{
  "metadata": {
    "kernelspec": {
      "name": "python",
      "display_name": "Python (Pyodide)",
      "language": "python"
    },
    "language_info": {
      "codemirror_mode": {
        "name": "python",
        "version": 3
      },
      "file_extension": ".py",
      "mimetype": "text/x-python",
      "name": "python",
      "nbconvert_exporter": "python",
      "pygments_lexer": "ipython3",
      "version": "3.8"
    }
  },
  "nbformat_minor": 4,
  "nbformat": 4,
  "cells": [
    {
      "cell_type": "markdown",
      "source": "# Experimento guia",
      "metadata": {}
    },
    {
      "cell_type": "code",
      "source": "import numpy as np\nimport matplotlib.pyplot as plt\nfrom scipy.interpolate import interp1d\nfrom scipy.optimize import curve_fit",
      "metadata": {
        "trusted": true
      },
      "execution_count": 1,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": "Servilleta Cerrada",
      "metadata": {}
    },
    {
      "cell_type": "code",
      "source": "c = np.loadtxt('tiempo_sc.txt')\nprint(c)\nc.shape",
      "metadata": {
        "tags": [],
        "trusted": true
      },
      "execution_count": 2,
      "outputs": [
        {
          "name": "stdout",
          "text": "[[0.     0.     0.     0.     0.     0.     0.     0.     0.     0.    ]\n [0.0332 0.0325 0.0348 0.0332 0.0346 0.0346 0.0336 0.0334 0.0331 0.0322]\n [0.0663 0.065  0.0695 0.0664 0.0691 0.0691 0.0673 0.0669 0.0662 0.0644]\n [0.0995 0.0974 0.104  0.0995 0.104  0.104  0.101  0.1    0.0993 0.0965]\n [0.133  0.13   0.139  0.133  0.138  0.138  0.168  0.134  0.132  0.129 ]\n [0.166  0.162  0.174  0.166  0.173  0.173  0.202  0.167  0.199  0.161 ]\n [0.199  0.195  0.209  0.199  0.207  0.242  0.235  0.201  0.232  0.193 ]\n [0.232  0.26   0.243  0.232  0.242  0.276  0.269  0.267  0.265  0.225 ]\n [0.265  0.292  0.278  0.265  0.276  0.311  0.303  0.301  0.298  0.257 ]\n [0.298  0.325  0.313  0.299  0.311  0.346  0.336  0.334  0.331  0.29  ]\n [0.332  0.357  0.348  0.332  0.346  0.38   0.37   0.368  0.364  0.322 ]\n [0.365  0.39   0.382  0.365  0.38   0.415  0.404  0.401  0.397  0.354 ]\n [0.398  0.455  0.417  0.398  0.415  0.449  0.504  0.468  0.43   0.386 ]\n [0.464  0.487  0.452  0.464  0.484  0.484  0.538  0.501  0.497  0.45  ]\n [0.497  0.52   0.487  0.498  0.553  0.553  0.572  0.535  0.53   0.483 ]\n [0.53   0.552  0.521  0.531  0.587  0.587  0.605  0.568  0.563  0.515 ]\n [0.564  0.585  0.556  0.564  0.622  0.622  0.639  0.602  0.596  0.547 ]\n [0.597  0.65   0.591  0.597  0.656  0.656  0.673  0.635  0.629  0.579 ]]\n",
          "output_type": "stream"
        },
        {
          "execution_count": 2,
          "output_type": "execute_result",
          "data": {
            "text/plain": "(18, 10)"
          },
          "metadata": {}
        }
      ]
    },
    {
      "cell_type": "code",
      "source": "prom_Tiempos1 = c.mean(axis=1)\nt_err = c.std(axis=1)\nt_err[0] = 0.0333",
      "metadata": {
        "trusted": true
      },
      "execution_count": 3,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": "d = -np.loadtxt('Alturas_sc.txt')\n",
      "metadata": {
        "trusted": true
      },
      "execution_count": 4,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": "prom_Altura1 = d.mean(axis=1)",
      "metadata": {
        "trusted": true
      },
      "execution_count": 5,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": "plt.figure()\nplt.plot(prom_Tiempos1[1:7], prom_Altura1[1:7], '.') \nplt.show()\nplt.savefig('Servilleta cerrada.pdf', bbox_inches='tight')",
      "metadata": {
        "trusted": true
      },
      "execution_count": 6,
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "text/plain": "<Figure size 640x480 with 1 Axes>",
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGdCAYAAAAxCSikAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAqiklEQVR4nO3df0xUd77/8deAMqDpTG1BoNtR3NYf10rBRRjHvbts76Uhd70bjX90qnevXFLc7o21utzcXTFeqd1kabf2lqZyr7p3rXW9irohNWkNrSG36bZww4qYqO32rq2KujOj3NQZQYO3zPn+YZzufAVlEJjPDM9HchL9zOd85v32eMqrZ84cbZZlWQIAADBYSrwLAAAAuBsCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeBPiXcBICYfD+tOf/qT77rtPNpst3uUAAIAhsCxLV69e1UMPPaSUlMGvoyRNYPnTn/4kl8sV7zIAAMAwnD9/Xg8//PCgrw8rsDQ0NOiVV16R3+9XQUGB3njjDZWUlNx1v48//lilpaWaN2+ejh8/HvXawYMH9S//8i86e/asZs6cqZdfflnf//73h1zTfffdJ+lmww6HI6Z+AABAfIRCIblcrsjP8cHEHFj279+v6upqbdu2TW63W/X19SovL9dnn32mqVOnDrrflStXtHLlSv31X/+1AoFA1Gutra1avny56urq9Ld/+7fau3evli5dqmPHjmnevHlDquvWx0AOh4PAAgBAgrnb7Ry2WP/xQ7fbreLiYm3dulXSzXtHXC6X1qxZo/Xr1w+639NPP62ZM2cqNTVVb7/9dtQVFq/Xq97eXr3zzjuRsYULF6qwsFDbtm0bUl2hUEhOp1PBYJDAAgBAghjqz++YviV048YNdXR0qKys7OsFUlJUVlamtra2Qfd788039cUXX6i2tnbA19va2qLWlKTy8vI7rtnX16dQKBS1AQCA5BRTYOnu7lZ/f7+ys7OjxrOzs+X3+wfc549//KPWr1+vPXv2aMKEgT+B8vv9Ma0pSXV1dXI6nZGNG24BAEheo/oclv7+fq1YsUKbN2/WrFmzRnTtmpoaBYPByHb+/PkRXR8AAJgjpptuMzMzlZqaettNs4FAQDk5ObfNv3r1qo4eParOzk4999xzkm7e82JZliZMmKD3339ff/VXf6WcnJwhr3mL3W6X3W6PpXwAAJCgYrrCkpaWpqKiIrW0tETGwuGwWlpa5PF4bpvvcDh04sQJHT9+PLL9+Mc/1uzZs3X8+HG53W5JksfjiVpTko4cOTLgmgAAYPyJ+WvN1dXVqqio0IIFC1RSUqL6+nr19vaqsrJS0s2Pai5evKjdu3crJSXltq8lT506Venp6VHja9euVWlpqV599VUtXrxYjY2NOnr0qHbs2HGP7QEAgGQQc2Dxer26fPmyNm3aJL/fr8LCQjU3N0dumvX5fOrq6oppzUWLFmnv3r3auHGjNmzYoJkzZ+rtt98e8jNYAABAcov5OSym4jksAAAknlF5DgsAAEA8EFgAAMAd+YLX1fp5t3zB63GrIWn+tWYAADDy9v++SzVNJxS2pBSbVLcsX97iaWNeB1dYAADAgHzB65GwIklhS9rQdDIuV1oILAAAYEBnunsjYeWWfsvS2e5rY14LgQUAAAxoRuZkpdiix1JtNuVlThrzWggsAABgQLnODNUty1eq7WZqSbXZ9Itl85TrzBjzWrjpFgAADMpbPE3fnZWls93XlJc5KS5hRSKwAACAu8h1ZsQtqNzCR0IAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADDesAJLQ0OD8vLylJ6eLrfbrfb29kHnfvTRR/r2t7+tBx98UBkZGZozZ45ee+21qDm7du2SzWaL2tLT04dTGgAASEITYt1h//79qq6u1rZt2+R2u1VfX6/y8nJ99tlnmjp16m3zJ0+erOeee06PP/64Jk+erI8++kjPPvusJk+erB/96EeReQ6HQ5999lnk9zabbZgtAQCAZGOzLMuKZQe3263i4mJt3bpVkhQOh+VyubRmzRqtX79+SGssW7ZMkydP1m9+8xtJN6+wrFu3TleuXImt+j8TCoXkdDoVDAblcDiGvQ4AABg7Q/35HdNHQjdu3FBHR4fKysq+XiAlRWVlZWpraxvSGp2dnWptbVVpaWnUeE9Pj6ZPny6Xy6UlS5bo1KlTd1ynr69PoVAoagMAAMkppsDS3d2t/v5+ZWdnR41nZ2fL7/ffcd+HH35YdrtdCxYs0OrVq1VVVRV5bfbs2dq5c6cOHTqkPXv2KBwOa9GiRbpw4cKg69XV1cnpdEY2l8sVSysAACCBjNm3hH73u9/p6NGj2rZtm+rr67Vv377Iax6PRytXrlRhYaFKS0vV1NSkrKwsbd++fdD1ampqFAwGI9v58+fHog0AABAHMd10m5mZqdTUVAUCgajxQCCgnJycO+47Y8YMSVJ+fr4CgYBeeOEFLV++fMC5EydO1Pz583X69OlB17Pb7bLb7bGUDwAAElRMV1jS0tJUVFSklpaWyFg4HFZLS4s8Hs+Q1wmHw+rr6xv09f7+fp04cUK5ubmxlAcAAJJUzF9rrq6uVkVFhRYsWKCSkhLV19ert7dXlZWVkm5+VHPx4kXt3r1b0s1ntkybNk1z5syRJH344YfasmWLnn/++ciaL774ohYuXKhHH31UV65c0SuvvKJz585F3ecCAADGr5gDi9fr1eXLl7Vp0yb5/X4VFhaqubk5ciOuz+dTV1dXZH44HFZNTY3OnDmjCRMm6JFHHtHLL7+sZ599NjLnyy+/1KpVq+T3+zVlyhQVFRWptbVVc+fOHYEWAQBAoov5OSym4jksAAAknlF5DgsAAEA8EFgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMN6wAktDQ4Py8vKUnp4ut9ut9vb2Qed+9NFH+va3v60HH3xQGRkZmjNnjl577bXb5h08eFBz5sxRenq68vPzdfjw4eGUBgAAklDMgWX//v2qrq5WbW2tjh07poKCApWXl+vSpUsDzp88ebKee+45ffjhh/r000+1ceNGbdy4UTt27IjMaW1t1fLly/XMM8+os7NTS5cu1dKlS3Xy5MnhdwYAAJKGzbIsK5Yd3G63iouLtXXrVklSOByWy+XSmjVrtH79+iGtsWzZMk2ePFm/+c1vJEler1e9vb165513InMWLlyowsJCbdu2bUhrhkIhOZ1OBYNBORyOWFoCAABxMtSf3zFdYblx44Y6OjpUVlb29QIpKSorK1NbW9uQ1ujs7FRra6tKS0sjY21tbVFrSlJ5efkd1+zr61MoFIraAABAcoopsHR3d6u/v1/Z2dlR49nZ2fL7/Xfc9+GHH5bdbteCBQu0evVqVVVVRV7z+/0xr1lXVyen0xnZXC5XLK0AAIAEMmbfEvrd736no0ePatu2baqvr9e+ffvuab2amhoFg8HIdv78+RGqFAAAmGZCLJMzMzOVmpqqQCAQNR4IBJSTk3PHfWfMmCFJys/PVyAQ0AsvvKDly5dLknJycmJe0263y263x1I+AABIUDFdYUlLS1NRUZFaWloiY+FwWC0tLfJ4PENeJxwOq6+vL/J7j8cTtaYkHTlyJKY1AQBA8orpCoskVVdXq6KiQgsWLFBJSYnq6+vV29uryspKSTc/qrl48aJ2794t6eYzW6ZNm6Y5c+ZIkj788ENt2bJFzz//fGTNtWvXqrS0VK+++qoWL16sxsZGHT16NOqrzwAAYPyKObB4vV5dvnxZmzZtkt/vV2FhoZqbmyM3zfp8PnV1dUXmh8Nh1dTU6MyZM5owYYIeeeQRvfzyy3r22WcjcxYtWqS9e/dq48aN2rBhg2bOnKm3335b8+bNG4EWAQBAoov5OSym4jksAAAknlF5DgsAAEA8EFgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAkFB8wetq/bxbvuD1eJeCMTQh3gUAADBU+3/fpZqmEwpbUopNqluWL2/xtHiXhTHAFRYAQELwBa9HwookhS1pQ9NJrrSMEwQWAEBCONPdGwkrt/Rbls52X4tPQRhTBBYAQEKYkTlZKbbosVSbTXmZk+JTEMYUgQUAkBBynRmqW5avVNvN1JJqs+kXy+Yp15kR58owFrjpFgCQMLzF0/TdWVk6231NeZmTCCvjyLCusDQ0NCgvL0/p6elyu91qb28fdG5TU5OefPJJZWVlyeFwyOPx6L333ouas2vXLtlstqgtPT19OKUBAJJcrjNDnkceJKyMMzEHlv3796u6ulq1tbU6duyYCgoKVF5erkuXLg04/8MPP9STTz6pw4cPq6OjQ0888YR+8IMfqLOzM2qew+GQz+eLbOfOnRteRwAAIOnYLMuy7j7ta263W8XFxdq6daskKRwOy+Vyac2aNVq/fv2Q1njsscfk9Xq1adMmSTevsKxbt05XrlyJrfo/EwqF5HQ6FQwG5XA4hr0OAAAYO0P9+R3TFZYbN26oo6NDZWVlXy+QkqKysjK1tbUNaY1wOKyrV6/qgQceiBrv6enR9OnT5XK5tGTJEp06deqO6/T19SkUCkVtAAAgOcUUWLq7u9Xf36/s7Oyo8ezsbPn9/iGtsWXLFvX09Oipp56KjM2ePVs7d+7UoUOHtGfPHoXDYS1atEgXLlwYdJ26ujo5nc7I5nK5YmkFAAAkkDH9WvPevXu1efNmHThwQFOnTo2MezwerVy5UoWFhSotLVVTU5OysrK0ffv2QdeqqalRMBiMbOfPnx+LFgAAQBzE9LXmzMxMpaamKhAIRI0HAgHl5OTccd/GxkZVVVXp4MGDUR8pDWTixImaP3++Tp8+Pegcu90uu90+9OIBAEDCiukKS1pamoqKitTS0hIZC4fDamlpkcfjGXS/ffv2qbKyUvv27dPixYvv+j79/f06ceKEcnNzYykPAAAkqZgfHFddXa2KigotWLBAJSUlqq+vV29vryorKyXd/Kjm4sWL2r17t6SbHwNVVFTo9ddfl9vtjtzrkpGRIafTKUl68cUXtXDhQj366KO6cuWKXnnlFZ07d05VVVUj1ScAAEhgMQcWr9ery5cva9OmTfL7/SosLFRzc3PkRlyfz6eurq7I/B07duirr77S6tWrtXr16sh4RUWFdu3aJUn68ssvtWrVKvn9fk2ZMkVFRUVqbW3V3Llz77E9AACQDGJ+DoupeA4LAACJZ1SewwIAABAPBBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGG9YgaWhoUF5eXlKT0+X2+1We3v7oHObmpr05JNPKisrSw6HQx6PR++9995t8w4ePKg5c+YoPT1d+fn5Onz48HBKAwAASSjmwLJ//35VV1ertrZWx44dU0FBgcrLy3Xp0qUB53/44Yd68skndfjwYXV0dOiJJ57QD37wA3V2dkbmtLa2avny5XrmmWfU2dmppUuXaunSpTp58uTwOwMAAEnDZlmWFcsObrdbxcXF2rp1qyQpHA7L5XJpzZo1Wr9+/ZDWeOyxx+T1erVp0yZJktfrVW9vr955553InIULF6qwsFDbtm0b0pqhUEhOp1PBYFAOhyOWlgAAQJwM9ed3TFdYbty4oY6ODpWVlX29QEqKysrK1NbWNqQ1wuGwrl69qgceeCAy1tbWFrWmJJWXl99xzb6+PoVCoagNAAAkp5gCS3d3t/r7+5WdnR01np2dLb/fP6Q1tmzZop6eHj311FORMb/fH/OadXV1cjqdkc3lcsXQCQAASCRj+i2hvXv3avPmzTpw4ICmTp16T2vV1NQoGAxGtvPnz49QlQAAwDQTYpmcmZmp1NRUBQKBqPFAIKCcnJw77tvY2KiqqiodPHjwto9/cnJyYl7TbrfLbrfHUj4AAEhQMV1hSUtLU1FRkVpaWiJj4XBYLS0t8ng8g+63b98+VVZWat++fVq8ePFtr3s8nqg1JenIkSN3XBMAAIwfMV1hkaTq6mpVVFRowYIFKikpUX19vXp7e1VZWSnp5kc1Fy9e1O7duyXd/BiooqJCr7/+utxud+S+lIyMDDmdTknS2rVrVVpaqldffVWLFy9WY2Ojjh49qh07doxUnwAAIIHFfA+L1+vVli1btGnTJhUWFur48eNqbm6O3DTr8/nU1dUVmb9jxw599dVXWr16tXJzcyPb2rVrI3MWLVqkvXv3aseOHSooKNBvf/tbvf3225o3b94ItAgAABJdzM9hMRXPYQEAIPGMynNYAAAA4oHAAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAYJh8wetq/bxbvuD1eJcCJL0J8S4AABLR/t93qabphMKWlGKT6pbly1s8Ld5lAUmLKywAECNf8HokrEhS2JI2NJ3kSgswiggsABCjM929kbByS79l6Wz3tfgUBIwDBBYAiNGMzMlKsUWPpdpsysucFJ+CgHGAwAIAMcp1ZqhuWb5SbTdTS6rNpl8sm6dcZ0acKwOSFzfdAsAweIun6buzsnS2+5ryMicRVoBRRmABgGHKdWYQVIAxwkdCAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPGGFVgaGhqUl5en9PR0ud1utbe3DzrX5/NpxYoVmjVrllJSUrRu3brb5uzatUs2my1qS09PH05pAAAgCcUcWPbv36/q6mrV1tbq2LFjKigoUHl5uS5dujTg/L6+PmVlZWnjxo0qKCgYdF2HwyGfzxfZzp07F2tpAAAgScUcWP71X/9Vq1atUmVlpebOnatt27Zp0qRJ2rlz54Dz8/Ly9Prrr2vlypVyOp2Drmuz2ZSTkxPZsrOzYy0NAAAkqZgCy40bN9TR0aGysrKvF0hJUVlZmdra2u6pkJ6eHk2fPl0ul0tLlizRqVOn7ji/r69PoVAoagMAAMkppsDS3d2t/v7+265+ZGdny+/3D7uI2bNna+fOnTp06JD27NmjcDisRYsW6cKFC4PuU1dXJ6fTGdlcLtew3x8AAJjNiG8JeTwerVy5UoWFhSotLVVTU5OysrK0ffv2QfepqalRMBiMbOfPnx/DigEAwFiaEMvkzMxMpaamKhAIRI0HAgHl5OSMWFETJ07U/Pnzdfr06UHn2O122e32EXtPAABgrpiusKSlpamoqEgtLS2RsXA4rJaWFnk8nhErqr+/XydOnFBubu6IrQkAABJXTFdYJKm6uloVFRVasGCBSkpKVF9fr97eXlVWVkq6+VHNxYsXtXv37sg+x48fl3TzxtrLly/r+PHjSktL09y5cyVJL774ohYuXKhHH31UV65c0SuvvKJz586pqqpqBFoEAACJLubA4vV6dfnyZW3atEl+v1+FhYVqbm6O3Ijr8/nU1dUVtc/8+fMjv+7o6NDevXs1ffp0nT17VpL05ZdfatWqVfL7/ZoyZYqKiorU2toaCTQAAGB8s1mWZcW7iJEQCoXkdDoVDAblcDjiXQ4AABiCof78NuJbQgAAAHdCYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAZKAL3hdrZ93yxe8Hu9SAGBUTIh3AQDuzf7fd6mm6YTClpRik+qW5ctbPC3eZQHAiOIKC5DAfMHrkbAiSWFL2tB0kistAJIOgQVIYGe6eyNh5ZZ+y9LZ7mvxKQgARsmwAktDQ4Py8vKUnp4ut9ut9vb2Qef6fD6tWLFCs2bNUkpKitatWzfgvIMHD2rOnDlKT09Xfn6+Dh8+PJzSgHFlRuZkpdiix1JtNuVlTopPQQAwSmIOLPv371d1dbVqa2t17NgxFRQUqLy8XJcuXRpwfl9fn7KysrRx40YVFBQMOKe1tVXLly/XM888o87OTi1dulRLly7VyZMnYy0PGFdynRmqW5avVNvN1JJqs+kXy+Yp15kR58oAYGTZLMuy7j7ta263W8XFxdq6daskKRwOy+Vyac2aNVq/fv0d9/3e976nwsJC1dfXR417vV719vbqnXfeiYwtXLhQhYWF2rZt25DqCoVCcjqdCgaDcjgcsbQEJDxf8LrOdl9TXuYkwgqAhDLUn98xXWG5ceOGOjo6VFZW9vUCKSkqKytTW1vbsItta2uLWlOSysvL77hmX1+fQqFQ1AaMV7nODHkeeZCwAiBpxRRYuru71d/fr+zs7Kjx7Oxs+f3+YRfh9/tjXrOurk5OpzOyuVyuYb8/AAAwW8J+S6impkbBYDCynT9/Pt4lAQCAURLTg+MyMzOVmpqqQCAQNR4IBJSTkzPsInJycmJe0263y263D/s9AQBA4ojpCktaWpqKiorU0tISGQuHw2ppaZHH4xl2ER6PJ2pNSTpy5Mg9rQkAAJJHzI/mr66uVkVFhRYsWKCSkhLV19ert7dXlZWVkm5+VHPx4kXt3r07ss/x48clST09Pbp8+bKOHz+utLQ0zZ07V5K0du1alZaW6tVXX9XixYvV2Nioo0ePaseOHSPQIgAASHQxBxav16vLly9r06ZN8vv9KiwsVHNzc+SmWZ/Pp66urqh95s+fH/l1R0eH9u7dq+nTp+vs2bOSpEWLFmnv3r3auHGjNmzYoJkzZ+rtt9/WvHnz7qE1AACQLGJ+DoupeA4LAACJZ1SewwIAABAPBBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgvGnC94Xa2fd8sXvB7vUgAACWJCvAvA+LL/912qaTqhsCWl2KS6ZfnyFk+Ld1kAAMNxhQVjxhe8HgkrkhS2pA1NJ7nSAgC4KwILxsyZ7t5IWLml37J0tvtafAoCACQMAgvGzIzMyUqxRY+l2mzKy5wUn4IAAAmDwIIxk+vMUN2yfKXabqaWVJtNv1g2T7nOjDhXBgAwHTfdYkx5i6fpu7OydLb7mvIyJxFWAABDQmDBmMt1ZhBUAAAx4SMhAABgPAILAAAw3rACS0NDg/Ly8pSeni6326329vY7zv/ggw/0rW99S3a7XY8++qh27doV9fquXbtks9mitvT09OGUBgAAklDMgWX//v2qrq5WbW2tjh07poKCApWXl+vSpUsDzj9z5owWL16sJ554QsePH9e6detUVVWl9957L2qew+GQz+eLbOfOnRteRwAAIOnYLMuy7j7ta263W8XFxdq6daskKRwOy+Vyac2aNVq/fv1t83/2s5/p3Xff1cmTJyNjTz/9tK5cuaLm5mZJN6+wrFu3TleuXBl2I6FQSE6nU8FgUA6HY9jrAACAsTPUn98xXWG5ceOGOjo6VFZW9vUCKSkqKytTW1vbgPu0tbVFzZek8vLy2+b39PRo+vTpcrlcWrJkiU6dOnXHWvr6+hQKhaI2AACQnGIKLN3d3erv71d2dnbUeHZ2tvx+/4D7+P3+AeeHQiFdv37z35CZPXu2du7cqUOHDmnPnj0Kh8NatGiRLly4MGgtdXV1cjqdkc3lcsXSCgAASCBGfEvI4/Fo5cqVKiwsVGlpqZqampSVlaXt27cPuk9NTY2CwWBkO3/+/BhWDAAAxlJMD47LzMxUamqqAoFA1HggEFBOTs6A++Tk5Aw43+FwKCNj4IeHTZw4UfPnz9fp06cHrcVut8tut8dSPgAASFAxXWFJS0tTUVGRWlpaImPhcFgtLS3yeDwD7uPxeKLmS9KRI0cGnS9J/f39OnHihHJzc2MpDwAAJKmYPxKqrq7Wr371K7311lv69NNP9Y//+I/q7e1VZWWlpJsf1axcuTIy/8c//rG++OIL/fSnP9Uf/vAH/du//ZsOHDign/zkJ5E5L774ot5//3198cUXOnbsmH74wx/q3LlzqqqqGoEWAQBAoov53xLyer26fPmyNm3aJL/fr8LCQjU3N0durPX5fOrq6orMnzFjht5991395Cc/0euvv66HH35Y//Ef/6Hy8vLInC+//FKrVq2S3+/XlClTVFRUpNbWVs2dO3cEWgQAAIku5uewmIrnsAAAkHhG5TksAAAA8UBgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPALLXfiC19X6ebd8wevxLgUAgHEr5gfHjSf7f9+lmqYTCltSik2qW5Yvb/G0eJcFAMC4wxWWQfiC1yNhRZLClrSh6SRXWgAAiAMCyyDOdPdGwsot/Zals93X4lMQAADjGIFlEDMyJyvFFj2WarMpL3NSfAoCAGAcI7AMIteZobpl+Uq13UwtqTabfrFsnnKdGXGuDACA8Yebbu/AWzxN352VpbPd15SXOYmwAgBAnBBY7iLXmUFQAQAgzvhICAAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGS5p/S8iyLElSKBSKcyUAAGCobv3cvvVzfDBJE1iuXr0qSXK5XHGuBAAAxOrq1atyOp2Dvm6z7hZpEkQ4HNZnn32muXPn6vz583I4HPEuaUyFQiG5XK5x2bs0vvun9/HZuzS++x/PvUvJ1b9lWbp69aoeeughpaQMfqdK0lxhSUlJ0Te+8Q1JksPhSPgDOFzjuXdpfPdP7+Ozd2l89z+ee5eSp/87XVm5hZtuAQCA8QgsAADAeEkVWOx2u2pra2W32+Ndypgbz71L47t/eh+fvUvju//x3Ls0PvtPmptuAQBA8kqqKywAACA5EVgAAIDxCCwAAMB4BBYAAGA8owJLQ0OD8vLylJ6eLrfbrfb29jvO/+CDD/Stb31Ldrtdjz76qHbt2hX1+q9+9St95zvf0ZQpUzRlyhSVlZXdtuYLL7wgm80Wtc2ZM2ekW7urke59165dt/WVnp5+z+87Gka69+9973u39W6z2bR48eLIHFOOuxRb/z6fTytWrNCsWbOUkpKidevWDTjv4MGDmjNnjtLT05Wfn6/Dhw/f0/uOlpHuPZHOeWnk+0/W834ovSfzed/U1KQnn3xSWVlZcjgc8ng8eu+9926blyjn/bBZhmhsbLTS0tKsnTt3WqdOnbJWrVpl3X///VYgEBhw/hdffGFNmjTJqq6utj755BPrjTfesFJTU63m5ubInBUrVlgNDQ1WZ2en9emnn1r/8A//YDmdTuvChQuRObW1tdZjjz1m+Xy+yHb58uVR7/fPjUbvb775puVwOKL68vv99/S+o2E0ev/f//3fqL5PnjxppaamWm+++WZkjgnH3bJi7//MmTPW888/b7311ltWYWGhtXbt2tvmfPzxx1Zqaqr1y1/+0vrkk0+sjRs3WhMnTrROnDgx7PcdDaPRe6Kc85Y1Ov0n63k/lN6T+bxfu3at9fLLL1vt7e3W//zP/1g1NTXWxIkTrWPHjkXmJMp5fy+MCSwlJSXW6tWrI7/v7++3HnroIauurm7A+T/96U+txx57LGrM6/Va5eXlg77HV199Zd13333WW2+9FRmrra21CgoK7q34ezQavb/55puW0+kc0fcdDWNx3F977TXrvvvus3p6eiJjJhx3y7q3Y1BaWjrgf7ifeuopa/HixVFjbrfbevbZZ0fkfUfKaPT+/zP1nLes0ek/Wc/7PzfUY5+s5/0tc+fOtTZv3hz5faKc9/fCiI+Ebty4oY6ODpWVlUXGUlJSVFZWpra2tgH3aWtri5ovSeXl5YPOl6Rr167p//7v//TAAw9Ejf/xj3/UQw89pG9+85v6u7/7O3V1dd1DN7EZzd57eno0ffp0uVwuLVmyRKdOnbqn9x1pY3Xcf/3rX+vpp5/W5MmTo8bjedyl0TsGd/szStRjPxwmnvPS6PafjOf9cCTzeR8Oh3X16tWov9eJcN7fKyMCS3d3t/r7+5WdnR01np2dLb/fP+A+fr9/wPmhUEjXr18fcJ+f/exneuihh6IOmNvt1q5du9Tc3Kx///d/15kzZ/Sd73xHV69evceuhma0ep89e7Z27typQ4cOac+ePQqHw1q0aJEuXLgw7PcdaWNx3Nvb23Xy5ElVVVVFjcf7uEujdwwG+zO6tWaiHvvhMPGcl0av/2Q972OV7Of9li1b1NPTo6eeeioylgjn/b1Kmn+t+W5eeuklNTY26oMPPoi6Ce1v/uZvIr9+/PHH5Xa7NX36dB04cEDPPPNMPEodER6PRx6PJ/L7RYsW6S/+4i+0fft2/fznP49jZWPr17/+tfLz81VSUhI1nqzHHV8bb+e8xHl/SzKf93v37tXmzZt16NAhTZ06Nd7ljCkjrrBkZmYqNTVVgUAgajwQCCgnJ2fAfXJycgac73A4lJGRETW+ZcsWvfTSS3r//ff1+OOP37GW+++/X7NmzdLp06eH0UnsRrv3WyZOnKj58+dH+hrO+4600e69t7dXjY2NQ/oP0Vgfd2n0jsFgf0a31kzUYx8Lk895aeyOQbKc97FI5vO+sbFRVVVVOnDgwG0f/yTCeX+vjAgsaWlpKioqUktLS2QsHA6rpaUl6v8W/pzH44maL0lHjhy5bf4vf/lL/fznP1dzc7MWLFhw11p6enr0+eefKzc3dxidxG40e/9z/f39OnHiRKSv4bzvSBvt3g8ePKi+vj798Ic/vGstY33cpdE7Bnf7M0rUYz9Upp/z0tgdg2Q572ORrOf9vn37VFlZqX379kV9VfuWRDjv71m87/q9pbGx0bLb7dauXbusTz75xPrRj35k3X///ZGv5K1fv976+7//+8j8W19v/ed//mfr008/tRoaGm77eutLL71kpaWlWb/97W+jvsZ29erVyJx/+qd/sj744APrzJkz1scff2yVlZVZmZmZ1qVLlxK6982bN1vvvfee9fnnn1sdHR3W008/baWnp1unTp0a8vsmau+3/OVf/qXl9XoHfF8Tjrtlxd6/ZVlWZ2en1dnZaRUVFVkrVqywOjs7o47rxx9/bE2YMMHasmWL9emnn1q1tbUDfr0x0Y69Zd2990Q55y1rdPpP1vPesu7e+y3JeN7/53/+pzVhwgSroaEh6u/1lStXInMS5by/F8YEFsuyrDfeeMOaNm2alZaWZpWUlFj//d//HXmtoqLCKi0tjZr/X//1X1ZhYaGVlpZmffOb34z6vr1lWdb06dMtSbdttbW1kTler9fKzc210tLSrG984xuW1+u1Tp8+PYpdDmyke1+3bl1kvezsbOv73/9+1Hf2h/K+Y2Wke7csy/rDH/5gSbLef//9Ad/TlONuWbH3P9Df6enTp0fNOXDggDVr1iwrLS3Neuyxx6x33303pvcdKyPdeyKd85Y18v0n83k/lL/3yXrel5aWDth/RUVF1JqJct4Pl82yLGtUL+EAAADcIyPuYQEAALgTAgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjPf/ADaBWAw6DsBoAAAAAElFTkSuQmCC"
          },
          "metadata": {}
        },
        {
          "output_type": "display_data",
          "data": {
            "text/plain": "<Figure size 640x480 with 0 Axes>"
          },
          "metadata": {}
        }
      ]
    },
    {
      "cell_type": "code",
      "source": "def modelo_sc(t, g):\n    return g*t**2/2",
      "metadata": {
        "trusted": true
      },
      "execution_count": 7,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": "Y = np.log(np.abs(-prom_Altura1 [1:-3]))\nX = np.log(prom_Tiempos1[1:-3])",
      "metadata": {
        "trusted": true
      },
      "execution_count": 8,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": "plt.plot (X, Y)\nplt.xlabel(r'$\\ln(t)$')\nplt.ylabel(r'$\\ln(y)$')\nplt.savefig('linealization.pdf', bbox_inches='tight')",
      "metadata": {
        "trusted": true
      },
      "execution_count": 9,
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "text/plain": "<Figure size 640x480 with 1 Axes>",
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAGyCAYAAADu9GDAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABKxklEQVR4nO3deVxVdeL/8ddlXxRI2ROVRSFXFPexkjShmtTKSiuVxqxsm8oybUprxsbJqabSymxxabGazGp0vragluWuuCsjiooguBAXXLgs9/z+sOEnkyIgcO6F9/PxOI9H93IO932PJ+/bcz/ncyyGYRiIiIiICAAuZgcQERERcSQqRyIiIiLnUDkSEREROYfKkYiIiMg5VI5EREREzqFyJCIiInIOlSMRERGRc7iZHcDZ2O12cnJyaN68ORaLxew4IiIiUg2GYVBUVER4eDguLlWfG1I5qqGcnBwiIiLMjiEiIiK1kJWVRatWrapcR+Wohpo3bw6c3bl+fn4mpxEREZHqKCwsJCIiouJzvCoqRzX036/S/Pz8VI5EREScTHWGxGhAtoiIiMg5VI5EREREzqFyJCIiInIOlSMRERGRczh9OXrjjTdo27YtXl5e9O7dm/Xr119w3ZUrV2KxWH6z5ObmNmBiERERcWROXY4+/fRTHn/8caZOncrmzZvp2rUrSUlJHD16tMrt0tPTOXLkSMUSHBzcQIlFRETE0Tl1OXrllVcYN24cd999Nx06dGD27Nn4+Pjw/vvvV7ldcHAwoaGhFUtVM2XabDYKCwsrLSIiItJ4OW05KikpYdOmTQwaNKjiORcXFwYNGsSaNWuq3DY+Pp6wsDCuvfZafv755yrXnT59Ov7+/hWLZscWERFp3Jy2HB0/fpzy8nJCQkIqPR8SEnLBMURhYWHMnj2bRYsWsWjRIiIiIhgwYACbN2++4OtMnjwZq9VasWRlZdXp+xARERHH0qRmyI6NjSU2Nrbicb9+/di3bx//+Mc/+OCDD867jaenJ56eng0VUUREREzmtGeOAgMDcXV1JS8vr9LzeXl5hIaGVvv39OrVi4yMjLqOJyIiIk7KacuRh4cHCQkJpKamVjxnt9tJTU2lb9++1f49W7ZsISwsrD4iioiIiBNy6q/VHn/8ccaMGUOPHj3o1asXr776KqdOneLuu+8Gzo4Xys7OZsGCBQC8+uqrREZG0rFjR4qLi3n33XdZvnw53377rZlvQ0RERADDMFi+5yiJscG4uFz8BrH1xanL0e23386xY8eYMmUKubm5xMfHs2zZsopB2keOHOHQoUMV65eUlDBhwgSys7Px8fGhS5cufP/99yQmJpr1FkRERAQoLC7lT4t38K+tOTyVHMf4AdGmZbEYhmGY9upOqLCwEH9/f6xWK35+fmbHERERcXpbswp4eGEah/JP4+Zi4ankOMZdFVWnr1GTz2+nPnMkIiIizstuN3jvp0xeXLaHMrtBq8u8eX1kN7q3vszUXCpHIiIi0uBOnLQx4Z9bWZl+DIDrOoXyt1u64O/tbnIylSMRERFpYKszjvPop1s4WmTD082FKTd24I5erbFYzBuEfS6VIxEREWkQZeV2Xkvdy6wVGRgGxAQ3Y9Yd3YgLdawxvCpHIiIiUu+yC87w6CdpbDjwCwAjekYw5cYO+Hg4XhVxvEQiIiLSqHyzM5eJn2/DeqaUZp5u/PXmzgzpGm52rAtSORIREZF6UVxazvR/72b+moMAdG3lz+sju9Gmpa/JyaqmciQiIiJ1bv+xkzz0cRq7jhQCcO9VUTwxOBYPN8e/c5nKkYiIiNSp5XvyeGThFk7aymjh68HLt3YlMS7Y7FjVpnIkIiIidcIwDN7+cT8vLtuDYUDPtpcx647uhPh5mR2tRlSORERE5JIVl5YzadE2vtySA8DIXhE8P6STU3yN9r9UjkREROSS5FqLue+DjWw9bMXVxcLUGzswqk8bh5nUsaZUjkRERKTWtmQVcO+CjRwtshHg486bd3SnX0yg2bEuicqRiIiI1MritMM8tWg7JWV22gU3490xPRz+Mv3qUDkSERGRGim3G8xYtoe3f9wPwKArgvnH7fE09zL/prF1QeVIREREqq2wuJQ/LkxjRfoxAB5MjGbCtbG4uDjn+KLzUTkSERGRask8fop75m9g37FTeLq5MGN4F4bGX252rDqnciQiIiIXtWrvMR78aDOFxWWE+nkxZ3QCXVoFmB2rXqgciYiIyAUZhsG81QeYtnQ35XaDbq0DePuuBIKdbGLHmlA5EhERkfOylZUz5cudfLoxC4BburfihZs64eXuanKy+qVyJCIiIr9xrMjG+A83sfHgL7hY4Onrr2Bs/0inndixJlSOREREpJId2VbuXbCRHGsxzb3cmDmyGwNinefGsZdK5UhEREQqLNmWwxP/3EpxqZ2oQF/eGdOD6KBmZsdqUCpHIiIiQrnd4O/fpDP7h30AXNU+iJkju+Hv3TgmdqwJlSMREZEmruB0CQ8vTGPV3uMA3HtVFE8lx+HaiCZ2rAmVIxERkSZsV04h9324kaz8M3i5uzBjeFeGdA03O5apVI5ERESaqK+35jDx87PjiyJaePP2XT3oEO5ndizTqRyJiIg0MWXldmZ8k86cX28ce2W7QGaO7EaAj4fJyRyDypGIiEgTkn+qhIcXbubnjBMAjB8QzRODY5vs+KLzUTkSERFpInZkW7nvg01kF5zBx8OVvw/vyg1dwsyO5XBUjkRERJqAL9OyeWrRNmxldtq09GHOqB7EhjY3O5ZDUjkSERFpxMrK7fz133t4/+dMAAbEBvHa7d3w92l68xdVl4vZAS7VG2+8Qdu2bfHy8qJ3796sX7++yvVXrlxJ9+7d8fT0JCYmhnnz5jVMUBERkQZ24qSNu95bV1GMHkqM4b0xPVWMLsKpy9Gnn37K448/ztSpU9m8eTNdu3YlKSmJo0ePnnf9zMxMbrjhBhITE9myZQuPPvoo99xzD998800DJxcREalfO7KtDJn1M2v35+Pr4crsu7rzRJIGXleHxTAMw+wQtdW7d2969uzJrFmzALDb7URERPDwww8zadKk36z/1FNPsXTpUnbs2FHx3IgRIygoKGDZsmXVes3CwkL8/f2xWq34+WkuCBERcTxfbD7M5C+2YyuzExnoy5xRCbQLadrji2ry+e20Z45KSkrYtGkTgwYNqnjOxcWFQYMGsWbNmvNus2bNmkrrAyQlJV1wfQCbzUZhYWGlRURExBGVltt57uudPP7ZVmxldgbGBfPlg79r8sWoppy2HB0/fpzy8nJCQkIqPR8SEkJubu55t8nNzT3v+oWFhZw5c+a820yfPh1/f/+KJSIiom7egIiISB06ftLGne+uY97qAwA8MrAd74zu0SRvHHupnLYcNZTJkydjtVorlqysLLMjiYiIVLI1q4AbZ/7E+sx8mnm6MWdUAo9f2x4XjS+qFae9lD8wMBBXV1fy8vIqPZ+Xl0doaOh5twkNDT3v+n5+fnh7e593G09PTzw9PesmtIiISB1buP4QU7/aSUm5naggX+aM6kFMcDOzYzk1pz1z5OHhQUJCAqmpqRXP2e12UlNT6du373m36du3b6X1Ab777rsLri8iIuKoikvLeerzbUz+Yjsl5Xau7RDClw/+TsWoDjhtOQJ4/PHHeeedd5g/fz67d+9m/PjxnDp1irvvvhs4+5XY6NGjK9a///772b9/PxMnTmTPnj28+eabfPbZZzz22GNmvQUREZEaO/zLaW6dvYZPN2bhYoGJybG8fVcCfl4aX1QXnPZrNYDbb7+dY8eOMWXKFHJzc4mPj2fZsmUVg66PHDnCoUOHKtaPjIxk6dKlPPbYY7z22mu0atWKd999l6SkJLPegoiISI2s2nuMRxam8cvpUi7zcWfmyO70bxdodqxGxannOTKD5jkSEREz2O0Gb/2wj5e+TccwoEsrf966K4HLA84/ZlYqq8nnt1OfORIREWkKCotLmfDZVr7bdfaiohE9I3huSEe83F1NTtY4qRyJiIg4sPTcIu7/cBOZx0/h4ebCn4d0ZESv1mbHatRUjkRERBzU11tzeOrzbZwpLefyAG/euqs7XVoFmB2r0VM5EhERcTCl5Xam/3sP7/+cCUD/mEBeH9mNFr4eJidrGlSOREREHMjRomIe+iiN9QfyAXhgQDQTBsfiqtmuG4zKkYiIiIPYeCCfBz7azNEiG8093Xjptq4kdTz/XR+k/qgciYiImMwwDD5Ye5A//2sXZXaD9iHNmH1XAlFBmu3aDCpHIiIiJiouLefZL3fwz02HAfh9lzBevKULvp76iDaL9ryIiIhJjljPcP+Hm9maVYCLBSZfdwX3XBmJxaLxRWZSORIRETHBhgP5jP9wM8dP2gjwcWfmyG5c2S7I7FiCypGIiEiDMgyDj9Yd4rmvd1JmN4gLbc6cUT1o3dLH7GjyK5UjERGRBmIrK2fqVzv5ZEMWADd0CePvw7vg46GPY0eiPw0REZEGkFdYzP0fbiLtUAEWC0xMiuP+q6M0vsgBqRyJiIjUs00H87n/w80cK7Lh5+XGzDu6c3V7jS9yVCpHIiIi9ejjdYeY+vUOSsvPzl80Z1QP2gb6mh1LqqByJCIiUg9Kyuw896+dfLzuEADXdQrlpVu7av4iJ6A/IRERkTp2tLCY8R9tZtPBX7BY4InBsTwwIFrji5yEypGIiEgd2nzoF8Z/uIm8QhvNvdx4fUQ3EuOCzY4lNaByJCIiUkc+3XCIZ7/cSUm5nZjgZrwzugeRGl/kdFSORERELlFJmZ2/LNnFB2sPAjC4Qwiv3B5PM40vckr6UxMREbkERwuLeeCjzWw8+AsAj1/bnocSY3Bx0fgiZ6VyJCIiUkubDp4dX3S0yEZzTzdeHRHPwCtCzI4ll0jlSEREpIYMw+Dj9Wfvj1ZabtAuuBlvj0ogKqiZ2dGkDqgciYiI1EBx6dn7o3268ez90a7rFMrfb+2q8UWNiP4kRUREqumI9Qz3f7iZrVkFuFjgiaRYxl+t+YsaG5UjERGRali3/wQPfryZ4ydL8Pd2Z+bIblyl+6M1SipHIiIiVTAMg3mrD/DC0t2U2Q2uCPPj7bsSaN3Sx+xoUk9UjkRERC6guLScp7/Yzhdp2QAMjQ/nbzd3wdvD1eRkUp9UjkRERM4jK/8093+4iZ05hbi6WJh8XRxj+0dqfFEToHIkIiLyP37ae5yHF27ml9OltPT1YOYd3egXHWh2LGkgKkciIiK/MgyDOT/u58Vle7Ab0KWVP7PvSiA8wNvsaNKAVI5ERESA0yVlPPn5NpZuOwLArQmt+MuwTni5a3xRU6NyJCIiTd6B46e474NNpOcV4eZiYeqQjtzVu7XGFzVRLmYHqK38/HzuvPNO/Pz8CAgIYOzYsZw8ebLKbVJSUrBYLJWW5OTkBkosIiKOaEX6UYbM+on0vCKCmnuy8N4+jOrTRsWoCXPaM0d33nknR44c4bvvvqO0tJS7776be++9l48//rjK7ZKTk5k7d27FY09Pz/qOKiIiDuq9nzKZtnQXhgHdWwfw1l0JhPh5mR1LTOaU5Wj37t0sW7aMDRs20KNHDwBmzpzJ9ddfz0svvUR4ePgFt/X09CQ0NLShooqIiAMqtxv8Zcku5q0+AMDIXq15bkgHPN00vkic9Gu1NWvWEBAQUFGMAAYNGoSLiwvr1q2rctuVK1cSHBxMbGws48eP58SJE1Wub7PZKCwsrLSIiIjzOlNSzgMfbaooRk9fH8dfb+qkYiQVnLIc5ebmEhwcXOk5Nzc3WrRoQW5u7gW3S05OZsGCBaSmpvLiiy/yww8/cN1111FeXn7BbaZPn46/v3/FEhERUWfvQ0REGtaJkzZGvrOWb3bm4eHqwqw7unHvVbpxrFTmUOVo0qRJvxkw/b/Lnj17av37R4wYwZAhQ+jcuTPDhg1jyZIlbNiwgZUrV15wm8mTJ2O1WiuWrKysWr++iIiYJ/P4KW5+azVbsgrw93bnw3t68/suFx6GIU2XQ405mjBhAikpKVWuExUVRWhoKEePHq30fFlZGfn5+TUaTxQVFUVgYCAZGRkMHDjwvOt4enpq0LaIiJPbdDCfe+Zv5JfTpUS08Gbe3b2IDmpmdixxUA5VjoKCgggKCrroen379qWgoIBNmzaRkJAAwPLly7Hb7fTu3bvar3f48GFOnDhBWFhYrTOLiIhj+7/tR3j00y3Yyux0beXPu2N6EtRc/+iVC3Oor9Wq64orriA5OZlx48axfv16fv75Zx566CFGjBhR6Uq1uLg4Fi9eDMDJkyd58sknWbt2LQcOHCA1NZWhQ4cSExNDUlKSWW9FRETq0Xs/ZfLAx5uxldkZdEUwC+/to2IkF+WU5Qjgo48+Ii4ujoEDB3L99dfTv39/5syZU2md9PR0rFYrAK6urmzbto0hQ4bQvn17xo4dS0JCAqtWrdLXZiIijUy53eD5f+3kL0vOzmE0qk8b3h7VAx8Ph/rCRByUxTAMw+wQzqSwsBB/f3+sVit+fn5mxxERkf9RXFrOHz9J45udecDZS/XHXRmlK9KauJp8fqtCi4hIo3HipI17Fmwk7VABHq4uvHxbV27sqivSpGZUjkREpFHIPH6KlLnrOXjiNP7e7rwzuge9IluYHUuckMqRiIg4vU0Hf+Ge+RsqLtWfm9KLmGBdqi+1o3IkIiJObdmOI/zxk7OX6ndp5c97ulRfLpHKkYiIOK33fspk2tKzV6QNjAtm5h3ddEWaXDIdQSIi4nTK7QbTlu5i7s8HALirT2ueu7Ejbq5OO0ONOBCVIxERcSrFpeU8+skWlu08e6PxydfFce9VulRf6o7KkYiIOA1dqi8NQeVIREScwp7cQu5dsIlD+bpUX+qXypGIiDi8JdtyePKf2zhTWv7rpfo9iQlubnYsaaRUjkRExGGV2w1mfLOHt3/YD8CV7QJ5fUQ3LvP1MDmZNGYqRyIi4pB+OVXCI5+ksWrvcQDuuzqKiUlxuLpo4LXUL5UjERFxOLtyCrnvw41k5Z/B292Vv9/ahd930cBraRgqRyIi4lC+3prDxM+3Ulxqp3ULH+aMTiAutOq7qIvUJZUjERFxCGXldmZ8k86cH8+OL7qqfRCvj4gnwEfji6RhqRyJiIjp8k+V8PDCzfyccQKABwZEM2FwrMYXiSlUjkRExFQ7sq3c98EmsgvO4OPhyku3duX6zmFmx5ImTOVIRERM82VaNk8t2oatzE6blj7MGdWD2FDNXyTmUjkSEZEGV1Zu56//3sP7P2cCMCA2iNdu74a/j7vJyURUjkREpIGdOGnjwY83s3Z/PgAPXxPDo4Paa3yROAyVIxERaTDnji/y9XDl5du6ktxJ44vEsagciYhIg/hi82Emf7EdW5mdyEBf5oxKoF2IxheJ41E5EhGRelVabueFpbuZt/oAAAPjgnnl9nj8vTW+SByTypGIiNSb4ydtPPDRZtZnnh1f9MjAdjw6sB0uGl8kDkzlSERE6sW2wwXc98EmjliLaebpxsu3dSWpY6jZsUQuSuVIRETq3D83ZvGnL3dQUmYnKujs+KKYYI0vEuegciQiInWmtNzOtCW7mL/mIACDrgjhldu74uel8UXiPFSORESkThwrsvHgR5tZf+Ds+KLHBrXn4WtiNL5InI7KkYiIXLK0Q78w/sPN5BYW09zTjX/cHs+gDiFmxxKpFZUjERG5JJ9tyOKZL3dQUm4nOsiXOaN7EB3UzOxYIrWmciQiIrVSVm7nuX/t5MO1hwAY3CGEl2/rSnONLxInp3IkIiI1ZhgGk7/Yzj83HcZigccHtefBRI0vksZB5UhERGrsH9/v5Z+bDuNigTfu6M51nXV/NGk8XMwOUFsvvPAC/fr1w8fHh4CAgGptYxgGU6ZMISwsDG9vbwYNGsTevXvrN6iISCPz8bpDvJ569u/OacM6qxhJo+O05aikpIRbb72V8ePHV3ubGTNm8PrrrzN79mzWrVuHr68vSUlJFBcX12NSEZHG4/tdeTzz5Xbg7K1A7ujd2uREInXPab9We/755wGYN29etdY3DINXX32VZ555hqFDhwKwYMECQkJC+PLLLxkxYsR5t7PZbNhstorHhYWFlxZcRMRJbT70Cw8t3IzdgNt6tOKxQe3MjiRSL5z2zFFNZWZmkpuby6BBgyqe8/f3p3fv3qxZs+aC202fPh1/f/+KJSIioiHiiog4lP3HTjJ23gaKS+0kxgbxwk2dsVg0+FoapyZTjnJzcwEICak8KVlISEjFz85n8uTJWK3WiiUrK6tec4qIOJqjRcWMmbueX06X0rWVP2/c2R131ybz8SFNkEMd3ZMmTcJisVS57Nmzp0EzeXp64ufnV2kREWkqTtrK+MO8DWTln6FNSx/eS+mJj4fTjsgQqRaHOsInTJhASkpKletERUXV6neHhoYCkJeXR1jY/7+yIi8vj/j4+Fr9ThGRxqy03M74DzexI7uQlr4ezL+7F4HNPM2OJVLvHKocBQUFERQUVC+/OzIyktDQUFJTUyvKUGFhIevWravRFW8iIk2BYRg8tWgbq/Yex9vdlfdTetI20NfsWCINwqG+VquJQ4cOsWXLFg4dOkR5eTlbtmxhy5YtnDx5smKduLg4Fi9eDIDFYuHRRx9l2rRpfP3112zfvp3Ro0cTHh7OsGHDTHoXIiKO6aVv0/liczauLhbevLM7XSMCzI4k0mAc6sxRTUyZMoX58+dXPO7WrRsAK1asYMCAAQCkp6djtVor1pk4cSKnTp3i3nvvpaCggP79+7Ns2TK8vLwaNLuIiCP7YO1B3lixD4DpN3UmMS7Y5EQiDctiGIZhdghnUlhYiL+/P1arVYOzRaTR+WZnLuM/3ITdgMcGteePmstIGomafH477ddqIiJStzYdzOeRhWnYDRjZK4JHBsaYHUnEFCpHIiJCxtGTjJ2/EVuZnYFxwfxlaCdN8ihNlsqRiEgTd7SwmDHvr6fgdCnxEQHMvKMbbprkUZowHf0iIk1YUXEpKXM3kF1whshAX94b00OTPEqTp3IkItJElZTZGf/hZnYdKSSw2dlJHltqkkcRlSMRkabIbjeY+PlWfso4jo+HK3NTetG6pY/ZsUQcgsqRiEgTNOObdL7ckoPbr5M8dm7lb3YkEYehciQi0sTM+zmT2T+cneTxb7d0YUCsJnkUOZfKkYhIE/J/24/w/JJdADyZFMvwhFYmJxJxPCpHIiJNxPrMfP746RYMA+7q05oHBkSbHUnEIakciYg0AXvzihi3YCMlZXYGdwjh+SGa5FHkQlSOREQauVzr2UkerWdK6d46gNdHdsPVRcVI5EJUjkREGrHC4lJS5q4nx1pMVJAv743piZe7q9mxRByaypGISCNlKyvnvgWb2JNbRFBzT+bf3YvLfD3MjiXi8FSOREQaIbvd4Ml/bmPN/hP4ergyN6UnES00yaNIdagciYg0Qn9btoevt56d5HH2qAQ6Xa5JHkWqS+VIRKSRee+nTOb8uB+AGcO7cGW7IJMTiTgXlSMRkUZkybYcpi09O8njU8lx3NxdkzyK1JTKkYhII7F2/wke/3QrhgFj+rbh/qujzI4k4pRUjkREGoH03F8neSy3k9wxlCk3dtQkjyK1pHIkIuLkcgrOMOb99RQVl9Gz7WW8OiJekzyKXAKVIxERJ2Y9c3aSx9zCYmKCm/HO6B6a5FHkErldysalpaXk5uZy+vRpgoKCaNGiRV3lEhGRizhx0sY9Czbyn7yThPh5Mv8PvQjw0SSPIpeqxmeOioqKeOutt7j66qvx8/Ojbdu2XHHFFQQFBdGmTRvGjRvHhg0b6iOriIj8KuPoSW56czVphwrw83JjbkovLg/wNjuWSKNQo3L0yiuv0LZtW+bOncugQYP48ssv2bJlC//5z39Ys2YNU6dOpaysjMGDB5OcnMzevXvrK7eISJO1OuM4N7/5M4fyT9O6hQ9fPPA7OoT7mR1LpNGwGIZhVHflkSNH8swzz9CxY8cq17PZbMydOxcPDw/+8Ic/XHJIR1JYWIi/vz9WqxU/P/1lJCIN67MNWTy9eDtldoOENpcxZ1QCLZt5mh1LxOHV5PO7RuXoXFlZWURERNQqoDNTORIRM9jtBjO+SWf2D/sAGNI1nBnDu2jwtUg11eTzu9ZXq8XFxTFlyhROnz5d218hIiLVcKaknAc/3lxRjB4Z2I7XRsSrGInUk1qXo++++45vvvmGdu3aMW/evDqMJCIi/3W0qJgR76zl/3bk4u5q4ZXbuvL4te01waNIPap1OerXrx/r1q1j+vTpPPvssyQkJLBq1aq6zCYi0qSl5xZx0xur2ZpVQICPOx+O7a17pYk0gEueBHL06NGkp6dzww03cN111zF8+HAyMzPrIpuISJP1w3+Occtbq8kuOENkoC+LH/gdvaNamh1LpEmosxmyBw8ezD333MPixYvp0KEDEydO5OTJk3X160VEmowP1h7kD/M2cNJWRu/IFix+oB+Rgb5mxxJpMmpdjmbPns3YsWPp0qUL/v7+DBw4kFWrVnH//ffz2muvsXHjRjp06MDGjRvrMm+FF154gX79+uHj40NAQEC1tklJScFisVRakpOT6yWfiEhNldsN/rJkF89+uYNyu8Et3VvxwdjemvVapIHV+lL+iIgIevfuTZ8+fejTpw8JCQl4e1eenfWvf/0rH3/8MTt27KiTsOeaOnUqAQEBHD58mPfee4+CgoKLbpOSkkJeXh5z586teM7T05PLLrus2q+rS/lFpD6cspXxx0+28P3uPACeGNyeBxNjNPBapI7U5PO71vdWy8rKuug6Y8eO5dlnn63tS1Tp+eefB6jxlXKenp6EhobWQyIRkdrJtRYzdv4GduYU4uHmwsu3duXGruFmxxJpsi7pxrMXExwczPLly+vzJWps5cqVBAcHc9lll3HNNdcwbdo0Wra88CBHm82GzWareFxYWNgQMUWkidiZY2XsvI3kFhbT0teDOaN7kNCm+mezRaTu1WjM0aFDh2r0y3Nycrj66qtrtE19Sk5OZsGCBaSmpvLiiy/yww8/cN1111FeXn7BbaZPn46/v3/F0hRnBReR+pG6O49bZ68ht7CYmOBmfPng71SMRBxAjcpRz549ue+++9iwYcMF17Farbzzzjt06tSJRYsW1SjMpEmTfjNg+n+XPXv21Oh3nmvEiBEMGTKEzp07M2zYMJYsWcKGDRtYuXLlBbeZPHkyVqu1YqnO14kiIlUxDIP3f8pk3IKNnC4pp39MIIvG9yOihY/Z0USEGn6ttmvXLl544QWuvfZavLy8SEhIIDw8HC8vL3755Rd27drFzp076d69OzNmzOD666+vUZgJEyaQkpJS5TpRUVE1+p0X+12BgYFkZGQwcODA867j6emJp6du6igidaOs3M6fl+xiwZqDAIzsFcGfh3bC3bXOZlYRkUtUo3LUsmVLXnnlFV544QWWLl3KTz/9xMGDBzlz5gyBgYHceeedJCUl0alTp1qFCQoKIigoqFbb1sbhw4c5ceIEYWFhDfaaItJ0FRWX8vDCNFamH8NigUnJcdx7VZSuSBNxMLUakO3t7c3w4cMZPnx4XeeptkOHDpGfn8+hQ4coLy9ny5YtAMTExNCsWTPg7M1xp0+fzk033cTJkyd5/vnnueWWWwgNDWXfvn1MnDiRmJgYkpKSTHsfItI0ZBecYey8DezJLcLL3YVXb48nuZP+YSbiiOr1arX6NGXKFObPn1/xuFu3bgCsWLGCAQMGAJCeno7VagXA1dWVbdu2MX/+fAoKCggPD2fw4MH85S9/0ddmIlKvth0uYOz8jRwrshHU3JN3R/ega0SA2bFE5AJqPQkkQGpqKqmpqRw9ehS73V7pZ++///4lh3NEmgRSRGpi2Y5cHv00jeJSO3GhzXkvpSeXB3hffEMRqVMNMgnk888/z5///Gd69OhBWFiYvjMXETmHYRjM+XE/f1u2B8OAAbFBzBzZjeZe7mZHE5GLqHU5mj17NvPmzWPUqFF1mUdExOmVltuZ8tUOFq4/O/XH6L5tmPL7DrjpijQRp1DrclRSUkK/fv3qMouIiNOzninlwY8281PGcVws8OzvO3D37yLNjiUiNVDrf8bcc889fPzxx3WZRUTEqWXln+aWt1bzU8ZxfDxceWd0DxUjESdU6zNHxcXFzJkzh++//54uXbrg7l75e/RXXnnlksOJiDiLTQd/4d4FGzlxqoRQPy/eS+lBx3B/s2OJSC3Uuhxt27aN+Ph4AHbs2FFXeUREnM6/tuYw4Z9bKSmz0zHcj/fG9CTU38vsWCJSS7UuRytWrKjLHCIiTscwDGYtz+Dl7/4DwKArQnhtRDy+nk47hZyIUMNy9Pjjj1drPYvFwssvv1yrQCIizqCkzM7kL7azaPNhAO7pH8nk66/A1UXTmog4uxqVo7S0tGqtpzmPRKQxKzhdwn0fbGJdZj6uLhaeG9KRUX3amB1LROpIjcqRvkoTkaYu8/gp/jBvA5nHT9HM04037uzO1e0b7obZIlL/9MW4iEg1rc/M594PNlJwupTLA7x5P6UnsaHNzY4lInVM5UhEpBq+2HyYpxZto7TcoGtEAO+MTiC4ua5IE2mMVI5ERKpgGAb/+H4vr6fuBeD6zqG8fGs83h6uJicTkfqiciQicgH/e0Xa+AHRPDk4FhddkSbSqKkciYicR1FxKeM/PHuPNFcXC9OGdWJkr9ZmxxKRBqByJCLyP3KtxaTMXc+e3CJ8PFx5487uJMYGmx1LRBqIypGIyDn25BZy99wNHLEWE9Tck7kpPel0ue6RJtKUqByJiPzq54zj3P/BJopsZcQEN2NuSk8iWviYHUtEGpjKkYgIlS/V7xXZgndG9cDfx93sWCJiApUjEWnSDMPgjRUZvPTt2ZvH3tg1nJdu7YKnmy7VF2mqVI5EpMkqK7fz7Fc7WLg+C4D7ro7iqaQ4Xaov0sSpHIlIk3TKVsaDH29mZfoxXCzw3JCOjO7b1uxYIuIAVI5EpMk5WlTMH+ZtYEd2IV7uLswc2Z1rO4SYHUtEHITKkYg0KRlHixjz/gayC87Q0teDd8f0oFvry8yOJSIOROVIRJqMdftPcO8Hm7CeKSUy0Jd5d/ekTUtfs2OJiINRORKRJuFfW3OY8NlWSsrtdG8dwLtjetLC18PsWCLigFSORKRRMwyDd1bt56//3gNAcsdQXh0Rj5e7LtUXkfNTORKRRqvcbvD8v3ayYM1BAO7+XVueuaEDrrpUX0SqoHIkIo3SmZJyHvkkje925WGxwJ+uv4J7rowyO5aIOAGVIxFpdE6ctDF2/ka2ZBXg4ebCq7fHc33nMLNjiYiTUDkSkUYl8/gpUuau5+CJ0wT4uPPu6B70aNvC7Fgi4kRUjkSk0dh08Bfumb+BX06XEtHCm3l39yI6qJnZsUTEyagciUijsGxHLn/8JA1bmZ0urfx5b0xPgpp7mh1LRJyQi9kBauPAgQOMHTuWyMhIvL29iY6OZurUqZSUlFS5nWEYTJkyhbCwMLy9vRk0aBB79+5toNQiUl/m/pzJ+I82YSuzMzAumE/u7aNiJCK15pTlaM+ePdjtdt5++2127tzJP/7xD2bPns3TTz9d5XYzZszg9ddfZ/bs2axbtw5fX1+SkpIoLi5uoOQiUpfsdoNpS3bx/L92YRhwZ+/WvD0qAR8PnRQXkdqzGIZhmB2iLvz973/nrbfeYv/+/ef9uWEYhIeHM2HCBJ544gkArFYrISEhzJs3jxEjRpx3O5vNhs1mq3hcWFhIREQEVqsVPz+/un8jIlItxaXlTPhsK0u3HwFgYnIs46+OxmLRHEYi8luFhYX4+/tX6/PbKc8cnY/VaqVFiwtfkZKZmUlubi6DBg2qeM7f35/evXuzZs2aC243ffp0/P39K5aIiIg6zS0iNffLqRLuencdS7cfwd3Vwmsj4nlgQIyKkYjUiUZRjjIyMpg5cyb33XffBdfJzc0FICQkpNLzISEhFT87n8mTJ2O1WiuWrKysugktIrWSlX+aW2avZuPBX2ju5caCP/RmaPzlZscSkUbEocrRpEmTsFgsVS579uyptE12djbJycnceuutjBs3rs4zeXp64ufnV2kREXNsO1zATW/+zP5jpwj392LR+H70jW5pdiwRaWQcatTihAkTSElJqXKdqKj/P/1/Tk4OiYmJ9OvXjzlz5lS5XWhoKAB5eXmEhf3/mXLz8vKIj4+vdWYRaRipu/N46OM0zpSW0yHMj7l39yTEz8vsWCLSCDlUOQoKCiIoKKha62ZnZ5OYmEhCQgJz587FxaXqk2CRkZGEhoaSmppaUYYKCwtZt24d48ePv9ToIlKPPlp3kGe/3IHdgKvaB/Hmnd1p5ulQf32JSCPiUF+rVVd2djYDBgygdevWvPTSSxw7dozc3NzfjB2Ki4tj8eLFAFgsFh599FGmTZvG119/zfbt2xk9ejTh4eEMGzbMhHchIhdjtxu8uGwPf1p8thjd1qMV743poWIkIvXKKf+G+e6778jIyCAjI4NWrVpV+tm5MxOkp6djtVorHk+cOJFTp05x7733UlBQQP/+/Vm2bBleXjo1L+JobGXlTPx8G19tyQHgsUHteWSgrkgTkfrXaOY5aig1mSdBRGrHeqaU+z7YyNr9+bi5WJh+c2du7aFpNESk9mry+e2UZ45EpPHKLjjD3XPX85+8kzTzdOPNO7tzVfvqjUUUEakLKkci4jB25li5e+4GjhbZCPHzZG5KLzqE6wytiDQslSMRcQg//OcYD3y4iVMl5cSGNGfu3T0JD/A2O5aINEEqRyJius82ZjH5i+2U2w36RrVk9qgE/L3dzY4lIk2UypGImMYwDF79fi+vpe4F4KZul/PiLV3wcHPKWUZEpJFQORIRU5SW23n6i+38c9NhAB5MjOaJwbG6VF9ETKdyJCINrqi4lAc+2syqvcdxdbHwl6GduKN3a7NjiYgAKkci0sByrcXcPW8Du48U4u3uypt3dicxLtjsWCIiFVSORKTBpOcWcffc9eRYiwls5sn7KT3o0irA7FgiIpWoHIlIg1i97zj3fbCJouIyooJ8mX93LyJa+JgdS0TkN1SORKTefZmWzZOfb6W03KBn28t4Z3QPAnw8zI4lInJeKkciUm8Mw+DNlfv4+zfpANzQJYyXb+2Kl7uryclERC5M5UhE6kVZuZ0pX+/k43WHALj3qigmJcfh4qJL9UXEsakciUidKzhdwmOfbmFF+jEsFnjuxo6M6dfW7FgiItWiciQidWr1vuM8/ulWcguL8XRz4fWR3UjqGGp2LBGRalM5EpE6YSsr55Vv/8OcVfsxDIgK9OW1Ed3o3Mrf7GgiIjWiciQilyzjaBGPLNzCriOFAIzs1Zpnf38FPh76K0ZEnI/+5hKRWjMMgw/XHmTa0t3Yyuxc5uPOi7d0YbC+RhMRJ6ZyJCK1cqzIxlOLtrF8z1EArmofxEvDuxDs52VyMhGRS6NyJCI1tnxPHhM/38bxkyV4uLkw+bo4xvRtq8v0RaRRUDkSkWo7U1LOX/+9mw/WHgQgLrQ5r43oRmxoc5OTiYjUHZUjEamWHdlWHv10CxlHTwIwtn8kTybFarZrEWl0VI5EpEp2u8E7q/bz0rfplJYbBDf35OXbunJluyCzo4mI1AuVIxG5oJyCM0z4bCtr9p8AIKljCNNv7kILX900VkQaL5UjETmvpduOMPmLbRQWl+Ht7srUGztwe88ILBYNuhaRxk3lSEQqOWkrY+pXO1m0+TAAXVv58+qIbkQG+pqcTESkYagciUiFTQd/4bFPt3Ao/zQuFnhgQAx/HNQOd1cXs6OJiDQYlSMRoazczszlGcxakUG53eDyAG9eHRFPz7YtzI4mItLgVI5EmriDJ07x6KdbSDtUAMCw+HD+PKwTfl7u5gYTETGJypFIE2UYBp9vOsxzX+/kVEk5zb3cmDasE0PjLzc7moiIqVSORJqggtMlPL14O//engtAr8gWvHJbV1pd5mNyMhER86kciTQxqzOO8/hnW8ktLMbNxcJj17bn/qujcdV90UREAJUjkSbDVlbOy9/+h3dW7ccwICrQl1dHxNOlVYDZ0UREHIpTXp974MABxo4dS2RkJN7e3kRHRzN16lRKSkqq3C4lJQWLxVJpSU5ObqDUIubJOFrETW+sZs6PZ4vRyF6tWfJIfxUjEZHzcMozR3v27MFut/P2228TExPDjh07GDduHKdOneKll16qctvk5GTmzp1b8djT07O+44qYxjAMPlx7kGlLd2Mrs3OZjzsv3tKFwR1DzY4mIuKwnLIcJScnVzrjExUVRXp6Om+99dZFy5GnpyehodX/YLDZbNhstorHhYWFNQ8sYoJjRTaeWrSN5XuOAnBV+yBeGt6FYD8vk5OJiDg2p/xa7XysVistWlx8wrqVK1cSHBxMbGws48eP58SJE1WuP336dPz9/SuWiIiIuoosUm+W78kj+dUfWb7nKB5uLky9sQPzUnqqGImIVIPFMAzD7BCXKiMjg4SEBF566SXGjRt3wfU++eQTfHx8iIyMZN++fTz99NM0a9aMNWvW4Orqet5tznfmKCIiAqvVip+fX52/F5FLcaaknL/+ezcfrD0IQFxoc14b0Y3Y0OYmJxMRMVdhYSH+/v7V+vx2qHI0adIkXnzxxSrX2b17N3FxcRWPs7OzufrqqxkwYADvvvtujV5v//79REdH8/333zNw4MBqbVOTnSvSkHZkW/njJ2nsO3YKgLH9I3kyKRYv9/MXfxGRpqQmn98ONeZowoQJpKSkVLlOVFRUxX/n5OSQmJhIv379mDNnTo1fLyoqisDAQDIyMqpdjkQcjd1uMGfVfl7+Np3ScoPg5p68fFtXrmwXZHY0ERGn5FDlKCgoiKCg6v2Fnp2dTWJiIgkJCcydOxcXl5oPnzp8+DAnTpwgLCysxtuKOIKcgjNM+Gwra/afHTuX1DGE6Td3oYWvh8nJREScl1MOyM7OzmbAgAG0bt2al156iWPHjpGbm0tubm6l9eLi4li8eDEAJ0+e5Mknn2Tt2rUcOHCA1NRUhg4dSkxMDElJSWa8DZFLsmRbDsmv/sia/Sfwdnflbzd3ZvZdCSpGIiKXyKHOHFXXd999R0ZGBhkZGbRq1arSz84dQpWeno7VagXA1dWVbdu2MX/+fAoKCggPD2fw4MH85S9/0VxH4lSKikt57utdLNp8GICurfx5dUQ3IgN9TU4mItI4ONSAbGegAdlipk0Hf+HRT9PIyj+DiwUeGBDDHwe1w93VKU8Ci4g0GKcdkC0i51dWbmfm8gxmrcig3G5weYA3r46Ip2fbi8/tJSIiNaNyJOLgDp44xaOfbiHtUAEAw+LD+fOwTvh5uZsbTESkkVI5EnFQhmHw+abDPPf1Tk6VlNPcy41pwzoxNP5ys6OJiDRqKkciDqjgdAlPL97Ov7efvQKzV2QLXrmtK60u8zE5mYhI46dyJOJgVmcc5/HPtpJbWIybi4XHrm3P/VdH4+piMTuaiEiToHIk4iBsZeW8/O1/mPPjfgCiAn15dUQ8XVoFmBtMRKSJUTkScQB784r44ydb2HWkEICRvVrz7O+vwMdD/4uKiDQ0/c0rYiLDMPhg7UFeWLobW5mdy3zcefGWLgzuGGp2NBGRJkvlSMQkx4psTPx8KyvSjwFwVfsgXhrehWA/L5OTiYg0bSpHIiZI3Z3HxM+3ceJUCR5uLky+Lo4xfdviokHXIiKmUzkSaUBnSsp54d+7+HDtIQDiQpvz2ohuxIY2NzmZiIj8l8qRSAPZkW3lj5+kse/YKQDG9o/kyaRYvNxdTU4mIiLnUjkSqWd2u8GcVft5+dt0SssNgpt78vJtXbmyXZDZ0URE5DxUjkTqUU7BGR7/bAtr9+cDkNQxhOk3d6GFr4fJyURE5EJUjkTqyZJtOTz9xXYKi8vwdndl6o0duL1nBBaLBl2LiDgylSOROlZUXMrUr3fyxeZsALq28ufVEd2IDPQ1OZmIiFSHypFIHTEMg1V7j/OnL7eTlX8GFws8MCCGPw5qh7uri9nxRESkmlSORC6RYRgs33OUmcsz2JJVAMDlAd68OiKenm1bmBtORERqTOVIpJbsdoNvd+Uyc3kGO3PO3hPN082FO3q35rFr2+Pn5W5yQhERqQ2VI5EaKrcbLN1+hDeWZ5CeVwSAj4cro/q04Z4rowhq7mlyQhERuRQqRyLVVFpu56stOby5IoP9x89O5Njc042U37Xl7t9F6vJ8EZFGQuVI5CJsZeUs2pTNWz9kkJV/BoAAH3f+8LtIxvRri7+3vj4TEWlMVI5ELqC4tJxPN2Qx+4d9HLEWA9DS14NxV0VxV582NPPU/z4iIo2R/nYX+R+nS8r4aO0h5qzaz7EiGwDBzT257+po7ujVGm8P3QtNRKQxUzkS+VVRcSkL1hzkvZ8yyT9VApy9JP/+AdHcmtBKN4gVEWkiVI6kybOeLuX9nzOZ+3MmhcVlALRu4cODidHc1K0VHm6awFFEpClROZIm68RJG+/9lMmCNQc5aTtbiqKDfHnomhhu7BKOm2a1FhFpklSOpMk5WljMO6v28+HaQ5wpLQcgLrQ5D10Tw3WdwnB10Y1hRUSaMpUjaTJyCs7w9g/7WLghi5IyOwCdL/fn4WtiGHRFCC4qRSIigsqRNAFZ+ad5c2UGn286TGm5AUD31gE8PLAdA9oHYbGoFImIyP+nciSN1v5jJ3ljxT6+3JJNuf1sKeoT1YJHrmlH3+iWKkUiInJeKkfS6KTnFjFrRQZLt+XwayfiynaBPDKwHT3btjA3nIiIODynvRxnyJAhtG7dGi8vL8LCwhg1ahQ5OTlVbmMYBlOmTCEsLAxvb28GDRrE3r17Gyix1Lcd2Vbu/2ATSa/+yL+2ni1Gg64I5ssHf8cHY3urGImISLU4bTlKTEzks88+Iz09nUWLFrFv3z6GDx9e5TYzZszg9ddfZ/bs2axbtw5fX1+SkpIoLi5uoNRSH9IO/cIf5m3g9zN/YtnOXACu6xTK0kf68+6YnsRHBJgbUEREnIrFMAzD7BB14euvv2bYsGHYbDbc3X97I1DDMAgPD2fChAk88cQTAFitVkJCQpg3bx4jRoyo1usUFhbi7++P1WrFz8+vTt+D1Mz6zHxmLt/Lqr3HAXCxwI1dw3kwMYb2Ic1NTiciIo6kJp/fjWLMUX5+Ph999BH9+vU7bzECyMzMJDc3l0GDBlU85+/vT+/evVmzZs0Fy5HNZsNms1U8LiwsrNvwUiOGYfBzxgleX76X9Zn5ALi5WLip2+WMHxBNVFAzkxOKiIizc+py9NRTTzFr1ixOnz5Nnz59WLJkyQXXzc09+3VLSEhIpedDQkIqfnY+06dP5/nnn6+bwFJrhmGwIv0oM5dnkHaoAAB3Vwu39ohg/NXRRLTwMTegiIg0Gg415mjSpElYLJYqlz179lSs/+STT5KWlsa3336Lq6sro0ePpq6/JZw8eTJWq7ViycrKqtPfL1Wz2w2W7cjlxlk/8Yd5G0k7VICnmwsp/dry48RE/npTZxUjERGpUw515mjChAmkpKRUuU5UVFTFfwcGBhIYGEj79u254ooriIiIYO3atfTt2/c324WGhgKQl5dHWFhYxfN5eXnEx8df8PU8PT3x9PSs2RuRS1ZuN/j39iPMWp5Bel4RAD4ertzVpw33XBlJcHMvkxOKiEhj5VDlKCgoiKCgoFpta7efvR3EueODzhUZGUloaCipqakVZaiwsJB169Yxfvz4Wr2m1L2ycjtfbcnhjZUZ7D92CoBmnm6M6deGsf2jaOHrYXJCERFp7ByqHFXXunXr2LBhA/379+eyyy5j3759PPvss0RHR1c6axQXF8f06dO56aabsFgsPProo0ybNo127doRGRnJs88+S3h4OMOGDTPvzQgAJWV2vth8mDdX7uNQ/mkA/L3d+cPvIknp1xZ/n/MPtBcREalrTlmOfHx8+OKLL5g6dSqnTp0iLCyM5ORknnnmmUpfgaWnp2O1WiseT5w4kVOnTnHvvfdSUFBA//79WbZsGV5e+orGLMWl5Xy2MYvZK/eRYz0731QLXw/uuTKSUX3a0NxLpUhERBpWo5nnqKFonqO6cbqkjI/XHeLtH/dzrOjsV6HBzT2596oo7ujdGh8Pp+ztIiLioJrcPEfiPIqKS/lg7UHeW5XJiVMlAIT7e3H/gGhu6xGBl7uryQlFRKSpUzmSBmE9Xcrc1ZnM/fkA1jOlALRu4cMDA6K5uXsrPNwcalYJERFpwlSOpF7lnyrhvZ/2s2D1QYpsZQBEBfny4IAYhsaH4+aqUiQiIo5F5UjqxdGiYt75cT8frj3EmdJyAGJDmvPQNTFc3zkMVxeLyQlFRETOT+VI6tQR6xne/mE/C9cfwlZ2du6pTpf78VBiOwZ3CMFFpUhERBycypHUiaz807y5ch+fb8qitPzsBZDdWgfwyDXtGBAbhMWiUiQiIs5B5UguSebxU7yxIoPFadmU28+Wol6RLXjkmnb8LqalSpGIiDgdlSOplf/kFTFreQZLtuXwayfiynaBPJQYQ++oluaGExERuQQqR1IjO3OszFqewf/tyK14bmBcMA9dE0O31peZmExERKRuqBxJtWzJKmDW8r18v/toxXPJHUN56JoYOl3ub2IyERGRuqVyJFXacCCf11P3smrvcQBcLPD7LuE8mBhDbGhzk9OJiIjUPZUj+Q3DMFi97wSvp+5lXWY+AK4uFobFX86DidFEBTUzOaGIiEj9UTmSCoZhsPI/x5iZupfNhwoAcHe1MDyhFeOvjqF1Sx9zA4qIiDQAlSPBbjf4bnces5ZnsD3bCoCHmwsje0Zw39XRhAd4m5xQRESk4agcNWHldoP/23GEWcsz2JNbBIC3uyt39WnNuCujCPbzMjmhiIhIw1M5aoLKyu18vTWHN1ZksO/YKQCaeboxum8bxvaPpGUzT5MTioiImEflqAkpKbOzOO0wb67cx8ETpwHw83LjD/0jSenXlgAfD5MTioiImE/lqAkoLi3nnxuzmP3DfrILzgDQwteDsf0jGd23Dc293E1OKCIi4jhUjhqxMyXlfLTuIHN+3M/RIhsAgc08ue+qKO7s0xofD/3xi4iI/C99OjZCJ21lfLDmIO+u2s+JUyUAhPl7cf/V0dzeMwIvd1eTE4qIiDgulaNGxHqmlPmrD/D+z5kUnC4FIKKFNw8MiOHm7pfj6aZSJCIicjEqR41A/qkS3v8pk/mrD1BkKwMgKtCXBxJjGBofjruri8kJRUREnIfKkRM7VmTj3VX7+WDtQU6XlAPQPqQZD13Tjhs6h+HqYjE5oYiIiPNROXJCudZiZv+wj4XrD2ErswPQMdyPh6+JYXCHUFxUikRERGpN5ciJZOWf5q0f9vH5xsOUlJ8tRfERATwyMIbE2GAsFpUiERGRS6Vy5AQyj5/izRUZLE7LpsxuANCrbQseHhhD/5hAlSIREZE6pHLkwPbmFTFrRQb/2prDr52I/jGBPHxNDL2jWpobTkREpJFSOXJAu3IKmbViL/+3Ixfj11KUGBvEQ9e0I6HNZeaGExERaeRUjhzI1qwCZi7P4PvdeRXPJXUM4eFr2tHpcn8Tk4mIiDQdKkcOYtqSXbz7UyYAFgvc0DmMh66JIS7Uz+RkIiIiTYvKkYPoFdmCuasPMDQ+nAcTY4gOamZ2JBERkSZJ5chBXNshhJVPDCCihY/ZUURERJo03VfCQVgsFhUjERERB+C05WjIkCG0bt0aLy8vwsLCGDVqFDk5OVVuk5KSgsViqbQkJyc3UGIRERFxBk5bjhITE/nss89IT09n0aJF7Nu3j+HDh190u+TkZI4cOVKxLFy4sAHSioiIiLNw2jFHjz32WMV/t2nThkmTJjFs2DBKS0txd3e/4Haenp6EhoZW+3VsNhs2m63icWFhYe0Ci4iIiFNw2jNH58rPz+ejjz6iX79+VRYjgJUrVxIcHExsbCzjx4/nxIkTVa4/ffp0/P39K5aIiIi6jC4iIiIOxmIY/52D2fk89dRTzJo1i9OnT9OnTx+WLFlCy5YXvq3GJ598go+PD5GRkezbt4+nn36aZs2asWbNGlxdXc+7zfnOHEVERGC1WvHz0xxEIiIizqCwsBB/f/9qfX47VDmaNGkSL774YpXr7N69m7i4OACOHz9Ofn4+Bw8e5Pnnn8ff358lS5ZU+0as+/fvJzo6mu+//56BAwdWa5ua7FwRERFxDE5bjo4dO3bRr7mioqLw8PD4zfOHDx8mIiKC1atX07dv32q/ZlBQENOmTeO+++6r1voqRyIiIs6nJp/fDjUgOygoiKCgoFpta7fbASp9BXYxhw8f5sSJE4SFhdXqNUVERKTxccoB2evWrWPWrFls2bKFgwcPsnz5ckaOHEl0dHSls0ZxcXEsXrwYgJMnT/Lkk0+ydu1aDhw4QGpqKkOHDiUmJoakpCSz3oqIiIg4GKcsRz4+PnzxxRcMHDiQ2NhYxo4dS5cuXfjhhx/w9PSsWC89PR2r1QqAq6sr27ZtY8iQIbRv356xY8eSkJDAqlWrKm0jIiIiTZtDjTlyBhpzJCIi4nxq8vntlGeOREREROqLypGIiIjIORzqajVn8N9vIXUbEREREefx38/t6owmUjmqoaKiIgDdRkRERMQJFRUV4e/vX+U6GpBdQ3a7nZycHJo3b14xE/d/bymSlZWlQdqXSPuybmg/1g3tx7qh/Vg3tB8vjWEYFBUVER4ejotL1aOKdOaohlxcXGjVqtV5f+bn56cDto5oX9YN7ce6of1YN7Qf64b2Y+1d7IzRf2lAtoiIiMg5VI5EREREzqFyVAc8PT2ZOnWqZtquA9qXdUP7sW5oP9YN7ce6of3YcDQgW0REROQcOnMkIiIicg6VIxEREZFzqByJiIiInEPlSEREROQcKke1NGTIEFq3bo2XlxdhYWGMGjWKnJycKrdJSUnBYrFUWpKTkxsosWOqzX40DIMpU6YQFhaGt7c3gwYNYu/evQ2U2PEcOHCAsWPHEhkZibe3N9HR0UydOpWSkpIqt9PxWFlt96OOx9964YUX6NevHz4+PgQEBFRrGx2Pv1Wb/ajjsW6oHNVSYmIin332Genp6SxatIh9+/YxfPjwi26XnJzMkSNHKpaFCxc2QFrHVZv9OGPGDF5//XVmz57NunXr8PX1JSkpieLi4gZK7Vj27NmD3W7n7bffZufOnfzjH/9g9uzZPP300xfdVsfj/1fb/ajj8bdKSkq49dZbGT9+fI220/FYWW32o47HOmJInfjqq68Mi8VilJSUXHCdMWPGGEOHDm24UE7oYvvRbrcboaGhxt///veK5woKCgxPT09j4cKFDRXT4c2YMcOIjIysch0djxd3sf2o47Fqc+fONfz9/au1ro7HC6vuftTxWHd05qgO5Ofn89FHH9GvXz/c3d2rXHflypUEBwcTGxvL+PHjOXHiRAOldHzV2Y+ZmZnk5uYyaNCgiuf8/f3p3bs3a9asaaioDs9qtdKiRYuLrqfjsWoX2486HuuWjsdLo+Ox7qgcXYKnnnoKX19fWrZsyaFDh/jqq6+qXD85OZkFCxaQmprKiy++yA8//MB1111HeXl5AyV2TDXZj7m5uQCEhIRUej4kJKTiZ01dRkYGM2fO5L777qtyPR2PVavOftTxWHd0PF46HY91R+XoHJMmTfrNgMD/Xfbs2VOx/pNPPklaWhrffvstrq6ujB49GqOKCcdHjBjBkCFD6Ny5M8OGDWPJkiVs2LCBlStXNsC7azj1vR+bipruR4Ds7GySk5O59dZbGTduXJW/X8dj3ezHpqI2+7EmdDzWzX6UuuFmdgBHMmHCBFJSUqpcJyoqquK/AwMDCQwMpH379lxxxRVERESwdu1a+vbtW63Xi4qKIjAwkIyMDAYOHHgp0R1Kfe7H0NBQAPLy8ggLC6t4Pi8vj/j4+DrJ7yhquh9zcnJITEykX79+zJkzp8avp+PxrJrsRx2PlZ27Hy+Vjseaa0rHY31TOTpHUFAQQUFBtdrWbrcDYLPZqr3N4cOHOXHiRKWDuDGoz/0YGRlJaGgoqampFf+zFxYWsm7duhpfGePoarIfs7OzSUxMJCEhgblz5+LiUvOTwjoea74fdTzWHx2PNdeUjsd6Z/aIcGe0du1aY+bMmUZaWppx4MABIzU11ejXr58RHR1tFBcXV6wXGxtrfPHFF4ZhGEZRUZHxxBNPGGvWrDEyMzON77//3ujevbvRrl27Sts0JbXZj4ZhGH/729+MgIAA46uvvjK2bdtmDB061IiMjDTOnDljxtsw3eHDh42YmBhj4MCBxuHDh40jR45ULOfS8Vi12uxHw9DxeD4HDx400tLSjOeff95o1qyZkZaWZqSlpRlFRUUV6+h4vLia7kfD0PFYV1SOamHbtm1GYmKi0aJFC8PT09No27atcf/99xuHDx+utB5gzJ071zAMwzh9+rQxePBgIygoyHB3dzfatGljjBs3zsjNzTXhHTiG2uxHwzh7ueqzzz5rhISEGJ6ensbAgQON9PT0Bk7vOObOnWsA513OpeOxarXZj4ah4/F8xowZc979uGLFiop1dDxeXE33o2HoeKwrFsPQyFcRERGR/9LVaiIiIiLnUDkSEREROYfKkYiIiMg5VI5EREREzqFyJCIiInIOlSMRERGRc6gciYiIiJxD5UhERETkHCpHIiIiIudQORIRERE5h8qRiDRaAwYM4NFHH63RNidOnCA4OJgDBw5Uud6IESN4+eWXax9ORByWypGIyDleeOEFhg4dStu2bSs9/9hjj3HzzTdXPH7mmWd44YUXsFqtDZxQROqbypGIyK9Onz7Ne++9x9ixY3/zs/Xr19OjR4+Kx506dSI6OpoPP/ywISOKSANQORKRJmHAgAE88sgjTJw4kRYtWhAaGspzzz1XaZ1///vfeHp60qdPn4rnSkpKcHd3Z/Xq1fzpT3/CYrFU/PzGG2/kk08+aci3ISINQOVIRJqM+fPn4+vry7p165gxYwZ//vOf+e677yp+vmrVKhISEipt4+bmxs8//wzAli1bOHLkCMuWLQOgV69erF+/HpvN1nBvQkTqncqRiDQZXbp0YerUqbRr147Ro0fTo0cPUlNTK35+8OBBwsPDK23j4uJCTk4OLVu2pGvXroSGhhIQEABAeHg4JSUl5ObmNuTbEJF6pnIkIk1Gly5dKj0OCwvj6NGjFY/PnDmDl5fXb7ZLS0uja9euv3ne29sbODtWSUQaD5UjEWky3N3dKz22WCzY7faKx4GBgfzyyy+/2W7Lli3nLUf5+fkABAUF1XFSETGTypGIyK+6devGrl27fvP89u3biY+P/83zO3bsoFWrVgQGBjZAOhFpKCpHIiK/SkpKYufOnb85e2S320lPTycnJ6fSvEarVq1i8ODBDR1TROqZypGIyK86d+5M9+7d+eyzzyo9P23aNObNm8fll1/OtGnTACguLubLL79k3LhxZkQVkXpkMQzDMDuEiIijWLp0KU8++SQ7duzAxeXC/3586623WLx4Md9++20DphORhuBmdgAREUdyww03sHfvXrKzs4mIiLjgeu7u7sycObMBk4lIQ9GZIxEREZFzaMyRiIiIyDlUjkRERETOoXIkIiIicg6VIxEREZFzqByJiIiInEPlSEREROQcKkciIiIi51A5EhERETmHypGIiIjIOf4fckF3qsCJpfIAAAAASUVORK5CYII="
          },
          "metadata": {}
        }
      ]
    },
    {
      "cell_type": "code",
      "source": "m, b =np.polyfit (X,Y,1)",
      "metadata": {
        "trusted": true
      },
      "execution_count": 10,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": "gexp = 2*np.exp(b)\ngexp",
      "metadata": {
        "trusted": true
      },
      "execution_count": 11,
      "outputs": [
        {
          "execution_count": 11,
          "output_type": "execute_result",
          "data": {
            "text/plain": "7.784219414344269"
          },
          "metadata": {}
        }
      ]
    },
    {
      "cell_type": "code",
      "source": "curve_fit(modelo_sc, prom_Tiempos1[:-7], prom_Altura1[:-7])",
      "metadata": {
        "trusted": true
      },
      "execution_count": 12,
      "outputs": [
        {
          "execution_count": 12,
          "output_type": "execute_result",
          "data": {
            "text/plain": "(array([14.72537717]), array([[0.14769673]]))"
          },
          "metadata": {}
        }
      ]
    },
    {
      "cell_type": "code",
      "source": "gexp",
      "metadata": {
        "trusted": true
      },
      "execution_count": 13,
      "outputs": [
        {
          "execution_count": 13,
          "output_type": "execute_result",
          "data": {
            "text/plain": "7.784219414344269"
          },
          "metadata": {}
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": "# Servilleta Abierta",
      "metadata": {}
    },
    {
      "cell_type": "code",
      "source": "datos_tiempo = np.loadtxt('tiempos_sa.txt')\nprom_Tiempos = datos_tiempo.mean(axis=1)\nt_err = datos_tiempo.std(axis=1)\n#\ndatos_altura = np.loadtxt('alturas1_sa.txt')\nprom_Altura = -datos_altura.mean(axis=1)\ny_err = datos_altura.std(axis=1)",
      "metadata": {
        "trusted": true
      },
      "execution_count": 14,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": "plt.figure()\nplt.errorbar(prom_Tiempos, prom_Altura, y_err, t_err, fmt='o', color='k')\nplt.xlabel('t (s)')\nplt.ylabel('y (m)')\nplt.show()\nplt.savefig('Servilleta abierta.pdf', bbox_inches='tight')",
      "metadata": {
        "trusted": true
      },
      "execution_count": 15,
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "text/plain": "<Figure size 640x480 with 1 Axes>",
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA0YUlEQVR4nO3df3SU5Z3//9edoQkwmLgKJsSZD2OrUkMtsSBZ9BihHZM21j3d6bRUjoqc0qqrJjTtdmHbBe3xLMddVyaruG61/qitisZpt9tOsZqqAYtly49dFatuCUKGJEKVDDO6UCf39w++mWbMBGaSmbln7nk+zplzct9z3ZP3ZYh5nfu67usyTNM0BQAAYBNlVhcAAACQTYQbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK5OsLiDfhoaGdODAAZ1yyikyDMPqcgAAQBpM09SRI0dUW1ursrIT35spuXBz4MABud1uq8sAAADjsH//frlcrhO2Kblwc8opp0g6/h+nsrLS4moAAEA6IpGI3G534u/4iZRcuBkeiqqsrCTcAABQZNKZUsKEYgAAYCuEGwAAYCuEGwAAYCuEGwAAYCuEGwAAYCuEGwAAYCuEGwAAYCuEGwAAYCuEGwAAYCuEGwAAYCuEGwAAYCuEGwAAYCuEGwAAYCuEGwAAYCuEGwAAMEosFpNhGDIMQ7FYzOpyMkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQCgyMViMRmGIcMwFIvFrC7HcoQbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK4QbAABgK5aHmw0bNsjj8Wjy5MlqaGjQtm3bxmz7/PPPJxYpGvnq7+/PY8UAAKCQWRpuNm7cqPb2dq1du1Y7duzQ3Llz1dzcrLfffvuE173++uvq6+tLvM4444w8VQwAAAqdpeHmzjvv1Ne+9jUtX75cdXV1uvfeezV16lQ98MADJ7zujDPOUE1NTeJVVmb5DSgAAFAgLEsFx44d0/bt2+X1ev9cTFmZvF6vtm7desJr6+vrNXPmTF122WV68cUXT9j26NGjikQiSS8AAGBfloWbQ4cOKR6Pq7q6Oul8dXX1mHNoZs6cqXvvvVdPPfWUnnrqKbndbi1atEg7duwY8/usW7dOVVVViZfb7c5qPwAAQGGZZHUBmZg9e7Zmz56dOL7ooov0hz/8QevXr9cjjzyS8prVq1ervb09cRyJRAg4AADYmGXhZvr06XI4HBoYGEg6PzAwoJqamrQ/Z8GCBdqyZcuY71dUVKiiomLcdQIAgOJi2bBUeXm55s2bp66ursS5oaEhdXV1aeHChWl/zq5duzRz5sxclAgAAIqQpcNS7e3tWrZsmebPn68FCxYoEAgoFotp+fLlko4PKYXDYf3whz+UJAUCAZ111lmaM2eO/u///k/333+/fv3rX+tXv/qVld0AAAAFxNJws2TJEh08eFBr1qxRf3+/6uvrtWnTpsQk476+Pu3bty/R/tixY/rmN7+pcDisqVOn6pOf/KSeffZZLV682KouAACQkVgspmnTpkmSotGonE6nxRXZj2Gapml1EfkUiURUVVWlwcFBVVZWWl0OAKDE5CLcFMtnTkQmf79Z/Q4AANgK4QYAANgK4QYAANgK4QYAANgK4QYAAIwSj8cTX3d3dycdFzrCDQAASBIMBlVXV5c4bmlpkcfjUTAYtLCq9BFuAABAQjAYlN/vVzgcTjofDofl9/uLIuAU1caZAABgfGKx2EnbxONxtba2KtUSeKZpyjAMtbW1yev1yuFwjPk5Vq+JQ7gBAKAEDC/INxGmaaq3t1dVVVUnbWclhqUAAICtcOcGAIASEI1GT9qmu7tbLS0tJ20XCoXU2NiYjbJygnADAEAJSGceTFNTk1wul8LhcMqhJcMw5HK51NTUdMI5N1ZjWAoAAEiSHA6HOjo6JB0PMiMNHwcCgYIONhLhBgAAjODz+dTZ2ana2tqk8y6XS52dnfL5fBZVlj6GpQAAQBKfzyev15t4KioUChX8UNRI3LkBAACjjAwyjY2NRRNsJMINAACwGcINAACwFcINAABjiMViMgxDhmGktX0BCgPhBgAA2ArhBgCAIhePxxNfd3d3Jx2XIsINAABFLBgMqq6uLnHc0tIij8ejYDBoYVXWItwAAFCkgsGg/H6/wuFw0vlwOCy/31+yAYdF/AAAKEAnm8Acj8fV2tqacg8o0zRlGIba2trk9XrHXKMmnf2mihHhBgCAAjRt2rQJXW+apnp7exOrDI/Vxo4YlgIAALbCnRsAAApQNBo94fvd3d1qaWk56eeEQiE1NjZmq6yiQLgBAKAAnWw+TFNTk1wul8LhcMrhJcMw5HK5imrDy2xhWAoAgCLkcDjU0dEh6XiQGWn4OBAIlFywkQg3AAAULZ/Pp87OTtXW1iadd7lc6uzslM/ns6gyazEsBQBAEfP5fPJ6vYmnokKhUEkORY3EnRsAAIrcyCDT2NhY0sFGItwAAACbIdwAAABbIdwAAJBH7OCde4QbAADyhB2884NwAwBAHrCDd/7wKDgAAFlwol282cE7vwg3AABkwUR28S7lHbxzgWEpAABgK4QbAIAtxGIxGYYhwzBOOESUK9FodMxXKBRK6zNCodCYn4H0MSwFAEAWnGhODDt45xd3bgAAyDF28M4vwg0AAHnADt75w7AUAAB5wg7e+cGdGwAA8ogdvHOPcAMAAGyFcAMAAGyFcAMAAGyFcAMAwBji8Xji6+7u7qRjFC7Lw82GDRvk8Xg0efJkNTQ0aNu2bWld9+KLL2rSpEmqr6/PbYEAgJIUDAZVV1eXOG5paZHH42H37iJgabjZuHGj2tvbtXbtWu3YsUNz585Vc3Oz3n777RNed/jwYV1zzTX6zGc+k6dKAQClJBgMyu/3KxwOJ50Ph8Py+/0EnAJnabi588479bWvfU3Lly9XXV2d7r33Xk2dOlUPPPDACa+7/vrrtXTpUi1cuDBPlQIA7CYWi6V8RSIRtba2ptwmYfhcW1ubIpFIyuthPcsW8Tt27Ji2b9+u1atXJ86VlZXJ6/Vq69atY1734IMPas+ePfrRj36k22677aTf5+jRozp69GjiOBKJTKxwAIAtTJs2bVzXmaap3t7exEJ8qd6HtSy7c3Po0CHF43FVV1cnna+urlZ/f3/Ka958802tWrVKP/rRjzRpUnq5bN26daqqqkq83G73hGsHAACFy/IJxemKx+NaunSpbr31Vp177rlpX7d69WoNDg4mXvv3789hlQCAYhGNRlO+QqFQWteHQqGU18N6lg1LTZ8+XQ6HQwMDA0nnBwYGVFNTM6r9kSNH9Lvf/U47d+7UTTfdJEkaGhqSaZqaNGmSfvWrX+nTn/70qOsqKipUUVGRm04AAIqW0+lMeb6pqUkul0vhcDjlEJNhGHK5XOwJVcAsu3NTXl6uefPmqaurK3FuaGhIXV1dKScKV1ZW6uWXX9auXbsSr+uvv16zZ8/Wrl271NDQkM/yAQA25XA41NHRIel4kBlp+DgQCBBsCpilu4K3t7dr2bJlmj9/vhYsWKBAIKBYLKbly5dLOj6kFA6H9cMf/lBlZWX6xCc+kXT9GWecocmTJ486DwDARPh8PnV2dqq1tTXpcXCXy6VAICCfz2dhdfnhdDqLdnK0peFmyZIlOnjwoNasWaP+/n7V19dr06ZNiUnGfX192rdvn5UlAgBKlM/nk9frTTwVFQqFGIoqEoZZrLFsnCKRiKqqqjQ4OKjKykqrywGAkhSLxRKPYkej0THnv/CZ1n1mocnk73fRPC0FAACQDsINAACwFcINAACwFcINAMAW4vF44uvu7u6kY5QWwg0AoOgFg0HV1dUljltaWuTxeNi9u0QRbgAARS0YDMrv9yetRyNJ4XBYfr+fgFOCLF3nBgCAdMRisZTn4/G4WltbUy42Z5qmDMNQW1ubvF5vyvVp7PjINAg3AIAiMLyGS6ZM01Rvb29iIb5U78N+CDcAABS5Yt4qIReYcwMAKHjRaDTlKxQKpXV9KBRKeT3siTs3AICCN9bcmKamJrlcLoXD4ZR3LgzDkMvlYk+oEsOdGwBA0XI4HOro6JB0PMiMNHwcCAQINiWGcAMAKGo+n0+dnZ2qra1NOu9yudTZ2Smfz2dRZbAKw1IAgKLn8/nk9XoTT0WFQiGGokoYd24AALYwMsg0NjYSbEoY4QYAANgK4QYAANgK4QYAANgK4QYAcFKxWEyGYcgwjDH3eQIKBU9LAQCQR2yVkHvcuQEAALZCuAEAALZCuAEA5F08Hk983d3dnXQMTBThBgCQV8FgUHV1dYnjlpYWeTweBYNBC6uCnRBuAAB5EwwG5ff7FQ6Hk86Hw2H5/X4CDrKCp6UAAFmX6nHxeDyu1tbWlE8KmaYpwzDU1tYmr9ebcusEp9OZk1phP4QbAEDWTZs2LeNrTNNUb29vYvPLVO8D6WBYCgAA2ArhBgCQddFodNQrFAqldW0oFEp5vRWGF9wzTZNhsSLCsBQAIOtSBYGmpia5XC6Fw+GUQ0yGYcjlcqmpqSnlnBsgXdy5AQDkhcPhUEdHh6TjQWak4eNAIECwwYQRbgAAeePz+dTZ2ana2tqk8y6XS52dnfL5fBZVBjthWAoAkFc+n09erzfxVFQoFGIoClnFnRsAsJlYLCbDMGQYRsr1ZgrByCDT2NhIsEFWEW4AAICtEG4AAICtEG4AAICtMKEYAGALwwvuAdy5AQAAtkK4AQAAtkK4AQAAtkK4AQCcVDweT3zd3d2ddAwUGsINAOCEgsGg6urqEsctLS3yeDwKBoMWVgWMjXADABhTMBiU3+9XOBxOOh8Oh+X3+wk4KEg8Cg4ASLlNQzweV2tra8rHq03TlGEYamtrk9frTdo+wel05rRW4GQINwAATZs2LeNrTNNUb29vYgPMkecBKzEsBQAAbIVwAwAWKpQdvKPR6KhXKBRK69pQKJR0HWA1hqUAACnnyTQ1NcnlcikcDqccajIMQy6XS01NTUlzbgCrcecGAJCSw+FQR0eHpONBZqTh40AgQLBBwSHcAADG5PP51NnZqdra2qTzLpdLnZ2d8vl8FlUGjM3ycLNhwwZ5PB5NnjxZDQ0N2rZt25htt2zZoosvvlinn366pkyZoo9//ONav359HqsFgNLj8/m0e/fuxHEoFFJPTw/BBgUrozk3hw8f1k9+8hNt3rxZb731lt577z3NmDFDF1xwgZqbm3XRRRdl9M03btyo9vZ23XvvvWpoaFAgEFBzc7Nef/11nXHGGaPaO51O3XTTTfrkJz8pp9OpLVu26LrrrpPT6dTXv/71jL43ACB9I4eeGhsbGYpCQTPMNBYkOHDggNasWaMf//jHqq2t1YIFC1RbW6spU6bonXfe0SuvvKLt27dr1qxZWrt2rZYsWZLWN29oaNCFF16ou+++W5I0NDQkt9utm2++WatWrUrrM3w+n5xOpx555JGU7x89elRHjx5NHEciEbndbg0ODqqysjKt7wEAuRKLxRJrzESj0awsgFcMn5mLGmFvkUhEVVVVaf39TuvOzQUXXKBly5Zp+/btSfuLjPT+++/rpz/9qQKBgPbv369vfetbJ/zMY8eOafv27Vq9enXiXFlZmbxer7Zu3ZpOWdq5c6d+85vf6Lbbbhuzzbp163Trrbem9XkAAKD4pRVudu/erdNPP/2EbaZMmaIrr7xSV155pf74xz+e9DMPHTqkeDyu6urqpPPV1dX6/e9/f8JrXS6XDh48qA8++EC33HKLVqxYMWbb1atXq729PXE8fOcGAGAdp9PJSsbImbTCzcmCzUTbZ2rz5s2KRqN66aWXtGrVKp199tm68sorU7atqKhQRUVFTusBAACFY1yL+B04cEBbtmzR22+/raGhoaT3Wltb0/qM6dOny+FwaGBgIOn8wMCAampqTnjtWWedJUk6//zzNTAwoFtuuWXMcAMAAEpLxuHmoYce0nXXXafy8nKdfvrpSQs7GYaRdrgpLy/XvHnz1NXVpS984QuSjk8o7urq0k033ZR2PUNDQ0kThgGg1MXj8cTX3d3drCCMkpPxOjf/8A//oDVr1mhwcFB79+5VT09P4rVnz56MPqu9vV333XefHn74Yb322mu64YYbFIvFtHz5cknH58tcc801ifYbNmzQf/7nf+rNN9/Um2++qR/84Ae64447dNVVV2XaDQCwpWAwmPTgR0tLizwej4LBoIVVAfmV8Z2b9957T1/5yldUVjbx9f+WLFmigwcPas2aNerv71d9fb02bdqUmGTc19enffv2JdoPDQ1p9erV6unp0aRJk/Sxj31Mt99+u6677roJ1wIAxS4YDMrv94+aqBsOh+X3+1lRGCUjrXVuRvr2t7+t0047Le11aApNJs/JA0CujXe9lw/vIB6Px1VXV6dwOJyyvWEYOvPMM/Xqq68mDVFl8v1YlwZWyuTvd8bhJh6P6/Of/7zef/99nX/++frIRz6S9P6dd96ZecV5RLgBMF6FtDjehzeyHK90/wQQbmC1rC/iN9K6dev09NNPa/bs2ZI0akIxAACAlTION//yL/+iBx54QNdee20OygEApCMajSYdd3d3q6Wl5aTXhUIhNTY25qosoCBkHG4qKip08cUX56IWAECaPjws1NTUJJfLpXA4nHKoyTAMuVwuHgtHScj4kae2tjbddddduagFADBODodDHR0dkkZPERg+DgQCBBuUhIzv3Gzbtk2//vWv9fOf/1xz5swZNaGYtRQAwBo+n0+dnZ1qbW1NemrK5XIpEAjwGDhKRsbh5tRTT+UXBAAKlM/nk9frVVVVlaTjc2wYikKpyTjcPPjgg7moAwCQJSODTGNjI8EGJWfiywwDAAAUkLTCzWc/+1m99NJLJ2135MgR3X777dqwYcOECwMAABiPtIalvvSlL+mLX/yiqqqqdMUVV2j+/Pmqra3V5MmT9e6772r37t3asmWLQqGQLr/8cv3zP/9zrusGAABIKa1w89WvflVXXXWVnnzySW3cuFHf//73NTg4KOn4I4Z1dXVqbm7Wf/3Xf+m8887LacEAYCfxeDzxdXd3d8FO/nU6nWlv1QBYLeO9pYYNDg7q/fff1+mnnz7qcfBCxt5SAMYr2/srBYPBlI9td3R0TOipVPaBgh1l8vd73BOKq6qqVFNTU1TBBgAKRTAYlN/vH7WLdzgclt/vZ80wYAJ4WgoA8iAWiyVekUhEra2tKYd5hs+1tbUpEokkrgGQvozXuQEAZG54mCgdpmmqt7c3sRDf8DkA6eHODQAAsBXCDQDkQTQaTbxCoVBa14RCocQ1ANKXcbhZtmyZuru7c1ELANiW0+lMvJqamuRyuUbt3j3MMAy53W41NTUlrgGQvozDzeDgoLxer8455xz94z/+46iZ/gBQCGKxmAzDkGEYBTch1+FwqKOjQ5JGBZzh40AgUJDr3QDFIONw89Of/lThcFg33HCDNm7cKI/Ho8997nPq7OzUn/70p1zUCAC24/P51NnZqdra2qTzLpdLnZ2dE1rnBih145pzM2PGDLW3t+u///u/9dvf/lZnn322rr76atXW1uob3/iG3nzzzWzXCQC24/P5tHv37sRxKBRST08PwQaYoAlNKO7r69MzzzyjZ555Rg6HQy0tLXr55ZdVV1en9evXZ6tGALCtkUNPjY2NDEUBWZBxuPnTn/6kp556Sp///Oc1a9YsPfnkk1q5cqUOHDighx9+WM8++6yeeOIJfe9738tFvQAAACeU8SJ+M2fO1NDQkK688kpt27ZN9fX1o9osXrxYp556ahbKAwAAyEzG4Wb9+vX60pe+pMmTJ4/Z5tRTT1VPT8+ECgMAABiPjMPN1VdfnYs6AAAAsoIVigEgTfF4PPF1d3d30jGAwkG4AYA0BINB1dXVJY5bWlrk8XgUDAYtrApAKoQbADiJYDAov98/akX2cDgsv99PwAEKDOEGAD4kFoslXpFIRK2trTJNc1S74XNtbW2KRCKJawBYK+MJxQBgd9OmTUu7rWma6u3tVVVVVdI5ANYh3ACAzTidTgIWShrDUgDwIdFoNPEKhUJpXRMKhRLXALAWd24A4EOcTmfi66amJrlcLoXD4ZR3QwzDkMvlUlNTE/tCAQWCOzcAcAIOh0MdHR2SjgeZkYaPA4EAwQYoIIQbADgJn8+nzs5O1dbWJp13uVzq7OyUz+ezqDIAqTAsBQBp8Pl88nq9iaeiQqEQQ1FAgeLODQCkaWSQaWxsJNgABYpwAwAAbIVwAwAAbIVwAwAAbIVwA8BysVhMhmHIMAz2ZgIwYYQbALYUj8cTX3d3dycdA7A3wg0A2wkGg6qrq0sct7S0yOPxKBgMWlgVgHwh3ACwlWAwKL/fr3A4nHQ+HA7L7/cTcIASQLgBUPRisZhisZgikYhaW1tT7gE1fK6trU2RSIS5PYCNsUIxgKI3bdq0tNqZpqne3t7EKsOpQlC+OZ3OgqgDsBPu3AAAAFsh3AAoetFoVNFoVKFQKK32oVBI0Wg0x1UBsIrl4WbDhg3yeDyaPHmyGhoatG3btjHbBoNBXXbZZZoxY4YqKyu1cOFCPf3003msFkAhcjqdcjqdampqksvlkmEYKdsZhiG3262mpiY5nc48VwkgXywNNxs3blR7e7vWrl2rHTt2aO7cuWpubtbbb7+dsn13d7cuu+wyhUIhbd++XYsXL9YVV1yhnTt35rlyAIXI4XCoo6NDkkYFnOHjQCDAhpeAzRmmhTPZGhoadOGFF+ruu++WJA0NDcntduvmm2/WqlWr0vqMOXPmaMmSJVqzZk1a7SORiKqqqjQ4OKjKyspx1w4ge2KxWGJScDQanfBdlWAwqNbW1qTHwd1utwKBgHw+X8HUCSB9mfz9tuzOzbFjx7R9+3Z5vd4/F1NWJq/Xq61bt6b1GUNDQzpy5IhOO+20MdscPXpUkUgk6QXA3nw+n3bv3p04DoVC6unpmVCwAVA8LAs3hw4dUjweV3V1ddL56upq9ff3p/UZd9xxh6LRqL785S+P2WbdunWqqqpKvNxu94TqBlAcRg49NTY2MhQFlBDLJxSP16OPPqpbb71VTzzxhM4444wx261evVqDg4OJ1/79+/NYJQAAyDfLFvGbPn26HA6HBgYGks4PDAyopqbmhNc+/vjjWrFihZ588smkYa1UKioqVFFRMeF6AQBAcbDszk15ebnmzZunrq6uxLmhoSF1dXVp4cKFY1732GOPafny5Xrsscd0+eWX56NUAABQRCzdfqG9vV3Lli3T/PnztWDBAgUCAcViMS1fvlzS8SGlcDisH/7wh5KOD0UtW7ZMHR0damhoSMzNmTJlSmI5dQAAUNosDTdLlizRwYMHtWbNGvX396u+vl6bNm1KTDLu6+vTvn37Eu2///3v64MPPtCNN96oG2+8MXF+2bJleuihh/JdPgAAKECWrnNjBda5AQrP8O+ldPyx7aampgk/3ZSLNWlY5wawTlGscwMA0vEF9+rq6hLHLS0t8ng8CgaDFlYFoJgRbgBYJhgMyu/3J60kLEnhcFh+v5+AA2BcCDcA8i4WiykSiai1tVWpRsaHz7W1tSkSiSgWi+W7RABFzNIJxQBK0/C8lRMxTVO9vb2JuTiFMD3Q6XQWRB0ATow7NwAAwFYINwAyFovFZBiGDMMY15BRNBpVKBRKq20oFFI0Gs34ewAoXYQbAHnndDrV1NQkl8slwzBStjEMQ263W01NTTxyDSAjhBsAlnA4HOro6JCkUQFn+DgQCLCbN4CMEW4AWMbn86mzs1O1tbVJ510ulzo7O+Xz+SyqDEAx42kpAJby+Xzyer1ZX6EYQOnizg0Ay40MMo2NjQQbABNCuAEAALZCuAEAALZCuAEAALZCuAEAALZCuAEAALZCuAEAALZCuAGQsXg8nvi6u7s76bhQDO/gbZom2zcAJYZwAyAjwWBQdXV1ieOWlhZ5PB4Fg0ELqwKAPyPcAEhbMBiU3+9XOBxOOh8Oh+X3+wk4AAoC4QbAScViMUUiEbW2tso0zVHvD59ra2sryCEqAKWFcAPYXCwWk2EYMgxDsVhsXJ8xbdo0VVVVjbpjM5Jpmurt7dXmzZvHWyoAZAXhBkBW9fX1WV0CgBJHuAFwUtFoVKFQKK22M2fOzHE1AHBihBsAJ+V0OtXU1CSXyyXDMFK2MQxDbrdbl1xySZ6rA4BkhBsAaXE4HOro6JCkUQFn+DgQCMjhcOS9NgAYiXADIG0+n0+dnZ2qra1NOu9yudTZ2Smfz2dRZQDwZ5OsLgBAcfH5fPJ6vaqqqpIkhUIhNTU1cccGQMEg3ADI2Mgg09jYOOFgM7xVAgBkA8NSAADAVgg3gM0VwyaXAJBNhBvAxtjkEkApItwANsUmlwBKFeEGsCE2uQRQygg3gA2xySWAUka4AUoYm1wCsCPCDWBDbHIJoJQRbgAbYpNLAKWMcAMUkFgsJsMwZBiGYrHYuD8n15tcDq8obJqmnE7nuOsEgFwg3AA2xSaXAEoVe0sBNsYmlwBKEXduAJvL9iaXAFDoCDcAAMBWCDcAAMBWCDcAAMBWCDdAARm511N3dzd7PwHAOBBugAIRDAZVV1eXOG5paZHH42H3bgDIEOEGKADBYFB+v3/UZpfhcFh+v5+AAwAZINwAFotEImptbZVpmqPeGz63cuVKhqgAIE2EG8BiVVVVo+7YjGSapvbv36/NmzeP6/PZKgFAqbE83GzYsEEej0eTJ09WQ0ODtm3bNmbbvr4+LV26VOeee67Kysq0cuXK/BUKfEi29oFKV19fX86/BwDYgaXhZuPGjWpvb9fatWu1Y8cOzZ07V83NzXr77bdTtj969KhmzJih7373u5o7d26eqwVyIxQKpdVu5syZOa4EAOzBMFMN9OdJQ0ODLrzwQt19992SpKGhIbndbt18881atWrVCa9dtGiR6uvrFQgEMvqekUhEVVVVGhwcVGVl5XhLBxSLxTRt2jRJUjQaHfeQTzwel8fjUTgcTjnvxjAMuVwu9fT0sHUCgJKVyd9vy+7cHDt2TNu3b5fX6/1zMWVl8nq92rp1a9a+z9GjRxWJRJJeQCFxOBzq6OiQdDzIjDR8HAgECDYAkCbLws2hQ4cUj8dVXV2ddL66ulr9/f1Z+z7r1q1TVVVV4uV2u7P22Sht2Vxwz+fzqbOzU7W1tUnnXS6XOjs75fP5xv3ZAFBqLJ9QnGurV6/W4OBg4rV//36rS4IN5GLBPZ/Pp927dyeOQ6GQenp6CDYAkCHLws306dPlcDg0MDCQdH5gYEA1NTVZ+z4VFRWqrKxMegETkcsF90YOPTU2NjIUBQDjYFm4KS8v17x589TV1ZU4NzQ0pK6uLi1cuNCqsoATisfjLLgHAAXO0mGp9vZ23XfffXr44Yf12muv6YYbblAsFtPy5cslHR9Suuaaa5Ku2bVrl3bt2qVoNKqDBw9q165dSbfygVzavHlzThfcAwBM3CQrv/mSJUt08OBBrVmzRv39/aqvr9emTZsSk4z7+vq0b9++pGsuuOCCxNfbt2/Xo48+qlmzZmnv3r35LB1FJluPbae7kB4L7gGAdSwNN5J000036aabbkr53kMPPTTqnIXL8gBpL6THgnsAYB3bPy0FZNMll1wil8s1aj2aYYZhyO1265JLLhnX57MPFABMHOEGyAAL7gFA4SPcABliwT0AKGyEG5SEbK4mLLHgHgAUMsINbC8XqwlLLLgHAIWKcANby+VqwgCAwkS4gW3F43G1tbWxmjAAlBjCDWxr8+bN6u3tHfN9VhMGAHuyfBE/IFdyvZrw8Jo0AIDCwp0b2BarCQNAaSLcwLZyvZowAKAwEW5QcGKxmAzDkGEYisVi4/4cVhMGgNJEuIGtsZowAJQeJhTD9nw+n7xer6qqqiQdX024qamJOzYAYFPcuUHByfZWCRKrCQNAKSHcoKDkaqsEAEDpINygYLBVAgAgGwyzxFYhi0Qiqqqq0uDgoCorK60uB/+/eDwuj8cz5orChmHI5XKpp6eHISUAKEGZ/P3mzg0KAlslAACyhXCDgpDrrRIAAKWDcIOCwFYJAIBsIdxgwrKxojBbJQAAsoVwgwnLxro0bJUAAMgWwg0mJJvr0rBVAgAgG3gUHOM2vC7Nh/8JDd9pGW8gGf4ZSWyVAAA4LpO/34QbjEsu16WJxWKaNm2aJCkajcrpdE64XgBAcWOdG+RcLtelcTqdMk1TpmkSbAAAGWNX8BITj8e1efNm9fX1aebMmbrkkkvGNeTDujQAgEJFuCkhwWBQbW1tSXdcXC6XOjo6Mp4bw7o0AIBCxbBUiRie/PvhoaTxbkrJujQAgEJFuCkB8XhcbW1to55qkpQ4t3LlyozWp2FdGgBAoSLclIBcTf5lXRoAQCFizk0JyOXkX5/PJ6/Xy7o0AICCQbgpAbme/FtZWZlyyAsAACswLFUCmPwLACglhJsSwORfAEApIdwUsFgsJsMwZBiGYrHYhD5rePLvmWeemXSeyb8AALthb6kClosNJLO1QjEAAPnE3lI2EAwGVVdXlzhuaWmRx+PJeLG9D3M4HFq0aJGuvPJKLVq0iGADALAdwk0BGl5NOBwOJ50f72rCAACUEsJNgcnFasIAAJQSwk2BydVqwgAAlArCTYHJ5WrCAACUAsJNgcn1asIAANgd2y9kSbYesR5eTTgcDqecd2MYhlwuF6sJAwAwBu7cZEEwGJTH49HixYu1dOlSLV68eNyPbbOaMAAAE0O4maDhx7Y/PAl4Io9tD68mXFtbm3Se1YQBADg5ViiegHg8Lo/HM+bTTcNDSD09PeO605KLFYoBAChGmfz9Zs7NBGTy2PaiRYsy/vzKysqU824AAMDYGJaaAB7bBgCg8BBuJoDHtgEAKDyWh5sNGzbI4/Fo8uTJamho0LZt207Y/vnnn9enPvUpVVRU6Oyzz9ZDDz2Un0JTGH5s+8NPNQ0zDENut5vHtgEAyCNLw83GjRvV3t6utWvXaseOHZo7d66am5v19ttvp2zf09Ojyy+/XIsXL9auXbu0cuVKrVixQk8//XSeKz+Ox7YBACg8lj4t1dDQoAsvvFB33323JGloaEhut1s333yzVq1aNar93/3d3+kXv/iFXnnllcS5r3zlKzp8+LA2bdqU8nscPXpUR48eTRxHIhG53e6sPC01LBgMqq2tLWlysdvtViAQ4LFtAACyIJOnpSy7c3Ps2DFt375dXq/3z8WUlcnr9Wrr1q0pr9m6dWtSe0lqbm4es70krVu3TlVVVYmX2+3OTgdG8Pl82rt3r5577jk9+uijeu6559TT00OwAQDAApY9Cn7o0CHF43FVV1cnna+urtbvf//7lNf09/enbB+JRPT+++9rypQpo65ZvXq12tvbE8fDd26yzeFwjOtxbwAAkF22X+emoqJCFRUVVpcBAADyxLJhqenTp8vhcGhgYCDp/MDAgGpqalJeU1NTk7J9ZWVlyrs2AACg9FgWbsrLyzVv3jx1dXUlzg0NDamrq0sLFy5Mec3ChQuT2kvSM888M2Z7AABQeix9FLy9vV333XefHn74Yb322mu64YYbFIvFtHz5cknH58tcc801ifbXX3+99uzZo29/+9v6/e9/r3vuuUdPPPGEvvGNb1jVBQAAUGAsnXOzZMkSHTx4UGvWrFF/f7/q6+u1adOmxKThvr4+7du3L9H+rLPO0i9+8Qt94xvfUEdHh1wul+6//341Nzdb1QUAAFBg2BUcAAAUvKJY5wYAACAXCDcAAMBWCDcAAMBWCDcAAMBWCDcAAMBWCDcAAMBWbL+31IcNP/keiUQsrgQAAKRr+O92OivYlFy4OXLkiCTlZGdwAACQW0eOHFFVVdUJ25TcIn5DQ0M6cOCATjnlFBmGkdXPjkQicrvd2r9/f8ktEFiqfS/Vfkv0nb7T91JRKP02TVNHjhxRbW2tyspOPKum5O7clJWVyeVy5fR7VFZWltQ//JFKte+l2m+JvtP30lOqfS+Efp/sjs0wJhQDAABbIdwAAABbIdxkUUVFhdauXauKigqrS8m7Uu17qfZbou/0nb6XimLsd8lNKAYAAPbGnRsAAGArhBsAAGArhBsAAGArhBsAAGArhJsMbdiwQR6PR5MnT1ZDQ4O2bdt2wvbPP/+8PvWpT6miokJnn322HnroofwUmgOZ9L2vr09Lly7Vueeeq7KyMq1cuTJ/hWZZJv0OBoO67LLLNGPGDFVWVmrhwoV6+umn81htdmXS9y1btujiiy/W6aefrilTpujjH/+41q9fn8dqsyvT3/VhL774oiZNmqT6+vrcFphDmfT9+eefl2EYo179/f15rDg7Mv2ZHz16VN/5znc0a9YsVVRUyOPx6IEHHshTtdmVSd+vvfbalD/zOXPm5LHikzCRtscff9wsLy83H3jgAfPVV181v/a1r5mnnnqqOTAwkLL9nj17zKlTp5rt7e3m7t27zbvuust0OBzmpk2b8lz5xGXa956eHrO1tdV8+OGHzfr6erOtrS2/BWdJpv1ua2szb7/9dnPbtm3mG2+8Ya5evdr8yEc+Yu7YsSPPlU9cpn3fsWOH+eijj5qvvPKK2dPTYz7yyCPm1KlTzX//93/Pc+UTl2nfh7377rvmRz/6UbOpqcmcO3duforNskz7/txzz5mSzNdff93s6+tLvOLxeJ4rn5jx/Mz/6q/+ymxoaDCfeeYZs6enx/zNb35jbtmyJY9VZ0emfT98+HDSz3r//v3maaedZq5duza/hZ8A4SYDCxYsMG+88cbEcTweN2tra81169albP/tb3/bnDNnTtK5JUuWmM3NzTmtMxcy7ftIl156adGGm4n0e1hdXZ1566235qK8nMpG3//6r//avOqqq3JRXk6Nt+9Lliwxv/vd75pr164t2nCTad+Hw827776bpwpzI9N+//KXvzSrqqrMP/7xj/kqMWcm+rv+k5/8xDQMw9y7d2+uSswYw1JpOnbsmLZv3y6v15s4V1ZWJq/Xq61bt6a8ZuvWrUntJam5uXnM9oVqPH23g2z0e2hoSEeOHNFpp52WqzJzIht937lzp37zm9/o0ksvzVWZOTHevj/44IPas2eP1q5dm48yc2IiP/f6+nrNnDlTl112mV588cVcl5pV4+n3z372M82fP1//9E//pDPPPFPnnnuuvvWtb+n999/PV9lZkY3f9R/84Afyer2aNWtWrsrMGOEmTYcOHVI8Hld1dXXS+erq6jHHlvv7+1O2j0QiRfULMJ6+20E2+n3HHXcoGo3qy1/+ci5KzJmJ9N3lcqmiokLz58/XjTfeqBUrVuSy1KwbT9/ffPNNrVq1Sj/60Y80aVLx7kc8nr7PnDlT9957r5566ik99dRTcrvdWrRokXbs2JGPkrNiPP3es2ePtmzZoldeeUU/+clPFAgE1NnZqb/5m7/JR8lZM9H/zx04cEC//OUvC+73vHh/C4EC9+ijj+rWW2/Vf/zHf+iMM86wupy82bx5s6LRqF566SWtWrVKZ599tq688kqry8qZeDyupUuX6tZbb9W5555rdTl5N3v2bM2ePTtxfNFFF+kPf/iD1q9fr0ceecTCynJraGhIhmHoxz/+cWKn6jvvvFN+v1/33HOPpkyZYnGF+fHwww/r1FNP1Re+8AWrS0lCuEnT9OnT5XA4NDAwkHR+YGBANTU1Ka+pqalJ2b6ysrKo/uGPp+92MJF+P/7441qxYoWefPLJUUOTxWAifT/rrLMkSeeff74GBgZ0yy23FFW4ybTvR44c0e9+9zvt3LlTN910k6Tjf/hM09SkSZP0q1/9Sp/+9KfzUvtEZet3fcGCBdqyZUu2y8uZ8fR75syZOvPMMxPBRpLOO+88maap3t5enXPOOTmtOVsm8jM3TVMPPPCArr76apWXl+eyzIwxLJWm8vJyzZs3T11dXYlzQ0ND6urq0sKFC1Nes3DhwqT2kvTMM8+M2b5QjafvdjDefj/22GNavny5HnvsMV1++eX5KDXrsvUzHxoa0tGjR3NRYs5k2vfKykq9/PLL2rVrV+J1/fXXa/bs2dq1a5caGhryWf6EZOvnvmvXLs2cOTMXJebEePp98cUX68CBA4pGo4lzb7zxhsrKyuRyuXJec7ZM5Gf+wgsv6H//93/11a9+NddlZs7iCc1F5fHHHzcrKirMhx56yNy9e7f59a9/3Tz11FPN/v5+0zRNc9WqVebVV1+daD/8KPjf/u3fmq+99pq5YcOGon4UPJO+m6Zp7ty509y5c6c5b948c+nSpebOnTvNV1991Yryxy3Tfv/4xz82J02aZG7YsCHpUcnDhw9b1YVxy7Tvd999t/mzn/3MfOONN8w33njDvP/++81TTjnF/M53vmNVF8ZtPP/eRyrmp6Uy7fv69evNn/70p+abb75pvvzyy2ZbW5tZVlZmPvvss1Z1YVwy7feRI0dMl8tl+v1+89VXXzVfeOEF85xzzjFXrFhhVRfGbbz/3q+66iqzoaEh3+WmhXCTobvuusv8f//v/5nl5eXmggULzJdeeinx3rJly8xLL700qf1zzz1n1tfXm+Xl5eZHP/pR88EHH8xvwVmUad8ljXrNmjUrv0VnQSb9vvTSS1P2e9myZfkvPAsy6fu//uu/mnPmzDGnTp1qVlZWmhdccIF5zz33FN16J8My/fc+UjGHG9PMrO+33367+bGPfcycPHmyedppp5mLFi0yf/3rX1tQ9cRl+jN/7bXXTK/Xa06ZMsV0uVxme3u7+d577+W56uzItO+HDx82p0yZYn7/+9/Pc6XpMUzTNK26awQAAJBtzLkBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBYAuvv/66ampqdOTIkZO23b17t1wul2KxWB4qA5BvhBsABWvRokVauXJlWm1Xr16tm2++WaeccspJ29bV1ekv//Ivdeedd06wQgCFiHADoOjt27dPP//5z3Xttdemfc3y5cv1b//2b/rggw9yVxgASxBuABSka6+9Vi+88II6OjpkGIYMw9DevXtTtn3iiSc0d+5cnXnmmYlzb731lq644gr9xV/8hZxOp+bMmaNQKJR4/7LLLtM777yjF154IdddAZBnk6wuAABS6ejo0BtvvKFPfOIT+t73vidJmjFjRsq2mzdv1vz585PO3XjjjTp27Ji6u7vldDq1e/duTZs2LfF+eXm56uvrtXnzZn3mM5/JXUcA5B3hBkBBqqqqUnl5uaZOnaqampoTtn3rrbdGhZt9+/bpi1/8os4//3xJ0kc/+tFR19XW1uqtt97KXtEACgLDUgCK3vvvv6/JkycnnWttbdVtt92miy++WGvXrtX//M//jLpuypQpeu+99/JVJoA8IdwAKHrTp0/Xu+++m3RuxYoV2rNnj66++mq9/PLLmj9/vu66666kNu+8886YQ10AihfhBkDBKi8vVzweP2m7Cy64QLt37x513u126/rrr1cwGNQ3v/lN3XfffUnvv/LKK7rggguyVi+AwkC4AVCwPB6Pfvvb32rv3r06dOiQhoaGUrZrbm7W1q1bk4LQypUr9fTTT6unp0c7duzQc889p/POOy/x/t69exUOh+X1enPeDwD5RbgBULC+9a1vyeFwqK6uTjNmzNC+fftStvvc5z6nSZMm6dlnn02ci8fjuvHGG3Xeeefps5/9rM4991zdc889ifcfe+wxNTU1adasWTnvB4D8MkzTNK0uAgAmasOGDfrZz36mp59++qRtjx07pnPOOUePPvqoLr744jxUByCfeBQcgC1cd911Onz4sI4cOXLSLRj27dunv//7vyfYADbFnRsAAGArzLkBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC28v8B2LfmSksl2LEAAAAASUVORK5CYII="
          },
          "metadata": {}
        },
        {
          "output_type": "display_data",
          "data": {
            "text/plain": "<Figure size 640x480 with 0 Axes>"
          },
          "metadata": {}
        }
      ]
    },
    {
      "cell_type": "code",
      "source": "def modelo(tiempo, C):\n\n    #condiciones iniciales\n    g = 7.8\n    t0 = 0\n    y0 = 0\n    v0 = 0\n    a0 = g - C*v0\n\n    tf = 10\n\n    dt = 0.001\n    t = np.arange(t0, tf, dt)\n\n    y = [y0]\n    v = [v0]\n    a = [a0]\n\n    for i in np.arange(1, len(t), 1):\n        yi = a[i-1]*dt**2/2 + v[i-1]*dt + y[i-1]\n        vi = a[i-1]*dt + v[i-1]\n        ai = g - C*vi\n\n        y.append(yi)\n        v.append(vi)\n        a.append(ai)\n\n    inter_func = interp1d(t, y)\n    Y = inter_func(tiempo)\n    return Y",
      "metadata": {
        "trusted": true
      },
      "execution_count": 16,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": "ajuste = curve_fit(modelo, prom_Tiempos, prom_Altura)\nprint(ajuste)",
      "metadata": {
        "trusted": true
      },
      "execution_count": 17,
      "outputs": [
        {
          "name": "stdout",
          "text": "(array([9.8049934]), array([[0.00827785]]))\n",
          "output_type": "stream"
        }
      ]
    },
    {
      "cell_type": "code",
      "source": "C_best = ajuste[0][0]",
      "metadata": {
        "trusted": true
      },
      "execution_count": 18,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": "tiempo1 = np.arange(0,1 ,0.05)\ny_best = modelo(tiempo1, C_best)",
      "metadata": {
        "trusted": true
      },
      "execution_count": 19,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": "plt.figure()\nplt.errorbar(prom_Tiempos, prom_Altura, y_err, t_err, fmt='o', color='k')\nplt.plot(tiempo1, y_best)\nplt.xlabel('t (s)')\nplt.ylabel('y (m)')\nplt.xlim(0, prom_Tiempos[-1]*1.1)\nplt.ylim(0, prom_Altura[-1]*1.1)\nplt.show()\nplt.savefig('Modelo Min.cua.no,lneal.C.pdf', bbox_inches='tight')",
      "metadata": {
        "trusted": true
      },
      "execution_count": 20,
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "text/plain": "<Figure size 640x480 with 1 Axes>",
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABST0lEQVR4nO3deVhU9f4H8PcwyCoMKbtD4q64YaCEJrYglta9OVGW141yKxWNuqW/SrPbzdutFHLJ1KumpWk4lrdIK9LALRTc90IFRkBQYZhBWWbO7w8uk8SgLDNzZob363nmeZgz3zN85oTw7nw3iSAIAoiIiIjshIPYBRARERGZEsMNERER2RWGGyIiIrIrDDdERERkVxhuiIiIyK4w3BAREZFdYbghIiIiu+IodgGWptfrceXKFXh4eEAikYhdDhERETWCIAgoKytDYGAgHBzufG+m1YWbK1euICgoSOwyiIiIqBlyc3Mhl8vv2KbVhRsPDw8ANRfH09NT5GqIiIgaptVqERgYCKDmf87d3d2t8j2b61aVDm9uP4GdpwoBADMf6oppwzob7VlRq9UICgoy/B2/k1YXbmovmKenJ8MNERFZNalUavja09PTJEHEHO/ZHCXllZi5KRMZl8rg5OqO95/qh6fC7nxHBkCjhpS0unBDRERE4sq5Vo5J6zOQXaSFh7MjVo4Pw5Cu3iZ7f4YbIiIisphjuSV44bNDKNZUIlDmgnVxg9DD/+5dTU3BcENEREQW8ePpQszanIVbVXqEBHhiXdxA+Hm6mPz7MNwQERGR2W04cAlv7zgFvQAM6+6D5X+7D22dzRNDGG6IiIjIbPR6Af/aeRar0rIBAM8ODMI/nuyDNlLzrSPMcENERERmcatKh1e2HsN3J/IBAK/GdMeMh7qafRFdhhsiIiIyuRvaSkzZcBiHL99AG6kE/47th9ED7j7V2xQYboiIiMikLl/TIm7dIWQXa+Hh4ohPx4dhcBfTTfW+G9E3zly+fDmCg4Ph4uKCiIgIZGRkNNh2z549kEgk9R4FBQUWrJiIiIgacjS3BIoV+5FdrEUHL1dse3GwRYMNIHK42bJlCxISErBgwQJkZWWhf//+GDFiBK5evXrH886dO4f8/HzDw9fX10IVExERUUN+OFWAZ1cdwDVtJXoHemL7S4PR3c+0a9g0hqjhZvHixZgyZQri4uIQEhKClStXws3NDWvXrr3jeb6+vvD39zc87rQ7aEVFBdRqdZ0HERERmdZn+y9h2ueZuFWlx4M9fLB1WiR8zbCGTWOIFm4qKyuRmZmJ6OjoP4pxcEB0dDQOHDhwx3NDQ0MREBCA4cOHY9++fXdsu2jRIshkMsODO4ITERGZjl4v4J/fncaCHacgCMBzg4KwZkI43M20hk1jiBZuiouLodPp4OfnV+e4n59fg2NoAgICsHLlSmzbtg3btm1DUFAQHnzwQWRlZTX4febNm4fS0lLDIzc316Sfg4iIqLW6VaXDzM1ZWJ1+EQDw9xE98N7ovnA04xo2jWFTs6V69OiBHj16GJ4PHjwYv//+O5YsWYKNGzcaPcfZ2RnOzs6WKpGIiKhVuP6/qd6Z/5vq/eHT/fHX0A5ilwVAxHDj7e0NqVSKwsLCOscLCwvh7+/f6PcZNGgQ9u7da+ryiIiIqAGXr2kxad0hXCzWwtPFEZ+OD0dkl/Zil2Ug2n0jJycnhIWFITU11XBMr9cjNTUVkZGRjX6fo0ePIiAgwBwlEhER0Z8cybkBxYr9uHjbVG9rCjaAyN1SCQkJmDhxIsLDwzFo0CAkJiZCq9UiLi4OQM14GZVKhQ0bNgAAEhMT0alTJ/Tu3Ru3bt3CmjVr8PPPP+OHH34Q82MQERG1CrtOFWD2l0dwq0qPPh08sXbSQPh6iDMj6k5EDTdjxoxBUVER5s+fj4KCAoSGhmLnzp2GQcb5+fnIyckxtK+srMQrr7wClUoFNzc39OvXDz/99BMeeughsT4CERFRq7Bu30W88+1pCALwcE9fLH1ugKgzou5EIgiCIHYRlqRWqyGTyVBaWgpPT0+xyyEiIjug1WrRtm1bAIBGo4G7u7vVvm9T31OvF/DPlDP4z96aGVF/i7gXC//S2+Izopry99s6IxcRERGJ7laVDi9vOYrvT9Ys0fL6oz0xfVhns+/q3VIMN0RERFTPdW0lJn92CFk5JXCSOuCDp/tZzVTvu2G4ISIiojouFWsxaV0GLl0rh6eLI1ZPCEdEZ+uaEXUnDDdERERkkHn5BqZsOIzr2krI73HF+riB6Opr+c0vW4LhhoiIiAAAO0/mY/aXR1FRrUffDjL8Z1K4VU71vhuGGyIiIsJ/9l7Eu9/VTPV+pKcvlo4dADcn24wJtlk1ERERmYROL+Dd705j3b5LAIBx99+Lt5+w/FRvU2K4ISIiakV0Op3h659278F313zww5kiAMC8x3piapT1T/W+G9uNZURERNQkSqUSISEhhudPPvE41s4ahcoLB7D0uQGYNqyLzQcbgOGGiIioVVAqlYiNjYVKpapzXFdWjPzt76Hq94MiVWZ67JYiIiKycVqt9o6v63Q6xMfHo6EdlyQAZs+ejejoaEil0ju+l6m2ljAnhhsiIiIbV7tXVHMJgoC8vDzIZLJGtbV27JYiIiIiu8I7N0RERDZOo9E0+JpOL+ClxV/ii7en3PV9UlJSEBUVZcrSRMFwQ0REZOMaGgdzs1KHOV8eQbrWF1IPb+jKrgGo360kkUggl8sRExNz1zE3toDdUkRERHaoWFOBZ1cfxI+nC+Hs1Aavv/0vSCSoN9W79nliYqJdBBuAd26IiIjszu9FGsStO4Sc6+XwcmuDNRPCER7cDmHB9yA+Pr7OdHC5XI7ExEQoFAoRKzYthhsiIiI7cujSdUzZcBgl5VW4t50b1scNRGefmtlUCoUC0dHRhllRKSkpdtMVdTuGGyIiIjvx7fErSNh6DJXVeoQGeWHNxHB4t3Wu0+b2IBMVFWV3wQZguCEiIrJ5giBgVVo2Fn1/FgAQE+KHpGcHwNXJ/oJLYzDcEBER2bBqnR4L/3saGw9eBgBMGhyMtx4PgdTB9veIai6GGyIialW0Wq1hRV+NRmMT2wk0pLyyGrM2HUHq2auQSIA3R4XghQc6iV2W6BhuiIiIbNDVsluY/NlhHM8rhbOjAxLHhOKxvgFil2UVGG6IiIhszG9XyzBp3SHk3biJe9zaYM3EgQjreI/YZVkNLuJHRERkpXQ6neHrtLQ06HQ6/Jp9DYoV+5F34yaC27tB+dIQBps/YbghIiKyQkqlEiEhIYbnI0eOhF+HIIz++xKob1VjwL1e2PbiYHTytt0xQ+bCcENERGRllEolYmNj66wkDADXCvORr/wnupefxuYp96P9n9awoRocc0NERGRBWq32jq/rdDrEx8dDEOpvcFlDgtPKJFS+Ow26yobXsbHlWWAtxXBDRERkQbXT0JtPgEqlMmyh0GCrBsOR/WO3FBEREdkV3rkhIiKyII1Gc8fX09LSMHLkyLu+T0pKCqKiokxVll1huCEiIrKgu42F8egSBkdPb1Sri42+LpFIIJfL7XI3b1NhtxQREZGV+PqICnGfHcY9D08FUBNkblf7PDExkcHmDhhuiIiIRCYIApbv/g1zthxFlU5AbKwCm7d8hcDAwDrt5HI5kpOToVAoRKrUNrBbioiISETVOj3e+uYkNmfkAgCmRnXG3Ed7wsEhDCMfjTHMikpJSWFXVCMx3BAREYlEU1GNGV9k4ZfzRXCQAAue6I2Jg4MNr98eZKKiohhsGonhhoiISASF6lt4fv0hnLqihksbByx97j4MD/ETuyy7wHBDRERkYecKyhC3LgNXSm/Bu60T1kwciNAgL7HLshsMN0RERBa077diTN+YibKKanT2ccf6SYNwb3s3scuyKww3REREFrItMw+vbzuOar2AQcHtsGpCGLzcnMQuy+4w3BAREZmZIAj4OPU3LPnpPADgif6B+CC2H1zacICwOXCdGyIiohbS6XSGr9PS0uo8r9Lp8VrycUOwmT6sC5LGhDLYmBHDDRERUQsolUqEhIQYno8cORLBwcFQKpUou1WF59cfwleZeXCQAO8+2QdzH+sJBwfJHd6RWordUkRERM2kVCoRGxsLQRDqHFepVIiNjUX/Se/ghu8AuDlJsWzsADzck1O9LYHhhoiIqAFarbbB13Q6HeLj4+sFGwCGYyeSk9D/1Y34ZGwoege0Nfp+d9tIk5qO4YaIiKgBbdu2bdH5urJiHH3/WUQsKG2wjbFwRC3DMTdERERmpC9vONiQefDODRERUQM0Gk2Dr6WlpWHkyJF3fY+UlBRERUWZsiy6C4YbIiKySlqt1tAtpNFoRBmbcqfvGRMTA7lcDpVKZbRrSSKRQC6XcydvEbBbioiIqBmkUine+/dHDQYbAEhMTGSwEQHDDRERUTOoSm5iY4EffJ78Pzh6eNd5TS6XIzk5GQqFQqTqWjeGGyIioiY6qSrF6OX7cL5Qg04DH8Lew0cNr6WkpODixYsMNiLimBsiIqIm2H32KmZsykJ5pQ49/DywLm4gZG30htejoqLYFSUyhhsiIqJG2vRrDt765iR0egFDurbHJ+PC4OnS5o6L/ZHlMdwQERHdhV4v4MMfzmHFnt8BAE/dJ8ciRV84OXJ0hzViuCEiIrqDimod/v7Vcew4dgUAMCe6G2Y/0s0wI4qsD8MNERFRA0rKKzF1YyYyLl6Ho4MEixR98XR4kNhl0V0w3BARERmRe70ck9Zl4PciLdo6O2LluDA80M377ieS6NhZSERErYpOpzN8nZaWVud5reN5JRi9Yh9+L9IiQOaC5BcjGWxsCMMNERG1GkqlEiEhIYbnI0eORHBwMJRKpeHYT6cLMebTgyjWVKJXgCe2vzQEPf09xSiXmkn0cLN8+XIEBwfDxcUFERERyMjIaNR5+/btg6OjI0JDQ81bIBER2QWlUonY2FioVKo6x1UqFWJjY6FUKrHhwCVM3XgYN6t0iOrug63T7oe/zEWkiqm5RA03W7ZsQUJCAhYsWICsrCz0798fI0aMwNWrV+94XklJCSZMmIBHHnnEQpUSEZG102q1DT7UajXi4+ON7gNVeyxu2kt4a/tx6AXgqVB/fBzbCw66SsN7kO2QCMb+S1tIREQEBg4ciGXLlgEA9Ho9goKCMGvWLMydO7fB85599ll069YNUqkUX3/9NY4ePdpg24qKClRUVBieq9VqBAUFobS0FJ6evM1IRGStmroruCmmZvs99x5uXjoK9YGt9V67059Lc+1gbo73tYbd1ptDrVZDJpM16u+3aHduKisrkZmZiejo6D+KcXBAdHQ0Dhw40OB569atQ3Z2NhYsWNCo77No0SLIZDLDIyiIU/iIiMi4krSNRoMN2RbRwk1xcTF0Oh38/PzqHPfz80NBQYHRcy5cuIC5c+fi888/h6Nj42axz5s3D6WlpYZHbm5ui2snIiLro9FoGnykpKQ06j22r/6owfcg22Ez69zodDqMHTsWCxcuRPfu3Rt9nrOzM5ydnc1YGRERWYM7da/ExMRALpdDpVIZ7V6SSCSQy+WIiYnhppd2QLQ7N97e3pBKpSgsLKxzvLCwEP7+/vXal5WV4fDhw5g5cyYcHR3h6OiId955B8eOHYOjoyN+/vlnS5VOREQ2RiqVIikp6X/P6o7NqR2rk5iYyGBjJ0QLN05OTggLC0NqaqrhmF6vR2pqKiIjI+u19/T0xIkTJ3D06FHDY/r06ejRoweOHj2KiIgIS5ZPREQ2RqFQYPo/lkPq0b7OcblcjuTkZCgUCpEqI1MTtVsqISEBEydORHh4OAYNGoTExERotVrExcUBqBkvo1KpsGHDBjg4OKBPnz51zvf19YWLi0u940RERLfT6QX849vTSCm7Fx2m/wc3dq9F2eEdSEn5rtV1Rbm7u99x5pc9EDXcjBkzBkVFRZg/fz4KCgoQGhqKnTt3GgYZ5+fnIycnR8wSiYjIxt2s1GH2l0fww+maYRCvDO+G2R98AwCIiopqVcGmtRB1nRsxNGWePBERiccU67EUayow+bPDOJpbAiepAz56pj8e7iqzmbVjbHVNGnOwiXVuiIjIfmi1WkgkEkgkEqtZzff3Ig0UK/bjaG4JZK5t8PnkCDzRP1DsssgCbGYqOBERUWMdunQdUzYcRkl5FYLauWJ93CB08WkrdllkIQw3RERkV/577Ape+eoYKqv16B/khf9MDId3W6531pow3BARkV0QBAGfpmXjX9+fBQDEhPgh6dkBcHXigOHWhuGGiIhsXrVOjwU7TuGLX2tm2E4aHIy3Hg+B1KHlm2mS7eGAYiIisko6nc7wdVpaWp3nt9NWVGPqxkx88WsOJBJg/uMhePsvvRlsWjGGGyIisjpKpRIhISGG5yNHjkRwcDCUSmWddlfVtzBm1QH8fPYqnB0d8MnfwvD8A50sXS5ZGYYbIiKyKkqlErGxsVCpVHWOq1QqxMbGGgLO+cIyjF6xHydVarRzd8Lmqffj0T719yak1odjboiIyOIaWgtHp9MhPj7e6PYAgiBAIpFg9uzZ8OgahoRtZ1BWoUPHdq5Y+Vw/3NvOydxlk41guCEiIourXXW3qQRBQF5eHsb9cyNcOw3ArbxT2Jv0LkJeLzO8bk9awz5Q5sBwQ0RENkd/Uw3t2XQUf7sY0FWJXQ5ZGY65ISIii9NoNEYfKSkpjTp/1KAeyP78TWhKb9Q5nwjgnRsiIhJBQxtAxsTEQC6XQ6VSNdgd0843AP+ZN4m7eVODeOeGiIishlQqRVJSEgBAIjGyTo1EgtWfLGOwoTtiuCEiIquiUCiQnJwMH7+607r9AjtgW3IyFAqFSJWRrWC3FBERWR3vPkPR/oXVkGQfR0X+BXz80l8xVvE479hQo/DODRERWZWth3IRt/4QyqsBCID6wFYoRkYz2FCjMdwQEZFVEAQBH/1wDq9tOw6dXsDjfXxR+NV86CuML/hH1BCGGyIiEl1ltR4JW49h6c+/AQBmPdwV/3qyF6CrFrkyskUcc0NERKIqLa/CtM8P42D2dUgdJHhvdB+MGXhvg1s0EN0Nww0REYkm70Y5Jq07hN+uauDuJMWKcWEY1t1H7LLIxjHcEBGRKE7kleL5zw6hqKwC/p4uWDtpIEICPcUui+wAx9wQEbUiWq0WEokEEolE1G6f1DOFeObTAygqq0BPfw9snzGYwYZMhnduiIjIojYeuIQFO05BLwBDu3ljxd/ug4dLG7HLahHu3m1dGG6IiMgi9HoB/9p5FqvSsgEAz4TL8c/RfdFGyk4EMi2GGyIiMrtbVTokbD2KlBMFAIBXhnfHzIe7Gt8/iqiFGG6IiMisrmsrMWXDYWRevoE2Ugn+HdsPowfIxS6L7BjvBRIRUYvpdDrD12lpaYbnF4u1UKzYh8zLN+Dp4ogNz0cw2JDZMdwQEVGLKJVKhISEGJ6PHDkSwcHB+ODTz6BYsQ+XrpVDfo8rlC8NRmSX9iJWSq0Fww0RETWbUqlEbGwsVCpVneN5KhVemz4JqiO/oJ9cBuVLg9HV10OkKqm14ZgbIiK6K2Nr4uh0OsTHxxufAv2/Y9q0NVi1+lW4O+jqvIe7u7vZaiViuCEiortq27Zts84rv34VAT7t6h3nmjBkTuyWIiIiIrvCcENERHel0WjqPVJSUhp1bkpKSr1zxVS7mrAgCOwes1PsliIiorsyFgJiYmLgHxCIgvwrRs+RSCSQy+WIiYmBVCo1d4lEBrxzQ0REzfLrxRtoM/R5o6/VrjycmJjIYEMWx3BDRERNlpyZhwlrM+DQ6X5ETv0nAgID67wul8uRnJwMhUIhUoXUmrFbioiIGk0QBCSlXkDiTxcAAI/3C8CHTz+Kyg9mQiaTAagZY8OuKBITww0RETVKZbUe85QnsC0rDwAwfVgXvDaiBxwcJNBV/hFkoqKiGGxIVAw3RERWSqvVGtaX0Wg0os7sKb1ZhRc/z8T+369B6iDBO3/tjb9FdBStHqI7YbghIqI7UpXcRNy6DJwv1MDNSYrlf7sPD/XwFbssogYx3BARUYNOqkoRt/4Qisoq4OvhjLWTBqJPB5nYZRHdEcMNEREZ9fPZQszcdATllTr08PPAuriBCPRyFbssortiuCEiono2HryMBd+chF4AHujqjRXj7oOnSxuL1lC7kjBRUzHcEBGRgV4v4P2dZ/FpWjYAIDZMjkWKvmgj5bJoZDsYboiICABwq0qHV7Yew3cn8gEACcO7Y9bDXQ2rDRPZCoYbIiLCdW0lpmw4jMzLN9BGKsG/Y/th9AC52GURNQvDDRFRK3epWIu49YdwsVgLDxdHfDo+DIO7eItdFlGzMdwQEbUiOp3O8HVaWhra9wjHtM+P4EZ5FTp4uWJ93EB08/MQsUKiluMIMSKiVkKpVCIkJMTwfOTIkRgSGgLVkV/Qt4MM22cMZrAhu8BwQ0TUCiiVSsTGxkKlUtU5Xl1WjKKv38NYv3z4eriIVB2RabFbiojIzmi12jrPdTod4uPjG1wzRiKR4LVXEjDq0RH1NrwUcz8rouZiuCEisjO1m202liAIyMvLg0xWf1sFLqJHtojdUkRERGRXGG6IiOyMRqOp81j1xbZGnZeSklLvXCJbxG4pIiIT0Gq1hu4gjUYj6liV2793+oUiJJ5xgdTDG7qyYqPtJRIJ5HI5YmJi6o25IbJFvHNDRGSnthzKQdy6Q9BWCYgYmwCJRFJvK4Xa54mJiQw2ZDcYboiI7IwgCPhw1zm8vu0EqvUCngwNxM/LXkNycjICAwPrtJXL5UhOToZCoRCpWiLTY7cUEZEdqajW4e9fHceOY1cAAPEPd8XLw7tDIpFAoVAgOjraMCsqJSWFXVFklxhuiIjsxA1tJaZtzETGpetwdJDgPUVfPBMeVKfN7UEmKiqKwYbskujdUsuXL0dwcDBcXFwQERGBjIyMBtvu3bsXQ4YMQfv27eHq6oqePXtiyZIlFqyWiMg6Xb6mxVOf7EfGpevwcHbE+rhB9YINUWsh6p2bLVu2ICEhAStXrkRERAQSExMxYsQInDt3Dr6+vvXau7u7Y+bMmejXrx/c3d2xd+9eTJs2De7u7pg6daoIn4CISHyZl29gyobDuK6tRAcvV6ydNBA9/LlHFLVeEkHE5ScjIiIwcOBALFu2DACg1+sRFBSEWbNmYe7cuY16D4VCAXd3d2zcuNHo6xUVFaioqDA8V6vVCAoKQmlpKTw9PVv+IYiIYJ6p4I15z+9P5GPOlqOoqNajTwdPrJ04EL6eDe8RZa4p69Y0FZ7sk1qthkwma9Tfb9G6pSorK5GZmYno6Og/inFwQHR0NA4cONCo9zhy5Aj279+PYcOGNdhm0aJFkMlkhkdQEG/TEpHtEwQBq9Oy8dKmLFRU6/FIT19smRp5x2BD1FqIFm6Ki4uh0+ng5+dX57ifnx8KCgrueK5cLoezszPCw8MxY8YMTJ48ucG28+bNQ2lpqeGRm5trkvqJiMRSrdPjrW9O4p8pZyAIwITIjlg1IRzuzpwjQgTY6Gyp9PR0aDQaHDx4EHPnzkXXrl3x3HPPGW3r7OwMZ2dnC1dIRGQe2opqzNyUhd3niiCRAG+M7IUXHuhUb3E+S3N3d+cmm2Q1RAs33t7ekEqlKCwsrHO8sLAQ/v7+dzy3U6dOAIC+ffuisLAQb7/9doPhhojIXhSqb+H59Ydw6ooazo4OSHo2FI/2CRC7LCKrI1q3lJOTE8LCwpCammo4ptfrkZqaisjIyEa/j16vrzNgmIjIHp0v1GD08n04dUWN9u5O+HLq/Qw2RA0QtVsqISEBEydORHh4OAYNGoTExERotVrExcUBqBkvo1KpsGHDBgA1a+Lce++96NmzJwAgLS0NH374IeLj40X7DERE5uYSHIpx649AW6lDZx93rJ80CPe2dxO7LCKrJWq4GTNmDIqKijB//nwUFBQgNDQUO3fuNAwyzs/PR05OjqG9Xq/HvHnzcPHiRTg6OqJLly54//33MW3aNLE+AhGR2eh0Orh0DoN7r2G49tsRDB06FKsnDoKXm5PYpRFZNVHXuRFDU+bJExE1lqnXedm2bRuenzYD6mt/jEvsIJfj46SkFm1yyfVoyFbZxDo3RERk3JavkhEb+3SdYAMAV1QqxMbGQqlUilQZkW1guCGiVkWr1UIikUAikUCr1YpdDrRabZ1HTsE1xE19CUD9m+q1N9pnz54NtVpd5zwi+oNNrnNDRGQvaruIAMDRyx+ywc/hZklRg+0FQUBeXh5kMlm940RUg3duiIisgFNgD/iP/wgSKf+fk6ilGG6IiESk0WigPHQRwXFLIHWTofO9gY06LyUlBRqNxvAgoj806X8RSkpKsH37dqSnp+Py5csoLy+Hj48PBgwYgBEjRmDw4MHmqpOIyO4IgoBNmYV47/uaPaIe6emLJc9Eo/c3H0GlUhntapJIJJDL5YiJiYFUKhWhaiLr16g7N1euXMHkyZMREBCAd999Fzdv3kRoaCgeeeQRyOVy7N69G8OHD0dISAi2bNli7pqJiGxeQ5tfero5IykpCQDq7RdV+zwxMZHBhugOGnXnZsCAAZg4cSIyMzMREhJitM3Nmzfx9ddfIzExEbm5uXj11VdNWigRkb3QVFQjfvMR/Hz2qtHNLxUKBZKTkxEfHw+VSmU4Ty6XIzExsUXr3BC1Bo1axO/atWto3759o9+0qe0tiYv4EbVu5lrErrHvW1Bas/nl6fy7b35Z+/sKqBljY4quKC7iR7aqKX+/G3XnpqlBxVqDDRGRmE5fUeP59YdQoL4F77ZOWDNxIEKDvBpsf3uQiYqKYlcUUSM1a87hlStXsHfvXly9ehV6vb7Oa9zEkoiovt1nr2LmpixoK3Xo6tsW6yYNRFA7bn5JZA5NDjfr16/HtGnT4OTkhPbt29cZ8CaRSBhuiIj+ZOPBy1jwzUnoBWBwl/b4ZFwYZK5txC6LyG41Ody89dZbmD9/PubNmwcHBy6TQ0TUEL1ewKLvz2B1+kUAwNNhcvxzdF84OfJ3J5E5NTnclJeX49lnn2WwISK6g5uVOszZcgS7TtVsfvn3ET3w0oNd6k3vJiLTa3JCeeGFF/DVV1+ZoxYiIrtQpKnAs6sOYNepQjhJa2ZEzXioq1UEG3d3dwiCAEEQOFOK7FaT79wsWrQIjz/+OHbu3Im+ffuiTZu6/caLFy82WXFERLZCp9MBAKQe7THqzXXQ3NMN7dq6YNWEcAwMbidydUStS7PCza5du9CjRw8AqDegmIiotVEqlYbJFLqyazi95lU4y3wwNzGRwYZIBE0ONx999BHWrl2LSZMmmaEcIiLbolQqERsbW28fqEp1MWY8Pw5+ni5cUZjIwpo85sbZ2RlDhgwxRy1ERFZNq9XWeajVasyKjze6wWXtsdmzZ0OtVhvOISLza3K4mT17NpYuXWqOWoiIrFrbtm3rPGT3tMOV2/Z++jNBEJCXlweZTGY4h4jMr8ndUhkZGfj555/x7bffonfv3vUGFCuVSpMVR0RkrRxcPdH2vlFQ79ssdilE9CdNDjdeXl7sPyaiVkmj0QAALl0rx/TNx3HhWEajwk1KSgqioqLMXR4R/U+Tw826devMUQcRkdVzd3dHxsXrmLrxCErKq9ClbzgkewJRWJBvdNyNRCKBXC43yW7eRNR4XGaYiKyWVquFRCKBRCKxisG4Xx9RYdyaX1FSXoXQIC98PTMKy5fVjEH881IYtc8TExMZbIgsrFHh5tFHH8XBgwfv2q6srAzvv/8+li9f3uLCiIishSAISPrpAuZsOYpKnR6P9fHHl1Pvh4+HMxQKBZKTkxEYGFjnHLlcjuTkZHbjE4mgUd1STz/9NJ566inIZDI88cQTCA8PR2BgIFxcXHDjxg2cPn0ae/fuRUpKCkaNGoUPPvjA3HUTEVlEZbUe85QnsC0rDwAwLaozXn+0Jxwc/rhTo1AoEB0dDZlMBqBmjA27oojE06hw88ILL2DcuHH46quvsGXLFqxatQqlpaUAam69hoSEYMSIETh06BB69epl1oKJiCyltLwK0z4/jIPZ1yF1kOCdv/bG3yI6Gm17e5CJiopisCESUaMHFDs7O2PcuHEYN24cAKC0tBQ3b95E+/bt600HJyKydTnXyhG3PgO/F2nR1tkRy8YOwIM9fMUui4gaocmzpWrJZDLDLVgiInuSlXMDUz47jGvaSgTIXLB20kD0CvAUuywiaqRmhxsiInuUciIfL285iopqPXoHemLtpIHw83QRuywiagKGGyIi1MyI+jQtG//6/iwAILqXL5KeHQB3Z/6aJLI1/FdLRK1elU6P+d+cwuaMHADApMHBeOvxEEgdJHc5k4isEcMNEbVqZbeq8NIXWUi/UAyJBJj/eAjihnQSuywiaoEmr1A8ceJEpKWlmaMWIiKLyi+9hadXHkD6hWK4tpFi1fhwBhsiO9DkcFNaWoro6Gh069YN7733HlQqlTnqIiIyC51OBwCQevpi1FvrcOZKCXw8nLF1WiSGh/iJXB0RmUKTw83XX38NlUqFF198EVu2bEFwcDAee+wxJCcno6qqyhw1EhGZhFKpREhICABAp76K82v/jsJVkzH13iL0lXNpCyJ70ayNM318fJCQkIBjx47h119/RdeuXTF+/HgEBgbi5ZdfxoULF0xdJxFRiyiVSsTGxta721ypLsa0iX+DUqkUqTIiMrUW7Qqen5+PH3/8ET/++COkUilGjhyJEydOICQkBEuWLDFVjURETabVag0PtVqNWbNmQRCEeu1qj82ePRtqtdpwDhHZribPlqqqqsKOHTuwbt06/PDDD+jXrx/mzJmDsWPHwtOzZgXP7du34/nnn8fLL79s8oKJiBqjbdu2fzxxdAaqKxpsKwgC8vLy6qy6biwIWZq7u7tV1EFka5ocbgICAqDX6/Hcc88hIyMDoaGh9do89NBD8PLyMkF5REQtI/X0hcd9o1CyZ53YpRCRhTQ53CxZsgRPP/00XFwaXo7cy8sLFy9ebFFhREQtodFocCyvFLO2noTqTGajzklJSUFUVJSZKyMic2vymJvx48ffMdgQEVmD3b+XIm7jMVzTVmHAwEgEBHaARGJ8xWGJRIKgoCDExMTA3d0d7u7uFq6WiEypRQOKiYisjSAIWL77N8zcdAQV1XpE9/JF8ksPYNnSjwGgXsCpfZ6YmAipVGrxeonI9BhuiMhuVFbr8ffk4/hg1zkAwPNDOuHT8eFwd3aEQqFAcnIyAgMD65wjl8uRnJwMhUIhRslEZAbcW4qI7EJJeSWmbczErxevQ+ogwdt/6Y3x93es00ahUCA6OtowKyolJQUxMTG8Y0NkZxhuiMjmXSzW4vn1h3CxWIu2zo5YNnYAHuzha7Tt7UEmKiqKwYbIDjHcEJFNy7h4HVM3HkZJeRU6eLniP5PC0dPfU+yyiEhEDDdEZLOUWXl4fdtxVOkE9JfLsHpiOHw9OJuTqLVjuCEimyMIApb8eB4f//wbAGBkX3989HQoXJ3YxUREDDdEZGNuVenwWvJx7Dh2BQDw4oNd8PeYHnBwML6GDRG1Pgw3RNRiWq3WsJeTRqMx2yJ41zQVmLoxE5mXb8DRQYL3RvfFMwODzPK9iMh2MdwQkU34vUiLGVtPIvf6TXi6OGLl+DAM7uItdllEZIUYbojIaul0OgBAG+978dcF66H364mO3h5YO2kguvq2vcvZRNRacYViIrJKSqUSISEhAICq4hxc2vA6ilZPxgvyIgYbIroj3rkhIqujVCoRGxsLQRDqHL9VWoy4cc/Cw8WR2yUQUYN454aIrIJWq4VWq4VarcasWbPqBRsAhmOzZ8+GWq2GVqu1dJkNcnd3hyAIEASBu4oTiYx3bojIKtTOtnJwaQv9LU2D7QRBQF5enmF/KGMhiIhaN965ISKr0cYnGLIHxopdBhHZOIYbIrIKKUcuo+v0T+DkE9y49ikp0GgavsNDRK0Xww0RiW7DgUuYseUEyit1GBYVhcAOHSCRGF9xWCKRICgoCDExMRzbQkRGiR5uli9fjuDgYLi4uCAiIgIZGRkNtlUqlRg+fDh8fHzg6emJyMhI7Nq1y4LVEpEp6fQC3t5xCvO/OQW9ADwTLsfGyZFY+vHHAFAv4NQ+T0xMhFTKfaSIyDhRw82WLVuQkJCABQsWICsrC/3798eIESNw9epVo+3T0tIwfPhwpKSkIDMzEw899BCeeOIJHDlyxMKVE1FLaSqqMWXDYazffwkA8PqjPfH+U/3g5OgAhUKB5ORkBAYG1jlHLpcjOTmZ08CJ6I4kgohTDSIiIjBw4EAsW7YMAKDX6xEUFIRZs2Zh7ty5jXqP3r17Y8yYMZg/f36j2qvVashkMpSWlsLT07PZtRPRH5q6t9SVkpt44bPDOJOvhrOjA5aMCcXIvgH12tX+ewVqxtjExMS0+I6NpfbBIiLTasrfb9GmgldWViIzMxPz5s0zHHNwcEB0dDQOHDjQqPfQ6/UoKytDu3btGmxTUVGBiooKw3O1Wt38oomoxY7mlmDKhsMoKquAd1tnrJkYjtAgL6Ntbw8yUVFR7IoiokYRrVuquLgYOp0Ofn5+dY77+fmhoKCgUe/x4YcfQqPR4JlnnmmwzaJFiyCTyQyPoCDuIEwklh3HrmDMpwdQVFaBnv4e+HrG4AaDDRFRc4k+oLi5Nm3ahIULF2Lr1q3w9fVtsN28efNQWlpqeOTm5lqwSiICahbaW/LjecRvPoKKaj0e6emL5BcHQ36Pm9ilEZEdEq1bytvbG1KpFIWFhXWOFxYWwt/f/47nfvnll5g8eTK++uorREdH37Gts7MznJ2dW1wvETXPrSodXvnqGL47ng8AmBbVGa892hNSB+NTvYmIWkq0OzdOTk4ICwtDamqq4Zher0dqaioiIyMbPG/z5s2Ii4vD5s2bMWrUKEuUSkTNdFV9C2M+PYDvjuejjVSCfz/VD/NG9mKwISKzEnVvqYSEBEycOBHh4eEYNGgQEhMTodVqERcXB6CmS0mlUmHDhg0AarqiJk6ciKSkJERERBjG5ri6uhpmVBCRdTipKsWUDYeRX3oLXm5tsHJcGO7v3F7ssoioFRA13IwZMwZFRUWYP38+CgoKEBoaip07dxoGGefn5yMnJ8fQftWqVaiursaMGTMwY8YMw/GJEydi/fr1li6fiBqw61QB5nx5FDerdOji4461kwaiY3tOuSYiyxB1nRsxcJ0bItO7fe2YxF2nkbg7G4IADO3mjWVj74PMtU2L39dUa9JwnRsi22QT69wQkZ2ROqL9iJlY8nM2AGBCZEfMfzwEjlKbnZRJRDaKv3WIqMWK1Ddxz0PPQyJtg8qc43j78Z545699GGyISBS8c0NELbJs7Rd4JWEOKkuLDcfeSl8Bz6Qk7gFFRKLg/1YRUbMtXLoOs14YVyfYAIBKpUJsbCyUSqVIlRFRa8ZwQ0RNptFosOLH0/jHG68Zfb12nsLs2bOhVquh1WotWR4RtXLsliKiJqnS6dHxqblo074DdGXFDbYTBAF5eXmGNaisZWKmu7u71dRCRObBOzdE1Gil5VWYtC4DHgMeQ3XZNbHLISIyiuGGqJXRarWQSCSQSCRN6i7KLtJg9Ip92PfbNbg5SfHKX8IbdV5KSgo0Gk1zyyUiajKGGyK6q/2/FWP0iv3ILtaig5crtr04GK89/zTkcjkkEuP7REkkEgQFBSEmJoYL5RGRRTHcENEdbfo1BxPWZqD0ZhUG3OuFr2cMQa8AT0ilUiQlJQFAvYBT+zwxMRFSqdTiNRNR68ZwQ0RG6fQCFv73FP5v+wlU6wX8NTQQm6fcDx8PZ0MbhUKB5ORkBAYG1jlXLpcjOTmZ69wQkSg4W4qI6im7VYVZm49gz7kiAMCrMd0x46GuRrugFAoFoqOjDbOiUlJSEBMTwzs2RCQahhsiqiP3ejle+OwQzhdq4NLGAYufCcXIvgF3POf2IBMVFcVgQ0SiYrghIoNDl65j2sZMXNdWws/TGasnhKOf3EvssoiImoThhogAANsy8zBPeQKVOj36dPDEmgkD4S9zEbssIqImY7ghauX0egEf/HAOn+z5HQDwaG9/LB7TH25O/PVARLaJv72IWrHySh0SlJnYdaoQADDjoS54ZXgPODgYX7uGiMgWMNwQtVJSj/YYv/4IzhZq4CR1wPuxfTF6gFzssoiIWozhhqgVcgroDh/FmzhbqEF7dyesmhCGsI7txC6LiMgkGG6IWpn/Hi+A/9h/QeLohG4+7lgbNwhB7dzELouIyGS4QjFRK6HTC3gv5QzmfnMWEkcnlF/4FZ/HDWCwISK7w3BD1AqUllchbv0hrErLhqDXoTglEUXKfyDr1/3Q6XRil9cgd3d3CIIAQRC4+SYRNRrDDZGd++2qBk+u2Ie080Wo+v0AtJ9Ng/bETwCAkSNHIjg4GEqlUuQqiYhMh+GGyI7tPnsVo5fvw8ViLZxzDyF/23u4drWgThuVSoXY2FgGHCKyGww3RHZIEAR8sud3PP/ZIZRVVGNAh7Yo270agiAYbQsAs2fPhlqttnSpREQmx9lSRHbmZqUOr287jh3HrgAAyo5+j6///Qkg6Bs8RxAE5OXlQSaTGQ1ARES2hHduiKyUVquFRCKBRCKBVqtt1DlXSm7i6U/3Y8exK3B0kOAfT/bB9V3L7xhsiIjsDcMNkZ3IvHwdf1m2DydVatzj1gafT47A+Ps7QqPRICUlpVHv0dh2RETWjN1SRHZgy6EcvPn1SVTpBPT098DqCeGG9Wvc3d0RExMDuVwOlUpltNtJIpFALpcjJibG0qUTEZkc79wQ2bAqnR5v7ziF17edQJVOwGN9/LHtxcH1FuaTSqVISkoCUBNkblf7PDExEVKp1DKFExGZEcMNkY26oa3ExLUZWL//EgAgYXh3LB97H9ydjd+QVSgUSE5ORmBgYJ3jcrkcycnJUCgU5i6ZiMgi2C1FZIPOFZRh8oZDyL1+E25OUix+JhSP9vG/63kKhQLR0dGQyWQAasbYxMTE8I4NEdkVhhsiG7PrVAESthyFtlKHoHauWD0hHD39PRt9/u1BJioqisGGiOwOww2RjdDrBSz9+Tcs+ek8AGBwl/ZYPvY+3OPuJHJlf+wBRURkDRhuiGyAtrIar27Pwvcna7ZOmDQ4GG+M6oU2Ug6bIyL6M4YbIisn9fTFuHVHcP6qFm2kErz7ZB+MGXiv2GUREVkthhsiK+Yc1Ac+T87D+ataeLd1wspxYQgPbid2WUREVo33tIms1KZfcyCLHINbl47CT3MB21+MZLAhImoE3rkhsjKV1Xo890YSvvnkPejKigEAxQAGf/MRkpKSuB4NEdFd8M4NkRUp1lTgwRnvQ/nvBEOwqaVSqRAbGwulUilSdUREtoHhhshKnLpSiseT9iBj82Kjr9dOtZ49ezZ0Op0lSyMisikMN0RW4NvjV/DUJ/tx6VRWvTs2txMEAXl5eUhPT7dgdUREtoVjbohEpNcLWPzjeSzb/RsA4GZ2VqPOy8/PN2dZREQ2jXduiERSdqsKUzdmGoLNlKGdsGn+8406NyAgwJylERHZNN65IRLB5WtaTP7sMC5c1cDJ0QGLRvfFU2Fy6HQ9IJfLoVKpjG5nIJFIIJfLMXToUBGqJiKyDbxzQ2QCWq0WEokEEokEWq32jm1/PluIJ5buxYWrGvh6OGPrtEg8FSYHULOpZVJSEoCaIHO72ueJiYnc7JKI6A4YbogsRKcXsPiHc3h+/WGob1UjNMgL/531AEKDvOq0UygUSE5ORmBgYJ3jcrkcycnJLV7npnaTS0EQ4O7u3qL3IiKyRuyWIrKAG9pKzN5yFGnniwAA4+/viDcf7wVnR+N3YBQKBaKjoyGTyQAAKSkpiImJ4R0bIqJGYLghMrPjeSV48fMsqEpuwqWNAxYp+mL0APldz7s9yERFRTHYEBE1EsMNkRl9mZGD+d+cQqVOj47t3bByXBh6BXiKXRYRkV1juCEyg1tVOsz/5iS2Hs4DAET38sNHz/SHzLWNyJUREdk/hhsiE8u7cRMJyiycuqKGgwR4JaYHXhzWBQ4OkrufTERELcZwQ2RCLp3D8PSaTKhvVaOduxM+fnYAHujmLXZZREStCsMNkQlUVVfDvc8jcAkOxdXzWRgUOQQrxw9EoJer2KUREbU6DDdELbRx81ZMnzEL5TeuQnsyFQCQlS7HwQ5JLV6ThoiImo6L+BG1QOLqjZgwdgzKb1ytc/yKSoXY2FgolUqRKiMiar0Yboia6bO0c/j7KwlGX6vdF2rOnDnQ6XSWLIuIqNVjuCFqoltVOszddhyvr1Siuqy4wXaCICA3Nxfp6ekWrI6IiDjmhqgJcq+X46UvsnBCVYrqsmuNOic/P79Z36t2DygiImoa3rmhVqUpu3f/2Z5zV/HEsr04oSrFPW5tMHf0oEadFxAQ0JxSiYiomUQPN8uXL0dwcDBcXFwQERGBjIyMBtvm5+dj7Nix6N69OxwcHDBnzhzLFUqtll4vIOmnC4hbfwgl5VXoL5fh2/iheHniU5DL5ZBIjC/OJ5FIEBQUhKFDh1q4YiKi1k3UcLNlyxYkJCRgwYIFyMrKQv/+/TFixAhcvXrVaPuKigr4+PjgzTffRP/+/S1cLbVGpeVVeOGzQ1jy03kIAjA24l5snR6JDl6ukEqlSEpKAoB6Aaf2eWJiIje8JCKyMFHDzeLFizFlyhTExcUhJCQEK1euhJubG9auXWu0fXBwMJKSkjBhwgTIZDILV0utzUlVKR5flo7d54rg7OiAD2L74b3RfeHs+EdYUSgUSE5ORmBgYJ1z5XI5kpOTuc4NEZEIRBtQXFlZiczMTMybN89wzMHBAdHR0Thw4IDJvk9FRQUqKioMz9Vqtcnem+zX1sO5eOvrk6io1iOonStWjgtD70DjgVqhUCA6OtoQuFNSUhATE8M7NkREIhHtzk1xcTF0Oh38/PzqHPfz80NBQYHJvs+iRYsgk8kMj6CgIJO9N9mfW1U6zFOewGvJx1FRrcfDPX3x7cyhDQabWrcHmaioKAYbIiIRiT6g2NzmzZuH0tJSwyM3N1fskkhEty+ol5aWVud53o1yPPPpAWzOyIFEArwyvDvWTAiHzK2NGKUSEVEzidYt5e3tDalUisLCwjrHCwsL4e/vb7Lv4+zsDGdnZ5O9H9kupVKJ+Ph4w/ORI0dCLpcjKSkJ3n2GIv7LIygpr4KXWxskPTsAw7r7iFgtERE1l2h3bpycnBAWFobU1FTDMb1ej9TUVERGRopVFtkppVKJ2NhYqFSqOsdVKhWeeioWsXMTUVJehX5yGb6d9QCDDRGRDRN1heKEhARMnDgR4eHhGDRoEBITE6HVahEXFwegpktJpVJhw4YNhnOOHj0KANBoNCgqKsLRo0fh5OSEkJAQMT4C2QCdTof4+Hijq/3WHrv+0yrEPfc0Fj7ZFy5tOF6GiMiWiRpuxowZg6KiIsyfPx8FBQUIDQ3Fzp07DYOM8/PzkZOTU+ecAQMGGL7OzMzEpk2b0LFjR1y6dMmSpZMFaLVatG3bFkBNmHV3d2/W+6Snp9e7Y/NnurJiPOZTwmBDRGQHRN9baubMmZg5c6bR19avX1/vGPfaoaZq7N5Ozd0DioiIrIvdz5YiauzeTtwDiojIPjDckN0bOnQofPwDG3zdFHtA1e7gLQhCs7vPiIjINBhuyK5VVuvx713ngchJRl/nHlBERPaH4YbsVnaRBk99sh+fpmXDrftgKF5bzD2giIhaAdEHFBOZmiAI2Ho4F2/vOI2bVTp4ubXB+0/1w4jeo6B+4wXuAUVEZOd454as1p22SmhIaXkVZmzKwuvbTuBmlQ6Du7THztlRGNG7ZtVr7gFFRGT/GG7IKimVyjoLM44cORLBwcFQKpUNnnMw+xoeTUpDyokCODpIMO+xnvj8hQj4y1wsUTIREVkJdkuR1andKuHPaxqpVCrExsbWGyNTpdMj8afzWLHndwgC0MnbHUnPhqKf3MvClRMRkTWQCK1sVTy1Wg2ZTIbS0lJ4enqKXQ79iU6nQ3BwMPLy8oy+LpFIIJfLcfHiRUilUly+pkX8l0dxLLcEAPBMuBwLnugNd2fjud1Uqx4TEZFlNeXvN+/ckFVJT09vMNgANYOFc3NzkZaWhhuybnjr65PQVurg6eKIRYp+GNWPC/EREbV2DDdkVRq7BcL7yoM4614OABjUqR2WjAlFBy/Xu55Xu9geERHZL4YbsiqN3QLh6DXA3UOCl6O74cUHu0LqIDFzZUREZCsYbsiqDB06FHK5HCqVqsE7LFIPb3TrNxBJY8Nw3733WLhCIiKydpwKTlZFKpUiKSkJwB9bI/zZY1PmImXOMAYbIiIyiuGGWkyr1UIikUAikUCr1bb4/RQKBZKTk+ttldDG0wevf7gK//3oFXi4tGnx9yEiIvvEbimySjGj/oInyzsgOeVn6DQ30KOTHJ+/GYdgHw+xSyMiIivHOzdkdY7mlmDUx+n49mQxnOW9UXVdhe/eZbAhIqLGYbihFmvOHlBG30cvYPnu3xD7yX5cvlaOQJkzCjfNQ+m+TXB04I8qERE1Dv9iUIs0Zw8oY66U3MTY1Qfxwa5zqNYLeKJ/ILZNDUeF6rSpSyYiIjvHcEPNVrsHlEqlqnO8dg+oxgaclBP5eCwpHb9evA53Jyk+ero/Pn42FJ4cNExERM3AvaWoWZq6B5Qx5ZXVWLjjNLYczgUA9JfLkPTsAAR71+z3xH2giIioFveWIrNr7B5Q6enpePDBB+u9fiKvFLO/PILsYi0kEuClB7tgTnR3tJH+cTORWyUQEVFzMNxQszR2D6g/t6uo1uHTX7Kx9OcLqNIJ8Pd0wZIxoYjs0t4cZRIRUSvEcEPN0tg9oG5vt/+3Yrz5zUlkF9Us9Pdob3/866m+8HJzMkuNRETUOjHcULPcbQ+o2jE3Q4cORVFZBd5LOYPtR2oGHvt4OOPNUb3wl/6BDW6xQERE1FycLdXKmGqrhDvtAVX7fPHiJfjycB4e+WgPth9RQSIBJkR2xE8Jw/DX0A4MNkREZBYMN9RsDe0BJZfLsWTVBnxx1R9vbD8J9a1q9Ongia9fGoJ3/toHMldO8SYiIvNht1Qr8+fVhGNiYhqcqt0YCoUC0dHRkMlkAADlN//FCaEjPv41Fzp9Cdo6O+LVmO4YHxkMqQPv1BARkfnxzk0rYqrVhP+sNhy5dovE+yddsPZADnR6AaP6BSD1lWGYNKQTgw0REVkM79y0ErWrCf958G/tasLJyclQKBTNem9VyU34PDUfbl0HoUBdgXvbueGdv/bGgz18TVE6ERFRk3CF4lbAFKsJG1NZrceavdn4+KcLuFWth6CrwvRhXfHyiF5wadP8ri4iIqI/4wrFVEdLVxM2JuPidbyx/QQuXNUAAO7v3A7vPtkXXX3bmqJkIiKiZmO4aQWau5qwMde1lViUcgZfZdaEpfbuTnhjVC+MHsCp3UREZB0YbqyUTqdDeno68vPzERAQgKFDhzZ7VlNzVhP+M71eQHJmHt77/gxKyqsAAM8NuhevP9qDKwwTEZFVYbixQkqlEvHx8VCpVIZjcrkcSUlJzRr025TVhI05X1iGN7efRMal6wCAnv4e+OfoPgjr2K7JtRAREZkbp4JbmdpZTbcHG+CPWU3NmbbdmNWEExMT690ZKq+sxr++P4uRSenIuHQdbk5SvDGyF/476wEGGyIislqcLWVFzDWrqZaxO0JBQUFITEysd0co9Uwh5n9zCqqSmwCAmBA/LPhLb3Twcm3y9yUiImqppvz9ZrixInv27MFDDz1013a7d+9u9KymP6v9/ACQkpJSb4XiKyU3sfC/p7DrVCEAoIOXK97+S28MD/Fr1vcjIiIyBU4Ft1GmnNXUEE9PT6Pjbqp1eqzffwmLfzyP8kodHB0kmDy0M+If6Qo3J/6YEBGR7eBfLStiillNzZGVcwNvbD+JM/lqAEB4x3vwz9F90cPfw6Tfh4iIyBIYbqxIS2c1NVVpeRXe33UWmzNyIAiAl1sb/N9jvRAbJocD94IiIiIbxXBjRWpnNcXGxkIikdQJOHea1dRUgiDg66MqvPvtGVzTVgIAng6TY97IXmjnzjVriIjItnEquJVRKBRITk5Ghw4d6hyXy+Ut2twSqFmI78fThYhdeQAvbzmGa9pKdPVtiy1T78cHT/dnsCEiIrvA2VImoNVq0bZtzZ5KGo0G7u7uLX5PU65QfKtKB2WWCmvSs5FdrAUAuLRxQPwj3TD5gc5wcmTGJSIi68bZUnZAKpU2e7p3revaSmw8cBkbDlwydD95uDjibxEdMWlwMPxlLiaolIiIyLow3JiATqczfJ2WllZv7RhLu1isxX/2ZuOrw3moqNYDqFmv5oUHOuGZgUFo68z/7EREZL/4V66Falf9rTVy5MgW7QPVEpmXr2NVWjZ+OF2I2s7Gvh1kmBrVGY/18YejlN1PRERk/xhuWqB2H6g/D1uq3QeqpQOAG0OnF/DDqQKsSs/GkZwSw/FHevpiSlRnRHRqV28/KSIiInvGAcXNZO59oO6mvLIayZl5WJN+ETnXywEATlIHKO7rgMlDO6GrLxfgIyIi+8EBxRaQnp7eYLABataSyc3NRXp6eosHBt+uqKwCGw5cwsaDl1FSXgWgZvG9Cfd3xPjIYPh4OJvsexEREdkihptmssQ+ULf77WoZ1qRfhDJLhUpdzSDhju3dMPmBTngqTM79n4iIiP6HfxGbyRL7QAmCgIPZ17E6PRs/n71qOD7gXi9Mi+qM4SH+kHKbBCIiojoYbprJnPtAVev0SDlZgNVp2TihKv3f+wExIX6YGtUZYR3btbh+IiIie9Vqw016ejoeffTRZg/2Ncc+UJqKamw5lIu1ey9CVXITQM1Kwk+HBeH5Bzqhk3fLVz4mIiKyd612thQAk6xHU7vOjUqlMhwLCgpCYmJio9+3oPQW1u+/hC9+vYyyW9UAgPbuTpg4OBjj7u/IPZ+IiKjVa8psqVYdbmrvsLR0PZrb3zMlJaXRKxSfLVBjddpF7DimQpWu5j9DZx93TBnaGaMHdIBLG/FWOSYiIrImDDd3cHsQAcy/Hs2flZZXITPnOtbtu4T0C8WG44M6tcPUoZ3xcE9fOHCQMBERUR1c56YJzLUejV4v4PL1cpzJV9/2KDOMpQEABwnwWN8ATBnaGaFBXib73kRERK1Zqw83tVqyHo22ohpnC8pwJl+N0/8LMucKylBeqTPavoOXK4aH+OGFBzohqJ1bs78vERER1cdw8z+NWY9GEASoSm7iTH5ZnTsyl6+Xw1jnnpOjA3r6e6CXvyd6BXigV4AnegZ4QubaxgyfgIiIiAArCDfLly/HBx98gIKCAvTv3x9Lly7FoEGDGmy/Z88eJCQk4NSpUwgKCsKbb76JSZMmNfv7N7Qeza0qHS4UaurcjTmTr4b6f7OZ/szXwxm9Ajz/9/BASIAnOnm7cyduIiIiCxM13GzZsgUJCQlYuXIlIiIikJiYiBEjRuDcuXPw9fWt1/7ixYsYNWoUpk+fji+++AKpqamYPHkyAgICMGLEiCZ//9rZUgsX/Rt7f79uCDCnr6iRXayFTl//doyjgwRdfdsixBBkasJM+7bc04mIiMgaiDpbKiIiAgMHDsSyZcsAAHq9HkFBQZg1axbmzp1br/3rr7+O7777DidPnjQce/bZZ1FSUoKdO3c26nvePlvK7R4/+I+YBl1H43eK7nFrc1uAqQkxXX3bwtmRU7SJiIgsySZmS1VWViIzMxPz5s0zHHNwcEB0dDQOHDhg9JwDBw4gOjq6zrERI0Zgzpw5DX6fiooKVFRUGJ6XltZsZ9D+r6/DtWMoqhykkFSWo2N7N/Tw80APfw/09PdEDz8P+Ho6G+7uGN6vXIsKEBERkSWp1WoAMLrl0Z+JFm6Ki4uh0+ng5+dX57ifnx/Onj1r9JyCggKj7dVqNW7evAlXV9d65yxatAgLFy6sd/zaN+/XeZ4DIL2Jn4GIiIgsq6ysrM56dcaIPqDY3ObNm4eEhATD85KSEnTs2BE5OTl3vTj2Sq1WIygoCLm5uXe9tWevWvs1aO2fH+A1AHgNWvvnB2zrGgiCgLKyMgQGBt61rWjhxtvbG1KpFIWFhXWOFxYWwt/f3+g5/v7+Rtt7enoavWsDAM7OznB2rj/YVyaTWf1/SHPz9PTkNWjl16C1f36A1wDgNWjtnx+wnWvQ2JsSos1TdnJyQlhYGFJTUw3H9Ho9UlNTERkZafScyMjIOu0B4Mcff2ywPREREbU+oi7CkpCQgNWrV+Ozzz7DmTNn8OKLL0Kr1SIuLg5ATZfShAkTDO2nT5+O7OxsvPbaazh79ixWrFiBrVu34uWXXxbrIxAREZGVEXXMzZgxY1BUVIT58+ejoKAAoaGh2Llzp2HQcH5+PnJycgztO3XqhO+++w4vv/wykpKSIJfLsWbNmiatcePs7IwFCxYY7apqLXgNeA1a++cHeA0AXoPW/vkB+70GrW5XcCIiIrJv3BuAiIiI7ArDDREREdkVhhsiIiKyKww3REREZFfsMtwsX74cwcHBcHFxQUREBDIyMu7Yfs+ePbjvvvvg7OyMrl27Yv369ZYp1Iyacg3y8/MxduxYdO/eHQ4ODnfcq8uWNOUaKJVKDB8+HD4+PvD09ERkZCR27dplwWpNrymff+/evRgyZAjat28PV1dX9OzZE0uWLLFgtebR1N8Ftfbt2wdHR0eEhoaat0ALaMo12LNnDyQSSb1HQUGBBSs2rab+DFRUVOCNN95Ax44d4ezsjODgYKxdu9ZC1ZpHU67BpEmTjP4M9O7d24IVm4BgZ7788kvByclJWLt2rXDq1ClhypQpgpeXl1BYWGi0fXZ2tuDm5iYkJCQIp0+fFpYuXSpIpVJh586dFq7cdJp6DS5evCjEx8cLn332mRAaGirMnj3bsgWbQVOvwezZs4X3339fyMjIEM6fPy/MmzdPaNOmjZCVlWXhyk2jqZ8/KytL2LRpk3Dy5Enh4sWLwsaNGwU3Nzfh008/tXDlptPUa1Drxo0bQufOnYWYmBihf//+linWTJp6DXbv3i0AEM6dOyfk5+cbHjqdzsKVm0Zzfgb+8pe/CBEREcKPP/4oXLx4Udi/f7+wd+9eC1ZtWk29BiUlJXX+2+fm5grt2rUTFixYYNnCW8juws2gQYOEGTNmGJ7rdDohMDBQWLRokdH2r732mtC7d+86x8aMGSOMGDHCrHWaU1Ovwe2GDRtmF+GmJdegVkhIiLBw4UJzlGd2pvj8o0ePFsaNG2eO8iyiuddgzJgxwptvviksWLDA5sNNU69Bbbi5ceOGhSo0r6Z+/u+//16QyWTCtWvXLFWi2bX0d8H27dsFiUQiXLp0yVwlmoVddUtVVlYiMzMT0dHRhmMODg6Ijo7GgQMHjJ5z4MCBOu0BYMSIEQ22t3bNuQb2xhTXQK/Xo6ysDO3atTNXmWZjis9/5MgR7N+/H8OGDTNXmWbV3Guwbt06ZGdnY8GCBZYo06xa8nMQGhqKgIAADB8+HPv27TN3qWbRnM+/Y8cOhIeH49///jc6dOiA7t2749VXX8XNmzctVbZJmeJ3wX/+8x9ER0ejY8eO5irTLOwq3BQXF0On0xlWOK7l5+fXYJ9xQUGB0fZqtdomf6Cbcw3sjSmuwYcffgiNRoNnnnnGHCWaVUs+v1wuh7OzM8LDwzFjxgxMnjzZnKWaTXOuwYULFzB37lx8/vnncHQUdfF2k2jONQgICMDKlSuxbds2bNu2DUFBQXjwwQeRlZVliZJNqjmfPzs7G3v37sXJkyexfft2JCYmIjk5GS+99JIlSja5lv4uvHLlCr7//nub/D1g+/+CiUxs06ZNWLhwIb755hv4+vqKXY5FpaenQ6PR4ODBg5g7dy66du2K5557TuyyzE6n02Hs2LFYuHAhunfvLnY5ounRowd69OhheD548GD8/vvvWLJkCTZu3ChiZZah1+shkUjwxRdfGHafXrx4MWJjY7FixQq4urqKXKFlffbZZ/Dy8sKTTz4pdilNZlfhxtvbG1KpFIWFhXWOFxYWwt/f3+g5/v7+Rtt7enra5A9yc66BvWnJNfjyyy8xefJkfPXVV/W6K21FSz5/p06dAAB9+/ZFYWEh3n77bZsMN029BmVlZTh8+DCOHDmCmTNnAqj5QycIAhwdHfHDDz/g4YcftkjtpmKq3wWDBg3C3r17TV2e2TXn8wcEBKBDhw6GYAMAvXr1giAIyMvLQ7du3cxas6m15GdAEASsXbsW48ePh5OTkznLNAu76pZycnJCWFgYUlNTDcf0ej1SU1MRGRlp9JzIyMg67QHgxx9/bLC9tWvONbA3zb0GmzdvRlxcHDZv3oxRo0ZZolSzMNXPgF6vR0VFhTlKNLumXgNPT0+cOHECR48eNTymT5+OHj164OjRo4iIiLBk+SZhqp+Do0ePIiAgwBwlmlVzPv+QIUNw5coVaDQaw7Hz58/DwcEBcrnc7DWbWkt+Bn755Rf89ttveOGFF8xdpnmIPKDZ5L788kvB2dlZWL9+vXD69Glh6tSpgpeXl1BQUCAIgiDMnTtXGD9+vKF97VTwv//978KZM2eE5cuX28VU8KZcA0EQhCNHjghHjhwRwsLChLFjxwpHjhwRTp06JUb5JtHUa/DFF18Ijo6OwvLly+tMgywpKRHrI7RIUz//smXLhB07dgjnz58Xzp8/L6xZs0bw8PAQ3njjDbE+Qos159/B7exhtlRTr8GSJUuEr7/+Wrhw4YJw4sQJYfbs2YKDg4Pw008/ifURWqSpn7+srEyQy+VCbGyscOrUKeGXX34RunXrJkyePFmsj9Bizf13MG7cOCEiIsLS5ZqM3YUbQRCEpUuXCvfee6/g5OQkDBo0SDh48KDhtYkTJwrDhg2r03737t1CaGio4OTkJHTu3FlYt26dZQs2g6ZeAwD1Hh07drRs0SbWlGswbNgwo9dg4sSJli/cRJry+T/++GOhd+/egpubm+Dp6SkMGDBAWLFihc2ub1Krqf8ObmcP4UYQmnYN3n//faFLly6Ci4uL0K5dO+HBBx8Ufv75ZxGqNp2m/gycOXNGiI6OFlxdXQW5XC4kJCQI5eXlFq7atJp6DUpKSgRXV1dh1apVFq7UdCSCIAhi3TUiIiIiMjW7GnNDRERExHBDREREdoXhhoiIiOwKww0RERHZFYYbIiIisisMN0RERGRXGG6IiIjIrjDcEBERkV1huCEiu3Du3Dn4+/ujrKzsrm1Pnz4NuVwOrVZrgcqIyNIYbojIaj344IOYM2dOo9rOmzcPs2bNgoeHx13bhoSE4P7778fixYtbWCERWSOGGyKyeTk5Ofj2228xadKkRp8TFxeHTz75BNXV1eYrjIhEwXBDRFZp0qRJ+OWXX5CUlASJRAKJRIJLly4Zbbt161b0798fHTp0MBy7fPkynnjiCdxzzz1wd3dH7969kZKSYnh9+PDhuH79On755RdzfxQisjBHsQsgIjImKSkJ58+fR58+ffDOO+8AAHx8fIy2TU9PR3h4eJ1jM2bMQGVlJdLS0uDu7o7Tp0+jbdu2htednJwQGhqK9PR0PPLII+b7IERkcQw3RGSVZDIZnJyc4ObmBn9//zu2vXz5cr1wk5OTg6eeegp9+/YFAHTu3LneeYGBgbh8+bLpiiYiq8BuKSKyeTdv3oSLi0udY/Hx8Xj33XcxZMgQLFiwAMePH693nqurK8rLyy1VJhFZCMMNEdk8b29v3Lhxo86xyZMnIzs7G+PHj8eJEycQHh6OpUuX1mlz/fr1Bru6iMh2MdwQkdVycnKCTqe7a7sBAwbg9OnT9Y4HBQVh+vTpUCqVeOWVV7B69eo6r588eRIDBgwwWb1EZB0YbojIagUHB+PXX3/FpUuXUFxcDL1eb7TdiBEjcODAgTpBaM6cOdi1axcuXryIrKws7N69G7169TK8funSJahUKkRHR5v9cxCRZTHcEJHVevXVVyGVShESEgIfHx/k5OQYbffYY4/B0dERP/30k+GYTqfDjBkz0KtXLzz66KPo3r07VqxYYXh98+bNiImJQceOHc3+OYjIsiSCIAhiF0FE1FLLly/Hjh07sGvXrru2raysRLdu3bBp0yYMGTLEAtURkSVxKjgR2YVp06ahpKQEZWVld92CIScnB//3f//HYENkp3jnhoiIiOwKx9wQERGRXWG4ISIiIrvCcENERER2heGGiIiI7ArDDREREdkVhhsiIiKyKww3REREZFcYboiIiMiuMNwQERGRXfl/lhTpZSfs3UMAAAAASUVORK5CYII="
          },
          "metadata": {}
        },
        {
          "output_type": "display_data",
          "data": {
            "text/plain": "<Figure size 640x480 with 0 Axes>"
          },
          "metadata": {}
        }
      ]
    },
    {
      "cell_type": "code",
      "source": "print(C_best)",
      "metadata": {
        "trusted": true
      },
      "execution_count": 21,
      "outputs": [
        {
          "name": "stdout",
          "text": "9.804993396947099\n",
          "output_type": "stream"
        }
      ]
    }
  ]
}