diff --git "a/Proyectos_Colegios/FundeUIS/A_qu\303\251_hora_del_d\303\255a_hay_mayor_contaminaci\303\263n.ipynb" "b/Proyectos_Colegios/FundeUIS/A_qu\303\251_hora_del_d\303\255a_hay_mayor_contaminaci\303\263n.ipynb" new file mode 100644 index 0000000000000000000000000000000000000000..e4b1bab6235ece67359ef661e4fc62e02e5d8bc0 --- /dev/null +++ "b/Proyectos_Colegios/FundeUIS/A_qu\303\251_hora_del_d\303\255a_hay_mayor_contaminaci\303\263n.ipynb" @@ -0,0 +1,2973 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "fnBSdjHHNjIs", + "outputId": "d8072d81-5468-4456-b2b7-154b8832772c" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: APIMakeSens in /home/juanguarin/Documentos/python-venv/lib/python3.11/site-packages (1.3.5)\n", + "Requirement already satisfied: pandas in /home/juanguarin/Documentos/python-venv/lib/python3.11/site-packages (from APIMakeSens) (2.0.3)\n", + "Requirement already satisfied: requests in /home/juanguarin/Documentos/python-venv/lib/python3.11/site-packages (from APIMakeSens) (2.31.0)\n", + "Requirement already satisfied: datetime in /home/juanguarin/Documentos/python-venv/lib/python3.11/site-packages (from APIMakeSens) (5.1)\n", + "Requirement already satisfied: zope.interface in /home/juanguarin/Documentos/python-venv/lib/python3.11/site-packages (from datetime->APIMakeSens) (6.0)\n", + "Requirement already satisfied: pytz in /home/juanguarin/Documentos/python-venv/lib/python3.11/site-packages (from datetime->APIMakeSens) (2023.3)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in /home/juanguarin/Documentos/python-venv/lib/python3.11/site-packages (from pandas->APIMakeSens) (2.8.2)\n", + "Requirement already satisfied: tzdata>=2022.1 in /home/juanguarin/Documentos/python-venv/lib/python3.11/site-packages (from pandas->APIMakeSens) (2023.3)\n", + "Requirement already satisfied: numpy>=1.21.0 in /home/juanguarin/Documentos/python-venv/lib/python3.11/site-packages (from pandas->APIMakeSens) (1.25.0)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /home/juanguarin/Documentos/python-venv/lib/python3.11/site-packages (from requests->APIMakeSens) (3.1.0)\n", + "Requirement already satisfied: idna<4,>=2.5 in /home/juanguarin/Documentos/python-venv/lib/python3.11/site-packages (from requests->APIMakeSens) (3.4)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in /home/juanguarin/Documentos/python-venv/lib/python3.11/site-packages (from requests->APIMakeSens) (2.0.3)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /home/juanguarin/Documentos/python-venv/lib/python3.11/site-packages (from requests->APIMakeSens) (2023.5.7)\n", + "Requirement already satisfied: six>=1.5 in /home/juanguarin/Documentos/python-venv/lib/python3.11/site-packages (from python-dateutil>=2.8.2->pandas->APIMakeSens) (1.16.0)\n", + "Requirement already satisfied: setuptools in /home/juanguarin/Documentos/python-venv/lib/python3.11/site-packages (from zope.interface->datetime->APIMakeSens) (65.5.0)\n" + ] + } + ], + "source": [ + "!pip install APIMakeSens\n", + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.dates as mdates\n", + "from MakeSens import MakeSens" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 791 + }, + "id": "rdTX37w_OSps", + "outputId": "0a9b4e21-5f5d-4225-e368-d8e38cb69d49" + }, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>ts</th>\n", + " <th>humedad</th>\n", + " <th>humedad2</th>\n", + " <th>iluminancia</th>\n", + " <th>pm10_1</th>\n", + " <th>pm10_1_AE</th>\n", + " <th>pm10_2</th>\n", + " <th>pm10_2_AE</th>\n", + " <th>pm1_1</th>\n", + " <th>pm1_1_AE</th>\n", + " <th>...</th>\n", + " <th>pm_n_10_0_2</th>\n", + " <th>pm_n_1_0_1</th>\n", + " <th>pm_n_1_0_2</th>\n", + " <th>pm_n_2_5_1</th>\n", + " <th>pm_n_2_5_2</th>\n", + " <th>pm_n_5_0_1</th>\n", + " <th>pm_n_5_0_2</th>\n", + " <th>presion</th>\n", + " <th>temperatura</th>\n", + " <th>temperatura2</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>2023-06-21 13:40:00</td>\n", + " <td>37.376965</td>\n", + " <td>45.491722</td>\n", + " <td>10286.000000</td>\n", + " <td>35.000000</td>\n", + " <td>35.000000</td>\n", + " <td>36.000000</td>\n", + " <td>36.000000</td>\n", + " <td>26.000000</td>\n", + " <td>23.000000</td>\n", + " <td>...</td>\n", + " <td>0.000000</td>\n", + " <td>194.000000</td>\n", + " <td>219.000000</td>\n", + " <td>4.0</td>\n", + " <td>5.000000</td>\n", + " <td>0.000000</td>\n", + " <td>0.000000</td>\n", + " <td>725.782776</td>\n", + " <td>36.275402</td>\n", + " <td>33.555733</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>2023-06-21 13:50:00</td>\n", + " <td>35.263925</td>\n", + " <td>41.668318</td>\n", + " <td>5446.666667</td>\n", + " <td>34.333333</td>\n", + " <td>34.333333</td>\n", + " <td>30.333333</td>\n", + " <td>30.333333</td>\n", + " <td>22.333333</td>\n", + " <td>20.666667</td>\n", + " <td>...</td>\n", + " <td>0.666667</td>\n", + " <td>201.333333</td>\n", + " <td>181.666667</td>\n", + " <td>12.0</td>\n", + " <td>10.000000</td>\n", + " <td>0.666667</td>\n", + " <td>2.000000</td>\n", + " <td>718.270223</td>\n", + " <td>36.463894</td>\n", + " <td>34.727118</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>2023-06-21 14:00:00</td>\n", + " <td>31.285034</td>\n", + " <td>39.609877</td>\n", + " <td>9362.333333</td>\n", + " <td>32.000000</td>\n", + " <td>32.000000</td>\n", + " <td>31.666667</td>\n", + " <td>31.666667</td>\n", + " <td>19.666667</td>\n", + " <td>19.333333</td>\n", + " <td>...</td>\n", + " <td>0.000000</td>\n", + " <td>156.666667</td>\n", + " <td>194.000000</td>\n", + " <td>18.0</td>\n", + " <td>21.333333</td>\n", + " <td>4.000000</td>\n", + " <td>1.666667</td>\n", + " <td>624.552307</td>\n", + " <td>38.706963</td>\n", + " <td>35.628800</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>2023-06-21 14:10:00</td>\n", + " <td>29.690599</td>\n", + " <td>38.547340</td>\n", + " <td>10557.000000</td>\n", + " <td>28.000000</td>\n", + " <td>28.000000</td>\n", + " <td>29.000000</td>\n", + " <td>29.000000</td>\n", + " <td>18.000000</td>\n", + " <td>18.000000</td>\n", + " <td>...</td>\n", + " <td>0.000000</td>\n", + " <td>174.000000</td>\n", + " <td>184.000000</td>\n", + " <td>10.0</td>\n", + " <td>13.000000</td>\n", + " <td>2.000000</td>\n", + " <td>1.000000</td>\n", + " <td>570.544739</td>\n", + " <td>39.920193</td>\n", + " <td>36.410316</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>2023-06-21 14:20:00</td>\n", + " <td>28.372649</td>\n", + " <td>37.232776</td>\n", + " <td>13607.500000</td>\n", + " <td>26.000000</td>\n", + " <td>26.000000</td>\n", + " <td>22.500000</td>\n", + " <td>22.500000</td>\n", + " <td>17.500000</td>\n", + " <td>17.000000</td>\n", + " <td>...</td>\n", + " <td>0.500000</td>\n", + " <td>144.000000</td>\n", + " <td>130.500000</td>\n", + " <td>5.0</td>\n", + " <td>8.500000</td>\n", + " <td>4.000000</td>\n", + " <td>1.000000</td>\n", + " <td>539.868591</td>\n", + " <td>40.570511</td>\n", + " <td>36.884298</td>\n", + " </tr>\n", + " <tr>\n", + " <th>...</th>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " </tr>\n", + " <tr>\n", + " <th>16194</th>\n", + " <td>2023-10-17 23:10:00</td>\n", + " <td>42.855087</td>\n", + " <td>48.285343</td>\n", + " <td>260.200000</td>\n", + " <td>14.600000</td>\n", + " <td>14.600000</td>\n", + " <td>13.400000</td>\n", + " <td>13.400000</td>\n", + " <td>9.400000</td>\n", + " <td>9.400000</td>\n", + " <td>...</td>\n", + " <td>0.000000</td>\n", + " <td>81.200000</td>\n", + " <td>75.800000</td>\n", + " <td>5.2</td>\n", + " <td>5.600000</td>\n", + " <td>1.600000</td>\n", + " <td>0.200000</td>\n", + " <td>772.239721</td>\n", + " <td>35.525901</td>\n", + " <td>34.521324</td>\n", + " </tr>\n", + " <tr>\n", + " <th>16195</th>\n", + " <td>2023-10-17 23:20:00</td>\n", + " <td>40.556768</td>\n", + " <td>45.962310</td>\n", + " <td>258.200000</td>\n", + " <td>14.000000</td>\n", + " <td>14.000000</td>\n", + " <td>15.800000</td>\n", + " <td>15.800000</td>\n", + " <td>9.400000</td>\n", + " <td>9.400000</td>\n", + " <td>...</td>\n", + " <td>0.600000</td>\n", + " <td>80.400000</td>\n", + " <td>86.600000</td>\n", + " <td>4.4</td>\n", + " <td>11.000000</td>\n", + " <td>1.200000</td>\n", + " <td>1.200000</td>\n", + " <td>746.031335</td>\n", + " <td>36.218856</td>\n", + " <td>35.132296</td>\n", + " </tr>\n", + " <tr>\n", + " <th>16196</th>\n", + " <td>2023-10-17 23:30:00</td>\n", + " <td>41.337808</td>\n", + " <td>46.487830</td>\n", + " <td>259.200000</td>\n", + " <td>16.800000</td>\n", + " <td>16.800000</td>\n", + " <td>15.600000</td>\n", + " <td>15.600000</td>\n", + " <td>10.800000</td>\n", + " <td>10.800000</td>\n", + " <td>...</td>\n", + " <td>0.400000</td>\n", + " <td>86.000000</td>\n", + " <td>81.400000</td>\n", + " <td>6.0</td>\n", + " <td>6.000000</td>\n", + " <td>2.400000</td>\n", + " <td>1.000000</td>\n", + " <td>770.249670</td>\n", + " <td>35.583475</td>\n", + " <td>34.660182</td>\n", + " </tr>\n", + " <tr>\n", + " <th>16197</th>\n", + " <td>2023-10-17 23:40:00</td>\n", + " <td>44.365917</td>\n", + " <td>49.309911</td>\n", + " <td>260.500000</td>\n", + " <td>15.750000</td>\n", + " <td>15.750000</td>\n", + " <td>16.250000</td>\n", + " <td>16.250000</td>\n", + " <td>11.500000</td>\n", + " <td>11.500000</td>\n", + " <td>...</td>\n", + " <td>0.000000</td>\n", + " <td>77.000000</td>\n", + " <td>74.500000</td>\n", + " <td>2.5</td>\n", + " <td>6.500000</td>\n", + " <td>1.000000</td>\n", + " <td>1.000000</td>\n", + " <td>814.936554</td>\n", + " <td>34.345113</td>\n", + " <td>33.532369</td>\n", + " </tr>\n", + " <tr>\n", + " <th>16198</th>\n", + " <td>2023-10-17 23:50:00</td>\n", + " <td>44.610671</td>\n", + " <td>49.978790</td>\n", + " <td>261.400000</td>\n", + " <td>14.200000</td>\n", + " <td>14.200000</td>\n", + " <td>17.600000</td>\n", + " <td>17.600000</td>\n", + " <td>9.800000</td>\n", + " <td>9.800000</td>\n", + " <td>...</td>\n", + " <td>0.600000</td>\n", + " <td>82.800000</td>\n", + " <td>102.200000</td>\n", + " <td>3.2</td>\n", + " <td>7.800000</td>\n", + " <td>0.800000</td>\n", + " <td>1.600000</td>\n", + " <td>827.037622</td>\n", + " <td>33.998128</td>\n", + " <td>33.053178</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "<p>16199 rows × 31 columns</p>\n", + "</div>" + ], + "text/plain": [ + " ts humedad humedad2 iluminancia pm10_1 \\\n", + "0 2023-06-21 13:40:00 37.376965 45.491722 10286.000000 35.000000 \n", + "1 2023-06-21 13:50:00 35.263925 41.668318 5446.666667 34.333333 \n", + "2 2023-06-21 14:00:00 31.285034 39.609877 9362.333333 32.000000 \n", + "3 2023-06-21 14:10:00 29.690599 38.547340 10557.000000 28.000000 \n", + "4 2023-06-21 14:20:00 28.372649 37.232776 13607.500000 26.000000 \n", + "... ... ... ... ... ... \n", + "16194 2023-10-17 23:10:00 42.855087 48.285343 260.200000 14.600000 \n", + "16195 2023-10-17 23:20:00 40.556768 45.962310 258.200000 14.000000 \n", + "16196 2023-10-17 23:30:00 41.337808 46.487830 259.200000 16.800000 \n", + "16197 2023-10-17 23:40:00 44.365917 49.309911 260.500000 15.750000 \n", + "16198 2023-10-17 23:50:00 44.610671 49.978790 261.400000 14.200000 \n", + "\n", + " pm10_1_AE pm10_2 pm10_2_AE pm1_1 pm1_1_AE ... \\\n", + "0 35.000000 36.000000 36.000000 26.000000 23.000000 ... \n", + "1 34.333333 30.333333 30.333333 22.333333 20.666667 ... \n", + "2 32.000000 31.666667 31.666667 19.666667 19.333333 ... \n", + "3 28.000000 29.000000 29.000000 18.000000 18.000000 ... \n", + "4 26.000000 22.500000 22.500000 17.500000 17.000000 ... \n", + "... ... ... ... ... ... ... \n", + "16194 14.600000 13.400000 13.400000 9.400000 9.400000 ... \n", + "16195 14.000000 15.800000 15.800000 9.400000 9.400000 ... \n", + "16196 16.800000 15.600000 15.600000 10.800000 10.800000 ... \n", + "16197 15.750000 16.250000 16.250000 11.500000 11.500000 ... \n", + "16198 14.200000 17.600000 17.600000 9.800000 9.800000 ... \n", + "\n", + " pm_n_10_0_2 pm_n_1_0_1 pm_n_1_0_2 pm_n_2_5_1 pm_n_2_5_2 \\\n", + "0 0.000000 194.000000 219.000000 4.0 5.000000 \n", + "1 0.666667 201.333333 181.666667 12.0 10.000000 \n", + "2 0.000000 156.666667 194.000000 18.0 21.333333 \n", + "3 0.000000 174.000000 184.000000 10.0 13.000000 \n", + "4 0.500000 144.000000 130.500000 5.0 8.500000 \n", + "... ... ... ... ... ... \n", + "16194 0.000000 81.200000 75.800000 5.2 5.600000 \n", + "16195 0.600000 80.400000 86.600000 4.4 11.000000 \n", + "16196 0.400000 86.000000 81.400000 6.0 6.000000 \n", + "16197 0.000000 77.000000 74.500000 2.5 6.500000 \n", + "16198 0.600000 82.800000 102.200000 3.2 7.800000 \n", + "\n", + " pm_n_5_0_1 pm_n_5_0_2 presion temperatura temperatura2 \n", + "0 0.000000 0.000000 725.782776 36.275402 33.555733 \n", + "1 0.666667 2.000000 718.270223 36.463894 34.727118 \n", + "2 4.000000 1.666667 624.552307 38.706963 35.628800 \n", + "3 2.000000 1.000000 570.544739 39.920193 36.410316 \n", + "4 4.000000 1.000000 539.868591 40.570511 36.884298 \n", + "... ... ... ... ... ... \n", + "16194 1.600000 0.200000 772.239721 35.525901 34.521324 \n", + "16195 1.200000 1.200000 746.031335 36.218856 35.132296 \n", + "16196 2.400000 1.000000 770.249670 35.583475 34.660182 \n", + "16197 1.000000 1.000000 814.936554 34.345113 33.532369 \n", + "16198 0.800000 1.600000 827.037622 33.998128 33.053178 \n", + "\n", + "[16199 rows x 31 columns]" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fecha_inicio = \"2023-06-20 00:00:00\"\n", + "fecha_fin = \"2023-10-18 00:00:00\"\n", + "estacion = \"mE1_00008\"\n", + "frecuencia = \"10T\"\n", + "data = MakeSens.download_data(estacion, fecha_inicio, fecha_fin, frecuencia)\n", + "data" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 455 + }, + "id": "A6s5n9KSZcW4", + "outputId": "d8bfba4d-2856-4ca9-e9e9-3789f38ff1c9" + }, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>pm10_1</th>\n", + " <th>pm10_2</th>\n", + " </tr>\n", + " <tr>\n", + " <th>ts</th>\n", + " <th></th>\n", + " <th></th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>2023-06-21 13:40:00</th>\n", + " <td>35.000000</td>\n", + " <td>36.000000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2023-06-21 13:50:00</th>\n", + " <td>34.333333</td>\n", + " <td>30.333333</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2023-06-21 14:00:00</th>\n", + " <td>32.000000</td>\n", + " <td>31.666667</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2023-06-21 14:10:00</th>\n", + " <td>28.000000</td>\n", + " <td>29.000000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2023-06-21 14:20:00</th>\n", + " <td>26.000000</td>\n", + " <td>22.500000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>...</th>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2023-10-17 23:10:00</th>\n", + " <td>14.600000</td>\n", + " <td>13.400000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2023-10-17 23:20:00</th>\n", + " <td>14.000000</td>\n", + " <td>15.800000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2023-10-17 23:30:00</th>\n", + " <td>16.800000</td>\n", + " <td>15.600000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2023-10-17 23:40:00</th>\n", + " <td>15.750000</td>\n", + " <td>16.250000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2023-10-17 23:50:00</th>\n", + " <td>14.200000</td>\n", + " <td>17.600000</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "<p>16199 rows × 2 columns</p>\n", + "</div>" + ], + "text/plain": [ + " pm10_1 pm10_2\n", + "ts \n", + "2023-06-21 13:40:00 35.000000 36.000000\n", + "2023-06-21 13:50:00 34.333333 30.333333\n", + "2023-06-21 14:00:00 32.000000 31.666667\n", + "2023-06-21 14:10:00 28.000000 29.000000\n", + "2023-06-21 14:20:00 26.000000 22.500000\n", + "... ... ...\n", + "2023-10-17 23:10:00 14.600000 13.400000\n", + "2023-10-17 23:20:00 14.000000 15.800000\n", + "2023-10-17 23:30:00 16.800000 15.600000\n", + "2023-10-17 23:40:00 15.750000 16.250000\n", + "2023-10-17 23:50:00 14.200000 17.600000\n", + "\n", + "[16199 rows x 2 columns]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "columnas = [\"pm10_1\", \"pm10_2\", 'ts']\n", + "pm_data = data[columnas]\n", + "\n", + "pm_data = pm_data.set_index('ts')\n", + "pm_data.index = pd.to_datetime(pm_data.index)\n", + "pm_data\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "id": "Vn4ur3WxadE1" + }, + "outputs": [], + "source": [ + "columnas = pm_data.columns\n", + "for col in columnas:\n", + " pm_data[col] = pm_data[col].where(pm_data[col]<120, np.nan)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 455 + }, + "id": "vONM6lUrqngF", + "outputId": "2531e931-f244-44fa-b7d0-43e96c660ba3" + }, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>pm10_1</th>\n", + " <th>pm10_2</th>\n", + " <th>mean</th>\n", + " </tr>\n", + " <tr>\n", + " <th>ts</th>\n", + " <th></th>\n", + " <th></th>\n", + " <th></th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>2023-06-21 13:40:00</th>\n", + " <td>35.000000</td>\n", + " <td>36.000000</td>\n", + " <td>35.500000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2023-06-21 13:50:00</th>\n", + " <td>34.333333</td>\n", + " <td>30.333333</td>\n", + " <td>32.333333</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2023-06-21 14:00:00</th>\n", + " <td>32.000000</td>\n", + " <td>31.666667</td>\n", + " <td>31.833333</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2023-06-21 14:10:00</th>\n", + " <td>28.000000</td>\n", + " <td>29.000000</td>\n", + " <td>28.500000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2023-06-21 14:20:00</th>\n", + " <td>26.000000</td>\n", + " <td>22.500000</td>\n", + " <td>24.250000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>...</th>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2023-10-17 23:10:00</th>\n", + " <td>14.600000</td>\n", + " <td>13.400000</td>\n", + " <td>14.000000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2023-10-17 23:20:00</th>\n", + " <td>14.000000</td>\n", + " <td>15.800000</td>\n", + " <td>14.900000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2023-10-17 23:30:00</th>\n", + " <td>16.800000</td>\n", + " <td>15.600000</td>\n", + " <td>16.200000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2023-10-17 23:40:00</th>\n", + " <td>15.750000</td>\n", + " <td>16.250000</td>\n", + " <td>16.000000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2023-10-17 23:50:00</th>\n", + " <td>14.200000</td>\n", + " <td>17.600000</td>\n", + " <td>15.900000</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "<p>16199 rows × 3 columns</p>\n", + "</div>" + ], + "text/plain": [ + " pm10_1 pm10_2 mean\n", + "ts \n", + "2023-06-21 13:40:00 35.000000 36.000000 35.500000\n", + "2023-06-21 13:50:00 34.333333 30.333333 32.333333\n", + "2023-06-21 14:00:00 32.000000 31.666667 31.833333\n", + "2023-06-21 14:10:00 28.000000 29.000000 28.500000\n", + "2023-06-21 14:20:00 26.000000 22.500000 24.250000\n", + "... ... ... ...\n", + "2023-10-17 23:10:00 14.600000 13.400000 14.000000\n", + "2023-10-17 23:20:00 14.000000 15.800000 14.900000\n", + "2023-10-17 23:30:00 16.800000 15.600000 16.200000\n", + "2023-10-17 23:40:00 15.750000 16.250000 16.000000\n", + "2023-10-17 23:50:00 14.200000 17.600000 15.900000\n", + "\n", + "[16199 rows x 3 columns]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pm_data['mean'] = pm_data[['pm10_1','pm10_2']].mean(axis=1) # 1ra forma\n", + "pm_data" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 238 + }, + "id": "Qev5k_NSrfr2", + "outputId": "760d1ad2-9920-4e9c-a8cc-6ad025a29925" + }, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>pm10_1</th>\n", + " <th>pm10_2</th>\n", + " <th>mean</th>\n", + " <th>hora</th>\n", + " </tr>\n", + " <tr>\n", + " <th>ts</th>\n", + " <th></th>\n", + " <th></th>\n", + " <th></th>\n", + " <th></th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>2023-06-21 13:40:00</th>\n", + " <td>35.000000</td>\n", + " <td>36.000000</td>\n", + " <td>35.500000</td>\n", + " <td>13</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2023-06-21 13:50:00</th>\n", + " <td>34.333333</td>\n", + " <td>30.333333</td>\n", + " <td>32.333333</td>\n", + " <td>13</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2023-06-21 14:00:00</th>\n", + " <td>32.000000</td>\n", + " <td>31.666667</td>\n", + " <td>31.833333</td>\n", + " <td>14</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2023-06-21 14:10:00</th>\n", + " <td>28.000000</td>\n", + " <td>29.000000</td>\n", + " <td>28.500000</td>\n", + " <td>14</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2023-06-21 14:20:00</th>\n", + " <td>26.000000</td>\n", + " <td>22.500000</td>\n", + " <td>24.250000</td>\n", + " <td>14</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + " pm10_1 pm10_2 mean hora\n", + "ts \n", + "2023-06-21 13:40:00 35.000000 36.000000 35.500000 13\n", + "2023-06-21 13:50:00 34.333333 30.333333 32.333333 13\n", + "2023-06-21 14:00:00 32.000000 31.666667 31.833333 14\n", + "2023-06-21 14:10:00 28.000000 29.000000 28.500000 14\n", + "2023-06-21 14:20:00 26.000000 22.500000 24.250000 14" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pm_data['hora'] = pm_data.index.hour.values # Agregamos una columna \"hora\" al DataFrame temp que contenga la hora de cada dato\n", + "pm_data.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 833 + }, + "id": "HLppjlHts6Tn", + "outputId": "dfc93b46-bf4f-4815-9211-7b0a792e2176" + }, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>pm10_1</th>\n", + " <th>pm10_2</th>\n", + " <th>mean</th>\n", + " </tr>\n", + " <tr>\n", + " <th>hora</th>\n", + " <th></th>\n", + " <th></th>\n", + " <th></th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>12.372112</td>\n", + " <td>11.759211</td>\n", + " <td>12.065662</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>13.222170</td>\n", + " <td>12.362461</td>\n", + " <td>12.792316</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>13.426788</td>\n", + " <td>12.607813</td>\n", + " <td>13.017301</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>13.488982</td>\n", + " <td>12.572898</td>\n", + " <td>13.030940</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>12.833891</td>\n", + " <td>11.977254</td>\n", + " <td>12.405572</td>\n", + " </tr>\n", + " <tr>\n", + " <th>5</th>\n", + " <td>11.966416</td>\n", + " <td>11.187513</td>\n", + " <td>11.576964</td>\n", + " </tr>\n", + " <tr>\n", + " <th>6</th>\n", + " <td>11.238872</td>\n", + " <td>10.583209</td>\n", + " <td>10.911040</td>\n", + " </tr>\n", + " <tr>\n", + " <th>7</th>\n", + " <td>11.268753</td>\n", + " <td>10.512096</td>\n", + " <td>10.890425</td>\n", + " </tr>\n", + " <tr>\n", + " <th>8</th>\n", + " <td>11.135546</td>\n", + " <td>10.446436</td>\n", + " <td>10.790991</td>\n", + " </tr>\n", + " <tr>\n", + " <th>9</th>\n", + " <td>11.622239</td>\n", + " <td>10.964932</td>\n", + " <td>11.293585</td>\n", + " </tr>\n", + " <tr>\n", + " <th>10</th>\n", + " <td>13.607990</td>\n", + " <td>12.957623</td>\n", + " <td>13.282806</td>\n", + " </tr>\n", + " <tr>\n", + " <th>11</th>\n", + " <td>17.296027</td>\n", + " <td>16.343072</td>\n", + " <td>16.819549</td>\n", + " </tr>\n", + " <tr>\n", + " <th>12</th>\n", + " <td>15.384254</td>\n", + " <td>14.341860</td>\n", + " <td>14.863057</td>\n", + " </tr>\n", + " <tr>\n", + " <th>13</th>\n", + " <td>14.134232</td>\n", + " <td>13.116691</td>\n", + " <td>13.625462</td>\n", + " </tr>\n", + " <tr>\n", + " <th>14</th>\n", + " <td>12.615559</td>\n", + " <td>11.708044</td>\n", + " <td>12.161802</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15</th>\n", + " <td>10.659177</td>\n", + " <td>9.880504</td>\n", + " <td>10.269841</td>\n", + " </tr>\n", + " <tr>\n", + " <th>16</th>\n", + " <td>9.424819</td>\n", + " <td>8.729812</td>\n", + " <td>9.077315</td>\n", + " </tr>\n", + " <tr>\n", + " <th>17</th>\n", + " <td>9.346053</td>\n", + " <td>8.702877</td>\n", + " <td>9.024465</td>\n", + " </tr>\n", + " <tr>\n", + " <th>18</th>\n", + " <td>8.758832</td>\n", + " <td>8.101849</td>\n", + " <td>8.430341</td>\n", + " </tr>\n", + " <tr>\n", + " <th>19</th>\n", + " <td>8.723607</td>\n", + " <td>8.060846</td>\n", + " <td>8.392226</td>\n", + " </tr>\n", + " <tr>\n", + " <th>20</th>\n", + " <td>9.326701</td>\n", + " <td>8.708942</td>\n", + " <td>9.017822</td>\n", + " </tr>\n", + " <tr>\n", + " <th>21</th>\n", + " <td>9.362338</td>\n", + " <td>8.658756</td>\n", + " <td>9.010547</td>\n", + " </tr>\n", + " <tr>\n", + " <th>22</th>\n", + " <td>10.174170</td>\n", + " <td>9.442620</td>\n", + " <td>9.808395</td>\n", + " </tr>\n", + " <tr>\n", + " <th>23</th>\n", + " <td>11.161028</td>\n", + " <td>10.500476</td>\n", + " <td>10.830752</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + " pm10_1 pm10_2 mean\n", + "hora \n", + "0 12.372112 11.759211 12.065662\n", + "1 13.222170 12.362461 12.792316\n", + "2 13.426788 12.607813 13.017301\n", + "3 13.488982 12.572898 13.030940\n", + "4 12.833891 11.977254 12.405572\n", + "5 11.966416 11.187513 11.576964\n", + "6 11.238872 10.583209 10.911040\n", + "7 11.268753 10.512096 10.890425\n", + "8 11.135546 10.446436 10.790991\n", + "9 11.622239 10.964932 11.293585\n", + "10 13.607990 12.957623 13.282806\n", + "11 17.296027 16.343072 16.819549\n", + "12 15.384254 14.341860 14.863057\n", + "13 14.134232 13.116691 13.625462\n", + "14 12.615559 11.708044 12.161802\n", + "15 10.659177 9.880504 10.269841\n", + "16 9.424819 8.729812 9.077315\n", + "17 9.346053 8.702877 9.024465\n", + "18 8.758832 8.101849 8.430341\n", + "19 8.723607 8.060846 8.392226\n", + "20 9.326701 8.708942 9.017822\n", + "21 9.362338 8.658756 9.010547\n", + "22 10.174170 9.442620 9.808395\n", + "23 11.161028 10.500476 10.830752" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pm_data_h = pm_data.groupby(pm_data['hora']).mean()\n", + "pm_data_hstd = pm_data.groupby(pm_data['hora']).std()\n", + "pm_data_h.head(24)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 501 + }, + "id": "wk3BESFBuaoI", + "outputId": "075c92e9-8830-4b20-d266-68710f7efea9" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/EAAAHkCAYAAAB2Ra+UAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADc2klEQVR4nOzdd5hU5fnw8e8502dnZvvSWZYF6SCCAlKtFKNCjAYboIhY+FkSY7pBYxITu+YN1qjRWGLvBQsWRBQpIr0sdXudXs/z/rGwstK3MFvuz3XNtTvnPHOee2bPzsx9nqYppRRCCCGEEEIIIYRo8fRkByCEEEIIIYQQQogjI0m8EEIIIYQQQgjRSkgSL4QQQgghhBBCtBKSxAshhBBCCCGEEK2EJPFCCCGEEEIIIUQrIUm8EEIIIYQQQgjRSkgSL4QQQgghhBBCtBKSxAshhBBCCCGEEK2EJPFCCCGEEEIIIUQrIUm8EEKIFmXRokVomsaiRYuO+rHz589H07SmD6qZzJo1ix49ejTb8Z988kk0TWPbtm1NdswJEyYwYcKEJjueaN32/r++9NJLyQ5FCCHaDUnihRCijdmbuGmaxhdffLHffqUU3bp1Q9M0fvKTnzSojr/+9a+89tprjYy0fSgsLGT+/PmsXLky2aG0axMmTKj7v/jxbf369fXKlpSUcNNNN9G3b1+cTicpKSkMGzaM22+/nerq6rpyPXr0OOj/0LJly9A0jSeffLJu296LTOXl5fXKvvnmm4wfP56cnBycTic9e/bkggsu4L333muy5y+EEKLtMCc7ACGEEM3Dbrfz7LPPMmbMmHrbP/30U3bt2oXNZmvwsf/617/ys5/9jKlTpzYyyv2NGzeOUCiE1Wpt8mMnQ2FhIbfeeis9evTg+OOPr7fv0UcfxTCM5ATWDnXt2pW//e1v+23v3Llz3e/ffPMNU6ZMwe/3c8kllzBs2DCgNim/4447+Oyzz/jggw+aLKa77rqLX/3qV4wfP57f/va3OJ1ONm/ezIcffsjzzz/PpEmTmqwuIYQQbYMk8UII0UZNmTKFF198kQceeACz+Ye3+2effZZhw4bt1xqYbOFwGKvViq7r2O32ZIfTaPF4/LAJusViOUbRCIDU1FQuueSSg+6vrq5m2rRpmEwmVqxYQd++fevt/8tf/sKjjz7aZPHE43H+/Oc/c8YZZxzwwkBpaWmT1dUYgUCAlJSUdh+DEEK0FNKdXggh2qgLL7yQiooKFi5cWLctGo3y0ksvcdFFFx3wMXfddRcnn3wymZmZOBwOhg0btt9YV03TCAQCPPXUU3XdkWfNmlW3f/fu3Vx++eV06NABm83GgAED+Pe//13vGHvH0T7//PP84Q9/oEuXLjidTrxe7wHHxH/++eecf/75dO/eHZvNRrdu3bjxxhsJhUINem0mTJjAwIED+fbbbzn55JNxOBzk5eXx0EMP1SsXjUa55ZZbGDZsGKmpqaSkpDB27Fg++eSTeuW2bduGpmncdddd3HfffeTn52Oz2fjXv/7FiSeeCMBll11W93rt7WJ9oDHxhmFw//33M2jQIOx2O9nZ2UyaNIlly5bVq2vfbtp7aZrG/PnzD/ncX3/9dc466yw6d+6MzWYjPz+fP//5zyQSif3KPvLII+Tn5+NwODjppJP4/PPPD3jM0tJSZs+eTYcOHbDb7QwZMoSnnnrqkHHs691332Xs2LGkpKTgdrs566yzWLNmTb0ys2bNwuVysXv3bqZOnYrL5SI7O5ubbrrpgLE3xMMPP8zu3bu555579kvgATp06MAf/vCHJqkLoLy8HK/Xy+jRow+4Pycn57DH0DSNefPm8d///pc+ffpgt9sZNmwYn3322X5lV6xYweTJk/F4PLhcLk477TS++uqremX2Dsf59NNPueaaa8jJyaFr166HjcMwDP7yl7/QtWtX7HY7p512Gps3b96v3IsvvsiwYcNwOBxkZWVxySWXsHv37npl9v6tt2zZwpQpU3C73Vx88cVA078XCCFEayQt8UII0Ub16NGDUaNG8dxzzzF58mSgNlmqqalh+vTpPPDAA/s95v777+ecc87h4osvJhqN8vzzz3P++efz1ltvcdZZZwHw9NNPc8UVV3DSSSdx5ZVXApCfnw/UjiUeOXJkXWKRnZ3Nu+++y+zZs/F6vdxwww316vvzn/+M1WrlpptuIhKJHLQL/YsvvkgwGOTqq68mMzOTr7/+mgcffJBdu3bx4osvNuj1qaqqYsqUKVxwwQVceOGF/O9//+Pqq6/GarVy+eWXA+D1ennssce48MILmTNnDj6fj8cff5yJEyfy9ddf79c9/oknniAcDnPllVdis9mYNm0aPp+PW265hSuvvJKxY8cCcPLJJx80rtmzZ/Pkk08yefJkrrjiCuLxOJ9//jlfffUVw4cPb9Bz3deTTz6Jy+XiF7/4BS6Xi48//phbbrkFr9fLnXfeWVfu8ccfZ+7cuZx88snccMMNbN26lXPOOYeMjAy6detWVy4UCjFhwgQ2b97MvHnzyMvL48UXX2TWrFlUV1dz/fXXHzKep59+mpkzZzJx4kT+/ve/EwwGWbBgAWPGjGHFihX1LnIkEgkmTpzIiBEjuOuuu/jwww+5++67yc/P5+qrrz7sc08kEvv1QLHb7bhcLgDeeOMNHA4HP/vZz47kpWy0nJwcHA4Hb775Jv/3f/9HRkZGg47z6aef8sILL3DdddfVXTyaNGkSX3/9NQMHDgRgzZo1jB07Fo/Hw80334zFYuHhhx9mwoQJfPrpp4wYMaLeMa+55hqys7O55ZZbCAQCh43hjjvuQNd1brrpJmpqavjHP/7BxRdfzNKlS+vKPPnkk1x22WWceOKJ/O1vf6OkpIT777+fxYsXs2LFCtLS0urKxuNxJk6cyJgxY7jrrrtwOp1A87wXCCFEq6OEEEK0KU888YQC1DfffKP++c9/KrfbrYLBoFJKqfPPP1+dcsopSimlcnNz1VlnnVXvsXvL7RWNRtXAgQPVqaeeWm97SkqKmjlz5n51z549W3Xq1EmVl5fX2z59+nSVmppad/xPPvlEAapnz5771bl33yeffHLQuJRS6m9/+5vSNE1t3769btuf/vQndSQfbePHj1eAuvvuu+u2RSIRdfzxx6ucnBwVjUaVUkrF43EViUTqPbaqqkp16NBBXX755XXbCgoKFKA8Ho8qLS2tV/6bb75RgHriiSf2i2PmzJkqNze37v7HH3+sAHXdddftV9YwjHp1Heh4gPrTn/5Ud3/vuVBQUFC37UCv5dy5c5XT6VThcFgpVft3z8nJUccff3y95//II48oQI0fP75u23333acA9cwzz9Rti0ajatSoUcrlcimv17tffXv5fD6Vlpam5syZU297cXGxSk1Nrbd95syZClC33XZbvbJDhw5Vw4YNO2gde+39m//4tu95nJ6eroYMGXLYY+11oP+hvQ70d997fpaVldVtu+WWWxSgUlJS1OTJk9Vf/vIX9e233x5xDHufx7Jly+q2bd++XdntdjVt2rS6bVOnTlVWq1Vt2bKlblthYaFyu91q3Lhxddv2njNjxoxR8Xj8sPXv/X/t169fvXPl/vvvV4BavXq1UuqHc2rgwIEqFArVlXvrrbcUoG655Za6bXv/1r/5zW/2q+9I3wuEEKItk+70QgjRhl1wwQWEQiHeeustfD4fb7311kG70gM4HI6636uqqqipqWHs2LEsX778sHUppXj55Zc5++yzUUpRXl5ed5s4cSI1NTX7HWfmzJn16jySuAKBAOXl5Zx88skopVixYsVhH38gZrOZuXPn1t23Wq3MnTuX0tJSvv32WwBMJlNd7wDDMKisrCQejzN8+PADvibnnXce2dnZDYoH4OWXX0bTNP70pz/tt6+pls7b97X0+XyUl5czduxYgsFg3Szty5Yto7S0lKuuuqpe74hZs2aRmppa73jvvPMOHTt25MILL6zbZrFYuO666/D7/Xz66acHjWXhwoVUV1dz4YUX1jtfTCYTI0aM2G/YAsBVV11V7/7YsWPZunXrET33Hj16sHDhwnq3m2++uW6/1+vF7XYf0bGayq233sqzzz7L0KFDef/99/n973/PsGHDOOGEE1i3bt0RHWPUqFF1E/ABdO/enXPPPZf333+fRCJBIpHggw8+YOrUqfTs2bOuXKdOnbjooov44osv8Hq99Y45Z84cTCbTET+Pyy67rN65srfXyd6/zd5z6pprrqk358VZZ51F3759efvtt/c75oF6VzTHe4EQQrQ20p1eCCHasOzsbE4//XSeffZZgsEgiUTikF2F33rrLW6//XZWrlxJJBKp234kCWRZWRnV1dU88sgjPPLIIwcs8+OJuvLy8o7oeezYsYNbbrmFN954g6qqqnr7ampqjugYP9a5c+f9Jso67rjjgNpx5yNHjgTgqaee4u6772b9+vXEYrFDxn6kz+dgtmzZQufOnRvcrfpIrFmzhj/84Q98/PHH+yVue1/L7du3A9C7d+96+y0WS70kcG/Z3r17o+v12wX69etX71gHsmnTJgBOPfXUA+73eDz17u+dI2Bf6enp+50TB5OSksLpp59+0P0ejwefz3dExzpSR/K/c+GFF3LhhRfi9XpZunQpTz75JM8++yxnn30233///WEnevzx3wlqz+VgMEhZWRkAwWCQPn367FeuX79+GIbBzp07GTBgQN32oz2Xu3fvXu9+eno6QN3fZu95cKAY+vbtu99ymGaz+YBj8ZvjvUAIIVobSeKFEKKNu+iii5gzZw7FxcVMnjy53rjTfX3++eecc845jBs3jn/961906tQJi8XCE088wbPPPnvYevbOxH7JJZcwc+bMA5YZPHhwvftH0gqfSCQ444wzqKys5Ne//jV9+/YlJSWF3bt3M2vWrGZdou2ZZ55h1qxZTJ06lV/96lfk5ORgMpn429/+xpYtW/YrfyTPp7EOlhQeyeRu1dXVjB8/Ho/Hw2233UZ+fj52u53ly5fz61//+pgvd7e3vqeffpqOHTvut3/fVRWAo2oZboi+ffuycuVKotHoES1xaLfbDzqhWjAYrCtzpDweD2eccQZnnHEGFouFp556iqVLlzJ+/PgjPkZTOdpz+WB/G6VUg+q32Wz7XRhK5nuBEEK0JJLECyFEGzdt2jTmzp3LV199xQsvvHDQci+//DJ2u53333+/3hryTzzxxH5lD5RIZmdn43a7SSQSh2ztPFqrV69m48aNPPXUU8yYMaNu+76z7jdEYWHhfstWbdy4EaBuMrWXXnqJnj178sorr9R7zgfq7n4wR9MNPj8/n/fff5/KysqDtsbvbeGsrq6ut/1QLd57LVq0iIqKCl555RXGjRtXt72goKBeudzcXKC2pXzfVvJYLEZBQQFDhgypV/a7777DMIx6Sdfervl7j3UgeydEzMnJadJzpqHOPvtslixZwssvv1xveMDB5Obmsnbt2gPu27BhQ12Zhhg+fDhPPfUURUVFhy27t0fDvjZu3IjT6azrueB0Outi2tf69evRdb3eZIXNYe/rsGHDhv16XmzYsOGIXqfmei8QQojWRsbECyFEG+dyuViwYAHz58/n7LPPPmg5k8mEpmn1WnS3bdvGa6+9tl/ZlJSU/ZJIk8nEeeedx8svv8z333+/32P2dus9Wntb+PZt0VNKcf/99zfoeHvF43EefvjhuvvRaJSHH36Y7OzsuvHFB6p76dKlLFmy5Ijr2XuR4Mev14Gcd955KKW49dZb99u3NwaPx0NWVtZ+S4j961//OuzxD/R8otHofo8dPnw42dnZPPTQQ0Sj0brtTz755H7PY8qUKRQXF9e7QBSPx3nwwQdxuVyHbEWeOHEiHo+Hv/71r/WGKuzV0HOmoa666io6derEL3/5y7oLOvsqLS3l9ttvr7s/ZcoUdu3atd//SCQS4bHHHiMnJ4cTTjjhoPUFg8GDnkvvvvsucODu5z+2ZMmSenM07Ny5k9dff50zzzwTk8mEyWTizDPP5PXXX2fbtm115UpKSnj22WcZM2bMfkMXmtrw4cPJycnhoYceqjdU591332XdunV1q18cSnO9FwghRGsjLfFCCNEOHKx7+77OOuss7rnnHiZNmsRFF11EaWkp/+///T969erFd999V6/ssGHD+PDDD7nnnnvo3LkzeXl5jBgxgjvuuINPPvmEESNGMGfOHPr3709lZSXLly/nww8/pLKy8qhj79u3L/n5+dx0003s3r0bj8fDyy+/fMTjoA+mc+fO/P3vf2fbtm0cd9xxvPDCC6xcuZJHHnkEi8UCwE9+8hNeeeUVpk2bxllnnUVBQQEPPfQQ/fv3x+/3H1E9+fn5pKWl8dBDD+F2u0lJSWHEiBEHHHN8yimncOmll/LAAw+wadMmJk2ahGEYfP7555xyyinMmzcPgCuuuII77riDK664guHDh/PZZ58dMOn8sZNPPpn09HRmzpzJddddh6ZpPP300/t1ebZYLNx+++3MnTuXU089lZ///OcUFBTwxBNP7Dcm/sorr+Thhx9m1qxZfPvtt/To0YOXXnqJxYsXc9999x1yojiPx8OCBQu49NJLOeGEE5g+fTrZ2dns2LGDt99+m9GjR/PPf/7zSF7mJpGens6rr77KlClTOP7447nkkkvqLugsX76c5557jlGjRtWVv/LKK/n3v//N+eefz+WXX87QoUOpqKjghRde4Pvvv+c///nPIbvlB4NBTj75ZEaOHMmkSZPo1q0b1dXVvPbaa3z++edMnTqVoUOHHjbugQMHMnHixHpLzAH1LgbdfvvtLFy4kDFjxnDNNddgNpt5+OGHiUQi/OMf/2joS3bELBYLf//737nssssYP348F154Yd0Scz169ODGG2887DGa671ACCFanWRMiS+EEKL57LvE3KEcaHmsxx9/XPXu3VvZbDbVt29f9cQTTxxw2bb169ercePGKYfDsd8yXSUlJeraa69V3bp1UxaLRXXs2FGddtpp6pFHHqkrs3dZqhdffHG/uA60xNzatWvV6aefrlwul8rKylJz5sxRq1atOugSXoczfvx4NWDAALVs2TI1atQoZbfbVW5urvrnP/9Zr5xhGOqvf/2rys3NVTabTQ0dOlS99dZb+y0Nt3fZtzvvvPOA9b3++uuqf//+ymw214v5x8dRqnZZuzvvvFP17dtXWa1WlZ2drSZPnlxv2bFgMKhmz56tUlNTldvtVhdccIEqLS09oiXmFi9erEaOHKkcDofq3Lmzuvnmm9X777+/32uulFL/+te/VF5enrLZbGr48OHqs88+U+PHj6+3xJxStX/zyy67TGVlZSmr1aoGDRp0wCXwDuaTTz5REydOVKmpqcput6v8/Hw1a9asesumzZw5U6WkpOz32KP9mx+JwsJCdeONN6rjjjtO2e125XQ61bBhw9Rf/vIXVVNTU69sVVWVuvHGG1VeXp6yWCzK4/GoU045Rb377rsHjXXvEnOxWEw9+uijaurUqXXnmNPpVEOHDlV33nnnfssbHgigrr32WvXMM8/U/e8OHTp0v7+lUkotX75cTZw4UblcLuV0OtUpp5yivvzyy3pljvT9Y6+D/S8fbCnEF154QQ0dOlTZbDaVkZGhLr74YrVr1656ZQ72t1bqyN8LhBCiLdOUauCMI0IIIUQrNWHCBMrLyw/Y7V+I1kTTNK699tpj2mNBCCFEcsmYeCGEEEIIIYQQopWQJF4IIYQQQgghhGglJIkXQgghhBBCCCFaCRkTL4QQQgghhBBCtBLSEi+EEEIIIYQQQrQSksQLIYQQQgghhBCthDnZAbQ0hmFQWFiI2+1G07RkhyOEEEIIIYQQoo1TSuHz+ejcuTO6fui2dknif6SwsJBu3bolOwwhhBBCCCGEEO3Mzp076dq16yHLSBL/I263G6h98TweT5KjObRYLMYHH3zAmWeeicViSXY4QjQZObdFWybnt2jL5PwWbZmc36I5eb1eunXrVpePHook8T+ytwu9x+NpFUm80+nE4/HIG4loU+TcFm2ZnN+iLZPzW7Rlcn6LY+FIhnTLxHZCCCGEEEIIIUQrIUm8EEIIIYQQQgjRSkgSL4QQQgghhBBCtBIyJl4IIYQQQgjRbhmGQTQaPWy5WCyG2WwmHA6TSCSOQWSirbFarYddPu5ISBIvhBBCCCGEaJei0SgFBQUYhnHYskopOnbsyM6dO49o8jEhfkzXdfLy8rBarY06jiTxQgghhBBCiHZHKUVRUREmk4lu3bodtoXUMAz8fj8ul6tJWlNF+2IYBoWFhRQVFdG9e/dGXQiSJF4IIYQQQgjR7sTjcYLBIJ07d8bpdB62/N5u93a7XZJ40SDZ2dkUFhYSj8cbtUyhnH1CCCGEEEKIdmfvuPbGdm0W4kjtPdcaO6eCJPFCCCGEEEKIdkvGt4tjpanONUnihRBCCCGEEEKIVkKSeCGEEEIIIYQQbdL8+fM5/vjjkx1Gk5IkXgghhBBCCCHEfh555BEmTJiAx+NB0zSqq6v3K1NZWcnFF1+Mx+MhLS2N2bNn4/f7j32w7Ygk8UIIIYQQQggh9hMMBpk0aRK/+93vDlrm4osvZs2aNSxcuJC33nqLzz77jCuvvPIYRlkrGo0es7qUUsTj8WNW349JEi+EEEIIIYQQrcSECROYN28e8+bNIzU1laysLP74xz+ilKor06NHD26//XZmzJiBy+UiNzeXN954g7KyMs4991xcLheDBw9m2bJlh6zrhhtu4De/+Q0jR4484P5169bx3nvv8dhjjzFixAjGjBnDgw8+yPPPP09hYeFBj6tpGgsWLGDy5Mk4HA569uzJSy+9VK/M6tWrOfXUU3E4HGRmZnLllVfWa+GfNWsWU6dO5S9/+QudO3emT58+h3wuTz/9ND169CA1NZXp06fj8/nq9kUiEa677jpycnKw2+2MGTOGb775pm7/okWL0DSNd999l2HDhmGz2fjiiy/YsmUL5557Lh06dMDlcnHiiSfy4YcfHjKOpiBJvBBCCNHOLa6p4cuamnpfAIUQot1RCiKR5NyO8v33qaeewmw28/XXX3P//fdzzz338Nhjj9Urc++99zJ69GhWrFjBWWedxaWXXsqMGTO45JJLWL58Ofn5+cyYMaNR7/1LliwhLS2N4cOH1207/fTT0XWdpUuXHvKxf/zjHznvvPNYtWoVF198MdOnT2fdunUABAIBJk6cSHp6Ot988w0vvvgiH374IfPmzat3jI8++ogNGzbU9QI4mC1btvDaa6/x1ltv8dZbb/Hpp59yxx131O2/+eabefnll3nqqadYvnw5vXr1YuLEiVRWVtY7zm9+8xvuuOMO1q1bx+DBg/H7/UyZMoWPPvqIFStWMGnSJM4++2x27NhxxK9hQ5ib9ehCCCGEaNE2BYM8VViICgbxdunCpI4dkx2SEEIkRzQK11130N2aUjiiUTSrFZp6WboHHgCb7YiLd+vWjXvvvRdN0+jTpw+rV6/m3nvvZc6cOXVlpkyZwty5cwG45ZZbWLBgASeeeCLnn38+AL/+9a8ZNWoUJSUldGzge39xcTE5OTn1tpnNZjIyMiguLj7kY88//3yuuOIKAP785z+zcOFCHnzwQf71r3/x7LPPEg6H+c9//kNKSgoA//znPzn77LP5+9//TocOHQBISUnhscceq1t//WAMw+DJJ5/E7XYDcOmll/LRRx/xl7/8hUAgwIIFC3jyySeZPHkyAI8++igLFy7k8ccf51e/+lXdcW677TbOOOOMuvsZGRkMGTKk7v6f//xnXn31Vd544439Ljg0JWmJF0IIIdoppRQvlZWhQiGU38+QPb8LIYRo2UaOHFlvzfFRo0axadMmEolE3bbBgwfX/b436R00aNB+20pLS5s73AMaNWrUfvf3tsSvW7eOIUOG1CXwAKNHj8YwDDZs2FC3bdCgQYdN4KF2eMHeBB6gU6dOdc97y5YtxGIxRo8eXbffYrFw0kkn1cWz1749DgD8fj833XQT/fr1Iy0tDZfLxbp166QlXgghhBDNY5nPR4HfT1Y4zO9dLsw+H7EtWzDl5aE7nfW+IAohRJtntda2iB+EMgxCXi8WjwdNb+K20CNIRI+WxWKp+33v+/mBthmG0eA6OnbsuN9FgHg8TmVlZYNb94/Gvkn+oez7vKH2uTfkef+4vptuuomFCxdy11130atXLxwOBz/72c+afZI9aYkXQggh2qGYYfDKnpb3cw0Dm8uFnp5OoqaGZ9at49/bt2PIGHkhRHuiabVd2pNxO8qLpj8eb/7VV1/Ru3dvTCZTU74ihzVq1Ciqq6v59ttv67Z9/PHHGIbBiBEjDvnYr776ar/7/fr1A6Bfv36sWrWKQCBQt3/x4sXoun7YCeyOVn5+PlarlcWLF9dti8VifPPNN/Tv3/+Qj128eDGzZs1i2rRpDBo0iI4dO7Jt27Ymje9AJIkXQggh2qElXi8VoRA9IxGG7uliqOk61WlpfBsMsqSoiEe3bSMhibwQQrQ4O3bs4Be/+AUbNmzgueee48EHH+T6669v8nqKi4tZuXIlmzdvBmpnjF+5cmXdhG/9+vVj0qRJzJkzh6+//prFixczb948pk+fTufOnQ957BdffJF///vfbNy4kT/96U98/fXXdePIL774Yux2OzNnzuT777/nk08+4f/+7/+49NJL64YBNJWUlBSuvvpqfvWrX/Hee++xdu1a5syZQzAYZPbs2Yd8bO/evXnllVdYuXIlq1at4qKLLmpUz4YjJd3phRBCiHZotNtN3DDoomnodnvd9iyzmRsyM3mgspJvioqIK8XcHj0wN3XXUSGEEA02Y8YMQqEQJ510EiaTieuvv75Z1mZ/6KGHuPXWW+vujxs3DoAnnniCWbNmAfDf//6XefPmcdppp6HrOueddx4PHGJYwl633norzz//PNdccw2dOnXiueeeq2v5djqdvP/++1x//fWceOKJOJ1OzjvvPO65554mf44Ad9xxB4ZhcOmll+Lz+Rg+fDjvv/8+6enph3zcPffcw+WXX87JJ59MVlYWv/71r/F6vc0S4740JevJ1OP1eklNTaWmpgaPx5PscA4pFovxzjvvMGXKlP3GeQjRmsm5LdqylnJ+JyoqiG3ciO7xoJn3v6ZfGI/zQGUlNSYTg3JyuKZnTyySyIvDaCnntxBHIhwOU1BQQF5eHvZ9LmYejGEYeL1ePB4PehLfDydMmMDxxx/Pfffdl7QYGkvTNF599VWmTp2a7FCOqUOdc0eTh8qnsRBCCNGOlEejFAaDJIqK0EymAybwAJ3NZm7MyCA9kWB1aSkPbtlC7Bh0ERRCCCHEoUkSL4QQQrQj/ysrY/7GjXxbXY22z3I7B9LBbOYXmZlkGgbZlZXoNTXHKEohhBBCHIyMiRdCCCHaiY3BICtranCEQvS1249oiaQsk4nfZGbiqKkhsXUrWs+e6IcZIyiEEKL5LFq0KNkhNJqM6G4caYkXQggh2gGlFC+VlaHCYabE46S4XEf8WJeuY0pPRyUSFG7ezIMbN+KPx5sxWiGEEEIcjCTxQgghRDvwtc/HNr+frHCYsS4X2lGuSQygp6bySizGqtJS7ty4Ea8k8kIIIcQxJ0m8EEII0cbFDINXyspQoRBTDQOL09ngY83MyCBX19ldWck/NmygOhZrwkiFEEIIcTiSxAshhBBt3OKaGqqCQfLDYY5v5PKpTk3jhowM8k0miquq+PuGDVRIIi+EEEIcM5LECyGEEG3cGI+HC5TipyYTus3W6OPZNY3/S0+nj8lEWVUVf1+3jpJIpAkiFUIIIcThSBIvhBBCtHFadTVjAgF6NLIVfl82TePa9HQGWCwEa2rwlZTIbMNCCCHEMSBJvBBCCNFGlUejFAWDJIqK0EwmNHPTrixr0TSuSkvjF04n3QoLSRQVSSIvhBCiVXjyySdJS0tLdhgNIkm8EEII0Ua9UFbG/I0bWVFdjeZ2N0sdZk2jm8uFZrcT376dDzdtYnso1Cx1CSGEOLYeeeQRJkyYgMfjQdM0qqur9ytTWVnJxRdfjMfjIS0tjdmzZ+P3+499sHv06NGD++67L2n1HwuSxAshhBBt0IZgkFU1NThCIfrY7Wh6837kaw4H6202Xigu5u7169kSDDZrfUIIIZpfMBhk0qRJ/O53vztomYsvvpg1a9awcOFC3nrrLT777DOuvPLKo6pH0zS2bdvWyGjbD0nihRBCiDZGKcVLZWWocJgp8ThOl+uY1Nvf6WS03U7Q5+Pe9evZGAgck3qFEKI9mTBhAvPmzWPevHmkpqaSlZXFH//4x3rDmXr06MHtt9/OjBkzcLlc5Obm8sYbb1BWVsa5556Ly+Vi8ODBLFu27JB13XDDDfzmN79h5MiRB9y/bt063nvvPR577DFGjBjBmDFjePDBB3n++ecpLCxs0ue9l1KK+fPn0717d2w2G507d+a6664Dal+b7du3c+ONN6JpGpqm1T3uySefpHv37jidTqZNm0ZFRUWzxHcsSBIvhBBCtDFLvV62+/1kh0KMdbnqfYlpTpqmcbHHwwSHg7Dfz33r17M2iV0qhRCirXrqqacwm818/fXX3H///dxzzz089thj9crce++9jB49mhUrVnDWWWdx6aWXMmPGDC655BKWL19Ofn4+M2bMaNRcJkuWLCEtLY3hw4fXbTv99NPRdZ2lS5c2+LiH8vLLL3Pvvffy8MMPs2nTJl577TUGDRoEwCuvvELXrl257bbbKCoqoqioCIClS5cye/Zs5s2bx8qVKznllFO4/fbbmyW+Y6FpZ7gRQgghRFLFDINXy8tRwSBTlcLsdB7T+jVN4wK3G4umsTAQ4MH167n6uOMY3IQz4wshRHO6duPGA25XSnFNejr999x/aPduVh+kx9GUzEzOyswEYHFNDc+WlBywXFebjd/m5h51jN26dePee+9F0zT69OnD6tWruffee5kzZ84PMUyZwty5cwG45ZZbWLBgASeeeCLnn38+AL/+9a8ZNWoUJSUldOzY8ahjACguLiYnJ6feNrPZTEZGBsXFxQ065uHs2LGDjh07cvrpp2OxWOjevTsnnXQSABkZGZhMJtxud73ndP/99zNp0iRuvvlmAI477ji+/PJL3nvvvWaJsblJS7wQQgjRhnxRU0NVMEivSIQhSUqcNU1jmsvF5JQUYsEgXxQUoBKJpMQihBBt0ciRI+v1sho1ahSbNm0isc977eDBg+t+79ChA0Bdi/W+20pLS5s73P1MnjwZl8tVdwMYMGBA3f0BAwYc9LHnn38+oVCInj17MmfOHF599VXi8fgh61u3bh0jRoyot23UqFGNfyJJIi3xQgghRBsyxuMhphQ9TCZ0my1pcWiaxjkuF510ncE+H/Ft2zDn5jb5MndCCNHU/t9xxx1wu2EYeL3euvtXdelyRMcbnZrK6NTUJontaFgslrrf9yb8B9pmGEaD6+jYseN+FwHi8TiVlZWHbN1/7LHHCO2zkknv3r1555136LLnNd03zh/r1q0bGzZs4MMPP2ThwoVcc8013HnnnXz66aeHfFxbIp+kQgghRBuiV1czLhBAbyHd1090OlEWC0ZxMTWJBFtzcjihla7LK4QQLcWPx5t/9dVX9O7dG5PJdEzjGDVqFNXV1Xz77bcMGzYMgI8//hjDMPZr+d5XlwNcAMnNzaVHjx5HVK/D4eDss8/m7LPP5tprr6Vv376sXr2aE044AavVWq9HAkC/fv0O+Jq1VpLECyGEEG1AeTRKPB4no6gIzWRqUS3emsWCkZrKA8XF7Kyu5pKePRmflZXssIQQotXasWMHv/jFL5g7dy7Lly/nwQcf5O67727yeoqLiykuLmbz5s0ArF69GrfbTffu3cnIyKBfv35MmjSJOXPm8NBDDxGLxZg3bx7Tp0+nc+fOTR4P1M4yn0gkGDFiBE6nk2eeeQaHw0HunrkFevTowWeffcb06dOx2WxkZWVx3XXXMXr0aO666y7OPfdc3n///VY7Hh5kTLwQQgjRJrxQVsafNmxgZXU1mtud7HD2Y7JYGOfxQDjMM1u38mESxmAKIURbMWPGDEKhECeddBLXXnst119//VGvzX4kHnroIYYOHVo3Yd64ceMYOnQob7zxRl2Z//73v/Tt25fTTjuNKVOmMGbMGB555JEmj2WvtLQ0Hn30UUaPHs3gwYP58MMPefPNN8ncM5HgbbfdxrZt28jPzyc7OxuonUPg0Ucf5f7772fIkCF88MEH/OEPf2i2GJtby7lML4QQQogGWR8IsKqmBmc4zHF2O5reMq/Rj3Y4MGsa/6mp4YVt24grxaQ9EysJIYQ4chaLhfvuu48FCxYccP+2bdv22/bjpeR69Ohx2OXl5s+fz/z58w9ZJiMjg2efffaQZQ7naJa5mzp1KlOnTj3o/pEjR7Jq1ar9tl9++eVcfvnl9bb98pe/POJ6W5KW+SkvhBBCiCOilOKlsjJUKMSUeBznnll+W6oRdjuzU1PRwmFe3raNN4uLG7VGsRBCCNHeSBIvhBBCtGJfeb3sCATIDocZ63LVW3KopTrBbmduWhqmSIS3tm+nyOdLdkhCCCFEqyHd6YUQQohWKmoYvFpejgoGmaYUZqcz2SEdscE2G1enpxOsqSF7505Uz55oDkeywxJCiBZv0aJFyQ5BJJm0xAshhBCt1Oc1NVQHg/SORBjcQpaUOxr9rVaGZWaSqKkhtnUrW6urpWu9EEIIcRjSEi+EEEK0UuM8HuKGQU+TCd1mS3Y4DaLpOnp6OisqKnjc52NUp07M7N4dvRUMCxBCCCGSQVrihRBCiFZKr6pifCBAbitshd+Xpuukp6Vhi0ZZXFjIY9u3k5AWeSGEEOKAJIkXQgghWpmyaJSSYJBEURGa2Yxmbv0d6/IsFm7MzCQlHufroiIeLiggbhjJDksIIYRocSSJF0IIIVqZ50tL+dPGjXxXU4Pmdic7nCbTzWzmFxkZuONxlhcX87dNm1gfCCQ7LCGEEKJFkSReCCGEaEXWBQKs9npxBIP0ttvR9Lb1Ud55TyKfk0iwvayMxdu2oSKRZIclhBBCtBht65NfCCGEaMMMpXiprAwVCnFWIoHD5Up2SM2io9nMLdnZ/NxmY0pVFbG1a4kXFbHR56M6Fkt2eEIIIVqJbdu2oWkaK1euTHYoTUqSeCGEEKKV+MrrZWcgQIdwmDEuF1obnsHdpGlM8HjIzMpCGQaBLVt4ZM0afr9uHa+VlhJOJJIdohBCtHmPPPIIEyZMwOPxoGka1dXV+5WprKzk4osvxuPxkJaWxuzZs/H7/c0a16xZs5g6dWqz1tGSSRIvhBBCtAJRw+C18nJUMMhUpTA5nckO6ZjQNA3d5UJlZNDfMIhWV/N2QQG/W7+ejysrZRZ7IYRoRsFgkEmTJvG73/3uoGUuvvhi1qxZw8KFC3nrrbf47LPPuPLKK49hlO2PJPFCCCFEK/BZdTXVwSDHRSIMauVLyjVEisnEpZmZ/D49nQGxGN7KSp7bvJk/bdjACp8v2eEJIcQxM2HCBObNm8e8efNITU0lKyuLP/7xj6h9Lmr26NGD22+/nRkzZuByucjNzeWNN96grKyMc889F5fLxeDBg1m2bNkh67rhhhv4zW9+w8iRIw+4f926dbz33ns89thjjBgxgjFjxvDggw/y/PPPU1hY2Kjn+dJLLzFo0CAcDgeZmZmcfvrpBAIB5s+fz1NPPcXrr7+OpmlomsaiRYsA+Prrrxk6dCh2u53hw4ezYsWKRsXQUkkSL4QQQrQC41NTmWYYTDOZ0G22ZIeTNF2sVq7NzuZ6t5tukQjF5eV8u20bRiiU7NCEEOKYeeqppzCbzXz99dfcf//93HPPPTz22GP1ytx7772MHj2aFStWcNZZZ3HppZcyY8YMLrnkEpYvX05+fj4zZsyol/wfrSVLlpCWlsbw4cPrtp1++unous7SpUsbfNyioiIuvPBCLr/8ctatW8eiRYv46U9/ilKKm266iQsuuIBJkyZRVFREUVERJ598Mn6/n5/85Cf079+fb7/9lvnz53PTTTc1OIaWrPUvLCuEEEK0A3pVFacEAuipqckOpUXo63DwG7udZcEgPWpqiK9di96hA5tcLjKcTjpYrckOUQjRSl177YG3K6VxzTUa/fvX3n/oIVi9+sBlp0yBs86q/X3xYnj22QOX69oVfvvbo4+xW7du3HvvvWiaRp8+fVi9ejX33nsvc+bM2SeGKcydOxeAW265hQULFnDiiSdy/vnnA/DrX/+aUaNGUVJSQseOHY8+CKC4uJicnJx628xmMxkZGRQXFzfomFCbxMfjcX7605+Sm5sLwKBBg+r2OxwOIpFIvbiffPJJDMPg8ccfx263M2DAAHbt2sXVV1/d4DhaKmmJF0IIIVqwsmiUslCIRFERmtmMZpbr73tpmsaJKSlkZWWhdJ3wtm08vm4dt6xdy7NFRfji8WSHKIQQzWLkyJH1JjcdNWoUmzZtIrHPpJ+DBw+u+71Dhw5A/UR477bS0tLmDreeq666CpfLVXc7kCFDhnDaaacxaNAgzj//fB599FGqqqoOedx169YxePBg7HZ73bZRo0Y1aewthXwTEEIIIVqw50tLWVtezhy/n4GZmckOp0XSNA3N6cSw2xleU8Mir5ePw2GWlJczqVMnzsjIwKpLu4UQ4sj8v/934O2GofB6f+h6ftVVR3a80aNrb8eaxWKp+31vwn+gbYZhNLiOjh077ncRIB6PU1lZedDW/dtuu+2w3dxNJhMLFy7kyy+/5IMPPuDBBx/k97//PUuXLiUvL6/B8bYV8okmhBBCtFDrAgFWe73Yg0Hy7XY0SUQPyaHrnJeezp8yMznRMAhVVfHali38Yf16vjjAskhCCNFa/Xi8+VdffUXv3r0xmUzHNI5Ro0ZRXV3Nt99+W7ft448/xjAMRowYccDH5OTk0KtXr7rbwWiaxujRo7n11ltZsWIFVquVV199FQCr1Vqv1wFAv379+O677wiHw3Xbvvrqq8Y8vRZLvg0IIYQQLZChFC+WlaFCIc5KJHAcpMuh2F+W2czlmZn8Ji2N42IxKisqWLd9O0Yzr1sshBDHyo4dO/jFL37Bhg0beO6553jwwQe5/vrrm7ye4uJiVq5cyebNmwFYvXo1K1eupLKyEqhNnCdNmsScOXP4+uuvWbx4MfPmzWP69Ol07ty5wfUuXbqUv/71ryxbtowdO3bwyiuvUFZWRr9+/YDa2fe/++47NmzYQHl5ObFYjIsuughN05gzZw5r167lnXfe4a677mr8i9ACSXd6IYQQogVa4vWyKxCgQzjMGJer3thHcWRybTauz8pibShEtt9PbN069JwcNnk8pDgc5O4zblIIIVqTGTNmEAqFOOmkkzCZTFx//fXNsjb7Qw89xK233lp3f9y4cQA88cQTzJo1C4D//ve/zJs3j9NOOw1d1znvvPN44IEHGlWvx+Phs88+47777sPr9ZKbm8vdd9/N5MmTAZgzZw6LFi1i+PDh+P1+PvnkEyZMmMCbb77JVVddxdChQ+nfvz9///vfOe+88xoVS0skSbwQQgjRwkQMg9fKylDBINOUwuR0JjukVkvTNAY4neB0osJhwjt38oSuU+1wMCI7m6k5OWTJTPZCiFbGYrFw3333sWDBggPu37Zt237bfryUXI8ePQ67vNz8+fOZP3/+IctkZGTw7MGm32+gfv368d577x10f3Z2Nh988MF+20eOHMnKlSvrbWvMEnotlSTxQgghRAvzaXU1NaEQfSIRBno8yQ6nzdDsdnSrlbFeLx/4fHwVDrO8ooIJHTpwVnY2Kcd4LKkQQgjREJLECyGEEC3MBI+H2M6d9DWZ0G22ZIfTplh1nclpaYyOx3nH6+XzmhoWhkIsLi/nrD0z2cvQBSGEEC2ZJPFCCCFEC2Oqrua0QAA9NTXZobRZHrOZ6RkZnBKL8VpNDSsrKymIxVAWC7jdksgLIVqsRYsWJTsEkWSSxAshhBAtRGk0ip5I4CkqQrNY0MzyMd3cOlgszM3KYkskgtvvJ7Z+PXpWFus9HiwOB31TUpIdohBCCFGPfDsQQgghWojnSktZX17OlX4/AzIzkx1Ou5Jvs4HNhopEiBQW8nRREVUOB4MyMjivUye6yLAGIdqstjjxmWiZmupck3XihRBCiBZgTSDAGq8XRzBIvt2OpstHdDJoNhuWrCzOtNlI8fv5rrCQW9eu5cndu6mKxZIdnhCiCZn2TGYZjUaTHIloL/aea6ZGTqQqLfFCCCFEkhlK8VJZGSoUYkoigd3lSnZI7ZquaYx3uzkpJYWFXi8f+nx8EQ7zTUUFM3NzOUnmKhCiTTCbzTidTsrKyrBYLOiHuXhqGAbRaJRwOHzYskL8mGEYlJWV4XQ6MTdyuJwk8UIIIUSSLfF62e330zEcZoxMqtZiOHSdc9LSGBuP82ZNDUuqq/kskWD4wIHoFkuywxNCNJKmaXTq1ImCggK2b99+2PJKKUKhEA6HQ96nRYPouk737t0bff5IEi+EEEIkUcQweHVPK/w0pTA5HMkOSfxIutnMjMxMBoZC9PP7SRQUoOXloUkiL0SrZ7Va6d279xF1qY/FYnz22WeMGzcOi/z/iwawWq1N0otDknghhBAiiRZVV+MNhegTiTDA40l2OOIQTnA4UBYLRlkZfsNgTXY2I2UCQiFaPV3Xsdvthy1nMpmIx+PY7XZJ4kVSSRIvhBBCJNEpHg/RHTvobzKhywzoLZ5mNqPS0lhQWsqmmhoq4nHO6tAh2WEJIYRoR2RGBiGEECKJTNXVnBEM0k1a4VsN3WxmQmoqeiTCa9u28VpRkSxRJYQQ4piRJF4IIYRIgtJolMpQiERhIZrFgtbImWrFsTXUbueqtDRMkQhvb9/Oi4WFksgLIYQ4JiSJF0IIIY4xBTxfXs4f1q9nndeLJkvKtUoDbTauSU/HHI3ywc6dPLtrlyTyQgghmp0k8UIcIzHDIG4YyQ5DCNEC7NB11vl8OEIh8hwONFlvuNXqZ7Xyf+np2KJRFu3ezeaqqmSHJIQQoo2TvntCNKPSaJQ1gQDfBwKsDwS4LDWV4w0DFY2yKy2NDm43TpMp2WEKIY4hQym+tFhICYc5K5HAnpKS7JBEI/W2Wrk+I4PC6mpyd+3CsNnQ5e8qhBCimUgSL0QT2xQM8q3Px/eBAKXhMMTjqGgULRqluLycuKZRZRjcV1SEMzWVK/PyyJN1oYVoN770eqnSNHqFw5zsdqNpWrJDEk0gz2KhR1YWRlUV8S1b2NWlC93T0zFLLwshhBBNTJJ4IRpBKUVpLIZD1/GYzahEgqWlpXxaVQWRCGmJBP0Ng366Tj+7HYfDgWYyYUkk6FJVxcaKCv4eDvOz7t05LTNTvswL0cZVxGK8Ul4OwLlKYZILeG2Kpmno6emsr6jgXxs3MiAnh6vy8rBIIi+EEKIJSRIvxFGKGAYbgkHWBAKsDgQoD4eZ6nBwBqCqqxkWCpFmGAywWOjscqHZbPsl56kmE9dnZvK2z8e7fj8vbN3KBr+fy7p1k+71QrRh71RUEAwG6ZtI0D81NdnhiGagaRrpaWm4KytZVVLCP5Ximp49sUkiL4QQoolIEi/EEVrh8/FpdTUbg0HisRgqFqtrbdcqKzFMJrDZyE9Lo9cRJOK6pnG2x0Mvm40nqqtZUVjIzkCAefn5dLXbj8EzEkIcaz9PSSElEsGIxWRJuTaso9nMjZmZ3FdRwZqSEh4wDP4vPx+7XKQVQgjRBOSysBAHEDEMVvn97AiHUUphhEKU7PkyZlRUcFx1NdP8fn6vadzucnFaVhZ6RgZ6SgraUX5J62ez8fusLPoA8cpKUkpKUIlE8zwxIUTSqHgcbedOzjQMLMkORjS7bJOJX2Zmkq0UG8rKuHfTJoLy3i6EEKIJSDOAENSObS+KRvk+EGBNIMDGQIBELMbJZjMXGwZGMMiQSIQsTeM4hwO73X7UyfqhpJpMXJeRQUUohGPXLuLhMLEuXVAOBynSciNEqxZIJHimuJipkQhpVVVoHg/sGRcv2raMPYn8fRUVbKmo4BmTiSt79052WEIIIVo5SeJFu7fU6+WVsjKqIhHY003eFI3SN5Ggh6Zh2GxodjuZbjdZzTjxnK5pZDudKJuNeHk5/6muZqvLxZV5efRyOputXiFE81FK8VRxMSsrKjC8XmZ7PE16AVC0fKm6zi8yM3m2qoqp1dUkKiowZWYmOywhhBCtmCTxot1QSrE7EmFNMEim2cwwpxMVCGCuqKCirIzsRIJ+hsFAXae3w4GtiVvbj5RmMmFkZBCoqqKyspI7w2Gmde/OxKwsmb1eiFbm0+pqVtbU4AoEON9qRbPZQLpUtztuXWduZiaGz0d861YSiQThjAw8Mi+CEEKIBmjQp8cbb7xx1I8544wzcMhSOm1a3DAIGwZmTaubvCduGAQNA0VtEr3X3t/SLT+MDK2MxTB+VGbvvTSzGeuemX298XjduMIfStf+nmIykbrnS1EokaAiFqM0FuP7QIDvAwGq96zb3lspBiuFCofpbRj8yWKhQ0oKWCwtIlG26jr/l5HBe34/bwYCvLx1Kxt9Pi7v3h2XfOkTolXYFQ7zv9JSlN/PDMPAk56e7JBEkuluN3Gfjyc3b2aHx8NNffqQaZEZEoQQQhydBmUDU6dOParymqaxadMmevbs2ZDqxDHkj8cJGAahRIKgYRBMJAjtScQHpaTQ2WYDaluXvvJ6CSQSBONxQokEMcMApRjmdDInOxuAgnCYO4uLD1iXRdN4sHv32jtK8edduwgYxgHLXp+dTT+HA5Ti5YoKlgQCByw33uXiwowMUIp1wSAPVVSAUqh4HBWNkrNn3fZBJhPK4UBLTcVhMtESLy9pmsZkt5t8q5V/V1fzXXExtwaDXNmzJ72le70QLVrUMHisqIhYIMBpkQj9MzJaxAVCkXyGy4W/qoqyqir+vm4dv+zThw57PluFEEKII9HgJr3i4mJycnKOqKzb7W5oNeIoJJSqS7oV0MFqBSCYSPBFTU3dvsA+iXkwkeC3XbpgA0gkuHPnToqiUVBqv5vD5SLbbIZ4nAq/n03hcO0+QFcKh1LYAGd1NbGSktqglCIzHmffr67anptZ04j5fHXbO8TjBAFtn9b4vY/TvV6ie74ApyYSdFWKA30dTq2pIVpUBIBVKXoYBilAP01jgM1GdgtqbT9Sx9ls/C4ri6eqq1lbVUX5rl306tlTlqcSogV7sayMQr+f7qEQZ7tc8v8q6lg1jWvT03m4upo1NTX8Y/16ftmnD51laVEhhBBHqEHfKmbOnHlUXeMvueQSPB5PQ6oSh7DC7+c5m43Pt24lrBTRPS3hKEUPi4VfZ2eDYRCORnmppKS2O7th1N6UQu35WVNVRdqefTnRaF1C7gCcmlb7E+gUCmHoOug6o4GhZjMOk4kUXceqabXjxzWt9rZHLnDr3juHSZx/caCNB3jMT/bc6hfbv1wf4FeHrLH18JhMzMvIYE0wSL+yMuKGgal7dxJ2OxZdVooUoqUZYbezIRjkMl3HKj1nxI9YNI2r0tJ4rKaGVTU13Ll+PTf26UN3GXYohBDiCDQoiX/iiSeOqvyCBQsaUo04jIjXS5Wm4SwvxwR1ibcDyFKKWEUFmqZhNQwmKYUTcOo6Dl2vTc7NZpwmE6maVttKpOvMcTpB10HTDtlanbHnJo4dTdMYmJKCsttJVFWx1u/nv3Y7V+TlcVxKSrLDE0LsoZQit7yc38ZiMgu5OCizpjEnNZUna2pY5vVy9/r1zB84sN5cMUIIIcSBSP++VmyQycSlkQiTs7Jwmc0/tIT/KAm3AWcnN1TRhDSTCT09nW8qK6kMhbgrEuHcbt2Ykp3dqoYJCNHWGEqxyu9nYCBAoqQEU1oamvSUEYdg0jQuS03F4vXiDgRwFRejunSR80YIIcQhHXUSX1VVhVKKjIwMysrK+Pzzz+nTpw8DBgxojvjEIdh1HbdSOBwOdFl3uF3RNI0ZGRl0CgR4PRDgtYICNvp8zM7NlSWLhEiStysqeLO4mFP9fqbZbGjSoiqOgK5pXOrxoCIREjt31g5369wZq7yXCyGEOIijutT72GOPMWzYMIYPH86CBQuYNm0aH330EdOnT+exxx5rrhiFEAegaRpnulz8Ij2dtEiENcXF3Lp+PesPMnO/EKL5bAwGeau8HD0QYKhhoLtcyQ5JtCKapqHb7eguFzt37uT3333H915vssMSQgjRQh3VZd4HHniANWvWEAqF6N69OwUFBWRnZ1NTU8P48eO54oormitOIcRB5Fut/C4ri/9UV7O6qop3DYPj+vVDl1ZAIY6JQCLB40VFGIEA06JR8mQcvGggzWZjTSxGld/PPzdu5KrevTk+NTXZYQkhhGhhjqol3mw243A4yMjIoFevXmTvWQs8NTVVxuIKkUQuk4mrMzL4udPJpV4vic2bMaRFXohmp5TiP8XFVAUC9AuFOM3jqZ2fRIgGmuRycbbLRTwYZMHGjXxTVZXskIQQQrQwR5XEm0wmwuEwAJ9++mnddr/f37RRCSGOmqZpTHC58GRkkKiqIrB+PXetW8c6SeaFaDafVlezoqYGVyDApVYruqz1LZrAlJQUprlcJEIhHt28mS8rK5MdkhBCiBbkqJL4Dz/8EJvNBtS2vu8VDAZ55JFHmjYyIUSDaCYTekYGX8ZirC8r495163ijpARDqWSHJkSbUxKJgN/PpYkEqR5PssMRbciZKSn83O3GCIV4YvNmvqyoSHZIQgghWoijGhOfepBxWTk5OeTk5DRJQEKIxtM0jVPS0iAQ4JVAgDcLCtjo9zMnN5dUmfFYiCZzXiLBidEoXdPTZViZaHITnE4smsYbXi9dS0pQbjea1ZrssIQQQiRZo7/Ne71ennjiCYqLi8nLy2PIkCEMGjQIp9PZFPEJIRpI0zROdbnIs1p5vLqa9cXF3BoMckVeHv1l5mwhGiWcSGD1+0kUFtLF5UKTi2OimYx2ODjBYsFaVUW8oABTjx7oe3pFCiGEaJ8a/a3jpz/9KatWreLEE0/kzTffZMOGDQDk5+czZMgQXnjhhUYHKYRouDyrld9mZfFMdTUrq6r4VzTKHQMG4JKxu0I0yHKfj2cKC7k0GKR/IoEu3ehFM3OYzaj0dOJlZbwWCmHr0IGzO3aU3h9CCNFONTqJX7JkCYsWLeLEE08EIBKJsHr1alauXMmqVasaHaAQovFSdJ0r09P5NBjEHghg27oVo3t3WctaiKNUGYvxn+JiAj4fvlAILSsr2SGJdkIzmahIS+OjykoS4TAxpfhpp06SyAshRDvU6CR+8ODBmPfpRmiz2Rg+fDjDhw9v7KGFEE1I0zQmpKSgHA4S1dWoDRv4JCODLtnZDJRkXojDMpTi8aIigoEAJ4ZCjExPR9OPan5YIRqlg8XC1enpLKiq4r0dO4gaBtO7dJFEXggh2plGf/v4xz/+wS233EIkEmmKeIQQzUzTdUwZGew0DF7auZP716/nleJi4oaR7NCEaNHerqhgk9dLVjDIzx0ONIsl2SGJdqi/1cq89HQs0Sgf7drF0zt3omT1ESGEaFcancT36NEDr9dL//79+d3vfscbb7zBzp07myI2IUQz6uZ283OXC1MwyLvbtvHLdet4dPdulnm9hBOJZIcnRIuyKRjkrfJy9ECAmYDT7U52SKId62O1cl16OvZolM927+a5XbskkRdCiHak0Un8eeedx7Zt2xg9ejRffvklM2fOpEePHmRnZ3PmmWc2RYxCiGagaRrjU1L4VUYGebEYwcpKlu7YwcObN/NIQQEqHgeQL4ai3VNK8VJZGUYgwNnRKHlpackOSQjyrVauy8jAGotRU1KCEQ4nOyQhhBDHSKPHxH///fcsWbKEIUOG1G3btm0bK1as4Lvvvmvs4YUQzay7xcKvcnKoiUZZHQyyKhBgYChEzOdDS0tjhcXC+5EIx6emcrzLRVebTcZfinZF0zSucTj4JBzmdI8HzWRKdkhCAJBnsfDrjAyya2owCgrQ8/PRZPk5IYRo8xqdxJ944okEAoF623r06EGPHj2YNm1aYw8vhDhGUq1WxlitjAFUIoGKRDCKi1kTj7Nd19lRUcGbVivpDgdD0tIY6nLR2+HALBN7iTZOhUI4CguZbLWiy9KMooXpbLGgMjJIVFZSs3UrOzp25IT09GSHJYQQohk1+tv39ddfz/z586murm6CcIQQLYFmMqE7nZgyMrgwK4tfOhycFo+T5fVSUVbGJwUF3LNxIy/t3ImSCfFEG1UYifBUYSH+HTswAgE0GQcvWihN10mkpXF3WRkPbdrEcvlOJoQQdVQsRmznTlQsluxQmkyjW+J/9rOfAdC7d2+mTZvGiBEjGDp0KAMHDsRqtTY6QCFEcpl0nV4pKfRKSeGnSlESibAqGGSV30+/UIhYTQ1aejofKcVapRjq8TDY5SJTZu4WrVjMMHi0qIhdlZWkBYNMTk+XYSSiRbOazUxwu3nR5+PRzZv5vz596C8XnoQQ7dimYBBvLMbgsjKMmhpURkabWVmm0Ul8QUEBq1atYuXKlaxatYq//vWvbNu2DbPZTJ8+fWRcvBBtiKZpdLTb6Wi3MxFQ8TgqHMbYuZMViQRbTCbWlZXxnNVK15QUjk9NZYjLRXcZRy9amRfLytjt89EtFOL0lBQ0c6M/LoVodqc6nQSV4m2/n39t3Mgv+valZ0pKssMSQohjrigS4f/t3k3Q6+XGYJCebaxxudHfSnJzc8nNzeWcc86p2+bz+Vi5cqUk8EK0cZrZjOZygcvFdYkE64JBvotEWB0MssPnY2dFBW9ZrVzYsSMTOnSQRF60Cit8PhZVVmIJBLhM17E6nckOSYgjdpbTScgw+DgQ4P4NG7i5f3+6yFwOQoh2pCYe54Fduwj4fIwIBslLSYE21JUemiCJ//LLL/F4PAwcOLBum9vtZuzYsYwdO7axhxdCtBJWk4khbjdD3G4Mw6AgFOK7cJjvwmGOi0aJV1SgpafzYiyG12zmeLebgSkppMhM36IFqYzFeKq4GBUIcEEsRoesrGSHJMRR0TSNn7lcBJXiK7+ff27YwG2DBmGRSUiFEO1AxDD45+7dVPj99AkGudjlQrda29R4eGiCJP7aa69l3rx59ZJ4gC1btpCTk4NbxmMJ0e7ouk5+Sgr5KSlMA1Q0ihEMYlRX841h4DWbWWa1YrJa6eV2MzQ1lSEpKWS1sa5OonVRSvHvoiKCgQAnhsOMSk9Hk8RHtEKapnGp240yDEb6/WglJdCpU7LDEkKIZmUoxSOFhWz3eukUCDDHbsfsdKLi8WSH1uQa/e1kw4YNTJgwYb/tH374IRdeeGFjDy+EaAM0qxXd48GclcXv09K41GRicCiEVlXF+sJCnt+yhd+tX886mVFZJJGmaYy2WukaDPJzu73NTH4j2idd05iVlsZxTieJ7dtJlJVhKJXssIQQotm8V1nJ6upqUv1+rjGZcLbhxuRGt8R7PB6qqqr22z527Fh+//vfN/bwQog2xmO1crLVyslANJFgfTDId+EwG4NBukWjxNxuEm43Cy0W0r1exmZkyFh6cUyoeJzhVVUcD5jb8Ae/aF90pxPDMFi0ZQvfVFRw43HHYZMeJkKINugUu51toRCTlCI9NTXZ4TSrRr+LT5o0ibvuumv/A+s60Wi0sYcXQrRhVpOJwW43l2RnMz87G6vFglFdjW/zZjabTDy1ZQv3FRRQJu8lohkFEgnWBwLECwsxKisxpaUlOyQhmpSRksKiRILNFRX8v82biRtGskMSQogmo5RCRaOYd+zg8liMru1gWdhGJ/F//vOf+fTTTznvvPNYvXo1AOFwmL///e8MHjy40QEKIdoHXdfR7Hb0tDRSsrKYHI2SGgqxpqiIP61dy3vl5SSkK6hoYkopni4u5t4tW/hy1y40txtNJlsUbYxZ07guI4MMpVhbVsYjBQXStV4I0SasDwR4cOdOfNu2kaisRE9Laxfz2TT6GXbr1o2vvvqKUCjEkCFDcDgcuN1u3nzzTe68886miFEI0Q71MAx+n5nJeJOJmNfLy1u38pdNm9geDic7NNGGfF5Tw/KaGpyBAP3NZjSbLdkhCdEs0nSd6zMy8BgGy0tKeGr7dpQk8kKIVmx3JMK/du9mdWkpX5eU1Cbw7eRCfIOT+FtuuYVvv/0WqF0r/p133qGgoIAXXniBN954g40bNzJq1KgmC1QI0f44dJ3p6en8Mi2NjpEIO0pL2b5zZ5ucZVQce4WRCC+UlKD8fi5NJEj1eJIdkhDNKsdk4v8yMnAkEiwuKuJ/u3dLIi+EaJWqYjEe2LWLkN/PyaEQY1NT0cyNnu6t1WjwM921axeTJ0/GarVy9tlnc+6553LqqaeSm5vblPEJIQT5Nhu/y85mmd/P8JISYtEo5i5dKLbb6Wy3Jzs80QrFDINHi4qIBoOcEo0ysB2MnxMCoKvZzLXp6dxfWUlBURGxjAysTmeywxJCiCMWTiT45+7dVPl89A8GudDtRm9nPeka3BL/73//m+LiYp577jncbjfXX389WVlZnHfeefznP/+hsrKyKeMUQrRzZk1jpNuNKTMT5fOxYd065n//PY/u2IFPWubFUXqprIzdPh/dgkHOdTrb1dV7IfItFm7MyODaaBRt+3aUTB4qhGglEkrxUGEhO71eugYCzLbbMTkcyQ7rmGvUmHhd1xk7diz/+Mc/2LBhA0uXLmXEiBE8/PDDdO7cmXHjxnHXXXexe/fupopXCNHOabqOnp6Oz2bDFgyydPdu/rhuHYurq6VbqDgiccOgJBTCEghwma5jTUlJdkhCHHN5Fgu2jAwSlZUEtm5lTU1NskMSQojD2hAMsq6mhvRAgKvNZhztdEnYJm166NevH/369ePmm2+mrKyMN954gzfeeAOAm266qSmrEkK0c0NTUuhpt/O/6mqWV1XxZDjM0sxMLunalRyrNdnhiRbMpGlck0iwKx6nQ2ZmssMRImk0XUelpXF/aSk7fD6uOe44hrTxtZWFEK1bX11ndjRKDpDajt+vGj07/dq1azEOsN5odnY2s2fP5vXXX5cEXgjRLFJNJuZkZnK1x0NqKMTaoiLmr13LjmAw2aGJFshQiqhhYJSVYZSW0jU1tV0sQyPEoZjNZoa63SRCIR7atIkNPl+yQxJCiP0EEglUNEqioIDB4TCd2/lcNo1uiR84cCB2u53+/fszZMiQere0tLQmCFEIIQ5tsMNBb5uN12tq2OXz0XHHDoyuXdFdrmSHJlqQdyoq+Kayklk1NXS2WtGkx4YQAJzhdBI0DN4LBPjnpk38sm9feshkd0KIFmJNIMDDu3ZxSTzO4Opq9IyMdp3AQxO0xH/66ad4PB66dOmCz+fj0Ucf5ZRTTiEzM5M+ffrwxz/+kerq6iYIVQghDm7vcnQ3ZGRgVFURW7+erQUF/K+4mMgBeguJ9mVzMMib5eUUV1URjcXkAo8QP3JOSgrjnU5Cfj/3bdhAYTic7JCEEIKd4TAP7d5NyOejtLKydi146UXX+CT++uuvZ8GCBbz++uv873//Y/Xq1SxcuJC8vDwuueQSPvvsM4YOHUpZWVlTxCuEEIdkNpsxZWSgmc08t3MnH2zbxvz161nt9yc7NJEkwUSCR4uKMAIBfhKNkie9xITYj6Zp/Nzl4kS7Hb/Px30bNhBOJJIdlhCiHavcsxZ82O9nTCjEGe1sLfhDaXQSv379egYMGFBv22mnnca9997LqlWrWLRoEcOHD+d3v/tdY6sSQogjpjkczMjIoHc8TllFBQ+sXy/L0bVDSimeLimhKhCgTyjEmR4PmsmU7LCEaJE0TWOmx8MQm42zAwHM0gAjhEiSYCLBA7t2Ue33MygY5OftcC34Q2l0Ej9s2DD++9//7rd94MCBfPDBB2iaxq9+9Ss+/PDDxlYlhBBHpaPFwo1ZWVzidGLfsxzdH2Q5unbDG49zx44dfFtdTUogwEyLBd1uT3ZYLdOaNbB2Lcj/Rbtn0jTmpqZykt1OYvt2EmVl8n4phDim4obBgsJCCn0+ugcCXOZwtMu14A+l0Un8XXfdxT333MOll17K+vXrAYhGo9x7771kZGQAtTPVl5SUNLYqIYQ4apqmMdrl4k9ZWZygFIGqKj7eupVEKJTs0EQTiRkGG/eMeX+ssBAVj2N4vTjLyiguLcVWXc1Mw2jXS9Ec0rp16C+8gP7882ivvAKxWLIjEkmmaRp6SgqYzazaupV7N26UuUWEEMdM0DDwBYNk+P1cbbFgl3ls9tPoQQUjRoxgyZIlXH/99fTv3x+bzUY8HsdsNvPEE08AsGLFCjp37tzoYIUQoqH2Lke3OhTC4/djrF9PvHNnAunpuKxWTO18ltPWxFCKgnCYDcEgG4JBNgeDxGIxiMdR0ShnFxeTFo2iEgluNJnIcTgw2+3tfibbA/L70V9/ve6utmoVWmkpxvTpkJ6exMBEi5CSwmsVFRSWl/OQrnNtfj5mmVBKCNHMXNEoN4bD+DVNLsAfRJPMDDBw4EA++ugjtm/fzqpVqzCZTAwbNoyOHTsCtS3xd9xxR1NUJYQQjTLI4UDZ7ahAgOiWLfw/u524282Mbt3oIV21WiRDKUqjUTruGQsXisX4x9atqFgMFYuhx2LkGQZ9lOI4sxmXxYLm8aCbTHRJcuwtmlLor74KwSB07IhxxhnoL78MRUXoDz2EccEFkJ+f7ChFEumaxryMDO6sqGB1WRmPm0zMyctDlwtiQohmsCEYJF/XUdu2YQsEcOzp1S321+gkfufOnXTr1g2A3NxccnNz9yszduzYxlYjhBBNRtM0NJcLr81GuKqKwlCIv/r9nNapE1M7dMDWQluaYoZBeSxGWSxGb4cDx54J2raGQgQTCbKtVjLN5lbfUqaUYlckwoZgkPXBIBuDQRKxGPdkZaH7/Vi8XoYHg6QqRR9dJ89ux263y4R1R0n75hvYtAnMZozzzoMOHTCuugr9+eehsBD9P/9BnX46aswYkKSt3UrXda5LT+eeykq+KS7GYTJxaffu0rNFCNGkvvP7+X+7dtEvGGRuMIgpM1PeZw6h0Ul8bm4uGRkZDBkyhOOPP77uFo1GeeCBB3jqqaeaIk4hhGhyaRYLv8vO5gOfj3f8fhZu386Kqiou7t6dQS1g/NXCykpKolFKYzFKo1Gq9nQRxzC4MS2NXgDRKAsjEb6NxUDX0Uwm0i0Wsu12sq1WTnC5GLjnuSilWvQHYjCR4D/FxawPBglGo7Xd42MxiEbpahhUVFWRaTaD1crMtDRZZqYxysvR3nsPAHXGGdChQ+32tDSM2bPR3n4bbflytIUL0Xbvxpg2DWRW4Haro9nMvIwM7qms5LPCQpxmMz/rIv1chBBNY1soxCOFhRh+P31DodoEvpU3SDS3Rn8DKigoYMWKFaxcuZIVK1bwv//9j8LCQgA8Hk+jAxRCiOZk0jQmezyc4HTybFUVGysqeCAY5KwuXZjaqVOz1BlMJCiNRinb06peuidRr4jF+Gvnzmh7xnZ/VFhIxd5kNpHArhRZe266z0dC19F0nbxYjJhSlAHlQLmuU65prDeZSHe76ZeRARYLiyMRXvV6ybLZyLHZyLZYyLZaybZY6GC1knqMkmKlFCXRKBtCIQojEaZnZ6PCYayBAOtLSvCHw3RRit6GQR9dp5fdTordLkl7U0kk0F96CeJxyM9HjRxZf7/Fgjr3XOjaFe3tt2HtWvTSUowLL4Ts7OTELJKuu9nMtWlpPFBVxarduzkrIwOHDEESQjRSeTTKg7t3E/H7mRAOc2p6uvSsOwJN0hKfm5vL1KlT67YtWbKEmTNncttttzX28EIIcUx0MJu5ISuLLwMBXgkE6FdcTMJiQW9Ady6lFL5EojZJj0ZRwKg9E7OUhkL8oaAADKP2lkjUtq7H4yjDoKSyksxEAmUYTFQKE5BtNpNts+E2m9Eslv0+3E7ZcwMw4nH88TilsRjl8Thdq6uJVVcDUKUUPqXw6ToFe1rtMZnQTCb6Ohzc0LUrmsVCDfB+VVVtkm+xkLXnZmngVXGlFOWxWO1EdKEQ6wMBaiKR2ucei3FKURHpe8a3zwWyrVY8djuaxdKg+sShaYsWQWEhOBy1LewHOr81DTV8OKpDB/QXXoDycvRHHqkt37//MY9ZtAy9rVbmpafTsaYG8/btqJ490azWZIclhGilAokED+zejdfnY0gwyM9cLvnsP0LN0qwxatQo7r//fv74xz8yffr05qhCCCGa3N7l6IY7nVj8fmKbNqFXVfG608n47Gxy9vmyqpQiphTWPYltQSjEB1VVlEWjlEQiRBIJ2NP1PUvTGO5yoUIh3JEIqaEQmYZBFpClaeToOlkmE9l2OykWC5jN6LrOmAY8B91sxmM247Hba7vb72OyYXBqPE7Fnh4AZbEYZeEwFUB3n49YdTWaycQOXefDWAzM5trubHsS/jSLhQ52Ozd261Z3YWNXOEyGxYLzRxcW/PE4rj0t58FEgj9s3oza0z1eRaNkGwbHGQa9dR2HzYbmcKC53fRqwd3924QdO9A++wwA9ZOfwOF6zHXrVjtO/oUXYPt29OefR40bhzr1VJCuju1SH6sVlZFBoqICA9jVtSv5LWD4kRCidUkoxb9276bY5yMvGGSWw4EuvXuOWKOT+Gg0ivUAV2F79+7NmjVrGnt4IYQ45my6Dh4PKhZjSXEx7+s6n5SVMSInh8CeruDlkQgjnU4u3lPO7/OxrKIClUigJRKkA1mGQTbQQdMwgkEwmzGZzfwlNbW2BfwYJ0GarmO3Wulite43a7tSqvaiQzxOTizG9ESCsmiUcqVqu+gDFZqGZjIRDwTA4QCrldvLyzF0Heee3gIZViu7IhGqIxHuyclBDwax1NQw0OvFkUjQW9PoY7ORYbeDxdKix+i3OZFI7ezzSqGGDEENGnRkj3O5MGbNQvvgA7QlS9A++wytsBDjZz8Dp7N5YxYtkmYyoaWl8UhpKd/7fMzr04dBMoRSCHEUdGCwrlPj93OVxYJNLgYelUYn8S6Xi/79+zN06FCOP/54hg4dSufOnXnwwQc5/fTTmyJGIYRICs1i4YSsLHbV1LDI6+WLSKS2m3EigW4YhCoriWoamlJ0UYq5ul7X9d1ssSQlUW8oTdPAbAazmUy7nXE/2r+3m74vHsfw+6G6Gr9h0N0wqABqNA3/nm76AGmJBEWVlXTUNDSrlblutyTtSaa98w5UVUFaGuqss47uwSYTavJk6NIF7bXXYPPm2mXoLrwQmmnuCNGy6WYzPdxuVvl8LNi4kRv69eO4lJRkhyWEaCVUKMQpFRWM1jRsshb8UWt0Ev/xxx+zatUqVq1axX//+19++9vfEg6HAZg0aRK33HILgwYNYtCgQfTt27fRAQshxLFk13UuSE9nZDTKNp+PzD2JeqbFgr43Udc03MCQZAfbjOq66e+zzQP8ClCGQTQepzwWozIWI0vT6OBwoNlskrS3FGvXoq1YAZqG8dOfgt3eoMOowYNROTnozz0HVVXojz6KOucc1PHHN228olWY5HQSMgw+CAR4cMMGftW3L51kPKsQ4hAW19TQGeiyaxdGIIBV1oJvkEYn8WPGjGHMmB9GbhqGwYYNG1i5ciUrV67k66+/5tFHH6W0tJREItHY6oQQIim6W610z8xMdhgtkqbr2A7STV+0AD4f+uuvA6BGj4YePRp3vI4da8fJv/QSbNqE9sorsHs3auLE2t4col2ZmpJC0DD4wu/nvo0bubHXj2fjEEKIWit9Pv5TVITF62V+NIpH1oJvsAZ92n733XcMHDgQ/QDdRHVdp1+/fvTr148LL7wQgO+//55U6SYhhBBCHFtKob/6KoRC0KlT7YR0TcHhwLjkErRPPkFbtAht6VK04mKMCy4At7tp6hCtgqZpXOh2E1KKb71e7t+8mZOSHZQQosXZGgrxaGEhhs/HuZFIbQLfSoYctkQNeuWGDh1KRUXFEZc/+eSTicViDalKCCGEEA2kff01bN4MZnNtN/qmbCnXNNSpp2JcfDHYbLWz1z/0EOzY0XR1iFZB1zRmeTz0t9kY7fcji84JIfZVGo3yz927ifr9nBYOM17Wgm+0Bn2aK6X44x//iPMIZ6WNRqMNqUYIIYQQDVVaivb++wCoM8+EDh2ap54+fTDmzq0dJ19Whv7EE6hJk1AnnXTgNehFm2TWNK5NTSXu9/MhENu9mx1ZWeQ6nZiltU2IdssXj/Pg7t34fD5OCIWY5vHIWvBNoEFJ/Lhx49iwYcMRlx81ahQOWfdPCCGEODbicfRXXoF4HPLzUSNGNG99WVkYc+eivfoq2po1aG+/XTtO/uyzQb6stRu6pqHtaeAp3LGDe0pK6JSezuzcXDrbbEmOTgiRDP8tKaHE66VXIMAMpxO9gROrivoalMQvWrSoicMQQgghRFPRFi2CwsLasevTph2bFnGrFXXBBbB4MdrChWgrV6KVlGBMnw7p6c1fv2hZUlPJ8nrZXlrKnwMBftqtG6fLJFZCtDs/s9uJB4NcbLNhlWUom4z0bxJCCCHaku3b0T7/HADjnHPA4znMA5qQpqHGjMGYOROcTigqqh0nv2XLsYtBtAidLRZ+m53N6VYrcZ+P/23dyt1bt1IhcyQJ0eYppVBKYQQCeHbtYo6u4zqWn0XtgCTxQgghRFsRiaC//DIohRoyBAYMSE4cPXtiXHUVdO4MoRD6f/5Te2FBqeTEI5LCrGmcl5rKDamppIfDrC8uZv7atRQEg8kOTQjRjD6qquLpXbuIbt2KEQyiySplTU6SeCGEEKKN0N55B6qrIS0N9ZOfJDeYtDSM2bNRJ5wASqEtXIj+wgsQiSQ3LnHMHWe384fsbEaZTKR5vXTYvRsVDic7LCFEEzOU4qOqKv5XUsLiwkIKvF70tDQZRtMMmnCtGSGEEEIkzZo1aCtWgKbVLifXEiYSs1hQ554LXbvWTna3di16aSnGhRdCdnayoxPHkEPXmZGeTigaRS8rIxYIUNOxI7tTUjje7U52eEKIRlofCPBCWRm7/X5UMMjPo1HyZS34ZiNJvBBCCNHaeb3ob7wBgBozBnr0SG48+9I01PDhqA4dalviy8vRH3mk9kJDv37Jjk4cYw6rFZWRgeH18uSmTWx0OBjTsSM/79QJu6wbLUSrUx6N8r+yMlbW1KBCITqFw5wH9MvIkLXgm1GTJPHV1dU8/vjjrFu3DoABAwZw+eWXkyrjH4QQQojmpRT6a69BKASdOqFOOSXZER1Yt24YV11Vm8hv347+3HOoceNQp54K0lLTrmiahu7xMCIYZJvfz+c7d7Le6+Wy3FyOk9mrhWhVArEYq8rKcIRCnB2PM8btxiRLize7Rn9qLlu2jPz8fO69914qKyuprKzknnvuIT8/n+XLlzdFjEIIIYQ4CG3pUti8GcxmjPPOA3ML7mTncmHMmoUaNQoA7bPP0J95BmSis3ZH0zRGpaTwh8xMeicSlFVUcNf69bxUVETMMJIdnhDiIAyl+NbnwzAMjKoqOm/fzgy/n/lmM+OysyWBP0Ya/Ul/4403cs455/Doo49i3vPFIR6Pc8UVV3DDDTfw2WefNTpIIYQQQhxAaSnaBx8AoM48E3JykhzQETCZUJMnQ5cuaK+9Bps3oz/0UO04+U6dkh2dOMayzGZuzMriI7+f1wMB3t++naJAgP/r1SvZoQkhfmRTMMgLpaXsCAS4BBjh84GmcaJ0nT/mGp3EL1u2rF4CD2A2m7n55psZPnx4Yw8vhBBCiAOJx2uXk4vHoVcv1IgRyY7oqKjBg1E5OejPPQdVVeiPPoo699zapfFEu6JpGqe73fSz2/lPdTWnVFQQdzgwdewoiYEQLUBFLMZLZWV8u2fce04oRCqgpaaiWSzJDq9danQS7/F42LFjB3379q23fefOnbhltlEhhBCiWWiffAJFReBwYEydCq1xCZ+OHWvHyb/0EmzahPbyy7BrF2rSJJDkrd3pYrHwm6wsVDhMfNs2DK+Xd91uRuXkkGO1Jjs8IdqdiGHwbkUFH1RWEg+FsIdCTInHGe9yYXY6kx1eu9boMfE///nPmT17Ni+88AI7d+5k586dPP/881xxxRVceOGFTRGjEEIIIfa1bRvaF18AYJxzDng8SQ6oERwOjIsvRk2YANSO8deffBL8/qSGJZJD0zR0hwM9PZ1lFRW8uX07t61bx6eVlSilkh2eEO1KUSTCO8XFJKqrGe3zMd9s5tTsbEngW4BGt8TfddddaJrGjBkziMfjAFgsFq6++mruuOOORgcohBBCiH2Ew+ivvAJKoYYOhQEDkh1R4+k66tRTUZ071w4R2L4dfcGC2h4GvXq1zl4GolE0k4nBWVmMranh85oanolEWJWdzcxu3UhtyZM3ijarKBLho4oKtppMTEl2MM1oRzhMN5sNFQzSpbiYaV4vfXWdLpmZMrylBWn0u6DVauX+++/nb3/7G1u2bAEgPz8fp1yhEUIIIZqc9vbbUF0NaWmoKW3sq2Tfvhhz59aOky8rQ3/6acjNxTjlFMjLk2S+nbFpGhelpTEkHOY/NTV8V1TEn/x+Ls3NZVhr7n0iWpWKWIy3Kir4srqaeDBIuq6TKCvDlJ5OjdlMTTxOrt2O1srfn6piMV4uK+PrmhpmWCycWFODikQ4zeNBk+EsLU6TXcp0Op0MGjSoqQ4nhBBCiB9bswZt1SrQtNrl5Gy2ZEfU9LKyMObORfvoI7RvvqltlX/ySejevTaZ79lTkvl2ZoDdzh8tFp6rqWF5VRUPRSL8rndv8lJTkx2aaMNq4nHeqajgs+pqEuEw5mCQkdEoWjxOYssWYnY7n1utvKUUmQ4HJ6SnM8ztJq+VJfRRw+D9ykreq6ggFg5jDQaJxePgcmHKzEx2eOIgGpTE/+IXvzjisvfcc09DqhBCCCHEvrxe9DfeAECNHQu5uUkOqBlZrajJk1GjR6N98QXasmWwYwf6U09JMt9OuUwm5mRk8E0wyFa/ny7bt5Po2hU9Pb1VJUyidaiIxbhl61Zi4TBaKMSYWIzJNhvOzEw+rK6GjAy0RAJnIEBWLEap388H1dUstNlIt9s5IT2dk1NT6Wa3J/upHJRSiq99Pl4pK6MqGIRgkFHRKGfbbHjS0tD0Rk+dJppRg5L4FStW1Lu/fPly4vE4ffr0AWDjxo2YTCaGDRvW+AiFEEKI9k4p9FdfhVAIOneumwSuzfN4UFOmoMaMQVu8uLZlXpL5du1Ep5PhDgfK6yW+cSNrMjPZkJLCeR07YpWkQzRCxDCwahooRZrPR2+fD3coxGSrlaw948FjiQRQOwGjZrMx3mZjnFIURiIsDwRY4fVS5PfzYXU16dnZdOnYEc3pJGQY2HUdvQW9V+2ORHh8505UKESvcJifmUx0k3HvrUaDkvhPPvmk7vd77rkHt9vNU089RXp6OgBVVVVcdtlljB07tmmiFEIIIdoxbelS2LIFzObabvTtbWIvj+eHlnlJ5ts9TdPQUlNJhMO8UFREhdXKOq+Xy3Nz6eFwJDs80crEDINPq6t5p7KSmSkp9K+pIVFVxVxNw3QESa2maXSx2+lit3M2UBgOszIYZHBREbHKSnSnk+dNJtYoxdD0dIa73RzndCYloffG47hNJojH6VhRwRk+H93icYZ6POhtcXhWG9bobwF33303H3zwQV0CD5Cens7tt9/OmWeeyS9/+cvGViGEEEK0XyUlaB98AICaOBGys5McUBJJMi/2YbLbmWcy8WR1NdvLy/lbMMhPunZlSnY2JjkHxGEklOLLmhreqqigKhRCBYOsKSmhr8mE7vGgNfBiaWe7nc57utGrWAwjGKQiFKJG11lUU8OnNhtuu52he8bQ93E6m/18jRkGC6uqeLeigovsdoZVV6N8Ps5xOtHS0mRISivU6CTe6/VSVla23/aysjJ8Pl9jDy+EEEK0X/F47XJy8Tj06oU66aRkR9Qy7E3mx4ypHTMvyXy71dFi4easLN71+XjH7+eNggJW19QwOzeXDjKjtjgApRTf+Hy8UV5OaTCICoXIj0Q4R9fplZqKZrE0WV2axYJmsXCDx0PZ3i73Ph/bAwE+ranhM5uNazt3Zkh2drOMQVdKsdzv56XSUir2jHvfGYtxgs2GlpEh495bsUYn8dOmTeOyyy7j7rvv5qQ9Xy6WLl3Kr371K3760582OkAhhBCivdI+/hiKisDhwJg2TZLSH3O7D57Md+tWm8zn58vr1sbpmsZZHg8D7Haeqq5ma2kpr8TjXHXccTK+V+xncyjEY3vGgneLRDgb6H8MupNn22xMtNmYCJRHIqwIBvne76d3QQGxsjL09HQeCodxOBwM93jo73RiaUSSvTMc5oXSUjb6/ahgkLxIhJ/pOj3S0xvcy0C0HI3+Cz700EPcdNNNXHTRRcRisdqDms3Mnj2bO++8s9EBCiGEEO3Stm1oixcDYJx7LrjdSQ6oBTtQMr9zJ/p//iPJfDvSw2rld9nZvF1Tw/jKSuKbN2Pq1g3N4ZDuwu3ctlCIXLsdFQ7To6yMk71e+iYSDHW70ZMwg3yWzcYZNhtnACoeR4VC1BQU8J1SGGYzX9ls2G02BqelMdzjYUBKylFN3FgejXJ7QQFGOEx6KMS5iQTDPZ6kPFfRPBqdxDudTv71r39x5513smXLFgDy8/NJSUlpdHBCCCFEuxQOo7/8MiiFGjoU+vdPdkStgyTz7Z5F05ialoaKx0lUVBDy+7nfbmdUp06cnJqKU1rm25WtoRCvl5ezzufjWpuNvtXVqHCYi1wutBaS0GpmM5rbjcft5i/RKCsCAVYEAmwOBFjq9fK1zYbNZuPPvXqRfojeAnHDqB1brxTpXi8jAwHSQiHOcDqxpqTIhaw2psn6UqSkpDB48OCmOpwQQgjRbmlvvw01NZCejpoyJdnhtD6SzLd7mtmMnpHB8poatldUsCMY5FW7nRMzM5mQnk6u3S5JTRu2Kxzm9YoKVnm9qFAITzhMyDDA5ULPzGyxf/s0q5VTrFZOAbzRKCuDQZYHAviDQVI2bCCWno7udvNMMEh/l4tBKSnYdJ3vAgFeLC3lHIeDoV4vicpKLjKZ0LKyZNx7G9VkSfzatWvZsWMH0Wi03vZzzjmnqaoQQggh2jxt9Wq0VatA02qXk5Nlfxpu32R+8WK0r7+un8xPmAC9ekky30ZpmsbotDSywmEW+Xx8Fwrxhd/P4pISurvdTMzJ4SSPJ9lhiiZUFo3yenk539TUYITDOMNhzojHGe90YmtlrdEeq5VxVivjgHg8jgqHMXbuZDPwOfCFzYbFZiPH6aQwHEYFg3wdiTBY1xs1u75oHRr91926dSvTpk1j9erVaJqGUgqg7p8kkUg0tgohhBCiffB60d56CwA1bhx0757kgNoItxs1adIPLfN7k/mnn5Zkvh3oY7fTx26nOhbjS7+fL3w+tgeDFITDDO/WDc3tRmlaUtbtFk2rNBzm69JSLKEQp8bjnOZw4ExPb1XJ+4GYzWZwucDlonM8zqWBAMuDQdYHAuzyekkDzk4kGCnj3tuNRifx119/PXl5eXz00Ufk5eXx9ddfU1FRwS9/+UvuuuuupohRCCGEaPuUQn/1VQiFoHNn1IQJyY6o7XG5JJlvx9IsFqakpzPRMFgbCtHB6yW2bh2a2807NhvrdZ0JmZkMc7sbNSu4OHZ88Tjf+nyM93gwKivpVVTEeT4fw+123GlpbbIrudNs5uTUVE4GgvE4u4JBuplM2J3OVn+xQhy5RifxS5Ys4eOPPyYrKwtd19F1nTFjxvC3v/2N6667jhUrVjRFnEIIIUSbpn31FWzZAmYzxs9+BjIBV/M5VDLftWvtmHlJ5tssk64zKCUFUlJqZwYPBllVUcFOk4ktlZW84HQyKiuL8WlpstZ8CxVMJFhYVcWHlZVEwmEylOK4QADNYuGUdjQO3Gk2c5wMCWmXGp3EJxIJ3HuWvcnKyqKwsJA+ffqQm5vLhg0bGh2gEEII0eaVlKAtXAiAmjgRsrKSHFA7caBkftcuSebbEc1sRvN4uNnl4rtAgE9DITaGQiz0evnQbqdvWhoXd+4syXwLETEMPqmq4r3KSoKhEIRCDIvFyLRY0NPS0OTip2gnGp3EDxw4kFWrVpGXl8eIESP4xz/+gdVq5ZFHHqFnz55NEaMQQgjRdsXjtcvJxePQuzfqpJOSHVH7I8l8u2fWdU5wuznB7aY4GuULn48lXi8bg0FsgJGZieZyETYMHJIoJsVyn49nS0rwhkKoUIjB0Sg/MZnokp4uk7iJdqfRZ/wf/vAHAoEAALfddhs/+clPGDt2LJmZmTz//PONDlAIIYRoy7SPPoLiYnA6MaZNk0QxmQ6VzHfpUpvM9+4tf6M2rqPVys8yMznHMNgeCGAvLCRWUkLU4+H38Ti9PB4mZGYyMCVFJsM7RpRSmIJBaior6RONcraukyfJu2jHGn3mT5w4se73Xr16sX79eiorK0lvAzNBCiGEEM2qoADtyy8BMM49t3b2YZF8B0rmd+9Gf+YZ6NkTY/Jk6NAh2VGKZmbVdXrvGTKqYjF2VFeTiMX4zudjdUUFGU4n47KyGJOWRqokk03KUIpvfT42hUJMT0khUVJCn/JybkokyEtLQ7NYkh2iEEnVoHecX/ziF0dc9p577mlIFUIIIUTbFgqhv/IKKIU64QTo1y/ZEYkfO1Ayv3Ur+oIFqBEjUKecArKcU7ugWSwcl5HBHYkEX/v9fO73sysY5DWvlzftdkZnZXFp587JDrPVixgGX9bU8EFlJRWhECocZmgiQV4ige5201PmJhACaGASf6QzzktLvBBCCHFgpnffhZoaSE9HTZ6c7HDEoexN5keMQH/3XVi/Hm3JErTvvkOdcQZq6FDpYt9O2E0mxqWmMtbjYVs4zOeBAN+Ew1gjEeJKoaelEbTZAHBJ6/wR88XjfFxdzaKqKgLhMCocpms0yulK0dPlQnc4kh2iEC1Kg95dPvnkk6aOQwghhGg30jZvRv/uO9D12uXk9nzpFy1cejrGRRfBpk21yXx5Odprr6EtW4Zx1lnQpUuyIxTHiKZp5Dkc5DkcnJdIkAgGiW/bhma18oHNxoeaxrCMDManp5PvcEjD1mE8tHs3m2pqUKEQ/WIxTtM0+rpc6NLTRYgDkkuEQgghxLFUU0PXTz8Fux01fjx065bsiMTR6t0bIy8P7auv0BYtqp387pFHUCecgDrtNJnboJ1JMZnA7Qa3GxWJEPL5MBIJlvj9fFVaSheXi/FZWYz0eGRm+z22hEJYNY2uJhNGVRUTqqpI9fk43WKhq0xYJ8RhNfo/5Lbbbjvk/ltuuaWxVQghhBBtg9eL+YUXMEUiqPx8GD8+2RGJhjKbUWPGoAYPRlu4EG3VKrRvv0VbuxZ1yim1SwXqerKjFMeYZrNxgc3GpFiMJX4/X/h87AoEeLa6mpcdDq7q3p2BHk+yw0wKpRSr/H4+qKpis99PP6W4NhbDCAQYbLUyJDNT1nkX4gg1Ool/9dVX692PxWIUFBRgNpvJz8+XJF4IIYQA2LED/fnnMXw+EjYb8WnTsMgX1tbP40Gddx5q+HD0d96BoiK0d95B+/bb2i72PXokO0KRBB6LhYnp6ZxhGKwPhfgsGGRdOEwXpYhnZWFKT2dFLEYnq5WOVmub7m4fMwy+8npZWFVFcTCICodJjUTonUhgOBzoGRlocsFLiKPS6CT+QJPceb1eZs2axbRp0xp7eCGEEKLV0775Bu2ddyCRQOXksPGkk+iUlZXssERTys3FmDsXbdkytI8+gpIS9H//GzVoEOrMMyE1NdkRiiTQdZ3+KSn0T0khFI9jCwZJbN1KyGbjMSBusZDtcDA4NZUhLhe9nU5MbSihL49GuWPHDrzhMCoUomM0ymmGwYkuFxaZK0CIBmuWAScej4dbb72Vs88+m0svvbQ5qhDi8AwDgkEIh0GpH2577bvtcPv23bb39711HOE+bZ/jq9RU6NwZZMyXEG1bPF7bKrtsWe39/v2Jn3su0e3bkxuXaB66jjrpJNSAAWgff1yb0K9ejbZhA2r8eNSoUfK+3445zObanhtKEQ2HGRUIsDoYpMTn48PKSj6y27FbrQxMTeWSjh1xttKeOjXxOKlmM8owSPP5cFZXkxMOcxow0O2WyeqEaALN9klSU1NDTU1Ncx1etFd7E3OfD/x+tEAA/P7aWyCAtvd3v7+23L6JeQuiAVgs0L07Ki8PlZdXm9S30g9sIcQB+Hzozz8PO3eCpqFOPx01ZswPF/hE25WSgjr7bNSwYbVd7HfsqB03v3w5xuTJcNxxyY5QJJGmaXgcDqY7HFxgGBRGIqwOhfjO62W7prHe68Ucj2N4PGguF58HAvR2OFp8t/vt4TAfVFbyrdfLr9xuulVXY3i9/BJwpKWhWSzJDlGINqPRSfwDDzxQ775SiqKiIp5++mkmy7q34kgcKDH3+SAQ+CEx33v/aBNzTatdumnvh56m/XA72P0fb2/ovn3v71sGoLS09rls2YK2ZUttUm+17p/UyxgxIVqnnTtrE3ifD+z22mXkJHFrfzp3xpg9u3bSuw8+gIoK9GeegT59apP5jIxkRyiSTNd1ujocdHU4mAx4o1FKwmGMwkKihYWUW608bRhoVmu9bve9HA7MLeA7glKKNYEAH1RVsd7nQ0UiWMJhdpSX09VqRU9NbbU9CoRoyRqdxN9777317uu6TnZ2NjNnzuS3v/1tYw8vWivDqE2697SKN3linpJSu4RPSgrK5ar7HZfrh/suFzidLTMRVgpKS9EKCtC2bYOCAgiFYPNmtM2ba5N6m61+Ut+pU8t8LkKIerRvv0V7+22IxyE7u3Zd8czMZIclkkXTUMcfj+rXD+2TT9C++go2bEDfsgU1ejRq7Njai7hCAB6rFc+e80EZBlooxLholNWh0H7d7gelpjK7c2f0JLXOf+/383J5ObsDAVQkgiscZkIiwVi7HVdamkxWJ0QzanQSX1BQ0BRxiNYsGoWtW9E2bkTbubNhXdkPl5i73T/sb6mJ+dHQNOjQAdWhA2rkyNrXqqSkNqkvKIDt22uT+k2b0DZt+iGp79GjNqnv0QM6dmz9r4MQbUk8jvbuu2jffFN7v39/jGnTav93hbDZUJMmoU44Af3dd2t7Yn36KdrKlagzz0QNHFi/x5Zo9zRdJyclhekpKVxgGBRFIny3T7f7Mp+PRCIBbjdxp5NFgQCDUlKOSbd7pRRBv59d5eVkRyKcahiMTEnB6nS26C7/QrQVMruKaJiqKrQNG9A2boRt22pbnH5s38Tc5ULt83tdi3lbSswbQ9OgY0dUx461Ex8ZRv2kfts2iERgw4ba1x3A4YDc3B9a6jt0kC+AQiSL34/+wgu1F+A0DXXqqahx4+R/UuwvJwdjxgxYtw79vfeguhrtxRfRli3DmDKl9r1ciB/RdZ0uDgdd9ul2XxMOk9i9mwSwzmLhRaV4qZm63VfHYnxUXU1lNMpsp5NEWRmDqqq4MhZjsMuF7nA0ug4hxJFrdBL/t7/9jQ4dOnD55ZfX2/7vf/+bsrIyfv3rXze2CtESJBK1E/Ns3FibuJeV1d+floY67jhUr16Qnl6bnLf3xLwxdB06dUJ16oQ6+eTapL6o6IekfseO2pb69evR1q//Ianf00qv8vIgJ0cSCCGOhV27ase/e71gs9WOf+/TJ9lRiZZM02p7avTujfb552hffAEFBegLFqBGjEBNmFD7ni7EQfy4231aKMS4UOiA3e5HZGRwcceODaqnMBLhg8pKltbUkIhEIBTiJ4ZBhq5jSknheBkKIkRSNDqJf/jhh3n22Wf32z5gwACmT58uSXxr5vejbdoEGzeibdlSu1TbXrpeO177uONQxx0H2dmSMDYnXYcuXVBduvwwu3Vh4f5J/dq1aGvX1ib1TucP3e/z8uRvJEQz0JYvR3vrrdreSFlZtePfZf13caQsltpeG0OHor//fu17+JIlaN99hzrjDNTQofK+LQ5L03W6HqLbfTAQIBaNYnK7qbbb+SYUYvAhut0rpdgYCvFBZSWrfT6IRNBDIUbF45xmsZCZmoomSyUKkVSN/g8sLi6mU6dO+23Pzs6mqKiosYcXx5JStYnh3tb2wsL649qdTlTv3rC3xV1aCZJH16FrV1TXrrWTIiUS+yf1wWD9pD4lpTaZ35vUZ2bKl0MhGiqRQHvvPbSlS2vv9+2Lcd55Mv5dNEx6Osb06bBlC/rbb0N5Odprr6F98w3GWWdB167JjlC0Egfqdh+JROq63S8zmXhJ03jZaiXL4WDIQbrdP7t7N4U+H45wmLGJBBPsdlJlsjohWoxGJ/HdunVj8eLF5OXl1du+ePFiOnfu3NjDi+YWidROrrM3cff76+/v1OmH1vYuXaR7fEtlMkG3bqhu3WrH4cbj+yf1gQDa99/D99/XJvVud+0EeXuT+owMSeqFOBL7jn8H1Cmn1HZ/lv8f0Vj5+RjXXIP21VdoixbB7t3ojz6KGjoUdfrptXPICHEUPFZr3eoHyjDI26fbfemPut1f2707vYFEeTlTqqqoikQ42enEnpIik9UJ0cI0OomfM2cON9xwA7FYjFNPPRWAjz76iJtvvplf/vKXjQ5QNIOKih+S9m3baltx97JaIT+/NnHv3Rs8nqSFKRrBbK4d7tC9O2r8+NqkfteuH5a027kTfD601ath9erapD4rCzVgAGrAgP/f3n1Hx1Xf+f9/3jt9Rr1YkmVLluXeuw3YmBIwxZgQWlggIT8SUlggtGT3SzqpLEs22SQQWFJ3EwhJSEjoBlNtbINt3HG3bMtVclGddj+/P64lWdi4SfZopNfjnDnS3Lma+x75ajyv+2maJE/ko2zb5o5/37/fHf9+5ZUwZEiqq5LuxOvFTJ2KGT0a66WX3DXmFy3CWrnS7Xo/aZIuqMtJsWybfpEI/Q7pdr/sYLf7TZbFq/X19LMsTDzO2HAYsrIU3kW6qA6H+HvvvZeamhq+9KUvEYvFAAgGg3z1q1/VOvFdRSIBmze3BfeamvaP5+e3tbaXl7sBULoXr9cdH9+vHwYgHm8L9Rs3wrZtbvfN11/Hev11N9CPGOEGek2QJwKAtWQJ1jPPuO+p+fk4113n/n2InAqZmZgrr8RMnOh2sd++Heu557Dee8+dxf5DPSBFTsSh3e4vwu12fyAaxfL7sdWAI9LldTitWZbFj370I77+9a+zatUqQqEQAwcOJKBxgalVV+euL75mDaxb567l3sK23UDXEtw1CVPP4/O1dqM3ANGou3Td8uXu+bJnD9Zrr7ndORXopadzHKwXX8SaN8+9P2iQ2wKveUHkdCgrw/n857Heew9r9mzYuRP7179235dnzIDs7FRXKN3AobPdi0jX12lNrhkZGUycOLGznk5OlDGwbVv7SekOlZGBGTjQDe0DBmjyJWkvEMCMGoUZNcoN9KtXY61YcXigLyxs3+VepLtraMB+6inYsAEAM3065rzzdDFLTi/bxkyciBk+HOuVV7DefRdr+XKsDz5wz8mpU9XFXkSkBzmpEH/XXXdx//33E4lEuOuuu46670MPPXRShclxaGoie906PMuXY69fDw0N7R8vLW1rbe/dWx865fgEApjRozGjRx8e6HfvVqCXnmP7duw//hH27QO/H+cTn4Bhw1JdlfRk4TDmssswEya4XeyrqrBmz8Zatw7n6qshMzPVFYqIyGlwUiF+8eLFxOPx1u8/iibDOIVefBHv//0f/XbuxM7OdgN6INA2Kd2gQZrFVjru0EDf3NzW5X79+sMD/aFd7kXSnLVsGdbTT7vj3/Py3PHvulglXUVJCc7NN7uT3j37LGzahP3wwzhXXQX9+6e6OhEROcVOKsTPmTOn9fvf/va39OnTB/tD3biMMWzZsqVj1clHKywExyGak4MzZYo7O3JZmSalk1MnGGwf6D/cQj9nDtacOdCrV1sLvQK9pBvHcWcEnzvXvT9ggNvCqfHv0tVYFmbMGEyfPu6Shzt3Yv/2t5jzz8dMm6bedyIi3ViHE19FRQXbt2+n14c+rNfW1lJRUUHy0OXLpPOMGEHiq19l9YYN9B04ENvjSXVF0pMEg+6HxzFjoKmpfQv9rl1Yu3a1D/QjRrgXnkS6ssZGd/z7+vUAmGnTMOefr7HG0rUVFOB87nNYzz6LtXix271+82Z38sVwONXViYjIKdDhEG+MOeL2+vp6gsFgR59ePorfD/n5rZMtiaRMKNQ+0Le00H840BcVtQV6rYggXc2OHe749717wefDueIKGDEi1VWJHB+/H3PFFVBejvXPf8LatW73+muvhT59Ul2diIh0spMO8S0T2lmWxTe+8Q3Ch1ztTSaTzJ8/nzFjxnS4QBFJI6EQZuxYzNixbqBftaot0O/cibVzJ9arr7qBvmUMvQK9pJi1bBnW3/4G8Tjk5rrj34uLU12WyAkz48Zhevd2u9fX1GA//jhmxgzM5MnqXi8i0o2cdIhvmdDOGMOyZcvwH7K2pN/vZ/To0dxzzz0dr1BE0lMo5H6gHDfuowP9K69AcXHbGHoFejmdHMftevzWW+79ykp3/Lu6IEs6Ky7G+fznsf/2N1i5Euu556CqCnP55VpeVkSkmzjpEN8yud1nPvMZfvrTn5KpZU1E5KMcGugbG90u98uXu8NBduzA2rGjLdCPGOFO1ChyKjU2Yv/5z+7EjIA56yzMBRdo/Lt0D8EgzrXXYr3zDtaLL7pryu/Y4Xav1yoLIiJpr0Nj4uPxOFVVVezYsUMhXkSOTzh8zEDve/llBnm9eKZMgYEDtfKCdK6dO7H/8Ad3/LvXi7niCszIkamuSqRzWRbmjDPc2ev/9CfYswf7l7/EzJrlzmEiIiJpq0Ofin0+H0uXLu2sWkSkp/moQL9+PaGaGuy33sJ++203wPfrh+nfHzNggNuSpPGdcjJWrMB++mmIxSAnxx3/XlKS6qpETp2+fXG+8AXsv/wF1q3D+utfYfNmzCWXgM+X6upEROQkdLhp64YbbuDxxx/nhz/8YWfUIyI91SGBPn7gAFVz5lASj2Nv2AD19e6Hz3XrsF56CSIRTGUl9O/vfs3OTnX10tU5DtacOVivv+7e79/fHf8eiaS2LpHTIRLBueEGrNdfx3rtNaz33sOqrna71+flpbo6ERE5QR0O8YlEgl/96lfMnj2b8ePHE/nQB6KHHnqoo4cQkZ4mEmHv4MEkBw7Etm13qbr167HWr4dNm6ChAWvpUli6FAugoABTWem20vfrp8mbpL2mJnf8+9q1AJgzz8RceKHGv0vPYtuYc8/FlJW5fw/bt7vL0F1xBQwblurqRETkBHQ4xC9fvpxx48YBsGbNmnaPWeruKiIdZVnuknRFRZgzz4REArZswdqwAWvdOqiuhj17sPbswZo/3w1mffq4ob6y0l0jWWGt50kk3FUQqqux5s6Fmhp3/Pvll2NGj051dSKpU1mJ88UvuuPkq6qwn3jCvbB1wQXg8aS6OhEROQ4dDvEts9SLiJwWXi9UVGAqKjDnnw9NTbBxY1tLfW0tVFVhVVVhzZnjtspXVLSNp8/P13j67iaZdHtrVFdDdTXWtm2wc6e7vUV2tjv+vXfv1NUp0lVkZeF85jPuEotvv401dy7W1q3uEBMNTxIR6fI6bbrnlStXUlVVRSwWa91mWRaXXXZZZx1CRORwoRAMG4YZNgwDsHevG+bXr8fasMEN+atXu5PmAWRnuy30lZWYigrIyEht/XJiHAd273aDenW1G9x37HBb3j8sFILSUkyfPphJk/RvLXIojwczY4bbvf7pp91W+YcfdoN8ZWWqqxMRkaPocIjfsGEDV1xxBcuWLcOyLIwxQFtX+uShLSEiIqdabi5mwgSYMAHjOLB9u9v1fv16qKqC/fuxFi2CRYvcUF9S0tZKX1am2Zq7Esdxh0q0tLAf/HrEwB4MQu/emIM3SkshJ0e9LkSOZehQnKIi7CefdMfJ/+53mHPOwUyfrqFIIiJdVIdD/B133EFFRQWvvPIKFRUVLFiwgJqaGu6++24efPDBzqhRROTk2LbbEltaipk2zV1WbPNmt+v9wXXp2b4da/t2rJal7MrK2sbTl5QoBJ4uxkBtrRvUt21zW9q3b3f/zT7M728N7JSWul/z8vRvJXKy8vJwPvtZrOefx3r3XXclh6oqnCuvVA8WEZEuqMMhft68ebz66qsUFBRg2za2bTN16lR+8IMfcPvtt7N48eLOqFNEpOP8fhg4EDNwoNv1vr7eDfMt4+kPHIANG9yW+5dfhlCoret9//6Qm5vqV9A9GAP79rlh/dAW9ubmw/f1+dzeEqWlbcG9oECBXaSz+XyYWbOgrAzrH/+A9euxH3kE55pr3F5KIiLSZXQ4xCeTSTIzMwEoKCigurqawYMHU15ezgcffNDhAkVETpmMDMyoUTBqlDsUaM+etgnyNm6Epias5cth+XK3630k4s7ebFntby1dTg+93/I9tL9/tJ/98H6Aadn24WO0bPN43KD7oZvx+9vut3x/6Daf7/R0lTUG9u9v7Q7fMpadpqbD9/V63cDeu3dbYC8sVJdekdPIjBmDKSlxu9fv2YP9q19hLrwQc8YZungmIunr4JDv7qLDIX7EiBG8//77VFRUMHnyZB544AH8fj+PPvoo/fv374waRUROPcuCwkJMYSFmyhR3ZvOtW9u63m/dCg0Np7+sU/lzXu/hFwAOCfrmKI/h9x/+uM/nXlQ4OI69NbAf6ffm8bhLB5aWtnWJLyzUElciXUFREc7nP4/1zDNYy5ZhvfCC273+4x93558QEUkXe/Zgv/MOrF8PDzyQ6mo6TYdD/Ne+9jUaDn5A+853vsPMmTOZNm0a+fn5PPnkkx0uUEQkJTweKC/HlJdjzjvP7eq9b597Jddx3K9Hux26Dxy2zTrS/i37ncgxkkmIx91bLIbV8v3B+xx6v+XWUlMi4d6O1CrOsS8EHPcFBtt2A/uhLexFRe5FBBHpmgIBzFVXud3rX3gBVq7E3rED59pr3flCRES6KseB1auxFyyADRvczz3xOKxZA+PGpbq6TtHhT1AzZsxo/X7AgAGsXr2a2tpacnNzW2eoFxFJe8EgFBd32tOdqk5dx3xeY9zgfpSwb31U+D/0QsGH92m5n0i4KwS0BPbSUjewa9Z/kfRjWZjJkzGlpdh/+hPU1mI/9hhm5kzM2LHqXi8iXcuBA1jvvYf13nvuPEfgvo8NHIgzfDjeQYNSW18n6tRmkJbl5fLy8jrzaUVEpLNYVlvX949wrAsB3WtUmYgcU58+OF/4AvZf/wpr1mD97W+waRNm5kx3mI2ISKoYAxs3uq3uq1e39WyMRDDjx7u3zExMfX23uvDYKSH+8ccf58c//jFr164FYODAgXz5y1/ms5/9bGc8vYiIiIikUjiMc/31WG+9hTV7NtaSJVjV1Tif/KS7YoSIyOnU1OS+Dy1cCHv2tG0vL8dMmoQZOrRt2F4ikZoaT6EOh/hvfOMbPPTQQ9x2222cccYZgLvs3J133klVVRXf+c53OlykiIiIiKSYZWGmTcP06YP91FOwaxf2I49gLr8cM3JkqqsTkZ6guhprwQKspUvbwrnf766sMXGiO4SvB+hwiH/44Yd57LHHuO6661q3zZo1i1GjRnHbbbcpxIuIiIh0JxUVOF/8ohvkN23CeuopqKrCzJjRrbqrikgXEY9jLV/utrpv3dq2vagIM3EiZvRoCARSV18KdDjEx+NxJkyYcNj28ePHk+iGXRdEREREerzMTJybbsJ69VWsN97Amj8fa+tWuOqqVFcmIt1FTQ3WwoVYixe3raTj8WCGD3db3cvKeuyFww6H+BtvvJGHH36Yhx56qN32Rx99lOuvv76jTy8iIiIiXZFtYz72MUzfvu6kd9u24fvlL8kaOxYGDEh1dSKSjhwH1qxxJ6pbt65te04OZsIEzLhxkJGRuvq6iE6b2O6ll15iypQpAMyfP5+qqio+9alPcdddd7Xu9+GgLyIiIiJpbvBgd/b6P/0Jtm6l4vnn8W7eDOecA4MH99iWMhE5AfX17vJw774L+/e72ywLBgzAmTQJBg4E205tjV1Ih0P88uXLGTduHADr168HoKCggIKCApYvX966n9aMFxEREemmcnNxbr4ZZ/ZsnJdewtq2DfsPf3DHrJ59Nmb4cH0AF5H2jHHn1Vi4EGvlyrbl4UIhd2m4iRMhNze1NXZRHQ7xc+bM6Yw6RERERCSdeb0kL7iAVb16UbprF/a778LOnVhPPYU1Zw5m6lR3AiqPJ9WVikgqNTe3LQ+3e3fb9r593eXhhg0Dny919aWBTulOLyIiIiICkAiHSV5wAfb06VjvvIP1zjuwZw/W3/7WFubHjdOHdJGeZscOt9X9/fchFnO3+f2YUaPcVveSktTWl0YU4kVERESk84VCmHPPxZx5pvvBfe5c2L8f69lnsV5/HXPmmZhJk8DvT3WlInKqJBJYK1a4re5VVW3bCwvd5eHGjIFgMGXlpSuFeBERERE5dQIBt/V98mSsRYuw3nrLDfMvvYT15puYKVMwU6ZAKJTqSkWks+zd6168W7QIGhvdbbaNGTbMbXXv10+TXnaAQryIiIiInHo+H2byZMz48VhLl2K9+aa7DvScOVhz57pjYc84Q8tHiaSrWAzrgw+wlixxl4czxt2ene0uDzd+vP6+O4lCvIiIiIicPl4vZtw4zJgxbjfbN95wJ8B7802sefPcD/tnnQXZ2amuVESOpanJDe4rV7rBPZFoe6xlebhBg7Q6RSc7qRB/6Nrvx6K14UVERETkMLaNGTkSM2IEfPAB9uuvw7Zt7mR4Cxdixo7FTJ0KeXmprlREDlVfj7VqlRvcN25sWxoOID/f7TI/bhzk56euxm7upEL84sWLj2s/rQ0vIiIiIkdlWTBkCM7gwbBhgxvmN23CevddrPfec2eunjoViopSXalIz7V3L9bq1W5wr6pq6yoPUFTkBvdhw6BXL411Pw1OKsRrbXgRERER6VSWBZWVOJWVUFXlhvm1a7Hef99dkmrYMJxp06C0NNWVivQMe/ZgrVzpBvfq6vaPlZa2BXe1uJ92GhMvIiIiIl1LWRnOjTfCtm3Yb74JK1fCypXYK1e642ynT4fy8lRXKdK9GOPOT9ES3HftanvMsqCsDDN8OGboUM1ZkWKdFuJXrlxJVVUVsVis3fZZs2Z11iFEREREpCcpLcX55Cdh1y534rulS2HdOux166C83A3zlZXqvitysoyBrVvd4L5qFdTWtj1m29C/v9viPmSIZpbvQjoc4jds2MAVV1zBsmXLsCwLc3B8RMt4+GQy2dFDiIiIiEhP1qsX5sorMeeei/XWW1iLF8Pmzdi/+50b9KdPh8GDFeZFjofjwObNbcH9wIG2x7xeGDgQM3QoZvBgCIVSV6d8pA6H+DvuuIOKigpeeeUVKioqWLBgATU1Ndx99908+OCDnVGjiIiIiAjk5WFmzcJMn441dy7WwoVul/s//MEN+tOnY4YP13JWIh+WSMCGDW5wX70aGhvbHvP7MYMHu+PbBw4Evz91dcpx6XCInzdvHq+++ioFBQXYto1t20ydOpUf/OAH3H777cc9k72IiIiIyHHJzsZcfDFm2jSsefOwFixwu9w/9RTWq69ipk3DjBrltiqK9FSxGKxb5y4Ht3o1RKNtj4VCmCFD3ODevz/4fKmrU05Yh9/ZkskkmZmZABQUFFBdXc3gwYMpLy/ngw8+6HCBIiIiIiJHlJGBueACzNSpWPPnY82bBzU1WH/7G9acOZizzsKMH6+AIj1HczPWBx+43eTXrHFb4FtkZrrd5IcNcyeG9HhSV6d0SIdD/IgRI3j//fepqKhg8uTJPPDAA/j9fh599FH69+/fGTWKiIiIiHy0UAhzzjmYM8/EWrgQ6+23Yf9+rOeew3rjDejbF2Pbbsu8bbvh5Uj3PZ7Dbwe3H/PnP7T/Yfc1Xl9Olfp6rDVrsFasgA0b4NA5yXJy2paC69tX52E30eEQ/7WvfY2GhgYAvvOd7zBz5kymTZtGfn4+Tz75ZIcLFBERERE5Ln6/2/o+aRLWokVYb70F+/fDqlV0NLp0OPrYdlvw93qhpATTrx+mvBx691bX/64qFoMtW7A2bsS7aRODtm3Dm5+PbdvtA/HRvj+e/Q69fyI/c7A+Dk4uDkBBQdtScCUlCu7dUIffLWbMmNH6/YABA1i9ejW1tbXk5ua2zlAvIiIiXdeuGg+WBYV5WlFGugmfDzN5MmbCBFizBqu+3m2ddBz3a8v3iUTbtkMfSyaxPnS/3c8d6f6Hn+/DHKdtH4C1a7HWrnUvDni90KcPprwc06+f22KqycVSIx5vDe3Wpk2wdWvrv6dlDKH9+7ESia4XjEtK3Bb3oUOhV69UVyOn2Cm55JeXl3cqnlZEREROgWdmR1i81MO5Z0WZeX4TwYA59g+JpAOPB4YO5WTO6A79FRjz0WE/mXTHLW/ZgrV5M2zeDA0NsGkT1qZNWK+/7rbYFxe3tdSXlUEk0pGK5KPE4+466Rs3Ym3cCNu2tR9HDu5Eiv36kSwvZ/3evRSVleE9dAWEQ1vBzYfOnJb7H/X14PfWh3/u0J//qOc3BmwbU1YGubnHfq3SbZxUiL/rrru4//77iUQi3HXXXUfd96GHHjqpwkREROTUM47DrAlVvPd+Ja+87uO9JT6untXE2OGxLtfQJJI2LKttTPxHMH36YM44ww1iNTVuoN+0yf26bx9UV2NVV2PNnev+QGGh20pfXu4G++zs0/JSup1Eoi20b9rkdkX/cGjPysJUVEBFhfs1JwcsCyeZpH7tWsyAAZ0+KZwuncqJOKkQv3jxYuLxeOv3H0Xd6UVERLqm6p0eMiNJwtG9FJZnc/9/hPjD/yZY9X6Mx34XYtjQAJ+8vFFd7EVONctyxzAXFMD48W6Y27+/tZXe2rQJdu+G3buxdu+GhQvdLvg5OW6Ybwn1BQVdr4t3V5BIuBdEWlraq6oOD+0ZGe1De16efpfSpZ1UiJ8zZ84RvxcREZGub+ceD//1m1wiViN3fS5OTkUFJeEwd30d3n27mSd+18TK1THuX5/Bt+7eT556aYqcXtnZ7jr3o0a5ob6hwR2n3dJSv3077NuHtW8fvP++G+ojkdZAb8rLobjY7Zbf0ySTbaF90yZ3uMLBxsdWkUj70J6fr9AuaaVDY+Lj8TgXXXQRjzzyCAMHDuysmkREROQUqdlr85Pf5FJXm2DQKMgaXoEdDgPuZ9iJU4MMHxfg739soHHHPrKTe3Aaw637iEgKRCIwZAhmyBA31LfMmN7SUr91qxv0V67EWrnSDfWBgLu0Xr9+7pjp0lLw+VL6Mk4Jxzm8pT0Wa79POAz9+mFaQnthoUK7pLUOhXifz8fSpUs7qxYRERE5hfbX2fzkt3ns3ZNgxJA4N9+Zgzfz8MmywmGL627OwIkHcXZZJHfsYMFbzSzbWsCVlzSSk+WkoHoRaeX3Q2UlprLSDfUtXcZbQv2WLdDcDOvWYa1b1zYDfmlpW0t9WZkb9NON48D27e1b2qPR9vuEQm4r+8HgTq9eCu3SrXR4dvobbriBxx9/nB/+8IedUY+IiIicAvUNFj/9bS67dyQZ2C/OF+/JxJ+bedSfsX1e7NJSrOwcXvxtM9VVCZavyuKyGc2cM6W5R/bUFemSvF4oK8OUlWGmTXOD7s6dbePqN2+G+vrW7y1wQ21JSVuob1mr3uNpW9O+5ZbKAGwM7NjR1tK+ebN7geJQoZA7lKClpb2oSKFdurUOh/hEIsGvfvUrZs+ezfjx44l8aPkLzU4vIiKSWsbAw3/IpXqbQ3lpnNu+EiFQcPwzW3syItzz3TBP/baBea9HeepvAd55z891VzRR0Sd+7CcQkdPLtt2AXlICU6ZgjIHa2vYz4O/d2zYD/rx5R38+y2oL80cK+cd7O/TnLQtztOeyLKy9e2HTJmhqal9PMHh4aNdVRelBOhzily9fzrhx4wBYs2ZNu8c0O72IiEjqWRbMmLiL55qyueMrIcIlJz5TXVaWxc23ZTD1XD//+3gTWzZH+Y+fhZk6JcEnZzXo87NIV2ZZkJ+Pyc+HcePcLvgHDrSfAX/PHrcF/0iMcSeMg8Nndu9IWce7YyDg9jRoCe0lJQrt0qN1OMRrdnoREZGuyRj3s7vT0MCIigSjz+2Ft1d+h55z8Ag/3/wPPy//o5F//DlK4956aKjDZGTo4r1IOsnKwowcCSNHtq1RbkxbYG/56jjtvz/W7Qg/Z33U48e6hcNuaO/dW6Fd5BAdDvEAb775Jr/85S/ZsGEDTz31FKWlpfz+97+noqKCqVOndsYhRERE5AQ4Dvz6z9mMqDjAxAExPP364e1V2CnP7fXCxVeEmTg1iOdAAquuHqemhnU1+WTmeOldpLXlRdKSZbV1ne9E5ti7iMgJ6PBf6F/+8hdmzJhBKBRi0aJFRA/ODrl//36+//3vd7hAEREROTHGwO+fzuLd93389YUIiaIyPEVFnX6cgkKb3MpCfEOHksjvzW//nMX3/iuTp18IE42pVV5ERORU6HCI/+53v8sjjzzCY489hu+QtSfPOussFi1a1NGnFxERkRNgDDz5bCbvLPIT8kS54w6LcL+SU9rV3QoE8PfvxxkzsrH9Pl561ce3H8ri/VX+U3ZMERGRnqrDIf6DDz7g7LPPPmx7dnY2+/bt6+jTi4iIyAl45pUMXn8ngN+KcfvthrIJpzbAt/D7LT5xfYRvPJjN4DFh9h7w8MhvQvzidxnU7NVYVhERkc7S4f9Vi4uLWbdu3WHb33rrLfr379/RpxcREZHj9MIbEV54LYTXiXHrlxwGnHF6AvyhevfxcM+3srj59kyyCoIsW+Hl6Wc8mI+a9VpEREROSIcntvvc5z7HHXfcwa9+9Sssy6K6upp58+Zxzz338PWvf70zahQREZFjSCTg/RVePIkon78lwbCze2OlaDZny4IzpgcZNSHAM080cN6QGkztXkwkQtQKEwpqmisREZGT1eEQ/2//9m84jsP5559PY2MjZ599NoFAgHvuuYfbbrutM2oUERGRY/CQ4LZZG6hK9GHE+aVYHk+qSyISsbju5gxMfCDJXbtoqtrB9x4JUznA4spLGsnKUOu8iIjIiepwiN+yZQv//u//zr333su6deuor69n2LBhRCIRqqqqKCsr64w6RURE5AjWbvJRXtyMp34f4T6FjOjfu0sE+ENZPh/e0lJ27s2l0URZ8F6MZSszmXVRlLMnNWv5ZxERkRPQ4f82Kyoq2LNnD36/n2HDhjFp0iQyMjKora2loqKiM2oUERGRI1ix1s9Pfp3Dz/4nhJVXgLeiAsvb4evzp8yAEWG++9NsJp8Tpinu48m/BnjgF1ls3tZ1axYREelqOhzijTnyuLb6+nqCwWBHn15ERESOYO0mH7/8YzbJ5hjDRnjwV1ZgHbLUa1eVnWPzuS9ncvc3MinqF2LzNg8/+u8Iby4IpLo0ERGRtHDSl77vuusuACzL4hvf+AbhcLj1sWQyyfz58xkzZkyHCxQREZH2Nm/z8ov/zSHeEOPCc2Jc+qleWP70WpN96Cg/3/5PPy/8rZHZ/2xmcEEVTr0HKxI57TPqi4iIpJOTDvGLFy8G3Jb4ZcuW4T/kw4Pf72f06NHcc889Ha9QREREWlXv9PDfv8uluS7G2WfEueqWQuxQevZ883ph5lVhPnZJAF99P5LbthHdWcuf3uzLhedEKS5MprpEERGRLuekQ/ycOXMA+MxnPsNPfvITsrKyOq0oEREROVxz1OKnv82lYV+cyePiXP+v+djhUKrL6rBg2APhXthZWcz+0z7mvWexYLGPaWckOH9qMwW5CvMiIiItOjyTzK9//evOqENERESOIeB3uHjCDj6ozuIzX87FEwkf+4fSiBUMct41RTTQyOxno7z2Frw+N4sxoxJcMK2Zij7xVJcoIiKScp02HezKlSupqqoiFou12z5r1qzOOoSIiEiPZAxYFpj9+zl7ip9z+2fjycpIdVmnRDBocfWnIpxzYYDZ/2jkrdfiLF5iWLwkwpWXNvKxs2PHfhIREZFurMMhfsOGDVxxxRUsW7YMy7JaZ6tvmZQmmVQXOBERkZPV2GTx8B9ymDlpB4MqvHj798fO7v5D2AqLvVz3uSxmXefw+vMNzHk5xqiyWpI1UexIhC21GRQXJEiz+fxEREQ6rMNLzN1xxx1UVFSwa9cuwuEwK1as4I033mDChAm89tprnVCiiIhIzxSNWfz8f3NZt87iH2/m4qnoj52dneqyTqtIhs0lV2fyw4fzKDlzEJ6SEuJNcX72WJD/96Mc/j47woH6Dn+cERERSRsdbomfN28er776KgUFBdi2jW3bTJ06lR/84AfcfvvtrbPYi4iIyPGLx+GRP+SwYQMU58f40p0hPHm5qS4rZTweCzIzsTMzqQsW03dwlJVLE7zwkmH2a9lMGhfnY1ObKOmlHoAiItK9dfjSdTKZJDMzE4CCggKqq6sBKC8v54MPPujo04uIiPQ4yST8z59yWL3GIj8rxp1f8ZPdryDVZXUZeSUh7vpmDt96MIuzzg9hbJu5871856FMfvl/mRwc2SciItItdbglfsSIEbz//vtUVFQwefJkHnjgAfx+P48++ij9+/fvjBpFRER6DMeB3/41m6UrPeSEY9x1r4f8gYWpLqtL6lPh5zO3+/n49UnmPNfA67PjhKjD2VuLHYmQ9ASwLPB4Ul2piIhI5+lwiP/a175GQ0MDAN/5zneYOXMm06ZNIz8/nyeffLLDBYqIiPQk9Y02GzdZZPhjfPlum17DilJdUpeXm+/hEzdmcclVDtEaL55mcPbu5fV3bF5ZVMg5U6NMm9BMKKgmehERSX8dDvEzZsxo/X7AgAGsXr2a2tpacnNzW2eoFxERkeOT6Wviy9fspTm3L6Wji/R/6QkIhmyCfbIxJgvT0MDmV6Ps3e/w9DN+nns5yFmTYpx3ZhP5uU6qSxURETlpnbJOfHNzM0uXLmXXrl04Tvv/GLVOvIiIyLEt/SDAiH51mPp68of0wdu3WAH+JFmWhZWRwee/msH5K6O8+EwTS95L8OrrXl57O4uxo5JcfmEjhXmaBE9ERNJPh0P8Cy+8wI033khNTc1hj1mWpXXiRUREjmH222H+8nyEMwbH+NTNGXj79FGA7yQDhgUYMCzAzm1xZv+zibffiLNoiWHW5H2YzCCWz5fqEkVERE5Ih2env+2227jmmmvYvn07juO0uynAi4iIHN1b74b4ywsR7ESU0WeE8ZaVYdla97yzFZX6uP7zWTzwcA633B6iV0UmpqGB6M4aHno0kzcXhojHU12liIjIsXW4JX7nzp3cddddFBVp4h0REZET8e6yIH94JgMrFuOmGxOMn1GCpanUT6mMLA8Tzz04br6ujiVzDrB2o4+1622eeSHA2WfFOWdSI5kZmgRPRES6pg6H+KuuuorXXnuNysrKzqhHRESkR1i6OsCv/5yJaY5x/bVxzphVjOXtlKlq5DhYloWVlcWkWVmES5t46Z9RVi1L8NwLhpdezWHKhDjnn9VEcaF6FYqISNfS4U8LP/vZz7j66qt58803GTlyJL4PjS27/fbbO3oIERGRbmXv3gDPvpCD0xTjylkxzrmqWGOzU8SyYOSEECMnhKhaH+OlZxpZMC/JW/McEg0Wn7o2oYsrIiLSpXT4f6U//vGPvPTSSwSDQV577bV2E/FYlqUQL6eN48CuGg/bdnjZtstH9U4vW3d4KCmI86Ub92uSKBFJuUQCsCAnJ8r0ETsJ52Zw0Q1FWH5/qksToKzSz2fv9POJGxK8+mwjE/sdwNTV4RjD+1UFJCw/wwdGiYTV1V5ERFKnwyH+vvvu49vf/jb/9m//hq2JeOQ0qau3sG1aP0i9+GaYZ1+NEI8ZN807DmCABOP61+PU1gKwdnsWf5lTyNBBCYYOiDGgLEZPbfwyxm2BAvj77AwaGi0mjW6msiyOrneIdJzjQPUuL+s3+9i41ce6zT76FTfzqZnbsSz4+OVJQgN6YQUCqS5VPiSv0MtVN2VhnAzMgQPEd+7mr49GqNlrgydMUaGhX1mSij5xKvrGKS1KoKkMRETkdOlwiI/FYlx77bUK8HJKxOOwY4/XbV3f6WXbTh/bdng4UAefOK+W88ftxSSTBGMxks1+SnslKS11KC3z0qfcS98KH1l5mVjxfJz6ej5Y6LB1m8XWrR5efjWML5jBwP5Jhg2MM2xAlJJe3XPsozFQs8/Duk0+1m72s26Tj0un7WPC4P2YWIxwIsELb+fz5tsRCgph4tg4k0c3U1TQPX8fIqfSmo0+XnwzwoYqH81NBpzkwQuLCSIeaLly6O3XDzsUTGmtcnSWbWPl5ODNzObKzzQxd04zG9cl2bkLdu6wmL/AD3aQW67Zy5hRSSyPh+27PAQDhpwsRxdERUTklOhwiP/0pz/Nk08+yf/7f/+vM+qRHsoY2LvfZutOHxWlMTIzDMYYHn8yi/dX+Q+2rhvAbWHPyXbAsrHz8rDCYab2D3L2vwTwRQLg9R6h63wET14eV9zqMP7CZlYsibFyaYJ16wwrV1qsXOFj3IgEn722Efx+ojGbWNwiK8NJwW+j8yxeGWDJyiBrN/nYuw9IOm6gIMHmzTBxhA+7oIDJMzNwirzMfzvB9m0Oz7/o5fmXs+hX7nD5jCaG9I+l+JWIdD21+2w2bPGzvspHUX6C6RPqMLEYiX02K5eHsewYfYqT9K8wVA71M3Coj/ze2SS9vWDzZuygAny68HgsJp0dZtLZYZykw64tzWxYE2fDmgQb1yXpV9KMOdCEcRz+/NcSVm7OIDsbKsrd1vp+feKUlyYI+NUNX0REOq7DIT6ZTPLAAw/w4osvMmrUqMMmtnvooYc6egjphjZt9bJ1h4+tO7wHx657aWp0u8LfPKuOsYPqACjPt9hfkklpqaG03Evffj76lHvJyAuAv6h1LeXjPZE9XpuKoWEqhoaZeR001Sf44P0mVi6NM7BXAyYWw9TXM//9LJ54uYi+pU5r1/vKvl23673jwLadXtZt9jO4IkpJYRzicdas8rJgIUCcvFzDwP5JBg3zMmi4n15lpdihIJZlkQ/MrIRLr4VNa5qZ/3ozC+Yl2bQZnL17ceocrHCY3fv85GYlu+zvQeRU2rPXw/IP/KyvcoN724Uxh34lMc4eUo/l91M5MsIdJR4qh/gJ5YYOG+/uaDHytGZ7bIr7hSnuB2de6G4z8VxMczOmqYm8Mou8A4bavRZLlsCSJT6w/FgeD5++8gCTx7n//s1Ri4DfqLVeREROWIdD/LJlyxg7diwAy5cvb/eYJhLr2RwHdtd63JC+08uFUxvx+xxIJPjDXzPZUu0F4+C2rscpyHfoU5Iko3c2vooCCASYOTrAZYHAKZsZOJThZcxZmYw5C4zJhWgUp7GRxKY44Qhs2WqxpcrDS6+0db0/Y1yUCSObT0k9xyuZhM3VPtZt8rFus591m30HL4IkueysOorO3I/l9zNlYpKKkTaDhvkoKA1BIHDUv0vLgorBQSoGB7n6ZsPKRU0MLi6CvTWY/ft5/Le92VWXxbhRCSaNbmZQhcbPS/fU1GyxYYuPUNDQv28c4zh8sNrmyb8HD75vxcnNNlRWJKkc7GXgsCx8lQVYoRB+j4eRqX4BclpZPp+7ukBmJjfdCcYY9u+KsmFNnI1r46xfk2TzZofC0AGSNY0APPVyMYs+yKRfeZKKvkn69Ym39kQTERE5mg4nozlz5nRGHdINNDRaLFgaYusOdwx79U5Pu4nmhhbUUVEaxfL5GD+skcrKMH3KvZSWu+PXg1kB8PtTdvHHsiwIBvEEg1z0L3DBNQ6b17R1vV+/3u163yeriXHldViBANX7wlTv9DGkf/SUfvBqabhraQF//E+ZLF7ub20FbOm2O2AADJqUh39ob6xQiEq/nwEn+fv0eCxGTgwDYUzvYqK19USKkkRrHOa+YzP3nQi5eRYTx8SYPKaZ3kUaPy/pqWXOiA1VPtZV+dhQ5ad6h41JJhk3qI5+l9WAbTOob4hzpoapHOJj0DA/eSXBY14Yk57JsixyioKMKwoybpq7LRlPQjQCzU04TU00Ox6iUVi9ymL1Kg/gBU+EgjzDzI81MnlMNKWvQUREui4tfCqdxrYcnn3RR0MjQBLbduhdmKR3b0Ofcg/5I/riL/FDIMCl49yuhV2Zx2vTf1iY/sPCXPYvbV3vCzMMts/BaWzknbf8zF6QCXaYsj4Hu95XRqksi9ORzgPNUYv1VW4r+9pNfjZt8XDDJbuZNHgfJpFgQGGSfSXZDBgIg4b7GTjMTyT/8G67ncXyeAgWZnP3d2Dv7jjvvN7E/LfibK1yeOkVLy/NyeK7d+8hv7Br/5uKgLvMWzxhEQq6F95eeivM314IH7KyRYJgAPpXJhg0IoC3shIrFKIkFOKG8zWWRE6Ox+cBXwQyIniAL37L0FwXZ+OamNtivy7JhvUOe2rA07ifZE0DltfLSwvzWboug35lSfr3dcfX5+ck1QtKRKQHU4iXk9YctXh1XpizxjWQadXhj0b59JU2jb4c+lb4KOnrO8pEc+mnpes9ZGJMEUSjDGyIUmslWb0ySdUWi6rNHl6cHcEftLnk/CZmnN10Qsd4dV6YBe8HqdrmwSSTbks7SbyeJPvrPNh5ediZmVwwMsyFoZDbffM0yy30cfFVPi6+Crasa+adN6Lsrmok119Pck8c4wvwm+d7M2ponNFDo5rISVKuodHtGr9hi5/1m31s2urlnHH7+fjZuzGJBH3CjeRnFVNZkWTAEB+Vg/2UVgTwhINd/mKjpC/Lsghl+Rk2wc+wCe42J+lQsz1K2PbiNU2Y+no2bPGzcSNs3GgzhyDYYTIzoV9ZkjPHNzNmqFrsRUR6GoV4OWHxOLyxMMwLb0So35/kwM4Grr3ch7dvX8ZOzj9l49e7kpau9+OnBxk/HZIJh00ftHS9j7NhA0ScAyRrDmD5fCxal8OqzRGGDYgxuH+MRNJi/WZ3ubczxjZR1qsJE4uxZ6vF5o0+Av4klZUJBg7xMGi4n4pBfnyZBV3ud9t3QJC+A4IYk4VpzMLZv59l8+p4b7GH9xbbBIIhRo9IMHlslCH9Y2glSjlVHMedeC4YMK2rSryxIMTzr4fZt99yd0g6YBxsT5zGJgs7KwsrM5ORQ8KM/sSx54wQOdVsj01hnxAQat32pW8l2LLeHV+/YW2SjeuS7N5jsWyZxaDCBpySeqxQiMZkkIDfdKgXmIiIpAe91ctxSyZh3uIQz70WYW+tA4kYw4fEmXpxNr5h/VPSKtxVeLw2lcPDVA4PM+t6aKqLQ5Mfb7wes38/7y3zsWSlzdx3QmBHwLZbu+5mmih9z27ECgSYfmGAKRf7KB8YwBMJpU0roGVZWJEIdiTCsEsdPpfXyLw3YqxcnmTBuzYL3g2TnRPhjIkxLv9YQ6rLPWGOAwfqbZJJyMvR2s+ptmW7ly3bfezY7WFXjZedezzsrrFJJgwfP6eWCybuc3uy1GWyb0+AjIihX1mCyoEeBg710W+gn0B2Xo9+z5L04Qt66T/cS//h7n1jDHU1MTZ+EKUktwDb58fZt4+n/hbig+pszjkrxrQJTYRD6gUlItJdKcTLcdm6w8tjT2azaxcQjzOgIsHHr/IyeGIvrEAg1eV1OaFMH2RmA9mY3r355K1RRiyOsnJpgtWrHLzEGdg/wcChXoaPLsJXVo4VCtGnGzRVB4I2k8/NYPK5sL82wfzXG5n/VpzNGx32bG3G2bcPKxwmagI0NVvkZjspqzWRcMP5/noP+w7YNDbZnDW+bQjEQ4/nsnOPTV29jXEMGIPPB0WFDlddUs/g/u6Mg3X1Fn4/GjrQSeJx2FnjZXeNhx17vOza4+Gi6Q30yo1BIsFzL4dYsrJllngDJPB6LXrnJwmEbOz8fKxQiCllASZ93EdGrjsXh9UN/r5ELMsiqyDA6IIAkAUUkahrYJ8dY9/+BH/7h4/nZweYOjnGuWc0kZ+buvdYERE5NRTi5bjkBRuoqwnRt5fh8k/YjDqrADsUTHVZacGyLApKg5xTGuScmWAcB2KxHtF1NzvPy4VXZHHhFVC9KYqpt7C9CZy6Ot6ZD396tYiBAxymjI0ydniUYKBzQnA8DvvrPeyvszlQZ+PzGUYMigGwc4+Hx57IZt8B252E0eCGQeOG9Al9tuL1ggXs2xXmwD4/gUCS7BwHy7bYXeth61aDXbeXZE0Uy7L4ywtFzF+RRV6OoaiXQ0mvJMUFCYoKEpQWJYiEFe4/zBjYu98mL6ctYDz2RDabq73U7rXdvxPn4OoWGIYWNVA4vAm8XkYObCY7z0tRbw/FvT0Ul3rJK/LhCfrbzcGh/+Ckp/BmRrj3/gjrV0V54e9NLHkvwSuveZnzVjbjRie45tJ6LV0nItKN6DOOHNEHG3y8+GYGN122i4g5QNDn49/uiVM8rBBPJJzq8tKaZdsQ7HkXQHr3CwABjMnHNDaSWNdMMGJYs8awZk2APwZCjBqeZNKYKIMqGo/4HNGYxf46++DNQ3Fhgj7FCQDeXRbkudci7D9g0dhEu3Dev3czQ/NrAPDWe9m2JQNwCIUMOVmGrEyHnByLrBwLevfFl+EDr5d7vuUjFLEJZXjB6wWPh2Q0we7tcXIjFfhMDKe5GU/QR8jvUFsLtXsMq1bagB+sIJdMr2PmeQ3g9bKxOsjaTT6KCtyQX5iXJE1GTJy0ZBKqtvvYtcfDzhovO3d72LnHw64am3gMHvhyFRFfDJNMUrM9SM1OCAYtiouS9Opl3KBe6mXAoL74Cn1Yfj9nj/OpVV3kCCqHBrh1aICd2+LM/kcjb72eYO2aOIHzajGBDCyfD2PQkCARkTSnEC/tbNrq5ZlXMlm11gvxOK/n+7ns40V4iooozchIdXnSDbSMn7/4ugjnf8Jh6fxG5r0ZZ9n7Sd5bZHhvUYiLzkngq3D3/+uLGSxdHWD/AYvmKG4TrmMAw0VT9lIy1Q3nsdoMtm8NgGURCRuyMx2yMg25uRYlpT68ZWVYXi/5tpfv/6ePrFwPgXBbOD9Sr4j8gsPr94b8lPT3AxEAPMD/9+/gJJIcqImxY2uC7duS7Dh4Ky9NYOJxaGxk2SKbF+aGAT/YNrbXojDfoajQYcSgGNMmul350+FDdjRmsavGQ1OzRXPMprnZoqnZoinqzh1w6bkNGMehuT7JA7/Idy+oHPx3a1mCsig/SUM8QGZRBlYoxM23BQln+cjM92P7fV1uIkeRdFFU6uP6L2Qz67ok29fV4c/Ixdm7l501No8/V8Z5U6NMHNWsSfBERNKU3r4FgOqdHv45J4PFK/wQi5MVaeaSyx3OvqQYb25mt+/2LanhD9hMODuDCWdD3b4EC99s4p23YowbXMeyGJi9e6nb7WdntQfLtsgMG7Kz3HCenWtRNjSCtyyC5fMxvszLsAt8ZOfa+IIfHc49QK9enf9abK+HnKIQOUUwZHzbdmMKIRbDxGKM8ibwFRs34Fc77NhlsXMH7NwOYSfKmZW1WF4v66vD/M/TvSjq5VDcK0lRfpKiggTFhcmTXh86mXSXhWyK2u7Xg4E7GrXo3zfWOm72vWUBlq8JtO7Xum+zxdghjXzykn3gOKxf5+e//5DrZnLMwZ4Pbnddv89hxsgabI9NyOtl1KAmsnJsevX2UtLHR3FvDwXFXrwhP/hKWv+Nevfp0D+BiHxIZraHzPE5GJONqavj3Sca2Lrd5ndPBPj7C0HOmRrj7ImaBE9EJN0oxAvvLQvw+J+yMLE44WAzM2YmOW9WFsHCLIV3OW0yc7ycd1km510GsYYgy2ZX4enXjys+E+IKj4esXC/ewMFwbtuHnZsZB29djWVZ7vwHgQCDJsCgCW2POfEENTvc1vuI34unMACNjdTstzlwAA7sg7VrbMAGyw+WTUGew3fuqsHyeDAGZr8dbgvczRbNMYumZvf+XZ/Zg9fjjiv/9k97sbvWgxu4Tbvw/ZnLDpA7tB5jDBs/yOOdhUEOpnLc2QHcL/UHEpioOw9AZsRDZVmcUAhCIYtg2CIUhlDYJr/Ah3fgIDxBP5bfz23j/Or+LpJClmVhZWXx8c9l0W9UEy8+08y61Qn+/k8fL7wS4KxJMc47U5PgiYikC4X4HioeB58PTDLJ4F57yA74OONshxlXZBDpnaPwLill+f0AeHr1Ir8bLwNm+7wU9vVS2Lf99qmDHMbNjLF9S7yta351kp3bHfIyo5i6Opxkkr0HPPz1HzkHf+qQwI37Qbxx5wEyMwHbJiccxUl4CQYgEDCEQhAOWwSCUNA/G7s0G8vj4cyLfQyc4iUUtgiGLMJhy/0+4sEXyML29AbbpsK2+bcZh19MEZGuy7Jg7JQQY6eEWL8qyovPNLH43QSvvu6lIJTgnOkmbZY2FRHpyRTie5iGRosX34wwf0mQr920ibA3SiQ/m+89GMRfmKvWMpEuwLJtInlBBuQFGTC6bbsxBhOLQzwPE4vh2RFn5uU24bBFMIg7Cd8h4TunaCi21waPh6/8yAa77fZR4bu8FMpP0+sUkdSpHBrgS0MD7KqOM+f5Rs4cX4uzfz+WZfHK0iJKSmD4wFiXn59DRKQnUojvIZqjFq/MDTP77TDNDUksJ86a7VlMPC8HOy9PV95F0oBlWVgBPwTcngq98uDjw1JclIiktV69fVx7czYmmYGzfz+162v4+4thkklDSUmYj50dZdKoJk2CJyLShegtuZuLx+GNhWFeeCNC/f4kJGOMHx3n8muClAyp0OzPIiIiguXx4MnLIzsjl3/5XCMvPRtl+7YEv3/Cz9+fD3DO1BjTJ2kSPBGRrkAJrpt78c0wz84OQiLGiCFxLr/KR78xxVjdeJyxiIiInBy/32L6RRHOnhHh/QWNvPhMlLWrEzzzrI93Fnr45p37sT0aeicikkoK8d2MMbBjt4eSXklMUxNnD6xl86Y+XDzLx6AJvbACgVSXKCIiIl2cZcGYyWHGTA6z8QN3Ery+GTWYfXtxvF72JbOoa/JRXppIdalpZX2Vj1fnhlm93kduVpLSkiSlRQlKixOUFiXIydIKASJybArx3YQxsGxNgGdmZ1BbY/j2/7eOSI6frEGl3DG1ECsYTHWJIiIikoYqBgf4wr0BTCIDZ28WyV27ePEvNm8symDgQIcLpjUzYpAmwTsSY9x5iUJBgzGG3TsSLFpsAQka62DbVgvwgeWnf98493y2Fnw+mmMeFq8MUloUp6QwwcFFW0REAIX4bmHNRj/PzclmwyYbEnGKC5McCJeSM7QAOxxOdXkiIiLSDVheL57CQuz8fIpHNpC9Oc7adXHWrg21ToI3Zlh9qsvsEvbs9TB/SZAF7wcpyo3yhVlbMI7DmIEhEtdlMP7MEPXxAFs2xqmuSrK1KkFpbhwTi0FjI1WbA/z+yWywg1i2Ta8Ch94lDn2K3Vb7UYOjumgi0oMpxKexzVs8PPNMf8z+XOxEnLycOLNmOky5MAdvVkaqyxMREZFuyLJtLrwik3MuNcx/rZGX/hll+1Z3Eryns/MY97Ge2Wzc2GSxaEWQ+e8HWbfJC4kEJBPYCTDZefgK8whkZXHuFPf3kwX07t/288YYiPXGRKNkhuJMOw+qqxJs3eawcyfs3AGLjZfcbIuRd9SAz4fxeHnqxRxKCtu65AcDmnxQpLtTiE9j7y7xsXVrJkPzm5n5ccPZl2Thy838yPWfRURERDqL328x7cIIUy+IsHRhEy/+I8r6D2JEInHM/v2YUIi/vlZAfq7D0AExeuUnu23r8Y7dHr738zwS0SQ4SSKhKBMmJphydpD+I7OxQ72P+fnMsiwIBLACAcpHw6dHu9udRJI91VG2bU6wZXMSK9aM5fNh4nF2b4vx2ht5gB+sINg2+XnGHWtfnOTCqQ0K9SLdkEJ8GptxocPa7dXc/fnBZBTnKbyLiIjIaWdZMHpSiNGTQlRvbmDhEoOVk0NDbZRXXvdiDGAHyc+DIQMTDBsQY3D/GJFweoZLY2DTNh8r1/q5eHo9RJspsJsoCAcoGQBTpvkZOTGCLyejUz6b2V4PvcrC9CqDsdNaaiiGeJzs2iif+lySrZsP3rY61NRAzW5YsdzDRSNrcEI+LJ+Px54uJBSy3In0iuKUFiXIiKTnv4FIT6cQn8ay+2QzduxuggUTFeBFREQk5Qp7+2EJ+AYMwBuHL9zZzIr346xYmqSmBt6eZ/P2vBCWN8L37t5Dbp67XJ0xdPlW+j17PSx4P8j8JUF27bYgkWB4UT3l5TbekmK+9UAGnpwsLI/nlNdiWRb4/WQW+zn70rbtTiLJvt0xtm6Ms3dPAn+fYkxDA7H6GEve97hd9vGBFQDbIicbehcnuebSeooKkqe8bhHpHArxIiIiItLp/GEf48/2Mf5scBzD7i3NrHg/xsqlCfbujJFtH8CpSWJsD9/6n3JKSmDogDhDK6MUFXSdrvdzF4WYt7j9OPfCAofJEx3yR1fg65OJ1UWmj7e9HvJKQuSVhA5uycMYgyeW4Os/jLFlU4JtmxMHW+0N+/bBvloL3/QaHNuBUIjNNZn0LU7gVUoQ6bL05ykiIiIip5RtWxSVhygqD3HeLHCSDjRlYhob2b6+ntp9HvbscVi2zAd2gNwcGDrI7Xo/akgUn+/01ZpIgG27N5NM8s4Ci3UbHSKhKOMnJDljeoD+I7Kww6G06AlpWRaegI+ywT7KBrdtN45DXU2MrZvi5JdVYBobaKjey08eCRGKePjY9CjTJjRpeTuRLkghXkREREROK9tjQ0YGZGTQp1cvfvx4nNXvN7NyaZyVy5Ls3g1z37FZ8G6QB++twWQEsbxeNm310ucUtBK3jHOfvyTIu8uC3HDxbkaW1QJw8XSb8y/KZdSkzhvn3hVYtk1WYZBhhUEgE4CoXUzZ4ChrV8b589/8vPhqgI+dE2X6pGYCfo2fF+kqFOJFREREJKUi2W1d740x7NkWZfniKAf2RPEHvZj6eurrDQ/8vAKf32ZgZZJhA92u98WFJ9/1vmWc+4KlQXbutCCZABNj01YvYyYV48nJYeSk0zPOvSsoKg/x1e+G+GBZlH/8uYnVy+M8/Yyfl+YEuOi8KB87qynVJUoXlUhAY7NNQ6OFZUFxoeZYOJUU4kVERESky7Asi8I+Qc7tEwTAOAWYxkYaNzbTfwBs3GhYscJixQq3631ONgwdnOBfLqs7oRb6F96I8PeXw63j3AvyHaZMcphyToii/n27zDj3VBg8MsDgkQHWr3LD/PIlCQ7saMCpb8QKh7FsO9UlyinSHLVoaLTcQN5k09houV+bLcaPiFKQ64bz51+PsGh5gIZGi4Ymi1gMMIAxjBnUwC3XNYLfTzLphvoech3stFGIFxEREZEuy7JtrIwM+ozM4N8fgMYDcT5Y6s56v3JZkl27YN3qJNb0Why/HwJBnnszmwH94gwoi+E9OB/dinUBPLZheGUTpqmJsoxGIp7itBznfrpUDg3w5a8H2LQ2RraJYzVGcWpreWVJIY1OmPPPbCQzQ93suxrHgXjCah0C0dhksWJtS+C2aWxuC+fNUYsvf6YWyzjgOHzzoSIO1FvuGBMDYFq/7+WrIXdQExawbwdsrfICFpZtEQk5REKGSNgwZVwUE49j6uuZvzyLv77RixFDEowZFmPYwJiGZnQChXgRERERSRvhLB9jp/oYO9Xtel9THaWm2ounqBSzbx+bN8R59gUvWD58wQwqyh2qd/mor3Pom9/I0Jv2Y4fDDJuaz39clIEvO6KW5WPoN9APlGBi+UR31vDSI14aDiSZ81Y206bEuWBaE9mZTqrL7HFWrvOz4P0gB+o9NDa5LegNjRZNzTCsfzO3XrcbHIfanR5+9YccN4zTEqBbLlY5NO/aRzBogW1TlNtMRtBLOOwQDltEMizCEYtIpk3v0cX4Stz9Li32ctENHsIRi1CGB9vrcZvbbRvLtjHNzTj19exakqCxyWLBuzYL3g3hC4QZMjDJmOFxRg5q1kWgk6QQLyIiIiJpybIsCkqDFJQGgVxMnz7k5TVxeX2clUsTrF9vWPMBQIz+5UmmnOnDN3gIdnbPGefemSy/n2DfEr76vTjP/aWR+XMTvPKa4fW5WZw1OcGMsxvJzVaYP1Xq6i1icYv8XAeTTLJ9S5z5C0JAy+/cAssiGDB4rSSWMeDxkFvoZ9pZSSKZNuEMm4wM92skAzIybCKlw7C9NpbHw1d+5AZxPJ6j9krJLzx6rVYwiCcY5JovwYVXx1g8v5klC+OsXuWwbLnNsuV+LjgrzhWXNGN5vTiOe1g5PgrxIiIiItItWLZNfp8Il/0LXPYv0FSfYMPKJvKz4xRVZPToce6dqXeZj8/emc1l1yZ4/q+NzH0jzutvGRa8l8kPvlpLIKQLJJ1l736bJauCLF4RYN0mL5OG7ufGGduxbJvxIyJkFENR3wAZBwN6OMPG629pFS8F2ybHsvj0hNS9hpxCP+fO9HPuTGisS7Ds3WYWL4gxdsReTF0dTjLJP+b2YsXmLEYPjzN6aJQ+xYmTnrCyJ1CIFxEREZFuKZThZfikzFSX0W0V9fZy079mMfNqN8wHovvwNu7DiXmJ+jI50OijqECzlJ+ovfttFi4NsnhlkE1bPJBMQjJJMBglGPbgLSvDzsqiIBKhMM16lIQzvUw+N4PJ54JxcjANDTh1dWz4m83WbRZbt3h59iU/+fkwenicMcOiVJbF1Ur/IQrxIiIiIiJy0gqKvNz4xSxMMoKzN0xy505ef8nwzJuZjB+T5OJzGuldpDD/UYxxZ4UPBd3x4du2wdPPBSCZJBJJMnpsgnGTfQwbF+lWczhYto2VmYmdmcm9PzKsX9HEkgUxFr+bYNdOw6uveXj19Qg3fPwAZ05JatLJQyjEi4iIiIhIh1keD56CAuzcXKzlDQTCcd5dBO8uzmTMyCSXnNdE35JEqsvsEoyBqmovi1cGWbIyQCQQ5+7rtkA8zqBiP+eeGWT0pABDxoTxZHT/Zf1s22LgyDADR4a58jOG7RubWbQgxpKFcUZU1OPUNoFl8X+ze9Oc9DNmWIwRg6KEQz1zYjyFeBERERER6TSWx8PMa7OYfrHDy39vYM5LcZYshSVLMxg5wuGqSxrold/zWuYdBzZs8bUG99paIJkAJ0F+niEZyiJQnosvI4N/mRLusS3Ptm1RWhmitDLEZdeBiWbi1NeT2HeA91eHaGwwLF4SwPaGGTQgyZhhMUYPjZKT1XMmVVSIFxERERGRTpeZZfOJGzOZcYXDK/9s5JXnY6xaFcM7fS8mK4Tl86W6xFPOGFonaNtVY/Ofj2ZDIgHE6VXgMG6sYdyUAOVDwtjhkh4b3I/GCgTwBAJ48vP5/s/jLF3YzKIFcVYsc1i92mL1aj9P2CG+8vlaKvqlutrTQyFeREREREROmUiGzaxPZnDB5YZ1S+rIy8vC2buX5hj8bnZfpp8RY3BFrNvMRh6Pw6oNAZasCLB5m5f7bt4G0WYKbYexg/30Kfcy7owgpQMi2KFgqstNKxk5Ps68wMeZF0C0KcmK95pYvDDO+tVx+mbtI7kngeXz8fizvSnIh9HDYvQr7n5DOBTiRURERETklAuFLEaekYUxmZgDB3jzmQMsWeZlyVIv/SuCXHxeM8MHpmeYj8YsVqzxs3hlkGUf+Ik2Oe6s8iTZut1D2eBC7OxsvjQ+EysQSHW53UIg5GHc1AzGTQUn6UBTGFNfT83GfSxa5gfH4aU5PrKzInzxyhj9R6S64s6jEC8iIiIiIqeNZVlY2dmcfW0WVm4jL/wjxoZNcX7+eIjysiAXnx9l1OBo2oT5RAL+33/k09jgQNLBIsbA/knGTbAZOyVIfp/BWH5/qsvs1myPDRkZkJFBQa8ivvaDZpbMj7L43QQ7dzgU9Up1hZ1LIV5ERERERE47v9/i/JkRzp4RZu6rTTz/9yibt8Z55NdBLj3fMPPCGAAr1/nZd8CDxzZ4PGBbBtsDHttQVJBsnSSvrt6iZp8Hz8HHPB6wbXd/v8+QmeHOZG6MG7w9Hne8+olcLGhq8vL2e2FWfBDipitqCVlNWNEog0q8xEyAcRM9jJ0cJKsko0eM+e+KbNui3+AQ/QaH+PinYP/uKBGfHyscTnVpnUYhXkREREREUsbns5g+I8xZ54eY/3oTL/6jmclDqknuacKybea8Wszy9QFoDdttqfvSafu4ZNoBsCwWL87gj8/nfmgX95u+JXH+/bM7wbI4UG/zbz/u3focLWHf4zF4bLjvi7vdmc4ti//5Uw7bd/vweCDhGN5dF6J3OIztOCztl2TKRA92aSlf/Lcs7MwMLK/iVVeTXRgAutcQBp1lIiIiIiKScl6vxVnnhznzvDCmwY+zbx/GcRg92UevCotkwpBMGpykwXHc+6UVfuyMDDCGnHwvgwckDu4DyaSFc3BoemFO3G2CdxxMwpARTLiPORbJJCTiED9Yh9XUgLHd1v3dOzLYvsMDgGMMXq9h/IhmJp4RYOT4vvjyM7A8nhT9xqSnUogXEREREZEuw7LAyshwwzlwbtnx/dz4YTD+E233jTEt37g3SsEYCozhx2ceut393jiGRBI89jAs3O13fssQjxmSSYjGEixYvoDLZs7Ar8npJIUU4kVEREREpNtpXXP9OAe9W8CHp5/LirR9H4/H8a42WLbdKfWJnCydgSIiIiIiIiJpQiFeREREREREJE0oxIuIiIiIiIikCYV4ERERERERkTShEC8iIiIiIiKSJhTiRURERERERNKEQryIiIiIiIhImlCIFxEREREREUkTCvEiIiIiIiIiaUIhXkRERERERCRNKMSLiIiIiIiIpAmFeBEREREREZE0oRAvIiIiIiIikiYU4kVERERERETShEK8iIiIiIiISJpQiBcRERERERFJEwrxIiIiIiIiImlCIV5EREREREQkTSjEi4iIiIiIiKQJhXgRERERERGRNKEQLyIiIiIiIpImFOJFRERERERE0oRCvIiIiIiIiEiaUIgXERERERERSRMK8SIiIiIiIiJpQiFeREREREREJE0oxIuIiIiIiIikCYV4ERERERERkTShEC8iIiIiIiKSJhTiRURERERERNKEQryIiIiIiIhImlCIFxEREREREUkTCvEiIiIiIiIiaUIhXkRERERERCRNKMSLiIiIiIiIpAmFeBEREREREZE0oRAvIiIiIiIikiYU4kVERERERETShDfVBcjJaWhoICMjA4C9e/eSk5OT2oJEOonObenOdH5Ld6bzW7oznd/SlaglXkRERERERCRNdIsQ39DQkOoSRERERERERE65tAvxN910ExkZGaxfv55LLrmEzMxMrr/++lSXJSIiIiIiInLKpeWY+EQiwYwZM5g6dSoPPvgg4XD4pJ7nSC34LdsaGhrweDztHotEIid1HBEREREREZHOkJYhPhqNcvXVV/ODH/ygQ8/TMjnFkfTu3fuwbXv27OnQ8TpTY2MjwWAQcCfXSCaTKa5IpHPo3JbuTOe3dGc6v6U70/ktp1pdXR0Axphj7muZ49mrC7npppv47W9/y+bNmykrK+vQc1mW1UlViYiIiIiIiHTMli1b6NOnz1H36bIt8bFYjNra2nbbCgsLAfB6vcd8Ycejvr7+sG2O47B9+3YyMjIOC/ldqTt9Q0NDa2+B6urqLlPbxIkTWbhwYarLaEc1HZ+uUlNXPbeh6/yODqWajq0r1aPz+8R0tZq6Wj3QtWrS+X1iulpNXa0e6Fo16fw+fl2tHuiaNX2YMYa6uroj9gj/sC4b4ufOncu5557bbtvGjRsBCAQC2HbH5+T7qD++zMzMDj/3qXboeP2srKwu80bi8XjIyspKdRntqKbj01Vq6qrnNnSd39GhVNOxdaV6dH6fmK5WU1erB7pWTTq/T0xXq6mr1QNdqyad38evq9UDXbOmI8nOzj6u/bpsiB89ejQvv/xyu23FxcUpqkZEREREREQk9bpsiM/NzeVjH/tYqssQERERERER6TLSbp14ERERERERkZ6qy7bEy9FFIpHjWn7gdLv11ltTXcJhVNPx6So1ddVzG7rO7+hQqunYulI9Or9PTFerqavVA12rJp3fJ6ar1dTV6oGuVZPO7+PX1eqBrllTR6TdEnMiIiIiIiIiPZW604uIiIiIiIikCYV4ERERERERkTShEC8iIiIiIiKSJhTiRURERERERNKEQryIiIiIiIhImlCIFxEREREREUkTCvEiIiIiIiIiaUIhXkRERERERCRNKMSLiIiIiIiIpAmFeBEREREREZE0oRAvIiIiIiIikiYU4kVERERERETShEK8iIiIiIiISJpQiD9NotEoX/3qV+nduzehUIjJkyfz8ssvH7bf3LlzmTp1KuFwmOLiYm6//Xbq6+uP+zjbtm3jmmuuIScnh6ysLC6//HI2bNhwxH0ff/xxhg4dSjAYZODAgfz3f//3Sb8+6dmO5/w+55xzsCzrsNtFF1103MfR+S2nW319Pd/85je56KKLyMvLw7IsfvOb3xxx31WrVnHRRReRkZFBXl4eN954I7t37z7uY+3bt49bbrmFwsJCIpEI5557LosWLTrivs888wzjxo0jGAxSVlbGN7/5TRKJxMm8ROnBjvf8vummm474/j1kyJDjPpbObzmdFi5cyL/+678yfPhwIpEIZWVlXHPNNaxZs+awffXeLWnJyGnxyU9+0ni9XnPPPfeYX/7yl+aMM84wXq/XvPnmm637LF682ASDQTN27Fjz8MMPm/vuu88EAgFz0UUXHdcx6urqzMCBA02vXr3Mj370I/PQQw+Zvn37mj59+pg9e/a02/eRRx4xgLnyyivNo48+am688UYDmB/+8Ied+rqlZzie83v69OmmT58+5ve//3272yuvvHJcx9D5LamwceNGA5iysjJzzjnnGMD8+te/Pmy/LVu2mIKCAlNZWWl+8pOfmO9973smNzfXjB492kSj0WMeJ5lMmjPPPNNEIhHzrW99y/zsZz8zw4YNM5mZmWbNmjXt9n3uueeMZVnm3HPPNY8++qi57bbbjG3b5gtf+EJnvWzpIY73/P70pz9tAoHAYe/fzzzzzHEdR+e3nG5XXnmlKS4uNrfddpt57LHHzP3332+KiopMJBIxy5Yta91P792SrhTiT4P58+cbwPzHf/xH67ampiZTWVlpzjjjjNZtF198sSkpKTH79+9v3fbYY48ZwLz44ovHPM6PfvQjA5gFCxa0blu1apXxeDzm3//931u3NTY2mvz8fHPppZe2+/nrr7/eRCIRU1tbe1KvU3qm4z2/p0+fboYPH37Sx9H5LanQ3Nxstm/fbowxZuHChR8Zcr74xS+aUChkNm/e3Lrt5ZdfNoD55S9/eczjPPnkkwYwTz31VOu2Xbt2mZycHHPddde123fYsGFm9OjRJh6Pt2677777jGVZZtWqVSf6EqUHO97z+9Of/rSJRCInfRyd33K6vf3224eF8DVr1phAIGCuv/761m1675Z0pRB/Gtx7773G4/G0C+fGGPP973/fAKaqqsrs37/feL1ec++997bbJxqNmoyMDHPzzTe3275q1ap2bzjGGDNx4kQzceLEw45/4YUXmsrKytb7zz77rAHMs88+226/uXPnGsD8/ve/P6nXKT3T8ZzfxrSF+Hg8burq6o76nDq/pSs6Wsjp1auXufrqqw/bPmjQIHP++ee327Zu3Tqzbt26dtuuvvpqU1RUZJLJZLvtt9xyiwmHw6a5udkYY8yKFSsMYH7+85+322/btm0GMPfff//JvDSR4wrxiUTisPf6D9P5LV3ZuHHjzLhx41rv671b0pXGxJ8GixcvZtCgQWRlZbXbPmnSJACWLFnCsmXLSCQSTJgwod0+fr+fMWPGsHjx4nbbhw4dyqc+9anW+47jsHTp0sN+vuU469evp66urrUe4LB9x48fj23bhx1L5GiO5/xusWbNGiKRCJmZmRQXF/P1r3+deDx+2HPq/JZ0sm3bNnbt2vWR5+eHz7nzzz+f888/v922xYsXM27cOGy7/X/LkyZNorGxsXUc50ed371796ZPnz46v+WUaWxsJCsri+zsbPLy8rj11luPOGePzm/pqowx7Ny5k4KCAkDv3ZLeFOJPg+3bt1NSUnLY9pZt1dXVbN++vd22D+9XXV191GPU1tYSjUaPeZyWejweD7169Wq3n9/vJz8//5jHEjnU8ZzfAJWVldx333388Y9/5He/+x2TJ0/mu9/9LjfccMMxj6HzW7qyY71/t5y/x3qO4z2/j3Ysnd9yKpSUlPCVr3yFX//61/zxj39k1qxZ/OIXv+Ciiy46rkm5dH5LV/B///d/bNu2jWuvvRbQe7ekN2+qC+gJmpqaCAQCh20PBoOtjzc1NQF85H4tj7cwxhx2jKP9/KH7NDU14ff7j1jrkY4lcjTHc36DO1v8oW688UZuueUWHnvsMe68806mTJnS+pjOb0knx3t+tjy+adOmIz7H8Z7fRzvWgQMHTuIViBzdD37wg3b3P/nJTzJo0CDuu+8+/vznP/PJT36y9TGd39IVrV69mltvvZUzzjiDT3/604DeuyW9qSX+NAiFQke8ktfc3Nz6eCgUAvjI/VoeP9oxjvbzh+4TCoWIxWJHfJ7jOZbIoY7n/P4od999NwCzZ88+5jFA57d0TSdyfh7tOY73/D7asXR+y+ly5513Ytv2Md+/Qee3pNaOHTu49NJLyc7O5s9//jMejwfQe7ekN4X406CkpKS1G82hWrb17t27tXvNR+3Xu3fvox4jLy+PQCBwzOO01JNMJtm1a1e7/WKxGDU1Ncc8lsihjuf8/ih9+/YF3O7yR6PzW7qyY71/t5y/x3qO4z2/j3Ysnd9yuoRCIfLz84/5/g06vyV19u/fz8UXX8y+fft44YUX2p1Deu+WdKYQfxqMGTOGNWvWHNZVZv78+a2PjxgxAq/Xy7vvvttun1gsxpIlSxgzZsxRj2HbNiNHjjzs51uO079/fzIzM1uPBxy277vvvovjOMc8lsihjuf8/igbNmwAoLCw8KjH0PktXVlpaSmFhYVHPD8XLFhwXOfcmDFjWLRoEY7jtNs+f/58wuEwgwYNat0PDj+/q6ur2bp1q85vOW3q6urYs2fPMd+/Qee3pEZzczOXXXYZa9as4Z///CfDhg1r97jeuyWtpXh2/B7hnXfeOWwd7ebmZjNgwAAzefLk1m0XXXSRKSkpMQcOHGjd9j//8z8GMM8//3y75zzSElw//OEPDWAWLlzYum316tXG4/GYr371q63bGhsbTV5enpk5c2a7n7/hhhtMOBw2NTU1HXvB0qMcz/m9f//+1mVWWjiOY6699loDmPfee6/dYzq/pSs62hJcX/jCF0woFGpdUtEYY2bPnm0A8/DDD7fb90jLFD3xxBOHrTW8e/duk5OTY6699tp2+w4ZMsSMHj3aJBKJ1m1f+9rXjGVZZuXKlR15idKDfdT53dTU1O5zSYt7773XAOavf/1ru+06v6UrSCQSZtasWcbr9R625Oyh9N4t6Uoh/jS5+uqrW9eB/+Uvf2nOPPNM4/V6zeuvv966z3vvvWcCgYAZO3asefjhh819991ngsGgufDCCw97PsBMnz693bYDBw6YyspK06tXL/PAAw+YH//4x6Zv376md+/eZteuXe32/fnPf24Ac9VVV5nHHnvMfOpTnzKA+d73vndKXr90b8c6v+fMmWOKi4vNnXfeaX7+85+bBx980Jx11lkGMLfccsthz6fzW7qS//7v/zb333+/+eIXv2gA84lPfMLcf//95v777zf79u0zxhhTVVVl8vPzTWVlpfnpT39qvv/975vc3FwzcuTIwy5glZeXm/Ly8nbbEomEmTJlisnIyDDf/va3zc9//nMzfPhwk5mZaVavXt1u33/84x/Gsixz3nnnmUcffdTcfvvtxrZt87nPfe6U/h6kezrW+b1x40aTk5NjvvjFL5qf/OQn5ic/+Ym55JJLDGAuuuiiw9bH1vktXcEdd9xhAHPZZZeZ3//+94fdWui9W9KVQvxp0tTUZO655x5TXFxsAoGAmThxonnhhRcO2+/NN980Z555pgkGg6awsNDceuutR7wCfqSQY4wxW7ZsMVdddZXJysoyGRkZZubMmWbt2rVHrOnRRx81gwcPNn6/31RWVpof//jHxnGcDr9W6XmOdX5v2LDBXH311aZfv34mGAyacDhsxo8fbx555JEjnnM6v6UrKS8vN8ARbxs3bmzdb/ny5ebCCy804XDY5OTkmOuvv97s2LHjiM/34Q+CxhhTW1trbr75ZpOfn2/C4bCZPn16u54nh3r66afNmDFjTCAQMH369DFf+9rXTCwW66yXLD3Isc7vvXv3mhtuuMEMGDDAhMNhEwgEzPDhw833v//9I55zOr+lK5g+ffpHntcf7ois925JR5YxH1rLSURERERERES6JE1sJyIiIiIiIpImFOJFRERERERE0oRCvIiIiIiIiEiaUIgXERERERERSRMK8SIiIiIiIiJpQiFeREREREREJE0oxIuIiIiIiIikCYV4ERERERERkTShEC8iIiIiIiKSJhTiRUREpJ2bbrqJj3/844dtf+2117Asi3379p32mkRERMSlEC8iIiKnRSwWS3UJIiIiaU8hXkRERE7KX/7yF4YPH04gEKBfv37853/+Z7vH+/Xrx/3338+nPvUpsrKyuOWWWwD46le/yqBBgwiHw/Tv35+vf/3rxOPxVLwEERGRtONNdQEiIiKSft577z2uueYavvWtb3Httdcyd+5cvvSlL5Gfn89NN93Uut+DDz7IN77xDb75zW+2bsvMzOQ3v/kNvXv3ZtmyZXzuc58jMzOTr3zlKyl4JSIiIunFMsaYVBchIiIiXcdNN93E//7v/xIMBtttTyaTNDc3s3fvXm699VZ2797NSy+91Pr4V77yFZ599llWrFgBuC3xY8eO5emnnz7q8R588EGeeOIJ3n333c5/MSIiIt2MWuJFRETkMOeeey4PP/xwu23z58/nhhtuAGDVqlVcfvnl7R4/66yz+K//+i+SySQejweACRMmHPbcTz75JD/96U9Zv3499fX1JBIJsrKyTtErERER6V4U4kVEROQwkUiEAQMGtNu2devWk3qeQ82bN4/rr7+eb3/728yYMYPs7GyeeOKJw8bTi4iIyJEpxIuIiMgJGzp0KG+//Xa7bW+//TaDBg1qbYU/krlz51JeXs59993Xum3z5s2nrE4REZHuRiFeRERETtjdd9/NxIkTuf/++7n22muZN28eP/vZz/jFL35x1J8bOHAgVVVVPPHEE0ycOJFnn332mGPmRUREpI2WmBMREZETNm7cOP70pz/xxBNPMGLECL7xjW/wne98p93M9Ecya9Ys7rzzTv71X/+VMWPGMHfuXL7+9a+fnqJFRES6Ac1OLyIiIiIiIpIm1BIvIiIiIiIikiYU4kVERERERETShEK8iIiIiIiISJpQiBcRERERERFJEwrxIiIiIiIiImlCIV5EREREREQkTSjEi4iIiIiIiKQJhXgRERERERGRNKEQLyIiIiIiIpImFOJFRERERERE0oRCvIiIiIiIiEiaUIgXERERERERSRP/P94tBu3IbcXhAAAAAElFTkSuQmCC", + "text/plain": [ + "<Figure size 1200x500 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = plt.figure(figsize=(12, 5))\n", + "ax = fig.gca()\n", + "\n", + "#Graficamos los datos\n", + "plt.bar(pm_data_h['mean'], '-r', alpha=0.6)\n", + "plt.plot(pm_data_h['mean'], '-r', label=\"pm 10 por hora\", alpha=0.6)\n", + "plt.plot(pm_data_h['mean']+pm_data_hstd['mean'], '--c', label=\"pm 10 + std\", alpha=0.6,lw=1.4)\n", + "plt.plot(pm_data_h['mean']-pm_data_hstd['mean'], '--b', label=\"pm 10 - std\", alpha=0.6,lw=1.4)\n", + "\n", + "#Coloreamos el area entre las lineas de maximo y minimo\n", + "plt.fill_between(pm_data_h['mean'].index, pm_data_h['mean']+pm_data_hstd['mean'], pm_data_h['mean']-pm_data_hstd['mean'], alpha=0.3, color=\"lightcoral\")\n", + "\n", + "#Formateamos el eje de fechas para que se vea mejor\n", + "ax.tick_params(which='major', pad=10, length=8, labelsize=12, direction=\"inout\", width=1.5)\n", + "ax.tick_params(which='minor', length=4)\n", + "ax.set_xticks(range(0,24,5))\n", + "ax.set_xticks(range(0,24,1), minor=True)\n", + "ax.set_xticklabels([\"00:00\", \"05:00\", \"10:00\", \"15:00\", \"20:00\"])\n", + "\n", + "#Agregamos la leyenda, los titulos y la grilla\n", + "plt.ylabel(\"material particulado [$\\mu g/cm^3$]\")\n", + "plt.xlabel(\"Hora\")\n", + "plt.title(\"Material particulado en FCUIS por hora\")\n", + "plt.grid(True)\n", + "plt.legend()\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 462 + }, + "id": "v4YR4I_N1Bhv", + "outputId": "ff7fff3f-bfdd-4d43-c08b-152f4be31e9f" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "<BarContainer object of 24 artists>" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9EAAAGsCAYAAADaEyRFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAff0lEQVR4nO3dfYxddZ348c/QobeVbQem0GlnmSkVkSKU4kIZWVi2DQ1lFguluoJBMhbjKgywZQBlspYHnwZwYyrStK6JFhOKqEuLoqKk0lYjBdvaXUjW0mKXzgptBZcZZpBL07m/Pwx3f0Mf+E4592HK65WcxHvuufP9hFwPeXPuPbemUCgUAgAAAHhLh1V6AAAAABguRDQAAAAkEtEAAACQSEQDAABAIhENAAAAiUQ0AAAAJBLRAAAAkKi20gO82cDAQDz//PMxZsyYqKmpqfQ4AAAAHOIKhUK88sor0djYGIcdduBrzVUX0c8//3w0NTVVegwAAADeYbq7u+PYY4894DFVF9FjxoyJiL8MP3bs2ApPAwAAwKGut7c3mpqaij16IFUX0W98hHvs2LEiGgAAgLJJ+UqxG4sBAABAIhENAAAAiUQ0AAAAJBLRAAAAkEhEAwAAQCIRDQAAAIlENAAAACQS0QAAAJBIRAMAAEAiEQ0AAACJRDQAAAAkEtEAAACQSEQDAABAIhENAAAAiUQ0AAAAJBLRAAAAkKi20gMAwKGm88Gnyrpe17ypZV0PAN7JXIkGAACARCIaAAAAEoloAAAASCSiAQAAIJGIBgAAgEQiGgAAABKJaAAAAEgkogEAACCRiAYAAIBEIhoAAAASiWgAAABIJKIBAAAgkYgGAACAREOO6LVr18acOXOisbExampqYuXKlXsd81//9V9x0UUXRV1dXRxxxBExffr02L59exbzAgAAQMUMOaL7+/tj2rRpsXjx4n0+/+yzz8Y555wTU6ZMidWrV8d//ud/xsKFC2PUqFFve1gAAACopNqhvqC1tTVaW1v3+/y//Mu/xD/8wz/EXXfdVdx3/PHH7/f4fD4f+Xy++Li3t3eoIwEAAEBZZPqd6IGBgfjxj38c733ve2P27Nkxfvz4aGlp2edHvt/Q1dUVdXV1xa2pqSnLkQAAACAzmUb0rl27oq+vL+6444644IIL4uc//3lccsklMW/evFizZs0+X9PZ2Rk9PT3Frbu7O8uRAAAAIDND/jj3gQwMDERExMUXXxzXX399REScdtpp8etf/zqWLl0af//3f7/Xa3K5XORyuSzHAAAAgJLI9Er00UcfHbW1tfG+971v0P6TTjrJ3bkBAAAY9jKN6JEjR8b06dNj8+bNg/Y/88wzMWnSpCyXAgAAgLIb8se5+/r6YuvWrcXH27Zti02bNkV9fX00NzfHTTfdFJdeemmce+65MXPmzHjkkUfiRz/6UaxevTrLuQEAAKDshhzR69evj5kzZxYfd3R0REREW1tbLFu2LC655JJYunRpdHV1xXXXXRcnnnhi/Pu//3ucc8452U0NAAAAFTDkiJ4xY0YUCoUDHnPllVfGlVdeedBDAQAAQDXK9DvRAAAAcCgT0QAAAJBIRAMAAEAiEQ0AAACJRDQAAAAkEtEAAACQSEQDAABAIhENAAAAiUQ0AAAAJBLRAAAAkEhEAwAAQCIRDQAAAIlENAAAACQS0QAAAJBIRAMAAEAiEQ0AAACJRDQAAAAkqq30AABA6XQ++FRZ1+uaN7Ws6wFAubkSDQAAAIlENAAAACQS0QAAAJBIRAMAAEAiEQ0AAACJRDQAAAAkEtEAAACQSEQDAABAIhENAAAAiUQ0AAAAJBLRAAAAkEhEAwAAQCIRDQAAAIlENAAAACQackSvXbs25syZE42NjVFTUxMrV67c77Gf/vSno6amJhYtWvQ2RgQAAIDqMOSI7u/vj2nTpsXixYsPeNyKFSti3bp10djYeNDDAQAAQDWpHeoLWltbo7W19YDH/OEPf4hrr702fvazn8WFF1540MMBAABANRlyRL+VgYGBuOKKK+Kmm26Kk08++S2Pz+fzkc/ni497e3uzHgkAAAAykfmNxe68886ora2N6667Lun4rq6uqKurK25NTU1ZjwQAAACZyDSiN2zYEF/72tdi2bJlUVNTk/Sazs7O6OnpKW7d3d1ZjgQAAACZyTSif/nLX8auXbuiubk5amtro7a2Np577rm44YYb4rjjjtvna3K5XIwdO3bQBgAAANUo0+9EX3HFFTFr1qxB+2bPnh1XXHFFzJ8/P8ulAAAAoOyGHNF9fX2xdevW4uNt27bFpk2bor6+Ppqbm2PcuHGDjj/88MNjwoQJceKJJ779aQEAAKCChhzR69evj5kzZxYfd3R0REREW1tbLFu2LLPBAAAAoNoMOaJnzJgRhUIh+fj//u//HuoSAAAAUJUy/4krAAAAOFRlemMxAIAD6XzwqbKu1zVvalnXA+DQ50o0AAAAJBLRAAAAkEhEAwAAQCIRDQAAAIlENAAAACQS0QAAAJBIRAMAAEAivxMNwLDnt4cBgHJxJRoAAAASiWgAAABIJKIBAAAgkYgGAACARG4sxjtCuW86FOHGQwAAcCgS0ZSMu+UCAACHGh/nBgAAgEQiGgAAABKJaAAAAEjkO9GHEDfPAgAAKC1XogEAACCRiAYAAIBEIhoAAAASiWgAAABIJKIBAAAgkYgGAACARCIaAAAAEoloAAAASFRb6QHgnajzwafKul7XvKllXQ8AAA5VrkQDAABAIhENAAAAiUQ0AAAAJBLRAAAAkGjINxZbu3ZtfOUrX4kNGzbECy+8ECtWrIi5c+dGRMTu3bvjc5/7XPzkJz+J3//+91FXVxezZs2KO+64IxobG7OeHQDgoLnJIwAHY8hXovv7+2PatGmxePHivZ579dVXY+PGjbFw4cLYuHFjPPjgg7F58+a46KKLMhkWAAAAKmnIV6JbW1ujtbV1n8/V1dXFo48+OmjfPffcE2eeeWZs3749mpubD27KKua/YgMAALxzlPx3ont6eqKmpiaOPPLIfT6fz+cjn88XH/f29pZ6JAAAADgoJb2x2GuvvRaf/exn46Mf/WiMHTt2n8d0dXVFXV1dcWtqairlSAAAAHDQShbRu3fvjo985CNRKBRiyZIl+z2us7Mzenp6ilt3d3epRgIAAIC3pSQf534joJ977rn4xS9+sd+r0BERuVwucrlcKcYAAACATGUe0W8E9JYtW+Kxxx6LcePGZb0EAAAAVMSQI7qvry+2bt1afLxt27bYtGlT1NfXx8SJE+PDH/5wbNy4MR5++OHYs2dP7NixIyIi6uvrY+TIkdlNDgAAAGU25Ihev359zJw5s/i4o6MjIiLa2tritttuix/+8IcREXHaaacNet1jjz0WM2bMOPhJAQAAoMKGHNEzZsyIQqGw3+cP9BwAAAAMZyX9iSsAAAA4lIhoAAAASFSSn7gCho/OB58q+5pd86aWfU0AAMiCK9EAAACQSEQDAABAIhENAAAAiUQ0AAAAJBLRAAAAkMjduQEYMnd1BwDeqVyJBgAAgEQiGgAAABKJaAAAAEgkogEAACCRiAYAAIBEIhoAAAASiWgAAABI5HeigapS7t8f9tvDAAAMhYgG2I9yB32EqAcAqHYiGgAA4B3EJ//eHhENMEz4Fx4AQOW5sRgAAAAkEtEAAACQSEQDAABAIhENAAAAiUQ0AAAAJBLRAAAAkEhEAwAAQCIRDQAAAIlENAAAACQS0QAAAJCottIDAAAQ0fngU2Vdr2ve1LKuB3CocCUaAAAAEg05oteuXRtz5syJxsbGqKmpiZUrVw56vlAoxC233BITJ06M0aNHx6xZs2LLli1ZzQsAAAAVM+SI7u/vj2nTpsXixYv3+fxdd90Vd999dyxdujSeeOKJOOKII2L27Nnx2muvve1hAQAAoJKG/J3o1tbWaG1t3edzhUIhFi1aFJ/73Ofi4osvjoiI73znO9HQ0BArV66Myy677O1NCwAAABWU6Xeit23bFjt27IhZs2YV99XV1UVLS0s8/vjj+3xNPp+P3t7eQRsAAABUo0wjeseOHRER0dDQMGh/Q0ND8bk36+rqirq6uuLW1NSU5UgAAACQmYrfnbuzszN6enqKW3d3d6VHAgAAgH3KNKInTJgQERE7d+4ctH/nzp3F594sl8vF2LFjB20AAABQjTKN6MmTJ8eECRNi1apVxX29vb3xxBNPxFlnnZXlUgAAAFB2Q747d19fX2zdurX4eNu2bbFp06aor6+P5ubmWLBgQXzxi1+ME044ISZPnhwLFy6MxsbGmDt3bpZzAwAADAudDz5V9jW75k0t+5rvFEOO6PXr18fMmTOLjzs6OiIioq2tLZYtWxaf+cxnor+/P/7pn/4pXn755TjnnHPikUceiVGjRmU3NQAAAFTAkCN6xowZUSgU9vt8TU1NfP7zn4/Pf/7zb2swAAAAqDYVvzs3AAAADBciGgAAABKJaAAAAEgkogEAACCRiAYAAIBEIhoAAAASiWgAAABIJKIBAAAgkYgGAACARCIaAAAAEoloAAAASCSiAQAAIJGIBgAAgES1lR4AAIDq0vngU2Vfs2ve1LKvCXAwXIkGAACARK5EAwBQ1cp9ZdxV8YNTbZ9g8L6hVFyJBgAAgEQiGgAAABKJaAAAAEgkogEAACCRiAYAAIBEIhoAAAASiWgAAABIJKIBAAAgkYgGAACARCIaAAAAEoloAAAASFRb6QEAAGC46HzwqbKv2TVvatnXBPZPRAMAwDBV7qgX9ODj3AAAAJBMRAMAAEAiEQ0AAACJRDQAAAAkyjyi9+zZEwsXLozJkyfH6NGj4/jjj48vfOELUSgUsl4KAAAAyirzu3PfeeedsWTJkrj33nvj5JNPjvXr18f8+fOjrq4urrvuuqyXAwAAgLLJPKJ//etfx8UXXxwXXnhhREQcd9xxcf/998eTTz6Z9VIAAABQVpl/nPtv//ZvY9WqVfHMM89ERMR//Md/xK9+9atobW3d5/H5fD56e3sHbQAAAFCNMr8SffPNN0dvb29MmTIlRowYEXv27IkvfelLcfnll+/z+K6urrj99tuzHgMAAAAyl/mV6O9973tx3333xfLly2Pjxo1x7733xr/+67/Gvffeu8/jOzs7o6enp7h1d3dnPRIAAABkIvMr0TfddFPcfPPNcdlll0VExNSpU+O5556Lrq6uaGtr2+v4XC4XuVwu6zEAAAAgc5lfiX711VfjsMMG/9kRI0bEwMBA1ksBAABAWWV+JXrOnDnxpS99KZqbm+Pkk0+O3/72t/HVr341rrzyyqyXAgAAgLLKPKK//vWvx8KFC+Pqq6+OXbt2RWNjY3zqU5+KW265JeulAAAAoKwyj+gxY8bEokWLYtGiRVn/aQAAAKiozL8TDQAAAIcqEQ0AAACJRDQAAAAkEtEAAACQSEQDAABAIhENAAAAiUQ0AAAAJBLRAAAAkEhEAwAAQCIRDQAAAIlENAAAACQS0QAAAJBIRAMAAEAiEQ0AAACJRDQAAAAkEtEAAACQSEQDAABAIhENAAAAiUQ0AAAAJBLRAAAAkEhEAwAAQCIRDQAAAIlENAAAACQS0QAAAJBIRAMAAEAiEQ0AAACJRDQAAAAkEtEAAACQSEQDAABAIhENAAAAiUQ0AAAAJBLRAAAAkEhEAwAAQKKSRPQf/vCH+NjHPhbjxo2L0aNHx9SpU2P9+vWlWAoAAADKpjbrP/i///u/cfbZZ8fMmTPjpz/9aRxzzDGxZcuWOOqoo7JeCgAAAMoq84i+8847o6mpKb797W8X902ePHm/x+fz+cjn88XHvb29WY8EAAAAmcj849w//OEP44wzzoh//Md/jPHjx8f73//++OY3v7nf47u6uqKurq64NTU1ZT0SAAAAZCLziP79738fS5YsiRNOOCF+9rOfxVVXXRXXXXdd3Hvvvfs8vrOzM3p6eopbd3d31iMBAABAJjL/OPfAwECcccYZ8eUvfzkiIt7//vfH008/HUuXLo22tra9js/lcpHL5bIeAwAAADKX+ZXoiRMnxvve975B+0466aTYvn171ksBAABAWWUe0WeffXZs3rx50L5nnnkmJk2alPVSAAAAUFaZR/T1118f69atiy9/+cuxdevWWL58efzbv/1btLe3Z70UAAAAlFXmET19+vRYsWJF3H///XHKKafEF77whVi0aFFcfvnlWS8FAAAAZZX5jcUiIj74wQ/GBz/4wVL8aQAAAKiYzK9EAwAAwKFKRAMAAEAiEQ0AAACJRDQAAAAkEtEAAACQSEQDAABAIhENAAAAiUQ0AAAAJBLRAAAAkEhEAwAAQCIRDQAAAIlENAAAACQS0QAAAJBIRAMAAEAiEQ0AAACJRDQAAAAkEtEAAACQSEQDAABAIhENAAAAiUQ0AAAAJBLRAAAAkEhEAwAAQCIRDQAAAIlENAAAACQS0QAAAJBIRAMAAEAiEQ0AAACJRDQAAAAkEtEAAACQSEQDAABAIhENAAAAiUQ0AAAAJCp5RN9xxx1RU1MTCxYsKPVSAAAAUFIljejf/OY38Y1vfCNOPfXUUi4DAAAAZVGyiO7r64vLL788vvnNb8ZRRx1VqmUAAACgbEoW0e3t7XHhhRfGrFmzDnhcPp+P3t7eQRsAAABUo9pS/NHvfve7sXHjxvjNb37zlsd2dXXF7bffXooxAAAAIFOZX4nu7u6Of/7nf4777rsvRo0a9ZbHd3Z2Rk9PT3Hr7u7OeiQAAADIROZXojds2BC7du2Kv/mbvynu27NnT6xduzbuueeeyOfzMWLEiOJzuVwucrlc1mMAAABA5jKP6PPOOy+eeuqpQfvmz58fU6ZMic9+9rODAhoAAACGk8wjesyYMXHKKacM2nfEEUfEuHHj9toPAAAAw0lJfycaAAAADiUluTv3m61evbocywAAAEBJuRINAAAAiUQ0AAAAJBLRAAAAkEhEAwAAQCIRDQAAAIlENAAAACQS0QAAAJBIRAMAAEAiEQ0AAACJRDQAAAAkEtEAAACQSEQDAABAIhENAAAAiUQ0AAAAJBLRAAAAkEhEAwAAQCIRDQAAAIlENAAAACQS0QAAAJBIRAMAAEAiEQ0AAACJRDQAAAAkEtEAAACQSEQDAABAIhENAAAAiUQ0AAAAJBLRAAAAkEhEAwAAQCIRDQAAAIlENAAAACQS0QAAAJBIRAMAAEAiEQ0AAACJMo/orq6umD59eowZMybGjx8fc+fOjc2bN2e9DAAAAJRd5hG9Zs2aaG9vj3Xr1sWjjz4au3fvjvPPPz/6+/uzXgoAAADKqjbrP/jII48Merxs2bIYP358bNiwIc4999yslwMAAICyyTyi36ynpyciIurr6/f5fD6fj3w+X3zc29tb6pEAAADgoJT0xmIDAwOxYMGCOPvss+OUU07Z5zFdXV1RV1dX3Jqamko5EgAAABy0kkZ0e3t7PP300/Hd7353v8d0dnZGT09Pcevu7i7lSAAAAHDQSvZx7muuuSYefvjhWLt2bRx77LH7PS6Xy0UulyvVGAAAAJCZzCO6UCjEtddeGytWrIjVq1fH5MmTs14CAAAAKiLziG5vb4/ly5fHQw89FGPGjIkdO3ZERERdXV2MHj066+UAAACgbDL/TvSSJUuip6cnZsyYERMnTixuDzzwQNZLAQAAQFmV5OPcAAAAcCgq6d25AQAA4FAiogEAACCRiAYAAIBEIhoAAAASiWgAAABIJKIBAAAgkYgGAACARCIaAAAAEoloAAAASCSiAQAAIJGIBgAAgEQiGgAAABKJaAAAAEgkogEAACCRiAYAAIBEIhoAAAASiWgAAABIJKIBAAAgkYgGAACARCIaAAAAEoloAAAASCSiAQAAIJGIBgAAgEQiGgAAABKJaAAAAEgkogEAACCRiAYAAIBEIhoAAAASiWgAAABIJKIBAAAgkYgGAACARCIaAAAAEoloAAAASFSyiF68eHEcd9xxMWrUqGhpaYknn3yyVEsBAABAWZQkoh944IHo6OiIW2+9NTZu3BjTpk2L2bNnx65du0qxHAAAAJRFbSn+6Fe/+tX45Cc/GfPnz4+IiKVLl8aPf/zj+Na3vhU333zzoGPz+Xzk8/ni456enoiI6O3tLcVomcu/2lfW9Q70z6Xcs0RU1zzVNEtEdc1TTbNEVNc81TRLRHXNU02zRFTXPG/176hqmqeaZomornmqaZaI6prH/8erZ5aI6pqnmmaJqK55qmmWiOqaZzi03RszFgqFtzy2ppBy1BC8/vrr8a53vSt+8IMfxNy5c4v729ra4uWXX46HHnpo0PG33XZb3H777VmOAAAAAEPW3d0dxx577AGPyfxK9Isvvhh79uyJhoaGQfsbGhrid7/73V7Hd3Z2RkdHR/HxwMBA/OlPf4px48ZFTU1N1uNVhd7e3mhqaoru7u4YO3ZspceBg+J9zHDnPcyhwPuY4c57mGpRKBTilVdeicbGxrc8tiQf5x6KXC4XuVxu0L4jjzyyMsOU2dixY50sGPa8jxnuvIc5FHgfM9x5D1MN6urqko7L/MZiRx99dIwYMSJ27tw5aP/OnTtjwoQJWS8HAAAAZZN5RI8cOTJOP/30WLVqVXHfwMBArFq1Ks4666yslwMAAICyKcnHuTs6OqKtrS3OOOOMOPPMM2PRokXR399fvFv3O10ul4tbb711r4+xw3Difcxw5z3MocD7mOHOe5jhKPO7c7/hnnvuia985SuxY8eOOO200+Luu++OlpaWUiwFAAAAZVGyiAYAAIBDTebfiQYAAIBDlYgGAACARCIaAAAAEoloAAAASCSiy2zx4sVx3HHHxahRo6KlpSWefPLJSo8EyW677baoqakZtE2ZMqXSY8EBrV27NubMmRONjY1RU1MTK1euHPR8oVCIW265JSZOnBijR4+OWbNmxZYtWyozLOzHW72PP/7xj+91fr7gggsqMyzsQ1dXV0yfPj3GjBkT48ePj7lz58bmzZsHHfPaa69Fe3t7jBs3Lv7qr/4qPvShD8XOnTsrNDHsn4guowceeCA6Ojri1ltvjY0bN8a0adNi9uzZsWvXrkqPBslOPvnkeOGFF4rbr371q0qPBAfU398f06ZNi8WLF+/z+bvuuivuvvvuWLp0aTzxxBNxxBFHxOzZs+O1114r86Swf2/1Po6IuOCCCwadn++///4yTggHtmbNmmhvb49169bFo48+Grt3747zzz8/+vv7i8dcf/318aMf/Si+//3vx5o1a+L555+PefPmVXBq2Dc/cVVGLS0tMX369LjnnnsiImJgYCCampri2muvjZtvvrnC08Fbu+2222LlypWxadOmSo8CB6WmpiZWrFgRc+fOjYi/XIVubGyMG264IW688caIiOjp6YmGhoZYtmxZXHbZZRWcFvbtze/jiL9ciX755Zf3ukIN1eqPf/xjjB8/PtasWRPnnntu9PT0xDHHHBPLly+PD3/4wxER8bvf/S5OOumkePzxx+MDH/hAhSeG/+NKdJm8/vrrsWHDhpg1a1Zx32GHHRazZs2Kxx9/vIKTwdBs2bIlGhsb493vfndcfvnlsX379kqPBAdt27ZtsWPHjkHn5rq6umhpaXFuZthZvXp1jB8/Pk488cS46qqr4qWXXqr0SLBfPT09ERFRX18fEREbNmyI3bt3DzofT5kyJZqbm52PqToiukxefPHF2LNnTzQ0NAza39DQEDt27KjQVDA0LS0tsWzZsnjkkUdiyZIlsW3btvi7v/u7eOWVVyo9GhyUN86/zs0MdxdccEF85zvfiVWrVsWdd94Za9asidbW1tizZ0+lR4O9DAwMxIIFC+Lss8+OU045JSL+cj4eOXJkHHnkkYOOdT6mGtVWegBg+GhtbS3+71NPPTVaWlpi0qRJ8b3vfS8+8YlPVHAygHe2//+rB1OnTo1TTz01jj/++Fi9enWcd955FZwM9tbe3h5PP/20+6owbLkSXSZHH310jBgxYq87DO7cuTMmTJhQoang7TnyyCPjve99b2zdurXSo8BBeeP869zMoebd7353HH300c7PVJ1rrrkmHn744Xjsscfi2GOPLe6fMGFCvP766/Hyyy8POt75mGokostk5MiRcfrpp8eqVauK+wYGBmLVqlVx1llnVXAyOHh9fX3x7LPPxsSJEys9ChyUyZMnx4QJEwadm3t7e+OJJ55wbmZY+5//+Z946aWXnJ+pGoVCIa655ppYsWJF/OIXv4jJkycPev7000+Pww8/fND5ePPmzbF9+3bnY6qOj3OXUUdHR7S1tcUZZ5wRZ555ZixatCj6+/tj/vz5lR4Nktx4440xZ86cmDRpUjz//PNx6623xogRI+KjH/1opUeD/err6xt0NW7btm2xadOmqK+vj+bm5liwYEF88YtfjBNOOCEmT54cCxcujMbGxkF3PoZKO9D7uL6+Pm6//fb40Ic+FBMmTIhnn302PvOZz8R73vOemD17dgWnhv/T3t4ey5cvj4ceeijGjBlT/J5zXV1djB49Ourq6uITn/hEdHR0RH19fYwdOzauvfbaOOuss9yZm+pToKy+/vWvF5qbmwsjR44snHnmmYV169ZVeiRIdumllxYmTpxYGDlyZOGv//qvC5deemlh69atlR4LDuixxx4rRMReW1tbW6FQKBQGBgYKCxcuLDQ0NBRyuVzhvPPOK2zevLmyQ8ObHOh9/OqrrxbOP//8wjHHHFM4/PDDC5MmTSp88pOfLOzYsaPSY0PRvt6/EVH49re/XTzmz3/+c+Hqq68uHHXUUYV3vetdhUsuuaTwwgsvVG5o2A+/Ew0AAACJfCcaAAAAEoloAAAASCSiAQAAIJGIBgAAgEQiGgAAABKJaAAAAEgkogEAACCRiAYAAIBEIhoAAAASiWgAAABIJKIBAAAg0f8DR9r9YA/wjQoAAAAASUVORK5CYII=", + "text/plain": [ + "<Figure size 1200x500 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = plt.figure(figsize=(12, 5))\n", + "ax = fig.gca()\n", + "\n", + "#Graficamos los datos\n", + "plt.bar(pm_data_h.index, pm_data_h['mean'], alpha=0.6)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "id": "TYooUEOydqCN" + }, + "outputs": [], + "source": [ + "import seaborn as sns" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "id": "scDUGHEqe-6E" + }, + "outputs": [], + "source": [ + "pm_data_hmax = pm_data.groupby(pm_data['hora']).max()\n", + "pm_data_hmin = pm_data.groupby(pm_data['hora']).min()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 513 + }, + "id": "GSkr8cRhLDx5", + "outputId": "be93d45f-4c15-4718-a918-dc65188c3358" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABOkAAAHwCAYAAADzQDuGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1xT9/c/8FcSRthLcSDgVgQHiora1i7raK3WFamzjlpnq1LtcC9a66qK1p9tnVTj1latVVur1WqtgBXEWRWMA4UqIISV9+8Pv/d+EpJAgJjkHc/z8chDufPc3Htz7z33PSSMMQZCCCGEEEIIIYQQQojVSK0dACGEEEIIIYQQQgghzztK0hFCCCGEEEIIIYQQYmWUpCOEEEIIIYQQQgghxMooSUcIIYQQQgghhBBCiJVRko4QQgghhBBCCCGEECujJB0hhBBCCCGEEEIIIVZGSTpCCCGEEEIIIYQQQqyMknSEEEIIIYQQQgghhFiZg7UDIIQQwp8dO3YgKSkJ9erVw6BBg6wdDiGEEEIIIYRwj5J0hBBCyuXEiRPo378/vL29cerUKWuHQwghhBBCCCF2gaq7EkIIMdmDBw8QFRUFR0dH7Nu3Dw0bNix1+tzcXEyfPh0hISFwcXGBRCKBRCJBYmIiAKB27dqQSCRYv379sw/eQuxxm4wZOnQoJBIJhg4dau1QrKqy3wN9j8SW3Lx5U/ytvnnzprXDIRw4duyYeMwQQgipHErSEUIIZzQaDXbv3o1hw4ahSZMm8PPzg6OjI3x8fBAWFoZBgwYhLi4OWVlZZl/vwIEDcffuXcTFxaF9+/ZlzqNQKDBv3jxcunQJEokE1apVQ7Vq1eDo6GjW2Agh5rdnzx7MmjULe/bssXYohCNCskb7I5VK4eXlhZYtW2LKlClITU01OK/wkkMikcDHxwdqtbrUdd27dw+Ojo7iPC+//LLB6U6cOIGvv/4aQ4YMQVhYGBwcHEqd3pCCggIsWbIErVu3hpeXF9zd3dG0aVPMnDkT2dnZJi+HEEIIKQ1VdyWEEI6cOXMGQ4YMweXLl8VhMpkMXl5eePLkCZKTk5GcnIzNmzfD09MTs2bNwsSJE82y7gULFuCXX37B0qVL0atXrzKnv3TpEn766ScAgFKpRL9+/fSmqVevHuRyOby8vMwSI7GsGjVqoFGjRqhRo4a1Q+GarX6Pe/bswYYNGzBkyBD07NnT2uEQzri5ucHd3R0AUFxcjIcPHyIhIQEJCQlYvXo1lEolunXrZnT+R48eYffu3YiKijI6zYYNG1BUVFRmLC+99FL5N0DLf//9h9deew0JCQkAAGdnZ8hkMiQlJSEpKQkbNmzA77//juDg4EqthxBCCKGSdIQQwok9e/bgpZdewuXLl+Hn54e5c+ciKSkJhYWFyMjIgFqtxv3797Fjxw706NEDOTk5UCqVZlv/tGnTwBjDRx99ZNL0Fy5cAAD4+fkZTNABwNGjR3Hp0iW888475gqTWFBMTAwuXbqEmJgYa4fCNfoeiT2Kjo7GvXv3cO/ePTx48ABZWVn45ptv4OHhgZycHCgUCty/f9/gvLVr1wYArFu3rtR1CM0KCNMb4+LigjZt2uCDDz7A2rVr0blz53Jty4ABA5CQkABPT08olUrk5ubiyZMn+OWXX1CjRg3cunUL3bt3R3FxcbmWSwghhJRESTpCCOHApUuXMHDgQBQUFKBZs2b4559/MG3aNISGhuq0AePv74/evXtjz549+Oeff9CuXTurxZybmwsAYkkKQgghzy8PDw+MGjUKS5cuBQDk5OQYbbuzd+/ecHNzw9GjR41WjT116hQuXbqEOnXqlFlSLjs7G2fOnMHq1asxYsQIVK9e3eS4jx49ioMHDwIA1qxZg379+kEqffoI1alTJ+zcuRPA0xdTz0NbpIQQQp4tStIRQggHpk2bhidPnsDNzQ27d+9GzZo1y5wnNDRUfBjSNmvWLJ22eHbu3Ik33ngD/v7+kEqlmDVrljhtUlISZs2ahVdffRX16tWDi4sLPD09ER4ejmnTpuHhw4dGly80gn/r1i2dtom0G8c3pZOFM2fO4L333kP9+vXh6uoKT09PNGnSBMOGDcOhQ4f0pj99+jSmTp2KF198EcHBwZDL5fD29kZkZCS+/PJL5OTklPndlSYvLw/z5s1DkyZN4OLiAn9/f3Tr1g1Hjx41eRn79+9H7969ERAQAGdnZ/j4+OCll17C6tWrUVBQUKn40tLSMGXKFLRo0QJeXl5wcXFBvXr10KNHD2zcuFGvjacbN27gyy+/RJcuXdCwYUOxilqTJk3w0UcfGX1ABkrv8OC///7Dd999h379+qFp06bw9fWFXC5HcHAw3n33XZw+fbrU7Thz5gwGDBiAOnXqQC6Xw83NDcHBwejYsSPmzp2L27dvm/yd9O/fHxKJpNSqdQBw7do1SKVSSCQSHDt2zOTla2OM4ZtvvkGbNm3g6ekJT09PvPDCC/jhhx+MzlNWxxGMMaxbtw7t2rWDh4cHvLy80LZtW/y///f/wBgzqeOJXbt24a233kK1atXg5OSEatWq4a233sLu3bv1phUagd+wYQOAp1UKS7YxZuj7SUpKwvvvv48GDRrA1dUV7u7uaNasGT7//HODvxUCc+5r4GnpKolEIpauOnz4MLp27YqqVavCxcUFoaGhmDdvntH2zgoLC7Fv3z68//77iIiIQI0aNeDk5AR/f3907twZW7ZsAWPM4LwlG9BPSEjAgAEDUKtWLTg6Ouq0gXbv3j2sWLECPXr0QEhIiHi+1q9fHyNGjEBycnK5ttuQBw8eYNq0aQgPD4eXlxfkcjnq1q2L4cOHm2X5FTFgwAAxyXX27FmD07i7u6Nv377QaDTicVjS999/D+B/509pZDJZheMV1l+3bl0oFAq98e3atRP368aNG8u9/JdffhkSiQSzZs1CQUEBvvjiCzRr1gxubm7w8fFBp06dxCRhacpzjgu0fzsYY/j222/xwgsvwM/Pr1IdIF27dg3Dhg1DYGAgnJ2dUatWLYwcORIqlarU+e7du4ePP/4YoaGhcHNzg5ubG0JDQzFlyhSjpS5LdnRy/fp1vP/++6hTpw6cnZ11SllW9rpECCEWwQghhNi0O3fuMIlEwgCwDz74oNLLmzlzJgPAOnbsyCZNmsQAMIlEwnx8fJhMJmMzZ84Upw0ODmYAGAAml8uZr6+vGAsAFhAQwC5duqSz/K+++opVq1aNeXp6MgBMKpWyatWqiZ8JEyboLX/dunV6cRYVFbEJEyaI6wLA3NzcmI+PjxiDl5eX3nza07u6ujIfHx+dYU2aNGH379+v0HeXkZHBwsPDxWU5ODgwb29v8TtctWpVqduUm5vL+vTpoxOPp6enzncaGRnJMjMzKxTfxo0bmVwuF5fl5OTE/Pz8mIODgzgsISFBZ56OHTvqTS+VSsVhXl5e7MSJEwbXN2TIEAaADRkyRG+ccJwBYDKZjPn4+DBnZ2dxmEQiYV9//bXB5a5fv17nO3F2dhaPJ+Fj6Ps15rfffhOPxVu3bhmdburUqQwAa9iwocnLZkz3e1AoFOK6tI9VAOy9995jGo2m1PlLKioqEpepfa4K+ygqKqrU+fPz83XmF+LS3sdRUVGsoKBAnOfkyZOsWrVq4rEkl8t1zuFq1aqxkydP6qznyy+/1Fmmq6src3JyEv+uUaMGi4+P14vP3PuaMcbWrVvHALDg4GAWGxsrLt/b21vnXAgPDzd4rgnHi/Y56uHhoTOsb9++rLi4uNR5d+zYwRwdHcVlyOVy1rFjR3FaYb8JvyW+vr468Tk7O7MdO3aUa9u1HT58WPx9AsAcHR2Zm5ubzvm+YcMGvflu3LghTnPjxo1yr1eYV/taUlLVqlUZANapUyed4cLv58yZM9nvv//OALC6devqnTdPnjxhHh4eTCqVsps3b4rfpfb3W5ryTF+9enUGgI0ZM8boNF9++aV4fuXm5poUg0D4Df7000/Ziy++qHdtKev7rMg5LhC+h8GDB7PevXvrzW/quad93P/666/M3d2dAWAeHh46x3TNmjXZ7du3DS7j2LFjOtvs5uamc7z6+PgYvBZpH69xcXHiul1dXZmbmxsLDg4Wp63MdYkQQiyFknSEEGLj4uLixBvIAwcOVHp5wk2qcCM7depUlp6ezhhjTK1Ws5s3b4rTDh48mK1fv14nsZGfn8+OHDnC2rRpwwCwli1bGlyP9oOyMaUltKZMmSJu97Bhw9jly5fFcY8ePWJ79uxhCoVCb77u3bszpVLJ7t69Kw7Lzc1lu3btYo0aNWIA2DvvvGM0ptK888474sPzN998w/Ly8hhjjN28eZO98847zNHRkbm6uhrdpoEDB4oPnXFxcezx48eMMcby8vLY3r17Wd26dRkA1rNnz3LH9tNPP4nJiA4dOrATJ06ISYT8/Hx24sQJNnLkSJacnKwz34cffshiY2PZlStXxOkLCwvZmTNnWJcuXcQHK0MPnqUlh9asWcNmzpzJ/v77b5afn88YY0yj0bB///2Xffjhh0wikTCZTKaXuBEevgGwgQMHsmvXronjcnJy2N9//80+/vhjtn///nJ9PyEhIQwAmzFjhsHxBQUFrFq1agwAW7RoUbmWLXwPXl5eTCKRsLlz54r7Nj09nY0bN048lg09AJb2PcbExIjzTpo0iT18+JAxxtjjx4/ZggULxKSdsfknT54sPnxOnz6d/ffff4wxxjIzM9lnn30mLnvq1Knlikvbt99+K/6mzJ8/Xzz3ioqK2N9//81effVVBoDVqlWLZWdni/M9q30t/Pa4uroyR0dH1rdvX5aamsoYe/pbsHr1avHB3NBvwZkzZ9ioUaPY4cOHxf3I2NMk/ddffy0mEQ3tS+1khbu7O+vWrRtLSUkRx1+5ckX8/9y5c9lXX33FLly4wAoLCxljjBUXF7OkpCQ2YMAAMVGhUqnKtf2MMfbPP/8wFxcXBoCNHDmSXbx4kRUVFTHGGLt16xYbM2aMmAw6e/aszrzPOkmXk5Mj/laV/A3XTtIxxlj9+vUZAPbbb7/pTLd+/XoGgL3++uuMsfIl3coz/cOHD8XtWbVqldHp9u/fL0537tw5k2IQCEk6Ly8vvWtLamqqzoudvXv36s1vjnPc3d2dOTg4sEWLFonHfHZ2Nrtz545J26B93Pv4+LC3335bPO7z8/OZUqkUz/VBgwbpzZ+amiom6Jo0acL++OMPcdzx48fFa7evr69ekk/7eHV3d2dt27bVOaa17x0qel0ihBBLoiQdIYTYuM8//1y8ATX1hrk02m+SJ02aVOHlZGdni0kNQ2+3K5Oku3z5slgKYMqUKRWOsaTbt28zZ2dnJpFISi1RZciZM2fE7+27777TG19UVMReeOEFcZqS23T8+HEGgPn7+4sJg5LS0tLEkgMlS7yVprCwkNWpU4cBYC+88IL48FFZRUVFrFmzZgwA27Rpk954U5M4howdO5YBYMOHD9cZLnzPbm5uYuLCHJYtWyYmioRkhbYdO3aICdgHDx6Ua9naJaKmT59ucBohQevr6ys+gJecv+T3mJOTIyaESn5PAu3zueT8t2/fFkuxfPrppwbnF0rTOjo66v2+mLJ/s7KyxIfrn3/+2eA0hYWFrFWrVgwAW7p0qTj8We1r4bdHSMIYKvEmJBYBsL/++qtcy9++fTsDwOrVq6c3TjtZ0aZNG4PHmqnefPNNBoDNnTu33PMKiVFj+50xJpZU7tGjh87wZ52k++qrr8RptI8HxvSTdPPmzWPA05Je2l566SWx5BRjzy5J988//5SaIBMkJiaK0/34448mxSDQLs1s6NpSXFwsbm9oaKjOOHOd4wDY8uXLyxW3Nu3j/pVXXjF4zi1fvpwBYC4uLnrn+wcffCAm+LRfsAnS0tLE38KxY8fqjNM+XoODg3VeBJSXsesSIYRYErVJRwghNi4jI0P8v6+vr8Fprl27hurVqxv8nDp1yuA8UqkUU6dOrXBc7u7u6NixIwDgjz/+qPByDNmwYQM0Gg38/Pwwe/Zssy03ICAAzZs3B2PM6PdizNatWwEAgYGBeO+99/TGy2QyTJ8+3ej83333HYCn7TEFBgYanKZWrVp45ZVXAMBge3vG/Pbbb7hx4wYAYOnSpXBycjJ53tLIZDJ06dIFgPn38Ztvvmlwud7e3gCAgoICnWO/soYMGQJXV1fcvn0bBw4c0Bu/du1aAECvXr1QpUqVCq3DxcUF0dHRBsfNmDEDAJCZmYnDhw+btLxffvkFWVlZAIDPP//c4DSTJ0+Gq6urwXE7d+5EUVER5HI5PvnkE4PTTJs2Dc7OzigsLMSOHTtMiqvkOh49eoTw8HCjPWY6ODggKioKgO5x/az2tbZp06aJ7Z9pe++991CrVi0A/zu3TSUcu9evX8e9e/eMTvfxxx9Xqi00Y+dIWW7evIlff/0VDg4ORo9HABg8eDAA4MiRI8+8V9Li4mJcu3YNs2fPxrRp0wA8vZ4NGTKk1PmGDBkCqVSKHTt2IDs7G8DT7/3EiRPw9vZGr169nmncwjoBGD3PSo7Tnqc8jF1bpFKp+J0lJyeLPacD5jvHfXx8MGrUqArFXdJnn31m8Jzr0aMHgKftul69elUczhjDtm3bAAAffPCBwU49atWqhQ8++ABA6efruHHjKtVZVUXPOUIIMSdK0hFCiB0oKirC/fv3DX6MdURQv359+Pv7l7nsn376CQqFAnXr1oWbm5tO4/HCjXV5G3Yvi5BA69SpE+Ryebnm1Wg0+OGHH/D2228jKCgILi4uOjH/9ddfFYr577//BvC/Rr4Neemll+Dg4GBw3MmTJwE8TdYZS6hWr14dR44cAfC0ww1TCd9X9erVERERYfJ8ghMnTmDo0KFo3Lgx3N3ddb6vhQsXAqjYPv73338RHR2NVq1awdvbGzKZTFyu0IlDyeXWq1cPjRs3RmFhIdq2bYsvv/wSiYmJlU4ieHt7i42+Cwk5wa1bt8TE2fvvv1/hdURERMDT09PguAYNGohJIeFYKkt8fDwAICgoCHXq1DE4jYeHB1q1amVwnLCe1q1bG43Lx8dHPGZMjUubcFynpKSUelzPmTMHgO5x/az2tcDBwQEvvviiwXFSqVRs7N/QdmdnZ+Orr75Cx44d4e/vDycnJ/HY1U7IlHZedOjQocwYz58/jzFjxqBZs2bw9PQUOy6RSCQYM2ZMmeswRNgnGo0GTZo0MbpPhAT8kydPnkmSdPbs2eK2ODg4oEGDBpg1axby8/NRtWpV7N27Fz4+PqUuo1atWujUqRNyc3OhVCoBAOvWrQNjDP379y/39cGWlXZtefHFF8Vri/bxaq5zvHXr1mZ7udO2bVuDw7U7vMrMzBT/f+PGDfHv119/3ehyO3XqBODpi0vhpVRJppxzFbkuEUKIJRl+kiCEEGIz/Pz8xP9nZmaiRo0aetM0btxYp7fBmzdvGn2oF5SVoNNoNBg4cCC2bNkCAJDL5ahTpw68vb3Fm/lLly7h/v37ePLkicnbYwqhdEpwcHC55svNzcVbb72F3377TRzm5OQEX19fODo6Anj6HRYWFpY75vT0dABPS+MZI5fL4efnZ7AXujt37gAAsrKyxNJRZW2LqSr6fQHA1KlTxUQc8LT0nI+Pj7iPc3Jy8OTJk3J/X7t370ZUVBTy8/PFYZ6enpDL5ZBIJCgoKMB///2nt1yZTIatW7finXfewY0bN/DJJ5/gk08+gaurK9q3b49evXqJpeLK64MPPsC6detw4MABqFQqcV9+++230Gg0aNSokU7vm+VV2rEhjL99+7Z4LJXlwYMHAFBmb87G1mvKMQtATB6aGpc24bhWq9VGe0vVpn1cP8t9DQBVqlSBs7Oz0fHC91Jyu69cuYLXXntN50Hd1dUV3t7eYgkh4Rwv7bwo6zd25cqV+PDDD6HRaAAAEokEXl5eYsx5eXnIysoq97kn7BONRmO0R8ySyvN7Yyqhp2jgaVLU3d0ddevWxWuvvYZhw4bpXNtKI/TkvW7dOgwbNkzsQXXYsGFmj7kkDw8P8f+lfUfa47TnKQ9Try3ax6u5znFTXtiZytj2a7/AKiwsFP+vHVNp2yFsgzCPoXucsrajotclQgixJCpJRwghNq5Jkybi/xMTE8223LKqYX333XfYsmULXFxcsHHjRjx+/BgXL17EqVOncOzYMRw7dkx8662dIDQHY6UJyjJ//nz89ttvcHFxwdKlS3Hr1i2o1WpkZGTg3r17uHfvnviW39wxl0UoHbR69Wqwp23ClvpZv369ycuu6Pd1+PBhMUE3ZswYXLhwAfn5+cjMzBS/r4kTJwIo3/eVkZGBoUOHIj8/H6+++iqOHTuG3NxcPH78GPfv38e9e/ewfft2o/M3b94cly5dws6dO/H+++8jLCwMeXl5OHLkCMaMGYPGjRvrVPkyVZs2bdCyZUsUFxeL1Y+Li4uxbt06AMDIkSPLvUxLqOj+tQThuFYoFCYd1zdv3tSZ/1nt68p47733cPv2bdSuXRvbt29HRkYGnjx5gvT0dNy7dw8qlUqctrTzorTf2JSUFHz00UfQaDTo27cv/vrrL6jVavz333/iubdkyZIy12GIsE+qVatm0j5hjKF27drlWocpoqOjxW25c+cOrly5gp9//hkff/yxyQk64Gk1SR8fH5w6dQqxsbFIS0tDaGgoWrdubfaYS9JOkGvv95K0x5WVVLdFlamWbUtK247KXpcIIcRSKElHCCE27pVXXhEf0vft22ex9QrtvowePRqDBg0yWBWmtIeWyhDapClPlU/gfzHPmDEDH330EYKCgvQSHKW1IVUa4Q19aducn59vtNpYRbfJFJX9vjp37ozY2FiEhYXpPeRU5Ps6cOAAsrKy4OPjgx9//BEdO3aEi4tLuZbr5OSEXr16Yc2aNbhw4QIePHiAb775Br6+vkhLSyuzLStjhHaNvv/+e2g0GrFUnbOzc4WXKSjrfBDGm1pqpWrVqgD+VzKqvOsV1lNW1S1hfEVK05jjuH5W+/rhw4dGq/sDhvdHWlqaWH18y5Yt6NOnj15boBX9DdG2Y8cOFBcXIyQkBFu3bjVY3bCi6xH2ycOHD+2iRJCzszPeffddABDb2DPUdtuz4OfnJ36fSUlJRqcTxkmlUoSEhFRoXaZeW7SPV0uc48+adkylbYf2uIpshzmuS4QQYgmUpCOEEBtXo0YNsXHsTZs2GW2LxdzS0tIAPG1Ly5BHjx7hzJkzz2Td7du3B/C0pJcpVegEQszh4eEGx9+8eRPXrl2rUExCmz6///670ZItx48fR1FRkcFxQls5P/30U4XWXxrh+7p371652hUr6/tijOHXX38tdzzCchs1amS0qqLQ9p6p/Pz8MGrUKHz55ZcAgISEhAq1o/Xuu+/C09MTt27dwqFDh8zSYYTg77//Rk5OjsFx165dEx8yTW03sGXLlgCeJsBKlkAT5OTk4Ny5cwbHabdD9fjxY4PTPHr0SKddK21C1c7SSnIJx/W5c+dw9+5do9OVh7n2dVFREU6cOGFwHGMMv//+OwDd/SEcu4Dx86K8x64hwnqaN29usJH9yqxH2CfFxcU4ePBgxQK0MULV1oKCAjg4OGDQoEEWW7fQFtqhQ4eMngs///wzAOCFF17QS/yYqrRry4kTJ8Rri/bxWtlz3BbUqVNHTIQfPXrU6HTC+eDn51dmcx6GPIvrEiGEPAuUpCOEEA7MmzcPbm5uePLkCXr27FlmyRpz8PLyAgCjCYCZM2ciLy/vmax76NChkMlkyMjIwMyZM02eT4j5/PnzBscb6/3OFEKnA6mpqdiwYYPeeI1Gg3nz5hmdX+iQICkpCatXry51XU+ePCm1BFBJr7zyCurWrQsAmDhxosnzlvV9ffPNN/j3339NjqPkcq9cuWIwyZqYmIgffvjB4LzabQUZov0AbCy5URo3NzfxAX/evHliT6+V6TBCkJeXh0WLFhkcJxwbvr6+4kN/Wd544w2xMfgFCxYYnGbp0qVG28rq3bs3HBwcoFarxYRXSQsWLEB+fj4cHR3Ru3dvnXHCuh89emQ0xr59+8Lb2xuFhYWYNGlSqQk9jUajs6xnva+Bp1XghTbftG3YsEF8aBfObeB/xy5g+LzIzs4u9Tw3lbCeCxcuGPzODh48iGPHjlVo2Q0aNBDbVvz888+NJm8E2o3426qWLVti9uzZmDx5MpYuXWrREmFCSc7r168brA555swZsR1Uocfciijt2iKc/02aNEHTpk3FcZU9x22BRCIRz8E1a9YYLM12584drFmzBgDEnqLLqzLXJUIIsShGCCGEC7t372ZOTk4MAPPz82Nz585lSUlJTKPRiNM8fvyYHTx4kL311lsMAAPAfvvtN53lzJw5kwFgHTt2LHV906ZNYwCYVCplK1euZGq1mjHG2J07d9jYsWMZAFalShUGgA0ZMkRv/nXr1jEALDg42Og6goODGQC2bt06vXGffPKJuA3Dhw9nV65c0dnOrVu3sp49e+rMM3DgQAaAeXh4sJ07d7LCwkLGGGP//vsvi4qKYhKJhPn4+DAAbObMmaVuvyFvv/02A8Dkcjn7f//v/4nfya1bt1ifPn2Yo6Mjc3V1NbpN7733HgPAJBIJ++ijj9j169fFcWq1mv3555/s448/Zn5+fiwtLa1csR04cIBJJBIGgL3wwgvsxIkTrLi4mDHGWH5+Pvvtt9/YgAEDWHJysjjPt99+K37Hc+bMYTk5OYwxxv777z82f/58JpPJmJ+fn9HjZciQIQb3/5UrV5hUKmUAWK9evdjt27fFOJRKJatataq43JK3IuvXr2ft27dn33zzjc73U1RUxH7++WdWq1YtBoC1a9euXN+PtgsXLojrBsAaNWpU4WUx9r/vwcvLi0mlUrZgwQKWlZXFGGPswYMHbMKECeK6li5danR+Q+fR/PnzxXk//vhjlpGRwRhjLCsri33xxRdMKpWKx7Sh+SdPniweczNmzGD//fcfY+zpPhbOcQBs6tSpevOuXbuWAWA+Pj4sJSXF6PavX79eXE7Xrl3Z6dOnxWOvuLiYXbx4kS1atIg1btyYbdq0SWe+Z7Gvhd8eV1dX5ujoyBQKhXg+5eXlsTVr1jC5XM4AsB49eujMW1xczIKCghgAFhoayv7++29x3KlTp1jLli11jt2Sv6+//fabweO6pCNHjojTjR49WtyvOTk57JtvvmGurq7iekr7DTXmwoULzN3dnQFgjRs3Znv27GF5eXni+Nu3b7ONGzeyV199lY0YMUJn3hs3boix3bhxo9zrFuatyG+scE0o77zCOWTsupadnc0ePHggfvr3788AsPbt2+sMz8zMNDh/165dxXN827Zt4vF95MgRVrNmTQaANW3alBUVFZUrbsYY69ixo7hs4doi7KvU1FTWr18/8TvdtWuX3vyVOcdL++0pD1OPe2PnTVpaGvP29hbPu5MnT4rj/vjjDxYSEsIAMF9fX/F6IjD1eK3MdYkQQiyJfoEIIYQjf/75J2vUqJFOgkFIpHh6euoM9/DwYHPnztV5MGPM9CTdf//9xxo3biwuTyqVijfRANgHH3xQ6g1+ZZN0RUVFYjJQ+Li7uzMfHx8xGeXl5aUzz82bN1m1atXE6R0cHJiXl5f494IFC8QHooo8QD58+JA1b95cXJ6jo6P4nUgkEhYbG1vqNuXn57MRI0YY3Cbh4UH4lHwQMcWGDRuYs7OzuAxnZ2fm5+fHHBwcxGEJCQni9AUFBezFF18UxwlJTCGWN998U3zIK0+SjjHGpk6dqrM9Xl5ezNHRkQFgderUYXFxcQYfhoTjpuQ2aH8/NWvWLDVpZIoXXnhBXN6iRYsqtSzt70GhUIjnpfaxCoANHjxYfLg3Nn9JhYWFrE+fPjrnoY+PD5PJZAwAGzRoEBs8eDADwEaNGqU3f35+vs5DvjC/9vcZFRXFCgoK9ObNzMxkVatWFaerUqUKCw4OZsHBwezPP//UmXb16tXiSwTt/Sbsc+GzefNmcZ5nta+1f3tWrlwp7gMfHx+deJo3b84ePnyoN/+PP/6oc864urqKyXc3NzedBFtFk3SMMTFRJHy8vb3F/dqqVSu2YsWKCifpGHua3KhevbretcLFxUVnvc9Dkk4YX9bH2HedmZnJwsPDxenkcrl4TAjz3bx5s3wb+3+Ea9Knn34q/i45OjqKyXfhM23aNIPzV+Yct5UkHWOMHTt2TOd67ebmxtzc3HTOj+PHj+vNV57jtaLXJUIIsSSq7koIIRyJjIzExYsXsXPnTgwdOhSNGzeGp6cnHj9+LDZYPWDAAGzYsAF3797FtGnTIJfLK7Qub29vnDp1Ch999BFq164NmUwGBwcHvPLKK9i6dWuZVTYrSyaTYeXKlfjjjz8wYMAABAUFobCwEIwxNGnSBMOHD8fOnTt15gkODsbff/+N4cOHiz3syeVyvPXWWzh06BA+/fTTSsXk5+eHU6dOYfbs2WjcuDGkUikcHBzQpUsXHD58GGPGjCl1ficnJ6xduxanTp3C0KFDUa9ePRQXFyMnJwf+/v54+eWXMWPGDPzzzz8ICAgod3yDBw/GpUuX8NFHH6FJkyZwcHBAXl4egoOD0bNnT2zatEmnUXNHR0f88ssvmDlzJho2bAhHR0cwxtCmTRusXr0a+/btq3Cvf1988QU2btyINm3awMXFBYWFhahfvz4+++wzJCQkGO0B8e2338bGjRvx3nvvoXnz5vDy8sLjx4/h4eGBNm3aYO7cuUhOTkbjxo0rFJegb9++AGCWDiO0bdmyBatWrUJ4eDiKiorg5uaGdu3aYePGjdiwYUO5q206ODhg27Zt+Pbbb8XvsqioCBEREfj222+xceNGsQqpt7e33vxOTk5QKpXYsWMHunbtCj8/P2RnZ8PPzw9du3bFrl278MMPP8DR0VFvXh8fHxw/fhz9+/dHQEAAHj9+jFu3bom9Jmv74IMPcPnyZURHR6N58+ZwdnbGo0eP4O7ujoiICIwfPx6HDx/WqapmiX09duxYHDp0CF26dIFUKoVUKkXjxo0xZ84c/PnnnwZ7GX3rrbdw/PhxvPnmm/D29kZRURGqVKmC9957D+fOncNrr71W4Xi0xcXFYdmyZWjWrBmcnZ1RXFyMpk2bIiYmBidPnoS7u3ullt+hQwdcuXIFixYtwksvvQRvb288evQIMpkMISEhGDhwoBgDKZ2Pjw9Onz6NRYsWoVWrVnB0dIREIkFYWJj4mx0cHFypdTg5OeHo0aNYsGABGjVqhPz8fHh5eeG1117D/v37MXfuXKPzVfQctyUdO3ZESkoKJk+ejJCQEGg0GjDGEBISgujoaKSkpODFF1+s1Doqel0ihBBLkjBWzn7dCSGEEEIA8SH//fffF9sL4kX37t3x008/ISoqiut2iBhjCAoKwu3bt7Fx40aLNqhvq9avX4/33nsPwcHBRjvcIMRWvPzyy/j9998xc+ZMzJo1y9rhEEIIsTIqSUcIIYSQClGpVACAatWqWTmS8vn333/FDiNGjx5t5WgqZ9OmTbh9+zYcHBzw+uuvWzscQgghhBBSCZSkI4QQQki5/f777zh16hQAoF27dlaOxnRZWVkYPXo0NBoN2rZtW+nqU5YQFRWFHTt24OHDh+Kw+/fv44svvsDIkSMBPK3qXKNGDWuFSAghhBBCzMDB2gEQQgghhB9r167FxIkT8eTJEwBAixYt0KlTJytHVbbo6Ghs374d9+7dQ0FBARwcHLhpi+vgwYPYunUrAMDV1RWOjo54/PixOP7FF1/E0qVLrRUeIYQQQggxEypJRwghhBCTPXnyBHl5eahRowaGDx+OX375BQ4Otv/O7+HDh0hNTYWTkxPatWuHn3/+GZGRkdYOyyTLly9H//790ahRIzg7OyM3NxdVq1ZFp06d8N133+Ho0aPw9PS0dpiEEEIIIaSSqOMIQgghhBBCCCGEEEKsjErSEUIIIYQQQgghhBBiZbZfP4UzGo0Gd+7cgYeHByQSibXDIYQQQgghhBBCCCFWxBhDdnY2atasCanUeHk5StKZ2Z07dxAYGGjtMAghhBBCCCGEEEKIDUlLS0OtWrWMjqcknZl5eHgAePrFP6tGnAsLC/HLL7/gjTfegKOj4zNZh7kxxjBnzhwkJibqjQsPD8f06dO5KHmoVqsRFRUFANiyZQvkcrmVIyq/Tz/9FJcuXRL/DgkJwYIFC6wYkWmEY+iff/6BRqMRh0ulUjRv3pybYwgANm7ciN27d4t/v/POOxg8eLAVIyof3uO/c+cOxo0bB+0mWSUSCVauXImaNWtaMTLT/fDDD9ixYwcYY5BIJOjTpw/effdda4dlMt7jB3SvBxs3bhSv/7ywh+sZ79vAe/wAv9cDe7qnAICzZ8/i//2//4f3338frVu3tnY49u3aNWDFiqf/Hz8eqF//6f/VauDxY8DfH+Do2LEXf/75J2JjYzF27Fi0a9fO2uE8d9RqNcaOHYvMzEz4+flh5cqVXF7TnrWsrCwEBgaWec9ISTozEy7onp6ezzRJ5+rqCk9PT26SdAAwadIkDBs2TGeYRCLBpEmT4OXlZaWoysfJyUnsxdDT05PLH58FCxZAoVCAMQapVIr58+dz0yvgpEmTMHLkSBQXF4vDHBwcuDqGAGDEiBE4cuQI8vLy4OLighEjRnB1LGnH7+rqylX8jDGsXbsWMplMb9zatWuxaNEiLh7Mhg4diuPHjyMjIwNVqlTB0KFDudkHAP/xA/rXA96SdPZwPeN9G3iPH3h6PTh27Biys7Ph4eHB1fXAXu4p1Go1vvvuOzx69Ajff/89OnTowM0+4FLLlsBrrwEnTgC7dwMzZgCOjsC//wKrVz9N2n38sbWjLLfTp0+LSS5eej7X9uqrr0KtVuPVV1/l6vnYXuzevRvZ2dlwcHBAVlYWDh48iCFDhlg7LJtV1rMGdRxBLCYgIECvpERUVBQ3JVfshZeXF6KioiCVStG/f3+ubkQDAgKgUCjEHzaJRIJ+/frRMWQFwoOloWSXLUtNTUVSUpLBcUlJSUhNTbVwRBUjl8sxYcIE+Pv7Y/z48dw9kPEePyHkKblcjujoaPj7+yM6Opqrc9le7imUSiUyMzMBABkZGVAqlVaO6DnQuzfg7Q2kpwP79+P06dP4+sMPcf/+faBGDWtHV25qtRqLFi1Ceno6Fi1aBLVabe2QnkunT5/GoEGDcPr0aWuHUi4qlQpKpVKsocIYg1KphEqlsnJk/KIkHbEohUIBPz8/AECVKlWgUCisHJH9YIxBrVaX+cnLy0OPHj2wZcsW9OvXz6R5tKsFWnsbevToAR8fHwCAr68vevbsaTPxmyouLg55eXkAgLy8PMTFxVk5ovJRKpXIyckBAOTk5NADgZVERkZi06ZNXL7xBviPnxDyFM/nskKhgK+vLwDAz8+Pu/tSQw/H27Zto4fjZ83FBXj3XcDTE/nVq2P58uVwu3sXScnJyOewbfK4uDhkZ2cDALKzs7m7L7UHarUay5cvR3p6OlasWMFNopQxhtjYWJ1mA4CnnWnGxsba3DMYL6i6K7EoofSEUJyapzeuti4/Px89evR4Jsveu3evRfZVebchIyMD/fr1K3M6S8VvCpVKhe3bt+sM2759O7p06YKAgAArRWU6Yw8Er7/+OhfxBwUFoX79+rh27ZreuAYNGiAoKMgKURFCCLEGuVyOMWPGYOnSpRg9erTN3CuYQng4NjZ8/vz5XDTfwK3mzYHGjbF161Y8fvgQ/mo18hnDnn/+gaJjR2tHZzLe70vthaESsTxUF01LS8O5c+f0hjPGcO7cOaSlpdG9dQVQko6YBWMM+fn5Jk3XuHFjrFixAs7Ozia9JXB2dqabDGIXGGNYvHix3lslYfjixYtt+li3lwcCHmIk5VdcXIzCwkKLrS8/Px9Vq1YFABQUFHDz1lugHb8p129bxPs2WDt+R0dHo00WlOe+TpjOlPs1uqczH2MPx8XFxfRwbCGqhw+hVCrhn5cHGWPIlcmw8eBBvNCrFxcJLsYYlixZYvC+dMmSJdy008s7nl+A16pVC25ubnjy5IneODc3t1J7MCXGUZKOmIU9lOLinbOzM/bu3VvmdGq1WqzOoVQqTfpunZ2dKx2fKUzZBluOvyypqalITk42OC45ORmpqakIDg62cFSms4cHgtTUVFy9etXguKtXr9r8PiD6GGO4d+8eHj16ZPH1jhgxAgBw7949SKV8tSCiHb9KpeLyQYz3bbCF+L29vVG9enW9dT+r+zpbu6dTq9VYtWoVcnJysGrVKkRERNhUfKUJDAxEq1atkJCQoFPVTCaTITw8HIEcVrvkifjikjG8cvcuAOA/JycwgJsXl6a000v3RM8W7y/A09LSDCboAODJkydIS0ujY6gCKElHiJ2QSCTlvrGUy+U2dTNa3m2wtfjtHT0Q2JYNGzZg69at6N+/PxdVIp4VIUHn7+8PV1dXi93MajQacV1BQUHcdaKiHX9wcDB3SUaA/22wZvyMMeTm5iI9PR0AUIPDxu7NQbuKWWZmJjdVzICn90xjx47FyJEjDQ635Qd7eyC+uGQMRf937l718uLqxaU9OXPmDDZu3Ag/Pz+88MIL1g7HZPbwAtye2Eovx5SkI2ZhD6W4CHnWAgMD4e7uLna6oM3d3d3mk1z28EDA+z4QPH78GFu2bAFjDFu3bkXPnj256qnZXIqLi8UEndApkaVoNBoxMSeXy7lM0mnHz1uCC+B/G6wdv4uLCwAgPT0d/v7+Osfws7qvs6V7Op6rmAmEHmqF6wGvPdTySPvF5e7gYATl5OCGhwdXLy6DgoIQGhpqsJZHWFgYN8khKhFrPUFBQQgLCzNYIpOnYwj4X+cdGRkZWLFiBVq0aGG144ivuxlis4QSUKZ8BKZOz8ODPyGmuH37tsHkEPC0l9Tbt29bOKLyEx4IhPOStwcCe9gHADB79mzxwVKj0WDOnDlWjsg6hDboXF1drRwJIXwSzp2S7Tk+q/s6W7mnK6uKGU89EvLeQy2vtF9QFkqluO7pCY1EwtWLS4lEgsmTJ+vFamy4rTJUIpYXxo4XXo4jiUSCSZMmcX8MAYY777AWStLZCMYY1Gp1mZ+8vDw8evQIubm5yMvLK3N6nm4yCLF3wtsyQxeyiIgIm39bJuD5gcAe9kF8fLzeW++kpCTEx8dbKSLr4+kmkBBb8ryeO0IVs+LiYp3h2lXMeCGXyzFhwgT4+/tj/Pjx3JQgsge8v7gEnm5D3759dYb17duXm20wVCJWqVRCpVJZOTLT8X4c8X4MAcZLVlvrOKLqrjaiIg30rl+/vsxpbK2BXkKeZ9rVRbUfDKRSKRdvywTCA4HQZgNPvzG87wONRoOYmBiD42JiYqBUKrmr8kcIIZbGexWzkiIjI63aftLzTKFQ4NChQ8jIyODuxaVgwIABOHjwILKzs+Hh4YEBAwZYOySTCCVftc9h4Om9Eg+dLmjj/TjSPoY8PT25OYYA2+y8g+7kCSHEggICAtC7d2+dYb179+bqbRPw9IFg06ZNXD4UGHpjqVAouNgHZ8+eRVZWlsFxWVlZOHv2rIUjIoRYmkQiwZ49ewAAN2/ehEQiQWJiolVj4g3vVcyI7bCHkoxyuRzR0dHw9/dHdHQ0N9sglIgtWXOMMUYlYi1M+xiaPHkyV/HbYslqKklnIyrSQO/mzZvh4eFR5nIJIYTo4vWNZUREBGQymd6NBPC0BEhERIQVoqoYW+lBS6DRaHDt2jU8fvwYXl5eqF+//jMrlVhWAmDmzJmYNWvWM1m3tdSuXRsfffQRPvroI2uHYlcCAwNx9+5dVKlSxdqhcIc6XSDmYg8lGXnchlq1asHT09Pgy0tPT0/UqlXLClFVHI/7QBuv8dtiyWpK0tkIoYHe8ijZYC8hxPapVCrs3LlTZ9iuXbvQpUsXbnqTswe8VtlVqVQGE3TA0zd+KpWKi560bKkHLQBISEjAhg0bkJKSArVaDblcjpCQEAwZMgTh4eFmX9/du3fF/yuVSsyYMQOXL18Wh7m7u5t9nc8CYwzFxcVwcLDc7WRBQQGcnJwstr7CwkI4OjpabH3lJZPJUL16dWuHwS1eX9gQQp52BlZa7YLbt29zcU9ErEu7KRxDw61RspqquxJCiIXYU29y9oDHKrvC2z5DeOn4ArCtHrQSEhIwZ84cnDt3Dr6+vmjQoAF8fX1x7tw5zJkzBwkJCWZfZ/Xq1cWPl5cXJBKJzrCtW7ciJCQEcrkcjRs3xqpVq8R5heqN27Ztw4svvggXFxe0bt0aV65cwdmzZxEREQF3d3d07doVDx48EOcbOnQoevbsidmzZ6Nq1arw9vbGjBkzUFBQIE4jtHlYp04duLi4oHnz5tixY4c4/tixY5BIJDh48CBatWoFZ2dn/PHHH7h+/Tp69OiBatWqwd3dHa1bt8aRI0fE+V5++WXcunULEydOhOT/ej8EgFmzZqFFixY6382yZctQu3Ztvbjnz5+PmjVrolGjRgCATZs2oU2bNggPD0eHDh0wYMAApKenl/q9165dG3PnzkVUVBTc3NwQEBCg95sskUiwevVqvP3223Bzc8P8+fMBAKtXr0a9evXg5OSERo0aYdOmTXrzrVmzBm+99RZcXV0REhKCP//8E9euXcPLL78MNzc3tG/fHtevX9eZ78iRI3jnnXfg6uqKunXrYvbs2SgqKhLHX716FS+99BLkcjmaNGmCw4cP68xvqLrr77//jjZt2sDZ2Rk1atTAJ598orNM8j9yuRxjxoyBu7s7Ro8ezc0LG0KI8XsinjoDI7bB1jrvoCQdIYRYiC22eUD4YuytHi8dXwDPvgctxhjy8/NN+uTl5eH7779Heno6GjZsCDc3NwCAm5sbGjZsiPT0dKxbtw55eXkG5y8oKEBBQQHy8/PNlmSPi4vDjBkzMH/+fKSkpGDBggWYPn06NmzYoDPdzJkzMW3aNMTHx8PBwQHvvvsupkyZgq+//honTpzAtWvXMGPGDJ15jh49ipSUFBw7dgxxcXE4fPiwTpIqJiYGGzduxDfffIPk5GRMnDgRAwcOxO+//66znE8++QRffPEFUlJS0KxZM+Tk5KBbt244evQoEhIS0KVLF3Tv3h2pqakAnpYWrlWrFubMmYO7d+/qlCQ0xdGjR3H58mUcPnwYP/30E4CnJdxmz56Nffv2ITY2Frdu3cLQoUPLXNZXX32F5s2bIyEhAZ988gk+/PBDvcTXrFmz8M477+DChQsYNmwYdu/ejQ8//BCTJ09GUlISRo0ahffeew+//fabznxz587F4MGDkZiYiMaNG+Pdd9/FqFGj8Omnn+Lvv/8GYwzjxo0Tpz9x4gSmTp2KwYMHIykpCWvWrMH69evFxKBGo0GvXr3g5OSEM2fO4JtvvsHUqVNL3T6VSoVu3bqhdevWOH/+PFavXo3vvvsO8+bNM+Wrfi61bdsWgwcPRtu2ba0dCiFWc/r0aQwaNAinT5+2digmE+6JSjZNwdM9kTYe94E9USgU8PX1BQCrl6ym6q6EEGIhwhu/+Ph4nQd6qVSKli1b0hs/YpKAgABERUXhhx9+EIf179+fi3aULNGDVkFBASZMmGDStI8ePcKpU6fg5OQkluwruazdu3fj/v378Pb21otZqGbj6emJFStWmKUd2JkzZ2Lx4sXo1asXAKBOnTq4ePEi1qxZgyFDhojTRUdHo3PnzgCADz/8EFFRUTh69Cg6dOgAABg+fLheL/BOTk74/vvvxZJeEyZMwMKFC7FixQoUFhZiwYIFOHLkCNq1awcAqFu3Lv744w+sWbMGHTt2FJczZ84cdOrUSfzb19cXzZs3F/+eO3cudu/ejX379mHcuHHw9fWFTCaDh4dHhapmurm54dtvv9Wp5jps2DCxHcHAwEAsW7YMbdu2RU5OTqnVhTt06IBPPvkEANCwYUOcPHkSS5cu1dmed999F++99574d1RUFIYOHYoxY8YAACZNmoTTp09j0aJFeOWVV8Tp3nvvPfTr1w8AMHXqVLRr1w7Tp0/X2U/ay507dy7ef/99vPPOO6hbty7q16+PuXPnYsqUKZg5cyaOHDmCS5cu4dChQ+L5vWDBAnTt2tXo9q1atQqBgYFYuXIlJBIJGjdujDt37mDq1KmYMWMG9f5MCNFja01QlEdAQAD69++vc0/ES2dg2tRqNRYtWoTs7GwsWrQImzdv5mYf2Au5XI7OnTtj69ateOONN6z6/dOVmhBCLER442eoFyoe3/gR61EoFPDz8wMAVKlShZt2lGytNGlBQQGKioqMtqnm4OCAoqIinSqhz9KTJ09w/fp1DB8+HO7u7uJn3rx5etUkmzVrJv6/WrVqAICmTZvqDCtZ/bN58+ZwdXUV/w4PD0dubi7S0tJw7do15ObmolOnTjrr3rhxo966S3ZQkpOTg+joaISEhMDb2xvu7u5ISUkRS9JVVtOmTfXaoTt37hzefvttvPzyywgPDxeTZWWtU0hAav+dkpKiM6zk9qWkpIjJT0GHDh305jNln6jVajG5e/78ecTGxiI8PByenp5wd3fHyJEjcffuXeTm5iIlJQWBgYE6D5sl4y8pJSUF7dq107medOjQATk5Obh9+3ap8xJCnk+21ARFRfB6T6QtLi4O2dnZAIDs7GzExcVZOaLnj1qtxqFDh6DRaPDLL79ArVZbLRYqSUcIIVbGGKP26Ei58NrxhSV60HJycsLy5ctNmvbq1auYOHEifHx84OnpqTc+KysL//33H+bOnYsGDRrojNNoNGLyqm7dumbpzCAnJwcAsHbtWr2qdzKZTOdv7c4MhIRMyWHa37Gp696/f79eJzYlSwgK1YIF0dHROHz4MBYtWoT69evDxcUFffr0KTO5KZVK9X77CgsL9aYrub4nT56gc+fOeOONN7Bo0SL4+PhAIpGga9euZkmollyfqUzZJwDE/ZKTk4Px48fjjTfeQHBwsE4pN17OaUII34w1QfH6669z06GZ0Lbk0qVLuWxbUqVSYfv27TrDtm/fTp3KWZihZLV2DQZLopJ0hBBiIYwxLFmyxOC4JUuWUKKOlAuPHV8Ya1PPnD1oSSQSODs7m/Rp0qQJQkNDcffuXUilUshkMvEjlUpx9+5dhIWFoUmTJgbnd3JygpOTE5ydnc0Se7Vq1VCzZk38+++/qF+/vs6nTp06lV7++fPnkZeXJ/6dmJgIV1dXBAYGituYmpqqt+6ykqcnT57E0KFD8c4776Bp06aoXr06bt68qTONk5OTXgnKqlWr4t69ezq/fdodIBhz6dIlZGRkICYmBhEREahXr16ZnUYISrb1c/r0aYSEhJQ6T0hICE6ePKkz7OTJk2jSpIlJ6zSmZcuWuHHjBoKDg/W+c6lUipCQEKSlpem04VdWW0VChxXa3+nJkyfh4eGBWrVqVSpeQoh9MdZxmUaj4a5DM17blhSeDQzVsqFnA8t51u0llxcl6QghxEJSU1ORlJRkcFxSUpLZqoYR01ADvdZhSz1oSaVSDBkyBFWqVEFKSgqysrJQVFSErKwspKSkoEqVKhg8eLBF2/GaPXs2YmJisHz5cly5cgUXLlzAunXrjCb4y6OgoADDhw/HxYsXceDAAaxYsQIDBw6EVCqFh4cHoqOjMXHiRGzYsAHXr19HfHw8VqxYoddpRUkNGjTArl27kJiYiPPnz+Pdd9/VK8VXu3ZtHD9+HCqVCg8fPgTwtNfXBw8eYOHChbh+/TpiY2Nx8ODBMrcjKCgITk5OWLlyJdLS0nD06FGxs4WynDx5EgsXLsSVK1cQGxuL7du348MPPyx1no8//hjr16/H6tWrcfXqVSxZsgS7du1CdHS0Ses0Ztq0adi7dy9WrlyJ5ORkpKSkYOvWrZg2bRoA4PXXX0fDhg0xZMgQnD9/HidOnMDnn39e6jLHjBmDtLQ0jB8/HpcuXcLevXsxc+ZMTJo0idqjI4ToEJqgKPl7rdFouOvQ7MyZM9i4cSPOnDlj7VDKhZ4NrK+s9pKtkSilqzUhhJDnjtBIcnp6OlasWGHVdieeR7bUg1Z4eDhmzJiBVq1aITMzE9euXUNmZiYiIiIwY8YMhIeHWzSeESNG4Ntvv8W6devQtGlTdOzYEevXrzdLSbrXXnsNDRo0wEsvvYSoqCi8+uqrGD9+vDh+7ty5mD59OmJiYhASEoIuXbpg//79Za57yZIl8PHxQfv27dG9e3d07twZLVu21Jlmzpw5uHnzJurVq4eqVasCeFrqa9WqVYiNjUXz5s3x119/mZT4qlq1KtavX48dO3agW7duWLt2LRYuXGjSdzB58mT8/fffCA8Px7x587BkyRKxYwdjevbsia+//hqLFi1CaGgo1qxZg3Xr1uHll182aZ3GdO7cGd988w3++OMPtG3bFpGRkVi6dCmCg4MBPE0i7969G3l5eWjTpg1GjBhRZjIyICAABw4cwF9//YXmzZvjgw8+wPDhw8XEHyGECAIDAxEWFmZwXFhYGDcdmqnVaqxatQo5OTlYtWoV3dORcrG19pIBQMKoDKVZZWVlwcvLC48fPzbYvk1lqdVq9OjRAwCwY8cOeHh4mH0dz5J2/Hv37uWuzQDe4wf43wae4y8uLsZbb71lsJ0oqVSKn376Sa/dKfJsbNiwAVu2bAFjDBKJBFFRUVZrd+J5dfr0abFNvYpW2VWr1bhx4wbq1KlT6d8CoafQx48fw8vLS6xyWNb0AFCvXj2bP3eHDh2KR48eYc+ePQB04y9rW21Vebehdu3a+Oijj/DRRx9ZILqy2cI+qOw5xPM1WVBYWIgDBw6gW7duOm0IEmLvGGOYPHkykpOT9caFhYVh0aJFXHRqxvM9nb3sA54xxvD5558jPj5ep9ScRCJBq1atMG/ePLPtA1NzRfzdkRFCCKf+/vtvow25azQa/P333xaO6Plka+1OPK9srU09qVSKhg0bonXr1mjYsCGXSStCCCHEVGlpaQaTQ8DTqpY8VHfl/Z5OIpFg8uTJBtvqNTScmJ9EIkGfPn0MtgvYp08fq+wDugMlhBALiYiIMFraRiaTISIiwsIRPX/sqZFkQgghhJCKqlWrltHSPJ6enjbf2YwttiVWEQEBAejbt6/OsL59+1qlrd7nEWMMO3bsMDhu+/bt1CYdIYTYM5VKpdfegaC4uJibt348s6dGknlHHXdY1vr168Wqrs+rmzdv2kxVV0IIsbbbt28jKyvL4LisrCzcvn3bwhGVjy22JVZRAwYMEJux8vDwwIABA6wc0fNDOI4MsdZxREk6QgixkMDAQLRq1crguIiICG4a6OVZYGAgQkNDDY7jqZFkgO8kl1qtxqJFi5Ceno5FixZRI8+EEEKIhQn3pYaqWvJwX8p7/Nrkcjmio6Ph7++P6OhoLtv35PW+1BZLlFKSjhBCLEQikWDs2LEGx40dO5banbAQe/ieee+dNi4uDtnZ2QCA7OxsxMXFWTkiQggh5Pki3JeWbINVKpVycV9qi22JVYattdVbHjzfl9piiVJK0hFCiA3gpd0MAa9vy9LS0pCUlGRwHC+NJAOAUqlEZmYmACAjIwNKpdLKEZlOpVJh+/btOsO2b99O1b0JIYQQCwsICIBCoRATWhKJBAqFgov20IS2xAyVpLNWW2LPK57vS22xphMl6QghxEIYY1iyZInBcUuWLOHmZoLnt2WBgYEICwszOI6X6q4892TGGMPixYsNvvU2NJwQQgghz5ZCoYCvry8AwM/PDwqFwsoRmUZoS8zQPQVvbdIB/L4A5/m+FPhfiUxDqHdXQgixc6mpqaWW4kpNTbVwRBXD89sygL9Si9p478ksNTUVycnJBsclJydzcw4QQggh9kIul2PChAnw9/fH+PHjuWkPTSgBVbK6rkwm465NOl5fgPN+XwpQ766EEEI4x/vbsrS0NKNJIh6qu9pTT2aEEEIIsQ08tocmtKlnqLorD23qaVMqlcjIyAAAPHz4kJsX4PZwX0q9uxJCiB1jjEGtVhv9+Pv7o0mTJgbnbdKkCfz9/Q3OZytvoezhbZkttjtRHrzHHxQUVGp146CgIAtHREj5rFmzBseOHbN2GMSMzpw5g40bN+LMmTPWDoUQUk6G2tTr168fF23qCVQqFbZu3aozTKlUcvEC3B5KM9pi764OFl8jIYTYqfz8fPTo0aNC8168eBE9e/Y0OG7v3r02UfXA2Jsm7bdltp5kEdqdMLQdPPQEZg/xDxgwAJ9++qneuIEDB9p8/OT5tmnTJqxduxa///57ueabNWsW9uzZg8TExGcTGKkwtVqNVatWIScnB6tWrUJERIRNXG+fN6dPn0ZsbCzGjh3LVUkuYhsUCgUOHTqEjIwMrtrUA4y/6NZoNIiNjcX8+fNt+t5IKLU4cuRIg8NtOXaBKb27Wvr5hkrSEUIIMYk9vC1jjCEuLs7guM2bN9t8aUDGGL7//nuD47777jsu4re1dj+sQSKRlPqZNWuWtUM0u9q1a2PZsmXWDqPCrly5goULF+Knn36Cm5tbueaNjo7G0aNHn1FkpDK021jNzMzkpoqZPeG1LS5iO+RyOcaMGQN3d3eMHj2aq0S7PXR+wXtpRuH5xlC1aWs931BJOkIIMRNnZ2fs3bu3zOkeP36MwYMHAwDc3d3x/fffw9nZudTl2gJ7eFtmSucdwcHBFo7KdLdu3cLVq1cNjrt69Spu3bqF2rVrWzaocjCl3Q9bL41pDnfv3hX/r1QqMWPGDFy+fFkc5u7ubo2wyo0xhuLiYjg4WO52sqCgAE5OThZbn6Bhw4a4cOFCheZ1d3fnZp8+T4y1sfr6668jICDAytE9Pwx1RjVkyBArR/X84b00Y9u2bTF48GC0bdvW2qGUi1DV0lBJLmtVtawInkszaj/faLetJ5VKrfZ8QyXpCCHETCQSCeRyeZkfLy8vcZ5x48bBy8ur1OltKfnF+9sy3mkndyoy3tosWhozP9/4p7DQLNNKCgogKSgod2jVq1cXP15eXpBIJDrDtm7dipCQEMjlcjRu3BirVq0S57158yYkEgm2bduGF198ES4uLmjdujWuXLmCs2fPIiIiAu7u7ujatSsePHggzjd06FD07NkTs2fPRtWqVeHt7Y0ZM2agQCt+jUaDmJgY1KlTBy4uLmjevLlOycdjx45BIpHg4MGDaNWqFZydnfHHH3/g+vXr6NGjB6pVqwZ3d3e0bt0aR44cEed7+eWXcevWLUycOFEsLQg8rQbaokULne9m2bJlOolmIe758+ejZs2aaNSoEYCnVU/btGmD8PBwdOjQAQMGDEB6enqp33vt2rUxb948DB48GO7u7ggODsa+ffvw4MED9OjRA+7u7mjWrBn+/vtvcZ6MjAxERUUhICAArq6uaNq0KbZs2SKOf/DgAapXr44FCxaIw06dOgUnJyex9FzJ7RS2KSYmBu3bt0dERATmzp2LoqIifPzxx/D19UWtWrWwbt06nfinTp2Khg0bwtXVFXXr1sX06dNRWPL4JCaxhzZW7QHvnVHZCyrNaD2mVLXkAa89BAsMPd8oFAqrPd9QSTpCCLGiiIgIa4dQbjy/LQsKCkJoaKjBHl556LigRo0alRpvbRYtjTlhgvFxYWHA+PH/+zs6GjCWbGvYEJg8+X9/f/YZkJMDCWOoKtxYG6lCXRFxcXGYMWMGVq5cifDwcCQkJGDkyJFwc3PTKV0yc+ZMLFu2DEFBQRg2bBjeffddeHh44Ouvv4arqyv69euHGTNmYPXq1eI8R48ehVwux7Fjx/Dvv/9i6NCh8PHxEZMVMTEx2Lx5M7755hs0aNAAx48fx8CBA1G1alV07NhRXM4nn3yCRYsWoW7duvDx8UFaWhq6deuG+fPnw9nZGRs3bkT37t1x+fJlBAUFYdeuXWjevDnef/99vX1viqNHj8LT0xOHDx8WhxUWFmL27NmQy+XIyMjAsmXLMHToUBw4cKDUZS1duhQLFizA9OnTsXTpUgwaNAjt27fHsGHD8NVXX2Hq1KkYPHgwkpOTIZFIoFar0apVK0ydOhWenp74+eefMXjwYNSrVw9t2rRB1apV8f3336Nnz55444030KhRIwwaNAjjxo3Da6+9ZjSOX3/9FQEBAdi8eTPi4+Px+eef488//8RLL72EM2fOQKlUYtSoUejUqZNYksLDwwPr169HzZo1ceHCBYwcORIeHh6YMmVKub/T5509tLHKu7ISpbbeFpc9odKM1iO8vDT0e8RLUzKCyMhILkthCmzp+YZK0hFCCCkXnt+WSSQSTNZOuGiZPHmyzT8QBAcHo0GDBgbHNWzY0Kar6gqoNGbpZs6cicWLF6NXr16oU6cOevXqhYkTJ2LNmjU600VHR6Nz584ICQnBhx9+iHPnzmH69Ono0KEDwsPDMXz4cPz222868zg5OeH7779HaGgo3nzzTUyYMAEbN26ERqNBfn4+FixYgO+//x6dO3dG3bp1MXToUAwcOFBv3XPmzEGnTp1Qr149+Pr6onnz5hg1ahTCwsLQoEEDzJ07F/Xq1cO+ffsAAL6+vpDJZPDw8BBLC5aHm5sbvv32W4SGhiI0NBQAMGzYMHTt2hWBgYFo0aIFli1bhoMHDyInJ6fUZXXr1g2jRo1CgwYNMGPGDGRlZaF169bo27cvGjZsiKlTpyIlJQX3798H8PR4jY6ORosWLVC3bl2MGTMGXbp0wbZt23SWOXLkSAwYMAAffPAB3NzcEBMTU2ocvr6++Prrr1G3bl306dMHjRo1Qm5uLj777DM0aNAAn376KZycnPDHH3+I80ybNg3t27dH7dq10b17d0RHR+vEQUxnrFSvVCrl7sGYV0KiVLt6GaCbKCXPHpVmtC6hQzBDeOgQzJ7Y0vMNlaQjhBBSbjy/LQsICEBISAhSUlLEYU2aNOEiSSSRSPDpp59i2LBheuM+/fRTbm7mLPK2cvly4+NKPJhj0SLTp/2/ao1Mo8GD69cBAB4Vic+AJ0+e4Pr16xg+fLhOibOioiKdavIA0KxZM/H/1apVAwA0bdpUZ1jJ6p/NmzeHq6ur+Hd4eDhyc3ORlpaG3Nxc5ObmolOnTjrzFBQUIDw8XGdYyRLAOTk5mDVrFvbv34+7d++iqKgIeXl5SE1NLc/mG9W0aVO9dujOnTuHmTNnIj4+Ho8fPxaHp6amokmTJkaXZcr3BgDp6emoXr06CgsLMWPGDCiVSqhUKrF6sIuLi85yFy1ahLCwMGzfvh3nzp0rsy3R0NBQnQRRtWrVEBYWJv4tk8ng5+ensw+VSiWWL1+O69evIycnB0VFRfD09Cx1PcQwofTu8OHDdYYzxrhpY5V3QqI0ISEBGo1GHC6TyRAeHk6JUguwp9KMZ86cwcaNG+Hn54cXXnjB2uGYTOhQSyKR6FSzl0gk2L59O1q0aMHNPrAHtvJ8QyXpCCGElNvp06cxaNAgnD592tqhlJtKpcKVK1d0hl2+fJmbt8YBAQHo1auXzrDevXtzkWQUyOVydO7cGVKpFG+88cazeVvp7Gz84+holmmZkxOYGTsxEEqBrV27FomJieInKSlJ71xz1IpLuIEvOUz7wdfUde/fv19n3RcvXtTrkbdk76bR0dHYvXs3FixYgBMnTiAxMRFNmzbVae/OEKlUqtf2l6E21kqu78mTJ+jcuTM8PT2xaNEi7NixAzt37gSAMtdpyvcGQPzuFi5ciM2bN2Pz5s3IyMgAYwz9+vXTW8/169dx584daDQa3Lx5s9QYSq5TWK+hYUIcf/75JwYMGIBu3brhp59+QkJCAj7//PMyt5eUH7VHZxnGmjngqTMq3tlLaUa1Wo1Vq1YhJycHq1at4qpNPXvo3ZWYHyXpCCGElAvPDQwbe2sMgKvGwocMGSKW5HF1dRV7C+aFWq3GoUOHoNFo8Msvv3B1DD1L1apVQ82aNfHvv/+ifv36Op86depUevnnz59HXl6e+HdiYiJcXV0RGBiIJk2awNnZGampqXrrLqtEy8mTJzF06FC88847aNq0KapXr66XqHJyctJ7EKxatSru3bunc94lJiaWuR2XLl1CRkYGYmJiEBERgXr16pXZaURF/fnnn+jSpQvat28Pd3d3FBUV4ezZszrTFBQUYODAgVAoFJg7dy5GjBhh9nhOnTqF4OBgfP7554iIiECDBg1w69Yts67jeSJcCwwliHi6FvAuICAAvXv31hnWq1cvrl468cyinTk9Q9pt6mVmZkKpVFo5ItPZyz4g5kVJOkIIIeViqIFhXtjLW2O5XI5PPvkE/v7+mDp1KlftAgJPj6GMjAwAwMOHD7k6hp612bNnIyYmBsuXL8eVK1dw4cIFrFu3DkuWLKn0sgsKCjB8+HBcvHgRBw4cwIoVKzBw4EBIpVJ4eHggOjoaEydOxIYNG3D9+nXEx8djxYoV2LBhQ6nLbdCgAXbt2oXExEScP38e7777rl4pvtq1a+P48eNQqVR4+PAhgKe9vj548AALFy7E9evXERsbi4MHD5a5HUFBQXBycsLKlSuRlpaGo0ePYv78+RX/YkrRqFEjHDhwAH/88QcuXryIESNGiL9/gs8//xyPHz/G8uXLxR5YDVVJr4wGDRogNTUVW7duxfXr17F8+XLs3r3brOt4ngjXgpLHqUaj4epaQEhl2ENpRt7b1LOHfWBPbKWmELdJurNnz2LcuHEIDQ2Fm5sbgoKC0K9fP70qTEOHDoVEItH7NG7c2EqRE0IIv3i/GaI3ltanUqmwdetWnWFCe18EGDFiBL799lusW7cOTZs2RceOHbF+/XqzlKR77bXX0KBBA7z00kuIiorCq6++ivFavdzOnTsX06dPR0xMDEJCQtClSxfs37+/zHUvWbIEPj4+aN++Pbp3747OnTujZcuWOtPMmTMHN2/eRL169VC1alUAQEhICFatWoXY2Fg0b94cf/31F6Kjo8vcjqpVq2L9+vXYsWMHunXrhrVr12LhwoUV+EbKNm3aNLRt2xZdu3bFK6+8gqCgIPTs2VMcf+zYMSxbtgybNm2Cp6cnpFIpNm3ahBMnTuj0rFtZb7/9NiZOnIhx48ahRYsWOHXqFKZPn2625T9v6FpgG1QqlVhVXbBr1y66HlgQz505ldWmHi8lYnneB/bElmoKSRgvR28Jffr0wcmTJ9G3b180a9YM9+7dw8qVK5GTk4PTp0+Lje8OHToUW7duxbfffqszv5eXF7p37272uLKysuDl5YXHjx8/k8Z81Wo1evToAQDYsWMHPDzM1Vy1ZWjHv3fvXu5Kf/AeP8D/NvAeP8DvecwYw+eff67XyLNUKkV4eDg3DQyrVCqMHDlSpzSdg4MD1q5dy80NkVqtxrBhw5CRkYEqVargu+++4+JcEI6h+Ph4vQaSW7ZsWe5jSK1W48aNG6hTp47Ft1+j0eDatWsAgHr16kEmk1l0/eU1dOhQPHr0CHv27AGgG3/9+vX1khU84H0bbCH+yp5DPF+TDV0LZDIZvv32W26uBTwTrgeJiYl6+6BFixbc3FPYA17vKVJTU3U6WSpp7dq1CAoKsmBEFcfrPrAnGzZswJYtW8AYg0QiQVRUFIYMGWLWdZiaK+LrbkbLpEmTcOvWLSxfvhwjRozAtGnTcOLECRQVFeGLL77QmdbBwQEDBw7U+TyLBB0hhNgze6keZA9vLHmtckwNJBNCbEVAQIBezZqQkBCurgU8s5fmJ+yBXC7HhAkT4O/vj/Hjx3OTHBJKxJYkkUi4KxHL6z7QZitVRSvC1moKcZuka9++PZxK9KjWoEEDhIaGIiUlRW/64uJiZGVlmTWGJ0+eGPwYG0cIITwLDAwUSymXFBYWxtXNkEKhgK+vLwDAz88PCoXCyhGZztZuJMqjVq1aRt8cenp6olatWhaOiBDyvFKpVHrPDCkpKVz8ltoDe6pyzHNyQhAZGYlNmzYhMjLS2qGYTCKRoE+fPnrDGWPo06cPdyUxedwHAluqKlpexqpHazQaq1WbdrD4Gp8hxhju37+P0NBQneG5ubnw9PREbm4ufHx8EBUVhS+//BLu7u6VWl9p8xt6C1dQUFCp9QFAYWGhzv+1/+ZByfhtvXpQSbzHD/C/DbzHD/B7HjPG9ErRaY8rLCzk5oZIJpNhzJgxWLNmDUaNGgWZTMbFfmCMYeXKlQZvJFauXInZs2fb9D5IS0sz+sIsKysLN2/eLNeDWWFhoXhcGjs2nxXtfVDauWErvv/+ewAQ4+QtfkN43wZbiF+j0Yi/3xW5nvJ6TRZ+S40Nt/Xf0pI2bdqE7du3o2/fvhg0aJC1wzHZqFGjMHr0aIPDi4qKrBBR+QnJiYyMDCxfvhyhoaFcloLiEWMM27dvNzhu27ZtCA0NpfPYQn744QedGh5btmzBwIEDrRyVaYRSvSUJNYVu3LhhtpcGpj5r2FWSLi4uDiqVCnPmzBGH1ahRA1OmTEHLli2h0Wjw888/Y9WqVTh//jyOHTsGBwfLfQUHDhyo9DK0d+yvv/4KR0fHSi/TkrTjP3ToEMVvBbxvA+/xA/yex5mZmbh48aLBccnJyYiLixNLp/GiT58+yMjIMMvvsyVkZmYiPj5eb7hGo0F8fLzN7wPGGGrUqIG7d+/qjatRowb++ecfXLhwweTlOTg4oHr16sjJyTHLi7Dy0E6oZGVlcdkemuDx48fcxQ/wvw22EH9BQQHy8vJw/PjxCiVFeL0m8/5bqi0vLw/btm0TS1W7urrCxcXF2mGZrEWLFjoPyOHh4UhISEBCQoIVozLdmTNnxN7KMzIy8MUXX6BNmzZWjur5YOw8BkDnsQU9fvwY27dv16vhIZPJ4OXlZeXoysYYQ/Xq1XHv3j29cdWrVy/3vWlpcnNzTZrObpJ0ly5dwtixY9GuXTudBv5iYmJ0puvfvz8aNmyIzz//HDt27ED//v0rvM6cnBy9YVlZWahZsyZu3bqlV6XHzc2twusSqNVqrF27FgDw6quvctPgvEA7/s6dO3P3pon3+AH+t4H3+AF+z2ONRoP9+/cjOztbb5yHhwfeffdd7h6SecMYw5UrV5CYmKjXeUeLFi0wYMAAm35rzBjD77//bjBJ5+vri27dupW744i0tDS4u7tb/LeAMYaHDx8CgNirJ0+04/fy8rLp48YY3rfBFuJXq9VwcXHBSy+9VOGOI3i8JvP+W6ptypQpOg/Hf/31F7788ksrR2W6V199FaNGjRIbzP/kk0+4OY7u3LmDNWvW6AxLSEjA+++/T20bWoA93Zfyeh4zxjBz5kyD41JSUrgolSzcmxpK0vn5+ZX73rQ0pja/ZhdJunv37uHNN9+El5cXduzYUWZR+4kTJ2L69Ok4cuRIpZJ0hpJuQuOn3t7ez6R3V+3GVR0dHbl5Yymg+K2P923gPX6A321ITU01eCMEANnZ2bh//z43vWjxbNy4cXq9mUmlUowfP16vrVZbk5qaWmppzHv37pXrGCouLoZEIoFUKrX4jbj2g70QA094jx/gfxtsIX6pVAqJRFLhaxGv1zOA799SQXx8vN5vanJyMi5cuICWLVtaKarycXR0xIQJExAbG4uxY8dy8+KSMaaXoBOsWbOGeqe1AHu5L+X5PE5NTS21VHJ57+ueBcYY8vPzjY5PS0sr9d701q1bBqu7Ojs7l/scN/UayX2S7vHjx+jatSsePXqEEydOmPTWwsXFBX5+fmK9aUIIIWWrVasW3N3dDZYidnd3p0b/LUTonVa7m3heeqcVGgo31PYHbw2FE0L4xvNvKfD0IbhkjSFBTEwMlEolN4nryMhI7hrLN9aOlXbvtNZOTtg74Z4iPj5ep41PiUSCVq1acXFPwft5LOyDhIQEnRdPMpkM4eHhNrEP8vPz0aNHjwrPP27cOIPD9+7d+8xK/druHjeBWq1G9+7dceXKFfz0009o0qSJSfNlZ2fj4cOHqFq16jOOkBBC7EdaWprBBB3wtPp/WlqahSOqHJ57Y+O1d1pjPbEB4LInNkII3xQKhdgRnLu7Oze/pQBw9uzZUjviOXv2rIUjer7YU++0vJJIJBg7dqzePpBKpRg7diwX9xS8n8fCPij5XRsbTkzDbUm64uJiKBQK/Pnnn9i7dy/atWunN41arUZhYaFesem5c+eCMYYuXbpYKlxCCOFeWV2QW6OL8orS7o1txYoVaNGiBTdt4ACAXC7XqR7ES+yMMezYscPguO3bt6NFixZ0Q0dsjkajwZIlS/Daa68hPDzc2uEQAuBp6WOZTKZT5VggJIrIsyMkIUpWmabkhGUZKhGrUCi4KRFrD+dxQEAAevfujW3btonDevXqZTP7wNnZGXv37i1zug0bNmDXrl0Anp7Hffv2xYABA0pd7rPCbUm6yZMnY9++fejatSsyMzOxefNmnQ8AsQ70mDFjsHz5cixfvhxvvvkmvvrqK3Tp0qVSxR4JIeR5U9YNJ083pEqlUqereKVSaeWIyi8yMhKbNm3iqoqQsepBAMTqQYTYmmnTpuH48eNo1qyZSdO//PLL+Oijj55tUMQslEql2KZVdnY2V9cClUpl8MEeeFqYQaVSWTiiiuO1ZLuQIBLuf3irMm0veK1dANjXeWyrJBIJ5HJ5mR/tvgp8fX0xYMCAUqd/ls893CbpEhMTAQA//vgjBg0apPcBnnbe8NZbb+Hw4cP49NNPMWXKFNy6dQsLFizAvn37bLp+NyGEWBpjDGq12ujH39/faLMCTZo0gb+/v9F5bamUnUqlglKp1Osqnm6Enr3AwEA0aNDA4LgGDRo8N9WDJBJJqZ9Zs2ZZO0Szq127NpYtW2btMMptz549OHbsGLZu3Vpmx2SCXbt2Ye7cuc84MlJZKpUKW7du1RmmVCq5uRYI1S0N4am6pVCyPT09HStWrIBarbZ2SOXCc4LIXsjlcowZMwbu7u4YPXo0N7ULAPs4j1UqFXbu3KkzbNeuXdz8lgq0S8Z98MEHVj2OuK3ueuzYsTKn8fb2xqZNm559MIQQYgcq07DqxYsX0bNnT6Pjn2XjquXBGENsbKzR4Tz1xnb69GmxuisvpekYY7hz547BcXfv3hWrqti7u3fviv9XKpWYMWMGLl++LA4T2siydYwxFBcXw8HBcreTBQUFFu15s2fPnqX+thkiPLAT2yX85pd8gaTRaLi5FgjVKocNG6Y3jqfqloZKtg8ZMsTKUZmO1+Yn7E3btm0xePBgtG3b1tqhlItwHo8YMUKn4wVe2tWzh99SQ9q0aWPV9VNRMkIIIc8NobplyaoF2r2x8cCWSx6UViLz5MmTePLkicH5cnJycPLkSS5KY1ZW9erVxY+XlxckEonOsK1btyIkJARyuRyNGzfGqlWrxHlv3rwJiUSCbdu24cUXX4SLiwtat26NK1eu4OzZs4iIiIC7uzu6du2KBw8eiPMNHToUPXv2xOzZs1G1alV4e3tjxowZKCgoEKcRepmrU6cOXFxc0Lx5c502BI8dOwaJRIKDBw+iVatWcHZ2xh9//IHr16+jR48eqFatGtzd3dG6dWscOXJEnO/ll1/GrVu3MHHiRLG0IADMmjULLVq00Pluli1bhtq1a+vFPX/+fNSsWRONGjUCAGzatAlt2rRBeHg4OnTogAEDBiA9Pb3U77127dqYN28eBg8eDHd3dwQHB2Pfvn148OABevToAXd3dzRr1gx///23OM/69evh7e0t/i3EvGnTJtSuXRteXl7o37+/WGVS2F7t6q6lrXf06NEIDw9HixYtdNabkZGBqKgoBAQEwNXVFU2bNsWWLVtK3T5iOuFaUPJ3hTHG1bUA0G9qQiKRcPN7aS8l23lsfsLenDlzBhs3bsSZM2esHUq5BQQE6FS1BID+/ftzUW1a+C3VTjACT+8nePsttSXclqQjhBBiXqY2rPr48WMMHjwYAODh4YHvvvuuzMZTn2XjquXBQ1fxprDlkgeVKZE5b948o+PKWxozP9/4OKkUcHSs3LQaDVBQYP63w3FxcZgxYwZWrlyJ8PBwJCQkYOTIkXBzc9PZxzNnzsSyZcsQFBSEYcOG4d1334WHhwe+/vpruLq6ol+/fpgxYwZWr14tznP06FHI5XIcO3YM//77L4YOHQofHx+xdGlMTAw2b96Mb775Bg0aNMDx48cxcOBAVK1aFR07dhSX88knn2DRokWoW7cufHx8kJaWhm7dumH+/PlwdnbGxo0b0b17d1y+fBlBQUHYtWsXmjdvjvfff1+vkXVTHD16FJ6enjh8+LA4rLCwELNnz4ZcLkdGRgaWLVuGoUOH4sCBA6Uua+nSpViwYAGmT5+OpUuXYtCgQWjfvj2GDRuGr776ClOnTsXgwYORnJxs9O3/9evXsWfPHvz000/477//0K9fP3zxxReYP39+udbbrl07vP3225gyZQpWr16ts161Wo1WrVph6tSp8PT0xP79+zFo0CDUq1fP6m/47UGtWrXg6elpsFdFT09P1KpVywpRlY9QgqVkUk4ikXBRgsWeSrYT61Kr1Vi2bBlycnKwbNkyREREcFeiUaFQ4NChQ8jIyECVKlW4qTYdGBiI0NBQJCcn640LCwvj5r7a1lCSjhBCCID/NaxaHhMmTICXl9czisj8tKsVlMRDtQLAeMmD119/HQEBAVaOznZMmGB8XFgYMH78//6Ojga0CpTpaNgQmDz5f39/9hmQkwMwJkFWVlUAQFycGQL+PzNnzsTixYvRq1cvAECdOnVw8eJFrFmzRidJFx0djc6dOwMAPvzwQ0RFReHo0aPo0KEDAGD48OFYv369zrKdnJzw/fffw9XVFSEhIZgwYQIWLlyIFStWoLCwEAsWLMCRI0fQrl07AEDdunXxxx9/YM2aNTpJujlz5qBTp07i376+vmjevLn499y5c7F7927s27cP48aNg6+vL2QyGTw8PFC9evVyfydubm749ttvdaq5Dhs2DBqNBteuXUNgYCCWLVuGtm3bIicnp9Tqwt26dcOoUaMAQExitm7dGn379gUATJ06Fe3atcP9+/eNxqrRaLB+/Xp4eHgAAAYNGoSjR4+WmqQztt6uXbsCAKZMmYIOHTqI6w0ICEB0dLQ4//jx43Ho0CFs27aNknRmcPv2bYMJOgDIysrC7du3ERQUZOGoysdYRzzaJVhseRuMxa9dst2W4ye2Iy4uTqcDmLi4OAwfPtzKUZUPz9Wmebh35g0l6QghhFQYjw+LAQEBCAkJ0XnrFxISwkW1Ah5KHphSInPKlCk6bbA1adIEMTExZS7X3j158gTXr1/H8OHDdUqcFRUV6SXDtXsarVatGgCgadOmOsNKVv9s3rw5XF1dxb/Dw8ORm5uLtLQ05ObmIjc3Vyf5BjxtAy48PFxnWEREhM7fOTk5mDVrFvbv34+7d++iqKgIeXl5SE1NLc/mG9W0aVO9dujOnTuHmTNnIj4+Ho8fPxaHp6amGu3gBjDtewOA9PR0o0m62rVriwk6AKhRo0aZVW0NrTcsLMzoeouLi7FgwQKx6l9BQQHy8/N19h+pOHsoScd7yXDe4ye2QaVSYfv27TrDtm/fji5dunD34jIyMpK7KtNpaWlISkoyOC4pKYmS7RVESTpCCCHPFZVKhZSUFJ1hFy9ehEqlsvkbOh5KHphSInPatGliT+xSqRSzZs0y+1vj5cuNjyvZufuiRaZPu2DB0381Gobr14U23zxgDjk5OQCAtWvX6jV+XbJnUUetOrhCYrbksJJtxJiy7v379+udByUTpG5ubjp/R0dH4/Dhw1i0aBHq168PFxcX9OnTR6e9O0OkUqle21mFhYV605Vc35MnT9C5c2e88cYbWLRoEXx8fCCRSNC1a9cy12nK9wag1O9Oe3phnrK+6/Ku96uvvsLXX3+NZcuWoWnTpnBzc8NHH31U5vYR09hDSTqhZHjJEkOMMS5Khgvxl6wCLwy39fiJ9THGsHjxYoNtSy5evBiLFy+m4+gZM5Zsl0qlaNmyJSXbK4g6jiCEEPLcEEqcGWrg1lDvVLZGuBmSlsgcyWQyREREcHMz5OnpKf6/d+/ez6TKtLOz8U+JHEuFp3VyYnByMt8xU61aNdSsWRP//vsv6tevr/OpU6dOpZd//vx55OXliX8nJibC1dUVgYGBaNKkCZydnZGamqq37rKOq5MnT2Lo0KF455130LRpU1SvXh03b97UmcbJyUmvw5aqVavi3r17OuddYmJimdtx6dIlZGRkICYmBhEREahXr16ZJdl4c/LkSfTo0QMDBw5E8+bNUbduXVy5csXaYdkN4be0JIlEwtVvaUBAAPz8/HSG+fn5cVEyHHgav0KhEBMpEokE/fr14yZ+Yl2pqakG20IDgOTkZLOV5ibGGUuq89I7ra2iJB0hhJDnhrGSaAC46IXK2M0QzyUPBg4caO0QbMrs2bMRExOD5cuX48qVK7hw4QLWrVuHJUuWVHrZBQUFGD58OC5evIgDBw5gxYoVGDhwIKRSKTw8PBAdHY2JEydiw4YNuH79OuLj47FixQps2LCh1OU2aNAAu3btQmJiIs6fP493331XLxFeu3ZtHD9+HCqVCg8fPgTwtBfUBw8eYOHChbh+/TpiY2Nx8ODBMrcjKCgITk5OWLlyJdLS0spsD45HDRo0wOHDh3Hq1CmkpKRg1KhRuH//vrXDshvCb2bJFx68PVjGx8eL55PgwYMHiI+Pt1JE5adQKODr6wvgaYKRlwbzCSFPUbLd/ChJRwgh5LkREBCgV21QIJPJbL66K0A3Q/ZuxIgR+Pbbb7Fu3To0bdoUHTt2xPr1681Sku61115DgwYN8NJLLyEqKgqvvvoqxmv1oDF37lxMnz4dMTExCAkJQZcuXbB///4y171kyRL4+Pigffv26N69Ozp37oyWLVvqTDNnzhzcvHkT9erVQ9WqTzvcCAkJwapVqxAbG4vmzZvjr7/+0ukswZiqVati/fr12LFjB7p164a1a9di4cKFFfhGbNe0adPQsmVLdO7cGS+//DKqV6+Onj17WjssuxIQEID+/fvrDFMoFNz8lmo0GqNtecbExJSrurs1yeVydO7cGVKpFG+88QZXDeYLTp8+jUGDBuH06dPWDuW5EhQUpNO2p7awsDCbr7JuTxQKhdhpk4eHByXbK0nCbL1uD2eysrLg5eWFx48f61TnMRe1Wo0ePXoAAHbs2KHTcDEPtOPfu3cvdxdi3uMH+N8G3uMH6Dy2pjNnzmDGjBlGx8+ZM0evLTBbpFarMWzYMGRkZKBKlSr47rvvuNoP5jqG1Go1bty4gTp16lh8+4WeRQGgXr16RpO/tmLo0KF49OgR9uzZA0A3/vr16+uVKOIB79tgC/FX9hzi+XoA8P1bStcz26BWqzFw4EBkZ2fDw8MDmzdv5ip+3sXHx+PTTz/VG/7FF1/odXpEnh17OA8scT0zNVfE190MIYQQUgmtW7c2elH09PRE69atLRxRxcjlckyYMAH+/v4YP348dzdChBBiC+RyOcaMGQN3d3eMHj2aq99Se7meKZVKZGZmAgAyMjKgVCqtHFH5xMXFITs7GwCQnZ2NuLg4K0f0/GCMYceOHQbHbd++3ebbGbYnSqVS7IAqJyeHu/PY1lCSjhBCyHNDKpUafOMKAJ9//jlXJXEiIyOxadMmREZGWjsUQgjhVtu2bTF48GAuSp1ps4frmUqlglKpFJMpjDFs27YNKpXKypGZRqVSYfv27TrDtm/fzk38vOO9nWF7wft5bIts/9ebEEIIMaOWLVsiNDRUZ1hYWBhatGhhnYAIsYD169eLVV0JIfahWrVqBocL7T7aMqG3dWPDbb0UFGMMixcv1ovT2HBbx2O7ekIvzYZ6FuWpl2aeGTtfNRoNF+exraIkHSGEkOfOzJkzxZs6qVRaars+hBBCiK0RHo4N9fbNw8OxUAqquLhYZ3hxcTEXpaBSU1ORnJxscFxycjJSU1MtHFHFqdVqLF++HOnp6VixYgXUarW1QzKJ0EtzSYwxrnpp5plwHpfsqEaj0XBxHtsqStIRQgh57nh5eSEqKgpSqRT9+/eHl5eXtUMC8PTGUq1Wl/nJy8vDo0eP8OjRI+Tl5Zk0j60/sFWGPW8bIc8SnTv8Eh6ODZXk4uHhWCgFVbJarkwmo1JQFsZ7u4CGzgH6bbOMwMBAvdopgrCwMDqPK8jB2gEQQggh1jBkyBAMGTLE2mHoyM/PF3uWMjcee14si6OjIwAgNzcXLi4uVo6GEP7k5uYC+N+5RPghJLkSEhJ0SrHIZDKEh4fb/MOxUApq5MiRBofbeimooKAghIWFISkpSW9cWFgYgoKCrBBV+RlrT+z1119HQECAlaMrHWMMS5YsMThuyZIlWLRokc0fR/agoKDA4PD8/HwLR2I/KElHCCGEEC7JZDJ4e3sjPT0dAODq6mqxG3KNRiNW01Kr1ZDJZBZZr7mUjJ+HRuZL4n0brBk/Ywy5ublIT0+Ht7c3d8cv4T/JBQABAQFQKBTYsmULGGOQSCTo168fatasae3QyiSRSDBp0iQMHz5cp9SWRCLB5MmTufj+y2oXcP78+Ta9HampqQaTpACQlJSE1NRUBAcHWziq50tqaiquXr1qcNzVq1dpH1QQJekIIYQQG+Hs7Iy9e/eWOZ1arYZCoQDwtJqKKSXknJ2dKx2fLapevToAiIk6S2GMievUaDTcJYi04xcejnnD+zbYQvze3t7iOUT4w3OSS6BQKHDo0CFkZGTAz89PvLbxICAgAH379sW2bdvEYX379uXm+zfWO6p2u4C8lAgkxJ5Qko4QQgixERKJpNxVUuVyud1VYy0PiUSCGjVqwN/fH4WFhRZbb35+PhYsWAAA+Prrr+Hm5maxdZuDdvyxsbFcJnF53wZrx+/o6Egl6OwAz0ku4Ok1bMKECYiNjcXYsWO5u54NGDAABw8eRHZ2Njw9PTFgwABrh2Qy3qtMBwUFITQ01GAHHjxVOeaZvVT7tjWUpCOEEEII92QymcUTDg8ePAAAODk5cfdgCfwvfmdnZy7jB/jfBt7jJ9Ynl8vRuXNnbN26FW+88QaXx1FkZCQiIyOtHUaFyOVyREdHc5lk5L3KtFC1eNiwYXrjeKlyzDt7qPZti/iqm0EIIYQQQgghBMDT5g8OHToEjUaDX375BWq12tohPXciIyOxadMmLhONQpVpIZnCY5XpkokgiURCvbtaUEBAAN555x2dYb169eLqGLI1lKQjhBBCCCGEPJfOnDmDjRs34syZM9YOpUKUSiUyMzMBABkZGVAqlVaOqPxOnz6NQYMG4fTp09YOpUJ4j1+hUMDX1xcAuKoyLXRwYShJFxsbS4k6C3Jw0K2gSU0pVA4l6QghhBBCCCHPHbVajVWrViEnJwerVq3irhSaSqWCUqkUkxGMMWzbtg0qlcrKkZlOrVZj+fLlSE9Px4oVK7jbB7zHD/yvXUB/f3+MHz+emyq7QscX2u3pAU87cxI6viDPnkqlws6dO3WG7dq1i6vfIVtDSTpCCCGEEELIc0epVCIjIwMAf6XQhFJExobzUoqI95KAvMcv4LHKrtDxRcne1WUyGSIiImy+44uSeCyRaez3RqPRcPU7ZGsoSUcIIcRuMMagVqvL/OTl5eHRo0d49OgR8vLyypyebjIIIcS+qFQqbN26VWeYUqnkpvSHUIqouLhYZ3hxcTE3pYh4LwnIe/y8M9bBBS8dX2jjtUQmlWZ8Nqh3V0IIIXYjPz8fPXr0MPty9+7dy031D0IIIaUrq/TH/Pnzbf4BXyhFlJCQoPOALJPJEB4ebvOliMoqCWjr+4D3+O2F0PHFli1bwBjjsuMLwHCJzCFDhlg5qrIFBgYiNDQUycnJeuPCwsJs/nfIVlFJOkIIIYQQQshzQyj9UTJJxxjjpvQH76WIeC8JyHv89oTXji8EvJfILCgoMDg8Pz/fwpHYDypJRwghxG44Oztj7969ZU6nVqvFmzilUllmKTlnZ2ezxEcIIcT6atWqBU9PT2RlZemN8/T0RK1atawQVfkFBASgd+/e2LZtmzisV69eXJQi4r0kIO/x2xO5XI4xY8Zg6dKlGD16NFc1H3gvkZmamoqrV68aHHf16lWkpqYiODjYwlHxj0rSEUIIsRsSiQRyudykj8CUaW35BokQQkj53L5922CCDgCysrJw+/ZtC0f0/OG9JCDv8dubtm3bYvDgwWjbtq21QykXKpFJDKEkHSGEEEIIIeS5IZSCMpRg4alXSJVKhZ07d+oM27VrFzfV5IT2xIT9wFt7YrzHT6yP9x5qg4KCEBoaanBcWFgYgoKCLByRfaAkHSGEEEIIIeS5IZR2KvlgLJVKuSkFVVY1OV56Jee9PTHe4yfWVVrJSx5+iyQSCSZPnmx0uK3Hb6soSUcIIYQQQgh5rhgqBaVQKLgpBWUv1eTkcjkmTJgAf39/jB8/nqv2xAD+4yfWFxAQgMaNG+sMCwkJ4ea3KCAgACEhITrDeIrfFlGSjhBCCCGEEPLc4bkUFO/V5LRFRkZi06ZNiIyMtHYohFicSqVCSkqKzrCUlBRuqq2rVCpcuXJFZ9jly5e5id8WUZKOEEIIIYQQ8twReoV0d3fnrldI6rjANqjVaixfvhzp6elYsWIF1Gq1tUMiHOG92rqxOHmJ31ZRko4QQgghhBBiNxhjUKvVZX7y8vLQqFEj9OnTB82aNTNpHlt66KSOC6xPqVQiMzMTAJCRkQGlUmnliAhPhGrrGo1GZ7hGo+Gi2jrv8dsqB2sHQAghhBBCCCHmkp+fjx49epRrnvXr15s03d69e22qxJ1CocChQ4eQkZHBXZVd3qlUKiiVSjFxyxjDtm3b8PrrryMgIMDK0REeBAYGIjQ0FMnJyXrjwsLCbL7aemBgIMLCwpCUlKQ3jof4bRWVpCOEEEIIIYQQDlHHBdbBezVFe3PmzBls3LgRZ86csXYo5VZQUGBweH5+voUjqRg61s2PStIRQgghhBBC7IazszP27t1b5nRqtVosebZ582Z4eHiYtGxChGp+JWn3rhsUFGSFyJ4/arUaq1atQk5ODlatWoWIiAhuktWpqam4evWqwXFXr15FamoqgoODLRyV6dLS0gyWAgSApKQkOg8qiErSEUIIIYQQQuyGRCKBXC436SMwdXpb65CBOi6wDnvqXZd32u0CZmZmUruAFiScByV/F6VSKZ0HlUBJOkIIIYQQQgjhEHVcYB3Uu65tMNYuoEqlsnJkpgkKCkJoaKjBcWFhYTZfCk043ksmq6VSKZ0HlUBJOkIIIYQQQgjhDO8JCt5R77rWZQ/tAkokEkyePNlgstfQcFtE54H5UZKOEEIIIYQQQjhiDwkKe6BQKODr6wsA1LuuhQntAhYXF+sM124XkAcBAQHo27evzrC+fftyleSi88C8KElHCCGEEEIIIRyxlwQF76h3Xesx1h6aRCLhrj20AQMGiB3XeHh4YMCAAVaOqHzoPDAvStIRQgghhBBCCEeEBIUhvCUoCKkIiUSCPn366JUaZYyhT58+XFQVFcjlcnTv3h1SqRTdu3fnMskVGRmJTZs2ITIy0tqhcI+SdIQQQgghhBDCESFBYQhvCQqe2UvvuqdPn8agQYNw+vRpa4diMsYYduzYYbAk3fbt27mq8q1Wq3Ho0CFoNBr88ssv3B5HxDwoSUcIIYQQQgghHGGMIS4uzuC4zZs3c5Wg4Jk99K7La6JRqPJtqCQdb1W+7eE4IuZDSTpCCCGEEEII4UhqaiqSkpIMjktKSkJqaqqFI3r+2EvvurwmiIQq31KpbkpDJpNxVeXbXo4jYj6UpCOEEEIIIYQQQkxkL73r8pwgkkgkGDt2rMHqroaG2yJ7OY6IeVGSjhBCCCGEEEI4EhQUhNDQUIPjwsLCEBQUZOGIni/20LuuPSSIAgICoFAoxIScRCJBv379ULNmTStHZhp7OI6I+VGSjhBCCCGEEEI4IpFIMHnyZIOliAwNJ+ZlD1Ut7SVBpFAo4OvrCwDw8/ODQqGwckSms4fjiJgfJekIIYQQQjjAGINarTbbR2DOZarVai5KXxBiDwICAtC3b1+dYX379uWmFBHP7KGqpb0kiORyOcaMGQN3d3eMHj0acrnc2iGZzB6OI2J+DtYOgBBCCCGElC0/Px89evQw+3LNXepg7969XD0kEcKzAQMG4ODBg8jOzoaHhwcGDBhg7ZCeG0JVyy1btoAxxl1VSyERNHLkSIPDeUoQtW3bFoMHD0bbtm2tHUq58X4cEfOjknSEEEIIIYQQwiG5XI7o6Gj4+/sjOjqaEuQWxnNVS+Bpgqh37946w3r16kUJIgvj/Tgi5kUl6QghhBBCOCMb9CbgUPHbOMYYUPR/7RA5yCpfYqKoCMWb9lduGYSQComMjERkZKS1w3guyeVyTJgwAbGxsRg7diwlSa3kzJkz2LhxI/z8/PDCCy9YO5xyo+OIaKOSdIQQQgghvHFwgMSx4h+pkyOkrvKnHyfHSi1L4uhQqYQhIaRyTp8+jUGDBuH06dPWDqVCeI8/MjISmzZt4jJRqlKpsHPnTp1hu3btgkqlslJE5adWq7Fq1Srk5ORg1apVOm2u8oTn44iYFyXpCCGEEEIIIYRDarUay5cvR3p6OlasWMFdgoL3+HnGGENsbKzR4bx0AqRUKpGZmQkAyMzMhFKptHJEhFQOJekIIYQQQgghhENKpRIZGRkAgIcPH3KXoNBOsGRkZHAXP8/S0tJw7tw5FBcX6wwvLi7GuXPnkJaWZqXITKdSqaBUKsWEImMM27Zt46okICElUZKOEEIIIYQQQjijUqmwdetWnWFKpZKbBAUlWKwrMDAQrVq1glSqmxKQyWSIiIhAYGCglSIzjbESfxqNhquSgISUREk6QgghhBBCCOEI7wkKe6lqyTOJRIKxY8fqdRxkbLitEUoCajQaneEajYabkoCEGEJJOkIIIYQQQgjhiJCgKJnMYoxxkaCwh6qW9iAgIAAKhUJMyEkkEvTr1w81a9a0cmRlCwwMREBAgMFxAQEBNl8SkAeMMajV6jI/eXl5ePToER49eoS8vDyT5qFEvHHUFRchhBBCCCGEcKRWrVrw9PREVlaW3jhPT0/UqlXLClGZTqhqmZCQoFMSSiaTITw8nBIsFqRQKHDo0CFkZGTAz88PCoXC2iGZpLi42GjVaJVKheLiYjhQz+OVkp+fjx49ejyTZe/duxdyufyZLJt3VJKOEEIIIYQQQjhy+/Ztgwk6AMjKysLt27ctHFH58F7V0p7I5XJMmDAB/v7+GD9+PDeJkx9++KFS4wmxVZRaJoQQQgghhBCOlFUdkYfqikJVyy1btoAxxlVVS3sTGRmJyMhIa4dRLu+++y7i4uJKHU8qx9nZGXv37i1zOrVaLZbAVCqVJiV6nZ2dKx2fvaKSdIQQQgghhBDCkZ9//rlS422FQqGAr68vAHBV1VLb6dOnMWjQIJw+fdraoTxXHBwcMGzYMIPjRo4cyV1VV1s8jiQSCeRyuUkfganTU2lZ4yhJRwghhBBCCCEc6dq1K2QymcFxMpkMXbt2tXBEFcNrVUuBWq3G8uXLkZ6ejhUrVkCtVls7pOeKQqGAi4uLzjBXV1f06dPHShFVDB1HRFuF08sbN240WxCDBw8227IIIYQQQgghxJ5JpVLUqlULt27d0hsXGBgIqZSfshg8VrUUKJVKZGZmAgAyMjKgVCoxZMgQK0f1fFmxYgVGjBgh/r18+XIrRlMxdBwRbRVO0g0dOtRsRRQpSUcIIYQQQgghpklLSzOYoAOAmzdvIi0tDUFBQRaO6vmiUqmgVCrBGAMAMMawbds2vP766wgICLBydM+PwMBAhISEICUlBSEhIdz1DEzHESmpUhW1mzdvXqkueffs2YN//vmnMiEQQgghhBBCyHPFHjqO4BljDLGxsUaHz58/n9rcsqCvvvoKBw4cQLdu3awdSrnQcUQMqVSSrkWLFpg5c2aF57958yYl6QghhBBCCCGkHEzpOOKtt96yUDTPn7S0NJw7d05veHFxMc6dO0clGYlJ6DgihlS4sQJPT0+4urpWauUuLi7w9PSs1DIIIYQQQggh5HnSpUuXSo23JbbYq2VZAgMD0apVK722/2QyGSIiIrirckmsw9hxJJVK6Th6jlU4Sffo0SOsXLmyUitftWoV/vvvv0otgxBCCCGEEEKeJyqVqlLjbQWvvVpKJBKMHTtWryqiseGEGCIcL0J7dALGGB1HzzF+uv0p4ezZsxg3bhxCQ0Ph5uaGoKAg9OvXD1euXNGbNiUlBV26dIG7uzt8fX0xaNAgPHjwwApRE0IIIYQQQggBDPdqyYuAgAAoFAqdYf369eOyPUAeSzNqO3PmDDZu3IgzZ85YOxSzKZm4I88PbpN0X375JXbu3InXXnsNX3/9Nd5//30cP34cLVu2RFJSkjjd7du38dJLL+HatWtYsGABoqOjsX//fnTq1AkFBQVW3AJCCCGEEEIIKb/AwEC4u7sbHOfu7s5FNTljvVryUgoQALp27Vrq3zzgtTSjQK1WY9WqVcjJycGqVau4il/oIMJQiczY2FhK1D2nuE3STZo0Cbdu3cLy5csxYsQITJs2DSdOnEBRURG++OILcboFCxbgyZMn+PXXXzFhwgR89tln2LZtG86fP4/169dbbwMIIYQQQgghpAJu376NnJwcg+NycnJw+/ZtC0dUPmX1aslLckL7uRN4WpCENzyXZgR048/MzOQqfqHjCI1GozNco9GIHUeQ50+5knT79u2DQqFAr1698MsvvwAAdu/ejcaNG8PJyQkNGzbE999//0wCLal9+/ZwcnLSGdagQQOEhoYiJSVFHLZz50689dZbOr2ivP7662jYsCG2bdtWqRiePHli8GNsHCGEEEIIIYRUltDgvKESODw0OC8kJ4qLi3WGa/dqaevi4+ORnJysMywpKQnx8fFWiqj8eC/NyHv81AEJMcTB1AmVSiWioqLQoUMH+Pn5oVevXli2bBnGjh2LIUOGYMKECTh58iRGjhyJGjVqWKWoL2MM9+/fR2hoKICnJ216ejoiIiL0pm3Tpg0OHDhQqfUZK2IOwGBbBOaoXltYWKjzf+2/eVAyfplMZsVoyo/3+AH+t4H3+AE6j20B79tA8VufNc7joqIiODo6AgBkkEAC22lQmkEC6f/FVlRUZJHvg/fjiPf4Af63gffr8ahRozB69GidRJdUKsWoUaNQVFRkxcjKVr16dbRs2RKJiYk6pYikUilatGiB6tWr2/T+0Gg0WLBggcFxCxYsQFxcnF7ixdYwxrBy5Uq9UosajQYrV67E7NmzbbrjAt7jFwjnsaHhtn4eC3i/FgCW2QZTf9NMTtItXLgQ48aNw/LlywE8TdoNGjQIkydPRkxMDABgzJgxcHV1xcKFC62SpIuLi4NKpcKcOXMAAHfv3gUA1KhRQ2/aGjVqIDMzE/n5+XB2drZIfJVNCgK6O/bXX38Vb9Z5oR3/oUOHKH4r4H0beI8foPPYFvC+DRS/9VnrPB45cqRF1lNuDgD+L7ajR49aZJW8H0e8xw/wvw28X48BoEWLFjh37pz4d3h4OBISEpCQkGDFqEwTEhKCxMREg8MPHjxo+YDK4caNG8jOzjY4Ljs7G6tXr0adOnUsHFX5ZGZmGiz1p9FoEB8fj7i4OPj6+lohMtPwED9jzKREW9OmTXXOhWbNmuGvv/4yOr2Dg4NNJSB5vxYAltmG3Nxck6YzOUl3+fJlfPXVV+Lf3bp1Q1FREbp06aIzXc+ePTFs2DBTF2s2ly5dwtixY9GuXTsMGTIEAJCXlwcABpNwcrlcnKaiSTpD7UBkZWWhZs2auHXrFjw9PXXGubm5VWg92tRqNdauXQsAePXVV+Hh4VHpZVqSdvydO3cW9wMveI8f4H8beI8foPPYFvC+DRS/9VnjPM7Pz0f//v0BALKBb0LiaPJt3DPHCotQvHk/AGDr1q0WeQHK+3HEe/wA/9vA+/UYeBr3qFGjkJGRgSpVquCTTz7haj88efIEe/bsEf/u0aMHoqKirBeQiTQaDf744w+DiTpPT0+MHj2ai5J0V65cQUJCgk5pNIlEgvDwcAwYMMCmEkElCfEbK41pC/Gr1Wr06dOn3POVlWjfsWOHTZ3nvF8LAMtsQ1ZWlknTmXx35+joqNNTiqurKwDoXczkcrnF21+7d+8e3nzzTXh5eWHHjh1i0UQXFxcAT29qSxK2RZimIgwl3YTi5t7e3npJOnPQLs7u6OjIXZaa4rc+3reB9/gB/reB9/gB/reB4rc+a2xDcXGx+KZXAwYJbKdhdQaG4v+LzcHBwWLfh4DH44j3+AH+t4H3+IGncU+YMAGxsbEYO3Ysd4nGy5cv6/3Ny3747LPP8Omnn+oN//zzzy1WU6uyxo0bh+HDh+sNHz9+vF7777Zo3LhxeiXMpVKpzcRfss1Fc7G13yt7+C21xDaYukyTk3T169dHYmIiunXrBuBpY4Z3795FlSpVdKa7dOmSRRs4fPz4Mbp27YpHjx7hxIkTOm3BCdVchWqv2u7evQtfX19ufkAJIYQQQgghpKSjR48iPT0dR48eRWRkpLXDMVl8fLxOh38AcPHiRcTHx6Nly5ZWisp0LVu2REhIiM42NGnSBC1atLBeUGbCS++6AQEBUCgU2LJlCxhjkEgk6Nevn8H24a3B2dkZe/fuLXM6tVoNhUIB4GmzYmWV4qIchn0zuQzu+PHj9UqOVatWTa9BvZ07d1qsPTq1Wo3u3bvjypUr+Omnn9CkSROd8QEBAahatSr+/vtvvXn/+usvu/gBJYQQQgghhDyf0tPTcfz4cQDA8ePHkZ6ebuWITKPRaMR2zUuKiYnRqb5oy0JCQnT+bty4sZUiKT/GGGJjYw2Oi42N5SZRp1AoxLbn/Pz8xGSXLZBIJJDL5SZ9BKZMa+1qvOTZMjlJN3jwYHz44YdlTvfrr79iyZIllQrKFMXFxVAoFPjzzz+xfft2tGvXzuB0vXv3xk8//aTTjffRo0dx5coV9O3b95nHSQghhBBCCCHPwsSJE3X+njRpkpUiKZ+zZ88abZ8pKysLZ8+etXBE5adSqfRKSe3btw8qlcpKEZVPWloazp07p5eMY4zh3LlzOs/Ptkwul2PMmDFwd3fH6NGjuWwPjRBttt2aZSkmT56Mffv2oWvXrsjMzMTmzZt1PoLPPvsMrq6ueOWVV7BixQrExMSgb9++aNq0Kd577z0rbgEhhBBCCCGEVMwvv/yChw8f6gx78OABfvnlFytFZLrWrVuLbZyX5OrqitatW1s4ovIxVgpNGM5DKbRatWoZbUPd09MTtWrVsnBEFde2bVsMHjwYbdu2tXYohFSa7XQLVk5CF8U//vgjfvzxR73xAwcOBAAEBgbi999/x6RJk/DJJ5/AyckJb775JhYvXkx1uQkhhBBCCCHcKS4uxrJlywyOW7ZsGV577TW9ZomI+Qil0EoqLi4WS6EFBQVZITLT3b59u9TSjLdv37b5bSDEHpktSVdcXIwlS5Zg165dYocSTZo0QXh4OMLDw9GiRQt4e3uba3U4duyYydOGhobi0KFDZls3IYQQQgghhFjLwYMHjfYcWVxcjIMHD+Ktt96ycFSmO3v2LHJzcw2Oy83NxdmzZ226VFRgYCBatWqFhIQEnfbzZDIZwsPDLdqRYkUFBgYiNDQUycnJeuPCwsJsYhsYY8jPzy9zmpycHOTm5iIvL8+kHlWdnZ2pXTdis8yWpJs2bRoWLlwoFu1NTU1FfHw8Nm/eLJ4AQUFBYtJu+vTp5lo1IYQQQgghhDw3unTpghUrVpQ63pa1bt0anp6eBktyeXp62nx1V4lEgrFjx2LkyJEGh/OSALL1OPPz89GjRw+Tp1+/fr1J0+3du5fariM2y2xt0sXFxcHR0RF79uxBfn6+2A344sWLMWjQIDRt2hR37tzBnj17MGvWLHOtlhBCCCGEEEKeK3fu3KnUeGuTSqV6CS7BqFGjIJXaftPpAQEBUCgUYqJLIpGgX79+qFmzppUjM01aWhqSkpIMjktKSuKm4whC7I3ZStI9evQIXbp0wdtvvw0AqFKlCl555RW88sor4jSFhYVITk7G+fPnzbVaQgghhBBCCLErZVXzq1q1KsLDw5GQkKA3Ljw8HFWrVoVardYbZyvV/BhjRpsv+vXXX/Haa6/ZRJxlUSgUOHToEDIyMuDn5weFQmHtkExmrMquVCpFy5YtbaK6q7Ozs14PuiWp1Wrxe9+8eTM8PDxMWi4htspsSbrmzZuX2YuNo6MjWrRogRYtWphrtYQQQgghhAOmtC1UHtoJCEPJiIqylSQGeb6Vt5qftoSEBPTs2dPgOFup5mes4wUA3HS8AAByuRwTJkxAbGwsxo4daxPframMVdmVSqU2U2VXIpGU6zuVy+Vc7QNCDDFbkm7s2LF4//33kZ6eDn9/f3MtlhBCCCGE2IHKJB3KYs7SK7aSxCDEnvFQistUkZGRiIyMtHYYFRIQEIDevXtj27Zt4rBevXpxU2WXEHtktiRd//798fPPP6NHjx7YtWsXatSoYa5FE0IIIYQQQshzw5RqfgDw+PFjDB48GADg6+uLb775ptSqfLZSzU8oxTVs2DCd4RqNxmZKcZnq9OnTYkk6XpN1hBDbYbYkHQB8+umneOutt9C0aVO899576N69O1q1agU3NzdzroYQQgghhHDMYWBfwKFyt6GMMaCo+P8WKKvcQ31REYo2b69UPISYU3mr+QHA6NGj4eXl9YwispyymlCyJWq1GsuXL0dGRgZWrFiBFi1acFUSV6VSYefOnTrDdu3ahS5duiAgIMBKURHyfDNbtzkHDhxAixYt8O+//yIzMxOLFy/GK6+8Ai8vLzRq1Aj9+/fHl19+iV9++QXp6enmWi0hhBBCCOGNgwMkjo6V+kidnCB1dXn6cXKq1LIqmzAkxBa0adPG2iGYjDGGxYsXGxy3ePFibhJ1SqUSmZmZAICMjAwolUorR2Q6xhhiY2ONDudlHxBib8x2R/LZZ58hPz8f3bt3R9euXZGVlYXz588jMTERV65cwdWrV7Ft2zZIJBJIJBIUFRWZa9WEEEIIIYQQQjiRmpqK5ORkg+OSk5ORmpqK4OBgC0dVPiqVCkqlUkxmMcawbds2vP7661yUQjPWeUdxcTFXnXcQYm/MlqS7cuUKwsPDDbadoFar8c8//yAxMRHx8fE4f/68uVZLCCGEEEIIIYRYTFml0ObPn2/z7eoZ67xDJpMhPDycq847CLEnZkvSVa9eHY0aNTI4Ti6Xo02bNlwVwSaEEEIIIYQQYn5BQUEICwtDUlKS3riwsDCbL8FlD6XQhM47Ro4caXC4rScZCbFXZmuTrnfv3vjrr7+o7johhBBCCCGEPMcYY1Cr1UY/+fn5GDdunF4iSCKRYNy4ccjPzzc6ry08bwql0KRS3cdpmUyGiIgIbkqhBQQEQKFQiPtBIpGgX79+qFmzppUjI+T5ZbaSdNOmTcPOnTsxb948TJ8+3VyLJYQQQgghhBDCkfz8fPTo0aPc8zHG8MEHH5Q6zd69e63eg6pQ2mzEiBE6wxlj3JVC69mzJ7Zs2QLg6Xb17NnTugER8pwzW0m6nj17onnz5pg1axaioqKQkpJirkUTQgghhBBCCCE2IyAgAL6+vjrD/Pz8uCuFtmfPHrF0okajwZ49e6wbECHPObOVpPv999/F/yuVSmzbtg316tVD69at0aJFC4SHhyM8PBx+fn7mWiUhhBBCCCGEEBvj7OxssEPBktRqNRQKBQBgypQp6NChg0nLtgXx8fF4+PChzrAHDx4gPj4eLVu2tFJU5SP0UKuNpx5qCbFHZkvS3bhxA4mJiTh//jwSExORmJiIa9eu4dq1a9iyZYtY5DcgIMBoL7CEEEIIIYQQQvgmkUjKXSW1Q4cOVq/GaiqNRoOYmBiD42JiYqBUKvXaq7M19tBDLSH2yGxJuuDgYAQHB+u0PZCVlSUm7YR/k5OT8dNPP5lrtYQQQgghhBBCiMWcPXsWWVlZBsdlZWXh7NmzaNu2rYWjKh976KGWEHtktiSdIZ6ennjxxRfx4osvisOKi4tx6dKlZ7laQgghhBBCCCHkmYiIiIBMJkNxcbHeOKGHV1sn9FCbkJAAjUYjDpfJZAgPD+emh1pC7E2Fy+DWrVsXH330EY4cOYKioiKT55PJZAgNDa3oagkhhBBCCCGEEKtRqVQGE3TA00IpKpXKwhGVn9BDbckqrcaGE0Iso8JJOgcHByxfvhydO3dGlSpV0L9/f/zwww/477//zBkfIYQQQgghhBBiM4RSaIZERERwUwotICAACoVCTMhJJBL069ePux5qCbEnFU7SXblyBSkpKYiJiUHTpk2xc+dODBo0CNWqVcPLL7+MJUuW4OrVq+aMlRBCCCGEEEIIsSqJRII+ffoYHNenTx+uSqEpFAr4+voCAPz8/MTedgkh1lGpLmcaNWqEKVOm4MSJE7h37x7WrVuHt99+GwkJCYiOjkbjxo3RuHFjTJ06FSdOnABjzFxxE0IIIYQQQgghFscYw44dOwxWFd2+fTtXz71yuRwTJkyAv78/xo8fz00Pu4TYK7P1C+3n54fBgwdjx44dePjwIQ4ePIjRo0dDrVbjq6++wssvvwx/f38MGTIEO3fuRE5OjrlWTQghhBBCCCGEWITQM2rJZBxjTOwZlSeRkZHYtGkTIiMjrR0KIc89syXptDk6OqJz585YuXIlbt68icTERMyaNQt169bF5s2b0bdvX1SpUgVr1659FqsnhBBCCCGEEEKeCaFNOqlU93Fa6NmVlzbpCCG255kk6Upq1qwZpk+fjjNnzkClUmHNmjV444038PjxY0usnhBCCCGEEEIIMQvqGZUQ8qyYLUm3ZcsWXL58uczpqlevjpEjR2Lfvn2Ijo421+oJIYQQQgghhBCLCAgIQO/evXWG9erVi3pGJYRUioO5FjRgwABIJBK4urqiWbNmCA8PR8uWLREeHo6wsDA4Ojqaa1WEEEIIIYQQQohVFRUV6fxdXFxspUgIIfbCbEm6zz77DElJSfjxxx/x559/4s8//xSL+To4OKBJkyZo2bIl2rRpg9dffx316tUz16oJIYQQQgghhBCLUalU2L17t86wXbt24c0330RAQICVoiKE8M5sSboP/z97/x1nx13fe/yvmdPP9t53tVr1Zrn3jsGxARuwLYqNgQv53R+xQwKGEFoCBG5yMf4lF8gNgdwgY8A22FgYN3CRuyQXWcWS1bb3Xk4vM78/VlrvWsW7e8426f18PFZ7dM7Mdz6zp8185vv9fr7wBa644gry8/P5zGc+Q11dHeFwmDfffJM//vGP7Nixg507d/KLX/wCgIsvvpj//b//N+ecc066QhARERERERGZUbZtc9dddx2zuutdd93FnXfeqXnpRGRa0pak++IXv0hrays7duygurp6wmPJZJJ//dd/5Wtf+xrXXnstPp+Phx56iIsuuoj/+q//4pZbbklXGCIiIiIiIiIzprm5md27dx/zsd27d9Pc3ExNTc0sRyUiJ4O0FY547LHHuPTSS49K0MFoKeovfelLbNy4kUceeYSvfe1rbN++naqqKv7yL/+SvXv3pisMERERERERERGRBSdtSbpYLPauE2V+9KMfZdWqVfyv//W/WLZsGb/85S+JRqP867/+a7rCEBEREREREZkx1dXVrF69+piPrVmz5pgdV0REJiNtSbozzzyTZ555hq6urhMut2LFCp566ikALrjgAtauXcvTTz+drjBEREREREREUmLbNpFI5Jg/0WiU22+//ah55wzD4LbbbiMajR533XfOYyciMl5aC0d8+MMf5vrrr+f3v/89paWlx1xuz549DA4Ojv1/6dKlPProo+kKQ0RERERERCQl0WiU6667bkrr2LbN//yf//OEy2zatAmv15tKaCJyEktbT7rrr7+ev/mbv2Hr1q2sXr2ab3/72xPmmhscHORv//Zv2bVrFytXrhy7Px6P43A40hWGiIiIiIiIiIjIgpO2nnQAd911F2vWrOGOO+7g29/+Nt/5zndwuVxkZGSM9Z4zTZPvfOc7Y+scOHCA4uLidIYhIiIiIpJ2tm0TjUbT0lYkEjnm7XTweDxHDcMTkanxeDxs2rTphMtEIhE2bNgAwFe+8hUuvPDCSbUrInI8aU3SAXzmM5/hhhtu4Kc//Sl//OMfeeONNxgYGKCgoICzzjqLf/iHf+C8884DYMeOHbz11lvceuut6Q5DRERERCStpjP8bTKOnOSni4bTiaTOMIwpvY8uvPDCefW+m+xFhfHLTTbBrwsBIjMn7Uk6gOzsbL785S/z5S9/GYBEIoHTefSm1q1bx969e+fVh5mIiIiIiIjIQjZTFxVAFwJEZtKMJOmO2sgxEnQwenVi+fLlsxGCiIiIiEjauG6+FZyuaa9v2zYkEqP/cTpT75WSiBO/Z2NqbYiIiMicSluS7plnnmH9+vXk5eWlq0kRERERmQG2ZRHs7CERCuP0+8goLcIw01ZP7NTgdGG4pp+kMwDc7rSFY6etJRE5GUxmTj2YOK/efffdN6kecppXT2TmpC1Jd+WVV2IYBpWVlaxfv37CT21t7dhy/+N//A/OPPNMPv/5z6dr0yIiIiIySUP1zbQ9u4VAawdWLI7pdpFZWUbFpeeRs7h6rsMTEZE0mOqcegBer1fDWEXmWNqSdJ/5zGd444032L17Nw8//DAPP/zwWLf97Oxs1q1bx7Jly9i0aROPPPKIknQiIiIis2yovpmDv/0jsZEg3oJcHF4PyUiUoUNNhLt7WXLj+5WoExEREZkjaUvS/fznPwdGi0Ts2bOHN954g+3bt7N9+3a2bNnC888/zwsvvIBt21RX6+BPREREZtdkK91NRiQSGbsdjUZxpTDscbyZrJhnWxZtz24hNhIko7J0bDtOv48Mn5dgaydtz24he1Glhr6KiIiIzIG0F45wOp2sW7eOdevW8clPfhKAQCDAL37xC7761a+yZs0a7rnnnnRvVkREROSEZqrS3a233kriSAGAFM1kxbxgZw+B1g68BbkYhkF0YIjowBDegjzcOVl4C3IJtHYQ7Owhs7xkRmIQERERkeOblcukmZmZ3Hbbbdx///288sorvP7667OxWRERERE5LBEKY8XiOLwe4iNBgh3dJCJRAm2dBFo7MB1OrFicRCg816GKiIiInJLS3pPuRK655hpWrFjB//pf/4ubbrppNjctIiIiMsZx6yXgdEx7fdu2cSXgk56l3J08hG2kUFszkSS58bnprz9JTr8P0+0iNhwg1Nkzep/PSzISITYcIDY0giszA6ffN+OxiIiIiMjRZjVJB1BbW8vTTz8925sVEREReZvTgeGafpLOAEy3ict0YTqcGFjTbiuF9N6UZJQW4S8rpvuVHZgeN+4MP5nVFVjRKCNtnUQHBjGcDvr3HsBXkIfD456lyEREREQE0pik+8IXvsD69es5/fTTWb169XEnUD548CClpaXp2qyIiIiITJLD7QbTJBmN4q2uANvGtm0cbje+wgK8BfkMHWwk1N5FxWXnk1VVPtchi4iIiJwy0pak+9GPfjRWJczlcrFixQpOP/101q9fz9q1a/H7/dxzzz0cOHCA//iP/0jXZkXe1UxV8xt/Ox2OV9EvnfHDzO3DTFYkFBGR1HVu2U4iHCZv6SIcXg+RvkFiQyOYbhe5SxZRcel5OP0+2p55iejwCI2PPk3+yiWUnncmDnd6qteKiIiIyPGlLUn3hz/8ge3bt4/97Ny5k507d3L33XdPWG7x4sV0dXXx6KOPcuaZZ1JSouphMrNmqprfhg0b0tre8Sr6zVT8kN59mMmKhCIikpqBfYfo3bUXgMXXX032okqCnT0kQmGcfh8ZpUUY5mg9sSU3XEvntu307d5H/96DBFo6qLjsfDIrNBJCREREZCalLUn3/ve/n/e///1j/x8YGJiQtHv99dfZv38/hw4d4lvf+tZYj5vS0lLOPPNM/vCHP6QrFBERERE5LNTVQ9tzWwEoPnMtOYurAcgsP/aFUtPlpPzCs8murabtmZeIBYI0/PFJClYvp+Tc9TiOM6WJiIiIiKRmxgpH5OXlccUVV3DFFVeM3RcKhdi5c+dY0m779u3s3r2bRx55ZKbCEJngh+/JwOOY/pBM27aJJUdvux2kPLwzmrT50pPBSS//1WtcuFN819q2TfzwPrhS3IdYAv750XhqAYmIyIyJB0M0PfEstmWRvaiK4jPXTXrdzPISltz4fjq3vE7/3gP0vbmPQEs7FZdfQEZp0QxGLSIiInJqmtXqrn6/n/POO4/zzjtv7L5EIsGePXtmMww5hXkcBh5nKok1A+8cdiBwO8GdUvwABp607cNs1SQUEZGpshJJmh7fTCIcwZuXQ+UVF0z5wozD7aLiknPJrq2i7dktRIdHqN/0JwrXraDk7PWYzulXyBURERGRiczprtjf308oFEpp46FQiOHhYdatm/xVXRERERE5Mdu2aXt2C+HefhweNzVXX57SMNWsqnKW3vh+8pbXATa9O/dy8IFHCHX3pi9oERERkVPctJN0RUVF3H777Slt/K/+6q8oLi5OqQ0RERERmah3x14GDzZgGAbVV12COzsz5TYdHjeVl51Pzfsuw+nzEh0cpv6hJ+jc9gZWMpmGqEVERERObdMe7mrbNrad+lC3dLQhIiIiIqNGmtvo3LodgLILzkp7VdbsRZX4Sz9AxwuvMHiokZ7tuxlpaKEsElGVbxEREZEUpDQn3QsvvMBnPvOZlNaX+c+2baLRaFraikQix7ydKo/Hk3IRB5k5C+E1BHodicjCFx0YouXJFwCb/JVLyF+9bEa24/R6qHrPRWQvrqb9+a1E+geor2+iqKiIpHrViYiIiExLSkm6gwcPcvDgwZQC0Anx/BeNRrnuuuvS3u6GDRvS1tamTZt09X4eWwivIdDrSETmt/GjD+x44qjHk9EYzY89gxWPk1lSROk5p0MiOaMlfrKrysn40F/Q/tw2hvY309vby5133snnPvc5ysvLZ3DLIiIiIiefaSfpnnnmmXTGISIiIiInML5HsnXPI8dcphbA8EF3APvuPzJbfdrKgfKVKwFoamrie9/7Hh/84Ae56qqrMM1pT4EsIiIickqZdpLu0ksvTWccskD8+C8uweNwTHt927aJJS0A3A4zpZ6U0WSS2x57btrry9z4nx80caXQh9e2bRKHzzqdjtR748YT8B9/sFJqQ0RE3rZixQoOHTrEgw8+yBtvvMGnPvUpSkpK5josERERkXkvpeGucurxOBx4nNNP0gF4XWkKRhYklxNczlQSawbutL6GVLxGRBYGj8czdtu8+VqMw1c8Bg/U0/b8NgCqrriQ7EVVsx6bHU+M9e677bbb2L59O/fffz/19fV897vf5UMf+hAXXHDBrMclIiIispAoSSciIiKyAIzvOWy4nBguJ6GuHtpefBUbKD5jLTlLa+cuwMNM0+TCCy9k5cqV3H333ezdu5f777+fV155hVgshtvtnusQT1npLOQEKggmIiKSbkrSiYiIiCxA8WCIpieexbYsshdVUXzWurkOaYL8/Hy+8IUv8Nxzz/HAAw9w8OBB6uvrKS4upsi2UQpm9s1UISdQQTAREZF00Ey+IiIiIguMlUjS9PhmEuEI3rwcKq+4YF72PDIMg0svvZRvfvOb1NXVYVkWnZ2dND7+Z+KB4FyHJyIiIjKvqCediIiIyAJi2zbtz28l3NuPw+Om5urLcbjm94SvRUVF/M3f/A0PPPAA3d3dBNra2X//A5RdeB55y5bOywTjyc5781+BM7XXjW3bkEiM/sfpTO15TMSJ3POTlOIRERFZ6JSkExEREVlA+vr6GLJCGA4H1Vddgjs7c65DmhTDMCgoKCAzM5PO4iLCvX20bX6e4YYmKi6+EFeGf65DPLU4XRiu1OYHNADcnndbbFJUxklERERJuhk3kxP0RqNRXGm6cq4JekVEROa/kZERuru7MfJqKLvgLDIrSuc6pCnzeDwsfv9f0LvnLbpf285IUzMHOrsov+h8cuoW63hERERETllK0s2wmZyg99ZbbyVxZIhBijRBr4iIyPzW2dlJW1sbAHnLl5C/etkcRzR9hmlSfPppZNdU0/LMs0R6+2h5ajNDDY1UXHQBTp9vrkMUERERmXVpSdJt376dhx9+mJ07d9LU1MTIyAgAWVlZ1NTUsG7dOj7wgQ9w+umnp2NzIiIiIqeUUCjET3/6UyzLwu/3U3bBmSdFjzNvfh5Lrv8g3W/soPu1NxiubyTY0UXFxReQU7torsMTERERmVUpJekaGxv5zGc+w7PPPgscnjz2HV577TUefPBBvv3tb3PZZZfxX//1XyxatCiVzY4JBAL84Ac/YOvWrWzbto2BgQH++7//m0996lMTlvvUpz7Fxo0bj1p/+fLlvPXWW2mJZTJ+8hc34HGklhe1bZuwlWRXZR5ndgzjZPoH6NFkgr967HcpxSMiIiIzy7Isfv7zn9PT04PL5aKyshLT4ZjrsNLGcJiUnHk62dVVtGx+jmj/AM1/eorcpUsou+BcnOrpLyIiIqeIaWeM2tvbOe+88+ju7mbdunXccMMNnHHGGVRWVpKRkQFAMBiktbWV119/nd/+9rc888wznH/++bz22muUl5enHHxvby/f+c53qK6u5rTTTmPz5s3HXdbj8fDzn/98wn05OTkpxzAVHocTb4pVtABcBrhcLrwuN07NsisiInJSe+CBB3jzzTdxuVxUVVXhdJ6cs5X4igpZ8uHr6H5tOz1v7GTwwEECbe1UXHIR2TVVcx2eiIiIyIyb9lHeN7/5Tbq7u7nrrrv4m7/5m+Mut27dOq655hq+8Y1vcNddd3HHHXfwrW9966iE2XSUlZXR0dFBaWkpr776KmefffZxl3U6ndx8880pb1NERERktrz88ss8+eSTANxyyy18+9vfnuOIZpbpcFB6zlmH56p7jtjQEE2P/4m8FcsoO+9cHJ7UqpGKiIiIzGfmdFd8/PHHOffcc0+YoHunL37xi5x77rk89thj093sBB6Ph9LSyVc1SyaTDA8Pp2XbIiIiIjOpvr6ee+65B4Brr72WM844Y44jmj3+kmKW3nA9hevWgGEw8NZ+Dvz2QUZa28aWsS2LQHsHgwcPEWjvwLasOYxYREREJHXT7knX39/PJZdcMuX1ampqeOONN6a72WkLhUJkZ2cTCoXIy8vjYx/7GP/yL/9CZmbmtNsMBoPHvS8YDOJwOIhEImmrwCoiIiKnhsHBQf7v//2/JBIJ1q9fzwc+8AGi0ehchzWrTKeTsvPPJXtRDS3PPEd8ZITGRx4nf9VK/KXFtL/wMoHWNqx4HNPlIrOygsrLLlbBCREREVmwpp2kq66u5vnnnycUCuH3+ye1TigU4vnnn6eqanbnFSkrK+MrX/kKZ5xxBpZl8fjjj/Pv//7v7Nixg82bN097bpcTJfiONede8kM3k0hDIbakMfF3Ku24XKNz5CUSCeLx+DGXSyQSY8slDZOEMe0OmGmVNOxpxO8iOY+q4U1mH8bHbxkurHkUv2XYHA5t0s+BbZjY82gfbMPG5RrtfXGifUin8duIx+Ozss10emf8jgU4gf1C3wfFPz3jP4scmBjTH1AAgOtw8abR39Nvy8bGHPddEAqF+NGPfsTg4CBlZWXccsstJBKJd8RvYKRQPCrdbIwJ+/Bu32dOmHT0uWWlZN34ITq2vkLvm3vp2rKN4ZZWnD4fmaUlOL0eEpEow/UNHOrpZfmNHyJ3iok6GzCmeEzhmsI+zAYbYArPgQsbg/kzubGNTXISz0E6LfTvY9D3wVxb6PHDwt8HvY/n3kKPH2ZnHyb72jTsY5VknYRvfetb/NM//RMXXnghP/nJT1i3bt0Jl9+5cyd/9Vd/xUsvvcQ3v/lN/vEf/3E6mz2uI3PSHau667F8//vf5+tf/zq/+c1v+OhHPzqtbRpTTDQ89NBD09qOiJxc4vE4P/vZzwD43Oc+N3bCtFAs9Phh4e+D4j952bbNU089xf79+/F6vdxwww1kZ2fPdVjzRlNTEz/60Y/o7e0lIyODgoICiouLMU0T27ZpbW1lyZIlfPrTn8Y058dFRZm/TobPooW+D4p/7i30fVjo8cPC34eFHj/Mzj6EQiE+/vGPMzQ0dMJju2kn6SKRCJdffjlbt27FMAzq6urGqrse6VkXCoXGqrseOnQI27Y577zzeOaZZ/B4PNPbs+OYapIuHA6TmZnJpz/96WkXsTjWcNfh4WHKy8tpamoiOzubaDTKrbfeCsB/vH8DnjRUd00a8FppFmd2juBI4QJoNBHntscfAODee+897nMSjUbHEpk/uvoS3M75kRmPJZLc/vhzwOTjv/PKTDzO+XPdO5qwueOpAHD8fRgf/99d48I9j+KPJWz+5dHRKwKTfQ7+Px80cc2jfYgnbH76h9GedJN5DtLBtu2xYfA+ny9tQ+JP9BykUyQS4YYbbgDgd7/7HV6vd8a3mW4LfR8U//SMfy87PnkJhiu17zMXBjebddxjHSKeQo8kO54keffo99lnP/tZHnnkEUzT5Pbbb2f58uXHjv/mazFc86fKqx1PkLznEWByn6XOT9ww1nNtKgLtHbzx81+QjESIh8LAaLEJb14unrxcrFicWCDAaf/jVjLLy6YQf5zEr353wvjfuQ+uT9w6rX2YKXY8TvxXG4HJPQfeT3wewzV/CnHY8RiRX/07MDffZ7/5zW/Iysqa8W2mm74P5tZCjx8W/j7ofTz3Fnr8MDv7MDw8TGFh4bsm6aZ9dOf1etm8eTPf/e53+clPfsLBgwc5ePAg8HYPs/H5v5ycHG677Ta+8Y1vzMqX7rvx+XwUFBTQ398/7TYyMjKOui+ZTAKQm5tLdnY2kUhk7O/gsMGZxlEFqbaXsN/ucul0Oo+bLU4mk2PLOWwLpz0/EixJ25pG/HEc8yR+AIdtv+s+jI/ftMGcR/Gbk4gfJu6DYZsY82gfDNsmHh9N0k3mOUi3eDyetiTdiZ6DdDryOQejQ+YX4tWyhb4Pin/62z3yXraw0jBcdLSnVhybONMvWmBjkYzHGRkZGUvQfexjH2PNmjUTlpsY/zwcqjiF7zOb6Q0VDYdCWIkEmVWVxENhQh2dWIkEod4+Qr19uDIzsJJJQsEQUznatIHEFL/PmOY+zBSbdz+um3BMNA+HTE/mmCKdFvpnKSz8fVD8c2+h78NCjx8W/j4s9PhhdvZhsm2mdAnW4/HwT//0T/zDP/wDL774Ijt27KC5uZlAYLRnUGZmJtXV1Zx22mlceOGF8+rJGhkZobe3l6KiorkORUQWkI9dD9OcxnKMbUPCcpJV+GnCA/+d0ilSIgG/eSi1eERk7kWjUdra2li1ahUXX3wxl1566VyHNC85/X5Ml4tkJIo7MwPXkjpiIyNE+wdIhMNEB4ew4nE6XnwZbJuculrMBTg3joiIiJya0jJOwuVycdlll3HZZZelo7m0ikQixOPxo7q9fve738W2ba6++uo5ikxEFiKnk7QM13Vj4nK5SDpNUuuLMX960ojI9CSjMVpaWrAsi7q6Oj760Y9Oed7bU0VGaQmZlRUM1TeQ6SvHMAw82Vl4srOIh8MMH2rAlZVJIhKh9Zln6diyjfyVyylYtQLXMUZAiIiIiMwn82cyk2n68Y9/zODgIO3t7QA8/PDDtLa2AnD77bczMDDA6aefzsc+9jFWrFgBwBNPPMGjjz7K1VdfzXXXXTdnsYuIiMipzbYsWp5+hVgshsvl4rOf/ey0q86fCgzTpPKyiwn39BJoa8eXn4/D4yYZjRHp7yezqpLFH7iGRCRC35t7SQSD9Lz+Bj3bd5KzeBEFa1bhLylWElRERETmpVk/Cnzsscfo6enhk5/8ZFrau/POO2lqahr7/4MPPsiDDz4IwM0330xubi7vf//7+fOf/8zGjRtJJpMsWbKE73//+9xxxx2q/CUiIiJzpnPLbgIt3RiGQVVV1YKc8Hq25dQuYumNH6J18/MEWtuwBuKYLhe5dYupuPQicmoXAVC0bi3DjU30vrmHUEcnQ4fqGTpUj7ewkII1K8mtW4yphKiIiIjMI7N+ZPKd73yHbdu2pS1J19jY+K7L/PKXv0zLtkRERETSZWBfE707DgBQUVGxIKuhzZWc2kVk11QT7OwiEQrh9PvJKC3BGHfx1XCY5NTVklNXS7i3j7439zB44BCR3l7aNj9P55ZXDg+FXYnTM3+qnIqIiMipS5cPRURERGZZqLOPtmdfB6DojOVk7+ia44gWHsM0ySwvm9SyvsICKi+9mNJzzqb/rX30v7mXeDBIz/Yd9Lyxi+zqSnJDIXw+3wxHLSIiInJ8GuspIiIiMoviwTBNT7yMnbTIri2n+MyVcx3SKcPp81J8+mks//hNVF91Bf6yUrAthhoaaWxspKGhgZdffpl4PD7XoYqIiMgpaNo96RzTLGdv27Ym6xUREVlgbNsmGo2mpa1IJHLM2+ng8Xjm9XGGlUjS9NjLJEJRvPnZVF55NkZKFZ5lOgzTJGdxLTmLawn39dH7xi4GDtQTiUT41a9+xcMPP8wll1zCpZdeSl5e3lyHKyIiIqeIaSfpbNsGRg+GpyIWi013kyIiIjJHotHojFRE37BhQ1rb27Rp07yd2822bdqefZ1wzwAOr5uav7gAh8uJHU/OdWinNF9BAZWXXEjh/noGBwfJy8tjeHiYxx57jCeeeIL169dzxRVXsGTJkrkOVURERE5y007SVVRU0N7eTlNTE8XFxZNe7/zzz2fbtm3T3ayIiIjIgtT7xn4G9zdjmAbV7z0Xd3bGXIck4zidTgoLC/n2t7/Nvn37ePrpp9m/fz+vv/46r7/+OpWVlVx44YVYloVpasYYERERSb9pJ+nOOeccHnroIV599VWuueaadMYkIiIi85h56wpwTT9JYds2JEZ75OM0Uh+eGrewNr6VWhszbKSpk86tuwEou/A0Mismf4HzZHFkFAaAHU/MYSRHGx+PYRicfvrpnH766bS2trJ582a2bNlCa2srv/71rzlw4AC5ubkUBwJ4NBRWRERE0iilJN3vf/97tm3bNqUk3fgDNBERmR2aT0zSymVipJCkMwDcaYuG+X5kER0YoeXJrWBD/qpa8lcvnuuQ5sT4z6Dkr347h5GcWDQaHavyWllZyc0338yHPvQhXnzxRZ588kmSySR9fX0M3PdrchbXUbBmLRll5frsEhERkZRNO0l31VVXsWXLFjIypjZU41vf+hY9PT3T3ayIiEyD5hMTmRvJaIymx14iGUuQUVZI2UWnKZmzAGVkZPDe976Xiy66iOeff57+/n4iNgw1NDDU0IA3P5/CNWvJXbIU0+Wa63BFRERkgZp2ku6MM87g97///ZTX09BYERERORXYlkXLk9uIDgVwZfmpft+5mA7HXIc1Z8YXG3N84kYM17QPQ9POjifGevedqCiaaZpkZ2eTnZ1N8roP0/fWXgb27yfS30/rc8/SsXUL+StXUrBqNe6s7NkKX0RERE4S8+foSEREZsU1N4AzhU9/24bk4WKUDgek2ikokYBHf5daGyLzUeeW3Yw0d2E6HdRcfT5O36ndS3R8D0LD5cSYpz3OJtvT0ZuXT+Ull1F6znkM7HuLvjd3ExsZoeeNN+jZ8QY5i2opWL2WjHINhRUREUmndE7lAzM3nc90pvJRkk5E5BTjdKaWpAOYp+fWIvPGwL4menccAKDyirPwFebObUAyY5xeL0Wnradw7TpGmpvo3b2LQFvbhKGwBWvWkveOobC2ZRHs7CARCuH0+8koLcNQ1VgREZF3NVNT+UB6p/OZzlQ+StKJiIjMgoVQvEOFO9Ij1NlH27OvA1B85gpy6irnOCKZDYZpkr2oluxFtUT6++l9cxeDh4fCtj33LJ1bt5C/YiUFq1cT7u2ldfMzjLS2YsVjmC43WZWVVF52OTm1p2ZhEREREUkhSbd48fQPIAzD4NChQ9NeX0REZKFZCMU7VLgjdfFgmKYnXsZOWmTXllN89qq5DknmgDc/n8qLL6XsnPPo3/cWfbt3jQ6F3fEGbS88R7CzE9M0ySgrw+EtJBmJMFR/iFBPN8tu3KBEnYiIyCT9+L1/iceR2jAf27aJJRMAuB3OlC5aR5NxbvvTf057/Wkn6RobGzEMA9u2p7yurtKLiIjIycZKJGl67GUSoSje/GwqrzxbxzynOIfHQ9G60yhcs5aRlmZ6du2k/+m3iA0P48rIINjZiSc/H09OLhkVlQTbWml9djPZNYs09FVERGQSPA4XXmfqc/H4XO40RJO6lIe7nnnmmdx8881cd911+Hy+dMQkIiIywck2OWzJrWCkWLzDHr3Yh+FMrXiHnYCujdNfX0bZtk3bs68T7hnA4XVT8xcX4JhH1UtlbhmmSXbNIkyXi65XtuL0+UiEwySjUUIdHUR6evAWFuLJz2ekpYVgZweZ5RVzHbaIiIjMsmkfPd5777386le/4vHHH+eLX/wi3/rWt/jwhz/MzTffzBVXXKErxyIikjYn2+SwhhNMV4rfk2m62Gcx9R7xMjrpf6CzjwNhm4Cvl6HOHgb3N2OYBtXvPRd3dsZchyjzUCIUAhuyKqvAtokODRLp68NKJAh1dmI4TDBM4oHAXIcqIiIic2DaSbqbbrqJm266if7+fu69917uueceNm7cyN13301ZWRkf+9jH+MQnPsH69evTGK6IiIjI3Bqqb6Nt82sEW7rpiDvpSAaJhyNklBWx6NoLyawonusQZZ5y+v2YLjfJSASn3483vwBPXh7RgQHCvb0ko1GseJyWZ57Gtizyli7DcDjmOmwRERGZJSmPw8jPz+fzn/88n//852loaOCee+7h17/+NT/84Q+56667WLlyJbfccgsf//jHqaqqSkfMIiJyCjvvY+BI8dvLtsE6PFzUTHG4aDIBW36TWjyycAzVt3Hw/ieJjQTx5edSYGbRdKibeCiC6XTi8HnmOkSZxzJKy8iqrGSo/hAZPh+GYWAYJt78Aty5uQweOIDT78e2bVqf3Uz39tcpOeNMcpcu0xx1IiIip4C0ftvX1tbyzW9+k71797J161Zuv/12+vr6+NrXvsbZZ5+dzk2JiMgpyuEEhyu1H6cb3P7RH6c7xfY07dgpw7Ys2ja/RmwkSEZFMU6vi7a2NgzDxFeYh+l20v7s69iWNdehyjxlmCaVl12OKyuLYFsriVAIO5kkEQoRam8no7SMtZ/7/1B+/gU4fT5iw8O0bH6G/fffy8CB/XptiYiInORm7NSipqaGxYsXU15eTldXF5YOKkRERGQBC3b2EWjpwpufA7bNSEs3GbEkpstJVnUJyWicQEsXwc4+MsuL5jpcmadyahez7MYNtG5+hpHWVqyBfkyXm5y6JVReehk5tYsByF+1mr43d9PzxnaiQ0O0PP0U3a+/RsmZZ5GzuE4960RERE5CaU3ShUIhHnzwQX71q1/x1FNPkUwmycnJ4XOf+xy33HJLOjclMicsy6axN8BIOE6Wz8WiwkxMc2EVSbEsm5aeIMFwggyfk6qijAW3DyIicyERjGDFE1jJJIFDrdjxJIbpIbuqBMPhwOExiA4Mkwimr2KwnJxyaheTXbOIYGcHiVAIp99PRmnZhMSbw+WieP3pFKxaTd+bu+jZsYPo4CDNTz2JZ3yyTsXaREREThopJ+ksy+KJJ57gnnvu4Q9/+AOhUAi3280HP/hBbr75Zq655hrc7jSVoBOZQ7tbB3lgWxMHOoeJJiw8TpOlpdl85Jwa1lTmznV4k7KveYhHtrTS0DFCNG7hcZnUlmVx7XmVLK/OmevwRETmNYfHRTwYJtw3jOl04HQ7WVS5iGZvHAubZDSG6XLizHj3Cr8ihmmSWV7xrss53G6KTz+TgtVr6d29i96dO4gODND85J/x5o8m67IP974TERGRhW3aSbqtW7fyq1/9ivvuu4+enh4Mw+CSSy7h5ptv5oYbbiAnRyf8cvLY3TrIvz2+h4FgjLJcHz63k3Aswa6WAVr7g3zh6lXzPlG3r3mInz+yn8FgnJJcL16Pg0g0yd7mITr6Qnz22mVK1ImIHEeou5/2F3dgWzbJaBRvYTFZpYX4HD6w49i2TaR/iJy6SjJKC+Y6XDkJOdxuSs44k8LVa+jdvZOeHTuI9PfT9Oc/4S0ooPi00/HZtnrWiYiILGDTTtKdf/75GIbB2rVrueOOO/j4xz9ORcW7Xw0UWWgsy+aBbU30B2LUFGaQtGxC0QQ2UJzlpakvyH9tPsD/vHLZ6IGxDbZtA2AzWkXS5vD/7SP3jf4/lrAZGgoB8Oqrr+J2u99e17ZHT/oiEQYHB7Ftmx2HnDgPj4SxD8dnW/aE/1tjD7y9zaRt8/vnmmjpDlKS52UkHCcaT+L3OllUkkFjV5BHt7aytDJbQ19FRMaxkxbdr79Fz+tvYVs2OXUVRHqHsJJJEpEYSW+SeCRCuH8Qd1YGFZedqbnCZEY5PB5KzjybwjXr6Nm5g95dO4n09dH85J9wNzdSVFQ0dixxMrJtm2g0mpa2IpG3h6ZHo1FcLlda2vV4PEqWiojItKQ83HXPnj18/etf5+tf//qk1zEMI21frrKwWJZFQ08fw+EI2T4vtUUFmHNwMpO0bEKxBKFogmA0QSiWfPv24d/Bw4+39Yd4Zk8nLofJYCh2VFvxhMVL+7uJJSyyfVM7uEtaNm1tCQB+8Ytf4HA4jl4mmaS9vR2AJ7aZOKbx5xoJxdnbNITLadLRP3GuJIdp4HQYvLavj5fe7ObMZQX4PCpXKSIS6R+m9elXCfcMAJC7pJKyi08n2N5D2+bXCLZ00zEQI+5KkFNXScVlZ5KzWBcsZXY4PB5Kzz6HwrXr6N25g96dbxCJRGhpaeEHP/gBH/7wh1m9evVJlyyKRqNcd911aW/31ltvJZFIpKWtTZs24fVq2LuIiExdSmfitm2n7ctMTn67Wtq4f8tr7O/oIppI4HE6WVZWwk3nncnaqumf1Ni2TSAQYHBwkEAgcNTP4OAgzc3NJJNJ/vUxk2g8STienHT7fSNR4paNzz16kOt0GDgPJxYNwOM0SYRssn0uSnN9GIwmoo8cEhsGGBgcOUZ++7dBMmmzvX808bds2TJcLtfYwfSR5GUikeDFF18EoK7cgctxpIFjbeftDRz5v2EYtPeG2N8yTH62+3C7NpGYRTiaIGnZxJMWwXCCP7zYzPM7u8jP8lBe6Ke8wEd5oZ/iPB8O9bATkVOEbdv07TxI59bd2EkLh8dF+SWnk7ukCoCcxRVkLyoj1jnA1eFCHvf14i7NUw86mRNOr5fSc86lYOUqOv/th/T399Pc3MyPfvQjamtr+cAHPsCqVatOumSdiIjIyWjaSTrLstIZh5zkdrW08cNHn6Q/EKQ8Lwe/200oFmNHcyst/QN86Zr3sLaqAtu2CcXihKJRQrEYwUiMYDRKMHr07+FwhH37DpFMJvnqV796zF5oMNoTLRAIANAXcI4lmwzA63aQ4XGS4XHidx/+7Rn32+2kLxBhKBwjP8NNjt991EFuIBJnIBjjc5cvZXFx1pT+LtGEzfbYaGx//dd/fcyrrpFIhCeeeAKAj1zqwu2c+kF2U1eA3Q0D5GS4yfC9/ba3LJtILEnfcJR+M0pBthfLtukfidI/EmV3w2jvEadpUJI/mrArL/RTUegn25+eISEiIvNJbCRI69OvEmzvBSCrupSKy87AleGbsNzopP9FLDWX8IJlEEfHRTK3nF4vJSUlFBQUcOWVV/Liiy/S0NDA//k//4fFixfzwQ9+kEWLFs11mGmVccvXMZzTL1Bn2zauRJQbfb38Nl5Gwjj2seSk2krECP7ye9NeX0REBNIw3FXk3ViWxf1bXqN/JEhVQR6BaJSBQIiEZWHbNm+2tvN3v3mQsxcvIhyLMdlZVJKWTTL5do84v99PZmbmUT9ut5udO3ficDj47OXZ5PpdZHic+FyOSc2/ZlnZPPVmJ7taBsjxTzwQtG2bjsEw66ryWFSYOZU/y6yqKsqgtiyLvc1D1HozxvXWM/B5HMSTNueuKuILH1lFNJ6kvTdEe1+Y9t4Qbb0hovEkbYdvH5HhdVKc56O314PP5yMSiWhoh4gsWLZtM7iviY4Xd5CMJTBdTsrOX0veqlr1QJIFxel08qEPfYhrr72WJ554gmeffZb6+nr+9V//lZqaGoLBIBkZGXMdZloYTjeGa/pJOgMw3S5cziFMw4OBesOKiMjcSjlJ9+ijj/LQQw/R0tKCx+Nh3bp1fPrTn6a2tjYd8ckCZts2fYEgz791kGffOoBlWQyEQkct5zBMOgaH6BwaIts32lPB43SS4fGQ4XHj93jI8LrH/n/kt8vhpO35V3E4HPzbv/3bcQ84I5EIP/7xjwGoKczEM8WeaKZp8JFzamjtD3Kwa+RwdVcH4ViSjsEweRluPnxOzbwuuGCaBteeV0lHX4iGzuCE6q5dgxFyM1xcc27l4aSdk7qKbOoqsoHR57F/JHY4cReivTdE10CEYCTBwbYRuruHAPjyl79MVVUVtbW11NbWsnjxYkpLS+dkzkERkamIhyK0P/s6w40dAPhLC6i84iw8OfP34ovMjfEFGex4fA4jOdr4eGzbJjs7mxtvvJH3vve9PP744zz33HPU19fT1NSE3++nsqONrGodr4uIiMwnKSXpPvGJT3DvvfcCbx+0PPzww9x5553ce++9fPCDH0w9QlkwbNumPxjiUFcPh7p7ONTVw1AoTO9IgMFgiCyfFxPI9HrJ8LhxOkyc5mhvts7BYW4890zOqVuE3+3GeZyhq+NFE0k8Hg/AcYe6psuayly+cPUqHtjWxIHOYTqHLDxOk3VVeXz4nBrWVObO6PbTYXl1Dp+9dhmPbGmloWOE7kELj8tkVU0O15xbyfLqnGOuZxgGBdkeCrI9rF2cB0AiadHZH6apK8TBgRHC4TC2bdPW1kZbWxsvvPACMFrdbNGiRVRWVjIyMoLP5wOmf8VbRCTdhurbaH/2dRKRGIbDpOTsVRSetlTzy8kxjS98lvjVxjmM5MSi0ejh71zIyclhw4YNvO9972PTpk386U9/IhQKceiRB8mqqqHkzPPJLFPBExERkflg2km6//qv/+I3v/kNTqeTW265hdNPP52RkRH++Mc/8vLLL/PJT36SpqYmcnKOfeIvJ4e+QJD6rh4OdvdQ39XL4Dt6ypmGyeKiQlr6BijJyaI0NwfzHcOGRiIRcv0+aosKx3rSzUdrKnNZVZ5DY2+AkXCcLJ+LRYWZ87oH3Tstr85haWU2LT1BguEEGT4nVUUZU94Hp8OksiiD4jw/j+0ffY9/73vfo6Ojg4aGBhoaGmhsbCQajbJv3z727NlDS0sLAHc/5Ka82E9JoY/SQh/F+T6czsmfDFuWTXt3iGA4TobPRXmxf0E9ByIyPyRjcTqee53B/c0AeAtyqLziLHyFuXMbmMgMyc3NZcOGDWzcuJHe3l5GTJORthZG2lrIqqym9KzzySgpn+swRURETmnTTtJt3LgR0zR57LHHuPLKK8fu//u//3s+/elPc/fdd/Pggw/y6U9/Oi2ByvwwEAzS0tvPoe5e6rt7GAgenZSrKshjSUkRdSVF1BTm4zRNYg8k2dHcStk72rNtm/aBIdbXVFJbVDB7OzJNpmlMuTjEfGOaBjUl6R/ClZOTQ0lJCevXrwdG5yI8krTbt28fmzdvJhqNMhyMEWiMs79xdJisaUBRvm8saVda6Cc3++gCHQAHm4d48qU2mtuDxOJJ3C4H1eUZvOeCCpYcpyegiMg7BYNBOn73FPFQBAwoOn05xWetxJzhXtmy8B3pwQ/g/MStGK75U0TJjsfHeveNj/OdXC4XZWVlVHzkFrp3v0H/W7sZaW1mpLWZrKpFlJ11Pv7i0tkKW0RE5oBt2xN6h6ciEokc83Y6eDyeU25u4Gkn6Xbt2sV55503IUF3xNe+9jU2btzIrl27UgpO5l5/fz87d+6kra2NUCjE/w4MjlVHhdGhkNUF+dQVFx5OyhXgcR39srrpvDNp6R9gf2f3hOqu7QNDFGRmcOO5Z2ruspOMaZpUVFRQUVHBWWedxf33308ymeS6i6P0DUTo7A3R2RsmFE7Q1Remqy/Mzn2j63o9DkoKDiftivyUFvpo7Qryq4cPMjwSozDPh8fjJRpNcqBxiK6+MJ/4wBIl6kTkhGKxGJ2dnfT392N4y3HnZVJ5xdlklM7/i0QyP4w/UTBcrnmVpBtvMic07qxsqi55D8Xrz6Zr+1YG9u1hpKWRkZZGsqtrKT3rfPxFJbMQrYiIzLZoNMp1112X9nY3bNiQ1vY2bdp0yhUnnHaSbnh4mLq6umM+duT+4eHh6TYvc2RgYIB9+/axb98+9u/fT29vL8lkkqGhI72eDKoL81lSXHTCpNw7ra2q4EvXvIf7t7zG/o4uOhPDeJxO1tdUcuO5Z7K2SnOhnAocDgdVpZksrhztjWjbNiPBOJ29YTp7Q3T1hOnuDxOJJmlqD9DUHhhbrr51hEAwTkWJH8MY7YHn9zmp8mbS0hHgqZfaWVyZraGvInJMjY2N/PSnP2VgYADDMMhfsYiS89ficDmx48l3b+AYbCziZhzbSmBPujb5MdoZt/3xhQlEZoMnO4fqS99Lyfpz6Hp9KwMH9jLc3MBwcwM5ixZTeub5+AqL5zpMERGRU8K0k3S2bR93sv4jPaIsy5pu8zJL4vE4wWCQX/3qV9TX19Pb2zvhcdM0qaqqoqCggIyMDL714b8g23f8IRQnsraqgtUVZTT09DEcjpDt81JbVKAedKcwwzDIznSTnelm2aLRXnDJpEXvYJTOnhBdvWE6ekO0dQbpH4jgcpp09oSBMKZpkOF3kul3kZPlpqk9QHt3iMrSY1f5FZFTUzKZ5NFHH+XRRx8lGo2ycuXK0QcODMKB55leeu5w28DPeDoNUb5t/IT/IrPJk5NL9eXvo+SMc+h8fSuDB95iqLGeocZ6cmqXUHrmefgKiiasY1sWwc524qEALn8mGaXlKroiIrLA/PjKO/A4pl/cz7ZtYsnRCuNuhyvl4anRZIzbnrozpTYWspSqu8rCMxQKcrCrg4NdnezvbOPAgQMAvPzyyzgcDkzTpLq6muXLl7N8+fKxXpHPP/88wKR6zZ2IaZrUlRS9+4JyynI4TEoKfJQUvH2Sumt/H+09IbL8LiKxJOFIgmTSZiQQZyQQH51TIW7xwmudXHB6CRUlfhwOnSSInOo6Ojr4f//v/9HcPFoc4vTTT6etrW2OoxKZ3zw5edRcfjUlp59L12tbGDy0j6GGgww1HCR38VJKzjwPX34hgw0HaNn8Z0Zam7DiMUyXm6zKGqouu4rc2qVzvRsiIjJJHocbj3P6SToAr2t6HXnkaCllXDZu3MjGjccuP28YxnEfNwyDRCKRyqZPWZZlcai3iwOBTgqCNksLS07YE20oFORQdycHuzqo7+6kZ+TtIcjJwz0dvV4v73nPe1izZg1Lliw5asx3uid/FJmqvGwv2RlusjJclPqcgE0kmmQkGCcQSjA8EsW2bOpbhunqC+NymlSWZrCoIpNFFVlkZ6b2pSMiC4tt2zz11FP8/ve/J5FI4Pf7+cQnPsHq1av54x//CID5yUswXKkVinBhcItZxy+tQ8RTHO5q3f0ccOIJ/0Vmkzc3j5or/2K0Z91rWxiqP8Bg/QGGGg7iys5h6NB+EpEw3vwinF4PiUiUwfr9hHq6WH7jzUrUiYiITENKSbrpzpui+VamZ1dLI/dteYF9nW30GBZ/tE2Wl1aw4byLWFu1CBhNytV3d3Gwq4ND3R0TknIABgaV+QXUlZRRXVBI1ytOHA4H119//Sk3IaMsHOXFfqrLMzjQOESVNxPDMPB6nHg9TgrzbJraoaTQx5mrCmlqDxAMJ2hoHaGhdQToID/HQ01FJovKs9TLTuQk19fXx7333sv+/fsBWLNmDbfccgu5ubkTLjoZLkfKSToDE5fpwrCcGKRnio9TrYKZzH/evAIWvedawv29dL22hYFD++nc9iKxkWEySiswnQ4M04HL78fpqybQ1kzLs38mp6ZOQ19FRESmaNpJOs03N7t2tTRy56MP0R8YoTQvH1duJhmDAV5vPMSuliYuW7mGaCJBz8jQhPXGknLFpSw+/ONzj/YqiiTix51XUGQ+MU2D91xQQVdfmJaOwOHqrg6i0SS9A2Fys93c8L5allTnYNs2vQMRmtoDNLaN0NEdon8oSv9QlO17+sZ62dVWZlFTnonPOz8r84nI1Ni2zdDQEN///vdJJBJ4PB5uvPFGLrroIiW+RNLAl1/IoqveT2bFTvrf2o3D4yU2MkRsZAhvXj7+4jIM08SbX8RISxPBznYyyyvnOmwREZEFRXPSLQCWZXHflhfoD4ywqLCY4WiYrq4u7MERIrEow6EQA6EAZ9UuwTRMKvLyqSsppa64jNriEvxuDZ2RhW9JdQ6f+MASnnypjeb2IH2DEdwuB8sW5XLlBeUsqR4tPGEYBkX5PoryfZy1pohINElLZ4DG1pFj9LKD3Cw3nZ0ZZGVlaRi+yAKVCEVpbWkhEAgQjUZZtmwZn/70pykq0hyoIunmcLvxZOfgzSsg3N9DbGSEyEA/scAImaUVOH1+ogMx4qHAXIcqIiKy4ChJtwA09HSxv6ONsrx82gb66RweJOI08SYsDMOgICsLwzC4as16Ll25Rkk5OWktqc5hcWU27d0hguE4GT4X5cV+TPP4vWS8HgdLa3JYWvN2L7vGttFedp09IfqHo/T3R+nv7+crX/kKa9asGfvJz8+fxb0TkekYqu+m/Zk9JAIBDMPguuuu49prr1XlcJEZ4vJnYrrc2BhkVS4iHgwQ6GjDiscYbmnE6fPh9Ppw+TPnOlQREZEFR0m6BWA4HCaSiON3e8jx+xmOhPHnZlHlcJPt9WMYUN/dRWlOnhJ0ctIzTYPK0oxprTu+l93Za0d72TW0jtDaP0wgECAWi7Fjxw527NgBQFlZGWvXrmXJkiVYlqWTfpF5JBmN0/HCPgb3d2BbNh6Ph4qKCq666iq9V0VmUEZpOVmVNQzW78fpq8aVkUnu4qWEejoJ9/US6unGl19IPByc61BFREQWHCXpFoBsnw+v00UoFiU/M4u8zCy6/S7yQnEMYCQSxut0ke3zzXWoIguK1+NgSU0OFRVZ2LbN3/3d33HgwAF2795NfX09HR0ddHR08Nhjj7F//378fj/7DmSxqDqLzAzNZScyVwKt/bQ9/SbxYAQwKFpfQwERJedEZoFhmlRddhWhni4Cbc2j1V09HtxZucSDQQzAX1RC05OPMtRwkIoLL8fl88912CIiIguCknQLQG1RCcvKKtjR3EBmaTmMmwDbtm06BvpZX1NLbVHJjGx/fDXeaCI5I9uYjvGxqGKwpMowDKqqqli6dCnXXHMNwWCQvXv3snv3bnbs2IFlWQQCAV7cEuDlbR3k5XqoqsikqiKLkmKfKsaKzAIrnqRr60H6djUD4M72U3HFavyF2Vg798xxdCKnjtzapSy/8WZaNv+ZkdYmogMxTJebgpVrqLzwCiIDfXS/8QqDh/YTaG2m4sLLyV2yXEVcRERE3oWSdAuAaZpsOO8iWvp7OdDZTmlePkmPyUgkTOdAP/mZWdx07kUz1oMgGo2O3b7t8edmZBupikaj+NSTUNIoIyODs846i7POOotwOMxrr71GIBCguChAX3+YgcEoA4NRdr7Zh8tlUlGWSWVFJlUVme/ay86ybDq7AyT7DuCIBygtdp9wXj0RgVD3EK1P7iY2FAIgf3UlJecvxeFyYsdVcV5ktuXWLiWnpo5gZzvxUACXP5OM0nKMw8ejuYuX0rz5T4T7emh6+jEGDu2j6uIrcWVorjoREZHjUZJugVhbtYg7rrme+7a8wL7ONnpCwxTZJutrarnp3ItYW7VorkOUGTK+l2AsMb96DI6P50S9Gcc/Fp9n+xCfxD4YhoHP58Pn8/H+q4tIJpO0tQdpaQ3Q0h4gEknQ2DxMY/MwAPl5HqoqsqisyKT0HYUtGpqGee7FNto6QiTsbpxGNxVlfi65sILamuyZ3VmRBchOWnS/3kDPaw1g2zgzPFRctoqs6sK5Dk3klGeYJpnllcd8zFdYzLIPfYzuHa/S+fpWhpvqeau9lfLzLyF/xRr1qhMRETkGJekWkLVVi1hdUc2B3i62ZBicF7RZWlgy43PweDxvF6P48dWX4HE6ZnR7kxVNJMd69o2P8WQzvifjPz+amMNITuxEvRnH78N//MEG5lei7ojJ9sj0epzU1eZQV3u4YmxfhJa2AC1tI/T0hukfiNI/EGXH7t6xXnZVFZlYts2jf2piJBCjIM+PP7uc0PAg9U3D9PRF+MgH65SoExkn0h+g9ak3ifSOJsBzlpRSdvEKnF7NCSmyEBgOByVnnEtO7RKaN/+JUHcnLc89yeChfVRechWe7Jy5DlFERGReUZJugTFNk7qSMvrKsqjrGMGchVzH+CudHqdj3iTpxjvR1diJc+rNr+RQdJI90WT+MgyDokIfRYU+zjitiEg0ccxedg1NQxw4NEgonKSsxI9l24d76Dmp8GbQ1hHkuZfaqanK0tBXOeXZtk3fzma6thzEtiwcHhfll6wgZ0npXIcmItPgzStg6XUb6Nm9nc5tLzHS1sK+395N2TkXUbhmvXrViYiIHKYknZz0xvfi+tJTwTmM5MSO14trfC/Br17jxO2cPweysYQ91rvvRL0Zxz/2Pz9o4JpH+xBP2Id796WnR+Y7e9n19EVoaR1hz1v9BEMJnE6T/sEo/YMxHJ1v4XGN4PM68HgcNLeO0Nkdorw0I+U4RBaq2HCYtmfeJNg+AEBmdSEVl63EleGd48hEJBWGaVK87kxyahbT8tyTBNpbaXtpM4P1+6m65Co8mZqrTkREREk6kXlu/NVlt9OYV0m68U50FXz8Yy7n/ErSjRpN0qX7Sr5hGBQX+igu9JGb4+FA/RCZGS7C4QTBUALLtgmFE4TCcWzbJhxO8PBjDaxclkdJiZ+SIj852W71MJCTjm3ZhDoGiYeiuPwe/GW5YMDgvg46XtiHFU9guhyUXrCMvJUVeg+InEQ8OXnUvf8G+vbuomPL8wQ729n3wD2Urj+LrMO9zEVERE5VStLJSW9876gfXpmBZx4liKIJe6x338k8r56Az+fE63Hg9TjIy/UAJglqCQy9RTgcY2gkhmkaRCIJ9h0cZN/BQQC8XiclRT5Kiv2UFPspKvDicMzsPJQiM2movnu0p1xrP8lYAofbia80B6ffQyIQAcBfmkvFFavx5PjnOFoRmQmGYVC4ah3Z1bW0Pv8kw82NdLzyMr3NDZSXl891eCIiInNGSTo56U2cU8+YV0m68XTl+ORWWuynoiyD+qZhKrwZGMZoYtaZ4yEn20nSslm9Ip/LL6qgpy9CZ3eI3t4wkUiCppYRmlpGAHCYBoWFPkqL/ZQU+cjL96GPclkohuq7OXjfy8RGwvgKsvB6nYR7A3RvO4ThMMldWkrle9ZSeFoNhuZmFDnpuTOzqL36egYO7KXthaeJRCLU19fzxz/+keuvvx6nU99vIjL/2LY9YUqlVEUikWPeTpXH49E55gKkbz4RkVlgmgaXXDiagGvrCFKQ58fnTBIOJ+gbCJGd6ebyiyuprcmmdtFotbtk0qKnL0JXd2j0p2c0aXfk/wCWBU1tbnw+Hy+99BKrVq2ipKREX8gy79iWTdszbxIbCZNRlksymiDUMUR0KITD58aKJnD6PUrQTVYikVKdbNu2IZEc/Y/TkfpnRmL+Vh+X+c0wDPKXrSKzpJzGxn2MjIzw+OOPs3v3bm699VZqa2vnOkR5h3QmKJSckIUoGo1y3XXXzUjbGzZsSFtbmzZtwuvVnL4LjZJ0IiKzpLYmm498sI7nXmyjrSPEYKADpxFj8aIcLrmgnNqa7AnLOxwmpcV+SotHh/zZts3wSIzO7hBd3WG6ukP0D0SJxWLEYjF+/etf43A4yMjIoK6ujiVLllBXV0dNTc1c7K4IViJJdCBIpC/A0KFOel9vHJ17bmTiiZi/KBtnhodI7wihjkEyKvLmJuAFJPnLR+Y6BJG0cvn9VFVVMTw8TGZmJh0dHfzLv/wL73nPe/jgBz+I2+2e6xDlsJlKUCg5ISKiJJ2IyKyqrcmmpiqLzu4YSde1OOKPUFrsxpxEzyHDMMjJ9pCT7WH5ktEkxkgwzv/7dZhQKERdXR1tbW0Eg0F27tzJzp07AXA6nZSVldHZ2Ynf7ycS9pOZpY9/SR/bsokNhYj0B4j0B4j2jf6ODYU5UpglOhQiHorizPBgAKbLgcPjwluYhcvvxk5aRAeCxEPpGz4iIgtPdnY23/zmN9m0aRNbt27lz3/+Mzt27OCWW25h2bJlcx2eiMgEP7r0n/A4UruIYNs2MSsOgNt0pdQLNJqMcfuz30gpHplbOksTEZllpmlQXpqJN38pkf5MID7ttrweJ1lZWWRlZfG3f/u3OJ1OmpubOXToEIcOHeLgwYOMjIzQ2NhIf38//f39/P5+yMlxU1jio6jYT3GJn+ycyVeRtSybnq4Q4XACn89JUYl/UknG+cSybPo7Q0TCCbw+J/mlC28f5oJt2yQSCWLNvUSHQ0SPJOX6g9iWdcx1HB4X3oJMMiryiPQF8OT68eRkYDgm/r2T0dEiEi6/iugcj8fjYdOmTWlpKxKJjPVaue+++9La40SFkCRVGRkZfOYzn+Hss8/mnnvuobu7mx/+8IdceumlXHPNNXMdnozzgU/+GKdz+u9527ZJJmIAOJypVbRPJKI8fPdt015fZDo8DjeeFN4DR3hRz08ZpSSdiMhJxOl0snjxYhYvXsxVV12Fbdv09vayZ88etm7dSjgcBqKMjMQYGYnRcHAIAJfbpKjYT1Gxj6ISP4WFPhzOo6vINjcOs+WFdjrag8TjSVwuB2XlGZx3UTnVi7KPWn4+am8YZvtz7fS0BUnEkjjdDooqMjj9knLKaxfGPsyGYDBIe3s7bW1ttLW10djYyL59+7AsCx7vOWreONPpwJOfiTc/E09BJt68DDwFmTh9oyddtmUT7hlh6FAXnryMCevatk24b4TcJaX4y3JncS8XFsMwZmT4ltfr1bAwmZfWrl3LP/7jP/LAAw/w/PPP8+yzz7J9+3YCgQCZmZlzHZ4ATqcHpyu1zw+X25emaGShmKl5DaPRKC6XKy3tguY2PJVYlkVDbzvD4RDZPj+1heWY5tHnQrNBSToRkXdh229Pzx5PAClN1z7WKo54nHjCTqm9+Li52sfHeYRhGBQVFXHuuedSXl4OwNUfSjIwEKKnK0xPd4jenjDxmEV7a4D21sDh9SC/wEtRiX80eVfip6crxCMPHSIYiJOb78Xj8RKNJmluHKavN8y119fN+0Rde8MwzzxwiNBInOwCLy6Pl3g0SXv9MIM9YS7/SN2CSNTZls1wZ4h4MIErw0l2qX/axRaSCYtwOEo0GuWBBx6gt7eX9vZ2BgcHJy6XTI4m6ABvXibewsPJuPwsvAWZuLK8JzyQNUyDistXE+4eJtDaj68gC4fHSTKaINw3gjvbR/llq1Q0QkQm8Pl83HzzzZx11ln88pe/pKuri+bmZnJycqiLhHG5FtZcdaoKKTJz8xreeuutJNJYyEhzG54adrUc4r5tT7K/s5loPI7H5WJZaTUbznkPa6vqZj0eJelERN7F+IPpex9KV6tx4GfpagwYjdPne/er0W6Pg4rKLCoqs4DDQz/7IvR0hejpDtHTHSYSTtDXG6GvN8Jbb/Zj2zYtTSOEQ3FKSv2Y5mgiz+dz4i3PoLM9yNYX26mszpq3w0Yty2b7c+2ERuIUVmSMnXx4fE4KKzLobQvyxnPtlNbM330A6Ksf5uDmNoZagiTjFg6XSU5VBksuq6Bg8fETjLZlEx6MERqIEOqLEhqIEuqLEBmMEWoYXeaZZ57B4XCMrVNQUEBFRQUVFRUUFBRw4MAB3G43zhvXYLimfnUxZ3ExSzacT9szbxJs7SfSPzrENXdJKeWXrSJncfGU2xSRU8OKFSv41re+xW9/+1ueeOIJhoaG2PvAz6m+5FpyF6+Y6/AmTVUhRUTmj10th7jz8V8zEBiiLK8Iv9tDKBZlZ/MBWvq7uePqj896ok5JOhGRU5xpGhQW+Sgs8rGSAmzbJhiI09MdorsrTG93iPa2AEODUZwuk56eCPRMvFqfTFi8/koXgZE4/kwXBoABBgaGceT2aG+qI+mvIz2mbBsOHhy9/d3vfheXa3TCXNM0MQwDwzBIJpPU19djGAbWH8HhGO0leKSx0eWO3B79ZywGY/TxwHCUgzv7cHlM+tqDYzGMX7dh7wDbn2snv8SHwzRxOA1M5+HfpoHDaeJwHP7tNDAdJlgGtm3MSo+Dvvph3rj/ENGRGP58L06vg0QkSd+hYQLdEdbfVEd+bRaxQJxQf/Twz2hSLjwYxUoe3dvStsHhcOD1ern00kupra2lvLyc8vLyCSdo4XB47P92/Njzz01GdlUhWTdfQrhzkHg4hsvnxleai2Ea0253/HrH6lEqIqPGvz/s+PTnQ50J4+M53vvY4/Fwww038NOf/pT29nbi4SD1f36AvMUrqbzofbh8GcdcT0Tmrx9c8SM8jtTmNQzbYQ4tfpOVTafjtFNLcUSTUb789O0ptSELg2VZ3LftSQYCQywtrR47ls/y+sksreZAZzP3b3uK1RW1szr0VUk6EZF3MX4S9I9eD660fHK68OZ9isjAL0ilcEQ88XbvvnRN1m4YBplZbjKz3NTW5QJw4K0BerrC+PxOYtEkkUiC8edQpsMgGbWJRpO4PY5jN3wclgWx0Tmj6erqmtCT64hkMjk2jGegG4xpfE8Gh2OEg3Esy0kscnQyyLZtouEEb73WQ0b25IdP2RZ0HRj9u33lK1/B5/PhcrlwuVy43e6x2wCtra0YhkH4RROH28R0mpiO0USg4TDGEn/m4eSg6TAwDicEDcNg359biAxGyanKwDRNrOTofrh8DgZbA2z9+V7yF2dhxY99gutwmfjyPfjzPPgLvPjzPfiyPfT9evRFfeONNx6358T4HqX2xrdSHvTtPfwDYNORlkHkMPkepSKnovHv4+ivfjKHkZzYu72P/X4/ixcvJrDufLp2v8JA/V6G2xqpuvC95C1ZvWCGadbdehdmihPO27aNfbjwgpFi4QUrEeXQxi+mFI/IVHkcnpQLL7gMJy6XC6/TgyPFJJ2cOhp629nf2UxJTgEDwRF6RwbJy8iiKDsPwzAoyytiX2cTDb3t1BVXzlpcegWLiLyL8Qe8Lie4nOk4+DdwuVwknYe7mU3b26mNmTwpyc5xk5HpIiPThc/nPFzl8+1tR8JxQsEE77t2EQXFPrAZS+LZtj3u9ts9JI7cTiTgqT+O3v7CF76A2+0+vI49NgdaJBJhz549AJx2pY3peLs9bBub0eGcR9gW2Bzerj16e6g3wlBfBI/PgcvtOLycPRZHLJrE4TCpqM3Cn+UmmbBIJm2SSRsrYZFM2CSTFtbh+5IJa0Ki0rZtQqHQcecaSiaTDA8PAxB7c+qJxlgwTvdbgzhcJrHgMeZbSdoEusP48z14stz4ct348734C95OynmyXEe9To6X0BMRmc9M06T87EvJW7qGps1/JNzfTePTmxg4uIeqS/4Cd0bWXIf4rkynB9OVhgtsbg1LFRGZCsuyeLO1gdb+bjrMvrHzk4SVpCg7DwC/20PnYJzhcGhWY1OSTkRE3lVRiZ+y8gyaG4fxlo/O5+ZyHRmuahMYiVNTm03N4pwpz+eWSIDfP3p76dKlx+zJFYlEyMoaPeEqqwHHNAp3WZZNW/0w7fXDZJVMnBDbtm1624IsWZvPJdcvntQ+jCYRbeIRm5d+NZpQ/PrXv47D4SAejxOPx4nFYmO3A4EAb7zxBrZtk3OmNbp+0sZO2FjJ0SSgnRhNAloJC2v8/UmbWDCObdsYjomxOdwmTo8Dh8skGoiz5PJyytcXjg7FTaPxPTWNW1dMa066mWLHLeyNbwHp61EqcjIa//7wfOKvMNJYBTFVdjw+1rtvKu9jf1EZKz78GTp3vEznay8w1HyAkfuaqDz/PRSsWL9getWJiMjMsm2b1oFutjftZ8fhOedCsSgeh4sMr4/CzGwKsnLHlg/FonhcLrJ9/lmNU0k6ERF5V6ZpcN5F5fT1hulsD45Wd3U7iMaSDPZHyMhyce6F5TNWcGH8/ETJaY8ONjjtwnKGeqL0tYfJzvfgdDtIxJIM90fJyPaw7sJy7KRBMjm59sDANMB5+Nu0tLT0uEO0IpEIBQUFo8udCaZran+rofYgW3+2F3eGC6fPAbY9Op/e4b95LJTAMA2yyjLSnqCDiT01DZc5r5J08HafUp2QixzfxPexC2OeVkad6vvYcDgoO+MicmuX07z5jwS722l+7lEGDu6h+tJr8BzuFSEiIqeenpFBtjftY3vTfnpGBsfuL87KY0VpNf3BYdZW1mGMm3fOtm06Bno4rXoZtYXlsxqvknQiIjIp1Yuyufb6Ora80E5He5DBeASXy0FNbTbnXlhO9aLjVxZN1fghpFvuTaWlbCrzT4P8cXe5oTRz9Gb9c1CfQuszOR9adqmfnKoM+g4Nk+PPOOpAItQfobAuh+zS2b3aJyIyX/jyilh23a10736F9m2bGWlvZO9vf0b5OZdRtOZsJfFFRE4RI+EQ25v3s71pHy393WP3u0wHqyoWc0bNMpaX1bC3vZE7H/81B7paJlR37RjoIT8zh5vOuXJWi0aAknQzbnzvj2jiGHMITUPSgHg8TjQRJ5HCVELj41E1PJGT2/j3eCofReWV2Vx/Uxa93SHC4QQ+n5PCYj+maUy73fHr6bPo+AzTYMllFQS6Iwy1BUeru3ocJKJJQv0RPFlu6i4rH+tZJyJyKjJMk5J155JTs5TmZx8h0NFM60t/ZuDQXmouvRZvXuFchyhzzLbt484fO1VHilq983Y6eDweJZZFpiASj7Gr9RCvN+7jYFfL26MsgGWl1Zxes5w1lYvxjutFvraqjjuu/jj3bXuS/Z3NdA7G8bhcnFa9jJvOuZK1VXWzvh9K0s2w8V8Af/X479La9s/S2Jaq4Ymc3MZ/Fj2a8keRAWSk2sgxHe+zaPz8ROd9dHpz0s2UZPzt3n0zPR9aweJs1t9Ux8HNbQy1BAkPRHG4TArrcqi7rJyCxTPXm1FEZCHx5uSz9AM307t3O21bniLY1cre3/2csrMuoeS08zBME9uyGO5s4kC0gWFPAm9pzYReynJyikajXHfddWlvd8OGDWltb9OmTcetuC4ioyzL4s22et5sOcTe9kbi1ttz1lTnl3DGouWcVrWUrBPMK7e2qo7VFbU09LYzHA6R7fNTW1g+6z3ojlCSTkRE5r3xV5IdrvmVpBvvRFe8x/cStOIwvjLvVORVZXHWJ1Yw0hUiHkrg8jvJKvFjmNOr1GqNm+NPPRlF5GRiGAZFq84gp6qO5uceZbi1nvZtzzBYv5ecxSvpfuMlAq31NMZH6HdlkVm5mJpL30/u4hVzHbqIiByHbdvs37+f9vZ2hoeHuSfowHE4oVaUlcsZNcs5vWY5hVk5k27TNE3qiitnKuQpUZJuho3vVfGTq2/A40z9T5404NXSLM7qHMGR4nDXI737VA1P5OQ2/j1+zQ1vFzqYDxKJt3v3ncyfReN7M3bfnY4WR68IxoF0FYZXr2oRORm5s3Kou+aj9B/YTeuLf2Kg/i0anvw9DreX3Jo6yv1ZBMImA4f2EuzuYNWNn1Oi7hTxlx/7d1zO6R972LZNIhEDwOl0pzw8NZ6I8p+/+XxKbYicjGzbprW1la1bt/LKK6/Q19fH4OAgANm+DM5atIIzFi2nPLdwwQ8Tn0enaSen8S8Qj9OJ15l694+EAS6XC4/ThTNNnR4W+gtZRE5s/Hvc6ZxfSbrx9FkkIiIzwTAMCpatJau8hi13fplkPIbpchPobCVaUYTLX0iWr5aR1gaann2EnEXLNPT1FOByenC5UhtS6nbr4pbITOnp6WHnzp1s27aNzs7Osft9Ph+5ubnk5OTwd9fegt998lzon6enaZMTCAT4wQ9+wNatW9m2bRsDAwP893//N5/61KeOWnbv3r387d/+LS+88AJut5trr72Wu+66i6KiotkPXERETjnjewkWfxLMeTJk14q/3bPvZO7JKCICEB0ewHA4yalZSmSgl2Q0QkNDAyFvP968Irz5RQy31hPobCGrvGauwxU5SjoLX8DMFb9Q4QuZrpFIkP7+foaGhvj2t7+Nw+EAwOl0sm7dOs4991yWLFnCRz7yEYA5mztupizoJF1vby/f+c53qK6u5rTTTmPz5s3HXK61tZVLLrmEnJwcvv/97xMIBLjzzjvZtWsX27Ztw+12H3M9ERGRdBl/oGq6wHTNlwPXt7tk62BaRE528VAAKxYls7waX34x4e5WGOomEQ4yEg6CaYJtE+ppV5JO5qWZKnwB6S1+ocIXMhWReJQ32w6wvWkPb3XWj/WaMwyDlStXcu6553L66aePvabSXU15PlnQSbqysjI6OjooLS3l1Vdf5eyzzz7mct///vcJBoO89tprVFdXA3DOOedw1VVX8Ytf/IK//Mu/nM2wRURERERkDrj8mZhuD4lIBJc/g6zyGmpKctnTHyY82EciHCQZj9P41B8YaW+maNUZZFfVaeiriEiaJZIJ9nU2sL15D2+2HSSRTABg2TZer5ecnBy+973vUVxcPMeRzq4FnaTzeDyUlpa+63IPPPAA73//+8cSdADvec97WLZsGffff/+0k3TBYPC49wWDQRwOB5FIhEQiMa32RUREREQkfTJLq8iurGXg0F6cvlowRodQZRSV4ikoYfDQHnwFmTj9GQw3H2S4+SDuzBwKV51BwYrTcPky5noXRMZ89fof406h8AWMDp+NJ0eLX7gcqRW/iCWi/PNDt6UUj5zcbNumvqeF7c172Nmyj3Ds7R5xhVn5nF6zitXlS/j7l/8vANnZ2XMV6pxZ0Em6yWhra6O7u5uzzjrrqMfOOeccHn300Wm3nZmZedzHysvLj7ov+aGbSaRhJFHSmPg7lXZcrtFJkRKJBPF4/JjLJRKJseWShknCmB9XEpOGPY34XSTn0XCuyezD+Pgtw4U1j+K3DJvDoU36ObANE3se7YNt2LhcFjC55wBj7J8Uud7xe5qm8RwYpGcP0sWAd92H8fGbh3/mC5t3j//IY0f2wQmY8+RZsJj6a8jEgTGPngUbA2uK3wcOzJT3wXX4ORz9Pf22bGzMScSfTuO3EY/Hx+Z7mUnvfA/Mj3fAKBswpvgacjH/9oEpHFO4sDFIUwWyNLCxSU75ObAwsKa2IRPqLr2W3d3tBFobyCgoIum1SEQCBPt6yCwuZ80Nn8VXUETPnu30vLWDRGCQzm1P0/Xqs+QtXkHxqjPILK2ckMywsaZ8XOogiUlyavHPIIPklPfBIInB/OiQMJ34bZLY8yR+GI1nKucGTpcTpyP1U/qx49wUWcbUn4OkmSRppPYcJI3khN8ptWVO7TlImhaJNGw3XZLm1D+LkoZNwpjiZ+k4lmXR2NvKcDhIti+DRYWVE+aJs22bjsFutjft5Y3mPQyHA2OPZfkyWV+9gvU1q6jIK8EwDGKJ+NSeA8MmYcyf77PjneNP9vjOsG17/uxNCo4Md31n4Ygj9999993ccsstE9b5yle+wg9+8AMikci0Jsue6lWGhx56aMrbEBEREUm3eDzOz372MwA+97nPpe0ETWShqK+v55lnnqGlpYVYLIbb7aaqqorLL7+cxYsXjy2XSCQ4ePAgu3fvpru7e+z+goICVq9ezbJlyzS/tYicsk70WVpYWMj+/fs5cOAAAwMDY+u43W7q6upYunQp5eXlJ13hh+MJhUJ8/OMfZ2ho6IQ9BE/6nnThcBg4dsW6I5MOhsPhaSXpAoHAUfcNDw9TXl5OU1MT2dnZRKNRbr31VgBOa+nH40z9IDhpwGulWZzZOYIjhRRrNBHntscfAODee+897t8gGo3y0Y9+FIAfXX0JbufMX22fjFgiye2PPwdMPv47r8zE45w/172jCZs7nhp9HR1vH8bH/3fXuHDPo/hjCZt/eXT0isBkn4P/zwdNXPNoH+IJm5/+YfTK0WSeg49eDy5HenrSefNvJdK/EZh+r5l40ubeh0ZvT/Y5uOYj4JxHn/6JBDw6+lE0qefgvI+CYx7lE5Jx2HLv6O3JPgcln5w/hSOsuE3X4equk43fvHUFhmv+HFDZcQtr41vA5PfB8clLMFypfZ+5MLjZrOMe6xDxFHok2fEkybvf/fssnSKRyFiS7n3ve9+sTO49/u/v3PAhSPF4wrZtSBzuveB0pFb4JJEkcd/vgcm/hlyfuHWs9918YMfjxH+1EZjcZ6n3E5/HcM2f5JIdjxH51b8Dk38OMm/+2vT3oboC/y0XUt3ZzMXRRp73LMJXWs0202TbOzv1LKmBJVfi6emg+83X6T/4Jod6I2x79jXMF3dRsGwNRcvWYj36synFX/fJH2K65k9VbSse5dDdXwImvw8fuOVHOOfJPiTiUR7+5e3A5OP/3Ed/gmuexA8Qj0f52b1/BUzy3OD6H+F2zJ/4Y8ko//LQ1J6D/33F/8HjSO2zKGkk2VvzBiub1uOwU/tuiSZjfOXpvwYm9xz8n0u/izvF+NMplozx189+E5jCOf4Vd+CeRp5id+t+nnj89wwEh6jOLcKf7WU4FOTAq2/y1rZdLCmpIT8zBydQZmawsryO9TWrWF62GJfDCUmg5Rj7kIhz+9N3nnAfJsR/1efSkmdJl2gizu1/Pvr7YHh4eFLrz6PTtJnh8/kAjlmm+khFkCPLTFVGxtFzUiSToweLubm5ZGdnE4lEONJZ0WGDM439FlNtL2G/3eXS6XQe9yp6MpkcW85hWzjt+XFimbStacQfxzFP4gdw2Pa77sP4+E0bzHkUvzmJ+GHiPhi2iTGP9sGwbeLx0STdZJ6D0fPwdMYfJ5UkHbbNkdAm+xzYMI8GOI3G8m77MD5+i/k1xMzi3eOHifuQYH4Nd51q/CbJeTZMzsKa4meRhYWR8nMwmqiMYxOf6pC7cWwskpOIP52OHK/A6DCn2drm2JCPe+6f8e1N12RfQzC/PotGP0snf0zhwEjDeyB9bIwpH1PEUx22bpr4yxex1OnitUQF8Xdpy11UQeVlFZSe/x769+2iZ89rRIf66dqznc7dr+JuOUBeXh5w/OGD4+NP4sBmflz8BrBwTPk5sHFgz5NTSpvE1I9LcWDMk/gBjEnsw8RzAwfmPIrftKf+HDgsBw4zPfvgsB047NTacljJqX2WWiZOc/68j5OWOY1zZAOnPbXPUsuyeGDr4wwEhqkpKGc4EqC9v4uhcADbshiOBGjsaeWc2nWctWgNqyuW4nePuyB4gsPIpP3u3wdHxz9/vs8Sx4l/ssda8+cdPUPKysoA6OjoOOqxjo4O8vPzZ+WKtYiIiIiILHxOj4/idedQtPZsRtob6X3zdQbr9xIKhQiFQnzjG9/gsssu4+KLL6agoGCuwxURSatoIsaz+7bx4sHXSFoWbzQPTng805dBcU4hBvDe1RdSV1x9zHbk2E76JF1FRQVFRUW8+uqrRz22bds21q9fP/tBiYiIiJxiPB4PmzZtSlt7kUiEDRs2AHDfffelbciuLt7KZBmGQXZFLdkVtUQH+2j7SSMDAwMEAgEee+wxHn/8cdauXcull17KqlWrTpl5l0Tk5GLbNh1DPezrqGd/VyMNva10DfXSOzJIljcD0zTJ9PjJ9WdRkJmHz+UhaSWp72llOHL0FGFyYid9kg7gIx/5CBs3bqSlpYWqqioAnnrqKfbv38/f/u3fznF0IiIiIic/wzBmbO47r9c7K/PqiRyPOyOLoqIiCgsL+exnP8uWLVvYu3cvO3fuZOfOnRQWFnLJJZdwxhlnzHWoIiLvKhAJsr+zkX1dDezvbCQQCU54PD8zl/yMHEpzCinLLT5qyG8oFsHjcpPtzZzNsE8KCz5J9+Mf/5jBwUHa29sBePjhh2ltbQXg9ttvJycnh6997Wv89re/5fLLL+cLX/gCgUCAH/zgB6xdu5ZPf/rTcxm+iIiIiIicJAzDYP369Zx33nl0dXXx3HPP8dJLL9Hb28uDDz7I73//e9ra2sjLyxubt1pEZK4lkgkae9vY19nA/q4G2ge6JzzucrpYXFTFitJalpXWUpCRyz9u+hE7WvbhMCb2ErZtm/bBHtZXr6C2sHI2d+OksOCTdHfeeSdNTU1j/3/wwQd58MEHAbj55pvJycmhqqqKZ599li9+8Yt89atfxe12c+211/LDH/5QQxpERERERCTtSkpKuPHGG7nuuut49dVXefbZZzl06BBDQ0MMDQ0Re/AnVK69iNJl63HMowqjInLys22baDRKMBjkFy88SHNfO7HExGJ25XnFLCupZVnpImoLK3E6JqaPbjrnL2jp72R/VxPluUX43V5CsQjtgz0UZOZw49lXz9gw//EXOaLviHuujY9nOhdjFnySrrGxcVLLrV69mieeeGJmgxERERERERnH7XZzwQUXcMEFF7Bv3z62bt3K0NAQgb5O9j33ew5teZTSZWdQvvpcMvNL5zpcETlJhUIh3nrrLfbs2cPOnTs5dOgQAPucDTgMkwyvn2UltaworWVp6SKyvBknbG9t5XK+dPWnuX/bY+zvaqRzqBePy8366hXcePbVrK1cPmP7Eo1Gx27f9uf/nLHtpCoajeLz+aa0zoJP0omIiIiIiCwENTU1lJeXU1JSQsb519Cx73VCgz207n6Z1t0vk1tWS8Xq8yhavBrToVM1EZk+y7Kor69nz549vPnmmzQ0NIz17EomkxiGgd/v5+q1F7O6fCnlucUYhjGlbaytXM7q8qU09I4Wicj2ZlJbWKlCOSnQJ7+IiIiIiMgscjgcVK29gOrTL2Og7RDtb26hp3EPgx0NDHY04PZlUrbybCpWnYs3K3euwxWRBWIwNDRWZfrv/u7viMViEx4vKSlh9erVLFmyhKamJkzT5NLl5+Bxuqe9TdM0qSuuTjX0KRk/bdmPr/pLPE7XrG7/RKKJ+FjvvulMr6YknYiIiIiIyBwwDIP8yiXkVy4hGhyifc822ve+QjQ4TNPrz9C8fTMFNSuoWH0e+VXLjurlYlsWg52NxIIjuDOyyC1dhKEeLCKnjGgiRkNPI/u6DrKv8yCdw910dHQAEA6HycrKYsWKFaxatYpVq1ZRUFAAQCQSWdC93cZ/FnqcLrzzKEk33lR7JoKSdCIiIiIiInPOk5FD7dlXUXPGFfQ27qFtz1YGWg/S27iX3sa9+LLzqVh9HqXLz8Tty6Cnfjd7N/+O/paDJOMRHC4v+VVLWHnZDRQtXjPXuzMplmXR3dlAODSMz59NcWntgk4cyOyzLIuGvnoOxA+QMZDH4oIlC+41NLoPTYyEA2T5MqktqDnuPti2TftQJ/u7DrG/6yCNvc0krOTY44Zh4PP5yMzM5Etf+hLLly9fcH+PU52SdCIiIiIiIvOE6XBQXLeW4rq1hAZ7aHtzCx1vvUZ4uJ+DLz9K/bY/4csuoGPfqySiETILynB6fSQiYboP7WKku5VzbvqbeZ+oa67fxUub76OjdT/xeBSXy0NZ5TIuuGwD1YvXznV4sgC82bqLB165nwNd++l39JKffJilJcv4yNk3sbpyYbyGdrXt4f5XN3Gg6xDRRBSP08PSkjpuOus61lasAmAkEuBA1yH2dR3kQFc9I9HAhDby/LksK6ljWUkd1fkVfOGFfwCgtvb4Se+J1VFjx1xmroyPZzrVURc6JelERERERETmIX9uEUsv/ACLz3kfXQd30PbmVoa7Wzj48iOER/rJzC8jHg1hW0kwDDLyShjuamLHY7/gnBv/BtPpxDQdGKYDwzQxDBPDdBy+zzz845jWkKxUNNfv4uHf3klgeIC8gjI8Xj/RSIimQzvp62nhAzfeoUSdnNCbrbv4P0/cRX+wn9LcUrwFbrx9fna17KStv5W/ft8X532iblfbHu7607/THxqgLKcUv9tHKBZmR8su3urYzxUrLiaSiNI+2DlhPbfDRV1RLctLl7CspI7CzIKx93A0ET3Wpo4yoTrq03emb6fSbDrVURc6JelERERERETmMYfLTfnKsylfeTYtu16kc99ruH2ZJKJhhjoaJyybTMRp3v4c8XAIT0b2pNo3TBNsm+G33gLgq1/9Kh6PB4fDgWmaOByOsdu2bdPQ0IBhGDz16H/hdHlGk36GiWmamIeTgEcSgUfuM0wHpmGAYfDiU7+hu7OR/MIKopEgiUQcry+D0sqldLYe4OVn76dy0WoN05NjsiyLB165n/5gP0uKlxJJhgkGgzgtN4WZRTT3N/Ffm/+Tz13x/8U0TAzeTkIfyUePT0yPfzyWjBMMBgE4cOAAHo9n4rKGQSwWIxQKAdDc14p7XNEFA+O4Se8j9xuGgWVb/PeLv6ZzuJvagtGiCz0jvQyGhxkODTMQGqI30MeZNesxDIPy3FKWlyxhWckSFhVU4VT155OWnlkREREREZEFwu3NxJuVS1ZxFZHhASIj/diWdXhYmI3pdGElYjhcLty+TGwriWUlR5exksccPnbkMcuyAAgEAoTD4WNuP5lMjj3W2XYQ03RMKf5QcJjGQztwujz0djdPeMzpdGGaDvbtfoldr/2JZasvxOfPmlL7cnILRUO8fPBFth7cgmEYbG96jYSVIOqO0B3rASCejPPywReJJWNk+yaXqD4iaSVpamsC4N/+7d9wOI5+fSeTSRobGwH4v7H/xjHF9wDAcHiEVxpfx+10E4gGj3o8x5eFbdtcuvR8Ll9xCZnejClv40QmVEe94o6UqrumWzQRG+vdN53qqAudknQiC0gsAZDauHzbtokfnlvU5ZhexZmJ8YiIiIjIbHFnZOFwebHicTILSsksKJ3weCwUIBIY5Owbv0Be+eKj1rdtezRZdzgpZx9O4CVjYQ79sgvbtvna176Gy+UimUyO/ViWRTKZJBQK8eabb2LbNhdcdhOmw4llWWOJQGtcu9aRBKFtj93uaq+npXE3WdmFGKaBbdskYlGi0RCJRBzbjhIOjfDi0/ey87Un8WfkUFBURUFxFQVFlRQUVeJJc8JC5qdEMkHnUActfc209DfT0tdMX6CXvkAvPSPdZHmzMAwDwzTxer34zQzAwLIsBkMD5PrzKM0tnZCYtsefSx2+Of7xuBXH3TOasCopKcHpdE5c37ZJJBK43W5s2yY/IxeH6TyqHfvtxiese0Q4Npro9rm8mMZoj1Gf20uuL4ccXzYep5uGvmaq8ivTnqCDd1ZHdc+rJN14sz0Ufz5Qkk5kAfnnR+NzHYKIiIjInJlwEhxPfbJzG4u4HcdOxLCZ/tDK8bHM9ETnuaWLyK9aQvehXeT5lkw4ibVtm0B/B8V168gtXXTM9Q3DwHA4weFkfP8fy+3B7R49US8vL8fr9R5z/UgkQnb2aO+k2qWn43Qde7nj6Ww/xMG3tpKRmTehl5xlWcSiIYYGu3E4XOQWlpNMxAkFhwgFh2hp3D22bGZW/uGk3eHkXWEFp+C5/EnFtm0GQwM0940m41r7m2kbaCNpHd0roDi7lNyMPIoyCynMLsbn9jKQ3Uf+SBEGBoHICIOhPD5z6edYXFw3pTiiiSgH/rwXgG9+85vHfB9EIhFef/11AL58xe14yjsDFQAAJxRJREFUnFPv7XWop4HeQD+5/hyyvJlHPT4SCeBxesjyHf2YnNyUpBMRERERkQVh/GTnwXu+l5Y2f5aWVt420xOdG6bJystuYKS7lYG2g2Tml+H0+EhEwwT6O/Bl5bPyso+MzjM3DxWX1lJWuYymQzvx+jLHkoymaeLxZpBMJFh12iXceOu3SSbj9Pe00dfTcvinlZGhXgIj/QRG+mk6tGO0UcMgKyuftrY2fD4fDQ0NLFmyBJfLNYd7KieSTCaJRCI899YzdA520tzXRPAdVUsB/G4/lfnVVBVUU5VfTVVBFR6nl3/a9A/satmJ3+1n3JRy2LZNx2AH66pOY1Fh7Szu0dTUFtSwtKSOna27yfTUHZVs7xjq5LTKNdQW1MxhlDIXlKQTmec8Hg+bNm1KW3uRSIQNGzYAcN999x33KulUnYrzBYiIiIjMhaLFazjnpr9h7+bf0d9ykORAJw6Xl+K6day87CMULV4z1yEel2maXHDZBvp6WuhoPTBa3dXjJxoNMdDXQWZ2PudfetPhghMeSsoXUzJu2G40GqK/p5W+nlZ6u1vo624mFBxiaLCboaEhhoaG+OEPf4jL5aKiooJFixZRU1PDokWLKC8vn8M9P3VZlkV7ezsNDQ00NDRw4MAB9u3bB8CTiT+NzenmMB2U5ZZTlV9N5eGkXMG4yqXjfeTsm2jrb+Vg1wFKc0tJ+pMEIiN0DnaSn5HPh8++cV4XHjFNk5vOuo7W/jYOdB+aUN21Y6iT/Iw8bjzrunm9DzIzlKQTmecMw0hbIu2dvF7vjLUtIiIikm7jLwpm3Px1DFdq8yi5sLjB2c7vEuXEUxzueqRn34kuXI4fCmvFo8ddbjIKqpZy4Sf+jqGuJmKhAG5/JjklNRimOa22x68z00N2qxev5QM33sFLm++jo3U/gwOduFweFi05jfMvvYnqxWuPu67H46eschlllcvG7guHRujuOMQj/XsJh8NkZmYSDodpaWmhpaWF559/HgCn00lpaSkdHR34fD76B7soKqhSIiTN4vE4b7zxxlhirqmpaUIv2GRydIJsl8vFmqp1LC6qoyq/mrK8clyOyfV+XF25lr9+3xd54JX7OdC1n/5oL/nJQtZVncaHz76R1ZXHfw3NF2srVvHF936e+1/dxIGuQ3QNd+Nxejitcg03nnUdaytWzXWIMgeUpBMRERERkQVhfI8aw+VOOUlnYOFyujAMN0YKSboJbZ5gcrTxiYpDd38xLdsbrydN7ZxoyO74BF4ihURjedVSPvyJr9PT1Ug4PILPl0VRySJM0yARj0ypLZfLRUlZLUVFRQB8//vfJxqN0tjYSFNT09jvUChEU1MTAwMDDAwMcO+D/z88Hh9FBZUUF1VSUlRNcWElOdmFk5qw3rIs2jsbCIWH8fuyKS+tXXAJP8uyaOluIBgeJsOXTVXx1PYhnojR2ddGe28zTZ0H2b9/P4lEgp///OcTKqN6vV4WLVpEbW0t5eXlNDQ04HQ6uencj01rTjcYTdStLF9Nfd9B3sjbxvqBc1hcsGRBPQdrK1axumwFDX1NjIQDZPkyqS2oWVD7IOmlJJ2IiIiIiIhMyvhE48O/vG0OIzm+WCxGXl4eeXl5nH766cBocrGnp4f9+/fzyiuvEIlEcDrdxOMx2jvrae+sH1vf4/ZRXFRJcVE1JYWjvzMzciYk7g417OTJ5+6juW0/8VgEl9tLdcUy3nPJBupq1836Pk/HvqZdPPLifTR07Ccaj+JxeagtW8a1F25gec3RPdFs26Z/uIf23mbaeppo72mme6AD27YASFpJEonRQg8VFRUsXbqU2tpaamtrKS0tHUs8jf7t05OKME2T2uLFBBcNUNu4GNOe+eTW+ER1NJl6ARuAyrxyyBu9HbfiYE2vnfHxzHSPWJkZStKJiIiIiIjMgvFDYes+eRema/7M6WvFo2O9+07GuYYNw6C4uJjs7GxKS0sB+Own/pFgaJiunha6elro7m2hp6+NaCxMS9sBWtoOjK3v92VRfDhhF42FeOq53xIMDVFUUD42p96B+h1097Tw8Y/cMe8TdfuadvHzP9zJYGCAkrwyvB4/kWiIvU076ehr4bMfvIPq0sW09zTT3ttMe08zbb3NRGPho9rK8GVTXlRNSX4ZfVYTPp+Pv//7vz9pp9UZn6i+/dlvzGEkJzbTRWxkZihJJyIiIiIiMgvG98QyXZ55laQb70RDPccn8D5wy49xzpN9SMSjYz37JptkNE2T/LxS8vNKWbnsbACSyQT9A1109TSPJe76+jsJhUdobNlLQ/Me9h54haHhfvJyiujpa8frycA0Tfy+LNq7GrnvoX/l/e/7HzgcTkzDxDBMTPPwb8PAGLttYpiHfxsGyWScUCiEYRi0tLTg9/sPF9AwcTgcGIZBLBYb660WjoawbTAwME3HWDvvNlTXsiweefE+BgMD1JYtxTAMLNsCwyDTm0V92z7++e4vs7Rq9VFtOR0uSgoqqCiqobywmoqiGrL8o70MY4kIT+y9Z6pPnYiMoySdiIiInHoSSVIZBGLbNlYC4p44VjKBbaTQWiKZQiQiIrNrfNLG6fLgdM2/3lKTmU/ueBwOJ0WFFRQVVrBm5fkAJBJxevra6O5t5a0Dr/LG7ufxef0kEjFGRvoZGekfWz+RiPPWgVcxTQcZ/uwpbduykjQ2NgLwL//yLxPmdDsimUyyf/9+AH50/3fHKqNOYBiYxtvJv4nJQJNAaJBte57H4/axt3EHhmEQjUfGhkdatk3PYCdlhdXUlNZRXlhNedFoQq4or+zY2zyFjE8C/+jSf8LjSG1uzHSKJmNjvftOxh6xpwIl6UREROSUk9z4XMptRIGfsRmn00nycK8GERE5+TidLspKFlFWsgifN4PX3niK0pJFRKMRwpEAsVgYy7bBtrAsi8HhHooKKykurMSykti2hW2PJuEs2xr9v2Udvm1jWaP3JRIxXC4Xtm2TnZ2NaZpYljXhZ1JsG8tOYnHsi0CDI/1E4xFcThfR+NttOhxOMryZeN0+hoOD3HjFpzl9+fnp+BOeVMYngT0O97QLX8y0VJLVMneUpBMRERERERGZBL8vG5fbSzweJTMjm8yMib3lQuERPF4/77v8ZirL66bUdjweYSiyDxitUHusOd0ikQiNjY3Yts0dH/keTod7NBGIPZoEtOy3b9sW2DZJK4lt26MJQTtJS1cDgw/1k+HLxu/1Y9vgcrrxuL0YQDA8gmEY5OcUT/vvJCLToySdnFKiydQq3Ni2TezwBSm3I/WrE6nGIyIik+fxeNi0aVNa2opEImzYsAGAjRs3kpmZmZZ2NTRFRGR+Ky+tpbpiGQfqd1BdsWzC+YBt2/T0tbNs8XrKS2tnNA7DMDBNE6fDCY6pndYX5ZaxomYde5t2UpRbctQ+dA10sGrRaVQVz+w+iMjRlKSTU8qXngzOdQinvHgCSGEmKNu2x6ZvcqYhURrXCDWRU4ZhGDNSac7j8Zy0FexERGQi0zR5zyUb6O5poblt/2h1V7efaCxET187OdkFXHnJTZimOdehHpdpmlx74QY6+lpo6Dgwobpr10AHuZn5XHPB/N4HkZOVknQiMqv+4w+TnEtj0tQbUURE5kAinnLxEY7MZeh0pj53UCKe2voiMml1tev4+Efu4Mnn7qO5bT/xWAcut5dli9dz5SU3UVe7bq5DfFfLa9by2Q/ewSMv3kdDx366BzvxuDysWnQa11xwE8tr1s51iCKnJCXpZEqiydQq0I0OFx1N0rgdZkoHpJONZaaGN913331p7TmhIU4iIiILR/yejXMdgohMw5EKpgDxeHTa7VRXLuNTH/06HV1NhCLD+L3ZlJXUYJom8XhkWm2Oj2d8nDNlec1allatpqW7gWB4mAxfNlXFtTPeg278vkWT038OjkgaCeLxONFEFIed2vnq+Hhm4zkQeScl6WRKbnss9Wp4s22mhjd5vV4Nb5okJUpFREREZD6IRt9OwvznvZ+fw0hOLBqN4vP5Znw7pmlSUzq1AhepGv8cfPnp22d121MxW8+ByHhK0onIjFOiVERETga66CQiIiIzSUk6eVcL4YBUB6MiIiIy03TRSWThG3/e8Jcf/XdcrvlzHhGPR8d6953M5zfj9+0HV/wIjyO1fU0aCfbUbGdV0+k47NRSHNFkdKx338n8HMj8pSSdvCsdkIqIiIiIyMlg/JzYLpcHl2t+no+kXExmHhu/bx6HB48z1SSdA5fLhcfpSTlJN97J/BzI/KUknYiIiIjIqSbF6rSQ5gq1qk4rIiKiJJ2IiIiIyKkmcs9P5joEEZmG8RVHY4nUK6Om0/h4VBlVZHqUpBMRERERERFZAMZXRv3nh26bw0hOTJVRRaZHSToRkSkYHdWT2pVB24aEZeGIx4klLIwU2jsyykhkVsWtlN4Fo0PkDrfgNFKf8yVupba+yCkincXAQAXBRERE0k1JOhGRKfjNQ+lqKQH8DKfTqUSbLDjWxrfS2p4GxIjMjpkqBgYqCCYyW8Ynsb96/Y9xp1h0IZ1iiehY7z4l20WmR0k6ERERERERkQVgfO9zt9OD2zk/k+OqjCoyPUrSiYi8i5kcHrRx40YyMzPT0q6uWMpMSuf7YKaGyIHeByIiIiKycClJJyLyLmZyeJDH49HwIFkQZup9oCFyIiIiIiKjzLkOQERERERERERE5FSnJJ2IiIiIiIiIiMgc03BXERGRWWYnwEqhpqltj7YBYDghlbmZbVUXFhERERGZF5SkExERmWVdG+c6AhERERERmW+UpJtF0WTq3RVs2yZsJYnHvUTiMZxMv/tEOuIRkYUnkeJb37YhmRy97XCk1osrHfGIiIiIiIicDJSkm0V/9djv0trefzudJHR2KyJT9Gh6P4pkkjweD5s2bUpLW5FIhA0bNgBw3333pa06qsfjSUs7IiIiIiIydUrSiYiIzALDMNKWTBvP6/XOSLsiIiIiIjK7lKSbYensOQETe09s3LiRzMzMtLSr3hMiJ7eF0IsLJvdZlI6R+rYN1uF2zBQLL2jmABERERERSQcl6WbYTPWcgNGTWfWeEJHJOJl6cW35zaxuTkREREREZFaYcx2AiIiIiIiIiIjIqU496UREZN6byakDVHhBRERERETmAyXpRERk3pvJqQNUeEFEREREROYDJelERERERGTBsROx1Na3baxElLgvjhWPYhuOOYtFRESmJ5qMp9yGbdvEDleDczucGClUlUs1HiXpRERERERkwQn+8ntpaedngNPpJJFQuW4RkYXmtj/951yHkFYqHCEiIiIiIiIiIjLH1JNOREREREQWhHQWEhpfRGjjxo1kZmampV0VERIRmVknc1E5JelERERERGRBmKlCQh6PR0WEpiGRiKa0vm3bJA/P5+dwulOaByrVWERk4TiZi8opSSciIiIiIiJT9vDdt811CCIiJxXNSSciIiIiIiIiIjLH1JNOREREREREJmWm5gWc63mgRE5V0WQspfVt2yaWjAPgdrhSGraejngWOiXpREREREREZFJmai6ouZ4HSuRUddtTd851CDKOhruKiIiIiIiIiIjMMfWkExERERERERE5RSyEYetwag5dV5JOREREREREROQUoWHr85eSdCIiIiIiInLKiSeiKa1v2zaJxOgk906nO+UJ81ONR0QWPiXpRERERERE5JTzn7/5/FyHICIygQpHiIiIiIiIiIiIzDH1pBMREREREZFTgibMF5H5TEk6EREREREROSVownwRmc+UpBMREREREZllVhqKBNi2jX24cIGRYuGCdMQjsyuWptdQPDn6GnI5UnsNpSOehSZ6+G+XCtu2iVlxANymK6XnIB3xyNxSkk5ERERERGSWHdr4xbkOQRa4f37otrkO4ZR3+7PfmOsQ5CSjwhEiIiIiIiIiIiJzTD3pREREREREZkE6ixbAzBUuUNGC+Uuvobmn50BmkpJ0C0wwGJxwOysraw6jEZHp0PtYZOHT+1hk4ZuL9/FMFS0AFS44VZxsr6FoMrV57ILRIOf8wzoAXv7OdrLd2TMez8n2HMj8ckok6TZv3szll19+zMdefvllzjvvvFmOSEREREREROTU9uWnb09p/UQiwZVXXgnAN569Ix0hicypUyJJd8Rf//Vfc/bZZ0+4b8mSJXMUjYiIiIiIiIiIyKhTKkl38cUXc8MNN8x1GCIiIiIiIiKnpHTO6dbX18dnPvMZAH72s59RXFyclnZBc7rJ3DilknQAIyMj+Hw+nM7Ud338PBbvvC8YDOJwOCY8lpGRkfI2ReT/3969x1R93nEc/xyo3AUi0gpFbCriBee1anVOdHQW662ziDKt2pmQTlpbO12zusVkc7aNTmd1MG0XnZtrWllJjVqt05oY7QSnthpxiKwFQap4BeVS4NkfDWeeHi5HKvw4nPcrIdHneX6/5/tAvjzke34XAAAAAO7qfj7T7e7z+Pj48Dw3uD2PKtI999xzqqiokLe3t37wgx9o9erVeuyxx1p9vqCgoCb7IiMjndrKyspaPVeD69evq7a21v7vLl26fOdztqeqqip7/FevXnW7X6LuHr/k/mtw9/gl8rgjcPc1EL/1yGPrufsa3D1+yf3X4O55LLn/z4D4refuayCPrefu8Uvts4by8nJJkjGm2XE209KITuDo0aNau3atnnrqKXXv3l1nz57VmjVrdPv2bR09elRDhw5t1XltNtt9jhQAAAAAAACdUVFRkaKioprs94giXWPy8/M1aNAgjRs3Tnv37m3VORq73bW+vl6XLl1SUFCQUxHvftzuevv2bftVeiUlJW57C+2IESOUk5NjdRit5u7xS+6/BneOnzzuONx9DcRvHfK443D3Nbh7/JL7rqGz5LHkvj+DBsRvPXddA3nccbh7/FLbrsEYo/LyckVGRsrLy6vJcR51u+vdYmJiNH36dH3wwQeqq6tzen6cK5r6BdC1a9fvGl6T7o4zODjYbX8JeXt7Kzg42OowWs3d45fcfw3uHD953HG4+xqI3zrkccfh7mtw9/gl911DZ8ljyX1/Bg2I33ruugbyuONw9/iltl9DSEhIi2OaLt95gJ49e6qmpqbRK+IAAAAAAACA9uLRRbqCggL5+fk1+wIIAAAAAAAAoK15RJHuypUrTm2fffaZdu7cqYkTJzZ7PzAAAAAAAADQ1jzimXSzZs2Sv7+/xowZowcffFBnz57V5s2bFRAQoDfeeMPq8O5JYGBgi6/sdQdpaWlWh/CduHv8kvuvwZ3jJ487DndfA/FbhzzuONx9De4ev+S+a+gseSy578+gAfFbz13XQB53HO4ev9Qx1uARb3d96623tH37duXn5+vWrVsKDw9XQkKCVqxYoZiYGKvDAwAAAAAAgIfziCIdAAAAAAAA0JHxMDYAAAAAAADAYhTpAAAAAAAAAItRpAMAAAAAAAAsRpEOAAAAAAAAsBhFOgAAAAAAAMBiFOkAAAAAAAAAi1GkAwAAAAAAACxGkQ4AAAAAAACwGEU6AAAAAAAAwGIU6QAAAAAAAACLUaQDAAAAAAAALEaRDgAAAAAAALAYRbo2Vl1drVdffVWRkZHy9/fXqFGjtH//fqdxR48e1dixYxUQEKAePXpo8eLFqqiocHme4uJiJScnKzQ0VMHBwZo+fboKCgoaHfvnP/9Z/fv3l5+fn/r06aMNGza0en2AJ3Alj8ePHy+bzeb0lZiY6PI85DHQdioqKrRixQolJiaqW7dustls2rp1a6Njc3NzlZiYqKCgIHXr1k3PPvusrly54vJcN27cUGpqqsLDwxUYGKgJEyboxIkTjY7duXOnhg0bJj8/P0VHR2vFihWqra1tzRKBTs/VPF6wYEGje3K/fv1cnos8BtpGTk6OXnjhBcXFxSkwMFDR0dFKTk5WXl6e01j2Y3iiB6wOoLNbsGCBMjMz9fLLL6tPnz7aunWrnnrqKX3yyScaO3asJOnUqVNKSEhQ//79tXbtWl28eFFr1qzR+fPn9dFHH7U4R0VFhSZMmKCbN2/qtddeU5cuXbRu3TrFx8fr1KlTCgsLs4/dtGmTnn/+eT3zzDN65ZVXdPjwYS1evFh37tzRq6++2mbfB8CduZLHkhQVFaXXX3/d4djIyEiX5iCPgbZVVlam3/zmN4qOjtbgwYN16NChRsddvHhR48aNU0hIiFatWqWKigqtWbNGp0+fVnZ2tnx8fJqdp76+XpMnT9Znn32mZcuWqXv37kpPT9f48eP173//W3369LGP/eijj/T0009r/Pjx2rBhg06fPq2VK1fq8uXLysjIuJ/LBzoFV/NYknx9ffXOO+84tIWEhLg0D3kMtJ0333xTR44c0cyZMzVo0CCVlpZq48aNGjZsmP71r39p4MCBktiP4cEM2syxY8eMJLN69Wp7W2Vlpendu7cZPXq0vW3SpEkmIiLC3Lx509729ttvG0lm3759Lc7z5ptvGkkmOzvb3pabm2u8vb3NL3/5S3vbnTt3TFhYmJk8ebLD8XPmzDGBgYHm2rVrrVon0Jm5msfx8fEmLi6u1fOQx0DbqqqqMpcuXTLGGJOTk2MkmS1btjiN+9nPfmb8/f3Nl19+aW/bv3+/kWQ2bdrU4jzvvfeekWR27Nhhb7t8+bIJDQ01KSkpDmMHDBhgBg8ebL7++mt72/Lly43NZjO5ubn3ukSg03M1j+fPn28CAwNbPQ95DLSdI0eOmOrqaoe2vLw84+vra+bMmWNvYz+Gp+J21zaUmZkpb29vpaam2tv8/Py0cOFCffrppyoqKtKtW7e0f/9+zZ07V8HBwfZx8+bNU1BQkN5//32Hc547d06FhYVO84wYMUIjRoywt/Xr108JCQkOx3/yySe6evWqFi1a5HB8Wlqabt++rd27d9+XdQOdiSt5fLfa2toWb1Unj4H25+vrqx49erQ47h//+IemTJmi6Ohoe9sTTzyh2NhYpz35woULunDhgkNbZmamHnroIc2YMcPeFh4eruTkZH344Yeqrq6WJJ09e1Znz55VamqqHnjg/zc2LFq0SMYYZWZmtmqdQGfmah43qKur061bt5odQx4D7WvMmDFOV8H16dNHcXFxys3NtbexH8NTUaRrQydPnlRsbKxD8U2SRo4cKemb21xPnz6t2tpaPfbYYw5jfHx8NGTIEJ08edKhvX///po3b579//X19fr888+djm+Y58KFCyovL7fHI8lp7PDhw+Xl5eU0FwDX8rhBXl6eAgMD1bVrV/Xo0UO//vWv9fXXXzudkzwGOqbi4mJdvny5yVz8dn4lJCQoISHBoe3kyZMaNmyYvLwc/8QaOXKk7ty5Y3/mTlO5HBkZqaioKHIZ+I7u3Lmj4OBghYSEqFu3bkpLS2v0QzTyGLCeMUZfffWVunfvLon9GJ6NIl0bunTpkiIiIpzaG9pKSkp06dIlh7ZvjyspKWl2jmvXrqm6urrFeRri8fb21oMPPugwzsfHR2FhYS3OBXgiV/JYknr37q3ly5fr3Xff1bZt2zRq1CitXLlSc+fObXEO8hjoGFrakxtytaVzuJrLzc1FLgOtFxERoV/84hfasmWL3n33XU2bNk3p6elKTEx06UHw5DHQvrZv367i4mLNmjVLEvsxPBsvjmhDlZWV8vX1dWr38/Oz91dWVkpSk+Ma+hsYY5zmaO74u8dUVlY2+YDNxuYC4FoeS9+8bfVuzz77rFJTU/X2229ryZIlevzxx+195DHQMbmaiw39X3zxRaPncDWXm5urpVv0ADTt2y9xmj17tmJjY7V8+XJlZmZq9uzZ9j7yGLDWuXPnlJaWptGjR2v+/PmS2I/h2biSrg35+/s3WuGvqqqy9/v7+0tSk+Ma+pubo7nj7x7j7++vmpqaRs/jylyAJ3Ilj5vy85//XJL0z3/+s8U5JPIYsNq95GJz53A1l5ubi1wG7q8lS5bIy8urxT1ZIo+B9lJaWqrJkycrJCTE/hxoif0Yno0iXRuKiIiwXz57t4a2yMhI+2W1TY2LjIxsdo5u3brJ19e3xXka4qmrq9Ply5cdxtXU1Ojq1astzgV4IlfyuCk9e/aU9M3trM0hj4GOoaU9uSFXWzqHq7nc3FzkMnB/+fv7KywsrMU9WSKPgfZw8+ZNTZo0STdu3NDevXsd8oX9GJ6MIl0bGjJkiPLy8pwukT127Ji9f+DAgXrggQd0/PhxhzE1NTU6deqUhgwZ0uwcXl5e+t73vud0fMM8jz76qLp27WqfT5LT2OPHj6u+vr7FuQBP5EoeN6WgoEDSN2+Sag55DHQMDz/8sMLDwxvNxezsbJfya8iQITpx4oTq6+sd2o8dO6aAgADFxsbax0nOuVxSUqKLFy+Sy8B9Vl5errKyshb3ZIk8BtpaVVWVpk6dqry8PO3atUsDBgxw6Gc/hiejSNeGkpKSVFdXp82bN9vbqqurtWXLFo0aNUo9e/ZUSEiInnjiCf3tb3+zv71Rkv7617+qoqJCM2fOdDjnuXPnVFhY6DRPTk6Owy+W//znPzp48KDD8T/84Q/VrVs3ZWRkOByfkZGhgIAATZ48+b6sG+hMXMnjW7duOV0ib4zRypUrJUlPPvmkQx95DHRczzzzjHbt2qWioiJ724EDB5SXl+e0J1+4cEEXLlxwaEtKStJXX32lDz74wN5WVlamHTt2aOrUqfZP/uPi4tSvXz9t3rxZdXV19rEZGRmy2WxKSkpqi+UBnV5VVZXD39QNfvvb38oYo8TERId28hhoX3V1dZo1a5Y+/fRT7dixQ6NHj250HPsxPJXNfPsJ5rivkpOTlZWVpSVLligmJkZ/+ctflJ2drQMHDmjcuHGSpBMnTmjMmDEaMGCAUlNTdfHiRf3+97/XuHHjtG/fPofz2Ww2xcfH69ChQ/a28vJyDR06VOXl5Vq6dKm6dOmitWvXqq6uTqdOnXL4xDA9PV1paWlKSkrSk08+qcOHD2vbtm363e9+p9dee61dvieAu2kpjw8dOqSUlBSlpKQoJiZGlZWVysrK0pEjR5SamqpNmzY5nI88BqyxceNG3bhxQyUlJcrIyNCMGTM0dOhQSdKLL76okJAQFRUVaejQoQoNDdVLL72kiooKrV69WlFRUcrJyXG4veaRRx6R5PjA6rq6Oo0dO1ZnzpzRsmXL1L17d6Wnp6uwsFA5OTnq27evfeyuXbs0bdo0TZgwQbNnz9aZM2e0ceNGLVy40OGDAQD/11IeX79+XUOHDlVKSor69esnSdq3b5/27NmjxMRE7d69W15e/79OgTwG2tfLL7+s9evXa+rUqUpOTnbqnzt3riSxH8NzGbSpyspKs3TpUtOjRw/j6+trRowYYfbu3es07vDhw2bMmDHGz8/PhIeHm7S0NHPr1i2ncZJMfHy8U3tRUZFJSkoywcHBJigoyEyZMsWcP3++0Zg2b95s+vbta3x8fEzv3r3NunXrTH19/XdeK9BZtZTHBQUFZubMmeaRRx4xfn5+JiAgwAwfPtz86U9/ajS3yGPAGr169TKSGv3673//ax935swZM3HiRBMQEGBCQ0PNnDlzTGlpaaPn69Wrl1P7tWvXzMKFC01YWJgJCAgw8fHxJicnp9GYsrKyzJAhQ4yvr6+Jiooyv/rVr0xNTc39WjLQ6bSUx9evXzdz5841MTExJiAgwPj6+pq4uDizatWqRnOLPAbaV3x8fJM5/O3yBPsxPBFX0gEAAAAAAAAW45l0AAAAAAAAgMUo0gEAAAAAAAAWo0gHAAAAAAAAWIwiHQAAAAAAAGAxinQAAAAAAACAxSjSAQAAAAAAABajSAcAAAAAAABYjCIdAAAAAAAAYDGKdAAAAAAAAIDFKNIBAAB4OJvNJpvN1uyYrVu3ymazacGCBe0TFAAAgIehSAcAAAAAAABYjCIdAAAAAAAAYDGKdAAAAAAAAIDFKNIBAADgO6mtrdWGDRs0fPhwBQUFKSgoSCNHjlRGRobq6uqcxo8fP142m01ffPGF/v73v+vxxx9X165dFRoaah+ze/du/fSnP1X//v0VHByswMBADR48WKtWrVJ1dXU7rg4AAKB9PGB1AAAAAHBfdXV1mj59uvbs2aPg4GD96Ec/kjFGBw8e1KJFi7R//35lZmbKy8v5s+HXX39d77zzjr7//e9rypQpKioqsvctXLhQlZWVGjhwoAYNGqSbN28qOztby5cv14EDB/Txxx/L29u7PZcKAADQpijSAQAAoNX+8Ic/aM+ePYqLi9OBAwf00EMPSZIuXbqkCRMmKCsrS+np6XrhhRecjt22bZsOHjyo+Ph4p75NmzZp4sSJ8vf3t7eVl5frJz/5iXbt2qXt27dr3rx5bbcwAACAdsbtrgAAAJAk2Wy2Jr+ee+65Ro956623JElr1661F+gkKSIiQqtXr5YkrV+/vtFjFy5c2GiBTpKmT5/uUKCTpK5du2rdunWSpA8//PDeFgcAANDBcSUdAAAAJEnz589vsi8/P19HjhxxaCssLFRhYaHCw8M1ceJEp2OmTJmi0NBQ5efnq7S0VD169HDonzZtWrPxnD9/Xnv27FF+fr5u376t+vp6GWPsfQAAAJ0JRToAAABIkrZu3dps37eLdCUlJZKkXr16NXqMzWZTr169dOPGDRUXFzsV6aKjoxs9zhijpUuXat26dfai3LeVl5c3GSsAAIA74nZXAAAAtBmbzdZkn5+fX6Pt7733ntauXauoqChlZmaquLhYNTU1MsbY3+zaVPEOAADAXXElHQAAAFolMjJSkvTll182Oaah7+GHH3b5vFlZWZKkjIwMTZ482aGvoKDgXsMEAABwC1xJBwAAgFaJjo5WdHS0rly5ogMHDjj17969W9evX1dMTIzTra7NuX79uiQpKirKqe/9999vfcAAAAAdGEU6AAAAtNqLL74oSXrllVd05coVe3tpaamWLVsmSXrppZfu6ZyxsbGSpM2bNzvc1nr48GH7G2MBAAA6G4p0AAAAaLUlS5Zo0qRJ+vzzz9WnTx/NmDFDP/7xjxUbG6vc3Fw9/fTTWrRo0T2dc/HixQoMDFR6eroGDhyolJQUjRs3TvHx8Xr++efbaCUAAADWokgHAACAVvP29tbOnTu1fv16Pfroo9q3b58+/vhj9e3bV3/84x+VmZkpL697+5MzNjZWx48f19SpU1VWVqadO3eqoqJCmzZt4ko6AADQadkMr8YCAAAAAAAALMWVdAAAAAAAAIDFKNIBAAAAAAAAFqNIBwAAAAAAAFiMIh0AAAAAAABgMYp0AAAAAAAAgMUo0gEAAAAAAAAWo0gHAAAAAAAAWIwiHQAAAAAAAGAxinQAAAAAAACAxSjSAQAAAAAAABajSAcAAAAAAABYjCIdAAAAAAAAYLH/AQC5wmRWk6swAAAAAElFTkSuQmCC", + "text/plain": [ + "<Figure size 1500x500 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Generamos la figura\n", + "fig = plt.figure(figsize=(15, 5))\n", + "ax = fig.gca()\n", + "\n", + "# Diagrama cajas y bigotes\n", + "sns.boxplot(data = pm_data, x='hora', y='mean', ax=ax)\n", + "\n", + "# Otros graficos\n", + "plt.plot(pm_data_h['mean'], '-ok', label=\"Temperatura promedio\", alpha=0.6)\n", + "plt.plot(pm_data_hmax['mean'], '--r', label=\"Temperatura máxima\", alpha=0.6)\n", + "plt.plot(pm_data_hmin['mean'], '--b', label=\"Temperatura mÃnima\", alpha=0.6)\n", + "\n", + "\n", + "# Formateamos el eje de fechas para que se vea mejor\n", + "ax.tick_params(which='major', pad=10, length=8, labelsize=12, direction=\"inout\", width=1.5)\n", + "ax.tick_params(which='minor', length=4)\n", + "ax.set_xticks(range(0,24,5))\n", + "ax.set_xticks(range(0,24,1), minor=True)\n", + "ax.set_xticklabels([\"00:00\", \"05:00\", \"10:00\", \"15:00\", \"20:00\"], fontsize=12)\n", + "\n", + "# Agregamos la leyenda, los titulos y la grilla\n", + "plt.ylim(5,28)\n", + "plt.ylabel(\"PM10 [$\\mu g/m^3$]\", fontsize=15)\n", + "plt.xlabel(\"Hora\", fontsize=15)\n", + "plt.title(\"Gráfica de cajas y bigotes para el PM10 por hora\", fontsize=18)\n", + "plt.legend()\n", + "plt.grid(True)\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 791 + }, + "id": "5Qx0uJEzYDJD", + "outputId": "c86c01d1-77af-4c17-cac9-1c7d6223c8f9" + }, + "outputs": [ + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m/home/juanguarin/Descargas/proyecto_grupo1 (1).ipynb Cell 13\u001b[0m line \u001b[0;36m5\n\u001b[1;32m <a href='vscode-notebook-cell:/home/juanguarin/Descargas/proyecto_grupo1%20%281%29.ipynb#X15sZmlsZQ%3D%3D?line=2'>3</a>\u001b[0m estacion \u001b[39m=\u001b[39m \u001b[39m\"\u001b[39m\u001b[39mmE1_00007\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m <a href='vscode-notebook-cell:/home/juanguarin/Descargas/proyecto_grupo1%20%281%29.ipynb#X15sZmlsZQ%3D%3D?line=3'>4</a>\u001b[0m frecuencia \u001b[39m=\u001b[39m \u001b[39m\"\u001b[39m\u001b[39m10T\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[0;32m----> <a href='vscode-notebook-cell:/home/juanguarin/Descargas/proyecto_grupo1%20%281%29.ipynb#X15sZmlsZQ%3D%3D?line=4'>5</a>\u001b[0m data \u001b[39m=\u001b[39m MakeSens\u001b[39m.\u001b[39;49mdownload_data(estacion, fecha_inicio, fecha_fin, frecuencia)\n\u001b[1;32m <a href='vscode-notebook-cell:/home/juanguarin/Descargas/proyecto_grupo1%20%281%29.ipynb#X15sZmlsZQ%3D%3D?line=5'>6</a>\u001b[0m data\n", + "File \u001b[0;32m~/Documentos/python-venv/lib/python3.11/site-packages/MakeSens/MakeSens.py:135\u001b[0m, in \u001b[0;36mdownload_data\u001b[0;34m(id_device, start_date, end_date, sample_rate, format, fields)\u001b[0m\n\u001b[1;32m 133\u001b[0m url \u001b[39m=\u001b[39m \u001b[39mf\u001b[39m\u001b[39m'\u001b[39m\u001b[39mhttps://api.makesens.co/device/\u001b[39m\u001b[39m{\u001b[39;00mid_device\u001b[39m}\u001b[39;00m\u001b[39m/data?\u001b[39m\u001b[39m{\u001b[39;00mencoded_params\u001b[39m}\u001b[39;00m\u001b[39m'\u001b[39m\n\u001b[1;32m 134\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[0;32m--> 135\u001b[0m rta \u001b[39m=\u001b[39m requests\u001b[39m.\u001b[39;49mget(url)\u001b[39m.\u001b[39mcontent\n\u001b[1;32m 136\u001b[0m d \u001b[39m=\u001b[39m json\u001b[39m.\u001b[39mloads(rta)\n\u001b[1;32m 137\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mException\u001b[39;00m \u001b[39mas\u001b[39;00m e:\n", + "File \u001b[0;32m~/Documentos/python-venv/lib/python3.11/site-packages/requests/api.py:73\u001b[0m, in \u001b[0;36mget\u001b[0;34m(url, params, **kwargs)\u001b[0m\n\u001b[1;32m 62\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mget\u001b[39m(url, params\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs):\n\u001b[1;32m 63\u001b[0m \u001b[39m \u001b[39m\u001b[39mr\u001b[39m\u001b[39m\"\"\"Sends a GET request.\u001b[39;00m\n\u001b[1;32m 64\u001b[0m \n\u001b[1;32m 65\u001b[0m \u001b[39m :param url: URL for the new :class:`Request` object.\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 70\u001b[0m \u001b[39m :rtype: requests.Response\u001b[39;00m\n\u001b[1;32m 71\u001b[0m \u001b[39m \"\"\"\u001b[39;00m\n\u001b[0;32m---> 73\u001b[0m \u001b[39mreturn\u001b[39;00m request(\u001b[39m\"\u001b[39;49m\u001b[39mget\u001b[39;49m\u001b[39m\"\u001b[39;49m, url, params\u001b[39m=\u001b[39;49mparams, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n", + "File \u001b[0;32m~/Documentos/python-venv/lib/python3.11/site-packages/requests/api.py:59\u001b[0m, in \u001b[0;36mrequest\u001b[0;34m(method, url, **kwargs)\u001b[0m\n\u001b[1;32m 55\u001b[0m \u001b[39m# By using the 'with' statement we are sure the session is closed, thus we\u001b[39;00m\n\u001b[1;32m 56\u001b[0m \u001b[39m# avoid leaving sockets open which can trigger a ResourceWarning in some\u001b[39;00m\n\u001b[1;32m 57\u001b[0m \u001b[39m# cases, and look like a memory leak in others.\u001b[39;00m\n\u001b[1;32m 58\u001b[0m \u001b[39mwith\u001b[39;00m sessions\u001b[39m.\u001b[39mSession() \u001b[39mas\u001b[39;00m session:\n\u001b[0;32m---> 59\u001b[0m \u001b[39mreturn\u001b[39;00m session\u001b[39m.\u001b[39;49mrequest(method\u001b[39m=\u001b[39;49mmethod, url\u001b[39m=\u001b[39;49murl, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n", + "File \u001b[0;32m~/Documentos/python-venv/lib/python3.11/site-packages/requests/sessions.py:589\u001b[0m, in \u001b[0;36mSession.request\u001b[0;34m(self, method, url, params, data, headers, cookies, files, auth, timeout, allow_redirects, proxies, hooks, stream, verify, cert, json)\u001b[0m\n\u001b[1;32m 584\u001b[0m send_kwargs \u001b[39m=\u001b[39m {\n\u001b[1;32m 585\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mtimeout\u001b[39m\u001b[39m\"\u001b[39m: timeout,\n\u001b[1;32m 586\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mallow_redirects\u001b[39m\u001b[39m\"\u001b[39m: allow_redirects,\n\u001b[1;32m 587\u001b[0m }\n\u001b[1;32m 588\u001b[0m send_kwargs\u001b[39m.\u001b[39mupdate(settings)\n\u001b[0;32m--> 589\u001b[0m resp \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49msend(prep, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49msend_kwargs)\n\u001b[1;32m 591\u001b[0m \u001b[39mreturn\u001b[39;00m resp\n", + "File \u001b[0;32m~/Documentos/python-venv/lib/python3.11/site-packages/requests/sessions.py:703\u001b[0m, in \u001b[0;36mSession.send\u001b[0;34m(self, request, **kwargs)\u001b[0m\n\u001b[1;32m 700\u001b[0m start \u001b[39m=\u001b[39m preferred_clock()\n\u001b[1;32m 702\u001b[0m \u001b[39m# Send the request\u001b[39;00m\n\u001b[0;32m--> 703\u001b[0m r \u001b[39m=\u001b[39m adapter\u001b[39m.\u001b[39;49msend(request, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[1;32m 705\u001b[0m \u001b[39m# Total elapsed time of the request (approximately)\u001b[39;00m\n\u001b[1;32m 706\u001b[0m elapsed \u001b[39m=\u001b[39m preferred_clock() \u001b[39m-\u001b[39m start\n", + "File \u001b[0;32m~/Documentos/python-venv/lib/python3.11/site-packages/requests/adapters.py:486\u001b[0m, in \u001b[0;36mHTTPAdapter.send\u001b[0;34m(self, request, stream, timeout, verify, cert, proxies)\u001b[0m\n\u001b[1;32m 483\u001b[0m timeout \u001b[39m=\u001b[39m TimeoutSauce(connect\u001b[39m=\u001b[39mtimeout, read\u001b[39m=\u001b[39mtimeout)\n\u001b[1;32m 485\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[0;32m--> 486\u001b[0m resp \u001b[39m=\u001b[39m conn\u001b[39m.\u001b[39;49murlopen(\n\u001b[1;32m 487\u001b[0m method\u001b[39m=\u001b[39;49mrequest\u001b[39m.\u001b[39;49mmethod,\n\u001b[1;32m 488\u001b[0m url\u001b[39m=\u001b[39;49murl,\n\u001b[1;32m 489\u001b[0m body\u001b[39m=\u001b[39;49mrequest\u001b[39m.\u001b[39;49mbody,\n\u001b[1;32m 490\u001b[0m headers\u001b[39m=\u001b[39;49mrequest\u001b[39m.\u001b[39;49mheaders,\n\u001b[1;32m 491\u001b[0m redirect\u001b[39m=\u001b[39;49m\u001b[39mFalse\u001b[39;49;00m,\n\u001b[1;32m 492\u001b[0m assert_same_host\u001b[39m=\u001b[39;49m\u001b[39mFalse\u001b[39;49;00m,\n\u001b[1;32m 493\u001b[0m preload_content\u001b[39m=\u001b[39;49m\u001b[39mFalse\u001b[39;49;00m,\n\u001b[1;32m 494\u001b[0m decode_content\u001b[39m=\u001b[39;49m\u001b[39mFalse\u001b[39;49;00m,\n\u001b[1;32m 495\u001b[0m retries\u001b[39m=\u001b[39;49m\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mmax_retries,\n\u001b[1;32m 496\u001b[0m timeout\u001b[39m=\u001b[39;49mtimeout,\n\u001b[1;32m 497\u001b[0m chunked\u001b[39m=\u001b[39;49mchunked,\n\u001b[1;32m 498\u001b[0m )\n\u001b[1;32m 500\u001b[0m \u001b[39mexcept\u001b[39;00m (ProtocolError, \u001b[39mOSError\u001b[39;00m) \u001b[39mas\u001b[39;00m err:\n\u001b[1;32m 501\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mConnectionError\u001b[39;00m(err, request\u001b[39m=\u001b[39mrequest)\n", + "File \u001b[0;32m~/Documentos/python-venv/lib/python3.11/site-packages/urllib3/connectionpool.py:790\u001b[0m, in \u001b[0;36mHTTPConnectionPool.urlopen\u001b[0;34m(self, method, url, body, headers, retries, redirect, assert_same_host, timeout, pool_timeout, release_conn, chunked, body_pos, preload_content, decode_content, **response_kw)\u001b[0m\n\u001b[1;32m 787\u001b[0m response_conn \u001b[39m=\u001b[39m conn \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m release_conn \u001b[39melse\u001b[39;00m \u001b[39mNone\u001b[39;00m\n\u001b[1;32m 789\u001b[0m \u001b[39m# Make the request on the HTTPConnection object\u001b[39;00m\n\u001b[0;32m--> 790\u001b[0m response \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_make_request(\n\u001b[1;32m 791\u001b[0m conn,\n\u001b[1;32m 792\u001b[0m method,\n\u001b[1;32m 793\u001b[0m url,\n\u001b[1;32m 794\u001b[0m timeout\u001b[39m=\u001b[39;49mtimeout_obj,\n\u001b[1;32m 795\u001b[0m body\u001b[39m=\u001b[39;49mbody,\n\u001b[1;32m 796\u001b[0m headers\u001b[39m=\u001b[39;49mheaders,\n\u001b[1;32m 797\u001b[0m chunked\u001b[39m=\u001b[39;49mchunked,\n\u001b[1;32m 798\u001b[0m retries\u001b[39m=\u001b[39;49mretries,\n\u001b[1;32m 799\u001b[0m response_conn\u001b[39m=\u001b[39;49mresponse_conn,\n\u001b[1;32m 800\u001b[0m preload_content\u001b[39m=\u001b[39;49mpreload_content,\n\u001b[1;32m 801\u001b[0m decode_content\u001b[39m=\u001b[39;49mdecode_content,\n\u001b[1;32m 802\u001b[0m \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mresponse_kw,\n\u001b[1;32m 803\u001b[0m )\n\u001b[1;32m 805\u001b[0m \u001b[39m# Everything went great!\u001b[39;00m\n\u001b[1;32m 806\u001b[0m clean_exit \u001b[39m=\u001b[39m \u001b[39mTrue\u001b[39;00m\n", + "File \u001b[0;32m~/Documentos/python-venv/lib/python3.11/site-packages/urllib3/connectionpool.py:536\u001b[0m, in \u001b[0;36mHTTPConnectionPool._make_request\u001b[0;34m(self, conn, method, url, body, headers, retries, timeout, chunked, response_conn, preload_content, decode_content, enforce_content_length)\u001b[0m\n\u001b[1;32m 534\u001b[0m \u001b[39m# Receive the response from the server\u001b[39;00m\n\u001b[1;32m 535\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[0;32m--> 536\u001b[0m response \u001b[39m=\u001b[39m conn\u001b[39m.\u001b[39;49mgetresponse()\n\u001b[1;32m 537\u001b[0m \u001b[39mexcept\u001b[39;00m (BaseSSLError, \u001b[39mOSError\u001b[39;00m) \u001b[39mas\u001b[39;00m e:\n\u001b[1;32m 538\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_raise_timeout(err\u001b[39m=\u001b[39me, url\u001b[39m=\u001b[39murl, timeout_value\u001b[39m=\u001b[39mread_timeout)\n", + "File \u001b[0;32m~/Documentos/python-venv/lib/python3.11/site-packages/urllib3/connection.py:454\u001b[0m, in \u001b[0;36mHTTPConnection.getresponse\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 451\u001b[0m \u001b[39mfrom\u001b[39;00m \u001b[39m.\u001b[39;00m\u001b[39mresponse\u001b[39;00m \u001b[39mimport\u001b[39;00m HTTPResponse\n\u001b[1;32m 453\u001b[0m \u001b[39m# Get the response from http.client.HTTPConnection\u001b[39;00m\n\u001b[0;32m--> 454\u001b[0m httplib_response \u001b[39m=\u001b[39m \u001b[39msuper\u001b[39;49m()\u001b[39m.\u001b[39;49mgetresponse()\n\u001b[1;32m 456\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[1;32m 457\u001b[0m assert_header_parsing(httplib_response\u001b[39m.\u001b[39mmsg)\n", + "File \u001b[0;32m/usr/lib/python3.11/http/client.py:1378\u001b[0m, in \u001b[0;36mHTTPConnection.getresponse\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 1376\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[1;32m 1377\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[0;32m-> 1378\u001b[0m response\u001b[39m.\u001b[39;49mbegin()\n\u001b[1;32m 1379\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mConnectionError\u001b[39;00m:\n\u001b[1;32m 1380\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mclose()\n", + "File \u001b[0;32m/usr/lib/python3.11/http/client.py:318\u001b[0m, in \u001b[0;36mHTTPResponse.begin\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 316\u001b[0m \u001b[39m# read until we get a non-100 response\u001b[39;00m\n\u001b[1;32m 317\u001b[0m \u001b[39mwhile\u001b[39;00m \u001b[39mTrue\u001b[39;00m:\n\u001b[0;32m--> 318\u001b[0m version, status, reason \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_read_status()\n\u001b[1;32m 319\u001b[0m \u001b[39mif\u001b[39;00m status \u001b[39m!=\u001b[39m CONTINUE:\n\u001b[1;32m 320\u001b[0m \u001b[39mbreak\u001b[39;00m\n", + "File \u001b[0;32m/usr/lib/python3.11/http/client.py:279\u001b[0m, in \u001b[0;36mHTTPResponse._read_status\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 278\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m_read_status\u001b[39m(\u001b[39mself\u001b[39m):\n\u001b[0;32m--> 279\u001b[0m line \u001b[39m=\u001b[39m \u001b[39mstr\u001b[39m(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mfp\u001b[39m.\u001b[39mreadline(_MAXLINE \u001b[39m+\u001b[39m \u001b[39m1\u001b[39m), \u001b[39m\"\u001b[39m\u001b[39miso-8859-1\u001b[39m\u001b[39m\"\u001b[39m)\n\u001b[1;32m 280\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mlen\u001b[39m(line) \u001b[39m>\u001b[39m _MAXLINE:\n\u001b[1;32m 281\u001b[0m \u001b[39mraise\u001b[39;00m LineTooLong(\u001b[39m\"\u001b[39m\u001b[39mstatus line\u001b[39m\u001b[39m\"\u001b[39m)\n", + "File \u001b[0;32m/usr/lib/python3.11/socket.py:706\u001b[0m, in \u001b[0;36mSocketIO.readinto\u001b[0;34m(self, b)\u001b[0m\n\u001b[1;32m 704\u001b[0m \u001b[39mwhile\u001b[39;00m \u001b[39mTrue\u001b[39;00m:\n\u001b[1;32m 705\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[0;32m--> 706\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_sock\u001b[39m.\u001b[39;49mrecv_into(b)\n\u001b[1;32m 707\u001b[0m \u001b[39mexcept\u001b[39;00m timeout:\n\u001b[1;32m 708\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_timeout_occurred \u001b[39m=\u001b[39m \u001b[39mTrue\u001b[39;00m\n", + "File \u001b[0;32m/usr/lib/python3.11/ssl.py:1311\u001b[0m, in \u001b[0;36mSSLSocket.recv_into\u001b[0;34m(self, buffer, nbytes, flags)\u001b[0m\n\u001b[1;32m 1307\u001b[0m \u001b[39mif\u001b[39;00m flags \u001b[39m!=\u001b[39m \u001b[39m0\u001b[39m:\n\u001b[1;32m 1308\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\n\u001b[1;32m 1309\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mnon-zero flags not allowed in calls to recv_into() on \u001b[39m\u001b[39m%s\u001b[39;00m\u001b[39m\"\u001b[39m \u001b[39m%\u001b[39m\n\u001b[1;32m 1310\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m\u001b[39m__class__\u001b[39m)\n\u001b[0;32m-> 1311\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mread(nbytes, buffer)\n\u001b[1;32m 1312\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m 1313\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39msuper\u001b[39m()\u001b[39m.\u001b[39mrecv_into(buffer, nbytes, flags)\n", + "File \u001b[0;32m/usr/lib/python3.11/ssl.py:1167\u001b[0m, in \u001b[0;36mSSLSocket.read\u001b[0;34m(self, len, buffer)\u001b[0m\n\u001b[1;32m 1165\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[1;32m 1166\u001b[0m \u001b[39mif\u001b[39;00m buffer \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[0;32m-> 1167\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_sslobj\u001b[39m.\u001b[39;49mread(\u001b[39mlen\u001b[39;49m, buffer)\n\u001b[1;32m 1168\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m 1169\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_sslobj\u001b[39m.\u001b[39mread(\u001b[39mlen\u001b[39m)\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + ] + } + ], + "source": [ + "fecha_inicio = \"2023-06-20 00:00:00\"\n", + "fecha_fin = \"2023-10-18 00:00:00\"\n", + "estacion = \"mE1_00007\"\n", + "frecuencia = \"10T\"\n", + "data = MakeSens.download_data(estacion, fecha_inicio, fecha_fin, frecuencia)\n", + "data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 455 + }, + "id": "4gNnsHkMYIjS", + "outputId": "9ccb97da-51f8-40b9-840b-10dc37865753" + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " <div id=\"df-385ba7a7-3181-4e76-9648-318d2d6acaa3\" class=\"colab-df-container\">\n", + " <div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>pm10_1</th>\n", + " <th>pm10_2</th>\n", + " </tr>\n", + " <tr>\n", + " <th>ts</th>\n", + " <th></th>\n", + " <th></th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>2023-06-20 00:00:00</th>\n", + " <td>9.666667</td>\n", + " <td>9.333333</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2023-06-20 00:10:00</th>\n", + " <td>10.250000</td>\n", + " <td>11.250000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2023-06-20 00:20:00</th>\n", + " <td>10.500000</td>\n", + " <td>8.500000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2023-06-20 00:30:00</th>\n", + " <td>9.000000</td>\n", + " <td>9.500000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2023-06-20 00:40:00</th>\n", + " <td>9.000000</td>\n", + " <td>10.333333</td>\n", + " </tr>\n", + " <tr>\n", + " <th>...</th>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2023-10-17 23:10:00</th>\n", + " <td>11.600000</td>\n", + " <td>11.800000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2023-10-17 23:20:00</th>\n", + " <td>11.600000</td>\n", + " <td>11.200000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2023-10-17 23:30:00</th>\n", + " <td>12.400000</td>\n", + " <td>13.200000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2023-10-17 23:40:00</th>\n", + " <td>11.750000</td>\n", + " <td>12.000000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2023-10-17 23:50:00</th>\n", + " <td>14.000000</td>\n", + " <td>12.000000</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "<p>16845 rows × 2 columns</p>\n", + "</div>\n", + " <div class=\"colab-df-buttons\">\n", + "\n", + " <div class=\"colab-df-container\">\n", + " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-385ba7a7-3181-4e76-9648-318d2d6acaa3')\"\n", + " title=\"Convert this dataframe to an interactive table.\"\n", + " style=\"display:none;\">\n", + "\n", + " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n", + " <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n", + " </svg>\n", + " </button>\n", + "\n", + " <style>\n", + " .colab-df-container {\n", + " display:flex;\n", + " gap: 12px;\n", + " }\n", + "\n", + " .colab-df-convert {\n", + " background-color: #E8F0FE;\n", + " border: none;\n", + " border-radius: 50%;\n", + " cursor: pointer;\n", + " display: none;\n", + " fill: #1967D2;\n", + " height: 32px;\n", + " padding: 0 0 0 0;\n", + " width: 32px;\n", + " }\n", + "\n", + " .colab-df-convert:hover {\n", + " background-color: #E2EBFA;\n", + " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", + " fill: #174EA6;\n", + " }\n", + "\n", + " .colab-df-buttons div {\n", + " margin-bottom: 4px;\n", + " }\n", + "\n", + " [theme=dark] .colab-df-convert {\n", + " background-color: #3B4455;\n", + " fill: #D2E3FC;\n", + " }\n", + "\n", + " [theme=dark] .colab-df-convert:hover {\n", + " background-color: #434B5C;\n", + " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", + " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", + " fill: #FFFFFF;\n", + " }\n", + " </style>\n", + "\n", + " <script>\n", + " const buttonEl =\n", + " document.querySelector('#df-385ba7a7-3181-4e76-9648-318d2d6acaa3 button.colab-df-convert');\n", + " buttonEl.style.display =\n", + " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", + "\n", + " async function convertToInteractive(key) {\n", + " const element = document.querySelector('#df-385ba7a7-3181-4e76-9648-318d2d6acaa3');\n", + " const dataTable =\n", + " await google.colab.kernel.invokeFunction('convertToInteractive',\n", + " [key], {});\n", + " if (!dataTable) return;\n", + "\n", + " const docLinkHtml = 'Like what you see? Visit the ' +\n", + " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", + " + ' to learn more about interactive tables.';\n", + " element.innerHTML = '';\n", + " dataTable['output_type'] = 'display_data';\n", + " await google.colab.output.renderOutput(dataTable, element);\n", + " const docLink = document.createElement('div');\n", + " docLink.innerHTML = docLinkHtml;\n", + " element.appendChild(docLink);\n", + " }\n", + " </script>\n", + " </div>\n", + "\n", + "\n", + "<div id=\"df-2431a99c-3586-4c7e-b917-5f8870125848\">\n", + " <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-2431a99c-3586-4c7e-b917-5f8870125848')\"\n", + " title=\"Suggest charts.\"\n", + " style=\"display:none;\">\n", + "\n", + "<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", + " width=\"24px\">\n", + " <g>\n", + " <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n", + " </g>\n", + "</svg>\n", + " </button>\n", + "\n", + "<style>\n", + " .colab-df-quickchart {\n", + " --bg-color: #E8F0FE;\n", + " --fill-color: #1967D2;\n", + " --hover-bg-color: #E2EBFA;\n", + " --hover-fill-color: #174EA6;\n", + " --disabled-fill-color: #AAA;\n", + " --disabled-bg-color: #DDD;\n", + " }\n", + "\n", + " [theme=dark] .colab-df-quickchart {\n", + " --bg-color: #3B4455;\n", + " --fill-color: #D2E3FC;\n", + " --hover-bg-color: #434B5C;\n", + " --hover-fill-color: #FFFFFF;\n", + " --disabled-bg-color: #3B4455;\n", + " --disabled-fill-color: #666;\n", + " }\n", + "\n", + " .colab-df-quickchart {\n", + " background-color: var(--bg-color);\n", + " border: none;\n", + " border-radius: 50%;\n", + " cursor: pointer;\n", + " display: none;\n", + " fill: var(--fill-color);\n", + " height: 32px;\n", + " padding: 0;\n", + " width: 32px;\n", + " }\n", + "\n", + " .colab-df-quickchart:hover {\n", + " background-color: var(--hover-bg-color);\n", + " box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n", + " fill: var(--button-hover-fill-color);\n", + " }\n", + "\n", + " .colab-df-quickchart-complete:disabled,\n", + " .colab-df-quickchart-complete:disabled:hover {\n", + " background-color: var(--disabled-bg-color);\n", + " fill: var(--disabled-fill-color);\n", + " box-shadow: none;\n", + " }\n", + "\n", + " .colab-df-spinner {\n", + " border: 2px solid var(--fill-color);\n", + " border-color: transparent;\n", + " border-bottom-color: var(--fill-color);\n", + " animation:\n", + " spin 1s steps(1) infinite;\n", + " }\n", + "\n", + " @keyframes spin {\n", + " 0% {\n", + " border-color: transparent;\n", + " border-bottom-color: var(--fill-color);\n", + " border-left-color: var(--fill-color);\n", + " }\n", + " 20% {\n", + " border-color: transparent;\n", + " border-left-color: var(--fill-color);\n", + " border-top-color: var(--fill-color);\n", + " }\n", + " 30% {\n", + " border-color: transparent;\n", + " border-left-color: var(--fill-color);\n", + " border-top-color: var(--fill-color);\n", + " border-right-color: var(--fill-color);\n", + " }\n", + " 40% {\n", + " border-color: transparent;\n", + " border-right-color: var(--fill-color);\n", + " border-top-color: var(--fill-color);\n", + " }\n", + " 60% {\n", + " border-color: transparent;\n", + " border-right-color: var(--fill-color);\n", + " }\n", + " 80% {\n", + " border-color: transparent;\n", + " border-right-color: var(--fill-color);\n", + " border-bottom-color: var(--fill-color);\n", + " }\n", + " 90% {\n", + " border-color: transparent;\n", + " border-bottom-color: var(--fill-color);\n", + " }\n", + " }\n", + "</style>\n", + "\n", + " <script>\n", + " async function quickchart(key) {\n", + " const quickchartButtonEl =\n", + " document.querySelector('#' + key + ' button');\n", + " quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n", + " quickchartButtonEl.classList.add('colab-df-spinner');\n", + " try {\n", + " const charts = await google.colab.kernel.invokeFunction(\n", + " 'suggestCharts', [key], {});\n", + " } catch (error) {\n", + " console.error('Error during call to suggestCharts:', error);\n", + " }\n", + " quickchartButtonEl.classList.remove('colab-df-spinner');\n", + " quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n", + " }\n", + " (() => {\n", + " let quickchartButtonEl =\n", + " document.querySelector('#df-2431a99c-3586-4c7e-b917-5f8870125848 button');\n", + " quickchartButtonEl.style.display =\n", + " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", + " })();\n", + " </script>\n", + "</div>\n", + " </div>\n", + " </div>\n" + ], + "text/plain": [ + " pm10_1 pm10_2\n", + "ts \n", + "2023-06-20 00:00:00 9.666667 9.333333\n", + "2023-06-20 00:10:00 10.250000 11.250000\n", + "2023-06-20 00:20:00 10.500000 8.500000\n", + "2023-06-20 00:30:00 9.000000 9.500000\n", + "2023-06-20 00:40:00 9.000000 10.333333\n", + "... ... ...\n", + "2023-10-17 23:10:00 11.600000 11.800000\n", + "2023-10-17 23:20:00 11.600000 11.200000\n", + "2023-10-17 23:30:00 12.400000 13.200000\n", + "2023-10-17 23:40:00 11.750000 12.000000\n", + "2023-10-17 23:50:00 14.000000 12.000000\n", + "\n", + "[16845 rows x 2 columns]" + ] + }, + "execution_count": 62, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "columnas = [\"pm10_1\", \"pm10_2\", 'ts']\n", + "pm_data = data[columnas]\n", + "\n", + "pm_data = pm_data.set_index('ts')\n", + "pm_data.index = pd.to_datetime(pm_data.index)\n", + "pm_data\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "HWJ3MjtpYO6y" + }, + "outputs": [], + "source": [ + "columnas = pm_data.columns\n", + "for col in columnas:\n", + " pm_data[col] = pm_data[col].where(pm_data[col]<120, np.nan)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 455 + }, + "id": "XJfzopWvYZSa", + "outputId": "9c8c120a-7330-4942-c1f1-a8ddd80e1c1c" + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " <div id=\"df-18ab886c-df29-4575-940f-7f3d3482b4c1\" class=\"colab-df-container\">\n", + " <div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>pm10_1</th>\n", + " <th>pm10_2</th>\n", + " <th>mean</th>\n", + " </tr>\n", + " <tr>\n", + " <th>ts</th>\n", + " <th></th>\n", + " <th></th>\n", + " <th></th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>2023-06-20 00:00:00</th>\n", + " <td>9.666667</td>\n", + " <td>9.333333</td>\n", + " <td>9.500000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2023-06-20 00:10:00</th>\n", + " <td>10.250000</td>\n", + " <td>11.250000</td>\n", + " <td>10.750000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2023-06-20 00:20:00</th>\n", + " <td>10.500000</td>\n", + " <td>8.500000</td>\n", + " <td>9.500000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2023-06-20 00:30:00</th>\n", + " <td>9.000000</td>\n", + " <td>9.500000</td>\n", + " <td>9.250000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2023-06-20 00:40:00</th>\n", + " <td>9.000000</td>\n", + " <td>10.333333</td>\n", + " <td>9.666667</td>\n", + " </tr>\n", + " <tr>\n", + " <th>...</th>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2023-10-17 23:10:00</th>\n", + " <td>11.600000</td>\n", + " <td>11.800000</td>\n", + " <td>11.700000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2023-10-17 23:20:00</th>\n", + " <td>11.600000</td>\n", + " <td>11.200000</td>\n", + " <td>11.400000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2023-10-17 23:30:00</th>\n", + " <td>12.400000</td>\n", + " <td>13.200000</td>\n", + " <td>12.800000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2023-10-17 23:40:00</th>\n", + " <td>11.750000</td>\n", + " <td>12.000000</td>\n", + " <td>11.875000</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2023-10-17 23:50:00</th>\n", + " <td>14.000000</td>\n", + " <td>12.000000</td>\n", + " <td>13.000000</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "<p>16845 rows × 3 columns</p>\n", + "</div>\n", + " <div class=\"colab-df-buttons\">\n", + "\n", + " <div class=\"colab-df-container\">\n", + " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-18ab886c-df29-4575-940f-7f3d3482b4c1')\"\n", + " title=\"Convert this dataframe to an interactive table.\"\n", + " style=\"display:none;\">\n", + "\n", + " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n", + " <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n", + " </svg>\n", + " </button>\n", + "\n", + " <style>\n", + " .colab-df-container {\n", + " display:flex;\n", + " gap: 12px;\n", + " }\n", + "\n", + " .colab-df-convert {\n", + " background-color: #E8F0FE;\n", + " border: none;\n", + " border-radius: 50%;\n", + " cursor: pointer;\n", + " display: none;\n", + " fill: #1967D2;\n", + " height: 32px;\n", + " padding: 0 0 0 0;\n", + " width: 32px;\n", + " }\n", + "\n", + " .colab-df-convert:hover {\n", + " background-color: #E2EBFA;\n", + " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", + " fill: #174EA6;\n", + " }\n", + "\n", + " .colab-df-buttons div {\n", + " margin-bottom: 4px;\n", + " }\n", + "\n", + " [theme=dark] .colab-df-convert {\n", + " background-color: #3B4455;\n", + " fill: #D2E3FC;\n", + " }\n", + "\n", + " [theme=dark] .colab-df-convert:hover {\n", + " background-color: #434B5C;\n", + " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", + " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", + " fill: #FFFFFF;\n", + " }\n", + " </style>\n", + "\n", + " <script>\n", + " const buttonEl =\n", + " document.querySelector('#df-18ab886c-df29-4575-940f-7f3d3482b4c1 button.colab-df-convert');\n", + " buttonEl.style.display =\n", + " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", + "\n", + " async function convertToInteractive(key) {\n", + " const element = document.querySelector('#df-18ab886c-df29-4575-940f-7f3d3482b4c1');\n", + " const dataTable =\n", + " await google.colab.kernel.invokeFunction('convertToInteractive',\n", + " [key], {});\n", + " if (!dataTable) return;\n", + "\n", + " const docLinkHtml = 'Like what you see? Visit the ' +\n", + " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", + " + ' to learn more about interactive tables.';\n", + " element.innerHTML = '';\n", + " dataTable['output_type'] = 'display_data';\n", + " await google.colab.output.renderOutput(dataTable, element);\n", + " const docLink = document.createElement('div');\n", + " docLink.innerHTML = docLinkHtml;\n", + " element.appendChild(docLink);\n", + " }\n", + " </script>\n", + " </div>\n", + "\n", + "\n", + "<div id=\"df-13dbdbc7-7fa9-4f08-aa8e-1b890b4db593\">\n", + " <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-13dbdbc7-7fa9-4f08-aa8e-1b890b4db593')\"\n", + " title=\"Suggest charts.\"\n", + " style=\"display:none;\">\n", + "\n", + "<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", + " width=\"24px\">\n", + " <g>\n", + " <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n", + " </g>\n", + "</svg>\n", + " </button>\n", + "\n", + "<style>\n", + " .colab-df-quickchart {\n", + " --bg-color: #E8F0FE;\n", + " --fill-color: #1967D2;\n", + " --hover-bg-color: #E2EBFA;\n", + " --hover-fill-color: #174EA6;\n", + " --disabled-fill-color: #AAA;\n", + " --disabled-bg-color: #DDD;\n", + " }\n", + "\n", + " [theme=dark] .colab-df-quickchart {\n", + " --bg-color: #3B4455;\n", + " --fill-color: #D2E3FC;\n", + " --hover-bg-color: #434B5C;\n", + " --hover-fill-color: #FFFFFF;\n", + " --disabled-bg-color: #3B4455;\n", + " --disabled-fill-color: #666;\n", + " }\n", + "\n", + " .colab-df-quickchart {\n", + " background-color: var(--bg-color);\n", + " border: none;\n", + " border-radius: 50%;\n", + " cursor: pointer;\n", + " display: none;\n", + " fill: var(--fill-color);\n", + " height: 32px;\n", + " padding: 0;\n", + " width: 32px;\n", + " }\n", + "\n", + " .colab-df-quickchart:hover {\n", + " background-color: var(--hover-bg-color);\n", + " box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n", + " fill: var(--button-hover-fill-color);\n", + " }\n", + "\n", + " .colab-df-quickchart-complete:disabled,\n", + " .colab-df-quickchart-complete:disabled:hover {\n", + " background-color: var(--disabled-bg-color);\n", + " fill: var(--disabled-fill-color);\n", + " box-shadow: none;\n", + " }\n", + "\n", + " .colab-df-spinner {\n", + " border: 2px solid var(--fill-color);\n", + " border-color: transparent;\n", + " border-bottom-color: var(--fill-color);\n", + " animation:\n", + " spin 1s steps(1) infinite;\n", + " }\n", + "\n", + " @keyframes spin {\n", + " 0% {\n", + " border-color: transparent;\n", + " border-bottom-color: var(--fill-color);\n", + " border-left-color: var(--fill-color);\n", + " }\n", + " 20% {\n", + " border-color: transparent;\n", + " border-left-color: var(--fill-color);\n", + " border-top-color: var(--fill-color);\n", + " }\n", + " 30% {\n", + " border-color: transparent;\n", + " border-left-color: var(--fill-color);\n", + " border-top-color: var(--fill-color);\n", + " border-right-color: var(--fill-color);\n", + " }\n", + " 40% {\n", + " border-color: transparent;\n", + " border-right-color: var(--fill-color);\n", + " border-top-color: var(--fill-color);\n", + " }\n", + " 60% {\n", + " border-color: transparent;\n", + " border-right-color: var(--fill-color);\n", + " }\n", + " 80% {\n", + " border-color: transparent;\n", + " border-right-color: var(--fill-color);\n", + " border-bottom-color: var(--fill-color);\n", + " }\n", + " 90% {\n", + " border-color: transparent;\n", + " border-bottom-color: var(--fill-color);\n", + " }\n", + " }\n", + "</style>\n", + "\n", + " <script>\n", + " async function quickchart(key) {\n", + " const quickchartButtonEl =\n", + " document.querySelector('#' + key + ' button');\n", + " quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n", + " quickchartButtonEl.classList.add('colab-df-spinner');\n", + " try {\n", + " const charts = await google.colab.kernel.invokeFunction(\n", + " 'suggestCharts', [key], {});\n", + " } catch (error) {\n", + " console.error('Error during call to suggestCharts:', error);\n", + " }\n", + " quickchartButtonEl.classList.remove('colab-df-spinner');\n", + " quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n", + " }\n", + " (() => {\n", + " let quickchartButtonEl =\n", + " document.querySelector('#df-13dbdbc7-7fa9-4f08-aa8e-1b890b4db593 button');\n", + " quickchartButtonEl.style.display =\n", + " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", + " })();\n", + " </script>\n", + "</div>\n", + " </div>\n", + " </div>\n" + ], + "text/plain": [ + " pm10_1 pm10_2 mean\n", + "ts \n", + "2023-06-20 00:00:00 9.666667 9.333333 9.500000\n", + "2023-06-20 00:10:00 10.250000 11.250000 10.750000\n", + "2023-06-20 00:20:00 10.500000 8.500000 9.500000\n", + "2023-06-20 00:30:00 9.000000 9.500000 9.250000\n", + "2023-06-20 00:40:00 9.000000 10.333333 9.666667\n", + "... ... ... ...\n", + "2023-10-17 23:10:00 11.600000 11.800000 11.700000\n", + "2023-10-17 23:20:00 11.600000 11.200000 11.400000\n", + "2023-10-17 23:30:00 12.400000 13.200000 12.800000\n", + "2023-10-17 23:40:00 11.750000 12.000000 11.875000\n", + "2023-10-17 23:50:00 14.000000 12.000000 13.000000\n", + "\n", + "[16845 rows x 3 columns]" + ] + }, + "execution_count": 64, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pm_data['mean'] = pm_data[['pm10_1','pm10_2']].mean(axis=1) # 1ra forma\n", + "pm_data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 238 + }, + "id": "tcut9YkoYgGi", + "outputId": "87ae0935-41c6-45ca-c073-1cf323af9d2a" + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " <div id=\"df-a0c72201-cb5d-43f5-879d-e18534509915\" class=\"colab-df-container\">\n", + " <div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>pm10_1</th>\n", + " <th>pm10_2</th>\n", + " <th>mean</th>\n", + " <th>hora</th>\n", + " </tr>\n", + " <tr>\n", + " <th>ts</th>\n", + " <th></th>\n", + " <th></th>\n", + " <th></th>\n", + " <th></th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>2023-06-20 00:00:00</th>\n", + " <td>9.666667</td>\n", + " <td>9.333333</td>\n", + " <td>9.500000</td>\n", + " <td>0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2023-06-20 00:10:00</th>\n", + " <td>10.250000</td>\n", + " <td>11.250000</td>\n", + " <td>10.750000</td>\n", + " <td>0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2023-06-20 00:20:00</th>\n", + " <td>10.500000</td>\n", + " <td>8.500000</td>\n", + " <td>9.500000</td>\n", + " <td>0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2023-06-20 00:30:00</th>\n", + " <td>9.000000</td>\n", + " <td>9.500000</td>\n", + " <td>9.250000</td>\n", + " <td>0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2023-06-20 00:40:00</th>\n", + " <td>9.000000</td>\n", + " <td>10.333333</td>\n", + " <td>9.666667</td>\n", + " <td>0</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>\n", + " <div class=\"colab-df-buttons\">\n", + "\n", + " <div class=\"colab-df-container\">\n", + " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-a0c72201-cb5d-43f5-879d-e18534509915')\"\n", + " title=\"Convert this dataframe to an interactive table.\"\n", + " style=\"display:none;\">\n", + "\n", + " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n", + " <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n", + " </svg>\n", + " </button>\n", + "\n", + " <style>\n", + " .colab-df-container {\n", + " display:flex;\n", + " gap: 12px;\n", + " }\n", + "\n", + " .colab-df-convert {\n", + " background-color: #E8F0FE;\n", + " border: none;\n", + " border-radius: 50%;\n", + " cursor: pointer;\n", + " display: none;\n", + " fill: #1967D2;\n", + " height: 32px;\n", + " padding: 0 0 0 0;\n", + " width: 32px;\n", + " }\n", + "\n", + " .colab-df-convert:hover {\n", + " background-color: #E2EBFA;\n", + " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", + " fill: #174EA6;\n", + " }\n", + "\n", + " .colab-df-buttons div {\n", + " margin-bottom: 4px;\n", + " }\n", + "\n", + " [theme=dark] .colab-df-convert {\n", + " background-color: #3B4455;\n", + " fill: #D2E3FC;\n", + " }\n", + "\n", + " [theme=dark] .colab-df-convert:hover {\n", + " background-color: #434B5C;\n", + " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", + " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", + " fill: #FFFFFF;\n", + " }\n", + " </style>\n", + "\n", + " <script>\n", + " const buttonEl =\n", + " document.querySelector('#df-a0c72201-cb5d-43f5-879d-e18534509915 button.colab-df-convert');\n", + " buttonEl.style.display =\n", + " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", + "\n", + " async function convertToInteractive(key) {\n", + " const element = document.querySelector('#df-a0c72201-cb5d-43f5-879d-e18534509915');\n", + " const dataTable =\n", + " await google.colab.kernel.invokeFunction('convertToInteractive',\n", + " [key], {});\n", + " if (!dataTable) return;\n", + "\n", + " const docLinkHtml = 'Like what you see? Visit the ' +\n", + " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", + " + ' to learn more about interactive tables.';\n", + " element.innerHTML = '';\n", + " dataTable['output_type'] = 'display_data';\n", + " await google.colab.output.renderOutput(dataTable, element);\n", + " const docLink = document.createElement('div');\n", + " docLink.innerHTML = docLinkHtml;\n", + " element.appendChild(docLink);\n", + " }\n", + " </script>\n", + " </div>\n", + "\n", + "\n", + "<div id=\"df-f80fd777-15b3-4fe3-affc-05bb10878273\">\n", + " <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-f80fd777-15b3-4fe3-affc-05bb10878273')\"\n", + " title=\"Suggest charts.\"\n", + " style=\"display:none;\">\n", + "\n", + "<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", + " width=\"24px\">\n", + " <g>\n", + " <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n", + " </g>\n", + "</svg>\n", + " </button>\n", + "\n", + "<style>\n", + " .colab-df-quickchart {\n", + " --bg-color: #E8F0FE;\n", + " --fill-color: #1967D2;\n", + " --hover-bg-color: #E2EBFA;\n", + " --hover-fill-color: #174EA6;\n", + " --disabled-fill-color: #AAA;\n", + " --disabled-bg-color: #DDD;\n", + " }\n", + "\n", + " [theme=dark] .colab-df-quickchart {\n", + " --bg-color: #3B4455;\n", + " --fill-color: #D2E3FC;\n", + " --hover-bg-color: #434B5C;\n", + " --hover-fill-color: #FFFFFF;\n", + " --disabled-bg-color: #3B4455;\n", + " --disabled-fill-color: #666;\n", + " }\n", + "\n", + " .colab-df-quickchart {\n", + " background-color: var(--bg-color);\n", + " border: none;\n", + " border-radius: 50%;\n", + " cursor: pointer;\n", + " display: none;\n", + " fill: var(--fill-color);\n", + " height: 32px;\n", + " padding: 0;\n", + " width: 32px;\n", + " }\n", + "\n", + " .colab-df-quickchart:hover {\n", + " background-color: var(--hover-bg-color);\n", + " box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n", + " fill: var(--button-hover-fill-color);\n", + " }\n", + "\n", + " .colab-df-quickchart-complete:disabled,\n", + " .colab-df-quickchart-complete:disabled:hover {\n", + " background-color: var(--disabled-bg-color);\n", + " fill: var(--disabled-fill-color);\n", + " box-shadow: none;\n", + " }\n", + "\n", + " .colab-df-spinner {\n", + " border: 2px solid var(--fill-color);\n", + " border-color: transparent;\n", + " border-bottom-color: var(--fill-color);\n", + " animation:\n", + " spin 1s steps(1) infinite;\n", + " }\n", + "\n", + " @keyframes spin {\n", + " 0% {\n", + " border-color: transparent;\n", + " border-bottom-color: var(--fill-color);\n", + " border-left-color: var(--fill-color);\n", + " }\n", + " 20% {\n", + " border-color: transparent;\n", + " border-left-color: var(--fill-color);\n", + " border-top-color: var(--fill-color);\n", + " }\n", + " 30% {\n", + " border-color: transparent;\n", + " border-left-color: var(--fill-color);\n", + " border-top-color: var(--fill-color);\n", + " border-right-color: var(--fill-color);\n", + " }\n", + " 40% {\n", + " border-color: transparent;\n", + " border-right-color: var(--fill-color);\n", + " border-top-color: var(--fill-color);\n", + " }\n", + " 60% {\n", + " border-color: transparent;\n", + " border-right-color: var(--fill-color);\n", + " }\n", + " 80% {\n", + " border-color: transparent;\n", + " border-right-color: var(--fill-color);\n", + " border-bottom-color: var(--fill-color);\n", + " }\n", + " 90% {\n", + " border-color: transparent;\n", + " border-bottom-color: var(--fill-color);\n", + " }\n", + " }\n", + "</style>\n", + "\n", + " <script>\n", + " async function quickchart(key) {\n", + " const quickchartButtonEl =\n", + " document.querySelector('#' + key + ' button');\n", + " quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n", + " quickchartButtonEl.classList.add('colab-df-spinner');\n", + " try {\n", + " const charts = await google.colab.kernel.invokeFunction(\n", + " 'suggestCharts', [key], {});\n", + " } catch (error) {\n", + " console.error('Error during call to suggestCharts:', error);\n", + " }\n", + " quickchartButtonEl.classList.remove('colab-df-spinner');\n", + " quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n", + " }\n", + " (() => {\n", + " let quickchartButtonEl =\n", + " document.querySelector('#df-f80fd777-15b3-4fe3-affc-05bb10878273 button');\n", + " quickchartButtonEl.style.display =\n", + " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", + " })();\n", + " </script>\n", + "</div>\n", + " </div>\n", + " </div>\n" + ], + "text/plain": [ + " pm10_1 pm10_2 mean hora\n", + "ts \n", + "2023-06-20 00:00:00 9.666667 9.333333 9.500000 0\n", + "2023-06-20 00:10:00 10.250000 11.250000 10.750000 0\n", + "2023-06-20 00:20:00 10.500000 8.500000 9.500000 0\n", + "2023-06-20 00:30:00 9.000000 9.500000 9.250000 0\n", + "2023-06-20 00:40:00 9.000000 10.333333 9.666667 0" + ] + }, + "execution_count": 65, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pm_data['hora'] = pm_data.index.hour.values # Agregamos una columna \"hora\" al DataFrame temp que contenga la hora de cada dato\n", + "pm_data.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 833 + }, + "id": "z_Cpka_uYozW", + "outputId": "ca4832c1-f392-4772-bf51-8c34ea2ee18c" + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " <div id=\"df-71eac98f-4f08-4ba6-bb7b-0906f0125d38\" class=\"colab-df-container\">\n", + " <div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>pm10_1</th>\n", + " <th>pm10_2</th>\n", + " <th>mean</th>\n", + " </tr>\n", + " <tr>\n", + " <th>hora</th>\n", + " <th></th>\n", + " <th></th>\n", + " <th></th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>16.952826</td>\n", + " <td>16.842415</td>\n", + " <td>16.897621</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>16.635739</td>\n", + " <td>16.692614</td>\n", + " <td>16.664176</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>16.497178</td>\n", + " <td>16.531814</td>\n", + " <td>16.514496</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>15.959155</td>\n", + " <td>15.929348</td>\n", + " <td>15.944251</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>15.797523</td>\n", + " <td>15.789755</td>\n", + " <td>15.793639</td>\n", + " </tr>\n", + " <tr>\n", + " <th>5</th>\n", + " <td>14.872493</td>\n", + " <td>14.921944</td>\n", + " <td>14.897218</td>\n", + " </tr>\n", + " <tr>\n", + " <th>6</th>\n", + " <td>14.599499</td>\n", + " <td>14.599165</td>\n", + " <td>14.599332</td>\n", + " </tr>\n", + " <tr>\n", + " <th>7</th>\n", + " <td>13.776010</td>\n", + " <td>13.865407</td>\n", + " <td>13.820709</td>\n", + " </tr>\n", + " <tr>\n", + " <th>8</th>\n", + " <td>14.077305</td>\n", + " <td>14.119196</td>\n", + " <td>14.098251</td>\n", + " </tr>\n", + " <tr>\n", + " <th>9</th>\n", + " <td>14.034519</td>\n", + " <td>14.086518</td>\n", + " <td>14.060518</td>\n", + " </tr>\n", + " <tr>\n", + " <th>10</th>\n", + " <td>15.775105</td>\n", + " <td>15.757759</td>\n", + " <td>15.766432</td>\n", + " </tr>\n", + " <tr>\n", + " <th>11</th>\n", + " <td>19.100729</td>\n", + " <td>18.981594</td>\n", + " <td>19.041161</td>\n", + " </tr>\n", + " <tr>\n", + " <th>12</th>\n", + " <td>23.171703</td>\n", + " <td>22.957554</td>\n", + " <td>23.123601</td>\n", + " </tr>\n", + " <tr>\n", + " <th>13</th>\n", + " <td>27.060502</td>\n", + " <td>26.794892</td>\n", + " <td>27.132482</td>\n", + " </tr>\n", + " <tr>\n", + " <th>14</th>\n", + " <td>24.200050</td>\n", + " <td>24.337733</td>\n", + " <td>24.444465</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15</th>\n", + " <td>21.335996</td>\n", + " <td>21.616494</td>\n", + " <td>21.545126</td>\n", + " </tr>\n", + " <tr>\n", + " <th>16</th>\n", + " <td>17.188285</td>\n", + " <td>17.414090</td>\n", + " <td>17.435128</td>\n", + " </tr>\n", + " <tr>\n", + " <th>17</th>\n", + " <td>13.871544</td>\n", + " <td>13.748506</td>\n", + " <td>13.881937</td>\n", + " </tr>\n", + " <tr>\n", + " <th>18</th>\n", + " <td>13.287077</td>\n", + " <td>13.328568</td>\n", + " <td>13.371715</td>\n", + " </tr>\n", + " <tr>\n", + " <th>19</th>\n", + " <td>12.447639</td>\n", + " <td>12.421078</td>\n", + " <td>12.434359</td>\n", + " </tr>\n", + " <tr>\n", + " <th>20</th>\n", + " <td>13.079880</td>\n", + " <td>13.046739</td>\n", + " <td>13.063309</td>\n", + " </tr>\n", + " <tr>\n", + " <th>21</th>\n", + " <td>13.689583</td>\n", + " <td>13.722704</td>\n", + " <td>13.706143</td>\n", + " </tr>\n", + " <tr>\n", + " <th>22</th>\n", + " <td>15.111272</td>\n", + " <td>15.012288</td>\n", + " <td>15.061780</td>\n", + " </tr>\n", + " <tr>\n", + " <th>23</th>\n", + " <td>16.321199</td>\n", + " <td>16.178633</td>\n", + " <td>16.249916</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>\n", + " <div class=\"colab-df-buttons\">\n", + "\n", + " <div class=\"colab-df-container\">\n", + " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-71eac98f-4f08-4ba6-bb7b-0906f0125d38')\"\n", + " title=\"Convert this dataframe to an interactive table.\"\n", + " style=\"display:none;\">\n", + "\n", + " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n", + " <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n", + " </svg>\n", + " </button>\n", + "\n", + " <style>\n", + " .colab-df-container {\n", + " display:flex;\n", + " gap: 12px;\n", + " }\n", + "\n", + " .colab-df-convert {\n", + " background-color: #E8F0FE;\n", + " border: none;\n", + " border-radius: 50%;\n", + " cursor: pointer;\n", + " display: none;\n", + " fill: #1967D2;\n", + " height: 32px;\n", + " padding: 0 0 0 0;\n", + " width: 32px;\n", + " }\n", + "\n", + " .colab-df-convert:hover {\n", + " background-color: #E2EBFA;\n", + " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", + " fill: #174EA6;\n", + " }\n", + "\n", + " .colab-df-buttons div {\n", + " margin-bottom: 4px;\n", + " }\n", + "\n", + " [theme=dark] .colab-df-convert {\n", + " background-color: #3B4455;\n", + " fill: #D2E3FC;\n", + " }\n", + "\n", + " [theme=dark] .colab-df-convert:hover {\n", + " background-color: #434B5C;\n", + " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", + " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", + " fill: #FFFFFF;\n", + " }\n", + " </style>\n", + "\n", + " <script>\n", + " const buttonEl =\n", + " document.querySelector('#df-71eac98f-4f08-4ba6-bb7b-0906f0125d38 button.colab-df-convert');\n", + " buttonEl.style.display =\n", + " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", + "\n", + " async function convertToInteractive(key) {\n", + " const element = document.querySelector('#df-71eac98f-4f08-4ba6-bb7b-0906f0125d38');\n", + " const dataTable =\n", + " await google.colab.kernel.invokeFunction('convertToInteractive',\n", + " [key], {});\n", + " if (!dataTable) return;\n", + "\n", + " const docLinkHtml = 'Like what you see? Visit the ' +\n", + " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", + " + ' to learn more about interactive tables.';\n", + " element.innerHTML = '';\n", + " dataTable['output_type'] = 'display_data';\n", + " await google.colab.output.renderOutput(dataTable, element);\n", + " const docLink = document.createElement('div');\n", + " docLink.innerHTML = docLinkHtml;\n", + " element.appendChild(docLink);\n", + " }\n", + " </script>\n", + " </div>\n", + "\n", + "\n", + "<div id=\"df-4002db70-d5ec-4fa9-932e-cd0a02ffb0ef\">\n", + " <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-4002db70-d5ec-4fa9-932e-cd0a02ffb0ef')\"\n", + " title=\"Suggest charts.\"\n", + " style=\"display:none;\">\n", + "\n", + "<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", + " width=\"24px\">\n", + " <g>\n", + " <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n", + " </g>\n", + "</svg>\n", + " </button>\n", + "\n", + "<style>\n", + " .colab-df-quickchart {\n", + " --bg-color: #E8F0FE;\n", + " --fill-color: #1967D2;\n", + " --hover-bg-color: #E2EBFA;\n", + " --hover-fill-color: #174EA6;\n", + " --disabled-fill-color: #AAA;\n", + " --disabled-bg-color: #DDD;\n", + " }\n", + "\n", + " [theme=dark] .colab-df-quickchart {\n", + " --bg-color: #3B4455;\n", + " --fill-color: #D2E3FC;\n", + " --hover-bg-color: #434B5C;\n", + " --hover-fill-color: #FFFFFF;\n", + " --disabled-bg-color: #3B4455;\n", + " --disabled-fill-color: #666;\n", + " }\n", + "\n", + " .colab-df-quickchart {\n", + " background-color: var(--bg-color);\n", + " border: none;\n", + " border-radius: 50%;\n", + " cursor: pointer;\n", + " display: none;\n", + " fill: var(--fill-color);\n", + " height: 32px;\n", + " padding: 0;\n", + " width: 32px;\n", + " }\n", + "\n", + " .colab-df-quickchart:hover {\n", + " background-color: var(--hover-bg-color);\n", + " box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n", + " fill: var(--button-hover-fill-color);\n", + " }\n", + "\n", + " .colab-df-quickchart-complete:disabled,\n", + " .colab-df-quickchart-complete:disabled:hover {\n", + " background-color: var(--disabled-bg-color);\n", + " fill: var(--disabled-fill-color);\n", + " box-shadow: none;\n", + " }\n", + "\n", + " .colab-df-spinner {\n", + " border: 2px solid var(--fill-color);\n", + " border-color: transparent;\n", + " border-bottom-color: var(--fill-color);\n", + " animation:\n", + " spin 1s steps(1) infinite;\n", + " }\n", + "\n", + " @keyframes spin {\n", + " 0% {\n", + " border-color: transparent;\n", + " border-bottom-color: var(--fill-color);\n", + " border-left-color: var(--fill-color);\n", + " }\n", + " 20% {\n", + " border-color: transparent;\n", + " border-left-color: var(--fill-color);\n", + " border-top-color: var(--fill-color);\n", + " }\n", + " 30% {\n", + " border-color: transparent;\n", + " border-left-color: var(--fill-color);\n", + " border-top-color: var(--fill-color);\n", + " border-right-color: var(--fill-color);\n", + " }\n", + " 40% {\n", + " border-color: transparent;\n", + " border-right-color: var(--fill-color);\n", + " border-top-color: var(--fill-color);\n", + " }\n", + " 60% {\n", + " border-color: transparent;\n", + " border-right-color: var(--fill-color);\n", + " }\n", + " 80% {\n", + " border-color: transparent;\n", + " border-right-color: var(--fill-color);\n", + " border-bottom-color: var(--fill-color);\n", + " }\n", + " 90% {\n", + " border-color: transparent;\n", + " border-bottom-color: var(--fill-color);\n", + " }\n", + " }\n", + "</style>\n", + "\n", + " <script>\n", + " async function quickchart(key) {\n", + " const quickchartButtonEl =\n", + " document.querySelector('#' + key + ' button');\n", + " quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n", + " quickchartButtonEl.classList.add('colab-df-spinner');\n", + " try {\n", + " const charts = await google.colab.kernel.invokeFunction(\n", + " 'suggestCharts', [key], {});\n", + " } catch (error) {\n", + " console.error('Error during call to suggestCharts:', error);\n", + " }\n", + " quickchartButtonEl.classList.remove('colab-df-spinner');\n", + " quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n", + " }\n", + " (() => {\n", + " let quickchartButtonEl =\n", + " document.querySelector('#df-4002db70-d5ec-4fa9-932e-cd0a02ffb0ef button');\n", + " quickchartButtonEl.style.display =\n", + " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", + " })();\n", + " </script>\n", + "</div>\n", + " </div>\n", + " </div>\n" + ], + "text/plain": [ + " pm10_1 pm10_2 mean\n", + "hora \n", + "0 16.952826 16.842415 16.897621\n", + "1 16.635739 16.692614 16.664176\n", + "2 16.497178 16.531814 16.514496\n", + "3 15.959155 15.929348 15.944251\n", + "4 15.797523 15.789755 15.793639\n", + "5 14.872493 14.921944 14.897218\n", + "6 14.599499 14.599165 14.599332\n", + "7 13.776010 13.865407 13.820709\n", + "8 14.077305 14.119196 14.098251\n", + "9 14.034519 14.086518 14.060518\n", + "10 15.775105 15.757759 15.766432\n", + "11 19.100729 18.981594 19.041161\n", + "12 23.171703 22.957554 23.123601\n", + "13 27.060502 26.794892 27.132482\n", + "14 24.200050 24.337733 24.444465\n", + "15 21.335996 21.616494 21.545126\n", + "16 17.188285 17.414090 17.435128\n", + "17 13.871544 13.748506 13.881937\n", + "18 13.287077 13.328568 13.371715\n", + "19 12.447639 12.421078 12.434359\n", + "20 13.079880 13.046739 13.063309\n", + "21 13.689583 13.722704 13.706143\n", + "22 15.111272 15.012288 15.061780\n", + "23 16.321199 16.178633 16.249916" + ] + }, + "execution_count": 66, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pm_data_h = pm_data.groupby(pm_data['hora']).mean()\n", + "pm_data_hstd = pm_data.groupby(pm_data['hora']).std()\n", + "pm_data_h.head(24)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 501 + }, + "id": "9b88pCVOYxyq", + "outputId": "086821a3-4f16-489c-d0de-74d53a63991d" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/EAAAHkCAYAAAB2Ra+UAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADJTklEQVR4nOzdd3iV9f3/8ed9n52dEKayRQQZWlBAQFGxIoqKq7gARbRWvmKtrR1qkfpT21rQ2oripO496x6ApbgBEQGRDZlkrzPvz++PhJTIEDghJyGvx3XlIrnPfe77dU4OOed9f5ZljDGIiIiIiIiISLNnJzqAiIiIiIiIiOwdFfEiIiIiIiIiLYSKeBEREREREZEWQkW8iIiIiIiISAuhIl5ERERERESkhVARLyIiIiIiItJCqIgXERERERERaSFUxIuIiIiIiIi0ECriRURERERERFoIFfEiItLo5s+fj2VZzJ8/f5/vO2PGDCzLavxQB8jkyZPp1q3bATv+Y489hmVZbNiwodGOOWrUKEaNGtVox2sqLTV3ImzYsAHLsnjssccSHeVHTZ48mZSUlETHEBFpMVTEi4g0Q9sLN8uy+M9//rPT7cYYOnfujGVZnHHGGft1jttvv51XXnklzqStQ05ODjNmzGDp0qWJjiKNaNSoUViWxbhx43a6bXsRfNdddyUgmYiIyO6piBcRacb8fj9PPfXUTtsXLFjAli1b8Pl8+33sA1nEH3/88dTU1HD88ccfkOM3tZycHG699dZdFvEPPvggq1evbvpQ0mjeeOMNvvzyy0THEBER2Ssq4kVEmrGxY8fy/PPPE41GG2x/6qmnGDRoEB06dEhQsl0LBoM4joNt2/j9fmy7Zb/NRKNRwuHwHvfxeDxxXUyRxOrSpQuZmZnceuutB/Q82/9vtFbV1dUJPb/jOASDwYRmEBFpLC3705WIyEHuwgsvpKioiPfee69+Wzgc5oUXXuCiiy7a5X3uuusujjvuONq0aUMgEGDQoEG88MILDfaxLIuqqirmzZtX321/8uTJ9bdv3bqVyy+/nPbt2+Pz+TjyyCN55JFHGhxj+7j3Z555hptuuolDDjmEpKQkysvLdzkm/uOPP+b888+nS5cu+Hw+OnfuzC9/+Utqamr267kZNWoU/fr148svv+S4444jEAjQvXt37r///gb7hcNhbrnlFgYNGkR6ejrJycmMHDmSjz76qMF+O3afvvvuu+nZsyc+n4/77ruPY445BoDLLrus/vnaPtZ4V2PiHcfhnnvuoX///vj9ftq2bcuYMWP44osvGpxrV+OVLctixowZe3zsr776KqeffjqdOnXC5/PRs2dP/vSnPxGLxXbad+7cufTs2ZNAIMCxxx7Lxx9/vMtjFhQUMGXKFNq3b4/f72fgwIHMmzdvjzl29NZbbzFy5EiSk5NJTU3l9NNPZ8WKFQ322T72eevWrZx99tmkpKTQtm1bbrjhhl1m/zF7+7vdk9TUVH75y1/y+uuv89VXX/3o/uvWreP8888nKyuLpKQkhg4dyr///e8G++zp/8b252DTpk2cccYZpKSkcMghh/DPf/4TgOXLl3PSSSeRnJxM165dd+qJU1xczA033ED//v1JSUkhLS2N0047jWXLlu31Y97R9qE7Cxcu5KqrrqJNmzakpaUxceJESkpKdtr/vvvu48gjj8Tn89GpUyeuueYaSktLG+yz4//N448/nqSkJH7/+9//aJa9eV1UVVXxq1/9is6dO+Pz+ejduzd33XUXxpgG+1mWxbRp03jyySfr87799tvA3v2NFBFpztyJDiAiIrvXrVs3hg0bxtNPP81pp50G1BZLZWVlTJgwgb///e873eeee+7hzDPP5OKLLyYcDvPMM89w/vnn88Ybb3D66acD8Pjjj3PFFVdw7LHHcuWVVwLQs2dPAPLz8xk6dGj9h+C2bdvy1ltvMWXKFMrLy7nuuusanO9Pf/oTXq+XG264gVAohNfr3eVjef7556murubqq6+mTZs2fPbZZ9x7771s2bKF559/fr+en5KSEsaOHcsFF1zAhRdeyHPPPcfVV1+N1+vl8ssvB6C8vJyHHnqICy+8kKlTp1JRUcHDDz/MqaeeymeffcZRRx3V4JiPPvoowWCQK6+8Ep/Px/jx46moqOCWW27hyiuvZOTIkQAcd9xxu801ZcoUHnvsMU477TSuuOIKotEoH3/8MZ988gmDBw/er8e6o8cee4yUlBSuv/56UlJS+PDDD7nlllsoLy/nr3/9a/1+Dz/8MFdddRXHHXcc1113HevWrePMM88kKyuLzp071+9XU1PDqFGj+P7775k2bRrdu3fn+eefZ/LkyZSWljJ9+vQ95nn88ceZNGkSp556Kn/+85+prq5mzpw5jBgxgiVLljS4yBGLxTj11FMZMmQId911F++//z5/+9vf6NmzJ1dfffU+PQ/7+rvdnenTpzN79mxmzJjBa6+9ttv98vPzOe6446iurubaa6+lTZs2zJs3jzPPPJMXXniB8ePHN9h/d/83YrEYp512Gscffzx/+ctfePLJJ5k2bRrJycn84Q9/4OKLL+acc87h/vvvZ+LEiQwbNozu3bsDtRcRXnnlFc4//3y6d+9Ofn4+DzzwACeccALffvstnTp12qfncLtp06aRkZHBjBkzWL16NXPmzGHjxo31FySgdtLJW2+9ldGjR3P11VfX7/f555+zaNEiPB5P/fGKioo47bTTmDBhApdccgnt27ff4/n35nVhjOHMM8/ko48+YsqUKRx11FG88847/PrXv2br1q3Mnj27wTE//PBDnnvuOaZNm0Z2dnb963Bv/kaKiDRrRkREmp1HH33UAObzzz83//jHP0xqaqqprq42xhhz/vnnmxNPPNEYY0zXrl3N6aef3uC+2/fbLhwOm379+pmTTjqpwfbk5GQzadKknc49ZcoU07FjR7Nt27YG2ydMmGDS09Prj//RRx8ZwPTo0WOnc26/7aOPPtptLmOMueOOO4xlWWbjxo312/74xz+avXl7OuGEEwxg/va3v9VvC4VC5qijjjLt2rUz4XDYGGNMNBo1oVCowX1LSkpM+/btzeWXX16/bf369QYwaWlppqCgoMH+n3/+uQHMo48+ulOOSZMmma5du9b//OGHHxrAXHvttTvt6zhOg3Pt6niA+eMf/1j/8/bXwvr16+u37eq5vOqqq0xSUpIJBoPGmNrfe7t27cxRRx3V4PHPnTvXAOaEE06o33b33XcbwDzxxBP128LhsBk2bJhJSUkx5eXlO51vu4qKCpORkWGmTp3aYHteXp5JT09vsH3SpEkGMDNnzmyw79FHH20GDRq023Nsd8IJJzTIvbe/2z0d78gjjzTGGHPrrbcawHz55ZfGmP/9jv7617/W73/dddcZwHz88cf12yoqKkz37t1Nt27dTCwWM8bs+f/G9ufg9ttvb5A5EAgYy7LMM888U7991apVO70egsFg/Xm2W79+vfH5fA2e1z29xna0/fU1aNCg+v8zxhjzl7/8xQDm1VdfNcYYU1BQYLxer/npT3/a4Pz/+Mc/DGAeeeSRBs8rYO6///49nvuHz8mPvS5eeeUVA5jbbrutwX7nnXeesSzLfP/99/XbAGPbtlmxYsVO59vbv5EiIs2VutOLiDRzF1xwATU1NbzxxhtUVFTwxhtv7LYrPUAgEKj/vqSkhLKyMkaOHLlXXYWNMbz44ouMGzcOYwzbtm2r/zr11FMpKyvb6TiTJk1qcM69yVVVVcW2bds47rjjMMawZMmSH73/rrjdbq666qr6n71eL1dddRUFBQX1E5W5XK76FlDHcSguLiYajTJ48OBdPifnnnsubdu23a88AC+++CKWZfHHP/5xp9saa+m8HZ/LiooKtm3bxsiRI6murmbVqlUAfPHFFxQUFPDzn/+8Qe+IyZMnk56e3uB4b775Jh06dODCCy+s3+bxeLj22muprKxkwYIFu83y3nvvUVpayoUXXtjg9eJyuRgyZMguu7b//Oc/b/DzyJEjWbdu3b49Cez773ZPpk+f/qNj4998802OPfZYRowYUb8tJSWFK6+8kg0bNvDtt9822H9P/zeuuOKK+u8zMjLo3bs3ycnJXHDBBfXbe/fuTUZGRoPnxufz1c81EYvFKCoqIiUlhd69e+/zY97RlVde2aAl/eqrr8btdvPmm28C8P777xMOh7nuuusazHUxdepU0tLSdhpS4PP5uOyyy/Ypw4+9Lt58801cLhfXXnttg/1+9atfYYzhrbfearD9hBNOoG/fvjudJ56/kSIizYG604uINHNt27Zl9OjRPPXUU1RXVxOLxTjvvPN2u/8bb7zBbbfdxtKlSwmFQvXb96aALCwspLS0lLlz5zJ37txd7lNQUNDg5+3dfH/Mpk2buOWWW3jttdd2GmtbVla2V8f4oU6dOpGcnNxg2+GHHw7UjjsfOnQoAPPmzeNvf/sbq1atIhKJ7DH73j6e3Vm7di2dOnUiKysrruPsyYoVK7jpppv48MMPKS8vb3Db9udy48aNAPTq1avB7R6Phx49ejTYtnHjRnr16rXTRIR9+vRpcKxdWbNmDQAnnXTSLm9PS0tr8PP2OQJ2lJmZucvx13tjX363e5Kens51113HH//4R5YsWUJmZuZO+2zcuJEhQ4bstH3H56lfv34/mmFXz0F6ejqHHnroTv9P09PTGzw32+dbuO+++1i/fn2DMeNt2rTZi0e6az98naSkpNCxY0c2bNgA/O810Lt37wb7eb1eevTosdNr5JBDDtnt0Jpd2ZvXxcaNG+nUqROpqakN9tvd63R3z388fyNFRJoDFfEiIi3ARRddxNSpU8nLy+O0004jIyNjl/t9/PHHnHnmmRx//PHcd999dOzYEY/Hw6OPPrrLpep+aPvs2ZdccgmTJk3a5T4DBgxo8PPetMLHYjFOOeUUiouLufHGGzniiCNITk5m69atTJ48+YDO2v3EE08wefJkzj77bH7961/Trl07XC4Xd9xxB2vXrt1p/715PPHaXbGwN5O7lZaWcsIJJ5CWlsbMmTPp2bMnfr+fr776ihtvvLHJZ0Dffr7HH398l6sluN0NP2q4XK5GO/e+/m5/zPax8bfeeit333133Pl291ra3XOwu+1mh0nbbr/9dm6++WYuv/xy/vSnP5GVlYVt21x33XXNavb7ff1/1Jiviz1liPdvpIhIc6AiXkSkBRg/fjxXXXUVn3zyCc8+++xu93vxxRfx+/288847DZY9e/TRR3fad1eFZNu2bUlNTSUWizF69OjGCU/tjNvfffcd8+bNY+LEifXbd5x1f3/k5ORQVVXVoDX+u+++A6ifxOqFF16gR48evPTSSw0e8666u+/OvrTQ9ezZk3feeYfi4uLdtsZvb+X94azee2rx3m7+/PkUFRXx0ksvcfzxx9dvX79+fYP9unbtCtS2lO/YSh6JRFi/fj0DBw5ssO/XX39dvzzgdtu75m8/1q5snxCxXbt2jfqa2RuN8bvd0fbW+BkzZuzyIlbXrl1ZvXr1Ttv35nlqLC+88AInnngiDz/8cIPtpaWlZGdn7/dx16xZw4knnlj/c2VlJbm5uYwdOxb432NbvXp1g54c4XCY9evXN8nvvmvXrrz//vtUVFQ0aI3fl+d/X/5Giog0VxoTLyLSAqSkpDBnzhxmzJjBuHHjdrufy+XCsqwGLbobNmzglVde2Wnf5OTknYpIl8vFueeey4svvsg333yz030KCwv3K//2VrYdWxSNMdxzzz37dbztotEoDzzwQP3P4XCYBx54gLZt2zJo0KDdnvvTTz9l8eLFe32e7RcJfvh87cq5556LMWaXY6u3Z0hLSyM7O5uFCxc2uP2+++770ePv6vGEw+Gd7jt48GDatm3L/fff32Ct+8cee2ynxzF27Fjy8vIaXCCKRqPce++9pKSkcMIJJ+w2z6mnnkpaWhq33357g+7s2+3va2ZvNMbv9oeuu+46MjIymDlz5k63jR07ls8++6zB8auqqpg7dy7dunXb5fjrxuZyuXZaTu35559n69atcR137ty5DX5/c+bMIRqN1q+KMXr0aLxeL3//+98bnP/hhx+mrKysSWZ1Hzt2LLFYjH/84x8Nts+ePRvLsuqz7sm+/I0UEWmu1BIvItJC7K57+45OP/10Zs2axZgxY7jooosoKCjgn//8J4cddhhff/11g30HDRrE+++/z6xZs+jUqRPdu3dnyJAh3HnnnXz00UcMGTKEqVOn0rdvX4qLi/nqq694//33KS4u3ufsRxxxBD179uSGG25g69atpKWl8eKLL+73OOjtOnXqxJ///Gc2bNjA4YcfzrPPPsvSpUuZO3du/SRdZ5xxBi+99BLjx4/n9NNPZ/369dx///307duXysrKvTpPz549ycjI4P777yc1NZXk5GSGDBmyyzG3J554Ipdeeil///vfWbNmDWPGjMFxHD7++GNOPPFEpk2bBtRObHbnnXdyxRVXMHjwYBYuXFjfi2BPjjvuODIzM5k0aRLXXnstlmXx+OOP71TYeTwebrvtNq666ipOOukkfvazn7F+/XoeffTRncbEX3nllTzwwANMnjyZL7/8km7duvHCCy+waNEi7r777p3GIO8oLS2NOXPmcOmll/KTn/yECRMm0LZtWzZt2sS///1vhg8fvlPR1Vga43f7Q+np6UyfPn2XF2F++9vf1i/3eO2115KVlcW8efNYv349L7744k5zChwIZ5xxBjNnzuSyyy7juOOOY/ny5Tz55JM7/U73VTgc5uSTT+aCCy5g9erV3HfffYwYMYIzzzwTqO2l87vf/Y5bb72VMWPGcOaZZ9bvd8wxx3DJJZc0xsPbo3HjxnHiiSfyhz/8gQ0bNjBw4EDeffddXn31Va677rr6XiF7si9/I0VEmq0EzIgvIiI/Yscl5vZkV0vMPfzww6ZXr17G5/OZI444wjz66KO7XLZt1apV5vjjjzeBQMAADZaby8/PN9dcc43p3Lmz8Xg8pkOHDubkk082c+fOrd9n+zJazz///E65drXE3LfffmtGjx5tUlJSTHZ2tpk6dapZtmzZTstg7csSc0ceeaT54osvzLBhw4zf7zddu3Y1//jHPxrs5ziOuf32203Xrl2Nz+czRx99tHnjjTd2WhpuV0uK7ejVV181ffv2NW63u0HmHx7HmNqlz/7617+aI444wni9XtO2bVtz2mmn1S9fZkztMldTpkwx6enpJjU11VxwwQWmoKBgr5aYW7RokRk6dKgJBAKmU6dO5je/+Y155513dnrOjTHmvvvuM927dzc+n88MHjzYLFy4cKel2oyp/Z1fdtllJjs723i9XtO/f/8fXZ5sRx999JE59dRTTXp6uvH7/aZnz55m8uTJ5osvvqjfZ9KkSSY5OXmn++7L73zH3Hv7u93T8bYvMbejkpISk56evsvXw9q1a815551nMjIyjN/vN8cee6x54403Guyzp/8bu3sOdpflh//Hg8Gg+dWvfmU6duxoAoGAGT58uFm8ePFOz82+LjG3YMECc+WVV5rMzEyTkpJiLr74YlNUVLTT/v/4xz/MEUccYTwej2nfvr25+uqrTUlJyV49lt3Zl9dFRUWF+eUvf2k6depkPB6P6dWrl/nrX/9av3zjdoC55pprdnm+vf0bKSLSXFnG/ODSvYiISAswatQotm3btstu/yKydx577DEuu+wyPv/8cwYPHpzoOCIishc0Jl5ERERERESkhVARLyIiIiIiItJCqIgXERERERERaSE0Jl5ERERERESkhVBLvIiIiIiIiEgLoSJeREREREREpIVwJzpAc+M4Djk5OaSmpmJZVqLjiIiIiIiIyEHOGENFRQWdOnXCtvfc1q4i/gdycnLo3LlzomOIiIiIiIhIK7N582YOPfTQPe6jIv4HUlNTgdonLy0tLcFp9iwSifDuu+/y05/+FI/Hk+g4chDSa0yagl5ncqDpNSZNQa8zEYlHeXk5nTt3rq9H90RF/A9s70KflpbWIor4pKQk0tLS9GYhB4ReY9IU9DqTA02vMWkKep2JSGPYmyHdmthOREREREREpIVQES8iIiIiIiLSQqiIFxEREREREWkhNCZeRERERERaLcdxCIfDiY4hrYDX6/3R5eP2hop4ERERERFplcLhMOvXr8dxnERHkVbAtm26d++O1+uN6zgq4kVEREREpNUxxpCbm4vL5aJz586N0kIqsjuO45CTk0Nubi5dunTZq1nod0dFvIiIiIiItDrRaJTq6mo6depEUlJSouNIK9C2bVtycnKIRqNxLUWpy00iIiIiItLqxGIxgLi7Novsre2vte2vvf2lIl5ERERERFqteLo1i+yLxnqtqYgXERERERERaSFUxIuIiIiIiMhBacaMGRx11FGJjtGoVMSLiIiIiIjITubOncuoUaNIS0vDsixKS0t32qe4uJiLL76YtLQ0MjIymDJlCpWVlU0fthVRES8iIiIiIiI7qa6uZsyYMfz+97/f7T4XX3wxK1as4L333uONN95g4cKFXHnllU2YslY4HG6ycxljiEajTXa+H1IRLyIiIiIi0kKMGjWKadOmMW3aNNLT08nOzubmm2/GGFO/T7du3bjtttuYOHEiKSkpdO3alddee43CwkLOOussUlJSGDBgAF988cUez3Xdddfx29/+lqFDh+7y9pUrV/L222/z0EMPMWTIEEaMGMG9997LM888Q05Ozm6Pa1kWc+bM4bTTTiMQCNCjRw9eeOGFBvssX76ck046iUAgQJs2bbjyyisbtPBPnjyZs88+m//3//4fnTp1onfv3nt8LI8//jjdunUjPT2dCRMmUFFRUX9bKBTi2muvpV27dvj9fkaMGMHnn39ef/v8+fOxLIu33nqLQYMG4fP5+M9//sPatWs566yzaN++PSkpKRxzzDG8//77e8zRGFTEi4iItBLGGN4vLuYbdXMUEdmZMRAKJeZrhwJ8b8ybNw+3281nn33GPffcw6xZs3jooYca7DN79myGDx/OkiVLOP3007n00kuZOHEil1xyCV999RU9e/Zk4sSJDYr/fbV48WIyMjIYPHhw/bbRo0dj2zaffvrpHu978803c+6557Js2TIuvvhiJkyYwMqVKwGoqqri1FNPJTMzk88//5znn3+e999/n2nTpjU4xgcffMDq1avrewHsztq1a3nllVd44403eOONN1iwYAF33nln/e2/+c1vePHFF5k3bx5fffUVhx12GKeeeirFxcUNjvPb3/6WO++8k5UrVzJgwAAqKysZO3YsH3zwAUuWLGHMmDGMGzeOTZs27fVzuD/cB/ToIiIi0mwsqazkubw8CAa5rFs3hmVlJTqSiEjzEQ7Dtdcm5tx//zv4fHu9e+fOnZk9ezaWZdG7d2+WL1/O7NmzmTp1av0+Y8eO5aqrrgLglltuYc6cORxzzDGcf/75ANx4440MGzaM/Px8OnTosF+x8/LyaNeuXYNtbrebrKws8vLy9njf888/nyuuuAKAP/3pT7z33nvce++93HfffTz11FMEg0H+9a9/kZycDMA//vEPxo0bx5///Gfat28PQHJyMg899FD9+uu74zgOjz32GKmpqQBceumlfPDBB/y///f/qKqqYs6cOTz22GOcdtppADz44IO89957PPzww/z617+uP87MmTM55ZRT6n/Oyspi4MCB9T//6U9/4uWXX+a1117b6YJDY1JLvIiISCtgjOGd4mJMTQ1ORQWPfv89y8rKEh1LRET2w9ChQxusOT5s2DDWrFlDLBar3zZgwID677cXvf37999pW0FBwYGOu0vDhg3b6eftLfErV65k4MCB9QU8wPDhw3Ech9WrV9dv69+//48W8FA7vGB7AQ/QsWPH+se9du1aIpEIw4cPr7/d4/Fw7LHH1ufZbsceBwCVlZXccMMN9OnTh4yMDFJSUli5cqVa4kVERCR+a2pqWF9VRWYoxGi/n8+DQbrn52OSk7Hc+jggIoLXW9sinqhzNzKPx1P//faCf1fbHMfZ73N06NBhp4sA0WiU4uLi/W7d3xc7Fvl7suPjhtrHvj+P+4fnu+GGG3jvvfe46667OOywwwgEApx33nkHfJI9tcSLiIi0Ah+XlWGCQU6KxRiVns6vsrLwFRYSXb8eJxJJdDwRkcSzrNou7Yn42qFVfW/8cLz5J598Qq9evXC5XI35jPyoYcOGUVpaypdfflm/7cMPP8RxHIYMGbLH+37yySc7/dynTx8A+vTpw7Jly6iqqqq/fdGiRdi2/aMT2O2rnj174vV6WbRoUf22SCTC559/Tt++ffd430WLFjF58mTGjx9P//796dChAxs2bGjUfLuiIl5ERKQVuDQzk4tjMY5LSsKyLFweD1ZGBsH8fO755hs+KSlJdEQREdlLmzZt4vrrr2f16tU8/fTT3HvvvUyfPr3Rz5OXl8fSpUv5/vvvgdoZ45cuXVo/4VufPn0YM2YMU6dO5bPPPmPRokVMmzaNCRMm0KlTpz0e+/nnn+eRRx7hu+++449//COfffZZ/Tjyiy++GL/fz6RJk/jmm2/46KOP+L//+z8uvfTS+mEAjSU5OZmrr76aX//617z99tt8++23TJ06lerqaqZMmbLH+/bq1YuXXnqJpUuXsmzZMi666KK4ejbsLfWfExERaQXs0lKGhsPYbdrUb7PcblanprKirIyV33+PddhhDMnMTGBKERHZGxMnTqSmpoZjjz0Wl8vF9OnTD8ja7Pfffz+33npr/c/HH388AI8++iiTJ08G4Mknn2TatGmcfPLJ2LbNueeey9/3YljCrbfeyjPPPMMvfvELOnbsyNNPP13f8p2UlMQ777zD9OnTOeaYY0hKSuLcc89l1qxZjf4YAe68804cx+HSSy+loqKCwYMH884775D5I++Js2bN4vLLL+e4444jOzubG2+8kfLy8gOScUeWiWdNgYNQeXk56enplJWVkZaWlug4exSJRHjzzTcZO3bsTuM8RBqDXmPSFPQ6O7DKo1HCkQhpa9ZgwmHsHSb22W5+dTXPVlRgBwJMOQgLeb3GpCnoddbyBINB1q9fT/fu3fH7/YmOs9dGjRrFUUcdxd13353oKPvNsixefvllzj777ERHaVJ7es3tSx2q7vQiIiIHsXeKi7lpzRr+U16OtZsJgEYlJfGz1FScmhoe/v57PlXXehERkWZLRbyIiMhBqjoWY2FpKU51Nb08Hix792/7o5KSuGCHQv4zFfIiIiLNksbEi4iIHKQWlJYSCgYZGI3Sfi+6yJ+YlATAcxUVlG/diklN1fJzIiLNzPz58xMdIW4a0R0fvTOLiIgchCKOw/slJZhgkNG2vdfF+IlJSRzuctGxrIzohg24u3VTIS8iItKM6F1ZRETkIPRJeTkVwSC9wmG6Z2Ts030P8fkwLhdOfj4rIxGqO3Zk8D4eQ0RERA4MFfEiIiIHGccY3i0pwdTUMBqw9mOmbMvtpiwtjX8WFhKtrIRevVTIi4iINAOa2E5EROQg4xjDCX4/R0YiHLmLJeX2VobXyxmpqcRqanhwzRq+KC1tvJAiIiKyX1TEi4iIHGTcts0J4TA/B+w41z4enZTEuTsU8l+qkBcREUkoFfEiIiIHEWMMJhjEbNuGXTfbfLxGJyVxbkoKsZoa5qqQFxERSSgV8SIiIgeRB3JymLd+PWU1NRBnK/yORicnc05dIf/SunVEotFGO7aIiEhTe+yxx8hooXO9qIgXERE5SGwNhfiqvJyvSkrwBQJYltWoxz8lOZmLUlO5proaNm7ExGKNenwREWle5s6dy6hRo0hLS8OyLEp30ROruLiYiy++mLS0NDIyMpgyZQqVlZVNH7ZOt27duPvuuxN2/qagIl5EROQg8W5xMYRCjIzF8DdSV/ofGpmURHZGBrG8PCLr17OhquqAnEdERBKvurqaMWPG8Pvf/363+1x88cWsWLGC9957jzfeeIOFCxdy5ZVX7tN5LMtiw4YNcaZtPVTEi4iIHARKIhE+LSvDrqlhlN+PZR+4t3jL48FKS+Px3Fzu+PZblpSVHbBziYhIQ6NGjWLatGlMmzaN9PR0srOzufnmmzHG1O/TrVs3brvtNiZOnEhKSgpdu3bltddeo7CwkLPOOouUlBQGDBjAF198scdzXXfddfz2t79l6NChu7x95cqVvP322zz00EMMGTKEESNGcO+99/LMM8+Qk5PTqI97O2MMM2bMoEuXLvh8Pjp16sS1114L1D43Gzdu5Je//CWWZTXokfbYY4/RpUsXkpKSGD9+PEVFRQckX1NQES8iInIQ+KCkBCcUYkg0SnpKygE/n+310i45mVhNDfd/9x1LVciLiDSZefPm4Xa7+eyzz7jnnnuYNWsWDz30UIN9Zs+ezfDhw1myZAmnn346l156KRMnTuSSSy7hq6++omfPnkycOLFB8b+vFi9eTEZGBoMHD67fNnr0aGzb5tNPP93v4+7Jiy++yOzZs3nggQdYs2YNr7zyCv379wfgpZde4tBDD2XmzJnk5uaSm5sLwKeffsqUKVOYNm0aS5cu5cQTT+S22247IPmagjvRAURERCQ+1bEYC0pLoaaG0V7vAW2F39GY5GQAXq2s5P7vvuPnhx/OUenpTXJuEZED5Zrvvtvtbb/t0oXOdZOG3r91K8t3M6RobJs2nN6mDQCLysp4Kj9/l/sd6vPxu65d9zlj586dmT17NpZl0bt3b5YvX87s2bOZOnXq/zKMHctVV10FwC233MKcOXM45phjOP/88wG48cYbGTZsGPn5+XTo0GGfMwDk5eXRrl27BtvcbjdZWVnk5eXt1zF/zKZNm+jQoQOjR4/G4/HQpUsXjj32WACysrJwuVykpqY2eEz33HMPY8aM4Te/+Q0Ahx9+OP/97395++23D0jGA00t8SIiIi1cXjiMLxJhQDRK+yZohd/RmORkzkxJIVpTw/1r1rCsvLxJzy8i0hoNHTq0QVfxYcOGsWbNGmI7TDg6YMCA+u/bt28PUN9iveO2goKCAx13J6eddhopKSn1XwBHHnlk/c9HHnnkbu97/vnnU1NTQ48ePZg6dSovv/wy0R9ZMWXlypUMGTKkwbZhw4bF/0ASRC3xIiIiLVx3v5+ZLhdVLheWu+nf2k+ra5F/rbKSOd99x019+3LoAZpYT0TkQPvn4Yfv1X4/P+SQvdpveHo6wxPQS8nj8dR/v73g39U2x3H2+xwdOnTY6SJANBqluLh4j637Dz30EDU1NfU/9+rVizfffJND6p7THXP+UOfOnVm9ejXvv/8+7733Hr/4xS/461//yoIFC/Z4v4OJingREZEWzlRU4CorIz01NWEZTktOxgCVVVW0y83FdOuG5XIlLI+IyMHsh+PNP/nkE3r16oWrif/uDhs2jNLSUr788ksGDRoEwIcffojjODu1fO/okF1cAOnatSvdunXbq/MGAgHGjRvHuHHjuOaaazjiiCNYvnw5P/nJT/B6vQ16JAD06dNnl89ZS6UiXkREpIUyxvDvoiIGFxeTEYthJ7gFYmxyMo7Hg5OXR9SyoEsXPAnoGSAicrDbtGkT119/PVdddRVfffUV9957L3/7298a/Tx5eXnk5eXx/fffA7B8+XJSU1Pp0qULWVlZ9OnThzFjxjB16lTuv/9+IpEI06ZNY8KECXTq1KnR80DtLPOxWIwhQ4aQlJTEE088QSAQoGvd3ALdunVj4cKFTJgwAZ/PR3Z2Ntdeey3Dhw/nrrvu4qyzzuKdd95psePhQWPiRUREWqxllZW8lp/P/YWF2E08Fn53bK8XOz2dnJwcbv76a5ZrjLyISKObOHEiNTU1HHvssVxzzTVMnz59n9dm3xv3338/Rx99dP2EeccffzxHH300r732Wv0+Tz75JEcccQQnn3wyY8eOZcSIEcydO7fRs2yXkZHBgw8+yPDhwxkwYADvv/8+r7/+Om3qJhKcOXMmGzZsoGfPnrRt2xaonUPgwQcf5J577mHgwIG8++673HTTTQcs44Gmy+MiIiItkDGGd0pKMMEgJxqD5fMlOlI9y+Ph26QktlVWct933/GLww+nf1paomOJiBw0PB4Pd999N3PmzNnl7Rs2bNhp2w+XkuvWrduPLi83Y8YMZsyYscd9srKyeOqpp/a4z4/Zl2Xuzj77bM4+++zd3j506FCWLVu20/bLL7+cyy+/vMG2X/3qV3t93uZELfEiIiIt0NqaGtZWVpIRCjG4bmK55mR0cjKnp6QQqa7mvu++U4u8iIhII1ERLyIi0gLVt8LHYngCgUTH2aUzkpMZm5xcX8h/o0JeREQkbupOLyIi0sLkhkIsKy/HHwwyPBBosFZwczOubqz+m1VV/PO775h2+OEcqa71IiL7bf78+YmOIAmmIl5ERKSF+bC0FEIhRsZiBJphV/ofOqNu+bn5VVV48/MxKSlYtjoDioiI7A8V8SIiIi3MOVlZZG3ZwmCfr0UUw5ZlMS45mZFuN2kFBUS9XtydO7eI7CIiIs2N3j1FRERaGG9ZGSeGQqQ3k2Xl9oZlWWT6/dhpacS2buXdNWvYUFOT6FgiIiItjop4ERGRFiIYi1EWDuMUFGC5XFguV6Ij7TPL62WF38/z+fncvWoVW4PBREcSERFpUVTEi4iItBALysr43erVLCwpwWpBrfA/1C8piWP9fiorKpi1ahV5oVCiI4mIiLQYKuJFRERagKjj8F5xMZGaGjpZFpa75U5rY1sWk9LSONrvp6y8nL+tWkVhOJzoWCIiIi2CingREZEW4NOKCsqDQXqGw/Q8CJZosy2Ly9PS6OfzUVJezqxVqyiJRBIdS0REDiIbNmzAsiyWLl2a6CiNSkW8iIhIM2eM4Z3iYkwwyGjA8ngSHalRuC2LK9PTOcLjobCsjLc2bEh0JBER2cHcuXMZNWoUaWlpWJZFaWnpTvsUFxdz8cUXk5aWRkZGBlOmTKGysvKA5po8eTJnn332AT1Hc6YiXkREpJn7uqqKvOpqOoRC9E9NTXScRuWxLH6ekcHpXi9nFRcTKyxMdCQREalTXV3NmDFj+P3vf7/bfS6++GJWrFjBe++9xxtvvMHChQu58sormzBl66MiXkREpJnb3gp/suNg+/2JjtPofJbFGRkZuN1uohs2UF5YSHUsluhYIiLN0qhRo5g2bRrTpk0jPT2d7Oxsbr75Zowx9ft069aN2267jYkTJ5KSkkLXrl157bXXKCws5KyzziIlJYUBAwbwxRdf7PFc1113Hb/97W8ZOnToLm9fuXIlb7/9Ng899BBDhgxhxIgR3HvvvTzzzDPk5OTE9ThfeOEF+vfvTyAQoE2bNowePZqqqipmzJjBvHnzePXVV7EsC8uymD9/PgCfffYZRx99NH6/n8GDB7NkyZK4MjRXKuJFRESaMccYjvR46BwKcUwLnpF+b9gpKZQDd61Zwz1r1hBUIS8iskvz5s3D7Xbz2Wefcc899zBr1iweeuihBvvMnj2b4cOHs2TJEk4//XQuvfRSJk6cyCWXXMJXX31Fz549mThxYoPif18tXryYjIwMBg8eXL9t9OjR2LbNp59+ut/Hzc3N5cILL+Tyyy9n5cqVzJ8/n3POOQdjDDfccAMXXHABY8aMITc3l9zcXI477jgqKys544wz6Nu3L19++SUzZszghhtu2O8MzVnLndpWRESkFbAti1ONqW2FDwQSHeeAc6Wk4BQXs7aoiH/YNtcedhheW20OItJ0rrlm97f99rfQuXPt9/ffD8uX73q/sWPh9NNrv1+0CJ56atf7HXoo/O53+56xc+fOzJ49G8uy6N27N8uXL2f27NlMnTp1hwxjueqqqwC45ZZbmDNnDscccwznn38+ADfeeCPDhg0jPz+fDh067HsIIC8vj3bt2jXY5na7ycrKIi8vb7+OCbVFfDQa5ZxzzqFr164A9O/fv/72QCBAKBRqkPuxxx7DcRwefvhh/H4/Rx55JFu2bOHqq6/e7xzNld4VRUREmjETieAUFGAFAliWleg4B1yqbXNdVhZtjWFVYSFz1q4l6jiJjiUi0qwMHTq0wXvCsGHDWLNmDbEdejANGDCg/vv27dsDDQvh7dsKCgoOdNwGfv7zn5OSklL/tSsDBw7k5JNPpn///px//vk8+OCDlJSU7PG4K1euZMCAAfh3GHY2bNiwRs3eXKglXkREpJl6rqAAU17OSZWVpLdpk+g4TSbdtrmuTRvuKipieWEhD9g2P+/RA1cruIghIon3z3/u3X4///ne7Td8eO1XU/PssJLJ9oJ/V9ucOC6UdujQYaeLANFolOLi4t227s+cOfNHu7m7XC7ee+89/vvf//Luu+9y77338oc//IFPP/2U7t2773feg4Va4kVERJqh0kiE+SUlfFRYiOP1YrWyLuVZdS3y6bEYS/LzeVTLz4mI1PvhePNPPvmEXr164XK5mjTHsGHDKC0t5csvv6zf9uGHH+I4DkOGDNnlfdq1a8dhhx1W/7U7lmUxfPhwbr31VpYsWYLX6+Xll18GwOv1Nuh1ANCnTx++/vprgsFg/bZPPvkknofXbLWuTwQiIiItxIelpURDIY6Jxcg8yCe02512LhfXZmWRGYtxVHExTlVVoiOJiDQLmzZt4vrrr2f16tU8/fTT3HvvvUyfPr3Rz5OXl8fSpUv5/vvvAVi+fDlLly6luLgYqC2cx4wZw9SpU/nss89YtGgR06ZNY8KECXTq1Gm/z/vpp59y++2388UXX7Bp0yZeeuklCgsL6dOnD1A7+/7XX3/N6tWr2bZtG5FIhIsuugjLspg6dSrffvstb775JnfddVf8T0IzpCJeRESkmQnGYswvKcFUVzPa7cZq4paV5qST282M7Gz6hcNE167Fqa5OdCQRkYSbOHEiNTU1HHvssVxzzTVMnz79gKzNfv/993P00UfXT5h3/PHHc/TRR/Paa6/V7/Pkk09yxBFHcPLJJzN27FhGjBjB3Llz4zpvWloaCxcuZOzYsRx++OHcdNNN/O1vf+O0004DYOrUqfTu3ZvBgwfTtm1bFi1aREpKCq+//jrLly/n6KOP5g9/+AN//vOf48rRXGlMvIiISDOzsKyMYChE/2iUjpmZiY6TcF7bxmRm4hQX8+nq1Wxp147zOnVqFRP9iYjsisfj4e6772bOnDm7vH3DLoYg/XApuW7duv3o8nIzZsxgxowZe9wnKyuLp3Y3/f5+6tOnD2+//fZub2/bti3vvvvuTtuHDh3K0qVLG2yLZwm95kpFvIiISDMSdRzeLynB1NQw2rax3HqrhtqxkTUZGTyxbRuhUAiPZXF2HF01RUREWip1pxcREWlGcsJhQqEQ3SMRDktNTXScZiXF5eKqzEzc4TD/3rSJN+NYg1hERKSl0uV9ERGRZqSL389tPh8lloXl9SY6TrPTx+vlqsxM7i8p4eWNG/HYNqe0a5foWCIiTWb+/PmJjiAJppZ4ERGRZsSprsZbUkKH5ORER2m2+nm9TElPxwqFeG7DBhYUFiY6koiISJNRES8iItJMLCwtpbSgABMKYfn9iY7TrB3t9zM5PR2CQT7etIlYOJzoSCLSQh2ME59J89RYrzV1pxcREWkG1tbU8ERODm1KS/ljIJDoOC3CMX4/XuCwigqcjRuxu3fXRIAistdcdct3hsNhAvq7K00gXHfB2RXn0rF6pxMREWkG3i0uxoRCDI/FsJOSEh2nxRjo92PcbpyCAmqAnI4dOSwlJdGxRKQFcLvdJCUlUVhYiMfjwbbVSVkOHMdxKCwsJCkpCXecF5xVxIuIiCRYXijE0vJyfMEgIwIBrX++jyy3Gyc9nX/m5rKurIxrDj+cfmlpiY4lIs2cZVl07NiR9evXs3HjxkTHkVbAtm26dOkS9/u8ingREZEEe6+kBBMKMSIWIykjI9FxWiSXx0OvlBRWV1Zy35o1TO/dm95qkReRH+H1eunVq1d9N2eRA8nr9TZKjw8V8SIiIglUFo2yuKwMKxjkRK8XS90599vYpCQijsM7VVXc+913/LJ3b3pqln8R+RG2bePXZKLSguiTgoiISAJ9VFJCNBTi2GiUTLUcx8WyLM5KSeHEpCSClZXcs3o1G2tqEh1LRESkUamIFxERSaCTMzIY6zic7HZjxTlbrdQW8uenpDAiEKC6spLZq1ZRGY0mOpaIiEijUXd6ERGRBEququK0YBArNTXRUQ4almVxYWoqEWPoWl2Nv7Aw0ZFEREQajYp4ERGRBIg6DiHHwVtQAKD1zRuZbVlMSkuDUIjw5s0AGGMSnEpERCR+6k4vIiKSAJ9XVPC7775jQVERliZfOyAsy8Ly+7ECAbbaNs9v2JDoSCIiInFTES8iItLEjDG8W1JCTXU1abEYlteb6EgHtbDPxzteLx9s28ZXxcWJjiMiIhIXFfEiIiJNbEVVFVurqmgbCjFQM9IfcD7LYkQkApEIT65fr4nuRESkRVMRLyIi0sTeKSnBhEKMdhzsQCDRcVqFXrEY/fx+yqqreU7d6kVEpAVTES8iItKEckIhVldUkBIMMkRj4ZuMBUxITsZvWfy3sJDlJSWJjiQiIrJfVMSLiIg0oQWlpRAOMzQWw5OUlOg4rUqGbXNOaipEIvxr/XpqYrFERxIREdlnKuJFRESaULJtEwiFGOnzYVlWouO0OiN8Pnr7/bSrqSGo1ngREWmBtCitiIhIEzrD62W04+BOS0t0lFbJsiyuSkvDW1qKnZeHSU/H8ngSHUtERGSvqSVeRESkCcWKirABy63r6IkSsCzs9HRMWRnBnBwijpPoSCIiIntNRbyIiEgT2BgM8npODsXFxdgaC59wlm2zJSmJ/7d5My9t2pToOCIiInttv5oBXnvttX2+zymnnEJAy+iIiEgr9WFJCf/Nz8fU1DBGa8M3C16fj22Vlbyfl8fg7Gx66vciIiItwH4V8WefffY+7W9ZFmvWrKFHjx77czoREZEWrSoW4/PycuxgkGF+vya0ayY6uFycnprKq+XlzFu7llv698dtq5OiiIg0b/v9TpWXl4fjOHv1laRugyIi0ootKisjGgpxVCxGutaGb1Z+6vfTxeslp6KC17dsSXQcERGRH7VfRfykSZP2qWv8JZdcQppm4RURkVbIGMOC0lJMMMjxto3lciU6kuzAtiwuTUvDNoa3c3PZVFWV6EgiIiJ7tF9F/KOPPkpqaupe7z9nzhyys7P351QiIiIt2srqagpraugQiXCYWuGbpUNdLk5NSSEWCvHkunUYYxIdSUREZLe0vo2IiMgB9HFZGSYUYoTjYPv9iY4juzE2EKAkHOaUmhpMVRWWJrkTEZFmap9b4ktKSiguLgagsLCQl156iRUrVjR6MBERkYPBhVlZnOU4DNEKLc2a27KYlJFB+1iM2JYtmFgs0ZFERER2aZ+K+IceeohBgwYxePBg5syZw/jx4/nggw+YMGECDz300IHKKCIi0mIlV1YyOhwmSV3pWwQ7PZ1IUREfb9yIo271IiLSDO1Td/q///3vrFixgpqaGrp06cL69etp27YtZWVlnHDCCVxxxRUHKqeIiEiLEjOGsOPg3rYNy+XC0tJlLYLlcvGYy8VXubmEAgFO6dgx0ZFEREQa2KdPFG63m0AgQFZWFocddhht27YFID09XWveioiI7GBZZSU3rl7NeyUlWGqFb1FGpaZCLMYrmzdTGAolOo6IiEgD+1TEu1wugsEgAAsWLKjfXllZ2bipREREWrgFpaXU1NSQFI1ieTyJjiP7oJfbzQnJyYSCQeatXavZ6kVEpFnZpyL+/fffx+fzAbWt79tVV1czd+7cxk0mIiLSQuWHw6ysrCQQCjFYrfAt0tnJyWS63awqKWFhQUGi44iIiNTbpyJ+d93m27VrxzHHHNNooURERFqyBaWlEAoxxHHwJiUlOo7sB79lcXFdt/oXNm2iWN3qRUSkmYh7nfjy8nIeffRR8vLy6N69OwMHDqR///4k6UOLiIi0QmHH4b9lZZhgkOM9Hs0Z04Id6fUyLCmJT6urWZ2Xx7CuXRMdSUREJP4i/pxzzmHZsmUcc8wxvP7666xevRqAnj17MnDgQJ599tm4Q4qIiLQUX1RUUB0M0jsapX1mZqLjSJzOS0nhBMehS0kJpn17LL8/0ZFERKSVi7uIX7x4MfPnz6/vTh8KhVi+fDlLly5l2bJlcQcUERFpSUKOQyAcZgRgueN+m5UES7IsuqSl4RQVEd26FXePHupdISIiCRX3p4sBAwbg3uFDis/nY/DgwQwePDjeQ4uIiLQ4owIBjjUGlya0O2hYloWVlsaHeXnkOA6X9eqV6EgiItKK7dPEdrvyl7/8hVtuuYWQJnwRERHBKS3FHQphBwKJjiKNqNrt5k1jWFRYyFfFxYmOIyIirVjcRXy3bt0oLy+nb9++/P73v+e1115j8+bNjZFNRESkxaiOxXi9oICiggLwetXl+iCTYttckJYG0ShPrl9PZTSa6EgiItJKxV3En3vuuWzYsIHhw4fz3//+l0mTJtGtWzfatm3LT3/608bIKCIi0ux9Ul7O63l5PFdejqWu9AelY7xe+gcClFVX89yGDYmOIyIirVTcY+K/+eYbFi9ezMCBA+u3bdiwgSVLlvD111/He3gREZFmzxjDwtJSTCjECMvCcrkSHUkOAMuyuCglhVtDIf5bWMgxbdrQXysQiIhIE4u7iD/mmGOoqqpqsK1bt25069aN8ePHx3t4ERGRZm9NTQ051dVkh8P0SUlJdBw5gDJsm3NTU3myrIx/rV/PzLQ0ArpoIyIiTSju7vTTp09nxowZlJaWNkIcERGRlmdBXSv8SMfB1jriB73hPh99/H6OqqnB0ucfERFpYnG3xJ933nkA9OrVi/HjxzNkyBCOPvpo+vXrh9frjTugiIhIc1YWjfJleTnuUIihmpG+VbAsi2lpaVBWhpWbi0lLw/J4Eh1LRERaibiL+PXr17Ns2TKWLl3KsmXLuP3229mwYQNut5vevXtrXLyIiBzUFpWV4YTDHBOLkZKRkeg40kRsy8KkpWGKiynaupW0Ll3w2nF3cBQREflRcRfxXbt2pWvXrpx55pn12yoqKli6dKkKeBEROeiNSEuDrVs53OXCUhHXqli2zYpAgEe2bGEkcEG3bomOJCIirUDcRfx///tf0tLS6NevX/221NRURo4cyciRI+M9vIiISLOWEgpxciiEpQntWqW2fj+Rqirey8tjcHY2PfQ6EBGRAyzuJoNrrrmGTz/9dKfta9eupaKiIt7Di4iINFsRxyFWUoIJh7E0D0yr1N7l4vTUVEw4zGNr1xJ1nERHEhGRg1zcRfzq1asZNWrUTtvff/99LrzwwngPLyIi0ixtC4f51Zo1vJybi6UJ7Vq1n/r9dPV6yamo4PUtWxIdR0REDnJxF/FpaWmUlJTstH3kyJF88skn8R5eRESkWVpYVkYwGCQYCqmIb+Vsy+KStDRsY3g7N5dNVVWJjiQiIgexuIv4MWPGcNddd+18YNsmHA7He3gREZFmJ+o4/KesDFNTw/Ferya0Ew51uTg1JYVYKMQrGzYkOo6IiBzE4v7U8ac//YkFCxZw7rnnsnz5cgCCwSB//vOfGTBgQNwBRUREmpsvKyupDAY5LBqlU3JyouNIMzE2EGCs38/E6mqcyspExxERkYNU3EV8586d+eSTT6ipqWHgwIEEAgFSU1N5/fXX+etf/9oYGUVERJqVBaWlmGCQEYDl8SQ6jjQTbstiXHo6/miU2JYtmFgs0ZFEROQgtN9LzN1yyy2cddZZDBo0iK5du/Lmm2+yceNGli1bhsfjYciQIWRlZTVmVhERkYTbEgzyfWUlqaEQR6kVXnbBTk+nrKiIRS4X4w47DNuyEh1JREQOIvtdxG/ZsoXTTjsNr9fLuHHjOOusszjppJPo2rVrY+YTERFpVgojEQLRKEMdB48mtJNdsFwu5to26woKSEpJ4ZSOHRMdSUREDiL73Z3+kUceIS8vj6effprU1FSmT59OdnY25557Lv/6178oLi5uzJwiIiLNwlHJydxuWfzU58NSC6vsxtlpaRCL8crmzRSGQomOIyIiB5G4xsTbts3IkSP5y1/+wurVq/n0008ZMmQIDzzwAJ06deL444/nrrvuYuvWrY2VV0REJKFMeTnuqiqS1JVe9qCX280JycmEgkH+tXZtouOIiMhBpFHXxOnTpw+/+c1vWLRoEZs3b2bSpEl8/PHHPP300415GhERkSZnjOGjkhKKCgsxxmC593tEmrQSZycnk+ZysbK0lA3l5YmOIyIiB4m4i/hvv/0Wx3F22t62bVumTJnCq6++yg033BDvaURERBJqXTDI07m5zCoowNJYeNkLfstiZHIyRKO8n5OT6DgiInKQiLsZoV+/fvj9fvr27cvAgQMbfGVkZDRCRBERkcRbUFqKCYUY7jhYfn+i40gLcbzPxzsuFytKSwlHIni1JKGIiMQp7pb4BQsWkJaWxiGHHEJFRQUPPvggJ554Im3atKF3797cfPPNlJaWNkJUERGRxKiIRvmivBxXMMhQv18T2sleS7Ntrk5N5Y+xGC51qRcRkUYQdxE/ffp05syZw6uvvspzzz3H8uXLee+99+jevTuXXHIJCxcu5Oijj6awsLAx8oqIiDS5/5aXEw2FOCoWI00T2sk+6uvzEXC5cOrmUxAREYlH3EX8qlWrOPLIIxtsO/nkk5k9ezbLli1j/vz5DB48mN///vfxnkpERKTJGWNqu9IHgxxv21guV6IjSQtkpaRQVlrK5qKiREcREZEWLu4iftCgQTz55JM7be/Xrx/vvvsulmXx61//mvfffz/eU4mIiDS5FVVVbKupoUMkQk+1wst+2mzb3BQO8+jmzWqNFxGRuMRdxN91113MmjWLSy+9lFWrVgEQDoeZPXs2WVlZQO1M9fn5+fGeSkREpMl1DwQY7/EwxnGwNaGd7KdDbZt0r5fN1dWs0VxBIiISh7hnpx8yZAiLFy9m+vTp9O3bF5/PRzQaxe128+ijjwKwZMkSOnXqFHdYERGRppbkOJxcXY1RK7zEwbYsTggEeKmsjPdzczk8MzPRkUREpIWKu4iH2q7zH3zwARs3bmTZsmW4XC4GDRpEhw4dgNqW+DvvvLMxTiUiItJkHGMwZWU41dXYKrokTsN9Pv7tcrGktJRtNTVkBwKJjiQiIi1Q3EX85s2b6dy5MwBdu3ala9euO+0zcuTIeE8jIiLSpKKOw4wNG+hVVsb5to3LjnsEmrRySZbF0ECABZWVfJSTw/k9eyY6koiItEBxfyLp2rUr2dnZnHzyyfzqV7/i8ccfZ/ny5Xz55ZdMmjSpMTKKiIg0uaWVlRRUV7O1qgp3Skqi48hB4kS/H2yb/2zbRjAaTXQcERFpgeJuiV+/fj1Llixh6dKlLFmyhOeee46cnBwA0tLS4g4oIiKSCAvKyjChECMAy+NJdBw5SLR3uTguECArGMSpqAAN0xARkX0UdxG/vQv92WefXb9t8eLFTJo0iZkzZ8Z7eBERkSaXGwqxurKSpFCInyQlJTqOHGQuTUkhFg7jKi5WES8iIvvsgAzwGzZsGPfccw933XXXgTi8iIjIAbWwrAxCIYbGYnhVxMsBYCcn4xQX41RXJzqKiIi0MHEX8eFweJfbe/XqxYoVK+I9vIiISJMKOQ6LSksxwSAjvV4sy0p0JDkIVXs8PB8MMnf9+kRHERGRFibu7vQpKSn07duXo48+mqOOOoqjjz6aTp06ce+99zJ69OjGyCgiItJkckMhXJEIfaJR2qmrsxwgbsviM5eL6rIycisr6ajJE0VEZC/F3RL/4YcfMnXqVDweD08++SRjxozh8MMP59577yUWi3HLLbfw/PPPs2rVqsbIKyIickB1CwT4f4EAF1oWljvua90iu+SzLIYHAhCN8kFubqLjiIhICxL3p5MRI0YwYsSI+p8dx2H16tUsXbqUpUuX8tlnn/Hggw9SUFBALBaL93QiIiIHlAkGcZWU0EYto3KAneD3835VFf8tKmJ8t24kaxUEERHZC/tVxH/99df069cP2965Id+2bfr06UOfPn248MILAfjmm29IT0+PL6mIiMgBtqSigkPLykgLBqFNm0THkYNcG9vmqECAJVVVfJyby5guXRIdSUREWoD96k5/9NFHU1RUtNf7H3fccUQikf05lYiISJOoisV4KCeHmzdvploT2kkTOcnvB8viw4ICYo6T6DgiItIC7FdLvDGGm2++maS9XHZndzPYi4iINBeLy8qIhEIMiMVIVu8xaSI9XS66eL0UBoPklJbSOSsr0ZFERKSZ268i/vjjj2f16tV7vf+wYcMIBAL7cyoREZEDzhjDwrIyTCjE8baN5XIlOpK0EpZlcVlqKmklJSRVVoKKeBER+RH7VcTPnz+/kWOIiIgkzurqavKqq2kbDtNbE9pJE+vgcuEkJWG2bcO0b4/l8yU6koiINGNxLzEnIiLS0i2oa4Uf6TjYfn+i40grZAUClFVX82VOTqKjiIhIM6cFcEVEpFUrjURYUl6OOxRiqIZ+SYKEgVsti2heHr06dSJdrfEiIrIbaokXEZFWzWfbnOX3MzoWIzk5OdFxpJXyWRZH+f1EIxHmqzVeRET2QEW8iIi0an7bZnQoxBluN5att0VJnJMCAbAsFm7bRkTLzYmIyG7o04qIiLRaxhhMVRVOWRmWWuElwTq7XBzm81EWDPJ5fn6i44iISDPVKGPiS0tLefjhh1m5ciUARx55JJdffjnpWmdXRESasQdycvCXlnJ6JEKG3rOkGTgpKYnvg0Hez89nWIcOWJaV6EgiItLMxN0S/8UXX9CzZ09mz55NcXExxcXFzJo1i549e/LVV181RkYREZFGVxAO81V5OV+VleHXjPTSTAx0u2nj9bKpqorvS0sTHUdERJqhuFvif/nLX3LmmWfy4IMP4nbXHi4ajXLFFVdw3XXXsXDhwrhDioiINLZ/FxVBOMyxsRi+pKRExxEBwLYsTktKoqysjLZVVZCZmehIIiLSzMRdxH/xxRcNCngAt9vNb37zGwYPHhzv4UVERBrd5+XlLC4pwVddzclerya0k2ZluM+Hk5SEVVSE6dABy60VgUVE5H/i/tSSlpbGpk2bdtq+efNmUlNT4z28iIhIoyoMh3k8Lw9TVcWFsRht0tISHUlkJ1ZSEk5VFdGSkkRHERGRZibuIv5nP/sZU6ZM4dlnn2Xz5s1s3ryZZ555hiuuuIILL7ywMTKKiIg0CscYHsrNpaaqiuOCQQZnZKgVXpony+JF4Kb16wlGo4lOIyIizUjc/bPuuusuLMti4sSJROveZDweD1dffTV33nln3AFFREQai21ZnOzzYWpqOC8pCcvjSXQkkV2yLIt8j4eiYJDFeXmceOihiY4kIiLNRNxFvNfr5Z577uGOO+5g7dq1APTs2ZMkTRIkIiLNjIlEOLqoiAGWhSslJdFxRPbopECAb2tq+KCggFGHHKLl5kREBGikdeIBkpKS6N+/f2MdTkREpNGURaNsDgbpXViIU1qKnZWV6EgiP6qv2017r5e86mq+KSqif3Z2oiOJiEgzsF9F/PXXX7/X+86aNWt/TiEiItIojDE8kpvLyuJiLq2sZEhamsbBS4tgWRYnJiXxTGkpH+TlqYgXERFgP4v4JUuWNPj5q6++IhqN0rt3bwC+++47XC4XgwYNij+hiIhIHN4uLmZleTkZVVX083qxvN5ERxLZa0O9Xl5zu/mmvJy8yko6aBiIiEirt19F/EcffVT//axZs0hNTWXevHlkZmYCUFJSwmWXXcbIkSMbJ6WIiMh+WFdTw6uFhViVlUw2hmQtfSotjM+yGB4I8HFFBVuKilTEi4hI/EvM/e1vf+OOO+6oL+ABMjMzue222/jb3/4W7+FFRET2S3UsxoM5OcSqqjgtHOawzExNDGYM1rJlsHlzopPIPhgTCHC738+AykqM4yQ6joiIJFjcE9uVl5dTWFi40/bCwkIqKiriPbyIiMg+M8bwRH4+RVVV9KqpYUxqKpbLlehYiWUM1r//jfXZZ1iAGTYMM3o0aJm9Zi/JsjApKThlZZiyMqwdGk5ERKT1ibslfvz48Vx22WW89NJLbNmyhS1btvDiiy8yZcoUzjnnnMbIKCIisk+ixhAMh0mqqmKSx4MrEEh0pMQyBuudd7A++wzqeiNYixdj338/5OQkOJzsDcvlogJ4e8sWYmqNFxFp1eJuib///vu54YYbuOiii4hEIrUHdbuZMmUKf/3rX+MOKCIisq/cwM9DIfIdp8Fwr1bJGKwPPsD6739rfzzrLExKCvYrr0BhIfbcuZgTT8SMHAmatb9Ze9DlYl1ZGe23bWNQu3aJjiMiIgkS97t1UlIS9913H0VFRSxZsoQlS5ZQXFzMfffdR3JycmNkFBER2SsRxyHkOMTy8nCKimifkdHqx8Fb8+djLVwIgDnjDMxPfgKHH45zzTXQty84DtYHH2A//DAUFSU4rezJ8YEAOA7v5+UlOoqIiCRQo11yT05OZsCAAQwYMEDFu4iIJMRzhYXc9t13bNq8GSsQwHLH3eGsRbM+/hirbkUZM2YM5thj/3djcjLOz36GOecc8Plg82bs++6r7XJvTIISy54M8nhIc7tZU1HBpvLyRMcREZEEabRPN99++y2bNm0iHA432H7mmWc21ilERER266uKChYUF+MpK8NjDHZSUqIjJZS1eDHWe+8BYE45BXPccbvYycIcdRSmWzfsl1+G9eux3ngDa9UqnLPPhrS0pg0te+S2LEYkJfFmeTnv5+RwuX4/IiKtUtxF/Lp16xg/fjzLly/HsixM3dX77d0XY7FYvKcQERHZo6JIhH/l5WGqqvhZJEL77OxER0oo6/PPsd56CwAzalTtePc9ycjAmTwZ65NPagv/77/H/uc/ccaNg379miCx7K0TfD7esW0+KynhvFCINJ8v0ZFERKSJxd2dfvr06XTv3p2CggKSkpJYsWIFCxcuZPDgwcyfP78RIoqIiOyeYwwP5+ZSVVXFMTU1DM3MxGrFE7RZX32F9frrAJgRIzAnnriXd7Qww4bh/Pzn0KkT1NRgP/cc1osvQk3NAUws+yLNthkcCBCNRPhIKwuIiLRKcX/KWbx4MTNnziQ7OxvbtrFtmxEjRnDHHXdw7bXXNkZGERGR3Xq9qIjvy8tpW13NhEAAqxWve259/TXWq68CdevAn3JK/ZJye61dO5wrrsCccAJYFtayZdj33Qfr1h2AxLI/Tg4EGOdyMTIYrO8BKSIirUfcRXwsFiM1NRWA7OxscuquCnft2pXVq1fHe3gREZHdqoxG+aCoCFdVFZcBgbr3o1ZpxQqsl14CYzDHHIMZM2bfC/jt3G7MySfjXHEFtGkDZWXYjz1W20W/bjlZSZzOLhenpaeTXF6OqahIdBwREWlicRfx/fr1Y9myZQAMGTKEv/zlLyxatIiZM2fSo0ePuAOKiIjsTrLLxY0eD5eGw3RtzevBr16N/fzz4DiYo4/GnHHG/hfwO+rcGefqqzHHHAPUTpZn338/bN0a/7ElLpbHg4nFqN62Ta3xIiKtTNxF/E033YTjOADMnDmT9evXM3LkSN58803uueeeuAOKiIjsjlNURHZBAYPT01vvOPjvv8d+9tnaAn7AAMxZZzVOAb+d14sZNw7nkksgJQUKC7EffBBr/nyoe/+XxHjX4+G3ubmsLS1NdBQREWlCcc9Of+qpp9Z/f9hhh7Fq1SqKi4vJzMysn6FeRESkMX1QUkJZdTVj8/OxXC6s1jpD97p12E89BdEo9O1bu+b7gbqYcfjhONOmYb3+OtaKFVgffoj13Xc455wDrXw1gESxvV6CNTW8l5vLYa25J4qISCuzX0X89ddfv9f7zpo1a39OISIisksbg0FeKCggVlZG30iEHm3aJDpSYmzciP3kk7UFfO/eOOedd+AK+O2SkjAXXABff43173/Dli3Yc+ZgTj21tsu9Lt43qRFeL2+6XCwpLaWopoY2gUCiI4mISBPYryJ+yZIle7WfWuJFRKQxBWMxHsrNJVpVxamhED3atGmd7zVbtmA/8UTtJHOHHYbzs5+BO+7OdXvHsjADB2K6dcN++WVYtw7rjTewVq3COftsSEtrmhxCsm0zJBDg48pKPsrJ4byePRMdSUREmsB+veN/9NFHjZ1D9kNuOMxnbjeHVFXRKyWF9Kb6ACcikiBPFRSQX1FBj5oazkhNxXK5Eh2p6eXmYj/+OIRC0L07zoQJTVfA7yg9HWfSJKxPPsF6773asfn//CfmjDMw/fs3fZ5W6kS/n4+rqvh42zbO6NoVvz4LiIgc9PSXvgVbVVTEF243+evWYXs8ZHi9dE1OplsgwGGBAL2TkhIdUUSk0XxSVsYnJSX4q6qY7HLhao1dh/PzsR97DGpqoEsXnIsvBq83cXksq3Y9+p49sV96CXJysJ5/Hlavxpx+OrTG31ET6+hy0cfvZ2UwyCf5+Yw65JBERxIRkQMs7iJ+5syZe7z9lltuifcUshs9jWFINEqbyko2A8W2TXFREUu9XvomJdGrUycsv58Kl4v/lpfT1e+nq99PUmtsuRKRFq0oEuHJ/HxMVRUXxWK0aY0TqRUW/q+AP+QQnEsvTWwBv6N27XCmTsVasABr4UKsr7/G2rABZ/x4UBfvA+6kQIANwSCh0lJQES8ictCLu4h/+eWXG/wciURYv349brebnj17qog/gA7xeBgUjXJKdjZu26Y8FGJjKMSmUIg2wSDhsjIsj4fvbJsXHQfL7QaXi7Z+f22Lvd9Pd7+fXmqxF5FmLtPt5lTLojgY5CetcfWT4mLsefOgqgo6dsSZOBGa24z8LhfmpJMwhx+O/eKLUFSEPW8eZsgQzCmnNJ8LDgehI91ubk9Lw1tTg1Ndja33dRGRg1rcRfyuJrkrLy9n8uTJjB8/Pt7Dy16yLIt0v58Bfj8D6rYZx4FolOxgkFPDYTbV1LAByLdt8m2bzz0eOvr9zOjSBcvvJ+p2s7CsjG5+P4f6fPha65rLItL8VFRwSlkZJCdjeTyJTtO0SkqwH30UystrW7wnTmze3dQPPRTn6qux3n0X67PPsD79FGvtWpxzz1Ur8QFiWRZ+v59YZSVOcbGKeBGRg9wBGROflpbGrbfeyrhx47j00ksPxClkL1i2DV4vh3i9bP/Y5MRiFIfDbAyH2RgMkhwMEqmoAK+XTW43z0SjWG43lstFx0CA7snJdPX56FbXFb/VtX6JSEKtqqoi1Rjabt4M0Sh2a1sLu7y8tgt9WRlkZ+NMngzJyYlO9eO83toJ7nr3xn7lFdi2DfvBBzEnnIA54YQDvxReK1Xh9/NxTg7HZWTQISUl0XFEROQAOWAT25WVlVFWVnagDi/7yXa5yA4EyA4EGFS3zTgORCL4g0FODIfZZAybgS1lZWxxufiPx0OSx8Osbt2wAwEsj4ePS0trj2dZWIBd970NDEhJwVv3AW1dTQ01jtPg9u33yfZ4SKubRbciGqUyFmuwjw1YgNe268fxG2MwdbeLyMGtNBLhgZwcQuXl3FhTQ8fWth58ZWVtAV9SApmZtQV8SyvMevXCueaa2iXovvkG66OPalvlzz8f0tMTne6g86Ft815VFcHcXC7q1SvRcURE5ACJu4j/+9//3uBnYwy5ubk8/vjjnHbaafEeXpqAZdvg89HB5+P8um2xaJT8uhb7DTU1WNXVRL/9FsvrpcLr5V/hcO39duGO9u3JqCvOn962jY3hMOyi6L4wM5MTUlLAslhQXs5r2y/6/GDfIwMB/q99e7AstobD3JGbS1ufj/Z+Px28Xtp7vbT3eGjv9ZLicqm3gMhBwDGGh/PyqKqu5qiaGjqkpe32b85BqbKytgv9tm21S7lNntxy119PSsKcfz4ccQTW66/Dpk3Y992Hc8450Lt3otMdVE7w+3m/qopFxcWcFYmQ3NqGnoiItBJxF/GzZ89u8LNt27Rt25ZJkybxu9/9Lt7DS4K43G46ud10SkpiWN02E4tBJEKkupqTw2Fi1F60cSwLp66F3AFcVVVE6wrpwx2HdGPAsojtsK8DpJaXE677UJ7kOHSu2779a/vxUsvKiBQWgmURNQYnGmWrZbHVtusn67NcLizb5t6ePfH4fFguF/NLSkh1u2nv8dDO663vHSAizd/bxcWsLi8ns6qKi/x+7OY2iduBVF1duw58YSGkpeFcdhm09GEEloUZMABz6KHYzz0HOTnYTz6JGT4cM3o0aNWURtHGthkYCLC0qopFubn8tEuXREcSEZEDIO4ifv369Y2RQ1oAy+UCl4s2fj/n7uV9zt7L/UbWfRljajds//cH3x9iDHcbQ3EkQn4kQl4kQkEwSAEQBcyKFUTcbmIeD08Hgxi3u3bspW2T6fXS3u+no8/HT7OyaKMWCpFm6fvqal4tLMSqrOQyY0hqaV3I4xEM1hbwubmQklLbAp+VlehUjScrC+eKK2onvfvkE6xFi7A2bcI577yWf6GimTjJ72dpdTUfFBRw8qGH4joAF7BjxlASiVAUjVIUiVAUibAtEqE4GqWDx8NFWVmYSATL76/97CAiIo3qgI2JF9kf9V3h99Al3gW09XhoC/TbYbtxHIjFIBolUlPD2HCY/Joa8oECoMiyKLJtVrrdjKquJlY3y/V9JSUUGkMHv7+2a77XSwevl3Yej7rnizSxqliMB3NzcaqqODMcpkebNq3n/2A4jP3EE7B1KyQl4UyaBNnZiU7V+NxuzNixmG7dsF99FTZvxr7//to15Y84ItHpWrzDXC46e71sDgZZum0bg9q12+dj7KpI7xUIcERyMsZx+GDbNl4oLATHqf8ysRjEYlQZQ3jrVojFyMnIwN+lCx39/gPwSEVEWq+4i/g77riD9u3bc/nllzfY/sgjj1BYWMiNN94Y7ylE9opV1+KOx0MgEGDsDrc50SiV0Sj5dS346Tk5RC0LA2x1HAp30T0f2+bS9u0Z0aYNlsvFupoacsNhkm2bZJeLJJer/nuPuuqLNIqaWIxAKMQRNTX8NC2t9bTibS/gN22CQKC2gG/fPtGpDqy+fXE6dqztXr91K/ZTT2GGDatdU96tNob9ZVkWJyYl8a+SEubn5++yiN+xSO/s89VPHvtSYSGflZdTEg7XXhjf4etkj4eeLhcmFCIrHKZdOEyWMWQDWZZFG9smy+WijdeL5XazwbaZlZdHdjDIH448kkBr+b8sTSLqOFTEYmSqV6W0UnG/Sz7wwAM89dRTO20/8sgjmTBhgop4aRZst5s0t5s0v58d5+s1xvDHupaG7QV+XjDINiAPyKyuJrJ1K5bXywLHYXE0WttLYPuXbYNlMTItjUvatweXiw3hMG8VF5NcV+QnuVz136e53Ry+w/q9xpjW08ooshfaxGL8OhQi5PVit5bWu0gE+5lnYMMG8PlwLr0UOnZMdKqmkZmJM2UK1vvvY/33v1iLF9d2r7/gAnWvj8Ngj4dyv5/jwmFMKMTblZXkh8Nsq+v2vmORPi0jgyNdLpxgkMrSUrYFg3iNIavua3uR3tO2cTwecLsZ4PczIDm59qL3bt7DOhtDl1CIdeXlPLxuHdccdpje72SfRB2HomiU6liM7oEAAGXRKHdu3EhxOEy2bfOnTp2wU1MTnFSk6cVdxOfl5dFxFx822rZtS25ubryHFzmgLMvC5fHQzuOhHdB/h9u2d8830Simpoae4TCuWIwaoNqyqDKG6rrvfeXlhAsKsGybXMfhq0jkfz0DLKv2e8siy+3m/3XqhOVyEbNt/m/zZgIuF8luN0kuFylud33BPyYri4y6K8ybgkECtk22x6MPQXJQqqR2VQw2b8ZVXU1Ka1lOLhqtbYn+/nvwemsL+EMPTXSqpuV2Y8aMwXTvjv3SS7Wt8nPm4Jx9NvTtm+h0LZLHsvhpWhqmqIhoXh6LysrID4dr39NisQZFuqu8nEjd+9Rpts1Yv59Ul+t/PdP28z3HbVlcmZ7OHUVFLC0s5PWkJM485JBGfqRysCiORFhaWUlBOExBJEJeOExRKISJxWqL9TZtcEIh/NXVFBUX4zEGvzFEgkG8/fq1nl5bInXiLuI7d+7MokWL6N69e4PtixYtolOnTvEeXiRhthfhVl0hPazua0fGcWon3tuhy+HhwLW2TZXjUBWNUmMMlcZQbQxJlkWkvByoLf7tWIwKoGKH1v3tBf8JlZWk+HxYbjfPFBfzfTSKx+2mYyDAIX4/nXw+Onq9dPf7SVXXU2nBQo7D6z4fm9esYWp5OamZma3jYpXjYL/wAqxeDW43zsUXQ2ueTbx3b5yrr8Z+/vnacfLPPIMZMgRz6qnqXr8fLMvCBAI4W7dymuNgb+/uvociPaORM6TbNlMzMphdXMzrmzfTJTmZozIa+yzS3DnGUBSJUBCJ1BfpBeEwXX0+xqWnY8Jh8ioqeCY/v/ZzVTSKiUbxGkNbY2hvDOGSEizbxnK5uN3nq/3cE4thbf8cJtLKxP2uOHXqVK677joikQgnnXQSAB988AG/+c1v+NWvfhV3QJHmrH7d6h2uAKfXfe2JMYYUx+FuY4jEYlQ7DpWxGDWOQ1UsRpXjkFpQQLTujelQx6HccSiwbTZYFhvqPoBZbjeXtGlTO27f62VFMMjWcJhOXi+dfD6y3O7WUQxJi2WM4flt2yixLELl5SQlJ9cWFwc7x8F68UX49tvaAv6ii+AHF8NbpYwMnMsvx/rgA6z//Afr00+xNm/GOf98aC29MxqRnZwMyckcm8AMPT0efpaezlNlZTz8/ff8vl8/TXR3EHKMoSQapSAcpk3d0r4A7xQV8UpBAbHtkw87Tn2hXmMMY9xuTDRKdjTKyXXDN9q73bT1+chwu7E8np1a2bd/xjLBYG0DikgrFPcnpV//+tcUFRXxi1/8gnA4DIDf7+fGG2/UOvEiu2FZVn3h73W78bLnFpDzqS12onVvkDmRCLnBIDnG0LGqikhuLpbHwyeOw6fG1BZBto3P46Gj388hgQBHp6QwoDUt1SXNWlUsxifl5XxcWsqWykq8wGTbxr3DnBEHLWOwXn0Va/lysG2cn/0MDjss0amaD5cL89Of1s5e/+KLtWvK338/5swzMf37//j9pdkZ6fezKRLh++pqTEFB6+5xchCJOA5vFxfzRUUFhaEQ0boi/cykJMb4fJjqanwVFZhgkHZ1rertLIu2lkU7l4v2Hg94PFh+PxkuF+eo0UFkr8VdxFuWxZ///GduvvlmVq5cSSAQoFevXvh8vsbIJyJ1LMvC4/FwiMfDjqMKjTG1V7cjEQbHYmSEw+QYQ64xbLNt1tk2622btPR0jszKwvL5WBqJ8E5VVW23fK+Xjj4fnbze2qveehOVA2xFVRX/3LKFaCiECYVoEwoxMBwmOy0t0dEOPGOw/v1vrCVLagv488+H3r0Tnap5OvxwnF/8onbIwcaNWM8/Dxs2YMaMAc1I3eL8LCWFsG3jz8/HSU3F1sSFLdramhrm5eWRV1WFqarCjkbJrivUM8vLidZ1fT/GthmanIzt8cQ1x4KINNRofRZTUlI45phjGutwIrKXLMuqHS/qdnNkIMCRdduNMUQiEfIiEXLCYTqVlBAtKcEA6yyLtcawrm5JPsvlApeLgNvNoPR0JtbNZxE1hnLLoiYWw60CX/ZTVSzGxmCQvsnJODU1HFpSgl1czFGxGCNsmx7JyXxQVPS/4SkHK2Ow3nsP67PPwLIw48fDkUf++P1as/R0nMsuw/rwQ6yFC7E+/7y2e/0FF0B2dqLTyT5wWxbu5GScsjLCGzawznHoqyESLVZBTQ25xcV0CQa5wLLouptC3ZvAjCIHs/0q4q+//nr+9Kc/kZyczPXXX7/HfWfNmrVfwUQkPpZl4fV66eL10iU5uX67MYYxkQhH1RX3uTU15BlDjjEU2TaR8nIiZWWQnMx6x+EJn48Fa9bgsm2S3O76mfQzPR6u3mGm4Q9LSvDZNknbl9Wr+zfJtvHZti4AtDLGGL6vqeHjsjK+KC/HDoe53e/HV1aGPxTidq8Xf3o6lstFJBZLdNwmYS1ciPWf/wBgxo3DDByY4EQthG1jRo/GdO1aO3t9Xt7/utcPGJDodLKvUlOZs20bK7//nmtcLgZqorsWIycUoqPXiykt5Sdbt0JNDUenpOCqW/5NRJrOfhXxS5YsIRKJ1H+/O/rQLtL8WJaFz+ulq9dL1x8U96FIhFA0ilNZiSktpTIaJcsY0kpKqLHtBjPpZ9QV/LjdGJeLZ0pL62fY/+HXbw45hJ5JSeBy8UpxMZvDYZJsm2SXq77QT3K56Ob3c0jdUJyI4+CyLGz9HWlRqmIxFpeV8XFZGbnV1ZhwGDsYpF8sRnVlJf7kZEhJIdDKfq/W4sVYH3wAULuc2uDBCU7UAvXqVTt7/QsvwIYNWC+8AOvXY8aOVff6FsS2bQakprKivJyHvv+eP/TrRwdNdNesVUSjPFtQwOdlZfzS5aJ7cTFYFoPatDn4e1CJNFP7VcR/9NFH9d/PmzePQw89FPsH/4mNMWzevDm+dCLSZCzLwu/14vf+r/Nbv1iMCcXFjD7kEDy2XT+TflUsRtRxcKqqwHGIxWKMicWoMoYay6pdVg+oqfvyVVcTtm0s2+b7cJjVxtQvpcf2pfwsi3FpaXSoa51dVF3NGxUVDM7MZGhaGl39fl0YbOaMMcxcv56S6mpMKER2OMxwx2Go309a3e+1NbK++ALrrbcAMCeeiDnuuAQnasHS0nAmT8aaPx9rwQKsL7+s7V7/s59B27aJTid7aaTfz6ZolEXV1dz33Xf8/sgj8bfSvw/NmTGGT8vLebaggKqaGvxVVZTFYlhpaVia+0okoeIeE9+9e3dyc3Np165dg+3FxcV0796dWCvpJilyMLNcLiyXa7cz6dvAuF3czxhTu/zL9nVcHYcJHg/ljkN13QWB6kiEamOoMoYu1dVECwowxhA2hlJj+KC0lA/9ftolJTEkK4shaWn1S9dIYm1vdT86NZXMSASntJRjS0spCAYZYdscnpKC3cpb2Kyvv8Z6/XUAzPDhmFGjEhvoYGDbmJNOqu1e/+KLUFBQ271+3DjMUUclOp3sBcuymJCSwtZIhA3l5Tyybh1XH3aYLtQ2I0WRCE/m5/NNeTmmqoqjQiEu8HpJz8zU70mkGYi7iDd161j/UGVlJf5W/uFNpLWrX0pvhxaWDnVfP2aUMfQJh/m8spLPysvJq6zktdJSXvf5GNe+PeM67M1RpLEZY1hTN9b9y/JyoqEQZZbFGaEQhEKc4fNhZWW12lb3BlatwnrpJTAGc8wxmJ/+tLb3iTSOnj3/N3v9unW1z/X69ZjTTwdd6Gv23JbFVRkZ3FFUxFeFhfw7OZkz6iZVlcTKCYW4Y+NGQtXVpFVXc4HjcFRGBpaGrYg0G/tdxG+f0M6yLG655RaSdljbNxaL8emnn3KUroiLyH6yLIsOPh/jfD5Odxw2BIN8Vl3Nl8EgXUMhIlVV2JmZLLdtQrbNUSkp+DQ274CpjEb5pLychWVl5NWNdXcFgxwdi9HHtrFSUrBSUxMds/lYuxb7uefAcTADB2LOOEMF/IGQkoIzcWJt1/r587GWLMHasqV29vr27ROdTn5Ehm1zRUYGfy8uhoICTNu2KhSbgfaRCJ0rK2lbVcXZgQDJKSlqfRdpZva7iN8+oZ0xhuXLl+Pd4aq31+tl4MCB3HDDDfEnFJFWz7ZteiQl0SMpifMcBzsYJFZQQCw/n9cti01eLz6fj6MyMxmank7f5GRNiNfIPikt5bmcHEwwSNtIhOGOw5BWPtZ9tzZswH7ySYhGoW/f2qXk9Ho8cGy7dq6Bbt2wn38eCguxH3gAc8YZmKOP1nPfzPXyeJiZlUV6WRnRzZtxd+umydKaWNRxeLu4mH6BAIeWlRHLzeUXwSDerCwsd6OtRi0ijWi//2dun9zusssu4+9//zupaoERkSbgtm1ISoKkJJxYjFGVlXxeXc2q6mo+qajgU5+PtECAwVlZ/DQrizYtqFXHGEPEGNwJnpW/MhplcXk5Qcfh9KQknNJSBhUWsraiguG2TS+Ndd+9rVv/V8D36oVz3nm1kzfKgde9e233+hdfhLVrsV55pbZ7/bhxDYb0SPOT6fFg0tKI5eWR6/HQrlMnTXTXRNbX1PCv/Hy2VlayJBjkhmAQOykJX3Z2oqOJyB7EdXktEomwadMm8vLyVMSLSJOzXS6GpqczFCiPRPiispLPKivZWF3Nh2VlnBiJ4GRlYQUC1DgOSc3kQ6FjDMWRCNl1PZiMMczasoWNNTUEo1EwBpdl4bFtPLbNxHbtGJCaCpbFR6WlLKuqwmvbeC0LT91+Xsuiu9/P4LQ0AEojEb6trsZjWXhtu3a/uu+9lkXHHWYWjtYt57empoaFpaV8VVFBNBTCEwox0hj8kQhJPh+Xaaz7nuXnY//rXxAKQbduOBMmgFqxmtb27vUff4z1wQdYy5Zhbd2Kdd55iU4mP8Lyelnp9TJ340YGhEL8vGdPdeE+gEKOw6vbtvFBcTFOdTWH1NTwM8vCpb/zIi1CXJ8uPB4PX3/9dWNlERHZb2keDydlZnISkB8Ksbq6msyNG4nk5kJqKjdHIrRJTmZIZibHpKaS1gTFlWMMOaEQueEweeEwueEwOaEQBaEQ0ViMezp0wBuJ4ASDVBQWUhOJkOI4xIAwUA1gWUTLyojU5d0cibAiFgPLqv2Au/1Drm0zzO9nYHo6lm2zKRLhsdLS2tu271P3b7LLxd8OPbS2hdiyuHbTJmLUXkzYPtb9J7EYI2ybQHIydnr6AX+uWryiIux586CmBg49FOfii7V2eaJYFub44zFdutROerdtG+4HHySrXz/o1SvR6WQPDklOxh8M8mVBAW8mJXG6Jro7IFZWVfGvvDyKqquxq6oYF4lwSkoK7h3mtxKR5i3uT7GXXHIJDz/8MHfeeWdj5BERiVt7n4/2Pl/t6hnhMHmlpTjhMOvKy1lfVMRzPh990tMZmpHBUSkpcXfbrI7F6ov0iOMwKjMTYwwVNTXMXLeudom9WAwTi2GiUVyxGO2Noai0lOy6Yvwql4vUQACvx1NbbBuDcRwixuCqWwXEGMNPXS6OtSyidV3vw3X7hKNR2ofDxCoqwBhSjGGE4xAFIpZVu49lETYGPxAuL8eyLIwxeGMxwkAWcJwxDPH7SdVY971XUoL92GNQWQkdOuBceiloDeXE69YN5+c/x37pJVizhs4LFmC3aQNa5q/Zyqyb6O6e4mJe3byZrsnJ9NNFxEZljOHl/Hy2lZbSs6aGi1wuOmRnax4CkRYm7iI+Go3yyCOP8P777zNo0CCSk5Mb3D5r1qx4TyEisl8sywKfj44+H3c4Dqurq/m0poalNTV8U1nJim3bSPX7+Uvv3rj3oWU+Pxzmw5KS+pb18nC4vlBPchyGb9uGqa7GF4nQKxgk3Rg6WBYdbZv2bjft/H5sjwdcrvruorsafWgBvh/8nL2bfX+oM3DhHm43xoAxWMbwl7rvAc0Mva8qKmpb4MvKIDsbZ+JECAQSnUq2S0nBufRSnA8+gNdew/XBB1iBAGbIkEQnk9043OPhvLQ0nisv58Hvv+cP/frRThfF4mKMIeQ4+Gwbp6SEC8vLWVtdzci0NM1vItJCxV3Ef/PNN/zkJz8B4Lvvvmtwm8YyiUhz4bJt+qak0DclhVAsxrKqKj6rqSG5pgbn22+JZmVRk5LC66EQP0lJIWzM/7rBh0Ic6vVyUXo6hMNUVlbyYUEBRKOYaJRUx6GDMbQHOlgW0VAI2+PB9nqZnpTULFu0G3TFl/1TVVVbwBcXQ2YmzuTJkJKS6FTyQ5ZF7MQTyd+6lUO+/x7r3/8Gnw+jZXCbrVF+P5siET6pquKf333H7488UkuI7qfSSISnCgooCwa5HqCwkE62zSFqfRdp0eIu4rfPUi8i0lL4XC6OTUvjWMCJRjHBINGNG/nEsvjQtpnv99eOF3ccTDQK0ShhY4i43ZholLaOwwSgo8tFB7+fFI8H3G59IGpNgkHsxx+HggJIS6st4OsmFZTmKe/YY3HatMH+7DOsl1/GeL3Qt2+iY8kuWJbFRamp5ESjRMrLqSgu1mzp+8gYw3/Kyni+oIBgTQ3J1dXkxWJ0TE/H2mFZaBFpmRptZqdvv/2WTZs2EQ6H67dZlsW4ceMa6xQiIo3OdrtrW09TUugXClFdVcXK8nJSLKu2C7xl0d7tpoPPh+XxYLndBCyL4xMdXBInHMZ+4gnIyYHkZJxJkyAzM9Gp5MdYFrExY3BFIlhLlmA//zzORRdpsrtmymNZ/CIjA09ZGYGtW3GSk7E1VGWvFITDPJ6fz+ryckxVFceEQpzn95OSmalesiIHibiL+HXr1jF+/HiWL19eP0kS/K8rfSwWi/cUIiJNItvnY6zPx9hEB5HmKxLBfvpp2LQJAoHaMfBt2yY6lewty8KcdRaEw1grVmA//XTt77Bbt0Qnk11It21MRgZOcTGRDRso6tqVTppBfY8+KSvj8bw8wtXVZNXU8DPHoV9mpuY7ETnIxN33c/r06XTv3p2CggKSkpJYsWIFCxcuZPDgwcyfP78RIoqIiDQDsRj2c8/B2rXg9eJccgl07JjoVLKvbBtz7rm1LfDRKPaTT8LWrYlOJbthWRax9HTuLSzkzytXUrhDj0/ZWbtolGhZGSdUVvIHr5d+2dkq4EUOQnG3xC9evJgPP/yQ7OxsbNvGtm1GjBjBHXfcwbXXXsuSJUsaI6eIiEjiOA7WSy/B6tXgdteuA9+5c6JTyf5yu3EmTKid12DDBux//Qvn8suhfftEJ5Nd8LhcpAcCrKqq4r7Vq/ntQTrRnTGGsDFUx2JUOw6OMXSumz0+5Di8U1xMdSxGlePU71MZjVIdi3FTp06klpZySG4uM6JR2mRlYe3Dqisi0rLE/b87FouRmpoKQHZ2Njk5OfTu3ZuuXbuyevXquAOKiIgklDFYr72GtXw5uFw4EyZA9+6JTiXx8nhwLr4Y+7HHYOvW2kJ+yhTIykp0MvkBy7K4uG6iu81lZTy2fj1X9ujRrMd3V0ajlMdiVNUV29uL7qpYjG5+PwPqVrL4prKS5woLqY5GqY5GiRpTu2Qp0N7lYka7dhCLEYtEeD0/v/Y2xwFjMHX/YgwlJSUEIhGspCSy27RJ5EMXkSYQdxHfr18/li1bRvfu3RkyZAh/+ctf8Hq9zJ07lx49ejRGRhERkcQwBuutt7C++gosC+e88+DwwxOdShqLz4dz6aXYjzwCBQXYjz1WW8inpyc6mfyAx7K4KiODO4uK+LyggK5JSYxpBsNZoo7DdzU1LKus5OS6Ri0nGOTZoiI+raysL8jrC29jON7rpY/fD5EIoWCQnJoaMAYbSDaGgDEkAdlAtLS09u+QMZxjDAHbJtmySLJtktxuklwukm0bj2VhpaZqlRSRViLuIv6mm26iqqoKgJkzZ3LGGWcwcuRI2rRpw7PPPht3QBERkUSxPvwQ65NPADDjx8ORRyY4kTS6pCScSZNqC/miIux582q71te1lErz0ca2mZKRwb3Fxby0aRNdkpPpm4ClHSujUb6pqmJZVRXfVFYSCocxkQht6iZ3jn77LW1jMbrEYgSAJCAZCFgWyZZFl2AQp6oKbJtelsVtfj/Jto3XsrBcrtolTi2rQUFuA6Ob/JGKSHMVdxF/6qmn1n9/2GGHsWrVKoqLi8nUMhYiItKCWR9/jLVgAQDmjDMwRx2V2EBy4KSm4kycWFvIb9uG/fjjOJMng5Y0a3aO8HgYn5bGS+XlbNmyhT59+jTp581/5eWxqKQEE4lgIhEIh+kRi9Ef6O12sxQgEGCM282YHxTiuxKo+xIR2ReNOuPF9uXlsjSeTEREWjDrk0+w3nsPAPPTn2KOPTbBieSAy8ysbZF/+GHIzcV+4gmcSZPA6010MvmBk/1+DgcOKSsjlp+Pu0OHRj+HYwzf13WTH5yaSjfAqaoieds2POXlHOE49Af6+f2kpqVhud1EYjHIz8dyu2tb1EVEDpBGKeIffvhhZs+ezZo1awDo1asX1113HVdccUVjHF5ERKTJWF99hfXmmwCYUaMwI0YkOJE0mezs2kL+0Udh82bsp56qXYlAS3Q1K5Zl0SUQwHEcYps3U+zx0DYrK+4W+epYjBVVVXxdVcXyykqqQyGIRokBnaJRTCjEybbNaYEAbr9f489FJGHiLuJvueUWZs2axf/93/8xbNgwoHbZuV/+8pds2rSJmTNnxh1SRESkKVjLl2O9+ioA5rjjMCeemOBE0uQ6dMC55BLsefNg3Trs55/H+dnPQC2rzY6dnMyXxcXM++47zunenVPiaJF/Y9s23ti2Daeum7wJhehW101+oMeDFQhgpaSQrKGiItIMxF3Ez5kzhwcffJALL7ywftuZZ57JgAED+L//+z8V8SIi0jKsXo314ou1M0gPHow59VTQB/bWqXNnnIsuwn7iCVi1CuvllzHnnqvXQzOUlJpKtLiY5zdt4tCkJPr8yER3jjGsDwZZVllJD7+fgR4PTlUVGYWFWCUlHFnXTb6/3096XTd5EZHmJu6/TJFIhMGDB++0fdCgQUSj0XgPLyIicuCtW4f97LPgOJiBAzFnnKGCrbXr0QPnZz/DfvpprK+/Bp9Pr4tmqM8OE9098P333NSvH9k/mMcg5Dh8W9dNflllJZWhEEQi9Hcc+hiDCYU4CjjK78cbCKibvIg0e3H/lbr00kuZM2fOTtvnzp3LxRdfHO/hRUREDqxNm7CfegqiUejTp3YpOX2IF4Devetb4K3PP8d6912om8RXmo/Rfj+DAwEqKyu577vviGxfmx1YVFbGL9esYc6GDfwnJ4fybdvoVFrKqRUVjAmHsTwe7KwsfG3a4EtOVgEvIi1Co01s9+677zJ06FAAPv30UzZt2sTEiRO5/vrr6/ebNWtWY5xORESkceTk1HaZDofhsMNwzj9fBbw0YPr3h0gE65VXsBYtAr8fc8IJiY4lO7Asi0tTU8mNRtlUWsrcdev4RefOOJWVtCkqwikq4gjHoR/Q3+ejTUoKliYrFJEWLO4i/ptvvuEnP/kJAGvXrgUgOzub7Oxsvvnmm/r9tGa8iIg0K/n5tZOXBYPQtSvOhAmg8a+yC+YnP4FQCOutt7A++AC8XkzdZL7SPHgti59nZHDntm3kFxYSKSvDCYXoAvzZ5yMQCGjZNxE5aMT9aeWjjz5qjBwiIiJNZ80a7Oeeg1AIDjkE55JLtB647JEZNgyCQayPPsJ6663aMfJ1jRjSPGTbNr9r04ayykpwu7GTk3FZFmpzF5GDjZocRESkVbE+/bS2CHOc2hb4Cy8Eny/RsaQFMKNG1bbI//e/tUsRejy13e2l2WjjctEmPT3RMUREDigV8SIi0jo4Tm136E8/BcAcdRTmzDPVhV72nmXVLj0YDmN98QXWiy9ifD44/PBEJxMRkVZEs/eIiMjBLxjEfuKJ/xXwp5xSOwu9CnjZV5aFOeOM2hZ4x8F+5hlYvz7RqUREpBVRES8iIge3khLsBx+E778HtxtnwgTMyJFa71v2n21jzjkHeveGaBT7ySdhy5ZEpxIRkVZCRbyIiBy8Nm3CfuABKCyEtDScKVOgb99Ep5KDgcuFc8EF0KMHhMPYjz8O+fmJTiUiIq3AfvUj3HHt9x+jteFFRCQRrGXLaicfi0ahUyeciy6CtLREx5KDiceDc9FFtUsVbt6MPW9e7YWiNm0SnUxERA5i+1XEL1myZK/209rwIiLS5IzB+vBDrAULan/u2xfnnHO0hJwcGF4vziWXYD/6KOTlYT/2WG0hn5GR6GQiInKQ2q8iXmvDi4hIsxQOY7/0Enz7LQDm+OMxJ5+s8e9yYAUCOBMnYj/yCGzb9r8W+ZSURCcTEZGDkMbEi4jIwaGioraI+vZbcLkw48djRo9WAS9NIyUFZ9Kk2hb4oqLaLvbV1YlOJSIiB6FGW1vn22+/ZdOmTYTD4QbbzzzzzMY6hYiIyK7l5mI/9RSUldW2il54IXTrluhU0tqkp+NMmoT98MOQn4/9xBO1hb3Pl+hkIiJyEIm7iF+3bh3jx49n+fLlWJaFMQb433j4WCwW7ylERER2b+VK7BdegEgEsrNxLrkEsrISnUpaqzZtagv5Rx6BLVuwn3qq9jXp8SQ6mYiIHCTi7k4/ffp0unfvTkFBAUlJSaxYsYKFCxcyePBg5s+f3wgRRUREdsEYrP/8B/uZZ2oL+J49caZOVQEvide+Pc6ll9a2wK9f/7/XqIiISCOIu4hfvHgxM2fOJDs7G9u2sW2bESNGcMcdd3Dttdc2RkYREZGGolGsV1/FevddMAZz7LG1RVMgkOhkIrUOPRTn4ovB7YY1a7D/9S+oqUl0KhEROQjEXcTHYjFSU1MByM7OJicnB4CuXbuyevXqeA8vIiLSUHU19r/+hfXVV2BZmLFjMWecAbbmapVmpls3nIkTwe+HjRtru9hXVCQ6lYiItHBxf+Lp168fy5YtA2DIkCH85S9/YdGiRcycOZMePXrEHVBERKTetm3Yc+fChg3g8+FcfDFm6NBEpxLZvW7dcC6/vHa5ufx87IcegqKiRKcSEZEWLO6J7W666SaqqqoAmDlzJmeccQYjR46kTZs2PPvss3EHlN347jvst96i09at2Fu3YiUng8+H8ftrr/hv//L5av9VC5WItHTr1mE/+2xtl+SMjNquyu3bJzqVyI/r0AFn6tTaZeeKi7Efeqi2hb5jx0QnExGRFijuIv7UU0+t//6www5j1apVFBcXk5mZWT9DvRwAW7Zgf/45bQsLcW3YUP9c7/YZ93p3Ku53Kvjrvsz2wt/nqx1f6vfXzqqr36eIJIj1+edY//43OA506YIzYUJty6ZIS5GZiXPFFdiPP167JOIjj+BcdBF0757oZCIi0sI02jrxO8rSzMAHXo8eOKeeSsE339AxKwsrHMYKBmH7VyhU21oVjdbuHw7XfpWX1x9idyX5Lrfb9v9a9bcX+B4PeDwYj6f2IkHdz7jd//t+++0//Prh/i5XYz9DInIwcBysd97BWrwY+P/t3XecHMWB/v9P9+SwOWhXWuWchSISQQgZJJJsYwSciTZnzjYOX2xsn384nnxOx/nO5wxOZ2wDTpwDmCwwIBACBJJAOeeVNofJXb8/Wpu0K2nRSppd7fN+vYbd7e6ZqhkVM/N0VVeBmToVs2SJluuSvikaxfnAB7B/+1vYsQP7/vtxrrkGJkzIds1ERKQPOakQ/6lPfYply5YRiUT41Kc+ddxjv/Od75xUxeQEhg3D8fvZn5vLpNGjsT0eTFfHpdNtob7dz06BPx7Hagn+Lce2/O447i0W63Jm3RP1z3er/962Owf9o26tJwvCYSgqwhQVQVGR+7eInH0SCezf/x42bQLALFyIufBCjQqSvi0YxLnpJuw//hHefhv7oYcwV12FmTkz2zUTEZE+4qRC/OrVq0kdWe909erVxzxOw+l7Aa/XHXJ61LDTrgJ/lycBjHHXtj068Mfj7vZUyj1R0PJ7u5vVxbZON3OkVMdxHzuROOZTObo1tf4dCnUM9e1/DwS69zqJSO9SU+P2Vh48CF4vztVXw6RJ2a6VyKnh8+Fcey3W3/6G9eqrWH/5CzQ3Yy64QCepRETkhE4qxC9fvrzL3+UsZFlu77ffD7m5rZu7DPxHOeExxrSdADjWiYBksvP2xkasqip3dt+6Ond0wJ49WHv2tFW75ZecHCgsxBQXd/hJYaGG44r0Vrt3uwG+qckdfvz+90NFRbZrJXJq2TbmqqsgEsF67jmsp56CpibM4sUK8iInUl+PtWaN28E0eXK2ayNyxvXomvhUKsXixYv58Y9/zOjRo09VnaS/sKy24fLHcKwTAa3bk0moroaqqtZg3xrwm5rc9XgbGrB27nSLbF92Xl6HXntTVATFxZCfr9n8RbLEWrsW6+GH3RN7ZWXuDPR5edmulsjpYVmYhQshHMb6+9/duR+amjDveY87kk5EXMbAwYNY69djbdwI+/ZBJuN2Mt12m/5/kX6nRy3e5/OxZs2aU1UXkXfO74eyMigraw32rQE/FnNDfXU1HD4M1dVYhw+7AT+RgNpaqK3F2roVaBfwPR4oKOgc8Fuuv/d61UsicqoZg2f5cqx//MP9e9w4d8Ivvz+79RI5A8zcuW6Qf/hhrDVrsJqb3RUY1P6lP0unYedOrA0bsDZscEdftrAsTEUFZvRo7Ewme3UUyZIen7a68cYb+dnPfsY3v/nNU1EfkVMnFIKKCky7YbgG3LO5TU1d995XVbkfGocPw+HDrcG+U2Tvarb9drPydzkj/9ET9bWfob+rm8ejkwXSP6RSDHnqKezKSveL2XnnYS65RCNipF8xU6diQiHsBx+ELVuwf/lLnBtv1OSt0r/EYlibN8OGDe7P9nMleb0wahRm3DjMmDEYr9edU0nzH0k/1OMQn06n+fnPf85TTz3FjBkziEQiHfZrdnrpdSyrdbI/M3Qo0K733hh3Gb6uAn51tfthAW3X5x+riO5Uozv1bAn0wSCmrAyGDMEMGQLl5Qo40vcZA7t34330UQo2b4aCAsy7342ZPj3bNRPJjjFj3CXofv1r2LMH+2c/w7n5Zl1SIme3mhq3t33jRtixo+27Frjf1caOxYwbByNGdLwEMx4/41UV6S16HOLXrVvH9CNfuDYdWQaohWanlz6n5Vr5vDzMiBFAu4DvOG4vfVeT7XVnRv5ksnsz9rd8eBnjlpVMQlOTezLhrbfc8O/zuaMMhg7FDB4MgwdDMJiFF0zkJKTTWG+/jbViBezbh2MM6WCQ9M034x05Mtu1E8muwYNxPvhB7Pvvh0OHsH/6UzfIl5Rku2Yip4YxsHcv1saN7jD5gwc77i8tdXvbx451JzVVnhDppMchXrPTS79h220z9R/DiWbk786s/mQynYN9UxPW7t1Yu3bB7t3u2eft27G2b3dDvWXBgAFuoG/prc/P1wef9C7Nze5yWq+84o54AXf5uEmT2FxRwcBhw7JaPZFeY8AAnH/+Z+xf/QoOH3aD/E03aZUG6btSKdi2zQ3uGze6Ew+3sG33u8u4cW6Pe2Fh9uop0keckqkcn3/+eX7yk5+wbds2fv/73zNo0CDuv/9+hg8fzvnnn38qihDpPzwe93ZUz7oZMaLtmv7KSjfQ79rl/qypgQMHsA4cgFWr3GCfm9sx1GsIvmRLZSXWyy9jvfGGO5oF3CGSs2djZs4kEwqR3Lw5q1UU6XXy83Fuu80dWr93r3uN/D/9E2i0ivQVjY1YmzZhbdoEmzd3vAzR78eMHg3jxrk/NfeDyDvS4xD/xz/+kZtuuokbbriB119/ncSRCSjq6ur4+te/zqOPPtrjSopIOy297gMGwKxZbrBvaGgN9NauXbB/v7uG6ltvtQ3B9/vdIfhDhmgIvpx+xriTc730EmzZ0ra9vBwzdy5m0qS2JYE0s7BI1yIR9xr5Bx6ArVuxf/1rzNVXY7QutvRWhw+3Xd++a5f7WdAiL8+9vn3sWBg+XMvCifRAj//v+drXvsaPf/xjbr75Zh588MHW7eeddx5f+9rXevrwItIdOTkwcSJm4kQ31CeT7vVmLaG+ZQj+tm1Y27ZpCL6cPskk1ptvYr38Mhw65G6zLBg/Hufcc2HoULUxkXfC78e54QasP/0Ja906rD/8AZqbMXPmZLtmIu48Prt3twX3w4c77i8vb5uYrrxc7/8ip0iPQ/zGjRu58MILO23Py8ujtra2pw8vIifD74fhwzHDh7/zIfhDhrihfvBgKC3N7vOQvqO+HuuVV7BWrYJYzN0WCGCmT8ecey4UFGS3fiJ9mdeLueYady35V17BeuQRaGrCLFigUCRnXsvEdGvXYq1dC42Nbfs8Hvf7R0uPe35+1qopcjbrcYgvKytjy5YtDDtqQqIXXniBEUdm9xaRLHsnQ/DXrYN167AAn8/HKI8H75AhWNGoe81aKASRCCYcdv9uuQWDuua+P9qzx73efd26tpUVCgow557rLhWn9XtFTg3bxlxxBUQiWMuXYz37rBvkr7hC771yZhw86I4GWbPG7QhoEQphxoyBMWPc69t1qZ7IadfjEP+hD32IT37yk/z85z/Hsiz27dvHSy+9xF133cUXv/jFU1FHETkdujMEPxYjUleHFYt1WjKyU9+PZbkf3JFIa7A3oVBbyG8J/u23hUL68tkXOQ6sX+9e775rV9v2oUNx5s6FceP07ypyOliW2/seiWA98og78qW5GfO+9+n6Yjk9amragnv7peB8Psz48e78DCNHqv2JnGE9/j/uX//1X3Ech4ULF9Lc3MyFF15IIBDgrrvu4uMf//ipqKOInAldDMFPHzjAjtdfp6y4GCuRgOZmd7m75mb391jM/RmPu8PrYrG2odR0DvrHDP7tevTb9/CbggIYNEjX6vcW8TjWa69hrVwJLZdLeTyYSZPcIfODBmW1eiL9hZk9GxMOY//xj1hvvYUVi7kz12vki5wKjY1ucF+71j2h38LjgdGjMZMnu0Plj7PkroicXj0O8bt37+bzn/88n/nMZ9iyZQuNjY1MmDCBSCTCrl27GDJkyKmop4icaZaFKS2lbuRInNGjMR5P665O691nMm54b2pqDfetQb998G8J/S1hv33wr6pyi21fhZZfQiEYOBBTXo4ZNAgGDlSwP5Oqqtwh86tXuyM2wD3JMmsWZvZsd1SHiJxZkybhhELuzPXbtmH/4hc4N94I0Wi2ayZ9UTyO9fbbbnDftq1tVnnLck/wT56MGT9eS8GJ9BI9DvHDhw9n//79lJaWMmHChNbtVVVVDB8+nIyWDhI5+3k87hfHdl8ejw76xwz+7cJ+p+B/6JA7fC8Wg61bsbZu7Rzsj9wU7E8xY2D7duyXX4aNG9u+0JWWYubNc4dQ+nzZraNIfzdypLsE3f33w7592D//Oc5NN2kiSemeVAo2bcJeuxY2bYJ0um3foEGYKVMwEydCbm726igiXepxiDem01dzABobGwlqYgsROZbuBv902p1MZ/9+2LcPa9++Ewf7QYMw5eUK9icjncZas8ZdIu7Agbbto0fjzJsHI0bo9RTpTQYNwvnnf8b+1a/g8GHsn/3MDfIDBmS7ZtIbZTLucrNr1mBt2ACJRNu+khI3uE+aBEVF2aujiJzQSYf4T33qUwBYlsWXvvQlwu2G12QyGVauXMm0adN6XEER6ee8XrdH4Mj11h2C/b59sH8/1t69UFl57GA/aFBbj315efaDvTHuPALtLi+wWn5PJt26WZY7OVzL7+3/bpk07qi/Tfu/u7rf8f4Gd53fV15xL4sAd+Kic85xr3cvLs7GKyUi3VFc3BbkKyvdHvkbbgBd0ijgfubs2uUG97fecj9rWuTnu/OaTJninvjRSVqRPuGkQ/zq1asBtyd+7dq1+NtNbuH3+5k6dSp33XVXz2soInK0EwX7o3vst2zB2rKlLdiHw52H4uflvfMvL8cL47GYu6/lMoEjv3eYCPAUO2VfvfLy3ImzZszQ9Y8ifUVuLs4HP4j929/Crl3Yv/wlznXXwdix2a6ZZIMxcOCAG9zXrYO6urZ9kYi7Ms2UKTB4sIK7SB900iF++fLlAHzgAx/gu9/9Lrm6XkZEsqmrYJ9KdT0Uv7n52MF+0CDMgAFYxrg90l2F8ZZJ/Hoaxn2+tqX2jtxMIOA+Zvub47j1afd3V8f0+O+iIje8T5jgXu4gIn1LOIxz883YDz0Emze7k96NG4cpLITCQnfFj4IC96Sl/h8/O1VVucF97Vo4fLhteyDgLgk3ZYp7WZSWARXp03p8TfwvfvGLU1EPEZFTz+eDigpMRQXQRbDfu9f9eaxg311+f1sQD4chGHSXymu3zbQL6i3HvJOJ4U59v72InJX8fpz3vx/r//4P68034e23W9/TWt/bLMsN8gUFbcG+/e+RiHpn+4pYDA4dwtq92w3u+/a17fN6YcwYnMmTYcwYTUYqchbpcYhv8fbbb7Nr1y6SLcsPHbFkyZJTVYSISM+1D/azZnUM9i1D8Q8dco9rCeMtoburMB4KuV+URER6C48Hc/XVmGnTsA4ehJoarJoaaLml01BbC7W1WNu3t96tNbb7fG3BvrCwLeDn57vbtT74mdfc7Ib1Q4egstL9eegQ1Nd3PM62YcQId4K68eMhEMhOfUXktOrxN89t27bx3ve+l7Vr12JZVuts9daRM7haYk5Eer2ueuxFRPoyy4KRIzEjRwLt3teMgcbGtmBfXe2G+SM/qa93T2xWVrphseXh2j92NHrsXvzcXA3V7onm5raQ3u4njY3Hvk9enjuz/Nix7pJw7VZ9EZGzU49D/Cc/+UmGDx/O008/zfDhw3nllVeoqqri05/+NPfcc8+pqKOIiIiInAqWBTk5kJODaTd7fWvIb+mlb9d736EXPx53A2VjI9bu3W0P2/KLx+P22BcWYoYMwQwdCoMGaSj30Rob3Z71ysoOP1tXB+lKXh6UlmJKStyfpaVQUqLedpF+qMch/qWXXuKZZ56huLgY27axbZvzzz+fb3zjG3ziE59oncVeRERERHo5r9ddUrK4uDXYdxidFIt16r1vDfm1te465FVV7gRrmze74b5l4tGhQ91QP2RI/wieLROkVlZ2Duvtl3k7Wn5+W1gvKVFYF5FOehziM5kMOTk5ABQXF7Nv3z7Gjh3L0KFD2bhxY48rKCIiIiK9RCjk9qwPGtQ55DuOOxy/psYNqzt3Yu3cCQ0Nrb9b4I4GKC/HDBvWFuojkaw8nVPCGGhowDp4kOI1a/Bs3Ih9+LA7DD4W6/o+ltUxrLcL7ZpzQEROpMchftKkSbz55psMHz6cOXPm8O1vfxu/38+9997LiBEjTkUdRURERKS3s203mObnY4YPhzlz3LmSqqvdML9zJ9aOHW6v/ZFlP60VK9z7lpRghg2DYcPcYf55eVl8IsdgjDvaoN3Ectbhw27PejyO1xgG1dVh5+W1ze5vWVBY2KFH3ZSUuKMdFNZF5CT1OMR/4QtfoOnI9Tv/9m//xpVXXskFF1xAUVERDz30UI8rKCIiIiJ9lGVBURGmqAimT3d77evqsHbtgh073HDfMtT80CFYtcrtrS8ocHvpW3rrCwvP3LJ3LZcEHD7cFtZbZoNPp7u+z5ETGHWFhZRPnIhVVtYW1jUfgIicYj0O8YsWLWr9fdSoUWzYsIHq6moKCgpaZ6gXEREREQEgLw8zeTJMnuyG+qYm2LXLHW6/Ywfs3982od4bb7ihPhp1e+qHDnV/lpb2PNSnUl0H9aoq99KArni97kmJluvVW4bAFxWRsix2bN7M6NGjsT2entVNROQ4TsnixvF4nDVr1lBZWYlz1Jue1okXERERkWOKRGD8eMz48W6oTyTaQv3OnbB3rzsb/rp1sG6dG+pDITgy+70ZNgzKy92Z8buSSHScCb4lrNfWukPku+L3uyG9uLjj9eoFBcdeQk/LKovIGdLjEP/YY49x0003UVVV1WmfZVlaJ15EREREui8QgNGjMaNHu6E+lYK9e9t66nfvdieM27gRa+NGN9T7/TB4sDv0PhzueL16ff2xywqFOs4EfyS0k5t75obvi4i8Qz0O8R//+Me59tpr+dKXvsSAAQNORZ1ERERERFw+n3tt/LBhmPnz3R7v/fvbeup37nRD/datWFu3dv0YubnusnlHD4OPRBTWRaTP6XGIP3jwIJ/61KcU4EVERETk9PN4oKICU1GBOe88d0h8ZaXbS79zJ1Yy2TGsFxe7Pe4iImeJHof4a665hmeffZaRI0eeivqIiIiIiHSfZcGAAZgBA9xl7bJdHxGR06zHIf773/8+S5cu5fnnn2fy5Mn4jlpG4xOf+ERPixARERERERERTkGIf+CBB3jiiScIBoM8++yzHZaVsyxLIV5ERERERETkFOlxiL/77rv56le/yr/+679iH2vJDRERERERERHpsR6n7mQyyXXXXacALyIiIiIiInKa9Th533LLLTz00EOnoi4iIiIiIiIichw9Hk6fyWT49re/zeOPP86UKVM6TWz3ne98p6dFiIiIiIiIiAinIMSvXbuWc845B4B169Z12Nd+kjsRERERERER6Zkeh/jly5efinqIiIiIiIiIyAloNjoRERERERGRPkIhXkRERERERKSPUIgXERERERER6SMU4kVERERERET6CIV4ERERERERkT5CIV5ERERERESkj1CIFxEREREREekjFOJFRERERERE+giFeBEREREREZE+QiFeREREREREpI9QiBcRERERERHpI7zZroCIiMiZZAzsr/Tw5oYg+w56GTU0yTkTE+RGnWxXTUREROSEFOJFRKRfSCQtHn02wpvrAxw8ZEE6A8bh1df8PPTnIF+9s5qSEivb1RQRERE5LoV4ERE5KzkO7NjrY8TgFMYYvJkEL6+MUt+YprDAYdpkh2HjQrz1tkXl7gSFnloyVQ74/Pzy0XLGjMwwbXycnKjJ9lMRERERaaUQLyIiZ41UCtZvC/DG2wHWbPDT1Gj48gd3UJKXwAoEeP/SJEWDowwZG8YOh7Asi3mXg5NxoCmCU1/PljWNvLray6urPTzgCTFmVIYZk5MK9CIiItIrKMSLiEif99raAG+sD7J2o59EzIFMBkgxrCJDc6AI39gc7GiUmTODXd7f9tiQm4udm8uIEoeP5jaz6qUka1Y7bNxosXGjnwe9IcaPSXPHzfVYGnUvIiIiWaIQLx0crvFQ12DT2GzT0HjkZ5NNY5PNwnlNDC5PgePwt2civPRGmHDQEApDJGQIBx1CIcOIiiQzJicAaI5Z7D3oJRJyCIcMoaDB7zP6AiwiPdLQaBEKGrxeMJkMT//Dx/ZdYFlJxoxIc84MD+fMCVA0OIrl97+jx/YHbKafH2X6+ZBMOKx9pZlXX3YDvZ2M41RXYQUCJOwwr70dYdr4ONGIeuhFRETkzFCI7wcSSYsN2/w0NrmBvKHJpqnZor7RQ2OTxeduP4xtMuA4/Pd9A6iqtd3pm40BA0f+w/gBTQwKNGLZNnXVQWqqDDXGtO4HC7CJTU4xbWAVlm2zbUeEH/wu391nuTePxxAOQVFBhs/eXo1luysd/v7vOfh97smAcLuTAuGgQ1lxmnf4PVxEzjLVtTZvbgjyxtsBNm/38tFr9jO+og7Lsrj0PA+xi/KYNitATlkRls93Ssr0B2xmXBBlxgWQjGdoOOjH6/HhVFfz5qoMv/mrnwe87pD7mVPcIfeRsAK9iMjplEhabNseYNzQWLarIpIVCvF92J59Nq+9Vkr91lzicY8b0BttGposyotTfPz9h8BxqKuy+PH/5h8Vyi3AXU6p4UAjubmAbTOyIk5JoZfcPItork1Onk1OrofcfJuhQyvwF9rg8XDTJA9L49Dc6NDc6NDU6NDcZIg1G0oK8vAMDkI6TbgJJo5z9zXHLPcWt2ioBx9pTG0tjjE4DjzzbP6Runnc+lm4wR+Lz952kGGD0mDb/O7xAnYf9FNa7FBalKG0ME1JUYaSwgzBgL48i5xNDh72sPptN7jv3ONxh8lnMgQCCWqaA3iHDMHOyWHm7CiWx3Na6+IPeigamgvkYsrLKXOamVmVZs3qDBs2WGzY4Oe33hBjR2c4f2ac6ZMSp7U+IiL9ldfO8Ocnogy/Jc6pOWUr0rcoxPdhu/Z6WbmynD1BD7Zl4wbgDGARsh1MKoVl2+Tm2syenu4Qyt2fFrl5NgWl47D9XiyPhw9N84BtY51gvLsNRKMQLT5+HccOh7EL3d+N44DjYNIZEnGHZCyDLzIRMhnSKYcP3G7R3AzNTYamRodYo0Nzs6GpKUNeLu5JiFSK7Tssdu6FrVss3CbsA9sG2+K9lzRwyYVxLNtmzwEvlYc9lBRlKC3KEPAr4Iv0dsa4s8q35PG/PxNk5Wo/ZDJEo2mmTMxwzmwfE6ZH8OcPaB3Jc6ZZHg+jp+UwehokYhnWrorx6ssp1qzOsH69xYBwgmnDGrFCIZoT7keteuhFRE7Orn1ennwhwuLz6yiP1EE6zXsW22RKBmF5FWek/1Gr78OGj/Exe/Z+5k8dQUGhj5xci5wjQT0U9WD7SsDjwWfb3D4r+xehW7btniDwegkFIZTfts8PnHf5se9rTJn7zT6T4dPLMhzcl+bg/gyVBxwqj/w8WGmRH4xh6upxHIdVLxXyxMvR1oCfGzWUljiUFjuMG5Fk1pT46X7KItINjgN790b4w5Zc1m0MccmcWi6cdBjSaWaPTRIOFzD93ACjJ4fw5EROeJLxTAuEPMy8MMrMCyHenGHdqzEGRDJYvgSmvp5nns/jsZXFjBvjznI/dZyG3IuInIgxsHG7nyeej7B+sxdSKfwpm5uuj2KXljJpdr4CvPRbavl9WMWoMDNnVjL/8pn4TtH1n72VZVlu15zHQ7gQhhfC8EkdjzGZDCaZC6kkJpVieIPDHAs36B+yqK+H+lrYstnCNCaZMbgGvF42743wyz8XU1LsUFLkMKCobXh+aaGuxRc5XWJxi+deCfP0iiDr94UZFPJik2LHLpuLzsvDLixk8jlRpoRCvS64H0sw7AZ6iGIyAzCNjWTWpvB44e23Ld5+289vvCHGjckwcUyKiaMTDCjOZLvaIiK9huPAm+sDPP58hJ17bEiliYbjXHyJw4LLi/EOzMvaKCyR3kIhXs4alseDFfJAyF1CatYi9wZuwG+qSVK53+3BL8qxsUs9mFiMqhoPtbWG2mrYjAX4AD/YNkUFDsvuPAQeD7GEh0efi2AfmaMP3E5+d74+w6XnN7cO2X/p9SANTXbLXH5Y1pFjMYwdkaS81P3Svmuflz0HfFiYdo/l3vJzM4wammp9fvGEpWv+5azx5oYA//vHXGKNGZx0ipKSGFde4GH2eWEGjcrHCna9FFxfYnk8WHl5LP0QXHVDhjWvxHj1pSRr33SOBHof4avqKJkaB9vmkRcKWPFGlPw8Q36eIS8nQ0Fehvwch4ED0gwuT2f7KYmInHavvxXkZw9GIZ2isCDFJQsNFyyKEijO7TMndEVON4V46Rcsj4docYhoMYyY3LK1FIALx2WYcWWyyyH6+ZEEJhaDdJrmei9PL889ZhkXjq7GG3YnC3z6mQr2HmoZHdHxA+eGy+oZ4GsE4M1X83n0xWhXhzFldIwR19QBcKjGy7/dN5gRwzJMGZ9i0pgEZSUZLdUnfUo6jbsknOMwIFRLoiHA1PFpLrnSw8ZDm7j88svP2lFFwbCH2RdFmX2RO+R+zSsxdmxKMGRcBDtsY5JJ6mo5ckKxZdUP+8jN4typTdy0pBHL42HL3hAPPFpIXq5DQa5DXq5Dfk6G/DyHwryMwr6I9CnxhMWmHX4mj4ljYjEmlxxm/NDBnHu+l9kX5+LN7X2XUYlkm0K89HvtA/7IKR33mUwGkiWYVIq8hiQ3fcBqXX3PcdqtxOcYoqOH4PUBxrDgcj8NDRaOYzodO3hCPnaZG9yHT/FxccjCyZjWxQNMxmCAijIfdkEBAAcP+PD6LLZssdiyxcef7ABFhTBpfIrJY5NMHJ08o6+ZyDtxqNrDEy9E2LTVy9237MDjJBlQlsPXv2lTNKKMNLDx0WzX8sxpC/RRoAgAYwy3TEiztCFNbVWGmsMZaqodaqsdaqodRg30uMvmZTIcrnTYv89h/15oC/oesCwK8x2WfXw/lseDY3n4zv+Wkt8+6Oc65OdmGDIwrZE9IpJV9Y02y18O89zKEPGmDF/54EFKyn0ERgzhzmVF2OFwtqso0mspxIsch+XxQCiEFQoRzoX5g7p3v4ve273jzhkG5yw68XEzRsPkSzNsXBNnzWsJ1r6R4fAhw3P/8LBrq834DzVjBYNkHJuGJpuCPKd7FRA5jfYd9PD481FWrfFjkmm8dppdtXmMmVmAXVBAccuERKnU8R+oH7AsC8vvI1rkI1oEFWO6Ps5kMswdk2b8xSlqqx2qq9qCfl21Q9iXdq8VTaepq8uwbWtLUG/r1ce28PngMx+uY/BAvVeIyJl1uMbDky+EWfF6kHQ8A5kkUyamoGIovnEFWIFAtqso0uspxIv0Ef6gh8mzI0yeHcFxDAd2xHnztSS5dhoLcGprWb81yA//VEHFQIdJ49NMGpNgeEUKzf8iZ9KOPV4e+0eUN9f7IJXC501w4QVpLn13mMJhI0/7eu5nM8vjwRfxUBIJUDK062OMMwjSaQoTab70jbYe/ZawX3XIUHnQUOY7hFNjY4VCvLA2nwmjkhQVKNSLyOnzp8ejPPViCJNMY5Pk3OkpFi0JUjG+EEszCYt0m0K8SB9k2xYDR4QYOCIE5GHSZZimJmKHE+TkWuzZa7Fnt4fHnooQidpMGJs6srRVIttVl35g+YoAb74JoUCCi96VYeGVYfIGZ29N9/7Gsm3w+/H5/QwZD0O6OCYVT2M3+3Cqq9m/tZHf/j4AnhBjRjmcNzPBtPFxrcwhIj1mjDsfis8HJpUi31OH17G54Pw0lywJUzy8WMvEiZwE/V8jchawvF6svDzOuwrmXmHYvj7G2teSrFmdZtdOw6pXbWhOM7miESsYpCnho67Rw8DStCbHkx4xBtZt8mOwmDy8AaexkUumNVJeNoCLr4gQLtNSQL2RL+iFYCGewkLCwRgLLkuyckWaTZsMmzYFCIZCzJyWYu6MBCMG63IHEXlnjIE31gd48oUI5YVx3n/xHizL4oIL85m7JEDOIJ3YFekJhXiRs4xtW4ycGGbkxDDvuRlqKpOsfS1OScTB8jZhGhpYtSrC754ZQEEB7rD7sUnGDU+o5026zXFg9VsBHns+yp69FsXRGBM+HMNbXMzQCaUMy9VSQH1FcUWIGz4cYukHHFavaObF51KsX5fhhZc87N7h5XMfadQ1qiLSLek0rFoT5IkXIhw4aEE6RWONjbm6GP/AUvz6bBA5JRTiRc5yBaV+LrzMD+RiMgMwzc34DyQoHWCorITnX7B5/sUQvkCEMaPSnDczwTkTNOxeutbyBe3xFyIcPPIFraTIYfEiC9/48Xhyo/qC1kf5AzZzFkSZswCqDqZYsTxGiS+BSSRwGhrYvD+Xp1cXM29GgsljE2gErIi0SKXgH6vCPPVimNpaA6k05WUZFi2ymHNxLt68gfpsEDmF9BEs0o9YHg9WTg4XvSeH+e82HNyV4M1XE6xdnWbTRoe33rIZmh9j6uAmrGCQg9U+du3KYW+Ol4Jci2jYQXOS9V+JpMWy7xdSVQWk0gwsy3DZZTDr4jy8udFsV09OoaIBPq663ocxOZhYCU5tLSuXZ1j3ls26t4JEc8LMnp5i7vQ4FWVal16kv8hk3HXd4wmLeNKmKD9DMGAwxvDEcj/1dSlGDE2z6AoP084vwBPRMnEip4NCvEg/ZVkWZUODlA0Nsuh9EGtM89ZrMQbmZbC8GUwsxvPLPfxtxQhWPxPGtm2wLCJhQ07UMGNynCsvbgagps5m7cYAOVGHnEjbLRQ0uua+j4snLPw+g2UZfKkmKnI95PoDLL5SX9D6A8uysMJh7HCYG+7MMPaFGC8+m2TLpgzPPOvhmX9EGVxhWHJpjEljktmuroh0wXHc93JjIBJ2l51sjlls2OonnrTbQnnCIp60SCUtbnlfPQDGGL79k0Kqaj3E45BKAwb3PwY+eu1BJo5oxpNMcv1lkDs4n7Ezi7GCwaw9X5H+QCFeRAAIRb3MnJ8D5GBMOaa5mYG7Ywzbt5fB4QDNjQ71jRZNjRZNDYaGsmYyVVVYlsWOTSEeeDgXLHBTu7sWtdcLZcUZ/r87qrFsG2Pg/56MEg27IT96JOznRh2iYQefL8svgrRqarZ45uUwz74cYunFlcweVY0VCvHBDwcIDSzGDukLWn8Tini4YFGUCxbBgd1JVjwTY8XzaXbvyZCursVpdLBCIeqbfeREHC1tKXKaGQOVVR7CQYecqBvOV7we4rlXQsTjFvEExOMWyRRgYPLoGB++9hA4Dof2e7nvN/nug7SEcsD9IIf3X1iNbbvbGmpyaKgz2LZFOGAIBhyCAQgGDP6QBzsaxSooYNYsLRMncqYoxItIJ5ZlYUUizL/KT5PnRS6/fAJejwcyGVLxDA21aTwE8UVKIJ1mgN9wSdxDQ02GhnqHhgZoaLSob7TIJNOYujocxyGRtHni6TzAA1hu4LesI+Hf5gsfqWRgmQO2zWPP53Co2oPfZwj4O95GDklSXpoBoL7RpqHJdvf5HPx+jvQcZ/MV7Ltq622eWhHmhVUhEs0ZyKTYfTDE3EuG4ykqwq8JzgQoG+zn6lv8vPtGw9uvxxhbVgo1VTh1ddz323KqGsPMmZFk3vQ4pUWZbFdX5KxR12CzcZufDVv9bNjmp6YGrrn4EBdNq8YCGg7ksWv7kfdpy/08DwUMwYAhHMi416X7fOSX+pk7O0MgaBEKWwTDHkIhi2DIIhQC35jReHwesG2+8E0bX8C92R4b7LabZQ3M6ush0l8pxItIt1hHPrD9Ph9FOR33DS2FoTM6bjOZDCadIRHL4PPkQiaDaU5zw6029XWG+jqHxjqH+nqHxgaob3SIemOYxhQ4Dm+8FmbXwZauedPukS2uvbSRATMbwbJY8VIef372qFEAQCBgmDAywYeurwPLoqrWw2//mt96UsDvNwT8zpHwb1g4r7n1ev9N231kHAuPbbBt8HjAtgweDxQXuNf/gTscMZW2Wvd5PLTeJxu9kMa4N2grP5WCWMLGcdxrGTOOheO4wys9HhhQ7AasRNLij49Heem1IOlEGstJMnNamsVX+Rg6eaB6V6RLHo/F5FlhIIwZWEbicD0pv0NtncPjT3l5/OlcRo5wmDczyfSJ8db/d0TknXluZYjnXgmz/6Dtvpk7DpCiqNDgCQXwDhmCFQxy/iCbGVd4CIYsgmHb7SnvELyHYFkWxcBts7tXdk7e6XxmInIyFOJF5LSwPB4sj4dQu47bUD4seE/nY40xRxJmPiadhkyG62831NU6JOKGRAIScUMyYYjFDEMnRLELfOA45BZ6GTE0TTLhBtGWWzIGmUQK09AAxlC/38f6t3PblWrTEvgBFoyvxvK4IwN++cBgahq8Hfa3uH3pYaaOjYFl8efHCvjHay0TunU8dt45Tdy4pA6AjTsC/PT3hUeCvjsk0WO7wT8SdvjUB6vBsrAsi+/+soBkysJxDJmM1fpdzTEW/7y02p1EzBh+9X/5rNkYbN2fyYBjAAOLL2hgyYJ6MIZVb4S5/68F7V7s1v8wsCTF3R/aD0Cy2eL5F/PwWEnmzUhx2XuClI0txtIU5NJNlsdDcEABX/pP2L0lzovLE7z8Qoqt2wxbt/r5XTDIl++soSA/2zUV6b3Sadi228fG7X4mjEoyYmAMk0jQdMhh/24/OTkwZmSa8VN8jJ/sp3RIGAKB1pnf84shP7tPQUTOAH07E5GssywLvF7welvXox4z4wR3OmL+WJh/45ETAY7jdkU7DibjkE7n4LVLwHEYMsLh8yMt4jGn9YRAPA7JhCGVNPiGVLjfnjIZJky0aG7KHOm5PnJ+4UhYzslxwwrGEA1lKC1It+vlBsexyDjgs1KYRAKMIdVk0dTotBtQ0PZ7biSDqa116w9s2pDnhnH3lenwXBM1TZiIO3lYvCFMc6M7UsG23JMDPg94bPCYtNsFb1mE/WlKC9IdRgh4bIN9ZFSB5fO5Iyxsi3ddlOZdVwQpGl7iPkeRkzR4VJDrRwV5362GN19u5sVnkzRUxsjNVOHU2BCJsmlPhLHDk7r0Rfo1Y2DPAS8btvrZuM3P5h0+kgn3QyV2qJHhlzZgBYPMXRhm2rt8VIwMYodD7ug4Eem3FOJF5KxgWRbt17+zgPYDwEM5MLK0e4/1gc8eb295a+B+7xTDe1vGr7cfy24MmHygAoxh2kTDD68AJ2PIpI0b+tPu7wC+/Imt97172ZHh+x4L22O1DtO3bYhER+PxuonnXyZY7nQCtoVtWy0vwpGfBa2/z5xiMfPao/dbba8Zg+HIa3X9Od17fUS6y+ezmHlBhJkXREgncrAaAziHD7P+jTj/80CI8vIw77owwazJMU1sKf2G47Rd8vTQ36I893Kw9Uyx7UkyYnCG8RMsps4owjd2EFY4TKlOrIpIOwrxIiLvkHVUGD7h8XQ8oXA8Q7t57aH6YKSv8Qa8ECjCLizEqm2ibHCS/XvT3P+gnz//PcD885LMnx1rXQJL5GzR0GixcXuADdv8bNjqY8HMehacU41JJhlekGBTUTHjxxnGT/ExdlKAUGHYHSUlInIMCvEiIiJyxliWxeQ5USbNhjdfaeaJvybYtD7NXx/18fgzfq6+Is78OfFsV1OkR7bv8fHaugAbtwXYs6/9ZHRp9uwBa14IT1kZc8dFOO/GcOulZCIi3aEQLyIiImecZcG0OWGmzQmzfWOCx/8a47WVGQrtapy6FFYkQiLj04z2ckq0XPGUyUA6467S0X7Ux/5KD+kjk4lmnLaf6TSMGJxqPXbTdh+VVV53CpX2x2Vg8MCEW1Ymw/q3DU8v9wJpImEYMy7N+Mlexk/xM2BIHlYo2DaqS0TkHVKIFxERkawaPjbAh8cGqKpMk0cF5lAlmfp6vv+bgRh/gEsujDNlbCIrSzdK39Ecs4jFLQrz0uA4bN7p54e/KWydeNQcWcEDIOh3+M5n9x5ZsMPw7R8OIp60Oq5oCoDh/73/AKOHxMEYXnihhFXrju41d+904fRG8qYCDQ1MGwvenDATpvoZMlqT0YnIqaUQLyIiIr1CUakXKMEUF9G8p46qhEPt3jQ/2RaktDTEwgsSnDsthr+7k0xIv7F7v5d7H8wnQJy73r8Lf8DGigVJxPLwegz+ltU7PAaPjTvCwxh3DRDLYvjgJMmUjdcLHi94PBZej7twSrQ0gl0QAsti8owAeeXg9Vl4vO7ko94jPwcOzGdbDXjHj2dIbi5DNRmdiJwmCvEiIiLSq1i2Td6QAr7xQ8OqfzTz+N+S7N2Z5oE/+PnL4wHmn5fiioua1DMvAKx4PcQDf42Sbk4xerjBGTwKX2mYsZMsfnLZkRU82k9I2norbd32qalWt4a3zxsF846xL5VKse1RsKNRLdMpIqeVQryIiIj0Sj6fxbyFEeZeHOGt12M8/tcE69emeevNGJfPbMBEIxqi3I+lUvDgI7mseDUAySSXLkhy9QcL8eZGs101EZHTSiFeREREejXLgkkzQkyaEWL3tiTxQw52wI9TU8PmPRGWry3hXefHGTU01d2VH6WPO1Tt4b6H8ti9G4KeOLfe7jDj0nItzSYi/YJCvIiIiPQZg0f4YUQpJl2IU1vL808kWbPWw5q1EYYNNbzrgjjnTNQkeGe7WMxwYE+GipI0//IxH2UTyzXbu4j0GwrxIiIi0udYXi+e4mI+8FmHUU8089Tfk+zYleanvw5SVBTi4gsSnDcjTsCvJerOFo5z5NL2TJpBgVo+dkuGUXPLCRTnZbtqIiJnlEK8iIiI9FmhsM2l74ly8ZWG1150r5vftS3N7x/2UxJuZNJk9c6eDeobbX72uzwmDG3gXVMP4yktZcLMIViBo5d7ExE5+ynEi4iISJ/n9VrMmR9m9oVhNq2Ns+r5ZiaOSuBUN2O8Xl5/vZRZA2xKCrJdU3mnNu/w8dPf5VFfnaH2cICFlw3FO6RcM8CLSL+lEC8iIiJnDcuCsVOCjJ0SxCSjODU1bHutipdfDlO5PsDl70rxrvNiePUNqNczBp56Mcz/PRnBiSeZMiHFBz4aIVRRmO2qiYhklT7CRERE5Kxk+f14BgygdGYe48e/TcOeIfz5EYsXX/GzdEmcyWMSms2+l4rFLe7/v1xWr/VhpZO898oUi/+pCE8knO2qiYhknUK8iIiInNXyCjwsWLCb8WPG84dfJdm2McmPfh5k4ng/S69sZkBxJttVlKM890qY1W96yA0luO0Ow4QLyrE0fEJEBFCIFxERkX5i+Cgvn/96iBXPxvnTb+O8tT7B3HExSgs8Z9X11dv3+DhU5WHWxEbIZMDvp6HJQ27UyXbVusU4Dgsn7KaxupRF1+RRMKJIy8eJiLSjEC8iIiL9hmXBeQuCTD83wEtPNTJ9uI1TU4MVDLK5Mp8xw9N9coi9MbB+q5/H/xFh0zYvQTvBhJJGwjkedm9J8K1fD2XCuAznzUowZWyC3nbOIpWCh5/M4aIZdRR5qvHm53PdHQOwo9FsV01EpNdRiBcREZF+JxSyuPiqHExmHJnKSja+UsN//zzCiOGGa5c0M3RQOttV7BbHgTfXB3j8+Qg7d9uQTpMbjbPwogzBCWPx5fiprGzGH7J4623DW28HyckNc+7MFPOmxygryf6lBIdrPNz7YB67d1vs2hrirjvL8A4ejOX3Z7tqIiK9kkK8iIiI9FuWx4O3vBzviEKKK2Js25nkW9+LMm92indf2kxO1GS7isdkDPzHfYXs2GVDOkVRQYpLLzGcvygHf2FO6xD0eZeHmb7AYdU/mnlheZKtmzI8+bSHJ5fnctG8BNctac7ac1izMcD//jGX5voUgwakuOVfQniHl2DZdtbqJCLS2ynEi4iISL83dnKAZf8d4Im/NPPowwleXAmvr8nliksSXHRuvNcMP08kLYyBgN/BxGKMKnZINuWy+DKYfXEenpxIl9ePB0M2FyyKcsEi2LcjwYvPxHnp+TRDCuvJVNVhBYPsqc0hYzwMG5Q67ZcUOA789Zkojz0XgkSSc2emuPHDuQRL8k5vwSIiZwGFeBERERHA54Mr3hdm7kVB/vCrJl55Mckf/gxFkTjTpmW3bk3NFstfDvPsyjDzp9VwxaxDWMEgS66LsLSs4B0tvTZwWIClHwzwnpsMptGP1VCDqarib496WLslwsCBMG9WkjlTY0Qjp2ckwm/+ksuKVX68ToLrrksz/70l2KHgaSlLRORsoxAvIiIi0k5hkc3td+Zw0aVJXnq6gckjGshUp7BzcmhO+YmEz9wQ+9p6m6dWhHlhVYhEcwYySQ7XePEMG4anqAh/8OSDr89nQUEOFORgyssZPSfG/sYU+w5k+MP/+Xj4kQBTJ6WZNzPB+JFJTtUId2MMF06sZNvmIj7wzx5GzBp4Vq0OICJyuinEi4iIiHRhzEQ/YyYW4TQGyOzfz+Y3Gvje70q4ZEGSRRc0czrnXatrsPnL01FWrg6QSaaxnCQzpqZZfJWPYVPKT/mkb5bPx+VLfSx+n2HDGzGefzrB6tcyvP6Gh9ffCPP/PhhnzBjrpJd6Mwbe3BBgyuhmTH0dQypCfPmbYbxFBVo+TkTkHVKIFxERETkOOxrFGjWK3WsbSFtpHn3c8NKqPK65MsY5E5On5fpxy0mz6lULy0ly/qwUi5YEKRtbjOU9vV/dbNtiwvQwE6aHaazPsPLZZt5eHWfUwGZMVRzj9/P7Z8sYNTzD1PEJulOdeMLi/odzeX2dj/fMbWLR5QV4hgzBDnf/EgAREWmjEC8iIiJyApZlsejqXCZMT/PAz5vY9FaS++4PMWZ0kGuvambQgJNfks4Y2LzDx7Mrw9x4RRXBdAMRY7jtn/wMn1ZA4dCSrAw3j+Z6WLgkh4VLcjDxHJy6OnasreXZF/08+6IhEg0ze3qKeTPiVJR1/fz3HfRw70P5HNxviAYTDJ2aj3fUgNN+MkJE5Gymd1ARERGRbho8zMtnvprHqhfj/P7XcTZtSfD1/47ymY/WM2yw844eyxh3ibXH/xFh+y4bUmmGFdhcuqgAT2kpM+bk9Zql1qxgEE8wyOD8Em6z3eH2mzZkWP6ch+XPRxk21HDerCTnzYi1jkx45c0gv/lzDsmmFCOGpPiXjwcoHFWs4fMiIj2kEC8iIiLyDlgWzD4/yJSZAf7+pya2vtlIRegQToMfKxoFrOMOsc9k4NW1QR5/PsL+AxakUxTkpbhkocMFiwfiLcnttUHXH7CZe3GEuRdHOLgnyYtPx3jxH2l27MzgSWWYN64REwrz0KN5/GNlEJJJFs5Pcc0H8/Hl52S7+iIiZwWFeBEREZGTEAxavPf9UZxrQ5hqm8y+fWxb28jv/zGIpUtijByS6vJ+f38uzCNPhyCdZkBJhkWXwrnvysWXH+214b0rAyr8XH2Ln3ffaFi7KoYv4WB5vTi1NfiSNn4sbvlgmtmXDTjlE/GJiPRnCvEiIiIiPWB7PVBaip2Xx3OPN7Jzb4Z7fhBh9ow0713cjN9n2H/Iy4jBSUxzM3OH17B+YAXvWmQzY34+nmgk20+hRzwei2nnhoEwJl2MU1/P1cXVLFhiMWDCoF5zSYCIyNlCIV5ERETkFLACAW77dIDhjzbz1z8keOU1eHNdLpbfi8dJs+yfDxDMD1E8qYLPzy/CCoWyXeVTzvJ68RQW4ikspCzblREROUspxIuIiIicIl4vXLokzJwLg/zp1028+GwSGlJMm5QmWTacnBGFWIFAtqspIiJ9mEK8iIiIyCmWl2/zgY/lcOlVKTyJJgYMj2D5fNmuloiInAUU4kVEREROk0FDfUB+tqshIiJnEc00IiIiIiIiItJHKMSLiIiIiIiI9BEK8SIiIiIiIiJ9hEK8iIiIiIiISB+hEC8iIiIiIiLSRyjEi4iIiIiIiPQRCvEiIiIiIiIifYRCvIiIiIiIiEgfoRAvIiIiIiIi0kcoxIuIiIiIiIj0Ed5sV0BOTlNTE9FoFICamhry8/OzWyE566iNyZmgdianm9qYnAlqZyJyJqknXkRERERERKSPOCtCfFNTU7arICIiIiIiInLa9bkQf+uttxKNRtm6dSuXX345OTk53HDDDdmuloiIiIiIiMhp1yeviU+n0yxatIjzzz+fe+65h3A4fFKP01UPfsu2pqYmPB5Ph32RSOSkyhERERERERE5FfpkiE8kEixdupRvfOMbPXqclglIujJw4MBO2w4fPtyj8k6l5uZmgsEg4E6gkslkslwjOduojcmZoHYmp5vamJwJamci0lMNDQ0AGGNOeKxlunNUL3Lrrbfyv//7v+zcuZMhQ4b06LEsyzpFtRIRERERERHpmd27d1NRUXHcY3ptT3wymaS6urrDtpKSEgC8Xu8Jn1h3NDY2dtrmOA779+8nGo12Cvm9aTh9U1NT62iBffv2nfG6zZo1i1WrVp3RMvtz2dkoN9ttDPRv3R/KznY762+vd38sO9ttDPrX653tcrNVdrbbWX97vXtD2SKnmjGGhoaGLkeEH63XhvgVK1awYMGCDtu2b98OQCAQwLZ7Piffsd5gc3JyevzYp1v76/Vzc3PP+IeFx+MhNzf3jJbZn8vORrnZbmMtddC/9dlddrbbWX97vftj2dluYy116C+vd7bLzVbZ2W5n/e317g1li5wOeXl53Tqu14b4qVOn8uSTT3bYVlZWlqXaiIiIiIiIiGRfrw3xBQUFvOtd78p2NURERERERER6jT63TryIiIiIiIhIf9Vre+Ll+CKRSLeWHzhd7rjjDpV9lpeb7TYG+rfuD2Vnu531t9e7P5ad7TYG/ev1zna52So72+2sv73evaFskWzqc0vMiYiIiIiIiPRXGk4vIiIiIiIi0kcoxIuIiIiIiIj0EQrxIiIiIiIiIn2EQryIiIiIiIhIH6EQLyIiIiIiItJHKMSLiIiIiIiI9BEK8SIiIiIiIiJ9hEK8iIiIiIiISB+hEC8iIiIiIiLSRyjEi4iIiIiIiPQRCvEiIiIiIiIifYRCvIiIiIiIiEgfoRAvIiIiIiIi0kcoxJ8hiUSCz33ucwwcOJBQKMScOXN48sknOx23YsUKzj//fMLhMGVlZXziE5+gsbGx2+Xs3buXa6+9lvz8fHJzc3n3u9/Ntm3bujz2Zz/7GePHjycYDDJ69Gi+973vnfTzk+zrThu76KKLsCyr023x4sXdLkdtrH9rbGzky1/+MosXL6awsBDLsvjlL3/Z5bHr169n8eLFRKNRCgsLuemmmzh06FC3y6qtreX222+npKSESCTCggULeP3117s89i9/+QvTp08nGAwyZMgQvvzlL5NOp0/mKUqWdbeN3XrrrV2+n40bN67bZamN9U+rVq3iYx/7GBMnTiQSiTBkyBCuvfZaNm3a1OlYvY+JSK9k5Iy4/vrrjdfrNXfddZf5yU9+YubOnWu8Xq95/vnnW49ZvXq1CQaD5pxzzjE/+tGPzN13320CgYBZvHhxt8poaGgwo0ePNqWlpeZb3/qW+c53vmMGDx5sKioqzOHDhzsc++Mf/9gA5n3ve5+59957zU033WQA881vfvOUPm85c7rTxubPn28qKirM/fff3+H29NNPd6sMtTHZvn27AcyQIUPMRRddZADzi1/8otNxu3fvNsXFxWbkyJHmu9/9rvn3f/93U1BQYKZOnWoSicQJy8lkMmbevHkmEomYr3zlK+b73/++mTBhgsnJyTGbNm3qcOyjjz5qLMsyCxYsMPfee6/5+Mc/bmzbNh/+8IdP1dOWM6i7beyWW24xgUCg0/vZX/7yl26VozbWf73vfe8zZWVl5uMf/7i57777zLJly8yAAQNMJBIxa9eubT1O72Mi0lspxJ8BK1euNID5j//4j9ZtsVjMjBw50sydO7d122WXXWbKy8tNXV1d67b77rvPAObxxx8/YTnf+ta3DGBeeeWV1m3r1683Ho/HfP7zn2/d1tzcbIqKiswVV1zR4f433HCDiUQiprq6+qSep2RPd9vY/PnzzcSJE0+6HLUxicfjZv/+/cYYY1atWnXMgPWRj3zEhEIhs3PnztZtTz75pAHMT37ykxOW89BDDxnA/P73v2/dVllZafLz880//dM/dTh2woQJZurUqSaVSrVuu/vuu41lWWb9+vXv9ClKlnW3jd1yyy0mEomcdDlqY/3Xiy++2CmEb9q0yQQCAXPDDTe0btP7mIj0VgrxZ8BnPvMZ4/F4OoRzY4z5+te/bgCza9cuU1dXZ7xer/nMZz7T4ZhEImGi0ai57bbbOmxfv359hw8VY4yZNWuWmTVrVqfyL730UjNy5MjWvx955BEDmEceeaTDcStWrDCAuf/++0/qeUr2dKeNGdMW4lOplGloaDjuY6qNyYkcL2CVlpaapUuXdto+ZswYs3Dhwg7btmzZYrZs2dJh29KlS82AAQNMJpPpsP3222834XDYxONxY4wxb731lgHMD37wgw7H7d271wBm2bJlJ/PUpJfoTohPp9Od3vuOpjYm3TF9+nQzffr01r/1PiYivZWuiT8DVq9ezZgxY8jNze2wffbs2QC88cYbrF27lnQ6zcyZMzsc4/f7mTZtGqtXr+6wffz48dx8882tfzuOw5o1azrdv6WcrVu30tDQ0FofoNOxM2bMwLbtTmVJ79edNtZi06ZNRCIRcnJyKCsr44tf/CKpVKrTY6qNycnau3cvlZWVx2wrR//7L1y4kIULF3bYtnr1aqZPn45td/yYmj17Ns3Nza3Xrh6rrQ0cOJCKigq1tbNcc3Mzubm55OXlUVhYyB133NHlPDJqY3IixhgOHjxIcXExoPcxEendFOLPgP3791NeXt5pe8u2ffv2sX///g7bjj5u3759xy2jurqaRCJxwnJa6uPxeCgtLe1wnN/vp6io6IRlSe/TnTYGMHLkSO6++24eeOABfvWrXzFnzhy+9rWvceONN56wDLUx6a4TvZ+1tKUTPUZ329rxylJbO3uVl5fz2c9+ll/84hc88MADLFmyhB/+8IcsXry4W5OBqY1Je7/5zW/Yu3cv1113HaD3MRHp3bzZrkB/EIvFCAQCnbYHg8HW/bFYDOCYx7Xsb2GM6VTG8e7f/phYLIbf7++yrl2VJb1fd9oYuLPFt3fTTTdx++23c99993HnnXdy7rnntu5TG5OT1d220rJ/x44dXT5Gd9va8cqqr68/iWcgfcE3vvGNDn9ff/31jBkzhrvvvps//OEPXH/99a371MbkeDZs2MAdd9zB3LlzueWWWwC9j4lI76ae+DMgFAp1ebY2Ho+37g+FQgDHPK5l//HKON792x8TCoVIJpNdPk53ypLepztt7Fg+/elPA/DUU0+dsAxQG5MTeydt5XiP0d22dryy1Nb6lzvvvBPbtk/4fgZqY+I6cOAAV1xxBXl5efzhD3/A4/EAeh8Tkd5NIf4MKC8vbx0q1V7LtoEDB7YOoTrWcQMHDjxuGYWFhQQCgROW01KfTCZDZWVlh+OSySRVVVUnLEt6n+60sWMZPHgw4A6XPx61MemuE72ftbSlEz1Gd9va8cpSW+tfQqEQRUVFJ3w/A7Uxgbq6Oi677DJqa2t57LHHOvxb6n1MRHozhfgzYNq0aWzatKnTcKiVK1e27p80aRJer5dXX321wzHJZJI33niDadOmHbcM27aZPHlyp/u3lDNixAhycnJaywM6Hfvqq6/iOM4Jy5Lepztt7Fi2bdsGQElJyXHLUBuT7ho0aBAlJSVdtpVXXnmlW//+06ZN4/XXX8dxnA7bV65cSTgcZsyYMa3HQee2tm/fPvbs2aO21s80NDRw+PDhE76fgdpYfxePx7nqqqvYtGkTf/vb35gwYUKH/XofE5FeLcuz4/cLL7/8cqc1vOPxuBk1apSZM2dO67bFixeb8vJyU19f37rtpz/9qQHM3//+9w6P2dXyX9/85jcNYFatWtW6bcOGDcbj8ZjPfe5zrduam5tNYWGhufLKKzvc/8YbbzThcNhUVVX17AnLGdedNlZXV9e6nE0Lx3HMddddZwDz2muvddinNiYncrzlvz784Q+bUCjUuryhMcY89dRTBjA/+tGPOhzb1dJMDz74YKf1lQ8dOmTy8/PNdddd1+HYcePGmalTp5p0Ot267Qtf+IKxLMu8/fbbPXmKkmXHamOxWKzDZ2WLz3zmMwYwf/rTnzpsVxuT9tLptFmyZInxer2dlkJtT+9jItJbKcSfIUuXLm1dB/4nP/mJmTdvnvF6vea5555rPea1114zgUDAnHPOOeZHP/qRufvuu00wGDSXXnppp8cDzPz58ztsq6+vNyNHjjSlpaXm29/+tvmv//ovM3jwYDNw4EBTWVnZ4dgf/OAHBjDXXHONue+++8zNN99sAPPv//7vp+X5y+l3oja2fPlyU1ZWZu68807zgx/8wNxzzz3mvPPOM4C5/fbbOz2e2pgcy/e+9z2zbNky85GPfMQA5uqrrzbLli0zy5YtM7W1tcYYY3bt2mWKiorMyJEjzf/8z/+Yr3/966agoMBMnjy508mkoUOHmqFDh3bYlk6nzbnnnmui0aj56le/an7wgx+YiRMnmpycHLNhw4YOx/71r381lmWZiy++2Nx7773mE5/4hLFt23zoQx86ra+DnD4namPbt283+fn55iMf+Yj57ne/a7773e+ayy+/3ABm8eLFndblVhuT9j75yU8awFx11VXm/vvv73RrofcxEemtFOLPkFgsZu666y5TVlZmAoGAmTVrlnnsscc6Hff888+befPmmWAwaEpKSswdd9zRZW9DVwHLGGN2795trrnmGpObm2ui0ai58sorzebNm7us07333mvGjh1r/H6/GTlypPmv//ov4zhOj5+rZMeJ2ti2bdvM0qVLzbBhw0wwGDThcNjMmDHD/PjHP+7y311tTI5l6NChBujytn379tbj1q1bZy699FITDodNfn6+ueGGG8yBAwe6fLyjv/waY0x1dbW57bbbTFFRkQmHw2b+/PkdRoG09/DDD5tp06aZQCBgKioqzBe+8AWTTCZP1VOWM+xEbaympsbceOONZtSoUSYcDptAIGAmTpxovv71r3f57642Ju3Nnz//mO3r6EGqeh8Tkd7IMuaodaREREREREREpFfSxHYiIiIiIiIifYRCvIiIiIiIiEgfoRAvIiIiIiIi0kcoxIuIiIiIiIj0EQrxIiIiIiIiIn2EQryIiIiIiIhIH6EQLyIiIiIiItJHKMSLiIiIiIiI9BEK8SIiIiIiIiJ9hEK8iIiIdHDrrbfynve8p9P2Z599FsuyqK2tPeN1EhEREZdCvIiIiJwRyWQy21UQERHp8xTiRURE5KT88Y9/ZOLEiQQCAYYNG8Z//ud/dtg/bNgwli1bxs0330xubi633347AJ/73OcYM2YM4XCYESNG8MUvfpFUKpWNpyAiItLneLNdAREREel7XnvtNa699lq+8pWvcN1117FixQo++tGPUlRUxK233tp63D333MOXvvQlvvzlL7duy8nJ4Ze//CUDBw5k7dq1fOhDHyInJ4fPfvazWXgmIiIifYtljDHZroSIiIj0Hrfeeiu//vWvCQaDHbZnMhni8Tg1NTXccccdHDp0iCeeeKJ1/2c/+1keeeQR3nrrLcDtiT/nnHN4+OGHj1vePffcw4MPPsirr7566p+MiIjIWUY98SIiItLJggUL+NGPftRh28qVK7nxxhsBWL9+Pe9+97s77D/vvPP47//+bzKZDB6PB4CZM2d2euyHHnqI//mf/2Hr1q00NjaSTqfJzc09Tc9ERETk7KIQLyIiIp1EIhFGjRrVYduePXtO6nHae+mll7jhhhv46le/yqJFi8jLy+PBBx/sdD29iIiIdE0hXkRERN6x8ePH8+KLL3bY9uKLLzJmzJjWXviurFixgqFDh3L33Xe3btu5c+dpq6eIiMjZRiFeRERE3rFPf/rTzJo1i2XLlnHdddfx0ksv8f3vf58f/vCHx73f6NGj2bVrFw8++CCzZs3ikUceOeE18yIiItJGS8yJiIjIOzZ9+nR+97vf8eCDDzJp0iS+9KUv8W//9m8dZqbvypIlS7jzzjv52Mc+xrRp01ixYgVf/OIXz0ylRUREzgKanV5ERERERESkj1BPvIiIiIiIiEgfoRAvIiIiIiIi0kcoxIuIiIiIiIj0EQrxIiIiIiIiIn2EQryIiIiIiIhIH6EQLyIiIiIiItJHKMSLiIiIiIiI9BEK8SIiIiIiIiJ9hEK8iIiIiIiISB+hEC8iIiIiIiLSRyjEi4iIiIiIiPQRCvEiIiIiIiIifcT/D5J+FsmUzKV2AAAAAElFTkSuQmCC", + "text/plain": [ + "<Figure size 1200x500 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = plt.figure(figsize=(12, 5))\n", + "ax = fig.gca()\n", + "\n", + "#Graficamos los datos\n", + "plt.bar(pm_data_h['mean'], '-r', alpha=0.6)\n", + "plt.plot(pm_data_h['mean'], '-r', label=\"pm 10 por hora\", alpha=0.6)\n", + "plt.plot(pm_data_h['mean']+pm_data_hstd['mean'], '--c', label=\"pm 10 + std\", alpha=0.6,lw=1.4)\n", + "plt.plot(pm_data_h['mean']-pm_data_hstd['mean'], '--b', label=\"pm 10 - std\", alpha=0.6,lw=1.4)\n", + "\n", + "#Coloreamos el area entre las lineas de maximo y minimo\n", + "plt.fill_between(pm_data_h['mean'].index, pm_data_h['mean']+pm_data_hstd['mean'], pm_data_h['mean']-pm_data_hstd['mean'], alpha=0.3, color=\"lightcoral\")\n", + "\n", + "#Formateamos el eje de fechas para que se vea mejor\n", + "ax.tick_params(which='major', pad=10, length=8, labelsize=12, direction=\"inout\", width=1.5)\n", + "ax.tick_params(which='minor', length=4)\n", + "ax.set_xticks(range(0,24,5))\n", + "ax.set_xticks(range(0,24,1), minor=True)\n", + "ax.set_xticklabels([\"00:00\", \"05:00\", \"10:00\", \"15:00\", \"20:00\"])\n", + "\n", + "#Agregamos la leyenda, los titulos y la grilla\n", + "plt.ylabel(\"material particulado [$\\mu g/cm^3$]\")\n", + "plt.xlabel(\"Hora\")\n", + "plt.title(\"Material particulado en la Normal por hora\")\n", + "plt.grid(True)\n", + "plt.legend()\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 462 + }, + "id": "CeWU3F8GY1Zy", + "outputId": "a677b549-ae3b-4a6e-d4fa-133598baa157" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "<BarContainer object of 24 artists>" + ] + }, + "execution_count": 68, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9EAAAGsCAYAAADaEyRFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAcSElEQVR4nO3dfWxV9f3A8U8FKai0WB5aOgqCD8MosAShEpXgIJQuYUPYosY/wBjNtkKCnXE2UUFn0uiSjTgZZskGMxk+LQLRLSxapcQMMGKI+ocECAsYaJ0sbaGOQuj9/bHY3zoRv4Xbey/weiUn4Z57uOfjcnbi23PPuUWZTCYTAAAAwDe6JN8DAAAAwPlCRAMAAEAiEQ0AAACJRDQAAAAkEtEAAACQSEQDAABAIhENAAAAiQbme4D/1d3dHYcOHYqhQ4dGUVFRvscBAADgApfJZOLo0aNRWVkZl1xy5mvNBRfRhw4diqqqqnyPAQAAwEXm4MGDMWbMmDNuU3ARPXTo0Ij4z/AlJSV5ngYAAIALXUdHR1RVVfX06JkUXER/+RXukpISEQ0AAEDOpNxS7MFiAAAAkEhEAwAAQCIRDQAAAIlENAAAACQS0QAAAJBIRAMAAEAiEQ0AAACJRDQAAAAkEtEAAACQSEQDAABAIhENAAAAiUQ0AAAAJBLRAAAAkEhEAwAAQCIRDQAAAIlENAAAACQamO8BAICLQ8NrH+V8n40LJ+V8nwBc2FyJBgAAgEQiGgAAABKJaAAAAEgkogEAACCRiAYAAIBEIhoAAAASiWgAAABIJKIBAAAgkYgGAACARCIaAAAAEoloAAAASCSiAQAAIJGIBgAAgEQiGgAAABKJaAAAAEgkogEAACCRiAYAAIBEIhoAAAASiWgAAABIJKIBAAAgkYgGAACARCIaAAAAEoloAAAASCSiAQAAIFGfIrqxsTGmTZsWQ4cOjVGjRsWCBQti9+7dvbaZNWtWFBUV9Vp+/OMfZ3VoAAAAyIc+RXRzc3PU1dXF9u3b480334yTJ0/G3Llzo7Ozs9d2999/fxw+fLhneeaZZ7I6NAAAAOTDwL5svHnz5l6v161bF6NGjYqdO3fGzJkze9ZfdtllUVFRkfSZXV1d0dXV1fO6o6OjLyMBAABAzpzTPdHt7e0REVFWVtZr/Z/+9KcYMWJE3HjjjdHQ0BBffPHF135GY2NjlJaW9ixVVVXnMhIAAAD0m6JMJpM5m7/Y3d0d3//+96OtrS3efffdnvW/+93vYty4cVFZWRkffvhh/PznP4/p06fHa6+9dtrPOd2V6Kqqqmhvb4+SkpKzGQ0AKEANr32U8302LpyU830CcP7p6OiI0tLSpA7t09e5/1tdXV18/PHHvQI6IuKBBx7o+fOkSZNi9OjRMXv27Ni3b19cffXVX/mc4uLiKC4uPtsxAAAAIGfO6uvcS5cujTfeeCPeeeedGDNmzBm3ra6ujoiIvXv3ns2uAAAAoGD06Up0JpOJZcuWxYYNG2LLli0xfvz4b/w7u3btioiI0aNHn9WAAAAAUCj6FNF1dXWxfv362LRpUwwdOjRaWloiIqK0tDSGDBkS+/bti/Xr18f3vve9GD58eHz44Yfx4IMPxsyZM2Py5Mn98g8AAAAAudKniF6zZk1ERMyaNavX+rVr18aSJUti0KBB8dZbb8WqVauis7MzqqqqYtGiRfHoo49mbWAAAADIlz5/nftMqqqqorm5+ZwGAgAAgEJ11k/nBgA4n+X6J7f83BbAheGsns4NAAAAFyMRDQAAAIlENAAAACQS0QAAAJBIRAMAAEAiEQ0AAACJRDQAAAAkEtEAAACQSEQDAABAIhENAAAAiUQ0AAAAJBLRAAAAkEhEAwAAQCIRDQAAAIlENAAAACQS0QAAAJBIRAMAAECigfkeAADoPw2vfZTT/TUunJTT/QFArrkSDQAAAIlENAAAACQS0QAAAJBIRAMAAEAiEQ0AAACJRDQAAAAkEtEAAACQSEQDAABAIhENAAAAiUQ0AAAAJBLRAAAAkEhEAwAAQCIRDQAAAIlENAAAACQS0QAAAJBIRAMAAEAiEQ0AAACJRDQAAAAkEtEAAACQSEQDAABAooH5HgAA4GLX8NpHOd9n48JJOd8nwIXAlWgAAABIJKIBAAAgkYgGAACARCIaAAAAEoloAAAASCSiAQAAIJGIBgAAgEQiGgAAABKJaAAAAEgkogEAACCRiAYAAIBEIhoAAAASiWgAAABIJKIBAAAgkYgGAACARCIaAAAAEvUpohsbG2PatGkxdOjQGDVqVCxYsCB2797da5vjx49HXV1dDB8+PK644opYtGhRtLa2ZnVoAAAAyIc+RXRzc3PU1dXF9u3b480334yTJ0/G3Llzo7Ozs2ebBx98MF5//fV49dVXo7m5OQ4dOhQLFy7M+uAAAACQawP7svHmzZt7vV63bl2MGjUqdu7cGTNnzoz29vb4/e9/H+vXr4/vfve7ERGxdu3auP7662P79u1x8803Z29yAAAAyLFzuie6vb09IiLKysoiImLnzp1x8uTJmDNnTs82EydOjLFjx8a2bdtO+xldXV3R0dHRawEAAIBCdNYR3d3dHcuXL49bbrklbrzxxoiIaGlpiUGDBsWwYcN6bVteXh4tLS2n/ZzGxsYoLS3tWaqqqs52JAAAAOhXZx3RdXV18fHHH8dLL710TgM0NDREe3t7z3Lw4MFz+jwAAADoL326J/pLS5cujTfeeCO2bt0aY8aM6VlfUVERJ06ciLa2tl5Xo1tbW6OiouK0n1VcXBzFxcVnMwYAAADkVJ+uRGcymVi6dGls2LAh3n777Rg/fnyv96dOnRqXXnppNDU19azbvXt3HDhwIGbMmJGdiQEAACBP+nQluq6uLtavXx+bNm2KoUOH9tznXFpaGkOGDInS0tK47777or6+PsrKyqKkpCSWLVsWM2bM8GRuAAAAznt9iug1a9ZERMSsWbN6rV+7dm0sWbIkIiJ+/etfxyWXXBKLFi2Krq6uqKmpid/+9rdZGRYAAADyqU8RnclkvnGbwYMHx+rVq2P16tVnPRQAAAAUonP6nWgAAAC4mIhoAAAASCSiAQAAIJGIBgAAgEQiGgAAABKJaAAAAEjUp5+4AgDOrOG1j3K+z8aFk3K+TwC4WLkSDQAAAIlENAAAACQS0QAAAJBIRAMAAEAiEQ0AAACJRDQAAAAkEtEAAACQSEQDAABAIhENAAAAiUQ0AAAAJBLRAAAAkEhEAwAAQCIRDQAAAIlENAAAACQS0QAAAJBIRAMAAEAiEQ0AAACJRDQAAAAkEtEAAACQSEQDAABAIhENAAAAiQbmewAAAApLw2sf5XR/jQsn5XR/AOfClWgAAABIJKIBAAAgkYgGAACARCIaAAAAEoloAAAASCSiAQAAIJGfuDpHfgICAADg4uFKNAAAACQS0QAAAJDI17kvILn+anmEr5cDAAAXF1eiAQAAIJEr0fQbD10DAAAuNK5EAwAAQCIRDQAAAIlENAAAACRyTzQAAMBFxLOLzo0r0QAAAJBIRAMAAEAiEQ0AAACJ3BPNRSHX931EXHj3fgAAAK5EAwAAQDJXoiEPPBERssv/pwCAXHElGgAAABKJaAAAAEgkogEAACCRiAYAAIBEIhoAAAASiWgAAABI1OeI3rp1a8yfPz8qKyujqKgoNm7c2Ov9JUuWRFFRUa9l3rx52ZoXAAAA8qbPEd3Z2RlTpkyJ1atXf+028+bNi8OHD/csL7744jkNCQAAAIVgYF//Qm1tbdTW1p5xm+Li4qioqDjroQAAAKAQ9TmiU2zZsiVGjRoVV155ZXz3u9+Np556KoYPH37abbu6uqKrq6vndUdHR3+MBAAAkBcNr32U8302LpyU831eLLL+YLF58+bFCy+8EE1NTfH0009Hc3Nz1NbWxqlTp067fWNjY5SWlvYsVVVV2R4JAAAAsiLrV6Lvuuuunj9PmjQpJk+eHFdffXVs2bIlZs+e/ZXtGxoaor6+vud1R0eHkIYc8l9GAQAgXb//xNWECRNixIgRsXfv3tO+X1xcHCUlJb0WAAAAKET9HtGffvppHDlyJEaPHt3fuwIAAIB+1eevcx87dqzXVeX9+/fHrl27oqysLMrKyuKJJ56IRYsWRUVFRezbty8efvjhuOaaa6KmpiargwMAAECu9Tmi33///bj99tt7Xn95P/PixYtjzZo18eGHH8Yf//jHaGtri8rKypg7d2784he/iOLi4uxNDVywcn2PtvuzAQDoiz5H9KxZsyKTyXzt+3/729/OaSAAAAAoVP1+TzQAAABcKEQ0AAAAJBLRAAAAkEhEAwAAQCIRDQAAAIn6/HRuAPKjkH7+K9ezRPg5MgCgMLgSDQAAAIlENAAAACTydW4AAApaId3OAiCiAb6G+34BAPhfIhoAALjg+AYD/cU90QAAAJBIRAMAAEAiEQ0AAACJRDQAAAAk8mAxAABI5GFVgCvRAAAAkEhEAwAAQCIRDQAAAIncEw0AAJyzXN8vHuGecfLDlWgAAABIJKIBAAAgkYgGAACARCIaAAAAEoloAAAASCSiAQAAIJGIBgAAgER+JxoAAM5Tuf5tZr/LDK5EAwAAQDIRDQAAAIlENAAAACQS0QAAAJBIRAMAAEAiEQ0AAACJRDQAAAAkEtEAAACQSEQDAABAIhENAAAAiUQ0AAAAJBLRAAAAkEhEAwAAQCIRDQAAAIlENAAAACQS0QAAAJBIRAMAAEAiEQ0AAACJRDQAAAAkEtEAAACQSEQDAABAIhENAAAAiUQ0AAAAJBLRAAAAkEhEAwAAQCIRDQAAAIlENAAAACQS0QAAAJCozxG9devWmD9/flRWVkZRUVFs3Lix1/uZTCYef/zxGD16dAwZMiTmzJkTe/bsyda8AAAAkDd9jujOzs6YMmVKrF69+rTvP/PMM/Hss8/G888/Hzt27IjLL788ampq4vjx4+c8LAAAAOTTwL7+hdra2qitrT3te5lMJlatWhWPPvpo/OAHP4iIiBdeeCHKy8tj48aNcdddd53btAAAAJBHWb0nev/+/dHS0hJz5szpWVdaWhrV1dWxbdu20/6drq6u6Ojo6LUAAABAIcpqRLe0tERERHl5ea/15eXlPe/9r8bGxigtLe1ZqqqqsjkSAAAAZE3en87d0NAQ7e3tPcvBgwfzPRIAAACcVlYjuqKiIiIiWltbe61vbW3tee9/FRcXR0lJSa8FAAAAClFWI3r8+PFRUVERTU1NPes6Ojpix44dMWPGjGzuCgAAAHKuz0/nPnbsWOzdu7fn9f79+2PXrl1RVlYWY8eOjeXLl8dTTz0V1157bYwfPz4ee+yxqKysjAULFmRzbgAAAMi5Pkf0+++/H7fffnvP6/r6+oiIWLx4caxbty4efvjh6OzsjAceeCDa2tri1ltvjc2bN8fgwYOzNzUAAADkQZ8jetasWZHJZL72/aKionjyySfjySefPKfBAAAAoNDk/encAAAAcL4Q0QAAAJBIRAMAAEAiEQ0AAACJRDQAAAAkEtEAAACQSEQDAABAIhENAAAAiUQ0AAAAJBLRAAAAkEhEAwAAQCIRDQAAAIlENAAAACQS0QAAAJBIRAMAAEAiEQ0AAACJRDQAAAAkEtEAAACQSEQDAABAIhENAAAAiUQ0AAAAJBLRAAAAkEhEAwAAQCIRDQAAAIlENAAAACQS0QAAAJBIRAMAAEAiEQ0AAACJRDQAAAAkEtEAAACQSEQDAABAIhENAAAAiUQ0AAAAJBLRAAAAkEhEAwAAQCIRDQAAAIlENAAAACQS0QAAAJBIRAMAAEAiEQ0AAACJRDQAAAAkEtEAAACQSEQDAABAIhENAAAAiUQ0AAAAJBLRAAAAkEhEAwAAQCIRDQAAAIlENAAAACQS0QAAAJBIRAMAAEAiEQ0AAACJRDQAAAAkEtEAAACQSEQDAABAIhENAAAAiUQ0AAAAJMp6RK9cuTKKiop6LRMnTsz2bgAAACDnBvbHh95www3x1ltv/f9OBvbLbgAAACCn+qVuBw4cGBUVFf3x0QAAAJA3/XJP9J49e6KysjImTJgQ99xzTxw4cOBrt+3q6oqOjo5eCwAAABSirEd0dXV1rFu3LjZv3hxr1qyJ/fv3x2233RZHjx497faNjY1RWlras1RVVWV7JAAAAMiKrEd0bW1t/OhHP4rJkydHTU1N/PWvf422trZ45ZVXTrt9Q0NDtLe39ywHDx7M9kgAAACQFf3+xK9hw4bFddddF3v37j3t+8XFxVFcXNzfYwAAAMA56/ffiT527Fjs27cvRo8e3d+7AgAAgH6V9Yh+6KGHorm5Of7xj3/E3//+97jjjjtiwIABcffdd2d7VwAAAJBTWf8696effhp33313HDlyJEaOHBm33nprbN++PUaOHJntXQEAAEBOZT2iX3rppWx/JAAAABSEfr8nGgAAAC4UIhoAAAASiWgAAABIJKIBAAAgkYgGAACARCIaAAAAEoloAAAASCSiAQAAIJGIBgAAgEQiGgAAABKJaAAAAEgkogEAACCRiAYAAIBEIhoAAAASiWgAAABIJKIBAAAgkYgGAACARCIaAAAAEoloAAAASCSiAQAAIJGIBgAAgEQiGgAAABKJaAAAAEgkogEAACCRiAYAAIBEIhoAAAASiWgAAABIJKIBAAAgkYgGAACARCIaAAAAEoloAAAASCSiAQAAIJGIBgAAgEQiGgAAABKJaAAAAEgkogEAACCRiAYAAIBEIhoAAAASiWgAAABIJKIBAAAgkYgGAACARCIaAAAAEoloAAAASCSiAQAAIJGIBgAAgEQiGgAAABKJaAAAAEgkogEAACCRiAYAAIBEIhoAAAASiWgAAABIJKIBAAAgkYgGAACARCIaAAAAEoloAAAASCSiAQAAIJGIBgAAgET9FtGrV6+Oq666KgYPHhzV1dXx3nvv9deuAAAAICf6JaJffvnlqK+vjxUrVsQHH3wQU6ZMiZqamvjss8/6Y3cAAACQEwP740N/9atfxf333x/33ntvREQ8//zz8Ze//CX+8Ic/xCOPPNJr266urujq6up53d7eHhERHR0d/TFa1nV9cSyn+zvT/y65niWisOYppFkiCmueQpolorDmKaRZIgprnkKaJaKw5imkWSIKa55CmiWisOYppFkiCmueb/r3vkKap5BmiSiseRzHhTNLRGHNcz603ZczZjKZb9y2KJOyVR+cOHEiLrvssvjzn/8cCxYs6Fm/ePHiaGtri02bNvXafuXKlfHEE09kcwQAAADos4MHD8aYMWPOuE3Wr0R//vnncerUqSgvL++1vry8PD755JOvbN/Q0BD19fU9r7u7u+Nf//pXDB8+PIqKirI9XkHo6OiIqqqqOHjwYJSUlOR7HOgzxzAXAscxFwLHMec7xzCFIpPJxNGjR6OysvIbt+2Xr3P3RXFxcRQXF/daN2zYsPwMk2MlJSVOFpzXHMNcCBzHXAgcx5zvHMMUgtLS0qTtsv5gsREjRsSAAQOitbW11/rW1taoqKjI9u4AAAAgZ7Ie0YMGDYqpU6dGU1NTz7ru7u5oamqKGTNmZHt3AAAAkDP98nXu+vr6WLx4cdx0000xffr0WLVqVXR2dvY8rftiV1xcHCtWrPjK19jhfOEY5kLgOOZC4DjmfOcY5nyU9adzf+m5556LX/7yl9HS0hLf+c534tlnn43q6ur+2BUAAADkRL9FNAAAAFxosn5PNAAAAFyoRDQAAAAkEtEAAACQSEQDAABAIhGdY6tXr46rrroqBg8eHNXV1fHee+/leyRItnLlyigqKuq1TJw4Md9jwRlt3bo15s+fH5WVlVFUVBQbN27s9X4mk4nHH388Ro8eHUOGDIk5c+bEnj178jMsnMY3HcNLliz5yrl53rx5+RkWvkZjY2NMmzYthg4dGqNGjYoFCxbE7t27e21z/PjxqKuri+HDh8cVV1wRixYtitbW1jxNDF9PROfQyy+/HPX19bFixYr44IMPYsqUKVFTUxOfffZZvkeDZDfccEMcPny4Z3n33XfzPRKcUWdnZ0yZMiVWr1592vefeeaZePbZZ+P555+PHTt2xOWXXx41NTVx/PjxHE8Kp/dNx3BExLx583qdm1988cUcTgjfrLm5Oerq6mL79u3x5ptvxsmTJ2Pu3LnR2dnZs82DDz4Yr7/+erz66qvR3Nwchw4dioULF+Zxajg9P3GVQ9XV1TFt2rR47rnnIiKiu7s7qqqqYtmyZfHII4/keTr4ZitXroyNGzfGrl278j0KnJWioqLYsGFDLFiwICL+cxW6srIyfvazn8VDDz0UERHt7e1RXl4e69ati7vuuiuP08JX/e8xHPGfK9FtbW1fuUINheyf//xnjBo1Kpqbm2PmzJnR3t4eI0eOjPXr18cPf/jDiIj45JNP4vrrr49t27bFzTffnOeJ4f+5Ep0jJ06ciJ07d8acOXN61l1yySUxZ86c2LZtWx4ng77Zs2dPVFZWxoQJE+Kee+6JAwcO5HskOGv79++PlpaWXufm0tLSqK6udm7mvLJly5YYNWpUfPvb346f/OQnceTIkXyPBGfU3t4eERFlZWUREbFz5844efJkr/PxxIkTY+zYsc7HFBwRnSOff/55nDp1KsrLy3utLy8vj5aWljxNBX1TXV0d69ati82bN8eaNWti//79cdttt8XRo0fzPRqclS/Pv87NnM/mzZsXL7zwQjQ1NcXTTz8dzc3NUVtbG6dOncr3aHBa3d3dsXz58rjlllvixhtvjIj/nI8HDRoUw4YN67Wt8zGFaGC+BwDOH7W1tT1/njx5clRXV8e4cePilVdeifvuuy+PkwFcvP77toNJkybF5MmT4+qrr44tW7bE7Nmz8zgZnF5dXV18/PHHnqvCecuV6BwZMWJEDBgw4CtPGGxtbY2Kioo8TQXnZtiwYXHdddfF3r178z0KnJUvz7/OzVxIJkyYECNGjHBupiAtXbo03njjjXjnnXdizJgxPesrKirixIkT0dbW1mt752MKkYjOkUGDBsXUqVOjqampZ113d3c0NTXFjBkz8jgZnL1jx47Fvn37YvTo0fkeBc7K+PHjo6Kiote5uaOjI3bs2OHczHnr008/jSNHjjg3U1AymUwsXbo0NmzYEG+//XaMHz++1/tTp06NSy+9tNf5ePfu3XHgwAHnYwqOr3PnUH19fSxevDhuuummmD59eqxatSo6Ozvj3nvvzfdokOShhx6K+fPnx7hx4+LQoUOxYsWKGDBgQNx99935Hg2+1rFjx3pdkdu/f3/s2rUrysrKYuzYsbF8+fJ46qmn4tprr43x48fHY489FpWVlb2efgz5dKZjuKysLJ544olYtGhRVFRUxL59++Lhhx+Oa665JmpqavI4NfRWV1cX69evj02bNsXQoUN77nMuLS2NIUOGRGlpadx3331RX18fZWVlUVJSEsuWLYsZM2Z4MjeFJ0NO/eY3v8mMHTs2M2jQoMz06dMz27dvz/dIkOzOO+/MjB49OjNo0KDMt771rcydd96Z2bt3b77HgjN65513MhHxlWXx4sWZTCaT6e7uzjz22GOZ8vLyTHFxcWb27NmZ3bt353do+C9nOoa/+OKLzNy5czMjR47MXHrppZlx48Zl7r///kxLS0u+x4ZeTncMR0Rm7dq1Pdv8+9//zvz0pz/NXHnllZnLLrssc8cdd2QOHz6cv6Hha/idaAAAAEjknmgAAABIJKIBAAAgkYgGAACARCIaAAAAEoloAAAASCSiAQAAIJGIBgAAgEQiGgAAABKJaAAAAEgkogEAACCRiAYAAIBE/we2MP8pKbD2EQAAAABJRU5ErkJggg==", + "text/plain": [ + "<Figure size 1200x500 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = plt.figure(figsize=(12, 5))\n", + "ax = fig.gca()\n", + "\n", + "#Graficamos los datos\n", + "plt.bar(pm_data_h.index, pm_data_h['mean'], alpha=0.6)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "D5cAG-g9j18t" + }, + "outputs": [], + "source": [ + "import seaborn as sns" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "YQ4J1pP-j6Yb" + }, + "outputs": [], + "source": [ + "pm_data_hmax = pm_data.groupby(pm_data['hora']).max()\n", + "pm_data_hmin = pm_data.groupby(pm_data['hora']).min()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 513 + }, + "id": "dozoMaH2kBSN", + "outputId": "80951a2b-5072-4dc7-f197-f21433edb529" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABOAAAAHwCAYAAAAPVRBMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1wT9/8H8NclQAKELSIbNygOFFedrbWO1mJdiJPWam21ddFat0gdbV111mqrOL6KW+uoVat1W3cd4Ga6QdlhJJ/fH/xyTUgCYSaH7+fjwUNz830jd5f3fQbHGGMghBBCCCGEEEIIIYRUCJGxAyCEEEIIIYQQQgghpCqjBBwhhBBCCCGEEEIIIRWIEnCEEEIIIYQQQgghhFQgSsARQgghhBBCCCGEEFKBKAFHCCGEEEIIIYQQQkgFogQcIYQQQgghhBBCCCEViBJwhBBCCCGEEEIIIYRUIErAEUIIIYQQQgghhBBSgcyMHQAhhFR1O3bswM2bN1G7dm0MGTLE2OEQQgghhBBCCKlklIAjhJAKdOrUKQwYMAD29vY4e/asscMhhBBCCCGEEGIEVAWVEEIqyIsXLxASEgJzc3Ps27cP9erVK3L6rKwsTJ8+HX5+frC0tATHceA4DteuXQMA+Pj4gOM4rF+/vuKDryRVcZv0CQ0NBcdxCA0NNXYoRlXW/UD7kZS3WbNmgeM4dOrUydihEELKwYkTJ/hnKEIIMSVUAo4QUqUplUrs3bsXv//+O86fP49nz54hLS0NMpkM7u7uCAgIQLdu3dCzZ0/Y2tqW63oHDx6MJ0+eYPv27XjrrbeKnSc4OBj79+8HAFhaWsLFxQUAYG5uXm5xEUIqxp49e3Dt2jU0bdoUvXr1MnY4RACuXbuGPXv2wN7eHuPGjTN2OKQIs2bNAlDwAsDHx8eosRBCCBEuSsARQqqsCxcuYNiwYbhz5w4/TCwWw87ODpmZmbh16xZu3bqFTZs2wdbWFrNmzcL48ePLZd1z587Fn3/+icWLF6N3797FTh8TE8Mn36KiotC/f3+taWrXrg2pVAo7O7tyiZFULldXV9SvXx+urq7GDkXQTHU/7tmzB5GRkRg2bBgl4IhBrl27hvDwcHh7e1MCzsSFh4cDADp16kQJOEIIIaVGVVAJIVXSnj170KFDB9y5cwdOTk6IiIjAzZs3kZeXh+TkZMjlcjx79gw7duxAUFAQMjIyEBUVVW7rnzZtGhhjBv+ounHjBgDAyclJZ/INAI4dO4aYmBh89NFH5RUmqUTz5s1DTEwM5s2bZ+xQBI32IyGEEEIIESIqAUcIqXJiYmIwePBg5ObmonHjxjh06BDc3Ny0pqtevTr69OmDPn364NatW1i7dq0Roi2QlZUFAJDJZEaLgRBCCCGEEEJIxaAScISQKmfatGnIzMyEtbU1du/erTP5VljDhg2xePFireGFG+feuXMn3nvvPVSvXh0ikYhvFwYAbt68iVmzZuGdd95B7dq1YWlpCVtbWwQEBGDatGl4+fKl3uWrGpSPi4vjGw4u3NC8IR0WXLhwAR9//DHq1KkDKysr2NraokGDBvjkk09w+PBhrenPnz+PSZMmoX379vD29oZUKoW9vT1at26N77//HhkZGcXuu6JkZ2fju+++Q4MGDWBpaYnq1aujR48eOHbsmMHLOHDgAPr06QN3d3dIJBI4ODigQ4cOWLVqFXJzc8sUX0JCAr755hs0bdoUdnZ2sLS0RO3atREUFIQNGzZALpdrTP/o0SN8//336NatG+rVqwdra2vIZDI0aNAA48aNQ3x8vN51FdV5wKtXr/Drr7+if//+aNSoERwdHSGVSuHt7Y2BAwfi/PnzRW7HhQsXMGjQINSsWRNSqRTW1tbw9vZGx44dERERgcTERIP3yYABA8BxHHr06FHkdPfv34dIJALHcThx4oTBy1fHGMPPP/+Mli1bwtbWFra2tmjXrh3+97//6Z2nuE4YGGNYt24d2rRpAxsbG9jZ2aFVq1b45ZdfwBgzqBOHXbt24YMPPoCLiwssLCzg4uKCDz74ALt379aaVtXYd2RkJAAgMjJS4zusb//cvHkTI0eORN26dWFlZQWZTIbGjRtj6tSpOq8VKuV5rAFg/fr14DiOr1Z35MgRdO/eHc7OzrC0tETDhg3x3XffaX0XVPLy8rBv3z6MHDkSgYGBcHV1hYWFBapXr46uXbtiy5YtYIzpnLdwQ+lXr17FoEGD4OHhAXNzc41OEZ4+fYply5YhKCgIfn5+/Pe1Tp06+PTTT3Hr1q0SbbehsrKysGXLFgwdOhRNmzaFs7MzJBIJ3Nzc0KtXLxw6dKhUy+U4Dh9//DEA7es+x3Ea9xaVFy9eYNq0aQgICICdnR2kUilq1aqF4cOH693+wvv433//RUhICNzc3GBpaQk/Pz8sWLAA+fn5/DxnzpxBr1694OrqCqlUCn9/f6xYsULvcVS/N6Wnp2Py5MmoX78+LC0tUa1aNfTq1QsXLlwodp+cOXMGgwcP5u9FdnZ2aNmyZZH3IvXvM2MMa9euRbt27eDk5KR1vyzN/U61fJW3335b4zipV0ct/F3SJTY2lp83NjZWY1zh+Y8fP84fB7FYrHHNKsu9qDidOnXiz8Hc3FzMnz8fjRs3hrW1NRwcHNClSxeDzvuSXEdVSnI8S+L+/fv45JNP4OnpCYlEAg8PD4wYMQJJSUlFzvf06VN8/fXXaNiwIaytrWFtbY2GDRvim2++wbNnz3TOU/gYP3jwACNHjkTNmjUhkUg0zo+y3vsJIQLECCGkCnn8+DHjOI4BYKNGjSrz8mbOnMkAsI4dO7IJEyYwAIzjOObg4MDEYjGbOXMmP623tzcDwAAwqVTKHB0d+VgAMHd3dxYTE6Ox/B9//JG5uLgwW1tbBoCJRCLm4uLC/3311Vday1+3bp1WnPn5+eyrr77i1wWAWVtbMwcHBz4GOzs7rfnUp7eysmIODg4awxo0aMCePXtWqn2XnJzMAgIC+GWZmZkxe3t7fh+uXLmyyG3Kyspiffv21YjH1tZWY5+2bt2apaSklCq+DRs2MKlUyi/LwsKCOTk5MTMzM37Y1atXNebp2LGj1vQikYgfZmdnx06dOqVzfcOGDWMA2LBhw7TGqc4zAEwsFjMHBwcmkUj4YRzHsZ9++knnctevX6+xTyQSCX8+qf507V99jh8/zp+LcXFxeqebNGkSA8Dq1atn8LIZ09wPwcHB/LrUz1UA7OOPP2ZKpbLI+QvLz8/nl6n+XVUdo5CQkCLnz8nJ0ZhfFZf6MQ4JCWG5ubn8PGfOnGEuLi78uSSVSjW+wy4uLuzMmTMa6/n+++81lmllZcUsLCz4z66uruzKlSta8ZX3sWaMsXXr1jEAzNvbm61YsYJfvr29vcZ3ISAgQOd3TXW+qH9HbWxsNIb169ePKRSKIufdsWMHMzc355chlUpZx44d+WlVx011LXF0dNSITyKRsB07dpRo21XUr/P69o/qfLKzs2NWVlYa2zdx4sQSr7Oo676Liwv78ccfNaY/cuQIf/0EwMzNzZm1tbXG9SgyMlJrPer7+ODBg/x5amdnp3EuDRgwgDHG2Jo1a5hYLOa3VX07J02apHNbVNfxRYsWsfr16/PxqJ+bIpGI/frrrzrnVygUWvcvmUzGxGIx/7l+/fosNjZWa17VeTF06FDWp08fre+t+vehNPe7r776irm4uPDTODg4aBynwMBAflr175I+jx494pf16NEjjXHq8y9ZskTj3m1ubq5xzSrLvag4qmVPnjyZtW/fXuv+rfpTf/5RV5rrqEpJjmdR1M/7v/76i8lkMgaA2djYaFw33NzcWGJios5lnDhxQmObra2tNb5zDg4OOvex+jHevHkzv24rKytmbW2tcX6U5d5PCBEmSsARQqqUzZs3a/zYKCvVw5HqAWrSpEns+fPnjDHG5HK5xg+CoUOHsvXr12skLXJyctjRo0dZy5YtGQDWrFkznesx5MG9qGTVN998w2/3J598wu7cucOPe/36NduzZw8LDg7Wmq9nz54sKiqKPXnyhB+WlZXFdu3axf+Q+uijj/TGVJSPPvqI/2H8888/s+zsbMYYY7Gxseyjjz5i5ubm/A9ZXds0ePBgBoDVqlWLbd68maWmpjLGGMvOzmZ79+5ltWrVYgBYr169Shzb/v37+R83bdu2ZadOneITBDk5OezUqVNsxIgR7NatWxrzjR07lq1YsYLdvXuXnz4vL49duHCBdevWjX+gz8rK0lpnUYmf1atXs5kzZ7JLly6xnJwcxhhjSqWSPXz4kI0dO5ZxHMfEYrFWUiYzM5NPdgwePJjdv3+fH5eRkcEuXbrEvv76a3bgwIES7R8/Pz8GgM2YMUPn+NzcXP5H6YIFC0q0bNV+UCUAIiIi+GP7/PlzNmbMGP5c1vXDo6j9OG/ePH7eCRMmsJcvXzLGGEtNTWVz587lE3L65p84cSL/o2f69Ons1atXjDHGUlJS2JQpU4pMRBQVl7q1a9fy15Q5c+bw3738/Hx26dIl9s477zAAzMPDg6Wnp/PzVdSxVl17rKysmLm5OevXrx+Lj49njBVcC1atWsX/INR1Lbhw4QL77LPP2JEjR/jjyFhBAv6nn37ikzC6jqX6j2SZTMZ69OjBoqOj+fF3797l/x8REcF+/PFHduPGDZaXl8cYK0jc3Lx5kw0aNIj/gZyUlFSi7Wes6ATcnj17WFhYGDt9+jTLzMzkhz9+/JiFh4fzScO9e/eWeL2GXPcZY+zff/9llpaWDAAbMWIEu337NsvPz2eMMRYXF8e++OILPkly8eJFjXnV97G9vT0LDg7m71FpaWls8uTJ/Ph58+Yxc3Nz9uWXX/KJqJSUFBYaGsonQtTvLSqqe5OdnR1zcHBg27Zt44/R7du3+YSOmZkZu3z5stb806ZNYwBY9erV2YoVK1hycjJjrOA6c/z4cf5FTrNmzbQSuarvnUwmY2ZmZmzBggX8eZiens4eP37MT1uW+51qHx0/flzvcSqvBJxUKmVisZiFhoby38X8/HyN73xZ7kXFUR0vOzs7rft3fHy8xosxXed9eVxHDTmeRVE/7x0cHNiHH37IX1tycnJYVFQUfz0dMmSI1vzx8fF88q1Bgwbs9OnT/LiTJ0/y54ujo6NWAk/9GMtkMtaqVSuN76X6d6i0935CiHBRAo4QUqVMnTqVf/Ax9EGtKOpvJydMmFDq5aSnp/MJC11vTMuSgLtz5w7/Zvmbb74pdYyFJSYmMolEwjiOK7IklC4XLlzg95uuUg/5+fmsXbt2/DSFt+nkyZP8DzLVD5DCEhIS+LfRhUuqFSUvL4/VrFmTAWDt2rXjH3rLKj8/nzVu3JgBYBs3btQab2iCRpfRo0czAGz48OEaw1X72dramv/BWx6WLFnCJ4FUP/TV7dixg0+uvnjxokTLVi/JNH36dJ3TqJKvjo6O/A+/wvMX3o8ZGRl8sqfwflJR/z4Xnj8xMZEvGTF58mSd86tKwZqbm2tdXww5vmlpafyPuj/++EPnNHl5eax58+YMAFu8eDE/vKKOtXoJr44dO+osqaZKGgJg//zzT4mWv337dgaA1a5dW2uc+o/kli1b6jzXDPX+++8zACwiIqLE8xaVgCvOjz/+yACwzp07l3heQxNwqqSsvvOSMcaXIAsKCtIYrr6Pu3TporNUqaqUEwD26aefao3Pz8/nr5m69q966e+jR49qjc/KymJ169ZlAFiPHj00xj169IiJxWJmaWnJrl27pnPb0tLSmIeHBwPAdu/erTFO/XqydOlSnfMborj7XWUm4ACw3r17l3JLir8XFUe9dJ2u+7dCoWAdOnRgAFjDhg01xpXXdbSsx1P9vH/77bd1XteWLl3KADBLS0uta+qoUaP45J16wlYlISGBv9+MHj1aY5z6Mfb29tZ4kVJS+u79hBDhojbgCCFVSnJyMv9/R0dHndPcv38fNWrU0Pl39uxZnfOIRCJMmjSp1HHJZDJ07NgRAHD69OlSL0eXyMhIKJVKODk5ITw8vNyW6+7ujiZNmoAxpne/6LN161YAgKenJ9/OkTqxWIzp06frnf/XX38FAAwaNAienp46p/Hw8MDbb78NADrbt9Pn+PHjePToEQBg8eLFsLCwMHjeoojFYnTr1g1A+R/j999/X+dy7e3tAQC5ubka535ZDRs2DFZWVkhMTMTBgwe1xq9ZswYA0Lt3b1SrVq1U67C0tERYWJjOcTNmzAAApKSk4MiRIwYt788//0RaWhoAYOrUqTqnmThxIqysrHSO27lzJ/Lz8yGVSvHtt9/qnGbatGmQSCTIy8vDjh07DIqr8Dpev36NgIAAdO3aVec0ZmZmCAkJAaB5XlfUsVY3bdo0iETaj4Yff/wxPDw8APz33TaU6tx98OABnj59qne6r7/+GmKxuETL1rWe8v7uGbrec+fOQaFQlPvyY2Nj8ddff8HMzEzv9wUAhg4dCgA4evSo3jgmTZqk0Z6Zivq5OHnyZK3xYrEYnTt3BlDQhpw+bdu25adTZ2lpia+//hoA8McffyA1NZUft379eigUCnTr1g1NmjTRuVwbGxv06tULgP5rvYODAz777DO9sRWnLPe7iqDrOBiqvO5F+u7fIpEI06ZNAwDcunWL78UdKL/raFmPp7opU6bovK4FBQUBKGir9t69e/xwxhi2bdsGABg1ahRq1KihNa+HhwdGjRoFoOhr4pgxY8rUuZaxrmuEkIpDvaASQt44+fn5ehvP1deof506dVC9evVil71//35s3LgRFy9exLNnz/jeTdWVtJH04qh+LHTp0gVSqbRE8yqVSmzduhVbt27FtWvX8OLFC52NrZc05kuXLgH4rzFnXTp06AAzMzONxr9Vzpw5A6AgEVdUg/yqH3JxcXEGx6baXzVq1EBgYKDB86mcOnUKv/76K86fP4/ExERkZmZqTVOaY/zw4UOsXLkSx48fx4MHD5Ceng6lUlnkcmvXrg1fX1/ExMSgVatW+Pzzz9G1a1c0atSoTMkMe3t7BAcHY926dVizZg169uzJj4uLi+OTYiNHjiz1OgIDA2Fra6tzXN26deHh4YHExERcunRJY/36XLlyBQDg5eWFmjVr6pzGxsYGzZs3x6lTp7TGqc7ZFi1a6I3LwcEBgYGBOHPmDD99SajO6+joaJ0/6lSys7MBaJ7XFXWsVczMzNC+fXud40QiETp16oRNmzbp3O709HT8/PPP2L9/P6Kjo/H69Wvk5eVpTZeYmKh3u9u2bVtsjNevX8fq1atx+vRpxMbGIiMjQ6tjgPK+vgLAs2fPsHLlSvz555+4e/cuUlNTtZJcWVlZePXqVakT0vqozhmlUokGDRronU4VT2ZmJpKTk3Xer1q2bKlzXhcXFwAFL61q1apV5DSvXr3SG8M777xT7DilUokrV67wL09U2/fnn38W+Z1QdZCg71rfokWLYl+mVNT9rrxZWlqiWbNmxU5XUfcilaLu3+3bt+fv35cuXUKjRo0AlN911JDjaahWrVrpHK7eQVdKSgr//0ePHvGf3333Xb3L7dKlC3744QckJyfj0aNHOu87hlzXSnPvJ4QIFyXgCCFVipOTE///lJQUuLq6ak3j6+ur8aMtNjZW7w92leKSb0qlEoMHD8aWLVsAAFKpFDVr1oS9vT3/EBkTE4Nnz57pfEguC1WpEm9v7xLNl5WVhQ8++ADHjx/nh1lYWMDR0RHm5uYACvZhXl5eiWN+/vw5gIJSBfpIpVI4OTnpTIY+fvwYAJCWlsaXaipuWwxV2v0FFJQg+eGHH/jPYrEYDg4O/DHOyMhAZmZmiffX7t27ERISgpycHH6Yra0tpFIpOI5Dbm4uXr16pbVcsViMrVu34qOPPsKjR4/w7bff4ttvv4WVlRXeeust9O7dmy/NVlKjRo3CunXrcPDgQSQlJfHHcu3atVAqlahfv75GL5UlVdS5oRqfmJjIn0vFefHiBQAU2+uxvvUacs4C4EuCGRqXOtV5LZfL9fYqqk79vK7IYw0A1apVg0Qi0TtetV8Kb/fdu3fRuXNnjR+IVlZWsLe350udqL7jRX0virvGLl++HGPHjuV/mHIcBzs7Oz7m7OxspKWllfv19dy5c+jRowdev37ND5PJZLCysgLHcVAoFHyvtZmZmeWegFOdM0qlUu+Lo8L0XQ9tbGx0DjczMytyvPo0uhKrKkV9d9THqZ9Dqu0z9Lqpb9uKO38q8n5X3pycnHSW2FJXUfcidYbev9WPZ3ldRw154Wmo4s57QPO8Vo+pqO1QbYNqHl3PkcVtR2nv/YQQ4aIqqISQKkW9hMC1a9fKbbnFlTD59ddfsWXLFlhaWmLDhg1ITU3F7du3cfbsWZw4cQInTpzg36QWLrFRVvreUBdnzpw5OH78OCwtLbF48WLExcVBLpcjOTkZT58+xdOnT/k3x+Udc3FUpTlWrVoFVtBeaZF/69evN3jZpd1fR44c4X/wfPHFF7hx4wZycnKQkpLC76/x48cDKNn+Sk5ORmhoKHJycvDOO+/gxIkTyMrKQmpqKp49e4anT59i+/bteudv0qQJYmJisHPnTowcORL+/v7Izs7G0aNH8cUXX8DX11ejipChWrZsiWbNmkGhUPBVghUKBdatWwcAGDFiRImXWRlKe3wrg+q8Dg4ONui8jo2N1Zi/oo51WXz88cdITEyEj48Ptm/fjuTkZGRmZuL58+d4+vQpkpKS+GmL+l4UdY2Njo7GuHHjoFQq0a9fP/zzzz+Qy+V49eoV/91btGhRsesoqfz8fISEhOD169do2rQpDh48iLS0NKSnp/PfzfPnzxu0faWlOmdcXFwMOmcYY/Dx8Sn3OCqKavsmTZpk0LadOHFC53KKu0eb8v2usOK2paLuRaakPEr1moKitqOs935CiDBRAo4QUqW8/fbb/A/wffv2Vdp6VW2AfP755xgyZIjOqhPqP0TLk6raTkmqYQL/xTxjxgyMGzcOXl5eWsmLotpsKorqrW9R25yTk6O3LavSbpMhyrq/unbtihUrVsDf31/r4bo0+0v1o97BwQG///47OnbsCEtLyxIt18LCAr1798bq1atx48YNvHjxAj///DMcHR2RkJCAYcOGlTguAHwbN7/99huUSiVfGk4ikZR6mSrFfR9U4w0tCeHs7AzgvxI1JV2vaj3FVfVRjS9NCY3yOK8r6li/fPlSbxV8QPfxSEhI4Kt0b9myBX379tVqe7O01xB1O3bsgEKhgJ+fH7Zu3aqzelp5rKewc+fOIS4uDmKxGPv370f37t21StNUxHrVqc6Zly9fmnwpmKK+0+rj1M+hirzWq6vI+52KqkRVUaVb1du/K62KuhcVZuj9W/14VsZ1tKKpx1TUdqiPK812lMe9nxAiPJSAI4RUKa6urujduzcAYOPGjXxj+xUtISEBQEHbVbq8fv0aFy5cqJB1v/XWWwAK3oobUq1NRRVzQECAzvGxsbG4f/9+qWJSta32999/630Df/LkSZ3tvwH/tZuyf//+Uq2/KKr99fTp0xK141Xc/mKM4a+//ipxPKrl1q9fX2/1waNHj5ZomU5OTvjss8/w/fffAwCuXr1aqob7Bw4cCFtbW8TFxeHw4cPl0vmCyqVLl/h2nQq7f/8+/+PG0Hb6VG0mxcXFaZUcU8nIyMDly5d1jlOt59KlS3p/JL9+/VqjjSN1qipjRZU4UZ3Xly9fxpMnT/ROVxLldazz8/N1to0HFGzT33//DUDzeKjOXUD/96Kk564uqvU0adJEb9W88liPvvU6OzvrrYpWlvWW5JxRKBQ4dOhQqddVGdSrd+obJxKJNM4V1fYdPXq0RPevkirr/U6VrCvqWDk4OAAoqI6oXqVQXXk8B1TUvaiwou7fp06d4u/f6teEsl5HTUHNmjX5FwnHjh3TO53qu+/k5FRsMya6VMS9nxBi+igBRwipcr777jtYW1sjMzMTvXr1KrZETHmws7MDAL0/7mfOnMk3rF7eQkNDIRaLkZycjJkzZxo8nyrm69ev6xyvrwczQwQHBwMA4uPjERkZqTVeqVTiu+++0zu/qnH/mzdvYtWqVUWuKzMzs8iSO4W9/fbbfEPj48ePN3je4vbXzz//jIcPHxocR+Hl3r17V+cP0GvXruntiELfjzwV9bfpxbUppIu1tTWGDBkCoOB7peoRtSydL6hkZ2djwYIFOsepzg1HR0d06dLFoOW99957fKPfc+fO1TnN4sWL9bYh1adPH5iZmUEul/PJrMLmzp2LnJwcmJubo0+fPhrjVOtWbyussH79+sHe3h55eXmYMGFCkT/mlUqlxrIq+lgDBdX0Cjf+DRT0tKz6saj6bgP/nbuA7u9Fenp6kd9zQ6nWc+PGDZ377NChQ3qrJpbHep89e6az/bXExEQsXbq01Ms35JypW7cu39bi1KlTiy1Bpd6YfGU7ffq0zuMgl8uxcOFCAAWltlQ9+gLAJ598AjMzM7x8+bLY+1dubq7epH1xynq/M+RYqXpxZYxh9+7dWuOzs7OxePFiQ8ItUkXdiwor6v6tusY2aNCA74ABKPt11BRwHMdf51avXq2zFNrjx4+xevVqAOB7rS6pstz7CSECxgghpAravXs3s7CwYACYk5MTi4iIYDdv3mRKpZKfJjU1lR06dIh98MEHDAADwI4fP66xnJkzZzIArGPHjkWub9q0aQwAE4lEbPny5UwulzPGGHv8+DEbPXo0A8CqVavGALBhw4Zpzb9u3ToGgHl7e+tdh7e3NwPA1q1bpzXu22+/5bdh+PDh7O7duxrbuXXrVtarVy+NeQYPHswAMBsbG7Zz506Wl5fHGGPs4cOHLCQkhHEcxxwcHBgANnPmzCK3X5cPP/yQAWBSqZT98ssv/D6Ji4tjffv2Zebm5szKykrvNn388ccMAOM4jo0bN449ePCAHyeXy9m5c+fY119/zZycnFhCQkKJYjt48CDjOI4BYO3atWOnTp1iCoWCMcZYTk4OO378OBs0aBC7desWP8/atWv5fTx79myWkZHBGGPs1atXbM6cOUwsFjMnJye958uwYcN0Hv+7d+8ykUjEALDevXuzxMREPo6oqCjm7OzML7fwbXv9+vXsrbfeYj///LPG/snPz2d//PEH8/DwYABYmzZtSrR/1N24cYNfNwBWv379Ui+Lsf/2g52dHROJRGzu3LksLS2NMcbYixcv2FdffcWva/HixXrn1/U9mjNnDj/v119/zZKTkxljjKWlpbH58+czkUjEn9O65p84cSJ/zs2YMYO9evWKMVZwjFXfcQBs0qRJWvOuWbOGAWAODg4sOjpa7/avX7+eX0737t3Z+fPn+XNPoVCw27dvswULFjBfX1+2ceNGjfkq4lirrj1WVlbM3NycBQcH89+n7Oxstnr1aiaVShkAFhQUpDGvQqFgXl5eDABr2LAhu3TpEj/u7NmzrFmzZhrnbuHr6/Hjx3We14UdPXqUn+7zzz/nj2tGRgb7+eefmZWVFb+eoq6h+ui7zr9+/ZpZW1szAKxDhw7szp07jLH/9nnt2rU1tu/Ro0clWu+9e/f4eaOiovROd+PGDSaTyRgA5uvry/bs2cOys7P58YmJiWzDhg3snXfeYZ9++qnGvIbsY0PuP0XdC1X3Jjs7O+bo6Mi2b9/O30+io6PZO++8wwAwsVjMLl68qDV/eHg4H+OQIUPYjRs3+HF5eXns6tWrLDw8nHl6erJTp05pzFvU9UBdWe93bdu2ZQBYnz59WGZmpt71tGvXjgFgrq6u7MiRIyw/P58xxtilS5fYW2+9xRwdHfWeL4YcB8bKfi8qTseOHfnjqbp/q863+Ph41r9/f379u3bt0pq/LNdRQ49ncQy9tui7NiUkJDB7e3v+2nbmzBl+3OnTp5mfnx8DwBwdHfl7tsqjR48MuiaU5d5PCBEu+jYTQqqsc+fOsfr162skD1QPpra2thrDbWxsWEREhMaPGsYMT8C9evWK+fr68ssTiUT8wxsANmrUqCIfLMuagMvPz+cTfao/mUzGHBwc+ESTnZ2dxjyxsbHMxcWFn97MzIzZ2dnxn+fOncs/iJcmAffy5UvWpEkTfnnm5ub8PuE4jq1YsaLIbcrJyWGffvqpzm1SPbSq/go/ABsiMjKSSSQSfhkSiYQ5OTkxMzMzftjVq1f56XNzc1n79u35caofbKpY3n//ff7HRUkScIwxNmnSJI3tsbOzY+bm5gwAq1mzJtu8ebPOh3DVeVN4G9T3j5ubW5EJIUOoflQCYAsWLCjTstT3Q3BwMP+9VD9XAbChQ4fyiSl98xeWl5fH+vbtq/E9dHBwYGKxmP9xP3ToUAaAffbZZ1rz5+TkaPy4VM2vvj9DQkJYbm6u1rwpKSnM2dmZn65atWrM29ubeXt7s3PnzmlMu2rVKv4FgfpxUx1z1d+mTZv4eSrqWKtfe5YvX84fAwcHB414mjRpwl6+fKk1/++//67xnbGysuIT69bW1hrJs9Im4BhjbMCAARrbb29vzx/X5s2bs2XLlhmUvNClqOv8qlWrtK5BqoRktWrV2L59+wz6sa1P586dNe5DqnOmcPL59OnTrEaNGlr3MktLS434jJmAW7RoEX/PlUgkGvcTjuPYL7/8onPZSqWSTZ8+XeP7b2lpyZycnPhjrPo7ffq0xryGJmzKer/buHGjxr3M3d2deXt7s7Zt22pMd/XqVY3nC6lUyidxXVxc2IEDB/SeL4Ym4Mp6LyqOaj9MnjyZv/abm5vzCUrV37Rp03TOX5brqKkk4Bhj7MSJExrniLW1NX8sVdegkydPas1naAKOsdLf+wkhwkVVUAkhVVbr1q1x+/Zt7Ny5E6GhofD19YWtrS1SU1MhEong5+eHQYMGITIyEk+ePMG0adMglUpLtS57e3ucPXsW48aNg4+PD8RiMczMzPD2229j69atxVajLCuxWIzly5fj9OnTGDRoELy8vJCXlwfGGBo0aIDhw4dj586dGvN4e3vj0qVLGD58ONzc3AAAUqkUH3zwAQ4fPozJkyeXKSYnJyecPXsW4eHh8PX1hUgkgpmZGbp164YjR47giy++KHJ+CwsLrFmzBmfPnkVoaChq164NhUKBjIwMVK9eHZ06dcKMGTPw77//6m2fqShDhw5FTEwMxo0bhwYNGsDMzAzZ2dnw9vZGr169sHHjRvj5+fHTm5ub488//8TMmTNRr149mJubgzGGli1bYtWqVdi3b1+pe26bP38+NmzYgJYtW8LS0hJ5eXmoU6cOpkyZgqtXr/LHp7APP/wQGzZswMcff4wmTZrAzs4OqampsLGxQcuWLREREYFbt27B19e3VHGp9OvXDwDKpfMFdVu2bMHKlSsREBCA/Px8WFtbo02bNtiwYQMiIyNLXJXSzMwM27Ztw9q1a/l9mZ+fj8DAQKxduxYbNmzgq5CpV4NTsbCwQFRUFHbs2IHu3bvDyckJ6enpcHJyQvfu3bFr1y7873//g7m5uda8Dg4OOHnyJAYMGAB3d3ekpqYiLi6O721R3ahRo3Dnzh2EhYWhSZMmkEgkeP36NWQyGQIDA/Hll1/iyJEjGlWbKuNYjx49GocPH0a3bt0gEokgEong6+uL2bNn49y5c3ByctKa54MPPsDJkyfx/vvvw97eHvn5+ahWrRo+/vhjXL58GZ07dy51POo2b96MJUuWoHHjxpBIJFAoFGjUqBHmzZuHM2fOQCaTlct6Chs1ahQOHDiATp06QSaTIT8/H+7u7vjyyy9x/fp1jep3pbFjxw6MHz8e9erVQ15eHn/OFK7q2LZtW9y9excLFixAhw4dYG9vj9evX0MsFsPPzw+DBw/m95GxODg44J9//sG3334LLy8v5OTkwNHRET179sSZM2f09pzMcRxmz56Nf//9F1988QX8/PwgFouRmpoKBwcHvPXWW/j6669x9uxZvs24kirr/W7w4MHYuHEj2rVrBysrKzx58gRxcXFajfQ3bdoUFy5cwIABA1C9enUolUpUq1YNo0ePxrVr1zR6ai+tirwXqbOwsMCxY8cwd+5c1K9fHzk5ObCzs0Pnzp1x4MABRERE6J2vtNdRU9KxY0dER0dj4sSJ8PPzg1KpBGMMfn5+CAsLQ3R0NNq3b1+mdZT23k8IES6OMYH2T00IIYQIiOoH8siRI/m2Y4SiZ8+e2L9/P0JCQgTdJg1jDF5eXkhMTMSGDRv49u3eZOvXr8fHH38Mb29vvZ1XEFIUHx8fxMXFYd26dQgNDTV2OKSMOnXqhL///hszZ87ErFmzjB0OIYRUKVQCjhBCCKkESUlJAAAXFxcjR1IyDx8+5Dtf+Pzzz40cTdls3LgRiYmJMDMzw7vvvmvscAghhBBCyBuEEnCEEEJIBfv7779x9uxZAECbNm2MHI3h0tLS8Pnnn0OpVKJVq1Zlrm5TGUJCQrBjxw68fPmSH/bs2TPMnz+frwI3dOhQuLq6GitEQgghhBDyBjLJBNytW7fQr18/1KpVC1ZWVqhWrRo6dOiA33//XWO60NBQcByn9VfWtm4IIYSQ8rBmzRrIZDJ06tQJubm5aNq0Kbp06WLssIoVFhYGb29vODs7488//4SZmZlR25YqiUOHDqFfv35wdnaGtbU17O3tUaNGDUyePBm5ublo3749Fi9ebOwwCSGEEELIG8bM2AHoEhcXh/T0dAwbNgxubm7IysrCzp078eGHH2L16tUYOXIkP61EIsHatWs15rezs6vskAkhhBAtmZmZyM7OhqurK3r06IF58+bBzMwkb70aXr58ifj4eMhkMjRv3hwRERFo3bq1scMyyNKlS3Ho0CFcvXoVz58/R0ZGBpydndG0aVMMGDAAQ4YMMfnGvwkhhBBCSNUjmE4YFAoFmjdvDrlcjpiYGAAFJeB27NiBjIwMI0dHCCGEEEIIIYQQQohupv8a/v+JxWJ4enri4sWLWuMUCgUyMzNha2tbbuvLzMws0fTW1tbltm5CCCGEEEIIIYQQUnWYdAJOVXUnNTUV+/btw6FDhxAcHKwxTVZWFmxtbZGVlQUHBweEhITg+++/h0wmK9O6Szp/ampqmdZHCCGEEEIIIYQQQoSFMYb09HS4ublBJNLf1YJJV0EdNWoUVq9eDQAQiUTo3bs3fvnlFzg4OAAAJk+eDMYYmjVrBqVSiT/++AORkZFo27YtTpw4UaZ2djiOK5dtIIQQQgghhBBCCCFVW0JCAjw8PPSON+kEXExMDBITE/H48WNs27YNFhYWWLVqFVxcXPTOM3fuXEydOhVbtmzBgAEDSr1uXVVQU1NT4e7ujps3b8LGxkZjXFmroMrlcgwdOhQA8Ouvv2otXwjUt2HDhg2QSqVGjqhkhB4/IOxtePLkCcaNGwf1SxLHcViyZAlcXV2NGFkBxhhycnKKHP/dd9/h3r17WuPq1auHqVOn6kzsSyQSk0j4K5VKfPrppzrb1JTJZFi7dm2Rb3NMwZMnTzB+/HgolUp+mEgkwuLFi03iHHoT/Pvvv/juu++0hk+bNg2NGzc2QkQlwxjDjBkzcOfOHa1xvr6+CA8PN4nva3GEfC9QEfo2UPzGJ9Rna8YY5s6dixs3bmjdzxo1aoQpU6YI4joEAJs2bcK+ffv4z0FBQRg0aJARIyJCs3XrVuzevRuMMXAch969e2vViDN1crkc48aNQ0pKChwdHbFkyRJBXVPXr1+PgwcP8p/ff/99DBs2zIgRlUxaWhpGjBjBn0Nr1qwp16bLVNLT01GzZk28fv26yE5BTboKqq+vL3x9fQEAQ4cOxXvvvYeePXviwoULem8848ePx/Tp03H06NEyJeB0JdQUCgUAwNPTs9wPmlwu50vsOTk5CeYhQV3hbRDShQUQfvyAcLeBMYaFCxdCLBZrjfvf//6HOXPmGP1hUy6XG/TQqKvk7cOHDzF8+HCd0+/du9ckjtOFCxc0zh91crkcDx8+RKtWrYwQmWFU55CZmZnWDxZTOYeqOqVSiZUrV+o8h1auXImoqCiTT+IyxiCVSnVug1QqhZOTkyDOI6HeC9QJfRsofuMT8rP1xIkTMWLECP63B1DwfBEWFoZq1aoZMTLDJSUl4dChQxrX04MHD6JPnz5wd3c3YmREKJKSknDgwAGN3wcHDhxAUFCQoM6hyMhIpKenw8zMDOnp6Th69KigElgymUzjeyyTyeDk5GTEiEpmz549GufQX3/9pfd3WVmYm5sDKL4mpWk/CRfSt29fXLx4EXfv3tU7jaWlJZycnJCSklKJkRFCyiIhIQGXL1/WOe7y5ctISEio5IjePC1atNBbklcmk6FFixaVHFHJqM4h9eQbUJAUMpVziDEGuVxe7F92djZev36N169fIzs726B5TKEw+8WLF5GWlqZzXFpams5OlExNQkICbt26pXPczZs3TeI8IoRUfe7u7ggODuZ/yHEch/79+8PNzc3IkRmGMYZFixZp3Zv0DSekMMYYVqxYoXe4UM6hpKQkREVF8fEyxrBt2zYkJSUZOTLDJCUlYffu3RrDdu3aJaj4t2/frjFs+/btRo3fpEvAFZadnQ2g6A4P0tPT8fLlSzg7O1dWWISQMvLw8IBMJtNb/bGoevSVRSKRYO/evcVOl5qayld5kclk+O233yCRSIpcringOA5ubm46q9C6urqafKkfT09P+Pv74+bNm1rj/P394enpaYSoNOXk5CAoKKhClm0KJSlbtGgBW1tbnUk4W1tbk0jiFleV3NnZGQEBAbh27ZpWdfimTZvC2dkZcrlcaz5TqUpOCKk6goODcfjwYSQnJ8PJyUlQ1e7i4+N13o+BgpcZ8fHx8Pb2ruSoiJDoezmvUCj4F6teXl5GiMxw+pKFSqUSK1asMPnaGcUl0hcsWEDxl4JJJuCeP3+O6tWrawzLy8vDhg0bYGlpiQYNGkAulyMvL0+rOHlERAQYY+jWrVtlhkwIKYOEhASdyTcAyMjIQEJCgtEf1DiOK3GCY8yYMUW2AWBKEhISdCbfAODevXuCedAhxiMSiTB58mRMnjxZa9zUqVNNovppaZOgjDFcvXoVvXr10jneFBKghJCqRSqV4quvvsKKFSswevRousaQN4qnpyeaN2+Oq1evatRuEIvFCAgIMIkXq8XRl0RUr51hys/WQk+km2r8JpmA++yzz5CWloYOHTrA3d0dT58+xebNmxETE4OFCxdCJpMhNjYWAQEBCAkJ4duJO3z4MA4ePIhu3bpVWCkDQygUCuTl5ZVonpycHL7UXm5urs437KZOfRuKKmFgqoQePyDcbShcbbCqCAwMNHYIBvP09ESdOnVw//59rXF169Y1+QcdQ6oOGvshx9BSlHK5nC/pEBUVZdCPLlMpSdmsWTM0bNhQ41j4+/ujadOmxguKEEIEqnXr1mjdurWxwygxLy8vrXuBir+/v9HvxyVx/vx5PgkqxGMhVBzHYfTo0RgxYoTO4aZc8krF09OzyO+BqT9bC11xL+aN9eLeJBNwwcHB+PXXX7Fq1SokJyfDxsYGzZs3x/fff48PP/wQAGBvb48PPvgAR44cQWRkJBQKBerUqYO5c+ciLCzMKG/aGWN4+vQpXr9+Xap5P/30UwDA06dPTaKkQEmpb0NSUpIgLozqhB4/IOxtCA4OxrZt27QuhkJ7UBMq1fVLlydPnvA9B5kq1ZvSK1euaJxDIpEIzZo1M4mHnNKUopRKpYIr9TBz5kwEBweDMQaRSIQZM2YYOyReaaqSOzo64ueffxZEVXJCCDEFHMdh8ODBOktEDx482KSfJ9TJ5XIsXboUycnJWLZsGZo2bSq4e7KQqdpC3LJlC/8cKqS2EIHiG+Q3ZUJPpBe37411bEwyATdgwIBiezC1t7fHxo0bKykiw6iSb9WrV4eVlVWJDqpSqeSn9/Ly0tkbpKlT3wZvb2/BJRGFHj8gzG1gjCErKwstW7bE8+fPcfz4cX4cx3GYOHGioG9eQnHx4sUiqwFfvHjRpHtBVX9Tqt5rnEgkEsyb0qrCzs4OISEh2Lp1KwYMGGBS1bBLkwQdOXKkSW0DIYSYOsYYduzYoXPc9u3b0bRpU0Hcl6OioviO/ZKTkxEVFSWo3iurAiG3hZiQkFBkFUhTqJ1RFKEn0r28vIpsH9pY+94kE3BCpFAo+ORbabrlVSqVfNJNKpUKNgGnvg1CSP6oE3r8gHC3wdLSEgDQsWNHnDlzBrm5uQCAoKAgQb3lEjIhNKBfHHd3d/Tp0wfbtm3jh/Xu3ZvOISMYNmxYlfmRIqSq5IQQYgoM6d3elBMPgP7eK9999124u7sbObo3h1QqxRdffIHFixfj888/F1QJRH3t2JlS7YyiCD2RznEcJkyYgE8++URrnDELeAjj17kAqNp8s7KyMnIkhAiTlZUVlEqlRscqMTExRozozaJqQF8XU2lAnxBCCHmTnD9/HkOGDMH58+eNHUqJqBIPhZ8dxGIxAgMDBZF4WLFihd7h1OlT5WrVqhWGDh1q0jUxdNHXXp1QamcYkkg3de7u7vDz89MY1qBBA6O+nKdfVOXM1L9IhJiq7Oxs5OXlaTysxcTE4MqVK0aM6s3i4uKic7iqYw9Tl5SUhJ07d2oM27VrF5KSkowUESGEEFI6qvbHnj9/jmXLlgmqgzZ9iQehNKCvSjyoN2kBFNR4EkrigZgGVTt2qnNeSO3YCT2RDhT8Nrhz547GsDt37hj1twEl4AghRscYw4sXL3SO++6776psL6mmRPVWt/BNViQSCeJtL72tJoQQUpVERUUhOTkZAPDy5UtERUUZOaKSocQDIQWCg4Ph6OgIAIJqx07oiXTVbwBdcRrztwEl4AghpcZxHPbs2QMAiI2NBcdxuHbtWomXk5mZqTfJlpmZiX/++acMURJDqN72Fj4OSqVSEG976W01IYSQqiIpKQlbt27VGBYVFSW4Et2UeCCkoB27r776CtWrV8eXX34pqHbshJxIN9XfBpSAM0FKpRJ3797FxYsXcffu3Qot/cNxXJF/s2bNqrB1G4uPjw+WLFli7DCqHE9PTzx58gT+/v4lntfc3LzI8fqqRpLyo+9tr0gkEsTbXnpbTQghpCrQV3JbqVQKrkQ3JR4IET6hJtJN9bcBJeBMzO3btxEWFoYvv/yS/3fChAm4evVqhazvyZMn/N+SJUtga2urMSwsLKxC1lveGGPIz8+v1HWqeuqsLKqOPkyVWCxGjRo1YGZW/p0r05vGiqd6q1v4wZ4xJoi3vUW9lRZC/IQQQgjwX6kNXfdjIZbobt26NTZu3IjWrVsbO5QSE2rigZgWIbfnCAg3kW6qJVkpAWdCbt++jRUrVuDy5ctwdHRE3bp14ejoiMuXL2P27NkVkoSrUaMG/2dnZweO4zSGbd26FX5+fpBKpfD19cXKlSv5eVVVDrdt24b27dvD2toaffr0waNHj3Dx4kUEBgZCJpOhe/fuGu17hYaGolevXggPD4ezszNsbW0xatQojYSWUqnEvHnzULNmTVhaWqJJkyYa3SCfOHECHMfh0KFDaN68OSQSCU6fPo0HDx4gKCgILi4ukMlkaNGiBY4ePcrP16lTJ8TFxWH8+PF8KT8AmDVrFpo1a6axb5YsWQIfHx+tuOfMmQM3NzfUr18fALBx40YEBgbCxsYGNWrUwMCBA/H8+fMi97uPjw8iIiIQEhICa2truLu7a7VfxXEcVq1ahQ8//BDW1taYM2cOAGDVqlWoXbs2LCwsUL9+fWzcuFFjvvr162Pr1q3o2bMnrKys4Ofnh3PnzuH+/fvo1KkTrK2t8dZbb+HBgwca8+3duxfNmjWDVCpFrVq1EB4erpHUvHfvHjp06ACpVIoGDRrgyJEjGvPrqoL6999/o2XLlpBIJHB1dcW3335bqkQpJU+MSyhv293d3eHr66sxzM/Pj95WE0IIEQwPDw/Y2trqHGdrawsPD49KjujNJdTEAzEtUVFRSElJAQAkJycLrj1HwHQT6YwxyOVyvX9OTk7o3bu3RknW3r17w9HRscj5KvK3T/kXVSE8xpjBpaTy8/Oxc+dOJCcno2nTpnxRSWtra9SrVw8xMTFYt24dfH19tYpRFmZhYVEuCYvNmzdjxowZWL58OQICAnD16lWMGDEC1tbWGDZsGD/dzJkzsWTJEnh4eGDw4MGYOHEinJ2d8dNPP8HKygr9+/fHjBkzsGrVKn6eY8eOQSqV4sSJE4iNjcXHH38MJycnPsk0b948bNq0CT///DPq1q2LkydPYvDgwXB2dkbHjh355Xz77bdYsGABatWqBQcHByQkJKBHjx6YM2cOJBIJNmzYgJ49e+LOnTvw8vLCrl270KRJE4wcORIjRowo8T45duwYbG1tNZJPeXl5iIiIQP369fH8+XNMmDABoaGhOHjwYJHL+vHHHzFlyhSEh4fj8OHDGDt2LOrVq4cuXbrw08yaNQvz58/HkiVLYGZmht27d2Ps2LFYsmQJ3n33Xezfvx8ff/wxPDw88Pbbb/PzrVy5EkuWLMHixYsxadIkDBw4ELVq1cLkyZPh5eWFTz75BGPGjMGhQ4cAAKdOncLQoUOxdOlStG/fHg8ePMDIkSP546tUKtG7d2+4uLjgwoULSE1Nxbhx44rcvqSkJPTo0QOhoaHYsGEDYmJiMGLECEilUq2qzRYWFpBIJDqXU69ePXh5eRW5LlJ26g2Vqt90OI7DihUrMGfOHJNPhCYlJSE6OlpjWHR0NJKSkuDu7m6kqAghhBDDJSYmIi0tTee4tLQ0JCYm0nNRJWrdurXJJR2IcCQlJSEqKop/tmaMYdu2bXj33Xfp2bQc5OTkICgoyODpVft/27ZtRU63d+/eCku4UwKuAuXm5uKrr74yaNpXr17h5MmTsLCwwLlz53Qua/fu3Xj27Bns7e2LXNbSpUv1JjNKYubMmVi4cCF69+4NAKhZsyZu376N1atXayTgwsLC0LVrVyiVSgwdOhQTJkzAkSNH0LZtWwDA8OHDsX79eo1lW1hY4LfffoOVlRUaNmyI2bNn4+uvv0ZERATy8vIwd+5cHD16FG3atAEA1KpVC6dPn8bq1as1EnCzZ8/WSFg5OjqiSZMm/OeIiAjs3r0b+/btw5gxY+Do6AixWMyXVispa2trrF27FhYWFvywTz75hP9/rVq1sHTpUrRo0QIZGRmQyWR6l9W2bVt8++23AAqSTGfOnMHixYs1tmfgwIH4+OOP+c8hISEIDQ3FF198AQCYMGECzp8/jwULFmgk4Hr37o3+/ftDJBJh0qRJaNOmDaZPn46uXbsCAMaOHaux3PDwcHz77bf8ca1VqxYiIiLwzTffYObMmTh69ChiYmJw+PBhvjTR3Llz0b17d73bt3LlSnh6emL58uXgOA6+vr54/PgxJk2ahBkzZmglkvUld9T3Nak4qiovhal3wmDKD/zF9XQkhAQiIYQQ4u7uDrFYrNVwOFDQ3Af9aCdvmgsXLmDDhg1wcnJCu3btjB2OwVTPpvqG07Ppm4kScCYiLy8PCoVCb/tZZmZmyMrKqrR2xzIzM/HgwQMMHz5co6RYfn4+7OzsNKZt3Lgx/38nJycAQKNGjfhhLi4uWlUymzRpAisrK/5zmzZtkJGRgYSEBGRkZCArK0sjEQUUJCEDAgI0hgUGBmp8zsjIwKxZs3DgwAE8efIE+fn5yM7ORnx8fEk2X69GjRppJYQuX76MWbNm4fr163j16hXfaUZ8fDwaNGigd1mq5KL658KdQxTevujoaL5kmkrbtm3x008/aQxTVY8F/uvAoPAxkcvlSEtLg62tLa5fv44zZ87wJRCBgh5i5HI5srKyEB0dDU9PT42qfIXjLyw6Ohpt2rTRuLG0bdsWGRkZWm9vc3Nz9baHcPPmTZNP/lQFqoZKr1y5olECTiQSoVmzZibfiYG+BKJ6T0d0DlWe8+fPY8WKFRg9ejSVHCCEkBK4dOmSzuQbUHBPu3TpElq1alXJUREhE/I9WS6XY+XKlcjIyMDKlSsRGBgomKrA9Gxa8SQSCfbu3VvkNHK5nG+/MSoqyqDzpzwKM+lDCbgKZGFhgaVLlxo07Z07dzBq1CjY2dnBzc1NKxuelpaGV69eISIiAnXr1i12vWWVkZEBAFizZo3WTV4sFmt8Vu/BUhV34WEl6clVte4DBw5oveUr/GWwtrbW+BwWFoYjR45gwYIFqFOnDiwtLdG3b99iE5cikUirrreuTg8Kry8zMxNdu3ZF165dsXnzZjg7OyM+Ph5du3Ytl2Rp4fUZypBjAoA/LhkZGQgPD+dLO6qrjJuchYUFLC0ttYYLJflTFagaJB0+fLjGcKF0wqBKIF69elXjekPnUOVTNTacnJyMZcuWoWnTpoJ5WCaEEGNr0aIFbG1tdVZDtbW1RYsWLYwQFREqod+T1dtPS0lJQVRUlEZNLFOm7+U2x3Fo3rw5PZuWA47jSnQ+S6VSo5//1AlDBeI4DhKJxKC/Bg0aoG7dunjx4gVEIhHEYjH/JxKJ8OTJE/j7+6NBgwbFLqs8fii7uLjAzc0NDx8+RJ06dTT+atasWeblX79+HdnZ2fzn8+fPQyaTwdPTk9/G+Ph4rXUXd6E6c+YMQkND8dFHH6FRo0aoUaMGYmNjNaaxsLDQerPo7OyMp0+falwc1TsT0CcmJgbJycmYP38+2rdvD19f32I7YFDf5sKf/fz8ipzHz88PZ86c0Rh25syZIkvaGaJZs2a4c+eO1v6uU6cORCIR/Pz8kJCQgCdPnuiNX1es586d09inZ86cgY2NjVYDwhzHwdHRUevcFYlEgkj+VHVC6IRB6L24ViVVobFhQggxFpFIhMmTJ+scN3Xq1GLbgiZEnZDvyfraT0tKSjJyZIbhOA59+/bV+Wzat29fejZ9Q9EV3ESIRCJ89NFHcHBwQHR0NNLS0pCfn4+0tDRER0ejWrVqGDp0aKXedMPDwzFv3jwsXboUd+/exY0bN7Bu3TosWrSozMvOzc3F8OHDcfv2bRw8eBAzZ87EmDFjIBKJYGNjg7CwMIwfPx6RkZF48OABrly5gmXLliEyMrLI5datWxe7du3CtWvXcP36dQwcOFCr9J2Pjw9OnjyJpKQkvHz5EkBB76gvXrzAmjVrEB8fj5UrV/IdFBTFy8sLFhYWWLZsGR4+fIh9+/YhIiLCoH1w5swZ/PDDD7h79y5WrFiB7du3Y+zYsUXO8/XXX2P9+vVYtWoV7t27h0WLFmHXrl0ICwszaJ36zJgxAxs2bEB4eDhu3bqF6OhobN26FdOmTQMAvPvuu6hXrx6GDRuG69ev49SpU5g6dWqRy/ziiy+QkJCAL7/8EjExMdi7dy9mzpyJCRMm6DyPLSwsNKolcxyH/v37Uw+WlURfG2qqThiEkITTR8ixC43QH5YJIcQUNGvWDA0bNtQY5u/vj6ZNmxonICJIQr4nF9d+mhCe7Rhj2LFjh85n6+3btwtiG0j5owScCWnQoAFGjx6N5s2bIyUlBffv30dKSgoCAwMxY8YMrfbPKtqnn36KtWvXYt26dWjUqBE6duyI9evXl0sJuM6dO6Nu3bro0KEDgoOD8eGHH2r0jBkREYHp06dj3rx58PPzQ7du3XDgwIFi171o0SI4ODjgrbfeQs+ePdG1a1c0a9ZMY5rZs2cjNjYWtWvXhrOzM4CC0lrLly/H//73PwQFBeGff/4xKKnl7OyM9evXY/v27WjQoAHmz5+PBQsWGLQPJk6ciEuXLiEgIADfffcdFi1axHeSoE+vXr3w008/YcGCBWjYsCFWr16NdevWoVOnTgatU5+uXbti//79+PPPP9GiRQu0bt0aixcvhre3N4CCBPHu3buRnZ2Nli1b4tNPP9VoL04Xd3d3HDx4EP/88w+aNGmCUaNGYfjw4XxSTxdra2u+kxEnJye+vj6peKp2KgonrNU7YTBlVTmBKBRV4WGZEEJMxcyZM/l7mkgkwowZM4wcERESod+TVc+lhWstqbefZupU26CrBJxQtoGUP2oDzsQ0aNAA77//Ph49eoTU1FTY2dnx1QArWmhoKEJDQzWGDRw4EAMHDtQ5vY+Pj9YFpVWrVrhz545GT626lgsUlLALDw/XuWyO4zB27Fi9JcI6deqk88bh4+ODv/76S2PY6NGjNT63bt0a169f15p31KhRePfddwGA3+dTpkzhxxfuyVUlJCQEISEhGsMMuanZ2toW2QWyvmV8/vnn+Pzzz/XOd+fOHY3Puo6Trv2nastOn3r16uHUqVN6Y9S1no4dO+Kff/4BY0xjnK42AVXD+vTpg7Vr1/KdTejrnEGlvKpdv+lU7VToaiw2MDDQ5NupEHovrlUBNTZMCCHlx87ODiEhIdi6dSsGDBig1QkaIUUR+j1Z33OpkNpP09c+sVgsRkBAgCC2gZQ/SsCZIJFIhHr16hk7DELKDWMM9+/fL3IahUKB58+f49dff8XLly8xd+5cg5a9d+9eozemWRVwHIdOnTrpfFjr1KmTySc56SHH+OgYEEJI+Ro2bJhgGpwnpkXo92RV+2mFn0uF1H6aqn3iESNG6BwuhG0g5Y+qoBJCCIFSqcSaNWt0jvvll19K1JOxMageZnShh5zKoe+Bkh40CSGEkMol9HtyVWk/zd3dHcHBwfx2CLWN6/Pnz2PIkCHFdsJHikcl4Eil01eV801SuGfWqo7jONSpU6fIaeRyuUaSJyoqyqCSbRKJpMzxEeDixYtIS0vTOS4tLQ0XL15Eq1atKjmqknF3d4efnx9u3brFD/Pz8xPcQ46QqR40t2zZAsaYYB80CSHEFERGRvJVUIVaEu78+fNYsWIFRo8ejdatWxs7nDeKkO/J+qrQqrefZspVaNUFBwfj999/R3p6OmQymeDauJbL5Zg/fz6ys7Mxf/58bN26lWoflQGVgCOEVDiO4yASiYr9U3/LJZVKDfoz9Td4QtGiRQvY2trqHGdra4sWLVpUckQll5SUhJiYGI1h0dHRgujtqyoJDg6Go6MjAOpMhRBCSis1NRVbtmyBUqnE1q1bkZqaauyQSkwul2Pp0qV4/vw5li1bVmy7vqT8CfWe7OnpCX9/f53j/P39Tb4KbVUSGRmJ7OxsAEB2djY2bNhg5IiEjRJwhBBCIBKJMHnyZJ3jpk6dWikdwZSFvt6+AAiit6+qRCqV4quvvkL16tXx5Zdf0ltSQggphfDwcP7epVQqMXv2bCNHVHJRUVFISUkBACQnJyMqKsrIEb15hHxPrirPblFRUUhPTwcApKenC+p7kJSUhF27dmkM27lzJ73cLgPT/kVFCCGk0jRr1gwNGzbUGObv74+mTZsaJ6ASqArd1VclrVu3xsaNG6m6ESGElMKVK1c0mlMAgJs3b+LKlStGiqjkkpKSEBUVxSdRGGPYtm0b/XA3AiHekxMSErS+Ayo3b94UzHNdUlIStm7dqjEsKipKEN8DxhjmzZunc9y8efOqTIK0slECjhBCCG/mzJl8tV6RSIQZM2YYOSLDqHr7KlxSTywWIzAwkKoqEEIIEQSlUlnkj15T7xQJ0F8qXTWcfriT4qie6wo3NSMSiQTzXKfvfFcqlYL4HsTFxeHevXs6x927dw9xcXGVHFHVQAk4QgghPDs7O4SEhEAkEmHAgAGws7MzdkgGEXpvX4QQQghgWKdIpo5KpZOyqgrPdarvQeFEm3pHEqbs6dOnZRpPdKNeUAkh5A3AGENOTo5B0wUFBSEoKAgSicSgBpMlEolJPAgJubcvQojxGXqdNIT6tbM8G543lestqTiqTpF0JeGE0imSqvTSlStXNJIPHMehefPmgii9RIxP6L3be3h4FPld9vDwMEJUhmvZsiVkMhkyMjK0xslkMrRs2dIIUQkfJeAIEajVq1ejfv366NSpk7FDIQKQk5ODoKCgCln23r17TaZR3+DgYBw+fBjJycmC6u2LEGJ8FXWdLM/rkCldb0nFUHWKpKtjJCF0igQUJNr69u2Ly5cvawxnjKFv376URCYGKap3e3d3dyNFZbjExMQiS7MmJibCy8urkqMynEgkwtSpU3Vei6ZPny6Ia5Epor1GiABt3LgRa9asKfFb0FmzZgmiQX1CSkvIvX0RQgghQEGnSJaWlhrDrKysBPMMxxjDjh07dFYf3L59u8m3fUWMryr0bq8qCaqLUNqxa9asGfz8/DSGNWjQQDDXIlNEJeDecMW9gZo5cyZmzZpVOcFUEh8fH4wbNw7jxo0zdiilcvfuXfzwww84cuQIrK2tSzRvWFgYvvzyywqKjJgyiUSCvXv3FjudXC7nS2tERUUZlMCSSCRljq88tW7dWlA9fQmJIVX01KcxtLocVasjpsZ88DDAzLzU8zPGgPz8gg9mZmU7v/PzkLcpsvTzE8G5cuUKsrOzNYZlZWXhypUraNasmZGiMpyq7avC1Nu+MuWSP8T49J1D6u0Imvo5pK8kKABBlQSdMmUKhgwZwn/WVSKOGI4ScG+4J0+e8P+PiorCjBkzcOfOHX6YTCYzRlglxhiDQqGAmVnlndK5ubmwsLCotPWp1KtXDzdu3CjVvDKZTDDHlJQvjuNKXBpMKpVSCTKioaKq6FG1OmJyzMzBmZc+AccBQDk9I5h+OQ9SnorrBTUqKsrkq36pSv5cvXpVo9dWsViMgIAAQZT8IcZVFc4h9ZKghdtC3L59O5o2bSqIJNyhQ4e0Pg8bNsxI0QifaV+9q4qcHP1/eXkak3K5uQZPq3OaEqpRowb/Z2dnB47jNIZt3boVfn5+kEql8PX1xcqVK/l5Y2NjwXEctm3bhvbt28Pa2hp9+vTBo0ePcPHiRQQGBkImk6F79+548eIFP19oaCh69eqF8PBwODs7w9bWFqNGjUJubi4/jerho2bNmrC0tESTJk2wY8cOfvyJEyfAcRwOHTqE5s2bQyKR4PTp03jw4AGCgoLg4uICmUyGFi1a4OjRo/x8nTp1QlxcHMaPHw+O4/iL3qxZs7TeKC5ZsgQ+Pj5acc+ZMwdubm6oX78+gILqoIGBgbCxsUGNGjUwcOBAPH/+vMj97uPjg++++w5Dhw6FTCaDt7c39u3bhxcvXiAoKAgymQyNGzfGpUuX+HmSk5MREhICd3d3WFlZoVGjRtiyZQs//sWLF3Bzc8PPP//MDzt79iwsLCxw7NgxfjvViwyrtmnu3LlwcXGBvb09Zs+ejfz8fHz99ddwdHSEh4cH1q1bpxH/pEmTUK9ePVhZWaFWrVqYPn068gqfn4QQQgghpESqQi+oVaEHS2JcRZ0rQjmHhN4LKlDQDl9UVJTGsG3btiEpKclIEQkflYCrDF99pX+cvz+gViWw2vffg7O0BHRdVOrVAyZO/O/zlClA4V5JVq8uY7D/2bx5M2bMmIHly5cjICAAV69exYgRI2Btba2R9Z45cyaWLFkCDw8PDB48GBMnToSzszN++uknWFlZoX///pgxYwZWrVrFz3Ps2DFIpVKcOHECsbGx+Pjjj+Hk5IQ5c+YAKHjDt2nTJvz888+oW7cuTp48icGDB8PZ2RkdO3bkl/Ptt99iwYIFqFWrFhwcHJCQkIAePXpgzpw5kEgk2LBhA3r27Ik7d+7Ay8sLu3btQpMmTTBy5EiMGDGixPvk2LFjsLW1xZEjR/hheXl5iIiIQP369fH8+XNMmDABoaGhOHjwYJHLWrx4MebOnYvp06dj8eLFGDJkCN566y188skn+PHHHzFp0iQMHToUt27dAsdxkMvlaN68OSZNmgRbW1v88ccfGDp0KGrXro2WLVvC2dkZa9euRe/evdG2bVu4uLhgyJAhGDNmDDp37qw3jr/++gseHh44efIkzpw5g+HDh+Ps2bPo0KEDLly4gKioKHz22Wfo0qUL31uPjY0N1q9fDzc3N9y4cQMjRoyAjY0NvvnmmxLvU0KIcBhSlbkqVGMmhBBjadGiBaytrZGZmak1TvVyWQioZ3JSVu7u7vD19RVsL6j6SvGJRCI0a9bM5Evx6WuHTzV8zpw5gkiEmhpKwBG9Zs6ciYULF6J3794AgJo1a+L27dtYvXq1RgIuLCwMXbt2hVKpxNChQzFhwgQcOXIEbdu2BQAMHz4c69ev11i2hYUFfvvtN1hZWaFhw4aYPXs2vv76a0RERCAvLw9z587F0aNH0aZNGwBArVq1cPr0aaxevVojATd79mx06dKF/+zo6IgmTZrwnyMiIrB7927s27cPY8aMgaOjI8RiMV9araSsra2xdu1ajaqnn3zyCf//WrVqYenSpWjRogUyMjKKrO7Zo0cPfPbZZwDAJyhbtGiBfv36ASgoZdamTRs8e/YMNWrUgLu7O8LCwvj5v/jiCxw6dAjbtm3ju4Hu0aMH+vXrh7CwMLRp0wbW1tZ6qzGoODo6YunSpRCJRKhfvz5++OEHZGVlYcqUKQAK6vnPnz8fp0+fxoABAwAA06ZN4+f38fFBWFgYtm7dSgk4Qqq4klZlpmrMhBBSMhzHwc3NDffu3dMa5+rqKqgfvNQzuWmIjIzE1q1bMWDAAEFVHUxKSkJ0dLTGMCH1gqoqxaf+WxEoqOklhFJ8VaEdPlNECbjKsHSp/nGF2nB4OWkSbGvVAsTiYqfF3LnlEJxumZmZePDgAYYPH65RUiw/Px92dnYa0zZu3Jj/v5OTEwCgUaNG/DAXFxetKplNmjSBlZUV/7lNmzbIyMhAQkICMjIykJWVpZFYAwraXAsICNAYFhgYqPE5IyMDs2bNwoEDB/DkyRPk5+cjOzsb8fHxJdl8vRo1aqTV7tvly5cxa9YsXL9+Ha9eveLfcMTHx6NBgwZ6l6W+31xcXPjlFx72/Plz1KhRA3l5eZgxYwaioqKQlJTEV9kt3EvWpEmT8MEHH2DHjh24fPlysSVLGjZsqNGWiIuLC/z9/fnPYrEYTk5OGscwKioKS5cuxYMHD5CRkYH8/HzY2toWuR5CCCGEEFK0hIQEnck3ALh3756gfvSqeiZfsWIFRo8eTS9kjCA1NZUvhbh161b06tVL67ecKVKVstKVpKoKpa+E1IurkNvhM0WUgKsMJahawywsCqbXlYArw3JLKuP/q7auWbMGrVq10hgnLhSbuVojxaoLYeFh6l9aQ9d94MABrbcbhZNJhXsBDQsLw5EjR7BgwQLUqVMHlpaW6Nu3r0b7crqIRCKtC6GuNs0Kry8zMxNdu3ZF165dsXnzZjg7OyM+Ph5du3Ytdp2G7DcA/L774YcfsGnTJkRFRaFx48aQyWQIDg7W6pEwPj4ez58/h1KpRGxsrEZSr7g4VOvVNUwVx7lz5zBo0CCEh4eja9eusLOzw9atW7Fw4cIi10MIIYQQQoqm+tGrq+RJYGCg4H70Us/kxhUeHs7/xlEqlZg9e7YgntmrQukrxpjefb1w4UIsXLjQpJOIqhJ8hZttorYcy4YScEQnFxcXuLm54eHDhxg0aFC5L//69evIzs7mS2+dP38eMpkMnp6ecHR0hEQiQXx8vEZ1U0OcOXMGoaGh+OijjwAUJPNiY2M1prGwsIBCodAY5uzsjKdPn/JtVADAtWvXil1fTEwMkpOTMX/+fP6BSL3jhPJ07tw5dOvWDW+99RaAgtKIFy9e1ChJl5ubi6+//ho9evRAYGAgPv30U9y4cQPVq1cvtzjOnj0Lb29vTJ06lR8WFxdXbssnhBBCCHlTcRyHvn376kw+9O3bl370EoNduXJFo/00ALh58yauXLmi1fmcqakKpa/i4+O19r/KrVu3EB8fD29v70qOqmTc3d3Rp08fbNu2jR/Wu3dvwbTDZ4qoF1SiV3h4OObNm4elS5fi7t27uHHjBtatW4dFixaVedm5ubkYPnw4bt++jYMHD2LmzJkYM2YMRCIRbGxsEBYWhvHjxyMyMhIPHjzAlStXsGzZMkRGRha53Lp162LXrl24du0arl+/joEDB2qVvvPx8cHJkyeRlJSEly9fAijoHfXFixdYs2YN4uPjsXLlSq0ul3Xx8vKChYUFli1bhocPH2Lfvn2IiIgo/Y4pQv369XHw4EGcPn0at2/fxqeffoqUlBSNaaZNm4b09HRMmzYN33zzDerVq6fV7kBZ1a1bF/Hx8di6dSsePHiApUuXYvfu3eW6DkIIIYSQNxFjDDt27NDZg+j27dsFUXWNGJ9SqdTbDvS8efNKVDvJGKgnXVJVUQKO6PXpp59i7dq1WLduHRo1aoSOHTti/fr1qFmzZpmX3blzZ9StWxcdOnRAcHAwPvzwQ8yaNYsfHxERgenTp2PevHnw8/NDt27dcODAgWLXvWjRIjg4OOCtt95Cz5490bVrV603PLNnz0ZsbCxq164NZ2dnAAU96ixfvhz/+9//EBQUhH/++UejwwN9nJ2dsX79emzfvh0NGjTA/PnzsWDBgpLvEANMmzYNrVq1Qvfu3fH222/Dy8sLvXr14sefOHECP/30E3744QfIZDKIRCJs3LgRp06d0uiBtqw+/PBDjB8/HmPGjEHTpk1x9uxZTJ8+vdyWTwghhBDyplJVvSucaGOM8VXvSOU5f/48hgwZgvPnzxs7lBK5ePEi0tLSdI5LS0vDxYsXKzmiklOVvlInpNJXXl5eGu1qq/P39zf5KrRAQUcYO3fu1Bi2a9cuJCUlGSki4aMqqIQXGhqK0NBQjWEDBw7EwIEDdU7v4+Oj9XDQqlUr3LlzB/b29kUuFygoYRceHq5z2RzHYezYsRg7dqzO8Z06ddL5BtDHxwd//fWXxrDRo0drfG7dujWuX7+uNe+oUaPw7rvvAgDq1KkDkUjE9wQKQKsnV5WQkBCEhIRoDCvu7WTharG65im8fx0cHLBr1y69y+zUqRNycnJw//59jWWkpqbyn2fNmqWR6NS1TSdOnCg23h9++AE//PCDxrBx48bpjY0QQgghhBSvKlS9qyrkcjmWLl2K5ORkLFu2DE2bNhVMRxItWrSAra2tziScra0tWrRoYYSo3iwcx2HChAkYPny4xm86juMwceJEky/Fp+oIo/BvVKVSWSU6wjAWKgFHCCGEEEIIISZAVcVOF6p6V7mioqL45l6Sk5MRFRVl5IgMJxKJMHnyZJ3jpk6dCpHI9NMAVaH0lbu7O/r166cxrF+/foIoxacqjVu4urJSqaTSuGVg+t88QgghhBBCCHlDuLu7w8/PT2OYn5+fIH60VxVJSUmIioriS/8wxrBt2zZBJX+aNWuGhg0bagzz9/dH06ZNjRNQCahKX+kbLqS2EAcNGsR3PGhlZVUhHRxWBE9PT63zR8Xf359K45YSJeBIpVu/fj327Nlj7DAIIYQQQggxOUlJSYiJidEYFh0dLajkj5AVV/VOSMmfb7/9VuPzpEmTjBRJyahKXykUCo3hCoVC0KWvhHTuAKAStxWAEnCEEEIIIYQQYgJUyR9d1b6ElvwRqqpU9e7QoUNFfjZVqrYQC1eVFYlECAwMFFTpq82bNyM7OxsAkJ2djc2bNxs5IsMkJCTg5s2bOsfdvHlTUN8DU0IJOEIIIYQQQggxAVWtF1Qh9iLq6elZZO+VQkn+qKrRqhNKNVpVW4i6vgdCagsxKSkJ27dv1xi2fft2QRyDqpQENSWUgCOEEEIIIYQQE+Dh4QFbW1ud42xtbeHh4VHJEZWeqhfR58+fY9myZZDL5cYOyWD6Ys3JyankSEqnKrWhVphQYmeMYeHChTqTiLqGVzbGGORyud6/nJwcjBgxQivZyXEcPv30U+Tk5Oid19jbZsrMjB0AIYQQQgghhBAgMTERaWlpOselpaUhMTERXl5elRxV6ejqRXTYsGFGjqp48fHxuH//vs5x9+7dQ3x8PLy9vSs5qpJRlaQsTL0NNVM+j1SJQo7jNJI5HMdhxYoVmDNnjsmXgouPj8etW7d0jrt165bRz6OcnBwEBQWVeD6FQoFRo0YVOc3evXshlUpLG1qVRiXgCCGECEJxb+rkcjmys7Px+vVrvH79GtnZ2cVOT2/pCCGEmJKqVv1RyL2ICpm+6oNisVgQ1QerUjt8hKijEnCECIhSqcSiRYvQuXNnBAQEGDscQipVad/UFYfe0hFCCDElQn8xVFz1R1MvveTp6QmZTIaMjAytcTKZzOSTV8B/baiNGDFC53BT3v/AfwnEq1evaiThxGIxAgICBHEMvLy84O/vr7MjA39/f6OXQJRIJNi7d2+x08nlcgQHBwMAvvnmG7Rt29agZRPdqAQcIQIybdo0nDx5Eo0bNzZo+k6dOmHcuHEVGxQhhBBCCCkXCQkJequtCaXnQVXpJYVCoTFcvfqjKUtMTNSZfAOAjIwMJCYmVnJEpePu7o7g4GA+2cZxHPr37w83NzcjR1Y8fYlCoSQQgYJYJ0yYoHMbJk6caPRt4DgOUqnUoD+Vtm3bGjS9sbfNlFEJuDdccV+OmTNnYtasWZUTTCXx8fHBuHHjBJeY2rNnD06cOIGjR49CLBYbNM+uXbtgbm5ewZERUjkMeVOn/pYuKirKoJJt9JaOEEKIqVCV/CncfhfHcWjevLkgSv7oK70kEonQrFkzk98GVfxXrlzRan9MKMdAJTg4GIcPH0ZycjKcnJz4ZyQhUCUQt2zZAsaYoBKIKu7u7vjoo4+wa9cufthHH30kqG0g5YtKwL3hnjx5wv8tWbIEtra2GsPCwsKMHaJBGGPIz8+v1HXm5uZW6vp69eqFs2fPwsrKyuB5HB0dYWNjU4FREVJ5DH1Tp2LoWz16S0cIIcRUFFXCR0glf0aPHq2z90chbIMq/sLtp4lEIkHEr04qleKrr75C9erV8eWXXwquyY3g4GA4OjoCgOASiCpmZmZFfiZvFpNMwN26dQv9+vVDrVq1YGVlhWrVqqFDhw74/ffftaaNjo5Gt27dIJPJ4OjoiCFDhuDFixdGiFqYatSowf/Z2dmB4ziNYVu3boWfnx+kUil8fX2xcuVKft7Y2FhwHIdt27ahffv2sLa2Rp8+ffDo0SNcvHgRgYGBkMlk6N69u8YxCQ0NRa9evRAeHg5nZ2fY2tpi1KhRGgktpVKJefPmoWbNmrC0tESTJk2wY8cOfvyJEyfAcRwOHTqE5s2bQyKR4PTp03jw4AGCgoLg4uICmUyGFi1a4OjRo/x8nTp1QlxcHMaPHw+O4/gb6KxZs9CsWTONfbNkyRL4+PhoxT1nzhy4ubmhfv36AICNGzciMDAQNjY2qFGjBgYOHIjnz58Xud99fHzw3XffYejQoZDJZPD29sa+ffvw4sULBAUFQSaToXHjxrh06RI/z/r162Fvb89/njVrFpo2bYqNGzfCx8cHdnZ2CAkJ0SgyX7gKamnWm5ycjJCQELi7u8PKygqNGjXCli1bitw+QgghhBBSvoTWNpyuBJxQtsHd3V2r3dmgoCBBllxq3bo1Nm7ciNatWxs7lBKTSqX44osvIJPJ8PnnnwsugZiUlISdO3dqDNu1axd1RvIGM8kEXFxcHNLT0zFs2DD89NNPmD59OgDgww8/xC+//MJPl5iYiA4dOuD+/fuYO3cuwsLCcODAAXTp0qXSSycVJSdH/19enua0ubmcwdPqmqY8bd68GTNmzMCcOXMQHR2NuXPnYvr06YiMjNSYbubMmZg2bRouXboEMzMzTJw4Ed9++y1++uknnDp1Cvfv38eMGTM05jl27Biio6Nx4sQJbNmyBbt27UJ4eDg/ft68ediwYQN+/vln3Lp1C+PHj8fgwYPx999/ayzn22+/xfz58xEdHY3GjRsjIyMDPXr0wLFjx3D16lV069YNPXv2RHx8PICCC56Hhwdmz57Nl/IriWPHjuHOnTs4cuQI9u/fDwDIy8tDREQErl+/jj179iA2NhahoaHFLmvx4sVo27Ytrl69ivfffx9DhgzB0KFDMXjwYFy5cgW1a9fG0KFDi3xQefDgAfbs2YP9+/dj//79OHnyJNasWVOu65XL5WjevDkOHDiAmzdvYuTIkRgyZAj++ecfw3ccIYQQQggplqqjAl3tRq1YsUIQCSzGGBYtWqRz3KJFiwSxDUBBQQ91MTExRorkzdaqVSsMHToUrVq1MnYoJaL6Lhc+35VKpWC+y6T8mWT5xx49eqBHjx4aw8aMGYPmzZtj0aJFGDlyJABg7ty5yMzMxOXLl/leRFq2bIkuXbpg/fr1/HTG9tVX+sf5+wNffvnf5++/rwZLSw66SjbXqwdMnPjf5ylTgMLtg65eXbZY1c2cORMLFy5E7969AQA1a9bE7du3sXr1agwbNoyfLiwsDF27doVSqcTQoUMxYcIEHDlyhO8hZfjw4Vi/fr3Gsi0sLPDbb7/BysoKDRs2xOzZs/H1118jIiICeXl5mDt3Lo4ePYo2bdoAAGrVqoXTp09j9erV6NixI7+c2bNno0uXLvxnR0dHNGnShP8cERGB3bt3Y9++fRgzZgwcHR0hFov50molZW1tjbVr18LCwoIf9sknn/D/r1WrFpYuXYoWLVogIyMDMplM77J69OiBzz77DAAwY8YMrFq1Ci1atEC/fv0AAJMmTUKbNm3w7NkzvbEqlUqsX7+er2Y6ePBgHDlyBOPHjy+39bq7u2tURf7yyy9x+PBhbNu2DS1btixyfxFCCCGEEMOpOjAoTKlU8h0YGLv3xOLEx8fr7PkRKOhIIj4+Ht7e3pUcVclcuXJFKwF3+/ZtXLlyRavWDCG6VIXvMil/JlkCThexWAxPT0+8fv2aH7Zz50588MEHGifuu+++i3r16mHbtm1lWl9mZqbOP33jqprMzEw8ePAAw4cPh0wm4/++++47PHjwQGNa9R45nZycAACNGjXih7m4uGhVyWzSpIlGW2Zt2rRBRkYGEhIScP/+fWRlZaFLly4a696wYYPWugMDAzU+Z2RkICwsDH5+frC3t4dMJkN0dDRfAq6sGjVqpJF8A4DLly+jZ8+e8PLygo2NDZ8gLG6d6vvNxcWFX37hYUVVZ/Xx8dFo483V1RXJycnlul6FQoGIiAg0atQIjo6OkMlkOHz4cLntU0IIIYSQNwljDHK5XOefs7MzAgICdLY/FhAQAGdnZ73zUoma8qFqCkeXefPmaXQsQSrehQsXsGHDBly4cMHYoZSIp6cn/P39dY7z9/cXVGcepPyYZAk4lczMTGRnZyM1NRX79u3DoUOH+IYXk5KS8Pz5c60EDFBQCu7gwYNlWndRJZd01f1PS0sDYwxKpVLrorxkif71iESAUvlfGwmTJr1EzZo2EOlIjaqmVfnuO+1pynI/UMWtVCqRlpYGAFi9erVWcV+xWKyxnarPqt5pgILGJVXjC+8X1baq7ydd6/7999/h7u6usW6JRKKxLEtLS43lTJw4EUePHsUPP/yAOnXqwNLSEv3790dOTo7GdKqYVDiO03hoYYzx1ZjV47aystKYLzMzE127dsV7772HjRs3wtnZGfHx8ejevTvkcnmRN2j1fVR436rvp/z8fI1tVh9vbm6utQzVfOr/qk9T0vX+8MMP+Omnn7Bo0SI0atQI1tbWGD9+vNY+LSvVOaSSl5dncG+vpiRPra54Xl6exmchKBy/0I6B0OMHhL8NQo8foO+xKTDGNuTn5/M9h5sDMJVm1hkA/H9c+fn5lXI+VsVzyJS+x3K5HH379i3RPEqlElevXkWvXr30TrNjxw6TaCPL1dUVDRo0wO3bt7XGNWzYEK6uriZ1PAr7559/+N8jhaWlpeHcuXNUC6SSyOVyrFixAhkZGVixYgWaNGliEue4IQr/Bis8Li8vTxAdegj9flBZ8Rt6TTPpBNzEiROx+v/rVIpEIvTu3RvLly8HAL7tLldXV635XF1dkZKSgpycHEgkkkqJ9eTJk6hRowYyMjJK3P5cdvZ/SRULC4acnDStt17q0xalLO3Aqd6cpaWlwdLSEq6uroiJiUHPnj21pk1LS+Mb+8/MzERaWprGBSYtLY0/udWXCxScnNeuXcOzZ89gaWkJoKBTBZlMBjs7O5iZmUEikeDOnTsICAjQue6srCwAQHp6usa+OnXqFAYMGIDOnTsDKCgR9+jRI7Rp04Zfv5mZGR+zikwmw5MnT/gkYmpqKi5evKiREMzLy0N+fr7GfNeuXUNycjKmTJkCDw8PPgb1/aKLUqmEXC7XGp+dnc0PK7x/C+/HnJwcKBQKjWXI5XL+/6mpqcjPz0dubi4/TWnW+/fff6N79+748MMP+WXcuXMH9evX17t9pZGbm6sR/+HDh/kfQkKifvH966+/BLcN6vEL8RgIPX5A+Nsg9PgB+h6bAmNtw4gRIyplPSVibgH8f1zHjh2rlFVWtXPI1L7HFZV8MqVjFRAQoDMB17RpUxw6dMgIERlOqVRCKpVqPJeqSKVSPH/+vMyFPYhhLly4gJSUFABASkoK5s+fL5jkZ0pKis7vAFDQ6eTmzZv5Hl5NmdDvB5UVvyo/URyTTsCNGzcOffv2xePHj7Ft2zYoFAo+uZX9/5koXQk2VVY8Ozu71Am4jMKNq6Eg8ePm5oa4uDjY2tpqjBOLxUhISIBMJitVVp4xhpcvXwIAbG1t9SbgKpJUKgXHcfy2zZo1C+PGjUP16tXRtWtX5OTk4NKlS3j9+jXGjx/PlxK0traGra2tRuklW1tbfjmFl2tubo68vDxMmDABU6dORWxsLL7//nuMHj0a9vb2sLe3x8SJEzFt2jRIJBK0a9cOqampOHv2LGxsbDBs2DC++qqNjY3Gsahfvz4OHjyIPn36gOM4zJgxA4wxWFhY8NPVrFkT//zzD9LT0yGRSFCtWjV069YNX3/9NdasWYNu3brh8OHDOHbsmMZ2mJubw8zMTGN9fn5+sLCwQGRkJD777DPcvHmTb3RWtV90EYlEkEqlWuMtLS35YYX3b+H9KJFIIBaLNZahfu6pkpnq216a9fr5+WHnzp24efMmHBwcsHjxYrx48QINGzbUu32lIZfLNeLv2rWrYN5wqZPL5XxHGO+8845GFWEhUI9fiMdA6PEDwt8GoccP0PfYFBhjG3JycjBgwAAAgPmgYeBM5EcGy8tD3uaCDrC2bt1aKS+Xq9o5ZGrfY8YYunbtWuQ0qampGD58OICCNo6XLVtW7LGXSCQmVaJGLpdr9ADZt29fhISEGDEiw3l4eGDatGlaw6dPn67R3jSpOI8fP+YL46hcvXoVI0eOFERvtIwx/PvvvzqTcA0aNMCgQYNM6vuqj9DvB5UVv6EFU0w6Aefr6wtfX18AwNChQ/Hee++hZ8+euHDhAl9yKkdHkS/V2wrVNKVhbW2tNUyhUAAA7O3ttRIPcrkcHMdBJBKVKnlWuDqkMRJwqnWq/h05ciRkMhl+/PFHfPPNN7C2tkajRo0wbtw4je1U/V/fNhT+l+M4dO7cGfXq1UOnTp2Qk5ODkJAQhIeH89N89913qF69Or7//nt89tlnsLe3R7NmzTBlyhSd61ZZvHgxPvnkE7Rr1w7VqlXDpEmTkJ6erhFPREQEPvvsM9StWxc5OTlgjKFhw4ZYvnw5vvvuO6xatQp9+vRBWFgYfvnlF424Cx8bFxcXrF+/HlOmTMGyZcvQrFkzLFiwAB9++GGx54Ku41x429SH6dqP6p/Vh6n/v/B6Srre6dOn49GjR+jevTusrKwwcuRI9OrVC6mpqeV6nopEIo34zc3NBfeGBfjvOgEIcxsofuMT+jYIPX5A+Nsg9PgB42yDQqHQeFNuKj+LGP57g29mZlZp+0KFzqGKUbhN4cLU4/38889RrVq1ig6p3A0dOhR//vkn0tPTYWNjgyFDhpjccdCnRYsWaNiwIW7dusUP8/f319n8ESl/jDGt5JvK6tWrMWfOHJNPXjHG9P5WEolEMDc3N/ltAEz/Wlqcyorf0OWadAKusL59++Kzzz7D3bt3+aqnqqqo6p48eQJHR8dKq35aVYSGhiI0NFRj2MCBAzFw4ECd0/v4+Gg19tqqVSvcuXMH9vb2RS4XAMLDwxEeHq5z2RzHYezYsRg7dqzO8Z06ddLZ0KyPjw/++usvjWGjR4/W+Ny6dWtcv35da95Ro0bh3XffBQDUqVMHIpEIU6ZM4ccX7slVJSQkROttXnGN4MbGxmoNKzxP4f1beD/OmjULs2bN0phn7NixeP/99/nPJ06cKPN6HR0dsWfPHt0bQgghhBBCKpRQqtwVJpVKERYWhhUrVmD06NGCKzkzc+ZMBAcH84mUGTNmGDukN4a+HkQVCoVgehBNSEgosjdgIWwDKX+C6QUV+K/aaWpqKtzd3eHs7IxLly5pTffPP/+gadOmlRwdIYQQQgghhBCV1q1bY+PGjWjdurWxQykxOzs7hISEQCQSYcCAAbCzszN2SG8MT09PNG/eXGs4x3EIDAwURA+iqm3QVfNIKNtAyp9JJuCeP3+uNSwvLw8bNmyApaUlGjRoAADo06cP9u/fj4SEBH66Y8eO4e7du+jXr1+lxUsIIYQQQgghpGqpX78+qlWrhvr16xs7lDcKx3E6ewpmjKFv376CqLrJcRxGjx6tFatIJNI5nLwZTLIK6meffYa0tDR06NAB7u7uePr0KTZv3oyYmBgsXLiQbyR+ypQp2L59O95++22MHTsWGRkZ+PHHH9GoUSN8/PHHRt4Koo++qpyEEEIIIYQQYgrkcjmWLl2K5ORkLFu2DE2bNhVcNVqhYoxhx44d4DhOo2kcjuOwfft2NG3aVBAJLHd3d/Tp0wfbtm3jh/Xu3VsQnUiQimGSJeCCg4MhEomwatUqfP7551i0aBE8PDywd+9eTJgwgZ/O09MTf//9N2rXro1vv/0WP/zwA3r06IEjR45Q+2+EEEIIIYQQYkTnz5/HkCFDcP78eWOHUmJRUVFISUkBACQnJyMqKsrIEb05VG3AFW6rmjHGtwFHiBCZZAm4AQMG8N3AF6dhw4Y4fPhwBUdkuOIa3yeE6Kb67qj3pksIIYQQQoRJLpdjwYIFSE9Px4IFC7Bp0ybBlCBLSkpCVFQU/3zKGMO2bdvw7rvvwt3d3cjRVX2q9tOuXr2q8dtALBYjICBAMO2nJSUlYefOnRrDdu3ahW7dutF59IYyyRJwQqTqdjYrK8vIkRAiTKrvTnp6upEjIYQQQoSHMQa5XF5ufyrluUy5XE4vq98gmzdv5p/r0tPTsXnzZiNHZBjGGFasWKF3OJ3DFU9f+2n6hpsifeeLUqmk8+gNZpIl4IRILBbD3t6e70DCysqqRBcGpVIJhUIBoOBBRywWV0icFanwNhTu8cXUCT1+QJjbwBhDVlYWnj9/DhsbG+Tm5ho7JEIIIURwcnJyEBQUVO7LDQ4OLtfl7d27VzCloEjpJSUlYfv27RrDtm/fLoiSP6rqj4UpFAq++qOXl5cRInuzuLu7Izg4GFu2bAFjDBzHoX///oJpP03feaRUKuk8eoNRAq4c1ahRA4DuXlyLwxjj51MqlYJInBSmvg2qi6SQCD1+QNjbYG9vD3t7e2OHQQghhBBCyoAxhoULF+psv2vhwoVYuHChST+jVpXqj1VBcHAwfv/9d6Snp0Mmk5X7C4GK5OnpiYYNG+LWrVta4/z9/ek8ekNRAq4ccRwHV1dXVK9eHXl5eSWaNycnB3PnzgUA/PTTT7C2tq6IECuU+jasWLFCcB1hCD1+QLjbYG5uDrFYrFHlhRBCCCGlIx08GjAzL/X8jDEgP7/gg5lZ2ZMl+XmQb9Ku0keqpvj4eJ1JBwC4desW4uPj4e3tXclRGU5VzXHEiBE6h5ty8pCYFjpXSGGUgKsAYrG4VFVIX7x4AQCwsLAQbNF81TZIJBJBboPQ4weqxjYQQgghpAzMzMGZW5R6dg4ALMrvJR61dESERujVH6uKqKgoZGRkAAAyMjIQFRWFYcOGGTkqwyQkJODmzZs6x928eZOqoL6hhFfPkRBCCCGEEEKISfLy8oK/v7/Ocf7+/oJJOvTq1Yv/P8dxGp9JxdPXE21SUpKRIzOMqipz4aalRCIRAgMDqQrqG4oScIQQQgghhBBCygXHcZgwYYLOHiwnTpwomGp5e/bs4ZM/SqUSe/bsMW5Ab5Cq0BOtqsqyrrYQqSrzm4sScIQQQgghhBBCyo27uzt8fX01hvn5+QmmCqeq9JU6IZW+EjpVD6IKhUJjuHpPtEImhAQiqRiUgCOEEEIIIYQQUm6SkpJw584djWF37twRRAKrKpS+Ejp91TfFYrFgqm+qzhddJUHpPHpzUQKOEEIIIYQQQki50Jd4ACCIxENVK311/vx5DBkyBOfPnzd2KAbT1+OskHqiVZ1HSqVSY7hSqRTkeUTKByXgCCGEEEJImTDGIJfLy/VPpTyXaeo//AmpCoSewKoKpa9U5HI5FixYgOfPn2PBggUa11ZTp+qJVpVsE1pPtFXpPCLlx8zYARBCCCGEEGHLyclBUFBQhSw7ODi43Ja1d+9eSKXSclseIUSbKvFw9epVjdI/YrEYAQEBJp94UJWyGjFihM7hQih9pbJ582akp6cDANLT07F582YMHz7cyFEZLjg4GIcPH0ZycjKcnJzK9X5Q0arSeUTKD5WAI4QQQgghhBBSLqpC9UGhl74CCtrh2759u8aw7du3m0Q7fIaWmmaMYdiwYbC2tuYTh0Iq6VwVziNSvqgEHCGEEEIIKTdmg/sBZmV7xGSMAfn/X33NTFy2H+z5+cjftL346Qgh5cbd3R19+vTBtm3b+GG9e/cWVOJByKWvGGNYtGiRVjJKNXzBggVGTYSWptT0999/b9B0plbSWcjnESl/VAKOEEIIIYSUHzMzcObmZfoTWVhAZGVZ8GdhUaZllTUZSAh5M0mlUnz11VeoXr06vvzyS5NK6hQnPj4eN2/e1Dnu5s2biI+Pr+SI3lxCPo9I+aMnEkIIIYQQQggh5SYpKQk7d+7UGLZr1y5069YN7u7uRoqq5Fq3bo3WrVsbO4wqRyKRYO/evcVOJ5fL+RJjmzZtgo2NjUHLNjV0HhEVSsARQgghhBBCCCkXjDGsWLFC7/A5c+YIoh04IfPy8kLDhg1x69YtrXH+/v7w8vIyQlT/4TiuxCXBpFKpSZUeY4whJyenRNNJJJJiz31DpiHCRQk4QgghhBBCCCHlIiEhAZcvX9YarlAocPnyZSQkJBg9AVTVcRyHiRMnYvjw4RrtwKmGU4Kn7Cqq929Ta8OOlC9qA44QQgghhBBCSLnw9PRE8+bNdfaCGhgYCE9PTyNF9mZxd3dHv379NIb169dPUB1hEFLVUAk4QgghhBBCCCHlguM49O3bV6sUHGMMffv2pdJXlahv3758T7Sq40LKR2nasYuKiiq2dJsptmFHyg+VgCOEEEIIIYQQUi4YY9ixY4fOEnDbt2/XqBJJKtaePXs0jsOePXuMF0wVo2rHzpA/FUOmpQR11UYJOEIIIYQQQggh5ULVBlzhRBtjjG8DjlS8pKQkREVF8ceBMYZt27YhKSnJyJER8uaiBBwhhBBCCCGEkHKhagNOF2oDrnIU1xMtlUIkxDgoAUcIIYQQQkg5YkolMh4n4fX9e8h4nASmVBo7JEIqDcdx6NSpk85xnTp1oip2lUBVClGhUGgMV++JlhBS+agTBkIIIYQQQspJ6qOHSDxxHOmJiVDm5UJkbgEbDw94dHobdjVrGTs8QiqcUqnEmjVrdI775Zdf0LlzZ4hEVA6kIqlKIV69ehVKtRcAYrEYAQEBVAqRECOhKx8hhBBCCCHlIPXRQ9zdHoXUhw9gIZPB2tUNFjIZUh8+KBj+6KGxQySkwl28eBFpaWk6x6WlpeHixYuVHFHpRUZGonv37oiMjDR2KCXCcRxGjx6tsyMMXcMJIZWDEnCEEEIIIYSUEVMqkXjiOPLS02Ht7gEzS0twIg5mVlawdvdAXno6Ev8+QdVRSZXXokUL2Nra6hxna2uLFi1aVHJEpZOamootW7ZAqVRi69atSE1NNXZIJeLu7o4+ffpoDOvduzfc3NyMFBEhhBJwhBBCCCGElFHm0ydIT0yE1NEJTJGP1EcP8frePeRlZIDjOEgdnZCekIDMp0+MHSohFUokEmHy5Mk6x02dOlUw1U/Dw8P5zgqUSiVmz55t5IgIIUInjKsfIYQQQgghJiw/KwvKvFxw5uZIj4+HIicHyvx8pCfEI+vZU4gszKHMy0V+VpaxQyWkwjVr1gxOTk4aw6pVq4amTZsaJ6ASunLlCm7duqUx7ObNm7hy5YqRIiq5pKQk7Ny5U2PYrl27kJSUZKSICCGUgCOEEEIIIaSMzKysIDIzQ9qjh1Dk5EBkZgaJvT0AQJ6SgtQHDwCuYDpCqrqkpCQkJydrDHv58qUgkj9KpRLz5s3TOW7evHkanRqYKsYYVqxYoXe4qmQfIaRyUQKOEEIIIYSQMrKs5gxFXh5yUlMBkQg2Xt6wdnWDzNMTEImQk5aGvMwsZCe/pB+/pEpjjGHhwoU6xy1cuNDkz/+q0IlEQkICLl++DIVCoTFcoVDg8uXLSEhIMFJkhLzZKAFHCCGEEEJIGSgVCsQfOwKJrR3EEgnEFhZgCgWYQgGRSAwzqRQSOztYu9TAk7NnEfvHQeRRVVRSRcXHx2tV31S5desW4uPjKzmikmnRogVkMpnOcTKZTBCdSHh6eqJ58+Za7e2JxWIEBgbC09PTSJER8majBBwhhBBCCCGlxJRKJBw/hvT4eEgcHNBw2CdwrO+L3IwMZD59gtyMDDjUq48mo7+ET7fu4MQipMfH496ObUiLjzN2+ISQQjiOg6urq85xbm5u4DiukiMqOY7jMHr0aJ2x6htOCKl4ZoZM9M4775TLyjiOw7Fjx8plWYQQQgghhBgTYwxJp/5G6oMH4EQi+HTtBhtPL7gEBiLz6RPkZ2XBzMoK1jVcwf1/SRRrN3ck/HUU8pQUxB46CCd/f7i2agORmUGP5YSYPC8vL/j7++PmzZta4/z9/eHl5WWEqAyXkJCAe/fu6Rx39+5dJCQkmPw2AIC7uzt8fX01SiP6+fnBzc3NiFER8mYz6E5/4sSJclkZZdoJIYQQQkhVwBjDk/NnkRITA3CAV+d3YeNZ8KOcE4kgc3PXOZ+lkxPqfNQHTy+cx8ubN5B88yYyHz+G5zudYelUrTI3gZAKwXEcJkyYgE8++URr3MSJE03+N6Gq+ubVq1c1OlwQiURo1qyZYKpvJiUlITo6WmNYdHQ0kpKS4O6u+/pECKlYBldB7du3Lx49elTqvz59+lTkdhBCCCGEEFJpnl+5hJf//gsA8Oj4Nuxq1TZ4XpGZGdzatoNP9x4ws7SEPCUF93fvxMsb/5p8A/WEGMLd3R1+fn4awxo0aCCI0lf6qm+KRCLBVN9U9XaqK1bqBZUQ4zG4rLtMJoO3t3epV6SvIUtCCCGEEEKE5OWNf/Hs0iUAgNtbbeFY37dUy7H18ka9fsFI/Ps40uLi8PjsGaQnxMOj49swt7Yuz5AJqVRJSUm4c+eOxrCYmBjBlL5yd3dHcHAwtmzZAsYYOI5D//79TSaByBhDTk6O3vGqXlALU/WCev/+fZ0l+SQSiSASjIQIlUEJuLFjx6JVq1ZlWtF7770He3v7Mi2DEEIIIYQQY0qJicbjs2cAAC6BLVCtUeMyLc/M0hLeXbsj+fYtPDl3FukJCbi3Yxs8Or0NW2+fcoiYkMqlKn1VuJSVavicOXMEkeQJDg7G4cOHkZycDCcnJwQHBxs7JF5OTg6CgoJKPf+YMWN0Dt+7dy+kUmmpl0sIKZpBVVAXL16MAQMGlGlFISEhWLx4cZmWQQghhBBCiLG8fvAAiSdPAACqNW6C6s2al8tyOY5DtYb+qNu7L6ROTsiXyxH7xyEknToJZX5+uayDkMqiKn2lKwF3+fJlJCQkGCmykpFKpfjqq69QvXp1fPnll5SYIoSUGXW3RAghhBBCSDHS4uOQ8NdRgAGOfn5wbd2m3EvxSB0dCzpo+Oc8Xv77L5Jv30JGYgJc5XL68U8Ew8PDA7a2tkhLS9MaZ2trCw8PDyNEVTqtW7dG69atjR2GFolEgr179xY7XWRkJHbt2gWgINHfr18/DBo0qMjlEkIqjsEJuOjoaLx48QI+Pj7FdrscFxeHuLg4VK9eHb6+pWsTgxBCCCGEEFOQ8eQx4v48DKZUwq52bbi361BhVehEYjHc2rSFjYcXEo4fQ87r13j48CFcXFyo4XQiCImJiTqTbwCQlpaGxMTEYn9PkqJxHGdQUn7AgAF8As7R0RGDBg2iZD4hRmRQFdSXL1+iTZs2GDBgAMzNzYud3sLCAgMGDEC7du3w+vXrssZICCGEEEKIUWS9eI7YQwfBFArYeHnD6+3O4EQGPUKXiY2nJ+r1C4bN/3eC9uzZMyxfvpyerYnJ8/T0RPPmzbWS1BzHITAwUGfj/6bq/PnzGDJkCM6fP2/sUEpFvUTbqFGjKPlGiJEZ9PSwbt06pKWlYe7cuXB1dS12eldXV8yfPx8pKSlYt25dmYMkhBBCCCGksslfpeDRgf1Q5uXB2s0N3l3eAycWV9r6zSwt4f3ue3B1dQXHcbhz5w5mz56Nq1evVloMhJQUx3EYPXo0RIUS1SKRCKNHjxZEBwwAIJfLsXTpUjx//hzLli2DXC43dkhl0rJlS2OHQMgbz6AE3IEDB2BnZ4fBgwcbvOBBgwbB3t4e+/btK3VwhBBCCCGEGENuWhoe7v8dipwcWFWvDp+u3SEyq/zmkzmOg4ODA2rVqgUPDw9kZmbi559/xqZNm5CTk1Pp8RBiCHd3dwQHB/PJNo7jEBwcDDc3NyNHZrioqCikpKQAAJKTkxEVFWXkiAghQmdQAu7WrVto3bo1zErw0CEWi9GqVSvcunWr1MERQgghhBBS2fIyM/Fw/z7kZ2VB6ugIn+7vQ2xhYdSYJBIJwsLC0LVrV3Ach1OnTmHOnDmIi4szalzkzcMYg1wuL/YvKCgIDg4OAAraH+vVq1eR01dmG4fFbcOjR48QFRXFx8QYQ1RUFB49emQy20AIER6DMmqpqalwcnIq8cKdnJyQmppa4vkIIYQQQggxhvz8fCQcOoDc9HRY2NqiZo8PYGYi7SaZmZmhd+/eaNCgAdatW4dnz55h/vz56NWrF9q3b2/s8MgbIicnB0FBQSWaJzk5Gf379y9ymr1791ZaG2Wl2QaFQoFRo0YVOU1lbgMhRHgMKgFnb2/PF78tiZSUFNja2pZ4PkIIIYQQQiqbQqFAfHw8cl6/hrm1NWp90BPm1tbGDkuLr68vZsyYgYCAACiVSuzatQtLly5FXl6esUMjhBBCiB4GlYCrU6cOLly4AIVCAbGBDc/m5+fj/Pnz8PX1LVOAhBBCCCGEVLTc3FwkJCRALpfDXCpFzfd7wsLGdF8kW1tb47PPPsPZs2cRFRWF+/fv48GDB3BzcwOVvyEVSSKRYO/evcVOJ5fLERwcDKCgPbXiSoap99hZ0YraBsYYwsPDcf36dSiVSn64SCRCkyZNMHPmTL0dSVTmNhBChMegEnDdunXD69evsXz5coMXvHz5cqSmpqJ79+6lDo4QQgghhJCKlp+fjzVr1iArKwsikQg1u/WA9P/brjJlHMehbdu2mDZtGry8vKBUKpGYmIj4k0ehyMs1dnikiuI4DlKp1KA/FUOmrczeUYvaBktLS3z55Zda8YhEInz11VewtLQ0iW0ghAiPQQm4MWPGQCaT4ZtvvsGmTZuKnX7jxo345ptvYGNjg9GjR5c5SEIIIYQQQiqCUqnEb7/9hujoaHAcBy8vL1hWq2bssEqkevXqmDhxIqr9f9yv7kbj7s7NyHr+1MiRESJM7u7u6NOnD/+Z4zj0799fUL24EkJMj0EJOEdHR0RGRkKhUGDYsGFo27Ytli9fjrNnz+LevXu4d+8ezp49i+XLl6Nt27YIDQ2FUqlEZGQkHB0dSxzUxYsXMWbMGDRs2BDW1tbw8vJC//79cffuXY3pQkNDwXGc1h9VeyWEEEIIIcVhjGHTpk24fPkyxGIxPD09YWVlZeywSkUsFqN69erw9vaGubUMOamvcW/PVjy7cgFMrRodIcQwffv25f/v6OjIV6clhJDSMqgNOADo1asXfv/9dwwbNgznzp3D+fPndU7HGIOzszPWr19f6uqn33//Pc6cOYN+/fqhcePGePr0KZYvX45mzZrh/Pnz8Pf356eVSCRYu3atxvx2dnalWi8hhBBCCHkzMMawfft2nDlzBhzHYdiwYZg1a5axwyoza2tr1OsdgqTzp/D6wV08uXgW6Ylx8Hq7Kyxs6BmZEEOpt+c2atQo6t2UEFJmBifgAKB79+6IjY1FZGQkDh48iGvXriE5ORkA4OTkhKZNm+L999/H0KFDy/T2cMKECfjf//4HCwsLflhwcDAaNWqE+fPna1SDNTMzw+DBg0u9LkIIIYQQ8ubZv38/jh07BgAYNmwYAgICjBxR+TGTSOHduQdsPWsi8cxfyHiShDs7NsOj/TtwqEM1RQgpqZYtWxo7BEJIFVCiBBwAWFlZ4fPPP8fnn39eEfEAAN566y2tYXXr1kXDhg0RHR2tNU6hUCAzMxO2tuXXU1VmZqbeYZmZmVq9wVqbYBf1hBBCCCFE29GjR7F//34AwIABA9CmTRvI5XIjR1W+OI6DY/0GsK7hhri/DiHr+VPEHTuEtIRYeLR9B2K1F92EEEIIqXglTsAZC2MMz549Q8OGDTWGZ2VlwdbWFllZWXBwcEBISAi+//57yGSyMq2vqPl1Nb6Zm1u2nqby8vI0/q/+WSgKb0PhJKWpE3r8gPC3QejxA8L/Lgv9GAg9fkD42yD0+AH6HpdGfn4+zM3NARQ8XJpSP4AMAPf/seXn5+Pvv/9GVFQUAKBnz55o164d8vLyNLbBHKazDQwA1OLXdz5qxs/AFcwJczs7NPiwH55cuYCnV/9B6t1oyJ8kwadzd8hcXCtjE8DAoDBgG8oTfY+NT+jbIPT4AeFvg9C/x0DVOwYUf/HrKYpgEnCbN29GUlISZs+ezQ9zdXXFN998g2bNmkGpVOKPP/7AypUrcf36dZw4cQJmZpW3eQcPHizT/OoH7K+//uIfoIREfRsOHz4suG0QevyA8LdB6PEDwv8uC/0YCD1+QPjbIPT4Afoel9aIESMqZT0lZg7g/2NbvXo1jhw5AsYYmjZtCqVSqfEMZ5LbYG7Bx6+qMqvPf/Hn/f+fahkA3mqCJzWr4+jRo0hPTwb2/w/1mzdH8+bNIRIZ1C9b6akdg+K2obzQ99j4hL4NQo8fEP42CP17DFStY0Dx65eVlWXQdBxjjBky4fPnzzF9+nT8888/qFGjBsaPH4/33nuvTEEaKiYmBq1atULDhg1x6tSpIrOWc+fOxdSpU7FlyxYMGDCg1OvUVQU1LS0Nbm5uiIuL06ruWtYqqHK5nO9pZ8uWLbCxsSnT8oxBfRt27NghuIZKhR4/IPxtEHr8gPC/y0I/BkKPHxD+Ngg9foC+x6WRk5PDP3eZDerLlzgzBSwvD/mbdyA9PR1169YFx3Fo164dQkJCwHH/lXNT3wbzQcNMZhtYXh7yNkcCALZu3arRMLw69filg74AZ667iqkiJwfxp/9Cyv07AABZDVf4vN0NEtuK66CB5eVCvnklgKK3oTzR99j4hL4NQo8fEP42CP17DFStY0Dx65eWloZq1aohNTW1yKbRDCoilpqayjc8OW7cOJw+fRrdu3fH9u3b0bt37/KJWI+nT5/i/fffh52dHXbs2FFskcHx48dj+vTpOHr0aJkScLoSagqFAgBgb29fru3NqS8bAMzNzQWXWQaEvw1Cjx8Q/jYIPX5A+NtA8Ruf0LdB6PEDwt8GY8SvUCj4t8wMplN9EyiIJ/X1a8THx6Nu3bpo3bo1hgwZolXqS30bANPZBob/3uCbmZnpPZ7q8YvBgdO3BRIpPDr3gJVXTSSd+gtpT5/g1o7NcG//Dhzr+hWsU6lE5tPHyMvKgLmVDNY13MCVoZQcA2fQNpQn+h4bn9C3QejxA8LfBqHHDwh/Gyh+wxi6XIMScCtWrEBCQgLOnTuHli1bYty4cWjcuDFmzZpVoQm41NRUdO/eHa9fv8apU6d0tr1WmKWlJZycnJCSklJhcRFCCCGEEGHIfvESCQkJYIzB398foaGhFV/lUgAc6/rB2sUN8cf/QObTx4j/6w+kx8fCxsMbSWdPID0xDsq8XIjMLWDj4Q3PTl1gX7OuscMmhBBCBMugp48nT54AABo1asQP8/PzQ1xcXMVEhYKigj179sTdu3exf/9+NGjQwKD50tPT8fLlSzg7O1dYbIQQQgghxPTJU17h0R9HoFQqYWVlheHDhwuuAemKJLG1Q52e/VAjsA04jsOzKxdwZcX3SI65AXOZLaxd3WEus8Xrh3dxZ/smvH50z9ghE0IIIYJlUAm4wMBAMMawf/9+9OvXD+np6Th9+jSaNGlSIUEpFAoEBwfj3Llz2Lt3L9q0aaM1jVwuR15enlY98IiICDDG0K1btwqJjRBCCCGEmL7ctHQ8OvAHFDk5sLS0hKenp+CqzlQGTiRCjeatIXPzwOWf5iIvKwvgRMjLTIe5pSXMraxgZumFjKR4JPx9BHbetctUHbUojDHk5OSUy7Lkcjn//5ycnHI79hKJRKPtQEIIIcRQBiXghgwZgk2bNmHo0KHYsmULrl+/jvT0dCxatKhCgpo4cSL27duHnj17IiUlBZs2bdIYP3jwYDx9+hQBAQEICQmBr68vgIJeLQ4ePIhu3bohKCioQmIjhBBCCCGmLS8zEw/3H0R+Vhakjg7whJhKvhWHAWZW1rBy5pCfnY3sl8+Rl5kOmbsXxOYWkDo6Iz0hDplPH0Pm5lEhIeTk5FTIM/ywYcOQn59fLsvau3ev4BohJ4QQYhoMSsCJRCL8+eef2LRpEy5duoTAwEAMGTIEnp6eFRLUtWvXAAC///47fv/9d63xgwcPhr29PT744AMcOXIEkZGRUCgUqFOnDubOnYuwsDBq24MQQggh5A2Un52NRwf+QF56BizsbOHT7T1w2/YYOyyTl5eVAZafD1uvmsjNSEfmkyTkZ2cj9dE9yNw8YW5pjZxXucjLyjB2qIQQQoggGZSAAwCO4zBkyBAMGTKkIuMBAJw4caLYaezt7bFx48YKj4UQQgghhAiDIicXjw4eRs6r1zC3tkbN97vBXCpF+ZR9qtrMrWQQmVsgX54Dia09zC2tkJ4Uj/zsbKQnxMFCZguxxALmVrJKicd6yFRwZhalnp8xBvP8HPSzfIntea7I50pfApLl5yJz45xSz08IIYQAJUjAEUIIIYQQYqqUefmI/eNPyF8mQ2xpiZofdIeFjQ1YXp6xQxME6xpusPHwxuuHd2Fm6QWRuQVsvWsj69kTZKe8RMbTJMjcPGBha1cp8XBmFuDMS5+A4wCILMxhbpYKEScBZ1jfc4QQQkiFoTsRIYQQQggRNKVCgbgjx5D19BlEFhao2aMrJPaVkyiqKjiRCJ6dusDCxg4ZSfEFnTEolbCwtYfY3BxmEikkNna4t3sLMp4kGjtcQgghRHAMSsDt2rULV65cKdOKrly5gl27dpVpGYQQQgghhKhjSiUS/jqBjIREcGZm8On+HiyrORk7LEGyr1kX9fsNhn2tesjLSEPm0yTkZaShmn9TNBk5FrbeNZGXlYkHv+/A8+uXwBgzdsiEEEKIYBhUBbVv374IDQ3Fb7/9VuoVLVu2DBs2bIBCoSj1MgghhBBCCFFhjCHp5GmkPYwFJxbDu+u7sK7hYuywBM2+Zl3YeddG5tPHyMvKgLmVDNY13MCJRHBq0BiJJ4/h1f0YPD5/CplPH8OrU1eIJRJjh00IIYSYPKqCSgghhBBCBIcxhidnL+DVnXsAJ4Jn506w8XA3dlhVAicSQebmAYc6vpC5eYATFfxkEJtbwOudbvBo9w44sRipsQ9wd9dmZCe/MHLEhBBCiOkzuBOGHTt2GNQ7qT4vX74s9byEEEIIIYSoe37pCpJv3gIAeHRqD7uaPsYN6A3BcRyqNWwCK2cXxB7Zj5y0VNzbvRUe7d+BY/2Gxg6PEEIIMVkGJ+AyMjKQkZFRppVxHFem+QkhhBBCCHlx/QaeX7kGAHBr1wYO9eoYN6A3kFX1GqjXZxDi/4+9+46Tq64X//86ber23jcdSEgDCVV671dKEFCwgA3liujlp169V7/yVVEvdr+gQjBKEbyEGqSFXiMkAdKT7b3vTj/l98ckm11S2J2Zzczuvp+Px2YnM2c+5312Zs458z6fz/vz/GoGGupoWPNPhtqaqTr+VFR9zF8xhBBCiGljTENQbdtOyY/UfxNCCCGEEMno2biJttffBKB02ccoXDA/zRFNX7rHy8yzL6b8qONQFIWeTe+zddV9RPr70h2aEEIIkXGkBpwQQgghhJgU+rZtp/mlVwEoWrKI4iWL0hyRUBSF0iOOZta5/4bu9RHq6mTLP/5G/85t6Q5NCCGEyCiSgBNCCCGEEBlvoL6RxudeBMehYP6hlC37mJQ3ySDZVbXM+8SV+MsqsKIRdv7zUVpefxHHttMdmhBCCJERpECDEEIIIYTIKI5tE2hrxwwG0X0+HNum4ennwLHJnTObihOOk+RbBnJlZTPn/EtpefNlOtf/i451awl2tFFz0hnpDk0IIYRIO0nACSGEEEKIjNG/s46mNS8x1NSMHYvhOGCGQvhLSyhctIDqk0+U5FsGUzSNymNPwl9aQeOafzLU2syW/72PskAAv9+f7vCEEEKItJEhqEIIIYQQIiP076xj69//l/4dO3FlZeEuKCA60E+kr5+h1jZyZ81C0eT0dTLImzWXuZ+4Ek9BIWYoSH19PV1dXTiOk+7QhBBCiLSQMxghhBBCCJF2jm3TtOYlooODZFVWoOgaQ41NKIqKp6gA3eul9ZXXpKbYJOLJy2fuxVeQP+cQADo6OrjjjjsIBoNpjkwIIYQ4+CQBJ4QQQggh0i7Q1s5QUzPeggIc02KwoRHHstDcbnJqqvEVFTLY2ESgrT3doYpx0AwX1SedQXl5OYqisGHDBn70ox/R0NCQ7tCEEEKIg0pqwAkhhBBCpJnjOEQikZS0FQ6H93k7Fdxu94TVXzODQexYDMXQGWhsxI6ZqC6D7JoqVE1Dcbuwe2OY0ntq0lEUhfz8fDweDwUFBXR1dfGTn/yEK664ghNOOEFq+gkhhJgWJAEnhBBCCJFmkUiEiy66KOXtLl++PKXtrVq1Co/Hk9I2d9N9PhRdZ6CuHse0UHSd7JpqVD1+umpFoqiGge7zTcj6xcTzer3ccsst3Hvvvaxfv56VK1eyfft2rrzySlwuV7rDE0IIISZUUgm4l19+mVWrVrF161YGBwf3WVRVURSeffbZZFYjhBBCCCGmOG9xEbZpEukbwJWTRXZNNZphAPEegqGeHvJmz8JfVprmSEUyfD4fX/7yl1m9ejWrVq3itddeo7GxkS984Qvk5OSkOzwhhBBiwiSUgHMch8997nOsWLFiOOmmKMqoBNzu/0uXciGEEEKIsdM+dR7oiV8jdRwHTCv+H11L/lzMNLH+8nhybXyE+AQML+LOzibs7kEzXGBZOJaFFYkS6unBlZ1N5UknoKhSwniyUxSFc845h1mzZnHnnXfS1NTEj370I6644op0hyaEEEJMmITOYP7whz9w9913c+SRR/L000/ziU98AoDNmzfz5JNPcu2116KqKt/85jfZsWNHSgMWQgghhJjSdB3FSPxHdRmoPk/8x2Uk1ZZi6EklA8fCcRyaX3qVgR11uPPzOOzTV5J/6DyiQ0ME2tqJDg2RN3sWcy/7N3JnzpjQWMTBdcghh/Dd736XuXPnEg6H+dOf/kRbW9s+R9UIIYQQk11CZ1R33303fr+fJ598ksLCQlauXAnA3LlzmTt3LmeddRbnnnsuy5cv57jjjqO2tjalQQshhBBCiKmh7c236d20GRSF6tNOJnfmDMqOOpJAWztmMIju8+EvK5Web1NUXl4eX//613n44Yd58skn6enpIRQKcUhgEHdeYbrDE0IIIVImoQTcxo0bOe644ygsjB8Udw9tsCwLTdMAuPTSSznyyCP52c9+NiFFhYUQQgghxOTWuW4DXe+uB6Dy48cP93BTVJWsivKDGsvIXldOLHZQ130gI2OZqj3DNE3jkksuobKykqeffppQKMTm/72LGWdeQk7lzHSHJ4QQQqREQgk427aHk28QL6YK0NvbS1FR0fD9c+fO5fHHJ7ZmiBBCCCGEmHx6Nm2h7fU3ASg7+igKDjskrfFEIpHh2+ZfV6Qxkv2LRCJ4vd50hzFhlixZwsyZM2lqaiIWDrLtsXupOOokSpceJ3WlhRBCTHoJ9eWvrKykpaVl+P+7h5i+8847o5bbsmUL+gTXDRFCCCGEEJNL/846ml98GYCiJYsoXrIozRGJTOF2u5k5cyaFcxcCDi1vrWH7k/djhkPpDk0IIYRISkLZsSOOOIJnn312eMjpmWeeyX/8x3/wrW99i3vvvZfKykr+8Ic/sHbtWk477bRUxyyEEEIIISapoeYWGp9dA45D/qHzKFv2sXSHBMQTP7vpV12DYhhpjGYPJxYb7pE3MsapTFVVak86j6yqmTS+/BQDjdvZ9NCfmHnmJfiLD+7QZCGEECJVEkrAXXjhhdx///08/vjjXHjhhSxevJgrrriC++67jwULFuxpXNf50Y9+lLJghRBCCCHE5BXs6KT+qWdwLIucmTOo/PjxGTO0cGQcimFkTAJupEz5Wx0sRYcuwVdUxs6n/0FkoJctD6+g6vgzKTps6bT7WwghhJj8EhqC+slPfpJQKMR55503fN+KFSu49dZbOeqoo5gzZw7nnnsuzz77LMuWLUtZsEIIIYQQYnIK9/ZS98RT2LEY/soKqk87WWY2FR/JV1TGIZ/4DLkz5uHYFo0vPUn9c49gxaLpDk0IIYQYl4QLtH24C7xhGNxyyy3ccsstSQclhBBCCCGmjujgEHWPP4UVieAtKab2zNNQNS3dYYlJQnd7mXXmpXSse53mN5+nZ9t7BLvbmXXmJXjyCj+6ASGEECIDJHTZ8YgjjuCyyy5LdSxCCCGEEGKKMUMhdj6+mlgggDs/jxlnn4nmcqU7LDHJKIpC6ZJjmXvB1eheP+HeTjY99Cd6t32Q7tCEEEKIMUkoAbd582aMDKyLIYQQQgghMocVjbLziX8S7e/HyMpi5rlno3s96Q5LTGLZ5TUcdunnySqvwTZj7Hz2f2l85Z/Ylpnu0IQQQogDSigBN3fuXLq7u1MdixBCCCGEmCJs06T+qWcId3Wheb3MPO9sjCx/usMSU4Dhy2Lu+VdRuuRYADrfe4utj6wkOjSQ5siEEEKI/UsoAfe5z32OF154gU2bNqU6HiGEEEIIMck5tk3Ds88TaGlFNQxmnnMm7rzcdIclphBFVak8+lRmnXUZmstNoKOZTQ/9kYGmnUD8PTjQUs/WrVsZaKnHse00RyyEEGK6S2gShq9+9au8//77nHTSSdxyyy1ccMEF1NTU4JJ6HuIgcxyHSCSSkrbC4fA+b6eC2+1GUZSUtimEEEJkIsdxaHnxZQbrGlA0jdqzz8BbXJTusMQUlTdjHt5LPsfOp/9BsKuNbY/fS3blDAIdLQSad1AXG6THyCaraha1J51P3qxD0x2yEEKIaSqhBJy2a9Yqx3G4+eabufnmm/e7rKIomKbUZBATIxKJcNFFF6W83eXLl6e0vVWrVuHxSM0bIYQQU5vjOLS98Ta9m7eColJz+ilkVZSnOywxxblz8pl30adpevVpmt94nvZ3X0VRVPJnHUJFcTZDIZXe7RsJdLQy/7LrJAknhBAiLRJKwFVXV0tvHiau91UkEknpJBfS+0oIIYQQB0NXVxdd70VRVJWqk04gZ0ZtukMS04SqG1SfcDYtb7+IFYth+PwMtTUSqS7D8BWR7Z3JYNNO6l94nNwZ81DUhCrxCCGEEAlLKAFXV1eX4jAmp4nqfXXNNdektNfgdOl99fPT/bi1xBONjuMQteK3XRpJJy0jlsM3ngkk1YYQQggxWfT09NDZ2YmSn0P5sUeTf8jcdIckppmhtkZigUEK5iwg1N2GHY1QX18P1V40XxbewlIGmnYw1NZIdoUkh4UQQhxcCSXghMhEbk3BrSeTNFPwpK7joRBCCDFtrF27lra2NgBKliyiaNHhaY5ITEex4BB2NIKvqBR3Th6DTTuwg70MNu4gZ8ZcNLcHu6eDWHAo3aEKIYSYhiQBlyK/PedS3Frif07HcQjZFhuq8jmydQCdZHtfmXzlyQeTakMIIYQQ4qO8//773HPPPQDk5+dTcuTSNEckpivDl4XqcmOGwxg+P7nVs1Dr32cgZDLQsB1/SSWqy43hy0p3qEIIIaahhDJGu0+yxurTn/50IquZVNyajkdPrvuUoYBhGHgMF7qTosCEEEIIISbIjh07+MMf/oBlWeTk5FBWViZ1Z0XaZJVVk1M1k97tG9G9M1FVldraWrp3NhMLh+jd/gHlHzuRrLLqdIcqhBBiGkooAXfttdeO6eTKcRwURZkWCbjJKJWTSMDoiSRG3k6WTCIhhBBCZJ6WlhZ+/etfE41GOfTQQ6mvr5fjtUgrRVWpPel8Ah2tDDbtxF9YAh7wFZfTvfV9VE0DRcE2Y2gud7rDFUIIMc0klID73ve+t88TLNu2aWxs5IUXXmDnzp1ce+211NZKgdNMNVGTSAAsX748ZW1Nl0kkhBBCiMmiq6uL22+/nWAwyKxZs7juuut4+umn0x2WEOTNOpT5l11H/QuPMdS0g9beQSwjm/IjjseMhHEskx3/fIjZ51yOmkT5GCGEEGK8Ejrq/Nd//dcBHzdNk5tuuon777+ft956K5FVCDEtSC9EIYQQk83AwAC33347/f39VFRUcMMNN6BpWrrDEmJY3qxDyZ0xj3BbPadEdvK8eyaeslqCXW1sfXQlg807qXvuEWaedjGKqqY7XCGEENPEhFz20XWd//mf/+GRRx7hlltu4W9/+9tErEak0G/OORF3kifPjuMQtWwAXJqaVMImYlnc8OSLScUzGUgvRCGEEJNJMBjkt7/9LZ2dnRQWFnLjjTfi9/tTetFHiFRQVJWcilrm6jprzUpiqPhLKph11mVsf/I++nZspNHtofrj58hFRiGEEAfFhPW71jSNI488UoYjTBJuTcOtJ3/12pPcPBRCCCGEyFC2bfOHP/yBpqYmcnJy+Pd//3fy8vLSHZYQ45JTNZMZp17Mzmf+l66N76B7fFQsOzndYQkhhJgGJrTwQVtbG4FAYCJXIcSUccu5Bq4kP5GO4xCz4rcNjaSu6EZN+PETseQCEkIIMSU4jkNTUxM7duwgKyuLG2+8kZKSknSHJURC8mcfhhkJ0fjSk7S98wq610fJwmXpDksIIcQUNyEJONu2+e1vf8trr73GsmVyMBNiLFw6uPRkh0AouFPWC9FJVUNCCCEmMcdxaGlpYWhoCF3XueGGG6iqqkp3WEIkpXj+EZjhIK1vvUDTq0+ju70UzFuY7rCEEEJMYQkl4E499dT9PjY0NMTOnTvp6elBVVW+//3vJxycEEIIIYRIH8dxaH1tLf39/QB8/vOfZ86cOWmOSojUKFt6PGYoSOd7b1G35lE0j5fcGnl/CyGEmBgJJeDWrFlz4EZ1nRNOOIHvfe97nHbaaYmsQgghhBBCpFnH2g30fLAFgIqKCg4//PA0RyRE6iiKQtVxZ2CFQ/Rse48d/3yIuedfSVZZdbpDE0IIMQUllIDbuXPnfh9zuVwUFRVhGFKNXwghhBBisup+bzMda9cDUFZWJhMuiClJURRqTz4fMxJioHE72598gHkXfRpvQXG6QxNCCDHFJJSAq62tTXUcQgghhBAiQ/Rt3UnLK28BULx0IQXrd6Q5IiEmjqJpzDzjE2x77G8EOprZ9vi9zLv407iz89IdmhBCiClETeRJn/3sZ/nzn//8kcvdfffdfPaznx13+2+99RY33HADCxYswO/3U1NTw+WXX86WLVv2Wnbjxo2cffbZZGVlUVBQwKc+9Sk6OzvHvU4hhBBCCAGDDc00Pf8qAIULDqHkCBl2KqY+zXAx+5zlePKLiQUH2fbY34iFAukOSwghxBSSUALu7rvv5uWXX/7I5V555RVWrFgx7vZ/8pOf8NBDD3Haaafxy1/+kuuvv54XX3yRI444gvfee294uaamJk488US2bdvGrbfeys0338zjjz/OGWecQTQaHfd6hRBCCCGms0BrBw3/fBHHccibM4Py4z+GoiQ7Q7cQk4Pu8TLnvE/iysolMtDLtsfvxYpG0h2WEEKIKSKhIahjFY1G0TRt3M+76aab+Nvf/obL5Rq+b/ny5SxcuJAf//jHrFy5EoBbb72VQCDA2rVrqampAWDZsmWcccYZ3H333Vx//fWp2RAhhBBCiCku1N1L/ernsS2L7OoKqk4+DkVRcNIdmBAHkcufzZzzr2TLwysIdbezffUDzD7jknSHJYQQ04bjOEQiqbn4EQ6H93k7Fdxu97gvUk5YAs5xHP71r39RXDz+AqbHHXfcXvfNnTuXBQsWsHHjxuH7HnroIc4///zh5BvA6aefzrx583jggQeSSsAFAnt3Od99XyAQQNM0wuEwpmkmvA4hhBBCJC+VJ2ow+gQtEomkbGKpRE7UDpZI/wB1jz+LFY3hLyum5owTUbSEBkoIMel5cguYc+4VbHl0JUOtDdQ9/wjFjpOxn18hhJhKIpEIF110UcrbXb58eUrbW7VqFR6PZ1zPGXMC7tRTTx31/9WrV+91326mabJ9+3ba2tr41Kc+Na6A9sdxHNrb21mwYAEAzc3NdHR08LGPfWyvZZctW8YTTzyR1PqysrL2+1hFRcVe91n/djVmksdkSxn9O9m2dn9hME2TWCy21zKmaQ4vYykqppI5J9qW4nxk/Lsf27MNBlYGnRiNZRtGxm8rBnYGxW8rDru/cx7oNUilkeuIxWIJ9aBNtw9vw8H4u6XSZH8NJnv8MPm3IR3xRyIRrrjiipS15zh7+nx9/vOfT9nFtvvuuw+3273Px0YeDzQUFA7e8SAWCNLw2HPYoTD+gnxmn30K+oiko4OCOo7jmQ4HMfqP5gDKOM8pDDJnGxyAccfvkEl9Fx0crHFvg42CndR69V3P1xNoJ7e4lEPOuoQtT9zPQP0WnK4OKisr5ZxoHCb7Nkz2+GHyb8NkP6+GqfcaHIz4Rx4LkuU4zvB5nK7rKb2QMvJ4MNb3puKMPMs8AFXdk5xRFIWPepphGJx99tn86U9/oqioaEzBHMjKlSv51Kc+xZ/+9Cc++9nP8vbbb3PUUUdxzz337JXk+9a3vsVtt91GOBze74nuRxnvC/Pwww8ntB4hxB6xWIw777wTgOuuuy5lO96DabJvg8SffpN9GyZ7/DA1tmGswuEwDz/8MD09PeTm5vJv//Zv+Hy+cbcz8gQ3k6X65DuTyGswMXbs2MFTTz2F4zgsXbqUY4899qCsdyrshyb7Nkz2+GHyb8Nkjx8m/zZM9vgnMgE3UjAY5Morr6S/v5+cnJz9LjfmHnA7d+4E4hswa9YsLr30Um677bZ9LutyuSgqKkrZi7Np0ya+8pWvcOyxx3LNNdcAEAqFAPaZYNvdDTAUCiWcgBsaGtrrvoGBASoqKqivrycnJ4dIJDIcz+LGHtx6cttrKbC2LJsj2wbRkrxoGTFj3LD6IWD/V9xH9hj49dkn4tIzJxsfNS2+uvpF4MA9BkZuw89Oy8KtZ84JXcR0uPnZ+PtoLK/Bf5xr4Mqg+KOmw0+eiGfyD/QaOI6TsklPwuHw8A7+5JNPHneX3v1xuVwH7WR/5DaceuqpZGdnH5T1psrI+M8666yUvQYHy2SPHyb/NqQj/pH7Uu3K4yHJ45njOGR9+lQ+6Z7NvdZOTDuJg7JpYf3tFWDsxzPt6vNQjAkt0wuAFYux47FnCXR3Yvi8zDnnGO53DYE5+hzIiZlYKx8H9r8N/f39XHXVVRMec7L++te/kpubu8/HRr4GxlXXDPeaSzcnFiP21/ikZgd6D0211yDr6m+jGK59LjdWOjaX6q08aJZjJjb3HNRUEjvWy7Y//182bdrEcccdxznnnJNUXGMx2Y8FMPm3YbLHD5N/Gyb7eTVMrdcgHed1vz7juqTzLJDcsWSkiBnjq0/H/x4jj8kDAwNjev6Yz+5qa2uHb3//+99n6dKlo+6bKG1tbZx33nnk5uby4IMPDnd59Hq9APus+bK7dsvuZRLh9/v3us+yLADy8vLIyckhHA4P9wTUHNBT1NM/FW2Zzp5ukLqu7zMZalnW8DKaY6M7mZP8sRz7I+OHD29DDC2DtkFznHG9BqoDagbFr44hfoh/3i65JPXFiVP5JSKR8fmJ2r2fgHhP4Ml2lUjiT7/Jvg3piH/kvtTWFRQj2X2pgupSMVQDS1MxkxgG56BgjfN4Zh+E4YO2ZdHwzxcZ7OhEc7moOe801JwsYvtYr4Pzkdug6xOfMEyFsb4GkFlDUMdyPJ5qr0EMFSXRpNmHmKjEkmgr75AlFBUV0dHRwSOPPEJxcfGE94Sb7McCmPzbMNnjh8m/DZM9fpj825Du8zrNUTIqT2E6yj6PyWP9uyR0pP7+97+fyNPGrb+/n3POOYe+vj5eeumlUbXXysvLAWhtbd3rea2trRQUFCTc+00IIYQQYqpybJum515lsKkFVdeYce4peArykmpz5DmXdtVlB6UH31g5MRPrr38H9j1yYqoYuW3uq76SMT34IN6LL/LX3wKT9zUoLCwcHsZ0zz334Pf7WbRoUZqjEkIIMZmk5Oyor6+PwcHB/daFGzlL6ViFw2EuuOACtmzZwjPPPMP8+fNHPV5ZWUlxcTFvv/32Xs998803WbJkybjXKYRIzhcvVEnmO5fjOJi7LrLo2vhrMY4UM+EPjyRXvFkIIaYax3Foefkt+nfUo6gqNWeehK90/DPWf9jI/bVi6BmV/BlpMtUeG6/Rr4GR9PDNiTJZXwNFUSgtLeXoo4/m7bff5o477uDGG29k7ty56Q5NCCHEJJHwV+W2tja++93v8sgjj9Dd3b3f5RRFGXdBWMuyWL58Oa+99hqrVq3abxfvSy65hBUrVtDY2Eh1dTUAzz77LFu2bOHrX//6uNYphEieoYORVB07BVfKvrNlzuxvQgiRKTreWkfPxq2AQtUpx5FdvffM7kKIfVMUhauuuopoNMr69ev5zW9+wze/+U2qqqrSHZoQQohJIKEEXGtrK0cddRQtLS3DPdE6Ojo49thj2bFjB+3t7SiKwrHHHpvQGOFvfOMbPPLII1xwwQX09PSwcuXKUY9fffXVAHz729/m73//O6eccgo33ngjQ0ND3HbbbSxcuJDPfOYziWyaEEIIIcSU1LV+Ix3vvAdA5cePIm/OjPQGJMQkpKoq119/Pb/85S/ZunUrv/zlL/nWt75FcXHyPUmFEEJMbQkl4P7P//k/tLS08IMf/IDvfve7fOYzn+Gee+7hlVfis3y9+OKLfOlLX0JRFJ588slxt//uu+8C8Oijj/Loo4/u9fjuBFx1dTUvvPACN910E7fccgsul4vzzjuPn//855O2voQQ4uByHGefk7kkavckMBCfJCZVhUrdbvekHbYjhEi/3i07aH1tLQClRy2mYP68NEckxORlGAZf/vKX+fnPf05TUxO333473/rWt/Y7u6sQQggBCSbgVq9ezcyZM/nud7+7z8dPPPFE/vnPf3LIIYfwwx/+kB/96Efjan/NmjVjXnbBggU89dRT42pfCCF2i0QiXHTRRRPS9jXXXDPuIfj7czBnchVCTG6ObRNo68QMhtB9XqxwhOY1rwFQtPAwipcenuYIhZj8fD4fN954Iz/5yU/o6uriV7/6Fd/4xjfw+XzpDk0IIUSGSmg+7ubm5lGTHGiaBjCqF0llZSWnnHIKDzzwQHIRCiGEEEKIMenf0cDGFQ/ywZ/uY9OKB1n/uxWs+83dRPoHyZ83i7Jjj5DetEKkSE5ODv/+7/9OTk4OTU1N/Pa3vyUajaY7LCGEEBkqoR5wOTk5o/6fl5cHxBNzs2bNGr7f4/HQ3NyceHRCCHEQffJi0JOcG9pxwLR1sos+Q6j3LpL5mmuacO/DycUjhJg++nc0sO3vjxEdDOApzAMH+nc2YIZCKApk1VRK8k2IFCsuLubGG2/kZz/7Gdu2bePOO+/ki1/84nAHBSGEEGK3hHrA1dTU0NDQMPz/ww+PD2V44oknhu8LBoO88sorlJeXJxmiEEIcHPquWVyT+XEZCj63imEYuHQ1qbaSTQYKIaYPx7ZpfuF1ooMB/FVlKJrGUFMriqriLSpE83hoefENHNtOd6hCTDlVVVV85StfwTAM1q9fzz333IPjyGzsQgghRksoAXfqqaeyfv16Ojs7Abjwwgvx+/1885vf5JZbbuHXv/41p5xyCu3t7ZxzzjkpDVgIIYQQQowWaOtkqKkVT2EediTKYH0ztmWhe9xk11TiLcpnqKmVQFtnukMVYkqaO3cu119/Paqq8vrrr/Pggw9KEk4IIcQoCfWvuOqqq2hsbOSDDz7gpJNOoqCggP/3//4fn/nMZ/jpT3+Koig4jsOCBQvGPQGDEEIIMZlM5Ey6I28nS2bSndrMYAg7GsOOmQRaO3BsG83tIrumEkVT0dxuIj39mMFQukMVYspatGgR11xzDXfddRfPPPMM2dnZnH322ekOSwghRIZIKAG3ePFi7r333lH3ffKTn+T444/niSeeoLe3l3nz5nHhhRdiGEZKAhVCCCEy0UTOpLt8+fKUtSUz6U5tus+LFY0Squ9F1XUMv4+sqnIULT7YwYpEUF0Gus+b5kiFmNqOOeYYhoaG+Pvf/87//u//kpWVxQknnJDusIQQQmSAhBJw69evR1XV4dpvu9XU1PDFL34xJYEJIYQQQoiP5jgOA/VNWNEYViSCpzAff3kpiqoMPx7u7iN3di3+suI0RyvE1Hf66aczODjI6tWrWblyJX6/n6VLl6Y7LCGEEGmWUAJuyZIlnHTSSTz//POpjkcIIYSYtEqvASUFM+k6Zvy2okMyo0YdE9pXJBePyGy2adH0/Cv072jAX1GK3uPGsR2scBjN7caKRAh39+HKyaLypGNQ1ITK/wohxuniiy9maGiIl19+mT/+8Y987Wtf45BDDkl3WEIIIdIooa8JBQUFVFRUpDoWIYQQYlJTdFCNFNRZcyXfBICNFACfysxQmPrVawh2dKGoKrMvOgtF12h+4XWGmlqJ9PSjugxyZ9dSedIx5M6qSXfIQkwbiqJw1VVXEQgEeOedd/jd737HN77xDWpq5HMohBDTVUIJuGOOOYYNGzakOhYhhBBCCDEGkb4B6p58jujAEJrLRc1ZJ5FVUQpAzowqAm2dmMEQus+Lv6xYer4JkQaqqvK5z32OX//612zevJlf/epXfPOb36S0tDTdoQkhhEiDhM7Gvv/977N582Z+/vOfpzoeIYQQQghxAIHWDrY/vJrowBCuLD+zLj5rOPkGoKgqWRWl5M2ZQVZFqSTfhEgjwzD48pe/TE1NDYODg9x+++309fWlOywhhBBpkFAPuI0bN3L11VfzrW99i5UrV3LeeedRU1Oz39nVPv3pTycVpBBCiP1zHIdIJJKStsLh8D5vJ8vtdqMkU8xMCAFA37Y6mp5/Fce28RYXUnv2yRgys6kQGc3j8fC1r32Nn/70p3R0dHD77bfzzW9+E7/fn+7QhBBCHEQJJeCuvfZaFEXBcRzWrVvHunXr9vnFynEcFEWRBJwQQkygSCTCRRddlPJ2ly9fnrK2Vq1atd+LNEKIj+Y4Dl3rPqDtjXcAyKmtovq0E1CNJGf9EEKkzIEuiBmGwRe/+EV+8Ytf0NTUxP/8z//w1a9+Fbfbvc/lJ+qCGMhFMSGmOrk4n7kSOmv73ve+Ny3/WEIIIYQQB5tj27S8/CY9G7cBULTwUMqOOUKGlgqRYcZyQSwcDlNXV4dt26xcuZLq6mrUj/gsp/KCGMhFMSGmOrk4n7kSSsD913/9V4rDEEIIkQrnXgp6Eh1iHAcsK35b0yCZay2mCU88mPjzhRBgRWM0Pv0Sg00tgEL5sUdQtOiwdIclhEiQx+OhpqaG+vp6AoEALS0tVFZWSucGIYSYBmTcghBCTCG6nlwCDsAwUhOLmDwmw1AFmH7DFWJDAeqeXEO4pxdV06g+/QRyZlSnOywhxBjMvuYXqPq+h5cCVDVuZcNTf8GxbZTDjmHOceeN2r85joNjRgFQdFfS+z7bjLB9xU1JtSGEmHx+c9rNuDVXws93HIeoFQPApRlJ7YsiVpQbnv1Zws+fCpJOwK1bt44333yTrq4uFixYwIUXXgjEuz1GIhFycnKSDlIIIYQQE2cyDFWAqT1cwXGcPbdjJuGePhqeeoFYKITh9lBz5sfxFhfixMyDH9uIdY6MUwixf6ruRjX2n4ArnnU480//JB88cx/NG9/ClZXHzI+dNnoh19Tc3wkhDh635sKtJ56AA/AcYF8mxifhBNzmzZv5zGc+wxtvvDF83zXXXDOcgPvb3/7G5z//eR5//HHOPvvs5CMVQggxJUnvKyEY9RmwVz6OAcwGULwQBR57GStNsY0UiUTwemXWVSFSoWzuEsxwkC0vP8LOt57G5fVTueCYdIclhBBigiSUgGtsbOTEE0+ks7OTCy+8kI9//ON885vfHLXM5Zdfzpe//GUeeughScAJIYTYL+l9lVnUaw4FI/Hi/o7jgLmrl5SuJJ+0jNnYKzYl14YQQmSoqoXHEQ0NUbf2Oba8tArd7aV0zuJ0hyWEEGICJJSA+8EPfkBXVxd//OMf+exnPwuwVwLO7/ezZMmSUT3khBBCCJHhDBUliQScApDcSIdRpsuAR5fLRUdHB93d3SjzasibM5Pyjy9D1bR0h4YTM7FXPg7Ee4IKIVJr5lFnEAsFaP7gDTY++wCGx0d+xWz62uqIBgZx+bPJK5shMx8LIcQkl1ACbvXq1SxatGg4+bY/M2bM4J///GdCgQkhhJh+jvkkaEnO4mrvKlel6snN4gpgmfD6vcm1IcRHicVirFixgq6uLgCKly6k9OglGTnkORNjEmKyUxSFeR+/iFg0RMe29bx5/+3obi9D3W1YsTCa4aGgeg6HnXwpxbMOT3e4QgghEpTQ15yOjg6OP/74j1wuFosRDAYTWYUQQohpSNNBS3YW1hT2vhJiogUCAX73u9+xefNmACoqKig8cqEkuoSYZhRVZf6pl9PXvJ2Gd1/AtkxKZi8mq6gcMxyiY/sGBjuaWHb5v0sSTgghJqmE+jEXFhbS0NDwkctt2bKF8vLyRFYhhBBCCDGldXZ28uMf/5ht27bh8Xiora0lLy8v3WEJIdJEUVSsWBQAw5PFYGcTjmXh8mWRXzmH0GAvG9c8hGPbaY5UCCFEIhJKwB1//PG89dZbvPvuu/td5oUXXuC9997j5JNPTjA0IYQQQoipaceOHfz4xz+mo6ODgoICbrrpJvx+f7rDEkKkUV9bHb0tOymZsxjD48WKRelu2IRtxVAUhayCcnoat9LXVpfuUIUQQiQgoQTczTffjOM4XHTRRTz55JNYljXq8eeee45PfepT6LrOv//7v6ciTiGEEEKIKeFf//oXv/jFLxgaGqKmpoZbbrmFioqKdIclhEizaGAQKxbG5cumsPZQNMOFGQnTVbcRy4yiu71YsTDRwGC6QxVCCJGAhBJwRx99NL/61a9oaWnh/PPPJy8vD0VReOihh8jPz+eMM86gpaWF3/zmNyxatCjVMQshhBBCTDqO4/D0009zxx13EIvFWLRoETfffDO5ubnpDk0IkQFc/mw0w4MZDqHprtFJuJ0fEB7qQzM8uPzZ6Q5VCCFEAhKey/rLX/4yL730EhdccAGKouA4DoODg0QiEc466yxeeOEFrr/++lTGOqXZts329la2bt3K9vZWbKntIIQQQkwZjuPwwAMP8OCDD+I4DieffDJf+tKXcLvd6Q5NCJEh8spmUFA9h6GeVhzHQXd5KJoxH93lwYxG6Ni2juziSvLKZqQ7VCGEEAlIaBbU3Y455hgefvhhHMehq6sL27YpKipC07RUxTctbGis4/7XX2ZzWzOdis1jjsohZZUsP+YEFlbPSHd4QgghhEiCbds0NTXx0ksvoes6l156KaeddprMdCqEGEVRVQ47+VIGO5robd5GVkE5uttLTmk17dvWo2o6ZiTIYFczOSXV6Q5XCCHEOCWVgNtNURSKi4tT0dS0s6Gxjp898TA9Q4OU5Rdg5GXh7xtiXcNOGnu6uPnciyUJJ4QQQkxSsUCIuro6wuEwuq7zhS98gaVLl6Y7LCEykuM4e27vmg00qfawiTkxHDOKk/jAn1GxjIxxIhTPOpxll/87G9c8SE/jNqzeNjTDw8yjTkdRFKxYlHceuZNF51xDfuXsCY1FCCFEaiWdgHv11Vd56aWXaGlpAaCiooITTjiB448/Pungpjrbtrn/9ZfpGRpkblkFKAohVSXb4yW7rIKtbS088MbLLKisQVUTP2k4WGzbZmdnNwOhMDleDzOLCydF3EIIIcRECPf0U/foy0TDYTRN48Ybb+Swww5Ld1hCZKxIJDJ8O7DyRylp886UtLJHJBLB6/WmuNXRimcdTtGM+fS11RENDOLyZ5NXNgPbirF+9V/obdrGusfv4vAzr6JohuxThEglx3FG7YuSFQ6H93k7WW63W3rST0IJJ+A2bNjAtddey7vvvgvsuRq0+02wePFi7r77bpmE4QB2drazpbWZ8vwCFEWhobuLts4o/RboqorjwKtbN/HgW68yp7Qcr8uFx3Dhc7nxGAYew4VL1zPig7ehsZkHXl/LltZ2IqaJW9eZV17K5cccycLqynSHJ4QQQhxUQ03tNDz1OlY4hsvloqamhpkzZ6Y7LCHEJKGoKvkVs0bdp6luFp1zDe8/fS9ddR+w4am/MP/U5ZTOXZymKIWYeiKRCBdddNGEtL18+fKUtbVq1So8Hk/K2hMHR0IJuM2bN3PSSSfR19dHVVUVl156KTNmzACgvr6ehx56iHfffZeTTz6ZV199lUMPPTSVMU8ZA6EQYTOGzxUvwByIhAhEw1imjQLYjsNgKMjj775NUXbOPttQFQWvy41vV3Jud5JO01Ta2trQNI0XXniBvLw8vF4vXq8Xn8+Hz+cbnjwj2QTehsZmfv7EM/QMBajIz8XnchGMRlnX0ERjTy/fOPf0SZGEs22Huq4hBkMxsr0GM4qyUNX0JzeFEEJMLr2b6mh+4V84toOvvJBKJwtdT0nVDyGmtJGTkviv/g6K4UqqPQObS/UWHjQriCU5BHV3j7x0T5yi6QaHn3kVm9Y8SNuWd/jg2fswY2Eq5x+d1riEEEJ8tITOBr/97W/T19fHLbfcwg9+8IO9Tip/+tOf8r3vfY//+3//L9/5znd46KGHUhLsVJPj9eLRDYLRCNkeLxX5haiaQ04wim3bDIZDGKrG4ZU1ZHu9hGMxQtEIwWiUcCyK7TjYjkMgEiYQGd2d1bJtenp6APj73/++z4kxLMti48aNqKrKT4mS5XbjdRl4DQOPy8BjGMP/97pceHfdt/t+j8vArWk88PpaeoYCzCsrGU7mZXs8zCtzs6Wtg7+/sZYFleUZPRz1vaY+Hnqznq1tA0RMG7euMrcsh0uW1XJ4VV66wxNCCDEJOI5Dx1sf0LF2EwB5c6qo+PhSnLtfTHNkQkwOIy8KK4Yr6QScgo2hGyiKCyWJBNyoNjNg5ImqaRx26uVohpvm919n8wv/ixWNULPkxHSHJsSU8uuT/g9uLbn9kOM4RO0YAC7VSGofErGifPWF7yYVj0ivhBJwzz//PAsWLODWW2/d5+OapvGjH/2IRx55hOeffz6pAKeymcWlzCuvZF3DTrLKKsjx+gj7DEpcMXActra1cNJhC/jGuRfvlbxyHIeoaRKKRQlHo4RiUULRKKFohHAsRn8oyPuBPizLYunSpcRiMUKhEMFgcPi3ZVlAvHZb71CQgWBo3NswGArx1o4GfG4XGxpb0FQVVVXQFAVVVbEtm5c3b+cvL79OdWEhLl3D0DRcuj7qdvy3hqFrGJqOs2sbD8ZJzntNffxy9Qf0BqKU53nxunRCUZMNjb009QS48ez5koQTQghxQLZl0bzmX/RtaQCg5MhDKTlqPpg2VppjE0JMPYqiMO/jF6G7PNS/s4Ztrz2BGQ0z86gzMiJJKMRU4NZcuPXke716kKGiIi6hBFwsFhtTbbdFixZRV1eXyCqmBVVVWX7MCTT2dLG1rYWy/AIst8pgOERbbw8FWdlcfvQJ++w5pigKbsPAbRjg8+/1eNiM8bedHwDwuc99bq/x4Y7jMDQ0xEUXXYRt23zppGWYtkU4GtvV0y5GKBodvh2OxQiNut/EtCwipkXMsrAdh2B079mq4sNow6zZuJWi7NYx/20s22FjQwuqqnLLLbfg8/lwuVx7/aiqSmtrK4qi8Mx7PnwuDUNTcekqhqZi6CouTcXQFIxd97l1bfi2psBDb9bTG4gypzR7+IQly2Mwp1RnW/sg/3iznvkVuTIcVQghxD5ZkSj1q18j0NKFoipUnHgEBYfNAGBi50sUQkxniqIw+5iz0V0etr+xmrq1z2FGw8w9/gJJwgkhRAZKKAG3ePFitm/f/pHLbd++ncWLpSjogSysnsHN517M/a+/zOa2ZjqDAxQ7KktqZ3L50SewsHrGhKxXURQMw8AwDABqigpw63sPUz2QmGWxsbmV7z/0GNkeN27DwNyVjLNtOz48NhzBrescPXsG+Vl+YqZF1LKImeau3/EEXtS0iFkmkZiF7djD67Btm6GhIUKhfffOsyyL3t5eAF7YOIA2ziTZQCjG2p3deAyNQMREVRR0VcFtaHgMDa+hsaGpj63tAxxSnjuutoUQQkx90YEAdU+8QqR3EM2lU33mMWRXl6Y7LCHENFJ7xMloLjdbXlpF04ZXsaIRDj35EpQMLv8ihBAHg23b7OxqYSAUJMfrY2ZRRVpLYyWUgPvOd77D+eefz5///Gc++9nP7nOZu+66i7feeotHH300qQCng4XVM1hQWcPWrnZe9yscE3CYW1Sa0TXTAAxN4/CqCg6vqmBdQxPzyrJHXW1zHIctbR2ccMhsrj/142PeHsu2GYpE+dLja7Btm29/+9soikI0Gt3rZ2hoiH/961/Yts3Rc1zgOEQtm5hpE7PiP9Hdt007/phlY1rxPgkx08a0HVQFouaexN9QxAR29eALm/z88Q+YXZpNUbab4hwPRdluirI9FGe7yfO55CqjEEJMQ8GOHuqfeBUzFMHI8jLj3OPxFMrFGiHEwVd1+LHoLg8bn/87rZvXYsbCLDj9k6iaTAAjhJieNjRu5/43n2FLWwORWAy3YTCvrIbly05nYfXstMSU0B7Z7/fzpS99ieuuu467776b5cuXU1tbC8RnQX3ggQd4+eWX+dKXvkRWVhYvvji6+PCJJ0qB0A9TVZXZpeV0l2czu3UQdZKMWVFVlcuPOZLGnl62tHWMmgW1pbefwiw/lx195LiSiZqq4jGM4ck9Kioq9jvFcjgc5le/+hUA5y/Nwq2PLRFm2w4x22Zr6wA/fHg9OV4Dr6FhOxCzbMIxi1DUoj8UHR6+2heM0heMsq19cFRbuqZQlOXZKzmX402uYKcQQojMNbCzhcZn3sQ2LbxFedSeexyG35vusIQQ01jZvKVohov3n76Xzh3vs/7JFSw862o0I70ztwohxMG2oXE7P1v9N3qH+inPL8bnchOMRljfsJXGng5uPvvKtCThEkrAnXzyySiKguM4vPzyy7zyyiujHnecePbo97//Pb///e/3ev7u4v9ialhYXck3zj2dB15fy5bWdtrMAdy6zpLaKi47+kgWVlemO8S9qKqCW9WYX5nH/Mo8NjT2Uli6dw++be2DHDe3mK+fPZ+eQJTOwTBdgxE6B8J0D0XoGoxgWg5t/SHa+kcPk7Vsh82tDi6Xi7/+9a9UVVVRVlZGaWkpRUVFe80eLIQQYnLoWr+V1lfXgwPZNWVUn7EMzWWkOywhhKB45gIWnXsNG578Cz2NW3n3sT+z+NzPSC1jcdA4jkMkEklJW+FwePh2JBIZLp+ULLfbLSOYpjDbtrn/zWfoHepnbmk1oViU1t4uinLymVtWw9a2Bh5481kWVM486KMOE8oAfPrTn5Y3rBhlYXUlCyrL2dnZzUAoTI7Xw8ziwowfRquqCpcsq6WpJ8C29sFds6BqhKIWrX0h8v0uLlk2gxyfixyfixnFWaOeb9sOPYEI3YMROgfDdA5G6NqVpOsNRLEsi1AoxGuvvYamaSPWq1JUVERBQQFtbW24XC4a2v2UFXjwe/SEP1+27dDYGSAQMvF7daqL/XLCJYQQKeLYNq2vrqd7Q7wObsH8mVR8fInUWRJCZJSCqrksueBzrH/ibvrb6nnnkTtYeNZV6Q5LTBORSISLLroo5e1ec801mKaZkrZWrVq13xFWYvLb3tHMuoatOI7Du41bicRiQPw7eEV+MeX5xWxuq2dnVwuzS6oOamwJJeDuvvvuFIchpoL4MNridIcxbodX5XHj2fN56M16trYN0NZv49ZVFlXn84lltRxelbff56qqQlG2h6JsD4cwuu7PQMjky4/3EI1GOeecc+jt7aW9vZ329nYikQgdHR20trbS09MDwH3PqWgquHSVghx3/CfbTWFO/Cc/24XL2P9EGZsb+nn89SZ2tg4Sidm4DZWZ5dmcd0wVh9RMjppEtu3Q0hEkEIrh9xpUlPgkgSiEyAhWzKTpmTcZqIvP6F127EKKFs+VC5JCiIyUW1bL0guv593H/sRgVwvvPPonsmOxlPUgEkKITBKzTLa0NfJ+0w7WbFpLXVcr2R4/qqKgKgq5vix8rnjS1edy09YXYyAUPOhxyhg4IYgn4eZX5FLXNcRgKEa212BGUVZSyR+3oeH1evF6vZx33nnDV1kcx6G/v5/29nYaGxt56623iEaj5GWZDAajRE2btp4QbT17z/ya5TUo3J2cy3FTmO2iMNdDa3eQPz+xlb5AjNI8Dx63RjhisbGhn9buIJ8/b17GJ+G2NfTzzKvNNLQEiMYsXIZGTYWf04+rZE6Gxy6EmFoc22aorZutIYchbxdKjpeG1a8T6uxF0VSqTzuK3NkH94qpEEKMV1ZROUdc/AXeefSPBPs66a6ro6amJt1hiWnktlN/jVtLvAah4ziEnBDbZ73PYfVL0Z3E0xcRK8I3n/tqws8XmScUjbCxpY73mrazqa2BqBnv6WbaNi5NJ8froyKvmFxvFpq2Z7RCMBrBbRjkeH0HPWZJwAmxi6oqzCrJnvD1KIpCXl4eeXl51NbWUlZWBsD1FxioikPfUJSegQjdAxF6BqN094fpGYwSipgMhWIMhWLUtw8Nt+c4Du/t7GMwGKO0wEtfIIoeUlBVhRyvTkt3kL8+s4Nrz56D21DRdRVDUzH0+I+uKehaeodPbWvo56+PbmNgMEpRvhe320MkYrG1rp/27hBXXTBHknBCiIOif0czzWvWEmjsoDWm004YMxLFU5SHtySf2nOOw19WmO4whRBiTHx5xRx58Zd4Z9UfGIjFqKuro6WlhVmzZu21bCprd8Ho+l0jbydL6ndNHm7NjVtPbhIQQ9ExDAOP7kZLIgEnpoaBUID3m3ewoWk729ubsRx7+LFcr58FlbNYUDmTe155gg2N28n3713nvbW3k8U185hZVHHQ40/4HRyJRLjvvvt44YUXaG1t3e/OWlEUnn322YQDFBNn92QZABEzsybGGBnPyDg/bPQ2ZNbUsSPjOdA2jKRrKkW5Hopy965JEIqY8cTcYDxBtztJ19A+xEAghqGrDARiDARio54XM23+taUb07LJ9u172IGiKMOzveq7knOqqlBX56CqKn/605/w+/243W5cLteon909+lRVpbFVw+vR0He3NdxePCG4r5Ml23Z45tVmBgajVJdnDS/j8+pUe7JobB3i2VdbmFWVI8NRhRATqn9HM9seeIboYABvQR65tpf6+g5iwTCxUITas4+V5JsQYtLxZOex9ILP89y6p4hEItx+++3cdNNNzJgxY9RyE1W7C2D58uUpa0vqdwkxvXQM9PJ+8w7ea9pBfXfbqMdKc/JZUDmLw6tmU11QMvxd8oqjz6Sp929sbWsYNQtqa28nBVm5XL7stLTUq08oAdfQ0MDpp5/O9u3bPzKxMJWvToxO/iRfENJSIBaLETFjJJtLGhnP/l6jkUnTG1a/mNwKJ1AkEsHr9e73sd2+8WzgYIU0bgfahrHyunUqi3Uqi/2j7n9/Zy8t3UGKcjzELJtIzMaybGwnntwyLZveoShZXoNcvwvTsomZNjHLGX5vOI5D1HSImnuuIFg2BIPx/7/zzjujJpEYybIsmpubAVj1HKj7+cyrCvGE3K4eeLquoOsqgaDJ2+914fVoNLcHUdX4cn6PjterU5Tvpb5liJaOIFVl/n22LYQQyXJsm+Y1a4kOBvBXlmAOBGhs6UJRVDxFeaiqSsfajRQunC2TLgghJh2XL5sZM2bQ0NBAMBjkF7/4BTfccAPz5s1Ld2hCCDGK4ziEQiEGBwf5n9X30j3UP+rxmoJSFlbPZkHlLEpy8vfZxsLq2dx89pXc/+YzbGlroK0vhtswWFwzj8uXncbC6tkHY1P2klAC7mtf+xrbtm3j1FNP5cYbb2TWrFlkZWV99BOnmJHJn6+sfjBl7d6ZspbiUpH8EZkry2fgc+sYukpetmuvxwMhk2yfwVVnzKK2dM/n1HEcLNvBtJx4Qs60iVk25q7kXDBi0f5cFNu2ueyyywCIRqN7/QwNDfHSSy/hOA6FeQ62HW/P3PVj78r/2g5EYzbRmD0qvr7BCIFgDByHcHh0T0xFAZehEYlZbKnroyjfjcctXc+FEKkXaOtmqLEdze1iqL4VMxghT3HhyvXjqyjGCkUYamwn0NZNVsXkm3BICCE0TaO2tpZ58+axfft2fvnLX/KFL3yBRYsW7bXsBZ/+DXqSQwcdx8Eyo/F1666kOmaYZoRH77khqXiEEJnLsiy2bt3Ku+++y9tvv83OnTsB6PD2Ymgac0qrOLxyNgsqZ5LrG1vuKZ6km8nOrhYGQkFyvD5mFlWkpefbbgl9k3322WeZO3cuq1evRtfly/Bk5XbvOaj+5uwTcev7n2HzYIuY1nCvvJFxftjIx35+mh+3njk9LiOmM9wr70DbkKzqYj8zy7PZ2NDPTI9/rzHu7X1h5tfmUv2hnnOKouyq/wYe196vfdR0yM2ND2c96aST9tvVPxwOs3r1agA+eV58uOlIlu0Qi9mYu5N7po1pOcO3WzqCdPdG8Lg1XIaK40AkahEMmcRMm0AwRsy0ef3dDjZs6aUg101lqY+KEj8VJT5ysvZOOgohxHjYMZOeDdsZau5EdRkoioKiQFFREb3FbmxAc7uI9A5gBlJXx0gIIQ42VVX50pe+xF/+8hfWrVvH73//ez772c9y1FFHjVpO193oRvLDPA2XdAIQQuxbNBrlgw8+4J133mH9+vUEg/FZSS3LQlVV/H4/y48+nUXVs4dnMB0vVVWZXZI5E2cllD1zuVwcccQR0z75NjKp8tuzL8Wd5N/DUuDtsmw+1jaIloIhqLt75e0v+TMyUePWtYxKwI10oKtlo7dByagE3EgTORRbVRXOO6aK1u4gO9sCo2ZBbe8Lk+c3OPfoqrTVT9NUBc2tAft+f82ozOa9rT1sreunqMQ34m/lEI1a7GgapCLXT1WZn96BKD39EXr6I2zY0gtAts+gotRHZWk8IVeQK4V5hRBjY4bCdL+3g+73thPu7sexbcDBW5SHtyCXEqOAXmcAcLAiUVRDR/dL3SEhxORmGAZf+MIXWLFiBW+88QZ/+tOfCIfDeyXhxMEnE2GIqc40TYaGhrjjjjvYsmULsdie+uVZWVksXryYww47jPr6elRVZUntPDz6vuuYT0YJZYyOO+44tm3blupYJp3RyR896TeGqcQPiG7dQE/hfAKyc5z6DqnJ5fPnzePx15vY2TpIR5+N21CZX5vLuUdXcUgGzyCqqgqnH1dJe3eIxtahXbOgakQiFl29IcqKfcOzoAbDJq0dQZo7ArR0BOnsDjEYjLF5Zz+bd8ZrA3jcGuXFPkqLfASDHinSK4TYS6RvkK51W+ndXI9jxYfF+0oLcGybSN8gnuJ8VGXP8ATHcQj39JM7u0omYRBCTAmapvGZz3wGt9vNiy++yMqVK+nv7//oJ4oJJRNhiKmoLzjAe81bWde4iS1btgCwfv16NE2jsLCQpUuXsmTJEmbPno2qqoTD4bQOE51ICSXg/vu//5sTTzyRO++8k+uuuy7VMQkhEnBITS5zq3Jo7AwQCJn4vTrVxf5JMXPonJpcrrpgDs+82kxDS4DuvjAuQ2PejDxOO66CObsSiD6PzuyaHGbX5AAQjVm0d4Vobo8n5Nq6QoQjFjubBtneOEBdXTwBffvttzN//nzmzp3LrFmzJnRIsBAiMzmOQ6C1i651Wxmsax2+31uST/GSeeTMrGCgrpVtDzxDoLkDb0EelsdPLBwm1NOHK9tP5clHygQMQogpQ1EUrrzySrxeL0899RQPP/wwHR0dFBdP3jqXqexBNlG9x0B6kImpzXEc2ge6eK95K+83b6WpJz5zqeXEL3q63W7OOeccli1bRlVV1bT6LCSUgDviiCP45z//ydVXX83KlSs588wzqays3G+W8tOf/vS42h8aGuK2227jjTfe4M0336S3t5e77rqLa6+9dtRy1157LStWrNjr+YcccgibNm0a1zqFmApUVRk10cJkMqcml1lVObR0BAmEYvi9BhUlvgMmEF2GRnV5FtXl8W22bIfOnhAt7UEaWgNsaghgWRbbtm0bLuSpqirV1dXMmTOHuXPnUlWVOTUBhBCp59g2/Tua6Xp3K6HO+NB1FMipLadoyTx8ZYXDJ365syqZc/npNK9ZS6Cxg9beKDHDJHd2FZUnH0nurMo0bokQQqSeoih84hOfwOv18tBDD9HV1YVt2zhOCofjHEQT1YMslb3HYGw9yG65+De4UjARRsyKT4RhaMlNhBE1I/z4YZkIY7qxbZudXU0MhIfI8WQxs6hqn3kfx3Fo6G7hveatvNe8ha7B3uHHFEVhRlEVh5TNoMUziMvl4rzzzpuWvSgTLlr29NNP09HRQV1dHS+//PI+l3EcB0VRxp2A6+rq4gc/+AE1NTUsXryYNWvW7HdZt9vNH//4x1H35eZm7nA7IcT+qapCVZn/oxfcD01VKCvyUVbkY+EhhWzvtohGo1xxxRU0NDSwbds2uru7qa+vp76+nmeffXY4Qefz+di63UdVhZ/sLGNaXYkRYiqyojF6N9XRvX4b0cF4UV9V18ibV0PR4rm487L3+bzcWZXkzCgn2tbL2aEiVnu7cJXlS883IcSUds4556BpGk899RQ9PT28/uJDHH/qlVN2GNhk4NLduPTkExRuQybCEInZ0LSZB958ki3tdURiUdyGi3mlM7h82TksrDoE0zLZ1tHA+81bea95K0PhwPBzNU1jbukMDq+cy4KKOWR5/ETMKCvq/pnGLUq/hBJwt912G//93/+N2+3m3/7t35g1axZZWanrdVNeXk5raytlZWW8/fbbBywIqus6V199dcrWLYSYOhRFwe12c8IJJwxfYent7WXr1q1s27aNrVu30tjYSDQaJRqN8tKrfagq+Hw6ZSW++E+pn/w895iH8tq2Q1vHEFb3VrTYEGUlrkkxDFiIqSIWCNGzaSc97+/EisYL++peNwWHz6JwwSx070d/mVFUlayKYuaqc3jZVohhT3TYQgiRdieeeCIVFRW0tLSwY8tabNvmhNOuRNMm58R713/ydxhJ9CBzHAfTjPce0/Xkeo8BxMwId9z75aTaEOJg2dC0mZ+vvoueQD8VecX4XB6C0TDvNGzkvZatHDNrMYPhAJFYdPg5bsPFYeWzObxqHoeUzcRjSNmfD0tob/r73/+enJwc3njjDQ455JBUx4Tb7aasrGzMy1uWRSAQICcnJ+WxCCGmlvz8fJYtW8ayZcsA6O7u5oMPPiAYDFJSHKSnN0wwaLKjboAddQMAuAyV0hIfpSU+ykt9FBd50bS9rwjvrB/gxVeaaW4NYjod6EoHleU+Tjy+kpm1sn8SYiKFw2G6u7sZvPcpdg+ccudlUbR4HnnzalAzdKZvIYTIJHl5eaiqiqppNOxYz5pYhJPOvAbdcKU7tHEzdDeGkVwPMpdLeo+J6ce2bR5480l6Av3MK63FtC26A/30BProDw3QHxykd6ifj804nGxvVryXW+Vc5pTUoE/ShP3BktBfp62tjTPOOGNCkm/jFQwGycnJIRgMkp+fzyc/+Ul+8pOfJN0jLxAI7Pe+QCCApmmEw2FM00xqPUKI9PL7/WRnZ5Odnc35Z4OCQ0dXiLb2IG3tATo6Q0RjNo3NQzQ2DwHxoa7Fxd7hXnKlJT6aWwM89Mh2BoeiFOb78OVUEBzoY0f9AJ3dYS65cLYk4YRIMcdx2LhxI0888QQ7duwAQCnz468spmjJPLJry2Q4uRBCjFNOTg7HnHUNLz3zN1oaN/Ps43dyyjmfxeWWZJQQ08HOriY2t+3A63KxqW0n/aFBGFEXMt+fg6qqXLT0NE6Y97GUn2uNrEEZMWMpbTtZI+NJpFZmQgm42bNnY9vpH45RXl7Ot771LY444ghs22b16tX87ne/Y926daxZswZdTzz7eqAEXkVFxV73Wf92NWaS7ztLGf072bYMwwDANE1isb3fuKZpDi9jKSqmkjk1HizF+cj4dz+2ZxsMrAz6ojWWbRgZv60Y2BkUv6047ArtgK9BLBYb/qxFLRUnQ7YhZjnoenw/FYvF0LR9934Z+RqggK4pVJS5qSjLA+JDSrt7QrR1xBNybR0BwmGTtvYwbe1hoAdwaGgaJBCIUVGehWHoqKqK1+ui0qPR3BrgxVfbqK0uGN9w1DG+BiO3Qdn1kwkUGHf86q6fTOHw0dswMn4dUDPmFQCb8b+HVDSUDHoVHBTsD+1LTdNk7dq1PP3007S0tGBZFqqqkpubS+nFp+CvTH4GP2PX6xj/nfjfw8FBHefxTENByaD3kYPykdvw4c9B5kQf/xwr43wNjCRP+B3Hgd0XaXU9uS8nZmx4RzTm+HFQyJwi+g4O1ri3wUZJcvi3vuv5epLtONjjPi/VsFCxklpvKilY4zovraicxRnnf47nnvgzHW3befrR33H6eZ/D403PZF9jiX/3Y7uXc7BwyJzOEs44XwNbsbAzKH5bGf9rYKkWlpLcNliKNep3wu2oicRvYya53lSy1PHviyzFwVTGtg+0bZvtHQ08vPZpNrfVkeXxDR+//B4v+b5c8rNycWsGO7ua8Hp9WKoDYzzejPU7/sjOUDc8fceY2k6HQCAw/D14f9vyYYqTQNrut7/9Lf/xH//Be++9x4wZM8b79HHZXQNuX7Og7sutt97Kd77zHe69916uuOKKhNc73hOlhx9+OOF1CTGZxWIx7rzzznSHcUDXXXfdniRbkhzHob+/n9bWVlpaWmhtbaW1tZVNmzZhGMaoxL+u62iahmVZmKbJ6aefTnl5OR6PB6/Xi9frxePxDP+kKsZk2LZNa2srwWAQn89HeXm5FGAWGSMSifDBBx+wfv364ZMzwzA47LDDWLRokZSiEBlj5LExlccgIQ62zs5OHnvsMUKhEPn5+VxwwQUprf0thEgvx3Ho6upiy5YtbN26lWAwSCAQYNOmTXi9XoqKisjLy8Pl2jMMPRgMMjQ0xHXXXUdlZepniJ8M3y9h9PE9GAxy5ZVX0t/ff8Dz0YS6iH3lK19h+/btfPzjH+eHP/whZ5xxxoT84RPx9a9/nf/8z//kmWeeSSoBNzQ0tNd9AwMDVFRUUF9fT05ODpFIhGuuuQaAxY09uPXkTq4sBdaWZXNk2yBakhctI2aMG1Y/BMB9992H2713AcRIJDL8N/r12SfiyqD6OFHT4qurXwT2Hz+M3oafnZaFW8+ca+4R0+HmZ+Pvo7G8Bv9xroErg+KPmg4/eSKeyT/Qa9Df35/xO8iTTz55v7Mjj3wNrrgYDO2jXwMPMLM0/sNSeG+jRXNjDJ/XIRwJEYlYKFoe0UgXED+whUIm7697ksad+y9GqmkKXo+Ox63j9mgYhsa/Nujous4PfvADCgoK8Pv9ZGVlkZWVhd/vR9O0Udtw7iWQaOffhrp+Xn+5idaWIWIxG8NQKa/I4pgTqqiZMf7ZpU0Tnojvhsb8OT7mCtAy6HuqFYPX74vfHsvnuPTToBqZ8zm2Yw7t98Rvj/U1UK85FMXInKSrE7MJ37merq4ujj76aEzTpLCwkJkzZ3LqqadywgknoGnacPzap09EMZI/nhkoXK3OZqW9nVgSPYmcmIV1z/iOZ9rV56EYmVNDxYmZWCsfB8b2OdCvunS4x1kmcGIxzL8+CIz9NUh6nSOub991110pG54z1vg9V30ZJYNqdjmxKOG//g4Y+zZkXf3tpLdBx+ZSvZUHzXLMZHqyxqIMrbwVGHv8sz/9c9QMKkBuxyJsv+cbwNg+xxd86tfohhulAE688CiefvROWnv6+Ns/XueM868nO7fwoMZvxiI8+pevHjB+GL0N113xW4wMeg1isQh33vcVYIzfDS7+NS4tc+KPWhF+8vD4XoOfnvor3Fpyn2NLsdhY+y6H1S9BcxI/vkesKN967mvA2OP/1Uk/xJVk/KkUtaJ87YX/BMa+Db8+9WZc+8hT9Ab6eaf+A96p/4COgW4A/ECxK5+Fs47h5VgOOzubmOutRokqsGuuBcdx2NbexseqD+WC6ELU+rHvW6NmjK8+97OPjD8cDnPXXXcB8PNTP5N0niWVImaMbzwXj+2ss84anuhvYGBgTM9P6Oxu91Aux3H43Oc+d8BlFUU5qHXSvF4vhYWF9PT0JNWO3+/f6z7Linc/zcvLIycnh3A4PHyCpTmgp6infyraMp093SB1Xd/nlVfLsoaX0Rwb3cmcL42WY39k/PDhbYihZdA2aI7zkdswsuutGXNQMyh+03SIxeKfXU3T9vsajPysfPFCBSNDkogx0+EPj8Q/SH6/f0zvofh37PHHX5Cvk5NtkOU38Hp1HEfB0eYQDW2OTxITNAkEYiw6vACf1yAcMQlHLMJhK347bGHbDpYFQwGLoUAEANuGzs74Oh588MF9DqP1+Xx4PB62bNmCpmm89oqGz6fjdmu4PRoeTzyZ5/ZoeNw6hkvd5xfBhroBHn94O4GhGHkFHtxujUjEor6uj66uAOddPJuaGePrXeQAu/+0Y/0c22TW0DWbj96GkfGbZN4Q1PG+BipWxgxdC3UM0Ll2J/0bNwPx41p1dTVnnnkmRx111HCP01AoNBy/FYslPWwN4sMuY2qMqB1LOgFn7z5OHWBfOvpzkIHDB8dxTuGQWZ9jBzDHcE6h6zoPPvhgStYZDodZvnw5AH/961+HT9CT5Xa795vMG3VOlIHDmMd7XhdDTdlweBOVWFJDydVxx2+h4ZA5F7dttHF9N3DQcHZ9VczJK+esi2/gmcfuYLC/i9Wr/h+nn389eQVjnzQvWQ7muF8DBQ0lsa+7E0IZwzaMOh47GmoGxa86438NNFtDU1OzDZqjoTmJt6XZVgLxq+hq5nyOLXv8+yLNUdCd+P4vGA2zvnET/6r/gJ2djcPLuzSDBZVzOKJ2AfNKZ6BrOoeVzuTnq+9iW1vDqFlQW/o6KczKY/lR5+BS9LGOPo3H5Yz9WLA7h+TTXHgy6Oq85uzJbxmGsadswhgvPCb0Dq6urs7YosaDg4N0dXVRXJx8/RchJlokEhm+/eMnMqfGw4dFIhG83n0X3h25LzD0zEnAxcWPCBO9vyor8VFZ7mdH/QCVHj+KoqIbBqodT8b19kU4ZG4+p51Uvc8acI7jEDPtXQk5i0g4nqAbDJj0DJhYlsWiRYsIh8MMDQ0xNDREMBjEcRyCwSCDg4OEQiEAdm6DA40YVRR2Jed2JebcGi63xto32ujuDFFU4sW2HEzTxuPRKKvw09YS4I1XWqiqyR5fDTshEuA4DoP1XXS9W0+wtRfH3pNI/8pXvsKSJUv2+kyP3Jfau3qbJcsC7uS5lLS124H2pSL9FEVJWaJspN1lBoSYzLKyCzjroq/wzGN30NfTylOrfsdp532eopKadIcmhDgA0zLZ0raTf9V/wMbW7cOdihRFYXZJDUfULmBh1Tw8H+oturDqEL5x9md44M0n2dJeR1t/F27DxZKaQ7nsqLNZWJX+CTkno4QScHV1dSkOY/zC4TCxWIzs7OxR9//whz/EcRzOPvvsNEUmhJhuVFXhxOMr6ewO09waoDDfh1e3CIVMunuD5GS5OPG4iv0mrxRFwWVouAyNnBG7tJjp8O4H8dvXX3/9qC9wtm0PJ9+6u7t5//3344m6pSamaREJ7/rZ1cMuErYwTRvHIZ7oC+8pKBsMxmisH0Q3VDraQ6O2y+3RUFXYsa2fhp0D1M7KydgLMGJys02Lvi2tdL1bT7Q/GL9TUcibW0ZBtACPx8Nhhx0m7z8hhEgTry+bMy/8Is898Se6Ohp4+tE/cMo5n6OsYna6QxNCjOA4DoFAgP7+fm597A9ER0wsVJ5XwhG181laM59cX/YBWokn4RZUzGVnVxMD4SFyPFnMLKqS+tBJyJw+rR/ym9/8hr6+PlpaWgB49NFHaWpqAuCrX/0qvb29LF26lE9+8pMceuihADz11FM88cQTnH322Vx00UVpi12IsRo57v2Wc/WMqwG3u1fe/sbniz1m1uZwyYWzefGVZppbg/QNtaIrUWbNyOXE4yqYWZva4vCqqg7XgsvPzx8u9rlg0f5rwFmmTSRiEYlYhENm/HbYoqF+gOaGQfx+AxuwTIdYND4sNhQ04zXsgiarH9tJUYmXwqLdPx4Ki7x4vBl7KBGTgBmK0vNeEz3vN2KG4gVGVJdOwfwqChdWo7td2Ns/OGAbI/dRagprwH1Knc1fUlADbnevPNmXCiEmO7fHz+nnX8+ap+6mrXkbzz3+R04881NU1c5Pd2hCTHstLS28+eabvPLKK9TX1wMQyopQ4M9lac18jqhdQHne+EYKqqrKbOnpmjIp+dYUiUTo6enB7XZTUFCQiib52c9+NvymAfjHP/7BP/7xDwCuvvpq8vLyOP/883n66adZsWIFlmUxZ84cbr31Vm6++WbJyopJYWRPDpeuZFQCbqSp3ONkZKHseMm7xL9oV1Vmc8Wlh9LeGcU2zkaNraa02IWqxnuzjVdsxKjkBCas3oumq/h0FZ9/dI2CvHw3H2zoxp8Vr2G3e327E3QDAxFsy0E3FCJhi5amIVqa9kxU4/Mbw8m4wiIvBUUeXK7MqZcx2Ti2w0BbkFjAxPDr5JT5UKbg0N9IX4CudQ30bW7BseI124wsD4WLa8k/tALNteu9GPvoem4j91GKoaUkAaegYqgGiq2npKYcTO19qRBi+jBcHk4553O89PRfaKr/gDWr7+aE065kxpwl6Q5NiGmnr6+Pt956izfeeIPGxnhdN8uyUFWVnJwcrjvpcg4tmyXnIBkiqQTcHXfcwe9//3s2bNiA4zhcc801/PnPfwbiCbOVK1fy05/+lDlz5oy77bEMc/3LX/4y7naFEGKkkbWj7ns4Va26gOd2/U6NiawdVVzqo7zCT0PdAJ4KP4qi7KqFFJ/MIRiIsWhpMRdfNpe+vgg9XWG6u0J0d4UY6I8SDMQIBuLDWHfLznGRX+Clu9uD1+slGo1KDaQx6N4xwLY1zfQ3BrBiNpqhklvtZ87JlRTOSm0vyoni2A7B1j5iwQiGz42vPG84geg4DsG2PrrWNTC4s5PdCW9vcQ5FS2rJmVU6JZONQggx1ei6wUlnXsMrz99H3bZ3eOnZvxKLRZh72NHpDk2IKc+yLF5//XXeffddNm3atGdiSE3j8MMPZ+nSpdTX16OqKrOKM7d+/3SUUALOsiwuvfRSHnnkEQzD4LDDDuP9998ftczixYu59NJLOfLII/nOd76TkmCFEEKknqoqHHNCBd1dIdpaAvFZUF0akahFX08Yf7bB0cdXYLg0ikt8FJf4hp8bi1p0d4fp6QrRvSsxFxiKMTgQpb8vSnt7PwA333wz1dXV1NbWMmPGDGpra6msrByexVLEk2/vPrCdyGAUX4EH3aNhhi26tw8w1BFmyeWzMz4J17+jg+bn3yfQ1IMVNdFcOv6qAipPmg8KdL1bT6ijf3j57NpiihbX4qvIk5NDIYSYZFRN44TTrsRwudn6weu8/sLfiUXDzF98UrpDE2LKsWyLTW1baWpqYnBwkJUrV6Jp8R7/s2fP5phjjuHII4/E7/cTDodlRGCGSuibz29+8xtWrVrFueeey5/+9CdKS0v3eoFnz57NnDlzePLJJyUBJ4TIWCNrMl1xMRgpyQcZePKvJdx7NxD7qIX3K2bu6ZU30bWjambkcN7Fs3n95RZaWwL0xcIYhkbtzByOPr6Cmhn7TvwYLo2ycj9l5f7h+8Ihk+7uEJ3tYbrbQ4RCIWzbpqmpiaamJl555RUgPv14VVUVFRUV9PX14fF4sG03GtMvEePYDtvWNBMZjJJb6R9ORrl8OobXT39zgO1rWiiYkZ2xPcT6d3Sw7f7XiA6G8BZm4/HomMEY3esb6Fy7k+zaIlw5XhRVJe+QcooW1+LO9390w0IIITKWoigc/fFLcLm8vP/u86x97VFi0TCLPnYmjuPQ0baTUHAAry+HkrKZkhQQYhwcx6Gxp5l/Nazj3cb3GAgPMjAwAEBJSQknnHACy5Yto6ioKM2RirFK6Kvm3XffTWlpKffffz9+//5PnufPn8/atWsTDk4IISbayF43hg5GSurwKRiGgaUrkFQyaU/dt4PRO6hmRg5VNdl0tgcJhUy8Xp3iUt9+Z2/dH49Xp7Iqm9KybHZsjJ88/PCHP6StrY36+nrq6uqor68nGAxSV1fH9u3bhyfciaxUyS/xkFfsIb/YS16xF1+2Mebtt22HnrYg4ZCJx6tTUDb++CeK4zhYMRszYmGGrfjvkEUsYjHQPETbhh5UQ6W/MYBt2TjsefdYpkPT2k5UXcWb5wIFFFWJP/6h34oKoKCo4FjQ3xx//9x77724XC5UVUVRlFG/Y7EYHR0dAKhve1AMNb4ORYFdQ5JHrgfYlQhUUFQFx3aof+IdQh39eEtysU2LWFeYcE98W8xQlGD7ABWnzKfw8GoMn0xGIIQQU4WiKCw9+lwMl4d333yS9WufpqVpC/297bQ2bSEWi2AYbsqr5nHcycupmbUw3SELkdG6Brt5p3E9/2pYT9dQz/D92R4/BQUF5Obm8p//+Z8TVp5GTJyEEnCbN2/mzDPPPGDyDcDv99PZ2ZlQYEIIIQ4+VVUoLU9tryRFUcjPz6e8vJylS5cC8WRUZ2cn9fX1bNmyhZdeeolwOIxp2nS1BelqCw4/3+XWyCvykF8ST8jlFXnwfmgiCYCWnQO882ILnc0BzKiF7tIorvSz9MQKKmamduimaZoEg0GGhobo6elhYGAAy7Kw3rWwLZtYyByVaIuF47cde9+TaYT7o4T7oxg+HXMfyUbHcYiFTAZaAkQDY+9V6dgQ2jXi85VXXhkeqvBhlmXR1dUV/8+/zHH3sosFIvRuakE1NAItvaMe090GnoIsFEUhu7JQkm9CCDEFKYrCwiNOwzDcPP/kn3n/3TVoukHNzIV4vH4i4SD129fT3dnIBZfdLEk4MW3Yts3O7noGQ0Nke7OYWVi7z56gQ+EA65re452G9dT3NA3f79IMDq88jCNqFlFTUMUX19wCyMROk1VCCTjDMAiHwx+5XENDA9nZ2YmsQgghxBSmKAolJSWUlJSwcOFC7rnnHhzHYdEFEQZ7w/R2hejrDDHQEyEasehoDtDRHBh+vsenk1/s2ZWQ8xIOxnj50TqCgzFyCj0Ybg+xiEXLjgH6OkOccsnsfSbhHMchFrWJRSyiYYtoxIz/DlvEohbhgEVTk4VlWfzkJz8hEokQCARGHQMty6KpKX6i1Pfm7h5o+6dqCrpHQ3dr6B4d3aMRC5kMdgRx+Q1cPh1Vi/c8i3eCdIiFLaJBk1knlZNV5MVxHBwHGP7NPu+zYzY9vfHHzjvvPAzDwLZtHMcZ9TscDvPWW2/hOA7K/Mrhrne7E4aO7YDjjGjbiRf83bXeUEc/qq7hyvLGe94BiqrizvNhZHvBtgnsmphBCCHE1DVvwXG88M8VxGIRdMNNX28b5b45eH3ZeLxZtDZt5bUXHqBqxgIZjiqmvA3NH/DA26vY2r6diBnBrbuZWzqbyz92EQsr5xM1o3zQspl/Naxnc/tW7F2TKSgozCudzRE1i1hQeRhuPT6xW8SU86jJLqEE3IIFC1i7di2Dg4P7TbB1dHTw7rvvcswxxyQVoBBCiOlBURRy8j3kl3ioOSQPAMuyGeiJ0NcVoq8zTG9niMHeCOGgSWv9EK31Q/H6GFv7CAdM8oo9RIJmfAinA26fRndrkGce2MaCZSXDybZIOD70Mxax2E+nNCDeg2xXqQ0aGxtH9SBTFAWfz4fb7cbr9aJpGgVzNQy/juHRRiTZtPj/dyXcVF3Z66qlYzsEe8J0bx/Ak+sa9bjjOIT6o5TMy6P26PHNEmrHHNS347fPOeec/c5EGw6Hh2cWV084ND4EdRwCzb0MNXRjZHnQfXvP/mtG4hMySO83IYSY2jradhIM9FNdu4Ce7maGBnrYPrQWw+XGcHnAcdi28U3ef/c5ZsxZij8rXxJxYkra0PwBv/jn7+gJ9lKeW4bP5SUYDbG+8T02tW7hmFkfozfYR8SMDj+nKr+CI2oWsaR6IdmerDRGLyZKQgm4T33qU3zlK1/hi1/8InfddRcu1+iTbcuy+MpXvkIwGOSaa65JSaBCCCGmH01TyS/2kl/shcPi95kxm/7ueDKurzNEy44BwgETTVcJDpoEB81RbVimTVv9IC6Phse399BVAF1XMNwaLo+Oy63h8mgYbg1D12BAQ9M0vvjFL1JQUIDf7ycrKwuv14uqqoTDYf71r38BUHYKqMb4hwQoqsKckysZ6gjT3xyIz4Lq1jAjFsGeMO5sF7NPrsjYCRh85Xn4qwro395Olrdg7wRi9yB5c8rwleelL0ghhBATLhQcIBaLUFo+C68/m9amLViWRSQcJBIO4jg2oeAgLz29knffXI2iqPiz88nOKSArp5DsnCKycwrJyi0kO7sgnrQTYpKxbZsH3l5FT7CXuSWzUYBANERvoJfB8BBdQz10DXVzZO0SCvz5HFGziCNqFlGSU5zu0MUEG1MCbtasWVx22WX85Cc/AeD666/n73//O/feey+vvvoqZ511FgDr1q3jxhtv5LHHHmPnzp2ceeaZXHXVVRMXvRBCiPhQwF1M8wALHmQjYxkZY7J0Q6WwzEdhmQ+Aptp+2hqGyMpzEYvaREMmsZiNqoKqxScTCA3GqJmXR8WMHFwebVSSzeXW0PR9X323YtD9Qfz24Ycfvt8eZKlQOCuHJZfPZtuaZvobA4R6I2iGStHsXGafXEHhrNTWsUslRVWoPGUBoY4Bhpp68BZmo7l1rIhJqHsQV46XipPnZ2wCUYgpx4yRzF7XcZw9O3FdT77WkJn4jOCTychjnR3LrKFiI+NJ5TH5w7y+HAzDTSQcxOfPZebcI4nFIsSiYWLRMIFAHwoKuQVl8bgsk6GBboYGuoGte7Xn8WaRlVOIz5dNR0cHLpeLbdu2UVVVRW5urtTBEhnHcRzWN3/Auw3rcWkudnbVMxQeIhjbU75kd++2CxefzcfnHivv42lkTAm4urq6UZMpaJrGE088wTe+8Q3++Mc/cscddwDwzjvv8M4776BpGtdddx2//OUv5c0khBATLBLZc1L9xINpDOQAIpHIhM3U5PHquDzxJJove+/hj5GQiculMW9xEUUVqZ1gItUKZ+VQMCObgbYgsYCJ4dfJKfNNisRV7qwS5iw/lubn3yfQ1EO4Jz7sNG9OGRUnzyd3Vkm6QxRi2giv/G26Q5iWRh6Pt99zUxojObCJPCaXlM2kvGoe9dvX4/FmoaoqbrcXtztevzQUHOTwI07lsmv+G0VRCAb6GRroYXCgm6GBLgYHunfd7iESDhAODREODWHbeyYLuv3229E0DcMwKCoqori4ePgnOzubSCSCYey7x/t42LZNS9tOgqEBfN4cKspmynBZMcpQOEDbQAftAx3x3/3x3429LTT0NJHtyR7Oh6iKQp4vj+KsQrLdfup6GskZ8biYHhIaggrg8Xj47W9/y3/913+xZs0a6urqsG2bqqoqTjnlFCoqKlIZpxBCCLFPBWU+iiv9tOwYoKjSv9fwx4HuMJWzcijY1WMu0ymqQm6GJwr3J3dWCTkzignumnDB8LnxledNigSiEEKI5KmqynEnL6e7s5HWpq3kF5bjdvuIRIL0dreSlVPAsSddPpzI8mfl4c/Ko7Ri1l5tRSMhhgbjybn+nlb6OzYQjUYpLCxkYGCAWCxGa2srra2tw8+xLIvt27cDsOL+/0tBXik52QXk5hSSm1NEbnYhuTmFuN2+AyY+tu9czzMv3k9D8xZi0TCGy0NN5TxOP3E5s2cuSvFfTWS6YDREx0Anrf3tu5JtnbQPdDAUCexzeY/uwmN48Lv9FPjy8Lm85Hiz0bV4+mUwPIRbd5PtlTpv003CCbjdiouLueyyy1IRixBCiAS43XsK2597KehJ79lTwzT39MgbGWOqqarC0hMr6OsM0dUciM+C6tKIRS0GusP4cgyWnFiBKkmgg0JRFfyV+ekOQ4hpx+12s2rVqpS0FQ6HWb58OQD3339/SoffT+TxIN1GbtvsT/8C1cicbbVjkeFeeRP9GtTMWsgFl93Mq2vup7VpC329bRiGmxlzFnPsSZdTM2vhmNpxub0UuCspKKrErJ7H5rUrAfjv//5vDMOgp6eHrq4uOjs7h39aW1tRVRXbtgkE+gmFhmhu3b5X24bh3pOUyykkN7uQnF2/O7qauO8fP6d/sIfiworhBOLWHevo6GzkyktuliTcFBWJRKivr6evr49wOMxdr/yNrsFu+sOD+31OgT+f8pwSSnNLKMspoTSnhEJ/Pv/niV+wvuk9KvPL97o43NrfxuKqw5lZWHswNktkkAz5miaEECJRIw/qup45CbiRJrp7fcXMHE65ZDbvvNhCZ3OAwWgY3aVROSuHJSdWUDEzc+unCSFEKiiKMiF1Kj0ez4TWv5xKRh7rVMOdUQm4kQ7GkLeaWQupmrGAjradhIIDeH05lKRwCKemacPDTg877LDh+8PhMK+99hqWZfGJ875EMBSgf6CLgcEe+ge66R/oJhDsJxaL0NXdQld3y6h2Hcdh09a3GQr2U5hfTm9/J26XF78vh+qKuTS2bOXZFx9gZu3hMhx1EovFYnR2dtLS0jLqp6urC8uyaGmJvy+2eLajqRoAed4cSnNKKMstpTSnmLKcEkpyinHre5c/Abj8YxfR1NPM1o7to2ZBbe1vo8Cfz2Ufu2jC3kMj6zyOnGU13UbGMpG1KDPZmL+mvfvuu/zgBz9IaCXf+973EnqeEEIIMVYVM3Moq82mpy1IOGTi8eoUlPkmvOfb6KLbQFKlz1PLHlH3fLqe6AghhEgPVVUpq5h90NerKAq6rlNWUoth7J08Ns0YA4Pdwwm5/sFuBnb9bm7bwVCgD0N3EwwOEAwODD9P1TQMzcV7m15jw8ZXWXjYcZKEm2C2bbOzewdbY1vx9+Yzq3DOuP7mlm3RPdhFW38rzX3NNDY2EolEuOmmm/bbTnZ2Nn6/H7fbzb8tPY/q/EpKc0vw7uO9dCALK+dz05lf5oG3V7G1fTvtAx24dTeLqw7nso9dxMLK+eNqbzxG1qO84bmfTdh6kjGRtSgz2ZgTcOvWrWPdunXjatxxHBRFkQScEEKIg0JVlYM+0cLIk5yOew7qqsdlup7oCCGEECPpukFBfhkF+WV7PbZ5279o72ikML8My4oRjUUIhYcIBgexLYuwGSAQGuSR1Xfy2ltPUFk2i8ry2VSWz6a4qEoScin0ftMGHnrrAba2b6FH66LAepS5pfO45KjLWVA1ehizbdv0BHroGGijvb+d9oE22vva6BrqxLItIJ6MGxyMDyV1HAefz0dlZSXl5eVUVlZSUVFBRUUFuq7zwQcfALBs5hG49cR7si6snM+C8kPZ2V3PYGiIbG8WMwtr5X0yjY05ATd79myOP/74iYxFCCGEEGkwsnecE7PTGMneRsYjvfgmCdNMuh+o4zhgxr80oWvJDZkzzSSjEUJMF35fLl6vH13XycneU8/UcRxCkQA9PW2gqPi8WcRiEeoaN1LXuBGI15WrKJs5KiG3e/iiGJ/3mzbwq6d+QU+gh7K8MjyFLjzdPjY0rmdn5w4uXXYFWZ4sOnYl2zoGOjCt2D7bculuSnNKKcgqZLu5BbfbzY9+9CNKSkr2eWwJh8Mp3RZVVZldPDOlbX6UkXUef3PqzfsdJnuwRczocI+8qVwP9EDGnIA74YQT+POf/zyRsQghhBCTzsgTiJJPg2qkMZgPsWN7euUd6ERnZC8+Z8WmDBpEO9q06cWXZAIrpcmrXfGMa/GVf09ufUIIkSYVZTOpqZzH1h3rqKmcN7z/VBQFr9uPZVt8bPGpfPaq/6Knr43m1u00t26npXUHkWiI+sZN1DduAsAwXJSX7knI5ecVp3PTJg3btnnozQfoHOykLLecocgQXW0dqAM6oUiQuq6dtPa2sHTGkaPrIGsGJTkllOaUUZJbSmlOGaW5peT58lEUhYgZ4bnepwDIzc09KLUQ02Xktrl1V8Yk4Eaayn//A8nAUt1CCCHE5DG66DaoRiadUOxJ40zXE53JyPrL4+kOQQghpiVVVTn9xOV0dDbS0LwlPguqy0ckGqSzu4XcnEJOO/FydF2npKiKkqIqli48Cdu26e5pHU7INbduJxIN0dC0mYamzbva1qhvqMfn87Fjxw7mzZuHnokzZx1EjuMwGB6gvT8+dLRjoJ1NLR/w1IYn0TWdgVA/ABFXGHc0XoPN7/ITioWoKKji8MqFlOaWUpJTRoG/QIZ2iow3vT/xQgghhBjVO0655lAUI3NOYJ2YjbMi3ptgug5XmAzcbjerVq1KWXvhcJjly5cDcP/996dsFk55DwkhPsrsmYu48pKbeebF+2lo3kIs2orh8jBv1hJOO/FyZs9ctNdzVFWluKiS4qJKliw8Ecdx6O5ppWlEQi4UGiQQCBAIBPjFL36B1+tl9uzZzJs3j3nz5jFjxoyDv7EHyb4Sbbt/wrHRQz67h7qIWTG8Lg9elxePy4OZE6PEKsPn8mNoBvVddZx4yMksrlmSng0SIkGSgBNCCCGmuZG94xRDzagEHOzpxzeVe/GlMoE1Uckr2H8CS1GUlK5nJI/HM2FtCyHEvsyeuYiZtYfT0raTYGgAnzeHirKZY+5hpSgKRYUVFBVWsOTwj+M4Du2d9fzuns0EAgH8fj/hcJiNGzeycePuGnIGNTU1dHZ24vP5MC0T1yT7tu44Dn19fQwNDRGJRFi19h/0DHXvM9G2m6qoFGYVUZJTQkluGaYVoy/QR3FOCTneHBwcerI7KRgsREFhKDyI23CT7cmesG3YLWJFJ2QdiRoZj9TFnZwm2UdaCCGEEGLqmagEliSvhBAiMaqqUlUxOyVtKYpCYX4ZBQUFFBQU8OMf/5je3l62bNky/DM4OMiWLVvo7OwE4Ff3/zfVpbOpKZ1FTdlsKotq0PXMKDS7O9HW0tJC7L9bmQAAKFZJREFUS0sLra2tw7+HhoZoaGgAYK3+1vBEFB9OtJXmlFKSU0pRdjG6tictYds2b+14gw2N6+NJNmX0elv7WllUvZgZRRMzscHIurhffeG7E7KOVJg2dXGnmDEl4Gw7s2ZEE0IIMXWMvIK3nwms0mZkPHKlUQghhBCpoCgKFRUVVFRUcPLJJ+M4Dm1tbbz33nu89tprBAIBTMukoW0bDW3bYB1oqk5lcS01ZbOoKZ1NZXHtRybkbNumsWMngdAAfm8O1SVj78UH8XOfodAAnb1ttHY30tLSQiQS4Zvf/Cax2L5P2lRVxeVy4Xa7OfmwU6nMr9pnom1/VFXlkqMup7mniW3tWynLK8PyWQyFB2nra6PAX8AnjrpM6r2JSUl6wAkhhEirkVcaX78vjYF8BLnSKIQQQoiJoCgK5eXl5OfnU1VVheM4fP6sm2jpbKKhfTsNbTsIhAbit9u3A0+jqToVxTV7esgV12KMmO1yc/0GHn/lfna2biESi+A23Mwsn8d5xy/nkNqFo9Y/MtHW1d9OV187nX1tdPe1E9k1dNSyLfr6+oB4qQPDMCgpKaG8vHw4mVheXk5ubi6XXHIJAKcuOAO3Pv7amwuqFvK1s27iobceYGv7FnoiXRRYRSyqXswnjrqMBVULP7qRBI0stfDrk/4Pbi1zZhCNWNHhXnlS03RykgScEEIIIYQQQgiRIRRFoSCnmLKCao445Fgcx6FnoJOG9h00tG2noX0HQ8F+Gtt30Ni+g1fWP4OqalQU1VBTNgvLsnj8lfsZCPZTml+Ox+0jHAmysX4djR07Of/4K8j25+4z0bZ3LCoFOUXkZRfQMPgBbreb/+//+/+ora3d5yyu4fC+2xmvBVULOaxiATu6t/Fu/pss6V3GrMI5E97zbWS9WbfmSiiBeDBM5bq4U5kk4IQQQqTVyCt4x1wBWmaUNwHiQ1B398qTK41CCCGmspGlFsxY5ABLHnwj45mOJSEURaEwt4TC3BKWzjsGx3HoHeyioW3Hrh5y2xkM9tPUsZPG9h1s2P42fUM9lBZU0jfUizXQSSgSJBwJ0tReR1t3Ewtnf2z0JEy7Em2FuaUU55VSlFdGUV4pBTnxoaNRM8z6zhcAqKys3GfyLdVUVWVmySwCM3qZWTcL1ZFhp2JykwScEEKItBp58qcZmZWAG0muNAohhJjKRpaEePQvN6QxkgOTkhB7esgV5BSzZN7ROI5D/1AP9W3beWfza7zxwQt4XD6C4SGC4aFRz/W4fYSjIYrzyzmk5vC9Em1CiIkjnzAhhBBCCCGEEGKSUhSFvOxC8rILMXSDV997jtKCCkLhIMHwELqm43H78Li86LpBU0cdxy86jfkzl6Y7dCGmFUnACSGEEEIIIcQ0N7LUwgWf+g26kTmlF8xYZLhXnpSEODC/Nwe34caxbQpziynMLR71eCA0iNtw4/fmpClCIaYvScAJIYQQQgghxDQ3stSCbrjRDU8ao9k/KQlxYNUlM5lZPo+N9euZ6cka9fdyHIf23lbmz1hMdcnMCVn/yBp9ESv5WoKWYhKLxYiYETTHSridkbFMxzqCIjNIAk4IIYQQQgghhJgCVFXlvOOX09rdyM7WraNmQW3vbSUvq4Bzj7t8wmYTHVlL8JvPfXVC1pEsqSMo0kUScEIIIYQQQoiM4pjR5J7vONhmhJg3hh2L4Cha2mIR4mA7pHYhn7/wZh5/5X52tm6ho68Nt+Fm/ozFnHvc5RxSuzDdIQoxLUkCTgghhBBCCJFRAn/5UUrauRPQdR3TNFPSnhCTxSG1C5lbvYDGjp0EQgP4vTlUl8ycsJ5vu42s0Xfbqb/GrSVXs89STD6ofYf59UvRnMTTFxErMtwjT+oIinSRBJwQQgghhBBCCDHFqKpKbdnsg7rOkTXn3Jobt55sAk7DMAzcujupBNxIUkdQpIsk4IQQQgghhBBp53a7WbVqVUraCofDLF++HIAVK1aQlZWVknal54wQQohESQJOCCGEEEIIkXaKouDxpH7mTbfbPSHtCiGEEOMxsQPAhRBCCCGEEEIIIYSY5qQHnBBCCCGEEEKISc9xnOHbsVgkjZHsbWQ8I+MUQkwfkoATQgghhBBCCDHpRSJ7klx33PflNEZyYJFIBK/Xu9f9IxNzUTOzEogj45EEohCJkQScEEIIIYQQQgiRZiMTiD9++IY0RnJg+0sgCiEOTBJwQgghhBBCCCEmvZGz1F5/xe8wjMyZtTYWiwz3ypPZdIWYniQBJ4QQQgghhBBi0lMUZfi2YbgxjMyc/XZknCONTMzdcvFvcOmZk6iLmpHhXnmSQBQiMZKAE0IIIYQQQggh0mxkYs6lu3HpkyuBKIQ4MEnACQAilpV0G47jELVsAFyamtSOORXxCCGEEEIIIYQQYnKKWLGknh/PUZgAuDQ96eRxsvFIAk4AcMOTL6Y7BCGEEEIIIYQQQggAbvjnHekOIaUkAZcikV1Z1UQ5jkPItojFPIRjUXSSzcwmF48QQgghhBBCCCGESA1JwKXIV558MGVt3aXrmObEJ9DcbjerVq1KWXvhcJjly5cDcP/99+PxpKZmgRT5nDxiJoCT8PMdx8HcNfpY15KrLxGTHLQQQgghhBBCTCqpzFNMVI4CEstTSAJuGlMUJaVvwJE8Hs+EtS0y1x8esVPcYuLJPCGEEEIIIYQQk8tE5SkyIUchCbgkTFRmdsWKFWRlZaWkXZAeZEIIIYQQQgghhBDpJAm4JExUZtbtdqc9MzsZRazkekvFZ0iJ33YlOfwxFfFMFpOhi7AkoYUQQgghhBBCpJMk4MSU8Y1nAukOYVqayl2EhRBCCCGEEEKIVJAEnBBCCCGEEEKkkG1Gknq+4zg4ZhQARXclPTIj2XiEEEIkTxJwYlKbDMMfYWxDIKNJziAK8ZO12K5htEaSw2ijMouoEGIyMq2kp29xHAfbhJg7hm2ZOEoSLe6e2lkIMa1sX3FTukMQQgiRYTIyATc0NMRtt93GG2+8wZtvvklvby933XUX11577V7Lbty4ka9//eu8/PLLuFwuzjvvPH7xi19QXFx88AMXB91UGv744ydiB3V9QggxFVkrXkxJOxHgTtag6zqWKVckhBBCCCFEcjIyAdfV1cUPfvADampqWLx4MWvWrNnnck1NTZx44onk5uZy6623MjQ0xM9+9jM2bNjAm2++icvlOriBCyGEEEIIIaalqTQyQwghROplZAKuvLyc1tZWysrKePvttznqqKP2udytt95KIBBg7dq11NTUALBs2TLOOOMM7r77bq6//vqDGbYQ45bKEzWQWUSFENPTRO5LV6xYQVZWVkralX2pEFPbVBqZIYQQIvUyMgHndrspKyv7yOUeeughzj///OHkG8Dpp5/OvHnzeOCBB5JKwAUCe8+oufu+QCCApmmjHvP7/QmvS0xfE3WiBnKyJoSYPiZyX+p2u2VfKoQQQgghkpaRCbixaG5upqOjg4997GN7PbZs2TKeeOKJpNo/0NXuioqKve6LRqNJrS8Wi426PfL/k8WHt+HDScpMN9njh8m/DemI3zRNDMOI/0cZ/idJxod+J0hx2B2aaZr73S+M3AaF1GxBKigw7vjVXT+ZwuGjt2Fk/DqgZswrADbjfw+paCgZ9Co4KNi7YjvQNqTSZD8mT/ZjAUz+bZD4008+x+M3+nzCQiFz6l8qWMOxjfV45mDhZNA2OGPYhpHx24qFnUHx28r4XwNLtbCU5LbBUqxRvxNuR00kfhszyfWmkqXa498GxcFU7IMW44FYijOm+FPpYO1Lx7otiuM4yU4WNqF2D0H98CQMu++/5557+NSnPjXqOd/61re47bbbCIfDCQ/3GO/skQ8//HBC69ktFotx5513AnDdddftSQhMIpN9GyZ7/DD5t2Gyxy+EmBom+75osscPk38bJP70m+zbMNnjF0JMDY7jYO6ajErX9XHnSdLtYO1Lg8EgV155Jf39/eTk5Ox3uUnbAy4UCgH7rqeye6hIKBRKOAE3NDS0130DAwNUVFRQX1+/1x812SGo4XB4+I1x6qmnkp2dnVR76TByG84666xJN2RnsscPk38b0hF/JBLhiiuuAOCKi8HQUtMDzlNwDeGeFUDiV3ZilsN9D8dv33ffffvdn43chnMvAT1D9uymCU88FL891viPuQK0DPqOYcXg9fvit/e3DSPjL/00qEbmnJjYMYf2e+K3x/oaqNccimJkUA+4mI29YhNw4G1Ipcl+TJ7sxwKY/Nsg8aeffI7Hb+Sx4IJP/RrdyJy6lWYswqN/+Sow9uPZdVf8FiODtiEWi3DnfV8BxnZO8R8X/xqXljnxR60IP3l4fK/BT0/9FW4tuYkRLcViY+27HFa/BM1JvPdSxIryree+Bow9/l+d9ENcScafSlErytde+E9g7NuQrIlKwKXjnG4i96UDAwNjWi5DvqaNn9frBeJvrg8Lh8OjlknEvhJqlhXvfpqXl3fArGYidrcNYBjGpLzKNdm3YbLHD5N/G9IRv2VZe7oMO5DaAZwxkknA4TjsDk3X9f3+PUZug7PrJxM4MO74bTJnCC3E4/mobRgZv0nmDUEd72ugYqFkzLsIHGzsXbEdaBtSSfal6TfZt0HiT7/Jvg3pPidy0HAy6Kuiw57hamM9niloKBm0DcoYtmHU8djRUDMoftUZ/2ug2Rqamppt0BwNzUm8Lc22EohfRVczZwi+Zavj3oZU2p2IS4Wpdk431nYz5xM9TuXl5QC0trbu9VhraysFBQUy25gQQgghhBBCCCGmjVTODj9yZvj7778/ZT3IpmuuZtIm4CorKykuLubtt9/e67E333yTJUuWHPyghBBCCCGEEEIIIdJkomaH93g8k7IkQSbJnCIvCbjkkkt47LHHaGxsHL7v2WefZcuWLVx22WVpjEwIIYQQQgghhBBCiLiM7QH3m9/8hr6+PlpaWgB49NFHaWpqAuCrX/0qubm5fPvb3+bvf/87p5xyCjfeeCNDQ0PcdtttLFy4kM985jPpDF8IIYQQQgghhBBCCCCDE3A/+9nPqK+vH/7/P/7xD/7xj38AcPXVV5Obm0t1dTUvvPACN910E7fccgsul4vzzjuPn//859N2TLEQQgghhBBCJMM0957obrwcx8EyowBouiup2RNTEY8QQqRbxibg6urqxrTcggULeOqppyY2GCGEEEIIIYSYJh6954Z0hyCEEFNOxibghBBCCCGEEEIIIdIhYkWTbsNxHKJ2DACXaiTVEzQV8Yj0kgScEEIIIYQQQkxzbrebVatWpay9cDjM8uXLAbj//vtTNnuilBoSB8tXX/huukMQU4wk4IQQYhfTBHCSasNxwLRttFiMqGmjJNFePB4hhBBCiImnKErKkmQf5vF4JqxtIYSYLCQBJ4QQu9z7cKpaMoE70XX9oCfRkl2f44BlxW9rGiTRSz6hWKwUxG/vakPVk4s/FfEIIYQQQojJQ3qCiokkCTghhJhCnngw3REk5/V70x2BEEIIIYSYrqQnqJhIkoATQkxrE3mVa8WKFWRlZaWkXbnKJYQQQgghhBCTlyTghBDT2kRe5XK73QflKlcqk4jp6CY/GeIHSYIKIYQQQgghEicJOCGEmOQmKol4sLrJT/b4hRBCCCGEEOKjSAJOCCGEEHvE7KTmAnYcB8xdLegKSrIzYcTs5J4vhBBiWoqZkaSe7zgOphkFQNddSR/Pko1HCDH5SQJOCCGEEMPsFZtS2l4yyTwhhBAiUXfc++V0hyCEEKOo6Q5ACCGEEEIIIYQQQoipTHrACSGEENOcTIQhhBBiKpDjmRAik0kCTgghhEgRx4TkKqiB48TbAVB0SKbkzO52PopMhCGEEGIqmErHs2gKasY5jkPMitexM7Tk6tilIh4hpjtJwAkhhBAp0r4i3REIIYQQYir48cM3pDuEpEWs5CfCCDkhYrEYYTOC7lhpi0WIVJAEnBBCCCGEEEIIIVLqm899NTUNPQu6rmOaY+zaL0SGkgScEEIIkYRU1puBias5I/VmhBBCiMwm5xRCTG2SgBNCCCGSMFH1Zv7/9u4+pqr7juP454LKo0BUWqWITQV8wPlYtToLOjuLxYfO4gPTqh0J6aS1tdM1q1tMNmfX6HRWB9N20bq5ppXV1KjVOq2J0VZwaqtRh+BaUbQ+oQIiVPjtj4a73t4LXNEDnMv7lZC0v/M75/f9efP1mA/33CvxGWoAALQmvvBvCqu+COOdd95RaGjofbkuASKaCwEcAAAAAAC4Z1aFiAEBAfxSErbn19wFAAAAAAAAAL6MAA4AAAAAAACwEAEcAAAAAAAAYCECOAAAAAAAAMBCBHAAAAAAAACAhQjgAAAAAAAAAAsRwAEAAAAAAAAWIoADAAAAAAAALEQABwAAAAAAAFiIAA4AAAAAAACwEAEcAAAAAAAAYCECOAAAAAAAAMBCBHAAAAAAAACAhQjgAAAAAAAAAAsRwAEAAAAAAAAWIoADAAAAAAAALEQABwAAAAAAAFiIAA4AAAAAAACwEAEcAAAAAAAAYCECOAAAAAAAAMBCBHAAAAAAAACAhQjgAAAAAAAAAAsRwAEAAAAAAAAWIoADAAAAAAAALEQABwAAAAAAAFiIAA4AAAAAAACwEAEcAAAAAAAAYCECOAAAAAAAAMBCBHAAAAAAAACAhQjgAAAAAAAAAAsRwAEAAAAAAAAWIoBrIcrLyz3+NwB7oZcB+6OPAfujjwH7o4/ha2wdwO3du1cOh8Pjz2effdbc5QEAAAAAAABq09wF3A9z587V4MGDXcZiY2ObqRoAAAAAAADg/3wigHv88ceVmpra3GUAAAAAAAAAbnwigJOk0tJSBQUFqU2b+7MlT8+Y146Vl5fL39/f5VhISMh9WRcAAAAAAAC+xScCuOeee05lZWXy9/fX448/rqVLl+rRRx+9p2uGhobWeSwqKspt7MqVK/e0XklJie7cueP877Zt297T9ZrD7du3nXu4evWqAgMDm7miu2P3+iX778Hu9Uv272W7vwZ2r1+y/x7sXr9EH7cEdt8D9Tc/+rj52X0Pdq9fsv8e7N7Hkv1fA+r3TmlpqSTJGFPvPIdpaEYLduDAAS1fvlxPPfWUOnXqpBMnTmjZsmUqLy/XgQMHNGDAgEZf2+Fw3MdKAQAAAAAA4KuKiooUHR1d53FbB3CeFBQUqG/fvkpMTNSOHTsafR1Pj6DW1NTowoULCg0NdQvo7vUR1PLycuc764qLi239SOvgwYOVl5fX3GU0mt3rl+y/BzvX7yu9bOfXQLJ//ZL992Dn+unjlsPue6D+5kMftxx234Pd65fsuwdf6WPJvq9BLeqvnzFGpaWlioqKkp+fX53zfOIR1O+KjY3VxIkT9cEHH6i6utrts9q8VVdzt2/f/l7Kq9N36wwLC7P1Xy7+/v4KCwtr7jIaze71S/bfg53r95VetvNrINm/fsn+e7Bz/fRxy2H3PVB/86GPWw6778Hu9Uv23YOv9LFk39egFvU3LDw8vME5dUdzNta1a1dVVVV5fBcbAAAAAAAA0JR8MoA7c+aMAgMD6/0iBQAAAAAAAKAp2DqAu3z5stvY559/ri1btmjMmDH1PnsLAAAAAAAANAVbfwbc1KlTFRQUpOHDh+uBBx7QiRMntHbtWgUHB+sPf/hDc5d3V0JCQhr8ylq7yMzMbO4S7ond65fsvwc71+8rvWzn10Cyf/2S/fdg5/rp45bD7nug/uZDH7ccdt+D3euX7LsHX+ljyb6vQS3qvz9s/S2ob775pjZu3KiCggLdvHlTkZGRGj16tBYtWqTY2NjmLg8AAAAAAACwdwAHAAAAAAAAtHR8SBoAAAAAAABgIQI4AAAAAAAAwEIEcAAAAAAAAICFCOAAAAAAAAAACxHAAQAAAAAAABYigAMAAAAAAAAsRAAHAAAAAAAAWIgADgAAAAAAALAQARwAAAAAAABgIQI4AAAAAAAAwEIEcAAAAAAAAICFCOAAAAAAAAAACxHA3YPKykq9+uqrioqKUlBQkIYOHapdu3a5zTtw4IBGjBih4OBgde7cWXPnzlVZWZnX65w/f15TpkxRRESEwsLCNHHiRJ05c8bj3L/+9a/q1auXAgMDFRcXp1WrVjV6f0Br4E0fjxw5Ug6Hw+0nOTnZ63XoY8A6ZWVlWrRokZKTk9WhQwc5HA6tX7/e49yTJ08qOTlZoaGh6tChg5599lldvnzZ67WuX7+ujIwMRUZGKiQkRKNGjdLhw4c9zt2yZYsGDhyowMBAxcTEaNGiRbpz505jtgj4PG/7ePbs2R7vyT179vR6LfoYuP/y8vL0wgsvKCEhQSEhIYqJidGUKVOUn5/vNpd7MVqrNs1dgJ3Nnj1bOTk5evnllxUXF6f169frqaee0ieffKIRI0ZIko4eParRo0erV69eWr58uc6dO6dly5bp9OnT+uijjxpco6ysTKNGjdKNGzf02muvqW3btlqxYoWSkpJ09OhRdezY0Tl3zZo1ev755/XMM8/olVde0b59+zR37lzdunVLr776qmV/DoCdedPHkhQdHa3XX3/d5dyoqCiv1qCPAWtduXJFv/3tbxUTE6N+/fpp7969HuedO3dOiYmJCg8P15IlS1RWVqZly5bp2LFjys3NVbt27epdp6amRikpKfr888+1YMECderUSVlZWRo5cqT+/e9/Ky4uzjn3o48+0tNPP62RI0dq1apVOnbsmBYvXqxLly4pOzv7fm4f8Ane9rEkBQQE6O2333YZCw8P92od+hiwxhtvvKH9+/dr8uTJ6tu3ry5evKjVq1dr4MCB+uyzz9SnTx9J3IvRyhk0ysGDB40ks3TpUudYRUWF6d69uxk2bJhzbOzYsaZLly7mxo0bzrG33nrLSDI7d+5scJ033njDSDK5ubnOsZMnTxp/f3/zq1/9yjl269Yt07FjR5OSkuJy/vTp001ISIi5du1ao/YJ+DJv+zgpKckkJCQ0eh36GLDW7du3zYULF4wxxuTl5RlJZt26dW7zfv7zn5ugoCDz1VdfOcd27dplJJk1a9Y0uM57771nJJlNmzY5xy5dumQiIiJMWlqay9zevXubfv36mW+++cY5tnDhQuNwOMzJkyfvdouAz/O2j2fNmmVCQkIavQ59DFhj//79prKy0mUsPz/fBAQEmOnTpzvHuBejNeMR1EbKycmRv7+/MjIynGOBgYFKT0/Xp59+qqKiIt28eVO7du3SjBkzFBYW5pw3c+ZMhYaG6v3333e55qlTp3T27Fm3dQYPHqzBgwc7x3r27KnRo0e7nP/JJ5/o6tWrmjNnjsv5mZmZKi8v17Zt2+7LvgFf4k0ff9edO3cafHycPgaaXkBAgDp37tzgvH/+858aN26cYmJinGNPPPGE4uPj3e7JhYWFKiwsdBnLycnRgw8+qEmTJjnHIiMjNWXKFH344YeqrKyUJJ04cUInTpxQRkaG2rT5/8MGc+bMkTFGOTk5jdon4Mu87eNa1dXVunnzZr1z6GOg6QwfPtzt3WtxcXFKSEjQyZMnnWPci9GaEcA10pEjRxQfH+8SrEnSkCFDJH376OmxY8d0584dPfrooy5z2rVrp/79++vIkSMu47169dLMmTOd/19TU6MvvvjC7fzadQoLC1VaWuqsR5Lb3EGDBsnPz89tLQDe9XGt/Px8hYSEqH379urcubN+85vf6JtvvnG7Jn0MtEznz5/XpUuX6uzF7/fX6NGjNXr0aJexI0eOaODAgfLzc/3n05AhQ3Tr1i3n59zU1ctRUVGKjo6ml4F7dOvWLYWFhSk8PFwdOnRQZmamx1+Q0cdA8zLG6Ouvv1anTp0kcS8GCOAa6cKFC+rSpYvbeO1YcXGxLly44DL2/XnFxcX1rnHt2jVVVlY2uE5tPf7+/nrggQdc5rVr104dO3ZscC2gNfKmjyWpe/fuWrhwod59911t2LBBQ4cO1eLFizVjxowG16CPgZahoXtyba82dA1ve7m+tehloPG6dOmiX/7yl1q3bp3effddTZgwQVlZWUpOTvbqg9XpY6DpbNy4UefPn9fUqVMlcS8G+BKGRqqoqFBAQIDbeGBgoPN4RUWFJNU5r/Z4LWOM2xr1nf/dORUVFXV+YKWntQB418fSt99K+l3PPvusMjIy9NZbb2nevHl67LHHnMfoY6Bl8rYXa49/+eWXHq/hbS/Xt1ZDj80BqNv3vxBp2rRpio+P18KFC5WTk6Np06Y5j9HHQPM5deqUMjMzNWzYMM2aNUsS92KAd8A1UlBQkMd0/vbt287jQUFBklTnvNrj9a1R3/nfnRMUFKSqqiqP1/FmLaA18qaP6/KLX/xCkvSvf/2rwTUk+hhobnfTi/Vdw9term8tehm4v+bNmyc/P78G78kSfQw0hYsXLyolJUXh4eHOz1yWuBcDBHCN1KVLF+fbWr+rdiwqKsr5dte65kVFRdW7RocOHRQQENDgOrX1VFdX69KlSy7zqqqqdPXq1QbXAlojb/q4Ll27dpX07SOm9aGPgZahoXtyba82dA1ve7m+tehl4P4KCgpSx44dG7wnS/QxYLUbN25o7Nixun79unbs2OHSK9yL0doRwDVS//79lZ+f7/bW1YMHDzqP9+nTR23atNGhQ4dc5lRVVeno0aPq379/vWv4+fnpBz/4gdv5tes88sgjat++vXM9SW5zDx06pJqamgbXAlojb/q4LmfOnJH07bcu1Yc+BlqGhx56SJGRkR57MTc316v+6t+/vw4fPqyamhqX8YMHDyo4OFjx8fHOeZJ7LxcXF+vcuXP0MnCflZaW6sqVKw3ekyX6GLDS7du3NX78eOXn52vr1q3q3bu3y3HuxWjtCOAaKTU1VdXV1Vq7dq1zrLKyUuvWrdPQoUPVtWtXhYeH64knntDf//5357ccStLf/vY3lZWVafLkyS7XPHXqlM6ePeu2Tl5enstfHP/5z3+0Z88el/N/9KMfqUOHDsrOznY5Pzs7W8HBwUpJSbkv+wZ8iTd9fPPmTbe3rhtjtHjxYknSk08+6XKMPgZarmeeeUZbt25VUVGRc2z37t3Kz893uycXFhaqsLDQZSw1NVVff/21PvjgA+fYlStXtGnTJo0fP975W/uEhAT17NlTa9euVXV1tXNudna2HA6HUlNTrdge4PNu377t8m/qWr/73e9kjFFycrLLOH0MNJ3q6mpNnTpVn376qTZt2qRhw4Z5nMe9GK2Zw3z/E8PhtSlTpmjz5s2aN2+eYmNj9c477yg3N1e7d+9WYmKiJOnw4cMaPny4evfurYyMDJ07d05//OMflZiYqJ07d7pcz+FwKCkpSXv37nWOlZaWasCAASotLdX8+fPVtm1bLV++XNXV1Tp69KjLb/qysrKUmZmp1NRUPfnkk9q3b582bNig3//+93rttdea5M8EsJuG+njv3r1KS0tTWlqaYmNjVVFRoc2bN2v//v3KyMjQmjVrXK5HHwPNY/Xq1bp+/bqKi4uVnZ2tSZMmacCAAZKkF198UeHh4SoqKtKAAQMUERGhl156SWVlZVq6dKmio6OVl5fn8tjLww8/LMn1A6Crq6s1YsQIHT9+XAsWLFCnTp2UlZWls2fPKi8vTz169HDO3bp1qyZMmKBRo0Zp2rRpOn78uFavXq309HSX0B/A/zXUxyUlJRowYIDS0tLUs2dPSdLOnTu1fft2JScna9u2bfLz+//7C+hjoOm8/PLLWrlypcaPH68pU6a4HZ8xY4YkcS9G62bQaBUVFWb+/Pmmc+fOJiAgwAwePNjs2LHDbd6+ffvM8OHDTWBgoImMjDSZmZnm5s2bbvMkmaSkJLfxoqIik5qaasLCwkxoaKgZN26cOX36tMea1q5da3r06GHatWtnunfvblasWGFqamruea+Ar2qoj8+cOWMmT55sHn74YRMYGGiCg4PNoEGDzF/+8hePvUUfA82jW7duRpLHn//+97/OecePHzdjxowxwcHBJiIiwkyfPt1cvHjR4/W6devmNn7t2jWTnp5uOnbsaIKDg01SUpLJy8vzWNPmzZtN//79TUBAgImOjja//vWvTVVV1f3aMuBzGurjkpISM2PGDBMbG2uCg4NNQECASUhIMEuWLPHYW/Qx0HSSkpLq7N/vxw7ci9Fa8Q44AAAAAAAAwEJ8BhwAAAAAAABgIQI4AAAAAAAAwEIEcAAAAAAAAICFCOAAAAAAAAAACxHAAQAAAAAAABYigAMAAAAAAAAsRAAHAAAAAAAAWIgADgAAAAAAALAQARwAAAAAAABgIQI4AAAAH+VwOORwOOqds379ejkcDs2ePbtpigIAAGiFCOAAAAAAAAAACxHAAQAAAAAAABYigAMAAAAAAAAsRAAHAAAAj+7cuaNVq1Zp0KBBCg0NVWhoqIYMGaLs7GxVV1e7zR85cqQcDoe+/PJL/eMf/9Bjjz2m9u3bKyIiwjln27Zt+tnPfqZevXopLCxMISEh6tevn5YsWaLKysom3B0AAEDTadPcBQAAAKDlqa6u1sSJE7V9+3aFhYXpxz/+sYwx2rNnj+bMmaNdu3YpJydHfn7uv899/fXX9fbbb+uHP/yhxo0bp6KiIuex9PR0VVRUqE+fPurbt69u3Lih3NxcLVy4ULt379bHH38sf3//ptwqAACA5QjgAAAA4OZPf/qTtm/froSEBO3evVsPPvigJOnChQsaNWqUNm/erKysLL3wwgtu527YsEF79uxRUlKS27E1a9ZozJgxCgoKco6Vlpbqpz/9qbZu3aqNGzdq5syZ1m0MAACgGfAIKgAAgI9zOBx1/jz33HMez3nzzTclScuXL3eGb5LUpUsXLV26VJK0cuVKj+emp6d7DN8kaeLEiS7hmyS1b99eK1askCR9+OGHd7c5AAAAG+AdcAAAAD5u1qxZdR4rKCjQ/v37XcbOnj2rs2fPKjIyUmPGjHE7Z9y4cYqIiFBBQYEuXryozp07uxyfMGFCvfWcPn1a27dvV0FBgcrLy1VTUyNjjPMYAACAryGAAwAA8HHr16+v99j3A7ji4mJJUrdu3Tye43A41K1bN12/fl3nz593C+BiYmI8nmeM0fz587VixQpn4PZ9paWlddYKAABgVzyCCgAAgLvmcDjqPBYYGOhx/L333tPy5csVHR2tnJwcnT9/XlVVVTLGOL8Bta5gDgAAwM54BxwAAABcREVFSZK++uqrOufUHnvooYe8vu7mzZslSdnZ2UpJSXE5dubMmbstEwAAwDZ4BxwAAABcxMTEKCYmRpcvX9bu3bvdjm/btk0lJSWKjY11e/y0PiUlJZKk6Ohot2Pvv/9+4wsGAABo4QjgAAAA4ObFF1+UJL3yyiu6fPmyc/zixYtasGCBJOmll166q2vGx8dLktauXevyqOm+ffuc36wKAADgiwjgAAAA4GbevHkaO3asvvjiC8XFxWnSpEn6yU9+ovj4eJ08eVJPP/205syZc1fXnDt3rkJCQpSVlaU+ffooLS1NiYmJSkpK0vPPP2/RTgAAAJofARwAAADc+Pv7a8uWLVq5cqUeeeQR7dy5Ux9//LF69OihP//5z8rJyZGf3939UzI+Pl6HDh3S+PHjdeXKFW3ZskVlZWVas2YN74ADAAA+zWH4qikAAAAAAADAMrwDDgAAAAAAALAQARwAAAAAAABgIQI4AAAAAAAAwEIEcAAAAAAAAICFCOAAAAAAAAAACxHAAQAAAAAAABYigAMAAAAAAAAsRAAHAAAAAAAAWIgADgAAAAAAALAQARwAAAAAAABgIQI4AAAAAAAAwEIEcAAAAAAAAICF/gdUIQStcfUt3QAAAABJRU5ErkJggg==", + "text/plain": [ + "<Figure size 1500x500 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Generamos la figura\n", + "fig = plt.figure(figsize=(15, 5))\n", + "ax = fig.gca()\n", + "\n", + "# Diagrama cajas y bigotes\n", + "sns.boxplot(data = pm_data, x='hora', y='mean', ax=ax)\n", + "\n", + "# Otros graficos\n", + "plt.plot(pm_data_h['mean'], '-ok', label=\"Temperatura promedio\", alpha=0.6)\n", + "plt.plot(pm_data_hmax['mean'], '--r', label=\"Temperatura máxima\", alpha=0.6)\n", + "plt.plot(pm_data_hmin['mean'], '--b', label=\"Temperatura mÃnima\", alpha=0.6)\n", + "\n", + "\n", + "# Formateamos el eje de fechas para que se vea mejor\n", + "ax.tick_params(which='major', pad=10, length=8, labelsize=12, direction=\"inout\", width=1.5)\n", + "ax.tick_params(which='minor', length=4)\n", + "ax.set_xticks(range(0,24,5))\n", + "ax.set_xticks(range(0,24,1), minor=True)\n", + "ax.set_xticklabels([\"00:00\", \"05:00\", \"10:00\", \"15:00\", \"20:00\"], fontsize=12)\n", + "\n", + "# Agregamos la leyenda, los titulos y la grilla\n", + "plt.ylim(5,35)\n", + "plt.ylabel(\"Temperatura [°C]\", fontsize=15)\n", + "plt.xlabel(\"Hora\", fontsize=15)\n", + "plt.title(\"Gráfica de cajas y bigotes para la temperatura por hora\", fontsize=18)\n", + "plt.legend()\n", + "plt.grid(True)\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.5" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +}