From f7082d497dfc9f40bae89c83f0c612b3b0f9307c Mon Sep 17 00:00:00 2001
From: Laura <laura.marcela.becerra@gmail.com>
Date: Sat, 26 Aug 2023 17:16:49 -0500
Subject: [PATCH] update library makesens

---
 .../DatosII-checkpoint.ipynb                  | 228 +++++++++++--
 .../DatosIII-checkpoint.ipynb                 |   4 +-
 .../DatosII_a-checkpoint.ipynb                |  36 +-
 .../apiMakeSens-checkpoint.ipynb              | 317 +++++++++---------
 Book/Jupyter_Notebooks/DatosII.ipynb          | 228 +++++++++++--
 Book/Jupyter_Notebooks/DatosIII.ipynb         |   4 +-
 Book/Jupyter_Notebooks/DatosII_a.ipynb        |   4 +-
 Book/Jupyter_Notebooks/apiMakeSens.ipynb      | 317 +++++++++---------
 8 files changed, 749 insertions(+), 389 deletions(-)

diff --git a/Book/Jupyter_Notebooks/.ipynb_checkpoints/DatosII-checkpoint.ipynb b/Book/Jupyter_Notebooks/.ipynb_checkpoints/DatosII-checkpoint.ipynb
index c169c61..f5294fc 100644
--- a/Book/Jupyter_Notebooks/.ipynb_checkpoints/DatosII-checkpoint.ipynb
+++ b/Book/Jupyter_Notebooks/.ipynb_checkpoints/DatosII-checkpoint.ipynb
@@ -51,7 +51,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 1,
+   "execution_count": 23,
    "metadata": {
     "tags": []
    },
@@ -77,16 +77,37 @@
     "Mediante el uso de la API de MakeSens, descargamos los datos de temperatura de una de las estaciones (en este caso, usaremos los datos de la estación del [Instituto Técnico Damazo Zapata](https://makesens.aws.thinger.io/dashboards/DmE1_00004?authorization=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJqdGkiOiJEYXNoYm9hcmRfRG1FMV8wMDAwNCIsInN2ciI6Im1ha2VzZW5zLmF3cy50aGluZ2VyLmlvIiwidXNyIjoiTWFrZVNlbnMifQ.ymDNV3g-sdbJmhR4vH1CGUioHffuoKbKvQl-LSQCXvg)) de la red de RACIMO-Móncora. \n",
     "\n",
     "Para esto definimos:\n",
-    "- la fechas de inicio y fin en formato *YYYY-MM-DD HH:MM:SS*\n",
+    "- la fechas de inicio y fin en formato: `%Y-%m-%d %H:%M:%S` Por ejemplo: `2023-08-01 00:00:00`\n",
     "- el *ID* de la estación\n",
-    "- la frecuencia de muestreo, en este caso, vamos a descargar los datos por hora (*h*). \n",
-    "\n",
-    "Luego, utilizamos la función download_data con las variables definidas para obtener los datos de temperatura en un DataFrame de Pandas. Para más información sobre la API de MakeSens, puedes consultar la [documentación](https://docs.makesens.co/help/api-sdk/makesensapi-en-python)."
+    "- Frecuencia de muestreo: `1T`, `1H`, `D`, `W`.\n",
+    "\n",
+    "Frecuencias de muestreo:\n",
+    "||Significado|\n",
+    "|--|--|\n",
+    "|`1T`|minutos|\n",
+    "|`1H`|horas|\n",
+    "|`1D`|días|\n",
+    "|`1W`|semanas|\n",
+    "\n",
+    " *ID*  de las Estaciones:\n",
+    "|`ID`|Colegio|\n",
+    "|--|--|\n",
+    "|`mE1_00004`|Instituto Técnico Damaso Zapata|\n",
+    "|`mE1_00005`|Colegio Santander|\n",
+    "|`mE1_00006`|Institución Educativa Nuestra Señora del Pilar|\n",
+    "|`mE1_00007`|Escuela Normal Superior|\n",
+    "|`mE1_00008`|Fundación Colegio UIS|\n",
+    "|`mE1_00012`| Institución Educativa Café Madrid|\n",
+    "|`mE2_00000`|Institución Educativa Piloto Simón Bolivar|\n",
+    "|`mE2_00000`|Institución Educativa Luis Carlos Galán Sarmiento|\n",
+    "|`E2_00023`|Grupo Halley-UIS|\n",
+    "\n",
+    "Luego, utilizamos la función ```download_data()``` con las variables definidas para obtener los datos de temperatura en un DataFrame de Pandas. Para más información sobre la API de MakeSens, puedes consultar la [documentación](https://docs.makesens.co/help/api-sdk/makesensapi-en-python)."
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 2,
+   "execution_count": 24,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -94,7 +115,7 @@
     "fecha_inicio = \"2023-04-23 00:00:00\"\n",
     "fecha_fin = \"2023-04-30 00:00:00\"\n",
     "estacion = \"mE1_00004\" #Damaso Zapata\n",
-    "frecuencia = \"h\"\n",
+    "frecuencia = \"1H\"\n",
     "\n",
     "#Descargamos los datos de MakeSens\n",
     "data = MakeSens.download_data(estacion, fecha_inicio, fecha_fin, frecuencia)"
@@ -110,12 +131,16 @@
     "\n",
     "> ¿Por qué tenemos dos columnas de temperatura?\n",
     "\n",
-    " Luego, renombraremos las columnas para que tengan nombres más cortos y entendibles. Finalmente, convertiremos el índice de los datos a formato de fecha y hora con la función ```to_datetime()``` para manejarlos facilmente y utilizarlos en la visualización."
+    " Luego, renombraremos las columnas para que tengan nombres más cortos y entendibles. Finalmente, convertiremos el índice de los datos a formato de fecha y hora con la función ```to_datetime()``` para manejarlos facilmente y utilizarlos en la visualización.\n",
+    "\n",
+    " **Nota: Copiamos dataset**\n",
+    "\n",
+    "* Debemos copiar el dataset para evitar errores de sincronización de datos con el dataset viejo."
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 3,
+   "execution_count": 25,
    "metadata": {},
    "outputs": [
     {
@@ -142,32 +167,37 @@
        "      <th>T1</th>\n",
        "      <th>T2</th>\n",
        "    </tr>\n",
+       "    <tr>\n",
+       "      <th>ts</th>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "    </tr>\n",
        "  </thead>\n",
        "  <tbody>\n",
        "    <tr>\n",
        "      <th>2023-04-23 00:00:00</th>\n",
-       "      <td>25.454298</td>\n",
-       "      <td>26.207681</td>\n",
+       "      <td>25.461412</td>\n",
+       "      <td>26.223011</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>2023-04-23 01:00:00</th>\n",
-       "      <td>25.305798</td>\n",
-       "      <td>26.074235</td>\n",
+       "      <td>25.296955</td>\n",
+       "      <td>26.060955</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>2023-04-23 02:00:00</th>\n",
-       "      <td>25.187994</td>\n",
-       "      <td>25.943823</td>\n",
+       "      <td>25.188348</td>\n",
+       "      <td>25.949191</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>2023-04-23 03:00:00</th>\n",
-       "      <td>25.072544</td>\n",
-       "      <td>25.844376</td>\n",
+       "      <td>25.073048</td>\n",
+       "      <td>25.849771</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>2023-04-23 04:00:00</th>\n",
-       "      <td>24.998870</td>\n",
-       "      <td>25.780380</td>\n",
+       "      <td>25.000205</td>\n",
+       "      <td>25.777762</td>\n",
        "    </tr>\n",
        "  </tbody>\n",
        "</table>\n",
@@ -175,22 +205,25 @@
       ],
       "text/plain": [
        "                            T1         T2\n",
-       "2023-04-23 00:00:00  25.454298  26.207681\n",
-       "2023-04-23 01:00:00  25.305798  26.074235\n",
-       "2023-04-23 02:00:00  25.187994  25.943823\n",
-       "2023-04-23 03:00:00  25.072544  25.844376\n",
-       "2023-04-23 04:00:00  24.998870  25.780380"
+       "ts                                       \n",
+       "2023-04-23 00:00:00  25.461412  26.223011\n",
+       "2023-04-23 01:00:00  25.296955  26.060955\n",
+       "2023-04-23 02:00:00  25.188348  25.949191\n",
+       "2023-04-23 03:00:00  25.073048  25.849771\n",
+       "2023-04-23 04:00:00  25.000205  25.777762"
       ]
      },
-     "execution_count": 3,
+     "execution_count": 25,
      "metadata": {},
      "output_type": "execute_result"
     }
    ],
    "source": [
     "#Obtenemos los datos de temperatura de los sensores mediante una copia del dataFrame\n",
-    "temp = data[[\"temperatura\", \"temperatura2\"]].copy()\n",
-    "temp.columns = [\"T1\", \"T2\"] #renombramos las columnas \n",
+    "temp = data[[\"ts\",\"temperatura\", \"temperatura2\"]].copy()\n",
+    "temp.columns = [\"ts\",\"T1\", \"T2\"] #renombramos las columnas \n",
+    "temp = temp.set_index('ts')\n",
+    "temp.index = temp.index.strftime('%Y-%m-%d %H:%M:%S')\n",
     "temp.index = pd.to_datetime(temp.index) #Convertimos el indice a formato fecha\n",
     "\n",
     "temp.head() #exploremos como quedo nuestro nuevo dataFrame."
@@ -200,6 +233,140 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
+    "> Convertir los indices en formato de fecha, nos permite hacer cosas interesantes. Por ejemplo:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 22,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>T1</th>\n",
+       "      <th>T2</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>ts</th>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>2023-04-23 00:00:00</th>\n",
+       "      <td>25.461412</td>\n",
+       "      <td>26.223011</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2023-04-23 01:00:00</th>\n",
+       "      <td>25.296955</td>\n",
+       "      <td>26.060955</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2023-04-23 02:00:00</th>\n",
+       "      <td>25.188348</td>\n",
+       "      <td>25.949191</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2023-04-23 03:00:00</th>\n",
+       "      <td>25.073048</td>\n",
+       "      <td>25.849771</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2023-04-23 04:00:00</th>\n",
+       "      <td>25.000205</td>\n",
+       "      <td>25.777762</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>...</th>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2023-04-29 19:00:00</th>\n",
+       "      <td>27.274842</td>\n",
+       "      <td>27.945907</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2023-04-29 20:00:00</th>\n",
+       "      <td>27.512799</td>\n",
+       "      <td>28.181474</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2023-04-29 21:00:00</th>\n",
+       "      <td>27.880514</td>\n",
+       "      <td>28.550688</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2023-04-29 22:00:00</th>\n",
+       "      <td>27.937186</td>\n",
+       "      <td>28.646966</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2023-04-29 23:00:00</th>\n",
+       "      <td>27.612088</td>\n",
+       "      <td>28.328476</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "<p>169 rows × 2 columns</p>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "                            T1         T2\n",
+       "ts                                       \n",
+       "2023-04-23 00:00:00  25.461412  26.223011\n",
+       "2023-04-23 01:00:00  25.296955  26.060955\n",
+       "2023-04-23 02:00:00  25.188348  25.949191\n",
+       "2023-04-23 03:00:00  25.073048  25.849771\n",
+       "2023-04-23 04:00:00  25.000205  25.777762\n",
+       "...                        ...        ...\n",
+       "2023-04-29 19:00:00  27.274842  27.945907\n",
+       "2023-04-29 20:00:00  27.512799  28.181474\n",
+       "2023-04-29 21:00:00  27.880514  28.550688\n",
+       "2023-04-29 22:00:00  27.937186  28.646966\n",
+       "2023-04-29 23:00:00  27.612088  28.328476\n",
+       "\n",
+       "[169 rows x 2 columns]"
+      ]
+     },
+     "execution_count": 22,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "# Datos de un mes especifico\n",
+    "temp.loc['2023-04']\n",
+    "\n",
+    "# Datos de un día especifico ?"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Analisis de datos\n",
     "> Para empezar a procesar los datos, primero debemos preguntarnos qué queremos analizar.  \n",
     "\n",
     "Primero  vamos a  determinar si los dos sensores miden la misma temperatura. Una manera de hacerlo es calculando el promedio entre las medida de los dos sensores de temperatura para obtener un único valor de temperatura por cada medición. Para esto, utilizaremos la función ```.mean()``` de Pandas.\n",
@@ -253,7 +420,9 @@
     "\n",
     "Realizamos un formateo del eje de fechas para mostrar las etiquetas principales diariamente y las etiquetas menores cada 6 horas, esto con las funciones major_formatter, major_locator y minor_locator. Ajustamos los parámetros visuales de las marcas de los ejes para mejorar su apariencia mediante la función tick_params.  \n",
     "\n",
-    "Finalmente, agregamos etiquetas y títulos a los ejes, mostramos una cuadrícula de fondo y añadimos una leyenda para identificar cada serie de datos. Luego, mostramos la gráfica resultante."
+    "Finalmente, agregamos etiquetas y títulos a los ejes, mostramos una cuadrícula de fondo y añadimos una leyenda para identificar cada serie de datos. Luego, mostramos la gráfica resultante.\n",
+    "\n",
+    "> **Revisa el modulo de Visualización de Datos para una introducción básica sobre matplotlib**"
    ]
   },
   {
@@ -510,6 +679,7 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
+    "### Cuartiles y Digrama de Caja y Bigotes\n",
     "A primera vista, podemos observar que el área sombreada entre los valores máximos y mínimos registrados por hora es amplia, lo que nos indica que la temperatura varía durante los días, dependiendo de la epoca del año. Por esto, vale la pena pensar:  \n",
     "\n",
     "> ¿Qué tan representativo es el promedio de cada hora respecto al comportamiento real? \n",
@@ -715,7 +885,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.10.10"
+   "version": "3.11.3"
   },
   "widgets": {
    "application/vnd.jupyter.widget-state+json": {
diff --git a/Book/Jupyter_Notebooks/.ipynb_checkpoints/DatosIII-checkpoint.ipynb b/Book/Jupyter_Notebooks/.ipynb_checkpoints/DatosIII-checkpoint.ipynb
index d9bbe77..98779f3 100644
--- a/Book/Jupyter_Notebooks/.ipynb_checkpoints/DatosIII-checkpoint.ipynb
+++ b/Book/Jupyter_Notebooks/.ipynb_checkpoints/DatosIII-checkpoint.ipynb
@@ -148,7 +148,7 @@
     "start = '2023-04-30 00:00:00'    # Fecha de inicio: año-mes-día hora:minuto:segundo\n",
     "end   = '2023-05-07 23:00:00'    # Fecha de fin:    año-mes-día hora:minuto:segundo\n",
     "\n",
-    "data = MakeSens.download_data(estacion, start, end,'m') # Descargar los datos\n",
+    "data = MakeSens.download_data(estacion, start, end,'1T') # Descargar los datos\n",
     "data.index = pd.DatetimeIndex(data.index)               # Convertir a tipo datetime el índice"
    ]
   },
@@ -2524,7 +2524,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.10.10"
+   "version": "3.11.3"
   }
  },
  "nbformat": 4,
diff --git a/Book/Jupyter_Notebooks/.ipynb_checkpoints/DatosII_a-checkpoint.ipynb b/Book/Jupyter_Notebooks/.ipynb_checkpoints/DatosII_a-checkpoint.ipynb
index a7c5c91..810326b 100644
--- a/Book/Jupyter_Notebooks/.ipynb_checkpoints/DatosII_a-checkpoint.ipynb
+++ b/Book/Jupyter_Notebooks/.ipynb_checkpoints/DatosII_a-checkpoint.ipynb
@@ -11,7 +11,7 @@
     "<table border = 5  align = center bgcolor=\"white\" cellspacing=\"10px\">\n",
     "\n",
     "<tr>\n",
-    "<td><a href=\"https://drive.google.com/file/d/14oQfOhwLDswvDw0uOIhQUNJZTmm6S0LE/view?usp=sharing\"> <img alt=\"Colaboratory logo\" width=\"150px\"  src=\"https://miro.medium.com/max/986/1*S2AyJcdw8EPcn7gwDVSBCA.png\" align=\"left\" hspace=\"10px\" vspace=\"0px\" /> </a> </td>\n",
+    "<td><a href=\"https://drive.google.com/file/d/1--wnF2vQE2nDQ8rC8iMa2A2Sk1tNwPwz/view?usp=sharing\"> <img alt=\"Colaboratory logo\" width=\"150px\"  src=\"https://miro.medium.com/max/986/1*S2AyJcdw8EPcn7gwDVSBCA.png\" align=\"left\" hspace=\"10px\" vspace=\"0px\" /> </a> </td>\n",
     "   \n",
     "    \n",
     " \n",
@@ -81,7 +81,7 @@
     "fecha_inicio = \"2023-04-15 00:00:00\"\n",
     "fecha_fin = \"2023-05-15 00:00:00\"\n",
     "estacion = \"mE1_00004\" #Damaso Zapata\n",
-    "frecuencia = \"h\"\n",
+    "frecuencia = \"1H\"\n",
     "\n",
     "#Descargar los datos\n",
     "data = MakeSens.download_data(estacion, fecha_inicio, fecha_fin, frecuencia)\n"
@@ -1438,6 +1438,36 @@
     "## Indice de Calidad de Aire"
    ]
   },
+  {
+   "cell_type": "markdown",
+   "id": "7886b066",
+   "metadata": {},
+   "source": [
+    "Hemos visto que las estaciones cuentan el **número de partículas** presentes en el aire y a partir de allí se determina la **concentración** de cada una de ellas. Sin embargo, no todas las partículas son iguales, algunas son más dañinas que otras. Por ejemplo, las partículas de menos de 2.5 micrómetros de diámetro son las más dañinas para la salud humana, ya que pueden penetrar profundamente en los pulmones y causar problemas respiratorios. Por otro lado, las partículas de menos de 10 micrómetros de diámetro pueden penetrar en los pulmones y causar problemas respiratorios y cardiovasculares. Además, una concentración no nos dice mucho respecto a qué tan dañado está el aire que respiramos.\n",
+    "\n",
+    "Es por esto que surge la necesidad de establecer un **Índice de Calidad de Aire (ICA)** que nos permita conocer el estado del aire que respiramos. Este índice es un **valor representativo de los índices de contaminación más significativos**. Así, es posible clasificar la calidad del aire en seis categorías, cada una de ellas asociada a un color y a un valor del ICA, tal como vimos en la tabla de la sección [calidad del aire](../Monitoreo_Ambiental/Normatividad.md)."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "8c0a488d",
+   "metadata": {},
+   "source": [
+    "La fórmula para calcular el ICA es la siguiente:\n",
+    "\n",
+    "$ {ICA}_{p} = \\frac{I_{alto}-I_{bajo}}{PC_{alto}-PC_{bajo}}\\times (C_{p}-PC_{bajo})+I_{bajo} , $\n",
+    "\n",
+    "donde:\n",
+    "- ${ICA}_{p}$ es el índice de calidad del aire para el contaminante $p$.\n",
+    "- ${C_{p}}$ es la concentración del contaminante $p$.\n",
+    "- ${PC_{bajo}}$ es el punto de corte menor o igual a $C_{p}$.\n",
+    "- ${PC_{alto}}$ es el punto de corte mayor o igual a $C_{p}$.\n",
+    "- ${I_{bajo}}$ es el índice correspondiente al punto de corte ${PC_{bajo}}$.\n",
+    "- ${I_{alto}}$ es el índice correspondiente al punto de corte ${PC_{alto}}$.\n",
+    "\n",
+    "Todos estos valores se pueden encontrar en la página del [IDEAM](http://www.ideam.gov.co/documents/11769/641368/2.01+HM+Indice+calidad+aire.pdf/5130ffb3-a1bf-4d23-a663-b4c51327cc05).\n"
+   ]
+  },
   {
    "cell_type": "code",
    "execution_count": null,
@@ -1463,7 +1493,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.10.10"
+   "version": "3.11.3"
   }
  },
  "nbformat": 4,
diff --git a/Book/Jupyter_Notebooks/.ipynb_checkpoints/apiMakeSens-checkpoint.ipynb b/Book/Jupyter_Notebooks/.ipynb_checkpoints/apiMakeSens-checkpoint.ipynb
index f449ef7..8f745c7 100644
--- a/Book/Jupyter_Notebooks/.ipynb_checkpoints/apiMakeSens-checkpoint.ipynb
+++ b/Book/Jupyter_Notebooks/.ipynb_checkpoints/apiMakeSens-checkpoint.ipynb
@@ -60,7 +60,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 3,
+   "execution_count": 1,
    "metadata": {
     "id": "METaVqUqOPPp"
    },
@@ -92,7 +92,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 4,
+   "execution_count": 2,
    "metadata": {
     "id": "LulIK6c9_-GT"
    },
@@ -113,7 +113,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 3,
    "metadata": {
     "colab": {
      "base_uri": "https://localhost:8080/"
@@ -123,7 +123,7 @@
    },
    "outputs": [],
    "source": [
-    "data = MakeSens.download_data('mE1_00004', fechaInicio, fechaFin, 'h')"
+    "data = MakeSens.download_data('mE1_00004', fechaInicio, fechaFin, '1H')"
    ]
   },
   {
@@ -135,7 +135,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 7,
+   "execution_count": 4,
    "metadata": {},
    "outputs": [
     {
@@ -159,195 +159,188 @@
        "  <thead>\n",
        "    <tr style=\"text-align: right;\">\n",
        "      <th></th>\n",
+       "      <th>ts</th>\n",
+       "      <th>humedad</th>\n",
        "      <th>humedad2</th>\n",
-       "      <th>pm_n_2_5_2</th>\n",
-       "      <th>pm25_1</th>\n",
-       "      <th>pm25_2</th>\n",
-       "      <th>pm1_1_AE</th>\n",
-       "      <th>pm10_2_AE</th>\n",
-       "      <th>pm_n_2_5_1</th>\n",
        "      <th>iluminancia</th>\n",
+       "      <th>pm10_1</th>\n",
+       "      <th>pm10_1_AE</th>\n",
+       "      <th>pm10_2</th>\n",
+       "      <th>pm10_2_AE</th>\n",
        "      <th>pm1_1</th>\n",
-       "      <th>pm25_1_AE</th>\n",
+       "      <th>pm1_1_AE</th>\n",
        "      <th>...</th>\n",
-       "      <th>pm_n_0_3_1</th>\n",
-       "      <th>pm_n_5_0_1</th>\n",
-       "      <th>pm_n_5_0_2</th>\n",
-       "      <th>pm10_2</th>\n",
-       "      <th>pm10_1</th>\n",
-       "      <th>pm25_2_AE</th>\n",
+       "      <th>pm_n_10_0_2</th>\n",
        "      <th>pm_n_1_0_1</th>\n",
        "      <th>pm_n_1_0_2</th>\n",
-       "      <th>longitud</th>\n",
-       "      <th>latitud</th>\n",
+       "      <th>pm_n_2_5_1</th>\n",
+       "      <th>pm_n_2_5_2</th>\n",
+       "      <th>pm_n_5_0_1</th>\n",
+       "      <th>pm_n_5_0_2</th>\n",
+       "      <th>presion</th>\n",
+       "      <th>temperatura</th>\n",
+       "      <th>temperatura2</th>\n",
        "    </tr>\n",
        "  </thead>\n",
        "  <tbody>\n",
        "    <tr>\n",
-       "      <th>2023-04-15 02:00:00</th>\n",
-       "      <td>62.688538</td>\n",
-       "      <td>15.666667</td>\n",
-       "      <td>26.466667</td>\n",
-       "      <td>27.066667</td>\n",
-       "      <td>18.133333</td>\n",
-       "      <td>29.600000</td>\n",
-       "      <td>13.066667</td>\n",
-       "      <td>5.933333</td>\n",
-       "      <td>18.133333</td>\n",
-       "      <td>26.400000</td>\n",
+       "      <th>0</th>\n",
+       "      <td>2023-08-16 17:00:00</td>\n",
+       "      <td>38.897320</td>\n",
+       "      <td>41.228504</td>\n",
+       "      <td>6.000000</td>\n",
+       "      <td>13.700000</td>\n",
+       "      <td>13.700000</td>\n",
+       "      <td>14.200000</td>\n",
+       "      <td>14.200000</td>\n",
+       "      <td>10.000000</td>\n",
+       "      <td>10.000000</td>\n",
        "      <td>...</td>\n",
-       "      <td>2955.800000</td>\n",
-       "      <td>4.800000</td>\n",
-       "      <td>3.857143</td>\n",
-       "      <td>29.600000</td>\n",
-       "      <td>28.666667</td>\n",
-       "      <td>26.866667</td>\n",
-       "      <td>165.866667</td>\n",
-       "      <td>185.866667</td>\n",
-       "      <td>None</td>\n",
-       "      <td>None</td>\n",
+       "      <td>0.200000</td>\n",
+       "      <td>66.700000</td>\n",
+       "      <td>71.300000</td>\n",
+       "      <td>5.000000</td>\n",
+       "      <td>7.400000</td>\n",
+       "      <td>1.800000</td>\n",
+       "      <td>2.000000</td>\n",
+       "      <td>969.452265</td>\n",
+       "      <td>28.068901</td>\n",
+       "      <td>28.687991</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>2023-04-15 03:00:00</th>\n",
-       "      <td>63.074693</td>\n",
-       "      <td>12.656250</td>\n",
-       "      <td>29.062500</td>\n",
-       "      <td>29.031250</td>\n",
-       "      <td>19.343750</td>\n",
-       "      <td>31.468750</td>\n",
-       "      <td>15.218750</td>\n",
-       "      <td>6.000000</td>\n",
-       "      <td>19.593750</td>\n",
-       "      <td>28.812500</td>\n",
+       "      <th>1</th>\n",
+       "      <td>2023-08-16 18:00:00</td>\n",
+       "      <td>41.789214</td>\n",
+       "      <td>44.269801</td>\n",
+       "      <td>39.071429</td>\n",
+       "      <td>10.000000</td>\n",
+       "      <td>10.000000</td>\n",
+       "      <td>10.285714</td>\n",
+       "      <td>10.285714</td>\n",
+       "      <td>7.071429</td>\n",
+       "      <td>7.071429</td>\n",
        "      <td>...</td>\n",
-       "      <td>3255.375000</td>\n",
-       "      <td>4.181818</td>\n",
-       "      <td>4.640000</td>\n",
-       "      <td>31.468750</td>\n",
-       "      <td>31.343750</td>\n",
-       "      <td>28.781250</td>\n",
-       "      <td>182.687500</td>\n",
-       "      <td>194.218750</td>\n",
-       "      <td>None</td>\n",
-       "      <td>None</td>\n",
+       "      <td>0.142857</td>\n",
+       "      <td>49.785714</td>\n",
+       "      <td>54.071429</td>\n",
+       "      <td>3.857143</td>\n",
+       "      <td>4.285714</td>\n",
+       "      <td>1.428571</td>\n",
+       "      <td>1.000000</td>\n",
+       "      <td>967.443556</td>\n",
+       "      <td>28.146178</td>\n",
+       "      <td>28.780804</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>2023-04-15 04:00:00</th>\n",
-       "      <td>63.844043</td>\n",
-       "      <td>13.161290</td>\n",
-       "      <td>28.225806</td>\n",
-       "      <td>29.645161</td>\n",
-       "      <td>19.064516</td>\n",
-       "      <td>32.000000</td>\n",
-       "      <td>12.516129</td>\n",
-       "      <td>6.000000</td>\n",
-       "      <td>19.322581</td>\n",
-       "      <td>27.935484</td>\n",
+       "      <th>2</th>\n",
+       "      <td>2023-08-16 19:00:00</td>\n",
+       "      <td>42.114675</td>\n",
+       "      <td>44.522121</td>\n",
+       "      <td>41.428571</td>\n",
+       "      <td>8.428571</td>\n",
+       "      <td>8.428571</td>\n",
+       "      <td>7.571429</td>\n",
+       "      <td>7.571429</td>\n",
+       "      <td>5.428571</td>\n",
+       "      <td>5.428571</td>\n",
        "      <td>...</td>\n",
-       "      <td>3189.290323</td>\n",
-       "      <td>3.727273</td>\n",
-       "      <td>4.307692</td>\n",
-       "      <td>32.000000</td>\n",
-       "      <td>30.096774</td>\n",
-       "      <td>29.129032</td>\n",
-       "      <td>179.387097</td>\n",
-       "      <td>207.516129</td>\n",
-       "      <td>None</td>\n",
-       "      <td>None</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>40.071429</td>\n",
+       "      <td>39.571429</td>\n",
+       "      <td>5.142857</td>\n",
+       "      <td>3.000000</td>\n",
+       "      <td>1.285714</td>\n",
+       "      <td>0.571429</td>\n",
+       "      <td>966.713915</td>\n",
+       "      <td>28.195374</td>\n",
+       "      <td>28.835164</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>2023-04-15 05:00:00</th>\n",
-       "      <td>63.372091</td>\n",
-       "      <td>12.800000</td>\n",
-       "      <td>28.466667</td>\n",
-       "      <td>28.500000</td>\n",
-       "      <td>19.333333</td>\n",
-       "      <td>30.600000</td>\n",
-       "      <td>13.931034</td>\n",
-       "      <td>6.000000</td>\n",
-       "      <td>19.500000</td>\n",
-       "      <td>28.200000</td>\n",
+       "      <th>3</th>\n",
+       "      <td>2023-08-16 20:00:00</td>\n",
+       "      <td>38.560408</td>\n",
+       "      <td>40.723931</td>\n",
+       "      <td>41.857143</td>\n",
+       "      <td>5.857143</td>\n",
+       "      <td>5.857143</td>\n",
+       "      <td>5.428571</td>\n",
+       "      <td>5.428571</td>\n",
+       "      <td>3.714286</td>\n",
+       "      <td>3.714286</td>\n",
        "      <td>...</td>\n",
-       "      <td>3188.700000</td>\n",
-       "      <td>3.920000</td>\n",
-       "      <td>4.260870</td>\n",
-       "      <td>30.600000</td>\n",
-       "      <td>30.733333</td>\n",
-       "      <td>28.233333</td>\n",
-       "      <td>177.866667</td>\n",
-       "      <td>193.600000</td>\n",
-       "      <td>None</td>\n",
-       "      <td>None</td>\n",
+       "      <td>0.285714</td>\n",
+       "      <td>26.571429</td>\n",
+       "      <td>21.428571</td>\n",
+       "      <td>3.428571</td>\n",
+       "      <td>2.285714</td>\n",
+       "      <td>0.857143</td>\n",
+       "      <td>0.857143</td>\n",
+       "      <td>966.744908</td>\n",
+       "      <td>28.157669</td>\n",
+       "      <td>28.842603</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>2023-04-15 06:00:00</th>\n",
-       "      <td>62.761833</td>\n",
-       "      <td>11.290323</td>\n",
-       "      <td>26.677419</td>\n",
-       "      <td>26.225806</td>\n",
-       "      <td>17.903226</td>\n",
-       "      <td>29.064516</td>\n",
-       "      <td>12.838710</td>\n",
-       "      <td>6.000000</td>\n",
-       "      <td>18.000000</td>\n",
-       "      <td>26.483871</td>\n",
+       "      <th>4</th>\n",
+       "      <td>2023-08-16 21:00:00</td>\n",
+       "      <td>38.032839</td>\n",
+       "      <td>40.042586</td>\n",
+       "      <td>42.000000</td>\n",
+       "      <td>6.045455</td>\n",
+       "      <td>6.045455</td>\n",
+       "      <td>5.363636</td>\n",
+       "      <td>5.363636</td>\n",
+       "      <td>4.181818</td>\n",
+       "      <td>4.181818</td>\n",
        "      <td>...</td>\n",
-       "      <td>2998.354839</td>\n",
-       "      <td>3.833333</td>\n",
-       "      <td>4.962963</td>\n",
-       "      <td>29.064516</td>\n",
-       "      <td>28.935484</td>\n",
-       "      <td>26.225806</td>\n",
-       "      <td>168.903226</td>\n",
-       "      <td>174.612903</td>\n",
-       "      <td>None</td>\n",
-       "      <td>None</td>\n",
+       "      <td>0.363636</td>\n",
+       "      <td>26.000000</td>\n",
+       "      <td>22.818182</td>\n",
+       "      <td>3.454545</td>\n",
+       "      <td>2.545455</td>\n",
+       "      <td>1.000000</td>\n",
+       "      <td>0.818182</td>\n",
+       "      <td>982.620261</td>\n",
+       "      <td>27.273129</td>\n",
+       "      <td>27.939668</td>\n",
        "    </tr>\n",
        "  </tbody>\n",
        "</table>\n",
-       "<p>5 rows × 32 columns</p>\n",
+       "<p>5 rows × 31 columns</p>\n",
        "</div>"
       ],
       "text/plain": [
-       "                      humedad2  pm_n_2_5_2     pm25_1     pm25_2   pm1_1_AE  \\\n",
-       "2023-04-15 02:00:00  62.688538   15.666667  26.466667  27.066667  18.133333   \n",
-       "2023-04-15 03:00:00  63.074693   12.656250  29.062500  29.031250  19.343750   \n",
-       "2023-04-15 04:00:00  63.844043   13.161290  28.225806  29.645161  19.064516   \n",
-       "2023-04-15 05:00:00  63.372091   12.800000  28.466667  28.500000  19.333333   \n",
-       "2023-04-15 06:00:00  62.761833   11.290323  26.677419  26.225806  17.903226   \n",
+       "                   ts    humedad   humedad2  iluminancia     pm10_1  \\\n",
+       "0 2023-08-16 17:00:00  38.897320  41.228504     6.000000  13.700000   \n",
+       "1 2023-08-16 18:00:00  41.789214  44.269801    39.071429  10.000000   \n",
+       "2 2023-08-16 19:00:00  42.114675  44.522121    41.428571   8.428571   \n",
+       "3 2023-08-16 20:00:00  38.560408  40.723931    41.857143   5.857143   \n",
+       "4 2023-08-16 21:00:00  38.032839  40.042586    42.000000   6.045455   \n",
        "\n",
-       "                     pm10_2_AE  pm_n_2_5_1  iluminancia      pm1_1  pm25_1_AE  \\\n",
-       "2023-04-15 02:00:00  29.600000   13.066667     5.933333  18.133333  26.400000   \n",
-       "2023-04-15 03:00:00  31.468750   15.218750     6.000000  19.593750  28.812500   \n",
-       "2023-04-15 04:00:00  32.000000   12.516129     6.000000  19.322581  27.935484   \n",
-       "2023-04-15 05:00:00  30.600000   13.931034     6.000000  19.500000  28.200000   \n",
-       "2023-04-15 06:00:00  29.064516   12.838710     6.000000  18.000000  26.483871   \n",
+       "   pm10_1_AE     pm10_2  pm10_2_AE      pm1_1   pm1_1_AE  ...  pm_n_10_0_2  \\\n",
+       "0  13.700000  14.200000  14.200000  10.000000  10.000000  ...     0.200000   \n",
+       "1  10.000000  10.285714  10.285714   7.071429   7.071429  ...     0.142857   \n",
+       "2   8.428571   7.571429   7.571429   5.428571   5.428571  ...     0.000000   \n",
+       "3   5.857143   5.428571   5.428571   3.714286   3.714286  ...     0.285714   \n",
+       "4   6.045455   5.363636   5.363636   4.181818   4.181818  ...     0.363636   \n",
        "\n",
-       "                     ...   pm_n_0_3_1  pm_n_5_0_1  pm_n_5_0_2     pm10_2  \\\n",
-       "2023-04-15 02:00:00  ...  2955.800000    4.800000    3.857143  29.600000   \n",
-       "2023-04-15 03:00:00  ...  3255.375000    4.181818    4.640000  31.468750   \n",
-       "2023-04-15 04:00:00  ...  3189.290323    3.727273    4.307692  32.000000   \n",
-       "2023-04-15 05:00:00  ...  3188.700000    3.920000    4.260870  30.600000   \n",
-       "2023-04-15 06:00:00  ...  2998.354839    3.833333    4.962963  29.064516   \n",
+       "   pm_n_1_0_1  pm_n_1_0_2  pm_n_2_5_1  pm_n_2_5_2  pm_n_5_0_1  pm_n_5_0_2  \\\n",
+       "0   66.700000   71.300000    5.000000    7.400000    1.800000    2.000000   \n",
+       "1   49.785714   54.071429    3.857143    4.285714    1.428571    1.000000   \n",
+       "2   40.071429   39.571429    5.142857    3.000000    1.285714    0.571429   \n",
+       "3   26.571429   21.428571    3.428571    2.285714    0.857143    0.857143   \n",
+       "4   26.000000   22.818182    3.454545    2.545455    1.000000    0.818182   \n",
        "\n",
-       "                        pm10_1  pm25_2_AE  pm_n_1_0_1  pm_n_1_0_2  longitud  \\\n",
-       "2023-04-15 02:00:00  28.666667  26.866667  165.866667  185.866667      None   \n",
-       "2023-04-15 03:00:00  31.343750  28.781250  182.687500  194.218750      None   \n",
-       "2023-04-15 04:00:00  30.096774  29.129032  179.387097  207.516129      None   \n",
-       "2023-04-15 05:00:00  30.733333  28.233333  177.866667  193.600000      None   \n",
-       "2023-04-15 06:00:00  28.935484  26.225806  168.903226  174.612903      None   \n",
+       "      presion  temperatura  temperatura2  \n",
+       "0  969.452265    28.068901     28.687991  \n",
+       "1  967.443556    28.146178     28.780804  \n",
+       "2  966.713915    28.195374     28.835164  \n",
+       "3  966.744908    28.157669     28.842603  \n",
+       "4  982.620261    27.273129     27.939668  \n",
        "\n",
-       "                     latitud  \n",
-       "2023-04-15 02:00:00     None  \n",
-       "2023-04-15 03:00:00     None  \n",
-       "2023-04-15 04:00:00     None  \n",
-       "2023-04-15 05:00:00     None  \n",
-       "2023-04-15 06:00:00     None  \n",
-       "\n",
-       "[5 rows x 32 columns]"
+       "[5 rows x 31 columns]"
       ]
      },
-     "execution_count": 7,
+     "execution_count": 4,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -471,7 +464,9 @@
   {
    "cell_type": "code",
    "execution_count": 11,
-   "metadata": {},
+   "metadata": {
+    "scrolled": true
+   },
    "outputs": [
     {
      "data": {
@@ -556,7 +551,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.10.7"
+   "version": "3.11.3"
   }
  },
  "nbformat": 4,
diff --git a/Book/Jupyter_Notebooks/DatosII.ipynb b/Book/Jupyter_Notebooks/DatosII.ipynb
index c169c61..f5294fc 100644
--- a/Book/Jupyter_Notebooks/DatosII.ipynb
+++ b/Book/Jupyter_Notebooks/DatosII.ipynb
@@ -51,7 +51,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 1,
+   "execution_count": 23,
    "metadata": {
     "tags": []
    },
@@ -77,16 +77,37 @@
     "Mediante el uso de la API de MakeSens, descargamos los datos de temperatura de una de las estaciones (en este caso, usaremos los datos de la estación del [Instituto Técnico Damazo Zapata](https://makesens.aws.thinger.io/dashboards/DmE1_00004?authorization=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJqdGkiOiJEYXNoYm9hcmRfRG1FMV8wMDAwNCIsInN2ciI6Im1ha2VzZW5zLmF3cy50aGluZ2VyLmlvIiwidXNyIjoiTWFrZVNlbnMifQ.ymDNV3g-sdbJmhR4vH1CGUioHffuoKbKvQl-LSQCXvg)) de la red de RACIMO-Móncora. \n",
     "\n",
     "Para esto definimos:\n",
-    "- la fechas de inicio y fin en formato *YYYY-MM-DD HH:MM:SS*\n",
+    "- la fechas de inicio y fin en formato: `%Y-%m-%d %H:%M:%S` Por ejemplo: `2023-08-01 00:00:00`\n",
     "- el *ID* de la estación\n",
-    "- la frecuencia de muestreo, en este caso, vamos a descargar los datos por hora (*h*). \n",
-    "\n",
-    "Luego, utilizamos la función download_data con las variables definidas para obtener los datos de temperatura en un DataFrame de Pandas. Para más información sobre la API de MakeSens, puedes consultar la [documentación](https://docs.makesens.co/help/api-sdk/makesensapi-en-python)."
+    "- Frecuencia de muestreo: `1T`, `1H`, `D`, `W`.\n",
+    "\n",
+    "Frecuencias de muestreo:\n",
+    "||Significado|\n",
+    "|--|--|\n",
+    "|`1T`|minutos|\n",
+    "|`1H`|horas|\n",
+    "|`1D`|días|\n",
+    "|`1W`|semanas|\n",
+    "\n",
+    " *ID*  de las Estaciones:\n",
+    "|`ID`|Colegio|\n",
+    "|--|--|\n",
+    "|`mE1_00004`|Instituto Técnico Damaso Zapata|\n",
+    "|`mE1_00005`|Colegio Santander|\n",
+    "|`mE1_00006`|Institución Educativa Nuestra Señora del Pilar|\n",
+    "|`mE1_00007`|Escuela Normal Superior|\n",
+    "|`mE1_00008`|Fundación Colegio UIS|\n",
+    "|`mE1_00012`| Institución Educativa Café Madrid|\n",
+    "|`mE2_00000`|Institución Educativa Piloto Simón Bolivar|\n",
+    "|`mE2_00000`|Institución Educativa Luis Carlos Galán Sarmiento|\n",
+    "|`E2_00023`|Grupo Halley-UIS|\n",
+    "\n",
+    "Luego, utilizamos la función ```download_data()``` con las variables definidas para obtener los datos de temperatura en un DataFrame de Pandas. Para más información sobre la API de MakeSens, puedes consultar la [documentación](https://docs.makesens.co/help/api-sdk/makesensapi-en-python)."
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 2,
+   "execution_count": 24,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -94,7 +115,7 @@
     "fecha_inicio = \"2023-04-23 00:00:00\"\n",
     "fecha_fin = \"2023-04-30 00:00:00\"\n",
     "estacion = \"mE1_00004\" #Damaso Zapata\n",
-    "frecuencia = \"h\"\n",
+    "frecuencia = \"1H\"\n",
     "\n",
     "#Descargamos los datos de MakeSens\n",
     "data = MakeSens.download_data(estacion, fecha_inicio, fecha_fin, frecuencia)"
@@ -110,12 +131,16 @@
     "\n",
     "> ¿Por qué tenemos dos columnas de temperatura?\n",
     "\n",
-    " Luego, renombraremos las columnas para que tengan nombres más cortos y entendibles. Finalmente, convertiremos el índice de los datos a formato de fecha y hora con la función ```to_datetime()``` para manejarlos facilmente y utilizarlos en la visualización."
+    " Luego, renombraremos las columnas para que tengan nombres más cortos y entendibles. Finalmente, convertiremos el índice de los datos a formato de fecha y hora con la función ```to_datetime()``` para manejarlos facilmente y utilizarlos en la visualización.\n",
+    "\n",
+    " **Nota: Copiamos dataset**\n",
+    "\n",
+    "* Debemos copiar el dataset para evitar errores de sincronización de datos con el dataset viejo."
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 3,
+   "execution_count": 25,
    "metadata": {},
    "outputs": [
     {
@@ -142,32 +167,37 @@
        "      <th>T1</th>\n",
        "      <th>T2</th>\n",
        "    </tr>\n",
+       "    <tr>\n",
+       "      <th>ts</th>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "    </tr>\n",
        "  </thead>\n",
        "  <tbody>\n",
        "    <tr>\n",
        "      <th>2023-04-23 00:00:00</th>\n",
-       "      <td>25.454298</td>\n",
-       "      <td>26.207681</td>\n",
+       "      <td>25.461412</td>\n",
+       "      <td>26.223011</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>2023-04-23 01:00:00</th>\n",
-       "      <td>25.305798</td>\n",
-       "      <td>26.074235</td>\n",
+       "      <td>25.296955</td>\n",
+       "      <td>26.060955</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>2023-04-23 02:00:00</th>\n",
-       "      <td>25.187994</td>\n",
-       "      <td>25.943823</td>\n",
+       "      <td>25.188348</td>\n",
+       "      <td>25.949191</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>2023-04-23 03:00:00</th>\n",
-       "      <td>25.072544</td>\n",
-       "      <td>25.844376</td>\n",
+       "      <td>25.073048</td>\n",
+       "      <td>25.849771</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>2023-04-23 04:00:00</th>\n",
-       "      <td>24.998870</td>\n",
-       "      <td>25.780380</td>\n",
+       "      <td>25.000205</td>\n",
+       "      <td>25.777762</td>\n",
        "    </tr>\n",
        "  </tbody>\n",
        "</table>\n",
@@ -175,22 +205,25 @@
       ],
       "text/plain": [
        "                            T1         T2\n",
-       "2023-04-23 00:00:00  25.454298  26.207681\n",
-       "2023-04-23 01:00:00  25.305798  26.074235\n",
-       "2023-04-23 02:00:00  25.187994  25.943823\n",
-       "2023-04-23 03:00:00  25.072544  25.844376\n",
-       "2023-04-23 04:00:00  24.998870  25.780380"
+       "ts                                       \n",
+       "2023-04-23 00:00:00  25.461412  26.223011\n",
+       "2023-04-23 01:00:00  25.296955  26.060955\n",
+       "2023-04-23 02:00:00  25.188348  25.949191\n",
+       "2023-04-23 03:00:00  25.073048  25.849771\n",
+       "2023-04-23 04:00:00  25.000205  25.777762"
       ]
      },
-     "execution_count": 3,
+     "execution_count": 25,
      "metadata": {},
      "output_type": "execute_result"
     }
    ],
    "source": [
     "#Obtenemos los datos de temperatura de los sensores mediante una copia del dataFrame\n",
-    "temp = data[[\"temperatura\", \"temperatura2\"]].copy()\n",
-    "temp.columns = [\"T1\", \"T2\"] #renombramos las columnas \n",
+    "temp = data[[\"ts\",\"temperatura\", \"temperatura2\"]].copy()\n",
+    "temp.columns = [\"ts\",\"T1\", \"T2\"] #renombramos las columnas \n",
+    "temp = temp.set_index('ts')\n",
+    "temp.index = temp.index.strftime('%Y-%m-%d %H:%M:%S')\n",
     "temp.index = pd.to_datetime(temp.index) #Convertimos el indice a formato fecha\n",
     "\n",
     "temp.head() #exploremos como quedo nuestro nuevo dataFrame."
@@ -200,6 +233,140 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
+    "> Convertir los indices en formato de fecha, nos permite hacer cosas interesantes. Por ejemplo:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 22,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>T1</th>\n",
+       "      <th>T2</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>ts</th>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>2023-04-23 00:00:00</th>\n",
+       "      <td>25.461412</td>\n",
+       "      <td>26.223011</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2023-04-23 01:00:00</th>\n",
+       "      <td>25.296955</td>\n",
+       "      <td>26.060955</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2023-04-23 02:00:00</th>\n",
+       "      <td>25.188348</td>\n",
+       "      <td>25.949191</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2023-04-23 03:00:00</th>\n",
+       "      <td>25.073048</td>\n",
+       "      <td>25.849771</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2023-04-23 04:00:00</th>\n",
+       "      <td>25.000205</td>\n",
+       "      <td>25.777762</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>...</th>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2023-04-29 19:00:00</th>\n",
+       "      <td>27.274842</td>\n",
+       "      <td>27.945907</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2023-04-29 20:00:00</th>\n",
+       "      <td>27.512799</td>\n",
+       "      <td>28.181474</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2023-04-29 21:00:00</th>\n",
+       "      <td>27.880514</td>\n",
+       "      <td>28.550688</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2023-04-29 22:00:00</th>\n",
+       "      <td>27.937186</td>\n",
+       "      <td>28.646966</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2023-04-29 23:00:00</th>\n",
+       "      <td>27.612088</td>\n",
+       "      <td>28.328476</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "<p>169 rows × 2 columns</p>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "                            T1         T2\n",
+       "ts                                       \n",
+       "2023-04-23 00:00:00  25.461412  26.223011\n",
+       "2023-04-23 01:00:00  25.296955  26.060955\n",
+       "2023-04-23 02:00:00  25.188348  25.949191\n",
+       "2023-04-23 03:00:00  25.073048  25.849771\n",
+       "2023-04-23 04:00:00  25.000205  25.777762\n",
+       "...                        ...        ...\n",
+       "2023-04-29 19:00:00  27.274842  27.945907\n",
+       "2023-04-29 20:00:00  27.512799  28.181474\n",
+       "2023-04-29 21:00:00  27.880514  28.550688\n",
+       "2023-04-29 22:00:00  27.937186  28.646966\n",
+       "2023-04-29 23:00:00  27.612088  28.328476\n",
+       "\n",
+       "[169 rows x 2 columns]"
+      ]
+     },
+     "execution_count": 22,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "# Datos de un mes especifico\n",
+    "temp.loc['2023-04']\n",
+    "\n",
+    "# Datos de un día especifico ?"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Analisis de datos\n",
     "> Para empezar a procesar los datos, primero debemos preguntarnos qué queremos analizar.  \n",
     "\n",
     "Primero  vamos a  determinar si los dos sensores miden la misma temperatura. Una manera de hacerlo es calculando el promedio entre las medida de los dos sensores de temperatura para obtener un único valor de temperatura por cada medición. Para esto, utilizaremos la función ```.mean()``` de Pandas.\n",
@@ -253,7 +420,9 @@
     "\n",
     "Realizamos un formateo del eje de fechas para mostrar las etiquetas principales diariamente y las etiquetas menores cada 6 horas, esto con las funciones major_formatter, major_locator y minor_locator. Ajustamos los parámetros visuales de las marcas de los ejes para mejorar su apariencia mediante la función tick_params.  \n",
     "\n",
-    "Finalmente, agregamos etiquetas y títulos a los ejes, mostramos una cuadrícula de fondo y añadimos una leyenda para identificar cada serie de datos. Luego, mostramos la gráfica resultante."
+    "Finalmente, agregamos etiquetas y títulos a los ejes, mostramos una cuadrícula de fondo y añadimos una leyenda para identificar cada serie de datos. Luego, mostramos la gráfica resultante.\n",
+    "\n",
+    "> **Revisa el modulo de Visualización de Datos para una introducción básica sobre matplotlib**"
    ]
   },
   {
@@ -510,6 +679,7 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
+    "### Cuartiles y Digrama de Caja y Bigotes\n",
     "A primera vista, podemos observar que el área sombreada entre los valores máximos y mínimos registrados por hora es amplia, lo que nos indica que la temperatura varía durante los días, dependiendo de la epoca del año. Por esto, vale la pena pensar:  \n",
     "\n",
     "> ¿Qué tan representativo es el promedio de cada hora respecto al comportamiento real? \n",
@@ -715,7 +885,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.10.10"
+   "version": "3.11.3"
   },
   "widgets": {
    "application/vnd.jupyter.widget-state+json": {
diff --git a/Book/Jupyter_Notebooks/DatosIII.ipynb b/Book/Jupyter_Notebooks/DatosIII.ipynb
index d9bbe77..98779f3 100644
--- a/Book/Jupyter_Notebooks/DatosIII.ipynb
+++ b/Book/Jupyter_Notebooks/DatosIII.ipynb
@@ -148,7 +148,7 @@
     "start = '2023-04-30 00:00:00'    # Fecha de inicio: año-mes-día hora:minuto:segundo\n",
     "end   = '2023-05-07 23:00:00'    # Fecha de fin:    año-mes-día hora:minuto:segundo\n",
     "\n",
-    "data = MakeSens.download_data(estacion, start, end,'m') # Descargar los datos\n",
+    "data = MakeSens.download_data(estacion, start, end,'1T') # Descargar los datos\n",
     "data.index = pd.DatetimeIndex(data.index)               # Convertir a tipo datetime el índice"
    ]
   },
@@ -2524,7 +2524,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.10.10"
+   "version": "3.11.3"
   }
  },
  "nbformat": 4,
diff --git a/Book/Jupyter_Notebooks/DatosII_a.ipynb b/Book/Jupyter_Notebooks/DatosII_a.ipynb
index 6558e85..810326b 100644
--- a/Book/Jupyter_Notebooks/DatosII_a.ipynb
+++ b/Book/Jupyter_Notebooks/DatosII_a.ipynb
@@ -81,7 +81,7 @@
     "fecha_inicio = \"2023-04-15 00:00:00\"\n",
     "fecha_fin = \"2023-05-15 00:00:00\"\n",
     "estacion = \"mE1_00004\" #Damaso Zapata\n",
-    "frecuencia = \"h\"\n",
+    "frecuencia = \"1H\"\n",
     "\n",
     "#Descargar los datos\n",
     "data = MakeSens.download_data(estacion, fecha_inicio, fecha_fin, frecuencia)\n"
@@ -1493,7 +1493,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.10.10"
+   "version": "3.11.3"
   }
  },
  "nbformat": 4,
diff --git a/Book/Jupyter_Notebooks/apiMakeSens.ipynb b/Book/Jupyter_Notebooks/apiMakeSens.ipynb
index f449ef7..8f745c7 100644
--- a/Book/Jupyter_Notebooks/apiMakeSens.ipynb
+++ b/Book/Jupyter_Notebooks/apiMakeSens.ipynb
@@ -60,7 +60,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 3,
+   "execution_count": 1,
    "metadata": {
     "id": "METaVqUqOPPp"
    },
@@ -92,7 +92,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 4,
+   "execution_count": 2,
    "metadata": {
     "id": "LulIK6c9_-GT"
    },
@@ -113,7 +113,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 3,
    "metadata": {
     "colab": {
      "base_uri": "https://localhost:8080/"
@@ -123,7 +123,7 @@
    },
    "outputs": [],
    "source": [
-    "data = MakeSens.download_data('mE1_00004', fechaInicio, fechaFin, 'h')"
+    "data = MakeSens.download_data('mE1_00004', fechaInicio, fechaFin, '1H')"
    ]
   },
   {
@@ -135,7 +135,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 7,
+   "execution_count": 4,
    "metadata": {},
    "outputs": [
     {
@@ -159,195 +159,188 @@
        "  <thead>\n",
        "    <tr style=\"text-align: right;\">\n",
        "      <th></th>\n",
+       "      <th>ts</th>\n",
+       "      <th>humedad</th>\n",
        "      <th>humedad2</th>\n",
-       "      <th>pm_n_2_5_2</th>\n",
-       "      <th>pm25_1</th>\n",
-       "      <th>pm25_2</th>\n",
-       "      <th>pm1_1_AE</th>\n",
-       "      <th>pm10_2_AE</th>\n",
-       "      <th>pm_n_2_5_1</th>\n",
        "      <th>iluminancia</th>\n",
+       "      <th>pm10_1</th>\n",
+       "      <th>pm10_1_AE</th>\n",
+       "      <th>pm10_2</th>\n",
+       "      <th>pm10_2_AE</th>\n",
        "      <th>pm1_1</th>\n",
-       "      <th>pm25_1_AE</th>\n",
+       "      <th>pm1_1_AE</th>\n",
        "      <th>...</th>\n",
-       "      <th>pm_n_0_3_1</th>\n",
-       "      <th>pm_n_5_0_1</th>\n",
-       "      <th>pm_n_5_0_2</th>\n",
-       "      <th>pm10_2</th>\n",
-       "      <th>pm10_1</th>\n",
-       "      <th>pm25_2_AE</th>\n",
+       "      <th>pm_n_10_0_2</th>\n",
        "      <th>pm_n_1_0_1</th>\n",
        "      <th>pm_n_1_0_2</th>\n",
-       "      <th>longitud</th>\n",
-       "      <th>latitud</th>\n",
+       "      <th>pm_n_2_5_1</th>\n",
+       "      <th>pm_n_2_5_2</th>\n",
+       "      <th>pm_n_5_0_1</th>\n",
+       "      <th>pm_n_5_0_2</th>\n",
+       "      <th>presion</th>\n",
+       "      <th>temperatura</th>\n",
+       "      <th>temperatura2</th>\n",
        "    </tr>\n",
        "  </thead>\n",
        "  <tbody>\n",
        "    <tr>\n",
-       "      <th>2023-04-15 02:00:00</th>\n",
-       "      <td>62.688538</td>\n",
-       "      <td>15.666667</td>\n",
-       "      <td>26.466667</td>\n",
-       "      <td>27.066667</td>\n",
-       "      <td>18.133333</td>\n",
-       "      <td>29.600000</td>\n",
-       "      <td>13.066667</td>\n",
-       "      <td>5.933333</td>\n",
-       "      <td>18.133333</td>\n",
-       "      <td>26.400000</td>\n",
+       "      <th>0</th>\n",
+       "      <td>2023-08-16 17:00:00</td>\n",
+       "      <td>38.897320</td>\n",
+       "      <td>41.228504</td>\n",
+       "      <td>6.000000</td>\n",
+       "      <td>13.700000</td>\n",
+       "      <td>13.700000</td>\n",
+       "      <td>14.200000</td>\n",
+       "      <td>14.200000</td>\n",
+       "      <td>10.000000</td>\n",
+       "      <td>10.000000</td>\n",
        "      <td>...</td>\n",
-       "      <td>2955.800000</td>\n",
-       "      <td>4.800000</td>\n",
-       "      <td>3.857143</td>\n",
-       "      <td>29.600000</td>\n",
-       "      <td>28.666667</td>\n",
-       "      <td>26.866667</td>\n",
-       "      <td>165.866667</td>\n",
-       "      <td>185.866667</td>\n",
-       "      <td>None</td>\n",
-       "      <td>None</td>\n",
+       "      <td>0.200000</td>\n",
+       "      <td>66.700000</td>\n",
+       "      <td>71.300000</td>\n",
+       "      <td>5.000000</td>\n",
+       "      <td>7.400000</td>\n",
+       "      <td>1.800000</td>\n",
+       "      <td>2.000000</td>\n",
+       "      <td>969.452265</td>\n",
+       "      <td>28.068901</td>\n",
+       "      <td>28.687991</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>2023-04-15 03:00:00</th>\n",
-       "      <td>63.074693</td>\n",
-       "      <td>12.656250</td>\n",
-       "      <td>29.062500</td>\n",
-       "      <td>29.031250</td>\n",
-       "      <td>19.343750</td>\n",
-       "      <td>31.468750</td>\n",
-       "      <td>15.218750</td>\n",
-       "      <td>6.000000</td>\n",
-       "      <td>19.593750</td>\n",
-       "      <td>28.812500</td>\n",
+       "      <th>1</th>\n",
+       "      <td>2023-08-16 18:00:00</td>\n",
+       "      <td>41.789214</td>\n",
+       "      <td>44.269801</td>\n",
+       "      <td>39.071429</td>\n",
+       "      <td>10.000000</td>\n",
+       "      <td>10.000000</td>\n",
+       "      <td>10.285714</td>\n",
+       "      <td>10.285714</td>\n",
+       "      <td>7.071429</td>\n",
+       "      <td>7.071429</td>\n",
        "      <td>...</td>\n",
-       "      <td>3255.375000</td>\n",
-       "      <td>4.181818</td>\n",
-       "      <td>4.640000</td>\n",
-       "      <td>31.468750</td>\n",
-       "      <td>31.343750</td>\n",
-       "      <td>28.781250</td>\n",
-       "      <td>182.687500</td>\n",
-       "      <td>194.218750</td>\n",
-       "      <td>None</td>\n",
-       "      <td>None</td>\n",
+       "      <td>0.142857</td>\n",
+       "      <td>49.785714</td>\n",
+       "      <td>54.071429</td>\n",
+       "      <td>3.857143</td>\n",
+       "      <td>4.285714</td>\n",
+       "      <td>1.428571</td>\n",
+       "      <td>1.000000</td>\n",
+       "      <td>967.443556</td>\n",
+       "      <td>28.146178</td>\n",
+       "      <td>28.780804</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>2023-04-15 04:00:00</th>\n",
-       "      <td>63.844043</td>\n",
-       "      <td>13.161290</td>\n",
-       "      <td>28.225806</td>\n",
-       "      <td>29.645161</td>\n",
-       "      <td>19.064516</td>\n",
-       "      <td>32.000000</td>\n",
-       "      <td>12.516129</td>\n",
-       "      <td>6.000000</td>\n",
-       "      <td>19.322581</td>\n",
-       "      <td>27.935484</td>\n",
+       "      <th>2</th>\n",
+       "      <td>2023-08-16 19:00:00</td>\n",
+       "      <td>42.114675</td>\n",
+       "      <td>44.522121</td>\n",
+       "      <td>41.428571</td>\n",
+       "      <td>8.428571</td>\n",
+       "      <td>8.428571</td>\n",
+       "      <td>7.571429</td>\n",
+       "      <td>7.571429</td>\n",
+       "      <td>5.428571</td>\n",
+       "      <td>5.428571</td>\n",
        "      <td>...</td>\n",
-       "      <td>3189.290323</td>\n",
-       "      <td>3.727273</td>\n",
-       "      <td>4.307692</td>\n",
-       "      <td>32.000000</td>\n",
-       "      <td>30.096774</td>\n",
-       "      <td>29.129032</td>\n",
-       "      <td>179.387097</td>\n",
-       "      <td>207.516129</td>\n",
-       "      <td>None</td>\n",
-       "      <td>None</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>40.071429</td>\n",
+       "      <td>39.571429</td>\n",
+       "      <td>5.142857</td>\n",
+       "      <td>3.000000</td>\n",
+       "      <td>1.285714</td>\n",
+       "      <td>0.571429</td>\n",
+       "      <td>966.713915</td>\n",
+       "      <td>28.195374</td>\n",
+       "      <td>28.835164</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>2023-04-15 05:00:00</th>\n",
-       "      <td>63.372091</td>\n",
-       "      <td>12.800000</td>\n",
-       "      <td>28.466667</td>\n",
-       "      <td>28.500000</td>\n",
-       "      <td>19.333333</td>\n",
-       "      <td>30.600000</td>\n",
-       "      <td>13.931034</td>\n",
-       "      <td>6.000000</td>\n",
-       "      <td>19.500000</td>\n",
-       "      <td>28.200000</td>\n",
+       "      <th>3</th>\n",
+       "      <td>2023-08-16 20:00:00</td>\n",
+       "      <td>38.560408</td>\n",
+       "      <td>40.723931</td>\n",
+       "      <td>41.857143</td>\n",
+       "      <td>5.857143</td>\n",
+       "      <td>5.857143</td>\n",
+       "      <td>5.428571</td>\n",
+       "      <td>5.428571</td>\n",
+       "      <td>3.714286</td>\n",
+       "      <td>3.714286</td>\n",
        "      <td>...</td>\n",
-       "      <td>3188.700000</td>\n",
-       "      <td>3.920000</td>\n",
-       "      <td>4.260870</td>\n",
-       "      <td>30.600000</td>\n",
-       "      <td>30.733333</td>\n",
-       "      <td>28.233333</td>\n",
-       "      <td>177.866667</td>\n",
-       "      <td>193.600000</td>\n",
-       "      <td>None</td>\n",
-       "      <td>None</td>\n",
+       "      <td>0.285714</td>\n",
+       "      <td>26.571429</td>\n",
+       "      <td>21.428571</td>\n",
+       "      <td>3.428571</td>\n",
+       "      <td>2.285714</td>\n",
+       "      <td>0.857143</td>\n",
+       "      <td>0.857143</td>\n",
+       "      <td>966.744908</td>\n",
+       "      <td>28.157669</td>\n",
+       "      <td>28.842603</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>2023-04-15 06:00:00</th>\n",
-       "      <td>62.761833</td>\n",
-       "      <td>11.290323</td>\n",
-       "      <td>26.677419</td>\n",
-       "      <td>26.225806</td>\n",
-       "      <td>17.903226</td>\n",
-       "      <td>29.064516</td>\n",
-       "      <td>12.838710</td>\n",
-       "      <td>6.000000</td>\n",
-       "      <td>18.000000</td>\n",
-       "      <td>26.483871</td>\n",
+       "      <th>4</th>\n",
+       "      <td>2023-08-16 21:00:00</td>\n",
+       "      <td>38.032839</td>\n",
+       "      <td>40.042586</td>\n",
+       "      <td>42.000000</td>\n",
+       "      <td>6.045455</td>\n",
+       "      <td>6.045455</td>\n",
+       "      <td>5.363636</td>\n",
+       "      <td>5.363636</td>\n",
+       "      <td>4.181818</td>\n",
+       "      <td>4.181818</td>\n",
        "      <td>...</td>\n",
-       "      <td>2998.354839</td>\n",
-       "      <td>3.833333</td>\n",
-       "      <td>4.962963</td>\n",
-       "      <td>29.064516</td>\n",
-       "      <td>28.935484</td>\n",
-       "      <td>26.225806</td>\n",
-       "      <td>168.903226</td>\n",
-       "      <td>174.612903</td>\n",
-       "      <td>None</td>\n",
-       "      <td>None</td>\n",
+       "      <td>0.363636</td>\n",
+       "      <td>26.000000</td>\n",
+       "      <td>22.818182</td>\n",
+       "      <td>3.454545</td>\n",
+       "      <td>2.545455</td>\n",
+       "      <td>1.000000</td>\n",
+       "      <td>0.818182</td>\n",
+       "      <td>982.620261</td>\n",
+       "      <td>27.273129</td>\n",
+       "      <td>27.939668</td>\n",
        "    </tr>\n",
        "  </tbody>\n",
        "</table>\n",
-       "<p>5 rows × 32 columns</p>\n",
+       "<p>5 rows × 31 columns</p>\n",
        "</div>"
       ],
       "text/plain": [
-       "                      humedad2  pm_n_2_5_2     pm25_1     pm25_2   pm1_1_AE  \\\n",
-       "2023-04-15 02:00:00  62.688538   15.666667  26.466667  27.066667  18.133333   \n",
-       "2023-04-15 03:00:00  63.074693   12.656250  29.062500  29.031250  19.343750   \n",
-       "2023-04-15 04:00:00  63.844043   13.161290  28.225806  29.645161  19.064516   \n",
-       "2023-04-15 05:00:00  63.372091   12.800000  28.466667  28.500000  19.333333   \n",
-       "2023-04-15 06:00:00  62.761833   11.290323  26.677419  26.225806  17.903226   \n",
+       "                   ts    humedad   humedad2  iluminancia     pm10_1  \\\n",
+       "0 2023-08-16 17:00:00  38.897320  41.228504     6.000000  13.700000   \n",
+       "1 2023-08-16 18:00:00  41.789214  44.269801    39.071429  10.000000   \n",
+       "2 2023-08-16 19:00:00  42.114675  44.522121    41.428571   8.428571   \n",
+       "3 2023-08-16 20:00:00  38.560408  40.723931    41.857143   5.857143   \n",
+       "4 2023-08-16 21:00:00  38.032839  40.042586    42.000000   6.045455   \n",
        "\n",
-       "                     pm10_2_AE  pm_n_2_5_1  iluminancia      pm1_1  pm25_1_AE  \\\n",
-       "2023-04-15 02:00:00  29.600000   13.066667     5.933333  18.133333  26.400000   \n",
-       "2023-04-15 03:00:00  31.468750   15.218750     6.000000  19.593750  28.812500   \n",
-       "2023-04-15 04:00:00  32.000000   12.516129     6.000000  19.322581  27.935484   \n",
-       "2023-04-15 05:00:00  30.600000   13.931034     6.000000  19.500000  28.200000   \n",
-       "2023-04-15 06:00:00  29.064516   12.838710     6.000000  18.000000  26.483871   \n",
+       "   pm10_1_AE     pm10_2  pm10_2_AE      pm1_1   pm1_1_AE  ...  pm_n_10_0_2  \\\n",
+       "0  13.700000  14.200000  14.200000  10.000000  10.000000  ...     0.200000   \n",
+       "1  10.000000  10.285714  10.285714   7.071429   7.071429  ...     0.142857   \n",
+       "2   8.428571   7.571429   7.571429   5.428571   5.428571  ...     0.000000   \n",
+       "3   5.857143   5.428571   5.428571   3.714286   3.714286  ...     0.285714   \n",
+       "4   6.045455   5.363636   5.363636   4.181818   4.181818  ...     0.363636   \n",
        "\n",
-       "                     ...   pm_n_0_3_1  pm_n_5_0_1  pm_n_5_0_2     pm10_2  \\\n",
-       "2023-04-15 02:00:00  ...  2955.800000    4.800000    3.857143  29.600000   \n",
-       "2023-04-15 03:00:00  ...  3255.375000    4.181818    4.640000  31.468750   \n",
-       "2023-04-15 04:00:00  ...  3189.290323    3.727273    4.307692  32.000000   \n",
-       "2023-04-15 05:00:00  ...  3188.700000    3.920000    4.260870  30.600000   \n",
-       "2023-04-15 06:00:00  ...  2998.354839    3.833333    4.962963  29.064516   \n",
+       "   pm_n_1_0_1  pm_n_1_0_2  pm_n_2_5_1  pm_n_2_5_2  pm_n_5_0_1  pm_n_5_0_2  \\\n",
+       "0   66.700000   71.300000    5.000000    7.400000    1.800000    2.000000   \n",
+       "1   49.785714   54.071429    3.857143    4.285714    1.428571    1.000000   \n",
+       "2   40.071429   39.571429    5.142857    3.000000    1.285714    0.571429   \n",
+       "3   26.571429   21.428571    3.428571    2.285714    0.857143    0.857143   \n",
+       "4   26.000000   22.818182    3.454545    2.545455    1.000000    0.818182   \n",
        "\n",
-       "                        pm10_1  pm25_2_AE  pm_n_1_0_1  pm_n_1_0_2  longitud  \\\n",
-       "2023-04-15 02:00:00  28.666667  26.866667  165.866667  185.866667      None   \n",
-       "2023-04-15 03:00:00  31.343750  28.781250  182.687500  194.218750      None   \n",
-       "2023-04-15 04:00:00  30.096774  29.129032  179.387097  207.516129      None   \n",
-       "2023-04-15 05:00:00  30.733333  28.233333  177.866667  193.600000      None   \n",
-       "2023-04-15 06:00:00  28.935484  26.225806  168.903226  174.612903      None   \n",
+       "      presion  temperatura  temperatura2  \n",
+       "0  969.452265    28.068901     28.687991  \n",
+       "1  967.443556    28.146178     28.780804  \n",
+       "2  966.713915    28.195374     28.835164  \n",
+       "3  966.744908    28.157669     28.842603  \n",
+       "4  982.620261    27.273129     27.939668  \n",
        "\n",
-       "                     latitud  \n",
-       "2023-04-15 02:00:00     None  \n",
-       "2023-04-15 03:00:00     None  \n",
-       "2023-04-15 04:00:00     None  \n",
-       "2023-04-15 05:00:00     None  \n",
-       "2023-04-15 06:00:00     None  \n",
-       "\n",
-       "[5 rows x 32 columns]"
+       "[5 rows x 31 columns]"
       ]
      },
-     "execution_count": 7,
+     "execution_count": 4,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -471,7 +464,9 @@
   {
    "cell_type": "code",
    "execution_count": 11,
-   "metadata": {},
+   "metadata": {
+    "scrolled": true
+   },
    "outputs": [
     {
      "data": {
@@ -556,7 +551,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.10.7"
+   "version": "3.11.3"
   }
  },
  "nbformat": 4,
-- 
GitLab