diff --git a/.ipynb_checkpoints/ejercicio2-checkpoint.ipynb b/.ipynb_checkpoints/ejercicio2-checkpoint.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..51dd0f3aed447438c8e64e569dac4f5573696bd2 --- /dev/null +++ b/.ipynb_checkpoints/ejercicio2-checkpoint.ipynb @@ -0,0 +1,53 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'\\nCreated on Wed Feb 3 09:47:54 2021\\n\\n@author: jennifer\\n\\nEste programa crea una lista de palabras separadas por guiones\\n'" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#!/usr/bin/env python3\n", + "# -*- coding: utf-8 -*-\n", + "\"\"\"\n", + "Created on Wed Feb 3 09:47:54 2021\n", + "\n", + "@author: jennifer\n", + "\n", + "Este programa crea una lista de palabras separadas por guiones\n", + "\"\"\"\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.3" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/.ipynb_checkpoints/ejercicio3-checkpoint.ipynb b/.ipynb_checkpoints/ejercicio3-checkpoint.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..8fdfdde2787a42e795aca964fffcd8221de3f9f8 --- /dev/null +++ b/.ipynb_checkpoints/ejercicio3-checkpoint.ipynb @@ -0,0 +1,255 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#!/usr/bin/env python3\n", + "# -*- coding: utf-8 -*-\n", + "\"\"\"\n", + "@author: jennifer\n", + "\n", + "Este programa entrega los números de una fila del\n", + "triángulo de Pascal.\n", + "\"\"\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Ejercicio 3: Amigos congueros" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Entre en contacto con 10 estudiantes del curso de datos y 2 profesores o personal de soporte\n", + "de LaConga, uno del curso de datos y otro de afuera, y consulte su nombre completo, su\n", + "nombre de usuario en mattermost, edad, pais de origen, ciudad donde residen, su especialidad\n", + "cientÃfica, nombre del instituto en que estudian/laboran, y un hobbie o afición.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Cree un diccionario llamado “compasâ€, donde la llave sea el nombre de usuario en mattermost,\n", + "y si depliego el valor almacenado, por ejemplo en compas[“juan-pinedaâ€], lo que obtengo es\n", + "a la vez otro diccionario, con las llaves “nombreâ€, “apellidoâ€, “paÃsâ€, “residenciaâ€, “edadâ€,\n", + "“instituciónâ€, “hobbieâ€.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Cree una función que reciba como entrada el diccionario y un paÃs de origen, y retorne las\n", + "informaciones completas de todas las personas de ese paÃs, tabuladas en una forma fácil de\n", + "entender. -Busque una forma de calcular, a partir del diccionario, el promedio de edad de\n", + "todas las personas en él, y una forma de mostrar todas las instituciones (sin repetición)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "d = {'dict1': {'foo': 1, 'bar': 2}, 'dict2': {'baz': 3, 'quux': 4}}\n", + "compas = {\"perezy\": {\"Nombre\":\"Yineth\",\"Apellido\":\"Perez\",\"Edad\":29,\"PaÃs\": \"Colombia\",\n", + " \"Ciudad\": \"Bogotá\",\"Institución\": \"Universidad Nacional de Colombia\", \"Hobbie\": \"Voleibol y ficción\", \"Tipo\": \"Estudiante\"},\n", + " \"acerot\": {\"Nombre\":\"Tatiana\",\"Apellido\":\"Acero\",\"Edad\":23,\"PaÃs\": \"Colombia\",\n", + " \"Ciudad\": \"Bogotá\",\"Institución\": \"Universidad Nacional de Colombia\", \"Hobbie\": \"Ver anime y disfrutar la naturaleza\", \"Tipo\": \"Estudiante\"}, \n", + " \"omarasto\":{\"Nombre\":\"Omar\",\"Apellido\":\"Asto\",\"Edad\":25,\"PaÃs\": \"Perú\",\n", + " \"Ciudad\": \"Lima\",\"Institución\": \"Universidad Nacional de IngenierÃa\", \"Hobbie\": \"Leer periódico\", \"Tipo\": \"Estudiante\"}, \n", + " \"carrilloj\": {\"Nombre\":\"Juan\",\"Apellido\":\"Carrillo\",\"Edad\":25,\"PaÃs\": \"Colombia\",\n", + " \"Ciudad\": \"Bogotá\",\"Institución\": \"Universidad Nacional de Colombia\", \"Hobbie\": \"Videojuegos\", \"Tipo\": \"Estudiante\"}, \n", + " \"ladinoj\": {\"Nombre\":\"JoseM\",\"Apellido\":\"Ladino\",\"Edad\":24,\"PaÃs\": \"Colombia\",\n", + " \"Ciudad\": \"Bogotá\",\"Institución\": \"Universidad Nacional de Colombia\", \"Hobbie\": \"Skate, ciclismo, guitarra\", \"Tipo\": \"Estudiante\"}, \n", + " \"martinezj\": {\"Nombre\":\"Jocabed\",\"Apellido\":\"Martinez\",\"Edad\":22,\"PaÃs\": \"Venezuela\",\n", + " \"Ciudad\": \"Caracas\",\"Institución\": \"Universidad Central de Venezuela\", \"Hobbie\": \"Música\", \"Tipo\": \"Estudiante\"}, \n", + " \"gomezc\":{\"Nombre\":\"Carla\",\"Apellido\":\"Gomez\",\"Edad\":27,\"PaÃs\": \"Venezuela\",\n", + " \"Ciudad\": \"Caracas\",\"Institución\": \"Universidad Simón Bolivar\", \"Hobbie\": \"Bici, electrónica y la gastronomÃa\", \"Tipo\": \"Estudiante\"}, \n", + " \"navasa\":{\"Nombre\":\"Alfonso\",\"Apellido\":\"Navas\",\"Edad\":24,\"PaÃs\": \"Colombia\",\n", + " \"Ciudad\": \"Bogotá\",\"Institución\": \"Universidad Nacional de Colombia\", \"Hobbie\": \"Crossfit\", \"Tipo\": \"Estudiante\"}, \n", + " \"vargass\":{\"Nombre\":\"Sasiri\",\"Apellido\":\"Vargas\",\"Edad\":20,\"PaÃs\": \"Colombia\",\n", + " \"Ciudad\": \"Cali\",\"Institución\": \"Universidad del Valle\", \"Hobbie\": \"Danza y canto\", \"Tipo\": \"Estudiante\"}, \n", + " \"sirias\": {\"Nombre\":\"Siria\",\"Apellido\":\"Sadeddin\",\"Edad\":30,\"PaÃs\": \"Venezuela\",\n", + " \"Ciudad\": \"Colombia\",\"Institución\": \"Universidad Simón Bolivar\", \"Hobbie\": \"Data Science\", \"Tipo\": \"Estudiante\"},\n", + " \"teofilo\": {\"Nombre\":\"Teofilo\",\"Apellido\":\"Vargas\",\"Edad\":54,\"PaÃs\": \"Perú\",\n", + " \"Ciudad\": \"Lima\",\"Institución\": \"Universidad Nacional Mayor de San Marcos\", \"Hobbie\": \"Wing Chun Kuen\", \"Tipo\": \"Profesor\"},\n", + " \"sirias\": {\"Nombre\":\"Siria\",\"Apellido\":\"Sadeddin\",\"Edad\":30,\"PaÃs\": \"Venezuela\",\n", + " \"Ciudad\": \"Colombia\",\"Institución\": \"Universidad Simón Bolivar\", \"Hobbie\": \"Data Science\", \"Tipo\": \"Profesor\"}}" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Pais: Colombia\n", + "Pais: Colombia\n", + "Pais: Perú\n", + "Pais: Colombia\n", + "Pais: Colombia\n", + "Pais: Venezuela\n", + "Pais: Venezuela\n", + "Pais: Colombia\n", + "Pais: Colombia\n", + "Pais: Venezuela\n", + "Pais: Perú\n" + ] + } + ], + "source": [ + "for item in compas:\n", + "# print('Nombre:',compas[item][\"Nombre\"])\n", + " print('Pais:',compas[item][\"PaÃs\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "# Create a nested dictionary\n", + "courses={ 'bash': {'classes': 10, 'hours': 2, 'fee': 500},\n", + " 'PHP': {'classes': 30, 'hours': 2, 'fee': 1500},\n", + " 'Angular': {'classes': 10, 'hours': 2, 'fee': 1000}}" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Course Name: bash\n", + "Total classes: 10\n", + "Hours: 2\n", + "Fee: $ 500\n", + "Course Name: PHP\n", + "Total classes: 30\n", + "Hours: 2\n", + "Fee: $ 1500\n", + "Course Name: Angular\n", + "Total classes: 10\n", + "Hours: 2\n", + "Fee: $ 1000\n" + ] + } + ], + "source": [ + "# Print the keys and values of the dictionary\n", + "for course in courses:\n", + " print('Course Name:',course)\n", + " print('Total classes:',courses[course]['classes'])\n", + " print('Hours:',courses[course]['hours'])\n", + " print('Fee: $',courses[course]['fee'])" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "ename": "KeyError", + "evalue": "'Apellido'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m<ipython-input-18-c2695fec8d9c>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcompas\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"Apellido\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mKeyError\u001b[0m: 'Apellido'" + ] + } + ], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def congueros(dicci,country):\n", + " for item in compas:\n", + "# print('Nombre:',compas[item][\"Nombre\"])\n", + " print('Pais:',compas[item][\"PaÃs\"])\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]\n" + ] + } + ], + "source": [ + "newlist = []\n", + "for x in range(10):\n", + " innerlist = []\n", + " for y in range(10):\n", + " innerlist.append(y)\n", + " newlist.append(innerlist)\n", + "\n", + "print(newlist)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.3" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/ejercicio2.ipynb b/ejercicio2.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..51dd0f3aed447438c8e64e569dac4f5573696bd2 --- /dev/null +++ b/ejercicio2.ipynb @@ -0,0 +1,53 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'\\nCreated on Wed Feb 3 09:47:54 2021\\n\\n@author: jennifer\\n\\nEste programa crea una lista de palabras separadas por guiones\\n'" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#!/usr/bin/env python3\n", + "# -*- coding: utf-8 -*-\n", + "\"\"\"\n", + "Created on Wed Feb 3 09:47:54 2021\n", + "\n", + "@author: jennifer\n", + "\n", + "Este programa crea una lista de palabras separadas por guiones\n", + "\"\"\"\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.3" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/ejercicio3.ipynb b/ejercicio3.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..8fdfdde2787a42e795aca964fffcd8221de3f9f8 --- /dev/null +++ b/ejercicio3.ipynb @@ -0,0 +1,255 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#!/usr/bin/env python3\n", + "# -*- coding: utf-8 -*-\n", + "\"\"\"\n", + "@author: jennifer\n", + "\n", + "Este programa entrega los números de una fila del\n", + "triángulo de Pascal.\n", + "\"\"\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Ejercicio 3: Amigos congueros" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Entre en contacto con 10 estudiantes del curso de datos y 2 profesores o personal de soporte\n", + "de LaConga, uno del curso de datos y otro de afuera, y consulte su nombre completo, su\n", + "nombre de usuario en mattermost, edad, pais de origen, ciudad donde residen, su especialidad\n", + "cientÃfica, nombre del instituto en que estudian/laboran, y un hobbie o afición.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Cree un diccionario llamado “compasâ€, donde la llave sea el nombre de usuario en mattermost,\n", + "y si depliego el valor almacenado, por ejemplo en compas[“juan-pinedaâ€], lo que obtengo es\n", + "a la vez otro diccionario, con las llaves “nombreâ€, “apellidoâ€, “paÃsâ€, “residenciaâ€, “edadâ€,\n", + "“instituciónâ€, “hobbieâ€.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Cree una función que reciba como entrada el diccionario y un paÃs de origen, y retorne las\n", + "informaciones completas de todas las personas de ese paÃs, tabuladas en una forma fácil de\n", + "entender. -Busque una forma de calcular, a partir del diccionario, el promedio de edad de\n", + "todas las personas en él, y una forma de mostrar todas las instituciones (sin repetición)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "d = {'dict1': {'foo': 1, 'bar': 2}, 'dict2': {'baz': 3, 'quux': 4}}\n", + "compas = {\"perezy\": {\"Nombre\":\"Yineth\",\"Apellido\":\"Perez\",\"Edad\":29,\"PaÃs\": \"Colombia\",\n", + " \"Ciudad\": \"Bogotá\",\"Institución\": \"Universidad Nacional de Colombia\", \"Hobbie\": \"Voleibol y ficción\", \"Tipo\": \"Estudiante\"},\n", + " \"acerot\": {\"Nombre\":\"Tatiana\",\"Apellido\":\"Acero\",\"Edad\":23,\"PaÃs\": \"Colombia\",\n", + " \"Ciudad\": \"Bogotá\",\"Institución\": \"Universidad Nacional de Colombia\", \"Hobbie\": \"Ver anime y disfrutar la naturaleza\", \"Tipo\": \"Estudiante\"}, \n", + " \"omarasto\":{\"Nombre\":\"Omar\",\"Apellido\":\"Asto\",\"Edad\":25,\"PaÃs\": \"Perú\",\n", + " \"Ciudad\": \"Lima\",\"Institución\": \"Universidad Nacional de IngenierÃa\", \"Hobbie\": \"Leer periódico\", \"Tipo\": \"Estudiante\"}, \n", + " \"carrilloj\": {\"Nombre\":\"Juan\",\"Apellido\":\"Carrillo\",\"Edad\":25,\"PaÃs\": \"Colombia\",\n", + " \"Ciudad\": \"Bogotá\",\"Institución\": \"Universidad Nacional de Colombia\", \"Hobbie\": \"Videojuegos\", \"Tipo\": \"Estudiante\"}, \n", + " \"ladinoj\": {\"Nombre\":\"JoseM\",\"Apellido\":\"Ladino\",\"Edad\":24,\"PaÃs\": \"Colombia\",\n", + " \"Ciudad\": \"Bogotá\",\"Institución\": \"Universidad Nacional de Colombia\", \"Hobbie\": \"Skate, ciclismo, guitarra\", \"Tipo\": \"Estudiante\"}, \n", + " \"martinezj\": {\"Nombre\":\"Jocabed\",\"Apellido\":\"Martinez\",\"Edad\":22,\"PaÃs\": \"Venezuela\",\n", + " \"Ciudad\": \"Caracas\",\"Institución\": \"Universidad Central de Venezuela\", \"Hobbie\": \"Música\", \"Tipo\": \"Estudiante\"}, \n", + " \"gomezc\":{\"Nombre\":\"Carla\",\"Apellido\":\"Gomez\",\"Edad\":27,\"PaÃs\": \"Venezuela\",\n", + " \"Ciudad\": \"Caracas\",\"Institución\": \"Universidad Simón Bolivar\", \"Hobbie\": \"Bici, electrónica y la gastronomÃa\", \"Tipo\": \"Estudiante\"}, \n", + " \"navasa\":{\"Nombre\":\"Alfonso\",\"Apellido\":\"Navas\",\"Edad\":24,\"PaÃs\": \"Colombia\",\n", + " \"Ciudad\": \"Bogotá\",\"Institución\": \"Universidad Nacional de Colombia\", \"Hobbie\": \"Crossfit\", \"Tipo\": \"Estudiante\"}, \n", + " \"vargass\":{\"Nombre\":\"Sasiri\",\"Apellido\":\"Vargas\",\"Edad\":20,\"PaÃs\": \"Colombia\",\n", + " \"Ciudad\": \"Cali\",\"Institución\": \"Universidad del Valle\", \"Hobbie\": \"Danza y canto\", \"Tipo\": \"Estudiante\"}, \n", + " \"sirias\": {\"Nombre\":\"Siria\",\"Apellido\":\"Sadeddin\",\"Edad\":30,\"PaÃs\": \"Venezuela\",\n", + " \"Ciudad\": \"Colombia\",\"Institución\": \"Universidad Simón Bolivar\", \"Hobbie\": \"Data Science\", \"Tipo\": \"Estudiante\"},\n", + " \"teofilo\": {\"Nombre\":\"Teofilo\",\"Apellido\":\"Vargas\",\"Edad\":54,\"PaÃs\": \"Perú\",\n", + " \"Ciudad\": \"Lima\",\"Institución\": \"Universidad Nacional Mayor de San Marcos\", \"Hobbie\": \"Wing Chun Kuen\", \"Tipo\": \"Profesor\"},\n", + " \"sirias\": {\"Nombre\":\"Siria\",\"Apellido\":\"Sadeddin\",\"Edad\":30,\"PaÃs\": \"Venezuela\",\n", + " \"Ciudad\": \"Colombia\",\"Institución\": \"Universidad Simón Bolivar\", \"Hobbie\": \"Data Science\", \"Tipo\": \"Profesor\"}}" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Pais: Colombia\n", + "Pais: Colombia\n", + "Pais: Perú\n", + "Pais: Colombia\n", + "Pais: Colombia\n", + "Pais: Venezuela\n", + "Pais: Venezuela\n", + "Pais: Colombia\n", + "Pais: Colombia\n", + "Pais: Venezuela\n", + "Pais: Perú\n" + ] + } + ], + "source": [ + "for item in compas:\n", + "# print('Nombre:',compas[item][\"Nombre\"])\n", + " print('Pais:',compas[item][\"PaÃs\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "# Create a nested dictionary\n", + "courses={ 'bash': {'classes': 10, 'hours': 2, 'fee': 500},\n", + " 'PHP': {'classes': 30, 'hours': 2, 'fee': 1500},\n", + " 'Angular': {'classes': 10, 'hours': 2, 'fee': 1000}}" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Course Name: bash\n", + "Total classes: 10\n", + "Hours: 2\n", + "Fee: $ 500\n", + "Course Name: PHP\n", + "Total classes: 30\n", + "Hours: 2\n", + "Fee: $ 1500\n", + "Course Name: Angular\n", + "Total classes: 10\n", + "Hours: 2\n", + "Fee: $ 1000\n" + ] + } + ], + "source": [ + "# Print the keys and values of the dictionary\n", + "for course in courses:\n", + " print('Course Name:',course)\n", + " print('Total classes:',courses[course]['classes'])\n", + " print('Hours:',courses[course]['hours'])\n", + " print('Fee: $',courses[course]['fee'])" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "ename": "KeyError", + "evalue": "'Apellido'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m<ipython-input-18-c2695fec8d9c>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcompas\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"Apellido\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mKeyError\u001b[0m: 'Apellido'" + ] + } + ], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def congueros(dicci,country):\n", + " for item in compas:\n", + "# print('Nombre:',compas[item][\"Nombre\"])\n", + " print('Pais:',compas[item][\"PaÃs\"])\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]\n" + ] + } + ], + "source": [ + "newlist = []\n", + "for x in range(10):\n", + " innerlist = []\n", + " for y in range(10):\n", + " innerlist.append(y)\n", + " newlist.append(innerlist)\n", + "\n", + "print(newlist)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.3" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +}