diff --git a/codigo/Muones.ipynb b/codigo/Muones.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..8b08578636ea3f5b209831b7b8170855a35b32ea --- /dev/null +++ b/codigo/Muones.ipynb @@ -0,0 +1,217 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 148, + "resources": { + "http://localhost:8080/nbextensions/google.colab/files.js": { + "data": "Ly8gQ29weXJpZ2h0IDIwMTcgR29vZ2xlIExMQwovLwovLyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKLy8geW91IG1heSBub3QgdXNlIHRoaXMgZmlsZSBleGNlcHQgaW4gY29tcGxpYW5jZSB3aXRoIHRoZSBMaWNlbnNlLgovLyBZb3UgbWF5IG9idGFpbiBhIGNvcHkgb2YgdGhlIExpY2Vuc2UgYXQKLy8KLy8gICAgICBodHRwOi8vd3d3LmFwYWNoZS5vcmcvbGljZW5zZXMvTElDRU5TRS0yLjAKLy8KLy8gVW5sZXNzIHJlcXVpcmVkIGJ5IGFwcGxpY2FibGUgbGF3IG9yIGFncmVlZCB0byBpbiB3cml0aW5nLCBzb2Z0d2FyZQovLyBkaXN0cmlidXRlZCB1bmRlciB0aGUgTGljZW5zZSBpcyBkaXN0cmlidXRlZCBvbiBhbiAiQVMgSVMiIEJBU0lTLAovLyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KLy8gU2VlIHRoZSBMaWNlbnNlIGZvciB0aGUgc3BlY2lmaWMgbGFuZ3VhZ2UgZ292ZXJuaW5nIHBlcm1pc3Npb25zIGFuZAovLyBsaW1pdGF0aW9ucyB1bmRlciB0aGUgTGljZW5zZS4KCi8qKgogKiBAZmlsZW92ZXJ2aWV3IEhlbHBlcnMgZm9yIGdvb2dsZS5jb2xhYiBQeXRob24gbW9kdWxlLgogKi8KKGZ1bmN0aW9uKHNjb3BlKSB7CmZ1bmN0aW9uIHNwYW4odGV4dCwgc3R5bGVBdHRyaWJ1dGVzID0ge30pIHsKICBjb25zdCBlbGVtZW50ID0gZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgnc3BhbicpOwogIGVsZW1lbnQudGV4dENvbnRlbnQgPSB0ZXh0OwogIGZvciAoY29uc3Qga2V5IG9mIE9iamVjdC5rZXlzKHN0eWxlQXR0cmlidXRlcykpIHsKICAgIGVsZW1lbnQuc3R5bGVba2V5XSA9IHN0eWxlQXR0cmlidXRlc1trZXldOwogIH0KICByZXR1cm4gZWxlbWVudDsKfQoKLy8gTWF4IG51bWJlciBvZiBieXRlcyB3aGljaCB3aWxsIGJlIHVwbG9hZGVkIGF0IGEgdGltZS4KY29uc3QgTUFYX1BBWUxPQURfU0laRSA9IDEwMCAqIDEwMjQ7CgpmdW5jdGlvbiBfdXBsb2FkRmlsZXMoaW5wdXRJZCwgb3V0cHV0SWQpIHsKICBjb25zdCBzdGVwcyA9IHVwbG9hZEZpbGVzU3RlcChpbnB1dElkLCBvdXRwdXRJZCk7CiAgY29uc3Qgb3V0cHV0RWxlbWVudCA9IGRvY3VtZW50LmdldEVsZW1lbnRCeUlkKG91dHB1dElkKTsKICAvLyBDYWNoZSBzdGVwcyBvbiB0aGUgb3V0cHV0RWxlbWVudCB0byBtYWtlIGl0IGF2YWlsYWJsZSBmb3IgdGhlIG5leHQgY2FsbAogIC8vIHRvIHVwbG9hZEZpbGVzQ29udGludWUgZnJvbSBQeXRob24uCiAgb3V0cHV0RWxlbWVudC5zdGVwcyA9IHN0ZXBzOwoKICByZXR1cm4gX3VwbG9hZEZpbGVzQ29udGludWUob3V0cHV0SWQpOwp9CgovLyBUaGlzIGlzIHJvdWdobHkgYW4gYXN5bmMgZ2VuZXJhdG9yIChub3Qgc3VwcG9ydGVkIGluIHRoZSBicm93c2VyIHlldCksCi8vIHdoZXJlIHRoZXJlIGFyZSBtdWx0aXBsZSBhc3luY2hyb25vdXMgc3RlcHMgYW5kIHRoZSBQeXRob24gc2lkZSBpcyBnb2luZwovLyB0byBwb2xsIGZvciBjb21wbGV0aW9uIG9mIGVhY2ggc3RlcC4KLy8gVGhpcyB1c2VzIGEgUHJvbWlzZSB0byBibG9jayB0aGUgcHl0aG9uIHNpZGUgb24gY29tcGxldGlvbiBvZiBlYWNoIHN0ZXAsCi8vIHRoZW4gcGFzc2VzIHRoZSByZXN1bHQgb2YgdGhlIHByZXZpb3VzIHN0ZXAgYXMgdGhlIGlucHV0IHRvIHRoZSBuZXh0IHN0ZXAuCmZ1bmN0aW9uIF91cGxvYWRGaWxlc0NvbnRpbnVlKG91dHB1dElkKSB7CiAgY29uc3Qgb3V0cHV0RWxlbWVudCA9IGRvY3VtZW50LmdldEVsZW1lbnRCeUlkKG91dHB1dElkKTsKICBjb25zdCBzdGVwcyA9IG91dHB1dEVsZW1lbnQuc3RlcHM7CgogIGNvbnN0IG5leHQgPSBzdGVwcy5uZXh0KG91dHB1dEVsZW1lbnQubGFzdFByb21pc2VWYWx1ZSk7CiAgcmV0dXJuIFByb21pc2UucmVzb2x2ZShuZXh0LnZhbHVlLnByb21pc2UpLnRoZW4oKHZhbHVlKSA9PiB7CiAgICAvLyBDYWNoZSB0aGUgbGFzdCBwcm9taXNlIHZhbHVlIHRvIG1ha2UgaXQgYXZhaWxhYmxlIHRvIHRoZSBuZXh0CiAgICAvLyBzdGVwIG9mIHRoZSBnZW5lcmF0b3IuCiAgICBvdXRwdXRFbGVtZW50Lmxhc3RQcm9taXNlVmFsdWUgPSB2YWx1ZTsKICAgIHJldHVybiBuZXh0LnZhbHVlLnJlc3BvbnNlOwogIH0pOwp9CgovKioKICogR2VuZXJhdG9yIGZ1bmN0aW9uIHdoaWNoIGlzIGNhbGxlZCBiZXR3ZWVuIGVhY2ggYXN5bmMgc3RlcCBvZiB0aGUgdXBsb2FkCiAqIHByb2Nlc3MuCiAqIEBwYXJhbSB7c3RyaW5nfSBpbnB1dElkIEVsZW1lbnQgSUQgb2YgdGhlIGlucHV0IGZpbGUgcGlja2VyIGVsZW1lbnQuCiAqIEBwYXJhbSB7c3RyaW5nfSBvdXRwdXRJZCBFbGVtZW50IElEIG9mIHRoZSBvdXRwdXQgZGlzcGxheS4KICogQHJldHVybiB7IUl0ZXJhYmxlPCFPYmplY3Q+fSBJdGVyYWJsZSBvZiBuZXh0IHN0ZXBzLgogKi8KZnVuY3Rpb24qIHVwbG9hZEZpbGVzU3RlcChpbnB1dElkLCBvdXRwdXRJZCkgewogIGNvbnN0IGlucHV0RWxlbWVudCA9IGRvY3VtZW50LmdldEVsZW1lbnRCeUlkKGlucHV0SWQpOwogIGlucHV0RWxlbWVudC5kaXNhYmxlZCA9IGZhbHNlOwoKICBjb25zdCBvdXRwdXRFbGVtZW50ID0gZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQob3V0cHV0SWQpOwogIG91dHB1dEVsZW1lbnQuaW5uZXJIVE1MID0gJyc7CgogIGNvbnN0IHBpY2tlZFByb21pc2UgPSBuZXcgUHJvbWlzZSgocmVzb2x2ZSkgPT4gewogICAgaW5wdXRFbGVtZW50LmFkZEV2ZW50TGlzdGVuZXIoJ2NoYW5nZScsIChlKSA9PiB7CiAgICAgIHJlc29sdmUoZS50YXJnZXQuZmlsZXMpOwogICAgfSk7CiAgfSk7CgogIGNvbnN0IGNhbmNlbCA9IGRvY3VtZW50LmNyZWF0ZUVsZW1lbnQoJ2J1dHRvbicpOwogIGlucHV0RWxlbWVudC5wYXJlbnRFbGVtZW50LmFwcGVuZENoaWxkKGNhbmNlbCk7CiAgY2FuY2VsLnRleHRDb250ZW50ID0gJ0NhbmNlbCB1cGxvYWQnOwogIGNvbnN0IGNhbmNlbFByb21pc2UgPSBuZXcgUHJvbWlzZSgocmVzb2x2ZSkgPT4gewogICAgY2FuY2VsLm9uY2xpY2sgPSAoKSA9PiB7CiAgICAgIHJlc29sdmUobnVsbCk7CiAgICB9OwogIH0pOwoKICAvLyBXYWl0IGZvciB0aGUgdXNlciB0byBwaWNrIHRoZSBmaWxlcy4KICBjb25zdCBmaWxlcyA9IHlpZWxkIHsKICAgIHByb21pc2U6IFByb21pc2UucmFjZShbcGlja2VkUHJvbWlzZSwgY2FuY2VsUHJvbWlzZV0pLAogICAgcmVzcG9uc2U6IHsKICAgICAgYWN0aW9uOiAnc3RhcnRpbmcnLAogICAgfQogIH07CgogIGNhbmNlbC5yZW1vdmUoKTsKCiAgLy8gRGlzYWJsZSB0aGUgaW5wdXQgZWxlbWVudCBzaW5jZSBmdXJ0aGVyIHBpY2tzIGFyZSBub3QgYWxsb3dlZC4KICBpbnB1dEVsZW1lbnQuZGlzYWJsZWQgPSB0cnVlOwoKICBpZiAoIWZpbGVzKSB7CiAgICByZXR1cm4gewogICAgICByZXNwb25zZTogewogICAgICAgIGFjdGlvbjogJ2NvbXBsZXRlJywKICAgICAgfQogICAgfTsKICB9CgogIGZvciAoY29uc3QgZmlsZSBvZiBmaWxlcykgewogICAgY29uc3QgbGkgPSBkb2N1bWVudC5jcmVhdGVFbGVtZW50KCdsaScpOwogICAgbGkuYXBwZW5kKHNwYW4oZmlsZS5uYW1lLCB7Zm9udFdlaWdodDogJ2JvbGQnfSkpOwogICAgbGkuYXBwZW5kKHNwYW4oCiAgICAgICAgYCgke2ZpbGUudHlwZSB8fCAnbi9hJ30pIC0gJHtmaWxlLnNpemV9IGJ5dGVzLCBgICsKICAgICAgICBgbGFzdCBtb2RpZmllZDogJHsKICAgICAgICAgICAgZmlsZS5sYXN0TW9kaWZpZWREYXRlID8gZmlsZS5sYXN0TW9kaWZpZWREYXRlLnRvTG9jYWxlRGF0ZVN0cmluZygpIDoKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgJ24vYSd9IC0gYCkpOwogICAgY29uc3QgcGVyY2VudCA9IHNwYW4oJzAlIGRvbmUnKTsKICAgIGxpLmFwcGVuZENoaWxkKHBlcmNlbnQpOwoKICAgIG91dHB1dEVsZW1lbnQuYXBwZW5kQ2hpbGQobGkpOwoKICAgIGNvbnN0IGZpbGVEYXRhUHJvbWlzZSA9IG5ldyBQcm9taXNlKChyZXNvbHZlKSA9PiB7CiAgICAgIGNvbnN0IHJlYWRlciA9IG5ldyBGaWxlUmVhZGVyKCk7CiAgICAgIHJlYWRlci5vbmxvYWQgPSAoZSkgPT4gewogICAgICAgIHJlc29sdmUoZS50YXJnZXQucmVzdWx0KTsKICAgICAgfTsKICAgICAgcmVhZGVyLnJlYWRBc0FycmF5QnVmZmVyKGZpbGUpOwogICAgfSk7CiAgICAvLyBXYWl0IGZvciB0aGUgZGF0YSB0byBiZSByZWFkeS4KICAgIGxldCBmaWxlRGF0YSA9IHlpZWxkIHsKICAgICAgcHJvbWlzZTogZmlsZURhdGFQcm9taXNlLAogICAgICByZXNwb25zZTogewogICAgICAgIGFjdGlvbjogJ2NvbnRpbnVlJywKICAgICAgfQogICAgfTsKCiAgICAvLyBVc2UgYSBjaHVua2VkIHNlbmRpbmcgdG8gYXZvaWQgbWVzc2FnZSBzaXplIGxpbWl0cy4gU2VlIGIvNjIxMTU2NjAuCiAgICBsZXQgcG9zaXRpb24gPSAwOwogICAgd2hpbGUgKHBvc2l0aW9uIDwgZmlsZURhdGEuYnl0ZUxlbmd0aCkgewogICAgICBjb25zdCBsZW5ndGggPSBNYXRoLm1pbihmaWxlRGF0YS5ieXRlTGVuZ3RoIC0gcG9zaXRpb24sIE1BWF9QQVlMT0FEX1NJWkUpOwogICAgICBjb25zdCBjaHVuayA9IG5ldyBVaW50OEFycmF5KGZpbGVEYXRhLCBwb3NpdGlvbiwgbGVuZ3RoKTsKICAgICAgcG9zaXRpb24gKz0gbGVuZ3RoOwoKICAgICAgY29uc3QgYmFzZTY0ID0gYnRvYShTdHJpbmcuZnJvbUNoYXJDb2RlLmFwcGx5KG51bGwsIGNodW5rKSk7CiAgICAgIHlpZWxkIHsKICAgICAgICByZXNwb25zZTogewogICAgICAgICAgYWN0aW9uOiAnYXBwZW5kJywKICAgICAgICAgIGZpbGU6IGZpbGUubmFtZSwKICAgICAgICAgIGRhdGE6IGJhc2U2NCwKICAgICAgICB9LAogICAgICB9OwogICAgICBwZXJjZW50LnRleHRDb250ZW50ID0KICAgICAgICAgIGAke01hdGgucm91bmQoKHBvc2l0aW9uIC8gZmlsZURhdGEuYnl0ZUxlbmd0aCkgKiAxMDApfSUgZG9uZWA7CiAgICB9CiAgfQoKICAvLyBBbGwgZG9uZS4KICB5aWVsZCB7CiAgICByZXNwb25zZTogewogICAgICBhY3Rpb246ICdjb21wbGV0ZScsCiAgICB9CiAgfTsKfQoKc2NvcGUuZ29vZ2xlID0gc2NvcGUuZ29vZ2xlIHx8IHt9OwpzY29wZS5nb29nbGUuY29sYWIgPSBzY29wZS5nb29nbGUuY29sYWIgfHwge307CnNjb3BlLmdvb2dsZS5jb2xhYi5fZmlsZXMgPSB7CiAgX3VwbG9hZEZpbGVzLAogIF91cGxvYWRGaWxlc0NvbnRpbnVlLAp9Owp9KShzZWxmKTsK", + "headers": [ + [ + "content-type", + "application/javascript" + ] + ], + "ok": true, + "status": 200, + "status_text": "OK" + } + } + }, + "id": "0_7rpLFRmQNG", + "outputId": "8a6b7855-c70f-4774-e67a-121fc1dc9cf2" + }, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import io\n", + "from PIL import Image\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "-T3R7rcFmUwT" + }, + "outputs": [], + "source": [ + "def plotting():\n", + "\tglobal x,y\n", + "\ty,x,bins = plt.hist(x=filter2[filter2<10000], bins=10)\n", + "\tplt.xlabel('Tiempo (ns)')\n", + "\tplt.ylabel('Frecuencia')\n", + "\tplt.title('Histograma'+i)\n", + "\tplt.savefig(i+'.png')\n", + "\tplt.close()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "id": "u9NfTSMEmW2R" + }, + "outputs": [], + "source": [ + "def globalPlot():\n", + " global x,y,plt\n", + " y,x,bins = plt.hist(x=filter2[filter2<10000], bins=10, alpha = 0.5)\n", + " print('Mean: ', x.mean())\n", + " plt.axvline(x.mean(), color='k', linestyle='dashed', linewidth=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 844 + }, + "id": "xnpXnIL4a-gu", + "outputId": "997a729e-6592-48e4-f969-5218badf538c" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "18-11-12-14-25\n", + "Mode decaimiento time\n", + "0 40003.0 1542119687\n", + "1 NaN 1542119703\n", + "2 NaN 1542119924\n", + "3 NaN 1542120430\n", + "4 NaN 1542120491\n", + "5 NaN 1542121481\n", + "6 NaN 1542122777\n", + "\n", + "Median decaimiento 4.000300e+04\n", + "time 1.542090e+09\n", + "dtype: float64\n", + "\n", + "Mean decaimiento 3.953147e+04\n", + "time 1.542090e+09\n", + "dtype: float64\n", + "\n", + "Mean: 5010.0\n", + "18-11-13-13-20\n", + "Mode decaimiento time\n", + "0 40003 1542382904\n", + "\n", + "Median decaimiento 4.000300e+04\n", + "time 1.542257e+09\n", + "dtype: float64\n", + "\n", + "Mean decaimiento 3.973597e+04\n", + "time 1.542257e+09\n", + "dtype: float64\n", + "\n", + "Mean: 4970.0\n", + "18-11-16-11-23\n", + "Mode decaimiento time\n", + "0 40002 1542384180\n", + "\n", + "Median decaimiento 4.000300e+04\n", + "time 1.542420e+09\n", + "dtype: float64\n", + "\n", + "Mean decaimiento 3.973363e+04\n", + "time 1.542420e+09\n", + "dtype: float64\n", + "\n", + "Mean: 4930.0\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEWCAYAAABIVsEJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAWs0lEQVR4nO3de5RlZX3m8e9DNyhyERTiQu4qigRRtIIYHTVREV1KO5qJoIzgGFnRQGZpMjMaZ5RAzIqXGHXQCCbteMkIiGsxbdQwTJTlJIGEYkBuirRcpAFDIzbQNoLQv/lj77IP1Zc69XafOlXV389aZ9XZ1/M7e3XXU/t99353qgpJkmZrh3EXIElamAwQSVITA0SS1MQAkSQ1MUAkSU0MEElSEwNE250k1yV56bjrkBY6A0SLTpJbkrx82ryTk/wDQFX9alVdMsM+DkpSSZaOsFRpQTNApDEwmLQYGCDa7gyeoSQ5KslkkvuS/GuSj/Wrfaf/uSbJ2iQvSLJDkv+a5NYkdyX5QpLHD+z3Lf2ynyT5b9M+5/QkFyT5UpL7gJP7z740yZokdyY5K8lOA/urJO9McmOS+5OcmeSpSf6pr/f8qfWT7Jnkb5OsTvLT/v1+A/s6OclN/X5uTvLmER9mbQcMEG3vPgF8oqp2B54KnN/Pf3H/c4+q2rWqLgVO7l+/ATwF2BU4CyDJYcCngTcD+wCPB/ad9lnLgAuAPYC/AR4B3gXsBbwAeBnwzmnbvBJ4HnA08J+Bc4ATgf2Bw4ET+vV2AD4HHAgcADwwUNsuwCeBV1XVbsCvA1cNfYSkzTBAtFhd2P9lvybJGrpf7pvyC+BpSfaqqrVVddkW9vlm4GNVdVNVrQXeCxzfN0f9FvC1qvqHqnoIeD8wfaC5S6vqwqpaX1UPVNUVVXVZVT1cVbcAZwMvmbbNh6vqvqq6DrgW+N/9598LfBM4EqCqflJVX62qdVV1P/DBaftaDxyeZOequrPfn7RVDBAtVq+rqj2mXmz8l/2UtwFPB76f5PIkr9nCPp8M3DowfSuwFHhSv+y2qQVVtQ74ybTtbxucSPL0vqnpx32z1p/SnY0M+teB9w9sYnrXfl+PS3J234R2H10T3B5JllTVz4A3Ar8L3Jnk60kO3cL3lIZigGi7VlU3VtUJwK8AHwIu6Jt8NjVM9R10TURTDgAepvulficw2OewM/DE6R83bfovge8Dh/RNaH8EpPGr/AHwDOD5/b6mmuACUFUXVdUr6JrXvg98tvFzpF8yQLRdS3Jikr2raj2wpp+9Hljd/3zKwOpfBt6V5OAku9KdMZxXVQ/T9W28Nsmv9x3bpzNzGOwG3Aes7c8I3rEVX2U3ujOSNUmeAHxg4Ds+KcmyPhgfBNb2303aKgaItnfHAtclWUvXoX583z+xjq4f4R/7fpSjgeXAF+mah24Gfg6cBtD3KZwGnEt3NrIWuIvuF/bm/CHwJuB+ujOC87bie3wc2Bm4G7gM+LuBZTsA76Y7g7qHrm9ka8JKAiA+UEra9vozlDV0zVM3j7kcaSQ8A5G2kSSv7TuzdwE+ClwD3DLeqqTRGVmAJFne32x17WaWJ8knk6xMcnWS5w4sO6m/eerGJCeNqkZpG1tG10x0B3AIXXOYp/hatEbWhJXkxXTtwF+oqsM3sfzVdG3GrwaeT3cz1/P7DsBJYILuqpUrgOdV1U9HUqgkqcnIzkCq6jt0HXabs4wuXKq/eWuPJPvQ3Xl7cVXd04fGxXQdnZKkeWScA7rty6NvrFrVz9vc/I0kOQU4BWCXXXZ53qGHem+UJM3GFVdccXdV7d2y7YIeEbSqzqEbG4iJiYmanJwcc0WStLAkuXXmtTZtnFdh3U43INyU/fp5m5svSZpHxhkgK4C39FdjHQ3cW1V3AhcBx/TDU+8JHNPPkyTNIyNrwkryZeClwF5JVtENrbAjQFV9BvgG3RVYK4F1wFv7ZfckORO4vN/VGVW1pc54SdIYjCxA+gHqtrS8gN/bzLLldMNGSJLmKe9ElyQ1MUAkSU0MEElSEwNEktTEAJEkNTFAJElNDBBJUhMDRJLUxACRJDUxQCRJTQwQSVITA0SS1MQAkSQ1MUAkSU0MEElSEwNEktTEAJEkNTFAJElNDBBJUhMDRJLUxACRJDUxQCRJTQwQSVITA0SS1MQAkSQ1MUAkSU0MEElSEwNEktTEAJEkNTFAJElNDBBJUhMDRJLUxACRJDUxQCRJTQwQSVITA0SS1MQAkSQ1MUAkSU0MEElSEwNEktTEAJEkNTFAJElNDBBJUhMDRJLUxACRJDUxQCRJTUYaIEmOTXJDkpVJ3rOJ5X+R5Kr+9YMkawaWPTKwbMUo65Qkzd7SUe04yRLgU8ArgFXA5UlWVNX1U+tU1bsG1j8NOHJgFw9U1XNGVZ8kaeuM8gzkKGBlVd1UVQ8B5wLLtrD+CcCXR1iPJGkbGmWA7AvcNjC9qp+3kSQHAgcD3xqY/dgkk0kuS/K6zWx3Sr/O5OrVq7dR2ZKkYcyXTvTjgQuq6pGBeQdW1QTwJuDjSZ46faOqOqeqJqpqYu+9956rWiVJjDZAbgf2H5jer5+3Kcczrfmqqm7vf94EXMKj+0ckSWM2ygC5HDgkycFJdqILiY2upkpyKLAncOnAvD2TPKZ/vxfwQuD66dtKksZnZFdhVdXDSU4FLgKWAMur6rokZwCTVTUVJscD51ZVDWz+TODsJOvpQu7PBq/ekiSNXx79e3vhmpiYqMnJyXGXIUkLSpIr+v7mWZsvneiSpAXGAJEkNTFAJElNDBBJUhMDRJLUxACRJDUxQCRJTQwQSVITA0SS1MQAkSQ1MUAkSU0MEElSEwNEktTEAJEkNTFAJElNDBBJUhMDRJLUxACRJDUxQCRJTQwQSVITA0SS1MQAkSQ1MUAkSU0MEElSEwNEktRkqABJcnSSy5OsTfJQkkeS3Dfq4iRJ89ewZyBnAScANwI7A78DfGpURUmS5r+hm7CqaiWwpKoeqarPAceOrixJ0ny3dMj11iXZCbgqyYeBO7H/RJK2a8OGwL8HlgCnAj8D9gfeMKqiJEnz31BnIFV1a//2AeCPR1eOJGmh2GKAJDm/qn47yTVATV9eVUeMrDJJ0rw20xnIf+x/vmbUhUiSFpYtBkhV3dm/3QG4s6p+DpBkZ+BJI65NkjSPDduJ/hVg/cD0I/08SdJ2atgAWVpVD01N9O93Gk1JkqSFYNgAWZ3kuKmJJMuAu0dTkiRpIRj2RsLfBf4myVlAgNuAt4ysKknSvDfsfSA/BI5Osms/vXakVUmS5r2hAiTJY+juPD8IWJoEgKo6Y2SVSZLmtWGbsP4XcC9wBfDg6MqRJC0UwwbIflXl6LuSpF8a9iqsf0ryrJFWIklaUIY9A3kRcHKSm+masAKUY2FJ0vZr2AB51UirkCQtOEM1YfXDue8P/Gb/ft0w2yY5NskNSVYmec8mlp+cZHWSq/rX7wwsOynJjf3rpOG/kiRpLgx7Ge8HgAngGcDngB2BLwEv3MI2S+iem/4KYBVweZIVVXX9tFXPq6pTp237BGDqMwu4ot/2p0N9K0nSyA3bif5vgePonkZIVd0B7DbDNkcBK6vqpn7srHOBZUN+3iuBi6vqnj40LsZnsEvSvDJsgDxUVUX/UKkkuwyxzb50Q55MWdXPm+4NSa5OckGS/WezbZJTkkwmmVy9evUw30OStI0MGyDnJzkb2CPJ24H/A3x2G3z+14CD+qu5LgY+P5uNq+qcqpqoqom99957G5QjSRrWsJ3oHwUuAL5K1w/y/qr67zNsdjtdx/uU/fp5g/v9SVVN3dn+V8Dzht1WkjRew17GS1VdTHeWMKzLgUOSHEz3y/944E2DKyTZZ+Cph8cB3+vfXwT8aZI9++ljgPfO4rMlSSM27FVY99P3f9A9SGpH4GdVtfvmtqmqh5OcShcGS4DlVXVdkjOAyapaAfx+/5yRh4F7gJP7be9JciZdCAGcUVX3zPrbSZJGJl3f+Cw26IbiXQYcXVUb3dsxLhMTEzU5OTnuMiRpQUlyRVVNtGw7bCf6L1XnQrpLbSVJ26lhm7BePzC5A90Nfj8fSUWSpAVh2E701w68fxi4heFvCpQkLULDPtL2raMuRJK0sAzVB5Lk80n2GJjeM8nykVUlSZr3hu1EP6Kq1kxN9ONTHTmSiiRJC8KwAbLDwE19U6PlDn0ToiRp8Rk2BP4cuDTJV/rpfwd8cDQlSZIWgmE70b+QZBL4zX7W6zfxXA9J0nZkNjcSPoFu+JKzgNX9GFeSpO3UsFdhfQD4L2wY0HDqiYSSpO3UKJ9IKElaxEb5REJJ0iI27icSSpIWqBmvwuqHbz8POBS4jw1PJJzNw6UkSYvMjAFSVZXkG1X1LGb3REJJ0iI2bBPW/0vyayOtRJK0oAx7J/rzgROT3EJ3JVboTk6OGFVhkqT5bYsBkuSAqvoRPn1QkjTNTGcgFwLPrapbk3y1qt4wBzVJkhaAmfpAMvD+KaMsRJK0sMwUILWZ95Kk7dxMTVjPTnIf3ZnIzv172NCJvvtIq5MkzVtbDJCqWjJXhUiSFpbZDOcuSdIvGSCSpCYGiCSpiQEiSWpigEiSmhggkqQmBogkqYkBIklqYoBIkpoYIJKkJgaIJKmJASJJamKASJKaGCCSpCYGiCSpiQEiSWpigEiSmhggkqQmBogkqYkBIklqYoBIkpqMNECSHJvkhiQrk7xnE8vfneT6JFcn+fskBw4seyTJVf1rxSjrlCTN3tJR7TjJEuBTwCuAVcDlSVZU1fUDq10JTFTVuiTvAD4MvLFf9kBVPWdU9UmSts4oz0COAlZW1U1V9RBwLrBscIWq+nZVresnLwP2G2E9kqRtaJQBsi9w28D0qn7e5rwN+ObA9GOTTCa5LMnrNrVBklP6dSZXr1691QVLkoY3sias2UhyIjABvGRg9oFVdXuSpwDfSnJNVf1wcLuqOgc4B2BiYqLmrGBJ0kjPQG4H9h+Y3q+f9yhJXg68Dziuqh6cml9Vt/c/bwIuAY4cYa2SpFkaZYBcDhyS5OAkOwHHA4+6mirJkcDZdOFx18D8PZM8pn+/F/BCYLDzXZI0ZiNrwqqqh5OcClwELAGWV9V1Sc4AJqtqBfARYFfgK0kAflRVxwHPBM5Osp4u5P5s2tVbkqQxS9Xi6DqYmJioycnJcZchSQtKkiuqaqJlW+9ElyQ1MUAkSU0MEElSEwNEktTEAJEkNTFAJElNDBBJUhMDRJLUxACRJDUxQCRJTQwQSVITA0SS1MQAkSQ1MUAkSU0MEElSEwNEktTEAJEkNTFAJElNDBBJUhMDRJLUxACRJDUxQCRJTQwQSVITA0SS1MQAkSQ1MUAkSU0MEElSEwNEktTEAJEkNTFAJElNDBBJUhMDRJLUxACRJDUxQCRJTQwQSVITA0SS1MQAkSQ1MUAkSU0MEElSEwNEktTEAJEkNTFAJElNDBBJUhMDRJLUxACRJDUxQCRJTUYaIEmOTXJDkpVJ3rOJ5Y9Jcl6//J+THDSw7L39/BuSvHKUdUqSZm9kAZJkCfAp4FXAYcAJSQ6bttrbgJ9W1dOAvwA+1G97GHA88KvAscCn+/1JkuaJUZ6BHAWsrKqbquoh4Fxg2bR1lgGf799fALwsSfr551bVg1V1M7Cy358kaZ5YOsJ97wvcNjC9Cnj+5tapqoeT3As8sZ9/2bRt953+AUlOAU7pJx9Mcu22KX3B2wu4e9xFzBMeiw08Fht4LDZ4RuuGowyQkauqc4BzAJJMVtXEmEuaFzwWG3gsNvBYbOCx2CDJZOu2o2zCuh3Yf2B6v37eJtdJshR4PPCTIbeVJI3RKAPkcuCQJAcn2YmuU3zFtHVWACf1738L+FZVVT//+P4qrYOBQ4B/GWGtkqRZGlkTVt+ncSpwEbAEWF5V1yU5A5isqhXAXwNfTLISuIcuZOjXOx+4HngY+L2qemSGjzxnVN9lAfJYbOCx2MBjsYHHYoPmY5HuD35JkmbHO9ElSU0MEElSkwUXIFszPMpiM8SxeHeS65NcneTvkxw4jjrnwkzHYmC9NySpJIv2Es5hjkWS3+7/bVyX5H/OdY1zZYj/Iwck+XaSK/v/J68eR52jlmR5krs2d69cOp/sj9PVSZ471I6rasG86Drjfwg8BdgJ+C5w2LR13gl8pn9/PHDeuOse47H4DeBx/ft3bM/Hol9vN+A7dDepToy77jH+uzgEuBLYs5/+lXHXPcZjcQ7wjv79YcAt4657RMfixcBzgWs3s/zVwDeBAEcD/zzMfhfaGcjWDI+y2Mx4LKrq21W1rp+8jO5+msVomH8XAGfSjbf287ksbo4NcyzeDnyqqn4KUFV3zXGNc2WYY1HA7v37xwN3zGF9c6aqvkN3pevmLAO+UJ3LgD2S7DPTfhdagGxqeJTpQ5w8angUYGp4lMVmmGMx6G10f2EsRjMei/6UfP+q+vpcFjYGw/y7eDrw9CT/mOSyJMfOWXVza5hjcTpwYpJVwDeA0+amtHlntr9PgAU+lImGk+REYAJ4ybhrGYckOwAfA04ecynzxVK6ZqyX0p2VfifJs6pqzTiLGpMTgP9RVX+e5AV096UdXlXrx13YQrDQzkC2ZniUxWao4V6SvBx4H3BcVT04R7XNtZmOxW7A4cAlSW6ha+NdsUg70of5d7EKWFFVv6hutOsf0AXKYjPMsXgbcD5AVV0KPJZuoMXtTdPwUQstQLZmeJTFZsZjkeRI4Gy68Fis7dwww7Goqnuraq+qOqiqDqLrDzquqpoHkZvHhvk/ciHd2QdJ9qJr0rppDmucK8Mcix8BLwNI8ky6AFk9p1XODyuAt/RXYx0N3FtVd8600YJqwqqtGB5lsRnyWHwE2BX4Sn8dwY+q6rixFT0iQx6L7cKQx+Ii4Jgk1wOPAP+pqhbdWfqQx+IPgM8meRddh/rJi/EPziRfpvujYa++v+cDwI4AVfUZuv6fV9M9e2kd8Nah9rsIj5UkaQ4stCYsSdI8YYBIkpoYIJKkJgaIJKmJASJJamKAaLuS5IlJrupfP05ye/9+bZJPj7s+6O7fSfLXjduem2Qx3hSoecjLeLXdSnI6sLaqPjruWgYl+QrwJ1X13YZtXwKcWFVv3/aVSY/mGYgEJHlpkr/t3+/SPz/hX/rnRCzr55+c5MIkFye5Jcmp/TNXruwHJXxCv94lST7Rn9lcm+Sofv4T+u2v7tc/YhN17AYcMRUeSU7va7kkyU1Jfn+gxq8n+W7/GW/sd/F/gZf3w/hII2WASBt7H90QOEfRPVPlI0l26ZcdDrwe+DXgg8C6qjoSuBR4y8A+HldVz6F7Ps3yft4fA1dW1RHAHwFf2MRnTwDTH/pzKPBKuuHJP5BkR+BY4I6qenZVHQ78HUA/COBK4NmN310amgEibewY4D1JrgIuoRsf6YB+2ber6v6qWk33qICv9fOvAQ4a2MeX4ZfPYdg9yR7Ai4Av9vO/BTwxye482j5sPBbT16vqwaq6G7gLeFL/ea9I8qEk/6aq7h1Y/y7gyQ3fW5oVA0TaWIA3VNVz+tcBVfW9ftngiMbrB6bX8+ix5aZ3Lg7b2fgAXWANGvzMR4ClVfUDuifMXQP8SZL3D6zz2H4/0kgZINLGLgJOm3qSZT+q8Wy9sd/2RXQjm95L1z/x5n7+S4G7q+q+adt9D3jaTDtP8mS65rMv0Q2aOfgM66ezcTOYtM3Z0SZt7Ezg48DV/cOobgZeM8t9/DzJlXQjnv6Hft7pwPIkV9ONeHrS9I2q6vtJHp9kt6q6fwv7fxZd38x64Bd0z7wnyZOAB6rqx7OsV5o1L+OVtrEklwB/2Pq8kX5o8fur6q8at72vqpruI5FmwyYsaf75Sx7d7zEba4DPb7tSpM3zDESS1MQzEElSEwNEktTEAJEkNTFAJElNDBBJUpP/D47vF3EuhOMhAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJsAAANYCAYAAABjLOyJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABTH0lEQVR4nO39fbhdeV0f/L8/MCCPah1nJMkoMILclWol2YOMtkzD4M+HJhEKtIpP2JpMGcAnEEipTrBiBoq1Vh5MRtBapbdCCyTh0hvBiFBG7jkn3FVR7ADyYBJwBEEG0EHm+/tj76Mnx5OTszLrrH1W8npd17rW+ez1/e79SWavnDPv891rVWstAAAAANCHu827AQAAAAAuHMImAAAAAHojbAIAAACgN8ImAAAAAHojbAIAAACgN5fMu4GN9sVf/MXtQQ960LzbAAAAALhgLC4u/nlr7bLVjl3wYdODHvSgLCwszLsNAICcOnUqW7duXXcNALBZVdUHznbMx+gAAAaybdu2TjUAwBgJmwAAAADojbAJAAAAgN4ImwAABrJ3795ONQDAGFVrbd49bKjJZNJcIBwAAACgP1W12FqbrHbMyiYAgIHs2LGjUw0AMEZWNgEADKSqsvxnr3PVAACblZVNAAAAAAxC2AQAMJAtW7Z0qgEAxkjYBAAwkFOnTnWqAQDGSNgEADCQAwcOdKoBAMbIBcIBAAbiAuEAwIXCBcIBAAAAGISwCQAAAIDeCJsAAAay8qP956oBAMZI2AQAAABAb1wgHABgIC4QDgBcKFwgHAAAAIBBCJsAAAAA6I2wCQBgIDfccEOnGgBgjFyzCQAAAIBOXLMJAGAT2Lp1a6caAGCMhE0AAAM5ffp0pxoAYIyETQAAAAD0RtgEADCQ7du3d6oBAMbIBcIBAAAA6MQFwgEANoF9+/Z1qgEAxsjKJgCAgVRVlv/sda4aAGCzsrIJAAAAgEEImwAAAADojbAJAGAgJ0+e7FQDAIyRsAkAYCCLi4udagCAMXKBcACAgbhAOABwoXCBcAAAAAAGIWwCAAAAoDfCJgCAgRw6dKhTDQAwRq7ZBAAAAEAna12z6ZJ1PsE/S3J8na/3wNbaB1fMf3KSpyb56iR3T/LuJL+Q5OWttTvXeN1vSvLDSSZJ7pXkfUn+e5IXt9b+ep39XDiOH5x3B6y0c/+8OwBgRFwgHAC4GKwrbEry4ST/dY3jj0zyD5O8N8mHlh+oqpcmuT7JXyV5c5LPJrk2yUuSXFtVT1wtcKqqZyd5YZLPJfntJH+R5JokP5FkV1Vd21r79Dr7BwAAAGAA6wqbWmvvTvKUsx2vqj+cffnKtuzXcVX1hEyDpg8neXRr7dbZ41+S6Uqpxyd5RpKfWfF8kyQ3Jvl0kse01t4xe/x+Sd6Q5NFJXpDkh9bTPwAAAADDuMsXCK+qqzNd1fS5JL+44vDSZ4yesxQ0JUlr7SOZfqwuSZ5bVSv7eG6SSvLCpaBpNu/2JN+b5M4k11fVF97V/gEAhrJr165ONQDAGPVxN7p/Pdv/Rmvt1NKDVXVFkh1J7kjy6pWTWmtvSXIyyQOSPGrZvHsm+eZZ+SurzHtfkpuT3DPJt/TQPwDAII4ePdqpBgAYo7sUNlXVfZL8q1n5ihWHHzHbv6u19pmzPMUtK8YmycOS3CfJx1pr7+0wDwBgU9u9e3enGgBgjO7qyqYnJbl/kj9LcmzFsQfP9h9YY/7SXesevOyxB684tt55AACb2rFjxzrVAABjdFfDpqWP0P1Sa+2zK47db7b/1Brzb5/t79/DvL9VVfuqaqGqFm677bY1ngYAAACAPp132FRVD8n0rnBJ8sp+2ulHa+1wa23SWptcdtll824HAAAA4KJxV1Y2La1qurm19kerHF9afXTfNZ5jaRXTJ3uYBwCwqbXWOtUAAGN0XmFTVd09yXfPypUXBl/y/tn+gWs81ZeuGLv86y/rOA8AYFM7fPhwpxoAYIzOd2XTNybZlukqpF89y5h3zvYPr6p7n2XMVSvGJsm7k3wmyRdV1ZefZd4jV5kHALCpXXfddZ1qAIAxOt+w6d/M9r/WWrt9tQGttQ8lOZHknpnete4MVXVNkiuSfDjJzcvm3ZHk12fld6wy78okVye5I8kbzrN/AAAAADZA57Cpqr44ye5ZebaP0C05ONu/cHZB8aXnuDzJy2blja21O1fMuzFJS/Kcqnrksnn3y/Ri5HdL8rLW2se79g8AAADAxjmflU3fleQeSd7dWnv7WgNba69J8vIkD0jy+1V1tKr+Z5Jbk3xlktcleckq825J8twk90ny9qp6Y1X9WpL3JrkmyTuSPO88egcAmJsjR450qgEAxuiS85jzvbP9K9czuLV2fVW9LcnTMg2K7p7pdZlemeTlq6xqWpr3oqr6vSTPzPTaTvdK8r4k/yXJi1trf30evQMAzM2OHTs61QAAY9Q5bGqtffV5zHlVkledx7zfSPIbXecBAGxG27ZtS2tt3TUAwBid7wXCAQAAAODvETYBAAAA0BthEwDAQPbu3dupBgAYo7rQrwswmUzawsLCvNvox/GD8+6AlXbun3cHAAAAMLiqWmytTVY7ZmUTAMBA3I0OALgYCJsAAAZy4sSJTjUAwBgJmwAAAADojbAJAGAgW7Zs6VQDAIyRsAkAYCCnTp3qVAMAjJGwCQBgIAcOHOhUAwCMUbXW5t3DhppMJm1hYWHebfTj+MF5d8BKO/fPuwMARqSqsvxnr3PVAACbVVUtttYmqx2zsgkAAACA3gibAAAAAOiNsAkAYCArP9p/rhoAYIyETQAAAAD0RtgEADCQyWTSqQYAGCNhEwAAAAC9ETYBAAAA0BthEwDAQG644YZONQDAGFVrbd49bKjJZNIumDu7HD847w5Yaef+eXcAAAAAg6uqxdbaqhectLIJAGAgW7du7VQDAIyRsAkAYCCnT5/uVAMAjJGwCQAAAIDeCJsAAAayffv2TjUAwBgJmwAABrK4uNipBgAYI2ETAMBA9u3b16kGABijaq3Nu4cNNZlM2sLCwrzb6Mfxg/PugJV27p93BwCMSFVl+c9e56oBADarqlpsrU1WO2ZlEwAAAAC9ETYBAAAA0BthEwDAQE6ePNmpBgAYI2ETAMBA3I0OALgYCJsAAAayZ8+eTjUAwBgJmwAAAADojbAJAAAAgN4ImwAABnLo0KFONQDAGFVrbd49bKjJZNIWFhbm3UY/jh+cdwestHP/vDsAAACAwVXVYmttstoxK5sAAAZSVZ1qAIAxEjYBAAAA0BthEwAAAAC9ETYBAAxk165dnWoAgDESNgEADOTo0aOdagCAMRI2AQAMZPfu3Z1qAIAxEjYBAAzk2LFjnWoAgDESNgEAAADQG2ETAAAAAL0RNgEADKS11qkGABgjYRMAwEAOHz7cqQYAGKO60H+DNplM2sLCwrzb6Mfxg/PugJV27p93BwCMSFWdsXrpXDUAwGZVVYuttclqx6xsAgAAAKA3wiYAAAAAeiNsAgAYyJEjRzrVAABjJGwCABjIjh07OtUAAGMkbAIAGMi2bds61QAAYyRsAgAAAKA3wiYAAAAAeiNsAgAYyN69ezvVAABjVK21efewoSaTSVtYWJh3G/04fnDeHbDSzv3z7gAAAAAGV1WLrbXJasesbAIAGIi70QEAFwNhEwDAQE6cONGpBgAYI2ETAAAAAL0RNgEADGTLli2dagCAMRI2AQAM5NSpU51qAIAxEjYBAAzkwIEDnWoAgDGq1tq8e9hQk8mkLSwszLuNfhw/OO8OWGnn/nl3AMCIVFWW/+x1rhoAYLOqqsXW2mS1Y1Y2AQAAANAbYRMAAAAAvRE2AQAMZOVH+89VAwCMkbAJAAAAgN4ImwAABjKZTDrVAABjJGwCAAAAoDfCJgAAAAB6I2wCABjIDTfc0KkGABijaq3Nu4cNNZlM2gVzZ5fjB+fdASvt3D/vDgAAAGBwVbXYWlv1gpNWNgEADGTr1q2dagCAMRI2AQAM5PTp051qAIAxEjYBAAAA0BthEwDAQLZv396pBgAYI2ETAMBAFhcXO9UAAGMkbAIAGMi+ffs61QAAY1SttXn3sKEmk0lbWFiYdxv9OH5w3h2w0s798+4AgBGpqiz/2etcNQDAZlVVi621yWrHrGwCAAAAoDfCJgAAAAB6I2wCABjIyZMnO9UAAGMkbAIAGIi70QEAFwNhEwDAQPbs2dOpBgAYI2ETAAAAAL0RNgEAAADQG2ETAMBADh061KkGABijaq3Nu4cNNZlM2sLCwrzb6Mfxg/PugJV27p93BwAAADC4qlpsrU1WO2ZlEwDAQKqqUw0AMEbCJgAAAAB6I2wCAAAAoDfCJgCAgezatatTDQAwRp3Dpqq6d1U9u6puqaqPV9Wnq+pPqurVVfX1q4y/W1U9raoWqur2qvpEVb21qr59Ha/15NnYT8zmLsyeS0gGAIzO0aNHO9UAAGPUKbSpqgcn+b0kL0yyLcnxJG9IcluSxyXZuWL83ZO8NslLkjw0yRuTvC3JVUleVVU/s8ZrvTTJrySZJHlrkt9M8hWz53qNwAkAGJvdu3d3qgEAxuiS9Q6sqvtmGvhcmeS5SV7cWvvcsuOXJrl0xbQfTLInyR8meUxr7SOzsQ/NNED6/qr6rdba61e81hOSXJ/kw0ke3Vq7dfb4l2QacD0+yTOSnDWsAgDYbI4dO9apBgAYoy6rg/59ki9P8tLW2guXB01J0lr7aGvt/yzVs1VNz56VT10KmmZjb03ynFn5vFVea/9s/5yloGk27yNJnjorn2t1EwAAAMDmsq6wpqrumWTvrPxP63zuq5NcnuRPW2u/s8rxVyf5bJKrqmrbste6IsmOJHfMxpyhtfaWJCeTPCDJo9bZCwAAAAADWO/H6HZk+hG5k621P6mq7Zl+lO3yJB9J8sbW2ttWzHnEbH/Lak/YWvt0Vb0rydfMtpMr5r2rtfaZs/RzS6bXjHpEkrev888AADBXrbVONQDAGK33Y2hfNdufrKoXJ1nM9GN1+5L8aJK3VtVrZ9d1WvLg2f4DazzvB1eMvSvzAAA2tcOHD3eqAQDGaL1h0xfN9o9I8swk/znJQ5L8gyTfmumqpMcledmyOfeb7T+1xvPePtvfv4d5f6uq9lXVQlUt3HbbbWs8DQDAcK677rpONQDAGK03bFoad48kv9xa+6HW2ntbax9vrR3JNGhqSb6rqr58A/rspLV2uLU2aa1NLrvssnm3AwAAAHDRWG/Y9MllX9+08mBrbSHTj9ZVkmtmDy+tPrrvyvHLLK1iWv785zsPAAAAgDlbb9j0J2f5erUxD5jt3z/bP3CN5/3SFWPvyjwAgE3tyJEjnWoAgDFab9j0zmVfX3qWMV882y+tTDox21+12uCquk+Sf7TK8y99/fCquvdZXuuqFWMBADa9HTt2dKoBAMZoXWFTa+1kknfMymtXHq+qf5Bk+6xcmO1vTnJbkiuq6tGrPO2TMr0G1C2z5196rQ9lGlTdczZm5Wtdk+SKJB+evQYAwChs27atUw0AMEbrXdmUJC+Y7f9dVU2WHqyqeyV5eZIvyPS6TTcnSWvtc0leNBv28qq6fNmchya5ccXzLndwtn9hVT1k2bzL83d3vLuxtXZnh/4BAAAA2GCXrHdga+1oVf1UkmcmeXtV/W6SjyZ5ZJKtSU4m+fbWWls27aeTPDrJ7iS3VtWbM13N9Ngk90rys62116/yWq+pqpcneWqS36+qNyX5bKarqj4/yeuSvKTjnxUAAACADdZlZVNaa89K8oQkb0vyVUm+Jcmnk/ynJI9ord26YvznkjwuyTOSvCfJN2Z6t7rFJN/RWvv+NV7r+iTfkelH6q6ZzX1PkqcnecLsuQEARmPv3r2dagCAMaozFyJdeCaTSVtYWDj3wDE4fvDcYxjWzv3z7gAAAAAGV1WLrbXJasc6rWwCAOD8uRsdAHAxEDYBAAzkxIkTnWoAgDESNgEAAADQG2ETAMBAtmzZ0qkGABgjYRMAwEBOnTrVqQYAGCNhEwDAQA4cONCpBgAYo2qtzbuHDTWZTNrCwsK82+jH8YPz7oCVdu6fdwcAjEhVZfnPXueqAQA2q6pabK1NVjtmZRMAAAAAvRE2AQAAANAbYRMAwEBWfrT/XDUAwBgJmwAAAADojbAJAGAgk8mkUw0AMEbCJgAAAAB6I2wCAAAAoDfCJgCAgdxwww2dagCAMarW2rx72FCTyaRdMHd2OX5w3h2w0s798+4AAAAABldVi621VS84aWUTAMBAtm7d2qkGABgjYRMAwEBOnz7dqQYAGCNhEwAAAAC9ETYBAAxk+/btnWoAgDESNgEADGRxcbFTDQAwRsImAICB7Nu3r1MNADBG1Vqbdw8bajKZtIWFhXm30Y/jB+fdASvt3D/vDgAYkarK8p+9zlUDAGxWVbXYWpusdszKJgAAAAB6I2wCAAAAoDfCJgCAgZw8ebJTDQAwRsImAICBuBsdAHAxEDYBAAxkz549nWoAgDESNgEAAADQG2ETAAAAAL0RNgEADOTQoUOdagCAMarW2rx72FCTyaQtLCzMu41+HD847w5Yaef+eXcAAAAAg6uqxdbaZLVjVjYBAAykqjrVAABjJGwCAAAAoDfCJgAAAAB6I2wCABjIrl27OtUAAGMkbAIAGMjRo0c71QAAYyRsAgAYyO7duzvVAABjJGwCABjIsWPHOtUAAGMkbAIAAACgN8ImAAAAAHojbAIAGEhrrVMNADBGwiYAgIEcPny4Uw0AMEZ1of8GbTKZtIWFhXm30Y/jB+fdASvt3D/vDgAYkao6Y/XSuWoAgM2qqhZba5PVjlnZBAAAAEBvhE0AAAAA9EbYBAAwkCNHjnSqAQDGSNgEADCQHTt2dKoBAMZI2AQAMJBt27Z1qgEAxkjYBAAAAEBvhE0AAAAA9EbYBAAwkL1793aqAQDGqFpr8+5hQ00mk7awsDDvNvpx/OC8O2Clnfvn3QEAAAAMrqoWW2uT1Y5Z2QQAMBB3owMALgbCJgCAgZw4caJTDQAwRsImAAAAAHojbAIAGMiWLVs61QAAYyRsAgAYyKlTpzrVAABjJGwCABjIgQMHOtUAAGNUrbV597ChJpNJW1hYmHcb/Th+cN4dsNLO/fPuAIARqaos/9nrXDUAwGZVVYuttclqx6xsAgAAAKA3wiYAAAAAeiNsAgAYyMqP9p+rBgAYI2ETAAAAAL0RNgEADGQymXSqAQDGSNgEAAAAQG+ETQAAAAD0RtgEADCQG264oVMNADBG1Vqbdw8bajKZtAvmzi7HD867A1bauX/eHQAAAMDgqmqxtbbqBSetbAIAGMjWrVs71QAAYyRsAgAYyOnTpzvVAABjJGwCAAAAoDfCJgCAgWzfvr1TDQAwRsImAICBLC4udqoBAMZI2AQAMJB9+/Z1qgEAxqhaa/PuYUNNJpO2sLAw7zb6cfzgvDtgpZ37590BACNSVVn+s9e5agCAzaqqFltrk9WOWdkEAAAAQG+ETQAAAAD0RtgEADCQkydPdqoBAMZI2AQAMBB3owMALgbCJgCAgezZs6dTDQAwRsImAAAAAHojbAIAAACgN8ImAICBHDp0qFMNADBG1Vqbdw8bajKZtIWFhXm30Y/jB+fdASvt3D/vDgAAAGBwVbXYWpusdszKJgCAgVRVpxoAYIyETQAAAAD0RtgEAAAAQG+ETQAAA9m1a1enGgBgjIRNAAADOXr0aKcaAGCMhE0AAAPZvXt3pxoAYIyETQAAAzl27FinGgBgjIRNAAAAAPRm3WFTVf1iVbU1tnefZd7dquppVbVQVbdX1Seq6q1V9e3reM0nz8Z+YjZ3YfZcQjIAAACATeiS85jzv5K8Z5XHT698oKrunuR/JtmT5C+TvDHJ5yW5NsmrqupRrbUfWO1FquqlSa5P8ldJ3pzks7N5L0lybVU9sbV253n0DwAwF621TjUAwBidzwqhn2+tPWWVbf8qY38w06DpD5N8RWvtX7TW/nmSr0rykSTfX1XfunJSVT0h06Dpw0m+urW2q7X2+CQPTfJHSR6f5Bnn0TsAwNwcPny4Uw0AMEYb9nG02aqmZ8/Kp7bWPrJ0rLV2a5LnzMrnrTJ9Kbh6zmzs0ryPJHnqrHyuj9MBAGNy3XXXdaoBAMZoI8Oaq5NcnuRPW2u/s8rxV2f60birqmrb0oNVdUWSHUnumI05Q2vtLUlOJnlAkkdtQN8AAAAAnKfzuWbTzqr66iT3y/SjcG9L8purXD/pEbP9Las9SWvt01X1riRfM9tOrpj3rtbaZ87Swy1Jts3Gvv08/gwAAAAAbIDzCZu+e5XH/rCqvq219vvLHnvwbP+BNZ7rg5kGTQ9e9th65y0fCwCw6R05cqRTDQAwRl0+Rvf/Jfn+JF+Z6aqmrUl2Jfnfs8fetPzjcLMxSfKpNZ7z9tn+/j3M+1tVta+qFqpq4bbbblvjaQAAhrNjx45ONQDAGK07bGqt/efW2s+21v6otfap1trp1tobkjwyye9men2m1e5IN7jW2uHW2qS1Nrnsssvm3Q4AQJJk27ZtnWoAgDG6yxcIb63dkeTgrPyWZYeWVh/dd43pS6uYPtnDPAAAAADmrK+70b17tl/+67j3z/YPXGPel64Ye1fmAQAAADBnfYVNl872ty977MRsf9VqE6rqPkn+0ax857JDS18/vKrufZbXu2rFWACATW/v3r2dagCAMeorbPqXs/0tyx67OcltSa6oqkevMudJSe6R5JbW2smlB1trH8o0qLrnbMwZquqaJFck+fDsNQAARuHw4cOdagCAMVpX2FRVX1NVu6rq7isev6SqnpnpXeqS5KeXjrXWPpfkRbPy5VV1+bJ5D01y46x8wSovuXQNqBdW1UOWzbs8yctm5Y2ttTvX0z8AwGbgbnQAwMXgknWOe1CS1yb5WFWdSPJnmX507quSbE1yZ5Jnt9b+nxXzfjrJo5PsTnJrVb0509VMj01yryQ/21p7/coXa629pqpenuSpSX6/qt6U5LNJrk3y+Ulel+Ql6/9jAgDM34kTJzrVAABjtN6w6X8n+Zkkj0zylUn+aZKW5E+T/EKSl7bWFldOaq19rqoel+T6JN+b5BuTfC7JYpKXtdZedbYXbK1dX1VvS/K0JNckuXumFyJ/ZZKXW9UEAAAAsPmsK2xqrf1Jkh88nxeYhUIvyXmsRJqFUWcNpAAAxmTLli2dagCAMerrAuEAAJzDqVOnOtUAAGMkbAIAGMiBAwc61QAAY1SttXn3sKEmk0lbWFiYdxv9OH7w3GMY1s798+4AgBGpqiz/2etcNQDAZlVVi621yWrHrGwCAAAAoDfCJgAAAAB6I2wCABjIyo/2n6sGABgjYRMAAAAAvRE2AQAMZDKZdKoBAMZI2AQAAABAb4RNAAAAAPRG2AQAMJAbbrihUw0AMEbVWpt3DxtqMpm0C+bOLscPzrsDVtq5f94dAAAAwOCqarG1tuoFJ61sAgAYyNatWzvVAABjJGwCABjI6dOnO9UAAGMkbAIAAACgN8ImAICBbN++vVMNADBGwiYAgIEsLi52qgEAxkjYBAAwkH379nWqAQDGqFpr8+5hQ00mk7awsDDvNvpx/OC8O2Clnfvn3QEAI1JVWf6z17lqAIDNqqoWW2uT1Y5Z2QQAAABAb4RNAAAAAPRG2AQAMJCTJ092qgEAxkjYBAAwEHejAwAuBsImAICB7Nmzp1MNADBGwiYAAAAAeiNsAgAAAKA3wiYAgIEcOnSoUw0AMEbVWpt3DxtqMpm0hYWFebfRj+MH590BK+3cP+8OAAAAYHBVtdham6x2zMomAICBVFWnGgBgjIRNAAAAAPRG2AQAAABAb4RNAAAD2bVrV6caAGCMhE0AAAM5evRopxoAYIyETQAAA9m9e3enGgBgjIRNAAADOXbsWKcaAGCMhE0AAAAA9EbYBAAAAEBvhE0AAANprXWqAQDGSNgEADCQw4cPd6oBAMaoLvTfoE0mk7awsDDvNvpx/OC8O2Clnfvn3QEAI1JVZ6xeOlcNALBZVdVia22y2jErmwAAAADojbAJAAAAgN4ImwAABnLkyJFONQDAGAmbAAAGsmPHjk41AMAYCZsAAAaybdu2TjUAwBgJmwAAAADojbAJAAAAgN4ImwAABrJ3795ONQDAGFVrbd49bKjJZNIWFhbm3UY/jh+cdwestHP/vDsAAACAwVXVYmttstoxK5sAAAbibnQAwMVA2AQAMJATJ050qgEAxkjYBAAAAEBvhE0AAAPZsmVLpxoAYIyETQAAAzl16lSnGgBgjIRNAAADOXDgQKcaAGCMqrU27x421GQyaQsLC/Nuox/HD867A1bauX/eHQAwIlWV5T97nasGANisqmqxtTZZ7ZiVTQAAAAD0RtgEAAAAQG8umXcDrN/N7/vovFtghd/9m/+TH/qGr5h3GwCMxMqP9p+rBgAYIyubAAAAAOiNsAkAYCCTyaRTDQAwRsImAAAAAHojbAIAAACgN8ImAICB3HDDDZ1qAIAxqtbavHvYUJPJpF0od3a5+RXPmncLrPC7X7bP3egAAAC46FTVYmtt1QtOWtkEADCQrVu3dqoBAMZI2AQAMJDTp093qgEAxkjYBAAAAEBvhE0AAAPZvn17pxoAYIyETQAAA1lcXOxUAwCMkbAJAGAg+/bt61QDAIyRsAkAYCA33XRTpxoAYIyETQAAAAD0RtgEAAAAQG+ETQAAAzl58mSnGgBgjIRNAAADcTc6AOBiIGwCABjInj17OtUAAGMkbAIAAACgN8ImAAAAAHojbAIAGMihQ4c61QAAYyRsAgAYyL59+zrVAABjJGwCABhIVXWqAQDGSNgEAAAAQG+ETQAAAAD0RtgEADCQXbt2daoBAMZI2AQAMJCjR492qgEAxkjYBAAwkN27d3eqAQDGSNgEADCQY8eOdaoBAMZI2AQAAABAb4RNAAAAAPRG2AQAMJDWWqcaAGCMhE0AAAM5fPhwpxoAYIyETQAAA7nuuus61QAAY3TeYVNV/WRVtdn2rDXGPbmq3lpVn6iq26tqoaqeVlVrvnZVfVNVvbGqPlZVn66qP6iq51XV551vzwAAAABsrPMKm6rqqiTPTrLmhQWq6qVJfiXJJMlbk/xmkq9I8pIkrzlb4FRVz07y60kek+REkjckuTzJTyT57aq6z/n0DQAAAMDG6hw2zVYW/dckH0ny+jXGPSHJ9Uk+nOSrW2u7WmuPT/LQJH+U5PFJnrHKvEmSG5N8OsnXt9Ye21p7UpIrk/xOkkcleUHXvgEA5u3IkSOdagCAMTqflU0/nuQfJvm3ST6xxrj9s/1zWmu3Lj3YWvtIkqfOyueusrrpuUkqyQtba+9YNu/2JN+b5M4k11fVF55H7wAAc7Njx45ONQDAGHUKm6rqa5M8M8mrWmtH1xh3RZIdSe5I8uqVx1trb0lyMskDMl2ptDTvnkm+eVb+yirz3pfk5iT3TPItXXoHAJi3bdu2daoBAMZo3WFTVd0r04/PfSzJD5xj+CNm+3e11j5zljG3rBibJA9Lcp8kH2utvbfDPAAAAAA2gUs6jH1BpmHQt7XW/vwcYx88239gjTEfXDF2+dcfzNmtNg8AAACATWBdK5uq6uuS/GCS17XWfnUdU+43239qjTG3z/b372HeGapqX1UtVNXCbbfdtmajAABD2bt3b6caAGCMzhk2VdW9k/xikr/M9O5ym15r7XBrbdJam1x22WXzbgcAIEly+PDhTjUAwBitZ2XTTyZ5aJIfbq2dXufzLq0+uu8aY5ZWMX2yh3kAAJueu9EBABeD9Vyz6fFJ7kzyPVX1PSuO/V+z/VOraleS97TWvi/J+2ePP3CN5/3S2f79yx5b+vrLOs4DANj0Tpw40akGABij9V4g/G5Jrlnj+JWz7Qtn9Ttn+4dX1b3Pcke6q1aMTZJ3J/lMki+qqi8/yx3pHrnKPAAAAAA2gXN+jK619qDWWq22Jfmvs2E/Mnvsa2ZzPpTkRJJ7JnnSyuesqmuSXJHkw0luXvZadyT59Vn5HavMuzLJ1UnuSPKG9f8xAQDmb8uWLZ1qAIAxWtfd6M7Twdn+hVX1kKUHq+ryJC+blTe21u5cMe/GJC3Jc6rqkcvm3S/JKzPt+WWttY9vVOMAABvh1KlTnWoAgDHasLCptfaaJC9P8oAkv19VR6vqfya5NclXJnldkpesMu+WJM9Ncp8kb6+qN1bVryV5b6Yf5XtHkudtVN8AABvlwIEDnWoAgDHayJVNaa1dn+nH4U5kGhR9Y5L3JHl6kie01j53lnkvSvLNSY5nem2n3Un+PMm/T3JNa+3TG9k3AMBGeP7zn9+pBgAYo/VeIHxVrbWnJHnKOca8KsmrzuO5fyPJb5xXYwAAAADMxYaubAIAAADg4iJsAgAYyMLCQqcaAGCMhE0AAAAA9EbYBAAwkMlk0qkGABgjYRMAAAAAvblLd6ODi92jPng4OX7pvNtgyc798+4AAADgomdlEwDAQG644YZONQDAGFVrbd49bKjJZNIulDu73PyKZ827BVZx9ZVWNm0aVjYBAAAMoqoWW2urXnDSyiYAgIFs3bq1Uw0AMEbCJgCAgZw+fbpTDQAwRsImAAAAAHojbAIAGMj27ds71QAAYyRsAgAYyOLiYqcaAGCMhE0AAAPZt29fpxoAYIyETQAAA7nppps61QAAYyRsAgAAAKA3wiYAAAAAeiNsAgAYyMmTJzvVAABjJGwCABiIu9EBABcDYRMAwED27NnTqQYAGCNhEwAAAAC9ETYBAAAA0BthEwDAQA4dOtSpBgAYI2ETAMBA9u3b16kGABgjYRMAwECqqlMNADBGwiYAAAAAeiNsAgAAAKA3wiYAgIHs2rWrUw0AMEbCJgCAgRw9erRTDQAwRsImAICB7N69u1MNADBGwiYAgIEcO3asUw0AMEbCJgAAAAB6I2wCAAAAoDfCJgCAgbTWOtUAAGMkbAIAGMjhw4c71QAAYyRsAgAYyHXXXdepBgAYI2ETAAAAAL0RNgEAAADQG2ETAMBAjhw50qkGABgjYRMAwEB27NjRqQYAGCNhEwDAQLZt29apBgAYI2ETAAAAAL0RNgEAAADQG2ETAMBA9u7d26kGABgjYRMAwEAOHz7cqQYAGCNhEwDAQNyNDgC4GAibAAAGcuLEiU41AMAYCZsAAAAA6I2wCQBgIFu2bOlUAwCMkbAJAGAgp06d6lQDAIyRsAkAYCAHDhzoVAMAjFG11ubdw4aaTCZtYWFh3m304uZXPGveLbCKq6+8dN4tsGTn/nl3ALCmqsryn73OVQMAbFZVtdham6x2zMomAAAAAHojbAIAAACgN8ImAICBrPxo/7lqAIAxEjYBAAAA0BthEwDAQCaTSacaAGCMhE0AAAAA9EbYBAAAAEBvhE0AAAO54YYbOtUAAGNUrbV597ChJpNJu1Du7HLzK5417xZYxdVXXjrvFliyc/+8OwAAALgoVNVia23VC05a2QQAMJCtW7d2qgEAxkjYBAAwkNOnT3eqAQDGSNgEAAAAQG+ETQAAA9m+fXunGgBgjIRNAAADWVxc7FQDAIyRsAkAYCD79u3rVAMAjJGwCQBgIDfddFOnGgBgjIRNAAAAAPRG2AQAAABAb4RNAAADOXnyZKcaAGCMhE0AAANxNzoA4GIgbAIAGMiePXs61QAAYyRsAgAAAKA3wiYAAAAAeiNsAgAYyKFDhzrVAABjJGwCABjIvn37OtUAAGMkbAIAGEhVdaoBAMZI2AQAAABAb4RNAAAAAPRG2AQAMJBdu3Z1qgEAxkjYBAAwkKNHj3aqAQDGSNgEADCQ3bt3d6oBAMZI2AQAMJBjx451qgEAxkjYBAAAAEBvhE0AAAAA9EbYBAAwkNZapxoAYIyETQAAAzl8+HCnGgBgjIRNAAADue666zrVAABjJGwCAAAAoDfCJgAAAAB6I2wCABjIkSNHOtUAAGMkbAIAGMiOHTs61QAAY7TusKmqnlFVv1ZVf1RVH62qz1bVbVX1pqr6zqqqs8y7W1U9raoWqur2qvpEVb21qr59Ha/55NnYT8zmLsyeS0gGAIzOtm3bOtUAAGN0SYexz0lyeZI/SPL2JJ9K8sAkj0lybZInVtW/aK3duTShqu6e5H8m2ZPkL5O8Mcnnzca/qqoe1Vr7gdVerKpemuT6JH+V5M1JPjub95Ik11bVE5e/FgAAAADz1yVs+rYk72ytfWr5g1X18EzDoG9N8j1JfmHZ4R/MNGj6wySPaa19ZDbnoUnemuT7q+q3WmuvX/GcT8g0aPpwkke31m6dPf4lSY4neXySZyT5mQ79AwAAALDB1v1xtNba21YGTbPH35XkpbPyG5Yen61qevasfOpS0DSbc2umK6WS5HmrvNz+2f45S0HTbN5Hkjx1Vj7Xx+kAgDHZu3dvpxoAYIz6Cmv+Zrb/62WPXZ3px+7+tLX2O6vMeXWmH427qqr+9gIFVXVFkh1J7piNOUNr7S1JTiZ5QJJH9dI9AMAADh8+3KkGABijuxw2VdWDk/zbWbn8fr2PmO1vWW1ea+3TSd41K79mlXnvaq195iwve8uKsQAAm5670QEAF4Mu12xKklTV9ya5Jsk9klyR5OsyDa1+srX22mVDHzzbf2CNp/tgpkHTg5c9tt55y8cCAGx6J06c6FQDAIxR57ApyddneiHwJX+T5EeT/KcV4+432/+96zwtc/tsf/8e5v2tqtqXZF+SfNmXfdkaTwMAAABAnzp/jK619n2ttUpynyQPT/KfkxxI8rtVtbXX7s5Ta+1wa23SWptcdtll824HACBJsmXLlk41AMAYnfc1m1prn2mt/WFr7UcyvXvcP07ykmVDllYf3XeNp1laxfTJHuYBAGxqp06d6lQDAIxRX3ej+8XZfndV3WP29ftn+weuMe9LV4y9K/MAADa1AwcOdKoBAMaor7DpLzK9dtMlSb5o9tjSFS6vWm1CVd0nyT+ale9cdmjp64dX1b3P8npXrRgLALDpPf/5z+9UAwCMUV9h06MzDZo+nuTPZ4/dnOS2JFdU1aNXmfOkTO9od0tr7eTSg621D2UaVN1zNuYMVXVNpnfB+/DsNQAAAADYJNYVNlXVP6mqXVX19+5eV1Vfn+QVs/IVrbXPJcls/6LZ4y+vqsuXzXlokhtn5QtWecmDs/0Lq+ohy+ZdnuRls/LG1tqd6+kfAAAAgGH8vfDoLB6S5BeSfLyqTmS6quj+Sb48yVfOxrwhyY+umPfTma562p3k1qp6c6armR6b5F5Jfra19vqVL9Zae01VvTzJU5P8flW9Kclnk1yb5POTvC5nXowcAGDTW1hY6FQDAIzResOmtyT5D0n+aZKHJvm6JJVp6PQ/kvxya+11Kye11j5XVY9Lcn2S703yjUk+l2Qxyctaa6862wu21q6vqrcleVqSa5LcPcm7k7wyycutagIAAADYfKq1Nu8eNtRkMmkXym8Jb37Fs+bdAqu4+spL590CS3bun3cHAGuqqiz/2etcNQDAZlVVi621yWrH+rpAOAAAAAAImwAAAADoj7AJAGAgN9xwQ6caAGCMXLNpRFyzaXNyzaZNxDWbAAAABuGaTQAAm8DWrVs71QAAYyRsAgAYyOnTpzvVAABjJGwCAAAAoDfCJgCAgWzfvr1TDQAwRsImAICBLC4udqoBAMZI2AQAMJB9+/Z1qgEAxkjYBAAwkJtuuqlTDQAwRsImAAAAAHojbAIAAACgN8ImAICBnDx5slMNADBGwiYAgIG4Gx0AcDEQNgEADGTPnj2dagCAMRI2AQAAANAbYRMAAAAAvRE2AQAM5NChQ51qAIAxEjYBAAxk3759nWoAgDESNgEADKSqOtUAAGMkbAIAAACgN8ImAAAAAHojbAIAGMiuXbs61QAAYyRsAgAYyNGjRzvVAABjJGwCABjI7t27O9UAAGMkbAIAGMixY8c61QAAYyRsAgAAAKA3wiYAAAAAeiNsAgAYSGutUw0AMEbCJgCAgRw+fLhTDQAwRsImAICBXHfddZ1qAIAxEjYBAAAA0BthEwAAAAC9ETYBAAzkyJEjnWoAgDESNgEADGTHjh2dagCAMRI2AQAMZNu2bZ1qAIAxEjYBAAAA0BthEwAAAAC9ETYBAAxk7969nWoAgDESNgEADOTw4cOdagCAMRI2AQAMxN3oAICLgbAJAGAgJ06c6FQDAIyRsAkAAACA3gibAAAGsmXLlk41AMAYCZsAAAZy6tSpTjUAwBgJmwAABnLgwIFONQDAGFVrbd49bKjJZNIWFhbm3UYvbn7Fs+bdAqu4+spL590CS3bun3cHAGuqqiz/2etcNQDAZlVVi621yWrHrGwCAAAAoDfCJgAAAAB6I2wCABjIyo/2n6sGABgjYRMAAAAAvRE2AQAMZDKZdKoBAMZI2AQAAABAb4RNAAAAAPRG2AQAMJAbbrihUw0AMEbVWpt3DxtqMpm0C+XOLje/4lnzboFVXH3lpfNuATavnfvn3QEAALABqmqxtbbqBSetbAIAGMjWrVs71QAAYyRsAgAYyOnTpzvVAABjJGwCAAAAoDfCJgCAgWzfvr1TDQAwRsImAICBLC4udqoBAMZI2AQAMJB9+/Z1qgEAxkjYBAAwkJtuuqlTDQAwRsImAAAAAHojbAIAAACgN8ImAICBnDx5slMNADBGl8y7AdbvyN3eM+8WWGbPnQ+ZdwsAjMzi4mK2bt267hoAYIysbAIAGMiePXs61QAAYyRsAgAAAKA3wiYAAAAAeiNsAgAYyKFDhzrVAABjJGwCABjIvn37OtUAAGMkbAIAGEhVdaoBAMZI2AQAAABAb4RNAAAAAPRG2AQAMJBdu3Z1qgEAxkjYBAAwkKNHj3aqAQDGSNgEADCQ3bt3d6oBAMZI2AQAMJBjx451qgEAxkjYBAAAAEBvhE0AAAAA9EbYBAAwkNZapxoAYIyETQAAAzl8+HCnGgBgjIRNAAADue666zrVAABjJGwCAAAAoDfCJgAAAAB6I2wCABjIkSNHOtUAAGMkbAIAGMiOHTs61QAAYyRsAgAYyLZt2zrVAABjJGwCAAAAoDfCJgAAAAB6I2wCABjI3r17O9UAAGO0rrCpqu5RVddW1U9V1UJV/WVV3VFVJ6vqNVX1z84x/8lV9daq+kRV3T57jqdV1ZqvX1XfVFVvrKqPVdWnq+oPqup5VfV56/8jAgBsDocPH+5UAwCM0XpXNl2T5E1JfjjJtiS/k+S1ST6W5AlJjlfVj682sapemuRXkkySvDXJbyb5iiQvSfKaswVOVfXsJL+e5DFJTiR5Q5LLk/xEkt+uqvuss3cAgE3B3egAgIvBesOmO5P8jySPbq1taa3taq39q9baVyX5tiSfS/KjVbVz+aSqekKS65N8OMlXz+Y9PslDk/xRkscnecbKF6uqSZIbk3w6yde31h7bWntSkiszDboeleQF3f+4AADzc+LEiU41AMAYrStsaq39Vmvtia21t65y7FeT/OKs/M4Vh/fP9s9prd26bM5Hkjx1Vj53ldVNz01SSV7YWnvHsnm3J/neTMOv66vqC9fTPwAAAADD6OsC4e+c7a9YeqCqrkiyI8kdSV69ckJr7S1JTiZ5QKYrlZbm3TPJN8/KX1ll3vuS3Jzknkm+pZ/2AQA23pYtWzrVAABj1FfY9NDZ/vSyxx4x27+rtfaZs8y7ZcXYJHlYkvsk+Vhr7b0d5gEAbGqnTp3qVAMAjNFdDpuq6gFJnjIr/8eyQw+e7T+wxvQPrhi7/OsP5uxWmwcAsKkdOHCgUw0AMEZ3KWyqqkuS/HKSL0jy5tba0WWH7zfbf2qNp7h9tr9/D/OW97WvqhaqauG2225b42kAAIbz/Oc/v1MNADBGd3Vl088luTbJh/L3Lw4+N621w621SWttctlll827HQAAAICLxnmHTVX1M0n+TZIPJ7m2tfbhFUOWVh/dd42nWVrF9Mke5gEAAAAwZ+cVNlXVTyX5/iS3ZRo03brKsPfP9g9c46m+dMXY5V9/Wcd5AACb2sLCQqcaAGCMOodNVfWiJD+c5KNJHtta+8OzDH3nbP/wqrr3WcZctWJskrw7yWeSfFFVfflZ5j1ylXkAAAAAzFmnsKmqbkzyI0n+Isk3tNZ+72xjW2sfSnIiyT2TPGmV57omyRWZfgzv5mXz7kjy67PyO1aZd2WSq5PckeQNXfoHAJinyWTSqQYAGKN1h01V9RNJnpPk45kGTetZVXRwtn9hVT1k2XNdnuRls/LG1tqdK+bdmKQleU5VPXLZvPsleeWs75e11j6+3v4BAAAA2HiXrGdQVe1J8rxZ+Z4kz6iq1Ya+u7V241LRWntNVb08yVOT/H5VvSnJZzO9g93nJ3ldkpesfJLW2i1V9dwkL0zy9qr6rUxDrmuSXJ7kHcv6AQAAAGCTWFfYlOSLln09mW2reUumq5L+Vmvt+qp6W5KnZRoW3T3T6zK9MsnLV1nVtDTvRVX1e0memem1ne6V5H1J/kuSF7fW/nqdvQMAbAo33HBDpxoAYIyqtTbvHjbUZDJpF8qdXfb/wuPm3QLL7Llz+snQq6+8dM6dwCa2c/+8OwAAADZAVS221lZdjNT5bnQAAJyfrVu3dqoBAMZI2AQAMJDTp093qgEAxkjYBAAAAEBvhE0AAAPZvn17pxoAYIyETQAAA1lcXOxUAwCMkbAJAGAg+/bt61QDAIyRsAkAYCA33XRTpxoAYIwumXcDMHY3v++j826BFa6+8tJ5twAAAHDRsrIJAAAAgN4ImwAABnLy5MlONQDAGAmbAAAG4m50AMDFQNgEADCQPXv2dKoBAMZI2AQAAABAb4RNAAAAAPRG2AQAMJBDhw51qgEAxkjYBAAwkH379nWqAQDGSNgEADCQqupUAwCMkbAJAAAAgN4ImwAAAADojbAJAGAgu3bt6lQDAIyRsAkAYCBHjx7tVAMAjJGwCQBgILt37+5UAwCMkbAJAGAgx44d61QDAIyRsAkAAACA3gibAAAAAOiNsAkAYCCttU41AMAYCZsAAAZy+PDhTjUAwBgJmwAABnLdddd1qgEAxkjYBAAAAEBvhE0AAAAA9EbYBAAwkCNHjnSqAQDGSNgEADCQHTt2dKoBAMZI2AQAMJBt27Z1qgEAxkjYBAAAAEBvhE0AAAAA9EbYBAAwkL1793aqAQDGSNgEADCQw4cPd6oBAMZI2AQAMBB3owMALgbCJgCAgZw4caJTDQAwRsImAAAAAHojbAIAGMiWLVs61QAAYyRsAgAYyKlTpzrVAABjJGwCABjIgQMHOtUAAGMkbAIAGMjzn//8TjUAwBgJmwAAAADojbAJAAAAgN4ImwAABrKwsNCpBgAYI2ETAAAAAL0RNgEADGQymXSqAQDGSNgEAAAAQG+ETQAAAAD0RtgEADCQG264oVMNADBG1Vqbdw8bajKZtAvlzi77f+Fx826BZfbc+ZB5t8BZXH3lpfNugSU798+7AwAAYANU1WJrbdULTlrZBAAwkK1bt3aqAQDGSNgEADCQ06dPd6oBAMZI2AQAAABAb4RNAAAD2b59e6caAGCMhE0AAANZXFzsVAMAjJGwCQBgIPv27etUAwCMkbAJAGAgN910U6caAGCMhE0AAAAA9EbYBAAAAEBvhE0AAAM5efJkpxoAYIyETQAAA3E3OgDgYnDJvBsA4AJ2/OC8O2Clnfvn3cFFbc+ePWmtrbsGABgjK5sAAAAA6I2wCQAAAIDeCJsAAAZy6NChTjUAwBgJmwAABrJv375ONQDAGAmbAAAGUlWdagCAMRI2AQAAANAbYRMAAAAAvRE2AQAMZNeuXZ1qAIAxumTeDQD07eb3fXTeLbCKq6+8dN4twNwdPXq0Uw0AMEZWNgEADGT37t2dagCAMRI2AQAM5NixY51qAIAxEjYBAAAA0BthEwAAAAC9ETYBAAyktdapBgAYI2ETAMBADh8+3KkGABgjYRMAwECuu+66TjUAwBgJmwAAAADojbAJAAAAgN4ImwAABnLkyJFONQDAGF0y7wYAgAEdPzjvDi5qO/7qL5Pjf/B39Y7vOfP4jh1DtwQA0DsrmwAABrLtX954Zr1t25o1AMAYCZsAAAAA6I2wCQAAAIDeCJsAAAay959fdWa9d++aNQDAGAmbAAAGcviZjz+zPnx4zRoAYIyETQAAA9lx3UvOrFfcfc7d6ACAC4GwCQBgICduPXVmfeLEmjUAwBgJmwAAAADozbrDpqp6WFX9QFX9clW9u6rurKpWVU9cx9wnV9Vbq+oTVXV7VS1U1dOqas3Xr6pvqqo3VtXHqurTVfUHVfW8qvq89fYNALBZbLn0/mfWW7asWQMAjNElHcY+NckPdH2BqnppkuuT/FWSNyf5bJJrk7wkybVV9cTW2p2rzHt2khcm+VyS307yF0muSfITSXZV1bWttU937QcAYF5OvXr/mfWpU2vWAABj1OVjdH+Q5D8m+VdJHpLkLeeaUFVPyDRo+nCSr26t7WqtPT7JQ5P8UZLHJ3nGKvMmSW5M8ukkX99ae2xr7UlJrkzyO0keleQFHXoHAJi7A7/4pjPrAwfWrAEAxmjdYVNr7edba89urf1aa+2965y29Ou757TWbl32XB/JdKVUkjx3lY/TPTdJJXlha+0dy+bdnuR7k9yZ5Pqq+sL19g8AMG/P/6XfOrN+/vPXrAEAxmjDLhBeVVck2ZHkjiSvXnm8tfaWJCeTPCDTlUpL8+6Z5Jtn5a+sMu99SW5Ocs8k39J74wAAAACcty7XbOrqEbP9u1prnznLmFuSbJuNffvssYcluU+Sj62xguqWJF8/m/eqftqFbo7c7T3zboFl9tz5kHm3AAAAQDY2bHrwbP+BNcZ8cMXY5V9/MGe32jwANrGb3/fRebfACldfeem8W7joLPzc086sFxbWrAEAxmjDPkaX5H6z/afWGHP7bL/8PsDnO+9vVdW+qlqoqoXbbrvtnI0CAAAA0I+NDJvmprV2uLU2aa1NLrvssnm3AwCQJJn825eeWU8ma9YAAGO0kWHT0uqj+64xZmkV0yd7mAcAAADAnG1k2PT+2f6Ba4z50hVjl3/9ZR3nAQAAADBnGxk2vXO2f3hV3fssY65aMTZJ3p3kM0m+qKq+/CzzHrnKPACATe2G737MmfUNN6xZAwCM0YaFTa21DyU5keSeSZ608nhVXZPkiiQfTnLzsnl3JPn1Wfkdq8y7MsnVSe5I8obeGwcA2CAHnvLYM+sDB9asAQDGaKMvEH5wtn9hVT1k6cGqujzJy2blja21O1fMuzFJS/Kcqnrksnn3S/LKTPt+WWvt4xvVOABA37Y+6eCZ9data9YAAGN0yXoHVtX2/F1AlCRfOdv/ZFU9a+nB1tqjln39mqp6eZKnJvn9qnpTks8muTbJ5yd5XZKXrHyt1totVfXcJC9M8vaq+q0kH09yTZLLk7wjyfPW2zsAwGZw+qNn3tvk9OnTa9YAAGO07rAp03Doa1d5/KFrTWqtXV9Vb0vytEzDortnel2mVyZ5+Sqrmpbmvaiqfi/JMzO9ttO9krwvyX9J8uLW2l936B0AAACAAaw7bGqt/XaSOp8Xaa29KsmrzmPebyT5jfN5TQCAzWb7Q8/8mNz27dvXrAEAxmijr9kEAMDM4qGnn1kvLq5ZAwCMkbAJAGAg+37qtWfW+/atWQMAjJGwCQBgIDe94ZYz65tuWrMGABgjYRMAAAAAvRE2AQAAANAbYRMAwEBO/tpzz6xPnlyzBgAYI2ETAMBAFv/PmWGSu9EBABciYRMAwED2/Pv/dma9Z8+aNQDAGAmbAAAAAOiNsAkAAACA3gibAAAGcuiHH3dmfejQmjUAwBgJmwAABrJv1yPPrPftW7MGABgjYRMAwEDqMf/uzLpqzRoAYIyETQAAAAD0RtgEAAAAQG+ETQAAA9n1qP/rzHrXrjVrAIAxEjYBAAzk6E9+95n10aNr1gAAYyRsAgAYyO5/90tn1rt3r1kDAIzRJfNuAACYj5vf99F5t3DROfa77z7j7/3YsWP56d/8P2fUAABjZ2UTAAAAAL0RNgEAAADQG2ETAMBA3v7zzzyj/k9v/OMz6tbakO0AAGwIYRMAwEBe95bfO6O++Q2/ekZ9+PDhIdsBANgQwiYAgIG86L/95hn1q3/mx86or7vuuiHbAQDYEMImAAAAAHojbAIAAACgN8ImAICBvOjpjzuj/jfPf/kZ9ZEjRwbsBgBgYwibAAAG8rAHfckZ9RVf8fAz6h07dgzZDgDAhhA2AQAM5FufdeiM+vnf/ugz6m3btg3ZDgDAhhA2AQAAANAbYRMAAAAAvblk3g0A9OHI3d4z7xZYZs+dD5l3C7Ap7Xn0V51RP+qb/+UZ9d69e4dsBwBgQ1jZBAAwkOd+9//vjPpf/tB/OKM+fPjwkO0AAGwIK5sAAAbyvT/+3/ILP/Zdf1sf+r5/eka94yv+exYPPX0erbFk5/55dwAAo2dlEwDAQP74g3+2Zn3i1lNDtgMAsCGETQAAAAD0RtgEADCQL/6C+65Zb7n0/kO2AwCwIYRNAAADOfJT/3bN+tSrXS8IABg/YRMAwEB+/vVvX7M+8ItvGrIdAIANIWwCABjIK4/evGb9/F/6rSHbAQDYEMImAAAAAHojbAIAAACgN8ImAICBvPLff+ea9cLPPW3IdgAANoSwCQAAAIDeCJsAAAbyr3/il9esJ//2pUO2AwCwIYRNAAAAAPRG2AQAAABAb4RNAAAD+de7r16zvuG7HzNkOwAAG+KSeTcAwIXnyN3eM+8WmNlz50Pm3QLLfN+3ft2a9YGnPHbIdgAANoSVTQAAA9nzzJ9bs976pINDtgMAsCGsbAIAGMiff+JTa9anP/rJIdthNccFfpvOzv3z7gCAjqxsAgAAAKA3wiYAgIE87MsuX7Pe/tCtQ7YDALAhhE0AAAP5hR/7rjXrxUNPH7IdAIANIWwCABjIjb/0xjXrfT/12iHbAQDYEMImAICBHPmd31+zvukNtwzZDgDAhhA2AQAAANAbYRMAAAAAvblk3g0AAFwsXv/i685Z3/y+jw7ZEutw9ZWXzrsFABgVK5sAAAbyx+//SKcaAGCMhE0AAAN59kte16kGABgjYRMAAAAAvRE2AQAAANAbYRMAwECe/V3f0KkGABgjYRMAwEAed81Xd6oBAMZI2AQAMJCv+76f6lQDAIyRsAkAAACA3gibAAAAAOjNJfNuAADgYvH1X31lpxpIcvzgvDtguZ37590BMAJWNgEADOQ/fv/jO9UAAGMkbAIAGMiP/JfXdqoBAMZI2AQAMJD/9Xvv61QDAIyRsAkAAACA3rhAOABcwI7c7T3zbgEAgIuMlU0AAAN5+88/s1MNADBGwiYAgIG87i2/16kGABgjH6MDABjIi/7bb+Zx13z1ums2h5vf99F5t8AKV1956bxbuHgdPzjvDlhp5/55dwB/j5VNAAAAAPRG2AQAAABAb4RNAAADedHTH9epBgAYI2ETAMBAHvagL+lUAwCMkQuEAwAM5FufdShv//lnrrsGgHNy0fbNx0XbrWwCAAAAoD9WNgEADOjI3d7TqWbj7LnzIfNugfN08/s+Ou8WWMXVV1467xaATcLKJgCAgfzjRz+wUw0AMEbCJgCAgXzzU76mUw0AMEbCJgCAgfzC83+7Uw0AMEau2QQAMJCPfOATnWoAuCtc32w+fvdv/s+ax3/oG75ioE7mR9gEAMBFycXYNxcXbAe4cPgYHQDAQO73BZ/XqQYAGCMrmwAABvL0n/6mTjXAmPjIFrDEyiYAgIG89XXv7lQDAIyRsAkAYCD/68gfd6oBAMZo04dNVfXkqnprVX2iqm6vqoWqelpVbfreAQAAAC42m/qaTVX10iTXJ/mrJG9O8tkk1yZ5SZJrq+qJrbU759giAADABcfdGmF17py5Pps2bKqqJ2QaNH04yaNba7fOHv+SJMeTPD7JM5L8zNyaBADo4Ck/dk2nGi4mwg2AC8dm/ija/tn+OUtBU5K01j6S5Kmz8rk+TgcAAACweWzKoKaqrkiyI8kdSV698nhr7S1JTiZ5QJJHDdsdAMD5+cUff0unGgBgjDZl2JTkEbP9u1prnznLmFtWjAUAAABgzjZr2PTg2f4Da4z54IqxAAAAAMxZtdbm3cPfU1X/LskLkvxKa+07zzLmBUn+XZLDrbXrVhzbl2TfrHxYkj/ewHY30hcn+fN5NwEj4XyB9XO+wPo5X6Ab5wys39jPlwe21i5b7cCmvRvdXdFaO5zk8Lz7uKuqaqG1Npl3HzAGzhdYP+cLrJ/zBbpxzsD6Xcjny2b9GN3ts/191xhzv9n+kxvcCwAAAADrtFnDpvfP9g9cY8yXrhgLAAAAwJxt1rDpnbP9w6vq3mcZc9WKsRei0X8UEAbkfIH1c77A+jlfoBvnDKzfBXu+bMoLhCdJVS0m2Z7ke1prv7Ti2DVJfjvJh5Nsa63dOXyHAAAAAKy0WVc2JcnB2f6FVfWQpQer6vIkL5uVNwqaAAAAADaPTbuyKUmq6mVJnprkr5K8Kclnk1yb5POTvC7JE1trn5tbgwAAAACcYTOvbEpr7fok35HkRJJrknxjkvckeXqSJ1yoQVNVPbmq3lpVn6iq26tqoaqeVlWb+r8XrKaq7lFV11bVT83ey39ZVXdU1cmqek1V/bNzzD+v86Gqvqmq3lhVH6uqT1fVH1TV86rq884x72ur6rVV9WdV9VdVdWtVvaiqvqD7nx7uuqr6yapqs+1Za4xzrnDRqqp7V9Wzq+qWqvr47L38J1X16qr6+lXG3212fizMzpdPzM6fb1/Haw16rkGfquqKqvrZqvrjqvrMsn+/f66qrlxjnu8xXHCq6mFV9QNV9ctV9e6qunP289YT1zF3FOfE7M/4y1V1qqr+uqo+UFUvr6ot5/oz3mWtNdsm2pK8NElL8pkkx5K8Nslfzh77n0nuNu8ebbYuW5LHzt6/Lcnp2fv6V5P8/rLHf/wsc8/rfEjy7NmYv8l0VeSrk/zZ7LGbk9znLPO+fTanJXnbrM8PzOpbk1w+779P28W1ZXozjL9Jcufsffiss4xzrtgu2i3Jg2fvu5bk1Oz9/+ok/2+mq+L//Yrxd0/y+tn4T8zOkTdkupK+JfmZNV5r0HPNZutzS/KIJH8xe999KNNPirwuyZ/OHvtkkq9bZZ7vMbYLckvyn/N3/z+yfHviOeaN4pzIdMHOp2fjFpP830n+aFb/WZKv2NC/33n/B7ad8WZ4Qv7uf8gfuuzxL0nyh7NjPzDvPm22LluSxyR5TZJ/usqxf7XsH86dK46d1/mQZJLp/5h/KsnXLnv8fkneMpv306vMu2L2j/Hnknzrsscvmf3D3JK8dt5/n7aLZ0vyebP3+snZDzGrhk3OFdvFvCW5b6ar3u9M8pwkd19x/NKVP0wneebsffquJF+y7PGHZnrzmbb8vb3s+KDnms3W95bk7bP32+Ek91j2+D2SvGJ27H+vmON7jO2C3ZJ8X5IXJfmXSb4805uQrRk2jeWcmH1/PD07/vQVx16cvwugasP+fuf9H9h2xn/0hdl/9O9e5dg1y97UVjfZLpgtyc/P3tuvWPH4eZ0PmQZbLcmPrTLvytk/1H+d5AtXHFv6R/eVq8z7/Ex/+92SfOW8/85sF8eW5IWz99zuJL+Ys4dNzhXbRbtlekOZluRn1zn+7kk+Mpvz6FWOf8/s2P+7yrFBzzWbrc8tyb3yd6s2tqxyfMuy4/dZ9rjvMbaLZsv6wqZRnBOZXnqoJfmtVebdPdNf1LQk37JRf5+uAbRJVNUVSXYkuSPT5XRnaK29JdPfbj8gyaOG7Q421Dtn+yuWHjjf86Gq7pnkm2flr6wy732ZLlG9Z5JvWXH4cWvM+8skR1eMgw1TVV+b6eqLV7XWjq4xzrnCRWv2Pt47K//TOqddneTyJH/aWvudVY6/OtOP3l1VVduWvdY8zjXo0+cyXU1+Lp/K9KNBvsfACiM7J9aa97lMV0WtNq83wqbN4xGz/btaa585y5hbVoyFC8FDZ/vTyx473/PhYUnuk+RjrbX3rndeVX1+pktnlx9fz+tB76rqXkn+a5KPJfmBcwx3rnAx25Hpx+ROttb+pKq2V9V/qKpDVfXjVfVPVpmz9L5c9f3bWvt0ph+vS5KvWWXeIOca9K219tkkb56Vz6+qeywdm339H2blK9ps6UN8j4GVxnROrPn9bo15vblko56Yzh48239gjTEfXDEWRq2qHpDkKbPyfyw7dL7nw4NXHFvvvAfN9h+f/YZgvfNgI7wg0x9Kvq219ufnGOtc4WL2VbP9yap6caarAZf70ap6XZLvbK19avbYes+Zr8nq58xQ5xpshOuT/EamKwK/uaoWZo9fleQfZHqx5GcvG+97DJxpFOfELKT6onP0uuHnkpVNm8f9ZvtPrTHm9tn+/hvcC2y4qrokyS8n+YIkb17xUaHzPR+Gnge9qqqvS/KDSV7XWvvVdUxxrnAxW/pB+hGZBk3/OclDMv2f5m/N9KMMj0vysmVznDNctGYf1fm6JL+e6eULHjfbtmV6YeO3zlZALXG+wJnGck7cb9nXZ5u74eeSsAmYl59Lcm2mt979zjn3AnNXVffO9ELgf5npb5+BtS39HHuPJL/cWvuh1tp7W2sfb60dyfR/oluS76qqLz/bk8DFYvYLjT/INJT91iSXzbbHZRrS/o+q+rG5NQhcUIRNm8dSsnjfNcYsJZSf3OBeYENV1c8k+TeZ3mL62tbah1cMOd/zYeh50KefzPQaZj/cWjt9rsEzzhUuZsvfYzetPNhaW8jsts6Z3iEocc5wkaqqL0zyukxXMXxTa+1Ia+3PZ9vrk3xTphcG/9GqWrqepvMFzjSWc+L2ZV+fbe6Gn0vCps3j/bP9A9cY86UrxsLoVNVPJfn+JLdlGjTdusqw98/2Xc+Hpa+/rOO8pc8yf+HsM87rnQd9enySO5N8T1X99vIt0/8JSJKnzh77+Vn9/tneucLF6E/O8vVqYx4w279/tj/fc2aocw369s8zXcX0u7OP052htfaeJO/I9Jq+/2z28Ptne99jYOr9s/2mPidm13f6i1l5tl43/FwSNm0eS7d/f/jsoxSruWrFWBiVqnpRkh9O8tEkj22t/eFZhp7v+fDuTH8r90VrfGTikSvntdY+kWTpzhBX/b0ZZ5kHG+Buma7AWLl9yez4lbN6MqudK1zMlr/HLj3LmC+e7Zd+y3titl/1/VtV90nyj1Z5/kHPNdgAS/+T+4k1xnx8tl+6HprvMXCmMZ0Ta36/W2Neb4RNm0Rr7UOZviHumeRJK49X1TWZXsjvw0luHrY7uOuq6sYkP5Jpyv4NrbXfO9vY8z0fWmt3ZHrRyyT5jlXmXZnk6iR3JHnDisOvX2Pe5yfZPStfe7a+4a5orT2otVarbUn+62zYj8we+5rZHOcKF63W2slMV2Ik02sAnqGq/kGS7bNy6a5bN2e6svaKqnr0Kk/7pEyvAXXL7PmXXmse5xr06dRsv6Oq7rHy4OyxHbPyTxLfY2ClkZ0Ta827e5JvO8u8/rTWbJtkS/LETC9keTrJQ5Y9fnmSd82O/cC8+7TZum5JfmL2/v2LJDvWOee8zodM0/s7M73zwiOXPX6/JL89m/fTq8z70iSfTvK5JHuWPX5Jkv8+m/faef9d2i7OLdMLh7ckz1rlmHPFdtFumf6Q3TJdMTtZ9vi9kvzfs2MLSWrZsWfNHn9XksuXPf7Q2XnUknzrKq816Llms/W5zd6nn5q9316S5POWHfu8JC+fHftYki9Ydsz3GNtFsy17bz5xjTGjOCdmz7v0Pe1pK479x9njJ5Z/f+x7q9mLsUlU1cuSPDXJXyV5U5LPZvrbus/P9KJ+T2ytfW5uDUJHVbUnf5esL2T6j/Bq3t1au3HF3PM6H6rq2UlemOk/yr+V6bLwazL9JvCOJI9prX16lXnfnuS/Zbrq822Z/hbwUZl+1vk9Sb6+tfZn6/uTQ3+q6heTfE+mK5tevMpx5woXrap6cZJnZvq+/91Mg6dHJtma5GSSnW3Z9QFnv9F9baZB1V8meXOmq5kem2lI9bOtte8/y2sNeq5Bn6rqe5K8IsndM/13e+ljNjuSbEny10m+rbX2uhXzfI/hglRV25O8bNlDX5npRfRvzTR4TZK01h61Yt4ozonZSqtfT3LvTG+YcWuSf5zkHyb58yT/pLX2x2f9C7qr5p0e2v7+luTJSf5Xpj8AfWr2xnhakrvNuzebreuW5CmZJufn2n77LPPP63zI9ILKv5npaqrPZBpyPS/LfpN3lnlfm+k3idsy/aHrPUlelGW/5bPZht6yxsqmZWOcK7aLdkvyLzL9wf0vZu/HW5P8VJLLzjL+bkmePjtPPjU7b96W5MnreK1BzzWbrc8t04+W/lKmH5X7q9n23iQ/n+Qr15jne4ztgtsyvRj+Of8/5SxzR3FOJHlYkl/J9KN9f53kg0l+LsmWjf77tbIJAAAAgN64QDgAAAAAvRE2AQAAANAbYRMAAAAAvRE2AQAAANAbYRMAAAAAvRE2AQAAANAbYRMAAAAAvRE2AQAAANAbYRMAAAAAvfn/A76EV6TN045JAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 1440x1080 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "files = ['18-11-12-14-25','18-11-13-13-20','18-11-16-11-23']\n", + "df = pd.DataFrame(index=files, columns=['si_decae','no_decae','x','y','corr'])\n", + "\n", + "plt.xlabel('Tiempo (ns)')\n", + "plt.ylabel('Frecuencia')\n", + "plt.title('Histogramas')\n", + "plt.figure(figsize=(20,15))\n", + "plt.rcParams.update({'font.size': 22})\n", + "\n", + "for i in files:\n", + " data = pd.read_table(\"/home/gomezc/ejercicios-clase-08-datos/data-used/\"+i+\".data\",sep='\\n', delimiter=' ', header=None, dtype=int,names =['decaimiento','time'])\n", + " print(i)\n", + " print('Mode',data.mode())\n", + " print()\n", + " print('Median',data.median())\n", + " print()\n", + " print('Mean',data.mean())\n", + " print()\n", + " filter1 = data[data['decaimiento']>40000]['decaimiento']\n", + " filter2 = data[data['decaimiento']<40000]['decaimiento']\n", + " No_decae = filter1.sum() - len(filter1)*40000\t # Numero de muonoes que no decaen\n", + " Si_decae = len(filter2)\t # Numero de muonoes que decaen\n", + " df.loc[i,['si_decae','no_decae']] = [Si_decae,No_decae]\n", + " globalPlot()\n", + " df.loc[i,'x'] = x[1:]\n", + " df.loc[i,'y'] = y\n", + " df.loc[i,'corr'] = np.corrcoef(filter1[:len(filter1)-1],filter1[1:len(filter1)])[0][1]\n" + ] + } + ], + "metadata": { + "celltoolbar": "Attachments", + "colab": { + "collapsed_sections": [], + "name": "Muones", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.3" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +}