diff --git a/.gitignore b/.gitignore
new file mode 100644
index 0000000000000000000000000000000000000000..87620ac7e74efee566c6ee9d2ed7281ebafb4788
--- /dev/null
+++ b/.gitignore
@@ -0,0 +1 @@
+.ipynb_checkpoints/
diff --git a/codigo/trabajo.ipynb b/codigo/trabajo.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..f5002bf0a293746b4b74e603f267e65ca5d48270
--- /dev/null
+++ b/codigo/trabajo.ipynb
@@ -0,0 +1,233 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "import csv\n",
+ "import numpy as np\n",
+ "import matplotlib as plt\n",
+ "import seaborn as sns"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df_species = pd.read_csv(\"~/ejercicios-clase-08-datos/data-used/species.csv\")\n",
+ "df_surveys = pd.read_csv(\"~/ejercicios-clase-08-datos/data-used/surveys.csv\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "pip install --upgrade pip"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df_species.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df_surveys.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df_surveys"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df_species['species_id'].unique()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df_surveys['species_id'].unique()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df_surveysspecie= pd.merge(df_surveys,df_species,how='left',on=['species_id'])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df_surveysspecie"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df_group_specie_id = df_surveysspecie.groupby('taxa').unique()\n",
+ "df_group_specie_id"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "plt.pyplot.scatter(df_surveysspecie[df_surveysspecie['weight']>0],df_surveysspecie[df_surveysspecie['hindfoot_length']>0]['weight'])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "plt.pyplot.scatter(df_surveysspecie[df_surveysspecie['taxa']=='Rodent'][df_surveysspecie['hindfoot_length']>0]['year'],df_surveysspecie[df_surveysspecie['taxa']=='Rodent'][df_surveysspecie['hindfoot_length']>0]['hindfoot_length'])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df_surveysspecie[df_surveysspecie['taxa']=='Rodent']['weight']"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df_surveysspecie.info()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df_surveysspecie['hindfoot_length']=df_surveysspecie['hindfoot_length'].fillna(0)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df_surveysspecie['weight']=df_surveysspecie['weight'].fillna(0)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "plt.pyplot.scatter(df_surveysspecie['taxa'](skipna=True),df_surveysspecie['weight'])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df_surveysspecie['taxa'].hist()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df_surveysspecie['taxa'].unique()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df_surveysspecie[df_surveysspecie['weight']>0]['weight'].max()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df_weight_vs_taxa= pd.concat([df_surveysspecie[df_surveysspecie['weight']>0]['weight'],df_surveysspecie[df_surveysspecie['weight']>0]['taxa']],axis=1)\n",
+ "f,ax=plt.subplots()\n",
+ "fig"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.6.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/data-used/analisis.csv b/data-used/analisis.csv
index 5ece3ad8444d8a8eec65234f394d319083784d3c..9efb9405e9985e0959d30ab01a57e610674ac247 100644
--- a/data-used/analisis.csv
+++ b/data-used/analisis.csv
@@ -30,4 +30,4 @@ tur08,Francia,9,15.5
tur09,Francia,10,17
tur10,Francia,5,11.5
tur11,Francia,20,26
-tur12,Francia,27,43.5
+tur12,Francia,27,43.5
\ No newline at end of file