZJWAEDRejEREwAAKAdJKwCgcKalFQCAGmNMKwAAAACgWLS0AgDKZmYPBgCgzkhaAQDFI2cFAKC+2uoebPs9tm+2fZPt821vUXVgAABIjYmY3NEbUDXqTgDQOWMmrbbnSHqXpIUR8RxJUyUdXnVgAAA0uMM3oErUnQCgs9qdiGmapC1tT5O0laS7qwsJAACg71F3AoAOGTNpjYi7JH1E0p2SVkpaHRGXt65n+xjbS2wvGRxc1flIAQD1RVMr+kg7dafmetMq6k0AMKp2ugdvL2mRpD0k7SJpa9tvbl0vIhZHxMKIWDgwsGPnIwUA1JY7/A+oUjt1p+Z6047UmwBgVO10D/4TSbdFxKqIWC/pYkkvrDYsAAA2sTt7AypG3QkAOqidpPVOSfvb3sq2JR0oaWm1YQEAsAm9g9FnqDsBQAe1M6b1GkkXSbpO0o35OYsrjgsAAKAvUXcCgM6a1s5KEXGKpFMqjgUAgOHRPIo+Q90JADqnraQVAIBeSV16yVoBAKgrklYAQNmYPAkAgFojaQUAFI+cFQCA+mpn9mAAAAAAAHqCllYAQPloagUAoLZIWgEAhTMTMQEAUGOVJK2h0MaIKop+wuDD6yotf0AzKy1fkqZNqb4SNqXibUzpwuwoG1XtsSRJ06dW31N+asXvxcbHq32dogvvAzASJmICAKC+aGkFABTNoncwAAB1xkRMAAAAAIBi0dIKACgfTa0AANQWSSsAoHhMxAQAQH2RtAIAisdETAAA1BdjWgEAAAAAxaKlFQBQPBpaAQCoL5JWAEDZuOYNAAC1RvdgAEDx3OF/Y27PPsf2vbZvalr277Z/afsG29+0PbvpsZNsL7N9q+1XV/MqAABQTyStAICiWWkipk7e2vBFSQe1LLtC0nMi4rmSfiXpJEmyvUDS4ZL2zM/5lO2pndl7AABA0goAQIuIuErS/S3LLo+IDfnu1ZLm5r8XSbogItZFxG2Slknat2vBAgAwyZG0AgCK5w7fOuBtkr6b/54jaXnTYyvyMgAA0AFMxAQAKF/nJ2IasL2k6f7iiFjcVij2+yRtkHRex6MCAABPQtIKACheO5MnjdNgRCwcdxz2WyUdKunAiIi8+C5J85pWm5uXAQCADqB7MACgeD2YiGmYGHyQpBMlvS4i1jY9dImkw23PtL2HpPmSfrq5+wwAABJaWgEAaGH7fEkvV+pGvELSKUqzBc+UdIVT5nt1RBwbETfbvlDSLUrdho+LiI29iRwAgMmHpBUAULzOD2kdXUQcMczis0dZ/3RJp1cXEQAA9UXSCgAoX7ezVgAAUAySVgBA0dJlashaAQCoK5JWAEDZNmPyJAAA0P+YPRgAAAAAUCxaWgEAxaOhFQCA+iJpBQCUj6wVAIDaImkFABTOTMQEAECNVZK0/uLn1w0OzJp+xzieMiBpsIpYuoh9KMdk2I8S92G3XgcAAJPRddddO7jldI+n3iSV+TsxXuxDGSbDPkhl7gd1pw6pJGmNiB3Hs77tJRGxsIpYuoV9KMdk2I/JsA9AJzF7MCaz8dabpMnxO8E+lGEy7IM0efYDw6N7MACgaBZDWgEAqDOSVgBA+chaAQCorVKS1sW9DqAD2IdyTIb9mAz7AHQMEzEBTzIZfifYhzJMhn2QJs9+YBiOiF7HAADAiJ679/Pj29//346WufvAFtcy9gkAgP5QSksrAAAjYiImAADqi6QVAFA8clYAAOprSi83bvsg27faXmb7vb2MZaJsz7P9Q9u32L7Z9vG9jmmibE+1/XPb3+l1LBNhe7bti2z/0vZS23/c65jGy/Z78nF0k+3zbW/R65iAnnNqae3kDehX1J3K0e/1Jom6E/pHz5JW21MlfVLSwZIWSDrC9oJexbMZNkg6ISIWSNpf0nF9uh+SdLykpb0OYjOcKel7EfEHkvZSn+2L7TmS3iVpYUQ8R9JUSYf3NiqgFO7wDeg/1J2K0+/1Jom6E/pEL1ta95W0LCJ+GxGPSbpA0qIexjMhEbEyIq7Lf69R+rDP6W1U42d7rqTXSPp8r2OZCNvbSXqppLMlKSIei4gHexrUxEyTtKXtaZK2knR3j+MBAJSDulMh+r3eJFF3Qn/pZdI6R9Lypvsr1GdfWK1s7y5pH0nX9DiUiThD0omSHu9xHBO1h6RVkr6Qu+p83vbWvQ5qPCLiLkkfkXSnpJWSVkfE5b2NCug9i+7BQEbdqRxnqL/rTRJ1J/SRno5pnUxsz5L0DUnvjoiHeh3PeNg+VNK9EXFtr2PZDNMkPU/SpyNiH0kPS+qrsT62t1c6Y76HpF0kbW37zb2NCigDnYOByadf606TpN4kUXdCH+ll0nqXpHlN9+fmZX3H9nSlL93zIuLiXsczAS+S9Drbtyt1NTrA9ld6G9K4rZC0IiIaZ2ovUvoi7id/Ium2iFgVEeslXSzphT2OCSgCLa2AJOpOpZgM9SaJuhP6SC+T1p9Jmm97D9szlAZNX9LDeCbEtpXGAiyNiI/1Op6JiIiTImJuROyu9D78ICL66ixVRNwjabntZ+dFB0q6pYchTcSdkva3vVU+rg5Un02IAFTFHf4H9CnqTgWYDPUmiboT+kvPrtMaERtsv1PSZUozfZ0TETf3Kp7N8CJJR0q60fb1ednJEXFp70Kqrb+VdF7+If+tpKN7HM+4RMQ1ti+SdJ3SzIo/l7S4t1EBAEpB3QkVoO6EvuCI6HUMAACMaK99nh+X/ejqjpa583Yzro2IhR0tFAAAVKJnLa0AALSLDr0AANQXSSsAoGhMngQAQL1xyRsAAAAAQLFoaQUAFI8ZfwEAqC+SVgBA+chZAQCoLZJWAEDxyFkBAKgvklYAQPGYiAkAgPpiIiYAAAAAQLFIWgEAhXPH/425Rfsc2/favqlp2Q62r7D96/z/9nm5bZ9le5ntG2w/r8IXAwCA2iFpBQAUzdp0rdZO3drwRUkHtSx7r6TvR8R8Sd/P9yXpYEnz8+0YSZ/uwG4DAICMpBUAgBYRcZWk+1sWL5L0pfz3lyS9vmn5uZFcLWm27Z27EigAADXAREwAgOIVMhHTThGxMv99j6Sd8t9zJC1vWm9FXrZSAABgs5G0AgDqaMD2kqb7iyNicbtPjoiwHRXEBQAAWpC0AgCK187kSeM0GBELx/mc39neOSJW5u6/9+bld0ma17Te3LwMAAB0AGNaAQBl6/AkTJvR1fgSSUflv4+S9J9Ny9+SZxHeX9Lqpm7EAABgM9HSCgAomvOtq9u0z5f0cqVuxCsknSLpQ5IutP12SXdIOiyvfqmkQyQtk7RW0tFdDhcAgEmNpBUAUL4uZ60RccQIDx04zLoh6bhqIwIAoL7oHgwAAAAAKBYtrQCA4lUwERMAAOgTJK0AgOIVcp1WAADQAyStAIDikbMCAFBfjGkFAAAAABSLllYAQPloagUAoLZIWgEAxWMiJgAA6oukFQBQNIuJmAAAqDOna6IDAFAm29+TNNDhYgcj4qAOlwkAACpA0goAAAAAKBazBwMAAAAAikXSCgAAAAAoFkkrAAAAAKBYJK0AAAAAgGKRtAIAAAAAivX/ARFOexpm7N+sAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "Err_B6=error(xdata6, poptB6[0], poptB6[1],poptB6[2], poptB6[3], poptB6[4], recorteB6.ravel(), inc=1)\n", + "poptB6E, pcovB6E = curve_fit(gauss2d, xdata6, recorteB6.ravel(), p0=[2,1,1,1,1], sigma=Err_B6)\n", + "estrellaB6E=gauss2d(xdata6, poptB6E[0], poptB6E[1],poptB6E[2], poptB6E[3], poptB6E[4])\n", + "FWHMB6E=FWHMB_I.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptB6E[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 6 fotografÃa (Banda Azul)\")\n", + "plt.imshow(recorteB6, plt.get_cmap('Blues'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 6 a partir de la gaussiana con incertidumbre (Banda Azul)\")\n", + "plt.imshow(estrellaB6E.reshape(10, 10), plt.get_cmap('Blues'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 7 con incertidumbre (Banda Azul)" + ] + }, + { + "cell_type": "code", + "execution_count": 857, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA60AAAFSCAYAAAAZ/jk6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAzv0lEQVR4nO3debwddX3/8fc7KzsBLyIkgVCNtMEFaEQUd1xAUfy5IC6A1EppsYKlPxWsFW1dftYqUtcouCKIgBYtClRFXAoakIIQ0ciWBJBEtgAhZPn8/vh+L5l7uMu5N2fO+Z47r2ce55F75sx85ztz5sx8P/NdxhEhAAAAAABKNKXXGQAAAAAAYCQErQAAAACAYhG0AgAAAACKRdAKAAAAACgWQSsAAAAAoFgErQAAAACAYk3rdQYAABjN1O12j1i/pqNpxpqVF0XEQR1NFAAA1IKgFQBQtFi/RjP3PKyjaT509acHOpogAACoDUErAKBwlkxvFgAAmoqgFQBQNkuye50LAADQIwStAIDyUdMKAEBjEbQCAMpHTSsAAI3FrWsAAAAAQLGoaQUAFI6BmAAAaDKCVgBA+WgeDABAYxG0AgDKZlHTCgBAgxG0AgAKZ2paAQBoMG5dAwAAAACKRU0rAKB8NA8GAKCxCFoBAOWjeTAAAI1F0AoAKByPvAEAoMkIWgEAZbOoaQUAoMG4dQ0AAAAAKBY1rQCA8tE8GACAxiJoBQAUjj6tAAA0GUErAKB8U+jTCgBAU3Hrehxsz7Mdtqfl95fa/usurNe2v2T7btu/rHt9m8v2nravtr3a9tvztI/bPnWC6X3Y9gmdzOM41v1l2//ai3WPpHrc2X657W/2Ok8AUIpeXatLY/vZtm/YzDQmtO9av4N+Zvs628/rdT7qYPv7to8qIB+72b7f9tQRPj/F9tdrWnft5wfbP7e9T53rGGXdN9t+YS/WPZJ8bnhC/vvfbf9tO8v1ZdCav4A1+QAffH2qjeUe2Um9VPlxVl9h+8QRFnmWpBdJmhMR+7WRfq+3852SfhwR20bEabafLelpkv7veBOyvZOkIyV9Pr9/nu2Nlf22wvb7O5r7DssnxLttz+x02hHxXUl72X5Kp9MGimGl5sGdfKF2DbxW91TrfouIn0bEnr3M02QQEXtFxKW9zkcdIuLgiPhKt9fbGkhFxK0RsU1EbOh2Xupm++WSVkfEr/P7U2yvq5xTlth+dY+zOSLb2+R8fr+mVXxM0sm2Z4w1Yz9fuV+eD/DB19s2N8Fu3RGs/Di3iYhtJD1Z0kZJ542wyO6Sbo6IB7qRv9G0uY92l3Rd5f0ekl4XEesmsMo3S7owItZUpt1W2XfPkvQW26+cQNq1sz1P0rMlhaRX1LSasyQdU1PaQBnszr7QLU26VvfERPbHZKgBRf/p9+Nugvk/VtLXWqZ9s3JeOUHS123vvLn5q8mrJa2V9CLbj+t04hFxu6Tfqo0ycj8HrcOy/QTbP7F9r+1Vg00nbV+WZ/nffMfgdbnWbrntd9m+Q9KXbE+x/W7bf7D9J9vn2N6xjfU+3vaP8jKrbJ9pe1ab2T5S0mURcfMw6b5F0hclPSPn+/15+lttL7V9l+0LbO860naONn/+7MW2b8j77DN5/w02P32zU7OGT9j+k6RTRttW2z+S9HxJn8rrf6KkF0j6u/z5Dra/Z3tlrn38nu05o+ybgyX9ZKQPI+ImSb+QtKCyPZ+0vcz2fbavdKrpHfzslPydftWp+fJ1thdWPt/H9lX5s29K2qLy2XjzLqXv9nJJX5b0SBMc27u23L1/0HZU8vj1yrxjNbO6VNLLxsgH0MdMTeskM9mu1Tnt/Wz/j+17bN9u+1Meofagcl4/xvZtef5/bDetvOxxtn8v6fej7bfKMjfnfXiNpAeGu6bYfpHt3+bv5VNK7Ryqn/+VU83Q3bYvsr17OzvO9tF5udW2b7T9N6PMO9WpyeAq2zfZfpuHNvceMS2nMsvPWtKrNkV8qe3r87IrBve57YF8Tb/HqZz0UzudKFypFWzzeznW9u/zPJ+2012y8R57tveyfUnOzx9tn5ynz7R9aj5ubst/z8yfDf5WTrR9Z87j0aOs45GmsYP7zvbH8vd7k+2DK/Pu6NRV7bb8+Xcqnx3i1C3sHtu/cKX11zDH3VmSdpP03XysvtOPbtK/h9P5YbXtSyQNVNIbclwP8x2dYvtbtr+el7/W9hNtn5T3yTLbL27ZFY+3/UuncuN/Op9LKvl6i+1bJf0oT2/rd5CPjRdo9HLsRZJWS3p8XmYHj1LWzN/ZvziVzVfbvth2df8cYfuWfJy9pyU/bZ+jKo6S9DlJ10h6UyWt13loOXat7UsrefzryryP+l22uFRtlGMn45X7XyRdLGkHSXMk/YckRcRz8udPzXc3BvsBPk7Sjkq1g8dI+ntJr5T0XEm7Srpb0qfbWK8lfTgv8xeS5ko6ZcyF0snsSEnDNs+IiNOV7tL8T873+2y/IK/rMEm7SLpF0tkjbedo8+cD/VxJJ0l6jKQbJD2zJRtPl3SjpJ0lfXC0bY2IF0j6qaS35fX/riWtKZK+pLS/d5O0RtJozcWenPM0LNvzJR2gFBgO+pWkvZW+129I+pbtLSqfvyJv/yxJFwyuP/9wv6N0R2xHSd9SusM00bxL6bs9M79e4nwnLSJua7mD/+2cp4lYImme7e0muDxQPmpaJ5tJda3ONkh6h1IB+xmSDlS+YTuK50uaL+nFkt7lTU0m20nrlUrX5wWj7LdWr1cqHM6KiPUt2zgg6XxJ/5TX+wel6+vg54dKOlnSqyTtpHStP2uM7Rt0p6RDJG0n6WhJn7C97wjzvlXphvXekvbN2znRtFqdLulvImJbSU9SDkIknShpudJ27ay0nTHM8u18L4codYl6ilK56yV5etvHnu1tJf23pB/k+Z8g6Yf54/dI2l9p/zxV0n5K39mgx0naXtJsSW+R9GnbOwy3nmE8XanMNSDpo5JOz8e+lMpGW0naS9JjJX0i53UfSWdI+hulcuTnJV3goV2iqsfd6yXdqk2tMD46TD6+IenKnI9/UeWmf5tenvO7g6RfS7pIqQw3W9IHch6rjpT0V0pl5PWSTmv5/LlK39lLxvk7mC9pY0QsH+5DJy+TNEPS9XlyO2XNNygd+4/Nyw7efFkg6bOSjlA6bh6jdH4dNK5zVA7Gn6dN5dgjBz+LiGpt8a5KcUK754NWS5SO5VH1c9D6nXynYPD11jx9ndIXvWtEPBQRo0X2Umrq876IWJuboB4r6T0RsTwi1iqdUF7jMZoERMTSiLgkp7NS0seVDvKxPEvpBHluG/MOeqOkMyLiqpzHk5RqYudNYP6XSrouIs7PF7DTJN3RsvxtEfEfEbE+ItZsxrYqIv4UEedFxIMRsVopCB5t2VlKd6Cqds3f+X2SfifpCkmPfM8R8fW8nvUR8e+SZkqq9uv5WURcmPtOfE2bfij7S5ou6dSIWBcR5yoFwBPKu+1nKR2L50TElUoFgDcMM9+7JP250glzIgb3z6wJLg8AdWnMtToiroyIy/O152algvFYab8/Ih6IiGuVCqqvH0daH46Iu1q6z4zltIhYNsIyg+WBc3N3nlM1tDxwbF7nklxe+JCkvUeqZaqKiP+KiD9E8hOlGxbPHmH2wyR9Mn+3d0v6yGak1WqdpAW2t4uIuyPiqsr0XSTtnq//P42IRwWtbX4vH4mIeyLiVkk/Vgoux3vsHSLpjoj49/z7WB0RV+TP3ijpAxFxZ07n/UpBSnUbP5C340JJ92toGWg0t0TEF3L56Ct5n+xsexelGwnH5v22Lu97Kd1E+nxEXBERGyL1kV2rVKYaNNpxN4Tt3ZSC/vfmfXWZpO+2mf9BP42Ii/Jx+i2l4PIj+bg+W+lG/6zK/F+LiN9E6ob3XkmHeeigUKfk3+nguafd38EsPboMq5z+PUrfzQWSPhQR90htlzW/FBG/y/k5R/kYk/QaSd+LiMvyefG9SudO5bTHe446QtI1EXG90n7byy0DSjm1SPiGpEsjovVmQLtWq40ybD8Hra+MiFmV1xfy9Hcq3c36pVPTz7ECgZUR8VDl/e6Svj14gVWK/jcoXaxGZHtn22c7NTe5T9LXVWnOMIqjJJ0XEfe3Me+gXZVqSyVJedk/Kd1BGu/8u0paVvkslO42Vi2rvtmMbZXtrWx/PjdduE/SZZJmeYQR45Tunm/bMu22/J1vp3SQr1Hl7rftf8zNNu7N3+H2LfmrXoQflLRFLujsKmlFy4Xqkf02gbwfJeniiFiV339DLXcLnZreHK90PI+n4FE1uH/umeDyQPm63DzY9lzbP3ZqSnid7eNbPj/RqdnYQH5v26c5dcO4Zhw1P5NdY67VTk0Qv2f7jpz2h9pIu3p9vUXpOtRuWss0fqMtM1x5oDr/7pI+Wdnndyl9hyOVPR5h+2Dblzs1db1HKUAead8MyUdrnseZVqtX5/lvcWp++ow8/d8kLZV0sVOT43ePsB3tfC+tZYxt8rLjOfbmKt3oHs6QMp0qx032pxhai/5IHtrwSN4j4sH85zY5P3flmwitdpd0YvXmVJ6/mqfxHKu7Sro7ho7jcstIM4/gj5W/10haFZsGeRosa1X3SevvcLqGfjcT/R0MV4aVUmXGrIjYWqlZ8JHOzdzbLGsOe4zp0b/hB5TK+8ppj/ccNdhaUBGxQqmZc2ut9wfzNr59lHTGsq3aKMP2c9A6rIi4IyLeGhG7KjVV+IxHH4Ww9U7aMkkHt1xkt8hf1mg+lNN6cg6m3qSWviCtbG8p6bUavbnRcG5T+tEMprO1UhOAkfI42vy3q9J0wLY1tCmB9Oh9NO5trThR6Y7f0/Oyg02aRlr+GklPHCmxiLhXKRh8ec7/s5UKQ4dJ2iEiZkm6t8383S5pdt4Hg3abSN7zd3uYpOfmk8MdSk0ynmr7qXmePZW++8MionpCfECpCc6gsTq+/4XSQF33jbWBQF/qdNPg9poHr5d0YkQsUKoxOM6p6ZVsz1VqznlrZf6DlZqCzVeqefhsJ3fBZDNJr9WfVRpQZH5O++Sx0lYq3A/aTel63W5awzVfHctoy9xezU++Flbzt0ypaW11n28ZEb8YbYVOzUTPUxoldOd8Xb5QI++bIeWSljyNldaQ66dbBo6JiF9FxKFKzSq/o1RLpVyTeWJE/JlSF6J/sH3gMHmbyHc8aDzH3jJJfzbCZ0PKdBp63NRlmaQdPXwf3GWSPthyXGwVEdWmoq3H3VjH4Q65rDqoWhZr/Y6nKtWkbo7W3+E6Sasq06r5Hc/vYGnKoke8sZNrPL+vXI7V+MvJVa2/4a2UyvuD2j5+bT9T6Xp2UqUc+3RJb/CmvseHK7UOeU0MHWx1IuXY/x1r4yZd0Gr7td7UYflupQNtsGr8jxr5JDDoc5I+6FzNb3snp/brY9lWqZr/3nxwtvN4l/+T8/jjNuatOkvS0bb3zifwD0m6IjYNDtG6naPN/1+Snmz7lfkgPE5jH1wT2dbqsmsk3ePU0f19Y8x/oUZvgruNpMO1abTibZUKmyslTbP9z0r9XtrxP3nZt9uebvtVSn1FJpL3Vyrd9V+g1Gxjb6Uf5U+V7qhtJ+k/lZq3tTaLu1rSc5wet7C9UnPu0TxX6YQHTF5drmmNiNsjNx3MTbSWaNOd9E8o3RyrFmQOlfTVSC5XujO+S0f3wSQySa/V20q6T9L9tv9cUjvPHnxvrlnZS6mP2mBf1Imk1c5+G81/KTX/e1UuD7xdQ8sDn1MqwO4lSba3t/3aNtKdodRNZ6Wk9U4tjFoHwqk6R9LxtmfnIOld40jrf/M27O00lsUpgx/YnmH7jba3zwXs+5SPOaeBhJ6QA/V7la7fG/VoE/leqsu2e+x9T9Iutk9wGnhpW9tPz5+dJemf8jE/IOmflWptaxNphNfvK91c2iGXkQaDqS9IOtb2051sbftlTv1yRzLisRoRt0haLOn9+Tt7ljYFdFLqFrZFXsd0pf68m/tIwTfZXpCDvA9IOjdGfvxO27+DiHhYqW/yaOXYOZIO0tBy7HjKyVXnSjrE9rOcxmn5gIbGeuM5fo+SdImGlmOfJGlLSQc7NRP+D6XWNCtblr1a0qvyue0JSn2rR9NWObafg9bBUccGX9/O058m6Qrbg+3Ej4+IG/Nnp0j6ilOV/mEjpPvJvNzFtlcrDfDz9BHmrXq/0oAB9yqd+M9vY5mjlNrRj+tuaUT8t1I79fOU7qo8XilwG3SKKts52vy56eprlTrc/0np4Fys1B9hJBPZ1kGnKh3wq5T27Q/GmP+rkl6a73QPemTkXaVmHDsq9fGQUmf7Hyid1G6R9JDabJaSTy6vUnrMzl2SXqeh2zaevB+l1Ofg1lyjcEdE3KHUmf6NSsHwnkoDSNxf2R5FxCVKBZdrlAYi+N4YWX+9Hj2oADC59HAgJqf+//soXVsOVepG0HpXeLaGnmuWq41mkw3QpGv1PyqNW7BaqSA/0mBIVT9Rqo35oaSPRcTFm5HWKRp7v42oUh74iFJ5YL6kn1c+/7ak/yfpbKemhb9RamEwVrqrlQLgc5SC/zcofXcj+YJSP9VrlAbRuVDphvKGsdKKNPjjB5QChd+rMt5FdoSkm3P+j9WmssP8vMz9SjewPxMRw92kmMj3MqjtYy9v54uUgrU78rY8P3/8r0rltGskXSvpqjytbkco1UD+VmkwrBNyXhcrDZ71KaXvZKlSOWo0H1YKvO9xZdTsijco/Z7vUgravjr4QW5h93dKT9ZYoVSrN+xAR+PwNaWnPNyh9NSIEZu6TuB38HkN7XMsSa+rlPt+pfQ7e3/+7FSNr5xczdt1SpVP31Aq79+tofumreM33/A5TNJ/VMuwkZ7Y8TWlc+KhSgNd/axyfh8MPD8h6WGlmxNfUW5iPMK6dlGKPb4z1vZ5nPESJjmnDtXLJb1xhBN219n+kKQ7I+LUXuelNE4PrT4iIsZdQAH6xZTt58bMZ/5DR9N86Af/cIuGNv9aFBGLWufLrTl+otRv5wdKtW0vjoh7bd8saWFErLL9PaWBPn6Wl/uhpHflAh0wRL4RcpOk6S39D9Ei16Z+LiLGHPAJKJHtnys9VePXvc5LaWz/u6Q/RMRnxpq3rx/yi86w/RKlEXjXKDVXsYY+QqanIuLkXuehVBHxXY1/VD2gz7itJr3jtCoiFo42Q256dp6kMyPifNtPlrSH0rMwpdTv7irb+ynd8a/2i5qjkccZADCC3LLq+Uq1rTsr1bR9e9SFgIJFxAFjz9VMEXFiu/P2c/NgdM4zlEapW6XUFGVzRrIFgM7rcvPg3LftdElLIuLjkhQR10bEYyNiXkTMU2qVsm9u+n+BUn91295f0r25HxiA8bFSU8m7lZoHL1HqtwmgwahphSLiFLXxcHUA6AmrjprWsRyg1A/pWttX52knR3ru4XAuVHqUxlKlRxAcXXsO0bfyQIjj61zdEJEetfK0XucDQFkIWgEAhaulefCoct/UUYOKXNs6+HcoDYABAAA6jObBAAAAAIBi1VLT+pjHDMTc3RnkbSzuQsugjTWPDr1xY/2jT6/bUP86Htow0uO4+sc2M+ptOLFi2a26+65VNGdDb4zzMTVAPxkYGIjdd5/X62wA6LCrrrpyVUTs1Ot8TAa1lHLn7r67LvlJvYPPuuYCzJQulI+mdKEQtnb9cM/G7pz71qyrNX1J+uO9oz0ytjOW3HVf7euYWnO7hgN2q/ec+OqXPKvW9IFRdb9PK9A1u+8+Tz+/gqcjAZPNltN9S6/zMFnQpxUAUD5qWgEAaCxuXQMAAAAAikVNKwCgbO7+6MEAAKAcBK0AgPLRPBgAgMYiaAUAFK/uwfcAAEC5CFoBAEWzCFoBAGgyOgkBAAAAAIrVVtBq+yDbN9heavvddWcKAIBHuIYXUDPKTgDQOWM2D7Y9VdKnJb1I0nJJv7J9QURcX3fmAACQTPNg9BXKTgDQWe3UtO4naWlE3BgRD0s6W9Kh9WYLAIBNbHf0BdSMshMAdFA7QetsScsq75fnaUPYPsb2YtuL/7RqVafyBwAAQSv6zZhlp2q5aeWqlV3NHAD0m44NxBQRiyJiYUQsfMzAQKeSBQAAmHSq5aadBnbqdXYAoGjtPPJmhaS5lfdz8jQAALqC2lH0GcpOANBB7dS0/krSfNt72J4h6XBJF9SbLQAAMkYPRv+h7AQAHTRmTWtErLf9NkkXSZoq6YyIuK72nAEAIMmMHow+Q9kJADqrnebBiogLJV1Yc14AABgWQSv6DWUnAOicjg3EBAAAAABAp7VV0woAQC9R0woAQHMRtAIAikfQCgBAcxG0AgDKxoi/AAA0Gn1aAQAAAADFoqYVAFA8mgcDANBctQStU2xtMX1qHUlvWseUegswD63bUGv6knT/2vW1r2OrGfV+D5PF/B22qX0dA1vPrDX9bbeo9x7U1Jp/c8BIeE4rAADNRk0rAKB4BK0AADQXQSsAoHzErAAANBYDMQEAAAAAikVNKwCgbKZ5MAAATUbQCgAoHkErAADNRdAKACgeQSsAAM1F0AoAKBqPvAEAoNkYiAkAgBa259r+se3rbV9n+/g8/d9s/9b2Nba/bXtWZZmTbC+1fYPtl/Qs8wAATDIErQCA8rnDr7Gtl3RiRCyQtL+k42wvkHSJpCdFxFMk/U7SSZKUPztc0l6SDpL0GdtTN3OrAQCACFoBAKXLowd38jWWiLg9Iq7Kf6+WtETS7Ii4OCLW59kulzQn/32opLMjYm1E3CRpqaT9Or4vAABoIPq0AgCK18s+rbbnSdpH0hUtH/2VpG/mv2crBbGDludpAABgMxG0AgCKV0PQOmB7ceX9oohYNMx6t5F0nqQTIuK+yvT3KDUhPrPTGQMAAEMRtAIAmmhVRCwcbQbb05UC1jMj4vzK9DdLOkTSgRERefIKSXMri8/J0wAAwGaiTysAoHxdHojJqWr3dElLIuLjlekHSXqnpFdExIOVRS6QdLjtmbb3kDRf0i8nvL0AAOAR1LQCAIrXgz6tB0g6QtK1tq/O006WdJqkmZIuyXm6PCKOjYjrbJ8j6XqlZsPHRcSGbmcaAIDJiKAVAFC0dkf87aSI+JmGr5O9cJRlPijpg7VlCgCAhqJ5MAAAAACgWNS0AgCK18tH3gAAgN4iaAUAFI+gFQCA5iJoBQCUj5gVAIDGImgFABSPmlYAAJqLgZgAAAAAAMWiphUAUDZT0woAQJPVErRa0vRp/V2Ju3bdxtrXsXrN+trXsebhep9t//D6+vfTdlvWf29lyxlTa1/HrK2m15r+A2vr/a4jak0eGJElEbMCmAyiCxfTyXK9rvu8z83Q/kJNKwCgcKZwAQBAgxG0AgCKR8wKAEBz9XcbXgAAAADApEZNKwCgeDQPBgCguQhaAQBlM82DAQBoMoJWAEDRLGnKFKJWAACaiqAVAFA8aloBAGguBmICAAAAABSLmlYAQPEYiAkAgOYas6bV9lzbP7Z9ve3rbB/fjYwBACDpkYGYOvkC6kTZCQA6q52a1vWSToyIq2xvK+lK25dExPU15w0AAFnUtKLvUHYCgA4aM2iNiNsl3Z7/Xm17iaTZkjjxAgC6wASt6CuUnQCgs8Y1EJPteZL2kXRFLbkBAACYRCg7AcDmaztotb2NpPMknRAR9w3z+TG2F9tevHLVyk7mEQDQcPRpRT8arexEuQkA2tdW0Gp7utJJ98yIOH+4eSJiUUQsjIiFOw3s1Mk8AgAaznZHX0Ddxio7UW4CgPaN2afV6ep+uqQlEfHx+rMEAEAFtaPoM5SdAKCz2qlpPUDSEZJeYPvq/HppzfkCAADoV5SdAKCD2hk9+GdKTxwAAKDreOQN+g1lJwDorHae0woAQE8RswIA0FwErQCA4lHTCgBAcxG0AgCKR8wKAEBztf2cVgAAAAAAuo2aVgBA2UzzYAAAmoygFQBQtDR6cK9zAQAAeqWWoDUkRUQdST9iw8Z60++GbhTC7rxvba3pbz2z/vse06fWv6OmT62/pXzdNUV1/yZC/f+bQ78yNa0AuqLua+m6DRtrTV+S1q2vfx3dMH1avWWzbpT90DnUtAIAikfMCgBAc3GLAQCAFrbn2v6x7ettX2f7+Dx9R9uX2P59/n+HPN22T7O91PY1tvft7RYAADB5ELQCAIpnu6OvNqyXdGJELJC0v6TjbC+Q9G5JP4yI+ZJ+mN9L0sGS5ufXMZI+2+l9AABAUxG0AgDK5tQ8uJOvsUTE7RFxVf57taQlkmZLOlTSV/JsX5H0yvz3oZK+GsnlkmbZ3qWzOwIAgGaiTysAoGhp9OCOd2odsL248n5RRCwadv32PEn7SLpC0s4RcXv+6A5JO+e/Z0taVllseZ52uwAAwGYhaAUAFK+GoHVVRCxsY73bSDpP0gkRcV81HxERthlWGwCAmtE8GACAYdierhSwnhkR5+fJfxxs9pv/vzNPXyFpbmXxOXkaAADYTAStAIDidbtPq1OV6umSlkTExysfXSDpqPz3UZL+szL9yDyK8P6S7q00IwYAAJuB5sEAgOLV0Dx4LAdIOkLStbavztNOlvQRSefYfoukWyQdlj+7UNJLJS2V9KCko7uaWwAAJjGCVgBA2dqsHe2kiPhZWvOwDhxm/pB0XK2ZAgCgoWgeDAAAAAAoFjWtAICiWe5F82AAAFAIglYAQPGIWQEAaC6CVgBA8aYQtQIA0FgErQCA4hGzAgDQXAzEBAAAAAAoFjWtAICi2T15TisAACgEQSsAoHhTiFkBAGgsglYAQPGoaQUAoLkIWgEAxSNmBQCguRiICQAAAABQLGpaAQBFsySLqlYAAJqKoBUAUDwGYgIAoLkIWgEAZbMZiAkAgAarLWjdGHWlnETN6U/twm39GdPq71L80IYNtaa/fk3NX4SkOx5cU/s6NtZ9QEnac8ftak1/q5lTa02/C7sIGBExK4CNdRcuJT20rt5y06rVD9eaviTdce9Dta+jG+WmXbbfotb0d9p2Zq3po7MYiAkAAAAAUCyaBwMAimZJU6hqBQCgsQhaAQDFI2YFAKC5CFoBAMVjICYAAJqLPq0AAAAAgGJR0woAKJpN82AAAJqMoBUAUDwGYgIAoLkIWgEAxSNkBQCgudoOWm1PlbRY0oqIOKS+LAEAMBQDMaEfUXYCgM4Yz0BMx0taUldGAAAAJhnKTgDQAW0FrbbnSHqZpC/Wmx0AAIaypCnu7AuoG2UnAOicdpsHnyrpnZK2rS8rAAAMw6Z5MPrRqaLsBAAdMWZNq+1DJN0ZEVeOMd8xthfbXrxq1cqOZRAAgMHH3nTqBdSpnbJTtdy0knITAIyqnebBB0h6he2bJZ0t6QW2v946U0QsioiFEbFwYGCnDmcTANBkzrWtnXoBNRuz7FQtN+1EuQkARjVm0BoRJ0XEnIiYJ+lwST+KiDfVnjMAAIA+RNkJADqL57QCAIo2OBATAABopnEFrRFxqaRLa8kJAAAjoEkv+hVlJwDYfNS0AgCKR8gKAEBztfWcVgAAesWWptgdfY29Tp9h+07bv6lM29v25bavzqO+7pen2/Zptpfavsb2vjXuDgAAGoegFQCAR/uypINapn1U0vsjYm9J/5zfS9LBkubn1zGSPtudLAIA0AwErQCA4nX7Oa0RcZmku1onS9ou/729pNvy34dK+mokl0uaZXuXzmw5AACgTysAoHg1DMQ0YHtx5f2iiFg0xjInSLrI9seUbvo+M0+fLWlZZb7ledrtHcorAACNRtAKACheDYMHr4qIheNc5m8lvSMizrN9mKTTJb2w4zkDAABD1Ba0RkRdSaf0a029O7rxCIeH1m+oNf1frbi71vQl6ZuX3lj7Oh64f23t63j1i55Ya/qvW/C4WtPfsHEy/OqAzXKUpOPz39+S9MX89wpJcyvzzcnTAHRQN65D9z64rtb0L7t5Za3pS9KiH95U+zo2bNhY+zqOev4etab/sj3rLTehs+jTCgAomtXZkYPbGT14BLdJem7++wWSfp//vkDSkXkU4f0l3RsRNA0GAKBDaB4MAChbm4MndXSV9lmSnqfU93W5pPdJequkT9qeJukhpZGCJelCSS+VtFTSg5KO7m5uAQCY3AhaAQDF60Z3iqqIeP0IH/3lMPOGpOPqzREAAM1F0AoAKB59WQAAaC7KAQAAAACAYlHTCgAomtX95sEAAKAcBK0AgOJNIWYFAKCxCFoBAMUjaAUAoLkIWgEARbNpHgwAQJMxEBMAAAAAoFjUtAIAikfzYAAAmougFQBQPFoHAwDQXAStAICiWdIUolYAABqLoBUAUDwGYAAAoLkoBwAAAAAAikVNKwCgeLQOBgCguQhaAQBFs02fVgAAGoygFQBQPGJWAACai6AVAFA8ntMKAEBzMRATAAAAAKBY1LQCAIrGc1oBAGg2glYAQPGIWQEAaC6CVgBA2UyfVgAAmow+rQAAAACAYtVW0+qa23Jt3LCx1vTX1Zy+JD28vv51bD9jRq3p/2Hlg7WmL0k3//wXta+jG5bvO6fW9LeYMbXW9Ov+TQOjsTj+gJJFRO3r2NCFdTywdkOt6f/whrtqTV+SfvOdC2pfh9Y/XPsq/vtxR9Wa/nN2e0yt6aOzaB4MAChaGoip17kAAAC9QtAKACgeQSsAAM1F0AoAKB7N0wEAaC4GYgIAAAAAFIuaVgBA0ejTCgBAsxG0AgDKZonWwQAANBdBKwCgeFOIWgEAaCyCVgBA0WgeDABAs7U1EJPtWbbPtf1b20tsP6PujAEAAPQryk4A0Dnt1rR+UtIPIuI1tmdI2qrGPAEAMAStg9GHKDsBQIeMGbTa3l7ScyS9WZIi4mFJD9ebLQAABllTRNSK/kHZCQA6q53mwXtIWinpS7Z/bfuLtreuOV8AAEhKfVrtzr7GXKd9hu07bf+mZfrf5+ae19n+aGX6SbaX2r7B9ks6vhPQbyg7AUAHtRO0TpO0r6TPRsQ+kh6Q9O7WmWwfY3ux7cWrVq3scDYBAI3lNBBTJ19t+LKkg4Zkw36+pEMlPTUi9pL0sTx9gaTDJe2Vl/mM7amd2wHoQ2OWnarlppWUmwBgVO0ErcslLY+IK/L7c5VOxENExKKIWBgRCwcGdupkHgEA6KqIuEzSXS2T/1bSRyJibZ7nzjz9UElnR8TaiLhJ0lJJ+3UtsyjRmGWnarlpJ8pNADCqMYPWiLhD0jLbe+ZJB0q6vtZcAQBQMcXu6GuCnijp2bavsP0T20/L02dLWlaZb3mehoai7AQAndXu6MF/L+nMPPrdjZKOri9LAABsMtintcMGbC+uvF8UEYvGWGaapB0l7S/paZLOsf1nHc8ZJgvKTgDQIW0FrRFxtaSF9WYFAIDhbUbt6EhWRcR4r2vLJZ0fESHpl7Y3ShqQtELS3Mp8c/I0NBhlJwDonHb6tAIAAOk7kp4vSbafKGmGpFWSLpB0uO2ZtveQNF/SL3uVSQAAJpt2mwcDANAzNTQPHmN9PkvS85SaES+X9D5JZ0g6Iz8G52FJR+Va1+tsn6PUZ3G9pOMiYkN3cwwAwORF0AoAKJrV/WZBEfH6ET560wjzf1DSB+vLEQAAzUXQCgAomyV3u6oVAAAUg6AVAFA8QlYAAJqLgZgAAAAAAMWiphUAUDSrlkfeAACAPlFb0Dql5vLF+o1Rb/ob6k1fkraeObX2ddxd8xcxsN3MWtPvmtV/qn0VM6bX27DhgbXra01/Y9T/mwBGQsgKlK0b/c67cfNq+tR617HbY7aqNX1JmrnnvrWvY8P6+gdI321g61rTnzGNBqf9hJpWAEDxqGgFAKC5CFoBAIUzowcDANBg1IsDAAAAAIpFTSsAoGgWd1gBAGgyglYAQPFoHgwAQHMRtAIAikfICgBAcxG0AgDKZmpaAQBoMroJAQAAAACKRU0rAKBoDMQEAECzEbQCAIpH82AAAJqLoBUAUDxCVgAAmosWVwAAAACAYlHTCgAoHq2DAQBoLoJWAEDR0kBMRK0AADQVQSsAoHjUtAIA0FwErQCAwlmmphUAgMZiICYAAAAAQLGoaQUAFI/mwQAANBdBKwCgaAzEBABAsxG0AgDKZmpaAQBoMoJWAEDxCFoBAGguBmICAAAAABSLmlYAQPF45A0AAM1F0AoAKJolTSFmBQCgsfo2aK27f9NkKSDtPGuLWtN/zV/sXGv6krT6ba+tfR333L+29nW8Ye9dak1/x61n1Jr+tMnyo0BfoqYVwNQuXIdmbTW91vRf3YVy067HPLP2dayP2lehA2bvWGv6O25Tb7kJndW3QSsAoDkYiAkAgOZiICYAAAAAQLGoaQUAFI/mwQAANBc1rQCAog0OxNTJ15jrtM+wfaft3wzz2Ym2w/ZAfm/bp9leavsa2/t2fCcAANBgBK0AgMK54//a8GVJBz0qJ/ZcSS+WdGtl8sGS5ufXMZI+u9mbDAAAHkHQCgBAi4i4TNJdw3z0CUnvlFQdO/NQSV+N5HJJs2zXO1w4AAANQp9WAEDZXMbowbYPlbQiIv7XQzM0W9KyyvvledrtXcweAACTFkErAKB4NcSsA7YXV94viohFI67f3krSyUpNgwEAQBe1FbTafoekv1ZqDnWtpKMj4qE6MwYAgDQ4EFPHw9ZVEbFwHPM/XtIekgZrWedIusr2fpJWSJpbmXdOnoYGo+wEAJ0zZp9W27MlvV3Swoh4kqSpkg6vO2MAAAxyh1/jFRHXRsRjI2JeRMxTagK8b0TcIekCSUfmUYT3l3RvRNA0uMEoOwFAZ7U7ENM0SVvaniZpK0m31ZclAAB6y/ZZkv5H0p62l9t+yyizXyjpRklLJX1B0t91IYsoH2UnAOiQMZsHR8QK2x9TGt5/jaSLI+Li1vlsH6M01L/m7rZbp/MJAGiyLg/EFBGvH+PzeZW/Q9JxdecJ/aOdshPlJgBoXzvNg3dQGs5/D0m7Stra9pta54uIRRGxMCIWDgzs1PmcAgAaqwfPaQUmrJ2yU7XctBPlJgAYVTvNg18o6aaIWBkR6ySdL+mZ9WYLAIBN7M6+gJpRdgKADmonaL1V0v62t3IaMvFASUvqzRYAAJv0eiAmYJwoOwFAB40ZtEbEFZLOlXSV0pDtUySN+Cw7AACAJqPsBACd1dZzWiPifZLeV3NeAAAYHtWj6DOUnQCgc9oKWgEA6JXUpJeoFQCApiJoBQCUjcGTAABoNIJWAEDxiFkBAGiudkYPBgAAAACgJ6hpBQCUj6pWAAAai6AVAFA4MxATAAANVkvQakmuedSMqTWnP23q5Gg5vcX0evfT3B23rDV9STrxWXvUvo616zfWvo4Z0+o9pqZNrfe7JmRALzEQE4ApXTgPbLNFvfU5ezx261rTl6Sdt9+i9nV0w5Yzptaa/lY1p4/OoqYVAFA0i5smAAA02eSoTgQAAAAATErUtAIAykdVKwAAjUXQCgAoHgMxAQDQXAStAIDiMRATAADNRZ9WAAAAAECxqGkFABSPilYAAJqLoBUAUDaeeQMAQKMRtAIAisdATAAANBdBKwCgaBYDMQEA0GQMxAQAAAAAKBY1rQCA4lHRCgBAcxG0AgDKR9QKAEBjEbQCAIrHQEwAADQXQSsAoHgMxAQAQHMxEBMAAAAAoFjUtAIAikdFKwAAzUXQCgAoH1ErAACNRdAKACiaxUBMAAA0GUErAKBsZiAmAACajIGYAAAAAADFImgFABTPHX6NuT77DNt32v5NZdq/2f6t7Wtsf9v2rMpnJ9leavsG2y/Z7A0GAACPIGgFAJSv21Gr9GVJB7VMu0TSkyLiKZJ+J+kkSbK9QNLhkvbKy3zG9tSJbCYAAHg0glYAQOHc8X9jiYjLJN3VMu3iiFif314uaU7++1BJZ0fE2oi4SdJSSft1bvsBAGi2WgZiuuqqK1dtOd23jGORAUmr6shLF7EN5ZgM21HiNuze6wwABfkrSd/Mf89WCmIHLc/TgLZMoNwklXmdGC+2oQyTYRukMreDslOH1BK0RsRO45nf9uKIWFhHXrqFbSjHZNiOybANQCfVMHrwgO3FlfeLImJRe3nxeyStl3Rmx3OFRhpvuUmaHNcJtqEMk2EbpMmzHRgej7wBABSt/W6o47JqIoUb22+WdIikAyMi8uQVkuZWZpuTpwEAgA6gTysAoHzdH4jp0VmwD5L0TkmviIgHKx9dIOlw2zNt7yFpvqRfTmwtAACgVSk1rW01ySoc21COybAdk2EbgI5pZ/Ckjq7PPkvS85SaES+X9D6l0YJnSrrEqb3y5RFxbERcZ/scSdcrNRs+LiI2dDXDaKLJcJ1gG8owGbZBmjzbgWF4U+smAADK85S9/zK++8NfdDTNeQNbXEnfJwAA+kMpNa0AAIyohoGYAABAnyBoBQAUj5gVAIDm6ulATLYPsn2D7aW2393LvEyU7bm2f2z7etvX2T6+13maKNtTbf/a9vd6nZeJsD3L9rm2f2t7ie1n9DpP42X7Hfk4+o3ts2xv0es8AT3nVNPayRfQryg7laPfy00SZSf0j54FrbanSvq0pIMlLZD0etsLepWfzbBe0okRsUDS/pKO69PtkKTjJS3pdSY2wycl/SAi/lzSU9Vn22J7tqS3S1oYEU+SNFXS4b3NFVCKAoYPBnqMslNx+r3cJFF2Qp/oZU3rfpKWRsSNEfGwpLMlHdrD/ExIRNweEVflv1cr/dhn9zZX42d7jqSXSfpir/MyEba3l/QcSadLUkQ8HBH39DRTEzNN0pa2p0naStJtPc4PAKAclJ0K0e/lJomyE/pLL4PW2ZKWVd4vV5+dsFrZnidpH0lX9DgrE3Gq0vMHN/Y4HxO1h6SVkr6Um+p80fbWvc7UeETECkkfk3SrpNsl3RsRF/c2V0DvWTQPBjLKTuU4Vf1dbpIoO6GP9LRP62RiextJ50k6ISLu63V+xsP2IZLujIgre52XzTBN0r6SPhsR+0h6QFJf9fWxvYPSHfM9JO0qaWvbb+ptroAy0DgYmHz6tew0ScpNEmUn9JFeBq0rJM2tvJ+Tp/Ud29OVTrpnRsT5vc7PBBwg6RW2b1ZqavQC21/vbZbGbbmk5RExeKf2XKUTcT95oaSbImJlRKyTdL6kZ/Y4T0ARqGkFJFF2KsVkKDdJlJ3QR3oZtP5K0nzbe9ieodRp+oIe5mdCbFupL8CSiPh4r/MzERFxUkTMiYh5St/DjyKir+5SRcQdkpbZ3jNPOlDS9T3M0kTcKml/21vl4+pA9dmACEBd3OF/QJ+i7FSAyVBukig7ob/07DmtEbHe9tskXaQ00tcZEXFdr/KzGQ6QdISka21fnaedHBEX9i5LjfX3ks7MF/IbJR3d4/yMS0RcYftcSVcpjaz4a0mLepsrAEApKDuhBpSd0BccEb3OAwAAI3rqPn8ZF/3k8o6mucv2M66MiIUdTRQAANSiZzWtAAC0iwa9AAA0F0ErAKBoDJ4EAECz8cgbAAAAAECxqGkFABSPEX8BAGguglYAQPmIWQEAaCyCVgBA8YhZAQBoLoJWAEDxGIgJAIDmYiAmAAAAAECxqGkFABTODMQEAECDEbQCAIpm0TwYAIAmo3kwAAAAAKBY1LQCAIpHTSsAAM1FTSsAAAAAoFjUtAIAisdATAAANBdBKwCgbKZ5MAAATUbQCgAomvMLAAA0E0ErAKB8RK0AADQWAzEBAAAAAIpFTSsAoHgMxAQAQHMRtAIAisdATAAANBdBKwCgeMSsAAA0F31aAQAAAADFoqYVAFA+qloBAGgsglYAQPEYiAkAgOYiaAUAFM1iICYAAJrMEdHrPAAAMCLbP5A00OFkV0XEQR1OEwAA1ICgFQAAAABQLEYPBgAAAAAUi6AVAAAAAFAsglYAAAAAQLEIWgEAAAAAxSJoBQAAAAAU6/8Dz/D4/h8UhQ0AAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "Err_B7=error(xdata7, poptB7[0], poptB7[1],poptB7[2], poptB7[3], poptB7[4], recorteB7.ravel(), inc=1)\n", + "poptB7E, pcovB7E = curve_fit(gauss2d, xdata7, recorteB7.ravel(), p0=[3,3,3,1,1],sigma=Err_B7)\n", + "estrellaB7E=gauss2d(xdata7, poptB7E[0], poptB7E[1],poptB7E[2], poptB7E[3], poptB7E[4])\n", + "FWHMB7E=FWHMB_I.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptB7E[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 7 fotografÃa (Banda Azul)\")\n", + "plt.imshow(recorteB7, plt.get_cmap('Blues'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 7 a partir de la gaussiana con incertidumbre (Banda Azul)\")\n", + "plt.imshow(estrellaB7E.reshape(10, 10), plt.get_cmap('Blues'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 8 con incertidumbre (Banda Azul)" + ] + }, + { + "cell_type": "code", + "execution_count": 858, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA70AAAFSCAYAAAA+ULjSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABDEElEQVR4nO3de7wcdX3/8ff7XJJwCQQ4ESEkgIr8xBtqRK03LFaBqqi1Ct5AbZFWW/1Va7X2p1Zr66VaL1gpVooXRFREUVGh1opaQQMG5KZcCpIQAiGSACGXc87n98d3DmyW3XP2uzt7yezrmcc+smf2O/P9zuzszOc73+98xxEhAAAAAACqaKTfBQAAAAAAoFuo9AIAAAAAKotKLwAAAACgsqj0AgAAAAAqi0ovAAAAAKCyqPQCAAAAACprrN8FAACgm0Z32z9i8t5Slxn33v79iDiy1IUCAICuoNILAKi0mLxX8w9+aanL3LzyUxOlLhAAAHQNlV4AQMVZMnfzAAAwrKj0AgCqzZLsfpcCAAD0CZVeAED10dILAMDQotILAKg+WnoBABhaXPoGAAAAAFQWLb0AgIpjICsAAIYZlV4AQPXRvRkAgKFFpRcAUG0WLb0AAAwxKr0AgIozLb0AAAwxLn0DAAAAACqLll4AQPXRvRkAgKFFpRcAUH10bwYAYGhR6QUAVByPLAIAYJhR6QUAVJtFSy8AAEOMS98AAAAAgMqipRcAUH10bwYAYGhR6QUAVBz39AIAMMyo9AIAqm+Ee3oBABhWXPruIdsH2A7bY8Xf/237T3qU9z/YXmf71l7k1wnbe9u+0PZdtj9STPtL2+fY+aPR2H697Y+VXtDW8n6P7S/2I+9mbJ9u+x+K94+x/T/9LhMADIp+nqsHie1ltu+2PdrBMu4737Qxb9h+WLt5Dwrb37V9fL/L0Q22T7H9//pdDkkq9tWHNPnsBNs/6VK+be/jGXmcafuF3cxjlrwH7vhn+0bbzy7e/4XtD7Yy31BWeouNdW/xA5l5ndzCfANzALZ9qO0f295ge9VsBx3byyS9RdIhEfHgFpZ9387UJydKWidpt4h4i+2DJL1W0gkRETkLsj1P0t9J+nDx90wwM/O9r7X9r7bHy16JshQH1Enb+5S97Ii4XNKdtp9f9rKBgWGl7s1lvtB1w3au7rf6c39E/DYido2IqX6Wa0cXEUdFxOf6XY5uiIiTIuJ9vc63UUWs2Fdv6HVZus32YyQ9VtI3i79PsD1Vc0y8wfaf9beUzTm5wfZVXcriM5JeYftBcyUc5jP384sfyMzrjZ0ucOaqcI98SdKFkvaU9ExJf277BU3SLpN0R0Tc1qvCNdPiNtpf0lU1FdxHSHp5RGxoI8tjJF0TEavrpi+KiF0lPVrSUyS9oY1ld53tXST9kaQNkl7ZpWzOkPT6Li0bGAx2uS/0yjCdq/uine1RBLLDHEOiD3b0/a7NY8/rJZ1R1+jzs5ljolKM+CHbjyulkOV7hqQHSXqI7SeWvfCI2Czpu5JePVfaHXbH6RbbD7P9o+Kq7DrbZxXTLyySXFZcWXmZ7cOLK7d/49Rt+D9sj9h+u+3rbd9h+yu292wh34fa/q9innW2z7C9aJZZDlD6EUxFxPWSfiLpkQ2W+2xJF0jatyj36cX0F9i+0vadxRWzRxTTv6BUSf5Wkf5ts6UvPnu87V86dUf+qu2zfH/32UbbaA/b37Z9u+3fFe/3K9KfLul4SW8r8n+2pMdL+tua/L5q+9biO7rQ9gPWu8ZRkn7U7MPiQsAFkg6pWf7M93eX7atsv6jmsxNs/8T2Pxdl/1/bR9V8fmCx/9xl+wJJE3XfR07ZpXQwu1PSe4vtUrusO2uu9N3j1LpxgBt04/HsLR//LekI2/PnKAuwgzItvRVTtXN1O8sujut/6dSKss72h11UCOZallOr7t/YvlzSPbbPVN253427eb/f9k8lbZL0gK6kth9n+9LiHHiWpAV1nz/P9sri/PU/Tq1Yc7L9h0WcsdH2zbbfM0f6t9leY/sW239Sew6cbVkz+0rdsmq7Uh5me0Ux71rbHy2mL7D9xWJ732n7F7b3rtluf5LxvbzV9uXFvn2W7QXFZ3u4SezUZBsstf31Iv0dLnpJFPv+39m+yfZttj9ve/fis5nv/Hjbvy3K+M5Z8riva6/v/529pVjuGtuvqUm7k+2PFPlucIqldio+e3KxP9xp+zLbh9fMV7/ffUHS0yWd7JreH3Xf8V62zy2+p59LemjN8rbbrxt8RyfY/qntfynKc4Pt3yum31ysW3139QnbFxT7/Y9s71+z7LD9BtvXSrq2mJbzO5grjv2lpKuVGohm8mwaaxbf2adsf6co78W2a7fPH9i+ppj3ZEmu+Sz3+Cel2PWbks5TTRxr+ynevhfPZts31pTxH2rSPuB3Wee/Jf3hHOWg0tvA+ySdL2kPSftJ+qQkRcQzis8fW1xdOav4+8FKV3D3V+qW+xeSXqh0RXdfSb+T9KkW8rWkfyrmeYSkpZLeM0v6j0l6te1x2wcrtVb+Z32iiPhPpR/MLUW5T7D9cElnSnqzpMVKO+K3bM+LiFdJ+q3uv7r+odnSO3UfPkfS6cV2OFPSi7S9+m00Iuk/ir+XSbpX0slFeU9Qann8UJH/A9ZJ6YrOQUpXji4t0jfzaEm/bvah7X0lPVfSRTWTr1c6oO4u6e8lfdHbdy1+UrHMCUkfkvRZ+76mny9JuqT47H2qq6hmll3F/GdK+rKk/2P7CTMfRMSimit9H5f0Y0n1LdpzKlrBt0k6OHdeYIdBS2/VVOpc3eaypXS+Xa50cfgYpVuBWl3WcUqB4qKIOE515/4m+b1KafstlHTTdoVP8cA3lCole0r6qtKF25nPHyfpNKWWq70k/Zukc93aBdd7lFpyFhVl/jM3ucfR9pGS/krSsyU9TNLh7S6rgY9L+nhE7KZUkfpKMf14pZhhqdK6naQU2zygeJr7e3mppCMlHSjpMZJOKKY3jZ0ekEm6D/vbSt/RAZKWKMURKpZ3gqRnKV242LXBcp6mFBMcIeldrmnomMODlbbDEkmvk/Qp23sUn/2zpCdI+j2l/eNtkqZtL5H0HUn/UEx/q6SzbS+uWW7tfneCUrzzxll6f3xK0mZJ+yj9Jl7bIM1sniTpcqXv8ktK2+6JSvvTK5Uq3LvWpH+F0jFpQtJKPTC2e2GxzENyfgdOvf0O1Oxx7BMlPVzSiprJc8WaxyrFt3tIuk7S+4tlTUj6utJtgRNK8fBTa7NTxjHK9s6SXlLkf4akY4vjhCKitrV6D0kXK8W77bhaqQv4rIa50vuN4grLzOtPi+nblA4o+0bE5oiY68b3aUnvjogtEXGv0oHunRGxKiK2KO0ML/EcXRoi4rqIuKBYzu2SPqp0Mm7m20o70r2SrpH02Yj4xRxlnfEySd8p8tumdCDaSelAlJv+yUqjgH8iIrZFxNcl/bxu/u22UUTcERFnR8SmiLhL6cc227puJyJOi4i7arbvY11cpWxgkaS7GkxfZ/tOpUriPZK+VrP8r0bELRExXQRM10o6rGbemyLiM8V9Tp9TOqju7XTv9BMl/b9iXS+U9K12y14s71mSvhQRayX9QA26b9h+maSXS/qj4vtpx11K2woABsnQnKvbWLYkfTAi1kfEb5Uq2MdlLOsTEXFzsT1adXpEXBkRkw3ON0+WNC7pY0U88DVJtet6oqR/i4iLi5bvz0naUsw3q4j474j4VXFevlwpOG62bV4q6T+Kcm5SXVCeuax62yQ9zPZERNwdERfVTN9L0sOKdbskIjY2WI9Wv5dbImK9UgxxaDFvTux0mFLF5K8j4p6638grJH00Im6IiLslvUOpMlK77/99Ea9dJukytVChqNkO7y2+//Mk3S3pYKceCK+V9KaIWF1so/8pfnuvlHReRJxXfCcXKFXgjq5Z7mz73XaKCv8fSXpXse5XKMVqOf43Iv6jiPPOUqrcvbf43s6XtFWpAjzjOxFxYbE+75T0FNtLaz7/p+J3eq/yfgeLiv/r49gnF8fDu5Ri7i+oaEWWWoo1z4mIn0fEpFJl9NBi+tGSroyIrxXb+WOSbq1Zbu4x6sXFup2vdGFjXI1bZD9RrGPTXgVzuEvpYsushrnS+8JILWUzr88U09+mdCXj507deee6OnR7pP7kM/aXdM7MCVrp6sOUpL1nW4jTiMVftr3a9kZJX1Rd19iatHtK+p5Sl9cFSj/G59r+8znKOmNf1VyhjYhpSTcrXZnLTb+vpNUR291rcHPd/NttI9s72/43py4uG5Xud1rkFkaItD1q+wNOXdI2Srqx+KjhtlK6er+wwfSJiFgkaWdJP5X0/Zo8Xl3T7eROSY+qW37tAWBT8XZXFa0FEXFPTdr7tlsbZX+VpKsjYmXx9xmSXu6aQbeKK4YnS3pRcQBq10KlbtRANdG9eUc1NOfqnGXXqD3f3qR0Hmp1WfXn6lbMNk+jeKC2NXh/SW+pvYihtE32nStT20+y/UOnrroblC5aNNs2+9aVc7syZy6r3uuUWtWucerC/Lxi+heU4ogvO3Wp/pAbDJDZ4vdS+5SNTUrxRW7stFTpAv1kg8+2i+mK92Paft9vWIYW3FGX58y8E0q/gesbzLO/pD+u2y+eptSgMCNnX12stD71v40ca2ve3ytJkRofaqfVbpP78iouJKzX9vt1bVlyfgd3Fv/Xx7EXFcfDhUqt64+U9I9Sy7Fms+93u99O8Vu+7+82jlHHS/pKcbFis6Sz9cBb9V6v1Bvj5UX9oh0Llca+mRVn7joRcWtE/GlE7KvU9eBfPfsokPWjCd8s6ai6k/SCeOBASvX+sVjWoyN1m3mlavrR13mIpKmI+HyxI61S6npxdJP09W5R+tFJkmxb6Qc3U8b6dZot/RpJS4ppM5ZuP/sDlvcWpW4zTyrWdaY7Wit9Bl+u1IXr2UpXdQ6YY97LlU5QDRVX3U5Xumo24XQfxmckvVHSXkXF+IoWy7ZG0h5Fd5QZyzoo+6uVbvy/1ek+tI8qHVyOliSnkeq+IekNke7pmHGPUmVeRbpZR+x26lo0T7N0nwF2aGV3baZ7c99V9Fyds+wZtefbZUrn61aXVb9NWnk6wmxpGsUDtefAmyW9v26b7xwRrXRp/JKkcyUtjYjdJZ2i5ttmjVKX9xn1Mclsy6o/f44qVaIkSRFxbaSu4A+S9EFJX7O9S9Gy+fcRcYhSL7jnqfHAOu18xzNyYqebJS1r0nNhu5hO6Tua1PYVvbKtU+pu/NAGn90s6Qt1+8UuEfGBmjQ5++rtSutT/9uYMdMwsXPNtDmfbDKH+/Jy6va8p+7/LUrbl7fl30HRiHK9Zo9j1ypVJmeewpEba9ZaU7cu1vbbseX91+l+89+X9MqaOPYlko526kYt209X6hZ+TGzfM2K736Hm/n4eodQjYVZUeuvY/mPfPzDA75S+3JkrD2vVYOCGOqdIen9ReZLtxbaPaSHrhUrdQDYUlZC/niXtb9Ki/XKnAQkerNQF+fIW8pHSPSh/aPuI4krkW5S6H8w8r7V+PWdL/zOlq+NvtD1WrGttV+Bm63qv0qNy9pT07hbLPTPvFkl3KP0g/nGO9Odplq4XTvdQvErpqtcdknZR+s5vLz5/jVJL75wi4ialLjl/73S/89N0/0Eoq+y2n6J0cjhMqdvJoUU5vqR0f9iYUpfsL0bEV+pmv0zSI50elbFAc98T9kxJ/1V0gwGqqcctvU6DyPzQaTC8K22/qZj+nuIq+cridXTNPO+wfZ3tX9t+bhe3xg6voufqnGXP+GunAY6WSnqTUlfMdpfVynabzc+UKht/6XQP84u1fTzwGUknFS2ttr2L06BSjXpj1VsoaX1EbLZ9mFJg38xXJL3G9iOc7imsf0zUbMv6jaQFRbnGle5tvO9eS9uvtL24aJG6s5g8bftZth9dVJI3KnXzbdRq1c73Ujtvq7HTz5UqMB8otvMC2zP3Zp4p6f86Dby5q1IsclaTVuFSFNvrNEkftb2vU2vkU4oY7IuSnm/7ucX0BU4DFzUdpEuz7KtFl+SvS3qPU+v4IappXSx6xa1WqoyNOvUSaVQZz3G07ac53a/6PqWW2Gat07m/g7ni2L2U7u2/spiUGyfX+o5S/PjiIs78S21f4czZf1+l9Hs6WPfHsQ+XtErSccUx6yuSXh0Rv6mbd6XSNt2zOG6+eY5yP1PpPuZZDXOld2aEwpnXOcX0J0q62PbdSlcC3xT3P/frPZI+59Qd4aVNlvvxYr7znfraX6R08/pc/l5pIIoNSjvd15slLK6GvFjS/1U62a9Uao1s6eHYEfFrpaszn1S6+vZ8pcErthZJ/knS3xXr+dbZ0hfzvFipy8+dRbpvK/3gmvmY0j3B65S2z/daKXfh80rdVFZLukrbD0DVyLeUBoCq7zZyZ/Edr1UaWOQFkVwl6SNKJ++1SgNh/TSjfC9X+r7XK52QPt9m2Y+X9M1I9x3dOvNS2r+epzS4xdMlvbluP15WHDzeqzRYyrVKo4XO5hVKASBQXb1v6Z2U9Jai5efJkt5QBF+S9C8RcWjxOi8Vz4coDS7ySKVBbP7VLdzyMQSG6Vzd8rJrfFNp8MSVxTyf7WBZ2537W0i/nZp44ASlc+DLavONiBWS/lTplpzfKQ2gc0KLi/9zSe8tvqt36f4BpBqV47tK9wj+sMhj5lw7E5c0XVakRyP+uaR/1/1jftSOGnukpCuL/e7jko4teow9WOlC9EalrvI/UuryXK+d72XGx9Ri7FRU/J6vdN/pb4t1eFnx8WlF2S6U9L9KLbB/kVGOdr1V0q+U7vNer9RSPlJUDo9RekrH7UotoX+t2esoH1e6B/93tj/R4PM3KnXZvVWpN99/1H3+p0Uedygdc/9HnfmSUsy3XmmwrqaPmGzjd3Cq0nNoa0889418rLS/3a77v8PcOLm2bOsk/bGkDyhtm4O0fQycs/8eL+lfa2PYIo49pfjsCKUu9V+rOb7PVNy/oNSAc6PS/cBnPXDxiVPjztFq4b5tb3/rBdA52xdLOiUi6g8yfWH7REmHRMSb+12WQeM0TP6/RcRT+l0WoFtGdl8a83/vr0pd5ubv/dUlEbG81fS2v6kU5DxV0t0R8c91n79DkiLin4q/vy/pPRHxs/JKjSqxHZIOiojr+l2WQeY08vAVkuZ3szUT6BbbX1K6N/Yb/S7LoLH9F0q3KrxtrrS9fEA7Ksr2M5XuB12n1Gr4GOW13nZVRJza7zIMqkgjV1LhRcW5G4NPTdiufUTEqc2ONbYPkPQ4pUcyPFXpdpBXK90O8ZaI+J3SwIC1V+RXqfngggBmYftFSt1Cd1ZqUfwWFV7sqCJitu78Qy0iPtlq2mHu3ozyHKzUDeFOpft9XxIRa/paIgCoVX735nURsbzm1azCu6vSICNvLrq7flrp/rFDle65+0hvNgAwVF4v6TalQYCmJP1Zf4sDoN9o6UXHimCP1lQAg8nqRkvv3NmmgXDOlnRGpGeYb/fYC9ufURoDQUr3X9WOkrmf7h9RH3iAiGAY8SYi4sh+lwHAYKGlFwBQce7H6M1WGlTo6oj4aM302mdPvkjpXkMpDap0rO35tg9UGkDk56VtAgAAhhgtvQAAlO+pSo9s+JXtlcW0v1V6VMOhSo/YuVGpG6Yi4krbX1EabXNS6fnbUz0uMwAAlTSQld69JiZi2bIDWk4fLT1PvbdGWnukxXYGcSDtKmzb6TY27HSjp+vNIvfrbue7zl2P3O00OpK/z+aU6ebf3qT1d6yjOx76o41jcici4idKHavrnTfLPO+X9P6uFQqVNTExEfvvf0C/iwGgZJdeesm6iFjc73JUwUBWepctO0A//OnFLaefns6vQUxlzpObw8IF+Zt262ReTSt3tduJ+XK3be52baeitWA879GVd2/JH7Bx89a8BpbR0bw7BdrZZ+/enLceu2Tug+3ss5syttPRz2KQaPRRH+7pBXpl//0P0E8vXjF3QgA7lJ3GfVO/y1AVA1npBQCgVD1u6QUAAIOjo0vfto+0/Wvb19l+e4PP59s+q/j84uJZhQAAAEOJ2AkAeq/tSq/tUUmfknSUpEOUBuc4pC7Z6yT9LiIeJulflB4QDgBA77j3ozcDjRA7AUB/dHLmPkzSdRFxQ0RslfRlScfUpTlG0ueK91+TdETxGAcAAHrHLvcFtIfYCQD6oJNK7xJJN9f8vaqY1jBNRExK2iBpr0YLs32i7RW2V6xbd3sHxQIAYHu2S30BbSotdqqNm24nbgKAWQ1MH62IODUilkfE8okJRuYGAJTDotKL6qmNmxYTNwHArDqp9K6WtLTm7/2KaQ3T2B6TtLukOzrIEwAAYEdF7AQAfdBJpfcXkg6yfaDteZKOlXRuXZpzJR1fvH+JpP+KiPwHlAIA0C534QW0h9gJAPqg7ef0RsSk7TdK+r6kUUmnRcSVtt8raUVEnCvps5K+YPs6SeuVDu4AAPQQXZIxGIidAKA/2q70SlJEnCfpvLpp76p5v1nSH3eSR7d0+5Lp1HR+Dtum8ubJzWPeWH7Dfm6gODU9nZW+jc2keWPdv+A9OtLdAHmX+aPZ8yzaeTwr/WTmxp1uoyFh53mtr8cIlQ70EZVeDIodOXYaNMPYAM6xDGhPR5VeAAB2BASKAAAMr4EZvRkAAAAAgLLR0gsAqDxaegEAGF5UegEA1caIywAADDUqvQCASjOjNwMAMNSo9AIAKo9KLwAAw4uBrAAAAAAAlUVLLwCg8mjpBQBgeFHpBQBUHpVeAACGF5VeAEC1MXozAABDjXt6AQAAAACVRUsvAKDy6N4MAMDwGthKb0540k4wY0VW+rzU0uZt05lzSJu2TmXPk2OkjZhvJHOmqcwNNdZGmbZlZrJpS/52HR/NK1juakxO5+5R0rzMX+v8sbyOHNORX6ax0dbzaGf/A8rAc3qB3ovMc0obp6Ds2Cy3TL2Qe2xyG+vQi8Mfx1gMuoGt9AIAUBYCMgAAhheVXgBA9VHnBQBgaDGQFQAAAACgsmjpBQBUm+neDADAMKPSCwCoPCq9AAAMLyq9AIDKo9ILAMDwotILAKg0HlkEAMBwYyArAAAAAEBltV3ptb3U9g9tX2X7SttvapDmcNsbbK8sXu/qrLgAALTBJb+ANhA7AUB/dNK9eVLSWyLiUtsLJV1i+4KIuKou3Y8j4nkd5AMAQPv6MHqz7aWSPi9pb0kh6dSI+LjtD0t6vqStkq6X9JqIuNP2AZKulvTrYhEXRcRJPS00eoHYCQD6oO1Kb0SskbSmeH+X7aslLZFUf+AGAKCv+nBPb8PKjaQLJL0jIiZtf1DSOyT9TTHP9RFxaK8Lit4hdgKA/ihlIKviCvXjJF3c4OOn2L5M0i2S3hoRV5aRZ69NT0dW+nu2TWXnsW1yOnueLJG3DpI0OpIXKGZuJk22UabMImm6jTzGx0az0o91eTtJ0mTmTGM9uGN/c8Z+3s46A2XpdaW3WeUmIs6vSXaRpJf0tGAYGDta7BSZ59LcY37u8iVpKjOTXpQp91hj5eUxkhsEKT9uGmnreJm3HgwuiF7rOCy2vauksyW9OSI21n18qaT9I+Kxkj4p6RuzLOdE2ytsr7hj3e2dFgsAgIEwS+XmtZK+W/P3gbZ/aftHtp/eq/Kh98qInWrjptuJmwBgVh1Vem2PKx20z4iIr9d/HhEbI+Lu4v15ksZtTzRaVkScGhHLI2L5XhOLOykWAADbK38gq4mZCkfxOrFhtk0qN7bfqdQF+oxi0hpJyyLicZL+StKXbO9W1upjcJQVO9XGTYuJmwBgVm13b3bql/BZSVdHxEebpHmwpLUREbYPU6pk39FungAAtKMLXenWRcTyOfJsWLmxfYKk50k6Ior+kxGxRdKW4v0ltq+X9HBJK8ouOPqH2AkA+qOTe3qfKulVkn5le2Ux7W8lLZOkiDhF6V6lP7M9KeleScfOnOABAOgF2/0Yvblh5cb2kZLeJumZEbGpZvpiSesjYsr2QyQdJOmGnhYavUDsBAB90MnozT/RHE8rjIiTJZ3cbh4AAOygmlVuPiFpvqQLior4zKOJniHpvba3SZqWdFJErO95qdFVxE4A0B+ljN4MAMAg68Pozc0qN+c1SX+2UldoAABQMiq9AIDK4/EYAAAMLyq9AIDqo84LAMDQotILAKg8WnoBABheHT2nFwAAAACAQUZLLwCg2kxLLwAAw2xgK73TGU+km5ya7uryJWkqM/2mLZN5M0jKfQrfVOZK3Lt1Ki8DSaMjeYHi2Ghu+vzOBpu35X3f45llkqRtmV/4WOZ2mj+Wv97bMvfzbZn7Uzt1gi0Z38U0j5lEn1jt7d9AVU3nBkHKP4bnxiiTbZRpMvNcnXsebWc75R5scuOsdmKa8cxYq40QRSOZ6zGivG3LhUt0amArvQAAlMMETAAADDEqvQCAyqPOCwDA8GIgKwAAAABAZdHSCwCoPLo3AwAwvKj0AgCqzXRvBgBgmFHpBQBUmpU/sigAAKgOKr0AgMqjpRcAgOHFQFYAAAAAgMqipRcAUHkMZAUAwPCi0gsAqDYGsgIAYKhR6QUAVJpFSy8AAMOMSi8AoOJMpRcAgCE2kJXeUGg6ouX0060nvc/k1HRW+tw8tk7mLV+SpjIz2bRtqqvpJWl8NC9Q3H3+eFb6eWPdH0ttt53yyiRJm+7dljdD5P2URhbkB+C5++CI8mYYH83/LqYz9g/qHADQHSEpsuKm/MApN0bJjYPu3ZYfN23aMpmVfktmHtsyY0Upv1dJbhy007zRrPSStHPmPPPH8+OBeZlj4zr7MXL5+ywXO1FrICu9AACUidgHAIDhRaUXAFB5XPEHAGB4dVzptX2jpLskTUmajIjldZ9b0sclHS1pk6QTIuLSTvMFAKAljN6MAULcBAC9V1ZL77MiYl2Tz46SdFDxepKkTxf/AwAADCPiJgDooV50bz5G0ucjjbBwke1FtveJiDU9yBsAMOR4ZBF2MMRNAFCyMobODUnn277E9okNPl8i6eaav1cV0wAA6Am73BfQAeImAOixMlp6nxYRq20/SNIFtq+JiAtzF1Ic+E+UpP2WLiuhWAAAJLT0YoCUHjctXUbcBACz6bilNyJWF//fJukcSYfVJVktaWnN3/sV0+qXc2pELI+I5XtNTHRaLAAA7kNLLwZFN+KmiYnF3SouAFRCR5Ve27vYXjjzXtJzJF1Rl+xcSa928mRJG7gvBQAADBviJgDoj067N+8t6Zyi29iYpC9FxPdsnyRJEXGKpPOUht2/Tmno/dd0mCcAAK0z3ZsxMIibAKAPOqr0RsQNkh7bYPopNe9D0hs6yQcAgHal0Zv7XQqAuAkA+qUXjyzqunR+yLNtKm+eyem89PduncpKL0nXbbg7K/36Tduy0t+yMS+9JO25c94usmS3eVnp9911p6z0krTrePd3253n5+UxOpIXUU9m7n+SNJ25n+fmkbuPS9IINQnsEExLLyov5xTRxuE+O27alBkHbciMaSTpjnu2ZqW/ddO9Wek3bp3MSi9Jo5nHmomd8uKmfXbJj5smdx7PSr9Qeeml/Hgg95Ccu12BepWo9AIAMBviJQAAhlcZz+kFAAAAAGAg0dILAKg8ujcDADC8aOkFAFRbyc/obaX+bHup7R/avsr2lbbfVEzf0/YFtq8t/t+jmG7bn7B9ne3LbT++uxsFAIDhQaUXAFBpafRml/pqwaSkt0TEIZKeLOkNtg+R9HZJP4iIgyT9oPhbko6SdFDxOlHSp0veDAAADC0qvQCAyut1pTci1kTEpcX7uyRdLWmJpGMkfa5I9jlJLyzeHyPp85FcJGmR7X1K3gwAAAwlKr0AAHSR7QMkPU7SxZL2jog1xUe3Stq7eL9E0s01s60qpgEAgA4xkBUAoPK6MI7VhO0VNX+fGhGnPjBf7yrpbElvjoiNta3EERG223hiKgAAyEGlFwBQeV0YvXldRCyfI89xpQrvGRHx9WLyWtv7RMSaovvybcX01ZKW1sy+XzENAAB0iO7NAIBq68/ozZb0WUlXR8RHaz46V9LxxfvjJX2zZvqri1GcnyxpQ003aAAA0AFaegEAKN9TJb1K0q9sryym/a2kD0j6iu3XSbpJ0kuLz86TdLSk6yRtkvSanpYWAIAKG9hKb2Tc5bR523T28rdM5s0zOZWX/voNd2ell6Qrbt2Ulf6q1Ruy0q+57Z6s9JK0YMFoVvqH77coK/3TH5r/3e2984K89CN56SVp3lheuaYjbzv1Qhe6czbIo+tZAB2zWn7MUGki4idKT0tq5IgG6UPSG7paKFTadEbgNDWdfyv5lm1TWenv3jyZlf6WjZuz0kvSZbdtzEp/5S15sdntbZRp3lheJ8qlE7tmpX/Cftuy0kvSI2K3rPRjo/kdQcdH846xoyN5cVM7ox+MKG+mXp8n0FsDW+kFAKAsxDIAAAwvKr0AgMobodYLAMDQotILAKg86rwAAAwvRm8GAAAAAFQWLb0AgEpLjxmiqRcAgGFFpRcAUHkj1HkBABhaVHoBAJVHSy8AAMOLSi8AoPKo8wIAMLwYyAoAAAAAUFltV3ptH2x7Zc1ro+0316U53PaGmjTv6rjEAABksCSX/A9oB7ETAPRH292bI+LXkg6VJNujklZLOqdB0h9HxPPazQcAgE4xkBUGAbETAPRHWff0HiHp+oi4qaTlAQBQDpuBrDCIiJ0AoEfKqvQeK+nMJp89xfZlkm6R9NaIuLJRItsnSjpRkpbst0xbJqdbznxrRtoZm7dOZaXfNpWXx/V3bM5KL0lXrd6Qlf4nP/5NVvott/w2K70kaTRvF7nlUY/MSr9wp/Gs9JL0xP3yeuXvPm9edh4LxiMr/eR0Xvr8EkkjmUF7KK9M7VQKIi8LoG+o82IAdRQ71cZNS5cuyzoeT2WesyRlxWWSdPfmyaz01915d1Z6Sbr4hjuz0l/x69uz0q+/PW/5kjQ+Ly+uuWXZXlnpp6cflJVeknbLLNPO80ez89hpPC82mzeal76t3joc+FGj44GsbM+T9AJJX23w8aWS9o+Ix0r6pKRvNFtORJwaEcsjYvleExOdFgsAAGAglRE71cZNE4sXd62sAFAFZYzefJSkSyNibf0HEbExIu4u3p8nadw2NVoAQM9YqadEmS+gQ8ROANBDZVR6j1OT7jm2H+yiz6Ttw4r87ighTwAAWmaX+wI6ROwEAD3U0T29tneR9AeSXl8z7SRJiohTJL1E0p/ZnpR0r6RjI7gLEADQWwxkhUFB7AQAvddRpTci7pG0V920U2renyzp5E7yAAAAqApiJwDovbJGbwYAYCDRJRkAgOFGpRcAUHkMPgUAwPCi0gsAqDyqvAAADC8qvQCAymMgKwAAhlcZjywCAAAAAGAg0dILAKg0SxqhoRcAgKE1kJXe6ZC2Tk63nH7bVOtp253nri2TWelvu3tbVnpJumnVxqz0W666OC+DHjzm79bf7JSV/tqHT2Tn8Zh9ds5Kv3lqKjuPqenMn0bmtm2np2XuQDzTmV93O3UCHhyJHYJN92ZUWijveDzdRjwwOZU3z8ateXHQqju3ZqWXpBtXb8hKf/P1q/MyWHNdXnpJmpcXo8T0I7LS7z2Rt3xJun3fvHn23y0/j6nMoCN/H+QYjs4MZKUXAIAyUecFAGB4UekFAFQeLb0AAAwvBrICAAAAAFQWLb0AgEpjICsAAIYblV4AQOXRvRkAgOFFpRcAUHlUeQEAGF5UegEAlWbnP/ILAABUBwNZAQAAAAAqi5ZeAEDl0dALAMDwotILAKi8Xg9kZfs0Sc+TdFtEPKqYdpakg4skiyTdGRGH2j5A0tWSfl18dlFEnNTTAgMAUGFUegEAldeHlt7TJZ0s6fMzEyLiZfeXxx+RtKEm/fURcWivCgcAwDAZyEqvJY1mBCijbTyAcToy0ytvhjs3bc3LQNK9927LmyEyV6IXtmzKSr5p82R2FrfelbedDtgtO4tsua1IvYi/q5IHsCOKiAuLFtwHcDpgvFTS7/e0UEChnfBhOnOmqem85W+ezJxB0tatU3kz3HtPZvq78tJL0lReXLNl85as9Ju3Za6zpG1Ted9dbowsKTNKzk8PdGogK70AAJTF8qCN3vx0SWsj4tqaaQfa/qWkjZL+LiJ+3J+iAQBQPVR6AQDV5q50b56wvaLm71Mj4tQW5z1O0pk1f6+RtCwi7rD9BEnfsP3IiNhYVmEBABhmVHoBAJXXhYGs1kXE8jbKMSbpxZKeMDMtIrZI2lK8v8T29ZIeLmlFw4UAAIAsLT2n1/Zptm+zfUXNtD1tX2D72uL/PZrMe3yR5lrbx5dVcAAAWjVS8qsDz5Z0TUSsmplge7Ht0eL9QyQdJOmGzrJBPxE3AcBgafXcfbqkI+umvV3SDyLiIEk/KP7eju09Jb1b0pMkHSbp3c0O8gAAVIXtMyX9TNLBtlfZfl3x0bHavmuzJD1D0uW2V0r6mqSTImJ9zwqLbjhdxE0AMDBa6t7cZBTKYyQdXrz/nKT/lvQ3dWmeK+mCmZO37QuUTgL1J3wAALrC6v1zeiPiuCbTT2gw7WxJZ3e7TOgd4iYAGCyd3NO7d0SsKd7fKmnvBmmWSLq55u9VxbQHsH2ipBMlacl+SzsoFgAA22vjyXZA2boWNy1duqzEYgJA9XR4a1ISEaEOH7kVEadGxPKIWL7nXovLKBYAAJJSpbfMF9CJsuOmvRYTNwHAbDqp9K61vY8kFf/f1iDNakm1zbb7FdMAAOgJO3VvLvMFtIG4CQD6pJNK77mSZkYVPF7SNxuk+b6k59jeoxiI4TnFNAAAgGFC3AQAfdLqI4sajUL5AUl/YPtapUcwfKBIu9z2v0tSMRDD+yT9oni9lxEpAQC9Rvdm9BJxEwAMllZHb244CqWkIxqkXSHpT2r+Pk3SaW2VDgCAEtAjGb1E3AQAg6WT0Zu7xpbmjbXe83rztunsPEYzL9XvOp63qeZnlH/GwoXz82bYvdHAj7PYsDYvfRvGJh6clX7hzuPZeUxO5Y39MW80/7sYG83bP3L3p5E2mopy54jMKD/aGFIlZzWcvQZAOSxphFovKszKO0e001sh9zy309hoVvq92ogH9txzp6z0tz7oQVnp75meykovSZqfV6bd99o9K/2eu2bGipJ2m5/3XYy1E6NkHmM5JqPXBrLSCwBAmUp5VAEAANghEQcAAAAAACqLll4AQOXRkw4AgOFFpRcAUGm2uX8MAIAhRqUXAFB51HkBABheVHoBAJXHs3UBABheDGQFAAAAAKgsWnoBAJXGc3oBABhuVHoBAJVHnRcAgOFFpRcAUG3mnl4AAIYZ9/QCAAAAACprIFt6bWkk47L82Gj+JfzxzHki8tI/dsmuWeklaevUdFb6e+55Ylb6NTetzUovSaPjo1npH/Z/lmSlP3if3bLSS9KBe87PSj9/NP/azljmPKM9aEbKvSdxcjq6VJL75ZSJ7qXoJ4sdENWWc4zNibFmzBvLOy8unJ8XYj50rwVZ6SVp1dI9stJPZ54X1z04b/mSNJ4ZNy1bkhcHPXLfhVnpJWnvnXfKSr9gXt46SPlxdW5MYIIIdGggK70AAJQlDWTV71IAAIB+odILAKg8Kr0AAAwvKr0AgMqjaxwAAMOLgawAAAAAAJVFSy8AoNK4pxcAgOFGpRcAUG1m9HAAAIYZlV4AQOXlPvILAABUB5VeAECl0b0ZAIDhNudAVrZPs32b7Stqpn3Y9jW2L7d9ju1FTea90favbK+0vaLEcgMAAAwkYicAGCytjN58uqQj66ZdIOlREfEYSb+R9I5Z5n9WRBwaEcvbKyIAAJ2xy30BczhdxE4AMDDmrPRGxIWS1tdNOz8iJos/L5K0XxfKBgBACayRkl/AbIidAGCwlPGc3tdK+m6Tz0LS+bYvsX1iCXkBAJDFoqUXA4fYCQB6qKOBrGy/U9KkpDOaJHlaRKy2/SBJF9i+prj62WhZJ0o6UZKWLF2m6elouRxjbYxQMtrlUU0euscu2fNs2jadlX7e6L5Z6W9etntWeklauGA8K/3Sibz1fsTeO2Wll6TFOy3ISj82mn9tZ3w0b//I3Z1G24iap6P134SUH5gTx6OyzEBWGBxlxU61cdPSZcvkjIN+OzHQ/LG8c+muC/JCzAN32zUrvSRNPyQv/d675cU06+6enDtRnXljedt2v0Xzs9IfvGd+fLn3rnl57DJ/NDuP8cxYKzcOaucQnvObQPW13dJr+wRJz5P0iojG0XhErC7+v03SOZIOa7a8iDg1IpZHxPK99ppot1gAAAADqczYqTZumphY3KUSA0A1tFXptX2kpLdJekFEbGqSZhfbC2feS3qOpCsapQUAoJtG7FJfQC5iJwDon1YeWXSmpJ9JOtj2Ktuvk3SypIVK3W5W2j6lSLuv7fOKWfeW9BPbl0n6uaTvRMT3urIWAAA00Y97eps8suY9tlcX582Vto+u+ewdtq+z/Wvbz+3KhkDPEDsBwGCZ84aLiDiuweTPNkl7i6Sji/c3SHpsR6UDAKAEfWidPV2pkvP5uun/EhH/XDvB9iGSjpX0SEn7SvpP2w+PiKleFBTlI3YCgMFSxujNAACgRqNH1sziGElfjogtEfG/kq7TLGNgAACAPFR6AQCV14XuzRO2V9S8Wn20zBttX150f96jmLZE0s01aVYV0wAAQAk6emQRAACDzurKFd51EbE8c55PS3qf0nNY3yfpI0rPawUAAF1EpRcAUG0ejOc1RsTamfe2PyPp28WfqyUtrUm6XzENAACUgO7NAIDKc8mvtspg71Pz54t0/6NozpV0rO35tg+UdJDSyL0AAKAEtPQCAFCy4pE1hyvd+7tK0rslHW77UKXuzTdKer0kRcSVtr8i6SpJk5LewMjNAACUh0ovAKDSrN4/sijnkTVF+vdLen/3SgQAwPAayEpvhLR523TL6acjsvNYMD7a1fTzxvJ7jj9o5/lZ6Z+0ZDIrfRubSfNG89Zjfmb6neblbdd25lm4IH83HxnJC5BHM9O3s8/mBu25MX47+8dUxkztLB8oS//v6AW6K2cfH8s8Z0n5cc0ubZx7c80b2y0r/ZJddspKv2kyL86S8s/Vu80bz0rfTkyzcKe8PHJjXkkaG+1ujDIAwzJgBzeQlV4AAMpEwAQAwPCi0gsAqDgPxOjNAACgPxi9GQAAAABQWbT0AgAqzeIKLwAAw4xKLwCg8ujeDADA8KLSCwCoPKq8AAAMLyq9AIBqMy29AAAMM25zAgAAAABUFi29AIBKYyArAACGG5VeAEDl0b0ZAIDhRaUXAFB5VHkBABheA1npHRmRdl3QetGmpiM7j62T01npt03lpd95fv6mHclsiRgd6X4Yl5tHbvr546NZ6SVpfDSvo+JU/u4hZe5T05nfndsoU+ZqZ5uOdjYUAGAQ5JyG3MZloNxzb65R58dN88fzyrTbTnl5TLYRQOR2KsndrvPG8r+H3O3UTh5jmfFfbsxLbx10aiArvQAAlIl4CQCA4UWlFwBQaWkgK2q9AAAMqzn7L9g+zfZttq+omfYe26ttryxeRzeZ90jbv7Z9ne23l1lwAABaZZf7AmZD7AQAg6WVTvunSzqywfR/iYhDi9d59R/aHpX0KUlHSTpE0nG2D+mksAAA5HPp/4A5nC5iJwAYGHNWeiPiQknr21j2YZKui4gbImKrpC9LOqaN5QAAAOwwiJ0AYLB0MhTfG21fXnTh2aPB50sk3Vzz96piGgAAPUX3ZgwIYicA6IN2K72flvRQSYdKWiPpI50WxPaJtlfYXnHHunWdLg4AAEn3D2RV5gtoQ6mxU23ctG7d7SUUDwCqq61Kb0SsjYipiJiW9Bml7jj1VktaWvP3fsW0Zss8NSKWR8TyvSYm2ikWAAAPVHIrLy29aEfZsVNt3DQxsbj8AgNAhbRV6bW9T82fL5J0RYNkv5B0kO0Dbc+TdKykc9vJDwCATlDpRb8ROwFA/8z5nF7bZ0o6XNKE7VWS3i3pcNuHSgpJN0p6fZF2X0n/HhFHR8Sk7TdK+r6kUUmnRcSV3VgJAACAQUHsBACDZc5Kb0Qc12DyZ5ukvUXS0TV/nyfpAUPyAwDQSzxmCL1E7AQAg2XOSi8AADsySxqhzgsAwNAayEqvZY1mRChjo/nRTG4AlB0wtXHTV846S9L88U6eONUdzlzv3HWWpHljeesdEdl55H5/uXm0U6SI7kbtI23ss9PtrAjQB7T0osqsvPPviNo4dmeer+c571w90kY8MJ4ZD0xNd/9cnSt3tduJm3LnaSeP3BiCsRHQawNZ6QUAoEwEWAAADK/BayoEAAAAAKAktPQCACqP7s0AAAwvKr0AgEpjICsAAIYblV4AQMWZll4AAIYY9/QCAAAAACqLll4AQLWZ0ZsBABhmVHoBAJVHnRcAgOFF92YAQKWlgaxc6mvOPO3TbN9m+4qaaR+2fY3ty22fY3tRMf0A2/faXlm8TunaxgAAYAhR6QUAVJ5LfrXgdElH1k27QNKjIuIxkn4j6R01n10fEYcWr5Ny1w8AADRHpRcAgJJFxIWS1tdNOz8iJos/L5K0X88LBgDAEBrIe3pDocmp6ZbTj7bxAMbxsbz6fm76ezZPzp2ozmjmaoyOj3Z1+ZI0HXnppzJnaOe7y51lakjv5uvFwD2jGZkwkBD6qvz9b8L2ipq/T42IUzPmf62ks2r+PtD2LyVtlPR3EfHjMgoJNOI2Dsgjyju/R+aPbryNIGVsJK9MuTFNROYMyt+2uWvdzrk0t0ztPNe8nX0K6KWBrPQCAFCmLjynd11ELG+rLPY7JU1KOqOYtEbSsoi4w/YTJH3D9iMjYmNJZQUAYKhR6QUAVN6gNELYPkHS8yQdEUUzUkRskbSleH+J7eslPVzSimbLAQAAraPSCwCovEGo89o+UtLbJD0zIjbVTF8saX1ETNl+iKSDJN3Qp2ICAFA5VHoBACiZ7TMlHa507+8qSe9WGq15vqQLivvfLipGan6GpPfa3iZpWtJJEbG+4YIBAEA2Kr0AgOrrcVNvRBzXYPJnm6Q9W9LZ3S0RAADDi0ovAKDS0rN1B6GDMwAA6AcqvQCAavPgDGQFAAB6j0ovAKDyqPMCADC85qz02j5N6fEKt0XEo4ppZ0k6uEiySNKdEXFog3lvlHSXpClJk+0+0xAAAGBHQewEAIOllZbe0yWdLOnzMxMi4mUz721/RNKGWeZ/VkSsa7eAAAB0jKZe9NbpInYCgIExZ6U3Ii60fUCjz5yeufBSSb9fcrkAACiJGcgKPUXsBACDpdN7ep8uaW1EXNvk85B0vu2Q9G8RcWqrC3bGqCPT0XLS+5efOc/4aPcDppx1lvLLNDY6kpVekqYjb0Ntm8pL385WzV2Pkcx1kPLLNTKS+93lfxe5A/GMMHIPcB9+DhggXYuduik3Rsn9zUUb5+rIPFtnnqo1iF1EenEsy/2ugR1Bp5Xe4ySdOcvnT4uI1bYfJOkC29dExIWNEto+UdKJkrTf0mUdFgsAgMQaxNAVQ6yU2Kk2blq6jLgJAGaT39xUsD0m6cWSzmqWJiJWF//fJukcSYfNkvbUiFgeEcv3mphot1gAAAADqczYqTZuWjyxuBvFBYDKaLvSK+nZkq6JiFWNPrS9i+2FM+8lPUfSFR3kBwBAe1zyC2gPsRMA9MGclV7bZ0r6maSDba+y/brio2NV1z3H9r62zyv+3FvST2xfJunnkr4TEd8rr+gAALTGJf8DZkPsBACDpZXRm49rMv2EBtNukXR08f4GSY/tsHwAAHSMcVnQS8ROADBYOuneDAAAAADAQOt09GYAAAYeDb0AAAwvKr0AgGpj8CkAAIYalV4AQOUx+BQAAMOLSi8AoNIsBrICAGCYMZAVAAAAAKCyaOkFAFQeDb0AAAyvgaz0Wtb4aOshyrapyM5jcmo6K/105IVMoyP5IdZYZv+7nG0ktVem3PW28rZrO8Yy1zvzq5aUv60GMaCejrzfxQj9P1Fl7N7AQHMb5yBOWwBaNZCVXgAAysRAVgAADC8qvQCAyqNFCACA4cVAVgAAAACAyqKlFwBQeTT0AgAwvKj0AgCqj1ovAABDi0ovAKDSLAayAgBgmFHpBQBUmxnICgCAYcZAVgAAAACAyqKlFwBQeTT0AgAwvKj0AgCqj1ovAABDi0ovAKDizEBWAAAMsYGs9K785SXrFu08dlODjyYkret1efqc9zCu87DmXfV13r/LyweAoXTppZes22ncjeImiXMaeVc332HIm9ipJANZ6Y2IxY2m214REct7XZ5+5j2M6zyseQ/jOgO9wujNqLJmcZPEOY28q5vvMOeNfIzeDACoNHfhNWee9mm2b7N9Rc20PW1fYPva4v89ium2/Qnb19m+3PbjS1lxAAAgiUovAGAY9LrWK50u6ci6aW+X9IOIOEjSD4q/JekoSQcVrxMlfTp7/QAAQFM7WqX31CHMexjXeVjzHsZ1BnrCJf+bS0RcKGl93eRjJH2ueP85SS+smf75SC6StMj2PuWsOcA5jbwrm+8w541Mjoh+lwEAgK55zKFPiG/94H9KXeYBEwsumeteLtsHSPp2RDyq+PvOiFhUvLek30XEItvflvSBiPhJ8dkPJP1NRKwotdAAAAypgRzICgCAMnVhIKsJ27WV0lMjouWr/hERtrnqDABAD1DpBQBUXhcGb17Xxqida23vExFriu7LtxXTV0taWpNuv2IaAAAowcDd02v7SNu/LkaxfHuDz+fbPqv4/OKi+1gZ+S61/UPbV9m+0vabGqQ53PYG2yuL17vKyLtY9o22f1Us9wFd2ro1uqftg2vWZ6XtjbbfXJemtPXOGdG0wbzHF2mutX18SXl/2PY1xTY9x/aiJvPO+v20ke97bK+u2aZHN5l31t9Dm3mfVZPvjbZXNpm37XUGBopTS2+ZrzadK2nm2HW8pG/WTH91cZx/sqQNEbGmo3XGUCF2InbqRuzUr7hplryJndC+iBiYl6RRSddLeoikeZIuk3RIXZo/l3RK8f5YSWeVlPc+kh5fvF8o6TcN8j5c6f6sbqz7jZImZvn8aEnfVWqweLKki7u0/W+VtH+31lvSMyQ9XtIVNdM+JOntxfu3S/pgg/n2lHRD8f8exfs9Ssj7OZLGivcfbJR3K99PG/m+R9JbW/g+Zv09tJN33ecfkfSusteZF69Bej360MfHzeu3lPqStGK2PCWdKWmNpG2SVkl6naS9lEZtvlbSf0ras0hrSZ8qfu+/krS839uM147zInYidupW7NSvuGmWvImdeLX9GrSW3sMkXRcRN0TEVklfVhrVslbt6Jdfk3SE3fndWhGxJiIuLd7fJelqSUs6XW6JejG65xGSro+Im0pe7n0ib0TTWs+VdEFErI+I30m6QA98HEh23hFxfkRMFn9epNStsFRN1rkVrfwe2s67+N28VCk4B1CiiDguIvaJiPGI2C8iPhsRd0TEERFxUEQ8OyLWF2kjIt4QEQ+NiEcHA1ghD7FTc8ROHcRO/YqbmuXdImInNDRold4lkm6u+XuVHnjwvC9N8aPboHT1vDRFt5/HSbq4wcdPsX2Z7e/afmSJ2Yak821fYvvEBp+3sm06daya/4i7td6StHfc35XvVkl7N0jTi/V/rdIV4Ubm+n7a8caie9BpTboldXudny5pbURc2+Tzbqwz0HPWwHRvBrqB2InYqV+xU6/jJonYCW0atEpv39neVdLZkt4cERvrPr5UqfvKYyV9UtI3Ssz6aRHxeElHSXqD7WeUuOw52Z4n6QWSvtrg426u93YiIpQOGD1l+52SJiWd0SRJ2d/PpyU9VNKhSl0gP9Lh8tpxnGa/UtnXfRIok0t+AbgfsdPwxU59iJskYid0YNAqva2MYHlfGttjknaXdEcZmdseVzponxERX6//PCI2RsTdxfvzJI3bnigj74hYXfx/m6RzlLpn1Or26J5HSbo0ItY2KFvX1ruwdqa7kbcf0bRW19bf9gmSnifpFcWJ4wFa+H6yRMTaiJiKiGlJn2myvG6u85ikF0s6a5YylrrOQD/R0osKI3Yidupp7NSPuKlYFrET2jZold5fSDrI9oHF1bNjlUa1rFU7+uVLJP1Xsx9cjqKP/mclXR0RH22S5sEz98DYPkxp+3V80rC9i+2FM++VBgm4oi5Zt0f3bHrlqlvrXaPZiKa1vi/pObb3KLqzPKeY1hHbR0p6m6QXRMSmJmla+X5y8629p+hFTZbXyu+hXc+WdE1ErGpSvtLXGegnl/wPGCDETsROPYud+hU3FcsidkL7YgBG06p9KY209xulkdfeWUx7r9KPS5IWKHUjuU7SzyU9pKR8n6bUNeRySSuL19GSTpJ0UpHmjZKuVBoJ7iJJv1dS3g8plnlZsfyZ9a7Nu2uje0raRelAvHvNtK6st/JGNF0u6d9r5n1t8b1fJ+k1JeV9ndK9HzPf+czolvtKOm+276fDfL9QfI+XKx2M96nPt9nvodO8i+mnz3y/NWlLW2devAbp9ZhDHx9r7txa6ktzjN7Mi1cvX43OFSJ2koidpA5ipyb5dj1umiVvYidebb9cfEkAAFTSYx/3hPj+jy4qdZn77D7vkohYXupCAQBAV4z1uwAAAHQbHZIBABheVHoBAJXG4FMAAAy3QRvICgAAAACA0tDSCwCoPEZcBgBgeFHpBQBUH3VeAACGFpVeAEDlUecFAGB4UekFAFQeA1kBADC8GMgKAAAAAFBZtPQCACrODGQFAMAQo9ILAKg0i+7NAAAMM7o3AwAAAAAqi5ZeAEDl0dILAMDwoqUXAAAAAFBZtPQCACqPgawAABheVHoBANVmujcDADDMqPQCACrNxQsAAAwnKr0AgOqj1gsAwNBiICsAAAAAQGXR0gsAqDwGsgIAYHhR6QUAVB4DWQEAMLyo9AIAKo86LwAAw4t7egEAAAAAlUVLLwCg+mjqBQBgaFHpBQBUHgNZAQAwvKj0AgAqzWIgKwAAhpkjot9lAACga2x/T9JEyYtdFxFHlrxMAADQBVR6AQAAAACVxejNAAAAAIDKotILAAAAAKgsKr0AAAAAgMqi0gsAAAAAqCwqvQAAAACAyvr/C5j/lioe0zYAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "Err_B8=error(xdata8, poptB8[0], poptB8[1],poptB8[2], poptB8[3], poptB8[4], recorteB8.ravel(), inc=1)\n", + "poptB8E, pcovB8E = curve_fit(gauss2d, xdata8, recorteB8.ravel(), p0=[1,1,1,1,1], sigma=Err_B8)\n", + "estrellaB8E=gauss2d(xdata8, poptB8E[0], poptB8E[1],poptB8E[2], poptB8E[3], poptB8E[4])\n", + "FWHMB8E=FWHMB_I.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptB8E[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 8 fotografÃa (Banda Azul)\")\n", + "plt.imshow(recorteB8, plt.get_cmap('Blues'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 8 a partir de la gaussiana con incertidumbre (Banda Azul)\")\n", + "plt.imshow(estrellaB8E.reshape(20, 20), plt.get_cmap('Blues'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 9 con incertidumbre (Banda Azul)" + ] + }, + { + "cell_type": "code", + "execution_count": 859, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA60AAAFSCAYAAAAZ/jk6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA1VUlEQVR4nO3de7wdVX338e83JzduEjCIkERAjdpgFTAiar1BVUAUalsEKyK1UlqsYOlDBZ8WtEV9WqtIVWoqKAhCEdGiRYEqijfQEBAIEY1ySUIiCdfIJeTye/5Y68Cck3PZ52TP3muf+bzz2q/sM3v2mjWzZ8/+/WatWeOIEAAAAAAAJZrU7QoAAAAAADAcklYAAAAAQLFIWgEAAAAAxSJpBQAAAAAUi6QVAAAAAFAsklYAAAAAQLEmd7sCAACMpO9pu0VseKytZcZjq6+MiAPbWigAAKgFSSsAoGix4TFNe/7hbS3z8Zs+M7OtBQIAgNqQtAIACmfJXM0CAEBTkbQCAMpmSXa3awEAALqEpBUAUD5aWgEAaCySVgBA+WhpBQCgsTh1DQAAAAAoFi2tAIDCMRATAABNRtIKACgf3YMBAGgsklYAQNksWloBAGgwklYAQOFMSysAAA3GqWsAAAAAQLFoaQUAlI/uwQAANBZJKwCgfHQPBgCgsUhaAQCF45Y3AAA0GUkrAKBsFi2tAAA0GKeuAQAAAADFoqUVAFA+ugcDANBYJK0AgMJxTSsAAE1G0goAKN8krmkFAKCpOHU9BrZ3tx22J+e/v2f7LzqwXNv+gu0HbP+07uVtKdvPt32T7bW235enfcL2meMs76O2T2xnHcew7C/a/uduLHs41f3O9ptt/1e36wQApejWb3VpbL/K9u1bWMa4tt3gz6CX2V5s+7XdrkcdbH/L9tEF1ONZtn9nu2+Y10+3fUFNy679+GD7R7b3rnMZIyz7Ttt/2I1lDycfG56bn/+b7b9q5X09mbTmD+CxvIP3Pz7dwvue3EjdZvsVtn+aE7ubbf/BCLP/gaTXS5odEfu2UHa31/NkSddExHYRcZbtV0l6qaT/M9aCbO8k6Z2SPpf/fq3tTZXPfYXtD7W19m2WD4gP2J7W7rIj4huS9rT9onaXDRTDSt2D2/lA7Rr4W91Vg7dbRPwgIp7fzTpNBBGxZ0R8r9v1qENEHBQR53V6uYMTqYi4OyK2jYiNna5L3Wy/WdLaiLgx/3267fWVY+IS23/c5WoOy/a2uZ7fqmkRH5d0qu2po83Yy7/cb847eP/jvVtaYKfOCNreUdI3JP2rpBmS/kXSN2zvMMxbdpN0Z0Q80on6jaTFbbSbpMWVv/eQ9LaIWD+ORb5L0hUR8Vhl2j39n7tSQv9u24eNo+za2d5d0qskhaS31LSYiyQdW1PZQBns9j5GXZzn2L7G9m25peWEQa+flJOEmflv2z7L9tKc3OxT05boNU36re6K8WyPidACit7T6/vdOOt/nKQvDZr2X5U49kRJF9jeeUvrV5M/lrRO0uttP7PdhUfESkm/UAsxci8nrUOy/Vzb37f9kO01/V0nbV+bZ/l5PmPwttxqt9z239teJekLtifZ/oDtX9u+z/Yl+YdrtOU+x/Z383vW2L7Q9oxhZn+FpFUR8ZWI2BgRF0haLemtQ5T7bkmfl/TyXO8P5envycHR/bYvt73rcOs50vz5tTfYvj1vs8/m7dff/fRdTt0aPmn7Pkmnj7Sutr8r6XWSPp2X/zxJ+0v66/z6Dra/aXu1U+vjN23PHmHTHiTp+8O9GBF3SPqxpHmV9fmU7WW2H7Z9g1NLb/9rp+fP9HynM+eLbc+vvL637UX5tf+SNL3y2ljrLqVW4uskfVHSk11wbO/qga0Pj9qOSh0vqMw7Wjer70l60yj1AHqYu9HSukHSSRExT9J+ko63PU9KCa2kN0i6uzL/QZLm5sexks5u5xaYaCbab3Uue1/bP7H9oO2Vtj/tYVoPKsf1Y23fk+f/u1bLyu893vavJP1qpO1Wec+deRveLOmRoX5TbL/e9i/y5/JppX4O1df/3Kll6AHbV9rebZhtN7jcY/L71tr+je2/HGHePqcug2ts32H7vR7Y3XvYspxilh8OKq/aFfFgpxNRa516av1dnj4z/6Y/6BQn/cBOBwpXWgVb/FyOs/2rPM9n7HSWbIz7nmzvafvqXJ/f2j41T59m+8y839yTn0/Lr/V/V06yfW+u4zEjLOPJrrH92872x/Pne4ftgyrz7uh0qdo9+fWvV147xOmysAdt/9iV3l9D7HcXSXqW0gmg39k+2Zt36d/D6fiw1vbVkmZWyhuwXw/xGZ1u+yu2L8jvv8X282yfkrfJMttvGLQpnuPUo+Jh2//tfCyp1Ovdtu+W9N08vaXvQd439tfIceyVktZKek5+zw4eIdbMn9k/OcXma21f5XzyNL9+lO278n72wUH1afkYVXG0pP+QdLOkd1TKepsHxrHrbH+vUse/qMy72fdykO+phTh2wiWtkv5J0lWSdpA0W9K/S1JEvDq//uJ8dqP/OsBnStpRqXXwWEl/I+kwSa+RtKukByR9poXlWtJH83t+T9IcSaePMv/gv184eKaIOEfpLM1Pcr1Ps71/XtbhknaRdJeki4dbz5Hmzzv6pZJOkfR0Sbcr/VBXvUzSbyTtLOmMkdY1IvaX9ANJ783L/+WgsiZJ+oLS9n6WpMckjdRd7PdznYZke66kVyolhv1+Jmkvpc/1y5K+Ynt65fW35PWfIeny/uXnL+7Xlc6I7SjpK0pnmMZbdyklrRfmxxudz6RFxD3V1gdJX8t1Go8lkna3/bRxvh8oX4dbWiNiZUQsys/XKn3PZuWXP6l0GURU3nKopPMjuU7SDNu7tHUbTCwT6rc62yjp/UoB9sslHaB8wnYEr1M60fEGSX/vp7pMtlLWYUq/z/NG2G6DHakUHM6IiA0DVizFA5dJ+r95ub9W+n3tf/1QSacqJe07Kf3WXzTK+vW7V9Ihkp4m6RhJn/TwvRHeo3QSaC9J++T1HG9Zg50j6S8jYjulz/G7efpJkpYrrdfOSusZQ7y/lc/lEKVLol6kFHe9MU9ved+zvZ2k/5X07Tz/cyV9J7/8QaUTaXtJerGkfZU+s37PlLS90vHq3ZI+49Z7B7xMKeaaqdSz4Bz7yQPmlyRtLWlPSc9QOg7K6VrNcyX9pVIc+TlJl3vgJVHV/e5IpRN+/b0w/mWIenxZ0g25Hv+kykn/Fr0513cHSTdKulIphpsl6cO5jlXvlPTnSjHyBklnDXr9NUqf2RvH+D2YK2lTRCwf6kUnb5I0VdJteXIrsebblfb9Z+T39p98mad0wvQopf3m6UrH135jOkblZPy1eiqOfWf/axFRbS3eVSlPaPV4MNgSpX15RL2ctH49nynof7wnT1+v9EHvGhGPR8RImb0kbZJ0WkSsy11Qj5P0wYhYHhHrlA4of+JRugRExNKIuDqXs1rSJ5R28qH8RNKuto+0PcXpIvjnKB0MWvFnks6NiEW5jqcotcTuPo75D5a0OCIuyz9gZ0laNej990TEv0fEhoh4bIzrOkBE3BcRX42IR3MgeMYo752hdAaqatf8mT8s6ZeSrpf05OccERfk5WyIiH+TNE1S9bqeH0bEFfnaiS/pqS/KfpKmSDozItZHxKVKCfC46u507dNuki6JiBuUAoC3DzHf30t6gdIBczz6t8+Mcb4fwAjysXJvSdfngGVFRPx80GyzJC2r/L1cTyW5TdaY3+qIuCEirsu/PXcqBcaj/TZ+KCIeiYhblALVI8dQ1kcj4v5Bl8+M5qyIWDbMe/rjgUsjXc5zpgbGA8flZS7J8cJHJO01XCtTVUT8T0T8Op/U+b7SCYtXDTP74ZI+lT/bByR9bAvKGmy9pHm2nxYRD/SfmMrTd5G0W/79/0FEbJa0tvi5fCwiHoyIuyVdo5RcjnXfO0Splf/f8vdjbURcn1/7M0kfjoh7czkfUkpSquv44bweV0j6nQbGQCO5KyL+M8dH5+VtsnM+AXeQpOPydluft72UTiJ9LiKuj9Qj4Tyl7qT7Vcodab8bwPazlJL+f8jb6lqlbvpj8YOIuDLvp19RSi4/lvfri5VO9M+ozP+liLg10mV4/yDpcA8cFOr0/D3tP/a0+j2Yoc1jWOXyH1T6bC6X9JGIeFBqOdb8QkT8MtfnEuV9TNKfSPpmRFybj4v/oHTsVC57rMeooyTdHBG3KW23PT1oQCmnHglflvS9iBh8MqBVa9VCDNvLSethETGj8vjPPP1kpbNZP3Xq+jlaIrA6Ih6v/L2bpK/1/8AqZf8blc68Dcv2zrYvdupu8rCkC1TpzlAVEfcpnZX/W0m/lXSg0hm1Ic/EDGFXpdbS/vJ+J+k+DR8gjTT/rqoEWvkgPbge1UBsTOs6mO2tbX8ud114WNK1Si0SQ44Yp3T2fLtB0+7Jn/nTlHbyx5QOrv3L+LvcbeOh/BluP6h+1R/hRyVNz4HOrkrBaPWH6sntNo66Hy3pqohYk//+sgadLXTqenOC0v48lsCjqn/7PDjO9wPla3/34Jm2F1YeQ14XbntbSV9Vuu5og9IZ9n/s1GpPAI35rXbqgvhN26ty2R8ZruyK6u/rXUq/Q62WtUxjN9J7hooHqvPvJulTlW1+v9JnOOrJGdsH2b7Oqavrg0oJ8nDbZkA9Btd5jGUN9sd5/rucup++PE//V0lLJV3l1OX4A8OsRyufy+AYY9v83rHETnOUTnQPZUBMp8p+k90XA1vRn6xDC56se0Q8mp9um+tzfz6JMNhukk6qnpzK81frNJZ9dVdJD8TAcVzuGm7mYfy28vwxSWviqUGe+mOt6jYZ/D2cooGfzXi/B0PFsFJqzJgREdsonQh7p3M39xZjzSH3MW3+HX5EKd5XLnusx6j+3oKKiBVK3ZwHt3qfkdfxfSOUM5rt1EIM28tJ65AiYlVEvCcidlXqqvBZjzwK4eAzacskHTToR3Z6/rBG8pFc1u/nZOod2rxbUbWe34+Il0bEjkpnMl4gqdXb2dyj9KWRJNneRqkLwHB1HGn+lap0HbBtDexKIG2+jca0roOcpHTG72X5vf1dmoZ7/82SnjdcYRHxkFIy+OZc/1cpBUOHS9ohImZIeqjF+q2UNCtvg37PGk/dbW+V6/CafHBYpdQl48W2X5zneb5Ssn14RFQPiI9o4Jn80S58/z2lgboeHm0FgZ7U7q7B6Su+JiLmVx4LNl+spyglrBdGxGVKwcUeStcN3ql0rFzkNDjFCqVArd9sDX9MbrwJ+lt9ttKAInNz2aeOVHZW3WeepfR73WpZQ3VfHc1I71lZrU/+LazWb5lS19rqNt8qIn480gKduol+VWmU0J3z7/IVGn7bDIhLBtVptLIG/H560MAxEfGziDhUqVvl15VaqZRbMk+KiGcrXUL0t7YPGKJu4/mM+41l31sm6dnDvDYgptPA/aYuyyTt6KGvwV0m6YxB+8XWEVHtKjp4vxttP9whx6r9qrHY4M+4T6kldUsM/h6ul7SmMq1a37F8D5amKnrYEzu5xfNbynGsxh4nVw3+Dm+tFO/3a3n/tf0Kpe7Np1Ti2JdJerufuvb4CKXeIX8SAwdbHU8cO7j30mYmXNJq+0/91AXLDyjtaP1N47/V8AeBfv8h6QznZn7bOzl1BxvNdkrN/A/lnXPE27s4Dfgzxek6xI9LWhbpYuxWXCTpGNt75QP4RyRdn3d8afP1HGn+/5H0+7YPyzvh8Rp95xrTug7x3sckPeh0oftpo8x/hUbugrutpCP01GjF2ym1hqyWNNn2Pypd99KKn+T3vi9/Nm9VulZkPHU/TOms/zylbht7KX0pf6B0Ru1pkv5bqXvb4G5xN0l6tdN9y7ZX6s49ktcoHfCAiavDAzHlgP0cSUsi4hOSFBG3RMQzImL3iNhdqcVtn4hYpdTF651O9pP0UKRRETGECfpbvZ2khyX9zvYLJLVy78F/yC0reypdo9Z/Lep4ymplu43kf5S6/701xwPv08B44D+UAtg9Jcn29rb/tIVypypdprNa0ganHkaDB8KpukTSCbZn5STp78dQ1s/zOuzlNJbF6f0v2J5q+89sb58D7IeV9zmngYSem7/3Dyn9fm/S5sbzuVTf2+q+901Ju9g+0Wngpe1svyy/dpGk/5v3+ZlKPT9quYdpv3ws+5bSyaUd8neiP5n6T0nH2X5ZPv5tY/tNTtflDmfYfTUi7pK0UNKH8mf2B3oqoZPSZWHT8zKmKF3Pu6W3FHyH7Xk5yfuwpEtj+NvvtPw9iIgnlHpnjBTHzlbqxVGNY8cSJ1ddKukQ23/gNE7LhzUw1xvL/nu0pKs1MI59oaStJB3k1E3435V606we9N6bJL01H9ueq3Rt9UhaimN7OWntH3Ws//G1PP2lStcd9fcTPyEifpNfO13SeU5N+ocPU+6n8vuusr1WaYCflw0zb9WHlAYMeEjpwH/ZKPOfrHQWZ5nSNQN/1MIyJEkR8b9K/dS/qnRW5TlKiVu/01VZz5Hmz11X/1Tpgvv7lHbOhUrXIwxnrOtadabSDr9Gadt+e5T5z5d0sFPLZb8nR95V6saxo9I1HlK62P7bSge1uyQ9rha7peSDy1uVbrNzv6S3aeC6jaXuRytdc3B3blFYlQPbT+e67qt0Ju2T1f041+NqpcDlZqWBCL45StWP1OaDCgATS4cHYlIagOYoSfs7jYp5k+2DR5j/CqWBKJYqBXGjDcDTFE36rf47pXEL1irtA8MNhlT1faV95juSPh4RV21BWadr9O02rEo88DGleGCupB9VXv+apP8n6WKnroW3Kl3nOFq5a5US4EuUTlC8XemzG85/Kl2nerPSIDpXKJ1Q3jhaWZEGf/ywUqLwK1XGu8iOknRnrv9xeip2mJvf8zulE9ifjYhrhqjbeD6Xfi3ve3k9X6+UrK3K6/K6/PI/K8VpN0u6RdKiPK1uRym1QP5CaTCsE3NdFyoNnvVppc9kqVIcNZKPKiXeD7oyanbF25W+z/crJW3n97+Qe9j9tdKdNVYoteq1enndcL6kdJeHVUp3jRi2q+s4vgef08BrjiXpbZW472dK37MP5dfO1Nji5GrdFis1Pn1ZKd5/QAO3TUv7bz7hc7ikf6/GsJHu2PElpRj3UKWBrn5YOb73J56flPSE0smJ85S7GA+zrF2Uco+vj7Z+js2vM0eDOV1QvVzSnw1zwO442x+RdG9EnNntupTG6abVR0XEmAMUoFdM2n5OTHvF37a1zMe//bc3RMT80ecE2s9pcK87JE2JQaP4YqDcmvofEdHS7XWA0tj+kdJdNW7sdl1KY/vfJP06Ij472rw9fZNftIftNyqNwPuYUncVa+AtZLoqIk7tdh1KFRHf0NhH1QN6jFvq0gug9+WeVa9Tam3dWaml7WsjvgkoWES8cvS5mikiTmp1XqIASOleTb9W6orwZm3ZSLYA0H6d7x4MoDus1FXyAaXuwUvEiN1A49HSCkXE6Rr55uoA0D0WLa2YUPJAiJw9GUKkW628tNv1AFAWklYAQOHoHgwAQJMRBQAAAAAAilVLS+vMmTNjt912r6PoJz2+fqjbZ7VPJy556ptU/0I2bKp3dOhO9G3qxADXnRhDu6/ujVVz+SuW3a3771tDdzZ0B9ehYgLrRNyE1kyEe2p05MYgHTgkT4Sj/o2LblgTETt1ux4TQS1J62677a4fXb+wjqKf9KtVv6u1/KmT62+E3m56/b2zH3jkiVrLn9xX/3Zat364+zu3T825vSRpm2l9tZbvmoP6P3oDg9+hi+gejAmsE3ETWrOp5oBgYwcCjk0dyFrrjjmk+ht3OtB2pK2nTrqr/qU0A9e0AgDKR0srAACNxalrAAAAAECxaGkFAJTNjB4MAECTkbQCAMpH92AAABqLpBUAULxODPoBAADKRNIKACiaRdIKAECTcZEQAAAAAKBYLSWttg+0fbvtpbY/UHelAAB4kmt4ADUjdgKA9hm1e7DtPkmfkfR6Scsl/cz25RFxW92VAwBAMt2D0VOInQCgvVppad1X0tKI+E1EPCHpYkmH1lstAACeYrutD6BmxE4A0EatJK2zJC2r/L08TxvA9rG2F9peuHrN6nbVDwAAklb0mlFjJ+ImAGhd2wZiiogFETE/IubvNHOndhULAAAw4RA3AUDrWrnlzQpJcyp/z87TAADoCFpH0WOInQCgjVppaf2ZpLm297A9VdIRki6vt1oAAGSMHozeQ+wEAG00aktrRGyw/V5JV0rqk3RuRCyuvWYAAEgyowejxxA7AUB7tdI9WBFxhaQraq4LAABDImlFryF2AoD2adtATAAAAAAAtFtLLa0AAHQTLa0AADQXSSsAoHgkrQAANBdJKwCgbIz4CwBAo3FNKwAAAACgWLS0AgCKR/dgAACaq5akdVNIjz+xsY6inzSp5vjloUfX17sASU9s2FT7MjZsrHcZkzoQSHZiO23cFLUvY0pfbwfdHdhEwJC4TysAqf6YRpLWra93GWsf31Br+ZL0+Pp6Y3BJmtJXf2fNbafX27a2zbS+WstHe9HSCgAoHkkrAADNRdIKACgfOSsAAI3FQEwAAAAAgGKRtAIAyubUPbidj1EXac+xfY3t22wvtn1Cnv6vtn9h+2bbX7M9o/KeU2wvtX277TfWt0EAAGgWklYAQPE6nbRK2iDppIiYJ2k/ScfbnifpakkvjIgXSfqlpFNy/eZJOkLSnpIOlPRZ24zyAQBAG5C0AgCK1+mkNSJWRsSi/HytpCWSZkXEVRHRP/zndZJm5+eHSro4ItZFxB2Slkrat+0bAgCABmIgJgBA0Wq65c1M2wsrfy+IiAVDLt/eXdLekq4f9NKfS/qv/HyWUhLbb3meBgAAthBJKwCgidZExPzRZrK9raSvSjoxIh6uTP+gUhfiC+urIgAAkEhaAQC9oAu3vLE9RSlhvTAiLqtMf5ekQyQdEBGRJ6+QNKfy9tl5GgAA2EJc0woAKFt3Rg+2pHMkLYmIT1SmHyjpZElviYhHK2+5XNIRtqfZ3kPSXEk/bet2AACgoWhpBQAUr4ZrWkfzSklHSbrF9k152qmSzpI0TdLVuU7XRcRxEbHY9iWSblPqNnx8RGzsdKUBAJiISFoBAMXrdNIaET/U0J2SrxjhPWdIOqO2SgEA0FB0DwYAAAAAFIuWVgBA+bowEBMAACgDSSsAoHhduKYVAAAUgqQVAFC0Vkf8BQAAExPXtAIAAAAAikVLKwCgeLS0AgDQXCStAIDikbQCANBcJK0AgPKRswIA0FgkrQCA4tHSCgBAczEQEwAAAACgWLS0AgDKZlpaAQBoslqS1k0Renz9xjqKflLfpHoDmEfXb6i1fEnatClqX8a6jZtqLX/xmodrLV+S/mfx6tqXsfP202tfxoHPnVlr+XNmbFVr+UC3WBI5K1C2TsQ0T2yoN6aRpNVr19Va/qKVD9RaviTddM8jtS9j9x2n1b6Ml8/asdbyZ+1I3NRLaGkFABTOtLQCANBgJK0AgOKRswIA0FwMxAQAAAAAKBYtrQCA4tE9GACA5iJpBQCUzXQPBgCgyUhaAQBFs6RJNY8YDwAAykXSCgAoHi2tAAA0FwMxAQAAAACKRUsrAKB4DMQEAEBzjdrSanuO7Wts32Z7se0TOlExAAAkPTkQUzsfQJ2InQCgvVppad0g6aSIWGR7O0k32L46Im6ruW4AAMiipRU9h9gJANpo1KQ1IlZKWpmfr7W9RNIsSRx4AQAdYJJW9BRiJwBorzENxGR7d0l7S7q+ltoAAABMIMROALDlWk5abW8r6auSToyIh4d4/VjbC20vvO++Ne2sIwCg4bimFb1opNipGjetXrO6OxUEgB7RUtJqe4rSQffCiLhsqHkiYkFEzI+I+U9/+sx21hEA0HC22/oA6jZa7FSNm3aauVPnKwgAPWTUa1qdft3PkbQkIj5Rf5UAAKigdRQ9htgJANqrlZbWV0o6StL+tm/Kj4NrrhcAAECvInYCgDZqZfTgHyrdcQAAgI7jljfoNcROANBerdynFQCAriJnBQCguUhaAQDFo6UVAIDmGtN9WgEA6IZO3/LG9hzb19i+zfZi2yfk6Tvavtr2r/L/O+Tptn2W7aW2b7a9T71bBACA5iBpBQBgcxsknRQR8yTtJ+l42/MkfUDSdyJirqTv5L8l6SBJc/PjWElnd77KAABMTCStAICyufP3aY2IlRGxKD9fK2mJpFmSDpV0Xp7tPEmH5eeHSjo/kuskzbC9S5u3BAAAjcQ1rQCAoqXRg7u4fHt3SXtLul7SzhGxMr+0StLO+fksScsqb1uep60UAADYIj2btEbUW/5k198IPbmv/ihs9WPray3/iz9ZNvpMW+hHF3yt9mVs/fy9a1/GM4/et9by58zYqtbyge5prXV0jGbaXlj5e0FELNhsyfa2kr4q6cSIeLhaj4gI2zX/GgG9YVPdgZmkx9dvqn0Zd9z/SK3ln33NnbWWL0kLf3x77cuY85xZtS9j6h//Xq3lz9hmaq3lo716NmkFADRHDS2tayJi/sjL9BSlhPXCiLgsT/6t7V0iYmXu/ntvnr5C0pzK22fnaQAAYAtxTSsAAIM4NameI2lJRHyi8tLlko7Oz4+W9N+V6e/MowjvJ+mhSjdiAACwBWhpBQAUrwv3aX2lpKMk3WL7pjztVEkfk3SJ7XdLukvS4fm1KyQdLGmppEclHdPR2gIAMIGRtAIAytbivVXbKSJ+mJY8pAOGmD8kHV9rpQAAaCiSVgBA0dLowV0cPhgAAHQVSSsAoHgkrQAANBcDMQEAAAAAikVLKwCgeDS0AgDQXCStAIDi0T0YAIDmImkFAJStC6MHAwCAcnBNKwAAAACgWLS0AgCKZpnuwQAANBhJKwCgeOSsAAA0F0krAKB4k8haAQBoLJJWAEDxyFkBAGguBmICAAAAABSLllYAQNFs7tMKAECTkbQCAIo3iZwVAIDGImkFABSPllYAAJqLpBUAUDxyVgAAmouBmAAAAAAAxaKlFQBQNEuyaGoFAKCpSFoBAMVjICYAAJqLpBUAUDabgZgAAGiwWpJWW5rSV+/lspsiai1/+pT6L/edOrn+ZazbuLHW8leseLjW8iVJ6x6tfRGPPvhQ7csAMH7krADqjv0k6aEn1tda/j33dCBu+s2NtS/i3unTal/GqrX1fhYbNm6qtXy0FwMxAQAAAACKRfdgAEDRLGkSTa0AADQWSSsAoHjkrAAANBdJKwCgeAzEBABAc3FNKwAAAACgWLS0AgCKZtM9GACAJiNpBQAUj4GYAABoLpJWAEDxSFkBAGiulpNW232SFkpaERGH1FclAAAGYiAm9CJiJwBoj7EMxHSCpCV1VQQAAGCCIXYCgDZoKWm1PVvSmyR9vt7qAAAwkCVNcnsfQN2InQCgfVrtHnympJMlbVdfVQAAGIJN92D0ojNF7AQAbTFqS6vtQyTdGxE3jDLfsbYX2l5435o1basgAAD9t71p12P05flc2/favrUybS/b19m+Kf/e7Zun2/ZZtpfavtn2PvVtCfSCVmKnaty0es3qDtYOAHpPK92DXynpLbbvlHSxpP1tXzB4pohYEBHzI2L+02fObHM1AQBN5tza2q5HC74o6cBB0/5F0ociYi9J/5j/lqSDJM3Nj2Mlnd2OdUZPGzV2qsZNO83cqRt1BICeMWrSGhGnRMTsiNhd0hGSvhsR76i9ZgAAdElEXCvp/sGTJT0tP99e0j35+aGSzo/kOkkzbO/SmZqiRMROANBe3KcVAFC0/oGYCnCipCttf1zppO8r8vRZkpZV5luep63saO0AAJigxnLLG0XE97jPGACg02roHjyz/3rC/Di2hWr8laT3R8QcSe+XdE6d64yJgdgJALYcLa0AgOLV0NC6JiLmj/E9Ryvdd1OSvqKnbmWyQtKcynyz8zQAANAGY2ppBQCg02xpkt3WxzjdI+k1+fn+kn6Vn18u6Z15FOH9JD0UEXQNBgCgTWhpBQBgENsXSXqtUjfi5ZJOk/QeSZ+yPVnS40ojBUvSFZIOlrRU0qOSjul4hQEAmMBIWgEAxRt/4+j4RMSRw7z0kiHmDUnH11sjAACai6QVAFC8Fu+tCgAAJiCSVgBA8chZAQBorlqSVsvqq/mmettOrzffntJX/xhV6zZsqn0Zddttzozal/HA/NfWvoy5L3hm/ct4+ta1lr8Fg8u0hJwBADCcTvSG6ERsttt229Ra/qvnz661fEm6ftpbal/GHs+aUfsyXrTztrWWP31KX63lo71oaQUAFM3aohF/AQBAjyNpBQCUzXQPBgCgyUhaAQDFYyAmAACai6QVAFC8+q9kAwAApSIOAAAAAAAUi5ZWAEDRLLoHAwDQZCStAIDi1XwXNQAAUDCSVgBA8UhaAQBoLpJWAEDRbLoHAwDQZAzEBAAAAAAoFi2tAIDi0T0YAIDmImkFABSP3sEAADQXSSsAoGiWNImsFQCAxiJpBQAUjwEYAABoLuIAAAAAAECxaGkFABSP3sEAADQXSSsAoGi2uaYVAIAGI2kFABSPnBUAgOYiaQUAFI/7tAIA0FwMxAQAAAAAKBYtrQCAonGfVgAAmo2kFQBQPHJWAACai6QVAFA2c00rAABNxjWtAAAAAIBi1dPSamlSzafFZ2w9pdby1z6+odbyJWndhk21L2PmVtNqLf/w+c+stXxJ2u85O9a+jN9/5ra1L+PZM7aptfy696dNUWvxwIgsmlqBknWiN8T0KfW3tczaYXqt5R+377NqLV+SDtvzGbUvY8a0qbUvY9YOW9Va/rbT6XDaS/i0AABFSwMxdbsWAACgW0haAQDFI2kFAKC5SFoBAMUzwwcDANBYDMQEAAAAACgWLa0AgKJxTSsAAM1GSysAoGyW3ObHqIu0z7V9r+1bB03/G9u/sL3Y9r9Upp9ie6nt222/sf0bAQCA5qKlFQBQvEmdv6b1i5I+Len8/gm2XyfpUEkvjoh1tp+Rp8+TdISkPSXtKul/bT8vIjZ2utIAAExEtLQCAIrW3z24nY/RRMS1ku4fNPmvJH0sItblee7N0w+VdHFErIuIOyQtlbRvu9YfAICmaylptT3D9qW5S9QS2y+vu2IAANRopu2FlcexLbzneZJeZft629+3/dI8fZakZZX5ludpaDBiJwBon1a7B39K0rcj4k9sT5W0dY11AgBggBp6B6+JiPljfM9kSTtK2k/SSyVdYvvZba8ZJgpiJwBok1GTVtvbS3q1pHdJUkQ8IemJeqsFAEA/a5KKGD54uaTLIiIk/dT2JkkzJa2QNKcy3+w8DQ1F7AQA7dVK9+A9JK2W9AXbN9r+vO1taq4XAACS0jWtnR49eBhfl/Q6SbL9PElTJa2RdLmkI2xPs72HpLmSfrql642eRuwEAG3UStI6WdI+ks6OiL0lPSLpA4Nnsn1s/7VB961e3eZqAgAaq82DMLUyEJPtiyT9RNLzbS+3/W5J50p6dr4NzsWSjo5ksaRLJN0m6duSjmfk4MYbNXaqxk2r1xA3AcBIWrmmdbmk5RFxff77Ug2RtEbEAkkLJGnvl8yPttUQAIAOi4gjh3npHcPMf4akM+qrEXrMqLFTNW56CXETAIxo1JbWiFglaZnt5+dJByidTQYAoCMm2W19AHUidgKA9mp19OC/kXRhHv3uN5KOqa9KAAA8pf+aVqDHEDsBQJu0lLRGxE2SxnprAAAA2oLWUfQaYicAaJ9WBmICAAAAAKArWu0eDABA19DQCgBAc5G0AgCKZtEtCACAJiNpBQCUzZJpagUAoLFIWgEAxSNlBQCguehxBQAAAAAoFi2tAICiWdzyBgCAJqslaU0BRh0lP6Wvr95G4k5cPxURtS/j6dtMq7X8HbeeWmv5krTPM2tfhLabXv/5m001f96PrttYa/mkDOgm9j+gbJ2Im6bUHPtJ0oxt6o1rtpraV2v5kjRn49a1L6Ov7kBf0rTJ9X7eU2ouH+1FSysAoHg0tAIA0FwkrQCAwpnRgwEAaDDaxQEAAAAAxaKlFQBQNIszrAAANBlJKwCgeHQPBgCguUhaAQDFI2UFAKC5SFoBAGUzLa0AADQZlwkBAAAAAIpFSysAoGgMxAQAQLORtAIAikf3YAAAmoukFQBQPFJWAACaix5XAAAAAIBi0dIKACgevYMBAGguklYAQNHSQExkrQAANBVJKwCgeLS0AgDQXCStAIDCWaalFQCAxmIgJgAAAABAsWhpBQAUj+7BAAA0F0krAKBoDMQEAECzkbQCAMpmWloBAGgyklYAQPFIWgEAaC4GYgIAYBDb59q+1/atQ7x2ku2wPTP/bdtn2V5q+2bb+3S+xgAATFwkrQCA4rnN/1rwRUkHblYPe46kN0i6uzL5IElz8+NYSWdv8QoDAIAnkbQCAIpmSZPc3sdoIuJaSfcP8dInJZ0sKSrTDpV0fiTXSZphe5ctX3MAACDVeE3rpJovQFr10Lpay39iw6Zay5eknbefXvsyJvfV+zk8vr7+7VTzKkiSpvTVf/7m8Zr3qWmT612HvlYifaAmLbaO1lsH+1BJKyLi5x74GzdL0rLK38vztJUdrB4w4U3qwO/QlJoXMXlS/cPJxOiz9IS6P24zWEJPYSAmAEDxaogtZtpeWPl7QUQsGH753lrSqUpdgwEAQAeRtAIAmmhNRMwfw/zPkbSHpP5W1tmSFtneV9IKSXMq887O0wAAQBuQtAIAitft7sERcYukZ/T/bftOSfMjYo3tyyW91/bFkl4m6aGIoGswAABtQtIKACha/0BMHV2mfZGk1yp1I14u6bSIOGeY2a+QdLCkpZIelXRMRyoJAEBDkLQCAArX8m1q2iYijhzl9d0rz0PS8XXXCQCApuKWNwAAAACAYtHSCgAom2sZPRgAAPQIklYAQPHIWQEAaK6Wugfbfr/txbZvtX2R7el1VwwAAKl/ICa39QHUjdgJANpn1KTV9ixJ71Ma2v+FkvokHVF3xQAA6Oc2P4A6ETsBQHu1OhDTZElb2Z4saWtJ99RXJQAAgJ5H7AQAbTJq0hoRKyR9XNLdklYq3TT9qsHz2T7W9kLbC9esWd3+mgIAmoumVvSQVmKnaty0mrgJAEbUSvfgHSQdKmkPSbtK2sb2OwbPFxELImJ+RMyfOXOn9tcUANBYbvM/oE6txE7VuGkn4iYAGFEr3YP/UNIdEbE6ItZLukzSK+qtFgAAT7Hb+wBqRuwEAG3UStJ6t6T9bG9t25IOkLSk3moBAPAUegejxxA7AUAbtXJN6/WSLpW0SNIt+T0Laq4XAABATyJ2AoD2mtzKTBFxmqTTaq4LAABDo3kUPYbYCQDap6WkFQCAbkldeslaAQBoKpJWAEDZGDwJAIBGI2kFABSPnBUAgOZqZfRgAAAAAAC6gpZWAED5aGoFAKCxSFoBAIUzAzEBANBgtSStmyL02PqNdRT91DI2Ra3l902qP0CaOrn+3tlT+updj74OjI4yueZ1kKT1G+vdnyRpes2f96aat9MkLiZAFzEQE4BOcM0HG45lwPjQ0goAKJpF72AAAJqMthMAAAAAQLFoaQUAlI+mVgAAGoukFQBQPAZiAgCguUhaAQDFY/ASAACai2taAQAAAADFoqUVAFA8GloBAGguklYAQNm45w0AAI1G0goAKB4DMQEA0FwkrQCAolkMxAQAQJMxEBMAAAAAoFi0tAIAikdDKwAAzUXSCgAoH1krAACNRdIKACgeAzEBANBcXNMKACie3d7H6MvzubbvtX1rZdq/2v6F7Zttf832jMprp9heavt222+sZSMAANBQJK0AAGzui5IOHDTtakkvjIgXSfqlpFMkyfY8SUdI2jO/57O2+zpXVQAAJjaSVgBA8dzmx2gi4lpJ9w+adlVEbMh/Xidpdn5+qKSLI2JdRNwhaamkfce1ogAAYDMkrQCA8rU/a51pe2HlcewYa/Tnkr6Vn8+StKzy2vI8DQAAtAEDMQEAipbyzLYPxLQmIuaP5422Pyhpg6QL21slAAAwFJJWAEDZWhw8qRNsv0vSIZIOiIjIk1dImlOZbXaeBgAA2oDuwQAAtMD2gZJOlvSWiHi08tLlko6wPc32HpLmSvppN+oIAMBEREsrAKB4nW5otX2RpNcqXfu6XNJpSqMFT5N0tVPT73URcVxELLZ9iaTblLoNHx8RGztcZQAAJiySVgBA+TqctUbEkUNMPmeE+c+QdEZ9NQIAoLlIWgEAhXMdAzEBAIAeUUvS+vMbF62Zue2Uu8bwlpmS1tRRlw5iHcoxEdajxHXYrdsVAICJaNGiG9ZsNcVjiZukMn8nxop1KMNEWAepzPUgdmqTWpLWiNhpLPPbXjjeWw+UgnUox0RYj4mwDkA7lTJ6MFCHscZN0sT4nWAdyjAR1kGaOOuBodE9GABQNKvzAzEBAIBykLQCAMpH1goAQGOVkrQu6HYF2oB1KMdEWI+JsA5A2zAQE7CZifA7wTqUYSKsgzRx1gNDcER0uw4AAAzrRXu9JL7xnR+3tczdZ06/gWufAADoDaW0tAIAMCwGYgIAoLlIWgEAxSNnBQCguSZ1c+G2D7R9u+2ltj/QzbqMl+05tq+xfZvtxbZP6Hadxst2n+0bbX+z23UZD9szbF9q+xe2l9h+ebfrNFa235/3o1ttX2R7erfrBHSdU0trOx9AryJ2Kkevx00SsRN6R9eSVtt9kj4j6SBJ8yQdaXtet+qzBTZIOiki5knaT9LxPboeknSCpCXdrsQW+JSkb0fECyS9WD22LrZnSXqfpPkR8UJJfZKO6G6tgFK4zQ+g9xA7FafX4yaJ2Ak9opstrftKWhoRv4mIJyRdLOnQLtZnXCJiZUQsys/XKn3ZZ3W3VmNne7akN0n6fLfrMh62t5f0aknnSFJEPBERD3a1UuMzWdJWtidL2lrSPV2uDwCgHMROhej1uEkidkJv6WbSOkvSssrfy9VjB6zBbO8uaW9J13e5KuNxpqSTJW3qcj3Gaw9JqyV9IXfV+bztbbpdqbGIiBWSPi7pbkkrJT0UEVd1t1ZA91l0DwYyYqdynKnejpskYif0kK5e0zqR2N5W0lclnRgRD3e7PmNh+xBJ90bEDd2uyxaYLGkfSWdHxN6SHpHUU9f62N5B6Yz5HpJ2lbSN7Xd0t1ZAGegcDEw8vRo7TZC4SSJ2Qg/pZtK6QtKcyt+z87SeY3uK0kH3woi4rNv1GYdXSnqL7TuVuhrtb/uC7lZpzJZLWh4R/WdqL1U6EPeSP5R0R0Ssjoj1ki6T9Iou1wkoAi2tgCRip1JMhLhJInZCD+lm0vozSXNt72F7qtJF05d3sT7jYttK1wIsiYhPdLs+4xERp0TE7IjYXelz+G5E9NRZqohYJWmZ7efnSQdIuq2LVRqPuyXtZ3vrvF8doB4bEAGoi9v8D+hRxE4FmAhxk0TshN7Stfu0RsQG2++VdKXSSF/nRsTibtVnC7xS0lGSbrF9U552akRc0b0qNdbfSLow/5D/RtIxXa7PmETE9bYvlbRIaWTFGyUt6G6tAAClIHZCDYid0BMcEd2uAwAAw3rx3i+JK79/XVvL3GX7qTdExPy2FgoAAGrRtZZWAABaRYdeAACai6QVAFA0Bk8CAKDZuOUNAAAAAKBYtLQCAIrHiL8AADQXSSsAoHzkrAAANBZJKwCgeOSsAAA0F0krAKB4DMQEAEBzMRATAAAAAKBYtLQCAApnBmICAKDBSFoBAEWz6B4MAECT0T0YAAAAAFAsWloBAMWjpRUAgOaipRUAAAAAUCxaWgEAxWMgJgAAmouWVgBA2Zy6B7fzMeoi7XNt32v71sq0HW1fbftX+f8d8nTbPsv2Uts3296nvo0BAEDzkLQCAIrmGh4t+KKkAwdN+4Ck70TEXEnfyX9L0kGS5ubHsZLOHuMqAgCAEZC0AgDK1+GsNSKulXT/oMmHSjovPz9P0mGV6edHcp2kGbZ3GftKAgCAoZC0AgDQmp0jYmV+vkrSzvn5LEnLKvMtz9MAAEAbMBATAKB4NQzENNP2wsrfCyJiQatvjoiwHe2uFAAA2BxJKwCgeDXcp3VNRMwf43t+a3uXiFiZu//em6evkDSnMt/sPA0AALQB3YMBAMXrwkBMQ7lc0tH5+dGS/rsy/Z15FOH9JD1U6UYMAAC2EC2tAAAMYvsiSa9V6ka8XNJpkj4m6RLb75Z0l6TD8+xXSDpY0lJJj0o6puMVBgBgAiNpBQCUr/3dg0cUEUcO89IBQ8wbko6vt0YAADQXSSsAoHg1DMQEAAB6BEkrAKBoVi0DMQEAgB7h1KsJAIAy2f62pJltLnZNRBzY5jIBAEANSFoBAAAAAMXiljcAAAAAgGKRtAIAAAAAikXSCgAAAAAoFkkrAAAAAKBYJK0AAAAAgGL9f0SlU1D7AFiqAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "Err_B9=error(xdata9, poptB9[0], poptB9[1],poptB9[2], poptB9[3], poptB9[4], recorteB9.ravel(), inc=1)\n", + "poptB9E, pcovB9E = curve_fit(gauss2d, xdata9, recorteB9.ravel(), p0=[1,1,1,1,1],sigma=Err_B9)\n", + "estrellaB9E=gauss2d(xdata9, poptB9E[0], poptB9E[1],poptB9E[2], poptB9E[3], poptB9E[4])\n", + "FWHMB9E=FWHMB_I.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptB9E[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 9 fotografÃa (Banda Azul)\")\n", + "plt.imshow(recorteB9, plt.get_cmap('Blues'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 9 a partir de la gaussiana con incertidumbre (Banda Azul)\")\n", + "plt.imshow(estrellaB9E.reshape(10, 10), plt.get_cmap('Blues'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Estrella 10 con incertidumbre (Banda Azul)" + ] + }, + { + "cell_type": "code", + "execution_count": 860, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAFSCAYAAADLrjNiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA0GUlEQVR4nO3dedxtdV33/9f7nMMsg3oIZRBQ0cJZj0baYFmJZmLd3oQ54HDHbUJq2W1qg1rZ3a+7TE2zUBRNEnFIKUmxQU0TEBBNQBNBZVI4IIOCwOF8fn981wX7XFzDvs7Z67rWvs7reR77ca699trf9V17Wp/P+g4rVYUkSZIkSUO3ZqUrIEmSJEnSOExgJUmSJElTwQRWkiRJkjQVTGAlSZIkSVPBBFaSJEmSNBVMYCVJkiRJU2HdSldAkqSFrN3jwKpNN0+0zLr56o9X1eETLVSSJPXOBFaSNGi16WZ2euCREy3zB+e9Zf1EC5QkScvCBFaSNHCBOOJFkiSZwEqShi5AstK1kCRJA2ACK0kaPltgJUkSJrCSpGlgC6wkScLL6EiSJEmSpoQtsJKkgXMSJ0mS1JjASpKGzy7EkiQJE1hJ0tAFW2AlSRJgAitJGrzYAitJkgAncZIkSZIkTQlbYCVJw2cXYkmShAmsJGka2IVYkiRhAitJGjwvoyNJkhoTWEnSsAVbYCVJEuAkTpIkSZKkKWELrCRp+OxCLEmSMIGVJA2eY2AlSVJjAitJGr41joGVJEmOgV1QkoOSVJJ13f1PJvlfA6jX45J8Lcn3kjxtpeuzmCR/nGRjkm939w9IckmSg7eirL2TfCXJLpOv6aLb3uLzMARJHp/kspH7ZyV50ErWSZKW01CP1UOT5J+THL0Nz9/ieLPE556Y5I+3dttDkeSZSU5f6Xr0IclPJPnqStcDIMnfJPn9BR6vJPfvYbtb/RlfwjaemOTDfW5jgW0/N8lnVmLb80nymiTv6f7eJ8mFSXZa7HlTkcAm+UaSm7uEbeb25jGe18sHfGsk+aMk/5VkU5LXzPH4ryb5ZpLvJ/lwknssUNwfAm+uqrtV1YcX2e4dH4yVkOQ+wMuAQ6vqXt3itwHHVdUlW1HkK4ATq+rmrvxPJvlB95m4PsmnkzxkMrWfvO7HsZL8Tk+b+HPa50NaPULrQjzJmybOY/VwzHXsr6onVdW7VqpOq0FVnVRVP7/S9ehDVf1HVT1wubc7V1JVVS+sqj9a7rosk9cBfzpzp/v9+373e7kxyXuT7LVy1VtY99tSSX500mVX1XeAfweOWWzdaTqK/2KXsM3cjtvWApe5Je0i4OXAR+eox4OAvwWeDewD3AT89QJlHQic30Mdl2TM1+8+wDVVdVX3nPsA766qu7wOY2xvJ+BoYHZCflxV3Q24B/BJ4O+WWvYyOhq4FnhOT+WfCvx0knstuqY0TZLJ3tQXj9UrbGteryH1LNL2Y9o/d0nWLnH9RwN7VtUZsx56WBfH3he4O/CaydRwspKEFr/2GceeBPzvxVaapgR2Tknun+RTXevbxiTv65Z/ulvli91ZjV+Z6RqQ5HfSurO+M8maJK9I8vUk1yQ5ZZwzqknul+TfuudsTHLSQmdMqupdVfXPwI1zPPxM4B+r6tNV9T3g94FfTrL7HNv9Ou0D/o/dfu2UZN8kpya5NslFSX6tW/dw4FXAr3TrfrFbPuf63WO7JHlXku+mNeO/PFt2Uf1G9/p9Cfh+knUjr9+NSS5I8kvduj8LfALYt9v+ibTP3Em5s6vX87rt3Jjk4iQLfWh/FLiuqubs3lFVtwMnA4eO1PcxST6X5LokVyZ5c5IdRx6vJC9M65J9XZK3dF9QkqxN8ufd+3sx8Auz3oul1J0kuwFPB44FDkmyYeSxN2fLVos7zv5nVutEFuiKVVU/AM4BnrhQXaTpEltgp9z2dqzutv3GJJcmuSHJOUl+YoF6npjWbfIT3THlU0kOHKestBaRDyR5T5IbgBcy97H/jq7Vaa1en03yl0muYY6AuYsHTuzigQuAR896fN8kH0xyddqwoBfPt3+znnf3JP/UPe+73d/7L7D+I5N8oXtd3p/kfTPHwMXKSotZfnbWazXTXXHn7jW7pjv+fz7JPiOvz8XdNi9J8syR5Z8ZKW+x9+WUJO/uyjl/1nF/zthpntdgbZJXjax/TpIDusce29X9+u7/x44875NpvQo+2z3v9CTr59nG43PXeO+3k3ypK/t9SXYeefyIJOd1+/71tJiTJHsmOSEt5ro8bRjZ2pHXb/Rz9z7gb4Af6z6r13XrbRHnJPk/XXlXJHn+rHrf8bme5z2qJC9Ki/Nu7F6P+yX5z67up2QkLuye86q034tvzLz3I/V6a5LTknyf1mCwlO/Bk4BPzfdgVd1Aa4gYjWOfl3lizdz5W/myJFd1r9HzRh6/Z1q8f0OSs4D7zdrPeT+/8/gJ4N7Ai4GjsmU8/cVsGcdWV78tPlfdult8L2c5E7hvRn7/5rIajuJ/BJxOO2OxP/BXAFX1k93jD+vOAr+vu38vWkvdgbQm6t8Angb8FLAv8F3gLWNsN8D/7Z7zI8ABbP0ZkwcBX5y5U1VfB24FHjB7xaq6H/At7jzLfQstabusq8vTgT9J8jNV9THgT4D3des+rCtmzvW7x14NHERLkn8OeNYc9X0GLZnbq6o2AV+nfaj3BF4LvCfJvavqX2hf1iu67T93jrKuAp4C7AE8D/jLJI+c53V6CDDv+Izui/RMYPTM1u3AbwLrgR8DngC8aNZTn0I7MD8UOJI7k79f6x57BLCB9lptbd0Bfhn4HvB+4OO01lgAquq4mRYL4Mdpn8OPLFDWQi4EHrboWtI0sQV22m1Xx+rO54GH0/bj74H3jyYAc3gm7XVaD5xHa4kYt6wjgA8AewEnMPexf7YfBS6mtSa/bo7HX00LeO9HOy7eccxKsgb4R9rrsR/t2PrSJOOcPF0DvJP23t4HuBmYs6t5d1z/B+BE2r6/FxhN9MYuaw5H0+KWA4B70hL/m9NONr8JeFJV7Q48lvZ+zGWx9+WptJhrL1piMlq3OWOnebbzW7TY68m0mOP5wE1pJ3E+2tX3nsDrgY8muefIc3+VFqP8ELAj8NvzbGMuRwKHAwfTYqTnQmscAN4N/J9u334S+Eb3nBOBTcD9afHTzwOjY9JHP3fPor3un+s+q3vNrkCXGP82LSY9BJgv8VnIE4FHAYfRelgc3237AODBtNd2xr1o38H9aJ+R45OMdq3+Vdr3ZXfgP1na92CxOPbutN+50Th2sVjzXrTP0H7AC4C3dOVA+438AS3pfH53G7XU36ijaft7Snf/F2ceqKqHjcSxv9Xt57kLlDWnLq+4iEXi2GlKYD+cdoZs5jbTangb7Ydr36r6QVUtNjh5M/DqqrqlG0f5QuB3q+qyLhl8DfD0LNKtoaouqqpPdOVcTfvR+Kmt3Le7AdfPWnY97cuxoLQzcI8Dfqfb//OAtzNP0/4Y6x8J/ElVfbdr6XzTHMW8qaounRmHWlXvr6orqmpzF3x8DXjMYnXvnvvRqvp6NZ+iBTjznQHai7nPir+pO2t3I3Ac7UAwU/45VXVGVW2qqm/Qun/Nfp/+tKquq6pv0freP7xbfiTwhm5fr6UFQVtbd2hf/Pd1LcV/Tzt7tcPoCkn2Bj4M/EZVfWGBshZyI+21kqTl5rH6zm2/p6qu6Y4/fwHsBCw0xvCjXevuLcDv0lqlDhizrM9V1Ye74/DNY+7PFVX1V12Zcz3nSOB1VXVtVV3KlvHAo4G9q+oPq+rWqrqYNr/FUYtttNuPD1bVTVV1Iy0ZmO89OYx2xYw3VdVtVfUh4KytLGu222hJ3/2r6vYuXrihe2wz8OAku1TVlVU157CtMd6Xz1TVad1x/+8YCcqXGDv9L+D3quqrXczxxaq6htaY8LWq+ruuDu8FvsJIYgG8s6r+u3uPT+HOGGccb+rqeC0tcZl57guAd3Tfrc1VdXlVfSWtBfvJwEur6vvVho/9JVt+Lhb73M12ZLcPX66q77N1J6D+rKpu6N7HLwOnV9XFVXU98M+0RHvU73e/GZ+inSA4cuSxj1TVZ6tqMy0hXcr3YC/mjmPP7eLYjbQTMX8788AYseZtwB9234/TaA0lD+xavf8H8Afde/FlYIsx8Ev5jUqyK/A/gb+vqttoJ8zukmsk+XHgj4GnjnyflmrROHaaEtinVdVeI7e3dctfTjvDelZa94zZZxdmu7paN8sZBwL/MHOwpbVe3U47MzSvtJmyTk7rHnEDbVzmnN0yxvA92pmVUXsw94d8tn2Ba7sf7hnfpJ2J2Zr19wUuHXls9O85lyV5Tlo3kpnX8MGM+VokeVKSM9K6M19H++Gb77nfZe5A4cXVztrtQjtL9YEkD+3Kf0Bal6Jvd+/Tn8xR/rdH/r6JFqTAXV+Lb25t3bsg5Ke584z6R4CdGemW3CWzH6D9OJw8Vzlj2h24bhueLw2PXYinhcfqO7f9213Xv+u7Ou+5yLbvON5U66J8Le04NE5Zcx2rF7PYcxY6Bh5IGx503ch78ioWeT+gBcJJ/jZtMqwbgE8De2Xu8YT7ApdXVc1V7yWWNdvf0XpDnZzWNfXPkuzQJUm/QjtpcmWSjyb54Xn2ZbH3ZXZ8sXPuHEK1lNjpAFqL7Wz7Mis24a4x4Hwxzjjme+589TkQ2IH2us3s19/SWn9nLPWzumAsNqbvjPx98xz3R1+T73afgdHt7Ttyf7QuS/0ezBfHPrKLY3cG3gr8x0xL6Bix5jXVWi1nzLxPe9NO/iwUxy7lN+qXaC3rp3X3TwKe1DW8zJR3AO0kydFV9d/zlDOORePYqT+KV9W3q+rXqmpf2qDfv87CsxnWrPuX0rqJjB5wd66qyxfZ9J90ZT2kqvagdUXY2n5p5zNyVi7JfWlnQcZ5868A7pEtx+DcB5ip/+z9XWz9K2ndu2YcMMc27ygzrY/622gtn/fsvoBfZozXIm1Spg/SZs7dp3vuaQs890vM31WL7izgf9C6HszMEvhW2tnIQ7r36VXj1K1zJVvu/322oe7Ppn3f/jFtTNfFtB+q0Usa/BVwA/B7s557E7DryP3FJmj6EUa6uUlTb9Ldh+1CvOy2t2N12liyl9Nabu7eHSOuX2TbdxxvksxMTHjFmGXNfr1m35/LYuvMewykvR+XzHo/dq+qJ4+x3ZfRWnl+tHtPZrqRz/XaXAnsl2zxpR2t02JlfZ95jp9di9Vrq+pQWjfhp9C1KFXVx6vq52hdL79Ci3O2sJXv8cxzlxo7Xcqs8YudK2hJ1KjRmK4v89XnUuAWYP3I52KPqhq9vN9SP6sLfQ5hgfd4K909rRv56PauGLk/+2TKUr4Hi8Wxt9F6RR5M6wGw1Fhz1NW0hHO+OHapn9+jaYnxt7o49v20kxW/2pW3C60H4RuqzSMwY4v3pzu5tDfz6E7w3J9F4tipT2CT/M/cOWD/u7QP1ubu/ndoYzkX8jfA67ofE9KuM3rEGJvenXY29vok+9HGASxUzx26sylrgHVpkwfMnCE8CfjFtGtw7Ua7DMqHZrWSzqlat57/BP5vV+ZDaV07Zmbq/Q5wUNp4lXHWPwV4ZdrECPvRflwXshvtNb+628/n0c4ijmNH2sH/amBTkidxZ+I5l7NoZ1bna10myY/RBr/PdPfZnZYUfq87g/rrY9YN2mvx4iT7p40neMU21P1oWtfmh4/c/gfw5LRB9v+b1u3pmV23lFHnAb+aNonD4SzQPar7jD2KNnmWtHrYAjvVtsNj9e604PHqrpw/4K6tt7M9OcmPp437/CPgjO6YvTVlbXHs30qj8cD+tHHIM84CbkybaGuX7vj04LRZVhezO63V67q0MZyvXmDdz9Fa2o9LmzTyCLbsZrtYWefRDddJm0Dpjrkskvx0kod07+8NtK6Ym9Na7Y/o3uNbaJ+f2cflmW0v9X2ZsdTY6e3AHyU5JM1D08a5ngY8IO3yTuuS/AotBvqnMeuxtU4AnpfkCWkTrO2X5Ier6kpaF9e/SLJH99j9kizUrfs7wP6ZNZHSiFOA5yY5NK0b61zv8S+ntcbfnxbTbqvXJtmxS/KeQkvW5rLU78FpLBzDraWNc72Z1tCx1FjzDtW6rX8IeE332hzKlo0mY39+u9/OJ9Bei4d3t4cB/x93diN+B/CVqvqzWU//b1rPg19I62n4e90+zecxwDeqasGW9mk6is/Mujtz+4du+aOBM5N8jzZA/iVdH3Ro/eTfldasf+QcZQK8sXve6UlupA2cHufaRq8FHkk7W/FR2odkIW+jfSCfQRvbcjOtVY6uT/4LaQfHq2gfqtkTDS3kGbSJl66gTXbw6moTKMGdX7prkpw7xvp/SJvg6RLgX2hdWm+Zb8NVdQHwF7SDzHdo4wE+O06lu4P+i2k/Tt+lncU5dYH1b6VNDjB7Yqk7ZvCldQn6vZGzP7/dlXsj7T14H+N7G6170RdpA9HveI+XUvckh9HOkL6la4WYuZ1Kay1+Rne7L+1s+8xn/FVdES+hjWe5jjbJx4cXqPMvAp+sqisWWEeaPrbATguP1c3HgY/Rgrdv0iZSWazr5N/TgvNraSciZ451W1PWXMf+pXptt71LaEnJHZeo64LjmWD2EtrYvbfTuiAu5g20IT8bae/jx+ZbsTvu/zItKbmO9pr8E3fGJYuV9fu0lsLvdvvz9yOP3YsW49xA65L+qW4f19AmobmC9l78FHOf/N6a92Vmv5YaO72eFm+c3tX3BGCXauNgn0Jrib6G1qL2lKraOE49tlZVnUU3oRDtu/Up7mwJfg4t8bqA9rp/gNaSPZ9/ozU6fDvJXerdxXNv6Na7qPt/1F/SJlP7Dm2M50lsm2939b6iK+uFVfWVuVZc6vegqs6lnUyb/dv1xe638bu0JPOXqo09X1KcPIfjaK2m36bFz+8ceWwpn99nA+dV1emjcSxtXPxDkzyYNu73l2b9/v9EtXHGL6K9LpfTWmTnvJpI55m0E5YLypbDCqQtJfl14Kiq2tpJLyYqra/9fwCPqPEnqthuJDkTeEG1wfrSqrBmzwNqp8f+1kTL/MHHfuucqtqw+JpS/9IuM3dZVc0eQqJZuuPc31TVOxddWRqYJD8PvKiqnrbSdRmaJD9EOxnyiFlzINzFVF9AWJOXNoX7fWlnBQ+hndUbd0r63lWbRXLOyRQEVTVOi4Q0ZWK3X2k71XU//SqtdeuZtMu5zNtqKw1ZVZ1Oa0nXLNVmrf6RcdY1gdVsO9JmjDuY1l3nZOCvV7JCkmS3X2m79UBaF8rdaOMCn96NtZS0nTKB1Ra6QdPjTsIkSf0LtsBqVauq5650HYaqqo4Hjl/pekgaDhNYSdLA2YVYkiQ1RgSSJEmSpKnQSwvs+vXr6z4HHtRH0XfY3PPsydnq65yPr8a6zvi22dz3JpZhEus1y3CaZTkm4+77vdhhbb+f2W998xts3LjRgYhaGY6B1Sq2fv36OrDnuEnS8jv33HM2VtXeK12P1aaXBPY+Bx7EZ8/4fB9F3+GmW2/vtfy1yxAs3b4MWdPNPb9Oy5H47bRD/xns5t4zfbj5trmugz45e+8+3zXAJ+MnH/uYxVeS+mIXYq1iBx54EJ898+yVroakCdtlh3xzpeuwGhkRSJKGL5nsbdHN5YAk/57kgiTnJ3lJt/z/JflKki8l+Ycke40855VJLkry1SRP7O/FkCRp+2UCK0nSXW0CXlZVhwKHAccmORT4BPDgqnoo8N/AKwG6x44CHgQcDvx1krUrUnNJklYxE1hJ0rClm4V4krdFVNWVVXVu9/eNwIXAflV1elVt6lY7A9i/+/sI4OSquqWqLgEuAux3L0nShHkZHUnS8E1+XoL1SUYHHR7fXW9yjk3nIOARwJmzHno+8L7u7/1oCe2My7plkiRpgkxgJUmDl8knsBurasMY270b8EHgpVV1w8jy36V1Mz5p0hWTJEnzM4GVJA1a6CWBXXy7yQ605PWkqvrQyPLnAk8BnlB1x1zslwMHjDx9/26ZJEmaIMfASpI0S1rGfAJwYVW9fmT54cDLgadW1U0jTzkVOCrJTkkOBg4BzlrOOkuStD0YK4FNcnh3WYCLkryi70pJknSH9HBb3OOAZwM/k+S87vZk4M3A7sAnumV/A1BV5wOnABcAHwOOrap+L8StQTN2kqR+LNqFuLsMwFuAn6NNSvH5JKdW1QV9V06SJMiydyGuqs8wd6p72gLPeR3wut4qpalh7CRJ/RmnBfYxwEVVdXFV3QqcTLtcgCRJyyLJRG9Sz4ydJKkn4ySw+wGXjtyf89IASY5JcnaSszduvHpS9ZMkyQRW02bR2Gk0brrauEmSxjaxSZyq6viq2lBVG9av33tSxUqSJK06o3HT3sZNkjS2cS6j46UBJEkrylZTTRljJ0nqyTgtsJ8HDklycJIdgaNolwuQJKl/KzMLsbQtjJ0kqSeLtsBW1aYkxwEfB9YC7+guFyBJUu+yArMQS9vC2EmS+jNOF2Kq6jQWuHSAJEl9MoHVtDF2kqR+TGwSJ0mSJEmS+jRWC6wkSSvJFlhJkgQmsJKkKWACK0mSwARWkjR0zhwsSZI6joGVJEmSJE0FW2AlSYNnF2JJkgQ9JrBVfZXcrFkFwczmzT2/SPT/Pmxahn249eZNvW9jOT5O69b0u5Hv33J7r+XfvgzvtTQXrwMrablUz4HTchxLV8vhem3PcVPPxatHtsBKkgbPBFaSJIEJrCRpGpi/SpIknMRJkiRJkjQlbIGVJA1b7EIsSZIaE1hJ0uCZwEqSJDCBlSRNARNYSZIEJrCSpIHzMjqSJGmGkzhJkiRJkqaCLbCSpOGzAVaSJGECK0kaOmchliRJHRNYSdLgmcBKkiQwgZUkTQETWEmSBE7iJEmSJEmaErbASpKGzwZYSZKECawkaQrYhViSJIEJrCRp4JKYwEqSJMAxsJIkSZKkKWELrCRp8GyBlSRJYAusJGkKzHQjntRtjO0dkOTfk1yQ5PwkL+mW3yPJJ5J8rfv/7t3yJHlTkouSfCnJI3t+SSRJ2i6ZwEqShi8Tvi1uE/CyqjoUOAw4NsmhwCuAf62qQ4B/7e4DPAk4pLsdA7x1W3ZXkiTNzQRWkjR4y90CW1VXVtW53d83AhcC+wFHAO/qVnsX8LTu7yOAd1dzBrBXkntP+GWQJGm7ZwIrSdICkhwEPAI4E9inqq7sHvo2sE/3937ApSNPu6xbJkmSJshJnCRJw5ZeJnFan+TskfvHV9Xxd9l0cjfgg8BLq+qG0XpUVSWpSVdMkiTNr5cEdnMVN996ex9F36nvCSmXISS5fXP/G6nqdxs33bKp1/IBrrjh5t63scOa/jsj3Oceu/Za/m0/6Pe92NzzZ0maT4AeJiHeWFUbFtxusgMteT2pqj7ULf5OkntX1ZVdF+GruuWXAweMPH3/bpmkCek7pgG4ddPmXsu/4eb+46brb7qt920sx8Twe+22Y6/l77Gz7XjTyi7EkqSBm+z41zFnIQ5wAnBhVb1+5KFTgaO7v48GPjKy/DndbMSHAdePdDWWJEkT4qkHSdLgrcBlYB8HPBv4ryTndcteBfwpcEqSFwDfBI7sHjsNeDJwEXAT8Lxlra0kSdsJE1hJkmapqs8w/2CVJ8yxfgHH9lopSZJkAitJGr4eJnGSJElTyARWkjRsWZEuxJIkaYBMYCVJgxZgzRozWEmSZAIrSZoCtsBKkiTwMjqSJEmSpClhC6wkafCcxEmSJMEYLbBJDkjy70kuSHJ+kpcsR8UkSQLumMRpkjepT8ZOktSfcVpgNwEvq6pzk+wOnJPkE1V1Qc91kySJYAuspo6xkyT1ZNEEtqquBK7s/r4xyYXAfoA/wpKkZRATWE0VYydJ6s+SJnFKchDwCODMXmojSZK0ihg7SdJkjZ3AJrkb8EHgpVV1wxyPH5Pk7CRnX7Nx4yTrKEnazjkGVtNoodhpNG66euPVK1NBSZpCYyWwSXag/QCfVFUfmmudqjq+qjZU1YZ7rl8/yTpKkrZzSSZ6k/q2WOw0GjftvX7v5a+gJE2pRcfAph3pTwAurKrX918lSZJG2GqqKWPsJEn9GacF9nHAs4GfSXJed3tyz/WSJEmaVsZOktSTcWYh/gztKgaSJC07L6OjaWPsJEn9Gec6sJIkrSjzV0mSBCawkqQpYAusJEkCE1hJ0hQwf5UkSbCE68BKkiRJkrSSbIGVJA1b7EIsSZIaE1hJ0qC1WYhXuhaSJGkIektgN1f1VTQA69b02/v5pttu77V8gB/c2v82bt20udfyz77i2l7LBzj+k9/ofRs77tj/uZzjHn9wr+U/ZJ89ey2/56+0tIDYAiuJ2zf3fyC64eZNvZZ/1qX9x03vPeeK3rexyzLETc951L69lv/gffuNm9QfW2AlSYNn/ipJksBJnCRJkiRJU8IWWEnS4NmFWJIkgQmsJGnoYhdiSZLUmMBKkgatzUJsBitJkkxgJUlTwARWkiSBkzhJkiRJkqaELbCSpMGzAVaSJIEJrCRpCtiFWJIkgQmsJGnonIVYkiR1HAMrSZIkSZoKJrCSpEELIZnsbdFtJu9IclWSL48se3iSM5Kcl+TsJI/plifJm5JclORLSR7Z48shSdJ2zQRWkjR4yWRvYzgROHzWsj8DXltVDwf+oLsP8CTgkO52DPDWCeyyJEmag2NgJUmDt2aZB8FW1aeTHDR7MbBH9/eewBXd30cA766qAs5IsleSe1fVlctTW0mSth8msJKkweshf12f5OyR+8dX1fGLPOelwMeT/DmtB9Nju+X7AZeOrHdZt8wEVpKkCTOBlSRtjzZW1YYlPufXgd+sqg8mORI4AfjZyVdNkiTNxzGwkqRBa+NWl3cSp3kcDXyo+/v9wGO6vy8HDhhZb/9umSRJmjATWEnS4K3JZG9b6Qrgp7q/fwb4Wvf3qcBzutmIDwOud/yrJEn9sAuxJGnwtqHVdGu3917g8bSxspcBrwZ+DXhjknXAD2gzDgOcBjwZuAi4CXjeslZWkqTtiAmsJGnwljl/paqeMc9Dj5pj3QKO7bdGkiQJ7EIsSZIkSZoStsBKkgYtQFjmJlhJkjRIJrCSpMHbhomXJEnSKmICK0katm279I0kSVpFeklgQ9hhbb/Da9et7TeY2XT75l7LB7h1U//b+P4tm3ot/9MXX99r+QDnvv8jvW+Du92z90087KC791r+Q/bZs9fypZVk/irp9s3V+zauv+m2Xss/6ewrei0f4J/f/M7et8Fue/W+iT1f9sxeyz/oHrv1Wr764yROkiRJkqSpYBdiSdKgBVhjE6wkScIEVpI0BcxfJUkSmMBKkqaAkzhJkiRwDKwkSZIkaUrYAitJGrTELsSSJKkxgZUkDZ6TOEmSJDCBlSRNAdNXSZIES0hgk6wFzgYur6qn9FclSZK25CROmkbGTpI0eUuZxOklwIV9VUSSJGmVMXaSpAkbK4FNsj/wC8Db+62OJElbCrAmk71JfTN2kqR+jNuF+A3Ay4Hd+6uKJElzSOxCrGn0BoydJGniFm2BTfIU4KqqOmeR9Y5JcnaSszduvHpiFZQkaeZSOpO6SX0aJ3YajZuuNm6SpLGN04X4ccBTk3wDOBn4mSTvmb1SVR1fVRuqasP69XtPuJqSpO1ZulbYSd2kni0aO43GTXsbN0nS2BZNYKvqlVW1f1UdBBwF/FtVPav3mkmSJE0hYydJ6o/XgZUkDdrMJE6SJElLSmCr6pPAJ3upiSRJ87Dbr6aVsZMkTZYtsJKkwTN9lSRJYAIrSRq4BNbYAitJkhhvFmJJkiRJklacLbCSpMGzAVaSJIEJrCRpCjiJkyRJAhNYSdIUMH+VJEnQUwJbFLdvrj6KvsOani8KeNvt/dYfYHP1v40d1/U7zHnTMrxO3HZL/9u4cWPvm7j3Hjv2Wn7fAb75gyRpJS1HT4y+N7Hzjmv73QDArnsuwzb26n0TO6/r982wZ8/0sgVWkjRoIc5CLEmSABNYSdLQxS7EkiSpMYGVJA2eXb0kSRJ4HVhJ0hRYM+HbYpK8I8lVSb48a/lvJPlKkvOT/NnI8lcmuSjJV5M8cdv2VpIkzccWWEmS7upE4M3Au2cWJPlp4AjgYVV1S5If6pYfChwFPAjYF/iXJA+oqtuXvdaSJK1ytsBKkgYttC7Ek7wtpqo+DVw7a/GvA39aVbd061zVLT8COLmqbqmqS4CLgMdM7AWQJEl3MIGVJA3emkz2tpUeAPxEkjOTfCrJo7vl+wGXjqx3WbdMkiRNmF2IJUmD18Olv9cnOXvk/vFVdfwiz1kH3AM4DHg0cEqS+068ZpIkaV4msJKkQUt6mYV4Y1VtWOJzLgM+VFUFnJVkM7AeuBw4YGS9/btlkiRpwuxCLEnSeD4M/DRAkgcAOwIbgVOBo5LslORg4BDgrJWqpCRJq5ktsJKkweuhC/GCkrwXeDytq/FlwKuBdwDv6C6tcytwdNcae36SU4ALgE3Asc5ALElSP0xgJUmDN/kexAurqmfM89Cz5ln/dcDr+quRJEkCE1hJ0sAFWLPcGawkSRokE1hJ0uA5YYMkSQJjAkmSJEnSlLAFVpI0ePYgliRJYAIrSRq4JI6BlSRJgAmsJGkKmL9KkiQwgZUkTYHlvg6sJEkaJidxkiRJkiRNBVtgJUmD5nVgJUnSDBNYSdLgmb9KkiQwgZUkDV0cAytJkhrHwEqSJEmSpkJvLbC3V/VVdLeBzb0Wvxxn+3fdqf8G8LU978fTH7JPvxsAbv3NF/S+jT133bH3bTzsh/botfyd1vV7Pir24dQKCn7+pO3dcsRme+3Wbzzw3Eft12v5AHv91jN738YuO/TfBvbLP9xvjLn7znZEnVa+c5KkQWuTOK10LSRJ0hCYwEqSBs8EVpIkgQmsJGkK2IVdkiSBkzhJkiRJkqaELbCSpEFzDKwkSZphAitJGraAPYglSRKYwEqSpsAaM1hJkoQJrCRp4OxCLEmSZow1iVOSvZJ8IMlXklyY5Mf6rpgkSdK0MnaSpH6M2wL7RuBjVfX0JDsCu/ZYJ0mStmAPYk0hYydJ6sGiCWySPYGfBJ4LUFW3Arf2Wy1JkmaENZjBanoYO0lSf8bpQnwwcDXwziRfSPL2JLv1XC9JkoA2BjaZ7E3qmbGTJPVknAR2HfBI4K1V9Qjg+8ArZq+U5JgkZyc5+5qNGydcTUnSdittEqdJ3qSeLRo7jcZNV2+8eiXqKElTaZwE9jLgsqo6s7v/AdqP8haq6viq2lBVG+65fv0k6yhJkjRNFo2dRuOmvdfvvewVlKRptWgCW1XfBi5N8sBu0ROAC3qtlSRJI9YkE71JfTJ2kqT+jDsL8W8AJ3Wz6F0MPK+/KkmSdKeZMbDSlDF2kqQejJXAVtV5wIZ+qyJJ0txsNdW0MXaSpH6MMwZWkiRJkqQVN24XYkmSVowNsJIkCUxgJUkDF+wuJEmSGmMCSdKwBZJM9LboJpN3JLkqyZfneOxlSSrJ+u5+krwpyUVJvpTkLpeakyRJk2ECK0kavEz4NoYTgcPvUo/kAODngW+NLH4ScEh3OwZ461L2TZIkjc8EVpKkWarq08C1czz0l8DLgRpZdgTw7mrOAPZKcu9lqKYkSdsdx8BKkgYtDOMyOkmOAC6vqi/O6oa8H3DpyP3LumVXLmP1JEnaLvSSwK5J2HXHtX0UfYdbNm3utfxxxkhtq6pafKVt1fN+3Pceu/VaPsDzH71/79vYcU2/n1eAffbYqdfy163tt0PFAPIHbcd6+PitT3L2yP3jq+r4ebef7Aq8itZ9WNIKWLum/wPRHjv327bzkP327LV8gIPv2X9sthxx8u49vxe77dR/7Kd+2AIrSRq8HmKljVW1YQnr3w84GJhpfd0fODfJY4DLgQNG1t2/WyZJkibMBFaSNHDjzRzcp6r6L+CHZu4n+Qawoao2JjkVOC7JycCPAtdXld2HJUnqgZM4SZI0S5L3Ap8DHpjksiQvWGD104CLgYuAtwEvWoYqSpK0XbIFVpI0aGH5z7ZW1TMWefygkb8LOLbvOkmSJBNYSdIUWOkuxJIkaRhMYCVJg2f6KkmSwARWkjR0sQVWkiQ1TuIkSZIkSZoKtsBKkgZtJSZxkiRJw2QCK0kaPLsQS5IkMIGVJE0B01dJkgT2ypIkSZIkTQlbYCVJg2cPYkmSBCawkqSBa5M4mcFKkiQTWEnSFLAFVpIkgQmsJGnwQmyBlSRJOImTJEmSJGlK2AIrSRo8uxBLkiQwgZUkDZyTOEmSpBkmsJKkYYstsJIkqTGBlSQNngmsJEkCJ3GSJEmSJE0JW2AlSYPnZXQkSRKYwEqSBi7AGvNXSZJETwlsgHVr++2dfNvt1Wv5u+20ttfyAW65bXPv29i0ud/XaZcd+3+dDr7n3XrfRlW/r1PbRr/l77Su3++cYxC1kmyBlZRlOBCt6zms2WOXHfrdALD7zqujfWpNz+/3Gs+MTq3V8QmXJK1qnkCRJEngJE6SJEmSpClhC6wkafDsQixJksAEVpI0cE7iJEmSZpjASpIGLrbASpIkwDGwkiRJkqQpYQusJGnY4izEkiSpMYGVJA2e+askSYIxuxAn+c0k5yf5cpL3Jtm574pJkgQzkzhlojepb8ZOktSPRRPYJPsBLwY2VNWDgbXAUX1XTJKkGZnwTeqTsZMk9WfcSZzWAbskWQfsClzRX5UkSZKmnrGTJPVg0QS2qi4H/hz4FnAlcH1VnT57vSTHJDk7ydlXb7x68jWVJG2/bILVFBkndjJukqStM04X4rsDRwAHA/sCuyV51uz1qur4qtpQVRv2Xr/35GsqSdpuZcL/Ft1e8o4kVyX58siy/5fkK0m+lOQfkuw18tgrk1yU5KtJntjPq6BpMU7sZNwkSVtnnC7EPwtcUlVXV9VtwIeAx/ZbLUmS7pRM9jaGE4HDZy37BPDgqnoo8N/AK1vdcihtfOODuuf8dZK1E9p1TSdjJ0nqyTgJ7LeAw5LsmiTAE4AL+62WJEl3Wu4exFX1aeDaWctOr6pN3d0zgP27v48ATq6qW6rqEuAi4DFbtaNaLYydJKkn44yBPRP4AHAu8F/dc47vuV6SJPVp/cz4w+52zBKf/3zgn7u/9wMuHXnssm6ZtlPGTpLUn3XjrFRVrwZe3XNdJEma2+QnXtpYVRu25olJfhfYBJw02SppNTF2kqR+jJXASpK0Ulq332FMHZzkucBTgCdUVXWLLwcOGFlt/26ZJEmasHGvAytJ0sqY8AROY07idNdqJIcDLweeWlU3jTx0KnBUkp2SHAwcApy1rbstSZLuyhZYSdLgLXf7a5L3Ao+njZW9jNYV9JXATsAn2rw8nFFVL6yq85OcAlxA61p8bFXdvsxVliRpu2ACK0nSLFX1jDkWn7DA+q8DXtdfjSRJEpjASpKmwTCGwEqSpBVmAitJGrgMZhInSZK0snpJYAvYdPvmPopeNjvvsHZVbOPGH2zqtfybb+1/mNdyhK1r1/Y/n9ntm2vxlbbBmjX9vlImEFpJWzvxkiQtRXr+sVm7LL9l/mBqdbMFVpI0aMFwTJIkNV5GR5IkSZI0FWyBlSQNn02wkiQJE1hJ0hRwDLYkSQITWEnSFHASJ0mSBI6BlSRJkiRNCVtgJUmDZwOsJEkCE1hJ0tB5HR1JktQxgZUkDZ6TOEmSJDCBlSQNXHASJ0mS1DiJkyRJkiRpKtgCK0kaPBtgJUkSmMBKkqaBGawkScIEVpI0BZzESZIkgQmsJGkKOImTJEkCJ3GSJEmSJE0JW2AlSYNnA6wkSQITWEnSNDCDlSRJmMBKkgYuOImTJElqTGAlScMWJ3GSJEmNkzhJkiRJkqaCLbCSpMGzAVaSJIEJrCRpGpjBSpIkTGAlSYMXJ3GSJElATwnsF849Z+PuO6/95hKesh7Y2EddlpH7MByrYT+GuA8HrnQFJGk1OvfcczbuskOWEjfBMI8TS+U+DMNq2AcY5n4YO/WglwS2qvZeyvpJzq6qDX3UZbm4D8OxGvZjNeyDNEnOQqzVbKlxE6yO44T7MAyrYR9g9eyHFmcXYknSoAWHwEqSpMYEVpI0fGawkiSJ4SSwx690BSbAfRiO1bAfq2EfpIlxEifpLlbDccJ9GIbVsA+wevZDi0hVrXQdJEma10Mf/qj6x3/9z4mWedD6nc9ZaKxUkncATwGuqqoHd8vuAbwPOAj4BnBkVX03SYA3Ak8GbgKeW1XnTrTCkiQJgDUrXQFJkhaTTPY2hhOBw2ctewXwr1V1CPCv3X2AJwGHdLdjgLdOYp8lSdJdmcBKkgYvE74tpqo+DVw7a/ERwLu6v98FPG1k+burOQPYK8m9l7yTkiRpUSuawCY5PMlXk1yU5BWLP2N4khyQ5N+TXJDk/CQvWek6ba0ka5N8Ick/rXRdtkaSvZJ8IMlXklyY5MdWuk5LleQ3u8/Rl5O8N8nOK10nacVNuPV1Gy7Js09VXdn9/W1gn+7v/YBLR9a7rFsmTZyx03BMe9wExk6aTiuWwCZZC7yF1vXqUOAZSQ5dqfpsg03Ay6rqUOAw4Ngp3Q+AlwAXrnQltsEbgY9V1Q8DD2PK9iXJfsCLgQ3dmLu1wFErWytpKCbeBrs+ydkjt2OWUptqE0g4iYSWlbHT4Ex73ATGTppCK9kC+xjgoqq6uKpuBU6mdcOaKlV15cxkHVV1I+2LP3Vn3pPsD/wC8PaVrsvWSLIn8JPACQBVdWtVXbeildo664BdkqwDdgWuWOH6SKvVxqraMHIbZ/bK78x0De7+v6pbfjlwwMh6+3fLpEkzdhqIaY+bwNhJ02slE9hV1+UqyUHAI4AzV7gqW+MNwMuBzStcj611MHA18M6uO8/bk+y20pVaiqq6HPhz4FvAlcD1VXX6ytZKWnlhMF2ITwWO7v4+GvjIyPLnpDmM9t29cq4CpG1k7DQcb2C64yYwdtKUchKnCUlyN+CDwEur6oaVrs9SJJm5VMQ5K12XbbAOeCTw1qp6BPB97pwhdCokuTvtTPrBwL7AbkmetbK1koZhuSdxSvJe4HPAA5NcluQFwJ8CP5fka8DPdvcBTgMuBi4C3ga8aBt3V9ouTGvstEriJjB20pRat4LbXjVdrpLsQPsBPqmqPrTS9dkKjwOemuTJwM7AHkneU1XT9ANwGXBZVc2cwf0AU/YjTAuIL6mqqwGSfAh4LPCeFa2VNADb0Gq6VarqGfM89IQ51i3g2H5rJAHGTkOxGuImMHbSlFrJFtjPA4ckOTjJjrQB16euYH22SncB+xOAC6vq9Stdn61RVa+sqv2r6iDa+/Bv0/YjXFXfBi5N8sBu0ROAC1awSlvjW8BhSXbtPldPYMomU5D6kgn/k6aUsdMArIa4CYydNL1WrAW2qjYlOQ74OG3GsHdU1fkrVZ9t8Djg2cB/JTmvW/aqqjpt5aq03foN4KTuoH4x8LwVrs+SVNWZST4AnEubofELwDgTy0iStgPGTuqBsZOmTlrPJ0mShulhj3hUffxTZ0y0zHvvueM5VbVhooVKkqTereQYWEmSxmKnX0mSBCawkqSB28ZL30iSpFXEy+hIkiRJkqaCLbCSpMFz5mBJkgQmsJKkaWD+KkmSMIGVJE0B81dJkgQmsJKkKeAkTpIkCZzESZIkSZI0JWyBlSQNXJzESZIkASawkqSBC3YhliRJjV2IJUmSJElTwRZYSdLg2QIrSZLAFlhJkiRJ0pSwBVaSNHhO4iRJksAEVpI0dLELsSRJakxgJUmDlu4mSZJkAitJGj4zWEmShJM4SZIkSZKmhC2wkqTBcxInSZIEJrCSpCngJE6SJAlMYCVJU8D8VZIkgWNgJUmSJElTwhZYSdLw2QQrSZIwgZUkTQEncZIkSWACK0kauOAkTpIkqUlVrXQdJEmaV5KPAesnXOzGqjp8wmVKkqSemcBKkiRJkqaCsxBLkiRJkqaCCawkSZIkaSqYwEqSJEmSpoIJrCRJkiRpKpjASpIkSZKmwv8Po9z4sYtVic4AAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 1080x1080 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "Err_B10=error(xdata10, poptB10[0], poptB10[1],poptB10[2], poptB10[3], poptB10[4], recorteB10.ravel(), inc=1)\n", + "poptB10E, pcovB10E = curve_fit(gauss2d, xdata10, recorteB10.ravel(), p0=[3,2,2,1,1],sigma=Err_B10)\n", + "estrellaB10E=gauss2d(xdata10, poptB10E[0], poptB10E[1],poptB10E[2], poptB10E[3], poptB10E[4])\n", + "FWHMB10E=FWHMB_I.append(2*np.sqrt(2*np.log(2))*np.sqrt(poptB10E[4]))\n", + "fig=plt.figure(figsize=(15, 15))\n", + "pos = fig.add_axes([0.5,0.35,0.02,0.3])\n", + "plt.subplot(131)\n", + "plt.title(\"Estrella 10 fotografÃa (Banda Azul)\")\n", + "plt.imshow(recorteB10, plt.get_cmap('Blues'))\n", + "plt.subplot(133)\n", + "plt.title(\"Estrella 10 a partir de la gaussiana con incertidumbre (Banda Azul)\")\n", + "plt.imshow(estrellaB10E.reshape(10, 10), plt.get_cmap('Blues'))\n", + "plt.colorbar(cax=pos)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Histograma con incertidumbres (Banda Azul)" + ] + }, + { + "cell_type": "code", + "execution_count": 861, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Datos de FWHM con incertidumbres de las estrellas para la Banda azul :\n", + "Desviación : 2.6951116878528705\n", + "Media : 4.515986827150282\n", + "Mediana : 3.49839915953825\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAVS0lEQVR4nO3dfZBldZ3f8ffHYVZQeUig4+Iw46hQbFhLQLtYQJMQWDYoCMkuJhB1hbA7FVcjJmZdMCmoJakUmo3ubnAlI7CgUgji0/CgLEG2BFS0wQGBwXXKTJZBlGFQnuTBwW/+uGeyl57b3Xem59w70+f9qro15+F3z/kequlPn6ffL1WFJKm7XjTuAiRJ42UQSFLHGQSS1HEGgSR1nEEgSR23y7gL2Fr77LNPLV++fNxlSNJO5Y477nikqiYGrdvpgmD58uVMTU2NuwxJ2qkk+b8zrfPSkCR1nEEgSR1nEEhSxxkEktRxBoEkdZxBIEkd13oQJFmU5LtJrh2w7sVJrkyyNsntSZa3XY8k6YVGcUZwJrBmhnVnAD+tqv2BjwEfHkE9kqQ+rQZBkv2A44GLZmhyEnBZM301cEyStFmTJOmF2n6z+E+BDwK7z7B+CfAAQFVtSvIYsDfwSH+jJCuAFQDLli3b5mKWn3XdNn93vtadf/zY9i1Js2ntjCDJCcDDVXXHfLdVVSurarKqJicmBnaVIUnaRm1eGnojcGKSdcBngaOTfGZamweBpQBJdgH2BDa2WJMkaZrWgqCqzq6q/apqOXAK8LWqese0ZquAdzXTJzdtHERZkkZo5L2PJjkPmKqqVcDFwKeTrAUepRcYkqQRGkkQVNVfA3/dTJ/Tt/wZ4G2jqEGSNJhvFktSxxkEktRxBoEkdZxBIEkdZxBIUscZBJLUcQaBJHWcQSBJHWcQSFLHGQSS1HEGgSR1nEEgSR1nEEhSxxkEktRxBoEkdZxBIEkd1+bg9bsm+XaSu5Lcm+SPB7Q5LcmGJKubz++1VY8kabA2Ryh7Fji6qp5Mshi4NclXqupb09pdWVXvbbEOSdIsWguCZhD6J5vZxc3HgeklaQfT6j2CJIuSrAYeBm6sqtsHNPudJHcnuTrJ0jbrkSRtqdUgqKrnq+oQYD/gsCSvndbkGmB5Vb0OuBG4bNB2kqxIMpVkasOGDW2WLEmdM5KnhqrqZ8DNwHHTlm+sqmeb2YuAN8zw/ZVVNVlVkxMTE63WKkld0+ZTQxNJ9mqmdwOOBe6f1mbfvtkTgTVt1SNJGqzNp4b2BS5Lsohe4FxVVdcmOQ+YqqpVwPuSnAhsAh4FTmuxHknSAG0+NXQ3cOiA5ef0TZ8NnN1WDZKkuflmsSR1nEEgSR1nEEhSxxkEktRxBoEkdZxBIEkdZxBIUscZBJLUcQaBJHWcQSBJHWcQSFLHGQSS1HEGgSR1nEEgSR1nEEhSxxkEktRxBoEkdVybYxbvmuTbSe5Kcm+SPx7Q5sVJrkyyNsntSZa3VY8kabA2zwieBY6uqoOBQ4Djkhw+rc0ZwE+ran/gY8CHW6xHkjRAa0FQPU82s4ubT01rdhJwWTN9NXBMkrRVkyRpS60NXg+QZBFwB7A/8PGqun1akyXAAwBVtSnJY8DewCPTtrMCWAGwbNmyNktuzfKzrhvLftedf/xY9itp59HqzeKqer6qDgH2Aw5L8tpt3M7KqpqsqsmJiYntWqMkdd1Inhqqqp8BNwPHTVv1ILAUIMkuwJ7AxlHUJEnqafOpoYkkezXTuwHHAvdPa7YKeFczfTLwtaqafh9BktSiNu8R7Atc1twneBFwVVVdm+Q8YKqqVgEXA59OshZ4FDilxXokSQO0FgRVdTdw6IDl5/RNPwO8ra0aJElz881iSeo4g0CSOs4gkKSOMwgkqeMMAknqOINAkjrOIJCkjjMIJKnjDAJJ6rg5gyDJR5LskWRxkpuSbEjyjlEUJ0lq3zBnBL9VVY8DJwDr6I0t8IdtFiVJGp1hgmBzf0THA5+rqsdarEeSNGLDdDp3bZL7gaeBdyeZAJ5ptyxJ0qjMeUZQVWcBRwKTVfUL4Cl6Yw1LkhaAYbuhfgXwm0l27Vv2qRbqkSSN2JxBkORc4CjgIOB64M3ArRgEkrQgDHOz+GTgGODHVXU6cDC9sYUlSQvAMEHwdFX9EtiUZA/gYZoB52eTZGmSm5Pcl+TeJGcOaHNUkseSrG4+5wzaliSpPcPcI5hqBqH/JHAH8CTwzSG+twn4QFXdmWR34I4kN1bVfdPa3VJVJ2xN0ZKk7WfOIKiqP2gmL0zyVWCPZjziub73EPBQM/1EkjXAEmB6EEiSxmjGIEjy+tnWVdWdw+4kyXJ6A9nfPmD1EUnuAn4E/MequnfA91cAKwCWLVs27G4lSUOY7Yzgf8yyroCjh9lBkpcBnwfe33RV0e9O4JVV9WSStwBfAg7YYmdVK4GVAJOTkzXMfiVJw5kxCKrqn85340kW0wuBy6vqCwP28Xjf9PVJ/iLJPlX1yHz3LUkazmyXhn57ti8O+sU+7fsBLgbWVNVHZ2jzq8BPqqqSHEbvKaaNc1YtSdpuZrs09NZZ1hUwaxAAbwTeCXwvyepm2YeAZQBVdSG9dxTenWQTvb6MTqkqL/1I0gjNdmno9PlsuKpuBTJHmwuAC+azH0nS/AwzMM3Lk1yc5CvN/EFJzmi/NEnSKAzzZvGlwA30Op4D+Bvg/S3VI0kasWGCYJ+qugr4JUBVbQKeb7UqSdLIDBMETyXZm94NYpIcDjhKmSQtEMP0NfQfgFXAa5LcBkzQe9pHkrQAzBoESRYB/6T5HEjvKaDvNyOVSZIWgFkvDVXV88CpVbWpqu6tqnsMAUlaWIa5NHRbkguAK+mNVwzA1nQ6J0nacQ0TBIc0/57Xt2zoTuckSTu2YYLgjKr6Yf+CJK9uqR5J0ogN8/jo1QOWfW57FyJJGo/Zeh/9NeDXgT2n9US6B7Br24VJkkZjtktDBwInAHvxwp5InwB+v8WaJEkjNFvvo18GvpzkiKoaZrB6SdJOaJh7BP8iyR5JFie5KcmGJO9ovTJJ0kgMEwS/1QwpeQKwDtgf+MM2i5Ikjc4wQbC4+fd44HNVZYdzkrSADBME1yS5H3gDcFOSCeCZub6UZGmSm5Pcl+TeJGcOaJMkf55kbZK7k7x+6w9BkjQfcwZBVZ0FHAlMNv0M/Rw4aYhtbwI+UFUHAYcD70ly0LQ2bwYOaD4rgE9sRe2SpO1gmKEqXwL8AX/3S/oVwORc36uqhzb3R1RVTwBrgCXTmp0EfKp6vgXslWTfrahfkjRPw1wa+kvgOXpnBQAPAv91a3aSZDlwKHD7tFVLgAf65tezZViQZEWSqSRTGzZs2JpdS5LmMEwQvKaqPgL8AqCqfk5vXIKhJHkZ8Hng/c3TR1utqlZW1WRVTU5MTGzLJiRJMxgmCJ5Lsht/N1Tla4Bnh9l4ksX0QuDyqvrCgCYPAkv75vdrlkmSRmSYIDgX+CqwNMnlwE3AB+f6UpIAFwNrquqjMzRbBfxu8/TQ4cBjVfXQcKVLkraHObuhrqobk9xJ78mfAGdW1SNDbPuNwDuB7yVZ3Sz7ELCs2e6FwPXAW4C19J5GOn1rD0CSND/DjEdAVW0ErtuaDVfVrcxxL6GqCnjP1mxXkrR9DXNpSJK0gBkEktRxQwVBkjclOb2ZnkjyqnbLkiSNyjBvFp8L/BFwdrNoMfCZNouSJI3OUOMRACcCTwFU1Y+A3dssSpI0OkO9UNY83bP5hbKXtluSJGmUhgmCq5L8L3odwv0+8L+BT7ZbliRpVIZ5oexPkhwLPE5vQPtzqurG1iuTJI3EsC+U3Qj4y1+SFqAZgyDJEzT3BQapqj1aqUiSNFIzBkFV7Q6Q5L8ADwGfptdlxNsBB4+RpAVimJvFJ1bVX1TVE1X1eFV9guGGqpQk7QSGCYKnkrw9yaIkL0rydpp3CiRJO79hguBfA/8S+EnzeVuzTJK0AAzz+Og6vBQkSQuWvY9KUscZBJLUca0FQZJLkjyc5J4Z1h+V5LEkq5vPOW3VIkma2TDdUP/nvukXb8W2LwWOm6PNLVV1SPM5byu2LUnaTmYMgiR/lOQI4OS+xd8cdsNV9XXg0XnUJkkagdnOCO6n96joq5PckuSTwN5JDtyO+z8iyV1JvpLk12dqlGRFkqkkUxs2bNiOu5ckzRYEPwM+BKwFjgL+rFl+VpJvbId93wm8sqoOBv4n8KWZGlbVyqqarKrJiYmJ7bBrSdJmswXBPwOuA14DfBT4DeCpqjq9qo6c746b7iqebKavBxYn2We+25UkbZ0Zg6CqPlRVxwDr6HU4twiYSHJrkmvmu+Mkv5okzfRhTS0b57tdSdLWGWY8ghuqagqYSvLuqnrTMH+5J7mC3iWlfZKsB86lN/A9VXUhvZvQ706yCXgaOKUZElOSNELDdDHxwb7Z05pljwzxvVPnWH8BcMFc25EktWurXiirqrvaKkSSNB52MSFJHWcQSFLHGQSS1HEGgSR1nEEgSR1nEEhSxxkEktRxBoEkdZxBIEkdZxBIUscZBJLUcQaBJHWcQSBJHWcQSFLHGQSS1HEGgSR1XGtBkOSSJA8nuWeG9Uny50nWJrk7yevbqkWSNLM2zwguBY6bZf2bgQOazwrgEy3WIkmaQWtBUFVfBx6dpclJwKeq51vAXkn2baseSdJgcw5e36IlwAN98+ubZQ9Nb5hkBb2zBpYtWzaS4haK5WddN7Z9rzv/+LHst4vHrNFZiD9fO8XN4qpaWVWTVTU5MTEx7nIkaUEZZxA8CCztm9+vWSZJGqFxBsEq4Hebp4cOBx6rqi0uC0mS2tXaPYIkVwBHAfskWQ+cCywGqKoLgeuBtwBrgZ8Dp7dViyRpZq0FQVWdOsf6At7T1v4lScPZKW4WS5LaYxBIUscZBJLUcQaBJHWcQSBJHWcQSFLHGQSS1HEGgSR1nEEgSR1nEEhSxxkEktRxBoEkdZxBIEkdZxBIUscZBJLUcQaBJHWcQSBJHddqECQ5Lsn3k6xNctaA9acl2ZBkdfP5vTbrkSRtqc0xixcBHweOBdYD30myqqrum9b0yqp6b1t1SJJm1+YZwWHA2qr6YVU9B3wWOKnF/UmStkGbQbAEeKBvfn2zbLrfSXJ3kquTLB20oSQrkkwlmdqwYUMbtUpSZ437ZvE1wPKqeh1wI3DZoEZVtbKqJqtqcmJiYqQFStJC12YQPAj0/4W/X7Ps/6uqjVX1bDN7EfCGFuuRJA3QZhB8BzggyauS/ApwCrCqv0GSfftmTwTWtFiPJGmA1p4aqqpNSd4L3AAsAi6pqnuTnAdMVdUq4H1JTgQ2AY8Cp7VVjyRpsNaCAKCqrgeun7bsnL7ps4Gz26xBkjS7cd8sliSNmUEgSR1nEEhSxxkEktRxBoEkdZxBIEkdZxBIUscZBJLUcQaBJHWcQSBJHWcQSFLHGQSS1HEGgSR1nEEgSR1nEEhSxxkEktRxBoEkdVyrQZDkuCTfT7I2yVkD1r84yZXN+tuTLG+zHknSlloLgiSLgI8DbwYOAk5NctC0ZmcAP62q/YGPAR9uqx5J0mBtnhEcBqytqh9W1XPAZ4GTprU5Cbismb4aOCZJWqxJkjRNm4PXLwEe6JtfD/zGTG2qalOSx4C9gUf6GyVZAaxoZp9M8v0Z9rnP9O92yA537Bnd+d0Oc+wjPOZ+O8zxj0Gnjn3az9fWHvsrZ1rRZhBsN1W1Elg5V7skU1U1OYKSdjgeezePHbp9/B779jn2Ni8NPQgs7Zvfr1k2sE2SXYA9gY0t1iRJmqbNIPgOcECSVyX5FeAUYNW0NquAdzXTJwNfq6pqsSZJ0jStXRpqrvm/F7gBWARcUlX3JjkPmKqqVcDFwKeTrAUepRcW8zHn5aMFzGPvri4fv8e+HcQ/wCWp23yzWJI6ziCQpI7b6YMgydIkNye5L8m9Sc4cd02jlmRRku8muXbctYxakr2SXJ3k/iRrkhwx7ppGJcm/b37m70lyRZJdx11Tm5JckuThJPf0Lfv7SW5M8oPm3783zhrbMsOx//fm5/7uJF9Mste2bn+nDwJgE/CBqjoIOBx4z4CuLBa6M4E14y5iTP4M+GpV/RpwMB3575BkCfA+YLKqXkvvgYz5Pmyxo7sUOG7asrOAm6rqAOCmZn4hupQtj/1G4LVV9Trgb4Czt3XjO30QVNVDVXVnM/0EvV8ES8Zb1egk2Q84Hrho3LWMWpI9gX9M7+kzquq5qvrZWIsarV2A3Zp3cF4C/GjM9bSqqr5O7+nCfv3d1FwG/PNR1jQqg469qv6qqjY1s9+i967WNtnpg6Bf03vpocDtYy5llP4U+CDwyzHXMQ6vAjYAf9lcGrsoyUvHXdQoVNWDwJ8Afws8BDxWVX813qrG4uVV9VAz/WPg5eMsZoz+DfCVbf3yggmCJC8DPg+8v6oeH3c9o5DkBODhqrpj3LWMyS7A64FPVNWhwFMs3EsDL9BcCz+JXhi+AnhpkneMt6rxal5G7dzz8En+E71L5Jdv6zYWRBAkWUwvBC6vqi+Mu54ReiNwYpJ19Hp3PTrJZ8Zb0kitB9ZX1eYzwKvpBUMX/Cbwf6pqQ1X9AvgCcOSYaxqHnyTZF6D59+Ex1zNSSU4DTgDePp9eGXb6IGi6rb4YWFNVHx13PaNUVWdX1X5VtZzejcKvVVVn/iqsqh8DDyQ5sFl0DHDfGEsapb8FDk/ykub/gWPoyI3yafq7qXkX8OUx1jJSSY6jd1n4xKr6+Xy2tdMHAb2/it9J76/h1c3nLeMuSiPz74DLk9wNHAL8t/GWMxrNWdDVwJ3A9+j9v7ygu1tIcgXwTeDAJOuTnAGcDxyb5Af0zpLOH2eNbZnh2C8AdgdubH7vXbjN27eLCUnqtoVwRiBJmgeDQJI6ziCQpI4zCCSp4wwCSeo4g0CaJsnzfY8ir06yPMlR03t3TXJpkpOTnJTkS33Lz25G3ds8/9Ykq5rpdUlumbad1f29SkqjZhBIW3q6qg7p+6ybo/036PV8u9kRwONJ/kEzf2TTZrPdkywFSPIPt1fR0rYyCKR5qqoN9H7x798sWkKvy5PNXT4cCdzW95WrgH/VTJ8KXDGKOqWZGATSlnbruyz0xb7l/6j/khFwYt+624Ajm+4ufkCvW+Ajmy6iDwa+09f288BvN9NvBa5p60CkYewy7gKkHdDTVXXIgOW3VNUJm2eSXNq37hv0/vJfRK8rgG8D59DrFv3+qnqmr+1G4KdJTqHXP9C8+omR5sszAmn7uI1eEBwJfLMZJGlX4CheeH9gsyuBj+NlIe0ADAJp+1hDb1yANwHfbZatBv4tL7w/sNkXgY8AN4yiOGk2BoG0HTR9wd8ObGzGB4DeJaJXM+CMoKqeqKoPV9VzIyxTGsjeRyWp4zwjkKSOMwgkqeMMAknqOINAkjrOIJCkjjMIJKnjDAJJ6rj/B4Hx9Qxtuo+sAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "FWHMB_I = np.array(FWHMB_I)\n", + "sigmaB_I = FWHMB_I.std()\n", + "mediaB_I = FWHMB_I.mean()\n", + "medianaB_I = np.median(FWHMB_I)\n", + "print(\"Datos de FWHM con incertidumbres de las estrellas para la Banda azul :\")\n", + "print(\"Desviación :\", sigmaB_I)\n", + "print(\"Media :\", mediaB_I)\n", + "print(\"Mediana :\", medianaB_I)\n", + "plt.hist(FWHMB_I)\n", + "plt.xlabel('FHWM')\n", + "plt.ylabel('# de estrellas')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* ## Resumen de resultados:" + ] + }, + { + "cell_type": "code", + "execution_count": 897, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1mLos valores estadÃsticos obtenidos para el Full Width at Half Maximum (FHWM) son:\n" + ] + }, + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>D-E</th>\n", + " <th>Media</th>\n", + " <th>Mediana</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>Blanco/Negro</th>\n", + " <td>2.506520</td>\n", + " <td>4.223188</td>\n", + " <td>3.141966</td>\n", + " </tr>\n", + " <tr>\n", + " <th>Blanco/Negro con incertidumbre</th>\n", + " <td>2.329890</td>\n", + " <td>4.021187</td>\n", + " <td>2.919205</td>\n", + " </tr>\n", + " <tr>\n", + " <th>B-Rojo</th>\n", + " <td>2.525571</td>\n", + " <td>4.242802</td>\n", + " <td>3.182727</td>\n", + " </tr>\n", + " <tr>\n", + " <th>B-Rojo con incertidumbre</th>\n", + " <td>2.699912</td>\n", + " <td>4.508061</td>\n", + " <td>3.482339</td>\n", + " </tr>\n", + " <tr>\n", + " <th>B-Verde</th>\n", + " <td>2.507212</td>\n", + " <td>4.216827</td>\n", + " <td>3.122942</td>\n", + " </tr>\n", + " <tr>\n", + " <th>B-Verde con incertidumbre</th>\n", + " <td>2.344335</td>\n", + " <td>4.008533</td>\n", + " <td>2.919655</td>\n", + " </tr>\n", + " <tr>\n", + " <th>B-Azul</th>\n", + " <td>2.525344</td>\n", + " <td>4.246485</td>\n", + " <td>3.173732</td>\n", + " </tr>\n", + " <tr>\n", + " <th>B-Azul con incertidumbre</th>\n", + " <td>2.695112</td>\n", + " <td>4.515987</td>\n", + " <td>3.498399</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + " D-E Media Mediana\n", + "Blanco/Negro 2.506520 4.223188 3.141966\n", + "Blanco/Negro con incertidumbre 2.329890 4.021187 2.919205\n", + "B-Rojo 2.525571 4.242802 3.182727\n", + "B-Rojo con incertidumbre 2.699912 4.508061 3.482339\n", + "B-Verde 2.507212 4.216827 3.122942\n", + "B-Verde con incertidumbre 2.344335 4.008533 2.919655\n", + "B-Azul 2.525344 4.246485 3.173732\n", + "B-Azul con incertidumbre 2.695112 4.515987 3.498399" + ] + }, + "execution_count": 897, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "# -- crear un data frame con esa información\n", + "# -- crear un array con todas las cantidades calculadas anteriormente para el FWHM\n", + "datos = np.array([[sigmaBN,mediaBN,medianaBN],\n", + " [sigmaR,mediaR,medianaR],\n", + " [sigmaG,mediaG,medianaG],\n", + " [sigmaB,mediaB,medianaB],\n", + " [sigmaBN_I,mediaBN_I,medianaBN_I],\n", + " [sigmaR_I,mediaR_I,medianaR_I],\n", + " [sigmaG_I,mediaG_I,medianaG_I],\n", + " [sigmaB_I,mediaB_I,medianaB_I]])\n", + "\n", + "print('\\033[1m' + 'Los valores estadÃsticos obtenidos para el Full Width at Half Maximum (FHWM) son:' )\n", + "FWHM_tabla = pd.DataFrame(datos,\n", + " columns=['D-E','Media','Mediana'], \n", + " index=['Blanco/Negro','Blanco/Negro con incertidumbre',\n", + " 'B-Rojo','B-Rojo con incertidumbre',\n", + " 'B-Verde','B-Verde con incertidumbre',\n", + " 'B-Azul','B-Azul con incertidumbre'])\n", + "FWHM_tabla" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* # Comentarios y conclusiones:" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* #### Fue posible implementar la función curve_fit para modelar la gaussiana sin mayores inconvenientes, sin embargo, la determinación de los parámetros sugeridos p0 fue totalmente aleatoria de tal manera que presentaba bastantes inconvenientes para algunos valores, y variaciones en los resultados bastante notables en el ingreso de diferentes enteros, como por ejemplo tomando x0=0 o y0=0 , el valor sugerido en p0 para la constante aditiva b de la gaussiana fue la que más cambio en los diferentes 8 resultados estadÃsticos del cálculo del FHWM, la segunda constante en más variar fue la multiplicativa de amplitud a. \n", + "\n", + "* #### Los resultados obtenidos para los análisis a blanco y negro se tomarón de la función lÃneal de Luma, como recomendación de algunos sitios web [1]. No se automatizó el plot de cada imagen ni la aplicación del modelo para cada una de las estrellas por que se estaban presentando errores de acumulación de datos en los arrays y listas, decidà hacerlo para cada una de tal manera que pudisese aprovechar esto y modificar algunos detalles para cada estrella, cómo: tamaño rejilla, titulos, añadidura de incertidumbres al fit y cambio en los p0 para cada uno de los tratamientos. \n", + "\n", + "* #### Al comparar los resultados obtenidos sin incertidumbres para los valores estadÃsticos del FHWM se observa que los canales rojo y azul tienen tanto mayor desviación como mayor FWHM que el canal verde y los resultados para los recortes blanco y negro, por lo que estos dos ultimos son los más considerables para modelar.\n", + "\n", + "* #### Al aplicar el módelo a todos los procedimientos, pero teniendo en cuenta la incertidumbre, los valores de p0 se hicieron mucho más variados que en los realizados sin incertidumbre. Razón por la cual es probable que justifique el hecho de que las desviaciones para los resultados de los valores estadÃsticos obtenidos del FHWM sean mayores en los casos de la bandas rojo y azul. El valor de la constante aditiva b de la gaussiana en la mayorÃa de los casos sin incertidumbre era cercano a 0 mientras que con incertidumbre tomaba siempre el mayor valor que todas las otras constantes, en especial en los casos de las bandas rojo y azul. Por lo que una vez más se presentan mejores resultados para el análisis a blanco y negro y para la banda verde.\n", + "\n", + "* #### Los valores obtenidos para el FWHM no varian significativamente con o sin incertidumbre, en la mayorÃa de todos los resultados el FWHM estaba entre 2 y 4, a excepsión de curiosamente la estrella más luminosa de la fotografÃa, la estrella 2, la cual presentaba FWHM alrededor de 11, como FWHM es el ancho de la gaussiana en su punto medio, podrÃa decirse que la estrella 2 es la más \"desenfocada\" de la fotografÃa por ser el objeto (o varios) de mayor tamaño. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.3" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/README.md b/README.md index 4faac69..3bf36c7 100644 --- a/README.md +++ b/README.md @@ -1,5 +1,61 @@ # Ejercicios para practicar numpy y optimización con scipy +**NUEVO PLAZO DE ENTREGA: Feb/18 a la media noche COL/PER/ECU - 1:00 a.m del 19/02 VEN** + + +# ADICIONES - FEB/17 + +## Para quienes tengan dificultad en comprender el ajuste sobre la región 2D + +Pueden empezar resolviendo un problema más sencillo, de nuevo en 1 dimensión +asà como en el ejemplo de la clase. En este caso, después de recortar el cuadradito +de una estrella, vamos a tomar solo los pixeles de la lÃnea que pasa por la mitad +de la estrella, es decir tenemos un vector de valores de intensidad luminosa. +Si los grafican, deben obtener algo similar a esto: + + +La idea entonces es ajustar una función gaussiana común y corriente, agregando una +constante aditiva. Cuando dominen este problema (y escriban su solución para entregar) +pueden retomar el problema original a ver si lo entienden mejor. + +La diferencia será +que ya no tendrán una función de una variable, si no de dos. Es decir: + +* En el problema +simplificado tenemos $y=y(x)$. 'x' es nuestra variable independiente y representa las +distintas posiciones a lo largo de la linea 1D, mientras 'y', que representa las +intensidades luminosas en cada posición, es nuestra variable dependiente, los datos +a los cuales deseamos ajustar el modelo + +* En el problema planteado originalmente se desea ajustar una función de 2 variables: +$z=z(x,y)$. 'x','y' son las variables independientes, y juntas representan todas las +posiciones sobre el cuadrito 2D del recorte de la estrella; deberán usar meshgrid +para obtener todas las combinaciones (fila, columna) de los pixeles en la imagen. +Por su parte, 'z', que es la variable dependiente, es el brillo de cada pixel, y +corresponde a los valores que vienen almacenados en la propia imagen. Esos valores +de 'z' son nuestros datos, a los cuales queremos ajustar el modelo de gaussiana 2D, +algo del estilo: zmodel = gauss2D(x,y) + +Una vez logren ajustar una de esas gausianas 1D, la idea es repetir en varias estrellas +y sacar una estadÃstica sobre el ancho de ellas. + + +## Para quienes ya dominaron el ejercicio inicial + +Olvidé comentar sobre la incertidumbre, que obviamente existe siempre que tomamos +cualquier medida. En el caso de las imágenes, el conteo de fotones es un proceso que +sigue la estadÃstica de Poisson, y si el flujo luminoso es grande (llegan muchos fotones) +esto acaba derivando en una estadÃstica gaussiana. En ese caso podemos modelar la +incertidumbre como la raÃz cuadrada del flujo observado. + +Como ejercicio final, repita los ajustes realizados inicialmente, esta vez teniendo +en cuenta la incertidumbre de los datos, para ver si surge algún cambio en los resultados. +Encuentre una forma de programar sus rutinas de modo que sean fácilmente reutilizables; +con una buena implementación, este nuevo ajuste debe ser cuestión de un par de minutos +con pocos o ningún paso manual. + + + ## Resolución espacial En observaciones astronómicas e imágenes en general, llamamos resolución espacial -- GitLab