diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..87620ac7e74efee566c6ee9d2ed7281ebafb4788 --- /dev/null +++ b/.gitignore @@ -0,0 +1 @@ +.ipynb_checkpoints/ diff --git a/codigo/trabajo.ipynb b/codigo/trabajo.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..f5002bf0a293746b4b74e603f267e65ca5d48270 --- /dev/null +++ b/codigo/trabajo.ipynb @@ -0,0 +1,233 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import csv\n", + "import numpy as np\n", + "import matplotlib as plt\n", + "import seaborn as sns" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df_species = pd.read_csv(\"~/ejercicios-clase-08-datos/data-used/species.csv\")\n", + "df_surveys = pd.read_csv(\"~/ejercicios-clase-08-datos/data-used/surveys.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "pip install --upgrade pip" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df_species.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df_surveys.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df_surveys" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df_species['species_id'].unique()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df_surveys['species_id'].unique()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df_surveysspecie= pd.merge(df_surveys,df_species,how='left',on=['species_id'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df_surveysspecie" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df_group_specie_id = df_surveysspecie.groupby('taxa').unique()\n", + "df_group_specie_id" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.pyplot.scatter(df_surveysspecie[df_surveysspecie['weight']>0],df_surveysspecie[df_surveysspecie['hindfoot_length']>0]['weight'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.pyplot.scatter(df_surveysspecie[df_surveysspecie['taxa']=='Rodent'][df_surveysspecie['hindfoot_length']>0]['year'],df_surveysspecie[df_surveysspecie['taxa']=='Rodent'][df_surveysspecie['hindfoot_length']>0]['hindfoot_length'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df_surveysspecie[df_surveysspecie['taxa']=='Rodent']['weight']" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df_surveysspecie.info()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df_surveysspecie['hindfoot_length']=df_surveysspecie['hindfoot_length'].fillna(0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df_surveysspecie['weight']=df_surveysspecie['weight'].fillna(0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.pyplot.scatter(df_surveysspecie['taxa'](skipna=True),df_surveysspecie['weight'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df_surveysspecie['taxa'].hist()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df_surveysspecie['taxa'].unique()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df_surveysspecie[df_surveysspecie['weight']>0]['weight'].max()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df_weight_vs_taxa= pd.concat([df_surveysspecie[df_surveysspecie['weight']>0]['weight'],df_surveysspecie[df_surveysspecie['weight']>0]['taxa']],axis=1)\n", + "f,ax=plt.subplots()\n", + "fig" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/data-used/analisis.csv b/data-used/analisis.csv index 5ece3ad8444d8a8eec65234f394d319083784d3c..9efb9405e9985e0959d30ab01a57e610674ac247 100644 --- a/data-used/analisis.csv +++ b/data-used/analisis.csv @@ -30,4 +30,4 @@ tur08,Francia,9,15.5 tur09,Francia,10,17 tur10,Francia,5,11.5 tur11,Francia,20,26 -tur12,Francia,27,43.5 +tur12,Francia,27,43.5 \ No newline at end of file