From 9fb4c545c3be5338427ee87c1312b3812c2445a0 Mon Sep 17 00:00:00 2001 From: arturos <arturos@cern.ch> Date: Wed, 17 Mar 2021 03:08:44 +0100 Subject: [PATCH] subida del proyecto final --- codigo/VACF_liso_Hr-10-500.root | Bin 0 -> 13326 bytes codigo/animacion.gif | Bin 0 -> 179865 bytes codigo/codigo_proyecto_final.ipynb | 2564 +++++++++++++++++ .../conversion_de_archivos_csv_a_ROOT.ipynb | 74 + codigo/convertir_csv_a_root-2do.ipynb | 74 + codigo/fdr.png | Bin 0 -> 15160 bytes codigo/fdr_evolucion.png | Bin 0 -> 62372 bytes codigo/imagen.png | Bin 0 -> 19182 bytes codigo/pairplot_para_fdr.ipynb | 376 +++ codigo/previsualizacion_dataset.ipynb | 2564 +++++++++++++++++ codigo/vacf.png | Bin 0 -> 10577 bytes 11 files changed, 5652 insertions(+) create mode 100644 codigo/VACF_liso_Hr-10-500.root create mode 100644 codigo/animacion.gif create mode 100644 codigo/codigo_proyecto_final.ipynb create mode 100644 codigo/conversion_de_archivos_csv_a_ROOT.ipynb create mode 100644 codigo/convertir_csv_a_root-2do.ipynb create mode 100644 codigo/fdr.png create mode 100644 codigo/fdr_evolucion.png create mode 100644 codigo/imagen.png create mode 100644 codigo/pairplot_para_fdr.ipynb create mode 100644 codigo/previsualizacion_dataset.ipynb create mode 100644 codigo/vacf.png diff --git a/codigo/VACF_liso_Hr-10-500.root b/codigo/VACF_liso_Hr-10-500.root new file mode 100644 index 0000000000000000000000000000000000000000..bf9c9cbb5f8b099e4efa8596c9c3c6c06b2babe9 GIT binary patch literal 13326 zcmb801#l%jlAxcN+IG9m%*@Qp%*<_UGcz+YGcz+YGqsuRHZ!x=|37nk8+WricU7TR ziqKO^Rh1cEDN|`@ZS4R6Tw4GD07C$P2@U{Y9Q&#ZeHEauq6GT&V*~&YZ~_1bxB#HF z4Ky+jFND+F4tQVybl2rq>;Kac1Ncjjis=Xv27u#l$zP)Z0ANZYzbuT<RQLr&bS-|_ zTkDG1QPa~=Gt<%0*!?xJ|GotP_Lr=`<pBUTU!s)0%HJ}-?m*+;O%!Ar<O~1+XZyRq z*k3dG`?&k()eu5SK;Pcn$N|U!($ZDe!NJbR2mk^Ac>dK6`BjF$I{N@Lq#(UO0Bqm@ z7a;06O;b%rEQl+G?;_uA(MmDn3c4!N!3HbN2A^P+ph9@Cu+zm%Sr***wQvs5_|uS3 ziqG&ZWOiKC>jr}-#rcX{f{c!L2dX58jgyMfnc0hznI?awpN_s07;b%@e(t=!dpzIY zb9=DuC{zS>pqglh-9PL?WyA+844AN9=S%X-zhWf|&3<}5d=rSn>wcg5<|W@*^sy6t zMfvHyq|U{8Z={7hh^vzQ0j(&w+Bo|<y^}^nMC-vFe!T6mWIq~lTDFwnu?zC{i$ya# z17iR-+0S=aX16-za%Of<@k!If_LJ+0+!*vXBBm=0t1x|zq}6c6&s*M?H+rGqhGY2d z&IooBI!CWN?e!#3*Ml5b=cAVXjP|CO<KMK=dsQdQn{GR#Z+rFWLq%PJ5v{cWa9bVC zxQ|+4j?Ndz1F&&|n{9z??i10`oDIELKhEMIkGWgkcu+upb9d?v_@P{Pq;dtmo;~*L z-eq$<GvJUl`PjZfe%xd9-9~@<3O{H^i1e?_5`7q47Hkq<W^(!z5EXcFK7c7aY<OOP z*vA~lq!L0PdbVMk;F%*lo{{#;S>W&8W6SdER|#yz4WiGe(&~+xuny_EBS@arN?kI% zQjt2S7`#EN1U1xj96DCabkCh8_fa^jIfDP;R<+V&-nB1T8;UXBVsaLj^m|iq!#3v# zH`#Z<GJnXeO5*WjzDUR=6cjBwWQ&xVzNT7qj{>Tguayx^ilV|+=UB+vLoabCaj=-F z<sSxj-YhVPkCNtSI$F*%2#><TX6LYT*gqa&B$bujEX1RW70G%`iWcb){%N(}7_zn+ zm8Tbj1wqOq(u=}y(e8o_W<tmO-5nH6o=erT+gD(KwW(%2+V6x}tPecQE%_(Rv3vvD z^rZ${#O~A6j^#T(lBbiRaZ4z{Wk<;}Fe>SEUO~M}-@Cg!Lwe=Mj(CC#FLAa0Dt#*= z@dK@GF$1;{$CyLHG1<I)QNC2L$p1b?1EZj^kvS+Fl#WVf<O}m9L=&SZu$4K=92SmB zX65tqMMNW`FtC|9P8=4FOXlT^^JPRcqrkCYIWQcUj!b7}bMnPS<D*Ehr8&|Zn2t?n zXY=xfMZ=>|u&FsT92$;I=Vy!ZrA5=DSg^4<I2;^~j%H?a^94ndqiC?TIocc?a5+98 z_N56*zHHI#znHVkKaCgw+W*hmf0{FdlfHp5nFINMZ`47588ssKKa3iz7nUo*6&T`5 z-Vo+@RK%^_0eNh*b^sH@t@ngWcL!3V<zNI|ZPNk?`l_*7P=Y#g`KyKbLELKJc~gtn z8&2Y?196*HY<ewrVnGMhobkgealVoCORehUzVa}C2g^AzA;RD~el^eyfkSzhD3e4G z4(q8mW;5aRx|LXkYBn)PX$q%qKK{GBIq}*=Qmjt6<hqJF@G(m3k<$ce3}^q2;b*;t z-8&zoB9o3}+Rv<$vz1>3i<ZQVgLT<TOr1+Op0@C@NrkJUe$_T(6RFqw5d4{Ls7C2t ze99t(kIygcN)X_bJUF((j@li4vW*D8N#ISpkNA}u&k$s(#`@LwBq-RAn3=rgj}J?; zZGsG<reAMt(zq5jc^9JU%CVt^wdrL%L_^mIHU$%V<(WJV!*=_XZ+N>#g=4*g^xDrK z<y5pF+3M+lz{CsfK4;zbw^Ayw;-B++Hg)ZGo>Y(;nn&_m-{sOitI#Q#{OddfbT(a} z##WmidhCnjoRkQi-PxgGqwtLe*~z>ukqn2Y1zKy+z}_Osp6mu=Z=HkW^zOTT1W~*N zz0A6uTt?uxh?MKJJ~=}>hG-&Z_t5q!0#ed8!NGouS69UCi3xQLtT=!N+b`ODaw`U$ z<*ii&wr-5PJb@kKM)vnIo1G^jfkV)!<mr2&!=W{q>RPr0y%+yvIwjcB(>2Mnx`l8) zqr9G%ofsf^$3-b%<wS7bdYQMy;CXmjte4988C%3bd@%|oC}GS}P%K#cilG|IJTiR2 zLrFoM3R^lY?s{6Bjn_&Nys4lcT(DNT%9NZb7R5v4&9(vlYe9bKYK~fr5L4|8Q&&)< zq+nea3U5O*Kk-a0V1HEqzG`}kpp;YC{-PD3VCoVbMi5;gqHIBSJ)-t?y!+J5QWKy1 zJqekHRb*~No+ud>&-SkJ!K$D0?1svK*y07n78L|}n)|iJpLAB;QCV+%#NKL&A1F_E z?xzk3guw5d07=(=d!3T5?jm?&?P&CHjNm35cwNtTb9DNZm0mV1`v6CN#kZnm*ei`R zVe|mzzDG0q$4_~hZQSf4#mz(lx^WPVDPmCN_U!{$7J)h1Q{c#I0f)&%r)qQG62lmy z9vBGAv#O_(XNJXbOX8x?9~F!({RQ43)|j~7VsjXkq4=jnmNefHhEwA?j-PRM*;V^( zydLm$s_1Xr5}9+?+K}KPND+9_izfCsq1YW_nP@}49+e}sZoAViBaYAQD+=Of&n0wz zK=A;BLsG7pOU^3md>=ZgOJ!DJRA-h?actpG*d_F<8vbK4BhA&AlQNnPD{!~I25;jh z0&vE+g=UTy{%LCYX=G!(0tzWllb=8Gy#Fw4R*ru+R1eJ3SG?K;J-wlU=t))}Tcn-> zChsgBWkU<nyZm9*%>&lU8@^DFa}T*e{^w!U7>{Db_s_6AzKE#|*JUa}+k#I~#gE$A zbTKwvB>VymJg>N0Nd8>OBfUA`+<WQwvp+&l9e24-G-yL%d!Mn>hDATpWeAoV%aW-) zW2@tNH2BYMvF^)2sMXGl2g5qMkuyqFGMD09m!XOwXpw08SIs3>kL$s<54jB!o~5st zpJU$~)*&vu?sx0ES9{(UF|MO!A9_b!)Y`|aFwd-6#{0`OwsShGoT@VYnn856Uq!&{ z*k!UZ*L(o4l`Z4w{+EZ*a{TB$9CKcD_liMkEDd@c;gV8Qx4*KKJM~<$CZ)U~1N77R z-tcHMsLYb(apcbp*?DC?MKi-%v|{C>B^g7@Cpj%kRtRoJ{UdKOUOERlZ%_{&sPH%8 zyXKx{JtSQ$-Aj(*#Otj1CN*Rle?)J4o5`Np5a|@19&20QjQHI+Fl1|pt03bZI3=7R z&{-g^N;yNbu#yrniw-=Qw<;D!uY;FoN9i4%o^OwmH2iKdbKzt?D%REbY1tT8S3(~Y zeeKitI)da<Aj_M84{S}NO>MwXv*XTURi7-ld`#9=W-pMl12z~}MEjk=OJ=xxH#(#i z!AjB?wU1EMOsmaX5Y(L9-1Pt|fZcJgkktQsR>+?r+$Y3JW|XgwV{nE4LK?aMMH(3D z|C2OOf00I);eTXJ$X~2^2KxtVh<m-+5}>|V!@k?3rr?B{sdGM5XjyQ+Uook=wAvPF zNgS=kL|AS`n>CQQX1T%H{s;QJYL2S;^{Oi%Q;lF@gw7yh%RiOAo3t}OVoZFG3z;+J zb&m%Z<@EFF^@?30>*^bBC$upK<wk4@x^Wlb#4ywYkj#TT2t)R*I$W=}aMT%eP*}7N z7vd!S@H--E*7DVEJ9CSN2kMR*d#E)x2*)G?xG>C$5TQ3>*mSEzSeF*S+cn7Lb5%b9 zg$0kT2a(s3ZXWK8Ea7*fkWRQR(0e=Fx`v(5;5A>->?Z<6`EvvXAv$Z32vpa3bIF5h zO8kdC9CPUfRdWUXn^sa3^Z_g+lgH1hdfdh;b64CJraUXzf)*+}crSMM7<pufJRQEg z;1WT9Tez2+MpK6ag`y4)rlhqNn!@r~q_*t#hg3M}eDwX2TL!CaE@5fx<9^H6_B)hE zf71_N*%g66Q~gf?YfgQ>@QRQJ=qQ2HS-GJxTai;OdUn0U-6>)q)~6Mj_4`Z$l}%T_ z_Q?z5Pb`Fh*R+X>X>2^E_c1AV)7hlfp)<z$VD~5#88WeT%2tx82F#g{3y$L#|FxOT zRGMcd3g|qwvT^2s0Mk02U64<FhkYf6Zm)KjO!J#=+ZP^~Orziye|xHs=II-ps6_!P z>AaO2J+UU7y)Z2<ywRycZ5uAA(2}s{h9gl2_TO<F$;1wxb%x$t1bnLECWjJ2NNp3L z>-)>#V$CUoT{LE5(?szfvVk#8<VVVn_A}?-dpmgQ{Vt-*(R2^(k7%5TXq}gG*AjZx z({Fswu*Whmen78~!?YT`fg4hD9wq!P$I~1$8U!=SKNP$kyCoC7({d%w>cR-Xk*1^P zNC?;2QWAH0vb`(PzR^S)$ZzhNxO{sQKk|IWNu9HW^+e!tNTP@KbVWJXJTE`Ov@&iz z^8H|i4&~hQJ(86<Y();6(e)hoxVZzl<9!8{R`%}Y8v)ua52g9GFT$(l0|vrPFQv7s z{H+TIe#L*94lTQhL3h@#w~lI2ERGeNdSzsP>SxG1y1BuW^tVjzi07DQx&;K|Eu}-S z)_J#!h}Ym4QP~h~u0Fg&(s)%BwV3E?{lU9;kpA@Y<7J3px{ME#n{6qopma;GGnh3x z3-kPkL(9RDP2eQ613D3CMuH7s5jut>3GGsg;iDkM2Z3shh$6310!`i_Q*EeXGvDah zXQz(V49LJsrh8#AJS6vu3}H!1q+hb3q4)H1`&*<KWfVCjm-tra^ZdCL2kW2LEJ(Cd zYr(7=0dwuWRaRpDc8|Yao%@i;6yMJ4qc?+Y^3>O>qk|OWq<_0`1u0}nQzx0{Hi+08 zY=a~oI@vw9elO#-DgdoTmm}`{gF4rNK#>KZF4!!f{AaYaO$J!GJ9%aNlR=5mS|O=d zFQU?s*i1r;zR5l-O7V(5DW`}+Mn?b4gPQfNhIFU|3o;NR!ZBDf0|_6^J)_UnK^3}j zoFk6)8e@UqlFMmQRt}c~|08u1=APZpxy}`0;nPcO;ZI%eMaiLDdX^x!ZLIpb2L?v* zG_mfeXD*Z!o^D`hPUuSTO*gjR!8d~W-6?^7_`|mtn{R1N=exVFATtrxJ%taFGj%9O z*pWyL>3`yKh@DLzb)&x>kNdN5FY?5!fLO-X8@|>dt)kH0zUt1;oCNFwSF$!V307#` z;~cR}&3el!2s{=mxVxT!I*>lt8sA<BBzFsGeCP#M=?Gm`yJ2z|0ipPJ<hb|7f*Q`u zxChU+@9pJmNniame$SD0jXXuZ0K5<W%Dek*bOgq5ov*AuGhWU3iBTh9%`KvVnWlGj z$NWmY?uV~rpo*jIyJPCB+Y-(C%}|_(bQ|g$D?zDBIdae@xdaEfkNykC`{ce3+6LTJ zpA}sHQx?pv-3?U4HO2`6U=Nj5og6o?S1rlf8jaSc_B5j9J{ML*l7JZ(-}l!&Q2QAx zr~Xg>+Sb;7q;};u-K}3KQ&mmzf9B~D(?Tw^-SvMc+k<4wyu&A%6Ec1g1?FE71;P7Y z6NT~L6Q%B-L_v;oS5gcH3MO1Z3ZLpKDQA(afR9TjyCe$gqa`4Q7Ov#Jxrr@TYoz$C zv1(v}pIR5R!<LY@oqq@Z+Fn{N%yE)yRC%Dm5nZ9tMh^zTa;=S99;8lzW9;;H%DKh9 zm5tk!bcTpaNhP8jaUCo+m0!Yn6<~I}t;FPEtr*F|<^Ns<d<_!}GS|*II2Gu{q{?kM zEvdZMGZK@+{2?tz2Cv2QYCa-6Ij0lZ1^hf9W?B>j=B=XUKKexP7WwFp-M!!IZRa;# zO9A=Gr(=4a1ODL^{n`u6__k&I1bwsR`#C>p8d4S5%|g9g>rVW3db#al&HXkVJXpwk z=KHxa+s2G-_M{vbd)2{;r(2?mBAW*BJYZ;BNQio~QySKFOFiP=+yYW85YstKs5&I$ z+o3!QZc-q)X~Xp-FAHK=D-}v(9hgylT@tJnqiX{O@38K})hw30=7d&Psg=k=jAOT} z@)|c<8*_h+Km7U`^ww@Y;CfFSV^GYd86g;BFjmlg=7M!ol0TJB1NQbONwkvz`i-2O zsmqYorFG5KV9TxMGv>ATgV*QtP3>8E-L>Y_MEPJ%)_)itf&hwHZ`fp&ZyvmcdNTen z5(pj{%$YRNw*!q`;|=PGzq$Q#AFstZsQ%UzwnY-VE@KMZocrQ~AGXEbH;zSUCVb@n z5Th3x=X|>fZN^hEdEEooqaE~7w#k>K(cSvV{wngJ$E07fm)hNL=O(*H8e;J0J6w%J z#;wyExs7KbckL`}RVOM`R4K6T<{@16I&jiHne9vX_893vsKHn-a<MIYJDgUNeDXsW z3Y8bp+>}bqwxE&Y9lZ@y!_F_@mM4vEJ!RmQ5@eHx!EL|6vcPI(-&WmIJ8i=4H>tzg zCn&uKc3X$@?4Anvnr>J06!l!q*#+oT^8scEfbqJ$PMaclk?M=cAD5oPuz}xDs=W== zR=P(<GY`7NC%=Jb7HLj!-w+z!)iGv^{hR!KX}r-*ISELLX@D)I$4au`W}2vK+@EMn z!{wo)s=!TN1u-2ldsgBd$%kNbepAYLSNv$uve&6h<_jk~kFo@sd|wrOfi$IoU2j<f zNh3Y}8Se$E*sd%qLh4t#Wp;Vj2~qSQ=Dp?sEY*oSc9996R_T;!Kw#=5u6ls#bD&w) z`0kifsMJ_h58QAUI$Ey-Qb~SsyQwjAf^usmp3}%W)8P2MVe{@!1|@jq2E{2OBENa$ zLdpV!hVG5jq6@!y+}$w}P{aD{;C&mPWMf0M04Q}WkGTY@sa4X&#}l`y%8DxWC6J=F zuW>81R4dMttUh^)Lh#Nx933&D$!?$CjrwD1k^~((h3GhMPXRn(^E;v5?k7^jF(~4m zkfSX^N{+p*n>`I$Hhz~26<mfg4%cTK<P?_83*{!5$-&8@3nHIlv*y$j9FsEmlyoJC zboE+%6TDB+$xK+4DE~Z;W%w18>B;xo2~NIw{Vm0y$(&!^O{LbHrZ3!9Ws>~!Sg&!} z^?Z9iq{oufrWH_=8*ei(o(8yH#vY5$)wGm+`peJG;~a8F_rk9X{JF5A1;29SPA;G? zfCI^X?VniA$Pr?j(*naD=i1H>`3JE@8^nV%6_C3=D&_R<7%O3#rr`dXNP)#TIMOLC z0f%KDEBRB;Czy-0=>)^n;h)3|o3j%_dca!F*UxMlSA>YfG!=ea%&*^w_UQ&r=3%6( zlLUo<i-6j7g>9OFm^SkaYr2k;uv*S<;AnciRP8qu&Hc>S36E|usp>!E_8OKO+(|h{ zrw?E{;N*4lKp+#!2tLUM4eXYXkR>LwfbnW%ghq;ML}j}454tVeIsu)L3!P3+@()69 z3$=~}zqixV%Y<Dpcc@>|1?*{c*%rU_pi}=e_Jx$eg>#U(1Qe4}uIQct7rPRg9C8DS zbsjCS%0GCGjuukBP$2%VP=FftuTjAC?@@5|PZWUl!f-7>03fdFIg}2_kXM{Umq6yt zjBpygl39r7-I{+niW*@^IC~%8Jn>#^K<HPlmbEh)5$1|a<jt$FR4yv9^nFfyENC%6 zF-EUFhMNqDSjpd!)_k1etE-$xZoYv=c_X@LXo~j!F}WjRx!U~Eyi=`$$&S#DlldWH z^=FWw0cH~)mpyAJ`@z}{PWJo?k3?<1=8Wv3(9<XIRmgOCxyPy6&F^JWSg9`-L1_!B zFyn?M&%<M(BSS7{hFU-)<=m%UU(n))a*qu`pJk{aF2^~emaQ@>C=ab@)_G}rJ3Y0i zlNKfh$$jZA{Fu3b3ccP!M-E_@oepLtQL;B+sM!yEbh|ks_Xrt7PBp4W?KQHAy_K4L z8kIrJ<XG}Rxc_D|&~PpfWrwXL6v%3VXA+S_r8q!%_ylC;q(*87I%sIJ;AxoMhDi-? zDsV7>Ckea1<09y{!Y%hrFeO@DvLrV@xgNj%CimH$@5w<DcEKo`l-9czrff{)m*|Qs z-QEv<cT<LxHR-eEb1pi<C6_Aru-sL~c<j9X+%};b7jl&n|Hqr6Z@NBitpE_CEIG~x zIY!wQK_gEw*Nkdkj(rB=^%Zc(2MPyt|6JR8SM9gpfFRTJ5*cnN>11_|_XjUi!SKB9 zQ8J&V&EWFg>l{tj(fxA{_%=cM3fTzQwr(aW@4Z|ynqO(ZyOdz-pNOY*x3?%4Y- z)Vsqz(ogp>fBd6_jVd1i8qYT^?Pf>9Z^x)aHw5r#bxI1!_t<o%Aky7yo<Q#|jbtP7 z{#~bCcNaUjxw35<s$Ijt?^SH-uB*sL#ZI$@f3jwTKL(~oWc`|&E9#||AS?|bM^Bh$ z=pu(e44mYmU&gDPG6K?`G={tf;moRoi+HOR__!-|nIsK-PnH~6NxVjVD6Z|ZOw*Ce z%mNLK;enJlQO4igV3q7;#X%W|dXZ{7R6jRiM07(gl5A!KG1(qlZ}~(6ZL<nnb54TD zO~%lbnmIYyDsdXvB$n-t8IGb+YH81$eR%ea&E;i4Jo_RwJw##KE_`b&D`}53fA1rb zAV$n+zSx<-r##Axabauq3JI-gbcqA@Xyf44zUevGOGVQx`(N*^rBSx=MTZMpA!znU zWm95Z!ve*-%B*IV1dd(OPe1oSm&DbLG+6*s7}~>#ev_lVrh_pBN$FZy&v>)fgU*{_ z?e!alCTs_B_J=|*DjILd@t#qXfvU`TPg~yfp5w#*p~+PR>VK0(nfmh4j+e=5Q?5}t zl43u9_FX>uZoZzq`=e0IIl6A;qLJ`iG50z1_B2MrPF91x3$t{xTamJ_OJH@=>4Mu8 zf6l+obvI{H4Bm~z(sm<&$u_%&Z7XEKdQIq!3q~O`obF1SHtJYpBK-Le+oFIvN*9~I z!7c@o^Dsa9mRKmolt8MZ+zXxobb<-zhzX-#E)$4>H(8Dpo&{oYw&1bYxN#L1H1T_F zsV*91VI1v>zBYW}Q`^;_?Iku1U7|{gJwl_LY<rBE?Gah^mQ03#{UTXn9!0y@j;DIe zXdHK6wRFGH*K@gv>%qw+x{*h5E3GvgnAUztCebmxN13?F;{}1Lz0@qu1HLTuUO1Ib zc-PMG^QkrPk@V)2{!$DwmFyvF>q`H=(j>bZZaCq6l35H)DB-kjSEF-}?=Zku1O5Sh z7zFRn_X=cF^+mm3iyDVcl8R+sXaWa}D&8~y-6N+3P%kJ~W%8AyPxk#=EhFGzY&H)f zaOEXdJn;wQ=|N|tP`?JuHP2=OFSFRY#medLs{FPPfleWvyTsvG)Po=E#!)QfwU_$7 z$7jSm57jmTg{O!EI`3I9znBRwPGCyq>%LtR{%mqC{~kJInTL!s9!vB<4@-O-QxL`~ z3zcKDyeB#P29g`o?xvXpXO4HNG4OCk1-=tEmQE1@l&e7sO>+%4%Ro_gNy^XkE(WK< zfVX>)DnS&@Z}Ilq*wGBM)-ZtjU`>#|UEs#-57meuOu^Da#5=sz>XyV;<hJEsfdqU0 z{{o4w?k_7tBNtuW|2`t}x0gy6=pSAx<zZFLulOh5Y=l6p0J@Q~v7w>>I<b3ng+&}u z9C{r^oik*td_h9M*^{=;RQRi17v}dX-E%E>Cp}SchLFtVRBg10?@mUnL3Nz{Xj3?6 zqdF0KMDF$QuXVWjXp<jUJ-%22y%G9Udu#!M>=FI!euU`L@>r9gQ9Ei;doD8DLNdFC zGWrDZY>A^8L&q7tNJVxeCblexbdkpy<KL$CJZQEBXm)?n>?qLe*;Q>zRPCBo?PwU= zVK3Q(u-YNkx1?&eB(Ak&a<;^`x1_JE_hVfc(LB;ezot%uaE$=t{KSX9g^a#Ii@pU7 zcZn-@NgL$qujd-R?dbWDR2PBj8v3VWg0f@GykiQpV^p(alCxvny<-}hXIqfxCo%3V zRCZn1^i#%fkKSaD!KDg)>a8p4)2FC=i*0w7x=`HZiD-)*Qm+HlrW?xcYfkSgQtxZl zwWnb3Pav^isRsZ6xaO}gIjr#CVQGfH!sNK&U+>HiOiAf00{x%w=szo8{zFG#fH3S= z0J<@`+Z>4>X_&XZJiWc5R}o2m0w0Bhyw4ZB_WSL(Uj)U2_$UHwQ7*wE5#N(?0$mbA zK7ASkKLy>weIR>v^@x`TMU*NOTo~$k)jP)doT`@}H&R)xH{G``8SMK8l%t>)<jDZ2 z6p0YgYy35v=OlbNetYYSI>0z^En8qiws*@Oy4B3xl`~SAFqZE|rt^ny(?}qs{jAQU z7#q)bZAJPPlUI6lXm2I7`R7~V$^9E}w2+Vyy``#=7=5|q>n-2tVYuIs7HB(f4*J|o zEdNw_eGUcm%odmdA-C`w&{x78^&ujH_to^M7!R9TaXrk=qknUeH(0my-TUQ)PV1}V z)hCB<vr({d=HwRMHb+_XI?o2&NaPF)f-J<Y!jNk(r^nD8AAc{uZDj%xq#v(q%%JLM zJoIA-=u_?G@|>h(gQtw9WGm=QX*aDma!SIQBc)WN$z?Y?kld|2KcqXmn2@CFx2Pvd zi!oX@V?_280}kr<wV%t6DvwqcFXRJV!nNMp(pa`zDmED*@7nzzD+R8=LH7^O$9h9c zZ<tCQz*)h{E|v1oE^Jaj%>-cUbkHq^NH!$oei}s~4H<q)Gj+$_Z=*w9!lgagk%Sj( zt0mh4dBBllioUu<&<-cL&`cC!U|rIm;|jg8#VqZb&&wrxH1fV8e@gXArI3#n1d&aZ zVxW^O+_aLQWjbnBHpWD4%63AxOFlCo&mTG)IX6Vlo3e96>W{|t90*D#<tdiYoCv5$ zlY5K0zQOUL#X*-rQHXpqn=krp6smudKY5|T16=>ilHLuSv+4he0@vkV3orK${IMi2 z{|OW}`P<;{9U))($`<mszViL0uYc_m`Ac7=e%U*GQ~cUDp>JtqCvIhI{X@vw@u!6= zp2aUKb0fpAi@n2__AY)0gs^>S@1&-7jMlI+Pks6C4~d(xBm&Z?b@d<S)S68h19em; zneE<w(keRjoN<0enkT7io%5@lk5N{SXR?O*i6I7OL{2q`q-@JZQea^cIlwe{F=a@D zvN_OY+li=<gCKIk$h1hZJ|*^Tmr`3R+Luy95%+X$_9hQry4m(GcgL4^pf+zXGaz69 z9~uuJA59Q4kI$F;)1`12666kwxl}ch?|eI!NALhEf4_JC3*erqU4sq^fu~^Jr-@=f z&Q~M)%UbK);5E}9^CxH2Tu%7eNH!ooZV1NS#-8@WTuuNREGMu}JBA)$Ml*v_8_9@~ ztGAJ&{<*c4K=KF<Af@&&xm4|S6dld91$35zrkm1))w}P5Dpj^C9N_h%4cLbf^j#je zO>~znm>NSdHzYDnq5wb#2Y~R%Sv=KYDhNXb@qsy&b0GpeVeL#H!rj_BjpZ@KqS^6* zZ#nq+9(<%a`q%@#0B<x_Uq1=V`)x<~f3$gGZ({->1!;B)0U-dmvKdiUx>{5SRfU=0 z#P?ddfj|N8Hx3mvzXvB4fLIeaI;YdEPyuJA%*mf#B{=4dXyGxX%b<YYjz?vn06&{) z#EX*XHA2#a*;k1%x>6w|2FsRG^QO20e8AZ;<afed(Z!T2L571$*a~1iSzDD~ASctG zcMyOXM8I1eGx3{3Ir%R?FhKb!!21Vafo!011ILUD5#WT1I#4)D6ehG%Li91?*P?`K ztA3?Gq}FPi9VsjI;xtzEN$IvPy2AXCJ;*iL)NL#H41+O-4ZGY2t~QcouQ<e{W&wAk zcN=#d$3jkvsj{n4V>i(F&}y<|@_AhCMcn={ybxLYL5+G^J(ptjIK1EQ=Pu?92n-8< zgsGGntDDQSpL351P8f&C*nP$tyxoZ8*He<;T*199(+f2$+7;y|4aEnDt?#Q7(aGp# zkN8uUOv9iol@rGjWP}JQ4~Q@#yZ1r>Ov{`zTQ(?IzV~bzEb_Wvu35YwDdOY7dV7EY ztYGx4yYDA91<Fl${Jh`+RczB0Gk2wPkU00E+e!KTgJC@-3TdN6Mj5&90?jHl@*d8# z`Ri`10E-lHD|&NKZI*CoARh;$ED~tpyes-_0bSem6m{fq?x(&M`cjJDk;_a?-HV*u z^FG%HlvM(faHUdWyrN>ktazD9@(!3?bXm|{u<Q5ToNr?)HmKNIq1!y7Hm!1BB+lGD zjuQ($_g>4{c;BIYUsEwfMh!<LL&?T#5Nz!oJzg%5INBLb+cCWa^iTt44td+}+pJka zQKLO?xM(nR9o4$U)RrL4r-o0G2M44o&~u|v5&H?P!4s}%f_S3|R3u!rsvsvN1W3rI z2F$3DHOh%D66VLF=5Gg%DQw-SrjMbN31#3LheIU^=P+{%unURvh(hLuJth3@d}+gD z#5OkXpsUk`_8=l6ewPxfU|U4$(f+Wo5??2l6>-$I?Q!1sjTU=dkqzoRt1;-SvKY8X zGzrwGNI{TNwg{|RDM9f=zMcw2gy~zh)+6W*@mMNZM<=;gAOiN8jFEjB+N2H-ldvY7 zGs3|xa8?7G)r=S^3nM5LW)BsdptdaB2W;12))&#QVZHpqb>*W;aP|06UMwhWP<-El z@Yu*yx)>3L8Vl~#3i4!$nycg5hGItuxB8hPWeL?FQi>Jdw`vi$z~SSu5&49Sah*Im zF8fNjNn0GSe?Kxae^{{4Hxc&q_0%GE5z>*b^Gdh<#KeD1dikSMj44T#+l8JI>#LR0 z6pC?P4`W7cEQM~24@AA5IgJmK<hQX9WFB7UrC7ZTY#5Vo784-{L63_V{~$;l@Cy{6 zpvsXnKbvvcAYw{|1L~P_TD$`2ttl~+$zCfbSK@LFswy|?+$)sSsAE1S*3L*0QI<Do zMZ27&mgh%wU05_put<&?x1wz(%IB#)A1xM0^_l%rKv8mY8rTsY-odbS31XXg@>=u9 znkrdXa1C($-TAd$!8~F}figA~YB{b1J#8^Bt-w6fcy`Ol!YgyRL)fB>C*3P_Y8ccD zoR&_XQBb^+;OF8~jM1iscp^Q4vG`aN6EF5;5*Nazr6NrlZACKJMHNTg7H8D8bI5gb zsO<?O4xSqH5@}4G^nGQ)@olC0TC_F6IW5O3uWW;A=tF~SyRM9Re%X4+YZ@bSeVKTQ z&DUqz9ErM=Yoc&j*|&p;sBcgGk!v@@h#Gh`N?zelD}B2O)0Zfz<0Q5&pRFE#u3?jQ zmLmn`XgL{)mM^ug2Rs0_t_^{u>_pw*+6L=UJ?;i4aDaCMT>lb?&lYi2bsY8dt5z^W z6`OYv>(#ocE;3{9cp|ug<~wbf5yF<k!{z>&bz<o?8W`;p3G5Lv#tgbQpTC{)MZtDa z7Bn{t<8VRyP=F;ObERFaTIgbwq2de;b=ozXMMBO|ps4(W8MVjzV}D6ZCY!v)PjG;F z`i#ib2MUvF=;Jt)>f@%L8$^(h69{1FY-%ESQui_6R8&C^U}K4G#fbv&$oghD!slz9 zqr*=5R5$Y|RjQN#TfP#qXo`m%Y^EOQn5Dc+m3QehvCGOr@5}1==Giy>vj4L0QqY3( z5<BsIy^FLs^tT0Lj`%DjI?VubvT=PU2nWrw)yo-?(QyrOhgIhsfeZFEJM3sG8&bK6 zixTR~VjvMSQBvT~MCy5NRI)X)g#DaS!1gZ3cfC-qJ0e%I=F|0GK#z!2;Qmc1*!h#7 z0M#Y^t$wtGfFdYrRd9H*ih3yXfmSj~E7SWrDv?A(E}ec156!g;nl|Rt4<yTuT`?jd z0ff-KuE^K@QKe9}1wtCESb_Zmzk+BC1#wQKv<uG_{@1mhVb3EkR}D>|4}JJ_)|pd` zM2xu}<~<Ekqd|J$5`a=#?7&=*a#}*yHW|0zqS_{#FoYIQ3aZ@#32@PAqek3Z6ab`) zjn*(WY)=M@QLRBX9rcDz!rfeEwOwd#_9I9c8UPy!mf<sp%%?we?6y~VB42c>Z6n!C z+ZD}(0|Nm0L7YBHBryl{!+Ol+Sc6dAohW-_y&XqeTwwuYbwG{IJhlc6gZ7h_ZmMiX ziE0R1rzzTZv3p+q6GT%DmzdPX?MIpN=S9J#w^gIpqVV^r7g>3&%)*wjN=A?$+2V^^ z^GFRG&iv_o`@rxeg1kAAS@tY$Nfr({2ohibSt^iXfBguW7PNPZ^29nc*v!N?5v3{! z7NW`r5hn~g4y{8GGtA(LgdGRdd_d0r&@HIz##mwN5QY_wyutvq^$aXTvq*`jbu<5Y ztbCumanM$Mmd_S}?E10$PXh!{+_&GawR0lukLajPMZfXYhYvC^dw^lLkpeC23xlM^ z*%^bmNhd)4*OU$0G2Sce0*k-*Y~yMi_;(9Vq{|i=XG(|IjI-*z(E!e%^{#}+ov$<~ zx86fOKVn9<40bpiaoWUiphpFVF%bAVN5n}NHdD28M1F)CA;`;5<_{7n7b%?cDXmIT zPmU(}+xZdUe>?L}jSH}@G5-0$$ii<Y4^dOy*6S4t{)z?rP{F&*-6eFN6{^N8S}xEa zA#@tgQ;F}&qAaqk?;XREB13P#LDIZ(+=H|>_9D25<dpohZOAPxoN;cBePSA*shu!d z5Jpgzky=W2{-CZV=hQ&z-K#vUItrIO3dgQLwguSyV-2t^Hf#3$qa+7)*yPFkEF;TN z%q4ATAxf$`_9#(qcwz5H!i<LLf7yfV7_3BGAdK<Q-}Nd^&@i<`HQ$@&Idq1YNjF-% zZKj&8<<N5owfr!0F$zMvKwxBSTXi{Errcpr><wYyLCdMKv|jUOdE?@xMygy^sl&aR zz+dx}^yI5(EtdX(y(&-Fy|3mG8__PKGbt`U*|k#Zd@jFY`67Lk<~d037KNsbFH+y7 z{bIDp>|TQ{!n)4bes=e*J2ejGt;mJJZeKoW6rAOI;80<YBr7%yIwjoZRx8iZ8ezO* z3dBW+t^bTU+{=&FpP^c@nx8N0FU7pO`X&mCuzuYK0sYC49U|MU&-D8}rK+w+SQOVZ z!(4wH?J+EVN`0!?ZPsg#wh9h{Gf!%JiJUreE&;aJqE;|<0=yO<#fBm@q~Z5dSGXCQ zQg7^2h@>T(46Yq1^Q_tOn$8;pNHXq1Sx!*#li&_rqk{39IxXL<n0}g^T&aL=*@+r> zP~ZE>*5E#d14sXv+=iJVz9Y~q4N+oRrQkxAN+&|b$HYe0m-rbiy!UuKzAiyjLEu8B zpmn*%GZoC))9u9B!<&E7`Nwd-V%rWnNY~A4#fk;mx@}|2ymHXJ>9zfAO3#$TUq7)V z18Y%nAQ-1F8IcO9Eu##B`Aw|Y`BZZR)&yMk$nvJz?dqh%o0D_R&;7|n+pSXZiUbL< zb&uKeCLyf0llA1I8G}%R`G=Nqq}Zf`bi%a<ky9YYQCPEJ&jYGxJ%OL$aJnD>_~--m zbmjs#UQjdo6^f=8y@t}~0$0u3seArpdh>DG_^j-<w7TZtMVWKIB7}Fg;%l23GJd$l z_!=)DXb{ZpImQ@GUoE-G{h){K$A|4KN}!|4fJ=!(f%pJUXK!0dk{EB<+Tg}Rg0KpZ z_k?l}g>k(64;X1Tm%W~pxE9f#vl*HjW8>_bde!WV*@fwDYX^%`HgC5!gnr~I^k&6l zohAo64=4RJ;v#}M<igPY&2yz7>_Vc@iWdH2BiPBqlmq)yE1_&BQj5zQ7ek6c*j?{& z@zLrZAF7a_;#-g)%jdE2;@m8XS#8m*>gbnw@=2~`Vp2}@>}>>UDK%{LRO+?ZC@)pg zTWcquoaBLVeQ(V)?w@~DR@_lOKK49`lRLMZR$lKHS3Y<~H&xe(H1W-K+r(Ge^RWdv zkvOKe&K3E9EEYMCi&zjB*2TTaQr6_*-~l`qozSluoo1+`0BBL|gors1O(mW7{V5nI zUdNrx&!$-5&%LbY?8@nhhAS2sv^5BL6UjEslTyqb+AW9kyWXL93+XLnK!Fw9%Zb{! z_<Mz>ea|V~pH;T=y9RI!Y1|AA?N77F#rtT(26!eCPoSLcYw4#On8U380t~*T$I8jJ zt|c=@CEwX<%jGlUcMiifMl<fXfQ}lS%2k73#5y_}JHNyZX<Oxqk;(moT~@VeH=V59 zGW~AMnOyBf@n81$u<j|j`>#!y)y`KjBQJ0<k;5O<eirG}O8f|Pk%I3`g(g>cBj<O5 z!$3Z@tpCH8?;f2wCmB^pkYx1JwP8nd!E%3Hf@+Slf|QO|)8$OaSbq`DBKx%v-mfe5 zbdeUxB=#Og318FKvd^SOlE-S={{8MamE7})sVlEG?1H7M(!BhRJ$_2+mrtL!#Uo?Z z#(17Z+?`^Y*F-#a7h1n10G#$?_rN_}*xl(3$m>?xw~+M%e8;spN$XeSg9Y`o_iOG5 z3U8fjPxEz7hO~+hN9@Ah6+pZ0hmIz@AYIrDoS*k(rB+uG-2uphm{J7%n!We~E0n`} ztg!%lD6A@yDVI}yuC|TCCUY3=3%M)+Z2pa13*f)JpB;aD9};!B=XU*icmB03KZqXk znk;_7u<966=oKuAchf+Le`-&vMc}w)>iZ^(8aTS8i9(KpkBiCvwPY}mjcn=0#2oG7 zW~qCAUO-Th5uj(WOSSx9$25S);&!`3csPUXXTP0vbSa5C-0|${wlVOCww_{j{`q?^ zwS9Uhg%IKsraLJN=gSdd^LN$@%ir#izq4MxGE@F`kNnSBFJJ%pa;5zLIs?CY3H?1D a^nV%euUwulcg(*T?`t$BIA`Vrz<&V6U;Ih{ literal 0 HcmV?d00001 diff --git a/codigo/animacion.gif b/codigo/animacion.gif new file mode 100644 index 0000000000000000000000000000000000000000..f82446b20a7387e17684cf3d559216e0ff02a6c0 GIT binary patch literal 179865 zcmeFaXIvCl-#-4G*<D!rsvsx`YsZGzQBfAVu@N=)LhN1a*vD>Sjfsk#B*tE_V_!A) zhP^As-m!Q2UuWj*vO6r0`@a7#elMQq&Ev=0!0wqdXRf)vSE*gMR#?R!B{5l;MD*?3 zx4^-hh^X)KQ&SQzUAULhWX{2Y!?vtE{!ik$`{l>)yz}VU!D~<E@4N2j=XdGSrJB>s zqY}=oTD7WT#fn3R4(-vSN92?}M~)o%{ot*_g$uW8)haG7u5R7BlO|2tx^?T1i;v<b z|KI=p-wOOcy8?Mr-5S<x+N649RL#;Mp&9`nv^e{)?DimiDhc|4ItlUn#_4kuZF3~y z_XCp*`M+COXTu){r}&lWas9}KKM&6^R{uGm?#87@e+_Q3s?E`je;uD2+VR-Jx|^1r zTo5+k@%5vdmY-f?8t0nlyUi=k{8{JMqHT|DUU_bL)Suri`fkgr3#(gf>T%=PmerTm zM<4h(Pra>cu59XdZdKdkTi0IO7IWv=qI%ob-PjrX`tgn9+t%OOD{0&U>nA4MJ}@~) zv34gCH{3ZqGk?9s^|x=lcRa34&zmQ<Z+dV#zWS8F20J!CI=7<9>UJl0Y<Y4iq2uwz z4R&sQb}ezhlba`ZZhLXdJkBks;jYA&caHp8to^B7+h0FO`m^4WhP!vXeR6qI&s(Q< z?|lCv`M{LaphkOkeSH1!-0JqH_w4@sKIP8wC5`s(`TF_8>nFEP@7+6EBCThE7D>sG z<6V40I$ch>U43%4f(@6pIP*`<skzGaxqJD{o!T?=)|_6T<=MM+e=G9Cx=vTl-m4c^ zs`II(EzjL=uu$~v7GpFX&{5<B&w{PaKm2}a-Ps|XubzL@WX1P?HT<j9g~vavX}P7( zy{i|VG*9^PpljRY`27={0|P1g+QnzB6Z_pe^;hdl&)e=A`u6#~YnNWMH;>VI6>4)i z<;TB&@+sNndSZzQE>xh=vNl&<bv`k#T;KcGue|P>^n1-2h1y<y)BXI)AJ%udarJG_ z%NshMKD2PmSSRNk<th2bwfB9K_f7CB-0phnhkkdD&Mw*Y=Jk&Q9-jHD(eidTJ`H+$ zWlP@&H*ahs!8@dv!6=xAzIo&uPDwYv4*&4--s$D-Z+#p2<>T8I4{qIxFp=n-y?D12 z<NookzNLFTOv(HA<m`nTuj%$O-=VQ?6!Y}q%lt=X=Bqucc=uNYj{O#-t53-r_iL$i z*T#nE*M&|ktTg1+(?_ohC&gErl)XfcH^FC@emA#t@5gV7oL|v+`TaJOT=e3aR@?eN zd;GT8<%AB0XPtZ;FG`#J1E|}Rch5w@jgr>(d>?Xi*Rc1mo;`VAGTA)VIY&sZ52643 z{j+bGK2JZC>U7vmODlSPEPemP{0ak}KmAzdVbUL^dd5+5*$FPG)NE594--k3H+DU@ zuJ`Bi&#&(o^7{F+&lOUV_fN`Evd@>WS9g!iEz|dA8<HNLUEXAUpRbkPJ-xbZz>DXL zKIw!!fpxGz^y$rGK~Krws(ktI>cP47eN(G``||1i>lZJAj5J2$lCx~A;m2wd+;Wv4 z_`%Sj#!oqlG}|1TEq^V6!Un(jkgZdlU-H+TQ+8<f&fm=pEUiD1AeidUE7Q@HVsdnC zxTx~bcW*xC=oa;R^`CN<8|K};@n7}kl^^uUyGPTNO_t-|`1EYHw)OVGZ$J6;YO$f? z(K+{ulBv~}o>#UG`kb>*o9zQ0UEDI<w{N@M!#}=z``I@pdfzw~-;m;D>TqyMt_rDx zzxeg<boAFE&9{!YvVmwp#Uby$<QmxR%%64VmLHjWP>&0%TW%ZtHTU3NS2lIOv~}d? ztwcMAzJK@CKQ`v}fuDRUj0zaqKUt)*L%szJ8~Etl%I4cf<rzNs*|qIM-haz8BKGB- zqjM{a4jlREjYyk^qy~-}@$vPeOWQ^VjUM&&^F22rgJd3~b;}(-IrR7a6WskPjnJ3+ z<L{rmi?!M{xzwMBrUg_U_B5EJBfk`=H$VKR(tjPBUA*;<5iYNn5|!<Fb=Oa2mY-S_ zKK#=cm$EC8ey=elca@*Zt~~o!{RNdqy85glYP!1B?w`x8zPPr{&S76&%dfe-Mx?kZ zQ_8Qsx~12(9V6W;q^`TZec+R;yQfrGe{=VU&!4`!g(XDq6UndY)UXZz9GvQ3d6av_ zjdzd!=IcgM#ZC85F04HKn|r0r56>*Ex1j2@N?RUZSkrpvD38ippI+JA9sj2Cw&yo? z4gdVjBRnzX_TN+dUz8x})x8r7Dv$Q8vg6I8^Q&9$onB?<yJy#T4o~&0y6eNsyT=z) zC`r<%w@<I_9PJgc=gY@8Pp<8qk-D4c%jeI|dQ-A#tj;5_MqJeGY7;&3R2}d4{XaE+ z_9@Zs@3`;p)S8~BN@H&_-K{gLV1vaq<~6?e-JB9__lzIfm}q{v-Z%fA*W^LN#Z^Xr z)8=maFzSz*(*kSGZ~Cb5vIdK)PH_E!XjSSDYug>1|HG4J>)P%frSosrtC>J27S~+R z>{+X=y>IN9;NSdtn;nCm-8{IU`HOaYMt=RK3uuuLEs%Rqt%WUKb~rRGPsGH4majS; zo1!E0!j`YQoLW?6v{Rl|Z@QiRtHF|5i(0+yadB<iy%Y1ae%I^jX8fB)t>5>#xqD=) zQ(&79G5;K#_C6<>KK8$Va#6&jz_y<TKEANF{o%!JKM#I>WA|w1pmtwkU)?*oz?V#4 zhrN4tWACJ(_TNT)di(6w;na43c3;10w8j|YzOhbT`RcET$$Ma;XHd1N!Ts_b{5faI z4kuRh%YS%!U=dd`_AhXBR-s0J)L+@Z;PE*j?e~WlAv!s~eBXakPplkJ`1IncqeYLR z1B1`}QENuN2CD`ZIk&9gl4=u*5?xr;Y<-85s|FRjw65LWu^z?BuO{kp`i};y2bZ|E zwa=~n(~1oVxv^vLi+@h89#Znwo>8fyXYm#ZL=(O8H(V22>dv9*LDi=hA6oj}L6M?Q ztr=S8!KuX&<2*|YEBol|vPOS4Tsy4XlZ)%xADCWZc=_H}MM^%kc6fysH}{Ozc!i7z zd->0y;cgT^qT=iOr<PQo5i+vU+s7BzcRamrWaanIZ|)uERdQ7L$5$6~QJwXps(gO; z{MG?qimv+g)4LaUPOl#wk^1eMAR5AEMn{fw&Q>Tqm`v3tdF8G3Ti7ohYEJPj)#ZHR zFR2}C&j^Z~=v{GEr@Fru{=UN(Lp0Icl0P2$t>UkR8VD3~|NQn}yEa-9F~-TK(r?|q z|FepYqIUe&y~*-Mzt@^wX?BkvRyW_!<-(5HJ)5s@zi*;X<vG2stP+yMsGW0qx8BzG z_I@9d`n26S<mLSfJLmRozjw6YoO5Awq63q%6>hdGu3yK)GxFA+6F#qh=i_rrb-lQ2 z-hi&BmqbpQ9w3#abIZS9-fZ{$ay<o#K0K$&g2BD7ZR_{o;_d}Q`rg{2BSY1NvHk8G z{-tp9Jqw2pcyRjn+H<Qe8aC+3r43y#?O8PZ{e8i#F+?mLG4%C=Gk^M$G;;X+7q<`3 zjaV{j<mdM<A6yD*Pn7yE@XvlS3X?hh`QDYxYWy>`2uWGspF$pHABp3iIctd0;h(J{ zJ<J^c^uJAULN|_oBHhTO#y<^l&}4ysoV`qWB#wU;?IcQ%e_n}n<Uhba1)Y-hW{!XA z;>c0spDy(T8u<L~m2(do#b<zjwsfO4w3*|dXdM|_UwqnfbN37DI&=K9%!kYw<Dbhf zJ0AH(;~ej9=J@ACOCmM?8Pr{%PN$c(z4os6_3eXR+;@b3b`7D2w3OqY%Q{NFdE@ht zl-mbq6mEa>3-Hf{Nxo$M&+v~#xdjXUsp(454F42uzOmP%R|QYRmF{}B4Gy6!@Q-U- zLvm4x<DVzZ1v)gVM9+7{uWs&fX=Cpv?@C-x?53j?nd6_kdv#)zQ#8jv_W}Nae`^04 z()&}{$LCX5HQ&_d*^bRbS>T^jJ5AC<TE_9u6&*c%{<ZRllz$HYTC(rAaNwUyQ+z4; zKfyoWcNjzd!a$CHY6Hmt|I9Ada_hj4*}DM$bidfC2$?d+KPx>;7^oO={8PMzKu6}3 z8=kYb4gTq_ql9$$r~C-Nem3~WtP`6$#pD{$<s|UWb6_Ji{<(?;lJSrKkUlrk;h%fQ z=T#VTbEk<O(F%@#uIebo7XJ);`{c?DUm`pF^YQ(AuT1byzr5opK#2XKFTE7_r>-kW zR{T?D*@=0;KfQ4DWQc#ttvbK5>FVsA4aQ;;$3MNWK*#2*@lOvOCEDVj<bC7a{O$3N z*<EbmWWhi0iUSI(@Xu!~(B_`k_DoabpNQ$<+ZFutymF-Uh*oj@b4^DdEchp4M%CR6 z|NQDpMhpIl*!%5kmiQ-nEaeeKXmd4Y_@|yL&9va3TutuRXZUAe5i)0le{%ouxGBRw zIU5*E#famdHCUl^_@^guiw*usiQYfKLxq3#xrl9?W^(-VtvH$0_{V<>(U#t~4yo}^ zQ0>KSIR5!oIg%dJ8jgRi>xel1SyFpRI~o7X1rXx+XG#0iQCZ<1zig4xbgDYmy$HiU z1$9)%f`6tK8BmDfpB<^*6rB<NnO1aAQQ)5``SkHV#PLrvJiXH4pDn;GHuxtt^!9!g z{@EC<6+$#eIQ|)(lcLr5XId+gu5RsnM~#1G<ZrZ&<Db-NMjAvM{|tF9lBD3D`=|eG zq~M?9Ze$#t5&mhKIP*t){4;fO-c(a<;`rz2ERmKr-9D>xJ&u36G+0oftt%zi;h);S z6#Bs)|J3x?Cb>!+{}gM6gQDx1Wj}EIb7*$u<|TB(5M3uq0RAD7v^m4$Vt&jJ|GfUk zNib;)Rpt-u4*c_HPLc-oytMwuH2gEMLEZ!6EjQBoRt=DdGQ>YaUfkL@$v0?`iC$CE z^5%ON1OGhN(M&7;*}G))Xe<7Sbj?M<jQ_zKS?2uD%3n;<T<XC2p9(s<tm1!0H#Q_2 z$4%7HAKxw7fj8?c_#cmYMyV}v{-^z3k@PD5XJVB)vB^J<)lgiSCI<7oGEx@&Ps0XA zsV{N<r{5isf>r#_SzrBSir+cp1$co}zkkF31kW_lc=G1_k3mQAD*mT(!+0`-{}E}8 zivOuN$PWK>Yaj~0iP4<@`3~5|p8uKt^>MU@fPY*mDGUB*h>JGb-OTV$!A8sK1NNx+ zpZR4bxOs)d#3Yaz{0}~JruYZ^&#i1?edj37|J({8vmO3f-!-D$IE~<0Hk_is|6nIS z&5Hk-n!7^(^I=A+L!AHl4hxiE#XoDh%lr>`j^vE^pT=u@yaoSL$65Q(HCf?*O0;f9 zQX2m0|KKe6pLMMTdY1wJbN9%s!cEro+MXiOd?AMOKQ-MbIt~APD)*G}KkZ5oWyJqH z|5EV{_#d|*Lvkfa;eWn<9s)pS#Xp<+zF_>%LjbaW$NzM!HO=4IQ=gK}#QC3BU^Q&< z&*q`vf8s=XlOg}Jve}klK2OdFLZX<$`JY)nM7H>c@jusaD%tTrD*VIvpF-hAQx^;W z^Ds%I-_-oi51{ih#y>LuvoAuM;7OeSdES=D!v8S*vkm;ux1j<(wD3P!;Ga@|*80gw zj0IQ7@K3$@Wr21$|HJXmuAg52MU(;mqu`%byL+5BNo#3`!vAdOsH3oS{Le-oGN$oA z4)D*>-<<vRQZ9+}Ke>T+((ym%MY^0B{_(6*DMll#(j;>JX9&=a!v9$C&(6_(+mWR3 zKmQ8<bd1ypVgMOr{L^4DSPiqn|5)(P-}7=TBXZ3DSnyA~gTt^w<V+*L|2%E6vGZ{N zDK-Bys2G_o{Es92b8L1A-|_}i8RGoU=57MjSMxus9q>Ok_=oX7w+&(&=b4=UNyQn& z_#Z3&0sj*OUX1ZS{|5i8=y%8DCR7#mGX5#lXfeQ!!v9$C5BMLKCL}rLe>nbG-=WGX zBQ+<P{~27o<wlX>)%?#jSBkgtKMwFu>3he<`)H52M|1us573U9|Jm9@pgx)5pBW)l z635a-A)50)yMcBX|C5G)ZXJjyNt6NqlOF$^4}O_yq8Vi3{7)fpJ1YFsZ;v-gw){_e z{L_3|pgzIJ#QC4W0EqVZXKtUipf~QO@js66&#PpO5UNSy{LeVR9vS~I{)gkAMXiX^ z_@BLFoPE>rKhA;DFd_^81AsW*m-9ay|GYTqMxhq|#}5BwF#js<7vGVH&%f&aD$)w| z{Hr|}p)BTKwKUy4D4x&1D&y&;o_~el>Gdk}`Pa}G>9|1uBmblEGF2go&%cJ_;k7^A z{Oi7s;{JpASN1jrGZu)?zm8&o(&3*Ufn+k_f7tx1mYX&?H<{V|YkI-fTd{*|_#b8d zwGD8?(fmv1e}I45Tq%896v{eN5}$tsmLRkJ{A*d;1$YO`i2t$7ze0AI=&3-xF#lrw z&jB}zQuv?sU2pOESM!o&{#Wxa;GcHI4ar!b{}KPx&ZT{rn@FC2mFRg93uNVg6#Nr% z6AP5$c>cxl&&U2hItk^SDOsL>)&8{*z>bCg;rM4=@10m7$MY|af10eX8XhTOfnr`L z{LeuEDTV*x_y_Z^_Be$8#r%umpNiS*8>kZzpMM<#K-_HQe`Nf#sB&jlO37gUCF38= zzv|@BrsO7*JpU>;{2dl3-TW&NILbQza)5ufj>xs?N39U%OeuW+6;gss>iO3-ERbXV z$2$LN7!XO%z<cuf*I}Thz>yaGqwqgnOOgrmuPpHo=3lw;>8UhHeE!w>JAqnZ{$<5K zZ2namREmT7mj(Y|{?%-$pBU>w#x<8WbUHr2%5a=P>E>T0+hB|-&%YevpJJ`|OuZ5_ zjuvX@1D}7*%}GYP`4{+~XLzvL&A-z4AIto!a6_Z?4%>{+zwQ8#asJ0T|Jnp-^l$hd z%)i`Sw3Lg?eEwA$aFETv((n)FU-Lxz;$Z%jhJWV&P^_^i>~bQ5jDJopt^%~9o`3nS zBU0vH8Q`DxhkC`C=#)Ss`24G$8_l$ve}VrQjAO}e{-we{n1AIcY%mQc;`6T$FGX5t z;eRaiuPgY;|APO){HyjvjVQTOG@pOXYfKWGf7#%ll>?U77ig4&`Ii;{oLuGeNTPNc z(ia<C{L02Irx*KBw0i#K)|@0|{^c0|%qiKie7KPw5LM;#ufIS@+0MV7f&bYFYRGQ> zWyAmQ`PWZg`glCX`26cjtU#wM{LifeGfIxGI`VxUZBvRL9Wfd&scG{s2l$80zYb5( zh~wQ!lILH`ny$nc!-oIq$L3%6C%ES-N`^|m1(QHC)%=hB{Hy%qNz_$CnasZ~F4%Wq zyek<BH*+_Ezi~MK%E|ek<$HP=O;5-=|JtgfBzgXohJQx)jHl>oI>P+R*+?eq{7d0~ zRQTui@CpWL6cL+$0so|aOC=rosq{Zy-yI<`<0F>taXk?PP8Rx~8r_Z3X`-=Q|5IB> zEmZoSMIkXM5FEMq(BwSzBBhp_=xpZtpBC%J&}0p@;QF81IVoPH|2b3~Wb!%Sv39$M zjUmcH|FhV?n)E=RI$Zy=!Hvvn{m;13=5PD79$swz)t;n(tN+=x!e~BBZZwtae=s0S zveW-m9CUGElwijE3j&d-Ec8DOeY8e@OxOARt2c1rU6uZ4caEZDY;!pjJJB2ZpEUfF zPX9A(<5*g$DNadT|1$?ik9z*KFm)SIM*1H<|0?;_L~jJ#mmL2b#vm*s{ZG?iqBQ*v z<9}58pQ6pXgd37OOFHUuR^flbFiKMEe_VYiS=Rq>{>N7T!{=WcoVr~bEJ%r*|7q)h z|G_Wm2K|o(|Jdn&l=)YW<EcWk_3bEG;eXaOXibt@|C88PpgCpwTJcYs{>M81T0BgG zK#ID_{LiZg$1w=YNdLoz@D}}#jDJ-6AI!gcxTn0jClcmgGX7cUfd82QL?r8fEcnM( z|D(*mn)_;Fo(vX<>wjKgfj*?^e-!*PMn|bJY5E^N|FYNr9M_4P`|KtY*Z*AmFZDlf zMd9)$z(PL%YLD4_2KXm9iX=Pz51)V8=zp%aFiQ33fqCZopCPVL1F7^sC5n>7=3grP zkBomf|I-7bvD7}-MS9HjKf?f|p#QPMKREz$nEr?1pA7UrWy<KuA4_eSf8i&7u<Cy} z{+Z+k8YUzCkHY_4&Y_J>-DBl{B1Qp^Inw{=@zk)@|BT}EFB|>O-8iH91QzHz*Z&N~ z<3_FjDOZ%t^8CwA|HJs7lUDstpPB~KI((g{T>mp1GpT?U_V~v)Cz+uCnO&m&p^WrD z<?`zdm9apU`PU5qGK>Dlf`5K;BSS{|AI|?=$)?rE7)=sB59fbA>nOec2e%m6>VG2m z{L4oF(;uov^B59bDfI}~|9k>Bq|*OP`?)DeD*cawf70|n&%QI7NGFKiR{rN(F(UQ+ zt0I(jz(1Mkf1b?)2j?nkgRS_-6N<xs4%y?M9sLDbr`G@2@;@_5rdGxm^VaI4pl-3z z|F~h0rJjF{4<^jNZ1q3O)bp=?a|#%Yn0;WWfPbL>sr^eJBt2^VPwpRxEc&08s`(fA zAEy5)R~ah>y3(6M`TVOE2JLG7Ps@!&(EnKRPa6MY)&GnfhLv(+D<yIL&*C;jYW>gW zfdZK)sresU{m<T@uM(w_#!qjECyDEy^HvuqpIZN%6BsEA{qt;%sQq9tngBAm{&|^5 zb=3Oj^{!;fLjT+=LaPszH+gohf1VCXMy-GD2t<^H{<*ck-VlwI(pl$UOQ0G`r++>j zf)nT8>z`xdvAdku?lN=z^Dlo|`JXiXGl-xQivC$O|4P$8H^g3WXG>39|J<{=K!1b( zvD5!_#oQ`0{WI{-9w#xtPhNV9{`s^>Q`P$C??L2brvG95&+Zc1FlFsGGyOC0&n*a& zxc<k=|18f0|JduFfqzOjHJBph+b3AoKNoGj%A1lE{STjiLH}GA9JE9Ia~l3>u*xWn z)wA0tn(Kes;-I<C@sCCSybUj@YW=ec|Ey^dNxE$8_DQzre@^11U9ErK)?1*7Hu`4= z_-EwDF=WUmpEOMW1O8_Z$oY))&%fi|@UzoDr^7$9{ux6~@(*PCXNG^yVS15H{~Qmw zG1ot5gnurO;9f)CT>mrv5kx<uyt^#=A3P7=*z2F~9iQMvDVge@hrPX|(T1Aj8{0Df z`Us7X1O3l0xFu}$&*|~ch@+)UlAvYR(8%@AkFbMO`sZ>*8w<256Z`}H^W4-YV{tzl z<Rg&lpF{Bi;;PdB9Q_#@p^Wg4qJQpnS|@7#@D0g{hH?G#esDWh{SW7V%7EKZ>7Uc) zUyA;DpD&Is!a?IlWYs@+!vjsNf9_aApl}EH$A<se)CoT)AHJX@5Z6C<$GR-6I>DCz zf&RG(u#GbRO2a?)`sbUQ+(oTX`Gyw#Gi1+_tbew_Kh1%N9O|Df_~+*CCS~w}ly7L_ z`kxBW_NevGqub(svY&rh^v~($U*2(8dJ&r<nxeV>dGhxpO%JrkKY!H`sGU9klTQD0 zz6&-*Zh6ft_-A!9f%ZWEY=?h3>1eV8{j&}K({Yzx)OJ&rEQI5qg*wu!_0J3NdRd<F zKN-)z1_4BpAa9BzT>m^AYG>8_YsL&rP#x=^9q~WeQmad(*K74=GBN!#@K0k<h>HH1 z>3?MY=fMe&Tv~lxvS0%K!E1a%ruyfWn;QFT^)n?rd)?{p*_CDd^9=CIqJQS|uhh56 zxA$pW#Xy=FJ`b?RR{!h(|HuH*Mfs?GZ^`^mo5XbbpGpIr{i)NXJ=i$1{zuLKr0Jha zHo{?~O(hrh<t0A<ib=2k$zRI_AJMPwth=H>jWhRuc^6{WN7*>s|5fw{fi~Lvzgn*M z(yn+*@oQVVivJwanX>SI4bP89jIx@R`By}G{qyQkF=NJ#bEf`JF75_rm4*MSLREGW z<7P>Xrg-lE0uLam{9i#4&XNzg7ifXACky}Ah%o#_oqYS5x&NzT6QYIo_@`{Jvj_ba z(i!hwj{RR&{L|_ya5ss97)nvx|8)VZw95Y#9tX3SSFk>XnEqL$UYYp6pnu-l4WNtg zI3o>N{a;W>6<7JcP8SO^BuiLL=$}C<GXK{FEB?vc|CRLn7)S}Q1&o5k`5)XfREzt+ ztor9*$Yd1#Pe%T)ri%^GHsI`#w6vA`zoLO=?e)+7AFKjdWWhg<{9nL7UyJJTP{rQN zP7f9TSM4b|)9}wT%lwN0AvOQQ{a+UR<Gjv@7f@X1I+V=y&yBEg6#SFs|JpMggj5#( zFB$)|3pWs0YC$Yu)ju=YGsizx{}%&74*XxX_-9pFyk8Lxh?!RZ*TuC&>HJ^2MDlh# z|5EhN;D5^A0e)ip#3Yi%|8-fU^IJ#S>wgAewgvx}tbex7zwG^Ar!-nWVt22L)&B+C zSB&icaxni2^d_Uq|E0!1B|{iGP?k*M{;#Ky2C4mDZ&x_*f7$XsJ4UYFl8R5J;oJ3p z!#__?0sk2JSGDjzpnW8Z{@F7B>Weond;gaj|2!Gj6}PCsb{WNynft#CIGfY?zkU+Q zqJOsGe{Aqildea#Fah!VXe#%A)dOr%;h(m<oB5E*p8v7OKhXc2$p@q;C~H5H`@aT5 z?X2d1a&IC^@Bd1}Kk$F;$sLJDud?*S{a?fI(r(c|Tm4^9ikrCp*)spiRR0rxSw1r4 z8-d{eV)&=@QX(7vN5Ma{AzRMO|AqP2sz&minI!*23;qG@siXFP?Z8CL;{US2KWYB2 zV{<e)7zmY|*sX5l{;#SS!dv}c9RE}X#hT{-vgd!e|Eu9b8C;Z=Pg$=2**#34oAUh2 zM*s5$yiF+ge>uWGvj5A)nZ3iA#<AnkqW@vCA1nUh`k(oDo`L_#Z2r}`5>`s2-0~sB z{9jD}jCWEy{};nQdqgUbiT?}u=gl2K5HY=wm)_$4g6&H^|N12rVj&0qFWdRoUtYkD zq%6Hf|8p2K_%!{qt^NlH&y<D#J-3HePkhNN`e)IH;?@55RbUXa&_6%x0o+c?l1beE z9-Bav&i{T$wCaB{@V}SG<J}YXCwa-na{v1w%;VJl_v*gTKWE{8KU`fOgU=;-h*}ew zx&J*8KuGO>?^siy8X5ZEW&D%ludxJ<z8g+8ku3iA<s#Kr``<UXQj{J4livT{(?^RB z!FH>GqWSy_144`c%j$pM4Mnt_|2@6`Ysgw-s)W}*Y*&fQ-2c942a)1`xAA|yfUwD` z|M@rmckfsuY57kk?tkBiL&%DM;Qx~OpSjTOWbA)u{LiW+_An+XuL(cV;{Sr}3;uWb zzbyJ6_}`BK2s!Y-+wwnd&U!pL$z2eQY5Hd-dzSUjHvadWIE3u{?-u-%=6|0a&hQ3B zv)3{U{@D%Kb3X(B`~Gp@ZEXGT>G+@Q_x=VMVfm`vl=;`9il9l<{&!CwNTA?<x5Yme z|2y}8t<EXK1i}lb3E?k_|NR=Qr_BFuhksuEC{Qr`?+)i*ivPXR0DwpK$#Ab~DVF=+ z_vt8<`QL5vPf3`(9QfaD^*=j7Zx}^T8|;%={a-2ZxGrk{`(%+U{x6&Pm#zNiK^;6$ z47jH9)6|dq-{<0Pv(f*^{`a+*h$;G?boytj|9x=-8F-L^-4PP^zkl2SXQz7pg_n&u zwg27T|MlUq3_SQJ3*-Lx<v>Jg|N9FdBDMcLGyU@)HSm+mTE4Rd|G*&kU-`epn)0!v zd}lMCf8_*nPUnB$j=2^5@AmUA?tfSKpE9@Q$2<Sd3%UQjC1zX9|89$awqhF3{O^|e zmjnNM{=)cRxWnX&Vdnn#pgkGupKn(aC@`J>-H!j6)j=ks`9|(z@xO<IlTrKMa|6;a z|CgQr-H!k1v%yp5Se2b@!9VUTNJ{7b>L8GX|H;7rzTmY4$eUbCz8Dt#b6X^%)&Iry zKMUL_-p>DSKmTI>uUqW#9324`i}G3VPYnnD_wQ5xfXgn;|DJySb^m<bvjAHp0r}#` zas2ZL6k@#E|Na9!>F~d2F#lru=UbcDD{ZKse6L#YPabHJ)&BQG7>zOimyQ0}I{)JO zpViF_CV}qY5HVZvPatR?i~rq%f4*SwYVm*B`QJ0tKYIk~qXnrZ?y+bx^ZXxoykM#F ze^zchpcOpB!kPZL5uWS%%=3SqoYCMh<~Ic=sJm7F(+9IHRsPS5{+Cmd1!rf%{L9@$ zQWp6?%L0s&KnWNP16y<d`*4U_RQW#@U+KgUibMVnWVBi2|J<qqcAZ`^zEMMI`9DrN zidN<S6sc+e^HO`J(HGht$N4{2{-=l=276@wUOu{#c>d395J7hNKhq0-o_#<I{c~eO z5{`&0@_&}K2GkR%06uCwe5=a*Yd}}vG5h?VC+B?vinICGGaZKK4*l;I{WJ1^`pQp~ zq&(QA9yFEv-_IauN0t9`dVO-T0M6MtyEjJe4)T9&^*^QS<Hi=KC@xeItZK~vzNY)8 zWkjm{pNFSiJp-xR<2Ngt2(&D1{$<VovGu<fWjr;lz@Czvto|<`x?tP<AK;%H%?&X> z3S9{KKTbvm{&x%i!}EWBRSu#3Ipoi(<o`V1wVlX5|L5z@LBc<W`!fAA-n}lS>7V~a z{!e-K>PFLCz>X8~{GXPP9@_ceq5pY+1clg)^M7Rg6D*VBDf8u3u=w9$dyi4)|C|D9 zQu2T7@Q)?`N5(%cwdEuIjPl8N{?Cn8z{HmM7x%w^z<_YFlK*3if9&#qKH^Bn3+NL0 zlU-*1FX(?>!jP}z|D@-Ce1Kcj`9CWD#~W{}WGp1f_tF2z|4g~S_#b*K)&bR}A)fz} zZ2s@^e-^T*j<JIB$%yCwlmxa>=l^`gR<h0iNyq<O+v^orP14XOm|o?zbLaU#Zs2Xy z`9ICP)93%#>7N%@X~6hTa}?pC8p*`-e?B$+FY|w%jiH<r;4~8_xkv#V|NQD8|7QpW zVYc}{w)ltZf7%A&g~Z&Se=<J*8imK0ZT=6_|BQsr_xiu$e|Y{+ekb;-Q(O7T7X9;2 z|E2zUP&Y;sN;>5`pW^zTUJmA8SAm++``_XJO4I*%$m31vEM?a+Ef?p1810j8{spB} zI{agw|MR84d|Jl`ns65CX)^TBjQ_cY(U>a#hx0$#a6@L8|HJW5PMmxuGBr>Z&*J~e zjSZvbe;xw}CD`ZxsPWH`V)$eRN^&#efugng-#y$YL7o3I5wJ(j|8X$?;`nD=A>67W z?G*~J2`cgYpO5{4$L#ZehP=1{JeKkN>(btc2od@pOa7s=G6<`#eCK$cf4Bl8RJH!O zU|qrLe|MOFSj9Cj9zsg~VUG)-vAoIbqg)?9o`3iU$Rc(AVKFG^GtECNQdn=UD02V% zu+2F3X+^U|@@?3G=O1o`DpH+)r~%uPY5w8Rmj-dgHi}pB4`=i>njsc_Sy*1+Oz}^- zTKHx>|HpCu;XJMQ)IEln{u%j)m6}3(LcbMN-ZCxuhpRESvg99H=3o1=@W01ILklA- zw@CKCw;B41ol3oKE|izUf`66+vsv;FE&R`6kVTp2A3kyxO$t|~<o|?!WDHF7>BaH} zKEe5)mq0|0@(*j^RE(1I4{h;}&HQU<fBYPca`P+sKPv~Yzac}xWAdk;!}AZLFe8)w z?>7499w2#a^M7pkAKCvNy<0xy@pCkkQ_erUdkC_H$&~!6vwTum{9iE0{TKeP3hbR! zROEMj{^hJZ-Y>3Kh87n6&u0)@j`9x^Fvd{w57YBMa{kZ!aNOYnfp;{*N-F37oVbGT zqov6#%m$m@l7F~Dq^9t{+vOi_L5`4J{*QY8)eek)3!->D_%&3P=O0d&Z+_GL6HMVj z#Pbi^0`{o#5B=Zw1Rzu8AKKxcA${<~7AY}EPl8FwKP)*4zf4D)`<|9B@Bga*nGa2w zAk8DAHq4^`Io};WnQBZa&F)!A$v-Stw5bFAPb)|McPszH{9k>ct|ULFQ2A@*R`L%I zxr&fmRxAV7Rd4lw{hIT?@PEydl`qmWWl$-}`G*lDznL%!y1G-@L2~{f_@6J(Q9H;# ztONQtQ~h&2fNSiM`O5Q^=l|>|!|sTwfyxeI`G;)&wK7$tHn#bPZ2q;~f&bku|L~@K zq|fv-$)q6H{|MeP-*{>fq#`D3{!i{LMArO63;wy{K>uvZ|9IXoNgCQU+RI?J=zju9 zUV15L2~G+vUFZJyj~eI!)%k~$p`f?PKeXe2<ov@1fq;X^Kg2~%rFfoys6gOaGn6gF z@(<bk3tMQNZT=zSf7&>hf7#|AhLr@z<V1DWTxQ@pP|iQ>On!{*j4snvK7{_K`B#Om zhUm%|cJ0MfCm!fp=6@FBce#^!hH{HN=lO?U9L>KN5tKpxA;&)j{IxS%0{<+)1lDBn zzvq#UrP{y93q(Bs@G%xB9sX&HhksiB57$52_}{}`;JwI?qIUVQtLo15KP>-{z1T<t zx{`bbS^V$J_HLK|gZ#tyy#$gR_}?x0hyFqF(H8wr)m;oGEN#C2W;J#O{mt?ZzkY&b zmJ*gkkQ4OJIPl_m{__g#9CiM4evEgjWs?6qzkngWuz-P#?EgyA2;T62{Z<6OH9N)0 z`OnSS#3p`qbLET0^Ze)4FrljRpG(4}B4(2R?AtEJ$c$Xo<oxIEXE1U9K=E68UXtHd z<K_J42UT&`K>x$;M~Nh!|6FkZ<bUe?=Zo;a_%#YN38EXV_;>lwQPE>5TmGUHrQ|=i zV(NGS{`a4YV|Qpt&VQbD4}jN+;#=lm2ZWxIdH$gj(tgtP&x-zM2Qc-TmO=|KZi@e1 z7m9nvHviDx|8-Mz7TufSmy(kI9JT?!0%GtsSNcm7#PvU?<sD>x)172Vf?3IbURI?w zUOUzP_gL7Qek<v0Fjpiw|M^>9_VlvopB4Ng=O1$Y&l7)be302JZ{TEW{&R~^8E=&C zrB7xjc_Ehn{D;CICcn%t;gMUznt#Y*4>|v1&3|S@P_;>-KH8h){AZ73Z;gcfXUF_c zugijP(aA50a29GT`Oo}q3i;1i%@`s%|G8a#JjJwBsEJb){-CGwJpVZ!9Fa}_p~C;H zh9szb9})(`zs2&O_h}4=DH#S_5VRTkzg8C3M^^<RdhDgeH6$hfS(er@{f`&Lv)j*G z&VL>cj{u0W4mH?inM}m-&*krltohHJ|GAG>3<?g5BJ)_P>>|&<lH!HQ<tfIS#%Y{$ zQjBZ-KB6W9R73Xo=cqORa8-#Iqp6LC9*Us`Dybzo|M~rT`SX+?k(h!@2>*-X|C%Y! zvj=oJp?tC|@DHRF(S*HyKvP!H{~XnnEes}4qI3R~&<-n&Pw$T9;P?mm&$jcgN0%ZZ zjH0doOP3qZPP0hvxeDp26loRx^GnFV4Q&2(wxc}l4U_Yqi+JHQF)lk1Cx6sT^v`b} z>O4Im(~{tSUxS~mXQ)XOj?K|YEdRNOCb1yF|22jNx=`XZqtuQ_{4kA-_WmzR{&O+k zK>1cz@}CEG1^t9MN2PK-oHSx$7c#Q^=bpzK%KrxW&-azrvY-8#|LY|TLYUxIsq{v^ z5iIjBHuh5RkJbO)_ohbYA{L;;84;-?1#;4oUowGEa?h=u$?~7wG~oec`eQ8l<R|mw zyyjZ?%p;mA{EtvJjKLn{KX0ucy|0=`JpcLBLakVX2$!39{_`18i!e!h{m&W=KB1z2 zKAbbmVCpSt$zY1Y4wUns*RBS@bfPccbm8*lRrJrd0fa)y(DK#YBe)uVWRmlr`zovO zSA)4Buvw+yAHbgLs{F$}x;iwo&Bs@F<?ADV)ite4l8NO%Z*!&yB61Q=IQvCKlSUM- z`{E;wl612FE7e5bv_#DR6-hZoV*!em^PkKA9U3p=pJw$9(fJA2$!N)c{<%#IUTw8% z{c|A=Q(ASi_`mXeXNr`THS{v-jTgB8t4BFJJi-5X6wCQ^43rE?{?BGtJVlK|LfY<d z7X7&Y>wR`c>|*}qrjR^5|9NAlbn~z7r*WO(e;?F?U1xS;jRpVXPw~SmNV=Tvqz?%& zN&h$znGDfGNdv=^pCNjfMlY;$u0zqtf4+f%LeMC3(rH}bJ{$FQ3_Zs+G`9aHY4FTp z`OoZ<=f?cYC~2`$(KrqcXq`oEC`oeubBC!0bE+AS4IeV_{O835Ldj&wKP*(=2?$Z2 z03u$=f8LCH9{QgKt;i(jKldI67aiE#E*E|tWMb%Iyqy1>fH!kWnA7{(R<=N)GX8ml zNnx}=dq;m&#_~M>@FnJgM*IBd2gk84$UiJAVOD{g7MsFJh(7Eok*W7JtO9Q63NJ)K zs!kLi3I1nVF@3_qp|55BCooSWn}0bQk;DF;Zs7o*VZ<}S8Te=K;wt0lh4A;>y?8>2 z8u9L>_3Z^~{<CqPNZHHl%?Wv{Ybl@T7cY@Cg$!UfHgr5JxEf^tS6yr~I2`al@&1c0 zCq*YG?d79o%pCtTeaLJX!EJNnc+&`fd{>a-<^BuNB%cfDzwlu5FHxC)mB8L+%Dips z+U~>`BeUFp@wpZDf^_@9BzayW-BIRWLm?1X^<TW{3WT+yorg3Q(b9su-sDd>+r71y z^F%ZJqtO?p_}G3<!mMIMl1XCy7jvr;%YO!U2LJnz=dQ2_)&ZjW_*!uFjxxlL9IkPL z|Gng1GkiE?)SGXa1iWqF(?kEGa~6wtx=d#F`cWVK7y0lF^|%J`zt3Qs6ZwZ@sYo`W zP@^PLsm_P~Hkg-*_<<B`il^}!7pH(wymiykx|#q#DcYo=@Bb`BQ7r$bg^OPcGCyg) z-o;ys{O4XGb@vFsmxvSy`kzJqdChHiIr|wY$yXXn&Y=N}%$EBv*h?xtDf%zMhvGUr zas0z>XA=ScoL>R$xLM9W?0kCENTUQl^q?oosg#-i`7Dm5B>2C`O-rE$b2#DL_R}X- zm2?QS^U_C+MmGP49NJ|3f8ZX`fc^`h1*k!KU5+tHlZEWs72U8vqENp7-8xiFnwd`{ z;~z;7nmL6U;Q!K4m+boJ*ImZxg~3I!$#G{@%SD89P9*eS0RP}PX#7_-!sQXERSxaL z9=M9sp#<}Ptr<%_E)?~P&I|unKmP*y==UM*cH*Qk#<OoY)>%_0)F=oVeD*FUus|Ae zH3n01>G7xp2=X%|zXpOf7}+l!PpQt7(C1lh8mD&=lh&;z0s3b*15Bvc<`8GH{)_%P zh|0P_|1;1He^?>=-`R<U*Kp)NAMBW>|M7~)e+59czWrYL54QYILOhYG|KiUY*ucnt z-tZ?*dGWX62D&FvvF2io3vTRrf_o^D**r!NV)50I;nQ#xy~_<d-)*du5SJbP_s2~{ zVTBX0KqSw9eoM5WV>WH*@SM-C2yU+0n9t3CLkzgZqK$wg!iPW;jzAR5K>yq(E|Lyv zJ+-MZ0m&vDz}Ubuu{lrT?IqYi0|~FVzjiSYn}0Pa=4T-EUu^KwCiHH-4=Ws7MxWvz zCeQ)FppRLIn*}!#Fjl4Ug2pct%P|(a)LWbK?Z$8oq5mSnKqEh4HPL^uXXIFVjU{LE zuP@l8eq8^9)6pnMa{omvyWq_Kbp)4Aq)Nju|0=*{N(SUVcRq%lhzB*#|5<~nyej|s z)9d|cB|*Oj^gnnv_0}f#FiOotVaMQtY!NqfI-DDC`fIP^$?AuLCN)w*|HWAhTyVvl z=)>11m)IYiu=bLf+=SefJ+TAtlHO077?6y&83Zy;B;!Cq)Ol;erd1l$L+2_c4z5B{ zFRa<+ss<zaFK}52yMyh(XuTBvQ4%%y8<P<!3Fn>t^irP6g3i^|7;2F74`INSs*W7y zCR`1QGO+yTAol>h6cI5>$7FBajL<&|xr5nu70JWjGYVc1#{b|Wn(oxX1a*YgCA*pB zKYQwD&XV!Zo=z>3ah(<adsq2ojL?6P^gCAEsLa27<zc+yf7c~prM0wc)Yn#QpIGys zdt%t8>c4n2%wPyha3bVCW40AZho)&The*a2a4xPj2T0NwTBL#Tu+=~bAQnJXiX`-3 zY;rPO!?IGZTU&7miL`s<`#^&!F-D`ytu+C6j;E9UB#pwy(9xP=dgLFzdkU)$1y$W8 z68bNK46Oe`(BqKCFa4x((wb-7V*MAs6mC%XAJ6bmBccByS3VrcbdWTj!7V6$-xzrL z{Pf1`W5zK3vwNu7B+V(|AD}lP{~2h3>7QSlSpH#P3*evcagP~m&Id?xqQ&5Ue5y(0 zN71bR0uSLmo@8YFPY1l}m=MN?{)-(y;LD4|`Y+s)O~^s{hW?A#P~2>odBn%Q{72rd zM)Y5>`PUxoN_GE5rOianqIr5AwqM+wv_}>V$92|-<P~G2m;c}q15_*Ge_V`7p(#>& ztTE7$hVlj5Gp?kJFYljTQrm2#;lMv;XLfRZ!k>VeMvv2GBPT;xD7!p3fXRsd3wQz9 z{OcgzqdSEgq}2T5@yra?hob*t7DX+q@e{trT*1>_A39*!Sgosg_x!v8G=?H_dHWg6 zCPC{CPhu2y7lsWrW&{3@)8dHHC(K?gXk3U|7$m0u(cpO|q5lHM<V^U#u&10%STP*w zqcs5lFf9LBnF7lBKjjTlX|3%4nmW%!r#)yqn}2n~J?~BlEdOwIUQoS~+<&3LT|)%_ zmy9p7n12=5hc5mSOAl~PB~-<yc;TX*88N!*7<w<TS2&Uc@IS$1ChS|mNG%d);wh>j zZzDGDSn_kB%SSfkmjvhR<X6#1_@++U7B2Cfj|)PFK)q>Gp_5vne?Bsoks2*=X8NDs z9!i9)-WIM{Am;y?0Q~dAYDiUYR5F`M=j2L$2Jk-sWW~dvSdq55(2+&ODvTKmp^4mo z(N60m>I+eP!jGVjij~LXUGhRG0_Y>;|9~J1HJS0j1ScE^@sZLw7efF@9zl}(zrKEA ztZDxzH`ngO1v7hLEYAAB4&l`{o+Q@)RXNCDGzqf)XZlE7LX2;f{x6xdI=yEkR>8@d ze|QIDGl%_Or1jQEo#}w}EGu?H{vrNQBcDF%?9#d{zyW8N86pN3Z;CpH-{C}0?+#`6 zyg>{Gl;|dDng8qR!0sY_52jcm^M%z~vDZC_cgJeU9beU4T%zvhMzQ?oYunt!6JV_I z1D(XD_x$5=8w=jX(D-;#_@AkM)uArVkH<TK$fL5n|I6J7cJb=KM|z>@>O)aDo<t8% zKU`<lf6=dGR7|{S9P@uwAhXi{71SKRLqPm_qvh+2=C_0krSxCOc-zeQA0Ze|3p4Bg zI#3v^D3aX&6@k5j*tFu^67W?uz&}d=SAMizp#RHm{&hWAij;mU>O$SFWRH~Mu+S@x z8qt3dmIFqk<OiqqG%<S~*SseDm^r1(8I0JHjh8!x@&2z4HIrEWp<bL>!ao`3K@Xug zHYv3M)Jv+8K*ajLvWJ<7aNtp>K03@a1~1Pvc_xvfe{N%>`|u!H@}Fz}+Q($1$2z(H zi}}AUx&r?+xW@foyN8>kWSl+0eRhRSq+=RCN|y7V7hx!hyM^UH<LtqOXZ;rufw*ft zC;|D;Uxx$I1L~pwOFsFMgN&B`ue^~C{O{Rx?#O>GAX5I?h4e9{NuXlL?fIA;|F%pC zZ9=YiffiLB1b~Pg@OyP&n_=E7Ma%r_oK9HLtO249o2_l-Z^Uva`G*CEv+c(753j@U zXQG(2{;&08alyF%YqDE#sy+q>-ceU-D(jz5xH<XhQ!3I}5vN)x<uyG%58NX6e_g`M zPbi!meQxZ4hRZ}I*8k<EoWQLA;&}j8K~GJ$joK~m1xx-R0wNvcAL5sO{hW*W-?6m? zSEp`d%nJhFUyS{b5Gnlx1d%xTWj^fo-1I@89rtsAdUJY_QR)BcghN`I=WNaY8D7W_ z7lr%3&f~YcQrJjWu74icN-_zg^ndkgp>;E8!|I`GK*>LhXZT0(G~%WO^@8_iCI4qk zDQ(zPf$5)pk)ja~=_B;d>jKyXXZ+6>meu0U^v^rwubRmFzq-0P>i=SAn3ITH$tp-H zJFhX4l*c4Jb7cbN!0>T&7b6^oe>56O9GyC9-xzwM@%9TP$)^88>lW%4jT^((|6Z*V zZbJ>_sbb@QuXt95J-ZbDS4n5Bd0vyQ_|PMi{x59FV4B(V(b=V7Ya}ws{THicZ4m4K z8iu<LJusb5iox=cW6?iv2XA9L|6=;*kFG$hIJbe9rGV`wI)*D|b~l>u>nMEmy8zQb z?*Gbd0)WSFRqLN`)iSB{&n3H>$*lB$wZm)t^Bc~gIOweNFZP52X%*BS&oM!aR`L(O zc#u0b5bOU6Y|5Ad^ndXWZ|VP<CX%G|U!?iJ>fyr^UVgB-kpGhd_y^M%y{j~4te&Rl ztGUWZO-P=9y)7aFMauYx_g~oRpEqbkvj+|srT=TnHhKS(XK_C>v%nhV{x2B_$@u3t z<Ue5k_23k_GVDpb|Etm#BHsU%=6}B;V#%UtKhdEX{$BCn*ubp+%TqE*k2B8yd9Cwq zVY2jp9d3_(ClDe3FeaKkGAT;#zW@XV0Ac)3F~-EC5+VPGubJ$BNB_kfk^V;im!1Es zw<|t0^S@6)+OxOJ|CBF*BTyv!{6jnab2~3=GuHowvm=@$x&KR%l`#IN>Qp0p!vX)} z9xvZVop}FO6%g)9|3#YqxmF3uBog|+_N+CU`V#ZMdyYVLAkEC6{|ox(CG6%E==Fn> ztpU=JddT$8{3Z1+@(=fp650H#jy(TTE{nwbPy79W_ak-x>2#6hKhL^{tyrAmGU-2U zRVGqeu0j6KF{AW@M)AM*yeR9Rq5o;QQD%F#u5G<lW=-RH|0yP9>GVIPeiSHQy~W`b zrOqOi&ZPfzKp{i?Ry@M{YXGq-XcYZ(K;i`KMAm=t5pVI{O#h4`Mg}Xb`G;QU9#rT5 zjNXk```1q{^~Lp(bj<&rVgG43Na(`=+3pPX2+I7c|2>J_tMRP=bUxz(k^g*pvHVpn z^Dj2`Qum+s{6WtDsW*q+hUcyQU-t7a=6^p>&R|9|vzCgp{6hddneAcuhg=kf{;zQg z$z$n1y@Wg>i~h&b|J4tPK$-QQE*d^YBm6xh0tc1se{X&oca)y)!v7wG2NDiEW&TAu z<@=fIpP9VH(tm2jKT|}Ssq~+w^MA4a)4NBpOSRgG2*FVLPi5&M>pvBhU?b>%F6@x+ z=l{+BHJ-gkB(wfg8P3W2pC%=lZo!iOvlXh|!Rr1~GZ1`w|Cdew*RD4>=R%eKQ+B}_ z{`u_2=nb;spWlIL(&hhTgSX4B|1_QcxsJ?yApbcj9-&2eKB51#uKf0H;{LA-tBBI& zA0}XinMwa?`4O?t*&)sJKbQOAI(t&Wh+Jjv%YzzA{xcG?|BL)*ud4E?mN?}7Dabeo zaKFOnZ(rmSIEMG1p7teT{io^m&;FGlrI+mcPgVNo;-%n!H<N_^FD6^Y0nGX@w#&QY zXWoDMosMEH_{Y+J+StdM|D2Kks~cXG@aBj7Lmy_~mHl7J?%?@{Wx5DdN!@??2Y#8- ze`@dlQu<HX{Og&_a|8bj#M$Gg_`j69#xno<whI<SyZ%$?e?B<Y|JduFoxQN7O?Qv{ zf>}cgGO_+sp*Y*omj2VO4XyYmt^c&TBmX<=KehVbOI(D&Fq#a_L)i2h8V%NeI*f%G zn7IFI1XN^c{illmYd|Li5@pzb%Je_IcbMp=7Ws#4n`mh&{9j*U*}GFX?>}9MY-d&f z>5}&-!cg^}rpy1a=|6p$cRc0HPe&$4V*@(N_-E-61_3PnUpv4e%l%&#{}<~&{TUHb zcKxR|`OixKX{CdP=%<&pdNJN3iSs`m?CjwEr|a7Zod2=OKOB#jY}S8jqkp#VKYe>& z%qE(vg6-+8m-{bT4`Itey#I8HTl)Uf(II%2r}dwv_kX=R(^?-tdNeRP!$0u9kCmwu zo_{#rk^ZMKNN5ZGQRhD^{`W=Ojn(K+P(wWbM-H~&{ipMPNS}ZBtOe|B@V}?m|5*CJ zo^CTcgM_QW`cLm2kv}5uKXt;<qxOHb22!;4pQhzM+x4G@Gt8GD_n!`Val?WBd5JH0 zMy3BWL;sge|JPDKqZv?^_rIec?Z4^2sH0&j9o~O|g0%mp|6+R#lec7&|8x9b^q;zU z8Im=Y{)@^({(tDd2z19!B;Nnt38Iar>i+kVs1nVr{}l7Dr7}iR`roJfAmqoc{}lLV z?pmS@`robj&)_~FXXX6Q5*-=U{qM^md(Nc)RQ7*OVD@k`?|)|vvFY?buK}d~jsKnN zpS@%x^S}Aui=Jf~xre;}{bvXI=i}H@8TY@-{7;Dd@^0yWKMg!)+kYzSf104lBIEvd z8UO5O?{LYy|NT^3l5G1=ng44y>a8;Jzo+YehyKTz{XqI3{a@V~%Q%qtzaMm<f9_n2 zO!ocn>HS~6o{VE+{in$P!DyN4sQcenV$!e5|Ka`bR{isBwv%Ic|NDawQtN;EjzWW6 zju1BgiXeClGVecC`ros=Gql6|FA9E_zW*XFyS7(s)V_Tp^w01t8!i3sYX7_3|GuHq zYPKaU{LlMT+*+#s_t2XNs`ne5B=bMOHcJ1y+W&6tKRwC5Gs*q$J+G}p3A26wd&KkB zl9o=Ci-G=U*c+XglPvvTY5ni^{;w1O=LGxy3oZPmvi`>=|EF{tW3ouoy$cb!%o<Df z{qHLO7wdn2b62$Jf0X`r=zq@WQsIg<fA^z^{?nZyh6J+s-{t<V3-aIC_P@WC|Hiie z)VC!2uWa*w%E^CY+kg6l{5RbH?*E?6zpVZ5%>O<#1}{_Lm&^j=f8Zmt>3<&)i+P+) z{}-!$m;2vs@lWI!un0Ezrxae^E&LD5|M>!X+`j)^?!UlgPEH+|BoO-F?fvg7;c8;@ zFS-8|{`a4MAW7+eSNI=w|HVKZ9ZBndk4=ac$Wzt-4*XNkV7v_(1xP~A60Pj}zgX>s zZT{gdd>*C$UC#eu_NK)){qNIp^w{E`1-=xm^uM$I3v2$5<l#xKaWR4k{qI7Qeg5;$ z-qgvq|GjYmogMy}T33MnS;;?S_-ABe3RUu-mHeM&-faHmsQ+E<|H>HuWZ3^+{bsVs zJRa}oY5dQelRLQGJc0GUbNuu2Hmmx8{>R$?{`P?zbZ|3oi+1^kQ<l$+G)?rR<h1<5 zOF^lkvorcH>Of&dP`5BAd&2LW|FP!(eE)}5@DFT?7EL?<dlQRGz5nCu*8Wr1H`OM( z`%rLOoBoSOqO(s(cuEREqyzm=9>xE4U~o+G?J@Ytn17}D-<z*<cFhht%9J>cyu89X zkvVY#*Z*v{^k1}mHQtq~Reorn|GdUmpGb=S`N>V$|FyGBY+RHez2y35=KuP&NgT!R z;QjBc|Kdi)rm1)`jB}!g=T=+w&+SW^MCr3<CAy415Z+)t)A2vKy^Vsorbhtvx_kM| zo!SciX?#~Bc-i%T<yeM6QlX~y{a^99g1g0p{;09ze;Pl7m0WW6EMVXN-V)~m#j<m5 z7iuq(uU&ef%0G0E9V59>0emsL{GUY?>tp@}{f~wJxsbgy#zMb?$hOfxzsPBnQc>kB z7NF>xY5w<016{?<LuCDrrT_h73jPhnM4Cl<S+1MhfBHq9f2H?-B_)f3FGVd4MK!3E z|CyPuN;B*rvh9CwX)Q&u%l}y}xzL<uarXTejSGg&OfikcgxSLXu>P-}&G2NQ5Pb_u zUgzXt^}pNXKWlOt1?q(B6t%7w?|*;(wBi7rvzI;oskB8aY{c}!7XQRt_bf`md-e&^ z-D7jD{TF41Bp}$(GncjhOYVQ)iOCw22r<w<<4{e?#Q$DD3>V=iY_5dZY+V2RA=}bJ z%<~^Q)TaOaxO17H`bjDF{qIA1#1R#l;6icb)AFA`o!{p~tt)q;6rWza{|o-F4Y*)2 zPvSMS9e;4p|GumFSaR_y8kUNecw7Jbuf_C<2~?KO{8`tEf7UOK5-j}}a{giW_J$;O z_hu*W3O4ya+nt;P1M9??1k>PW*R~Jg{a;(!CmQ1qOwduKu#^<3x)Z&AlyU#5Z=V=r z^nRUP{`23##-&F*=)3vhvi`Yv>m4Jm^slBP^uP1|i{YRCew25d<nB+F{GSDtM!F8_ zjzg_9_?&X9<@_HR|Evkr#+6$w5V?A4V`8CyUUwb(A3Oh72KwiW`!AIIXQqG7wEx|b zf4G<TpJs%A{)7Hg^ncmSzvij?-+BK9!$0c&3nl-##t&;V>Ay&qfB5xVy8ItsPd(*L zb!%9&X_M-aQ8i14gle$7RJ<yc!*Kd%VbZs6-vS43!e8}WeyZTGEluVeym<d*`SCla zBwo7n=;^BC|7<&V|KPPJ3-;ge^YgoO=~B(<=2fd!RjgQX=+L1(dh|GQ<VfU{J<*Gg z7A{<PRKmGdty;y!#l;`IRkv>4Ns}gR-MSS&`Tzd!|5o7t*%i>kV_zUC*+dgvDSJ`Y zF|Wp0JYy&T9UFCjb_s}Dk&=7>Vv>%$W8R_19vJJ<DVOZ&J2tEs>m2VG>rkpbe*1nW zOUFFVSWHZ~eL$75So%jnEY$R}(I|WD3&+}HEJqz<&W(uqi;fhjL*`u{wE{HOykjh* zjG?b@w4T8fw-?V<bc_`?fMy@<5Mwoj#`+)Lv2mv3AuZA$XF_AGbzvNniwSb@Qk_p_ z*0FI6*^{nfc=%*|AJ(xU8kojf=~&GuWAU*Mk=fZ@4DCfxms4)<M>KS%9b;GDuoAX4 zU2a?*1YdNg)9M-91h2yFY-ViR2f&KhXn8w_8H=in>AibM))?(=PnZ%rXNShxm|@1y z8L+pkW3?{wJ$`dIV@u0eY=w1M3XOH!q6mo0&|{`}?7^JK9UD+*WtA~qxDo7QtYfT< zo3&##9mmx59M4!pa<c3(!)PrS8f%_0q;$+TNy}K2XKc6eZ~CHR72F%s7@=d{;<5ko z>3!xI)1`igsi)%LH;z1JT~ry<sE~lh=%<_oi;}7FUlxzO<BY`;V3b;I>3L-x_Di2O zykmoBEPnR2&loC$fL0k}6@(HflZ?gO&{%H*2$ehLw_`B))jyVLj55p^x{81EEzgM9 z6m->BNar!zmQlu#f2B@*#@5)IjDMnIwKCIKD;@J`7>jqTUc|p)9UG21#;h76K4XJ% zoXVqPwL_L3dtj___(xO2HvIFqNMWNg=a_n2K%M|JM&)}6)FTUw#Uhkfwcb1Z>y9il zhGqoqg^%I0+%X1;AO+NjV;(abj;Y<>ao?w5tRugminPYO#;k<4jjCgHv8rR9F(|BK z!w19J)T}U8g>^)Op4~h+yg8DOv*=iz+LGjs`FBX2w&j@G?wy!Now4|hXDs^qlIdfA zo-wWN*a&L(g>}q>LSY)~XQ);+WZ1D`!!h;a9UCjM;pkx*(=IrAW~FJ2R2{3lV<R`t z9yVjEg0trw_t<BYu~-vlkF2pqqELvUF|y&9>@$WUz#p+0TQN+_hVqVib;rhm=_Q6U zj;S~P&2V(AsyL>KukSOBQOHQ1F)ep&V1%SEiH`Y~BE>gaKgt2eWZN;8t&mN|^oDpM z-%?%9$9=D8jCjYq;~CpZoIT8Aro-98I>s`~nD)Tg!#F08a7<$@XG~|rG3C!mQa^Nz zIm%d6XAHH6>SzHp)>|B8Osh3UaE>SKSu}jea|a#sb{%7O9jj1P24{tTepO~{1?y#z zF$Db6y$L++-!1xX5bm)So9sI_uBbZZ=i(NNef{``BaM-oW7^e{q|@=$r+9+Qespd{ zlhy4`?%47~)>t>#DSPZW$ApYUUwBv<$CN*-j3K5mLUWd!F?7p~Ondiy{kI*fcUkH* z<CwgQkU6bm%rXASgG9yem)4zK2xj|7S#)fy!oPXeI<envq)zjWjSM^H^Mj4N0*%pJ z%=4@n)9M);$3KbqH#e@m?|TadMmzk2j<GX;0sq|i#Aj?bKEHn<0?HZ9yD+RizrL#% zfE_f}nRjfY<hAWsMW7c&ixai^auDkn!(64=#$JzJsXNAOI#wTkk2lo%W`$#NkTEpN zHe(SP)BSWH&mtv_dv5e+JbB+&gr6Zth$>^Ta1$Gj>EmlmkZ8o@l;m+*aIDQXEjA{< z?MWN0_-BY(V<dA-*Aa|&c6ng~<Cvaa$pIUywPRJ?G0!=sx4=<MV@(C>Q;gxqY7R6; z4FA|@jMxaN#a3-{w1&_zhH06#V<Ur(`Q>bVt4(nBsT5WR7M>Ox05^EX^p&lSHAc)6 zLwM<sG$<67GlnFhUyEd(G5rbieU`D<wlyTBS#-?zX-mX7CI>S%t}#mEm|l2+0~(`s z%Uv9>XTR(*(`T5mSQd`5W3!95-U!&U>;yDMX&loRb;o>p4BJ+rV-*Wz$1&M=Y`9gB zIi^SWM-|rJ-0i4i)#|b59Mb~yu(FQ%Br&Uu>BJZi{eI9GRm6m3er299y&CvOoiU9W z+eoBzUPZ@zD&&opjG?a_|L~3t$N0w$`#)FXyLCAJVHzWK$GipqB!S)xs5!r><BqYm zyX`baYg-}H5FC>)$3F|0#wY{)Q*k50LD8`~g5w|FG2dVb&zQEwKhv;-ZeqsvF6)fx z(W#jKG5j-^<DVP<LB=B1<p?_F4?EIWtMN~x#keIriVj>6B|u}{VAa4P8RMU)P|mQ7 z#qt==_PMoxT4o(%EjAEM52`-h9S^MxHAdx>jKw^yG5AHs;+_&n$GK_Am{xbJD){Fx z*BCkK7_*(Rsqjw=JgO#n<*nsVV+4<x(lG{&HPaYPEy6N}D)hSv5k2qN;2o>!@lOY! zou19tx8IHUMmvqQ1N@VUf5S9JAf2N!oUyTv)v{f+uCz3*W7PvspKH(<9fJJGI%Dg{ zGZxckZ0ML@l%E-|Y-eovU3(Xg9R3d4ah5UkZ#7142u#2{-X>!aeHBMH{&gH8^dk#1 z(O4fF*iBllx8;9|Dl@jRK4i%lI=)q%v3Q($><4S~wcs(c@;@DAjdgto9(z^CYQsG7 z<?$*uAPxU;kC}sxjh?qo*>uc@zo&=UsKx0$O2(qKWBxSc*IDvE`cme@PPQEz$R%JM zV?P47Kx3`y7_;q||5I36Uh&ws+|mabi>rx#JUG2z<z|^>46zy81COXU4bK>oHAXs? zG4!hQ@vJ(=77U{6uC^J|A(U$FclYS*!oFm7fPaQqW^6;>+|sORPUf%7W2WFAf!@4$ zaBE3~33ww@{-;hUI-;}f7~>tQ9pOW>W(>V9oRq#}^-p102t~gwdU1`Cv4{ogaClaU zdQcQ?W-~T*$A+A-h>RiUCmzwUg7o*#zDma8ky*e|Y{rHKO7oaG<bQS!lCGmJ^!YQE zF~mAHaMCdTrx;>~D!zHB%9!RIV~qcKldMT-PRVKf4;sQP9b*Kue=P9N1eM3$I%B(g zkn;Q3&e$3g!#@|7;tY~A7T>5lHY_u?*-i<o$kc4DRb#E-pJy%Mq|5;SM9Uo;*DIL7 zg!on98H>O_Ac9!OSUG(CTs&iFWNw}@{Z;0FfPa|A=&}%7j8fA0AK*gfF}v9YzL|3? z?J}lEC>e{K|C!;H0u}1Vv>6*XBHpnI{?qt-ruZkfCa$T)W5zl*>Vs|p{&~F&!%b+c z)%XW9Hm))1o!ht?L4rGnagEV&fE_tw2=XD0e=?Y{l}e_mKDHVoJjPDKWA?l_Ne`_W zqYG=&&)7N_)>9iny8ZVQIb#SJ)A(g<#`aL877p>xZr-tRYZp9bJ}hHsuZ_n{=YiP6 z(BGY56A2&hmkof`r-VKK1CPB;$5`?1Mss}~5?8G=HW+S$C0D=DDCRM1Oc184J67%S z&%4!Qs5c&KHXeKMKNLD*rb#eEV+8-DrDJTOx?@$=SU*Hu=fY-o8Pfvw>KR8SQ73DR zj4F>=1lL%vZGTwN7%fK{CH9L=$10$nL4f=?JM6Mc+K<Mo&KC{K7-Al?e2(}Z;Gaou zqSTZu8PhBKvzPbmVX=hdCRako#zJHCgNDR3*6NOpG>y@q9Y$)dv+Y;~x*jWSMMJ{m zV$J*Db3C`rSWMS3HljtObPUIxO~*Wbzw@%7I+&ufjA{HFh5yN*V|8eZPFP%wjA{JO zPN2xW_2T7@Rh%z%{saD}^j(AWhbZ$uiE_tSP$V$Ptfg3wsAWxE05cqGtbI8C`P9oG z6>+9Uzgs&t(4RUR_@`}F9UJT0XayQz?U+Z$7y#moytU^905~7dv}1KaErV3v*;Zo> zMra{A<_`kf?6J`p0sm~^8tYs8SjYUX!5IAvpakF_*<%*51jCE>FCSc5(jN3@TE?_K zhr{{T%i9teF}zRfm<N~0GKK&UrIQOXnt!c4w>)Z^r{1(hu<aPbiOV!b8^I&B%>e%( z0wu71ix(12_NNvntQsR6J;#wTbP7k$1IGUZHrS!UKZ_Oqr>&RXyi>64SmpTVK05C+ zpMSL*F$U+l)notU)@iJeGXIK+hmz4Jq?4*+qg)@W#^^)~qxq<lt;QNah~b}pNQ*xA zK*^YHWs83-9<vL}bYidGcJnVm_L$AVD@OW`u`xQYLTxUm$QeVP?s?63<cuMPe^|!` zgw(IQCjA}>M#xrUba_K(`}x<4tH^5XYw_5Zlsi`c?fk3JXruY7lZ=1tG)AKAvH!ig zpkyqnJoafGvx=`wQk(}RrFG0Bb&=s8S4^^k<&4GNkKYt=H2-Suq79xxbTtkCh;qi_ zI)rn+v*I5|{Lij9lXOCFi+}K<_4s`1s^%<Ov7EYN%z}U9`PW`es283&HuwiX>c#V~ zJ0a6Q^lM2O|HvKl>E>S%LD6viBh@1f|KKI;CuB@7h0&wdG!_3NXH0J$_%S=1e>HJR z$OXb|QCi15LY#(qcW=BjtB(0OJ;zc{jgeAvTIXNu(fsxC-CKtpW40Qj1r=+TXBk5{ zQmq=JZGc8>{?(b!zcS{3?l_4}u~N1gBW3>e720!4$3`0dapW-@q3}P>x%E;hJf>~t zU%)M;;ju3YD8c7n8Sp=ioP_yKCWZf5EqBZ#YiS4Y&%4#ovmc*dB_od+IyM&VG)l>c z3h=AS=3fV=`d1!>Bj+wWW=)VNz3D!~Ki?St;{gAx@YN>fAwjx<jKyyra>oYmn1{UC z(lO?k|Jk#1EIq{)qX=XSasKB&n17wkH;D@3Key=^11@A4i$gKIu<$=oX&y66#`G%8 zze0K&Og(YIcct+^K4f~<YHRN+uJD*Wx7ApyHAZH=815<AX{=HD3jSwcH-YLq;(r#k ze&2`jKThrZBk3R98kUZEhJSEJURc|H8)zS7Ebbod%;#S=8tWi={&k_Ner5!A$Jej6 z_$L8}v}aJYsrv7;$e3<FE5H!l1z*|PF$VmDNmlTgKWa^ZIXE-^r}&jM8hFfb9I*Kp z=YK>>KDl~`LysBbf2<y}ryr_Gr|_L^I_4p^z6g)~D4a%V9(zap&m>>Hu?oKP#k7tM zH!@=W_3EzfKf*sD#SKyieEHBWHX3V^82{4%NQU!2YLERGCmH`NGKdB6<&}&@MPn^e zrwcn~Kfyg_p2#v5GtyXperG~8hJg&cW4>^+T@W}P2L55y8pxO~)s=hfBN_iQ(AHyC zH%K2^8DHMUWA<<H&xpaIkmPJ4$%=nQA-y!^!KJ<JF=EaV|71hZhY`1yY2#9B#~3CK z(Ek*HCoxm}^Ji`kgJfdCBi(Ks+hXyUk;LX-jyg7E{zt|?O#d?iTN{}da0BJ9x46Ed zv34W#_D#&MPJS8TABF#UN`j|clW3!{R`5@yLFl}<=YM#|yp{hMeG?xVsR$-@#!yZ` zn%mVUXUhwuoTmS=Xsm5I#*Y7j6afTvn4HMkF%~%i{}sbOwUJtJm3NG(J66H}w7$5e z89cd2$TlK%Bn|&yZpAd#doj1N;vYx)pNg;GXAXf!STLt)tS>7b`@wLK543pfRr(*! z|4bhd35%zwJwj%ij#U6MWK1sxId9>AGSXPv%)e@lLF5ul@@7T<gZUTJSR=lO&A&py z$z<9w|0oHofF#6dk~sfU>~aD)3rY}>IGnwz+_4ILaR2Pup6@g4m=Ey7*Fg`TpQ8V% zAZJYDY^D((5DTdlQoUHlA`YR;na;mb(K?1)CfIb9j74M&y?8Er%!IJZlnnmoKh*!Y z2EZOJ8_#V#_Mm-c7t625%W0PraV}a)7@FDqtLPaR`xQHN8voM~80oXgbkz&|&mtp* zv`ODFZ{M-%iOgV@b?R=b|JjT(At8K4=)Qd#bj)vRh}$3dhx0#<=3k?ccxJ|3qhT3C z++zk~G(2WhDN4>5`VaAsE~nn4{6L$IReAnJmAbKvMb7{5j(G?CPo?wKNW^XEN5(Xb zHHH^d9}-4f`5;Oh>DD}zSjJ)|8f)jOhGYqe5>AvjwW0<8v?3z!0DVl-ZH)x}2eEfb z#&m}IpS><xDcZ;kz)b(c=U=`gXDl9u>8PrO|FOY8cKi?T7=!-D+s|kckQ@cudz$`d zDG}p;hGGY0JpW?&=drsXUimt98PmwQ0sr$B^LgH}DtpXsq|;d6angq>mnERqLf$ct zr<d$81B0k!OlRn^Uycj|{-1y09b@QN1=?Zyp9&aqWuX7z_=h!z&fF*OGE2wC|Hs~Y zheuJr>;KQpmTW3Z3!#NYKo9~12q8d#K~Yc<q5?+hB2}bBqzM5g6h%cv@k1}M0aBy% zzF<R<qDWC%5Cx<Qgev5FKku2{ncZvx@;Tr0`(D@2^T#<}oNSwU&wK89p8I*-KK%m; zupq7cm*Ztp^o+5ZFZ{s$FD+w!U`2h#?28JFD@QmHwv`!)1AH^~`ivPmgsuYnU#m{z zqSaq-=$|3_jM+vR3Ji=z(~P~J{#m^CbG$qWSW0~SPxD%T+-k{i?tkg^pI@M(b}nK6 zPd@#xjcf4oV%p11GiJK}$&rz<Q9%DoFow|o`XEVUj1@%`i#xX|-Vu~IoiUA!4J;w9 z|BTc7UnhQEJ2`m&Ydlg{Rqf@w*Kz%)%NFP#bT8olnFoWEQn3Fg2QLRcls{e1*kJvG zLeQ?cO<xZ-W6%B{L;v(Zz=-~GQ~d`Dn(IGk5Gvk`)$~^{pZsw?7}F;GbL-k(yxfH^ z55`agDOq~P2K>(`F=ECZv`zJ`JdB~qRi0hgk^5h$|GbY-3DgkzIz-0muDN=~27ygm zwbMda$(XS?TV!km^ZyJ4pGki?7}JN>v;PPBhlur0Tq>!7{%7xu8S9_SN1lDn2?b8# z(@p*#68*0wXr&$v$XNBy7^~BSkxTsYTv9d}`iJP^@$GYKb|LmZqyDowC}Xj3C7=Jf zXR`N=%o(eng0TqybA3E}70~}e{U^GTGgJQ=yY(4+);|Er>|NSpJ(iM5|Kyy{<Nvu9 z>3g~G|7aPj%VCv$^xX#=VUzaFnB}Se49MOxet(oRI~P|hAI06qj2X<CoH4%%Ysu(; z{kd1q*f8mz<*jiJJ-DNo8AGgpw2ZNj9+fC@;Mr4uRnTYbHT`4q|GfH>*vv?52d4fP zkUm`hnUD8D#=Nip#rg;Rua~ZRGsdD9<HqE~igm%NJp7uk{)1t$>+!#RH39E)_IfRi zv1rVg-C)L0^U3Ic4eDvng~lSnohh7pdi~EsFQX#F{jafjqXPZU!~VoPG;YWE870jA z=bGT(!vA~*EFB+XD4+gUVjBn{oCMjrhR9U^k%%+q_uw(!sQ<hXU6<=We*Wi1ze2x2 z6*3)1V=QX^AB{0|zJo-k_N^RYFc$s&&**<eutE$coCGXIea4>qUl3B<|N0qkBp8eN z>7V3!*u!G@Bq$P@`d{dy!T<ah4C3+k?0>c(X2^{_fDv75CTKJE@IRyC%ro|Jy8maL zIb)vv&%XXwKd`Dj#4Ea(U&cIOoald@ZcAWH7g+z<RF=1;E&O`bTmOOoS<9I3tM|Y1 ztN*NcX)efKq#hO@uV<_>V+fftGaHUR-w~F@pM%$bH2pKWCU!OThWPY={#Pv6OCI(= zC!&+}TeE^P#$u~mp;vn{LiUia|7C@=Vf_=0(vF_7>YuT}`bT37wG-5$e*F3k<9+=v zpg-9Ea}}>IAY&dG8;Gk@Ng2d1_h!t){{y!V&)DyWM$+p)u^q1m%b5ShVnt<i1iw7p zsQ=W|7(=U}k?y4DnX%8O|CJ6v4E)dhhW`Dp&RZuwR0mg<N&f`ve?|5Yigl@-aq=d{ zqAW5t*dTSJVE@llTv-lMqHtxI{XfuJ?0^0d@1yIVE?)n$fB)+$t}G|Dh~+EG<bQ@o znlt7P>HcReV=S2ed4vt-gltmXd^9T>{%0Iu&KT>AMV{NOIT(xi`kyP8W<asBi!Vs0 z;s0qvB4cbk9MNqT6~I^=umvK=Ezx>j(pgglV=*K;d0G~XNQEo6o2A!(m@yQ*{?ltG zc1MYp@j28O(<hNJHWax~oH5oBTjsZZjG@`X{rg{28)J6_^*@AnM{oZN{vVl`v6wpw zjA?JiYCiq1&yS5Kgh^Y)_GZ#QVWcddw_|1^!1BHs`zKZ``0-=bKc*S`g+Bt(MF+yL zlw{iKow45od#}h?J&N}+>7O9;Uz<53Kq-k^3~pyfe$e#KTbz(dg^E~{PF*Aw{%7=~ zl|cV<xmL`W-Zr@!7>jE!9}Pj^iBcAJRJ@PL|ATv#8dW+r`4kq)t!o$gjqch1T)qf` zBt6YBOA4a2QUCdr_0NOO6v>1B7wR?zGlqWT#g!eV@&WqFo3XkV(>tDX2Semo%IvV3 zTg+GT>YtjX`cD!+Tqamtd=~>_(VH>P8LR8YTIus1t(__B6a8lF{pY_#{U^MhDA)V~ zD0vEbO#UAXl67glr733Y|Jc<Us%PXq)PFEzUmbybB&m~-D2bE{QU4M82T$)k<xJ)Z zfU$T2j-X)vA7lQDp@J%m^x{CfefsC>5)3argl0a^e+{#-|G6gne}eVD`rf$I6$C+i zi;`jqm>EO7mcrz!6&FNiC!Rk<RyyVL{{)-=y7?FCC2^F^YspEIjQ$sv5=oa%B6U8u zvC02q35^yRW5N7Cb@(AlqW5rs@B{Bd|5Tq*p0DsVvWrptpLg?RjM=n|`86{AT%i8> z`}zgw4S>@kR0X?r5;KN0{}0+;?Eh&CC1dvg<f;E$Is|?wUHrQ~ACAEK&++fxg$fMF z7%O1@t8c0c`%STj_{vgE^IxzVWBw}`W5}d`-YV5-_+=)|&q%C<!=ZlGM(clJ#vZoi zFwB2t;e86~f87p`slhu$OkzuyY9sD{>GNNx(s2D}hVFk3(*M$C?1!G_N80PRXL96% zmN6zW=27ighm4K+c%LBtXH)&>qE@sTJxT`2mK;j9*Z=(C!xEKg4FAtZck};TS%Yog zN_~H===8|u{+ErE8SwvndRPBX^dj7QaeoZI#y{ii5g%h(*FT{kA$sdSLH$3yzeCkE zm6VmI8Q`g!=D+UM|2(~y5VMzl7kZ56zjXhzBr?W$K+eDah58Q|(+~UCf5xDejZCiJ zxAE8TG8UnK(7X`!pA8S8;(&~e{QW;~fyK=FhwmREW25IT&X~vE!~L&tfPr<!V$GwQ zM&*i(4Zr%&twyYBzn{WCgBjCvG{)kK61778Cn#guul}?7DPD;?=avKHpK?z7`d>1s zg=&u4Fbvx0<9nX}5|0M)@BPMrRWoA<)gJag&%r6z{LlIHzdlaj8Xot*_;AD<j3Km^ zx&BjHum7~oH)C}@r~Jy$Km2<X%zwfEBlHjYXy|`k2F6s$)Bo!F?G!y@{^Y*5heK9I zlC{JrrW%{{4?1G3fA;G0Ul%n0Pu}{^rt8?hs~}@FHv{#bLKM@&SO38@24}2JgxdPL zp!$!)j+PzkpQKk#G{f()AY(NazehFcAM~40|Eby*{iXuuzrHE!%<ON`=ih4{MM*yf zjG>EseyVi#`G3%Z{{#M?Zqbw}>OaB#KZ*S;(!daxo74-U{u8?as)^pO7LvwC$~6Cu zJ{tR<kBE#_Q~d|}2lb!UUj4JITvI}5njMc`*-gj6|I@N}d2G&wE6GV*_L*4H=l=oI zkTd2nAh)>tFF&#WIoSMr@!`C;JDE4G&wq`7g4Z_Y-^Cl6=HH=P4(>bGVKw?zpLWQ1 z{;O4AAuEfCtPbJ-IWem~>!@b$+Qo17GKNt9fg|W37>ld*`7hLeg6N;t^J|pF>MDc$ zC6s9O`j3d|wUhg3tcOpFiLr<qzBd1kG*ES1Sc%$t#ztk%ST*~9%9TfcaQ5%~@+@us ztGWmnLB<9}G56WfKN!yCjQJIx5i&M{XRLDlXBU)JCaG&maPosb|Gse%w*4r~e`!D7 z@IO~ZA%_`5)1Z;g8ugz9;s06QpEEW@|Ev0XEEwGG(e1)PWdC#jzt^Op$O*OccYT$& z(7^uJx0B1^DBQdf-2Zcd=f4d7Qy6?dNomGm!>E{O{^zff@TI|HpJEkftlINl|BrY6 z3kv#Te*Wjr+O4emAH<J2XwW&alr;Tw?f^e@q}|$gj*qxW|DY<({^vrFHZQ;M^;;!P z{%4V~q1S&BPU7{TCEgr_0-Lw~vxGNrWNaLY#?JT8{m&;t`Q@Yjj$j&h8ZySfn6|hm zUIAV_yvPc^N0{cnY+C(iqRbhq`OUxoI&m%5zeK}tqKKwgn6cRC&4d?m=LS$CEa$WF zWTjLuV|w^)%wQZq{pWp{SCO&W_u#sbLH*D1NAVT0;fVNRypg7V#Bx=kf4I8hGW<V% z0DW9PD)QD!Of3|^7<#vaLm_00{lwJ~*ZQmH4y_-7U>kht-?vYGoqv3e!I;L6XaDox zcV$d}+)T!^6O}B|Jp(_L=if2^rRk0nEvNH?<D_R#w$lAS3rH{)hvVUWp4tBs$QbI3 zhYd8(+pl^_RO7Ua)r}3sD*gLTPB?FY$QbkXzc7>j{H5;SPX-%t*7G7`HCX>^NhxeA z;mBAWITOn@42)^ie=Z(l;XJA1+JO!{cB-+ReEly%#>U3cjF#s4uRQ*rb4NL2{?1Js z%mCy@A45n+En~GYm*kN#U;SYmaWeJ4P;P1Y*}zXRV#)O%WQ>{nUq1cwV(m34ZiH~^ zjK#K}S!IPX2P66qN7_-18H+t&LL_(f4y*V8BV*M&|Go^%8~P^#-HWZS70Sz4>?Zur zUxg#0xa>Ndd9DAo@=rXLVM&ch>=%xsuub&8HWU>#^}l}mx;&Pf+n9fcdt+(0T}vAY z|MOVrANYUrGNzA}c7idTJ1PowWx<#pYsb0t5HiLJiIb{j%p=Axmvyr8T0|(HRnz=C z9MPPyQ5Ra`vpqyM#EqKjKOej(GFH8e#a5l1>KU?yA@M4HiXs#GUv1Y9!QNw~um01p z1RDp6(eCwJ|4G*hN?pHvEgU~g%)jgUN1}M{f1!IZH^k|PZ@?F^nX%~8KV1Jgx;oOy zPu6t&n-chsOk}t1`mp)bSf<+BsQdm+WeFczo19JNK>z%%{pJzZ&WjH<&3}38KQ06S zP!(jXcEwiuz!S4t_!x^O{?B)lU0Uwx_Ng@xGnb|NpTGJAn~<Hxgq1Co!1vzwx&HI# zPrL&oW4;d`g`oZ)jw?+&zO^oSGdBGFKj8nYI_Spst@(d0b;mM666xAkPU1flQiT8c zDfS&;v@EOJ=El5<9OU`0*|+!+a7=i)&MY^)^&e!6g_E)ojKzI6q7;`p^a7MfZj71< zO<YpXn7<kk7NMvfB}1l5{{1h-9$tjpf&S<A3A;Vo{CmacYyUpR9xX5K__*7HpWL1K zKl65=Q6DcdHgGr)8zcPBZ#{@p2MhSqpFW0iyDCBdVE(J^OML1kR_d?{lER#^fkM#v zP8(kRE6f$2jUUD#!HUb%^(&M{-N@MJMv)E|&%bBT^tvGm65q%kN)zq;#q|DH-P1Oy zdq|S%lE~tn|H8&0=HD@WOr?rdQSsOM{QL01wi2kw968)jwU;b{(BdN^W8M<4s`zGM zn*O<c%kFeKb{}ox0sp6cDrF1)Pi#V(xFI29-k~;C$qF{K=zmcuQNV%!=UGt^Rj1YN z_0!^#lkqnQnmYUEa{kS)6{+4w%h;%0oJbjugz#oO|J81hEGt;#o-q~&N0(piOLBx0 z0f|?uA6kvfoZj)7ifobKe_nqLC(l}{n8Q5`Ne$3HiK<7HY-D#4;!0)24%CdnvXy1& zvB^=CfqSQxG4^W?Sp3o0XiBSyL>dx;(6eh7B0?i5CLXKn_cHbvczl|U4Yx#V`scLW zUdEAqc)g5_vA60GDloDoqI-%q|8=aiqPh{S<cN+#-8^#)qIjb#ws7O7!Si3eG4Cx| z<u;3lDbg6Zgu{CA)aPWO3Xe}oc=Zyl-Vj<b=*CYypgSB8Aj1EHi_T3-%7>4PN4f-7 zwCH~=Y=dKmXt0&TSMsr2Gel=he>Vlk&hvU`VH`X7pAW5;<)0(*z}A_<<tvejTR|dI z9nA5>)S@T}^IwhK<(1!&lg=4q$k;&r$BqkvehiU6NbEF&zmTg;49+UaHu>i$9BItI zTN3Ev%q?Riq!B(BpQ*~2$mxhA$l+HgB+Qxx|IgJkRxD1G5;JTFVU8a?$3r$pT(Oia zrKu!`*j-gpRL&U7DGL3ABAV5%IMn#A56cc@ib4>nZ`kCHshNa4S4m{7cK;R$T=8zV zn13%B=bnU9H$5RVLdhhx)ogoMYLe5{Ta}12Hm;mfNpf+<MxQnotd2Fh{|Ax2lF&cg z&d?asZD*Fp{%@z#zi#ZnTLt{jx5JYJV-Z!Fn9o%Qm1;QZP^zMShd8P=>1%NmA|q&x z(}mOc$&-^Gi+69yAk2T&z#*5dWgONuZ#P_h9!rTg=dCJf^Ixyx2+gR2uek0C*`lm# zMvcU8K4dAjEzKn|HcC`U%a+I5EDr0iLb;73Svq}iGxX1>zin~InCJQr(nVcP<=9r# zKa(Tqn8;Y|{M9f%D-MdQ;#4sIZYx5{^!GEyQ}s^kDyrmZIiv22HL{#aFPtXM7%Rqh zGeBH<{%c+++>x2&5gDuP+KLBq?thKoqtIi=oJVJ_>WdY~{jU-V|A#4K3~rz7E%F1T z%u22Gf+Up*!P<oWdA|@cR>{+IC&GQHY=eXh`m``9vrDZ+(yZLkjfFH$3X5<$CJF!Z z;G+0u=zrlBrOesTG()n<B4gtUIm4`;Ib}!KEwo{DNS50(UJ8kdz>mLuGso(TNyQe( zjOn8Im(l#=sjmmU5Lt?fRrz|xQi`ET*)n9m?1um6_+z$EibrA_j!SejmJrdCQ=GDA zV(4U?gAj)^H_7R)+*-C_acchO*Av-wDp|uKXaX41WQ)Y1LcfOlUjsYw{|mJk)PJJ; z;ke*$c>Y~Hv}X?G`i}%x7|{G%Uz1?qB;1~T{vVm#-^96O74;uW3zv)jB(DFw-Jod( zEiH}pb4<bfJDg<ksz*kGa|F54lU^o!DQdAad2L3xG^a^rr@KMUpE%DgR5!K^I}+F2 z85tS&2ui@NMz^k>$A`M+V&}k8+BSL%Ve26_Y!Qv6m;}n&t<Ap=T9eIx6A`DxQ?7)J zvB-p&N#(a-4@<!`iDxU`+x^YB7fIPMBRtGSS(7Wbwp(Rq6;D@Q3yvx&IE*sXPK;jv zDT<&^w<m+^KjU#0bp3NR&f<`=x0dCMv2}Kbb$97ZLdLulVrR!8GB@FWPO8PvXPmK7 z8@mxw_p(IB1_Dr1M8<|Vh{{X*mwD?y=v(cq?vjzQDz$XRrw^m!Ayo0XO|#aHp<Ur| zE~h#i!QNTbC=2`_)PG)iE(Lp#l_)+n%R}Q}uM&*u+c(1ze6_4e#u)7Xh4HNKp|Ms! z{$Z8(B=xNlMN#<B^w01F>Pm#*UTbPe)sq1!tk1s_?t-2=_!pe8m<BHO>5oGqC>8y$ zXXm5v7^7v(OR%w$q%vdL<`y@|pO}Am4i}`8raie@#MsaQL;tY<=XF~%W=waZP^)!X zvR41GRB@vIL%0pmqzsE1od476aHe<uYt}H?=D>Hx#W4<<_syGQ2NjIz)vfR~?6mbQ zWUSu7*$CD2&v0Bw`utZ(uHI@Ht6^+)BCh}F^ItZ~Z1J>WCDea@sG{Pk3!{k@QU5_6 zR2#dh&A$h$|IDuM0{^E)c_<>`f1Zo*OqG~_*avnfk2e2aZ57@ylot0mxNk`ZelE)F zu)oG(R+A>ibSg4di&u4AOeqh6_g<xNccuy!J^VlWl3kvYcGQ0!49fpG_j3eJm{V0C zuE%NhpTBVR3jfdL6VQV$a2%Qc)2%takSsDbS~q4@3;*-7P55RaW9;Z1(f=wzxNZx{ z_NbqQ{?X>Y$~Pl>l+{Jq=K2rw4|V_Z7saMS0TAn-7cbBI!HQcHgahh7cy4v!GUoZO zs;H4Fc2WO%qAl+8nA<vc`adu6PCUu*|5OX$A0By1#Vs!1{?`{hAe@~okTKSKcZiGx z(QK{$Qxq2)as6j|EY7oq)(yS9uM;j&z5XNkhamYd|8O@<+ahCL_@4v$KfRh@QOU^I zn7d3Ya_{`RMN;r6s_^`K4a7Q&`L9-DO_}DuV3T3S^arrp=<{DM!v7QKe{RH@LJFk> zo152N1nZyTFSTRCx?Avnx@{?iI6;}1f5;X)GVu>lM`He=2NCXhGd2wVPfx|AoZ`Uf zcowtal)4)JpTw8MQ>x$}uEsOmZjrG%9*-ZS4D@Ae{3(n6*DXAyB4dpChkqesJ`exU z5)b_YW#z<eAf69dSgGU*@yD9V5_AjCf4z>nK)m1|mV)>rm%%^8(|ddPe=dJYevIir z|8u|g4yudNjOc&m;28`&Z0>(?2ek~(zqen>r3cdZKbrp;o_Oe=Gw5e*85dsKnE&$U zAC50t%s~x21pPC!@!O^9iam@o#`+2qx!Q1b|HI;~|FQpPfANTH>`&VK*IXQWnQrR* zL#?C({$T_k4zvFUkzUAHE%J%xf6kXNy$Q<=JH(@J$2J<y8i(sY?Rkxx`G>H0aK;!c z^vcY9{Lf<kt3O+aS^vEJ0)BHxt^UKmd6H58S)paDj%-hyF&~6~sQaG>6op=3|MPSh zQWZ(ee<8P5tN-Z!AAFy=oo^4%0crnrZT?HE|BSj*K>sTQM+*0Q)PL$D4qVIF;3!d2 zr_}KAe^CG5_Sq|ycg>as|A*(l-VMh8S@$z9S5hOZMSF0<5mvTnNc9fHzxf~6e|FBP zfS-z66#UO!*c~J0zw9Y|Ho*V!`kyh|m7et1Z(qUNyfodY|Cst;M>eDWvuPdlG8%i! zI*-ItT@+1V|MPYJVwt0x`160z+Ukn>Pg#_9g#Q`*L+|{%pZ}-QHrx?#VNO2L5|wY( zKkz>{<b|j9Hu#4UWn%ul?LsOjV|Bo>_n%U*-Yj(Sge{F19`sLi1g7BN7li(q#{9$b z%>hDW|4;RBUH{~r|I+kNAABG9h-O|>`5ZVK&w{-W^?!55#yTif%)ifpc{Shu7uSCd zmcw1pBj&&2val-f6`B8>BHTVLjQS56Vc&xPGo~128uMT5fA;4;x1Iro7lR7?k7SJ& z`e)BP?8#{VF5J6F_dgSH#zr;JTLSop{{El89)O1h=rFtJf4zJhCxfQx^IynVg$MDT z_=jszL{qT1g#RbXjrB_(8T{uGl!^XV_U7<hKmT(;|7+Lg(WBHblt4trsufi<ZT?I5 zKf`Z>`S<reCIbJE^-n(h!&&utZ8sesRY{+J$3#5qpVrV(?U6AC{lom9y!_`SzwnQT z{^9x$`=6hK-oX5OG@il4{JY8jqtCye(D;XSaEZ}<&42Ao=R>t(z{w+rwfQfgfw=zj zV>s<TV&ebY&Hs~{#_wbDKcl3?{-0;{`7cfXJh+oHRt^3$>Oaq9V&Oog_~zeFx0Pts zz;mZpqQ&g*e@6Xh&A^k!{MV-_(yLYz|F9;E%<O*#AX4<dycuJ<|Jl_4>ie_ysqp_m z|A7B<4IaDK(Er-72GJl!#zr9j85#2@;jzP~?&FLx!T;F>SWsj5pD*kDL!<wN`p<Re z3(a``eTAN}@fZfd6lBbE{YPYMU_kC7&%f6~q*osOWA;B+{RyiBNgB{U+Wc1z4iNXh zI<zC!KLzlAE~D;<4>k3_&><B3=jjkhUjI*GF#b=yv*J^Y{@33)K=;P~nOsiXgpK+4 zYvI@i@i=7-j{?%LVE#{OQNtGeL*ajJIUTM-WNcJMgy`^s_&*zO4#G-AAIr=CnNhcz zR{!~;_+2wL#%iC+^Y4Ox*mDOOa_~PV^p@xe=${5FPY2`wVE%pN2=S@RKU^#PKSM!d zh5u*KvoHc_{jc1p#v88x_51dj{uyI8&S)PRF#k0HDxLYygYZyVp#Qo0lbQ>B2G74w z=l)l+jfgWgKGgV!1^Ay6&*0XAff%3ufxU&+f&aWx_dn;&*l42je@bJ^@o4;KjeqzF zbj$4aISk0&keB~#%zw>EzAir0=zk$X>t6a_&_8D^JV%KthmZe*+q;YT&&729VZi*? zz)IV7{d3}bEaaG6%7p&W{6B5bA!PmYW*brq=0A_Z^@C6K&A$&hhpBn4|D?l{T+sX% zdNKT|<bwZMoBwK$#wlmaM`CD)`G;QpW6?8KMaG!WKjpN`$LIe!vhn`r-y3L$jQP*H z{%Hb9G!W^3MXFND+V?9#rntY!&;P^x=c?KjWn_%)s7j<d<izC6Y?s9IUznqxQV{?7 z*d}bZ@uvP)?H&?Fr!t`pEQQ$rQ$26Ss{j1g0M^SHlHecqCq>T~>jeEnsC;L2dL)F7 zZW-I!h3^w={tNt{AQ`I@aMNP{&n(A}vUmRL_%~LWD#FaGeuqel1#Rj#RrBf}-~5;6 z|0z`m&vM1#|8Ys`-bK$9b+qthtcr}W?&4p}{KG-wU%)@~&A*Qq|6=Ape<1$F?Em>h z{EN<iuHF!b5QW(TOFp!S`7e!s=<R<6@P9_GC(8bk>p!~x=Q+?0&HCp8OhS3)zxYXF zf_MIF0ytdRr#vEK6|?PT{WBH59aH|r<oSO3r$#4CW0?8RpF<Iu_0Mwnh*1Aw{_`J8 z-*&mSTEe0b>3(oOTFhqtPdf;qZm9pXo~QADYC)v@!u%i2|Lo1b$azVd|C+f9^?<>~ z{Cf#6|B(4V^)I2)+hPHEz<;I(x&P&xe^0*=D(2t4`lrcgnS$t_(8|>NlrjJQ(bu77 z{S){2K>4ou7vBC?e*B*R{nKxU_MQFmFGe(K;mpqb(n2Qx&$Cm`HYFRG_0QE=3NHEF zn5xv<=l|(<YslHq7_0lDHvc93KdAqBstrox;FVMKU=q@`B=xMX{!<wFo(lWI&HkSO zN4tJGHl%DBIu+pmDH*j`l`J+g>7OAhrg^0CVTBqeQ<~5}y8q`tv1QVSIh%Uye)C_4 zZ*+awDix-L99Q<2W20j9`VZ@$|0t4@8WQWrf1c8hFGG|6=ho1guNA_wMgPm>|M?9U zHut}nf5;iDYhMWoqZTjW@!8BjT!eyb+QEzvT95zm>7V``6)SD8JBTip89vCzKRi>& znyk%#dFwxyN<Bzm=PBtX{^6h9rcugRODOPSsQ-BN&(j}<AOkKr&FSZVuGlba0@S|+ zzh}({illn^&y{yt<*IbOep6ZfQ1kzYjMb{=u=Rld?DIb_dki;cX5M{o;{UwWE>~4U zizhlJkPG~0U;k@lWk=FkNo34>{m*5?@$rfcwYOpWG9@4Xu<mL8_+gFk@#c)Nlk;#R zF!K**mTL{Szd-l-WvmWCVQSiZ{H@ME6!Y%~o2NOCHMNEmrt2Xl|1;`8G7ddjs;ZUZ z`k(~o&A+Jq30ie6`<&7;=Dqyqnmihy`20VoQa)-@!2$nsfd8k#U`6umLmX$iIb(kD z*ho4w+(U|)|1+3BK08AVqlhOnN%`vqEn~j^7dWnQ4KMo7zt0gLpVP;v|9oEV&?r|^ zT$$#K)!ZexdQKFr=;!~rH7KMsrC(DeKmX4ToC9SOZjfjBKXU!*KhYDt+vJ2QzWj@q zD?G|`4USOL{MYs=ag|cYrTc%L`hn{|Gm2Y>;bOx|HrIciTDWD)>mh~9v}FH}G5@v1 zTX-)N)j0W-Dv|F0+23Ee_pmi2tvxtm)!siYB5ZBq+5^Y`Jonl6zpe2PTho%(9(~7S z4qNjjts!*{VQapmHKeZL*8lJS{CfocpFIL1Y;9Y%;sFWhUc=Tr*ewE!Z2@9agsl}e z!?t~}B`wg_7q(Wj<u>?q@F=Xo225fzpRhIhM`3H&KDIrCrse<ju(j?J5VkhX@z286 z8YHVOg08&xur(Fz*c$(atqIs<kHBW54>pi@*zVu3wayzEHu-PZ+6(`Nt^FIe7SwG1 zZ`hj2Y;G#H{TsICdgM(JHv4bbTA<my|NlS2)?m5$FT&Qgj{nDDYis^#*xJ}|_~QRb z*xE4lqUVwSrLeUJ{_lsaCH=FoH9YdDV<Y|zTl+U`Ex)kYf5X;{u#p`LjbhusVQc?O zVQYYG&qI*N#u<ZO+6M}c0UHp*cAGN*TjH=09X4<oy|iXi8_&KuNTMviu#rI6z_K~2 zU4)JJH5;3v4#8ow<sXp>7`9{B(nIgVMNrObHs`PrFyOfU16+G%5ZIE>Y_)$`J2=)< zNx-(*Y>s9lLfdA;Y>udiO9D2TU;SrslG?*cwPCi>VN0M6aM(y|bOcSX$#Y`ZZpZr7 z8f<`JOGl*lE1>>kz$S?fEPv_fQjn4__%$25_+Z;QY~ag6o^lxEAZt`bVYUh_UbWag z!nU8BEOmdt9JZ!68yld|kFePqJ@SQZ_l!(gh4F5NO=`_X7_!)Gg}JV?d0>-f*wXZu z>4!+_tDCLRYy{qoVcYW&KjLjRGHk%yY}CVMH(TNmq-F|R!xw<rYBt)j$G(2IvOa8= z7dCleYB^661*2?6*cu#F95!14$wGdx0khd$zy>BuJ*%3-)^LCxe!WQbC*X5{*&MKe z;9(;#eA_3|Jw!5xt-=4zux%Wmi{}c0Ev<c7{Q-`m^FG)>^?ME*@mS)!n8VhF!2Jc- z_C_2an5_)hl5V!zqle92yF9lXxp@?!m;qa=LJFI$S{3uc2FzizCfL&Shb%v1we&K= z)_^<%Z1QI~LY|!N4O;_jfX(J6*!Fi*{wPIDWHOnp5L(Ny$yar=xj$@s$lo!(u#wBh zX=ZV=*$P(Sy^Ee--4oV_f??a^L(-OlFz9PGo|9=1%;tY1jb&S2v$+vAdrc2pD-xl? z&G3(50|;B|q0SDY>xS7JM1h|^Z8;O;nj&o0*K9Px*7RoM3zju){mfPf_PU8-yX$D^ z7hpC=*vQf{t`)LoHrLEn@QgKFb@rDp014n>J5$(*FKi94$*4v*|FTL8;q)@WmN2~W z-B7r!x!H)p5_8x{fZ1wVVAyQ;-Y(B$HeohL*er*w6(gmR8djo43OS!W(Gokl2{y@Q ztAMbPoCSc*w8bp%jJ9Xm>99$nFQ~?_31~keYy@AZ;INV3Ja##`ofx*`uvvx;!2RB9 z8o6W}efrc~yNf)gX5-3!N5AofjcBmRp>-USI)a$LW41SJ4aP7!2J?5}Dn#Wvrvo$h zLq4zpzh)zctsQG>mtw1GW~*oc+lCP~v`jLI@AF{mR?f_4Dw)mZ25j308+i9>N2mKU znOe>D>7Ot-MKEk9!)#tUF#{xg0b8nW3L6=6!3bMhwcbTtZ4_m|1~3}s8T);q2f7av zuqC`t6vHM>ux&rsWN9!aHx(yG4K|y9!)B|Fq@LJW0Ugqj4F=<^x_2#Q*rYI<=Y<WF z+c<`R1l_hQz-%7IX7eu{#i-c_NrhGN3tRIun`^M8<j-8nQvkM^VB4D6{B0Pi0$>9@ z5jNt5ZBOa@%aTa>liQ@4%vK2ZII(yAbGWkDY;J^&=w@>tY;x2@mvT~=t-N6)@SzXJ zuw5sBl>E(Bf%@l|Lv99gz6mxdVdl6*lg=9eBFGEd4sN!B{(+a{fl;KGU;|h^sQ*0l z45?<=w!hh&_0N&7oSD5rjWJ-807<ghyd8j)`Sicij(-pRbN*LJx|B#B4x81@R`4_x zt=1XCG3vLbun|N5c*E94$2v0yTPUmBc0FwE6(}OsKbruI^Mg$SHei^|0h_#aMUuAG z^EaFSW7u|oYi9ZT44d8akyUPqj5U+lToSO!DT_7Owr;lCnHRRS^GTQIn4O9l`UfJ1 z!`1@KR;+)P^*sEmp?}Wpv&v`tljj=4wsqK&L?6IxH48}KA3tq9zw=?3tr)g#GFu7Q zz_LOE%6o3v{fF(Ke*haO5(g7nfv}|qnlqNXyM?Mg=YwrSBXQVl5&%el1`V6lVUvCK zSfo{nl%3;)ZQ}rO*z9)9E%=$u^XQ+D8qVyOE%binXP4@*ZTP<#wv=h3D*bMn%;tH* z)`p&wrPnH$VcR%B95&ku%Goem1=BzC3%NN7>gKh}7yQgt5)g)iuJ8Vk{LEH)^-r0S z#7R&L+t!EeAeMSFYye6o5Vq~7e-12?w%HY;e(il`a}Bn=f2kI>7TEtX!Is+1aw#V; z);P!qn@oi40c`U5W!S(uY%Tw=k<F3Tv{;hNVY3ihJZyJS3tPJ<*klGpSX|(=e)QEF z#j3U60N6H(u(eZ9Yp`v=CK0w4*C8)#`}+jI25`t2Hjp69Rt<FhGanIcb&aqQhAo-Q zRsy!PJVHJYsgi0kTgf794YTwN8}J{t^9x(s@oH0bF9y$e*zT-mwt{Dv_0Re0q+T?I z%?ka)ut^_m`{SApYK&!KGMht3vDxa94qLkY_boAO=Y>teYz4FVxR|GZGtA~TDH$gm zumNA#tVA6*jVoDno))$y%;t?o0yYq+e=03>d48r`q~d<<(?8X;uo3VoMA%y1un}+A z+N-6lN*SDR&1}W6rT^%#r5#$>+LhivLH|6)W^==ACG^ih%qMQdd3GAGZCqKbf9`bD z!q)V#*&tzS?>2WTqi~+j3fPiQ|M0`R3;Ks?oUsA0Nq@8XpM@V$r{IK5Fu|69on*85 z?T4@d<}+-k)qmzkIb4bOD3ktyvz=i}gY>YGps-01w)UGO)d*4U3pRP7k&7<l!c^X^ z;SHMw+=BJbh!P@fHZN@H>V@OGg#NiC6>-GJ<2#2Ge$Wfs)`#tigQFC5*v^1WJ|RnK zSY4_qYy{KJsQ<M2jLc!P{`yCRt>rx7QV!xv1GY4^f2Z|B|2nZ3ptml74dfOlHLdHH z4BPe&+xhg57PdCIy48u$LfSL`>G|!r{<D9XjV3W{=~rAX0=9iLu>PZ)&CA}%p#4}} zI&46M&1(8*Zf6{`3&#X(0K<0q>7Nh36lU`lpTF?6EY-%3&-|E&?X>=vM9&~>WFQ88 z3-<rqe%__-!H;Lyq&{qi$Flu^4U9pJXfcPa>GdB?{}^E-M>h`wR~*BCvd}*|Y!Z+p z4qKZ79p$b6c=gYs&O1!?A8>BNnChd$CWZb%T??@7`madlVLKCS+iN!OQm8RdMm$|< zhHaBp|Cy9|x3Jj_(=c)+UcTFaO=1(`u(h?%5@ni(?ef-t8q~$~#yFBNVclWh+2^(T zPdhDa<UiPz^kF-Mt?{s3VAxuCX-rNkD#hGi{bvI}dWuWI==vvy{=tkLo6Wa?QK`X} zg4BOb9yNu{K0FS=8;DjTI~6ftlNhbzun`yZh8H%V!6pNS?M}ADFna_h1TE(J51s|H zj$yjDa59}bol}iBTyxk+;IQ4f(yN<-Ou&$fY=n*IX7ldw_zt@$0=5cq{RiWkd57)% z^v`C%CP@qxS21AQcnCZ7lZaMpaP_PfHrw#}#bEje^`9<{@NxjAa6ZkjNjy(ocaBlP zQEj()8gz;YHsBk!GhmY+8G&pDY!Wr0PYYQSav%YJ4wV-?V>5>BiuX-5!M3$wyF*`K zswGvBEKL3%)WKprW5bG;NzSE<F|~ikIEmS8uEVxX!*;{3U>+()V0QZ(ux(Ha>P4wA z&tupQ;0cr2{M^B{fv|xip<qVg8i61)>OUpKupK3JCpDh$UZoo7VY8b4F~PPGHj=#d zJxt&WuApn4*K9r?!*<^Mv{;I1#FJ8}|1=mGR(GM<Y;M$ldaiWpd1J#&ut^M+iTpIr z77N1$K)rG4VYB(@pQ&JPYQKkJle+$iCKuO#hC<1hU;|><4)q^H{|q^4lUu}#)AHZw zpO3$h!Q>KLSfBoxQr$*sNz{KZjaYE~XJv1da;*`3Rz2SO4`2f_&3bfZyMD;hIFu)B z&8vSHHu*z6oJ?^x7`9}p{{S{wYJ~<H2%>-Vu-Pg7cr9ozzrkT^TKz`?)c@N#Wl>oz zC~WrJ(dP#6hGhqAGM<1B^9|c+VQU{Xlc+|}ur=?n-Q(}`P7z_v#g8|`wjrbtw#E*r zIllVO3+Db8V3VwWwhz``&oB4FCNXR$i?FpUw`8vW7-6%EU)5pTPd$&9M-~x8NrbI= z>puX>VAyVTe~Cur9kzSK&_6pn;^kr5%T2IJEo^O5x<u!7{c{I+m841TrejU|#~ZeW zVY_Lc=i-gR#TyCOHp138Y!>|{4BMSRB!apAV}y-(>p$&_;pGw9%k{7|4x2@B6tL}c zSV7s}82U%RCjII^hf3h(cJ1Y+uo0QYA#C;v=2`QHO|t&!Eaq9Ym+Sh6VcURq@82~0 z7K-#-|6$l<@cPfuQMhI1Qc*3tZmbbDVxwscn|xEI-iNmN!6r>%BdGset_X+;X)pJN ztzp;>;r4(n?U|>+whh<->mMU*q|^4R)r^;W!`4v$LEWY$!e+NZw-~T(12*6d8+q#H z7vsoAT2L2YlivCdG!pl}j>zQj4;u-n|J;UB3;}F`HxKplsXdGI{uh2c_rGq+bm|_$ z*7~m)#vE@%WyQe%Y`_L20h^qx>!19?M(VZ)=RtqD2{wRiSM<N8ECCYvk0A9QpZ>X8 z+ITtFf9ehp{Vz$tmS$iN3atP5_rF$`b>*TNs(t(W=zk5Ei~2TM^pjwMZKEf}u<f@X z6AB7jd$H)JSOWM0;zq#zFMZe!s)_qwDR`fP!q%?#O9kx(B?Ih*kp$SJxBmsk0PCNk zsP+^TwwBOmM=nGggb1#LQnY(%zgs$N0KGAUt-T%&Y=D3*)fsS}VM|>9@rNz#0hxF= zK_yEG)Z6HPA+8T$YnPAK^w&Q@U;_<&VQY9BQ~&FqgstJ4LD-t|--fNJ|7F-3R`UN? z*qY<N3|n*lmtkwp`wLrp5W<<m*6{Hr{d3P@Yn7duB5Vzx{$GWyp~>144{m1tgYn*f z8n$M=zpyn18Y_eN<L@(U4KE+TFaIA4TXX%lVQbhSjA1(n#7qtw`3GTZ>VFxwhAZp7 z!`4zrb@S1@@36Hj5w?a_sG)!G5H`Q{hmVb~dM{yXst8+i-e1_-H-hSbur=3xhpnkr z4qL<Scz<DQ<yob0*c$$iN&ld?b#Gy7PctWx!`3JuYz<5Whg>FYn1F5L1esuy&_8*? zX1j(1ad{vjli%lIBWwh<d3rsvP;6QnWv)7Rkl)A8|Kkf=^Xi|!I5Ofulz1Njo77<g z;4f{w#goIVe~9iaY_@+~Dj%2fpn@voG4#(gh7H_MJQmb{PPc?gXkB3a=RbCS`E#I` zIVr_g|Jf(>&p=F;oj)8ZUpZ~tolpHogAM%gWvGy0byPeQlFNWi!o_hQ>me9qJ@Ee^ z!#(@(L397>_wWA0umPX`S@$x^Sinz~RhW}L(eVEu@o@y6k&`Lq=p7b_XZ`9wTTS}M zsQ>irj)f!B1L6P?U`yWq7qG6M=wWN8;Ti&L(xiU^{XZPG26>Pw4v>G?8W8adCS})9 zHw?dqgO^=1J73r&!baXG&WvH|t-X(_|FsgU$hv#!Mm#wkT8D<*y@jpe02K)cTl@R^ zrIXur*ivBsD@fQ{bYYPJ&;nnmg&8(54|(!{O+Jsp;p_s#W{YUpmkx~C1#G~m|J-xf z?Af6Zf1%U{xI63=0yd!4e^4Ys*zDfVP_(*TP}o|1L;*tRp5LJ0Z5BMY8nEplT>n8u zh+&go<9%Z9ssFVV{-3ZFECJpq8g88=V3TDUB5bzyCoRA>nvwj*rB8^0^}h_*(#q%g zd8Fm^XdDhRYygZTz?R}tB|q4Jss2+>hYj3H<P8QU8pM>TUmIa-=t)gP*xC;oY{>{4 z34|@(8YBvb*Ke=ql(PE`Tl0`>^qv2Ku(jm-4qH3(`v2!)YZ|@jzYSX}C0ofg@OOUN z<**SiYzbN)VI#lh79+P8wlpXxY_ge%7OA$MZyQ?Ji0FTz_r40SrI8pyHPwHDgst7; z5H9-Tdk!bd^wxi>568nPhmE}5o&;?2o$4bJ&jp1o9jxJ0+5aQ5+8X#^lW^8;0&KD| z>@5ZKzx?Yz@w~KMkBNYEgw6V3OEz-Wf4}?V@1t&`)qiSsHO+smW!Pks414hg3G>9` zYRbARoMyqWNj+>0EiLx{Y(#5~>pvoFBp7Vz=t{&aDd>M4<D;2k^uL}5ux)CsUf;x# z(ree;{9u#)4z7N(8iP6k+vdZe8vbXrcQTt#ZOpJGhD~nLVB10JKe_Lq?uh36Ns%|7 z>lZfL3}{L2e?1Je<VX33t@U^ki5E^^*xFaP!&&Y>Y^{+qvxa02TdVkAgss`6fhYS@ zrsjVRY2{KlY{bGzW~x{J0Je=9(N2V|okx?+fGy?mKcCsv1forKgdtkT8@48@J@+5B z)}A+KZb<mT)<pg1{=?Qba1oiJ*;ei`!q&L{bKhZWBXK*7;F6B|KN+?b&WUQDaK+9W zwx;FB-hbE{hnB$qgQMy8g{>XL34<T|{=?R8p}`VL7uyNZW(r#anfretY^@Ly;@p63 z6N<J9DUXT%*R+>~0Qn#xG@G}TRA1QIzG9mHc`)#kMcM!J2K>)?{Xc_Gqxuw07f<If zpLyGqx+9|dwf}<ik1s}_?+}iSCTj%ypGE%*Z65YNKZuQ{fUvber*?+m^=YMY@YWGt z{R54aMoRy~YpdgmpkZmpzI>xZy-{Ue9VpSXdPDCVf{nve{|W4Wo!P-%TA~}5q4_dN z;jp!9@IT|nBT^%|_wI-B?M?kJ;3q#u|EpdYQNCeo8{T-OC&<sG=z8d&rs!vI|BL-U zT90hu&kLgQE6n~MBKH4)POj!3wuZ2gQFS@r1+XQQMqT9kLck_Fi$yW3;VY|HqM5>G zZJPh*03P!;<?nxPEwV8Io8*mG<*>Efs7?6NVKlADfX@8me_cPikbo_nIS3%-X84~$ z<Mf9u1^9m|JSrYloX>P`5y{}uNgTFTy@M8DjIfa>z>)WO!`9$`)?kw_qPsJz@%U10 zPm8dTz_7I*JH{Y>M6po6!>b-eWmYD@CcmCp?*i5W{cVd#<?kBd3tMXvt@)oHLj0@& z+s@<v8KEsD&+O9IAP`X>6aMF~SX?MKF8xsiC(3Drt?B)*Tu>+T4_h0R6A?o#5w<4! zU(JT`ZXZ>yaZ8j8>?HipPj_S4qehf`hQD*Gk9_(Es)xhYUJ5hACiCc@o0AoFA<{Lx zu%-TRDR_kcxe=d3)<18TuE(O{{BK`ZE02#i>7Q`Q99HZ2Hxq3%A@0@Me|$fsrWUs5 z4VxAI=XtYK1^UNQEM^jsrhncRdl>p(xO))^|1-iyxJ*8wMyGYWgPQ%%xSkNUHWNmm zMz?ap$n!44wr~3UKmPh>62rF3KlZ_?iweCJQn8F9t5&XRrE*Q#|6CEDQAEHdaeks{ zQhg3vOTYu;Zc<v$ZOkVsAJ}%J%cW+s+V{LxykT(t^D>&>X*hJ7ku>K#M2hhLwCd=B z5&>-6o{67o6=7@Bm-hrwJC5RKB)rJ+c4GcZ3mfS`ba3^{C%>sqM0QCHDHKnNZ~n{F z|I+kN1N@38gssJT@E>6nDQnJ1)PD}vWQzsC|6|d*&p!Q=fg1^skRLwsI`5o8{m-~5 z$_qM{%p^4rY+L95w3#RA{^y6Dwb<lhZVnq+7{g_W%thS)VoE74DENOK?Z8?<_<x>T zIv!{B)Zy(@c>|ZjW4Zsu^`B_UWY}ambkp66x_w&BdM(^;Zn%j0&!9hTc3RLbi_|lw z{ujd5^!m@9$5L=b$QFA{{3NuvSpQ7rHD#qQUOGAo|1XOcHnM5Mbw1LmyEZi%!B4WH z|8*;e%eY$D2y)Cb1H(pAfBfyyw`6;jNzP1#CY6&X#yLIR@s4elcK@Xa2h^he^I3V% z4jI{KP&+5}`cFb{Io#%mP$v0clY<wIvC#@IY+H&G^`GT-A8hhqA8yZU{-1D<2NokM z{67S%^c%%%_C#bCQ}A2P>sV4VtYiz=_AH1CybAv3r@P^%BawhjMjpf;Tj=bG!!!9n z>tQ1=bN#0T0i=g;GlfzP-^@8JBU;C)$Yb!<PDjd-bQLIeB%}Z~d5x1sJ#O^u9P-(d zyXKNda@fnbR7o8pN%+ic0h^4B;rXw}ER<Np0sl{i%^DU*?n{7eKU5-Bq3lX6385zo z>SrqIEGq)pUi6TfNk#BCS5C=xEo}B7ixuzeNOMW*;`S@6;`>-QU`Puav4%(Ev#wSj zBUz)Y3rc6=(i(mZ{jaIZz}~kPeK5sEzkMY|rR)7K2@!3t0#G=kUa!Vt3;U?~<Qn}- zdC>pGr4HESO3u<qAh+m$_2Y{~QqlhsIV6{U_rbPhNWyq&3~scT|Ju|^Q7>X!LhuWY z{ptOSrlNu()1{MpLOd?I^S8xmJ=L1r!v9lon436ktwtGVwkJcj$i-q*RgtXW&Ukkk zb^$z4e30;JZC;b9Uv&47f&&DsekeNk)Np8Y4E{EQpnu9fp`z%-Icx;6gtHLu!Xj5K zrI38&&diXhTk#0RO{#3O$}0vRjNU?POW7;-PID=pH%dtBgP%&Gu~Gt3U6dCr2tvzE z`#T9=h(po<n^f&~&HvoXVsSVpIccyehdAPhJc?|Udhc(HZ^r(g3lNBkgq^)az0Mn& z(jN{=7<#A7@GE>BA#APT5OG_+D8fcISAgb|DCf*Cd^F9lNtv!(D3pTh(HdT=VilLV z6~{HnIth#74M&kO4z-pC;qna!Cg9Lz5d1&*9_niriNi+r{6S>tljzRG)fZ_AvtAEP zSg`xUCgE{3$*sWuQz+qjJPy!jmLd^w6M7`hd=p_KS+<H;+6bFnVT*S<=vppZcZ0OB zks}+2hPypDoEcJNDQi+Xz6aNThNQc<prTqeWKvo-Cv7ztaeiVpxTBvuiTFZNPw!n6 zS<$Vy)U$FqP5<=6&WHRQ*BbbrA@x$QfdBYmX2SuSTztkBcG&#RM%KCOpnn>tUlZ(Q zwed#e9EH&^um0KmE;^{UZ`l-0|KM~gF*t~?MMNgx7(Or-r6F7jPgfwDO-|>q5s4~2 zSyhQw9>I1HZ&gdGSduzyd*_T0JkNx=GRBLr*%=61vr<G{3sNAQMc7FD9FK~)GlosZ z9k5uUuqbg{SM@t=S1|gNq3NI1OKrFyi&aT;d9tO5c&sI*7QRQBCPP}fX^hQccO^NM z%O`eN8xxgnf2Fs*h&<~-w>JM(RLK5c;eVd@c6pQuLq*tZ(nb7uoUxAZ{~&S*Ur2<_ zTCk@I*tUgZ&&>J<#->7DuwHV`9SxbJD0BxmY^y8H)ifh4%-W(iVNEy^PzZhbBgBl^ z-ALUb75-;gad(weyMr>V@h)Q6cC@nFt>7|@iOB8kcH<X@*qt#R<zY^pay=F1!5i6R z<?X6<u@-EyJ2J(M%?Ig{N%5JIj13F@uf%iMsO;7W9o!zQjyPzf5^9E2L>9?}xc*Av z*5FcKD@3u6B&yPu5W77h!jYy*>P{+B1-XHW`jb?#m?N`&-3-|l<#eTB$N6=Y6w@0Y ze&NW*lIe=mJuHLuPrXsulwqfsiah_7bNc5H>$W+aU=KO6d2~7Kb2lus^W)ab8sEmg zP*H@9jJ&}QFCuJ&NMu`*@c%e)Qt|s9`@o^%MnLht`VaIEsTCiGD*dEQsCx`etzr2p znN;YXM9y^0R4mA@vlcHk2((t*i?8n{MTE@`e!`{fmBO46yA^7RTT28v8%|lAYN6c- zn{BrQ_g*J{Dk&EHLhM*>X$%?@R&D+(qhytM4YpmnCdE&$Z6VZu_ND&<H`d&ymXvs< zsZ12%a$S`4u(flgnyQE`DCWqTIaFmu!C@mWAOEH#WL)|U!p_w!#DiaWW?ymI&Gn!2 z$h_hQE%yIdGz%pAp9`t@sxkDtfNk4z$-?3!bIVvl1~BxG*Z=&{qX@+6Sqx_d{%5J8 z)0tUO>withzA!aJ-j*Dnxn+!OrBjE#TRwl++(tzcQZfJjG$H#=_<!c7eEfvre{R2* z)MXSCH_3JEOWg29*xHhVD;<t94rOW$$r@?59w?nnSW`m(#N(+hEQZ6@j(>|w!%dm+ zKToSB601*g*a#e|D)L&NU1V2W3U+m$|A*(lX0FCgim=((j*5ERq4}T59wN7xx>OHa z3+8{GJ90|~T|B<MIc09Tee3$=qYQVqsyzSRA`8bXn&J?)R{oJtY*d-7e<q5H)^oi1 zBysEl{6Fm$xH2CZZ>2%!e}9Oi42i}eY~+Je8T5E9a_2Yy{%InDJw3lHw|MnW5h0%t zHZr8JHG4gI*#B(NLcv)7{IG_%(u%F;#ZBiWouK)D7`BbRpc*25_G~ZOjrlM5k#^1N zbTCo1NrOt$?tJ@SrJqyXB$GD(HR38nK{4nk%zuT;i_4LR!$yvw0!erfypeNZ|1KAK z$U@Gz-jiIo{3yP!54Md8!8a32)$4=a7W~f-G#}L_%}x2kw&(A{Uf2Tqr^++Xpf1h- z^E4u-adP)9Zoj&Z_9P0}cJU|qg!BB@8O{HUIWo+@Zx{v%?e+iE=zHDpKO=0U^0V_= z;#F2keC0@A{D(}BLI2!LP%XJQnF6-GpJhMmpMyB7lzpon`+pEN!dV)ue|C0c|8pMy zkM4gSe#H*seY{&zuV2EWP9{PB!2c5x&-3q?)WiJyhg+aq*#G?7BdoHs^std3SFS%z z^d7=SDn3NY6aT4Z_@9mWuPf|-wn`K1E~1ABFGt#au|91+dv<Q3C<pWW``(4(7oz^t zVG6H>14h_LaU!n&;Q8<(!q)Pif2T3BlvD^`8LziRP`n5mnHMQ)RXqRot+w#izk2P& zQ+yJ<^&f<-g=?_wA5q`)_P>IJt&Q%4d(GuPOF)N>=K9Z>CKRtotbdYQTvTvDqyBS! z5`X)uV*X3`pHT?nu(jrx<jQaU3;nM)f8fi%X-~o;<N5an{ocfl)<z54Z+vqv-q6DR zujn{lq|+L`mAK?rQU9q%x$2>{gU<YfX)!ZwJ7E5O;87{W;UX3NuN|`*)<MdFMbv+= z33);|Y<7q^94lTr=&k?YF2Vkvt$;0h!$$o4&sVkjPve^z_>R*MHqr>+EQ0mVC`^1K zI~ZZJe)I2PG>PZm!yy6u=D*%4+X!K6`uuyd>CaRcBidFapY7Qa8q`UXIBbMhw9}aX z!tf4<t=()xw9p*3Hp&d!K8N}DjR@|;xj@*+K3sl^g+{{v%oh@||9MubfNh6sVQZ81 z`LCU`8^Qk!{Sz?%HDbj$IOxeUyF<P67F=|q{zLrDg#OX|&*)z4UDD;-QF_>j9=5h4 z&;0u?>_Li5B5chquIDJszdMOfuQJgG+r}P*u(c+`abZ{d?)?W_8}*-wrui?xwx{BI zq>8XvQ~^@R{m`Cytt1W%ro9W>Ez|waGKZ}VS&SAchs_SjZ~lGGc6^~w_CI&TGXing z?Ad9&q-z-UpJ;OP{QHxr5e=_v@;?WJja&ySUxu<uUptVeLp1&K6ZRK!8}sk4;`^}v z*$B;e^vipy|0KQlz#~{4Whm>t+~beoGY}h#{@3IRD0`A>%zr(l`JbPikGVwde|=yI zTVwx^xBr#MRSiPeEOsOOQ0{*<T7=7w1|0MGpYdQcbwHQRBhhQifBt>nhLQtu8Oy0D zM2J|HQfg8b&wnizUu+2aUoW2&^Izc7fdA7Gd$Z2}$y5IkVY3~&IMsC2aKo%A?`r;^ z&HGtX2hM--w`TwIf)vuiM%e%SR!p5ff&S+vwNVTCbh||ho9(#+H!V6K^p7$&tn3qQ zNc|Y|?@wXcYmdMF@t=QpmrQkdq9t`T*MGv@ygE$$AC!H#{!<7_hV@T=^Y00#Y)G9= z74u(<kWVE1KWnu550bK=e_EyE0C~ekO#LtLf4Ki8_&@s_^Yv`_pO1%Y^IuodB-@oI zY$PxLPzx1nW`wPQ5%kBC(`t1^?QYMBr)Kf|S5W`+o{w>@QHl|^wuq?f*Y8wnh_Npd z|0jt5`3#mD!e&|j96In9!bZRd;;@nJvU&c?@c;Pc-`D4G2^;kvum16dja0_8m(Twb zbpAaX2N*>w=$}7!&F=#L&n?6MgWJ0MqAR%nXCV8ZTTB$iMG>|p{6Bv@DN#>^%`Tru z6d1O~VY7z+r$+;qqFP1Rnl}IbPI1bP1OIssJkojQzs&mQ1&{Wj9JVIr-!Ju$pnuMv zUAvq})PGF=pSphYUzg`K5}(RpYkv#>GYVwc?0^0kscpA0|K$rC37r2*zoLCAhpn0X zKX^XW!e)yRz2FzN2K`gGdkfY-TG-kH;y^1cr?dYD^Y1%np-ck(bE>t*|H<3`^74QB z490a7Y6=_aSB;d82%Fuh>z^R}XYc&`oA^{WOtV_pNXbE`c4KZG^IthHN?O=#zVq+r zN8nTKTKz}xf0orCh5bJRP*cn&Y*wHDy2KalZc-7p#$mGv8^P^egw0NnDV68n1LnVs z`S+rKh{oKSH|osaIXij8&A)G8ikZVks$=UB`X}G{ueBnI%-sKa1>T;w;Q!em)Aifo zN$7tC=pU{BwP|9>OX5?nM>Np=Kgd#5Ic%*zrrq`V_k8$2ZwNDsYRtbMw9$1ATf2yY zb3oYIl`{u72kM{LX5jy99f!q*y323g`S*_>yT`EEI~(d_o3qfw*hjhkGw-R{00bza z|MeN9mBIhP{8x`1b1?tK`bV38KeST&)C-+AvHmHO%HvJk|BCq>6O3iOVQV`7$4~#< zNfw{l(HAy*5Y4h{{f}&X6{^XYe>cs4oo4+rr_-&ge`+84_b|QxwQ)G+(Kf$ct{l9X zsQ-LBw~K$+2=jl+fB9NeIrIE`tz+VZIUX9Q>!0b*XkoMI7<Om>&u_URY(xuN^Y4GX zt*sM7|8zo-TD2i@zkDtW|8su&Cn_%Wg80-Hi@E>B`lrnEn*VtdDwrqz`d_V<`0Jle z+A=w^X|z87^)<p~H*LvK9XMU@)+mb`r4hEqVY7k!pXTh@umsM3p-@4jy4+ui(5gvE z?|pPv{!dG7!5H&j!26M6#bRl2iqsdMoe$oiSN{Z=e{Z{f$XOf(^!3F2JFqExwfV2x zkiPsR`g)x-%9>W|xK)OQGI=_O&7%IZVfrh1{69ITB+30P^AG#NN~r0dqZ^7kkX@wM z=-bMOR!hHOm3Dmy{}0c9<>&v|c*PoOZA0;+AGU&jc)YdCC6T}Xr{lKWZW(bxrm)#< zwYu@YOkn==cN+ianI8Nv+h#q^{%7VNepja#|BIvS6Dz#@LvG&Tef0XzvIn)_?8a|a zRxN&B^45QZ{;BpHsiyfa3q+03Kj8m}`S*A6gk+lks?$p{`=2{6!5-x6f9(e~>%h6p z|D~`sr&ZCCwh%T8*<+gjnpP8<<atB?^upbX>pwrAdRp)gzi&gd;OS3WeX57e_5_8@ zH2<}t7rMM&{!hR4+WH6ou!P6zAGVe(`G>8w4hUN-N{dbWpP5&!{$Xp4rCg8bf0_Ny zLG{m{d+#>?UV#4L`p^4u`uzLSL)nTlE==ej=Krw%d3E_CRw*hend?73{nKWCS$-DF zsmk>qgw5tuOI;FLJIR^$p={<Ko?JCMt*K{xlzINE#t*CIkPwuSdPlfX3NI5&3v~X^ zE9WDcdR_}DR;D7k{q)bzWfGHzdA3NZ9yTlLKbB=kJ+}FU%?_9&veA;0Df_l*{{3Rv zGQ)-uXQQG2<>Mbty&z><9rzyc2b!v{hm@(o^&egT#AL|yc2onpXx2a9u>n8r28YdR z`ls@a@Yn}Z{QW;47JY!yZi@Pk;2$n(i>%f`J0|)0pI`be44dWBu~Br2|HJG5xwZ_Y zQAe+AOct8`Kkt@v3?uS}t+D@kcAb{w#8+hg;Sk;byn0i7`LSairRmDm+oiq!pX6a$ zHX2E0{^7yT!ttpd&PMy-T}4ucqyM#fXm0EsF=CL_q`XYJ|3`$)>iVb51DgKP`9BpN zbwES`#;2nGgZXz&|2!GygjTYnTF+s#y8a1mbJ8j`Ye-36{txue>1Xgav;g~@x};=n z;{KQ5|5TsJ8)si^oTTxewf<M<^}H&`q<>!6>VxO$VY6KS8L=tOC96Lcdw`P6VY7W4 zQLbbaC2Ya}xf7|)f8C146NegxO@7#%@)n=|8FCJb;`*Eni)s#={dhi41l%y`pW`8p zrXB@%uQIHEbpB7R5ApmN*B^VSH*AgTKV{4IrAc3WX`|}iur>6*#-UnBR0!L?GXV?v z(YJN|)3O2>iF=!dX#FoQ|7XV&TeeuptbcmkQqGTcl#E49{W(Mb9Em7QW#%{~j~=!r z_&;SE9zf>j>*17as{fR2k6Yc6vV+Lk0srCSA8sh`P%o-u#$vppT=O~H|Kj@3oLOVk zu+YU85A@HF^V<A-`gKP!n$>)6=i9@to;wWv(`BShDjTby1nu$hf4uYWA9^C9l5q~) zvihdRKdiv@pZ1GWnkuh{h0>t3>|+wXVP`%6qLxLzYdjjEQZ;1xfcZPMY_v90zkYMg z{<`DV|9<MsXWR97w3wKf{rmR^WTVa4a%kJOZIvrmZr{Fr)3-Kto%7wOtUUqoXdR|N z&Hej7{~m$=M~{GrM_aSorQTyaTB()`vOQz(B_6F+sM9A8m-jjBUmo+}kzT0YV$E*a zdN1*4$4IK!=71CXC)$IRF$~9e>}UP)NPc+ikk;hFp0us9!g%a)6o7}+%VWMQUf9EL zU$I6$NYgfdD5+=<Rz^KY9j%)1*fr1|Jobn$i+5tly8VAY@ME`ctU$7<<oN_o`>;oa zx`?LL>ao+5#k<FAkMhaG1l%*E21dqg~%!(Sd6cx<CQb~=(!6b+Z+^msIh;`H*E zFN;^l0~lGncyq|Z!DnEL<@R83JhnC-xArp7-M}Nw9!`3D(3i!l;URk+^=9#Q**pri z#GDH!H#fnf4&xzv7f>Giu^XE7kcW@gE}%WAkH@vgapCe<r&2^e>v%{*9v;XtXYuwZ zO>_u&$nPV)_HZ8_AWwU+brfY|JZ?sv5DgDmV0mmX{)pRy9t)Z9NWt*{$M81;?j+y5 z3@ZHq0}qfJP#!~ju<OGC<8igR5|yq$<jR3sT6<6{j|FcJ{#l2J?ctS5k@C!^1>>=+ zmnMbrkV~;%`g3_~-%7(C9?%}FlN&|Ec<f3cl;+Fg&5K78<8i(4H>HQd9&VwFhCGBl z9PL5a!_8T|=YGZC2s|X<qxDAL`*>V~?lGh?9`YG<L-H?=)e(54efS%ehePe?jKdyf z%Hqv~M_P-&VR`t1g_3;j!64&tqCAEjE@@)Y=Wy6jQbBk~$iqH+C0YYKQsP<ktbOgl zTV8osx{0YhIQ$A4a<E6;#w8}~;V6%p<)L8@-~4X5(L_2P(gSaSSst44klyy-w)bH9 zMtiWw_ayL;z$4Aj?NKIsxF!!j`-y}-ym%krQSyri@s`Kx^+zHz?BOHo5$WZzi|(za z_MoXeHnBbtm&dNcK^fQ{>~OU&+oODV>^o)2llI%!Z<i<pd$@r|@|MTE@=%n=X5w#H z9{vKiW|uqZH}APTRv24PY?Cn&q1bu~Y7dI?SSjp1jE8K5y$9_<1CJd9kMt<^9>!y@ zizGMjkY+q~RNS!mV_RP<<ile(i6S@K!>eIF&lryjj>qnYzZp^Q!jTOYGafs={^b)U zJU}-Mk9`<_!{xERB+6{PY*eFLSMRw!__<pvk4>wUOZ2X04@Y}2pLjIvJv<&~!`}1s z$Iai%8xLZX$0D)!@Oa#uNIyKbz(WS&kt#%K_NcNUutyb89%DRY7yJ$5u~))+6*L~i z)E?Z2zY+E*RAdUmBOx9n_YUk)6w@LLPA8b35D#M5qw=-~AD=AIf{x#PQE5AR9C`8B zXb<|zV=G?VgB}d*QG;=frRJ}HggtyJE-{XWT~v=$FCIHD9su^JIxijBP#;+&ut!Ce zCG{@)C%i-~seb_vP@xcI8u1_)k2ALiz4~W9{%GT^YZs4(_~9Y%s(;qN>M@DSV<r9Y z073On*;3@;^4Nos-tjnZdCY4MM|)7mLoUSMoa?aW<zseAK|IKYS98wi8xK+;gi_ER z{9&qvG<!JgQ4a=b53>GQgTLYS;8B$L^>~l~Jb+OiyLJHv<Vj9XIz}Hj9u30I+a4Ur z_Ncq#0Se=;qm1#zqp3vge0XfM2fgJn6CV52k3`fWON&Rd+y#$R{m>fFugO(jv4oe< z;?c%nb|P;)tPhWk_TY`nC-D)(hC$zqgFUd_@+r>joR{c}UV98YQV=}Ap;sA?UD*MD z_0_Y#6orM#Tpqh}djIl3{gVS7Rn7&^h6|(r&aPWY;IX~sF~c5Zv<EBU?v=XAy4!6b zl*jCprsJ`NJu29E+<ZR158FbDCndBX0v-}_LyX7y@Ys3uPqqgq6^}g1*zhPy$VEJe zLNxiI=T^ZU?rRVB{_*3-r<(APHwVM@06cc5hM0ziJ<3!b%cFn#H^QV3@Bk-cNdX?< zyMp3DE?~w*v<KrLdl(N;5FRq2B)TlXV}AkJW8fjR_MotboAgg&q!tf?17seL3x>yD zJLpgR5#s@dTj+X0?LoFj&BWhudvG^=R*lW&vApfUv||9GL;uvjL^OlrK@2>k*B<55 zKO=9F7>~;xNn|RI-4&1hPB_*-+oN>-!{c$L^4M2qJofGnp`*|qd{Ngw`HshNdvM9G z&}hIzmeBQ&sXUfP|I{By#CXVbUH=5LM|t(n+gL$IHjd1_s_P$9c`Vi#kJHLyxhTtV zdvL0*e?)og9`z57%eDnCSNQgAR3{^R?Lh+%@CuK|>FvSRb8tySRvolpH_<x}01wIb zsC@L#*#ppcutz2K!_x)E<Ek+pJ0Ja%`ZC@R?ZF7#w1SVv8STNc4GH$}0mnC$WqY`< zJt)TG0`<?gu{s_bR>ou#9`Y{wCl$9U9*-LrL&~FOJb)OF3(!9kOOo=`%z7^$iSWZ? z2h~3>K<x-Tfc-9b0N}B6@i)_e#~yDn;{k%}pLzHj5s!vpsJq6aVJ4j8(eQ{-a6DR* zxs7jQ%ID<%&0X+_;Tw-L;UOzLG0V>$^$v^~Xb)EWjszb2i%+-bHy*d5H|}2VSMBuu zpcje!?BPM`KU1)RSpQUm>@l|ojqx}G51EV=#QJAv8O-^!{t1r97WJQfkVYJjW`Uwv z!}_Nh@Ywn2pVxEoM;mTjKD8@^Jeyem9N#`yk4HOm7d+(G<0R_K^`CEvO!lbmzZiII zpFL{+F3i`lJ-jzjf$?b2Kdbs`@gVCHH9U6Scn}{RvgZ#;@PEBmsr3{*aT$0>Z~ezV z9%K%79L7VQjPj2M3B)4_{qs^G9ghuZb#HiVy*)SyRSm{tx2Q!b?BT*5<<}lG>7VE8 zkjm}BLnVm{#3P|Sh|n)Uo?iI&O;mf>9%b0We_F!vXuu=+@Q{U2?GboL2#^Btkf(pn zUDy_XbQAWdEQl>19x{mj;rh>y_#4JUo`G-j!ubOAqV38cq^gh0vUt^XA6rr`m! z_F!}TO%dQBAF}wh2Tk#4hW>d1f5Yv;1roLKiw7~`k@R@9Lu-H<Mg8Z(VQAN@IR(Un zK>yS^f$rGQtAGFU3X#A5$%{w2H5B&n*M~adB?a{#$*S4I3&I2J521^(iY+|)LCP9k zt_ig8b;bjj+k-*%&nJ*ZEhsu!LFyLbLD26S7OK^Mel@iR{pvqY!VNyWDG0GeDRtwU z#Ub!I8hGr$co5jbf8F?2i2)GBv8ni9Tdf?A*2>9v00WOyt-~h9BXN81j@KTQSQg^m z9)+@Oyaanx5&6KXNP)*55xo8*^v`pJD7z`}0MJoUvFVWO-_N{Pdla_^Ye(SYEN@1+ zI%@4fi7*~#*u#V9pPjQY%wY}dDih+-WCtn29#s$?U`8azgW%w8fd0Y36L<ilJ@~Kw z`B(pl@i?zN>R<h%;{pEFKW%{r_*eh@tA85*KcRoFE*^uSL8Jd=bCSa2aS(|9_Nct| zpXp5;&J-;kO}9ruNUa)K`r0|v&I+vm9GL}QXekj7tJ}lNk+4TCD?~IZ{l?`#jd+lP z^v{75^&1N{5O_#ok3!jp<I$c&&8uMjlPS-@6S5Hx@{*>1PS+(hNIaURe>6NK=H#Zy zs>vP>A;s|^+u)MVtA9-OpIa-`UqG+*j>p|Xdq>2h6)i-rwRz(~O!c2%ZPU7tYa`-e z4{H4{WQ4&Uo{JXqJ;bBE6KYHEXpTqI`(H(S-Yp)jZdK*9?AQOYld~P{;oZQxGuy*E zVmuCbBt!qCb(Y4LAVnXKL;nk9AC3oEg@>@7e)jOdc(mukJsZgbd-%v)yTBu%AO(BW zt0<7o^2Wnz_He)c*WBj0ojk*B!XB>ozfcikd-x5Er0aO3VD@m-f8Hr(Q``8B$C0o{ z)xiPs)_-;dvxm=pxNdue+S+KTssBZ8jtALpr_6lE<GBCTb)(JdYDaF}9?p0q2<yIC zP8c!@QRA^ukuFRzFdj0%9zNhW;z7{=+BAB9PnUa*tl^Qg`cDWUWi})vs-iVbjK`s{ zmDe6_8jmXnzUUpPD#e@PL12|DFZa%pxc-ASQNi(O^PaHDX;mr9hlk{+_vY_4c4RXi zpcP8s@j4#TFCNy1hdlUsIqO$#N!8=g(EmD$qtMV1f53uAr%Kk8#W6~^Z-GY&h(|N< zkPXW@vp^x&@JJ#a7GFBj)6^CkSq6B3^kH~>m{j?>O|xD#^}qb=;qTs7>2er-^4w;D zM*<!Io6*Qyl+=>4(Eqx7{pac5NOBdY7{eZpUh33%DQyj9!XA#WBMlEA#^a3s*Jt{8 zT-!fMN-b`VhecI`id0QXbCp-&CpZrGMy5F)O^=5)^}ohPI;JfqRqKC=cr;Wir=fsv ziGuC7^Nv!AA0EJmN5XjA2Ce=R65CY849rJHJS?g{?El#ul1qw?$Igp~G}V97T(G+r zC%57MsYS&8pPw=D+MN4e6`%jfY!5g3UtNkgcV7lf)QCs3Xn276!1(6h|3W;-kj1n{ zZcLdSeEl!<;5i;G8XHYl(|BB7|4+?uSM_WQnc`vb4cPy4&~H4h^P$}9f%foDuS(J{ zwiMcZ*ysOACt`c}=Enc1|MlBeSxyYg)bRkCJzVR5ebEERzh1%nUz$BUa-BkLq+*n^ z#1{{8&-I@n#T`}RR9W@LqhUM_WgE7KZ%5e%{V&AB=I8$zkrN`V!;d%N0fy;#0PsTc z#{=9%|7&a$SN2BG{!SS7aNO|G{{qyb3`)*{{vZGPPpw#I+B0M$lmAEWf7OST#)wA? zHXgS}lGorsbN{Q`cLEQI<^|&c_MyaDp#P^{F6t^ucPYdik5+~h?ti@tkpw)p$sWER z`Un0WU;k@$q$9pYHrT(0{|8CUj0ZR?ne|T)|Igf!R_T_l43c4t`p?7TVYfj%+5=zt z;Q<(rZMKIa9`^Af8R~R7ij48NP?$HwcwDKwjmIr7;#AwA2iW)Ex{+T0&pr3Qx=FL@ zm%~V>508z$AjacHoohg<77v@xc-+kJ5-t_GFoaS!ztd>Frhm|%XaCP+Xe5*VG26p~ z^}iNm;eEhzNiy5Rw;>~LPP6GnaAoD&|KfO%*u&2&z`x2?+&@hHFDS%L8%No0)g{U^ z9_OcjzVC#=Q4B>#-IxA(wwlxB0{JCG;E}Gg|EFAYG`ZOSQxB3x;E}|5T!8)&_V8>- z@_0p6L3r~Yk84U2iFjDFm<x`F{pBw{2Yl=V9@0A=2VE{lR!zX|9sZvJ`d^<8=a1)u zXVO1t5OV+PEwnN6kB4PEWX)KY;tAnn=cqp1>;J*R;dr!BXnO_6V^?UsROp}ag`6&T z1|K^U9ujL&;33fn`zQXN!h8x5tCvQ(N^`^iBLR=J_WeH~q1{38*j_xq={jRbMyy^E zseRfmdhT=K|Jjdw6Y!Aj(7nhPkInJ0AxqzaXA}Te&<Uo!?9)Fa@JO>Dr3=Jkzr6fG zmrDlQ0O&`7M-q5|WQ-kRJnnUL-18rgV?5-y;ZC<I4x)xfGLOdrw&-F1Pn1QAM+=4r zcoy-nU-W1p$+e3)UD>2+<8h2fQs5(E|IbJ85q08twEXY@SNq`D+qIXA@wg{fv;MJY z@gSQda`^C&M*qtgkGoNee>`5USX7h$8Q=M-^{dYP3O(k<LmK+W)c?A@hKUo}%LN`l z_x}LPw+sERtH5dBYya!fiOz=rr^ysgyAuul10xXd06o5mAdj#A73hB!c%(;o7F2tA z-#>octB=Q(CJ)EM&eQ!rhW|Ox|1%;4Pw4z|3*#Z#|HJWUkVd`G|9Txwt}FiiuK@q^ za$sI4GgrJm&KQrwZZ!DpFDrZL{jaazHR3@G|MSs1BmX`V>2Ogd0l;aeDu(|VevS#~ zf6a=~@JRXhzn*-+sp8fA@>7QY=brt~>x(#@lJ@ciM*j<Y5XXbW;>PNWhxOtC*#BIQ z{XeXKs^LQ5PtV223p~;R;r~Gsp2y>kU^nvOk%GsgO)r7n2pC3&#kt{s*8M*t!MVVA zT<a!UJeuDB3XKlte-`?uY;AEJiT4rxFJ1rW@gT4s790;!3il)2%t7wM0ly#pb7v9m zhc*hst;K`~==~#%M2rXc6NV(;cwC_VVLZ}1x3Gf330IUGD%t3N{bT?0?rf6eFsg#z zgP>L;9v0Oe);|xxl5F4sg4BOb{Qz=bMM}XPN}?Ht|2dLK32{iJkRRlN|C!{w`JXR# z#2pUpd+|o48v6Xtkb?*!iYk-Vn_SR8{6+=(f3Ek9K(`4)%;F0f{vW8F^;fNUFb5t0 zPZp+lShN4x507LGb>N^V*t($93_KE^!QLrb7Uclt_igWm%A`yec<g-qKUJP$#E$-b z%y?{cyUw(Wa#FgjT6qtS&=3B206+Z$JiuzPWl#%oqD**z5FnK=kF$qTy1i_Jrgw{n zeQgIz38IQ(;rQZVPw%ymC(8Y>C4@GN4!O|C4-c8I|0e@%vP|y*n&87DEkF<couZ|Z z5D!xEI~b(Q@gQdZkGKAF0=rQ(wW!J~(B%KY3Uoh=!M#l~;{jC7|5HHy=Q$`m8@Zx+ zgAjNC4Udf<>vY#S8Oik@>@Nb3op1f83)GHFQhyULO2hv%T*Cvr(}>jbM}px2y!D@t z>$y}??*I$R*R?4g7B-m=lHU96s{lMC$Abj;pNnuhRGKW#j}{Li^bb5a>ktnM5Ol$K zfGO1^uyen%iDfeMuM;{R0Q&77{Xac;wWma4nP7_*cmRP%f@^x{fTNp7;(ZtonJ*sc z+6l2Ks>#?^YEz1@{?nw1hDZ7qg`m-9{R2Ew5dZU!*|_SWC?-^Vk7ro_X#O8SLKzP* z0IEsoAI2l)t^cfC*!JUcV8l`;!p(8{#XPxc@h{88{8u6gJkr~x5vW+8|3_j@qoi&} z1ZF&CE;sx?@FQXVYdD_4OnAs3^`HHX@a56|wlKv?HTj<{lpE6;^`A>Hb{AOx*`3{V zTxfCc{8!0RC}euRev2WUyMH|Ht^affyAS=ZwYBdy|8=?<7AGP76u-xFy6xiUR|@|# z6!cf{|4e~`4mST~=$|=HDvFhmA%%Om2Y4iJ{Ra=Vh=+Xz_TFas`k&VhzVLt8d++cl z>h|sXn%PZuQ%DvPLVy4(%}8CT0Rjw2iHZ=F8zOZPlnw#ubrMkcp=d-w6qKMSAT1!$ z%YuklfGAzsA_yoT0i>6_=k=W}lVo=Z_jA1O@jTDV{m1X{;J4W_^PTTpb6w~8InVCy z#9Q)YJd!$cu>pJa&u9{LJAP+4<Shfvo$&U53i!X~C87weL(aY3QA40@?)87+F1!Qv z&vW7AEYEmIzx9u`I0$bNwVlfc(Rs}ikA`P3#v}cNLMX8Rt6yVWSuzd%GZaUGbow8O zEbxD2og#{<J?Nr;{m%=dv61J3XZU(`1&2eYe}*EcQ2wutZ}6QmesDL&4<7XDpP}$z z|JOB_{u%urzx7Xp@;i7fykCLWf-WBR7lgP0kF@V~G>k{z@T-4b+@aEQycRmI=cAyH zN0Vsv@Vhbp90mHzJOA>f|2fu?H<<X2F}OC!jYmTN2PRL(L+-~Lx$ywL>YoXlMu-|V z^+6Xt3c7eSG`~bV8oIoN_kY#Er7o-g6U~Q1@BhN8;CM7#Vu9n)z8sB9JqYzrCBD=b zw_gH0WZfkPmvw>MhVcMUuj}xT?*0$-Kid53&i$~%mqZ<w@Xl=hJ$dRME9-yiV-Df% z|9qQ29<9;ZLHmP^7T_ThNXCYz$3w!hv42VD6=?hD=3hSQpYNmaXrMm0Pi8Zs{D21t zDkAVm&EEnIX>#m~ukOHM=(c0_i>F(;{a;BlD!qXIkGuXk@-!ZDOClaNMCD&G?t!tC z3lE86hxI=n<Eqv5e=c-b&i$X#JpXdz0hWp<eC3}mWW*(!p__kcc*t=Hc*N1wKizlE z%@+^S?khBlWLnnMV8uf_>HJ@)1$h1ifjG~<{QJL7+!iN8nOBx1sVHp%9>Ar42CUYF z2e2rxJVg4$Bk}yJY@;f%$wV$ZWG!?qF#j6&EMGPH`ByMm8IRP$KuH1g&v*ZW<7$ki zBn=OFoFBpvk2WmCJeBM<PkQ=4#CXW12}3mfv%h$dXQM2cop6BA|3N(3h>PMWD0A%E zL9$$4@Bc#Unf+fAG1T?Mqunf6|NLt(I;OPCBvp$C$=!lGH@$@Ums8<4OkU@X2T4HT z%=+gYv3dJH`TbwJXGb#{){cF$BpEe4BtNug@%-xruE`(0|8uiE3Mve6(7;6Ah}QoZ zlql}cw%$A2C=^WI`PYjk4G+1@KpDUzdGU}Zx26FP>8^jeb-`INP>YVD*3#x*K=kA3 z!_ss@q6{i&{`uF<D<>mi?tW<f)1{BX@VDl&V#O7y;gO0}k^ltUHMc<&7l=cFM{?Ca zm}D^?={;0Lf%-qF3(d6XKTDeNM)k)}pK||a9p42VYX^5X0_hs-jtA)md9TWN$amw& zm=;8}`kxT<FJJoSFFN4I!-_hjCKs$K^v~%3#F4m9r|g;AfFo0r=C$3tLGyoM4`Mvz zq})hrW}<pchllj5e>N3iMTFy-sYaunk{OR(vaXyUuJ9*XPHSN$JTi0rqv?N8N-!R2 zj%2*pA|qft?13-CM3~2gj=;^E-SM#UE~}zQG~~~pTJk&V{9gvLb~&8W<2%V%Ek?<U zN6PPi-;Fm+AqU(|==tKiYyS6E{D#hLZ&tuAn+K1Cf!xAw$H!bJd36|0hiCp(p#C{I z;SR1<D`lT-ip@v#4oK*qd!=9{hg0R3mQG~|wXXgN*5X0p4dy;i;rz_@KmVE?9UQOW zv0qyF9EuzYqE2fEwd4gT{O_GRV724I7<eIu7vNd1{u$Efnuv!rm@M`bRibGn{MJ7v zvpIgclT_%RJAO0h(wMpu6ujBX2aZ+w(Jkj6)<2&_K8c;2=>M4UQxT5_Jfy&5;~|Xk zkb4^A#YX(Ubp4;k91rWAf1R92R!K61gif{DaWcb7)*E&!=M-At!HmcLf?JU;Jkk@~ zP2>6pc`P`j9z0U-J&@a={@K?XGY=bH<0PpF&8|0Ghezt)f$`Ya?-WP>r;EvKt7_dY z8RWyOTDtu2zqJ%g3Gryv#Rh?Rw0h$X+xYQJ_`is+jrLyuSDbtPWwioPyW|yv-*{Ll zE;d7LCXqJ(YWOeWgG$E}jm5{W!wS;ykZ)sKQi2J1r0(x2Sb0MKv$YAX%wWn9`e(T) zezO&LNVoo3n}1z-6`@eU=3C~MBvr#BUG0@-0L#&6Lyh!to&KzUKDS#o)S+7++f^x) zrpfWiV*Vu|ILrF=es}%T0oY8&V>{9eo_N^T!)TPd{@Gc^Y8~9o0BwaEk7S6qD?nd_ zvHv}j3|Q@GYzqBz?Vc8Erie#-5AzHZ7d-zevhg~qz-U@Gy-|HIpDlFDg-2rlI}yR3 zXU-w@-@o>MX`&%^75e9*Rx7^is4GDfO^649{^!>Uc&thrC;b~@vE@jJn4mk}`BxiN zaWqFfNGuMfN<~orY?_T76in@L#t<wDLm16X{8;%8duo?0#$*S|o*=474u?ac#^WCt zL-%84heublSyeU75L`Yy0hGreIafBei0A%~sDDr=s6nP^izQ>0Lq#A)EP4n3aR29E z8JhyepuvcEv{(qsh5tQar6f%+T2bJ!k%(e-#iP|m>%sxA<d-je)D7!RLj40g<k8{5 z+}>k6wm3jqJQ~lxKH~#awqha<kYm{22Nt5fbgJ}ExW!C0?dboQa7C;j2jh`e)WkQ$ z+2HxtNi;XYBd8kmKZriC#8I-EE+ZbT`LI#64aPg8{TKMZb{ay9k-6khRh>~O#FmoE zm#o}v3x}-WKL(Z0RWi4cj4&LtxypW3{oEXZd=DH>*%TX&txPcnl?;wktoEvhmUr74 ziW5&1WU!d0+MEt47^f~lX@)!Rh^S--mO`*Bn_F0{?0+{}VzX^_hs^%330>^Xq#)ci z_Pp~k$~dD@jZv)MsTl8PqW^<1Cj7#wFJMi<|8=My))X#G#G}>dG71|6=unyC8oY6q zHyRNSa&RG6$AtQ4J#XM*{slZX``;yUOeyD-xc)hWiC9w^Wu_djDoQiiWUSae9<QDf zQ9RsE>Z>iM1)0sUc7^9(Wf9=hV8((ZW2tbv)e1cJEMrWcgjC+K>PvAJ*8fPs5%DMi z;w7o|d&ThgP_^jr*sss*rznS(8;z3@kG7P;4M<YSnl<p~8neYL@Q{XR#BVVOf2+xe zc#squHd%|oo~l6qGu?zRH1>Z5g`2ah@%D@QC!(v$XUY|ib`WJ4Dgmy4#64I+|0m64 za^M6>tp9m8j&B4U59`81qPA&tlOoyw&Mnq+zs~EeC<^9ZM<Y?RtFm-6s6{-^9OEHP z=GX*_G)cy-5<8XyyOPB`Tl0T~nE7J+;XPxqiYYc#Qa_;BxD>1aS+eykZ?$HgO*a^g z=Z~%bV0*d&^<43O4i$Lp_sb_`I<SId_P>Aob$cU%VKQyJCQae-37KizRjFhQdV$T< zqibcec{bNS8;oWvK8w<~#)eYtCI#Oo%xq54@Q_8~vh7axe?47Jv1WeL8-E@jpM~$U zZ;@0j)|!ca1#p$0y|A&KYQ(Q_Xz{QUv72O)%KoohaTyB!PZ@{Urw|W&cLeWKTK`9@ zf0}SjWJqNH`*;cg_j~WWrUoRjL{v;w9NhmY+aehg*r`QJBKgnB`X4Dig{x!ee?qOi zU*ae%?R8{mr8LavEhs!N|4N7&mtbk;XqSoI-WrM*OXg@>W)|YnC^Wo<&BmuAJlv8% znb>jA|LKavC#i@bxLSfjxH5yI(cDs@Aqk7ENZE%jBOWBI#Z<d>JE74WZL_P})1=_= z<m6Nwaa=5Y?Buw{^Dje6Dt(tGhnmfH@PGOngDr7jt_%N{A>N@PL~PreVR(kh9hHW2 zSgrdYtfce5e%Wr`ApDF_T0QvOiLQ5X5}`Tm4*wT{NpI8QLH;y2thkWie?Rwwl_Zoo zUj9!oIkS7HCe%Mh>l4)K9jZ6<;wXiZLPHUpY}N4CrDE;4dvX2q&SHC7y3tU+T6_j} zBh*pRltHL%g3DVJ)j{cIQ1A#F9^)Yg9k8n^$t5EwzW)uq{|g5}iw7BV^N;GOc06+j z2gk-I^5Pct&+H+Rp{Ox=c^lq(KB-?J0dFYuKf%cg^$TME`=Cpm@Ts`ig#YVzE<!c^ zPnbw`LOj|BJ^3NiUH<@&4I$CFve;>I{`kR=WFf-*s{~Jw=-w@qR*MEtR3z!n&C9Kc zH2n|yKl2^9Mb#Om;US~+@gQ#hd&!~ORLO)8rQ26udn-uvf1=Lq##G0Gnga2#&5E0C zUu*oIDyR$b;P^7|ko~S>O_ifz*Y6yt8Y~(0{&&DQ;QuPi@vtk73;$P`T?r=CKd)Pw zan>Bg<)Yux9QU>GIKTX#=S##Yh*UF}Vkt}0|46ao4u^Qyu$tH)uyjN`EQDiNFRcH$ zaS`jE5RY~%rzrkI-~S=HR<*r3dwz475Dy#a(f=eQe+MFiU;q2tvDhIjJtTEzH86Lz z5ADbG&yzBK^R0U!b>g#8q{Nb1XYos4@`vWtKU1Rd)}8Az>z^?~a>s+X>mObJXX9F| zlgUArY_dMB;-;1Gt}7na0L3BhXYBtvb{mHrv93*~ml|%w$20$Djpl!c?D?PLo5o&? z(BjeF&cpw4``<U;k&W_(k*#f%re2XP;qLmUws>@7{m(*CDQf!XOoy3WTRJ=>(X`^# zyRF6}iogC($(O(S#UKwjv8k^s9`@g76_NxVveSoH>?J7?@v!}jQm&D@eDB6X24VKj z{hwLF|K-MG=bwM2q^99KM`7=QJeT`F;oL|Kr!MIK)W*(&98n9$gYZen=ybi`K~ev7 z9zg;RIo{=e*YwY#{>jt-*;Fzf^_b>=Ke<ILu3r!jvIQSu7X6<lsDD69%a6wn#gK&Y z*rl<}4k`b=9uJwW_rHJH$|##FlJ$+sFMNUroZMSve-iUAENNWfzcT+v)Bi|>c(mbP z?+0R4r+;QV_Nv$SdgDRvkHJ?2j{1+?b3Q`7Ob_IUYPVMK)0DNX7mp2z9P~e(0RpNW z0FOQJHzN)i^M8)xn?a(KaOIDkQ%ds})A4^Kq5s)<12`rhcx?Cl>vZd;;){`NNyxDC ztwHpEzI&5<leYI?_4?mQ#KQugO8Mqr91mN6$l3kth5orabT?egg8wreC0Y=1{S$fs zdomj69{n?n@B^TK-i_zGSpz$-)y0E&=U*I;cHAIa%0d5g<qxbEgp+XnGZVE9sa`xb zM(@cBJ8bTR@y?1K-uah^2hsO`E;O;K>m}MdpT|TB)Y2<^ANuS#)(fgZ5B~=h5$k`B zV`?^U!ub60AmIP_^1n;*_|1s^qfnd8nz=xxc<6uD|Hf~v<Nsg~#`>R$!KC<_e;rt& z@qhZa4>lX8mZ>@mmyMWz9pv|M^?!K&h4#^klUr2)0u)y~tS|k~`fI%ma`U&}O?L5r zg1PR{&%a<~-?;Yj$t}<$x%JOF{g1o<vuFGUY?rmdb5VG(|9#(_`uM4;&i@WUk}DpB zFSk7NuS#tfh<G%Oe~9^4ET1|Z9{XqT2Ejl4;B_Lu@gOfV9=mHl{`Ri<SI4X#-(%u= z@Zu}0dqX4b#$)^Rzh`yl(TiP+2jTe_gk!A#Iq1^=_@96EERCm3$6)k-B3=9+fE1zs z8GTLTA7cIm{SWG&0`sqSC-{t=5%C~`{{xK>`afL%pfRCN4lPm38;{oKO5XX`pgMef zKdd6+K`Q++yB208%>RLcKIfuW|D(fWyZDC(7USxrRK{a#{KL{{zrg?gHM%|E{|r6n z?f>NCAExnHaeCrGYMq7SgX2Nocz8U>Kt3&6Jett|V3NiCpKN?-_P_g$2f06*Ps^gg zUjCsS&#Rb!F?%B)|1huq`Prd-fJhgQ1}QP(LE6rhL_7%UAMg+Bjwz^rzTOv4)?EK^ z|A+O@h2|fo*EZ*(P+<O{#{a<)DxCj)`KQfrfOPR_@U}Dm@K=}qnfX6H;?Z);Ho1ch zkNxi=9?k84$L&Jpc#u%ot;|n<&iq4fJepqr{Ms)5bG`qaRE`I^Sd!Gh{KLf&SoW%p z|ASsJ>z`{JgWpP5{}kl^j2p$vzKYlXj@pLx&#e)>-q6SVi|ZfZf5$G5Qd&*)_`k*g z>ba!zRsfRF|Jlg#upa(TUj6gha(uDe&+Grn#!@O$rpe@6SV~;~_@94$5{G9=*&PoH z{^3|myLkTfjDZwaJcu9v`_h9rz!fRO6Aw~&{$V4u!|<uzc(muC2;%x@iGkEIZvM}w zojD%F?f=s1pY=K7LoFWuPvfz`Ol_WM%57XY{ZD!jw2&ECknVVpmeWusp#Ss5PNF7x z>Yqv+59`8Xi}@EqkqOVw%>Tjs3-wRSQX2oTA=rjhbn$52wx%N<O<(`K#tKY)Q#b#o zJJhQL|5uh%n}50EK?=^lKIM`T2?`$l&s$|Q{qs@ONW%Z+iU%pk|Jkj5sAv8)8sZJ+ zA8x(_6+mI*(NO<Hi}%s#pMRWDSp9RAVdC3+^*_6TM(ntv`?d+L`sY`~!}_j&Mu<;U zdVDvf=#w2b%|^VdL@nU|x_SnJB;WBM%s)i^vuup`&@-O;ClYFB*8h}4ZR6Mf)%3G* zqpzLNJ{0v2{9jGyO}Kvtw=u-S=0141|Lgrf&;>wG#^e8jyaoQRo<9MQq`Klk{OEt) z$Ci^xs;mB40*WJQ64w8$g50L-&uf+))#;zXKm2(u*FOgEe`a46AFB0#I37*#e@d4! zs>u@bf3ROF8v^m42Oq`O6R+d{@ZFsf%~{*Fu|luU$vxPE^!n$0OA6?Je!wQANP7Nr zm2kYt<PfS@?>sp$|AI^g{2!10r-1+Kn?Lb0qNAN69xaH%UGX6A2NPKx270k(D&o<; zK43)3v(ux0cJUA4|2oM0L!o~jbX1c675blU;c!rD{GYd?5Uprcg6RE93MH>!HJMod zeC&wm|M;$d>YX!&$n7b+Gj1a2|FpAMbFmV<`kybG;-BCU)73u{#lQTkiwF5m{EH9% zVQ>^8uANV?{^zBoqW*~y|03dHng5L40o{l`qtguB|G`8|&p(_8-A?s>p898XU#Pnl zzU1+Lx%odcs%!n9edsmm<Iy&vj&j#O*WR?DvJNgowm}!sH+99M3H@__pn>xEzZMzv z`scehF2T)lP0YVUJZxLc-p_D6>_6K4>v?E<JoV3=Nfa5^rVln=^ndU^I{x#P`$RXc z<<~zK#l%O)Kir8GG)xzd_FFH~`@aq@0E4WpOaHuRPmv<BvIx?!m%gNmdE!AX{3nFg zx#nM7|8(vklb(P0+e~jf2=kxQDv@nmtT!IyYR?epf4uXrdw%%O;2-Aof9dL<{QT$4 z`gP1SUnV{OaL#1{s4^mg_OH!X|Adt?W<TLD=IQ@Tp6zTtiDDoV*7?8wObUsSQ_kn* zAJ(dx+K0LD^QmGTvtyg2ay+aSj}|EpNVUyxCg<V*-2bV^B!elglz09m>Yw9?k8R_g zf0b^+{O4^UZs2{Mc#vcB(S65T=c#`N?AK;E>OT=uVuI6-=HRIvTK{J#P&x^Nvn8H? zq5jeQU*9}w#%8AHKmXb}hkD3);z5p@;!)dr^*`YMoUuuc9bqM?i@yHpiKc5C>`KaO z_>V4ICYKca=l;Q?NI4f2q1XSk?6kibnFRmYqyK4mJstV6m4PGI>3>qfiq)v2W=Rfx z|L5|EK2B061xHexJ06z#&qMI3lz`vkcpX0#`e!X3_M^6zOqmWAv*xXT2109nPuKsM zdkdXWG`RBmzYZ9T8Oc4K!8>#R#~lx{qFZyiQ-+Qej7N)$bz*-hE~B?|WqS~L;z8n~ zjEl(5Z2q>oc-SLDn@=**AbmXAhT6@by5{d8;$hwV!?p&6GKXWs)Ym^n?q+T?m?BFh zl2y+?+<@(klAk~o_*Ts>7!tVS(Hda4pM~8%5C3^DE3@;&!yby1oqJFS>G_A_>*M>} zek+(hd*;0w;~Q%FpBkID1=EQ}DP+~hqg~}sck&(K#uIHQb7Irn2M-VtjQ$Vw&tc7H zliCAmLDp8#KfC%rNkcBM(p-5f+M|CS{adr=O_mx7WYhJ3_I^^rN|q{EihBNG<$*BL zABc#dUY`CB=3o7B#<H;#)q(gAr#l|@auaioL)?2Y|6=~3R{!KorsBm~1n1#D@4-s6 zH2!2*-+c>TME~cL;eUCO5<Ky+=>MGClI@r@$y5ZE2c7@@&ehQ3@~}l1C`<`18<(0z zD(atezb@=JxQW$g6wHfsf|g6WY085K7^rd-%%HFK9QZTm<yqg?dvhZ)VWzD;#8EIm zom#u^td;|V;Fq1pE+7r2<-3js4H}FdJ-T1Nep(a^a$t}KqlLgA4Q9%eDQniOK{Cwz z?@vx%{tMp!@&6tlf&V>^07t=?;~0hRs}))>DOp${1E4@z3ikm}parFH|M^3eX#2D> zUMoO>M}g-@;$bKBAy&wbSE+l=G&KMU^u+EtYt)m-L-U{@e6>P9-Jo8MpsBfT6neo& z0iZzVZNZ=xqmAUeR)Bo1&>!BGTU4QBKPU(-DS7W4d2$U(c1OVoE2J(dP_qIok$2!V z+zRz;1vt4;HrAwMNa6gWAkO_Px4>(D4`hYBd{mxXm6Cm+Aat$Jn-}CAcu`?dpmLPC z4{BB2qkv8d=S~WIrkKSEX;T0x9HL-CD_Nb3A!F4&3V2(g?on`=y9#v)(o5moj{-Ur zdYe&c>MkfMmV1%{eW4&Wtd^x!#UFwKT|dMme^vD%Ny+!FnT^>UH7kHFDcP?TASl9; z^P&VRfIBH!hk_7E$^0m=C(cTXWb)GrbtNT#*-24Sf@qgOL2widP!KWsqhLC(RcTu& zMc30m3V2(gE)+VR)uk_rYgPciD2Q7F4f529lv)6V&L{{^EA*nt_#x~j<K0Pt4@Y68 zB&#i?h=(L4@9QN?b%OAi=Sd38g93Fu3bbEfG^P|s?FuVEAQb3<CKk0L272S}!U~{E z3e1ZFeSMRnzK(A;%7X&cp|ISe;OR%dm8DJiW~3zr`Wyu}-Z<jC**K~MzM1|}z=gun zp&<UOK=Dc@nJC<41>jbw*9z&j0`wiC(hM02MvoOhdlVRWLXSd^ZyPDU6RJEE1==ah ztiZQLen-Iq1$wQnRar?!iql2G<hKIMYjx>}N(Z613ET>8kYkYNhT)q9MnU`$v}xjd z<S2X;%%}|9P@wEk@}RKtwL%xafl+X+5O5LD-8Vi2h2DQS=IF54;T`=aC9@Q644h6j z%u|e1_L+AJwn9B9h)YNChG<*i4eJF&L2NH-wy5F_m%E~1d|M$0Prz@E5O0|0QJ`q$ z_FgN1`%wTWtS=mBL&sxGAO#);ryZ=uQV2X+XjaIDdMTX#QDDG9vmB8q-q8Ojm>&gh z*0nkiC5kr;oRmELyg@Fny`lb5KxYMTJqna4Va?RuP(;C8KDo_13ihI~fI`1xgu~Q| zX#-Gj537H!Jb_6Zq<uI*E-QdP6#Bs~{Ek8*9>@xSq~v9A?j|c3)fdr^f_1G>_bB+@ zA*>E);w)K`9);z@3h*q1Z%zqcwH_Vb&7)vp1#qFT^!3k}t2p1V*(we^Hh%YZp!#QI zcdR!Rek5p|gcQzgh0Is~zzSJ423QejXk_&Fe4#)+D2PRE4J<DcAD_Se;Zd+B3T8P( z7K#KH5(J8lz)>)hgV<GqWp5BxNdK+S(onqP8)~2K9R=%Jp@_nB)juO2h>K18@uT&v zQ12+%M-&WnGOSs_da*wYh5ku<E6cgWFLZjWklv(ZT@+p$T>M$C<C{+kmv0oj;#d)! zUgE_iJ;Vw*eKZbPZiwr<YAA@i_5RT(B}dg9bWe<e@7CZsEeitS+w`<TbxFzID3~)9 zpkg5fI|UdQm&<via0R09v{7*7L@QRJ_Rcyhq&q2Dk3z4@=h^kn`lMvN6+lB_E$e{G z5Pf?qZ>|D`?oLY17ll_JQ7{QPVpnr90(cbczZE(i-CsPS{L40Xf)uVq{R#f+pGK{* z$PIKlh!wVvQ2!)g-N{siE$r&f>2Zy`C{R~YGEi6=3jKu`p6<3K@l$=(KVB=qSHVVn zix_c@Jj4o_vYdx>vBBaJ4U9tHGFL3KP6i7m8xKKY-JKxz+x?Q6yS9O?kUxVM<us`G z;r*ublHLmGqy8zQdCO+t#n6!XK%wiR@akeFrjX+$9J1(#S|OL?K2MhV;&2?(qd*Iw z&|k@t;LYi>r5f*8-cj%i^YWuW2cB#-o;`@0$A+=1N<(4!vqF9vh9l*;b%nochPxH& zu|npT!g;Nbb&|xLrAD`C9>gIjIlw6Rvs~P?R0A~`AId{rofJ-of^bXWK5d9yO;T6A z#@FFP>Yw4_NK?<9{Ozqkf%=bv>A!~$v~}znUUyD63e@K)xa&Ih@7VX&-~;Wu{;4^! z$$hp$wuVSmB5sAo^M9E9)jvH23TrYSGl`PF;$uc1)$9=fg>{1WZ3Come8?0J3X4a< zKw-^dDV%2%ycvtrDbdD};ubYnps@6<P%jGWwV&U_AwvtZ_g)hYnN8OU)keX2tdIwb zf}~}en*c5u9&UB5&@ly2Soi)l$ml9;E$fhQe0T6DxR6q~;{2sEzi15~T{J1H7W}AL zA$`?9?Pf(9&4*!yd{MmkA@$GKsDIEGU)EWBXMw`XGYWRsKd=Jy+)~<z6#L9ouW9eR zUWbCvp|E=X3@gBzfxq!ma%`-B86{(2DcpU@GYU?`Q49wPYr=iD8y6OZ^?3`pCxCc# zXrtihXT=I?zr6iuzQVmIP_6&dPKN@0FT#?&y04M6`lrf&gpDZsK>tJhrLDe3!LIs; z)uup!j&k>Z%C!==nD;BSZo*b;fx_}L3SP#tcHaJFV>QY~6dt5-d{f7>`I#R-C}&BP z9B;4{z*GO^k;2`+0=MQ=SOLUcJ+nKbux?){XTeR7rEsB%R;L_L3Reanj{@d7m_6gj zd6lJby*E@8x0r?_|Ea@&p4og#G2JNm-=}o-PkTI`VS7r+g5f0D9R(AVB`UPDzkS(X z!L_T4g3<MVG!#VXNTAas^_P#!3BA6C0xd$Q4sydNYtZrE;o_jz14QAKcrukg<F|!| z1e7bPCWR}bpqwlQ6vT;5ye$<z3V3o^UjNjy6(g*ykWD6u{tp*IkiwP1VO4z9Kkoj| zd|Ycb1kbi#gy%fGkEnl!zQDo-;`)c*$4~!9M8PmaEt8a2zyF^QNa3)D2`Suiv^U7e zQn&&9Qv*c7EDnLpzx1e7)IU*8`NMz$?T-3i8OA8A74PCgfM0Rs%|ZM=0iy8End0y; z>5z;e6q`7erEn&$b0v-fuFva5tA8%SUQ1N*`A>{?e!~DLi0b89SYQQ!iH{PrQ7{#Y zv!tq|qW=TP1W6hSz5fk9-@gL|>d58)3Lu5MRMtX3p@$hY6#DDCamL`XgcNQ*?~Ya> zg<FBz28UsF|D!C-g>P9%;Sy41nuh+*y<6#F!7((-R}^02DA`D}T~RQ*BQ4Za#xqZ} z6%K107q1mEqzOtaB1FN|d&lZ@N#Xhw#R3lHD41d@FTjeaY~l+t(x%BF`y`3#mZ(M< zFZbSKf)6@A%l_S)Qdl@jiS~c}hFzcwk$oFbI9e2N{{#3dMnNp?h<yYote8tO4LrVO z{PQ^UutNS;iImITI12dq^W@M+0Y^QVjK+y78R9CYWVli2n@gtQ(!j(wqf^~9v)l!P zL`6ga{|vdDDicTHO&81L9TA0h1?4)aWxF;U#yc^7JZybI<zq3(9>+h7QgAqAx^&zS zZ&iSTz&075s$lRN8biaZ_DmRPjA)U<3h-v>IGSpPhYG}TONuR1m1QE>KkW-tIU*(z zuc@R)!jNfH>^ROiF1b@hS=wY`Wdbp3ve_JNPRJBexDe3Y4mg4VYLJsvIE(Ngp%w{? zX_gkmQFw39a*)9kj@6avz*YQ@oSaG9@L9pIsSx#`a&hs=_>a>-VKwbw&vckfhR`mt zIXx7%9H|l9{|SQkFKOABZ~rzJqOHlU{*M6;L>dgX97UFm+r|g68e1V@1%N3L*E&YQ z%W8_1EKm?98)FGTQrB)p+0A^U%u{Pl+=3PTPuQ-@cHHm<3f+RQDqGP1!L<ei15j8m zB3;^Gp=`52AqIi_XH|j1k|VlUvSz&Yyi_#QobePN;D`uw_WBPNrb*zsz;vgYq}K13 zt!_u(hT6?5pI}w{9e`iU5^q)eAHsVlq-NT&6npROHcHI|ldwcY3wXelt{ertd90mp zKV;g1<4Y)8$eM%c$`7byEMgQahsUQVT>s2#6vf9*mc%IdcdQqd!j(Cy(os3I8fDEH zIhZ2D#r=#Jh1KpKaqDF(<b4&d7EySOMwr;0Yx`{6?JNB7V`VGA#Uk-3Ru%P6kR{w^ zRkxBcm&%zD1#I1hn|XY6vZ8)B#S%6k7OlIMQc$q@@UE3#v_=b&qwsnerTCZ2=2)7k zKYt{bhjru|ps-AdvGJ-kU7e>)DrIq70g9($NlIE2UX}d@c~x19<6B7K?B9jjvQ8Oz z;l{>h64q4e=}=oTRuHzpYE!LFhsuu3vehzG15J&p+O3UUReuOBOS2gTifaUmT%fQT zM<rkvfS~T>CEdF6?kG@Lr5Va&=KjykL3|yd^i<W;+`Gcf>)JV3A?p)4($T_>$KqrZ zL{NAx;lJ1lu%sh?vuZHM#2>afRYD;|vB|KGtL9*{H6`2L%uw2l&#@b1gIuxgf&|Al zxYdHq&cnZcfxn`6+SnAwj~|#U;jyXBfC8-<8LcEMju+-Ocq7J2PKh!pI(!{I3x?r{ zIMhFU`54<2SJ8en$g45``VUNws16iGN#l!lKrBv5x-6gBGqb<qKoszmhOk1eI2jZ| z;g#($3PNNTX3L^xljR6AWp=rZqxo?VY8#fqeO6OYD;Nd(1-!)$qLr`h1zZ#tOBh`| z%Td6nCc9|!uhU|A;6-d?%Z$K_AcZU89HcmIUM_(L6Idbn|5Xil{`&^H5)y}-rwX59 zwAl&Nfx`rIO&nIVgl}f+m1HLwQFv{;*hor~gCnp?*$`d6^$a7to~i-2kN7OO7G~R` zqAm7oXR(`%xOxwF4fF!viWrZJMKVQTpK?Z1T2PQNIyTjTwa}?tMRLLluma-0pe!f$ z_I^@Atj#H@>xLAMOTd<K!ca6gI#$JoN9pA(WWQzm<2ysBH8xctpg@CK;9RQsEVcq1 zxrQU&>VwJyaiER4p`qqJ$4f~n_kX?`$mb_SpdfDIHv>$`{hvQj{2eBzKtbTi9CuOF zKmE5_aag5bbDT{f8uM?EF$*a4@e*DAv%*wtypqgPxUJ<fC*eLuDNegYZ-z#paIk!y zZVnE$jzZd8Iyz+@DcrP*0tFEtVoAb`3j1!KgG--P^Pxbi-*LctZVIi2D-=h8t&n4i zUzjAz>&jYkU<HthTHrj48Ho88&J)T?LKN_Cm2lIM2q=i_M{nW>k{Kw7*em#fX39;y z7kl+|7?Xu<0tE_)LXIOX4PTm3pgvLPONvG-m@Hs%PAySClQ;_R<NCeJ;x350So^gT z%7`*Mfvu3EuAD-#m7_($d?Sh_M8WLa%J*;!`bdGIV5San;zSvvA^6cy=xwk}ev+uu zhG8E&RNnRv!wT7Z4;~-T>f-)SbCk*G8vXWVn~z)JW}$leKLzJsuVABD*VtyymDKfb z6vv^$n%*qtU)VDY6bdQaEgP!+XpVvzdIl|hT2~+n&oloTG#!6+L@poA8|NUY1l@W7 z6htb+L`G>*Ff&`jrzKEW9pA%`4`2ltcN-W1i`sPJ1Ib(em{7ghMg7yH*DYKuvOr-y zosO@XIKh7u-k2_S#nJXNGotVqg*6}hi&dL{NlZhQ=xeTjrt{e-h{E#Dzq;XyQn1(w z^-oY-0v{Lr14qH&*tZZUh@Sw2Ng(A~fGC)YznX9#%3v!%Q7-!xMxo<-q-rR1zfmyz zv4XM$3gQUv{F%_5UcYp5VRsaWbpO7=XiddF=?{g~a~tl0XuvQE6nB;s)IYESbQIls zZxpZ_1*%yAG%I8iJh9~v!3rQ@I)v2$6h!*<PW-8QD`bHv;O+mx#b%<nA}a*rPD!$u zf0Z1{4Kn+lrK9~?Asgcv40k5yo=;1Ql7=E{j9Zt(bzzc*LZ7FT!Yv=)$YlliY=bPF zZA?kvtKqCfK$^$>pMUY?fr8LW;e7Ug77aoD|6UN<d?9v~K8O$~^h!VTr)D(JN#WY* zP@wNu{?CSg7f!;J8Ji5ZK9^_-lr@v1fcaB}71GoHIpvnZxlo|%xo$~J!9zS**b4A8 z3RHYnqVFhRQU7!rCP^#0m$qssh#~t#Cth!bED!}Vuc?BXLMAc)YJv({)}yc<-v22l z`pVz?MWM6)=VkGlz*c|{#B1DENKyY3(EsccuL+C-jRJN$PZW%g`Pa+hH6jYwFADtw z@fr<<wP*82Mqw44f9(@5x_|f9wTDFkGYYE%hN7Sg2a19jzDK-9*Z-MW<F)+ypSIWe zee%q|^i}}T|Jfs6gQerL0{l<$ny-7UkQxfT9iFcct2@7?Z!3U6VeJ*K(ODsV&A-~g z2Z6_eQ~putx3BNz*C=`vgbyp^Ql4jU{Zp;))rvpqtdP1Wn57N)H39lRhyq^LkYDra z4{j@fuPESUjc{u)QgDI(&yz2E^*>!kW1|V7j2Z*))Zr*#MqzOjunq+ZE5OkkC=bxv zam~LxR)CjR=&X=;uVa>4F#rlHzZD<~<`}C4i0e}wR*%YOg`8DqG)DnfePxDbWUJlR zqyO=N0<F%6L#9Ps{}h~mas31RPyZ44sm6!Rzi#D-N+@ew$v0g3A0P9tdVllSm{RjZ z!Q`KR{d)#Cd@E2`Uj2{W3b1x$ZdvGm{>J?b>t@1zpdbR)KTm(Lb2=Ng6u3Dw6jm*c z!t>0(1PW{6o=+3|;;^b(6inl3brz%kaa#erDA0`^%3!rh)a&OwQNV94Kc<huyYnrU z5RNO?Kd=J$i2@$SO9*`%PyORXK}`2V!NhR|9bHjxg><7J+)*%Wg}i7m&W<$uR4F&1 zx@456NnVvQ^vO^uR~q~6poM$tP2PC={DrsI9s2s`KfXV9!6Q_LMA@THp0oWpB+4zP zJDz;<Nl29KpZ%z*l%ZJGRLYPmL#6!Iirw`1e~*vA|E@=XRm#?N*;X|u6e)7PfaNQ{ z_~AY4Gt<zeS@7&MbE%|EXXYfZjC=kx_gU`JB)s7TcItuUf9*lVmc+oSfK|$?)myB~ zrslx}V1o~pjsRA%VX@8nTBk@VpS;V0C-c3T&s4yWE0AH4RXV2DWF;f*s-%!()9A@0 zfK?t~gRd&({xBo_53}dZmsC_K70lTACZcm6Q86WuO1Wn%qeNX)a`eK4to`y{A=ZZh z%WJ#_9yf(b2??X{dkDaCW<t0ETl`L`K(s*gM3_{q7f-29ZAZhtK$Vi$u=v+Ly!q<@ zR$ag(WN*H}mi#K6_183D!>412bcRKrfh}7n02Fuq^0}=|A6lhcJpXG?tx9>eRvuu3 zu1fI&8#)y_u;tLI*GdyHu;C|=8*1o)<p^v6u-uj>u%#WIf7q~C8y=cKfptQqGaN4} z6tEmBol^!(sSwz5O?reWl~$!Z-2)D>1|$AG{4@j01F4j6{QFmJA_g{8f;0N1FQ5O| zFR&9+s_KOXHoRT3c5Z|QY^VgRc%Uj}#DF8;^u}wrN?DIEmiyY2%CAc2_eTzF;VBh> zRlQ<~r&Lv6f|d<cN+6X^|ATl9S1BWdwJuGIw@dl0Qr6=&0G6+O6%(wt0|2XpN*Oy` z0#_+Jkf7%YZ1Ek~+wTC#52#Y=UBuk*s5h`z2ki6$8~!Ew8ivLDxWobi8xYuAZlWi! z7b69VYvBb}z4%9q0>Fk{?@Kfn!1C9ALO8M8u$Wh+3}6ES>so%&e(`U}#|5yVct3Ja zseA#;wJuHJfeqbvz5{9u2ln0oHKq@Mojz1LJKeyB2W2#sPKiiT`~%Co-5YiF&)swI zn)?8D9x;){4J`Ms(s{=l*isZ*536)Su=UKS+)ig$e5znzODXI<3~XpzN&_}D2e8T? zu%RXPo}+69o!kJZLk$nG!3!+kjxLQGSk)8^23F}*HRUxd`U>nFh}Upn?<TZTYm8%H z)qC#1x&mFA<9JO?7#6Qc0@&~<fpshGL;#lWpZzpc3f{oF{J?SzShW~?4|i#Tu=l*E zH!QZA*)V@#ZxQT0tkU@m<c2`NDpo01K=cZ$bjkoC6`)J=2?HCt<24K{{}zG0n=z#d z)TKFy*KGN8?8twR$>9N3=~c>Jl}_%1Tr{mQrOMovj-a`R)juC#E`-3AN<ZUq`62aB z-+iD00oXYl*O&&Z^4+C54Pg04g8*el{j&sdV;ZnQr_wpiz;e_-tF*x0O$~_apSL5* zxPVpNc5nFh!Xcl5EhWm5dIiAF3W(=jFQ!ypV0nQq%|g6r^WB>{Cru3OENqu%(3y2M ztxFSKk{r+KfaR|NSOsADTs^R=Oeu1_xZv5Dl@UhwmjG7z59|ex$-%&eQ$SdG0(%9p zvtXB|f{Bv3OY@O|oPJa~Jf-5m-ec?V8lF;}1Rl`^tn$^R5x}aOmoZSBYH^ICFxtPO zcO(kCTUY)Js8T+kqX#yWDvG;~H9g2!z9_|`OQULmy_!nLcVO@NUx}zi7CBj^13r`| zu-5~ua=Ww!USMFu5Ci5N-~fb`u+aGnH*2P2QeLqB(RFDq-oADYA2Do{Gt)3Rn1P+| zTAV<-=k3yP{i6d`p-XdYG$70iE0{ARx^eMHQ6o9;`&21=f#ugxN3lwotSu<j(qlX3 zo&c8XfDNstbNzG64eT6UtP<{CDQk?`Rs(%pyRR#-H&9^9LO#AS7}Is?C?c>9(EPe% z#gxjYOA9I;rvoPyk37nxum}xUj=yvPtNeCp?hGgT2Ec}{jlk#e1or0d(g>B#TJV^N zU0UbLk}}Fimqq}~UBIf#k(er_8N*6dL)qg6miq=))hS6TcWG9k?D^^!7qFb`pRsoU z?8KBxSO3&2q5;csfK(CK63C_X7hc4HEn|@C;@_pE)jxCans5ZRWP?%~uuFp})hTeZ z0W5EDmFN?1V4XLxR|l*be+L*g1lHw_2N?DO>YqG;b)LYMf-2=OtpAcPok?=lKY>)r z+4E6Hq5kRXs((Dd1~0JF3v5{SJ8HBoZ<a2B&3X8x69HAq4TeHqR=xYqajyEu4Q%jL z|4hdUVqnz`SN$VYIvm*RV@j1<mK<FFeB`Qs{07$fm{Q@m>;ka-hv^cjdSGV(U=>_i z?LNaL0btdlYy_+X3hV{2>f&K7u&&-f!~vY#USLWESq;0iME#R8L<?*Q$4$$>O8Ei@ z_P$%DkpPyT-clwnu)$aT^FvtyEZ;g7RPsa)>~#Ul|2Y{DSjEu1DUnaKnjA}t7ucx_ z?A6yl;4vv&|C|UXwRiq06$0z@F0EHl?eLUpb1>QRs+99jskTl8kFt<~b$$1Jg>XCo z8~PuVXveHPD&+$8&$Y7>wE(dE4jwUtN@wgy|1Pcjm_M95w6!}PF&^sDLjUJoiCCpm z@kbzpyn%H-`#*hf_nHBh`mnwLcYGm$<$n7=v#^3vQU6p$*%L6Z&JC=ZUAzCDIAUPc zGj9iQsUJjX#Qh%wDw=g%|5Vkxv|NELuKH(6E?&gI&b=mbAh1^l?0o2y>ifwWu&U<| zxM9ER4ea&h(ptC|q^pQZoj&YC^sJ95m2j!MTv}@eXn}Pb>)}470jvDFw2){+99TCC zPh47HumAezGwe76kF6hm4q3iJrR)ZF`l^5W1IEdLE!$9971pILfSnoWYA~=W>FI~L zw0>LqN^Mf-HXM2NSV>IQ0;!ZSrE&wSrlH%T2bSk^Y1KqvizyP_9`64{p#bq8Sm&Bj z{Rc1NDODDVt%3erTCOS8uP$IG68%yy{}ZtOnQ#vTE!ULFgi6NZ$ED@2e_G=;Jf(Wd zK&iKjc>`PAz$!hk^EteR16vkJ)IQLZ3NCd3%f*!H@^Jwy7b;~D*rEegd0gtX&lVQg zdE@@wk>DdvdBbd#SfzuRjR1Cf1A7YsI}ZWsS(bvrVk$DQv#E+N^zbPa`acU$8YNLo zLnVW(m{MVeqz88Ttbd*d_;bt?GMS4}%I0asQQ!r1sb2uFs>EPIuOJ2gC*6oF$I`7J zIPf>6;`-;;1<%i^hkI3eFgj?e70Rt6Mdib5idffrfSn#-)zv?Lnd7N{Is$pt3@RPe zQ4wVmQLg_q$E8v(=u*Gy4Qz4ue`-OIq#CA0Si7W>a=I1vW~h`=|Kts<)4SC7d@4bu z6WR=koh_%M(JTV%KJ^3a6oGZ06d~nOCmg&@sDE(q9@js^MPLg9J0I6SQ0Y9bfBek9 z9@jtaz`DHspU3r&FO|;Y`p4V<`9HG$flIwxqHt;D2X^KGmJe<MdkF&TdY6Ok1}f!4 z1%aKKODlh1ORIMz8U<i^#a&upuOF3;=>PP=!}~PMzy8G|hA)-QnEM>qi@+ABbYk%6 zHQ?xm@fYgllA1@Q<Ac(3FM-q_0qk6kXD<ZyBCy3>{}k;1tiiL_!vkA1mCndWvNEvz z2Y}B-U|pf=A3^Eafo?qmJA3W~4Jd$0nJGOB_aHbBfxXc<F53Ky1AG0{KlSkJ#euzJ z@$BVQDf_N}-odjM2eypBvsbU5xc^g-((|b+uw??Cy#^q#_fP~W1%c&x=U<)S2vUN> zBv}D~6!R|>yov|dSqPUp=3lRFLmfNpywlNaGGWRR{#4=TUs9c20@x{uz!rb=uNM&5 z+j)&dj_G%;P>PSZe4?d=$oKrqOX=AOH%D)i)MO-C#|)cHU%g;}ORKKd|EWIKC#C0m z1PDhsq&Lk)U_YzTwIS-|z?7bv6Cd0o`scJMvze?4U?=P5COyQZ9*rXeN{`fM9U-vp zBlKH745U*25WN|+%%&>a(k7WD*k?A(>`&ywrJkq%19KHIQ#V_A#zX*i21DwO`PUPz z0W3#g%STW90G78cLki|!J+|UB`VH)LxzwMDB$Zw2%aCS@`Iq1R56{0Y<2CbKfxS>4 zst=<SV!WfWOZ{^gc^*b7#CRuj@xF!0^ANrA5dBXo#ybkT)JGs6#S1L=J^#XZ=P(EM z?m<5)K>vqT$~@j-N@2nk^rHgwe}qbT+-*!YKq;Is9(}RXegk_$iWj8xln>Wj>di2v z3P>r0OMMbv!<53-2D0Z@DeL<`OeySx*D$brtwg{03~cdI3QzwaQJb&292xp2L=buP zKkU+40sYVQ{)e^s*P2V%7A~JXJ_ir)`Sm}y^SjhHj|GSYD&?lQdlj0}<C=fPgp-p4 zTWSL<e#HeW_oq@Gj@MiRrAL93#tSUZ<5EZeN23(>z-xH^^$p}U+WgB`|3}QfUfm%v zu>97_(?pf?%)jyg%Qcnqbtt6RrM__lOt~X<z;Yid<>OFqXo0=Nfps6$Wc`nq(&L?f zfl_#~oSh08*fOh5U+h5~*wPEF=RhuX*8dE|FuwibmlwA!;&Q3$faUq;U%%lsOzF7} zT)GcRPpqf^!z$(a=+dxCc|Jsbeq36f`PX*5hABN~B&sv=0SC7D>Hj=vBynJ`rc%E4 z*9zR>IIsl+Lb9k1o`3nSf1v-VR0BSGy-L~L|CucbmzK}|kEnmH_klm77_FP;oqv&V zsY4*8{{Ai3KRyEMwE5S~(1f{p`ahCzsdIy@VW9eF%cV~0pdcC}0$W7?2SpC+e?G!b zZR|^>eC5o~TK^|U{vAS#rd#g0D20!r|0(tb%?KCzANTx=9Bn?SI}idX<(!Vv<D>q0 zKB&uUq<Hl|81D#|Ix0lC)ZZ-KQ3Uq-n19`<syuBV4y=oN<to=dh-Y~PE-efQ$ptL; zHUC0j?*LgISDP$d*rmmRy<IR_=K0qHl+u46Sl0cA&$?=Xb*6Hf{>K9>|Dd;3*&-8M zS{`6Ia_ZQn6&6gHsT^2WuDMSCgZY=6((~-}P-A9$&86iEY{3AFf#tP(Bh+Q0><Mhq zTv~cc&+tza>KH^@yn!u{{V=8QD3E7*VEL8_x%&CnsHb~w3pOepH2qJ_p2DSt51SNG zz2PvTuiAa#32b?{K>f3}u|h+F=v}Y=2h%PFmM?)u$m7z|1Iur?=3nEl7dJXP7I10R z!Px5=%)gpoqU8dXgHotbdc45$^>C?wR58q)u~?gbxdQ9p=`Y^!!}EB?$SBzV@dnlv zfBQemD<CH<@CLR(5yUR_6PS?&ru4iWg1}w{$#V$ojnRPRg`I!JB^ac=LGfgB1@<0- z{s-kKD23&4^Af=Ft)FpVofg>Qm(tTGIZd4cXQnH#mnqE{W3c`?+*SYhpMUkQY*E@f zOr)bUyXv0~s9S#0T<Qf}TCD$ByS$S@z8ZRqL|`2UwxIsO6s2mnUq)eqnn(Y`^-rGp z*Mmew?Jq@%z}_{QORLcHul<qc+}N6SS=9o2#r(@av)e)cgGih6CtZPcf%MNiQWQsP zeEd7!`4@&c6k(C;WIKsn>KF}V@AFU!QU4T}e|;sd?)Rx)|9k}R&}Wy^kp@oxnLS^I zS&24{zAge=5ZGH#|5K@SWmwU%+gH}>e;OhlYjIIyCOJ_5ppFWxe@?^_l7r#$l^nXj zI*HzS@-jc+{B>YSYYREX7GD2T^baGv?IK5NSBA%>g}P<HVu=HLD;O8O5=DD>{^iv_ z=c|9FSGHKKFl~n93#{w3x>zYV*>6<uVw5O*S^t~<_0K6FsL7SZ*MR=HK3wXoe@4!A zuyuYKC?%+WI$(^E-=&pT|1&<)lB|mFk?eJ8VF*7e1dnCVKW{<>eej#Xy1<qu5ANLw zKxt;=hW3UYm-;NoTR<yBNMvdVVg7~tya=pw1-9ttUz+~8%C86~w&4IF629|#cm2b1 zC>r>CI2~Ry99vHpxYQ4RJGO*xO5y!t2<!zff$IdFORE8RZJ_j2#<N#Hzm#UC^bADA zEC3h$=c(TMr*UERKgZjF(xaxs>I^fJOaDC1{Pe3t99Y)}TTfv9^XHuLmnQyPxYRZM z4@U1?|NIR(>tdZtOW*&|^v~(=ZK408eLU-bG)i+SM%7`Zn+!nP$B#?P)&J?)#OieY zIe93}jqqr}l%7k_bGQRr^31>7fh`-KDPgs{Ki%8^nV{)^1~)AbSeJaNIVe4ODa|{l z1M+DjyI7m7e}3fpr&US5HXPy{>H=F_{U0o$Jb^9jQcuZ4Da^$ss!E{K;v9<lN23(t z_Rjj}@z{i1fxUv#bJC-Kb_cec21SE#cQu-m^pxfsIEoWZ<;spjcX79;{@FUkfB&bB zu!AyF)+v!LuvgRnEI<cQAK2nU|J?8z^9dMQ>M*EZdFvktiN41CYZ=}sUtnEc{m)0s zKxZJbT3s%6xBl6rQ3^lA`vh>QqyFg|%m<NFSO9}T>G9~FvC(i~ZzEUzv%)W>`9u`s zw}?+hZ2rKOqLoqh^g#Vn1_B%%rP){g^BxTSxaSad&Ts;y$F2XV1F{AJdt2h!E06w1 zSN~{~!j&Bu{?%E058FqB1f}P|#*fhdnJAfJ;?OvB1-9rZg}VMv>l(N;XrEZysw=P# z`X4;Kr=B~wxic=Yt!V`*&7kzS>YsLP;k7i7BZ_x7ef?vg40frz0_$A;pMWV9$+)zl zXex+uSmhkp`=drFL~X<VuX?C$e)JPqC-gu4UW{Zgo@1sst5dxx6?h2az`E^d7NP$W z!2dN7MpeqJrJYrWxBkH;#+06A4N3K_e|D!-oU6h6)H%L1u;J)j>gXder8yCIFYf;o zR{s+OmYR(mEkS(3-s7Saa{coovH$DHjMpe2rEq4A13wBo^#WNDhxNY*>`grm(zcDV zV;RnXo?I8rrH=j&ZeHwCk3q+|K>tU$)Y1PDl)@fJ?p2}xKSLHiFnUTMgiW9nj=hP< z37`HiK`CVa*93zCT8gFORI%P-ye{=Z_kTVJ0%OH_Z6ROty1=?pDBc#mwD38oeX1N> z>goR!bg6d-nFZI%iA{XXJ8ug85BGm?7n@e1_Ml&I7t;sUx$2+KTYunjsrT-H;?W5G za~Qvoj?#<-Jy4q0p@lfhw@clne{Onw64Q^e2G`_kMA!d;vZ$O!X=ZSA^MHZ972vcc z<++)F?b^_b^7MZ&y%+_T`aV3Qx+#Ue{a;-LL8Rx8GTz6arxYSXm+PNR2>!huQ2+BW z<5z5ybFU<>)mS~H2Za#)Uw!vN>H`0lr~gw>|GZV)O%?1^4D%yUdR&ykJ4A=k|2csc zYoX^~MSJ4=#3Hb+7`_jlOT3h3JdCma`8SvU%ZL8i6<DY6-eFyGaH$~qc;;U$UM=MO z>q2#_-GKSmlVJ=1(#^j#{d3*Fi8^ic<x+R2R5Tfj9W<B{CjQe!#qwbPm&>L8U(LTN zw?VyNpyJg#MDso3-7<~c^Dl#zQZW;hL|0&)FaKAihS+-KC`x>@l+Zu7=Od(CIJk_D zkj1NicJ+Vmq7VY5&`1AA3#^-JGOOXEQLAh7ui9s2aPp~4!_|Do=ISWTg_?hjc>^Ut zbSx-^T3|2wKQ~dHg6-37^BBgStKRyjDbWLs(&NNEF2YM`F3|sZy-PB-r(lW!j7gDH zEu~`LYgk;-l)G#3%h-ERw|M(M*n9S&{&`4X@4zDrszLt;rxzFc?j<8@p4>7TM^i=H zeEXXWC%3x->o}!?s0R8!4c;L7tSS0GpcMM@e|5*6jC<6H&3GUDD$W1Zb`uw799XB| z-wt}~A5>P{|2cyh*@_8;^M9p<1Cyqb^8GZR$6`r!^?!_+Vgpb9s{Jec89GWc=&M}+ zG&Yc>;fH<v`M;`M$0Zs{lZ%HrvAWFe{tuuPDWszQ;Y~j4BX9o)LTm)~&P5><X#Vvn zj)I-%U&~O~WsovZq*QceQWEMP6DWB2`}aMR9(csK{yE_CfBBw&U2bbnmknh_V6S`r z<-jFjVE;Rs8QAnIJU2J#{m-#HiV-M<6;wQC>H>RzM3<i6H!<gkz}|tu<oIS`I|_@X z*ymRJN$G0%nhnQgg&i1D1%bWa^w~F~vAB$(fBs(7|DygGxdIhu48^utXA>Xl4eV`$ zyE>IApU5AI{!e3=v^K2ni~17vhhP8K!WZn5ROp|>Yzk?V!jGEZmrAs%|H%ji%QnQF z(seZm@L=el$KD7sw%7Z=CKCMbq2W0qr6MvIpEh4Il#M}CN<sZovTm{2Xs@)+2rFh2 z^DjW!bo!qkhXT0@|JN_;9nZ)RRYL!qC#4JALSP0R2bKUf>I&@LSS$%=^$5Vn_Su=4 z>9j5gg?wlBe{s@tDoIRfHlS+4nHQ9vQCD!DMEz3>7{@C4`#*~eiIn~O^$Q0j@X7F< zFX4Msv}AAGt{M^13Fc`o4#$sDHT;)DreD8&5_^vW9jn!Y&+Yltp&DsN1(3bA2V;X+ z+WX{*`*&}kqeICjCybZzq-3*`q=3>RD>fWgytQq>`3%tW<WMlOu3-KZ6GG?DU#TDk zg;PegXNOAahenGfHiIdJwWRo4<g6_EKgZTvo5?|8M0UGfQWu1osn6d$|Dy0X#te3l z4AJ2UsrU#(Z1|{KD#lN%`yE>K!kkQ1U1x})Mg2=SNE(AfrPV+8$1qk*;`*oCre=yn zGnmrz@hTJFP0wGv{l+;yQt>)U4@&66D{-jock2xzvy44#o2okHaErx$Z=Gr|2AliT zz|MKTxG}kYrV2`Ph%xmXr<2Q3;jsuQPJ9b@lyH=j+a`y~XZOvU2aKbU$eNTRWy-)& zR<RO2u|3FOtTSvBjt^LkaW=%X>@*ZF7H`Y40x(%2DBPBcb1{=*!sD&<`Y*D{R*h1l zNTx=k<s>Upx1I^H+HH#Rk_296>ffu=RVg&soHgcK2e6jtQ7TqOhT-XM369XWIETaU z9;`0Q<tp2(nVCvAY3%Ko1S@6nr<>#LbOmQOmQyNXC()1W|4Ot<63uBa^2V_vlfdgQ z!t<}|MrjF7UQQ|Yzk^$wjJHPpbM1z>dPV&+_ZHLNG5<O?T9S$jN}-F=1OL~p9E6D4 zCYDtu(}hDNEXhulZeI;Ev;O%3R!}wW|0roeW?O>Q3jcdp5lgJq`Z@gXPnKfFs3gS& z#l<FXbKr;BVq?|$>8eKQi8>2tP?KnjTKk+NC62vO&1yZbh6WYGzqEHq27?il=5HO? zM858{d0O472Mr<h%(uqyA~jel#^Y;9!MM-HTdlborRU2=I4v|zici8c#fZO;t=C0K zOE<`+8chg)#epAKrSq0|N~*FnH!L<qP?|pnW|Qw#2bOl;IHED$+9>?*b40b{q7>pD zV-xeQpTfYowCd(xJZ6o=W(NI_WHnQBb&O;RH;;-uNpBhCzmL|(H<P4$&_Bm3&a{wn z5oSgB-$U!0RV}5<gk_?f-ifa|u8tjtbw;IUBd}$tG^={ovfLC*$7L92$#|LPU!%(= z*%Sx-@Bb5HNp>i28iMLYTP$_^Nrqg&O1~HWug+B~#wIs&91b;vVyAK7kYoO}3_xB< z8h+_u^(<mA(Y-23xUxVoif)qviYiIdOP4!r!=m^pq;fUv6wT8?i5^#0(fscQD+&)R z>MmQ~Ds%T+oI^M-*#CZvw_9!gH3|H5yaN8O`ZZB#>gQjmNg|s#4BY>zSx&|Ixnvq= zu`~s|@p_cmQ8SZNgM1Hw<1AH84=z%LGHu(y=MHa^W3_*-$|j>d(Q5w!*QkZa;Z)&& zN2*EY&`LkgG(^+X5NtGff~<(=KP(EFCKS7cTNFvfV<_os`y@$fJ1-`QxQWnVMdf&_ z{emQcQdlNgp(Cq;DpS%N1^#zKlUQuv1pj;SiVnM7R<{_86ay|Xt_Y*G?b6sQX*jF# zNoq3(zDEr03a7NR5F%@`0~VK{u;_|*Y;UapDKT54G!KljS?%z@Z<$z{tn7c^!LU&> zsObMZW3uCDVwbh=1*PzYpk`@-y+{O0CAxd#pX22KIVX`)v3CUr_M$OoNlI%@5z)BP zkkSR}im^o<MM3=&MZJF61xhp4ZEUo~_L76Rp5q$<$ziPjiE>QlJ3ra+4-_8UhHM|k z|7tXZ+hT1vV+(`pRZCGwm6wDRvw%`q^$<4j$(&MgBr7BsJB3{)q;zfRnu+-rirR{n ztdY;)l8?6YVU<w-RGqC*v-BXc3jNQSppa<F-c(XelMOMpqzs26Ei{}KbSQ$?LjUu_ ztRkhG$p);=>}4BqV+xNYOOv^yhMe9J6>iCzJNk`tK{ogNiw~LIASi{oTkQC-pctf7 zd^Y~>b)*d4BBnIoyn=OSmnc{Be_61|O?v-3p54?4sn+Y8kW%r(d%TDg#LY|bPqrb) zs!B`?+SMY%F1>{T2Z9<PgECTjXqo4tainzfujg7)rr`f{s+5T)4Jggt`B#v`nuZJM z4>AAhx*;6EZ^uW21(r1d7nJ%PQ<~qIja!2pVIyVzs@Dv1t*~T`(%ck{Ei4L=QqfgW zf&`^`Jnr1I?u`p>N+D__PU+f->nKxE`5a<1%FOHk(oqWAwIg*bjNY!43NkagRh60l z6P=(qwuOdKwO)s_Pko1A5Gy7B`bW!mN;DO{W2AJoEX%M_o&O#4Civf9-wnM@Eju}$ zl&IO8`RgA~O4oBHv-78Kl{6_BM}a?-L`rGBfuaT#_0L8S)ve^XjQLk2aHtNQ{s)?} zc3*Y*cqq}wb^YppmYU3&U5~E8y<DR-Up@f@vMZ%@CnxG@{U3xdI57<J@_!71(meVa zKtf#qJbeC@dde7%?JeHw{2T|IQZJ(Z*~Jaj+2mwOVLS9WaC$kV)R@X=OgH}uCi}lg z=}I!V>K~serInt?6F1f!^%4H}p@Phd{?C}3atdF(#QdLXx45E@sSW+l)1Wjz`EsH8 zKYxjRMeu)c$dk#*DP8X&#shPS^S>>0Q3^Hx*G4qRb_UY_v}-Eic45Hd!l)c4?i=uU z!T-Kv3ZVLws-qMVG5_b4TAKc6m_PqlPeytg2>qWbb@5YiKVnMZw}11+JM8)$P?}eA zN(IJVOetJm1OkTu^RGWPhJ_-f!Y)!OP+fCvvm5o#*>QYYbSV{31abYd5{;zs0VsvX zZi3qk%s5jDvCW#}Gd2JF2cTDL`e&E^2k$cx{&yJU0#llqQW#VmRYs<)zF(naxJ8{I zY4y)~zM<6dPzuLlmll*}V0-*h3VHrjB@KIgxE-6TBn?2lO!Y<mBMo4Uk$e7?<=h6} zIw*xt|3Sp{4^k>v|6Gv&v-2I?R}U=hST2dIYc3vH-T#N>D7@9<T1v$_=zs8q-c4M8 z^$a*d6Mdyru>KkPpB10t3tc=?8kLpM|Lk4C?{lB)AG6|A(uMy$+m0p$=3lpLu9S+| z?v&De{;!smV{K`$+}Gv)&o}AVPFVj8N;C6+VC`c4^T+762K2vQ`h8__><|{O{s+?w zrZnHHPqh8bBIUIHk52#N(LZ-Ci*HXl{*OURDLo?5u>$iiz5l)OZDwzG(dmEwJOBHO zxYmNm{tNrxh5n}`(U0K&d;+nMFaNua(%jg@30zNc|3~BhKyQqcuDbn+Q2zv&f4$jA zQ6$pof1uJCh5pYw$QuZdQo3x+_4C+qXsTELgTX24A46^#cmKy9rFj|d;oz`&{qJ}> zeh(=X_gMd|)jyolm5^a?=1>1TB$u}(n(Wp8lqBVOq;ze;wCr__|Kpv1<>~*l!j?g5 zKTk^6AtDD-x;j8X?@j5-qknewfA%!O-B|R0Hq93EFBku3Ci*s;K7Io!6(0T1iwirj z|6SBSjpx+6z(-2Q|4Bp)2>L&*@u2m_xxMqf^Dox_==INA`A8``{f{L2Ke-Pc?tg#( z4?aNbe|M#Hq4x|*bI<K)It1V!LjT;F50F;>^gGV_A6z%6e@5T{_1X7z*Pjcdw7d1s z2gL#6`p3mTL?y%gpII*ba~}PVp8qpK93WjvX(Dm|r)oQZfF8pC*~Ujm)%o8w{ZG@0 zDmXa-`G+gT0m`HQK}yBbukD01Iv@WhU;iiRX&fNO-~R#sP)ljYxCtqxvv7d?rnC$F z&xyC2VFl?Z&4uOvtm%*aU*rF1l;%X9f5HFW5u}a$`sd^9fA>(Dze8s>kN!uZi>{PX z+=uNs*6ovp|2;4Nr~Xi`f0Euo{X=#yrTH}?)IUp~b@|`@>VFp2z<r)n-TbSt`sc&k zN)-BMt^R>|hgkp9ABB(){j;9Zyt0VsVSD&LEbp}q{^uS8BEQN*Y0l68>3%}xh}P^C zgL5_g&$)7>&A%$*AtCVmt3DbYg#M2wrM(u)gwavG+s;Lq@bB%Yg8H9+tba!RbA2&> zD&j9Z^-uqLT1poHkq^=Tm`X$cgHILxA3<sU1l&SSDTPAHZ%T!jf8AY!Pc>`$XHKaY z`44s@);}-AZWNHxeC-eqUWxKink{%ZW&hWC8>zneKkoV0ESCM~>z~nut$zk|!1~9o z?cpDm$Q^_y6!_o!*LSB>B%uCb{ZD>MbA3&y;`M($Ya+EFQo6o|*}jNZ|5MQaJ~~x= zs#pJ92I9<Pwd<HEO;%C=Amqln`Ofu=h4g=&&&Db<3jY`U@0fqx<EK@VR4XAP8;1q` zAJjH4pJn}Xo|JYE|M0Kh<_m#`@^^cYQi1-@l7mD9z<@Hq5W)Iq$bLEn^ncyOa#baX z{a<h4nb_t3D)|Q9MouKlo%CSnf93!pAU#C?a}$SE_`hnN^yq&Em1#z3!zSYqAKTTR zKesmfPbm%eol-HyY%yk%y(jjaCh5liv64)B{^0=eFZBkq{+UzSp?|(4{t5g;kN$c1 zH2$*=E8HoiThlLzf6=E@41AkkGve|eV*a(+jPIR;`BzveLjNZLIdkup^Z36y1B9qg zsaSxymCpZl<076{PJ2^I5jmmi`G<M*KMjo`w57gN@PDK{{KKYDkRhcsfBjPggRBhJ z|2)y^!-V%={eBvN<@<H|=a+gB>G?mCQ3!eJpWP;@thTzK|G^vS{qJAnjdUsP`RkwQ z*n~X#AEcDtckzFC{>AmrPKjE${a?@T$p*1Fl$0qkMXWOI6Dbv1{j>Gmy#BAv6<qxv zZT{8Z8j_lH_0MOGWzx^T=DkOp()BR?^RBG<Na^DF*UHZWr&Rd!zwZbyA}g7i|I5w) zd9i^4&)Xye>H9w|e||zW3jPoD&qDw6<=f8YlPD&h=U-W;ME~cPbyrTAW8@SkQc5-c zq0m3ida6$!20`zm@^#Fa+a#U-CsOW}YMqZ;pJP&(TmMtF-0~+T8BC>0(d@Q5{_}{? zm}*J6q-<gS&pu86bIn7z_K{K%G_+6lwr!KBB(+(P!u_9;bqAd}Jml3W=15%g$upi& zBO>agQ1)+sa{UATVN|-28kA1WtAGBSFYN67UjE^M#e!{;hyUE8f<oEwf4TWT$2XL! zNY1gR@Vj*S=g5d0$d7{Ks15&zoB#98If|rrwq#0q^gmr2nVlN{$F2Vv-F+(fPxy*@ z{!i~gPi%iP*iws}C%pAf;;0Ddd{eWXQXc-{-bh^P3Ps@e*e!S;PyJ&lioM7AD)ydw zqW;nJ&riLC=2Ml9s|Nh#;vbH??U2z~tVrkoV*i&br2>1ni}MZr&r8c({KF2@ElvPb z_4=Q>rSW|zTDFq?=5}~)ZeG0v{-M*Mice3)r|bGZ%i~^Yj*sV*E;s-Ae#vGA6Y4)~ z`%ZoRv&x{5vokhcJ^!%ggUoFPQ)DU3$nNV>+Am_fL&_5*)893_kn=&~d$(Bs)4i#~ zKzC~P@#uf*jMDf&#Xih-<V~sQHqJu5b`d3cQYzLA>$?j5)Y`S{VE&~`Y5%lHEwcTz zP3HcOhyPr!2+jeSq<G3<!i(tt!2k98Y8=+oqpE>Zx;*;l-)HitZ`1LAo;)=o=dd&x zB*gY>yeSp8uOhf7sWoa8eM;Ao(!D5k&ZHpH>wj*R!AbbDNCKsn#ecZ{UpFq|iqNh@ zeM)Klnol6n@tU;1p#MGE+)P%P{|x;z&%dfRTwqZrO~Sql{ZB0|rHkvIU13EUCXC9q z%Br4!_}c=U15+s4jkrS7g2U(&m;R?6+Tc&*hP7?k{^e(yCAX|q!)Cymp=t#KAO<ho z<H~>-^KHF1H=Ypz5bO4x<qU|U7h+>$4;?y$00`thcrqZ6{(uY!EdWAGfAB;<G=F;w zA|Vg}fe(B9zsE=5f7>JA34nOBkO2^F7CG&>l|MWHqHRdgLIpr1fyF8pG614tdk5e5 z(EzECTDSlR1pyFGwm<;H`oac4RHoVQ&Hpa~Af}RI!Q@8?fKWrFI*%Lx;Q$z-n*DJA z1PfsBeE&EA!beQi;{XU>F;$NPAUq9_#{m%A-|=C9dK>_uZ-96KIE!mP4uH@Cus(Pk z0Fiy_nW;r9we>bY{;v;!$oO9kfWZ9zQ3D{7vK}b_!unqXKnxh=v_GQ-K+Jli00{Nb z10c#LJz@X^JxTzC(mcpiyjC6MaR9{Q00@r(+}8l;aR5Y{#Sj2%1}J?1*5d#OuK-2> zaA1IX901{oDSsRQ;WGgAaR7u%0Angvt&c|llhNaG00awQ{{ImG(cf%)v;YVN0T7k{ zs{n|4EoMJj00bsV=BP&xfUs_V^Z<ydHV%L&_Wxx7MEOSyfGE}D5d$E8$H99X0CC`J zy#VHM0EEu~(8mE-d*>;WV1QcvH~>Ot0M`Y8J`R9*8~_nm0Q@)rLJL553t&2Jn)>t? zj{_id1}Gf>aL51c0T9Fi5G@Y>F9kphI1Gg9e-QxT_<ubBVlV<ARzFGrM6)0!jXqic zL`IMQA^@V-x<?6s$VlFnW(bk$JxTyXWduN2zYBgG0HGP6PCX8Q@ED+60icfqAU>)! zPyldr0^r915XtlP0KosV0wBtczw@s|t6>0t0JPirLI+?W0HOrUO)LN|4=*(Yz#M?S zVO&UUp8@F4xD4P6;I|$hTKDVy{sG9Hz6C6T10ZS~L+StmK)nFuf(EFeXGj2WZUeI5 zH9$Q-r(giqmg%KO78Za!HupheVguBin&n6>ya7rB;NZAqumQX@_!jvL;9a-m0{|xC zHEaN%uLYn72*B!a@$gEC=C+*EVc_pt0J_%ze!1HgHh}8@$nbtr90DLp;<yA3z<R4p zqY-fB4LrGXd?PIY-3>t28^F8X872ZC-favE^YP6SZ@L1|3k5)Kvnb0B5Fi2|%uka# zEvDwHUIX}3Lo2cY{B!U8t0cUapRfUH6U^Z{1GwG*HNDDkEdcBLQbdQAciTD!xewKj ztkN5x3Iw1(z-u@FJ<MeQ*BPL+0Ej(a0N@LF4F_N?g-P6N03Ry=I0i2OSs1`~<25zL zH@yCrqycbl{&QmMq{x~+10cZnb;1C(^#OFpfeqjy0HO@wehp^ydUl3H3);KqUtax> z-T?mV=Mq&!0O()85oNZT*>I-U0FD6kZ7_g)1JJ7<C35bZ*{CBth9j?>WdJe^Pyiq& z&Q9%-4}d%xD~JKea~t4n_%ndJ0<e~01#tkn2~Nu)Yyj`*3c%7Cpxg%V$Z|LYMT*LG zb~%Ls9L7N#0LTE~AOPJRfaM>6T%}hssXuT4gk}JT(StH1n2AclO!VwGl~tmle;*3~ zK>oUY8o}S#M;O2b0H-vmN4_!3?a2WHIJp2g{s73;Qq<E%D*yavZP);g0Q3j|a1fyu zN3kz_QYRgO>`U|pa902X0<bs$J*?dF&gu}eJ^%}8=Nqnv7o|QYYdoQjyiD750306x z<eJ^piE60c03J(@@1{hR(f~L{Edc#A18{r>pnvcs%?+iCXO6f7AWD(rMT#nwzy>Ie zP;2vLrvqLCxUT*Y2Jl%+X<ev301LLvll&lH?Q%Hv6udt*Uq5#EN>2_zM*!AUw*l%} zZw4S&UbbGP{h_qf8-N9(f*K-Ku{w)z06Na4wcD}WTSM3Y-uuL{0s&aZ8x0SVchuAe zppWMZ>X(J@NsjUNZX3vX@?=v506_ixE58A}#jR$vD~MWo`#<0vR{{XACvZ2{GytG) z19<x{494WHc>u`Z&CICYe+?Y+&_4$Vz&iN6LVpD54N!#!;0!txY|QCK&iWn$_*D&n zylFI`9&P{*2VfNlK#%OMfFT#AGk{+%yaD{_Dwfoj95Q(f;I;b#m%|3A2JmDDGJqHF zzt1SI3r!LF9|qvC0Sdg~H2?q(B+?n6ZukHo$FxzDUii{F15_L-eGmZg9&pEc1JpNt z53R`yz*!q<w$-r10L2DyEdT<p^$BIhj<_h%u$vFccmc>`H~`cgfQ9;J-ez#hno>@r zE&!|fWYjI_|CHZ>azpfgQ2#U<g8)#k0ZOZX8q5G@4}2n(thxX!aA67+0D2%4`~<Li z6gL2e1JLV(@4^8P7vKc<X#n>Ca9WqODhkk4R!W%825<lX0YJvKwz~h(<z=)0P;UTM zQwHGZ0?^-o*<!cj+goT<ZbTCo0LNATd;=u1Cje{fgM0uSUH_-WwBpsf?TCjHJQSoM zl@xCP`cDXZNBtA^I+0%kxCj6(-U&E4DOdaZ{~`eE;6_CyGyWXG4I%(b0C3JCk#u5k znNq{F00?&g=v!qv=L>+C^(p>5So?Et0O-F&OA&y@4tdl+1p=_V0T3PA;m?6tqUa1{ z`K1R(x&X)$DF7gUjuliRVEyy#RVHLb0|14;*VR7~Sz!QYh4^P004M+a%T@nu{1z_! zvJ}s#MRkMQ0KR2{fy~uL*-mZ4`?v!jJO*%m{qxCH0XMVrQljPEzjFs*p(5h?XA|DX z69C~0fHU?QU@$gv;2auh&lm070Az$jGywqc0^WxKfDZ%UtjsMRB;g4|`yM*|Gi=%) z0Dw~$P#S&xQviVc^^1&waD5L3;JE4^#9a;Syms($ypJvb!bknHRV)G0LTGdVoQ9xK z!vNk2>~%K)$9DkekS7^y4R{2vL=gbGvNr>8ZsJ=_DbcjsIHGgEF6>yS0IXeErxa`q zG<%mguC)+=wGse8)IY%8FaW0=aK~Bz#7}dd<p79;H}cg#bAp*Ayc(+`MDPD9r2zob z5%(Yf$bJDhgTt6cr=G&ss7Q`=D^LHR1z@2-ME!GOX#-;a*W3OBKo`DcRU9UA;C&pD zdW8Wv-S=!-f9;$^N%PunZg`y-fV^k(#+#R&-}$V6nohvC52EumtqPeK0O$eWfN8_} z=O+;5=`n!+>ZAVo`8^ZZ;K@-6AR&mi^wd9{>JV`N)_+h4y}ZZ+0MrFQ0D!~&pS~;0 zTdcUi*AZx>Sms^50ayU?R4z>Y(|9y?*$`S9tU*Y7?ezp;0Yi%VXImPuIRWdRyCcsT zjAlDI5`hRcA_~O|00d;=HU~g7rH9o&T}CNT43}>ScAcHn54{F(11;){`e%+rIlk*3 z4uF6Gd?x2On(6%SyyGCiq&f$Hvj1yf>B9QICW0THBY`Rm^e-sMIsgs;P#wM*bZNtI zEQ;O;0KHpJ7XYC*fFF7R`>hd~eOMF@EdbP2|Cq?m0ifqWEi8Nh)>F;vSXG&(mljzf zO49ob032QHwda8EUkw1@*`Gm)I=GqvIDP`KHoPHDZ~Jej@okLOxdX6%oCWURKmY&_ zAnr3J5CHK1>Fms-qo}eleyh5=)7d&r$kIRvjYen?ut6k20u+cd84!|@01;Ul4yzyr z1~6d>m9Pk?Lyn>-NQjCfZWtCN8ZZ^aK}8|B0kTCAL<B)aM^wyw_f>Uwfgxwk{Fl>& z>eQ=OufF%)Ti<VN6|Qc509%-Gh=Prw{ALUQMF27aa6r2G+p2COu?RH^z*@HZJ1<7# z<Q~b(mpAkRI0A4W+F1W!*jJ`6NS%MR{y_lX)d4uTybAQs=^Q>Ei~a%Sf%Ojxgj%Ei zPtGdj4I_&0g^$+r=}_4JnF38vHRtk~TMPhb&j&*RI7R@V&_4iR6-KLw;4}Rnfc40M z0KjP-_<~yk03!ea-FkZeGccPh`bPu+9)9cL9%cZ}j=7Ru+SS7d06h7@ldasC{ujUb zn85(vs-MptshTVF53+*+0R022^#2-w<7v_w;l>?CL8cl3IA?ja#%8K4vmLXSI)?op zctjk4+{0%0KO6vf`|8|3`9IBPX|z#x#rVA{CM5&V*9<*(2oG2v0suFTkPvU7uNfBf ze=>{!z;0OP$BF<P695_t0EGS-e)05&DaupbDo7x{JU&tl{Zn=?r%UdbU!TOwn+X7A z{ezIeRQNxzH>?4GR{=n))A#B8WQig@E+FO$DP{l;r+-39!2e0Wk*)p@PClpgZ3~f# zQGUk@@yOolWCB2i{}T$pF#!;TT`&qb(4cj4h8PaB|Az&00(ob5xQkb#ECA2}06o6* z;TzM5s6`q_^D_Yb5|E(KKRcJiUEh%YY4(Fy%$yx>-3tBV2nOIpdpKb9+~==LPPa<L z0m!ER10D5OL@RIra(bfxtW>o`aXWAvO~nfuA^@lUvVy2;FKHYAi06?RfHQ+N8$FoZ z8K@Wy0T?S<^;u%}KLfb=LKoe}0El^J0M3{FNSl~l7L}BM0OSS%5JRH<2tb}9{GW6E zRrRhd6Cx?6>T%XT(To$r9|Zqrpcq!+{}cd9=%BQr+cP%tJs%3dnfMvzH2B`B<nFn; zE5Tn_&jEnNxSLZz_EPVqD38ZoaW{~`F{C6T0QvhbV<;`;|3s)Yx=aT)O^nb<<p4li z7D;NM0Dvxdi;#(90f25BO*>2C>M7alE3Ly^ipcc&;Pw~+IH&U=j}@2mAn-qu<hADn z4E-~>tRI5-_eeDM{im9JtdY&|f7)g{dC5_?Zut8%oUo;DWdOPXz#_`q<S3x>mxfWi zyfiTy`e(D<hlQ%Vqa@{@i1*~wX&L}nZAec>KD$Cr06_C4+2(X+R3N}l=${xBk3RCm zc<Q9S5CF~?AKrhTOkgizd^H(f2tDyI^0aI+{zY#=C318Ed0ZMt;ycr_s94gzu6_2e z6LEsG$R6d*(rezvKlx(nvq}TB5WfwPQ3lEf#itnnh@YDIHT?Dh4WDR!B#0wwJT0%H z9N2sD{#QUJSA;V4tAqPb{3QyJ;$8r-{<iXl#Fz}PesX{m*~?EkHy2A%_jbs&7XHuN z+3p<dZ=iqLv=n!i&_A;fUn@s30OH1Bd}nzL{qyO@@rRM)R+$ehK@I>A$iqs@A^p|k zSe2qZI%%|PS>lbo{JKW(0suj!8bZsTw8!KD$MLnI^oz?wy71&rus`zR%)sDwdawZR zL_Ry6b>M1BQ4zivF8~mFi6XDOsck^T#dISfy$DA<d&utL{C!!LcdbayhKiHE`M4=g z3<1cBBh8Z^&}0V=6yaA%mE@QLueXi^0Gr<FQFTpQig+=<-Wp7Ys9p&wjnR?R?s8`Y zRO-Ld5#yYM0GvB)Zc6Y807M4Dtnp6>z*!v6Kj7)*R6Q!;I<x*+?!`46{u<|vVYZFk zE&K9S8ZIgEA^>?rWr9*Wkm>*cEd+bX564wU0J7_4oQ}-?&j)$@g9U&NBj`s?2rBJ# z@9LQ()x)ru(6R28sgg~p1pxi^V#Im1#mc8kHhD?Ywq<Hf37iH503Nx7^jri04mzsJ zGQ#>#8~O*qh(iCIIk4rvn>0SvQwYFWM|PY1^N;7xw<;%;$dg0>&cXylaQg$2CP&6N zD+-#NC|2A_Aj<`GnXXTCyYu76zyD}Nd>Wjb33re^9-lOAi@(S1r3(lEB)7}yZy&(M z8UZ*%hHE9bXA!+VCvnP9a$tG8AOetU;>C7|1CSFjWYz#2NRqps?n|+WZt~CbOy{Mi zYdz$#I_|wklhrI_{o}9q#o(?}PuDsXGXT($km5D~5Fn=Iw@ClaWsge3GlC?Syfis| z8tw>y;P5-YcL%70I%IgM$86b_k%KFyYf#|+JimsUjs2f&Os-2m#5%qBiXyUmd>*RB zWleQCGnQWP7Q5u;x6V6Q%VP)q<I`x7J<_3S`WPhpI}`(e^{6c=Er1)70a)+ns;ahk zZRRYOMo;UQt;>^c@vD-?@4w&sCYF^K+@k+^3ZlgoX9gaN2RDt|vmAFHrjh`lC)e}F z(?^x?e@5AG`~6}7&_w_s;lU<n%$_G{2tc+Wb{yf_lA;v+@%tsx_OF-lWP$&q$iu5n z)%8LDGYA<tRS-$BP+`5)C27~PR^9-wPxkm2Hv#}P8}jaRF0`&evOa=#DK&GUjGZg) z%)Z5v?DBbVVmLT%L)_tiT(-x1XcC?t9DuCkl;ftOq%==$jYiACQlL^D|C<3=k$2W; zc8Yi7h-9;OjPzvqHGrJ$bYxK}>4V6bKt7!q0P&y;?i02V@>9)m3D4w8^@;<3s{uft z)=?j$%T8O2Q(ZIkmEpD&?te!8tJ0<%=~+QK>R*x%|Lp?iWDEk3f2qJTJcBf$f5^x1 zNqxfJwLMzk8Lm$X2OxvU1^;LES&|hZfGDO(wkWJGy83`j525~*(tV*4>B#XCVWiy3 zi0X}`&;IV{8_8Zosga#NSl1h}N0Sh{ZvkM9uAXO)NuYl4E-e0!E!vAw&}6x#Lq(FY z8GwA3T7yT!pl7feVObISXYeVKy4h3e@v5n$mGw##e~?U~{`Cpwq@7gMzs}_1!G;)H z06;f7@B{Quu>J*WmGw__I-Z>|<a~F{Hhe8sVi)^AI~T=yv<gi!0|4LXTw)ghtU_x5 zAOq0PH7k~#k?|>BUFe_tPV60dH<sJC=C{bAKqaR1KOx)Zbq4_SF+|jAq@4i(Yxgu& z!%)42`qwdD-Wu|M+~o`Ei>Pt`C$ln8uhELsNIVI&^_oNgV7>9kbN!=O`3nE1Ydc<4 z)$Db>i)FtT-)ZT8#$J@`UoT3^xKCF<Ms#)ki}jBgfV`FGf5ocvqcGdK{&gV$tQpoW z4nTeoIl=j)j^DGY^RRCG6_)x}2!O8adc0#D&UD*!06^E=e;?PsSpQh+U%L`#y8UbQ z5^$4+|8qai!cYFPd4)g1V#0kX0+6?*^H*G5|6<YUY}$Ur2EK3N@WfWH9RPS&d|!MA z^bh=>fluPl<y8LszIDBuU<L&w?O6aIZofw*I~n>%03hHRF#vs(4GU*^2kev^3qXGM z2B8!YfIR39TxUttzX~@?QcIe2ECfJ@(fkbn5YM6_hRF&bMcKfrtLtBb7y!ZkPp>Ks zDgzn`{tt6cuytYo=Qsf9r>Wc$0EjKgo^{y^U~e=K0GQZ`0T5Tb|K1le0hguq?aRUC z1G_^2ur{CMM1BT9m;uPmNY5_sv)B<!dP4y8U;y&4=dmHj%BSD8HOl1-L`%8|0PM;6 z`C<R37)*u{2QQ3yTcQq))xQQ_Lj6l|CwSC4jSf1J2mlBGKnc$p!~a<v*Ou#F-(z!& z`qxt^@9cjr`}t8vf3*P6!vV;jPPqw+3IK>m2s;4){Z>#BR7?FU5ndP9zufS4CNTi3 zxe<VD0iX;2C;qDvn>^v8OssAKfb~fsZwk!-z>n7VUxni^04oQ_F#`b2{vT@q;Jx1t zohr*V2jng5pE>{ejz>yk{R04~|I1y=G0_+Ru^Tt`#;KROSODl&04V&Q&oA;7gZ>Hn zKP`#4{uLc(03cRf699UMaU6B<e^~#p|AU<6k6*p78Z)Rd0D8NjTMGmLBAv-0|BwH3 z&qYnc@PzY!VEZrt;vH1YlGy(_g!)%Q{!iWZmW-e9OdtEsgUtj0YX%Vmutsz@01)i| zaQ$mlxB1Pltbc70ZjS{3iXgC}ltNC31^_E%&dgu{;MD=hfAnCNo%?@^=3Qa{Xe;O+ z_&?|4$Ws5>X$=4j*1y`_33Z^s{~55_2tbC{h5ny5AD{;M`SxWuTk2m=Ti$=ab^e@{ zB~Up6fc4U6ufYF_CGX47Kf4{40OTwE9|M415!j(XPHGvOzBB>o7$Ek4rowyvu+jdX zZEf%z`#%5>D^fFgM_joeuD4nLLPd=0Uq42m;%)*U{#5@m01!9EV}SImM{XEcW&qF) z0O$k^(9~-LAdC9f;^iyx<gTZeM;QRDkvob2hd7(JdHj2@jfS3UBmlV%1LUOAyzhhl z4+e<)f97EZ?KJ@C7cKhdm5~5o8TGHKHqf4Q4E~SV|6?PyY{aD*Cnd^!fc+oQ|5G;d zH|U=$>R-JuKr(F)1JGNMUSt43`Qa6+e{uhhZ~Ao>0D5Zgl3iJ<M%Dmim^A$UdsiC+ zK+OQ;FaY$$nIQngnLA<o7yxwi{{R5djWq86=?U-I^ndQ}1OS#9fc#b%0C5@n5bz1Y z0mu>s_P$)W<rGn`YXd-`e_F1=Wuc;Q{|{^*)<0_^$cz3T);|ou`g8x!+#mR=co%T} zOZYzvfJl{${vRAMEf)Z+Pyq7n@P8&)1CVE2&jW1f|1tfaV<15U0q70;KZAhaA<giA z1ON*J>VFNX8VZ3J)IU`X_W!uf_Q7RY(OLkoSpP&&1p^?~q93W}>Y0<R0m!=_2LRmw zfbLk6ehw~xH2^siH7)=k9zaLXtZ(7}Tn&H-)xY*J=Rm!p|Hnq2tcr5%a;*TY1_F>D zIl&}|4M6}p{2u`T{RbQ<)<4GkUkw64vjqtP`X?BGj7AF7zh+~A003PZ3_v~_1VF(5 zF#?d2*n_tA|4iim9{@mm0}1iwR@Oh)=>NIzFr<V^<);4GyS?y7qGtxI8#I3oIwQ6; zTK^i>TYT#e-yYvrT@C*ySpR~~39$Zo09JE2{|Elh)%`!4zrsji(-6`>@7+uU{o_jH z{vWP?jsM&dfNbr5-U2*SInmY-03zRJ06?q2TR3_6z<B|HK>aHWz%u)P-hffZKGKmx zX8+H?Tfq>2VaTgPTarHI;HL56`j-hnH}wztf0)9DZ#^B-KL^p<!vV<WC3>js=wrVZ zUi{|MR~rIgRrk^{6%!~7fT$hwzrO#zF$Fr;3cy;7j-Uh>)lJ$902c0ze}w{&8`3{_ z&&En&r`lJh{72}YA5LObLK40|;|ZiFYrB>w159iJuo~7s_te&7p1_9+1t9-?j)?H4 zb>028SX$Ebrc@#Tu&%9tzI+X1r}ilp`e!te5r8c84=3T*wW?c;&0$i9rCv;*=w{t! z0)W+TS<{gI=|217FHOdY`qx((Dgfx{|H(ZhsU`q@OPdlzL@OJJHXvMcY5ZeuntZ1< z06DCGLIA9h%c&2#)(-YxiXG~aN~i3ld;rjQ%)Mmv|5S@ltomo%Zt;<&{&jkv_{6Gz z4v0^z0IcKU6X+lA|C#ttj6Hm{-0D(^0T5>W%LJfbzGMK<gZgK5?>_+`{CNM%29|;u zfXw>m`hTO;Wa<Bz+=Wa4DEgltYtn`)52-e7ZDtUF71TfLuk3&R=^ms06=ed@K?u`6 ze@*y5hW_~)lE~Ws3^C3CETMl|6uIk)7e>aqsq!JlS6lT@Cv3uk{Xbm)nixS^u>KXB zS(*O@j$`Tnxm<`l@})2U{XDod1^{bCuge8Uj_<cY^#4#ARj%lLb^p)O9GR9d0L$oq z?l^R1u>Pfp{^ztC3;;R+5ZwPf;f}~F^v|z@#ry9K*1rS*6#B>BA`C!pO#cK-09NN* z<BzuV|4i8X_$~eLh7U4wpBuO?1VEqmN^4ya{m%>lW&N}FVG(!V-q1e)fcA#|x%D5B zh`X;P)vA9E-#Cur?&)Vr>*_2;XU(raojbmJ-RSzFKjLKCRTto7b1MLSgWu+eaCPZQ z<v{=z_dk~=cE|%})0+R&sY%!RCvs|P91&C`hxJeU+}jq$x>6OL0!IJyhcB}KGdMk~ zfa7;JH<zd8m)6LdQU7B7gQ@uLVN6Af{)ub)7k9aQ1pp%Z^@`Rzl`8<~u8yr`4FJ$k z|IdNFeu>UUCj)+J>HjG}S+gv?mI8C|!^WWg*%47df#0#dSp1(A=a2QFh=u@I@!P$U zx+s#o0svv?pN#$WC5xhCuM3bL{m+k@{XcsiZH^YzIwZbR`t(zu1p9wJZH9}0xcgkH z=!(<Ge%kDR9?}HsllBtUCrkg&kh$G%Q?AfI&;6#u{lQ4Nt^LnmkYuD96ZFr-&rAT; zl*irLRtH%C5W7cl(mEw#F{}7(r=0=lhX3=9`1UvO?N$K9wD~+Kxc`U!AMXFjPDR|k zSlSH$sHOio!Q+*+g-x%cJSza=?TFY^M6Kh3hx?y>gO>vaPKYjc(-VbX$Xc-fCwm== zcAhz{ZNmQ<`My#A>arGr^V&;!TMPge^v{g>Zq&aF{SyRWRlQ!LP(kOeq;Grmc(rDW z7W$_;)=zmaW0slyKcfG606+&Eci)~oEyu_P0QAE*Uz>6O!}`QgOu)ky0O<KL{`PSH zPwlfk?pKfY;k5fnq5hxuT4k60w%AD@4OmL$J1hXK3oWp#8okgS)<2Q(fAajgjheKW zL^+-Dg8)FV{_(a_5U0mOZUvwpn$cH_a?X@3{Xd^f+K*U`4p#j$c`-Fl;qtL=?SFn} l)T9c)CLHnB{^!H1rY%NlbgoJ&-=SRqn=t#Ii&EUw<G=WXUjzUE literal 0 HcmV?d00001 diff --git a/codigo/codigo_proyecto_final.ipynb b/codigo/codigo_proyecto_final.ipynb new file mode 100644 index 0000000..50c2cd6 --- /dev/null +++ b/codigo/codigo_proyecto_final.ipynb @@ -0,0 +1,2564 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "import seaborn as sns\n", + "import matplotlib.pyplot as plt\n", + "from seaborn import lmplot" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>t</th>\n", + " <th>vacf</th>\n", + " <th>vacf_2</th>\n", + " <th>vacf_3</th>\n", + " <th>vacf_4</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>0.00</td>\n", + " <td>0.893155</td>\n", + " <td>0.000000</td>\n", + " <td>0.005954</td>\n", + " <td>0.894384</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>0.01</td>\n", + " <td>0.867854</td>\n", + " <td>0.000177</td>\n", + " <td>0.011740</td>\n", + " <td>0.874035</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>0.02</td>\n", + " <td>0.821965</td>\n", + " <td>0.000701</td>\n", + " <td>0.017220</td>\n", + " <td>0.832205</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>0.03</td>\n", + " <td>0.758831</td>\n", + " <td>0.001553</td>\n", + " <td>0.022279</td>\n", + " <td>0.773162</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>0.04</td>\n", + " <td>0.682706</td>\n", + " <td>0.002707</td>\n", + " <td>0.026830</td>\n", + " <td>0.700901</td>\n", + " </tr>\n", + " <tr>\n", + " <th>...</th>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " </tr>\n", + " <tr>\n", + " <th>194</th>\n", + " <td>1.94</td>\n", + " <td>-0.000913</td>\n", + " <td>0.424637</td>\n", + " <td>0.039358</td>\n", + " <td>0.004982</td>\n", + " </tr>\n", + " <tr>\n", + " <th>195</th>\n", + " <td>1.95</td>\n", + " <td>-0.000803</td>\n", + " <td>0.426829</td>\n", + " <td>0.039352</td>\n", + " <td>0.004958</td>\n", + " </tr>\n", + " <tr>\n", + " <th>196</th>\n", + " <td>1.96</td>\n", + " <td>-0.000885</td>\n", + " <td>0.429018</td>\n", + " <td>0.039346</td>\n", + " <td>0.004928</td>\n", + " </tr>\n", + " <tr>\n", + " <th>197</th>\n", + " <td>1.97</td>\n", + " <td>-0.000768</td>\n", + " <td>0.431205</td>\n", + " <td>0.039341</td>\n", + " <td>0.004659</td>\n", + " </tr>\n", + " <tr>\n", + " <th>198</th>\n", + " <td>1.98</td>\n", + " <td>-0.000709</td>\n", + " <td>0.433389</td>\n", + " <td>0.039336</td>\n", + " <td>0.004458</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "<p>199 rows × 5 columns</p>\n", + "</div>" + ], + "text/plain": [ + " t vacf vacf_2 vacf_3 vacf_4\n", + "0 0.00 0.893155 0.000000 0.005954 0.894384\n", + "1 0.01 0.867854 0.000177 0.011740 0.874035\n", + "2 0.02 0.821965 0.000701 0.017220 0.832205\n", + "3 0.03 0.758831 0.001553 0.022279 0.773162\n", + "4 0.04 0.682706 0.002707 0.026830 0.700901\n", + ".. ... ... ... ... ...\n", + "194 1.94 -0.000913 0.424637 0.039358 0.004982\n", + "195 1.95 -0.000803 0.426829 0.039352 0.004958\n", + "196 1.96 -0.000885 0.429018 0.039346 0.004928\n", + "197 1.97 -0.000768 0.431205 0.039341 0.004659\n", + "198 1.98 -0.000709 0.433389 0.039336 0.004458\n", + "\n", + "[199 rows x 5 columns]" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#carguemos el dataframe\n", + "\n", + "file = '/home/student/ejercicios-clase-08-datos/data-used/VACF_liso_Hr-10-500.csv'\n", + "df = pd.read_csv(file)\n", + "df" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>t</th>\n", + " <th>vacf</th>\n", + " <th>vacf_2</th>\n", + " <th>vacf_3</th>\n", + " <th>vacf_4</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>0.00</td>\n", + " <td>0.893155</td>\n", + " <td>0.000000</td>\n", + " <td>0.005954</td>\n", + " <td>0.894384</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>0.01</td>\n", + " <td>0.867854</td>\n", + " <td>0.000177</td>\n", + " <td>0.011740</td>\n", + " <td>0.874035</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>0.02</td>\n", + " <td>0.821965</td>\n", + " <td>0.000701</td>\n", + " <td>0.017220</td>\n", + " <td>0.832205</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>0.03</td>\n", + " <td>0.758831</td>\n", + " <td>0.001553</td>\n", + " <td>0.022279</td>\n", + " <td>0.773162</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>0.04</td>\n", + " <td>0.682706</td>\n", + " <td>0.002707</td>\n", + " <td>0.026830</td>\n", + " <td>0.700901</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + " t vacf vacf_2 vacf_3 vacf_4\n", + "0 0.00 0.893155 0.000000 0.005954 0.894384\n", + "1 0.01 0.867854 0.000177 0.011740 0.874035\n", + "2 0.02 0.821965 0.000701 0.017220 0.832205\n", + "3 0.03 0.758831 0.001553 0.022279 0.773162\n", + "4 0.04 0.682706 0.002707 0.026830 0.700901" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#visualicemos la data de forma general, solo los 5 primeros elementos y los nombres de las columnas\n", + "\n", + "df.head(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1.- Una vez que tenemos el archivo de nuestros datos disponibles, visualicemos y exploremos la composición de la data que tenemos" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(199, 5)\n" + ] + } + ], + "source": [ + "#tengo manera de saber cuanto registros tengo?\n", + "\n", + "print(df.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "- Puede ocurrir que al pre-visualizar los datos, alguna columna tenga valores en `NaN`, este valor\n", + " se traduce en python como un `None` y en humano como un valor nulo. Asà que serÃa de gran utilidad saber que registros por columna tienen los datos con valores nulos para poder limpiarlos o interpretarlos, ya sea el caso.\n", + " Una manera de realizar esta exploración es usando el método `count` (aunque para nuestra data, no se cuenta ningún `NaN`)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "<bound method DataFrame.count of t vacf vacf_2 vacf_3 vacf_4\n", + "0 0.00 0.893155 0.000000 0.005954 0.894384\n", + "1 0.01 0.867854 0.000177 0.011740 0.874035\n", + "2 0.02 0.821965 0.000701 0.017220 0.832205\n", + "3 0.03 0.758831 0.001553 0.022279 0.773162\n", + "4 0.04 0.682706 0.002707 0.026830 0.700901\n", + ".. ... ... ... ... ...\n", + "194 1.94 -0.000913 0.424637 0.039358 0.004982\n", + "195 1.95 -0.000803 0.426829 0.039352 0.004958\n", + "196 1.96 -0.000885 0.429018 0.039346 0.004928\n", + "197 1.97 -0.000768 0.431205 0.039341 0.004659\n", + "198 1.98 -0.000709 0.433389 0.039336 0.004458\n", + "\n", + "[199 rows x 5 columns]>\n" + ] + } + ], + "source": [ + "#En la previsualizacion de los datos, revisemos la presencia de algún valor NaN\n", + "\n", + "print(df.count)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Otra forma de saber la cuenta de valores nulos, es contarlos por columna, ya que con el `data.count()` lo que estoy obteniendo en realidad es la cuenta de datos no-nulos y esto lo conseguimos iterando sobre la lista de columnas preguntando a cada uno por el método `isnull()` y obteniendo la suma con `sum()`. En la siguiente celda pordemos ver la salida de este procedimiento:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "valores nulos en <t>: <bound method Series.sum of 0 False\n", + "1 False\n", + "2 False\n", + "3 False\n", + "4 False\n", + " ... \n", + "194 False\n", + "195 False\n", + "196 False\n", + "197 False\n", + "198 False\n", + "Name: t, Length: 199, dtype: bool>\n", + "valores nulos en <vacf>: <bound method Series.sum of 0 False\n", + "1 False\n", + "2 False\n", + "3 False\n", + "4 False\n", + " ... \n", + "194 False\n", + "195 False\n", + "196 False\n", + "197 False\n", + "198 False\n", + "Name: vacf, Length: 199, dtype: bool>\n", + "valores nulos en <vacf_2>: <bound method Series.sum of 0 False\n", + "1 False\n", + "2 False\n", + "3 False\n", + "4 False\n", + " ... \n", + "194 False\n", + "195 False\n", + "196 False\n", + "197 False\n", + "198 False\n", + "Name: vacf_2, Length: 199, dtype: bool>\n", + "valores nulos en <vacf_3>: <bound method Series.sum of 0 False\n", + "1 False\n", + "2 False\n", + "3 False\n", + "4 False\n", + " ... \n", + "194 False\n", + "195 False\n", + "196 False\n", + "197 False\n", + "198 False\n", + "Name: vacf_3, Length: 199, dtype: bool>\n", + "valores nulos en <vacf_4>: <bound method Series.sum of 0 False\n", + "1 False\n", + "2 False\n", + "3 False\n", + "4 False\n", + " ... \n", + "194 False\n", + "195 False\n", + "196 False\n", + "197 False\n", + "198 False\n", + "Name: vacf_4, Length: 199, dtype: bool>\n" + ] + } + ], + "source": [ + "col_names = df.columns.tolist()\n", + "for column in col_names:\n", + " print(\"valores nulos en <{0}>: {1}\".format(column,df[column].isnull().sum))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "- Exploremos los datos visualizandolos por columnas, lo cual podemos hacerlo con `.columns`" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Index(['t', 'vacf', 'vacf_2', 'vacf_3', 'vacf_4'], dtype='object')" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#visualicemos solo las columnas\n", + "\n", + "df.columns" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Este método nos sirve para visualizar alguna columna en especial, por ejemplo, si quiero explorar la segunda columna de nuestra data, obtendremos la numeración del registro por fila en la primera columna y los valores correspondientes para la *VACF*" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 0.893155\n", + "1 0.867854\n", + "2 0.821965\n", + "3 0.758831\n", + "4 0.682706\n", + "Name: vacf, dtype: float64" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Me interesa visualizar una columna en especial, la vacf(t)\n", + "\n", + "columna = df[\"vacf\"]\n", + "columna.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2- Ahora intentemos explorar detalles de nuestros datos: \n", + "\n", + "Aquà se muestra el poder de python para el análisis de datos!... Observe la facilidad de obtener información de los principales indicadores estadÃsticos sobre nuestro dataset en una sola lÃnea con el método `.describe`" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "<bound method NDFrame.describe of t vacf vacf_2 vacf_3 vacf_4\n", + "0 0.00 0.893155 0.000000 0.005954 0.894384\n", + "1 0.01 0.867854 0.000177 0.011740 0.874035\n", + "2 0.02 0.821965 0.000701 0.017220 0.832205\n", + "3 0.03 0.758831 0.001553 0.022279 0.773162\n", + "4 0.04 0.682706 0.002707 0.026830 0.700901\n", + ".. ... ... ... ... ...\n", + "194 1.94 -0.000913 0.424637 0.039358 0.004982\n", + "195 1.95 -0.000803 0.426829 0.039352 0.004958\n", + "196 1.96 -0.000885 0.429018 0.039346 0.004928\n", + "197 1.97 -0.000768 0.431205 0.039341 0.004659\n", + "198 1.98 -0.000709 0.433389 0.039336 0.004458\n", + "\n", + "[199 rows x 5 columns]>" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# inspeccionemos a mayor profundidad nuestra data: podemos obtener información de los principales indicadores\n", + "# estadÃsticos sobre la data set\n", + "\n", + "df.describe" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Para explorar las caracterÃsticas principales de nuestros datos de manera detallada, usamos el método `.info()` o viendo los tipos de valores de los que disponemos usando `dtypes` combinada con un operador lógico. Estos dos procedimientos nos describen los tipos de objetos que tenemos en nuestra dataset y tener una visión más clara del procesamiento que podemos realizar a la misma." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "<class 'pandas.core.frame.DataFrame'>\n", + "RangeIndex: 199 entries, 0 to 198\n", + "Data columns (total 5 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 t 199 non-null float64\n", + " 1 vacf 199 non-null float64\n", + " 2 vacf_2 199 non-null float64\n", + " 3 vacf_3 199 non-null float64\n", + " 4 vacf_4 199 non-null float64\n", + "dtypes: float64(5)\n", + "memory usage: 7.9 KB\n" + ] + } + ], + "source": [ + "df.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "t True\n", + "vacf True\n", + "vacf_2 True\n", + "vacf_3 True\n", + "vacf_4 True\n", + "dtype: bool" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# columnas numericas y columnas de texto\n", + "df.dtypes == float" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "t False\n", + "vacf False\n", + "vacf_2 False\n", + "vacf_3 False\n", + "vacf_4 False\n", + "dtype: bool" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.dtypes == object" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "De hecho, podemos explorar cuantos valores nulos tenemos por cada una de las variables (columnas)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "t 0\n", + "vacf 0\n", + "vacf_2 0\n", + "vacf_3 0\n", + "vacf_4 0\n", + "dtype: int64" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# veamos cuantos valores nulos hay por cada variable\n", + "\n", + "df.isnull().sum()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3- Busquemos relaciones entre nuestras variables:\n", + "\n", + "En esta sección del proyecto, mostramos cómo configurar y ejecutar *gráficos de pares* en Python utilizando la biblioteca de visualización `seaborn`. Siendo más especÃfico, se muestra cómo crear un gráfico de pares predeterminado para examinar nuestros datos y cómo personalizar la visualización para obtener información más profunda. Gracias a este curso he conocido esta manera de trabajar con los datos:\n", + "\n", + "Estoy sorprendido que una simple lÃnea de código nos proporcione toda esta información!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "- El diagrama de pares se basa en dos figuras básicas, el histograma y el diagrama de dispersión. El histograma en la diagonal nos permite ver la distribución de una sola variable, mientras que los diagramas de dispersión en los triángulos superior e inferior muestran la relación (o falta de ella) entre dos variables. Por ejemplo, el gráfico más a la izquierda en la segunda fila muestra el gráfico de dispersión de *VACF* versus tiempo." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "<seaborn.axisgrid.PairGrid at 0x7f538e3454a8>" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3YAAAN2CAYAAAC1rRuNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAADWAElEQVR4nOz9e3xc133fe3/WngsGV+IOUiBBEhIlUpRpWiYlW5bs1HJYxo9iuXEiMUlzqX2quo0j98jxK2nruqmT0yfuRefYiZ/jyolay6/UkhKnjpwotms7jSNTjknJlCJSEu8EwQtAgLgDw7ns9fwxmOEAHAADYDB775nv+/WCBMz1R2DN+s1v9m+vZay1iIiIiIiISHA5XgcgIiIiIiIiq6PCTkREREREJOBU2ImIiIiIiAScCjsREREREZGAU2EnIiIiIiIScCrsREREREREAq6iCrv9+/dbQF/6KvdXUTQ+9eXBV1E0NvXl0VdRND715dFXUTQ+9eXB14IqqrAbGhryOgSRBWl8il9pbIqfaXyKn2l8ip94UtgZYzYZY/7aGHPMGHPUGPPxArcxxpjPG2NOGmNeNcbc6UWsIiIiIiIifhf26HlTwCestS8bYxqBl4wx/8taeyzvNj8FbJv9uhv4f2f/LyIiIiIiInk8KeystZeAS7PfTxhjXge6gfzC7kHgKWutBX5ojGk2xmyYva9IRXNdy9nhKQbG43Q1xdjSVo/jGK/DEhEpiuYwKaWgjaegxSuVw6sjdjnGmC3A24C/m3dVN3A+7+f+2ctU2ElFc13LN49e5rFnjxBPusQiDo8/tJv9O9crMYiI76VSLn/52iV+82uvag6TVQtaTgxavFJZPF08xRjTAHwN+JfW2vEVPsYjxpjDxpjDV65cKW2AIqu0kvF5ZmgqlxAA4kmXx549wpmhqbUMVaqM5k5ZC4lEmhdODeWKOrg+h50dLn4O0/iULD/mxMXGpx/jlerhWWFnjImQKer+2Fr7ZwVucgHYlPfzxtnL5rDWPmGt3WOt3dPR0bE2wYqs0ErG57nhqVxCyIonXc4t402RyFI0d0qpJRJpXjg9xMt9IwXnsMGJeNGPpfEpWX7MiYuNTz/GK9XDq1UxDfBHwOvW2scXuNlzwC/Pro75DmBM59dJNagJO8Qic1+asYhDNFxRu5OISAVJpVwO941w5PworqXgHNbZGPMoOgmyoOXEoMUrlcWrUfYu4JeA9xpjjsx+vd8Y81FjzEdnb/M8cBo4CXwJ+BcexSpSViEHPn7/tlxiiEUcPn7/NkLKCSLiQ6mUyw9ODXF+ZBrXwjdeucCj7507h332Q7vY0lbvcaQSREHLiUGLVyqLV6tivgAsegbp7GqYv1aeiET8IxxyqI+GeOTdvbgWHAP10RARZQUR8ZlUyuXFM8O81DfCts5GvvHKBR7e08Mzh/v4yL29hBy4s6eFe29u18IRsiJBy4lBi1cqi0aZiM8YoLE2MueyxtrI4p+EiIiUWSrl8sKpIS6OzuBa+PLB03z03bfwzOE+HtjVTciB3ZuauWdrG2G1ockKBS0nBi1eqSyeb3cgInMl0y7JVJpbOxuZSqSoj4aZTiRJpN2l7ywiUgbZ9suX5x2p+9rLfXxi33biiRTdLXXs7WkhGg15Ha4EWNByYtDilcqiwk7EZ8Ihh3jSpX90ItfG0V4fVRuHiPhCfvula+HS6DQH9vbw9KHMkbqTgxPsWN/ExpaYijpZtaDlxKDFK5VFo0zEZ9TGISJ+ld2nLtt++Y1XLlATDlEfDfHg7m7M7EQVCRs2tWixFFm9oOXEoMUrlUVH7ER8Rm0cIuJH2X3qjpwfndN++eTBMxzY28OtnY04juHWzgZ6Oxq0WIqURNByYtDilcqiwk7EZxZq4wirjUNEPDJ/n7r57ZczyTQhx3D7TY1sbmvwOlypIEHLiUGLVyqLRpmI79iCbRxgvQlHRKpaoX3q1H4p5RO0nBi0eKWS6IidiO+Ygm0cRh36IlJmC+1Tp/ZLKZ+g5cSgxSuVRIWdiM8YIBIOcXzwehvH1vZ6pQQRKavsPnUD4/E5+9R98fsnc+2XdTUh7u1t1+qXsmaClhODFq9UFhV2Ij6jE69FxGvap078Img5MWjxSmVRYSfiM4udeO26Vq1OIrKmtE+d+EnQ9oULWrxSWTTKRHzGcQrvgTN1LcWZoSmPohKRauC6loOnh7VPnfhG0PaFC1q8Ull0xE7EZ6xb+MTr1y/FsRZu7tRS4iJSeq5ree3iKIfPXdVCKeIbQWttDFq8UllU2In4TGt9lHNXnTknXrfVRXn6UB//4R+9xevwRKQCpVIu33ljgFTaap868ZWgtTYGLV6pLBplIj5UXxNhx/omHANpF548eIZfvHsz4ZA+IReR0sq2Xx67NA5G7ZfiL0FrbQxavFJZdMROxGfODE0RDRtcl0wrx7UUB/b2EAs7hI0+ixGR0slvv3Qt9I9kjtTlt19ioKe1ljtualb7pZRd0FobgxavVBYVdiI+E4s4vHZhjFgkxNBUItfKUR8N0dYQ9To8EakQ89svQwa++qM+PnzPVh7c3c1UIs3xwQlu39Ckok48E7TWxqDFK5VFo0zEZ0KOIRa5cQnxtoYaelrVBiUiq1eo/bK1Lpo7Wpd2M29I92xu5X3bu1TUiWeC1toYtHilsuiInYjPWGsBiCfTbOtsZCaRoqUuSnN9WG+uRGTVlmq//OS+7Wq/FN8IWmtj0OKVyqLCTsRnwrPtGpOJNG8OTOCYTJHXUt/kcWQiEnSua/nemwPEE67aLyUQgtbaGLR4pbJolIn4jNo4RGStnL4yyav9Y2q/lMAIWk4MWrxSWXTETsRn1MYhIqXmupbzI1McH5xU+6UEStByYtDilcqiwk7EZ9TGISKllG2/TKYsrrVqv5RACVpODFq8Ulk0ykR8Rm0cIlIq2YVSXu0f4/XL4/SPTNNWf2P75dt7WtR+Kb4UtJwYtHilsuiInYjPqI1DREph/kIpcP1IXcjAb+zbzkwixYbmWt65tY1wWJ/1iv8ELScGLV6pLCrsRHxmoTaOsNo4RGQZsgul3NrVSMjA149c4OE9mSN1D+zqZnJwgjt7WlTUia8FLScGLV6pLBplIr5jC7ZxgPUmHBEJFNe1nBuenLNQSrb98pnDfTywq5uQk2m/vPfmdhV14nNBy4lBi1cqiY7YifiOKdjGYdShLyJLWGyhFLVfSjAFLScGLV6pJJ4UdsaYJ4EHgEFr7R0Frv8J4M+BM7MX/Zm19jNlC1DEQwaIhEMcH7zexrG1vV4pQUSWlNunDqiLhuYslJJtv3y72i8lQIKWE4MWr1QWr47Y/XfgD4CnFrnN31prHyhPOCL+oROvRWS55u9TBzpSJ5UhaDkxaPFKZfGksLPWft8Ys8WL5xbxO+2BIyLLUaj9UgulSKUIWk4MWrxSWfw8yt5pjHnFGPNXxpidXgcjUi7aA0dEliPbfjl/nzotlCKVIGg5MWjxSmXx6+IpLwObrbWTxpj3A18HthW6oTHmEeARgJ6enrIFKFKMlYxPtXFIOWjurAyJRLoi2y81PiXLjzlxsfHpx3ilevhylrfWjltrJ2e/fx6IGGPaF7jtE9baPdbaPR0dHWWNU2QpKxmf2TaO44MTnB+Z4fjgBPGkqzYOKSnNncGXSKR54fRQrv3yG69cb78ci6c5MThBZ1MscEUdaHzKdX7MiYuNTz/GK9XDl6PMGLPeGGNmv7+LTJzD3kYlUh5q4xCRpaRSLof7RjhyflTtl1LRgpYTgxavVBavtjv4KvATQLsxph/4d0AEwFr7ReBngX9ujEkBM8ABa612dpSqoDYOEVlMIpHm4JlhBsbjuLZy2i9FCglaTgxavFJZvFoV8+eXuP4PyGyHIFJ1tKKWiCwk23555Pwo2zob57RfavVLqURBy4lBi1cqi0aZiM+ojUNECslvv3QtfPngaT767lvmtF/u3tTMPSrqpIIELScGLV6pLH5dFVOkaqmNQ0TmS6VcfnBqiMuz7ZfZI3Vfe7mPT+zbTjyRYmNLHXt6WohGQ16HK1IyQcuJQYtXKosKOxGfURuHiORLpVxePDPMS30jc9ovs0fqTs62X961pVVH6qTiBC0nBi1eqSwaZSI+ozYOEclKpVxeODXExdEZtV9KVQpaTgxavFJZdMROxGfUxiEicL398uV5R+ry2y+7W+rYq/ZLqWBBy4lBi1cqiwo7EZ9RG4eI5LdfuhYujU5zYG8PTx+63n65Y30TG1tiKuqkogUtJwYtXqksGmUiPqM2DpHqlkik57RffuOVC9SEQ9RHQzy4uxszOxlEwoZNLfXeBiuyxoKWE4MWr1QWHbET8Rm1cYhUr8X2qTuwt4dbOxtxHMOtnQ30djTgOHq7KJUtaDkxaPFKZVFhJ+IzC7VxhNXGIVLR5u9TN7/9ciaZJuQYbr+pkc1tDV6HK1IWQcuJQYtXKotGmYjv2IJtHGC9CUdE1lx2oZTzI9NqvxSZI2g5MWjxSiXRETsR3zEF2ziMOvRFKtJC+9Sp/VIEgpcTgxavVBIVdiI+Y4BIOMTxwettHFvb65USRCpQdp+6gfH4nH3qvvj9k7n2y7qaEPf2tmv1S6lKQcuJQYtXKosKOxGf0YnXItVB+9SJLC1oOTFo8UplUWEn4jPaA0ek8mmfOpHiBC0nBi1eqSwaZSI+oz1wRCpbtv1S+9SJLC1oOTFo8Upl0RE7EZ9RG4dI5Vqo/VILpYgUFrScuFi8rmv1mpY1pcJOxGfUxiFSmZZqv9Q+dSI3ClpOjIZDBeMFOH1lklu6Gj2OUCqZP18VIlVMbRwilcd1LQdPD6v9UmSZgpYT2xqiBeM9MTDJmaEpj6KSaqHCTsRn8ts4NrXUcmtnI8lUOtfGISLB4rqW1y6OcvjcVeqi4Tntl1OJzGv99g1NfGDXTbz3ti61aonkWSwn+tGmlnrqa8Jz402m+aMfnKEmorfdsrbUiiniM2rjEKkcqZTLd94YIJW2ar8UWYGgtWI6jqGzIcqlsWtcGJ0h7cJfvHqBA3t7qNMKt7LG/PmqEKliauMQqQzZ9stjl8bBqP1SZCWC1ooJkHYt8VQaAGPgwd3drF8X83XMUhlU2In4jNo4RIIvv/3StdA/kjlSl99+uX19I+/b0an2S5FFBK0VE4IZs1QGtWKK+IzaOESCbX77ZcjAV3/Ux4fv2cqDu7uZSqQ5PjjB7RuauOOmZhV1IosIWismBDNmqQwaYSI+47qWlNo4RAIpu09dfvtla100d7Qu7Wbe5O3Z3Mr7tutInchSgtiKGcSYpTLoiJ2Iz5y+MslMIl1wg9OkVsUU8a35+9Tlt18e2NvDJ/dtBwM9rbU6UidSpKBtUA7BjFkqgwo7EZ85MzSFCwXbOBpq9JIV8aPsQimXxmbUfilSQgu1NYZ93NYYxJilMmiEifhMLOLwpe+fpDE2t42juT7K9q4mj6ISkYUU2qdO7ZcipWILtjWCnztYghizVAJ9/C/iM7XREPfvWM8f/91ZfvmeXuKJFBvW1dJcFyYc1mcxIn6y0D51ar8UKRVTsK3R+PqMtSDGLJXAk3eJxpgnjTGDxpjXFrjeGGM+b4w5aYx51RhzZ7ljFPGKAdavi3HPLR0cH5igf3SGoalrJFLqzRfxk6X2qcu2X8Yijoo6kRUyQCQc4vjgBOdHZjg+OEEkHPJ1iRTEmKUyeHXE7r8DfwA8tcD1PwVsm/26G/h/Z/8vUvF00rWI/y22T92BvT3c2tmoI3UiJRDEnBjEmKUyeFLYWWu/b4zZsshNHgSestZa4IfGmGZjzAZr7aXyRCjiHe1/I+Jv2qdOpHyCmBODGLNUBr+OsG7gfN7P/bOXiVQ87X8j4l+F2i+1UIrI2gliTgxizFIZVlXYGWM+W8xla8kY84gx5rAx5vCVK1fK+dQiS1rJ+Mxv4djUUsutnY0kU2m1cEhJae5cvsXaLwE+uW87OzY08r4dndx7S7sWO1oFjU/J8mNOXGp8+jFmqQ6rzTo/WeCyn1rlYwJcADbl/bxx9rIbWGufsNbusdbu6ejoKMFTi5TOSsZntoUj/6TreNJVC4eUlObO5XFdy/feHKBveO4+dXWRuQulhB2j9ssS0PiULD/mxKXGpx9jluqwohFmjPnnxpi/B26bXbUy+3UGeLUEcT0H/PLs6pjvAMZ0fp1UC7VwiPjP6SuTvNo/pvZLkTILYk4MYsxSGVa6eMr/AP4K+P8Cv5V3+YS19upSdzbGfBX4CaDdGNMP/DsgAmCt/SLwPPB+4CQwDfyTFcYpEjhaTUvEP1zXcn5kiuODkwVXv9Q+dSJrK4g5MYgxS2VYUWFnrR0DxoCfX+H9F73f7GqYv7aSxxYJOq2mJeIP2fbLZMriWqvVL0U8EMScGMSYpTJohIn4jFo4RPwh2375+uVx+kemaau/sf3y7T0tar8UWUNBzIlBjFkqg1cblIvIAtTCIeK9RCKda7+E60fqQgZ+Y992ZhIpNjTX8s6tbVr9UmQNBTEnBjFmqQwq7ER8Ri0cIt5KJNK8cHoo13759SMXeHhP5kjdA7u6mRyc4M6eFhV1ImUQxJwYxJilMmiEifiMWjhEvJNKuRzuG+HI+dE57ZfPHO7jgV3dhJxM++W9N2ufOpFyWCgnQuY8WD9SHhev6IidiM+ohUPEG4lEmoNnhhkYj+NatV+K+EHStQVz4kwizZmhKW7ubPA6xBsoj4tXVNiJ+IxaOETKL9t+eeT8KNs6G/nGK2q/FPGDhppwwZw4nXQ5N+zPwk55XLyiESbiM2rhECkf17WcG57k0Gz7pWvhywdP89F33zKn/XL3pmbuUVEnUnbbu5poro/OuawxFuFL3z9J1KevR+Vx8YqO2In4jFo4RMojf5+68XgS15I7Uve1l/v4xL7txBMpNrbUsaenhWg05HXIIlUnHHboaYnRUhvl0tgMsWiYpw6e5v4d6/HrATDlcfGKCjsRn1mohSPs1wwmElDZfeqAOe2X2SN1J2fbL+/a0qojdSIeSrlwZmiSoakEroV7bumgPhrybV5UHhevaISJ+I5dYAUwf67+JRI02fbL7D51ar8U8bug5cWgxSuVQkfsRHzHFGzhMOrOF1m1/PbL+fvUqf1SxK+ClheDFq9UChV2Ij5jgEg4xPHB6y0cW9vrlQ5ESiC//bIuGsrtU/f0oevtl29X+6WIrwQtLwYtXqkcKuxEfEYnXYusjUQinWu/BO1TJxIUQcuLQYtXKocKOxGf0f43IqWX3adufvul9qkT8b+g5cWgxSuVQyNMxGe0/41IaaVSLodn96nrH5nOtV/mL5Ty9p4W7r25XUWdiA8FLS8GLV6pHDpiJ+IzauEQKZ1EIs3BM8MMjMdxrdovRYJosbzouhbH8VfJpDwuXlFhJ+IzauEQKY1s++WR86Nz9qlT+6VIsETDoYJ5ETILIt3S1ehxhHMpj4tXNMJEfEYtHCKrl99+qX3qRIKtrSFaMC+eGJjkzNCUR1EtTHlcvKIjdiI+oxYOkdWZ336ZPVKnfepEgmlTSz1vDkzOzYvXkvzRD87wOw/e4XV4N1AeF6+osBPxGbVwiKzcQu2X2SN1J2fbL7VPnUhwOI6hsyHKpbFrXBidIe3CX7x6gQN7e6jz4YczyuPiFY0wEZ9RC4fIyqj9UqRypV1LPJUGwBh4cHc369fFfJkblcfFKzpiJ+IzauEQWb5UyuUHp4a4rPZLkYoUpNwYpFilsqiwE/EZtXCILE8q5fLimWFe6htR+6VIhQpSbgxSrFJZNMJEfEYtHCLFSyTSvHBqiIujM2q/FKlgQcqNQYpVKouO2In4jFo4RIqz0EIp+e2X3S117FX7pUjgBWmTcuVx8YoKOxGfWaiFI6wWDpGc+QulXBqd5sDeHp4+dL39csf6Jja2xFTUiVSAhXKj4xjODE1xc2eD1yHmKI+LVzTCRHzHFmzhAOtNOCI+k22/PD8ynVsopSYcoj4a4sHd3ZjZD+4jYcOmlnpvgxWRkog4TsHcOJ1I03fVb5uUK4+LN3TETsRHXNdiMQVbOIy680UWbL988uAZDuzt4dbORhzHcGtnA70dDb5qzxKRlVtXFyE5cGNuPHE5zs7udV6HN4/yuHjDsyN2xpj9xpg3jTEnjTG/VeD6XzXGXDHGHJn9+j+8iFOknM4MTZFOu0TCIY4PTnB+ZIbjgxNEwqHcUQiRarXUPnUzyTR1NSHed1snt3Q1qqgTqSA9rfXU10Tm5MZ40iUWCRH22WvdQOE87nVgUvE8OWJnjAkBXwB+EugHDhljnrPWHpt302estR8re4AiHjk3PEXStQU/6cMqJUj1SiTSHDwzzID2qROpSo5j6GqKEg2tY2Q6QW00zKXRaWKREK71V4ujFk8Rr3jVinkXcNJaexrAGPM08CAwv7ATqSqxiMPJC2PEIqEbTrpua4h6HZ6IJxZqv9Q+dSLVxnBpbIahqUQuP8YiIcIhh1TK9c3rX/vYiVe8GmHdwPm8n/tnL5vvQ8aYV40xf2qM2bSqJ9zUgzFmxV/dm3pW8/Srpvi9jb9cQo4hFrnxaENbQw09rVoEQqrPUu2X2qdOpHostIDK1LUURy+OeRTVjbSPnXjFz4unfAP4qrX2mjHmnwFfBt47/0bGmEeARwB6ehZ+83+x/zwP/9eDKw7mmX92z4rvWwqK39v4V6rY8ZllZ9tJ4sk02zobmUmkaKmL0lwf1vlCUlLLHZteUPtl9QrC+JTyW2gBldcvxdncVsdbaSlLHEuNT7Viile8+njzApB/BG7j7GU51tpha+212R//EHh7oQey1j5hrd1jrd3T0dGxJsEC4ISr+ojTao+4rdoqf//haMyTv99yx2d2j5vJRJo3ByboH53h0tiMVtKSkivb3LlC2fbLl/tGqIuG57Rf3t3bwcnBCTqbYty1pVVFXQXy+/gUbxRaQGUm4fL0oT5a6qK4bnnOtVtqfGZbMecv9KJWTFlrXh2xOwRsM8ZsJVPQHQB+If8GxpgN1tpLsz9+AHi9vCHO46aq8ohTludH3Erw+w/C3y/bvjE0lchdpvYNqTYLtV9+8fsn1X4pUsUcx7CxNUYsEuKV/lHSLjx58Awffc8tGKxvNipXLheveFLYWWtTxpiPAd8CQsCT1tqjxpjPAIettc8BjxpjPgCkgKvAr3oRa8nMHnGq2ueXoqh9Q6qd2i9FZDGpFAxPxnN58pP7tjOdSDIWTzOd8Edhp1wuXvHsHDtr7fPA8/Mu+3Te9/8K+FfljmvNeH3Ez+vnl6JoJS2pZlr9UkSW0tYQ5ejFG/Pk6NAkO25ah+taz89JVy4Xr2iEifiIVtKSaqXVL0WkGD2t9bQ11NxweSwSAptpx/Sacrl4xc+rYopUHbVvSDVS+6WIFMtxDBuba4mGnBs2Kp9Oupwb9r4dU7lcvKLCTsRH1L4h1UbtlyKyXOvqIrzSP3rDRuXnhibZvqHJ883KlcvFKxphIj6i9g2pJmq/FJGV6Gmtp32Bdsx40vV8s3LlcvGKjtiJ+IjaN6RaqP1SRFbKcQw7u5uIFGjHPHVlkpTrlm2z8kIWy+V+WNxFKpc+AhXxEW1qKtVAm4+LyGptaqknkXbpH53hzYEJJhNprCW3WXkq5d0HotFwqGAuBzh9ZdKzuKTy6d2iiI+ofUMqmetazg1PckjtlyKySo5j2Nxax1s3NuMY5mxWfi2V5jUP2zHbGqIFc/mJgUlfrNoplUtZU8QnXNeSyGvf2NRSy62djSRTabViSuClUi7fPnaZYxcn6B+ZzrVfvnf7+lz75ebWWt6xtY17e9t1pE5EltQQC+c2K+9preWT+7YTMpbXL03QPzqD61pP4trUUk99TXhuLk+m+aMfnKEmorfesnY0ukR84szQFCHHqBVTKo7rWg6eHubYpXFevzyu9ksRKYme1nrqayJzcuZMwp1tx4x4dnTMcQydDVFCjuHC6AyvX57gC39zigN7e6jV/CZrSO8WRXzi3PAUU4l0wfaNiKOXqgST61peuzjK4XNXcS1qvxSRklmsHTORzuxp55WU6xJPpQEwBh7c3c36dTHAm6OIUh20KqaIDyQSaSIhw+uXxmmui9ywkta6usjSDyLiM6mUy3feGCCVtrgWQga+fkSrX4pI6TTEwhy7NJbLm5/ct53pRJITlyfYvqGJRCJd9rnFdS0WU3BlTKOz5mUN6aNREY+5ruWl8yPMpNzcHjz5bSUNNRF6Wuu9DlNkWfLbLzGZ8+la66Ic2Du3/XL9ulq1X4rIivW01tMwrx0znryeTw/3jZR9hcwzQ1Ok0y6RcGhOXJFwCKO6TtaQjtiJeOzUlUn6rk4zMp2gLhIinkyzrbORmUSKlroot65v0J43Eijz2y/7R6Y5sLeHJw+e4cDeHj65bzsY6Gmt5Y6bmjW+RWTFltrTrq0+SjLt8q6b28vW6n1ueIqkawsescNqvpO1oyN2Ih5KJNKcGJygLhrmqz/qw1qYTKR5cyCzolcy7bKpRUfrJDiyq1/2Dc/k2i+/+qM+6iIhHtzdzVQizfHBCcKOUVEnIiWxqaWeZNoW3NMuFg3zUt8IL54ZLsuRu1TKJRIynBuaLLgYWltDdM1jkOqlwk7EI9kWzPzFJJ48eIa0C47JLCbxvu1deuMrgZFKubxwaqhg+2X+2N6zuVVjW0RKxnEM79veye5N8xZRefctPHXwNGkXLo3O8MKpoTUv7o5eHMudWjFfe0ONTq2QNaVWTBGPnBmayrVg3r9j/ZzFJDasq2Vze63OO5LASKVcfnBqiJf7RtR+KSJlF42GuLe3nZpwiAsj03xi33aeOnia925fzzOH+/iNfdt5uW8EC/S217GppX5N5qELozP0jUzr1ArxhI7YiXjk3PBUrgWzLhLinls6OD7bgjkRT7KxWZ/qSTCkUi4vnhnmpdmiTu2XIuKFaDTExpYYjbEIJwcnuLu3g2cO93Fgbw+XRqdJu/DjvhGOXZzg28cur8nRu9aGaMFTKxJplw2NtSV/PpF8KuxEPBKLOgu2YHatq6Hv6hSuq/1uxN+y7ZcXRzPn1Kn9UkS8tKmlnkg4M89k94+rj4aoCYf4i1cvkHbh9cvjHLs0viatmdGw4aPvmZvX37qxma6mKD84M8zZoUnldlkzasUU8UhNKFSwBdM4lr85PgTAlrZ67uxpZmNzHX0j0wyMx+lqirGlbW1aSESK5bqW8yNTnB6a5sd9I2zrbOQbr2T2qMtvv3Qcw62dDfR2qAVJRNae4xjee1sXW1rrOT44OTtXTfP0oT4e3pPZbuWBXd0YAy/3jeAYw723tJdsfrKuIWQsn9y3Pbca5vBknJRbw9GLY/y4b0S5XdaMCjsRj7Q1RKmPXm/BdAzEk2niyTRpN/NJ47/+n3/PI+/upae1jt//3gnODc8Qizg8/tBu9u3oUkIQT7iu5XtvDpBMWV6/PI5r4dJo5py6pw9l3jTNJNOEHMPtNzWyua3B65BFpIo4juGWrka2tNXzwqkhZpJpHtjVzTOHrxd3D+7uJu3C4XNXuWldjFu6Gkvy3G0NUY5edOkfncC1mSN27fVRRocmldtlzakVU8QjPa313NRyY799tl3EWognXVwLn/r6azywqxvIXPbYs0c4eHqY93/+b/n5L/0d7//83/LNo5dxXYvrWk5fmeTFU0OcvqKWDym901cmebV/LFfUfeOVC9SEQ9RHM+fUZTfgjYSNtusQEc+Eww733tzOns2thBxyxd2BvT201UVzrZlnhqZK9pzK7eIlHbET8Uh+u8iJwUnS89pFvvLDc8QiTi4JmLwP7OJJl8PnrhJPurmfH3v2CLf9+n28OTDBY88eIZ50c58A7t+5PveJn+tazg5PLfhp4FLXS/XKtl8eH5wk+55ifvvlrZ2Nar8UEU/l57EN62JsaqmlPtrBwMQ1dqxv5PzINE8ePJM7enf31paSPbdfc3uxt5FgU2En4qFsu0hvR0PmE8PZE72/8sNzjEwnePS92+YkgaxYxCE973zveNKl7+pUbuLPXvbYs0fY/uh99HY04LqWbx69vGByWOr6+ZQkqkcq5fKdNwawFlxrCRn4+pELc85ZmUmmaYiFuffmdsJhNYSIyNqbn4d6Wur49usDPPbsEVrqovzyOzfzue+e4CP39vITt7UxNJGc05p5YG8PDdHSvh32W27P/p6Kze/K7cGlwk7EBxzHcHNnA1vb69mxvolbuxo5PjCRSwK/+8E7+P3vnQAyE/9nP7SLx//Xm3MeIxZxqIuGcxN/VjzpMjgRp7ejgbPDiyeHpa7PpyKweriu5eDp4czG40BdNERbfXTOOXUhB97e08K7VNSJSIktlD8K5aEnfmlP7uefuXMjn/vuidyRsdcvTdAYiwDXV8xcvy5GW2N0TeL2S24His7vy83t2fsov/uDCjsRH8lPArdvaOKem9vobMx8AnlnTwuDE/Hcz5GQc8PE29VUQyzizEkAsYhDZ2MMgIHx+KLJYanr861lEZh/v+UmCyWY0nJdy2sXRzl87mqu/fKrP+rjw/dsJWTgN/ZtZyaRYkNzLe/c2qaiTkSA4ufiYk4PWCh/FMpD+a2MxjAnp/3RC2f4tffczK2djbkVK+tqnDU/F9jr3F7sbWB5uR3KWwgqvy9NhZ2IDzmOobejYc4kOv/n/TvXs/3R+3IJYUtbJjE9/tDuGybY7HVdTbFFk8NS1+dbqyIwa6XJolwFZDXIrn4ZT7i5jcez7ZdPHjzDA7u6mRyc4M6eFhV1IhVsuXNksXNxMbdbLH8UykOuZU4ey37/tZf6+aV3bOYLf3Mq12WwZ3Mr9/S2lW2+9yq3F3sbWF5uh/IUgqu9XzXld2VhkYDKJoh39LbnFqlwHMP+net5/tH7ePqRu3n+0fvmTHpb2up5/KHdxCKZl/785LDU9fmySSLfSorAhSyULM4OL7x62Uruk00WhVYhW8xyVygL4opmp2ZXv8TM3Xg8e05d9o2RzqkTWXurnUNWev+VzJHFzsXF3G6x/FEoD33jlQt89kO7iEUcvvZSPx+/fxuxiMOlsTjPHO7jdx58C/fe0sYHd3dz7y3+m7vWIrcXextYXm6H5ef3leTpld6vGvO7jtiJVJhCnwjmX1fo08Bscljq+nzZJLHQJ4j5lnMkMGu5nxqu9D7lOJq4nE+v/fLJYirlcmIwsw9T/0hmj7r8jccx0NNayx03NVf0p58iq1Gq1/RKj1aU4v4rmSOLnYuLud1i+aNQHvrN/TvYt6OLt3SvY3AizvqmGPtuX8+VycVzmt+tJrcXextYXm6H5ef3leTpld6vGvO7Z4WdMWY/8DkgBPyhtfb35l1fAzwFvB0YBh621p4td5wilWax5FDM9fm3W4siMGslxWC5CsjlJotibl/MiqXlLPqOXhzLtV9mz6l7cHc3U4k0xwcnuH1Dk4o6qTilfJ2tthjLt5I3qKW6/0rmyGLn4mJut1j+WCwPzc9jN3cu/XsKsmJyd7G3KTa3w9oXgqu5XzXmd08KO2NMCPgC8JNAP3DIGPOctfZY3s0+AoxYa28xxhwAPgs8XP5oRWQha1EEZq2kGCxXAbncZFHM7RdLDlva6gsmhds3NHJpbG0KvQujM/SPTOdWv8yeU5e/+qWKOvHKWnzQUcpCDFZfjOVb6VGOUtx/JXNksXNxMbcrptOkmDwkxVvO73StC8HV3C+o+f2zH9rFTc0x2uprlj23eXXE7i7gpLX2NIAx5mngQSC/sHsQ+O3Z7/8U+ANjjLHW+v/EFBG5wXKT70qKwXIVkMtNFsXcfqnzFAolhUfe3cvnv3ty1W9AC2ltiPLZb71xw+qX69fFuKfXf+elSPUodQGWVcpCDFZfjOVb6VGOUtx/JXNksXPxcm6n4s2/1rIQXM39gprff/Nrr/KRe3v5oxdOL3tu8yozdwPn837un72s4G2stSlgDGgrS3Qi4guFTiIv9X2WOim9kOUsMlPs7Rc7YX2hpJA9P7vYk8+XIxo2fPQ9t/DkwTOMxdOcGJygraGGdbVhFXXiqZUuvrCUlSzytJjlLkKxmOXOOaW8/0rmyOz9ipmLVzLPS7Ct9G9eTfk9u1XHcue2wC+eYox5BHgEoKenx+NoRObS+AyGtT6aWMztl/pksdAngvn9C8s9ErDU2LSuIWQsn9y3Pbff0/BknObaSFGPL7Iai43PUh4Jy7fao2LzrbTlrJCVHuUo5f11xOw65fbgCHp+X+7c5lVhdwHYlPfzxtnLCt2m3xgTBtaRWURlDmvtE8ATAHv27FGbpviKxmflWkmyWGrRmoWSQ6Gk8PH7t/HUi+dy91/uG9ClxmZbQ5SjF136RzMrYzoG2uujtDVEi34OkZVabHyWugDLKmUhBqsvpgo93mqKKxVnpaPcXtm8zu+PvncbX/lhJr8vd27zqrA7BGwzxmwlU8AdAH5h3m2eA34FeBH4WeB7Or9ORCrZQslhflLoaIhxZniSkekEsPy2rGL0tNZzU8skQ1OJ3GU3tdTS01q65xBZiVIXYFmlLsSyj6liSkSKye8D43GSacu//fO/59JYfEVzmyeFnbU2ZYz5GPAtMtsdPGmtPWqM+Qxw2Fr7HPBHwFeMMSeBq2SKPxGRqjQ/KWxtr+f5Er4BLfR8772ti972hjV7DpGVWIsCLP+xVYiJSDnlzzuua/lvv3rXiuc2z86xs9Y+Dzw/77JP530fB36u3HGJiARBOd6A6k2u+JXGpohUolW3XJc4HhERERERESkzFXYiIiIiIiIBZyppPRJjzBXg3AJXtwNDZQynGH6LSfEsbqF4hqy1+5e68xLjc7nP6Qd+jU1xXVeqsemH36liqLwY1nLuLIYffpfzKabilCOm1Y5Pr39vXj+/H2Ko1OdfcGxWVGG3GGPMYWvtHq/jyOe3mBTP4ryIx2+/g3x+jU1xlZ4fYlcMiqHU/PjvUEzF8WNM83kdo9fP74cYqvH51YopIiIiIiIScCrsREREREREAq6aCrsnvA6gAL/FpHgW50U8fvsd5PNrbIqr9PwQu2LIUAyl48d/h2Iqjh9jms/rGL1+fvA+hqp7/qo5x05ERERERKRSVdMROxERERERkYqkwk5ERERERCTgVNiJiIiIiIgEXEUVdvv377eAvvRV7q+iaHzqy4Ovomhs6sujr6JofOrLo6+iaHzqy4OvBVVUYTc05OXm8iKL0/gUv9LYFD/T+BQ/0/gUP6mowk5ERERERKQaqbATEREREREJuLDXAaw117WcHZ5iYDxOV1OMLW31OI7xOiwREd/T/Cl+pbEpIpVotXNbRRd2rmv55tHLPPbsEeJJl1jE4fGHdrN/53olABGRRWj+FL/S2BSRSlSKua2iWzHPDk/lfjkA8aTLY88e4ezwlMeRiYj4m+ZP8SuNTRGpRKWY2yq6sBsYj+d+OVnxpMvgRNyjiEREgkHzp/iVxqaIVKJSzG0V3YrZ1RQjFnFoqYvyM3duxBgIGVjfFPM6NBERX+tqirG5rZYHdnVjZjtAvvHKBTobNX+Kt7K5Pf8NUCzilGRs6tw9ESm37Lwzk0zz8ftv4dnD/VwayxRzy53bKrqw29JWzx/8wts4MTDJ5757Itevetv6JnpaNVmLiCykp6WOX3/vNj719ddyc+fvfvAOelrqvA5NqtyWtnoef2j3DeehbGmrX9Xj6tw9ESm3QvPOx+/fxlMvnmNkOrHsua2iCzvHMWxta+Bj/+PHN/Srbn/0Pno7GjyOUETEn/pGpnNFHWTmzk99/TXu7GnR3CmechzD/p3r2f7ofQxOxOlsLM2RtYXOb9H7BRFZK4Xmnc999wRf/id30dFYs+y5raLPsQMYnFAvvojIcuk8JvEzxzH0djTwjt52ejsaSnJETWNeRMptoXnHYlc0t1V8YZftxc9Xql58EZFKpblTqo3GvIiUW6nnnYov7LK9+NlfWql68UVEKpnmTqk2GvMiUm6lnncq+hw7WLtefBGRSqa5U6qNxryIlFup552KL+wg80vLVr4D45leeU3WIiLFsdbrCETKI3vuXqkWS9H2CSICi88FpZx3qqKw0xLGEkTWWqy1GGMwRuNUykvzpsjq6DUkIlDeuaDiz7GDhZcwPjs85XFkIguz1vLwF1/A6nCJeEDzpsjq6DUkIlDeucCzws4Ys98Y86Yx5qQx5rcKXN9jjPlrY8yPjTGvGmPev9Ln0hLGElQ6Uide0bwpsjp6DYkIlHcu8KSwM8aEgC8APwXcDvy8Meb2eTf7FPCstfZtwAHg/7fS59MSxiIiy6N5U2R19BoSESjvXODVEbu7gJPW2tPW2gTwNPDgvNtYoGn2+3XAxZU+mZYwFhFZHs2bIquj15CIQHnnAq8WT+kGzuf93A/cPe82vw182xjz60A98L5CD2SMeQR4BKCnp6fgk2kJY/FKMeNTxAtLjU3Nm+KlSpg79RqqXJUwPqV8yjkX+HnxlJ8H/ru1diPwfuArxpgb4rXWPmGt3WOt3dPR0bHgg2WXEn1Hbzu9HQ2aWKUsih2fIuVWzNjUvCleqZS5U6+hylQp41PKp1xzgVeF3QVgU97PG2cvy/cR4FkAa+2LQAxoL0t0IiIiIiIiAeJVYXcI2GaM2WqMiZJZHOW5ebfpA+4HMMbsIFPYXSlrlCIiIiIiIgHgyTl21tqUMeZjwLeAEPCktfaoMeYzwGFr7XPAJ4AvGWP+TzILqfyqXeWGXovt+i4iInNpzhTxD70eRfzJT69NrxZPwVr7PPD8vMs+nff9MeBdpXq+cu76LiISdJozRfxDr0cRf/Lba9PPi6eUVDl3fRcRCTrNmSL+odejiD/57bVZNYVdOXd9FxEJOs2ZIv6h16OIP/nttVk1hV05d30XEQk6zZki/qHXo4g/+e21WTWFXTl3fRcRCTrNmSL+odejiD/57bXp2eIp5VbOXd9FRIJOc6aIf+j1KOJPfnttVk1hB9d3fe/taPA6FBER39OcKeIfej2K+JOfXptV04opIiIiIiJSqVTYiYiIiIiIBJwKOxERERERkYBTYSciIiIiIhJwVbV4iutazg5PMTAep6tJK0qJiCxGc6ZI5dDrWaQ4QX6tVE1h57qWbx69zGPPHiGedHP7TOzfuT4wfywRkXLRnClSOfR6FilO0F8rVdOKeXZ4KvdHAognXR579ghnh6c8jkxExH80Z4pUDr2eRYoT9NdK1RR2A+Px3B8pK550GZyIexSRiIh/ac4UqRx6PYsUJ+ivlaop7LqaYsQic/+5sYhDZ2PMo4hERPxLc6ZI5dDrWaQ4QX+tVE1ht6Wtnscf2p37Y2V7Zre01XscmYiI/2jOFKkcej2LFCfor5WqWTzFcQz7d65n+6P3MTgRp7MxWKvciIiUk+ZMkcqh17NIcYL+Wqmawg4yf6zejgZ6Oxq8DkVExPc0Z4pUDr2eRYoT5NdK1bRiioiIiIiIVCoVdiIiIiIiIgGnwk5ERERERCTgVNiJiIiIiIgEnGeFnTFmvzHmTWPMSWPMby1wm4eMMceMMUeNMf+j3DGKiIiIiIgEgSerYhpjQsAXgJ8E+oFDxpjnrLXH8m6zDfhXwLustSPGmM5SPLfrWs4OTzEwHqerKVhLmIqIlJvmTBHRPCBBVW1j16vtDu4CTlprTwMYY54GHgSO5d3mnwJfsNaOAFhrB1f7pK5r+ebRyzz27BHiSTe36eD+nesr+o8sIrISmjNFRPOABFU1jl2vWjG7gfN5P/fPXpbvVuBWY8wPjDE/NMbsX+2Tnh2eyv1xAeJJl8eePcLZ4anVPrSISMXRnCkimgckqKpx7Pp58ZQwsA34CeDngS8ZY5rn38gY84gx5rAx5vCVK1cWfcCB8Xjuj5sVT7oMTsRLFbPIHMsZnyLlVMzY1JwpXtHc6R+aB26k8RkM1Th2vSrsLgCb8n7eOHtZvn7gOWtt0lp7BjhOptCbw1r7hLV2j7V2T0dHx6JP2tUUIxaZ+0+ORRw6G2Mr+CeILG0541OknIoZm5ozxSuaO/1D88CNND6DoRrHrleF3SFgmzFmqzEmChwAnpt3m6+TOVqHMaadTGvm6dU86Za2eh5/aHfuj5zttd3SVr+ahxURqUiaM0VE84AEVTWOXU8WT7HWpowxHwO+BYSAJ621R40xnwEOW2ufm71unzHmGJAGPmmtHV7N8zqOYf/O9Wx/9D4GJ+J0Nlb+6jgiIiulOVNENA9IUFXj2PVqVUystc8Dz8+77NN531vgsdmvknEcQ29HA70dDaV8WBGRiqQ5U0Q0D0hQVdvY9fPiKSIiIiIiIlIEFXYiIiIiIiIBp8JOREREREQk4FTYiYiIiIiIBJwKOxERERERkYDzbFVML7mu5ezwFAPjcbqaKn/pUxGRldJ8KSIroblDSk1jamlVV9i5ruWbRy/z2LNHiCfd3GaF+3eu1+AQEcmj+VJEVkJzh5SaxlRxqq4V8+zwVG5QAMSTLo89e4Szw1MeRyYi4i+aL0VkJTR3SKlpTBWn6gq7gfF4blBkxZMugxNxjyISEfEnzZcishKaO6TUNKaKU3WFXVdTjFhk7j87FnHobIx5FJGIiD9pvhSRldDcIaWmMVWcqivstrTV8/hDu3ODI9uju6Wt3uPIRET8RfOliKyE5g4pNY2p4lTd4imOY9i/cz3bH72PwYk4nY1aVUdEpBDNlyKyEpo7pNQ0popTdYUdZAZHb0cDvR0NXociIuJrmi9FZCU0d0ipaUwtbcWtmMaYd83+v6Z04YiIiIiIiMhyreYcu8/P/v/FUgQiIiIiIiIiK7OaVsykMeYJoNsY8/n5V1prH13FY4uIiIiIiEiRVlPYPQC8D/iHwEulCUdERERERESWa8WFnbV2CHjaGPO6tfaVEsYkIiIiIiIiy1CKfeweM8Y0Z38wxrQYY54sweOKiIiIiIhIEUqx3cEua+1o9gdr7Ygx5m0leNw147qWs8NTDIzH6WrSPhgiIovRnCkia0XzS/XR33ztlKKwc4wxLdbaEQBjTGuJHndNuK7lm0cv89izR4gn3dzO9ft3rtegEhGZR3OmiKwVzS/VR3/ztVWKVsz/ArxojPkdY8zvAgeB/1iCx10TZ4encoMJIJ50eezZI5wdnvI4MhER/9GcKSJrRfNL9dHffG2turCz1j4FfAgYAC4DP2Ot/cpqH3etDIzHc4MpK550GZyIexSRiIh/ac4UkbWi+aX66G++tkpxxA5r7VHgWeA5YNIY07PUfYwx+40xbxpjThpjfmuR233IGGONMXtKEWtXU4xYZO4/OxZx6GyMleLhRUQqiuZMEVkrml+qj/7ma2vVhZ0x5gPGmBPAGeBvgLPAXy1xnxDwBeCngNuBnzfG3F7gdo3Ax4G/W22cWVva6nn8od25QZXt7d3SVl+qpxApCdd1wXodhVQ7zZkislY0v1Qf/c3XVikWOfkd4B3Ad6y1bzPG/APgHy9xn7uAk9ba0wDGmKeBB4FjBR77s8AnSxAnAI5j2L9zPdsfvY/BiTidjVqNR0RkIZozRWStaH6pPvqbr61SFHZJa+2wMcYxxjjW2r82xvw/S9ynGzif93M/cHf+DYwxdwKbrLV/aYxZsLAzxjwCPALQ07NkByiQGVS9HQ30djQUdXuRlVrJ+BQph+WMTc2ZUm6aO6tHEOcXjc/VCeLfPChKcY7dqDGmAfhb4I+NMZ8DVrW0jTHGAR4HPrHUba21T1hr91hr93R0dKzmaUVKTuNT/EpjU/xM41P8TONT/KoUhd1fA+vInAv3TeAU8NNL3OcCsCnv542zl2U1AncA/9sYc5ZMq+dzpVpARUREREREpJKUorALA98G/jeZguwZa+3wEvc5BGwzxmw1xkSBA2RW1ATAWjtmrW231m6x1m4Bfgh8wFp7uATxioiIiIiIVJRS7GP37621O4FfAzYAf2OM+c4S90kBHwO+BbwOPGutPWqM+Ywx5gOrjUlERERERKSalGLxlKxBMhuUDwOdS93YWvs88Py8yz69wG1/ogTxiYiIiIiIVKRVF3bGmH8BPAR0AH8C/FNr7fxtC3zHdS1nh6cYGI/T1aSlVkVEFqM5U0S8ovnH3/T38Y9SHLHbBPxLa+2REjxWWbiu5ZtHL/PYs0eIJ93c5oj7d67XQBQRmUdzpoh4RfOPv+nv4y+lOMfuXwWpqAM4OzyVG4AA8aTLY88e4ezwqnZpEBGpSJozRcQrmn/8TX8ffynFqpiBMzAezw3ArHjSZXAi7lFEIiL+pTlTRLyi+cff9Pfxl6os7LqaYsQic//psYhDZ2PMo4hERPxLc6aIeEXzj7/p7+MvVVnYbWmr5/GHducGYrYfeEtbvceRiYj4j+ZMEfGK5h9/09/HX0q53UFgOI5h/871bH/0PgYn4nQ2agUfEZGFaM4UEa9o/vE3/X38pSoLO8gMxN6OBno7GrwORUTE9zRniohXNP/4m/4+/lGVrZgiIiIiIiKVRIWdiIiIiIhIwKmwExERERERCTgVdiIiIiIiIgFXtYunALiu5ezwFAPjcbqatIqPiMhCNF+KiB9pbio9/U6Dq2oLO9e1fPPoZR579gjxpJvbd2P/zvUavCIieTRfiogfaW4qPf1Og61qWzHPDk/lBi1APOny2LNHODs85XFkIiL+ovlSRPxIc1Pp6XcabFVb2A2Mx3ODNiuedBmciHsUkYiIP2m+FBE/0txUevqdBlvVFnZdTTFikbn//FjEobMx5lFEIiL+pPlSRPxIc1Pp6XcabFVb2G1pq+fxh3bnBm+2h3hLW73HkYmI+IvmSxHxI81NpaffabBV7eIpjmPYv3M92x+9j8GJOJ2NWvVHRKQQzZci4keam0pPv9Ngq9rCDjKDt7ejgd6OBq9DERHxNc2XIuJHmptKT7/T4KraVkwREREREZFKocJOREREREQk4Dwr7Iwx+40xbxpjThpjfqvA9Y8ZY44ZY141xnzXGLN5LeJwXcvpK5O8eGqI01cmcV27Fk8jIhJ4mi9FJAg0VxWm30vl8+QcO2NMCPgC8JNAP3DIGPOctfZY3s1+DOyx1k4bY/458B+Bh0sZh+tavnn0cm4jxuzKP/t3rtdJoiIieTRfikgQaK4qTL+X6uDVEbu7gJPW2tPW2gTwNPBg/g2stX9trZ2e/fGHwMZSB3F2eCo3wCGzAeNjzx7h7PBUqZ9KRCTQNF+KSBBoripMv5fq4FVh1w2cz/u5f/ayhXwE+KtCVxhjHjHGHDbGHL5y5cqyghgYj+cGeFY86TI4EV/W44gsZDXjU2QtLXdsar6UctLcKStVjrkqiONTc3h18P3iKcaYfwzsAf5ToeuttU9Ya/dYa/d0dHQs67G7mmK5DRizYhGHzsbYSsMVmWM141NkLS13bGq+lHLS3CkrVY65KojjU3N4dfCqsLsAbMr7eePsZXMYY94H/BvgA9baa6UOYktbPY8/tDs30LP9xlva6kv9VCIigab5UkSCQHNVYfq9VAevNig/BGwzxmwlU9AdAH4h/wbGmLcB/xXYb60dXIsgHMewf+d6tj96H4MTcTobY2xpq9dJpCIi82i+FJEg0FxVmH4v1cGTws5amzLGfAz4FhACnrTWHjXGfAY4bK19jkzrZQPwJ8YYgD5r7QdKHYvjGHo7GujtaCj1Q4uIVBTNlyISBJqrCtPvpfJ5dcQOa+3zwPPzLvt03vfvK3tQIiIiIiIiAeRZYecXrms5OzzFwHicriYdlhb/cF0XizYPFX/RnCkiQVItc1a1/DtlcVVd2GmzRhGR4mnOFJEgqZY5q1r+nbI03293sJa0WaOISPE0Z4pIkFTLnFUt/05ZWlUXdtqsUUSkeJozRSRIqmXOqpZ/pyytqgs7bdYoIlI8zZkiEiTVMmdVy79TllbVhZ02axQRKZ7mTBEJkmqZs6rl3ylLq+rFU7RZo4hI8TRnikiQVMucVS3/TllaVRd2oM0aRUSWQ3OmiARJtcxZ1fLvlMVVfWEH2vtDRGQ5NGeKSBAFee4KcuxSPlVf2GnvDxGR4mnOFJEgCvLcFeTYpbyqevEU0N4fIiLLoTlTRIIoyHNXkGOX8qr6wk57f4iIFE9zpogEUZDnriDHLuVV9YWd9v4QESme5kwRCaIgz11Bjl3Kq+oLO+39ISJSPM2ZIhJEQZ67ghy7lFfVL56S3fvj9o/fx8D4NaYSKTa36oUiIlKI5kwRCaKgzF0LrX6pfeqkGFVf2GUduzSh1YZERIqkOVNEgsjPc9dSq19qnzpZStW3YoJWGxIRWQ7NmSISRH6fu/wen/ifCju02pCIyHJozhSRIPL73OX3+MT/VNih1YbEf1zXxXXdpW8o4gHNmSISRH6fu/wen/ifzrHj+mpDn/3m6zywq5uQA3s3t9LTUud1aCIivrOlrZ4/+IW38Wr/GK6FkIG3bFynFdpExNf8NnfNXyilp6WOxx/afcM5dppbpVgq7MislLRvRxfJtMtvfu1VX55QKyLiJ4mU5Ynvn54zX4qI+J1f5q6FFkrZt6OL57X6payQWjFn9Y1M54o60AmrIiIL0Qn+IhJEfpq7Foqlb2Sa3o4G3tHbTm9Hg4o6WRbPCjtjzH5jzJvGmJPGmN8qcH2NMeaZ2ev/zhizZS3j0QmrIiLF0XwpIkHkp7nLT7FI5fCkFdMYEwK+APwk0A8cMsY8Z609lnezjwAj1tpbjDEHgM8CD69VTF1NMTa31fLArm7M7Icj33jlQtlOWHVdS9/VKYYnE2As1oLFAoZU2iUacrBAMu/7Qtev5D56zMWvT7uQSLlsbqtna7taIkSyJ/i31EX5mTs3YkzmXJX1TeU/wb9Uc2fSB3NNuee/tb6P5k4pldGZOMcvTzEwfo2uphp6WkJYoLYmRnNt8fNOud7rFYo3VhOjqaYmd05dXTTM5rZazg3P5O6nhVJktbw6x+4u4KS19jSAMeZp4EEgv7B7EPjt2e//FPgDY4yx1tq1CKinpY5ff+82PvX113K9zr/7wTuWXEAl+6ZibDpJ0nWZTqS5lnLpbatna0cDrmt5Y2CceDKNhYIJEiyD4wmGJ68RizhEwiGSqTSRcIiJmWTusvzvC12/kvvoMRe/fiqR5nPfPaHzLkXyZBcgODEwOef1cdv6Jnpai3sDn0q5vDEwzuS1FAZIuZZryUwRsLm1jv7R6dy8uljRVYq50w9zTbnnv7W+j+ZOKZXRmTjffu0Kn37u+vuzz3xgJ+/e1sT4TJz4tThjcbgymSASCtFcG+Lm9ibC4Rub0lb6Xq808UL8Wpz3f/7FOc/9+987wbnhGS2UIiXhVStmN3A+7+f+2csK3sZamwLGgLa1CqhvZDr3QofM4fBPff01+kamb7htKuXy2oVRDp8d5q9eu8SPzgxzeniKQ2dH+Ld//hqXRmcYnIzzSv9Vnj96iWMXxzg/MsPrF8c5f3WavpEZTl+ZpH8kzusXxxmdSvHmwARDUwnqohHODE3l/p9/2VLXr+Q+eszFr8++McmOCZ1HJJJZcGprW8OyXh/ZefOHp4d4pS8zN758boTjlyd48/IERy+MkXQtI9NxvnXscm5ePZY3b87/vlRzpx/mmnLPf2t9H82dUirHL0/liiTIjKdPP3eUvqtpLo+m6buaJp5IEXFgOpHgjcuT/O2pQWZmkjc81nLe661FvH0jad65tXXOc3/+wNt4+pG7ef7R+/Thh6xa4FfFNMY8AjwC0NPTs+LHyfY6b1gXy7UWAVydukZvRwOQOTrXPzrFkfNjjE4l2LCuljcHJri1s5HjgxP8+ZEL/Np7biYSCXFiYJKt7Q2cHJzMXQ/kvs+/rCYSwp09Djl1LYVrr/8//7Klrl/JffSYi1+/UP97dkwspVTjU6TUVjs2ByeWnjPhxnkTyM2NAA3RELFI5mts+hphx8yZV4EFvy/V3Lmc267VXFPu+W+t76O5U0plYPxawfE0kHcuWldjDAhRGwkxMTNNLBziyMUxdt+0jtraSN5jxee0kAN87aX+ZY1NWHx8Lh6v4aM/cQtvDExyaSwzh84k07yjt73o5xZZjFeF3QVgU97PG2cvK3SbfmNMGFgHDM9/IGvtE8ATAHv27Flxm2a27/rhPT18/nvX20e2dTZw52ym+t6bA9SEQrk3JNk3Fdlk9sCubupqInlvOmaKSpB10TCh2QmmPpb5Pvv//MuWun4l99FjLn59LOLMmaCX2/9eqvEpUmqrHZtLzZmOY0ilXL7zxgD10XBu3oTrcyPAhuY6TuQVba/0jxZdgJVq7lzObddqrin3/LfW99HcKaXS1VRTcDx15Y2n/CKvua6GaynLRDzJK5fGuHNjC9FoCIAN62L88js3z2kT/vj925Z9fvBi43OpeAcnrvFL79jMV354jpHphM6pk5Iya3TK2uJPminUjgP3kyngDgG/YK09mnebXwPeYq396OziKT9jrX1oscfds2ePPXz48Ipicl3LCyeHeOQrh29YEOBn7uxmbCbJd14fpLu5lvMjmRNdb+tq5OTgBNu6GjkxMIEFutfVcn608PVA7vv8y+pnP7EGfHeeWTU/5jLOEymqb2I549N1XeLxOL/y3w7zzD+/F8fRziSyIiUfm1mLzZn/6G3dbGyu4wenhnipb2TOvAnX50aA7uZa+mav29ScmT9DhoLz5vzvSzV3+mGu8fP5cmt4jt2ajU+pHIudY5dwof/qDGEnigXS1nJl4hrRkENTbZihyQQdDTXs6ckUd2euTPI/j1zIfTj0tZf6GZlO8Je/fh83d95wxG5F43OxeAHOXk3zq//tRzzy7l62r29S+6WsxIIDxpMjdtbalDHmY8C3gBDwpLX2qDHmM8Bha+1zwB8BXzHGnASuAgfWMibHMURChpa6KB99dy/XUmk2tzfQVh/mtQvjWAuunfsJ8aXRadrqo0xfS7KlvZ5YJETatbnrv3zwNL9495bc9RMzydz3+ZdlxZNputbVsi4WIhRyAAsttdcXXGmpvXH1sfzrC1221H30mEte/4e/vEcru4nMkz9n/tI7NvPM4T4+8q6tbOtq4MpknL6r07zUN3LDvAnX58aJeJLW+igXZj8Mq4+F+cYrF/jwPVsLzpvzv89a9dyZf72Hc01Z578y3Edzp5RCc22MfXd0sKX9rswqk4019LRmVsXsvzpD/0iS27oizKRcLo7M0NlUi+MYkmmX5roI/SPTxFNp2uojzCRc7uhex+krk3z1R325I2dXJuOFCrsVaaqp4d3bGnnqw3PjBXDJtJ/Hky5v29TMe27t1OtCSsqzc+ystc8Dz8+77NN538eBnytnTF1NMf7JPZsxhhvP9+hqJGTmviHJGp1Osm19jKZYmOGp62867t+xnj/+u7P803ffwrpYiI2LJEjHGFKuJZFy6WisVRKscq7r4rru0jcU8VBXU4yf27ORZw73zTm/uKMxxng8iWspOG/mz40NNSFu7WpkePIa09eSfPQ9t/DFvznJgb097NgQmztvFijANHeKVL7m2hh3bc20LE7NXOPo5clc0fT2zbXEU5bBqzNEwiFca0kkXVJplz97+TwPvHUTR86PsndzK2eGMi3hdZEQH75nK08ePMPP7dlY0nbIU4OTxFMuXU0hsDWzbaIxutaFmJhJcy1tiUUcNrdprpLSC/ziKaW0pa2e7RuaOHxuBJh7vkf/SOboXP4bkrqIQyTskJ59U9FcW8Nbu1u4MDbN8ESCa+k0b+lepzccIlKRtrTVc2tn4w3nFw9NJdjW2Zg7+lZo3ty18frcuGdzG/2j07m96D77oV1cnUrQUhtl503rCi5bLiLVqb62hru21uC6llNXJjl1ZYpYxKG7uR7HsSTTgLH84fdP8Q9u28BTB09zd28Hl8ZmGJpdwCnrgV3d3NrVWNItBs4MT2IxjM1ANBQh2zUXT8JU0uWVvjFtayBrRoVdHscxpNL2hpP0Qwa++qM+PnzPVkIGfuWeXsamE9Q117Knp/WGNx2b2xrYvGYbM4iI+IPjGHZsaOL44MScRU0g06p+YG8PTx48w4G9PfzqPb0k0y7r1tVwx03NN3zItaW9gS1aGE5EiuQ4hm1djWzrasxdlkikOdw3Qv/INA+8dRNPHTzNe7ev55nDfXxi3/Y5cxRAyIEd65tK+qF7LBLijUvjxCIh4slJNjTXcXZ4ipaZKJGw4e7eNt7SfeMcKFIK+hh0ns1t9YRmFwDInu/RWhfNvUEZi6c5MTjB+nW1vHNrmz5JFpGqtrW9nr2bW3MrIoYMfOOVC9SEQ9RHQzy4u5upRJrjgxPEIk7Bok5EpBSi0RB7elpob6zh5OAEd/d28MzhPj767lt46uBpHMOcrz2bW9naXtojZ4014dyiTpOJNG8OTNA/OkMi7VITDqmokzWlI3bzbG2v5y0b13FxZOaG8z0+uW87jgPbOhu5uaNBL0xZU6lUCi9WrRVZDscxvLO3je+fHMydX5x/pO7WzkZCjmFbZwO9mjdFZI1FoyHu7W2nNhLi/NVpPrFvO08dPM39O9ZTP7vtAUBnU4x7ettKPift6Gri/MgMl8dm2NbZyEwiRVdTjPoaw+6NrZoDZU2psJvHcQzvva2LvqtTN5zv0b2uVud7iIjMEw47/MStXZwfmco7v/gtWhFRRDwRjYa4e2sbnY0x+q5O8X/+5G2EZ5fmDRuHtoYoPa1rMy/FYmH2be/i7y+NcXn8Glva6tnQUkP3Os2DsvZU2BXgOEbne0jZZFe/zN+rLpFIkEgkFrqLiO84jtH5xSLiG45juLmzoWTbGCxHLBZm71ZNhlJ+KuxEPGatxXVdrLUYY7DWkkqlSKfTrEUjprU291zGFP70sJjbSPnp7yIiIiILUU+hiMfS6TQP/cH/5ud+/38zPT3Nz37+e/ziH/wNj/y3w5BX2hXa226h/e4W2wfPWsvDX3xh0fP3irlNMc+1mttW4n2Kuf1y/nba71BERESydMROxEdueJM+ezSv4HULXLbY5fnXrfY2xTzXam5bifdZ7e9z/t/Fdd05LbwiIiJSvUwlrbpnjLkCnFvg6nZgqIzhFMNvMSmexS0Uz5C1dv9Sd15ifC73Of3Ar7EprutKNTb98DtVDJUXw1rOncXww+9yPsVUnHLEtNrx6fXvzevn90MMlfr8C47NiirsFmOMOWyt3eN1HPn8FpPiWZwX8fjtd5DPr7EprtLzQ+yKQTGUmh//HYqpOH6MaT6vY/T6+f0QQzU+v3p4REREREREAk6FnYiIiIiISMBVU2H3hNcBFOC3mBTP4ryIx2+/g3x+jU1xlZ4fYlcMGYqhdPz471BMxfFjTPN5HaPXzw/ex1B1z18159iJiIiIiIhUqmo6YiciIiIiIlKRVNiJiIiIiIgEXEUVdvv377eAvvRV7q+iaHzqy4Ovomhs6sujr6JofOrLo6+iaHzqy4OvBVVUYTc05PU+jCIL0/gUv9LYFD/T+BQ/0/gUP6mowk5ERERERKQaqbATEREREREJOBV2IiIiIiIiARf2OgARv3JdS9/VKQbGrzGVSLG5tZ6t7fU4jlnz506lXI5eGuPSWJwN62rZuaGJcFifw4iISPUJWk4MWrxSOVTYiRSQSrl8540BzgxN8bnvniCedIlFHB5/aDf7d65f0+IulXL5+isX+NTXX8s97+9+8A4++NZuJQYREakqQcuJQYtXKotGmMg8rms5eHqYY5fGc0UdQDzp8tizRzg7PLWmz3/04lguIWSf91Nff42jF8fW9HlFRET8Jmg5MWjxSmVRYSeSx3Utr10c5fC5q7iW3MScFU+6DE7E1zSGC6MzBZ/3wtjMmj6viIiI3wQtJwYtXqksKuxEZqVSLt8+dpm+4RlcCyEDscjcl0gs4tDZGFvTOFobogWft7U+uqbPKyIi4jdBy4lBi1cqiwo7ETJF3Q9ODXHs0jgY+MYrF2iti/Lx+7flJujsOXZb2urXNJaIY/h3P71zzvP+u5/eSaQMi7aIiIj4SdByYtDilcqixVOk6qVSLi+eGealvhFcC/0j0xzY28OTB89wYG8P//ln3woGelprueOm5jVfFTOZdgkZy3/+2bcylUhRHw0znUiSSLtL31lERKSCBC0nBi1eqSwq7KSqZRdKuTR2vf3yqz/q48P3bOXB3d1MJdIcH5zg9g1NZSnqAMIhh3jSpX90AteCY6C9Pko4pAPsIiJSXYKWE4MWr1QWjTKpWvkLpdRFw7n2y+zRurSbmZD3bG7lfdu7ylLUZVgaayNzLsn8bMv0/CIiIn4RtJwYtHilkuiInVSl7D51qbTFtXBpdG775Sf3bS9r++VchmQqza2djXPaOAzqzxcRkWoTtJwYtHilknh2xM4Ys98Y86Yx5qQx5rcWud2HjDHWGLOnnPFJ5crfpy67UEpNOER9NDSn/TIWcTwo6sAAkXCI44MTnB+Z4fjgBJFwSClBRESqTtByYtDilcriyRE7Y0wI+ALwk0A/cMgY85y19ti82zUCHwf+rvxRSiWav0/d/IVSbu1s9PBIXUYy7Rb8tE8nXouISLUJWk4MWrxSWbxqxbwLOGmtPQ1gjHkaeBA4Nu92vwN8FvhkecOTSjS//dIPC6UUstCJ1xGdeC0iIlUmaDkxaPFKZfFqlHUD5/N+7p+9LMcYcyewyVr7l+UMTCpTofZLfyyUciMDBU+8VhuHiIhUm6DlxKDFK5XFl4unGGMc4HHgV4u47SPAIwA9PT1rG5gE0lLtl2u5UMpKxqfaOKQcNHeKn2l8SpYfc+Ji49OP8Ur18OqI3QVgU97PG2cvy2oE7gD+tzHmLPAO4LlCC6hYa5+w1u6x1u7p6OhYw5AliFzX8r03B+gbnrtPXV1k7kIpYcesSfvlSsZnto0j/8TreNJVG4eUlOZO8TONT8nyY05cbHz6MV6pHl6NskPANmPMVmNMFDgAPJe90lo7Zq1tt9ZusdZuAX4IfMBae9ibcCWoTl+Z5NX+Md+3X+ZbqI0DMoWqiIhItQhaa2PQ4pXK4kkrprU2ZYz5GPAtIAQ8aa09aoz5DHDYWvvc4o8gsjjXtZwfmeL44GTZ2y9XK+nagm0cM4k0Z4en6O1o8DpEERGRsghaa2PQ4pXK4tk5dtba54Hn51326QVu+xPliEkqQ7b9MpmyuNb6dvXLhdSGQwVX1JpOugyMx1XYiYhI1QjaKpNBi1cqi0aZVJxs++Xrl8fpH5mmrf7G9su397T4qv0yn4tlXd28No5YhC99/6QSg4iIVJWgtTYGLV6pLL5cFVNkJea3X8L1I3UhA7+xbzsziRQbmmt559Y2wmF/FklNsSh/+eoJ/vE7erk8NkMsGuapg6f5R3duYnQm4XV4IiIiZRO01sagxSuVxZ/vbEWWKdt+eeziRK798huvXODhPZkjdWPxNCcGJ+hsivm6qAMwWP7hHd382z//e85dneHk4AQfvvdm/ufL52mqiSz9ACIiIhUiaKtMBi1eqSwaZRJ42X3qCrVfPnO4jwd2dRNyMu2X997c7uuiDuDUlSnSbppPP7CTkANpFz77zdf50Nt76FpX43V4IiIiZRO01sagxSuVxd/vcEWWMH+fOtdm2i/t7J51v7FvO5tba9m7pZV3BaCoA4hFHL7w16cYnohza2cjPa21fHLfdtoaomxqqfc6PBERkbLJb23c1FLLrZ2NJFNp37Y2Bi1eqSz+f5crsoj8feqC3H6ZrzYa4sDeHr7wN6d4/fIEF0ZnCDmGjoaoLxd7ERERWSsLtTaGfdraGLR4pbJolEkgua7l3PDknH3qgtx+OZdl/boYD+7uxszWcfFUmpSrT/tERKTa2IKtjWC9CWdJQYtXKolWxZTAWWyfuiCtfrkwU3BFLaMOfRERqTpBy4lBi1cqiQo7CZxc+yVQFw3N2afugV3dTA5O8PaeloAWdZkTryPhEMcHr29uurW9XilBRESqTtByYtDilcqiwk4CJZFIB36fuqVoDxwREZGMoOXEoMUrlUWFnQRGIpHmhdNDufbLrx+5vlBK9kjdnQE+UpeVPfG6f/T6p33t9VHtgSMiIlUnaDkxaPFKZdEok0BIpVwO941w5PxohS2UciPtgSMiIpIRtJwYtHilsuiInfheIpHm4JlhBsbjuX3qKq39Mp/aOERERDKClhODFq9UFhV24mvZ9ssj50fZ1tk4Z5+6Smq/zKc2DhERkYyg5cSgxSuVRaNMfCu//dK18OWDp/nou2+Z0365e1Mz91RQUQdq4xAREckKWk4MWrxSWXTETnxpfvtl9kjd117u4xP7thNPpNjYUseenhai0ZDX4ZaU2jhEREQygpYTgxavVBYVduI7C7VfZo/UnZxtv7xrS2tFHanLUhuHiIhIRtByYtDilcqiUSa+Uq3tl/nUxiEiIpIRtJwYtHilsuiInfhGKuXyg1NDXK7C9st8auMQERHJCFpODFq8UllU2IkvpFIuL54Z5qW+kapsv8ynNg4REZGMoOXEoMUrlUWjTDyXSKR54dQQF0dnqrb9Mp/aOERERDKClhODFq9UFh2xE08ttFBKfvtld0sdeyu8/TKf2jhEREQygpYTgxavVBYVduKZ+QulXBqd5sDeHp4+dL39csf6Jja2xKqmqIOF2zjCauMQEZEqE7ScGLR4pbJolIknsu2X50emcwul1IRD1EdDPLi7GzPbsxAJGza11HsbbNnZgm0cYL0JR0RExDNBy4lBi1cqiY7YSdkt1H755MEzHNjbw62djTiO4dbOBno7GnCcautMNwXbOIw69EVEpOoELScGLV6pJJ4VdsaY/cDngBDwh9ba35t3/UeBXwPSwCTwiLX2WNkDlZJaaJ+6L37/JA/s6mYmmaauJsS9ve1V1X6ZzwCRcIjjg9fbOLa21ysliIhI1QlaTgxavFJZPCnsjDEh4AvATwL9wCFjzHPzCrf/Ya394uztPwA8Duwve7BSMtqnrjg68VpERCQjaDkxaPFKZfHqiN1dwElr7WkAY8zTwINArrCz1o7n3b4eNScHmvapK572wBEREckIWk4MWrxSWbwaZd3A+byf+2cvm8MY82vGmFPAfwQeLVNsUmKplKt96pZBe+CIiIhkBC0nBi1eqSy+XjzFWvsF4AvGmF8APgX8yvzbGGMeAR4B6OnpKW+AsqRs++XL847UVcs+dSsZn2rjkHLQ3Cl+pvEpWX7MiYuNTz/GK9XDq8MjF4BNeT9vnL1sIU8DHyx0hbX2CWvtHmvtno6OjtJFKKuW336Zv0/dM4f7uLu3g5ODEzTGIhW9T91Kxme2jeP44ATnR2Y4PjhBPOmqjUNKSnOn+JnGp2T5MScuNj79GK9UD69G2SFgmzFmqzEmChwAnsu/gTFmW96P/x/gRBnjk1VyXcvB08O59kvtU1c8tXGIiIhkBC0nBi1eqSyetGJaa1PGmI8B3yKz3cGT1tqjxpjPAIettc8BHzPGvA9IAiMUaMMUf3Jdy2sXRzl87qr2qVsBtXGIiIhkBC0nBi1eqSyenWNnrX0eeH7eZZ/O+/7jZQ9KVi2VcvnOGwOk0nZO++XTh/py+9SFHMPtNzWyua3B63B9SStqiYiIZAQtJwYtXqksGmVSMtn2y2OXxsGo/XKl1MYhIiKSEbScGLR4pbL4elVMCY789kvXQv9I5khdfvslBnpaa7njpma1Xy5CbRwiIiIZQcuJQYtXKosKO1m1+e2XIQNf/VEfH75nKw/u7mYqkeb44AS3b2hSUVcEtXGIiIhkBC0nBi1eqSwaZbIqhdovW+uiuaN1aTczqe3Z3Mr7tnepqCuC2jhEREQygpYTgxavVBYdsZMVW6r98pP7tqv9cgXUxiEiIpIRtJwYtHilsqiwkxVxXcv33hwgnnDVflliauMQERHJCFpOXCjecMjBda3eD8ma8uerQnwte6Tu1f4xtV+uAbVxiIiIZAQtJzpO4XjTaZczQ1MeRSXVQkfsZFnmL5Si9svSUxuHiIhIRtByonVNwXjH4mmmE1Pc3Kk9fGXt6IidFG3+QinZ9su6SGhO+2XYMSrqViHbxnF8cILzIzMcH5wgnnRzbRwiIiLVYrGc6EdtDdGC8Z4bmiQa9mfMUjlWNcKMMf/QGPMRY8yWeZd/eFVRie8UWiilrf7G9su397So/bIE1MYhIiICYAvmRPDnB509rfW0NdTccHksEsKntahUkBUPMWPMfwD+DfAW4LvGmF/Pu/pjqw1M/COVcvn2scv0Dc/MWSjFzn7/G/u2s7m1lr1bWnnXze2E9YnUqsQioVwbx6aWWm7tbCSZSjMWT3NuWIWdiIhUE1MwJxqfnmXnOIbu5hhvuWkdPS21bOtsJJ5MA/h2wRepHKsZYT8NvNda+y+BtwM/ZYz5v2ev8+erTZZtqX3qxuJpTgxOsH5dLe/c2qairgS2dzURi4bntHFEQiG+9P2TauMQEZGqYoBIODQ3J4ZDvn6jmXYtk4kU/aMzvDkwwWQi7esFX6RyrGbxlLC1NgVgrR01xvw08IQx5k+AaEmiE09pnzpvhMMOPS0xWmqjXBqbIRYN89TB09y/Y73aOEREpKoEbfEUCGbMUhlW8zbxlDHmPdkfrLVpa+1HgDeBHauOTDyV3adufvulFkpZe65rSbpwZmiS/tEZjg9McM8tHdRHQ2rjEBGRqrLQ4il+zodBjFkqw2pG2M8BP5p/obX2U8Cm7M/GmJ2reA7xyOkrk9qnziNnhqZIp93C+/boVy0iIlUkaPvYQTBjlsqw4lZMa+3MItddyPvxK8CdK30eKS/XtZwfmeL44KTaLz1ybniKpGsLtnFg9fsWEZHqEcS2xiDGLJWhHBuU651oQGTbL5Mpi2ttrv3yw/dsndN+efuGJhV1aygWcTh5YYxYJET/6ASuzRwhba+P0tag01dFRKR6ZNsa5+dDP7c1BjFmqQzlGGH+3GhEbpBtv3z98rj2qfNQyDHEIqEbLm9rqKGntd6DiERERLwRxLbGIMYslaEcR+wkABKJdK79Eq4fqcvuUzeTSLGhWVsalIO1mT9CPJlmW2cjM4kULXVRmuvDKqhFRKSqBLGtMYgxS2VYcWFnjHmXtfYHxpgaa+21RW6aWOlzSHkkEmleOD2Ua7/8+pELPLwnc6TugV3dTA5OcGdPi4q6MgnPtmpMJtK8OTCBYzJFXkt9k8eRiYiIlFcQ2xqDGLNUhtWMsM/P/v/FxW5krX3HKp5D1lgq5XK4b4Qj50fntF8+c7iPB3Z1E3Iy7Zf33tyuoq5M1MIhIiKSEcScGMSYpTKsphUzaYx5Aug2xnx+/pXW2kdX8dhSBolEmoNnhhkYj+NatV/6hVo4REREMoKYE4MYs1SG1RR2DwDvA/4h8FJpwpFyybZfHjk/yrbORr7xitov/UItHCIiIhlBzIlBjFkqw2r2sRsCnjbGvG6tfaWEMckay2+/dC18+eBpPvruW/ji90/m2i93b2rmHhV1nsi2cAxNXT89VS0cIiJSjYKYE4MYs1SGUqyK+Zgx5uPW2lEAY0wL8F+stR8uwWNLic1vv8weqfvay318Yt924okUG1vq2NPTQjR645L7svbUwiEiIpIRxJwYxJilMpSisNuVLeoArLUjxpi3LXUnY8x+4HNACPhDa+3vzbv+MeD/AFLAFeDD1tpzJYi3ai3UfpldKOXkbPvlXVtadaTOQ2rhEBERyQhiTgxizFIZSjHCnNmjdAAYY1pZomA0xoSALwA/BdwO/Lwx5vZ5N/sxsMdauwv4U+A/liDWqrVQ+2X+6pdqv/QHraYlIiKSEcScGMSYpTKU4ojdfwFeNMb8CZmx/LPA/7XEfe4CTlprTwMYY54GHgSOZW9grf3rvNv/EPjHJYi1KqVSLj84NcRltV8Gglo4REREMoKYE4MYs1SGVRd21tqnjDEvAf9g9qKfsdYeW+w+QDdwPu/nfuDuRW7/EeCvCl1hjHkEeASgp6enqJirSSrl8uKZYV7qG1H7pQdWMj7VwiHloLlT/EzjU7L8mBOXGp9+jFmqQ0lGmLX2KPAs8BwwaYwp2SxsjPnHwB7gPy3w3E9Ya/dYa/d0dHSU6mkrQiKR5oVTQ1wcnVH7pUdWMj7VwiHloLlT/EzjU7L8mBOXGp9+jFmqw6qP2BljPkCmHfMmYBDYDLwO7FzkbheATXk/b5y9bP5jvw/4N8B7rLXXVhtrNVlooZT89svuljr2qv3Sd9TCISIikrFYTnRdi+P4r1xSHhevlOIcu98B3gF8x1r7NmPMP2Dp8+EOAduMMVvJFHQHgF/Iv8Hsypr/FdhvrR0sQZxVY/5CKZdGpzmwt4enD11vv9yxvomNLTEVdT60UAtHWC0cIiJSZRbKiY5jODM0xc2dDV6HeAPlcfFKKUZY0lo7TGZ1TGd20ZM9i93BWpsCPgZ8i8zRvWettUeNMZ+ZPQIImdbLBuBPjDFHjDHPlSDWipdtvzw/Mp1bKKUmHKI+GuLB3d2Y2Q+2ImHDppZ6b4OVBdiCLRxgvQlHRETEIxHHKZgTpxNp+q5OeRTVUpTHxRulOGI3aoxpAP4W+GNjzCCw5CvNWvs88Py8yz6d9/37ShBbVVmo/fLJg2c4sLeHWzsbcRzDrZ0N9HY0+LJ9QQBMwRYOo+58ERGpMuvqIiQHbsyJJy7H2dm9zuvwFqA8Lt4oRWH318A64ONkWjDXAZ8pwePKMiy0T90Xv3+SB3Z1M5NMU1cT4t7edrVf+pwBIuEQxwevt3Bsba9XOhARkarT01rP0YvjvDkwt60xFgkR9ukH1Mrj4pVSFHZh4NvAVeAZ4JnZ1kwpE+1TV1l00rWIiEiG4xi6mqJEQ+sYmU5QGw1zaXSaWCSEa/3Z2qg8Ll4pxT52/x7498aYXcDDwN8YY/rVSlke2qeu8mj/GxERkXyGS2MzDE0lcnkxFgn5Ni8qj4tXSjnCBoHLwDDQWcLHlQWkUq72qatA2v9GRETkuqDlxaDFK5WjFPvY/QvgIaAD+BPgn1prj632cWVx2fbLl+cdqdM+dcGnFg4REZHrgpYXgxavVI5SnGO3CfiX1tojJXgsKUJ++6X2qas8auEQERG5Lmh5MWjxSuVY9Qiz1v4rFXXl47qWg6eHc+2X2qeu8qiFQ0RE5Lqg5cWgxSuVoxRH7KRMXNfy2sVRDp+7qn3qKphaOERERK4LWl4MWrxSOVTYBUQq5fKdNwZIpW3B9suZZJqQY7j9pkY2tzV4Ha6sglo4RERErlsoL4ZDDq5rffdBtvK4eEUjLACy7ZfHLo2DUftlpVMLh4iIyHWOUzgvptMuZ4amPIpqYcrj4hUdsfO5/PZL10L/SOZIXX77JQZ6Wmu546Zm331qJcunFg4REZHrrGsK5sWxeJqZ5BQ3d/qrU0l5XLyiws7H5rdfhgx89Ud9fPierTy4u5upRJrjgxPcvqFJRV0FUQuHiIjIdW0NUY5evDEvjg5NsrN7ndfh3UB5XLyiEeZThdovW+uiuaN1aTczUezZ3Mr7tnepqKsgauEQERG5rqe1nraGmhsuj0VChH34/kd5XLyiI3Y+tFT75Sf3bVf7ZQVTC4eIiMh1jmPoaooSDa1jZDpBbTTMpdFpYpEQrrVeh3cD5XHxigo7n3Fdy/feHCCecNV+WaXUwiEiIjKf4dLYDENTiVxujEVCvsyNyuPiFY0wnzl9ZZJX+8fUflnF1MIhIiIyV5ByY5BilcqiI3Y+4bqW8yNTHB+cVPtllVMLh4iIyFxByo1BilUqiwo7H8i2XyZTFtdatV9WObVwiIiIzBWk3BikWKWyaIT5QLb98vXL4/SPTNNWf2P75dt7WtR+WSXUwiEiIjLXQrkRMh+Q+4nyuHhFR+w8NL/9Eq4fqQsZ+I1925lJpNjQXMs7t7YRDqsOrwZq4RAREZkr6dqCuXEmkebMkL82KVceF6+osPNIofbLrx+5wMN7MkfqHtjVzeTgBHf2tKioqzJq4RAREZmroSZcMDdOJ13ODfursFMeF69ohHlkofbLZw738cCubkJOpv3y3pvbVdRVkWw7iVo4RERErtve1URzfXTOZY2xCF/6/kmiPnufpFZM8YqO2HkgkUir/VIKOjM0xUwiXbCFI+mzcwikenRv6uFi//kV3femjZu4cL6vxBGJSLUJhx16WmK01Ea5NDZDLBrmqYOnuX/Hevx2IEytmOIVFXZllkikeeH0kNovpaBzw1MkXVuwhaOhRi9X8cbF/vM8/F8Prui+z/yze0ocjYhUq5QLZ4Ymc5uU33NLB/XREOGQg+ta3ywwp1ZM8YpGWBmlUi6H+0Y4cn5U7ZdSUE3Y4UvfP0ljbG4LR3N9lO1dTR5FJSLVqntTD8aYFX91b+rx+p8gFcRxCrc4ptMuZ4amPIrqRmrFFK94dgjAGLMf+BwQAv7QWvt7865/N/D/ALuAA9baPy17kCWUSrm8cGqIgfE4rlX7pRQWcuD+Hev54787yy/f00s8kWLDuloaYo7GhYiU3WqO1oKO2EppWdcUbHEci6eZSfpnARW1YopXPHmnaIwJAV8Afgq4Hfh5Y8zt827WB/wq8D/KG13ppVIuPzg1xMt9I9RFw3zjlevtl2PxNCcGJ+hsiqmoE8Ihh/poiHtu6eD4wAT9ozOcGZpEuUCq1WqPGIWjMU+POHkd/2rvL+InbQ1R4kmX44MTnB+Z4fjgBPGky7mhSV8toJJtxZwfp1oxZa15dcTuLuCktfY0gDHmaeBB4Fj2Btbas7PXBfotbSrl8uKZYV7qG8G18OWDp/nou2/hi98/mWu/3L2pmXtU1AmZPvzG2ghDU4ncZY21EfT+SqpVKY4YeXnEyQ/x64ibVIqe1nraGsbn5EiAWCREyDG+Oc9OuVy84lVh1w3kL7HWD9y9kgcyxjwCPALQ0+OvXn7XtRw8PcylsRlcS+5I3dde7uMT+7YTT6TY2FLHnp4WotGQ1+HKGlju+EymC2/AmkprRUwprbLNnU442Ed+gh5/QPk5t4t3HMewobmGaMhhZDpBbTTMpdFpYpEQyZRbto3KlxqfyuXilcAvs2etfQJ4AmDPnj2+ecW4ruW1i6McPneVbZ2NuaIuu1DKycEJ3tbTwl1bWnWkroItd3xaW3hFTNf6ZmhLhSjb3Ommgn3EKOjxB5Rfc7t4z7qGS2MzuZUxHZM5YlfOjcqXGp/K5eIVryqKC8CmvJ83zl5WEVIpl28fu0zfcOZI3aXR6RtWv9yxvone9joVdTJHeIH+e/Xli4iIZM6zK+Tc0CSRcGbbA68pl4tXvBphh4BtxpitxpgocAB4zqNYSirbfnns0jiYTPtlTThEfTTEg7u7c/3VkbBhU0u9t8GK72iJZBERkYVlzrOrueHyWCQE1vpi2wPlcvGKJ62Y1tqUMeZjwLfIbHfwpLX2qDHmM8Bha+1zxpi9wP8EWoCfNsb8e2vtTi/iLVZ++6VroX8kc6TuyYNnOLC3h1s7G8FAT2std9zU7IsTfMVftESyiIjIwhzHsLG5tuB5duVsx1yMcrl4xbNz7Ky1zwPPz7vs03nfHyLTohkIqZTLd94YIJW2uBZC5vpedQ/u7mYqkeb44AS3b2hSUScLyi6RPL8vX+0bIiIiGevqIrzSP3rDeXbnhibZvqGJVMr19FQX5XLxikZYCRRqv2yti+aO1qXdzIt6z+ZW3re9S0WdLEjtGyIiIovraa2nfYF2zHjS5ejFMQ+iuk65XLwS+FUx/eD0lckF2y8/uW+72i+laGrfEBERWZzjGHZ2NxEp0I556sokKdflrbR4Ft9iudwve+1JZdIRu1VKJNIcH5yc035ZFwnNab8MO0ZFnRQl275xfHCC8yMzHB+cIJ501b4hIiKSZ1NLPYm0S//oDG8OTDCZSGMtPH2oj5a6qKerY0bDoYK5HPDF4i5SufRucRUSiTQvnB7CtVbtl1ISjlmgfUPDR0REJMdxDJtb63jrxmYcA2kXnjx4ho++5xaupdKcvjLpWWxtDdGCufzEwCTnhlXYydpRYbdCqZTL4b4RjpwfndN+CfDJfdvZsaGR9+3o5N5b2rVXnRQtmba59o1NLbXc2tlIMpUmlfZ+Xx4RERE/aYiFGZ6Mc2tnIz2ttXxy33ZCxvL6pQlPj4xtaqmnviY8N5cn0/zRD84Q1XtCWUMaXSuQSrm8cGqI8yPTuFbtl1IarmtxrS3YvuFaFXYiIiL5elrrqauJzMmZMwmXpw/1URPxbrNyxzG01oUJOYYLozO8fnmCL/zNKQ7s7UFnVsha0vBaplTK5Qenhni5b4S6aJhvvHKBh/fMbb+8s6dF7ZeybIu1jdSEQmWMRERExP8cx7CppZYd65vmtGMe2NtDJGQ8bccEw5WJeOY7Aw/u7qY+GtI587KmNLqWIZVyefHMMC/1jeBa+PLB03z03bfwzOE+HtjVTciB3ZuauWdrm9ovZVlc13LiyiQnBicL9uW3NUY9ikxERMS/musixFNp4HoBtX5djBMDk5y8MundUTudMy8eUPVRpOxedRdHZ3BtZq+6925fz9de7uMT+7azubWWd2xt497edqJRHV2R5Tl9ZZKakMMfvXCGZHLuOXb1NWE2tdR7HaKIiIjvbGqpp2Gh89lCjidH7VzXktA58+IBFXZFyu5Vl99++czhPu7u7eDk4AQdTTHu2tKqok6WzXUtJwYnSbqWA3t7+MLfnOL1yxNcGJ0h5Bi6GmrU1isiIlKA4xg6G2oKns+WdC3HBydJpcq7F+yZoSmSKbfgOfMq62QtqbBbgutazg1P5vaquzSaWQEzv/1yx/ometvr1H4pK3LqyiRpazk3NEl9NLMIT7ZV48pEnHV1kcUfQEREpIqtq4sUPJ/t3FCmFfMHp4bKWtydG55iOln4+RpqwmWLQ6qPKpFFuK7le28OcOziRG6vuppw6IY335GwUaucrEgikebE4AT9I9PEIjce7e1qitHTqrElIiKykJ7WerqaYjdcHouEOD8yzUt9I7x4ZrgsxV0q5RIJGb70/ZM0xuZ+MNtcH2V7V9OaxyDVS4XdIk5fmeTV/jFevzw+Z6+6qUSmZ3r7+sxede+9TStgyvK5ruWl8yO5LTOshXgyzbbORnpaatmzuYX7tbqqiIjIohzHcP/2LvZuaaWnpZZtnY3Ek2mshacP9ZF24dLoDC+U4cjd0YtjzKRc7t+xnj/+u7PcMpvT925upbetXt1dsqY0uhaQSrm59kvtVSdr4czQFH1Xp+d8aDAWzxzBa4xF2Nym9l4REZFihMMO79zaRkdTjBODE4zF0zx58AwP7+nhL169QG00zMt9I2te3F0YneH0lcypFffc0sHxgQn6R2c4MzRJQ0xtmLK29K6xgEQizQunhnCtJWTQXnWyJs4NT1EXDc/50CDb3mutVXuviIjIMoTDDr3tdexY30TIgQd2dfPM4T4O7O3h0ug0aRde7hvhb08NcW54bbZCaG2I5rpw8rU11LCxua7kzyeST4XdPIlEmhdOZzYg7x+Zpq0+esNiKW/vaeHem9t1NEVWJRZ1cnsh5n9osHtTM811YfquTnm2/46IiEgQbWqpJxLOfEqav5BKTTjEX7x6gbQLP+4b4djFCb597HLJj95Fw4aPvmduXn/rxmZuaq7hW8cuc3bIu731pPLpmHCeVMrlcN8IR86P5tovP3zPVkIGfmPfdmYSKTY01/JObUAuJVATCnH/jut7IcYTKTasq8VxLD88MwKMsKWtnjt7mulprdfRYRERkSU4juG9t3WxpbU+c0qNazk/Ms3Th/pyW1U9sKub1y+PA1AXDXPvLe0ly7HWNYSM5ZP7tjOVSFEfDTM8GSft1vDmwARvDkwot8uaUXUyK7sB+fmR6dwG5Nn2y+x5T51NMRV1UjJtDdGCPfiv9o/nzu381//z7/mzH1/gm0czn/K9eGqI01f0aZ+IiMhCHMdwS1cj+3Z00RALM5NM59oys+fcpd1Mnj187ipnhqZK9txtDdGC+9edujKp3C5rThXKrIU2IM+2X96p9kspsZ7WejrnLc+cXcHLMcyukuniWnjs2SP82Y8v8PNf+jve//m/5ZtHM+0jp68oIYiIiBQSDjvce3M7d/a0zDnnLlvcOQbSLvRdLV1hp9wuXlKVwtwVMLPnPOUXdbs3NXOPjtRJiTmO4X3bu9izuTWXXJ48eIYDe3toq4vyZy/3E4s4c5IAZL5/7NkjHDw9zPs//7dzEoLrWlzXKimIiIhwvbjbs7n1hgVV2uqi/MWrF4iW8P2dcrt4qerPsUsk0hw8M5zbgPzhPT1zznnqbqljb08L0eiNm0eLrFY47HDvLe10N9fSd3WKu7e28Malcb74/dOMTCd49L3b+MoPz+WSQFY86XL43FXiSTf382PPHuG2X7+PNwcmeOzZI8STLrGIw+MP7Wb/zvW5Pn7XtZwdnmJgPE5XU4wtbXN7/Je6XkRExM/y89iGdTHSLjTGQtx3SzsDE9fYsX4750emcwVXOFTaHOfH3F7sbSTYqrqwy66AeeT8KHXREAf29vD0ocyRupODE+xY38TGlpiKOllTjmO4ubOBmzsbcF1Ld3MdN7XUcXxggq/88Bwj0wk+fv82nnrxXO4+sYhDet5CXvGkS9/VqdzEn73ssWePsP3R++jtyDz+N49eXjA5LHX9fEoSIiLipfl5qKeljm+/PsBjzx6hpS7KL79zM5/77gk+cm8vb920jquT1xiaSuDa6ytmhk3pO7L8lNuzv6di87tye3BVbWG30AqYD+7uzh0WNwbtJSZllU0EW9vruX1DE/fc3EZHQ4wzw5OMTCeAzMT/2Q/t4vH/9eac+8YiDnXRcG7iz4onXQYn4vR2NHB2ePHksNT1+VQEiohIOSyUPwrloSd+aU/u55+5cyOf++4J4kkXYzLrKdRFbvywvq0huqbxe53bgaLz+3Jze/Y+yu/+UJWFXbb9cmA8fsMKmPMXS9HAFC84jqG3oyE32W5tr+f5R+9jcCJOZ2PmE8lIyLlh4u1qqiEWceYkgFjEobMxcyL3wHh80eSw1PX51rIIzL/fcpOFEoyIiPeKnYuLOT1gofxRKA/ltzIaw5yclv0QP19nU4ye1vJ8iO9Vbi/2NrC83A7lLQSV35dWVYWd61r6R6c4OTjFkfOjbOts1AqYEgjzkwHA/p3r2Z6XELa0ZRLT4w/tvmGCzV7X1RRbNDksdX2+tSoCs1aaLFRAiojcaDVz1nLvW+xcXMztFssfhfKQa5mTx7Lff+2lfn7pHZvnfIi/Z3Mr9/S2eTZ3lyu3F3sbWF5uh/IUgqu9XzXld88KO2PMfuBzQAj4Q2vt7827vgZ4Cng7MAw8bK09u9zncV1L39UpxqaT9I/O0BSL5NovsytgfvH7J7UCpgROoYQAhZNCdkLa0la/aHJY6vp8a1UEZq2kGPRzAbnaE9sLnUfSNzIdyMQjslpr9car1I9bysdbbWG2kjfFK71vsXNxMbdbLH8UykPfeOUCn/3QLn7za6/ytZf6+fj92/jcd09waSzOM4f7+J0H30IkZHw7b65Fbi/2NrC83A5rXwiu5n5BzO+djTFCDlwaW9mc4UlhZ4wJAV8AfhLoBw4ZY56z1h7Lu9lHgBFr7S3GmAPAZ4GHl/M8rmv53psDXByZYcO6Wt4cmKC7uXZO+2X+CpgbW+rYoxUwJeAWSgrZ6xZLDktdn2+tisCslRSDfi0gV3tiO3DDdb/7wTv4/e+d4NzwzLLepIkE3WqKlHI+bikfb7WPtdI30yu9b7FzcTG3Wyx/FMpDv7l/B/t2dPGW7nUMTsRZ3xRj3+3ruTK5eE7zu9Xk9mJvA8vL7bD2heBq7hfU/J5dVGdkOrHsOcOrw1J3ASettaettQngaeDBebd5EPjy7Pd/CtxvjFnWK/Hs8BSv9o8xNJXg6nRmBaT5G5Df3dvBycEJOpti3LWlVUWdVLxscnhHbzu9HQ03TBZLXZ9/u/071/P8o/fx9CN38/yj9y04+WQTRSySmXKWShRwPVnkW6oYXMl9FksWpbrPQoni7PBUUbcpdN2nvv4aD+zqXvDxRCpVMa8nPzxuKR9vtY+1knluNfctdi4u5naL5Y+F8lA47OTy2Jb2zMqUS+W0oCsmdxd7m2JzOyw/v68kT6/0fkHN75/77gl+5s6NK5ozvCrsuoHzeT/3z15W8DbW2hQwBrTNfyBjzCPGmMPGmMNXrlyZc112cZRsQRcy2oBcymux8VkJ1qIIzFpJMejXArKYRLHYbRa6Lv+jrmLfpGVV+tiUYFsqt6+0SFlMqR+3lI+32sda6Zvpld632Lm4mNstlT+KzUOlVOnz53J+p2tdCK7mfpWQ35c7ZwR+8RRr7RPAEwB79uyx+dd1NcXI7jl5aXSatvoo9+9Yr/ZLKZvFxme1WayNZKHbF9sWupr7LLftZCX3KcWJ7YWuy9/Yttg3aVkam+JnS+X25bZ2F6PUj1vKx1vtY61knlvNfYudi5dzu+Xkj7Wm+XOu5fx9VpKnV3q/Ssjvy50zvCrsLgCb8n7eOHtZodv0G2PCwDoyi6gUbUtbPW/ZuI6LIzO5y0IGfuWeXmYSKW5qqeWuLa06UifiUytJ5n4sIEtxYvv867Ln2EHxn3iKVILVFCnlfNxSPt5qH2ulb6ZXc99i52K/FW2y9lb6N6+W/J49x24lc4ZXhd0hYJsxZiuZAu4A8AvzbvMc8CvAi8DPAt+z1i7rUxHHMbz3ti76rk4xPJkgZV1SaUsi5XL7hia2tgfzBFoRKa21LiBLcWL7/Ot6Wuq4s6dl2W/SRIJuNUVKOR+3lI9XisdaTQGl4kuCKmj5vaMhsyrm23qaV/Q696Sws9amjDEfA75FZruDJ621R40xnwEOW2ufA/4I+Iox5iRwlUzxt2yOY9jS3sCW9lJFLyKyfMUkiqVWPZt/nd5oSbVaq0Kj1I9bysdTcSXiT2uR37e0r+x17tk5dtba54Hn51326bzv48DPlTsuERERERGRoNHJZSIiIiIiIgFnlnnamq8ZY64A5xa4uh0YKmM4xfBbTIpncQvFM2St3b/UnZcYn8t9Tj/wa2yK67pSjU0//E4VQ+XFsJZzZzH88LucTzEVpxwxrXZ8ev178/r5/RBDpT7/gmOzogq7xRhjDltr93gdRz6/xaR4FudFPH77HeTza2yKq/T8ELtiUAyl5sd/h2Iqjh9jms/rGL1+fj/EUI3Pr1ZMERERERGRgFNhJyIiIiIiEnDVVNg94XUABfgtJsWzOC/i8dvvIJ9fY1NcpeeH2BVDhmIoHT/+OxRTcfwY03xex+j184P3MVTd81fNOXYiIiIiIiKVqpqO2ImIiIiIiFQkFXYiIiIiIiIBp8JOREREREQk4CqqsNu/f78F9KWvcn8VReNTXx58FUVjU18efRVF41NfHn0VReNTXx58LaiiCruhIS83lxdZnMan+JXGpviZxqf4mcan+ElFFXYiIiIiIiLVSIWdiIiIiIhIwIW9DsBPUimXo5fGuDQWZ8O6WnZuaCIcVu0r5ee6lrPDUwyMx+lqitHTUkffyHTu5y1t9TiO8TpMqWKua+m7OsXA+DWmEik2t9aztV3jUkRkIcrtstZU2M1KJNL8+asX+YO/PsEDu7o5dmmcq1PXeFdvO9FoyOvwpEq4ruXM0BSvXxrnxOAEzx7uZ2Q6we9+8A5+/3snODc8Qyzi8PhDu9m3o0sJQTzhupbvvTnAiYFJnj7UxwO7ujlyfpS9m1t5Z2+bPhATEcmj3C7louxL5kjd4b4R/uCvT/Dwnh7+4tULpF348flRDp4ZJpVyvQ5RKpzrWk4NTvL831/iuVcu8H89/zr/9fun+aV3bKalLsqnvv4aD+zqBiCedHns2SMcPD3M+z//t/z8l/6O93/+b/nm0cu4rsV1LaevTPLiqSFOX5nEdRddQElk2U5fmeTV/jGePtQ3Z848dO4qPzg1pDlTRATldim/qi/sXNdy8PQw50emeWBXN88c7uPD92wl5IBr4cd9I3znjQG9gGTNpFIuL5wc4s9fucAbAxN8/ciF3KT/+e+d4Gfu3Eg86WLyPrCLJ10On7tKPOnmfn7s2SOcGZrim0cvF0wKIqXgupYTg5O4ltycmV/cvdQ3ouJORErKWsv09DTWBieXKbeLF6q+sDs7PMXhc1epi4YJOXBgbw/TyTR/fuQC1l7fMOL8yJTXoUoFSqVcXjg1xOFzV3EtfOOVCzy8p4dnDvfNmfRjEYf8fBaLOKTnvW+OJ136rk7x2LNHbkgKZ4c1fqU0zg5PkbaWkIGQo+JORNbezMwMD3/+W8zMzHgdSlGU28UrVV/YDYzHcS18+eBp3rqxmU0tdTe0F71+aZwzQ9N6kyIl5bqW77wxwMt9I7gWQgY+fM9WnjmcOWcpO+k7Bn73g3fwF69eADKXffZDu3I/Z8UiDnXRcG7iz4onXQYn4nOeV+0cslID43H6R6Zpq4+yY0PTnOIuv9vhZXU7iEgJhaMxr0MoinK7eKmqF09xXUsqba9/knLoLB9826Y5n0BnX4gv941ggHfd3K6FAaQk+q5OMTgen3OZMZmjxjPJNAD/4R+9hTt7mtnYXMedPS0MTsTpbMyspBUJOblP8LInXXc11RCLOHMSQCzi0NmYSYiua/nm0cs33G//zvU6OVuWlJ0zv/qjTBE3PBHnbZua+fH50TndDg/s6saa690Om9savA5dRKQslNvFS1Vd2J0dnuJTf/73cwq4aMi54RPo4elE7hPomWSafbfrhSKrNzyZYCox941wR1OMnoiDxbC1rY6e1uurYfV2NNDbcf0N8v6d69n+6H25hLClrR6Axx/afcPknr3u7HDhdo7tj94357FFCsmfM588eCZ30v+dPS1MxlP8p2+/MWc+ff3SOLWREN3r6vSBmIhUheHJRMHLb+5oIBJ2lNtlTVV1YTcwHufc8Axf+eE5fubOjRgDJwYnubOnhZf7RuZ8An1gbw+bWupIuZajF8fYedM6FXeyKvFUmqcPZT48uJZKs6G5jomZJPXRGHf1tBKLLf7ydBxzQ0KAwkkhO1YHxuMLtnNkH2f+PjtaalmyCs2Zl8YTvHVTM9OJ9A3dDgf29jAZT/Ht1we4rbOBrR0NGksiUtFSNpNjG6IhNjTXMZNI0VofZV1dhLdtbFnyQ661yu2g/F4Nqrqw62yMEYs4XBqL84W/PglkDm1/8+P3YYCJ2U+gP3zPVqaTaf7Tt9/ggV3dHB+YYHQ6qf2aZFWuJV0O7O2Z7bcPcWJwAtfChdEZZhJpfnKFR4YXSgoAXU0xtXPIimTbMAvNmR+6s5vbOsO8cXl8TreDMXB8dly/eXmct2xcx3tv69JYEpGKNz+v39rVuKq5bzW5HZTfq0VVVyUhBz5+/zZikcyvIRZx+Pj924DMuXSOY3hgVzfD04nckZV1sRDbOhu5NDbDi9rjTlZhc1s9m1rqiCfTTCXSHDx5hVu7GrmpuZa6mjD9o6Vf7WpLWz2PP7R7zpgvpp1DK29Jtg3z0ffOnTM/+6FdbGmrZ2tHA3s3t+Za2a+l0rlW4/poZt6MJ12OXhzTSf0iUrFSaUt89ly6hmiI27oa6W6upSbsrNkK60vldlB+rxZVfcTu0licp148x0fu7cUYsBaeevEcb+tpZkt7A7d1NvDG5XFcS+7ISnp2Bc1/+u5bSKZcvvPGADd3NHCzWoxkmba213N8YIINzXV8+eBpPnRnD3/xynl+8R1bGZ5MEAkZOmprqK2NlOw5HceUpJ1Dqk9+G2b+nNndHMuNn3f2tuFay0t9I2xoruM/53U8/PfZefPKxDW+feyy5k0RqUjXki6b2xsYGJth/boa1tWGSbuWaNjh7NAUm1pK3/64VG4H5fdqUdWFXVdTjJHpRK6lCOYeus5+An343FU2tdRxfHCCgyev8It3b+H0lUmePtTHR961lXW1YS6NzXAt5dI7+8m13qzIUhzHcGtnAy/1jfDL9/TyF6+c5/4dG/jLV/r54J09DI5f41Uzzh3rG6ivrSnp866mnUOqU3ZsFGrDzAqHHd51czuQeROR7XiYP28e2NtDLOIwNHmNkakE3S117NzQpNZ2EQm8zW31nBueoi7q0FIfJexktjaIhBxSbpr+0Sl6WktfSC2W20H5vVpUdRbtaanjsx/ateCha8cxvLO3jR0bmsBk9mb65Xt6OTM8xdOH+vi199xMY22EI+fH+Px3j+NauDg2ww9ODfG91wc4Nah9RGRxWzsa6G6pZSaR4hffsZWXzg7xgd3dZD8WcF3Lj/tHicdTZYmnmHaOfNo3p3osNV9mZYu7Dc21uT3t8ufND9+zlbb6CJfGrvFbf/Yq565OMzJ9jUPnrvL8qxd55fyoWtxFJLC2ttdzLe3y1p51REJhrkxco6OxhgsjU4xMJZkqUz6fbzn5Xbk9uKr2iJ3rWr79+gCP/683+ci9vYQc2LO5lXt62+YcbQuHHfbdvp6jF8c4MTDBTCKFazPnkNTVROYcxRsYm2Eqkea7r1/mn777Fs4NT3FicEItR7IgxzHcvaUNx1xlYPwav/yuXq6Mx3Gti2shmXZJu5azI5Ns39BclniWaufI0onY1aPY+TIrHHZ459Y2XNdmtonJmzeHpxPc2tCYW5iqNupwaewaX/ybkxzY20M45DA2kyCVtmxuq2dru1ZtE5HgcBzD7esbOD00Rchxcrm8taGGyXiSmYQ3H1wVm9+V24Otagu7/JNI89uKni+w54fjGHbetI6BiTg14RAXR2ewBqaupXKfRp8cnABQq6YsWzjs8PZNLbzcPwIuhENmTuuGMZZUunzxLNXOkaV9c6rHcubLrOyRu5lkmvqacG7edG1m7ixU5BkDl8dmiCfTbG5v4OLoNBfHZkimXBV5IhIYU4l0wVy+qbWOcY+O2EFx+V25PdiqtrBb7kmkjmN4721d9I9OMTLdQCTkkHYtIUPu02i4XuT9+ZEL/Np7biYSCXHk/FjuKN7FsRmuTF0j7drMCbZ6syJANBrirRvWcWZkimjIAAZjwDGGaMjg+LBpWidiV4+V/q2zHQ/58+Ybl8apj4VzbZr5RV5DNEQskvkaGJuZfZ5MkXdlYobBibjOyRMR3zNQMJfXhENcSya9Dm9Ryu3BtuaFnTFmP/A5IAT8obX29+ZdXwM8BbwdGAYettaezbu+BzgG/La19j+XKq6VnETqOIae1gZuaqrjxJVxzo/E2dJeT3tDDRdHM29ClmrVzIon02xb38jQVJzBiRnSLiT0qXRVq62NEBqD6YRLc12IjsYYgxPX6GyqoYQLY5aMTsSuHqv5W8+fN9OuZfpakrdubObV/tE5Rd6G5jpOzHY/5Bd5Y9PXuDplcu2adTUhftw/Qirtau4UEd9xHAg7hvTslGkMhIwh5MDWBc5Z9wvl9mBb08LOGBMCvgD8JNAPHDLGPGetPZZ3s48AI9baW4wxB4DPAg/nXf848Felji17Eun8HuKFFonIFw477NjQzG1dlvMjU0zMpLi5s4HRqQQ3Ndcu2qqZfbPSXBdhdDrJ+eHpOeflXRzNLCQAYLGA0ZuXKpJMgQUaakIkU2nAYoCUC4lEmmg05HGE163mNSTBUoq/9fV5cx19V6eYjKe4tauRqbwiL7/7Ib/Iu7Vz7jl5I9NJ+jR3iohPOQaaaiOMTF0/j6Jp9hPam31+1Eu5PdjW+ojdXcBJa+1pAGPM08CDZI7AZT0I/Pbs938K/IExxlhrrTHmg8AZoOS7Jy5nkYjFHmNzW+YFun19E28MjJNKu9zcuXCrZvbNyq2djRyfd17ewNgMsYhDJJx5Ux8Jh5iYSRb15iUacrBkF9vQG5mgmkykubnjxk/FomEYmJpgU7S5/EEtoBSvIQmGUv6tHcewpT0zb95+09wirybscGFe9wPceE6e5k4R8bOaSGafz3zRcObInd/nFeX2YFvrwq4bOJ/3cz9w90K3sdamjDFjQJsxJg78Jpmjfb9R6sBc13J2eIqB8ThdTasftOGwwx3dzQDccZO7ZKtm9mgezD2ily34llP4ZS+bmMn0beefk3J1+tqcNy8LvaFZ7PqV3KdSHrPcb/auTFyjp7Uusw+Jyf2HGv8cqJuj2IVWoPSvOfHG/DcrqzG/yDs/MkUi5TI0eY3W+miuyJt/Tt5azJ3LKQLXaq4p9/y31vdRoSzVKupA30iagYlrdDXF6GnJJPGgbOSynNwOyu9+4ufFU34b+L+ttZPGLDw4jDGPAI8A9PT0FPXAa72U62Ktmtk3K/WxMKHZp5r/yfRy37xkv59/Tsp0Yu6bl4Xe0Cx2/UruUymPmX2z97nvnljxOFnu+NywLoYDfP/EBJ9+7rXc837mAzu5b1sTYzNx1tUGr89dyyf7z3LGZjn+ftkOiE0t9fRdnWJsOsmtXY0MT1678Zy8Es+dUHwRuFZzTbnnv7W+T7nnTpFyWmx8js7EC+bwd29rqsjNo5Xf/WWtx9gFYFPezxtnLyt4G2NMGFhHZhGVu4H/aIw5C/xL4F8bYz42/wmstU9Ya/dYa/d0dHQUFdRCS7meHS5tx2f2jcodG5t5/84N3Lm5hea6CLd2NTJ9LcmW9nra6qPc1FxLyEDIkHvTkv1/fitn/puW7P/zv9/QXMfQVIKhqQR10QhnhqbmfF/osqWuX8l9KuUxh/7/7d17mBx3def/z+m5qKW52PJoNCNblkYCEWEZRybC3GICGMKQEDshIDs34BcnXhIck9Xu71nyC+uHBfZZSDbisjhLvAmLIQRbkE2iJMZOgg3kAl4LLBtkY1vIgy0bzcgjWTOamZ5bn98ffVHPeC4901VdVV3v1/OM1JfqqlNV3zpVp7vqW2NT5QOT1baTlbbPyy48T0+emi3vEErTvfngET11alaPngj8rOS6qNc2h+qtpG3Wc/2VfsX78S3r9eZLN+k1L+rWC7o7tKE9vNxZeRP1qHJNvfNf2J+pd+4E6mmp9vnYibEF9+FPnprVk6fqeO+iOmH/Hi9h/2J3v6QdZrZNhQLuOkm/PG+Yg5LeKembkt4m6R53d0lXlgYwsw9IOuvunwoiqCi6cq08VTOf9/I30tP5vJoyKv+iVzpoKf0/OjFd7pBFev7BS+VrC317Xfl4odeWe381n2mUcUqqeztpbW3S4OjkgtMdHM2pdGpm0tB9crJFtf5KRV7fhsLzl1wUTu6Ulv/1L+xcU+/8F/Zn2N6RVoMjjbcPXwr793gJtbArXjN3o6S7VbjdwWfc/YiZfVDSIXc/KOnPJH3ezI5KOqVC8ReqqLtyrbyupOQlF+b1/cERnZ2cUUvGzl2rsH6tmpc5eCk97ljTPPealHkHL4sd0Cz1/mo+0yjjlBRJO+npXLPgdHs6sondJ0S9zaE2cVl/YeXOlRSBYeWaeue/sD8Th/YCRKER9+FLicv+AQXmQV4JH7E9e/b4oUOHlh0uiecDz8wscvBScRF7U8b09HM5DZ+djPW1a0kZ5wquE6mq0VTbPp+byOkfvndywWvs1q3Jco0dViKQtpnk9VdN7nRJTRnpqdM5PTc2xTV29bvGLtDcicY1Pj6uX/n01/WFd/+U1q1bV6/Jrqp9LrYPf82OTmXXZHV+AvfhS0ny/iHBFl2wqSzspHM9+DRaV66l0zyHz05J5nKPZ2+TSRlnlb1iBn5w8txETo+dGNPgyKR6OtZoywVNWpvQoq6kUbe5mAusbaZh/VVbBNIrZmC9YlLYoSpJKuykhffhjVjUlaRh/xAziy7cOPeKGaqVduWaFPOvSUEynb82qyu2NdYOoFG3ubRIw/qrvBYaAFarEffhS0nD/iEpGrHnVQAAAABIlVT+YseNFIFkYFuNB9YDACAo7FPCk7rCjos8gWRgW40H1gMAICjsU8KVulMxuZEikAxsq/HAegAABIV9SrhSV9gtdSNFAPHBthoPrAcAQFDYp4QrdYVd6UaKlbiRIhA/bKvxwHoAAASFfUq4UlfY9XW1af/e3eVGVTq3t6+rLeLIAFRiW40H1gMAICjsU8KVus5TMhlT/65e7bzpSm6kCMQY22o8sB4AAEFhnxKu1BV2EjdSBJKCbTUeWA8AgKCwTwlP6k7FBAAAAIBGQ2EHAAAAAAlHYQcAAAAACZfKa+zyedfA8JgGR3Lq6eSiTaCRsH0Hi+UJAIgD9kfLS11hl8+77jpyonzX+1I3q/27emkcQMKxfQeL5QkAiAP2R9VJ3amYA8Nj5UYhFe52v+/AYQ0Mj0UcGYBasX0Hi+UJAIgD9kfVSV1hNziSKzeKktx0XkOjuYgiAhAUtu9gsTwBAHHA/qg6qSvsejqz5bvdl2RbMtrYkY0oIgBBYfsOFssTABAH7I+qk7rCrq+rTfv37i43jtI5un1dbRFHBqBWbN/BYnkCAOKA/VF1Utd5SiZj6t/Vq503Xamh0Zw2dtCrDtAo2L6DxfIEAMQB+6PqpK6wkwqNY3t3u7Z3t0cdCoCAsX0Hi+UJAIgD9kfLS92pmAAAAADQaCjsAAAAACDhKOwAAAAAIOEo7AAAAAAg4SjsAAAAACDhUtcrZj7vGhge0+BITj2ddJUKgLywFJYNACCp0rYPS1Vhl8+77jpyQvsOHFZuOl++uWH/rt6GXskAFkdeWBzLBgCQVGnch4V+KqaZ9ZvZo2Z21Mzet8D7a8zsjuL795lZX/H1K8zscPHvQTP7hVpjGRgeK69cScpN57XvwGENDI/VOmoACUVeWBzLBgCQVGnch4Va2JlZk6RbJL1Z0iWSfsnMLpk32PWSTrv7CyV9TNJHi69/T9Ied98tqV/Sn5hZTb8wDo7kyiu3JDed19BorpbRAkgw8sLiWDYAgKRK4z4s7F/srpB01N2PufuUpNslXTNvmGsk3VZ8/GVJV5mZufu4u88UX89K8lqD6enMKtsyd5azLRlt7MjWOmoACUVeWBzLBgCQVGnch4Vd2F0k6amK58eLry04TLGQOyOpS5LM7OVmdkTSdyW9u6LQW5W+rjbt37u7vJJL59r2dbXVMloACUZeWBzLBgCQVGnch8W68xR3v0/SLjN7saTbzOwr7j7n91Mzu0HSDZK0ZcuWJceXyZj6d/Vq501Xamg0p40djd87DqK1kvaJaKQ1L1TTNtO6bBA9cifijPaZDGnch4X9i93Tki6ueL65+NqCwxSvoTtP0nDlAO7+iKSzki6dPwF3v9Xd97j7nu7u7mUDymRM27vb9YrtG7S9u72hVy6it9L2iWikMS9U2zbTuGwQPXIn4oz2mRxp24eFXdjdL2mHmW0zs1ZJ10k6OG+Yg5LeWXz8Nkn3uLsXP9MsSWa2VdJOSQMhxwsAAAAAiRPqqZjuPmNmN0q6W1KTpM+4+xEz+6CkQ+5+UNKfSfq8mR2VdEqF4k+SflLS+8xsWlJe0m+7+7NhxgsAAAAASbRkYWdmJuntKvRI+WVJr1ehF8vvS/q0u+eX+Lgkyd3vlHTnvNdurnicK05j/uc+L+nzy88CAAAAAKTbcr/Y3SJpo6RWFQq6NSqcOvmzkn5M0ntDjQ4AAAAAsKzlCrsr3f0lZtYi6YSkTe4+ZWZflPSd8MMDAAAAACxnuc5TZiTJ3acl3V+8yXjpfnPLnoYJAAAA1MrdNT4+LnePOhQgtpYr7E6YWbskuXt/6UUz65U0FWZgAAAAgCTNTk/qXX/ydU1MTEQdChBbS56K6e5vXuStUUlvKT0xs13ufiTIwMKQz7sGhsc0OJJTT2fj36QQQHjSkE/SMI8AkqOpNRt1CEiBJO/7VnW7A3cfkzRW8dLnJb00kIhCks+77jpyQvsOHFZuOq9sS0b79+5W/67exKwsAPGQhnyShnkEAKBS0vd9Qd2gPPZzOjA8Vl5JkpSbzmvfgcMaGB5b5pMAMFca8kka5hEAgEpJ3/cFVdjF/krWwZFceSWV5KbzGhrNRRQRgKRKQz5JwzwCAFAp6fu+oAq72OvpzCrbMnd2sy0ZbezgfG0AK5OGfJKGeQQAoFLS931LFnZm9uri/2uWGU/se8js62rT/r27yyurdM5sX1dbxJEBSJo05JM0zCMAAJWSvu9brvOUT0r6CUnf1BKdo7j7K4IMKgyZjKl/V6923nSlhkZz2tiRrF5uAMRHGvJJGuYRAIBKSd/3LVfYTZvZrZIuMrNPzn/T3W8KJ6xwZDKm7d3t2t7dHnUoABIuDfkkDfMIAEClJO/7livs3iLpDZLeJOnb4YcDAAAAAFip5W5Q/qyk283sEXd/sE4xAQAAAABWoNpeMfeZ2fmlJ2a23sw+E05IAAAAAICVqLawu8zdnys9cffTki4PJSIAAAAAwIpUW9hlzGx96YmZXaDlr88DAAAAANRBtcXZH0n6ppl9SZJJepuk/xpaVAAAAACAqlVV2Ln758zs25JeV3zpre7+cHhhAQAAAACqVfXplO5+xMxOSspKkpltcfcnQ4sMAAAAAFCVqq6xM7OrzexxSU9I+rqkAUlfCTEuAAAAAECVqv3F7kOSXiHpn9z9cjN7naRfDS+scOTzroHhMQ2O5NTTmVVfV5syGYs6LAApkMT8k8SYAQCopzjtK6st7KbdfdjMMmaWcfd7zezjYQYWtHzeddeRE9p34LBy03llWzLav3e3+nf1cqACIFRJzD9JjBkAgHqK276y2tsdPGdm7ZL+WdIXzOwTksbCCyt4A8Nj5YUuSbnpvPYdOKyB4UTNBoAESmL+SWLMAADUU9z2ldUWdvdKOk/SeyXdJekHkn4urKDCMDiSKy/0ktx0XkOjuYgiApAWScw/SYwZAIB6itu+strCrlnSP0j6mqQOSXe4+3BYQYWhpzOrbMvc2c22ZLSxIxtRRADSIon5J4kxAwBQT3HbV1ZV2Ln7f3H3XZLeI2mTpK+b2T+FGlnA+rratH/v7vLCL50D29fVFnFkABpdEvNPEmMGAKCe4ravrPo+dkVDkk5IGpa0MfhwwpPJmPp39WrnTVdqaDSnjR308AagPpKYf5IYMwAA9RS3fWVVhZ2Z/bakvZK6JX1J0m+6+8NhBhaGTMa0vbtd27vbow4FQMokMf8kMWYAAOopTvvKaq+xu1jS77r7Lnf/wEqKOjPrN7NHzeyomb1vgffXmNkdxffvM7O+4utvNLNvm9l3i/+/vtppAgAAAECaVPWLnbv/3mpGbmZNkm6R9EZJxyXdb2YH5xWG10s67e4vNLPrJH1U0rWSnpX0c+7+jJldKuluSRetJg4AAAAAaGTV/mK3WldIOurux9x9StLtkq6ZN8w1km4rPv6ypKvMzNz9AXd/pvj6EUlrzWxNyPECAAAAQOKEXdhdJOmpiufH9fxf3crDuPuMpDOSuuYN84uSvuPukyHFCQAAAACJFXZhVzMz26XC6Zn/bpH3bzCzQ2Z26OTJk/UNDlgG7RNxRdtEnNE+EWe0T8RV2IXd0yp0vFKyufjagsOYWbOk81S4nYLMbLOkv5L0Dnf/wUITcPdb3X2Pu+/p7u4OOHygNrRPxBVtE3FG+0Sc0T4RV2EXdvdL2mFm28ysVdJ1kg7OG+agpHcWH79N0j3u7mZ2vqS/l/Q+d//XkOMEAAAAgMQKtbArXjN3owo9Wj4i6YC7HzGzD5rZ1cXB/kxSl5kdlbRPUumWCDdKeqGkm83scPEvUTdFBwAAAIB6qOp2B7Vw9zsl3TnvtZsrHuckvX2Bz31Y0ofDjg8AAAAAki72nacAAAAAAJZGYQcAAAAACRf6qZhxkc+7BobHNDiSU09nVn1dbcpkLOqwAKAsbnkqbvEAAJBE9dqfpqKwy+dddx05oX0HDis3nVe2JaP9e3erf1cvBykAYiFueSpu8QAAkET13J+m4lTMgeGx8sKUpNx0XvsOHNbA8FjEkQFAQdzyVNziAQAgieq5P01FYTc4kisvzJLcdF5Do7mIIgKAueKWp+IWDwAASVTP/WkqCruezqyyLXNnNduS0caObEQRAcBccctTcYsHAIAkquf+NBWFXV9Xm/bv3V1eqKVzW/u62iKODAAK4pan4hYPAABJVM/9aSo6T8lkTP27erXzpis1NJrTxg56dwMQL3HLU3GLBwCAJKrn/jQVhZ1UWKjbu9u1vbs96lAAYEFxy1NxiwcAgCSq1/40FadiAgAAAEAjo7ADAAAAgISjsAMAAACAhKOwAwAAAICEo7ADAAAAgISjsAMAAACAhKOwAwAAAICEo7ADAAAAgISjsAMAAACAhKOwAwAAAICEo7ADAAAAgISjsAMAAACAhKOwAwAAAICEa446gHrI510Dw2MaHMmppzOrvq42ZTIWdVgAULUo8hi5EwCAcAW5r234wi6fd9115IT2HTis3HRe2ZaM9u/drf5dvRygAEiEKPIYuRMAgHAFva9t+FMxB4bHygtLknLTee07cFgDw2MRRwYA1Ykij5E7AQAIV9D72oYv7AZHcuWFVZKbzmtoNBdRRACwMlHkMXInAADhCnpf2/CFXU9nVtmWubOZbcloY0c2oogAYGWiyGPkTgAAwhX0vrbhC7u+rjbt37u7vNBK5672dbVFHBkAVCeKPEbuBAAgXEHva0PvPMXM+iV9QlKTpD9194/Me3+NpM9J+glJw5KudfcBM+uS9GVJL5P0WXe/cTXTz2RM/bt6tfOmKzU0mtPGDnp2A5AsUeQxcicAAOEKel8bamFnZk2SbpH0RknHJd1vZgfd/eGKwa6XdNrdX2hm10n6qKRrJeUk/WdJlxb/Vi2TMW3vbtf27vZaRgMAkYkij5E7AQAIV5D72rBPxbxC0lF3P+buU5Jul3TNvGGukXRb8fGXJV1lZubuY+7+LyoUeAAAAEgxd9f4+LjcPepQgFgKu7C7SNJTFc+PF19bcBh3n5F0RlJXyHEBAAAgQWanJ/WuP/m6JiYmog4FiKXEd55iZjeY2SEzO3Ty5MmowwHmoH0irmibiDPaJxbT1Bp9z7y0T8RV2IXd05Iurni+ufjagsOYWbOk81ToRKUq7n6ru+9x9z3d3d01hgsEi/aJuKJtIs5on4gz2ifiKuzC7n5JO8xsm5m1SrpO0sF5wxyU9M7i47dJusc5eRoAAAAAqhZqr5juPmNmN0q6W4XbHXzG3Y+Y2QclHXL3g5L+TNLnzeyopFMqFH+SJDMbkNQpqdXMfl7ST8/rURMAAAAAUi/0+9i5+52S7pz32s0Vj3OS3r7IZ/tCDQ4AAAAAGkDiO08BAABAOnDLA2BxFHYAAABIBG55ACyOwg4AAACJEYdbHgBxRGEHAAAAAAlHYQcAAIDE4Do7YGEUdgAAAEgMrrMDFkZhBwAAgEThOjvg+UK/j13U8nnXwPCYBkdy6unMqq+rTZmMRR0WANSkHrmN/AkAQP3Uut9t6MIun3fddeSE9h04rNx0XtmWjPbv3a3+Xb0cnABIrHrkNvIngDgrXWeXzWaVy+W0du1amZGbkFxB7Hcb+lTMgeGx8sKRpNx0XvsOHNbA8FjEkQHA6tUjt5E/AcRZ6Tq7U6dO6dpP3r2i6+3Gx8c1Pj4eYnTAygWx323owm5wJFdeOCW56byGRnMRRQQAtatHbiN/Aoi7TMsajY+Pq6lljcbGxjQ2NkZPmUisIPa7DV3Y9XRmlW2ZO4vZlow2dnDBLYDkqkduI38CiLPZqUlNT07o3/3Zv2g6N6F3fOof9bY/+BsNDw9HHRqwKkHsdxu6sOvratP+vbvLC6l0rmpfV1vEkQHA6tUjt5E/ASRBpnVN+f9M6xq5+5xf7yrvecf97xBnQex3G7rzlEzG1L+rVztvulJDozlt7KBXNwDJV4/cRv4EkEQTExN65//8qjJNLTrw798sSbr2k3frjpveVH78v3/jSq1bty7KMIHnCWK/29CFnVRYSNu727W9uz3qUAAgMPXIbeRPxJm7a2JiItDeEOM8ziDGU8s4VvrZlQwf9DJqal0jy7RobKzQ6URza/bce8Xr8tauXbvq6QBhqXW/29CnYgIAgMY0MTGx4t4QkzzOIMZTyzhW+tmVDB/UMspPT+l3/vx+5Wfzmp2e1Ds+9Y/6lY/9naanpzUxMaF3/PE/aTpXuC4vyHUMxEXD/2IHAAAaV5Dd1pfGFcdxBjGeWsax0s+uZPjlhh0fH9fs1KR89lyPgfnpSSmflzKZua81tSg/NTnn87NTk+Vxz38PaCTWSBeQmtlJST9c5O0Nkp6tYzjViFtMxLO0xeJ51t37l/vwMu1zpdOMg7jGRlznBNU247BMiaHxYggzd1YjDstyPmKqTj1iqrV9Rr3cop5+HGJo1Okv2jYbqrBbipkdcvc9UcdRKW4xEc/SoognbsugUlxjI67gxSF2YiCGoMVxPoipOnGMab6oY4x6+nGIIY3T5xo7AAAAAEg4CjsAAAAASLg0FXa3Rh3AAuIWE/EsLYp44rYMKsU1NuIKXhxiJ4YCYghOHOeDmKoTx5jmizrGqKcvRR9D6qafmmvsAAAAAKBRpekXOwAAAABoSBR2AAAAAJBwFHYAAAAAkHANVdj19/e7JP74q/dfVWif/EXwVxXaJn8R/VWF9slfRH9VoX3yF8HfohqqsHv22ShvLg8sjfaJuKJtIs5on4gz2ifipKEKOwAAAABIIwo7AAAAAEi45qgDCFs+7xoYHtPgSE49nVn1dbUpk7GowwKAmtQjt5E/EVe0TQB4voYu7PJ5111HTmjfgcPKTeeVbclo/97d6t/Vyw4AQGLVI7eRPxFXtE0AWFhDn4o5MDxWTvySlJvOa9+BwxoYHos4MgBYvXrkNvIn4oq2CQALa+hf7AZHcspN57XpvKze+tLNsuIXeafGJrW9uz3a4ABgBSpPPcuYaf26Vv3oTK78fm46r6HRXGC5bXAkp/XrWufkzr/89vFApwGsRmnfXimo9s8pngCSrKELu57OrLZ2rdW1e7bok/c8Xj5lY8fGdr007yRrAImw0Kln771qhz73zR+Wi7tsS0YbO7KBTXPTeVm945Vb9YmvPj5nmr2dwU0DWI2ezqyyLZk5xV0Q7Z9TPAEkXUOfitnX1aYPXfOSclEnFb7V+09/+RCnbABIjIVOPfvEVx/X2/dslqTyAWhfV1tg05zNq1zUVU5zNr/MB4GQ9XW1af/e3cq2FA5hgmr/nOIJIOka+he7TMbU0mShnbIBAPWw2Klnl198vm6/4eXa2BH8KWNDowtP8+TZnF6wkdyJ6GQypv5dvdp505UaGs0F1v7DPMUTAOqhoQs7KbxTNgCgXhbLY1u72kI74CR3Is4yGdP27vZA2z9tHkDSNfSpmFJ4p2wAQL1EkcfInUgb2jyApGv4X+zCOmUDAOolijxG7kTa0OYBJF3DF3ZSIVmXvnEbHCn0IEeyBhA3S3W1HsapZ9Vyr/skgUgEvZ1x+wQA9ZSKwo4ujAHEXdzyVNziAZKGbQhAvTX8NXYSXRgDiL+45am4xQMkDdsQgHpLRWG3VBfGABAHcctTcYsHSBq2IQD1lorCrtSFcSW6MAYQJ3HLU3GLB0gatiEA9RZZYWdm/Wb2qJkdNbP3LfD+FjO718weMLOHzOxnVjstujAGEHdxy1NxiwdIGrYhAPUWSecpZtYk6RZJb5R0XNL9ZnbQ3R+uGOz9kg64+/80s0sk3SmpbzXTowtjAHEXtzwVt3iApGEbAlBvUfWKeYWko+5+TJLM7HZJ10iqLOxcUmfx8XmSnqllglF2FQ4A1YhbnopbPEDSsA0BqKeoCruLJD1V8fy4pJfPG+YDkv7BzH5HUpukN9QnNAAAAABIljh3nvJLkj7r7psl/Yykz5vZ8+I1sxvM7JCZHTp58mTdgwSWQvtEXNE2EWe0T8QZ7RNxFVVh97Skiyueby6+Vul6SQckyd2/KSkracP8Ebn7re6+x933dHd3LznRfN517ORZffMHz+rYybPK572WeQCWtZL2icYWt/xTTduMW8xID3Ln87E9xgftE3EV1amY90vaYWbbVCjorpP0y/OGeVLSVZI+a2YvVqGwW/XXIvm8664jJ8o3Cy31TtW/q5cLmQGEKon5J4kxA42K7RFANSL5xc7dZyTdKOluSY+o0PvlETP7oJldXRzsP0j6TTN7UNIXJb3L3Vf99dTA8Fg5IUqFm4TuO3BYA8NjNc0LACwnifkniTEDjYrtEUA1ovrFTu5+pwq3MKh87eaKxw9LenVQ0xscyZUTYkluOq+h0Ry9VQEIVRLzTxJjBhoV2yOAasS585RA9XRmyzcJLcm2ZLSxIxtRRADSIon5J4kxA42K7RFANVJT2PV1tWn/3t3lxFg6P72vqy3iyAA0uiTmnyTGDDQqtkcA1YjsVMx6y2RM/bt6tfOmKzU0mtPGjqz6utq46BhA6JKYf5IYM9Co2B4BVCM1hZ1USIzbu9s5Hx1A3SUx/yQxZqBRsT0CWE5qTsUEAAAAgEZFYQcAAAAACUdhBwAAAAAJR2EHAAAAAAmXqs5T8nnXwPCYBkdy6umkRykAq5eGfJKGeQTSgu0ZaHypKezyedddR05o34HDyk3ny/eA6d/VS2IDsCJpyCdpmEcgLdiegXRIzamYA8Nj5YQmSbnpvPYdOKyB4bGIIwOQNGnIJ2mYRyAt2J6BdEhNYTc4kisntJLcdF5Do7mIIgKQVGnIJ2mYRyAt2J6BdEhNYdfTmVW2Ze7sZlsy2tiRjSgiAEmVhnyShnkE0oLtGUiH1BR2fV1t2r93dzmxlc4v7+tqizgyAEmThnyShnkE0oLtGUiH1HSeksmY+nf1audNV2poNKeNHfQIBWB10pBP0jCPQFqwPQPpkJrCTioktu3d7dre3R51KAASLg35JA3zCKQF2zPQ+FJzKiYAAAAANCoKOwAAAABIOAo7AAAAAEg4CjsAAAAASDgKOwAAAABIuFT1iilJ+bxrYHhMgyM59XTS3S8A8sJSWDYAyANAMqSqsMvnXXcdOaF9Bw4rN50v36Czf1cvCQpIKfLC4lg2AMgDQHKk6lTMgeGxcmKSpNx0XvsOHNbA8FjEkQGICnlhcSwbAOQBIDkiK+zMrN/MHjWzo2b2vkWG2WtmD5vZETP7i1qnOTiSKyemktx0XkOjuVpHDSChyAuLY9kAIA8AyRHJqZhm1iTpFklvlHRc0v1mdtDdH64YZoek35P0anc/bWYba51uT2dW2ZbMnASVbcloY0e21lEDSCjywuJYNgDIA0ByRPWL3RWSjrr7MXefknS7pGvmDfObkm5x99OS5O5DtU60r6tN+/fuVralMNul88T7utpqHTWAhCIvLI5lA4A8ACRHVJ2nXCTpqYrnxyW9fN4wL5IkM/tXSU2SPuDud80fkZndIOkGSdqyZcuSE81kTP27erXzpis1NJrTxg56dkK4VtI+EY205oVq2mZalw2iR+6MD/LA89E+EVfm7vWfqNnbJPW7+28Un/+apJe7+40Vw/ydpGlJeyVtlvQNSS9x9+cWG++ePXv80KFDYYYOLKSqvRvtExGgbSLOaJ+IM9on4mrRthnVqZhPS7q44vnm4muVjks66O7T7v6EpMck7ahTfAAAAACQGFEVdvdL2mFm28ysVdJ1kg7OG+avJb1WksxsgwqnZh6rY4wAAAAAkAiRFHbuPiPpRkl3S3pE0gF3P2JmHzSzq4uD3S1p2MwelnSvpP/X3YejiBcAAAAA4iyqzlPk7ndKunPeazdXPHZJ+4p/AAAAAIBFRHaDcgAAAABAMCjsAAAAACDhIjsVM0r5vGtgeEyDIzn1dHI/FqCRsH0Hi+UJYDXIHUD9pa6wy+dddx05oX0HDis3nVe2JaP9e3erf1cvCQdIOLbvYLE8AawGuQOIRupOxRwYHisnGknKTee178BhDQyPRRwZgFqxfQeL5QlgNcgdQDRSV9gNjuTKiaYkN53X0GguoogABIXtO1gsTwCrQe4AohFoYWdm9wQ5vjD0dGaVbZk729mWjDZ2ZCOKCEBQ2L6DxfIEsBrkDiAaqy7szOyheX/flfTq0vMAYwxUX1eb9u/dXU44pfO++7raIo4MQK3YvoPF8gSwGuQOIBq1dJ4yIGlE0oclTUgySf8s6edqDys8mYypf1evdt50pYZGc9rYQU9NQKNg+w4WyxPAapA7gGisurBz96vN7Bck3Srpv7v7QTObdvcfBhdeODIZ0/budm3vbo86FAABY/sOFssTwGqQO4D6q+kaO3f/K0lvlvRaM/sbSa2BRAUAAAAAqFrN97Fz9zFJ+8zsxyW9cv77ZrbL3Y/UOh0AAAAAwMICu0G5uz8o6cEF3vq8pJcGNR0AAAAAwFz1uI8dV8oCAAAgVWZmZjQzMxN1GEiRehR2XodpAAAAAEBqBXYqZpLk866B4TENjuTU00kXvEBcsa3GA+sBQFjIL0BwVl3Ymdmr3f1fzWyNu08uMejUaqcRhnzeddeRE9p34LBy0/nyTTP7d/WSSIAYYVuNB9YDgLCQX4Bg1XIq5ieL/39zqYHc/RU1TCNwA8Nj5QQiSbnpvPYdOKyB4bGIIwNQiW01HlgPAMJCfgGCVcupmNNmdquki8zsk/PfdPebahh3aAZHcuUEUpKbzmtoNMdNNIEYYVuNB9YDgLCQX4Bg1VLYvUXSGyS9SdK3gwknfD2dWWVbMnMSSbYlo40d2QijAjAf22o8sB4AhKWR80upR8zm5lR2Z4GIrPpUTHd/1t1vl3S1u982/y/AGAPV19Wm/Xt3K9tSmPXS+dx9XW0RRwagEttqPLAeAISF/AIEK4ivEfaZ2Xvd/TlJMrP1kv7I3X89gHEHLpMx9e/q1c6brtTQaE4bO+iBCYgjttV4YD0ACAv5BQhWEIXdZaWiTpLc/bSZXR7AeEOTyZi2d7dz/jYQc2yr8cB6ABAW8gsQnCBuUJ4p/konSTKzC5TS++MBAAAAQBSCKOz+SNI3zexDZvZhSf8m6Q+W+5CZ9ZvZo2Z21Mzet8Rwv2hmbmZ7AogVAAAAABpOzb+sufvnzOzbkl5XfOmt7v7wUp8xsyZJt0h6o6Tjku43s4PzP2dmHZLeK+m+WuMEAAAAgEYVxC92cvcjkg5IOijprJltWeYjV0g66u7H3H1K0u2SrllguA9J+qikXBBxAgAAAEAjqrmwM7OrzexxSU9I+rqkAUlfWeZjF0l6quL58eJrleN9qaSL3f3vl5n+DWZ2yMwOnTx5cqXhA6GifSKuaJuIM9on4oz2ibgK4he7D0l6haTH3H2bpKskfauWEZpZRtJ+Sf9huWHd/VZ33+Pue7q7u6ueRj7vOnbyrL75g2d17ORZ5fNeQ8TAwlbbPhsR21y8rLRtsv5QT+ROVIpb/qF9Iq6C6L1y2t2HzSxjZhl3v9fMPr7MZ56WdHHF883F10o6JF0q6WtmJkm9kg6a2dXufqjWgPN5111HTmjfgcPKTefLN8Ts39XLvVOAELDNJRvrD0BUyD9A9YL4xe45M2uX9M+SvmBmn5A0tsxn7pe0w8y2mVmrpOtUuD5PkuTuZ9x9g7v3uXufCr8ABlLUSdLA8Fg5QUhSbjqvfQcOa2B4ubABrAbbXLKx/gBEhfwDVC+Iwu5eSeep0HvlXZJ+IOnnlvqAu89IulHS3ZIekXTA3Y+Y2QfN7OoAYlrS4EiunCBKctN5DY3SRwsQBra5ZGP9AYgK+QeoXhCnYjZL+gdJpyTdIekOdx9e7kPufqekO+e9dvMiw7629jDP6enMKtuSmZMosi0ZbezIBjkZAEVsc8nG+gMQFfIPUL2af7Fz9//i7rskvUfSJklfN7N/qjmyEPV1tWn/3t3KthRmv3S+dl9XW8SRAY2JbS7ZWH8AokL+AaoXxC92JUOSTkgalrQxwPEGLpMx9e/q1c6brtTQaE4bO7Lq62rjIlwgJGxzycb6AxAV8g9QvZoLOzP7bUl7JXVL+pKk33T3h2sdb9gyGdP27nZt726POhQgFdjmko31ByAq5B+gOkH8YnexpN9198MBjAsAAAAAsEI1F3bu/ntBBAIAAAAAWJ0gbncAAAAAoMjdNTMzI3ePOhSkCIUdAAAAEKDJyUn96p/8i2ZnZ6MOBSkSZK+YiZPPuwaGxzQ4klNPJ70sASvFNpQerGsAcRTn3GRNTVGHgJRJbWGXz7vuOnJC+w4cVm46X74vSv+u3tgkBCDO2IbSg3UNII7ITcBcqT0Vc2B4rJwIJCk3nde+A4c1MDwWcWRAMrANpQfrGkAckZuAuVJb2A2O5MqJoCQ3ndfQaC6iiIBkYRtKD9Y1gDgiNwFzpbaw6+nMKtsyd/azLRlt7MhGFBGQLGxD6cG6BhBH5CZgrtQWdn1dbdq/d3c5IZTOy+7raos4MiAZ2IbSg3UNII7ITcBcqe08JZMx9e/q1c6brtTQaE4bO+LVkxIQd2xD6cG6BhBH5CZgrtQWdlIhIWzvbtf27vaoQwESiW0oPVjXAOKI3ASck9pTMQEAAACgUVDYAQAAAEDCUdgBAAAAQMKl+ho7ScrnXQPDYxocyamnk4tuAbYJLIa2ASAJyFVIq1QXdvm8664jJ7TvwGHlpvPlbnL7d/WSAJBKbBNYDG0DQBKQq5BmqT4Vc2B4rLzhS1JuOq99Bw5rYHgs4siAaLBNYDG0DQBJEKdclZ+d1czMTN2ni/RKdWE3OJIrb/gluem8hkZzEUUERIttAouhbQBIAnIV0izVhV1PZ1bZlrmLINuS0caObEQRAdFim8BiaBsAkoBchTRLdWHX19Wm/Xt3lxNA6Tzsvq62iCMDosE2gcXQNgAkAbkKaRZZ5ylm1i/pE5KaJP2pu39k3vv7JP2GpBlJJyX9urv/MMgYMhlT/65e7bzpSg2N5rSxg56TkG5sE1gMbQNAEpCrkGaRFHZm1iTpFklvlHRc0v1mdtDdH64Y7AFJe9x93Mx+S9IfSLo26FgyGdP27nZt724PetRAIrFNYDG0DQBJQK5CWkV1KuYVko66+zF3n5J0u6RrKgdw93vdfbz49FuSNtc5RgAAAABIhKhOxbxI0lMVz49LevkSw18v6SsLvWFmN0i6QZK2bNmy4kC4iSXCVGv7DANtHtLq2ybtB/UQx9yJZAojZ9E+EVexv0G5mf2qpD2Sfmqh9939Vkm3StKePXt8JePmJpYIWy3tMwy0eZSspm3SflAvccudSKawchbtE3EV1amYT0u6uOL55uJrc5jZGyT9vqSr3X0y6CDidBNLoB5o86gF7QdAkpCzkDZRFXb3S9phZtvMrFXSdZIOVg5gZpdL+hMVirqhMILgJpZIG9o8akH7AZAk5CykTSSFnbvPSLpR0t2SHpF0wN2PmNkHzezq4mB/KKld0pfM7LCZHVxkdKvGTSyRNrR51IL2AyBJyFlIm8huUO7ud7r7i9z9Be7+X4uv3ezuB4uP3+DuPe6+u/h39dJjXDluYom0oc2jFrQfAElCzkLaxL7zlDBxE0ukDW0etaD9AEgSchbSJtWFncRNLJE+tHnUgvYDIEnIWUiT1Bd2EvdlQmOhPSNstDEASUTuQqNLfWHHfZnQSGjPCBttDEASkbuQBpF1nhIX3OMEjYT2jLDRxgAkEbkLaZD6wo57nKCR0J4RNtoYgCQidyENUl/YcY8TNBLaM8JGGwOQROQupEHqCzvucYJGQntG2GhjAJKI3IU0SH3nKaV7nFzy3is1ODKpsakZbb2AjRzxt1jvXtyzB2EiZwJIInIX0iD1hV3Jwz8apackJMZyvXtxzx6EjZwJIInIXWhkqT8VU6KnJCQPbRZRov0BSCJyFxodhZ3oKQnJQ5tFlGh/AJKI3IVGR2EnekpC8tBmESXaH4AkIneh0XGNnc71lPTRux7RWy67SE0Z6WVbL9CW9euiDg2Q9PyOUrasX6f9e3c/7zoBevdCPfR1telTv3y5Hjp+RnmXmkx6yebzaH8AYo3chUZHYadCT0k//eIeTc/m9Z/+8iEuqEWsLNZRyk+/uEd30vslIjI147r1G8fmtEkAiDtyFxoZp2IWPXl6vFzUSVxQi/hY7GLvJ0+Pa3t3u16xfYO2d7dT1KFu6IAAQBKRu9DoKOyKuKAWcUXbRNzQJgEkEbkLjY5TMYt6OrPa2rVWb7nsIlnxh4+/ffBpLqhFJCqvqVvX2qytXWv1w+GJ8vtc7I0olTogWL+uVW996WaZFa5V6e2kTQKIL4710Ogo7Iq2rF+n33n9Dr3/r79XPu/6wz9/KR2ooO4Wuqbuwz9/qf7HPY/rh8MTdJSCyJU6IHh88Kw+8dXHy+30x3o7teUCrvUEEE8c66HRUdgVPXl6vLyhS4Wf5t//19/TS7es1/bu9oijQ5osdA3A+//6e7rjhldoYnqWjlIQuUzGtK2rXTf+xQPPu1Zl501XkjMBxBLHemh0FHZFpfOuN52XLZ9aJEmnxibZ2FE3+bzr5OikfuPK7ZKkv/z2cf3oTKFtTkzP6hXbN0QcIVAwNErOBJAsgyO5OaeQS4X97NBoLrS8NTMzo5mZGTU3c8iN8NHKikrnXV+7Z4vuOPRk+X52Y5OzmpnJq7n5XD8zMzN5fX9wRGcnZ9SSMU3nXafOTumi9eu0a1PnnGGBauTzrieeHdOJkXF1ZFv0ky/coJOjk/r4tT+uO/7vk7rzyCDXACBWVpIzpbl50yTJpJlZ1+R0Xlu72rRtA79CA1idqalZPfTMGf3oTE4bO9aoM9ukF2zoUGtr05zhLjw/q5vfcokeOTGivBeur3vHK7dyfTAaBoVdUV9Xmz50zUv0n//mu7p2zxZ98p5z14189Bcv089euklPnxnX6MSMjg2P6bmxKWVbMpp106e/flTXv3qb1re16P4fDqu1KSOXND2bLz92uSTTzDKvLfeZ1Y5zNi9NzSx/AFXZaceF52c1OjGj3MysXNLMbF4ZM83kORgLUj7v+uejQ2pf06Spmbw2tJsyalJX2zqdHpvV617cq+tevlU97S1RhwqULZczf+6yC5XPu74/OKKZ2byePD2h58am5owjNz2rrRvadXJ0QqfGJxfNdSt9XGturXw8PjWryZm8tne1adsStxVZKHeenSp8+bfSPAxgrucmcnrsxJgGRybV07lGm85vUrNJs5Imp6SZvNTWmtG2rnV6YnhUJ0ZMJ4rb4prmZm25oHBN+uGnzsy5X/FNr9+h2+9/Uj99SW+0MwgEJLLCzsz6JX1CUpOkP3X3j8x7f42kz0n6CUnDkq5194Gw4slkTC1NprdcdpHuOPSk3nvVDm3vbtd52Sa1NGd0z2NDGpuc0Ya2NTo6dFaS9KKNHfrDf/i+3vNTL1BLS5MeHzyrbEtGLc1NGp2YLj+enpmt6rVa31/sM2NTs/rqIyf0m6954ZIHUE0Z0/Hncnrm9LguuahTDx4/o9zUTHk8JfMPxhRgARp2Ubv1gnU6/ty4zoxPazqfr2qaYR6MTU3N6tjwqHLTea1pbtKLe899a3h6fFaDo4Wd2Jb1TXrg+HN66eb1Wre2NbDpA6tVmTM/ec/jWr+uVb/1U9v1wp52uUvfPX5aPywWc9s2tJfzpiS1tzYp21L4OzM+qfGpxXPdSh/XmlsrH584kyvnzmfOTOj0RKEwnZ8rmjKmHzw7ri/eN6DffeOL9ODxM+Uv/1aah4POf7V8prKo3drVtmjuXGw6FLIIwnMTOeUmc4VDjcI/ajFpbEpqaZYyJuWmZpSbyWtq1tW+pkVTM7PKtjTp9PiMnhw+oyPPjKi3c40uWNeiT1x3uZ549qxu+7cf6pP3PK7rf3K7Tp7N6QUbOYUcyRdJYWdmTZJukfRGSccl3W9mB9394YrBrpd02t1faGbXSfqopGvDjKunM6vzsk369Vdtk5nKBxzZ5ibNFk+Vm5rJK1/IKxqbnNFbLrtI69a06LGhUUmFYm/+42pfq/X9xT7zb0dP6lde3rfsAVRntlmnzk4q29Ikz5uODp2dM56FDsaCLEDDLmpPj+f0/RMjGpucXtHnK3v92793t/p39QZygDI1Nat7Hx9S+5pmTc+4TpyZVEamLRc06RuPj+rmg+d67frg1Zfq1Ts69MPnxvViCjvERE9nVk0Zaf26Vv37q16olpYmHR0sFHCVxdyaloly3pSkTeev0+NL5LdaHtf6fuXjUu4cPDOxZK7INjfpi/cN6Fde3lfOnfPHWW0erldOXe4zlUXtybM5fX9wdMHcudg4w8ydSJfcZG7BfeJrdnToyVOzxaFMUpOaMy73vDrXNmtyJq8zE1Na19qiRwdH1dqU0Y/OFG4btK6lSe9+zXZ9+hvH1JQRlzqgYUR1MdgVko66+zF3n5J0u6Rr5g1zjaTbio+/LOkqMwt1j9DX1aaXbD5fw+NTenaskAyeeHZMj5wY0djkjPIurWttVlPxnk1t2ebiNSWF9/K+8ONqX6v1/cU+845XbdcTw2Pl+amct8rHE1N5PTtWmPdnzkw8bzybzl9Xfr/0meXGWe1rYY3zq4+cKB9MnZmY1aODoyv6fOnARDrX69/A8Fgg7e2hZ85oesZ1/PSExiZndEFbiwZHJ/Xk6dnyDqw03ZsPfk9Pn5rV+GR+mbEC9dPX1aaXbb1Ab9+zWevWnNtuKnPI/LzZZNLE1NL5rZbHtb5f+biUO5fLFY+cGCkPWznfq8nD9cqpy32mlDsHz0xoNLd47lxsnGHmTqTLYvvEJ0/PanA0V/4bGs3p2bOTOj0+rWfPTmpialbnr2vRWDHfnC4e25X+hsen9PY9m7Vn6wWh3T7I3TUzMyN3X35gIABRFXYXSXqq4vnx4msLDuPuM5LOSOoKM6hMxuTFnfD8nXJbtnBgctu/HVNfV5u62lo1PjmtH998fvm9crE373G1r9X6/mKfKR1EreSAp3QgttB4wipAwy5qHzz+3Io/X9qRlOSm8xoazQXS3k6M5DQ2OaN1rc1qyzbrz7/1hHo612hwZHLB6Q6OTurs1Ewg0waCkMmYXrm9Sy/c2D5nu5lfzFXmza62Vl3Q1rpkfqvlca3vVz5eSc4rDfu8L/9qyMNh5tSVFLWnxqdWPJ0wcyfSZdF94sikejqy5b+NHVltaF+j9etatKF9jTrXNusL33pCba3Nypi0trV5To7Ku7RjY7tetb0rtF+SPZ/X9Z+9X7Ozs8sPDAQg8d03mtkNZnbIzA6dPHmy5vH1npd93k75bx98WuO5afVtaNNVL+7VF+4bUM95a7XpvLXqamvRmuaM+jacK/bmP672tVrfX+wzF56/tqqDmNPjU887EKscz0IHY0kralf6+WzL3E0k25JZ0SkbS7XPTZ1ZtWWbddu/HVNG0ut2btLGjib1dK5ZcLo9HWs0Oc0vdghGULmzuTmjXZvOm7PdzC/mKvPmtg1tOn9di17U07Fofqvlca3vVz4u5c7lcsXfPvi0Ljxv7YJf/q00D9crp66kqF3oi77lxhlm7kS6LLVP7D2/Sd0dTVrT7JJmNZOf1Ww+L/e8/uaBp/S6nZs0PjWtDW2t+tFz48qY5vxdsum8VfVkvpL2aU1NS74PBMmi+HnYzF4p6QPu/qbi89+TJHf/bxXD3F0c5ptm1izphKRuXyLgPXv2+KFDh2qKLZ933fPooJ45PTHnWoPb739S1796m3b0tGu62EX3tg1t5fuePHV6TMOjU5qcnY1dByJNGemp07k5HaEs1mlAJmPK533OtWnnZZvU1JSR5BoamdLw2cm6Xw+y2nFu627XoYFT2tHToT+8+/v69Vdt09rW6qdZ5XUiVX3VN799lq6xOzU2rb/89pN6z+t3qLUpoxdsaNE3Hh/RzQePVFxPsEuv2dGp0VyTdvR21NTGkSqrapsrVerZ9dTYdLmjpcocsq4lI5lpuqIjDUl68tSYhs9OSeZyr60nzDB6xWxtzuiJ4fE5HaEslCtOnMnpgSeH9bOXXaRnnsvNme+1xe7Wq83DcbnGbkP7Gh0aOCVJaitfX119xzVh5k6ky4nnnlt0nzijc71izualfL7QocoPT+XU1tqkqdm8Hj8xqmzL84urC9ev1et/rGepX+tqap9nz57VL/3x19XU0qLbf+s1yma5jg+BWbzRRlTYNUt6TNJVkp6WdL+kX3b3IxXDvEfSS9z93cXOU97q7nuXGm9QyT+f9+cdcIxPzc4p5pJ2AXjpHlK56XO3LljsgCZjVr7H1NRMXlsuONej2ULLpl49uNVa1JZuTXHdy7boxZs61LamOahbRaw6+U9NzerRoVGdnZzRqbEp9XZmtbOnTadyE/pR8fqBno6sNq1v0o+em9aerRsS1/YQqbodOOfzPucLrtKtUebnkKSZf9/SxXLF+NSsmjPSutYWjU7OKDc9q21dc/cX1ebhOPSKWVnUluSmZ7Wjt0PrWpuUz3sQvWJS2GFZExPTejY39rx94oZsm9auXfg2QKV7wz55akytzRk1N51ras2WUVd7q7ZcsGxOorBDXC3aNiPpFdPdZ8zsRkl3q3C7g8+4+xEz+6CkQ+5+UNKfSfq8mR2VdErSdfWKL5Mx9W1oV9+Gek0xfM3NGV160fk1jyeJy+YlF547mPrIWy/T6fEprV/bql0Xru4UjCC1tjbpJZvPf97rTdakE8+d0bltt1l7tp6XyANjpEMmY9ra1a6toV4JXX9B5c6gx1UPL+49b85N5UuF+oa2bGILdSTP2rUt2qA2/chGJBW+eF6qqJMK+egFG9u5hQFSJ7L72Ln7nZLunPfazRWPc5LeXu+40HiSdjAlSdlss162rcGOkAEkShJzJxrT2rUtuiLB+8RS75hNTU0Kq4N3d9fs7OyS06hmmLCmnaTprFSc4kp85ykAAABAXM3OzuraP/66ZmdnNTMzo5mZcz1cz3++2GtLvT5/GtXEsZylplXLeFcz/lqms9pphTH/S42z8r3VxFsS2S92AAAAQKPy2Vl5JjPngH2+al9b6vXK92odpppp1TLe1Yy/lunUOq2VDLvcZ6pZN6XHzc2rK9Ei6TwlLGZ2UtIPF3l7g6Rn6xhONeIWE/EsbbF4nnX3/uU+vEz7XOk04yCusRHXOUG1zTgsU2JovBjCzJ3ViMOynI+YqlOPmGptn1Evt6inH4cYGnX6i7bNhirslmJmh9x9T9RxVIpbTMSztCjiidsyqBTX2IgreHGInRiIIWhxnA9iqk4cY5ov6hijnn4cYkjj9LnGDgAAAAASjsIOAAAAABIuTYXdrVEHsIC4xUQ8S4sinrgtg0pxjY24gheH2ImhgBiCE8f5IKbqxDGm+aKOMerpS9HHkLrpp+YaOwAAAABoVGn6xQ4AAAAAGlLDFXZm1m9mj5rZUTN73wLvrzGzO4rv32dmfRHH8y4zO2lmh4t/vxFyPJ8xsyEz+94i75uZfbIY70Nm9tKI43mtmZ2pWD43hxzPxWZ2r5k9bGZHzOy9CwwTyDKqpa2a2e8VX3/UzN60munXENe+4vJ5yMy+amZbK96brVhXB4OMq8rYFt2ezOydZvZ48e+ddY7rYxUxPWZmz1W8F+oyq1YccmcVMbzGzL5jZjNm9ragp19lDIu2/zrH8W4z+26x3fyLmV1S7xgqhvtFM3Mzi00vhattz2bWVdwHnDWzT8Ukpjea2beL6/vbZvb6GMR0RUXeetDMfiHqmCre31Jcf/8xqJjCjLcO0w81Z0WdJ6qZvpnttXPHdX8R5PSriaHYJu81sweK6+Fngo6hzN0b5k9Sk6QfSNouqVXSg5IumTfMb0v6dPHxdZLuiDied0n6VB2X0WskvVTS9xZ5/2ckfUWSSXqFpPsijue1kv6ujstnk6SXFh93SHpsgXVW8zKqpa1KuqQ4/BpJ24rjaapjm32dpHXFx79VuQ1JOhviuln19iTpAknHiv+vLz5eX6+45g3/O5I+U49lVo/2WOcY+iRdJulzkt4W0XJYtP3XOY7OisdXS7qr3jEUh+uQ9A1J35K0J6o2vIrlt1h+bZP0k5LevVAuiSimyyVdWHx8qaSnYxDTOknNxcebJA2VnkcVU8X7X5b0JUn/Mc5trY7TDy1nRZ0nqpz/HZIeUHGfL2ljBG3gVkm/VXx8iaSBsNpko/1id4Wko+5+zN2nJN0u6Zp5w1wj6bbi4y9LusrMLMJ46srdvyHp1BKDXCPpc17wLUnnm9mmCOOpK3f/kbt/p/h4VNIjki6aN1gQy6iWtnqNpNvdfdLdn5B0tDi+ICwbl7vf6+7jxaffkrQ5oGnXHNsS3iTpH939lLuflvSPkpa98WxIcf2SpC8GNO2gxCF3VtP2Btz9IUn5AKe70hjq0f6riWOk4mmbpKAvmK+2XX9I0kcl5QKefi1W3Z7dfczd/0XBz08tMT3g7s8UXz8iaa2ZrYk4pnF3nym+nlVw7a+mXGRmPy/pCRWWUz1EnTujzllR54lqpv+bkm4p7vvl7kMRxOCSOouPz5P0jELSaIXdRZKeqnh+XM8/KC8PU0xKZyR1RRiPJP1i8afZL5vZxSHFUq1qY66nVxZP9fiKme2q10SLp0tcLum+eW8FsYxqaathrqOVjvt6FX69LMma2SEz+1ZxBxukWranWCyz4ikw2yTdU/FymMusWnHInXHIPbW2/7rGYWbvMbMfSPoDSTfVOwYrnIZ+sbv/fcDTrlUc2nNYMf2ipO+4+2TUMZnZy83siKTvSnp3RaEXSUxm1i7pP0n6LwHEUa2o21rUOSvqPFHN/L9I0ovM7F+L+9mgvtRdSQwfkPSrZnZc0p0qnLkTikYr7JLobyX1uftlKvyKcNsyw6fNdyRtdfcfl/Q/JP11PSZa3EH8paTfnffNOIrM7Fcl7ZH0hxUvb3X3PZJ+WdLHzewFdQ4r7tvTdZK+7O6zFa9FvcywCou0/7py91vc/QUqHMy+v57TNrOMpP2S/kM9p5tmxS82Pyrp30UdiyS5+33uvkvSyyT9npllIw7pA5I+5u5nI44jlqLIWTHJE80qnI75WhXOmPlfZnZ+nWP4JUmfdffNKlzO8/nisglcoxV2T0uq/MVrc/G1BYcxs2YVfhIdjioedx+u+ObtTyX9REixVKuaZVg37j5SStLufqekFjPbEOY0zaxFhaLuC+7+fxYYJIhlVEtbDXMdVTVuM3uDpN+XdHXlN8fu/nTx/2OSvqbCL55BqWV7inyZFV2neadhhrzMqhWH3BmH3FNT+693HBVul/TzdY6hQ4Xrvb5mZgMqXG98MOiOEVYpDu050JjMbLOkv5L0Dnf/QRxiKnH3RySdVaE9RBnTyyX9QbE9/q6k/8/MbgwgprDirdf0w8xZUeeJaub/uKSD7j5dvHzlMRUKvaBUE8P1kg5Ikrt/U4XTl8M5lvWQLt6L4k+FqvyYCqc6lS5g3DVvmPdo7kWsByKOZ1PF41+Q9K06LKc+Ld5Zyc9qbscg/zfieHp17n6LV0h6svQ8pFhMhY4ZPr7EMDUvo1raqqRdmtt5yjEF13lKNXFdrsKFwjvmvb5e0pri4w2SHtcSnYiEFNuC25MKnaY8UYxxffHxBfWKqzjcTkkDle037GVWj/ZYzxgqhv2swuk8ZdXtP4I4dlQ8/jlJh6JaH8Xhv6b4dJ5Sc3tWwB2b1RKTpPOLw781Lsup+JlS5ylbVbhmaEMc1l3x9Q+oPp2nRJo7o85ZUeeJKue/X9JtxccbVDhtsqvOMXxF0ruKj19c3F5COZYNtcFH8afCT5yPFRvx7xdf+6AK31JIhSr5Syp0OPF/JW2POJ7/psJFvg9KulfSzpDj+aKkH0maVuFbjOtV6P3r3cX3TdItxXi/G+QGuMp4bqxYPt+S9KqQ4/lJFS5yfUjS4eLfz4SxjGppqyp88/YDSY9KenOd2+w/SRqsWD4Hi6+/qrg8Hiz+f30I62fV25OkXy8uy6OS/p96xlV8/gFJH5n3udCXWT3aYx1jeJkKeWJMhW+8j0QQw4LtP4I4PlFs64eLbX3Rg6kw23XFsF9TTAq7WtuzCl/AnFLhV6jjCujLltXGpMJptmMVbe6wAurZr4aYfq2i/X1H0s/HYd1VjOMDqkNhF1S8IU8/1JwVdZ6oYv5NhdNBH1ZhP3tdBG3gEkn/qsK+/rCknw6rPZZ+CQEAAAAAJFSjXWMHAAAAAKlDYQcAAAAACUdhBwAAAAAJR2EHAAAAAAlHYQcAAAAACUdhl3Jmdr6Z/XbUcQCrYWbdZnafmT1gZldGHQ8AAEBUKOxwviQKOyTVVZK+6+6Xu/s/Rx0M0mm5LxjMbJ2Z/b2Zfd/MjpjZR6KIE+lUzRdgZnaXmT1YbJ+fNrOmeseJ9FnJl7NmdtDMvlev2JKKwg4fkfQCMztsZn8YdTBIDzP7iJm9p+L5B8zs/Wb2VTP7jpl918yuqXj/HWb2UPHg4/NmtlvSH0i6pth+10YwG4BU3RcM/93dd0q6XNKrzezN9QsPKVdN+9zr7j8u6VJJ3ZLeXrfokGZVfTlrZm+VdLZ+YSUXNyhPOTPrk/R37n5p1LEgXczsckkfd/efKj5/WNKbJJ1x9xEz2yDpW5J2SLpE0l9JepW7P2tmF7j7KTN7l6Q97n5jNHOBpCv+evaUu99SfP4BSTOSXidpvaQWSe93978pvv8OSf9Rkkt6SNIfSTooaa2kpyW90t0nlpnmJyR9z93/VxjzhMZR7/ZpZi2S/o+kP3f3O0KaLTSAerVNM2uXdJekGyQd4Hh1aRR2KUdhhyiZ2SMqfGPXLemPJb1W0sckvUZSXtKPSdqmwrfHve7++/M+/y5R2KEG9f6CwczOl/QdSW9w92OhzBQaRj3bp5ndLekKSV+R9GvuPhvajCHx6tU2zexjkr4h6QFxvLqs5qgDAJBqX5L0Nkm9ku6Q9CsqFHk/4e7TZjYgKRtdeGh07v6AmW00swtVaHunJZ2Q9DEzK33BcJGkHkmvl/Qld3+2+NlTK5mWmTVL+qKkT1LUoRr1bJ/u/iYzy0r6QnFc/xjcnKDR1KNtFi+5eIG7//viDxFYBoUdRiV1RB0EUusOSf9L0gZJPyVpr6ShYlH3Oklbi8PdI+mvzGy/uw+Xvu2LJmQ0oHp9wXCrpMfd/eMBjAvpUbcvwNw9Z2Z/I+kaUdhheWG3zVdK2lMcT7OkjWb2NXd/bS1BNzI6T0k5dx+W9K9m9j06T0G9ufsRFb5YeNrdf6TCN8V7zOy7kt4h6fsVw/1XSV83swcl7Y8oZDSmOyRdp8IBypcknafFv2B4u5l1SZKZXVDtBMzsw8Xx/m6AcSMdQm2fZtZuZpuKj5sl/ayKuRdYRqht093/p7tf6O59kn5S0mMUdUvjFzvI3X856hiQXu7+korHz6rwDd1Cw90m6bZ5r31W0mdDDA8p4O5HzKz8BYOZfUHS3xa/YDikii8YzKz0BcOsCtd8vGu58ZvZZkm/XxzPd8xMkj7l7n8aygyhoYTdPiW1STpoZmtU+ML/XkmfDmFW0GDq0DaxQnSeAgAAAAAJx6mYAAAAAJBwnIoJAEBAzOw+SWvmvfxr7v7dKOIBKtE+EVe0zWBwKiYAAAAAJBynYgIAAABAwlHYAQAAAEDCUdgBAAAAQMJR2AEAAABAwlHYAQAAAEDC/f8q3EG4OOG9BwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 900x900 with 30 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sns.pairplot(df)\n", + "\n", + "#plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Los diagramas de pares son una herramienta poderosa para explorar rápidamente distribuciones y relaciones en un conjunto de datos. `SEABORN` nos proporciona un método predeterminado simple para hacer graficas de pares de variables que se pueden personalizar. En un proyecto de análisis de datos, una parte importante del valor proviena de la visualización de los datos. Un diagrama de pares nos proporciona este primer vistazo completo de nuestros datos y es un excelente punto de partida en el análisis de datos." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4- Ahora inspeccionemos los datos de la función de autocorrelación de velocidades *(vacf(t))*\n", + "\n", + "El método `.unique()` nos muestra los valores almacenad en la columna de nuestro dataframe." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 8.93154621e-01, 8.67853999e-01, 8.21965277e-01, 7.58830547e-01,\n", + " 6.82705879e-01, 5.99214256e-01, 5.12496531e-01, 4.26708788e-01,\n", + " 3.45072299e-01, 2.69724578e-01, 2.02340394e-01, 1.44143075e-01,\n", + " 9.50296447e-02, 5.50241806e-02, 2.31665950e-02, -9.18336620e-04,\n", + " -1.86049007e-02, -3.06770168e-02, -3.79997827e-02, -4.15365249e-02,\n", + " -4.23383266e-02, -4.11057547e-02, -3.85393314e-02, -3.52143683e-02,\n", + " -3.14373672e-02, -2.74279676e-02, -2.36809831e-02, -2.02437267e-02,\n", + " -1.71742495e-02, -1.48698576e-02, -1.29330419e-02, -1.18340570e-02,\n", + " -1.10314433e-02, -1.04457177e-02, -1.01393731e-02, -1.03211133e-02,\n", + " -1.06234215e-02, -1.07802572e-02, -1.10281892e-02, -1.10716727e-02,\n", + " -1.11191701e-02, -1.12334173e-02, -1.11250076e-02, -1.07489433e-02,\n", + " -1.04600526e-02, -1.03032459e-02, -9.96753480e-03, -9.46925581e-03,\n", + " -9.13583953e-03, -8.54541920e-03, -7.87504204e-03, -7.39814481e-03,\n", + " -6.95338519e-03, -6.47809729e-03, -5.87645266e-03, -5.16474200e-03,\n", + " -4.80043422e-03, -4.64318646e-03, -4.29089228e-03, -4.09926428e-03,\n", + " -4.04093787e-03, -3.86099005e-03, -3.77666252e-03, -3.56659852e-03,\n", + " -3.36388382e-03, -2.98618292e-03, -2.89732125e-03, -2.91161449e-03,\n", + " -2.71109212e-03, -2.64524529e-03, -2.53665051e-03, -2.60184612e-03,\n", + " -2.72347359e-03, -2.72307545e-03, -2.75016972e-03, -2.73831910e-03,\n", + " -2.67977756e-03, -2.54126010e-03, -2.70556612e-03, -2.93237646e-03,\n", + " -2.85940222e-03, -2.75847316e-03, -2.55324272e-03, -2.43231817e-03,\n", + " -2.22090632e-03, -1.81037607e-03, -1.66162930e-03, -1.33774348e-03,\n", + " -1.03217398e-03, -5.66349074e-04, -2.74554506e-04, -5.68616888e-05,\n", + " -4.33644163e-06, 5.21896218e-05, -1.01174715e-04, -2.90779426e-04,\n", + " -3.62070772e-04, -4.50906868e-04, -6.24679378e-04, -6.60558580e-04,\n", + " -7.15219358e-04, -6.02265471e-04, -5.96747268e-04, -4.89137834e-04,\n", + " -3.73787334e-04, -3.35799938e-04, -1.71133324e-05, 3.81512291e-05,\n", + " 1.75224952e-04, 2.74340564e-04, 2.92499433e-04, 5.11027640e-04,\n", + " 5.76491526e-04, 4.80154820e-04, 4.12027701e-04, 3.34814598e-04,\n", + " 3.94699513e-04, 8.88253999e-05, -1.27831736e-04, -2.92120531e-04,\n", + " -2.59702938e-04, -1.47469589e-04, -2.97198887e-04, -4.53291228e-04,\n", + " -5.23567956e-04, -5.18088520e-04, -7.21369695e-04, -6.01590495e-04,\n", + " -6.43687206e-04, -3.95731739e-04, -3.52889416e-04, -4.81653406e-04,\n", + " -6.77651318e-04, -6.92399044e-04, -7.43436685e-04, -9.58102290e-04,\n", + " -1.17542152e-03, -1.01089594e-03, -8.60720582e-04, -7.21602875e-04,\n", + " -6.49456983e-04, -5.52507583e-04, -3.34334822e-04, -7.83924770e-05,\n", + " 1.06010542e-04, 5.89528609e-05, 1.48837338e-04, -4.80122690e-05,\n", + " -8.75702754e-05, -1.15438765e-04, -2.85895134e-04, -4.50302789e-04,\n", + " -3.51646973e-04, -2.38260647e-04, -2.42416674e-04, -1.83340962e-04,\n", + " -1.50821346e-04, -1.66885860e-04, -3.07395501e-04, -4.77931811e-04,\n", + " -5.23011549e-04, -3.56306729e-04, -1.00346508e-04, 9.04311746e-05,\n", + " 5.27369921e-05, 1.09636658e-05, -3.95643983e-05, 4.34031572e-05,\n", + " 6.19495986e-05, 2.03832184e-04, 2.06827404e-04, 2.27460230e-04,\n", + " 2.41240807e-04, 3.17600294e-04, 3.92820017e-04, 3.48903006e-04,\n", + " 2.48353666e-04, 2.90645345e-04, 3.54456497e-05, 1.41456272e-04,\n", + " 1.91575100e-06, -1.05931562e-04, -1.12848858e-04, -1.59171730e-04,\n", + " -3.88738437e-04, -3.07661714e-04, -2.84524198e-04, -3.20903375e-04,\n", + " -3.85275809e-04, -3.96396877e-04, -4.21230390e-04, -5.73414552e-04,\n", + " -6.10906398e-04, -7.30710512e-04, -9.13490599e-04, -8.02771014e-04,\n", + " -8.85016285e-04, -7.67805497e-04, -7.08730426e-04])" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#pd.unique nos dice los distintos valores presentes en la columna vacf(t)\n", + "pd.unique(df[\"vacf\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Trabajemos con esta columna, dado que queremos calcular estadÃsticas de datos agrupados por subconjuntos o atributos.\n", + "Por ejemplo, mostremos alguna estadÃstica básica de todos los datos en la columna usando el comando `.describe()`. Note la salida que nos devuelve:\n", + "\n", + "- conteo de datos\n", + "- la media\n", + "- desviación standard\n", + "- valor mÃnimo\n", + "- valor máximo\n", + "- nombre y tipo" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "count 199.000000\n", + "mean 0.029651\n", + "std 0.145300\n", + "min -0.042338\n", + "25% -0.002959\n", + "50% -0.000566\n", + "75% -0.000044\n", + "max 0.893155\n", + "Name: vacf, dtype: float64" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# En algunas ocasiones, esta es una de ellas, queremos calcular estadÃsticas de datos\n", + "# agrupados por subconjuntos o atributos de nuestros datos.\n", + "\n", + "df[\"vacf\"].describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "También podemos extraer un de las métricas que nos interese:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-0.042338326600000004\n", + "0.893154621\n", + "0.02965061882257874\n", + "0.14529958318959033\n", + "199\n" + ] + } + ], + "source": [ + "# otra manera de hacer la misma estadÃstica:\n", + "\n", + "print(df[\"vacf\"].min())\n", + "print(df[\"vacf\"].max())\n", + "print(df[\"vacf\"].mean())\n", + "print(df[\"vacf\"].std())\n", + "print(df[\"vacf\"].count())" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 30.122630\n", + "1 29.269338\n", + "2 27.721690\n", + "3 25.592402\n", + "4 23.025013\n", + " ... \n", + "194 -0.030808\n", + "195 -0.027074\n", + "196 -0.029848\n", + "197 -0.025895\n", + "198 -0.023903\n", + "Name: vacf, Length: 199, dtype: float64" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Si queremos, podemos hacer operaciones sobre una columna de nuestra data. Como por ejemplo\n", + "# multiplicar todos los valores por 2. Un uso más útil podrÃa ser normalizar los datos con\n", + "# la media, área o algún otro valor calculado de nuestra data\n", + "\n", + "df[\"vacf\"]/df[\"vacf\"].mean()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Grafiquemos los datos usando pandas\n", + "\n", + "Uno de los gráficos que podemos construÃr es el gráfico de dispersión. Mediante el cual podemos ver la relación entre dos variables, como en este caso: tiempo *(t)* vs la función de autocorrelación de velocidades *(vacf)*. Este tipo de gráfico puede obtenerse mediante el método ´lmplot´ al que se le indicará la caracterÃstica para cada uno de los ejes y el conjunto de datos. Como se muestra a continuación." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "from seaborn import load_dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/student/.local/lib/python3.6/site-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.\n", + " FutureWarning\n" + ] + }, + { + "data": { + "text/plain": [ + "<seaborn.axisgrid.FacetGrid at 0x7f5384823cc0>" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFuCAYAAAChovKPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAbe0lEQVR4nO3dcXCkd33f8c9Xqz1Li4VP5m4LY+niU3qMsKgzBo1LSUYVhQxnEnRNwzTnlBloHE4UnIQhycSMOzdUTKdOmbbBE3eqG9fTkEkx4LYZNcF2ILaiDnDEIsUY2bJ9yA6Sk3rvDvmQWem02vv2j33WWel0q93TPtrnt/t+zWh2n9/z7O73nt376Kfn+e3zM3cXACAcHc0uAABQH4IbAAJDcANAYAhuAAgMwQ0AgelsdgH1Onr0qD/yyCPNLgMA9oJt1xhcj/vcuXPNLgEAmiq44AaAdkdwA0BgCG4ACAzBDQCBIbgBIDAENwAEhuAGgMAQ3AAQGIIbAAJDcANAYIK7Vkm9pudzmpxZ0OJyXv29GY2PDGh0MNvssgDgqrV0j3t6PqeTU3PKraxpf3dauZU1nZya0/R8rtmlAcBVa+ngnpxZUDplyuzrlFnpNp0yTc4sNLs0ALhqLR3ci8t5dadTm9q60yktLeebVBEA7F5LB3d/b0arheKmttVCUX29mSZVBAC719LBPT4yoELRlV/fkHvptlB0jY8MNLs0ALhqLR3co4NZTYwNKdvTpQurBWV7ujQxNsSoEgBBa/nhgKODWYIaQEtp+eAuYzw3gFbR0odKyhjPDaCVtEVwM54bQCtpi+BmPDeAVtIWwc14bgCtpC2Cm/HcAFpJWwQ347kBtJK2GQ7IeG4AraItetwA0EoIbgAIDMENAIEhuAEgMAQ3AASG4AaAwLTNcECJKwQCaA1t0+PmCoEAWkXbBDdXCATQKtomuLlCIIBW0TbBzRUCAbSKtglurhAIoFW0TXBzhUAArSLW4YBmdlTS5ySlJN3v7vdsWX9I0h9I2h9tc5e7fyWuerhCIIBWEFuP28xSku6TdJukmyTdbmY3bdnsX0v6krvfIum4pP8cVz0A0CriPFRyq6Qz7r7g7uuSHpR0bMs2Lun10f3rJP1NjPUAQEuIM7hvkLRYsbwUtVX6tKQPmtmSpK9I+rXtnsjMTpjZrJnNnj17No5aASAYzT45ebuk/+bufZLeJ+kPzeyymtz9lLsPu/vwwYMH97xIAEiSOIP7JUn9Fct9UVulOyR9SZLc/ZuSuiQdiLEmAAhenMH9hKQjZnbYzPapdPJxass2P5D0bkkys7eoFNwcCwGAKmILbnffkHSnpEclPaPS6JE5M5sws7Fos9+U9BEze1LSFyR92N09rpoAoBVYaDk5PDzss7OzzS4DAPaCbdfY7JOTAIA6EdwAEBiCGwACQ3ADQGDaas7JMuaeBBCytutxM/ckgNC1XXAz9ySA0LVdcDP3JIDQtV1wM/ckgNC1XXAz9ySA0LVdcDP3JIDQteVwQOaeBBCytutxA0DoCG4ACAzBDQCBIbgBIDAENwAEhuAGgMAQ3AAQGIIbAAJDcANAYAhuAAgMwQ0AgSG4ASAwBDcABIbgBoDAENwAEBiCGwAC05YTKUjS9HxOkzMLWlzOq783o/GRASZXABCEtuxxT8/ndHJqTrmVNe3vTiu3sqaTU3Oans81uzQA2FFbBvfkzILSKVNmX6fMSrfplGlyZqHZpQHAjtoyuBeX8+pOpza1dadTWlrON6kiAKhdWwZ3f29Gq4XiprbVQlF9vZkmVQQAtWvL4B4fGVCh6Mqvb8i9dFsousZHBppdGgDsqC2De3Qwq4mxIWV7unRhtaBsT5cmxoYYVQIgCG07HHB0MEtQAwhSW/a4ASBkBDcABIbgBoDAENwAEBiCGwACQ3ADQGAIbgAIDMENAIEhuAEgMAQ3AASG4AaAwBDcABAYghsAAkNwA0BgCG4ACAzBDQCBIbgBIDCxBreZHTWzZ83sjJnddYVt/rmZPW1mc2b23+OsBwBaQWxTl5lZStJ9kn5W0pKkJ8xsyt2frtjmiKRPSfppd182sz2fS2x6PqfJmQUtLufV35vR+MgAU5oBSLQ4e9y3Sjrj7gvuvi7pQUnHtmzzEUn3ufuyJLl7LsZ6LjM9n9PJqTnlVta0vzut3MqaTk7NaXp+T8sAgLrEGdw3SFqsWF6K2iq9WdKbzezrZnbazI7GWM9lJmcWlE6ZMvs6ZVa6TadMkzMLe1kGANSl2bO8d0o6ImlUUp+kGTP7B+7+SuVGZnZC0glJOnToUMNefHE5r/3d6U1t3emUlpbzDXsNAGi0OHvcL0nqr1jui9oqLUmacveCu78g6TmVgnwTdz/l7sPuPnzw4MGGFdjfm9FqobipbbVQVF9vpmGvAQCNFmdwPyHpiJkdNrN9ko5LmtqyzR+r1NuWmR1Q6dDJnh2nGB8ZUKHoyq9vyL10Wyi6xkcG9qoEAKhbbMHt7huS7pT0qKRnJH3J3efMbMLMxqLNHpV03syelvS4pN929/Nx1bTV6GBWE2NDyvZ06cJqQdmeLk2MDTGqBECimbs3u4a6DA8P++zsbLPLAIC9YNs18s1JAAgMwQ0AgSG4ASAwBDcABIbgBoDAENwAEBiCGwACQ3ADQGAIbgAIDMENAIEhuAEgMAQ3AASG4AaAwBDcABAYghsAAkNwA0BgCG4ACAzBDQCBIbgBIDCdzS4gCabnc5qcWdDicl79vRmNjwwwYTCAxGr7Hvf0fE4np+aUW1nT/u60citrOjk1p+n5XLNLA4BttX1wT84sKJ0yZfZ1yqx0m06ZJmcWml0aAGyr7YN7cTmv7nRqU1t3OqWl5XyTKgKA6to+uPt7M1otFDe1rRaK6uvNNKkiAKiu7YN7fGRAhaIrv74h99JtoegaHxlodmkAsK22D+7RwawmxoaU7enShdWCsj1dmhgbYlQJgMRiOKBK4U1QAwhF2/e4ASA0BDcABIbgBoDAENwAEBiCGwACQ3ADQGAIbgAIDMENAIEhuAEgMAQ3AASG4AaAwBDcABAYghsAAnPF4Dazn45ur9m7cgAAO6nW4743uv3mXhQCAKhNtetxF8zslKQbzOzerSvd/dfjKwsAcCXVgvvnJb1H0nslfXtvygEA7OSKwe3u5yQ9aGbPuPuTe1gTAKCKWkaVfNLM9pcXzKzXzB6IryQAQDW1zDl5s7u/Ul5w92UzuyW+kppnej6nyZkFLS7n1d+b0fjIAHNRAkicWnrcHWbWW14ws+vVgpMMT8/ndHJqTrmVNe3vTiu3sqaTU3Oans81uzQA2KSWAP4Pkr5pZl+WZJI+IOnfxlpVE0zOLCidMmX2lXZJZl+n8usbmpxZoNcNIFF2DG53/7yZfVvSu6Kmf+buT8db1t5bXM5rf3d6U1t3OqWl5XyTKgKA7dV0yMPd58zsrKQuSTKzQ+7+g1gr22P9vRnlVtZe63FL0mqhqL7eTBOrAoDL7XiM28zGzOx5SS9I+gtJL0p6OOa69tz4yIAKRVd+fUPupdtC0TU+MtDs0gBgk1pOTn5G0jskPefuhyW9W9LpWKtqgtHBrCbGhpTt6dKF1YKyPV2aGBvi+DaAxKnlUEnB3c+bWYeZdbj742b2e3EX1gyjg1mCGkDi1dLjfsXMrpX0fyT9kZl9TtKPa3lyMztqZs+a2Rkzu6vKdr9oZm5mw7WVDQDtq5bgflzSdZJ+Q9Ijkr4v6f07PcjMUpLuk3SbpJsk3W5mN22zXU/03N+qvWwAaF+1BHenpD+TNC2pR9IX3f18DY+7VdIZd19w93VJD0o6ts12n5H0u5LWaqoYANrcjsHt7v/G3YckfVzSmyT9hZl9rYbnvkHSYsXyUtT2GjN7m6R+d//Tak9kZifMbNbMZs+ePVvDSwNA66pn6rKcpP8n6bykXZ/BM7MOSf9R0m/utK27n3L3YXcfPnjw4G5fGgCCVss47o+Z2bSkP5f0Bkkfcfeba3julyT1Vyz3RW1lPZLeKmnazF5UacjhFCcoAaC6WoYD9kv6hLt/p87nfkLSETM7rFJgH5f0y+WV7n5B0oHycvTL4bfcfbbO1wGAtlLLtUo+dTVP7O4bZnanpEclpSQ9EH11fkLSrLtPXc3zAkC7M3dvdg11GR4e9tlZOuUA2oJt11jPyUkAQAIQ3AAQGIIbAAJDcANAYAhuAAgMwQ0AgSG4ASAwBDcABKamyYLbyfR8TpMzC1pczqu/N6PxkQFmxQGQKPS4K0zP53Ryak65lTXt704rt7Kmk1Nzmp7PNbs0AHgNwV1hcmZB6ZQps69TZqXbdMo0ObPQ7NIA4DUEd4XF5by606lNbd3plJaW802qCAAuR3BX6O/NaLVQ3NS2WiiqrzfTpIoA4HIEd4XxkQEViq78+obcS7eFomt8ZKDZpQHAawjuCqODWU2MDSnb06ULqwVle7o0MTbEqBIAicJwwC1GB7MENYBEo8cNAIEhuAEgMAQ3AASG4AaAwBDcABAYghsAAkNwA0BgCG4ACAzBDQCBIbgBIDAENwAEhuAGgMAQ3AAQGIIbAAJDcANAYAhuAAgMEylsY3o+p8mZBS0u59Xfm9H4yACTKwBIDHrcW0zP53Ryak65lTXt704rt7Kmk1Nzmp7PNbs0AJBEcF9mcmZB6ZQps69TZqXbdMo0ObPQ7NIAQBLBfZnF5by606lNbd3plJaW802qCAA2I7i36O/NaLVQ3NS2WiiqrzfTpIoAYDOCe4vxkQEViq78+obcS7eFomt8ZKDZpQGAJIL7MqODWU2MDSnb06ULqwVle7o0MTbEqBIAicFwwG2MDmYJagCJRY8bAAJDcANAYAhuAAgMwQ0AgSG4ASAwBDcABIbgBoDAENwAEBiCGwACQ3ADQGAIbgAIDMENAIEhuAEgMLFeHdDMjkr6nKSUpPvd/Z4t6z8p6VclbUg6K+lX3P2v46ypHkwaDCCJYutxm1lK0n2SbpN0k6TbzeymLZv9X0nD7n6zpIck/fu46qkXkwYDSKo4D5XcKumMuy+4+7qkByUdq9zA3R939/Jkjqcl9cVYT12YNBhAUsUZ3DdIWqxYXoraruQOSQ/HWE9dmDQYQFIl4uSkmX1Q0rCkz15h/QkzmzWz2bNnz+5JTUwaDCCp4gzulyT1Vyz3RW2bmNl7JN0taczdL273RO5+yt2H3X344MGDsRS7FZMGA0iqOIP7CUlHzOywme2TdFzSVOUGZnaLpEmVQjtRZ/2YNBhAUsU2HNDdN8zsTkmPqjQc8AF3nzOzCUmz7j6l0qGRayV92cwk6QfuPhZXTfVi0mAASWTu3uwa6jI8POyzs7PNLgMA9oJt15iIk5MAgNoR3AAQGIIbAAJDcANAYAhuAAgMwQ0AgSG4ASAwBDcABIbgBoDAxDoDTitgFhwASUOPuwpmwQGQRAR3FcyCAyCJCO4qmAUHQBIR3FUwCw6AJCK4q2AWHABJRHBXwSw4AJKI4YA7YBYcAElDjxsAAkNwA0BgCG4ACAzBDQCBIbgBIDAENwAEhuAGgMAwjrtGXN4VQFLQ464Bl3cFkCQEdw24vCuAJCG4a8DlXQEkCcFdAy7vCiBJCO4acHlXAElCcNeAy7sCSBKGA9aIy7sCSAp63AAQGIIbAAJDcANAYAhuAAgMwQ0AgWFUSR240BSAJKDHXSMuNAUgKQjuGnGhKQBJQXDXiAtNAUgKgrtGXGgKQFIQ3DXiQlMAkoLgrhEXmgKQFAwHrAMXmgKQBPS4ASAwBDcABIZDJVeBb1ACaCZ63HXiG5QAmo3grhPfoATQbAR3nfgGJYBmI7jrxDcoATQbwV0nvkEJoNkI7jrxDUoAzRbrcEAzOyrpc5JSku5393u2rL9G0uclvV3SeUm/5O4vxllTI5RDujwksHxikvBOhun5nO55+Bm9cD6v4qVL6jCTS3L3qvc3LrlckrnUmartMbt9fCivSZ1X/5gOMw0ceJ1+5+hgwzLC3L0hT3TZE5ulJD0n6WclLUl6QtLt7v50xTYfk3Szu3/UzI5L+gV3/6Vqzzs8POyzs7Ox1Fyr8pDAdMrUnU5ptVBUoegt3fMuh+GZs6+q6Mn9z1Qsui41ZxcB2+rskCRTbyatz37gp+rNCNv2ORtR2BXcKumMuy9Ikpk9KOmYpKcrtjkm6dPR/Yck/b6Zmcf126RBKocESlJmX6fy6xuanFkIMrh36qFuXHJd2vKOuKT1om9pqX7/ah5zdY8HkuOSS+mUaWWtcRkRZ3DfIGmxYnlJ0j+80jbuvmFmFyS9QdK5yo3M7ISkE5J06NChuOqt2eJyXvu705va4hgSWEug7rYnWxnIHVLUWyUQgUZxl8ykjeKlhmVEEF95d/dTkk5JpUMlTS5H/b0Z5VbWXutxS40bElh5SGIj+pt/p0DdbU+2jEMMQOOZlcK7s6OjYcOG4wzulyT1Vyz3RW3bbbNkZp2SrlPpJGWijY8M6OTUnPLrG5uOcV/tkMDtwrrywBaBCoSrw6TiJVdvJt2wYcNxBvcTko6Y2WGVAvq4pF/ess2UpA9J+qakD0h6LOnHt6VoSKBKx7qff/lHWi+69nV2XNXoknu/9pzufez51wK7LPE7ISCdHZKZJeokamivSZ3JGlUSW3BHx6zvlPSoSsMBH3D3OTObkDTr7lOS/qukPzSzM5J+qFK4B6H8BpycmtN10eiS8gWnJrRzeJd72fMvv7oH1e7e3x2uKf01YEruf6Z9nSll9qV0JNvDlRvRkmIbDhiXJAwHLLv91OnLjnXn1zeU7enSF06844qPq7zC4FohWQdCOrR3vQYAO9rz4YAt72pHl/zuI/PK/WhNa1uPj1SxXaA2qifbaaa/n72WUAYCQXDvQnl0yUbRde7Vi1ovXlKqw3Tj9dufOd56eMRU/Vh2uoNABXA5gnsXxkcG9FsPPalX8gV1WCmIN4qu8z9e1/R8blPY3vu153Tf9Pd1saKXfaXQ7u/t1meOvZWwBrAtgnsXRgezOnjtNXp1bUPrxVIgm5lWLm7onoef0ehgtqaTkOWe91ve2EPvGsCOCO5dWrm4ob/3+mv0NxfW1CHTJb+ktYJr/uVXdeNdf7rj4RBJuibdoRuvz+jhT4zsRckAAsdlXXepvzejl1cuRqHt2jpIZKfQ7ursULanS3fd9pbYagTQWgjuXSpPrOByFesYWlke43P4wOta+qqCABqPQyW7NDqY1Zuz1+qFcz/WpTqCe19nhz4++pP69fe8OcbqALQietwN8DtHB5V9fZe60h3bj5aPlNe95Y09mvzg2wltAFeFHncDlK9dcs/Dz+jZaPRI5VfEJSllUmeKXjaA3SO4G2R0MLtp+F/5GtpcNwNAoxHcDVYOcACIC8e4ASAwBDcABIbgBoDAENwAEBiCGwACQ3ADQGAIbgAIDMENAIEhuAEgMAQ3AATGvI5LkSaBmZ2V9NdX8dADks41uJzdSlpN1FNd0uqRklcT9VRXbz3n3P3o1sbggvtqmdmsuw83u45KSauJeqpLWj1S8mqinuoaVQ+HSgAgMAQ3AASmnYL7VLML2EbSaqKe6pJWj5S8mqinuobU0zbHuAGgVbRTjxsAWgLBDQCBaYngNrOjZvasmZ0xs7u2WX+NmX0xWv8tM7uxYt2novZnzey9e1TPJ83saTP7rpn9uZn9RMW6opl9J/qZ2qN6PmxmZyte91cr1n3IzJ6Pfj7UiHpqrOk/VdTznJm9UrGuofvIzB4ws5yZfe8K683M7o1q/a6Zva1iXcP3Tw31/IuojqfM7Btm9lMV616M2r9jZrONqKfGmkbN7ELF+3KyYl3V9zqmen67opbvRZ+Z66N1Dd9HZtZvZo9H/6/nzOw3ttmmcZ8jdw/6R1JK0vclDUjaJ+lJSTdt2eZjkv5LdP+4pC9G92+Ktr9G0uHoeVJ7UM+7JGWi+/+qXE+0/GoT9s+HJf3+No+9XtJCdNsb3e/di5q2bP9rkh6IcR+NSHqbpO9dYf37JD0sySS9Q9K3Yt4/O9XzzvLrSLqtXE+0/KKkA43cPzXWNCrpT3b7Xjeqni3bvl/SY3HuI0lvkvS26H6PpOe2+X/WsM9RK/S4b5V0xt0X3H1d0oOSjm3Z5pikP4juPyTp3WZmUfuD7n7R3V+QdCZ6vljrcffH3T0fLZ6W1LfL19xVPVW8V9JX3f2H7r4s6auSLvsW1x7UdLukLzTgdbfl7jOSflhlk2OSPu8lpyXtN7M3Kab9s1M97v6N6PWk+D8/NdVUxW4+f42qJ9bPjyS5+9+6+19F91ckPSPphi2bNexz1ArBfYOkxYrlJV2+w17bxt03JF2Q9IYaHxtHPZXuUOm3cFmXmc2a2Wkz+6e7rKWeen4x+vPtITPrr/OxcdWk6DDSYUmPVTQ3eh/t5Er1xrV/6rH18+OS/szMvm1mJ/a4ln9kZk+a2cNmNhS1NXUfmVlGpRD8HxXNse4jKx2KvUXSt7asatjnqHPXVeKqmdkHJQ1L+scVzT/h7i+Z2YCkx8zsKXf/fsyl/G9JX3D3i2Y2rtJfJ/8k5tes1XFJD7l7saKtGfsocczsXSoF989UNP9MtG+ykr5qZvNR7zRuf6XS+/Kqmb1P0h9LOrIHr7uT90v6urtX9s5j20dmdq1KvyQ+4e4/asRzbqcVetwvSeqvWO6L2rbdxsw6JV0n6XyNj42jHpnZeyTdLWnM3S+W2939peh2QdK0Sr+5Y63H3c9X1HC/pLfX+ti4aqpwXFv+zI1hH+3kSvXGtX92ZGY3q/ReHXP38+X2in2Tk/S/tPtDfzVx9x+5+6vR/a9ISpvZATVxH0WqfX4auo/MLK1SaP+Ru//PbTZp3OeokQfom/Gj0l8NCyr9OV0++TG0ZZuPa/PJyS9F94e0+eTkgnZ/crKWem5R6YTNkS3tvZKuie4fkPS8dnkip8Z63lRx/xcknfa/O2nyQlRXb3T/+r14z6LtBlU6kWRx7qPouW7UlU+8/Zw2n1T6yzj3Tw31HFLpfMw7t7S/TlJPxf1vSDraiHpqqOmN5fdJpSD8QbS/anqvG11PtP46lY6Dvy7ufRT9Wz8v6feqbNOwz1FD3tBm/6h0tvY5lcLw7qhtQqXerCR1Sfpy9GH/S0kDFY+9O3rcs5Ju26N6vibpZUnfiX6movZ3Snoq+nA/JemOParn30mai173cUmDFY/9lWi/nZH0L/fqPYuWPy3pni2Pa/g+UqlH9reSCiodX7xD0kclfTRab5Lui2p9StJwnPunhnrul7Rc8fmZjdoHov3yZPR+3t3A92unmu6s+AydVsUvle3e67jribb5sEqDDyofF8s+UulwlUv6bsX78r64Pkd85R0AAtMKx7gBoK0Q3AAQGIIbAAJDcANAYAhuAAgMwQ1UYWb7zexjza4DqERwA9XtV+nqkkBiENxAdfdI+sno2s2fbXYxgMSck0BV0ZXe/sTd39rsWoAyetwAEBiCGwACQ3AD1a2oNBUVkBgEN1CFl651/fVowllOTiIRODkJAIGhxw0AgSG4ASAwBDcABIbgBoDAENwAEBiCGwACQ3ADQGD+PwsyLQHVODEBAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 360x360 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lmplot(\"t\",\"vacf\",data=df, fit_reg=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "from seaborn import kdeplot\n", + "from seaborn import distplot" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/student/.local/lib/python3.6/site-packages/seaborn/distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).\n", + " warnings.warn(msg, FutureWarning)\n" + ] + }, + { + "data": { + "text/plain": [ + "<AxesSubplot:xlabel='t', ylabel='Density'>" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAo50lEQVR4nO3deXSc9X3v8fd3Rvtm7ZJtWZZsC7ANBoOwWQLlEtYsmCSkhYQsLQlpEpq0uekpp81N2vTec7P05Nz2NE0gCc0eCFnASUkhkEDYLGzAxvsmybZky9r3ZTQzv/vHjIhsS/bI1uiZ0Xxe58ia5bH0sUbWR8/v9zy/x5xziIhI6vJ5HUBERLylIhARSXEqAhGRFKciEBFJcSoCEZEUl+Z1gJkqLS11NTU1XscQEUkqr776aqdzrmyq55KuCGpqatiyZYvXMUREkoqZHZruOQ0NiYikOBWBiEiKUxGIiKQ4FYGISIpTEYiIpDgVgYhIilMRiIikOBWBiEiKUxGIiKS4pDuzWESm9uOGw55+/vetr/b088vZ0x6BiEiKUxGIiKQ4FYGISIqLaxGY2S1mttfMDpjZ/VM8/2Ez6zCzrdG3j8Qzj4iInCpuk8Vm5ge+DtwItACbzWyjc27XSZs+4py7L145JPk45+geCnC8f4zjA6N09I9xvH+UvpFxhsdDDI8FGQ6EGA6EGAoECQTDhMIu8ubcH29H38LRx074HKd8zlMznG77Ux+Y8iEALPqHAWaGTb4NWHSDPz4OxonbMfH4FM9NfPyBkSBmkO73keY30v0+0n1Gmt9Hht9HToaf3My0N98XZKVTnJtBdoZ/muSSKuJ51NA64IBzrhHAzB4GNgAnF4HMMq+PHpmJiR/6TZ1DHO4epn1gjPaBUUbHw6dsm+H3kZEWfZt0O81n+Mzwp0Xe+4zo+8gPTJ9v8g/cyew090594OTnT9l+un9j9A03URbuzeI5q8eJfN3+eDvyPicjDeccwZBjPBRmbDzEYPT2eCjMcCBEMHxqXWWl+yjLy2RxUQ5VhdlUF+dQkpfxZgHFysvvOx2xdG7iWQSLgSOT7rcA66fY7j1mdi2wD/gb59yRkzcws3uBewGqq/WCJ7uwcxzuGmZrSy97jvXTPxoEIDvdT0VBFhdXFVKal8mC7HQKstLIz0onLyuNdL+mtM6Fc47xkGNoLMhQIEj/yDhdQ4E3975eO9TDpsYuAEpyM7igMp+ViwqoLcmdcSlIcvH6PIJfAT9xzo2Z2ceA7wHXn7yRc+5B4EGA+vr66fbAJcGNBUM0NHbT0NRFz/A46X7j/Ip8lpXlUVuaS3l+pn7gxJGZkZFmZKRlUJSbAUUnPh92jo6BMZo6h9jT1k9DUzcvHuyiLD+TK5eVsLa6kMw0DSPNR/EsglZgyaT7VdHH3uSc65p099vAV+KYRzwSCIbZ1NjFH/Z3MBwIsawslxtWVrBqYQGZ6frBkih8ZlQUZFFRkMUVy0oIBMPsaO3j5cYuNm47ylO72rjuvHKuXF6ivbN5Jp5FsBmoM7NaIgVwJ/C+yRuY2ULn3LHo3duA3XHMIx7Y29bP41uP0jsyTl15Hm9dWUF1cY7XsSQGGWk+Ll1axNrqQo50D/P7vR389842Njd3c/vaxSwvy/M6osySuBWBcy5oZvcBTwJ+4CHn3E4z+yKwxTm3EfiUmd0GBIFu4MPxyiNzazwU5ontx2ho6qY8P5OPXrOM2tJcr2PJWTAzqkty+dBVuRxoH+Sxra1854UmrllRyk2rK/H7NJyX7Ozkw+QSXX19vduyZYvXMRKa10cN9Y+O88NNh2jpGeGaFaXcuKqCNA0lzBuTS76mJIe71y8lJ9Pb6UYdNXRmZvaqc65+quf0v1NmVcfAGN989iDt/WPcvX4pt160UCUwz6T7fWy4ZDF/Vr+Elp4RvvHcQXqGAl7HknOg/6Eya9r7R/n2842Mh8J89NplrFpU4HUkiaOLlxRyz1tqGQoE+dbzjXSrDJKWikBmRe9wgIdebMIBH7lmGYsLs72OJHNgaUku97xlGWPBMN95oZGB0XGvI8lZUBHIORsJhPjuS82MBcP8xdW1VBRkeR1J5tDiwmw+fFUNg2NBvv/yIQLBU88Kl8SmIpBzEnaOR189QufgGHdfsZTKBSqBVLSkOIe71lVztHeEX7zecspaTZLYVARyTp7d28GetgHevmaRjitPcRdUFnDjqgreaOnjpYNdZ/4LkjBUBHLWDncP88zu41xctYAraou9jiMJ4NrzylhZmc9/72zjWN+I13EkRioCOStjwRCPbjnCgpx0NlyyWGsECRBZpuJdl1aRne7n0S0tBEOaL0gGKgI5K0/vOk7XUIA7LqsiS+sFySR5mWm8+9LFtPWP8uy+Dq/jSAxUBDJjR3tHeOlgF+tqillWqnkBOdUFlQWsqVrAc/s66BwY8zqOnIGKQGYk7ByPb20lJzONm1dXeh1HEtjbL1pIut/YuO2ojiJKcCoCmZHtLX0c6RnhltWVusShnFZ+Vjo3rKzgQMcge48PeB1HTkNFIDEbD4V5clcbCxdksba60Os4kgTW1RZTkpvBb3a0nXLdaEkcKgKJWUNjF73D49x64UJ8OkpIYpDm83HrhZV0DEQuhSmJSUUgMQkEwzy3r4PlZbmsKNcEscRu5cIClhRl8/u97QTDOpw0EakIJCabGrsYCoS4YWWF11EkyZgZb11ZQe/IOK9qryAhqQjkjMZDYZ7f38GK8jyWlugqYzJzdeV5LCnK5rm9HZorSEAqAjmj1w73MBQIcd35ZV5HkSRlZlx3fjm9I+Nsb+3zOo6cREUgpxV2jhf2d1JVlE2t9gbkHJxfmU9ZfibP7+/QeQUJRkUgp7XraD9dQwGuqSvTekJyTnxmXLOilGN9oxzsGPI6jkyiIpDTermxi8KcdFbrspMyCy5ZUkhuZhovH+z0OopMoiKQabX1j9LUOcQVtSU6b0BmRZrfx+U1RexpG9AF7xOIikCm1dDYRZrPqF9a5HUUmUfW1RRjBg1N3V5HkSgVgUxpbDzE64d7WVNVSE5mmtdxZB4pzMlg5cICthzq1vUKEoSKQKa0vbWPQCjMuhrtDcjsu7ymmOFAiN1tWowuEagIZEqbm7spy89kSXGO11FkHlpRnseC7HS2NGt4KBGoCOQUx/tHOdIzQv3SIh0yKnHhM+OypUUcaB+kZ1iTxl5TEcgpXjvcg89gbbWGhSR+LqsuwgGvH+71OkrKUxHICcLO8UZLH3Xl+eRpkljiqCg3g5qSHN5o6dWZxh5TEcgJDncN0zcyzpqqBV5HkRSwpqqQ9oEx2vpHvY6S0lQEcoI3WntJ8xmrFupMYom/CxcvwGfwRosWovNSXIvAzG4xs71mdsDM7j/Ndu8xM2dm9fHMI6cXCju2t/ZzwcICMtN1PWKJv7zMNJaX5Wl4yGNxKwIz8wNfB24FVgF3mdmqKbbLBz4NNMQri8SmsXOQobEgaxZrWEjmzpqqQnqGx2npGfE6SsqK5x7BOuCAc67RORcAHgY2TLHdPwNfBjRI6LE3jvSRmebj/Mp8r6NIClm9qIA0n7GtpdfrKCkrnkWwGDgy6X5L9LE3mdmlwBLn3H+d7gOZ2b1mtsXMtnR0dMx+UiEYCrPzWB+rFxWQ7tfUkcydrHQ/51Xks721j7CGhzzh2f94M/MBXwP+55m2dc496Jyrd87Vl5XpKlnxsO/4IKPjYdZUFXodRVLQmqoFDIwGaerUdQq8EM8iaAWWTLpfFX1sQj5wIfCsmTUDVwAbNWHsjR1H+8jJ8LO8LM/rKJKCLqgsIMPvY4cuY+mJeBbBZqDOzGrNLAO4E9g48aRzrs85V+qcq3HO1QCbgNucc1vimEmmEAo79rT1c0FlAX6flpSQuZeR5qOuIo/dx/p19JAH4lYEzrkgcB/wJLAb+KlzbqeZfdHMbovX55WZO9Q1xOh4mJULNUks3llZWUD/aJCjfTpuZK7FdQ0B59wTwBMnPfb5aba9Lp5ZZHq7j/WT5jNWlGtYSLxzXmU+RuT7cXFhttdxUooOD0lxzjl2HetneVkemWk6iUy8k5eZRnVJDruP9XsdJeWoCFJc+8AYPcPjXKBhIUkAKysLONY3Sq+Wpp5TKoIUN/Hb18pKrS0k3lsZXeNKVy6bWyqCFLf7WD9VRdkUZKd7HUWEsvxMSvMyNTw0x1QEKWxgdJwjPSNcoL0BSSArF+bT1DHE6HjI6ygpQ0WQwvZEd7912KgkkpWVBYScY99xDQ/NFRVBCtvTNkBhdjqVBVleRxF5U3VJDjkZfvZqnmDOqAhSVCjsaOwY5LyKfF2gXhKKzyLntOxvH9QidHNERZCiDncPMxYM6yQySUh15fkMjgVp01nGc0JFkKL2Hx/AZ6gIJCHVRb8v97cPepwkNagIUtT+9kGWFOWQpUtSSgIqiM5d7deE8ZxQEaSgwbEgR3tHqKvQ3oAkrrryPA51DRMIhr2OMu+pCFLQwfZBHJFxWJFEVVeRT8g5Gjs1PBRvKoIUtL99gOx0P4uLtMKjJK6lJTmk+439x1UE8aYiSDHOOfa3D7KiPA+fDhuVBJbu91Fbmsv+ds0TxJuKIMW09Y8yMBp886gMkURWV55P52CAniGtRhpPKoIUcyB6OF5dheYHJPHpMNK5oSJIMfvbBynPz2SBVhuVJFAW/V7V8FB8qQhSSDAU5lDXEMs1LCRJwsxYXpZHY8eQlpuIIxVBCjnSM8J4yLG8VEUgyWN5WS4j4yGO92u5iXhREaSQxo5BDKgtzfU6ikjMlpVFfnE52DHkcZL5S0WQQg52DLGoMJvsDC0rIcljQXY6JbkZNHZowjheVAQpIhAMc6R7mGVl2huQ5LO8LI+mziFCYc0TxIOKIEUc7h4m5BzLyzQ/IMlnWVkuY8EwR3tHvI4yL6kIUsTBjkF8FjltXyTZTMwTaHgoPlQEKaKxY5Cqohwy0zQ/IMknLzONyoIsDnZqwjgeVAQpYHQ8REvPCMs1PyBJbFlZLoe6hgiGtCz1bFMRpIDmziEcf9y9FklGy0rzGA85jvRonmC2qQhSQGPnEGk+o7pY8wOSvGpLczE0TxAPMRWBmf3CzN5uZiqOJNTYMciS4hzS/Xr5JHllZ/hZVJitE8viINafDP8BvA/Yb2ZfMrPz45hJZtHoeIhjfaM6m1jmhdrSXFp6hjVPMMtiKgLn3NPOufcDlwLNwNNm9pKZ/bmZTbuMpZndYmZ7zeyAmd0/xfN/aWbbzWyrmb1gZqvO9h8iUzvUFZkfUBHIfFBbmkswrHmC2RbzWIGZlQAfBj4CvA78K5Fi+O002/uBrwO3AquAu6b4Qf9j59xFzrlLgK8AX5thfjmD5q5hfAZLijQ/IMlv4jyY5i4ND82mWOcIfgk8D+QA73TO3eace8Q591fAdIeirAMOOOcanXMB4GFgw+QNnHP9k+7mAjp/fJY1dQ5RVZRDRprmByT55WREzido1vkEsyotxu2+5Zx7YvIDZpbpnBtzztVP83cWA0cm3W8B1p+8kZl9EvgMkAFcP9UHMrN7gXsBqqurY4wsgWCY1p4Rrl5R4nUUkVlTU5rDa4d6CYUdfp+uuz0bYv018X9P8djLsxHAOfd159xy4O+Az02zzYPOuXrnXH1ZWdlsfNqUcKQnsr5QjeYHZB6pLc0jENK6Q7PptHsEZlZJ5Df7bDNbC0zUbwGRYaLTaQWWTLpfFX1sOg8D3zjDx5QZaO4cwoClxSoCmT9qJs0TLNG5MbPiTENDNxOZIK7ixIncAeDvz/B3NwN1ZlZLpADuJHII6pvMrM45tz969+3AfmTWNHcNUbkgS9cfkHklPyud0rwMmjqHuKZOIwSz4bRF4Jz7HvA9M3uPc+7nM/nAzrmgmd0HPAn4gYecczvN7IvAFufcRuA+M7sBGAd6gA+d1b9CThEMhzncPUx9TbHXUURmXU1JLjuO9hF2Dp9pnuBcnWlo6G7n3A+BGjP7zMnPO+dOe7hndIL5iZMe+/yk25+eWVyJ1dHeUcZDjpoSDQvJ/FNbmsuWQz0c7x9l4YJsr+MkvTMNDU38FNFqZUlm4vC6Gl1/QOahiRMkmzqHVASz4ExDQw9E3//T3MSR2dLcNURpXib5WdOe+C2StApzMijMSae5c4irlpd6HSfpxXpC2VfMrMDM0s3sGTPrMLO74x1Ozk7YOZq7hqgt1d6AzF+1Jbk0dQ3jnM5DPVexnkdwU/Qs4HcQWWtoBfC38Qol5+Z4/yij42HND8i8VlOay9BYkI7BMa+jJL1Yi2BiCOntwKPOub445ZFZ0DQxP6ATyWQem5gnaO4c9jhJ8ot1iYlfm9keYAT4uJmVAaPxiyXnorlziMLsdIpyMryOIhI3JbkZ5GemaQG6WRDrMtT3A1cB9c65cWCIkxaQk8TgnKO5a1h7AzLvmRk1pbk0dQ5pnuAcxbpHAHABkfMJJv+d789yHjlHTZ1DDI4FqdX8gKSAmtJctrf20dIzouUmzkFMRWBmPwCWA1uBUPRhh4og4bzS1A1ofkBSw8QvPA1N3SqCcxDrHkE9sMpp/yvhvdLUTW5mGqV5mh+Q+a+8IJPsdD+bm7q547Iqr+MkrViPGtoBVMYziMyOhqZuakpyMK2/IinAZ0ZNSQ6vNHd7HSWpxbpHUArsMrNXgDcP2nXO3RaXVHJWWntHaO0dYW11oddRROZMTWkuv9nRRvvAKOX5WV7HSUqxFsE/xjOEzI7NE/MDmiiWFDLx/b65qYe3r1nocZrkFOvho88ROaM4PXp7M/BaHHPJWWho6iY/K43KBfqtSFLHosJsstP9vNLU5XWUpBXrWkMfBX4GPBB9aDHwWJwyyVl6pamLy2uKtT67pBS/z7hsaRGvNPd4HSVpxTpZ/EngaqAfIHpVsfJ4hZKZ6xwc42DHEJfrQjSSgtbVFrOnrZ++4XGvoySlWItgzDkXmLgTPalMh5ImkC3RoybW1aoIJPVcXlOMc7DlkI4eOhuxFsFzZvb3RC5ifyPwKPCr+MWSmWpo6iYr3cdFixd4HUVkzq2tLiTdbzqM9CzFWgT3Ax3AduBjRC4/+bl4hZKZe6Wpm0uri8hIi/UlFZk/stL9rKkqfPPMepmZWI8aChOZHP6Ec+4O59y3dJZx4ugfHWfXsX4NC0lKW1dbzPaWPkYCoTNvLCc4bRFYxD+aWSewF9gbvTrZ50/392Ruvdrcg3OwThPFksLW1RYTDDteP6yjh2bqTHsEf0PkaKHLnXPFzrliYD1wtZn9TdzTSUwamrpJ9xtrq4u8jiLimcuWFmEW+f8gM3OmIvgAcJdzrmniAedcI3A38MF4BpPYNTR1saaqkOwMv9dRRDxTkJXOqoUFbNaE8YydqQjSnXOdJz/onOsA0uMTSWZiOBBke0sf6zU/IMLlNcW8driHQDDsdZSkcqYiCJzlczJHXjvUSzDsNFEsAqyvLWZ0PMyOo7qs+kycadG5i82sf4rHDdCCNgmgoakLv8+o10SxCJdHfyGaOJxaYnPaPQLnnN85VzDFW75zTkNDCaChqZsLFxWQlzmTq46KzE+leZksK8vV+QQzpLOPktjoeIitR3o1LCQyyfraYjY3dxMK61SnWKkIktjWI70EgmHW15Z4HUUkYVxeU8zAaJC9bQNeR0kaKoIk9kpTN2ZoxVGRSSb2kHUYaexUBEmsoamLCyoLWJCj6RqRCVVFOSwuzNY8wQzEtQjM7BYz22tmB8zs/ime/4yZ7TKzN8zsGTNbGs8880kgGObVQz06f0BkCpfXFNHQ1I2WRItN3IrAzPzA14FbgVXAXWa26qTNXgfqnXNriFwB7SvxyjPfbG/tY3Q8zBXLVAQiJ1tXW0Ln4BjNXcNeR0kK8dwjWAcccM41Ri9q8zCwYfIGzrnfO+cmXqlNQFUc88wrDdHrs2p+QORU62oj5xA0NOo6xrGIZxEsBo5Mut8SfWw69wC/meoJM7vXzLaY2ZaOjo5ZjJi8Ghq7qSvPoyQv0+soIglneVkepXmZbFIRxCQhJovN7G6gHvjqVM875x50ztU75+rLysrmNlwCCoai8wMaFhKZkplxxbJiXm7s0jxBDOJZBK3Akkn3q6KPncDMbgD+AbjNOTcWxzzzxq5j/QyOBVmn8wdEpnXFshKO92ueIBbxLILNQJ2Z1ZpZBnAnsHHyBma2FniASAm0xzHLvNLQGDks7godMSQyrSuXR35RevmghofOJG5F4JwLAvcBTwK7gZ8653aa2RfN7LboZl8F8oBHzWyrmW2c5sPJJA1N3dSW5lJeoHX/RKazrDSX8vxMXtY8wRnFdaUy59wTRC50P/mxz0+6fUM8P/98FAo7Njd3c8vqSq+jiCS0yDxBCS8djMwTmJnXkRJWQkwWS+x2H+unb2T8zd1eEZnelcsj5xMc7BjyOkpCUxEkmRcPRC4Yd5WKQOSMrlwWnSfQ8NBpqQiSzEsHu1hRnqf5AZEYLC3JYeGCLDZpwvi0VARJJBAM80pTN1drb0AkJhPzBJt0PsFpqQiSyNYjvYyMh7hqRanXUUSSxpXLSugaCrC/fdDrKAlLRZBEXjrYic/gCp1IJhKziQMrXorOr8mpVARJ5KUDXVy4eIGuPyAyA0uKc1hSnM0LBzRPMB0VQZIYDgR5/UgPVy3XsJDITL1lRRmbGrsYD4W9jpKQVARJYnNzD+Mhp8NGRc7CNXWlDI4F2Xak1+soCUlFkCReOtBJht+n6w+InIWrlpdgBs/v1zzBVFQESeLFg52srS4kO8PvdRSRpFOYk8GaxQt4QRPGU1IRJIGeoQA7j/ZrfkDkHLylrpStR3rpHx33OkrCUREkgecPdOIcXHueikDkbF1TV0Yo7LQs9RRUBEngub0dFOWks6aq0OsoIknr0uoicjL8vKB5glOoCBJcOOx4bl8H19SV4fdpGV2Rs5WR5mN9bbHmCaagIkhwu4710zk4xp+cp2s1i5yrt9SV0dQ5REuPLl85mYogwT23rwOAazQ/IHLOrqmL/D/S8NCJVAQJ7rl9HaxeVEB5vpadFjlXdeV5VBZk8ezeDq+jJBQVQQLrHx3ntUM9GhYSmSVmxvUry3l+fwdjwZDXcRKGiiCBvXSgi2DYqQhEZtH155czFAjxSlO311EShooggT23r4P8zDQuXVrkdRSReePqFaVkpvn43Z52r6MkDBVBgnLO8dzedq5eUUq6Xy+TyGzJzvBz1fISntndrquWReknTILad3yQo32j/Mn5GhYSmW3Xr6zgcPcwBzuGvI6SEFQECeqpnW2YwVtXlnsdRWTeuf6CyP+r32t4CFARJKwnd7WxdkmhDhsViYPFhdlcUJnPM3uOex0lIagIElBr7wg7Wvu5aXWl11FE5q3rLyhnc3MPfSNajVRFkIB+u7MNgJtWVXicRGT+euvKckJhxx/26eQyFUECemrXcerK81hWlud1FJF565IlRRTnZvDbXRoeUhEkmN7hAA1N3dy0WnsDIvHk9xk3r67gmd3HGR1P7bOMVQQJ5nd72gmFHTet0vyASLy97aKFDAVCby7umKpUBAnmqZ3HqSzI4qLFC7yOIjLvXbmshKKcdJ7YfszrKJ6KaxGY2S1mttfMDpjZ/VM8f62ZvWZmQTO7I55ZksHoeOQ3kxtXVeDTRWhE4i7N7+Pm1ZU8vSu1h4fiVgRm5ge+DtwKrALuMrNVJ212GPgw8ON45Ugmv9vTzsh4iJt12KjInNHwUHz3CNYBB5xzjc65APAwsGHyBs65ZufcG0A4jjmSxi9fb6U8P5Mrl5d4HUUkZVy5XMND8SyCxcCRSfdboo/NmJnda2ZbzGxLR8f8bO3e4QDP7m3ntosX6drEInMoXcNDyTFZ7Jx70DlX75yrLyubn4uwPbG9jfGQ4/a1Z9WVInIOUn14KJ5F0AosmXS/KvqYTOGxra0sL8tl9aICr6OIpJyJ4aFfbTvqdRRPxLMINgN1ZlZrZhnAncDGOH6+pNXSM8wrTd28a+1izDQsJDLX0v0+brt4EU/tOk7vcMDrOHMubkXgnAsC9wFPAruBnzrndprZF83sNgAzu9zMWoD3Ag+Y2c545UlkG6O/hWy4RMNCIl55b/0SAsEwj29Nvb2CtHh+cOfcE8ATJz32+Um3NxMZMkpZzjkee72Vy5YWsaQ4x+s4IinrwsULWL2ogJ9uOcKHrqrxOs6cSorJ4vls17F+9h0f5PZLFnkdRSTl/Wn9EnYe7WdHa5/XUeaUisBjD79yhIw0H++8WEUg4rUNlywiI83Ho1uOnHnjeURF4KHhQJDHXm/lHRctpDAnw+s4IimvMCeDm1dX8tjWoyl1ToGKwEO/3naMgbEgd62v9jqKiET9aX0VfSPjKXWdAhWBR5xz/LDhECvK86hfWuR1HBGJunp5KYsLs/lxw2Gvo8wZFYFHXjvcwxstfXzoyqU6d0Akgfh8xvuvqOblxi72tPV7HWdOqAg88tCLzRRkpfHuS1P66FmRhHTX5dVkpfv47ovNXkeZEyoCDxztHeG/d7Rx57pqcjPjeiqHiJyFotwM3rW2il++3kr30Pw/01hF4IFvP98EwAevXOpxEhGZzj1vqWEsGOa7LzV7HSXuVARzrGtwjJ+8cpjbL1lMVZHOJBZJVCvK87l5dQXffbGJwbGg13HiSkUwx777UjOjwRAfv26Z11FE5Aw+cd0K+keD/HDTIa+jxJWKYA71DAX4zxebuXlVJSvK872OIyJncPGSQq6pK+Vbf2ic13sFKoI59I3nDjIUCPKZm87zOoqIxOgzN55H11CAh15o8jpK3KgI5khb3yjfe6mZd12ymPMqtDcgkizWVhdx06oKvvWHRnrm6RFEKoI58pUn9+Ac/PUN2hsQSTafvfl8hgJB/t/T+7yOEhcqgjnw+uEefvFaK/dcU0t1iY4UEkk251Xk8/71S/lhw2H2tg14HWfWqQjiLBR2fGHjTsrzM/nk/1jhdRwROUufufE88jLT+MLGHTjnvI4zq1QEcfafLzbxRksfn3vHKvJ0FrFI0irKzeD+Wy9gU2M3j2yeX9crUBHEUXPnEP/y1F5uWFnOO9cs9DqOiJyjOy9fwpXLSvg//7WbY30jXseZNSqCOBkPhfn0I1tJ9/v459sv1AqjIvOAmfGl91xEMOz4zCPbCIXnxxCRiiBO/uWpvWw70suX37OGhQuyvY4jIrNkaUku/7RhNS83dvEfvz/gdZxZoSKIg1+/cZQHnmvkfeuredtFGhISmW/ee1kVGy5ZxNee3sfv97R7HeecqQhm2RstvXz20W1ctrSIL7xzlddxRCQOzIz/++6LWLWwgE/95PWkP6RURTCL9h8f4EMPvUJpXibfvPsyMtP8XkcSkTjJyUjjWx+sJzvDzwe+08DhrmGvI501FcEs2X98gLu/00Ca38cP71lPWX6m15FEJM4WFWbzg3vWEwiFed+3N3Goa8jrSGdFRTALXjvcw3sfeJmwgx99ZD01pbleRxKROXJ+ZT4/+Iv1DI0FueObL7PzaJ/XkWZMRXAOnHM8svkwdz6wiYKsdH7+l1dpQTmRFHRR1QJ++rErSfMZ7/nGS2zcdtTrSDOiIjhLvcMB/uonr/N3P9/O5bVFPP7Jq7WOkEgKq6vI5/H7rubCRQv41E9e528f3Ub/6LjXsWKiNQ9mKBgK89MtLXz1yT0MjAb525vP52PXLiPNr04VSXXl+Vn8+KNX8G/P7Oc/nj3As/s6+LtbLuD2SxYl9M8IFUGMBseC/GrbUR78QyNNnUOsqynmnzasZuXCAq+jiUgCyUjz8dmbz+em1RX8r8d38tlHt/Fvz+zn3muXccdlVWSlJ97RhCqC0wgEw7x6qIfHt7byq21HGQqEWLWwgAc+cBk3rarQshEiMq01VYX88uNX8dSu43zjuYN87rEdfO23+7j1wkreftFC1tUWJ8xeQlyLwMxuAf4V8APfds596aTnM4HvA5cBXcCfOeea45npdLqHAuw62s+uY300NHbzcmMXw4EQ2el+3rFmIXetr2btkkIVgIjExOczbrmwkptXV/ByYxc/2nSYX7zWyo8aDlOUk059TTGXLS3i0uoizqvIozAnw5OccSsCM/MDXwduBFqAzWa20Tm3a9Jm9wA9zrkVZnYn8GXgz+KRp61vlAPtg/SOBOgZHqdvOPK+rW+Ult4RWrqH6Zp0Gbrq4hzefelirq0r46oVpVpCWkTOmplx1fJSrlpeykggxLN723l6dzuvHurmt7uOv7ldcW4GtaW5VBRkUpaXSWleJqX5mRTnZpCfmcaK8jzKC7JmPV88f7qtAw445xoBzOxhYAMwuQg2AP8Yvf0z4N/NzFwcrvrw2NZWvvSbPSc8lp3up3JBFlVF2dy0uoLa0lxWL1rAyoUFFOd608wiMr9lZ/i59aKF3Bpdh6xzcIw3Wno52D7EwY5BmjqH2NM2wAsDnfSPBk/4u/98+4V84Iqls54pnkWwGJh89YYWYP102zjngmbWB5QAnZM3MrN7gXujdwfNbO9shdwz9cOlJ2dIMsrvnWTODkma//1/vJmU+Sc5bf4Pfhk+ePYfe9oGSYrxDufcg8CDc/X5zGyLc65+rj7fbFN+7yRzdlB+r3mVP55T1q3Akkn3q6KPTbmNmaUBC4hMGouIyByJZxFsBurMrNbMMoA7gY0nbbMR+FD09h3A7+IxPyAiItOL29BQdMz/PuBJIoePPuSc22lmXwS2OOc2At8BfmBmB4BuImWRCOZsGCpOlN87yZwdlN9rnuQ3/QIuIpLaEuO0NhER8YyKQEQkxakIADMrNrPfmtn+6PuiabYLmdnW6NvJE99zysxuMbO9ZnbAzO6f4vlMM3sk+nyDmdV4EHNaMeT/sJl1TPp6f8SLnNMxs4fMrN3MdkzzvJnZv0X/fW+Y2aVznXE6MWS/zsz6Jn3tPz/XGU/HzJaY2e/NbJeZ7TSzT0+xTSJ//WPJP7evgXMu5d+ArwD3R2/fD3x5mu0Gvc4azeEHDgLLgAxgG7DqpG0+AXwzevtO4BGvc88w/4eBf/c662n+DdcClwI7pnn+bcBvAAOuABq8zjyD7NcBv/Y652nyLwQujd7OB/ZN8f2TyF//WPLP6WugPYKIDcD3ore/B9zuXZSYvLl8h3MuAEws3zHZ5H/Tz4C3WuKslhdL/oTmnPsDkSPdprMB+L6L2AQUmtnCuUl3ejFkT2jOuWPOudeitweA3URWKZgskb/+seSfUyqCiArn3LHo7TagYprtssxsi5ltMrPb5ybalKZavuPkb6QTlu8AJpbvSASx5Ad4T3S3/mdmtmSK5xNZrP/GRHWlmW0zs9+Y2Wqvw0wnOuS5Fmg46amk+PqfJj/M4WuQFEtMzAYzexqonOKpf5h8xznnzGy6Y2qXOudazWwZ8Dsz2+6cOzjbWQWAXwE/cc6NmdnHiOzdXO9xplTxGpHv9UEzexvwGFDnbaRTmVke8HPgr51z/V7nmakz5J/T1yBl9gicczc45y6c4u1x4PjEbmP0ffs0H6M1+r4ReJZIk3sh2ZfvOGN+51yXc24sevfbRK5ZkUxieY0SknOu3zk3GL39BJBuZqUexzqBmaUT+SH6I+fcL6bYJKG//mfKP9evQcoUwRlMXuriQ8DjJ29gZkUWuZAO0Rfkak5cUnsuJfvyHWfMf9J47m1ExlGTyUbgg9GjV64A+iYNPyY0M6ucmE8ys3VEfk4kyi8RRLN9B9jtnPvaNJsl7Nc/lvxz/RqkzNDQGXwJ+KmZ3QMcAv4UwMzqgb90zn0EWAk8YGZhIi/Kl9yJF9mZMy65l++INf+nzOw2IEgk/4c9CzwFM/sJkSM7Ss2sBfgCkA7gnPsm8ASRI1cOAMPAn3uT9FQxZL8D+LiZBYER4M4E+iUCIr+EfQDYbmZbo4/9PVANif/1J7b8c/oaaIkJEZEUp6EhEZEUpyIQEUlxKgIRkRSnIhARSXEqAhGRFKciEJkFZlZoZp/wOofI2VARiMyOQiIrvookHRWByOz4ErA8unb8V70OIzITOqFMZBZEV5H8tXPuQq+ziMyU9ghERFKcikBEJMWpCERmxwCRyw6KJB0VgcgscM51AS+a2Q5NFkuy0WSxiEiK0x6BiEiKUxGIiKQ4FYGISIpTEYiIpDgVgYhIilMRiIikOBWBiEiK+/+KfQJFzhB1zQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sns.distplot(df[\"t\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/student/.local/lib/python3.6/site-packages/seaborn/distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).\n", + " warnings.warn(msg, FutureWarning)\n" + ] + }, + { + "data": { + "text/plain": [ + "<AxesSubplot:xlabel='vacf', ylabel='Density'>" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEHCAYAAACp9y31AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAb4UlEQVR4nO3deZwU9Z3/8dd7DgRU7uEQVAQRNB6gI2rUaFATPGJ04yaaYMxvNZg75sbV3/7MmmzMYUx2f66GRDdoDgkmUaPGxAM1JoIOCoggAgIKIgwoh8gxzHz2j65JhmGGaYap7pmp9/NBP6aquo5P0T3vrvn2t6oUEZiZWXaUFLsAMzMrLAe/mVnGOPjNzDLGwW9mljEOfjOzjHHwm5llTFnaG5BUClQBKyPiPEmHAHcBfYFZwKURsX136+jXr18MHTo07VLNzDqVWbNmrY2IisbTUw9+4IvAAqBHMv5d4KaIuEvSrcDlwC27W8HQoUOpqqpKt0ozs05G0vKmpqfa1CNpCHAu8LNkXMA44O5klinABWnWYGZmO0u7jf9HwNeBumS8L7A+InYk4yuAwSnXYGZmDaQW/JLOA9ZExKxWLj9RUpWkqurq6jauzswsu9I84j8ZOF/SMnJf5o4Dfgz0klT/3cIQYGVTC0fE5IiojIjKiopdvpswM7NWSi34I+LqiBgSEUOBi4HHIuJjwHTgomS2y4B706rBzMx2VYx+/N8AvixpMbk2/9uKUIOZWWYVojsnEfE48Hgy/AowthDbNTOzXfnMXTOzjHHwm5llTEGaeqx1fjXz1Z3GP3rCQUWqxMw6Ex/xm5lljIPfzCxjHPxmZhnj4DczyxgHv5lZxjj4zcwyxsFvZpYxDn4zs4xx8JuZZYyD38wsYxz8ZmYZ4+A3M8sYB7+ZWcY4+M3MMsbBb2aWMakFv6Sukp6RNEfSi5K+mUz/uaSlkmYnj9Fp1WBmZrtK80Ys24BxEfG2pHLgKUl/TJ77WkTcneK2zcysGakFf0QE8HYyWp48Iq3tmZlZflJt45dUKmk2sAZ4OCJmJk99W9JcSTdJ2qeZZSdKqpJUVV1dnWaZZmaZkmrwR0RtRIwGhgBjJR0JXA2MAo4H+gDfaGbZyRFRGRGVFRUVaZZpZpYpBenVExHrgenA+IhYFTnbgP8BxhaiBjMzy0mzV0+FpF7JcDfgLOAlSYOSaQIuAOalVYOZme0qzV49g4ApkkrJfcD8JiLul/SYpApAwGzgUynWYGZmjaTZq2cuMKaJ6ePS2qaZmbXMZ+6amWWMg9/MLGMc/GZmGePgNzPLGAe/mVnGOPjNzDLGwW9mljEOfjOzjHHwm5lljIPfzCxjHPxmZhnj4DczyxgHv5lZxjj4zcwyxsFvZpYxDn4zs4xx8JuZZYyD38wsY9K82XpXSc9ImiPpRUnfTKYfImmmpMWSpkrqklYNZma2qzSP+LcB4yLiGGA0MF7SicB3gZsi4lDgLeDyFGswM7NGUgv+yHk7GS1PHgGMA+5Opk8BLkirBjMz21WqbfySSiXNBtYADwNLgPURsSOZZQUwuJllJ0qqklRVXV2dZplmZpmSavBHRG1EjAaGAGOBUXuw7OSIqIyIyoqKirRKNDPLnIL06omI9cB04CSgl6Sy5KkhwMpC1GBmZjlp9uqpkNQrGe4GnAUsIPcBcFEy22XAvWnVYGZmuypreZZWGwRMkVRK7gPmNxFxv6T5wF2SvgU8D9yWYg1mZtZIasEfEXOBMU1Mf4Vce7+ZmRWBz9w1M8sYB7+ZWcY4+M3MMsbBb2aWMQ5+M7OMcfCbmWWMg9/MLGMc/GZmGePgNzPLGAe/mVnGOPjNzDLGwW9mljEOfjOzjHHwm5lljIPfzCxjHPxmZhnj4DczyxgHv5lZxqR5s/UDJU2XNF/Si5K+mEy/TtJKSbOTxzlp1WBmZrtK82brO4CvRMRzkvYHZkl6OHnupoj4QYrbNjOzZqR5s/VVwKpkeJOkBcDgtLZnZmb5KUgbv6ShwBhgZjLpc5LmSrpdUu9mlpkoqUpSVXV1dSHKNDPLhNSDX9J+wG+BqyJiI3ALMBwYTe4vghubWi4iJkdEZURUVlRUpF2mmVlmpBr8ksrJhf4vI+J3ABGxOiJqI6IO+CkwNs0azMxsZ2n26hFwG7AgIn7YYPqgBrNdCMxLqwYzM9tVmr16TgYuBV6QNDuZ9q/AJZJGAwEsA65MsQYzM2skzV49TwFq4qkH09qmmZm1zGfumplljIPfzCxjHPxmZhmTV/BL+p2kcyX5g8LMrIPLN8j/G/gosEjSDZJGpliTmZmlKK/gj4hHIuJjwLHkumA+Iulvkv5PcpKWmZl1EHk33UjqC3wCuAJ4HvgxuQ+Ch3ezmJmZtTN59eOX9HtgJHAn8IHkypsAUyVVpVWcmZm1vXxP4PppROx04pWkfSJiW0RUplCXmZmlJN+mnm81Me3ptizEzMwKY7dH/JIGkrt5SjdJY/jHJRh6AN1Trs3MzFLQUlPP+8l9oTsE+GGD6ZvIXXDNzMw6mN0Gf0RMAaZI+lBE/LZANZmZWYpaauqZEBG/AIZK+nLj5xteZ9/MzDqGlpp69k1+7pd2IWZmVhgtNfX8JPn5zcKUY2Zmacv3Im3fk9RDUrmkRyVVS5qQdnFmZtb28u3H/76I2AicR+5aPYcCX9vdApIOlDRd0nxJL0r6YjK9j6SHJS1Kfvbemx0wM7M9k2/w1zcJnQtMi4gNeSyzA/hKRBwBnAh8VtIRwCTg0YgYATyajJuZWYHkG/z3S3oJOA54VFIFsHV3C0TEqoh4LhneBCwgdzLYB4EpyWxTgAtaUbeZmbVSvpdlngS8G6iMiBpgM7kAz4ukocAYYCYwoMFF3t4ABuxJwWZmtnfyvUgbwChy/fkbLnNHSwtJ2g/4LXBVRGyU9PfnIiIkRTPLTQQmAhx00EF7UKaZme1OvpdlvhMYDswGapPJQQvBn9yk5bfALyPid8nk1ZIGRcQqSYOANU0tGxGTgckAlZWVTX44mJnZnsv3iL8SOCIi8g5g5Q7tbwMWNDrD9z7gMuCG5Oe9+a7TzMz2Xr5f7s4DBu7huk8GLgXGSZqdPM4hF/hnSVoEnJmMm5lZgeR7xN8PmC/pGWBb/cSIOL+5BSLiKf5xGefGzsi7QjMza1P5Bv91aRZhZmaFk1fwR8QTkg4GRkTEI5K6A6XplmZmZmnI91o9nwTuBn6STBoM3JNSTWZmlqJ8v9z9LLkvazcCRMQioH9aRZmZWXryDf5tEbG9fiQ5ict9683MOqB8g/8JSf9K7qbrZwHTgD+kV5aZmaUl3+CfBFQDLwBXAg8C16ZVlJmZpSffXj11ku4B7omI6nRLMjOzNO32iF8510laCywEFiZ33/q3wpRnZmZtraWmni+R681zfET0iYg+wAnAyZK+lHp1ZmbW5loK/kuBSyJiaf2EiHgFmAB8PM3CzMwsHS0Ff3lErG08MWnnL0+nJDMzS1NLwb+9lc+ZmVk71VKvnmMkbWxiuoCuKdRjZmYp223wR4QvxGZm1snkewKXmZl1Eg5+M7OMcfCbmWVMasEv6XZJayTNazDtOkkrG92D18zMCijNI/6fA+ObmH5TRIxOHg+muH0zM2tCasEfEU8Cb6a1fjMza51itPF/TtLcpCmod3MzSZooqUpSVXW1LwhqZtZWCh38twDDgdHAKuDG5maMiMkRURkRlRUVFQUqz8ys8yto8EfE6oiojYg64KfA2EJu38zMChz8kgY1GL0QmNfcvGZmlo687sDVGpJ+DZwO9JO0Avh/wOmSRpO7UfsycrdxNDOzAkot+CPikiYm35bW9szMLD8+c9fMLGMc/GZmGePgNzPLGAe/mVnGOPjNzDLGwW9mljEOfjOzjHHwm5lljIPfzCxjHPxmZhnj4DczyxgHv5lZxjj4zcwyxsFvZpYxDn4zs4xx8JuZZYyD38wsYxz8ZmYZk1rwS7pd0hpJ8xpM6yPpYUmLkp+909q+mZk1Lc0j/p8D4xtNmwQ8GhEjgEeTcTMzK6DUgj8ingTebDT5g8CUZHgKcEFa2zczs6YVuo1/QESsSobfAAY0N6OkiZKqJFVVV1cXpjozswwo2pe7ERFA7Ob5yRFRGRGVFRUVBazMzKxzK3Twr5Y0CCD5uabA2zczy7xCB/99wGXJ8GXAvQXevplZ5qXZnfPXwNPASEkrJF0O3ACcJWkRcGYybmZmBVSW1ooj4pJmnjojrW2amVnLfOaumVnGOPjNzDLGwW9mljEOfjOzjHHwm5llTGq9emzP/Grmq8Uuwcwywkf8ZmYZ4+A3M8sYN/W0IxHB/FUbqVr2Fms2bQXg0P77MXZoXwb37lbk6syss3DwtxObt+3g7lkrWLh6Ez26ljGsYj9qauuY89oGqpa9xekjK/hw5RDKSv1HmpntHQd/O1C9aRu3PrGE9VtqOO/oQZw4rC8lEgBba2p5YO4qpi+s5qqps/nxxWMoLVGRKzazjszBX2Qbt9Zw6W0z2bi1hstPPoSh/fbd6fmu5aV86Lgh9O+xD/fPXUW38lK+d9HRSA5/M2sdtxsUUUTw9WlzWbzmbSacePAuod/QqSMq+MK4Q5k2awW/cNdPM9sLDv4iuuPp5Tz04ht8ffxIRvTfv8X5rzrzME4fWcH1f5jPvJUbClChmXVGDv4iWbZ2M//x4ALeO7KCK04ZltcyJSXipg+Ppve+5Xx12hxqautSrtLMOiMHfxFEBNfc8wJdSkv4zj8dTckefFnbe98uXP/BI3npjU1MfvKVFKs0s87KwV8E985+nb8uXsekc0YxsGfXPV7+fe8ayLlHDeLHjy7itTffSaFCM+vMHPwFtmV7Ld996CWOHtKTS44/qNXrufa8wykR3PDQS21YnZllQVGCX9IySS9Imi2pqhg1FMvP/vIKqzZs5dpzj9ijJp7GBvXsxpXvGc4Dc1dRtezNNqzQzDq7Yh7xvzciRkdEZRFrKKg1G7dyyxNLGP+ugYw9pM9er+/K04YxoMc+XH//fOrqog0qNLMscFNPAd3455epqa1j0tmj2mR93buU8fX3j2LOig3cO2dlm6zTzDq/YgV/AH+WNEvSxKZmkDRRUpWkqurq6gKX1/bmv76R38x6jctOGrrbE7X21IVjBnP0kJ5876GFbNle22brNbPOq1jBf0pEHAucDXxW0nsazxARkyOiMiIqKyoqCl9hG7vhoZfo0bWcz48b0abrLSkR15xzOKs2bOV//ra0TddtZp1TUYI/IlYmP9cAvwfGFqOOQnlq0VqefLmaz487lJ7dy9t8/ScM68uZhw/glulLeHPz9jZfv5l1LgUPfkn7Stq/fhh4HzCv0HUUSl1d8J0/LmBwr25cetLBqW1n0tkj2bx9B//12KLUtmFmnUMxjvgHAE9JmgM8AzwQEQ8VoY6CuG/O67z4+ka+9v6R7FNWmtp2Du2/Px85/kB+MWM5y9dtTm07ZtbxFTz4I+KViDgmebwrIr5d6BoKZduOWn7w54W864AenH/MAalv76ozD6OspITv/2lh6tsys47L3TlTdOfTy1nx1hauPvvwvTpZK18DenTlk6cewv1zVzH7tfWpb8/MOiYHf0o2bKnh/09fzKkj+nHKiH4F2+7E04bTd98ufOfBBUT4pC4z25WDPyW3PL6EDVtq2uxkrXztt08ZV505gplL3+TRBWsKum0z6xgc/ClYvm4zt/91KReOHsy7DuhZ8O1fPPYghvXbl+sfmM/WGp/UZWY7c/C3sYjg2nvm0aW0hG8U+Gi/XnlpCddfcCTL173DzdMXF6UGM2u/HPxt7P65q/jLorV89X2HMaDHnl9rv62cfGg/LhwzmFufWMLiNZuKVoeZtT9lxS6gM9m4tYZ/v38+Rw3uyaUnDW12vl8V6Gbp15x7OI+9tIZrfj+PuyaeiJR+zyIza/98xN+GbvzTQta9vY1vX3gkpQXovtmSfvvtw6SzRzFz6ZtMm7Wi2OWYWTvh4G8jM15Zxx0zlnPpiQdz9JBexS7n7z5SeSBjh/bh+j/M920azQxw8LeJ9e9s50tTZzO07758fXxxvtBtTkmJuPHDx4Dgi3c9T01tXbFLMrMic/Dvpbq64KvT5lC9aRs/vng0++7T/r42ObBPd/7jwqN47tX1fPuBBcUux8yKrP2lVAfzo0de5pEFa7juA0e0qyaexj5wzAHMeW09P3tqKSMH7s8lY1t/o3cz69gc/Hth6rOv8p+PLebDlUO47N1Di11OiyadPYqX17zNNb9/gV7dyjn7qEHFLsnMisBNPa107+yVTPrdC5x2WAXfuuCoDtFVsqy0hFsnHMuYg3rzhbue548vrCp2SWZWBA7+Vrjj6WVcNXU2xw/tw60TjqNLWcf5b+zepYzbP3E8Rw/pxWd+9Ry3PbXUF3Mzy5iOk1jtwNaaWq7+3Vz+7d4XOWPUAO74l7F065LezVXS0rNbOb+84gTOOnwA198/n8/88jne8i0bzTLDwZ+nma+s47z/eopfP/Manz59OLdOOJau5R0v9Ot1LS/l1gnHcfXZo3h4/mrG3fg4v5ixnO073N3TrLMrSvBLGi9poaTFkiYVo4Z8RASzlr/FFVOe5SOTZ7C1ppY7/mUs3xg/irLSjv+ZWVIirjxtOPd/4RRG9N+fa++Zx3t/8Dg3T1/Mqg1bil2emaWk4L16JJUCNwNnASuAZyXdFxHzC11LU7bvqOP5V9/iL4vW8vD81SxcvYme3cr5ylmHccWpwzpk005LRg3swdQrT+SJl6u55fElfP9PC/n+nxZyaP/9OOXQfow9pA/DK/bj4L7dO/RfOWaWo0J/sSfpJOC6iHh/Mn41QER8p7llKisro6qqqlXbq60Ltu+oY9uOWrbtqGNbTW548/Za3ty8jXVvb2fNpm0sqX6bJdWbWbR6E+9sr6W0RIw5sBf/dOwQzh99APu14YlZbXmRto+esHN//KbW3XiepuZrOM/StZt5eP4bTKtawbJ1m6mpzb1HJBjYoyu9u3ehV/dyenUvp2e3LnTvUkp5aQldSkV5aQnlZSWUl5ZQViIkqFr2FvWdnoQQcOLwPrmh3D9KlJtXSuYR/G3JOur7StX3mjrl0H5/r6Ve4/5UjTtY/WXR2p2fB049rGI3y2s3z+08/sTL1bus+/SR/ZstruFo455gj7+0841zxh3ef6dx7VINBLnXpv7XuP63uf73un68ft3146cl+9/Scv+Ih9zAky//4/+y/qn616SlWv6+XDL618U7vy4nDutLJPNHsoIgiCCZvvM4yXzPLn1zl3rHHNTr7+NB8Nzy9f+oqX79CUmUCk4Y1peyUlFeUkJ5mSgrKaE8eU+XlZZQXiLKy3Lv6/LS5D3eYP7SElEqUVL/KMm9r0uT34MS5Z7Pvc8L0wtQ0qyIqNxlehGC/yJgfERckYxfCpwQEZ9rbpnWBv//vWced85Ynte8A3t0ZXj/fRnRf39OGt6Xk4b3pUfX8j3eZj7ae/A3nGdHbR2rN25j7dvbGNizKyve2sKGLdtZ/04N67fUsP6d7WytqWN7bZ2/HzDLU0nyQVB/wFNv5wOa3Mjkjx/HqSMqaI3mgr/dnsAlaSIwMRl9W9LCVqymH7C2xbmA5cDMVmygAHa7Dx/LYwVtNc9eyPt1aMe8D+1DZ9gH2IP9eM+39mo7Bzc1sRjBvxI4sMH4kGTaTiJiMjB5bzYkqaqpT7uOxPvQPngf2ofOsA9Q/P0oRteUZ4ERkg6R1AW4GLivCHWYmWVSwY/4I2KHpM8BfwJKgdsj4sVC12FmllVFaeOPiAeBBwuwqb1qKmonvA/tg/ehfegM+wBF3o+C9+oxM7Pi6vinn5qZ2R7pVMEvqY+khyUtSn72bmKe0ZKelvSipLmSPlKMWhtr6TIWkvaRNDV5fqakoUUoc7fy2IcvS5qf/L8/KqnJrmbFlO/lRCR9SFJIanc9TPLZB0kfTl6LFyX9qtA1tiSP99JBkqZLej55P51TjDp3R9LtktZImtfM85L0n8k+zpV0bMGKi4hO8wC+B0xKhicB321insOAEcnwAcAqoFeR6y4FlgDDgC7AHOCIRvN8Brg1Gb4YmFrs/+9W7MN7ge7J8Kc74j4k8+0PPAnMACqLXXcrXocRwPNA72S8f7HrbsU+TAY+nQwfASwrdt1N7Md7gGOBec08fw7wR3IndJ8IzCxUbZ3qiB/4IDAlGZ4CXNB4hoh4OSIWJcOvA2uA1p0W13bGAosj4pWI2A7cRW5fGmq4b3cDZ6h93f2lxX2IiOkR8U4yOoPcORztST6vA8D1wHeBrYUsLk/57MMngZsj4i2AiFhD+5LPPgTQIxnuCbxewPryEhFPAm/uZpYPAndEzgygl6SC3BavswX/gIiov63UG8CA3c0saSy5I4olaRfWgsHAaw3GVyTTmpwnInYAG4C+BakuP/nsQ0OXkzvaaU9a3Ifkz/EDI+KBQha2B/J5HQ4DDpP0V0kzJI0vWHX5yWcfrgMmSFpBrofg5wtTWpva09+ZNtNuL9nQHEmPAAObeOqahiMREZKa7bKUfLLeCVwWEb7ITAFJmgBUAqcVu5Y9IakE+CHwiSKXsrfKyDX3nE7ur64nJR0VEeuLWdQeugT4eUTcmFz48U5JR/p3OT8dLvgj4szmnpO0WtKgiFiVBHuTf8JK6gE8AFyT/IlVbPlcxqJ+nhWSysj9ebuuMOXlJa9LcUg6k9yH9GkRsa1AteWrpX3YHzgSeDxpZRsI3Cfp/Iho3eVj214+r8MKcu3JNcBSSS+T+yB4tjAltiiffbgcGA8QEU9L6kru+jftrdlqd/L6nUlDZ2vquQ+4LBm+DLi38QzJZSJ+T65t7e4C1rY7+VzGouG+XQQ8Fsk3RO1Ei/sgaQzwE+D8dtiuDC3sQ0RsiIh+ETE0IoaS+56iPYU+5Pdeuofc0T6S+pFr+nmlgDW2JJ99eBU4A0DS4UBXoJqO5T7g40nvnhOBDQ2aqtNV7G++2/JBrs37UWAR8AjQJ5leCfwsGZ4A1ACzGzxGt4PazwFeJvd9wzXJtH8nFyyQe2NPAxYDzwDDil1zK/bhEWB1g//3+4pd857uQ6N5H6ed9erJ83UQuSar+cALwMXFrrkV+3AE8FdyPX5mA+8rds1N7MOvyfUarCH3V9blwKeATzV4HW5O9vGFQr6XfOaumVnGdLamHjMza4GD38wsYxz8ZmYZ4+A3M8sYB7+ZWcY4+M1SIqkiuZLq85JOLXY9ZvU63Jm7Zh3IGcALEXFFsQsxa8j9+M2aIOkG4LWIuDkZvw7YQe7S0r2BcuDaiLg3ef7jwFfJXTVyLnAjuTMzu5E7Df+kiNhS4N0wa5KD36wJyeUlfhQRpyXj84H3kzutfmNyqYMZ5K5xcwS5y4C8OyLWSuoTEW9K+gS5szE/V5y9MGuam3rMmhARz0vqL+kAcvdreIvcpb5vkvQeoI7cJXQHAOOAaRGxNll2d9dgNys6B79Z86aRuyDeQGAq8DFyHwLHRUSNpGXkrqFk1qG4V49Z86aSuzLkReQ+BHoCa5LQfy9Qf8/gx4B/ltQXcvd+LkaxZvnyEb9ZMyLiRUn7Aysjd4+HXwJ/kPQCUAW81GC+bwNPSKoldz/bTxSrbrOW+MtdM7OMcVOPmVnGOPjNzDLGwW9mljEOfjOzjHHwm5lljIPfzCxjHPxmZhnj4Dczy5j/BTDYoySy+v84AAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sns.distplot(df[\"vacf\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "La gráfica de los diagramas a pares son una gran herramienta para visualizar la dependencia y distribución de la data, pero para una mejor interpretación del significado de nuestros histogramas podemos usar `jointplot` y visualizar las densidades de las columnas del dataframe que nos insterese. A continuación presentamos la gráfica generada con este método y los gráficos de densidad de las variables." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiUAAAInCAYAAABHpSngAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAArjklEQVR4nO3dfXAkd33n8c+3tfIO6MFea/Xg7JMsMF4s4NbOFjGGDRsgh+AS+0KSxXChAufEhIcsKV2lznApH2cuRR4qOnBwKriC6w6OYCsQUk6yLATbghhszgsR2Gtie72I9RpWssc2etjMrqT+3h+aESN5JY2k6elfa96vKtU8tWY+6p6d/mz3r3vM3QUAAJC2KO0AAAAAEqUEAAAEglICAACCQCkBAABBoJQAAIAgUEoAAEAQNqUdYA04hhkAUCuWdoB6wpYSAAAQBEoJAAAIQl2Xkm07dsrMgv/ZtmNn2rNqw2CZ1x+WOZAdlsHTzFctsJnprZ/8ZrWeLjF3vPsqZXA5BYllXn9Y5lgnxpTUUF1vKQEAAOHI4tE39SfaJLOwy/rPbN+hJ584kXYM1NC2HTv1o5NPpB1j48jAv/OGxs2anT6TdowV8XmUXZSSLIhngt/8fMe7r0o7AmrsRyefCP59KWXovZmRf+ehZ5QytMzxPOy+AQAAQWBLCaojA5ueM4X5CaAOUUpQHRnY9CxlaLNuBuZnZuYlgMxg9w0AAAgCpQQAAASBUgIAAIJAKQEAAEGglAAAgCBQSgAAQBAoJQAAIAiUEgAAEARKCQAACAKlBAAABIFSAgAAgkApAQAAQaCUAACAIFBKAABAECglAAAgCJQSAAAQBEoJAAAIAqUEAAAEgVICAACCQCkBAABBoJQAAIAgUEoAAEAQKCUAACAIlBIAABAESgkAAAgCpQQAAASBUgIAAIJAKQEAAEGglAAAgCBQSgAAQBAoJQAAIAiUEgAAEARKCQAACAKlBAAABIFSAgAAgkApAQAAQaCUAACAIFBKAABAECglAAAgCJQSAAAQBEoJAAAIAqUEAAAEgVICAACCQCkBAABBoJQAAIAgUEoAAEAQKCUAACAIlBIAABAESgkAAAgCpQQAAASBUgIAAIJAKQEAAEGglAAAgCBQSgAAQBAoJQAAIAiUEgAAEARKCQAACAKlBAAABIFSAgAAgkApAQAAQaCUAACAIJi7p51hVczssKStVXq6rZKertJz1VqWs0vZzk/29GQ5P9nTs578T7t7XzXDYGmZKyXVZGZH3H1v2jnWIsvZpWznJ3t6spyf7OnJev56wu4bAAAQBEoJAAAIQr2XklvTDrAOWc4uZTs/2dOT5fxkT0/W89eNuh5TAgAAwlHvW0oAAEAgKCUAACAIlBIAABAESgkAAAgCpQQAAASBUgIAAIJAKQEAAEGglAAAgCBQSgAAQBAyV0r6+vpcEj/88MMPP/zU4mdNrrzyyrRzr+nnvvvuS3WeZq6UPP3002lHAABgWc8++2zaEdbkzJkzqb5+5koJAADYmCglAAAgCJQSAAAQBEoJAAAIAqUEAAAEgVICAACCQCkBAABBoJQAAIAgUEoAAEAQKCUAACAIlBIAABAESgkAAAgCpQQAAASBUgIAAIKwKe0AaYhj10h+SqPjBXW25tTd1qQosrRjAQBQ1+qulMSx6/DRU+ofHFZhOlauMdLAgT3q6+2imAAAkKK6230zkp+aLySSVJiO1T84rJH8VMrJAACob3VXSkbHC/OFpKQwHWtsopBSIgAAINVhKelszSnXuPDPzjVG6mjJpZQIAABIdVhKutuaNHBgz3wxKY0p6W5rSjkZAAD1re4GukaRqa+3S7sP7tPYREEdLRx9AwBACOqulEhzxaSnvVk97c1pRwEAAEV1t/sGAACEiVICAACCUJe7b0o4sysAAOGo21LCmV0BAAhL3e6+4cyuAACEpW5LCWd2BQAgLHVbSjizKwAAYanbUsKZXQEACEvdDnTlzK4AAISlbkuJxJldAQAISd3uvgEAAGGhlAAAgCBQSgAAQBAoJQAAIAiUEgAAEARKCQAACAKlBAAABIFSAgAAgkApAQAAQaCUAACAIFBKAABAEOr6u29K4tg1kp/S6HhBna18MR8AAGmo+1ISx67DR0+pf3BYhelYucZIAwf2qK+3i2ICAEAN1f3um5H81HwhkaTCdKz+wWGN5KdSTgYAQH2p+1IyOl6YLyQlhelYYxOFlBIBAFCf6r6UdLbmlGtcOBtyjZE6WnIpJQIAoD7VfSnpbmvSwIE988WkNKaku60p5WQAANSXuh/oGkWmvt4u7T64T2MTBXW0cPQNAABpqPtSIs0Vk572ZvW0N6cdBQCAupXo7hsz6zOzR8zsmJndcI7Hd5rZPWb2L2b2PTN7c5J5AABAuBIrJWbWIOkWSW+SdJmkt5nZZYsm+wNJg+5+uaRrJf1FUnkAAEDYktxS8kpJx9z9uLuflXS7pGsWTeOSWovXz5f0owTzAACAgCU5pmSbpCfKbp+U9HOLpvmwpK+Y2e9KapL0hgTzAACAgKU90PVtkv63u/+Zmb1K0mfM7GXuvuBsZmZ2vaTrJWnnzp0pxAQAYHnl66r29nYNDQ2lG2gNJicnE8+9f//+JR9LspQ8KWlH2e3txfvKXSepT5Lc/T4zy0naKmmsfCJ3v1XSrZK0d+9eTyowAABrVb6uuvTSS325lW+ohoaGli0NSUtyTMkDki4xs4vN7DzNDWS9c9E0JyS9XpLM7KWScpKeSjATAAAIVGKlxN1nJL1f0pclfV9zR9kcNbObzOzq4mT/RdJvm9l3JX1O0jvdnS0hAADUoUTHlLj7IUmHFt13Y9n1hyW9OskMAAAgG+r+u28AAEAYKCUAACAIlBIAABAESgkAAAgCpQQAAASBUgIAAIJAKQEAAEGglAAAgCCk/YV8QYlj10h+SqPjBXW25tTd1qQosrRjAQBQFyglRXHsOnz0lPoHh1WYjpVrjDRwYI/6ersoJgAA1AC7b4pG8lPzhUSSCtOx+geHNZKfSjkZACCL+Cq31aOUFI2OF+YLSUlhOtbYRCGlRACArDozM6vZ2dm0Y2QOpaSoszWnXOPC2ZFrjNTRkkspEQAgqzZvalBDQ0PaMTKHUlLU3dakgQN75otJaUxJd1tTyskAAFlkxnjE1WKga1EUmfp6u7T74D6NTRTU0cLRNwAA1BKlpEwUmXram9XT3px2FAAA6g67bwAAQBAoJQAAIAiUEgAAEARKCQAACAKlBAAABIFSAgAAgkApAQAAQaCUAACAIFBKAABAECglAAAgCJQSAAAQBEoJAAAIAqUEAAAEgVICAACCQCkBAABBoJQAAIAgUEoAAEAQKCUAACAIlBIAABAESgkAAAgCpQQAAASBUgIAAIJAKQEAAEHYlHaA0MSxayQ/pdHxgjpbc+pua1IUWdqxAADY8CglZeLYdfjoKfUPDqswHSvXGGngwB719XZRTAAASBi7b8qM5KfmC4kkFaZj9Q8OayQ/lXIyAEDWuHvaETKHUlJmdLwwX0hKCtOxxiYKKSUCAGTRmZlZzc7Oph0jcyglZTpbc8o1LpwlucZIHS25lBIBALJo86YGNTQ0pB0jcyglZbrbmjRwYM98MSmNKelua0o5GQAga8wYi7haDHQtE0Wmvt4u7T64T2MTBXW0cPQNAAC1QilZJIpMPe3N6mlvTjsKAAB1hd03AAAgCJQSAAAQBEoJAAAIAqUEAAAEgVICAACCQCkBAABBoJQAAIAgUEoAAEAQKCUAACAIlBIAABAESgkAAAgCpQQAAASBUgIAAIJAKQEAAEGglAAAgCBQSgAAQBAoJQAAIAiUEgAAEARKCQAACAKlBAAABIFSAgAAgkApAQAAQaCUAACAIFBKAABAECglAAAgCImWEjPrM7NHzOyYmd2wxDQHzOxhMztqZn+dZB4AABCuTUk9sZk1SLpF0i9KOinpATO7090fLpvmEkkflPRqd3/WzDqSyrNacewayU9pdLygztacutuaFEWWdiwAADasxEqJpFdKOubuxyXJzG6XdI2kh8um+W1Jt7j7s5Lk7mMJ5qlYHLsOHz2l/sFhFaZj5RojDRzYo77eLooJAAAJSXL3zTZJT5TdPlm8r9xLJL3EzL5hZvebWV+CeSo2kp+aLySSVJiO1T84rJH8VMrJAABZ4e5pR8icJLeUVPr6l0jaL2m7pK+b2cvd/bnyiczseknXS9LOnTsTDzU6XpgvJCWF6VhjEwX1tDcn/voAgOwpX1dtbW/X1772tZQTrd7k5KSGhoYSfY39+/cv+ViSpeRJSTvKbm8v3lfupKRvufu0pB+Y2aOaKykPlE/k7rdKulWS9u7dm3j17GzNKdcYLSgmucZIHS25pF8aAJBR5euqSy+91F/72tfKLFu7/IeGhpYtDUlLcvfNA5IuMbOLzew8SddKunPRNH+nua0kMrOtmtudczzBTBXpbmvSwIE9yjXOzZ7SmJLutqaUkwEAsiJrhSQEiW0pcfcZM3u/pC9LapB0m7sfNbObJB1x9zuLj/17M3tY0qyk33f3fFKZKhVFpr7eLu0+uE9jEwV1tHD0DQAASUt0TIm7H5J0aNF9N5Zdd0n9xZ+gRJGpp72ZMSQAANQIZ3QFAABBoJQAAIAgUEoAAEAQKCUAACAIlBIAABAESgkAAAgCpQQAAASBUgIAAIJAKQEAAEGglAAAgCBQSgAAQBAoJQAAIAiUEgAAEARKCQAACAKlBAAABIFSAgAAgkApAQAAQaCUAACAIFBKAABAECglAAAgCJQSAAAQBEoJAAAIAqUEAAAEgVICAACCQCkBAABBoJQAAIAgUEoAAEAQKCUAACAIm9IOELo4do3kpzQ6XlBna07dbU2KIks7FgAAGw6lZBlx7Dp89JT6B4dVmI6Va4w0cGCP+nq7KCYAAFQZu2+WMZKfmi8kklSYjtU/OKyR/FTKyQAA2HgoJcsYHS/MF5KSwnSssYlCSokAANi4KCXL6GzNKde4cBblGiN1tORSSgQAwMZFKVlGd1uTBg7smS8mpTEl3W1NKScDAGDjYaDrMqLI1Nfbpd0H92lsoqCOFo6+AQAgKZSSFUSRqae9WT3tzWlHAQBgQ2P3DQAACAKlBAAABIFSAgAAgkApAQAAQaCUAACAIFBKAABAECglAAAgCJQSAAAQBEoJAAAIAqUEAAAEgVICAACCQCkBAABBoJQAAIAgUEoAAEAQKCUAACAIlBIAABAESgkAAAgCpQQAAASBUgIAAIJAKQEAAEGglAAAgCAsWUrM7NXFy821iwMAAOrVcltKbi5e3leLIAAAoL5tWuaxaTO7VdI2M7t58YPufjC5WAAAoN4sV0p+SdIbJL1R0rdrEwcAANSrJUuJuz8t6XYz+767f7eGmQAAQB2q5OibfjO7oHTDzLaY2W3JRQIAAPVoud03Ja9w9+dKN9z9WTO7PLlIYYpj10h+SqPjBXW25tTd1qQosrRjAQCwYVRSSiIz2+Luz0qSmV1Y4e9tGHHsOnz0lPoHh1WYjpVrjDRwYI/6ersoJgAAVEklu2/+TNJ9ZvYRM/ufkr4p6U+SjRWWkfzUfCGRpMJ0rP7BYY3kp1JOBgDAxrFiKXH3T0v6VUmjkk5Jeou7fybpYCEZHS/MF5KSwnSssYlCSokAANh4KtoN4+5HzewpSTlJMrOd7n4i0WQB6WzNKdcYLSgmucZIHS25FFMBALCxrLilxMyuNrPHJP1A0tckjUj6UsK5gtLd1qSBA3uUa5ybXaUxJd1tTSknAwBg46hkS8lHJF0p6avufrmZ/YKk30g2VliiyNTX26XdB/dpbKKgjhaOvgEAoNoqKSXT7p43s8jMIne/x8w+lnSw0ESRqae9WT3tzWlHAQBgQ6qklDxnZs2S/lnSZ81sTBKHnQAAgKqq5JDgeySdL+kDkg5LelzSLycZCgAA1J9KSskmSV+RNCSpRdId7p6v5MnNrM/MHjGzY2Z2wzLT/aqZuZntreR5AQDAxlPJeUr+h7v3SnqfpIskfc3MvrrS75lZg6RbJL1J0mWS3mZml51juhbNbYX51iqzAwCADaSSLSUlY5o7eVpeUkcF079S0jF3P+7uZyXdLumac0z3EUl/LIkzkQEAUMcqOU/Je81sSNJdktok/ba7v6KC594m6Ymy2yeL95U/9xWSdrj7P1acGAAAbEiVHH2zQ9LvuftwNV/YzCJJA5LeWcG010u6XpJ27txZzRgAAFRF+bqqvb1dQ0ND6QZag8nJycRz79+/f8nHzN0TeVEze5WkD7v7G4u3PyhJ7v7R4u3zNXckz2TxV7okPSPpanc/stTz7t27148cWfJhAACqaU1nybz00kv9kUceqXaWxA0NDS1bGqpkyXm6mjElq/WApEvM7GIzO0/StZLuLD3o7j9x963u3u3u3ZLu1wqFBAAAbFyJlRJ3n5H0fklflvR9SYPFL/a7ycyuTup1AQBANlX0LcFr5e6HJB1adN+NS0y7P8ksAAAgbEnuvgEAAKgYpQQAAASBUgIAAIJAKQEAAEGglAAAgCBQSgAAQBAoJQAAIAiUEgAAEARKCQAACAKlBAAABIFSAgAAgkApAQAAQaCUAACAIFBKAABAEDalHSBr4tg1kp/S6HhBna05dbc1KYos7VgAAGQepWQV4th1+Ogp9Q8OqzAdK9cYaeDAHvX1dlFMAABYJ3bfrMJIfmq+kEhSYTpW/+CwRvJTKScDACD7KCWrMDpemC8kJYXpWGMThZQSAQCwcVBKVqGzNadc48JZlmuM1NGSSykRAAAbB6VkFbrbmjRwYM98MSmNKelua0o5GQAA2cdA11WIIlNfb5d2H9ynsYmCOlo4+gYAgGqhlKxSFJl62pvV096cdhQAADYUdt8AAIAgUEoAAEAQKCUAACAIlBIAABAESgkAAAgCpQQAAASBUgIAAIJAKQEAAEGglAAAgCBQSgAAQBAoJQAAIAiUEgAAEARKCQAACAKlBAAABIFSAgAAgkApAQAAQaCUAACAIFBKAABAECglAAAgCJQSAAAQBEoJAAAIAqUEAAAEgVICAACCsCntAFkVx66R/JRGxwvqbM2pu61JUWRpxwIAILMoJWsQx67DR0+pf3BYhelYucZIAwf2qK+3i2ICAJAkubvMWCesBrtv1mAkPzVfSCSpMB2rf3BYI/mplJMBAEJwZmZWs7OzacfIHErJGoyOF+YLSUlhOtbYRCGlRACAkGze1KCGhoa0Y2QOpWQNOltzyjUunHW5xkgdLbmUEgEAQsOum9WjlKxBd1uTBg7smS8mpTEl3W1NKScDACC7GOi6BlFk6uvt0u6D+zQ2UVBHC0ffAACwXpSSNYoiU097s3ram9OOAgDAhsDuGwAAEARKCQAACAKlBAAABIFSAgAAgkApAQAAQaCUAACAIFBKAABAECglAAAgCJQSAAAQBEoJAAAIAqUEAAAEgVICAACCQCkBAABBoJQAAIAgUEoAAEAQKCUAACAIlBIAABAESgkAAAgCpQQAAAQh0VJiZn1m9oiZHTOzG87xeL+ZPWxm3zOzu8xsV5J5khDHruNPTeq+x5/W8acmFceediQAADJpU1JPbGYNkm6R9IuSTkp6wMzudPeHyyb7F0l73f20mb1H0p9IemtSmaotjl2Hj55S/+CwCtOxco2RBg7sUV9vl6LI0o4HAECmJLml5JWSjrn7cXc/K+l2SdeUT+Du97j76eLN+yVtTzBP1Y3kp+YLiSQVpmP1Dw5rJD+VcjIAALInyVKyTdITZbdPFu9bynWSvpRgnqobHS/MF5KSwnSssYlCSokAAMiuxHbfrIaZ/YakvZJeu8Tj10u6XpJ27txZw2TL62zNKdcYLSgmucZIHS25FFMBANJQvq5qb2/X0NBQuoHWYHJyMvHc+/fvX/Ixc09mYKaZvUrSh939jcXbH5Qkd//oouneIOnPJb3W3cdWet69e/f6kSNHEki8eowpAYANb00f5pdeeqk/8sgj1c6SuKGhoWVLQ5UsOU+T3FLygKRLzOxiSU9KulbS2xekMrtc0icl9VVSSEITRaa+3i7tPrhPYxMFdbTk1N3WRCEBAGANEisl7j5jZu+X9GVJDZJuc/ejZnaTpCPufqekP5XULOlvzEySTrj71UllSkIUmXram9XT3px2FAAAMi3RMSXufkjSoUX33Vh2/Q1Jvj4AAMgOzugKAACCQCkBAABBoJQAAIAgUEoAAEAQKCUAACAIlBIAABAESgkAAAgCpQQAAASBUgIAAIJAKQEAAEGglAAAgCBQSgAAQBAoJQAAIAiUEgAAEARKCQAACMKmtANsFHHsGslPaXS8oM7WnLrbmhRFlnYsAAAyg1JSBXHsOnz0lPoHh1WYjpVrjDRwYI/6ersoJgAAVIjdN1Uwkp+aLySSVJiO1T84rJH8VMrJAADIDkpJFYyOF+YLSUlhOtbYRCGlRAAAZA+lpAo6W3PKNS6clbnGSB0tuZQSAQCQPZSSKuhua9LAgT3zxaQ0pqS7rSnlZAAAZAcDXasgikx9vV3afXCfxiYK6mjh6BsAAFaLUlIlUWTqaW9WT3tz2lEAAMgkdt8AAIAgUEoAAEAQKCUAACAIlBIAABAESgkAAAgCpQQAAASBUgIAAIJAKQEAAEGglAAAgCBQSgAAQBAoJQAAIAiUEgAAEAS+kK/K4tg1kp/S6HhBna18WzAAAJWilFRRHLsOHz2l/sFhFaZj5RojDRzYo77eLooJAAArYPdNFY3kp+YLiSQVpmP1Dw5rJD+VcjIAAMJHKami0fHCfCEpKUzHGpsopJQIAIDsoJRUUWdrTrnGhbM01xipoyWXUiIAALKDUlJF3W1NGjiwZ76YlMaUdLc1pZwMAIDwMdC1iqLI1Nfbpd0H92lsoqCOFo6+AQCgUpSSKosiU097s3ram9OOAgBAprD7BgAABIFSAgAAgkApAQAAQaCUAACAIFBKAABAECglAAAgCJQSAAAQBEoJAAAIAidPS0Acu0byUxodL6izlbO6AgBQCUpJlcWx6/DRU+ofHFZhOp7//pu+3i6KCQAAy2D3TZWN5KfmC4kkFaZj9Q8OayQ/lXIyAADCRimpstHxwnwhKSlMxxqbKKSUCACAbKCUVFlna065xoWzNdcYqaMll1IiAACygVJSZd1tTRo4sGe+mJTGlHS3NaWcDACAsDHQtcqiyNTX26XdB/dpbKKgjhaOvgEAoBKUkgREkamnvVk97c1pRwEAIDPYfQMAAIJAKQEAAEGglAAAgCBQSgAAQBAoJQAAIAgcfZMgvpgPAIDKUUoSwhfzAQCwOuy+SQhfzAcAwOpQShLCF/MBALA6lJKE8MV8AACsDqUkIXwxHwAAq8NA14TwxXwAAKwOpSRBfDEfAACVY/cNAAAIQqJbSsysT9LHJTVI+it3/6NFj2+W9GlJPyspL+mt7j6SZCYg62p5Ur44dp14Zkqj42d0dnZWrZsbdTaOdV5DpLOza7s8fXY28ycTLC2D/NQZvaCxQVNnZjV1dka7LmzSxVtr/3ctl2fXhS/UiWdPKz91ZtXLq/RcKy37jbBMEYbESomZNUi6RdIvSjop6QEzu9PdHy6b7DpJz7r7i83sWkl/LOmtSWVKC2d2RflKYz0rghc0NujR0Ul96IsPassLz9Ov792ul/3M+eps2XzOFUalK5Wlcvwwf1onnjmt2x84obfu3ak7jqz/8pdesU3n5xr08u0XqCEybd6UzIoyqecqLYOP3/Wo/vNVF+v09Kw+ftdjFS2PWud511W7tKVpsz5xz2OrXk6l51pp2d989/J/exrLi5KUXUluKXmlpGPuflySzOx2SddIKi8l10j6cPH65yV9wszM3T3BXDXFmV3XrpIVeTU+8JL+0Cxfaax3RVCYmdWtXz+uLS88T++4cpfuOHJCuU0N+sNDD695pbLUZWFmVpJ069eP67rX9Ojmux9b1+Xi57/hb7+X2IoyyecqLYPrXtOj/OmzFS+PNPJMnp3VwFcfWtPyKj3XStMu97ensbxuvvuxYD5rZ2ZmUnnd9Uoid0NDg8xWXg5JlpJtkp4ou31S0s8tNY27z5jZTyS1SXo6wVw1tdSZXXcf3Ff3A2CXKx2VrMir8YFXiw/N8pXGelcEv7WvR4XpWG+5YnvVVirLvZY09541W//lL71i27qLzXr/pmo8V2kZmEmxq+LlkUae8sdWe1l6rpWmXe5vT2N5hfJZe2ZmVgf+4muSVNHKeDnr/f3VPM+bOiZ1yyfvrcrrlcSzs7rjva/Vpk0rV45MHH1jZtdLul6Sdu7cmXKa1VnuzK4buZSsVDjOTMf6Qf60/vzuc5eOSlbk1fjAq8WH5mpWDCutCKS5c95Uc6Wy3Gs1mBaca2c9lw3R+ovNev+majzXgr/JKl8eaeRZ1/KqcNmHtrzK1fqztnxdtXVru97cOTl3v8rKwGr7hUsXtzdXpZhU8hSTk9L7etf9Uos06N57f1p09u/fv+SUSZaSJyXtKLu9vXjfuaY5aWabJJ2vuQGvC7j7rZJulaS9e/dmatdO6cyu5f9Yanlm12oPVKxkV8dyWzlKWxP+bXr50lHJirwaH3i1+NAsLfNKLldaEXzh2yd18HWX6MzMbNVWKsu91u/8fI8+8PpLdPsDJ3TwdZfojiNrv7yh76XrLzbVLElrfK7SMii9nz/w+ktUmF55eaSRp/yx1V6WnmulZb/cezGN5ZXWZ620cF3V/aIX+z88mZPHsT77O/vmtxJUsrVgsUp3fVTD0NDQsqUhaUmWkgckXWJmF2uufFwr6e2LprlT0m9Kuk/Sr0m6eyONJ5F+embXxWNKkj6za6mMHP3ReNUGKla6q2O5rRylrQkrlQ6pNiuoWnxormbFsNKK4Oa7H9Nn7v+h3nXVLn3kmpfpE/c8tu6VylKXN9/9mP7y68fnXysy6dUvulxn41ivfnGbzs6u7jJ210d/5eX62F2PJr6iTPK5Ssvg1/du10VbXqCfac3pzEysHRc26c/vrv3ftlyeP/i7B+cfe3Fns25+6+qW3wsaG3TFzi2anp1dctm/oLFBu9qa9PFzLNc0ltfiMSWpnUXbNV9INm/eLDOrabnIKkuyA5jZmyV9THOHBN/m7n9oZjdJOuLud5pZTtJnJF0u6RlJ15YGxi5l7969fuTIkcQyJ6G0KyPJM7suPiTw0dHJ+W8kLhWET927vsuGqLLn+q19PfrE3cf0/te9+HmXkuav/9U/z017rsvywXNZH1Oy4OiEbeers3n5IzNKW6OmZ2fVco6tUaUjC3ZumTvU85mpM2pc43PV+vDd0vt0ucyVbq1b699Ujec613xJ829bLk8tzii93N+exvKq8vt2TU/Q3fNif8V7blZjLiczUzw7q79+92uet6VkLVtOklSjLSVLztNE54a7H5J0aNF9N5ZdL0j69SQzhKB0ZtfutiaN5Kf0rR/kq/5Bf/joKf3x4e8v2FJR7YGKq9mnu9LWhJW2HpT/72+5/+FV8j+5avxvcD3Pdcf1VyZ2iGLWzhi8kc9yHNrfVss8of3tofjs7+xTY2Pj/O2GhoYU02RDWBVtA0vq0OA4dj345HPqHxx+3ngMKZ19ussVjtIm2I/ftXzpSHJFDgC1sHnzZp133nlpx8gUSkmNVPvQ4NKYke+ceE4j+alzbqmo9kDF1ezTXa5wlLYmnD47o50pnQETABLFR9qaUEpqpJqHBpe2uvzrqfH53TTn2lJR7YGKle7qYCsHAFTv/CL1hFJSI9U6NLh8d01pN83i3SWlLRXX/3yPXtLZopd2tbI1AgBqaPOmhuAGsWYBc6xGyg8NLh2J8ZKOFrnPFY2VCsO5dtdIc8Xmxz8p6DP3/1BvuWK7NkXS/73u5zQ9G7OlAgBSxJaS1aOU1EgUmfp6u3TZB/bpOyee04e++GDFA16X2l1Tvpvmxz8p6FP3HtfAgT26YucWiggAIHOitAPUkygyxa75QiL9dMBr6Zwii5XvrikdklsqI8+ePju/m+YTb79c//i7+/iiPwAIxAY7F2hNsKWkxsoHvF50fk5vuWK7zKSnJs88b1fLzEysf3zox3r8qclz7q4pndDs9bs79PJtF1BGACAQZ2ZmNTMzs+A8JVgZW0pqrDTg9aLzc3rHlbv0qXuP6wvfPqlvHHtahx78sR4fm9TMTKyRpyf1z48/rf/6he8p9oVH1ZSKyafuPa7dXa0UEgDAhsCWkhorDXj911Pj86cff8eVu+avv+uqXdrStFlPPHta0sLdNRxVAwDZsHlTA2dwXQNKSY2VBryWDg9+yxXbF5STybOzGvjqQ/OniGd3DQBkz5mZWZ09e3b+y/hQGXbfpCCKTN1tTco1RvNnYS2Vk9JgVkn6++8++bzdNS9qb6aQAEAGvP2T92p2djbtGJnClpKUlHbjPHJqfEE5kX46fqT0LbmlLSR7d12oq3raKCQAELjNmxo0+L797MJZJUpJSubPW3JRi3a1NemH+annnXuk9P0xjB8BgOzhjK6rxxxLURSZurc2a+eFTTrxzJR2tTXpQ198kMGsAIC6RCkJQHk52bPjAo1NFNTRwiniAQD1hVISkCgy9bQ3r/pbgwEA2Ag4+gYAAASBUgIAAIJAKQEAAEGglAAAgCBQSgAAQBAoJQAAIAiUEgAAEARKCQAACAKlBAAABIFSAgAAgkApAQAAQaCUAACAIFBKAABAECglAAAgCObuaWdYFTN7StIPq/R0WyU9XaXnqrUsZ5eynZ/s6clyfrKnZz35n3b3vtX+kpkdXsvv1bvMlZJqMrMj7r437RxrkeXsUrbzkz09Wc5P9vRkPX89YfcNAAAIAqUEAAAEod5Lya1pB1iHLGeXsp2f7OnJcn6ypyfr+etGXY8pAQAA4aj3LSUAACAQG7KUmFmfmT1iZsfM7IZzPL7ZzO4oPv4tM+sue+yDxfsfMbM31jT4TzOslL/fzB42s++Z2V1mtqvssVkzGy7+3Fnb5BVlf6eZPVWW8bfKHvtNM3us+PObtU1eUfb/VZb7UTN7ruyxtOf7bWY2ZmYPLfG4mdnNxb/te2Z2Rdljqc73YoaV8v+nYu4HzeybZvbvyh4bKd4/bGZHapd6/vVXyr7fzH5S9v64seyxZd9zSasg+++X5X6o+D6/sPhY2vN9h5ndU/wsPGpmHzjHNEG/73EO7r6hfiQ1SHpcUo+k8yR9V9Jli6Z5r6S/LF6/VtIdxeuXFaffLOni4vM0BJj/FyS9sHj9PaX8xduTgc/7d0r6xDl+90JJx4uXW4rXt4SUfdH0vyvpthDme/H1f17SFZIeWuLxN0v6kiSTdKWkb4Uw31eR/6pSLklvKuUv3h6RtDXgeb9f0j+s9z2XRvZF0/6ypLsDmu8XSbqieL1F0qPn+LwJ+n3Pz/N/NuKWkldKOubux939rKTbJV2zaJprJP2f4vXPS3q9mVnx/tvd/Yy7/0DSseLz1dKK+d39Hnc/Xbx5v6TtNc64lErm/VLeKOmf3P0Zd39W0j9JquWJh1ab/W2SPleTZBVw969LemaZSa6R9Gmfc7+kC8zsIqU/3yWtnN/dv1nMJ4X1nq9k3i9lPf9eqmKV2UN7z//Y3b9TvD4h6fuSti2aLOj3PZ5vI5aSbZKeKLt9Us9/o85P4+4zkn4iqa3C303aajNcp7n/CZTkzOyImd1vZv8xgXzLqTT7rxY3pX7ezHas8neTUvHrF3eXXSzp7rK705zvlVjq70t7vq/F4ve8S/qKmX3bzK5PKdNKXmVm3zWzL5lZb/G+zMx7M3uh5lbaXyi7O5j5bnO74C+X9K1FD22k931d2JR2AKydmf2GpL2SXlt29y53f9LMeiTdbWYPuvvj6SQ8p7+X9Dl3P2Nm79bcFqvXpZxpta6V9Hl3ny27L/T5viGY2S9orpS8puzu1xTnfYekfzKzfy1uAQjFdzT3/pg0szdL+jtJl6QbadV+WdI33L18q0oQ893MmjVXln7P3cdr/fqoro24peRJSTvKbm8v3nfOacxsk6TzJeUr/N2kVZTBzN4g6b9Jutrdz5Tud/cni5fHJQ1p7n8PtbJidnfPl+X9K0k/W+nvJmw1r3+tFm3GTnm+V2Kpvy/t+V4xM3uF5t4z17h7vnR/2bwfk/RF1X6X67LcfdzdJ4vXD0lqNLOtytC81/Lv+dTmu5k1aq6QfNbd//Yck2T+fV930h7UUu0fzW39Oa65zeulwWO9i6Z5nxYOdB0sXu/VwoGux1X7ga6V5L9ccwPkLll0/xZJm4vXt0p6TDUcOFdh9ovKrv+KpPuL1y+U9IPi37CleP3CkLIXp9utuQF+Fsp8L8vRraUHW/4HLRzw9/9CmO+ryL9Tc2O8rlp0f5OklrLr35TUF1j2rtL7RXMr7hPF5VDRey7N7MXHz9fcuJOmkOZ7cR5+WtLHlpkm+Pc9Pwt/NtzuG3efMbP3S/qy5ka33+buR83sJklH3P1OSZ+S9BkzO6a5f2zXFn/3qJkNSnpY0oyk9/nCTfSh5P9TSc2S/mZufK5OuPvVkl4q6ZNmFmtuK9gfufvDgWU/aGZXa27+PqO5o3Hk7s+Y2UckPVB8upt84abiELJLc++V2734yVaU6nyXJDP7nOaO8thqZicl/XdJjZLk7n8p6ZDmjkQ4Jum0pHcVH0t1vpdUkP9GzY37+ovie37G575grVPSF4v3bZL01+5+OLDsvybpPWY2I+nfJF1bfP+c8z0XWHZp7j8PX3H3qbJfTX2+S3q1pHdIetDMhov3fUhzBTYT73s8H2d0BQAAQdiIY0oAAEAGUUoAAEAQKCUAACAIlBIAABAESgkAAAgCpQTY4MzsAjN7b9o5AGAllBJg47tAc9+MDQBBo5QAG98fSXqRmQ2b2Z+mHQYAlsLJ04ANrvgNqv/g7i9LOwsALIctJQAAIAiUEgAAEARKCbDxTUhqSTsEAKyEUgJscO6el/QNM3uIga4AQsZAVwAAEAS2lAAAgCBQSgAAQBAoJQAAIAiUEgAAEARKCQAACAKlBAAABIFSAgAAgkApAQAAQfj/nKg9y85mh2QAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 576x576 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "prueba = sns.jointplot(x=\"t\",y=\"vacf\",data=df)\n", + "\n", + "prueba.fig.set_size_inches(8,8)\n", + "\n", + "plt.grid()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 5- Grafica de la Función de Autocorrelación de Velocidades a partir de nuestros datos\n", + "\n", + "\n", + "Usamos dos maneras diferentes de construÃr la gráfica explotando recursos de python" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAJcCAYAAACxEXM4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABEtElEQVR4nO3de5xcdX3/8fdnLruzl5nN5k4SIAGDyFU0FRWQQLWircBPRVCr0IrYWrUWa394+VlLqbXV3n5Fa6lSiwUj0qpYoWCV/EDuQVFuAiEIJBByz+4m2c3uzOf3xzmzmd3M7s7szpkzO/N6Ph7z2Jlzzpzz/Z6Z3Xnv9/ud8zV3FwAAAOorEXcBAAAAWhEhDAAAIAaEMAAAgBgQwgAAAGJACAMAAIgBIQwAACAGhDAgJmY2YGZHjFuWMLPvmdn7anicr5vZFbXaXzMys8+a2b/PcB+Hha9pctzyDjO708zOmlkpx+xzrZldXKv9VXjMi8zsJzPcx2lm9vgk66f9Xq3FawjUGyEMCJnZr8xsX/hBWrwtiep47t7t7hvGLb5C0o/c/WtRHbdaFthgZo9W+bzlZuZmloqqbI3E3Z8NX9P8uFX/LOlv3P2/4yhXkZllzGyXmZ1ZZt3fmdkNUZfB3e9w95dGfRxgtmiJP45AFd7i7v8T18Hd/ZNxHXsSr5O0UFLKzH7N3e+Pu0CTMbOUu4+MW5YsE47qwt3fG8dxx3P3QTP7lqT3SvpxcXnYcvdOSe+Pq2xAq6IlDJhC2EL2+pLHo90eJa09F5rZs2a2zcw+VbJt0sw+aWZPmVm/mT1gZoeG69zMXhLe7zGza8xsq5k9Y2afNrNEuO4iM/uJmX3RzHaa2dNm9qZJynuSmf00PN63JGXGrf8tM3swbBW5y8xOmOIUXCjpe5JuCu9XdG4k3R7+3BW2Kr4m7G79dFjHLWGde0qef2pYpl1m9pyZXVTh+bkzbM3ZLumzYbfWP5nZTWa2R9IZZrbEzP4j3MfTZvaRSc7ht81ss5ntNrPbzezYknUdZvY3YTl2h69Nx/iWv/B4N5rZDjNbb2bvL9nHZ83s+rBO/Wb2iJmtmqQ8bzCzX4bHu1KSjVv/u2b2WPj+uMXMDp9gV/8m6W1m1lmy7I0KPgtuDs/z18zsBTPbZGZX2Lju1ZJjvtbM7g/LdL+ZvbZk3Vwz+1czez4s03fD5avNbGPJdhO+V82s18z+K3y9dob3l5WsX2Fm/y987g8lzR9XvleXvJd+bmarS9ZdZEHrbn/4Xnj3BOcLiBQhDKiNUyW9VNKvS/qMmb0sXH6pglaGN0vKSfpdSXvLPP8fJfVIOkLS6QpaK36nZP3Jkh5X8EHz15K+ZmY2fidm1ibpu5K+IWmupG9LelvJ+pMkXS3pA5LmKegqu9HM2stVKvywfruka8PbBeExKvG68OecsJvubkkXhbczwrp2S7oyPNbhkm4Oz8UCSS+X9GC4j0rOzwZJiyT9RbjsXeH9rKS7JH1f0s8lLVXwOn3UzN44QdlvlrRSQQvgT8O6F31R0islvVbBOf4TSYUy+1gjaaOkJQrO4edsbFfg2eE2cyTdWDwP45nZfEn/KenTCl7/pySdUrL+HEmflPRWBeftDknfLLcvd79L0gvhtkXvkXRd2Hr4dUkjkl4i6SRJvyHpoLFnZjZX0g8k/V8F76O/lfQDM5sXbvINSZ2SjlVwDv+uzD4mfa8q+Hz6V0mHSzpM0j6NPUfXSXogPCd/rpJ/EMxsaVi+K8J9/7Gk/zCzBWbWFZb7Te6eVfA6PljufAGRc3du3Li5S9KvJA1I2hXevluy/PUl231W0r+H95dLcknLStbfJ+mC8P7jks6Z4Hiu4MMuKWm/pGNK1n1A0trw/kWS1pes6wyfu7jMPl8n6XlJVrLsLklXhPf/SdKfj3vO45JOn6CMvy1pq4KhCxlJuyX9r3HnbKpzkypZ/yNJHyx5/FJJw+H+PyHpO2XKUMn5eXbcc74u6ZqSxyeX2eYTkv51fLnLHH9OWI8eBcFgn6QTy2w3Wl9Jh0rKS8qWrP9LSV8vOd7/lKw7RtK+CY7/Xkn3lDw2BeHu4vDxzZLeV7I+oSDoHz7B/j4t6dbwfi7c9iQFAXZIUkfJtu+UdFvJef5JeP89ku4bt99iyD5EQSjtLXPs1ZI2VvJeLfPcl0vaGd4/TEFY7CpZf13Je+9/S/rGuOffoiCodSn4/X5baV25cYvjRksYMNa57j4nvJ1bxfM2l9zfq6CFRwo+jJ+a4rnzJaUlPVOy7BkFLTYH7d/diy1p3TrYEkmb3N3H7avocEkfC7todpnZrrCME30B4UJJ17v7iLsPSvoPjeuSrNISHVzPlIIAMNG5quT8PFfmeaXLDpe0ZFy9PxkedwwLupA/b0EXcp+CoFksx3wFYXSq13SJpB3u3j9Jmce/ZzJW/ksMS0rrEr624+v2DyX12qEgqJUeq9Q3FHbPKmihe8rdfxbuJy3phZJ9/bOClqxyZXpm3LJi/Q5VUPedExy/dB8TvlfNrNPM/jns9u1T0L09J+weXaIgkO0p99ywLueNe71PlXRI+JzzJf1eWNcfmNnRU5QViAQhDJjaHgWtT0WLq3juc5KOnGKbbQpag0rH8RwmaVMVxyl6QdLScV2Vh40rz1+UBM057t7p7gd1X4Xjb86U9NsWjI/arOBD+81hF5k0+bkp/XAtel4H13NE0oua+FxVcn7KHat02XOSnh5X76y7v7nM894l6RxJr1fQ+rU8XG5hWQYnKGep5yXNNbPsJGWu1AsKgk1QiOC1PbRk/XOSPjCubh0edD0exN2fUdBl+dsKWrT+rWQ/Q5Lml+wn5+7HltnN+NextH7PKaj7nArqNdl79WMKWkpPdvecDnRvW/jc3rBrsdxzn1PQElZ6Trrc/fPhObjF3d+goNXul5L+ZYqyApEghAFTe1DBWKh0OHj67VU896uS/tzMVlrghJJxM5IkD761d72kvzCzbDg26lJJ07nm0d0KQs1HwvK+VdKrStb/i6TfM7OTw/J0mdlvjgsLRe+R9ISCD8KXh7ejFHSFvTPc5kFNfG62KuiWKr0W2jcl/VE4qLpb0uckfcuD8UjXSnq9mb3DzFJmNs/MXl6j83OfpH4z+98WDKJPmtlxZvZrZbbNKggj2xUEzM8VV7h7QcGYur+1YOB90oIvHIwZU+fuzynoWvtLCy4NcYKk91VZ5qIfSDrWzN4atpR9RGPD7lckfcLCLw9YMLj+vCn2+W+SPqRgbNm1YZlfkHSrpL8xs5wFX6I40sxOL/P8myQdZWbvCl+r8xV0qf5XuJ+bJX3ZgsH1aTN7XZl9TPVezSro+t0VjkH70+KKMEiuk/RnZtZmZqdKekvJc/9d0lvM7I3ha5Sx4EsBy8xskZmdEwa4IQVDEMqN6QMiRwgDpvZ/FLR87JT0ZwrGnlTqbxUEiFsl9Un6mqSOMtt9WEGr0gZJPwmPcXW1BXX3/QoGXV+koFvqfAWDuovr1ym4FMGVCuqzPty2nAslfdndN5feFHzoF7skJzw3YbfpX0i6M+wSenVYp28o6Fp6WkGr0ofD7Z9V8AWGj4Vlf1DSieHuZnR+wiD3WwqC5NMKWrS+qqCla7xrFHRtbZL0qKR7xq3/Y0kPSbo/LOdfqfzf0ncqaEV7XtJ3JP2pT+PyJ+6+TdJ5kj6vIBiulHRnyfrvhGVYE3bbPSxpwm/Phv5DwYD1H4Whqei9ktoU1HunpBsUtBaNL9N2BefzY2GZ/kTSb4VllYIAP6yglWmLpI+W2cek71VJf6/gd2Wbgtdg/HXW3qVgrN8OBQHtmpJ9P6egNfOTCv4ZeE7SxxW8TgkFIf758LmnS/r98eUD6sHGdscDAACgHmgJAwAAiAEhDAAAIAaEMAAAgBgQwgAAAGIw6ybwnj9/vi9fvjzSY+zZs0ddXV1Tb9ikWr3+EueA+lN/6k/9W1Wt6//AAw9sc/cF5dbNuhC2fPlyrVu3LtJjrF27VqtXr470GI2s1esvcQ6oP/Wn/qvjLkZsqH9t629m42eXGEV3JAAAQAwIYQAAADEghAEAAMRg1o0JAwAA8RseHtbGjRs1ODgYd1FqqqenR4899ljVz8tkMlq2bJnS6XTFzyGEAQCAqm3cuFHZbFbLly+XmcVdnJrp7+9XNput6jnuru3bt2vjxo1asWJFxc+jOxIAAFRtcHBQ8+bNa6oANl1mpnnz5lXdKkgIAwAA00IAO2A654IQBgAAEANCGAAAQAwIYQAAoGVt3bpVJ598sk466STdcccdcnedeeaZ6uvr065du/TlL395zLZnnXVWzY5NCAMAAC3rRz/6kY4//nj97Gc/02mnnaZbbrlFJ554onK53EEhbMGCBTrkkEN055131uTYXKICAADMyJ99/xE9+nxfTfd5zJKc/vQtx066zWWXXaZDDz1Uf/AHfyBJ+uxnP6tUKqXbbrtNO3fu1PDwsK644gqdc845kqRrrrlGX/ziF2VmOuGEE/Sxj31Mf/Inf6J9+/Zp3bp1uvvuu3X99deP7u+yyy7TU089pZe//OV6wxveoC984Qs699xzde211+qUU06ZcR0JYQAAYFY6//zz9dGPfnQ0NF1//fW65ZZb9JGPfES5XE7btm3Tq1/9ap199tl69NFHdcUVV+iuu+7S/PnztWPHDs2dO1eXX3651q1bpyuvvFKSdO+99+rqq6+WJH3+85/Xww8/rAcffHD0mKtWrdKnP/3pmpSfEAYAAGZkqharqJx00knasmWLnn/+eW3dulW9vb1avHix/uiP/ki33367EomENm3apBdffFE//vGPdd5552n+/PmSpLlz55bd586dOye9WOvChQv1/PPP16T8hDAAADBrnXfeebrhhhu0efNmnX/++br22mu1detWPfDAA0qn01q+fHlVF1FNpVIqFApKJMoPmx8cHFRHR0dNys7AfAAAMGudf/75WrNmjW644Qadd9552r17txYuXKh0Oq3bbrtNzzzzjCTpzDPP1Le//W1t375dkrRjx46y+3vJS16iDRs2SJKy2az6+/vHrH/iiSd03HHH1aTshDAAADBrHXvsserv79fSpUt1yCGH6N3vfrfWrVun448/Xtdcc42OPvro0e0+9alP6fTTT9eJJ56oSy+9tOz+3vjGN2rt2rWSpHnz5umUU07Rcccdp49//OOSpNtuu02/+Zu/WZOy0x0JAABmtYceemj0/vz583X33XeX3e7CCy/UhRdeOGbZRRddpIsuumjMNh/84Ad18cUXS5Kuu+66MdvfeOON+t73vleTctMSBgAAEFq8eLHe//73q6/v4EtubN26VZdeeql6e3trcixawgAAwLS4e1NO4v2Od7yj7PIFCxbo3HPPLbvO3as+Di1hAACgaplMRtu3b59W+Gg27q7t27crk8lU9TxawgAAQNWWLVumjRs3auvWrXEXpaYGBwerDlNSEEqXLVtW1XMIYeP85Mlt+sQde/WNY/r1koUTX6wNAIBWlk6ntWLFiriLUXNr167VSSedVJdj0R05Tld7Ui/scT21dU/cRQEAAE2MEDbO0YtzMkmP1HgiUgAAgFKEsHE62pI6pNv0yKbdcRcFAAA0MUJYGYdnE7SEAQCASBHCyjgsl9TmvkFtHxiKuygAAKBJEcLKODwXnBZawwAAQFQIYWUcliWEAQCAaBHCyuhuMy2d06FHnmdwPgAAiAYhbALHLc3pUVrCAABARAhhEzh2SY+e3r5He4ZG4i4KAABoQoSwCRy7JCd36bEXaA0DAAC1RwibwLFLeiQxOB8AAESDEDaBRbl2zetqY3A+AACIBCFsAmamly7O6sktA3EXBQAANCFC2CQW92T04u7BuIsBAACaECFsEotzGW3pH1Kh4HEXBQAANBlC2CQW92Q0UnBt28MckgAAoLYIYZNYlMtIkl7cTQgDAAC1RQibxCE9QQjb3Me4MAAAUFuEsEkszhHCAABANAhhk5jX3a5kwviGJAAAqDlC2CSSCdPCbDstYQAAoOYIYVNYlMtoMy1hAACgxghhU1icy9ASBgAAao4QNgWumg8AAKJACJvColxG/UMj2jM0EndRAABAEyGETWFxT7skLlMBAABqixA2hQNXzSeEAQCA2iGETYELtgIAgCgQwqawmKmLAABABAhhU+hsSymbSdEdCQAAaooQVgGuFQYAAGqNEFaBxT0Zbe4birsYAACgiRDCKrA4xwVbAQBAbRHCKrC4J6OtA0PKFzzuogAAgCZBCKvAolxG+YJr2wBdkgAAoDYIYRUYvVYYXZIAAKBGCGEVKF4r7EW+IQkAAGqEEFaB3q42SdLOvftjLgkAAGgWhLAKzO0MQtiOPcMxlwQAADQLQlgFOtqSyqQTtIQBAICaIYRVqLezTTv3EMIAAEBtEMIq1NvZRksYAACoGUJYheZ2tWkHLWEAAKBGCGEVmtOZ1q69DMwHAAC1QQir0NyuNu2gOxIAANRIpCHMzM4ys8fNbL2ZXVZm/WFmdpuZ/czMfmFmb46yPDPR29mm3fuGmT8SAADURGQhzMySkr4k6U2SjpH0TjM7Ztxmn5Z0vbufJOkCSV+Oqjwz1duZlru0ex9dkgAAYOaibAl7laT17r7B3fdLWiPpnHHbuKRceL9H0vMRlmdGilfNZ3A+AACoBXOPpnvNzN4u6Sx3vzh8/B5JJ7v7h0q2OUTSrZJ6JXVJer27P1BmX5dIukSSFi1a9Mo1a9ZEUuaigYEBdXd3j1n28LYRfXHdkD55ckZH9SYjPX7cytW/1bT6OaD+1J/6U/9WVev6n3HGGQ+4+6py61I1O8r0vFPS1939b8zsNZK+YWbHuXuhdCN3v0rSVZK0atUqX716daSFWrt2rcYfY/6m3friup9o+VHHavWxiyM9ftzK1b/VtPo5oP7Un/qvjrsYsaH+9at/lN2RmyQdWvJ4Wbis1PskXS9J7n63pIyk+RGWadqYxBsAANRSlCHsfkkrzWyFmbUpGHh/47htnpX065JkZi9TEMK2RlimaevtTEtiEm8AAFAbkYUwdx+R9CFJt0h6TMG3IB8xs8vN7Oxws49Jer+Z/VzSNyVd5FENUpuhjnRS7amEdtESBgAAaiDSMWHufpOkm8Yt+0zJ/UclnRJlGWrFzJi6CAAA1AxXzK/CHCbxBgAANUIIq8LcrrR2Mn8kAACoAUJYFXo727ST7kgAAFADhLAq9HYyiTcAAKgNQlgVeruYxBsAANQGIawKc5nEGwAA1AghrApM4g0AAGqFEFaF3s4ghHHBVgAAMFOEsCrMpSUMAADUCCGsCnPC+SN3ca0wAAAwQ4SwKoy2hNEdCQAAZogQVoXiJN5csBUAAMwUIawKZhZcNZ+WMAAAMEOEsCr1drVpxx7GhAEAgJkhhFWptzNNSxgAAJgxQliVeruYxBsAAMwcIaxKczrSTFsEAABmjBBWpVxHWn2Dw3JnEm8AADB9hLAq5TJpDeddg8OFuIsCAABmMUJYlXo6gqvm0yUJAABmghBWpVxHSpLUN0gIAwAA00cIq1IuE7SE9dESBgAAZoAQViW6IwEAQC0QwqqUC0MY3ZEAAGAmCGFVymXCMWH7RmIuCQAAmM0IYVXK0R0JAABqgBBWpXQyoc62JAPzAQDAjBDCpiGXSTMmDAAAzAghbBp6mD8SAADMECFsGnIdKQbmAwCAGSGETQPdkQAAYKYIYdPQ00EIAwAAM0MIm4ZcR1q79xLCAADA9BHCpiGXSal/aESFgsddFAAAMEsRwqYh15GWuzSwn8H5AABgeghh0zB61Xy6JAEAwDQRwqYhl2ESbwAAMDOEsGnIdTCJNwAAmBlC2DT0MIk3AACYIULYNNAdCQAAZooQNg3Fgfl9tIQBAIBpIoRNQ7Y9JTNCGAAAmD5C2DQkEqZse0p9gwzMBwAA00MIm6ZcR5qWMAAAMG2EsGnq6Ujz7UgAADBthLBpymXSfDsSAABMGyFsmnIdKS7WCgAApo0QNk09HbSEAQCA6SOETVMuw5gwAAAwfYSwacp1pLV3f17D+ULcRQEAALMQIWyaivNH9nOtMAAAMA2EsGnKdaQkMYk3AACYHkLYNI1O4k0IAwAA00AIm6ZidyTfkAQAANNBCJumXBjC6I4EAADTQQibpgPdkQzMBwAA1SOETVNxYD7dkQAAYDoIYdPUkU4qmTANcIkKAAAwDYSwaTIzdben1E9LGAAAmAZC2Ax0t6fUP0RLGAAAqB4hbAaymRRXzAcAANNCCJuBXCZNdyQAAJgWQtgMdGdSGqA7EgAATAMhbAbojgQAANNFCJuB7vYUl6gAAADTQgibgWwmTUsYAACYFkLYDGQzKe3PFzQ0ko+7KAAAYJYhhM1ANhNMXURrGAAAqBYhbAYIYQAAYLoIYTPQ3Z6WJAbnAwCAqhHCZuBASxgXbAUAANUhhM3AaAjjgq0AAKBKhLAZyIbdkYwJAwAA1SKEzQDdkQAAYLoIYTPQHYYwBuYDAIBqEcJmIJ1MKJNOMCYMAABUjRA2Q0xdBAAApoMQNkPZ9hRjwgAAQNUIYTOUzaRoCQMAAFUjhM1QdyalAcaEAQCAKhHCZijbnqY7EgAAVI0QNkPdmRSXqAAAAFUjhM0QY8IAAMB0EMJmKJtJa2D/iAoFj7soAABgFiGEzVC2PSV3ac9+WsMAAEDlCGEzdGD+SEIYAACoHCFshkbnj+QyFQAAoAqEsBnKZtKSxGUqAABAVQhhM0R3JAAAmA5C2Axl2wlhAACgeoSwGTrQHUkIAwAAlSOEzdCBgfmMCQMAAJUjhM1QV1tSCaMlDAAAVIcQNkNmpu52pi4CAADVIYTVQDaTJoQBAICqEMJqIJjEmzFhAACgcoSwGuhuT3HFfAAAUJVIQ5iZnWVmj5vZejO7bIJt3mFmj5rZI2Z2XZTliUrQEkYIAwAAlUtFtWMzS0r6kqQ3SNoo6X4zu9HdHy3ZZqWkT0g6xd13mtnCqMoTpWwmrV9t3xt3MQAAwCwSZUvYqyStd/cN7r5f0hpJ54zb5v2SvuTuOyXJ3bdEWJ7IdDMmDAAAVMncPZodm71d0lnufnH4+D2STnb3D5Vs811JT0g6RVJS0mfd/b/L7OsSSZdI0qJFi165Zs2aSMpcNDAwoO7u7oq3v/7x/br1mWF99Te6IixV/VRb/2bU6ueA+lN/6k/9W1Wt63/GGWc84O6ryq2LrDuyQilJKyWtlrRM0u1mdry77yrdyN2vknSVJK1atcpXr14daaHWrl2rao7xcOFJ3fT0E3rNqaepPZWMrmB1Um39m1GrnwPqT/2p/+q4ixEb6l+/+kfZHblJ0qElj5eFy0ptlHSjuw+7+9MKWsVWRlimSBTnjxxgcD4AAKhQlCHsfkkrzWyFmbVJukDSjeO2+a6CVjCZ2XxJR0naEGGZItHdXpw/khAGAAAqE1kIc/cRSR+SdIukxyRd7+6PmNnlZnZ2uNktkrab2aOSbpP0cXffHlWZopINJ/HmMhUAAKBSkY4Jc/ebJN00btlnSu67pEvD26xV7I7s4xuSAACgQlwxvwaKLWGMCQMAAJUihNUA3ZEAAKBahLAaYGA+AACoFiGsBopjwrhqPgAAqBQhrAbaUgm1pxLqpyUMAABUiBBWI9lMijFhAACgYoSwGslm0oQwAABQMUJYjXS3pzTAmDAAAFAhQliN0B0JAACqQQirkWwmxSUqAABAxQhhNdLdzpgwAABQOUJYjWQzKeaOBAAAFSOE1UixOzKYkxwAAGByhLAayWZScpf27M/HXRQAADALEMJqpDh10QDjwgAAQAUIYTVSnMSb+SMBAEAlCGE1ks0EIayPljAAAFABQliNFEMY1woDAACVIITVSHFMGN2RAACgEoSwGhltCaM7EgAAVIAQViMHBuYTwgAAwNQIYTXS1ZaSGd2RAACgMoSwGkkkTN1tKfUzMB8AAFSAEFZD2UyK7kgAAFARQlgNdWdSDMwHAAAVIYTVUDaTVv8QY8IAAMDUCGE1lKUlDAAAVIgQVkPd7YwJAwAAlSGE1VA2k2buSAAAUBFCWA1lMykNMCYMAABUgBBWQ9n2lAaHCxrOF+IuCgAAaHCEsBpi/kgAAFApQlgNdWfSkpg/EgAATI0QVkPFlrA+5o8EAABTIITVULY97I5k/kgAADAFQlgNZemOBAAAFSKE1dDowHwuUwEAAKZACKuh7jCE0RIGAACmQgiroSwhDAAAVIgQVkPtqaTakgm+HQkAAKZECKuxbCbFxVoBAMCUCGE11p1JcYkKAAAwJUJYjWUzKcaEAQCAKRHCaqy7ne5IAAAwNUJYjWUzaQbmAwCAKRHCaizbzpgwAAAwNUJYjTEmDAAAVIIQVmPFb0e6e9xFAQAADYwQVmPZTFr5gmtwuBB3UQAAQAMjhNVYd3tx6iIG5wMAgIkRwmpsdP5IBucDAIBJEMJqjEm8AQBAJQhhNZbNpCWJC7YCAIBJEcJqjDFhAACgEoSwGmNMGAAAqAQhrMay7UF3JGPCAADAZAhhNdYdtoQxJgwAAEyGEFZjyYSpsy3JmDAAADApQlgEshkm8QYAAJMjhEWgu51JvAEAwOQIYRHozqT5diQAAJgUISwCuUyKMWEAAGBShLAIdLen+HYkAACYFCEsAtkMY8IAAMDkCGER6G5P8+1IAAAwKUJYBIqXqMgXPO6iAACABkUIi0Bx/sg9+2kNAwAA5RHCIjA6iTfjwgAAwAQIYRHoDifx5huSAABgIoSwCBRbwgaGuFYYAAAojxAWge4whPXREgYAACZACItArtgSRggDAAATIIRFoDgmjIH5AABgIoSwCDAmDAAATIUQFoHOtqQSRksYAACYGCEsAmam7nbmjwQAABObMISZWaqeBWk22UyaEAYAACY0WUvYfcU7ZvaPdShLUwnmj2RMGAAAKG+yEGYl90+JuiDNhu5IAAAwmclCmNetFE2oO5PSwBAhDAAAlDfZuK+jzewXClrEjgzvK3zs7n5C5KWbxbKZtJ7ZvjfuYgAAgAY1WQh7Wd1K0YTojgQAAJOZLISlJS1y9ztLF5rZKZI2R1qqJpDLpNQ/yMB8AABQ3mRjwv5eUl+Z5X3hOkyiuz2loZGC9o8U4i4KAABoQJOFsEXu/tD4heGy5ZGVqEkcmLqILkkAAHCwyULYnEnWddS4HE2nO1OcxJsuSQAAcLDJQtg6M3v/+IVmdrGkB6IrUnPIhS1hDM4HAADlTDYw/6OSvmNm79aB0LVKUpukt0ZcrlkvG7aE9dESBgAAypgwhLn7i5Jea2ZnSDouXPwDd/9xXUo2y2VpCQMAAJOYcpJud79N0m2SZGZHmtn/kXSBux8bdeFms9zomDBCGAAAONhkY8IkSWa2xMz+yMzul/RI+JwLIi/ZLHegJYzuSAAAcLAJQ5iZXWJmt0laK2mepPdJesHd/6zcpSswVjGE9e2jJQwAABxssu7IKyXdLeld7r5OksyMSb0rlEom1NmWpCUMAACUNVkIO0TSeZL+xswWS7pewVRGqFA2w/yRAACgvMnGhF0u6WF3P13Sr0vaJelFM3vMzD5Xj8LNdtlMWv1DtIQBAICDTRbCnpD0BTP7laSPSPqxu6+SdLakwTqUbdbLZlKMCQMAAGVNGMLc/R/c/TWSTpe0XdLVZvZLSe+StKaSnZvZWWb2uJmtN7PLJtnubWbmZraqyvI3tFwmzZgwAABQ1pSXqHD3Z9z9r9z9JEnvlHSupMemep6ZJSV9SdKbJB0j6Z1mdkyZ7bKS/lDSvdUVvfExJgwAAEykkuuEpczsLWZ2raSbJT2uyqYtepWk9e6+wd33K2g9O6fMdn8u6a/UhF2c2UxafYQwAABQhrmXv+qEmb1BQcvXmyXdpyBEfc/d91S0Y7O3SzrL3S8OH79H0snu/qGSbV4h6VPu/jYzWyvpj4uXwxi3r0skXSJJixYteuWaNRX1hk7bwMCAuru7Z7yfbz2+X//zzLD+5Te6alCq+qlV/WezVj8H1J/6U3/q36pqXf8zzjjjgXBM/UEmu0TFJyRdJ+lj7r6zZqUJmVlC0t9Kumiqbd39KklXSdKqVat89erVtS7OGGvXrlUtjvFw4Und/PQTes2pp6k9lZx5weqkVvWfzVr9HFB/6k/9V8ddjNhQ//rVf7IJvM+c4b43STq05PGycFlRVsHE4GvNTJIWS7rRzM4u1xo2G+U6Dswf2d49e0IYAACI3pRjwmbgfkkrzWyFmbUpmG/yxuJKd9/t7vPdfbm7L5d0j6SmCWBS6fyRjAsDAABjRRbC3H1E0ock3aLg25TXu/sjZna5mZ0d1XEbSba92BLGZSoAAMBYk40JmzF3v0nSTeOWfWaCbVdHWZY40BIGAAAmEmV3ZMsrjgnr20dLGAAAGIsQFiFawgAAwEQIYRHKZsKWMMaEAQCAcQhhEepupyUMAACURwiLUDJh6m5P0RIGAAAOQgiLWI5JvAEAQBmEsIhlM2muEwYAAA5CCItYlpYwAABQBiEsYoQwAABQDiEsYtlMmoH5AADgIISwiOU6aAkDAAAHI4RFrDgw393jLgoAAGgghLCIZTMpDeddQyOFuIsCAAAaCCEsYkxdBAAAyiGERSwXTuLdt49xYQAA4ABCWMRyYUsYF2wFAAClCGERy2aYxBsAAByMEBax7GhLGCEMAAAcQAiL2IGWMLojAQDAAYSwiOU6+HYkAAA4GCEsYl1tSSWM7kgAADAWISxiZqbudqYuAgAAYxHC6oBJvAEAwHiEsDrIdaS5WCsAABiDEFYHuUyKljAAADAGIawOgpYwQhgAADiAEFYHPYQwAAAwDiGsDnKZtPr4diQAAChBCKuDno60BoZGNJIvxF0UAADQIAhhdZDrYBJvAAAwFiGsDnrCqYt2My4MAACECGF1kMswfyQAABiLEFYHPZ20hAEAgLEIYXUw2hLGVfMBAECIEFYHjAkDAADjEcLqoPjtSMaEAQCAIkJYHXSkk0onjZYwAAAwihBWB2YWXDWfEAYAAEKEsDrp6UjTEgYAAEYRwuok28H8kQAA4ABCWJ3QEgYAAEoRwuokl0mpnxAGAABChLA6oSUMAACUIoTVSa4jrb7BYbl73EUBAAANgBBWJz0daQ3nXfuG83EXBQAANABCWJ0wfyQAAChFCKsT5o8EAAClCGF1wvyRAACgFCGsTordkbv3EsIAAAAhrG6K3ZG0hAEAAIkQVjc5xoQBAIAShLA6yWXCMWF8OxIAAIgQVjepZEJdbUlawgAAgCRCWF31hFfNBwAAIITVUa4jrT5awgAAgAhhdZVjEm8AABAihNVRLpNW3yAD8wEAACGsrnrojgQAACFCWB3lOlKEMAAAIIkQVlc9HWn1D40oX/C4iwIAAGJGCKuj4vyR/VymAgCAlkcIq6Mepi4CAAAhQlgdFeePZOoiAABACKujYkvYrn37Yy4JAACIGyGsjno7wxC2l+5IAABaHSGsjnqKIYwxYQAAtDxCWB3N6WiTJO3aQ3ckAACtjhBWR22phLrakrSEAQAAQli9zelsY0wYAAAghNXbnM60du2lOxIAgFZHCKuzOZ1puiMBAAAhrN7mdLZpJy1hAAC0PEJYnc3pSGs3Y8IAAGh5hLA6K3ZHunvcRQEAADEihNVZb2eb8gVX/xDzRwIA0MoIYXVWnD+SLkkAAFobIazOejuDq+YzOB8AgNZGCKuzOUziDQAARAiruzlM4g0AAEQIq7s5YXckV80HAKC1EcLqrDgwn+5IAABaGyGsztLJhLLtKQbmAwDQ4ghhMejp5Kr5AAC0OkJYDHo72xiYDwBAiyOExWBOZ5ruSAAAWhwhLAY9TOINAEDLI4TFoLezjZYwAABaHCEsBnM609q9b1iFgsddFAAAEBNCWAzmdLap4FL/0EjcRQEAADEhhMVgzugFW+mSBACgVRHCYtDbxVXzAQBodYSwGPR0BPNHMjgfAIDWRQiLwZzOoCVsNxdsBQCgZRHCYtDbGbaE7aElDACAVkUIi0Euk5Ikpi4CAKCFEcJikEomlMukGJgPAEALI4TFZE5nG5eoAACghUUawszsLDN73MzWm9llZdZfamaPmtkvzOxHZnZ4lOVpJL2dabojAQBoYZGFMDNLSvqSpDdJOkbSO83smHGb/UzSKnc/QdINkv46qvI0mp7ONu2kOxIAgJYVZUvYqyStd/cN7r5f0hpJ55Ru4O63ufve8OE9kpZFWJ6GMrczzbcjAQBoYeYezSTSZvZ2SWe5+8Xh4/dIOtndPzTB9ldK2uzuV5RZd4mkSyRp0aJFr1yzZk0kZS4aGBhQd3d3pMe47rEh3b5xRF95Q1ekx5mOetS/0bX6OaD+1J/6U/9WVev6n3HGGQ+4+6py61I1O8oMmNlvS1ol6fRy6939KklXSdKqVat89erVkZZn7dq1ivoYj/h63frM43r1Kacpk05Geqxq1aP+ja7VzwH1p/7Uf3XcxYgN9a9f/aPsjtwk6dCSx8vCZWOY2eslfUrS2e4+FGF5Gsq8ruCCrTvokgQAoCVFGcLul7TSzFaYWZukCyTdWLqBmZ0k6Z8VBLAtEZal4cwNQ9j2AUIYAACtKLIQ5u4jkj4k6RZJj0m63t0fMbPLzezscLMvSOqW9G0ze9DMbpxgd01nXne7JGn7npZp/AMAACUiHRPm7jdJumncss+U3H99lMdvZHRHAgDQ2rhifkzmdtMdCQBAKyOExSTbnlJbMqHttIQBANCSCGExMTPN7WrTDsaEAQDQkghhMZrb1UZ3JAAALYoQFqN53W10RwIA0KIIYTGa19XGtyMBAGhRhLAYze1q1/YBxoQBANCKCGExmtfdpj378xoczsddFAAAUGeEsBhxwVYAAFoXISxGzB8JAEDrIoTFiPkjAQBoXYSwGNEdCQBA6yKExYj5IwEAaF2EsBgxfyQAAK2LEBYj5o8EAKB1EcJixvyRAAC0JkJYzJg/EgCA1kQIixnzRwIA0JoIYTFj/kgAAFoTISxmzB8JAEBrIoTFrHjBVsaFAQDQWghhMSvOH7mDb0gCANBSCGExY/5IAABaEyEsZsXuyG20hAEA0FIIYTFbkA1awrb20xIGAEArIYTFrKs9pe72lLb0D8ZdFAAAUEeEsAawMNuuLbSEAQDQUghhDWBBtl1b+mgJAwCglRDCGsCiXIaWMAAAWgwhrAEszLZrS9+Q3D3uogAAgDohhDWAhbl27RvOq39oJO6iAACAOiGENYBFuYwkaUsfXZIAALQKQlgDKF4rjMtUAADQOghhDWBhlpYwAABaDSGsASzM0RIGAECrIYQ1gGx7Sh3pJC1hAAC0EEJYAzAzLcxx1XwAAFoJIaxBLMy260Wumg8AQMsghDWIhdmMttISBgBAyyCENQi6IwEAaC2EsAaxMJvRwNCI9nDVfAAAWgIhrEEsHL1gK61hAAC0AkJYgzgwdRGD8wEAaAWEsAZRvGDri7SEAQDQEghhDWK0O5KWMAAAWgIhrEH0dKTVlkpwmQoAAFoEIaxBmJkWZrlMBQAArYIQ1kC4aj4AAK2DENZAFmYztIQBANAiCGENZFGuXS/upiUMAIBWQAhrIEvmdKh/aER9g8NxFwUAAESMENZAlvZ2SJI27dwXc0kAAEDUCGENZOkcQhgAAK2CENZARlvCdhHCAABodoSwBjK/q11tqQQhDACAFkAIayCJhGnpnA66IwEAaAGEsAazdE6HNtISBgBA0yOENRhawgAAaA2EsAaztLdD2waGNDicj7soAAAgQoSwBlO8TMXzdEkCANDUCGENhstUAADQGghhDYYLtgIA0BoIYQ1mcU9GCaMlDACAZkcIazDpZEKLcxlawgAAaHKEsAa0tJdrhQEA0OwIYQ2Ia4UBAND8CGENaGlvhzb3DWokX4i7KAAAICKEsAa0dE6n8gXXi/1DcRcFAABEhBDWgEavFUaXJAAATYsQ1oBGrxW2a2/MJQEAAFEhhDWgYgjbuIOWMAAAmhUhrAF1tCW1OJfR09v2xF0UAAAQEUJYgzpiQZeeIoQBANC0CGEN6ogFXdqwdUDuHndRAABABAhhDeqI+d3qHxzRtoH9cRcFAABEgBDWoI5Y0CVJ2rB1IOaSAACAKBDCGtSRC7olSRsYFwYAQFMihDWoJXM61JZK0BIGAECTIoQ1qGTCtGJelzZspSUMAIBmRAhrYEcs6KI7EgCAJkUIa2BHLOjSszv2av9IIe6iAACAGiOENbAj5ncrX3A9u4M5JAEAaDaEsAbGZSoAAGhehLAGdgSXqQAAoGkRwhpYT0da87vbaAkDAKAJEcIa3Ir5XKYCAIBmRAhrcEfM76Y7EgCAJkQIa3BHLuzSjj37tX1gKO6iAACAGiKENbjjlvRIkh5+vi/mkgAAgFoihDW4Y5eGIWzT7phLAgAAaokQ1uB6OtJaPq9Tv9i4K+6iAACAGiKEzQLHLe3Rw5vojgQAoJkQwmaBE5b1aNOufQzOBwCgiRDCZoHjl86RJD3EuDAAAJoGIWwWOHZpTpL00EZCGAAAzYIQNgvkMmkdMb+LljAAAJoIIWyWOG5pDyEMAIAmEmkIM7OzzOxxM1tvZpeVWd9uZt8K199rZsujLM9sdsKyHr2we1Bb+xmcDwBAM0hFtWMzS0r6kqQ3SNoo6X4zu9HdHy3Z7H2Sdrr7S8zsAkl/Jen8qMo0mx1XctHWM45eGHNpAFQqX3AN5wsaKbiGRwoaLhQ0kneN5H30fnH9SL6g/flgmZmUSiSUTppSyeBnOplQKhH+TJpSiYTaUgl1pJNKJ01mFnd1Y+PuGs67hkbyGs67EiYlE6ZkwpQwUyq8P1vOUbE++/MFufvYdWW3D54zUnAVCsHPfMFVcA/WlezXS55TXFO6zcb+gn65ua9kG6ktlVC2PaWOtqQKBQXlkiudSCiZtOBnIjjPicTsOMeNILIQJulVkta7+wZJMrM1ks6RVBrCzpH02fD+DZKuNDPz8e846NglOZkF35AkhGG2c3cNjRS0Z2hEA0Mj6ts3ot37hsve+sos6x8cVsGl4uepSTKz8Gdwvz0ZBJTiLZ1MKGkmCz+cExZ8WCRMSlrxcbBu1859+tcN90mSCh58mBU/0PLhB9xwPghNI2HIGs6PD1RByKrXX7NkwtSRTiqTTqo9ldBkWSMZBrm2ZELpVEJtyaD+ZpLJtGvXPv3L+ntksgPnuPT8jnssWclyjT5vdJ8WnOeEmTLphDrSKXW1J9XRllRXW0rursGRgoaGCxocyZf9OTTB8tL1hQrOdWk4S5oduB/eUomERvYPqvfB29WWShz02ucLrry7CgWN3h/dJixAMnkg9KUSxcAcnvOS9+JQvqCh4bz254O67y99PFK/905Zd94x7acmwn8gEonwd6vkfCdKzvuY9XYgMCcTxWUas2zMejMlE2PXtyUTo+9/V/D6uIevl0uF0dcx+L0eKbjOOXGJXn/MotqdtypFGcKWSnqu5PFGSSdPtI27j5jZbknzJG0r3cjMLpF0iSQtWrRIa9eujajIgYGBgciPMR1Luky3/HS9TkhuivQ4jVr/eorjHBTcNVyQhvPSUD64P5R3Deel/QVpf94P/MwruBWC+8PhukL436y7Rj+QCvLRP+ZmUkLFD8TgNvp3vvhcScPDw7r64VuULygIFB58wKbCP5qphJRMSKniH0lJI+4aKSioQyEo90h4f39eGsxL+0ZcgyOufSNSfooPmJRJnWlTZ1rqSpm60qYl7dLKblNHKq3iP9vFf+ZLd1fw4LgjhYJGCoXwfrBNoSAV8sH9vAflLp63ggfnbjif174Xt8sVjNkoPV/F0JZJKPiQSEnJtvCcmEY/OJKWUDKRDM5RuCw4X8XHCj94DjwvFX7wpBJh+QpSPjyveQ8ej3jxwz9YNlzyPgjeG3kNF/ITnlcP32t5l0byUn5Y2hN+MBXX5/N5bdm2c/S95CXPLX2faPz68I3mJdsWdKA1peDBe3loxDWUL9+ikzSpLSmlE1I6YUonpbaEKZ0oLjd1J6XeNimdsdFl6WQ62CYRnNPi70Ch+AEcns9C8T2g8ENZCj+kg+3yhbwGUwUVCnuVHwzeh23F1z0pJVJjf4+S4ToLf0rFY4avUSEfBDUPfh/yQ9JgIThWKmHqSEi5pJROB3VMJaR0MqlUIjn6OKGDE3W5kJ0IlydNSiQOvHeD7Q88wcJb8YGVLJdJg4OD6shkxux7pBD8/g7lD7x/TQfelwUP/k4UvHRZ8J4olJyTwujrcuBv0+jjgkZfq0LJ72bp7+fYm49u6x7+7Qn/Fhb/IUhY8bwc+LtnOvC7PH9km1Jb0mPqWs+//1GGsJpx96skXSVJq1at8tWrV0d6vLVr1yrqY0zHG/sf1bX3PqNXn3KaMulkZMdp1PrXU6XnYO/+Ef1q215t2rVP/YPDGghbdgYGD/zsGxzRwNDw6OP9IwXtzwcBIeieClpPpvtfbzJhyqSC/wBHW3jC1odia0TxD/H4/+ALBR9tyZAOtHLs359Xpj2lhEnt6aTakokgJO4vaDg/tnttfz6vgrvawv/y21PJ8GdCbengZ086qe72VHDLBD+72lPKZlLqaksp15FWz7hbJp2Ireuo1X8H6lH/0tbQhJna08F7J9kAXVm8/tS/XvWPMoRtknRoyeNl4bJy22w0s5SkHknbIyzTrHbaUfN19Z1P676nd+h1Ry2IuzhNr39wWC/2DWrz7iFt7hsM7w+Oub9lgi9KpBI2GjKymbSy7SktzGZ0xPzUaHdEW3GMT8n9dCqhTCqhjragW2n0VroslVSmLTF6P4qxQK3+RxjRM7PR9zfQqqIMYfdLWmlmKxSErQskvWvcNjdKulDS3ZLeLunHjAeb2Mkr5qotmdAdT24lhM3ASL6gbQP7tTkMUi/2hcEqDFib+wb1/I49GvzvWw96bk9HWotzGS3qyejoxVkdNrdTK+Z369C5Hcpl0qOtPMGYnPj/owcANK7IQlg4xutDkm6RlJR0tbs/YmaXS1rn7jdK+pqkb5jZekk7FAQ1TKCzLaVfW9GrO57cNvXGMesbHNZTWwa0adc+bdq5T9v37FffvmH1D40onTC1p5LKpBNqDwdRtqcODKhsTyVHuybaw+6s0e1TwTZtqcRod9je/Xnt2hfsf9fecDD34LD2DOU1MDRSMvh7WJv7gst8jB/Am0qYFuUyWpRr19GLszqyc0irjnmJFvdktCiXCYJXLqOONv5rBwDURqRjwtz9Jkk3jVv2mZL7g5LOi7IMzea0lQv0+Zt/qS19g1qYy0z9hDrYP1LQ/b/aoQee2amfPrtTv3yhX5v7Bsds055KqKcjre72lPLuGhzOa6jk21C1bv9MJkxdbcnRsUdd7Sn1dLbpqEXZMcGqeH9eV9uYr1WvXbtWq08/sraFAgCgxKwYmI8DTls5X5+/WbrjyW162yuXxVqWZ7bv0XX3Pasb1m3U9j37JUlHLerWa4+cp5WLsjpyQZcOnduppb1BV91ESq/vMzRSGBPQhkbyGix+PX2kMLp+OF8Y/cp3Rzqpns605nS0hT/T6mxL0h0IAGhohLBZ5mWLc5rf3aY7ntwaWwh7eNNu/dPap3TTwy8oYaZfP3qh3v7KZTr5iHnq6Zg4bE3EzNSWsuBigBGUFwCARkQIm2USCdNpKxfo9ie2qlDwul6ZeEvfoP7s+4/qBw+9oGx7Sr9/+pG68LXLtahBukUBAJhNCGGz0OuOmq/v/GyTfvbcLr3y8N7Ij+fu+uZ9z+kvb35MQyMFffT1K/W7p66YtIsRAABMjhA2C73hmMXqantYa+57NvIQ1j84rI9/+xf670c26zVHzNPn3nq8VszvivSYAAC0gkTcBUD1uttTOvvlS/X9Xzyv3fuGIzvOLzf36ewr79QPH3tRn3zz0bru/ScTwAAAqBFC2Cz1rlcdpsHhgr77s2jmkfzPn27UuV+6UwNDI7ru4pN1yeuO5NuGAADUECFsljp+WY+OX9qj6+59VrWcZGBoJK9/e2RIl17/c52wbI5+8JFTdfIR82q2fwAAECCEzWLvOvkwPf5iv3767M6a7G/jzr16x1fu1m3PjegDrztC1118shZm+eYjAABRIITNYmefuETd7Sl9/a5nZryvtY9v0W/940+0Yeseffikdn3izS9TKsnbAwCAqPApO4t1tad04WsP1/d//rxuf2LrtPaRL7j+7odP6He+fr8W5zK68cOn6pWL+NIsAABRI4TNch8+c6WOXNClT/znQ+ofrO6bktsHhvQ7X79f//CjJ/XWk5bpOx88hW8/AgBQJ4SwWS6TTuoL552oF3bv01/e/MuKn3frI5v1xr+/Xfc8tV1/+dbj9cXzTlBHWzLCkgIAgFL0OzWBVxzWq/edukL/csfTOmJ+l9536ooJLyfx/K59+sItj+s7P9ukYw7J6dqLX66XLmbGRgAA6o0Q1iQ+9hsv1a+279UVP3hMd67fpr9++4lakG2XFEw7tGHbHn3z3md1zT3PSC59+MyX6MNnrlRbisZQAADiQAhrEpl0Ule955X6xj3P6IofPKZXfe5/tKy3Q4fP7dKTW/r1Yt+QEia97RXL9IevX6llvZ1xFxkAgJZGCGsiZqb3vma5XnPEPN388GY98WK/frV9j35t+Vy95sh5et3KBTp0LuELAIBGQAhrQisXZbVyEeO8AABoZAwIAgAAiAEhDAAAIAaEMAAAgBgQwgAAAGJACAMAAIgBIQwAACAGhDAAAIAYEMIAAABiQAgDAACIASEMAAAgBoQwAACAGBDCAAAAYkAIAwAAiAEhDAAAIAaEMAAAgBgQwgAAAGJACAMAAIgBIQwAACAGhDAAAIAYEMIAAABiQAgDAACIASEMAAAgBoQwAACAGJi7x12GqpjZVknPRHyY+ZK2RXyMRtbq9Zc4B9Sf+lP/1kX9a1v/w919QbkVsy6E1YOZrXP3VXGXIy6tXn+Jc0D9qT/1p/5xlyMu9aw/3ZEAAAAxIIQBAADEgBBW3lVxFyBmrV5/iXNA/Vsb9W9t1L9OGBMGAAAQA1rCAAAAYkAIAwAAiEHLhTAzO8vMHjez9WZ2WZn17Wb2rXD9vWa2vGTdJ8Llj5vZG+ta8BqpoP6XmtmjZvYLM/uRmR1esi5vZg+GtxvrW/LaqKD+F5nZ1pJ6Xlyy7kIzezK8XVjfktdGBfX/u5K6P2Fmu0rWNcPrf7WZbTGzhydYb2b2f8Pz8wsze0XJumZ4/aeq/7vDej9kZneZ2Ykl634VLn/QzNbVr9S1U0H9V5vZ7pL3+WdK1k36uzMbVFD/j5fU/eHwd35uuK4ZXv9Dzey28DPuETP7wzLb1PdvgLu3zE1SUtJTko6Q1Cbp55KOGbfNByV9Jbx/gaRvhfePCbdvl7Qi3E8y7jpFUP8zJHWG93+/WP/w8UDcdahD/S+SdGWZ586VtCH82Rve7427TrWu/7jtPyzp6mZ5/cM6vE7SKyQ9PMH6N0u6WZJJerWke5vl9a+w/q8t1kvSm4r1Dx//StL8uOsQcf1XS/qvMsur+t1p1NtU9R+37Vsk/bjJXv9DJL0ivJ+V9ESZz4C6/g1otZawV0la7+4b3H2/pDWSzhm3zTmS/i28f4OkXzczC5evcfchd39a0vpwf7PJlPV399vcfW/48B5Jy+pcxihV8vpP5I2SfujuO9x9p6QfSjoronJGpdr6v1PSN+tSsjpx99sl7Zhkk3MkXeOBeyTNMbND1Byv/5T1d/e7wvpJzff7X8nrP5GZ/O1oGFXWvxl//19w95+G9/slPSZp6bjN6vo3oNVC2FJJz5U83qiDX4DRbdx9RNJuSfMqfG6jq7YO71PwH0FRxszWmdk9ZnZuBOWLWqX1f1vYDH2DmR1a5XMbWcV1CLuhV0j6ccni2f76V2Kic9QMr3+1xv/+u6RbzewBM7skpjLVw2vM7OdmdrOZHRsua6nX38w6FQSM/yhZ3FSvvwVDjU6SdO+4VXX9G5Ca6Q7QnMzstyWtknR6yeLD3X2TmR0h6cdm9pC7PxVPCSPzfUnfdPchM/uAglbRM2MuUxwukHSDu+dLlrXC6w9JZnaGghB2asniU8PXf6GkH5rZL8OWlWbyUwXv8wEze7Ok70paGW+RYvEWSXe6e2mrWdO8/mbWrSBgftTd++IsS6u1hG2SdGjJ42XhsrLbmFlKUo+k7RU+t9FVVAcze72kT0k6292HisvdfVP4c4OktQr+i5hNpqy/u28vqfNXJb2y0ufOAtXU4QKN64pogte/EhOdo2Z4/StiZicoeO+f4+7bi8tLXv8tkr6j2TccY0ru3ufuA+H9mySlzWy+Wuj1D032+z+rX38zSysIYNe6+3+W2aS+fwPiHihXz5uClr8NCrpZioMrjx23zR9o7MD868P7x2rswPwNmn0D8yup/0kKBqCuHLe8V1J7eH++pCc1ywamVlj/Q0ru/y9J94T350p6OjwPveH9uXHXqdb1D7c7WsEgXGum17+kLss18cDs39TYQbn3NcvrX2H9D1Mw3vW145Z3ScqW3L9L0llx1yWC+i8uvu8VhIxnw/dCRb87s+E2Wf3D9T0Kxo11NdvrH76W10j6+0m2qevfgJbqjnT3ETP7kKRbFHzb5Wp3f8TMLpe0zt1vlPQ1Sd8ws/UK3ogXhM99xMyul/SopBFJf+Bju2oaXoX1/4KkbknfDr6PoGfd/WxJL5P0z2ZWUNCC+nl3fzSWikxThfX/iJmdreA13qHg25Jy9x1m9ueS7g93d7mPbapveBXWXwre82s8/MsTmvWvvySZ2TcVfANuvpltlPSnktKS5O5fkXSTgm9HrZe0V9LvhOtm/esvVVT/zygYA/vl8Pd/xN1XSVok6TvhspSk69z9v+tegRmqoP5vl/T7ZjYiaZ+kC8Lfg7K/OzFUYUYqqL8U/PN5q7vvKXlqU7z+kk6R9B5JD5nZg+GyTyr45yOWvwFMWwQAABCDVhsTBgAA0BAIYQAAADEghAEAAMSAEAYAABADQhgAAEAMCGEAZj0zm2NmHwzvLzGzG+IuEwBMhUtUAJj1wnng/svdj4u7LABQKVrCADSDz0s60sweNLNvm9nDkmRmSTP7gpndH07K/oFw+Woz+39m9j0z22Bmnzezd5vZfWb2kJkdGW73dTP7Sjhx+RNm9lvh8oyZ/Wu47c/CuRYBoCotdcV8AE3rMknHufvLi61i4fL3Sdrt7r9mZu2S7jSzW8N1JyqYCWCHgilpvururzKzP5T0YUkfDbdbrmAKmyMl3WZmL1EwvZm7+/FmdrSkW83sKHcfjLqiAJoHLWEAmtlvSHpvOEXJvQqm5FkZrrvf3V/wYML2pyQVw9lDCoJX0fXuXnD3JxWEtaMlnSrp3yXJ3X8p6RlJR0VbFQDNhpYwAM3MJH3Y3W8Zs9BstaShkkWFkscFjf3bOH7gLANpAdQELWEAmkG/pGyZ5bcomJA5LUlmdpSZdVW57/PMLBGOEztC0uOS7pD07uI+FUwA/Ph0Cw+gNdESBmDWc/ftZnZnOCD/sZJVX1XQtfhTMzNJWyWdW+Xun5V0n6ScpN9z90Ez+7KkfzKzhySNSLoo7NYEgIpxiQoAmICZfV3BpS+47hiAmqM7EgAAIAa0hAEAAMSAljAAAIAYEMIAAABiQAgDAACIASEMAAAgBoQwAACAGPx/v2ea+vkbzYEAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 720x720 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "import pylab as pl\n", + "import csv\n", + "\n", + "entrada = open(\"/home/student/ejercicios-clase-08-datos/data-used/VACF_liso_Hr-10-500.csv\")\n", + "\n", + "tabla = []\n", + "\n", + "for fila in csv.reader(entrada):\n", + " tabla.append(fila)\n", + "entrada.close()\n", + "\n", + "x = [0]\n", + "y = [0.893155]\n", + "\n", + "for fila in range(1, len(tabla)):\n", + " x.append(float(tabla[fila][0]))\n", + " y.append(float(tabla[fila][1]))\n", + " \n", + "pl.figure(figsize =(10,10))\n", + "\n", + "pl.plot(x,y)\n", + "pl.xlabel(\"tiempo\")\n", + "pl.ylabel(\"VACF\")\n", + "pl.grid()\n", + "pl.legend([\"vacf(t)\"])\n", + "pl.title(\"Función de Autocorrelación de Velocidades\")\n", + "pl.savefig(\"imagen.png\")\n", + "pl.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Función de autocorrelación de velocidades')" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfEAAAHwCAYAAAC2blbYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA4WUlEQVR4nO3de5xcdX3/8dcn95BkNyGBGBIMEPECFIUgul4XgwUtgtZLidYbtnhvvbUVtUqx/altaak/9ecN2nojXFSKCkYNWYuwaEABCQgGDBACCiEQAiQhyff3xzkTJsteZrNz5pzZfT0fj32c65z5fufMznu+33PmnEgpIUmS2s+4sgsgSZL2jCEuSVKbMsQlSWpThrgkSW3KEJckqU0Z4pIktSlDXJUWEZsj4qA+88ZFxP9ExNua+Dz/FRH/2KztjTYR0R0R65qwndUR0d3P/M9HxBkj3X7d9k6PiG80a3sNPudbIuJnI9zGCyPi5kGW7/H7tIzXRMUzxDUsEbE2Ih7Nw7X2t19Rz5dSmp5Suq3P7H8EVqSUzi7qeVslfz2PLbscrZJSOjSl1FM/LyJOBbamlD5eTqmqI6V0eUrpaWWXQ+1jQtkFUFt6RUrpJ2U9eUrpI2U992gQERNSStuHmtcqKaUvl/G80mhgS1xN0bdFWd91FxEHRESKiDdHxB0RcV9EfLRu3fER8ZGIuDUiHoqIayJi/3xZioin5OOdEfG1iLg3Im6PiI9FxLh82Vsi4mcR8a8RsTEifhcRLxukvEdExC/z5zsPmNJn+QkRcW1EPBARV0bE4YNs6z8i4s6I2JSX/YV1y3br/qzvlo6IrwNPBr6X92j8bT7/xLzb+YGI6ImIZ9Q9fv+I+E7+GmyIiM/l88flr8ftEfGH/HXq7PP6vy0i7gAuy1+vKyLi3yNiA3B6REzOX787IuL3EfHFiJg6QJ0/XLe/boyIV/VZ/pcRcVPd8iPz+bveJ/nznRUR6/O/syJicv3rFBEfzOtzd0S8dZB9cGBE/DR/vh8Dc/osf26+Hx+IiOuiny79fL2/i4gL+9m/n83HOyPi7Lw8d0XEP0bE+AG29byIWBURD+bD59Ut2zsi/jOv98aIuKi+3nXrDfg+jYhZEfH9/L2wMR9f0IzXJH9/3JY/9ncR8Yb+X3mVLqXkn38N/wFrgWOHmg+cDnwjHz8ASMBXgKnAM4GtwDPy5X8D/Bp4GhD58tn5sgQ8JR//GvA/wIx8m7cAb8uXvQV4DPhLYDzwTmA9EP2UdRJwO/B+YCLwmvyx/5gvPwL4A/CcfFtvzus3eYDX5M+B2WQ9Wx8E7gGm5Mv+q7bdfLobWDfI6/ZU4GHgpXnZ/hZYk5d5PHAd8O/ANLIP9BfkjzslX+8gYDrwHeDrfV7/r+WPm5q/XtuB9+blnppv92Jg7/w1/h7wqQHK/VpgP7KGwJ/lZZ5Xt+wu4Nn5/nwKsLBvfYEzgKuAfYF9gCuBT9Y93/Z8nYnAy4FHgFkD7INe4N+AycCLgId4/P03H9iQb2Nc/tpuAPbpZzsL8+eZkU+PB+4GnptPfxf4Uv467gv8Anh73XvwZ/n43sBG4I3567s0n669r38AnAfMyuv34r6vM0O/T2cDrwb2yvfXBcBFI31N8rptAp6WrzsPOLTszx7/BvhMLrsA/rXXX/4hvBl4IP+7qG7+UCG+oG75L4CT8/GbgZMGeL5EFgLjgW3AIXXL3g705ONvAdbULdsrf+yT+tnmi+gT8GQBUvtw/H/kYVK3/ObaB20Dr9FG4Jn5+H8xvBD/e+D8uulxZIHYDXQB9wIT+nnOFcC76qafln/gT6h7/Q+qW/4W4I666SAL4kV187qA3/VX7n6e/9raPgSWA389yPunFuK3Ai+vW3YcsLbu+R6tryvZF6vn9rPNJ5MF/rS6ed+qe//9HfkXmrrly4E3D1DGnwFvysdfCtyaj88l+/I5tW7dpcDKute0FuJvBH7RZ7u9+TrzgJ3084WE3UN80PdpP499FrBxpK8JWYg/QPYFYWp/z+Vfdf7sTteeeGVKaWb+98phPO6euvFHyFqMAPuTfaAPZg5Za+T2unm3k7UonrD9lNIj+eh0nmg/4K6Uf3LVbatmIfDBvJvxgYh4IC9jvyfwRcSH8q7jB/N1O+nTdTkM+9WXJaW0E7iTrJ77A7en/o9d7/a4fHwCWfDU3NnnMfXT+5B98bmmrs4/zOc/QUS8KR4/3PAAcBiP17mR/TlQmetf4w196lr/num7nY0ppYf7bKtmIfDaPvvzBWRh2p9vkYUzwOvz6dp2JgJ3123nS2Qt8qHqVitTbT/en1LaOMDz129jwPdpROwVEV+K7BDKJuB/gZl59/4evyb5Y/4MeEde1x9ExNOHKKtKYoirWR4mC4GaJw3jsXcCi4ZY5z6yluXCunlPJmulDtfdwPyIiD7bqi/PP9V9UZmZUtorpXRu3w1Fdvz7b4HXkbWsZgIPkrVsYejXpe9tBNdTV8e8jPuT1fNO4MkR0d8Jqbs9jsdbYr8f5Lnqp+8ja/keWlfnzpTSE0IzIhaSHRp5D1n38EzgBh6vcyP7c6Ayr2/gcX3dDcyKiGl9tlVzJ1mrs35/TkspfXqA7V0AdOfHl1/F4yF+J1lLfE7ddjpSSoc2ULdamWr7ce+ImNlAvQZ7n36QrMflOSmlDrKWO2T7YUSvSUppeUrppWRfdH5Dtr9VQYa4muVa4OSImBgRR5Edv2vUV4FPRsTBkTk8ImbXr5BS2gGcD/xTRMzIg+QDwJ787rWXLOD+Ki/vnwJH1y3/CvCOiHhOXp5pEfEnETGjn23NyLd1LzAhIj4OdNQtvxZ4eX4i05OA9/V5/O/JjmPXnA/8SUQsiYiJZB/UW8m6UX9B9uH86bxMUyLi+fnjzgXen5/MNB34P8B5A7TanyBv8X8F+PeI2BcgIuZHxHH9rD6N7AvAvfl6byVridd8FfhQRCzOX7+n5Purr3OBj0XEPhExB/g4e7A/U0q3A1cD/xARkyLiBcAr6lb5BvCKiDguspMop+QnkC0YYHv3Aj3Af5IdTrgpn3838CPgzIjoiOxkwkUR8eJ+NnMJ8NSIeH1ETIiIPwMOAb6fb+dS4AuRnZw2MSJe1M82hnqfziD74vVAROwNfKIZr0lEzI2Ik/IvAFvJDp/t7O+1UvkMcTXL35O1vjYC/8DjrZdG/BtZeP2I7ISas8lOtOrrvWQt29vIjlt+CzhnuAVNKW0D/pTs+OT9ZF2H36lbfjXZCXKfI6vPmnzd/iwn63a+hay7cgu7d1N/nexktLV5/c7r8/hPkQXZAxHxoZTSzWQnyv1fstbxK8h+0rct/yLzCrJzBO4A1uVlh+x1+DpZl+rv8nK8t7FXZJe/y+t6Vd49+xOylt5uUko3AmeShczvgT8CrqhbfgHwT2T75yHgIrITvfr6R7KguZ7sxMZf5vP2xOvJTkS8nyzMvlZXnjuBk4CPkH3xuJPsZMrBPv++BRzLE9/HbyI74exGsvfGhfTTLZ9S2gCcQPYlbANZb80JKaX78lXeSNaz9BuyY/3v62cbg75PgbPI/k/uIztB8Id9NrGnr8k4si/I6/PHvpjsRFFVUOx+uEWSJLULW+KSJLUpQ1ySpDZliEuS1KYMcUmS2pQhLklSm2q7u5jNmTMnHXDAAU3b3sMPP8y0adOGXrFNjKb6WJdqGk11gdFVH+tSTSOtyzXXXHNfSqnfqye2XYgfcMABXH311U3bXk9PD93d3U3bXtlGU32sSzWNprrA6KqPdammkdYlIvpewncXu9MlSWpThrgkSW3KEJckqU213TFxSVJ7euyxx1i3bh1btmwZct3Ozk5uuummFpSqeI3WZcqUKSxYsICJEyc2vG1DXJLUEuvWrWPGjBkccMAB7H6H1Sd66KGHmDGjvxsHtp9G6pJSYsOGDaxbt44DDzyw4W3bnS5JaoktW7Ywe/bsIQN8LIoIZs+e3VAvRT1DXJLUMgb4wPbktTHEJUlqU4a4JGlMOOaYY1i+fPlu88466yze+c53ct999zFx4kS++MUv7rb8nnvu4eSTT2bRokUsXryYl7/85dxyyy2sXbuWqVOn8qxnPWvX37Zt2wC46KKLOOOMM3aN/+Y3v9m1vQ996ENcdtllTauTIS5Jqq7eXvjUp7LhCC1dupRly5btNm/ZsmUsXbqUCy64gOc+97mce+65u5allHjVq15Fd3c3t956K9dccw2f+tSn+P3vfw/AokWLuPbaa3f9TZo0CYB//ud/5l3vehfwxBB/73vfy6c//ekR16XGs9MlSa33vvfBtdcOuHjqjh2weTNcfz3s3AnjxsHhh0Nn58DbfNaz4KyzBlz8mte8ho997GNs27aNSZMmsXbtWtavX88LX/hCPvaxj3HmmWfy+te/nnXr1rFgwQJWrlzJxIkTecc73rFrG8985jMBWLt2bb/PccsttzB58mTmzJnDlVdeycUXX0xPTw9nnnkm3/72t1m0aBEbNmzgnnvu4UlPetLAdWmQLXFJUjU9+GAW4JANH3xwRJvbe++9Ofroo7n00kuBrBX+ute9jnXr1nH33Xdz9NFH87rXvY7zzjsPgBtuuIHFixcPuL1bb711V1f6u9/9bgCuuOIKjjzySACe97znceKJJ/LJT36Sa6+9lkWLFgFw5JFHcsUVV4yoLjW2xCVJrTdIixng0YceYsYNN8CSJbBtG0yaBN/8JnR1jehpa13qJ510EsuWLePss8/mvPPO43Wvex0AJ598Mqeccgof/OAHh9xWrTu93t13380++/R7w7Fd9t13X9avX7/HdahniEuSqqmrC1asgJ4e6O4ecYADnHTSSbz//e/nl7/8JY888giLFy/m1FNP5Z577uGb3/wmAOvXr+e3v/0thx56KBdeeOGwtj916lQeHKLHYMuWLUydOnWP61DP7nRJUnV1dcFppzUlwAGmT5/OMcccwymnnMLSpUu55ZZb2Lx5M3fddRdr165l7dq1nHbaaZx77rm85CUvYevWrXz5y1/e9fjrr7+eyy+/fMDtP+MZz2DNmjW7pmfMmMHmzZt3W+eWW27hsMMOa0p9DHFJ0piydOlSrrvuOpYuXcq5557Lq171qt2Wv/rVr+bcc88lIvjud7/LT37yExYtWsShhx7KaaedNugJaS960Yv41a9+RUoJyLrn/+M//oMjjjiCW2+9lccee4w1a9Zw1FFHNaUuY7s7/corOfArX4HJk5v2LU+SVG2vfOUrd4XsJz7xiScsP/zww3fdsGS//fbj/PPP73c7N9xwwxPm7bXXXhx77LGsWLGCY489luc///msWrVq17XTv/vd7/Ka17yGCROaE79jtyXe2wvd3Sz81rfgJS9pym8QJUn6yEc+wiOPPNLvsu3btzd00lyjxm6I9/TAjh3Z+LZt2bQkSSM0d+5cTjzxxH6Xvfa1r2XmzJlNe66xG+Ld3Vk3OsD48dm0JKlQtW5sPdGevDZjN8Tzny48NmMGvOAFHhOXpIJNmTKFDRs2GOT9qN1PfMqUKcN63Ng+sa2riweOOIJ97rij7JJI0qi3YMEC1q1bx7333jvkulu2bBl2oFVVo3WZMmUKCxYsGNa2x3aIAw8dfDD7/O//ZpfzG+yavJKkEZk4cSIHHnhgQ+v29PRwxBFHFFyi1iiyLmO3Oz23+SlPyUauu67cgkiSNEyG+MEHZyO/+lW5BZEkaZjGfIhvmz0b5s41xCVJbWfMhzgABxwAy5d7wRdJUlsZ8yHesXo1XHMN3HNPdss7g1yS1CbGfIjPvPbax28675XbJEltZMyH+APPehZMnJhNeOU2SVIbGfMhvunQQ+Hcc7OJD3zAK7dJktrGmA9xAE44ASJglFwdSJI0NhjikHWn77sv3HVX2SWRJKlhhnjN/Pmwbl3ZpZAkqWGGeM38+bbEJUltxRCvMcQlSW3GEK+ZPx82bIAtW8ouiSRJDTHEa+bPz4br15dbDkmSGmSI19RC3C51SVKbMMRrDHFJUpsxxGsMcUlSmzHEazo7Ya+9DHFJUtswxGsi/JmZJKmtGOL1FiwwxCVJbcMQr2dLXJLURgzxevPnZ78TT6nskkiSNCRDvN62bdnfpZeWXRJJkoZkiNf09sLnP5+N/+mfZtOSJFWYIV7T0wPbt2fjjz2WTUuSVGGGeE13N0yalI1PmJBNS5JUYYZ4TVcXfOc72fi7351NS5JUYYZ4vT/+4+yiLx0dZZdEkqQhGeL1xo+HWbPgvvvKLokkSUMqNMQj4viIuDki1kTEh/tZ/uSIWBkRv4qI6yPi5UWWpyFz5hjikqS2UFiIR8R44PPAy4BDgKURcUif1T4GnJ9SOgI4GfhCUeVp2OzZsGFD2aWQJGlIRbbEjwbWpJRuSyltA5YBJ/VZJwG1A9CdwPoCy9MYW+KSpDZRZIjPB+6sm16Xz6t3OvDnEbEOuAR4b4Hlaczs2Ya4JKktRCroOuER8Rrg+JTSX+TTbwSek1J6T906H8jLcGZEdAFnA4ellHb22dapwKkAc+fOXbxs2bKmlXPz5s1Mnz591/RBX/wi8y+6iMt/+MOmPUcr9a1PO7Mu1TSa6gKjqz7WpZpGWpdjjjnmmpTSUf0uTCkV8gd0Acvrpk8DTuuzzmpg/7rp24B9B9vu4sWLUzOtXLly9xmf/nRKkNLDDzf1eVrlCfVpY9almkZTXVIaXfWxLtU00roAV6cBMrHI7vRVwMERcWBETCI7ce3iPuvcASwBiIhnAFOAewss09Bmz86GdqlLkiqusBBPKW0H3gMsB24iOwt9dUScEREn5qt9EPjLiLgOOBd4S/6tozxz5mRDz1CXJFXchCI3nlK6hOyEtfp5H68bvxF4fpFlGLZaiNsSlyRVnFds68vudElSmzDE+7I7XZLUJgzxvmbNym6CYktcklRxhnhfEybAzJmGuCSp8gzx/syZY3e6JKnyDPH+eP10SVIbMMT74/XTJUltwBDvj93pkqQ2YIj3x+50SVIbMMT7M3s2PPooPPJI2SWRJGlAhnh/ahd8+Yd/gN7ecssiSdIADPH+1LrS//VfYckSg1ySVEmGeH9+97tsuHMnbNsGPT2lFkeSpP4Y4v154Quz4bhxMGkSdHeXWhxJkvpjiPenFtonnQQrVkBXV6nFkSSpP4Z4f2bOzIZdXQa4JKmyDPH+TJuW3Qhl48aySyJJ0oAM8f5EZK3xBx4ouySSJA3IEB+IIS5JqjhDfCCGuCSp4gzxgcya5TFxSVKlGeIDsSUuSao4Q3wghrgkqeIM8YHYnS5JqjhDfCAzZ8LWrbBlS9klkSSpX4b4QGpXbbNLXZJUUYb4QGbNyoZ2qUuSKsoQH4gtcUlSxRniAzHEJUkVZ4gPxO50SVLFGeIDsSUuSao4Q3wghrgkqeIM8YFMngxTp9qdLkmqLEN8MF56VZJUYYb4YAxxSVKFGeKD8frpkqQKM8QHY0tcklRhhvhgDHFJUoUZ4oOZNcsQlyRVliE+mFpLPKWySyJJ0hMY4oOZORN27IDNm8suiSRJT2CID6Z2/XS71CVJFWSID6Z26VV/ZiZJqiBDfDC1EP/c56C3t9SiSJLUlyE+mDvuyIZnnw1LlhjkkqRKMcQHs3p1Nty5E7Ztg56eUosjSVI9Q3wwL3lJNhw3DiZNgu7uUosjSVI9Q3wwS5Zkw2OPhRUroKur3PJIklTHEB/M5MnZ37OeZYBLkirHEB9KZyc8+GDZpZAk6QkM8aF0dMCmTWWXQpKkJzDEh2JLXJJUUYb4UGyJS5IqyhAfii1xSVJFGeJDMcQlSRVliA/F7nRJUkUZ4kPp7MxCPKWySyJJ0m4M8aF0dGTXTn/44bJLIknSbgzxoXR2ZkOPi0uSKsYQH4ohLkmqKEN8KB0d2dCT2yRJFWOID8WWuCSpogzxodgSlyRVlCE+FFvikqSKMsSHUmuJG+KSpIoxxIcyYwZE2J0uSaocQ3wo48ZlQW5LXJJUMYZ4I7x+uiSpggzxRngnM0lSBRnijejoMMQlSZVjiDeidiczSZIqxBBvhN3pkqQKMsQb4YltkqQKMsQbYUtcklRBhngjOjrg0UfhscfKLokkSbsY4o2oXT/dLnVJUoUUGuIRcXxE3BwRayLiwwOs87qIuDEiVkfEt4oszx7z+umSpAqaUNSGI2I88HngpcA6YFVEXJxSurFunYOB04Dnp5Q2RsS+RZVnRGyJS5IqqMiW+NHAmpTSbSmlbcAy4KQ+6/wl8PmU0kaAlNIfCizPnquF+Be+AL295ZZFkqRckSE+H7izbnpdPq/eU4GnRsQVEXFVRBxfYHn23Nq12fDss2HJEoNcklQJhXWnD+P5Dwa6gQXA/0bEH6WUHqhfKSJOBU4FmDt3Lj09PU0rwObNm4fc3qIf/pD9AXbuZOfWraw95xzu2Lq1aWVopkbq0y6sSzWNprrA6KqPdammQuuSUirkD+gCltdNnwac1medLwJvrZteATx7sO0uXrw4NdPKlSuHXun7308JUho3LqWpU1O68sqmlqGZGqpPm7Au1TSa6pLS6KqPdammkdYFuDoNkIlFdqevAg6OiAMjYhJwMnBxn3UuImuFExFzyLrXbyuwTHtmyZJseOyxsGIFdHWVWx5JkijwmHhKaTvwHmA5cBNwfkppdUScEREn5qstBzZExI3ASuBvUkobiirTHpsyBSZNgiOOMMAlSZVR6DHxlNIlwCV95n28bjwBH8j/qs3bkUqSKsYrtjXK25FKkirGEG+ULXFJUsUY4o2yJS5JqhhDvFG2xCVJFWOIN8p7ikuSKsYQb5Td6ZKkijHEG9XRkYV4dmU5SZJKZ4g3qrMTduyARx4puySSJAGGeOM6OrKhx8UlSRVhiDeqdk9xj4tLkirCEG9ULcRtiUuSKsIQb5Td6ZKkijHEG2V3uiSpYgzxRtkSlyRVjCHeKFvikqSKMcQbNWNGNrQlLkmqCEO8UePHw/TphrgkqTIM8eHw+umSpAoxxIfD25FKkirEEB8OW+KSpAoxxIfDlrgkqUIM8eHo7DTEJUmVYYgPh93pkqQKMcSHw+50SVKFGOLD0dkJjzwC27eXXRJJkgzxYaldP90udUlSBRjiw+E9xSVJFWKID4ctcUlShRjiw2FLXJJUIYb4cHg7UklShRjiw1HrTv/616G3t9yySJLGPEN8OH7722x4wQWwZIlBLkkqlSE+HNdckw1Tgm3boKen1OJIksY2Q3w4XvrSbBgBkyZBd3epxZEkjW2G+HA873nZcfGjj4YVK6Crq+wSSZLGMEN8uObMgUWLDHBJUukM8eHydqSSpIowxIfLEJckVYQhPlyGuCSpIgzx4ero8IptkqRKMMSHy5a4JKkiDPHh6uzMWuIplV0SSdIYZ4gPV2cn7NwJmzeXXRJJ0hhniA+XtyOVJFWEIT5c3o5UklQRhvhw1W5HaktcklQyQ3y47E6XJFWEIT5chrgkqSIM8eEyxCVJFWGID5chLkmqCEN8uKZPhwjPTpcklc4QH66I7Ax1W+KSpJIZ4nvC66dLkirAEN8ThrgkqQIM8T1hiEuSKsAQ3xOGuCSpAgzxPVG7HakkSSUaMMQjYkIrC9JWPDtdklQBg7XEf1EbiYj/24KytI9ad3pKZZdEkjSGDRbiUTf+/KIL0lY6O+Gxx2DLlrJLIkkawwYLcZuZA/HSq5KkChjsuPfTI+J6shb5onycfDqllA4vvHRVVR/iT3pSuWWRJI1Zg4X4M1pWinZTC3HPUJcklWiwEJ8IzE0pXVE/MyKeD9xTaKmqrqMjG9qdLkkq0WDHxM8C+mtqbsqXjV0eE5ckVcBgIT43pfTrvjPzeQcUVqJ2YIhLkipgsBCfOciyqU0uR3uphfi3vw29veWWRZI0Zg0W4ldHxF/2nRkRfwFcU1yR2sDq1dnw0kthyRKDXJJUisFObHsf8N2IeAOPh/ZRwCTgTwsuV7Vdfnk2TAm2bYOeHujqKrVIkqSxZ8AQTyn9HnheRBwDHJbP/kFK6bKWlKzKursh8gvaTZqUTUuS1GJD3uQkpbQSWAkQEYsi4u+Bk1NKhxZduMrq6oInPxmmT4evfMVWuCSpFEPeijQi9ouI90fEKmB1/piTCy9Z1c2bl/0Z4JKkkgx2K9JTI2Il0APMBt4G3J1S+of+fno25tTuZCZJUkkG607/HNALvD6ldDVARHhTlJrOTli7tuxSSJLGsMFCfB7wWuDMiHgScD7ZpVgFtsQlSaUb7Jj4GcANKaUXA0uAB4DfR8RNEfF/Gtl4RBwfETdHxJqI+PAg6706IlJEHDWcwpfKEJcklWywEL8F+JeIWAv8FXBZSuko4ERgy1AbjojxwOeBlwGHAEsj4pB+1psB/DXw82GXvkwdHfDoo/DYY2WXRJI0Rg0Y4iml/0gpdQEvBjYA50TEb4DXA8sa2PbRwJqU0m0ppW35Y07qZ71PAp+hgS8GleL10yVJJRvyJ2YppdtTSp9JKR0BLAVeCdzUwLbnA3fWTa/L5+0SEUcC+6eUftBwiavCEJcklWzIi71ExASyLvGTyY6N9wCnj/SJI2Ic8G/AWxpY91TgVIC5c+fS09Mz0qffZfPmzXu0vTl33slhwNWXXcbmO+8ccv1W2dP6VJF1qabRVBcYXfWxLtVUaF1SSv3+AS8FzgHuAS4m60afNtD6/Ty+C1heN30acFrddCdwH7A2/9sCrAeOGmy7ixcvTs20cuXKPXvgZZelBCnt6eMLssf1qSDrUk2jqS4pja76WJdqGmldgKvTAJk4WEv8NOBbwAdTShv34PvBKuDgiDgQuIusJf/6ui8PDwJzatMR0QN8KOW/Sa88u9MlSSUb7AYoLxnJhlNK2yPiPcByYDxwTkppdUScQfat4uKRbL90HR3Z0BCXJJVkyGPiI5FSugS4pM+8jw+wbneRZWk6W+KSpJINeXa6BmCIS5JKZojvqUmTYMoU2LSp7JJIksYoQ3wkvPSqJKlEhvhIGOKSpBIZ4iPR0WGIS5JKY4iPhC1xSVKJDPGR6Oz0xDZJUmkM8ZGwJS5JKpEhPhKGuCSpRIb4SHR2wkMPwY4dZZdEkjQGGeIjUbtq20MPlVsOSdKYZIiPhDdBkSSVyBAfiVpL3DPUJUklMMRHwpugSJJKZIiPhCEuSSqRIT4ShrgkqUSG+EjUQvy886C3t9yySJLGHEN8JG66KRt+73uwZIlBLklqKUN8JGqhnRJs2wY9PaUWR5I0thjiI3HMMdkwAiZNgu7uUosjSRpbDPGR6OqC/feHww6DFSuyaUmSWmRC2QVoe/PmwaxZBrgkqeVsiY/UzJnwwANll0KSNAYZ4iM1axZs3Fh2KSRJY5AhPlK2xCVJJTHER6rWEk+p7JJIksYYQ3ykZs6Exx6DRx8tuySSpDHGEB+pWbOyocfFJUktZoiP1MyZ2dDj4pKkFjPER8qWuCSpJIb4SNkSlySVxBAfKVvikqSSGOIjZUtcklQSQ3ykOjuzoSEuSWoxQ3ykJk6E6dPtTpcktZwh3gxeelWSVAJDvBm8CYokqQSGeDPYEpcklcAQbwZb4pKkEhjizWBLXJJUAkO8GWyJS5JKYIg3w8yZsGkT7NhRdkkkSWOIId4MtUuvPvhgueWQJI0phngzeOlVSVIJDPFmqIW4x8UlSS1kiDdDrTvdlrgkqYUM8WawO12SVAJDvBm8p7gkqQSGeDPUWuLf+Q709pZaFEnS2GGIN8Ovf50Nf/hDWLLEIJcktYQh3gw//Wk2TAm2bYOenlKLI0kaGyaUXYBRobsbIrLxSZOyaUmSCmZLvBm6uuDQQ+Ggg2DFimxakqSCGeLNsnAhdHYa4JKkljHEm2XvvWHDhrJLIUkaQwzxZpk9G+6/v+xSSJLGEEO8WfbeGx56KDs7XZKkFjDEm2X27GzoVdskSS1iiDfL3ntnQ4+LS5JaxBBvllpL3OPikqQWMcSbpdYSN8QlSS1iiDeL3emSpBYzxJvF7nRJUosZ4s0yYwZMmGBLXJLUMoZ4s0RkXeq2xCVJLWKIN5OXXpUktZAh3kxeelWS1EKGeDPZEpcktZAh3ky2xCVJLWSIN5MntkmSWsgQb6a994aHH4atW8suiSRpDDDEm8kLvkiSWsgQbyYvvSpJaiFDvJlsiUuSWsgQbyZb4pKkFjLEm8mWuCSphQoN8Yg4PiJujog1EfHhfpZ/ICJujIjrI2JFRCwssjyFsyUuSWqhwkI8IsYDnwdeBhwCLI2IQ/qs9ivgqJTS4cCFwD8XVZ6WmDYNxo+HH/wAenvLLo0kaZQrsiV+NLAmpXRbSmkbsAw4qX6FlNLKlNIj+eRVwIICy1O8q66CHTvg8sthyRKDXJJUqCJDfD5wZ930unzeQN4GXFpgeYrX05MNU4Jt2x6fliSpABPKLgBARPw5cBTw4gGWnwqcCjB37lx6mhiOmzdvbtr2Ojo6OCICUmLnhAlc19HBphYHeTPrUzbrUk2jqS4wuupjXaqp0LqklAr5A7qA5XXTpwGn9bPescBNwL6NbHfx4sWpmVauXNnU7aUlS1KaPTulK69s7nYb1PT6lMi6VNNoqktKo6s+1qWaRloX4Oo0QCYW2Z2+Cjg4Ig6MiEnAycDF9StExBHAl4ATU0p/KLAsrXPIIbB9O3R1lV0SSdIoV1iIp5S2A+8BlpO1tM9PKa2OiDMi4sR8tX8BpgMXRMS1EXHxAJtrH/vsAw8+mB0TlySpQIUeE08pXQJc0mfex+vGjy3y+Uuxzz7Z8L77YL/9yi2LJGlU84ptzbbvvtnwD6Pj6IAkqboM8WartcTvvbfcckiSRj1DvNlqIW5LXJJUMEO82Wrd6bbEJUkFM8SbbebM7PrphrgkqWCGeLONGwdz5tidLkkqnCFehH33tSUuSSqcIV6EffYxxCVJhTPEi7DPPnanS5IKZ4gXwe50SVILGOJF8PrpkqQWMMSL4FXbJEktYIgXwQu+SJJawBAvgi1xSVILGOJF8PrpkqQWMMSLYHe6JKkFDPEizJyZXX71f/4HenvLLo0kaZQyxIvw85/Dzp3w05/CkiUGuSSpEIZ4EXp6smFK2W/Fa9OSJDWRIV6E7u6sOx1g0qRsWpKkJjPEi9DVBccfDx0dsGJFNi1JUpMZ4kV55jPh4YfhOc8puySSpFHKEC/KvHmwY4c/M5MkFcYQL8p++2XDu+8utxySpFHLEC/KvHnZ0BCXJBXEEC+KIS5JKpghXpRaiK9fX245JEmjliFelClTYNYsW+KSpMIY4kWaN88QlyQVxhAvkiEuSSqQIV6k/fbzmLgkqTCGeJHmzYN77sluhCJJUpMZ4kWaNy+7i9n995ddEknSKGSIF8mrtkmSCmSIF8nfikuSCmSIF8mrtkmSCmSIF8kQlyQVyBAv0rRpsNdecPHF0NtbdmkkSaOMIV6k3l549NFsuGSJQS5JaipDvEg9PY//RnzbtmxakqQmMcSL1N0N48dn45MmZdOSJDWJIV6kri5461uz8UsuyaYlSWoSQ7xoL3hBNpw/v9xySJJGHUO8aAsXZsPbby+3HJKkUccQL5ohLkkqiCFetAULYNw4Q1yS1HSGeNEmTsxuhGKIS5KazBBvhYULDXFJUtMZ4q1giEuSCmCIt8LChbBuHezYUXZJJEmjiCHeCgsXwvbt3ldcktRUhngr+DMzSVIBDPFWMMQlSQUwxFvhyU/Ohoa4JKmJDPFWmDYNOjvhoou8p7gkqWkM8Vbo7YVNm2DVKliyxCCXJDWFId4KPT2QUja+bVs2LUnSCBnirdDdDRMmZOOTJmXTkiSNkCHeCl1d8NGPZuNf+Uo2LUnSCBnirXLCCdlw6tRyyyFJGjUM8VZ56lOz4c03l1sOSdKoYYi3SkcHzJtniEuSmsYQb6WnPc0QlyQ1jSHeSrUQr/3cTJKkETDEW+lpT4ONG+G++8ouiSRpFDDEW+lpT8uGdqlLkprAEG8lQ1yS1ESGeCsdcEB25bb//m+vny5JGjFDvJV+8QvYsQMuv9wboUiSRswQbyVvhCJJaiJDvJW6u2HixGzcG6FIkkbIEG+lri74zGey8c98xhuhSJJGxBBvtTe+MRs++mi55ZAktT1DvNXmzIGFC+Gaa8ouiSSpzRniZTjqKLj66rJLIUlqc4WGeEQcHxE3R8SaiPhwP8snR8R5+fKfR8QBRZanMo46Cm67LbsEqyRJe6iwEI+I8cDngZcBhwBLI+KQPqu9DdiYUnoK8O/AZ4oqT6UsXpwN7VKXJI3AhAK3fTSwJqV0G0BELANOAm6sW+ck4PR8/ELgcxERKY3y23zVh/ixx5ZbFo1Ovb3ZdQhmz4YNG5o6fPKqVXDLLf0vr/1ssqDnbsqwTxkHrc+ebHuwX500ul/28HVsal328PVsyfuszDLW9nFtX/adbvS90CRFhvh84M666XXAcwZaJ6W0PSIeBGYDo/s2X3vvDfPmwTe+AS96kT81q5oCArApH0gDfRDddx90dMD69TB1Klx7LXzve7B9eyG3vT0Q4KtffeKCCBg3Lhtu3970522Kfso4YH32ZNsTJsBxx8HTnw6bN2f/6w8+CNOmwU03wQ9/2Nh+GT8+G+7YMawiNK0uwzEu79DdubOpm23qfqmVcZivZ7/bmjDh8dDesSPbV89+Nqxa9fi+jYApU2DFisI/36OoRm9EvAY4PqX0F/n0G4HnpJTeU7fODfk66/LpW/N17uuzrVOBUwHmzp27eNmyZU0r5+bNm5k+fXrTtteIjtWrOeKv/gp27mTn5Mlcd+aZbDr00KZsu4z6FKWRunSsXs3Ma6/lsY4OJm7a1Nhw40Z27LUXkzZuZPvUqUx+4AE2H3QQsW0bs6+6ir2vvpoY6T97ESKyYT//s9HgJlK+7kDDIgz1nM0ejga1PVxEvYt4/HDLOhbeEzvHjWPtKadwxxveMOLP5WOOOeaalNJR/S0rsiV+F7B/3fSCfF5/66yLiAlAJ7Ch74ZSSl8Gvgxw1FFHpe4mXumsp6eHZm6vIb29uz6Ix2/fzpGbNjXt6m2l1KcIvb3c9s1vctCzn/3EVul992Xfcq+4Ai6+uLqtvmbb0y/cEbtaBzHEkAaGuz4Y+y4fNy5rpUTAY49lLbMGnrPZw0HrUCsjZO+bnTsHrs+eDvdgv/QtY9S9jtHg60hKpAZeh5Hs+yc8bg/L2sgwNWk7A70vC93H48YxbvJkDjrlFA7q6ir0c7nIEF8FHBwRB5KF9cnA6/usczHwZqAXeA1w2ag/Hg5ZYE+eDFu2ZG+wqoVu32M9RWx7oC7jzs4snC+4gAMfe6x1XYMDtXKb9MHeyIdrQ+HTyAdRbd1TToEjjmj6cdDfrVrV/5erNj0mPmh9hjP81a/gP/9z4P0znP2yh69j0+pSgWPiTa1Ls8pY28fbt2fd6C9/OVx66ePT9fu2iM/PfhQW4vkx7vcAy4HxwDkppdURcQZwdUrpYuBs4OsRsQa4nyzoR7+uLrjsMjjhBHjGM8o7Jl4fqPfem81btQouueTxYz3HHw+HHgoPP5xdqGbzZth3X3joIZg7Fx54IJs/0Jt+/Xo4/PBs/e985/E3fAPf1YbdDdaMgOzvn7EqH0jD+SAq8APkjqc+lYOG+uLZDud55GVsqD6NetObBt8/w90vw3wdm1qX4WryPi+kLs0oY20f1/ZlkY2eBhTZEieldAlwSZ95H68b3wK8tsgyVFZXF5x8cnZv8W3bshuiFK32ZpsyBZYvh5/8ZPATPXbuzE6Q+t73ii9bP4bs5mxmi7M+IAv4Z2zqB1I7BORY1dXl/hnt+u7jkvd5oSGuIRx3HHzhC3DllcV2qff2Zl8Wzjkn6+prtYGOIw0RzuuPO475J5zQ2hanH8CS2oghXqbu7qzr9vTT4VOfKiZArrwSjjkma+0Ppm/rtnasZ6QnguxpV3V3N7/dupX5VTtfQJIqxBAv0+rVWdD99KewZEnzf1N40UVw6qn9B/hgXdF9j/U086SS4bSce3qa8CJI0uhliJepp+fxbuZt27LpZoR4by984hPw4x8/Pq+/0B4qUJt9rMeuaklqKkO8TPU/NYtoynHxzuuvhw9+cPffTo8bl13e9fTTDVJJGkW8FWmZaj81O/zw7IzxZz5zZNu7+GIO++hHdw/wiOyLggEuSaOOIV62ri747Gez31+/+c1ZV/hw9fbCiSfCSScxYfPmbN64cdnP1t7+9pZcv1eS1Hp2p1fBxIlZi/nCC+EHPxhe6F5xRXb2ef7TsQC7zyVpjLAlXgU//enj41u3Nn5W9o9+BK961W6//U52n0vSmGFLvAq6u7Nj4o8+mv0m+6absi7y/kK49rOvTZvgM595/Oz2+guknHaaAS5JY4AhXgVdXVkX+mc/C8uWwde/nnWt9+1W7+3Nfk++ZcvuV0Cr6z7/7datzDfAJWlMMMSroqsra2Gfd14W0I8+Cn/7t/DGN2a/6Z42Db70pWx+zYQJ2bqTJj3efe4FUiRpzDDEq6TWrV5raf/sZ9lfX+PGZce9zzqrpbe8kyRViyFeJbVu9dNPz+4wtnPnE9fxzHNJUs6z06umqysL6MmTs8CG7Odn8HgL3ACXJGFLvJpqLfL+bj5i17kkKWeIV1XJN5qXJFWf3emSJLUpQ1ySpDZliEuS1KYMcUmS2pQhLklSmzLEJUlqU4a4JEltyhCXJKlNGeKSJLUpQ1ySpDZliEuS1KYMcUmS2pQhLklSmzLEJUlqU4a4JEltyhCXJKlNRUqp7DIMS0TcC9zexE3OAe5r4vbKNprqY12qaTTVBUZXfaxLNY20LgtTSvv0t6DtQrzZIuLqlNJRZZejWUZTfaxLNY2musDoqo91qaYi62J3uiRJbcoQlySpTRni8OWyC9Bko6k+1qWaRlNdYHTVx7pUU2F1GfPHxCVJale2xCVJalOjOsQj4viIuDki1kTEh/tZPjkizsuX/zwiDqhbdlo+/+aIOK6lBe9HA3X5QETcGBHXR8SKiFhYt2xHRFyb/13c2pI/UQN1eUtE3FtX5r+oW/bmiPht/vfm1pa8fw3U59/r6nJLRDxQt6wy+yYizomIP0TEDQMsj4j4bF7P6yPiyLplVdwvQ9XnDXk9fh0RV0bEM+uWrc3nXxsRV7eu1P1roC7dEfFg3Xvp43XLBn1/tloDdfmbunrckP+P7J0vq9p+2T8iVuafvasj4q/7WafY/5uU0qj8A8YDtwIHAZOA64BD+qzzLuCL+fjJwHn5+CH5+pOBA/PtjK94XY4B9srH31mrSz69uez9Mcy6vAX4XD+P3Ru4LR/OysdnVb0+fdZ/L3BORffNi4AjgRsGWP5y4FIggOcCP6/qfmmwPs+rlRN4Wa0++fRaYE7ZdRhGXbqB7/czf1jvzyrUpc+6rwAuq/B+mQccmY/PAG7p5/Os0P+b0dwSPxpYk1K6LaW0DVgGnNRnnZOA/87HLwSWRETk85ellLamlH4HrMm3V5Yh65JSWplSeiSfvApY0OIyNqqR/TKQ44Afp5TuTyltBH4MHF9QORs13PosBc5tScmGKaX0v8D9g6xyEvC1lLkKmBkR86jmfhmyPimlK/PyQrX/ZxrZNwMZyf9bIYZZl8r+vwCklO5OKf0yH38IuAmY32e1Qv9vRnOIzwfurJtexxNf3F3rpJS2Aw8Csxt8bCsNtzxvI/vmVzMlIq6OiKsi4pUFlG84Gq3Lq/OupwsjYv9hPraVGi5TfojjQOCyutlV2jdDGaiuVdwvw9X3fyYBP4qIayLi1JLKNFxdEXFdRFwaEYfm89p230TEXmSh9u262ZXdL5Edjj0C+HmfRYX+30wY7gNUbRHx58BRwIvrZi9MKd0VEQcBl0XEr1NKt5ZTwoZ8Dzg3pbQ1It5O1lvykpLL1AwnAxemlHbUzWu3fTPqRMQxZCH+grrZL8j3y77AjyPiN3kLsqp+SfZe2hwRLwcuAg4ut0gj9grgipRSfau9kvslIqaTfdl4X0ppUyufezS3xO8C9q+bXpDP63ediJgAdAIbGnxsKzVUnog4FvgocGJKaWttfkrprnx4G9BD9m2xLEPWJaW0oa78XwUWN/rYEgynTCfTp2uwYvtmKAPVtYr7pSERcTjZe+yklNKG2vy6/fIH4LuUezhtSCmlTSmlzfn4JcDEiJhDG+8bBv9/qcx+iYiJZAH+zZTSd/pZpdj/m7JPDCjqj6yX4Tay7svaCR2H9lnn3ex+Ytv5+fih7H5i222Ue2JbI3U5guwEloP7zJ8FTM7H5wC/pcQTWxqsy7y68VcBV+XjewO/y+s0Kx/fu+rvs3y9p5OdlBNV3Td5OQ5g4JOn/oTdT9D5RVX3S4P1eTLZ+S7P6zN/GjCjbvxK4PiK1+VJtfcWWbDdke+nht6fVapLvryT7Lj5tCrvl/w1/hpw1iDrFPp/M2q701NK2yPiPcBysjM0z0kprY6IM4CrU0oXA2cDX4+INWRvmJPzx66OiPOBG4HtwLvT7l2gLdVgXf4FmA5ckJ2bxx0ppROBZwBfioidZD0vn04p3VhKRWi4Ln8VESeSvfb3k52tTkrp/oj4JLAq39wZafeutpZrsD6QvbeWpfy/N1epfRMR55Kd5TwnItYBnwAmAqSUvghcQnam7RrgEeCt+bLK7RdoqD4fJzsH5gv5/8z2lN2kYi7w3XzeBOBbKaUftrwCdRqoy2uAd0bEduBR4OT8vdbv+7OEKuzSQF0g+/L+o5TSw3UPrdx+AZ4PvBH4dURcm8/7CNkXxJb833jFNkmS2tRoPiYuSdKoZohLktSmDHFJktqUIS5JUpsyxCVJalOGuDQGRMTMiHhXPr5fRFxYdpkkjZw/MZPGgPy6zt9PKR1WdlkkNY8tcWls+DSwKL8P8wW1ezlHxPiI+JeIWJXfcObt+fzuiPhpRPxPRNwWEZ+O7P7bv8jv57woX++/IuKL+U1cbomIE/L5UyLiP/N1f5Vfn1xSk43aK7ZJ2s2HgcNSSs+qtcrz+W8DHkwpPTsiJgNXRMSP8mXPJLuq3P1kl+78akrp6Ij4a7L7or8vX+8Askt9LgJWRsRTyC5pnFJKfxQRTye789RTU0pbiq6oNJbYEpfGtj8G3pRfMvLnZJchrd39alXK7pe8ley6/LVw/zVZcNecn1LamVL6LVnYP53sjmDfAEgp/Qa4HXhqsVWRxh5b4tLYFsB7U0rLd5sZ0Q1srZu1s256J7t/dvQ9scYTbaQWsSUujQ0PATP6mb+c7MYZEwEi4qkRMW2Y235tRIzLj5MfBNwMXA68obZNshtC3LynhZfUP1vi0hiQUtoQEVfkJ7TdVLfoq2Rd47+M7PZQ9wKvHObm7wB+AXQA70gpbYmILwD/LyJ+TXY3urekunvcS2oOf2ImaY9FxH+R/XTN351LJbA7XZKkNmVLXJKkNmVLXJKkNmWIS5LUpgxxSZLalCEuSVKbMsQlSWpThrgkSW3q/wNy8wquY0jjdwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 576x576 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "#FDR_cilindro_liso_Hr-10.csv\n", + "\n", + "file = '/home/student/ejercicios-clase-08-datos/data-used/VACF_liso_Hr-10-500.csv'\n", + "\n", + "dataframe0 = pd.read_csv(file)\n", + "\n", + "x = dataframe0[\"t\"]\n", + "y = dataframe0[\"vacf\"]\n", + "\n", + "plt.figure(figsize =(8,8))\n", + "\n", + "#plt.scatter(x,y, marker = \"+\")\n", + "pl.plot(x,y, \"r.-\")\n", + "plt.savefig(\"vacf.png\")\n", + "\n", + "pl.xlabel(\"tiempo\")\n", + "pl.ylabel(\"VACF\")\n", + "pl.grid()\n", + "pl.legend([\"VACF(t)\"])\n", + "pl.title(\"Función de autocorrelación de velocidades\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 6- Gráfica de la Función de distribución radial\n", + "\n", + "- Partiremos inicialmente mostrando el gráfico de la Función de Distribución Radial *(FDR)* correspondiente a un cilindro con una superficie lisa. Esta función nos muestra la estructura y organización de las partÃculas del fluido confinadas dentro del cilindro con un radio de 10 diámetros moleculares. Los máximos de la función nos están indicando la distancia en la cual las partÃculas tienden a acumularse, dicho de una manera más formal: los máximos de probabilidad en la que conseguiremos distribuidas las partÃculas.\n", + "\n", + "- Veremos el tratamiento y la visualización estadÃstica de la distribución de los puntos de data en histogramas individuales para cada variable y luego la gráfica que nos resume ambos histogramas. \n", + "\n", + "- En la siguiente celda construimos a partir de la data la gráfica de la evolución de la estructura del fluido a medida que aumentamos la cantidad de obstáculos en las paredes del cilindro." + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Función de distribución radial')" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAegAAAHwCAYAAABt1fz6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABGa0lEQVR4nO3deZwcVbn/8e/TM5kkhCyyJCxBAl6Q3QC54ICEgQAiisQV3PAiGqK4sGh+bhdBFBUvyFW8CAoRNOKGgrIJAg3ItMgW0BiRLUJYDAQhJCaZSeb5/XG60tU91T0901vN5PN+vfpVvVRXnT7dXU8955yqMncXAABIl0yrCwAAAPojQAMAkEIEaAAAUogADQBAChGgAQBIIQI0AAApRIAGEpjZSjPbseS5jJldY2Yn1nE9PzSzr9RpWVkz+3D+/vvM7KZ6LDe/vEVm1pW/f6aZ/bhey46t4wYz+2DC85/J15PVe53VMrMlZnZY/v7nzewHVb6vbt8vNj7trS4AUA0zWyJpiqT1sad3dvdnGrE+d9804emvSLrF3S9txDrryd0XSFow0Hxm9kNJS939iwMsb/c6Fa3SOt5U+pyZvUnSPpLe7yk5aYO7n9PqMmDjQIDGcHK0u/++VSt398+3at2tYmbt7r6uVet39xsk3VDPZZpZm7uvH3hOoLVo4sawFm96zD/e0PxqZtPMzM3sg2b2pJm9YGZfiM3blm+ufMzMXjGz+8xsu/xrbmb/kb8/0cyuMLPnzewfZvZFM8vkX/svM/uDmf2Pmf3LzJ7IZ33lyru3md2fX9/PJI0pef0tZrbQzF4ys24z26vCsg43s7+Z2ctmdqEki732X2b2h/x9M7NvmdkyM1thZn82sz3MbI6k90mal2/S/22sTv+fmT0kaZWZtZfWs6QxZvaz/Oe438xeF1v3hrrLPy5q5jWzY/KfcUW+7o/MPx9vos/k6/kf+XJfYWYTq/leE+rph2Z2kZldb2arJB1iZm82swfyZXjKzM4sec8H8uteXrpsK2niN7NfmNlz+e/hDjNreGsDNg4EaGwM3iDptZJmSTrDzHbNP3+apPdIOkrSBEkfkvTvhPd/R9JESTtKOljS8ZJOiL2+v6SHJW0h6VxJl5r17y81sw5JV0v6kaTNJP1C0jtir+8t6TJJJ0naXNLFkn5jZqMTlrWFpF9J+mJ+vY9JOrDM5z9C0kxJO+c/x7slLXf3SxSawc91903d/ejYe94j6c2SJpXJoI/Jl38zST+RdLWZjSqz/ni595N0haTPSJqUL9eShFn/K387RKHeN5V0Yck85b7XJO+V9FVJ4yX9QdIqhe9xksLn/KiZzc6XcTdJF0n6gKRtFL6LqRWWfYOknSRNlnS/quhaAKpBgMZwcnU+s3zJzK4exPvOcvfV7v6gpAclRdnehyV90d0f9uBBd18ef6OZtUk6TtLn3P0Vd18i6TyFjXfkH+7+/Xyz6eWStlboLy/1ekmjJF3g7r3u/ktJ98RenyPpYne/293Xu/vlktbm31fqKEmL3P2X7t4r6QJJz5X5/L0KgWkXSebui9392TLzRr7t7k+5++oyr98XW/f5Ci0BSeUsdaKky9z9Znfvc/en3f1vCfO9T9L57v64u6+U9DlJx5lZvFuu3Pea5Bp3vyu/zjXunnX3P+cfPyTpSoWdL0l6p6Rr3f0Od18r6b8l9ZVbsLtflv9trJV0pqTXRdk+UAsCNIaT2e4+KX+bPYj3xQPXvxWyMUnaTiHzrGQLhaD6j9hz/5C0bdLy3T3KwJMGmW0j6emSwU7x5W4v6fTYTshL+TJuU2ZZT8XW6/HHce5+q0L2+V1Jy8zsEjObkDRvTOKykl539z5JS8uUs1Q1da78skrrvF3FOz7lvtckRZ/HzPY3s9vy3RYvS5qr8F1H645/vlWSinbcYstpM7Ov55vqV6jQGrBF0vzAYBCgMdytkrRJ7PFWg3jvU5JeM8A8LyhkoNvHnnu1pKcHsZ7Is5K2LWn+fnVJeb4a2wmZ5O6buPuVZZa1XfQgv8ztEuaTJLn7t919X0m7KTR1fyZ6qdxbBvgs8XVnFJqAoxH1/1b576SaOld+WaV1vk7SP6t4b5LSz/MTSb+RtJ27T5T0PRX68EvrdhOFZu4k71Vo7j9MoftgWvS2IZYT2IAAjeFuoULT5ygzm6HQPFmtH0g628x2yg+k2svMijbE+Wbrn0v6qpmNN7PtFfquh3IccE4hyHwyX963S9ov9vr3Jc3NZ3dmZuPyg5nGJyzrOkm7m9nb882+n1SZnRMz+8/8Mkcp7NCsUaHJ9p8KfbyDtW9s3acoNMX/Mf/aQknvzWeXR6rQdCxJl0o6wcxm5QeCbWtmuyQs/0pJp5rZDma2qaRzJP2sjiPKx0t60d3X5PvF3xt77ZeS3mJmb8iPG/iyym8rxyt89uUKOyUcgoW6IUBjuPtvhYzsX5LOUsiMqnW+QvC9SdIKheAxNmG+TygEtscVBhj9RGEw16C4e4+ktysMfnpR0rEKA72i1++V9BGF5uh/SXo0P2/Ssl6Q9C5JX1cIDjtJuqvMqicoBP9/KTQVL5f0zfxrl0rabQj9+tfky/8vhf74t+f7oyXpU5KOlvSSQl/yhuW6+58UBth9S9LLkm5XcaYcuUxhMN0dkp5Q2Kn4xCDKN5CPSfqymb0i6QyF30FUxkWSTlb4np9V+IxLyyznCoU6fVrSX1XYSQFqZik59h8AAMSQQQMAkEIEaAAAUogADQBAChGgAQBIIQI0AAAplKqrWW2xxRY+bdq0uixr1apVGjduXF2WtbGiDmtHHdYH9Vg76rB2jajD++677wV33zLptVQF6GnTpunee++ty7Ky2ay6urrqsqyNFXVYO+qwPqjH2lGHtWtEHZrZP8q9RhM3AAApRIAGACCFCNAAAKRQqvqgk/T29mrp0qVas2bNoN43ceJELV68uEGlao0xY8Zo6tSpGjVqVKuLAgBosNQH6KVLl2r8+PGaNm2aiq/SV9krr7yi8eOTLgI0PLm7li9frqVLl2qHHXZodXEAAA2W+ibuNWvWaPPNNx9UcB6JzEybb775oFsSAADDU+oDtKSNPjhHqAcA2HgMiwANAMDGhgBdhba2Nk2fPn3DbcmSJcpms5o4caL23ntvvfa1r9XMmTN17bXXbnjPmWeeqW233VbTp0/XbrvtpiuvvLJomaeccoruuOOOxPV9+tOf1q233trQzwQASLfUDxIbklxOHb/7nfTGN0qdnTUvbuzYsVq4cGHRc0uWLNFBBx20ISgvXLhQs2fP1tixYzVr1ixJ0qmnnqpPf/rTeuSRR7Tvvvvqne98p0aNGqXly5frj3/8oy644IJ+61q/fr0+8YlP6CMf+YgOPfTQmssOABiehleAPuUUqSRQ9vPyy9JDD6mjr086+2xpr72kiRPLzz99upQQKAdr+vTpOuOMM3ThhRduCNCRnXbaSZtsson+9a9/afLkybrqqqt05JFHbnh92rRpOvbYY3XzzTdr3rx5Ou6447R8+XI999xz2mqrrWouGwBg+Bl5Tdwvvyz19ckkqa8vPK7R6tWrNzRvv+1tbys73z777KO//e1v/Z6///77tdNOO2ny5MmSpLvuukv77rtv0Tybb7657r//fh133HEblnXXXXfVXHYAwPA0vDLoajLdXE6aNUve0yPr6JAWLKi5mTupiTuJuxc9/ta3vqX58+fr73//u377299ueP7ZZ5/VllsWX7zk2GOPLXo8efJkPfPMM0MvNABgWBt5GXRnp3TLLer54helW26pSx90tR544AHtuuuuGx6feuqpWrRoka666iqdeOKJG45hHjt2bL/jmUsvYbZmzRqNHTu28YUGAKTSyAvQktTZqZ7TT29qcH7ooYd09tln6+STT+732lvf+lbNmDFDl19+uSRp11131aOPPlpxeX//+9+1xx57NKSsAID0G5kBuknuvPPODYdZnXzyyfr2t7/db4BY5IwzztD555+vvr4+vfnNb1Y2my273N7eXj366KOaMWNGg0oOAEi74dUH3SIrV67s91xXV5derjAA7cwzzyx6vO++++rhhx+WJB100EH63Oc+p5deekmTJk3SkiVLiua99tpr9c53vlPt7Xw9AJAKuZxevWCBNHp001pnyaBb5LzzztOTTz6Z+Nq6det0+umnN7lEAIBEuZx0wAHa4Qc/kGbNCo+bgBStRfbff/+yr73rXe9qYkkAABXluyRNknp6wuMmZNHDIoMuPXxpY0U9AEALdHUV7nd0FD9uoNQH6DFjxmj58uUbfXCKrgc9ZsyYVhcFADYu8Wy5iYfvpr6Je+rUqVq6dKmef/75Qb1vzZo1Iy6YjRkzRlOnTm11MQBg49XEw3dTH6BHjRqlHXbYYdDvy2az2nvvvRtQIgAAGi/1TdwAAGyMCNAAAKQQARoAgBQiQAMAkEIEaAAAKmnRYb4EaAAAKlm/viWrJUADAFAJARoAgBQiQAMAkEIEaAAAUogADQBAChGgAQBIIQI0AAAptG5dS1ZLgAYAoBIyaAAAUogADQBAChGgAQBIIQI0AAApRIAGACCFCNAAAKRQPkB7prkhkwANAEAl+eOgCdAAAKQJGTQAACkU9UEToAEASBEyaAAAUijKoM2auloCNAAAlUQZdFtbU1dLgAYAoJIoQJNBAwCQIgwSAwAghaLjoGniBgAgRWjiBgAghWjiBgAghTgOGgCAFCJAAwCQQi1q4m5v5MLNbImkVyStl7TO3Wc0cn0AANRdizLohgbovEPc/YUmrAcAgPqjiRsAgBTKHwc9opq4Jbmkm8zMJV3s7peUzmBmcyTNkaQpU6Yom83WZcUrV66s27I2VtRh7ajD+qAea0cdDt02ixdrZ0nr3Ztah40O0G9w96fNbLKkm83sb+5+R3yGfNC+RJJmzJjhXV1ddVlxNptVvZa1saIOa0cd1gf1WDvqsAaLFkmSbNSoptZhQ/N1d386P10m6deS9mvk+gAAqLuRdrlJMxtnZuOj+5KOkPSXRq0PAICGaNHlJhvZxD1F0q8t7HG0S/qJu9/YwPUBAFB/LcqgGxag3f1xSa9r1PIBAGgKDrMCACCFCNAAAKRQi46DJkADAFAJGTQAACkUDRJrMgI0AACVRAHavamrJUADAFAJGTQAACmUD9BGBg0AQIqQQQMAkEL0QQMAkELRcdBNRoAGAKASmrgBAEghAjQAAClEHzQAAClEBg0AQApxHDQAAClEBg0AQAotWyZJalu5sqmrJUADAFBOLifdcYckadPHHw+Pm4QADQBAOdms1NcX7ruHx01CgAYAoJyuLimTD5Vm4XGTEKABACins1PaZx9J0soddgiPm4QADQBAJZtsIknqy0+bhQANAEAlvb0tWS0BGgCASqKrWXGiEgAAUoQMGgCAFCJAAwCQQlETd5MRoAEAqCTKoOmDBgAgRWjiBgAghfJN3FxuEgCANCGDBgAgheiDBgAghRjFDQBACtHEDQBAChGgAQBImb6+Qt8zfdAAAKRELHvmMCsAANKiRc3bEgEaAIDy4iO4yaABAEgJMmgAAFKIAA0AQAq16CQlEgEaAIDy4hk0fdAAAKQETdwAAKRQrImb46ABAEgLMmgAAFIoCtDt7fRBAwCQGlET96hRTV81ARoAgHKiDLqjo+mrJkADAFBOFKDJoAEASJF4Ezd90AAApAQZNAAAKRQL0BwHDQBAWjCKGwCAFIqP4iaDBgAgJeiDBgAghWjiBgAghWjiBgAghWjiBgAghWJN3BxmBQBAWozkDNrM2szsATO7ttHrAgCgrh57LExXrGj6qpuRQX9K0uImrAcAgPrJ5aT588P9P/xBmbVrm7r6hgZoM5sq6c2SftDI9QAAUHfZrLR+fbjf16fMmjVNXX2jM+gLJM2T1Nfg9QAAUF9dXVJbW7ifyahv9Oimrr69UQs2s7dIWubu95lZV4X55kiaI0lTpkxRNputy/pXrlxZt2VtrKjD2lGH9UE91o46HJrdDjxQm+dyennPPTX6mWeaWocNC9CSDpT0VjM7StIYSRPM7Mfu/v74TO5+iaRLJGnGjBne1dVVl5Vns1nVa1kbK+qwdtRhfVCPtaMOh2jXXaW//lWbvfa1+vdzzzW1DhvWxO3un3P3qe4+TdJxkm4tDc4AAKRaT084i5jEcdAAAKRGb28I0GZNX3Ujm7g3cPespGwz1gUAQN3EMuhmI4MGAKCcKEC3IIMmQAMAUE5PT+E0n/RBAwCQEvEMmgANAEBKtHCQGAEaAIByOMwKAIAUYpAYAAApFB8k1mQEaAAAyiGDBgAghaJBYlLTR3E35UxiAAAMS5xJDACAFIoHaEZxAwCQEtEgMfqgAQBIkVgfNMdBAwCQFoziBgAgZdwZJAYAQOqsWxem9EEDAJAiPT1hyihuAABSpLc3TOmDBgAgRcigAQBIoXiAJoMGACAlogCdv5oVx0EDAJAGZNAAAKQQg8QAAEghBokBAJBCNHEDAJBCJYPEyKABAEgDMmgAAFLooYfC9OGHJXGYFQAArZfLSZ//fLh/8snSP//Z9CIQoAEAKJXNFq5mtW6d9PTTTS8CARoAgFJdXVJ7e7g/apS07bZNLwIBGgCAUp2d0umnh/sLFkhbb80obgAAUmH77cO0s5NR3AAApAZnEgMAIIXiJyohgwYAICVKMmiOgwYAIA3IoAEASKHeXqmtLdxagAANAECSnp7CADEzBokBAJAKPT2FK1nRxA0AQErEM2iJDBoAgFTo7S1u4m4yAjQAAElKMmgOswIAIA1KB4k1GQEaAIAk8UFiLUCABgAgCRk0AAApFB8kJjGKGwCAVCCDBgAghTgOGgCAFOJMYgAApBDHQQMAkEKcSQwAgBQq7YNuMgI0AABJGMUNAEAKlZ5JjD5oAABSgAwaAIAU4kxiAACkUEkGzWFWAAC0mjsnKgEAIHXWrw9BmsOsAABIkZ6eMGWQGAAAKdLbG6YjcZCYmY0xsz+Z2YNmtsjMzmrUugAAqKsUZNDtDVz2WkmHuvtKMxsl6Q9mdoO7/7GB6wQAoHZRgP7976V99pE0gi6W4cHK/MNR+VtzPx0AAEPxx3wuec010qxZ0tKlTS9CIzNomVmbpPsk/Yek77r73QnzzJE0R5KmTJmibDZbl3WvXLmybsvaWFGHtaMO64N6rB11ODiv+elPtZ0kuatv7Vq9vHChXiU1tQ7Nq0zZzWyypAMlbSNptaS/SLrX3fuqeO8kSb+W9Al3/0u5+WbMmOH33ntvVeUZSDabVVdXV12WtbGiDmtHHdYH9Vg76nCQfvhD6YQTpExGGj1aes97pMsuq/tAMTO7z91nJL02YBO3mR1iZr+TdJ2kN0naWtJukr4o6c9mdpaZTai0DHd/SdJtko4cZNkBAGi+nXcO0+OPl265Rdpuu/C4if3Q1TRxHyXpI+7+ZOkLZtYu6S2SDpd0VclrW0rqdfeXzGxsfp5v1F5kAAAabPXqMD3hBKmzU7rppqYXYcAA7e6fMbOMmb3b3X9e8to6SVeXeevWki7P90NnJP3c3a+ttcAAADRcFKDHji1+3r1ph1xVNUjM3fvMbJ6knw84c+E9D0nae6gFAwCgZUoDdMrPJPZ7M/u0mW1nZptFt4aVDACAVokC9Jgxxc+nrA86cmx+enLsOZe0Y/2KAwBACqxZE6YtzKCrDtDuvkMjCwIAQGpU6oNukmoOs3rDAK9PMLM96lckAABarFwfdMqauN9hZudKulHhrGDPSxqjcHawQyRtL+n0hpUQAIBmK+2DTmMTt7ufmh8M9g5J71I4fGq1pMWSLnb3PzS2iAAANNnq1eEMYqWBOWUZtNz9RUnfz98AABjZ1qwp7n9O62FWZtZmZlvEHneY2RwzW9y4ogEA0CKrV/cfICalbpDYcZJelPSQmd1uZkdIelzhvNzva3D5AABovtIAncY+aIWLYuzr7o+a2T6ScpLe6e6/bWzRAABokeGQQUvqcfdHJcnd75f0CMEZADCirV5dfBaxlGbQk83stNjjSfHH7n5+/YsFAEALlQ4Si6RsFPf3JY2v8BgAgJFl9WppfCzUpTGDdvezmlEQAABSY/VqafLk/s+nrA9aZnaImV1lZovyt1+aWVdjiwYAQIukYBR3NYdZvVnSZZKulfRehUOrrpd0mZkd1djiAQDQAi+9JD3yiJTLFT+fsj7oz0ia7e4Pxp5baGb3SvqOQrAGAGBkyOWkZcuk55+XZs2SbrklnRm0pK1KgrMkyd0fkjSl/kUCAKCFstkwdZd6egqPo+eapJoAvWqIrwEAMPx0dYWpmdTRER6ncRS3pNeY2W8SnjdJO9a5PAAAtNb++4fpIYdIX/mK1Nkp3XVXeC5lfdDHVHjtf+pVEAAAUqGnJ0wPOywEZym1GfQT7v5kw0sCAEAarF0bpqNH938tZX3QV0d3zOyqxhUFAIAUWLMmTOMBOsqgUxag43k9fc4AgJEtKYNO6WFWXuY+AAAjT0qauKvpg36dma1QyKTH5u8r/9jdfULDSgcAQLOlJIOu5mIZbc0oCAAAqZCSDLqqi2UAALDRSEkGTYAGACAuCtBjxvR/jQwaAIAWIYMGACCF6IMGACCFyKABAEghMmgAAFKIDBoAgBQigwYAIIXIoAEASCEyaAAAUigK0B0dhefIoAEAaLG1a6VRo6RMQogkgwYAoEXWru3fvE0GDQBAiyUF6AgZNAAALVIpgyZAAwDQIjRxAwCQQmvW0MQNAEDqkEEDAJBC//yntHy5lMv1f40MGgCAFsjlpHvvlZYulWbNKgRpMmgAAFoom5X6+sL9np7wOI4MGgCAFujqKmTLHR3hsUQGDQBAS3V2SlttJU2fLt1yS3gcRwYNAECL9PVJ++1XHJzJoAEAaLFVq6Rx45JfI4MGAKAF3JMDNBk0AAAttHZtCNKbbJL8Ohk0AAAtsGpVmJJBAwCQIuUCdIQMGgCAFvj3v8O0tImbDBoAgBYigwYAIIUG6oMmQAMA0AI0cQMAkEIbQxO3mW1nZreZ2V/NbJGZfapR6wIAoC6iDDoFh1m1N3DZ6ySd7u73m9l4SfeZ2c3u/tcGrhMAgKGLMuiRfKISd3/W3e/P339F0mJJ2zZqfQAA1GxjO1GJmU2TtLeku5uxPgAAhqTcILFIEzPoRjZxS5LMbFNJV0k6xd1XJLw+R9IcSZoyZYqy2Wxd1rty5cq6LWtjRR3WjjqsD+qxdtRhdXa5805NzmS08OKLtWL33Tc8P3nxYu0m6e6779bqp59uSlnMG7g3YGajJF0r6Xfufv5A88+YMcPvvffeuqw7m82qq6urLsvaWFGHtaMO64N6rB11WIVcTpo5U1q3Tho7VrrllsI1oRcskN7/funhh6Wdd67bKs3sPnefkfRaI0dxm6RLJS2uJjgDANBS2ay0fn2439MTHkdGWB/0gZI+IOlQM1uYvx3VwPUBADB0XV1SJh8WOzrC41IjoQ/a3f8gqfm7HAAADEVnp/T610uPPy5ddVWheVsacRk0AADDy+jR0mteUxyc40bCcdAAAAw7q1YlH2JFBg0AQAutWlX+PNwSGTQAAC3x738nB2gyaAAAWqhcE3eEDBoAgBYo18RNBg0AQIu4l2/ijs/TJARoAAAkae1aqa+v8ihuAjQAAE0WXcmKJm4AAFIkuhY0g8QAAEiRKECTQQMAkCKVmrgjZNAAADRZpSZuMmgAAFqkUhN3hAwaAIAme+CBMH300f6vkUEDANACuZx05pnh/pw54XESMmgAAJoom5V6e8P93t7wOI4MGgCAFujqktrbw/2OjvA4CRk0AABN1NkpvetdIUjfckt4HEcGDQBAi4wbJ22xRf/gHEcGDQBAk730kjRpUvJrZNAAgI1KLid97WvlR003U6UAHWliBt3etDUBABCXy0mzZoXLPI4endz320wvvSRtvnnya2TQAICNRjYrrVkTrsG8Zo10xRWtLU/KMmgCNACgNbq6CgHPXZo/v7VN3dX0QROgAQAj3q23Fj9OOkFIs7gzSAwAAOVy0n//d/FzmUz5E4Q02urVYQeBJm4AwEbtxhv7B7sPfah1g8ReeilM//jH5GZ2MmgAwEZhp53C1Kxwis0ddmhdeaKm9d/8Jows52IZAICNUtSUPHeudMcd4fFVV7VukNjtt4dpX5/U08PFMgAAG6klS8L0jDPCdMUK6d57K2evjTRtWpi2tXGxDADARuwf/wgnJ5k8OWSrUeBLyl6bYbPNwvQzn0nNxTI4kxgAoLlyOelXv5LGjJHuvjtkq6NGheAslT+bVyM9/3yYnnVWyKDLIYMGAIxIuVwIyI8/Lr38snTIIeH5b34zTNevl045pfnN3MuWSRMnlg/O9EEDAEa0bLaQKUuFJu1Vq/o/10zPPx+a2wfCxTIAACNSV1fIRqNAFx+QlcmEUdSVBmk1yvPPS1tuWf51+qABACNaZ2c4pGrKlBCEjz++MCDrbW+Trr1W+v3vm3/CkmXLpNe8ZuD56IMGAIxIr7wi/etf0gc/KF10UXEgPuCAcOnJXXZpfrmefjrcyvV90wcNABjRHn88TJOy1R13DNMzzmjuILHubunFF6s7DpsMGgAwIl13XZjGB4VFVqwI04suau4JS268MUzdyw9QI4MGAIxYuZx05pnh/sc+1j8AP/ZYmJY73Waj7LVXmGYyAw9QI4MGAIw42ay0bl24nxSA3/jGMDVr7kju6DSf73tf8lnEojI1GQEaANAc0SFWUnIAPuAAafvtpd13Lx8oG+HFF8N07tyB10kGDQAYcTo7w8lApk8vH4B32kkaN665h1ktXx6m0fm4k0Q7FgRoAMCIc/vt0nPPhStGlTN1qrR0afPKJBUy6GoCdBMRoAEAjXfnnYUm7fvuC+fgLjdK+5lnwvzNEgXoV71q4HnJoAEAI8rVVxc/ThoklstJCxaEIHjEEc07zGr5cmn8+HBFrXLIoAEAI9LUqcWPkwaJZbPhalZScw+zevHF6i9xSQYNAKibXE6vXrCg+ZdwjBs9Okw/8IEwWvq22/oPBOvqKszn3rzrQj/2WNghqFQ/ZNAAgLrK5aRZs7TDD34gzZwpXXJJa8rx+OPSmDHSD3/Y/xzckc5O6YILCle7asZ1oXM56Y9/DP3e1Zy9jAwaAFAX2ay0erVMCicJ+fjHW5NJ33OPNGGCdPfdleeLDnmSmtPMnc2GM5cNtD4yaABAXZUe0rRuXfP6diO5XBiVvWzZwFlqV1dhsFZ7e+PPJhYtv9qzl5FBN1guJ33ta63tjwGARsvlpMsvL34uk2neKTQjN95YCGwDZcWdndL//m+4//WvN/6EJXvuGaZvfGPls5e1IINub/oaWy2Xkw49NPxIRo+u7+nkcrnww+vqav7FxgEgLpeTDj5Y6u2VJLkUmrk/8IHmb59eeCFMq7kYhSQdfniYVnNccq2efTZM3/ve6uqliRn0xhegs1lpzZpwP9qTq8ePNZcLB9739tY/8APAYP3P/2wIzpLkZiFAP/FE2F41a/uUyxUGpmUyYRDYQOveaqswjYJnI0XriNZZDn3QTRDfc6vn1VKyWWnt2uZfJg0A4nI56cQTpV//uuhpk0L2d/vtzb3WcvwKVu7Fg8DKGTcunDikmQF6662rm58+6AaK77n96Ef124vs6ioMxmjmZdIAIBI1a192WXEgMZNnYpv7tWvDdZmbEaQPOmhDGQa1bZw0KRwr3egyVhugyaAboNKAsNIz29Sis1Pae+9w/8Yb+wd+BqYBaLRzzy1q1pYURkSfdJIe+dSnCqOj+/qkm29uTib99NNhevDB1Xf95XLhfX/+c+PLeN99Ibl6+OHq5ieDrpP8Afr64heLv+Rx48L0zjvrGzSjPdTdd08uxxe+kPxjSwreBHQAg5HLSddc0//5E0+ULrpIzx59tHTWWYXn3aXVq6UrrmhsmY4/vnC/WtUem1yrXE668spwetHDDkvdmcRG9iCx/AH6kooHhG2yibRqlfTZz4Yfab0Gdb3ySmEaP0VdvBxr1xYPTMvlQhNQX184y84tt4Tnu7pCvw0DzoDhodVHcVxySf/sbvToQoAs59JLwzyNKHM2W8joo+Ovq1lPV1c4BnrdusZ2GSad+3ug8pFB10lXV2GvZ9SowpccZdDr19d3UNeKFcXTeDkibW3Fj6MfiHuhHNlsuN/XF0acN3IPF0DtoqM4Pv/55g7Aiq//Rz8qPM5kpNmz+5/vOgp8cY08cUl8GzyYQNvZKX3yk+H+z3/euB2eqHzV9I9Hn4MAXSednYWh89/7XvkvuV57aFEGXRqgr7uucD9qtokkjSqPBlVI4ccwf/7Q//C5nPTRj4bbIJcxYdGiIb+3qUq7A1rZPUDXRPOloc5/8IPQOiaF1rLoHNI1/P8G5dJLC5mgmTRnThjFXbrN6+yUvvvd4rOLmTXuohTr1oXl77HH4FsCo23j5MkNKZokaZ99wjb2kEMGLl8Lmrjl7g25SbpM0jJJf6n2Pfvuu6/Xy2233Rbu7LSTu+R+++2FF7fcMjwnuW+xhXt3d+0r7Otzz2TCMq+7rvB8d7e7WWF9Zu7nnBOeP+cc97vuKrz2k5+E9zz/fOE5yb2tLcw7WHfdFd4bX87FF1f33u5uXx9/76hR7nPn1qeuyqxvQ70Mxje/WajXsWPD5+voCJ917NjGlTdJd3eoJ7NQhu7uwu8QNSlbj93d7qNHF77/Zn/fc+e6v+lNxf/X+H+mvb3wePToxpSvu7v4f15mPUV12N3tfswxhfc0ou6i70ba8H8YlIULw3t/8Yv6livuZz8L6/jiFweeN5cL815/fV2LIOleLxMTG9kH/UNJF0pqbftstKf48suF5+IZ7gsvhJGPW21VuR9moP6lf/+7kB3Hl5/N9jvcQZtvHvbYov6VyHXXSdOm9T97zlAz/OuvL+xVS+H+xz8e7i9fXrmvLJuVxd/b2ytdfHE4bWDpnmatfW9DPbvbJZdI8+aF++4hg/nxj8NypPqeiKac+Gc/77xCf1tPT+iaOPbYxq17Y5bLhfq9//5C5tqM7zu+/q6uwm8tSelo6rVrQ5nrXb7584uz5xNOGHgdnZ3S/vtLv/lNcfdaPcsWddVJoXyDXf6rXx2m8+dL225b/3qLD2D75jelo45KXQbdsADt7neY2bRGLb9qUX9LFKD7+gp/6MjVV4fp/PnJ1yitJoDEg3L8/gEHFM/32teGPpX4RiXyk59Iv/hFcV/56NHStdcO7ce53Xb9n+vtDc1t7qFf/qijkndOor6Z+M5F0h852lDVMqCt2rO7xYOhJH3sY8Xla2srbrpr9PHo8Y306NH9mwmfey75PbXuzNQ6ECmXC02ymYz0oQ8NvwGI558vnX56/+ebcWEFKdTfmWdWDs7lzJ9f3wFZuVxYZqSjY+BBYZGoP7q3t3iMTr1E54YY6kCvxYvD9IYbwna53oNl4zsQgxnAtjGd6tPM5kiaI0lTpkxRtk6DFVauXKlsNqsZq1drU0l/v+cePTN1qjJr1mimpL62Ntn69YrvE3lPj5647DI9WRLAX71ggXbMB5C+tWu1JGGesU89pf3z9x9duFBL85+j48UXdYCk5zs7tekTT2jM3/4mLV68Yb19mYwy0d6vu7ynR3bTTeEzbLmlxi1Zohc+/Wn1braZnjvySK0oPYSrgq2eeEK7KHYO3vx99fXJ8p832jnxSy/Vwm99Syt2310TFi3SpIULNWXKFI2LBRmX1NfergcnTNCKbFYTFi3StPnztVn+R16ubkpNWLRIU373O0nSP9/4RmnCBO2Tf219bPml79n7k5+U+vrUN2qUVu24o8bnv7/o7/Kv3XfXq7LZDc+9sO++eur++7Vi7doNn+ml6dMHVYelZYgvY+dzz9U2+c/ua9eG68nG+HXXqf3AA5WNvX/6qafK1q2TZzJ65FOf0rNHH1112SYsWqTXnXaaMuvWqW/UKD143nll548vU1LR/emf+pQy69fLJfn8+Xr2qKPC9xCbb6h11CgrV67UYyedpK1uvFGbPPmkJKk0n1m5zTb6e/77jtTje5ekCX/5izbv7taarbfWTv/7v8WtS/myRL9DN5O5F//n8vP09fZW9R+p1qsXLNAO69aFZZvp2SOO0CPRkSIlom1i3JTTT9euX/+6XtxtNy0pqbt6mL7rrhq7dKkWnX12WPYgtu+vXrBAO0gy96q3LYMxYcIETc9kZOvXF23Xyhm/eLH2lfTQQw/pxU02qVs5KirX9l2Pm6RpanUf9D77hH6Dr341PF62LDw+7TT3/fbr32eU1E/y3e8W5hkzJnmee+8tzHPGGYXn//rX8NyCBe4779y/n+r885P7r6J+1fjjwfRhdXe7H3xwWEbUN17pFu8bHz3ava3N+8zct966eP1RH/aZZ/YvX0fHwP3U3d1hvvgy4/3wX/lKWEbpcs45Z+DPkHTr6Ahlzn+mIfe1Rf3L8WVMn1553W1t/tiHP1xYxpe/3P/3dvHF4TdVTT/gRz5S/P599imeP+rHj3/e9vYwzWTC8ufOTS5re3uYJ5MJdTZ7dvJ3OdSxAknuuit83wMtq7vbV+ywQ3Xfd7wOY7/lDeMThlL26LuPxnGUrjNeb3PnhvWUzhf9V9rbqx8HUm3ZomUPsH1I7Me/445C+RrRD73ttu577DH0/1y07WrU+IJZs9w326y6Zd99dyjLtdfWtQiq0Addl0BcduFpCNB77RU+5rx54fETT4THl10W/ijxP9HnPtd/QfE/p+T+hS8kr/DWWwvznHJK4fko+Fx/vfu++/b/c7/5zYU/16telfynjt/mzq38wbu73Y8+uvi9UWCptGGLgu9uu214rk/qv1MxerT7Jz5RfjlRICj3g08KEAcfXL5M0XJuuil5nqQ6Kr1Fv4GofNGAu8EEm89+trCMtrbwOQZad0eH33fhhYVlXH55/7o64oji5RxxRHJ5SgcCxZcxb14IqNHr8YFJpXU1e/bA9RW/RQMLo0FFUTCq9B3HdxSSdraieaL/VbSspO/je99zz2TCb7GaW/QZzznH/QMfKH4+ulW7sY/KM1Cd7bdf/3JHQToaMHjkkdX9PwYrmy36vQ06QMd3fIc6GHWgstUS/I85xn3cuMYN/ttvP/fDD69u3j/9KXweAnTtNvwYd9wxfMyTTgqPf/zj8Pjss92vuircnzw5/Ljf8Ib+P4TSrOXII4tfj/7E3/hGYZ599y0s59prw3Pf/37lDfo22yRu4CsGrVKl2Wn8j1duI5PJhNdnzkwu3y67JG8EB9qoJ/3Rr766uoAavx1xRNjYffSj5TfIA7UQ7Lln8eN589y//e1CQKtm4/F//1d4f3t7oWUm6bOffnoo1957+99OO60QrN797uJyR1ldaUBNKs9QWxCSfj8dHe4TJw7ufUnf28yZ/QPT7bcn70iU/m7jnycKqlHAjua9+OLyv5dMpngUcrl5yj0/UCAq919KupXLiOM7HP/v/xV/3oF2tKv1xjcO/L/LSwzQ3d2F31+9s9T4tnOowf+rXw3v//e/61euuC23dJ8zp7p5owD929/WtQgtCdCSrpT0rKReSUslnTjQexoSoKdMCR/zuONCc070p+3oKDRdT5xY2BDE9+bnznWfNKn4z3jQQeEL+upXwx8zkwnvLbeR/dGPwuPTTqscnErXE/3x584tymor/tDPOSd5HVGmlrThTNoxKA048RaEgQJs6d5yfCM1c2Z1G7yBAkPphn/evMLhTe3t4XF0eEc+UPb7TANtsKPvP8r+SrPfcmWN5s+XOzHz23zzcPhfVEelrRTxLDCa56KLBl93lerz/e+v3/KiJvFjjglNmuXm3XXXQv10d1f+nuMtAqX1OHNmeH+8m2UwO37t7QN3w5R2fyXd/uM/qm+uLm2tK9edNhilh3AOpYnbPXQzSO5vf3t9A/Shhxb+X0MN/tH28+GH61euyO9/H5Zd7c7SPfeE+UdCgB7KrSEBety48DHf9Cb3448v/JgzmeSs0iwE4XJ/+Ne/vjBfuabEKAicc07I1KRwbPTYseWbmpPWF99ZKG0OTJLUDBr9OS6+OExLs4qBss9MJvyA58wpX+74Os0KG63u7sI6OzpCYKq03mr6ykvXHf25SptH49nXQM37mUxxE+vFFxfvlIwa5f6hD1X+ruN90+V2lEq/28MPd3/LWyp/7rFj3T/5ycJvra0ttPQMpp6Sfl/VBKBG3UaPdj/33MrzRDvW+dt6KfxfS/vco/9UR0f1v58DDxx8K1TpbbABtvQ3EY35qMVb3pL8XyijbID+9a8LyxnK8cpJ7ryzPv3ut98elnHzzbWXKa67uzD2o9rPHAXo3/ymrkXZeAP0+vWFH8mrX10cZEaP7t98Xc2GJQr40Ya90oa1u9v9rLPC456e8PhLXyr+U5XejzLBaGMc/YmjQH/UUZV/TG96k/smmxQGq8SDVrxPrVzmYVac6cY3RPE+8niWV9ofG5W53IAkKfQ7l9ZffEBTNd9HpY1k6QYxWnbScvbcs7ipL2m+iROTN9zRQK/Ses7PW3XfabU3M/f3vjfc32yz6jLHTCZkr6XPxXdC2tpCy0NHRyErnjev//K32qp+n2MQ8y878MDk7zm+Y/axj1VeTjTgMd7KU7pjV6krId5aNtiAUxr4a8mgu7uLg7NU1QDSsgG69H86e/bQyhUXL18tfdvRmKF6Z/fnnFPYzlRbvmggMAG6drfddpv7ypXFP7z4BumMM4r3wAfKsuKBM7pV2tO+5ppQkFNOcd9000LBSpv24n9+yX377QtlimfLN9/cf+MSF21odt/d/ZBDKldO/HPHWwHiTbRRfcT3LidPTi5DtLzotahpvlILQ3t7/zMwRYOvoia3aHlRWeI7FQNtJEs3iGbu3/pWclkOPtj9da+r/P2X+wzlylDNILKhBq4TTuj/22lvL9+9MXZs/9ai6LsuHcSV1BIRDXaKgkA1A83a2kKWHgX9Wj57W1vxYLtyBtrh7uwsXtfs2eEzRfUXDYYrV4dDHQUe/02+731hmZ/5zNCXkTRCvIpm2qoDdFtbbcEwPvpaqu0Mao0aZR5vlSx3ZE6pKEBH2/Y62XgD9D//Wf7PGn0p8WbN0swtGjwVbcRK/7RHH11+I3PUUeE9r399yL7ie+ilG6L29sIAor33Th7NmjTaMl72MWMK5d9tt4F/cPH3lu4QnHNOYSMQX1d8/aWBqbs7DI6bOLFyYI7XX+no7fgfuVxAnDev+o1kUmZQ+v0OdrBUvCwD7SCMHevro41/FKzmzi3eUSz9/MceG+7HD28r/X0dfnjhNxSNL4h/j/HDfaK6im+QBrvRLP09RjtkSQE13s8cqTTYq/T7KJ0vk3G/+OLqTpmaFGjiy4tOARtfdun88UPnolaFeh1W5h5a9To6wpEFgzl1bjQmIjp1cfxWZTZe8XSppUG/lkFspQMA67Wseo8yf/e7Q93ddVd18993nxOg6+S2225zf+yxwo8kPi33Zc+YEZrCDzzQffz4/v1dpYEnqSm23MY33qRWuiHt7nafPz/Mt//+yR8o/ieKAlW0AUoqx2D2NstsgNfHB3dU0yQU7+MvF5Tjh+l88IPJf+RKrQyD+YOWZtGlfeXxpv7B3qrZWHR3h+Ogk1o75s4N649u0e8gGrhS7vPHxxOUtrIk7dglrbce51SPllVN0I//dkp3NuJBtExwdq8QXErLFJ2XOzps8Igjin+3pU39A/1e6xkQojKW/o4Gai4v3bkqrcMqm9sr1mHpsdu1ZL0DtfYNRjwbr/co82OOCS2O1YoC9NVX168M7htxgI5GAL72tWG6/faFjULSlz17duiPfOc7wx+51MknV/5Dm5UffBPfoCdtSKOBGjNnlv9QUfNY0sZsKAGkktLgEt+xKNfEnrQRiQ9Mi5qw41ld0jLLDbIaSr9dPKuK+l2j9c2d2z9wlB4/HjWBRq0pgzzhyaAvlnHNNf3Lk9RyMFAwbpZqgn65rqToc8V3WEubnPOqrsdy2X70nQ3mOPB6jLQuldTHHdsRqfo91Qb3mAHrMP5fqSXzjUasH3lkfepvMCcTGYy99gp95dW6//6mB+iWn+qzUSYsWiSdemp48MgjYfrUU+EE8W99a/K5jDfdNFwy8uWXpYkT+y/0wAPDpdqSZDLhfMwnnigtXNj/PL3xc9F2dvZf9+jRYfr00+H8uknnhI2fXtA9uRxRWWo9D3Vnp55cu1Y7RuXo7Aznwi13HuhsNpzPttRmm4ULkkTn4y09D3HSMru6pDFjwvnK+/rCOcHb2qQLLxz8uXiPPz5c4KOnJ6z/ggsKFwqRwmtr1hTqs/T85NFni8pXj3NhV/KXvxQ/PvzwcN7npMsGpuEc2tWUI/7bWbIkXORECnU+aVLxb0CqrX5Ly1P6u5Wk3/62+L+UZKi/t4F0dYXfYXz70NcnzZ0b7s+ZE6bR7+yll8J5qJPK93//V5i/Ho4/Ply2src3fDff/760996DW0cuV7ggTzYrnXFG7eXaZx/pD38I2+56cZcefTRc76Dc9rbSe5ulXORuxa2eGfTSpP5hqfgkIqU++tFw+cn99gsnACgVDfkv3ftNym4mTXKfNi3shSedAKVUdNnESk05lUZFx291Op3goLK/pC6AeCYy2GbVeB95rZlipWyzu7v4bF517ucadAYdb9IbKLMajrq7w3iJQZ52ta6X7Uw6FWd023PPxl5W1b38QLtMJhxpMm9e8n8pPl5iCL/TqurwpJNqa0VoRJ/xd74Tlvfcc7UvK3LDDYWWgmp/hw88EN7z61/XrxxeOYPONG9XoLnaVq1KfuH++6VZs5Ivnr7pptLKleUz6KlTw3TChMJzZiEL+NznCnthnZ3SQQeF+7290tFHD7yHtmZN4XJm0RWdSh1/fMjwksQvheYessRmii4EP2pU/8uyrVsXLh03mL3Uzs5Qp3PmFNftUMtWbhmdnSFDHTMmZCWNvgLWQDo7QwuPFL7HU05J/q0OV52d0q23SmefXf+rE1VrzhzpzjtD1rrffsW/18WL63u1qSSdndKvfy3Nnl38fF9faF0499zk1qgVK0JLWyN/px/8YOEKgFIoxxWDuGJwfLtZrzJGl5388pfr91/47W/D1L389racJmbQIzZAr9ppp3DHrPiay5W+kE03DYHyhReSA3T+KjobLidZqSl53LjQnCeF5tKBzJo1cJDo7JRuvz1sVEplMiE4tjLIzJkTynfSScU7Eq0OegOJmkFbGTTi9tmncKnPwW48hoNKO0zNLMNFF4Uuj/glSvv6mlff8+aV3+FOEl3ruZG/02hHO9ppcQ+Xs6wmMOZy0mmnhfttbaFu61HGl14K0+99r3xyNVjbbBOmg9lexuukSUZsgN5Qif/939J3vlP8Wrnrxo4fH6bLl4esuFT8h5HJSIcdlvxHyeWkq64qPH7xxYHLW22Q6OwMP/yxY/tnqiee2PogE234br89ZChz5yZfYztt0hA0Iocdlp6MfqSLt/xE40iaVd+VdrhLmYWyHX9843+nc+ZI73tf4XF0reSBZLOF69zXsxXv0UfDtK+vfjus0Y7RF75Q/faydHvbBCN2kNikhQtDU/SRRxZ/odFeaNIXsummhftJGXRXVwiM0YCjpME7UlhffBDK449XV+hqB/5EwfyKK8LebbkBWK2UlkFMw9FAA/JQX3PmSHvu2Zr6jna4Z82SVq8ufm3mzLD92nzzwsDGZpXtox+VfvzjQgtkNTst8aSmry+Uux6OPDIkHoMpy0CeeCIMYD3rrMG/t4kZ9MgM0LmcNrvnnlCRs2YVMs4osEajc0sNFKCr3XB2dYW93egPF/Wh1FMUAI8/ng35SMQOTnO1sr6j7copp0h/+lPh+d12C9lyKxxwgLTHHtKqVdKCBdXVzUMPFe5nMvXLoA84QJo2LXQbfv/79fmeHnggtFINZgR3CzLokdnEnc0W9nJ6esIPpZrm46iJW5LuuCO5r6OaptBorzhyxhmNG+iTpqZZAEMTbTM6OgqZYrlEolmmTZOWLatu3lyuEKDb2urfVbDLLiHJqsd2LpcLO0LPPDO0Pm36oGvU1aW+0tGO1QSyeAZ91VW1DUhYvjzsRUojc6APgPrq7Azbia9+NUxbudOdy0m/+13IoGfOLBy7Xm7eQw+VurvD46OPrv84mNGjwwj7eiQ6t95anMBVu20mg66Tzk49eN55gx8wFc+gax2QEDVzM9AHQLXS0iIWH0ezbl3oky4XpLPZcPRL5Lrr6luWXE66/vqws1CPUdw77xymQz2hExl07Vbsvvvgf+jxDLrWs3Gl7dAdAKhWV1ehBVAqnO3sbW/rHyB337348fr19W0xjO8s1KM1cty4MP3IRwa3bSaDbrGHHy7cz2RqP44vLXvDADAY0eFn8SDtLl19tXTIIYUgncsVxtu0tTXmULWursJhUW1ttS/7ppvC9JhjhrZtJoNukYULC/dbcTYuAEiLOXPCOQ0yJWFi7dpwzoWDDw7XJ4jOFZ7JhPfUu8Wws1O69tpw/0Mfqm3ZuVzhegrveMfgmsvJoFvs8MPDSEH6jQGgEKRLLV4cjnSJZ5NDOaVvtQ47TNpiizD6upY+6PhFfYbaXE4G3SL0GwNAsTlzqjvkK5NpXFKTy4UzMla6lkI1urpCJjyUk56QQacA/cYAUGzu3OJrGpTKZMLlLxu13Sw9t8VQB4rttVdYTrnTNFeDM4kBAFIjOkb7iiuk554rfi26dnojk5qurnANhd7eMGBsqJn6I4+E6Zw5gy8v5+IGAKRSq0+HetFF0oc/LH3pS0MvRzTYrPS854NBHzQAADHveU/IYm++eWh90JdcEoK7FC6JO9hl0AcNAECCBx8M01tvHfxAsVxOOvnkcMIVKRwqNtR+bDJoAABi4gF1zZrQHz6Y90aHV0lDO+FJlEEToAEAiImfUcxdmj+/+iy69NrUp546LAaJEaABAOnX2RnOJBZZt676Zuprrincz2SkSZOGXg4yaAAAShx/fDjcSgoZbWlmnCSXk264ofB4qIdpkUEDAFBGZ2cY7CWFK1ydcsrAzdxf+1oh6zWTTjihtsPFyKABAEgQZc3uA4/GzuUKxz5L4Wxo1Zy2NAkZNAAAFUyZUrjf11e5mfuWW+qbPUtk0AAAJFq+vDibveqq8s3cK1eGqZk0ZszQs+doGU1GgAYADB9dXSHYRm6+OfnEJZdcIn3zm+F+W5t0wQX1OVUpGTQAAAk6O0Owjbj3P3HJJZdIH/1o4cxhfX0h864FF8sAAGAAUTN3lM26SxdfLE2YIB19dLg8ZjzTHcqZw8rhcpMAAJQRNXOvWVMcpM89NxzzHA+iZtKFF9bevE0fNAAAA+jsDCO0Tzqpf+D885+LH7e3S3vuWb910wcNAEAF0TWiP/OZyvP19Q39ylVxZNAAAAzCN74hzZ6d/FomE05OUq/+Z4k+aAAAqjZvnnT99VJPT3jc1iadfnq4KEZXV30Or2IUNwAAg9TZGZqxo0Otjj++PkE5CRk0AACD0NnZuKAs0QcNAECqMYobAIAUiTJoAjQAAClCEzcAAClGBg0AQIqQQQMAkGJk0AAApAgZNAAAKUYGDQBAipBBAwCQYmTQAACkCBk0AAApRgYNAECKkEEDAJBiZNAAAKQIGTQAAClGBg0AQIqQQQMAkGIjJYM2syPN7GEze9TMPtvIdQEA0DBRBj0SArSZtUn6rqQ3SdpN0nvMbLdGrQ8AgIYZYU3c+0l61N0fd/ceST+VdEwD1wcAQGPddJOUyzVlVY0M0NtKeir2eGn+OQAAhpd77gnT66+XZs1qSpBub/gaBmBmcyTNkaQpU6Yom83WZbkrV66s27I2VtRh7ajD+qAea0cd1mb7K6/UNEnmrr61a7Xkssv05Nq1DV1nIwP005K2iz2emn+uiLtfIukSSZoxY4Z3dXXVZeXZbFb1WtbGijqsHXVYH9Rj7ajDGo0erfU//ana1q1TpqNDO37oQ9qxs7Ohq2xkgL5H0k5mtoNCYD5O0nsbuD4AABqjs1MPnnee9lmxQurqkhocnKUGBmh3X2dmH5f0O0ltki5z90WNWh8AAI20YvfdQ3Bukob2Qbv79ZKub+Q6AAAYiTiTGAAAKUSABgAghQjQAACkEAEaAIAUIkADAJBCBGgAAFKIAA0AQAoRoAEASCECNAAAKUSABgAghQjQAACkEAEaAIAUIkADAJBCBGgAAFKIAA0AQAqZu7e6DBuY2fOS/lGnxW0h6YU6LWtjRR3WjjqsD+qxdtRh7RpRh9u7+5ZJL6QqQNeTmd3r7jNaXY7hjDqsHXVYH9Rj7ajD2jW7DmniBgAghQjQAACk0EgO0Je0ugAjAHVYO+qwPqjH2lGHtWtqHY7YPmgAAIazkZxBAwAwbI24AG1mR5rZw2b2qJl9ttXlGY7MbDszu83M/mpmi8zsU60u03BlZm1m9oCZXdvqsgxHZjbJzH5pZn8zs8Vm1tnqMg03ZnZq/n/8FzO70szGtLpMw4GZXWZmy8zsL7HnNjOzm83skfz0VY0sw4gK0GbWJum7kt4kaTdJ7zGz3VpbqmFpnaTT3X03Sa+XdDL1OGSfkrS41YUYxv5X0o3uvouk14m6HBQz21bSJyXNcPc9JLVJOq61pRo2fijpyJLnPivpFnffSdIt+ccNM6ICtKT9JD3q7o+7e4+kn0o6psVlGnbc/Vl3vz9//xWFjeK2rS3V8GNmUyW9WdIPWl2W4cjMJkqaKelSSXL3Hnd/qaWFGp7aJY01s3ZJm0h6psXlGRbc/Q5JL5Y8fYyky/P3L5c0u5FlGGkBeltJT8UeLxWBpSZmNk3S3pLubnFRhqMLJM2T1NficgxXO0h6XtL8fDfBD8xsXKsLNZy4+9OS/kfSk5KelfSyu9/U2lINa1Pc/dn8/eckTWnkykZagEYdmdmmkq6SdIq7r2h1eYYTM3uLpGXufl+ryzKMtUvaR9JF7r63pFVqcJPiSJPvIz1GYWdnG0njzOz9rS3VyODhEKiGHgY10gL005K2iz2emn8Og2RmoxSC8wJ3/1WryzMMHSjprWa2RKGr5VAz+3FrizTsLJW01N2j1ptfKgRsVO8wSU+4+/Pu3ivpV5IOaHGZhrN/mtnWkpSfLmvkykZagL5H0k5mtoOZdSgMhvhNi8s07JiZKfT7LXb381tdnuHI3T/n7lPdfZrC7/BWdydzGQR3f07SU2b22vxTsyT9tYVFGo6elPR6M9sk/7+eJQba1eI3kj6Yv/9BSdc0cmXtjVx4s7n7OjP7uKTfKYxWvMzdF7W4WMPRgZI+IOnPZrYw/9zn3f361hUJG6lPSFqQ3+F+XNIJLS7PsOLud5vZLyXdr3B0xgPijGJVMbMrJXVJ2sLMlkr6kqSvS/q5mZ2ocOXFdze0DJxJDACA9BlpTdwAAIwIBGgAAFKIAA0AQAoRoAEASCECNAAAKUSABoYJM1tvZgvzVyZ60MxON7NM/rUZZvbtCu+dZmbvbUCZKq4XwNBxmBUwTJjZSnffNH9/sqSfSLrL3b9UxXu7JH3a3d/S0EICqBsyaGAYcvdlkuZI+rgFXdE1p83s4HymvTB/kYnxCidYOCj/3Kn5jPpOM7s/fzsg/94uM8vGrsG8IH8GKpnZf5pZdz57/5OZjS9Z735mlsuvszt2BjAAQzCiziQGbEzc/fH8NdAnl7z0aUknu/td+QuerFG4yMSGDNrMNpF0uLuvMbOdJF0paUb+/XtL2l3hsoR3STrQzP4k6WeSjnX3e8xsgqTVJev9m6SD8mf0O0zSOZLeUeePDWw0CNDAyHOXpPPNbIGkX7n70nwSHDdK0oVmNl3Sekk7x177k7svlaT8qV6nSXpZ0rPufo8kRVc3K1nuREmX5wO+59cBYIho4gaGKTPbUSG4Fl1Rx92/LunDksZKusvMdkl4+6mS/inpdQqZc0fstbWx++tV/Y782ZJuc/c9JB0taUyV7wOQgAANDENmtqWk70m60EtGeprZa9z9z+7+DYUrvO0i6RVJ42OzTVTIiPsULozSNsAqH5a0tZn9Z34d482sNHBPVOHyrv81+E8FII4ADQwfY6PDrCT9XtJNks5KmO8UM/uLmT0kqVfSDZIekrQ+P8DrVEn/J+mDZvagQgBfVWnF7t4j6VhJ38m/52b1z5DPlfQ1M3tAdJ8BNeMwKwAAUogMGgCAFCJAAwCQQgRoAABSiAANAEAKEaABAEghAjQAAClEgAYAIIUI0AAApND/B10L6UlH2l9gAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 576x576 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "#FDR_cilindro_liso_Hr-10.csv\n", + "\n", + "file = '/home/student/ejercicios-clase-08-datos/data-used/FDR_cilindro_liso_Hr-10.csv'\n", + "\n", + "dataframe0 = pd.read_csv(file)\n", + "\n", + "x = dataframe0[\"r\"]\n", + "y = dataframe0[\"g(r)\"]\n", + "\n", + "plt.figure(figsize =(8,8))\n", + "\n", + "#plt.scatter(x,y, marker = \"+\")\n", + "pl.plot(x,y, \"r.-\")\n", + "plt.savefig(\"fdr.png\")\n", + "\n", + "pl.xlabel(\"Distancia\")\n", + "pl.ylabel(\"FDR(r)\")\n", + "pl.grid()\n", + "pl.legend([\"FDR(r)\"])\n", + "pl.title(\"Función de distribución radial\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Al igual que con la data correspondiente a la Función de Autocorrelación de Velocidades, también podemos visualizar el perfil estadÃstico básico de la data que genera nuestra Función de Distribución Radial. A continuación se muestra los perfiles de densidad en cada uno de los ejes:" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/student/.local/lib/python3.6/site-packages/seaborn/distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).\n", + " warnings.warn(msg, FutureWarning)\n" + ] + }, + { + "data": { + "text/plain": [ + "<AxesSubplot:xlabel='r', ylabel='Density'>" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEGCAYAAAB/+QKOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAqJklEQVR4nO3deXhcd33v8fdX+77LmxZLXoOT2LHjOAsJ0IZAAiGGNpQEaFMKTTe60eUmvfdSoL0tdIFyn8ItKVACtA1pWOpCICGkkIUsXuIljmNblm1Jlm3t+z7zvX/MyMjK2JZsjc6M5vN6Hj2eOXOO9ZE9Ot85v+2YuyMiIjJdWtABREQkMalAiIhITCoQIiISkwqEiIjEpAIhIiIxZQQdYK5UVFR4XV1d0DFERJLKzp07O9y9MtZrC6ZA1NXVsWPHjqBjiIgkFTM7fq7X1MQkIiIxqUCIiEhMKhAiIhKTCoSIiMSkAiEiIjGpQIiISEwqECIiEpMKhIiIxBTXAmFmt5rZQTNrMLP7Yrz+BjPbZWYTZnbntNfuMbPD0a974plTREReK24zqc0sHfgccAvQAmw3s23u/sqU3ZqAXwX+eNqxZcCfA5sBB3ZGj+2OV96F4t9eaJqX7/Pea2vj/j3m42eZj59jviykf6+F9LMks3gutbEFaHD3RgAzewjYCpwpEO5+LPpaeNqxbwV+6O5d0dd/CNwK/Hsc80oA+kbGaWgb4GTPCJ2Do3T0j9IxOEbXwBhH2gcYDzkT4TDjoXDkcSiMO4QBd8cdnMifwFnPZ3KvxI9t2x/PH29ehWZ4d8g0A8MwI/IVfZxm0W387HGaGVkZaWSlp5GVkcbTh9vJy8qgIDudysJsFhXmsKgomxUVBVSX5pKWZvH9IWVexbNAVAHNU563ANdewrFV03cys3uBewFqa/VpINFNhMLsO9HLc42dvNDYxYGTfbT1j561jxmU52dRmpfF8HiIzPQ08rLSyUjLJDPdyEhPO+tEZlMfn/U88ueFrFtWFI8fNRCvtPZdcJ+zCqh7tND+rNiG3fEp20LujE+EGQ2FGR4P0dA2wNBYiP6RcfpGJs76u7Mz0lhZWcDVy0u5fmU5160opyw/Kz4/rMyLpF6sz90fAB4A2Lx5s26uPY9m0wRwsneYHce72d3Uw/B4CIBFhdlUl+aysbaURYXZlOZlkZ+dTn52BmkzObPLa9SU5s3r9xsPhRkYmaBneJyOgVHa+0c51TvCN7Y387XnI+u/LS/P46qaEq6qKSE7I31e88mli2eBOAHUTHleHd0202PfNO3YH89JKpkX7s6h0wM8+eppmruHSU8z1i0t4vJlRdRX5FOYkxl0RLlEmelplOZnUZqfRX1F/pntobBzonuIw+0D7Gvp5T93t/KDl09x/YpyblpdSW6WCkWyiGeB2A6sNrN6Iif8u4D3zvDYx4C/MrPS6PO3APfPfUSJh46BUbbtbqWhfYDSvEzefuVSNtaUkJed1BesMkPpaUZteT615fn8/NpFNHcN8UxDBz8+1M4LR7u49YolXL28VFeKSSBuv7HuPmFmHyZysk8Hvuzu+83sE8AOd99mZtcA3wZKgXeY2cfd/XJ37zKzvyBSZAA+MdlhLYnL3dlxrJv/2ttKeppx+/qlbKkvIyNN021SlVmkWLy3PJ+TvcP8155Wvv3SCV4+0cu7N9dQoA8NCc18hiMfEt3mzZtdNwyav2Gu04XCzndeOsHOpm5WLSrgzk3VFOWqGUnOFnZn+7Euvrf3JHlZ6fzK9XUsK8kNJIuGuUaY2U533xzrNX20k0s2NhHmq88dY2dTNz+3dhG/ekOdioPElGbGtfXl/NabVmJmPPB0Iw1tA0HHknNQgZBLMh4K8/UXjtPQNsAvbKzilnWL1bYsF7S0OJffeuNKyvKy+NrzxzjaMRh0JIlBBUIuWtidh3c009A2wC9uqmZzXVnQkSSJFOVm8ms31lOSl8WDzx3jZO9w0JFkGhUIuWg/OtDG/tY+3nblUjYtL73wASLTFGRn8GuvrycnI42vPX+cgdGJCx8k80YFQi7KgZN9/PfBNq5eXsrrV5YHHUeSWHFuJu+/bjkDIxM8tL2J8AIZOLMQqEDIrPWPjPPNXS0sLc5h64ZlmPoc5BJVl+bxjg3LaGwf5NmGjqDjSJQKhMyKu/OtXScYmwjzS5tryEjXW0jmxublpaxbWsTj+09zqm8k6DiCCoTM0v7WPg6e7uct6xazuCgn6DiygJgZ79pYRXZmGt956YSamhKACoTM2Mh4iO/ubWVpcQ7Xr6wIOo4sQPnZGdx2xVKauobYeUy3fwmaCoTM2FOH2+kbmeCdV1WRrnX/JU421ZZQV57P46+cYiS6+q8EQwVCZqR3eJxnGzpYX11MTdn8ListqcXMeNuVSxgcC/H04fag46Q0FQiZkR8dOE04DG9ZtyToKJICqkvzuLKqmGcaOugbGQ86TspSgZAL6h4cY1dTN1vqy3SHMJk3b1m3mFDYeeawhr0GRQVCLuipw+0YxhvWVAYdRVJIeUE266tLeOFoJ4OaYR0IFQg5r77hcXYc72bT8lKKtUKrzLM3rqlkIuQ8e0RXEUFQgZDzer6xk3DYecNqDWuV+be4KId1y4p4obGLsYlw0HFSjgqEnNN4KMyLx7p43dIiyguyg44jKeqGlRUMj4fY3dwTdJSUowIh57SnuYehsRDXazE+CVBdeR5Li3P46ZEOFsodMJOFCoTE5O4819jJ4qJsVlTkBx1HUpiZccPKctr6R2nUjYXmlQqExHSiZ5iTvSNcW1+u1VolcOurS8jJTGP7sa6go6QUFQiJacfxbjLSjA3VJUFHESEzPY2rakp4pbWP4TEtvzFfVCDkNcYmwuxp7uGKqmJys9KDjiMCwOblZUyEnd3NWsRvvqhAyGvsb+1ldCLMZt1GVBLIspJclpXksPO4CsR8UYGQ19jT0kNJXiZ16pyWBLOptpTW3hFO64ZC80IFQs4yMDpBQ9sAG6pLSFPntCSYK6uKMWBvS0/QUVKCCoScZd+JXsKOOqclIRXmZLJyUQF7Wno1J2IeqEDIWfY097C4KJslxbqdqCSmDdUldA2O0dI9HHSUBU8FQs7oHR6nqWuI9bp6kAR2+bIi0s3Yd6I36CgLngqEnPFKa+QX7vJlRQEnETm3nMx0Vi7KZ3+rmpniTQVCztjf2seiwmwWFap5SRLbFcuK6R4a52SvRjPFkwqEAJHRS0c7BnX1IEnhsqVFGPByq5qZ4kkFQgB49WQfDly+rDjoKCIXVJCdQX1FPvtb+4KOsqDFtUCY2a1mdtDMGszsvhivZ5vZN6Kvv2BmddHtmWb2oJntM7MDZnZ/PHMKHDzdT3FuJks1ekmSxGVLi2jvH6V7cCzoKAtW3AqEmaUDnwNuA9YBd5vZumm7fRDodvdVwGeAT0W3vxvIdvcrgauB35gsHjL3JsJhGtoGWLO4UCu3StJYu7gQiHy4kfiI5xXEFqDB3RvdfQx4CNg6bZ+twIPRx48AN1vkDOVAvpllALnAGKBryThp6hxidCLM2sUFQUcRmbGKgixK8zI5pAIRN/EsEFVA85TnLdFtMfdx9wmgFygnUiwGgZNAE/B37v6aheDN7F4z22FmO9rb2+f+J0gRh073k27GykoVCEkeZsaaxYUcaR9gPKT7VcdDonZSbwFCwDKgHvgjM1sxfSd3f8DdN7v75srKyvnOuGAcPN3P8oo8sjO1tLckl7VLChkPOcc6dae5eIhngTgB1Ex5Xh3dFnOfaHNSMdAJvBf4gbuPu3sb8CywOY5ZU1bP0Bin+0bPtOeKJJMVFQVkpBmHTqmZKR7iWSC2A6vNrN7MsoC7gG3T9tkG3BN9fCfwpEemRjYBPw9gZvnAdcCrccyasg6fHgBgjQqEJKGsjDTqK/I5GH0fy9yKW4GI9il8GHgMOAA87O77zewTZnZHdLcvAeVm1gB8BJgcCvs5oMDM9hMpNP/i7nvjlTWVTQ5vXVSYHXQUkYuyZnEhHQOjdGm465zLiOdf7u6PAo9O2/bRKY9HiAxpnX7cQKztMrcmwmEa2ge4qrpEw1slaa1dXMj39p3k0Ol+rltRHnScBSVRO6llHhzvHGJsIqzmJUlq5QVZlOVnabhrHKhApLDDpwdIM1hZqVuLSvKKDHct4Ej7ABNhDXedSyoQKayxY4CaUg1vleS3oqKA8ZBzQjcRmlMqEClqZDxEa88wK3T1IAvAiorI+7ixQ/Mh5pIKRIo63jlI2KG+QrOnJfnlZWewpCiHxnYNd51LKhApqrFjkPQ0o7YsL+goInNiRWU+TV1DTGjZjTmjApGijnYMUlOaS1aG3gKyMKyoyGc85DSrH2LO6OyQgkbGQ5zoHmaFFueTBaSuIh8DjnaomWmuqECkoGOdgzhQX6EOalk48rIyWFKcQ2O7OqrnigpECmpsV/+DLEwrKiL9EFr+e26oQKSgox2D1JblkZmu/35ZWFZUFjARdpq7h4KOsiDoDJFihsci8x/UvCQLUV15pB9CzUxzQwUixUz2P2iCnCxEuVnpLC3J4agmzM0JFYgUc7RjkIw0o6ZU/Q+yMK2oKFA/xBxRgUgxxzsHqS7NVf+DLFh15XmEwk5rj+ZDXCqdJVLIeChMa88ItWVqXpKFqyY6Ou94pzqqL5UKRApp6R4m5M7ycjUvycJVmJNJeX4Wx7tUIC6VCkQKaYr+wmj+gyx0tWV5NHUOErnFvVwsFYgUcrxzkIqCbPKz43qnWZHALS/PZ3AsRKfuU31JVCBShLvT1DXEcl09SAqYbEZtUj/EJVGBSBEdA2MMjYXU/yApobIwm5zMNI53aT7EpVCBSBHHOyO/KOp/kFSQZpG1xjSS6dKoQKSIpq4hcjPTqSjMDjqKyLxYXp5PW/8ow2OhoKMkLRWIFHG8c4jasjzSzIKOIjIvJq+Wm9TMdNFUIFLA0OgE7QOj6n+QlFJTmkeaofkQl0AFIgVMzn9YXq4Z1JI6sjLSWFqcq36IS6ACkQKOdw2RZlBVkht0FJF5VVueR0v3EKGwJsxdDBWIFNDcNcTS4lyyMvTfLamltiyP8ZBzum8k6ChJSWeMBS7sTkvPMDVlunqQ1DO5rL3uMHdxVCAWuPb+UcYmwlTr/g+SgkrzMsnLSqelS0t/XwwViAWuJfrJSTcIklRkFrk5lq4gLo4KxALX3DVMTmYa5QVZQUcRCUR1WS7t/aOMjGvC3GzFtUCY2a1mdtDMGszsvhivZ5vZN6Kvv2BmdVNeW29mz5nZfjPbZ2Y58cy6ULV0D1FdqglykrpqSvNw4ITuMDdrMyoQZvYtM3u7mc24oJhZOvA54DZgHXC3ma2bttsHgW53XwV8BvhU9NgM4OvAb7r75cCbgPGZfm+JGJsIc6pvhOpSdVBL6pp8/7dowtyszfSE/3ngvcBhM/ukma2dwTFbgAZ3b3T3MeAhYOu0fbYCD0YfPwLcbGYGvAXY6+57ANy90911fThLJ3uHCbv6HyS15WVlUJ6fRXO3riBma0YFwt2fcPf3AZuAY8ATZvZTM/uAmWWe47AqoHnK85botpj7uPsE0AuUA2sAN7PHzGyXmf1prG9gZvea2Q4z29He3j6THyWlNEc/MekKQlJdTVnemQEbMnOzaTIqB34V+BDwEvBZIgXjh3HIlQHcCLwv+ue7zOzm6Tu5+wPuvtndN1dWVsYhRnJr7h6mJDeTwpxz1XCR1FBdmkvfyAS9w2qpno2Z9kF8G3gayAPe4e53uPs33P13gYJzHHYCqJnyvDq6LeY+0X6HYqCTyNXGU+7e4e5DwKNEipHMQkv3ENW6/4PImXlAzeqHmJWZXkH8s7uvc/e/dveTEBmBBODum89xzHZgtZnVm1kWcBewbdo+24B7oo/vBJ70yF3GHwOuNLO8aOF4I/DKjH8qYWB0gu6hcWrUvCTC0uIc0s1oUT/ErMy0QPxljG3Pne+AaJ/Ch4mc7A8AD7v7fjP7hJndEd3tS0C5mTUAHwHuix7bDXyaSJHZDexy9+/NMKvwswlymkEtApnpaSwpzlE/xCxlnO9FM1tCpCM518w2ApOD6YuINDedl7s/SqR5aOq2j055PAK8+xzHfp3IUFe5CM1dw1rBVWSKmrJcdjX1EHbXvKAZOm+BAN5KpGO6msgn+kn9wJ/FKZPMgZbuIRYX5WgFV5Go6tI8nm/sor1/lMVFmnc7E+ctEO7+IPCgmf2iu39znjLJJXJ3WrqHuaKqKOgoIgmjZkpHtQrEzFyoien90aaeOjP7yPTX3f3TMQ6TgHUOjjE8HtIEOZEpyguyyMlMo6V7mM11QadJDhdqYpq8R+W5hrJKAvrZBDkVCJFJaWZUl2hl19m4UBPTF6J/fnx+4shcaOkeJis9jUVF2UFHEUko1WW5PHWonbGJcNBRksJMJ8r9jZkVmVmmmf3IzNrN7P3xDicXp7l7iKrSXI3UEJmmpjSPsEOrVnadkZkOcXmLu/cBtxNZi2kV8CfxCiUXbyIU5mTviCbIicRwZmVXNTPNyEwLxGRT1NuB/3D33jjlkUt0qm+EUNipUv+DyGsU5mRSkpuplV1n6EKd1JO+a2avAsPAb5lZJTASv1hysSbf+LqCEImtujRXVxAzNNPlvu8DbgA2u/s4MMhr7+0gCeBE9xAF2RkU52oFV5FYqkvz6B4ap2twLOgoCW+mVxAAlxGZDzH1mK/OcR65RM3dw1SX5mLqoBaJabIfYk9LDz+3dlHAaRLbTEcxfQ34OyL3Zrgm+nWuVVwlIP0j43T0j2r+g8h5VJXkYsCe5p6goyS8mV5BbAbWRZfilgS170Qvju4gJ3I+2ZnpVBZms7dFY20uZKajmF4GlsQziFy6Pc2RN7wKhMj5VZfmsae5B33mPb+ZXkFUAK+Y2YvA6ORGd7/j3IfIfNvb0kNZfhZ5WbPpWhJJPdWluexq6uZEz7CaZM9jpmeSj8UzhMyNPc09unoQmYEzHdXNvSoQ5zHTYa4/ITKDOjP6eDuwK465ZJba+kdo7R3Rm11kBpYU55CVnsbelp6goyS0mY5i+nXgEeAL0U1VwHfilEkuwt5o/4MmyIlcWEZaGq9bVsRujWQ6r5l2Uv8O8HqgD8DdDwMaQJxA9rb0kJ5mLC1WgRCZiQ3Vxbx8opdQWB3V5zLTAjHq7memHUYny+lfNYHsbullzeJC3WJUZIY2VJcwOBbiSPtA0FES1kzPJj8xsz8Dcs3sFuA/gP+KXyyZDXdnb0sPG6qLg44ikjQ21ER+X9TMdG4zLRD3Ae3APuA3gEeB/xWvUDI7TV1D9AyNs6GmJOgoIkljRUUBBdkZ6qg+jxkNc3X3sJl9B/iOu7fHN5LM1uQnoPXVxWcmy4nI+aWlGVdW6XfmfM57BWERHzOzDuAgcDB6N7mPzk88mYm9Lb3kZKaxZnFh0FFEksqGmhJePdXHyHgo6CgJ6UJNTH9IZPTSNe5e5u5lwLXA683sD+OeTmZkT3MPVywrJjNdHdQis3FVTTHjIefAyb6goySkC51Rfhm4292PTm5w90bg/cCvxDOYzMxEKMzLrb2sry4JOopI0pn8vdHCfbFdqEBkunvH9I3RfgjdkSYBHDo9wMh4+MyIDBGZuaXFOVQWZmvp73O4UIE43y2XdDumBDA5AmODriBEZs3M2FBdzB6NZIrpQqOYNphZrMY5A3LikEdmaU9LD8W5mSwv1xpMIhdjQ3UJTxxoo29knKIcNYxMdd4rCHdPd/eiGF+F7q5/yQSwp7mX9dXFusWoyEVaH50/9LL6IV5Dw16S2PBYiIOn+7lKE+RELtrkCgS71cz0GioQSWx/a2ShMY1gErl4JXlZLC/PU0d1DHEtEGZ2q5kdNLMGM7svxuvZZvaN6OsvmFndtNdrzWzAzP44njmT1Z7oJbHWYBK5NBuqSzTUNYa4FQgzSwc+B9wGrAPuNrN103b7INDt7quAzwCfmvb6p4HvxytjstvT3MPS4hwWFWm8gMilWF9dzMneEdr6RoKOklDieQWxBWhw98boUuEPAVun7bMVeDD6+BHgZov2tprZO4GjwP44ZkxqkRVcS4KOIZL0Jvvx9ugq4izxLBBVQPOU5y3RbTH3cfcJoBcoN7MC4H8AHz/fNzCze81sh5ntaG9PrTUEe4bGONY5xHpNkBO5ZJcvKyY9zdQPMU2idlJ/DPiMu5/3Th7u/oC7b3b3zZWVlfOTLEHsPdP/UBJsEJEFIDcrnTWLCzVhbpoZLfd9kU4ANVOeV0e3xdqnJXqXumKgk8iCgHea2d8AJUDYzEbc/R/jmDep7GrqxizSdioil+6qmhK+u7eVcNhJS9O8IojvFcR2YLWZ1ZtZFnAXsG3aPtuAe6KP7wSe9Iib3L3O3euAfwD+SsXhbLuaeli7uJBCzfwUmRObakvoH5mgQbcgPSNuBSLap/Bh4DHgAPCwu+83s0+Y2R3R3b5EpM+hAfgIkTvXyQWEw85LTd1srC0NOorIgrFpeeT36aWm7oCTJI54NjHh7o8SuT3p1G0fnfJ4BHj3Bf6Oj8UlXBI70j5A/8gEm2pLgo4ismCsqMinODeTXcd7eM81tUHHSQiJ2kkt5/FSUw+AriBE5pCZsbG2hF26gjhDBSIJ7Wrqpjg3kxUV+UFHEVlQNtWWcrhtgN7h8aCjJAQViCS0q6mbjbUlGmkhMsc2Ra/Kd2s+BKACkXT6RsY53DZw5o0sInNnQ00xZuqonqQCkWR2N/XgjgqESBwU5mSydnEhu6L9fKlOBSLJTE6Q0z2oReJjY20pLzV1Ew570FECpwKRZHY19bBmkSbIicTLxuiEuSOaMKcCkUzCYWd3UzeblpcEHUVkwZpsvtVwVxWIpNLYMUDfyITmP4jE0eSEuZfUD6ECkUx2Ho98olEHtUj8pKVFJsxN/r6lMhWIJPLi0W7K8rNYWakJciLxdE1dGYfbBugaHAs6SqBUIJLIi8c6uaaulOhN90QkTrbUlwGw/VhXwEmCpQKRJE72DtPcNcyW+vKgo4gseOuri8nKSGP7URUISQIvRt+o10Y/2YhI/GRnpLOxpoQXdQUhyeDFo10UZGfwuqVFQUcRSQnX1pfx8oleBkYngo4SGBWIJLH9WBdXLy8lXQv0icyLa+rLCDvsSuHRTCoQSaBrcIxDpwfOdJyJSPxtqo18IHsxhfshVCCSwORICvU/iMyf/OwMrqgqVoGQxPbi0S6yMtK4sloL9InMpy11pexu7mFkPBR0lECoQCSB7ce62FhTQnZGetBRRFLKlvpyxkJh9rb0Bh0lECoQCW5gdIKXT/SqeUkkANfURZa1efFoZ8BJgqECkeB2Hu8m7GiCnEgASvKyuGxJIS+kaD+ECkSCe+5IJxnRxcNEZP5tqS9j5/FuxibCQUeZdyoQCe6ZhnY21ZaSn50RdBSRlPT6VRUMjYVS8v4QKhAJrHNglP2tfdy0uiLoKCIp6/qV5aSnGc8c7gg6yrxTgUhgzx7pxB1uVIEQCUxRTiZX1ZTw9OH2oKPMOxWIBPbM4XaKcjJYX10SdBSRlHbjqgr2nuilZyi17g+hApGg3J1nDndww8oKrb8kErCbVlfgDj89klrDXVUgEtSR9kFae0e4aY2al0SCtqGmhMLsjJRrZlKBSFDPRN+IN62qDDiJiGSmp3HdynKePtyBuwcdZ96oQCSoZxo6qC3Lo7Y8L+goIkKkmamle5jjnUNBR5k3KhAJaDwU5rkjnRq9JJJAblwV+X18uiF1hrvGtUCY2a1mdtDMGszsvhivZ5vZN6Kvv2BmddHtt5jZTjPbF/3z5+OZM9G81NTD4FiIm1apQIgkivqKfKpKcnn6UOr0Q8StQJhZOvA54DZgHXC3ma2bttsHgW53XwV8BvhUdHsH8A53vxK4B/havHImoqcPt5NmcMNKFQiRRGFm3LS6gueOdDIeSo1lN+J5BbEFaHD3RncfAx4Ctk7bZyvwYPTxI8DNZmbu/pK7t0a37wdyzSw7jlkTyhMH2rh6eSnFeZlBRxGRKd60dhH9oxNsT5HF++JZIKqA5inPW6LbYu7j7hNALzB92dJfBHa5++j0b2Bm95rZDjPb0d6+MC77TvQMc+BkHze/bnHQUURkmptWV5CVnsYTB9qCjjIvErqT2swuJ9Ls9BuxXnf3B9x9s7tvrqxcGMNBnzxwGoA3q0CIJJz87AxuWFXOj149nRLDXeNZIE4ANVOeV0e3xdzHzDKAYqAz+rwa+DbwK+5+JI45E8oTB9qoK89jZWV+0FFEJIabX7eY451DHGkfCDpK3MWzQGwHVptZvZllAXcB26bts41IJzTAncCT7u5mVgJ8D7jP3Z+NY8aEMjA6wXNHOrn5dYsx0/IaIono5ssWAfD4K6cDThJ/cSsQ0T6FDwOPAQeAh919v5l9wszuiO72JaDczBqAjwCTQ2E/DKwCPmpmu6Nfi+KVNVE8+WobY6Ewb718SdBRROQclpXksqG6mMdePhV0lLiL611o3P1R4NFp2z465fEI8O4Yx/0l8JfxzJaIvr/vJJWF2Vy9vDToKCJyHrdduZRPfv9VWrqHqC5duKsdJHQndSoZGpvgvw+2cevlS7R6q0iCu+2KyFX+Dxb4VYQKRIL48cF2RsbDZ954IpK4lpfns25pEY/uOxl0lLhSgUgQ393bSnl+Flvqy4KOIiIz8Pb1S9nV1ENL98JdvE8FIgH0jYzzxIE2bl+/lIx0/ZeIJIN3rF8GwLY9rRfYM3npbJQAfrDvFGMTYd65cfpEcxFJVLXleVy9vJTvvHRiwU6aU4FIAN/ZfYK68jyuqikJOoqIzMI7N1Zx6PQAB072Bx0lLlQgAtbaM8xzjZ1svapKk+NEksztVy4lM9341q6WoKPEhQpEwB7eEVnP8M6rqwNOIiKzVZqfxZtft5hv7mphdCIUdJw5pwIRoFDYeXh7MzeuqqCmbOFOthFZyO7aUkv30DiP7194S2+oQAToqUPttPaOcPeW2qCjiMhFumlVBVUluTy0vSnoKHNOBSJA//rCcSoKsrS0t0gSS0sz7rqmhmcbOhfcCq8qEAE52jHIj15t473XLicrQ/8NIsnsri21ZKWn8ZVnjwUdZU7pzBSQrzx7lMy0NN5/nZqXRJJdZWE2W69axiM7W+gZGgs6zpxRgQhA79A4/7GzhXdsWMaiwpyg44jIHPjA6+sZHg/xby8unL4IFYgAfPnZowyNhfj1N9QHHUVE5si6ZUXctLqCLz9zlOGxhTHkVQVinvWNjPPlZ4/y1ssXc9mSoqDjiMgc+r2bV9MxMLZgriJUIObZV549Rv/IBL/786uDjiIic+yaujKuX1HOP/3kCCPjyX8VoQIxjzoGRnngqUZuWbeYK6qKg44jInHwh7esob1/lC89czToKJdMBWIefeaHhxgZD3HfbZcFHUVE4mRLfRm3rFvM5/+7gfb+0aDjXBIViHny6qk+HtrezPuurWVlZUHQcUQkju6/7TJGJ8L8/eMHg45ySVQg5kEo7Nz3zX0U52byB29eE3QcEYmzFZUF/NqN9Ty0vZkXGjuDjnPRVCDmwdeeO8bu5h4+evs6SvOzgo4jIvPgD968murSXO7/9r6k7bBWgYizQ6f7+eQPXuWNayrZetWyoOOIyDzJy8rgr951JY3tg3zy+68GHeeiqEDE0ch4iN/9t5coyM7gb9+9XjcEEkkxb1hTyQdvrOcrPz3G4/tPBR1n1lQg4iQcdv7oP/ZwqK2fv/+lq7SkhkiK+tNb13JlVTF/9PAeDp1OrluTqkDEyd89fpDv7T3JfbdexhvXVAYdR0QCkp2Rzhd++Wpys9L5wL9sp61vJOhIM6YCEQf/90eH+fyPj3D3llrufcOKoOOISMCWleTyxXs20z00xt3//Dxt/clRJFQg5lA47Pz1owf49A8P8QubqvjLd16hfgcRAWB9dQlf+cAWTvaO8J4vPM+xjsGgI12QCsQc6R0a5ze/vpMvPNXI+6+r5W/v3EB6moqDiPzMlvoyvvbBLfQMjfHOzz/LTw61Bx3pvFQg5sBPDrVz22ef4slX2/jft6/jL7ZeoeIgIjFdvbyMb//261lUmM09X36Rj23bz8DoRNCxYsoIOkAye/VUH59+/BCPv3KaFRX5fPO3bmBDTUnQsUQkwdVV5LPtwzfyV48e4MHnjvH9l0/yB29ewy9uqk6oWxCrQMzS0NgEP3j5FI/sbOGnRzopzM7gT966lg/dVE92RnrQ8UQkSeRkpvOJrVfwro1VfPy/XuH+b+3jH544xLs2VnPn1VWsWlQYdMT4FggzuxX4LJAOfNHdPznt9Wzgq8DVQCfwHnc/Fn3tfuCDQAj4PXd/LJ5Zz2U8FObgqX6eb+zkhaNd/LShg8GxELVleXzkljXcc30dxXmZQUQTkQVgY20p3/7tG/jxoXa+/txx/vnpRv7pJ0dYt7SIG1aWs6W+jM11ZZQFsExP3AqEmaUDnwNuAVqA7Wa2zd1fmbLbB4Fud19lZncBnwLeY2brgLuAy4FlwBNmtsbd53xBk4HRCV5p7aNzYJSOwTG6BsboHByltWeYxvZBjncNEQo7AHXledxxVRXv2ljFNXWlGqEkInPCzPi5tYv4ubWLaOsfYdvuVn74ymm++vxxvhi9r0RZfhYrK/NZXp5PRUE2FQVZlOVnUV6QTU1pLivisEp0PK8gtgAN7t4IYGYPAVuBqQViK/Cx6ONHgH+0yFl3K/CQu48CR82sIfr3PTfXIRvaBvilL5z91xbnZrKkKIe1Swp525VLWbOkkC11ZSwp1mxoEYmvRYU5fOimFXzophWMToTY29LL7qYeGjsGONI2yNOH2+kaHGM85GeOefv6pXzuvZvmPEs8C0QV0DzleQtw7bn2cfcJM+sFyqPbn592bNX0b2Bm9wL3Rp8OmNmcLb6+N/bmCqBjrr5HnCR6xkTPB8o4FxI9H+9LgozMMOPngc+/76K/x/JzvZDUndTu/gDwwHx9PzPb4e6b5+v7XYxEz5jo+UAZ50Ki5wNlnIl4jqc6AdRMeV4d3RZzHzPLAIqJdFbP5FgREYmjeBaI7cBqM6s3sywinc7bpu2zDbgn+vhO4El39+j2u8ws28zqgdXAi3HMKiIi08StiSnap/Bh4DEiw1y/7O77zewTwA533wZ8CfhatBO6i0gRIbrfw0Q6tCeA34nHCKaLMG/NWZcg0TMmej5QxrmQ6PlAGS/IIh/YRUREzpY4c7pFRCShqECIiEhMKhCzZGZ/a2avmtleM/u2mZUEnQkiy5qY2UEzazCz+4LOM52Z1ZjZf5vZK2a238x+P+hMsZhZupm9ZGbfDTpLLGZWYmaPRN+DB8zs+qAzTWdmfxj9P37ZzP7dzAKfYWpmXzazNjN7ecq2MjP7oZkdjv5ZmmD5Aj/XqEDM3g+BK9x9PXAIuD/gPFOXNbkNWAfcHV2uJJFMAH/k7uuA64DfScCMAL8PHAg6xHl8FviBu18GbCDBsppZFfB7wGZ3v4LIAJW7gk0FwFeAW6dtuw/4kbuvBn4UfR6Ur/DafIGfa1QgZsndH3f3ycXbnycyRyNoZ5Y1cfcxYHJZk4Th7ifdfVf0cT+RE9trZscHycyqgbcDXww6SyxmVgy8gcjoP9x9zN17Ag0VWwaQG53blAe0BpwHd3+KyEjJqbYCD0YfPwi8cz4zTRUrXyKca1QgLs2vAd8POgSxlzVJqJPvVGZWB2wEXgg4ynT/APwpEA44x7nUA+3Av0Sbwb5oZvlBh5rK3U8Afwc0ASeBXnd/PNhU57TY3U9GH58CFgcZ5gICOdeoQMRgZk9E20+nf22dss//JNJs8q/BJU0+ZlYAfBP4A3fvCzrPJDO7HWhz951BZzmPDGAT8P/cfSMwSLDNIq8RbcffSqSYLQPyzez9waa6sOgE3YQc8x/kuSap12KKF3d/8/leN7NfBW4HbvbEmEiSFEuTmFkmkeLwr+7+raDzTPN64A4zexuQAxSZ2dfdPZFObi1Ai7tPXnk9QoIVCODNwFF3bwcws28BNwBfDzRVbKfNbKm7nzSzpUBb0IGmC/pcoyuIWYreBOlPgTvcfSjoPFEzWdYkUNFl3L8EHHD3TwedZzp3v9/dq929jsi/35MJVhxw91NAs5mtjW66mbOXz08ETcB1ZpYX/T+/mQTrSJ9i6lI/9wD/GWCW10iEc41mUs9SdFmQbCKLCgI87+6/GWAkAKKffP+Bny1r8n+CTXQ2M7sReBrYx8/a+P/M3R8NLlVsZvYm4I/d/faAo7yGmV1FpBM9C2gEPuDu3YGGmsbMPg68h0izyEvAh6L3dgky078DbyKyfPZp4M+B7wAPA7XAceCX3H16R3aQ+e4n4HONCoSIiMSkJiYREYlJBUJERGJSgRARkZhUIEREJCYVCBERiUkFQkREYlKBEJlHFqHfO0kKeqOKxJmZ1UXv1fFV4GXOXhZFJGFpopxInEVXr20EbnD35wOOIzJjuoIQmR/HVRwk2ahAiMyPwaADiMyWCoSIiMSkAiEiIjGpk1pERGLSFYSIiMSkAiEiIjGpQIiISEwqECIiEpMKhIiIxKQCISIiMalAiIhITP8fnwQItf5jee8AAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sns.distplot(dataframe0[\"r\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/student/.local/lib/python3.6/site-packages/seaborn/distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).\n", + " warnings.warn(msg, FutureWarning)\n" + ] + }, + { + "data": { + "text/plain": [ + "<AxesSubplot:xlabel='g(r)', ylabel='Density'>" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEGCAYAAABvtY4XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAavElEQVR4nO3deZAkZ3nn8e9TVX1OXzPT3XOPenQNOoyukRAIg0IYJBsBSxBeDAjvEuxqd4PdAOwAA7HsmljvrsNrs3gPOxACr7AkC4NAtmWwEIeQsKWRZiSha3SgOaQ5+5iZrr6qu6vq2T8yq6dnpo/qI7uysn6fiI7uyqrMfGq659dvv/m+b5q7IyIiyZOqdAEiIhINBbyISEIp4EVEEkoBLyKSUAp4EZGEylS6gOk6Ozu9p6en0mWIiFSN3bt397t710zPxSrge3p62LVrV6XLEBGpGmZ2YLbn1EUjIpJQCngRkYRSwIuIJJQCXkQkoRTwIiIJpYAXEUkoBbyISEIp4EVEEkoBLyKSULGaySrlu3vna2dt+/CbtlagEhGJK7XgRUQSSgEvIpJQCngRkYRSwIuIJJQCXkQkoRTwIiIJpYAXEUkoBbyISEIp4EVEEkoBLyKSUAp4EZGEUsCLiCSUAl5EJKEU8CIiCaWAFxFJKAW8iEhCKeBFRBJKAS8iklAKeBGRhFLAi4gklAJeRCShIg94M0ub2VNmdn/U5xIRkVNWogX/SWDPCpxHRESmiTTgzWwz8G7g9ijPIyIiZ4u6Bf8V4LNAcbYXmNmtZrbLzHb19fVFXI6ISO2ILODN7Gag1913z/U6d7/N3Xe4+46urq6oyhERqTlRtuCvA95rZvuBe4AbzOzOCM8nIiLTRBbw7v55d9/s7j3AbwE/cfdbojqfiIicTuPgRUQSKrMSJ3H3h4CHVuJcIiISUAteRCShFPAiIgmlgBcRSSgFvIhIQingRUQSSgEvIpJQCngRkYRSwIuIJJQCXkQkoRTwIiIJpYAXEUkoBbyISEIp4EVEEkoBLyKSUAp4EZGEUsCLiCSUAl5EJKEU8CIiCaWAFxFJKAW8iEhCKeBFRBJKAS8iklAKeBGRhFLAi4gklAJeRCShFPAiIgmlgBcRSSgFvIhIQingRUQSSgEvIpJQCngRkYRSwIuIJJQCXkQkoRTwIiIJpYAXEUkoBbyISEJFFvBm1mhmj5vZL8zseTP7UlTnEhGRs2UiPPY4cIO7D5tZHfBzM/uBuz8W4TlFRCQUWcC7uwPD4cO68MOjOp+IiJwu0j54M0ub2dNAL/Cgu++c4TW3mtkuM9vV19cXZTkiIjUl0oB394K7Xw5sBq4xs0tneM1t7r7D3Xd0dXVFWY6ISE1ZkVE07n4S+Clw00qcT0REoh1F02VmHeHXTcA7gRejOp+IiJwuylE0G4A7zCxN8Ivkr939/gjPJyIi00Q5iuYZ4Iqoji8iInPTTFYRkYRSwIuIJJQCXkQkoRTwIiIJpYAXEUkoBbyISEKVFfBm9l0ze7eZ6ReCiEiVKDew/wz4MPCKmf2hmW2PsCYREVkGZQW8u//I3T8CXAnsB35kZv9kZh8L13oXEZGYKbvLxczWAv8S+FfAU8CfEgT+g5FUJiIiS1LWUgVm9j1gO/CXwHvc/Uj41LfMbFdUxYmIyOKVuxbN19z9+9M3mFmDu4+7+44I6hIRkSUqt4vmD2bY9uhyFiIiIstrzha8ma0HNgFNZnYFYOFTbUBzxLXJHL731CFGJ/L85lVbqM9o9KqInG2+LpobCS6sbga+PG37EPCFiGqSeQyOTbL7wHGKDkO5fXz8rduoSyvkReR0cwa8u99BcNOOD7j7vStUk8zjoZd6KTq8+dy1PLp3gJeODnHppvZKlyUiMTNfF80t7n4n0GNmv3Pm8+7+5Rl2k4g98PxRWhsy3HjJenbuG+DQyTEFvIicZb4umlXh55aoC5Hy5CYLPPRSH5dubKc+k2J9WyOHToxVuiwRiaH5umi+Gn7+0sqUI/N5fN9xRicKXLShDYBNq5t47lAWd69wZSISN+UuNvZHZtZmZnVm9mMz6zOzW6IuTs728rEhALasbgJgY0cTY5MFToxOVrIsEYmhcodevMvds8DNBGvRnA98JqqiZHb7+kfoaK6juSH442tzRzBa9eCJ0UqWJSIxVG7Al7py3g18290HI6pH5rGvf4RtnaumHq9rayCdMg6dVD+8iJyu3IC/38xeBK4CfmxmXUAuurJkNmcGfCYdXmhVwIvIGcpdLvhzwFuAHe4+CYwA74uyMDnb6ESeI4M5zp0W8ABdrQ0cH5moUFUiElflLjYG8AaC8fDT9/nmMtcjc9jfH/Szb+tsYXDs1EXVjuY6sgcnyReKZDSjVURC5S4X/JfAecDTQCHc7CjgV9S+/hEAtnWu4unXT05tX91cT9HhaDbH5tVaIkhEAuW24HcAF7sGW1fUvv5hAHo6m08L+I7m4KZaB0+MKeBFZEq5f88/B6yPshCZ397+ETa0N9Jcf/rv5dXN9QCa0Soipym3Bd8JvGBmjwPjpY3u/t5IqpIZnTmCpqS96VQLXkSkpNyA//0oi5DyHDoxxvXbu87aXpdO0dqY4dBJTXYSkVPKCnh3/5mZnQNc4O4/MrNmIB1taTJdvlCkf3ic9W2NMz6/urleLXgROU25a9H8a+A7wFfDTZuA+yKqSWbQPzxB0aF7loDvaK7TZCcROU25F1k/AVwHZAHc/RWgO6qi5GzHssHE4bla8IdPjlEsaqCTiATKDfhxd5+aKhlOdlKSrKBSwK+bowU/WXB6h8ZnfF5Eak+5Af8zM/sCwc233wl8G/i76MqSMx0Lg3tdW8OMz5eGSmpVSREpKTfgPwf0Ac8C/wb4PvAfoypKznZsMEc6ZaxtmTngS0MlDw9qDTgRCZQ7iqZoZvcB97l7X7QlyUyOZXN0tQRLA8+krTEI+N6sAl5EAnO24C3w+2bWD7wEvBTezek/zXdgM9tiZj81sxfM7Hkz++RyFV2Ljg2Nz9o9A9BYl6I+k6JPffAiEpqvi+bTBKNnrnb3Ne6+BngTcJ2ZfXqeffPA77r7xcC1wCfM7OIlV1yjerO5WYdIApgZ69oapi7GiojMF/AfBT7k7vtKG9x9L3AL8Ntz7ejuR9z9yfDrIWAPwfh5WYSj2dysQyRLulsbNYpGRKbMF/B17t5/5sawH76u3JOYWQ9wBbBzhuduNbNdZrarr0/d+zPJTRY4OTo5ZxcNQHdrgwJeRKbMF/Bz3SaorFsImVkLcC/wqfDG3adx99vcfYe77+jqOnudFWGqX32uLhoIA15dNCISmm8UzWVmdlYoAwbMnTaAmdURhPtd7v7dRdQnBN0zMPskp5LutkayuTy5yQKNdVoqSKTWzRnw7r7olDAzA74O7HH3Ly/2OLXu7p2v8czBkwDsPnBizjXfu1uDLpze7Dhb1+rGHyK1LsobeF5HcJH2BjN7Ovz4jQjPl1hDuTwAbY1z/8FV6sLpHVI3jYgs7KbbC+LuPyfoypElyuYmyaSMpnm6XaZa8LrQKiJE24KXZZIdm6S1MUPQ6zW7Uh+9xsKLCCjgq0I2l6etaf5Rqaub66hLm1rwIgIo4KvCUG5yaq2ZuZgZXS0N9GYV8CKigK8K2Vx+3gusJV1tjbrIKiKAAj72cpMFJvJFWstowUNpspNa8CKigI+9bG4SoKw+eAhuCKIWvIiAAj72yh0DX9Ld2siJ0UnG84UoyxKRKqCAj7nsWNiCX0AXDaB14UVEAR932bAF39pUZgu+TZOdRCSggI+5bG6ShkyKhkx5ywJ1t4bLFehCq0jNU8DH3NBYeWPgS0ot+D5daBWpeQr4mMvm8mV3zwCsXdVAyuCYWvAiNU8BH3PZ3CTtC2jBp1NGZ4uGSoqIAj7W3J2hsXzZk5xK1rXp3qwiooCPtROjkxTcaVtAFw1oNquIBBTwMXZ0MOhmWWgLvluzWUUEBXysHQtDur3MWawlXa2NDIxMkC8UoyhLRKqEAj7GesMbd7SWuQ5Nybq2Btyhf3giirJEpEoo4GPs6GDQj97asNA+eN2bVUQU8LF2bChHc32aTHph36bSejQaCy9S2xTwMdabzdG+wO4ZmL4ejVrwIrVMAR9jx7LjtC7wAitAZ0sDZlqPRqTWKeBj7Gg2t6B1aErq0inWrqrXZCeRGqeAj6l8oUj/8PiCx8CXdLU2To3CEZHapICPqf7hCdxZ8CzWku7WBrXgRWqcAj6mjoWt78V00UAp4NWCF6llCviYOrrEgF/X1kj/8ASFoi9nWSJSRRTwMXVqFusiu2jaGigUnYERddOI1CoFfEwdHsxRlzZaFjiLtaQ02UlDJUVqlwI+po6cHGNdWyMps0Xt3xUuV9CnC60iNUsBH1OHB3NsbG9a9P7rNJtVpOYp4GPqyOAYGzoaF71/l9ajEal5CvgYKhado4M5NiyhBd+QSdPRXKcWvEgNU8DHUP/wOJMFZ+MSWvCgW/eJ1DoFfAwdDm/Vt5QWPOjm2yK1TgEfQ0dOjgGwoX1pLfiu1oapGbEiUnsiC3gz+4aZ9ZrZc1GdI6lKLfiNHUtrwW9sb6J3aFz3ZhWpUVG24P8fcFOEx0+sIyfHaKxLsbp5ccsUlGzsaKJQdHXTiNSoyALe3R8Gjkd1/CQ7Eo6Bt0VOciopXaQ9FHb5iEhtqXgfvJndama7zGxXX19fpcuJhcNLHANfsnl10MVzWAEvUpMqHvDufpu773D3HV1dXZUuJxaOnFzaGPiS0jHUghepTRUPeDndeL7AsaEcm5Z4gRVgVUOGjuY6Dp1QwIvUIgV8zLx+fAx36OlsXpbjbepoUheNSI2KcpjkXwGPAtvN7KCZfTyqcyXJa8dHANi6ZtWyHG9jRxOHT2osvEgtWtxi42Vw9w9Fdewk298/CkDP2uVrwT/66gDuvuRROSJSXSILeFmcAwMjtDRkWLOqfsH73r3ztbO2bepoYng8TzaXp71paePqRaS6qA8+Zg4cH+Wctc3L1touzYZVP7xI7VHAx8yBgVF61i5P/zucmuykgBepPQr4GMkXirx+fJSty9T/DkwNtzyooZIiNUcBHyNHBnPki75sF1ghWFGyuT7Nvv6RZTumiFQHBXyM7B9Y3iGSAGbGts5VCniRGqSAj5H9A+EQyWWa5FSigBepTQr4GHm1d5jm+jTrWpe+0Nh053a1cPDEKOP5wrIeV0TiTQEfI3uOZNm+vpVUanknJJ3buYqiw+vHR5f1uCISbwr4mHB39hzJctGGtmU/9rbOoE9/b5+6aURqiQI+Jg4P5sjm8ly0vnXZj91TCnj1w4vUFAV8TLx4JAsQSQu+vamOzpZ69qkFL1JTFPAxsScM+O0RtOABzu1s0UgakRqjgI+JPUeH2LKmidbGaBYE29a5ir39w5EcW0TiSQEfE3uOZLlo/fJ3z5RcuL6V/uEJerNaG16kVijgY2B4PM/+/pFI+t9L3ri5HYBnDw1Gdg4RiRcFfAw8sf84RYdrtq2J7BwXb2jDTAEvUksU8DHw2KsD1KdTXLl1dWTnWNWQ4fyuFp5TwIvUDAV8DDy2d4DLt3TQVJ+O9Dy/sqmdZw4q4EVqhQK+wrK5SZ49NMi150bXPVNy6aZ2eofGdaFVpEYo4CvsiX1B//u1562N/Fy60CpSWxTwFfbIK/3UZ6Ltfy+5eGMb6ZTx5GsnIj+XiFSeAr6C8oUi9z9zmHe8oZvGumj73wGa6zNcubWDh1/uj/xcIlJ5CvgKeuSVfvqHJ3j/FZtW7JzXb+/m2UOD9A2Nr9g5RaQyMpUuoJbd++RBVjfXcf32bgDu3vla5Od8+4Vd/I8HXuLhl/v4wFWbIz+fiFSOWvAVMjA8zoMvHOPmN26kPrNy34aLN7TR2dLAQy/3rdg5RaQyFPAV8r9/8ksmC0X+xVvOWdHzplLG2y/s4uGX+5jIF1f03CKyshTwFbC/f4Q7HzvAB6/eyvnd0SwPPJeb37iBwbFJHnj+6IqfW0RWjvrgV9hkocjnvvsMdekUn/61CyI/30z9+kV3tq5p5puP7uc9l22MvAYRqQy14FeQu/PF+57jsb3H+a/vv5TutsaK1JEy47fffA5P7D/B84c16UkkqdSCXyazjYD58Ju2AjA4Nslnvv0LfvjCMa7f3kVusrgio2Zm85tXbeFPfvgyX/nRK9z20asws4rVIiLRUMBHbHg8zz2Pv8afPfQq2bFJvnjzxTSu4KiZ2bQ31/GpX7uA//6DF/nBc0f5jV/ZUOmSRGSZKeAjMjA8zj+9OsB/+/4ehsfz/OoFnfzeTW/g0k3tFW25T/fxt27j/meO8MX7nuOiDW1s61xV6ZJEZBkp4JfZ68dH+dnLfew5kiVlxvsu38hH33wOV6zAWjMLlUmn+J8fvIx//tXH+OBXH+UvPnY1l2xsr3RZIrJMFPDL5MToBA88f5RnDg7SVJfm7Rd2ce25a/m3159X6dLmdH53K9+69Vo+cvtO3vt//pGPvGkrH7pmK29Y36p+eZEqZ+5e6Rqm7Nixw3ft2lXpMhYkm5vkzx96la89vBeAX72gi7dd2ElDJvrFw5aidPG35PjIBP/uzt1Ttw9c1ZBhXWsD3W0N3HjJerasbmbLmmbOWdu8IgujiUh5zGy3u++Y6Tm14BdpIl/krp0H+F8/foUTo5NcvqWDd128jo7m+kqXtihrVtXzvss38Y6L1vH84UEOnhijN5vjqddO8tje41OvSxmc393CJRvbeePmdq7uWcNFG4JliEUkXiJtwZvZTcCfAmngdnf/w7leXw0t+KODOf7m6UN889EDHDo5xlvOW8vnf/2ixN5Ew90ZmShwYmSC46MT9GbHOTI4xvGRCXrDFSlbGjJcsbWDa3rWcPW2NVy2OfrbD4pIoCIteDNLA/8XeCdwEHjCzP7W3V+I6pwlxaKTLzqFolNwp1Bw8sUi+aIzkS8yUSgykS8yGX4ubSuU9intV3TyBad/eJz9AyM8/foge45kAbj23DX8wfsv5foLuzCzxAa8mdHSkKGlIcOWNc2nPXdydIL9A6McGBjh5WNDPPJKf7gPbF7dxHldLfSsXcXq5no6mutoa8qQMpv2ERzfLJh8ZeG+Vtoenj9lYNip55i2jzFtv4XtM1kIvseTxSL5gpMvBD8jpdenDJhWWyp16vilYxQ9+CVY9GCGcLHoOJBOGZmUkU4ZdenU1ONMOjW1vfS49HXKjHwx+Dks/fxOFk5/nJ9Wc7HoU8erzwSf69Ip6tIpMunS18Fng6mf+4l8kfFp/w8m8sH7LoY/88Vi8H5SKUhbUGtqWo3psP6UnXqPqZRNvTYdfp1KMfXYsKn/g6V/68li8H+z9O9/6r0WKRSDfevTKeoywXuoD99bXdqoy5x6HNVfj17KgGn/NjNlxEzbUhbU3JA5VXN9+HV9OkVqhf7ijbKL5hrgl+6+F8DM7gHeByx7wF/1Xx5keDw/9c2IQkdzHZdubOczN27nxkvWc353SyTnqSYdzfVc3lzP5Vs6ABidyPPawCgHT47RPzzOS0eHeGzvALlJLWom0UkZwS+xMDNLnRKnJcHUtlNbZ3pdqUfDpz0fhVO/+IIGRGdrPY989oZlP0+UAb8JeH3a44PAm858kZndCtwaPhw2s5cirGkuncCstzo6APwCuGvFylmUOd9DFaj2+qH630O11w9V+h7s96a+XGj9sy5JW/GLrO5+G3Bbpesws12z9WNVi2p/D9VeP1T/e6j2+qH638Ny1h/lnPlDwJZpjzeH20REZAVEGfBPABeY2TYzqwd+C/jbCM8nIiLTRNZF4+55M/v3wAMEwyS/4e7PR3W+ZVDxbqJlUO3vodrrh+p/D9VeP1T/e1i2+mM1k1VERJZP5detFRGRSCjgRUQSSgFPsKSCmb1kZr80s89Vup6FMrNvmFmvmT1X6VoWw8y2mNlPzewFM3vezD5Z6ZoWwswazexxM/tFWP+XKl3TYphZ2syeMrP7K13LYpjZfjN71syeNrN4r3kyCzPrMLPvmNmLZrbHzN68pOPVeh98uKTCy0xbUgH40EosqbBczOxtwDDwTXe/tNL1LJSZbQA2uPuTZtYK7Ab+WbV8DyxYV3mVuw+bWR3wc+CT7v5YhUtbEDP7HWAH0ObuN1e6noUys/3ADnevuklOJWZ2B/CIu98ejj5sdveTiz2eWvDTllRw9wmgtKRC1XD3h4Hj874wptz9iLs/GX49BOwhmAldFTwwHD6sCz+qquVkZpuBdwO3V7qWWmVm7cDbgK8DuPvEUsIdFPAw85IKVRMuSWNmPcAVwM4Kl7IgYffG00Av8KC7V1X9wFeAzwLVvHCQAz80s93hEijVZhvQB/xF2FV2u5kt6T6aCniJDTNrAe4FPuXu2UrXsxDuXnD3ywlmbF9jZlXTVWZmNwO97r670rUs0Vvd/Urg14FPhF2X1SQDXAn8ubtfAYwAS7omqIDXkgqxEPZd3wvc5e7frXQ9ixX+Sf1T4KYKl7IQ1wHvDfuw7wFuMLM7K1vSwrn7ofBzL/A9gu7XanIQODjtr7/vEAT+oingtaRCxYUXKb8O7HH3L1e6noUysy4z6wi/biK4YP9iRYtaAHf/vLtvdvcegp//n7j7LRUua0HMbFV4gZ6wW+NdQFWNKnP3o8DrZrY93PQOlri8esVXk6y0KlxS4Sxm9lfA9UCnmR0E/rO7f72yVS3IdcBHgWfDfmyAL7j79ytX0oJsAO4IR2SlgL9296ocaljF1gHfC28UnwHudvd/qGxJi/IfgLvCxuZe4GNLOVjND5MUEUkqddGIiCSUAl5EJKEU8CIiCaWAFxFJKAW8iEhCKeBF5mBmX5ltRqSZ/bGZ3bDSNYmUS8MkRWZhZmuBv3f3a2d4Lk0w6/lr7v6uFS9OpAw1P9FJBMDMvgjcQrDY0+sESxZngX+Y9pr9wLcIZqr+kbvfY2ZrzWx9OAtRJFbURSM1z8yuBj4AXEawUNWO8KnrCIJ+ugF3v9Ld7wkfPxm+TiR21IIXCQL6b9w9B+TM7O/C7RsIWvTTfeuMx73AxojrE1kUteBFZjcGNJ6xbeSMx43h60RiRwEvAv8IvCe8t2oLULpd3R7g/Hn2vZAqW7VQaocCXmqeuz9BsET0M8APgGeBQeDvCVbpnFG4hv35QFXe4FmSTwEvEvhjd78QuBE4B9jt7o8APaW13t2954wbOt8MfMfd8yterUgZdJFVJHCbmV1M0Kd+R+km4MDvAluBkzPskwH+ZGXKE1k4TXQSEUkoddGIiCSUAl5EJKEU8CIiCaWAFxFJKAW8iEhC/X/NhJ5kpRR96QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sns.distplot(dataframe0[\"g(r)\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhsAAAInCAYAAAAxn5trAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABWDUlEQVR4nO3deXxc1X338e+ZkeTRLlnWYmRLsmx5xxhHBHAwceyEOqlTklCWNIU8gdQlDTEtWYA0IQt92tCmfgJNmpSGtGnSFJykhEBSlxRwCE1IEGCMV7xgGxtbsmWtI4000j3PH6N7PWNJtiTrambkz/v18gs8luYeXc3M/d5zfuccY60VAACAXwLJbgAAAJjcCBsAAMBXhA0AAOArwgYAAPAVYQMAAPiKsAEAAHyVkewGnIZ5uACAiWCS3YDzCT0bAADAV4QNAADgq1QbRhkXlTOr9ObhN5LdjEGCmVPUH+1JdjMSpGKbpNRsVyq2SUrNdqVim6TUbFcqtklKzXZdMGOmjrxxKNnNwBiYFFuufFwaY4zR9f/06/F4qnH1yJ8uT7l2pWKbpNRsVyq2SUrNdqVim6TUbFcqtklKzXY98qfLNY7XLGo2JhDDKAAAwFeEDQAA4CvCBgAA8BVhAwAA+IqwAQAAfEXYAAAAviJsAAAAXxE2AACArwgbAADAV4QNAADgK8IGAADwFWEDAAD4irABAAB8RdgAAAC+ImwAAABfETYAAICvCBsAAMBXhA0AAOArwgYAAPAVYQMAAPiKsAEAAHxF2AAAAL4ibAAAAF8RNgAAgK8IGwAAwFeEDQAA4CvCBgAA8BVhAwAA+IqwAQAAfEXYAAAAviJsAAAAXxE2AACArwgbAADAV4QNAADgK8IGAADwFWEDAAD4irABAAB8RdgAAAC+ImwAAABfETYAAICvCBsAAMBXhA0AAOArwgYAAPAVYQMAAPiKsAEAAHxF2AAAAL4ibAAAAF8RNgAAgK8IGwAAwFeEDQAA4CvCBgAA8BVhAwAA+IqwAQAAfEXYAAAAviJsAAAAXxE2AACArwgbAADAV4QNAADgK8IGAADwFWEDAAD4irABAAB8RdgAAAC+ImwAAABfETYAAICvCBsAAMBXhA0AAOArwgYAAPCVsdYmuw0eY8wmSdPO8WmmSToxDs05H3CuRofzNXKcq5HjXI3ceJ6rE9baNeP0XDiLlAob48EY02CtrU92O9IB52p0OF8jx7kaOc7VyHGu0hfDKAAAwFeEDQAA4KvJGDYeTHYD0gjnanQ4XyPHuRo5ztXIca7S1KSr2QAAAKllMvZsAACAFELYAAAAviJsAAAAXxE2AACArwgbAADAV4QNAADgK8IGAADwFWEDAAD4irABAAB8lVJhY82aNVYSf/jDH/7whz9+/xmTyy67LNntHtGf3/zmNyl1XlMqbJw4cSLZTQAAYFgtLS3JbsKI9PT0JLsJCVIqbAAAgMmHsAEAAHxF2AAAAL4ibAAAAF8RNgAAgK8IGwAAwFeEDQAA4CvCBgAA8BVhAwAA+IqwAQAAfEXYAAAAviJsAAAAXxE2AACArwgbAADAVxnJbgAAAGfiOFYHmsNqbI+ovCCkmpJcBQIm2c3CKBA2AAApy3GsNm0/pjs2blEk6iiUGdCG65ZqzaIKAkcaYRgFAJCyDjSHvaAhSZGoozs2btGB5nDS2mStTdqx0xVhAwCQshrbI17QcEWijpo6IklpT0+0T62trUk5djojbAAAUlZ5QUihzMRLVSgzoLL8UJJahLEgbAAAUlZNSa42XLfUCxxuzUZNSW5S2pOVEVRRUVFSjp3OKBAFAKSsQMBozaIKzV+/Qk0dEZXlJ3c2ijFGxlCYOlqEDQBASgsEjGpL81RbmpfspmCMGEYBAAC+ImwAAABfETYAAICvCBsAAMBXhA0AAOArwgYAAPAVYQMAAPiKsAEAAHxF2AAAAL4ibAAAAF8RNgAAgK8IGwAAwFeEDQAA4CvCBgAA8BVhAwAA+IqwAQAAfEXYAAAAviJsAAAAXxE2AACArwgbAADAV4QNAADgK8IGAADwFWEDAAD4irABAAB8RdgAAAC+ImwAAABfETYAAICvCBsAAMBXhA0AAOArwgYAAPAVYQMAAPiKsAEAAHyV4eeTG2MOSOqQ1C+pz1pb7+fxAABA6vE1bAx4h7X2xAQcBwAApCCGUQAAgK/8DhtW0pPGmBeNMet8PhYAAEhBfg+jXGGtPWKMKZP0C2PMLmvts/FfMBBC1klSVVWVz80BAGB04q9TpaWl2rx5c3IbNAKdnZ1JaefKlSuHfNxYayekAcaYL0rqtNZ+dbivqa+vtw0NDRPSHgDAec2M5ZvmzZtnd+/ePd5tGXebN28e9sLvsyHPq2/DKMaYXGNMvvv/kq6StM2v4wEAgNTk5zBKuaRHjTHucX5grd3k4/EAAEAK8i1sWGv3S7rIr+cHAADpgamvAADAV4QNAADgK8IGAADwFWEDAAD4irABAAB8RdgAAAC+ImwAAABfETYAAICvCBsAAMBXhA0AAOArwgYAAPAVYQMAAPiKsAEAAHxF2AAAAL4ibAAAAF9lJLsBAAAMx3GsDjSH1dgeUXlBSDUluQoETLKbhVEibAAAUpLjWG3afkx3bNyiSNRRKDOgDdct1ZpFFUkLHNZaWWtlDIFnNBhGAQCkpAPNYS9oSFIk6uiOjVt0oDmctDb19PWrtbU1acdPV4QNAEBKamyPeEHDFYk6auqIJKlF0pSMoIqKipJ2/HRF2AAApKTygpBCmYmXqVBmQGX5oSS1SDLGMIQyBoQNAEBKqinJ1YbrlnqBw63ZqCnJTXLLMFoUiAIAUlIgYLRmUYXmr1+hpo6IyvKZjZKuCBsAgJQVCBjVluaptjQv2U3BOWAYBQAA+IqwAQAAfEXYAAAAviJsAAAAXxE2AACArwgbAADAV4QNAADgK8IGAADwFWEDAAD4irABAAB8RdgAAAC+ImwAAABfETYAAICvCBsAAMBXhA0AAOArwgYAAPAVYQMAAPiKsAEAAHxF2AAAAL4ibAAAAF8RNgAAgK8IGwAAwFeEDQAA4CvCBgAA8BVhAwAA+IqwAQAAfEXYAAAAviJsAAAAXxE2AACArwgbAADAV4QNAADgK8IGAADwFWEDAAD4irABAAB8RdgAAAC+ykh2AwAAGIrjWB1oDquxPaLygpBqSnIVCJhkNwtj4HvYMMYEJTVIOmKtXev38QAA6c9xrDZtP6Y7Nm5RJOoolBnQhuuWas2iiqQGDmutrLUyhtAzGhMxjHK7pJ0TcBwAwCRxoDnsBQ1JikQd3bFxiw40h5Part6+frW2tia1DenI17BhjJkh6fclfdvP4wAAJpfG9ogXNFyRqKOmjkiSWoRz4XfPxtckfUaSc5avAwDAU14QUigz8RIVygyoLD+UpBbFZGUEVVRUlNQ2pCPfajaMMWslNVlrXzTGrDzD162TtE6Sqqqq/GoOACCN1JTkasN1SwfVbNSU5E54W+KvU6WlpfrlL3854W0Yrc7OTm3evHnCj7ty5cohHzfWWl8OaIz5G0k3SuqTFJJUIOk/rbV/PNz31NfX24aGBl/aAwBIL+5slKaOiMryx302ypieaN68eXb37t3j1QbfbN68edgLv8+GPK++9WxYa++WdLckDfRsfOpMQQMAgHiBgFFtaZ5qS/OS3RScIxb1AgAAvpqQRb2stZslbZ6IYwEAgNRCzwYAAPAVYQMAAPiKsAEAAHxF2AAAAL4ibAAAAF8RNgAAgK8IGwAAwFeEDQAA4CvCBgAA8BVhAwAA+IqwAQAAfEXYAAAAviJsAAAAXxE2AACArwgbAADAV4QNAADgK8IGAADwFWEDAAD4irABAAB8RdgAAAC+ImwAAABfETYAAICvCBsAAMBXhA0AAOArwgYAAPBVRrIbAADA6RzH6kBzWI3tEZUXhFRTkqtAwCS7WRgjwgYAIKU4jtWm7cd0x8YtikQdhTID2nDdUq1ZVEHgSFMMowAAUsqB5rAXNCQpEnV0x8YtOtAcTnLLJGutrLXJbkbaIWwAAFJKY3vECxquSNRRU0ckSS06paevX62trcluRtohbAAAUkp5QUihzMTLUygzoLL8UJJadMqUjKCKioqS3Yy0Q9gAAKSUmpJcbbhuqRc43JqNmpLcJLdMMsbIGOpGRosCUQBASgkEjNYsqtD89SvU1BFRWT6zUdIdYQMAkHICAaPa0jzVluYluykYBwyjAAAAXxE2AACArwgbAADAV4QNAADgK8IGAADwFWEDAAD4irABAAB8RdgAAAC+ImwAAABfETYAAICvCBsAAMBXhA0AAOArwgYAAPAVYQMAAPiKsAEAAHxF2AAAAL4ibAAAAF8RNgAAgK8IGwAAwFeEDQAA4CvCBgAA8BVhAwAA+IqwAQAAfEXYAAAAviJsAAAAXxE2AACArzL8emJjTEjSs5KmDBznR9baL/h1PADA5OE4Vgeaw2psj6i8IKSaklwFAibZzcIY+RY2JPVIWmWt7TTGZEp6zhjzX9ba5308JgAgzTmO1abtx3THxi2KRB2FMgPacN1SrVlUQeBIU74No9iYzoG/Zg78sX4dDwAwORxoDntBQ5IiUUd3bNyiA83hJLdMstbKWi5lo+VrzYYxJmiM2SKpSdIvrLW/9fN4AID019ge8YKGKxJ11NQRSVKLTunt61dra2uym5F2/BxGkbW2X9JSY0yRpEeNMYuttdviv8YYs07SOkmqqqryszkAgDRQXhBSKDOQEDhCmQGV5YeS0p7469S0aaV66aWXFAwGk9KWkers7NTmzZsn/LgrV64c8nEzUd1Bxph7JHVZa7863NfU19fbhoaGCWkPACA1TVDNxpieaO7cuXb37t0yJrVrRzZv3jzshd9nQ54YP2ejlEqKWmtbjTHZkt4l6T6/jgcAmBwCAaM1iyo0f/0KNXVEVJafOrNRjDEpHzRSkZ/DKNMlfdcYE1SsNmSjtfYJH48HAJgkAgGj2tI81ZbmJbspGAe+hQ1r7VZJF/v1/AAAID2wgigAAPAVYQMAAPhqRMMoxpgySW+TdIGkbknbJDVYa50zfiMAADjvnTFsGGPeIekuSVMlvazY4lwhSe+TNNsY8yNJf2+tbfe5nQAAIE2drWfjPZL+xFp76PR/MMZkSFqr2JTWH/vQNgAAMAmcMWxYaz9tjAkYY66z1m487d/6JP3Ez8YBAID0d9YC0YG6jM9MQFsAAMAkNNLZKP9jjPmUMWamMWaq+8fXlgEAgElhpIt6XT/w34/HPWYl1Y5vcwAAwGQzorBhrZ3ld0MAAMDkdMZhFGPMFWf59wJjzOLxbRIAAJhMztazcY0x5m8lbZL0oqTjiq2zMUfSOyRVS/qkry0EAABp7WxTX/9ioBD0GknXSqpQbAXRnZK+Za39X/+bCAAA0tlZazastSeNMQWStkp61X1Y0nxjTNhau8XH9gEAgDQ30tkob5FUL+mnkoxiK4dulXSrMeaH1tq/9al9AIDzjONYHWgOq7E9ovKCkGpKchUImGQ3S5JkrZW1VsakRnvSxUjDxgxJy6y1nZJkjPmCpJ9JulKxWg7CBgDgnDmO1abtx3THxi2KRB2FMgPacN1SrVlUkRKBo7evX62trSouLk52U9LKSBf1KpPUE/f3qKRya233aY8DADBmB5rDXtCQpEjU0R0bt+hAczjJLcO5GGnPxr9L+q0x5rGBv79X0g+MMbmSdvjSMgDAeaexPeIFDVck6qipI6La0rwkteqUrIygioqKkt2MtDPSRb3uNcb8l6S3DTx0q7W2YeD/P+RLywAA553ygpBCmYGEwBHKDKgsP5TEVp1ijKFeYwxGOowia22Dtfb+gT8NZ/8OAABGp6YkVxuuW6pQZuzy5NZs1JTkJrllOBcjHUYBAMB3gYDRmkUVmr9+hZo6IirLT63ZKBgbwgYAIKUEAka1pXkpUaOB8THiYRQAAICxIGwAAABfETYAAICvCBsAAMBXhA0AAOArwgYAAPAVYQMAAPiKsAEAAHxF2AAAAL4ibAAAAF8RNgAAgK8IGwAAwFeEDQAA4CvCBgAA8BVhAwAA+IqwAQAAfEXYAAAAviJsAAAAXxE2AACArwgbAADAVxnJbgAAAC7HsTrQHFZje0TlBSHVlOQqEDDJbhbOEWEDAJASHMdq0/ZjumPjFkWijkKZAW24bqnWLKpImcBhrZW1VsakRnvSBcMoAICUcKA57AUNSYpEHd2xcYsONIeT3LJTevv61dramuxmpB3CBgAgJTS2R7yg4YpEHTV1RJLUIowXwgYAICWUF4QUyky8LIUyAyrLDyWpRYNlZQRVVFSU7GakHcIGACAl1JTkasN1S73A4dZs1JTkJrllpxhjqNcYAwpEAQApIRAwWrOoQvPXr1BTR0Rl+cxGmSwIGwCAlBEIGNWW5qm2NC/ZTcE4YhgFAAD4irABAAB8RdgAAAC+ImwAAABfETYAAICvCBsAAMBXhA0AAOArwgYAAPAVYQMAAPjKt7BhjJlpjHnGGLPDGLPdGHO7X8cCAACpy8/lyvskfdJa+5IxJl/Si8aYX1hrd/h4TAAAkGJ869mw1h611r408P8dknZKqvTreAAAIDVNyEZsxpgaSRdL+u1EHA8AkH4cx+pAc1iN7RGVF7Dj62Tie9gwxuRJ+rGkP7fWtg/x7+skrZOkqqoqv5sDAEhBjmO1afsx3bFxiyJRR6HMgDZct1RrFlUkPXDEX6dKS0u1efPmpLZnJDo7O5PSzpUrVw75uLHW+nZQY0ympCck/be1dsPZvr6+vt42NDT41h4AQGraf7xT73ngV4pEHe+xUGZAP1+/wq/t5seUYGpqZ9uXX2xQcXHxeLdnXG3evHnYC7/Phjyvfs5GMZIekrRzJEEDAHD+amyPJAQNSYpEHTV1RJLUIownP9fZeJukGyWtMsZsGfjzHh+PBwBIU+UFIYUyEy9JocyAyvJDSWrR0LIygioqKkp2M9KOn7NRnrPWGmvtEmvt0oE/P/freACA9FVTkqsN1y31Aodbs1FTkpvkliUyxijWcY/RmJDZKAAAnEkgYLRmUYXmr1+hpo6IyvKZjTKZEDYAACkhEDCqLc3zqyAUScTeKAAAwFeEDQAA4CvCBgAA8BVhAwAA+IqwAQAAfEXYAAAAviJsAAAAXxE2AACArwgbAADAV4QNAADgK5YrBwCkBMexOtAcVmN7ROUF7I0ymRA2AABJ5zhWm7Yf0x0btygSdbxdX9csqkipwGGtlbWWnV9HiWEUAEDSHWgOe0FDkiJRR3ds3KIDzeEktyxRb1+/Wltbk92MtEPYAAAkXWN7xAsarkjUUVNHJEktwngibAAAkq68IKRQZuIlKZQZUFl+KEktGlpWRlBFRUXJbkbaIWwAAJKupiRXG65b6gUOt2ajpiQ3yS1LZIyhXmMMKBAFACRdIGC0ZlGF5q9foaaOiMrymY0ymRA2AAApMe00EDCqLc1TbWnehB4X/iNsAMB5Ll2mnaYCpr6ODWEDAM5z7rTT4pwsfWDZDBkj7T7WroXT81UzjV6GeO7U1+Li4mQ3Ja0QNgDgPNfYHlFxTpZuvKxaDzy9x+vdqC7JVdVU6ibiWUmtra0qKiqid2MUmI0CAOe5srwpurZ+hhc0pNgaF5999NWUW1Qr2Yyk237wIgt7jRJhAwDOY45j1dTZo6qpOSyqNSJMfR0LhlEA4Dx2oDms3+xv1pSMgEKZgYTAMZGLaqXCbJiRsLL6hw8uY2GvUSJsAMB5rLE9IsdKGxve0PpVdXqk4ZDWLqlUMCC9papYVcU5vrch3WbDFBYW0rsxSgyjAMB5rLwgpMdfOaLr66v09K5jWnflbD303H498NRe/en3X9STOxvlONbXNqTLJmySpIGprxgdwgYAnMdqSnJ155oFeqThkG5aXqt7n9gx4Rf9tNqEjeXKx4RhFAA4zy2cnq+/veYiNYd7FIk6ml4Y8tbbkKST4R5fV/V0N2FLVr3IaBiJsDEGhA0AOE/19Tn62bajuvPHWxWJOrp99RxVl2Tr+vqqhPU26srytMyxvtVPuJuwnV6zkWqbsEns+jpWhA0AOA85jtWv9zd7QUOSNjYc1j1rF+ovTqufuPPHW3VhZaFvvRvptgmbu8YGC3uNHGEDAM5DB5rDajh4MmHo4mhbRHuaOoetn/BzKCVdNmHr7XN0y7/+Tr3dnfrex1axbPkIUSAKAOchd8prKDPxMtDvOIMeS9X6CaQPwgYAnIfcKa/rV9V54SKUGdCC6QXacN3ShMf8rp9wHKv9xzv1m30ntP94p+9Tbc9FZtDo2x++RN/72CpqN0aBYRQAOA+5U17v27RTt1xRq2BAqq+equW1JZKkR9ZdpqNtEU0vzNai6QW+1U+k24Je0X5HxhiGT0aJsAEA56FAwOiqBeWqLAoNhIqQFk0vVCBgJvTiP9yCXvPXr0jJ+g12fR0bhlEA4DzkOFZP7mzU9Q8+r1u//5Kuf/B5PbmzUa+fmNjVPNNqQS+x6+tYETYA4Dw0XI/CwZPhCb34uwt6xUvtglRWEB0LwgYAnIeG61HInZIxoRd/d0GviSxIPRdZGQGKQ8eAmg0AOA8Nt0R4ef6UCV3NM90W9KI4dGwIGwBwnnEcq2BA+uv3X6jPPvpqQqiompqrqqm5E3rxT5cFvTB2hA0AOI84jtXTuxu1p7FTD79waNC0VzdUuD0Zje0R7++p2tswkay1amlpYTbKKBE2AOA8cqA5rK2H2/Tgs/sViTr6xjN7JcWGUH4+MN003da+mEg9ff264e8f08OfvJrhlFGgQBQAziPuMuVnmnEy3EwVv6a/pptv3fJ2CkRHiZ4NAEgCx7E6dDKsxvYehXv7VD01V7Om+T9UUV4QUtBoyOJQd8aJO1NlemFIH1g2Q+5owclwz7jXVTiO1YHmsBrbIyovSO3iUFdhYSFDKKNE2ACACRZfN3H/U3smdKiipiRXF84o1O2r6wYd263TKC8IqbokW9fXV+mBp099TV1ZnpY5dtzax3DN+YOwAQAT7PS6CWlil+meU5qn4uwsPfThevX2Oao6rVelpiRX9159odZ9ryGhfXf+eKsurCwct/al21Llrra2toSeDYpFz46wAQAT7Gx1E35daIfrSTh9+CYQMMoMGt/bd6alylM1bBhJdzy62wsXvd2d+t7HVlEsehbnTYFoOm1hDGDychyrrGDAq5uI5/cy3aMp/JyIZcTTb6lyieXKx+a86NnwY1wwHYuaACRXX5+j/9nVqGi/o6k5WYPqJv76/Rf6ukz3aHoS3GXE/VxJdCKOMd6yMgJ66P+8NeExZqac3XkRNsZ7XJCiJgCj1dfn6Ll9J7TjaLuMpJ9sOaIbLqnS/TdcrMyA0cmuXs0p83fooCx/6CXKS/MG9yRMxDLi6bZUOcbuvAgb4z0umK5FTQCSw3Gsfr2/WS8dapFjpR+/eFg3Xlath184NGjGh583LsGABvWm3L66TsFhBtQnYhnxdFuqvKevXx/8hyeVEQxKkqLdnSzwNQLnRdgYbsOhsY4LpmNRE4Dkef1EWFsPt8qxUtBILV29+t7zB3X3exboMz96RcU5Wd56FruPtWvh9HzVTBv/z5KjbRH9228O6pYramWMZK30b785qIurioY9nt9Dxuk2JG0k2WhE/3Djld7wCcMoZzdpw0b8C3h6YWhcxwXPFl6Ge/Ok25sKwLnr63O0/Wibqkty9dUnd+nm5bO83oXXGjtUnJOl/7O8Rv/vf17zPp+qS2KboY3350NZfkgtXb3eEuXSmW+8/B4yTs8haaNAZuL5am1tTfg7U2EHM9amzqyM+vp629DQcM7PM9QL+Ot/dLFmleSppatHmcGAunr7x3zBP9MbRNKQ/3bVgnI9ubNxyMcPtXQRQACfJSPsO47Vc3tP6MWDJ5WbFVSfIz3ScEg3XFKlmcU5KsjO0PY323X/U3tUnJOlmy6v1oziHHX39ml+RYEWVxaO6wJao11IbP/xTr3ngV8NurH6+TgNGfv9/GcxphNbUzvbLr7lPmVm5w0ZKFJlKuzmzZu1cuXKZBx6yPM6KXs2hqqpuO0HL2vT7SvU1NF7zin6TEVN+5o6h6zneGTdZYMev2/TTgWMtONou9e9euGMQq2aV07gAMZRsu6gXz8RVsPBk/phw2Hds3ahvrJpp9YuqVS4t187j3Xot/uP6+YrZqs4J0u3Xlmrrmi/Pv2jV3xp44HmsG77wcsqzsnyhlECRlo4PX/Y5/d7yDg9h6SNAlNy1O8kttut4cDQJmXYGO4F3NjeM26FnUMVNTmO1c6j7UMe+2jb4DbdcEmVXj8R9lYRdIu15pTmjXi89lz2V3C7d4+2RTS9MFuLphcoIyP5S68w3DR5Jet3+/qJ2A3I6bURiy7IV78j39pzsDksx8ZqNL65ea/WXTlb9z6xIyFMTM3N0rX1M9Tc1asHn93vW/2G+7l4tC2SMIyyfHbJsM8/3vVuE/38/rByeroSHolGwrr/Zmo4zmRSho3hXsBdvX2+pujXT4S1p6ljyGNPL8we9PjM4hx9auAuxm3L/U/t0bKq4hF9uJzL/gp9fY5+8soRfe4n27zv+6v3Ldb7LqpMauA40xBYU8fEXKCStUHWZJeM3gX3d7njaLuKc7J042XVeqThkNYuqVTulKAaDrbqLx991bd6hIyg0eOvHNH6VXV64Ok9+vrTe7XuylrNKc3TogsKNWtarg6dDKtqao4ONHd5bYyfnTIe9RuOY9XXb0d9Yfd7HYyq4hzdd80S3fnjrWmzzobbsxEv0N+f8PfTazhc53Mth29hwxjzHUlrJTVZaxf7dZyhDPUG+fofXayMQEChzEDCnUPQSBUF45OiD54Ma2PDYe+DJRJ1VF2SrS++d7F6+/t13zVLtOEXu7V2SaWCASljmOWAu3r7RnS8+P0VRns3tP1omxc03J0dD53s0iuHW3VxVbH3wXYud6Jj+V73DtQ9L8U5WdrT2KnbfvCyrxcot63N4R41d/bq9RPhCd8ga7Jyz+3xjvHrWRyJvj5HP9t2VG1dvSotCOna+hl6pOGQbl4+S81dvZo5NVd/MUR75n1ihWaPw3oXr58Ia9fRdt1wSZUefuGQbrmiVsGAtKCiQAsvyFd1SewYVVNzdaS1W2+c7NK19TO8zw63TZ999FUtnVl0TufoQHNYn3vs1YTPplBmQPdds+SMF3Y/18FwHKsndzZqwy92e+emvnqqlteWpPj7bHDPRjAYTFjCfCipUsuRLH72bPyrpK9L+jcfjzGkod4g1ko3f/d3unvNfHVF+/XwC7G7G2ukN052a0ZRTsId/VgulLlZGd6UtluuqFV+KKj8UKY+9u8vKhJ1VF9dqPWr5+ovH31VxTlZ+sJ7Fw55p1E1dWSp3t1fIb6avTgnSx9ZXq2DzV1642TsTinc2z/oDt0d1pleGEq4k3rw2f1nLXYdyUV3pHex8ef5gqKQth9tSzgfH7q0yrvoS/5coNyL0p0/3qrb3jFHvf2Or93Z59rWVBz6Go67YuaOo+2qmpozIePzbm/G681d2vCL3frCexfpS49v123vqNMNl1SpK9qvx7Yc0dyr8ofcRv1oW9c5hw13SPVffn1Qt15Zq6uXVsrdIcGxVjOLT73HAwGjS2tK1BHpU2ePP72vje0RHWzu9j6b3GmvlUWhEV/Yx3suQXxtnTusM4HFoedgcM+GpEE1HIP+va8vocfjfOvl8C1sWGufNcbU+PX8Z3N6TcVv9p3QweZudfT06YcvvjFoIZ37rlmi9y65wJuiOpaLbHnBFG9K2zee2as718zzxmcl6dLaUi9o3HhZtf7mv3bqL945Vz/43UGtXVKpwlBQF84oUmN7RMborAGnvCCkoJFuurzaCxpukdk9P92mm5fPUle0fcg7dHdY5wPLBt9J3bdppyqLQt6FfSwX+pEsfBZ/nueW5Wn9O+dqX1On1/v0sbfXqjAna9w/fE+fFn3oZLfu/PFWFedkqaIwdNbubMexgy74gYAZUTg9l56i04e+Yr1mizQlI6iKwtSqbXEv+Idbu/X6ibAe23JEd61ZoOqSbK1dUuld2B9/5ci4jc+7x3zpUKsa2yPqjvZr7ZJKnejo0cHmbjV1RFQ9NVd/NzD9NHdKcMht1GunXSjnHLdRP9AcG1Jt6erVt57dnxBmFl1QMOi5MzICumphhba92ebLOXKHluPrNUKZAV2zrPKM3+fn0Fd6FodKVlbh5qNj+t5b/+23Msaor7tT/7xu1TnVdqRbWJmUNRtD8eo4+hytXVI56AIbv3Xy6V35I73IVk3NVV15ntZdWaucrKDKC0IJbyZjYs8Vf4H/2dY3te7K2Xr0pTf0/mUz9ZF/fWHEb+qq4hwtmF6gvn7rPa9bZHbLFbXe/w8VJBxrde/Vi703vHt3lx8KqjA7S9c/+Lz+bOWcIe/8ToZ7hjwP8bUOzeEe77jx33+8s8e7KLqBpDgnS7eunKOth1v1w4bDunvNfGVnBTQ1L6RXD7equiRbN1xSpRnFOerq6VNPX79yMoP6zb4TYxraif/wXL96jnduPnRpld442aWg0bDd2W+pLtILB1oSal3+7g+XKGAC+uQPz/yBHH+Xn5MV1IyiHO082q75FQWqnprjTYGeXhhSvyOd7OpRdmZQ4Z5Yz1RBKDNh6Ov6+ip98fHtuuGSKp0M5+j1E50qzw8N6smSNC5FmSMJSo5j9UZLWNuOtCtojPocq/uf2qNbrqjVQ8/t061XztGXntjunad7r16squKcQQGw39GoanTc3+uuY+16bMsR3b56rvafCCsYiL3mQpkBff/5Q/rL9yzQ2iWVau7qVU9fv+5as2DQUMp4DFs0tkcShlS/8cxeb++T4XouAwGjhRUF+sSqukG1VFXFg++kR2OstRF+rpacnsWhsXmd2XmF5/QcGXmFZx12OZN0HJJJetgwxqyTtE6SqqqqfDuOW8ex+1i7rBl+a+eaktxhZ5ScLXEHAkar5pWrdlqemjt79NzeEwk1IvPK8xXKDGhKxqk32Iq5ZXrw2X26c80C3bdpp9fFKUn3bdqp+RX5g44Z/4F+pKVL86cXeM/b2+8oEnVkjAZtYb2kskAfvLRa1z/4vCJRR1ctnKY/unRWwt3dp66aqy89vl1zy/K06IKCIe/86srytCzuzs8NGdvfbNehk126/6k9+sSqOd7PHl+U9797T6g36ujy2hIv6Hxg2YzYTrwDVfuOtcoPZWnr4VZt3tWkP189V8faI/r0wEqLN11erU88/LJX+3JJ9VRdWjNVh9u6z3pBPf3D0+3aDmUGVF4Q0oZfvKZbr6xVbihj6BlNbT3ehcB9bE9T51mHXRzH6oWDJ727/Ovrq/R3T+7SDZdUKXdKUFsOt3q9XjddXq2ndh7TBy+tVlN7j9czdd81F3rH/cCyGXp61zGtX12npvYe7279tcZOb4hwyxutWjWvVK+f6NLdZyiCPH0oqzUc1dH2xGGakRTuzijM1tOvNSkzaNTc2aOcKRnqHwjCUzICurS2VF96Yrt3nvJDQWVnBvX86yfUHI56vUs3XV494noZt+0nOmP1IB9dUau1SyqVlRHQ46/EelO+sinWg/j//uc1NbZHFAzEfu//8uuD+vTvzRtVoB4JtxgzfkjVnWa6rKrojMHpUEvXoNfX536yTcuqis+pPWOtjfCz9yGdNmGLv05Nm1aq983JGodn7R3zd1onoBdeeEHBM0y37erq0lNPPTXkv53p+87VcGt7JD1sWGsflPSgFFvUy49juB9IpflZqpparhOdvcMWip5pRklFQUj7j3d6F7Sq4pwhF+SqKcnVjjfbtXHgLr0r2u8t2vPZd89XaVyiN0Zau6RSh0+GB13U16+qG/Sh585AMZJ3Yf/zd9Z5z3vwRNjbstndwtodkqielqs//d6L3s89vyJfX/jpNt25ZoHXw1BRkO31NHz5ie3evw3XCxR/Rylp4K6yTmUDQ0qS9PALh/RHb61OWCHx/uuXqmJgKGdKRsBbXXH9qjqV5oe081hs7ZGV88v0evOp6cEfWDbD20/CDTAHmzt1vLNHnx3BrILTe3KWzijUvT/bobvXzNe0vCyv2/ue9y70urPzQ0FVFuXoREdExzt7Bn34unUzZ5pFcKA5rObOXu8u3y1UNEbq7nW8oHH3exbo75/cpTvXLNCuY+0JIWZ6Ycj7fc6viIVB92s+ddVcNXf16rEtR3Tz8lnq6etXXUW+ToajujsuxNSW5ikzYPTUrkbVTstT9dQcPbmzUfdt2qmPr5ytN052656fDp6hdKilK2HqaHlBllrCUd32g18lDOnsONquuWX5OhHulQn3KjszNlRRV5annccSZ4S4geuTV8337rhHU6Pjvva+89w+feiyGkWijoqzM9UWiepwS5eur6/SQ8/t07orZ+vBZ/fplitq1e84WlZVrJcPtailq1dH27q9QP30rmO6aXmtunv7FO236u3tV1bW6D+UTy/GdHs17rtmyVnrsfy4uJ9LbYSfvQ/ptAlb/HWqpna2/cnesQeF8ZJ51JExw18yf7/S6md7B082SFavSNLDht9OvyOrLsnWV6+9SH9/7UXexdp9/LLaEnVEogndn8U5sTnwC6cX6JXDbd6HYn11oT54ac2Q0+bix2s7evr09Wf2eh/SpfkhfeW/dmr9qjo90nBI88rztaepQ9OLcrzFfKTYB8wDT+/RI+suS/h53Bkoc8vyvbZ/99cH9eU/WKS/+vkOfX7tQt2+us67M/7su+dLkkrzQzrWFkm4KH50Ra0ONndrb1On90GvgSGEXcfadbC5W4eau4b88DsZ7pEkb4bBR1fUKm9KUNfXV6k72q+/fHSb5pbl6SNXzNK1b5npBY3phSHddHm1ToR79c+/2qevXrtE2ZkZ2tfU4QWIT101X46NjVXf9o46HTzZ5X1vVXEsALgXq0caDg0ZiNwLVE1JbsI01pLcKQkXl7fOKvaKBvc0dng1N998Zq9uffscfeuXe3V9fZUef+UNvWvhBQoGzKAP3/hhl/i79qxgQL98rUnVJbk61hZReKD4zw2YXdF+dUf7dSLc6/1eDjWHtXZJpXYNhC23Dqe5q1cHmsO675oL1dYVVVFOll44cFKOleaW5WlaXkit3Z264ZIqGSP1WynS63gX+FuvjN1d7z/e6QXfjyyv1kUzi3Tfpp26efksTS/M0Z98r2FQMHl6d5MyAsZr49O7junWlXW67Qcveefhxsuq9fIbsb0/wj193mZjt15Zq7vfvUB/8187ddeaBd55cgPX9fVV2tvU4R2zojA0oout41htO9Kq+zbFnnfXsXbVVxdqam6WLijO1q6j7frJliNau6RSHZGoPnnVfB1qDuvS2hItKC9QJNqv21fX6eEXYq+f7zy3T9csq9Jn4hbUuvfqxXr/0tFPBR+uGPOCERRjuhf38Zwxdy4Bxs/eh/RdT2foAtGJdraCVGulvtOm5EqDC1XP1UhrR/yc+vofklZKmmaMOSzpC9bah/w63nDiU707zn3jQ7/Tbe+Yox+++IY3a6S8IKQ9jR2aOTXH6/68fXWdCrIzde8TOwbGnPd7z3PzFbOHvcDFj9dG+voTZou4F/hN245q3ZWz9dUnd+muNQu073jnkB8IXb2JLxZ3Bko4rmr9aFtEO4916GBzt3a82aH/2XFM17+1Sg88tUefe89Cvfpmm06Ee1VXlj+oFiGUGRt6qS7JVnlBSIdburw5/9Ul2aouyRl0ca0uydaR1oj++KHfeXUdkjSjKLZuyEdX1MaGaRZV6MCJsC4oyvbO242XVat7YDbQzctnKSMQ0Jef2O51d69dUqnMgbUJrq+vUnNnj4JGXkB4s61bwYC8upvb3jFH+4c4d8U5WWoJ92rn0djQjju0UBgK6ot/sFhfHOjRefFgi37YcFh/vrpOX3tqj269slbrrqxVXVm+Pv2jV3TbO+bo6V3H9LGVdfryE9v18bfP1hfeu0jf+uVe3XBJlRZMz1dhdqYOt0QG3bW7a6jUVxfqtlVz1dLV6/U6FYaCKs6dooMnY1Po3GmZ3muhz1HQSB9ZXu3Nnli7pFIXFGZr3/Gw2iOnNvVad+Vs7WnqUNDE1m55ralDj205ojveNU+OlbdgVHZm0Asabvg40hrxahhCbd1DBpNI1NFda+Z5bbxzzQJtPdzqnfMllQWaXpit1u4Ob5Mx97/fena/PnnVXB1s7tY3N+/VR66Y5Q2ruL/Du9bM002Xx14XB06Ez1og6fbutXZFde1bZmrnsXb9sOGw7rtmidZ9r0Fzy/L04bfVxLZvP2045sLK2DDGVQsrdOhkWMuqinUy3Kubltd6QcN9733+sW2aW56ni2aO7g4wJytjyGLMqxaWnfV7a0py9fU/ulh74obDhpsxN1Kj2Vb+dH71PqTnniiuwVNfU5INyukZ3AMzkmm6IzWaXhLf5sxZaz9orZ1urc201s6Y6KDhOFb7j3fqtcaOhHFu90KbETQD3az71ddv9fqJsE6Ee72725auXvU71ptN4hZ3SrHpmLuODV/XUV4Q2+xo07ajekt1sTdbJP4Cv2Jume59Yof3IbxgoO5iemFIH3/HHN22ao5uXz1H0wsTPxDcGSjxFy5J6u13vOCwcn7suXv7rFq7o3JsrKv/aGuXN/1wemFIuVlBfX7tQj3+yhHduWaBDrd06T9+d0iFoUzvsa9sivXCuMcKZQb0pT9Y7I2vL6iI1aE8u7tJ/dZ6P6MbXjY2HFZZ/pSEmS+OlXeB23G03TsH666crYee268vPb5DH7o0dtG2kqpKcnTXmgV64Ok9emZXky6aUaRgIBYoygtCqi7JTTgXSyoLdNuqOfrdgZPa3djhDbs8sfWI+q3U1dOX0HvQ0tWrN1q7vYtjvxP7Gvf5b1peq1cOt2rtkkrd8/gOPbntqD551TyV5GaqpSuq5/efVEbQeEEuvgB5SWWBPr6qTl/46TZlZwZ1x7vm6vl9x7WoslCHW2LFqM/vO67aaXlau6RSX9m0UxfNKNLjrxzR1Jws1ZXnJ7S/ubM3VovT53hf02+tNjYc1tScLGmgVidWzxILbTOLc5STFdS0vCleD1ZzV69OhHuVlRHwahhysjK8YHIi3OsFkzvXzFN5YUhVU3MSzlsoM6AllQVa/865spLXnpysoErzp3jvowPNXQplBrT1SLvebO32hlXc32FlUY7ufyr2unhmV5NuvXKOnth6RNbG6hz+6n2L1e9Y/WbfCe0/3jmwg2qb3jjZpdL8Kd7v8NjAHfzWI+366n+/Jkn6uz+8SN/842X62SdWJFzIAgGjmml5urS2RPMq8tU9zIJ/x9oio/rMOdjcqWNt3YPeM+tX1Snaf+Y7Ubdds0ryEl+zjvTCwZP6330n1Nd39ucY9Jwmtq18fHvOtK38UG2qKclVWX5Ije0RHWgOy3HObcR7uMLTA83hc3reiRHr2Uj1PzLBYf+t33GG7PXw06QcRolPzR9dUevdKVUVZ3sv7sq4YYvSvCl6o7Vbkrx58Xe8s06lp80mcbs3ywtCOniya9ixzPi7k3se26ZPXzXf+7ofv3iqx8N9bOuRdt3/P6/p/75/cUJBYCgzoHkVBd64v+NYBQPS3PJ8NXf26I53zdWGX8RCzOOvHNG9Vy/W15/Zo9veUefVN7gXtJ8MjOUXZWd6vQTuxeTa+hmSYhesGy+r1j89G7vw7z/emdAdnB8K6oKiHG8l1g8sm6HXT3Tqs++er3Bvv462dnvB4/NrF+nVw61q6erVweawbl9dp+5o7GfOzgyop89JKM7ceqRdx5/e6xWwLZ9dotXzy3W8M+LV0hTnZGnN4un65uY9+tjKOmVnBnW4pUu5WUFvWOqWt83SjKk53roKB092ecMuH72iVp09fXqtsUPZAzOT3NUdH2k4lDDGfvvqObq2Pnb+LijKjvUiBGIfigsri7S3qVNzy/L1WlOHHnx2v/78nXWaWZyTEEyXVBbok783T8cHpl5+69n9+tjba3X9JdXafiRW03PrlbW65YrZOtgcmzlxsLlbrzXGhpS+8+vX9enfm58wbPRmW7f3+3S/5q/ed6EXlO69epGCRrJGevCXsdkfzZ09mlGcoz1NHaouydYFRdnafyL2oX64pUsLKmK1H9/99X798WWztPd4p6RTdSiSdPd/vqpPrJrjBZPHXzmiu9fMV3lhSFsPtyonK6gbLom154ZLqjS7NE+zS4P69k31kqzqymIzIb7//CHds3ahHnpunz62MlbT8+qbbd7rYuX8Mn3r2b1e/VJxTpayM4P63E+2eQXBCyoKvGGav37/Yv3j5r1av6pOOVlB7z15tC2i+zbtVigzoEfWXXbGdTNqSnLV2B4Zuk6rcGTDF25vS7TPatex2BBO/BDKIw2HtGZxxYieq6kjkvA7H26K/kjbtf3N9lFvK3/6c4x3L0S6TnuNSe+eDdfpS6yP1Ui/f1KGjfjU/OzuJm+63UdX1HofKK+fCHsv9pwpGQoOvGfcD+2737NA++IKRX/84mH9xTvnyrFWh1u6Ei5S7g6OoayAOrqj+u3rzSrLm+KtemkGCjXdD8HvPX9Qf/n7CxI+3LYeaU8IGlLiVNXefsdb2fLhFw55H+j/fGO9ov2OqktyVT01R2+pLlbzwFQ/Y+Rd0NwLwS1vm6UvvHeR/uzfX/La88OGw7rnvQu94aMPLJuhjkhUS2YUet3B//lSLIh85kev6O/+8CKvsLO9p1+9/darS3ELYncdbfeGkv7l1wd08/JZmjUtV9Ul2SoIZWpa/hRvXN29yB9ti+ih5/brvmuWaOH02G6X7kXCHQ5wi0KbwxFdUJitr2za5V281q+uU05mhra8EeuFcIdgrJGufctMHe/s0YPP7tfcsjzd/s65+vIT2xMKTTMC0nc+fImMiU3X3XakXf/35zv1t9cs0T9u3qu71izwzmt8bUIk6qizp1+yPd7dY3VJtm5dOUcd3X16YyCYHm2LqLGjVw89t0sfXVGbMMzw3d8c1D1rY4u8tXRH9fgrRwbaZBKGjdxhDndVyrVLKnXwRKe+fPVi3fPYNn3+se36+DtmqyRvih58dr/+43cH9fFVdert69fGhsP6/NqFcqz1Xu/dvf166Ll9+uCl1QplVqilK3bOsjODXk/Nl967SJGoo+8/f8irDbq+vkr91nqbCP7H72LDYlcvjW0ytu3NNi2cXqCrFlZ4QfnCykI1dUTU3duvS2tL9c3Ne/Shy2q073hs6CQvK0PlBRkJP6tbMBsfPtxA5QZZb4XOt83Sl/5gkb7w01NTa//qfYu1aPqZpykGAkZvmVnshXX3/RwIxHp7zrTmhjsT63hHj7YebpMk/XAgtMeHhL9+/4UjrnMoLwh5v/NHGg4lzFDb8IvdXnH2SMTXj410W/mhnmO8p7+m67TXmNSo2RhK/GZwJtCjrJwztNMYFRUVTVih6KQMG/GpecXcMm9ev9ur8MDTe7xhh0jU0ZHWLpXkxqYyuQWCrzV2eF/vBorK4pCi/VZ/u2m3VygXP/Xw+voq3fZ0LGCsX32qluGNli7veSNRRy1dvTrZ2aO/vWaJPhM37929M45f8yI/lKn1D7+sT141X3sH7qJjIWS3pMFV5bWleQnTfN0L2k2XV+tTV81Xd2+fHMcmvMk/sGyGV7QaXz3/teuXesVhH7r01B3WkdYu3b1mvsoKQ9p1tN2bbnu0LeIVxLoXUze8mEBsqOdz71moTzz8csK4evxSzsNNyaspydXiCwoVygh6BYYZgVMbXK1/51xtPdwqSV4vhJVUkpul0oKQ2rujeqOlW5GooxVzywYFjWBAmltRoLfWTPXGxfud2PN/57n9+rOVc/TQc/v0+bUL1dQe61rPDWV4M37cYki3OPfzaxdp6+FWVRZmJxQcu70e8a/FA81d3s/x+bUL9eCz+xIurl9470LtGJiOfbQtkvD7zAoGNKcsTzOLsjWvPE/H2iKqLM5WXlZQf/3+C/XZR1/Vn37vRd21Zp5aunq1t6lTWRlGU3OyvAvY6gUVeuCp2EW2sihH0/L6lZMVVEtXVJGoo7zQqRqEwy1d3u/sU1fN18muqFdf851fv+6dy2VVxbpi9rSEYQt3kb39xzv18hutajjYpnfM7/aG7O7YuMXrPXF7VY61dg8KWsbEfq+3rz4VZK9eWqmmzl5V5GfpXz5yidq6oppeGNKi6YUjqnPIygrq6iUXKDcrqIMnu/Svv96vm5bX6qVDLTrR2aO3zCweNDMlfm+iqblZXk/dWKa8nv5av6R6qnYebRvRDLUzOX29j7GEHz96IdJp2uvpzmVRr5EY6+6x0e6wHrrtPV5Pw0svvaSH3rXsjN8zkRvGTcqwEV8QFV9r4fYq3HJFrd5SVai6gUVuvvvrg/rY22sVifartjRP//hHy5SZEdC3f7XfK+RsbI/otcZOGZ36MLn7PQu8AHDLFbUJhZfumLY7W8QtPHQGxqEvKM7WyroyLR6423OXVI+fKfGJ1XN1z2PbdH19lQ4N7B45kje9W9S1cHq+qkty9dlHX/W6lDdct1SzpuUl3FUYoyGr56flZWlZ1VQtvH2Fth4+tYx4Z0+/rJW+8l+xWQxlhafOd6TPGXQx/cYze7V+9Rz99c936d6rFyeMq7sXzcygUV1Z/rAbngUCRuX5U7T+4VO9RfEfojvebPc+7N31FXYei3Uff+zttaouydWbA8M88T+vW/Hf70h5U4IJF6ZZ0059IDaHe7XuytnKzAho0fQCHWntVrgnqpppuV6Q/Naz+/XxlbX64KU12nX0VD1I/MXHXWsl/rVYMCWov3n/hbr70Vf19af36tr6GZpTnqdH/uQydUX7dUFRSNmZQw8RxAfNi2YW66KZp85ZVUmels4sUlNHbCiqqiRXu4+1q7s31hNxwyVVqi3NU05mQF987yL1O1azBqbD/mrvcTW2R1Rdku2N8d//1B41d0X14xcP6wPLZig3K+gFjfjQdvFA0BjuIu9eTN2Ftm68rNor8nWHWa6tn+EV5r4yUIzqLlrX3NWrHzYc9l47juOoNH+KMgaC11gLGA+3dWtXY4d+vff4iGamxO9N9PfXXuQNb41lymu8QMDo8toSBQNGN3/3hYSZKT19/QpljvxiVJYfOufw41cvxMLp+fruR96qrt4+VaXRZofjsajXcKKRsL51DkMb8TNDgsFgSi36NenCRl+foz1Np6YwSkp4o7hd9dcsi02LdLt2KwpiqxYe74xd+KuKc7ThuqXadaxd9z6xQ3+2MrZnRvxF9LXGDkkaFGokJXzd0baIvvPr13Xv1RcqM2i8FRJfOHhS5QUhvbWmxOtqvvfqC/XAU7t1zbIqvXiwxetKdaf3jfRN7xbAVU3N9S44bj2JpIS7CvfufKiljAMBI8fKu1AX52SpLC9LhTlZCXUI9169WJ9/bJv3vfEX02BAurCycOCDe+iL5nc/8taz7kfRFe1P+NnjP0RnTcvV3qYO/e/e47r1yjleTcCDz+7XPT/doS++d4F3NxyJ9g/7855+DoerxF8yo0iHTobV1hXVzOJsPXjjW9QTjV30bvjn5/XRFbV6/JVYnYxbW/ONZ/aquiTbO1fua3HDdUt11YJyXXTa7yn+g7eycPQrQJ6+ZH/V1FwtnJ6v7W+2DzlTI34MvrokV198PLbOypef2KGbl8/yZum4XfJ3vXtewnCOW09RO+3Msybci6n788QPKx5ti3izVuaU5XszlUKZAeVPyVDnwCaFLV29Xu+e+/s71z013Jle7syUoaYAzy6N9SK9drxDh1u6venJocyASnKzBvXUvaWqWG+L6+EZKff8nb4onjXSic5e9fU5Z+2xcRyr15s7E7ZQcH/Xowk/490LMVwNiLvabeobv2GUQb0YEzy0MZGMHe/ddc5BfX29bWhoGPP3O47Vc3tPaN3AWgHu4kPZmRn6/GPbhv1gPdPzbX6tSX/56Dbds3ahdh1r1z/FLbI0vyJfe5s69E/P7tdHV9Tq27/an3AxrC7J1gM3XKzuaH/Chf5MxVa/2XdCxzt79ZkfvaJPrJqjnj5H/Y70xNYj+vjbZ6tfRl96PHFMeizbwrtz3N2gteNoxxnbtOWNVuUOdCOHe/tlJH0trr5kemFsV8231hR7q0HGP9e88nz9/j/8Sn/+zjpZq4QL3e2r6/TuxRVnLVbbf7xT73ngVwnTaON31/3UVfOUEQh4U2jjf/fuwmaRaL+qp+WpratX98SN7Y/XtLvf7DuhD/7zb7WkskDXv7VKDz67z6sBCAaM6gbuvA+1dI16KmH87+xcpiDGLys/3F2le0HYf7xTX33ytUFDe/c+scM7pyfCvV6P3ZIZhVo1r3zUP8/pr8G71sxTcW6W7vzxq1pSWaB1b69VdmaGth5u9Ypjz6Vwcij7j3fqsS1HdEFRtr72P3u8IZtwb7/3er1q4TStvWiGWsOxnWR3HW2XlRIWU5telKPu3j5NL8rW5bNKxrxR3v7jnfrJliPeirOj/Xnd90t8z0jASB+4uHLUGwqO12svvl2n3zQlYQO2Mf0ANbWz7eJb7jvngw/XizFee55s3rx52NU8fTZk4ydVz8aB5rAaDp707prdosaHnnt9TFsYBwJG1VNzdW39DH1lYOGj+LsE9wLnLg50+rjonWsWePP6XfuPd56x2Kq8IKRDA7u15mVlqLY0pJ0D00ObOnu9tUHcoY5/eHrPmJYyHuqud7i59OUFIXVH+9Xv2IQdUeN/3pauXs2vKNDy2aWS5PUYnd6b4i4gFT+kVFeeN6I7rfg7rKNtET3ScEgP3livzKDxVnT91d7jOtjc7fVYTC8M6ZYrarWkskDzKvK93qt55Xn62SdWeD1Z47WgUGwqbrbWLJ6uB5/dp7VLKtUd7VdeKCNhaCH+3I/U6b+zsXJ7vc50wXF7dV490qavP7M3oReouiRbj6y7TN3R/kE9gqM5j2d6DVYUhHS0LeLNVArI6MtPbNfNy2eNuM5ntGpKcnXhjEJNyQh6U4AleXVS0wtD+uPLatVw8KQk6aevHNGHLq1Rv7VeL98Hls1Qe2OHrJVqS3PPaUfempJczS3LT6hZcUPD/uOdOnQyfMbfoVtrEf+7k2IzvUYbNtzpr+7zuu0byzlP75ko0mh7NoatwZjEvRhDmVRhw+0Gdbvp44sax7KFsdsNWTU1x/swuenyav3dH16krp4+1Zbm6uKZxTrS1qW3VBWrvSeq799yqaL9zrAr4p3tjeZOw7u2fob+ZtMuXT5rqm68vCb2M/U5CRdS13i8Sc90IXPH2F84eNKrG4kfJjFGWjFnmi6pmer9vEM915pFFZpfka+T4R5lBgPq6u0f1cqBI1lgyF1z4/Rhs5+vX+F9wMYP15zrVuKnqynJ1b1XX6h132sY8+suVQQCRhdWFg7qQh8qRI/HeTz9NXhBwakhp45IX8J78FNXzVdXT59mTM3W5bWjH6YY7vir5pXrcGtYJ8N52tPUqaxgwAsa96xdqKNt3V5t0KW1pfraU6/prncvGNGw3Fjas2B6gV4bWGH1TMvhn87dn2W8ai3Gc/pres9EkUYz9fVs00snskAz2SZV2CgvCCVMST1911VpdAn6QHNYt/3gZW9TMbfGQDp18QgEjLa/OXgI4tJZQ99pne2N5k7Da+ro8dZ0+MfNe7xZEMl4k7pj7I61eulQS0LNhTsO/IGLK8/6oTMed+Zne45kV7kHAkaZQZPmd26nJHP/iqysoN6/tFJzy/PUHVdnE/8efGTdZePalkDAqGpqnqLR2KKAtaWx6do3L5+lcG+fcrJOTZO3A4XGX358x6BezfF6zc2aFgv6kobchXi43WlP358lfvhlLO0az+mvyX6PnruhezaG7ME4z3ovzmRShY2q4hzd8a552vCL3frkVfMT1slwjebi7PZCfP/5wUMk7psjfpv04Xb8jDeSN1pWVlCLB1YUNUZqONimI609uunyan1+7UJvVdOJfJNmZAT0ttnT1D2wp8TpxYWp8kGRCps7pf+dW6LxGr4Zi4yMgC6aWay+Pkd/9b7Fg7ZeP9saGmM1qzRPF84oVHdvv7cp3smuXv3v3uP60KU16ohEvQ0VTy+GXj2/bFDPz1i5Qb+lu3dUAfZc9mcZyngOfaTCe/TcDO7ZOFMPxvnUe3EmkyZsxG+jvHZJpbp7+855fnn5CD5MGtsjo+riHOkbbVZpnrdWRvwd3fTCkNZdWauLZxapuiR3Qt+kGRmBhD0lUnXKWjIvjtJkuHNLPRkZAb3vokrVlcXWEqkYxRoaY+EOqWx7s03PvnbcW7H0xsuq9e+/PaA/uXKOCkNB/d/3X6i/fPTVhJlF4xU0XBkZAS2aXnjWPWPincv+LEPxK0Cn0PyEUYj1bCT0ZNCDcVaTZjbK6RXOt62ao2//av+IKrGH231wJOOUbsW4W0TmGo8xenfWwEuHWke0fTpSx3hW7yN5HMfqf/eeUMPBkwkz0dzPk2uWVarfke+/574+Rz955cignp2hZqI5jtX/7juuVw+3D1oQ7K2zilVfUzLq449nzUYKbcI2poNV1862NVffrvs/fKUKC2M9a4WFhSouLh6XWSTjhdkoPjm9m+/0RaWGm19+thf+2Xoh3IpxP8boz7RWBheu1Jbs3hWMD3cYI9zbN+R6FTOLc73ftZ8OtXTpcz/Z5q39MaM4Nr12x7F2Lb6g0Ps8cD/PDjWHE5Y6H+3+LKfzFgq8fYUa23sU7u1T9SjW6ojnx/LnE8lIyp92gb709DEZ0+jtfJpKQSMVTZqwcXo3nzs10p2iN9xF+mwv/LNdNNyKcT/H6LlwAcmTCsOH7nDtrVfWqiva720iefrN0YHmsDe9fKiF2851KO9M6/GM5mdJ7wJq4+2cipGbNGFjqHHyoabonW48Xvjxy1ozRg9MPiNZm8RP5QUhb+0Pd50bt4ejMxLVtjfbtPiCQjW2x3aM/ZtNu1Sck5WwRPnC6fnnFI7Gq0ci/QuoTxWInuvy4ueTSRM2xlLhPF5z0dO/uhpAKnOHa3c1diT0cHz1yV264ZIqHWuLqKunTz19joKBU2vhnOtiXvHGq0eiqnj0S++nllNTXwP9/UluS/qYNGFDGv1ww3jORWeoA4Bf3OHaPU0durZ+hrqi/Xr4hUO6efksBYNG+453akpGQN/9zQFvL5nx7jkYjx6J+FmD470C7MQ51bMRDAZ12w9e1Pf/jJkoZzOpwsZoDTcXvXKMc9EBwC+zpuV6a39Eoo7WLqlUV7Rf3V39emzLEX36qvk62Nytb27e68t6PDUlufr6H12srYfb5FgpaKQLZxSO6nnjh2LSd3XdxEW9ol0dam1tHbc9TSar8zpsxK+jMZ7LDAPAeHPX/nj5UIue3XNcwYA0NSdLb7R2a+2SSmlg9+atR9p1/Om9Xs/BFbOnqT5uK4Fz0dtnvWn+bogZjfQvDpVOX9SL3o2R8WdFnDThFpWGMmOnIf3GDgGcTwIBo95+RxsbDmtBRYFyQ7Hl04MB6XBLl25fXefdQD303H5lZwZVVjBlXILGcAWiB5rDI34O9wYvXnoVh0qSUVZOfsIfejTO7rzu2aCwE0C6KS8IqaWrV9/cvFef+r15KsnNUmlBSF/5r8E7Ks+aljuiHZVHYjx6JdK/OFSy1tFXr64b1IvBjJQzO6/DhkRhJ4D0Ej/N/6v/vVsffluNmjsiuu0ddfr6M3u0dkmlL4WXbq9E/CqqQSNVFIysV2JyFIeKpcnH6LwPGwCQTk7vka0oCKnfkVq6evTADRerq7c/YduF8eIWiO5p7ExYLGxeRcGwW93He/3EZCgOjWlra0u55clTHWEDANLM0D2y/l6wAwGjWSV5uu0HL494l2uX41jtPNo+CYpDY8uVUxA6eoQNAMCINHWMbpdr1+snwtrT1JHmK4e6jJz+fqXSJqbp4LyejQIAGDl32XQ3aEix3onPPvrqGWelHGwOa2NDbHPM+Nl/f/W+C9OqODTGyolGkt2ItEPPBgBgROJ3uZ5eGPKGUiTpZLhnyOEQx7HKCBq1dPUmLKAYMNKskpz0Kg6VJBllZudRrzFKhA0AwIi4y6ZXl2Tr+vqqhKGUurI8LXPsoPDw+omwdh1t1+2r63T/U3v0jWf2KpQZ0O2r61SSl5Wkn2TsrKz+4YPLmOo6SoQNAMCIzZqWq3uvvlCff+xVr5dCkjb8YrcurCxM6N1wC0P/5dcHdeuVtQlrgFRNzRm3NUCQ+qjZAACMWCBglJ0V0PX1VXrouf36+tN79e1f7df19VU6Ge5J+NoDzbHC0JauXn3r2f3qj5uMsuiCgjQcQon5029vVmtra7KbkVYIGwCAUckKBrwhlOmFId1yRa0iff0yMnKcU7M0GtsjXmFoS1evvvFMLJjUlIzfyqbJ8E8fXckwyigxjAIAGJWugZ1nl1QW6Pq3VunBZ/dp7ZJK/XLPcXX19uvygVVB+/rtkIWhy6qK0rZXw8VOr6ND2AAAjEp5QUjVJdm6deUc3bdp56Bi0a9dv1TTC0P63GOvav2qOj3w9KnC0PuuWZLWvRpG0h2P7lY0Etb3PraKhb1GiLABABiVmpJYkWjDwZNau6RSjzQc0u2r6zSjOEeO46ilK6q27qgONncn9GpYK5XkZqZ5r4ZRv+Oov6+P3o1RoGYDADAqgYBRZtDIsVJhKKibl8+SJH31yV3KygjqS49vV96UDG+7+288s1dff3qvHnpuvzKDwSS3/lxZOT1dCgaDuu0HL1IoOkKEDQDAqJUXhPT4K0e0YHqhmrt69fALh3Tz8lkK9/apOCfLW0sjfsXQ21fXqbxgSpJbfq6MAlNyFJiSw7Llo8AwCgBg1GpKcnXnmgXaebRdjpXWLqlUV7RfJ7t6dW39DH35iR26efmshLU1Zk1L71koMbGeDUksWz4K9GwAAEbN3er+0toSBY0UDEhTc7K0seGwZhbn6GBzd8LaGv2ONC0vK83rNSTJKCsnX1k5+SxbPgr0bAAAxiQQMLqwslDHOyOK9lv1O7Gprk0dkYR6DSk2jHLNssokt/jcWWv19++b662zwXobI0PPBgBgzAIBo1XzyrVwer6KczJ1++o6bWx4Y9AOrxuuW5qGO7wONiUzqJqaGhUXF6u4uJiejRGiZwMAcE4CAaPqkjxVFuaoI9Knq5dWKhCQvvqHF8kEpPnlBZo1LXcSDKFIxhgCxhgQNgAA4yIjI6CrFlZobnm+mjoiKssPqaZkcoQMnBvCBgBg3AQCRrWleQm7vwLUbAAAAF8RNgAAgK8IGwAAwFeEDQAA4CvCBgAA8BVhAwAA+IqwAQAAfEXYAAAAviJsAAAAXxE2AACArwgbAADAV4QNAADgK8IGAADwFWEDAAD4irABAAB8RdgAAAC+8jVsGGPWGGN2G2P2GmPu8vNYAAAgNWX49cTGmKCkb0h6l6TDkl4wxvzUWrvDr2MCACYfx7E60BxWY3tE5QUh1ZTkKhAwSWmLtVbWWhmTnOOnK9/ChqS3Stprrd0vScaYhyVdLYmwAQAYEcex2rT9mO7YuEWRqKNQZkAbrluqNYsqkhI4evv61draquLi4gk/djrzcxilUtIbcX8/PPAYAAAjcqA57AUNSYpEHd2xcYsONIeT3DKMhp89GyNijFknaZ0kVVVVJbk1AIBU0tge8YKGKxJ11NQRUW1p3oS0If46VVpaqldeeWVCjnsuOjs7tXnz5gk/7sqVK4d83M+wcUTSzLi/zxh4LIG19kFJD0pSfX299bE9AIA0U14QUigzkBA4QpkBleWHJqwN8depefPm2eEuqKlk8+bNw174k8HPYZQXJNUZY2YZY7Ik3SDppz4eDwAwydSU5GrDdUsVyoxdrtyajZqS3CS3DKPhW8+GtbbPGHObpP+WFJT0HWvtdr+OBwCYfAIBozWLKjR//Qo1dURUlp/c2SgYG19rNqy1P5f0cz+PAQCY3AIBo9rSvAmr0cD4YwVRAADgK8IGAADwFWEDAAD4irABAAB8RdgAAAC+ImwAAABfETYAAICvCBsAAMBXhA0AAOArwgYAAPAVYQMAAPiKsAEAAHxF2AAAAL4ibAAAAF8Za22y2+AxxhyXdPAcn2aapBPj0JzzAedqdDhfI8e5GjnO1ciN57k6Ya1dM9pvMsZsGsv3ne9SKmyMB2NMg7W2PtntSAecq9HhfI0c52rkOFcjx7lKXwyjAAAAXxE2AACAryZj2Hgw2Q1II5yr0eF8jRznauQ4VyPHuUpTk65mAwAApJbJ2LMBAABSyKQKG8aYNcaY3caYvcaYu5LdnlRljJlpjHnGGLPDGLPdGHN7stuU6owxQWPMy8aYJ5LdllRmjCkyxvzIGLPLGLPTGHN5stuUqowxfzHw/ttmjPkPY0wo2W1KJcaY7xhjmowx2+Iem2qM+YUxZs/Af4uT2UaM3KQJG8aYoKRvSHq3pIWSPmiMWZjcVqWsPkmftNYulHSZpI9zrs7qdkk7k92INHC/pE3W2vmSLhLnbEjGmEpJ6yXVW2sXSwpKuiG5rUo5/yrp9PUs7pL0lLW2TtJTA39HGpg0YUPSWyXttdbut9b2SnpY0tVJblNKstYetda+NPD/HYpdECqT26rUZYyZIen3JX072W1JZcaYQklXSnpIkqy1vdba1qQ2KrVlSMo2xmRIypH0ZpLbk1Kstc9KOnnaw1dL+u7A/39X0vsmsk0Yu8kUNiolvRH398PiAnpWxpgaSRdL+m2Sm5LKvibpM5KcJLcj1c2SdFzSvwwMOX3bGJOb7EalImvtEUlflXRI0lFJbdbaJ5PbqrRQbq09OvD/xySVJ7MxGLnJFDYwSsaYPEk/lvTn1tr2ZLcnFRlj1kpqsta+mOy2pIEMScskfdNae7GksOjmHtJArcHVigW0CyTlGmP+OLmtSi82NpWS6ZRpYjKFjSOSZsb9fcbAYxiCMSZTsaDx79ba/0x2e1LY2yT9gTHmgGJDc6uMMd9PbpNS1mFJh621bi/ZjxQLHxjsnZJet9Yet9ZGJf2npOVJblM6aDTGTJekgf82Jbk9GKHJFDZekFRnjJlljMlSrNjqp0luU0oyxhjFxtV3Wms3JLs9qcxae7e1doa1tkax19TT1lruQIdgrT0m6Q1jzLyBh1ZL2pHEJqWyQ5IuM8bkDLwfV4ti2pH4qaQPD/z/hyU9lsS2YBQykt2A8WKt7TPG3CbpvxWr7P6OtXZ7kpuVqt4m6UZJrxpjtgw89llr7c+T1yRMEp+Q9O8DgX+/pI8kuT0pyVr7W2PMjyS9pNjssJfF6pgJjDH/IWmlpGnGmMOSviDpK5I2GmNuUWyH8OuS10KMBiuIAgAAX02mYRQAAJCCCBsAAMBXhA0AAOArwgYAAPAVYQMAAPiKsAEAAHxF2AAmCRPDexpAyuGDCUhjxpgaY8xuY8y/SdqmxCX7ASAlsKgXkMYGdu3dL2m5tfb5JDcHAIZEzwaQ/g4SNACkMsIGkP7CyW4AAJwJYQMAAPiKsAEAAHxFgSgAAPAVPRsAAMBXhA0AAOArwgYAAPAVYQMAAPiKsAEAAHxF2AAAAL4ibAAAAF8RNgAAgK/+P53ItosO6Ar4AAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 576x576 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "#prueba = sns.jointplot(x=dataframe0[\"r\"],y=dataframe0[\"g(r)\"],data=df,kind=\"reg\",line_kws={\"color\":\"red\"},scatter_kws={\"alpha\":0.33})\n", + "\n", + "prueba = sns.jointplot(x=dataframe0[\"r\"],y=dataframe0[\"g(r)\"],data=df)\n", + "\n", + "print(\"\")\n", + "\n", + "print(\"\")\n", + "\n", + "prueba.fig.set_size_inches(8,8)\n", + "\n", + "pl.grid()" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " r g_liso g_2 g3 g5 g12 g15 g20\n", + "0 0.03 0.749559 1.067157 1.060624 1.086467 0.927405 1.010291 0.944136\n", + "1 0.05 0.820106 0.960441 0.954561 1.231928 1.008123 1.000188 0.825305\n", + "2 0.07 0.831444 0.961748 0.955860 1.173692 1.010822 0.962181 0.815073\n", + "3 0.09 1.087596 1.036667 1.030320 1.198206 1.022817 0.944809 0.860936\n", + "4 0.11 0.889851 1.129246 1.122333 1.048102 0.947701 0.910792 0.813170\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlcAAAJcCAYAAADU/IFHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAADo4UlEQVR4nOzdd5yU1dn/8c+ZspUtNClKF1aWsnQBBSmKBg2C0YAxUTTGKD8hefI8SkwxiU98QhITY2KiwUZiDBI0oLHETlODCAIiTUH6srAL26fP+f0xs+MuLGybYRf4vl8vXoGZ+77PmbnXcHGd676OsdYiIiIiIvHhaO4JiIiIiJxJFFyJiIiIxJGCKxEREZE4UnAlIiIiEkcKrkRERETiSMGViIiISBwpuBKpgzHGGmPOb+I1fmCMebyW1y8yxnxgjGndlOtXu1736HxdjTj3p8aYvzVy3A7GmBXGmDJjzG8ac416jvOqMeamWl6/yxizwBhj4jTOTGPMqjhdK/a9GmO6GmPKjTHOOF37UWPMj6O/H2eM2ReP6x4zxin52W2M6D3/efT3Y4wx2+p5Xtzur0htGvx/wCItlTFmF9ABCFV7eYG19s7mmdEXrLX/d+xrxpguwP8BV1lrj576WcXVbUAhkGkT2DzPWvulY18zxnwJGAJ8PZFjx4O1dg/Qqq7jjDEzgVuttRfXcb3b4zS1k41xWvzsWmtXAjnNPQ8RUHAlZ54vW2vfbO5J1Ie1di9wSXPPI066AZubI7ix1r4KvHqqx21uxhintTZU95Hxl4ifXWOMy1objOc1RZqLlgXljGeMSTbGFBtj+ld7rb0xxmOMOSf6528ZYz4zxhwxxrxojOl8gmstM8bcWu3PNZYXjDH9jDFvRK9TYIz5QfT1GktuxpgpxphPovNaZozpW+29XcaY/zHGbDTGlBhjFhljUk4wH6cx5gFjTKExZidw5THvZxljnjDG5Btj9htjfl7fJSljzGJjzMHoHFYYY/qd4LgFwE3A3dElr0urL9dEj6mxZFXXZzTGXG2MWW+MKTXG7DDGXBF9Pfb9G2McxpgfGWN2G2MOGWP+aozJir5XtTx6kzFmT/T7+eFJPmvb6H0vNcZ8APQ65v0Lqt3XbcaYr57kWj2MMctNZIn0DaBdtfdqLNtGf352Ro/93BhzQ/Rn4VFgVPT7LK76no0xjxhjXjHGVADjj/2eo8f9IPp5dxljbqj2ekv72Z1pjHnXGPOgMaYI+Kkxppcx5m1jTFH0MzxjjMmuds5gY8y66Pe1CKj+M3Psz9j3oz87ZcaYzcaYaSe6ZyLxpuBKznjWWh/wT+D6ai9/FVhurT1kjJkA/CL6WidgN/BsQ8cxxmQAbwL/BjoD5wNv1XJcH2Ah8F2gPfAK8C9jTNIx87sC6AEMBGaeYNhvAVcBg4FhwLXHvL8ACEbnMhiYBNxK/bwK9AbOAdYBz9R2kLV2ZvS9X1lrWzUgc1jrZzTGjAD+CtwFZANjgV21nD8z+ms80JPIctvDxxxzMZGloonAvdUDgWP8EfASuf+3RH8RnU868AbwdyLfxQzgT8aY3BNc6+/AWiJB1f8SCTyPE73u74EvWWszgNHAemvtFuB24P3o95ld7bSvAfcDGUBtNUMdo+OeGx13vjGmzqWyZvrZBbgQ2ElkOf9+wBD5b7Ez0BfoAvw0OnYSsBR4GmgDLAa+cpJr7wDGAFnAz4C/GWM6neR4kbhRcCVnmqXRf1FX/fpW9PW/E/lLscrXoq8B3AA8aa1dFw3E7iGSNejewLGvAg5aa39jrfVaa8ustatrOW468LK19g1rbQB4AEgl8pdrld9baw9Ya48A/wIGnWDMrwK/s9bujR77i6o3jDEdgMnAd621FdbaQ8CD1PweTsha+2T0M/iI/AWXV5UZipMTfcZvErkfb1hrw9ba/dbarbWcfwPwW2vtTmttOZH7NsPULOb/mbXWY63dAGwA8o69iIlk8r4C3Bv9njYBf6l2yFXALmvtU9baoLX2I+B54LpartUVGA782Frrs9auiH62EwkD/Y0xqdbafGvtJyc5FuAFa+270e/Fe4JjqsZeDrxM5GekLs3xswtwwFr7h+j36rHWfha9ts9aexj4LV8sP44E3ER+3gPW2ueANSe6sLV2cXQeYWvtIuBTYEQ9vguRJlNwJWeaqdba7Gq/Hou+/g6QZoy5MBo0DQKWRN/rTCRbBUD0L+oiIv/6b4guRP61XJdjxwsDe48Z72C131dy4iLoztFzq+yu9vtuRP4yyq8KNoE/E8m+nJSJLDfOiy6rlPJF5qjdSU5rqBN9xkZ9j9Hfu4hkQeoao7r20fNO9j1eWD1oJxLYdTzBnI5aaytOcK2Y6DHTiWSp8o0xLxtjLqjt2Gr21vF+bWPXusR9jOb42YVjPo+JPHX6rIksYZcCf+OLn7nOwP5j6vpq/W6j17rRRJaWq+5Zf+L78ytyQgqu5KwQLfz9B5GlweuBl6y1ZdG3DxD5CxSILde0BfbXcqkKIK3an6v/BbuXyPJUXY4dzxD5y6228eqSHz23Stdj5uMD2lULNjOttbXWTh3ja8DVwKVEllW6V023nvM62fdUl70cU/N0AjW+RyKfPQgUNGAsgMPR8072PS4/JmhvZa29o5Zr5QOtoz9DtV2rBmvta9bay4gsR24Fqv4xcKIHA+p6YKC2sQ9Ef9/Sfnbh+M/zf9HXBlhrM4Gv88XPXD5wbnTMKrV+t8aYbkS+yzuBttGl1U3U/+dXpEkUXMnZ5O9EMgU38MWSIERqSG42xgwyxiQT+T/41dbaXbVcYz1wjTEmzUR6X32z2nsvAZ2MMd81kSL6DGPMhbVc4x/AlcaYicYYN/DfRIKg9xrxmf4BzDHGnGci/Ya+X/WGtTYfeB34jTEm00QKwHsZY+rzlFdGdE5FRP5CPu5x/DqsByYbY9oYYzoSqdGpryeI3I+J0Tmfe4KMzkLgv0ykgLxVdI6LGvrEWTTw/ieRguq0aC1V9Tqpl4A+xphvGGPc0V/Da6vfstbuBj4EfmaMSTLGXAx8ubZxo1maq6PBkA8oJ7JMCJEA8bxjapnqq2rsMUSW+xZHX19Py/rZrU0Gke+hxBhzLpG6uyrvEwmC50TvwTWceJkvnUiQdhjAGHMzkcyVyCmh4ErONP8ykSesqn5VLf0RrSGpILK88Gq1198EfkykjiafSNbkRHVJDwJ+In/5/YVqRd7RTNhlRP4yPUikxmP8sRew1m4j8i/yPxDpDfVlIi0k/I34vI8BrxGpJ1pHJEio7kYgCdgMHAWeI5IlqctfiSy57I+e+58Gzuvp6Jx2EQnwFtX3RGvtB8DNRL7rEmA5NTNUVZ6MjrMC+JxIQfrsBs6zyp1Elq8OEnkI4Klq8ykj8iDADCKZm4PAL4HkE1zra0QKtY8APyHyXdbGAXwves0jRGqLqrJhbwOfAAeNMYUN+BwHidznA0R+Nm+vVq/W0n52a/MzIj3LSojUi8V+nqNjXEOkQP4IkX8oHfvzXnXsZuA3RAKyAmAA8G6c5ihSJ9MMbWlEREREzljKXImIiIjEkYIrERERkThScCUiIiISRwquREREROKoRW3c3K5dO9u9e/eEXLuiooL09PS6D5RTSvelZdJ9aXl0T1om3ZeW6VTdl7Vr1xZaa9sf+3qLCq66d+/Ohx9+mJBrL1u2jHHjxiXk2tJ4ui8tk+5Ly6N70jLpvrRMp+q+GGNq3SVAy4IiIiIicaTgSkRERCSOFFyJiIiIxFGLqrmqTSAQYN++fXi93iZdJysriy1btsRpVhIvzXVfUlJSOO+883C73ad8bBERObO1+OBq3759ZGRk0L17d2puht4wZWVlZGRkxHFmEg/NcV+stRQVFbFv3z569OhxSscWEZEzX4tfFvR6vbRt27ZJgZVIdcYY2rZt2+RsqIiISG1afHAFKLCSuNPPlIiIJMppEVyJiIiInC4UXNXDwYMHmTFjBr169WLo0KFMnjyZ7du3c+DAAa699log0rDsqquuAuDFF19k3rx5DRpj5syZPPfcc42e47hx42INWCdPnkxxcXGjryUiIiKN1+IL2pubtZZp06Zx00038eyzzwKwYcMGCgoK6NOnT60B0ZQpU5gyZUpcxg+FQjidzgad88orr8RlbBEREWk4Za7q8M477+B2u7n99ttjr+Xl5TFmzBh27dpF//79jztnwYIF3HnnnUAkIzVnzhxGjx5Nz549Y8GYtZY777yTnJwcLr30Ug4dOhQ7v3v37sydO5chQ4awePFiFi5cyIABA+jfvz9z586tc87du3ensLCQiooKrrzySvLy8ujfvz+LFi0C4K233mLw4MEMGDCAW265BZ/P16TvSERERL5wWmWufvavT9h8oLRR554oA5TbOZOffLnfCc/btGkTQ4cObdSYVfLz81m1ahVbt25lypQpXHvttSxZsoRt27axefNmCgoKyM3N5ZZbbomd07ZtW9atW8eBAwcYOXIka9eupXXr1kyaNImlS5cyderUOsf997//TefOnXn55ZcBKCkpwev1MnPmTN566y369OnDjTfeyCOPPMJ3v/vdJn1GERERiVDm6hSYOnUqDoeD3NxcCgoKAFixYgXXX389TqeTzp07M2HChBrnTJ8+HYA1a9Ywbtw42rdvj8vl4oYbbmDFihX1GnfAgAG88cYbzJ07l5UrV5KVlcW2bdvo0aMHffr0AeCmm26q9/VERESkbqdV5upkGaa6NLZZZb9+/ZpUaA6QnJwc+721tl7npKenN2lMgD59+rBu3TpeeeUVfvSjHzFx4kSuvvrqJl9XRERETkyZqzpMmDABn8/H/PnzY69t3LiRlStXNum6Y8eOZdGiRYRCIfLz83nnnXdqPW7EiBEsX76cwsJCQqEQCxcu5JJLLqnXGAcOHCAtLY2vf/3r3HXXXaxbt46cnBx27drFZ599BsDTTz9d7+uJiIhI3U6rzFVzMMawZMkSvvvd7/LLX/6SlJQUunfvzu9+97smXXfatGm8/fbb5Obm0rVrV0aNGlXrcZ06dWLevHmMHz8eay1XXnllvbNPH3/8MXfddRcOhwO3280jjzxCSkoKTz31FNdddx3BYJDhw4fXKNYXERGRpjH1XaY6FYYNG2arejVV2bJlC3379m3ytbW3YMvUnPclXj9bZ6Jly5Yxbty45p6GVKN70jLpvrRMp+q+GGPWWmuHHfu6lgVFRERE4kjBlYiIiEgcKbgSERERiSMFVyIiIiJxpOBKREREJI4UXImIiMgZ4cUNB/h/f1/X3NNQcFUfBw8eZMaMGfTq1YuhQ4cyefJktm/fzoEDB7j22muByGOfV111FQAvvvgi8+bNa9AYM2fObHIn+Hi74YYbyMnJoX///txyyy0EAoE6zxk3bhxV7TQmT55McXFxo8ZeunQpmzdvbtS5IiJydpqz8CNe3pjf3NNQcFUXay3Tpk1j3Lhx7Nixg7Vr1/KLX/yCgoICOnfuXGtANGXKFL7//e/HZfxQKBSX6zTGDTfcwNatW/n444/xeDw8/vjjDTr/lVdeITs7u1FjK7gSEZHTlYKrOrzzzju43e4aXczz8vIYM2YMu3bton///seds2DBAu68804gkpGaM2cOo0ePpmfPnrFgzFrLnXfeSU5ODpdeeimHDh2Knd+9e3fmzp3LkCFDWLx4MQsXLmTAgAH079+fuXPn1jrPNWvWMHr0aPLy8hgxYgRlZWV4vV5uvvlmBgwYwODBg2Nb7CxYsIBrrrmGK664gt69e3P33XfXes3JkydjjMEYw4gRI9i3b99xx3g8HmbMmEHfvn2ZNm0aHo+nxucoLCwE4G9/+xsjRoxg0KBBfPvb344FjZ06deKHP/wheXl5jBw5koKCAt577z1efPFF7rrrLgYNGsSOHTvYsWMHV1xxBUOHDmXMmDFs3boVgMWLF9O/f3/y8vIYO3bsCe6iiIjIqXN6bX/z6vfh4MeNOjU1FARnLR+34wD40omX8DZt2sTQoUMbNWaV/Px8Vq1axdatW5kyZQrXXnstS5YsYdu2bWzevJmCggJyc3O55ZZbYue0bduWdevWceDAAUaOHMnatWtp3bo1kyZNYunSpUydOjV2rN/vZ/r06SxatIjhw4dTWlpKamoqDz30EMYYPv74Y7Zu3cqkSZPYvn07AOvXr+ejjz4iOTmZnJwcZs+eTZcuXWqdfyAQ4Omnn+ahhx467r1HHnmEtLQ0tmzZwsaNGxkyZMhxx2zZsoVFixbx7rvv4na7mTVrFs888ww33ngjFRUVjBw5kvvvv5+7776bxx57jB/96EdMmTKFq666KrbsOnHiRB599FF69+7N6tWrmTVrFm+//Tb33Xcfr732Gueee26jlyBFRETi6fQKrk5TU6dOxeFwkJubS0FBAQArVqzg+uuvx+l00rlzZyZMmFDjnOnTpwORjNS4ceNo3749EFmqW7FiRY3gatu2bXTq1Inhw4cDkJmZCcCqVauYPXs2ABdccAHdunWLBVcTJ04kKysLgNzcXHbv3n3C4GrWrFmMHTuWMWPGHPfeihUrmDNnDgADBw5k4MCBxx3z1ltvsXbt2tj8PB4P55xzDgBJSUmxWrWhQ4fyxhtvHHd+eXk57733Htddd13sNZ/PB8BFF13EzJkz+epXv8o111xT6/xFREROpdMruDpJhqkunkbuYdevX78mF5onJyfHfl/fvRzT09ObNGZdqs/J6XQSDAZrPe5nP/sZhw8f5s9//nOjx7LWctNNN/GLX/ziuPfcbjfGmJPOIxwOk52dzfr1649779FHH2X16tW8/PLLDB06lLVr19K2bdtGz1VERKSpVHNVhwkTJuDz+Zg/f37stY0bN7Jy5comXXfs2LEsWrSIUChEfn5+rB7qWCNGjGD58uUUFhYSCoVYuHAhl1xySY1jcnJyyM/PZ82aNUBkM+RgMMiYMWN45plnANi+fTt79uwhJyen3nN8/PHHee2111i4cCEOR+0/KmPHjuXvf/87EFlC3bhx43HHTJw4keeeey5WV3bkyBF279590rEzMjIoKysDIpm4Hj16sHjxYiASrG3YsAGAHTt2cOGFF3LffffRvn179u7dW+/PJyIikggKrupgjGHJkiW8+eab9OrVi379+nHPPffQsWPHJl132rRp9O7dm9zcXG688UZGjRpV63GdOnVi3rx5jB8/nry8PIYOHcrVV19d45ikpCQWLVrE7NmzycvL47LLLsPr9TJr1izC4TADBgxg+vTpLFiwoEbGqi633347BQUFjBo1ikGDBnHfffcdd8wdd9xBeXk5ffv25d577621Pi03N5ef//znTJo0iYEDB3LZZZeRn3/yR2VnzJjBr3/9awYPHsyOHTt45plneOKJJ8jLy6Nfv3688MILANx1112xYv+qgn4REZHmZOq7THUqDBs2zFb1SKqyZcsW+vbt2+RrlzVyWVASqznvS7x+ts5Ey5YtY9y4cc09DalG96Rl0n1pWbp//2UAFlyRfkruizFmrbV22LGvK3MlIiIiEkcKrkRERETiSMGViIiISBwpuBIRERGJIwVXIiIiInGk4EpEREQkjhRc1cPBgweZMWMGvXr1YujQoUyePJnt27dz4MCB2N53y5Yti23j8uKLLzJvXsO6yc+cObPJneDj7Zvf/CZ5eXkMHDiQa6+9lvLy8jrPqb5Z8+jRoxs99oIFCzhw4ECjzxcREWkuCq7qYK1l2rRpjBs3jh07drB27Vp+8YtfUFBQQOfOnWsNiKZMmcL3v//9uIwfCoXicp3GePDBB9mwYQMbN26ka9euPPzwww06/7333mv02AquRETkdKXgqg7vvPMObreb22+/PfZaXl4eY8aMYdeuXfTv3/+4cxYsWMCdd94JRDJSc+bMYfTo0fTs2TMWjFlrufPOO8nJyeHSSy+NbQ0DkezP3LlzGTJkCIsXL2bhwoWxLuRz586tdZ5r1qyJdSgfMWIEZWVleL1ebr75ZgYMGMDgwYNjW+wsWLCAa665hiuuuILevXtz991313rNqg2grbV4PJ7YHoDVFRUVMWnSJPr168ett95aY+/EVq1axX7/61//muHDhzNw4EB+8pOfALBr1y6GDRvGt771Lfr168ekSZPweDw899xzfPjhh9xwww0MGjQIj8fD2rVrueSSSxg6dCiXX355rMP773//e3Jzcxk4cCAzZsyo9XOIiIicSqfVxs2//OCXbD2ytVHnhkIhnE7nca9f0OYC5o6oPWCByH55tW3p0hD5+fmsWrWKrVu3MmXKFK699lqWLFnCtm3b2Lx5MwUFBeTm5nLLLbfEzmnbti3r1q3jwIEDjBw5krVr19K6dWsmTZrE0qVLmTp1auxYv9/P9OnTWbRoEcOHD6e0tJTU1FQeeughjDF8/PHHbN26lUmTJrF9+3YA1q9fz0cffURycjI5OTnMnj2bLl26HDf3m2++mVdeeYXc3Fx+85vfHPf+z372My6++GLuvfdeXn75ZZ544onjjnn99df59NNP+eCDD7DWMmXKFFasWEHXrl3ZsWMHixYt4rHHHuOrX/0qzz//PF//+td5+OGHeeCBBxg2bBiBQIDZs2fzwgsv0L59exYtWsQPf/hDnnzySebNm8fnn39OcnIyxcXFTbpPIiIi8aDM1SkwdepUHA4Hubm5FBQUALBixQquv/56nE4nnTt3ZsKECTXOmT59OhDJSI0bN4727dvjcrm44YYbWLFiRY1jt23bRqdOnRg+fDgQyTi5XC5WrVrF17/+dQAuuOACunXrFguuJk6cSFZWFikpKeTm5p5wI+WnnnqKAwcO0LdvXxYtWnTc+ytWrIiNceWVV9K6devjjnn99dd5/fXXGTx4MEOGDGHr1q18+umnAHTr1o1BgwYBMHToUHbt2nXc+du2bWPTpk1cdtllDBo0iJ///Ofs27cPgIEDB3LDDTfwt7/9DZfrtPq3goiInKFOq7+NTpZhqktj97Dr169fkwvNq2+WXN+9HNPT05s0Zl2qz8npdBIMBk94rNPpZMaMGfzqV7/i5ptvbvBY1lruuecevv3tb9d4fdeuXcfNw+Px1Hp+v379eP/994977+WXX2bFihX861//4v777+fjjz9WkCUiIs1Kmas6TJgwAZ/Px/z582Ovbdy4kZUrVzbpumPHjmXRokWEQiHy8/Nj9VDHGjFiBMuXL6ewsJBQKMTChQu55JJLahyTk5NDfn4+a9asASKBZDAYZMyYMTzzzDMAbN++nT179pCTk1Ov+Vlr+eyzz2K/f/HFF7ngggtq/Rx///vfAXj11Vc5evToccdcfvnlPPnkk7GnDffv31+jxqw2GRkZlJWVxT7f4cOHY8FVIBDgk08+IRwOs3fvXsaPH88vf/lLSkpK6vVEo4iISCLpn/h1MMawZMkSvvvd7/LLX/6SlJQUunfvzu9+97smXXfatGm8/fbb5Obm0rVrV0aNGlXrcZ06dWLevHmMHz8eay1XXnklV199dY1jkpKSWLRoEbNnz8bj8ZCamsqbb77JrFmzuOOOOxgwYAAul4sFCxbUyBSdjLWWm266idLSUqy15OXl8cgjjxx33E9+8hOuv/56+vXrx+jRo+natetxx0yaNIktW7bEPmOrVq3429/+VmsNXJWZM2dy++23k5qayvvvv89zzz3HnDlzKCkpIRgM8t3vfpc+ffrw9a9/nZKSEqy1zJkzh+zs7Hp9PhERkUQx9V2mOhWGDRtmP/zwwxqvbdmyhb59+zb52o1dFpTEas77Eq+frTPRsmXLGDduXHNPQ6rRPWmZdF9alu7ffxmABVekn5L7YoxZa60dduzrWhYUERERiSMFVyIiIiJxpOBKREREJI4UXImIiIjEkYIrEREROaM098N6Cq5ERERE4kjBVT0cPHiQGTNm0KtXL4YOHcrkyZPZvn07Bw4c4NprrwUij+NeddVVALz44ovMmzevQWPMnDmzyZ3g423mzJn06NGDQYMGMWjQINavX1/nOePGjaOqncbkyZMbvd/f0qVL2bx5c6POFRGRs1tzN5lSE9E6WGuZNm0aN910E88++ywAGzZsoKCggD59+tQaEE2ZMoUpU6bEZfwTbTh9qvz617+OBZAN9corrzR63KVLl3LVVVeRm5vb6GuIiIg0B2Wu6vDOO+/gdru5/fbbY6/l5eUxZswYdu3aRf/+/Y87Z8GCBdx5551AJPszZ84cRo8eTc+ePWPBmLWWO++8k5ycHC699NIa28F0796duXPnMmTIEBYvXszChQsZMGAA/fv3Z+7c2vdXXLNmDaNHjyYvL48RI0ZQVlaG1+vl5ptvZsCAAQwePDi2xc6CBQu45ppruOKKK+jduzd33313o78fj8fDjBkz6Nu3L9OmTauxN2D37t0pLCwE4G9/+xsjRoxg0KBBfPvb3yYUCgGRDvQ//OEPycvLY+TIkRQUFPDee+/x4osvctdddzFo0CB27NjBjh07uOKKKxg6dChjxoxh69atACxevJj+/fuTl5fH2LFjG/05RERE4uW0ylwd/L//w7dla6PODYZCHKklA5Tc9wI6/uAHJzxv06ZNDB06tFFjVsnPz2fVqlVs3bqVKVOmcO2117JkyRK2bdvG5s2bKSgoIDc3l1tuuSV2Ttu2bVm3bh0HDhxg5MiRrF27ltatWzNp0iSWLl3K1KlTY8f6/X6mT5/OokWLGD58OKWlpaSmpvLQQw9hjOHjjz9m69atTJo0ie3btwOwfv16PvroI5KTk8nJyWH27Nl06dLluLn/8Ic/5L777mPixInMmzfvuO1zHnnkEdLS0tiyZQsbN25kyJAhx11jy5YtLFq0iHfffRe3282sWbN45plnuPHGG6moqGDkyJHcf//93H333Tz22GP86Ec/YsqUKVx11VWxrNnEiRN59NFH6d27N6tXr2bWrFm8/fbb3Hfffbz22muce+65jV6CFBERiSdlrk6BqVOn4nA4yM3NpaCgAIAVK1Zw/fXX43Q66dy5MxMmTKhxzvTp04FIRmrcuHG0b98el8vFDTfcwIoVK2ocu23bNjp16sTw4cMByMzMxOVysWrVKr7+9a8DcMEFF9CtW7dYcDVx4kSysrJISUkhNzeX3bt3HzfvX/ziF2zdupU1a9Zw5MgRfvnLXx53zIoVK2JjDBw4kIEDBx53zFtvvcXatWsZPnw4gwYN4q233mLnzp1AZF/Eqlq1oUOHsmvXruPOLy8v57333uO6666LZb7y8/MBuOiii5g5cyaPPfZYLBsmIiJnt+be2e+0ylydLMNUl8buYdevX78mF5pXz/bU9/HQ9PT0Jo1Zl+pzcjqdBIPB447p1KlT7Nibb76ZBx54oFFjVW0C/Ytf/OK499xuN8aYk84jHA6TnZ1da0H9o48+yurVq3n55ZcZOnQoa9eupW3bto2ap4iInBmau6Bdmas6TJgwAZ/Px/z582Ovbdy4kZUrVzbpumPHjmXRokWEQiHy8/Nj9VDHGjFiBMuXL6ewsJBQKMTChQu55JJLahyTk5NDfn4+a9asASKBZDAYZMyYMTzzzDMAbN++nT179pCTk1PvOVZlh6y1LF26tNb6srFjx/L3v/8diCyhbty48bhjJk6cyHPPPRerKzty5EitmbLqMjIyKCsrAyKZuB49erB48eLYfDZs2ADAjh07uPDCC7nvvvto3749e/furffnExGRM0dz97aqTsFVHYwxLFmyhDfffJNevXrRr18/7rnnHjp27Nik606bNo3evXuTm5vLjTfeyKhRo2o9rlOnTsybN4/x48eTl5fH0KFDufrqq2sck5SUxKJFi5g9ezZ5eXlcdtlleL1eZs2aRTgcZsCAAUyfPp0FCxYcVzN1MjfccAMDBgxgwIABFBYW8qMf/ei4Y+644w7Ky8vp27cv9957b631abm5ufz85z9n0qRJDBw4kMsuuywWuJ3IjBkz+PWvf83gwYPZsWMHzzzzDE888QR5eXn069ePF154AYC77rorVuxfVdAvIiJnn1C45QRXpiVFesOGDbNVPZKqbNmyhb59+zb52o1dFpTEas77Eq+frTPRsmXLGDduXHNPQ6rRPWmZdF9aDm8gxAU//jcAj09K49IJ4xM+pjFmrbV22LGvK3MlIiIip71wtWRRc6eNFFyJiIjIaa8lLQsquBIREZHTXjj8xe+bu+JJwZWIiIic9kLNHVFVo+BKRERETntaFhQRERGJo7AyV6eXgwcPMmPGDHr16sXQoUOZPHky27dv58CBA7G975YtWxbbxuXFF19k3rx5DRpj5syZTe4EH28PP/ww559/PsaY2AbMAM888wwDBw5kwIABjB49OtbQ82Sqb2b96KOP8te//rVRc9q1a1esaamIiEiV6pmr5g6zTqvtb5qDtZZp06Zx00038eyzzwKwYcMGCgoK6NOnT60B0ZQpU5gyZUpcxg+FQjhr2XD6VLjooou46qqrjuvh0qNHD5YvX07r1q159dVXue2221i9enW9r3v77bc3ek5VwdXXvva1Rl9DRETOPFoWPI288847uN3uGgFBXl4eY8aMYdeuXbVuCVM9SzNz5kzmzJnD6NGj6dmzZywYs9Zy5513kpOTw6WXXhrbGgage/fuzJ07lyFDhrB48WIWLlwY60I+d+7cWue5Zs2aWIfyESNGUFZWhtfr5eabb2bAgAEMHjw4tsXOggULuOaaa7jiiivo3bs3d999d63XHDx4MN27dz/u9dGjR9O6dWsARo4cyb59+2o9/6mnnqJPnz6MGDGCd999N/b6T3/609g+hTt37uSKK65g6NChjBkzhq1bt570e/v+97/PypUrGTRoEA8++CChUIi77rqL4cOHM3DgQP785z8Dka17xo4dy6BBg+jfv3+TtysSEZGWrUZwpY2b62/lP7ZTuLe8UeeeKAPUrksrxny1zwnP27RpU61bujREfn4+q1atYuvWrUyZMoVrr72WJUuWsG3bNjZv3kxBQQG5ubnccsstsXPatm3LunXrOHDgACNHjmTt2rW0bt2aSZMmsXTpUqZOnRo71u/3M336dBYtWsTw4cMpLS0lNTWVhx56CGMMH3/8MVu3bmXSpEls374dgPXr1/PRRx+RnJxMTk4Os2fPpkuXLg3+bE888QRf+tKXav3MP/nJT1i7di1ZWVmMHz+ewYMHH3fcd77zHR577DF69+7N6tWrmTVrFm+//fYJv7d58+bxwAMP8NJLLwEwf/58srKyWLNmDT6fj4suuohJkybxz3/+k8svv5wf/vCHhEIhKisrG/zZRETk9NGSnhY8rYKr09XUqVNxOBzk5uZSUFAAwIoVK7j++utxOp107tyZCRMm1Dhn+vTpQCQjNW7cONq3bw9E9vtbsWJFjeBq27ZtdOrUieHDhwORjY4BVq1axezZswG44IIL6NatWyy4mjhxIllZWUBk77/du3c3OLh65513eOKJJ1i1atVx761evbrGvKdPnx4bu0p5eTmrV6/muuuui73m8/liv6/tezvW66+/zsaNG2OZrZKSEj799FOGDx/OLbfcQiAQYOrUqQwaNKhBn01ERE4v4bOl5soYswsoA0JAsLb9dxriZBmmujR2D7t+/fo1udC8+mbJ9d3LMT09vUlj1qX6nJxOJ8FgsEHnb9y4kVtvvZVXX32Vtm3bNmoO4XCYrKws1q9fX+ccT/S9WWv5wx/+wOWXX37ceytWrODll19m5syZfO973+PGG29s1DxFRKTla0mZq1NRczXeWjuoqYFVc5kwYQI+n4/58+fHXtu4cWOTa3jGjh3LokWLCIVC5Ofnx+qhjjVixAiWL19OYWEhoVCIhQsXcskll9Q4Jicnh/z8fNasWQNEAslgMMiYMWN45plnANi+fTt79uwhJyenSfMG2LNnD9dccw1PP/00ffrUHvBeeOGFLF++nKKiIgKBAIsXLz7umMzMTLp16xZ7z1pb55OHGRkZlJWVxf58+eWX88gjjxAIBIDI56yoqGD37t106NCBb33rW9x6662sW7eusR9XREROAy3paUEVtNfBGMOSJUt488036dWrF/369eOee+6hY8eOTbrutGnT6N27N7m5udx4442MGjWq1uM6derEvHnzGD9+PHl5eQwdOpSrr766xjFJSUksWrSI2bNnk5eXx2WXXYbX62XWrFmEw2EGDBjA9OnTWbBgQY1sUF1+//vfc95557Fv3z4GDhzIrbfeCsB9991HUVERs2bNYtCgQQwbdnzc3KlTJ376058yatQoLrroIvr27VvrGI8//jhPPPEEeXl59OvXjxdeeOGkcxo4cCBOp5O8vDwefPBBbr31VnJzcxkyZAj9+/fn29/+NsFgkGXLlpGXl8fgwYNZtGgR3/nOd+r9uUVE5PRTffub5mbqu0zVqIsb8zlwlEgQ+Wdr7fxajrkNuA2gQ4cOQ6vaHVTJysri/PPPb/JcmrOlgZxYc96Xzz77jJKSkmYZu6UrLy+nVatWzT0NqUb3pGXSfWk5dhaHuO8/XgB+PdLSPjvx92X8+PFra1uZS3RB+8XW2v3GmHOAN4wxW621K6ofEA245gMMGzbMHttTacuWLY2qlTpWY2uuJLGa876kpKTU+gSjRJriHvvfojQv3ZOWSfel5cjYfQT+8z4QqVtuzvuS0GVBa+3+6P8eApYAIxI5noiIiJydQi1oWTBhwZUxJt0Yk1H1e2ASsClR44mIiMjZqyUVtCdyWbADsMQYUzXO3621/07geCIiInKWakkbNycsuLLW7gTyEnV9ERERkSraW1BEREQkjs62JqKnvYMHDzJjxgx69erF0KFDmTx5Mtu3b+fAgQNce+21QOSJkauuugqAF198kXnz5jVojJkzZza5E3y8Pfzww5x//vkYYygsLIy9vmzZMrKyshg0aBCDBg3ivvvuq/Na1TezfvTRR/nrX//aqDnt2rWLv//97406V0REzlw1tr/Rxs0tm7WWadOmcdNNN1HVg2vDhg0UFBTQp0+fWgOiKVOmMGXKlLiM35x9oC666CKuuuqqWh9nHTNmTGzz5Ia6/fbbGz2nquDqa1/7WqOvISIiZx4tC55G3nnnHdxud42AIC8vjzFjxrBr1y769+9/3DnVszQzZ85kzpw5jB49mp49e8aCMWstd955Jzk5OVx66aUcOnQodn737t2ZO3cuQ4YMYfHixSxcuJABAwbQv39/5s6dW+s816xZw+jRo8nLy2PEiBGUlZXh9Xq5+eabGTBgAIMHD45tsbNgwQKuueYarrjiCnr37s3dd99d6zUHDx5M9+7dG/W9ATz11FP06dOHESNG8O6778Ze/+lPf8oDDzwAwM6dO7niiisYOnQoY8aMYevWrSf93r7//e+zcuVKBg0axIMPPkgoFOKuu+5i+PDhDBw4kD//+c8A5OfnM3bsWAYNGkT//v2bvF2RiIi0bC0puDqtMlfvLJjPod07G3VuKBjC6To+A3ROt56Mn3nbCc/btGkTQ4cObdSYVfLz81m1ahVbt25lypQpXHvttSxZsoRt27axefNmCgoKyM3N5ZZbbomd07ZtW9atW8eBAwcYOXIka9eupXXr1kyaNImlS5cyderU2LF+v5/p06ezaNEihg8fTmlpKampqTz00EMYY/j444/ZunUrkyZNYvv27QCsX7+ejz76iOTkZHJycpg9ezZdunSp92d6//33ycvLo3PnzjzwwAP069fvuM/8k5/8hLVr15KVlcX48eNrbdj5ne98h8cee4zevXuzevVqZs2axdtvv33C723evHk88MADsazZ/PnzycrKYs2aNfh8Pi666CImTZrEP//5Ty6//HJ++MMfEgqFqKysrPdnExGR009Lqrk6rYKr09XUqVNxOBzk5uZSUFAAwIoVK7j++utxOp107tyZCRMm1Dhn+vTpQCQjNW7cONq3bw/ADTfcwIoVK2oEV9u2baNTp04MHz4ciGyIDLBq1Spmz54NwAUXXEC3bt1iwdXEiRPJysoCIDc3l927d9c7uBoyZAi7d++mVatWvPLKK0ydOpVPP/20xjGrV6+uMe/p06fHxq5SXl7O6tWrue6662Kv+Xy+k35vx3r99dfZuHFjLLNVUlLCp59+yvDhw7nlllsIBAJMnTqVQYMG1euziYjI6els6XMVdyfLMNWlsdus9OvXr8mF5tU3S67vXo7p6elNGrMu1efkdDoJBoP1PrcqeAOYPHkys2bNorCwkHbt2jVoDuFwmKysLNavX1/nHE/0vVlr+cMf/sDll19+3HsrVqzg5ZdfZubMmXzve9/jxhtvbND8RETk9NGS+lyp5qoOEyZMwOfzMX/+F3tOb9y4sck1PGPHjmXRokWEQiHy8/Nj9VDHGjFiBMuXL6ewsJBQKMTChQu55JJLahyTk5NDfn4+a9asASKBZDAYZMyYMTzzzDMAbN++nT179pCTk9OkeUPk6cmqYOeDDz4gHA7Ttm3bGsdceOGFLF++nKKiIgKBAIsXLz7uOpmZmXTr1i32nrWWDRs2nHTsjIwMysrKYn++/PLLeeSRRwgEAkDkc1ZUVLB79246dOjAt771LW699VbWrVvXpM8sIiItW/Xtb5o7zFJwVQdjDEuWLOHNN9+kV69e9OvXj3vuuYeOHTs26brTpk2jd+/e5ObmcuONNzJq1Khaj+vUqRPz5s1j/Pjx5OXlMXToUK6++uoaxyQlJbFo0SJmz55NXl4el112GV6vl1mzZhEOhxkwYADTp09nwYIFNbJBdfn973/Peeedx759+xg4cCC33norAM899xz9+/cnLy+POXPm8OyzzxLtxF9j3j/96U8ZNWoUF110EX379q11jMcff5wnnniCvLw8+vXrxwsvvHDSOQ0cOBCn00leXh4PPvggt956K7m5uQwZMoT+/fvz7W9/m2AwyLJly8jLy2Pw4MEsWrSI73znO/X+3CIicvoJt6CCdlPfZapTYdiwYfbDDz+s8dqWLVtO+BdzQzR2WVASqznvS7x+ts5Ey5Yta9Yd5eV4uictk+5Ly7Hwgz3c88+PAfj9+DSmXD4+4WMaY9Zaa4cd+7oyVyIiInLaa0mtGBRciYiIyGmvJT0tqOBKRERETns1g6vmDa8UXImIiMhpT60YREREROKoRs1VM8dZCq5ERETktNeStr9RcFUPBw8eZMaMGfTq1YuhQ4cyefJktm/fzoEDB7j22muByOO4V111FQAvvvgi8+bNa9AYM2fObHIn+Hi74YYbyMnJoX///rGtZCDS7HPOnDmcf/75DBw4sF4NOqtv1nzvvffy5ptvNmpO69ev55VXXmnUuSIicuYKq6D99GGtZdq0aYwbN44dO3awdu1afvGLX1BQUEDnzp1rDYimTJnC97///biMHwqF4nKdxrjhhhvYunUrH3/8MR6Ph8cffxyAV199lU8//ZRPP/2U+fPnc8cddzTouvfddx+XXnppo+ak4EpERGpTvUN7c1NwVYd33nkHt9vN7bffHnstLy+PMWPGsGvXLvr373/cOQsWLODOO+8EIhmpOXPmMHr0aHr27BkLxqy13HnnneTk5HDppZdy6NCh2Pndu3dn7ty5DBkyhMWLF7Nw4UIGDBhA//79mTt3bq3zXLNmDaNHjyYvL48RI0ZQVlaG1+vl5ptvZsCAAQwePDi2xc6CBQu45ppruOKKK+jduzd33313rdecPHkyxhiMMYwYMYJ9+/YB8MILL3DjjTdijGHkyJEUFxeTn59/3Pn3338/ffr04eKLL2bbtm2x16tn6T766CMuueQShg4dyuWXXx67zrhx45g7dy4jRoygT58+rFy5Er/fz7333suiRYsYNGgQixYtoqKigltuuYURI0YwePDgWIf3Tz75hBEjRjBo0CAGDhx43MbSIiJyZmlJy4Kn1cbNxf/agf9ARaPODYWCeJzHf9ykzulkf7nXCc/btGkTQ4cObdSYVfLz81m1ahVbt25lypQpXHvttSxZsoRt27axefNmCgoKyM3N5ZZbbomd07ZtW9atW8eBAwcYOXIka9eupXXr1kyaNImlS5cyderU2LF+v5/p06ezaNEihg8fTmlpKampqTz00EMYY/j444/ZunUrkyZNYvv27UAkA/TRRx+RnJxMTk4Os2fPpkuXLrXOPxAI8PTTT/PQQw8BsH///hrHnnfeeezfv59OnTrFXlu7di3PPvss69evJxgMMmTIkOO+x0AgwF133cVLL71E+/btWbRoET/84Q958sknAQgGg3zwwQe88sor/OxnP+PNN9/kvvvu48MPP+Thhx8G4Ac/+AETJkzgySefpLi4mBEjRnDppZfy6KOP8p3vfIcbbrgBv9/frBlAERFJvFC45aSuTqvg6nQ1depUHA4Hubm5FBQUALBixQquv/56nE4nnTt3ZsKECTXOmT59OhDJSI0bN4727dsDkaW6FStW1Aiutm3bRqdOnRg+fDgQ2RAZYNWqVcyePRuACy64gG7dusWCq4kTJ5KVlQVAbm4uu3fvPmFwNWvWLMaOHcuYMWPq/ZlXrlzJtGnTSEtLAyJLpcfatm0bW7Zs4bLLLgMiS6DVA7RrrrkGgKFDh7Jr165ax3n99dd58cUXY/VcXq+XPXv2MGrUKO6//3727dvHNddcQ+/eves9dxEROf20pI2bT6vg6mQZpro0dg+7fv36NbnQvPpmyfXdyzE9Pb1JY9al+pycTifBYLDW4372s59x+PBh/vznP8deO/fcc9m7d2/sz/v27ePcc89t8BystVxwwQV88MEHJ53jyeZnreX5558nJyenxut9+/blwgsv5OWXX2by5Mn8+c9/Pi6AFRGRM4f6XJ1GJkyYgM/nY/78+bHXNm7cyMqVK5t03bFjx7Jo0SJCoRD5+fmxeqhjjRgxguXLl1NYWEgoFGLhwoVccsklNY7JyckhPz+fNWvWAJFAMhgMMmbMGJ555hkAtm/fzp49e44LQk7m8ccf57XXXmPhwoU4HF/8qEyZMoW//vWvWGv5z3/+Q1ZWVo2MU9XnW7p0KR6Ph7KyMv71r38dd/2cnBwKCwt5//33gcgy4SeffHLSOWVkZFBWVhb78+WXX84f/vCHWND60UcfAbBz50569uzJnDlzuPrqq9m4cWO9P7eIiJx+anRoV5+rls0Yw5IlS3jzzTfp1asX/fr145577qFjx45Nuu60adPo3bs3ubm53HjjjYwaNarW4zp16sS8efMYP348eXl5DB06lKuvvrrGMUlJSSxatIjZs2eTl5fHZZddhtfrZdasWYTDYQYMGMD06dNZsGBBjYxVXW6//XYKCgoYNWoUgwYN4r777gMihe49e/bk/PPP51vf+hZ/+tOfjjt3yJAhTJ8+nby8PL70pS/FliyPnffTTz/N3LlzycvLY9CgQbz33nsnndP48ePZvHlzrKD9xz/+MYFAgIEDB9KvXz9+/OMfA/CPf/yD/v37M2jQIDZt2sSNN95Y788tIiKnn5a0cbOp7zLVqTBs2DD74Ycf1nhty5Yt9O3bt8nXbuyyoCRWc96XeP1snYmWLVvGuHHjmnsaUo3uScuk+9Jy/HjpJp7+z24AfnNJKl/5UuJLQYwxa621w459XZkrEREROe0FW1DmSsGViIiInPaC1R4XbO4w67QIrlrS0qWcGfQzJSJyZlHmqgFSUlIoKirSX4YSN9ZaioqKSElJae6piIhInARb0NOCLb7P1Xnnnce+ffs4fPhwk67j9Xr1l2kL1Fz3JSUlhfPOO++UjysiIokRbEGbC7b44MrtdtOjR48mX2fZsmUMHjw4DjOSeNJ9ERGReAiEWs4KV4tfFhQRERGpS/W9BZs7zFJwJSIiIqc9FbSLiIiIxFGgBdVcKbgSERGR015L2v5GwZWIiIic9qoXtDd3KwYFVyIiInLaC4a1LCgiIiISN8HqmatmnAcouBIREZFT4bO3oPRAwi6vpwVFRETk7PK3a+CxiQm7fEvq0K7gSkRERBKrqsK8LHGZq0DI4nKYhF2/IRRciYiISGKFgwzo0ZUH2mQnbIhQ2OJyRoIrPS0oIiIiZ7aQH4C/ZGUmbIhgOIzb0TLCmpYxCxERETljhQLehI8RCFXLXCV8tJNTcCUiIiIJFQwmPriKLAu2jLCmZcxCREREzliBYCUAzgQWQwVCYZIUXImIiMjZIBCIBFeuBI4RrFbQ3twUXImIiEhCBYM+AJwJSlxZayPLgg7VXImIiMhZIBD0AInLXFV1Z3dXLQuqFYOIiIicyaoK2l0kZtmual9Bt2quRERE5GwQiAVXiREMR7a+USsGEREROStUBVfuRGeu1ERUREREzgbBUKSgPVHLgoFo5srtUuZKREREzgKBBNdchaIF7S5lrkRERORsEIzuLegyiS5oV58rEREROQsEQlWZq8SEHYFQtKBdmSsRERE5GyQ6cxVbFqx6WjCB2+zUh4IrERERSahAVXCVsMyV+lyJiIjIWSQWXJnEhB1Vfa7c6nMlIiIiZ4NEB1dVmSuXMlciIiJyNgiGI8GV2zgTcv2qmiu3Q08LioiIyFkgEAoACVwWrHpaUJkrERERORtULQs6E5S5Chz3tGBChqk3BVciIiKSUEEbBBKXuQpVFbSrz5WIiIicDWLLgmrFICIiItJ0gXBVzVVit79xafsbERERORsEw5FlQUeCaqHU50pERETOKoFozVWigp7gMcuCCq5ERETkjFaVubIJCnuqMldqxSAiIiJnhUA4lNDrB49tIqpWDCIiInImq2rFkKioJ6jtb0RERORsErCRzFWiEkqBkAraRURE5CxSFVwlKuqJ7S2ozJWIiIicDYKxzFWiCtqjy4IOZa5ERETkLBCwkWW7xC8LtoywpmXMQkRERM5YwWhwlajwKhS2OAzEGsDraUERERE5kyU+c2VxORyYBG2v01AKrkRERCShAiQ2uAqGwjX2FVTNlYiIiJzRYsuCNnEF7S6HoWXkrU5BcGWMcRpjPjLGvJTosURERKTlCSQ4lxQMh1tMA1E4NZmr7wBbTsE4IiIi0gIFo8FVwloxhCxup6GFlFwlNrgyxpwHXAk8nshxREREpOUKJGg5sIo/FK7RhqG5a65cCb7+74C7gYwTHWCMuQ24DaBDhw4sW7YsIRMpLy9P2LWl8XRfWibdl5ZH96Rl0n2pn8iyoMHj9STk+9p/wEvQF2bjho0AeCoTM059JSy4MsZcBRyy1q41xow70XHW2vnAfIBhw4bZceNOeGiTLFu2jERdWxpP96Vl0n1peXRPWibdl/q5f2fkf5NTUhLyfT27dy1HbTl5ef3gw9WkpKY2631J5LLgRcAUY8wu4FlggjHmbwkcT0RERFqgQNVvErReFwxHlgXP+Jora+091trzrLXdgRnA29barydqPBEREWmZgtH/TVQtlD9kW8zWN6A+VyIiIpJI1hKIZpQS9bRgIBgmyemghex+k/CCdgCstcuAZadiLBEREWlBQgGCCW7vGQiFSXI5aCldRJW5EhERkYSxQW8sc5UogWNbMWjjZhERETlTBQMerEnsgl0gWnPVUjbAUXAlIiIiCRMIlMd+n6iEUmRZsGUEVqDgSkRERBLIH6iI/T5hBe2hs6QVg4iIiIjfX5nwMQIhi8vRcra/UXAlIiIiCVMjc5WgqKdqWbCFJK4UXImIiEji+ANfZK4SvSzYUrScmYiIiMgZJxA8NcuCkZqrlpG7UnAlIiIiCRMIeBI+hj8UxuX8IrBSnysRERE5Y/mD3tjvE7ksmKSnBUVERORs4A8mNnMVCluspWaH9oSOWDcFVyIiIpIwNTNX8RcIhQGiHdpbBgVXIiIikjCBULXgKgHRlT8WXFUPrZo3d6XgSkRERBKmKnPlspZEBD2BYLXMVQtJXSm4EhERkYTxh3wAJNvE5JOC4chVa9Rc6WlBEREROVP5g9HgCpOQ4MofrL4sGEldqaBdREREzlj+kB8AN4aELAtGa66SXFoWFBERkbNAMBwJrpIT9CxfIBQJ2Kpv3NzcWs5MRERE5IxTlblKItGtGLRxs4iIiJwF/OEAkPhlQbdLTURFRETkLOAPBXBHH99LTOYqctUkbdwsIiIiZwO/DZBkI8/xJaJFQvUO7VXUikFERETOWIFQkCQMiaqIqurQ7lLNlYiIiJwN/DaIO/p7m4CFwWC1ZcGWouXMRERERM44fhskCUeCytmP2bi5haSuFFyJiIhIwvjDIZJM4pbsArVs3KynBUVEROSMFbAhkhIYbvirb9zcQqquFFyJiIhIwgRsCLeJBD6JqLmqasXgVs2ViIiInA38Now7geFGMFytQ3vLSFwpuBIREZHE8RMmyTjBJKYWKrYs6FKfKxERETkL+AmT5HBGnxZM3LKgWjGIiIjIWSFgLUnGlfCnBV0OPS0oIiIiZwE/FrfDBZiEBD3BUBhjwOlQzZWIiIicBfyGLzJXCYiu/CEbbSDaQiIrFFyJiIhIAgUAtzOxy4JV9VZVfa5U0C4iIiJnLD+Q5IjsLpiYgvYwrmh39paSvFJwJSIiIokRDhEwVcFVYmquAqHwcQ1EVdAuIiIiZ6agF78xuJ3JCVwWtF8sCypzJSIiImeyoL+CsDEkOZOBxGSUIpmrFhJVRSm4EhERkYTw+0oBSHElJ7CJaBjXMQXtzU3BlYiIiCSEz18GQJIzJWFhjz9oVXMlIiIiZwefLxJcJbtSgcQEPcFwmCQ9LSgiIiJnA1+gHIAkV2rCmnzW9rRgc6euFFyJiIhIQvj8FQAku1Or2nvGfYxAtWXBFpK4UnAlIiIiieEPRIMrVzqQmISSv1oT0SqquRIREZEzki9QCUByUhpgErItTY3tb1pI6krBlYiIiCRELLhypydsyS4Y0tOCIiIicpbwBT0AJLkTtywYCIVxu6rCmZaRulJwJSIiIgnhC1YtC7ZKWBNRfyiM23FMUKWnBUVERORM5A96AUhOyiBRWaXqrRhUcyUiIiJnNF80uEqKZq4SIRiyuF16WlBERETOAv5QJLhKSc6KLgsmYoyw+lyJiIjI2cEX8gGQlJSWsDGqt2KoosyViIiInJF8IT8ASY4kwCSkoD0QsrEmoonaYqehFFyJiIhIQvhCflzW4nQ4MSb+GaVw2BIKa/sbEREROUv4wn6SoxHVFUsq6f1ZKK7XD4TDAMc3EU1EK/gGUHAlIiIiCeEPBUjGYK2lz5YAX3s+GNfrB0KRIErb34iIiMhZwReOBldeb0KuHwhGMlfHbtzc3BRciYiISEL4bZBkDOFocOV3xff6gVDNZUHTQqquFFyJiIhIQvjCQZKMA1sZ2QYn4I7v9f3R4EqtGEREROSs4LMhko2TsCeygXMwzpmrYLTmqqpDu2quRERE5IzmsyGSjJOwJ7IsGO/M1bHLglWa+WFBBVciIiKSGH7C0cxVdFnQFd/UUtWyoMvRssKZljUbEREROWP4rCXZ4Y49LRiIe0F7tBVDnIO2plJwJSIiIgnhw5JsXIQrIzVX8V4WDB77tGALibEUXImIiEhC+LEkOdyxgnZ/gp4WPK7mKr7DNJiCKxEREUkIr4FkpxvrjWauErQs6NbGzSIiInLGsxa/gWRHEuFKD2WtzsOXlBrXIao6tLe0zFWcY0gRERERIOTHZwxJziTCXg9rht2DCe2N6xDHd2hvGZS5EhERkbgL+8oIGEOyK4VQtKDdOrvEdYxAuGpZ8JhwRn2uRERE5Ezj85YAkOxKxV8ZiLxoQ3Edo2pZMOmYpwWbe1lQwZWIiIjEncdbDECqO52AJxpc4Y/rGFXLgq6qgvYWsjCo4EpERETizusrBqqCq2hQZRMTXB23LNjMWtZsRERE5Izg9ZUCkeAq6AsCYOIeXEU7tKuJqIiIiJzpPL5IzVVKUgYBX1WtVeDEJzRCLHN1zPY32rhZREREzjgefxkAKckZBPyR4Cr+mauaGze3kMSVgisRERGJP6+/HIDU5CxC/mgqycY3c+U/pkN7FT0tKCIiImccTzS4SknOIhCIhDuJyFy5neaLbW9aSOpKwZWIiIjEnTdQCUBqShbBqpKrOAdXwVC4xT0pCAquREREJAE8wQoAUlPaEApGM1dx73NlawRXZ3yfK2NMijHmA2PMBmPMJ8aYnyVqLBEREWlZPMHIljfJSRkEw9FwI+41V+Hj6q2g+WuuErlxsw+YYK0tN8a4gVXGmFettf9J4JgiIiLSAniDXgCSgxByuAEwCdj+pupJQWg5fa4SFlxZay1QHv2jO/qruYNJEREROQU8QS8ua3F6/IScSdFX4xv9+IJhkt3HL8I1d5+rRGauMMY4gbXA+cAfrbWraznmNuA2gA4dOrBs2bKEzKW8vDxh15bG031pmXRfWh7dk5ZJ9+XEisqOkOKE999+m5AjGYhkWOL5fe0/6CXkC8euWRpt+eDz+Zr1viQ0uLLWhoBBxphsYIkxpr+1dtMxx8wH5gMMGzbMjhs3LiFzWbZsGYm6tjSe7kvLpPvS8uietEy6Lye2bJ+LtICDYf3687JzFxApOI/n9/XUzg8Iuv2MG3cxAEXlPnj7TZKTk5v1vpySpwWttcXAO8AVp2I8ERERaV6V4QApGMLl5QlbFvQGQiS7nbE/mxZSdJXIpwXbRzNWGGNSgcuArYkaT0RERFoObzhIinESrqwg5Eiq+4TGjBEMk1ItuKrS3AXe9V4WNMacA1wEdAY8wCbgQ2tt+ASndAL+Eq27cgD/sNa+1MT5ioiIyGnAa4OkOpzRzFVy9NU4F7QHQqRkJMf+3DLyVvUIrowx44HvA22Aj4BDQAowFehljHkO+I21trT6edbajcDgeE9YREREWj6PDZHiSCZcUUG4alkwzimlY5cFY06DpwUnA9+y1u459g1jjAu4isiS3/NxnpuIiIicprw2TLbDTai8nJAjI/JinGuifMEwKa7j+1y1+GVBa+1dxhiHMear1tp/HPNeEFiaqMmJiIjI6clLmFRHEuGKCkLOdpEXE5C5ql5zdVptfxOtq7o7wXMRERGRM0QllhRnMuHyasuCcX9aMExKbU1E4zpKwzXkacE3jTH/Y4zpYoxpU/UrYTMTERGR05O1eA2kOJMJlVdUa8UQzyEs3mDNzFULSVw1qIno9Oj//r9qr1mgZ/ymIyIiIqe9oBevcZDqTCFYXok1VQFQ/KIffyiMtZDsOiUtOxuk3sGVtbZHIiciIiIiZ4aQvxy/w5DiSsVf6YcEtLnyBSOdoGrUXLWQzFWd4Z4x5uI63s80xvSP35RERETkdOb1HAUgzZ2GzxNIzBiBEECtrRhOh42bv2KM+RXwbyKbMB8m0ufqfGA80A3474TNUERERE4rHm8xACnuNPzeCsiKvB7Pp/l8gWjmqnorhrhdvWnq04rhv6KF618BriPSed0DbAH+bK1dldgpioiIyOnki+AqnYDvULV34hf+VGWuTtvtb6y1R4DHor9ERERETsjri2zakprUioD/RLvkNXGMaOYquUYT0ZaRu6pXib0xxmmMaVftz0nGmNuMMVsSNzURERE5HXn8JQCkuFsRCFZ/J47LgsETZ66aW30K2mcAR4CNxpjlxphJwE7gS8ANCZ6fiIiInGa8/jIAUm0KQUdkY2VHyBvfMQK1PC0Y1xEarz7Lgj8ChlprPzPGDAHeB6611v4rsVMTERGR05HXXwFAajiZImcKAM6wh8TUXNXWob15q67qsyzot9Z+BmCtXQd8qsBKRERETqQyUA5AcshN0JWCMRZHOL4tGby1LAu2kJKremWuzjHGfK/an7Or/9la+9v4T0tEREROV95AJQBJQRchZwputwGvJb6Zq+ML2mNOgz5XjwEZJ/mziIiISIw3EFkWTAq6CLpSSEoyRPJWiS1oj2cfraaoT5+rn52KiYiIiMiZwRP0AOD2QdCZgjvZSTDOlVCxgnZXy+tzVd9WDOONMc8bYz6J/nrOGDMusVMTERGR05E3GHky0OkNEHKlkpRa762M6z9GbPub6n2u4j5Mo9SnFcOVwJPAS8DXiLRfeAV40hgzObHTExERkdONJ+Ql2VqorCToTCE5zU0knxTP7W+iwVUtNVfNnbmqTyh5FzDVWruh2mvrjTEfAn8gEmiJiIiIAOAJ+UixhlB5OSFXK5LSkyJvxDHq8QbDJLsctXdlb+boqj7Lgh2PCawAsNZuBDrEf0oiIiJyOvOG/aRiCFdUEHSmfBFcxXHdzhcIHded/bRZFgQqGvmeiIiInIU84QApxkG4vIKgK5WkFBdg45u5CoRrbSAKzZ64qteyYC9jzIu1vG6AnnGej4iIiJzmvOEgqTgJllcSdibFCtrjubGyLxgi+ZgnBU+bVgzA1Sd574F4TURERETODN5wkFSnG3955KnBqsyVjWufq3DtDUQ5PTJXn1tr9yR8JiIiInJG8BCilSMVf2UAksCd4oyEVXGMevzBMEnHBFenU83V0qrfGGOeT9xURERE5EzgsWFSHUn4PZG+7LGaqzhGP/7Q8cFVS1GfWVX/JlRjJSIiIiflxZLiTMLvi/SiSkp1QlwXBSPLgknOYzJXcbx+U9QnuLIn+L2IiIjIcTwGUhxJ+P2RsCGSuYJ4hj+1LQtWsafBxs15xphSIt9IavT3RP9srbWZCZudiIiInF7CYbwGUl0pBP2R/f8SFVwdW9Aez6cRm6I+GzcfvyOiiIiISG2CXrzGkOpIJhCMBDtVy4LxdLrXXImIiIjUS8BXStAY0sLJBB3JALhTXNGcVZyXBU/jmisRERGRevF4jwKQHk4i6EoBwJ2cgMzVyWqu4jpSwym4EhERkbjxeosBSAu6CTlTcDktDkf8c0q1LQu2kJIrBVciIiISP55ocJUadBN0peBOqop4LPFfFqy9LLy5nxZUcCUiIiJx4/VHmgqkBl2EnKkkJSUmnVR7h/aWkbpScCUiIiJx4/GVAZAcdEUyVynVs0vxCX6stfhDJ95bsLm1zFmJiIjIacnji2SukgMOgs4UklPd0XfityzoC0b7Z6mgXURERM503kAFAO6gg5ArhaQ0dx1nNJw/FAmuastctYSVQQVXIiIiEjeeQDkALh8EnSkktYr0ujJxzFz5lbkSERGRs0UscxUgkrlKT477GLHgyllL5iruozWcgisRERGJG0+gEgDjC0cyV7GC9lOXuWru1FV9Nm4WERERqRdP0AuA9YTBOGKbNhdVvkCyMycuY1TVXNUWXLWEdgzKXImIiEjceIMejLUEK0MAJKe5CPh9APhC2+IyxsmWBaHZE1cKrkRERCR+vCEfKYCvMgBAcpobb1lZ9N34PDl4slYMzZ+3UnAlIiIiceQJ+Ui1Br8nmrlKdeEpi/S+csQpuKqz5qqZtcxZiYiIyGnJGw6QisHnjwZAqS685ZHMlTFJcRlDfa5ERETkrOEJ+0kxDvyBSJSTnObCE10WNLjjsqvyFzVX2rhZREREznAeGyTVOAlESq6imavIsqAxSdhwuMljnGxZ0LSAqisFVyIiIhI3XhsiBSeBUCSrFKm5qspcJWHj8CyfPxSp51KHdhERETnjeW2IjKCLoDMVpyOM0+2IZa4wDuIR+lRlrmqruWoBiSsFVyIiIhI/Hhsmy+ci4EolKdqq3BNrxUDClwVbgpY5KxERETktebFk+p2EXKm4kyJppKpWDGDjsiyoPlciIiJy1vAYyPA7CLhSSU6N1F15q2Wu4rIsGFKHdhERETkbhMN4DLTyuQi6UklOizQN9VTVXAHWxnFZsJbgSn2uRERE5IxhA5V4jSHV54gEV60iTUNrZK7ikFbyB8O4nQaHo/ZISn2uRERE5Izg8x7FGkOa1xB0pZGcmUo4FMJbWVHtqPg8LXiiJcFIn6vmja4UXImIiEhceCoLAUj2RjNXmSmRYvZoKskSp2XBUPiETwpqWVBERETOGBWVhwFI9ruxDhfJqS4qS4qrHRGnpwUDJw6uIqM0LwVXIiIiEhcVniMAOHzJACSnuaksKTnmqPg8LXjCzFWTr950Cq5EREQkLqqCK3yRpwRT0t1UlhbXOCZeTUSTXbVv2hwZpMlDNImCKxEREYmLcm8xANYXac2enPbFsqDhJMFQA1X6g6Ql1X490wKKrhRciYiISFxU+IoBCAaimzZHgyuH04kxbrDxqbmq9IdIcZ84WFPNlYiIiJwRKvyRZqFBf1Vw5aaytIS0zKzYMfF4WtAbCJ04c9XkqzedgisRERGJiwp/OY6wJRCOBD4p6ZHMVWpWNmDiFvlU+k8cXIEyVyIiInKGKA9UkO6FoCsNsCSlRIKr9KzsL+KqOGSuTros2AJSVwquREREJC4qgh7aV1oC7nSS3GAc5pQvC7YECq5EREQkLipCHtpGt75JSjZYa6ksKYktC8ajmB2qlgVdtb7XAhJXCq5EREQkPipC/lhwlZLqxO/xEPT7amaumhhghcMWT6COpwXV50pERETOBOVhP629TgKuVJLT3VSWHAUgPbt17JimNhH1BSPnq8+ViIiInPEqbJBMn4OgO53kjBQqiqsFV3F7UjAIQKr6XImIiMiZrsKGyPQ5CLjSSMlMjXVnT6tqxQBYmpa5qvSHAEg9YeaqSZePCwVXIiIiEhcVWNJ9jkjNVUZSjcxVVWhlm1gQ5Q1Egis9LSgiIiJnNmspN5DmS8Y6nLGtb4xxkJqZGbdhYpmrEywLtoDElYIrERERaTrrr6DSYXD70wBISXNTUXyU1MxMHI7qgVDTMld1LQs2fYSmU3AlIiIiTebzHCFoDE5/ChDZtLmipLjak4LRhcEmPi34xbLgCfpcGdPs0ZWCKxEREWmy8opDAJjQF8FVZUlxtJi9StOjHi0LioiIyFmh0lMIgA0kAZCcHlkWrNHjiqY3Ea1qxaCNm0VEROSMVl5ZCNYSCkWCq6RU5/GZK9v04KpqWVCtGEREROSMVuE9QnIAQs5UABz4CQUCsczVFefeSI+MXk3em6auZUE4gzNXxpguxph3jDGbjTGfGGO+k6ixREREpHlVeEvI8EDAlYYxFr+vDID0rGzC/hDprgyGtrkQa+PURPSEwVXzp65qL7WPjyDw39badcaYDGCtMeYNa+3mBI4pIiIizaDcV0xWBQRdaSQlmS+6s2e3JlzmB8Ab8pASh2XBZJcDh+MkQdSZ+rSgtTbfWrsu+vsyYAtwbqLGExERkeZT4S8js9IScKeRnOKIBVfpWdmEYsGVt8mBT6U/dNJi9pZQc5XIzFWMMaY7MBhYXct7twG3AXTo0IFly5YlZA7l5eUJu7Y0nu5Ly6T70vLonrRMui9f2HdoH5mVkcxVwPrYsOYTANZ/spmskjQ64cQX8rJmzWpS0w42epyde3w4wqETfu9+vx9/INys9yXhwZUxphXwPPBda23pse9ba+cD8wGGDRtmx40bl5B5LFu2jERdWxpP96Vl0n1peXRPWibdly9sPPw7siotAVca7Tq1o8057djncDDx8iuo+M9BitfvwBvyMmzYMNqf06/R4yzev47sQOkJv/fkd9/E7Q41631J6NOCxhg3kcDqGWvtPxM5loiIiDSfymAlbSsh6E4nJSM50uMqKxvjcMSWBf3WR9O3vwmesDt7lTP5aUEDPAFssdb+NlHjiIiISPMrD3ppHQ2uktPd0R5XkTYMVcEVWGwcWjGcbF/BllBzlcjM1UXAN4AJxpj10V+TEzieiIiINJOKsI/MSgcBZ0pkX8Hio6RnZwPEnhY0mLg0ET1Zj6uWIGE1V9baVbSEZhMiIiKScBXhAK28yWAcJKe5qSgppl2X7kD1zBVxaSLaOfskmasWEHqoQ7uIiIg0WYUNkhzMACA1w01lcXEsc/VFcGWwNL2J6MmWBaHJ8VuTKbgSERGRJiu3YRyhSHDldPkIh4Kkt26DDYUJlweA6HJWEwOfupYFz/SaKxERETlL+EJhwiYTABuKbH2T0a49wSPVG4camv604MmbiLYECq5ERESkacJhHB7wJ0WCq6CvBIDMtu0JFnljhxlDk/YWDIctnroyV5zBrRhERETk7GD95bg9Bn9SJg5j8ZQXAdHM1WEPACEbBNu0wMcXjARmqSfpc2VawLqggisRERFpEk/lYTI84EvKJCXNQVlRIS53EqkZmQSLPJgUF/6QN1IP1YRq80p/EKDOZUEVtIuIiMhprazsAJkV4E/OIj0zibKiQjLatccYQ7DQg6t9ajRj1bSnBSv9IYAW3+dKwZWIiIg0SUnZfjKjNVdp2SmUFR4io207AIKFHtxtUwAbaSLahLSSNxANrlTQLiIiImeykvJ8Mist/qRM0tumUVZ4mIx27bGBMKESH652qdU6szdlWTASXJ1sWbAFlFwpuBIREZGmOVpxiMxKg9/dipR0J+XFR8ls157gEQ9YcLVLBaJP8jWp5qp+y4J6WlBEREROa8WeQlp5W4Fx4HJVgrWRJwULI08KutrGJ3NVn2VBZa5ERETktFfiKyYtEG0gGi4HIKNte4KFkR5XVZmraKOrRo/zxbLgybdGburm0E2l4EpERESapNhfSmo0uAoFow1E27UnWOTBke7GkeoCa5vc4LOqFcPJm4g2f+pKwZWIiIg0SXGgAreNBFd+TzEAGW3bETjsiWWtYq0YTsXTgupzJSIiIqezUp8H64gEV76Ko6RmZOJOTiFY5MHVNiV6VDRz1YTtb/S0oIiIiJwVAhV+/ElZuJ1hyo8WktG2PWF/iHCp//jMVbjpwVWKnhYUERGRM1pFCH9SJqlpjliPq9iTglXF7DS9FYM3ECLZ5cDpOHF6qgUkrhRciYiISBOEwzgqLL6kTNIy3JQWHo4Usx8XXNno04JNy1y19O7soOBKREREmiDkKSK50uBPyiAl0+D3VJLRth3Boi96XEGkPYKhaW0SKv0h0upYEjQtoOhKwZWIiIg0WmnJXrLLDf6kLJzJkb5W2R06ESz04shIwpF8TDDUxGXB+mSumjBEXCi4EhERkUYrLt1H6wo3IVcKlkiPq+xOnQkWenC1S6l2ZGTjZppQ0F7uC9bZQLT581YKrkRERKQJSsoPkOmJtGEI+o4AkN2hI8EiD+52abHjqrJJ4SYEV2XeAFmp7jqP09OCIiIicto6WlFAK38GAL7KQlq1bYfTugiXB47PXJmmNREt9QbJTD155qolpK4UXImIiEijFVceJiW69U1l8SFad+hUY8PmKrGQKtT4zFWpJ0BmyskzVy0gtlJwJSIiIo1X4jmCy2YBUFZUEKu3gpo9rqpqrsJNylwFyNSyoIiIiJzJKoqPEnRnQNiDt7yU1h2jwZWh2tY3XwQ8jd3+xhcM4Q2EyUypo6BdrRhERETkdOYvLsWflInbVQxEnxQs8uLMSsbU6ElV9bRg4/JKZd4gQP0yV2rFICIiIqerUIkHf1ImLncpAK07diZQ6DlmSfALjW0iWuoJAKjmSkRERFquSn+QFdsPN+kJPsoC+JOyMI4yMCbaQNRTY0kQvgiqbCML2ktjmas6nhZsARRciYiInKUeX/k5Nz75AW9sLmj0NZzlIXxJmVjKyGjTDuMH6wniqtbjqkqkHirBmasWkLpScCUiInKWenljPgD3vbQZf7ARGSVrSaoAf1IGAd8RWnfqROBgBQDujscGV9HMVSObiJZ6o8GVnhYUERGRluizQ+VsKyhjaLfW7Dvq4bND5Q2+hvVXkOppBcaJr7yQ7I6dCeRXAuDulF7zWGhSQXupJ7osWGfNVfOnrhRciYiInGWstfz2jW04HYZZ43oBsOdIRYOvU1G6n3RfNjbsIeCriBSzH6zAkeHG2Srp2FGrBm/UnKsyV/XZ/qa5KbgSERFpScLhhPcSeO2Tg7zy8UH+Z1IOw7q3AWB3UWWDr1NcupuUYDtsuBiA7E7nEjhYgbtjeq3HR5qINm7OpZ4AbqchxX3y0EU1VyIiIvIFfwWFj46m+PcDYctLCRtm/d4S3E7DbWN7kpXqJjvNze4jDQ+ujhbvwUkbbKgYgOxzOhIoqDhuSRCa3kS01BvZ+qY+TULV50pEREQAOPzvu/lKSikTsmDBG9+F8kMJGWd/sYfO2ak4HZFApVubNPY0InN1tHA3waS2YAvBGFo5syFoT5C5imzcTGML2j3BehWztwQKrkRERFqCoI//3f8GlU43Q9oN4KHMFHa+PjchQ+07Wsm52V80+ezaNp3djai5KsvfhzelLQ5TTGa79oQL/QAnXBZsimJPoM6tb6roaUERERGhfNdKVqQm8bVOY/jVpQ+T6nDzQMEqOLor7mPtP+qpEVx1a5PGgWIvgQY2+PTmF+BJaQuURZ8UrACHwX3O8T2ubHT7m8a2YjhS4aNN+rFF8sfT3oIiIiICwLrtLxAyhtF9ptEmpQ239P0GK9NS+GT5/XEdxxcMcajMx3mtvwiAurdLJxS2fF7YsOxV8FAJ3pS2BAMlsScFXe1TMa4ThxeNLLniSLmfNunJjTv5FFNwJSIi0gJ8cGgtbgt5510EwIy828jEwV+LPozrOAeKvQCc2/qLzNXw7q0BeH9HUcMudsRByIQIBTy07hTJXNVWzF7FYBpVbG6tpajCT9vj2jvUNoYK2kVERCTg4YPAEQYltyPFFdmTr1VSKy5M6cTH1gtBX9yG2n/UA1BzWbBtOl3apLLqs8IGXctZno4NHwUgu01HQiW+k9RbWTAGa0MNnnOFP4QvGKZtvZYFG3z5uFNwJSIi0sxKdr7NVreLER2G1Xg9p00f9rpdVBzcELexdhyOdGI/r1rmCuDi89vxnx1FBBtQd+XyZsXaMGQ42wLHd2avYrEYS6M6tB8pjxTK16fmKjJW81JwJSIi0sw+/PRFrDGM6HN1jddzOl0IwKe7l8dlnI/3lTDv1a306dCKztk1g6sLe7SlzBfks8P13wbHFWxNOFyMMQ5S/JGMW9LJnhQ0jVsWLKqIZO7qtSyozJWIiIisPryeVAsDosFUlT5dxgCw/dD6uIzz0scHCIbDPHPryFiPqyo92kWCovr2uwoWFmCd2djQETLbtyd0yIsjzYUj88QBkAHCjahoL4pmrtqqoF1ERETqVLyX1cEShqR2wu2s2SSzU2YXMqxhW+nncRlq3xEPXVqn0T7j+CClS5vI04N7ozVZdSnZ9iG+5GywR2JtGNwd00/YCsFGt25uzJrdkYr6Lwtq42YREZGz3JYP/sjOJDfjel993HvGGPq4MtkWKI7LWHuOVHJem+N7UAG0TnPTKtnF3npug1OybT3epGzCoRKyO0TaMJzsSUGIZK4a06G9sAHLgqCaKxERkbPakl2vkGThS/2+Xuv7ORld2e40hEvzmzzW3qOVdG2TWut7xhjOa51a7+CqbMd2PMmpYAO0yz4PGwjXozN747JKR8r9pLqdpCXV3aFdNVciIiJnsfCRnbzqCjIxszdZyVm1HpPTfiAeh4N9TSxqL/EEKK4M0KV17ZkrgK5t0thTz+DKt/cAXlckR5SV1B448ZOCVYyJ9KxqqCMV/no/KQg0e+pKwZWIiEgz2brleYqdTsZ2v4KCeb/k6KJ/HHdMTtexAGw/8J8mjVWVkep6gmXBqvf2Hq2sVwAUPOTH2siThanBdDDgqmXbmyqxmqtGtGKobwNRaGxuLL7qtwOiiIiIxN0He5YBkLerFUcWPAiAcTnJ/spXYsf06jgEh7VsK9rKpU0Ya9/RSHDV5STBVZc2aXgDYQ6X+zgnI+Wk1wuXpxMOH8UYB84yA+1ScSQ5T3pOpEN7w4Or4ko/2Wn1z1yp5kpERORsZC2ry3bRO5SM96H5pPTrR/rFF5P/43spe/ud2GEprhS6mWS2eQuaNFzVct/JgquqxqL763hiMFRSgt/ZHhsqplXb9gQLPPWot4qEPLYRmatiT4DWae66D4QWUXSl4EpERKQZhIp3sc4N1+xsS7CggHP++3uc9/uHSLngAvJ/9CNCJSWxY89PbsPnYV+TNs3bVVRJ6zQ3WaknDlI6ZkWyVQWl3pNey79nL5VpHbHho7Tr1IXQEW89gqvG7y1YXBkg+yTzPpYyVyIiImehzz59lUDYMGBlCcm5fUkbNQpHWhqd7v85oeJiDv/h4dix3TO6sM/lIFC8p9HjfX64ItYo9EQ6ZUUyV/klJw+uAgfzqUg7Bxs+SqfsXgC4z2110nOsIbqrcsNaMYTCllJvgKx6Lgs2f95KwZWIiEiz2Lj/Xa5bGSapoIRz/ut7seabKX37knX11RQ//3wse9W9zQUEjWHf/tWNHm9XUQXd6wiuWqe5SXY5OFhHcBU8cIDy1GywAVo7O4CB5G6ZdczANqrmqtQTwFoalLlq7tSVgisREZFmsKVgO1eusWRefTWtxlxM4b4y8neUEAqFafONr2M9Hor/uQSA7p0iGzrvauQ2OJX+IPklXnrWEVwZY+iUlcKBOoKryl2fURlNJKX5WuHukI4jtT7PyJkG11wVewIAZNez5qoFlFzpaUEREZFTLhQk8Fk57hC0vu5aSgs9PP+rtQT9Ydp0TufyW/uTmpdHyYsv0vbmmXTvNBSAXUc+bdRwuwojxex1Za4gUnd1sOTkBe2F+w4TDmdgMDiOWJKG1JW1ijA0vM9VcWVk65vWDXpasHlTV8pciYiInGKVBZvoutPgT3eztbAdL/5+PcYYLvlaDp7yAEsfXIe55Ep8W7bg37ePzOQs2ljDrsoDDR7raIWfJ9+N7E1YV80VROqu6qq5Kim2hIMFtM3qAv4wyd3rF1zRiGXBqsxVVn0zVw26emIouBIRETnFPv38bQbvsBQPH8P7S3ficBgm3tSX/mPPZdr3BhMOW1YX9sRiKHvjTQC6O9PZ5S9t8Fh/XrGT59bui1yjbf0yVwWlXsInWb6r8KZjQ4fock5fAJLqEVxZLMYYbAP3FiypjC4LNqTmqpkpuBIRETnF9qxbSboPCs/5EkmpLq6dO4xeQ84BoHXHdC6+rjeHD/goGvhlKlauAKBHagd2OUIQ9DVorJ2HI13U//yNoaQn110N1CkrhUDIUlThr/V9GwxS6ciMPCmY3hNnVjKu7JM3HK15gcYtC9a3iagxprnr2RVciYiInGqeT/bgTW5NweE0+o89l6RjisFzRnSk7Xmt2HPOaDyfbMZaS/fsnhxxOikp2NigsfYe9TDxgnO4vF/Heh1f1WR0S37tWbLgoUOUpiQD0MqXWa+sFQAmsv1NAzsxcDSaucpMqV+ZuJYFm0Hg4EGChYXNPQ0RETmLpX9eyafnj8EC/cZ2Pu594zD0HnYOxcEMKr2GwL59dG/fH4BdDWjHYK1lT1HFSbuyH2tUz7akJTn59ycHa33fv2cPlUlh0lyZGC8NqLeqaiLawGVBT4CMFBcuZ/1Dlib0Wo2Lsy64+mzceD69eExzT0NERM5S/v1bOXe/4Ui70XTr35bMtqm1HtdzUHsACtsOxLtpEz3OHQXArsJP6j3WkQo/Ff7QSTdrPlaK28mEC87htU0HCdVSd1W2+TOClJKdEgkKk87LqNd1bS2/q4/iSn+DnhRsCa0YzrrgqkpjNo4UERGpUuEL8vctPn77+jbKvIF6n7fzb3+gMr0XIZPBeX0cPP397/DIbV/nL//z/1j36oux41p3TCerfQpF7frj/eQTzm3TG5e17CrZVe+xqvYTbEhwBTCpX0eKKvy1Lg0Wbc8nHDpEVquO4AB3x/pf22AIhxo0FYo9gZNu2dMSnVXBVfWAqnLNGgL5+c04GxERiZtQAAIn780Ub3985zNe3x3k929/xuuf1H9T5crX/8OOboMxrhD/ef4BSgsP02vYhbhTU3lnwXyW/fUxgv5IEXen87Mpy+5B5caPcTlcdMHNLu/heo9VFVx1a9uw4KpbNBirrSVD4d5ibKiItqnn4GqfhnE763lVG0krNXBZsLDcR9tWDchctYCqq7Oqiaj1fPEf3p4bb8LZujV93n+vGWckIiJNtuc/rH3xNirCfga2z6OispBzL5wF/a5J2BpRQamXx1d9zoiOTtYeCrOzsLxe5/k+/5yU/R6O9h7MOe0Psn9zEdfc8zN6DBpKOBzi7afms/blFyg9fJgp//0DzumWydb30yjetgcbCNA9qTW7KmuvharNnqJIcHVe64YFV+dkRgrWD5fVfDLRhsMcLq+AlDBtHOeQ1Pnk+wnWZBrVRPRQqY/cTvWv64Jm3/3m7AquQkePnvTPIiJymjm6m4f+9Q0ez0gB3CT5PsHvMlyyci4/+OAROve9BkbeEfcg643NBfiDYa4+P5XDQQefF1bU67yy117jSJu+OGwmnpLlZHfoRPeBgwFwOJxc+s07SM/O5r1/PMPeTzbSvls3AErdHfBu3Ub3Vueyyn+IUPkhnK3OqXO8dXuO0rN9OqlJ9c0uRbRrFQmuDpXVzFwF9u+n1O0k2ZFGajgdd+e6+2bFRJ8WpAGJq1DYUlju45yMBrR6aP7E1dm1LBg8Wlzjz8527ZpnIiIi0nSVR/j34ut4vFUKU7tM5PYB3+KKHpOZlXcHH6RncLmzgK9+/BCHnp4C7/0hbsMWlvtY+elhzs1OpXO6oUe7dHYerl9wVfzyC2zvPpJgYCVH9n/GsC9fg3HU/Kt42JevoVXbdvznn4tod24rjANKM7ri+WgdPdrkEDCGA/v/U+dY/mCY1Z8f4aJeDf+7zu100CY9iUPHZK5827dT6Q7SJuU8AJLOrV8xe5WGbtxcVOEjbL/IpNVXc5dVn1XBVejoEQA6P/AAWVdPIVRSctxNfmb1bv7vlS3NMT0REakva3nvH9fxg6RK8jK6c+8lv+b/DZnD/Zf8ijsGzeL5aS/y3SHfZXdKGhPtLr6y6WECez9o8rCvfXKQYT9/k9c+KWBsn3YYY+jZLp1dRRUn7WgO4N+3n/LdRyhP60So4kP6XXIpAy+94rjj3EnJDBg/iT2fbKSy9Ahtz21FWbs+VK77iO4dI1muz/PX1TnXDfuKqfSHuOj8to36rOdkJHOotGZw5dm2nYApJ7tVV6wDkrrUf1nQRjNKDQmuqsY/J6P+wVULSFydbcFVZBkwpV8uyX1yIBAgXFFZ4xjznwfpvu7uUxL2lvuCfPfZjygqb1i3XRGRs13JugV8P5xPj5T2PHju3ZQ+9Re8mzfH3u+S0YVvDvgmf73qWb7aayrbk5N4acVPmjRmKGz51b+3xv58SZ/IslyP9ul4A2HyS0++H1/Z66+z97zxBD3vk5SWzribbsVElysDhyvxbCkiHG2YmTt2AljLlpXv0KlnFiXpXancvIXunS8EYNfR7XXO973PijAGRvZsXHDVPiOZw8f8/VS0dS/hUCGtUzri7pzegGL2CIPB1hGEVldV89W+IcuCLcBZGVy5WrfG2bo1AMHXf8Unj45i75JvEcrfwL9SXuXPnXdw9MPHEz6fTftLWLr+AB/uVu2XiEi9eY7yuzW/IrvQwf0Fl1H0rTs59MBv+Py6r3L44T8SOPhFwXdOmxx+dNF95Ca14THP5wTzG9bdvLo3Nh9kx+EK/nD9YJ6/YzSX9+sAQM92kexN1TYzJ1L8+lvs7tADG9zNqK/MICW9FZ5tRyh+ZScFD66j6C+bOfSnDYTK/WR36EjnnFy2vb+STudnE8LF0aOWzHAKWRZ2le+vc74f7y+hV/tW9d425ljtM5I5fEzAuH9/IQZLR+c5pHTLauAVq54WbEDmKlrz1aDMVQtIXZ1VwVXw6FFwOnFkZuJsnQ3AnE8WMSO1nO8VrmLJ23PZlJLEEaeT3679HTRwc8mGqvAFASj3BhM6jojImWTDy//Drr0O7v8b2Eeext21Cz1ffYVW48dR+PDD7PzyFDyffNFo0xjDbcO+x163m1eX/6jB463fW8zlD67gobc+o0NmMpMHdGJot9axrFNup0yMgXW7i094Df++/RzYU4nft5pwiotBl19F+ep8ip76hPIV+0m5oA1tbriAYLGP4hd2AHD+8JEc3v05rbIjbRmKs3rh27aN7o40dvlPPFaVLfml9G3gU3bVnZORwuFyX2wZL+z3kx/w0ia5E27cJHVr4LUN0acF639K1bJg+wYEV9D8TwueVcFV6MhRnNnZGIcDZ3Y2AKnBFC7O6Ml2t5NnKndxrj+Z84524+UUQ/medxM6n/Kq4Mqn4EpEpD5CBbs5+rt3ufv5MCkdOtHzlVfouXQpyT160OXhh+n58ks4MzLY/bUb2P/f/8O+Od/h0G8fZFyvqzjflcljZdsJF+9p0Ji/+vdWthWUsSW/lGmDz8PpqJkayUpzM+DcLN797MRbq5W8sJTd53TGhg7R8eIcfOuLKF76GSk5ren8s9G0uzGXtAHtybioM55NhQSPejl/WGQJMP/TdWS0dlOS1Qvvlq10T23PLgIQOvHfHSWVAfYXexrcwqC6czKSCYQsxdGlSv/OnZQkBziv1UBChEjp3boRV21o5spHZoqLlAYsP7aEPldnV3B19GgsY+XKivzADQ61YUbvawkbQ94HTr72WhL7Si4hYAyrNi5I6HwUXIlIi1J+CPavTXjWvrGCR4+y9dYbaFdk2H3bOHouWUpyzx4Y1xddhZJ79aLbwr+TcemlVK5di/eTTyiaP5/KFSu5ZcCtfJ7k5oP3f1PvMd/9rJD3dhTx5bzO9OucyddGdK31uIvOb8cHu44w4v43jwuybDhM0ZKlHEo5TK/WFzF+35c5+vynJHXPpO3X++JI/iJwSB/VGQyUr9xP607n0va8rnz24Wo69GpNWVYPvFs20z2zO4ddTsoPn/jhqy0HI53V+3Zq2NN81VU9oVf1xGDJxo34HGV0TutJYXY+jtSGd3MymDoL/6s7VOblnMzTq94KzsLgypUdibTX7PscgK4HHeSEe9O21PKVd8MM2lyCt7wX2dbBW4c+rHmB4j2wdgEUfhqX+VTUI7gKhML8YMnHbD1YbQuCE0X9xXvAW/su5iIi1R37xFbJygd45PFh/HjJtbz36GDse3+EVQ/C2r9A4OSF2qdCqLyC3TfcgN1ZxJNXORk7+zcETBK7NxXx1l+3sPIf22Ofyd2hA+f+5gF6L3uHXv9+laQePTj0y19x2QXTycLB4r1vnjTrU6XUG+CuxRvo3jaNX31lIC/PGUPXE3Q6r2p3cKjMx8Nvf1bjvcoPP+QTk0yWO51h2ReT3DWLtjfm0v6bA44rCHdlJ5M+vCPl7x/A93kJ5w8fyb4tm2jdwYk3KZuSTZ/RI7qB8+4DJ97AuWrbmqZkrjpGg5r8kkgD7t0ffUimuy2ZrlZUnlvW8AuayBJtQzJXB0u8sXnUe5jmT1ydZU1ES0tJ6t4dgEUfvc+3DXRctZ+jq27m7s4GVxggTJ+j+zmXLqxyfk6weC++nW9T/NnrfOQv4i+VnzPqvQD/df3rmHbnN2k+5b7IBksnq7latu0wf1+9h0OlPh6/aRgEfax4dBgAw7tfStBXysMHh9Bj4CVUrJ9G345DGX3dswBs2FtMRoqLnu0b0kH3NLN+IaS3h64jwTggqWFdiEVOiYoiwu8+hGPYTGjTs7lnw+Hf/4HSV16h6//egSndRdlnu7nT/ouPW2eR7khmadhH90/+gN8YssJhZq1+kIuGzWLth48wfML9OC+YfMrnfPDee/F9/jn/N93B6InTwOPiH/PWUHbEi3FEnkAr2l9OWmYyF07pSVb7yGbIxu2m/XfmsP+7/4V/+btc3XE0f89fSeEnz9Nu4PSTjvn4ip3kl3r55x2j62zCOapXW+69KpfdRRX85f3dPPTmp8wc3Z2sNDeFzz3HntYuhmVfQsDhp/PX+p4065M1uQfeT4spfmEHPa8cweol/8Bf+RmQTtHhIN1a5QLw+aGP6XeCa3y8v4R2rZIbXKtUXefsyHd4oDgSXO/dd4COqX0ASMnJbvR16xtbWWvZWVjB1YM6J2yMRDmrgivzjUz8SdF0t92Do9qXf94RJx9c0YER/97PgKKd/OfA+ZSfu5utW57j2U0LeNMVJDMcpiw5laeSk+j18m1cfeNbTQqRq4Kqcl8Qyg/x4d+uYtCXHsLVbVTsmDc2R5566ZgV+Q/k4JYX+H8Z0K7E4st/nbIkB18Ovsf6d97j5W4p5BVvIO+9d3Fmt+bqv0ayc9t//iWSXCdJUvorIeSD1MasnyeODYUoevJJMi69lOQePY5/b/6DPL3hMfZcEGKA9WGwDE7vSt64n2L6TPri4KAPjBOc9ftx927bhnfTJ2R/5Zp4fpz6y99I4apf0zr3GpxdRkaCx3rOvUUrPxTJggy5ETIiT1nZYJCK994jdcgQnK3q+EfA5ysh69wWEZw0SNlBXvjrZcxLC/O9Xf/mupvehuTm+wdPxfvvU/inPwHw4Zy7CYWhbYnhax2dZN4xk+Ff+iavfvA3XvN/QJv0DnxS8BGzPQXkrn+AzenJXPLOHH5VcZC0obc0eS5/fOczLunTnv7nnvyps7K336H0lVd446IwaamX0m//9Sx9ax2VZV4m3tST8y5oz0u//xf5n+7B4e7BjrWHyL24M2Om98bhdJBx6aW4zzuPI088yVf++DP++tIqlq7/E7f2+8oJ/9sq9wX5y/u7mZTbgcFd6/7/RqfDcMvFPThS4efdHUU8+GakVcKsgVmsX7+R7A7n0TWtO0d7HqlzOc2R7CLz0q4c/cd22vi60Kp1Gwr3fAyMpKxVF/rt8eK0ll0lO094jY/2FDO4a3as6L4xzslIxukwHCiOZK4OeSsZ1iaHA64iOvUc0PALGhupNK/nsmBRhZ8ybzD2NGa9h1Hm6tT674pNdKlw8xBg+eJR3Z4v/Qv3eeeR43Lz1nuXMaxgK4vLv07fgjfZtPkvvH5BEI/DQYXDwbyh32Ph5qd5oHw/F73/EO1GfzcSIocC4GrY465Vy4Jl3iDrP3yUm1M9fOftu7j15lUA+Aq28/qm/OixISjZz1ub/kqbUsvDjxuOdmnNk1/P4qPQ53TJ/oAuh5JxFTvY8+CtgIOHu3Rka5+uPP9qNheWzKe08lMu6DCI5PMvx/S7GsoOQtDLey/dwadHtvG1i+7FPWxmHL7pOgT99fquCh99lMI/PEz5m2/R+Ve/xN2pEyX/egn/7t1UfrgGz7qPuAIHO7Y6ufcbKQRchl4HShn/yJ1MKzmPYIEh88vXsT1pEYQDjL75HXCefGf1cGUl++6YReDAAVJy+5LSt2+9PlIgP5+jC/5IYdZK+n71ibqzmuEweIvZ9fxMXA4nBkOnPlfiLcvngc1P8nyrNIat/A/9fT7GJHWle+grpA6/iPQLR3xxjaAfHC5wOAgWFeFIScGRnl7tPWfk14nGD1RAUqt6/z9RsKiI8hUrybp6ynEdpQMHDnDogd+QPmYMGePH4czOxh78BP+aN0ia8A0ql8/juR1LeDI9iXv3vsPEG17Gt2sX++6cjX/HDtJHj6bLY/MxztrnW7J8Hj/75DF6hgx3XHQvzoEzGvzfW5OEQ1BRiO9gKYd//3tScnPxfLyJjEsvxfr9ZF51Fc5W6ZH/ptb+hWBJEd5gD7YdXsB+/PyoFaSbZOZRif/RAUzqNJr2l/8qEiwmgA1FsuLHfp+hwgL2fOfblGaHeWyCi+krLa1Cbl6/ohUTPzI4f/I4n//vAi4Ihbj86b+SNmwYgVCA2a98g3ePfMKY9kNYeXgdd3z4C+ZueIbcq+dD216NmuO+o5X8+rVtvL31EM/fMbrWYyo++IAjTy2gfPlyCtpaXhrSgS+vH8bGLf8mKTUFp1nHy787iMPpJBz9zKOuu5lAoD+blu/HUx7gsm/m4nS5aHPLzRTc97902VzA8JQO/L18P30fH8VFt6wAd+pxYz/7wR5KPAFuv6Rhn69NehJvfu8Srv7juyzbfoirn3+Q/W3aM7HDVyhyF9Pl6gvrdZ20vHMofXMPFe/n06V/Hns+Xk9mu0soK+qOf90Gzj3HxS7PoVrPPVLh5/PCCr46rEuD5n4sl9NBx8wUDhR7qDyYj9cRon1KB15ttZJb21zZiCs2LOqp2lKoR/sGbLET1dxPC55VwdU5rnQKfCUABBxf9JZKPj/yF6Gn0s8bXYdx26Z/cce6N7lyV4gj6W66p2bRavC55HsOManv9fQ99yK++uI07vvgEX6ZMpySI++x8eX5TJr3UYP+RVrur8pcBXhz9xsA/NUe4Wufvs6BD/7IP4o2MMMM4VG+ib/0IH/8yzX8OzWJb6xOwhEK0/bzI/z3nwwcDrMmx83gXZDkC1OSBrt6BsnZvp/s4v1kvLeaIyHLb6c6+Dh5Jf/zwNtc0WMN77T5J4etj+fTkinKTufVdf/HH4p30H7cj8FbAq3an3DuFb4gRyr8dGlT+zKczd/I3rd+TNfJDwKG8lUP0Griz/AVbGbpizdxxcj/IWvk/4scXLSD8LqnI0smrbtHrv/BBxT+8U8kde+OZ8MGdlx+Bc4OmYQKSsEYghnw3KUQbt2Kry0u59lnziF55HAqlv4LE3ZS4sinMt3if/RP3HNHkIokw3PL7qP7xP896T0p+PWvCRw4gElOpnD+fNp961t4Nmwge8aMGv8CtOEwoeJiXG3aECopYc83b8W/cyd72sPBddcx6qb7KNn/NB2/9FtwuKHVOWAMFR98wP45s/H5Sii4wsV/XWAwIYs1hl7rf4XHODiYkc7l543njX3L+ciVTL8FRaQXzgfzGK0nX0y7b3+TYAW8+9qtJGe5GTXhAT6//ec4MzLovvgfOJKTWf3MVZiglxE3vRkLQqzfjy0vwux4lfc+fJhNvsOc78pmwpgfYXqMwbpSIbX2f+laaznwgx9QsXwFwcOHSR8+nLJ33gSnG2dWFp4NGyh79d+UvvIKB91unBdnUbT+EFlHHRT3fBRPscG0TWJAPyf/Ofo5/Up/TOlf3wKHgzbTp3Jk0VL23HQTnf77ZpL6jfpieffAeip3r2Lm9qfId6ayygUrPryfuzb+leEznmfjs9eSlpTJ+dc9A+4G1GV4jkJpPnTIxYZCNYKQwMGDeDdvIbmr4dMV98GWSirXHWHDRT4GrE4ic7eLsjfexJHipvzttwE4suApkru358j7ayhKM7Qug+QgvDDWwZKLHPRP7chDVz3DnH9/k3mOXfyycgO/evk2rvjay/WfcwPs/6/v4dm4kTZXXUw4aEkdPAK7dzk7nnoFVxk8eFMK54+8jKH3/oA2KW0YReQx+9KXXsa7eTPly5Zx4Ac/pOvjj5HUtSsPfukp1hWsY1TnUbz22Uv8+P17mW4P8Z1nr+Kbw/4LM+yWBmVXl28/zKcFkZqdtbuP8sHnRxjRo02NYyo/+og937wVZ1YW+4e6eLJHKyb/pxMB/2IAgh5ISk3lwmlfxVpLp94XsHn5W7y/+CmuvuvHZLU/n3ef+4xQMMylM/vS+tprOfLkUxT8Yh5z/ve/mbvt59zhL+GFNY/QY/T3aoztC4Z4bOVORvVsW6+sVW3G9WnPcy++x9rt2xne7xukOFP5Y5f5/L791fU63zgNaQPbUbZiH51H57Bl5Tuc2z/M4cM9qfzwGXpMzWZn5aHIP+6P+W/2oz2Rv9+GdM1u1Nyr65ydwv5iD3tWvMM5qV1xGSefp2/F7Tj5P1RPxobqF/p8Ht1SqGe7hgVXLeFpwbMquOqYlM02/xGwFo+rnPtvdvH4dS/E3q/0h1jSayztPCVcs2MFALvbZjJiayvuvHsB7pQUnA4n3Rzt+L/dw+jy9/fZ9eit7BzgoufHLvZf9y/OHX19vedTlbmynmLedhRybnIG+/Hwxze/y7MpDvxZGfRJ+YSbQ/uhfDWPtkln7MdhRn0UIuvqqWReOZnd//t/HK7wceG2UiDEhxdmsXFAKm+1L2Lgp3D96rFs7nIprUo+5AfP/ZO1V3Rm2Pt7OPL+83TKAm+HZIq+4uTWC77O2+8+w7x3FnPVpy9xIOzlhm9v+OIvZmshGKTkhRfY/8dHuaPv9Rxs3ZnV/zWElBULsd0uJjVvUOSpnXCIBS/fym/dHr7/j2kYHPw6JcCjb/+Ijw9v5KHWrXhpw0M8nL+R8s/f5qEVQQa/nIKn/2Im/d9i/rPoRrKf9pF0Thbt77mSxY8+TDkOJn1UStqQPEquTeMbpR/QM60j/zv+Qc4dvY/ipUupeOFlUi64gL23fYm3K1bzydb/8L9PBxi81cHnXZ38oeAfPDDiTkx0SSrGWig7SNEffkjxwvdp881bME4XRfPnU/bGmxAMEtj6T8L902g//lcECo+y/7//B/+uXXS+5zbyF/8Fu9vDSxfDsE3QcZWXXavuZnl/wzkHr2S3OcogupNZ6Sf92XIq0sKUpBiS3wxxc2kak94Lsue2K1jmW8+0xQVktO5A65wk7pr+R7wfrKG8cD5//LLhyp1+wq+s4PC/V+AKGc5xwMvDQ3y69nZG5jsJ5udT8PP7Sb6wOw/t20sIw//OnUrHCXfQauJlHLjzNkreW8N7gyy/v9xNBlnMWB4isOQnpLjCtN/rILlje3r+bT6pH33Arid/zqFzCuns6o7x9aBi+QpcHTpw+Le/5TBgsdHi1MjX6Lwwm/PGXcyWv75M2juFBDIdrL3AydCtITztHAw7ksnwpcUAHF3+PGS7SLu+G0/ahfQf66DH+x+y5UcfEJ6czJeuforyPe/xm/cfJG1HEsM8Tqatc0IoxCc9k/ntiANc/+NhvOpIYmv3/dz2p1zGdBnHeVMeJeTx4dmwEUf557gqduDoMwbXgAk1bvlbi77CR/t2ce2mHLyf7Cf5/F4QDmADPvx787GBECUdHWzPsAz91JJmnIx4Pg13CJ4fbTjUO8i2NtAtHwgY7li2G8e7u1hzvoOO7tYcyHTg2lfEte9bLjvUlnNHjaV02jd47O67yfft5NV3/8yRvTvZ9J8RZIzoTNcxczHdRn1RKNKAdY1wZSUmORljQ/g+/5y3n3mV7q+/jnXBocefixy04HkAyjLhtRs68LvZz9IxvWON6ziSksi+ZhpcM43KyV9i77dvZ+eUq8n+yldIzRtIr483cbTzp1w+/auMnn4J9y+fy0P57/LCxt/y++Id9Lj8l/Wa767CCm56MrINTVaqm2SXg9kL17HotlF0b5eOtZbXfzDv/7d31/F1VvcDxz/nuW5xd2+apkkldactLUWK63AGjCEDZrCNCYxtvxmD+YDh7lK01KhR96Zt3N2u2/P74yYphUrSNm1Hz/v12ms0ufd5TvLc3Od7v+d7voe4d18iGBFN3E/m8cF7HzO21AwaK1njLmHuDbPobm3GaLURlZTSf+z0olF0/7yZD/76B+bfdjdFs/RsW9bGKw+vY+Hdo0n4+c+pu/tuTLc8wDNP/5MF667j2R1P88DEuw7I8r69qZ6mbg+/v7h4wNfhq2blx1Hz+GZ6krJINGfxfOT7JCR8PUN2OMbh0fQsrSVeH9q8WattxqVE0l1aSb4hj5XeVnzdtejCD8xQbaruRKsIilIijnr8fZIiTGys7qCqbD2plny8+OgMG1wri34CUEPvHQNR1mpHpxGkRA6ulvZUmBYUg9njZ1AHFuJJ4BygWVXVwoE8p6SkRF2/fv2RH3gUli5dys6ep/hn23rWLPyEB//wOB6tgx/dejfagIeo5FTKWuzM+dNyjH4PT37yGyI9dlbnJNFhMXHxTx8isqYe+/IV+NvacKxY0X/soABFha6bJjLx+/895Bh8dXVok5JCNyRHK1c8sZvUPS5SsLM0420uGjaRtzufZVegm+y2YkTrCH7w8bN0pQk2jFjATvNmfvZcPbqxY0l77DH0EeEsKW3m139+k8eWPoIvMYWRn32MEIIl5dv5zuPbuaMtGoQGl7abhXVP4d9Vit0I2zIEI+oUwnoCvHbvSO6/5ll2zZ+DaGzl15cpbM8QLIq/mejkmXh3LKX5n0+jOlVUNUDQ7qVLb+EfY87nFu97RG4MZQO1cdHYrknCE2Hi8s51BPR6XGoAk1vFZRQUerxUabXEGKOo8nWiqCoE4MFnA2Q2hX6Hu8cE2GHUctEqlceuVOmKD7LdYOCs5Ons3LiMc7Ru3gnX4jbYeOuyJVj1+zOF/tZWFIsFxWTCH/Rz2avzueWxOlK/tCraMzKS4r/8HdGyGyLS2bXsQep7aqjx+8h5TtBlg5l//zPm3Lm0/t8D1Cx5k3ZfkOhWQVkiFNSCLjIKNFo0YSY8+6oAeHaWwrsTFUTDAuLMnzJzs4vzV6t0m2FlgcDqEuTVB7G44cfXK0xT07j0P9VofUGEXo9itRJ0OtHGxqJLSsKzdy+Bnh4IBDDMmMq9Z1RQ6WxinCOaUcubaAyH7G4d4zeFlkjXJ6iMGD+FjndWhV6THLgUOBAm0HSr1EdCUgfYx+Ri3VxGQFVpCxNY3EHW5wpmbFdpTAsQX60c8OkvaISGbC8d44M01+rZrdeydpjAZRBcscvNpG0afnKOFp0hiMuncENZPBd97990G1VeePpuLrj454yIL8K5YQNP1TxD6ZrlbMgRdFsEWgR+VK5YGmDhGpWyBAhTglTECkbsFth6F6qZSsZiGlFI5/vv4e5qR+tXUVQIKNBhgW4LpCeGoa9UCHxpk3a/VsUwLYa0+WdinPc9Opa9zMrf/YnseggKlc5cFb1b0CWCuDWCKpsGc7iPhFItkV4d4oypJHzrOvRvfIKjbA/Lri3g71UvMiNxEma9jb0tW9npqEMAPx79Pa4suhFf0Mfn694g9cFnEYEg3ooKUJTQ//y9GWsjWN2wrFBQPcPHr+b/jaWf/IAmTwdhGiOTcy8l6sxf9mfVli5dysyZMwFo/vMjCI2Ct7qG7g8+QAnX0aV3YGsMPbYjUuXu67QM74mkO+AjobWHYiWF3BvuIledwJo3y/F5ApxzRzGWcANelx+T7cBpVl9DAy1/eZSu998Hnw9hMKB6POgzM0l/7llUg54Pm5byfysfINHt5JmCWzFOvvOQU9Efbm9gfWUHrXYPb22uB2DeiHjumTuMy/69mmGRen6/9QVc9Q0Ey/axKmkkb407l4n2pzC2mrAlzEFlFFc/OBmTVYdrSwvusk6ETkEbaUSfHoYhPYzu1haeu+97uLq70Or0LLjztyx9sRGjRcvCu0djdLVTeemlaCIieOHmGN7q2MD7w79DQm8mPRBUmfunZZj0Gt67Y+oRa5a+fF2+rLu9ncdvuZYxsfPJtI3k0mH38nDJbcwuuv6wx/syNajS8PBa9BlhPP/Rz8gcM4Oa0kKKt/wV37ezuFPzEa+N+gHDiq854Hk3Pb2e6nYHH989Y8DnOpTffbibx1eUc1/Fs8xMuYltpnLWj3iLBy8dfNZ19f1PkBrMY3P0x5zzg8PPIgDc/Mx6ylsdfHrP4H6Oq59YS31zO4vvO2vQYxwsIcQGVVVLvvb1IQyupgN24JlTIbhasmQJez57kh12J+NsN9PdHEppRiYtpmHHFhSNnsjsPH7hncpdc/KwbV1P+6efYTHW4NbrKMwvJv2Ndwn6fLTEFNM2+Sqs1/uJuOJ+bG7oMunZkJ8OllTOf+AnJKcduLqh57PPqL3tu2jPP5c1niZaOmuIjE/H2Xk1LkMDJk8iAOZJlbzSuYhzdt0GQFb520R1lLJ+7A/BvZWJO17l3jPv5ap5o7hqVAof7mninle3cNfmV0meNY1Lf3wTAOsr2/n5o1+wwKmnLGoT2e2jueqBEpStq1jl3MbejiSKzSOJ+/31KCYTQq/H39CAM0xP0O9jUwZM27n/tVEVIzB5tcR1+1g900fxFg3mjtDt+5PRgl2p8N33gnxeoLA5D+56Q4X4WFpHJhO9eDN7r57AzxPWU9So5Sejfox7eDrvffwIY99tJ7milf+Mv5kRnk8oqFSI7Cylc/Jwnj5fy/q2HdyafxU3jLub77x3FWs7dhEuDPzfrL8xOfXwtQtuvxtnfQ3qZysJ6rS8/tH/MWZnPBvHZ1MZaUdr2c37SW6KyixM3m1h+rYGfnexQkqSl4W6WJb5u1jZZqO4JoIzK3oIr26nIQYS21RqFgZYFhvAWxXOiIQcfGfNZvfGCBxbolhjbSWjYCt3RifT8ui/6dYlYDcZSOy0E7hoFO1j07lmxHXYXBBoa8Pf1k71tddiHDGCuL/8jS1re0jNMtD27PNEJ1lI+vY1aML3F/z2eHtY17iO/Kh8InbVsXrtq/xUs4gUxceYTbl48JLl6aIkfQa/y9yMtrSOu94OElDg44cu4pxHv0Cpq8Fw6eVc35aKJjOT8pYerp+7i3G/e57MGh9r8wSbLs3nkqiz+G3F36iy+A/4OPj9kbcwf9glvLnnNZ7a9h8caoAxtkyizckUa8/g8hkL0Wl0VO9oo63OTu64eMKiQ5/anT4nv1n1c/JiRuLwO5mdNptIYyTB5jbaz78Cu0WhQesgoxnUwjxyH3gYJTkNXZgFRaPga2qm8qorcUVZsN72bcxb9tFRtZe9O1eQ1ODDGxbk5RkCt0/DGGMW4evKKC5X8WnAb1MxdQpcemi8fDrvhe1hhS0UfZsVHRoUZqRMZ1ntMlxBH28ufIuMiK8X0AeCATSKBq/bj0s4eH3v68xImUF2xNfrc1RVxbVpMwDV111HxGWXEfOd77CobRmxrywj4tkPCQqoSQ/ybqGW0hSBVwu/eypApMZA7E23EDZuGGt3NVAUEYV742rann11/+u82IKrzIESgDcnKZSmCpojDJxnnofp0934vV6isvLJGjkPRBqla0OBhsfpRQgNXsc6PI49XPngr6nb66Cz0cmwiQlYwg04e7zExQp8lZUYR4zAuX491d++GX1qKt6KCqKuvZbtF+TzvTU/JcXn48+2YvIvevZr9XA76rs4+9HP+3c+GZseGSoAn5LJ/MIE3n/6XRqfeobJDdvpTs/hTXMW8aMScZatw+jxoDXNZGb8BKK0AkOSlaDLj7/VhWLRovpUVG8ANILoqwsw5kbSUlNB/Z7dLH/uSWLS0ik841LWvutBp1eYfvkw4uyl1Hz72xhuu4FLwp5hnifAw5d/DOEpLN7VxI1Pr+evV47mnKIjr1I7WHClqipv/+EhqtZt4NyM79Gsb+fmnAdYcdkKwge5cKjjrX041jexRvsBTlcPPV0Lyap8l6xpRi5OeY+H42dw7vy/HvCcWX9YyvBEG3+/auygznUwz66p4hdvbOLXzcuYmnAhDyY+wegcHbee/Z9BH2v1T54gNZDHpqiPOPeHDx3x8fMfWU5KpInHrx03qPOcCsHVkE0Lqqq6XAiRMVTHHzRVxWwKJ31PB+2WzwmYJqALGGmv6U1viiTa9mxnYeQwwpZHEbCn4Mq4BG3bowDUr1+DKyuZ1sgwDBTT3lLOTUm3smPcS7BiKzUxEbiDKvTU8/K9d3LlLx4mYUQeqqoSaGuj+8MPAdi+ZRfemFiiRA41HVGE6VtpUH/P2PQbUD3jETXDme7SIswQbKmiNMaLPy4GnWMZfu8G1g3Po9KvZ+emJp5+pQqRbQMh+HvJZVyUm8LUvZ08v6mGar+PAq8GjVXLcn8O2UBjlYOgrYg4MZyqpRVs6nqDlKkTGNvahcZmQ3/mXDIvu4yySy9l/B43n44NEG1SKPeHETDEY+kKkpAeyV+HbYFxfqZtV0lsV/k07VrG+g18PKWbon1VjPxoLYH4KLTWSAxrWqnMu4imfeP40yeQ0PAFgWd+hR6VCwGnMZrPpvyGYYoev2EYW4tAEY1o9Ulc2RHPL6bFE3B1EnT7+evsJ1ndtJE7n29k1c4IJvdmwkvXNhIeZyIhM7z3Uoemq4xaI25jMo5Js1j/7nPoU89mnWE6BA2ktoHS7OW+7UtwaIpwR0SzLeEposbpebtzE+X7BFn1yUzxGBG+INpb78SYlciHjc+zvewLOnUW5uy7mix/NmecV8yGHa1kratHQVDQncgnNYnM+dYsPusKp/7NV9hhHQ7sYrx1FFePvS40cGNon0tDDmS8+iqd2jhe/8c+etrcbAJgPOYWPbmfNFMwWUtUUqjuwKa3cUZaaJqrIdKMJeUGrhPD2dKzFptyEZEWwXl/LiHCFMFTqkpNTw2tM1egcRn5x2ojbxTk8c7PUnm51kX2Wi+zPGb+ofPS2TaPOf+5jOqli2iPdvLnc+5BEQo/rs7l5Y1P8oMzHiKgBqjpqWFq0lR8bhe3jv4uxYEcPn/ySTIyLkX1p9FS3cOH23fg7PbSXh+qmVj/QRWR8WaGT07EEm7gZxN+g1avwdHpoGLj58SNHEtzSwSJr71HTY2PdlaTNbyAEfFF+H0BXvjFWrQ6hVlXDycxO46cRYtAqw0V1s8Ec6uLrm2V/GHbQ3TiIFWXxYWz5nFW/jzq7fVsWP8ujiefRjR3smGcYNh5V3Dj3J+yANjVtosOdwcTkyaiqioaRYPL76Ld3U6yNRmXvYd9X6ymvb6W8QsvprOxgYScPHaurGfJc7tJzvVjczbSM8HB5117sbd7aK7sxuvxMuHcROKzElm3RoPX5SfxgVdQk2xEGq2cl3s+/OR8eiaczSevPUziFw3c/l5oNbOq1eARsDvRg/rHR2kGooG+3eRaEoN484OstQheGukhwm5k3o4S4jpbCNrDidPFonPsIKiJRWvMpL1iK/bKf6EzT0UbnoXZvJHO2h0YrWm4OksBePGBh0CJQqM1svmjMhRNIoo2jmGTJzP9sgI2fFILagIJ136bnsf/jj4nm/annqI4/E6emPMobz5+Lz+M38aPn5xFUfjlmAuycWZMwWIN453N9WgVwZu3TeHB93dy+6wcpuXG4N23j/r7HyPrjTfIEILXi8+mdEQ+I6uWEdxZhlEbiWIq4cwFc7Ft7MY0IppApwdNmJ6wOWmYikJ1oUG7l5b/bKPtqR3okq3E3lJEXEYWOoOBJU/9m0//82vOuOEHlH6h58N/b+OKn0/AOmc2jqde4vqH5/Gvpo/If3EB19ywhpX72jBoFc4sOHDadDDqduwiqjKKzJgL0SsaloR9QL5iGXRgBWAZG49jTQO5SSUsXv4k0VkCh3cEhl1L0Ser7G0/sO+ixx+gut3JOUWJRz3+L0uOMDKyYw+p1ny8QT9rwzdxTuTlx3bQ4JHn7VRVpbbDxYSv1OIN1MkuaB+yzBVAb3D13uEyV0KIm4GbAeLj48e+9NJLQzIWu92OM1BJ7at7CQYrWTMqmpllV+HpfgyNrhitaTKerscR2kSMGQvRKwJ3Yw+erv9g9Ppx6/fHoQKBRuhInXMFccFOwjb0YA0r5P3al1BN4/E53iOvxUPEjdcR/tor6HbtQdVA25jxZCTd2J9mrnU148VL3Iq/oTrb2LfgDqqd+QB40nxkfvoPymP9IIygukGYQXWyKnISU8VE9AiCQuWvNjcxRh9pVoVJu1sQSiTbTFaKvVrMw+HBBhd3NG5AaxUoYjL4BKrqxdP5T8DP8Eu/TcATRtDXgaOllPZtm/B6XFSOVIne48fq3v+za4zDKRdOXJOmotHC8tp6rq7Px6jREBQ+jAEL6ZXvU56RDBSj6Z1a0ituvEEjfS/5KE0DKWktrGrLw9BtZG96gD0tAfJ8Ggp8WoQGgn6VgHcbfudiEHpQvWCwscQ6hinOaszCS0z+GDorczBGQGJJG607t9K+dxd6WxjxRXNp3GzE3flS6PenBlD08YSFQaQhns42Ky7TRNSgHZ/qJMEcR06kykZ1FT271/bugyUwRcfi6ezGmnQjsQWNbNpdjtMxgQzVhM4k8PXu1VqpCzBtmkL5R6U4PdsIj9TT09GKqppZmXchyTWfMMyxj9QpZ+BobgChEJaaTmRWHu17BU1bVLRGSBoncFepEC7oqlbxdIVq4jNnCwxh+9+UHE0qFUuCeLufBxQMEZcghA41AIklgshs+l9ralDlsU0e/Ps2Udizi2h/J6hBQI/edjaqLoOthgDz8rQ4WyBylBNbmAVPFzRs+Jz2sg1sLbyE+QkJOPe24Xetxd5QijFqBKq/CU93KyDQGNNQND7UYCaKtgutwQ6KH2PUNILeRNy960g0Jj+uzq0EXetBtaNoI9FZLkPRmVEDgIDEMQJTDPTUQcv20O8m4Ast+NRbIXGcwBguCPhU9r2v4v9Kn0utEfTxEADSRwl0JkGjrzFU/Kw/+I2nu7aapi3r0FttgEBnsdKwfnXv74pQSw81gDEqDViAGtyGp3Mt4AdhwhB+ITpzJEH/WpwtG0ENIJRIDBHz0FsNeLoMICxodHuJL9YSmZ2FUBS6/V38oeZXnGcfzrSOPHSVldSPTOf/It8ltcpFUpeCSwnQHaFSb9XQHibwacDgMxLpm0FBmZ60mq00ROWhdduJcbWgKJHEj7qIWJuZlFZBmEODP+hjb/cGmtxV2MN9eLs7ic4vpKu6G1fr/m7fOnMEPldXb7G0Cb11AkLJQShhaI0qSVH1WCcnEf70UxjXb0A1GFDcboJASwTEd4amqmtnq6zT3cHnrizSwxTuHhtadKB0dBLx2GPo6utRNRqcs2ezdco8tny0iIvNw9EKA+3BMCqNQWwWO7N8ebgjoG588JALzhQf2OoFMbsE9kSVpiIVBAS8XkrfehFPdxc5Cy6ndlUM1kTISK4h5re/pfPyS/hPzkbWBar4s24uv6mai0aB+ycMrD7Kbrdj/UobEc0He8kUoffyMq+Pu0feyXxtNmem3j2gYx5AhbTPFTy4WbT9UcIzzkftimfK5/fzyzs12AjwrbzH+h9eZw/yk89d3FxkYHLSsedPanuClD33EtemX0a96OCWgl9yX/S3SbIWDf5HeW8HudoilolXSZ53+FY3Dp/Kdxc7uWyYnrMyB1c8/4f1buweP7+YMvQtT2bNmnViM1cDparqv4F/Q2ha8GBz18fD0qVLGZ19Ea+//RY+Rxn4mkM33KAfRWNj5lWFLH9zBB2N25l/2zh6Fn1Abf12KoGCuhZez5vOjOkjyE7LoPGtPRRFjGR3/V7abGbCzDHoNSbiLAW0iiyENpU98Z3kvryL2C4dYuY9sOElEpOuoN3TwD6fifBgJfnhowHwzH4AvaKjoG4DynCBtWsPbWvfp9tgR9FEYIi+mTW+UnIMmUR1LGdixxoUk57c2RPZ+cmnXOANEuXYjhL04QOEEkWR8i2qtQF+evNM3v/NiwRdX+B1gcYoMIZPxaCvwdPpR6BQvbiUOGUM4cF6Ktu/wBofS5Q1FXVrKULREzdnGm0rVQhswO/eRToQY5nLxZecw8sPP05H579YFjOfzbYEFna78CfE4u/4DLehDl+glcKLb+GCc2ay4/NKHJ1BPO4A25bU0bRtIyZDBJvDkpk1M4/3395BjTaIRRWcP89C5dr3aNi7FVtiHq09ApsuHF93FbPalgJagtowGje+g9Y8G3sjlL6+FEXRkJBdREv1Xio/ewEhtAihISLlBhKzu6jZu5bOuio6aUIoCmPnFrFj6evgcDIh8nb0boXcLiu7bGlc/ouf4fe5qC9t47P//pKe+rforq4nDJVoazbxc8fTE6tnxbtlzNIqzDN5UFprCdgXYVQicLe40alutKbRnKdE8kj4JMZaHFSv+BSD2YJQFNp2b6MnczSdjeFkjppEyrBukpKz8G9vxiVcRHwnj6ayeta800nTmgimXRpBfGYyq96oo/zzFZhsAk9HaDm2XvMxZ1x/Mx+/0kjD+gCBFh+RcXW47GFUbtnIFHc9aqAVVROPRj+agC4Ng7IGb89bGNPPYnRXPs1bQQ06EZoeYoYPY9v7n+FzrAOCjN6zjqjaEUQHOyjraUTR5+Ju3w0E0JrnkjQceup3omi0tNWuxGixEhaeSE97N47qdzBabWQVjcPj8FC+eS2qvwu/IRmjMh6/ezkG/SL0YZeSOzaF1roOypb+FxQrihJFVEomGZdNY/d/X8BgtODqjKTsw0jSJqRgRuBzllOywMyj6x00uEJva9cZw+mudoc+AXfpsRYpBGvt5BYksWf5Jloq1qI3abDFxKNoIggSj7NjE87OJlRVi6p6QwG5LovI5FnoPD109qxEaNNxta9BKP9FDXrIGjOezDFnsub1f+K2vwo+HR6Hg7yJ0/G6I2kqW4m74xXc7aEAzRweg7OllYpPoWPHWGKzLiAhM423zl1KVMz+rUrGAPODP0FVVZoa2rnjgxsgTKVi50VEtUSSn6JHLVf4hdaCTvHSmTIJRRuGLkKhwRmgPBwW5Cbj3NyC0CtYZifQvaeB4TUTGc5EDHmRGDLD8Dc5Md+cQkN1FdHJcbRUVZA1ZhzBQID60p188Pcn6GldCixj2JS5NOxzUFU3mqKWFEY+9lfa//UvgvYebPPns/mDJXQuf5cdE3xMW+8i+KEgfc4jRDcu4Lzw4WQ1RdPz2WLcO3aiOp3EPvAzws48E21MDJZnfkOuqYBM60icAT+pGi3FAF6gIIrsi/PINR/5Jtu9pBrxURXRhjAsY+KxzExg/NgxvPCTe2j4/ANGzrqLLYvb0QyfgmH4cOI3buF3d/yDM99dwGbPGmrsc7luSgYzZw6sDctXpwU7dtTQAzR2bKdcl89e61p8iuCCqd9lXObMQxzl8Dp7yrCva0SrMxBm7aGlKws/BiZ3hfNWVAMzp07un4r9cHsDfL6R82aMO2L/sIHocfv48PWP0Cp6qqJL0agqF82/GYN28FvSrP50H/jBFhZ+0Dq1L9tR3wWLP2dGSSEzRw4uC/dk+Rc4m9qOeI6hdNKDqxPJ36VD0WUQFBDT5UANhlIO0akJFE5PZt2uDLwNmxGdHUSVhpEccyb+gJOO6HSao+fiKRqBBT2p1tAfeJ4jiz0NG4kKD80H59jyyNG5iIm6nE/rn6ItPgXD8DnohAbPrAfQI1jW8SZKwtV0Nb1BWdca9BoLY2Pm0S6cJKZMIHfli6zQ7qXTZACjmYyRRaRfUcIb/wzwMFa6dAv4tNGB37WMbe8tQ0UQ61HxGxLw69IxBIMEnetYo65iQ/gELl/2EVOr38ehC8NMAgH3OpT4DtqrSpmVciVa1cynDS9TlDkaY7CYRPNw9Gfl0tjuwuPbwsjpydTuMdFl6qTH5kBXtQGEka7PPqBrwhQ69ywDgkxs+xhFmYPPVYrXVY0qDBg9pehQqPnwP+yOcvHJvx7BaLbgTcjF270drerDF/wYsyEL/bZqrq1ZTHPcCNz2OlY/V0NezDgyL7yR7+420m4Mkm8z8cv26ShBOyadhSpUPJ0bqbOvwRtwoNPncGbyBSguwW7LZOoMa0kvDKPk3IXEpKajKILL/pVLTWA7aSY/C5w72fb+M2h1BsbHnIVeUahzlpEXXkKHYxSv/2EPakBFHwiSHjmDqo5lKLpcAv4qGgK7sFjHsm3PPkYbtMxFT8CjwV2WjGHepTzvyKa0rJoJYi8Xzj2Xte/UcbkuApd6CSPiHETmJtMRbWLRkregYjUA9Tu24toSg8OcQ6ZtJKYOEzV/XoXT10W8aMPUk8nWv5bSqHjwMQWfYxFee6i3z9TLr2Hly8/x1u/upccYQ1vMAtxbXqZa9fS//gNCj1Ybgz7sUrZbQFcUxR8vvZL3H/095RsWUWfaQ67GjU010LStDKVsJ0WmGHp0kxgWNh6jEnq7EEJQEDEJxaKDeCNVta1scQtyLZEUPnALilVL+8pywgqSCHZ6cZodfPLE3xBCsHPZu2h0Omr1CWhTz+ZtNZyf5Kfx3gYrt6t+XJ51xCRpaNz7GcFADWpQSzDoo3nf59Q//AJaNdD/83g1kZSvvhwl6CHoeYWVL9oZrjGRGJNHp8NDzCUL+efSdoY5epjWVIf/43bCdBEs3/BW6OfQZeP1mmit6SLTHEWsAVq9sUTGzCM8Mp5aRxeJwSC2+FiiUm24trZimz+NQIKFyreK2VD+CtNnf4fcK2ah6DXkjM1lzRsv4/d6KZozn6S8UObC3nERy559gsTcfHxuFzuXf0Zy4cWUr6+gs2EDnY1bKF9fxLr3ckgZnkVSbjJZo2KJTraiVbR0Nvew+JdPc7/1Vuyqg33BDmaZohAVfrSKFq/fRZ2rEpM+F5cXzEqQYSYN+V6wb2xGF2kk5sZCtOEGwudm8MvXt+He0MTtVd149oRSifYdbRhMWvw5WjLOGoUQAo1WS+qIIm589M9UbNzFnjUfsOvzj3vfM51s+bSZ2j15ZBReyJh56RitOl6uNvOufzSXjE3BXbiT6c89zDkvA3wCyz6hEdBEh2EeM56o66/HPGYMnoouGp/7EH39GDJtZrb6u2g3R3PZ90ZTvaOFW9/fzo356Vw+gMAKIGxWGkKnwb66no439uLvcGObkcL5P/o5L//8R1RueIr8yTey6eNq5p1/E77f3EvwipuYe20q73oqmcwqxqSNGsytpZ/f7qX9mR34/T52aKJRIgzUx71OWEAwJn32UR0TwJAVjn1VPTmZ42jurASK6Q5Lo6ApwONxGtrq1xOdFuoVtq85dF/LHGT7gkPqbifVlosr4GWV7SMyheGoAiugv25TDKCJaF1HqHFpcsTgVljCYLtpDY3TKrjqanEjhIGGaC8ZtSaChlCDzvxJoT5XwbA4psZfhO2ZaoJKaOnnmOjZfKSDGR4jFXvbMdX7GaNRaBI+gt4W8sPHoapB7P5O4g1R9CgeHLgYF38WWlWPP6jS4W8lzhBDpb2Ubr+eKVOTaFobz569OyBg57vBNs5vfJcL8+8mUDCDzppqvEVzCW5fzpiCeQQ1Chejx6uq2DQKxTGXYNb6aYjt4SONhvh6HZEuPRpVUBMhaG/porhrA2a9SvVrQSamnkXmwsls/bSemh0v0FFVyuwpNxBTH6pXGB89A2PQSIe1DbM9Gu3HlbQ5A7gCsax9z0OcyU96vJ777QXExkVzCRGMVzS8+rPbiTVEU5R6PUFHJ1fpE1jtbmWlyc+6mNlcFWvhjZZ6zqp7hw///meiU1JxhyXg2r2VOlMqJanTiW3czVgRjnmbwGvKZKzdR7nfRU7xtYzqTqC63kC7q4W7Z2TTs6yWZJ2OdmMkO9weCtAQGTUBR/hwdiubyY2ai7XDgz9CzxhFMH3W1UTMy8DX6mLLK7vwGTUkNrjAlEoRWs4wF+LODtCmqsT6FT5zlvIfRfALApSYNbSpKhFmPTpfEBGYSO64MVS7oinf+Sm3WEej/byTcZ5uwvSxVNi3oYyKIqM2FVtFFPcFVZ7KzuTqK84jWdEQs64drctPUFVRhAHqXcTWOjHbptBuGcVoqxXhB0WEFgl4EwM0mrRE7QsjypRARrD3xmJJo9PbQqOhkSZvGl3eVrLSR5PjHEnywgeo1Zez4pVnsdU+g0ZnomDWD+ms+4TNNW2sG3Yx79w6iTV/2MD5bhV1j4fWP21lcsS52NPaiW5yMiHuAmyKlWp3GUn6NLS9vWxqCLJXCfAvTxsPXDyeyV4FX4MDb62dMIzMUYJo6hxU/30z1jgz3vIu3B81AaCNN7Ng1u3oU204g920vlFPbbuLXDSkKz7M9d38yDqM+N71jVXP76C2bTspM67gbxU29GFa7sj3seijL2gOT2H08DTWbtjBnI61RATXEalXMBlLyIofh6u9g3ZPHft82/C8+gF/suSSaEpHMWeiItAIhZjUSezr7CRHH0e9L0hSlJGUHj9BRSXdWkBQI/B5/BRrrQRsOrTuAK6tregSzPQsrQUgjjDOSr4JdkHjH9fTHQiScsNIxn/r2zy/phpHj4ELgiqKIrBGRnH2nT/ofx+acMGlrNrXyp8q1zAmANNTdJStX0PAs5F9azSUr89izRuFFEcnIuLDqd27hBmRk/GrPmKEmVwlGYe/C4e/h4Dwsyv4BROuuozbP3IT1ePhZxcVQqKJq/61hitm53JLbxPMvlrEbc09rA96uPSKYvL1Om56aj3TvYLzhiXi3NqKu7SDsLlpWMYl4G9341jdQPqEDHLGfZ9Z19/CxkXvsOb1F4FNdNUXsKF+Ils+eZGZd17D4p1NZPsUDGva2GlOoP7Kn3KWbzmvuJazM1nF7IZoUyc/MfYQsXcdZW/XYPBE4Q5AvbOCumAcXYYI5l+ciy7KSNbUFOyf7+Hl9TVcUpKKRhnYbdM2NRnr5CQ6Xt1Dz5IaHOsaibwolwU3fZ+3//YQ0amLMdnGsr0tgjP+8Q/qvvMdrm69go/Ca7Amv8yYmFsGfX9RgyoVf16MXjWyrf0L7MapLJjn4a/7XKQ6U9EcqqHvAOh760mTI3LZV/kFGnMQV8YYEmrXwEjYW7OiP7jaXNNJWpQZi+H43N7XP/00WaZxVHhdbNe1MtmUeeQnHcFAipHqervCJ0cOPrga6DmG0pAFV0KIF4GZQIwQohb4uaqqTwzV+QbCtLKWsVaFnaNz4d0a/M5PAcgtCa0G8ttiSTCF0vKKUKh37iPJnMPkBA0ml5+PvujEHlDRhenwRYexYR9Y3T4SknbirGxgXMx8uudn89rGX3JH43UIVWFZ4yv4hcr4qLls71iKYi0kZ3w8dtdY2LsDV0IeNaYUInJGUNm+nSxzMWPmnMt74RPpChSiW+1H62pkLjoWCR/xqmCCQYsiDIR3GRgbhM+StJRmWVi9uYkONcjwUecSWP8yt2ryiItJgwD43mhieFBDbvJV7A12E1MfgSEnAqFTyNgV2p0q//Z5tDc4aX+xlDFCMO2qfDo8QXzv7cPqDvLPrFxiRk3B9E4FApiUfSGRIgqTYsZtM9DpaWNy9GwyTAq3ugLYOgRN0bnUxF/GmKZ1VCfP5dkmlcvHnMF0RceUFh9ExeNSwGzSkOII7VmVTxBDjwJaheQmN/ekxHDxug6CGOhMteCYn86P/rMGDTDTYuJXwUjGuqZDhwfr9BTC52fQ8Uop9mW1GDPDaX9pN7HO0PL376PDr+hQgyrNkXpiOrwkA78UTj4xh1LPf7AFmNbjJ0soTE+PxmjW4Wt2El3hJDZPR7ptLG1+Ozu9leQr0QTVAIw0MuXGy/A1OrGvqMNb28MNzR60L+2hU69B6wsQflYmbywtZ2eUhjsKU+jc2kxavZMsEcY+vSBnhJmwkSl8tqYWZ6aN+z/dw9nFSfz1itH0rKvDZwmg2n2YX3eTr8aSn9A7baGCp6wTnH5SDClMSLsdnepHmxJO8fxRfLgnhRc+3MlfZ+ahtQfJcat0pFlJTQ8n0OXBtbWVM6yXomoCeEWot07qLhURqyNqTg7O8i6uX1PK9dOzqV/mYpfDw7w5ef1/Vzc+uoId9T0MDyr8wm5Gb/cRNjcdoVNQzDp6ltbQ9UFoKyah16D1h7JPmgQLCxsd0BNkDUEexMWFMTbOYATp1hFQBVMUcNpVVmwN8r3oM7Gjsm1vgNH5Mylun4jypTorj8XEnm4XY81FZNhGoiDo8tup9tfjsqYwMtrGyw3tXOI0kqJPIJhoJrHBiabHT8PISEZdnM8/3t/NX76oYrhWR0lAwVwczT2Ts/Ds64SiaLT1oYBSsenpWVqDZWw8FWvrMXb5WP/0Nl7T+ilu82JEYeWOdkbGWLGUJKCx6VEDQboXV6OYdewOeKjUCyoZz61XTyO7ZCLPbWgkvqKTRH8tabogaYqNQLOPtLApdKpePnV8SFpcGimJRUTmR1I8ZT4arZZxXA3A/J5Setx+CieHVriFp9j4YHsjt87M4S+f7uWV9TU8d9MESvuad7b0sEuvZaXXw0ogfVQUs+ek0/HWPjrfKsO+og7VrxLo8mBfVY82xoQxP4oR1klk/GQ0tWXb+fylZwmyCwWVd37TzAXWmcTavyBgGElcpxuf/S22IBgXP5Xici+W8blULluDXzefTmMyAX8PXzhWUuf0oCSnc/YV00nMDsfQm6USQvDD+cO4++Ut3PXSJu6ZmzfgvVKFIoi8NA/LxETaXy6l7emdmIwaJp5zGWvee5mS8wrZvsLHx74wxoybiOaNz0g4dxLLYldTveMfxCX8ekDn6VP3ykZMDiu7GxZRZ5lDweQEPtn3bZyKwo6Ws2ize4i2Ht0+fxqLDm28mfBADH6vl7BEJw7TMHTL3kCZp1LavJmJhLbsWb63lasmpB3Veb6qu7WFztIuNDFaSrUeWrUa8qMHNl16UH2x8QAin7oOF0adQrRl8DsxnAp9roZyteDAu2meIAFvEJtByxn59/Hm0r8zunsrAJbIKH78+lZe/qKRM1UTOsWAisqnsWaucUBc7zLfTAEphVFQ3YMhLQz2dWNOD8M/YTJv1LzBupEWHp6eySM7u7k09/ukdkRQ6DPyvfueYPET/8BR18nbhnBGdznRxYeWumlzR0MtxEyeT/XLL5FrGUOhfgqitAuLJ/QG49/cggFBcHQs72xqYBI63FqBxR96hY7rCtBg1jPOC3tRua/TQGTiVfhQCb8oB0thLJ3vliG0Cs07Wkl1hKNMTybmzAzUoErnW/tACHQRJuIjTMTeN56mP2/A+3EVMSNj6HEH2aFXGVHtgNoKdEkWtHFmkjaHfq9RV+VhHhmLGghiX1VPx+e1rHV5mGYzc67bz4OeKO7UXoChSfAtrUDXpgI+luLj17g4qziJP1xQhGNdI9oYExtf2oHdoFCTaOLCXXYurPUiIgxELcwhuSCaRmdoqisAlBkFCbeNw7O3A02UMXRdgPBzsnDtbqf1ye2gV7gKO7EIYlC4X5hRgceMPnINfuI8QT7Bz+PXlNDl8pERY+bn7+zg33XdPDIqkh63jyvmZVDzfhne7a1ECA0PRFtZ2q2gqAGevyCKaRNmI4RAn2Ql6rJh+DvcdH9chaeiC1+nHevUZGwzUqhz9PDmykoeuHk8bwQ9/LWhiQfn5fOjj3bzUFYqKXr4XlkDlIWyqt1uH0IRhE3Y3yixvnMfqqub7OHjoMOPJtKIMTcSd2k71RsaadnhQYueMY0qzY9tYgzwnCGcrI9qaeoJBcb5lwxDFxvKzrZrS3HtbGNxupGnmjq4ozCMF1ureeb2uXywvYGfbdyHGyhKDicl0tQ/7QDgDwTZ2/vvXQS5DDtjY228dkYqQgh8gSAJJfEEHD5cW1voXlzNM7Yg2216XrxkOJV/XM8LQQ9PCQ/nj0rmgU11rNYbmBBjY2N9F34Bc00m5jk1NBKknSBFaEiod6OJMPB2lo4Xdjbwt+vHsbvHzQ9ea2LpbcXsfG4Hte1OHjMJtvzqqv4m1qv/vYZlFV3cVJzC2ZePwF5n57cvbub5bVXEVjbS5fRxdnESvzxvBD94bQvLV1fx3s4mrp2cwe9//Smf3TuTpKwIANy54aysbOdPWhdT8HJjl+DHQEBvpD4YIHVnF3a6sK+qB78Kmt6Gq6rKdAG/01h4JuBm6cZ6huuyyG0VzLelA8WoArx54NjdSV0gwJNJsdw65jzOmDXrkO9v95457IB/LxiZyG8/2E1Nu5OnVlXQ4fRxyT9X09O7p+nG6g4UIYizGeh2+1hT3sb8wgRibynCvaudnmW1+BodxFw/Al+zC/fuNuwrQ+sVNeEGMiOG4c29g46OPax01RLn2E5UeyUBVALeXfiFBrMlHkWbg7+zhZHhxaSuz2GmZTwIwbrWD6l0taENu5BJV+Qy9swMxEEyU+ePSmZ3Yw//XVmJ3ePnqevHf+0xhyKEwJAeRvwdo3HtaKPjtT2MSJjKztillK1/jckX3caq11upGHs9SetuoWjVKLrOgzcq3qdEfWhgd+kgtL6zG3WTg5rurQSTRyC6Barjhzxp6GSCIZNP3Tlsqe3kjPz4Ix/vEAyZ4fg3uBAIrBF2WhvjCbrcjG5U2KMJrXpfsrsZrz/IWYXHZ6Vg2Ya1ZFmL6Pb7qTBtBmB42rH0zur9fQ5gIV1dp4ukCNPR740oN24+cZz+IOGKwOkLsNeS3R9cabRaXlpXg14o6ETok4VIMdAcnUv7FjtRCFSNINOkYGoIfWrNOSudV7u7+f3eJvgQ0rJn8+j5oUWRZstNOII/YndsE83eeVzkNXLO937EY/95hZraKMpb7KTFZfJ+3DxunzQNXt1GR0QGC371I3Q7VRzL64lXwBYU6NPD8FZ1Y8iJIDE7glWbaig3gHlCAo8vL2c6Wqb6dIxo9TEKIz5UdI4Ai/QBGtMtPDAu9EcWdWnojbeiOIor/7OGR9LMJGkVxJe+10cxaYm8bBitT26n57Ma1utVPs4zMzEmGteudmKuHYFi1uHMjiDo9mMqjAn9zjQKtmkpeNPMPPL0euZNS8awqJJfY6Iblfi56Vj2dGIeHYenzcnf1+zF5YNoqwFFr8E2JbTP2se5FlbsbaVrVyfGcWnclB6LMTcSTe/m1fE2IzaDlh6Pn+YeDxqLDvOouAN+hjWN3UQszCSt288Kr4eqxZ2E2n0GuGdOKtvK2lhR3siSL839z8qP6592+O2FRZzz2Of85oNdNHV7OK84mb/rfbyn9hCPwsJx2SxdvJdrp2YzcULB194AtJFGoi4bRqDbi31NPbapoZ9tRl4s/15ezpLSZhq63IRZ9Vw6M4vfrihje10Xq8paiTDrMOs01He5aer+yhI4oGj+fADe3VLPstoW5obFM08jMBVEs83l4vs7KilIDCO220eeXofiDnCNzYbWqEEkWlF0Sn9gBRB5cR6RgSD5NZ1U/HsN97yyBYBr//sFG6s68Pf+jnLjreTEWtnXbKeqzUGXy4dZr8HrD3LbzGyW723hjGFxPPrZPjZWd2Izajnzz8t58roSzsiPp2NYBBGjY3nmV59wa1EW2mgT706L5cllZaRHmXng3AL2NPcwe3ImVoOWd57bQGFSGFOuG8f9j65m4tgkPqvpYHRaBHePz0AxarlSqDz5xzbu+3g3M/PiEAIS4yzEf288b2+u4y9hRoQQ/ffIv1w+ivpOF2PTQ8u7bSk2fnTHRIq3N/Lk5xU4PH7uW5BPpEXPd2Zm4/AEWF3exkPv70RV4eMdjUzPi+X7r25hR303Hn+oSP3y+fmUVjsoyIoiaVwCn6yt4u5FpZxXmMglPi2vlDZxVnoMI+ZnoTHreO0vaxmlavkbZrTLWwBIR8fqOB1L7U4euW0Sn7f1cMu+DSTHmvjnVaNp2L3ha6+Fw1lQGAqunltTRYfTR1FKOFtrQw1/E8KMbKjqwKLXMjotAocnwJryNiAUkJgKojEVRO9vazIMbNOSUYMq3spuWhaVs7e5B49fT7GtCKe1AJE2gYTEdtKKS3jn3c+I1LUx75Jr0W4N4NzaghpUqXFWEBRh1AQiaFVzyJ10LtMvLyYs5tBTP0II7jtrOLUdLrb1jn+wFJMWS0k8rm0tOFY1cualt/HOk7/j8+cfJH/699j9hYeavAVcXfoJ896z4mntpC7q1yRf+NPDHtdbbyfhMwdufwsVPVvRd62lxnIz0Qn1fM9YSbYpnh/P/Rsrtu/ko+1NxxZcZYXjWNNAlCkZvaEDjzeBbls6k+qaWRwX+r28t7WeGKuBselHt2XPV7Vu3MNw4zi2uQK4YjegqCoF6Wcc+YmHInrfbweSuep0HVW9FciaqxMuc2ICjnVNOD1+mgz7X+RBl58wBOG9l2S7fzXzvvsDrq/tgo5yRIOLmOtGUPPCDpqdPmZ8ewzPbKnnhX1NXDs5nVFpEZxVmIhRF5pTz4jM4IutNzEiYxVr7JOpaHVQmBxOedRI1LoGylsdbK7ppCU6jwVFyTz4/m5Km+xcN2UkZIBtcgo3PbmWEquRB68vpP3VPVinJJPs9xIAXh5m4Q9zMvlweSkOnWC6T8eo7Z3UECAZBU+YjrFXFBB5kBR0QVoEAY1gc00n8wsP3cfFmB1B9JXDcVV08uOVpdwYG0f4vEzC5++fb7eMO/jzx6ZHsfmBM1GDKus3NJLY5OatOC23z06H2aFtHKxAcUcn9dsbv5YqT4sy0+XyATB9XAqWr+ztpSiCF2+eyLtb6vnX8nLsHj/WL9UXdLl83PLsBnLirCwYmcB/11dh0WtweEPTUSlTktkbrce/r+GA4365niOp94+6qTuUJdvb3MOmmk4sVj3XzMzhuskZXDQmhbTow2/LoAnTE35mRv+/J2RGkR5t5j8rKog060gID938hyeGsbaindoOJ9dMyuCnZw/nNx/s5qlVlQR7a3fa7B6u++86zitO4upJ6fzgtS14/UEWbWvgg7umkR5toabdiRBw8dgUfvXeTpY5XHz/zDySz8g95BiFIkDRMCErmgtHJ/PB9kZK4gSrqzqYkBXFhaNT+GB7IxnRFnLirCwpbWHG75cCUJAYyhSeNyqJH87Pp7bDyaOf7aO0sQezPvT38N+VlWgVhWue/IKCxDACQZU5w0N/f5kJoWn4zBgLEWY9790xDQhl7HQawZi0SOJsRv5z/0yEENz0lbGHAQ+cW8DtL2xie1030RY9Bm3ovJeP//rUSGK4icTwA9+ww4w6Li1J5YLRyXS7fP2vx7HpUbx480SufmItK/a2ogj4ZFcTVe1Ottd1c9XENKbmxLCzvpsrp2RgnLm/pubiklQW727h39vrWRxroQwP+3Re/psWxsbqDn7sc/DrecOI2NjKhjY7W4N+zpuXi0cjeH/RLu5RA9zxwiZy4628cNNEws06GnYf5oV2EGnRZgqTw/jX8nIAfnp2ATc/u55Op49rJqfzfx+WAh4WjkpGqxH8/qNSatqdB+wX+tUPDUIRGLLCeavAyh8+rqcoJZwH46OZuqEV3DFQGQMV3VxECca8KLyvt+LzBrFOTKTFqmfvJxrGzk/H7PYzPaOYlPyB9zDKjLbwwbYGvP4geq1y5CccRPi52bT+eyuaj11cMut+3lrxR2q3P0fAdBYtSfPxxqsk71hNtwuafvUckalT0ERnYMj6ep1Rzxd1dL5Rhi6gY3PzW+TkRlKWfzeeXZ1sTXqWcKHlmQvexqa3cfHYbl5dX8vdc/NICD+6YnBDb91VRlwhzY56hFJAZ/YUhtW/x79KPLQ01fDZ7maunZQx4Nq0w1FVFWujDb/BR31Qpc1WSTYGzPpjKJTvez2pRx5fXYeLEUlHv9rxZNdcHd0r9H+UNtwAviAepw+E4IvCq6iYdCPtL+/mt5hI6A2uptx4LUIIilMjKLhqBDHfHokxO4IvJsVyk+pAiTFR1+HCotfwy4WFXDA6pT+wgtCnwp7uHDKNP4Gggcrenb33NodqHTZVd7JoeyPnj0rGqNOQG29jT28dBIA2wkCn24cn0oDQaYi+cjiG9DBSIkJverFWAya9hs9/NIt//Wh/ivZenDyMG+ecVMZmRh+0NsGo0zA8MYzNNR1f+95XmUZE0zkhHreqkhkz+H4hQhG0zEzi+zhJm/X1G13fDTbqK3Pqab1v7gatcsg/rsLkcIb13pibv5LdeWFtNXaPn+11XTy6eB++QJBbZmSTEGYkPsyAWa9l5JeWKL9yyyTW3HfgSp5Isw6jbv+fx9qKdvY127lhaiY3TM1EUcQRA6uD0WoUbp6exZaaTpaWtvTf6IcnhlHR6sAXUDmnKBEhBBnRFrz+IPVdocLOO1/axLa6Lh5dvJfPdjfj9gV58PxCNIrgwfd2oqoqlW0OEsOMTM/bv+n2jLy4g47lYH5/STErfjSLG0caKH3oLJ6/aSIXjU3h8WtL0GoUJmVHA3DHGTmcU5TIzoZuvjsrm/yEUJCVFG7CpNOwt7mHnt69M/c12/ndh6HIYGdDN+Mzovo3w82JC72usr7y+goz6njp5kncNTsUFB5uauDskYn9DROPZYWUTqMctCbm3jOHMWd4PNdMymBNeTtvb65nVn4sPz93BLOHx3PH7NwD/v4BIsx6Xrx5IvkJNsp6N59dua+NHrePX767kzibgYWTM+iamsSTQQ8bRID5JckUJIV+j3e8sAmn188jl40ifICr5A7m3rn7s9Jj0iL41oR0cuKsXFqS2n+fG5EUxoVjktEogufWVg3ouB/taGJMWgTv3D6VoovyibmpkLg7R2OdmkzEBTlYpybj3tWOJtJI/J2jiVyYQ97sNK777RRGzkxh7PyMQQVWELq2QRVqOpyDet6X6WJMxN5WHCrW393DtOybMHVH4Gh8GgMu9qVdjuHv79Dw8HV4NIKqq2+jfMECHKtX9x8j6HTS+f4XdL5RRpOrkm27H2PuH+/DM+laKnd2kjuhkc+iq7gp6wJs+tB71LenZRFQVab/fgmf7mw6qrFrbHq0sSaSLbnU7d5BbJqOtpiRxFS58APvrnobX0Dl4pKUIx5rINpKK0k25lHtaMSQZKLcqJKlO3LH+sPp/ys+QuTj9Pppc3hJOcpi9qOeSjyOTqvMldK3d5bDh1GnoMZl0KKquMu7KUBDBqE3SFPC/huvNtwQCsoAS28jUafXT4/bh8148De9vk8mO+q7Aahoc+ALBKnoDbK21YVSuJeNC9VdDYu38damuv4UPISyLxFfeVNNjDASY9WT3xtU9G1mqXx7JBs6HNS/tpl6fPwk5/Ap4VGpEby+oZZAUD3iJ5zyvl3JY4/upnXWqCTS460HDZLmjohn3AoNk7KiD/h6X9BSnBpx2E+ocbbQ77mlx0NTt4f4MANZsVZe31iLzailx+3H7vHzx0vHMm9EAm12D87e7FVqlIlwk44ul4/C5DDM+gP/FIQQJEWY+n/+F9aGahrGZxxdt+Avu2hMCr/7YDfdbj+Jva+V4b0ZoBirgeLezVb7AoXKVidmvZaV+9qYPyKBD3c0ctvzG9FrFC4YnUxzt4e/LN7L/EdWUNrUw/jMKLJjLcTZDASCKiN6b9gDoVEEMb0BxsFeG2fkx1P+8AIUReAPBLn9jJz+wApCWcXsOAv7mu392cSGLjcNXW7unZvHG5vquHvu/mL47Fgr6dHm/qDtywY6tSGE4LErRnPd5IyvBerHw6jUCB6/toTaDifvb2ugpSc0TTwQM4bFsruxh5RIE7UdLv6zooItNZ08uHAEVoOWUakRQCijGWczolVCr/edDd1cPDaF3HjbYY5+ZLPy41h05zS6XD60GoV75uZxz9w8FEVQkh7JusoORiSHkRhuYu7weF5eV8Pdc/Iw6jQsLW3mh69t5cHzC5k3Yn+WuqrNwba6Lu5fEGo1IRSBsfc9R5+0P0g2j4lDF2dGHGWW6asy+v8eHGQPsKj9YLQRRiIX5uCJMKD7oIKpMQvIsYygJmwv/u5IPvjnNsafewnPX/k2Jcs7GN8aQfMf/0Tk5ZfR/cGHuLbsRj/jJzhUF827nyfmyivpcuhZ8/Z20guj2aP9LYpf5Zwxtx0w9je+M5nbX9zI45+XM6fg6KYHrVOS8L/lItNciGKsotmfQNCjIaUlQJlzLTlxIw/4ezwWLYt2Y8HEHp+J2MhmejQK0cYRx3bQAcY8fW0Yjja4Apm5OqE0vcGV4vBj0WuJtRowdHrBG0CLYL7OQFCAJuzgKzr6lrY6vQF63H5sxoPHpn3B1e7GUDaqstVBVZsTX0DtD1IKEsP6G7zlJdjo8fhp6AplYDz+AC5fgHDTgcGVTqOw6sez+4OyPsbsCMxx+7Mo0dbD32BGpUbg8AYOKEwOBlUCX6o/entzHfe/uY3y1tBjso4yIyCEOGT2Kcyo47ujjAdMQwCkR4fOVXKEm2usLXSdGrvd3Pzsen7zwW7cvgDlLXYuGpOCEKDTCKbkhGrCfrmwkN9fUtw/rqKUcBLCjF8LrPr0zfdrFEFdpwubUcvIlGNvymfUaTiz92Zl6p06G54YuomekR+L0hvU9AVX33piLXe/vBmAayalc0XvdFdeghWzXsu3Jqaj1yiUt9q5YUomd8/JQwjBPXPzuPfMYf3HO176jqfVKAd9I8+JtVLWbD+gXmx6Xiy3n5HDku/PPCCQMuk1LPvBLOYe5c2mjxCCkoyoAa8kOxopkWZeunkid87OZU7BwLKBM3uzhjdOzcRm0PLfz0OrJqflhjKLefFWJmVFc8OU0LRTlEXPtZPS+d6cXB46f0Bbsh5RQVJY/+9cUUT/9btxaiZnFSaQEBZ6v7pmUjqdTh/vbgltqvzC2mqaezzc+twGGnqzpw1dLm55dgNmvYazj7Dvnj7JetwCK9j/99D3IfVYPeNysEDY8c5OIc6SyjjfeCZpYLq5g/Wvf0j2rimURQ1jTYGZqqpyyh58EE9bAO+Mm1G0JhotO5n3+ut06NJ4+5HNmMP0zLo8g8XuGkbpIoi2xB5wvuLUCC4cncLainaae75eSzkQlgmJ6LPCGRk9jZ7GrYCgMzyHwuognf4qCgfxQepwfD1uTE0GGrp24lHCceg2A+DXTTy2A/fXsx8+9KntPLbg6uTnrU6zzFVfcKV1+ZkktBQHFErtfujNWA3zCTQRBoTm4JfGYgg9zuHx0+PxEWY6ROaq983K21vsWtXmZHdjKIs1f0QCf19axuXj9wdIfZmoS/+1mievG9efsfpqcAUcMpPTNxazXnPIYKFP36flzTUd/VNrv3pvJzsbunnllkkAPPl5BVtqu5g5LJZYm4EI8/HPCBxKUriRh84v5MwRh7/hxvUGVyv3tdLj9rOttovyFgfB3o1ht9R2EmHSHVCP9WX3nTWcdof3MOMI/WFHW/Q093i4eVpWfz3PsbpsXCqvbajt/wQ+LN7GxWNTuG7y/tqO+DADk7OjWVXWxrI9oaLnwpRwJmVHMzo1ghHJoTfSWJuBP11WTJhRd8B04MFqjk6EnDgrb22up6LVQVFKOPeeOYxJWdGnRKr+WGXHWrnnS5m3I5mYFcVfLh/FmQUJrNzXxqe7moix6knvzc5qNQov3nzgDeuXC49PUHUk8wsTmf+lVWWTsqPJibPyzOoqzi5KZPneFkalRrC5ppMNVR3kxPm44G+rCKoqT1w77qiLjY9WpFmHRa/hofd3YdZrOac4kbBDzB4cyoaqDl76opo5BfEs3tXMuMwosuZm4h0VS9WH6+lorCO+NZnxNierWuuwqZG0OP348zMYFzMfkyEBE9AW3cLM7/2Yuj1dVC9XiUk1ctatI9mz5gfs1Wn5YfqZBz3/2UWJ/GXxXj7a3sjVkzIG/TsQQmCbkoS3vAvR5EGYnHSljKakZifvDO9gauKxB1eqqtLw1AYUFBpaqxFx+ZQrqzAHVdpdx/aeIhhYzVVtf+Zq8KUXp4rTKrjqmxbUuQPc6NRgrHIR9At8egWdNxQImYpiDvn8vqDF4QnQ7fIfMkMUH3ZgwWKbw8uy0haMOoVbZ2ZjMWi5ZOz+4GpMWiQ/mDeM339Uyqp9rUzs/ZQZZRl4T5S+N5kjZa0g9AkwzKhlc00nl40L/bGs2NtCdbuTNruHilYHW3pX5SwtbeHsQW49cKyEEHxrYvoRHxdh1qHTCBZtawRCGayV+1oByIu38d/rxh02a1NwhE95s/LjaHN4Obc4kd9/VMr1U4+9eV6fcRlRrPjhrP4blFaj8IferFofIQQvfHsij68o56H3d5EVa+m/zpd+JXt5zhGyCCdSXx3VusoO5hbEMyMv9gjP+OYSQrBwVGgKcUpONJ/uamJseuQpGWgKIbhpaiY/fmMbVz2+FrcvyF1zcrnl2Q1sre1iX7Mdtz/Akntn9k/RnejxjU6L5PN9rdz/5jYe/7ycN78zZVA1ac+sruTtzfW8uiHUDPanZ4d6NuljreRePROA9uXlKIsULsy7naacAM6N3aRrbbhVN5u6NmGyZtDpT+XzO5ej1WswhMFFPxiLt2oxP2v4lGSDjQsn3HvQ8+fF28iNs/Le1oajCq4AjPlRYFLIshay21RFByMYuVqlThugIObYb+nO9U0odUG2tC2hPbKElGGRLA3UkRq00NDlOfIBDkPtz1wd/nG1HU70GoXYo+wLJsSAuj0MqdNqWlAxa0EjSLAHiA0KbA4/U9BSa9XwJB40wyIJn5dxyOf3Z66OUHOl1yrE9AY5ub03mne31lOcEhGaCpuV0z8dBKFpp9tmZmPRa6hsc9LaE8qmxAwgUOrTN0UZM4AXoxCCCVnRvLWpnjc31dJq91DeW0x91eNrufifqw94/ISsY68zGgpCCAqSwrH3Fk4DvL6xFq0i+lefDfaT7ZfNL0zg8WtLWDgqmc9/dMYhM2BHKzXKPKApu756l75arFPdqNT907nxh5hiPx1Nyw19cBt3HOr2hspl41K5fFwqm6o7uWB0MtNyYhiRFNafvRoWbzspgVWfx68tYcvPz+TpG8ZT0+7k+69tGdTzN9d0MiMvlozezOEZ+V+f3o2ankX8nWPQhBmI2wZpljA26xr52B7g84gAHeEOUAQFU5IIizaSNEGgdJdz32d3UqPV8eCM32PRHfp3dHZRIl9Utn9tIc5ACY2CtSSRJEsuwl1BT9CKT0kksV4hyrP2qI7ZR/UF6PqkinZvA+11a3FpokjNVdmjFcSKNOo7j27M/WPvfbsTRwh86jpcJEUYj6Gk4eR/eDmtgishBMKio9ge7P9aBAorhZ9nNV7irx2B0Bz6V3JgQfuha65gf93VecVJxNoMuH1BSjIOXUMkhCAjxkJlm4MWe+gF3FdTNBBGnQaDViF6gNmuX19QSFashbtf3kLJQ5/2R/l9dWIZvcu4AcZnnro3g1/31qXkxlkRIjT+zBjLUS/VPhWlRpn52TkF3HgcM2dDKSHc2H/zircd5R5k30A5cTZeuGnCgLKyJ4sQgt9cOJINP53Dny8bhVajUJwSwZaaTtZXdhz2PexEMOo0hJt0zMiL5Xtz8vhkZxP/XVnB9rpD97+ye/xUtDrocHipanMyMSuav101hh/MG3bIGj19kpW47xQTdWU+KT+ZxLkPXcrC341kbf4zvBH3S86/Isisb+VzxQMTCAvr4bE3LuUzo44fFn6bcWkzD/sznD0yEVWFn729/ehrr0riUVCIctsQuKlPmsjEUpWyhiVHdbw+PSvrCXZ72dy2BNU6Gq1ewWP6nIAQxNhKaOhyERzAvoCH1BtdHekItR2uY54SlAXtJ1ipuj/LoWoFAVRe7+whxmo4YpTcl7mye0IF7YfLivTVXcWFGbhkbGhp7JFWP2VEW6hqc9LSE0q9Dia4glBvpvQBtgeIsxl567tT+Nk5BV/73g/nD2PRXdOYlhtLUriRvLhjW7E0lAqTw3nt1kn89/pxjO1d3l/cW1P2TXLj1MzjssP9iZLXu8rtWNoIfBNNzon5WtuGU40Q4oCWFBMyo/D4g7h8AUrST50PWjdMySTWZuCX7+7k+qfWsbeph03V+1vMvLWpju+/uoUL/raSWX9YyoTfLAZCNacjksL57qycwx5fMWoxF8Wi9GasU2wp/LjkB2w36Pjuom/R9fmf6PzkAbaV3sfjBj8XJUzhyrF3HHHcufE2bp2RzZLdLfzq3Z1H9bPr4i0QqyXbWkxEfDv18eOZsFtla8u2ozoeQKDHS8+SGtpEA12OGrqjZjFqThq7OlYCkJY0B19ApdV+9FODfQHPkTJXoeDq6Gv6ToVZ99Oq5kpVVX7mc/DbCBtFoxJxNtpZvruZlkCQ4rAjf8LuWy3Y4fDiDQQHlLmKshiYW5CARtm/au1Q0qPNfLSjkYYuN0adMuhpqJdvnjiozTp1GoXrJmfw4HuhP/Boi542h5fRqZGY9VrumZvHd2ZmH/fVZsdbSe80y4s3T6Sh002cnIo66eYWxPPxzqYBZ1KlU9f8wgTump3L6xtrmZzz9ZYZJ4tJr+GJa0t4dPE+Pt3VxMX/XI1eq/DF/bNZW9HO91/dQkBVsei13Dg1kyd6V2oWHcOK3/kjrsSh+nho/R9YsOdxujUasCnMixnNT+Y+NuBauh+flY/bF+CFtdW0O7xH1UIkck42vOgn3NNMhzYJoUnBtasWAn7QDP7W3vVRJUGvnzXV7xLhS8GuaCiencrLr5STLDRkx6UCTdR1uogbwP3yYERfOucwwZXbF6DV7jmm4OpUcFoFV612L3VuH/vmJjBtSgY2f4D7fxpqmjf5IH12vqqvoL2vZULY4YKrsL7gSk+URf+1fb8OJiPagj+osqWmkxirYdBFr0fzgtcogsX3zsDu9vPQ+ztpd3r72w3oNAq6w0yTnmp0GuWoGntKx9/FY1PIirUwJu3kTiNJx04Iwd1z8w7oT3aqKEqJ4A+XFFHy0Kf9uzrsbOjm52/vICXSxCu3TkKrKERZ9Jw/KpnqduegPoAezEWF15IdM4In1v2RgoRxqK1Gbpl3CxplcBnJK8an8dSqSt7cVHdUU/7mkbHUv7qRbHcSlYEumpJGk7+zjqaKz4jPOfhqxUPx1tlxrm9ir30T+kAPnqiFpA6PwmiErUEHY6xp/btW1He6GX20iwYHsHFzXW8bhuRjyVwd9TOPn/+dO+dx0NchPbd3mkvRagj0fq+vW/jhWHqL0Pv69xyqoB1CK6Y0ihjUcuW+QtGN1Z2DnhI8FtmxVopTI5iRF8usYXHHvXBbOv0IIRibHnVKroqTvlkizHqm58X2v9f+9K3tlDb1cNecXOJsxv6s0MiUcM4uOj4rn0cllPDYuS/ynXH3UGAqGHRgBTAswUZqlImNX5rKHAyhCCLPy8OqDSdLV09b6njG7lP5YtWzgzqOqqp0vleGT3jZ07OW7Eo3HkMU2SUJNFWtoEmroShm5JeCK9dRjRf2t2I43LvC8WrDcKReWkPttLqL9jXNzI3/ehHjqAHU6Wg1Cgat0t9QL8x06F/fmQUJLLl35qD2kcqLt/YvIT3aJajH4vbD7D8nSZJ0qvrL5aMIBFXO++tKNlV3khVj4dxTqD3JoeTF2djXZD/yAw+hOiGSat82RlmHU928BLs5HuenW+CagR/DuaEZb0U3W1o/IxtoTp+PzqCQNSqGJcvfBqAoaz5hRh02g7Y/s3RUektM1MP0uToe3dlPhc90p1fmqsmOzaDtbz4J8OR1JfzjqjED3ujSYtD2b+Z7uMzV0ew9F2HWU9jbzfxEZq4kSZL+l9mMOiLMeu5fkM9NUzND04H/AyUNufE2ylvt+ALBIz/4ID7a3sj/GfQoGg3Ftgx25BcxfIOPzrdfG9DzPVXdtL+xhyZXFe5oBxHb6miKHMnImSkYzDpWNn1BmAoF6aE9bJMiTMeUuRrI5oK1HU60iujf3ux/1WmVudrb3ENOvPWAqYoz8ge37YZZr+nPXB2uoP1oTciMYltdF2b9qb2iSJIk6VTz1a7zp7rcOCu+gEpVm7O/+e5grCprIz0jkvDsBJRPFMrs21mfFYn2/p+jT87AXFJy0Oepqoq3opu253fhCvSwW7ueSVVN7EqfiVAExbPTUD12Vvm7mGhNRauE7nVJEcb+jeSPSn/N1aGTGbUdLpIiTANOeBz8NCc/dXXqh/bHUVastX9Pr6NlNWhx+0KfMg6XuTpaRb3Tk30bDEuSJEnfTH0tS/Y29Qz6uS5vgF0N3YxJjyBsRhp+k2BCzAKssVOoSQij9o47cZfu+drzVF+Q9pdKafn3Vvw+L0vrXiIvLhb35s20pE8jNT8Kc5ievTtfo1mrYWrKjP7nhjJXR99ItD+2OkJB+/FYKSj7XJ1AD18wclD7gh3MlzNKh1steLTOKkzgjjNyuGu2rH+SJEn6JsuOCy1i2tU4+OBqe30X/qDKqNRIhFYh/oZivMLA5LjzSB71A/zWCKqvuw53aSm+Rgf2tQ0Eery0PL4N15YWWqKaeKvsUcxxVizPv4J36kIcboWcktBszsqy9wCYXPit/nMmRZhod3hxHe2Hf+XIBe1VbQ7Soo6tmP1UqLk6raYFj4e+ZbyK2N+x/XjSaZQBtW2QJEmS/reZ9VrGZ0TxwtoqbpqWOeDtup78vIJf9fYn7FuMZUq10TA8mt0b9jDGHI53zHfQVq6i4Vevoc+egepV6XynjGAwwJrm92ioLyctPYOcj5aii41ld+4FGJo8ZI0Oze6s7NpDrlZPfPj+vgt9KzLru1z9m84PRn9JziHSSl0uH612L1mxx77Fksxc/Y/pC6hGJoef8s01JUmSpFPbz84poM3h5a4XN/X36jocVVX7AyutIg5Y/DT27Ewag+F85FyNGlDQZy5AkzyJ7q56ylwbaHFW80ntM0QURnPp7PPIf+tDrBmZOO7+Kw0VDiaen43BpMXZsouNmiBTIg/cwaOvHUNfu4RB6w+uDn7vrGh1AJAZM/jA7WCnOZlk5uooHanbuiRJkiQdyciUcH513gh++e5O7n1lM49fO+6wj+9rKXTF+FQuLUk94HsRcWbGzs9g/SL4oH0tRs92HP4uDEB4lwO92UJRWTXWdavoBCwzphP49gOseqKU9MJoCqaG2ld8sfUZfEIwOW/hAcfPiAlN11W02JmRN/j65SMFPeUtoZ8t83hsDn6SU1cyuBqk7fWhDUJlcCVJkiQdD1dPysDuCfC7D3ezal8rE7KiUQQHbcL7+b5WAG6bmUPqQWqTJpyXhSG9i6X/Go3PqlJcFM2Uiy+l5Uc/xrl6DXE/+hGasHCCLifekrm8/ZetRKdYOfOmEf2zMZ/VLsOmQknugcFVrNWAzaClvDfDNGhHiK4qWh1oFHHsNVenwGpBGVwN0vjMKGo76o64CbMkSZIkDdT1UzJ4dnUljyzei+fD3SRFmPjblWMOKD9xev28vrGWtCjzQQOrPqOKR/NM1h1klp1H7V4jQWEm9R//INDVhTYydO9qquzmnUc2YbToOPu2YvS9C7T8jhaWBjqZZs1ApzmwBkwIQVashfKWowyujlCIVN7iIDXShF577BVLsubqf8zDF4xk7f2zT/md7SVJkqT/HUadhqsnZfBFRTtbarv4YHsjv/+4lJYeD/9dWcEr62q4/r/r2FnfzY/m5x/xeLNm5fNm4Z9x2l0s+vtWWmsdaCIi6Gh0sObtMhb9fStGq44Lvj8Ga+T+uq3NW56iQ6PhjOxzD3rcrFhr//TdoPXt3HyIyKe81UHWURTKf/08x36IYyUzV4Nk1GlkYCVJkiQdd5eWpPDnT/aQHGliTFok/1haxj+WlvV/XxHw58tGDWiPxPmjb+Zv2x9nd8aT6Oq/wysPr8MaZSDgV3F1ezGF6VlwWxG2qAM7oS8u/wC9qjKt8OqDHjcrxsKbm+pwev2YB7livm+aUxykoD0YVKlotTM5O3pQxzyUk525ksGVJEmSJJ0Coq0GHr1iFAnhJopTwjmrMIGqdifjMiKpaXdhNWoHXEiuU3Rck7WQ3/A6143djFF/CaVrG+locnL5A+OJTLB8bcW76nXxmaeRSaZ4zIaDZ5D6MkvlLQ4Kk8MH9fPt78Tw9eCqsduN2xc8Lm0YROgkJ5UMriRJkiTpFPHl7XvmFOzfnq0oJWLQx1o4/l4eLXud1yqf5eHr76RgahKqqh60UB5g58Z/U6/VcEv67EMes2+bnr3NPYMOrujPXH39W/vbMByH4OoU6MUga64kSZIk6RvIYrBxfsxoPlDclK76E3DowMPXuodfb/snNlUwa9TNhzxmVqwFvVZhV8Pgu8qLw/SG7KvjyjrGHld9Tva0oAyuJEmSJOkb6tbZjxCOhh/sepzti+4Ed/fXHuNr3MaP3riQbXotvyz5IZGWuEMeT6dRGBZvY2f9149zRP2B3deDrPJWB2a9hvgww9e+N+jTHPMRjp0MriRJkiTpGyrCFMVvp/8fXXojV7Qs4f6nJ+KsWRP6ZsBH5dKHuO6dS/jEIPh+3lXM/dJegodSkBjGzoZu1MPtwHwQ/ZmrgzytvMVBZozllJjSOx5kzZUkSZIkfYNNzJrH+ylTeGL1r3my4j32fngdd8dMpN3Txc/cezEYDPx+3H3ML7h8QMcrSArj5fU1NHV7SAg3HvkJvQ61t6DbF2BbXRfTc49Pc+5TIT6TwZUkSZIkfcNZ9VbumvEbRiVO5FdrHuSW7g0IVWWMMY4/LHyFGNPAA5uCpDAANlZ3sGDkkdtC9BHKwSfLnl9bTbvDyxXj0w76/aMha64kSZIkSTohZuQt5IOrVnF33pVMtWXxyMLXBhVYAYxKjSDOZuDV9TWDO/lBMkpef5B/Ly9jUlY0E7KOT4+rUyBxJTNXkiRJknQ60Wv03DDpPm44yufrNAqXj0vlsSX7qGl3HnYrngP0Zq6+vPffB9sbaOr28NuLio5yNAc3yHKw405mriRJkiRJGpRLSlJRVfhoR+OAn6P0FkN9Oe55cmUlWTEWZuQOrDnqQJwKRfEyuJIkSZIkaVBSo8xkxlhYXdY28CcpB25/s7G6gy01nVw3JeNr3eL/18ngSpIkSZKkQZuUHc3ainb8geCAHv/VhNJ/V1ZiM2i5aEzKcR3XqRCmyeBKkiRJkqRBm5Idg93jZ0tt14AeLxRN/3/va+7h/a31XD4+FYvh+Jd/y9WCkiRJkiT9z5mSE41OI1i0rWFAjxe9EYdA8PuPSjHrtXxnZs7xH9gpkLqSwZUkSZIkSYMWYdYzZ3g8b22qwzeAqUG1N7pSVfh0VzNXTUgjyqIfkrHJ1YKSJEmSJP1PunhsCm0OL8v3tBzxsUpvK4agqhIIqkzKPj59rb5KnAKpKxlcSZIkSZJ0VKblxmLWa1hS2nzkB/dGHIFgqLh9THrk0A7uJJLBlSRJkiRJR0WvVZiUFc2Kva1HfGxfQbsahGHxNsKMuiEZ0ynQ5koGV5IkSZIkHb3pebFUtTmZ9JvFrNh76OlB0dvLKqjChMyoIR2TXC0oSZIkSdL/rJnDQt3VG7rc3P7CJmo7nAd9nPhSxPHdWUOwSrDvPEN25IGTwZUkSZIkSUctPdrCih/O4tN7puP2Bfj70rIDvu/1BznrLyv4eFeoLkuvUYgLMw7ZeOS0oCRJkiRJ//NSo8zkxNk4f1Qyb2ysZfr/LeG9rfUALCltZldDN+uqQs1GNcrQhx6yFYMkSZIkSd8I107OwO0LUt3u5LHF+1BVldc21KIICPRO2ClDPHEnWzFIkiRJkvSNUZAUxju3T+Fn5xRQ2tTDL97ZweJdTVw/JZOkKPMJG8fJLmg//hv6SJIkSZJ02ipKiSA3zsYr62p4enUVY9MjuWduHq02B3zgHvLznwo1VzK4kiRJkiTpuDLpNXxw1zS21nWRF2/FrNfS1jdXdrLTSieADK4kSZIkSTruFEUwKjVi/781oSaiQ51aOhUyV7LmSpIkSZKkISd6VwmKE5C5OtnJMRlcSZIkSZI05ER/C4ahTi2d/NSVDK4kSZIkSRpyiiYU9JyIVgmyz5UkSZIkSd94QgmVeQ913CNrriRJkiRJOi30bdx8YmKfk5u6ksGVJEmSJElDTmh7VwsOcdxzCiSuZHAlSZIkSdLQ62vFIMQJ2FtwyM9weDK4kiRJkiRpyO0PqoY29JE1V5IkSZIknRaErq9v+QmIfuRqQUmSJEmSvumE0ldzNcQd2hEnO7aSwZUkSZIkSUOvv+ZqiM8jpwUlSZIkSTotKL2tGE5E9CMzV5IkSZIkfePtr7ka4vOckLMcngyuJEmSJEkackrfxs0neRwnggyuJEmSJEkacidq42ZxChRdyeBKkiRJkqQhJ7QnJrgCuXGzJEmSJEmngf5WDKcBGVxJkiRJkjTklN7MlTgBWSW5WlCSJEmSpG88cYJaMZwCJVcyuJIkSZIkaej17S14CsQ+Q04GV5IkSZIkDb2+zNVQrxY8BcI3GVxJkiRJkjTk+qcFTwC5WlCSJEmSpG+8/f2nZM2VJEmSJEnScaGq6ikwaTf0ZHAlSZIkSdIJoaIy9DVXJ58MriRJkiRJOkFOTOZK9rmSJEmSJOm0EAp6ZM3VMRFCzBdClAoh9gkhfjyU55IkSZIk6VR3YnJK39jMlRBCA/wNOAsoAK4QQhQM1fkkSZIkSTq1hQrahzpzJU56dKUdwmOPB/apqloOIIR4CVgI7BzCc0qSJEmSdAqLNyaz5o5nhuz4ZwAz1cCQHX8ghDpEnbaEEBcD81VVvan331cDE1RVvf0rj7sZuBkgPj5+7EsvvTQk47Hb7Vit1iE5tnT05HU5NcnrcuqR1+TUJK/L4OhfqyBCHz3k5wmoAdoWRg75eWbNmrVBVdWSr359KDNXA6Kq6r+BfwOUlJSoM2fOHJLzLF26lKE6tnT05HU5NcnrcuqR1+TUJK/LIJ2g39XJvi5DWdBeB6R+6d8pvV+TJEmSJEn6xhrK4GodkCuEyBRC6IHLgXeG8HySJEmSJEkn3ZBNC6qq6hdC3A58BGiAJ1VV3TFU55MkSZIkSToVDGnNlaqqi4BFQ3kOSZIkSZKkU4ns0C5JkiRJknQcyeBKkiRJkiTpOJLBlSRJkiRJ0nEkgytJkiRJkqTjSAZXkiRJkiRJx5EMriRJkiRJko4jGVxJkiRJkiQdRzK4kiRJkiRJOo5kcCVJkiRJknQcyeBKkiRJkiTpOJLBlSRJkiRJ0nEkgytJkiRJkqTjSAZXkiRJkiRJx5EMriRJkiRJko4jGVxJkiRJkiQdRzK4kiRJkiRJOo5kcCVJkiRJknQcyeBKkiRJkiTpOJLBlSRJkiRJ0nEkVFU92WPoJ4RoAaqG6PAxQOsQHVs6evK6nJrkdTn1yGtyapLX5dR0oq5LuqqqsV/94ikVXA0lIcR6VVVLTvY4pAPJ63Jqktfl1COvyalJXpdT08m+LnJaUJIkSZIk6TiSwZUkSZIkSdJxdDoFV/8+2QOQDkpel1OTvC6nHnlNTk3yupyaTup1OW1qriRJkiRJkk6E0ylzJUmSJEmSNORkcCVJkiRJknQcnRbBlRBivhCiVAixTwjx45M9HgmEEKlCiCVCiJ1CiB1CiLtO9pikECGERgixSQjx3skeixQihIgQQrwmhNgthNglhJh0ssckgRDi7t73r+1CiBeFEMaTPabTkRDiSSFEsxBi+5e+FiWE+EQIsbf3/yNP5Ji+8cGVEEID/A04CygArhBCFJzcUUmAH7hXVdUCYCLwXXldThl3AbtO9iCkA/wF+FBV1XygGHl9TjohRDJwJ1CiqmohoAEuP7mjOm09Bcz/ytd+DCxWVTUXWNz77xPmGx9cAeOBfaqqlquq6gVeAhae5DGd9lRVbVBVdWPvf/cQulkkn9xRSUKIFOBs4PGTPRYpRAgRDkwHngBQVdWrqmrnSR2U1EcLmIQQWsAM1J/k8ZyWVFVdDrR/5csLgad7//tp4PwTOabTIbhKBmq+9O9a5E38lCKEyABGA2tP8lAkeAT4IRA8yeOQ9ssEWoD/9k7XPi6EsJzsQZ3uVFWtA/4AVAMNQJeqqh+f3FFJXxKvqmpD7383AvEn8uSnQ3AlncKEEFbgdeB7qqp2n+zxnM6EEOcAzaqqbjjZY5EOoAXGAP9QVXU04OAET3FIX9dbw7OQUPCbBFiEEN86uaOSDkYN9Zw6oX2nTofgqg5I/dK/U3q/Jp1kQggdocDqeVVV3zjZ45GYApwnhKgkNH1+hhDiuZM7JIlQtr1WVdW+zO5rhIIt6eSaA1SoqtqiqqoPeAOYfJLHJO3XJIRIBOj9/+YTefLTIbhaB+QKITKFEHpCBYfvnOQxnfaEEIJQDckuVVX/dLLHI4GqqvepqpqiqmoGob+Tz1RVlZ/ETzJVVRuBGiHEsN4vzQZ2nsQhSSHVwEQhhLn3/Ww2cqHBqeQd4Nre/74WePtEnlx7Ik92Mqiq6hdC3A58RGg1x5Oqqu44ycOSQlmSq4FtQojNvV+7X1XVRSdvSJJ0yroDeL73A2I5cP1JHs9pT1XVtUKI14CNhFY/b0JuhXNSCCFeBGYCMUKIWuDnwG+BV4QQNwJVwKUndExy+xtJkiRJkqTj53SYFpQkSZIkSTphZHAlSZIkSZJ0HMngSpIkSZIk6TiSwZUkSZIkSdJxJIMrSZIkSZKk40gGV5IkSZIkSceRDK4kSTotiBD5nidJ0pCTbzSSJH1jCSEyhBClQohngO0cuBWWJEnSkJBNRCVJ+sYSQmQQ6mg+WVXVNSd5OJIknSZk5kqSpG+6KhlYSZJ0IsngSpKkbzrHyR6AJEmnFxlcSZIkSZIkHUcyuJIkSZIkSTqOZEG7JEmSJEnScSQzV5IkSZIkSceRDK4kSZIkSZKOIxlcSZIkSZIkHUcyuJIkSZIkSTqOZHAlSZIkSZJ0HMngSpIkSZIk6TiSwZUkSZIkSdJx9P/Z/cLmUXDXZQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 720x720 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Disponemos del archivo de data que almacena todas las funciones de distribución radial clasificadas por filas y columnas,\n", + "# esto nos permitirá construÃr el código para graficar la evolución de la función de distribución radial del fluido confinado\n", + "# dentro de un cilindro\n", + "\n", + "dataframe7=pd.read_csv(\"/home/student/ejercicios-clase-08-datos/data-used/FDR_evolucion_general.csv\")\n", + "print(dataframe7.head())\n", + "\n", + "plt.figure(figsize =(10,10))\n", + "ax = plt.gca()\n", + "\n", + "dataframe7.plot(kind=\"line\",x=\"r\",y=\"g_liso\",ax=ax, label=\"Cilindro liso\")\n", + "dataframe7.plot(kind=\"line\",x=\"r\",y=\"g_2\",ax=ax, label=\"Cilindro con 2 dientes\")\n", + "dataframe7.plot(kind=\"line\",x=\"r\",y=\"g3\",ax=ax, label =\"Cilindro con 3 dientes\")\n", + "dataframe7.plot(kind=\"line\",x=\"r\",y=\"g5\",ax=ax,label =\"Cilindro con 5 dientes\")\n", + "dataframe7.plot(kind=\"line\",x=\"r\",y=\"g12\",ax=ax, label =\"Cilindro con 12 dientes\")\n", + "dataframe7.plot(kind=\"line\",x=\"r\",y=\"g15\",ax=ax, label =\"Cilindro con 15 dientes\")\n", + "dataframe7.plot(kind=\"line\",x=\"r\",y=\"g20\",ax=ax, label =\"Cilindro con 20 dientes\")\n", + "\n", + "pl.xlabel(\"r\")\n", + "pl.ylabel(\"FDR(r)\")\n", + "pl.grid()\n", + "#pl.legend([\"FDR(r)\"])\n", + "pl.title(\"Evolución de la función de distribución radial\")\n", + "\n", + "pl.savefig(\"fdr_evolucion.png\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Presentar la evolución de la función de distribución radial en forma de gráfica *(estática)*, tiende a ser confusa, por lo que a continuación aplicaremos lo aprendido en las clases del ***Módulo de Ciencia de Datos** mostrando una representación *dinámica* de la variación de la Función de Distribución Radial a medida que cambian las caracterÃsticas del cilindro que contiene el fluido." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 7- Intentemos una animación" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [], + "source": [ + "from matplotlib import animation\n", + "from matplotlib.animation import FuncAnimation\n", + "#from Tkinter import *\n", + "from IPython.display import HTML\n", + "%matplotlib notebook" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A nosostros como humanos se nos hace más sencillo observar el comportamiento de la data mediante algún tipo de representación visual, esto nos permite explicar el fenómeno que registra nuestra data, pero en muchas ocasiones las imágenes estáticas no lo lo muestran. Es aquà donde las animaciones comienzan a tener sentido y demostrar su valor en la visualización de nuestros datos!\n", + "\n", + "Lo que haremos para la animación será tomar las gráficas de cada columna de datos de interés y grafiquémoslas de manera consecutiva dentro de un mismo marco de ejes coordenados. Por lo que debemos definir los datos y juntarlos en una lista que podamos manejar y graficar echando mano de la función `animate` y `FuncAnimation`." + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " primera_columna segunda_columna\n", + "0 0.03 0.944136\n", + "1 0.05 0.825305\n", + "2 0.07 0.815073\n", + "3 0.09 0.860936\n", + "4 0.11 0.813170\n", + ".. ... ...\n", + "495 9.93 0.000000\n", + "496 9.95 0.000000\n", + "497 9.97 0.000000\n", + "498 9.99 0.000000\n", + "499 10.01 0.000000\n", + "\n", + "[500 rows x 2 columns]\n" + ] + } + ], + "source": [ + "# r g_liso g_2 g3 g5 g12 g15 g20\n", + "\n", + "#dataframe7=pd.read_csv(\"/home/student/ejercicios-clase-08-datos/data-used/FDR_evolucion_general.csv\")\n", + "\n", + "#f0 = dataframe7[\"r\"], dataframe7[\"g_liso\"]\n", + "\n", + "f0 = pd.DataFrame({\"primera_columna\":dataframe7[\"r\"], \"segunda_columna\": dataframe7[\"g_liso\"]})\n", + "f1 = pd.DataFrame({\"primera_columna\":dataframe7[\"r\"], \"segunda_columna\": dataframe7[\"g_2\"]})\n", + "f2 = pd.DataFrame({\"primera_columna\":dataframe7[\"r\"], \"segunda_columna\": dataframe7[\"g3\"]})\n", + "f3 = pd.DataFrame({\"primera_columna\":dataframe7[\"r\"], \"segunda_columna\": dataframe7[\"g5\"]})\n", + "f4 = pd.DataFrame({\"primera_columna\":dataframe7[\"r\"], \"segunda_columna\": dataframe7[\"g12\"]})\n", + "f5 = pd.DataFrame({\"primera_columna\":dataframe7[\"r\"], \"segunda_columna\": dataframe7[\"g15\"]})\n", + "f6 = pd.DataFrame({\"primera_columna\":dataframe7[\"r\"], \"segunda_columna\": dataframe7[\"g20\"]})\n", + "\n", + "print(f6)" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "# Crearemos una variable global que almacene todos los dataframes que escogimos\n", + "global mylist\n", + "mylist=[f0,f1,f2,f3,f4,f5,f6]" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "/* global mpl */\n", + "window.mpl = {};\n", + "\n", + "mpl.get_websocket_type = function () {\n", + " if (typeof WebSocket !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof MozWebSocket !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert(\n", + " 'Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.'\n", + " );\n", + " }\n", + "};\n", + "\n", + "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = this.ws.binaryType !== undefined;\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById('mpl-warnings');\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent =\n", + " 'This browser does not support binary websocket messages. ' +\n", + " 'Performance may be slow.';\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = document.createElement('div');\n", + " this.root.setAttribute('style', 'display: inline-block');\n", + " this._root_extra_style(this.root);\n", + "\n", + " parent_element.appendChild(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message('supports_binary', { value: fig.supports_binary });\n", + " fig.send_message('send_image_mode', {});\n", + " if (fig.ratio !== 1) {\n", + " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n", + " }\n", + " fig.send_message('refresh', {});\n", + " };\n", + "\n", + " this.imageObj.onload = function () {\n", + " if (fig.image_mode === 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function () {\n", + " fig.ws.close();\n", + " };\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "};\n", + "\n", + "mpl.figure.prototype._init_header = function () {\n", + " var titlebar = document.createElement('div');\n", + " titlebar.classList =\n", + " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", + " var titletext = document.createElement('div');\n", + " titletext.classList = 'ui-dialog-title';\n", + " titletext.setAttribute(\n", + " 'style',\n", + " 'width: 100%; text-align: center; padding: 3px;'\n", + " );\n", + " titlebar.appendChild(titletext);\n", + " this.root.appendChild(titlebar);\n", + " this.header = titletext;\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._init_canvas = function () {\n", + " var fig = this;\n", + "\n", + " var canvas_div = (this.canvas_div = document.createElement('div'));\n", + " canvas_div.setAttribute(\n", + " 'style',\n", + " 'border: 1px solid #ddd;' +\n", + " 'box-sizing: content-box;' +\n", + " 'clear: both;' +\n", + " 'min-height: 1px;' +\n", + " 'min-width: 1px;' +\n", + " 'outline: 0;' +\n", + " 'overflow: hidden;' +\n", + " 'position: relative;' +\n", + " 'resize: both;'\n", + " );\n", + "\n", + " function on_keyboard_event_closure(name) {\n", + " return function (event) {\n", + " return fig.key_event(event, name);\n", + " };\n", + " }\n", + "\n", + " canvas_div.addEventListener(\n", + " 'keydown',\n", + " on_keyboard_event_closure('key_press')\n", + " );\n", + " canvas_div.addEventListener(\n", + " 'keyup',\n", + " on_keyboard_event_closure('key_release')\n", + " );\n", + "\n", + " this._canvas_extra_style(canvas_div);\n", + " this.root.appendChild(canvas_div);\n", + "\n", + " var canvas = (this.canvas = document.createElement('canvas'));\n", + " canvas.classList.add('mpl-canvas');\n", + " canvas.setAttribute('style', 'box-sizing: content-box;');\n", + "\n", + " this.context = canvas.getContext('2d');\n", + "\n", + " var backingStore =\n", + " this.context.backingStorePixelRatio ||\n", + " this.context.webkitBackingStorePixelRatio ||\n", + " this.context.mozBackingStorePixelRatio ||\n", + " this.context.msBackingStorePixelRatio ||\n", + " this.context.oBackingStorePixelRatio ||\n", + " this.context.backingStorePixelRatio ||\n", + " 1;\n", + "\n", + " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", + " 'canvas'\n", + " ));\n", + " rubberband_canvas.setAttribute(\n", + " 'style',\n", + " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n", + " );\n", + "\n", + " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n", + " if (this.ResizeObserver === undefined) {\n", + " if (window.ResizeObserver !== undefined) {\n", + " this.ResizeObserver = window.ResizeObserver;\n", + " } else {\n", + " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n", + " this.ResizeObserver = obs.ResizeObserver;\n", + " }\n", + " }\n", + "\n", + " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n", + " var nentries = entries.length;\n", + " for (var i = 0; i < nentries; i++) {\n", + " var entry = entries[i];\n", + " var width, height;\n", + " if (entry.contentBoxSize) {\n", + " if (entry.contentBoxSize instanceof Array) {\n", + " // Chrome 84 implements new version of spec.\n", + " width = entry.contentBoxSize[0].inlineSize;\n", + " height = entry.contentBoxSize[0].blockSize;\n", + " } else {\n", + " // Firefox implements old version of spec.\n", + " width = entry.contentBoxSize.inlineSize;\n", + " height = entry.contentBoxSize.blockSize;\n", + " }\n", + " } else {\n", + " // Chrome <84 implements even older version of spec.\n", + " width = entry.contentRect.width;\n", + " height = entry.contentRect.height;\n", + " }\n", + "\n", + " // Keep the size of the canvas and rubber band canvas in sync with\n", + " // the canvas container.\n", + " if (entry.devicePixelContentBoxSize) {\n", + " // Chrome 84 implements new version of spec.\n", + " canvas.setAttribute(\n", + " 'width',\n", + " entry.devicePixelContentBoxSize[0].inlineSize\n", + " );\n", + " canvas.setAttribute(\n", + " 'height',\n", + " entry.devicePixelContentBoxSize[0].blockSize\n", + " );\n", + " } else {\n", + " canvas.setAttribute('width', width * fig.ratio);\n", + " canvas.setAttribute('height', height * fig.ratio);\n", + " }\n", + " canvas.setAttribute(\n", + " 'style',\n", + " 'width: ' + width + 'px; height: ' + height + 'px;'\n", + " );\n", + "\n", + " rubberband_canvas.setAttribute('width', width);\n", + " rubberband_canvas.setAttribute('height', height);\n", + "\n", + " // And update the size in Python. We ignore the initial 0/0 size\n", + " // that occurs as the element is placed into the DOM, which should\n", + " // otherwise not happen due to the minimum size styling.\n", + " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n", + " fig.request_resize(width, height);\n", + " }\n", + " }\n", + " });\n", + " this.resizeObserverInstance.observe(canvas_div);\n", + "\n", + " function on_mouse_event_closure(name) {\n", + " return function (event) {\n", + " return fig.mouse_event(event, name);\n", + " };\n", + " }\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mousedown',\n", + " on_mouse_event_closure('button_press')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseup',\n", + " on_mouse_event_closure('button_release')\n", + " );\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband_canvas.addEventListener(\n", + " 'mousemove',\n", + " on_mouse_event_closure('motion_notify')\n", + " );\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseenter',\n", + " on_mouse_event_closure('figure_enter')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseleave',\n", + " on_mouse_event_closure('figure_leave')\n", + " );\n", + "\n", + " canvas_div.addEventListener('wheel', function (event) {\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " on_mouse_event_closure('scroll')(event);\n", + " });\n", + "\n", + " canvas_div.appendChild(canvas);\n", + " canvas_div.appendChild(rubberband_canvas);\n", + "\n", + " this.rubberband_context = rubberband_canvas.getContext('2d');\n", + " this.rubberband_context.strokeStyle = '#000000';\n", + "\n", + " this._resize_canvas = function (width, height, forward) {\n", + " if (forward) {\n", + " canvas_div.style.width = width + 'px';\n", + " canvas_div.style.height = height + 'px';\n", + " }\n", + " };\n", + "\n", + " // Disable right mouse context menu.\n", + " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n", + " event.preventDefault();\n", + " return false;\n", + " });\n", + "\n", + " function set_focus() {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'mpl-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " continue;\n", + " }\n", + "\n", + " var button = (fig.buttons[name] = document.createElement('button'));\n", + " button.classList = 'mpl-widget';\n", + " button.setAttribute('role', 'button');\n", + " button.setAttribute('aria-disabled', 'false');\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + "\n", + " var icon_img = document.createElement('img');\n", + " icon_img.src = '_images/' + image + '.png';\n", + " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", + " icon_img.alt = tooltip;\n", + " button.appendChild(icon_img);\n", + "\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " var fmt_picker = document.createElement('select');\n", + " fmt_picker.classList = 'mpl-widget';\n", + " toolbar.appendChild(fmt_picker);\n", + " this.format_dropdown = fmt_picker;\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = document.createElement('option');\n", + " option.selected = fmt === mpl.default_extension;\n", + " option.innerHTML = fmt;\n", + " fmt_picker.appendChild(option);\n", + " }\n", + "\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "};\n", + "\n", + "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", + "};\n", + "\n", + "mpl.figure.prototype.send_message = function (type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "};\n", + "\n", + "mpl.figure.prototype.send_draw_message = function () {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1], msg['forward']);\n", + " fig.send_message('refresh', {});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", + " var x0 = msg['x0'] / fig.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n", + " var x1 = msg['x1'] / fig.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0,\n", + " 0,\n", + " fig.canvas.width / fig.ratio,\n", + " fig.canvas.height / fig.ratio\n", + " );\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch (cursor) {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_message = function (fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", + " for (var key in msg) {\n", + " if (!(key in fig.buttons)) {\n", + " continue;\n", + " }\n", + " fig.buttons[key].disabled = !msg[key];\n", + " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", + " if (msg['mode'] === 'PAN') {\n", + " fig.buttons['Pan'].classList.add('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " } else if (msg['mode'] === 'ZOOM') {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.add('active');\n", + " } else {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message('ack', {});\n", + "};\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function (fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = 'image/png';\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src\n", + " );\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data\n", + " );\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " } else if (\n", + " typeof evt.data === 'string' &&\n", + " evt.data.slice(0, 21) === 'data:image/png;base64'\n", + " ) {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig['handle_' + msg_type];\n", + " } catch (e) {\n", + " console.log(\n", + " \"No handler for the '\" + msg_type + \"' message type: \",\n", + " msg\n", + " );\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\n", + " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", + " e,\n", + " e.stack,\n", + " msg\n", + " );\n", + " }\n", + " }\n", + " };\n", + "};\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function (e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e) {\n", + " e = window.event;\n", + " }\n", + " if (e.target) {\n", + " targ = e.target;\n", + " } else if (e.srcElement) {\n", + " targ = e.srcElement;\n", + " }\n", + " if (targ.nodeType === 3) {\n", + " // defeat Safari bug\n", + " targ = targ.parentNode;\n", + " }\n", + "\n", + " // pageX,Y are the mouse positions relative to the document\n", + " var boundingRect = targ.getBoundingClientRect();\n", + " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n", + " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n", + "\n", + " return { x: x, y: y };\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys(original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object') {\n", + " obj[key] = original[key];\n", + " }\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function (event, name) {\n", + " var canvas_pos = mpl.findpos(event);\n", + "\n", + " if (name === 'button_press') {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * this.ratio;\n", + " var y = canvas_pos.y * this.ratio;\n", + "\n", + " this.send_message(name, {\n", + " x: x,\n", + " y: y,\n", + " button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event),\n", + " });\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "};\n", + "\n", + "mpl.figure.prototype.key_event = function (event, name) {\n", + " // Prevent repeat events\n", + " if (name === 'key_press') {\n", + " if (event.which === this._key) {\n", + " return;\n", + " } else {\n", + " this._key = event.which;\n", + " }\n", + " }\n", + " if (name === 'key_release') {\n", + " this._key = null;\n", + " }\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which !== 17) {\n", + " value += 'ctrl+';\n", + " }\n", + " if (event.altKey && event.which !== 18) {\n", + " value += 'alt+';\n", + " }\n", + " if (event.shiftKey && event.which !== 16) {\n", + " value += 'shift+';\n", + " }\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", + " if (name === 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message('toolbar_button', { name: name });\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "\n", + "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n", + "// prettier-ignore\n", + "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "\n", + "mpl.default_extension = \"png\";/* global mpl */\n", + "\n", + "var comm_websocket_adapter = function (comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function () {\n", + " comm.close();\n", + " };\n", + " ws.send = function (m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function (msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data']);\n", + " });\n", + " return ws;\n", + "};\n", + "\n", + "mpl.mpl_figure_comm = function (comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = document.getElementById(id);\n", + " var ws_proxy = comm_websocket_adapter(comm);\n", + "\n", + " function ondownload(figure, _format) {\n", + " window.open(figure.canvas.toDataURL());\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element;\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error('Failed to find cell for figure', id, fig);\n", + " return;\n", + " }\n", + " fig.cell_info[0].output_area.element.on(\n", + " 'cleared',\n", + " { fig: fig },\n", + " fig._remove_fig_handler\n", + " );\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function (fig, msg) {\n", + " var width = fig.canvas.width / fig.ratio;\n", + " fig.cell_info[0].output_area.element.off(\n", + " 'cleared',\n", + " fig._remove_fig_handler\n", + " );\n", + " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable();\n", + " fig.parent_element.innerHTML =\n", + " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + " fig.close_ws(fig, msg);\n", + "};\n", + "\n", + "mpl.figure.prototype.close_ws = function (fig, msg) {\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "};\n", + "\n", + "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width / this.ratio;\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] =\n", + " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message('ack', {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () {\n", + " fig.push_to_output();\n", + " }, 1000);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'btn-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " var button;\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " continue;\n", + " }\n", + "\n", + " button = fig.buttons[name] = document.createElement('button');\n", + " button.classList = 'btn btn-default';\n", + " button.href = '#';\n", + " button.title = name;\n", + " button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message pull-right';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = document.createElement('div');\n", + " buttongrp.classList = 'btn-group inline pull-right';\n", + " button = document.createElement('button');\n", + " button.classList = 'btn btn-mini btn-primary';\n", + " button.href = '#';\n", + " button.title = 'Stop Interaction';\n", + " button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n", + " button.addEventListener('click', function (_evt) {\n", + " fig.handle_close(fig, {});\n", + " });\n", + " button.addEventListener(\n", + " 'mouseover',\n", + " on_mouseover_closure('Stop Interaction')\n", + " );\n", + " buttongrp.appendChild(button);\n", + " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", + " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", + "};\n", + "\n", + "mpl.figure.prototype._remove_fig_handler = function (event) {\n", + " var fig = event.data.fig;\n", + " if (event.target !== this) {\n", + " // Ignore bubbled events from children.\n", + " return;\n", + " }\n", + " fig.close_ws(fig, {});\n", + "};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (el) {\n", + " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (el) {\n", + " // this is important to make the div 'focusable\n", + " el.setAttribute('tabindex', 0);\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " } else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager) {\n", + " manager = IPython.keyboard_manager;\n", + " }\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which === 13) {\n", + " this.canvas_div.blur();\n", + " // select the cell after this one\n", + " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", + " IPython.notebook.select(index + 1);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " fig.ondownload(fig, null);\n", + "};\n", + "\n", + "mpl.find_output_cell = function (html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i = 0; i < ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code') {\n", + " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] === html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "};\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel !== null) {\n", + " IPython.notebook.kernel.comm_manager.register_target(\n", + " 'matplotlib',\n", + " mpl.mpl_figure_comm\n", + " );\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"640\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Configuramos la figura, los ejes, y la gráfica que queremos animar\n", + "fig = plt.figure()\n", + "ax = plt.axes(xlim=(0, 11), ylim=(0, 6))\n", + "line, = ax.plot([], [], lw=2)\n", + "\n", + "# función inicialización: grafica el fondo de cada frame\n", + "def init():\n", + " line.set_data([], [])\n", + " return line,\n", + "\n", + "# función animation para la lista de los dataframes\n", + "def animate(i):\n", + " line.set_data(mylist[i]['primera_columna'], mylist[i]['segunda_columna'])\n", + " return line,\n", + "\n", + "# Animamos usando FuncAnimation, en intervalos de 300 ms\n", + "# declaramos el número de frames de la lista \n", + "anim = animation.FuncAnimation(fig, animate, frames=len(mylist), init_func=init, interval=300, blit=True)\n", + "\n", + "writergif = animation.PillowWriter(fps=1000)\n", + "anim.save(\"animacion.gif\",writer=writergif)\n", + "\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/codigo/conversion_de_archivos_csv_a_ROOT.ipynb b/codigo/conversion_de_archivos_csv_a_ROOT.ipynb new file mode 100644 index 0000000..22f6591 --- /dev/null +++ b/codigo/conversion_de_archivos_csv_a_ROOT.ipynb @@ -0,0 +1,74 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Conversión de archivos csv a ROOT\n", + "\n", + "Este pequeño programa nos permite convertir archivos csv a ROOT usando comandos C++, la utilidad de estos archivos se basa en la forma en que almacena la data y directorios. Están diseñados para almacenar un gran volumen de información en menor espacio optimizando el tratamiento de la data cuando son archivos muy grandes, en fÃsica de altas energÃas por ejemplo.\n", + "\n", + "Una vez tenemos el archivo convertido a ROOT podemos realizar los tramientos estadÃsticos en C++ o escoger un camino alternativo procesandolos con UPROOT." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%jsroot on" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "#include \"Riostream.h\"\n", + "#include \"TString.h\"\n", + "#include \"TFile.h\"\n", + "#include \"TTree.h\"\n", + "#include \"TSystem.h\"\n", + "#include <stdio.h>\n", + "#include <stdlib.h>" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "TString dir = gSystem->UnixPathName(\"/home/student/ejercicios-clase-08-datos/data-used/FDR_cilindro_liso_Hr-10.csv\");\n", + "dir.ReplaceAll(\"FDR_cilindro_liso_Hr-10.C\",\"\");\n", + "dir.ReplaceAll(\"/./\",\"/\");" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "TFile *f = new TFile(\"/home/student/ejercicios-clase-08-datos/data-used//FDR_cilindro_liso_Hr-10.root\",\"RECREATE\");" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "ROOT C++", + "language": "c++", + "name": "root" + }, + "language_info": { + "codemirror_mode": "text/x-c++src", + "file_extension": ".C", + "mimetype": " text/x-c++src", + "name": "c++" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/codigo/convertir_csv_a_root-2do.ipynb b/codigo/convertir_csv_a_root-2do.ipynb new file mode 100644 index 0000000..f06d196 --- /dev/null +++ b/codigo/convertir_csv_a_root-2do.ipynb @@ -0,0 +1,74 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Conversión de archivos csv a ROOT\n", + "\n", + "Este pequeño programa nos permite convertir archivos csv a ROOT usando comandos C++, la utilidad de estos archivos se basa en la forma en que almacena la data y directorios. Están diseñados para almacenar un gran volumen de información en menor espacio optimizando el tratamiento de la data cuando son archivos muy grandes, en fÃsica de altas energÃas por ejemplo.\n", + "\n", + "Una vez tenemos el archivo convertido a ROOT podemos realizar los tramientos estadÃsticos en C++ o escoger un camino alternativo trabaja" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%jsroot on" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "#include \"Riostream.h\"\n", + "#include \"TString.h\"\n", + "#include \"TFile.h\"\n", + "#include \"TTree.h\"\n", + "#include \"TSystem.h\"\n", + "#include <stdio.h>\n", + "#include <stdlib.h>" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "TString dir = gSystem->UnixPathName(\"/home/student/ejercicios-clase-08-datos/data-used/FDR_cilindro_liso_Hr-10.csv\");\n", + "dir.ReplaceAll(\"FDR_cilindro_liso_Hr-10.C\",\"\");\n", + "dir.ReplaceAll(\"/./\",\"/\");" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "TFile *f = new TFile(\"/home/student/ejercicios-clase-08-datos/data-used//FDR_cilindro_liso_Hr-10.root\",\"RECREATE\");" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "ROOT C++", + "language": "c++", + "name": "root" + }, + "language_info": { + "codemirror_mode": "text/x-c++src", + "file_extension": ".C", + "mimetype": " text/x-c++src", + "name": "c++" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/codigo/fdr.png b/codigo/fdr.png new file mode 100644 index 0000000000000000000000000000000000000000..0a419630eb11a8a8095ad340f8d2466988a0fddf GIT binary patch literal 15160 zcmeIZcT`hd*DtyO5ygT91VM@l!b25Bkd6vMKzi?Lqy~c2NXOnliWCv)y-Nv!P+|>8 zCrFS$h>u7&L27^iIXeNL_q*?V$GP{6^W8D-AIAY<o4xkhYtH$bzd83@b3ZjP(mlY* z&j|p)0f?Tq833?qF@E>#1^~e2^^hX?M>#;pCcxasH2`tL&jm2N5pdhfC&0_&rbv*B zpTCC>{JiXWSp{hk_ke)g{wi{E-v11c_3?9)J7m#`1}E8jThG=X0QMba{IUSA-|zu| zN<KvUlEs}jWMb&66PD@p`JU9&Ye!hvFYmhcGbig_mi84r0a><7vd_*`P@d7;0}emF zZMwSm>LF_3tk|Akxpyu>cIB3#Kd_$KC%fnFnY$hjqp}>5H>;jS`8~a)#rEaaxk+j( zWN2V;TEmh!&>DitD9oIpOc!gI_d6~Z&na8Flp$FGpzUQ#nE<%LUhiEZ01&78e?I^J zqX9NsrK~~n+m8o>P{g1P^l<<P`0R)vF6+X`OJ&1-9=o#k{;C^>+ts)l;=2GKODb9( z(}6xf)Zzu<)h5V#=>N;llafh!{@uRjwcaALpu0pVCh6m{AL|P!>6;hoOIhnbyo@jB z<m3TCb=h1R{rfZ|H<uz$xD2oYA_`ZojMHA8vDCO~uty639u%0w)e+i>m~~GyM(t1( z0PHa(B^$1eGz`_9Hes0Ka&2%;8vjdgRaPCw_1dODwc>Elu4lk5K<h~kuuG0PNI`>A zU=h`{Jpp&r_lJzrZAC!vNq_~28ex1MIwz^+#JHyjf_dj?&N$wGsp(`c>rci-fZyZ) zdg-Batp6`Y{cqghf8|oGwmn)-yQ|?^sN+zf_$4<;npli2%*}216vKxb_G#Il@GRei z;$uJ=<w0SmSlIxe;bkjuOKh`~&p$=p_2MiRbo4zuB67jMSXF!NXra)~4l$y8^qLQh zT(Y{aZddLN2*D-AvD*DK08C|#SVom0F{E?hcDPuvuHwbl<9Nal_|so#JQoC#nY$o3 zRRgCM_EmYb{IE7vOz`A%i<dn+pp~{q{poo5J}+H}rXp64;zQ3yuB>~dfmTVwwsuhW zUUBl{Vay%Bge@Cp0klp*p|&WII}J17n!o#enCKd({jsN^8t{G}%N`)A*MvnsnqeLH zB0%ga6HOLTM@}<r%P*<*^e_WG2Y9kRG0ppE@ju33|Kl50lbcNVT;a9ZIbfHNXMiF* zn>CS-dCyNhY})K?|91a~<<f=l9XLJ6vq;d`nqL?To$IQQVPP&O;if5}ws>Q;TlG9l zAG8_>^jq$F{CpCc8S1Jv1rL}~=y9@7FJ{VVMtl^gh8etLj+z*#>_)S{XHN2Zl~3da z>*BWC%>P09$JDH&|0XhYM+vX*@bYcDz`wKr?1<6Jp1dv3KRUd)Ut?R;zqOzIyYA%w zXjAv@zbpDbmH0pT=FMJ}e^ck#-8%|CF7R?Uh-IB#rrfUmXFPDCh|C?I%znxta);@( zud6^L?`4{{tH2QVJ*&|eSlCucz@N4KbMOxu{wGWNGv){^zbma65YuMhNE8Z%>$6K7 zW|;ouQ0*5(WlrgMhutF3YZ&>76znTl4SXK}ct2(B^@(6mQA!6OI&A^rawYBo0D_fd z!}KQA+Ndvigk1#Mc@5%|65xyXW&yIiORX$5wgxJzJ#@eO@kWU{ig-NDn~!Dyp0+|F z8OHebhf^7->97ROVNaZ%_JENck2b--@zr4YYFx<#q@$-G0LVOH?RldNM^i_KkYd+C ze@mEvgcQn89ENBn1iX@;pbf}X<7H9!?mB#ThDLY@YIqNz1<lQcs~{@U{J3AGIIxSr z$hLSwDxN?T6_lEGg^_9J;l}`={P_#kG&N<AP-U$daR08uBht;5*rtU)(Dn>jCsF*$ z_dEc&8*@kHa2{f5+sEW|Ge?$tOzJ$Dy-%8l=|CSurYxA`yO$?x=KvaIc8RH5i$4d^ zEc)z>o5X<_+&-|#+;f=8$qycInn*H{@F4fy&UJkvQ;?S<i93)ud0a5?@4{HaJ4d9| z!KiSAJ&QqO%$uK6nZeTeUIrT6W0Hbsnxf^wsDf=i*U~Ej^6xQ7LoWy5&i?ad&ZS;c z_9p<7^0oA)SPiz<b9Rr)wmg^FC3XaRddU3$QH<NCK5YyAWwFPAOI?)cZ;Y4OO8}J! zfW`xZrFh0|)YuFE9#fWW>~ep;sr=iEkmzB4S(g#8v-$Y_%%Sa*tT{Uil;C9dXy^7A zRhw=kb)hd@+Gdrmw0t(MMAt6A*y8QTc8C+!A%6L%n$}aM@;`rjmF6e3Lx48}z8Zq~ zW~zkS6!_u!d)v#|d9uDTN9zPET>0ZD+{=<$yLQxhSeQ+l*X9&cwTCMKot-Fp=o!dI zAk8wb{bv&P$L|XtG1Mz@@$gMgrUmbDn(Q1LJz21Q4z$7c0Uui;Ka*dxSa%Mt@BcIU zpUci)+L^MRKWt|v5ENG!VB$_wgluk7uI~71HlJYm3HoVJtxPxO&dnXCR2H#n?@$Ey zJm(?D>pQwBFbuex|A4tva5-nJS=#u{f9CUlEI;7{?cBt^iu{5$1c2J;OTEQkEP;et zQ``+aK}nxrj5Ec)Y8X=73q&1LpMS9QtH!KYn_VIs^r_hmmyVARd$_h6pfx9zls8bC zUznLZ(UU@H>Q^^rZ!@T1jT1c%U5}Bc>V??hV(<j#TO*<XaK=hne{77hHC3c=F2Te9 za!Mm`tDNXnPBg|{gZM|w(=0GpzVlwuw$NzXnjkWv0(BUO;=gjmjFjB9@;ytzC!>)u zJB8KclO3%r&t6o}a?-7%99aYY6dGraF4wUDCb=eYD<kG1U9h|)seEPsYPe}H7;>ZK z`(xyX;SHLWID4^8L_rKIkY&lnhSQ+cpJlj*3z*Rb40R{8xJ6H=?2AmXhgEjfGxRd? znK!@KoEZLs)j$-~ogGaIQd14*005^SEE1O)vZCLC@t6M(x;{Ub(>E`$(9qopo`-Ct zyhrrdCB&GxdVAx3+PU33KKA>^a|ZivJDiDN)Tuv_{}M<$mwG|QW`+V*ERfGk`}Xk1 zu$<a)0M^}?3b()H+m$ZK<ZlpK+XqD&oYLURn6dkig)sXc)SLt{SHgs9l)P5)DMtQq z@3D|yf9PC!SjG<BG*?(8Se4zT#;W1e3s@8PFnG(!T3SC%sgVX|v%U}hjDx%D&CDUF z92`XGj&n=}KD@V7hl1Gq$do%w3+evxpL^b@qyj^!$HIS{=sh+D_wx&~$9#tsb`7vR z;WXKHJS}z!OQxp&^Pu-%0N({ddRux$cw)h|;_yGqKlzUmzP-JBsrN6YkgSqB(y|`B zZ_LAx=#T=Z)^A2M%^Hk}fsBoTRLyXttU>RQsRD2{zFMOUJuRWHvgm=-^pxQ}mAR~m zDhx$8zu+{PVV+h2CuT5I?`#h63Ayd6S%ao5`hrZgwen?sWkm3)KyZFt=KMte*tD%4 z`q!;LS$K09m_;rBg`od@NgM;2-G?E3h;7wW1^bx>k1Crr|DAMesXF^)F@{9URQRI) zg6|5z^!%(89!?xYyn$xzOcv6eVqIjg9{BuJpPPm))ja&?QuOkyqtdtU*T)w@gl(^A zcF;gB7_#~9$_`GPs2}#>tn3FgKnD|Gt{xQ;z6pr#P)ydKj^p(K(4yPo@(139SVXC9 zPZfiH_kVxl1bgzo6vp(yN(Jo5&FJ8FeEwj5@wIGt7x3-@NR8;bWdgk}&;%nCe$+d9 z=qk<;`%0i3$#si(76ABvNWA?zUc!2-Jp6-QC^eZDnY@&hcYLUh6Noy4#pd;yf`Pl* zfj#RYv=g4-3R%~|8iFZE)$%Mck<+Ba?>OlD_6BG(oClsTIlB?|uN;Hu1L``S*XedY zNML5g3vQrx#$|!y&@*2iW(wQDDod#RFtQ(v>;)tLn(i+|pzZ>|Ct^@qnv;KwLS%&Z z9uOO13_^v9I-Z)o1S6-^z_|e6s9iI`u(g$FlXbId<2-baRt6}%XxGan7Rck{P|A>B zs6C#+KiT0czWps49=A>S`6cPmvS)o7RQ8YBg{FyW$N*8dn`SKGAsh3!#~PwMoJpF6 z%zH6%6>Z(S>9_AK6)0IUV1#N4ybF4A@|46`*@y8=252rD3Xb|?lMXOI=`w=XluOsY zEY*RpL_B_HoZ	++m$5m)XHaN@d7^kmL^ft9hN=!*;y_9|Mju5pm2iY6hgr7=|~< z!Hz|VN@`^={h->_@%kTRxmZN0F!K&MdrStW3CH%G<(jnEi`cdYyJf@+Mc7Ctc}8CS zgEdP@NaRLt0F{W_SX;hwXeYr58IVEM7b9^~MHbRlTW>hyl$h>UVshIYn)m*ahkMb= zg+Gh8tPC$tleG~kcd$LEeVCzh=FLjnG6VaevE>Iek2qf6%Up}4DL@Ds##a8xi7H=9 z03gblo<k@{=^LcrHGegw6#;>r%tR)uu*^wDFr;YTF)&;_<kkQ9aj5nor%9^`3mBIv zO^fZ8NmcUGiRRU%yG&VT_!vu!AMePARhEar7bgfu4+VA9^e_qpFU1Gx$~zt|YCWzz zoky4yH?D|e{Q$qSGBhzD{FF0JoN;+V>4Mj&!`evn@nvJJZ!&Zmrb3{?l=sBHuALsP zwmrcY=h_pLlG!G?k*F`5SnfEydb#KbkBBjYK}2~2Tsz}dhIH+a`XQUM`MN^Bx({8l zZ4$Aq#LW=i%Sqsqq!!2(T7F51NLYUE3%}UN)hpDI!@9Tpxxe+s?Yr0|`#^HX`Lz-< zLi7o5FA)L<+vl}nO61ZN5fus^2?5{l#<ZT?(Vdp0@K(!>`=xc-k2CD04AbzND`n1e z9|q-H6@(xEd6G1PsLX34=)Y=+OZWCUJp61oUE7Z)9jFT`PczCKU1eC4!6~cjgT%il z5=zkyA;q<D$F)h@fcxs3wP`II<6X{w0_&Y`Pxl{akiVFqD%~<HekG6ft0_bBm63kK z+|w1uWc<e9vJIcqBUgrqn!+X)ES~=YY;+7nF1&c@vmCmjLgJUS!&HH(SWz0j%(tJk zRW}dIk=J);a^Pd(WGAZ1bXkq0l)AkSx#Dx+fF)6Im!l*E9M>4xDeu6U%LMgEB&OCE z>fI}mlsB0PW<fP;;}SS4X{&?na77?(J7kKGtjZHI!pznODm||lNu}gYJy;F=@;aUU z^)|3YND&K1m5_CcKS8lhzssArB<lU}UgNQ$Ql|^^15-Ph?*f^p@^*hq3n9*2LQg#N z7lppsN>o4M<#jEjKkYR}d>bQLEe8&wr&HbVm31cq;?gL!=7?b=JiT^v<tXOG&T=sN zVjgRLgI&ujsKLs*&NtHqv6`dJLAFxri=CgqfXwtZkxYHD>9{L-G>Sjb@Ufs3U7}K& zwbyy;2jOeGj?JGn726~#dP{1;0}=;~R2$|mr8wf7KYq^)#)64>;C_%h;*1A$11_kv z&%RJ~NE%PJM<Zmjtk~jqm?h5Ge-hnWGuMLq@mco!R{=H)>EtWeM+YeS^XYXV$h57$ zxtL~W*d#9IrYXNrvXNR<V@m21wY9w274W|;%jMX|X{|l%x5{g8>bMQtOF}YNA2dd; zPannbZnKFNHGEtOtk$7t9UTMW8%g9t0bLj1Dk_8xM%t3il_VS+6SxxHJ6{D!Q@ju< zw@rdk6!0nLe0Nb;MH+ZJ!tbis2AW%@y6>tA<)YGsf<?CnLi`EqG~%Y!=yQf%P2~P! zlnB2RaPJ3*Cg3VIz1G(4;^9uNmpv=nPc=yPQW_0H$rtAH|4NYL&O<eKIX;cZp@MOQ zQBu7A-0VyG{hR$~P^a`3_koYsa@1ZEgz?xxz_%|1{_#=!Bx=|QO+iyCGJo8FUC%=P zUY@aTTwDyuO&=S>35C|KIDsBy!ZO2?;!LsPOj9bf=afxyAgycC{iz2@yP`s#eQy8V zKPcY(_W>L>hUn8FOt(3BuzdHE^q_={J30Q|&q9AZ#mhEdVi0qY^{)oEwTRdG-#g?G zQYp3fd4Sqniv&2jctIIPw0-4#C!40~p5kcLf(iDA&0^CLLGSYfcv8TJzPUk8X717a zBgQA7KOJF&qDgUDEm!z~T6r7R04DMQi(N@Q0_MRH={*s3p(iEKfM;anEOQdogdUCI zFUbvBD__ma*|S#9Y1{A7vMm<+-4xNB21i<=H#-`C{V32CcGR?y|IM!@4pw0y;sfwJ z8jTo#-MpZ_6|b)}`mI^N7afSJXw=W7hs~;{n~JQBOsWiH17{uftS?vEDj^QBNbKv= zdbe8tMgrKJHlE&{ph+Jx<hqy@vFf3qQRH;?lr)R`AfjbVal#j?C%pC~fYN|t=S|E+ zS%u8&fXt<W$!HimIGr!&J@-9sYJuCCX6JUFusql}9XM#Xp#hr0m)qu;RfROyu4wGI zcGBy>**xP&yVq*U=@oA$Gb`U%p-%IM@gZ|fBsgkg1c;+U?Majii<6C$I8TA7?v4eC zUNDdt$QFlHRQ8l#0VyqZu)LJ`gyj2pSQ!@J@hlHs|3004y|{2Bq<mm`$R~2PU~DXD zwzF0Tnr{~@y!%opn6p0Iq{@+E*E4cC<1E&)jU`I}o&Ng5j1uq178+(B?Rf7z`@G;k zHb!hbb};JJ)vI~;xq?(Ji9)v=Bq8FN4hO+1=00A1=he$D-@%7<Rl5O!1tX!_`CQ?K zVkEh_N4~Y*qtN&fpCf=Am<Mx0unt%KmO464>w6|56qUEs;$Zr_xB`%ImUX;yV{M+D z*P<dWrzUQN+Sm$K#Ca@mu)h=aDFn@yLAq^=gUW)Q64`Qq_%J|t!Wd6qG=r@F6eqd} zlpq|?^MaDch@rZ>cjt*2<kfVSl(}+q!qxA5*o(`9BvsB?yt8S<8xE^q{0Y*PM}MAD zbMd0(Z}7>@=Csj+Z_0Rr15q?w7uTOafsHTwL@cIx&j{UlXUBWGy(j$dedCj&Fgc7` zI#q?NpoBqTnm0z;o**|jljcwX9^-S()Mm;WG*(6v)haYTNTm*L8A)BeS|)fxy2owd z7S*9NS*FyBTJ1tcW%q;Mrz?E1gO;VM3?O}HEMT<tk=k^O(t%Pd+t7`9ysXp6CbheC z*awlhxV1&0_oT?w1a-e5%+>$YNHItbm{bk;`(e^t%`FJbTM6q!>@A5uOm$2w6XbKJ z&uM-KU|gDNn?aui?_?oWDc=Yr`h=1_tqzsHzLJ3dCiKk-v7X$@*^3YpO!C-QQmUS? z)O#f<b`D*Nl>DL{nhMrCKHnr~eY$cm9^Tj`c-U03p_vPUrcoA}3Js+&5jasybIr}F zg%9@yl#;o^y<KA0NL%F#^J|lXk>UKIr2K?os5e5WBe~&x$gs@#vQ%XNn`-|r!W+FM zs+==r%b3^s4Ut`Z@zhqTebtA}%Es`m^6?HwvGEtGo|v%&nnMI_IH|`m*u{<Dw>Cab z3lGQD4I6E!_T3RFMs}F5){iGIxLhm?oEv)K7!)rQuCN)T1BRfL;f}GFXVzQHSQb(O zSv!85@lbNHWkHW0vo~jv<o4<sC1_hFfO@KN4Nay0=7J0Pgh9vW4(zX=%vH}8@R6RA zH%j*;x6qPFnk6?oUzv`oHvYbh!Gzz+Q;S_K$B@YBE6WYEeY|*jX!ph36+|h0B|iQq zPs*MAlA(;LwkM?zbTlzjIqh`^4%&sTPmi~n7X-BMzx7JBf7Dl9=H&F87qPM#E@SUX zKCHXsYUy*zbU<!hdafBU*5g(<8aZtSBmI7aosGYWvXVTnLH2MFw3?$97$GCey8~`E zI3gT_iIa<%U=qz?7>-fjth0rYc`-H(PH&2E8liPaUEy@kqlqs$O(qVs{fzBa0USfi z%lB%vo`BNV?^ZfpI&MxkczdTR{r7Xfr9R4J<DApl#@~<a8#h<*8R2!bHPWWzc$3pg z^}?8h=;t{(hbcvi`IyL3r*$*x=+W|5v*ikv^*Jkn^PoaLd27E68jx|cJLnmcOmBO# zPoeKB{7VAiHmct!iQZrPQ8y5Ho<g;EtoWRRe12>oDBiNC(N;i%Hgrp%bmn{gt*0cn zQcwt@_uGT&wet%U?RQV2qwDFz->+{9KDUCW?{Uvuw-{e9P4C%kdt$HI`Km9KPA{>n za1>rQp)JO85RJ&48%u@bf!<Q|v`wlw5IlNuf6GB==i5ARk48*IP2DhZ&4BDb>~*^9 z)k#6bo7qRtU<!J3Rjp?t40Atz2cy8lm5J`a*h+NCMoo(b!UF5xGtez3Dd-%IY&>qR zVbPMra#v~OJK-FnVrel`Dbjo6ch5j6F*{qX#fFaTFKAexgYhJJOE~;%QoOh)DW&D7 z(WjMBYBI;Y*qDZKQy-zvH`f$c1r+rr)2&r|#52pn!anoB(eClIbbFt``=;T$&94?p z@d?UgzWzRu2CJ-g^!6%SNaR?YOi3Af##8ZJ%dg|QSJ|2em%i9wINIZ-z}sN#@ru&Z z5p971d@Di24dcE)<0-p*QXD6emw&%iwZ1kIJlW7=<(%0lxnk?qKx$afpC--)VUGG- zdHpyTbq)h24j(68!$w?NQsp9t1UI?6X6uGWHYR%zvEjoJ!`_rVl~?C{qGwAqC>Iee zX_1?Q>zOfAdOZppOIy>%aJ%rf(9(?1?sWgc^ebQO1IbAE`U^y@CTaEe-J<8R<h#A9 zzrGjHS7YJf*v}@a;<LMwKO5RwM}ZkO-Xdyr&1lf@f(Be_rQ2z1VLcR>e}50FKv8_6 z|KtAsq@JEsC^=r&j<%RN{964(>Ul?YiP!W}C(A9{=9$a6oDc@pg1O~Z`c{PXQ};SI z6^{g3^J-RC(QL)K;>B<E3x^L}h2vwE@hGdU?gTMBrNM1nZ8t}`pio6wo%TTb(-PU` ztvdHLE3Qvo$c1W<uooQAUkS01O<S~OY6?lNMf%6$6S~}(%W8{;wPopGMr>H#JWVj{ zZ7KJ`{T5c@C8cjbLTjFP?I>MG<dn20h*gA_Z^Y)h5Xwr)czfc;k5JNbiI*u))_}bQ z%Tw#A-5f+j7O~=0kvfOaw+;1Dx|`{s`||AiI*uF^ji{pSKlj4gIb5o~ytb=wf#-ng zldZ_~BET^yHI3d(ty@`F_AgVPDY8h*dSelF&PVG^WB{IJs?-@7>9`gh(;(MZ>g-Jh zE0dYJn!`StRF_f;EMrQdVwE$LO6;io>sUwS5R?n?VDKZ?@FS_-)bp^+&{_N0$8oMw z4Oa!C?}PMr;)Q0*mcB-de5_BsI3Y@L2J4A{9&`4kpfW?@rRAQ^gGLfFv;G2$M~!ZG zpps&4hCx+a^j&xzmKSWQKMC%==<*D??^t4EV@Yhub98IO!b`%+0IcU8J6WbN1f}fn zz-zY@>A6hJaS^8P?@TqvNXZf0E#*>XddLuQ%kH_X`<`@RQ<R@7>dQ-F)0nOqb{ID} zNO%-6P}2T;<ku#DjDSPaH{y@X6xT5dA@IZAqmgs3pCV)m1<%cp6>4WOTOFHQ#f1ff z74>rAU%KdPllGzEwdd1LvG$Ut3~?BPkjuC;kXVED+ckp-QQ$M?!JxDARyB3m@}N-k zy{k=?!9(X@&hwo1H6Na1$E5A8oQ90k?QC71_P7xgV8&{Fgfw_bx^+OBV);tL+9EOZ zlM>~qWmHM&{`mvWx$3wOkjr?&R9SLOUlnO=YDuBouYHVBN~R+Q$g$X6Is&CzTkRNR zQr)2aC2Q-`IaPKviakxUc(nd%q4tv=OvrJNYtnpb6DqeFkI7Yp(G^%toHLRBlXi_C z4{nXw%!F$s%lHc{PxlL8;1iwgRbKNfv&)2r+kbze*Myv`O~Sx(^uM&}xm>6l4V82F zwmyCEM^f^tpTUufB?yVINmK~Zp5DB*JiR+>u}6-s8P=*16KhXPNU8UPiA&pjpCEY- zAG{a^{0#1BVrh<;)dQY!9oqOL?)8~dLgQ`2`r1q5ittfB)ZrJ374tLKmai%j4!wwN z9E_YXr}*X`aBH>?xP`5D8K*u&m+(IoUOq-VV_2f5X;dokbalZ7{WVZPad?jo$|s_x z+HlZm7G2}o<+-U|nsTLiGN$-f$P<p__``_q7glt<``F>Gv8DbFU4&seL9J<Jc|hpo zogYt+VkYfJf83is`B)*t$2oKOyz|?v4GgT%uYam;b7h)6D@fD0?_9bnY7I8i+?pUZ zUZTI0N|{4+6s6DHthxK4+)8p-(92;{8J@4&n0jZqkodl5!25YJ!tQ=;Y3x@69GQw9 zw54TGMSaXKWMXJhY$Gb-I=e*R)pb``rl7(#k&ck2Np&zy6$)zRvCmB+%{p1HUF7F7 z^<nEJ&9#{Hs80%IMn;U^C`>>uP7Fk5uB!deb?|OR4oi8j=xi=m66d-zof{wXdynM$ z9`91Lo6q7dZ+f9t9i%*vHkj&`JbYA`WTs9JYWz5}nfY4gxp5?VVcAr~vsS+G_lNb4 zPkb=?)|>zx{x$t@CEfyo$Pa#Q1QoFqdN}wCKNYZN-lgI8jd8jtXH@#C0O5dh47U4I z3QY+!w7&7$(!j3VqE6sqNh`ZpG4Q!n>`c0KV4!FBo1Z6(l5$<`FSxxZ6)I5Q-B$P< zPH|w3o0M7Hy|i9_nq}&va2=0S-_(|Yvt0wnacB7p1RIOF_lD_qm|1<l#{_#A`E+c3 zE3fk}p;o2n7)gQUZY6Hv=N3LbVuVB5&NGb^&lZQAv&Wpz%vbH5|9+&|Iqc&hQfX<1 zwFS9^(o)*;xyMY9D`6k6RmO1sXn9g|`^=$*`B)_i-sWu<GRALtGOw@x>5QlIGPWt5 zTHNxvHDCLFr~p!ZRL5qsWf|@JW6Ub&*|!f5$ImMC(ZIYy#lkS4REcE8aZqVy%X>-V zId7w{hVaJq@pDCpt<ov~<ASVns!pz8($b0e_CE6d)^g=wozLHwF~K_C&mwtq1LJ&X zC6g%uPF?s=$Via=TIBFd(`0ub^t`z?@Z$_j72Ig)xc0SCM_e#k5#N`h*z!RUdqBjg zsXmBpA;#xxcR$}?VH1r)LF7nk*CGy+&R(^QYiVge8!(-Z)IBqxYIoYH?<uQZZFT)T z_GwC2+mqq6r-<@T!?v3dQdWt>Hq9(g5H#(MO4D~R?p;6bJNGCTt}OTU8IhwKpI};P zqt?nrLAT!q-Ja7%t!}&)3^W(y%&mg-DW}iKq-{mONb?5~k@U@3Or*l<#VyQJRs-%g z92^~v+5?uwGmF=dXg4QfbNwCP%{Z_p3dt6xdzBxtXi4835a;y@`s&iGh@W-!<UW%- z=d>|@i6be+`z!m<FNq7ng>P<>6^H97^Fi7j%}#pPLb^*s25ysrtuhCtAj2xbi3DhD z!<wv3?>fE4L<G#hz#vsgQaKX!LK#c&Mj<0N&skO89&;{o&!wgI)K6EnT2YQ$bA2dB zocVTDH|A68D{afdJHT_Uwupr<1WfLFT(3J2l*<!V8mcfreoAj1=%JJ7!*_<jJU2Ji zsxG^4bR!Rf<U!7S#FTOzrj-GuRBdrXNsODtCH-@6@8qm}V)I<S>VGRQ>{f<+(hbkT zbbf1_AA_o;RLwN^u_iCu;E$OBvFLQIfifwDmb;|~Bgj^YKO&vEcNt&I_O%YIv2VUR z<?-ajH6pAMAG;e&jIl|zPto`6<6U_qgtT8qV1JPHX}6yALHH{%Ez6|8xXmz%$621F zm61&VusY9GH{z{C8<Y!bHn7|H<wlw8%Z^tXF;T7*@Tomop)eLY8KamSqiE3wQ}QmM zqqN!HI4{1&qo0JWP}0;%64E;GW@Pn&KEEd%pNnoDu5=hkBh9xCZW(Gw{ah8Qkw=EU zoWGlAMz*afZT+S_X`w&+A#FL?H_-AFr`|Hwe+{06BNU<di)Os9Pj;7Y?$=KGmPfo6 zqk+1A|ETqu{{6?6--LLM(`s>_dDEL))@xqj|6anQ*FMR0yv+MiJ=cP#pkXTB&(Rw# zE6AUV&uF96kuc$qqGeKW2UuIlKy?cA&Z54u^|n2kg=H%D6UcQ^nVJ)iHOnw85=kRH zn(L-Yn`=F=$%Zb)y1zNktDLA0(IL%@8Y~f91>&u!*Hr@z^IQdbu0qdttD}5-J&v{f z5RfF9g)Cz$Rhld?JwLy|o33sA4DaK?<i;4jX34Qzj{17kXlk>=q86=|Gq2r8;tdy{ zVNb55Ppqm52yU1N%BlpW*UlWhdo^<|<i;6Ks#EAdOUqF*Xt|#qA}Rr!QEa$1;j5Fz z_Eo3WnttTWXV3fB8UB><@#T1x_XPN4h%Y!1RYJWuCXh7KZX~L5Z^m)Xub)G>EZng6 zREY-FAZ+}?xgRYO39}PtvFR{q&WaJY(@eTS-lz<@rmId;<9e0TSuaFxvK7K`c{OP! z=u@e-N9_6E9<Yrtvy)C`wW;|A9hvcE$$`yPm*<Dyb08FNE2>^T%PDyJG$s0D*KQo* z=8&beNO(yFsJ&ppRP2jyj}E{i=nHaRCXVttTO<3i!HXldE9QwQz}G<}4F1kh$u*#M z;~QaN^Wi??^1~AEnwT_=t@^Z<UoObXRQZpFu_`4SZ{%@rl*eb=xH%~y`U#EL?iZ^1 z96}d;Lt}iYxwC$j0{ni10wv<>#5Qzb7pd|n*lU$W3K$f9CLkC{R-P?esTe=6_N#)l z{7_D`@v7+(U4mP3P8TdK4cg4k`GlpT;D2$CESH@sOt+%f@RwwtL`By);2++r^-Qwo z>P#Ig@J)9b{rC}A?Sca>65*rd6Ev8o@>^?qeRkH_SQ<THEuQRHWz$eGQg4c0!mUiq zCsl%bI5C4R<X398gow~-P5Sv}y5WWjlw4c2PJftuI0{`HGJc5uU2*-LPcvBU-J-(n z<N!ti`^Mu7BzH>H<FrwPb8yR1BqAr~cJ_CIx|<QX2Q0dlzm#gV+RtS`T2F=<h<<rg z;dC8hpZ%Q`KdG6y^;slbjXLt_#zl+f>au<8)2*7x5%c>zz8vuo2`ZoIN>jyjK7O3f zArvQzE?Q_j(i~ay{FhL~oyla!=JYZiDLXEq`~>@g_`7$1&gPgwLRM@&y7&?A@d}rF zd*f&?j`we^|0Q&&4_#(p(i~xc+~@Uiw{?5^g^oa9Z8qPuB$r$>m;z9}es&-}ej%Q3 zK=-z#)G=?J2K2z`YCAy#`9M#yj-0CRr)QP!Wjdvg%W}PP-cRT`zt(MCYeJMlX$ejm zxjd&&!#nN6h&WG#{l?992-n@%JYT~qPXQ(LnqY`~XvbpK{gJsmJ>_Xufmdfwo>ZsL z3&Z6+-?L6XIi2@hE~tmP4B>S!iJbFTxP_wDc)Tp#vPe;V{&^w8w#mLQ16)`*j5udh z+j=ap@0uv#dCQU+3ZbYtv2yd6OnXbnVUJ~>OXX8^dug<~c`|hJ0G9!clGb(38P#2$ zk|UdX5t?Tlb~$7#m|8DDn!o(M{4|$FeG}XRd3mAjG@RcuhgU{_G$Z?@HN+Do)1|gv zlos)wjVxzuz~08eQe+Pnbv_CQQG1kiLl(ZYb9vXy%Y%&rU>$b35tB2&FE{sS<l!-A zJ1AJoQ`?F=lM_|tepsL#qqD1x(&3q^JDYSsKyuJLJiJ0R_)a~|Taw%1x60&+=};2P zyCG2@$75Yj>k3i`C-}Ah1&^?HO6^vwZ0t4!Yu3#q=>9k*ED&f=HC1vkVV{WEESp^J zybAd6KRh_nz54L-d$OZmh3D7e_hm%B(`;G(Im_*P#p_ETV4fP>F1ew7O!{^|tir>a z7`WIq&e?#R7JA~_b`p*rd+}w`QnKN;IK=Hu-&RN}b3*`S!6o5TTeSTB$N{~LkHRxt z^)T_<ztFI?EfV3n6)^o5x5M{_@neXuV<nbDkAxxXi<!hF8VNzX(UGDQ;ax0B40zc% zcmD02Q;edw^P2vG;Fp_KP0%I}^UzrraF=3=bvF4bRKjkrOdszR$;Zb?Gwp|U^(Hfh z?NW{dOJ;+U>4@Yxux{~jkxE3>h3A_EH^n8wsn$Qivhfm!=56A2$cuZ=UjQ|DpXO_f zZh)e+Fl*7i$BmV8!R|NCN=2C*IMA?s{cAZgxF%pUn6kv;JOAw2Pp8b4;I@c010|&5 z+6#|tk>-UYuz#T8K9rDZ%>AZU5&iD+p>(z>5MYxI0?~aehjK1o3Yk=u%50qApZ;`I zsxdofUOC>#qLE9zc4RX#U<>RpIeD=4#7i&n<K8EMWwcrGhFIeY!E2Zmu(hwwThNXH zTZeweEKWdbTp@EIDNFIOiIJluxo|RUdhRz5C;Zw((6AUuzIjGcX{B&|S7P~f(9WzT zl~Tt#QhcxXo{MUFF6(11c&sdm(x8i8_e5NsU0qB^@9${}rbPGFxUThpyBnkQ2n4;u zc}2j)kg1Eo<qv_+fUK1LT-H{>uczncMnV>mm4Sbcb)Mgh-Bqfgqu;37z}&VBajbMG z+yjJs$<e`mE$(ve2bVS`02YMcU{8rN9ZkRR{?ViM0cldY1GqPGkyCnCa{!+tuyk+r zaCwi$Yyr4&QCe$&Gg1xQIwu&bJ^_~Uw{-7;{T&gshEg_%h+rCKr#ItJK^fv8m!`vd zr`tvk>F649F7NpHjbU)pW}oAAaQ9S#J5SkvWc+fNaqXRcLmUB#Yo@LT=I(6NzS9LU z6^;_v7cf&C0gck2Dl5fgnp8P5Yxe-~+f*9;l20G^=m0K1rH)GDbrdaka*R+r+Z&<8 z?{;s6u}}W472F|~i3eG-k`>&1`KvHdSm5+#zoz^i^mE3xJ7Wc7FQhc#lWH0%PIeVS z5LrDLyPtyxcN$Vw?P}WuBjg%H&Uq6)Vaz2VDGp{4Z+?d9Fck@|!BRrcd9$QZQ$sdA zi13Mc9h^jiRwGX-!+-p^<(;+DEO=xVpCl!J^uVKvimm+z*Ae01{=*RwupcK*JM3&N zvWw#i?{j!r+)vHl4g5PT1qtqMX9G6QQu7$Q?Ix^@4daCM?;IVx7m#?z%(4uyhTu>I zDfRo)7Ly0YPr<p{)YjJg#qO6HYhM<648%bA=Ep|VZaAnu?ot99tps?lumd6odNiHa zRyP)j{vbYuX|Eb@U3G}W(Ah1<b{e7L9#LDY(Q6Y6P#AGscAX|=93s(hslR1%>nYfT zA0rF)y5P>LNz2%p3Fw!6G>*i8`v70MH;?|=@UDFmS`h$NN-%IDI$$(*ryat>u2%20 z3NqrNJXUZk1N$xWPkSiNLPAf<8m-@(2N|CPi=zHg)@OuiM;Q$qmwEvpuiWG|O6Pfd z3f87pqWSwjcQJZ;&!o@<?1y0VXa0FRK&xn{o8+ID2_Cfbv2J%OWasSbWbT&7fdFH6 zC|m59anJETovJ!JjUNAfLlVH&!D!`nzQs8Ci5t+)R9h6-lIH{7cw7=};8_=Ql$dsh zgc^io%Dc`n8}nJgb3Y{k$m`S7H(+F+GGuN-gs8_QtTzbf9&n@Ze2-qf8Q8sQG|Jk$ z9}@dnNV8>J82~<*NkWuJzb^M~tUbt59G3x*pZ;ryVp$p+pj8fby*CXJg#`m+`>LDR zvq%OZF2CkGWqK^%{@3p0L4FQEtK-q5ykhhGtq70Xz3Nvx7;iPC5dZQphIUf?-cQ;< z=&!tAf(~H9v|W2oZ(L|}GANQQtTkG`P!D~{43jr!1Dorqw*}qoFYY}W%-*6eb~JN{ zW)~XlnHEtE7GMM4=U{Yq0BelqQJ~?!>l0drv_)kX9*5%f*B$k1hA-iS&0kwPRqgM8 z?|1Em%c~O|X9YdvS{=)g{pN3+jZXoA@$#-Q$e<uRdCzh1oOJ6?n@3-m!<Vl7UtZWT zLCEx=St8kN9!+0YKGS-RG26l9Tn;Sg%~2!StlKZBd=<mK%8i!i0$&4B#J))l4807E z4$haKI0o%x!@i=$$QQa23rv`erx*pSLt3EyWtZq7JfHtV`3X#nJQqKd(-!rY0`?WX zX1p;hQ+|RJBX3>}H{TO2Pm;%~c}F+Mt&FUIy=O7<bf1oZM(JTbPF53MzW=}z&l`D2 zp*@V6tYD4%B7McDP(S4C?A2YA(u4{WzQqV9@Oi=OxxDM6yjaL<?{cCpXf<e!x8>Ou zsp+DU$?n8joLysKUXr~Klyz4Y<<-AKlJgmIWiO0Ow5QN*;rGv<9=3Ye%6HxzH!SA( zhAC5UYTkV@$5RkI!4yWWNmZ1*#+FdP58W-=tc?>s2RA-chAb6TH(y?2g^-5*=%ES6 zf@%!2L3^}rLt9pHbTnGN5%OAWn)kSpm^QDT-6;>Xv7iTD2nbB9{2MOmPL;fCX_)}e z5g2(+Y_l{^S4{onv@(p`Q|)cp8&r$es2bmTnGn=jEuSp{oRk1xgb{Q6Ygz$DUbIDt zi(+3vMb*8_o26#!cEPo9X`<mBcB%%rkiPNWWErT%v9^a_tn~<>_ilOFFQeY0uQVz* zHL`=MSZ&U;#tQX}ESw-*k4_ckjfl8j-Yhx0vdcXq55W(<{WJSWy_0Wo(<_ZTuT@MP zULGSEXWhnrs+Mvaf<fXdka&1PKvEv+)<{8|I%s>_gt}{)-Sz61L_pco6IK+kzu?iw z69s-D46)vv&*ZUfF%5UX_kqUChL4{5=T(898uyj#VMDX<m&g?eB=$Jesd2n`EkUU5 zE#zc~1<nE5X;2r2ntXouC&c0O^nH6uqzTUWoR`5_hC2({{P9(a`{Ny7%}y1cW=n_w z0p`}>pIMFHQfNGLvQ<NJn!`TGJ>v9qCTKGg@U5V;Scj9-@P^ZBk$-i&jvRq@Vhs2b zYVXTW_(C${m&70`0#FU<X+*--$;M-k?w`NJ#&C{(`vKtRL9jRG|9t*;XrP<UQ7v)a VNjlgn3;_Q@bd0nsE?>X*KLDTh#ODA2 literal 0 HcmV?d00001 diff --git a/codigo/fdr_evolucion.png b/codigo/fdr_evolucion.png new file mode 100644 index 0000000000000000000000000000000000000000..82a5d1209242a9ee65a0b40a781b900212cbd0ea GIT binary patch literal 62372 zcmeFZby!sGzc)IxgrFcWND2swB8-T1C@7#3lG5l%4&5CpB1));fTV&Tt<sI4fYKtM zbazQN?{^74zrEkw`#tA9=Z|x|F0SW#U}mj*-S;;>@tp}&QIb1McAN}_LLF9+msLff z@LQ0dL&Wf#A}zTX_>YL=m0ON#HYScPx9yElinkqYEo~ev&F`=|8{0dW+gJ;n6F7I_ zESs65qpgD|AD`7fFF0poZ_0N>y`dN`LTW3o?SMj&(;z>1s8=y)6l&?Hg6t)A*O-}J zH_spKWqZFnqfRn%-i~0a<6^r_dPMrm<)gH`I)v#&Z?#%<aHoyBx775C-EGd4<#l$g zcD&U|WmL_5=afoEbTscVTlCpWPbCQP?>67fU)sVxKj9~RJ}htpe|~)UQ{wG0v3>`W z^4H}{U&lQ{K6J4E`4>EFF-iIe`4@BTSi%)q_;)7(#f$unnt;gcDExbdJ|+DGdBtaG zJRRf(oWx`;f8LBy@ufpv5$K1Xi@ZRd;{U(I|3~*?gu*oFLrtVZv}=e*5GJ&9Y5ht~ zWN0wPD%yTmXMFmmgrPE1_D&IIEK0amq8^>ogI2Q$+OQHIHyaVQL1UBQ4a_x>8#U;# z1UnNnR+Do=ueG@y?GS=VZa@z!wG^>pYPOR$r{NwFfx`0`tmo<elHc#j$M*DhR?M&s zFRzxLyWOcJJ4L_b^FTJq7>#vCnc}_Hp=vJZXtIc6U^dR&Y5x$)fGx(Wz|Z>F!LqSv z8m>}+?=Sr@uj67TTSr$m^HwBg3|GlNpxY?o%zg{!f|toC+JqJ$DEy+c6;9mbqI)md z`6EUta9$rb>mgn7GA`heETl$^PPuia{`c=;W)!$t>w$D$iBQ5xN=wT?6fV<?z;(Eu zrQj_Cwx^>@rCN^5z`=9=I99x)%ZR=CG&`>xFB5x;F!shrOmZDs;C%;{IT#aO6RFhh zvloIHbHFy-#x|U(i9E+G+<6|`z?-*gFs}8fCK9hE(nljcr4sF+yfW<6#Sw&|3C6^0 zG~=Q$$v&Cm&S>mzJjNszll&8%(}E7Ozqe5sjG;nf$$~N6erH16B-_wS4=`N)=$uaU zQh%@&D}T+|^EETsan<(N245N`A=XIB9_`*ZTk~1NOf6Qml(K}^Yi2=3UFe(|wA!7Z zUnW6CZ#I8VjN1g+F<`wdgMOI@i5LaBeM5(7@8~I>sdvOSWKA`X_l1>quC{lUeMT=~ zTDBs`o70{23((kdx91Kk7ivmz?6YV0@I`;PXDK~VTv=;gox)b|*W5_oHE<;?e80JL zHf<vY*3F1D5UP1WK+n1*qQ&Z>yt37MJ19zX+AhUwzKOr4)F#NS1?_NXy$F+BfEi=P zHoTr%Tgbp9D`s|52-aj|?UvHv=T(@7?68!iZ+fKsK<Big1vX?mZ^%+B<LQhXGtJDz z-=)+uoF25npVz^`Hr3#*X-T~#njwq}bz;Ka5PeU$&fP*JOz&C}H@t~Y?#qf|_UrWX zL1UkXMD^23D;x3i4--~<lN6Gn$tXy&B*r#2q~E)rlkxjq$$O!RQJOV@=KXQk{PO!5 zc>-ziTdX*%X|y+i%Dl&gnjpeB{5ez?3hT?fQtEwmCH{$@fvgV4u4@Cv@Wdi+=elov z2c<{tx>Tjy$Y#IZPQcVgF8(f&xZFriB-!>?bePvY2MLl4cIueDCv{ZxwW*Tx^M2Xd zxHi9=mB(?jTmu&es;8QB6f+}wQQOq=BvaFavw9M9zuJc-O@hqdXTJ6?cfo5S$)_<d z+dOIXXj^v%f0?8hPb!;5jMSCX^|%?yS^RRl=MFXmR|%pj`Fu@-FxuQA2C~%huysEc zRh^78#+qHySbaj|7gFtHR<Nix--=r}Ev<mrl0fx6_s_zs8kOF-S)0r}Nt{(`-fE(I zNHl(_N#;&O-bIu+Dv6p@MbO(Ov)43Jf?}HhZGR6_LAu?fQ&O_|a|;*8UlT)g1LbX$ z$y?CDf?`RU8@IjO(N&>d5x~QKf-5DtDw>VkJ+z<8USiic^RO;%O$R5`xwL6sxu=6G z(8bk1(kn<!o;&=a;(dpv4z3d)=NE%jzQaztVS|#&+>N=2^2v0n)2O7x&4zV!CFHHD z4O|&0c5iZ`<i}qR%*+3#Q&PHF7AucNn*}N4b&Toaq{O~{K=J9~`m=ZSJh_FFO=evD zIv;t4UPw9#8@Z~D+f&&of?G*tOS**Tt+FjtFj>(Sp%$n&ys2*C3{jeK6Q4V}uCy;5 z(#6r^>-s$lUOy|#i3fdCi8m}G&&pzF!(nCky59wC!$$ij*F*0MH;c~6rZu6|13t*e zrn!EYxSBN8{uEnFPEZocVB?dSeMb0qu&I8Up)S@mGrNR_lxagyN(B{4o%$y3MPTm3 zhV)%pS5mn%mCQ<uA8*A@NYt!|X!^{aP;Im{3+fWpteCqSKfICW!_Pt8Cl+s{B$tsl z$}Oy=zJgJEq#nH#jLBxeHl@%1)NvMC@btoVc853yy<G3}$M%H=W{fSC2Iew`qnd4( zJ+jE(uSH63xl46VIrN&bTS*IcTCxT1?9x691DGIkSiRqJMTp&ssgodE2X{R^zE6&m z6R*`Uvw&o^!y(O{EwiH^7x1oER)_Ss{fz5FdEZo<(uX5j75OzHwGAm`6Drdrk123g zWn~Sug?NR>3t!Y_S9<)oQSfX@^w;>0r@c&V_dW5QB<0xWB@P|?%uiSOX{s}J#=&zf zlC?oc7gwRxT(szy-`+2?5}OX^9o^AY|0p-alGws~K&-Vf@^EjGcK^?<v<m00wR22+ z-rgEJKiP0r#0$J3-p!)~rdpxeiG9r-=(gB8QxS4A!(QSXzZ##t$MQ6%p#@0Baj5=| zu4!F8{Ak&+?`{yoogf9SMb_V;8F^w;BDKc{j$?1U3d}gXGpo~FMs^o!rV+c)xnxFc zQ}#HM4?)(28ofI~zw!4JI48W1)Ou_(^4Fr<+GRV2%hJb4aaNKGbPKxJ8xI3}96P(w zZISIX-_yq(AIVRMTA$7#&cNeBW4jozqBN6HRvFxn^g^$vjeD+=^5j6NdR3?Bk(oYT z$lnppl;%^oDfTS-=l3*^Xxtia1=+G-&2|8$Mt8?l)@$cSM^|hmcO_pCMxiD$8)cYn z(=%l;-QMn3Kz54b`**x&toX$&ZMr?T1hJu9-(P)rxA|L8c-o^ta#B_@;10Iom+a;M z&QpGbBvz!obKtmA&-2#D@<*f&83h#u$`k3xmU9AZOnK=OS@(@d(8r?d!n?W2v)qg6 z140%O<%H{`&&oSI+1s0GR!F4|tp^guRH#nZ6i+=~HI~J1^JbTbpl9{K$Ia5Qhv!Kh z(H7g7mVMd3RQua|kD^o|slr9@8QZPyU}@_2M}_fArIWgTJxzJE?e1x_g4<&rE{)5I zYola8;e8uxXqLHyE)1+Q)u$-E-h0g<xI#TNhiUy@ouY3JHpVnqTUO`rDoxSv#jiR` zr%&21jjFTL{@kg|_8XyznI>izs%0kjzB-bV5lX&(b47%TW^yGn)uMvHlXym`=2*>w zB)qq2>yf8TpJuvGk9mK|$_CLh!LlcT%QkWq@#(dN59<^I0|K}CJ!jTD8b2`l^;47f z5>>Jd><~8Ils*0_xAJ51A8eg+R^vYm$KxJSJ(Hbid3}GjHBl}nwxYB&Ml(}K&@;i) z+)*(`q4P_WqkfEB=jW*MjOmXS?P-^BR<$Oq6UW}7c1}*VCX&Q^E-K{2`uzH69K<Y^ z|Er1bLz|!-mp;AecPBd*eHzovk6BMJV-Iw{KG6|I2!QOJH~%$7ct=u9M1+sGI`iv( z^Ehs?=)8cyuUvCAe3O%b-&H#~PoDJ8(k~fWaj#hZ03@S{kgSE*tT|31DJ7*XQI0AI zqbRCnZhm@la+35_6zApZdNerR07~XN@RH@3UrX1Sb!BBoZoH-op&MD+FzYY(3aieM zKa8cA?JiKRvk`<PC3(XoZwzWvEB33w1~y*D+oUM)+4D|TioG`9SN65B(YWdX>B#8l z2b+G$tg=-dwvS^Y8d~~9m1nX`t4iIL?i|O~1TmB@RFT^?+s*v^&?=bAeIru(=FOWu z<J3TM%z0L%<3DBO-G~#9nrus1+FoiVc<(%`Lq<k6(OqCu_S$9WbKs2_Va$o)fXgR( ztX*zoyX~xW(wxsnm{F;^pX7aB{o-TUo%L1)y>wn@xw!+7)56wL5>qm{_Ta{v<C`<I zbA08E-I`)Vf{qJ5HYjtyLQs(RQai__HQP|?T-mZJC6n+GFRxG*iAXV*bJY(IV_V-` zIeY89@1^_17~28qv8LGWff$eFiA%R{pBNn-)pHvS9~l|phd<Gs(>qkzZBx<M@>+)B zg4q$Feop}n4GqQ3Aml(p-lDvSyWig?C@Lya6qWP#mOP`GG0?7MIGR;5hi~+I=!@mA zkN&}oLW@7tlz)FBVg2EzxV1W~UFI$byLNl7r>JzPNeq_%F#L?x;`i%(f)+hKyG!wo zli&UGaGf7-R}*Iy4v~3EvI>|q7!6kWXBbw*8S&RuQ%UtCt#QMF*`Lj`75>b(`<sDr zE&TJ&=4RK4k0o~(a<Zw+rhX_{d{0s+)I0YvC+GC3Qz)a2#Zf(<ot45~>te^rszSTr zsZx_~FHWN}^opK;z}9~MfR#ffD@NBWj@CzAFju`lOnLmmqrL6sy}PhdJ*Re!AQp*N zu&(bprplYEv*eY_lWiLnds|Z83-?($=MDqitz%H8oe=oxi$`!P&q5=t=~+w+(@vL8 z_q)zq$RGtQ{_<>hM0>iHfLRNh_x3QWL%-LW;6@CRyTPx?a%C>$sWLSuGY{7U565}T z4SuL)8Sc=vAu{SMb~;8+-<GLcP&j_xqyf$1wR|&KIljq{faF%O<7uHD+iJVoU?!30 zA`W9Jw{FRI=UZvNH^R#?ZMOb_hAmIjFLCyq*6n|z7=2NEcYV0WZ9EpD^?tL|UW`Mt zL_|uw_p5C0m2|rbDulalo`Rqa!kjfIjbz;(AlcsRtl)xVWRY-RDCytHQW%dFcRN2{ zx<vWw*RL3dCJ{Z?LH`w&i16?)kP?OKLr*?**pG&5*{`%~30VZKOm{leGP?}e7cID# ziEl4dCnY5<jD#uM_d0bRr66X&+>woC<U~{i>Q5I|JLkS%s1Bei5X3Qb{>(L}+1XlC zuG`29FIdVQ5mXpi>zFh-C^>IaPSm#in_6QMp6BeEL*@8bmFj;(STHSwI|(>Vsk^Vu zDOy{fqv5*2#>W@xwY6$Do7ai|?4(0h@e~irz-^RvtTCFt4Gl3l;7@NLzupslrz_Wd zdAc(cj>CSbQHbUc;c?H#pC7QP+K+9aejKBv{UW$}ov-Y3O)%rIdnU*xQB}9=Wv=I| z4s|Y8D<wc0<#e2PTfAEn!d#zk)eXTzyVma`MMOjdx$w5HMa*tUcCL6j>p>7JnLo9C zoa>F~i@}Z2LOI?$?mTDCxNZNg#k%iIXICgiU$h!Ju8T-6cUFFfRErmKhH?w3=Pj!f z5={tneSdrXw|kkB^K|{!ueX;cT9FulMYF8E+E^MFz;&EuQ`L?WFr`eq8vI5p+n}}5 zD$}?lLmPQESpEwF5=vRaeki?AGV0&ouD+FPc9fj%tWitCB?>0tr$r9q9b(Op%jYeA zoU*sKM~m2VzJ2?4-BZ%Kc#@0w@bS-3Mzo6^%^kfv^&Ads>Ddu^Z7vTsiOpxM#lU`7 zqVHoKKI4%4Xxbb%9Fm%mad+xR>hgSl{MRsUHEnI}aj#=^bodJm0?qvPBk~U^7^++< zwt6S1h~aNN9`j{Tv}`{S(W|JaRFbfI{wdMSE<K-~o{;&OZ^Z~XG5q*U7MqYz1X4oX zmP}A|ygHvN{RqCoW;8@%xC<XcMd5l!_7HC&K;6$7-)i)~EpJ9kV~tR+pW(90UVeE( zpJQB4chR~>{?a8p$b}xyrN-9IT$}zl$nhL#8RrTI@S&+*fqOGZd5iOvEmMbaDL!VI zUfYT~Z%jr`f9~$*M@L`0c=7brt8X$?5)UvBAzP5O)r7Jt8yK*la2*+gZOT$7MMR>! zcQ!E|tCq!1)0*?!1b!%GshtZ{63Z=i%@Rmby?y(^yp5|PQ@0jQCPd7nEm`rbUg1-S zBUWf14N(GatG`T(e%COb=HnZ`M}BS~qGJ1`OP?DzQgSzbhx#;p4x}lXN=tvkdp<(X zo-|Z^@ep!6iJ_8r#u}oKQr+Xy?^U`n79HcY`pd2Wsdtknm_i6mBQU(;G<Za2<F3Q! zepX1%MWj5uHy}A?@61AI_$1R%L=zsmYSjK&Y^)+|6skUgZ+vq)yLQ&O?d^4X$O)}+ zLAB%?c<kY$2X&b3yXFVajYUyB_xhK-ca4oPcRn9Noj-pbb?d_&BB*M_1F)P#kF~j0 zl-Jjj5l^F{NTr>fFN(R$iQo2(6LH`|`U}K&twe$6hCQsFpmN~TeFkyY1-shPoz?CP zoje}Vif`Ypi8@UYN~@}>=DLVOT=?uv8`hSUXJiCXNv``&XO*1WyrrQr(&<32?|2l+ z_vrp@E(l%4vL*VX&je(Cb`Va`#XUliwV3AO5fES47%PVuoapShIM;bCQzy^jd*tC% z3GRY!MSgU~TA|_g5IvK)>r**auM2Y@02IVa#%|45>=lle8t^3-tJ=PCdr*BFYDx7g zL0pK(+%q{AWcP>iIt@5rbsFiKt>s=@h2uQz>?v6)PDDBzzZi}s#J&j(ANuxP^?O?z z*1ZwhTH$z{hwIFT+QO9%UA$Wb*34hNeBsXcd9fxEgLPeQm5Y+}5+$KzGJ?tiedBN~ zvk+tx?2!z#f2;0%<4^a9TGQ-<A>5wD$2WfqKLZt-5b`)FIr+T%vRRzhsy3XN97Jb{ z^XwbL3hxYqvf`T#o=}9`p!&IO%@)`dO;ykuK~9OU^*97E3WXeIy!hU_w|F?DXyp0z z!p*7ljX^3O`4pvCVb67bxVGbb-_8SUN=k~Fjt-eD&y<A6>Rmu7dM>?Aw{Y6<3?d>T zmfiWmOU+X8$d6E;>;2vmmouO-$GlEk%He6Dd>wtL*{B9h$7j&+{N(kC-Vz}KVv2#e zlKEtZ@g_yl`H`<-fWWAbG<6*g{%=|q6oC`4$?4hU#Z4Fm1qCE`e&v{kg@sicN9aFn z9>>BK!SNtv?8RxdNGTuh*l!Lp)+MtS0n8Nw0%SOU_t09eOTS&M=e$RMB1F;d&el>} z{BCZa_wSh*%iXPtz3AV=wF0gSM(0Xq&Mz)4DT}WDNLAZtwDGQn()bIiRI}vPS!MCx zgz&r+Xnx-aLvIFOvAIGH_xr|;iZ7r(nWUKys*vXjMAqzf>Ax~rUl`0cIXrkA>i!#_ zy<JifA9E&JGjju8H%01=GN)qgd`kvwZHU#Rc^zgS&ubg#7ldjzdwqM<WKFj-@Ysa4 z8J+V@N38T0iRhJ7d_=_`vYqmCrrQ_t1KN0)n)Z?VknQU_Ngf@Nt`qx;J(Cixnd!|x zYQA0Jd-nw9D}SW^&x5&?xj6tK23P0%o8kE;;Vb|m-iYM)D=igYo$aoLh$fePc|Pse z^UZKAgWG+jKQDSkVX#-jT*PnW+W2gBBlr`x34z?-zI{9HsR-!x)Y-FyMnB%&v<sE+ z+4Y3W(63EjksWEE`7YWL^5#F^L&etz?q}$iymXrGuxk<-U#OMZ#Uyw7EPNud3(Z8R z%7>4z4acBw{@m}IJ<i=$t+hyFlW@Nv<~(CGQ0Z4&X0p4z(eO%;{E_<0@rJ1CcQ+F! zp!#31)x|{#;^=lZSB3%EjzXJh?OdB^y$?<DyyZ`Rr1jh*B7ajd+ZZcW(C3z=S9HFZ zroZkP$7x>PFXKygZHht|K#312nZLo^6PHTHUf~Ld9-o<j7>25CS~lKLSNEtX@8d^m zwdT-eg!gQ(|3+d)*Sg5RE1ELTx>s~_#m0My@oEtI6O_M=U(Mdcl_AVxXh~1u{*5LV zG`|sQxHdH9<HzUp2Cja}k{b`q+mbPN>y7}X&;|@*xHF{%9B6d0o-cIn?)p~$UL3?R zF%?S#oa(d}D-w<^qAd^}e;TDsS+`m(yOdNs?HSF5sr2ltXWE|7^O-;ix9ll=mJ;Va zRcK-LKP3R|A|3N<0><BtvA9p1=*ZHqhfJ1NR2<#go!{fHc@JoZ?(8iDcmLk-L?Oh% zpPc?9^4oKIb#uKX)3IBMLcOx%O|id9-2|XdNX~5_Mb~rmjNxETvm|zL<m*gV-gF_h z&wZLV-@5l(EvpZl9S#9p(3MDxpiz77ZS{}CixUAWmjag6^O((}V3mw9jrV#fi0c^m z?HVcJagncd0Y6<cb7(BuW~|R+p2(=L)Xj5qG9^Q|AViMEjWeH|1FCfRD^w;~u7InK zJ3jUA=}@1>vFhkyZ?99ws%D)#-DXOi$1yH<cQkrsfpActi+BRN3&jL=tK3th)6hr4 zx*+<TelfpwPoZcwf)|dYo(*LddkIH~&u`Ur;U%A8Q<6g1n_6q2Ss58;;hgc9GMTb( zePBQC-YhmRUhFcjgn$U7okvAQq3)WR<~WQi0fKPu=|TAW<=01GmrQ_K^*FXEI>i~n zjeX$x@d_8eoiXpupS2rzoz5&ke$b+hr%=Ym#+JRs;Q;vqV7mn%Qc(5|4!@vl+hzBE zG$v=fXgTn){u}{&C+5r<a^Fw)Nd#b>T#B#M#|3~_2!y`;;6SI5&};;y*{D5D16U)Z z)ADo|FC}+dnnpTT@UN#`4)!Izg!ezuuuMCbM2R}_@RhIM(Zg!viniuTfYlyGAQAL{ z@$UXz=fv^bnZ}jAc&(k;zzqxf+{t}A4LpM9;US<ay*kQqHD=ih!6~y7JWSVGloIwy zmY$BzHFtOS8`%s()=bc%s6r)H(eUmwsOgT(#KOYDzQ<PBU<QGQ(5hcR*Kio9#Cv&8 z|Jz|;T0M3gav^ttZ37tno^PcK5oxP;=1PV4PF-`e>FBrcAT;LQ_wTBzYHAEnCy;^; ze2xRS1duR<l51ug^bTxi<RSeG$QM11H@kF^Y&_P*plp7)XgqEhDMU7<zlr5Sm_+6x z>-j2T;<rb*5y%hdF2`lwpwwVqp;lR0IVCsu!sad|i+EiCt9KnjM%a!Zqy_p;j>nqy zIoP=J#qjI}P#x4XHLpUCIPU2KNxONI>Q90Gzlq~@ig2Ai9SEs-9^fgI4h2O;<FC(8 zHpGa8&3nyzP#nK-D73bEdt+%@-BY<nrylb6^y$-|bgnBYQBp~5118&<F_jtyNN5U2 ziHH~wVB>{Yz`)Hw$luI=fD$df)F4os*Y@KgwuS;}y0E<)3)NI^gZ}i9z*qp|5Z=Fp zF!7cG8^iLIOq-i}dO>+Ffe@b(2axb7mn<OXUp;d*Oj$B@=_g!$qQAoDaucgEk<Kfv z>jq)6-Zrt;FL`xqfWGOvAGfE_ryp+>w0qfKQ5L?pqs3x4KRZg*&(J?J%z)L@#svs% zNvE7z`D1kp>p9Yf(8UGFPKYADws4H*pzYr#`lL_x9cuQ_z6DO{;>b|)GByD50g)H# z<@zW3kDoYNOo<2ql=LC_w(kgMLGAiqaniRz{}WCMx)i8jVJBoB@<W~ii)$Oe0l&Q7 zsQLi7R>He?r?Ng6x=)@2`hxDnA&vCdcf|)GZ-UjEj5>6<l;axUoZNOd#_?{IIP(G( z1?{3>pNeuR#Y8^+E%UlXL5RuRx&rXa8!67uQ!AZ@p&mUE2JV6BS;dcMW@ZYTPq4F_ zzI<gR_98y^5~7U!#~P{Kf4-5TL7f763R2Bxfq-F={Yjv(?4XtbomAD)dE7icoE&X^ z2O+A=qA%WFkGMMS(kR$z`-N7kB}JKa4(LRoR6Gy@METp>-H8H$BRo9ZsZS0-F{)X7 zi2_Obx~C^R*Gl?N9wWnh7E3o@wq^j;t8m~R`KeQ<2JTZy4gi=L3=x|%f)^s$4QSd9 z?(j4^x_+WH5$Q>&Cv?1b05%}_#-t&#us;CAfK3a{!6T+BzLNK?e!lnX>FME$<@i?@ zweQq-!F%ue`%b>)uPOlEZd0i#fLy4iN|QmHK&l)DTf^@%r`P8;&J4#~4T#-s@@>Qv z(*er_j(7yunT4bzK=?(Uy)`f)Z&i3pAk=+xc@p?J3VC0ZKe;yYTOg%tbG<7~JJ8pR z7Y06UF9b*>rKL?3j<b5N-~RsnJ0i<etbgHyuGwx^YuS~H<o@FB)_jgh<MAGAA*AG? z5FruRI0CR>eGB7Kdr>zNuVO&R@Lr1Ue-Ez&p`|gipzj;&?g9yr<SztN;*~&C@e1e5 zw_JfpXhYaRWxQrde^pji>5L#R)8p2r1UkxqpL^+sH}lLLda|h=US^U^W@azib8{>o zk4sjXO@e0gpnjBHOf34|J$w|>B9XA{o=v_UaSoVBRueAyMijm*Pd%XGxA22P>gs5H zgn;??q=^r@`IaZnoOuF$1NHRTGrY>jv}cfRkAmvV0(^s;kB`dt`njS94GlL?pez0= za^MDSE?po1cwBr_tl03{RuRyyjg@SlMrEJPHqqL%hUGC(gir{a1?1$}v*iN>3DA{> zqc=pD<J1pQUl7F1=3PN_+5@F6#KTKln}OAH0S^vdfBC~JexKGW^st8%<&bFh5VcHe zI!BL+I6TleK&K!#zVdW1L^>%B$G8?+0!&fyc+QEu@e$_|QsVoy%wgf-v=Xb30YiQy zERS$!alCCQ%HwciQgb5Nos4C=o3cxX0;+QX{`EzpS=~mCN^VYY7<kMILVHJ$Af$dM zE)H6U1-Z~-#fQaF6<_B^$(oO^U%#%PtQ<Ni_&<;=S+za{fB8SlI~$stxdCk8ctKrJ zE!*h>>OTlw6x&m1X9?*9t%KR6;beqf6$sOfR6gr6!1+H9RtEsiehUf$H<OrzL@e}c zHr1Q+zjC-CL5DzTtJbLpm{bSK5J18hpWO}QrxetanZ7baUK^pHB`a8_NV<sV`}<Pq z$?Gp$N?dG+DbSU`0u=#;MmzR_bOl?@3bBGnFGWBTrzOrogt;w^+5P@P5A;$7&RxsU z%PAK7{Q2`+g|;UEk#Rxgsy|mk5#L-389^FQ4L$VHX|-g2pWSWI@bQO8%p&SN5Ck%E zazwoG?7{SJ^{t&cb0!gJ;P!HgRAzypIAj3=olOvCz#<+Amkiq8-VO_q0G$&_Lw?5z z70?@N0Pfb)D2rc$hK!Kr(FjB00jOh-`i!(4Xx<`vrG<BW`sM!#>lFWAkWOo#T{Q!P zoY2&r=aDXL#*LD3n1AWD;Pc7Kejc=#JE8uo4I~Xj3uaPEw-tV}KO$Cb&O!SR(X@5s zpd~Wr-k&0~6V4=<J$ukr>1PL2LYxtyvj-3m0v*dd*0_MwlhSZKjfkj4#FN!7oL`;l zRY6_V3V^r`(L#L57%0T8Bg|AZv!OoQ93Y;Yt3kuACWcCF&Ez24hU_#bn!rc82a5hW zE_HK$$`UK;dJbJ5uq4eAYkGRwv`3${MY|`&UJ*MQ_n+~6E;rGpKRH+Y2)gD}p`en- z>de=Y`SR-!cy7bNLWqpBF_9R0+^etKx`cO5q@8eL)7k16!0GN*7Bf411W!Y8`!c=K zLFxs%0b)}yi#h)&DRY{&m=0nPK=9FjPSJfdmoMZp*W*53WIy_CLdg@FUs7)FF$hQC zSDzCu-AC8}+%vdo{uM535M<Q^<#<WNRal9008bI5x8cHCx!~i7@`;CZ$e&=Elx6!Y ze&wF*F5rXfjqI%Thf0F<xEDjh;)?Qx3ghtadgYRWR6)sH@sqVak5B+H3()eY$@~k4 zL&VUaN8Kl(8f%qfC1US>8VWcaK{?=8LB}d{A3p`mi)uw$><Lec>3dL~ew0W!odvZ; z8^ptCAsZ90+z?WS*c-gM`S0z9uL9|+Yib$;G8a<*x2qz`Kd8y?E!ugy@~!IEe-9&F zH4>bm<y#f~&7c7x$;xpxC?P57!H*y62xSezAQlw}^8()6u8WI{s9V5S;=MOdgSv!> z=pZN|CQf93H)PwV&hphf_x`13?^OXrBsMYOqBr!!$OKSI%oT#^7Av*4(F_<YAXIYm zQIvq`A_(O%3l8uEEL7qPsO<7h9u&e`fY~7yR$3a*x#9_S1T^>W?Yf++*tVYogaQ<g zmX;P%Ap|WW??<lfsjFi5@pENL*9yeRTq3^w@ytXWag7r;t5*ME&rCY$qqy_TEm7y0 zLzU1pfUmm6qRK!E|M>AEaylpm1_o5dtq=F$feCB@n6yGBn)#N4_*d7^K*$DlDOSv- zhAANeNENab&}TvL1hF$sU>@q6Y;D#}P0bo$U!R>i_36Db;Ndo%yyCk*AjBP55PhZ! zJw1I6Na2XM(J0h^gYAeB*nJcX=Q)$txF7)HYzyC-vgMtYuKkM6Avi^JS$aXehtC@b zhGKaUAEe1<p4CWp1c<clNf<^|4<#VmM*Qfu=}u74c?)`~7;Q=~fmkv8N=BH8OF$qD zxc>#=S{g6w4xL><M7A5F5v*%HU>3T8KLjm~SZcF1v=EB?@T(N4n8)AnGVxpzyNB=C zre~SSYq|dZp<tfs|B!edAq@ozW0xoX1B@jKIPp_RhX&Q?tbTEBALH=V5T>tyBR~U7 z0#pg^Et`%;7Q!ZxxCXe3#9?mk3y8z3p)8F^JqIPYuD%}InWc|J9!OHP5;nd-LG1uR zEG)Mvw-wmzbdCTu9AE9W83+0C?%liZ&05(3Mock<J$rTuK%h1lJb*%&J9J>rU3%>D z-u_W&kMC?ji)aELwgK(}t{yn#cHl0kf%ORY18J#TMni)(T`OA?)IpI({~rXir-}m? zC`^KGgDZSi`{RSYG7kZxO4MBWmbEBUnxrKqaL6USHlN1EHU<mzA!PQ}yd4-jP@+Sh z@Rdh`lL}a*2&Cg_rmz<;J_A~f0%QgUsptI57%;3!Q;dQzlL<il8&T)|!O!YUow_)( zR<S1m4{Z!H0Z1taZH&klbc9gIGK|C64a7uR7_8m9gP^|nz3p*C7uIuZy#lsVMIVO6 zXWK5$b%+%91QE;lDz+CD#xDSp1C$GQMij&z`+8o`RRloO153UR94Y;KpV&b2;(#9h zS|;G5?cinWik;P~6*iE8g8mx5&d1t*8kStwuZiUI<&Z6pV9o20bpALTK*ee;wJ{PV z8fw**JNaPnjOK6kgtu;a|Hk#K<uyFTtK9j;4F)tur+sdH+ARCxnHU<;@9p846KWcy z?ZlIx;;sFo>S#swE!^61tSH{z`5Mdoj&s>wzL+u10ZreWCebIx^)K5+E}58^#2Wq* zx^n8+wVy?t7@fse>z?Jq<^7y*GBR$&2NO&d3x{R}<{XPq$5$C$n=Tgi#dnO!$n!|w zTl2-3VECzTc{gA}@j@>p;d{*}FM_ym?UuhPt=YKwR~#T2)%ox4Z_-|=9b6_UQ=9Vb zTNvqp|MzuI7&ZzrHx5$B-Z+k?vNZdp9f)W&*BDcUp=SRUA-`oA<X3099+S5k&ntEk zENKz_cFQF8rUVo-32xST;Pdn|c*i476-NfMQ8PIea-dO<9#xw&BYL!C^=yAde5zW? zcR*thGg17v@!j0qW)KLQT}Jn)N8Y|&Lkn-=+nH>Bo4(RW#249Do~3qwhsJo!6``@G z&Wab)H+?j&hjN9`KBy}XAZ)TfIW)#g#e)ikw@}9sx&U(xUj$R2*)H@rG=Et^V0l?8 zNf(@e-GQTvxbz@aQB`*3;b00O!KS}_<zZhS4flDwq0fKpT-%afQW32Tq;^C9PjjEY z3qJb=sO}be<7Kn?-9vF|ioRJkomb)FIsVnW5(KG=|Dw`Pmkj~5CCY`G)P^vF3A<3( z`6Da8DH3xZNC!Wl7Wb7Y+QU5^Iwp;;5RIyE`TKPd=#<MV67I`JFxWuBcrob86S@yZ zpYRcD11e6Gn2UAUlHUIghjwok0YvG(JaM#hoEY)=zk?WqlrEr0tX|td0!5J4g@VzS z@qg#Vj)i$!gV#e3oSH@EA;lmJi*OzzvxBh#ez5)!#Tj}7nKX=;AkH3gAmBFxGT@tA z1BoH!;j8FF8UfD42owSh5<K1lg>giV`|_C9vad7>_S+t+^v8d(XgCX`3q{+Mi)_9E zFCoW$#R73Ai0JhyL5MW#&gTVbeEe;M!5wHTt=JuJDX=JSgHnpfd(WR!gZ|_;@j75% zmA+`x*8l+FYkfU|QR6E?L<r{O=5B-XY|<R3SYX|Id?!wFdqD>3$i(-z<j5WX&K91N z*aP7U3qt5!6BB!&1Dz#fi?ap&O;CwUftgn$4G?i|fqp8j7Xhva1+2uTv*Qi+9uk?L zHmYlA*dhE70LSj`T7?6&B?s6=fJ*P)y)#?(pgH<XO-+$JKvX2=5?<GdmrXuF1Y!lX zJDV!}54zO~nBS<a8R&@*cl=-B&Yh$!{|n+AN<8uJX|rh}!7}*NKY>64AQ}UXZVLMh z;&NUSh83n;V%?OZ&Yu)@4*vM@Ji<j`qNsQR3$sVuJ3S$Qh;2TAooMD?Tv!+h?>`Sg zVqLyrg71d{tN9MZN3gpMu+=FT1wovsPe96AMxwW#hlM2?c3<5cwuU_qtFe@y6)Ebq zzW2!}(NLGB1&`}SB%(l^h9-;jhsG03lwna(U%?<a9y1&$DTL$oS+8a-++M5?^{|F< zqEcWJU~=AP-I<U>OhrtiGAI?i;E-t_OJIJJ8b0KjAI$RaB<AA`KKsKwwLcbZGZ1A2 zp#6ETO-C5gsswdxx(s7IQuhp25l~fi83CS%OQbP+9E>DH6hfve;9;);?*^3>aJD#* z6vSZ#XU%!G3rX=?W$sQrOAqVPI89@n=xWfCyX)AhL4E+(*$xdG<MGW%gh6MjtE)2t zk9B0^hd!M+2giL-^mCy9!%mB4<bjVdS2%2O{Xk@1LsV!GnIr9nYX(=`A<&0sa+;Ih zzkdo7dW*61o&kW+K-flnGy7L+zRq;LvaZAeHHdEY@~rk{7^Y)@1`6{7LIC`%zq@fO z$ASIrg`n;lMw^i;ay~G~!NY*rn%Xb)hBu(7fn})YwbJesqHyin9Z0-}IEiRL0f=>q zjD(psaWYXNgH)jBRQ(Z`ofsDpiwaf*6C^B1(EuEWUrEkaT6r+#0jj<D-u9CEys)-u z9|ErtLS8iS<_V$#mtm37DDmH)X%KY|z=?tP#%NfRIY?kIGX|;a3f5rJ=u2H#w8_u+ zw~-Pw@4Z$6x-$sIS7F5vG{%UR;=MH+?A?#3C23!qL9{YDzJ+r!e+8mLH<)ZmO;~7_ zqPN!{Yy8)&S-Y&B{#yOP0OjOfn2##MA<Tz@h<+c_{RVHG$=o+X5c@{m5BUt0UE!<P zLmI1�OTb+Mj6O*OcWI5mWS!n`?AiBc54q-<$n(Igid$<%RRXTS(OQa+dxhRxNa< zbd)O$bwvu<7~H@@)F*xwW8s2fg|>;#Y*vt7gRGw%e%8AOE_pS`FZEzJGUj3Gn|*d2 zSX>A2P~Mwu@gMJgeO@@03)-InGKgnz21+-d)$pu1NZtH6-Y{-u6PQRslv7Z!?Dlrn z)KpZYfg(&DE~DXA8iB~XR=56I<<yDsz*@NRPY_h6JF^l05_~)+Ut}l%ior)<1uPyj znDVu<`7e%r2-<_;r3+aiFmwG#-U}vsSpJWCy8n`*i&mN(5JLzY4G3K5g9<RNDj6Rd zZCxCQhzigv!BsjQ+b`IuS52#>cL_405aw*ACB`3+((u<91>J^PF!L*i1Q`T~0!DHa zOF^$^i+AP9m67pr*0oK;-NguGrZ5{UP8ha4x#>D<u?5q7-?S<=H4wZEwJLF(LCpCq z3_%#f#gG?6-=qQt3;LuQVw}Q!6vAXdutnyVf?$deio;cx^V^W&$Osqo<J*t}NNomz z363nF3s2{Zndw6AGGWpvqOtv3$@)DEFM&T$2Nr+*(3dALt4Gc#WSx|d;0xv^)abDZ zTvvfj^Hh8KuL2uZ<YB-@eFK~(h*c^M@eUNixUPh*Z0#T@9`TfrYIp4#;sU=8V5ve^ zZ>~%uN;-6BM2&r<ZZEa7tOkXB62cIqvt-=@>y;*{BZm-<v(zF(h4<cNzE89kieosC z(C46pdRapCN9q9LAj3Q<GB35o1QS)ja7YkZ4S?=0lE<JXY>)E!;IW}87Jt{WE`dX} z^u%!c9w>dbFuD2rD|b9HHE`4yFk=8z#@{ef<^SdlJA!xsIeg;?6|X{yEyU`=)()@E zSC|?aOCigJj1!Y>mC7IN*J4?lmU+z<K35zekb3=0muH!aT8gvk|6B7?!QRaX0)s^4 z;^jU3C^wG@hq(8k@FQyEqulf#l!M6V9tvtRWNKoc9m2<9CNkX2Cl5wsfczl@YI`xF z;w~^QJ%>g?5HM0&9pJ&$LctIFlX?GEukNnvKLZpTW@9fVt;PVY`egLJZ`k|y6GPjD zflDyw+B$&+=lx=d%Y4YL7hDsWJ;OAA(y0efR10bE`CTN=(z`>)!1MPN2o0_A-=O_D zfNizZh0Dg=t|COPG3+f5_H&z@aL;#vr&vJfCt#<AV#~#Z=cF?C5}WNp1=YQfMhyT% zeDx=`wHBG9gX8Z^T0`b-Ax-2@9fQ#Zsjhg>4Dgf|VXjCO*zT!gcVJw~b0ys{)8WRy zEMU}&moKSdwDrLMMIrP9nL9{uJ0B{wD{ND~!3E|^<*4Xpvk|CK;wwMYZs9h7t12R_ z?3-QVmIr7}?=mt#b$j6hgTl436)<Q8j`QMR04x5pmm%P>%p^Hn`?u{`YI~5XmGy=s zqysA7re7)BpbSy|KwB0BR~xsyMF)qVEFat)k_ht}{}1=(I7a(!tAd*_nhDGvDLIJC z<6GD0U*^6t1mtN{tbc<N43qc}k6FmaNSJm2g6%nrGklUC!6Y`1Oen+X4CHw=yczMo zltfbyT>!?*uiCJ0e^vIr3=$C3DP#l&@yk)$vo=0h@Y)dW1}dN}XsH)By`DU(OHEl- zdhq!Bf443F9irO*Sb<0c=hgqQDICJ=KN{p^#DFrKo*W&V53yOr1Y^=O@~We~64YMs z{Q0;uCEbtn&amP8jaa9q$?ZViK6@msj3S^am*$jo0sl(E^*56q*JMYQsnv<P?2aYq zs$9E91~WaX1J547F!e;s2^dn;afivj=WMTa$S<A22;aY`YJTZJ+JLFT_g}{sH$2G{ zDck<}<b?O+@Z(4FONSmDi;lgDS4`wqX5hX$6ZO;qRL>x&@mwQ%&(XyomOVf82}-(l z*U=wUz^2%Tj4sWN&I%u>>Y63^nfSQ^2VQj~PfOF^r*U#-xBTQ*ck|$dbU%2Q{&`X- z7xrU+HTw5Yo!K3k{$P}6$qNxOt#c+~UJ1@rxgT>m_Ah(ki(1%#3qkbk@+BDP5Ba0| z%d5?76lyCQwp9%}Gh|i`9@)Q*;(|{41rwL47Rzxe_3Wxar)U#KnLESg`yWV;`8H=! zvp^xID_nZ6T_X0f)@8(5_+)WW^><-=)!?zeOQi^~E1{@)=U;vL?{T0%y6UwLYM%r( zVSl3Sz0uDhrxKN&Un2j!<Z-U8FIkJyYmGl2Xkj{gBwweh>GlB@d#_SAlxk3g%*6e@ zf^=cBzl?@i%HRJtdZ$SqaIGa||FiN#Mz7z08FqecoDeH>0M77V+d49v(I&)RI{3xC z+fQn(e&Efr{j+c!EoI8V%-wq<C-MOB8}{GLdDL?0N5K8p^5g-+0sFqmeWL2y;^*k6 z?m1KL@4l>A7MbI^8BuZ6!>4Ej4#DU1(>34ZUF<n4Lzq^us7aOUuzw<-&m4Q?Z60kN z9Hg>7A=)xTvA+PjkDt<Xe9Zfz4;_YBKG?jWV-%WKE3EVBLTu65-TpVJ0<Z@cIgMVv z^5+jvzs$mLfzm!8rB0Df7@9DAb-I_hiY~hYaWRqa40t9?WKm#yL5)cCBh72}=&%V3 zMAZ45>P#-@kVP=tq1kr;XsJ^wBaSA>z#;#@pZ&YAv>Y;$#vC#^ex{n?j;lQXx>crA zLUbmHsAVE!>V-};HRHj(1YOAGPFa3<S*O_t!xjgDVMq4RB9ow(0#EeF<6M7Ni<ckN z@Vbufpa0OYLmP>PLUJBgPBDq3$bmccct1{KUU@K-7`+pfF5!5lNc8vg1JxX~5(oz2 zG&(aW&A9iEEKrTj(UF$Yawy_My7{1O$+7rY**_=Esq{&Qc4EwI@Lf@0%e4LNAB3~$ zgB?%P_p=V63rUn{X`hx(Cq<SMU5OsPSmS9C<d*k#9GMw0EH^rJWT#jg-!YSpvOOLm zqS)M;<YL}3Cxm~JF=16>ch%7#m_gAHj*-O^RjP^1stm6j=9Qp_eK%)t(i}7kVVN)* ziBYho2hlnJ-*MZUq=%Gq_oXf(zMUkj{xs2<&%o|i(V_I<TXWMOq+876AdD6sNk(3J z5C*Gk-;-IHi9!e`00vyX2w2;K(;Fw9i@BPTriX46pKD6QeHSJnBY!hmhfJ7pp0rV( z*bri+#Cva7?asrKRwsXWUt{z<htG8!%Y`~E{SY(8fSWC_V7;5^Md3<e1hcNrfI1p4 zz6J%eHD)~G=j1Elu&gHne>6sgVM~d{LoZ~@B>~xewQQ4kJ-%ki`yf>6j_jPuZn=X5 zi`Lt$Cj{^OIVd~2N;32GGxH>TQ!B-4ADSZ1xI<)-S=Gu^uzsb}FRLg}#pS5zy@T_` z&vQ?R=IFiZk&qV@oA}N@F)$;q-q)B{{4lb6c$ajixvETh0{OotzDoHUwWp6*j|Hoz zxv(!6>zi@gjPI9#z_7jR7J~~NmZPx?M>$yzPI$4?deE#U`cPQUxgSKcOn-kHAk&(i zsknWW$IqzoD$ip}r8ntFb*4^9kT{+Yo#@YTWY+H@OsF0?i0BO*(Ztw<GUbCj%3S30 zrTfX_`w*f^xR?xzLe@k0m3+*0-d0>RNTm^Y1=k^p1OIu-w5G;9GC9SSU++k}Fb6?D zlC9xn9T$6uSHYs+mPsET81i%jrxhEW>R+u}7F;mZ-1PcScZ00XMD=>|GRY<80Mgqh znDE-^7yi+vXKX^#lSxDeQzC>9R(2ZYnpR)csOFc?=@wEW_)pE_Wa$_ZdU`i>SEBV^ zo{liEwS(H_`T&0&!zpJoj~g?dab$e`x5j)T_FC5`wsCrI6=FQIed0+iq`*Oi43y!& zMJlZ-Ks+JMf8)81Fw;H>=A^{)5kY-T=28-rp@MQqE+=sKgx$dj-Ir1!mR5C&u?W!+ z-aet5PNEZYc|S!dy?uyK3hlIJxN1^Xjw2bmewuh)2X6Jy02O#^h0#_)qGCtW{<VDr zR9AUg`le95XN8VFglAztI4eT@_H^4q@n<Bj68&W)T0)Zcw=m!pnd1d%q5IOOZah!X zbkzKl?T8ybbmY)FO8%ljg4;(cwqrHJX<5?g|0)p+ot8;MA?gXy#<U?iyi6_P*GCm* z4i50o3KX)ErsQ5ta#c;yQNm6iGz>~V6<XBScD!N+y1_@w(j~N=F;}(VX0n`=tz@|+ zT+-b6{v5~hAMna)4XV)O{<GnR`hH6G+*(r4e^NWL9U~oKS!*50p!}!s$y|{3NITO) zD&@l|%?)u@dr<pi*mV4q0>z&W(1jSCqW(IaQT3YoF97&_;s_b4vA@bLmqhe+N(9$G zhcQFK_DjF)*|mG=)w@Q$EM|#Zl(m2VSW%2WD`?I3JKdHrWYUkgS9aoW8D9w4an1Z9 zJFI?Z*oxot230OuOUOZ#lK2QqKR?+O6SJTpd{0oKB@b%+zujh{g^sBk)>(9v*>d$i zMS}N}gDK6@_wJ3^L$NJOB+wKbPG^Y(XCd85o++*B#B)qzN0lAS^i639tKV~`I5^{V ztEZg9qFp+z4ZKVVP<a1_k;dSW(>1-8>9!CtOugT9PyPi6f%p3#%AcQ`==BOTIFXo) zKWleJSnQt_9164S`N271qU$fC>n3)9kziqwcZbdMJ04?og{7yZ#r*#+_&sNlc%J5< zydzaEPm9vq{rDo0dU-dZU_(eXwT$NWWx1!W2g&&Q+pXt%20`X=!Wuc@1xRl@xPC^) zTQZr)VnwU>Ntxf2!?XeMehIkckH3DHvnY%oc968Zn(tlgA?EA*X>#?Vib8n(m5*Yn z3|fPSuoQ**P(IrU{|-N57PsnA^3L22j?5FElXZRShMbDt&|0?uIyg9?L>?bfltSDK z9kHWa-n1cIXKc|cw!#nhA1r8F<1LD_L=Dq;Eal#7euL0AuV^OIkfZqgjz^`pYEbb@ z+4zy+jt4a5&mK$NO^kkr()rwUX+Ih6sE_hNJcV8B_Mo%xW*mI5CQWjAaQNkW5Y7$& z?&mrrx)+l!cBB1N(8{qa6DEw;?i{2ihoK^oXsSl0T=Xzk752@mf1n&Shfe~&?_Ha& zRuUQ}YXT_BXZM2utwF?rC;GKpbo1658}^`O>CWIr9%;mZM}jA4`_na)>T?UC36sLW z7Bv9cTxNfx`=*8yxtwYyDt2Pimd$M1GU@sHQBH&X-hfFX)5Lq)6GJ;;drP8)^5Ae2 z)28S`l9HAuu#Ig5neWDAi-9h%v%`zq)e}OA&8YSLC|PpI5CD3x(;PmEzN;*~@^3|W zTH>%Ce@-dxWt=aptu8g0XQcMl6K=xW!|XGQ&nI-Zw`=o|xzvLk!z>2ua1!LFJw8le z{rbHOCC6<3gOH=*CLFXaJWNWj=_rv-f!6Tf=G2xceDl1DQbc+wgJ5=rDN{6^r0W1v z-%+Ps4Ga3T$&(nW&8Rei-c><|UccEG=%|5|p*!kFDW5(*q33o%n%k2$L?x0l6u{y^ z2}N&IT~ZB-w!Jb-=6Hv|F^OdJr-m@JPZ*p1^VEy}1W9O@Ub+y%z9D)_-FvrTP)Pmn z_Ho`wt8cU9W%9F4iZ7ni?1RbhzgrT2IBaT>I&1j~>-D=HSJ;k;blUMUkuqL-b&$SS zC99H(pC8iFWb)#VDbx_g|K!fo0!R8cK6&0J6^4Dt<7sK^t-?$DCn3*fd@*JF604U& zBKnN{E@VDuD*miIS&JQiO%fU_d9fx#u*TCQXyeNDW(9cka!$W%Jo@KUB~Cx!fpOql zjMsXOwDU5>Vcion?l}`HUsoPDra=^x)A5o4TUtqmZD8!^@+nyU3~x<xBTBzUik5lI z9d6`bp<Q$60gOI}!5qY=tJXQZ>AUF#o1xxZ#{lvWsBb(*$*&|0Weax^FjETF@-RW< zvgg@;{)*ts3_MEI-p3B_A607bQTAtimy9)zqEh=b*Xu2Ku@RN7y0k&L_c=SezUjgz z|5S)Xl`ejtxbPX>MhxyPgIQ*;$`%^i@b6IJ#*6<BDzv{tdnFxp>a6hP+mbEk7T2?4 z#b{QetVEBIwnR(mhW?r-9vHx59kjjG`31i5B)U#V_im6jnI4{{@K{l;Z!PK}_~zh! zc3Uppg3mfNx_Jl2W(6XU5Rl>0#H*N}9nF+g+_u))OJ?D@0-LUDS-tRmQOyn3A}H`u z?AQ72OA3ev{JqkDX%rj6J-|ID!QQBy`X*2lsXlPt$l;07HRME&h3`_MRKvcLsx#}m zaXb?{s!7BybTrvDG|<B0o-?6F0v`4T_W*kWxr##4^X<UARasp!V>}<hn!>>CBa1?~ z*>uBiccGUjUD-&xh9|Gs#HK<UBpKI&((fgR9deRm70@}<g=v~VSp^lL3!liZeNU0K zK6C?*3$H8~!-uNK>v;LYJ2uamnSZ%H7CuA#NchrQsgFmrEbO_$cY!?E4&mqW*?RgC zLxUd*qHL)o91!d1(yx`g9rPQeb=17s^>=+-B=SBrV>appwdVqd2t%%R$!aEe!Dww< z*R=E#wU}1CE*%f}au4I6jpV#ln_6*tLIaDaD8y`6+rS@1aYk!Cn3hc)%a(p35c6B; zsOFkT|F7>$M<71bWQ_SgdbwN^j(S?p=(YX8Md{1yH1{*}aN%^KE|I2nl)hCUW^50> zO^X5B)xK>$seoK|Y5m@_Mz!bo51)!{Owf?d`K=aGu*}L%$eTKn%kiqE?X7L)vE)c+ z(?$OAHEu!0+PwFmN1;*RDx0U?)<Zn%pC-JD38=%ja31-~OmI>oKU5epIDhH9dj}9r z$%ra|4=rka*o+rD&IH#Cz>J+aEFOP5h+*BhQ4U@nlYM@M`^)jF(a{Gzr(0{QNv#Lv zS0{)sr--(lY3b*$*```hHlnqCS|{2vj!#d}>$hiFG>NRdZT+&hD*uCT-wwHl5KqWn zJf%fcU8|Kq<Kk}qMnF_r7w2=!D`!B+clyx`z)(wkmb{KEv#%R}9$Nh&LDF&h!A1Lf zb3Z1Ax%(=Goi(`MAsfX25pdWD`Cg-<%}}^Yox+CYQ}vz)_1{R_)1<i<i7V<9AJjT_ zr2+gib)>rBi>a{+npBydhwop}4aP+4*c(9o8@drb$d+28ukR;$JVEg?f#bVAMRlkH z0>}xY1!#pSG6dkOw1OC@EJ@0VZ{S+LBFo~~uzYkZBEnXi;e>J~U5IR-ELvPrnlU_q zdH9CS;5z0hE_0^`EkLn;q_9J0E0iuS0^TI7e)6_xVd;Z!^`!2qwk4MzRLv2tNq4qY zod~f@He{&CTXjI;W-W};t8(DgF*i=WRCl5F`$(2yH|*?BE%}fS%|03#eJGD2*CA$- zb^^F5Yx|~0G?cTBT^sTSq#80cn4UeI#ko!EZR^*`{F(K}wROb@Usu!<+JXO@y8G@5 zJoSEFfy4(BE#<JlLv>}c-9=Oq3_hnybHBfz*cYs>?&}<~e<-cr9sY!Cz+rV2bBfft zW838_v8dQOU&cv4V7E$6$!pTsprW7Xr8k(doGB?j_-e2G<x*J2XSaL1s+Vh?4k>b| z(2_REooNX?eJP-t&gUHvBq+;4a05nc7U3>_DOr#7-O1ukzX~*#D|e*l&zpI8C<&fU zDV!V#b>!?MG_$-zZLPsi{TbMrLu@NAQzdgHCvLV&Co~gN<B7lRCm)Gee0Y^w8iYqu zrAe-%7F^l=I-f_9<?<aN9XTC`<!J$7CrF?e|FEMZmpFk@rannbJN^<v(MXmwXbGNP z=D{nKo}~-<{35{X(-cbIkVy0dhrC+sBwn$2(>SbYghE}LIYBodj8wyBcs4UjnmbK$ zhFrGEW#+sybb=6pGXF&QcC>JJ79r_uK9BQAU|E)@siIWxDZKDd<*ymClbfmvoKnt8 zOO^J3@ItP=ITa?pRvB@T9M&OnQhgKfkI2Z05v5PlgJzQ=H=*fn+OS`^%FCo=mrOFj zmyuVZ<4z4%wzqh<9D(<gdYO7TX+Tl5OY7M?TU`w=n%mFEe=6w$0{jxyN3f&XNM934 zuWQSKyn}3kh#jws(UHb6<>`x=kc-^ige$h|GSA4Cf8*%@djAr|l7QPgl@j-d;h#24 zp!QAjJu#wi@^t(C)S?o;OM@MTWt5K3b%l<Kw!>>@Nz0Kv7g2&rCLbX*@K`;etyC`E zE-+1+L|M;IQ_t?9KpBZ>En4kz5_PQ3j$k_kX;;w8=vPP{C>pnr_;%BCjwo=aYEUP? zN%rT!U}N6-%RqY+P9(_9)10n`*U2Yp5PP9<m~aikUS<XBaEkE2S-&jNOXMW)c4v;6 zI{r}~1O53%IEdaGj}oSPB;c-9bA6I%`C6-qH2)x20x~b1)arRcDz)Rt*=)8MrN@M3 zug1BmMm8_1-u#En98ZPHMk}MCokTBs`peQ=UaTnqqyt?kc!Zop9&-+I3RQY~PAA=# zlWQQ(k`|$d`{HBLGoES$VM$*(@-9od1Q^`|n)45(&^5E?3-z4{ivAHE;e}RD)rUXL zr<1nKC4Rby*<kQFr8iH;1Ru6jJJ5HZhw`7Ux!=zk`0-inA>5Gq&_&hMY%gSI_Q{-i z(lth|_E_0U*3&{BIE@6Fyl2<iN%3<*v<N}=jAP?Hg1QJfQj3~+m`Ky4wTNU^@@>(A zm;M4Tjtz<=ZN5vT(u(AAilm};>9$NIf!Bg%HHzMv@1y_Y987P%OHZp%Us5JR^^NF6 z$8uUQn}OaOcW{qeJ|f}g=ri$IF3%kkw|-J@TuB?K7MMo4CBsdLK)m}YZ@Jl!xZ`=3 z#zV};J8^PC;S1yB&_Ih{Ea5jPr3uZxl{IPZvF-1U`#>{TMcWPSo0~vV!42Q2BVX5B zxEouCx7za{D3OkGysaHcRdd34K2<-Z!|sRNRTZu|b-ML&rIBnB@-h)8Mjv9{2c1br zdD3--Ro~!k{xlrnUf{Y6i+;6FAvn}E!%<I}9FHz1J?r5~ox=;9@dJ@LadHZ_?a_sM z&8(y?3f}aWT*$soo_2~;?zzg-^{spIU`JkmHze~-A-flMLG}C;@x%kGBx=#GS9wSo zF1@<;hs`A&_1v{b>3IuvjB<%IUQhT&@72d?&p`{*)&DGj_#5hw))mcud8H*4Z5?Va z$(!wiVJp(<|7f$pDh%&XY<diV$_lA0JlC&>vK&!r5Z3slvLn#~YU2TN=2*WMjv_q6 zp&%mCejf%$l|GBMd{T*g?|(P6WS0PVHQ_#`x+;A9zfkp-aaFC+_AuSujkL5#H-dC` zhtl008>JNKM!HM7Hr*{PT~gBBwfDQu@!bEt?+3s6+pM*oXVw^Vj+slx%*Q+~WvLGY zDTGi%&}+PjMqs?}Z!yawX*m@!Wbmv_^ZOpngSH&N4LpOZ0OLTwq(S|Qyw9L?su401 zJ!{94WMuwP4nP$0*+Oejn40)o1k9i$=dsL4;-JVjovQ#xQYpbCF*gFo^S{|VomTiu z!&M7#WG-!NRMi=g30noo^k#%H->LQi6Xg0oZ>1Ib;!)}b9M9&Bj<}AI*3p+@rv320 zY5adL^co%6#&DN$U!G1-Py@4yGS?BV=~7G|yCLQOfnPGOn`xG{d{KO6<y4}t-vNMO z4eD#`90$_2VUn%?N}gynm9(D#fOJF;kR{0s3}B<VjBNT>YdZIIiaSLNlwI+WX#e|) zmV*hW-uUN*@d?>c)eQvpee@+waCr4m#+IJJDi_&iOp>nueeiIEiqbdX^K(G5Yf&uy zl#{4Q3oC?6xIZd^6Wl;Q={iXY+~$)1>{ueV4kc$yS|K?imp^)Ee%%J@4%E!JD(k&@ zjQ{(eq<vvw<h4g&3JZOitE(hR3L9c5l7gvX!VLuQrWt9KOa6r`W`ZwAC1F;znPKRg zFV*yCd*gNRb2G$Lc1Qki#RWggf+gK~&IB8mNd#c(Eo<})B{JEH624$soZcfoAJvBV zNP*9PO&p#jAOg0g=R3?vUVG`6Ur|a?6+$WuW^~C4p#9Jja=^y_GADAtkH*5_puN96 zSCPNcP!9;zNp~!O6;dBtoLlHrmtvm+T2cR@^k#zJg1Gb)Uz4CVk5tkU?l%B349T1C zLsudtO4k{VVF3U1<*%W_vy>~yT}X9P9(bz&hN5nyW&EiMs|j#r_V|Q*n*VxzTZ#0p zq<JwEKZ8v#{Z%Sr!U0)YLL1HcWN)~XT66@}#ooNf`u_+To?H<%l_LcdA5D3M&*hhH zl09aHaK>u}@n5L+Ba!@a>9$MpTZ{fPiChuAcWnxaQ;9Nekr|iy!^&Z{j?3>21@P2q z#12^g=~MsD2;oORi!JL)b|>nrK`BtDD&MY{DQ#_OS>|#P?uTMBxoZ6PoYLUPCNZh0 zmB^&)LV!-v&S;vRami1qRTSM6`p2gKgQ4I@C4=5p7$Jz*7FrZ)sCPtr8(5JWRrObX zS3kgxUj~ZC4+Zk=|2ZQyrx1%rr9xyO(e%rFI`Ar$hC!p)a^`A3UPEJ(AEgc8bF$z( zD5AL5qPP^JxyS+WT2gZ-=L10?b(OnfZl*EN_C@j4kh9$_Y6pL5_&LnC&fH0W)bOB? zsMz-@j)9<w$zih;Any#a;XDF9cY_S<>p!6fpOKr_8TzRFbC^n_D2a!P@UH+*Cp{f6 z2jz}y<p1``k<-o%+oMPvLE;eAi&hKvAMj$^ta7}0zN!k+O0bBKxmH*IPlastfqfS# z;YHS)CQ2)Jg~DBLmexu770T2(3xzV7G~PSd)~``qqQQCHvg{&+|G0jv9+pvKq*!sp z()GbM9mL1dV(AqdL<0cEGkNKvi<99RY(O$W_(#aJZ12JFlOgPc&=DKZYc}uT&dkbc zKYyio{C}nT3RB9Z5TbgJ5@7Egu7pM-zrAK-`2aNFWGd31Bf))Q473tfq=oe}TxU!n zbQV2*I5EA4^#K%1F2G5}h6zA-cNCWi?dF5N{mI6W@SwpH$vH{)`DWh<FbbXFC<gF4 z1%i|Rf0e()f|#A^o{j}c0gX>od=26mrYN)GK-;@{=jb}93a0z$g71Laux0yAz&Q<F z#O|9`)uHWd=+7W5!{#@BKS>fqzZwduek>u15l9;@zEg$C_|XVmnfWJ$jsK&m;~F=g zjC1|oi53HK^wTie)aIz!HMsbeksqL`0as0#^DP((Ge~MauLVt?no0cU2>My8Mc&IG zBDBZDP@bp4#T%pa6+!l0i_7?NWpp>Ebk<e=`D1|8Z0?)|kV8$N>?TKy{HQ??we=DC z&B~4hn6O$UjAMo${s&-~8=uX*WM`A4{9i65^S!UOdLi5i;HBr3eW!6>X?(&;MvS3a z>_-DG2S#bww$@*t;D%?(3oBH{TXrC?ML@iH>m#RPFAeVBI7cNb>!mJ}$N^~Q{nU;B zKsYzNUF{+ZExl*?^uk8vqUYfcGs_JFBvPe?EPk1`AD!zsaSlE?x%?Ayn+5&`jKtS> zsqyNtkR-kayF{gtybueIFKpbzBFBo00)!A8s??sND)DTf%jG|mO(kDMPsI=MUbIqv zOfLUgjppE_0^Z}p?le4p4VtVJtBb^}vrba+Umqm+wayGNJ-M=GP};6Fb*5KxM%bf2 z+;I)f1I|D|Wxg{H?tds^;Db!b8oYsrX<m^PAfPV@l$Dg$#;HTll$?`g%!OO~LMZSH ze(mzFbpy|^(?=eIU_;IU`>I1~$mU5#fH%SBpATIaw%u>&QTl%#mtO7bm<*i9Yc<N; z74I)d`)YO;FIFqSca~zO;MEFt^8K4$G2xb?Y^g>f?3YIlGqR9U3gNQ-=%;U~mFJCb zDr2YUNo;blq5Pi=Q}C;rGzmxp3DDKf-^W=`(n>IFr1dGqQ;i__!HVaAKifN<MrAXX zYxp;>8UBjE!X+l9t-)Ak%b|cqXAe|%C<HoN2XO|hO1#ehhj-sW2q=0eyvKkPV$8g4 zpR<?n?hfw_jk!N>P!%=!<g}$1Z2~Zc+j6sieQ~CQ`bgC<N2ok$gI$KgL0(8ap#av? zD~xQcvNRi8uq|$DT|7I*%>R70+)@ipQbHo&!OI*IN?&u(0-yPF1TA@~k5HkcCt_<E zfJ5<l5n?6h8fN|*XogV<lJ^qTPZ{==`*x$*40Zi6ZB!$)@M>jq#Yq@RnwU((3W{d{ zrf%!MgUKy@epUH$07EhgBj*fci;M#ytm7f_65q=)-g|M29LTUJQ_JA}rKxuiA_F6A zPQD@RyS%CUsvzTuxI9aPXpT`V^e%(3!R4P~uho^jtQ28w=D%P6{pAd$tOqzASW{e> z$_l_WHaN${@n~;i!|_b@PG7sy|Hm|{<bumX3(u#GQD)z+{2o*;1*19hNa%8!FNB8r zH-t&?<7T7%&l9)jXVwVg*CbJjN&L~zLZzxgP;7uRt{?EybaONZIK$xo;SBLn2z0kp zM_)0FXlTW$u1pxmRCP~7($GBc{c^|54?m@(6#pB>-Dry-a=|K?nqH-Gd|CA<MDqsl z-}~7(bq~>jIq)sfO)h0yz`6X5euA)?R7>v%GBjX;x}3Vae{M8{mA7su)0H=nsW)L1 zfM-a{fP#Vd$M^p^6S+WuBpS_QVTMm_rU-7*x7Mxhj`z9-ACA`8Dg--eAqt(&Dt`WZ zKYr2anaC+1-Y34TsnUR1_BfTyt-(`$O4@e?@P-T4GK}Az<QnamvfOhyhS`5p3(-hL zujyhD%%e-3ACYVy_HO9$IWDM;;mKljax>IuIW7=~<u0<XDgHOT5sg&vN;J{#K=SaV zakQ)MR%ewU_r7`SrK}fLQ22JS6tXug;EGL$`nO+0BQ}2~z~BKm+k60>6t>0{@dyYm zwqiYFj3NZ;ewCoO@41wJIYkx4FiUL&sZFq{sg}Bg+Z%X$c&!wwGQ&?!rWJ5maR6K% zT`f_8-a7E_%MRO?^io@_!UMyVisV~jvhwn<9EqPW31O%BD$sjElEE{HE)3Lb=Y_>@ z9KOfdD+cr=R&~Py$OPWMj!^J~Z7m=U&opjN_tfg9iq18wApiUoV24rB?VZYd90+JE z=Uyrm{$`(bHizXLbHfV40l8O|e+wHG;p*zi5~(A41BMp;c0XsMy;32q_u3jrPP(`- zjzXS{YHBgf?iE5q=|D=4@T1rDt=<15<ARj|>Ut9i%7{i>HQb`YO&|9*Bf%5+Y#b#l zMVN!yO8=xdyGWmJ?_o~tmUY&(dvH1>1j4CoY;FH_TW-rW^KMU9ISJo)to|&zAFNjq zwqYd?c~@<*1Tde}Hib6n8>8&VPHc~tljpkfpD^}nnBMTMWB%w>ub<6JskQ&>{VsQh z{n4qq2*e=n^+nx%yFv3O%zv7yZ;KT(v?gqG2D9msLwjpu_gK(36`d4wS?b_q%|L=+ zjCB=H08uay*kZ>_)zWd^UXwrsDC7SspYdu7>PhI;Q|8(FWFYlRLU%avcgwU6>3GXO zeqLX+zP2?h(vdVBR|JU=okl9Ly@Tt-TlNBoXHiN`uI$!}va+$oWG&s?S#ks9*6;uC zQD=@X#qLcZOmyj3mGyc_@e`l#g0LX>eu=79XYq1sr^|eGDp!IhbaPwAwYTpgKKs0! z9I<^MUNj8~ctU!wyZPmgv3Kh`T0=^$u;ssaf?T~}CX|W;V=~~yIiP3_29kspAs$4( zxqV!QI^{^)^N{Hk4_)(p-2`*OxuR;9E6QhtAYrvK5gJ(@)AkAHd($IQcf6Z8jH4j~ z@1YM6SVjK5Pqrr7mH`xORyGPu%f$`5G1Fc7y<i`^mu;LM3j1pQ-&kz3j=xrwWhSR9 zB&-Y&hgouE?VZP;`1GCB=Jmle(AE`s2NLdoC&I$Fjt1ATU6Oj(BnQlF1H+Ghdpc%* zU^$ygnk1ygTSvp>>SmZ2tvkI!*TAs!*J1SdAu7vqu*}D6K<L$mA-MMT;r?46@cYA6 z(Fh4E<_<KK%S|Ct@nXA$iQ2i20jPH_E!44NJbrY9gt`Cu0iFugrcSi(;h@BVSmU)j zaxJit!*UBxp81KOM$eL?#*v8EbPJ_kb935Oq(s4_=A|@M=Z=?z>kd-y%Px3E1pM~U zw%+FBcOj$G632={B*S-Gl`e`~|5~bC{Ug|g-F7~1%~$WbHpo~OKF-_4xOcF2zOK16 zp?+l^bIMe(8GgPuVg;Q%uqv|SsZ_y9N<fQDzn4S24*o+RO*0Uwh*BPGH-;hBU)oh| z_5U@7nSg+S016fc{zh(-g=uX@p@zfv!bcw!52`{jJvS=InQstDJ-n>4hTK~lY1l`` zyPEksqx-tLa7;B=^30?GuMgl%zf1->#3IHjY&KePVGR)fqfq0m+|7=}A81F$hJT<R zia15(IctzNAt>V2{pjCx6Ibo*3SsVRb9HoD5SsK|<M3;6CY;sq%9Hxg%jdTJq3xQ@ z;nhDNmc;dGr;i~UR`QeWLN{h;V;RhUDNW&0K>LGqt`pQfI_N<3es!DC$3ix7Xi2}r z_|9_4dTvEwy3*Lr!Tw!p@%z*o00Bq;)dh!44<tsz|ECG#dqh_zKXzqN$i+<c_V4ZN zQ~!CKXO6y!tTR5}(zUrGac}!nowKXG21WC`%}AL$>^9aJfYhefWe9;)EqR<YPIOSF zsBqCjluFV;{5PWgt)0j7UDmGJQ@1QXF1Uh?Pq(wryeD*Fhga@g6Ni?Kjg3#|IU3jZ zCT&w?wBP*fnF(LW!g>k-_d23P#7>nf3riwboO{R(Bzrvj!vKTK7e79FgZ=Q6y`uL& zIUR<xCkXsKJvNh#M{mhNmz$dO8?lXw?N=g1O$58VzCYF?Sof!d(i;jN7c@?nt1b-v zp1e;BSz0jpJVKj{Cx9^QN~^pix2vX4FVU=vea-w=IuLKtK<xF)XA{Qcsv;At@tjyp zq$7$gPyd5mg%66mpBS;5k6Z>&D<)k$6wlUV$*`t6+cEDGRzCL0+JJO)B_jfvjzQtY z+Tr#rQ_=ciQa9Fr;l=n+bOHyn#s!z4jH|_`0_aY6yJ;e{K8JE4WEHr1zKk#s5~uTu zp;J1-={TdD@8jBDl;sZRMhqDXYVny^^RiF#@r0r(I-i_IStw*#Xkl9&4KR)*>^Xah z{(f!L=AhYcTCGM#&jb4R^VKDDrRdB-7iSbe3-S@gLiL(2#kr3_-B}`d2raz#nDsJ? zN20`MEi*a(XSR%1?pU*P5gYG}M*M*-cBT&^mW=^oEBI}l@W%`uXLwl|_kTuj|LGT? zUmbdY4icixLgsi2F{qT9nX+@oZ!`t3@9~p>N&joGdxbaC>U=0U>K#QHJy7l%eJYUA zv0`~r48Y8;{<wkrxk}DbfOios@py3U554H<v<10;FMIjAi3oS&CX6xAh{O&oHv#G* zJSWEi6Gq1iyycFF+vWgra}4XXKz?~q|2k+Vl=e6l;TM&$3|!6j)F621G2ah!--J?S z#tPQLvN+Ck^$Uz~Hkonn1Vyb++pn%L@95$m@PUQBs(y9I)oq({#c2N(5OR`BGw==- zXl^&cGzm|4OfLzFFfI%XuJgw3sK@Kd2N}+Aamh;|^ytD0TN^V^-$LSH*6KgOtO;_5 zy<h@`1ePYDldM2MXcV6{?$7F1EwX>)O=pv+_O~Ko(xYuQO1X#9WaHoeTh+veE;pX! zM7{LKX;9^lRR^ICN=tvGwr8)DiDfLaR>cy3!GLi}&2U%36E4RZ5M3t@+bt~dv03Q0 zqSsGnPSQpM{E&)|5-{#InxwKgMKdu%2J=Bt<1Q*OyO~*ZN;>(I%#C>8bnyD(xLM)D z-xwuXxpKp?=iCH#Lr$FO5~uE{%VIh+>fsiD;rDMQn!ODtKd&^5;N+}>xKHi?LJGPA zYpZSBYJwd?neF3nx$agL3^9q?c_B}Cn%VQH<Sg{81;iwBVoWbP_%^*lQ__S%%Y}SS zh*$s?{1>#M{}tnyao~n9Gh{qI1YMjsZ1$RFZ=>W$-AvvH9NnZM{>+ucp${h!d+l_5 z0Y)J>iSqpcUnF*krf@JV0R&o>sc!kFT=<74W@UNUUW-L9pGk$jIf=0Qv2uw8U_r_5 z-$)?o%SQ!krhL)zBft^aQMiN)vH}l2J>B#WVajTTHjxW^Tu;NSor*{f*7%=wnUn3w zwd7oZZuk%xv@vhR;XNk4AnXG%?B(gQ?E0RIL`1p@X@x)cRyp*dvKQArI3?vjlQJK} zp0-W3gbMD}m@6{(F<t+D%*j?&VC9r&rt0)sdG)5I@kv|DarM0!G|0~i6WL6*=X=`V zvWZ@J;}ipT*jGVgG7-p+sBqRPSucuL6dd&2yKE?n;m)r@3;1yd^}b?7I4S|<<S)4Y z{5k!H+aL(v-f7rN2h;CcFiC(b5Ez=BGJ0#q+Uob@SVw0k^4->i{C*+q)8!2D%uh(g zE30RB?gsdII;{P^kf$Qfnn_$T(evsxN4q1&$D;cEgHM#M`T$o7QE1T2@DDa#Q}oJv z#P9Pgv|j<?e6rg4j};4ZKp%!Js%bkEi6cWYo;5>^Zi1Hg<^IqPs;&=1aV$WvVNEWt zI+5GKdt5pkYx~1Eg7wXxeZIA5u2xmq6eqD@agwULhy46Ed>(Q2Gm|}8=^mGuT6X;{ zQO2&);~b&2+PQOx|Gc0o9Yb};#Gf9)`@3V?gED|uCM^%RVZ0QMeMRBM?ecT!hHAFe z5iP5=#C`u5_g?G?Bbe%R{um{xpJ%?RkI-X6j%MJ<>DrzV<51}<=P>dLTCD#>xFo@o zu|%*})dan#va{A4fA$>z?|qI?N3s_5ynh=*1Id^Jh26Mi24pXsf$clAa5V)2{rRe1 z_06Sq)77;-uTB;S>g!irmOX6;;yZFKdpSY9;z4)zke98i(9b>lwW97qYMH;%x7dYi z=4a>{@r9L8;4se!^nhrHHeqY_bZQ=0q>607<gZs(_8Yth*XFJHeW%wxLGHHX_sNWl zAqvbXkie%E_r^yKJ4c(F0Bqbo;IsqDF1&=$VW6kRp{y(hK70VFQ_fO_ao)`&cIxwi z68g~08y#f4l)!)f$bDXN&Db%HW%Bgm{F-BNvWIfT2kJa|9*exU$r^i2?R~I96rAru z{`u*4x?Y(x2E0aaV!E<_;YAfGD#7Hxdc7Y9B;!L+v)^N51vB`sxCJjaG|!fz(Whi9 ze$_JU_w53Ht?3h{SxgN6>_HJJvqX-Jo#a)XES2S0jS<|_UGq7xZJ|)U_k$!g<m)8F znPhVpyL)US!V?tYQmP;EvMp@LjNKjQ<hW?yvPFIxlMHQsI6h1WX{>=>dGG(K=jVpp zsjfb^4Uu?XIXal$aH*~dW{lQp2zfY0bEzc+VG-t3<;f0xf;nDX0B__!!qH$Q=?qZh z!U`3YxYRTpf`=6O9qHcVRvJp{T+1EKoX_}3c+e&5QNF&>o-Dx)oNp}sHz!i1%gd+p zgitNEHHTRNaOzjJ`%{qncIyULqi3+Q!vl9;O#7JQ*+$=<stHogGvf1CsH3@ngRkq2 ziHwKWRpX~DL9Nr+^<%G@g@*tHv8A6?ReOn<ov~Y=J1{!7j=-Yvx1o8drUU$-AaTnG ztcx?^946)gsg()aq{ajJ-9znbfhRba&ey9`rM^y!h8Pk#^<;|-HB^9E3aY6FbNpOU z74QiD`6~u&;O{!;4sQ`?$I@4OD@pyjjCSs**t4$0b-NV(pU!7hx*j@Dpl71A)DoDE zp;abYzEnM3zU1*`E(<tnx23S1%O3MH>ajjJxi5Z#f!5kl9c6doiTUD{lbJF&4O>4c z2pFAO%Q2~X*n$(;pL7bIU+&7TJrH!Q;TRO<#~h@()C-O%W^dYIF(|xA?bidM>-r-0 ze~E_7{LD_Oh9uRm+zgnr3oCf>+GU@Cf>6wVe>OS!7!*r6n<%KIBmLT_ImO=$id&=Y zp>+6uW~q|A!y%LFVxSDZNZVsnF2>ha=---Ve^ze)9M=F)VR||XV7k0Bhx05F?+10X z#@Cgb1#$wt{}Cu>`XiGmKeq~g5uB3x61z`!eY4~b=&l|T>)vv1pZIl5&OE%|&t3)p zJXHR)^nBZ)Of_pT7R4m~=Llp3+Z}v+x_=sEN|3^T|2V_H@lm(A8mAPP1;6YI0ATQK zWuZ>q5BJ&&I9P~F4IfD<+pN_rHJF!tVKg@j$W6TNvH0vd&zxB;%u;^}qy&G{%Izb< zN~Wv?@;EUxc-ZzTi{+IV`mEXW$4TC;wXf$AWt_#gm;enB0e5Xn@3Dije!4fc>EA33 z2~tAzGhW~Gc)kPG+V%b6v=lo7nGBa_$&!hw0eec&5Pff>)7w{tlFzcd>9!U9H5*^P z?axwb2)pbJ3;W(44j8Rop^2%=@8+#RLnHf?$!^Cd(e#=a@JwbkMJyP}Cu~#0S1ide zrsmJ~&fCuFo25*9A?z4kc5jU*$z875lOIrZr5~GCJOwj;bnaa&wK==%Ov*h;yZWgH z<Tw_}Y8ZNjvXHUW>fDC}v>u@pOgK_6_@AUvEydS(k;~5Qt-MzDnidnRyEZXzI<NYW ze<U&VN5Ymct9%a+y@KOkht-M_fl5fcZM#C0_&riyg)yxQ|LN5EwTTbB7LlvP?wZJo zJ-c)TWFz%$k!eTg*A4cOCyhZoKsbdU;2sC$k?QX0%g@-M@w1A&q&~10;TC$wiAp6# zmLOd0xwBvn8f$(ENF-#I54c@_agDXD+|6rlo~bZrrFw}q%5L?g$60ErHeAtaq89ND z=78?gd0Ar7?LYCKCRxas1hVsy6x;c8MP#qNhk!uuA=P5}cDfc>d&kq;0u9#0gH*j4 zJNd8c`L#3nrweYDjxWI|DU<>SKEToz929*SkJyetcv^M}i7ax|ip$IMmI|BHdH8P( zWri3XbFMnM*eP1ldov{e!dKU}y;@ol0#R+shEZH#gOa+<L`0*O8`MFqD)Xy0=s;gj zG(pSS^GIW2q~jUSQ>H@TJB2_y;Huj;%)kZJ0}9_9yh=|m!~|XUv?s+Iax2b(-{>Yq z`sTSzi}nH0%yx^z^OceA@d9B8Z08~$Ev(PEsqgb-hT&q8Y414k&CVrk7O9`g%Kp`h zP)WU$^R)b=`sE|}@yS$}iwkidqp4H^e^`jB!|&hbN2RN3a*w)gTXrYAQ_qtqPoFb| zY2EsM-_B9bws<oRoIGu=G^A&rJmT?$2l_(-XD;}5b&)SPqO0*1bY}U~>(P)TmWtUC z9B587CK-QmM6tG9WYm-B(yI)(C7KqAzqi$XQ~W<!`y<aL%eU3vn@+?Jw(V~j`a9L| zPJ}J+`NEOCI|py+IY%NQ>L!mibL=6j$L=iEXyqFQz)IE%>g@3(S!1Kxw@Mk#L5Zi6 zBFZIgr}<a0XGMEkU5R`F0uOhqV-QnFq!h?Ep;wlQp^<jD*)K4wh}onm;NDDWI}o_e z*c~0o5vh)JBima?A#D`iKTFps7X!fw#u1067j#A@6Q8`ra+Agp65694mm4YkytpBh z0}bhm852-vfppU&`KO~vIwRb|087})l_t6hRdF%s&W1(SN_gE){p+>5EUGMkwJk8a zk>Bg!>Pq^l#i^fO+brHajduMhp@49|($_R@=W=RkC4J{=%O3M<(R+$Xynh;)un_lW z-}6W`JHksyE2PaQrwmmEgnP}`h#haXIftH~JdjaJI<1SfcP@cK*(=aAfYRiPfOO61 zbWvMmta$g!wNQ)&iO`D`RTc=sJrj-{d%IA4eWuzR0ezq0Y}6NToxRx&ea1!x-3eno z-!`wlxrD~sVWNvc{R=h<8dH!{9g38{r&c*?rt=h{r{5fZ@df}Gm^8@FkjUj}({?te z?~$p4V@B9Q3RnIfA;D@F*~Xu~hI9{(N?FgISuw)k!m0!Mo8jE!kd8&QwDmsDT(hS= ziw5jZTm)1Y(*>FwFs2lOzE2y2&v<q9Z$FxJ<jX`ZC|i}MhBP|Su4-z$Pi^P~yG}dF z-7Tt+488T@eObtQyS4wx>$LfTR0{TyM;$*`)Nut5BaHbH$wm`(J>Lz9(ewBByFR13 zLARbx_Dss-fi6+C&ZCf4Cczp~g-iUmIlyd+_M25RM8B8pkLybT&tBz2wM|R>SUB;s zTH4HQ+3Ef6UE-<9u{$4i#W97&Lpf8Vv~3k9v4Us3Q|hjY&s@OCAMRqSa$gpz8A)o6 zpW44*6N6%^Me4BXS$UIxKp#0DgRY$)gX$8zW=k}$d%w|x;wKlDvHy6g#?3e?lJWjQ zuehxdIeS&lA(q+<y{dS&yUg{AJzBfiSD?UdZwdRH&}!&N4SCvFN+f;NyuENhzOQNr z^=in;RzA9_j}g{=TyzSJ(Ne#>t+FAP9qEaVpM2Gb&Mb^>YyLrYsS|%fm;jL4HI;<^ zxL@YC1B!H|AlID^gjkBrFDsKvmB_CBn(s9hNET9J=!O>pVyrFuXL@l-W%+TN+6OCF z*<*Cu!nRMwkp<ES%=$kp3i)9yM2+V6eIFKYdKb}DUuee$*{KWw+tQ?ZjWAr_28OoA zZZ$){OCPzUk;|?r{uw^wvlZK&>uFh~rl)8EtJElJj=RYV|1n0D82G-ocz2L^En>}c z8nah><RZv<FMCnhpsU~U$W;Y)<fU(<B|+0vGZ+Biz6>5!*{kI4&bg_p3Sb?jzzXCh z{?KV*lU)@5a|CuGbUSD2)Ns~jZd|HnwC_81&`<B)Hk2l3cm$IB5zsU{4!sQqaYO>x zt~clPq<=`#?cNsYMHc7FMh0k4<#x>#8F?k*egM<Nr2W~14=S8fr0UE_5%~<d>oG3! z*#EB5g)TG;Ii3e|({9%G-C1i~Z+)ZiJDxQ1-ot))%HZ~K+?7%iy{k)%(LY2#H?4Ns zdCoooALM6)RqGP7xx$~SN&5!_8APt8Rf3x7V+B*MX;`@lp{Hv<)-qHTbYxqLZ@S$- z_%ACTd-u8*WiP}utk%CaZq29<-<jb%a`37$l=sWHNGi_3Us4-L9>juv)pdEyufZ^V zMd1w~b{vixBb+e~dx1W4ET2zttQowm0v}nBS~{r~1kKAN&Pq*|=u@%?ZgSuN1W8QU z$G>RW(u(7Bo|$4vyLYppKs?Lq;Z;swB~4QNK)2M2uge+#{?zj2X?E;E^Q~=XJoK&U z5`-U;oE}qqK5&TqumMSY_3{I}r>W`NM8pC|(|(lG8~$9F2{OD+TZ@Rjoz=JJ8a&U? z?%GB4CUor5lW3llBI$0vS~)&}=&p|{<wIM;Je>Gbx+q<)5>xrkx9<`6t?H3=Lk1 z=KxYGg;;>HuzOFh<UHg++(%3_c4Q<Sp%->S{!C#qkH07PXbS>Tw`V70)lJ~DKw)IQ zZPd*8X|VW6lyn;Lfj`>>$}3QV`ey2&eP8NB4))QVY~KWG7@V3H%-cz)bwNJ(jl-_X zZse|RGGg)0Q*EWnJE&#-d;)YfN8@%vIO&H^#3T|T>3LZO-3dmj@%Ns)pmULmyXu{< zjo9w};ixNbpqIq8*W-rw^bF}LZBoxcP_kB|8(A0L6XFH{S6@=sqjCfZ9AuugWSG@t zLceED5KKDmfQ&}`K`RP-Cg~QYNzxZR8e)FF3~hW~RwpZM2i#k19IdBD8iq`p6T`XV zo(rz`WhMJh1=KSei9H*mV%7@!G{rYxhk{NEjFav^ulid;6T|n&7Ggz^g8{aLD4;zf zwo~AzFjO!_3S`(nfmJ!;C`|ROXj^yE@!SZAO7C`CLy|bw##`t(%;xMlr|($tnFSUT zBUMwT%{^pw5SpZ3qnvJ=j~-@8OIT!F6z|V4CVTqRwvnEi+;E*F)}ObE5H#BNJ4?s9 zUPDL8Oi9;G^i*`L&}`*vWw{z%8blghG8xyK?H?5W7+?`Q7nQev39*d_jaLFnu<npY z-PVo=7U6Isnbb=ukJ8t46>qb)L<ibiA<V#B2xN{WnW{>wbK?vNl6+{nG{(<=U}|$R zA6*y85>)fZzgl<u&f#MEWWdzW`&!o{`4di0pJ`3M*4w>4o}ee6x0MGI%SjeUp3mIQ zOr!?d23{iP$W5x?gdgJ1#N3e^zd@#kQZ`U4ERJ@nC&<}{7j)S@%2Il;H?Q*xL}WA- zGNaD^DlY-gE9gjk@u3ph-DS-=Zy;Gzl+^w}B+c15Oq|FRf4hp+`LIAAbb7_jN?Fy^ zmVUJyI|8y0LOyLze}TRzKKq{4J=UVvAUE;YttJ3lU>2fh1@BA52Y5Cj=W;Y4Gn2Kx z&b$z5U+0e-&s^<K;^znTE*4BH#71L|&Y&FUACH8J5P{%WYSMRRC&Edf`%QUOOQ~_t zNqLhqlaapunR}69irVEMdFTtIz+I?;(l7`G>yP^LrBYCf3mnMEgExs9F84lJ_dZ~i z!J+L^0S=K#KcV6hB?sauf<4~#C6W+IjylU;Xmg?X&wEAunJn3<Y(95fH}V#J2r)Dp zhwJs9S8v>k)#|*ZvkH7xBr0y+a<0^T*xq2&c)U~^HeH~-;>?DElGuGSZlolSoe@KH zd>7rCXrk$z{5nI=8<sG@K~x}7A9iTwBga4gnr|}(y9|nOuj%VK8KMu6Q|orCQ~M^c z$*9ihseIhg`60XJw-ja2L1A(<^~*_6-P205TJ51`HhA$(-E#(l_^8>z?3hh51QEIU z<&$=`SodgZP<WRI?AoN^csG}RK<6P0r}#Z{a#8%*kQYA$8Ei!1cg<CG#GhO#Z(<U3 z`0;rC(YgN$QBtIH3%%3L2^q=T5r6jSaqSn)^Y0lk2XVcLrsO02n`J`)ftQ_}?^yD< zH4sV1Y^DPnGEE=$va!rl<jUsIgi6u0%OjUvHx>EZAo*E%luT_GAO9})Gwt$Qz<sOP zab3Q?!(d|FEWhj0lA{3nvbNGRE!fEap%>iRe*xv6Mp(PoYkV>D^(go*gN;8sJ(CHn z!c;Ew6PCb1L*w6Oz1YGc?Vj=bX=9Kjo}klB+=0aX6MTO$1hO>tMOx@I?cW%@A0|sy z>MZ+cciVjbC+_TGK8F86f0wxZyr<8D<iU{-dSIXFe!*sd*;zb&#avC8i|uUKi!ATd zJJ{#12>O|}xv^KE+ojr;59ol&z+elnw`W+c5aFqen*EAM20y=pY;bEkDDX9KUT%$Z z8NCFd5Yt==>(_}H_we_rx%_756F=UZOeNvNGLVYh!nqT>V<gqZ*rl!jDZgsO>>9gv zyKS=eaoHHUhW@$wEpO|#%YA*3<LZ5kEIK5yo)MRgs2{TQba@B35s%i(yaMDiW5hv3 z<8U}$?YbP?#V+b?ulkpA);G3P33YzkPsiLaEVJyfMkiMD!t&3zyF6ewilPj@soTDB zg4%?*TJT9kfLeQ64(5+7rt0;d{MKy93tv->(I^BYdfH9lU3OX!8@hId?*Z{d&+}JC zwoDMhk0V`>fpx)V&F^GZH@ZYFv))jJ1dwpUNz8$(`n7;Pdl=}RPTE-{_O6{LXu+B3 zjDacMs?P%}oa7=qmUzZ++i?wv_`Gk2CET&{H#E?mF*}%MyByWy5z>6&As!p4nr$`q zU6#~uIxETHPR#}SlF1E~*Lb{TXz*tsUw_68sfM5zo9DD9RthM&jMoR$oiYPMs&3&M z;lg|2eieF+4^0l6-|RczRa{M$tZajd-Np?*haq!Oab~MzEnbCCOTPIcuUPO>s5mTs z&)0)JTI0BOe1`YYyC@@i$(Epz4+C^b<k!YgaDE4R<vENK;A^-T2#C3^c~h53xy1yX z>7(z4u|c6HYo5VIb4x=PXOs(B`rfJggKJ@-B&erYMFNOufQWp9S_#2=%8bV98avLH zHvhV|rSaCM<Kz24XxeL3dA?pGA2BF>TYAf##o6hEbM{lF`+7%Ij_u)v@X5~&h^f=c zJw+ntOPZQJBJUVAo$a8xakbLZs+qtu?~Sf*!M7M0;|ER~``qikA}t}ZH!>u(9Rd5~ zD2|1RX@<^4yR+7>ZGYq{SJ0GTu$XT`#u|ObWvEC3_{T<xF9<4pt9)^ZyM$x?tBq0r z4EII-?)O1QFKa#1eQzAZOcsb@Y{yZ&gF==a5ci#5r-n|sZ==Kz+<E316_q9J7r@3i zAh8lbJp=4^cuj_hsVer>^ZpH+RD|2nxhc-x&s=K{P9-wB1&|lw9<qJf!$`6S&;8y$ zvI%UsIksR{=PM59;N3Pd)NrkA6Qkac`X`EO5^e1=$ceLU;1gv-ZG6C6gLjR^_>Gnf zVxBZGHzzn5DW7yonEcOOqKMFs#Gc~b%~JkszX=cv{D^-BH5aXSI*AqKiXZ;Qk^j)R zAh3OG?K6E%)s>f>;_K~pqm7PDy6u0&TIPIrxhM_a`h2rs&zmXyCT!>rp$24e`xlet z8|FtPzVyg9F~YY;j+7L!_Ua5+&IFP9H2alsbvCF%!xtqmY8tgk&!JLJbqmS7+;7Go zDl0z?v5b&rx9iR=%PZTn79?E0=K6(0oiTkA;_3Rjyj;WRZ0iRkqRNl9lbT+Fnn_wc z8_^2Zv%LKF<n&@OdSnXKlYIbejOLEajKPIjyvLAw?5~temmLvqJOIy{Q!=EHtWyu` zZ!eO{6|7!gO}mmFEi-+-7leIr30;%xGlj|zSsGq+s*m^f%BEjbn`2LLoI$+L?a@u? z3STcyohz-m%?H#0%g0!d3Py9x#kNwVtuO8lWA&ZC{hq*<vU!esUNq-<e%i1g<ju$I z$+V;inAYJN1pE3m#m8}Wo96J&Y~?5`t0FIeF4)LDNWqE<F3!f17j*+Rjye#2I=Ptj zuZqMwo#m2LLEE&W8R+ReSMpK%_*i7_!$(Djou(JQ4yIJDOy}oI51FZ?uL||11<Y^9 zZ%^6M#)`<PX%?urdfLZY>dzT2d5Nk-x2cWRYvSVII6J&4FDhBC_&21M28k$6(CQ)g z6rY+teqZ-Xyq)~^rQ?KAp{Y~prO9h6175GmiD6S$d~bsgv>i=PxxIyy=-E^G3wnbq zGT9+jSiU6=RZ6i#^X08g>Jle^)zAW8R2?%UIUZ&DgmEF|EO30IR?)2Kx;7pvLWKuC zM=l4w*em?`*<-5zHSp)F1kN$p18>;(*0axp89ZVyJTdiFA5?8i4to|3q87GXE25y1 zdH3J!Uk__Be=mK*%Mm64qhTI_bKe^Gr^V1VDtLeLyAAizgQp{fUt%;g`Y6{^iXHpc z@(8s%*7Eaul9k>YabJGIcq&O|nzv#vp?@aD-yOZdvAe8o=n99no^4j~pM-uFDr>zX zF6?^7b8h$N2YK;aML<nPcbH>8Q1M_myQ1!jw<JUk%RmIB74wW$6#|)3pC4iim#GF# z@_zqfNO&FsNxYG}nuW^NxHDME^1K_eA<G8AOBdvsFTM4`q6}Vkbs^N7wwG@|p)g2s zF5H}poq{L4Ae&*;s$=0PB;k$PXutChLdHCP_3=I5xcMQ_z(HrZ$q`xIo>s@IT|9A* zzMMJY5cCp2q<dmkFg8kQX@x|5uozdqy<{R*ZkjD`C>2~X<GFfsNnq8FO=q=i+Cvm^ zc!g`@Bnh-)DY7X%_psvw>!{jqC#03$#?XOZ2Xk;>RnEfpy!uo}3D$9x&PnelKhVDB z_?%6MgZfKQc$)0@EVtxhWe`uLLHj#Q`~_b8fc+0bm^gLzU#H0y6Sk}+zK%Nok={B; zo(T0K#^;d&`#q}OU(OD_W?%0uezKl*?{&fOP0Sm*HixXa(vS1rIJ6!u^b<Pe9j10I zLqUAyB<*Nz3526g>7$?1LA^hOeS$)P9o??kAhDh%K7|S4oSBMhn#%-57ZV>??(!`) z?*%hbv8cPrr_5A-(eYVf6RV+Okjq|*E(z%7xu6qu<%pl!Ve^We7u*g@%kF2QuRprD zO2T-D*4)pVyijx5xe;G$1v_D1{ReY>u#r7FiI$yA3eB7&Es}d(UQ-(}q<B)sS;!|W z+%qRoE<gthpHtNmQlZ^`an4c<<;l6va4HNuHL|N}k0FMf<J_^RUP}5Srs`A;#EJN9 zT!qjiLpfHZy9kgA>SCSCni_1-m!=t6_>-pi&sd%n;>1ft24qFW#Q&J@Z?V}FDBpiu z{wl9r(BaA-C*3BRylTL`pI2kWz7aL)NF^TT$zerl)zVR=;1=2?J33bJ&YpghWE>fn z+RbFuHK2<H`NdUh+)3OqTVjEAO1!YC`AiUXYUs@Ow`upcH4!Wrwm(`npO$ak+Q+Ss zcrq1xNTpCqX>K_bc5V^%(-$KinBminYGYKS?oB@~Q(73#+WH;ZM)|fNICq77d!d0@ zHie>@tG#PG8a8x0JNd9awu>6KJsWoxktID%Ur5p-;LaGE+&PBT^{La**WzR`(x5Yx z)&Ed`>!9aso+n;YO?4HJLFPJ9I@SahTA7ONS)W0|2y{gc?w-G=jYy?oJYS#a>hZir zjliqYIwlhe?V*lXfr;FvsnDUx)3F>RORmKhk$4Q3F`9hN#+D_zyhNb%=78es4q(1B ze>3&GkTcy{ju2QFf14~!S`{z>hV0dPx{8wWzu?+ud=}%13ALZ-=PSg9>IaBRGr~(F z=@~yFVG?my{KBbpcP{R+>n`307kV-nyeiY*Y*y?Qw^DR!kMS<4FuF|-|6`FH*4cH{ zt45Bxjfavv&)u=C+WwT&p8aF5I1?T0dkqh>xE=s+Dvh|FPwTKfG^?t<Z{$Ora|aDZ zPbqDGc0gEOX7nn24%tt&&MzR%v@M;>c&&H+=3;_P?C}{roZ#rfWFCIccki=I-XHI- z0ZQV}3`h47&Xo9(CiHwDf~qjZX$Hob^D`!9ehE4FyPOKM2H8B$h1s_JZ1<E1IbXze zDs}m9h+8Wxg4SiDhXKjZjPmWANn7xqu{e&&+^%USmj_#wByq*i%f=pz-0;ZY!q$fu z#}1!y9l7T>$=`^><ebhmGpj$$Fp_lX%f4Rx>KeeYK7dFNLp37d96Xd2H?@_2y?Zph zc#S}b24Uo^y%DN<^FGc=sTb_TREkEXttf?H)6UBSIhM@FWV9Q_GNSyWs1+hPq(#Tr z{FU(L#6f;eEfc1|AmFFTM~in}!POXNI20vs`b$5UJ)+1!pK-JAhr&o2kWQbMguz|+ z3C4sOKHjtT`=}QKQ^p=PjR;TaBT?E9V^?T5-+0>VpNZ)QNcEO*ccMIr7?HHQqdkxH z!kw1;e=AdY4fXsM3X2baC7eLG&R<D;H!FWV+Ll(VyZ-*>$u&beO6*NcB*RtR*c4_L zi4vCB%LZj(;D_Q$PhOh($h^fblSk5X!G`EJ9U=57+HOu?KQr~dKTuATD?`P(n|o_F zN&VCRU~HO&C}F%7rd^;R@}7t=WNmPJuTxUR0*jicJz`H+HL>{v{}21ZPc9X~4~-;N z^ZdsTt$c61*O&tM_TV9E-taQAEGxPY{BP?D8cLiL))3O`2o<<nUESHo9%Q|6?2^r| zplwc0>5<#bWvz(LcMMo*!W{kca+FjdRMrtWxWd{7GCOasmrdif<9gdcXBNMI@o4x_ z35iRR<G%Z|;;eo*Ovlp&5gO<0YKLxo{3z%9%ymivLHFyw*&9g){mGv2TYtW{dTS*T zw0I#2K5Vba#mZ2hWXdQ%xQ^IR5_P{(3wr9&aq{(~%u$W(KHn`#;xtgv&=hsvi?X(n z#6RWySYtO%a$J7^8hjl-F+sP3p5QRr)7BJk7DXC89xOI83LdL2s%l7^%=RG&o+jRq zxG44!3;IaM?R=m*KSZtWdgS;^^!ye7^R`OW(X;RwD3F@iq_*qku%3PH*vaE+$1+6a zb=0_nzO<qi2I?OSowS7n3yjS-f-w&dk@;q)q+#}!yz+t_OSK<qZu<|w2JT!=oCBHI zi0ly@>CN@Ulz`SrlDYUov-~nQYKK*iZsBsT^Lt_e9asO=Kx6U6&g$LTKxIX;UVLc% z$JlC2X}{dIocvL30jJ1(3m9r@MMOV97xNGh8&_G<6MOnCDrR&Kx>ln2>a;)#1NLvu z(|_do^93OjH9i1OG~FvJI;d3zspC<=z>!?q6?ZZJV;W_m!kD2mz6Q_np(j^|Q_irp z>c(&q?<Vo*-cS?+*$Io^4F}hh;@5FksU|^)kxNQIQnn~`#*A@GG-`h)i*BO@ZzD;+ zBXh2{<N0&Zi*>}Y<$VJYm(Pp19`C)*vV;Eh#w7yA;n*zv#AeY^ctJT!2zB<*7j|^8 z&w}J28w4*}@EP5CLY$bp^NmDXQ%dQC&D)_gQhVn@w~N&0GH+6AaJA*?EuxPud!LvW z#_62>IX{0sf~1JJcHfTjI}LjRf;Q5|jzlbcJ&`FA;@;BfkJaiIN7|C*y=?_NnH_?m z8zq+;6;e?T3bIZmSutgFQvn?m%2q;mKvy$Ln$_Vzv?gRYL^0^yuNX!S-;QKPbBu3K zLSP?hTuK?jh?OCbv&tV<S#}-ip%rV;u)ksUc3E#T3<*j60C)X{Otq+o=zPcXJMpn^ zdx_WcZ=<v^e_#{F)#heCuG_Lv{bAB6Gb`a8maI?zfGERZu)|oWeZR3wLsfe-NESbO zV`++`OEI>%r4sJozBwH-g5C3;(vdh#zp;u?HZf+f48C+CroiFiwSq7vf`;jC%FlHH z=nG?v6*@z$3Y(bt2n{ypD$ZmfRecM+D<9=pYJsX!;pN^PPH82>V~M!5dyglWOlYd> z$#hw_n(j36n~RAXSDS&?2mVDa8_b`qS+d_s(#L*nCUxB4aW+mC)x_p7uY9I=Qp~3> z{)B4D_b0ZgM&EFf&@|$UeOL?K4Mq&byPqZBriCaR$OPiMmL73QSCyA>SZl{}wl00& zeMS=zmzL^U3@8^({!z=Po|cRAE8O%xp9cvdZ~)aat^eNK)TN+VgD)LsWQa%PV8p#c z#AvBRyN|7|ITJZ&+fUluWxVD54b(RnK3*tTUqgEQb5uB1$eVKH?uB^XvBwc%EW5}$ zy59P?fIr{-K7x{{U+!Z-(wYbUY0=p04AHdpK@5ZW>f(YjBw0=HMk5PTcY+pW*^R-q zSTYSF&1bUY6t?729Xf@MoK^wK48IH??yf|l6$tV5`;L$l3FIsq@%rcvpZneg^#%Y8 z(`qTNIjj_j!jiQ60yVq=MjUq^7VxaUuG|UCoylS%xmFv=m(EJ9iBmDC8Om-+by+8t zefm6pMS5{;upC8Gj;GCXNoX=Uv&H*b$&h-d+|vM$qb0tyqFUOVr|$e4CrL_z<cSpa zbPLz2RHf&l%>uZFN6Ht2?dO6TC91R_UzKCF+;%xT$t)h}+an`dkC#$T_gc#j41S43 zyrl{23o_H?ccfmo`q!kw!CRO&{l!c2!*0J%FmfCCW@>$KA43s%thlwiAiU)Z5nTMl zj)nN+#{4cl#Kie`{`Zbk6QN^but$0LSN}RthvhDW{ahX<AUiYN5X~MP^g0DY5raAo z8Gf4ZR|;{PW(HD*d1_zVZv-=%(TZKVA<4+#W*qh7I2XA~QTFg{yxaSdmh!GYRBP3- zlFj!7(Ju0vjdSVV&y1j+a#fKAejgI|4}gIwC1nQkJ?>ZpahJr5PLPR_zUZ=vTEn`` zi>FR)VxI3BZ^sJxx&Q*n!0PYKxJiDUq>J83=b~y)o(^+aSH(walAM%&W9}T$t&7f) zwzlL)s6+1>XSXc%bJp<(?<tL)57$jySHBybFkrDKjlEsOUydq9?|0iW^aIY`YqZt) z4Q$?r&|IEEqn^mctkN9c(iD8n@LL_Kv*+`E(4#SpD@RVLZS<wIhTO#zh(S&o37?-U zqXPo(eCj?r4h3ZUuGqCe26zKJj?xk@8MovJr1dMx?d~`$-M=Tm1j4D5z`RU=a&mW$ zCZ}xhr&lJW3P@a}&)(}^qrT=NC`$ak57Emnej`K|>6vl(CRH@rlsfy9NO{fYwLrJ8 zRp&KyM<U^qq+!y=;itr)9>=MgTwTW8;CwpkWy_x}kI#X7w?wIGBIZb0e(dOeMFrC& z=e7ZQbf?8{PX$F_ndm5W)pWP=ZKo9S=P^r^_xhIgqbFWS-_2S)uQ%d2<l62Kwi`MA z7Vmg#!{L5G?hWs6A0`X}F}95@>lv-}4qbV37ojy3*~vLwPq7Ndq&Hui??sXsjZ@7B zHDN}0qP}!ye`65(u4X9A480TB1-;<sQA&HH<yPs!fZDR8NzuMy%J(CF4iL-zTscC+ z=&VKB%+Q|@z|HPzUfW!r*;bgsIE&?{bw9<xfLmJLYwn?u=}Y977!j2pJJlv)LxDvQ zl5G|UFZ|Y8BU_A;9gT&>03_;L<|pFXvSW%9{ShVpqbid02lWBk^~IVLN8u+f=;_Go z$j{Z>5>nE_@+}c(?AM-1rR?j2;bEp~txfRK;zTeE1oS)5NDN(cOZB~Y-E*OVZT4qw zcUYvHa4thySWH`9B0P8hx4yq!sO~@#b4{28^q>0{zNzn8$BT=Eq}R({MIaO5uaHU3 zbw4q3f?5LwxSFiiTV9-u(zuY<-ZRj<tre)|KFGW}T5Uiz^~AIsTxaubi&K*ra9F@U z4<iv`P23S-ay^Ks(#Q+fD*tAvui26bN`htwwOJ+Tibke=Gd2<sYw!Q{*m^_YY@oFD z#Hz=2Q6f^`9-n#=R%q(MS8u}np=n;lur5B9HABzk>D71WqwIQgxz&uexV2m_j-9Yw z%VFOYX}ZAY15pk$&v6#UV&!~q4`&!MA@chtb8&`&U#Xj-RUc-b-F~Rh`AXq0o@<ky z>QIwqN!|wQ;nihXV15~}na<m&M|6=@<PM5OuBRjN*5}O|eM>|}wy1t3$d3um8qPE! zs4BC3A-2RwkAF8GtS4#0*_nU`FtW{7JoAkgQ?ku9m7a8zw<wn%6YtjwWo!1?11?9l z_r)NQo%Y|ERf2CiZj5ffr4B0|4uwBrvQ_E*94?GsyymOR)V~i2BGP92_<jZ@UrF7^ zh(m$z2ThBtGaD9@K}WWl#O^HAL9${NCs9kv!4FPI3at_|izlghR%4H`NR}W3*f7?f zmtEdV#MTOPae>AK@AgK&&lw_=!frmq9gC~ioc=`xg&Aj9<(;9?y9`8HW1L?Vx$0B* zgh^`mH?MgXBiqVC_Lz|LsVvR5<}K>x2%3Of#MeJ1Tsp7>#tf+>?u_}U)?tJBGNsQL zACEmwn1gf9G-Y5YF=hHqhB~C@ZGzhHyD8Hz>ozn5k#t=Asigdvy+^mRT63TJj8$H4 zQbSab%OiceVT7pLV!MK#xg&+k!O{hr?eeh&{Wmh^-k;ase_I)v692i~{*GCz$z$gC z<;8`gIZCKxX&9o`29#XHuz72q^x?QzyvE0xW;TNu|JwImZLTueq_3;g^yBB(jFdfA z*n>*QxAM08+iVDA!mjMq`R<zVtpeQBskf3jW<`1JNee;l*qti;Ay%2H?tx-+(v?v{ z{1HkE2IZg|*5|v8e#;&x*V@T$EVoIapxrAe=$lwmm9vrP?fTfq)=NiNzta#<pW*!b zoHTA%TR5ZjBNYhub92<GFC-6H5DtK8eJwEc2uzHxUkL(zC;6|EYZZegh`s4AvztO0 zQY&S+POE3co-g=J4Ae(&H&lf;sceFALC=vHO`SbEzgYEb3<saeoG<6K?b`w<=BNuV z`NtNQ>$16_?oaB}(ED~t2v>D5CAM;3q4+I(-yPCEwln40E^4kZ1MK7Q{|6jF<Gv(7 zpMawUXhl(O0B!(?kB=Yx`s=Tsvaz^aF4oNZ6nk|UoBP)?sQh7C)fHHp*I;zsL7?+X zg5DkIoY!NrSn+yPd@XOI4U`hnXu^}+)X=^^t?|R@Icqpk5B~+-kZal4yqY@F3AmRK z-PS^nsj~<<95|nU1|{f6Y3iVJ>d%NWW~0;SY3Qt^Bos%|_J0vkv7Pq5Ls%Vq4FDQF z)Kt&KsjViYHXZQ4(9mp4p};nq@!s$fYadyBG&(}mcd9&;pr>_PCyOm6a{OB2P*|TE zz*_7guWdU~{fE%DGyFV%=Q4tx6(kQIOKjg^0C-#LXfN1K&Biq}C;8bN-NvXb`+ER2 z`V3m4qxsySaKYdto+;W$PVHExwe7FEIa>-y+x046PrRR~mJk|^f$*|L3Z_si8iNM2 zr-2mTdR!?<6f_N|#iFt)6vPoy806dEHKnS4{2ia72CLASqEXdO)<pKD)$d>`yKyEb zq0#rExkw><Is`qnH0;=dr@4`Y!6WEwNTYVs1_JJ{0Z_ED=uLJqFwq=x(q<fvq9~{# z4`>V|#A#?sDWGxtLJU>m%_H;{D}Hwej?A-39Gpp0{U)BP403McK(u-Y`4to+1idP) zDIwz8Rod$|(;3x5j8#j=&NXaEoI_R6!;HGQBn};gH8vhkOEad(Xd;r+2n97%tyXC( z2U{ZOE#PSe6zFUW|Cu^kAtFUN;A^8&xl*O6a5n+>LTpKA;qM6Fj<+X6+Sr3<x|g?y zcz97WLtEC;Q`>^MxeOI8dh<AR<^inJ2kFsYLu#uAQ&K0930729rL(D%-Cw;$V^TlT z^ZR42RDfFQHhqakA4x<?3N`EI?fL%bfzE704LL!zqBAvOuy+7yg#0=9_bj%cH3H5~ zJQeE*y4RtgVsM;~Mw^7r2!1z2<wC+hg-{T7eWv2?41XKhlfyrTv3(RQG2yRA^DdRD z)q8>^DjF2fsU+lU@cL9@G8GIqg>p|B1-?QCSq2fQJM;~gs;bm(T!TiZLk$M8C8bca zZZ$0>g`kGe=&h)s00x_bh}3Dcm758878CSt12pKZ)6g1vg3?CNyA;2>0*&5+RzC!t zxd)*@xQ$Dr^N}#99cOwJidKuNsytuv2Q<5DxUOwHwvtLhK|g<<(}t$Hi4i+gf*Od@ z23Ve`r^TwUJ#Ej<d)^3AgCogbQh`MY(xK{c1lq#iySCv(W{xJ=s1jY@flW11(y^6N z*H+rq7J@!6I<p0PQV*JUtv}@J5&oeuV{#4!r9Y^8G&)GOmk^!eL)+el<N4?DWoM%= z-HjRyvMyVpS9J(2DuvU7Y`0!cUDPN(De?2*ND~<jEy0kAW!*Y#AAgLlriPHkO!K+t z^S7obrgy9*N7I8QpNm%AAll4sM#nlyX}3~6Fi1xnC?Qb4k*Aa(ILZ{9yA?uOs2CX{ zq=%r-NBPpPY22}e^a*FuQP+pgM#!B3aew?Bp$I!~Uz^AK?O$@O$Aaqo1OK<)%ddx< z$c;RDXmhz-*lY(^NBvE$WG**i(uRMA-nV?hGwGl3m()ivYP-IpUSyF%bdiS78ebq} zvlHk%ivb%Rr(#@yhx?TAsN)*+&O!Sg|L9r|%^sD9MxUHL0RFtVnV*&KpikszewF$F zHfw;3G9T{xfkKe;g_dnC>oHt>=+dO$^vq^2n;L>VKCx?6^bK_Z9$V+-w<AqtI*vVf zACHL>CrW@m0_lN1g;Z623U~^_73jmglRsG&ELecW(i>H&!qjA;Q{RHg<wnt1$r=zx zL)mcZi?`C4+r}?`GM4x6`!98B3lW_`5}TXZnBSi>=geTm>+do)YBm*~B8Cnh#ixB{ zGt!Vorp-g6HwMf;8d*&7idOm;zJWe%6x8pcrGGj}=AM*vl;BhK<X97lQM3dH-AYT} z8e;1!=^5{)J`h2+Z70nu7qU4c2Ayd%9-W2FdM~4WW^m1AU|=a~%0!IbRz^0L;?}fb zsoF|?nSvU0GbVHy8eJ^G5z&myw6SabqXayq)UBz+Xge3sps3+(U>mm;&{8;*R82j* zo8QF~?7$HpPoTP%QPt4|<ILED$#~m+1bw@SsM*a#ZyrCN^B}SFw$u3B-)S&p@J31! zJv(BVq-Ic)n@L3Vm(*%aXyVej>+Vab*wIAUwkCps5LHDE8k9PeHXSOEG%cOy<`<x< zU{ayC)y&Y5KGuHn7G8fXT1zqkUk9j022_P-%zM#NTfYgNu?($wBGrqQ(p0eloxy;? zY@_Jow^4M-sDVl}`fOrS2h&ph3BHbc3KRuYm0km*Xl^i4Q}8Z%v6nH>mrTp{SiY=w zGw7^Ku}9m<9x{TL?)^D!WlQiiZlSZSh-rr21e_YKdT1o~JiLU|kb>Fj;j9r!tp4yx za93e=Yv~{eiiOdk9G<Ya38nU-diB9ee>s!WF<Ph4S_eaB<d8kUhG7S|Hq@ZZaAJ&3 z<jZH)Qnf;1(5?N5O*7$Y39<0ituz<y!tN-d$<>Iv_I-L!xD`W06kETppl+F!!DpIi zYiOjQLQnnTx49zFfyrNuqH&@%4kZ|>C(t<`N34hZwqfX2YiI(DH5#V=dL$qJYdzIF zJ}2m_N8hxN=88xxfeIQrx8n)=KyAcbw*y5JiQdr@)xDlTM}SZ;d{4yR0sb}vfxt%c zhL1wgMq+j5uye&KI(DuF)r&@-gBq;I-}V8q*;nCix6^ZEEL#_?q+x3@s*;JK7?^V7 z8EjozK-I=gSR#8-JTFM*@FWI~P3H4YHWQnsr7c0v!i`P1G%8c9c52p#`#@TD!kItq zgRaWK$fQ1)tkKN<@3WX~J|Yuhu|~zw-e|%cVWe{TH&<j(&>9D#(I*q=_zI0a8gE+* z^;_RXX8<+ON%oLwG*%SRQu7%}S+!K`2;bh0Nz13Lt^!}jCz!2k=;&x7Dk+!7%1Vmo zwqlP?rq}q}amG9N`&n<(X>2DoB6Z)HUkrHI+PIZ?OFaKv_z=%GE+d^mY}++~i55RA z3xeFH?a$!mW*VKP)LAmnY0Q{>K?=NWOr6n>_yBaQs74p>z^nJrvuY?kBZi_)He(ta zi>5)v+%Jw*U(X{hGm-kz0y6p!!X6z>ZOJZHyz>EdC5wQ?WDOpVyFH%Lnn;2%8O*#R zpB9}K*TRLE&YF!jCYrpLU!=w2$Kp}R{8+=LS+8L4sAZ~YJQt=X<1a6#W93R(-+Lcp zk35{$U5DeWS!nb@cHjGJhDDr%MZ158yC6<*DL7_kk~}8)s6ENv;uh+k-a?NZc5I`P zu=I~5G-(p={`o=57tdqTbwgP4RwwR)DB>==lBRz=!u|aoqi)S6J`Ged$EZc8QMh8( zgk!3D9<Bnt^`ZALXw2;PG*B0EGB4{h1{-2HbMmyK9`A5`c`oYyZ#{kU#<Fh5TvVM( zM{FLw-8DcNMrSMI4j97&tL8Hx%gKZZ1CQ%`-?VJ*Bc$1S(HwNM!QRMi@#79#bw3(4 z5Tf#nrGRow&;MW13Nqt@OqekGsE<8RaC<GRTf?A1gXw>Q>tKr$BLVsc#OzI=)e=Qg zod;KR2T|U3RK?DqGt-Gm%;BF`Ka0`V#I6q)Gd^MzmD*S~`WMoWHii|w#`DW*V<}${ zNu&ai##q+>{&iAx;ag{M=5*qNW%O~3ps>Y9vAde)QNJP67J)n0O`OI^Wk(_FTx~d` zY?M~Lj1@C|VkctJN1{tfB)hT%!-n6oEIpn;M!1jg!rxrXHE-|cqGpu|==hvg=vaYg z*G9a6O$}jlL8CF1h@cjqriMoE7c7Z5m+R8?IJSI(%Tr2FpN7_7MyGBuQMv{cx1J%% z*Ri7ReKKO2=uHwmEZ0#Mt!3B^qxj^B53xF$$Q?F?1+P|+)W4PT)&Bz&Vwwvn-(E`8 z*7Y<5YOn=r$ZQ;sOVdhKXA#lCMnb_xB7soZCOX^4QnLPinyV^E?3GVpXCaAg;q^<4 zBZ7=?_c7JI7I&wIaz{GJO{-b?dJEBUsp!U^!yh&SD*P53S)C08LvBLR>D1J2p{Zpa z{$K@7E$#HoJdaGWDRuiP@GeEG-9^udGw4130upm#SX?-rd!GD=UhO-WkgR9>vX4Pg za2gZnWsaiF--Oc`$B?9(DA-^nF5S+?`8%;_$KnfqKxbPMiY6MxU&M;&0F&C>tk8P7 zOKZcTL=gC*37f};GWjQbx>X^kbw0iO^u=8Q7y2y}DQ7S$p%2k^6MfDd!Jl9Kn4I#t zXm}dE(ZbI8acq98ovF!Jqg8Y?JiCc{&8O(v>TpKnv*OWJRClh&ns6QN<|X*r*U;Lj zBehRI>PmL8eZgN*O;*+$r!jcfYTp0r;_x@Vq6gKF8PJ)>(PSIQB4dC@Zy8G4vJYAF z(YrLnxQOh8B!_|8(sew2$3oKd7OZLwxv>}G)R~AeB?8%~j3ekUpii-|dsi_Vn-z2k z(OiDfO&HVcRBzfrC=?_<HwQ(h;oZMJNZFQ6csg9+nLUa^g(;nNu_GCqkVR}~E9PCF z5!tkXK^KfCI^D?TFFzsZ_W<F_=%@etn$EUXOd&76j?W2cOcX6Whute{33}JlQn8TG zW)1DpqlgK*Db5&6YR^bs+)%|8u4+E|>t`hERo1$T2&jHQN2@-T+Tt=aArIO1{?zyz zNwD-L!7-TzO#rLA42LC!jH&r(H`Jj|8AHUJ99I2%2?g6;!)UiK?T$N%$<4&?^YZnx z|DkfnHu8p#V$3C15)l(e!0%`7laJ9_S3}O=;S{V`g2}4E7Z^)><6>67|7R3kJVx7O z@`feS(Njl4wgYFJ1(VLi;P}BTdUY8?77b&PeKudWZ{?hrRK~B-(d26;$rz-~?<dKU zM=S=^5JVVt^fku9l4?2t>xe|0v$Ih&3YEpp{QZAxxUE4$@bxkP+Lu<-BPA1EjhW1e z=b(=bSNtMk;>aC3lGPtArM`46+ZTr?+F2a2R27`Vn}70>KmH;zufBzd7&C>n?OasX z1A`9UJvWWo8?WQCw_UhR^RajqP`c*^qb4E(+n6yVKl*nRvjxw#2DZKSCZnzA6VfQm zZ}&57W+q8?J#Q{5VO4~N|Bg*Lrr+_#EGN-d_NM9eoix8yK<Cy*qAu>i?7Qycwcp&s z;+G#|*tz$z=F=veqlXb|GEsWPm0WW7Y;M!NLSXl!^hx?fms$o6RQ>5j933$fH?Cr{ zZXnw9Qi@F~=cP<KuHymd6RapE9dV{KJgzn(Q(bhV^u@Sy0}O?NhAoWS^H`5RNO`lH za|fNg4Tm!7tBHsi&Mr$m0KJliAK!txI3cs5xs&|luJ<s@A{?g=3DCz$QIyw!2|$dZ zC>6kORaJeayT+rcDw<9Q%}z5(l{#uXRj8qMjJ5>gGb6&44MPH#w)LfbO9Lp7Y|W)8 zs)H77ADpEgDhpaLdxBurvb$q98P*=42X~+yi_Xr-h+MpikA6|3(6E?HTLjJiP9pUd zR8?hD^Fs9YSxmX1Kd(LTKFz@VPAA!&B@B-rMOJh^+w=0UL|SR7uf-e@OKe;c%`MxR zsMye<Ffn=@n~c3MSiH2SHnMW3gC2ej$-3~8MGG{W8Q1tF$*vXn=PoDE;AiltIfSyt zQT*1^v^K0G5EaYh%u6x(Obm;kg{PwxkI4pR3%Sj(=^yK9sE?(gGM3V9Wn?=IJlkQ# z5YeBIA&u)p9_Ib&5t{sU<i}2>S=I74QwlZiVm5foSm_*0$e2iaY9zJ|@AJlkza;4Q z6Q7;O#<?F8r$Sl8U<TtNB~XWL?ph}KTWRuDqv<H8UaMtxpWDy|^qgPlVq{hXMU}1e z_duK_4j(EVUX`BCd;*T1EU9@1bIvq+c{9-f`4$6xvS*QUbAL2?E$+&8mVdsBVk0CN zlh|ZT;1;8k`0S}{(bmw{pNKEy<5ky2q8&rIz+giS1Tj^+$hPZ<(Da}^?<SVjxNt>; z7+hD+%#Hw^kAB9ZiXM}}#{7o&7@IzuG5T}R2krP0T$GNxhO5r&N8uYg39hY0Rkc`5 z8E69v-q&|?aiBL<kqM+lYjJpd*tJpUQ^GAaZE2m@$|8v-5%zY`M5WOg$Y+DAh)}Q` z9|~$fW%$6eG31-rUca1m%NCN`@gDw=7o)uwv1y4^Z2g)qV<vL#v|*T=9h|eZg^ToN z;uh6{It<MOShe6?l5Kq%ZJ11TaxPwP8=3ZeR3-vY74$RLUrkX;6u-#J!dKzKx3i7( zKs4!QpjD;m+3i@*Oh@_Jg~lJGUfqDks^_fPcVkGm)7V;xdwo62HhY;8)NzeY!|&Q$ zM0s^gi8~LyqR{+74R6*wj%w6VKkjChY%S*(qhnY#e<7_#BmE{$VddH_q%`dy<o=Yn zq+x_Qw$MB8971h+`gK-P<*uT2-V<a+4B)S(bb2^@(qf6mX^5p(?PR@cB{tI_tRV~4 zW-VuEwHWrSs<T%Q07GBUDX^d%Rj<LjwTXtEYsmB)$jrC~0xG^YYbi@}W9SjZnK$0S z?uHJ^o89Om!tFFVy`Gu3-?Q(y<1W9JP$<Yx9$ksOC`iAEO4_S-(%D?V#?KWtf87JE zp*LB%y-1EU(BbqDShALp&H<>ZN+0J)2!JclLV_WR&CQExh^(b9>q6FTbulW+&czq@ z;FS-zvq=-;$twq=i?i&j+-~jk@~-M5qE8%m$461Bgedv6nCv<Q$L==VYify@nvQK` z5{gbk=Z+@&4;g^rtkDdaHH-Sv66QYnII8*-K~EBk-<ZX+cU+9Wv@f5#jc8El;nwou zQV*|=`2|my7gJR9HEYvD1ax55hPXN}hMX~1()#rZnpSpV3^;HEv#Ivhu*08-DZxVa zlr(gDElqA0Uo9-AqS;MK<gwk#H}{Mp>46crmRHgGQ8CqjTuJ0PIh=j(1H5|w-E5uz zG}(iH!q%0IT=>k(G~RtHX>YA3ex{MnZADz9UjdBi@@q^-Nh7|6O*D2^u)~l?Vy1(V z$nc6fanW7teLj$)Q7~pkz@B}zEcRB~{0RihE9ljxr$DXP_t@>#ZKx{b#2x#jyCdmz zwG*dJAf$#Ujts9P(<}3g<2%^CW$ccga6=)L>J|^v`X(ITx#-G%hvHO`0DYWPRlVfs zkNWNyD-=ds43s81X=*DYx@7}u$U|KEKomtG5Dek4=AlPNl#)P;uO7QTid1tPeN8$H z9Wd{u?esTmQSAmcwj{H=%|k}CpPiL&b7t~2xD<FP`*p6~bs+<zC)4DuVSe?ioSA$r z^`3It{LS<n(u3H{^nK$hOBz6wE|r3<%g9Q}C(fEf;<cA>+3N*-n2<>Qe>QP01{C0b zArC*%ni%Ye#fU;Bxi}myG;^|e<n3*wI?ZhC$RS6mWV)+?k%8HmV{A|jT3;J^NwZn+ z%A#jdKTK^Q%=t0IYzFiR1aq{+oi~V`kFO`q6Ch@AEY0y&Z0%kgn;W>*t4I0S?RY-e zMP6HwBzq1!I@Z(M7QRjB33ZU?7=kfjDArCd)6mmkuyAd{EN*mvi6t(T|5+!}k=o4I ztXM89RZ05Bj#MftAyjq{LhI51LB^wSU3@gU@&E=!#c)+GuK8#)Wle4dqT?^oP9`W9 zgI@uiLj0`*@a}G-<^3W$mREzK(E3R+X+R1pXJDmH4^eFaf))e)+(}ds;&yY88qHvI zgb3heyiSkZpx{tImukme4(E)_W?@+q*`8!dI(OqVM3JYBpwzvM(YIYmYEB=T-q=Z? z&dph^D&|fd?Mo{$Z>mR^Y@^!aXK}NOF~ia@m$j2s?IPC{ODL!kO4g&8Lj>bvY4HcR zvACLg)y<|mhv47sqIq*E`s@hQFI<dt^Z`d7RE<hV4WeD@C5V?^j)8<Sb8t13pf_2W zbngtbHVfxJo=d0J#@W+H)AU{;ZjFLH+exs+L!ik^j-wxm*_oI^I*2rq)SM0m(Dk*W zX;+x14e*DGdZzZtWBIN|{xmZye7yo8KG{&kpWoh$26#ANChL<DG!X_Y17cAW1y5l! z&2NR<g>>;240S=qs#*ei4MtChzhfi>tW|<+vcYx4GbQzAJc<TWv4#uGJt-*CVRp{u zEQg*?cKC_3jpDrFGqG)IL#OB<c@TJ^!5kvRm`ZQwC|W`uoEj4$HAtbqnOs9Gg%Mh^ z+DuHdPavR#_d^>P0*^)|=K8+0wRyS!lkIHj=;S6$Y_ljlboUtA=apja9gU*bgxeuv z%(zxoql-5Y^acrTZKQQuBO8<;ue`U7z99`;Vy#>~JrAwJh#@%~W_;!C_^UfmvLaa8 z?!q6_pY)06F~`}+`en=6R?$IfV>POG0eKB^SX%68y|qL|3}CHi7v*(x$w@v7v&~QB zlx#AG4#Muv#TlQ->fO!!r*s9sy)mEYcssVnWafRmjdG1jRHvUiUf;mAV=^hM3oi|} zys{P3dHLM>=t6emW_Xl|S8pCd^Sgz#eo}&KSrz79(YTgXfdYoK2+Vz=$%x43yxSk7 zs%j^zKYWMwj#n@Q+<f*g6D#8`<wkEarT}QR>bbgO0qa6lMCHt&x3iPZNQHHs8(6(O z4b!H2?7ApCzE;+@e@&IwPuAF(jOv>~?$CI&y72FYi-)H1!m?6se{DT~KCd5n@pg`d zqEWDqPR5XIqxG}hG`+SHG%)MjyLkJB-;t2B95vLNPu^=~%w;#>`TK9Vc;d}GVfrtn zzSn`Dcj@&d)ES`We`^Q^1C$1v2$I6^@h%?UQcprh6uTRazWd;j7&9Gswl`rlI#HBH zT;3G?Iy0lI4Sa2B+jnQ@i*2=NH43A%kGwtlv0Cx^%cR<RQSbM$)3}rvRUyWHoa;+> zp)y?W^5P4INO5+(kNa2xy7+ELfc}9{T@a(waNFoxxVmm0Guqz-AfsOfb?qK*dv!f$ z=$-o>@5zqETU14+B@qRMK_)FLTYbdF7}2NNp}d3Eke0}4J*j=;3x4O_#m{b=O;YJu z+`vPOZ_Gej(oWy;qtOqFW%Z-~BcRdng*m`XgAuREK}e%Tal}z)O(L~q5iWlV12WE_ ztz5_T8XFOHK7zodijk@qBd^uBb1_EjC<IVRuJMqJ4wubLi(VzQ)5jS`BUc$_6JZMx zvMIz|(ihM6COX#CqDiqau%a)WUWmTD7p6YZw0^!D*TM=Cru4-aX=1>GBWZYf8*FbP zeM%bDuWqN75Sbwj+7EUUY71iS6AfEoh;stENE5L?$wxJTXHyf(=cPmwqE@evSlvm4 zJ_>XE)r{%XkmFZLu_T}^3jqp$pp#;PyngR^bekIqw)xmy+)QM32dyLH*}bBQTT~O8 z<uw@dBC!sQ$I>f?q~%r$o7}7*K;_H~@|*kwTYXqZB%+ToqffBn+1^O&7rP;(Qs~g~ zbZa}q(J@$WAl(n2;wO-1W6};kkKtir|3q5cey$sn$v@^5@I+A~m-I_zW_}U_lOxc5 zvYYmebqo!tY|;j~*&GF`%8iaPuDxLjaarL|8GCJC)If-)H+SOQ)k^1<M$jt6T-Apb zkC#6_wwS-98ksdSlX1WOf=kn5_`0eEt3}V7H;(3<e=lWySxfkvP|@JETZtSIiDN{# zH+FYKfP#;glA70#SVt<VCx|&e21TdPzOaJmA}?vyJaj<gW1AtUave6(dPLLkr<JI_ z5RU$_L|+_U!NR?vj;7alqK&cf_l9Q9n4HO~Rol68+F)W*9Xv93C$FrmCNIHGPMnSR z)>qQ*@nbjXQFI!%HMpo!LWESfh7S6m<?k2tCMh>uHdlix{@M<FrERp$E5m2ibGECA zXRaMi<U7TL8ala-4&u@stSxP38(J>2S*daR@De0hr(;xGkg*tPB*aftW4N@m*^N8R z!C#AunbJR(v*z^Vtj8BJr&j`Jdo<X$Ht}24&6#H=GNAV$;thJ%l{In0>zlX$1CuZ7 zM^ciVc`t6_FEx!Q?{6f=Ze)$y%^%LqN29=N?`&q*%WJrKLN-q=*vYwrQaFFl*UdgY zg+`B`#RU!g`>oA9r&`H)r<gxsCa8e6K0xD(+du>QBpU=({IzZfsi<0on}Y_{=~O=6 zRK;C)j_0u@K`zw?Nlys34g|FUn$$WRh8SM;H<5MOBziR^GWpCi5Bj}kj0jg{hh;{w z>9=QMHiVx)JwJipf4q%PH&>G!X=Y(TJqru!>6s7?papg9tl8bn?nXC8ordkzZD2PL zb4_17h0V0i-HmHm6~-(F#w-V&+nZ?pv;+X1Nk^|C!-*K1$@Vq#DezWc=&WEw{adJ^ zHvB-NA(3c*HHsmN#*zvgdJFyS135!Kg6N1u+Wbu{seP9^r3Z$nF-*HMkDmQf`KHt; z3x7DLFL%GWk!g=DV#Ti}6K6m6iFn2g2eCiN$F-sw*Rm?~1q%HppUI}L=W@pN!&o!d z%ks)p2F50k`08imUXsLIQziFStih6UY;(hc?LI1=T!B7lq`2r+>Qb*Jub0a6Yj32< zq9fXKIUDx=Odls>R=AZRD`^0AowWe8$M&LEbtTW{x$w4>VsNJO`IZ_+W<?WeHJs4- z079W4bt?+Vjp@r;mz$lMT6*eZkNbFg?}8l5+S(P(;T=DdBaeR~q$~i@{UkvDK)Cm8 zoMts>Dbwy>S;7__%{yx=Sy|G=Svu#w&+7-I^J%%4EB3sbjn`|4v8m7*z?$czUxI}f zHdpZ6{GBvdrf}o<Z2DwH(GncV8#{x%ldv9pECgd7=A7Yu7<$2_+`p&^^PUROj<oSO z>^9;fOjNXV^826vnm|DZn&lp%me+DQMpV59jaC6qkbY<9!E=p#9Pn|W&BmYo9ZdCV z7>16RW-ouhO#hIMR-cN&pzxmJ<HDZ|$CO~lloN?#W)_50e)hLTcoK~Kw{N&Y;hdg{ z<BT+v1A6`<&(5K)d;|6W*@PDO6P^5HR$oG&mS7#8fb;AeI#yQW+1ZS3bTV2;xVmB+ znuv8s0%QI>pV@h_T)M862ZLsMc(fEn>c~Zl&Zb8fZRYFxHa@FrL#t76IL&CrhhIE9 ziW<1=>6K&^R^iopcw=Zb4yOs**c6mKOEP7~SXo#Q?#HY3`5E<%{>VTuM9qkJlI#W) zorVXu?530eO9^m&mV+ys;l(-^ttIvRod7{#bfkqpotp!|E7y-;_P>^}W_L5Mtt#jK znZ1~HMher`7BUGv&K}XQtpgN=GcK7<T*kqhQ7AeM(U<l@4TNa<XcxLz3p%Hf9;$(a z2oqmzuVY9?6pg54k4VN}6Tve}irHG#%KEYvECwxZUwD1-lE#jMUJNsa3?gI5AUeDO zKHpLUz`40j6h*<9<z(tZUt-p4F|~NPFE*OBHEo<_G83`06-~T_K&>0=ko~ts&HZDE zjWQ96F|+)!MSS+bW<357OWxZ=j|4lPZVsO#&TiayTX<J}2YK-}ECwArYud?)vk_9k zY1Xr~s*UHiRPo2$X#V)=cC;FWUrg(XF2RavKrD~U-HB&SGyPJX)L+(<3m#ugH7dUz zn?*uI6>CbHnE12djQ#6;+C2eYxN;bO`)~*51`p|z(|Kt@G4EV8l&H=S$@wv8-%$9) zmMU^x88o~7#K&6cKR%0BmhHw+(!|seJ#kvXU%#pL1a?nxGj%{RY0=@}dB$x+C|y#* z+^sdNDrw^4p{ZOlEDeu8$bS|Vv!T3&TVGv|%NwA>7v%iGDZIJ5oG-T3Fn?z~!H`Nq zgo$kl5jffdB#cPHo$KJIe_hPj^e8ScnyIgBrxTSPeWS6DPi6BvJD5`y;(~y}&c+~> zzgfzCDtI+oo(y@oXmAR>re*VgpKRspb!Chil*-Qsr?O~K@wfeY3tvma{-5DQhnYcX zPCngSv#*cTYS6NyrX9OUN4qD$D=SL@xN&?okAGFjj+!?5BsnnUMq<j1#9!}5=QN_| zwM3kePN1QaV27WU_X=rSUWGBFG9q#e>1v3VJBt}^Dj_yEo()wl93`8`9y*e#=iWli z2fNVMbP!MjwE3H;_6J$l?#8dA(SQ1QM$XE`VE*=(+BpM~ahUa7{oHDbYF%9l&=CH4 zw2w(fW75+6b|Hgj&t%uSRm^+(A%@QR37ZyJSv%@B27mBtZdgBzZS55-Dg8N9e>?w( z4YjJOVyO;M{>Q}-RM=AW5s_ogAyA~U$om)GjnZ*p>KQZ|hqJJt9*;kG+`ZNML>r1x zOM)SbqTTD!nl-fKjwNN+i-Z(~UAyO_B%DV{LkHK5$vm!ed{cetZqm%X@do{D(6q5j zr(tST&!a!_2#z(>R<`U3(9Yvn$65-|rws|vKM=-b6{<iJRPl$P#*##Wy9$lThG|bL zfn8^#*;|W#Ml{(&lF)9bhH@Xa(Mi<qY-Ch}mzH!JG5uq?^Y04@sVWnC#4@>OJk$5| zY9%<$lvmtJPLF@%s_jQXFuWX^efTs=*DS@@(7~>H7mNJK+%vQX?VbQj3LA*c9)mtl zgMUZ|Uv8-6zYB_a;(~$Lsyp$Ow`0n3knA+`WJ3p+-#C)MC)>Gedo5oWo$%>y`lF)* z6^E)2nv{m>b(0jozYk8)D4<c$Wk<5MpzffZ5tVQJQrFrH#9Z5lrZ)@t%C4}f$VJkq zWEdEa#-c+}6l^1su#GtMR-U3Lym!keY$hGvm}+`_wwroFWL=$4Qk*rsRJNkv*jfWG z)e~hk9JE$x+Mb2~iyJza(mS4%Ik|_N<El{^q()hI=;LkFwRsQu_x~*1#Uo!7@Xk%6 z_-JDlr7ka8jY2S_VoQx6<*Hm-fA<CL-u=7nSquk%4U!yYKHnM+k2`AGiLx5#1h&T* z_{+FVW{yfHCDO7lh#iii(-3*i{_!h{!khs~{BLnF6MKf2{!4I}P!#Y7RsQ_h4)j`u zukW5fd9#}f{<EBt`VI!Ag_m6WVrvaw@2KMs=j8L$qGBHZst|yXs&c`QR9xNwO&vaN zotVRu3wLo-eFH|LmOJksfwnV<)@~r^@}adE4jPj&Exg9`uV?n+w%68^<<L;v(7~?y z4z3=R!Mp1!nBF&GUw}UQiKPHc?it6rvS!BS#`5<I`=e15u6lMATPnkAr$4nP@ZEc6 z4}SXcT0H(Bg|#k5WJP1tX-SH=(W2LYKS*}0m499`5Vt>w&8TB+ZVaDosbOH6lTmk$ zrmo#fyxqu!Bhn5EP`{bgiv>IDxa!$e0Hj8lQ51#CM`v>R=!1iVNw4Mh$p?Qw>9iVt zIzF49jLl+UK|RAVqxL;^{?8}y#_BSD@lJSEjg93kY^`eLzV|j0Ycq1?$aGrVe#Yg+ zFm2%eH*roNdq6z@-cZH7cpDA)XmR^kJ$ncSn~{G<sBCNV@qBtBY^~>AU4Sx8h<k4u z#w(94A|=+q;x%Qwv!RNgP3^@UlXH)2N4y#Ni9GztcD7ZwF{O7rF*YNwttw-7|0LdA zQ_g2wYOor#TsSn9$G<9MVL?58lJ-y9+B=zW-`6U}j4sAZ#LfK~^!s^qszL7TmBgIw zF7C19fHoIhi;-R)55`f`F{IgP`rl?u79GKUu`JotfKL}o|4Hd&RmL-HRwj`N$F|E{ z?w;0-lEw~3<s4sof@MG)9jj~U__&;N$KK15oo})3ljq48b^{e#ova*i9>W*EOOmP* z+E7b*?7gJi{8!-6s;TM^QS;n-l8W`T`06RHe4ifUr?RLpiiqe2{u5QjHK|j%Ytr9Y zR@A`z8>)DBT_u+ePdl!$D_R9(Mg$S%K04c4$?2n|ZdWFmmCe}QS_-OHv$=9Odac5Y z{KVrr$2V24+eWe_mm-fB#a4)_DCDP(JNgrkK;5&X>Csf4j0*H|KU1765}<!5BEmnk z{?>5d+SX$>^+k)g$e6_V_jZwlf<t3LO|Z~o@;DTYhI@WGl(zZh*hVE0oS4Gchv)H& z{;4=Uei~d}{&-IQA-@n4B21`(2u3@e<oT_oD8UW@iuP2Vy@3#q%_~Hs!1;qyShlMH zUob>zV+T2LcJv8WDlA$y62y@gg}vYY-S(25W=a}5h>0}w@Y#L2U`Ps)s~Yg`Z02ii zfcJu4ZgfU4bxbmMX%Fr%-fKXrgLl?dP|@6Z#9gZN@mAt*8_3r$tR^$s8s3r1`t3Xa z9Vjj$9B|CzQuys>+bJc)2MGsHY8jIogH8j{-?-J7=rEzvC<H<(L(&hwIZ9@Xm1{?5 z@W|Yq)U_WRpgsN|&n?{zz|Y^>NJ&EnX1$h~{StY5Z3USzRx}!gKFJZRC~jhQ|0E{& zieq};gI{!#4(PortZhfHRfsU@n0MFs6WW~M+A*0tw{$nZ|7hF3|L@+f!Q#ROCiRRX z!C@lGYCx+|C}{|P|7@yg;nvsI;|qismlw-|oplUIbz;zI_}xd_IHOlQHEkXMdM4V* zPj;}OyoE_UqcP~TU=P1RI50ea)2x1p*iAY-<y*<^KNP!BM_h!7-=5Wb-#mf6Z$vH` zmdb0Z%CVbt{A6qv`aR!oIdL}LTvJXcwEyMnxuv`La$D`bkN<Lhcnw&MMj<=S%C@RD z(xNSBGzvCj_*d@jlXDrH8%u;K{5_Yv=X!jz`WR<7ao_Y_{OY}M$UWAHX5XaIDEr>j z9B9sfWd66fgb`U$yu6}}d*0eaFr@PQwL|HdaOmbXdp&mXKzb!c@Tbpq?EBnT+v`Y; zvhdZ8I_{d1N7~pdW;|F*(64gU$aLZp>?AwQEZfz<hO!pU>=Vz=&d58i{|~_I0ZBaa z#ZEl_5W_R07?KgiYpco_o)t|+b0-T6>gkmjL9)}#@XYYP{d8RRQFq^4T-ZQoAjtFA z3}t*?ER7rLP&xxBRUL%deVBSi;aX9Rx40F{;CP&~v(OlITzo;0pg**46Pd0^j4)x; zY1qBz=izuLIt?+`_NDccV%!_*7-pG{%hJiNrBC9vPD7V41;g#vL0l7?Z@hw>e}7Ep zON()wb1w0}xOd-iLViEB&ut=D>}GSr*F?v5GW~^Tc=Jzd(HR1)PkM|<Rl^Nqeh0wF z>}c|n9sKdr?bNn;xO2+!T~kA*1KrMM%vw7pa}{oXEFIQF^2=-48BxId#g$C%8Bf$n zXx{(`ZD>bTZIt+QD9PcUul(%kCwNr#m<q%d&2Azs`hC9-x<U%jrw<9xKM)}uD0&Uv zJpnp0CYA*)<M9={Fa%VFq9ak!;EHjeXu@GY(P?l@2~YU5`h&QE4qt$FPq=dFv>f_E zU^VKnn{;fe4p*M5T0P;)TV4CU$9%N0ipf3Wh>tMsn-sIN#zjtC`0uTqezXUKiM_I7 ztrXY0&}%g$I7}os67WacaVOh&ZhZ+Q%|Vv;c5vpmglB*Oso_w%p}ggows|dX=pZld z*e33LlcFeGeElF|?1xUEu^4oWN!F2`a&Y^DPOBj~(oAWin<3w5jriuV<06dIw|nsg zLR2)n$%?h{`IZ_QJACN1;qaNC?BKndN3o)~iFejj&^s|4ditd}Sy9|XcC3v#0}fsC zDapA%s1??^X!iyfk`Z;nJA1`Pm^iC{67Q_5*!QtcqhQc!@C8Dg(JLMRgHA(gq?wY& zaA0_KWf?}DhD3*nhd$m$b*qQFrsQ#Ep9Ic)Y!Uaoy^(p_>i|fNv@j|=nhoVGjLSRr zo<&7bn9w7R1=ZWgK49zIz126JR>OjyPrzx>V>juU*dvatSnIy;TL=eew=c+!n*HDJ zzyEj}DUoL4>_&nim2tWID~S2YP69y{qwe5406h~Tju=o6bm{OkGGZ*O-Q9d#%U&Ic zNv~zzUE@(zm7+QqD~g-Qi?<!q*e3Rj+ZUkiCLMFP)}SciH`zCg%fh7B(ks!<mdZ9} z^$*|8>5*XP>m79{3fw)l#|e!+&Tit%JIC|Pk`m4tm`t?I$lRZeBPY&=%M;jBaSs1K zt{j=cEw8R)VL=^}dd8!wD)+s+nY?&A*No0Mr~>=>)*2jUJ)?7CP!xrjf$@i&+uSb} z)f>c=xBpGB-k?QqIKCDJjYc6o+CoW#`?#LJ?>I&+k>}=O85~dbQ=6C=Ig5JhNLICe zfzi-|&tEJdqhAaScg-R6===2O@Y3}1%S6nWfp_N)+P|KUyV{7g$2n}OpNFGqBSZf4 zHcQ?qrlr=+)XS~>tFVa+qX%I#gnxz<Md2S84dB5KxAOQ`g<Lc=^`JNC$I8+-hPHX7 zj7Xl%j`DTDnY2XrW<+@di?Zrz?C^2+z>~9lowuQ#XkQ|g?L`E%IW*XJkl@$gFn{~+ z<YN(jTYU@_=$6hCsy;(_UZv<>-=0Lo_lp7=yMbVv4+!7t1qhahE5pOlVMW22aQNka zj5-ZkjY5Zae}J}|4*&it(P3g+RolLg%bMI2)w+nW?GKU{4Gs7FX2;slD6q43f8c2C z^b=vy9dg_7?kPQZ^(P|^`kX$&ieqX9R!ev+->m3<Q_n;@MxBNY<t^X(7;hlR-{$V1 zw#`FXqnoVQW4q0IIHPi6zIEpO)qRZoZqA{bRHj8)Fz7V&O+Io+iM1K2YxnTNvfWI3 zY%$FpJ~mgjV$y4vw5OUlu}3UAt%fnVF)aV(<bAh-`|b%^88L@{6Onwt3!K{*q`1C= z;h87);<4Ao!}d>>GU>JGv>JNs8Q0`q`>UX7(N;d$RLyO#t!HCJD+5xU+;e6Rs$0XA z=J9#4^hmHXHaCWO+v`Y+vT$afczPt*nb|Lqym%W^dL0^WPDE;y1^b?=@YFsD2Zd+Y zzkJrRT@43){_hv`=hdH#;Po3u9`t?vn_0bh?Hk|I$757>47W|rJ!<vzcqxj)Q&$dQ zX1_%4n0#y%#N0R=Ne&b75k}4#n9TCxMpo}`W_(`kzFydIxv^x$SQ)&hO=nu41d^R* z{_o;}$Gqaik)%dhcyM+fqWApn>5*VZt5KNRCw^ZD2AJ9>p7;nOFDwi9MQ^Ka<Mq|$ z{Ql!@ys&KdzT?f?R?CMQs+f_Vu<x$J;TY2+4hqjFLq@cf-Hpdzfj*EY&dhmAJ8viH ziLymAE#^WdDH<k4xM^I!3hjb?*7VBf<*_C@4LWvRcp=sIKR{b)9j3gqsB#yPJt7(3 z&9|}q{Sr3Mub|(g6pGtl#HUf1+~=}`&X*Hs<Ds*|zw18RGk2k@bTMWeXJ!(oO(9s} z!s_(XmNuBYN)1ICKL&gZOmm*#S0=3Noz-a2Qs(v$lV+vJ;3d*~a*lm$73fY<j;H^b z1KVvRL3cN)K>vVf?FK?FA6j5YNXu)0zBXLZ7)Ll1B&Hocv?+>$#h|6b8>HP6o{_ls z_VPEyN0=z6b?y7Oq@jbIwe1YgjAC(NJqDe2-|b?PUQ0%_mABWFlO1bi&VXcEI|De( zhaTHu(c?Hw)%(D)MB9$MT#{a^q3@pC`+L>4dAQ-FwfyUnfuu%RSX9u!6Z3ab-|i(4 zQV*&|eitqsmbR}?_DJF)jO?gs-`57Ssj`)V+IDi|?2OEcX71KnCLC~EKEbiSsyv}b zEEf$)WnAvzE3|tnMEz47Y^(_P^j<jR&{YDC$KhI2ru9uAEy_ZC#Qrf3PK#twK|LRB z3@-qC>%<&p^$S-jm+flY_a@-pGkan+6!Fm6eTm&u?eCN1;EOxQpOo=-#ohqDv?v^) zZycY^u*^t?XGI_O@fL#)%gMRpe9A?b^gMCtprb!<4@FV9e^zh&!4O8BmKT?o0zn36 z?7#j$pW1_;osqZi&c=m9Q@L>H$@xAzk{Fwj4G&D&7dG@-4VMf{<FR>#lr(fOcT2ch z9&I)7_0D>(9-YZwKHtHU3wDv8?BG{3dY$qyep6<Ql`po{^40cQMrKE2F?8+aSyffu zT3bQ1)j)?YNMj(x*g1KmMB6BPWhJ$xyNC|NGs>C57ZooM9rOax%+G-|Yi|a}o`D_{ zLDf(61-;1{GmMoF&!@ezoWA3e88aiA+g_bdltItHj6>H-&Wy3rJ28S!HdP(>L_gbz zL|W(VCd-yjxoI~|#!Pxv`|t)d^tBZecbL0<UFENHV<=ImaqXnh)RVmE78-S0B0ADe zXd)!+nM8P$1g)wn70qrYbm8vVfux1w^dSNI2SgiTfU-8Gqi6V<CZ?c6=L=D%sKlw^ zA3H<Jw^w~^MjdWnfVMpW`bZV%1FbG;qN2HzD@Uf&Bf(Ch!*o#f=Em{a{B`b5{yl#e za|R^S+~M1|a=@|L8=zy3(Brz-fK(?huPDVI458O*SX5BY#_|@H?`kC0Ze;$>a4W!j z>ni~ml5uh?Nk=pN7$?ER+Keo0t*2p6AM}<z0eW;!3>ObeBRSH-z;D^gHNvFd*Nb~N z88KFDMjcm-%wXeN8@Y6N+DTa&3c|ta%R9&65ALs!+%hrekjLFRDTi|hB{S}C^HEjk zml6)lv-&0N3(^4jDGvT~#o&`Nwi6X?HQ==9S-PtcfJ=s@k{*5hcQC&1_D<+(b^FmM z5K<3*1EtX@7*0{u{Aj*;hwIW|Y5aTsE`IgyW~y5|8I}=6W{j23x7N_%4e->WVy5*; z;E@aaA6IYciQ0Sj=(-oy5Mk2s(sjeTv{iFKt&4l#-UNgv4M$q^3`mVct5L}O=~yxu zi>I=cx_@n8R_09v2E?*p=@JGg$;27$H2Z34rxs0WCbeq~Y*@aI_DUFeZZ?Caq%rsP zIV?14xjpB6w3@?*%$fZX`P<x`;TDDCS>sr*!8$OW)D?aTo8HG4%%#JcLhrIlk`i_v z*JRTJsX>+c7dGP$dMPVg2FclUSQmpAD&765YUw2FgbFGuihATRHg)*$_(Rgd@dF?& z96umhy8(?mz~DXai>@IYbe|=BOFZ(tTy&A&zC_ag3iRF<j>A`j6CB|me2o$gwD0Z- zqJz_;xP5Xi7ks0VdEwAh<_t)pw5fwoNTt5r+vQ5a-Y|c(3N*l=v`D;x5Kk{IAsABG zyl2&fdE0C0`J2yqb!B*qUw=>~KEk+fWsK8JMvRpXUy!yv*JE*EJ+*CKdc@l?>9tJh z9e>;}C=Rop^$$$p{J|-#x&I9QaQ30CCMO~{-cIkNBe$q%H43RwmVJS%D`BC#D2hVg zBnQ4gcxS%@E9yUH4vU_?$qu5d1~Ow#&o>lt5hnh4Za&M48>wpXaLwpU`lUE&ar^mr zQx(CG%0<IcyCpmWoYg;(=dKybi`Nb#!mQ`|7uV3}I&>ADZ?nFv8GvCKQMi3UCiaLs zq~*ty>>%;3p_sEGF|2K1s;MVdlYxzHKVNs+*sSW<xH~|5qlf0&4y<u7@QgHyzxoXi zdUnyr7{fIq@B7v<%-r*a>a)$&$MF>ivkr+zgBGXT25JknDI*xMLq#zZ9rrQ!a<8i; z)aYYP!x#7*{jfR>6a*GyR8<;1c~rG{PU!e5N3THdT?6`fCj`q@-lq?#K>vVf?0U5R z5F_?n)-*IU=;33(pW)N9xnk&%w+*!#bq7r%{I&{o!k*9&Wi>FXUlPwR+kMoY-i#P4 z9)F0sb}tPs??JbDk440umXFwD2+&h{$1@{8fxmpdgXfl(;0uPs&b;mWS4zlFcCfj! zm0_9DCtTGyRW2Ty#_#s5X3;Oj!HVK00P+$}ymu7Xcb6dM7`~>b(oe=_ks4X^y$PdZ za${Jsr-kE0ZukDs{CY+&S~~rw?avd0R|d+6wvZfYCedMLYgPEo^)pLKP!#qpsn{Ki zIxQ1>gj=$nx?%{k{<)ZceqF>>qcV>8rX(0r(P|VnR<z(S>-pbRL-^V2>%VnLIen~! zm}~mtT3m_7sw1&~44T?<K3w#3)_QmFZqC)DjlG9pAjG0Y3u)c*Cb#Z>8>7L(KW4sy zPV?=tAtT00-{c71SY6KKUh&8EW=fxILla{l)0<Dbxt3aG1Vfg;&5ASXx_qnyg?vHU zzAU9pZKSnnJHf=6^cxb-yw+NJ=&UrLrE1Um%qQl^-~amq^a)m=Pw3g=WRME<4@jLR z{3B&YK{1A3*cYqec8sWFc(-dYXmNXkw0Zm(beeAs2YXvMqO68}6UO?dIF8uUo3Up- z;i5VhO>W;Y1>pllSq*3uh(3lE4uej^KQ9@?6PFI6rPEK#o?T`_YPj<H=1)iR=kxLb z82K%|tEU6ALCcqSj^my)dvMMHv(I~;qyT-onA#_SM=u)C-NQI$V{?yho!%e1;aSm~ z+2_b_(oY9NGNMS_a~CZy-j2nfrJ&YDVub0ib2GX_@1zLM9hAcJ%XTyIkp-;T-L!AX zM+h%x`P8CaJiDZXzQ3KzRnM;C{q<G!Pj%uj>v`^)VMku&N26dLpMrHr0$RO}+>}fn zn*9Vijh5SYJWbi$U!bkqNKE<L+`jw)YIJ%YJL5?bk71kZpN`9>w9(C+e=XTJpQbAm zMZrEIg=k|EwonURO!&+>=qf_^+mCO8B7kdA1;I8StE)dpr_V#H*N{Kb$aam&07o{8 zvVVh<<EI{VtL@5`@VunsZQ+ouyiXref&KycGU&sCpUH|I`@~e*KHtsUKzLP-*kfp! zuo-n!wRmXv1c>;S>ND)WZ5?Gb&@&-|t45|X=v&q_-Ya8IpXj=>W>odq#&e)chNaOb zDFW*;-d@#e6lV5IWZw2#-dkTutUbIW+<;W)zRe_F{mF2K9^pmibdVcwCpX@XFAyR# zCcIwt-WPw-J$fDE@^j+!r`KwD<bwX({K~pxo}2Jpx%bQ-1VbwCt*_+1cQ;d5=i;@W zj9^4o6u*3D6Yp;bPrmJ$U}yF2COZ8=`llTKGKX=t1RkIKZ|?s3HZHFGnB3j(vdv&1 zU^MWTQNL$E((q$C&RPAFNOYJu|3Az5Xk+zpZLVS+98c4yg(P((P)>mA_yLUCQpAq! z?~p(2mM$MJ(Bh?iVFh(cCGFlyl&D)6Fd>!ln$PiR6#6BPB;Ia1;R^JzRD~;=JBcvq zzIBrRF`r9H(A`b~^bbg3eFw`ODp%Y+3Pq>k#mXkOY;MD#)9hOh^++s+J(CDK{omUE z4Ern4(bjMXKHO4m-<0Guqt_~|-W_g3=xTtDvKpAs<Is&Dj^@GHeTa`Rk>oV-zz16o z>a!h{{r#yV8g!cD`u~fQPoq(I`MTlQj_@W^e1FWyPh{f*Q!yD%uN$&)5hng|(EwcD zz`l)ozS>?(yT{M_8>+Z%QVxBR9E{J4rNQOpAM*-0e{jlCj(TLnQ^xT6*&lM>7eA#X z(7|YJ4wsL)ks*mgyL6nv>5=q^xAXeyvf~QS8nX_ymyzVHIjG(pG$agR#FDpIyZ!Uy z3eatzmk<mDSXuTV@vS!MA`RpXjpxhtO91GXGn1s%)l{{fU<LXZQf)<Z=W+KxgY-b3 zPEN1i7~+H!*15=uv!O9)Q8Wsg<Z#t@K&tbYDz{dnmJVNd65+S?KSOwf6^lXJr4YP# z!q}SK;fXHaRo|_{tml{0dom&`8byH-S*Lf!S$sc?$&F#a_h8baI5rN8{;11Jc9-dW z!)-BUy_Q9V^*pg)7im!z?wFj*w7v<L4O&v8EIfMQfRnN!OiDy5FP;A>A6&eUvtzI5 za(ISt8^)}DiEOH9J+3wmfRytF;ZZvoZ+7BWReZ)oI+hoAx%BESYs0;vp6$&mh}Q%N zMvccFWh5rm#-^4+VpW9%XC_Hb^GTRQc=Q&F%I3}!?tg|oOXi7gB?0;eBD7~GvAyfm z0{d19IM&;GR)cQOMk@Xz-d<7^h3Bpw%8lc*yEMk!I2)b*Aizmk&$BD?;_a-wZ}Ru5 z>MVp1v->CUpUVev`{Y~-YF%tBZ{erov(O!3qnFb`&po@M7S_3r^2o!}S&V!d2{Fb5 zlGQB~=MJUs`Vg+_O~-r;H5j7hgCe|mDDiG0X<H3V5xL|JOF#+w*$`+Y-x!OcC?q@0 zRJL@UU@$%MDja*)fIg8W?4$sF`Z&FR0>v?F@~CwBgXA8tbJ}@>QW%#Pd(1)CV$|W@ zvuxUtD$o#~FqGiv+Nuc$PT1>?l^^21C#&sUXH-+$whl$Q^r93IQ3xt3DxE+CB2|zQ zP$D2ADjX1yK<Gtj1~5tylomsiP^Bq^CPf5}A|g^ll^y~J3R3T)c+PqEy<hLg8~4X! zj6KLscJ^Lt&ToEeuDNFBQehHnumW)bdq19Mou{9qFndrHix~wtX1!4j7-@{5OxDYv zE3|00FkBOg?#nZ}B{%jLJp{=zK9BWZLAEUAMB?Xlf3D3I_OD+*WZ(w0k>mR3mG*B) zWL`F#7mHJpuIJIB9hTFuKCEdQHuvTo>o7<~HVwM#x;8bx&+ui4?N+%aCI+%WXEerQ zp6E8ZY>qccJ6Y*DTWD*ce6ZGmX|OKWX;D}fE{c<3%(c2Mmz45aFNAXh9V=)zyqFp_ z`t+e<mZRQsjFfE4eWR=w__7TUesVMyzko#em>IHJoP&LM<*RsDXtYvYaBJ-gS87hE z>9vUCt_AsasMdRDFOCgeDGTcDe!C=?9NcMh)Bf!mByvh<;HmE%HCOVs6sf+C)Y8NZ zitBI2Z)#}(BGDunHs*FkyU~)Mv$HYm%kb3ov83u5>EaMhbu>pFh_HY4=$96rX?-pO zf-=(rI9HdGJwJoeE!JMW!La?nsTuU$P8Ip-wW%auip$IRQOrG^O)z~O^O8d?L&`@* z45`t^HQZ_TRL<!bvhxW)&p;Wh`Czq%*AW^EWT*IeA9ft3*Dca?Dk>~xCYVFa;IY2= zR?vau+=*(vk8n5IIOZJJ0OX2he7B<T_5}6TX{E}yG5(HX!JJv~ARLpU`~1;NxljuV zI87iJ8m@REzRpRSEh70*t75cA{hI0K`XR`XOv5HrZ>VZJDA$_&F1{>{JH5LsN;Xl= zM)MxS=6$>K*6Zhv&`OM)rL0)AT+LWX7@e$|^Yzhi8e=v%s$%@`O^J*!-o)_wGU_Vh z>dw6Hn`Yg);P_X4Go~djkZWpkGqJ+v0C`h(m%We9IlsICX6d8fZ{VgBL7aILRue9p z@!^`91P>%iCv2+nn%Tx}I@l%7<a=DiV^4autlpX2sWrEQ3ppL>ro4@cDA2X8i%6td zXx8*!J$B9a9J2Jx&5N{HLZSa+E85|F<j3dLbCv9Fp6=N^M7Y~G7BpDxk&&y{=_%BT zJ2iP%Qd;<iXdjIpS>(<0Fiv%*cBH`mOUJ}Py*<_Lq5{9+I|C^5w*dltbY~8KD4$!j zuS#P+s(6KxpLOn2kj%LLpBl~$=5}~l(~yE@g#DUab-q`K*u)2$GFVW<Y5t)%<4ST< zVYX3cfa5*?tu<rJI?V(b`lHfiaDfjY)@+|y^o!mHk1M?F=IYnv>g4Pn8743&lMRpX zJISa|=_8?1L6clnfZG|MSRmR}Qy8kaWziCkiIQw_P#AH0N_C(g>TQ3fuX246iby-N zS}8oRrKN0LN<EU2;fa(N8Q}LFxP?{{XPy;_?6(ZDA7!shPHrFvsO6A1?5|iiMG7s- zB)D_36*gElUpG0*Kl(O=umoi#2`MXBY30BL<k4r!Cv<u_^;p0_di>LkR62Q-%#>Xm z8$gugEl;!a&g<x-AMT27EhC4yM1`0_uNd{eKUQz-HIzFL<_LM(FCHC16%FmPPdD!3 zA-J=VmefxPx=F;yQEmo09G)6ae0Ax$=5)-~tt>kQ($`Lz>3-p}Yhftu<1DI~mkaDD zDPuG2v3!4IfH2hMNzV>@&l7R=_KPd_E?&)%u(vEr%rI1vzHt!$8fC*ycJqKwXE3LF zc-mAl@7u=u&z@cgsSOj6%Br&aO{WiezW0YjL<j;`>Ok`1tdLb>dbhTq^`(x94HwKU z&UnS}m4j}DxC24ihN2}N%0yz($b%bS1B`SBU7Ohy#N7uMYkGeQLSh)M1-yS%e8b6; zPV6{J3HJwK@QK+wXf}s=S+PN3i0xpxL5oqt!^bQo-I6`_<Jl(|7Qc->sPKWRGl}`b z{gqBd;EDIT5{0f>e0iVj>{vU>Vca!7oHJXRd-CqLGV`t&E+<6?uG=4DQ|E1JYKGdo z&MrTb{t{nmD<VUiM>as(u;!>9w;@ktEFDU0coVUB`KKIv&T(sbXK@bk>~<K3B6Yw8 z)$da2Bs^ICM7KG`_Ez$peHPF0hC)C}jL&){Uy#BM2Xl@vO2B$sRw}RXQ*v*s<K|P- zHrHiO8A7bjRB~OpSQ66Ze8B6AACvGnG&AGo{Hd+cmgMEduc==-lO4t7I^R9wlO4AG z5n;1_40f6QN;2`4qtuN1art+Ls<mTFZx`Gj@$Om}e7Nz{7j<n;JuRu5+k-LM9h9h~ zzXNcio^%g$sagE%t#2TkqPQsi$?GmN&fD^zfmhoY@?-s;_i1k7Ok1U|$k9XNrI@Vt z{yArT18;0})PBkpBaK^I2SWdRe^{c?<NfD+R(TkX2-Tm){IJ0tv^{rSehQkeR?Sl4 z9SpYa4SfV7olEInC-^m@?MEg(xbc9bnOs|b=(&D>&6)&>{19d5NZmX>=k>s(0-d`O z&ik=2eIX?$7R69;5Iug~!hx*WknrgaM@O<C%XcJMFuK$NlqOIL;;ftH>UkxHedM;R zx$;xTU(%MDBram@yPVEw!2~)us2tB${=g$Iw5z(3&Xn(V<=Fi2!7CeMRVUjS5(L#K z;eHKO+~VC<9iiUBFz(?AVQ)tyQp$ev@QLwnvjrdyLN=r=0ZkRF#xUG6u#1*W4p<{z z`LS6#q`F=<+^Dzp4#t=IBvWRwqZxN-A)zYf2*|R?c7UZwS8>#^qc0_f83fD+#~0Fp zO|j8n<k)Q!mN1`aZ^)B&&dst<km_mAD?5`qxCOz0GOp#ZIUcHvN_4n3Pp+Kd_sF4v zhg=ZH9EX|jo^^;}4Ib*iF-no)XKs(Rwqq4ByGryu-Pq0TxfPA*Pr=BvMlqa1EekxY zblbN{*8BBK&-P7Y>9Z@gM^AtBiqB23(t=sF(JN!``O*k}sW%IkH!q`2ie)K5Ur1Fw z3TFi(8}Vt)J+~P1q-K2VSpi<YyS%wH$lltr?OM#!#G;SGoe|YXK0I^RZz>XWzj+bW zbFJs|n5%F;?d*PfFaMsqq3K%DoUV>1B85B3)0r#!bOQN-^ct3}tQ=KEEh}Qz7M+ja z<rh1?*!QdaTuwk+vgU*F=Bnu@cv@>;BbRV5-NwgWT_Os$PKm6HDPqO~NBDQc7%vob zy0zmIuevl^+)ZA3J*xCBqrPK)p9Y{6!XJjF!?i3Wpc)RTBzXNMW11TQ_s2;smAFZ> zU9>GcxOb#;0Ia2Hd=~c#&_KqgWcjDjR=p_<0(0o?^)-8xiyqDPD7mAh5eUfmDypi8 z%4D||NG(?zQGHz!45G&%=w?VAg6n?DqGA37x)#jIcp#34uJ*fSRMUDA-RrJX`4}0H zF&K~2Rvw-uaiEKi_lz{`iXm75UUQRCF6~hUNw8w6vWjL|jTK|_$>EKo=W6zWfeSX4 zXt0jFd(%($vXL#1#sMACYc%njEr<4kK>UCe>TR5O$HP(~!|6Bao4%`$A=1E#nHKg> zu<2)(eP|u2TebDM&%(k|PypgUoi42nNhWe~R~ahS_FAwKs#7)MVzJaznM597S$h6i zf+1b$VTqu@YC`(HzdJ7khPjT_qlGTFVVl<{6H?Ofg&>zx?BJ6uw4-ql)qhu{V(hlp ztWM4jK!jRRk5;>@_$IGw+i73?B6SdV#BwL^Zl^C{GD^zear;l_jg9eTX!%tVpimYz zUFAl;NfU3h>&ac*sSAhJ6SB;2(1RQ<YCr&Ms#CsdT^iWQ70WfH@aL+@*_0~SC*qO| zT6s@IgCnW&Y(tHIgte<Rz6CA<R-RL3a<Hb`qJCq}c|gD+KsL=B!)D^!geJov+hiBs zfiy@;PEt_D(weIjV^LOD4MFZcD4+Hapk~#M2IQ(K#=GE(bOOG699ow%4*08|k8bE2 zuz`GzaVM}2{L|v2P;8_;=MAk(%JXCjJG8Ysc@LuM!XX5xinmQbnQ7U=kQVA!Tip$d zepNP${l$z&-$pyFm3>$3OyBpHHWU~(jFXo1T#NE5;^NI?Y34~iegF)DLQfrGV-xXq z6a&#cNmmTLEnYpNdiv3IXhTW$!!^|{^1f?QU^!_|7?$`B2avh9DU=#_Xi}8t>N|sN zXpYcl`(pU+O#Q7fgIJcN5r{P3WJlO8d4%(%6Z~(}m;<k3kLnt9T(KuU6|pqgYwU7g z1M})BIpZG8De%1C!k5&Cjq%->3R3mc-m&mt1*1V5<O(U*BceWL7nH8|O%=vaUjMYI zU>%Mn+{3>ftP9StduMZ8QgDpgUT-8RU(E3ttbgN?J|w4Z@KP-@<1b1HR<OzPKjHk( z7D(MZND^iJeG6@5=iJF5T}G|t-|aC@nzo~)Gx$~PS&i%cx*2!?W`dinx7X3;!ziz< zJHLB$VX)C4c<tk{eZV!{BLyG01>W$tP7D%E@d5gK=uN`U-H@!CJC2V?`~5s_Urdfm zI8|cryYzkndaXbJQ-6uoq^3B^z|{Ue6%2?tke1QGi|EOQ>OLVrYbex(Z3Pm9vJan- z-SX59RAt8!?gU8&PQjgrxDiI)n7NnRmfxOSU5r$yjwuco2R|b94W&U4iTpXlX*w&$ zar9!s&Lx-98CRPSU1YkI6kUcEj+HmG2L>+Lask`ad~MPWwHPO_c1x+ysT{mKm4Kqx zpeoo+aA`@>tnwQ3jxh`|1g@-jf<ja-Eg#43l^aYgAiA1m6=BWpJIBU**{SCSz3osz z?_P$~?{0Yo77|^Vi8_I*s&VjX8qqAuul@_WMXj!H*TD{E<}v6A1h=crR;iv;DwoKT zEI+k#h?YxOp0}ZmB1IU{y)f~>J|-63BP+d2b%k-Yw`WmQMkc{7EUBIFd;;`Y@Poz1 z+6=Pt(QUIvXH7=tn)tK(*kuGybOh2*j^c?9aHCjMP<bG~rx~&{kF0WX`$DD#k;gkf zwB6ucDIqoOyd_qRDvC@7pMf*W!@HVN4?nes5HU@GJuq+*Soajo)V^=eCW9ww_rRu( z4%&q=lUN0O7fb)wx8p@3Nj_|9ELg%9x{R!OUKx13)PI+7R@U5fMS2cVa7`p>!bb;8 zqk{?1KTMG#pUI<~YyVZRyE@ip-JXj5yL2|{7fdl6aAEcQ<|&>0)}2FZ_q9FTd&j#I z1LDcv@hAXFfyinmcoEMsp)CdoBP=iCmmLPD6-a<)V+ntn^V%g6peQ~>c^awdXdN%2 z{W!MB$|x2`@;P}#--tJh0ChfrEz&TGoy8I&DO4He%e-SBVKp^nQ0({T1ZXDpPzMee zP1|v-aTc`YDV?f72DBv}OW>vcI#;CJv|<ZFN<QF5()09ZL?-uNBS3ZMs3LI?+FCN$ z&WGV5<n?=ZMW=om$2sbS@CPdFzWGE4L%iBOzlvl6w7GV+mJ^9wqqP_sp^9|kzAo05 zIQvrLYt4zoaa!xyUsrsaj=}?K_S0cak<tKejFs$vPL0cKOlA`;@`%$FumERCVWwyj z##G%XmiM~EJQ{;T1WRE@An$0}ATNp2CdkqZ6yvd<pJ{F(jL?DmUQUlMtV6Sj6-;+l z-(^iePE&rZvDWqsjwNU&&`-|2zKLHC#GQDI_pmVHJw|tcDVH+-g2|KZjR2GTqC$iJ zGdOI%KjrK5EI!05k7c|+#T1!Ge~6|f&;gG`cAl=ln2taeh(xowUq1Ue2a_NCdKC?k zZjd5CvHLw4SDq1xPGne$=sASZ&TdEfv(#7N4<-XI)W#5r?DR^H``XEO4Gm|7>zrMp zAvpwSJYb@R;g`c1Uv4Uv-aSmSx|YYS4I3Jbg{AV4fzV;Y^Xph5an57elRhn|2TPzx z^iQ7$l|$l5814J>mc=Yc<nq7^uS6F-KY4}?uZisRMj|(ANwqKU9*XHMFf)qP41@)I zbzk)KkKGn@9>YC8M6)SxBiu8(DU7U=DGEav@z%kT`#=Q}VAtYsWapYG@{$o!_Q8Bx za~F}Qi^xj^%Akuqf&FaTmL);gSK+FCB$w^L3n<pEZLYZa{kM-D&0)1jpG|+h`3v%o z#<cVRU2--VB0B*_U(>oVw?+H!F$q_`hZT*Z8LwS^O527mveS^{tgW6@c9+ho$Alir zkUs^K2UK5SY!v%C$UWGc&jLsB?~>+4c<oPsG(fS&H0%5;=jJmB&@P&c+7PmQo#^SF zhnKfaY@2xa*>`#Af5{^wjBw_d!Kodtvn~VwU>Q)|Py$q$58=htO`Gnq490|!Cb*n2 zmwNb|6vF5%)7*eO=msBIMOZ9&r5#L{In{k@;&eUv!39sZX>G-SW|B$+ym(yH|HN`J zOxu&We>eBv@BQa6<bO7Q|9|T~?F=*j97>0_XzY)f&4!mIj6uMk4#Ge)U;X<1e*tC^ BV3+^^ literal 0 HcmV?d00001 diff --git a/codigo/imagen.png b/codigo/imagen.png new file mode 100644 index 0000000000000000000000000000000000000000..e8c0423cffc8231de084e10c23e7414f8448e39a GIT binary patch literal 19182 zcmeIaXH-*N*C<M{fIcdUio%1a5EPIi)qoTm5UNt8+Xx+$Py~daf}Iv>gaAtD0%`(C zM^I4+0Yj5+gAl4xB_YXKd-J^S``vr)J>Rc0#`$r^5R<*v+H=i0*X(ocJUnk^ux*Rz z79Jj+Z79RD7CbzBozS1aCUB?9)*u6XAOp@_46yV=2LxaCcjYm?9B|#+FTmU5%E2I4 ze~gEpuZn_-g6gq@?g0VUF`9~sKL4Je;OFnAC}c&c20#R_8`@!bc(w{df4n?TGxqWD z7&)NMp0c``F*6*NA?Zq(`#q<aI!n|-1$T&}H*FF+JNxxm!O_1aWGA;wZ@D89rG0o- zHgtEN_Dy7I+v~6|q~b8-gI3w%qbClRHp%|ID3GI|v43~fT_wlyCfC_vZIy7;e1>ij zEzvB$#&Q^C8{9)@hmQ52taIm2T7RNwm`7N<Qjxp>H+Pf6(-6Hp7(rf9@F5V%vkiP~ z(2Iob@*ULU2Oqpb*<fxYj{x8gj~>qkckpqLhffuJ2=V;i$NrCI$%ZRvHah51J2?tJ zd<`w({(b6J7e&FZm-+l7rT!9n6hE%Hys+Z&8Xek8nN=lq<@L2*m~y;|7E$*K-&Q}q z5xwlv<=7%dnSLlZZoXPK@FZN|()iBo+ej)UQ;nn@Ay725?9(%ar2A8=0@V@~Qx`Gx zAr1Sb>Qi_(0$yA6SBM;ig10NO_DMI*z;v)!WGj^^FI@dZ2CLyRxwwg<jIL;=n3br^ zWl^R-*i^nnuE^1c<Q&+VJmaw!*EaLMYt+iXa1~#O1XIJMU-V@*qHudrM)-b-6ZF}w zHK&A+laer{7ggl#j(njC(1%#fH;3)1RlF*!OyY`hb)E9C#BppTamT$Lb)Mhv1yqGD za6T@k7afROvvO2x4Xwv(`=K2u(<JLQ>Go+A^fDR0gzsmgD~7V@l<7Sjwt`AcFGW4Q zAA?>-su=%SP*5Uql}T7t(hPd}3BE4y&hh~-bi;3#xiFlv+5-0@<-jik$vI_Gj&%P9 zx^Xp%CeLBttB4`GFtNdZa#qWhjIDI&E5BVEI-IOKuyvz(;^>MIih}!f)(|7^xo`5~ z#)jQr<<LQo@iVx9NB9{pwC=CI-%s%2-gkWdgsX&orUX6hS8SjDRTN^U!g@X$OW@Rh z>WzKFDhnpzeN;&Kl<B+HQ-AK@hrg~Ac2Eu+CnXD$={wq|Z*Z4Nldb_2)A8El4Z6N6 zBzB8kPo-2{7e%uuukPFk_i`n3a8(Swd<XBNN@^>~lggb`b8$njtol@UP@HYm{4(+E z8obZ^;G!g!DXTJgzI^D-oVCi-agqd!<yC{l+V!mQQ>H~Y7_79%DN~lS<&ra#fG;U} z8hksXp=fb+E_x-FRL4W!$1D1vvd=g)m#AUHti{*0W<@-#{ajaxk~L)d;ez@?INXG8 z1VayXq)iO5)>X86#4z-<v*DjnT>WLVP0cP9uf#=3)M$#TIc)_|NAl#n!j&d09zrdQ zC5sGsqi2>h$2OOcq@3uZ)Fqdkokv!&HEi0w8ido=QM2Eyr-=c%Tzi&rb<gPDtq5^R z1}|1T#ycwzx7V2IfE@^1V}+oCQA~4GLn7H~B!c+{U+0=pF)GWr6e2m-@SElQI}Yb8 z&j_5a`0ZjO+h^C}i4v2Vk@FMd5MmUvP7J%`IndgZXU?}#_8KyGpt2GxxmhUzS9;b| zq{8)SSsw>|8*q!mp;P|UVFY6%w*S$Bl+#??0M^pt0!>azT#nI>`_OHl-hUFMo3L0m zKVsm5TNGAFpHrOoL5btGr&ey`7E(2(Z<V#OuuG$e8AT6WRG4b0n3EzS0-L@TQ&c~M z@3&|OPi0MUwxV>ENYUtCMkT9+T2))i{-aknv+>fV6ZAJXeyHE~!(}FSD|+0=vM%&2 zYFNv!Y($Ozo-2$0DJ5V0l<S3}Ggq?W13sK6qyOBPOe7vc-M4OM#S_&y?5$GT)@o(V z*jb$B)JYUg8fBw4qku|ftu!2F_<3e7L=h8PJbtjGd{S)lQWD6PG>JZM(x(d3B2P{S zBK*zdZ#l#^))bdal<4(1BRNQ4eM-M&Nh`OGGcO=f@)7JXpPH%Kh|1A8g^*{yam1Xd zV;VFUR2w2$YOHvitB4wX5n9K!Rhv^ng?$KN14YlDeD!JTxCk@OFM08H(W+pG3vF4# zEj%l6(UKeS)@Au(h>Ol9glln1cqLJ*sA2)Ty3&!jIQ4YNrvBiJ<lNSC=7c_H1i)pk zN3%m)pBBXBM9klbaO+u{Djo^ro}pEGWn$B7<A-JD7TDCudjB6E<TJ!1JM~mE7#UN` zer}s?jy$$r32qa!ORhb*v?$f#bWlc~QB~y8@kvZZoD@NKblsqp|7tmz{2592?6rQ? zKs0CSdd(@3#3RI7v@XuyLTQ|!KLVx;rF-6Vzkwdh(_7bazG?90U{S&hsh+w}ln?fL z^l1e419tcVMXsi*srGfcbBN0>*_n$6=N`Yi#tLvj4Q61%g~?UR+KI22n;mBzhDETW zy~{H$Ma*(j=Z~ckC7z=xF0{jb*Va7fLw@WfBBJhmd1=`vu~Vged34V_Yi6aR^Jrz< z0<&jo-%6b)S{%Ks)?k%q>x?>I>0<G^tX8S6cm%_)&u}6&xF~u^aFKLFrb<JZ?s3wY zBOY>*dk^XHe=av3De!xb<LLlGnT<;6KkT==qS`l57bV7DYxaICE~Pgqc-porv!R5E z>zv7$x=xK*{WMypp>0iLQHnQ5TyXvxn(ktA(6rX4=<bF0(lIk`7ih+!SO>M&;gfYX zOXMY7W+5YZ1i4b7*%1~;RFSGfjT9_w!B(&O?BAD9=ut;KbwjTT4h$8D{EW6J+c{G2 z<gA9RBkt%~l%J~gk2wx}(I>fun_0C9KmDvr+|JYP6fNz}z})Y%Go6WeF*_O>5<cgf z?IK)ft1B}n@<=!XvvEdVP?=k$9f8!ZqnD;?@Hy3)Y7#KEe+Iv*(}yHl#pJP$v<6d} z4Uhck$W70uctgq?Jh*ygB)*d?Q#j5C%69dR3)X?paZ+@G`1egHtQR_@Veg+^C`)Ai z%<w!Pqh)QG^N{!h$agwXSA`_JwjA)Zf6(iW^ZO87W|GL2*x!ElKgvnmtZbn0i(&`8 zQ&ub^ma0k{<QT#n-b+Xn_6Q@4THH`)MoXtmJE2pQNvr4}lf;USG6e8xT&20l1|nYk zG8%i{t-rSRV3qYq>fMH7%5`e;SWi6mQ|;XiiR0pbBa7}0AuFAokxg9Xxy2g>D5hSc zy6xIo+Bfv_5stu8iz@SRt1TjYV2xkAT}$ZKG^%%19wpLNoLf)zTiA+=kYzkZ+knM7 z?oy_IYIZc7qa8voAHcd0B+LF9YvF|YCI=*kZ05^rpC)QfrA^m8O|?}ZHJ4R!id+BU z8aLXbus&!X^l~U_t{`+aSgNj>GV*;c=Sj$BB?T4Idvwq}iTcfB$v!>Bmp3c%3v}uQ zu+2jxV+RrJ@>=^g{cx1?A66mJ88sT8R6-gu7>gM%O<Z*0csUA_pHZt0g=~J{bZ{<z z4f9hx(gxpPGs0*sP3p_aUvr&8y3nktRU*ZH^L!4uPp%I6{78MeRzlQbXMJ}0vBDUf zkBG(UkGRhou*b4egI|svVOQuLWVmAky9RV31h|qRE_|5@8o0H<5J^gTX|nD1mltR` zxY<HHR|Ize7mzhdZLno?`A6ja7DE$>5=Klpjc7|LO?ri)rUPxy{Au=E-0X{|+%pZ^ zirE(T?;~QuQudDS_$ltVg3<kDQ|n@pUK`<;8jw?aVPHVrC%IBvmr==3M6eS^Z9cK) z)sFcEthk~i%1E(-qs2Im-H4m(<J$1^VFzYbJ{J3oN-H|LIF!#W%}1R3^Q2bMe+m(9 zG!kL-k;PZ>2|N1<$EmFd=Rx0#QTV|J;(Dc>`u}arpFPr()5*7W@3HH0HZR;6Ueg2R z#smT(QE}geMcom0>X%K6S)48`bM)BCD3-gIKGc*~qI5-|Q{~$GM|<pRf_#i!uC_l_ zvoH6w2H(_kxW8u`-l=DE!Bb^hYW6?#2;#QCSbn`ya9VKl|3|8^4dfpWV!nO5?DOU2 zDSm$b%Nn_b)z#IDU#`Y&jBu7t{QTOrEy*n3p|fb>Fi2w}zkGRl`R@E`t<8&zhg7!K zAWgga`ton-NK7E9NT1<qYcX~2PTtLbcRo)!Cye+TWH{=ZHf>VHa@Gu^>4nNF?OD3I z{yD!@ZbJ#umFQo!B7;{v|4T*`i9|1qw`+cj5)PPt)iP<@z)a4-XfAbI_6!adi)#f< z6cv|>mQQ=+6ZT&5%DE3gQEFLRqwDr17#t`Z<t$f*Hj9m95Bk=a8c2kbw?sFk@zh=a zc6x@?p;Ns;)jH#SgAC_k=+4|!=ORVyYMW$S!>?$?iTO6gKC#h1`r^SuH#FxzN(OeB zYQ#_)mIu57yDu0pCUW9>L+FJ3%?EDkVOLYJh3UT4sFuGmPnM_qbHse#oN~*!@!=yg zD}w1Ej-ec9cIWFLP?`%AmB8V^zIJZ|$tPW3czGf(GN-t=&c^vp`b=u>7_7{02yOW$ ztbm~+=@UOBxNmgk6XFbUzHh#58V(xtVSZ`R$vgclTi&5!Lai($#!QzTpv|1fsa~6J z3+!_W_IP_|<3NQ^`gnVKew#v#iC14~PqMAE461r%BrLF9t<Mlw`sVu<?X_Rcp<i!r z)_2B?wI(x%=sJDf^&j>_Dd(k4;$hRTLRZI9%RRcJeMV~Sw6(SEUtfEu^ZTLsL~6rY z?yiSX>b^q-sm`IO%F&1#st(Ir{^CnLoT}eQZS~YpeK;$Me%qPso}lhC(2e7~+X;bv zN4qBZz9e9|-)-uHm|yo}#rgt3q5(jepzb&Ff;HFR!U(Vj@-7e%F>WQB>tFTa?DL4g z*~Z4m*Ztn4rxIb^P|8es2|ZP8Th<$+F;W0_&_OGBw)^?H$3P$hTf~DWs_2=CQiRaS zLMCUWp{&HA(g;`KGiVbWUUu`n9NBkR6J?>3W$WTHTCi%avr3FT@%_Qx<)hB9ys1q8 zYTg0HvQiYBio%!s4d%k<!pehY?8QTVCR9V)KJn~+?6H;pjtHA0S+`!t>M-4%{68TA z`&LpaYtMQ0zDSS)((H01^X791aKc@Ixi>$y*Rf~(vJ&dw^FqSUbLb`jqCcw$I2Jq_ z9y~lo)#ctIU^%Nfc}~~gZmj-#XRE&a!nYmRiz3c9pGh&8Q)Lq6Ywa4NCnqTf(hk7Z zWBd)mIA!9l#9DS}SWBk$HJ~5WKXJz0U0uSb+nzt%3F-)u0yq0=My!LGP0?Ee$MJ4d z@2iJnp#dQ|YSqhhC9jwAdG}zAlT7^NKGj>Y!64*Y2>5KhrhHk$mHI3SaQoc{pz7qy z&6|K2AgA+Gdm0-XlkQw!Hv#sY&)p^U4Bic!`}OoiXk_PbFBxhRd@gHj=83eEA(%}? z@^2TY*>75jZWo0_>avEU`q6I>9*Ec64_MiXC>gESn$80ZIV;Mmd3gI^<v~>FwXQE+ zec)Dhh(PDgSGD<P`jZwv<`FJyYy?(=2JR&orY*M}*>@Y%P~4C61w>8T8czHcVOq&z zJP!bxZ4T)feB?w&E&r9eNJ-(mOa~TM$Zo@gKz~Dg(!1MH0CdUO$k_OBO;aD4NyrY{ zKjaZVR2aqRM1)Y^f$PrG8zvqgZ;jqL(BCabKM^kkkl6zk#(b%F8h90UF+FH|)bMVw zl;L4L1Ijnf9zlr_!~MXD>d6UZOO9I`Z!y~E_8qL_zK1X1-L*lS{i|$C^IAiw>f^qV zFJOcG40ZCHC%p6>9`RGgTlUv|G5*geqtzWVn*Au(|BETW=E2|46AIU?f@mq6XY1r3 z0Xg;-9}Rc8LeeC!7a5z4aEgc=*E<cc$^#qHc?G+HiGbzgX)IV`L2EF{Oca(qc=p*Q z^3kl%#!1(~<ErAkn$P!&4D5$F%F7pUR-W<wiY&w@0Js1VeeB=Q6(F2u2Gp!9MjNlM z<F*^jz9FjxR_#5gXVCqzM<96ny`f#;+8u0z)tG0L;`ETPzcB#zJeo)R0=yu36If80 zL9EuIWwdSw%>4wITS1I}wh7pX^@}(0u<ZRa(%2&a81XcQNBr{R8s!0+ZoxMTAc_F! zSpcdjWw)}w*}#y2IPh6|B(MeEDBBvT3m>4ZJPSCLKFZiQF;jEzw67qT5CBbZc1xG? z5QA(|wg*_e_s3>1K@h6IwV#fReMzk#(okK?!_Dhbrwpc`(UT1K92mog;8LTE6e9|$ zm^6?9$6y0{t)t(-)9#{t0pjSOr+DqlXmfmjZs7Qw8#*|x->-f8luDSxz8UX#wN!PV z9|z%$I;7X9L?RLujYErx%~ExPl<mcK(-@rZbt*_y9Z|OJ-g06FkSEr|?96V_bf#H? zG7t!}P{jzs1=5p5t6y`$r~%cxGh2!IIi_06e-%3htz*1Pp!2GHGP!>8_a>};xuRic z7Tza5;4v|dYSMLQis5ZpINhyr{;wJtfOEnn>TzYeb_x|2@Dww9n)^EhXLg<H<XBEY z%vTJHv`?4g>JKpl=#EurClOS&A#Sgt^V(!jv27)JhRtTTj``>04VM=d6ifWwy~ppP zC(4c7px85o&3ISG-8C2q1u5p-^syvMv#L>K<!cYQCuvq+wxva@8`(QA-Nfsb3~ZJn zNTaA#HSNbFJ#G_Ii$(mYPVx*-lzo+dt^){Q9zUJ7BcWqFU7EFjzb=jVr6cbD^OdG= zLuN{S#Fxn>U9;~a*oQuPT!t>&WlxaGY2g)42ibiG%B(#cw_TmYPkCWFa_Wvo-?4>S zP!z%8>x?Y)Y2*8ST<?wt{z+Z<M{N%3^<Ag#K{y>_sH5UOX$^jmL<iyVgjvO96iPys zG>T%D61NT=D~V?O=2sQ51k&Zc-RQ*Rb?Wfpxv!0r9$978+ybJoTeXwr=PrDTltLb` zJe^WcfP9o{=LXQ;q=9O<ULp`bDy6&qy%k{n(|bJP{0o``WCCoi^A75@=$X6O4+dZ0 z2N6u?UmGU&P5evhPy(IDJG=Vx#GwjtBs4YBmS6jYe~3+H5#+MX4uOY(Am+Zd9MwAx zYX>C+07&a&xKPuTfu2QrNP;PG64^+|q+Mdd0KdiQVUF+lXRxu>C~~B|3bIUjj{$1h z1P{~`$mOc?^J;GLpOMMkr4P%auu%5ZM#{e_y81j{vcv~gZWA$HP3cfTQn<+Goqz!* zBH$Wm`oOFEFpZ4EdM#&d)k{XS9b3f!7S#ZY3m=I+T6$0%+8D4i`|9&}Q?HftsOEnR zU|JWL@;P})A&*vb{{loj0}y}qP&!U(Y5V!jP^c%qVIuA5wRM-Ui7&v!%IHMUE|>~n zbcCagwyC;(2kcJU3&y79zhy&ed`T04Jq0bQhXK?aPBc48P&GOMrsV;DAdDV&iiw9Y z_5h4Ev{g5S@lyr(NoAR04#6w~v=|;rd=9zEOHTnfT5>K78Y0T#V;*uVL=yDKJFTq- z7a*StIHKeRZV=_td(RiXczb2tj!}Sv+9z|(68A>*5X1$55HbF@0=*sfSC$5mu?eLw z{<U$f5cFUCs<2sx$4-AJzCAnK44cWkM?B(^8`lW|7E?0$u0ZgtG_;8(dw4bV2P_0# zyHK!a$h*xWt`hD22)1J$fTt$5>g{$g2jCHtr@LUOfkqC&{wZxcUjXHN6A%w2ZNPGw zYbPE+k_2(m@?&0)hSCfF{%F`WA^{IoochVFW&>*Pjsg?bXa#6O|MZONJ_Vs7$g7Fo z(w`)C0p7oJFtECv?q;rlV@hh^61M-BLILD1>;1Ra@rNGrpK;z6z&)r2*=oyEk+FEk z4_iCK`C+9fgfP{_pI0Yb+W_tGBk*)m8?n1(ov0`t@iVI?Ms@3Q3V_|4pOIM-hUH{^ zY@J{ku&w8H62HSn8onsie(y02NyY;J!dY-L93#s@&=-tPw7QA}S%SfF;HdxFvsS!w zdB^cBKq`fHgBAQ|A|msi0E!PPfzdG)57hJR5NcbXhgXbGoDhM``*pDUt=4?1^gAF# z5O@L>iB8z*4)uWa&O<}xVQQU!pA`Tw{{}D%AV;013E%~i5y?u0S?~rn0*Kept>yXa z!+b#0!E#F$&~6Fs<JHWY$M0U(NM7h-|GI>L_``D5<mp|=!RAGRi;+`NaFD&>Tx6`w z`W#@SEUQe6!ePE`(2tBQJS|=F?26sp_ZDyzkY)*%wyw(1$bSt86@aG)De755TPySz zyfRtpU&N$|?!SHDr&SPO*eM_pMHc++0uY@_V9(b%UI_H9dqmV7Ui=Q&(%o*~!0a^O zT20DxcX^s4x;tP==K~Wj>Ll7IN<zYLTPS-<iPS}z7E}pqr6`EI;e+x0Iq2mFcqiR1 zAMbm&q(OrMETmWXQcP(u&CY_BieNt@Zo|#0kkSd5I2(D)OQN~4=4WK(FlBFa*8t;_ zo5ecQg(N$#iYqc?=tG+Hp?G2sj#^+heiv6ioiV5Y{8p;ln;6rC4&sRzaR~l~iB~B` z_AW~|?*i9$2)F$>NvnPOfQpvS2m8LWRm<zt2z<=IT&}!qbDTtyB8+F$bYgF15<wkI z#8!UcDykVbg7Cl-U5qqo$jY4mKexM0k-Kz%)6zsQuAW?!6J7EYd5R^Wc4O{ed43lc zjRbCYHkexCJ+MXcp6JA@|M=WZs1;56J%sjEw7HSyMOt{zRwTVNC7@iY#IcH2VqXq= zN-0t$b|n2%&R0$6B$>m#+iqv7q;H(TcK^q(H^@$-qoilqSsqE(p9E$R@3v3#fc`;1 zDKXtEWi^3ljk|{4`ZGD;MfzKH^>c4^w;EJY%7De-i8=gVoh_;wG^W5lq0#xQ$HUSd z#dvL5#&%SeKh<Yj{(H;R4&qn_Iqc2ubv66zAE(Pmc?$X5IVq>_qvJ0e^Zb!>-x7?& zfCyf?@&rgmgp?je8Zuz|z}~)4o-~Ps;%}fpALj97sT*pi!4T-W9=G{re1f@oJ^BSI z`@w%*{(+nyUl&2(H7^=y%BU1(!T#VL0Cy}wX>7o95}^lHQw92pSzTUNF3{VJt-2*` z3VTT&Ak%Gb78%iy{__CSIi|d>L%?n!%cAZ=saNMw=>C8VB;o=<8!^!)k6>*C?co+j zokZHDS1+FZ%S#AC0L$~G9`XwUeH8_13|LDZm2?9<tO{%srs|0X-@4C;0m|W+39TR` zz^ggFB|>mBY%}5eV+T*e>4)eUfXF(L&~$JczJP95En8Xm6h?)@h`9^!ippNIn9PSf zUG||3?nnDFpTn{6DeyfDh1m=7dDG79XO3a(*aO_|{bOT9&qdyIX*vaSe*>>5M?iHQ zk%M|?R-f4N&tz<c!%)%zUQuAZK$<iA>>s<bB+v=$aEcV1rHSfA-t)&NNflz_HK8Ej zlTh}vT8Zp1c;nJ`0|fu@uG{ZV5FRzQ{KMwZn$VCW;_r;DklFR$;BF;;_9J8n8m|H9 zrSb@s?T0r2xd50MNtskt?1qus29U$qemDhfW8+VO&iJ2B)O6U)0^o-}X$fzp!$$aT zUQry;QMyD2cBs;TQex{r^d%kwAd>v($DkA~2Eg03PWEBwwwJkA$92^Ef3g^g=LUDf zdHrmJ0v+s^(tbWwsSpv1gtJgi*(e28m)f%)+kkDr)rz{WC-;B>hdlfQ4Y&tkw~+=7 zE+6=ZxOXtlhUcK-9FGY|@<GYt3@ntA5Ik3!AVL@p<<{Zj_opsE+5rw6NP;kL-6=|+ zjr{Q7mUM|TWV;)q1UmO6_?g3zsgfX{s{YS)M+32U9-qYA45v@RhxD$VEnN?10fNU5 z|4TSf>lYpcR=thaW!A$}`wi|-KDt@p&O(`6;|6E}uN6MkK**f`kOYAKz4_950F^q) zPDc|^1-Nt)JXg@Ix3Z3l0>I_T-)9Zs`0Nb;0ta=CKM#v!w;$URBsO03cm6BDg*2<5 zd}N}F?QB{<SCDiFV;Uw~SYdSss=x7=9DKw(P&Avh&t7i4;I#DnQ&9i~;RjbDK|Xa! z0jM0z|1`bbQ_(xrNSnuE&Px0oP33+;(qp%jd5~Oy7t)2D>l3+0yi9B8p{sBRa^=FY zZ-&P9;~8P4Olc4N^VR5Qg}@Q7do;b>{ENEAlO-y3eOdPfe=5VFwu#gu-q2T=*=GX} zIpjSmqZw7X@u>B9Q}FC@y<l@CMJ>yiv|<nl3EszKP=N4eXCB=&QI1}IJMa)4^o+<l z<KB^hYa;?xD*cx#B|pD;ez*m}?xc(q*WC`uC90#ayKHjCAJt-!bM?0`j}7GfSq3zx zWqw3R(T9w2&Ti;@L(QhFHDUVD%pr9z>d|X79I^iP^JT`Cs^efL>HJT=fN0F@c2uw- z4ljNU&9$UeQLCDpefp<uwE2J_N4|P~kzXFAObTzG7DfkU5e<GWEe*w|t4)oucTPCN zvEF%Guqk+_Yv^D@dr6Oa;ts=5;0yYe%>3?u-Xba43CDGz&o4IJ$R*Yw>ROPMHaN-? z%xkrR_$7nv6*v|>Zw~mVgQKP_o>Or+%-9r?x}wiNzs}5~{)oSE3W<v^F|*fDeo5pr zG-LE~8lLS`AfL|vnnA<~uIJ)60Bdz+7!s6eJCsCXKn=z>m)M2a7S;c<s*#e^L4@~z zp8-G?GwYIpDN7D`O)SBc9w)UR>I`U;=fyM(Zt^~b{X-}aJUP$-L((}T$lw>mU}H^7 z+SQnoeH1el(h<tEj7m+wov{%QG?ikbp5H?{b0~3K6^e&`Jn)WGCne!QQ>HXApqO~1 zyD_)6{g@1+4L2goP(sbAlbR=wrKT>9B8CUM?{)COBtB8}=N+JMIw_?I<WscG2=-ap zDQXplfYDHU`RE5ido06&o*{;_UB01D7~|;EM&<4V_JEKNwq`fZD(D$A$;29|x>jUx zHD)%HK2*xn;Ueo1-t%J{hrAOVltCP$R%Mygl#_(kCA=f!hp1!^W%?K@A4ykOl*l^5 z*gzk8&-oEW90aETGQxT(y@sHTb<V-FH!y+tSjyw~_xEMab=Bo9O3N!Na;a^mVcMf1 z0q28#WhdqQCcRG=qs>T6UEBBnbG<<K@&3sN-=nSaymE+R)^Vw;U9$7I*m&{>ij>Dg zVtV`Z;(*XhMvXnK2S@fFGph9LDcY;<U=NA~Pk)Ox><>My>%vVk(_~yj>{4gnYmY}S zVM`x{aS;`~?0oJb*7{4kfawrRw+jf^ai<lO<`>F#C6YRdZd6^R+=Z+J{~D2%O~}gA zG;Q36D0<bgEL0n^5c>d5r|maPh*GPb6CWdnrRT`Opur3dgtSqn7q2^LsJzM005<K< z(QgIK$l%9B2hY6lhzwWT_Ot0|3&^Z-t%CZmivhEw)TYE2b6i%kvn~u4vVwDwANECi zFF`(vr)X#P@lCMbfb8Lux_?9rGMpEF?KnK`3LBZf_*6f*gRnToq#zX*!Q;RRHbY_y zo9KeOJTV|61>lx;W?!(?NgRhW8<4dX$Yr4lgLlAnu)VyZfqRra-~eFqpk9sw93f0f z{?~7%x1@8O&LH*}kF962#X<nynEwd-E*yebfyt$(duuW@U=yALt@c*p_PGBDSR205 zX@<zs)863TZC!X9&g!1%N9sEz?{qKK2l<VXD1?Q+em3k(dH{xxVL4@jZ^iP-=fh;5 z=}@8Ch|(5b(I2wcy5Lx?`=H)cM-VqHK+X=n7!g>{jsb*ywxHTTfa9(wrz1bS*@9mm zQiF!pYZOmTLHGNULN`D1r>^I(c7SI$0$saglL<lFlAC-%>89}oJdM*MuwFk=1YGY) zUi!yhg@K(aJ)HuxAKISB@V8fB5fOO*uEOK$2-KwbSC}7rz$Cd2I1<?heZ?z{4O+tF zSOFh;dgFR50LT;uWKN31hXp|nef(Lew^3afoOoy7;fWChdj>}^1%SAyYPbryFB-c4 z8a5ALPp+N@iFnYCWK~Dm`*3n@cN=~VP_jQ7c>Q?b=cTGOYm0aKBmKZm0eKLXy$*ei zydcn-cHXvEVtuPXz5D8}=wooY1vs152?8lN_JASCs&zV2K}o0a3_wJg5jB7lgoWwW z26vN>6swPUFmAs9A7o(KUW)LFCdyu;Wqbg^W1~Uj2V(VW*xYa7Q<b*<m{*kqG$=BT zCkC}gSq2tH2vU(n)3<*j#%F*ui)e5A_piJD6*3Bl1DM}o{z4m4XcU<TrQ4A_F`EKd zyrC_=P$&a}oW#k=f(;YT;vGOeMo0&&*VFY`8V;*?9zt_%^|K4101pV3e}4cJ2v=A_ zi8Kg9eo{<^0XyNmS}#)nDyVJ2jD7%~3k)XT5IO|b6X<k5AFOT~2|x((if#j?<E~h3 zSO$f%KgZ8*hr>mX6N`2af6jY*#V+ig(R$(5YJ<D#wYm3JM}Gi3e*@JxQ%!P?9I1Z{ zSsWohFiNb+G2I1k0W_5ubr;G7^e8(4+)NOA!hJRnmToJ2qKAR@P$(G8lS(v`O*C_- z!>uE|S}^(Ltao~l66B_@#PY=43k)Wf6ChO+!hq>7Y9vbt&|a)xfm$dO5FK0wWL*UH zNiA6V-a)HO&F?rI@Q==P0@_|?#**(Do7LR^haOb`&HJbS2xK23_W}EG*~xCse`GND z#zDZR2SA5Jdw+luB$SN_xxq^}1B(IG2M&IKmUG<@x*0CE9tX^5-qLRriH2<6I}zUM z?J8RBluRY)R31%pLGd`r0IIUHs_-)s`dV)G(gdr23PJBgd8_Z?5r}X*ngc>ynlX$H zy4ZfDA(>1=1}7245bQa;kL%4)O}O~>K!b1bVvBKTE3%S`)R6KhC#n>QfFkd=jKLY* zS_9ha{k~V-t2GB;X?~?2dBCfXxMUrt@u%y<0xznvf_#qjv6f1%xN!jD-_>y-tlLPB z@B{=yl|B^B`LQ5H_?l7khWdIgG2j(3k$|}yIPN0FIE=Edz4;q7HJyiP6)UitEMHWs zpKpxJoROcJGoN&4OqsklS;VS8{<r_i;%KzV<Y)LdV0>M>Z1x?8DjQpUlE}4_zm>5A zN72jDsH~n7-|TQ17+d3Ndz?+FBg3Y|zGv}+jRSCz_8if=xQWj!4f0xG-W6%4Zu);b z@c$ySFBVZET}6bO(iouhamM|s`*?6gq2J4bw^!D~`lvfRPR&T$B-@l5>BJVPVGt3# zqkz*TUF`RqQx;~lmG)^~m70)@o^#aN46Is{Q^rGJw%>tc0f8szz6k-w?c@&IVQkkE z4bPM`sC6UHzH3iQ7OYYODxng$(|v=oZl3~b{VCwJZc`QvV1IG2RG?FUSPkW<2V<eH z@hG`uB}mouymw~rG(3EHlHn~0d_?4z!+Mf0R|!4?G&n{4eKu16(gMb3paS+bLgpLX zH>j792vGS`$N{=&AelPAneg#*&{VC#ZjFoGmtL(`B+x(+Znw9E(C>`Yd!6{10??$K z<WuGQ0X5MMQUNC35v5MM;0$YhskNOGC2;HO9k33!t&L8c5C*B<14;0Z+%=jJ;t9O6 zF<3dpFfA0W5k8RNQ_Z^;;g(*Z3@a@#H!}DvuP$}i_#X!*Jc%;p?FQ?{E?!YfWq|S^ z?Ecrs=DaOOFJ1U|$?gI$rJrguf)&<FuHWwgaNl5j0Ta`3t5rd$?|P6<YC#iE>+1Q< z{(zMdbjj0j=Qb+pH4JG8!HqpM*aJ)2=M)Rj<w#vm$A1G~lq4@pR)JBy4`4ea`K{x& z9ZaqOy~j4Vv~~qr*I_#K`U(2Fk9`7sU+dm6714bP#lhM8;EE6WFYt^FGI<!iT?%A7 z$6??U7X1#~xDk>B81{cZt&f8{weNt(w5<3jaXX?g73QJ@7`6kbd24=xob7`>fR7Z) znq~h^NHA^zk1GFoet(?_ls-P#2?kvcLDuyk8W5WD9y0BbX#gqvy?X}Ay$Xm<cO7Fu z1?wF@uV|MAGFcqzz#de9=C;1KTHmRy07x|C{)IHa+HKE4isc7Op$W8Dw6_s(C+h30 z0S?@w&@m<+w!9)>_Tckd_uvaL_~ImtiVgr@5nlazfP7W&pC&>lsAQN7(lTFwHa9tZ zWxXBijsz?Fcm&(v$TwJ-uygASh336JpsP3cMI7EPd*D$$iZ@JbgGt*5JlsI_YmdMR zMEMQ4u6<SlP=-d^4<y39jCXvzqNcCNT5T}%Hu9-Hz2X4}j1ULFK+PGgpdDU)m)1K@ zWKaz-eH8%eyH8F7#(}c|IWlmU=mB8L(<?t6JK<FyK==2K5A>v%z%J-8z$wpA%7hi* zM!u{CE6QhJ?z^rlKwR7m+(J9e7Y-1gLo@9L5_{Uh?}{EvfrUn|4LBavWXt}#msbzM z>PH4rX4(w3*!2E}#@ed2q;5c6E+HQXmd^10++BHY6|-C5%9H#VuoN*-a7Lry%#`}d zdW@8ENH3>wyJLJ;bvumm#9`>#{!1afV%DZ`dVOJI0NiS`!gTlfLJFb|h|@LTS-}ko z3fJrN><KVLXN3VKfnV>Kt=Ij}0$njxD<hdY^{=<25`aCi#N)R+ep#2!V}MPwjT@0A zgH15QrQz#nLTF*|dG_7+aM;}$0EieqwY834Fl&7gU`0$TSFD0yFFOG+XDnxpK8r$` z!%}t_*or(ab42-z{JWO@;It8l<8lxul0milfh?b@{dcgQHpw;hUyY2Xk9cBIPI!;r zfn>{fYYwCh_P`fEluQjm;SLPEksP`QY@8}MDkOiSv&jtfleEdtG~k+!>K<@2!ALsb zOZ`Sz=6?bfDH|xv(3-`<tk+Ens2`Fk3C1<G{DMdcNF{{;65|D~Be$b=_<q?BOX*W! zG*Xb)FPn+`0N@Ew9rO8J9;f?w0vc_e)^CXp@*u2&w*<7YoH}&H;V3jU^ive$SNK*q zYLNk%89F6t(G}&F9FRr~PVc|0_BdRR76e{?kYXni8?yRssNx34W@tI-q1MNeo1yq# z&r;}rZn9JM<Lbvo8!phq+9~LlF_;e*+5p;FBa}UYw+n7i3opugU3vq`BA0ze)rjC! z3)u^DgeX^PBmcqY7N8Ea*M2>h#+mK&+fR1{Zx|RoRrF|kLcYGe&@tiH+ihBlt%%il z2Yyvss3))Vf)MthVQF^1&0Oa5An-BT_%ef-;5Ud?o{KZFXfgq|BiL9vX_+fcNiw;) zAS`IvL?q%VCMfQW!<Pqst;P3l*ZEf7j!bSd%Y7|YrRx|Zs*qxROlw<et87Zfqp{cb zin%GZ4b2F@s@5M@`W@<(!@p$d;G;t5(dI`etaOv3gheLa^hh%5NHX}}$GAuy-+A`T z&QDPxg9!Y2O;@8M!knOA746KWGu3V#KO_gcSYDEG27Z2Gbs5~I<Us3X16OBtf|Y^8 zSc*l3ybL{K)8i452O!A3`yRLHUYqFO3Le=Pd%s?{<9|;pXpn5{4ms)QZzM&uI{eM2 z^6cq{Q8LLd6B<yYx;CqE{7P_31@G|dv0x*FaL#i0rv{e;Rf@^2uE`ntDTzcY8aC!^ z6D$3Nx8K4_`ik@4vLQYavdJqP`B=jE(9gLYM?z*~k$cz`yV(`3GfsK0OIt<j`b#J4 ztrSv||MZt|{6}g*otrQ-5=IHrtw~t1&}4*1SUh}ZIBLlWll_Jr!Eu&{S++TO2zJNM zkE2ogrpD5q<F-0&)(eB6kxE0A=kM}2lVr8lgv1fV>U_*JuRYuDWRVuYdLAgyDSr+9 zuLBb=)VzAhi%U!v%Yh?$Dw$xZj$r@HG$?<`Wu(;idQWpro|>|Qsf827XE;?ye^J@6 zmHVw!mcu+ZCHLFwM2tnhH794$*L8*+cl@%o2KSZNQs~H!w{K4kbJjYn{4GAa1UC_r z@D_qH9`hXO+7@ZQsw@2-Z;o-tRUPN^cBEu%GNNTZ@6!A1VSYjM=q#Zk|HSVgLwt9F zdSG5Il`NB}jQF|I)leuakVGJpYAa{X9Z7Btt2C{8O~|mcOJ;>tTK6NX+_G>OwLwZl z2wMZeW+ii{6FC)yBRc)9KPq0eNeSmA<u02o^d-)(Jg#IDj3QXZ5dudw^DU}~xCN$$ z74F`$p#!Uq)hztvqAk;9zS8_Na!*_NoY)a<*5XL~n0eXIjx#i31u@CYkP#(ASmab7 zhyfO!#%cbj!j@60Ye?38TtitKqR?@%vJexNZ#!(nsh5yVS$bCyBa5Vm_ZKZxq5ilC zd5((FMpo=y!`~ONZI8_jk0k35g-2Mf-E5*vYP^Mv=^xhu`=;8JYh&7;);>iqnyyLi zSS}5k6H!Q1J?UtnNw8XK+n!3;WQ5q3{7ACwstqGmjN#|;g;mp%WfNX}>w~^dSaOJH zjbf2*`qgpMv2CicBAG7viK)2;rs<~K&F^@5Ltn(;Qf#%I$IXi?DVtP`QIj}wdC)m( zRWZUz9wld68c=Lg;(0F2;00*0l|;l8-efb&L#Lyi3Ag4ydAjDddCzc71P8cR3SYFd z?@me_EdmiX=k{|ZyCMAUxutD?#hFZr9rJv1@xcDTMNX(>!kPDVIc8z^j75L>eOn9l z!`*xOIxm2h1hm-CTqYGI(}$<kE+>IPz2>0Bq_=sYT>61Px$cuxqOg2;N8fi9r4TLw zBkA%c0~6L<DdCt~q$oMhNoh0VZ+4wIAnUnu{!>H9?H9`a7gq-}&5kA-6=@SdHKy>| z9k#9|I*cp#Ev&nYmm`v;eFiYC)!N0kNWYZrlBTa;C!DvOwDMT5ynlpSa7ZuipEhC0 zsZ~eRT%p}K8U^0ua-iAae1l`wZ1z|l5wF$L4O>KLR|Zzv9Gm#72Knl1Mpx``bLgvJ zJ;mki6S)M==m>A!8;o9u&u|I7a>nKcE@|*{iWLa*9K%3xRj1pKj}r_e=jzW^BI<Y& zd={F{RLCQD9ewTdsmNo*AHO)_F(Wfazf#PM%b6#IAi|Q^pPx^1Zx&(irPfZ|>KhJb zyz3*Jm?ybwddQ~ce)A6@23#&Eih5=h<Y|oPo=r6+=hrTi5p`KDJGId^YRauTA1KGM z8*WKASUm%JueSDd94ZRR$S_3dL(nlIVmY-c9T5&*bZMWKK@I+l_I~nX+h)ZiDfZ+_ zx?rcNlGU-PT%&!<{J)Ls_(OlK@K;a%t}(bXf9b|F-hA)R0rH#p&vL0h0|#~*lgUSl zLI2%RI`>wMM$uC*^TK#kF-g17%HLPqZD=^Nv*{KqjbVp4<GzjOV39!Qe@&_+;scgV zD!obvuo3rDI@%^h%zZzHlsWAT!bq!KJm%3A%j+{#Z{QHTtthzTC8&EPnT1Lwk93ex zu4@fB5%nc1Wy;m|ZODAi+vh>k2f`cexR)-}Y<dii1d8Ih7S`uSs=d4)o(4s_QuX{j zc8s*KVUW0e2C+Ff;s_3O^?`37)-KN-w>h|p=aM=IL&hj3V8hSrGH3LGhq^jh(M0y? zi;q|s3L56F1!@1jk`=-A&r<gu%|Y+|DP<zbt3@z*lC)#`fNad)Y@N&in$<^QozhV9 z=g)052GQRUPR@q2t$9n2UDi$)+tgKrYy(k!AgBaMj$HqB+9`N$fjP6F6|ly;aN4J> z@j9yV<l>!r))YN(lr)G4ag)CJ{&_~M-AGRGfl8CMP)#yft2lZ!XwPeByXNbkdXP&= z!L3EDGB5NAw4&uCYtE^g$(GWA6}jER-^6eBIt2>ZQx$V3yv>WW&oMx?h_sDYRONg5 z=5|}<%gmlRjr)7EE9XRM8grpGqtz_CnJ?Ne`1b}(DvsQGV0PkqeXQd^u1R&m%cq&Q zc7jmVV}m>8L8-TW%dxp$MQp>ltXm6mZj0rc?-^H5#^x_BaYOY%nT6Thym!jn-0@l8 zffHDL^W&i6^c<A;_G4&ow=Q+)VlC2Ho2D{lp6!{92rbrGXub~)#X2!_a+W{0jNE*= z-Hx(nCofN9cY9_|l~9PEuBQa@2>Yvsm_5h-y@j3a5cACl+i#`7Du_wlY}T1Phm8I8 z7dR;r16EjgbPg$wZ9Eyi($`Tu)YR7PGb`53s=rZI&wQM}lqtO2<s+esD$~7rs?B)^ z$e6YQW=z%{na&3hbgz?nT-AJt<<QEsdL7#Zo4dJpu2ZB##~!=VVjw&C0e=j{V+$Z% z$}!Wr@-S4BR?X?_Pz$W1B8Qi!UsCIs2f)#nrRE)31;O>9c9t$6($)jT$$RDb;FY<a zw#6<3XIfi0zp0%Yh@W))*?x<|E%z7mY~^X~65(~u<>t?1rU0j)TKf~Nl|O8&V_L)4 zN0}aFQx8R00UwfsCo2F1WSMuD?dXc<9_5VU{X9HSR-rPR9gQT+w?;E36?;8?#A;hQ zckIB{oN|j;HCx)YH;^5DWTIp<5m}}Jx~U)?JAI>nzd^xth64NTU4Mly`;nU-Bf@75 zb})oTS%g@}-rTHP(@UD)8dv2#!CA~k_YLk*S5|Achcip=gSQ+;pNsXXJGcIx$a5y# z7$Y#L+8tA8jz|<tDV{v_cpksEVmIi9s+OL8&{?|@#a>Fh@7y`28(~uBXwiARt)|5( z2*jpkTu%aLjNV`yY>-}Bbt%_OJK#4(Z7*1?ML_j*qG1~6+lw4fZVl|Uou%1ge=nwO zeeqXnt34ZNMXPS<XI;)Bs&4fqg2`wxKYS7-b)BGJab7;F@0o+n@+K#y#E!{F4ibIa zR!aIVv-Xl-<e!PF>nvtv4(AP@L5SD5RMsz+UR@lxTM!5s{tXmf0-VG>oR&s@1pHu& z1xz(7P6mqwO&r-#mwk8d_#*X33ZolrQ_-2d{`a6dKR8l-TrLeyb*^%BD|1vpfr30v zkPmP-Exh3NhZkpW0;nXAbby3J;QzSS>*3<xt4ru~gm&NeRJ(&7#*hDB@8Y!Bl2{F( zes@{8PXuHw0>??fQzT!mlsxwTc*{p3NbCC@sGPy`pPvTMv@hLW!+R))`+x=B>-nwE z{UHxd;#`1R2t2%SUd;oJqhv}_rd3tKnkbpdB;zTHp9X1ebzx48w8wfuXT}`cL>W=e z+2)7a#Kb<tYkQ)1Jnipj_vRLbAXLH{8-`Dk<o#m7*loN|=_EbcdV#7z8f8^3xK)g` zf7au23ybE=pZ3QVg<SZ;?Mv%#Lofe2vCvN8^o;5NNH?q(p1<TCnc{}ABXmKJ7vKNc zdLeTuU-uH)%dNDhy-Sa4i|?lvt*p|E$4&qA<F|@VaPy0poR?gD7QG|Ai#19~N$(fu zaQ))a`mtps6QVAcl!A#JJl23RG77b)-Np?_vCU|g)!J@dq}j4rbR%XamaBwa4MJ`H zGljZ0oWFOGyBj6WVe6JHj$(%-f+Wz{ToJ?S*HjE0Wl!hM{GMBh8qP<rG@w`GjH;z& zS)+5!C|qpfA|PZ`nqh;IW~kw2V_G?WFS%vKi^enuIrfT#uAIlIFX8StxV9+f4Fcn~ zjuvT2-Hz*(5`LdJnDd&8n2}_h;6^yp5(7ExxJ5d)Vr1X#OtIM1#UzX`0pn{(1Lvf> zk74c+{Z?1}k{0z<RIp4>`cO7zc0bB|bt>IhdZqz1*XcvP+;7^rl=kal4uuJ9-ONfu zCLZIPj`6J_W}!4o&dqoyXS2aO_;XalHuM9`Y$~q8^ySC>xYEGPFsZ=wew{}jI9X&a zI9<KQL49VeX}spPs1UGP=$J@$TsM6bxpD_HtHELGpyE*W_N0ptgZJ=;`d(a5TSZyC zqIMrZH5a^PytXMzYjERC^X8x7Vr3uG`t4O}S}0WSQ!M+E&zy!X?&_?*io=0lRV2IS z@L$Hk+v5YmdVW^bbH$F2s6T4r>?m4Zn3H06Q)V?tk57AcncOVFv#AtcHBvL%<JABc z-Fry!ASc_?|JrgxNG`s`sJarpH;XGoZ1UylG(j)xpyUt)N3{?veMnzL>pTr)|M8ev z#&!EI%3K*n4Ydl?{^M(1B+a%}nO;6&ON*gaS@e)kOk)j|NtQo1PW0KDM$|QMMNmvU zUVApqUH_Bc&$<p)`?L=(LW=SAdiw51!G_gcNLy`t@rP_bG&02HFP+(psckjdmo|i! zemUw9((}WWL#}R1voo?tC6;W{39j%e*a4T>lLM+TzAu%Bk(HmhHD)x?kkPMn9EvrU zF=*dIFEb7e%;_NT-&y?T*t2#^>^6J!!S9L-yO*(NDAPwn=GZD37zeqo;$?0dE~22y zwn<%v?pTH?9c{oqCX(^;=btP$_&x97W(;%DDJdeEWf&^kfN<^#cXbCp*s3??w72M> zNPPJxmcjF7Z$1s<qQ5VPrPSU%nxV^fT%gi!MAlw-=+be%Cf$|BN$-D!tCv<h+2E*F z*FqU!v$jeRjxs*)_X@$N(zxM82Qn4P%*=4UiHm5g)}mo3N!Lfg<0o5DMaydBwsNqo z>EkAj-@A6)$ectBR}`g1z$hLSWnnGQ6<I`Xd_X2<_EQmqfKDkJO6}uTyZNWJQM?~w zDUT`BH$%9Ue%5!h2uGDj3Ly<AN37I*sB>6sL&O={Rce)D4C&$vUGC*)QCGKvgZS;! zS3>;Oh_xzzoxFlhMcGef)Yy$|o*qOmC)M7Sr!Hl&9^i)$Dyr^AgcHZ<Gj?TfIo!L% z4B{M%8+URpL(7R)EEV2PX`Sa-Ry83t^7*Xpvbkw^f`XrfUt+M$b|k$5-#_}16=#K0 zC|(W0^m@JI;#M+UX0SJ2q%E*qaFpqqc`Es3BSqbiDTnev`BTHKY4Y>2@32NRUlew- zBOT20EZ~CIRVgjj9D2h<hJ%d9E20Fm%K}##Ol6PmpKAnX-MAzvb`^dPVkRM=l#482 z^$R}R+C|gjA{cQ9b~m!Jc(M=}&m%^f=Cm{D<w)Hb72I;-_us2oC2w|t9vS!*82F&~ zfA`Zck@0DEmH6;44Gm@Z;eA2rJUod%z_AjcT`CTT7%kK)$tK^eJlQuuF;nkmX?#FD zUK{*Ci3aID;u8gjUfu!D=is&7(Gv6dWy&O%w0=``1(i~&L|S>;U)DZ-NJZ<T%WOJ& z*;>WH3k@v3#A+A#J&!rg>jpKF<>@IT59PAsLm{3fOd(M+1Jh!qpTlNI#0Misbbl$H zi^#{byR(AHwQ|RN6Uk<@J_4pCy&s#pcmXA`k_ynfiQ0^+Zl*XNVn~8s)vO_xM%Ps% zoyoxPm&_jJIV%XN;7Y7oI~t2^yfPv;r`)rdwJ?jJ)_u(oOIjoojb26=I=h#?d5g3S zqOzTxJ9VsR;0;^@04vTo)QonhWM&J`*&Q&HG-8}4-B(QQvv)G_Z4qj$sKqsgqfxia zBeMM_Z>02P&_HSGIwIrZ#`M8)hA1>}g7toyom*pImJeF6L4m1<GB;!<6IX0{Wju7T zn!q1}GUq`lYE=n3C?EUl>s4z~y+YaFKQz#2oVu~5%Gb%P)I~4UMih2DLrjSTWb!@b z0M05Y;I_*aJ`l2i<7ayB()u;V2nXU8jQI7o!bh5THZ(%zU$FO31Aynh+j}tO|Nfc~ hV8Z|Q2r!bnLp!zarN}e=F0dRA>YUlx($kmj{0~yWVb1^n literal 0 HcmV?d00001 diff --git a/codigo/pairplot_para_fdr.ipynb b/codigo/pairplot_para_fdr.ipynb new file mode 100644 index 0000000..1cbba88 --- /dev/null +++ b/codigo/pairplot_para_fdr.ipynb @@ -0,0 +1,376 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "import seaborn as sns\n", + "import matplotlib.pyplot as plt\n", + "from seaborn import lmplot" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>r</th>\n", + " <th>g(r)</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>0.03</td>\n", + " <td>0.749559</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>0.05</td>\n", + " <td>0.820106</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>0.07</td>\n", + " <td>0.831444</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>0.09</td>\n", + " <td>1.087596</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>0.11</td>\n", + " <td>0.889851</td>\n", + " </tr>\n", + " <tr>\n", + " <th>...</th>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " </tr>\n", + " <tr>\n", + " <th>495</th>\n", + " <td>9.93</td>\n", + " <td>3.514682</td>\n", + " </tr>\n", + " <tr>\n", + " <th>496</th>\n", + " <td>9.95</td>\n", + " <td>4.027678</td>\n", + " </tr>\n", + " <tr>\n", + " <th>497</th>\n", + " <td>9.97</td>\n", + " <td>4.659614</td>\n", + " </tr>\n", + " <tr>\n", + " <th>498</th>\n", + " <td>9.99</td>\n", + " <td>5.603222</td>\n", + " </tr>\n", + " <tr>\n", + " <th>499</th>\n", + " <td>10.01</td>\n", + " <td>0.000000</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "<p>500 rows × 2 columns</p>\n", + "</div>" + ], + "text/plain": [ + " r g(r)\n", + "0 0.03 0.749559\n", + "1 0.05 0.820106\n", + "2 0.07 0.831444\n", + "3 0.09 1.087596\n", + "4 0.11 0.889851\n", + ".. ... ...\n", + "495 9.93 3.514682\n", + "496 9.95 4.027678\n", + "497 9.97 4.659614\n", + "498 9.99 5.603222\n", + "499 10.01 0.000000\n", + "\n", + "[500 rows x 2 columns]" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "file = '/home/student/ejercicios-clase-08-datos/data-used/FDR_cilindro_liso_Hr-10.csv'\n", + "df = pd.read_csv(file)\n", + "df" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(500, 2)\n" + ] + } + ], + "source": [ + "print(df.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "<bound method DataFrame.count of r g(r)\n", + "0 0.03 0.749559\n", + "1 0.05 0.820106\n", + "2 0.07 0.831444\n", + "3 0.09 1.087596\n", + "4 0.11 0.889851\n", + ".. ... ...\n", + "495 9.93 3.514682\n", + "496 9.95 4.027678\n", + "497 9.97 4.659614\n", + "498 9.99 5.603222\n", + "499 10.01 0.000000\n", + "\n", + "[500 rows x 2 columns]>\n" + ] + } + ], + "source": [ + "print(df.count)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Index(['r', 'g(r)'], dtype='object')" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.columns" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWUAAAFlCAYAAAAzhfm7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABMJ0lEQVR4nO3deZxcVZ3//9e599Ze1fuSTiedTmchISEsNsgiqMTBqCguI+KouIL+Rgcc/LqOIz9n5jvfcX4zOC6MDgpfdwFlUGEQQUAQWQMGkhBIQpbO0ul9qf1W3Xt+f1R3k6Wzd9et5fN8POrRy71V9anq2+8+fe455yqtNUIIIUqD4XUBQgghXiGhLIQQJURCWQghSoiEshBClBAJZSGEKCESykIIUULKIpTXrFmjAbnJbaZvRyXHntxm6XZYZRHKg4ODXpcgqpQce6LYyiKUhRCiWsxaKCulblFK9SulNuz3vQal1P1KqS0TH+tn6/mFEKIczWZL+QfAmoO+9wXgAa31EuCBia+FKCuuq9k2kODxlwfZNpDAdY/YRShK0Gz+DE/2sa0Zq+QgWutHlFKdB337MuB1E5//EPgD8PnZqkGImea6mns37uO629eRybkEfQY3XH4Ga1bMwTCU1+WVDNfV7BhK0jeeobUmSGdj5Ijvz/Huf6L3mbzfbP0MZ+KxZy2UD6NVa9078fk+oLXIzy/ESdkxlJz6hQPI5Fyuu30dy665kK7mqMfVveJIgXWi247n8Y8nmE4kyE4m/GbzZzgTj13sUJ6itdZKqcO265VSVwNXA3R0dBStLiGOdOz1jWemfuEmZXIu/fHMjIfy/sHXVhvEcaE/XgjBjvowPSOpw267b1PftIEFHDbMjrRt/6A7WiAebzCdSJCdTPjN5s9wJh672KHcp5Rq01r3KqXagP7D7ai1vgm4CaC7u1s67UTRHOnYa60JEvQZB/ziBX0GLbHgCT/fZPgOJbP4TQPbcQn5TDb3JfjSneupD/u58rwFfOOBLWRyLgsaQ/zNxUv48q82HLIt6DO46QPdhw0s4IS27R8oRwvE4w2mEwmykwm/2fgZzuRjF3tI3G+AD058/kHg10V+fiFOSmdjhBsuP4Ogr/CrM9lK7GyMHPF+rqvZMZjgyW1D/HFLP8/1jPD0jiE27BnlV+v28OEfPMXT20e45tY/8/T2Ee57oY8v3bmeTM7lnWfNmwpdgEtXtfPlX22Ydlsm57J25/BhA+tIYXakbfs72n6TwbS/IwXT8e5/oveZdKI/w2MxE489ay1lpdTPKZzUa1JK7QauB/4FuF0p9VFgJ3D5bD2/ELPBMBRrVsxh2TUX0h/P0BI78gkm19XsGkmycc84O4dT3Pp0D+/p7uC2tYWPmbzDTY9s46Ov6eKbD26Z+vixC7umgk8pDgjB/b8+eBuAqzlia+1Et006WmtwMpgO7t44XDAd7/4nep9Jx/szPB4z8dizOfrivYfZtHq2nlOIYjAMRVdz9Ij/Jk+G8YY94/hNgxf74kcM38lw3T9k9w++6ULwcNvuem4PX3vXKj5/x/PTBtaRwuxYgu5ogXi8wXQiQXay4XcsP8MTdbKP7dmJPiEqletq/riln7wLL/XFaa8L4WqOGL4Hf7zjmd1cc/ESvvngFu54ZjfXrl4y1U1x13N7+Ke3r+TLv9pwyLagz+Dza5ZzyfJWTmuvnTawjhRmxxJ0xxKIxxtMJxJksxmsXpJQFmKGvdyfIJ5x2Nwfx9UQ9luY6sjhe9vangM+fvPBLfz4iZ1cfVEXS1tjrGir4ZJT5zCQKIRgR32Yszrq6Y9nmFMTPGDbZEAeLrBOdNuJ7CeOnyqHC6d2d3frtWvXel2GqDxH/V/3RI69+zb2MpLMsWs0jakg4jcJ+kyStnNIn/I3H9xCfdjPu7vnsbK9ltZoANt18ZsGKds5rkkRoqwc9gcqLWUhZljQZxIJau56bg8fOX8hauLXz1Twvy5ZhtYu/+edq8g7Dj/6yDmMp3PUhHy0xAJ0NEgAVzsJZSFmWDRg0R/P8InXLua7D2/lirM7WNQcJegzSNsOWpts2D2Ko0FrplrNt63t4drVSzlzfh1KQe9YhrDfwnYcGiMBaTFXCQllIWZYc42f3SMGruvwz+84jeFkjtqQj5ybI+g3eXrHCADz60Jcf9fGA0ZkfOnO9Vx9URchn8mPHt/JSMqe6mu+7i9OoSHiw2+atMQCEtwVSkJZiBnWXhthb00KVxsMJrI0RQOMpjKkcppkJsdkZoYD1rQjMlwN33igENI3PrR1KrA/f8fzfPQ1Xdz86DauXb2EiN/kOw9vOyC4P716KU0xHzXBACvaarAsWTK93MhPTIgZZhiKV3U0odGAIm07KGWSyzu4GpoifpoifnaPpAj6DPTEZI/9P06GNEw/lO4bD2xhMGnzzrPmkcm5fPPBLVy6qp0v3rmeeMblmluf5VfP7SGfd49Yqyg9EspCzALLMjh3YROnttUAEPKbtNWGaK0Nkck5aA23Pl0Y/nb383sO+Pjfz+6eCmc4NLDhlRb1dMH94r7xqanYG/eOefDqxcmQ7gshZolhKBa1RFnUEj1gxbdXdzViOy7fvOJMbMflgkWN9CWyXHZGOz9+otCPfO3qJfzo8Z0EfcYB45d//MROoBDQhgJnoiG8f3A77ivTr/eMpTkducBPOZFQFqIIjjTZwnU1dSNJ6kM+VsytoSHsJ+e6fK7mFII+E8tSfPFNy/k/v91E71iGoM84oE/54OC+bW0Pl65qJ+gzaIoEPHi14mRIKAvhAdfV9AwnGUsVJpkMJ7IAJG2HjblxgKm1MkwDfrF2N//nnafRN5ahORZg51CSxa1RPnxBJ6fOreGFPWNcuqr9gOF11791Ba21EsrlRvqUhSiiQhgnuHdDL49sHmDvWIbNfXEGkzaDSZtvPLAFV3PAWhmuhpGUTTyT5/q7NvLsrlG+9ruX+Jd7XiQW8PEf97/EwqYoS1sj/ONlK2mvD/LZS5Yxty7A/PqTX45SFJe0lIUoksmFijSKF/viAAwmbfa/rubkIkX7r5Vx13OFE4A/fGwb11+6gu8+snVqfYyfP7WTqy9ahAssaIiQzbvUBH10NERY2CRjlsuRhLIQRbJtoLBQUdLOHxDE5n65OblI0Scu6uLa1UsOWCvj0lXtOK7Dv77rdJJ2jp989NXkHFfWx6gwEspCFMn2wSTJbJ5wwJoK4l+tO3B9jMllOL/7yDY+fP4C/vGylRgKLlh0JqmcLFBUDSSUhSiSoM8gErTYO5KiMeIH4IqzO7jlse1T62PEgibfv7IbO++yoFG6IKqRnOgTokgiAQuFprmmcNmkTM6hqznK9ZeuoLMxQl3Yxxf+ez3ZvEvOdfH7PC5YeEJaykIUSWPUT388Q2PQYk5NgGxek8jmCfst/D6T3rEMO4fSPLd7lKUtMXqG0rywN05N0CLss1g+pwa/3/T6ZYhZ5klLWSn1t0qpjUqpDUqpnyulTv7a3kKUuPn1EWpCFgHLJJvXpG2HoGWQyOT5j/s3Uxf2Tc3IS9p59oykyeU1j28b5rFtQ9z7wj427h1l20AC1y39i1OIE1P0UFZKtQPXAN1a65WACVxR7DqEKDbDUJy7sJmmSABDQd7V5BzNzY9u493dHfz0ie1Ta2BE/BZBvzU1UuMbD2xh60CC8XSeD//gKX67YZ8Ec4Xyqk/ZAkJKKQsIA3s9qkOIojIMxaLWGOd2NtJWG8TRms++cTmm0ixpreO2tT184rWLMRT86LFtRPzW1KpxrobBRJZLV7XzmV+sY9tAwuuXI2ZB0fuUtdZ7lFL/BvQAaeA+rfV9xa5DCC/5/SbdnQ0A5PMuAcsg6Pdx/qLTsB2XGx/cwrte1UEqm5taNc5Q0BgNoFSCTM5l+1CSxa0xj1+JmGledF/UA5cBC4G5QEQp9f5p9rtaKbVWKbV2YGCg2GWKKlbsY8+yDM7oqOcNS1sKF0zNOlx3yTIcx+HrD2ydWjVuUXOEvSPJqdXggj456VeJin41a6XUu4E1WuuPTnx9JXCu1vqvD3cfuZq1mCWzcjXr4+W6mr3jSZ7dOcZo0mZhU5SknSMW9DGezhPymwQsxUA8w0gyPzWu+cIlTaxsr5vV2sSsKamrWfcA5yqlwhS6L1YDkriiKuXzLk9sH0Apg639hT7igC9N2G9hKBhOZmkggFImQZ+PdL6w7nJ7fYhlrTUeVy9mQ9G7L7TWTwK/BJ4F1k/UcFOx6xDCa66reWL7EK5W7B5JT60OF/Zb9I6mGIhnsEyDmx99GVdrIgGTefVhLj6lhTevaJPr71UoT36qWuvrtdbLtNYrtdYf0FpnvahDCC+93J9gz2ia4WSOsL+wHoap4IePbaM5FmQ0lcdUmusuWUYik8cyDN6wtIUzOuolkCuY/GSF8IDral4eTBD2WzREfPzwsW10NkZojPhZvXwOP31yB621IRoiQcbTOZbNqeHszgaCQZmEW+nkJyyEB3YMJQn7TV7sHUfrQGHyyJM7uOqixYR9Bivba8nmHFmUqApJS1kID/SNZwj7TYI+k/GMM9VNYecdLNPAVJr5DUEWNIQlkKuMhLIQHmitCZLNO9RF/KSyeSIBP0MJm1jQB2iyjmbbQJp7Nvby0r5R8nnX65JFkUgoC+GBzsYIadsl7Dc5dW4tGj2xWJHC1Rq/abBp3zhb+xP0j+e4Z2OvBHOVkFAWwgOGobhocTPRgImrNbm8JpV1GEnlGEvnyTkujlsYItc7lmZrf4INe8e8LlsUgYSyEB7x+01Ob6vDZxoYhqImZBGeWC95IJ7l7uf3YCgI+i1cDbtH07IyXBWQUBbCQ6GQj1fNr6etNshIKofPNIinbL790FauOLuDhY0RfvTYNgwF9WEfO4aSXpcsZpkMiRPCY5Mrxtm2w4beMWojAa6/dAU5V/O9R7ayevkc2utD2I5LfzxDV3PU65LFLJKWshAlwHU1T+wYwtEuoHG1xnU1n7p4Ka9aUE/AhC374rTE5CI9lU5CWYgSsLV/nLU7RzCUQc5xCfpMbMdFKdi8b5y+cZuuliidjRGvSxWzTLovhPCQ62p2jSTZNpjC1ZB3HbSGbQMJOhojpLIOCxqj1IYtVs6tk4kkVUBCWQiPuK7m3o37iAZMQj6Tu57bQ0ddkNa6IM2xIIOJLE3RALbjUBvySSBXCem+EMIjO4aSXHf7OoaTOfyW4srzOrnx4ZfZOZgi57iAYjydx3U18+ul26JaSCgL4ZG+8QyZnEtDxMf//dM2mmMBPnheJ43RAKahCPsNokGT8zqbpJVcRSSUhfBIa02QoM/g/z66ndXL27j7ud0saY2hVGEmX1M0wMY9Y7zUH/e6VFFEEspCeKSzMcK/vHMVj28f5t71vbz/3IWMpmzqw34ULsMpm/GsIzP5qoyc6BPCI4ahePOKOdRHfAwlbDRQF/JhGDCezrNzKI2hoC7s596N+1izYo50Y1QBT1rKSqk6pdQvlVIvKqU2KaXO86IOIbzm95s0hv20xAKMpnK4FCaJ9I3bBH0mi5oj+Cy47vZ1MsW6SnjVUv4GcK/W+i+VUn4g7FEdQnguGrR4eTDB3tEMecdlfmMEy1BYhiKezZO1XTI5mWJdLYreUlZK1QIXATcDaK1trfVosesQolR0NESIBS2WzYkR8BVWiXNdTSbnkMk5pHIuQZ8hU6yrhBfdFwuBAeD/KqX+rJT6vlJKBmGKqmUYilcvqMdnGViqMDY5nsmTdzUGiu89spV/fsdpMsW6SngRyhZwFvAdrfWZQBL4wsE7KaWuVkqtVUqtHRgYKHaNoooV+9jL513W98aJ+E1iIQvLUAT9JiG/yXAyy1+/fgnL50TlJF+V8CKUdwO7tdZPTnz9SwohfQCt9U1a626tdXdzc3NRCxTVrdjH3oa9Y+wby5J3XeKZHNGAiWkoRlM5OpuiZOwcIb8MlKoWRQ9lrfU+YJdS6pSJb60GXjjRx2uf34FS6rhulj943Pcp9v2kxpm5X/v8jhk5bmeL62p2j6ZpiPj43iMv47cMfKaB42gcFzb3xdEYdDRI10W18OrP798AP1WFkRfbgA+f6APt3b2L9/zXY8d1n9s+fv5x36fY95MaZ+Z+t338/ON+nmLaMZSkIezjB49tY/XyNm59aicfuqALw1D4TUVrLEBbTVC6LqqIJ6GstV4HdHvx3EKUkr7xDFnHZfXyNh7Y1Mv7zl3IQNymtSbAo5v3sXROPQ0Rn9dliiKSadZCeKi1JsiWfXEao34+cG4Xg/EszbEAYymb1y9vo70+QCLreF2mKCIJZSE81NkYYV59hOFEFle7NET8jKZsIgEfhgKfZdAzkvK6TFFEckpXCA8ZhmJFe4ye4RRp28UyFCnbwWcYONplMJ5laWuN12WKIpKWshAee3kgSX3ITyxoksk7NMcCmAaMp3PUhPy0xPxelyiKSFrKQngs4rfIuQ4D8SyDCZvmWJCI32RBUwTHcaVPucpIS1kIj7XWBNg1nCIatFjSEgMg4DNQQE3IJ33KVUZCWQiPdTREsAyT4UQW01SAxlCKdM5hMFFY9F5Uj6OGsiqYX4xihKhGhqFY0BimtTbEUMIm4reIZ/Iksw4p28EykSuPVJGjhrLWWgP3FKEWIapWOpcn7xQuopq0HSIBk7DfJJd3UBhsG0h4XaIokmPtvnhWKXX2rFYiRBXL5jQoTcAyiAUtxtN59oykQSl8lmK7XHWkahzr6ItXA+9TSu2ksNSmotCIXjVrlQlRRQwDxpMO8XSKunAA23GZ3xDG0S5b9o3TWisX56kWxxrKb5zVKoSocpZpkM05zK0L4WjwmQpDFZbvTNku9WFZ/6JaHFMoa613znYhQlQzn6HwWSYv7B1nfkMEx4WcqxlN5amL+Fkms/qqhkweEcJjrqvJuS5hv8ncujCZnMOc2iDjmRxLWmPUhCwsS0avVgv5SQvhsR1DSbSGoKVojPqxTANXF076jaRs7LwrQ+KqiISyEB5yXc3OoSRJ2yFpu+Qch9qQxWDcJm27mIZC60Jwi+ogoSyER1xXc+/GfViGwY0PbsE0FDlH42rwWwZ1YQvTUOS1S38843W5okgklIXwyI6hJNfdvo5ENs87zprPAy/0Eg1YpG2HkN8kZTvYeZfNvXFaYkGvyxVFIqEshEf6xjNkci6RgMmdz+5izcp2knaeSMBkIJ4lbbskMjkao0E6G+XCqdXCs1BWSplKqT8rpe72qgYhvNRaEyToM9gxlOTd3R189e6N7B5OYyhFNGBRG/KxoCkysUiRqBZetpSvBTZ5+PxCeKqzMcINl5/BzY9ux1DwxTXLqY8EsPMuYb9B71iK53pGCVqGnOirIp6EslJqHvAW4PtePL8QpcAwFGtWzOGWD55DcyxAXcSHUpDOOby0L04m5zKnLsSOoSR943Kir1p41VL+D+BzgOvR8wtREgxDsaglOnXB1IBpoBSc0lbD8rk1tNcFGEzYaLSMVa4SRQ9lpdSlQL/W+pmj7He1UmqtUmrtwMBAkaoTwptjT7uF9S8CPoOco1HAWDrHy/1JmiJ+EhlHujCqhBct5QuAtymldgC3AhcrpX5y8E5a65u01t1a6+7m5uZi1yiqmBfHnmUq8o5LcuJ6fKahiAUtlrbW8J2HtzGSsmWscpUoeihrrb+otZ6nte4ErgAe1Fq/v9h1CFEq8nkXTWFadSRgAuC4mlQ2z48e285IqnA1EhmrXB1knLIQHtuwd4yNe+M0Rv34TANDgc80uGvdXu7Z2Mf1b11B0GfIWOUq4ekqcVrrPwB/8LIGIby2ZzRN2G/x/K4xfJbJA5t6+cC5Xbx++RzefXYHpqFprQlhGDJeuRpIS1kID7mupiHi54ePbSMS8BHyKa48r4vhlE1NyOLl/jgjyTzz66WVXC0klIXw0I6hJEGfwbu7O/jpkzsI+HxorWkI+0ll83Q2RXn90hZpJVcRCWUhPNQ3niHvutSFfXzsNYvIOS4uYJoQDVgEfIpdo2mvyxRFJKEshIdaa4K81Bsn7DeoCflwJiaIbOtPMJS02bQ3zk4Zn1xVJJSF8FBnY4T6SICRpI3fUjRF/Yyn8zTHQoT8Jjf/aTt+y5DZfFVEQlkIDxmGYl5DkPpwgOFkjmzOJZt3CPgM7nimh/e9egGGAb/dsE+CuUpIKAvhsXweRtM2kYBJKufQXhciY+c5s6ORWMDENBSf+cU6tg9KN0Y1kFAWwmONUT8jyRz7xtI0RnzYjkteQ8AyCAcsUrZDJufSMyyhXA0klIXwWEdDhJZYkJ3Dabb0J1AUxi8vbY0R8Vt8/b7NBH0GYb+nc71EkchPWQiPua7G71OcMb8OO++ilKIx6ieZdfj2g1vY3J/g+reuoLUm4HWpoggklIXw2Ma9Y5jK4NmeERa3hPFbPuycS8Bn8KELFhILWChVaFGLyiehLITH9oylqQ/7aIz4GUs7pO0kNUE/OVdTF/IR8BnMq5e1L6qF9CkL4bGmaICX+xPEQj5S2TyN0QChiVEXjqtJZPNoGQ1XNSSUhfBYLGgSCfrI5R3m1oUZSeVQgGnArpEU9RE/++QafVVDQlkIjw3GbXymojEaIBq0iPgtLFNxxzM9RAIWPYMJWeC+ikgoC+GhfN4FFD/403YMQxHP5KgL+xhP53n/uQsJ+RQhv08WuK8iEspCeGjD3jFAc8mKNm58cAshv8lYKkfO0SQyeerDARa3hOUkXxWRUBbCQ3tG06RyLs2xAG8+bS5aQyxkYSgwlCKVcxjPOLLuRRWRUBbCQw1RPzsHEziuy/z6MNmcg1IKV2tqwj5+t76XP24ZZIcs31k1ih7KSqn5SqmHlFIvKKU2KqWuLXYNQpSKupBFc02QVNahd6xwrb6hhE1TNMAvn+7hno19OC7sG5PRF9XCi5ZyHviM1vpU4Fzgk0qpUz2oQwjPLWmuIew3aa8P0dEYIZt3aYn5+cVEIP/9pady9/N70OiJk4Ki0hU9lLXWvVrrZyc+jwObgPZi1yFEKbAsg9qQhd80iWdyALy0L868xgg3XH4Gdz67i0+vXsrGPWNs7B3zuFpRDJ72KSulOoEzgSe9rEMILykMvvzr9fgNiAZNGqMBXr2wAdNQXPuGpVimZizjSBdGlfAslJVSUeAO4NNa6/Fptl+tlFqrlFo7MDBQ/AJF1Sr2sddaE+CKszv453tfonc0TUPEz3AyR9hvMpLMYjtw9/N7mFMrE0iqgSehrJTyUQjkn2qt/3u6fbTWN2mtu7XW3c3NzcUtUFS1Yh97HQ0R5jeEueLsDizTZDSVw3VdxlI5wgEfP39yJ598/RJWtNXOei3Ce16MvlDAzcAmrfUNxX5+IUqNYSjm14c4pTXGYDxDztUMJ20ao34cV/PpN5xCc8zvdZmiSLxoKV8AfAC4WCm1buL2Zg/qEKIkuK4m5FPYjsPilhgKWNAYIZ7Jk7Hz/N2v1hPyWXKir0oUfT1lrfWjgMwZFYLC2hcPvNhH33iGBY1hAj4T01Sksg6D8Szf/9M2Pvm6xViGZt9YhtPne12xmG0yo08Ij7iu5qmdQ2zsHeeff/sipgEp22HfSIrasI/asI9/eecqasMWw8m8nOirEhLKQnhk+2CSoUQOV0Mm52IaJveu30NHU5ShhE00YLGlL07KdtFoOdFXJSSUhfDIzuEkEb+JqSDoM/jF0z10dzbx7/e9iN9UJG2Hxa0xupoinDo3JivFVQkJZSE8EvFb5LWmORbg2tVLuGdjH0+8PMhnLlmG7bi0xgL86tkeHnixnw274zz4Up+sFlcFJJSF8EhrTYDRZJZIwCLiN/nPvzqL1y+fA0BDxMezu0a4/ZleXA2b9o3z/O4xWS2uCkgoC+GRjoYItSE/yUyOzqYISduhMerHMKB3NE084xD0GRgKHBdcDX1yrb6KJ6EshEcMQ7GsLUZ7fZixdJ6I3ySRybNzMEky63L383u4dvUSFrdEufv5PRgKwn7T67LFLJNQFsIjrqt5eSDJl+7cgGUoRtM5ApZBYzRAXdjHZy9Zxoq5Ndz93G6uOLuDxrAf25HlOyudhLIQHnBdzb0b9/HcrlFGUjb/cPcLDMSzfOvBzSRtF9vRNEb9pHMO7z2nk6WtUW55bDt+U35lK538hIXwwI6hJNfdvo7b1+7mHy9byUjK5geP7WD18jn4DEVrTYD+8QzbBpL0DKX4h7tf4D3dHdJSrgJFn2YthCicsMvkXHrHMqRzeb51xZkk7Dw+w2AgkcFxA6DgtPZaxtM5vrBmOf9y7yZWttfiulrGLFcwaSkL4YHWmiBBX+HXrz9u80/3vMBo0qYmZNESCxIJmAR9Fi/sHWMoafMv927iU69fwt//er0Mi6twEspCeKCzMcLX3rWKoM/gjmcKJ/K+9ruX+Pwd6xlNZlFKEc/kmN8QIW3n+cqlK7jn+b3sHErTH5dhcZVMui+E8IBhKM6YX8t//tVZrNs9CsC1q5fQHA0wkMjSFHOJBXxk8g5z6sJ84/ebeX7POEGfQUtMFiaqZNJSFqLIXFezYzDBpt44OVdzTmcDHQ0hzuyow28p2uvDfPfhrYxnchgKPvfL56YC+YbLz6CzMeL1SxCzSFrKQhSR62oefKmPLX0JMjmHiN+kLuwj4DPZ2hdnfmOE0VSOT7/hFEZSWUaSNh99TRer2mtY0hqjszEiJ/kqnLSUhSiiHUNJnt89xjce2MLta3cTsEwyOZd4OseCpijJbJ76sI/dw0lsR/Odh7dx86PbaKkJMJTMsmMoKYsSVTgJZSGKqG88M7V+cu9Yhu8+sg3H1cxviNA/ngENL/aOUxsO8MM/7WAkZfPZN57CQNzm2Z2jfPgHT3Hvxn0SzBXMq6tZr1FKvaSU2qqU+oIXNQjhhdaa4NT6yQC9Yxm+evcmxjNZ6sN+do+mWT63lmjA5K9fv5iffuzVfP+P2xlJ2Xz995u5dFU7192+TobFVTAvrmZtAjcCbwJOBd6rlDq12HUI4YXOxginzavl2tVLpoI56DNQmKA0y+bEGE7aaMAyFRv3jDGSsgn5LTI5F6UKrWwZFle5vDjRdw6wVWu9DUApdStwGfCCB7UIUVSGobj4lFbqQ37+86/OYiCepSbk4/ane3h393xc7ZLJOYynFalsjpv/tJ3rL13B9x95maDPQGtkWFyF86L7oh3Ytd/Xuye+J0RVMAyFZRo8t3uU6+/ayMbecR7fPsx3H34ZFwhYBs2xALVhP5+9ZBk/f2onm/sT/O0blnL383tkWFyFK9khcUqpq4GrATo6OjyuRlSTYhx7tuPQEPZz7eol3Pp0D3/7hqV8/febuebnfyboM/jSm5bR1RJhLJXnA+d1Eg1Y7BpO8s0rzuS09joZFlfBvAjlPcD8/b6eN/G9A2itbwJuAuju7pZTzaJoinHsNUYC3PLYdj5+URf/8LaVZB2Xb11xJqPpHCGfSWPUj+04fOYXz5HJuVMTRySQK58Xofw0sEQptZBCGF8B/JUHdQjhmc7GCJ9fs5zrbl/H0pYon7p4CX6fQR0+FjZF6GqOAnDPNRfSH8/QEgvKxJEqUfRQ1lrnlVKfAn4HmMAtWuuNxa5DCC8ZhmLNijksO0rodjVHpwJaVAdP+pS11vcA93jx3EKUCsNQErriEDKjTwghSoiEshBClBCldekPbFBKDQA7p9nUBAwWuZzplEodUDq1lEMdg1rrNUe68xGOvaM9djko9/qhfF/DYY+9sgjlw1FKrdVad0sdryiVWqqhjlJ5jSeq3OuHyngNB5PuCyGEKCESykIIUULKPZRv8rqACaVSB5ROLdVQR6m8xhNV7vVDZbyGA5R1n7IQQlSacm8pCyFERZFQFkKIElIWobxmzRoNyE1uM307Kjn25DZLt8Mqi1AeHCzHseGiEsixJ4qtLEJZCCGqhYSyEEKUkJK9HJQQJ8N1NTuGkvSNZ2itkQXiRfmQUBYVx3U1927cx3W3rzvgUkprVsyRYBYlT7ovRMXZMZScCmSATM7lutvXsWMo6XFlR6e1JpvNIpO6qpeEsqg4feOZqUCelMm59MczHlV07Gzb5j3ffgDbtr0uRXhEQllUnNaaIEHfgYd20GfQEgt6VNHxMS2/1yUID0koi4rT2RjhhsvPmArmyT7lzsaIx5UJcXRyok9UnGO9UrQQpUhCWVQkuVK0KFfSfSGEECVEQlkIIUqIhLIQQpQQCWUhhCghEspCCFFCJJSFEKKEeDIkTim1A4gDDpDXWnd7UYcQQpQaL8cpv15rLZd1EEKI/Uj3hRBClBCvQlkD9ymlnlFKXe1RDUIIUXK86r54jdZ6j1KqBbhfKfWi1vqR/XeYCOurATo6OryoUVQpOfaElzxpKWut90x87AfuBM6ZZp+btNbdWuvu5ubmYpcoqpgce8JLRQ9lpVREKRWb/By4BNhQ7DqEEKIUedF90QrcqZSafP6faa3v9aAOIYQoOUUPZa31NuD0Yj+vEEKUA1lPWVQk19XsGErSN56htUYWuRflQ0JZVBzX1dy7cd/UFa0nLwe1ZsUcCWZR8mTyiKg4O4aSU4EMhStZX3f7OnYMJT2uTIijk1AWFadvPDMVyJMyOZf+eMajioQ4dhLKouK01gSnrmQ9KegzaIkFPapIiGMnoSwqTmdjhBsuP2MqmCf7lDsbIx5XJsTRyYk+UXEMQ7FmxRyWXXMh/fEMLTEZfSHKh4SyqEiGoehqjtLVHPW6FCGOi3RfCCFECZFQFkKIEiKhLIQQJURCWQghSoiEshBClBAJZSGEKCESykIIUUIklIUQooR4NnlEKWUCa4E9WutLvapDVJ5yXUtZa002m/W6DOExL2f0XQtsAmo8rEFUmHJeS9m2bd73nYew/GGvSxEe8qT7Qik1D3gL8H0vnl9UrnJfS9m0fF6XIDzmVZ/yfwCfA9zD7aCUuloptVYptXZgYKBohYnyNhNrKcuxJ7xU9FBWSl0K9GutnznSflrrm7TW3Vrr7ubm5iJVJ8rdTKylLMee8JIXLeULgLcppXYAtwIXK6V+4kEdogJVwlrKTt6WE35VrOgn+rTWXwS+CKCUeh3wv7TW7y92HaIyyVrKotzJesqi4shayqKceRrKWus/AH/wsgYhhCglMqNPCCFKiISyEEKUEAllIYQoIXKiT1Sccl37QgiQUBYVppzXvhACpPtCVJhyX/tCCAllUVFmYu0LIbwkoSwqykysfSGElySURUWphLUvRHWTE32iosjaF6LcSSiLiiNrX4hyJt0XQghRQiSUhRCihEgoCyFECZFQFkKIEuLFNfqCSqmnlFLPKaU2KqW+WuwahBCiVHkx+iILXKy1TiilfMCjSqnfaq2f8KAWUYFkQSJRzk4qlJVSLRQuhDoXSAMbgLVaa/dw99FaayAx8aVv4qZPpg4hJpXzgkTZbBbXlV+FandC3RdKqdcrpX4H/A/wJqANOBX4MrBeKfVVpVTNEe5vKqXWAf3A/VrrJ0+kDiEOJgsSiXJ3oi3lNwNXaa17Dt6glLKAS4G/AO6Y7s5aawc4QylVB9yplFqptd5w0ONcDVwN0NHRcYJlimpzpAWJjnUyiRx7wksn1FLWWn8W2K2UunyabXmt9a+01tMG8kH7jgIPAWum2XaT1rpba93d3Nx8ImWKKjQTCxLJsSe8dMKjLyb6jT93vPdTSjVPtJBRSoUotKhfPNE6hNifLEgkyt3Jjr74vVLqfwG3AVOddlrr4SPcpw34oVLKpPBH4Xat9d0nWYcQgCxIJMrfyYbyeyY+fnK/72mg63B30Fo/D5x5ks8rxGHJgkSinJ1UKGutF85UIULMFBmnLMrZCYWyUuo1WutHj7C9Bug4eESFELOtnMcpCwEnfqLvXUqpx5RSX1FKvUUpdY5S6iKl1EeUUj8G7gZCM1inEMdEximLcndCLWWt9d8qpRqAdwHvBuZQmNG3Cfiu1vpPM1eiEMduJsYpe01rTTabRWuNUtK6rzYnMyRuGKgBngfuBx4FBoFlSqkzZqQ6IY5TJVw41XXyfPSWJ7Bt2+tShAdOdpW4VwGfoDDMbS7wcQoTQb6nlDruMcxCnKxKGadsWH6vSxAeOdkhcfOAs7TWCQCl1PUU1sO4CHgG+NeTfHwhjouMUxbl7mRDuYXCUpyTckCr1jqtlMoe5j5CzCoZpyzK2cmG8k+BJ5VSv574+q3Az5RSEeCFk3xsIYSoOic7eeQflVK/pbCmMsAntNZrJz5/30lVJoQQVeikrzwyEcJrj7qjEEUgs/lEufPiclBCzAqZzScqgVzNWlQMmc0nKoGEsqgYR5rNJ0S5kFAWFaMSZvMJIaEsKkalzOYT1a3oJ/qUUvOBHwGtFBbEv0lr/Y1i1yEqj8zmE5XAi9EXeeAzWutnlVIx4Bml1P1aa5lsImaM1l5XIMSJKXooa617gd6Jz+NKqU1AOzIDUJwkGRInKoGnfcpKqU4K1+t70ss6RGWQIXGiEngWykqpKHAH8Gmt9fg0269WSq1VSq0dGBgofoGi7MzUkDg59oSXPAllpZSPQiD/VGv939Pto7W+SWvdrbXubm5uLm6BoizN1JA4OfaEl4oeyqpwfZubgU1a6xuK/fyicsmQOFEJvBh9cQHwAWC9UmrdxPe+pLW+x4NaRAWRIXGiEngx+uJRQH5LxKySIXGiXMkqcaJilPOQuMkrWBfmU4lqJtOsRcUo5yFxtm3zwZseRrsSytVOWsqipNm2w/N7x9g3nqGtJshpc2vx+81p9z3SkLhyuF6fafm8LkGUAAllUbIymTy/Wd/LV36zYao74h8uW8nbV82dNpgnh8TtH8yySpwoN9J9IUqS62qe2zvGV36zgfqwn0++fjEfu7CLPSMpXth3yFwjQIbEicogLWVRknYMJekdy1Af9vOJi7oYStlMdrf2jKRYNa9u2pN3fktx9UVduBoMVfhaiHIioSxK0r6xDA0RHx8+fwGpnMNNj2yb6sK4dvUSeoaTdDYd2E+8YyjJp37250O6L+655sKy6FMWAiSURYkKWAY/eORl/urVC7n+Nxv46Gu6UBON3luf7uGsjvpDQrncT/QJARLKokSNZWzOmN9Iys7znu4OvvnglqmW8jUXLyHnOAfs77qavKPlRJ8oe3KiT5SkxkiQ29b2EAv6pgIZCi3fbz64hVjgwOFjO4aSfPnX67nm4iUHnOj72rtWyYk+UVakpSxKjutq8q7DJ167mOd2jVIf9vPOs+ZNdV/c8cxuUrkDW8p94xl2DqX58RM7p7o6tIb2umDJz+YTYn8SyqJo8nmXjb1j9I5laKsNsaKtBss69J+1nuEk2wdT/PzJnXzhzcswDcWtT/dw6ap2TAO+8tZTmVt3YJfE5Bjl3rEMNz60FSi0lN91VntRXpsQM6XsQ9l1NTuGkvSNZ2itkVXBSpVtO/z6+b38/a9fmQjyT29fydtPbz8kmPvGs+waTrG5P8GzO0f5xTO7DulX/tq7VjG//pWfdUd9mH96+0q+/KsDH7+jPuzFyz1u2WwW19UY0qFY9co6lI9lARoJbe/l8y7P7h7h2w9tOWAUxbce3MKS5iind9QfsH8ym+f2tbu55uIlZPIOl65qP6Rf+fN3PM9p7bVToyp6RlJ868EtB3RdfOvBLZzVUV+WIy8mFyjy+/0oJcdrNSnbUHZdzfo9o1x3+7oD+hxf2jfOqW0xOpuiB4R2fdjPu7vnsXJuLa2xALbr4jcNUrYjYT2LXFfzTM8wY+nCKIp1u4b40AVd2HnNyrk1ZB1nooX4ynvfGA0wkrL58RM7+dKbl7OlPz5tv/L+Q90m+5Qnuy4mletwONfJ8YH/+iO3X/MGAoGA1+WIIirLUJ4M2xf3jVMf9vOBcxcc8K/tgsYIHQ2RqVXDlrZEee+rF/Ddh7cStEz+9z0v8JHzF07NEjMVnDavlotPacV19SH9nsAx9YVOV2e5tNKPp1bX1ewaSdI3lmU8m6Mu5MfOu8ypPfR+L/cnSNkONUGLdbuGeMuqdrb2JRhMvvLej6XzrF7WimEoXFczmMjwt29Yytd/v5l/vmcT//SOFYR8Jt94YMsBE0jm1LzSr9wSm37di+Zo+Q6HMyy/1yUID3gSykqpW4BLgX6t9crjvf9k2H7swi6uPG8BD2zax7/+5emks3nCAYu7ntvFoubI1DTdv7l4CX9z65/51OsXc9vaHr5y6als7kscMktsaWuUp7aPcOtTO7nqosUMJbI8vn2AfWM2335oC5euaqdnKEkim0NpxZy6V0Jo/1Brqy0EwZ97Rvnpkzu48vwueoZT9I1neNX8+kMW05kMuXg6T9J26I9nmVt75BXRDr7/yYR/JpPnnhf28aU71x91HWLbdnhixyAjqRyG0hjK5JHdA4f8cTMMRT7vsnUwgXY1I6kc7zt3IS/1juNoDnnvl7RE6WyKsn0wSTrn8rOnXhlF4TqFCSMHTyC55NQ5U3UZCq5dveSQ4Dalj1aUGa9ayj8Avg386ETuPDlz65GX+rn2DUuoC3XwuV8+Rybn0r2glivO6eQ9Nz3Bxy7s4t3d8xhO2dSH/XQ1RfjI+QsxVOFs/j+87VTmNUQYjGepj/jpH89y38a9XHXRIhLZHEPxLKvm1/Hth7bwsdd0EfIpDMPkS3eunxoJcOGSJiJ+kxf3JfjZkzu46qLFDMRHiQQsfrthD5d3d/Cjx7Zx1UWLSdsOD27uZ1FTlEUt0ang+uPWfgD64zbX/2bj1Ov47Jpl2DlNJu/Q1RihvTbEi/1xcq4DKCwDXFexfSjJrU/t5JMXL2EgkWH3SAqtNXUhP6ncgd0zB//x8FnwUm+SL925nvqwnyvPW8C8+jB5x+HPPSPYjjt1/8m+Yb9porCpCwXYPnjgWsV7R9JTU6A37h0jYBr4AwY9e8YwlKKtLsy/3ffiYWfo7RxOsnskxRVnd0wF7JfedMq0E0hGUlmg0E21ce84P3r8wOFwP3p8J2d21B0y80+IUuZJKGutH1FKdZ7o/SeHP124tAWfafDVuzeytCXK3126jLStuf43G7h29RKWtcVIZArjWa+9eBGxkI+dwynimRyfecMS0nnNR37w9FQIXnXRIj564SISmTxp22FBY4iBeJYPnddJwFK01oT48q838FfnLODrv9/MeQsbWNQcIRbwce+GPVx+9gK2DSSoCVpo4IPnd/H1+1/iIxd0kcjm0K5LV0uMkbTNMz1DgCKTc3Fc8FsG1/9mI29e0cpVr+uiZyjNjsEUD2zq5UMXdJHO57nvxT4CFmQdsJQmnnXJOy4Pb+7jqosWEU/nGBjPsKglwnAyT188S0vMRzaX54W9Y+RdzbbBJPdu2MMnXreYvaMpDMNka3+C+rCfv129GK0Udz23i0tPn8fDWwot4DkxP7aTJ552yOZdHEdTHw6SnhgrHPWbtNWFSdt5GiJ+xlI5APaMpjFNAwuXtrogLTUBBsYzh3QdfeT8hVMz9MJ+i58/1cNHzl84tbDQsrYarv7xM4dMILnt6nOBwn9OW/rjjKTsA/qUZTafKEcl26eslLoauBqgo6PjgG2TSzTuHk7RH8+ytCXKNauXYOc1m/eN87HXdKG1Zs9ImqZogMF4ho7GCFv74jSE/QQsi5Df4N9//cqaCud1NWCoQkjm8hq0pj4SJJt3ifgtXK0ZTed596vm8/Xfb2ZpS5SrLlrEhj2jRFosrjy/i7+7cz1fetNyXA3hgMlwMsdVFy0maCnyrkPA72M4aeO4mpFkjnBAYRkmoEhkc7x5RStvPWMu4+k8ftPggU29vGVVO4PxDIYKMZ62Wdwa44W94yxpiXHLn17i/3ndYj50fhcp22E8nWN+Y5hcXpNzXBqjFolsnpFUjvFMnppg4Y/HO8+aTzLrYBkG/eMZTmmL8eHzF9BWH+Ibv9/MNauXsmMwSUvUz9K2GHbeYTSZYzSdx3U1jgZwqAsVDh9Hw2cn/lMJ+gz++R2ncUpLjPqIn3+/70U+ckEXpqEwlGZObYg9oxke2zrAled3kbbzzK0L0Rzz4boa04Arzu7glse2T/03Es/kyeRc2mqDB5zss51CSPeNZ6ZGa+zfmv7nd5x2QrP5jnTsCTHblPboCpMTLeW7j6VPubu7W69du/aA79m2w7O7R7DzLuPpPDUhi7F0HstQbNo3Tshnks45vNg7yvvOXUg8kycWtCZ+wR0ifovtg0nW7RrikxcvYddQBttxCVoGjoa6kA9Ha3725HYuP3sBGdsl7DcZSGS5d30vV722i+FEDp9lUBuyGIjbDMYznDq3lkzOYSBR6Bd2XE3e1ViGgaNdQJHNuTywaS+XnTkf1wVXa5QCn2mQc1xcDYlMnljI4qXecVa219Ift2mI+Ehk8ji6MGQqFrIImCajKRuUIhIw8ZsGUAjlgFX4Y5JzXHYMJmmKBogFfWTzDumci9aa5liA/niG1poAo+k82gXTUGRyOTI5TUPETyRgkXNctC5s29If55TWGNm8y593jfLY1gE+efES/KbBcDJHY8TCMAwyOYfesSx3PNPDVRctxmco/JbBf/y+8N+DqwvD3yJBC5+p6GqK8tCLfQQsc6olbSg4bW4t/3TPC9OOVX7rqrms3zPGe256/IARGoaCS05tZWV73REPwxM59mbD+Pg4773xQQzDxHUdDMPE8ge59a8vktEXlemwx15ZngZxXc0TO4YL3Qw5B1drhpM5In6TpJ0n7LNoigZoivp508p2hhI2dSEfoymbkM+gMeKnLuxj3a6hQqsx41ITsvBbBn7LwDRgNJ0jbTssaa0j5DNpiPjIa01nY4j3n9dJ3tE0Rv34DMVAPEtdyKKrJUpfPIPfUtSFfIWWnFIMJW1G0zl8psFgIovtuLz9rA6yORcoLKIzmsoymMgynMwVRiuELEaSOdrrw4ymcjREfIyl80SDFhG/SXMsgN802DuWnvreaDLHQDxLNq8BRd94hoF44TEXNkWIBi1G0zlsR089xp6RJM3RAI4LNQGLvKsL71E0yI1/2Eom5049Rt51GU5maIwGUEqTzrk0Rf185IIu0rZDznFZ2BRCoxiI27y4L46pNB86v4vRlD3Vmv/kxUsYy+T5wWPbCAUsktk80YDFjsEk41mHWx7bzkQjGMeF/3pkK19920puW1s42fepiwsL3t9w/0vsGEpiO85EH3Oh++L7f9xG0DLJHDQVu9w4eXviYqqimpRs98WRbB9M8mLvGHPrw+wcSrK0JUbAZ5DJu7TEArTGguQcF8sMsHbnCAoYSxX+9f/x49v40PldDCayvO/chdg5l8FkltGUTVM0gO24xAIWpmmQyuYxDVi/e5xT2qLkHRfw0TuaoCkWJOfkMJTCMgrdHpm8S13Ix8v9CRqiAWwHDOUSCVjUBi2Gkjkawn6CPoPBeJZs3qUm5GMklUWjaK0Jks05pGwHBbTWBhhK2MSCFj95YjsfvmAR6VxhhInGZSSZp2+8sO5wxG/RFPVjGIU/AnlH01pTaGHlHBcXyOYLIWrnXbKOy3g6i98yyebzJLN6qtWfdzWJdJ4PnLuAhogPpRRj6Rzf+cNW3nduJ04+T8AXoj6siAYiuFoXap4Y3lZoLfv4t/sKfcO7R+NTrd5XdzaAgjue6eFdZ71ygjboM/jeB7q567k9h7SI//c7TiPsN6c92TeczNIQDkwF9uRJvtvW9vDGFXOOcBQJUZo8aSkrpX4OPA6copTarZT66PHcf+dQkvkNEXYPp7h97S5GkoXWp+u6BH0mWcfBbylGUzksw+D2tbuZUxvix49v44qzO7nh/peIBQst0Zzj0hwNcPOj20mkc4T9JjUhC59Z6LM8Y14d6VyeGx/cAhoGElnmN0YIWAZKKfrjGW5+dBvpnIOh4CdPbCcW8pHIFJ67MeJn11AS0DRF/eS1xm8ZtNYGGUpk+d4jW3FcRTydI+hTOK5LxG/ias14Klu4j+tyZkcjQ4nCqJOUnWcslac55uf2tbsYStgk7TxZxyHvFvp6gz6DO5/twXEdHNclbTtsG0ig0IQCJqPJLKmcRilNLBigtSbA3tEUvaMpUrZDY8RHa02IrONiOw4Kzbte1cFPn9iB3+dja18Cv2Uwls7jMw0sw8Bvmoyn80T8Jrbj8onXLp5q9RoKTp9XR0uNj5FUjivP7+K7j2ydavl++g1LsMxCf/JkwF6zejFfv/wMOhtDBCzjkJbybWt78JnGVD/0zY9u49sPbuXmR7dxxdkdMhxOlCVPDlut9Xu11m1aa5/Wep7W+ubjuX/Qb5C08/zw8Z381TkLuPHhl0llc4R8JmMpG1Mptg0kaYz4WdoaZSRl850/bOW1p8xha3+CtTvHuOG+zcypDRANWgwmsrynu4MbH36Zp3eM8sCLA6RsB59pEPAplrTGWL18Drf8aRuNE0Pndg4lSWVz1IX9XLKijaFklj0jKc7saOR/nt/DvIYwfssgns1xypwabrh/M7bjEPIZ7B1NYSqXuXUhLlnRxk+f3EFNOMBLvQlaaoI0x/zYjiaV0ySyeYYSNnPrguwdzeBqjaEUzbEAQZ/JJ1+/hG8/tJXdw2liQYtowEdTzI9lKM5c0MRv1u2huSbInJoAP3+qh56hFGk7T9BvkczkqAkFJkZJKBqjgcJJyolQrQla3PjgFpIZh7qIj1PnxLjukmWYCpa2Rjm9vZ6OhjDDyRzWRDdO2G+S15r+8Qy1IYvPXrKMjoYQS1ti5F2XhY01zKsPo7XLe7o72NI3yvmLGjhjfh3xrEPEb3LZGe1TJ/MG4hnQCtsp7D8ZvN//4zbe092B7bj0jmWmhsN96uLFfPQ1Xfzo8Z30jmVm4/AVYlaVZfdFwDRpjPgZSdn84LEdXHneAsIBPx//ybN87MIuWqKFmVBDyQyN0eDUpIJvP7iVv3vLcoI+g+f3jHP7Uz2899wF2HmX29YWViFTqtCP+ZVfb+QHHzoHDQSsLJ2NYc7qqAdc2uuDfPG/C2OX7XyOle01aA3DSZuRpM2ytjoee3kYQ8GqebW8pquR0fMW8pVfb+STr1tEOODjxd4Ep82vpb0uxClzYmRzLstb66fGLy9t1fQMJxmIZ/nHu1/goxcs5JS2GtJZB1MZjKfzLGiM8PZVczmlNcq+sQx+02RFWy2WZbC0pTAhZVFThJ6hFB31YT73xmX86+9e5IqzO1jeFqN5YjpzZ0OYFXNrWTW3jhf7xsnkHEZSOerC1tQfoyvP7yJjp2mrDbG4Jcwpc+oAWNFWQzqXZyBu0xwLAJq+8Sw+y2R44r8KR2saon7Oaq/DsgxWttWQyeX5n+cLI0ES2TxKK7YNJgj7Dp0s0xj1M5bOHdBFAYUuigsWN+I31bTD4cLHMPGmFEyucwHenHQXpcWz0RfH4+Az4DsGE+wcSvJCb5xvPFBYhMY04JsPbKWtNsgnLurCNBWpbJ6OxghfveuFqbPyEb+JoRRf//1mMjmXj10wn7O7mhlO5vjqXRun+iv//d1n8KaVh85og8IMuLs29E7N8jMNOHN+Hed1NrIvkaFvPEvKztPREGFh04GTNvrjGebUBHFcGEhkaIkdfUrz0RZdOlb713Asz7tnLMmfe8bY2p+Y6hNe0hLlTSvaDphmnsnkWbtrhH1jKRqiAeKZPPF0jvmNEUZTOZqjAc5sryUUemVh+j9tGUAZoCicMAz5LL7w388fMIbZUHBKa4w3rWzjmZ5hnt4+ckif8nmLGhiI22ztTxyy7ZyF9XR3Nh7pLSmJ0RfZbJZ3/NtdgIFp+aZGXyjD4Ccfv5CamppZfX7hicMee2XZUu5oiLBzOElLTYCrL+qivTbErtH01Hq6331kG1eet4D59WFqQ9YhragFjSFuu+pc0nmHlliQebUhNg/E+d6V3WRyDgsbI3Q1Rw8bWMGgxTvOaGfpRAt1Tm1wqoXaGYxOO4PMMBRdzdEDFsdZ1HL0mWaGoVizYg7LrrnwmML0aI91cA1H2nd+fZS2WJiNDWOHvM79BYMW5yxo4IGX8iQyOToawmTzhYk3bTVBVs2tJRg88FBrqwvRM5wiYBlYBoxnCgsW7T8+edmcGmqCJoah8JsG33xwywHD3rJ5B1fDxr1j/GrdnkNO9K1ZWT4n+kzLh5Mv79EiYmaUZSgbhuLCxS30DCeZVxfG0S7/+fDWqckDvWMZvvHAFr72rlWcvaCRGy4/44CW5ufXLOe0gy5Rf5TxrIewLIPT59dz+vwZfnHTOJ4wnWnH+jr9fpM3rphDz3CSvvEsaTvPqW01U/8pHKyzMcLmvjjj6RyuLnQ3HNyF9LV7N/GtK84EIGU71If9fOKirqmWNMBAPMvta3cfsijViU4cEcJrZRnKUAiqzqbo1BKdn1+znK/du2mqK6N7QQPndzViWcaMtTTFke3/MzmWfRc1RdkXz6C15psPbOb/ee1i/t/9upD+8bKVnNpWCxSm1n/4/AWE/AZLozGS2Tz1UT81Qd/UMp+TLWVDQddh/hgIUerKNpT3N/Uv/pzYtMHrZUtTHN6iligDiTQZx+Xd3R38Ym0P//qXp5Ox87TXh6ZODEKhZX3mgjq29qf4wWOFE49+02AkaU/9h3TjQ1un+pMHkzLpQpSnighlkOAtR4ahOLermd2jSVqieTrfuJyBeJau5iirDlq21DAUjluYdPK+V3cynsoStApTy6ebOPL/vet0D1+ZECeuYkJZlCfDUHQ0RKHh6PsOJ2yuumgxY6ksXS0RHKcwkegTr118wMiZ69+6gtbaylgvQi4LVX0klEXZaK8PM5TI0lITxFAmiXzhJKFfaf7tL08naeeJ+AuzGefXV8ZJPtu2+eD3/8Rtn1otCxNVCZmIKsrGirYabMfFZxaWHN02kABgNJWjsAQTBCyDJa2HH85Yjky5LFRVkVAWZcOyDBY1RRlO5miOFaaNaw0J2+Glvji7R9PYjlsxrWRRnSSURVlZ1BKlJeZnz0iSv37dgQsenTGvjlXzayqqlSyqj/Qpi7JiGIoz59XTF8+CdvnHy1YykspRH/ZhGdBeW/qtZK01tm3j9xe6JQ63ZvIra2KIaiItZVF2/H6TN69oo6s5hlKKsN9kbm2Ic7uay6KVbNs27/n2A9i2jW3bvO87D+G6h65B4zp5Pv7Dp6bdJiqXtJRFWbIs47inxpeS/U/emZYP17an3c+wfDIsrsp4tcj9GqXUS0qprUqpL3hRgxDlwnVyfOC//oh9mOAWlaXoLWWllAncCPwFsBt4Win1G631C8WuRVSuyWVK+8YztNaU5nonk33Lx8KQYXFVw4vui3OArVrrbQBKqVuBywAJZTEjZnIN6tni5G3i8TgfueUxlHFsv4aTJ/1kEkll86L7oh3Ytd/Xuye+J8SM2DGUnApkgEzO5brb17FjKFnUOib7gqe7kMTkNtPyTXNPUc1KdvSFUupqpdRapdTagYEBr8sRZaRvPDMVyJMyOZf++LFds2+mjr14PM7l3/z9tF0UMrJCHI4XobwH2H/J9HkT3zuA1vomrXW31rq7ubm5aMWJ8tdaEyToO+jqKD6DlljwmO4/k8eeMn2HbS0bM9BKPlJrXJQnL0L5aWCJUmqhUsoPXAH8xoM6RIXqbIxww+VnTAXzZJ+yF1cicZ0c7//uI4yPj5NOp8lkMicVoJMh7Lou2WyWbDY7NeZZVIain+jTWueVUp8CfgeYwC1a643FrkNUrpm8ruGMUIr3/edDQGFM8o8/fuHUJiefwzCOfNXtwj6FX1Xbtrnye4/yo6teM/Vx/zHPcjKw/HkyeURrfQ9wjxfPLaqD1xc9eGWKdGH9usmuisnujBN9TNu2p0LY2O+xtNZkMhkymQxKqSNONNl/mvfB+xxp24nUWsoTXkq1xpI90SdEKZvsOjgc27b54E0Po12Nk8+Rt7No1yWXTfGhm/54Qif4bNvmyu/+Yeqq166T48Pf/xOuq4nH4/zl1+/lvd+6nw989xFs2z5sjftP8z6ebQc70ntwPI9zLI83k/eZdCI1HquTqUumWQtxgo70Sze5zc3ncF0H7boowHUdDMPEzefAcHFdZ+rj/vscvM01zP0esxC4Tj53wNfHW9t0+xxp24m8/uMJphMJsZNZsOlEajyexz7RLiRVDmdtlVIDwM5pNjUBg0UuZzqlUgeUTi3lUMeg1nrNke58hGPvaI9dDsq9fijf13DYY68sQvlwlFJrtdbdUscrSqWWaqijVF7jiSr3+qEyXsPBpE9ZCCFKiISyEEKUkHIP5Zu8LmBCqdQBpVNLNdRRKq/xRJV7/VAZr+EAZd2nLIQQlabcW8pCCFFRyiKUj3alEqVUQCl128T2J5VSnbNQw3yl1ENKqReUUhuVUtdOs8/rlFJjSql1E7evzHQd+z3XDqXU+onnWTvNdqWU+ubEe/K8UuqsWajhlP1e6zql1LhS6tMH7TMr74lS6halVL9SasN+32tQSt2vlNoy8bH+MPf94MQ+W5RSHzyB5y7rK+ccy7FcDpRSplLqz0qpu72uZUZprUv6RmF9jJeBLsAPPAecetA+fw18d+LzK4DbZqGONuCsic9jwOZp6ngdcHeR3pcdQNMRtr8Z+C2ggHOBJ4vwc9oHLCjGewJcBJwFbNjve/8KfGHi8y8AX5vmfg3AtomP9ROf18/k8Vjqt2M5lsvhBlwH/KxYv3PFupVDS3nqSiVaaxuYvFLJ/i4Dfjjx+S+B1WqGJ7NrrXu11s9OfB4HNlHai/NfBvxIFzwB1Cml2mbx+VYDL2utDzfRYkZprR8Bhg/69v7HwQ+Bt09z1zcC92uth7XWI8D9wBEnkBzkWI7HklaGx/IhlFLzgLcA3/e6lplWDqF8LFcqmdpHa50HxoDG2SpoonvkTODJaTafp5R6Tin1W6XUitmqgcJKN/cppZ5RSl09zfZiX+HlCuDnh9lWrPekVWvdO/H5PqB1mn1O9n2pqCvnHOVYLmX/AXwOcI+yX9mRtS+Ok1IqCtwBfFprPX7Q5mcp/PueUEq9GfgVsGSWSnmN1nqPUqoFuF8p9eJE67HoJtbFfhvwxWk2F/M9maK11kopGVp0BEc5lkuWUupSoF9r/YxS6nUelzPjyqGlfCxXKpnaRyllAbXA0EwXopTyUTiIf6q1/u+Dt2utx7XWiYnP7wF8Sqmmma5j4vH3THzsB+6k8G/1/o7pCi8z5E3As1rrvmnqLNp7AvRNdtFMfOyfZp+TfV+K+b7OmqMdyyXuAuBtSqkdFLqPLlZK/cTbkmZOOYTysVyp5DfA5Fn0vwQe1BNnAmbKRB/1zcAmrfUNh9lnzmRftlLqHArv72z8cYgopWKTnwOXABsO2u03wJUTozDOBcb2+9d+pr2Xw3RdFOs9mbD/cfBB4NfT7PM74BKlVP3E6IxLJr53rMr+yjnHciyXMq31F7XW87TWnRTe/we11u/3uKyZ4/WZxmO5URhJsJnCWe+/m/jePwBvm/g8CPwC2Ao8BXTNQg2vodCP+zywbuL2ZuATwCcm9vkUsJHCGfkngPNn6f3omniO5yaeb/I92b8WBdw48Z6tB7pnqZYIhZCt3e97s/6eUPgj0AvkKPTrfpTCeYQHgC3A74GGiX27ge/vd9+PTBwrW4EPz8TxWE63wx3LXtd1gq/ldVTY6AuZ0SeEECWkHLovhBCiakgoCyFECZFQFkKIEiKhLIQQJURCWQghSoiEshDipCil/kMpddFhtv2bUuriYtdUzmRIXIWamCCgtNYVtzaAKB1KqUbgf7TW506zzaQw4/F7WutLil5cmZK1LyrIxOIyv6OwuMyrKExyKMqqbaLyKaX+Hng/MEBhUaZngHHg3v322QHcBvwF8K9a61uVUo1KqTla633Fr7r8SChXniXAB3VhuU4hZoRS6mzgXcDpgI/CQlPPUFiH4pcH7T6ktd7/ogrPTux3RxFKLXsSypVnpwSymAUXAL/WWmeAjFLqronvt1FoOe/vtoO+7gfmznJ9FUNO9FWepNcFiKqSprD2zP4OPgaDE/uJYyChLIQ4Fn8C3qqUCk6sw3zpxPc3AYuPct+lHLqKoTgMCWUhxFFprZ+msETp8xSu/biewhV+/ofCSm3Tmli3eTFwyMV9xfRkSJwQ4pgopaK6cAWZMPAIcLXW+lml1KPApVrr0Wnu8w4KF2n9+yKXW7bkRJ8Q4ljdpJQ6lUIf8Q/1xMVXgc8AHcDoNPexgH8vTnmVQVrKQghRQqRPWQghSoiEshBClBAJZSGEKCESykIIUUIklIUQooRIKAshRAn5/wGCkGZ+05T3tgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 360x360 with 6 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sns.pairplot(df)\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/student/.local/lib/python3.6/site-packages/seaborn/distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).\n", + " warnings.warn(msg, FutureWarning)\n" + ] + }, + { + "data": { + "text/plain": [ + "<AxesSubplot:xlabel='g(r)', ylabel='Density'>" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEGCAYAAABvtY4XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAavElEQVR4nO3deZAkZ3nn8e9TVX1OXzPT3XOPenQNOoyukRAIg0IYJBsBSxBeDAjvEuxqd4PdAOwAA7HsmljvrsNrs3gPOxACr7AkC4NAtmWwEIeQsKWRZiSha3SgOaQ5+5iZrr6qu6vq2T8yq6dnpo/qI7uysn6fiI7uyqrMfGq659dvv/m+b5q7IyIiyZOqdAEiIhINBbyISEIp4EVEEkoBLyKSUAp4EZGEylS6gOk6Ozu9p6en0mWIiFSN3bt397t710zPxSrge3p62LVrV6XLEBGpGmZ2YLbn1EUjIpJQCngRkYRSwIuIJJQCXkQkoRTwIiIJpYAXEUkoBbyISEIp4EVEEkoBLyKSULGaySrlu3vna2dt+/CbtlagEhGJK7XgRUQSSgEvIpJQCngRkYRSwIuIJJQCXkQkoRTwIiIJpYAXEUkoBbyISEIp4EVEEkoBLyKSUAp4EZGEUsCLiCSUAl5EJKEU8CIiCaWAFxFJKAW8iEhCKeBFRBJKAS8iklAKeBGRhFLAi4gklAJeRCShIg94M0ub2VNmdn/U5xIRkVNWogX/SWDPCpxHRESmiTTgzWwz8G7g9ijPIyIiZ4u6Bf8V4LNAcbYXmNmtZrbLzHb19fVFXI6ISO2ILODN7Gag1913z/U6d7/N3Xe4+46urq6oyhERqTlRtuCvA95rZvuBe4AbzOzOCM8nIiLTRBbw7v55d9/s7j3AbwE/cfdbojqfiIicTuPgRUQSKrMSJ3H3h4CHVuJcIiISUAteRCShFPAiIgmlgBcRSSgFvIhIQingRUQSSgEvIpJQCngRkYRSwIuIJJQCXkQkoRTwIiIJpYAXEUkoBbyISEIp4EVEEkoBLyKSUAp4EZGEUsCLiCSUAl5EJKEU8CIiCaWAFxFJKAW8iEhCKeBFRBJKAS8iklAKeBGRhFLAi4gklAJeRCShFPAiIgmlgBcRSSgFvIhIQingRUQSSgEvIpJQCngRkYRSwIuIJJQCXkQkoRTwIiIJpYAXEUkoBbyISEJFFvBm1mhmj5vZL8zseTP7UlTnEhGRs2UiPPY4cIO7D5tZHfBzM/uBuz8W4TlFRCQUWcC7uwPD4cO68MOjOp+IiJwu0j54M0ub2dNAL/Cgu++c4TW3mtkuM9vV19cXZTkiIjUl0oB394K7Xw5sBq4xs0tneM1t7r7D3Xd0dXVFWY6ISE1ZkVE07n4S+Clw00qcT0REoh1F02VmHeHXTcA7gRejOp+IiJwuylE0G4A7zCxN8Ivkr939/gjPJyIi00Q5iuYZ4Iqoji8iInPTTFYRkYRSwIuIJJQCXkQkoRTwIiIJpYAXEUkoBbyISEKVFfBm9l0ze7eZ6ReCiEiVKDew/wz4MPCKmf2hmW2PsCYREVkGZQW8u//I3T8CXAnsB35kZv9kZh8L13oXEZGYKbvLxczWAv8S+FfAU8CfEgT+g5FUJiIiS1LWUgVm9j1gO/CXwHvc/Uj41LfMbFdUxYmIyOKVuxbN19z9+9M3mFmDu4+7+44I6hIRkSUqt4vmD2bY9uhyFiIiIstrzha8ma0HNgFNZnYFYOFTbUBzxLXJHL731CFGJ/L85lVbqM9o9KqInG2+LpobCS6sbga+PG37EPCFiGqSeQyOTbL7wHGKDkO5fXz8rduoSyvkReR0cwa8u99BcNOOD7j7vStUk8zjoZd6KTq8+dy1PLp3gJeODnHppvZKlyUiMTNfF80t7n4n0GNmv3Pm8+7+5Rl2k4g98PxRWhsy3HjJenbuG+DQyTEFvIicZb4umlXh55aoC5Hy5CYLPPRSH5dubKc+k2J9WyOHToxVuiwRiaH5umi+Gn7+0sqUI/N5fN9xRicKXLShDYBNq5t47lAWd69wZSISN+UuNvZHZtZmZnVm9mMz6zOzW6IuTs728rEhALasbgJgY0cTY5MFToxOVrIsEYmhcodevMvds8DNBGvRnA98JqqiZHb7+kfoaK6juSH442tzRzBa9eCJ0UqWJSIxVG7Al7py3g18290HI6pH5rGvf4RtnaumHq9rayCdMg6dVD+8iJyu3IC/38xeBK4CfmxmXUAuurJkNmcGfCYdXmhVwIvIGcpdLvhzwFuAHe4+CYwA74uyMDnb6ESeI4M5zp0W8ABdrQ0cH5moUFUiElflLjYG8AaC8fDT9/nmMtcjc9jfH/Szb+tsYXDs1EXVjuY6sgcnyReKZDSjVURC5S4X/JfAecDTQCHc7CjgV9S+/hEAtnWu4unXT05tX91cT9HhaDbH5tVaIkhEAuW24HcAF7sGW1fUvv5hAHo6m08L+I7m4KZaB0+MKeBFZEq5f88/B6yPshCZ397+ETa0N9Jcf/rv5dXN9QCa0Soipym3Bd8JvGBmjwPjpY3u/t5IqpIZnTmCpqS96VQLXkSkpNyA//0oi5DyHDoxxvXbu87aXpdO0dqY4dBJTXYSkVPKCnh3/5mZnQNc4O4/MrNmIB1taTJdvlCkf3ic9W2NMz6/urleLXgROU25a9H8a+A7wFfDTZuA+yKqSWbQPzxB0aF7loDvaK7TZCcROU25F1k/AVwHZAHc/RWgO6qi5GzHssHE4bla8IdPjlEsaqCTiATKDfhxd5+aKhlOdlKSrKBSwK+bowU/WXB6h8ZnfF5Eak+5Af8zM/sCwc233wl8G/i76MqSMx0Lg3tdW8OMz5eGSmpVSREpKTfgPwf0Ac8C/wb4PvAfoypKznZsMEc6ZaxtmTngS0MlDw9qDTgRCZQ7iqZoZvcB97l7X7QlyUyOZXN0tQRLA8+krTEI+N6sAl5EAnO24C3w+2bWD7wEvBTezek/zXdgM9tiZj81sxfM7Hkz++RyFV2Ljg2Nz9o9A9BYl6I+k6JPffAiEpqvi+bTBKNnrnb3Ne6+BngTcJ2ZfXqeffPA77r7xcC1wCfM7OIlV1yjerO5WYdIApgZ69oapi7GiojMF/AfBT7k7vtKG9x9L3AL8Ntz7ejuR9z9yfDrIWAPwfh5WYSj2dysQyRLulsbNYpGRKbMF/B17t5/5sawH76u3JOYWQ9wBbBzhuduNbNdZrarr0/d+zPJTRY4OTo5ZxcNQHdrgwJeRKbMF/Bz3SaorFsImVkLcC/wqfDG3adx99vcfYe77+jqOnudFWGqX32uLhoIA15dNCISmm8UzWVmdlYoAwbMnTaAmdURhPtd7v7dRdQnBN0zMPskp5LutkayuTy5yQKNdVoqSKTWzRnw7r7olDAzA74O7HH3Ly/2OLXu7p2v8czBkwDsPnBizjXfu1uDLpze7Dhb1+rGHyK1LsobeF5HcJH2BjN7Ovz4jQjPl1hDuTwAbY1z/8FV6sLpHVI3jYgs7KbbC+LuPyfoypElyuYmyaSMpnm6XaZa8LrQKiJE24KXZZIdm6S1MUPQ6zW7Uh+9xsKLCCjgq0I2l6etaf5Rqaub66hLm1rwIgIo4KvCUG5yaq2ZuZgZXS0N9GYV8CKigK8K2Vx+3gusJV1tjbrIKiKAAj72cpMFJvJFWstowUNpspNa8CKigI+9bG4SoKw+eAhuCKIWvIiAAj72yh0DX9Ld2siJ0UnG84UoyxKRKqCAj7nsWNiCX0AXDaB14UVEAR932bAF39pUZgu+TZOdRCSggI+5bG6ShkyKhkx5ywJ1t4bLFehCq0jNU8DH3NBYeWPgS0ot+D5daBWpeQr4mMvm8mV3zwCsXdVAyuCYWvAiNU8BH3PZ3CTtC2jBp1NGZ4uGSoqIAj7W3J2hsXzZk5xK1rXp3qwiooCPtROjkxTcaVtAFw1oNquIBBTwMXZ0MOhmWWgLvluzWUUEBXysHQtDur3MWawlXa2NDIxMkC8UoyhLRKqEAj7GesMbd7SWuQ5Nybq2Btyhf3giirJEpEoo4GPs6GDQj97asNA+eN2bVUQU8LF2bChHc32aTHph36bSejQaCy9S2xTwMdabzdG+wO4ZmL4ejVrwIrVMAR9jx7LjtC7wAitAZ0sDZlqPRqTWKeBj7Gg2t6B1aErq0inWrqrXZCeRGqeAj6l8oUj/8PiCx8CXdLU2To3CEZHapICPqf7hCdxZ8CzWku7WBrXgRWqcAj6mjoWt78V00UAp4NWCF6llCviYOrrEgF/X1kj/8ASFoi9nWSJSRRTwMXVqFusiu2jaGigUnYERddOI1CoFfEwdHsxRlzZaFjiLtaQ02UlDJUVqlwI+po6cHGNdWyMps0Xt3xUuV9CnC60iNUsBH1OHB3NsbG9a9P7rNJtVpOYp4GPqyOAYGzoaF71/l9ajEal5CvgYKhado4M5NiyhBd+QSdPRXKcWvEgNU8DHUP/wOJMFZ+MSWvCgW/eJ1DoFfAwdDm/Vt5QWPOjm2yK1TgEfQ0dOjgGwoX1pLfiu1oapGbEiUnsiC3gz+4aZ9ZrZc1GdI6lKLfiNHUtrwW9sb6J3aFz3ZhWpUVG24P8fcFOEx0+sIyfHaKxLsbp5ccsUlGzsaKJQdHXTiNSoyALe3R8Gjkd1/CQ7Eo6Bt0VOciopXaQ9FHb5iEhtqXgfvJndama7zGxXX19fpcuJhcNLHANfsnl10MVzWAEvUpMqHvDufpu773D3HV1dXZUuJxaOnFzaGPiS0jHUghepTRUPeDndeL7AsaEcm5Z4gRVgVUOGjuY6Dp1QwIvUIgV8zLx+fAx36OlsXpbjbepoUheNSI2KcpjkXwGPAtvN7KCZfTyqcyXJa8dHANi6ZtWyHG9jRxOHT2osvEgtWtxi42Vw9w9Fdewk298/CkDP2uVrwT/66gDuvuRROSJSXSILeFmcAwMjtDRkWLOqfsH73r3ztbO2bepoYng8TzaXp71paePqRaS6qA8+Zg4cH+Wctc3L1touzYZVP7xI7VHAx8yBgVF61i5P/zucmuykgBepPQr4GMkXirx+fJSty9T/DkwNtzyooZIiNUcBHyNHBnPki75sF1ghWFGyuT7Nvv6RZTumiFQHBXyM7B9Y3iGSAGbGts5VCniRGqSAj5H9A+EQyWWa5FSigBepTQr4GHm1d5jm+jTrWpe+0Nh053a1cPDEKOP5wrIeV0TiTQEfI3uOZNm+vpVUanknJJ3buYqiw+vHR5f1uCISbwr4mHB39hzJctGGtmU/9rbOoE9/b5+6aURqiQI+Jg4P5sjm8ly0vnXZj91TCnj1w4vUFAV8TLx4JAsQSQu+vamOzpZ69qkFL1JTFPAxsScM+O0RtOABzu1s0UgakRqjgI+JPUeH2LKmidbGaBYE29a5ir39w5EcW0TiSQEfE3uOZLlo/fJ3z5RcuL6V/uEJerNaG16kVijgY2B4PM/+/pFI+t9L3ri5HYBnDw1Gdg4RiRcFfAw8sf84RYdrtq2J7BwXb2jDTAEvUksU8DHw2KsD1KdTXLl1dWTnWNWQ4fyuFp5TwIvUDAV8DDy2d4DLt3TQVJ+O9Dy/sqmdZw4q4EVqhQK+wrK5SZ49NMi150bXPVNy6aZ2eofGdaFVpEYo4CvsiX1B//u1562N/Fy60CpSWxTwFfbIK/3UZ6Ltfy+5eGMb6ZTx5GsnIj+XiFSeAr6C8oUi9z9zmHe8oZvGumj73wGa6zNcubWDh1/uj/xcIlJ5CvgKeuSVfvqHJ3j/FZtW7JzXb+/m2UOD9A2Nr9g5RaQyMpUuoJbd++RBVjfXcf32bgDu3vla5Od8+4Vd/I8HXuLhl/v4wFWbIz+fiFSOWvAVMjA8zoMvHOPmN26kPrNy34aLN7TR2dLAQy/3rdg5RaQyFPAV8r9/8ksmC0X+xVvOWdHzplLG2y/s4uGX+5jIF1f03CKyshTwFbC/f4Q7HzvAB6/eyvnd0SwPPJeb37iBwbFJHnj+6IqfW0RWjvrgV9hkocjnvvsMdekUn/61CyI/30z9+kV3tq5p5puP7uc9l22MvAYRqQy14FeQu/PF+57jsb3H+a/vv5TutsaK1JEy47fffA5P7D/B84c16UkkqdSCXyazjYD58Ju2AjA4Nslnvv0LfvjCMa7f3kVusrgio2Zm85tXbeFPfvgyX/nRK9z20asws4rVIiLRUMBHbHg8zz2Pv8afPfQq2bFJvnjzxTSu4KiZ2bQ31/GpX7uA//6DF/nBc0f5jV/ZUOmSRGSZKeAjMjA8zj+9OsB/+/4ehsfz/OoFnfzeTW/g0k3tFW25T/fxt27j/meO8MX7nuOiDW1s61xV6ZJEZBkp4JfZ68dH+dnLfew5kiVlxvsu38hH33wOV6zAWjMLlUmn+J8fvIx//tXH+OBXH+UvPnY1l2xsr3RZIrJMFPDL5MToBA88f5RnDg7SVJfm7Rd2ce25a/m3159X6dLmdH53K9+69Vo+cvtO3vt//pGPvGkrH7pmK29Y36p+eZEqZ+5e6Rqm7Nixw3ft2lXpMhYkm5vkzx96la89vBeAX72gi7dd2ElDJvrFw5aidPG35PjIBP/uzt1Ttw9c1ZBhXWsD3W0N3HjJerasbmbLmmbOWdu8IgujiUh5zGy3u++Y6Tm14BdpIl/krp0H+F8/foUTo5NcvqWDd128jo7m+kqXtihrVtXzvss38Y6L1vH84UEOnhijN5vjqddO8tje41OvSxmc393CJRvbeePmdq7uWcNFG4JliEUkXiJtwZvZTcCfAmngdnf/w7leXw0t+KODOf7m6UN889EDHDo5xlvOW8vnf/2ixN5Ew90ZmShwYmSC46MT9GbHOTI4xvGRCXrDFSlbGjJcsbWDa3rWcPW2NVy2OfrbD4pIoCIteDNLA/8XeCdwEHjCzP7W3V+I6pwlxaKTLzqFolNwp1Bw8sUi+aIzkS8yUSgykS8yGX4ubSuU9intV3TyBad/eJz9AyM8/foge45kAbj23DX8wfsv5foLuzCzxAa8mdHSkKGlIcOWNc2nPXdydIL9A6McGBjh5WNDPPJKf7gPbF7dxHldLfSsXcXq5no6mutoa8qQMpv2ERzfLJh8ZeG+Vtoenj9lYNip55i2jzFtv4XtM1kIvseTxSL5gpMvBD8jpdenDJhWWyp16vilYxQ9+CVY9GCGcLHoOJBOGZmUkU4ZdenU1ONMOjW1vfS49HXKjHwx+Dks/fxOFk5/nJ9Wc7HoU8erzwSf69Ip6tIpMunS18Fng6mf+4l8kfFp/w8m8sH7LoY/88Vi8H5SKUhbUGtqWo3psP6UnXqPqZRNvTYdfp1KMfXYsKn/g6V/68li8H+z9O9/6r0WKRSDfevTKeoywXuoD99bXdqoy5x6HNVfj17KgGn/NjNlxEzbUhbU3JA5VXN9+HV9OkVqhf7ijbKL5hrgl+6+F8DM7gHeByx7wF/1Xx5keDw/9c2IQkdzHZdubOczN27nxkvWc353SyTnqSYdzfVc3lzP5Vs6ABidyPPawCgHT47RPzzOS0eHeGzvALlJLWom0UkZwS+xMDNLnRKnJcHUtlNbZ3pdqUfDpz0fhVO/+IIGRGdrPY989oZlP0+UAb8JeH3a44PAm858kZndCtwaPhw2s5cirGkuncCstzo6APwCuGvFylmUOd9DFaj2+qH630O11w9V+h7s96a+XGj9sy5JW/GLrO5+G3Bbpesws12z9WNVi2p/D9VeP1T/e6j2+qH638Ny1h/lnPlDwJZpjzeH20REZAVEGfBPABeY2TYzqwd+C/jbCM8nIiLTRNZF4+55M/v3wAMEwyS/4e7PR3W+ZVDxbqJlUO3vodrrh+p/D9VeP1T/e1i2+mM1k1VERJZP5detFRGRSCjgRUQSSgFPsKSCmb1kZr80s89Vup6FMrNvmFmvmT1X6VoWw8y2mNlPzewFM3vezD5Z6ZoWwswazexxM/tFWP+XKl3TYphZ2syeMrP7K13LYpjZfjN71syeNrN4r3kyCzPrMLPvmNmLZrbHzN68pOPVeh98uKTCy0xbUgH40EosqbBczOxtwDDwTXe/tNL1LJSZbQA2uPuTZtYK7Ab+WbV8DyxYV3mVuw+bWR3wc+CT7v5YhUtbEDP7HWAH0ObuN1e6noUys/3ADnevuklOJWZ2B/CIu98ejj5sdveTiz2eWvDTllRw9wmgtKRC1XD3h4Hj874wptz9iLs/GX49BOwhmAldFTwwHD6sCz+qquVkZpuBdwO3V7qWWmVm7cDbgK8DuPvEUsIdFPAw85IKVRMuSWNmPcAVwM4Kl7IgYffG00Av8KC7V1X9wFeAzwLVvHCQAz80s93hEijVZhvQB/xF2FV2u5kt6T6aCniJDTNrAe4FPuXu2UrXsxDuXnD3ywlmbF9jZlXTVWZmNwO97r670rUs0Vvd/Urg14FPhF2X1SQDXAn8ubtfAYwAS7omqIDXkgqxEPZd3wvc5e7frXQ9ixX+Sf1T4KYKl7IQ1wHvDfuw7wFuMLM7K1vSwrn7ofBzL/A9gu7XanIQODjtr7/vEAT+oingtaRCxYUXKb8O7HH3L1e6noUysy4z6wi/biK4YP9iRYtaAHf/vLtvdvcegp//n7j7LRUua0HMbFV4gZ6wW+NdQFWNKnP3o8DrZrY93PQOlri8esVXk6y0KlxS4Sxm9lfA9UCnmR0E/rO7f72yVS3IdcBHgWfDfmyAL7j79ytX0oJsAO4IR2SlgL9296ocaljF1gHfC28UnwHudvd/qGxJi/IfgLvCxuZe4GNLOVjND5MUEUkqddGIiCSUAl5EJKEU8CIiCaWAFxFJKAW8iEhCKeBF5mBmX5ltRqSZ/bGZ3bDSNYmUS8MkRWZhZmuBv3f3a2d4Lk0w6/lr7v6uFS9OpAw1P9FJBMDMvgjcQrDY0+sESxZngX+Y9pr9wLcIZqr+kbvfY2ZrzWx9OAtRJFbURSM1z8yuBj4AXEawUNWO8KnrCIJ+ugF3v9Ld7wkfPxm+TiR21IIXCQL6b9w9B+TM7O/C7RsIWvTTfeuMx73AxojrE1kUteBFZjcGNJ6xbeSMx43h60RiRwEvAv8IvCe8t2oLULpd3R7g/Hn2vZAqW7VQaocCXmqeuz9BsET0M8APgGeBQeDvCVbpnFG4hv35QFXe4FmSTwEvEvhjd78QuBE4B9jt7o8APaW13t2954wbOt8MfMfd8yterUgZdJFVJHCbmV1M0Kd+R+km4MDvAluBkzPskwH+ZGXKE1k4TXQSEUkoddGIiCSUAl5EJKEU8CIiCaWAFxFJKAW8iEhC/X/NhJ5kpRR96QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sns.distplot(df[\"g(r)\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/student/.local/lib/python3.6/site-packages/seaborn/distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).\n", + " warnings.warn(msg, FutureWarning)\n" + ] + }, + { + "data": { + "text/plain": [ + "<AxesSubplot:xlabel='r', ylabel='Density'>" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEGCAYAAAB/+QKOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAqJklEQVR4nO3deXhcd33v8fdX+77LmxZLXoOT2LHjOAsJ0IZAAiGGNpQEaFMKTTe60eUmvfdSoL0tdIFyn8ItKVACtA1pWOpCICGkkIUsXuIljmNblm1Jlm3t+z7zvX/MyMjK2JZsjc6M5vN6Hj2eOXOO9ZE9Ot85v+2YuyMiIjJdWtABREQkMalAiIhITCoQIiISkwqEiIjEpAIhIiIxZQQdYK5UVFR4XV1d0DFERJLKzp07O9y9MtZrC6ZA1NXVsWPHjqBjiIgkFTM7fq7X1MQkIiIxqUCIiEhMKhAiIhKTCoSIiMSkAiEiIjGpQIiISEwqECIiEpMKhIiIxBTXAmFmt5rZQTNrMLP7Yrz+BjPbZWYTZnbntNfuMbPD0a974plTREReK24zqc0sHfgccAvQAmw3s23u/sqU3ZqAXwX+eNqxZcCfA5sBB3ZGj+2OV96F4t9eaJqX7/Pea2vj/j3m42eZj59jviykf6+F9LMks3gutbEFaHD3RgAzewjYCpwpEO5+LPpaeNqxbwV+6O5d0dd/CNwK/Hsc80oA+kbGaWgb4GTPCJ2Do3T0j9IxOEbXwBhH2gcYDzkT4TDjoXDkcSiMO4QBd8cdnMifwFnPZ3KvxI9t2x/PH29ehWZ4d8g0A8MwI/IVfZxm0W387HGaGVkZaWSlp5GVkcbTh9vJy8qgIDudysJsFhXmsKgomxUVBVSX5pKWZvH9IWVexbNAVAHNU563ANdewrFV03cys3uBewFqa/VpINFNhMLsO9HLc42dvNDYxYGTfbT1j561jxmU52dRmpfF8HiIzPQ08rLSyUjLJDPdyEhPO+tEZlMfn/U88ueFrFtWFI8fNRCvtPZdcJ+zCqh7tND+rNiG3fEp20LujE+EGQ2FGR4P0dA2wNBYiP6RcfpGJs76u7Mz0lhZWcDVy0u5fmU5160opyw/Kz4/rMyLpF6sz90fAB4A2Lx5s26uPY9m0wRwsneYHce72d3Uw/B4CIBFhdlUl+aysbaURYXZlOZlkZ+dTn52BmkzObPLa9SU5s3r9xsPhRkYmaBneJyOgVHa+0c51TvCN7Y387XnI+u/LS/P46qaEq6qKSE7I31e88mli2eBOAHUTHleHd0202PfNO3YH89JKpkX7s6h0wM8+eppmruHSU8z1i0t4vJlRdRX5FOYkxl0RLlEmelplOZnUZqfRX1F/pntobBzonuIw+0D7Gvp5T93t/KDl09x/YpyblpdSW6WCkWyiGeB2A6sNrN6Iif8u4D3zvDYx4C/MrPS6PO3APfPfUSJh46BUbbtbqWhfYDSvEzefuVSNtaUkJed1BesMkPpaUZteT615fn8/NpFNHcN8UxDBz8+1M4LR7u49YolXL28VFeKSSBuv7HuPmFmHyZysk8Hvuzu+83sE8AOd99mZtcA3wZKgXeY2cfd/XJ37zKzvyBSZAA+MdlhLYnL3dlxrJv/2ttKeppx+/qlbKkvIyNN021SlVmkWLy3PJ+TvcP8155Wvv3SCV4+0cu7N9dQoA8NCc18hiMfEt3mzZtdNwyav2Gu04XCzndeOsHOpm5WLSrgzk3VFOWqGUnOFnZn+7Euvrf3JHlZ6fzK9XUsK8kNJIuGuUaY2U533xzrNX20k0s2NhHmq88dY2dTNz+3dhG/ekOdioPElGbGtfXl/NabVmJmPPB0Iw1tA0HHknNQgZBLMh4K8/UXjtPQNsAvbKzilnWL1bYsF7S0OJffeuNKyvKy+NrzxzjaMRh0JIlBBUIuWtidh3c009A2wC9uqmZzXVnQkSSJFOVm8ms31lOSl8WDzx3jZO9w0JFkGhUIuWg/OtDG/tY+3nblUjYtL73wASLTFGRn8GuvrycnI42vPX+cgdGJCx8k80YFQi7KgZN9/PfBNq5eXsrrV5YHHUeSWHFuJu+/bjkDIxM8tL2J8AIZOLMQqEDIrPWPjPPNXS0sLc5h64ZlmPoc5BJVl+bxjg3LaGwf5NmGjqDjSJQKhMyKu/OtXScYmwjzS5tryEjXW0jmxublpaxbWsTj+09zqm8k6DiCCoTM0v7WPg6e7uct6xazuCgn6DiygJgZ79pYRXZmGt956YSamhKACoTM2Mh4iO/ubWVpcQ7Xr6wIOo4sQPnZGdx2xVKauobYeUy3fwmaCoTM2FOH2+kbmeCdV1WRrnX/JU421ZZQV57P46+cYiS6+q8EQwVCZqR3eJxnGzpYX11MTdn8ListqcXMeNuVSxgcC/H04fag46Q0FQiZkR8dOE04DG9ZtyToKJICqkvzuLKqmGcaOugbGQ86TspSgZAL6h4cY1dTN1vqy3SHMJk3b1m3mFDYeeawhr0GRQVCLuipw+0YxhvWVAYdRVJIeUE266tLeOFoJ4OaYR0IFQg5r77hcXYc72bT8lKKtUKrzLM3rqlkIuQ8e0RXEUFQgZDzer6xk3DYecNqDWuV+be4KId1y4p4obGLsYlw0HFSjgqEnNN4KMyLx7p43dIiyguyg44jKeqGlRUMj4fY3dwTdJSUowIh57SnuYehsRDXazE+CVBdeR5Li3P46ZEOFsodMJOFCoTE5O4819jJ4qJsVlTkBx1HUpiZccPKctr6R2nUjYXmlQqExHSiZ5iTvSNcW1+u1VolcOurS8jJTGP7sa6go6QUFQiJacfxbjLSjA3VJUFHESEzPY2rakp4pbWP4TEtvzFfVCDkNcYmwuxp7uGKqmJys9KDjiMCwOblZUyEnd3NWsRvvqhAyGvsb+1ldCLMZt1GVBLIspJclpXksPO4CsR8UYGQ19jT0kNJXiZ16pyWBLOptpTW3hFO64ZC80IFQs4yMDpBQ9sAG6pLSFPntCSYK6uKMWBvS0/QUVKCCoScZd+JXsKOOqclIRXmZLJyUQF7Wno1J2IeqEDIWfY097C4KJslxbqdqCSmDdUldA2O0dI9HHSUBU8FQs7oHR6nqWuI9bp6kAR2+bIi0s3Yd6I36CgLngqEnPFKa+QX7vJlRQEnETm3nMx0Vi7KZ3+rmpniTQVCztjf2seiwmwWFap5SRLbFcuK6R4a52SvRjPFkwqEAJHRS0c7BnX1IEnhsqVFGPByq5qZ4kkFQgB49WQfDly+rDjoKCIXVJCdQX1FPvtb+4KOsqDFtUCY2a1mdtDMGszsvhivZ5vZN6Kvv2BmddHtmWb2oJntM7MDZnZ/PHMKHDzdT3FuJks1ekmSxGVLi2jvH6V7cCzoKAtW3AqEmaUDnwNuA9YBd5vZumm7fRDodvdVwGeAT0W3vxvIdvcrgauB35gsHjL3JsJhGtoGWLO4UCu3StJYu7gQiHy4kfiI5xXEFqDB3RvdfQx4CNg6bZ+twIPRx48AN1vkDOVAvpllALnAGKBryThp6hxidCLM2sUFQUcRmbGKgixK8zI5pAIRN/EsEFVA85TnLdFtMfdx9wmgFygnUiwGgZNAE/B37v6aheDN7F4z22FmO9rb2+f+J0gRh073k27GykoVCEkeZsaaxYUcaR9gPKT7VcdDonZSbwFCwDKgHvgjM1sxfSd3f8DdN7v75srKyvnOuGAcPN3P8oo8sjO1tLckl7VLChkPOcc6dae5eIhngTgB1Ex5Xh3dFnOfaHNSMdAJvBf4gbuPu3sb8CywOY5ZU1bP0Bin+0bPtOeKJJMVFQVkpBmHTqmZKR7iWSC2A6vNrN7MsoC7gG3T9tkG3BN9fCfwpEemRjYBPw9gZvnAdcCrccyasg6fHgBgjQqEJKGsjDTqK/I5GH0fy9yKW4GI9il8GHgMOAA87O77zewTZnZHdLcvAeVm1gB8BJgcCvs5oMDM9hMpNP/i7nvjlTWVTQ5vXVSYHXQUkYuyZnEhHQOjdGm465zLiOdf7u6PAo9O2/bRKY9HiAxpnX7cQKztMrcmwmEa2ge4qrpEw1slaa1dXMj39p3k0Ol+rltRHnScBSVRO6llHhzvHGJsIqzmJUlq5QVZlOVnabhrHKhApLDDpwdIM1hZqVuLSvKKDHct4Ej7ABNhDXedSyoQKayxY4CaUg1vleS3oqKA8ZBzQjcRmlMqEClqZDxEa88wK3T1IAvAiorI+7ixQ/Mh5pIKRIo63jlI2KG+QrOnJfnlZWewpCiHxnYNd51LKhApqrFjkPQ0o7YsL+goInNiRWU+TV1DTGjZjTmjApGijnYMUlOaS1aG3gKyMKyoyGc85DSrH2LO6OyQgkbGQ5zoHmaFFueTBaSuIh8DjnaomWmuqECkoGOdgzhQX6EOalk48rIyWFKcQ2O7OqrnigpECmpsV/+DLEwrKiL9EFr+e26oQKSgox2D1JblkZmu/35ZWFZUFjARdpq7h4KOsiDoDJFihsci8x/UvCQLUV15pB9CzUxzQwUixUz2P2iCnCxEuVnpLC3J4agmzM0JFYgUc7RjkIw0o6ZU/Q+yMK2oKFA/xBxRgUgxxzsHqS7NVf+DLFh15XmEwk5rj+ZDXCqdJVLIeChMa88ItWVqXpKFqyY6Ou94pzqqL5UKRApp6R4m5M7ycjUvycJVmJNJeX4Wx7tUIC6VCkQKaYr+wmj+gyx0tWV5NHUOErnFvVwsFYgUcrxzkIqCbPKz43qnWZHALS/PZ3AsRKfuU31JVCBShLvT1DXEcl09SAqYbEZtUj/EJVGBSBEdA2MMjYXU/yApobIwm5zMNI53aT7EpVCBSBHHOyO/KOp/kFSQZpG1xjSS6dKoQKSIpq4hcjPTqSjMDjqKyLxYXp5PW/8ow2OhoKMkLRWIFHG8c4jasjzSzIKOIjIvJq+Wm9TMdNFUIFLA0OgE7QOj6n+QlFJTmkeaofkQl0AFIgVMzn9YXq4Z1JI6sjLSWFqcq36IS6ACkQKOdw2RZlBVkht0FJF5VVueR0v3EKGwJsxdDBWIFNDcNcTS4lyyMvTfLamltiyP8ZBzum8k6ChJSWeMBS7sTkvPMDVlunqQ1DO5rL3uMHdxVCAWuPb+UcYmwlTr/g+SgkrzMsnLSqelS0t/XwwViAWuJfrJSTcIklRkFrk5lq4gLo4KxALX3DVMTmYa5QVZQUcRCUR1WS7t/aOMjGvC3GzFtUCY2a1mdtDMGszsvhivZ5vZN6Kvv2BmdVNeW29mz5nZfjPbZ2Y58cy6ULV0D1FdqglykrpqSvNw4ITuMDdrMyoQZvYtM3u7mc24oJhZOvA54DZgHXC3ma2bttsHgW53XwV8BvhU9NgM4OvAb7r75cCbgPGZfm+JGJsIc6pvhOpSdVBL6pp8/7dowtyszfSE/3ngvcBhM/ukma2dwTFbgAZ3b3T3MeAhYOu0fbYCD0YfPwLcbGYGvAXY6+57ANy90911fThLJ3uHCbv6HyS15WVlUJ6fRXO3riBma0YFwt2fcPf3AZuAY8ATZvZTM/uAmWWe47AqoHnK85botpj7uPsE0AuUA2sAN7PHzGyXmf1prG9gZvea2Q4z29He3j6THyWlNEc/MekKQlJdTVnemQEbMnOzaTIqB34V+BDwEvBZIgXjh3HIlQHcCLwv+ue7zOzm6Tu5+wPuvtndN1dWVsYhRnJr7h6mJDeTwpxz1XCR1FBdmkvfyAS9w2qpno2Z9kF8G3gayAPe4e53uPs33P13gYJzHHYCqJnyvDq6LeY+0X6HYqCTyNXGU+7e4e5DwKNEipHMQkv3ENW6/4PImXlAzeqHmJWZXkH8s7uvc/e/dveTEBmBBODum89xzHZgtZnVm1kWcBewbdo+24B7oo/vBJ70yF3GHwOuNLO8aOF4I/DKjH8qYWB0gu6hcWrUvCTC0uIc0s1oUT/ErMy0QPxljG3Pne+AaJ/Ch4mc7A8AD7v7fjP7hJndEd3tS0C5mTUAHwHuix7bDXyaSJHZDexy9+/NMKvwswlymkEtApnpaSwpzlE/xCxlnO9FM1tCpCM518w2ApOD6YuINDedl7s/SqR5aOq2j055PAK8+xzHfp3IUFe5CM1dw1rBVWSKmrJcdjX1EHbXvKAZOm+BAN5KpGO6msgn+kn9wJ/FKZPMgZbuIRYX5WgFV5Go6tI8nm/sor1/lMVFmnc7E+ctEO7+IPCgmf2iu39znjLJJXJ3WrqHuaKqKOgoIgmjZkpHtQrEzFyoien90aaeOjP7yPTX3f3TMQ6TgHUOjjE8HtIEOZEpyguyyMlMo6V7mM11QadJDhdqYpq8R+W5hrJKAvrZBDkVCJFJaWZUl2hl19m4UBPTF6J/fnx+4shcaOkeJis9jUVF2UFHEUko1WW5PHWonbGJcNBRksJMJ8r9jZkVmVmmmf3IzNrN7P3xDicXp7l7iKrSXI3UEJmmpjSPsEOrVnadkZkOcXmLu/cBtxNZi2kV8CfxCiUXbyIU5mTviCbIicRwZmVXNTPNyEwLxGRT1NuB/3D33jjlkUt0qm+EUNipUv+DyGsU5mRSkpuplV1n6EKd1JO+a2avAsPAb5lZJTASv1hysSbf+LqCEImtujRXVxAzNNPlvu8DbgA2u/s4MMhr7+0gCeBE9xAF2RkU52oFV5FYqkvz6B4ap2twLOgoCW+mVxAAlxGZDzH1mK/OcR65RM3dw1SX5mLqoBaJabIfYk9LDz+3dlHAaRLbTEcxfQ34OyL3Zrgm+nWuVVwlIP0j43T0j2r+g8h5VJXkYsCe5p6goyS8mV5BbAbWRZfilgS170Qvju4gJ3I+2ZnpVBZms7dFY20uZKajmF4GlsQziFy6Pc2RN7wKhMj5VZfmsae5B33mPb+ZXkFUAK+Y2YvA6ORGd7/j3IfIfNvb0kNZfhZ5WbPpWhJJPdWluexq6uZEz7CaZM9jpmeSj8UzhMyNPc09unoQmYEzHdXNvSoQ5zHTYa4/ITKDOjP6eDuwK465ZJba+kdo7R3Rm11kBpYU55CVnsbelp6goyS0mY5i+nXgEeAL0U1VwHfilEkuwt5o/4MmyIlcWEZaGq9bVsRujWQ6r5l2Uv8O8HqgD8DdDwMaQJxA9rb0kJ5mLC1WgRCZiQ3Vxbx8opdQWB3V5zLTAjHq7memHUYny+lfNYHsbullzeJC3WJUZIY2VJcwOBbiSPtA0FES1kzPJj8xsz8Dcs3sFuA/gP+KXyyZDXdnb0sPG6qLg44ikjQ21ER+X9TMdG4zLRD3Ae3APuA3gEeB/xWvUDI7TV1D9AyNs6GmJOgoIkljRUUBBdkZ6qg+jxkNc3X3sJl9B/iOu7fHN5LM1uQnoPXVxWcmy4nI+aWlGVdW6XfmfM57BWERHzOzDuAgcDB6N7mPzk88mYm9Lb3kZKaxZnFh0FFEksqGmhJePdXHyHgo6CgJ6UJNTH9IZPTSNe5e5u5lwLXA683sD+OeTmZkT3MPVywrJjNdHdQis3FVTTHjIefAyb6goySkC51Rfhm4292PTm5w90bg/cCvxDOYzMxEKMzLrb2sry4JOopI0pn8vdHCfbFdqEBkunvH9I3RfgjdkSYBHDo9wMh4+MyIDBGZuaXFOVQWZmvp73O4UIE43y2XdDumBDA5AmODriBEZs3M2FBdzB6NZIrpQqOYNphZrMY5A3LikEdmaU9LD8W5mSwv1xpMIhdjQ3UJTxxoo29knKIcNYxMdd4rCHdPd/eiGF+F7q5/yQSwp7mX9dXFusWoyEVaH50/9LL6IV5Dw16S2PBYiIOn+7lKE+RELtrkCgS71cz0GioQSWx/a2ShMY1gErl4JXlZLC/PU0d1DHEtEGZ2q5kdNLMGM7svxuvZZvaN6OsvmFndtNdrzWzAzP44njmT1Z7oJbHWYBK5NBuqSzTUNYa4FQgzSwc+B9wGrAPuNrN103b7INDt7quAzwCfmvb6p4HvxytjstvT3MPS4hwWFWm8gMilWF9dzMneEdr6RoKOklDieQWxBWhw98boUuEPAVun7bMVeDD6+BHgZov2tprZO4GjwP44ZkxqkRVcS4KOIZL0Jvvx9ugq4izxLBBVQPOU5y3RbTH3cfcJoBcoN7MC4H8AHz/fNzCze81sh5ntaG9PrTUEe4bGONY5xHpNkBO5ZJcvKyY9zdQPMU2idlJ/DPiMu5/3Th7u/oC7b3b3zZWVlfOTLEHsPdP/UBJsEJEFIDcrnTWLCzVhbpoZLfd9kU4ANVOeV0e3xdqnJXqXumKgk8iCgHea2d8AJUDYzEbc/R/jmDep7GrqxizSdioil+6qmhK+u7eVcNhJS9O8IojvFcR2YLWZ1ZtZFnAXsG3aPtuAe6KP7wSe9Iib3L3O3euAfwD+SsXhbLuaeli7uJBCzfwUmRObakvoH5mgQbcgPSNuBSLap/Bh4DHgAPCwu+83s0+Y2R3R3b5EpM+hAfgIkTvXyQWEw85LTd1srC0NOorIgrFpeeT36aWm7oCTJI54NjHh7o8SuT3p1G0fnfJ4BHj3Bf6Oj8UlXBI70j5A/8gEm2pLgo4ismCsqMinODeTXcd7eM81tUHHSQiJ2kkt5/FSUw+AriBE5pCZsbG2hF26gjhDBSIJ7Wrqpjg3kxUV+UFHEVlQNtWWcrhtgN7h8aCjJAQViCS0q6mbjbUlGmkhMsc2Ra/Kd2s+BKACkXT6RsY53DZw5o0sInNnQ00xZuqonqQCkWR2N/XgjgqESBwU5mSydnEhu6L9fKlOBSLJTE6Q0z2oReJjY20pLzV1Ew570FECpwKRZHY19bBmkSbIicTLxuiEuSOaMKcCkUzCYWd3UzeblpcEHUVkwZpsvtVwVxWIpNLYMUDfyITmP4jE0eSEuZfUD6ECkUx2Ho98olEHtUj8pKVFJsxN/r6lMhWIJPLi0W7K8rNYWakJciLxdE1dGYfbBugaHAs6SqBUIJLIi8c6uaaulOhN90QkTrbUlwGw/VhXwEmCpQKRJE72DtPcNcyW+vKgo4gseOuri8nKSGP7URUISQIvRt+o10Y/2YhI/GRnpLOxpoQXdQUhyeDFo10UZGfwuqVFQUcRSQnX1pfx8oleBkYngo4SGBWIJLH9WBdXLy8lXQv0icyLa+rLCDvsSuHRTCoQSaBrcIxDpwfOdJyJSPxtqo18IHsxhfshVCCSwORICvU/iMyf/OwMrqgqVoGQxPbi0S6yMtK4sloL9InMpy11pexu7mFkPBR0lECoQCSB7ce62FhTQnZGetBRRFLKlvpyxkJh9rb0Bh0lECoQCW5gdIKXT/SqeUkkANfURZa1efFoZ8BJgqECkeB2Hu8m7GiCnEgASvKyuGxJIS+kaD+ECkSCe+5IJxnRxcNEZP5tqS9j5/FuxibCQUeZdyoQCe6ZhnY21ZaSn50RdBSRlPT6VRUMjYVS8v4QKhAJrHNglP2tfdy0uiLoKCIp6/qV5aSnGc8c7gg6yrxTgUhgzx7pxB1uVIEQCUxRTiZX1ZTw9OH2oKPMOxWIBPbM4XaKcjJYX10SdBSRlHbjqgr2nuilZyi17g+hApGg3J1nDndww8oKrb8kErCbVlfgDj89klrDXVUgEtSR9kFae0e4aY2al0SCtqGmhMLsjJRrZlKBSFDPRN+IN62qDDiJiGSmp3HdynKePtyBuwcdZ96oQCSoZxo6qC3Lo7Y8L+goIkKkmamle5jjnUNBR5k3KhAJaDwU5rkjnRq9JJJAblwV+X18uiF1hrvGtUCY2a1mdtDMGszsvhivZ5vZN6Kvv2BmddHtt5jZTjPbF/3z5+OZM9G81NTD4FiIm1apQIgkivqKfKpKcnn6UOr0Q8StQJhZOvA54DZgHXC3ma2bttsHgW53XwV8BvhUdHsH8A53vxK4B/havHImoqcPt5NmcMNKFQiRRGFm3LS6gueOdDIeSo1lN+J5BbEFaHD3RncfAx4Ctk7bZyvwYPTxI8DNZmbu/pK7t0a37wdyzSw7jlkTyhMH2rh6eSnFeZlBRxGRKd60dhH9oxNsT5HF++JZIKqA5inPW6LbYu7j7hNALzB92dJfBHa5++j0b2Bm95rZDjPb0d6+MC77TvQMc+BkHze/bnHQUURkmptWV5CVnsYTB9qCjjIvErqT2swuJ9Ls9BuxXnf3B9x9s7tvrqxcGMNBnzxwGoA3q0CIJJz87AxuWFXOj149nRLDXeNZIE4ANVOeV0e3xdzHzDKAYqAz+rwa+DbwK+5+JI45E8oTB9qoK89jZWV+0FFEJIabX7eY451DHGkfCDpK3MWzQGwHVptZvZllAXcB26bts41IJzTAncCT7u5mVgJ8D7jP3Z+NY8aEMjA6wXNHOrn5dYsx0/IaIono5ssWAfD4K6cDThJ/cSsQ0T6FDwOPAQeAh919v5l9wszuiO72JaDczBqAjwCTQ2E/DKwCPmpmu6Nfi+KVNVE8+WobY6Ewb718SdBRROQclpXksqG6mMdePhV0lLiL611o3P1R4NFp2z465fEI8O4Yx/0l8JfxzJaIvr/vJJWF2Vy9vDToKCJyHrdduZRPfv9VWrqHqC5duKsdJHQndSoZGpvgvw+2cevlS7R6q0iCu+2KyFX+Dxb4VYQKRIL48cF2RsbDZ954IpK4lpfns25pEY/uOxl0lLhSgUgQ393bSnl+Flvqy4KOIiIz8Pb1S9nV1ENL98JdvE8FIgH0jYzzxIE2bl+/lIx0/ZeIJIN3rF8GwLY9rRfYM3npbJQAfrDvFGMTYd65cfpEcxFJVLXleVy9vJTvvHRiwU6aU4FIAN/ZfYK68jyuqikJOoqIzMI7N1Zx6PQAB072Bx0lLlQgAtbaM8xzjZ1svapKk+NEksztVy4lM9341q6WoKPEhQpEwB7eEVnP8M6rqwNOIiKzVZqfxZtft5hv7mphdCIUdJw5pwIRoFDYeXh7MzeuqqCmbOFOthFZyO7aUkv30DiP7194S2+oQAToqUPttPaOcPeW2qCjiMhFumlVBVUluTy0vSnoKHNOBSJA//rCcSoKsrS0t0gSS0sz7rqmhmcbOhfcCq8qEAE52jHIj15t473XLicrQ/8NIsnsri21ZKWn8ZVnjwUdZU7pzBSQrzx7lMy0NN5/nZqXRJJdZWE2W69axiM7W+gZGgs6zpxRgQhA79A4/7GzhXdsWMaiwpyg44jIHPjA6+sZHg/xby8unL4IFYgAfPnZowyNhfj1N9QHHUVE5si6ZUXctLqCLz9zlOGxhTHkVQVinvWNjPPlZ4/y1ssXc9mSoqDjiMgc+r2bV9MxMLZgriJUIObZV549Rv/IBL/786uDjiIic+yaujKuX1HOP/3kCCPjyX8VoQIxjzoGRnngqUZuWbeYK6qKg44jInHwh7esob1/lC89czToKJdMBWIefeaHhxgZD3HfbZcFHUVE4mRLfRm3rFvM5/+7gfb+0aDjXBIViHny6qk+HtrezPuurWVlZUHQcUQkju6/7TJGJ8L8/eMHg45ySVQg5kEo7Nz3zX0U52byB29eE3QcEYmzFZUF/NqN9Ty0vZkXGjuDjnPRVCDmwdeeO8bu5h4+evs6SvOzgo4jIvPgD968murSXO7/9r6k7bBWgYizQ6f7+eQPXuWNayrZetWyoOOIyDzJy8rgr951JY3tg3zy+68GHeeiqEDE0ch4iN/9t5coyM7gb9+9XjcEEkkxb1hTyQdvrOcrPz3G4/tPBR1n1lQg4iQcdv7oP/ZwqK2fv/+lq7SkhkiK+tNb13JlVTF/9PAeDp1OrluTqkDEyd89fpDv7T3JfbdexhvXVAYdR0QCkp2Rzhd++Wpys9L5wL9sp61vJOhIM6YCEQf/90eH+fyPj3D3llrufcOKoOOISMCWleTyxXs20z00xt3//Dxt/clRJFQg5lA47Pz1owf49A8P8QubqvjLd16hfgcRAWB9dQlf+cAWTvaO8J4vPM+xjsGgI12QCsQc6R0a5ze/vpMvPNXI+6+r5W/v3EB6moqDiPzMlvoyvvbBLfQMjfHOzz/LTw61Bx3pvFQg5sBPDrVz22ef4slX2/jft6/jL7ZeoeIgIjFdvbyMb//261lUmM09X36Rj23bz8DoRNCxYsoIOkAye/VUH59+/BCPv3KaFRX5fPO3bmBDTUnQsUQkwdVV5LPtwzfyV48e4MHnjvH9l0/yB29ewy9uqk6oWxCrQMzS0NgEP3j5FI/sbOGnRzopzM7gT966lg/dVE92RnrQ8UQkSeRkpvOJrVfwro1VfPy/XuH+b+3jH544xLs2VnPn1VWsWlQYdMT4FggzuxX4LJAOfNHdPznt9Wzgq8DVQCfwHnc/Fn3tfuCDQAj4PXd/LJ5Zz2U8FObgqX6eb+zkhaNd/LShg8GxELVleXzkljXcc30dxXmZQUQTkQVgY20p3/7tG/jxoXa+/txx/vnpRv7pJ0dYt7SIG1aWs6W+jM11ZZQFsExP3AqEmaUDnwNuAVqA7Wa2zd1fmbLbB4Fud19lZncBnwLeY2brgLuAy4FlwBNmtsbd53xBk4HRCV5p7aNzYJSOwTG6BsboHByltWeYxvZBjncNEQo7AHXledxxVRXv2ljFNXWlGqEkInPCzPi5tYv4ubWLaOsfYdvuVn74ymm++vxxvhi9r0RZfhYrK/NZXp5PRUE2FQVZlOVnUV6QTU1pLivisEp0PK8gtgAN7t4IYGYPAVuBqQViK/Cx6ONHgH+0yFl3K/CQu48CR82sIfr3PTfXIRvaBvilL5z91xbnZrKkKIe1Swp525VLWbOkkC11ZSwp1mxoEYmvRYU5fOimFXzophWMToTY29LL7qYeGjsGONI2yNOH2+kaHGM85GeOefv6pXzuvZvmPEs8C0QV0DzleQtw7bn2cfcJM+sFyqPbn592bNX0b2Bm9wL3Rp8OmNmcLb6+N/bmCqBjrr5HnCR6xkTPB8o4FxI9H+9LgozMMOPngc+/76K/x/JzvZDUndTu/gDwwHx9PzPb4e6b5+v7XYxEz5jo+UAZ50Ki5wNlnIl4jqc6AdRMeV4d3RZzHzPLAIqJdFbP5FgREYmjeBaI7cBqM6s3sywinc7bpu2zDbgn+vhO4El39+j2u8ws28zqgdXAi3HMKiIi08StiSnap/Bh4DEiw1y/7O77zewTwA533wZ8CfhatBO6i0gRIbrfw0Q6tCeA34nHCKaLMG/NWZcg0TMmej5QxrmQ6PlAGS/IIh/YRUREzpY4c7pFRCShqECIiEhMKhCzZGZ/a2avmtleM/u2mZUEnQkiy5qY2UEzazCz+4LOM52Z1ZjZf5vZK2a238x+P+hMsZhZupm9ZGbfDTpLLGZWYmaPRN+DB8zs+qAzTWdmfxj9P37ZzP7dzAKfYWpmXzazNjN7ecq2MjP7oZkdjv5ZmmD5Aj/XqEDM3g+BK9x9PXAIuD/gPFOXNbkNWAfcHV2uJJFMAH/k7uuA64DfScCMAL8PHAg6xHl8FviBu18GbCDBsppZFfB7wGZ3v4LIAJW7gk0FwFeAW6dtuw/4kbuvBn4UfR6Ur/DafIGfa1QgZsndH3f3ycXbnycyRyNoZ5Y1cfcxYHJZk4Th7ifdfVf0cT+RE9trZscHycyqgbcDXww6SyxmVgy8gcjoP9x9zN17Ag0VWwaQG53blAe0BpwHd3+KyEjJqbYCD0YfPwi8cz4zTRUrXyKca1QgLs2vAd8POgSxlzVJqJPvVGZWB2wEXgg4ynT/APwpEA44x7nUA+3Av0Sbwb5oZvlBh5rK3U8Afwc0ASeBXnd/PNhU57TY3U9GH58CFgcZ5gICOdeoQMRgZk9E20+nf22dss//JNJs8q/BJU0+ZlYAfBP4A3fvCzrPJDO7HWhz951BZzmPDGAT8P/cfSMwSLDNIq8RbcffSqSYLQPyzez9waa6sOgE3YQc8x/kuSap12KKF3d/8/leN7NfBW4HbvbEmEiSFEuTmFkmkeLwr+7+raDzTPN64A4zexuQAxSZ2dfdPZFObi1Ai7tPXnk9QoIVCODNwFF3bwcws28BNwBfDzRVbKfNbKm7nzSzpUBb0IGmC/pcoyuIWYreBOlPgTvcfSjoPFEzWdYkUNFl3L8EHHD3TwedZzp3v9/dq929jsi/35MJVhxw91NAs5mtjW66mbOXz08ETcB1ZpYX/T+/mQTrSJ9i6lI/9wD/GWCW10iEc41mUs9SdFmQbCKLCgI87+6/GWAkAKKffP+Bny1r8n+CTXQ2M7sReBrYx8/a+P/M3R8NLlVsZvYm4I/d/faAo7yGmV1FpBM9C2gEPuDu3YGGmsbMPg68h0izyEvAh6L3dgky078DbyKyfPZp4M+B7wAPA7XAceCX3H16R3aQ+e4n4HONCoSIiMSkJiYREYlJBUJERGJSgRARkZhUIEREJCYVCBERiUkFQkREYlKBEJlHFqHfO0kKeqOKxJmZ1UXv1fFV4GXOXhZFJGFpopxInEVXr20EbnD35wOOIzJjuoIQmR/HVRwk2ahAiMyPwaADiMyWCoSIiMSkAiEiIjGpk1pERGLSFYSIiMSkAiEiIjGpQIiISEwqECIiEpMKhIiIxKQCISIiMalAiIhITP8fnwQItf5jee8AAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sns.distplot(df[\"r\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n" + ] + }, + { + "data": { + "text/plain": [ + "Text(0.5, 1.05, 'Distancia vs Probabilidad de encontrar las partÃculas')" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhsAAAJSCAYAAABqcAcZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACEAklEQVR4nOzdeXxc533f+89zllkxAAYACZDgJlGyNmuxKMt7vDuxEjubnX1x0zbJTdqkzdakvWncpGmT9t7cpkuavU7S1EnsponjKHZkO5bjRbJF2doXixQJEiSxL7PPWZ77xxlAQxAgMCQGAMnv+/XCC8CZM8955szMOb/ze5ZjrLWIiIiIdIuz3RUQERGRq5uCDREREekqBRsiIiLSVQo2REREpKsUbIiIiEhXKdgQERGRrlKwISIi1yxjTN4Y86wxpmqMeeN21+dqtenBhjHm/cYY2/YTGGPmjDFPGWM+YIx53SrPeVPb+u+/xG2+3xjzvs14DZvJGPPppde23XXp1Ir3pf1n0RjzeWPMP+jitj/Qtr1Dm1ju+9rKfd8G1j/RWvfEemWstu5Fyn1/J/XYqBXv2QcusYxDbWV8erPqdjUzxtzVdhy6a7vrs9KKz9ubtrs+W8UY801t70v/Gqv9OnAI+CZr7YNdqscVex7YLN4WbaO/9XMr8P3GmP8C/LjdvBnFfqH1+0HgA5tUpqytALwGeI0x5g5r7T/f7gqJbLO7eOk4dAL4ynZVRM7zTcD3t/7+ADDf/qAx5ltbj7/HWvu3W1mxa023m1H+TWsbe4AfBhZay/8p8PNLK1lrP22tNa2f93e5TlvKWvumpde23XW5TA+2XkMGeF/b8h9bL/NgjMl0sV5dZa091Hr/Dm3muiKwud+NK/l7ttk2ui+stf/bWutba/+y23W61nW9z4ZNnLPW/hbnn6T+hTFmANZuRjHG3GmM+XNjzLgxpmGMmTHGPGqM+S1jjL+Uzm4r840r07/GmLcaYz7aSnGXjTFNY8wpY8z/NMbc0F7X9lSXMeZmY8xHjDElY8w5Y8zvGmN6V6xfMMb8ojHmiVZ7X6XVXPQzq5XZtuyAMeZPTNJOONdqapo2xnzcGPP29fapMebLrTLnjTHptuX9xph667HPtJYNGWP+mzHmeKuOi8aY54wxHzTG3LTetlay1jastX8APNFa5AD3tLbV3vTxBmPMh40xC8AzbXV8Q2u/TrVe97nWvrjjIpvdbYz549brLRlj/swYs6etzB5jzB+03oeZVrnzxpjPGGO+/SLlesaYXzLGnG7tt88ZY17VvoLprGlk1XWNMa8xxnyhtY0TxpifuEgZ/6a17kTrs1oxxjxujPmXxpjUinX3tvZxufW6/ztJ1mnDjDG9rc/2XOuz8UFg+CLr32KM+aPWd7JpjJls1eFi71/78x1jzI8aY77Uqnet9b79lDHGa1uvvSnnA8aY7zPGPNla/xljzPevUvbdrc/1Ut2mjTF/Z4y5t22dfGsfP9Uqq9r6Pv3EpW7fJMea/9FWlf9hVjSRtX82Wt+BzxtjasBvth7f0Pu+Sr1+0CTHkQD4jo28Byv22X83yTF16ftYMsZ80RjzfxljTNt6jjHmZ1vv1UJrP4yZ5Nj69etsY2Wd/0FrHzZMcix634r1v90Y84BJjtPV1nrHjTG/aYwZXrHumvvVJMfc9s/Ji231OLSyXivKvehnyax9ztpwlwDTwXnAbPJxfFtYazf1B3g/YFs/71/l8efaHn9va9mbVj4HyAFTbctX/vSQBC9rPf7pVjk/e5F1JoChtrp9uu2xuVXW/922dYeAZy+27ZVlti179UXqFAFvXmcf/1jb+t/ctvwH2pa/r7Xsry+yrW9YZzvt78unVzz2ZNtj72kt+0Dbsum2v0+0Hv+e1utbrS514E1t5beXNb7K+s8Auda6Ixd5jRb4vrZy37dOuRXg5W3rn2h/DauU8b511r21VebK7ZxZo4y1PlMW+B9t62Vb++Bi5X5gnffXAJ9ap4z2z/LrgeoadasBb1hnew7wFxd5fX8FmNa6h9qWr/ZdtMDr28r+ZiBYY72l70IeOHqR7d8POJ1un/OPG2tte+mzUWntq/Peow7e9/Z6Ta+2rQ0cl9u/Z/WLbPcX2tb76Yus9/+s876313mtY/oPtK3/mxfZ1rNAapXv3AX79SJl2Fad2uv1gQ4/S29qW/b+tueutfzTS8sv5TzAZRzHd8rPdoxGebbt70MXWe8WkhM6wM+QpO93kRzw/j0QWms/YM9vnnjQvtQc86bWsgeAryG5WvOBAeCXW4/tJjkBruaLJM0/rwIarWXf3Rbt/yKwFFF+Frid5GB2D/Chi7wugJPANwL7Wq8rD7yr9ZgD/Pg6z/9joNn6+7vali/9XWqrw9e0fv850Af0AncAPwmcXmc7FzDGpFpXdbe1FlngS6usukjSryML3GeMyQP/heT1hSRf6F6S5jWANPBba2z2JHCQZH99rrXsZuAftf4uAd9O8nnKkezT15KcGAHWyiT4rTr2t+pG6/m/uMb6l+LnW2UC/EZrW28heS9W83MkAUofkAJu4KX2/+8zrWwg8H0k+wDgIZJ9cwMr2qTX8Q7gza2/X2iVtwf46hrr/w7J+3kSOELynr2C5ASSAf7bOtv7NpLPPSTf4QGSz8B/ai37BpLPxUr9wI+Q7JNfbVv+vQDGmGyrbkuZiX9N8n0fAt4LHG8t/2fA3a2/P07yWq8HHm0teyerZwcuuv3Wsaa9s/Q/aDsOfWBFWTngM63t9vDSsWij73u7QeBXWq9zN3ApfQ5+ALiRJCOWIjk2LB0XfrzteLd0HDnBS8etwySB90MdbG+IJNvQC3x32/J/b4zxW3//L5Lj7hDJd3SYlzJHNwH3rVLuBfu1dW74g7Z1rmt7X06sVrkOPkuboZPzwKYex7fFZkcvrJ/Z+Ku2x396rWiQ5MuzFF0eJXnTvw24YZUyl5776VUeGyE5yL/A6lH8f18t+uT8q9tH2paPtJadblt28CL7Y7nMtmUp4F+RHEzKq9TpmQ3s5z9rrVslOVCMkJzELednYB5vLTsD/AeSg8MRWldw62zjTavUbeXPr7et/4G25d+1oqx3tD32lyse+3LbYzesUtbb29Z9e9vyv2otMyQng4dI+gXFK+pYa3v++9qW/3Lb8hxJAGeBUtvyE61lJ9Yo433rrDvRtm5f2/I/WqOMtwEfAybb3s/2n1e11vvTtmXvbnv+P2xb/oH2/bzK+/urbev+WNvyt7Yt/3Rr2Y0b+Cwsfz/W2N4fb+D5v9la91Dbskfaynh52/KPte2zpWV/d5Htf75tvVe0Lf/GtuX/s9PtX+wzscpnwwJ7V3l8o+97e72epZUJ2sB3+f1tz3tT2/JvJzlGzbJ61nG4td5/bv3fIMk8/AjJ8SG3gW231/lzKx77XNtjR9o+a38EjPHSd7L95190sF8/0Pb4oYvU6wMdfpbe1Lbe+zew/NNLy9uWbfg8wGUcx3fKz1aMRlnp5ra/X1xrJWvtpDHmh0ki97t56YoEY8xnga+31i5ebEPGGAf4JMkVw1qyayx/ru3vStvfSx2PltoOq9bakxerxyr+M/BDl1Cndr9PEmlnSa4Gi4Dbeuz32tb7xyTR/U0kqdAlJ40x32St/coG69yuQtKM8nvA766xzpdX/L+r7e+xFY+dJOnND0mQ+cKKx8fW+Hsp8/UvSK6U17JWZ7Hlsqy1VWPMDEnQ1mOMSVtrG2s8rxODrd8la+1C2/ILrkZMMiz841y8L9XSZ2OwbdnpNf7eaN02UsbuDso8t8ZjGyljcJVlG/0uAjx9kbLX+gy2f39Xq+N62+/EpLX2TPuCDt/3do/Z1pnoUhhjvgP44DqrLW33F0mOo2/h/GNX2Rjzo9baP9zgZld+98dIspAAQ8aYPpJM8cU+K6vtiwv26yXa6GdpLZ2cUzs5D3TjOL6ltrQZxSTDjJY6ZVZJAoE1WWt/j+TgfzvwrSRvDiRNKT+6gU3ewUuBxlMkkawDvHu9J1prg/Z/V1llovU7Z4w5sIG6tFtK1TZIvmg+SVqsE39L0ucA4DtbP5BEw19YWsla+7C19mbgOpI08c+SRNEHOT8lvJ72Jqoea+2rrbW/c5GDXW3F/5Ntf6/cXwfWWG+1x9v/nm79bk99fxOQtkkKdWaNul1QljEmx/mBwWYEGu11LLQOpEv2rbLue3npO/mrQKH1Ov78IuWuLGu1cter20bKaH9fPtH2WVj+IbnKeuoi22sv4/VrlPFtqzxvo99FSJpfN7L9tT5Tq33+1tv+xZavtPJ7AZ297+uV1Yn2780/BbKt7T66ckVr7bS19m0kAdubSJo/nyVpsvjvxhh35XPWcLHv/jRJs95SoPFJYE+rTj+2Trlr7YtOg7GNfpbajw/tQef1HWxrw+eBTTyOb5uuBxsmMdzKUvx+20O/Yq2du8jzhowx/w9Jm/okSfNL+/Ck9g/p0knloDGm2LY8bPu7QfLmHCBpH71cH2n7+w+NMbcZY7ImGUHzI+s8d6leMUkbex74j51s3Fob81J75NtJ2jjh/F7xGGN+2RjzLpIU6adIml+W9nunQdLl+Hzbdt9pjHm3SUaR/GOSdn+A56y1K7MaAL9gjNlnjBnlpbkMIOmPA+e/z/OAb4z5eVa/Sm73j4wx97aCgF8h+bIDfGJjL2lD/q7t739njOkzxrwZ+JZV1m1/HWUgbPX0X62Nur3cnzXGjBpjDpO04V5K3f6JMeYmY8wIbcPSl1hrvwo83/r3rcaYf2aS0U+Z1mf+XwN/ss72Ptr296+3npdqHR++2RjzUV5qm+7E53jpGPBmk4zg2GWMKZpkUqelMv+67Tm/3NruIZImWlZZpxPtge3LTdvIlg3o5H3fTO3bXSQ5XP8DXvo+LjPG/OPWYwMkfbQ+xEsZyBwvZRnX81pjzHe3vvvfxUtZjUmSpoL2OtWBijHmNpJg6FK0vy93tvVBWctGP0vt2bC3t74Hw0Ancw5t+Dywg47jl26z22U4v21wrZ9fp62tkdX7bOxbp4xvanv+R1d5/P0kKa2nV3ns+ba/P3CxdrWVy2m1+3F5o1F+Z506ndjgvr5hRRkBrTbWtnVeuMg+/E/rlN/+vnx6A/X5wMr9tOLx76Y7o1H+1SqPT9E2iqCt3PetU+5WjUaZWlkGScZuZX+TaMV7+KbWumuNRmkv9wPrvF+GJOC4WBntn+U3cn6P/zU/92tsz2H172r7z9LrO7Ta61ixvL1u3RyNspHtj5Jc0Kws89Ban42253byvq9arw6Py0tlffcq9a0Cp1ap/+9eZL99eZ1tt9f5zBpl/EBr3SJJ4LHy8fbj4/sv9p1bse33rFLWiXXe43U/S6312r87FZLgof273l7PTy8tv5TzAJdxHN8pP1vRjBKRRG1Pk1yJv85a++O2tQcvYg74/0ii6OlWOSWSK+Tvstb+Rdu6/5TkQDHXXoC1NiRpMvmb1nOnSZpi1kvJrctaOw3cC/wSSRNNneSL+kyrLhfzz0k6WU2SfDg/StIxqdM6vEDSA3vJ/dbaiRWr/VeSSPgMSWerequ+v8D5bX9dZ639Y5IA5qMkVw8hSdryz4B7rbWfXuOp30zSQ32B5Mrvw8BbrLVLo01+Ffh3JMFDjWQm2bfw0iRya/kF4N+S7JsG8AXgrdbaJzt/dauz1j5Nknl6mGT/nyIJjn5jlXU/S3ICeLZVn6dJmhU+u8q6NZLPzJ+TfIbmSbJa/7iDulmSZqff56V9++esPiIEm0zlfAT4Q5J+HQFJx8LHSUbz/Mt1theTdMb8JyT7o9x6nSdJOkf+E1ZJ4W/wtfwfkuzen5C8n2Grbg/Sanu31lZIMie/SPI9bZB8H75CkhF6d6uOl7L9cZIRQk9zfop9I8/d8Pu+mVrfx39O0neuTtIR/p3AsVVW//PWzwmS41xI0t/id1vP2ai/JXmtz5B8H75KMnrn91t1mmuV99nWds6QBEq/0slra/O/SUb8jJGcQ9a1kc9Sy3eTZNvnSfbfH3D+XFLr6eQ8sGOO45fKrH/OFxERuTStpqoXW//+gbX2fdtXG9kuuuuriIiIdJWCDREREekqNaOIiIhIVymzISIiIl2lYENERES6SsGGiIiIdJWCDREREekqBRsiIiLSVQo2REREpKsUbIiIiEhXKdgQERGRrlKwISIiIl2lYENERES6SsGGiIiIdJWCDREREekqBRsiIiLSVQo2REREpKsUbIiIiEhXKdgQERGRrlKwISIiIl2lYENERES6SsGGiIiIdJWCDREREekqBRsiIiLSVQo2REREpKsUbIiIiEhXKdgQERGRrlKwISIiIl2lYENERES6ytvuCqxgt7sCIiJyTTDbXYFriTIbIiIi0lU7LbMhW8haSxRbmlFMGFtsDLG1RNYSW4u1EMUX/h3b1nOtJW49x1qwbYkpuyJHtTJlZVeusOo6F19j/W2s9qpXZ9a4xlnr0met9dd6RiflmzVW7rQupsO6dLPszShnO96LZP0LH+m0Lq5j8F0n+e04uK7Bc5If1zFrvuciV4sdFWzsP3CQ06fGtrsaF+V6PlEYbMOWDU4mj5Prw8324iz9pLI4qSym7bebzoGfwUllMG4KXA/j+hjPxzgexvOh9dsYJbdEtpuNQmwcQhxj4zD5P2hgw2brd+snaGKjgLhZJa5XiBsV4np5zZ/tapnevuPkxq12wSPds6OCjdOnxvi1v31uu6txUT/xjps2vY7WWsqNkMVaSKkRUKqHlOoh5UZIqR5QaUTUg+iih43kysmQch2mx77KwRtvwXed5SsnxzG4JvnbXfG344BjkmtMs/z7In9jWr9by1t/r7zcW+uqFeB3/u8f5Af/7W9f+MAFZXRmM68QrbX81s/9AD/073//8srp4IFOD38Wy+/9/A/zD3/pNy+roE5W7/QYbbH8wS/+GN//r//zJW+04/1yCXX8n//+p/ien/t/LrkyF9vkUkYwtpY4bmUKbfvv1uOt7GEUW8LYEkaWII4JI0vY+n3u9El6d++jGcZEF3mhjoF82iOf8sinXXrSHvm0R2/Gpz+X/KQ9d/3Xewm6cZyUK9uOCjaudtZaFmoBs5UmM5Umc0u/q02C6PyDRsZz6Ml4FDI+I30Zcr5HxnfIplyyfvKT8V1SnrOcnl3yE//m6/jpHf5Frx9/hEND+e2uxrrqJ77CwcGdXc/asS9x/VDPdlfjoqrPf54bdxe2uxoXVX3mQW4e6d3uaqzrJ97xDn7qb5/D2iQgaYQxjSCi3vrdCGPqQUS1GVFuhFQaIXOVgFNzNZphfF5ZWd9dDjwG8il29aTZVUiTS+nUIJtLn6guqgURZ+ZrTCzWmVhsMLFYp9H2Zc+nXQZyKW7d08tAPkVf1qeQ8SlkPHxXzRsisjZjkmym7zr0pDd2KG+GMYv1gPlqwHy1yXwt+XtspsozZ0vL6+XTLrt60uzpz7K3L8Nwb0bHJLksCjY2UTOMOTVX5fRcjdNzVabLTSBpehjKp7lxdw/DvRkGe1IM5FNdS2GKiKwm5TkM9aQZ6klf8Fg9iJgqNZgqN5guNZhYbHBiZgZImmR2FzIcGMhxYCDHSF/mvGyqyHoUbFymxVrA8ekKL05XGJ+rEVmL6xj29GV49fUD7OvPsbs3rasCEdnRMr7L/oEc+wdyy8tqQcTZhRpn5+uMz9f40olZvnhilpTrsH8gy/W7erh+KE/G14WTXJyCjUtQroc8P1niuXMlJksNAPpzPnfu7+PQYJ49fRk8BRcicoXL+i7XD/Us9wlqBBFjc1XGZqqcmKlybKqCY2B/MccNu3u4YXePAg9ZlYKNDQqjmOcnywx/xy/ze597EYDdhTSvv2GI63flKeZS21xDEZHuSvsuN+4ucOPuAtZaJkoNXpgs88JkmU8+O8mnn5vi8K48mevuJrYWR/OHSIuCjXXMVZo8Mb7A02cXaYQxbmEXr7pugJtGCgowROSaZYxhpDfDSG+G1x0eZKrU4Omzizx3rsTwt/0i/+NzJ7htby+3j/aR32AHVrl66ROwCmstY7NVjo7NcWq2hmPghl093L6vj1/79m/g1e/d2cNKRUS2kjGG3b0ZdvdmeP2NQ7z/x/8RB3/gl3j4xVkeOTHHy0Z6eMX+IrsKF3ZMlWuDgo02sbW8MFnm6Mk5JksN8imX1xwe5LY9vYrMRUQ2wHMcqs99jm96xShzlSZfOTXP02cXeeZsif3FLK+6bpDRYna7qylbTGdQkkzGcxMlHjo+y0ItoJjzeestu7l5pIDnqKOniMilKOZTvPnm3bzm8CBPnlngy2PzfPjR04z2Z3nVdQPsK2Z1X5hrxDUdbFhreXG6wuePzzBTbjLUk+Lrb9/D4V15fQFERDZJxne55+AAd+7r58nxBR45Oceff3mc0f4sr79hiJG+zHZXUbrsmg02zi7U+Mzz05xbrNOf9Xnny0e4cXePggwRkS7xXYdXHChy+2gfT55Z5IsvzvKnj5ziZcM9vPbwEH1Zf7urKF1yzQUb5XrI545N8+y5Evm0y1tv2c2tI704mg1PRGRLeK7DXfv7uXVPL0dPzvHo2BzHJivcub+Pe68b0OzKV6FrJtgI45hHT87zpROzWOCVh4rcc3CAlKc+GSIi2yHlObzm8CC3j/bxheMzPDo2z3PnSrzhxl28bFiZ5qvJNRFsjM/V+OSzE8xVAw7vyvOGG3cpXSciskP0ZDzefuswt+/r4++eneRjT53jqTNZ3nzTbop5zWd0Nbiqg416EPHZF6Z56swivRmPb7xrL4d2+O3CRUSuVSO9Gb79lft5cnyBzx2b4X8+fJJXXTfIkYNF3fjtCnfVBhsvTJb5u+cmqQURdx/o59XXD+pmaCIiO5xjDHfs6+eG3T08+PwUXzg+wwuTZd526252FzRq5Up11QUb9SDiweenePZciV2FNN941159QEVErjC5lMc7X76Hlw2X+dSzk/zpl05xz8EB7r1uQFmOK9BVFWycnKnwiWcmqTRDXnXdAK88pA+liMiV7PCuHkb7s3zmq1N88cQsL85U+LrbRhhQX44rylXRrhBGMZ9+bpK/+MoZUp7Dt9+zn1dfP6hAQ0TkKpDxXd5x6wjfcMceSvWAD35xjCdOL2Ct3e6qyQZd8ZmN2UqTv3nyLNPlJq/Y389rDw/iqW+GiMhV5/CuHoZ7Mzzw9ASfem6Sk7MV3nrzMNmU5uXY6a7Ys7K1lqfOLPDBL45RaUS8+869fM3LdinQEBG5ivWkPb7prr284cYhTkxX+eOHTzI2W93uask6rsjMRiOM+NSzkzw/UWZfMcvX3jZCj+7KKiJyTTDGcPeBIvuLOT725Dn+z5fHOXKwyGuvH9Rs0DvUFXeGPrdY52NPnmOxHvCa6we551ARR7PMiYhcc3YV0nzHvfv5zPNTHD05x7mFOu98+Qh5XXzuOFdMm4O1lsdPz/PhR04TW8t77t7HvdcNKNAQEbmG+a7DW28Z5mtvHWZisc4fPzzGKTWr7DhXRPgXRjGfem6SZ86WODiY4+tuGyHjq0OQiIgkbt7Ty65CmvufSJpVXn39IK88VNT9VXaIHR9sLNQC/vrxs0yVG7zqugFlM0REZFWDPWm+/ZX7+dSzk3zh+AxnFmp87W0jZHVxuu12dDPKiekKH/ziGIv1gHffuZdXXz+oQENERNaU8hy+9rZh3nzTLk7P1vjgF8eYWKxvd7WueTsy2LDW8tDxGf7ysTMUMh7f8cr9XDekG6iJiMj6TOv+Ku+9Zx8AHzp6mqfPLm5zra5tOy7YqAcRH3nsDA+/OMvNIwW+7Z799Oc0La2IiHRmuDfDd7xyP3v7WhOBPTtJFGvW0e2wo/ps+Luv54NfHKPcCHnzTbu4fbRPnXtEROSS5VIe33TXKJ8/PsPRk3NMlxvcd/ue7a7WNWdHZTZGvuc/Elt4z5F93LGvX4GGiIhcNscxvP6GIe57+QjT5QYf/OLYdlfpmrOjgo3mmWf5znv3s6cvu91VERGRq8yNwwW+/Z79pHRbiy23o/b4xJ/+PLnUjmrZERGRq8hgTzLrqGytHRVsYOPtroGIiFzl0p7m3dhqOyvYEBERkauOgg0RERHpKgUbIiIi0lUKNkRERKSrFGyIiIhIVynYEBERka5SsCEiIiJdpWBDREREukrBhoiIiHSVgg0RERHpKgUbIiIi0lUKNkRERKSrFGyIiIhIVynYEBERka5SsCEiIiJdpWBDREREukrBhoiIiHSVgg0RERHpKgUbIiIi0lUKNkRERKSrFGyIiIhIVynYEBERka5SsCEiIiJdpWBDREREukrBhoiIiHSVgg0RERHpKgUbIiIi0lUKNkRERKSrFGyIiIhIVynYEBERka5SsCEiIiJdpWBDREREuspYa7e7DsuMMR8Dhra7Hle4IWB6uytxldC+3Bzaj5tH+3LzZKy1L9/uSlwrdlSwIZfPGPOItfae7a7H1UD7cnNoP24e7cvNo325tdSMIiIiIl2lYENERES6SsHG1ee3t7sCVxHty82h/bh5tC83j/blFlKfDREREekqZTZERESkqxRsiIiISFcp2BAREZGuUrAhIiIiXaVgQ0RERLpKwYaIiIh0lYINERER6SoFGyIiItJVCjZERESkq7ztrkC7r/u6r7Mf+9jHtrsaIiJy9TOX8iSdp9a16n7dUZmN6enp7a6CiIjImnSeujQ7KtgQERGRq4+CDREREekqBRsiIiLSVQo2REREpKsUbIiIiEhXKdgQERGRrlKwISIiIl2lYENERES6SsGGiIiIdJWCDREREekqBRsiIiLSVQo2REREpKsUbIiIiEhXKdgQERGRrlKwISIi14TxuSofeWyc3//scQ797F9/+3bX51qiYENERK5643NV7n/iLLVmxO7eDED+UsqJrSWM4s2t3DVAwYaIiFz1jo7N0Zv1KWR8HGMAFi+lnKfOLPKZ56c2t3LXAAUbIiJy1ZsuNcinvU0pq1KpbEo51xIFGyIictUbKqSpNMJNKStJjEgnFGyIiMhV78iBIou1gFI9ILYWoPdSy+rp6dm8il0jFGyIiMhVb7SY477b95BNuUwu1gEuuS3EdZTa6NTmNGCJiIjscKPFHKPFHAA/8Prr//RSyzEo2OiUMhsiIiIdUJ+NzinYEBER6YBijc4p2BAREemEoo2OKdgQERHpgKN2lI4p2BAREemAQo3OKdgQERHpgFFmo2MKNkRERDqgWKNzCjZEREQ6oFijcwo2REREOqDMRucUbIiIiHRE0UanFGyIiIhIVynYEBERka5SsCEiIiJdpWBDREREukrBhoiIiHSVgg0RERHpKgUbIiIi0lUKNkRERKSrFGyIiIhIVynYEBERka5SsCEiIiJdpWBDREREukrBhoiIiHSVgg0RERHpKgUbIiIi0lUKNkRERKSrFGyIiIhIVynYEBERka5SsCEiIiJdpWBDREREukrBhoiIiHSVgg0RERHpKq+bhRtjTgAlIAJCa+093dyeiIiI7DxdDTZa3mytnd6C7YiIiMgOpGYUERER6apuBxsW+FtjzFFjzA92eVsiIiKyA3U72Hi9tfZu4J3AjxpjvmblCsaYHzTGPGKMeWRqaqrL1REREelM+3lqu+typepqsGGtHW/9ngT+D3DvKuv8trX2HmvtPbt27epmdURERDrWfp7a7rpcqboWbBhj8saYwtLfwDuAJ7u1PREREdmZujkaZRj4P8aYpe38L2vtx7q4PREREdmBuhZsWGuPA3d2q3wRERG5Mmjoq4iIiHSVgg0RERHpKgUbIiIi0lUKNkRERKSrFGyIiIhIVynYEBERka5SsCEiIiJdpWBDREREukrBhoiIiHSVgg0RERHpKgUbIiIi0lUKNkRERKSrFGyIiIhIVynYEBERka5SsCEiItIRu90VuOIo2BARkWvC+FyVjzw2zu9/9jiHfvavv32763MtUbAhIiJXvfG5Kvc/cZZaM2J3bwYgf6llWSU2OqZgQ0RErnpHx+bozfoUMj6OMQCLl1pWqVTavIpdIxRsiIjIVW+61CCf9jalrEKhsCnlXEsUbIiIyFVvqJCm0gg3pawkMSKdULAhIiJXvSMHiizWAkr1gDjpdNG73XW6lijYEBGRq95oMcd9t+8hm3KZXKwDVLa7TteSzWnAEhER2eFGizlGizkAfuD11//pNlfnmqLMhoiIiHSVgg0REZEOaJ6NzinYEBERka5SsCEiIiJdpWBDREREukrBhoiIiHSVgg0RERHpKgUbIiIi0lUKNkRERKSrFGyIiIhIVynYEBERka5SsCEiIiJdpWBDRESkA5qtvHMKNkRERKSrFGyIiIhIVynYEBERka5SsCEiIiJdpWBDREREukrBhoiIiHSVgg0RERHpKgUbIiIi0lUKNkRERKSrFGyIiIh0wGoK0Y4p2BAREZGuUrAhIiIiXaVgQ0RERLpKwYaIiIh0lYINERER6SoFGyIiItJVCjZERESkqxRsiIiISFcp2BAREZGuUrAhIiIiXaVgQ0REpANW85V3TMGGiIiIdJW33RUQERHptvG5KkfH5pguNRgqpPmxD35l/4lf+fpT212va0XXMxvGGNcY82VjzEe7vS0REZGVxueq3P/EWWrNiN29GWrNCOC9l1qeGlE6txXNKD8OPLMF2xEREbnA0bE5erM+hYyPYwyFjA8wf6nllculTavbtaKrwYYxZh/w9cDvdnM7IiIia5kuNcinL+g1oIhhC3U7s/GfgJ8B4i5vR0REZFVDhTSVRrhyceFSy+vpueSnXrO6FmwYY74BmLTWHl1nvR80xjxijHlkamqqW9UREZFr1JEDRRZrAaV6QGwtpXoA0L/R57efpwBMl+p5NetmZuN1wLuNMSeAPwHeYoz5nytXstb+trX2HmvtPbt27epidURE5Fo0Wsxx3+17yKZcJhfrZFMuwIc2+vz281T3anl169rQV2vtzwE/B2CMeRPwU9ba7+nW9kRERNYyWswxWswt///uO0c17HULaVIvERGRDmjoa+e2ZFIva+2ngU9vxbZERERkZ1FmQ0RERLpKwYaIiIh0lYINERER6SoFGyIiItJVCjZERESkqxRsiIiISFcp2BAREZGuUrAhIiIiXaVgQ0RERLpKwYaIiEgHrOYr75iCDREREekqBRsiIiLSVQo2REREpKsUbIiIiEhXKdgQERGRrlKwISIiIl2lYENERES6SsGGiIiIdJWCDREREekqBRsiIiLSVQo2REREOmDRfOWdUrAhIiIiXaVgQ0RERLpKwYaIiIh0lYINERER6SpvuysgIiLSTeNzVY6OzTFdajBUSHPkQJHRYm67q3VNUWZDRESuWuNzVe5/4iy1ZsTu3gy1ZsT9T5zl0M/+9f7trtu1RMGGiIhctY6OzdGb9SlkfBxjKGR8erM+wGsvuVCNfO2Ygg0REblqTZca5NPn9xho/T98qWWWy+XLrNW1R8GGiIhctYYKaSqN8Lxlrf8nLrXMnp6ey6zVtUfBhoiIXLWOHCiyWAso1QNiaynVAxZrAcDnt7tu1xIFGyIictUaLea47/Y9ZFMuk4t1simX+27fw4lf+fpT2123a4mGvoqIyFVttJjTUNdtpsyGiIiIdJWCDREREekqBRsiIiLSVQo2REREpKsUbIiIiEhXKdgQERGRrlKwISIiIl2lYENERES6SsGGiIhIB3TT184p2BAREZGuUrAhIiIiXaVgQ0RERLpKwYaIiIh0lYINERER6SoFGyIiItJVCjZERESkqxRsiIiISFcp2BAREZGuUrAhIiLSAaspRDumYENERES6SsGGiIiIdJWCDREREekqBRsiIiLSVQo2REREpKsUbIiIiEhXKdgQERGRrvK6VbAxJgN8Bki3tvNha+0vdGt7IiIiK43PVTk6Nsd0qcFQIc2RA0VGi7ntrtY1p5uZjQbwFmvtncBdwNcZY17dxe2JiIgsG5+rcv8TZ6k1I3b3Zqg1I+5/4izjc9Xtrto1p2vBhk2UW//6rR/NuyYiIlvi6NgcvVmfQsbHMYZCxqc363N0bO6yyrU6lXWsq302jDGuMeYrwCTwgLX24W5uT0REZMl0qUE+fX5vgXzaY7rUuKxyy6Xy+ivJeboabFhrI2vtXcA+4F5jzMtXrmOM+UFjzCPGmEempqa6WR0REbmGDBXSVBrhecsqjZChQrqjctrPU5tZv2vJloxGsdbOA38HfN0qj/22tfYea+09u3bt2orqiIjINeDIgSKLtYBSPSC2llI9YLEWcORAsaNy2s9TAPmefFfqezXrWrBhjNlljOlv/Z0F3g48263tiYiItBst5rjv9j1kUy6Ti3WyKZf7bt9z2aNRjDGbVMNrR9eGvgJ7gD8wxrgkQc2fWWs/2sXtiYiInGe0mNNQ1x2ga8GGtfZx4BXdKl9ERESuDJpBVERERLpKwYaIiIh01YaaUYwxu4HXAXuBGvAk8Ii1Nu5i3UREROQqcNFgwxjzZuBngQHgyySTc2WAbwIOG2M+DPy/1trFLtdTRERErlDrZTbuA/6xtXZs5QPGGA/4BpIhrf+7C3UTERGRq8BFgw1r7U8bYxxjzLdZa/9sxWMh8BfdrJyIiMhOY3VrlI6t20G01S/jZ7agLiIiInIV2uholE8YY37KGLPfGDOw9NPVmomIiMhVYaOTen176/ePti2zwPWbWx0RERG52mwo2LDWXtftioiIiMjV6aLNKMaY16/zeO9qt40XERERWbJeZuNbjTH/AfgYcBSYIpln4wbgzcBB4Ce7WkMRERG5oq039PWftzqCfivwXmCEZAbRZ4DftNZ+rvtVFBERkSvZun02rLWzxphe4HHgiaXFwM3GmIq19itdrJ+IiIhc4TY6GuUIcA/wEcCQzBz6OPDDxpgPWWv/Q5fqJyIicknG56ocHZtjutRgqJDmyIEio8XcZZdrNatXxzY6z8Y+4G5r7U9Za3+SJPjYDXwN8L4u1U1EROSSjM9Vuf+Js9SaEbt7M9SaEfc/cZbxuepll10ulzehhteWjQYbu4FG2/8BMGytra1YLiIisu2Ojs3Rm/UpZHwcYyhkfHqzPkfH5ra7atekjTaj/DHwsDHmL1v/vwv4X8aYPPB0V2omIiJyiaZLDXb3Zs5blk97TC7WL7vsfE/PZZdxrdnopF6/ZIz5G+B1rUU/bK19pPX3d3elZiIiIpdoqJCm0ggpZPzlZZVGyFAhfdllG2Muu4xrzUYzG7SCi0fWXVFERGSbHTlQ5P4nzgJJRqPSCFmsBbz+hqFtrtm1aaN9NkRERK4Yo8Uc992+h2zKZXKxTjblct/tezZlNIp0bsOZDRERkSvJaDGn4GKHUGZDREREukrBhoiIiHSVgg0RERHpKgUbIiIi0lUKNkRERDqge6N0TsGGiIiIdJWCDREREekqBRsiIiLSVQo2REREpKsUbIiIiEhXKdgQERGRrlKwISIiIl2lYENERES6SsGGiIiIdJWCDRERkQ5o/tDOKdgQERGRrlKwISIiIl2lYENERES6SsGGiIiIdJWCDREREekqb7srICIistnG56ocHZtjutRgqJDmyIEio8XcdlfrmqXMhoiIXFXG56rc/8RZas2I3b0Zas2I+584y/hcdXM2YDX4tVMKNkRE5KpydGyO3qxPIePjGEMh49Ob9Tk6Nrcp5ZfLlU0p51qiYENERK4q06UG+fT5vQTyaY/pUmObaiQKNkRE5KoyVEhTaYTnLas0QoYK6U0pv6cnvynlXEsUbIiIyFXlyIEii7WAUj0gtpZSPWCxFnDkQHGTtmA2qZxrh4INERG5qowWc9x3+x6yKZfJxTrZlMt9t+/RaJRtpKGvIiJy1Rkt5hRc7CDKbIiIiEhXKdgQERGRrlKwISIiIl2lYENERES6SsGGiIiIdJWCDREREekqBRsiIiLSVQo2REREOmDRXV87pWBDREREuqprwYYxZr8x5u+MMU8bY54yxvx4t7YlIiIiO1c3pysPgZ+01j5qjCkAR40xD1hrn+7iNkVERGSH6Vpmw1p71lr7aOvvEvAMMNqt7YmIiMjOtCU3YjPGHAJeATy8FdsTEZFr2/hclaNjc0yXGgwV0hw5UNSN2bZR1zuIGmN6gP8N/DNr7eIqj/+gMeYRY8wjU1NT3a6OiIhc5cbnqtz/xFlqzYjdvRlqzYj7nzjL+Fz1ksprP08BWA1G6VhXgw1jjE8SaPyxtfbPV1vHWvvb1tp7rLX37Nq1q5vVERGRa8DRsTl6sz6FjI9jDIWMT2/W5+jY3CWV136eAqhUypta32tBN0ejGOD3gGestb/Wre2IiIi0my41yKfP7yWQT3tMlxrbVCPpZmbjdcD3Am8xxnyl9XNfF7cnIiLCUCFNpRGet6zSCBkqpDel/Hy+Z1PKuZZ0rYOotfazgOlW+SIiIqs5cqDI/U+cBZKMRqURslgLeP0NQ5tSvtGZrWOaQVRERK4qo8Uc992+h2zKZXKxTjblct/tezZtNIo6iHZuS4a+ioiIbKXRYq5rQ10VbHROmQ0REZEOxIo2OqZgQ0REpAOxYo2OKdgQERHpgFVmo2MKNkRERDqgUKNzCjZEREQ6oD4bnVOwISIi0gH12eicgg0REZEOqM9G5xRsiIiIdEDNKJ1TsCEiItKBIFKw0SkFGyIiIh1oBNF2V+GKo+nKRUTkqjI+V+Xo2BzTpQZDhTRHDhQ3deryehBvWlnXCmU2RETkqjE+V+X+J85Sa0bs7s1Qa0bc/8RZxueqm7aNmjIbHVOwISIiV42jY3P0Zn0KGR/HGAoZn96sz9GxuU3bxkK5smllXSsUbIiIyFVjutQgnz6/h0A+7TFdamxK+QY1o1wKBRsiInLVGCqkqTTC85ZVGiFDhfSmlO8YA66/KWVdSxRsiIjIVePIgSKLtYBSPSC2llI9YLEWcORAcVPKd4z6bFwKBRsiInLVGC3muO/2PWRTLpOLdbIpl/tu37Npo1GMMTTUjNIxDX0VEZHL0u2hpp0aLea6tn3HQF2ZjY4psyEiIpdsK4aa7jQKNjqnYENERC7Z0lDTIIw5enKOL52Y5fh0hQeePrfdVeuKMIop15vbXY0rjppRRETkkh2bKDM+X+W5iTK9GZ99xQzGwOdemOHtt45sa3NKd1iqjQBrLcaY7a7MFUOZDRERuSTjc1WeObvIo6fmKddDpisNnjtXptaIGCqkN3UirZ3CGMNkqcH8/Px2V+WKomBDREQuySeeniCIIhpBTMozGAuzlQbHpsvcMlLYtIm0dhIDRBqM0jE1o4iIyCV57PQ8e/pz1ELLXKVJZCHjexgg7bv0p9wtr1O3R8ZYa8mmXPr7+zetzGuBMhsiInLpDBwczNGX8+nPeoBlutzkC8dmGO3LbGlVtmJkjAGCGPXX6JCCDRERuSR37OtjvhrgOQ67elJMlRss1kNG+zPcMlLg0bH5LR0CuxU3YbM2JojsppV3rVAzioiIXJK33zrCdKnBTDVgqtRkd2+GgazP62/cxUBPmlI94OjY3JaNSJkuNdjde342JZ/2mFysb9o2HGNohOq00SkFGyIicsmGCmnOLNSpBRE3Dxc4OJjj2HSFr5yep5D2KGS27jSzdBO2QualG6Vt5k3YAIxjCGNLHFscR00pG6VmFBER6djREzP8h48/x9ETSdPF9UN5pst1njyzSDOM6cv6LNZDTs7Wtqwppds3YQPoaQUyTQ1J6YiCDRER6cj4XJU/emgMzzHs7ssQRJZ6EDFRajJbbZLxHepBjLWWW0cKWzbfRrdvwgZgSLIZE9OzWKu+GxulZhQREenI0bE5wjhmsCeDMYZsymWokOHcQh1iy0I1oJD1uWWkSH8+tal9JtbTzZuwAVQbIb3Ar9//GD//LUcoFjcva3I1U7AhIiIdmS412NWTph7EZFtzaWR8B9cxHB4u8IYbdy2vW6oHm9pnYtu1umnEymp0RMGGiIh0ZKiQphlGPD9RAZJAY74aMNiTZjCXolQPyKc9Ko2QxVrA628Y2pJ6bcWt7ntSSe+D73njrZrYqwPqsyEiIh05cqCI6zi8bDhPyjVMLNaJYssPv/F6vvNVB6g1Qz71zAQPH58h5W7NaWarbnVfboQAZHI9mtirA8psiIhIx3zX8MzZMgCvPDjA224dZrSYY3yuShBZXnX94HJ24/4nzm56R82V2if0ApZ/b/o8H63mk1oz3LwyrwHKbIiIyIYtZRCyKY+33DLMq64fPG8Y6FbM4rma6VKDfPr86+d82tv0m8E5rWzG6an5TS33aqdgQ0RENmy9YGKrTvorLU3o1W6zJ/QCcFvNQtOV5qaWe7VTsCEiIhu2XjCxVSf9lbZiQi+A3YU0BigFOn12QntLREQ2bL1gYqtO+ittxYReAJ7nMdiTZmKxu5maq406iIqIyIaMz1U5PlniE89MkXINh3f1cMPuHhzHLA9vXTrpHx2bY3KxzlAhzetvGNqSm7F1e0KvJTfszvPcRKnr27maKLMhIiLrGp+r8sGHT/L8ZIXrd+XI+C5Pnlng6Mk57j7Qv2V3dt1uYRhyeCDNs+eSe8DIxijYEBGRdR0dm2OmGlDMpdjdm+XW0T7uPjjAYCHN+MJL05Fv1XwX22Vivsrxk2PUg5hHTsxud3WuGAo2RERkXdOlBs0wJuO/dNrI+A7NIDpvpMl2DX3dOpaff9ftpFyHjz91brsrc8VQnw0RkSvA0RMzfOTxs5ydr7GnP8u779jDkUODW7b9oUKalOecdz+UehCT8t3zRppMlxrs7s0wW25wbLpCqR5QSHsUMt093WzFVOUJw8hQkftuH+HPHx3nZ77u5gtG58iFlNkQEdnhjp6Y4Tc+fYxyPWRfMUu5HvIbnz7G0RMzW1aHIweKDOZ85qpNqs2QaiNkvtJgMJc6b6TJUCHN6dkKj47N0wxj+rI+i/WQk7O1rjWlbG3TTTKD6Pe99hClRsgffOFEF7Zx9VGwISKyw33wi6coNULG52q8OF3Fdw39uRQfefzsltVhtJjjzTfvJus7PHF6nq9OlnnZSIHvfNWB8zIIRw4UefZcGWOSZpZ6EGOt5daRQteaUra26cawsLDAdQV4040D/JdPfpUz81dHf5RuUu5HRGQHG5+r8vjpBXYVUqR9lyC0vDhV4eBgjrPztS2tx6Nj89x73SBvvnl4+Y6uK40WcxwcyLFQD1ioBhSyPreMFOnPp5hcrK9S8uVbarppl097Xdme4xj++NEpjJlmJGdohjH/5I+P8ic/9DpSnq7f17Ljg42ta4cTEdlZxueq/NoDzzFbaTBbaTCQT7OrkCLluZyYrXLLnt4tq0snNzo7PNxDrRktrwNQqgfdmUU0jtmVcaiVKhR8BxPHmDimUm2w1zMwMQFxDFF0/u/Dhy9pc8Zxl+/2Wki7vHqvz+dOLfL+v3qKX/6ml+tOsGvY0cHGUjtcb9Znd29mU+8eqCBGRHayoydm+M0Hj/P46XlSrqHcjJkuN6gHIQP5FJVmzLvv2LNl9Tk2UWahHlCuhxSyPoeH8mtmK44cKHL/E0kTz9KdXxdrwfLEXxdYGQysDAwu9hu419Z48MQUUdojl3KpNiOCRshrX7YLFhY2dT8M9aT4kTffcN6y33roHL/54HF8x/AL77oNx1HAsdKODja6dcvgbgYxIiKX6+iJGf7d3zzL5GIdA6R9DwiphTEzlSbVZswrD/Uz0pfdkvqMz1U5OVvFdQz9OZ96EPPo2Bw3DRfYU2zVoS0IGE3D119X4CsnZ5idrjOU9fiaPT3sqS/A6dlVA4bLMdyX5Y0v28WTZxeZKTcp9qS452CR4S3aPz/ztTcRW/jtzxxnoRbwK996Bxnf3ZJtXyl2dLDRrXa4bgUxIiKXa3yuym89eIypUoNqM8Yxlvlqk3zKxXccCnmfvqzHXfuLm3+RtEb24PEnT3NXtsnxc2X8kqHgWkrVJucmxvnG1x+C5ysXFLUX2Lvbhd351pIAShf28dgsw33ZLQkuJuar/LsPf550Og0YapUS//d3vJGfe+fN9GV9/uPHn+P5iTL/7bvv5rqh/LrlXSt2dLCxdMOf9na/zbh74FZ2JhIR6cSHHznFk2dLBGFEGFlSngEDi/UQx0lGoewfyHGu1GCqVOf0fI0ffMP1LwUc6zU7rNMksZrKqXMc7ElR7DeMzdWolEP6Uy75HpeRntSaz5tYqPHk2UXmWtmGl+/p7UpAsFXbgaSDaBwG/MO33Up/fz8A/f39GGP40TffwM0jBX7yQ4/xDf/573n/u2/jPUf2qR8HOyzYCKKYjzw2vtyPYrQvw6Nj88AG2/02aCNBzFp9OtTXQ0S65eiJGT509DTNeoCHxQ8DbCOix3VoNAJ25X1GooDy2AINx1LwDBUDf1+b5k03Dl30xH85XAOPjs0RhJZ8xuOWkQKe65BJrd1UMLFQ48Hnp8inPQZ7UlSbEQ8+P8UbX7ZrUwOBrdrOMmNwvPP38/z8/PLfd4+k+Ot/+nr++Z8+xk9/+HH+z5fH+eVvvv2az3LsqGBjoRYsT8pSaYQ8OjbP3Qf6GV+o8/y5RRbqIf2Zl8ZOX+pJfr3OS2v16bj7QD+Pjs2vunx8oa4AROQKtukXEnHcUYfHJ8Zm+L1PfZWB6TIeFmsMNrZgoBlZeqzl5r5eqosRBd8lCCNOt6YQry+WqVdrvO91lzbC4mImFmrMVpqU6iGFrEczjPjK2Bz7ijm+4c69az7vybOL5NMePa3ZNZd+P3l2cVODgK3azjJrSafTy8NfV6qVF/nJd93Nn/zgq/lfXxzjVz/2LF/7nz7D//XGw/zQG68nl9pRp90ts6NetduajAVe6kcxvlDnyIEiEwt1Rou55eDgctoq17sF8ieenuD4dIUgjJd7XfdmfT7y+Flu3dN7Xh3nKg3+8KExbhnpYWKxwaNjc3zqmUm+99UHtnQqYRG5dGt2Gr9tmNHe9MZHRrT/tnbD259YqPGRL50kDkKKOY9SLcTGFs9ziC30+oY33DDEfD2k0qjSDEPG5+pJh82sx2I94tPPz3DPwQFevq+4/gY78OTZRUb6swwV0kkTSiOkJ+tTzKcuejKfKzcZXJFpyaVcZsrNTa3fVm1nmTE4fopms3He4qU+HEscx/A9rz7IO24d5hc/+jS//smv8qdfOsVPf+1NfPMrRq+5ESs7KthYufOX+lF0o0PnaDG36nOX0pgp19Cb9Yliy6PVJnft7+fsfI1XHho4b/2JxQblapPnJypkUy7DvRnmqwF/+NAYI33Zjut3Ofc/GJ+r8sDT53j8dDLU6859/bzt1uEdl2VRU5Qs6fpnwdrVA4G2jMPZ2TL/6wsnWFyskfHAaT0nZSwPj5/gdTcMdb0/wOdfmObMfI1aMyS2lpTnEMaAjcl4LtfvzvOee/Zz/xNnWagGHJsq43suWd8QRFALAnpzHn/1+NlNDzbGpiuUGyGVRrTchNKb9dc9mRdbTRo9bfcNqTYjipvZ1GMtA2lDc36RgolxgiZOs0G9UuOgDeFL56DReOmn2Xzp73/7by95m3Fw/muvVUr8g6+787w+HEt292b4r991N9//2ln+7Uef5ic/9Bj/4/Mv8q/uu5XXHL52Lkh3VLARx+dfCSz1o+hkfPflGJ+r8kcPjZFLuaQ8hyiGM/M19vZneeZciT392Qv6ekyVGwQWsil3+eZE/TmfyYV6x8HQ0v0P+nMp9hWzLNSS+x/8yJtYN+AYn6vywYdPcnymSn/OBwtffHGGqVLjgumEt9PFmqi2qynqSgnSrjYbHoJu7flNEZ1kF+L4onV48vQcf/HYWV44t0hsLeVGBMYwmPMp5HyeP7vIo6fmSDkOxXyKMIp5sNTY1P4AEws1jo7NkfYcnKzHfDXEYOlJO1SbMNCT4jvu2c9wX5YDQ3kyvsOLMxUyrqEeWmwMnmvoy/g8P1FmYqG2qXU7s1DHMYberEcjjHn6zCLXDeXZ1dfqZB+G55/Mm02o17lrbpHHjk2SJiJnQ4JqnXS1xq0DaXjEXhgE1OurBwVr/d9a/y0dZJDOc6nBRiuz0e5ifTiW3NBn+PP/67V89Imz/OrfPMt3/s5DvOPWYX7uvluuif4cXQs2jDG/D3wDMGmtfflGnhNZS6kenNeP4oZdeT71zCSuY3AdeP5ciUdOzHL9UJ5XHOjf1DofHZsjjGMODeU4MVMl7br4rsPJmQrNKOaVBwf4/LEZRnvT1MKYqXKDcwt10p5z3m2X60HMYCF93m2XN+Ijj5+lP5eimE9RqgfMVprMlBv8+idf4N9/y8WzJEfH5pipBhRzKbIpl1I9YL4W8rnjM5Sa4Xm91TfravJSyjk6NkccW549V6JUS6YyzrqGP3xojNceHtyyeU+W6v7CRIlnzpaIYstIf2bHBmlXvLYg4MxMmS+fnOFzz02QcQz9u/Nksh7ZOCZbbfD0wzOM3rz7kpojOvHk6Tn+86deYL4aUGkEycWOMfiu4exixFwtoNIIiWJ4xaEijTDmxekK1w3lN7U/wOdfmKbajCjXQxpRTD7t0gwd6mHE7t40P/w11y9nK16+p5cHSw12F1JMLDaIY4vrwL6sS6ZRZSAKeOErzzI8Wrj4yXqtZSse92ZL/ONajajWwA8DvLCJEzRxg4BsHCRlrDGKZRB4y6bsocvk+5BKJT+ZDKTTyd+XapXMxsX6cCxZ6svxjXeN8rW3jfB7n32R3/i7F3j7rz3IP3jdIX78bS87Lwt0tenmK/sA8F+BP9zoE/qyPtmUe14/iqNjc9w80sOXxxaYLDVwHUulEfKlk3PUmhG3j/ZdcNV/qSfT6VKDXT1pmpHluqE8k4sN5ipNpkoNjhwscuS6AZ46PceDL8ww0pth/0CWYsbjU89PM1NuMtKXoZhLYQwcGC50PET37HyNfcUs5xaqPHO2TGzBIWZ8rsoP/dEjDORT5FMe1kIu7Z53BT7d6ijWn/Mp1QNenK6Qch18A7OlxvLJG9iUCc02elW68r34++cneXG6irVQyHhEseWRyRLWgu+Y8/rIdGvek6MnZvjDh8aIo5jJUp1zi3XCGOaqTTK+SzOKmasGDBVSvO9112/69i/VtmZg1muO2MAsj/BSJqFaCzgxW8Vay7PGcNNIgbv29yfp+dkmNPu78jKWhkienC7z0PFZZitNHAMp12UxDMHaJLYxsFgNiIEXZ6rUo5i+jEcm5WEMeG7bPTCshSDo/GTeaFBarND37Fm+NQ4IqnWcoIlpNsnEIX4YcLjPp3B/tLz+cKPBt9YbvKtaI643SEUBfhR2ZV9BEjBcLus4RKk0kedj02m8TBovl01O+On0Syf/TOb8Ze0/Kx9vCxweOVehjku6J0ecShP7KUrW4PfkePPL94G7yZNrrZLZAC7ow7FSo9E4L+PxI286zHvv2cf/+/Hn+Z2/f5GPPHaGf/X1t/KuO/ZclUNluxZsWGs/Y4w51MlzfNfh3XeOnrfs40+dY99AnuNTFabLdSZLTbKeQ6EnRSHrX9A34nJmBx0qpGmG0XL/i12FFCdnKlgMGd9jvtKkHsHNrTbLw0N5Hh2b5/CuPKdma5xZqDE2W6WY8xmbrXL7aB/AhoOdPf1ZzszXeX6yhGMMvoFzCw3CGKIo5oXJJAAZzPncOFw47wp8qJAm5SV3WJxcbJBufcF832WoN0Nv1ueBp8/x4kyV2VKDod4Mh4fyDPQkAVHHTT4b6EfT/l54juGBp87x4HPT9GY9dhfSnF1o8PT4AouNiKzvMFRIn9dHptK4/IPoymBntC/DHz00hucY6pHl+cky9WZMxjecbIb0ZVOM9KapBxGfe2GGt986ArDqSX7p9W4kqL3cbNLKZrJyLeD/fPk0Dzw9wdtvHV4/6FgZLGw0cFj6+zKyC+0n+EfH5smnXBZqIdVmlJzoPYfHTi8wNlPlul15bu30fh/WvpTKb0vjt5/052YXeebENCfPzpGxAamFKq9YrOAFTdI2pIcYW6vjhQGpKCATBXhRQDoK8aOATBySiUOycYgbNukhhrgtwLhEBTq/+neBjnMq7Vf0K0/iF/n/RDmk6Xh42czyibzquLi5LLdft3vtMlqBwUQj5sFjc+Qz/vI04pVGuKnNUCceOcVgT4qo7QTtW5v0KdnsQAOIgoC5iTOX9Nz/9sBTGGOoV8r8xDfeS39/Pz/71v18/S39/PsHjvNjH/wyf/LQi/zS19/AQP7i2ZeluT2uFDs+Z7M0J0YMFLI+uVRyUvNcs2rfiLVGkmzkZLo06uVlw3mOTZZ58swi9TDm7v19+J7Do2Nz1IOYkb40i7WAY9NJUHLjcAEDVIKY6VKNsdkaQ/kUT4wvkPUdJhbq6wY743NVilmPjz0xTxDFDOZTLNRDQgsD+RSL9ZAgtvRlfUJgoR6ytz/LTLXJA0+fA+DUTIVyM6LaCLEWFusBKc8h5Rgm5qu8MFXFxjGu63BipsrRE7McKGZJpzystRc9Aa7suOoARw4NMFtucGy6QqkeUEh7FDIvfaSWApIgjPnKqQXOzNcwwFS5zly1Sc53WWwEBCFYG/PcxCJBYMmmXU5MV/ialw2dN+/KpZygVwaef/TQGOV6wEBPimfOlUi5DpELtTDGdcB1DLO1gKGeNEOFNA88fY7pUuOCvjDHJsv0Zn32D+bWDWqXMinlapNSI6QaRBgMb7t1N+85sn95X02XGjgGDIaZSoPx+RqVekQu7eIYQxBGDKYdokaDmZkyvXFMtFjlE5+f4+MPPkEx69HjOZgoJufDrcMFXn94gJGeFBPz1U3t5HjBJEq78wxn3Quu3F84Nc2nHj9Fab5CtVRluNkkHQXsJ+JVNsQ2mnhhk2wc0kNI1kbsyRhqPR6m2aRUqhJXa7it1L0TNPHDgHQc4LZnDtbpm1EEXtv62RZLqfz2k34qxWzk0PR8ZkND6CZX/qTTNFyPlx8aItfbs3ogkMkwH8JDp0ucbUCqJ0PkpliMDLuGennLnQfYtavvpeaDSzwplVuZqDiKKeZT7OpJ4ziGN75sF2zg8/Pk6QnyGb+rw1K3pCNqG9fz6Bu4vLme0unMBc0ur92fo5g2PHxinnf91qO85XAve3pXfw1LTTLF4uZ2Bu6mbQ82jDE/CPwgwIEDBy54fGlODN91WKyH5DyXIIoZLeYv6BuRpJkniLFEUTJs7OxcjdfeMLihq+T2IbHPT5S5cXcPE6UmZxcbTFeahLFlttpkupLm4ECOiYU61WbIYj2k1ozYX8wwW3bIpQz9eZ/JUpO/evwcdx/ox3fNqin58bkqH3pkjE88M4WNY6y11IOQ0/MhvuuQ9hxqQUi5kZwMU47Bdx1qzYgginhsbI6/e3aSvX0ZRnozYC0vTjVIu4ZsymOgJ8WZ+SoTi01CG+MZB8c1RFGMYwwzlSavPFgkm/bWbAb50CNj/PUTExTzPodar/uJ8XkePzWPcR329WdIeQ5PnVmk2owYzKd5263DyzO1Hj03RxTHTJWb5NIOYc3BWstsNcB1DJ6xRDHMlAN6Mx71IObEdJVmNMnh6Sqe65DyHJ4/u8ibb9694Y6kq2VfSvUm43N1jk1VWKgFOEAQRwShxfMdyo0QzzFcN5DnlpECXzk1T9p3l/vCtD6zvDBV5uBQnltH+5YDrtVmc1zqdNwIIqZLdRYqTUwU4Dnwv/9+jo9//llcHIoZl+GeFEEzoN5osFgNqNQCMg4MDmY4N1/DxpZ9ewrMVAL2RpZqM+DUbAVrHAopl9lGg3Ic0W8C0h585fEGp/7OMpSCiekS2ShgT9YhmzGcDAOyxTS9Tryc7q8slJmdKxFU68T1OkG1Ds0G+Thk0Ic8STo/rNXpqdZ4fRDgBk2cZhNnjVT+Da2fS5VZf5UNiR2HppcicH2ank/T8Wi4PoHn0XB8Atej4aVoOB6hl6wT+SlqxiNOpWg6LnU3Rein2Lu7l77+Ht50x4HzAgcymdVT/akUOKvfevzBo6d4/PQ8rutQaoTJhVVsedV1A9y7ThNeP1A7eorZmcryZFsHilk81+HxpstbC4XL2mcTCzWePlvi8FCO6XKTuWqTxXrIN965Z8OBwlYMS335nl4efH5queyl7Mk9BzfvRNx+nioM7Fq1GaVTqzW73NDvMJDO85mTNf762Xm+5mCWg/3+BeutbJLp1HZkRbY92LDW/jbw2wD33HPPcq62Pe3su4aRQponTs/jOYbdhRSnZmss1gOuH8pzaPClrEa5EZD2PfIZjyC0TJbqPHJijrfdNrxqSn21E9doMcexiTJjsxVGetO8OF1hshTgGvBdw2It4PRMlUoQ4rkungOeY3hhqkIjjMn6DlOlAN8xxA5MlRrLKfmVJ/IPPnySzx6bwXVgoRERxZZCxse2esa7xlBPxsBhSP6uNiOaYcTTZ+apBXGS7Yhinj67SDOM2duXptyMGOnP4hjLyZmAZhyTcR1qYYQbGwxgTTLi5/hMhW87sh/fc1ZtBvnii3MM5H3i2PLQsWlCCw7wwlSZgXyak1MlIgu+67K/mOHoyVmmSnXOLTb48sk5xuaqVBohtSAijpPJinzHIYwjXAdix5AxhjC2BJEl7RnyKYeFWsjpuSqFrE+pHjJfafDAM5O8bHcPg4U0QRhz/0WyRkvBzlIwcHyqxNNnSkRRTGwtzSjGcRwynksUhQRhzGItoD/nM1dr8uDzk0yVmhgg47vk0h4jPT75lEO9XCXOwsKUx1Njc2RdOGQDyi+c5vMzY3zN/gLDfszYk6e49YWzxNUqNy7UcJp14noTP2ziBA28ICBrQwZcS7Nax4+C5Mo9CsgT4QRNvKBJKgrxwoAcIX7QXL7ST0VLP5ff5JRv/azHo/MDR4yh6bVO6m6KpusReC+d5MPWyT3yU+D7LFgXJ5NcxZtUirqbou64mEyGQ3uKkMngZjPcfv3uC9L4042YL4xXSPfkmG7GfPTZWWLXBQsLjYAgTD5jFvAcB7BYazHGYbDHpxFYotiSS7s0gphKI8BicDDk0w6W5Lkne4b5uts2fuJdzWI9YKLUwDGGfNpjT1+GILLnjXi7mMjC3QeKOG0njnipCeEytU+Wtbc/+X6VGyET5SYb6vHP1mQdtuImbO3nqZGDN9iVHUQ3U78H7zzk88mxJp8dq5FzIgaz5werG+mQupbtyopse7CxmtXS39OlBq86NMDfvzDN+GyVPX1ZDg/lCaKY45MVfv2B5/iTL41Ra0YYYyjm04z0pois5dGxOQbzKT75zCS3jhQYHcjx1Ok5fuvB2eWOnitPXPP1AMdxGMynmCg1aIRxcrK08LKhPE+eWSSM4iTdnk9TatSZLjexNsYxKfIpB0ySXWiEMQeH0hc05SyNIHEdQ62ZjKd3coZSPWkG8V1DNQhxjENvxqPcCJirxHgO1AKDYwyu4xCEMafmavTnUjRjSxgnI2IMljPzdYIoBgvVIMZ1DLm01+r8FpP2PearyRdnaV6TpaDs089OkvZd5qoBfVmXuWpII7JJfxLfoVaKCNIRlWaM4xgKGYdmGPPFE7M8c7a0XP+JxSZhFJPzHTAOvjEEcYwxYK0l7XnEsSXrO1gAA+UghjgkimNyKZ+UY5irhjSjJsVcivGFOk85i7zyYP/yfh2fLvF3XznJsyem8IMmqaCJ9S0L82UypTI9Z2Z4db1GutkgGzXxG3XSQUA2bjLkRITVGumwyaAb4zcbxNUaXpAEBtk4JGeTNvysjTDNBuk4xAsCvqW1jrNKv4bXtH52gqbjtU74fnKib3XYi/wUFVzqxqXu+jQcn8j3iTyfquMReWki34NMhkN7+pkNHQr9eaaahop1OF4OqTsegeNxaG+RCi4nKzGLsUPDScps4uK6hjiGILZJ52eTBK3ZtIshyRgN96apNCLKzYjBnI+1cGahRn82RU/axTgO1w3muHlPgSiG2+/Zf8Hr/Pujp3gyCDnx1UXOLdaJLbgmJggtlmS7ra8EOd+Qcj0cx3DbaC8/8LrrmCrV+ZMvnWJioU4u5xNbSxjFSdcQCyknadJ9+PgsYWj5hjv3XtKJbWKhxlcny+zpy1BuXY3XmiH3HCoSb7CLzNLJPIzi5Qm3fNdw3eDlD6VcOb/GgWJ2Q/NrtNuKrMNW3hcFWLOD6GZK+/Dm63zu/2qFz50J+aabey5YZ70OqWu53KzIShvNknRz6OsHgTcBQ8aY08AvWGt/byPPXZn+DsKY4zNV+rI+d+zrZ2yuykK1ydlFB2zMl0/N0wwiqmFMxnOwFuarTcr1AN8z9Gd9MEn24bmJEkEU88jJBdKeQxTHBJHluYkSNw0Xlk9cfRmPxdb06VjLrp40U+U6i7WQc6UGnmPoSafoy3pMLDZwDaQ9Qxy7lOphckJuja5wHMMtI4ULhsIujSApZDzmKk2yvkvO9YiimFIjYrAnTb0Z0Zf1mCw3ybou2JgYS7N1dZZ2HeLkFE0QxbgGmq321SBKHsmmXGxsWaiH2AhsbImxpDyXXT0prGX5dtFp3+H+J84SxTHHJsvM1wJmyg3OeS4D+RTGGGJL8hodw0I9xHUMac/BwzI7s0g+alKohsS1On6tznDUJK7VyUQBg15MJgoIKjX6TTL+PhU2iSpV0lFAOmiw24sJKzW8oEE2Chhwk8571Oukgga5OCBvkyv85Ko/IAqbjEYR37N5H+FNFzjucho/aJ34G65P002u8JtecqJfCggark/oJ4/Hnk/op6gYl7rxCT2PKJUi8HxqxqNmfELXo7EUTLg+dXepqSBF6LpYk1wdea7Bcx1cA8ls2JZGaPFcaIZJkxZAyoMoNnje0ryIhrv39xNbeHG2Ssp1KNVDwmJMqjU6Y9w1BKGlkoqwreNPM0yCUQPEroM1lqxr8DyHlGuWs3PVZsRUJaRpwTEOZypBkoEyDjUMcWxoNELi+QbnahFvuHEo6QvR5txCjc+cmGeuGjDbtISOT4SlHFpcF7K+Qy1Ivhc9aRcv43N4dw/7B/K8+xWjyZ1Dd8M/Gerj7786xbNnF1mYrGCimGYU46c8ijkf3/co1QOmYpfHZpu8Y2Rg9X4RFzkIP/jMLLMmRbNhKWTS7BlK4ToOp0PLkdF+6OlZt4xbb3T5iy+Pc3K2ged4zDZj5qsB56Imh+cD7jzQ4XiS1rbOzlc51vRwXZ++QY9SaDk6H3KD7zM8UoC+vg29xuH+ft7Q18dj4wucLTcYGEzzhn39DPdvoO/VBk5gZ+erPHBukUK2l0K/y2Ij4uPnAt4+MMCepW1sdnPBKkNfuyEN3DLg8shESKnaIO9vzuu4nKzISp1kSbo5GuU7O35SHHNmfJrPf+UkBijkfK4bzDM2U2GXExGUm6QMvCwHxyoBTqXJXC3Ea4QEzZB+xyFoxuR8D4ulHsZExjCY7WF+ci4ZZRDFfOnJaSqLTRzHMAMc9JPnzp5rkGtk4VAPN+cs/U3LizPzVKeSYKbWjBnIeIxYQ1CvEVctJvTY7brctKfAKbfJizNVamFIMGdJ+Q6NkuHGPQWi6Wn29GdhdnZpB7EnqjJeWyQVhMxXF5NMhTGkrKVoLTfme6j6EWEUcqjHAIbx+QblepMoshA7eI6h3AgwBozj0GsjMlGTW4oppqdLDMchTrNBKg6JyhWcIBkrn42a9JmYjA0Zci0DnsVtNhjwYiqLFSqlKj9ar5NrPd80m2SiJL2fDgP8MBme5wVJhz8/CklF3bt99GaIMQS+T9NLJyd5P0XgpbDpFE0vhU2nmY9dYt+n6viUSE7WpNOUjEvdTVNrncjJpqkaj7qTBAVkM6TzOcJ00mM/yqQ5XbVUHZ+al8LLpFkMY5oR2BjSKTe5WjZJSt62zsyBTW565XsO9dDiAJ4DIYZC2l/+XPuuoTfjs9gIqQYxcWSXs0JukiYgjCwWQzZlaIRJQBrHybE34zs4JNmuqJVFS3tu0pQVxstlZb0k22QcQ85z+VScfN4aqTy+A17WIQxjUr7LYD7NxEKVWmixWZtswxiqjWToqzWQ9hx60h5+NsX+oTyvv3GIx0/P8+xEiZPTVaLY4jnQiGLCyOJ7Dg6W8dCSSXn09LmcjS1YmJ1PMX6sSSHjLzeDHl2cY2JwLxOpBqV0QBhbImsp10McIJf2cE0y7LruOcw0Qt557w287dZhRtqyjiPAe++4GYCPPDbO3z6VdBROpTwqxtAMY9wiTOVTnM73wf4LMyxrWeoH9SdPlXFNDs91GEinGA8Ne/qzVJsR33/PLbCREWx7IDfrUGGWEzNVUvk8fp/Dc42IXzw6z7/cPXJJt0340rlxeg/s5Ytj89iSpZDxyOVdFpouP/OKl22obst13A3xriRbeqbUoFn1ODKU35Qh218aHyc9spt0xiciOUE36wFfKju8u1uzc25BZmNJX84BQhZDh0JuY01rG7GUFVk5xXo37ahmlKDW4LOf/gq7SlUwUJuJ+MJTdarNmN6cx3AhQy7tcWK6wijJ7J1D1pJtRDSiiIznEoSWMI6IY8g7UEh53BzDudNThH0Zsq5D9eQcI2mPCItrDAvHFxkt5qg1Q/bmdsHEBEfSTT56bgJ3vsYrc/Ds2RJ+PaAQ+HhUGQ2Tg3S1FJLL+zh+g5FmxL37UpwcX+C5yTkO9rjsy7qYF8eoPlnjphv74VgKGg3m50rkj0+w7/QsNJrcZUNMs4kXBhRMxO4UBLU6/U5MaaFCOgrxwmQMvhM0l/9Ptdr4/TBpt281ROxYDS+5Giedxs/naPrJiT5Op5kJDFXXp+L42HSGkvGoOT4l4xGm0lSdpF0/TGUIUynmYoeG4xNnszi5DAuxRxmHhp+03dfdFBXHpeGmCVMpjO/jOA4p3yXjQiOCkb4M3/KKUZ45V+KZMwt4rmG2ElBthMzXQoyxZHwPQ5I5aoatGSbzacqNEGtjGqEl7TnkUi79OZ/ZSpNmGFNxIvKppK+A4xgaJsZLWRqRxfNdGmFEyk2yTkHc6jdgwXhJJ17jRIRxkrr3XIfe3izVRkiDkBALnscNxTwnpiss1JM+RX0Zn1IjIoxjjGPwXTDGIeUl2TCb3K0czzHUQotxDE4MYQwmSpogk8NbMqLUcQyNMCJuLVisxWTTHoWMYaEa0Ixt0iwRREws1igHcTKjpQOukwQ0PZkkfZ7xXPYWc+wqpMj4Lq840E9/PsX1u/J8+dQcgz0+i/WQRhDjOg5xHBOESdbEGksQRVSbyYihfcUs8/WQjz15jtv29lEPIz71zCS+m/QrmCk3sK3Abal1K+UZfM+hL+vzykNFgsjSk/H4/tddd9HP7JEDRT71zCSxTbKGBkMzjNjbnyXlux3Np3P0xAy/+eBxnj6zQGQtGS8JOmcrTXozPlOlBu+4rbO5UyJrGepJ4xjD2cU6vuMy2JN0wrzU2yYcmyhzdrHOaF+GhXpAqR5SbgTcvre/47IuZzqC9Sz1y2q31BzcNVuU2QA4OZd8rwdT8aZvc+UU65dqo8/fUcFGPYjIpz1u2NXDIyfnmC038T1DaGMq9ZBKKmS0P8OTjZCM54C1rQ5eEWnPBWsYzDsszNXIE5EJI/Z6husWGvTNLDLzQomw3uC2eoM8EW7YpN+JcZpNbKNB2oZ4GcMTHvR7ljeUqoS1Ok6zSbNaw2kFA5k4IE+MFzSwrYl1Uq2rfGedIXhL+oGvaf1spdB1CbwUsecTtXrM10zSRl9v9dAvWZem69H001SdpANf5KeouT5RJkvgp6g4PjUnRZTJ4BfyhJksY1VLM5VmDp/ATxGn0jRTKapOinxvD4MDPRjXYU9flp/52psYLeZoP0x/4bFxvnBsBscYwjjmubOLHJ8qUw1iCqmkvb4ZJEOAHZP0D0l5ydnTYHAdQyOICGJwHcj6LhZLI4gxFlIkmaMoiqnFhv68x5tv2kUYW24a7uHUTJWBvM9sJSACXPNS81TaTZrnYiDtODitZrkwNqTdpFNeFFtqQZS07ceQck3SrddJ5pLwXZd82mV3bxrPcTg2WSK2Ft91mKsF5HyPYi5FpRmS9V1cxzBXC2gGEdmUh+8mzQ75tEczjImiGN916M16SefC/gzX7ephcr7G46cXqAYRvVkf18BCLcR4cdJsYgwxBmMsjgXrgGcMvgNBZDGuwW11GmgESVZi6U6VoWOJrSXne1TciJgYz0ma92rNmDhOTvC5tJdkZTyHMIJdBZ9f/467lq+yl/oFTS7W2VvMsbcv19rPTU7N1Ui1vt/NMLlPSNokdznFSQKGSiOiFrT6E6Q9rt+V57FT85ycrZFxHRzHENuYemiTfZYyNCNDbC23DPcQRJb5apPvunf9jMRoMcf3vvoAv/ngccbnqmRad1x9+MUqhbTPSG+a8bnqukPbP/TIGB8+Ok6tGWEx9KQMpUZIb8bH9wyFTPI+Ls3tslFDhTSPjs0lwW9smW00qDWTY2K52rykyfHa+6ztap3M5ypN4ku4CO7Gva2WLE2N0N6hduk2F12zRZmN04sBxxciri/6ZDIbez2dZir6+/u3rKPojgo2vNlpbv3wH+AGTUanFwmqtdbY+iQ4SEch6Sjgza1Je7wwxI+aeEGA10rt+/HqU+fuFNY4NP2lTngpSKewrav7yPfJFPIMFnvO611fxWGsEuNmM0w3LYuRYTZyiPwUcTrp3NfbmyfX20PZuvj5DCXrMhs5pPoKuPkcTi7DTOzRNB7vfeV+HjtbppBL8cipRcYW6tSCGFyP/rzP0dNlIptc9ZXrIWFsedlwD4v1AN9xiGxyH5uXjxaYrYSUGgGeMUwu1ik3IwrpZN6OqVIDawzFrIdNeZSbEfuLab7v1atPA37kQJG/+soZsr7DucUGad+jL+uT8mKakWVfb5rJEtggwnUMTms4oWsMMbb109rPNgkSChkfh6Rjq2uS/grDhTSu6/Cmlw3x42+7aXn7BsOzEyX2F7McnypjUx5BbPGdZKSM6xhyxiXlJ3fi9Nwk2PBdQ2Qt2ZTDQjVMRvpYS9p1CKwl57nUgqg1AsfhDTcMcXy6mjSJNCNu2dvHqZkyC7WQWhiR9hxuGikkTQ4pl798/ByGpGPjcF+WRhARxzHz9ZCRvgxfe9sILx/t5YnxBR4/vUBvLsV3v/ogi7WAh0/MkXINr76+h109Kf7+hWnOLtSpBxFZL+nEHIQhQQwYQ8aHjJu87p6Mm9xxNONxrtSg1oigNax8rhZSSLuUGwAW13XJOBYvjEj5HgM5n1oQE8SWrG94z5HR89L5K2+E+OlnJ8n4LreO9vHk+EJr5t461lr2D2SZKjWphxFuFBO3hmxXmiFYeP7cIvOVBvP1kHQyUQlBFGGMQ28maRoqZjP05zx29WZoxpbBjMd33bt/w00MRw4N8v6+LB96ZIz7nzjHQrVJynWoNgP+9EuneOTFOf7Z229ctbzzR50ZHMdQb4ZUjEtPyqUZRsSxQz0VdZzVWPrefOqZSc7O1whjizGmNYLKYaER8sJEqaPygPP6rGX8ZLLA2Fr6Mp2fMrqZfViaGmGpzKXbXLz+hsubB+NiLmdSr41IpVOcqzl8YdKlNwW35KtU5qvrPq9eLfNT3/K6jjIVl5vV6MSOCjayczNc96cfAODCGTc2z9JQu2ZbB7rI9yGVJvCTNH8qlyXwPCLPpzjQS824TDSgYVxqjo+TTdrm7zy8m56+Hk5UIhYjQ76QYzF2qDkeY6WYpuvy3EKT6SY0XI/BvjzWWuarIZhkiNvhXXkGe9IsVgNuHC7wnqUe9o4DrkvOcegrNXn87CIvztYYW2jyspFeRgZ7qAQxT5yc56Y9fQwMFUi3nvPZJ84w1JNmdFfPeZNuDWY87rr7ZexqTX39yPQMPekUqbzLucU6J0tVBnIeM9WAepCcurN+Mgw147ncub+PehAzvlCnN5tmVyHD1GID13XYP5Dj+FSZyCZXyHt9hzCI8X2XfNrjPXfvu+hMl6PFHK+/YYiPP3WOKLb0Zj2GChlcA9OVJsV8mpTvcHquThDG9GU9FmoB9TDpGJvyHAKTZB8cwHUNfVmfeWvJpgx9uRT9OZ/b9vZx3WCOcEWX/7fdOkwzirlrfz+NIOJLJ2Z57twiWd+jL9cajlwPGZ+vUQuSoCLtGCIsWd9jdyFLym1SboRJM4brMJhyCC2Um0kHzDtG+7h+d4H+XIqHX4x4sVYltpa33TpCtRny7LkyxaxPbKA/43N4uIeU73J0bB7XGHIpl9H+LM0w4j3XDZ7XBLDWia59uPdbbx3mjx4a48x8kj1oBBETCzWqzYhGaMmnfV53wxDfee9+Rvqy/NJHn2K23GS+FtAIk3laMMl9ipqt9yib8pLMIuA7MFVu4nsejhPRCGNuHunlvfdc/Bt9575+vvjiDMYYDgxkaQQxKc/hQDFHPuvTaPVTCeOYcj2Z5M/apJNzI7KcXWyQ9lx6Mh6em/QVma81iYHBnjTfde+By57afbSY4/rdBW4aqXBsskItSALDILacmK3ym585zvtXabJoH3WWcg3zkSW0lqA1tD2fdtnVm2FPX7bjrMZSvb731Qf4qQ8/TrM19N4Cs+UmxbzP+Hyt4zIH88mQ/xcmSlgDhwZy3DTcw95L2H/dzj74ruHh4zNA8jnq5j2VYHMm9VpLpVwiO7CHL3xlmht25/jt77iNvuzG+2rs5FlFd1Sw0fTTfHXv9Zh0mqpxcDLJFLmFvjx+NkvdTU7y1+8dYNE6nKnGTDYtFTxSuQwDQ70cHCli0ykeOVslncvwYjnksckaVVyqeLgZn2aURP3NIOklH8WWYs6nN5tK+oo0Qkb6stw00sPRk3O85vAQuZTLuYUax6er7O3L0Jf1McBDluXhVne1hltNLNT43c++SMOLOVdqctpp4ORdIsfhRANix8XJZgiNYd73OTZnOOhlGB4Y4OUv2wM3HLhgEqA9wJ7W4PalE8iZUoOhYprvODTMo2PzLEaQ9xwq9QDPcdjTm2GgJ708JXmpHixPTDVazDHQk+bmPT2cnq0TxTHWRixUmyxUYXchzUA+xVS5gSGZ9+KWPX2EcdJm/qYbh5ipBkyW6gwW0vRnfE7P1xgspImi5MRvsVTqIbsLad7+8pELpqJfzdtuHeazL0xzaChNNuXy7NmYWjPk5Xt7mSo1SXtu0mzguxgnaRKZrwdENplzYCCXJu0b6kGcjIIwkE+7xNZw/WDSIXGgJ02pHtCfOn8q4/ZJ3SqNkLffNsLPvvOW8+YdeeDpc3zqmQlenK4QWdjVk2a0mOXOff3sH8zzpROzzJYbfHWizEK9STrlETcj+rM+e/qz3LGvL2k68Rzu2NfP+157aHmul73FHO+6c/SCA+WRA0WyD48xU23SDCJSfhJwLE2ZfjErMwhLlpoE+nMp7j44QBDFXDfUc8HN5+67Yy+1ZsTRE7M8Nb5INYiIbZwMBW9GOI7hW14xykw1YLbcYGy2xt7+DIWsz2y5SV/O4YffeP26B/+33TrMVKnBTDXp/LyvmCGMIgYLGQ4M5njnbSPMV5v87udOENukiWype5KxMdUm1IKYZuSyqyfNdbvyVOrpjj57GzFdajCx2CCyST+d2FrK9YByI+ThYw3++Z9+mddcP0Qx77NQDTh6cpYnz5QI4pi042Baw309xyGMIkqtzt39GX/NjN9GHDk0yJtetotHTswyWw3wHXBdh6lyg1oQc/TEzIazOONzVaZKdSILh4d7kvlJqk3K9YgjBzpPuXcr+9DeF+Qttwwvl9t1m9iM0t7sMVsNeXCywezYNN92zz7+9btuu6puzLajXsn8nv386Y/9MpOLdeLWUM39Azn29GUumCa3F+gFbl6jrLtaY6+ffvwMs5lkYpps3JrIKYqpN2P81lCiwVyKfNonjJKjl+s65DMeKc/l7gNF0hmfqVrE4O4ibzpyGBzDJ56fpiebpiebYj6IuX825h2jg4wO9jDsuuRm0zx3eoFTVKlnIlKew3wtoNYI8T0HY2OsSXrmB1HMWN1Aw7B3qLDmbINLVjuBjPRll9vAhwppvvfVB3h0bP6Cu+i2f8GnSw3SrkM9iFisNWlEyQG0EcaUGxGDPYbvedVBPNdwdrFBX8bj5Gxtea6SXY2QvX2Z5RP0ZLlBX8bnbCs9am3SIdFxnQ0fpJayG89OlFioBuztz1Cqh6R9j1v2ZhjpTfOZ56eYr4UUfJf9gzmYqVILYnoyHkM9KYZ6Mlgbk/E9zrXqMtKXWe6QWKoHax7s1jo5Lz32vtddf8FMsL//2ePLk4eV6wHHpytkfYfYuslVv+vytlt38/obhhhfqJ93o8HRYo4jG9gn3/mqA5typ154qUmg/X4v9x4YXPXKf+lEUQ0ibhvt5dh0mcnFBiO9Wfb0ZSg1Qna17r0zsVinP+sy2JOhHkb0Z1N876sPbOgkt9prHO3L8OjYPL1Zn3zaw/cchntSVJpRMslaFDFbadBstZymnKR5b7bSpJBxyaS8jj57GzFUSBPElmaYzHczVw2WJ92LYsOp2RrEU8zVAiYX61jjYKylEURU4wjjwEAuhec41Eiuyu8+0M///Q23XfbV+CsOFpmtNEnNVZPA3E36XBjHdNRR9OjYHPsH84z0ZZezor25FEOF1CXVsT2IX/nZvxzd7AtyUZvUQXSpg6ab7eG3PnuKv3hqkp60x3//7jt4Z+ummVeTHRVsGFi+Cp9YrLO/PzmgXco0uUvrffyJc3iOoRRYMmmPwFoaKYNxDK+7ZYQnzpUglcJmfU4vNAliy3B/nsx1g5zxPO5b5UrzI4+Nk9ozQjrjE5PcFCmsBxydqjO6NzmwHh4pcGymwnBvmkYQMTZXJwxjYpIe7TaGYt4lJhlpMJD3ecPLBhlfqK978lnNRgKQlV/woUKaWhhTyHnMVZsYDLmURzpl6Ul59GQ8xhfqXD+UX56Cu71j38oynz+7yEItYKQ3zXQpmd54fzHX8RXbUnPG0knm9GyFZ8+V6cv47C3m+Ml33MTv/P1xZstNXOPwxpuGOTCQZabSZHy+xmsPD2JI+lEsnZiBTT/Yte/H07OV5Rv43bKnwInpKp7r8U13jZ53Er+U9xYuHgRdankbuaPt0oni9HyN2VKDO/YVl2/gV6oH1Joh2ZRLpRFy76HiBfu9kzpv5DN83x17+LtnJ5NZgtMu1fGYIGpiY/A9l/6sR601yd0rDw5cVrZgNUcOFPnoV8aZKiWj5JrR0pBig+smI3eemSiT9pKZRsM46TDsOhABxsJCPaCYTXF4KMtbb9lNT8bflDou9XlKey4HBnM0gigZ5ZL1OTVT4YGnz23oPT82UWahHlCuhxSyPnftS4L0ro7wuATbMhIFOs5srNVp01rLg2MN/uvfv8BMpcl3vPIAP/21N617A7Yr1Y4KNpZMVxrMlJu4BQPGcOe+fjzX4Vw15OW+n9zJr9U3Ya3f4wt1/ub0JLN7Rik1LM3IMl4PWiMIYobyGQ68/CCveV2GJ8YX+MKxGSq+gzGGKJMhlc2s2ca7kQ95+3C5ahCT9qDajDEkHRod32At7OvPct1Qnv58in0D+U39oqx3glqqY60RkU+7uI6TTNOccgmipH9CI4jOawNdq8zkyvTg8tXyUsfFS2knX3kltFrzwvhCnVozOq8deFc94BUHi2umzLt1tbO0H13HkPGTrNS+YpabhgsUey7tanAnGS3m+ME3XL+css6nveXsULfbx1d+3sbnqsyUmjx+ZoEgjAgjy2A+TW/GJ5NKJtRLeRbPNfzCuy8/W7BafX7ojYf5/z7xPI+fXiCKLSnHEJLcjTUIY6pBTKWZTMXvAJmUB7ElthEYcIzh4FCOd92xF99zlps2N6Nur79hiL947AxxFCezsPakSLkusbWr3jJhpfG5Kidnq7hOcqPLehAvT/i3p3hps3J2a+jrtoxEgY4yG2sNL33qbIlffaDKH//NMe4+0M//eN+93L6vb/VCrhI7KtgIXZezmV4eCyO8Yh+Hrh9i0vc4EcTcuX8g6dB33cXHxC85+tU5CoUc+3dF9FQaLNSSmS4LGY/XXj/InmJ2+aQ00pcliOzygXS9tr+NfMjbh8udnKkAMFzIUmu+NOV3cm8GgzFweCi/NV+UNkt1/Hd/8yyNakzWN8ksocDhXVkyKZfXHB7c8AFho1fLGy1rvUBpq3uhr2W0mOPgQI6FesBCNaCQ9bllpLgjrwYvVbdS4ZdSjx960+HloHa+lnR8vmVvLz2t7+NcpUlPxutecHlokF/91jv5tQee4+iJOSrNiKwTE8fJTKxO6yI2ikiGilqwJumgHFnLQC7Fvv4svuds+mf2bbcO8+VT85yZr1HI+ufNCZJJues2MXzi6Ylk9uCpKr0Zn33FDMYYnj5X4hvu3HtJdepWc8e2HQPWyGyslcFoH146XW7wHz/2HH929BSD+TT/73vv5JtfMYrj7MxOnZtpRwUbtQg+MxEQZrLcONpHrjeZ3z92I545V+I1HcwIt5R9ODyU59FqwN7+LNcN5ZhabOA45rx23KNjyV1Jnz1XSkZtZHyGC6k1vwwb/ZAvtY3/2gPP8dDxWVzHcP3uAkM9Pmfm60yUmsTWctf+/q4ceDbiyKFB/uU7b17uMJjc6C5NM4wY7c9uanv3ZtopJ78lh4d7Lsi0lOrBlgaP3bbZTTmXU4+loPboiRl+49PHCCJLHMcs1MINz59xuXX4ibffxAcfPsknn52iHoRMtW5H4LoGQ3KPIizUgxDfc/GMQ943HBrMLd9GYLM/s0sXEL/wkacJW02Re/uzGMOqt0xoNz5X5bMvTLOrkOaWPQXG5+o8fTa5jcPBgc4nBlvSreaObTsGrJLZuNgEWf39/YRRzB89dJJfe+B5as2If/T66/ixt9644RvuXQ12VLCR8hwG8ikKfnKTsaUx3hbLdKnR0YlvKfsw0JPm7gP9HJuuLI+cWJm+e2GixKm5GrlUMq9DPYh5bqJMtbn6nB2dfMiXDkr/8ePPnZea9F2XVx0aoBLGhLGlvwsHno3qpMPgTrJTTn6wszIt15Ijhwb5kTfBRx4/y+m5Gnv6sx3Nn3E5lpoOzy7Weej4LJ7rJPdHshbHMeR8S6URElro9Rz2D2Q5crCfYv7CY9BmOnJokPce2cezEyXmK01mq03yKY9nzpW4afjCG3otOTo2x1AhjTGG3myK3myKWjMitpYbhi/9dvXdau5YOaz7cjpNd6SV2ViZyVhrgqyvnJrnX3z4cZ6bKPGGG4f4hXfdyg27L31/Xql2VLBRyPjctb+fxVqA05o3YaEW4LsOr7vhwnT+xT5s7Qf//nyKmz1neeTEynIWWjdOW2o7zaZc6kHEQn3t23Z3cqJbutr4w4fGmFxIAp4DwwUcx/DdXW7z3qjNbAK5Fu20TMu15MihwS0JLlbTfjHRPnfJbKVJLuVRyHjce12R63cXtvSkmAwlrrNQCxgtZpeHr06XmmvOdnpsokwQRjw3UV5uQnFdp+MLvZW6EYh3cwr09URBwNkXn+dH7ztCX+uGdH19hy/IajTDmP/8ya/yG59+geHeDL/5PUf42tuGd+w8GN22o4INSPouHB2boxnEvPGm3csfzJWT3az3Yevk4N+f8VmsNs+fLS+O6d/EFNeRQ4PLPeu3PBKXLbGTMi2yddr7Zy3NXXL7aN/y3CXvvWdzR8RstE67ChlmqgHjs1UmS0naf64a4Lnwz95+/qQB43NVnjm7wHzrwmuq3GCm3OCmkcKqF3qd1uW+2/fwwNPnzpt863Js27BXkkm9hvcd4qPHmhgzvXzn0/YgYmymyg//z6M8fXaR9xzZx79+1630XkNNJqvZccHGQE+am4Z7OLvYuGiQsJEP20YP/oeHe5JJu0qN5Q5+B4q9l9z7ei06GYlcnXZiU2RkLXt60zxxeoHerE8u5VBtRvz1ExO84cZd52WDHnj6HM3IEoTJHV4LaY/5ekA1iC5pVtPVBJHlVdcPLmc3LicTsW3DXmG5GWXpzqkrfeHYDD/yx0eJLfz29x7hHbdtzv670u24YKNUD3AdZ3leh7VMlxp4jkk6ddaSAOG6wRyVxtpNH2s5cqDI/Qt1bh4pnJfm26mdI0Vk59lpTZFDhTSfeHqCfNrDNTBZarBYbVKPLP/mr57mH33N9cvZ1YeOzdIMY6xNJkVLew69meRmepsRLG12JmLbhr3CeR1Ea5US/6StY+hffmWcn/yzxzg0lOd3vu8erhvKd78+V4gdFWwEUbzhHtquSebD78+n6Wt1unz4+Az3Xtd5263a20XkanPkQJH/+skXKGRcZmohQRRRbUakfZfjk2X+6yefp9aMKeZ9xmZrZH2XYj5FT9rDALtbszZvhs3ORIz2ZfjDh8aIo5jBQpo9vRkcx2xNh+y2oa+O99IQ2I89eY6f+LPHuOdgkd/5/nuu+WaTlXZUsDHUk97wPQwsFruio401Botd4xkXpyYOEbmajBZz3LGvj0dPzWFtcr8ga2Gm0iAM4cx8HWtjzszXcRxohMndlJtBRCHrc2K2yjfftTn3lNnMTMT4XJVHx+a5ZaSHicUGU+UG89WA793k2WLX1JbZSKfT/O5njvG2ssM//ZOnuGNfH7/3vldeVfc02SxX7B6JLbz6ugFenKmyUEvmxnj1dQMX3MlTRORa9Z337uex0/NkUy6LteR2DHGUTLTcCGIc1yRzqFuw1jBfCyhmfUwjZLg3s6Gb/W3E0oiUuUpjOUDwHIfvfXXn9/dub5I5MJgM5S3Vg0u+1UPHVkzqtbCwyM/+5XPs6cvygffdq0BjDVfsXhkqpKk1I155aGB52Wp38hQRuVYdOTTIN9yxh48+dpal67CU7xDGFhtb4tjiGnAcg+9AJuWS8hwKaY+33bJ70zIFo8Ucdx/oX276GGo1fTw6Nr/hG8Qt2dbOoXDBpF5PzrtMlgP+4Htvpi+nppO1XLHBhiZREhFZ33uO7OfJ8UVu2VPgyTOLTCw2gBiMwVpLyjNEscEaw1A+he867B/Mb9oolCXjC3Vee3jwgll2O+0kuq2dQwGMIdtTAAxztZDj87PcNOBy+95rb6KuTlz8XuY72FKnzmzKZXKxTjblbsmELiIiV5KlG7TlMz77i1lSnsEzDsaA5wAYPBdSbnI68D1n0++WC0lGIr+iiSGf9i46hfpqjhwocmqmyt9/dYpPPn2Ov//qFKdmqls2ejBoNvjOu4b4kTffQN26ZFMO/+277151qnJ5yRWb2QB16hQR2Yi33TpMM4q5a38/Rw4W+ZsnzzG5UCPCkHINac/hwGCeXYUM3/vqA12ZkXUpIxGEMcemK5TqyezQF5tCfW2tNqHlQQJb11fPdT36+/vxcwU++dws33z3Pg6P7t6y7V+pruhgQ0RE1tc+vL8n4/Ptr9yPwTBTabBQD+nP+Bwe7unqrMZHDhT54MMnOT5TpT/nk3KddadQX80nnp5gphoQhMmN5g4P5fE9Z0tmD00YFhYWePxkjVoQ8S2v2JwRO1c7BRsiIteA7c4Et0+hPlduUg0i8imPmWqTB54+t6EJ0Y6emOFDR0+Tcg29WZ8otjxabXLX/v5LmtDxUjiO4Xc/c4xaqp/ejMcrNPnjhlyxfTZEROTKElnLLSMFsimPfcUce/ozGAOfe2GG8bnqRZ87Plfljx4aI5dyyaU9ohjOzNewFp45V9rSDqLNZpMvn17klYcGcDdp4rOrnYINERHZEkOFNM+cK5FNuWRTLsYYDIahQpqjY3MXfe4nnp7g5GyVRhBxdqFOIwzxXYeJxfpl35m2I9YSBE3GZmvcsqd3a7Z5FVCwISIiW+LIgSLTpQbWWhZrTZ45s8jjp+cJwpgXJkprPm98rspnX5gm6zkUsj4DOZ+ZcpNKM6QeRJd9Z9qOGEPk54ksHN6te59slIINERHZEkvDcEv1gGfOJsHFrXsKWODkbG3NppRPPD2xPJfS2YU6xsCeviy+1505QS4mjiLecuseAIYLmXXWliUKNkREZMu87dZhXMdhtD+L7xlemKowNlNhtHf1ppSlrMZQT4pc2qMn7TFdbjJfa1JthF2ZE+TiDLPVpDPqlvUTuQpoNIqIiGyZ0WKOYtbnibkq1kIh49Gf8zlbauCt0pRydGyOoUIaxxiyaY/JxQaea0i7Du+4bbgrc4JcjI0j/vLRk4DHYD617vqSULAhIiJbKjZwcDBPMZ+iVA+YXGwwU24wU75wzo1jE2WCMOK5iTK9GZ99xQx7+jNMLTa2tPlkiXEc7jg0wlMLMxRzCjY2Ss0oIiKypfozPnEcc3KqzJdOzPLcuUXOLtQ4NVPlP378OY6emAGSJpRnzi4yNlfDAabKDR47tUClHm5tp9DzJPdEKWa9lyYwlXUpsyEiIlvq8HAPQRjxsdMT1IOIMIaM72EcaIYRf/jQGAD/64tjHJ8qEVrY1ZOmkPFZqDWpBdG2ZDUgmdTriXNVojBkfn6eYlGTem2Egg0REdlSRw4U+dQzk/SkPTK+SzOKCYKIIIx55OQcBjg+VcZay3BflmYYM1tp0pv1KWR8DGzfbKjGUG2GpBzL/Pw8/f39GKU41qVmFBER2VKjxRwHB3L051Is1gKwljC2lBsRtUZIqR5ybLLE8akyz0+UmSo38TyHjO9yaFf+grvHbilrqQUxuZTD737mGPPz89tXlyuIMhsiIrLlDg/3kE051JoRs9UmQRgTRJYgjrEW4hgiC7ENMdbi4DE2WyXru3zNy4a2seaGegjZlEez2cTarbvj7JVMmQ0REdlyRw4UcR2Hew720Qwjys2IyEa4xsEYg+cZPANhFGONYbERkfYdXOf/b+/uYuSs6jiOf//dt+52d9vpi7BuiwtKkApBaGMQEk1EE0QFrwwmGi5M9EIFjYnBS24MF8aoiTEh+AKRQAyS2ChBDZp4I0ZAhUIlEJTSWqSN1da2tvvy92KmphLBfZY9e/aZfj/JZmcm2Xl+OcnM/uY8Z54T1dZrAGQm8wkjscDC3KlqOdrGsiFJWnGnt72/eHoD26cmGRseZHRoiIGBNUyODJIZDAwGI4PBQARDa4IrtnW4eGqi6u612VufMTk+yui6CddrLJKnUSRJVZze9n7HeR1u27WbJ/YfYYRkgWAw5oHuhbxGhwfYOdNh58xGRocHqmaenZ0F4CM7tnLVBR02bNhQNU9bOLMhSapqujPGp979ZjZPDAPB3Nw868eGmBwd4tzJETaND/OWLeMcOTG7cru7vooNE93N12amNtHpdJzZWCRnNiRJ1e2Y2cRtH3obdz+yl38eP8Vswvz8PCfnk0un1zPVGWXHeZ2qp1AAFggC2DzuvihNWDYkSavCjplNnLt+lMf2HubQ0ZNsnhhZFQXjTPMLySCw0X1RGrFsSJJWjdPrOFaruYVky9gQQwOuQmjC0ZIkaZHm5tNTKEtg2ZAkaZHmFiwbS2HZkCRpkeYXko3jrtdoyrIhSdIiLWQyudbljk1ZNiRJWqT5TNYNWzaasmxIkrRImTDuzEZjlg1JkhoYr7nFfUtZNiRJamCdZaMxy4YkSQ2MDtXdDK6NLBuSJDXg3mvNWTYkSWpgjW2jMcuGJEkN2DWas2xIktRAd5N5NWHZkCSpgTV2jcYsG5IkNeBplOYsG5IkNRC2jcaKlo2IuDYinomI5yLi1pLHkiRpJVg1mitWNiJiAPgm8H5gO/DRiNhe6niSJP0/+w8fZ9cf9jNz609uXupzOLHRXMmZjXcAz2Xm85l5CrgPuKHg8SRJelX7Dx/nwScPcOLUPMCBpT7P8WPHli/UWaJk2ZgGXjzj/r7eY5IkrbjH9h5mcnSIibVDALnU53HNRnPVF4hGxCcj4tGIePTgwYO140iS+tShoyeXtInamf+n1q2Z45I3vaFAuv5WsmzsB7adcX9r77H/kpl3ZObOzNy5ZcuWgnEkSWezzRMjHDs51/jvzvw/dcHUJi7YMl4gXX8rWTZ+C1wYEedHxDBwI7Cr4PEkSXpVO87rcOTELEf/NQt+qWRFFSsbmTkHfAb4KbAH+EFmPlXqeJIkvZbpzhjXXTrF6PAAwFTtPGeT5ievGsjMB4EHSx5DkqTFmu6MMd0Z4/rLpr9RO8vZpPoCUUmS1N8sG5IkqSjLhiRJKsqyIUmSirJsSJKkoiwbkiSpKMuGJEkqyrIhSZKKsmxIkqSiLBuSJKkoy4YkSSrKsiFJkoqybEiSpKIsG5IkqajIzNoZ/iMiDgIv1M7RcpuBQ7VD9AnHcnk4jsvHsVw+azPzkqZ/FBEPZea1JQL1s1VVNvT6RcSjmbmzdo5+4FguD8dx+TiWy8exXFmeRpEkSUVZNiRJUlGWjf5zR+0AfcSxXB6O4/JxLJePY7mCXLMhSZKKcmZDkiQVZdnoExGxLSJ+GRFPR8RTEXFL7UxtFhEDEfG7iPhx7SxtFhEbIuL+iPhjROyJiHfWztRWEfH53mt7d0TcGxFra2dqi4j4TkS8HBG7z3hsY0T8PCKe7f3u1MzY7ywb/WMO+EJmbgeuBD4dEdsrZ2qzW4A9tUP0ga8DD2XmW4HLcEyXJCKmgZuBnb1rQwwAN9ZN1SrfA155bYxbgYcz80Lg4d59FWLZ6BOZeSAzH+/dPkr3TX26bqp2ioitwAeAO2tnabOIWA+8C/g2QGaeysy/Vw3VboPAaEQMAmPAXyrnaY3M/BXwt1c8fANwV+/2XcCHVzLT2cay0YciYga4HPhN5Sht9TXgi8BC5Rxtdz5wEPhu75TUnRGxrnaoNsrM/cBXgL3AAeAfmfmzuqla75zMPNC7/RJwTs0w/c6y0WciYhz4IfC5zDxSO0/bRMQHgZcz87HaWfrAIHAF8K3MvBw4hlPVS9JbT3AD3QL3RmBdRHysbqr+kd2vZfrVzIIsG30kIoboFo17MvOB2nla6mrg+oj4M3Af8J6I+H7dSK21D9iXmadn2O6nWz7U3HuBP2XmwcycBR4Arqqcqe3+GhFTAL3fL1fO09csG30iIoLuufE9mfnV2nnaKjO/lJlbM3OG7gK8X2SmnyCXIDNfAl6MiIt6D10DPF0xUpvtBa6MiLHea/0aXGz7eu0Cburdvgn4UcUsfc+y0T+uBj5O95P473s/19UOpbPeZ4F7IuIJ4O3Al+vGaafe7ND9wOPAk3Tfu70C5iJFxL3Ar4GLImJfRHwCuB14X0Q8S3fm6PaaGfudVxCVJElFObMhSZKKsmxIkqSiLBuSJKkoy4YkSSrKsiFJkoqybEiSpKIsG1KfiC5f05JWHd+YpBaLiJmIeCYi7gZ2A9tqZ5KkV/KiXlKL9Xb4fR64KjMfqRxHkv4nZzak9nvBoiFpNbNsSO13rHYASXotlg1JklSUZUOSJBXlAlFJklSUMxuSJKkoy4YkSSrKsiFJkoqybEiSpKIsG5IkqSjLhiRJKsqyIUmSirJsSJKkov4NU3irluKNkFAAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 576x576 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "prueba = sns.jointplot(x=\"r\",y=\"g(r)\",data=df,kind=\"reg\",line_kws={\"color\":\"red\"},scatter_kws={\"alpha\":0.33})\n", + "\n", + "print(\"\")\n", + "\n", + "print(\"\")\n", + "\n", + "prueba.fig.set_size_inches(8,8)\n", + "\n", + "prueba.fig.suptitle(\"Distancia vs Probabilidad de encontrar las partÃculas\",fontsize=16, weight=\"bold\",y=1.05)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/codigo/previsualizacion_dataset.ipynb b/codigo/previsualizacion_dataset.ipynb new file mode 100644 index 0000000..dcae0cd --- /dev/null +++ b/codigo/previsualizacion_dataset.ipynb @@ -0,0 +1,2564 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "import seaborn as sns\n", + "import matplotlib.pyplot as plt\n", + "from seaborn import lmplot" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>t</th>\n", + " <th>vacf</th>\n", + " <th>vacf_2</th>\n", + " <th>vacf_3</th>\n", + " <th>vacf_4</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>0.00</td>\n", + " <td>0.893155</td>\n", + " <td>0.000000</td>\n", + " <td>0.005954</td>\n", + " <td>0.894384</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>0.01</td>\n", + " <td>0.867854</td>\n", + " <td>0.000177</td>\n", + " <td>0.011740</td>\n", + " <td>0.874035</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>0.02</td>\n", + " <td>0.821965</td>\n", + " <td>0.000701</td>\n", + " <td>0.017220</td>\n", + " <td>0.832205</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>0.03</td>\n", + " <td>0.758831</td>\n", + " <td>0.001553</td>\n", + " <td>0.022279</td>\n", + " <td>0.773162</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>0.04</td>\n", + " <td>0.682706</td>\n", + " <td>0.002707</td>\n", + " <td>0.026830</td>\n", + " <td>0.700901</td>\n", + " </tr>\n", + " <tr>\n", + " <th>...</th>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " </tr>\n", + " <tr>\n", + " <th>194</th>\n", + " <td>1.94</td>\n", + " <td>-0.000913</td>\n", + " <td>0.424637</td>\n", + " <td>0.039358</td>\n", + " <td>0.004982</td>\n", + " </tr>\n", + " <tr>\n", + " <th>195</th>\n", + " <td>1.95</td>\n", + " <td>-0.000803</td>\n", + " <td>0.426829</td>\n", + " <td>0.039352</td>\n", + " <td>0.004958</td>\n", + " </tr>\n", + " <tr>\n", + " <th>196</th>\n", + " <td>1.96</td>\n", + " <td>-0.000885</td>\n", + " <td>0.429018</td>\n", + " <td>0.039346</td>\n", + " <td>0.004928</td>\n", + " </tr>\n", + " <tr>\n", + " <th>197</th>\n", + " <td>1.97</td>\n", + " <td>-0.000768</td>\n", + " <td>0.431205</td>\n", + " <td>0.039341</td>\n", + " <td>0.004659</td>\n", + " </tr>\n", + " <tr>\n", + " <th>198</th>\n", + " <td>1.98</td>\n", + " <td>-0.000709</td>\n", + " <td>0.433389</td>\n", + " <td>0.039336</td>\n", + " <td>0.004458</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "<p>199 rows × 5 columns</p>\n", + "</div>" + ], + "text/plain": [ + " t vacf vacf_2 vacf_3 vacf_4\n", + "0 0.00 0.893155 0.000000 0.005954 0.894384\n", + "1 0.01 0.867854 0.000177 0.011740 0.874035\n", + "2 0.02 0.821965 0.000701 0.017220 0.832205\n", + "3 0.03 0.758831 0.001553 0.022279 0.773162\n", + "4 0.04 0.682706 0.002707 0.026830 0.700901\n", + ".. ... ... ... ... ...\n", + "194 1.94 -0.000913 0.424637 0.039358 0.004982\n", + "195 1.95 -0.000803 0.426829 0.039352 0.004958\n", + "196 1.96 -0.000885 0.429018 0.039346 0.004928\n", + "197 1.97 -0.000768 0.431205 0.039341 0.004659\n", + "198 1.98 -0.000709 0.433389 0.039336 0.004458\n", + "\n", + "[199 rows x 5 columns]" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#carguemos el dataframe\n", + "\n", + "file = '/home/student/ejercicios-clase-08-datos/data-used/VACF_liso_Hr-10-500.csv'\n", + "df = pd.read_csv(file)\n", + "df" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>t</th>\n", + " <th>vacf</th>\n", + " <th>vacf_2</th>\n", + " <th>vacf_3</th>\n", + " <th>vacf_4</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>0.00</td>\n", + " <td>0.893155</td>\n", + " <td>0.000000</td>\n", + " <td>0.005954</td>\n", + " <td>0.894384</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>0.01</td>\n", + " <td>0.867854</td>\n", + " <td>0.000177</td>\n", + " <td>0.011740</td>\n", + " <td>0.874035</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>0.02</td>\n", + " <td>0.821965</td>\n", + " <td>0.000701</td>\n", + " <td>0.017220</td>\n", + " <td>0.832205</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>0.03</td>\n", + " <td>0.758831</td>\n", + " <td>0.001553</td>\n", + " <td>0.022279</td>\n", + " <td>0.773162</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>0.04</td>\n", + " <td>0.682706</td>\n", + " <td>0.002707</td>\n", + " <td>0.026830</td>\n", + " <td>0.700901</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + " t vacf vacf_2 vacf_3 vacf_4\n", + "0 0.00 0.893155 0.000000 0.005954 0.894384\n", + "1 0.01 0.867854 0.000177 0.011740 0.874035\n", + "2 0.02 0.821965 0.000701 0.017220 0.832205\n", + "3 0.03 0.758831 0.001553 0.022279 0.773162\n", + "4 0.04 0.682706 0.002707 0.026830 0.700901" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#visualicemos la data de forma general, solo los 5 primeros elementos y los nombres de las columnas\n", + "\n", + "df.head(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1.- Una vez que tenemos el archivo de nuestros datos disponibles, visualicemos y exploremos la composición de la data que tenemos" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(199, 5)\n" + ] + } + ], + "source": [ + "#tengo manera de saber cuanto registros tengo?\n", + "\n", + "print(df.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "- Puede ocurrir que al pre-visualizar los datos, alguna columna tenga valores en `NaN`, este valor\n", + " se traduce en python como un `None` y en humano como un valor nulo. Asà que serÃa de gran utilidad saber que registros por columna tienen los datos con valores nulos para poder limpiarlos o interpretarlos, ya sea el caso.\n", + " Una manera de realizar esta exploración es usando el método `count` (aunque para nuestra data, no se cuenta ningún `NaN`)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "<bound method DataFrame.count of t vacf vacf_2 vacf_3 vacf_4\n", + "0 0.00 0.893155 0.000000 0.005954 0.894384\n", + "1 0.01 0.867854 0.000177 0.011740 0.874035\n", + "2 0.02 0.821965 0.000701 0.017220 0.832205\n", + "3 0.03 0.758831 0.001553 0.022279 0.773162\n", + "4 0.04 0.682706 0.002707 0.026830 0.700901\n", + ".. ... ... ... ... ...\n", + "194 1.94 -0.000913 0.424637 0.039358 0.004982\n", + "195 1.95 -0.000803 0.426829 0.039352 0.004958\n", + "196 1.96 -0.000885 0.429018 0.039346 0.004928\n", + "197 1.97 -0.000768 0.431205 0.039341 0.004659\n", + "198 1.98 -0.000709 0.433389 0.039336 0.004458\n", + "\n", + "[199 rows x 5 columns]>\n" + ] + } + ], + "source": [ + "#En la previsualizacion de los datos, revisemos la presencia de algún valor NaN\n", + "\n", + "print(df.count)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Otra forma de saber la cuenta de valores nulos, es contarlos por columna, ya que con el `data.count()` lo que estoy obteniendo en realidad es la cuenta de datos no-nulos y esto lo conseguimos iterando sobre la lista de columnas preguntando a cada uno por el método `isnull()` y obteniendo la suma con `sum()`. En la siguiente celda pordemos ver la salida de este procedimiento:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "valores nulos en <t>: <bound method Series.sum of 0 False\n", + "1 False\n", + "2 False\n", + "3 False\n", + "4 False\n", + " ... \n", + "194 False\n", + "195 False\n", + "196 False\n", + "197 False\n", + "198 False\n", + "Name: t, Length: 199, dtype: bool>\n", + "valores nulos en <vacf>: <bound method Series.sum of 0 False\n", + "1 False\n", + "2 False\n", + "3 False\n", + "4 False\n", + " ... \n", + "194 False\n", + "195 False\n", + "196 False\n", + "197 False\n", + "198 False\n", + "Name: vacf, Length: 199, dtype: bool>\n", + "valores nulos en <vacf_2>: <bound method Series.sum of 0 False\n", + "1 False\n", + "2 False\n", + "3 False\n", + "4 False\n", + " ... \n", + "194 False\n", + "195 False\n", + "196 False\n", + "197 False\n", + "198 False\n", + "Name: vacf_2, Length: 199, dtype: bool>\n", + "valores nulos en <vacf_3>: <bound method Series.sum of 0 False\n", + "1 False\n", + "2 False\n", + "3 False\n", + "4 False\n", + " ... \n", + "194 False\n", + "195 False\n", + "196 False\n", + "197 False\n", + "198 False\n", + "Name: vacf_3, Length: 199, dtype: bool>\n", + "valores nulos en <vacf_4>: <bound method Series.sum of 0 False\n", + "1 False\n", + "2 False\n", + "3 False\n", + "4 False\n", + " ... \n", + "194 False\n", + "195 False\n", + "196 False\n", + "197 False\n", + "198 False\n", + "Name: vacf_4, Length: 199, dtype: bool>\n" + ] + } + ], + "source": [ + "col_names = df.columns.tolist()\n", + "for column in col_names:\n", + " print(\"valores nulos en <{0}>: {1}\".format(column,df[column].isnull().sum))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "- Exploremos los datos visualizandolos por columnas, lo cual podemos hacerlo con `.columns`" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Index(['t', 'vacf', 'vacf_2', 'vacf_3', 'vacf_4'], dtype='object')" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#visualicemos solo las columnas\n", + "\n", + "df.columns" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Este método nos sirve para visualizar alguna columna en especial, por ejemplo, si quiero explorar la segunda columna de nuestra data, obtendremos la numeración del registro por fila en la primera columna y los valores correspondientes para la *VACF*" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 0.893155\n", + "1 0.867854\n", + "2 0.821965\n", + "3 0.758831\n", + "4 0.682706\n", + "Name: vacf, dtype: float64" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Me interesa visualizar una columna en especial, la vacf(t)\n", + "\n", + "columna = df[\"vacf\"]\n", + "columna.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2- Ahora intentemos explorar detalles de nuestros datos: \n", + "\n", + "Aquà se muestra el poder de python para el análisis de datos!... Observe la facilidad de obtener información de los principales indicadores estadÃsticos sobre nuestro dataset en una sola lÃnea con el método `.describe`" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "<bound method NDFrame.describe of t vacf vacf_2 vacf_3 vacf_4\n", + "0 0.00 0.893155 0.000000 0.005954 0.894384\n", + "1 0.01 0.867854 0.000177 0.011740 0.874035\n", + "2 0.02 0.821965 0.000701 0.017220 0.832205\n", + "3 0.03 0.758831 0.001553 0.022279 0.773162\n", + "4 0.04 0.682706 0.002707 0.026830 0.700901\n", + ".. ... ... ... ... ...\n", + "194 1.94 -0.000913 0.424637 0.039358 0.004982\n", + "195 1.95 -0.000803 0.426829 0.039352 0.004958\n", + "196 1.96 -0.000885 0.429018 0.039346 0.004928\n", + "197 1.97 -0.000768 0.431205 0.039341 0.004659\n", + "198 1.98 -0.000709 0.433389 0.039336 0.004458\n", + "\n", + "[199 rows x 5 columns]>" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# inspeccionemos a mayor profundidad nuestra data: podemos obtener información de los principales indicadores\n", + "# estadÃsticos sobre la data set\n", + "\n", + "df.describe" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Para explorar las caracterÃsticas principales de nuestros datos de manera detallada, usamos el método `.info()` o viendo los tipos de valores de los que disponemos usando `dtypes` combinada con un operador lógico. Estos dos procedimientos nos describen los tipos de objetos que tenemos en nuestra dataset y tener una visión más clara del procesamiento que podemos realizar a la misma." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "<class 'pandas.core.frame.DataFrame'>\n", + "RangeIndex: 199 entries, 0 to 198\n", + "Data columns (total 5 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 t 199 non-null float64\n", + " 1 vacf 199 non-null float64\n", + " 2 vacf_2 199 non-null float64\n", + " 3 vacf_3 199 non-null float64\n", + " 4 vacf_4 199 non-null float64\n", + "dtypes: float64(5)\n", + "memory usage: 7.9 KB\n" + ] + } + ], + "source": [ + "df.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "t True\n", + "vacf True\n", + "vacf_2 True\n", + "vacf_3 True\n", + "vacf_4 True\n", + "dtype: bool" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# columnas numericas y columnas de texto\n", + "df.dtypes == float" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "t False\n", + "vacf False\n", + "vacf_2 False\n", + "vacf_3 False\n", + "vacf_4 False\n", + "dtype: bool" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.dtypes == object" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "De hecho, podemos explorar cuantos valores nulos tenemos por cada una de las variables (columnas)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "t 0\n", + "vacf 0\n", + "vacf_2 0\n", + "vacf_3 0\n", + "vacf_4 0\n", + "dtype: int64" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# veamos cuantos valores nulos hay por cada variable\n", + "\n", + "df.isnull().sum()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3- Busquemos relaciones entre nuestras variables:\n", + "\n", + "En esta sección del proyecto, mostramos cómo configurar y ejecutar *gráficos de pares* en Python utilizando la biblioteca de visualización `seaborn`. Siendo más especÃfico, se muestra cómo crear un gráfico de pares predeterminado para examinar nuestros datos y cómo personalizar la visualización para obtener información más profunda. Gracias a este curso he conocido esta manera de trabajar con los datos:\n", + "\n", + "Estoy sorprendido que una simple lÃnea de código nos proporcione toda esta información!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "- El diagrama de pares se basa en dos figuras básicas, el histograma y el diagrama de dispersión. El histograma en la diagonal nos permite ver la distribución de una sola variable, mientras que los diagramas de dispersión en los triángulos superior e inferior muestran la relación (o falta de ella) entre dos variables. Por ejemplo, el gráfico más a la izquierda en la segunda fila muestra el gráfico de dispersión de *VACF* versus tiempo." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "<seaborn.axisgrid.PairGrid at 0x7f538e3454a8>" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3YAAAN2CAYAAAC1rRuNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAADWAElEQVR4nOz9e3xc133fe3/WngsGV+IOUiBBEhIlUpRpWiYlW5bs1HJYxo9iuXEiMUlzqX2quo0j98jxK2nruqmT0yfuRefYiZ/jyolay6/UkhKnjpwotms7jSNTjknJlCJSEu8EwQtAgLgDw7ns9fwxmOEAHAADYDB775nv+/WCBMz1R2DN+s1v9m+vZay1iIiIiIiISHA5XgcgIiIiIiIiq6PCTkREREREJOBU2ImIiIiIiAScCjsREREREZGAU2EnIiIiIiIScCrsREREREREAq6iCrv9+/dbQF/6KvdXUTQ+9eXBV1E0NvXl0VdRND715dFXUTQ+9eXB14IqqrAbGhryOgSRBWl8il9pbIqfaXyKn2l8ip94UtgZYzYZY/7aGHPMGHPUGPPxArcxxpjPG2NOGmNeNcbc6UWsIiIiIiIifhf26HlTwCestS8bYxqBl4wx/8taeyzvNj8FbJv9uhv4f2f/LyIiIiIiInk8KeystZeAS7PfTxhjXge6gfzC7kHgKWutBX5ojGk2xmyYva9IRXNdy9nhKQbG43Q1xdjSVo/jGK/DEhEpiuYwKaWgjaegxSuVw6sjdjnGmC3A24C/m3dVN3A+7+f+2ctU2ElFc13LN49e5rFnjxBPusQiDo8/tJv9O9crMYiI76VSLn/52iV+82uvag6TVQtaTgxavFJZPF08xRjTAHwN+JfW2vEVPsYjxpjDxpjDV65cKW2AIqu0kvF5ZmgqlxAA4kmXx549wpmhqbUMVaqM5k5ZC4lEmhdODeWKOrg+h50dLn4O0/iULD/mxMXGpx/jlerhWWFnjImQKer+2Fr7ZwVucgHYlPfzxtnL5rDWPmGt3WOt3dPR0bE2wYqs0ErG57nhqVxCyIonXc4t402RyFI0d0qpJRJpXjg9xMt9IwXnsMGJeNGPpfEpWX7MiYuNTz/GK9XDq1UxDfBHwOvW2scXuNlzwC/Pro75DmBM59dJNagJO8Qic1+asYhDNFxRu5OISAVJpVwO941w5PworqXgHNbZGPMoOgmyoOXEoMUrlcWrUfYu4JeA9xpjjsx+vd8Y81FjzEdnb/M8cBo4CXwJ+BcexSpSViEHPn7/tlxiiEUcPn7/NkLKCSLiQ6mUyw9ODXF+ZBrXwjdeucCj7507h332Q7vY0lbvcaQSREHLiUGLVyqLV6tivgAsegbp7GqYv1aeiET8IxxyqI+GeOTdvbgWHAP10RARZQUR8ZlUyuXFM8O81DfCts5GvvHKBR7e08Mzh/v4yL29hBy4s6eFe29u18IRsiJBy4lBi1cqi0aZiM8YoLE2MueyxtrI4p+EiIiUWSrl8sKpIS6OzuBa+PLB03z03bfwzOE+HtjVTciB3ZuauWdrG2G1ockKBS0nBi1eqSyeb3cgInMl0y7JVJpbOxuZSqSoj4aZTiRJpN2l7ywiUgbZ9suX5x2p+9rLfXxi33biiRTdLXXs7WkhGg15Ha4EWNByYtDilcqiwk7EZ8Ihh3jSpX90ItfG0V4fVRuHiPhCfvula+HS6DQH9vbw9KHMkbqTgxPsWN/ExpaYijpZtaDlxKDFK5VFo0zEZ9TGISJ+ld2nLtt++Y1XLlATDlEfDfHg7m7M7EQVCRs2tWixFFm9oOXEoMUrlUVH7ER8Rm0cIuJH2X3qjpwfndN++eTBMxzY28OtnY04juHWzgZ6Oxq0WIqURNByYtDilcqiwk7EZxZq4wirjUNEPDJ/n7r57ZczyTQhx3D7TY1sbmvwOlypIEHLiUGLVyqLRpmI79iCbRxgvQlHRKpaoX3q1H4p5RO0nBi0eKWS6IidiO+Ygm0cRh36IlJmC+1Tp/ZLKZ+g5cSgxSuVRIWdiM8YIBIOcXzwehvH1vZ6pQQRKavsPnUD4/E5+9R98fsnc+2XdTUh7u1t1+qXsmaClhODFq9UFhV2Ij6jE69FxGvap078Img5MWjxSmVRYSfiM4udeO26Vq1OIrKmtE+d+EnQ9oULWrxSWTTKRHzGcQrvgTN1LcWZoSmPohKRauC6loOnh7VPnfhG0PaFC1q8Ull0xE7EZ6xb+MTr1y/FsRZu7tRS4iJSeq5ree3iKIfPXdVCKeIbQWttDFq8UllU2In4TGt9lHNXnTknXrfVRXn6UB//4R+9xevwRKQCpVIu33ljgFTaap868ZWgtTYGLV6pLBplIj5UXxNhx/omHANpF548eIZfvHsz4ZA+IReR0sq2Xx67NA5G7ZfiL0FrbQxavFJZdMROxGfODE0RDRtcl0wrx7UUB/b2EAs7hI0+ixGR0slvv3Qt9I9kjtTlt19ioKe1ljtualb7pZRd0FobgxavVBYVdiI+E4s4vHZhjFgkxNBUItfKUR8N0dYQ9To8EakQ89svQwa++qM+PnzPVh7c3c1UIs3xwQlu39Ckok48E7TWxqDFK5VFo0zEZ0KOIRa5cQnxtoYaelrVBiUiq1eo/bK1Lpo7Wpd2M29I92xu5X3bu1TUiWeC1toYtHilsuiInYjPWGsBiCfTbOtsZCaRoqUuSnN9WG+uRGTVlmq//OS+7Wq/FN8IWmtj0OKVyqLCTsRnwrPtGpOJNG8OTOCYTJHXUt/kcWQiEnSua/nemwPEE67aLyUQgtbaGLR4pbJolIn4jNo4RGStnL4yyav9Y2q/lMAIWk4MWrxSWXTETsRn1MYhIqXmupbzI1McH5xU+6UEStByYtDilcqiwk7EZ9TGISKllG2/TKYsrrVqv5RACVpODFq8Ulk0ykR8Rm0cIlIq2YVSXu0f4/XL4/SPTNNWf2P75dt7WtR+Kb4UtJwYtHilsuiInYjPqI1DREph/kIpcP1IXcjAb+zbzkwixYbmWt65tY1wWJ/1iv8ELScGLV6pLCrsRHxmoTaOsNo4RGQZsgul3NrVSMjA149c4OE9mSN1D+zqZnJwgjt7WlTUia8FLScGLV6pLBplIr5jC7ZxgPUmHBEJFNe1nBuenLNQSrb98pnDfTywq5uQk2m/vPfmdhV14nNBy4lBi1cqiY7YifiOKdjGYdShLyJLWGyhFLVfSjAFLScGLV6pJJ4UdsaYJ4EHgEFr7R0Frv8J4M+BM7MX/Zm19jNlC1DEQwaIhEMcH7zexrG1vV4pQUSWlNunDqiLhuYslJJtv3y72i8lQIKWE4MWr1QWr47Y/XfgD4CnFrnN31prHyhPOCL+oROvRWS55u9TBzpSJ5UhaDkxaPFKZfGksLPWft8Ys8WL5xbxO+2BIyLLUaj9UgulSKUIWk4MWrxSWfw8yt5pjHnFGPNXxpidXgcjUi7aA0dEliPbfjl/nzotlCKVIGg5MWjxSmXx6+IpLwObrbWTxpj3A18HthW6oTHmEeARgJ6enrIFKFKMlYxPtXFIOWjurAyJRLoi2y81PiXLjzlxsfHpx3ilevhylrfWjltrJ2e/fx6IGGPaF7jtE9baPdbaPR0dHWWNU2QpKxmf2TaO44MTnB+Z4fjgBPGkqzYOKSnNncGXSKR54fRQrv3yG69cb78ci6c5MThBZ1MscEUdaHzKdX7MiYuNTz/GK9XDl6PMGLPeGGNmv7+LTJzD3kYlUh5q4xCRpaRSLof7RjhyflTtl1LRgpYTgxavVBavtjv4KvATQLsxph/4d0AEwFr7ReBngX9ujEkBM8ABa612dpSqoDYOEVlMIpHm4JlhBsbjuLZy2i9FCglaTgxavFJZvFoV8+eXuP4PyGyHIFJ1tKKWiCwk23555Pwo2zob57RfavVLqURBy4lBi1cqi0aZiM+ojUNECslvv3QtfPngaT767lvmtF/u3tTMPSrqpIIELScGLV6pLH5dFVOkaqmNQ0TmS6VcfnBqiMuz7ZfZI3Vfe7mPT+zbTjyRYmNLHXt6WohGQ16HK1IyQcuJQYtXKosKOxGfURuHiORLpVxePDPMS30jc9ovs0fqTs62X961pVVH6qTiBC0nBi1eqSwaZSI+ozYOEclKpVxeODXExdEZtV9KVQpaTgxavFJZdMROxGfUxiEicL398uV5R+ry2y+7W+rYq/ZLqWBBy4lBi1cqiwo7EZ9RG4eI5LdfuhYujU5zYG8PTx+63n65Y30TG1tiKuqkogUtJwYtXqksGmUiPqM2DpHqlkik57RffuOVC9SEQ9RHQzy4uxszOxlEwoZNLfXeBiuyxoKWE4MWr1QWHbET8Rm1cYhUr8X2qTuwt4dbOxtxHMOtnQ30djTgOHq7KJUtaDkxaPFKZVFhJ+IzC7VxhNXGIVLR5u9TN7/9ciaZJuQYbr+pkc1tDV6HK1IWQcuJQYtXKotGmYjv2IJtHGC9CUdE1lx2oZTzI9NqvxSZI2g5MWjxSiXRETsR3zEF2ziMOvRFKtJC+9Sp/VIEgpcTgxavVBIVdiI+Y4BIOMTxwettHFvb65USRCpQdp+6gfH4nH3qvvj9k7n2y7qaEPf2tmv1S6lKQcuJQYtXKosKOxGf0YnXItVB+9SJLC1oOTFo8UplUWEn4jPaA0ek8mmfOpHiBC0nBi1eqSwaZSI+oz1wRCpbtv1S+9SJLC1oOTFo8Upl0RE7EZ9RG4dI5Vqo/VILpYgUFrScuFi8rmv1mpY1pcJOxGfUxiFSmZZqv9Q+dSI3ClpOjIZDBeMFOH1lklu6Gj2OUCqZP18VIlVMbRwilcd1LQdPD6v9UmSZgpYT2xqiBeM9MTDJmaEpj6KSaqHCTsRn8ts4NrXUcmtnI8lUOtfGISLB4rqW1y6OcvjcVeqi4Tntl1OJzGv99g1NfGDXTbz3ti61aonkWSwn+tGmlnrqa8Jz402m+aMfnKEmorfdsrbUiiniM2rjEKkcqZTLd94YIJW2ar8UWYGgtWI6jqGzIcqlsWtcGJ0h7cJfvHqBA3t7qNMKt7LG/PmqEKliauMQqQzZ9stjl8bBqP1SZCWC1ooJkHYt8VQaAGPgwd3drF8X83XMUhlU2In4jNo4RIIvv/3StdA/kjlSl99+uX19I+/b0an2S5FFBK0VE4IZs1QGtWKK+IzaOESCbX77ZcjAV3/Ux4fv2cqDu7uZSqQ5PjjB7RuauOOmZhV1IosIWismBDNmqQwaYSI+47qWlNo4RAIpu09dfvtla100d7Qu7Wbe5O3Z3Mr7tutInchSgtiKGcSYpTLoiJ2Iz5y+MslMIl1wg9OkVsUU8a35+9Tlt18e2NvDJ/dtBwM9rbU6UidSpKBtUA7BjFkqgwo7EZ85MzSFCwXbOBpq9JIV8aPsQimXxmbUfilSQgu1NYZ93NYYxJilMmiEifhMLOLwpe+fpDE2t42juT7K9q4mj6ISkYUU2qdO7ZcipWILtjWCnztYghizVAJ9/C/iM7XREPfvWM8f/91ZfvmeXuKJFBvW1dJcFyYc1mcxIn6y0D51ar8UKRVTsK3R+PqMtSDGLJXAk3eJxpgnjTGDxpjXFrjeGGM+b4w5aYx51RhzZ7ljFPGKAdavi3HPLR0cH5igf3SGoalrJFLqzRfxk6X2qcu2X8Yijoo6kRUyQCQc4vjgBOdHZjg+OEEkHPJ1iRTEmKUyeHXE7r8DfwA8tcD1PwVsm/26G/h/Z/8vUvF00rWI/y22T92BvT3c2tmoI3UiJRDEnBjEmKUyeFLYWWu/b4zZsshNHgSestZa4IfGmGZjzAZr7aXyRCjiHe1/I+Jv2qdOpHyCmBODGLNUBr+OsG7gfN7P/bOXiVQ87X8j4l+F2i+1UIrI2gliTgxizFIZVlXYGWM+W8xla8kY84gx5rAx5vCVK1fK+dQiS1rJ+Mxv4djUUsutnY0kU2m1cEhJae5cvsXaLwE+uW87OzY08r4dndx7S7sWO1oFjU/J8mNOXGp8+jFmqQ6rzTo/WeCyn1rlYwJcADbl/bxx9rIbWGufsNbusdbu6ejoKMFTi5TOSsZntoUj/6TreNJVC4eUlObO5XFdy/feHKBveO4+dXWRuQulhB2j9ssS0PiULD/mxKXGpx9jluqwohFmjPnnxpi/B26bXbUy+3UGeLUEcT0H/PLs6pjvAMZ0fp1UC7VwiPjP6SuTvNo/pvZLkTILYk4MYsxSGVa6eMr/AP4K+P8Cv5V3+YS19upSdzbGfBX4CaDdGNMP/DsgAmCt/SLwPPB+4CQwDfyTFcYpEjhaTUvEP1zXcn5kiuODkwVXv9Q+dSJrK4g5MYgxS2VYUWFnrR0DxoCfX+H9F73f7GqYv7aSxxYJOq2mJeIP2fbLZMriWqvVL0U8EMScGMSYpTJohIn4jFo4RPwh2375+uVx+kemaau/sf3y7T0tar8UWUNBzIlBjFkqg1cblIvIAtTCIeK9RCKda7+E60fqQgZ+Y992ZhIpNjTX8s6tbVr9UmQNBTEnBjFmqQwq7ER8Ri0cIt5KJNK8cHoo13759SMXeHhP5kjdA7u6mRyc4M6eFhV1ImUQxJwYxJilMmiEifiMWjhEvJNKuRzuG+HI+dE57ZfPHO7jgV3dhJxM++W9N2ufOpFyWCgnQuY8WD9SHhev6IidiM+ohUPEG4lEmoNnhhkYj+NatV+K+EHStQVz4kwizZmhKW7ubPA6xBsoj4tXVNiJ+IxaOETKL9t+eeT8KNs6G/nGK2q/FPGDhppwwZw4nXQ5N+zPwk55XLyiESbiM2rhECkf17WcG57k0Gz7pWvhywdP89F33zKn/XL3pmbuUVEnUnbbu5poro/OuawxFuFL3z9J1KevR+Vx8YqO2In4jFo4RMojf5+68XgS15I7Uve1l/v4xL7txBMpNrbUsaenhWg05HXIIlUnHHboaYnRUhvl0tgMsWiYpw6e5v4d6/HrATDlcfGKCjsRn1mohSPs1wwmElDZfeqAOe2X2SN1J2fbL+/a0qojdSIeSrlwZmiSoakEroV7bumgPhrybV5UHhevaISJ+I5dYAUwf67+JRI02fbL7D51ar8U8bug5cWgxSuVQkfsRHzHFGzhMOrOF1m1/PbL+fvUqf1SxK+ClheDFq9UChV2Ij5jgEg4xPHB6y0cW9vrlQ5ESiC//bIuGsrtU/f0oevtl29X+6WIrwQtLwYtXqkcKuxEfEYnXYusjUQinWu/BO1TJxIUQcuLQYtXKocKOxGf0f43IqWX3adufvul9qkT8b+g5cWgxSuVQyNMxGe0/41IaaVSLodn96nrH5nOtV/mL5Ty9p4W7r25XUWdiA8FLS8GLV6pHDpiJ+IzauEQKZ1EIs3BM8MMjMdxrdovRYJosbzouhbH8VfJpDwuXlFhJ+IzauEQKY1s++WR86Nz9qlT+6VIsETDoYJ5ETILIt3S1ehxhHMpj4tXNMJEfEYtHCKrl99+qX3qRIKtrSFaMC+eGJjkzNCUR1EtTHlcvKIjdiI+oxYOkdWZ336ZPVKnfepEgmlTSz1vDkzOzYvXkvzRD87wOw/e4XV4N1AeF6+osBPxGbVwiKzcQu2X2SN1J2fbL7VPnUhwOI6hsyHKpbFrXBidIe3CX7x6gQN7e6jz4YczyuPiFY0wEZ9RC4fIyqj9UqRypV1LPJUGwBh4cHc369fFfJkblcfFKzpiJ+IzauEQWb5UyuUHp4a4rPZLkYoUpNwYpFilsqiwE/EZtXCILE8q5fLimWFe6htR+6VIhQpSbgxSrFJZNMJEfEYtHCLFSyTSvHBqiIujM2q/FKlgQcqNQYpVKouO2In4jFo4RIqz0EIp+e2X3S117FX7pUjgBWmTcuVx8YoKOxGfWaiFI6wWDpGc+QulXBqd5sDeHp4+dL39csf6Jja2xFTUiVSAhXKj4xjODE1xc2eD1yHmKI+LVzTCRHzHFmzhAOtNOCI+k22/PD8ynVsopSYcoj4a4sHd3ZjZD+4jYcOmlnpvgxWRkog4TsHcOJ1I03fVb5uUK4+LN3TETsRHXNdiMQVbOIy680UWbL988uAZDuzt4dbORhzHcGtnA70dDb5qzxKRlVtXFyE5cGNuPHE5zs7udV6HN4/yuHjDsyN2xpj9xpg3jTEnjTG/VeD6XzXGXDHGHJn9+j+8iFOknM4MTZFOu0TCIY4PTnB+ZIbjgxNEwqHcUQiRarXUPnUzyTR1NSHed1snt3Q1qqgTqSA9rfXU10Tm5MZ40iUWCRH22WvdQOE87nVgUvE8OWJnjAkBXwB+EugHDhljnrPWHpt302estR8re4AiHjk3PEXStQU/6cMqJUj1SiTSHDwzzID2qROpSo5j6GqKEg2tY2Q6QW00zKXRaWKREK71V4ujFk8Rr3jVinkXcNJaexrAGPM08CAwv7ATqSqxiMPJC2PEIqEbTrpua4h6HZ6IJxZqv9Q+dSLVxnBpbIahqUQuP8YiIcIhh1TK9c3rX/vYiVe8GmHdwPm8n/tnL5vvQ8aYV40xf2qM2bSqJ9zUgzFmxV/dm3pW8/Srpvi9jb9cQo4hFrnxaENbQw09rVoEQqrPUu2X2qdOpHostIDK1LUURy+OeRTVjbSPnXjFz4unfAP4qrX2mjHmnwFfBt47/0bGmEeARwB6ehZ+83+x/zwP/9eDKw7mmX92z4rvWwqK39v4V6rY8ZllZ9tJ4sk02zobmUmkaKmL0lwf1vlCUlLLHZteUPtl9QrC+JTyW2gBldcvxdncVsdbaSlLHEuNT7Viile8+njzApB/BG7j7GU51tpha+212R//EHh7oQey1j5hrd1jrd3T0dGxJsEC4ISr+ojTao+4rdoqf//haMyTv99yx2d2j5vJRJo3ByboH53h0tiMVtKSkivb3LlC2fbLl/tGqIuG57Rf3t3bwcnBCTqbYty1pVVFXQXy+/gUbxRaQGUm4fL0oT5a6qK4bnnOtVtqfGZbMecv9KJWTFlrXh2xOwRsM8ZsJVPQHQB+If8GxpgN1tpLsz9+AHi9vCHO46aq8ohTludH3Erw+w/C3y/bvjE0lchdpvYNqTYLtV9+8fsn1X4pUsUcx7CxNUYsEuKV/lHSLjx58Awffc8tGKxvNipXLheveFLYWWtTxpiPAd8CQsCT1tqjxpjPAIettc8BjxpjPgCkgKvAr3oRa8nMHnGq2ueXoqh9Q6qd2i9FZDGpFAxPxnN58pP7tjOdSDIWTzOd8Edhp1wuXvHsHDtr7fPA8/Mu+3Te9/8K+FfljmvNeH3Ez+vnl6JoJS2pZlr9UkSW0tYQ5ejFG/Pk6NAkO25ah+taz89JVy4Xr2iEifiIVtKSaqXVL0WkGD2t9bQ11NxweSwSAptpx/Sacrl4xc+rYopUHbVvSDVS+6WIFMtxDBuba4mGnBs2Kp9Oupwb9r4dU7lcvKLCTsRH1L4h1UbtlyKyXOvqIrzSP3rDRuXnhibZvqHJ883KlcvFKxphIj6i9g2pJmq/FJGV6Gmtp32Bdsx40vV8s3LlcvGKjtiJ+IjaN6RaqP1SRFbKcQw7u5uIFGjHPHVlkpTrlm2z8kIWy+V+WNxFKpc+AhXxEW1qKtVAm4+LyGptaqknkXbpH53hzYEJJhNprCW3WXkq5d0HotFwqGAuBzh9ZdKzuKTy6d2iiI+ofUMqmetazg1PckjtlyKySo5j2Nxax1s3NuMY5mxWfi2V5jUP2zHbGqIFc/mJgUlfrNoplUtZU8QnXNeSyGvf2NRSy62djSRTabViSuClUi7fPnaZYxcn6B+ZzrVfvnf7+lz75ebWWt6xtY17e9t1pE5EltQQC+c2K+9preWT+7YTMpbXL03QPzqD61pP4trUUk99TXhuLk+m+aMfnKEmorfesnY0ukR84szQFCHHqBVTKo7rWg6eHubYpXFevzyu9ksRKYme1nrqayJzcuZMwp1tx4x4dnTMcQydDVFCjuHC6AyvX57gC39zigN7e6jV/CZrSO8WRXzi3PAUU4l0wfaNiKOXqgST61peuzjK4XNXcS1qvxSRklmsHTORzuxp55WU6xJPpQEwBh7c3c36dTHAm6OIUh20KqaIDyQSaSIhw+uXxmmui9ywkta6usjSDyLiM6mUy3feGCCVtrgWQga+fkSrX4pI6TTEwhy7NJbLm5/ct53pRJITlyfYvqGJRCJd9rnFdS0WU3BlTKOz5mUN6aNREY+5ruWl8yPMpNzcHjz5bSUNNRF6Wuu9DlNkWfLbLzGZ8+la66Ic2Du3/XL9ulq1X4rIivW01tMwrx0znryeTw/3jZR9hcwzQ1Ok0y6RcGhOXJFwCKO6TtaQjtiJeOzUlUn6rk4zMp2gLhIinkyzrbORmUSKlroot65v0J43Eijz2y/7R6Y5sLeHJw+e4cDeHj65bzsY6Gmt5Y6bmjW+RWTFltrTrq0+SjLt8q6b28vW6n1ueIqkawsescNqvpO1oyN2Ih5KJNKcGJygLhrmqz/qw1qYTKR5cyCzolcy7bKpRUfrJDiyq1/2Dc/k2i+/+qM+6iIhHtzdzVQizfHBCcKOUVEnIiWxqaWeZNoW3NMuFg3zUt8IL54ZLsuRu1TKJRIynBuaLLgYWltDdM1jkOqlwk7EI9kWzPzFJJ48eIa0C47JLCbxvu1deuMrgZFKubxwaqhg+2X+2N6zuVVjW0RKxnEM79veye5N8xZRefctPHXwNGkXLo3O8MKpoTUv7o5eHMudWjFfe0ONTq2QNaVWTBGPnBmayrVg3r9j/ZzFJDasq2Vze63OO5LASKVcfnBqiJf7RtR+KSJlF42GuLe3nZpwiAsj03xi33aeOnia925fzzOH+/iNfdt5uW8EC/S217GppX5N5qELozP0jUzr1ArxhI7YiXjk3PBUrgWzLhLinls6OD7bgjkRT7KxWZ/qSTCkUi4vnhnmpdmiTu2XIuKFaDTExpYYjbEIJwcnuLu3g2cO93Fgbw+XRqdJu/DjvhGOXZzg28cur8nRu9aGaMFTKxJplw2NtSV/PpF8KuxEPBKLOgu2YHatq6Hv6hSuq/1uxN+y7ZcXRzPn1Kn9UkS8tKmlnkg4M89k94+rj4aoCYf4i1cvkHbh9cvjHLs0viatmdGw4aPvmZvX37qxma6mKD84M8zZoUnldlkzasUU8UhNKFSwBdM4lr85PgTAlrZ67uxpZmNzHX0j0wyMx+lqirGlbW1aSESK5bqW8yNTnB6a5sd9I2zrbOQbr2T2qMtvv3Qcw62dDfR2qAVJRNae4xjee1sXW1rrOT44OTtXTfP0oT4e3pPZbuWBXd0YAy/3jeAYw723tJdsfrKuIWQsn9y3Pbca5vBknJRbw9GLY/y4b0S5XdaMCjsRj7Q1RKmPXm/BdAzEk2niyTRpN/NJ47/+n3/PI+/upae1jt//3gnODc8Qizg8/tBu9u3oUkIQT7iu5XtvDpBMWV6/PI5r4dJo5py6pw9l3jTNJNOEHMPtNzWyua3B65BFpIo4juGWrka2tNXzwqkhZpJpHtjVzTOHrxd3D+7uJu3C4XNXuWldjFu6Gkvy3G0NUY5edOkfncC1mSN27fVRRocmldtlzakVU8QjPa313NRyY799tl3EWognXVwLn/r6azywqxvIXPbYs0c4eHqY93/+b/n5L/0d7//83/LNo5dxXYvrWk5fmeTFU0OcvqKWDym901cmebV/LFfUfeOVC9SEQ9RHM+fUZTfgjYSNtusQEc+Eww733tzOns2thBxyxd2BvT201UVzrZlnhqZK9pzK7eIlHbET8Uh+u8iJwUnS89pFvvLDc8QiTi4JmLwP7OJJl8PnrhJPurmfH3v2CLf9+n28OTDBY88eIZ50c58A7t+5PveJn+tazg5PLfhp4FLXS/XKtl8eH5wk+55ifvvlrZ2Nar8UEU/l57EN62JsaqmlPtrBwMQ1dqxv5PzINE8ePJM7enf31paSPbdfc3uxt5FgU2En4qFsu0hvR0PmE8PZE72/8sNzjEwnePS92+YkgaxYxCE973zveNKl7+pUbuLPXvbYs0fY/uh99HY04LqWbx69vGByWOr6+ZQkqkcq5fKdNwawFlxrCRn4+pELc85ZmUmmaYiFuffmdsJhNYSIyNqbn4d6Wur49usDPPbsEVrqovzyOzfzue+e4CP39vITt7UxNJGc05p5YG8PDdHSvh32W27P/p6Kze/K7cGlwk7EBxzHcHNnA1vb69mxvolbuxo5PjCRSwK/+8E7+P3vnQAyE/9nP7SLx//Xm3MeIxZxqIuGcxN/VjzpMjgRp7ejgbPDiyeHpa7PpyKweriu5eDp4czG40BdNERbfXTOOXUhB97e08K7VNSJSIktlD8K5aEnfmlP7uefuXMjn/vuidyRsdcvTdAYiwDXV8xcvy5GW2N0TeL2S24His7vy83t2fsov/uDCjsRH8lPArdvaOKem9vobMx8AnlnTwuDE/Hcz5GQc8PE29VUQyzizEkAsYhDZ2MMgIHx+KLJYanr861lEZh/v+UmCyWY0nJdy2sXRzl87mqu/fKrP+rjw/dsJWTgN/ZtZyaRYkNzLe/c2qaiTkSA4ufiYk4PWCh/FMpD+a2MxjAnp/3RC2f4tffczK2djbkVK+tqnDU/F9jr3F7sbWB5uR3KWwgqvy9NhZ2IDzmOobejYc4kOv/n/TvXs/3R+3IJYUtbJjE9/tDuGybY7HVdTbFFk8NS1+dbqyIwa6XJolwFZDXIrn4ZT7i5jcez7ZdPHjzDA7u6mRyc4M6eFhV1IhVsuXNksXNxMbdbLH8UykOuZU4ey37/tZf6+aV3bOYLf3Mq12WwZ3Mr9/S2lW2+9yq3F3sbWF5uh/IUgqu9XzXld2VhkYDKJoh39LbnFqlwHMP+net5/tH7ePqRu3n+0fvmTHpb2up5/KHdxCKZl/785LDU9fmySSLfSorAhSyULM4OL7x62Uruk00WhVYhW8xyVygL4opmp2ZXv8TM3Xg8e05d9o2RzqkTWXurnUNWev+VzJHFzsXF3G6x/FEoD33jlQt89kO7iEUcvvZSPx+/fxuxiMOlsTjPHO7jdx58C/fe0sYHd3dz7y3+m7vWIrcXextYXm6H5ef3leTpld6vGvO7jtiJVJhCnwjmX1fo08Bscljq+nzZJLHQJ4j5lnMkMGu5nxqu9D7lOJq4nE+v/fLJYirlcmIwsw9T/0hmj7r8jccx0NNayx03NVf0p58iq1Gq1/RKj1aU4v4rmSOLnYuLud1i+aNQHvrN/TvYt6OLt3SvY3AizvqmGPtuX8+VycVzmt+tJrcXextYXm6H5ef3leTpld6vGvO7Z4WdMWY/8DkgBPyhtfb35l1fAzwFvB0YBh621p4td5wilWax5FDM9fm3W4siMGslxWC5CsjlJotibl/MiqXlLPqOXhzLtV9mz6l7cHc3U4k0xwcnuH1Dk4o6qTilfJ2tthjLt5I3qKW6/0rmyGLn4mJut1j+WCwPzc9jN3cu/XsKsmJyd7G3KTa3w9oXgqu5XzXmd08KO2NMCPgC8JNAP3DIGPOctfZY3s0+AoxYa28xxhwAPgs8XP5oRWQha1EEZq2kGCxXAbncZFHM7RdLDlva6gsmhds3NHJpbG0KvQujM/SPTOdWv8yeU5e/+qWKOvHKWnzQUcpCDFZfjOVb6VGOUtx/JXNksXNxMbcrptOkmDwkxVvO73StC8HV3C+o+f2zH9rFTc0x2uprlj23eXXE7i7gpLX2NIAx5mngQSC/sHsQ+O3Z7/8U+ANjjLHW+v/EFBG5wXKT70qKwXIVkMtNFsXcfqnzFAolhUfe3cvnv3ty1W9AC2ltiPLZb71xw+qX69fFuKfXf+elSPUodQGWVcpCDFZfjOVb6VGOUtx/JXNksXPxcm6n4s2/1rIQXM39gprff/Nrr/KRe3v5oxdOL3tu8yozdwPn837un72s4G2stSlgDGgrS3Qi4guFTiIv9X2WOim9kOUsMlPs7Rc7YX2hpJA9P7vYk8+XIxo2fPQ9t/DkwTOMxdOcGJygraGGdbVhFXXiqZUuvrCUlSzytJjlLkKxmOXOOaW8/0rmyOz9ipmLVzLPS7Ct9G9eTfk9u1XHcue2wC+eYox5BHgEoKenx+NoRObS+AyGtT6aWMztl/pksdAngvn9C8s9ErDU2LSuIWQsn9y3Pbff0/BknObaSFGPL7Iai43PUh4Jy7fao2LzrbTlrJCVHuUo5f11xOw65fbgCHp+X+7c5lVhdwHYlPfzxtnLCt2m3xgTBtaRWURlDmvtE8ATAHv27FGbpviKxmflWkmyWGrRmoWSQ6Gk8PH7t/HUi+dy91/uG9ClxmZbQ5SjF136RzMrYzoG2uujtDVEi34OkZVabHyWugDLKmUhBqsvpgo93mqKKxVnpaPcXtm8zu+PvncbX/lhJr8vd27zqrA7BGwzxmwlU8AdAH5h3m2eA34FeBH4WeB7Or9ORCrZQslhflLoaIhxZniSkekEsPy2rGL0tNZzU8skQ1OJ3GU3tdTS01q65xBZiVIXYFmlLsSyj6liSkSKye8D43GSacu//fO/59JYfEVzmyeFnbU2ZYz5GPAtMtsdPGmtPWqM+Qxw2Fr7HPBHwFeMMSeBq2SKPxGRqjQ/KWxtr+f5Er4BLfR8772ti972hjV7DpGVWIsCLP+xVYiJSDnlzzuua/lvv3rXiuc2z86xs9Y+Dzw/77JP530fB36u3HGJiARBOd6A6k2u+JXGpohUolW3XJc4HhERERERESkzFXYiIiIiIiIBZyppPRJjzBXg3AJXtwNDZQynGH6LSfEsbqF4hqy1+5e68xLjc7nP6Qd+jU1xXVeqsemH36liqLwY1nLuLIYffpfzKabilCOm1Y5Pr39vXj+/H2Ko1OdfcGxWVGG3GGPMYWvtHq/jyOe3mBTP4ryIx2+/g3x+jU1xlZ4fYlcMiqHU/PjvUEzF8WNM83kdo9fP74cYqvH51YopIiIiIiIScCrsREREREREAq6aCrsnvA6gAL/FpHgW50U8fvsd5PNrbIqr9PwQu2LIUAyl48d/h2Iqjh9jms/rGL1+fvA+hqp7/qo5x05ERERERKRSVdMROxERERERkYqkwk5ERERERCTgVNiJiIiIiIgEXEUVdvv377eAvvRV7q+iaHzqy4Ovomhs6sujr6JofOrLo6+iaHzqy4OvBVVUYTc05OXm8iKL0/gUv9LYFD/T+BQ/0/gUP6mowk5ERERERKQaqbATEREREREJuLDXAaw117WcHZ5iYDxOV1OMLW31OI7xOiwREd/T/Cl+pbEpIpVotXNbRRd2rmv55tHLPPbsEeJJl1jE4fGHdrN/53olABGRRWj+FL/S2BSRSlSKua2iWzHPDk/lfjkA8aTLY88e4ezwlMeRiYj4m+ZP8SuNTRGpRKWY2yq6sBsYj+d+OVnxpMvgRNyjiEREgkHzp/iVxqaIVKJSzG0V3YrZ1RQjFnFoqYvyM3duxBgIGVjfFPM6NBERX+tqirG5rZYHdnVjZjtAvvHKBTobNX+Kt7K5Pf8NUCzilGRs6tw9ESm37Lwzk0zz8ftv4dnD/VwayxRzy53bKrqw29JWzx/8wts4MTDJ5757Itevetv6JnpaNVmLiCykp6WOX3/vNj719ddyc+fvfvAOelrqvA5NqtyWtnoef2j3DeehbGmrX9Xj6tw9ESm3QvPOx+/fxlMvnmNkOrHsua2iCzvHMWxta+Bj/+PHN/Srbn/0Pno7GjyOUETEn/pGpnNFHWTmzk99/TXu7GnR3CmechzD/p3r2f7ofQxOxOlsLM2RtYXOb9H7BRFZK4Xmnc999wRf/id30dFYs+y5raLPsQMYnFAvvojIcuk8JvEzxzH0djTwjt52ejsaSnJETWNeRMptoXnHYlc0t1V8YZftxc9Xql58EZFKpblTqo3GvIiUW6nnnYov7LK9+NlfWql68UVEKpnmTqk2GvMiUm6lnncq+hw7WLtefBGRSqa5U6qNxryIlFup552KL+wg80vLVr4D45leeU3WIiLFsdbrCETKI3vuXqkWS9H2CSICi88FpZx3qqKw0xLGEkTWWqy1GGMwRuNUykvzpsjq6DUkIlDeuaDiz7GDhZcwPjs85XFkIguz1vLwF1/A6nCJeEDzpsjq6DUkIlDeucCzws4Ys98Y86Yx5qQx5rcKXN9jjPlrY8yPjTGvGmPev9Ln0hLGElQ6Uide0bwpsjp6DYkIlHcu8KSwM8aEgC8APwXcDvy8Meb2eTf7FPCstfZtwAHg/7fS59MSxiIiy6N5U2R19BoSESjvXODVEbu7gJPW2tPW2gTwNPDgvNtYoGn2+3XAxZU+mZYwFhFZHs2bIquj15CIQHnnAq8WT+kGzuf93A/cPe82vw182xjz60A98L5CD2SMeQR4BKCnp6fgk2kJY/FKMeNTxAtLjU3Nm+KlSpg79RqqXJUwPqV8yjkX+HnxlJ8H/ru1diPwfuArxpgb4rXWPmGt3WOt3dPR0bHgg2WXEn1Hbzu9HQ2aWKUsih2fIuVWzNjUvCleqZS5U6+hylQp41PKp1xzgVeF3QVgU97PG2cvy/cR4FkAa+2LQAxoL0t0IiIiIiIiAeJVYXcI2GaM2WqMiZJZHOW5ebfpA+4HMMbsIFPYXSlrlCIiIiIiIgHgyTl21tqUMeZjwLeAEPCktfaoMeYzwGFr7XPAJ4AvGWP+TzILqfyqXeWGXovt+i4iInNpzhTxD70eRfzJT69NrxZPwVr7PPD8vMs+nff9MeBdpXq+cu76LiISdJozRfxDr0cRf/Lba9PPi6eUVDl3fRcRCTrNmSL+odejiD/57bVZNYVdOXd9FxEJOs2ZIv6h16OIP/nttVk1hV05d30XEQk6zZki/qHXo4g/+e21WTWFXTl3fRcRCTrNmSL+odejiD/57bXp2eIp5VbOXd9FRIJOc6aIf+j1KOJPfnttVk1hB9d3fe/taPA6FBER39OcKeIfej2K+JOfXptV04opIiIiIiJSqVTYiYiIiIiIBJwKOxERERERkYBTYSciIiIiIhJwVbV4iutazg5PMTAep6tJK0qJiCxGc6ZI5dDrWaQ4QX6tVE1h57qWbx69zGPPHiGedHP7TOzfuT4wfywRkXLRnClSOfR6FilO0F8rVdOKeXZ4KvdHAognXR579ghnh6c8jkxExH80Z4pUDr2eRYoT9NdK1RR2A+Px3B8pK550GZyIexSRiIh/ac4UqRx6PYsUJ+ivlaop7LqaYsQic/+5sYhDZ2PMo4hERPxLc6ZI5dDrWaQ4QX+tVE1ht6Wtnscf2p37Y2V7Zre01XscmYiI/2jOFKkcej2LFCfor5WqWTzFcQz7d65n+6P3MTgRp7MxWKvciIiUk+ZMkcqh17NIcYL+Wqmawg4yf6zejgZ6Oxq8DkVExPc0Z4pUDr2eRYoT5NdK1bRiioiIiIiIVCoVdiIiIiIiIgGnwk5ERERERCTgVNiJiIiIiIgEnGeFnTFmvzHmTWPMSWPMby1wm4eMMceMMUeNMf+j3DGKiIiIiIgEgSerYhpjQsAXgJ8E+oFDxpjnrLXH8m6zDfhXwLustSPGmM5SPLfrWs4OTzEwHqerKVhLmIqIlJvmTBHRPCBBVW1j16vtDu4CTlprTwMYY54GHgSO5d3mnwJfsNaOAFhrB1f7pK5r+ebRyzz27BHiSTe36eD+nesr+o8sIrISmjNFRPOABFU1jl2vWjG7gfN5P/fPXpbvVuBWY8wPjDE/NMbsX+2Tnh2eyv1xAeJJl8eePcLZ4anVPrSISMXRnCkimgckqKpx7Pp58ZQwsA34CeDngS8ZY5rn38gY84gx5rAx5vCVK1cWfcCB8Xjuj5sVT7oMTsRLFbPIHMsZnyLlVMzY1JwpXtHc6R+aB26k8RkM1Th2vSrsLgCb8n7eOHtZvn7gOWtt0lp7BjhOptCbw1r7hLV2j7V2T0dHx6JP2tUUIxaZ+0+ORRw6G2Mr+CeILG0541OknIoZm5ozxSuaO/1D88CNND6DoRrHrleF3SFgmzFmqzEmChwAnpt3m6+TOVqHMaadTGvm6dU86Za2eh5/aHfuj5zttd3SVr+ahxURqUiaM0VE84AEVTWOXU8WT7HWpowxHwO+BYSAJ621R40xnwEOW2ufm71unzHmGJAGPmmtHV7N8zqOYf/O9Wx/9D4GJ+J0Nlb+6jgiIiulOVNENA9IUFXj2PVqVUystc8Dz8+77NN531vgsdmvknEcQ29HA70dDaV8WBGRiqQ5U0Q0D0hQVdvY9fPiKSIiIiIiIlIEFXYiIiIiIiIBp8JOREREREQk4FTYiYiIiIiIBJwKOxERERERkYDzbFVML7mu5ezwFAPjcbqaKn/pUxGRldJ8KSIroblDSk1jamlVV9i5ruWbRy/z2LNHiCfd3GaF+3eu1+AQEcmj+VJEVkJzh5SaxlRxqq4V8+zwVG5QAMSTLo89e4Szw1MeRyYi4i+aL0VkJTR3SKlpTBWn6gq7gfF4blBkxZMugxNxjyISEfEnzZcishKaO6TUNKaKU3WFXVdTjFhk7j87FnHobIx5FJGIiD9pvhSRldDcIaWmMVWcqivstrTV8/hDu3ODI9uju6Wt3uPIRET8RfOliKyE5g4pNY2p4lTd4imOY9i/cz3bH72PwYk4nY1aVUdEpBDNlyKyEpo7pNQ0popTdYUdZAZHb0cDvR0NXociIuJrmi9FZCU0d0ipaUwtbcWtmMaYd83+v6Z04YiIiIiIiMhyreYcu8/P/v/FUgQiIiIiIiIiK7OaVsykMeYJoNsY8/n5V1prH13FY4uIiIiIiEiRVlPYPQC8D/iHwEulCUdERERERESWa8WFnbV2CHjaGPO6tfaVEsYkIiIiIiIiy1CKfeweM8Y0Z38wxrQYY54sweOKiIiIiIhIEUqx3cEua+1o9gdr7Ygx5m0leNw147qWs8NTDIzH6WrSPhgiIovRnCkia0XzS/XR33ztlKKwc4wxLdbaEQBjTGuJHndNuK7lm0cv89izR4gn3dzO9ft3rtegEhGZR3OmiKwVzS/VR3/ztVWKVsz/ArxojPkdY8zvAgeB/1iCx10TZ4encoMJIJ50eezZI5wdnvI4MhER/9GcKSJrRfNL9dHffG2turCz1j4FfAgYAC4DP2Ot/cpqH3etDIzHc4MpK550GZyIexSRiIh/ac4UkbWi+aX66G++tkpxxA5r7VHgWeA5YNIY07PUfYwx+40xbxpjThpjfmuR233IGGONMXtKEWtXU4xYZO4/OxZx6GyMleLhRUQqiuZMEVkrml+qj/7ma2vVhZ0x5gPGmBPAGeBvgLPAXy1xnxDwBeCngNuBnzfG3F7gdo3Ax4G/W22cWVva6nn8od25QZXt7d3SVl+qpxApCdd1wXodhVQ7zZkislY0v1Qf/c3XVikWOfkd4B3Ad6y1bzPG/APgHy9xn7uAk9ba0wDGmKeBB4FjBR77s8AnSxAnAI5j2L9zPdsfvY/BiTidjVqNR0RkIZozRWStaH6pPvqbr61SFHZJa+2wMcYxxjjW2r82xvw/S9ynGzif93M/cHf+DYwxdwKbrLV/aYxZsLAzxjwCPALQ07NkByiQGVS9HQ30djQUdXuRlVrJ+BQph+WMTc2ZUm6aO6tHEOcXjc/VCeLfPChKcY7dqDGmAfhb4I+NMZ8DVrW0jTHGAR4HPrHUba21T1hr91hr93R0dKzmaUVKTuNT/EpjU/xM41P8TONT/KoUhd1fA+vInAv3TeAU8NNL3OcCsCnv542zl2U1AncA/9sYc5ZMq+dzpVpARUREREREpJKUorALA98G/jeZguwZa+3wEvc5BGwzxmw1xkSBA2RW1ATAWjtmrW231m6x1m4Bfgh8wFp7uATxioiIiIiIVJRS7GP37621O4FfAzYAf2OM+c4S90kBHwO+BbwOPGutPWqM+Ywx5gOrjUlERERERKSalGLxlKxBMhuUDwOdS93YWvs88Py8yz69wG1/ogTxiYiIiIiIVKRVF3bGmH8BPAR0AH8C/FNr7fxtC3zHdS1nh6cYGI/T1aSlVkVEFqM5U0S8ovnH3/T38Y9SHLHbBPxLa+2REjxWWbiu5ZtHL/PYs0eIJ93c5oj7d67XQBQRmUdzpoh4RfOPv+nv4y+lOMfuXwWpqAM4OzyVG4AA8aTLY88e4ezwqnZpEBGpSJozRcQrmn/8TX8ffynFqpiBMzAezw3ArHjSZXAi7lFEIiL+pTlTRLyi+cff9Pfxl6os7LqaYsQic//psYhDZ2PMo4hERPxLc6aIeEXzj7/p7+MvVVnYbWmr5/GHducGYrYfeEtbvceRiYj4j+ZMEfGK5h9/09/HX0q53UFgOI5h/871bH/0PgYn4nQ2agUfEZGFaM4UEa9o/vE3/X38pSoLO8gMxN6OBno7GrwORUTE9zRniohXNP/4m/4+/lGVrZgiIiIiIiKVRIWdiIiIiIhIwKmwExERERERCTgVdiIiIiIiIgFXtYunALiu5ezwFAPjcbqatIqPiMhCNF+KiB9pbio9/U6Dq2oLO9e1fPPoZR579gjxpJvbd2P/zvUavCIieTRfiogfaW4qPf1Og61qWzHPDk/lBi1APOny2LNHODs85XFkIiL+ovlSRPxIc1Pp6XcabFVb2A2Mx3ODNiuedBmciHsUkYiIP2m+FBE/0txUevqdBlvVFnZdTTFikbn//FjEobMx5lFEIiL+pPlSRPxIc1Pp6XcabFVb2G1pq+fxh3bnBm+2h3hLW73HkYmI+IvmSxHxI81NpaffabBV7eIpjmPYv3M92x+9j8GJOJ2NWvVHRKQQzZci4keam0pPv9Ngq9rCDjKDt7ejgd6OBq9DERHxNc2XIuJHmptKT7/T4KraVkwREREREZFKocJOREREREQk4Dwr7Iwx+40xbxpjThpjfqvA9Y8ZY44ZY141xnzXGLN5LeJwXcvpK5O8eGqI01cmcV27Fk8jIhJ4mi9FJAg0VxWm30vl8+QcO2NMCPgC8JNAP3DIGPOctfZY3s1+DOyx1k4bY/458B+Bh0sZh+tavnn0cm4jxuzKP/t3rtdJoiIieTRfikgQaK4qTL+X6uDVEbu7gJPW2tPW2gTwNPBg/g2stX9trZ2e/fGHwMZSB3F2eCo3wCGzAeNjzx7h7PBUqZ9KRCTQNF+KSBBoripMv5fq4FVh1w2cz/u5f/ayhXwE+KtCVxhjHjHGHDbGHL5y5cqyghgYj+cGeFY86TI4EV/W44gsZDXjU2QtLXdsar6UctLcKStVjrkqiONTc3h18P3iKcaYfwzsAf5ToeuttU9Ya/dYa/d0dHQs67G7mmK5DRizYhGHzsbYSsMVmWM141NkLS13bGq+lHLS3CkrVY65KojjU3N4dfCqsLsAbMr7eePsZXMYY94H/BvgA9baa6UOYktbPY8/tDs30LP9xlva6kv9VCIigab5UkSCQHNVYfq9VAevNig/BGwzxmwlU9AdAH4h/wbGmLcB/xXYb60dXIsgHMewf+d6tj96H4MTcTobY2xpq9dJpCIi82i+FJEg0FxVmH4v1cGTws5amzLGfAz4FhACnrTWHjXGfAY4bK19jkzrZQPwJ8YYgD5r7QdKHYvjGHo7GujtaCj1Q4uIVBTNlyISBJqrCtPvpfJ5dcQOa+3zwPPzLvt03vfvK3tQIiIiIiIiAeRZYecXrms5OzzFwHicriYdlhb/cF0XizYPFX/RnCkiQVItc1a1/DtlcVVd2GmzRhGR4mnOFJEgqZY5q1r+nbI03293sJa0WaOISPE0Z4pIkFTLnFUt/05ZWlUXdtqsUUSkeJozRSRIqmXOqpZ/pyytqgs7bdYoIlI8zZkiEiTVMmdVy79TllbVhZ02axQRKZ7mTBEJkmqZs6rl3ylLq+rFU7RZo4hI8TRnikiQVMucVS3/TllaVRd2oM0aRUSWQ3OmiARJtcxZ1fLvlMVVfWEH2vtDRGQ5NGeKSBAFee4KcuxSPlVf2GnvDxGR4mnOFJEgCvLcFeTYpbyqevEU0N4fIiLLoTlTRIIoyHNXkGOX8qr6wk57f4iIFE9zpogEUZDnriDHLuVV9YWd9v4QESme5kwRCaIgz11Bjl3Kq+oLO+39ISJSPM2ZIhJEQZ67ghy7lFfVL56S3fvj9o/fx8D4NaYSKTa36oUiIlKI5kwRCaKgzF0LrX6pfeqkGFVf2GUduzSh1YZERIqkOVNEgsjPc9dSq19qnzpZStW3YoJWGxIRWQ7NmSISRH6fu/wen/ifCju02pCIyHJozhSRIPL73OX3+MT/VNih1YbEf1zXxXXdpW8o4gHNmSISRH6fu/wen/ifzrHj+mpDn/3m6zywq5uQA3s3t9LTUud1aCIivrOlrZ4/+IW38Wr/GK6FkIG3bFynFdpExNf8NnfNXyilp6WOxx/afcM5dppbpVgq7MislLRvRxfJtMtvfu1VX55QKyLiJ4mU5Ynvn54zX4qI+J1f5q6FFkrZt6OL57X6payQWjFn9Y1M54o60AmrIiIL0Qn+IhJEfpq7Foqlb2Sa3o4G3tHbTm9Hg4o6WRbPCjtjzH5jzJvGmJPGmN8qcH2NMeaZ2ev/zhizZS3j0QmrIiLF0XwpIkHkp7nLT7FI5fCkFdMYEwK+APwk0A8cMsY8Z609lnezjwAj1tpbjDEHgM8CD69VTF1NMTa31fLArm7M7Icj33jlQtlOWHVdS9/VKYYnE2As1oLFAoZU2iUacrBAMu/7Qtev5D56zMWvT7uQSLlsbqtna7taIkSyJ/i31EX5mTs3YkzmXJX1TeU/wb9Uc2fSB3NNuee/tb6P5k4pldGZOMcvTzEwfo2uphp6WkJYoLYmRnNt8fNOud7rFYo3VhOjqaYmd05dXTTM5rZazg3P5O6nhVJktbw6x+4u4KS19jSAMeZp4EEgv7B7EPjt2e//FPgDY4yx1tq1CKinpY5ff+82PvX113K9zr/7wTuWXEAl+6ZibDpJ0nWZTqS5lnLpbatna0cDrmt5Y2CceDKNhYIJEiyD4wmGJ68RizhEwiGSqTSRcIiJmWTusvzvC12/kvvoMRe/fiqR5nPfPaHzLkXyZBcgODEwOef1cdv6Jnpai3sDn0q5vDEwzuS1FAZIuZZryUwRsLm1jv7R6dy8uljRVYq50w9zTbnnv7W+j+ZOKZXRmTjffu0Kn37u+vuzz3xgJ+/e1sT4TJz4tThjcbgymSASCtFcG+Lm9ibC4Rub0lb6Xq808UL8Wpz3f/7FOc/9+987wbnhGS2UIiXhVStmN3A+7+f+2csK3sZamwLGgLa1CqhvZDr3QofM4fBPff01+kamb7htKuXy2oVRDp8d5q9eu8SPzgxzeniKQ2dH+Ld//hqXRmcYnIzzSv9Vnj96iWMXxzg/MsPrF8c5f3WavpEZTl+ZpH8kzusXxxmdSvHmwARDUwnqohHODE3l/p9/2VLXr+Q+eszFr8++McmOCZ1HJJJZcGprW8OyXh/ZefOHp4d4pS8zN758boTjlyd48/IERy+MkXQtI9NxvnXscm5ePZY3b87/vlRzpx/mmnLPf2t9H82dUirHL0/liiTIjKdPP3eUvqtpLo+m6buaJp5IEXFgOpHgjcuT/O2pQWZmkjc81nLe661FvH0jad65tXXOc3/+wNt4+pG7ef7R+/Thh6xa4FfFNMY8AjwC0NPTs+LHyfY6b1gXy7UWAVydukZvRwOQOTrXPzrFkfNjjE4l2LCuljcHJri1s5HjgxP8+ZEL/Np7biYSCXFiYJKt7Q2cHJzMXQ/kvs+/rCYSwp09Djl1LYVrr/8//7Klrl/JffSYi1+/UP97dkwspVTjU6TUVjs2ByeWnjPhxnkTyM2NAA3RELFI5mts+hphx8yZV4EFvy/V3Lmc267VXFPu+W+t76O5U0plYPxawfE0kHcuWldjDAhRGwkxMTNNLBziyMUxdt+0jtraSN5jxee0kAN87aX+ZY1NWHx8Lh6v4aM/cQtvDExyaSwzh84k07yjt73o5xZZjFeF3QVgU97PG2cvK3SbfmNMGFgHDM9/IGvtE8ATAHv27Flxm2a27/rhPT18/nvX20e2dTZw52ym+t6bA9SEQrk3JNk3Fdlk9sCubupqInlvOmaKSpB10TCh2QmmPpb5Pvv//MuWun4l99FjLn59LOLMmaCX2/9eqvEpUmqrHZtLzZmOY0ilXL7zxgD10XBu3oTrcyPAhuY6TuQVba/0jxZdgJVq7lzObddqrin3/LfW99HcKaXS1VRTcDx15Y2n/CKvua6GaynLRDzJK5fGuHNjC9FoCIAN62L88js3z2kT/vj925Z9fvBi43OpeAcnrvFL79jMV354jpHphM6pk5Iya3TK2uJPminUjgP3kyngDgG/YK09mnebXwPeYq396OziKT9jrX1oscfds2ePPXz48Ipicl3LCyeHeOQrh29YEOBn7uxmbCbJd14fpLu5lvMjmRNdb+tq5OTgBNu6GjkxMIEFutfVcn608PVA7vv8y+pnP7EGfHeeWTU/5jLOEymqb2I549N1XeLxOL/y3w7zzD+/F8fRziSyIiUfm1mLzZn/6G3dbGyu4wenhnipb2TOvAnX50aA7uZa+mav29ScmT9DhoLz5vzvSzV3+mGu8fP5cmt4jt2ajU+pHIudY5dwof/qDGEnigXS1nJl4hrRkENTbZihyQQdDTXs6ckUd2euTPI/j1zIfTj0tZf6GZlO8Je/fh83d95wxG5F43OxeAHOXk3zq//tRzzy7l62r29S+6WsxIIDxpMjdtbalDHmY8C3gBDwpLX2qDHmM8Bha+1zwB8BXzHGnASuAgfWMibHMURChpa6KB99dy/XUmk2tzfQVh/mtQvjWAuunfsJ8aXRadrqo0xfS7KlvZ5YJETatbnrv3zwNL9495bc9RMzydz3+ZdlxZNputbVsi4WIhRyAAsttdcXXGmpvXH1sfzrC1221H30mEte/4e/vEcru4nMkz9n/tI7NvPM4T4+8q6tbOtq4MpknL6r07zUN3LDvAnX58aJeJLW+igXZj8Mq4+F+cYrF/jwPVsLzpvzv89a9dyZf72Hc01Z578y3Edzp5RCc22MfXd0sKX9rswqk4019LRmVsXsvzpD/0iS27oizKRcLo7M0NlUi+MYkmmX5roI/SPTxFNp2uojzCRc7uhex+krk3z1R325I2dXJuOFCrsVaaqp4d3bGnnqw3PjBXDJtJ/Hky5v29TMe27t1OtCSsqzc+ystc8Dz8+77NN538eBnytnTF1NMf7JPZsxhhvP9+hqJGTmviHJGp1Osm19jKZYmOGp62867t+xnj/+u7P803ffwrpYiI2LJEjHGFKuJZFy6WisVRKscq7r4rru0jcU8VBXU4yf27ORZw73zTm/uKMxxng8iWspOG/mz40NNSFu7WpkePIa09eSfPQ9t/DFvznJgb097NgQmztvFijANHeKVL7m2hh3bc20LE7NXOPo5clc0fT2zbXEU5bBqzNEwiFca0kkXVJplz97+TwPvHUTR86PsndzK2eGMi3hdZEQH75nK08ePMPP7dlY0nbIU4OTxFMuXU0hsDWzbaIxutaFmJhJcy1tiUUcNrdprpLSC/ziKaW0pa2e7RuaOHxuBJh7vkf/SOboXP4bkrqIQyTskJ59U9FcW8Nbu1u4MDbN8ESCa+k0b+lepzccIlKRtrTVc2tn4w3nFw9NJdjW2Zg7+lZo3ty18frcuGdzG/2j07m96D77oV1cnUrQUhtl503rCi5bLiLVqb62hru21uC6llNXJjl1ZYpYxKG7uR7HsSTTgLH84fdP8Q9u28BTB09zd28Hl8ZmGJpdwCnrgV3d3NrVWNItBs4MT2IxjM1ANBQh2zUXT8JU0uWVvjFtayBrRoVdHscxpNL2hpP0Qwa++qM+PnzPVkIGfuWeXsamE9Q117Knp/WGNx2b2xrYvGYbM4iI+IPjGHZsaOL44MScRU0g06p+YG8PTx48w4G9PfzqPb0k0y7r1tVwx03NN3zItaW9gS1aGE5EiuQ4hm1djWzrasxdlkikOdw3Qv/INA+8dRNPHTzNe7ev55nDfXxi3/Y5cxRAyIEd65tK+qF7LBLijUvjxCIh4slJNjTXcXZ4ipaZKJGw4e7eNt7SfeMcKFIK+hh0ns1t9YRmFwDInu/RWhfNvUEZi6c5MTjB+nW1vHNrmz5JFpGqtrW9nr2bW3MrIoYMfOOVC9SEQ9RHQzy4u5upRJrjgxPEIk7Bok5EpBSi0RB7elpob6zh5OAEd/d28MzhPj767lt46uBpHMOcrz2bW9naXtojZ4014dyiTpOJNG8OTNA/OkMi7VITDqmokzWlI3bzbG2v5y0b13FxZOaG8z0+uW87jgPbOhu5uaNBL0xZU6lUCi9WrRVZDscxvLO3je+fHMydX5x/pO7WzkZCjmFbZwO9mjdFZI1FoyHu7W2nNhLi/NVpPrFvO08dPM39O9ZTP7vtAUBnU4x7ettKPift6Gri/MgMl8dm2NbZyEwiRVdTjPoaw+6NrZoDZU2psJvHcQzvva2LvqtTN5zv0b2uVud7iIjMEw47/MStXZwfmco7v/gtWhFRRDwRjYa4e2sbnY0x+q5O8X/+5G2EZ5fmDRuHtoYoPa1rMy/FYmH2be/i7y+NcXn8Glva6tnQUkP3Os2DsvZU2BXgOEbne0jZZFe/zN+rLpFIkEgkFrqLiO84jtH5xSLiG45juLmzoWTbGCxHLBZm71ZNhlJ+KuxEPGatxXVdrLUYY7DWkkqlSKfTrEUjprU291zGFP70sJjbSPnp7yIiIiILUU+hiMfS6TQP/cH/5ud+/38zPT3Nz37+e/ziH/wNj/y3w5BX2hXa226h/e4W2wfPWsvDX3xh0fP3irlNMc+1mttW4n2Kuf1y/nba71BERESydMROxEdueJM+ezSv4HULXLbY5fnXrfY2xTzXam5bifdZ7e9z/t/Fdd05LbwiIiJSvUwlrbpnjLkCnFvg6nZgqIzhFMNvMSmexS0Uz5C1dv9Sd15ifC73Of3Ar7EprutKNTb98DtVDJUXw1rOncXww+9yPsVUnHLEtNrx6fXvzevn90MMlfr8C47NiirsFmOMOWyt3eN1HPn8FpPiWZwX8fjtd5DPr7EprtLzQ+yKQTGUmh//HYqpOH6MaT6vY/T6+f0QQzU+v3p4REREREREAk6FnYiIiIiISMBVU2H3hNcBFOC3mBTP4ryIx2+/g3x+jU1xlZ4fYlcMGYqhdPz471BMxfFjTPN5HaPXzw/ex1B1z18159iJiIiIiIhUqmo6YiciIiIiIlKRVNiJiIiIiIgEXEUVdvv377eAvvRV7q+iaHzqy4Ovomhs6sujr6JofOrLo6+iaHzqy4OvBVVUYTc05PU+jCIL0/gUv9LYFD/T+BQ/0/gUP6mowk5ERERERKQaqbATEREREREJOBV2IiIiIiIiARf2OgARv3JdS9/VKQbGrzGVSLG5tZ6t7fU4jlnz506lXI5eGuPSWJwN62rZuaGJcFifw4iISPUJWk4MWrxSOVTYiRSQSrl8540BzgxN8bnvniCedIlFHB5/aDf7d65f0+IulXL5+isX+NTXX8s97+9+8A4++NZuJQYREakqQcuJQYtXKotGmMg8rms5eHqYY5fGc0UdQDzp8tizRzg7PLWmz3/04lguIWSf91Nff42jF8fW9HlFRET8Jmg5MWjxSmVRYSeSx3Utr10c5fC5q7iW3MScFU+6DE7E1zSGC6MzBZ/3wtjMmj6viIiI3wQtJwYtXqksKuxEZqVSLt8+dpm+4RlcCyEDscjcl0gs4tDZGFvTOFobogWft7U+uqbPKyIi4jdBy4lBi1cqiwo7ETJF3Q9ODXHs0jgY+MYrF2iti/Lx+7flJujsOXZb2urXNJaIY/h3P71zzvP+u5/eSaQMi7aIiIj4SdByYtDilcqixVOk6qVSLi+eGealvhFcC/0j0xzY28OTB89wYG8P//ln3woGelprueOm5jVfFTOZdgkZy3/+2bcylUhRHw0znUiSSLtL31lERKSCBC0nBi1eqSwq7KSqZRdKuTR2vf3yqz/q48P3bOXB3d1MJdIcH5zg9g1NZSnqAMIhh3jSpX90AteCY6C9Pko4pAPsIiJSXYKWE4MWr1QWjTKpWvkLpdRFw7n2y+zRurSbmZD3bG7lfdu7ylLUZVgaayNzLsn8bMv0/CIiIn4RtJwYtHilkuiInVSl7D51qbTFtXBpdG775Sf3bS9r++VchmQqza2djXPaOAzqzxcRkWoTtJwYtHilknh2xM4Ys98Y86Yx5qQx5rcWud2HjDHWGLOnnPFJ5crfpy67UEpNOER9NDSn/TIWcTwo6sAAkXCI44MTnB+Z4fjgBJFwSClBRESqTtByYtDilcriyRE7Y0wI+ALwk0A/cMgY85y19ti82zUCHwf+rvxRSiWav0/d/IVSbu1s9PBIXUYy7Rb8tE8nXouISLUJWk4MWrxSWbxqxbwLOGmtPQ1gjHkaeBA4Nu92vwN8FvhkecOTSjS//dIPC6UUstCJ1xGdeC0iIlUmaDkxaPFKZfFqlHUD5/N+7p+9LMcYcyewyVr7l+UMTCpTofZLfyyUciMDBU+8VhuHiIhUm6DlxKDFK5XFl4unGGMc4HHgV4u47SPAIwA9PT1rG5gE0lLtl2u5UMpKxqfaOKQcNHeKn2l8SpYfc+Ji49OP8Ur18OqI3QVgU97PG2cvy2oE7gD+tzHmLPAO4LlCC6hYa5+w1u6x1u7p6OhYw5AliFzX8r03B+gbnrtPXV1k7kIpYcesSfvlSsZnto0j/8TreNJVG4eUlOZO8TONT8nyY05cbHz6MV6pHl6NskPANmPMVmNMFDgAPJe90lo7Zq1tt9ZusdZuAX4IfMBae9ibcCWoTl+Z5NX+Md+3X+ZbqI0DMoWqiIhItQhaa2PQ4pXK4kkrprU2ZYz5GPAtIAQ8aa09aoz5DHDYWvvc4o8gsjjXtZwfmeL44GTZ2y9XK+nagm0cM4k0Z4en6O1o8DpEERGRsghaa2PQ4pXK4tk5dtba54Hn51326QVu+xPliEkqQ7b9MpmyuNb6dvXLhdSGQwVX1JpOugyMx1XYiYhI1QjaKpNBi1cqi0aZVJxs++Xrl8fpH5mmrf7G9su397T4qv0yn4tlXd28No5YhC99/6QSg4iIVJWgtTYGLV6pLL5cFVNkJea3X8L1I3UhA7+xbzsziRQbmmt559Y2wmF/FklNsSh/+eoJ/vE7erk8NkMsGuapg6f5R3duYnQm4XV4IiIiZRO01sagxSuVxZ/vbEWWKdt+eeziRK798huvXODhPZkjdWPxNCcGJ+hsivm6qAMwWP7hHd382z//e85dneHk4AQfvvdm/ufL52mqiSz9ACIiIhUiaKtMBi1eqSwaZRJ42X3qCrVfPnO4jwd2dRNyMu2X997c7uuiDuDUlSnSbppPP7CTkANpFz77zdf50Nt76FpX43V4IiIiZRO01sagxSuVxd/vcEWWMH+fOtdm2i/t7J51v7FvO5tba9m7pZV3BaCoA4hFHL7w16cYnohza2cjPa21fHLfdtoaomxqqfc6PBERkbLJb23c1FLLrZ2NJFNp37Y2Bi1eqSz+f5crsoj8feqC3H6ZrzYa4sDeHr7wN6d4/fIEF0ZnCDmGjoaoLxd7ERERWSsLtTaGfdraGLR4pbJolEkgua7l3PDknH3qgtx+OZdl/boYD+7uxszWcfFUmpSrT/tERKTa2IKtjWC9CWdJQYtXKolWxZTAWWyfuiCtfrkwU3BFLaMOfRERqTpBy4lBi1cqiQo7CZxc+yVQFw3N2afugV3dTA5O8PaeloAWdZkTryPhEMcHr29uurW9XilBRESqTtByYtDilcqiwk4CJZFIB36fuqVoDxwREZGMoOXEoMUrlUWFnQRGIpHmhdNDufbLrx+5vlBK9kjdnQE+UpeVPfG6f/T6p33t9VHtgSMiIlUnaDkxaPFKZdEok0BIpVwO941w5PxohS2UciPtgSMiIpIRtJwYtHilsuiInfheIpHm4JlhBsbjuX3qKq39Mp/aOERERDKClhODFq9UFhV24mvZ9ssj50fZ1tk4Z5+6Smq/zKc2DhERkYyg5cSgxSuVRaNMfCu//dK18OWDp/nou2+Z0365e1Mz91RQUQdq4xAREckKWk4MWrxSWXTETnxpfvtl9kjd117u4xP7thNPpNjYUseenhai0ZDX4ZaU2jhEREQygpYTgxavVBYVduI7C7VfZo/UnZxtv7xrS2tFHanLUhuHiIhIRtByYtDilcqiUSa+Uq3tl/nUxiEiIpIRtJwYtHilsuiInfhGKuXyg1NDXK7C9st8auMQERHJCFpODFq8UllU2IkvpFIuL54Z5qW+kapsv8ynNg4REZGMoOXEoMUrlUWjTDyXSKR54dQQF0dnqrb9Mp/aOERERDKClhODFq9UFh2xE08ttFBKfvtld0sdeyu8/TKf2jhEREQygpYTgxavVBYVduKZ+QulXBqd5sDeHp4+dL39csf6Jja2xKqmqIOF2zjCauMQEZEqE7ScGLR4pbJolIknsu2X50emcwul1IRD1EdDPLi7GzPbsxAJGza11HsbbNnZgm0cYL0JR0RExDNBy4lBi1cqiY7YSdkt1H755MEzHNjbw62djTiO4dbOBno7GnCcautMNwXbOIw69EVEpOoELScGLV6pJJ4VdsaY/cDngBDwh9ba35t3/UeBXwPSwCTwiLX2WNkDlZJaaJ+6L37/JA/s6mYmmaauJsS9ve1V1X6ZzwCRcIjjg9fbOLa21ysliIhI1QlaTgxavFJZPCnsjDEh4AvATwL9wCFjzHPzCrf/Ya394uztPwA8Duwve7BSMtqnrjg68VpERCQjaDkxaPFKZfHqiN1dwElr7WkAY8zTwINArrCz1o7n3b4eNScHmvapK572wBEREckIWk4MWrxSWbwaZd3A+byf+2cvm8MY82vGmFPAfwQeLVNsUmKplKt96pZBe+CIiIhkBC0nBi1eqSy+XjzFWvsF4AvGmF8APgX8yvzbGGMeAR4B6OnpKW+AsqRs++XL847UVcs+dSsZn2rjkHLQ3Cl+pvEpWX7MiYuNTz/GK9XDq8MjF4BNeT9vnL1sIU8DHyx0hbX2CWvtHmvtno6OjtJFKKuW336Zv0/dM4f7uLu3g5ODEzTGIhW9T91Kxme2jeP44ATnR2Y4PjhBPOmqjUNKSnOn+JnGp2T5MScuNj79GK9UD69G2SFgmzFmqzEmChwAnsu/gTFmW96P/x/gRBnjk1VyXcvB08O59kvtU1c8tXGIiIhkBC0nBi1eqSyetGJaa1PGmI8B3yKz3cGT1tqjxpjPAIettc8BHzPGvA9IAiMUaMMUf3Jdy2sXRzl87qr2qVsBtXGIiIhkBC0nBi1eqSyenWNnrX0eeH7eZZ/O+/7jZQ9KVi2VcvnOGwOk0nZO++XTh/py+9SFHMPtNzWyua3B63B9SStqiYiIZAQtJwYtXqksGmVSMtn2y2OXxsGo/XKl1MYhIiKSEbScGLR4pbL4elVMCY789kvXQv9I5khdfvslBnpaa7njpma1Xy5CbRwiIiIZQcuJQYtXKosKO1m1+e2XIQNf/VEfH75nKw/u7mYqkeb44AS3b2hSUVcEtXGIiIhkBC0nBi1eqSwaZbIqhdovW+uiuaN1aTczqe3Z3Mr7tnepqCuC2jhEREQygpYTgxavVBYdsZMVW6r98pP7tqv9cgXUxiEiIpIRtJwYtHilsqiwkxVxXcv33hwgnnDVflliauMQERHJCFpOXCjecMjBda3eD8ma8uerQnwte6Tu1f4xtV+uAbVxiIiIZAQtJzpO4XjTaZczQ1MeRSXVQkfsZFnmL5Si9svSUxuHiIhIRtByonVNwXjH4mmmE1Pc3Kk9fGXt6IidFG3+QinZ9su6SGhO+2XYMSrqViHbxnF8cILzIzMcH5wgnnRzbRwiIiLVYrGc6EdtDdGC8Z4bmiQa9mfMUjlWNcKMMf/QGPMRY8yWeZd/eFVRie8UWiilrf7G9su397So/bIE1MYhIiICYAvmRPDnB509rfW0NdTccHksEsKntahUkBUPMWPMfwD+DfAW4LvGmF/Pu/pjqw1M/COVcvn2scv0Dc/MWSjFzn7/G/u2s7m1lr1bWnnXze2E9YnUqsQioVwbx6aWWm7tbCSZSjMWT3NuWIWdiIhUE1MwJxqfnmXnOIbu5hhvuWkdPS21bOtsJJ5MA/h2wRepHKsZYT8NvNda+y+BtwM/ZYz5v2ev8+erTZZtqX3qxuJpTgxOsH5dLe/c2qairgS2dzURi4bntHFEQiG+9P2TauMQEZGqYoBIODQ3J4ZDvn6jmXYtk4kU/aMzvDkwwWQi7esFX6RyrGbxlLC1NgVgrR01xvw08IQx5k+AaEmiE09pnzpvhMMOPS0xWmqjXBqbIRYN89TB09y/Y73aOEREpKoEbfEUCGbMUhlW8zbxlDHmPdkfrLVpa+1HgDeBHauOTDyV3adufvulFkpZe65rSbpwZmiS/tEZjg9McM8tHdRHQ2rjEBGRqrLQ4il+zodBjFkqw2pG2M8BP5p/obX2U8Cm7M/GmJ2reA7xyOkrk9qnziNnhqZIp93C+/boVy0iIlUkaPvYQTBjlsqw4lZMa+3MItddyPvxK8CdK30eKS/XtZwfmeL44KTaLz1ybniKpGsLtnFg9fsWEZHqEcS2xiDGLJWhHBuU651oQGTbL5Mpi2ttrv3yw/dsndN+efuGJhV1aygWcTh5YYxYJET/6ASuzRwhba+P0tag01dFRKR6ZNsa5+dDP7c1BjFmqQzlGGH+3GhEbpBtv3z98rj2qfNQyDHEIqEbLm9rqKGntd6DiERERLwRxLbGIMYslaEcR+wkABKJdK79Eq4fqcvuUzeTSLGhWVsalIO1mT9CPJlmW2cjM4kULXVRmuvDKqhFRKSqBLGtMYgxS2VYcWFnjHmXtfYHxpgaa+21RW6aWOlzSHkkEmleOD2Ua7/8+pELPLwnc6TugV3dTA5OcGdPi4q6MgnPtmpMJtK8OTCBYzJFXkt9k8eRiYiIlFcQ2xqDGLNUhtWMsM/P/v/FxW5krX3HKp5D1lgq5XK4b4Qj50fntF8+c7iPB3Z1E3Iy7Zf33tyuoq5M1MIhIiKSEcScGMSYpTKsphUzaYx5Aug2xnx+/pXW2kdX8dhSBolEmoNnhhkYj+NatV/6hVo4REREMoKYE4MYs1SG1RR2DwDvA/4h8FJpwpFyybZfHjk/yrbORr7xitov/UItHCIiIhlBzIlBjFkqw2r2sRsCnjbGvG6tfaWEMckay2+/dC18+eBpPvruW/ji90/m2i93b2rmHhV1nsi2cAxNXT89VS0cIiJSjYKYE4MYs1SGUqyK+Zgx5uPW2lEAY0wL8F+stR8uwWNLic1vv8weqfvay318Yt924okUG1vq2NPTQjR645L7svbUwiEiIpIRxJwYxJilMpSisNuVLeoArLUjxpi3LXUnY8x+4HNACPhDa+3vzbv+MeD/AFLAFeDD1tpzJYi3ai3UfpldKOXkbPvlXVtadaTOQ2rhEBERyQhiTgxizFIZSjHCnNmjdAAYY1pZomA0xoSALwA/BdwO/Lwx5vZ5N/sxsMdauwv4U+A/liDWqrVQ+2X+6pdqv/QHraYlIiKSEcScGMSYpTKU4ojdfwFeNMb8CZmx/LPA/7XEfe4CTlprTwMYY54GHgSOZW9grf3rvNv/EPjHJYi1KqVSLj84NcRltV8Gglo4REREMoKYE4MYs1SGVRd21tqnjDEvAf9g9qKfsdYeW+w+QDdwPu/nfuDuRW7/EeCvCl1hjHkEeASgp6enqJirSSrl8uKZYV7qG1H7pQdWMj7VwiHloLlT/EzjU7L8mBOXGp9+jFmqQ0lGmLX2KPAs8BwwaYwp2SxsjPnHwB7gPy3w3E9Ya/dYa/d0dHSU6mkrQiKR5oVTQ1wcnVH7pUdWMj7VwiHloLlT/EzjU7L8mBOXGp9+jFmqw6qP2BljPkCmHfMmYBDYDLwO7FzkbheATXk/b5y9bP5jvw/4N8B7rLXXVhtrNVlooZT89svuljr2qv3Sd9TCISIikrFYTnRdi+P4r1xSHhevlOIcu98B3gF8x1r7NmPMP2Dp8+EOAduMMVvJFHQHgF/Iv8Hsypr/FdhvrR0sQZxVY/5CKZdGpzmwt4enD11vv9yxvomNLTEVdT60UAtHWC0cIiJSZRbKiY5jODM0xc2dDV6HeAPlcfFKKUZY0lo7TGZ1TGd20ZM9i93BWpsCPgZ8i8zRvWettUeNMZ+ZPQIImdbLBuBPjDFHjDHPlSDWipdtvzw/Mp1bKKUmHKI+GuLB3d2Y2Q+2ImHDppZ6b4OVBdiCLRxgvQlHRETEIxHHKZgTpxNp+q5OeRTVUpTHxRulOGI3aoxpAP4W+GNjzCCw5CvNWvs88Py8yz6d9/37ShBbVVmo/fLJg2c4sLeHWzsbcRzDrZ0N9HY0+LJ9QQBMwRYOo+58ERGpMuvqIiQHbsyJJy7H2dm9zuvwFqA8Lt4oRWH318A64ONkWjDXAZ8pwePKMiy0T90Xv3+SB3Z1M5NMU1cT4t7edrVf+pwBIuEQxwevt3Bsba9XOhARkarT01rP0YvjvDkwt60xFgkR9ukH1Mrj4pVSFHZh4NvAVeAZ4JnZ1kwpE+1TV1l00rWIiEiG4xi6mqJEQ+sYmU5QGw1zaXSaWCSEa/3Z2qg8Ll4pxT52/x7498aYXcDDwN8YY/rVSlke2qeu8mj/GxERkXyGS2MzDE0lcnkxFgn5Ni8qj4tXSjnCBoHLwDDQWcLHlQWkUq72qatA2v9GRETkuqDlxaDFK5WjFPvY/QvgIaAD+BPgn1prj632cWVx2fbLl+cdqdM+dcGnFg4REZHrgpYXgxavVI5SnGO3CfiX1tojJXgsKUJ++6X2qas8auEQERG5Lmh5MWjxSuVY9Qiz1v4rFXXl47qWg6eHc+2X2qeu8qiFQ0RE5Lqg5cWgxSuVoxRH7KRMXNfy2sVRDp+7qn3qKphaOERERK4LWl4MWrxSOVTYBUQq5fKdNwZIpW3B9suZZJqQY7j9pkY2tzV4Ha6sglo4RERErlsoL4ZDDq5rffdBtvK4eEUjLACy7ZfHLo2DUftlpVMLh4iIyHWOUzgvptMuZ4amPIpqYcrj4hUdsfO5/PZL10L/SOZIXX77JQZ6Wmu546Zm331qJcunFg4REZHrrGsK5sWxeJqZ5BQ3d/qrU0l5XLyiws7H5rdfhgx89Ud9fPierTy4u5upRJrjgxPcvqFJRV0FUQuHiIjIdW0NUY5evDEvjg5NsrN7ndfh3UB5XLyiEeZThdovW+uiuaN1aTczUezZ3Mr7tnepqKsgauEQERG5rqe1nraGmhsuj0VChH34/kd5XLyiI3Y+tFT75Sf3bVf7ZQVTC4eIiMh1jmPoaooSDa1jZDpBbTTMpdFpYpEQrrVeh3cD5XHxigo7n3Fdy/feHCCecNV+WaXUwiEiIjKf4dLYDENTiVxujEVCvsyNyuPiFY0wnzl9ZZJX+8fUflnF1MIhIiIyV5ByY5BilcqiI3Y+4bqW8yNTHB+cVPtllVMLh4iIyFxByo1BilUqiwo7H8i2XyZTFtdatV9WObVwiIiIzBWk3BikWKWyaIT5QLb98vXL4/SPTNNWf2P75dt7WtR+WSXUwiEiIjLXQrkRMh+Q+4nyuHhFR+w8NL/9Eq4fqQsZ+I1925lJpNjQXMs7t7YRDqsOrwZq4RAREZkr6dqCuXEmkebMkL82KVceF6+osPNIofbLrx+5wMN7MkfqHtjVzeTgBHf2tKioqzJq4RAREZmroSZcMDdOJ13ODfursFMeF69ohHlkofbLZw738cCubkJOpv3y3pvbVdRVkWw7iVo4RERErtve1URzfXTOZY2xCF/6/kmiPnufpFZM8YqO2HkgkUir/VIKOjM0xUwiXbCFI+mzcwikenRv6uFi//kV3femjZu4cL6vxBGJSLUJhx16WmK01Ea5NDZDLBrmqYOnuX/Hevx2IEytmOIVFXZllkikeeH0kNovpaBzw1MkXVuwhaOhRi9X8cbF/vM8/F8Prui+z/yze0ocjYhUq5QLZ4Ymc5uU33NLB/XREOGQg+ta3ywwp1ZM8YpGWBmlUi6H+0Y4cn5U7ZdSUE3Y4UvfP0ljbG4LR3N9lO1dTR5FJSLVqntTD8aYFX91b+rx+p8gFcRxCrc4ptMuZ4amPIrqRmrFFK94dgjAGLMf+BwQAv7QWvt7865/N/D/ALuAA9baPy17kCWUSrm8cGqIgfE4rlX7pRQWcuD+Hev54787yy/f00s8kWLDuloaYo7GhYiU3WqO1oKO2EppWdcUbHEci6eZSfpnARW1YopXPHmnaIwJAV8Afgq4Hfh5Y8zt827WB/wq8D/KG13ppVIuPzg1xMt9I9RFw3zjlevtl2PxNCcGJ+hsiqmoE8Ihh/poiHtu6eD4wAT9ozOcGZpEuUCq1WqPGIWjMU+POHkd/2rvL+InbQ1R4kmX44MTnB+Z4fjgBPGky7mhSV8toJJtxZwfp1oxZa15dcTuLuCktfY0gDHmaeBB4Fj2Btbas7PXBfotbSrl8uKZYV7qG8G18OWDp/nou2/hi98/mWu/3L2pmXtU1AmZPvzG2ghDU4ncZY21EfT+SqpVKY4YeXnEyQ/x64ibVIqe1nraGsbn5EiAWCREyDG+Oc9OuVy84lVh1w3kL7HWD9y9kgcyxjwCPALQ0+OvXn7XtRw8PcylsRlcS+5I3dde7uMT+7YTT6TY2FLHnp4WotGQ1+HKGlju+EymC2/AmkprRUwprbLNnU442Ed+gh5/QPk5t4t3HMewobmGaMhhZDpBbTTMpdFpYpEQyZRbto3KlxqfyuXilcAvs2etfQJ4AmDPnj2+ecW4ruW1i6McPneVbZ2NuaIuu1DKycEJ3tbTwl1bWnWkroItd3xaW3hFTNf6ZmhLhSjb3Ommgn3EKOjxB5Rfc7t4z7qGS2MzuZUxHZM5YlfOjcqXGp/K5eIVryqKC8CmvJ83zl5WEVIpl28fu0zfcOZI3aXR6RtWv9yxvone9joVdTJHeIH+e/Xli4iIZM6zK+Tc0CSRcGbbA68pl4tXvBphh4BtxpitxpgocAB4zqNYSirbfnns0jiYTPtlTThEfTTEg7u7c/3VkbBhU0u9t8GK72iJZBERkYVlzrOrueHyWCQE1vpi2wPlcvGKJ62Y1tqUMeZjwLfIbHfwpLX2qDHmM8Bha+1zxpi9wP8EWoCfNsb8e2vtTi/iLVZ++6VroX8kc6TuyYNnOLC3h1s7G8FAT2std9zU7IsTfMVftESyiIjIwhzHsLG5tuB5duVsx1yMcrl4xbNz7Ky1zwPPz7vs03nfHyLTohkIqZTLd94YIJW2uBZC5vpedQ/u7mYqkeb44AS3b2hSUScLyi6RPL8vX+0bIiIiGevqIrzSP3rDeXbnhibZvqGJVMr19FQX5XLxikZYCRRqv2yti+aO1qXdzIt6z+ZW3re9S0WdLEjtGyIiIovraa2nfYF2zHjS5ejFMQ+iuk65XLwS+FUx/eD0lckF2y8/uW+72i+laGrfEBERWZzjGHZ2NxEp0I556sokKdflrbR4Ft9iudwve+1JZdIRu1VKJNIcH5yc035ZFwnNab8MO0ZFnRQl275xfHCC8yMzHB+cIJ501b4hIiKSZ1NLPYm0S//oDG8OTDCZSGMtPH2oj5a6qKerY0bDoYK5HPDF4i5SufRucRUSiTQvnB7CtVbtl1ISjlmgfUPDR0REJMdxDJtb63jrxmYcA2kXnjx4ho++5xaupdKcvjLpWWxtDdGCufzEwCTnhlXYydpRYbdCqZTL4b4RjpwfndN+CfDJfdvZsaGR9+3o5N5b2rVXnRQtmba59o1NLbXc2tlIMpUmlfZ+Xx4RERE/aYiFGZ6Mc2tnIz2ttXxy33ZCxvL6pQlPj4xtaqmnviY8N5cn0/zRD84Q1XtCWUMaXSuQSrm8cGqI8yPTuFbtl1IarmtxrS3YvuFaFXYiIiL5elrrqauJzMmZMwmXpw/1URPxbrNyxzG01oUJOYYLozO8fnmCL/zNKQ7s7UFnVsha0vBaplTK5Qenhni5b4S6aJhvvHKBh/fMbb+8s6dF7ZeybIu1jdSEQmWMRERExP8cx7CppZYd65vmtGMe2NtDJGQ8bccEw5WJeOY7Aw/u7qY+GtI587KmNLqWIZVyefHMMC/1jeBa+PLB03z03bfwzOE+HtjVTciB3ZuauWdrm9ovZVlc13LiyiQnBicL9uW3NUY9ikxERMS/musixFNp4HoBtX5djBMDk5y8MundUTudMy8eUPVRpOxedRdHZ3BtZq+6925fz9de7uMT+7azubWWd2xt497edqJRHV2R5Tl9ZZKakMMfvXCGZHLuOXb1NWE2tdR7HaKIiIjvbGqpp2Gh89lCjidH7VzXktA58+IBFXZFyu5Vl99++czhPu7u7eDk4AQdTTHu2tKqok6WzXUtJwYnSbqWA3t7+MLfnOL1yxNcGJ0h5Bi6GmrU1isiIlKA4xg6G2oKns+WdC3HBydJpcq7F+yZoSmSKbfgOfMq62QtqbBbgutazg1P5vaquzSaWQEzv/1yx/ometvr1H4pK3LqyiRpazk3NEl9NLMIT7ZV48pEnHV1kcUfQEREpIqtq4sUPJ/t3FCmFfMHp4bKWtydG55iOln4+RpqwmWLQ6qPKpFFuK7le28OcOziRG6vuppw6IY335GwUaucrEgikebE4AT9I9PEIjce7e1qitHTqrElIiKykJ7WerqaYjdcHouEOD8yzUt9I7x4ZrgsxV0q5RIJGb70/ZM0xuZ+MNtcH2V7V9OaxyDVS4XdIk5fmeTV/jFevzw+Z6+6qUSmZ3r7+sxede+9TStgyvK5ruWl8yO5LTOshXgyzbbORnpaatmzuYX7tbqqiIjIohzHcP/2LvZuaaWnpZZtnY3Ek2mshacP9ZF24dLoDC+U4cjd0YtjzKRc7t+xnj/+u7PcMpvT925upbetXt1dsqY0uhaQSrm59kvtVSdr4czQFH1Xp+d8aDAWzxzBa4xF2Nym9l4REZFihMMO79zaRkdTjBODE4zF0zx58AwP7+nhL169QG00zMt9I2te3F0YneH0lcypFffc0sHxgQn6R2c4MzRJQ0xtmLK29K6xgEQizQunhnCtJWTQXnWyJs4NT1EXDc/50CDb3mutVXuviIjIMoTDDr3tdexY30TIgQd2dfPM4T4O7O3h0ug0aRde7hvhb08NcW54bbZCaG2I5rpw8rU11LCxua7kzyeST4XdPIlEmhdOZzYg7x+Zpq0+esNiKW/vaeHem9t1NEVWJRZ1cnsh5n9osHtTM811YfquTnm2/46IiEgQbWqpJxLOfEqav5BKTTjEX7x6gbQLP+4b4djFCb597HLJj95Fw4aPvmduXn/rxmZuaq7hW8cuc3bIu731pPLpmHCeVMrlcN8IR86P5tovP3zPVkIGfmPfdmYSKTY01/JObUAuJVATCnH/jut7IcYTKTasq8VxLD88MwKMsKWtnjt7mulprdfRYRERkSU4juG9t3WxpbU+c0qNazk/Ms3Th/pyW1U9sKub1y+PA1AXDXPvLe0ly7HWNYSM5ZP7tjOVSFEfDTM8GSft1vDmwARvDkwot8uaUXUyK7sB+fmR6dwG5Nn2y+x5T51NMRV1UjJtDdGCPfiv9o/nzu381//z7/mzH1/gm0czn/K9eGqI01f0aZ+IiMhCHMdwS1cj+3Z00RALM5NM59oys+fcpd1Mnj187ipnhqZK9txtDdGC+9edujKp3C5rThXKrIU2IM+2X96p9kspsZ7WejrnLc+cXcHLMcyukuniWnjs2SP82Y8v8PNf+jve//m/5ZtHM+0jp68oIYiIiBQSDjvce3M7d/a0zDnnLlvcOQbSLvRdLV1hp9wuXlKVwtwVMLPnPOUXdbs3NXOPjtRJiTmO4X3bu9izuTWXXJ48eIYDe3toq4vyZy/3E4s4c5IAZL5/7NkjHDw9zPs//7dzEoLrWlzXKimIiIhwvbjbs7n1hgVV2uqi/MWrF4iW8P2dcrt4qerPsUsk0hw8M5zbgPzhPT1zznnqbqljb08L0eiNm0eLrFY47HDvLe10N9fSd3WKu7e28Malcb74/dOMTCd49L3b+MoPz+WSQFY86XL43FXiSTf382PPHuG2X7+PNwcmeOzZI8STLrGIw+MP7Wb/zvW5Pn7XtZwdnmJgPE5XU4wtbXN7/Je6XkRExM/y89iGdTHSLjTGQtx3SzsDE9fYsX4750emcwVXOFTaHOfH3F7sbSTYqrqwy66AeeT8KHXREAf29vD0ocyRupODE+xY38TGlpiKOllTjmO4ubOBmzsbcF1Ld3MdN7XUcXxggq/88Bwj0wk+fv82nnrxXO4+sYhDet5CXvGkS9/VqdzEn73ssWePsP3R++jtyDz+N49eXjA5LHX9fEoSIiLipfl5qKeljm+/PsBjzx6hpS7KL79zM5/77gk+cm8vb920jquT1xiaSuDa6ytmhk3pO7L8lNuzv6di87tye3BVbWG30AqYD+7uzh0WNwbtJSZllU0EW9vruX1DE/fc3EZHQ4wzw5OMTCeAzMT/2Q/t4vH/9eac+8YiDnXRcG7iz4onXQYn4vR2NHB2ePHksNT1+VQEiohIOSyUPwrloSd+aU/u55+5cyOf++4J4kkXYzLrKdRFbvywvq0huqbxe53bgaLz+3Jze/Y+yu/+UJWFXbb9cmA8fsMKmPMXS9HAFC84jqG3oyE32W5tr+f5R+9jcCJOZ2PmE8lIyLlh4u1qqiEWceYkgFjEobMxcyL3wHh80eSw1PX51rIIzL/fcpOFEoyIiPeKnYuLOT1gofxRKA/ltzIaw5yclv0QP19nU4ye1vJ8iO9Vbi/2NrC83A7lLQSV35dWVYWd61r6R6c4OTjFkfOjbOts1AqYEgjzkwHA/p3r2Z6XELa0ZRLT4w/tvmGCzV7X1RRbNDksdX2+tSoCs1aaLFRAiojcaDVz1nLvW+xcXMztFssfhfKQa5mTx7Lff+2lfn7pHZvnfIi/Z3Mr9/S2eTZ3lyu3F3sbWF5uh/IUgqu9XzXld88KO2PMfuBzQAj4Q2vt7827vgZ4Cng7MAw8bK09u9zncV1L39UpxqaT9I/O0BSL5NovsytgfvH7J7UCpgROoYQAhZNCdkLa0la/aHJY6vp8a1UEZq2kGPRzAbnaE9sLnUfSNzIdyMQjslpr9car1I9bysdbbWG2kjfFK71vsXNxMbdbLH8UykPfeOUCn/3QLn7za6/ytZf6+fj92/jcd09waSzOM4f7+J0H30IkZHw7b65Fbi/2NrC83A5rXwiu5n5BzO+djTFCDlwaW9mc4UlhZ4wJAV8AfhLoBw4ZY56z1h7Lu9lHgBFr7S3GmAPAZ4GHl/M8rmv53psDXByZYcO6Wt4cmKC7uXZO+2X+CpgbW+rYoxUwJeAWSgrZ6xZLDktdn2+tisCslRSDfi0gV3tiO3DDdb/7wTv4/e+d4NzwzLLepIkE3WqKlHI+bikfb7WPtdI30yu9b7FzcTG3Wyx/FMpDv7l/B/t2dPGW7nUMTsRZ3xRj3+3ruTK5eE7zu9Xk9mJvA8vL7bD2heBq7hfU/J5dVGdkOrHsOcOrw1J3ASettaettQngaeDBebd5EPjy7Pd/CtxvjFnWK/Hs8BSv9o8xNJXg6nRmBaT5G5Df3dvBycEJOpti3LWlVUWdVLxscnhHbzu9HQ03TBZLXZ9/u/071/P8o/fx9CN38/yj9y04+WQTRSySmXKWShRwPVnkW6oYXMl9FksWpbrPQoni7PBUUbcpdN2nvv4aD+zqXvDxRCpVMa8nPzxuKR9vtY+1knluNfctdi4u5naL5Y+F8lA47OTy2Jb2zMqUS+W0oCsmdxd7m2JzOyw/v68kT6/0fkHN75/77gl+5s6NK5ozvCrsuoHzeT/3z15W8DbW2hQwBrTNfyBjzCPGmMPGmMNXrlyZc112cZRsQRcy2oBcymux8VkJ1qIIzFpJMejXArKYRLHYbRa6Lv+jrmLfpGVV+tiUYFsqt6+0SFlMqR+3lI+32sda6Zvpld632Lm4mNstlT+KzUOlVOnz53J+p2tdCK7mfpWQ35c7ZwR+8RRr7RPAEwB79uyx+dd1NcXI7jl5aXSatvoo9+9Yr/ZLKZvFxme1WayNZKHbF9sWupr7LLftZCX3KcWJ7YWuy9/Yttg3aVkam+JnS+X25bZ2F6PUj1vKx1vtY61knlvNfYudi5dzu+Xkj7Wm+XOu5fx9VpKnV3q/Ssjvy50zvCrsLgCb8n7eOHtZodv0G2PCwDoyi6gUbUtbPW/ZuI6LIzO5y0IGfuWeXmYSKW5qqeWuLa06UifiUytJ5n4sIEtxYvv867Ln2EHxn3iKVILVFCnlfNxSPt5qH2ulb6ZXc99i52K/FW2y9lb6N6+W/J49x24lc4ZXhd0hYJsxZiuZAu4A8AvzbvMc8CvAi8DPAt+z1i7rUxHHMbz3ti76rk4xPJkgZV1SaUsi5XL7hia2tgfzBFoRKa21LiBLcWL7/Ot6Wuq4s6dl2W/SRIJuNUVKOR+3lI9XisdaTQGl4kuCKmj5vaMhsyrm23qaV/Q696Sws9amjDEfA75FZruDJ621R40xnwEOW2ufA/4I+Iox5iRwlUzxt2yOY9jS3sCW9lJFLyKyfMUkiqVWPZt/nd5oSbVaq0Kj1I9bysdTcSXiT2uR37e0r+x17tk5dtba54Hn51326bzv48DPlTsuERERERGRoNHJZSIiIiIiIgFnlnnamq8ZY64A5xa4uh0YKmM4xfBbTIpncQvFM2St3b/UnZcYn8t9Tj/wa2yK67pSjU0//E4VQ+XFsJZzZzH88LucTzEVpxwxrXZ8ev178/r5/RBDpT7/gmOzogq7xRhjDltr93gdRz6/xaR4FudFPH77HeTza2yKq/T8ELtiUAyl5sd/h2Iqjh9jms/rGL1+fj/EUI3Pr1ZMERERERGRgFNhJyIiIiIiEnDVVNg94XUABfgtJsWzOC/i8dvvIJ9fY1NcpeeH2BVDhmIoHT/+OxRTcfwY03xex+j184P3MVTd81fNOXYiIiIiIiKVqpqO2ImIiIiIiFQkFXYiIiIiIiIBp8JOREREREQk4CqqsNu/f78F9KWvcn8VReNTXx58FUVjU18efRVF41NfHn0VReNTXx58LaiiCruhIS83lxdZnMan+JXGpviZxqf4mcan+ElFFXYiIiIiIiLVSIWdiIiIiIhIwIW9DsBPUimXo5fGuDQWZ8O6WnZuaCIcVu0r5ee6lrPDUwyMx+lqitHTUkffyHTu5y1t9TiO8TpMqWKua+m7OsXA+DWmEik2t9aztV3jUkRkIcrtstZU2M1KJNL8+asX+YO/PsEDu7o5dmmcq1PXeFdvO9FoyOvwpEq4ruXM0BSvXxrnxOAEzx7uZ2Q6we9+8A5+/3snODc8Qyzi8PhDu9m3o0sJQTzhupbvvTnAiYFJnj7UxwO7ujlyfpS9m1t5Z2+bPhATEcmj3C7louxL5kjd4b4R/uCvT/Dwnh7+4tULpF348flRDp4ZJpVyvQ5RKpzrWk4NTvL831/iuVcu8H89/zr/9fun+aV3bKalLsqnvv4aD+zqBiCedHns2SMcPD3M+z//t/z8l/6O93/+b/nm0cu4rsV1LaevTPLiqSFOX5nEdRddQElk2U5fmeTV/jGePtQ3Z848dO4qPzg1pDlTRATldim/qi/sXNdy8PQw50emeWBXN88c7uPD92wl5IBr4cd9I3znjQG9gGTNpFIuL5wc4s9fucAbAxN8/ciF3KT/+e+d4Gfu3Eg86WLyPrCLJ10On7tKPOnmfn7s2SOcGZrim0cvF0wKIqXgupYTg5O4ltycmV/cvdQ3ouJORErKWsv09DTWBieXKbeLF6q+sDs7PMXhc1epi4YJOXBgbw/TyTR/fuQC1l7fMOL8yJTXoUoFSqVcXjg1xOFzV3EtfOOVCzy8p4dnDvfNmfRjEYf8fBaLOKTnvW+OJ136rk7x2LNHbkgKZ4c1fqU0zg5PkbaWkIGQo+JORNbezMwMD3/+W8zMzHgdSlGU28UrVV/YDYzHcS18+eBp3rqxmU0tdTe0F71+aZwzQ9N6kyIl5bqW77wxwMt9I7gWQgY+fM9WnjmcOWcpO+k7Bn73g3fwF69eADKXffZDu3I/Z8UiDnXRcG7iz4onXQYn4nOeV+0cslID43H6R6Zpq4+yY0PTnOIuv9vhZXU7iEgJhaMxr0MoinK7eKmqF09xXUsqba9/knLoLB9826Y5n0BnX4gv941ggHfd3K6FAaQk+q5OMTgen3OZMZmjxjPJNAD/4R+9hTt7mtnYXMedPS0MTsTpbMyspBUJOblP8LInXXc11RCLOHMSQCzi0NmYSYiua/nm0cs33G//zvU6OVuWlJ0zv/qjTBE3PBHnbZua+fH50TndDg/s6saa690Om9savA5dRKQslNvFS1Vd2J0dnuJTf/73cwq4aMi54RPo4elE7hPomWSafbfrhSKrNzyZYCox941wR1OMnoiDxbC1rY6e1uurYfV2NNDbcf0N8v6d69n+6H25hLClrR6Axx/afcPknr3u7HDhdo7tj94357FFCsmfM588eCZ30v+dPS1MxlP8p2+/MWc+ff3SOLWREN3r6vSBmIhUheHJRMHLb+5oIBJ2lNtlTVV1YTcwHufc8Axf+eE5fubOjRgDJwYnubOnhZf7RuZ8An1gbw+bWupIuZajF8fYedM6FXeyKvFUmqcPZT48uJZKs6G5jomZJPXRGHf1tBKLLf7ydBxzQ0KAwkkhO1YHxuMLtnNkH2f+PjtaalmyCs2Zl8YTvHVTM9OJ9A3dDgf29jAZT/Ht1we4rbOBrR0NGksiUtFSNpNjG6IhNjTXMZNI0VofZV1dhLdtbFnyQ661yu2g/F4Nqrqw62yMEYs4XBqL84W/PglkDm1/8+P3YYCJ2U+gP3zPVqaTaf7Tt9/ggV3dHB+YYHQ6qf2aZFWuJV0O7O2Z7bcPcWJwAtfChdEZZhJpfnKFR4YXSgoAXU0xtXPIimTbMAvNmR+6s5vbOsO8cXl8TreDMXB8dly/eXmct2xcx3tv69JYEpGKNz+v39rVuKq5bzW5HZTfq0VVVyUhBz5+/zZikcyvIRZx+Pj924DMuXSOY3hgVzfD04nckZV1sRDbOhu5NDbDi9rjTlZhc1s9m1rqiCfTTCXSHDx5hVu7GrmpuZa6mjD9o6Vf7WpLWz2PP7R7zpgvpp1DK29Jtg3z0ffOnTM/+6FdbGmrZ2tHA3s3t+Za2a+l0rlW4/poZt6MJ12OXhzTSf0iUrFSaUt89ly6hmiI27oa6W6upSbsrNkK60vldlB+rxZVfcTu0licp148x0fu7cUYsBaeevEcb+tpZkt7A7d1NvDG5XFcS+7ISnp2Bc1/+u5bSKZcvvPGADd3NHCzWoxkmba213N8YIINzXV8+eBpPnRnD3/xynl+8R1bGZ5MEAkZOmprqK2NlOw5HceUpJ1Dqk9+G2b+nNndHMuNn3f2tuFay0t9I2xoruM/53U8/PfZefPKxDW+feyy5k0RqUjXki6b2xsYGJth/boa1tWGSbuWaNjh7NAUm1pK3/64VG4H5fdqUdWFXVdTjJHpRK6lCOYeus5+An343FU2tdRxfHCCgyev8It3b+H0lUmePtTHR961lXW1YS6NzXAt5dI7+8m13qzIUhzHcGtnAy/1jfDL9/TyF6+c5/4dG/jLV/r54J09DI5f41Uzzh3rG6ivrSnp866mnUOqU3ZsFGrDzAqHHd51czuQeROR7XiYP28e2NtDLOIwNHmNkakE3S117NzQpNZ2EQm8zW31nBueoi7q0FIfJexktjaIhBxSbpr+0Sl6WktfSC2W20H5vVpUdRbtaanjsx/ateCha8cxvLO3jR0bmsBk9mb65Xt6OTM8xdOH+vi199xMY22EI+fH+Px3j+NauDg2ww9ODfG91wc4Nah9RGRxWzsa6G6pZSaR4hffsZWXzg7xgd3dZD8WcF3Lj/tHicdTZYmnmHaOfNo3p3osNV9mZYu7Dc21uT3t8ufND9+zlbb6CJfGrvFbf/Yq565OMzJ9jUPnrvL8qxd55fyoWtxFJLC2ttdzLe3y1p51REJhrkxco6OxhgsjU4xMJZkqUz6fbzn5Xbk9uKr2iJ3rWr79+gCP/683+ci9vYQc2LO5lXt62+YcbQuHHfbdvp6jF8c4MTDBTCKFazPnkNTVROYcxRsYm2Eqkea7r1/mn777Fs4NT3FicEItR7IgxzHcvaUNx1xlYPwav/yuXq6Mx3Gti2shmXZJu5azI5Ns39BclniWaufI0onY1aPY+TIrHHZ459Y2XNdmtonJmzeHpxPc2tCYW5iqNupwaewaX/ybkxzY20M45DA2kyCVtmxuq2dru1ZtE5HgcBzD7esbOD00Rchxcrm8taGGyXiSmYQ3H1wVm9+V24Otagu7/JNI89uKni+w54fjGHbetI6BiTg14RAXR2ewBqaupXKfRp8cnABQq6YsWzjs8PZNLbzcPwIuhENmTuuGMZZUunzxLNXOkaV9c6rHcubLrOyRu5lkmvqacG7edG1m7ixU5BkDl8dmiCfTbG5v4OLoNBfHZkimXBV5IhIYU4l0wVy+qbWOcY+O2EFx+V25PdiqtrBb7kmkjmN4721d9I9OMTLdQCTkkHYtIUPu02i4XuT9+ZEL/Np7biYSCXHk/FjuKN7FsRmuTF0j7drMCbZ6syJANBrirRvWcWZkimjIAAZjwDGGaMjg+LBpWidiV4+V/q2zHQ/58+Ybl8apj4VzbZr5RV5DNEQskvkaGJuZfZ5MkXdlYobBibjOyRMR3zNQMJfXhENcSya9Dm9Ryu3BtuaFnTFmP/A5IAT8obX29+ZdXwM8BbwdGAYettaezbu+BzgG/La19j+XKq6VnETqOIae1gZuaqrjxJVxzo/E2dJeT3tDDRdHM29ClmrVzIon02xb38jQVJzBiRnSLiT0qXRVq62NEBqD6YRLc12IjsYYgxPX6GyqoYQLY5aMTsSuHqv5W8+fN9OuZfpakrdubObV/tE5Rd6G5jpOzHY/5Bd5Y9PXuDplcu2adTUhftw/Qirtau4UEd9xHAg7hvTslGkMhIwh5MDWBc5Z9wvl9mBb08LOGBMCvgD8JNAPHDLGPGetPZZ3s48AI9baW4wxB4DPAg/nXf848Felji17Eun8HuKFFonIFw477NjQzG1dlvMjU0zMpLi5s4HRqQQ3Ndcu2qqZfbPSXBdhdDrJ+eHpOeflXRzNLCQAYLGA0ZuXKpJMgQUaakIkU2nAYoCUC4lEmmg05HGE163mNSTBUoq/9fV5cx19V6eYjKe4tauRqbwiL7/7Ib/Iu7Vz7jl5I9NJ+jR3iohPOQaaaiOMTF0/j6Jp9hPam31+1Eu5PdjW+ojdXcBJa+1pAGPM08CDZI7AZT0I/Pbs938K/IExxlhrrTHmg8AZoOS7Jy5nkYjFHmNzW+YFun19E28MjJNKu9zcuXCrZvbNyq2djRyfd17ewNgMsYhDJJx5Ux8Jh5iYSRb15iUacrBkF9vQG5mgmkykubnjxk/FomEYmJpgU7S5/EEtoBSvIQmGUv6tHcewpT0zb95+09wirybscGFe9wPceE6e5k4R8bOaSGafz3zRcObInd/nFeX2YFvrwq4bOJ/3cz9w90K3sdamjDFjQJsxJg78Jpmjfb9R6sBc13J2eIqB8ThdTasftOGwwx3dzQDccZO7ZKtm9mgezD2ily34llP4ZS+bmMn0beefk3J1+tqcNy8LvaFZ7PqV3KdSHrPcb/auTFyjp7Uusw+Jyf2HGv8cqJuj2IVWoPSvOfHG/DcrqzG/yDs/MkUi5TI0eY3W+miuyJt/Tt5azJ3LKQLXaq4p9/y31vdRoSzVKupA30iagYlrdDXF6GnJJPGgbOSynNwOyu9+4ufFU34b+L+ttZPGLDw4jDGPAI8A9PT0FPXAa72U62Ktmtk3K/WxMKHZp5r/yfRy37xkv59/Tsp0Yu6bl4Xe0Cx2/UruUymPmX2z97nvnljxOFnu+NywLoYDfP/EBJ9+7rXc837mAzu5b1sTYzNx1tUGr89dyyf7z3LGZjn+ftkOiE0t9fRdnWJsOsmtXY0MT1678Zy8Es+dUHwRuFZzTbnnv7W+T7nnTpFyWmx8js7EC+bwd29rqsjNo5Xf/WWtx9gFYFPezxtnLyt4G2NMGFhHZhGVu4H/aIw5C/xL4F8bYz42/wmstU9Ya/dYa/d0dHQUFdRCS7meHS5tx2f2jcodG5t5/84N3Lm5hea6CLd2NTJ9LcmW9nra6qPc1FxLyEDIkHvTkv1/fitn/puW7P/zv9/QXMfQVIKhqQR10QhnhqbmfF/osqWuX8l9KuUxh/7/7d17mBx3def/z+m5qKW52PJoNCNblkYCEWEZRybC3GICGMKQEDshIDs34BcnXhIck9Xu71nyC+uHBfZZSDbisjhLvAmLIQRbkE2iJMZOgg3kAl4LLBtkY1vIgy0bzcgjWTOamZ5bn98ffVHPeC4901VdVV3v1/OM1JfqqlNV3zpVp7vqW2NT5QOT1baTlbbPyy48T0+emi3vEErTvfngET11alaPngj8rOS6qNc2h+qtpG3Wc/2VfsX78S3r9eZLN+k1L+rWC7o7tKE9vNxZeRP1qHJNvfNf2J+pd+4E6mmp9vnYibEF9+FPnprVk6fqeO+iOmH/Hi9h/2J3v6QdZrZNhQLuOkm/PG+Yg5LeKembkt4m6R53d0lXlgYwsw9IOuvunwoiqCi6cq08VTOf9/I30tP5vJoyKv+iVzpoKf0/OjFd7pBFev7BS+VrC317Xfl4odeWe381n2mUcUqqeztpbW3S4OjkgtMdHM2pdGpm0tB9crJFtf5KRV7fhsLzl1wUTu6Ulv/1L+xcU+/8F/Zn2N6RVoMjjbcPXwr793gJtbArXjN3o6S7VbjdwWfc/YiZfVDSIXc/KOnPJH3ezI5KOqVC8ReqqLtyrbyupOQlF+b1/cERnZ2cUUvGzl2rsH6tmpc5eCk97ljTPPealHkHL4sd0Cz1/mo+0yjjlBRJO+npXLPgdHs6sondJ0S9zaE2cVl/YeXOlRSBYeWaeue/sD8Th/YCRKER9+FLicv+AQXmQV4JH7E9e/b4oUOHlh0uiecDz8wscvBScRF7U8b09HM5DZ+djPW1a0kZ5wquE6mq0VTbPp+byOkfvndywWvs1q3Jco0dViKQtpnk9VdN7nRJTRnpqdM5PTc2xTV29bvGLtDcicY1Pj6uX/n01/WFd/+U1q1bV6/Jrqp9LrYPf82OTmXXZHV+AvfhS0ny/iHBFl2wqSzspHM9+DRaV66l0zyHz05J5nKPZ2+TSRlnlb1iBn5w8txETo+dGNPgyKR6OtZoywVNWpvQoq6kUbe5mAusbaZh/VVbBNIrZmC9YlLYoSpJKuykhffhjVjUlaRh/xAziy7cOPeKGaqVduWaFPOvSUEynb82qyu2NdYOoFG3ubRIw/qrvBYaAFarEffhS0nD/iEpGrHnVQAAAABIlVT+YseNFIFkYFuNB9YDACAo7FPCk7rCjos8gWRgW40H1gMAICjsU8KVulMxuZEikAxsq/HAegAABIV9SrhSV9gtdSNFAPHBthoPrAcAQFDYp4QrdYVd6UaKlbiRIhA/bKvxwHoAAASFfUq4UlfY9XW1af/e3eVGVTq3t6+rLeLIAFRiW40H1gMAICjsU8KVus5TMhlT/65e7bzpSm6kCMQY22o8sB4AAEFhnxKu1BV2EjdSBJKCbTUeWA8AgKCwTwlP6k7FBAAAAIBGQ2EHAAAAAAlHYQcAAAAACZfKa+zyedfA8JgGR3Lq6eSiTaCRsH0Hi+UJAIgD9kfLS11hl8+77jpyonzX+1I3q/27emkcQMKxfQeL5QkAiAP2R9VJ3amYA8Nj5UYhFe52v+/AYQ0Mj0UcGYBasX0Hi+UJAIgD9kfVSV1hNziSKzeKktx0XkOjuYgiAhAUtu9gsTwBAHHA/qg6qSvsejqz5bvdl2RbMtrYkY0oIgBBYfsOFssTABAH7I+qk7rCrq+rTfv37i43jtI5un1dbRFHBqBWbN/BYnkCAOKA/VF1Utd5SiZj6t/Vq503Xamh0Zw2dtCrDtAo2L6DxfIEAMQB+6PqpK6wkwqNY3t3u7Z3t0cdCoCAsX0Hi+UJAIgD9kfLS92pmAAAAADQaCjsAAAAACDhKOwAAAAAIOEo7AAAAAAg4SjsAAAAACDhUtcrZj7vGhge0+BITj2ddJUKgLywFJYNACCp0rYPS1Vhl8+77jpyQvsOHFZuOl++uWH/rt6GXskAFkdeWBzLBgCQVGnch4V+KqaZ9ZvZo2Z21Mzet8D7a8zsjuL795lZX/H1K8zscPHvQTP7hVpjGRgeK69cScpN57XvwGENDI/VOmoACUVeWBzLBgCQVGnch4Va2JlZk6RbJL1Z0iWSfsnMLpk32PWSTrv7CyV9TNJHi69/T9Ied98tqV/Sn5hZTb8wDo7kyiu3JDed19BorpbRAkgw8sLiWDYAgKRK4z4s7F/srpB01N2PufuUpNslXTNvmGsk3VZ8/GVJV5mZufu4u88UX89K8lqD6enMKtsyd5azLRlt7MjWOmoACUVeWBzLBgCQVGnch4Vd2F0k6amK58eLry04TLGQOyOpS5LM7OVmdkTSdyW9u6LQW5W+rjbt37u7vJJL59r2dbXVMloACUZeWBzLBgCQVGnch8W68xR3v0/SLjN7saTbzOwr7j7n91Mzu0HSDZK0ZcuWJceXyZj6d/Vq501Xamg0p40djd87DqK1kvaJaKQ1L1TTNtO6bBA9cifijPaZDGnch4X9i93Tki6ueL65+NqCwxSvoTtP0nDlAO7+iKSzki6dPwF3v9Xd97j7nu7u7mUDymRM27vb9YrtG7S9u72hVy6it9L2iWikMS9U2zbTuGwQPXIn4oz2mRxp24eFXdjdL2mHmW0zs1ZJ10k6OG+Yg5LeWXz8Nkn3uLsXP9MsSWa2VdJOSQMhxwsAAAAAiRPqqZjuPmNmN0q6W1KTpM+4+xEz+6CkQ+5+UNKfSfq8mR2VdEqF4k+SflLS+8xsWlJe0m+7+7NhxgsAAAAASbRkYWdmJuntKvRI+WVJr1ehF8vvS/q0u+eX+Lgkyd3vlHTnvNdurnicK05j/uc+L+nzy88CAAAAAKTbcr/Y3SJpo6RWFQq6NSqcOvmzkn5M0ntDjQ4AAAAAsKzlCrsr3f0lZtYi6YSkTe4+ZWZflPSd8MMDAAAAACxnuc5TZiTJ3acl3V+8yXjpfnPLnoYJAAAA1MrdNT4+LnePOhQgtpYr7E6YWbskuXt/6UUz65U0FWZgAAAAgCTNTk/qXX/ydU1MTEQdChBbS56K6e5vXuStUUlvKT0xs13ufiTIwMKQz7sGhsc0OJJTT2fj36QQQHjSkE/SMI8AkqOpNRt1CEiBJO/7VnW7A3cfkzRW8dLnJb00kIhCks+77jpyQvsOHFZuOq9sS0b79+5W/67exKwsAPGQhnyShnkEAKBS0vd9Qd2gPPZzOjA8Vl5JkpSbzmvfgcMaGB5b5pMAMFca8kka5hEAgEpJ3/cFVdjF/krWwZFceSWV5KbzGhrNRRQRgKRKQz5JwzwCAFAp6fu+oAq72OvpzCrbMnd2sy0ZbezgfG0AK5OGfJKGeQQAoFLS931LFnZm9uri/2uWGU/se8js62rT/r27yyurdM5sX1dbxJEBSJo05JM0zCMAAJWSvu9brvOUT0r6CUnf1BKdo7j7K4IMKgyZjKl/V6923nSlhkZz2tiRrF5uAMRHGvJJGuYRAIBKSd/3LVfYTZvZrZIuMrNPzn/T3W8KJ6xwZDKm7d3t2t7dHnUoABIuDfkkDfMIAEClJO/7livs3iLpDZLeJOnb4YcDAAAAAFip5W5Q/qyk283sEXd/sE4xAQAAAABWoNpeMfeZ2fmlJ2a23sw+E05IAAAAAICVqLawu8zdnys9cffTki4PJSIAAAAAwIpUW9hlzGx96YmZXaDlr88DAAAAANRBtcXZH0n6ppl9SZJJepuk/xpaVAAAAACAqlVV2Ln758zs25JeV3zpre7+cHhhAQAAAACqVfXplO5+xMxOSspKkpltcfcnQ4sMAAAAAFCVqq6xM7OrzexxSU9I+rqkAUlfCTEuAAAAAECVqv3F7kOSXiHpn9z9cjN7naRfDS+scOTzroHhMQ2O5NTTmVVfV5syGYs6LAApkMT8k8SYAQCopzjtK6st7KbdfdjMMmaWcfd7zezjYQYWtHzeddeRE9p34LBy03llWzLav3e3+nf1cqACIFRJzD9JjBkAgHqK276y2tsdPGdm7ZL+WdIXzOwTksbCCyt4A8Nj5YUuSbnpvPYdOKyB4UTNBoAESmL+SWLMAADUU9z2ldUWdvdKOk/SeyXdJekHkn4urKDCMDiSKy/0ktx0XkOjuYgiApAWScw/SYwZAIB6itu+strCrlnSP0j6mqQOSXe4+3BYQYWhpzOrbMvc2c22ZLSxIxtRRADSIon5J4kxAwBQT3HbV1ZV2Ln7f3H3XZLeI2mTpK+b2T+FGlnA+rratH/v7vLCL50D29fVFnFkABpdEvNPEmMGAKCe4ravrPo+dkVDkk5IGpa0MfhwwpPJmPp39WrnTVdqaDSnjR308AagPpKYf5IYMwAA9RS3fWVVhZ2Z/bakvZK6JX1J0m+6+8NhBhaGTMa0vbtd27vbow4FQMokMf8kMWYAAOopTvvKaq+xu1jS77r7Lnf/wEqKOjPrN7NHzeyomb1vgffXmNkdxffvM7O+4utvNLNvm9l3i/+/vtppAgAAAECaVPWLnbv/3mpGbmZNkm6R9EZJxyXdb2YH5xWG10s67e4vNLPrJH1U0rWSnpX0c+7+jJldKuluSRetJg4AAAAAaGTV/mK3WldIOurux9x9StLtkq6ZN8w1km4rPv6ypKvMzNz9AXd/pvj6EUlrzWxNyPECAAAAQOKEXdhdJOmpiufH9fxf3crDuPuMpDOSuuYN84uSvuPukyHFCQAAAACJFXZhVzMz26XC6Zn/bpH3bzCzQ2Z26OTJk/UNDlgG7RNxRdtEnNE+EWe0T8RV2IXd0yp0vFKyufjagsOYWbOk81S4nYLMbLOkv5L0Dnf/wUITcPdb3X2Pu+/p7u4OOHygNrRPxBVtE3FG+0Sc0T4RV2EXdvdL2mFm28ysVdJ1kg7OG+agpHcWH79N0j3u7mZ2vqS/l/Q+d//XkOMEAAAAgMQKtbArXjN3owo9Wj4i6YC7HzGzD5rZ1cXB/kxSl5kdlbRPUumWCDdKeqGkm83scPEvUTdFBwAAAIB6qOp2B7Vw9zsl3TnvtZsrHuckvX2Bz31Y0ofDjg8AAAAAki72nacAAAAAAJZGYQcAAAAACRf6qZhxkc+7BobHNDiSU09nVn1dbcpkLOqwAKAsbnkqbvEAAJBE9dqfpqKwy+dddx05oX0HDis3nVe2JaP9e3erf1cvBykAYiFueSpu8QAAkET13J+m4lTMgeGx8sKUpNx0XvsOHNbA8FjEkQFAQdzyVNziAQAgieq5P01FYTc4kisvzJLcdF5Do7mIIgKAueKWp+IWDwAASVTP/WkqCruezqyyLXNnNduS0caObEQRAcBccctTcYsHAIAkquf+NBWFXV9Xm/bv3V1eqKVzW/u62iKODAAK4pan4hYPAABJVM/9aSo6T8lkTP27erXzpis1NJrTxg56dwMQL3HLU3GLBwCAJKrn/jQVhZ1UWKjbu9u1vbs96lAAYEFxy1NxiwcAgCSq1/40FadiAgAAAEAjo7ADAAAAgISjsAMAAACAhKOwAwAAAICEo7ADAAAAgISjsAMAAACAhKOwAwAAAICEo7ADAAAAgISjsAMAAACAhKOwAwAAAICEo7ADAAAAgISjsAMAAACAhKOwAwAAAICEa446gHrI510Dw2MaHMmppzOrvq42ZTIWdVgAULUo8hi5EwCAcAW5r234wi6fd9115IT2HTis3HRe2ZaM9u/drf5dvRygAEiEKPIYuRMAgHAFva9t+FMxB4bHygtLknLTee07cFgDw2MRRwYA1Ykij5E7AQAIV9D72oYv7AZHcuWFVZKbzmtoNBdRRACwMlHkMXInAADhCnpf2/CFXU9nVtmWubOZbcloY0c2oogAYGWiyGPkTgAAwhX0vrbhC7u+rjbt37u7vNBK5672dbVFHBkAVCeKPEbuBAAgXEHva0PvPMXM+iV9QlKTpD9194/Me3+NpM9J+glJw5KudfcBM+uS9GVJL5P0WXe/cTXTz2RM/bt6tfOmKzU0mtPGDnp2A5AsUeQxcicAAOEKel8bamFnZk2SbpH0RknHJd1vZgfd/eGKwa6XdNrdX2hm10n6qKRrJeUk/WdJlxb/Vi2TMW3vbtf27vZaRgMAkYkij5E7AQAIV5D72rBPxbxC0lF3P+buU5Jul3TNvGGukXRb8fGXJV1lZubuY+7+LyoUeAAAAEgxd9f4+LjcPepQgFgKu7C7SNJTFc+PF19bcBh3n5F0RlJXyHEBAAAgQWanJ/WuP/m6JiYmog4FiKXEd55iZjeY2SEzO3Ty5MmowwHmoH0irmibiDPaJxbT1Bp9z7y0T8RV2IXd05Iurni+ufjagsOYWbOk81ToRKUq7n6ru+9x9z3d3d01hgsEi/aJuKJtIs5on4gz2ifiKuzC7n5JO8xsm5m1SrpO0sF5wxyU9M7i47dJusc5eRoAAAAAqhZqr5juPmNmN0q6W4XbHXzG3Y+Y2QclHXL3g5L+TNLnzeyopFMqFH+SJDMbkNQpqdXMfl7ST8/rURMAAAAAUi/0+9i5+52S7pz32s0Vj3OS3r7IZ/tCDQ4AAAAAGkDiO08BAABAOnDLA2BxFHYAAABIBG55ACyOwg4AAACJEYdbHgBxRGEHAAAAAAlHYQcAAIDE4Do7YGEUdgAAAEgMrrMDFkZhBwAAgEThOjvg+UK/j13U8nnXwPCYBkdy6unMqq+rTZmMRR0WANSkHrmN/AkAQP3Uut9t6MIun3fddeSE9h04rNx0XtmWjPbv3a3+Xb0cnABIrHrkNvIngDgrXWeXzWaVy+W0du1amZGbkFxB7Hcb+lTMgeGx8sKRpNx0XvsOHNbA8FjEkQHA6tUjt5E/AcRZ6Tq7U6dO6dpP3r2i6+3Gx8c1Pj4eYnTAygWx323owm5wJFdeOCW56byGRnMRRQQAtatHbiN/Aoi7TMsajY+Pq6lljcbGxjQ2NkZPmUisIPa7DV3Y9XRmlW2ZO4vZlow2dnDBLYDkqkduI38CiLPZqUlNT07o3/3Zv2g6N6F3fOof9bY/+BsNDw9HHRqwKkHsdxu6sOvratP+vbvLC6l0rmpfV1vEkQHA6tUjt5E/ASRBpnVN+f9M6xq5+5xf7yrvecf97xBnQex3G7rzlEzG1L+rVztvulJDozlt7KBXNwDJV4/cRv4EkEQTExN65//8qjJNLTrw798sSbr2k3frjpveVH78v3/jSq1bty7KMIHnCWK/29CFnVRYSNu727W9uz3qUAAgMPXIbeRPxJm7a2JiItDeEOM8ziDGU8s4VvrZlQwf9DJqal0jy7RobKzQ6URza/bce8Xr8tauXbvq6QBhqXW/29CnYgIAgMY0MTGx4t4QkzzOIMZTyzhW+tmVDB/UMspPT+l3/vx+5Wfzmp2e1Ds+9Y/6lY/9naanpzUxMaF3/PE/aTpXuC4vyHUMxEXD/2IHAAAaV5Dd1pfGFcdxBjGeWsax0s+uZPjlhh0fH9fs1KR89lyPgfnpSSmflzKZua81tSg/NTnn87NTk+Vxz38PaCTWSBeQmtlJST9c5O0Nkp6tYzjViFtMxLO0xeJ51t37l/vwMu1zpdOMg7jGRlznBNU247BMiaHxYggzd1YjDstyPmKqTj1iqrV9Rr3cop5+HGJo1Okv2jYbqrBbipkdcvc9UcdRKW4xEc/SoognbsugUlxjI67gxSF2YiCGoMVxPoipOnGMab6oY4x6+nGIIY3T5xo7AAAAAEg4CjsAAAAASLg0FXa3Rh3AAuIWE/EsLYp44rYMKsU1NuIKXhxiJ4YCYghOHOeDmKoTx5jmizrGqKcvRR9D6qafmmvsAAAAAKBRpekXOwAAAABoSBR2AAAAAJBwFHYAAAAAkHANVdj19/e7JP74q/dfVWif/EXwVxXaJn8R/VWF9slfRH9VoX3yF8HfohqqsHv22ShvLg8sjfaJuKJtIs5on4gz2ifipKEKOwAAAABIIwo7AAAAAEi45qgDCFs+7xoYHtPgSE49nVn1dbUpk7GowwKAmtQjt5E/EVe0TQB4voYu7PJ5111HTmjfgcPKTeeVbclo/97d6t/Vyw4AQGLVI7eRPxFXtE0AWFhDn4o5MDxWTvySlJvOa9+BwxoYHos4MgBYvXrkNvIn4oq2CQALa+hf7AZHcspN57XpvKze+tLNsuIXeafGJrW9uz3a4ABgBSpPPcuYaf26Vv3oTK78fm46r6HRXGC5bXAkp/XrWufkzr/89vFApwGsRmnfXimo9s8pngCSrKELu57OrLZ2rdW1e7bok/c8Xj5lY8fGdr007yRrAImw0Kln771qhz73zR+Wi7tsS0YbO7KBTXPTeVm945Vb9YmvPj5nmr2dwU0DWI2ezqyyLZk5xV0Q7Z9TPAEkXUOfitnX1aYPXfOSclEnFb7V+09/+RCnbABIjIVOPfvEVx/X2/dslqTyAWhfV1tg05zNq1zUVU5zNr/MB4GQ9XW1af/e3cq2FA5hgmr/nOIJIOka+he7TMbU0mShnbIBAPWw2Klnl198vm6/4eXa2BH8KWNDowtP8+TZnF6wkdyJ6GQypv5dvdp505UaGs0F1v7DPMUTAOqhoQs7KbxTNgCgXhbLY1u72kI74CR3Is4yGdP27vZA2z9tHkDSNfSpmFJ4p2wAQL1EkcfInUgb2jyApGv4X+zCOmUDAOolijxG7kTa0OYBJF3DF3ZSIVmXvnEbHCn0IEeyBhA3S3W1HsapZ9Vyr/skgUgEvZ1x+wQA9ZSKwo4ujAHEXdzyVNziAZKGbQhAvTX8NXYSXRgDiL+45am4xQMkDdsQgHpLRWG3VBfGABAHcctTcYsHSBq2IQD1lorCrtSFcSW6MAYQJ3HLU3GLB0gatiEA9RZZYWdm/Wb2qJkdNbP3LfD+FjO718weMLOHzOxnVjstujAGEHdxy1NxiwdIGrYhAPUWSecpZtYk6RZJb5R0XNL9ZnbQ3R+uGOz9kg64+/80s0sk3SmpbzXTowtjAHEXtzwVt3iApGEbAlBvUfWKeYWko+5+TJLM7HZJ10iqLOxcUmfx8XmSnqllglF2FQ4A1YhbnopbPEDSsA0BqKeoCruLJD1V8fy4pJfPG+YDkv7BzH5HUpukN9QnNAAAAABIljh3nvJLkj7r7psl/Yykz5vZ8+I1sxvM7JCZHTp58mTdgwSWQvtEXNE2EWe0T8QZ7RNxFVVh97Skiyueby6+Vul6SQckyd2/KSkracP8Ebn7re6+x933dHd3LznRfN517ORZffMHz+rYybPK572WeQCWtZL2icYWt/xTTduMW8xID3Ln87E9xgftE3EV1amY90vaYWbbVCjorpP0y/OGeVLSVZI+a2YvVqGwW/XXIvm8664jJ8o3Cy31TtW/q5cLmQGEKon5J4kxA42K7RFANSL5xc7dZyTdKOluSY+o0PvlETP7oJldXRzsP0j6TTN7UNIXJb3L3Vf99dTA8Fg5IUqFm4TuO3BYA8NjNc0LACwnifkniTEDjYrtEUA1ovrFTu5+pwq3MKh87eaKxw9LenVQ0xscyZUTYkluOq+h0Ry9VQEIVRLzTxJjBhoV2yOAasS585RA9XRmyzcJLcm2ZLSxIxtRRADSIon5J4kxA42K7RFANVJT2PV1tWn/3t3lxFg6P72vqy3iyAA0uiTmnyTGDDQqtkcA1YjsVMx6y2RM/bt6tfOmKzU0mtPGjqz6utq46BhA6JKYf5IYM9Co2B4BVCM1hZ1USIzbu9s5Hx1A3SUx/yQxZqBRsT0CWE5qTsUEAAAAgEZFYQcAAAAACUdhBwAAAAAJR2EHAAAAAAmXqs5T8nnXwPCYBkdy6umkRykAq5eGfJKGeQTSgu0ZaHypKezyedddR05o34HDyk3ny/eA6d/VS2IDsCJpyCdpmEcgLdiegXRIzamYA8Nj5YQmSbnpvPYdOKyB4bGIIwOQNGnIJ2mYRyAt2J6BdEhNYTc4kisntJLcdF5Do7mIIgKQVGnIJ2mYRyAt2J6BdEhNYdfTmVW2Ze7sZlsy2tiRjSgiAEmVhnyShnkE0oLtGUiH1BR2fV1t2r93dzmxlc4v7+tqizgyAEmThnyShnkE0oLtGUiH1HSeksmY+nf1audNV2poNKeNHfQIBWB10pBP0jCPQFqwPQPpkJrCTioktu3d7dre3R51KAASLg35JA3zCKQF2zPQ+FJzKiYAAAAANCoKOwAAAABIOAo7AAAAAEg4CjsAAAAASDgKOwAAAABIuFT1iilJ+bxrYHhMgyM59XTS3S8A8sJSWDYAyANAMqSqsMvnXXcdOaF9Bw4rN50v36Czf1cvCQpIKfLC4lg2AMgDQHKk6lTMgeGxcmKSpNx0XvsOHNbA8FjEkQGICnlhcSwbAOQBIDkiK+zMrN/MHjWzo2b2vkWG2WtmD5vZETP7i1qnOTiSKyemktx0XkOjuVpHDSChyAuLY9kAIA8AyRHJqZhm1iTpFklvlHRc0v1mdtDdH64YZoek35P0anc/bWYba51uT2dW2ZbMnASVbcloY0e21lEDSCjywuJYNgDIA0ByRPWL3RWSjrr7MXefknS7pGvmDfObkm5x99OS5O5DtU60r6tN+/fuVralMNul88T7utpqHTWAhCIvLI5lA4A8ACRHVJ2nXCTpqYrnxyW9fN4wL5IkM/tXSU2SPuDud80fkZndIOkGSdqyZcuSE81kTP27erXzpis1NJrTxg56dkK4VtI+EY205oVq2mZalw2iR+6MD/LA89E+EVfm7vWfqNnbJPW7+28Un/+apJe7+40Vw/ydpGlJeyVtlvQNSS9x9+cWG++ePXv80KFDYYYOLKSqvRvtExGgbSLOaJ+IM9on4mrRthnVqZhPS7q44vnm4muVjks66O7T7v6EpMck7ahTfAAAAACQGFEVdvdL2mFm28ysVdJ1kg7OG+avJb1WksxsgwqnZh6rY4wAAAAAkAiRFHbuPiPpRkl3S3pE0gF3P2JmHzSzq4uD3S1p2MwelnSvpP/X3YejiBcAAAAA4iyqzlPk7ndKunPeazdXPHZJ+4p/AAAAAIBFRHaDcgAAAABAMCjsAAAAACDhIjsVM0r5vGtgeEyDIzn1dHI/FqCRsH0Hi+UJYDXIHUD9pa6wy+dddx05oX0HDis3nVe2JaP9e3erf1cvCQdIOLbvYLE8AawGuQOIRupOxRwYHisnGknKTee178BhDQyPRRwZgFqxfQeL5QlgNcgdQDRSV9gNjuTKiaYkN53X0GguoogABIXtO1gsTwCrQe4AohFoYWdm9wQ5vjD0dGaVbZk729mWjDZ2ZCOKCEBQ2L6DxfIEsBrkDiAaqy7szOyheX/flfTq0vMAYwxUX1eb9u/dXU44pfO++7raIo4MQK3YvoPF8gSwGuQOIBq1dJ4yIGlE0oclTUgySf8s6edqDys8mYypf1evdt50pYZGc9rYQU9NQKNg+w4WyxPAapA7gGisurBz96vN7Bck3Srpv7v7QTObdvcfBhdeODIZ0/budm3vbo86FAABY/sOFssTwGqQO4D6q+kaO3f/K0lvlvRaM/sbSa2BRAUAAAAAqFrN97Fz9zFJ+8zsxyW9cv77ZrbL3Y/UOh0AAAAAwMICu0G5uz8o6cEF3vq8pJcGNR0AAAAAwFz1uI8dV8oCAAAgVWZmZjQzMxN1GEiRehR2XodpAAAAAEBqBXYqZpLk866B4TENjuTU00kXvEBcsa3GA+sBQFjIL0BwVl3Ymdmr3f1fzWyNu08uMejUaqcRhnzeddeRE9p34LBy0/nyTTP7d/WSSIAYYVuNB9YDgLCQX4Bg1XIq5ieL/39zqYHc/RU1TCNwA8Nj5QQiSbnpvPYdOKyB4bGIIwNQiW01HlgPAMJCfgGCVcupmNNmdquki8zsk/PfdPebahh3aAZHcuUEUpKbzmtoNMdNNIEYYVuNB9YDgLCQX4Bg1VLYvUXSGyS9SdK3gwknfD2dWWVbMnMSSbYlo40d2QijAjAf22o8sB4AhKWR80upR8zm5lR2Z4GIrPpUTHd/1t1vl3S1u982/y/AGAPV19Wm/Xt3K9tSmPXS+dx9XW0RRwagEttqPLAeAISF/AIEK4ivEfaZ2Xvd/TlJMrP1kv7I3X89gHEHLpMx9e/q1c6brtTQaE4bO+iBCYgjttV4YD0ACAv5BQhWEIXdZaWiTpLc/bSZXR7AeEOTyZi2d7dz/jYQc2yr8cB6ABAW8gsQnCBuUJ4p/konSTKzC5TS++MBAAAAQBSCKOz+SNI3zexDZvZhSf8m6Q+W+5CZ9ZvZo2Z21Mzet8Rwv2hmbmZ7AogVAAAAABpOzb+sufvnzOzbkl5XfOmt7v7wUp8xsyZJt0h6o6Tjku43s4PzP2dmHZLeK+m+WuMEAAAAgEYVxC92cvcjkg5IOijprJltWeYjV0g66u7H3H1K0u2SrllguA9J+qikXBBxAgAAAEAjqrmwM7OrzexxSU9I+rqkAUlfWeZjF0l6quL58eJrleN9qaSL3f3vl5n+DWZ2yMwOnTx5cqXhA6GifSKuaJuIM9on4oz2ibgK4he7D0l6haTH3H2bpKskfauWEZpZRtJ+Sf9huWHd/VZ33+Pue7q7u6ueRj7vOnbyrL75g2d17ORZ5fNeQ8TAwlbbPhsR21y8rLRtsv5QT+ROVIpb/qF9Iq6C6L1y2t2HzSxjZhl3v9fMPr7MZ56WdHHF883F10o6JF0q6WtmJkm9kg6a2dXufqjWgPN5111HTmjfgcPKTefLN8Ts39XLvVOAELDNJRvrD0BUyD9A9YL4xe45M2uX9M+SvmBmn5A0tsxn7pe0w8y2mVmrpOtUuD5PkuTuZ9x9g7v3uXufCr8ABlLUSdLA8Fg5QUhSbjqvfQcOa2B4ubABrAbbXLKx/gBEhfwDVC+Iwu5eSeep0HvlXZJ+IOnnlvqAu89IulHS3ZIekXTA3Y+Y2QfN7OoAYlrS4EiunCBKctN5DY3SRwsQBra5ZGP9AYgK+QeoXhCnYjZL+gdJpyTdIekOdx9e7kPufqekO+e9dvMiw7629jDP6enMKtuSmZMosi0ZbezIBjkZAEVsc8nG+gMQFfIPUL2af7Fz9//i7rskvUfSJklfN7N/qjmyEPV1tWn/3t3KthRmv3S+dl9XW8SRAY2JbS7ZWH8AokL+AaoXxC92JUOSTkgalrQxwPEGLpMx9e/q1c6brtTQaE4bO7Lq62rjIlwgJGxzycb6AxAV8g9QvZoLOzP7bUl7JXVL+pKk33T3h2sdb9gyGdP27nZt726POhQgFdjmko31ByAq5B+gOkH8YnexpN9198MBjAsAAAAAsEI1F3bu/ntBBAIAAAAAWJ0gbncAAAAAoMjdNTMzI3ePOhSkCIUdAAAAEKDJyUn96p/8i2ZnZ6MOBSkSZK+YiZPPuwaGxzQ4klNPJ70sASvFNpQerGsAcRTn3GRNTVGHgJRJbWGXz7vuOnJC+w4cVm46X74vSv+u3tgkBCDO2IbSg3UNII7ITcBcqT0Vc2B4rJwIJCk3nde+A4c1MDwWcWRAMrANpQfrGkAckZuAuVJb2A2O5MqJoCQ3ndfQaC6iiIBkYRtKD9Y1gDgiNwFzpbaw6+nMKtsyd/azLRlt7MhGFBGQLGxD6cG6BhBH5CZgrtQWdn1dbdq/d3c5IZTOy+7raos4MiAZ2IbSg3UNII7ITcBcqe08JZMx9e/q1c6brtTQaE4bO+LVkxIQd2xD6cG6BhBH5CZgrtQWdlIhIWzvbtf27vaoQwESiW0oPVjXAOKI3ASck9pTMQEAAACgUVDYAQAAAEDCUdgBAAAAQMKl+ho7ScrnXQPDYxocyamnk4tuAbYJLIa2ASAJyFVIq1QXdvm8664jJ7TvwGHlpvPlbnL7d/WSAJBKbBNYDG0DQBKQq5BmqT4Vc2B4rLzhS1JuOq99Bw5rYHgs4siAaLBNYDG0DQBJEKdclZ+d1czMTN2ni/RKdWE3OJIrb/gluem8hkZzEUUERIttAouhbQBIAnIV0izVhV1PZ1bZlrmLINuS0caObEQRAdFim8BiaBsAkoBchTRLdWHX19Wm/Xt3lxNA6Tzsvq62iCMDosE2gcXQNgAkAbkKaRZZ5ylm1i/pE5KaJP2pu39k3vv7JP2GpBlJJyX9urv/MMgYMhlT/65e7bzpSg2N5rSxg56TkG5sE1gMbQNAEpCrkGaRFHZm1iTpFklvlHRc0v1mdtDdH64Y7AFJe9x93Mx+S9IfSLo26FgyGdP27nZt724PetRAIrFNYDG0DQBJQK5CWkV1KuYVko66+zF3n5J0u6RrKgdw93vdfbz49FuSNtc5RgAAAABIhKhOxbxI0lMVz49LevkSw18v6SsLvWFmN0i6QZK2bNmy4kC4iSXCVGv7DANtHtLq2ybtB/UQx9yJZAojZ9E+EVexv0G5mf2qpD2Sfmqh9939Vkm3StKePXt8JePmJpYIWy3tMwy0eZSspm3SflAvccudSKawchbtE3EV1amYT0u6uOL55uJrc5jZGyT9vqSr3X0y6CDidBNLoB5o86gF7QdAkpCzkDZRFXb3S9phZtvMrFXSdZIOVg5gZpdL+hMVirqhMILgJpZIG9o8akH7AZAk5CykTSSFnbvPSLpR0t2SHpF0wN2PmNkHzezq4mB/KKld0pfM7LCZHVxkdKvGTSyRNrR51IL2AyBJyFlIm8huUO7ud7r7i9z9Be7+X4uv3ezuB4uP3+DuPe6+u/h39dJjXDluYom0oc2jFrQfAElCzkLaxL7zlDBxE0ukDW0etaD9AEgSchbSJtWFncRNLJE+tHnUgvYDIEnIWUiT1Bd2EvdlQmOhPSNstDEASUTuQqNLfWHHfZnQSGjPCBttDEASkbuQBpF1nhIX3OMEjYT2jLDRxgAkEbkLaZD6wo57nKCR0J4RNtoYgCQidyENUl/YcY8TNBLaM8JGGwOQROQupEHqCzvucYJGQntG2GhjAJKI3IU0SH3nKaV7nFzy3is1ODKpsakZbb2AjRzxt1jvXtyzB2EiZwJIInIX0iD1hV3Jwz8apackJMZyvXtxzx6EjZwJIInIXWhkqT8VU6KnJCQPbRZRov0BSCJyFxodhZ3oKQnJQ5tFlGh/AJKI3IVGR2EnekpC8tBmESXaH4AkIneh0XGNnc71lPTRux7RWy67SE0Z6WVbL9CW9euiDg2Q9PyOUrasX6f9e3c/7zoBevdCPfR1telTv3y5Hjp+RnmXmkx6yebzaH8AYo3chUZHYadCT0k//eIeTc/m9Z/+8iEuqEWsLNZRyk+/uEd30vslIjI147r1G8fmtEkAiDtyFxoZp2IWPXl6vFzUSVxQi/hY7GLvJ0+Pa3t3u16xfYO2d7dT1KFu6IAAQBKRu9DoKOyKuKAWcUXbRNzQJgEkEbkLjY5TMYt6OrPa2rVWb7nsIlnxh4+/ffBpLqhFJCqvqVvX2qytXWv1w+GJ8vtc7I0olTogWL+uVW996WaZFa5V6e2kTQKIL4710Ogo7Iq2rF+n33n9Dr3/r79XPu/6wz9/KR2ooO4Wuqbuwz9/qf7HPY/rh8MTdJSCyJU6IHh88Kw+8dXHy+30x3o7teUCrvUEEE8c66HRUdgVPXl6vLyhS4Wf5t//19/TS7es1/bu9oijQ5osdA3A+//6e7rjhldoYnqWjlIQuUzGtK2rXTf+xQPPu1Zl501XkjMBxBLHemh0FHZFpfOuN52XLZ9aJEmnxibZ2FE3+bzr5OikfuPK7ZKkv/z2cf3oTKFtTkzP6hXbN0QcIVAwNErOBJAsgyO5OaeQS4X97NBoLrS8NTMzo5mZGTU3c8iN8NHKikrnXV+7Z4vuOPRk+X52Y5OzmpnJq7n5XD8zMzN5fX9wRGcnZ9SSMU3nXafOTumi9eu0a1PnnGGBauTzrieeHdOJkXF1ZFv0ky/coJOjk/r4tT+uO/7vk7rzyCDXACBWVpIzpbl50yTJpJlZ1+R0Xlu72rRtA79CA1idqalZPfTMGf3oTE4bO9aoM9ukF2zoUGtr05zhLjw/q5vfcokeOTGivBeur3vHK7dyfTAaBoVdUV9Xmz50zUv0n//mu7p2zxZ98p5z14189Bcv089euklPnxnX6MSMjg2P6bmxKWVbMpp106e/flTXv3qb1re16P4fDqu1KSOXND2bLz92uSTTzDKvLfeZ1Y5zNi9NzSx/AFXZaceF52c1OjGj3MysXNLMbF4ZM83kORgLUj7v+uejQ2pf06Spmbw2tJsyalJX2zqdHpvV617cq+tevlU97S1RhwqULZczf+6yC5XPu74/OKKZ2byePD2h58am5owjNz2rrRvadXJ0QqfGJxfNdSt9XGturXw8PjWryZm8tne1adsStxVZKHeenSp8+bfSPAxgrucmcnrsxJgGRybV07lGm85vUrNJs5Imp6SZvNTWmtG2rnV6YnhUJ0ZMJ4rb4prmZm25oHBN+uGnzsy5X/FNr9+h2+9/Uj99SW+0MwgEJLLCzsz6JX1CUpOkP3X3j8x7f42kz0n6CUnDkq5194Gw4slkTC1NprdcdpHuOPSk3nvVDm3vbtd52Sa1NGd0z2NDGpuc0Ya2NTo6dFaS9KKNHfrDf/i+3vNTL1BLS5MeHzyrbEtGLc1NGp2YLj+enpmt6rVa31/sM2NTs/rqIyf0m6954ZIHUE0Z0/Hncnrm9LguuahTDx4/o9zUTHk8JfMPxhRgARp2Ubv1gnU6/ty4zoxPazqfr2qaYR6MTU3N6tjwqHLTea1pbtKLe899a3h6fFaDo4Wd2Jb1TXrg+HN66eb1Wre2NbDpA6tVmTM/ec/jWr+uVb/1U9v1wp52uUvfPX5aPywWc9s2tJfzpiS1tzYp21L4OzM+qfGpxXPdSh/XmlsrH584kyvnzmfOTOj0RKEwnZ8rmjKmHzw7ri/eN6DffeOL9ODxM+Uv/1aah4POf7V8prKo3drVtmjuXGw6FLIIwnMTOeUmc4VDjcI/ajFpbEpqaZYyJuWmZpSbyWtq1tW+pkVTM7PKtjTp9PiMnhw+oyPPjKi3c40uWNeiT1x3uZ549qxu+7cf6pP3PK7rf3K7Tp7N6QUbOYUcyRdJYWdmTZJukfRGSccl3W9mB9394YrBrpd02t1faGbXSfqopGvDjKunM6vzsk369Vdtk5nKBxzZ5ibNFk+Vm5rJK1/IKxqbnNFbLrtI69a06LGhUUmFYm/+42pfq/X9xT7zb0dP6lde3rfsAVRntlmnzk4q29Ikz5uODp2dM56FDsaCLEDDLmpPj+f0/RMjGpucXtHnK3v92793t/p39QZygDI1Nat7Hx9S+5pmTc+4TpyZVEamLRc06RuPj+rmg+d67frg1Zfq1Ts69MPnxvViCjvERE9nVk0Zaf26Vv37q16olpYmHR0sFHCVxdyaloly3pSkTeev0+NL5LdaHtf6fuXjUu4cPDOxZK7INjfpi/cN6Fde3lfOnfPHWW0erldOXe4zlUXtybM5fX9wdMHcudg4w8ydSJfcZG7BfeJrdnToyVOzxaFMUpOaMy73vDrXNmtyJq8zE1Na19qiRwdH1dqU0Y/OFG4btK6lSe9+zXZ9+hvH1JQRlzqgYUR1MdgVko66+zF3n5J0u6Rr5g1zjaTbio+/LOkqMwt1j9DX1aaXbD5fw+NTenaskAyeeHZMj5wY0djkjPIurWttVlPxnk1t2ebiNSWF9/K+8ONqX6v1/cU+845XbdcTw2Pl+amct8rHE1N5PTtWmPdnzkw8bzybzl9Xfr/0meXGWe1rYY3zq4+cKB9MnZmY1aODoyv6fOnARDrX69/A8Fgg7e2hZ85oesZ1/PSExiZndEFbiwZHJ/Xk6dnyDqw03ZsPfk9Pn5rV+GR+mbEC9dPX1aaXbb1Ab9+zWevWnNtuKnPI/LzZZNLE1NL5rZbHtb5f+biUO5fLFY+cGCkPWznfq8nD9cqpy32mlDsHz0xoNLd47lxsnGHmTqTLYvvEJ0/PanA0V/4bGs3p2bOTOj0+rWfPTmpialbnr2vRWDHfnC4e25X+hsen9PY9m7Vn6wWh3T7I3TUzMyN3X35gIABRFXYXSXqq4vnx4msLDuPuM5LOSOoKM6hMxuTFnfD8nXJbtnBgctu/HVNfV5u62lo1PjmtH998fvm9crE373G1r9X6/mKfKR1EreSAp3QgttB4wipAwy5qHzz+3Io/X9qRlOSm8xoazQXS3k6M5DQ2OaN1rc1qyzbrz7/1hHo612hwZHLB6Q6OTurs1Ewg0waCkMmYXrm9Sy/c2D5nu5lfzFXmza62Vl3Q1rpkfqvlca3vVz5eSc4rDfu8L/9qyMNh5tSVFLWnxqdWPJ0wcyfSZdF94sikejqy5b+NHVltaF+j9etatKF9jTrXNusL33pCba3Nypi0trV5To7Ku7RjY7tetb0rtF+SPZ/X9Z+9X7Ozs8sPDAQg8d03mtkNZnbIzA6dPHmy5vH1npd93k75bx98WuO5afVtaNNVL+7VF+4bUM95a7XpvLXqamvRmuaM+jacK/bmP672tVrfX+wzF56/tqqDmNPjU887EKscz0IHY0kralf6+WzL3E0k25JZ0SkbS7XPTZ1ZtWWbddu/HVNG0ut2btLGjib1dK5ZcLo9HWs0Oc0vdghGULmzuTmjXZvOm7PdzC/mKvPmtg1tOn9di17U07Fofqvlca3vVz4u5c7lcsXfPvi0Ljxv7YJf/q00D9crp66kqF3oi77lxhlm7kS6LLVP7D2/Sd0dTVrT7JJmNZOf1Ww+L/e8/uaBp/S6nZs0PjWtDW2t+tFz48qY5vxdsum8VfVkvpL2aU1NS74PBMmi+HnYzF4p6QPu/qbi89+TJHf/bxXD3F0c5ptm1izphKRuXyLgPXv2+KFDh2qKLZ933fPooJ45PTHnWoPb739S1796m3b0tGu62EX3tg1t5fuePHV6TMOjU5qcnY1dByJNGemp07k5HaEs1mlAJmPK533OtWnnZZvU1JSR5BoamdLw2cm6Xw+y2nFu627XoYFT2tHToT+8+/v69Vdt09rW6qdZ5XUiVX3VN799lq6xOzU2rb/89pN6z+t3qLUpoxdsaNE3Hh/RzQePVFxPsEuv2dGp0VyTdvR21NTGkSqrapsrVerZ9dTYdLmjpcocsq4lI5lpuqIjDUl68tSYhs9OSeZyr60nzDB6xWxtzuiJ4fE5HaEslCtOnMnpgSeH9bOXXaRnnsvNme+1xe7Wq83DcbnGbkP7Gh0aOCVJaitfX119xzVh5k6ky4nnnlt0nzijc71izualfL7QocoPT+XU1tqkqdm8Hj8xqmzL84urC9ev1et/rGepX+tqap9nz57VL/3x19XU0qLbf+s1yma5jg+BWbzRRlTYNUt6TNJVkp6WdL+kX3b3IxXDvEfSS9z93cXOU97q7nuXGm9QyT+f9+cdcIxPzc4p5pJ2AXjpHlK56XO3LljsgCZjVr7H1NRMXlsuONej2ULLpl49uNVa1JZuTXHdy7boxZs61LamOahbRaw6+U9NzerRoVGdnZzRqbEp9XZmtbOnTadyE/pR8fqBno6sNq1v0o+em9aerRsS1/YQqbodOOfzPucLrtKtUebnkKSZf9/SxXLF+NSsmjPSutYWjU7OKDc9q21dc/cX1ebhOPSKWVnUluSmZ7Wjt0PrWpuUz3sQvWJS2GFZExPTejY39rx94oZsm9auXfg2QKV7wz55akytzRk1N51ras2WUVd7q7ZcsGxOorBDXC3aNiPpFdPdZ8zsRkl3q3C7g8+4+xEz+6CkQ+5+UNKfSfq8mR2VdErSdfWKL5Mx9W1oV9+Gek0xfM3NGV160fk1jyeJy+YlF547mPrIWy/T6fEprV/bql0Xru4UjCC1tjbpJZvPf97rTdakE8+d0bltt1l7tp6XyANjpEMmY9ra1a6toV4JXX9B5c6gx1UPL+49b85N5UuF+oa2bGILdSTP2rUt2qA2/chGJBW+eF6qqJMK+egFG9u5hQFSJ7L72Ln7nZLunPfazRWPc5LeXu+40HiSdjAlSdlss162rcGOkAEkShJzJxrT2rUtuiLB+8RS75hNTU0Kq4N3d9fs7OyS06hmmLCmnaTprFSc4kp85ykAAABAXM3OzuraP/66ZmdnNTMzo5mZcz1cz3++2GtLvT5/GtXEsZylplXLeFcz/lqms9pphTH/S42z8r3VxFsS2S92AAAAQKPy2Vl5JjPngH2+al9b6vXK92odpppp1TLe1Yy/lunUOq2VDLvcZ6pZN6XHzc2rK9Ei6TwlLGZ2UtIPF3l7g6Rn6xhONeIWE/EsbbF4nnX3/uU+vEz7XOk04yCusRHXOUG1zTgsU2JovBjCzJ3ViMOynI+YqlOPmGptn1Evt6inH4cYGnX6i7bNhirslmJmh9x9T9RxVIpbTMSztCjiidsyqBTX2IgreHGInRiIIWhxnA9iqk4cY5ov6hijnn4cYkjj9LnGDgAAAAASjsIOAAAAABIuTYXdrVEHsIC4xUQ8S4sinrgtg0pxjY24gheH2ImhgBiCE8f5IKbqxDGm+aKOMerpS9HHkLrpp+YaOwAAAABoVGn6xQ4AAAAAGlLDFXZm1m9mj5rZUTN73wLvrzGzO4rv32dmfRHH8y4zO2lmh4t/vxFyPJ8xsyEz+94i75uZfbIY70Nm9tKI43mtmZ2pWD43hxzPxWZ2r5k9bGZHzOy9CwwTyDKqpa2a2e8VX3/UzN60munXENe+4vJ5yMy+amZbK96brVhXB4OMq8rYFt2ezOydZvZ48e+ddY7rYxUxPWZmz1W8F+oyq1YccmcVMbzGzL5jZjNm9ragp19lDIu2/zrH8W4z+26x3fyLmV1S7xgqhvtFM3Mzi00vhattz2bWVdwHnDWzT8Ukpjea2beL6/vbZvb6GMR0RUXeetDMfiHqmCre31Jcf/8xqJjCjLcO0w81Z0WdJ6qZvpnttXPHdX8R5PSriaHYJu81sweK6+Fngo6hzN0b5k9Sk6QfSNouqVXSg5IumTfMb0v6dPHxdZLuiDied0n6VB2X0WskvVTS9xZ5/2ckfUWSSXqFpPsijue1kv6ujstnk6SXFh93SHpsgXVW8zKqpa1KuqQ4/BpJ24rjaapjm32dpHXFx79VuQ1JOhviuln19iTpAknHiv+vLz5eX6+45g3/O5I+U49lVo/2WOcY+iRdJulzkt4W0XJYtP3XOY7OisdXS7qr3jEUh+uQ9A1J35K0J6o2vIrlt1h+bZP0k5LevVAuiSimyyVdWHx8qaSnYxDTOknNxcebJA2VnkcVU8X7X5b0JUn/Mc5trY7TDy1nRZ0nqpz/HZIeUHGfL2ljBG3gVkm/VXx8iaSBsNpko/1id4Wko+5+zN2nJN0u6Zp5w1wj6bbi4y9LusrMLMJ46srdvyHp1BKDXCPpc17wLUnnm9mmCOOpK3f/kbt/p/h4VNIjki6aN1gQy6iWtnqNpNvdfdLdn5B0tDi+ICwbl7vf6+7jxaffkrQ5oGnXHNsS3iTpH939lLuflvSPkpa98WxIcf2SpC8GNO2gxCF3VtP2Btz9IUn5AKe70hjq0f6riWOk4mmbpKAvmK+2XX9I0kcl5QKefi1W3Z7dfczd/0XBz08tMT3g7s8UXz8iaa2ZrYk4pnF3nym+nlVw7a+mXGRmPy/pCRWWUz1EnTujzllR54lqpv+bkm4p7vvl7kMRxOCSOouPz5P0jELSaIXdRZKeqnh+XM8/KC8PU0xKZyR1RRiPJP1i8afZL5vZxSHFUq1qY66nVxZP9fiKme2q10SLp0tcLum+eW8FsYxqaathrqOVjvt6FX69LMma2SEz+1ZxBxukWranWCyz4ikw2yTdU/FymMusWnHInXHIPbW2/7rGYWbvMbMfSPoDSTfVOwYrnIZ+sbv/fcDTrlUc2nNYMf2ipO+4+2TUMZnZy83siKTvSnp3RaEXSUxm1i7pP0n6LwHEUa2o21rUOSvqPFHN/L9I0ovM7F+L+9mgvtRdSQwfkPSrZnZc0p0qnLkTikYr7JLobyX1uftlKvyKcNsyw6fNdyRtdfcfl/Q/JP11PSZa3EH8paTfnffNOIrM7Fcl7ZH0hxUvb3X3PZJ+WdLHzewFdQ4r7tvTdZK+7O6zFa9FvcywCou0/7py91vc/QUqHMy+v57TNrOMpP2S/kM9p5tmxS82Pyrp30UdiyS5+33uvkvSyyT9npllIw7pA5I+5u5nI44jlqLIWTHJE80qnI75WhXOmPlfZnZ+nWP4JUmfdffNKlzO8/nisglcoxV2T0uq/MVrc/G1BYcxs2YVfhIdjioedx+u+ObtTyX9REixVKuaZVg37j5SStLufqekFjPbEOY0zaxFhaLuC+7+fxYYJIhlVEtbDXMdVTVuM3uDpN+XdHXlN8fu/nTx/2OSvqbCL55BqWV7inyZFV2neadhhrzMqhWH3BmH3FNT+693HBVul/TzdY6hQ4Xrvb5mZgMqXG98MOiOEVYpDu050JjMbLOkv5L0Dnf/QRxiKnH3RySdVaE9RBnTyyX9QbE9/q6k/8/MbgwgprDirdf0w8xZUeeJaub/uKSD7j5dvHzlMRUKvaBUE8P1kg5Ikrt/U4XTl8M5lvWQLt6L4k+FqvyYCqc6lS5g3DVvmPdo7kWsByKOZ1PF41+Q9K06LKc+Ld5Zyc9qbscg/zfieHp17n6LV0h6svQ8pFhMhY4ZPr7EMDUvo1raqqRdmtt5yjEF13lKNXFdrsKFwjvmvb5e0pri4w2SHtcSnYiEFNuC25MKnaY8UYxxffHxBfWKqzjcTkkDle037GVWj/ZYzxgqhv2swuk8ZdXtP4I4dlQ8/jlJh6JaH8Xhv6b4dJ5Sc3tWwB2b1RKTpPOLw781Lsup+JlS5ylbVbhmaEMc1l3x9Q+oPp2nRJo7o85ZUeeJKue/X9JtxccbVDhtsqvOMXxF0ruKj19c3F5COZYNtcFH8afCT5yPFRvx7xdf+6AK31JIhSr5Syp0OPF/JW2POJ7/psJFvg9KulfSzpDj+aKkH0maVuFbjOtV6P3r3cX3TdItxXi/G+QGuMp4bqxYPt+S9KqQ4/lJFS5yfUjS4eLfz4SxjGppqyp88/YDSY9KenOd2+w/SRqsWD4Hi6+/qrg8Hiz+f30I62fV25OkXy8uy6OS/p96xlV8/gFJH5n3udCXWT3aYx1jeJkKeWJMhW+8j0QQw4LtP4I4PlFs64eLbX3Rg6kw23XFsF9TTAq7WtuzCl/AnFLhV6jjCujLltXGpMJptmMVbe6wAurZr4aYfq2i/X1H0s/HYd1VjOMDqkNhF1S8IU8/1JwVdZ6oYv5NhdNBH1ZhP3tdBG3gEkn/qsK+/rCknw6rPZZ+CQEAAAAAJFSjXWMHAAAAAKlDYQcAAAAACUdhBwAAAAAJR2EHAAAAAAlHYQcAAAAACUdhl3Jmdr6Z/XbUcQCrYWbdZnafmT1gZldGHQ8AAEBUKOxwviQKOyTVVZK+6+6Xu/s/Rx0M0mm5LxjMbJ2Z/b2Zfd/MjpjZR6KIE+lUzRdgZnaXmT1YbJ+fNrOmeseJ9FnJl7NmdtDMvlev2JKKwg4fkfQCMztsZn8YdTBIDzP7iJm9p+L5B8zs/Wb2VTP7jpl918yuqXj/HWb2UPHg4/NmtlvSH0i6pth+10YwG4BU3RcM/93dd0q6XNKrzezN9QsPKVdN+9zr7j8u6VJJ3ZLeXrfokGZVfTlrZm+VdLZ+YSUXNyhPOTPrk/R37n5p1LEgXczsckkfd/efKj5/WNKbJJ1x9xEz2yDpW5J2SLpE0l9JepW7P2tmF7j7KTN7l6Q97n5jNHOBpCv+evaUu99SfP4BSTOSXidpvaQWSe93978pvv8OSf9Rkkt6SNIfSTooaa2kpyW90t0nlpnmJyR9z93/VxjzhMZR7/ZpZi2S/o+kP3f3O0KaLTSAerVNM2uXdJekGyQd4Hh1aRR2KUdhhyiZ2SMqfGPXLemPJb1W0sckvUZSXtKPSdqmwrfHve7++/M+/y5R2KEG9f6CwczOl/QdSW9w92OhzBQaRj3bp5ndLekKSV+R9GvuPhvajCHx6tU2zexjkr4h6QFxvLqs5qgDAJBqX5L0Nkm9ku6Q9CsqFHk/4e7TZjYgKRtdeGh07v6AmW00swtVaHunJZ2Q9DEzK33BcJGkHkmvl/Qld3+2+NlTK5mWmTVL+qKkT1LUoRr1bJ/u/iYzy0r6QnFc/xjcnKDR1KNtFi+5eIG7//viDxFYBoUdRiV1RB0EUusOSf9L0gZJPyVpr6ShYlH3Oklbi8PdI+mvzGy/uw+Xvu2LJmQ0oHp9wXCrpMfd/eMBjAvpUbcvwNw9Z2Z/I+kaUdhheWG3zVdK2lMcT7OkjWb2NXd/bS1BNzI6T0k5dx+W9K9m9j06T0G9ufsRFb5YeNrdf6TCN8V7zOy7kt4h6fsVw/1XSV83swcl7Y8oZDSmOyRdp8IBypcknafFv2B4u5l1SZKZXVDtBMzsw8Xx/m6AcSMdQm2fZtZuZpuKj5sl/ayKuRdYRqht093/p7tf6O59kn5S0mMUdUvjFzvI3X856hiQXu7+korHz6rwDd1Cw90m6bZ5r31W0mdDDA8p4O5HzKz8BYOZfUHS3xa/YDikii8YzKz0BcOsCtd8vGu58ZvZZkm/XxzPd8xMkj7l7n8aygyhoYTdPiW1STpoZmtU+ML/XkmfDmFW0GDq0DaxQnSeAgAAAAAJx6mYAAAAAJBwnIoJAEBAzOw+SWvmvfxr7v7dKOIBKtE+EVe0zWBwKiYAAAAAJBynYgIAAABAwlHYAQAAAEDCUdgBAAAAQMJR2AEAAABAwlHYAQAAAEDC/f8q3EG4OOG9BwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 900x900 with 30 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sns.pairplot(df)\n", + "\n", + "#plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Los diagramas de pares son una herramienta poderosa para explorar rápidamente distribuciones y relaciones en un conjunto de datos. `SEABORN` nos proporciona un método predeterminado simple para hacer graficas de pares de variables que se pueden personalizar. En un proyecto de análisis de datos, una parte importante del valor proviena de la visualización de los datos. Un diagrama de pares nos proporciona este primer vistazo completo de nuestros datos y es un excelente punto de partida en el análisis de datos." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4- Ahora inspeccionemos los datos de la función de autocorrelación de velocidades *(vacf(t))*\n", + "\n", + "El método `.unique()` nos muestra los valores almacenad en la columna de nuestro dataframe." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 8.93154621e-01, 8.67853999e-01, 8.21965277e-01, 7.58830547e-01,\n", + " 6.82705879e-01, 5.99214256e-01, 5.12496531e-01, 4.26708788e-01,\n", + " 3.45072299e-01, 2.69724578e-01, 2.02340394e-01, 1.44143075e-01,\n", + " 9.50296447e-02, 5.50241806e-02, 2.31665950e-02, -9.18336620e-04,\n", + " -1.86049007e-02, -3.06770168e-02, -3.79997827e-02, -4.15365249e-02,\n", + " -4.23383266e-02, -4.11057547e-02, -3.85393314e-02, -3.52143683e-02,\n", + " -3.14373672e-02, -2.74279676e-02, -2.36809831e-02, -2.02437267e-02,\n", + " -1.71742495e-02, -1.48698576e-02, -1.29330419e-02, -1.18340570e-02,\n", + " -1.10314433e-02, -1.04457177e-02, -1.01393731e-02, -1.03211133e-02,\n", + " -1.06234215e-02, -1.07802572e-02, -1.10281892e-02, -1.10716727e-02,\n", + " -1.11191701e-02, -1.12334173e-02, -1.11250076e-02, -1.07489433e-02,\n", + " -1.04600526e-02, -1.03032459e-02, -9.96753480e-03, -9.46925581e-03,\n", + " -9.13583953e-03, -8.54541920e-03, -7.87504204e-03, -7.39814481e-03,\n", + " -6.95338519e-03, -6.47809729e-03, -5.87645266e-03, -5.16474200e-03,\n", + " -4.80043422e-03, -4.64318646e-03, -4.29089228e-03, -4.09926428e-03,\n", + " -4.04093787e-03, -3.86099005e-03, -3.77666252e-03, -3.56659852e-03,\n", + " -3.36388382e-03, -2.98618292e-03, -2.89732125e-03, -2.91161449e-03,\n", + " -2.71109212e-03, -2.64524529e-03, -2.53665051e-03, -2.60184612e-03,\n", + " -2.72347359e-03, -2.72307545e-03, -2.75016972e-03, -2.73831910e-03,\n", + " -2.67977756e-03, -2.54126010e-03, -2.70556612e-03, -2.93237646e-03,\n", + " -2.85940222e-03, -2.75847316e-03, -2.55324272e-03, -2.43231817e-03,\n", + " -2.22090632e-03, -1.81037607e-03, -1.66162930e-03, -1.33774348e-03,\n", + " -1.03217398e-03, -5.66349074e-04, -2.74554506e-04, -5.68616888e-05,\n", + " -4.33644163e-06, 5.21896218e-05, -1.01174715e-04, -2.90779426e-04,\n", + " -3.62070772e-04, -4.50906868e-04, -6.24679378e-04, -6.60558580e-04,\n", + " -7.15219358e-04, -6.02265471e-04, -5.96747268e-04, -4.89137834e-04,\n", + " -3.73787334e-04, -3.35799938e-04, -1.71133324e-05, 3.81512291e-05,\n", + " 1.75224952e-04, 2.74340564e-04, 2.92499433e-04, 5.11027640e-04,\n", + " 5.76491526e-04, 4.80154820e-04, 4.12027701e-04, 3.34814598e-04,\n", + " 3.94699513e-04, 8.88253999e-05, -1.27831736e-04, -2.92120531e-04,\n", + " -2.59702938e-04, -1.47469589e-04, -2.97198887e-04, -4.53291228e-04,\n", + " -5.23567956e-04, -5.18088520e-04, -7.21369695e-04, -6.01590495e-04,\n", + " -6.43687206e-04, -3.95731739e-04, -3.52889416e-04, -4.81653406e-04,\n", + " -6.77651318e-04, -6.92399044e-04, -7.43436685e-04, -9.58102290e-04,\n", + " -1.17542152e-03, -1.01089594e-03, -8.60720582e-04, -7.21602875e-04,\n", + " -6.49456983e-04, -5.52507583e-04, -3.34334822e-04, -7.83924770e-05,\n", + " 1.06010542e-04, 5.89528609e-05, 1.48837338e-04, -4.80122690e-05,\n", + " -8.75702754e-05, -1.15438765e-04, -2.85895134e-04, -4.50302789e-04,\n", + " -3.51646973e-04, -2.38260647e-04, -2.42416674e-04, -1.83340962e-04,\n", + " -1.50821346e-04, -1.66885860e-04, -3.07395501e-04, -4.77931811e-04,\n", + " -5.23011549e-04, -3.56306729e-04, -1.00346508e-04, 9.04311746e-05,\n", + " 5.27369921e-05, 1.09636658e-05, -3.95643983e-05, 4.34031572e-05,\n", + " 6.19495986e-05, 2.03832184e-04, 2.06827404e-04, 2.27460230e-04,\n", + " 2.41240807e-04, 3.17600294e-04, 3.92820017e-04, 3.48903006e-04,\n", + " 2.48353666e-04, 2.90645345e-04, 3.54456497e-05, 1.41456272e-04,\n", + " 1.91575100e-06, -1.05931562e-04, -1.12848858e-04, -1.59171730e-04,\n", + " -3.88738437e-04, -3.07661714e-04, -2.84524198e-04, -3.20903375e-04,\n", + " -3.85275809e-04, -3.96396877e-04, -4.21230390e-04, -5.73414552e-04,\n", + " -6.10906398e-04, -7.30710512e-04, -9.13490599e-04, -8.02771014e-04,\n", + " -8.85016285e-04, -7.67805497e-04, -7.08730426e-04])" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#pd.unique nos dice los distintos valores presentes en la columna vacf(t)\n", + "pd.unique(df[\"vacf\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Trabajemos con esta columna, dado que queremos calcular estadÃsticas de datos agrupados por subconjuntos o atributos.\n", + "Por ejemplo, mostremos alguna estadÃstica básica de todos los datos en la columna usando el comando `.describe()`. Note la salida que nos devuelve:\n", + "\n", + "- conteo de datos\n", + "- la media\n", + "- desviación standard\n", + "- valor mÃnimo\n", + "- valor máximo\n", + "- nombre y tipo" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "count 199.000000\n", + "mean 0.029651\n", + "std 0.145300\n", + "min -0.042338\n", + "25% -0.002959\n", + "50% -0.000566\n", + "75% -0.000044\n", + "max 0.893155\n", + "Name: vacf, dtype: float64" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# En algunas ocasiones, esta es una de ellas, queremos calcular estadÃsticas de datos\n", + "# agrupados por subconjuntos o atributos de nuestros datos.\n", + "\n", + "df[\"vacf\"].describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "También podemos extraer un de las métricas que nos interese:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-0.042338326600000004\n", + "0.893154621\n", + "0.02965061882257874\n", + "0.14529958318959033\n", + "199\n" + ] + } + ], + "source": [ + "# otra manera de hacer la misma estadÃstica:\n", + "\n", + "print(df[\"vacf\"].min())\n", + "print(df[\"vacf\"].max())\n", + "print(df[\"vacf\"].mean())\n", + "print(df[\"vacf\"].std())\n", + "print(df[\"vacf\"].count())" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 30.122630\n", + "1 29.269338\n", + "2 27.721690\n", + "3 25.592402\n", + "4 23.025013\n", + " ... \n", + "194 -0.030808\n", + "195 -0.027074\n", + "196 -0.029848\n", + "197 -0.025895\n", + "198 -0.023903\n", + "Name: vacf, Length: 199, dtype: float64" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Si queremos, podemos hacer operaciones sobre una columna de nuestra data. Como por ejemplo\n", + "# multiplicar todos los valores por 2. Un uso más útil podrÃa ser normalizar los datos con\n", + "# la media, área o algún otro valor calculado de nuestra data\n", + "\n", + "df[\"vacf\"]/df[\"vacf\"].mean()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Grafiquemos los datos usando pandas\n", + "\n", + "Uno de los gráficos que podemos construÃr es el gráfico de dispersión. Mediante el cual podemos ver la relación entre dos variables, como en este caso: tiempo *(t)* vs la función de autocorrelación de velocidades *(vacf)*. Este tipo de gráfico puede obtenerse mediante el método ´lmplot´ al que se le indicará la caracterÃstica para cada uno de los ejes y el conjunto de datos. Como se muestra a continuación." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "from seaborn import load_dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/student/.local/lib/python3.6/site-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.\n", + " FutureWarning\n" + ] + }, + { + "data": { + "text/plain": [ + "<seaborn.axisgrid.FacetGrid at 0x7f5384823cc0>" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFuCAYAAAChovKPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAbe0lEQVR4nO3dcXCkd33f8c9Xqz1Li4VP5m4LY+niU3qMsKgzBo1LSUYVhQxnEnRNwzTnlBloHE4UnIQhycSMOzdUTKdOmbbBE3eqG9fTkEkx4LYZNcF2ILaiDnDEIsUY2bJ9yA6Sk3rvDvmQWem02vv2j33WWel0q93TPtrnt/t+zWh2n9/z7O73nt376Kfn+e3zM3cXACAcHc0uAABQH4IbAAJDcANAYAhuAAgMwQ0AgelsdgH1Onr0qD/yyCPNLgMA9oJt1xhcj/vcuXPNLgEAmiq44AaAdkdwA0BgCG4ACAzBDQCBIbgBIDAENwAEhuAGgMAQ3AAQGIIbAAJDcANAYIK7Vkm9pudzmpxZ0OJyXv29GY2PDGh0MNvssgDgqrV0j3t6PqeTU3PKraxpf3dauZU1nZya0/R8rtmlAcBVa+ngnpxZUDplyuzrlFnpNp0yTc4sNLs0ALhqLR3ci8t5dadTm9q60yktLeebVBEA7F5LB3d/b0arheKmttVCUX29mSZVBAC719LBPT4yoELRlV/fkHvptlB0jY8MNLs0ALhqLR3co4NZTYwNKdvTpQurBWV7ujQxNsSoEgBBa/nhgKODWYIaQEtp+eAuYzw3gFbR0odKyhjPDaCVtEVwM54bQCtpi+BmPDeAVtIWwc14bgCtpC2Cm/HcAFpJWwQ347kBtJK2GQ7IeG4AraItetwA0EoIbgAIDMENAIEhuAEgMAQ3AASG4AaAwLTNcECJKwQCaA1t0+PmCoEAWkXbBDdXCATQKtomuLlCIIBW0TbBzRUCAbSKtglurhAIoFW0TXBzhUAArSLW4YBmdlTS5ySlJN3v7vdsWX9I0h9I2h9tc5e7fyWuerhCIIBWEFuP28xSku6TdJukmyTdbmY3bdnsX0v6krvfIum4pP8cVz0A0CriPFRyq6Qz7r7g7uuSHpR0bMs2Lun10f3rJP1NjPUAQEuIM7hvkLRYsbwUtVX6tKQPmtmSpK9I+rXtnsjMTpjZrJnNnj17No5aASAYzT45ebuk/+bufZLeJ+kPzeyymtz9lLsPu/vwwYMH97xIAEiSOIP7JUn9Fct9UVulOyR9SZLc/ZuSuiQdiLEmAAhenMH9hKQjZnbYzPapdPJxass2P5D0bkkys7eoFNwcCwGAKmILbnffkHSnpEclPaPS6JE5M5sws7Fos9+U9BEze1LSFyR92N09rpoAoBVYaDk5PDzss7OzzS4DAPaCbdfY7JOTAIA6EdwAEBiCGwACQ3ADQGDaas7JMuaeBBCytutxM/ckgNC1XXAz9ySA0LVdcDP3JIDQtV1wM/ckgNC1XXAz9ySA0LVdcDP3JIDQteVwQOaeBBCytutxA0DoCG4ACAzBDQCBIbgBIDAENwAEhuAGgMAQ3AAQGIIbAAJDcANAYAhuAAgMwQ0AgSG4ASAwBDcABIbgBoDAENwAEBiCGwAC05YTKUjS9HxOkzMLWlzOq783o/GRASZXABCEtuxxT8/ndHJqTrmVNe3vTiu3sqaTU3Oans81uzQA2FFbBvfkzILSKVNmX6fMSrfplGlyZqHZpQHAjtoyuBeX8+pOpza1dadTWlrON6kiAKhdWwZ3f29Gq4XiprbVQlF9vZkmVQQAtWvL4B4fGVCh6Mqvb8i9dFsousZHBppdGgDsqC2De3Qwq4mxIWV7unRhtaBsT5cmxoYYVQIgCG07HHB0MEtQAwhSW/a4ASBkBDcABIbgBoDAENwAEBiCGwACQ3ADQGAIbgAIDMENAIEhuAEgMAQ3AASG4AaAwBDcABAYghsAAkNwA0BgCG4ACAzBDQCBIbgBIDCxBreZHTWzZ83sjJnddYVt/rmZPW1mc2b23+OsBwBaQWxTl5lZStJ9kn5W0pKkJ8xsyt2frtjmiKRPSfppd182sz2fS2x6PqfJmQUtLufV35vR+MgAU5oBSLQ4e9y3Sjrj7gvuvi7pQUnHtmzzEUn3ufuyJLl7LsZ6LjM9n9PJqTnlVta0vzut3MqaTk7NaXp+T8sAgLrEGdw3SFqsWF6K2iq9WdKbzezrZnbazI7GWM9lJmcWlE6ZMvs6ZVa6TadMkzMLe1kGANSl2bO8d0o6ImlUUp+kGTP7B+7+SuVGZnZC0glJOnToUMNefHE5r/3d6U1t3emUlpbzDXsNAGi0OHvcL0nqr1jui9oqLUmacveCu78g6TmVgnwTdz/l7sPuPnzw4MGGFdjfm9FqobipbbVQVF9vpmGvAQCNFmdwPyHpiJkdNrN9ko5LmtqyzR+r1NuWmR1Q6dDJnh2nGB8ZUKHoyq9vyL10Wyi6xkcG9qoEAKhbbMHt7huS7pT0qKRnJH3J3efMbMLMxqLNHpV03syelvS4pN929/Nx1bTV6GBWE2NDyvZ06cJqQdmeLk2MDTGqBECimbs3u4a6DA8P++zsbLPLAIC9YNs18s1JAAgMwQ0AgSG4ASAwBDcABIbgBoDAENwAEBiCGwACQ3ADQGAIbgAIDMENAIEhuAEgMAQ3AASG4AaAwBDcABAYghsAAkNwA0BgCG4ACAzBDQCBIbgBIDCdzS4gCabnc5qcWdDicl79vRmNjwwwYTCAxGr7Hvf0fE4np+aUW1nT/u60citrOjk1p+n5XLNLA4BttX1wT84sKJ0yZfZ1yqx0m06ZJmcWml0aAGyr7YN7cTmv7nRqU1t3OqWl5XyTKgKA6to+uPt7M1otFDe1rRaK6uvNNKkiAKiu7YN7fGRAhaIrv74h99JtoegaHxlodmkAsK22D+7RwawmxoaU7enShdWCsj1dmhgbYlQJgMRiOKBK4U1QAwhF2/e4ASA0BDcABIbgBoDAENwAEBiCGwACQ3ADQGAIbgAIDMENAIEhuAEgMAQ3AASG4AaAwBDcABAYghsAAnPF4Dazn45ur9m7cgAAO6nW4743uv3mXhQCAKhNtetxF8zslKQbzOzerSvd/dfjKwsAcCXVgvvnJb1H0nslfXtvygEA7OSKwe3u5yQ9aGbPuPuTe1gTAKCKWkaVfNLM9pcXzKzXzB6IryQAQDW1zDl5s7u/Ul5w92UzuyW+kppnej6nyZkFLS7n1d+b0fjIAHNRAkicWnrcHWbWW14ws+vVgpMMT8/ndHJqTrmVNe3vTiu3sqaTU3Oans81uzQA2KSWAP4Pkr5pZl+WZJI+IOnfxlpVE0zOLCidMmX2lXZJZl+n8usbmpxZoNcNIFF2DG53/7yZfVvSu6Kmf+buT8db1t5bXM5rf3d6U1t3OqWl5XyTKgKA7dV0yMPd58zsrKQuSTKzQ+7+g1gr22P9vRnlVtZe63FL0mqhqL7eTBOrAoDL7XiM28zGzOx5SS9I+gtJL0p6OOa69tz4yIAKRVd+fUPupdtC0TU+MtDs0gBgk1pOTn5G0jskPefuhyW9W9LpWKtqgtHBrCbGhpTt6dKF1YKyPV2aGBvi+DaAxKnlUEnB3c+bWYeZdbj742b2e3EX1gyjg1mCGkDi1dLjfsXMrpX0fyT9kZl9TtKPa3lyMztqZs+a2Rkzu6vKdr9oZm5mw7WVDQDtq5bgflzSdZJ+Q9Ijkr4v6f07PcjMUpLuk3SbpJsk3W5mN22zXU/03N+qvWwAaF+1BHenpD+TNC2pR9IX3f18DY+7VdIZd19w93VJD0o6ts12n5H0u5LWaqoYANrcjsHt7v/G3YckfVzSmyT9hZl9rYbnvkHSYsXyUtT2GjN7m6R+d//Tak9kZifMbNbMZs+ePVvDSwNA66pn6rKcpP8n6bykXZ/BM7MOSf9R0m/utK27n3L3YXcfPnjw4G5fGgCCVss47o+Z2bSkP5f0Bkkfcfeba3julyT1Vyz3RW1lPZLeKmnazF5UacjhFCcoAaC6WoYD9kv6hLt/p87nfkLSETM7rFJgH5f0y+WV7n5B0oHycvTL4bfcfbbO1wGAtlLLtUo+dTVP7O4bZnanpEclpSQ9EH11fkLSrLtPXc3zAkC7M3dvdg11GR4e9tlZOuUA2oJt11jPyUkAQAIQ3AAQGIIbAAJDcANAYAhuAAgMwQ0AgSG4ASAwBDcABKamyYLbyfR8TpMzC1pczqu/N6PxkQFmxQGQKPS4K0zP53Ryak65lTXt704rt7Kmk1Nzmp7PNbs0AHgNwV1hcmZB6ZQps69TZqXbdMo0ObPQ7NIA4DUEd4XF5by606lNbd3plJaW802qCAAuR3BX6O/NaLVQ3NS2WiiqrzfTpIoA4HIEd4XxkQEViq78+obcS7eFomt8ZKDZpQHAawjuCqODWU2MDSnb06ULqwVle7o0MTbEqBIAicJwwC1GB7MENYBEo8cNAIEhuAEgMAQ3AASG4AaAwBDcABAYghsAAkNwA0BgCG4ACAzBDQCBIbgBIDAENwAEhuAGgMAQ3AAQGIIbAAJDcANAYAhuAAgMEylsY3o+p8mZBS0u59Xfm9H4yACTKwBIDHrcW0zP53Ryak65lTXt704rt7Kmk1Nzmp7PNbs0AJBEcF9mcmZB6ZQps69TZqXbdMo0ObPQ7NIAQBLBfZnF5by606lNbd3plJaW802qCAA2I7i36O/NaLVQ3NS2WiiqrzfTpIoAYDOCe4vxkQEViq78+obcS7eFomt8ZKDZpQGAJIL7MqODWU2MDSnb06ULqwVle7o0MTbEqBIAicFwwG2MDmYJagCJRY8bAAJDcANAYAhuAAgMwQ0AgSG4ASAwBDcABIbgBoDAENwAEBiCGwACQ3ADQGAIbgAIDMENAIEhuAEgMLFeHdDMjkr6nKSUpPvd/Z4t6z8p6VclbUg6K+lX3P2v46ypHkwaDCCJYutxm1lK0n2SbpN0k6TbzeymLZv9X0nD7n6zpIck/fu46qkXkwYDSKo4D5XcKumMuy+4+7qkByUdq9zA3R939/Jkjqcl9cVYT12YNBhAUsUZ3DdIWqxYXoraruQOSQ/HWE9dmDQYQFIl4uSkmX1Q0rCkz15h/QkzmzWz2bNnz+5JTUwaDCCp4gzulyT1Vyz3RW2bmNl7JN0taczdL273RO5+yt2H3X344MGDsRS7FZMGA0iqOIP7CUlHzOywme2TdFzSVOUGZnaLpEmVQjtRZ/2YNBhAUsU2HNDdN8zsTkmPqjQc8AF3nzOzCUmz7j6l0qGRayV92cwk6QfuPhZXTfVi0mAASWTu3uwa6jI8POyzs7PNLgMA9oJt15iIk5MAgNoR3AAQGIIbAAJDcANAYAhuAAgMwQ0AgSG4ASAwBDcABIbgBoDAxDoDTitgFhwASUOPuwpmwQGQRAR3FcyCAyCJCO4qmAUHQBIR3FUwCw6AJCK4q2AWHABJRHBXwSw4AJKI4YA7YBYcAElDjxsAAkNwA0BgCG4ACAzBDQCBIbgBIDAENwAEhuAGgMAwjrtGXN4VQFLQ464Bl3cFkCQEdw24vCuAJCG4a8DlXQEkCcFdAy7vCiBJCO4acHlXAElCcNeAy7sCSBKGA9aIy7sCSAp63AAQGIIbAAJDcANAYAhuAAgMwQ0AgWFUSR240BSAJKDHXSMuNAUgKQjuGnGhKQBJQXDXiAtNAUgKgrtGXGgKQFIQ3DXiQlMAkoLgrhEXmgKQFAwHrAMXmgKQBPS4ASAwBDcABIZDJVeBb1ACaCZ63HXiG5QAmo3grhPfoATQbAR3nfgGJYBmI7jrxDcoATQbwV0nvkEJoNkI7jrxDUoAzRbrcEAzOyrpc5JSku5393u2rL9G0uclvV3SeUm/5O4vxllTI5RDujwksHxikvBOhun5nO55+Bm9cD6v4qVL6jCTS3L3qvc3LrlckrnUmartMbt9fCivSZ1X/5gOMw0ceJ1+5+hgwzLC3L0hT3TZE5ulJD0n6WclLUl6QtLt7v50xTYfk3Szu3/UzI5L+gV3/6Vqzzs8POyzs7Ox1Fyr8pDAdMrUnU5ptVBUoegt3fMuh+GZs6+q6Mn9z1Qsui41ZxcB2+rskCRTbyatz37gp+rNCNv2ORtR2BXcKumMuy9Ikpk9KOmYpKcrtjkm6dPR/Yck/b6Zmcf126RBKocESlJmX6fy6xuanFkIMrh36qFuXHJd2vKOuKT1om9pqX7/ah5zdY8HkuOSS+mUaWWtcRkRZ3DfIGmxYnlJ0j+80jbuvmFmFyS9QdK5yo3M7ISkE5J06NChuOqt2eJyXvu705va4hgSWEug7rYnWxnIHVLUWyUQgUZxl8ykjeKlhmVEEF95d/dTkk5JpUMlTS5H/b0Z5VbWXutxS40bElh5SGIj+pt/p0DdbU+2jEMMQOOZlcK7s6OjYcOG4wzulyT1Vyz3RW3bbbNkZp2SrlPpJGWijY8M6OTUnPLrG5uOcV/tkMDtwrrywBaBCoSrw6TiJVdvJt2wYcNxBvcTko6Y2WGVAvq4pF/ess2UpA9J+qakD0h6LOnHt6VoSKBKx7qff/lHWi+69nV2XNXoknu/9pzufez51wK7LPE7ISCdHZKZJeokamivSZ3JGlUSW3BHx6zvlPSoSsMBH3D3OTObkDTr7lOS/qukPzSzM5J+qFK4B6H8BpycmtN10eiS8gWnJrRzeJd72fMvv7oH1e7e3x2uKf01YEruf6Z9nSll9qV0JNvDlRvRkmIbDhiXJAwHLLv91OnLjnXn1zeU7enSF06844qPq7zC4FohWQdCOrR3vQYAO9rz4YAt72pHl/zuI/PK/WhNa1uPj1SxXaA2qifbaaa/n72WUAYCQXDvQnl0yUbRde7Vi1ovXlKqw3Tj9dufOd56eMRU/Vh2uoNABXA5gnsXxkcG9FsPPalX8gV1WCmIN4qu8z9e1/R8blPY3vu153Tf9Pd1saKXfaXQ7u/t1meOvZWwBrAtgnsXRgezOnjtNXp1bUPrxVIgm5lWLm7onoef0ehgtqaTkOWe91ve2EPvGsCOCO5dWrm4ob/3+mv0NxfW1CHTJb+ktYJr/uVXdeNdf7rj4RBJuibdoRuvz+jhT4zsRckAAsdlXXepvzejl1cuRqHt2jpIZKfQ7ursULanS3fd9pbYagTQWgjuXSpPrOByFesYWlke43P4wOta+qqCABqPQyW7NDqY1Zuz1+qFcz/WpTqCe19nhz4++pP69fe8OcbqALQietwN8DtHB5V9fZe60h3bj5aPlNe95Y09mvzg2wltAFeFHncDlK9dcs/Dz+jZaPRI5VfEJSllUmeKXjaA3SO4G2R0MLtp+F/5GtpcNwNAoxHcDVYOcACIC8e4ASAwBDcABIbgBoDAENwAEBiCGwACQ3ADQGAIbgAIDMENAIEhuAEgMAQ3AATGvI5LkSaBmZ2V9NdX8dADks41uJzdSlpN1FNd0uqRklcT9VRXbz3n3P3o1sbggvtqmdmsuw83u45KSauJeqpLWj1S8mqinuoaVQ+HSgAgMAQ3AASmnYL7VLML2EbSaqKe6pJWj5S8mqinuobU0zbHuAGgVbRTjxsAWgLBDQCBaYngNrOjZvasmZ0xs7u2WX+NmX0xWv8tM7uxYt2novZnzey9e1TPJ83saTP7rpn9uZn9RMW6opl9J/qZ2qN6PmxmZyte91cr1n3IzJ6Pfj7UiHpqrOk/VdTznJm9UrGuofvIzB4ws5yZfe8K683M7o1q/a6Zva1iXcP3Tw31/IuojqfM7Btm9lMV616M2r9jZrONqKfGmkbN7ELF+3KyYl3V9zqmen67opbvRZ+Z66N1Dd9HZtZvZo9H/6/nzOw3ttmmcZ8jdw/6R1JK0vclDUjaJ+lJSTdt2eZjkv5LdP+4pC9G92+Ktr9G0uHoeVJ7UM+7JGWi+/+qXE+0/GoT9s+HJf3+No+9XtJCdNsb3e/di5q2bP9rkh6IcR+NSHqbpO9dYf37JD0sySS9Q9K3Yt4/O9XzzvLrSLqtXE+0/KKkA43cPzXWNCrpT3b7Xjeqni3bvl/SY3HuI0lvkvS26H6PpOe2+X/WsM9RK/S4b5V0xt0X3H1d0oOSjm3Z5pikP4juPyTp3WZmUfuD7n7R3V+QdCZ6vljrcffH3T0fLZ6W1LfL19xVPVW8V9JX3f2H7r4s6auSLvsW1x7UdLukLzTgdbfl7jOSflhlk2OSPu8lpyXtN7M3Kab9s1M97v6N6PWk+D8/NdVUxW4+f42qJ9bPjyS5+9+6+19F91ckPSPphi2bNexz1ArBfYOkxYrlJV2+w17bxt03JF2Q9IYaHxtHPZXuUOm3cFmXmc2a2Wkz+6e7rKWeen4x+vPtITPrr/OxcdWk6DDSYUmPVTQ3eh/t5Er1xrV/6rH18+OS/szMvm1mJ/a4ln9kZk+a2cNmNhS1NXUfmVlGpRD8HxXNse4jKx2KvUXSt7asatjnqHPXVeKqmdkHJQ1L+scVzT/h7i+Z2YCkx8zsKXf/fsyl/G9JX3D3i2Y2rtJfJ/8k5tes1XFJD7l7saKtGfsocczsXSoF989UNP9MtG+ykr5qZvNR7zRuf6XS+/Kqmb1P0h9LOrIHr7uT90v6urtX9s5j20dmdq1KvyQ+4e4/asRzbqcVetwvSeqvWO6L2rbdxsw6JV0n6XyNj42jHpnZeyTdLWnM3S+W2939peh2QdK0Sr+5Y63H3c9X1HC/pLfX+ti4aqpwXFv+zI1hH+3kSvXGtX92ZGY3q/ReHXP38+X2in2Tk/S/tPtDfzVx9x+5+6vR/a9ISpvZATVxH0WqfX4auo/MLK1SaP+Ru//PbTZp3OeokQfom/Gj0l8NCyr9OV0++TG0ZZuPa/PJyS9F94e0+eTkgnZ/crKWem5R6YTNkS3tvZKuie4fkPS8dnkip8Z63lRx/xcknfa/O2nyQlRXb3T/+r14z6LtBlU6kWRx7qPouW7UlU+8/Zw2n1T6yzj3Tw31HFLpfMw7t7S/TlJPxf1vSDraiHpqqOmN5fdJpSD8QbS/anqvG11PtP46lY6Dvy7ufRT9Wz8v6feqbNOwz1FD3tBm/6h0tvY5lcLw7qhtQqXerCR1Sfpy9GH/S0kDFY+9O3rcs5Ju26N6vibpZUnfiX6movZ3Snoq+nA/JemOParn30mai173cUmDFY/9lWi/nZH0L/fqPYuWPy3pni2Pa/g+UqlH9reSCiodX7xD0kclfTRab5Lui2p9StJwnPunhnrul7Rc8fmZjdoHov3yZPR+3t3A92unmu6s+AydVsUvle3e67jribb5sEqDDyofF8s+UulwlUv6bsX78r64Pkd85R0AAtMKx7gBoK0Q3AAQGIIbAAJDcANAYAhuAAgMwQ1UYWb7zexjza4DqERwA9XtV+nqkkBiENxAdfdI+sno2s2fbXYxgMSck0BV0ZXe/sTd39rsWoAyetwAEBiCGwACQ3AD1a2oNBUVkBgEN1CFl651/fVowllOTiIRODkJAIGhxw0AgSG4ASAwBDcABIbgBoDAENwAEBiCGwACQ3ADQGD+PwsyLQHVODEBAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 360x360 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lmplot(\"t\",\"vacf\",data=df, fit_reg=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "from seaborn import kdeplot\n", + "from seaborn import distplot" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/student/.local/lib/python3.6/site-packages/seaborn/distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).\n", + " warnings.warn(msg, FutureWarning)\n" + ] + }, + { + "data": { + "text/plain": [ + "<AxesSubplot:xlabel='t', ylabel='Density'>" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAo50lEQVR4nO3deXSc9X3v8fd3Rvtm7ZJtWZZsC7ANBoOwWQLlEtYsmCSkhYQsLQlpEpq0uekpp81N2vTec7P05Nz2NE0gCc0eCFnASUkhkEDYLGzAxvsmybZky9r3ZTQzv/vHjIhsS/bI1uiZ0Xxe58ia5bH0sUbWR8/v9zy/x5xziIhI6vJ5HUBERLylIhARSXEqAhGRFKciEBFJcSoCEZEUl+Z1gJkqLS11NTU1XscQEUkqr776aqdzrmyq55KuCGpqatiyZYvXMUREkoqZHZruOQ0NiYikOBWBiEiKUxGIiKQ4FYGISIpTEYiIpDgVgYhIilMRiIikOBWBiEiKUxGIiKS4pDuzWESm9uOGw55+/vetr/b088vZ0x6BiEiKUxGIiKQ4FYGISIqLaxGY2S1mttfMDpjZ/VM8/2Ez6zCzrdG3j8Qzj4iInCpuk8Vm5ge+DtwItACbzWyjc27XSZs+4py7L145JPk45+geCnC8f4zjA6N09I9xvH+UvpFxhsdDDI8FGQ6EGA6EGAoECQTDhMIu8ubcH29H38LRx074HKd8zlMznG77Ux+Y8iEALPqHAWaGTb4NWHSDPz4OxonbMfH4FM9NfPyBkSBmkO73keY30v0+0n1Gmt9Hht9HToaf3My0N98XZKVTnJtBdoZ/muSSKuJ51NA64IBzrhHAzB4GNgAnF4HMMq+PHpmJiR/6TZ1DHO4epn1gjPaBUUbHw6dsm+H3kZEWfZt0O81n+Mzwp0Xe+4zo+8gPTJ9v8g/cyew090594OTnT9l+un9j9A03URbuzeI5q8eJfN3+eDvyPicjDeccwZBjPBRmbDzEYPT2eCjMcCBEMHxqXWWl+yjLy2RxUQ5VhdlUF+dQkpfxZgHFysvvOx2xdG7iWQSLgSOT7rcA66fY7j1mdi2wD/gb59yRkzcws3uBewGqq/WCJ7uwcxzuGmZrSy97jvXTPxoEIDvdT0VBFhdXFVKal8mC7HQKstLIz0onLyuNdL+mtM6Fc47xkGNoLMhQIEj/yDhdQ4E3975eO9TDpsYuAEpyM7igMp+ViwqoLcmdcSlIcvH6PIJfAT9xzo2Z2ceA7wHXn7yRc+5B4EGA+vr66fbAJcGNBUM0NHbT0NRFz/A46X7j/Ip8lpXlUVuaS3l+pn7gxJGZkZFmZKRlUJSbAUUnPh92jo6BMZo6h9jT1k9DUzcvHuyiLD+TK5eVsLa6kMw0DSPNR/EsglZgyaT7VdHH3uSc65p099vAV+KYRzwSCIbZ1NjFH/Z3MBwIsawslxtWVrBqYQGZ6frBkih8ZlQUZFFRkMUVy0oIBMPsaO3j5cYuNm47ylO72rjuvHKuXF6ivbN5Jp5FsBmoM7NaIgVwJ/C+yRuY2ULn3LHo3duA3XHMIx7Y29bP41uP0jsyTl15Hm9dWUF1cY7XsSQGGWk+Ll1axNrqQo50D/P7vR389842Njd3c/vaxSwvy/M6osySuBWBcy5oZvcBTwJ+4CHn3E4z+yKwxTm3EfiUmd0GBIFu4MPxyiNzazwU5ontx2ho6qY8P5OPXrOM2tJcr2PJWTAzqkty+dBVuRxoH+Sxra1854UmrllRyk2rK/H7NJyX7Ozkw+QSXX19vduyZYvXMRKa10cN9Y+O88NNh2jpGeGaFaXcuKqCNA0lzBuTS76mJIe71y8lJ9Pb6UYdNXRmZvaqc65+quf0v1NmVcfAGN989iDt/WPcvX4pt160UCUwz6T7fWy4ZDF/Vr+Elp4RvvHcQXqGAl7HknOg/6Eya9r7R/n2842Mh8J89NplrFpU4HUkiaOLlxRyz1tqGQoE+dbzjXSrDJKWikBmRe9wgIdebMIBH7lmGYsLs72OJHNgaUku97xlGWPBMN95oZGB0XGvI8lZUBHIORsJhPjuS82MBcP8xdW1VBRkeR1J5tDiwmw+fFUNg2NBvv/yIQLBU88Kl8SmIpBzEnaOR189QufgGHdfsZTKBSqBVLSkOIe71lVztHeEX7zecspaTZLYVARyTp7d28GetgHevmaRjitPcRdUFnDjqgreaOnjpYNdZ/4LkjBUBHLWDncP88zu41xctYAraou9jiMJ4NrzylhZmc9/72zjWN+I13EkRioCOStjwRCPbjnCgpx0NlyyWGsECRBZpuJdl1aRne7n0S0tBEOaL0gGKgI5K0/vOk7XUIA7LqsiS+sFySR5mWm8+9LFtPWP8uy+Dq/jSAxUBDJjR3tHeOlgF+tqillWqnkBOdUFlQWsqVrAc/s66BwY8zqOnIGKQGYk7ByPb20lJzONm1dXeh1HEtjbL1pIut/YuO2ojiJKcCoCmZHtLX0c6RnhltWVusShnFZ+Vjo3rKzgQMcge48PeB1HTkNFIDEbD4V5clcbCxdksba60Os4kgTW1RZTkpvBb3a0nXLdaEkcKgKJWUNjF73D49x64UJ8OkpIYpDm83HrhZV0DEQuhSmJSUUgMQkEwzy3r4PlZbmsKNcEscRu5cIClhRl8/u97QTDOpw0EakIJCabGrsYCoS4YWWF11EkyZgZb11ZQe/IOK9qryAhqQjkjMZDYZ7f38GK8jyWlugqYzJzdeV5LCnK5rm9HZorSEAqAjmj1w73MBQIcd35ZV5HkSRlZlx3fjm9I+Nsb+3zOo6cREUgpxV2jhf2d1JVlE2t9gbkHJxfmU9ZfibP7+/QeQUJRkUgp7XraD9dQwGuqSvTekJyTnxmXLOilGN9oxzsGPI6jkyiIpDTermxi8KcdFbrspMyCy5ZUkhuZhovH+z0OopMoiKQabX1j9LUOcQVtSU6b0BmRZrfx+U1RexpG9AF7xOIikCm1dDYRZrPqF9a5HUUmUfW1RRjBg1N3V5HkSgVgUxpbDzE64d7WVNVSE5mmtdxZB4pzMlg5cICthzq1vUKEoSKQKa0vbWPQCjMuhrtDcjsu7ymmOFAiN1tWowuEagIZEqbm7spy89kSXGO11FkHlpRnseC7HS2NGt4KBGoCOQUx/tHOdIzQv3SIh0yKnHhM+OypUUcaB+kZ1iTxl5TEcgpXjvcg89gbbWGhSR+LqsuwgGvH+71OkrKUxHICcLO8UZLH3Xl+eRpkljiqCg3g5qSHN5o6dWZxh5TEcgJDncN0zcyzpqqBV5HkRSwpqqQ9oEx2vpHvY6S0lQEcoI3WntJ8xmrFupMYom/CxcvwGfwRosWovNSXIvAzG4xs71mdsDM7j/Ndu8xM2dm9fHMI6cXCju2t/ZzwcICMtN1PWKJv7zMNJaX5Wl4yGNxKwIz8wNfB24FVgF3mdmqKbbLBz4NNMQri8SmsXOQobEgaxZrWEjmzpqqQnqGx2npGfE6SsqK5x7BOuCAc67RORcAHgY2TLHdPwNfBjRI6LE3jvSRmebj/Mp8r6NIClm9qIA0n7GtpdfrKCkrnkWwGDgy6X5L9LE3mdmlwBLn3H+d7gOZ2b1mtsXMtnR0dMx+UiEYCrPzWB+rFxWQ7tfUkcydrHQ/51Xks721j7CGhzzh2f94M/MBXwP+55m2dc496Jyrd87Vl5XpKlnxsO/4IKPjYdZUFXodRVLQmqoFDIwGaerUdQq8EM8iaAWWTLpfFX1sQj5wIfCsmTUDVwAbNWHsjR1H+8jJ8LO8LM/rKJKCLqgsIMPvY4cuY+mJeBbBZqDOzGrNLAO4E9g48aRzrs85V+qcq3HO1QCbgNucc1vimEmmEAo79rT1c0FlAX6flpSQuZeR5qOuIo/dx/p19JAH4lYEzrkgcB/wJLAb+KlzbqeZfdHMbovX55WZO9Q1xOh4mJULNUks3llZWUD/aJCjfTpuZK7FdQ0B59wTwBMnPfb5aba9Lp5ZZHq7j/WT5jNWlGtYSLxzXmU+RuT7cXFhttdxUooOD0lxzjl2HetneVkemWk6iUy8k5eZRnVJDruP9XsdJeWoCFJc+8AYPcPjXKBhIUkAKysLONY3Sq+Wpp5TKoIUN/Hb18pKrS0k3lsZXeNKVy6bWyqCFLf7WD9VRdkUZKd7HUWEsvxMSvMyNTw0x1QEKWxgdJwjPSNcoL0BSSArF+bT1DHE6HjI6ygpQ0WQwvZEd7912KgkkpWVBYScY99xDQ/NFRVBCtvTNkBhdjqVBVleRxF5U3VJDjkZfvZqnmDOqAhSVCjsaOwY5LyKfF2gXhKKzyLntOxvH9QidHNERZCiDncPMxYM6yQySUh15fkMjgVp01nGc0JFkKL2Hx/AZ6gIJCHVRb8v97cPepwkNagIUtT+9kGWFOWQpUtSSgIqiM5d7deE8ZxQEaSgwbEgR3tHqKvQ3oAkrrryPA51DRMIhr2OMu+pCFLQwfZBHJFxWJFEVVeRT8g5Gjs1PBRvKoIUtL99gOx0P4uLtMKjJK6lJTmk+439x1UE8aYiSDHOOfa3D7KiPA+fDhuVBJbu91Fbmsv+ds0TxJuKIMW09Y8yMBp886gMkURWV55P52CAniGtRhpPKoIUcyB6OF5dheYHJPHpMNK5oSJIMfvbBynPz2SBVhuVJFAW/V7V8FB8qQhSSDAU5lDXEMs1LCRJwsxYXpZHY8eQlpuIIxVBCjnSM8J4yLG8VEUgyWN5WS4j4yGO92u5iXhREaSQxo5BDKgtzfU6ikjMlpVFfnE52DHkcZL5S0WQQg52DLGoMJvsDC0rIcljQXY6JbkZNHZowjheVAQpIhAMc6R7mGVl2huQ5LO8LI+mziFCYc0TxIOKIEUc7h4m5BzLyzQ/IMlnWVkuY8EwR3tHvI4yL6kIUsTBjkF8FjltXyTZTMwTaHgoPlQEKaKxY5Cqohwy0zQ/IMknLzONyoIsDnZqwjgeVAQpYHQ8REvPCMs1PyBJbFlZLoe6hgiGtCz1bFMRpIDmziEcf9y9FklGy0rzGA85jvRonmC2qQhSQGPnEGk+o7pY8wOSvGpLczE0TxAPMRWBmf3CzN5uZiqOJNTYMciS4hzS/Xr5JHllZ/hZVJitE8viINafDP8BvA/Yb2ZfMrPz45hJZtHoeIhjfaM6m1jmhdrSXFp6hjVPMMtiKgLn3NPOufcDlwLNwNNm9pKZ/bmZTbuMpZndYmZ7zeyAmd0/xfN/aWbbzWyrmb1gZqvO9h8iUzvUFZkfUBHIfFBbmkswrHmC2RbzWIGZlQAfBj4CvA78K5Fi+O002/uBrwO3AquAu6b4Qf9j59xFzrlLgK8AX5thfjmD5q5hfAZLijQ/IMlv4jyY5i4ND82mWOcIfgk8D+QA73TO3eace8Q591fAdIeirAMOOOcanXMB4GFgw+QNnHP9k+7mAjp/fJY1dQ5RVZRDRprmByT55WREzido1vkEsyotxu2+5Zx7YvIDZpbpnBtzztVP83cWA0cm3W8B1p+8kZl9EvgMkAFcP9UHMrN7gXsBqqurY4wsgWCY1p4Rrl5R4nUUkVlTU5rDa4d6CYUdfp+uuz0bYv018X9P8djLsxHAOfd159xy4O+Az02zzYPOuXrnXH1ZWdlsfNqUcKQnsr5QjeYHZB6pLc0jENK6Q7PptHsEZlZJ5Df7bDNbC0zUbwGRYaLTaQWWTLpfFX1sOg8D3zjDx5QZaO4cwoClxSoCmT9qJs0TLNG5MbPiTENDNxOZIK7ixIncAeDvz/B3NwN1ZlZLpADuJHII6pvMrM45tz969+3AfmTWNHcNUbkgS9cfkHklPyud0rwMmjqHuKZOIwSz4bRF4Jz7HvA9M3uPc+7nM/nAzrmgmd0HPAn4gYecczvN7IvAFufcRuA+M7sBGAd6gA+d1b9CThEMhzncPUx9TbHXUURmXU1JLjuO9hF2Dp9pnuBcnWlo6G7n3A+BGjP7zMnPO+dOe7hndIL5iZMe+/yk25+eWVyJ1dHeUcZDjpoSDQvJ/FNbmsuWQz0c7x9l4YJsr+MkvTMNDU38FNFqZUlm4vC6Gl1/QOahiRMkmzqHVASz4ExDQw9E3//T3MSR2dLcNURpXib5WdOe+C2StApzMijMSae5c4irlpd6HSfpxXpC2VfMrMDM0s3sGTPrMLO74x1Ozk7YOZq7hqgt1d6AzF+1Jbk0dQ3jnM5DPVexnkdwU/Qs4HcQWWtoBfC38Qol5+Z4/yij42HND8i8VlOay9BYkI7BMa+jJL1Yi2BiCOntwKPOub445ZFZ0DQxP6ATyWQem5gnaO4c9jhJ8ot1iYlfm9keYAT4uJmVAaPxiyXnorlziMLsdIpyMryOIhI3JbkZ5GemaQG6WRDrMtT3A1cB9c65cWCIkxaQk8TgnKO5a1h7AzLvmRk1pbk0dQ5pnuAcxbpHAHABkfMJJv+d789yHjlHTZ1DDI4FqdX8gKSAmtJctrf20dIzouUmzkFMRWBmPwCWA1uBUPRhh4og4bzS1A1ofkBSw8QvPA1N3SqCcxDrHkE9sMpp/yvhvdLUTW5mGqV5mh+Q+a+8IJPsdD+bm7q547Iqr+MkrViPGtoBVMYziMyOhqZuakpyMK2/IinAZ0ZNSQ6vNHd7HSWpxbpHUArsMrNXgDcP2nXO3RaXVHJWWntHaO0dYW11oddRROZMTWkuv9nRRvvAKOX5WV7HSUqxFsE/xjOEzI7NE/MDmiiWFDLx/b65qYe3r1nocZrkFOvho88ROaM4PXp7M/BaHHPJWWho6iY/K43KBfqtSFLHosJsstP9vNLU5XWUpBXrWkMfBX4GPBB9aDHwWJwyyVl6pamLy2uKtT67pBS/z7hsaRGvNPd4HSVpxTpZ/EngaqAfIHpVsfJ4hZKZ6xwc42DHEJfrQjSSgtbVFrOnrZ++4XGvoySlWItgzDkXmLgTPalMh5ImkC3RoybW1aoIJPVcXlOMc7DlkI4eOhuxFsFzZvb3RC5ifyPwKPCr+MWSmWpo6iYr3cdFixd4HUVkzq2tLiTdbzqM9CzFWgT3Ax3AduBjRC4/+bl4hZKZe6Wpm0uri8hIi/UlFZk/stL9rKkqfPPMepmZWI8aChOZHP6Ec+4O59y3dJZx4ugfHWfXsX4NC0lKW1dbzPaWPkYCoTNvLCc4bRFYxD+aWSewF9gbvTrZ50/392Ruvdrcg3OwThPFksLW1RYTDDteP6yjh2bqTHsEf0PkaKHLnXPFzrliYD1wtZn9TdzTSUwamrpJ9xtrq4u8jiLimcuWFmEW+f8gM3OmIvgAcJdzrmniAedcI3A38MF4BpPYNTR1saaqkOwMv9dRRDxTkJXOqoUFbNaE8YydqQjSnXOdJz/onOsA0uMTSWZiOBBke0sf6zU/IMLlNcW8driHQDDsdZSkcqYiCJzlczJHXjvUSzDsNFEsAqyvLWZ0PMyOo7qs+kycadG5i82sf4rHDdCCNgmgoakLv8+o10SxCJdHfyGaOJxaYnPaPQLnnN85VzDFW75zTkNDCaChqZsLFxWQlzmTq46KzE+leZksK8vV+QQzpLOPktjoeIitR3o1LCQyyfraYjY3dxMK61SnWKkIktjWI70EgmHW15Z4HUUkYVxeU8zAaJC9bQNeR0kaKoIk9kpTN2ZoxVGRSSb2kHUYaexUBEmsoamLCyoLWJCj6RqRCVVFOSwuzNY8wQzEtQjM7BYz22tmB8zs/ime/4yZ7TKzN8zsGTNbGs8880kgGObVQz06f0BkCpfXFNHQ1I2WRItN3IrAzPzA14FbgVXAXWa26qTNXgfqnXNriFwB7SvxyjPfbG/tY3Q8zBXLVAQiJ1tXW0Ln4BjNXcNeR0kK8dwjWAcccM41Ri9q8zCwYfIGzrnfO+cmXqlNQFUc88wrDdHrs2p+QORU62oj5xA0NOo6xrGIZxEsBo5Mut8SfWw69wC/meoJM7vXzLaY2ZaOjo5ZjJi8Ghq7qSvPoyQv0+soIglneVkepXmZbFIRxCQhJovN7G6gHvjqVM875x50ztU75+rLysrmNlwCCoai8wMaFhKZkplxxbJiXm7s0jxBDOJZBK3Akkn3q6KPncDMbgD+AbjNOTcWxzzzxq5j/QyOBVmn8wdEpnXFshKO92ueIBbxLILNQJ2Z1ZpZBnAnsHHyBma2FniASAm0xzHLvNLQGDks7godMSQyrSuXR35RevmghofOJG5F4JwLAvcBTwK7gZ8653aa2RfN7LboZl8F8oBHzWyrmW2c5sPJJA1N3dSW5lJeoHX/RKazrDSX8vxMXtY8wRnFdaUy59wTRC50P/mxz0+6fUM8P/98FAo7Njd3c8vqSq+jiCS0yDxBCS8djMwTmJnXkRJWQkwWS+x2H+unb2T8zd1eEZnelcsj5xMc7BjyOkpCUxEkmRcPRC4Yd5WKQOSMrlwWnSfQ8NBpqQiSzEsHu1hRnqf5AZEYLC3JYeGCLDZpwvi0VARJJBAM80pTN1drb0AkJhPzBJt0PsFpqQiSyNYjvYyMh7hqRanXUUSSxpXLSugaCrC/fdDrKAlLRZBEXjrYic/gCp1IJhKziQMrXorOr8mpVARJ5KUDXVy4eIGuPyAyA0uKc1hSnM0LBzRPMB0VQZIYDgR5/UgPVy3XsJDITL1lRRmbGrsYD4W9jpKQVARJYnNzD+Mhp8NGRc7CNXWlDI4F2Xak1+soCUlFkCReOtBJht+n6w+InIWrlpdgBs/v1zzBVFQESeLFg52srS4kO8PvdRSRpFOYk8GaxQt4QRPGU1IRJIGeoQA7j/ZrfkDkHLylrpStR3rpHx33OkrCUREkgecPdOIcXHueikDkbF1TV0Yo7LQs9RRUBEngub0dFOWks6aq0OsoIknr0uoicjL8vKB5glOoCBJcOOx4bl8H19SV4fdpGV2Rs5WR5mN9bbHmCaagIkhwu4710zk4xp+cp2s1i5yrt9SV0dQ5REuPLl85mYogwT23rwOAazQ/IHLOrqmL/D/S8NCJVAQJ7rl9HaxeVEB5vpadFjlXdeV5VBZk8ezeDq+jJBQVQQLrHx3ntUM9GhYSmSVmxvUry3l+fwdjwZDXcRKGiiCBvXSgi2DYqQhEZtH155czFAjxSlO311EShooggT23r4P8zDQuXVrkdRSReePqFaVkpvn43Z52r6MkDBVBgnLO8dzedq5eUUq6Xy+TyGzJzvBz1fISntndrquWReknTILad3yQo32j/Mn5GhYSmW3Xr6zgcPcwBzuGvI6SEFQECeqpnW2YwVtXlnsdRWTeuf6CyP+r32t4CFARJKwnd7WxdkmhDhsViYPFhdlcUJnPM3uOex0lIagIElBr7wg7Wvu5aXWl11FE5q3rLyhnc3MPfSNajVRFkIB+u7MNgJtWVXicRGT+euvKckJhxx/26eQyFUECemrXcerK81hWlud1FJF565IlRRTnZvDbXRoeUhEkmN7hAA1N3dy0WnsDIvHk9xk3r67gmd3HGR1P7bOMVQQJ5nd72gmFHTet0vyASLy97aKFDAVCby7umKpUBAnmqZ3HqSzI4qLFC7yOIjLvXbmshKKcdJ7YfszrKJ6KaxGY2S1mttfMDpjZ/VM8f62ZvWZmQTO7I55ZksHoeOQ3kxtXVeDTRWhE4i7N7+Pm1ZU8vSu1h4fiVgRm5ge+DtwKrALuMrNVJ212GPgw8ON45Ugmv9vTzsh4iJt12KjInNHwUHz3CNYBB5xzjc65APAwsGHyBs65ZufcG0A4jjmSxi9fb6U8P5Mrl5d4HUUkZVy5XMND8SyCxcCRSfdboo/NmJnda2ZbzGxLR8f8bO3e4QDP7m3ntosX6drEInMoXcNDyTFZ7Jx70DlX75yrLyubn4uwPbG9jfGQ4/a1Z9WVInIOUn14KJ5F0AosmXS/KvqYTOGxra0sL8tl9aICr6OIpJyJ4aFfbTvqdRRPxLMINgN1ZlZrZhnAncDGOH6+pNXSM8wrTd28a+1izDQsJDLX0v0+brt4EU/tOk7vcMDrOHMubkXgnAsC9wFPAruBnzrndprZF83sNgAzu9zMWoD3Ag+Y2c545UlkG6O/hWy4RMNCIl55b/0SAsEwj29Nvb2CtHh+cOfcE8ATJz32+Um3NxMZMkpZzjkee72Vy5YWsaQ4x+s4IinrwsULWL2ogJ9uOcKHrqrxOs6cSorJ4vls17F+9h0f5PZLFnkdRSTl/Wn9EnYe7WdHa5/XUeaUisBjD79yhIw0H++8WEUg4rUNlywiI83Ho1uOnHnjeURF4KHhQJDHXm/lHRctpDAnw+s4IimvMCeDm1dX8tjWoyl1ToGKwEO/3naMgbEgd62v9jqKiET9aX0VfSPjKXWdAhWBR5xz/LDhECvK86hfWuR1HBGJunp5KYsLs/lxw2Gvo8wZFYFHXjvcwxstfXzoyqU6d0Akgfh8xvuvqOblxi72tPV7HWdOqAg88tCLzRRkpfHuS1P66FmRhHTX5dVkpfv47ovNXkeZEyoCDxztHeG/d7Rx57pqcjPjeiqHiJyFotwM3rW2il++3kr30Pw/01hF4IFvP98EwAevXOpxEhGZzj1vqWEsGOa7LzV7HSXuVARzrGtwjJ+8cpjbL1lMVZHOJBZJVCvK87l5dQXffbGJwbGg13HiSkUwx777UjOjwRAfv26Z11FE5Aw+cd0K+keD/HDTIa+jxJWKYA71DAX4zxebuXlVJSvK872OIyJncPGSQq6pK+Vbf2ic13sFKoI59I3nDjIUCPKZm87zOoqIxOgzN55H11CAh15o8jpK3KgI5khb3yjfe6mZd12ymPMqtDcgkizWVhdx06oKvvWHRnrm6RFEKoI58pUn9+Ac/PUN2hsQSTafvfl8hgJB/t/T+7yOEhcqgjnw+uEefvFaK/dcU0t1iY4UEkk251Xk8/71S/lhw2H2tg14HWfWqQjiLBR2fGHjTsrzM/nk/1jhdRwROUufufE88jLT+MLGHTjnvI4zq1QEcfafLzbxRksfn3vHKvJ0FrFI0irKzeD+Wy9gU2M3j2yeX9crUBHEUXPnEP/y1F5uWFnOO9cs9DqOiJyjOy9fwpXLSvg//7WbY30jXseZNSqCOBkPhfn0I1tJ9/v459sv1AqjIvOAmfGl91xEMOz4zCPbCIXnxxCRiiBO/uWpvWw70suX37OGhQuyvY4jIrNkaUku/7RhNS83dvEfvz/gdZxZoSKIg1+/cZQHnmvkfeuredtFGhISmW/ee1kVGy5ZxNee3sfv97R7HeecqQhm2RstvXz20W1ctrSIL7xzlddxRCQOzIz/++6LWLWwgE/95PWkP6RURTCL9h8f4EMPvUJpXibfvPsyMtP8XkcSkTjJyUjjWx+sJzvDzwe+08DhrmGvI501FcEs2X98gLu/00Ca38cP71lPWX6m15FEJM4WFWbzg3vWEwiFed+3N3Goa8jrSGdFRTALXjvcw3sfeJmwgx99ZD01pbleRxKROXJ+ZT4/+Iv1DI0FueObL7PzaJ/XkWZMRXAOnHM8svkwdz6wiYKsdH7+l1dpQTmRFHRR1QJ++rErSfMZ7/nGS2zcdtTrSDOiIjhLvcMB/uonr/N3P9/O5bVFPP7Jq7WOkEgKq6vI5/H7rubCRQv41E9e528f3Ub/6LjXsWKiNQ9mKBgK89MtLXz1yT0MjAb525vP52PXLiPNr04VSXXl+Vn8+KNX8G/P7Oc/nj3As/s6+LtbLuD2SxYl9M8IFUGMBseC/GrbUR78QyNNnUOsqynmnzasZuXCAq+jiUgCyUjz8dmbz+em1RX8r8d38tlHt/Fvz+zn3muXccdlVWSlJ97RhCqC0wgEw7x6qIfHt7byq21HGQqEWLWwgAc+cBk3rarQshEiMq01VYX88uNX8dSu43zjuYN87rEdfO23+7j1wkreftFC1tUWJ8xeQlyLwMxuAf4V8APfds596aTnM4HvA5cBXcCfOeea45npdLqHAuw62s+uY300NHbzcmMXw4EQ2el+3rFmIXetr2btkkIVgIjExOczbrmwkptXV/ByYxc/2nSYX7zWyo8aDlOUk059TTGXLS3i0uoizqvIozAnw5OccSsCM/MDXwduBFqAzWa20Tm3a9Jm9wA9zrkVZnYn8GXgz+KRp61vlAPtg/SOBOgZHqdvOPK+rW+Ult4RWrqH6Zp0Gbrq4hzefelirq0r46oVpVpCWkTOmplx1fJSrlpeykggxLN723l6dzuvHurmt7uOv7ldcW4GtaW5VBRkUpaXSWleJqX5mRTnZpCfmcaK8jzKC7JmPV88f7qtAw445xoBzOxhYAMwuQg2AP8Yvf0z4N/NzFwcrvrw2NZWvvSbPSc8lp3up3JBFlVF2dy0uoLa0lxWL1rAyoUFFOd608wiMr9lZ/i59aKF3Bpdh6xzcIw3Wno52D7EwY5BmjqH2NM2wAsDnfSPBk/4u/98+4V84Iqls54pnkWwGJh89YYWYP102zjngmbWB5QAnZM3MrN7gXujdwfNbO9shdwz9cOlJ2dIMsrvnWTODkma//1/vJmU+Sc5bf4Pfhk+ePYfe9oGSYrxDufcg8CDc/X5zGyLc65+rj7fbFN+7yRzdlB+r3mVP55T1q3Akkn3q6KPTbmNmaUBC4hMGouIyByJZxFsBurMrNbMMoA7gY0nbbMR+FD09h3A7+IxPyAiItOL29BQdMz/PuBJIoePPuSc22lmXwS2OOc2At8BfmBmB4BuImWRCOZsGCpOlN87yZwdlN9rnuQ3/QIuIpLaEuO0NhER8YyKQEQkxakIADMrNrPfmtn+6PuiabYLmdnW6NvJE99zysxuMbO9ZnbAzO6f4vlMM3sk+nyDmdV4EHNaMeT/sJl1TPp6f8SLnNMxs4fMrN3MdkzzvJnZv0X/fW+Y2aVznXE6MWS/zsz6Jn3tPz/XGU/HzJaY2e/NbJeZ7TSzT0+xTSJ//WPJP7evgXMu5d+ArwD3R2/fD3x5mu0Gvc4azeEHDgLLgAxgG7DqpG0+AXwzevtO4BGvc88w/4eBf/c662n+DdcClwI7pnn+bcBvAAOuABq8zjyD7NcBv/Y652nyLwQujd7OB/ZN8f2TyF//WPLP6WugPYKIDcD3ore/B9zuXZSYvLl8h3MuAEws3zHZ5H/Tz4C3WuKslhdL/oTmnPsDkSPdprMB+L6L2AQUmtnCuUl3ejFkT2jOuWPOudeitweA3URWKZgskb/+seSfUyqCiArn3LHo7TagYprtssxsi5ltMrPb5ybalKZavuPkb6QTlu8AJpbvSASx5Ad4T3S3/mdmtmSK5xNZrP/GRHWlmW0zs9+Y2Wqvw0wnOuS5Fmg46amk+PqfJj/M4WuQFEtMzAYzexqonOKpf5h8xznnzGy6Y2qXOudazWwZ8Dsz2+6cOzjbWQWAXwE/cc6NmdnHiOzdXO9xplTxGpHv9UEzexvwGFDnbaRTmVke8HPgr51z/V7nmakz5J/T1yBl9gicczc45y6c4u1x4PjEbmP0ffs0H6M1+r4ReJZIk3sh2ZfvOGN+51yXc24sevfbRK5ZkUxieY0SknOu3zk3GL39BJBuZqUexzqBmaUT+SH6I+fcL6bYJKG//mfKP9evQcoUwRlMXuriQ8DjJ29gZkUWuZAO0Rfkak5cUnsuJfvyHWfMf9J47m1ExlGTyUbgg9GjV64A+iYNPyY0M6ucmE8ys3VEfk4kyi8RRLN9B9jtnPvaNJsl7Nc/lvxz/RqkzNDQGXwJ+KmZ3QMcAv4UwMzqgb90zn0EWAk8YGZhIi/Kl9yJF9mZMy65l++INf+nzOw2IEgk/4c9CzwFM/sJkSM7Ss2sBfgCkA7gnPsm8ASRI1cOAMPAn3uT9FQxZL8D+LiZBYER4M4E+iUCIr+EfQDYbmZbo4/9PVANif/1J7b8c/oaaIkJEZEUp6EhEZEUpyIQEUlxKgIRkRSnIhARSXEqAhGRFKciEJkFZlZoZp/wOofI2VARiMyOQiIrvookHRWByOz4ErA8unb8V70OIzITOqFMZBZEV5H8tXPuQq+ziMyU9ghERFKcikBEJMWpCERmxwCRyw6KJB0VgcgscM51AS+a2Q5NFkuy0WSxiEiK0x6BiEiKUxGIiKQ4FYGISIpTEYiIpDgVgYhIilMRiIikOBWBiEiK+/+KfQJFzhB1zQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sns.distplot(df[\"t\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/student/.local/lib/python3.6/site-packages/seaborn/distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).\n", + " warnings.warn(msg, FutureWarning)\n" + ] + }, + { + "data": { + "text/plain": [ + "<AxesSubplot:xlabel='vacf', ylabel='Density'>" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEHCAYAAACp9y31AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAb4UlEQVR4nO3deZwU9Z3/8dd7DgRU7uEQVAQRNB6gI2rUaFATPGJ04yaaYMxvNZg75sbV3/7MmmzMYUx2f66GRDdoDgkmUaPGxAM1JoIOCoggAgIKIgwoh8gxzHz2j65JhmGGaYap7pmp9/NBP6aquo5P0T3vrvn2t6oUEZiZWXaUFLsAMzMrLAe/mVnGOPjNzDLGwW9mljEOfjOzjHHwm5llTFnaG5BUClQBKyPiPEmHAHcBfYFZwKURsX136+jXr18MHTo07VLNzDqVWbNmrY2IisbTUw9+4IvAAqBHMv5d4KaIuEvSrcDlwC27W8HQoUOpqqpKt0ozs05G0vKmpqfa1CNpCHAu8LNkXMA44O5klinABWnWYGZmO0u7jf9HwNeBumS8L7A+InYk4yuAwSnXYGZmDaQW/JLOA9ZExKxWLj9RUpWkqurq6jauzswsu9I84j8ZOF/SMnJf5o4Dfgz0klT/3cIQYGVTC0fE5IiojIjKiopdvpswM7NWSi34I+LqiBgSEUOBi4HHIuJjwHTgomS2y4B706rBzMx2VYx+/N8AvixpMbk2/9uKUIOZWWYVojsnEfE48Hgy/AowthDbNTOzXfnMXTOzjHHwm5llTEGaeqx1fjXz1Z3GP3rCQUWqxMw6Ex/xm5lljIPfzCxjHPxmZhnj4DczyxgHv5lZxjj4zcwyxsFvZpYxDn4zs4xx8JuZZYyD38wsYxz8ZmYZ4+A3M8sYB7+ZWcY4+M3MMsbBb2aWMakFv6Sukp6RNEfSi5K+mUz/uaSlkmYnj9Fp1WBmZrtK80Ys24BxEfG2pHLgKUl/TJ77WkTcneK2zcysGakFf0QE8HYyWp48Iq3tmZlZflJt45dUKmk2sAZ4OCJmJk99W9JcSTdJ2qeZZSdKqpJUVV1dnWaZZmaZkmrwR0RtRIwGhgBjJR0JXA2MAo4H+gDfaGbZyRFRGRGVFRUVaZZpZpYpBenVExHrgenA+IhYFTnbgP8BxhaiBjMzy0mzV0+FpF7JcDfgLOAlSYOSaQIuAOalVYOZme0qzV49g4ApkkrJfcD8JiLul/SYpApAwGzgUynWYGZmjaTZq2cuMKaJ6ePS2qaZmbXMZ+6amWWMg9/MLGMc/GZmGePgNzPLGAe/mVnGOPjNzDLGwW9mljEOfjOzjHHwm5lljIPfzCxjHPxmZhnj4DczyxgHv5lZxjj4zcwyxsFvZpYxDn4zs4xx8JuZZYyD38wsY9K82XpXSc9ImiPpRUnfTKYfImmmpMWSpkrqklYNZma2qzSP+LcB4yLiGGA0MF7SicB3gZsi4lDgLeDyFGswM7NGUgv+yHk7GS1PHgGMA+5Opk8BLkirBjMz21WqbfySSiXNBtYADwNLgPURsSOZZQUwuJllJ0qqklRVXV2dZplmZpmSavBHRG1EjAaGAGOBUXuw7OSIqIyIyoqKirRKNDPLnIL06omI9cB04CSgl6Sy5KkhwMpC1GBmZjlp9uqpkNQrGe4GnAUsIPcBcFEy22XAvWnVYGZmuypreZZWGwRMkVRK7gPmNxFxv6T5wF2SvgU8D9yWYg1mZtZIasEfEXOBMU1Mf4Vce7+ZmRWBz9w1M8sYB7+ZWcY4+M3MMsbBb2aWMQ5+M7OMcfCbmWWMg9/MLGMc/GZmGePgNzPLGAe/mVnGOPjNzDLGwW9mljEOfjOzjHHwm5lljIPfzCxjHPxmZhnj4DczyxgHv5lZxqR5s/UDJU2XNF/Si5K+mEy/TtJKSbOTxzlp1WBmZrtK82brO4CvRMRzkvYHZkl6OHnupoj4QYrbNjOzZqR5s/VVwKpkeJOkBcDgtLZnZmb5KUgbv6ShwBhgZjLpc5LmSrpdUu9mlpkoqUpSVXV1dSHKNDPLhNSDX9J+wG+BqyJiI3ALMBwYTe4vghubWi4iJkdEZURUVlRUpF2mmVlmpBr8ksrJhf4vI+J3ABGxOiJqI6IO+CkwNs0azMxsZ2n26hFwG7AgIn7YYPqgBrNdCMxLqwYzM9tVmr16TgYuBV6QNDuZ9q/AJZJGAwEsA65MsQYzM2skzV49TwFq4qkH09qmmZm1zGfumplljIPfzCxjHPxmZhmTV/BL+p2kcyX5g8LMrIPLN8j/G/gosEjSDZJGpliTmZmlKK/gj4hHIuJjwLHkumA+Iulvkv5PcpKWmZl1EHk33UjqC3wCuAJ4HvgxuQ+Ch3ezmJmZtTN59eOX9HtgJHAn8IHkypsAUyVVpVWcmZm1vXxP4PppROx04pWkfSJiW0RUplCXmZmlJN+mnm81Me3ptizEzMwKY7dH/JIGkrt5SjdJY/jHJRh6AN1Trs3MzFLQUlPP+8l9oTsE+GGD6ZvIXXDNzMw6mN0Gf0RMAaZI+lBE/LZANZmZWYpaauqZEBG/AIZK+nLj5xteZ9/MzDqGlpp69k1+7pd2IWZmVhgtNfX8JPn5zcKUY2Zmacv3Im3fk9RDUrmkRyVVS5qQdnFmZtb28u3H/76I2AicR+5aPYcCX9vdApIOlDRd0nxJL0r6YjK9j6SHJS1Kfvbemx0wM7M9k2/w1zcJnQtMi4gNeSyzA/hKRBwBnAh8VtIRwCTg0YgYATyajJuZWYHkG/z3S3oJOA54VFIFsHV3C0TEqoh4LhneBCwgdzLYB4EpyWxTgAtaUbeZmbVSvpdlngS8G6iMiBpgM7kAz4ukocAYYCYwoMFF3t4ABuxJwWZmtnfyvUgbwChy/fkbLnNHSwtJ2g/4LXBVRGyU9PfnIiIkRTPLTQQmAhx00EF7UKaZme1OvpdlvhMYDswGapPJQQvBn9yk5bfALyPid8nk1ZIGRcQqSYOANU0tGxGTgckAlZWVTX44mJnZnsv3iL8SOCIi8g5g5Q7tbwMWNDrD9z7gMuCG5Oe9+a7TzMz2Xr5f7s4DBu7huk8GLgXGSZqdPM4hF/hnSVoEnJmMm5lZgeR7xN8PmC/pGWBb/cSIOL+5BSLiKf5xGefGzsi7QjMza1P5Bv91aRZhZmaFk1fwR8QTkg4GRkTEI5K6A6XplmZmZmnI91o9nwTuBn6STBoM3JNSTWZmlqJ8v9z9LLkvazcCRMQioH9aRZmZWXryDf5tEbG9fiQ5ict9683MOqB8g/8JSf9K7qbrZwHTgD+kV5aZmaUl3+CfBFQDLwBXAg8C16ZVlJmZpSffXj11ku4B7omI6nRLMjOzNO32iF8510laCywEFiZ33/q3wpRnZmZtraWmni+R681zfET0iYg+wAnAyZK+lHp1ZmbW5loK/kuBSyJiaf2EiHgFmAB8PM3CzMwsHS0Ff3lErG08MWnnL0+nJDMzS1NLwb+9lc+ZmVk71VKvnmMkbWxiuoCuKdRjZmYp223wR4QvxGZm1snkewKXmZl1Eg5+M7OMcfCbmWVMasEv6XZJayTNazDtOkkrG92D18zMCijNI/6fA+ObmH5TRIxOHg+muH0zM2tCasEfEU8Cb6a1fjMza51itPF/TtLcpCmod3MzSZooqUpSVXW1LwhqZtZWCh38twDDgdHAKuDG5maMiMkRURkRlRUVFQUqz8ys8yto8EfE6oiojYg64KfA2EJu38zMChz8kgY1GL0QmNfcvGZmlo687sDVGpJ+DZwO9JO0Avh/wOmSRpO7UfsycrdxNDOzAkot+CPikiYm35bW9szMLD8+c9fMLGMc/GZmGePgNzPLGAe/mVnGOPjNzDLGwW9mljEOfjOzjHHwm5lljIPfzCxjHPxmZhnj4DczyxgHv5lZxjj4zcwyxsFvZpYxDn4zs4xx8JuZZYyD38wsYxz8ZmYZk1rwS7pd0hpJ8xpM6yPpYUmLkp+909q+mZk1Lc0j/p8D4xtNmwQ8GhEjgEeTcTMzK6DUgj8ingTebDT5g8CUZHgKcEFa2zczs6YVuo1/QESsSobfAAY0N6OkiZKqJFVVV1cXpjozswwo2pe7ERFA7Ob5yRFRGRGVFRUVBazMzKxzK3Twr5Y0CCD5uabA2zczy7xCB/99wGXJ8GXAvQXevplZ5qXZnfPXwNPASEkrJF0O3ACcJWkRcGYybmZmBVSW1ooj4pJmnjojrW2amVnLfOaumVnGOPjNzDLGwW9mljEOfjOzjHHwm5llTGq9emzP/Grmq8Uuwcwywkf8ZmYZ4+A3M8sYN/W0IxHB/FUbqVr2Fms2bQXg0P77MXZoXwb37lbk6syss3DwtxObt+3g7lkrWLh6Ez26ljGsYj9qauuY89oGqpa9xekjK/hw5RDKSv1HmpntHQd/O1C9aRu3PrGE9VtqOO/oQZw4rC8lEgBba2p5YO4qpi+s5qqps/nxxWMoLVGRKzazjszBX2Qbt9Zw6W0z2bi1hstPPoSh/fbd6fmu5aV86Lgh9O+xD/fPXUW38lK+d9HRSA5/M2sdtxsUUUTw9WlzWbzmbSacePAuod/QqSMq+MK4Q5k2awW/cNdPM9sLDv4iuuPp5Tz04ht8ffxIRvTfv8X5rzrzME4fWcH1f5jPvJUbClChmXVGDv4iWbZ2M//x4ALeO7KCK04ZltcyJSXipg+Ppve+5Xx12hxqautSrtLMOiMHfxFEBNfc8wJdSkv4zj8dTckefFnbe98uXP/BI3npjU1MfvKVFKs0s87KwV8E985+nb8uXsekc0YxsGfXPV7+fe8ayLlHDeLHjy7itTffSaFCM+vMHPwFtmV7Ld996CWOHtKTS44/qNXrufa8wykR3PDQS21YnZllQVGCX9IySS9Imi2pqhg1FMvP/vIKqzZs5dpzj9ijJp7GBvXsxpXvGc4Dc1dRtezNNqzQzDq7Yh7xvzciRkdEZRFrKKg1G7dyyxNLGP+ugYw9pM9er+/K04YxoMc+XH//fOrqog0qNLMscFNPAd3455epqa1j0tmj2mR93buU8fX3j2LOig3cO2dlm6zTzDq/YgV/AH+WNEvSxKZmkDRRUpWkqurq6gKX1/bmv76R38x6jctOGrrbE7X21IVjBnP0kJ5876GFbNle22brNbPOq1jBf0pEHAucDXxW0nsazxARkyOiMiIqKyoqCl9hG7vhoZfo0bWcz48b0abrLSkR15xzOKs2bOV//ra0TddtZp1TUYI/IlYmP9cAvwfGFqOOQnlq0VqefLmaz487lJ7dy9t8/ScM68uZhw/glulLeHPz9jZfv5l1LgUPfkn7Stq/fhh4HzCv0HUUSl1d8J0/LmBwr25cetLBqW1n0tkj2bx9B//12KLUtmFmnUMxjvgHAE9JmgM8AzwQEQ8VoY6CuG/O67z4+ka+9v6R7FNWmtp2Du2/Px85/kB+MWM5y9dtTm07ZtbxFTz4I+KViDgmebwrIr5d6BoKZduOWn7w54W864AenH/MAalv76ozD6OspITv/2lh6tsys47L3TlTdOfTy1nx1hauPvvwvTpZK18DenTlk6cewv1zVzH7tfWpb8/MOiYHf0o2bKnh/09fzKkj+nHKiH4F2+7E04bTd98ufOfBBUT4pC4z25WDPyW3PL6EDVtq2uxkrXztt08ZV505gplL3+TRBWsKum0z6xgc/ClYvm4zt/91KReOHsy7DuhZ8O1fPPYghvXbl+sfmM/WGp/UZWY7c/C3sYjg2nvm0aW0hG8U+Gi/XnlpCddfcCTL173DzdMXF6UGM2u/HPxt7P65q/jLorV89X2HMaDHnl9rv62cfGg/LhwzmFufWMLiNZuKVoeZtT9lxS6gM9m4tYZ/v38+Rw3uyaUnDW12vl8V6Gbp15x7OI+9tIZrfj+PuyaeiJR+zyIza/98xN+GbvzTQta9vY1vX3gkpQXovtmSfvvtw6SzRzFz6ZtMm7Wi2OWYWTvh4G8jM15Zxx0zlnPpiQdz9JBexS7n7z5SeSBjh/bh+j/M920azQxw8LeJ9e9s50tTZzO07758fXxxvtBtTkmJuPHDx4Dgi3c9T01tXbFLMrMic/Dvpbq64KvT5lC9aRs/vng0++7T/r42ObBPd/7jwqN47tX1fPuBBcUux8yKrP2lVAfzo0de5pEFa7juA0e0qyaexj5wzAHMeW09P3tqKSMH7s8lY1t/o3cz69gc/Hth6rOv8p+PLebDlUO47N1Di11OiyadPYqX17zNNb9/gV7dyjn7qEHFLsnMisBNPa107+yVTPrdC5x2WAXfuuCoDtFVsqy0hFsnHMuYg3rzhbue548vrCp2SWZWBA7+Vrjj6WVcNXU2xw/tw60TjqNLWcf5b+zepYzbP3E8Rw/pxWd+9Ry3PbXUF3Mzy5iOk1jtwNaaWq7+3Vz+7d4XOWPUAO74l7F065LezVXS0rNbOb+84gTOOnwA198/n8/88jne8i0bzTLDwZ+nma+s47z/eopfP/Manz59OLdOOJau5R0v9Ot1LS/l1gnHcfXZo3h4/mrG3fg4v5ixnO073N3TrLMrSvBLGi9poaTFkiYVo4Z8RASzlr/FFVOe5SOTZ7C1ppY7/mUs3xg/irLSjv+ZWVIirjxtOPd/4RRG9N+fa++Zx3t/8Dg3T1/Mqg1bil2emaWk4L16JJUCNwNnASuAZyXdFxHzC11LU7bvqOP5V9/iL4vW8vD81SxcvYme3cr5ylmHccWpwzpk005LRg3swdQrT+SJl6u55fElfP9PC/n+nxZyaP/9OOXQfow9pA/DK/bj4L7dO/RfOWaWo0J/sSfpJOC6iHh/Mn41QER8p7llKisro6qqqlXbq60Ltu+oY9uOWrbtqGNbTW548/Za3ty8jXVvb2fNpm0sqX6bJdWbWbR6E+9sr6W0RIw5sBf/dOwQzh99APu14YlZbXmRto+esHN//KbW3XiepuZrOM/StZt5eP4bTKtawbJ1m6mpzb1HJBjYoyu9u3ehV/dyenUvp2e3LnTvUkp5aQldSkV5aQnlZSWUl5ZQViIkqFr2FvWdnoQQcOLwPrmh3D9KlJtXSuYR/G3JOur7StX3mjrl0H5/r6Ve4/5UjTtY/WXR2p2fB049rGI3y2s3z+08/sTL1bus+/SR/ZstruFo455gj7+0841zxh3ef6dx7VINBLnXpv7XuP63uf73un68ft3146cl+9/Scv+Ih9zAky//4/+y/qn616SlWv6+XDL618U7vy4nDutLJPNHsoIgiCCZvvM4yXzPLn1zl3rHHNTr7+NB8Nzy9f+oqX79CUmUCk4Y1peyUlFeUkJ5mSgrKaE8eU+XlZZQXiLKy3Lv6/LS5D3eYP7SElEqUVL/KMm9r0uT34MS5Z7Pvc8L0wtQ0qyIqNxlehGC/yJgfERckYxfCpwQEZ9rbpnWBv//vWced85Ynte8A3t0ZXj/fRnRf39OGt6Xk4b3pUfX8j3eZj7ae/A3nGdHbR2rN25j7dvbGNizKyve2sKGLdtZ/04N67fUsP6d7WytqWN7bZ2/HzDLU0nyQVB/wFNv5wOa3Mjkjx/HqSMqaI3mgr/dnsAlaSIwMRl9W9LCVqymH7C2xbmA5cDMVmygAHa7Dx/LYwVtNc9eyPt1aMe8D+1DZ9gH2IP9eM+39mo7Bzc1sRjBvxI4sMH4kGTaTiJiMjB5bzYkqaqpT7uOxPvQPngf2ofOsA9Q/P0oRteUZ4ERkg6R1AW4GLivCHWYmWVSwY/4I2KHpM8BfwJKgdsj4sVC12FmllVFaeOPiAeBBwuwqb1qKmonvA/tg/ehfegM+wBF3o+C9+oxM7Pi6vinn5qZ2R7pVMEvqY+khyUtSn72bmKe0ZKelvSipLmSPlKMWhtr6TIWkvaRNDV5fqakoUUoc7fy2IcvS5qf/L8/KqnJrmbFlO/lRCR9SFJIanc9TPLZB0kfTl6LFyX9qtA1tiSP99JBkqZLej55P51TjDp3R9LtktZImtfM85L0n8k+zpV0bMGKi4hO8wC+B0xKhicB321insOAEcnwAcAqoFeR6y4FlgDDgC7AHOCIRvN8Brg1Gb4YmFrs/+9W7MN7ge7J8Kc74j4k8+0PPAnMACqLXXcrXocRwPNA72S8f7HrbsU+TAY+nQwfASwrdt1N7Md7gGOBec08fw7wR3IndJ8IzCxUbZ3qiB/4IDAlGZ4CXNB4hoh4OSIWJcOvA2uA1p0W13bGAosj4pWI2A7cRW5fGmq4b3cDZ6h93f2lxX2IiOkR8U4yOoPcORztST6vA8D1wHeBrYUsLk/57MMngZsj4i2AiFhD+5LPPgTQIxnuCbxewPryEhFPAm/uZpYPAndEzgygl6SC3BavswX/gIiov63UG8CA3c0saSy5I4olaRfWgsHAaw3GVyTTmpwnInYAG4C+BakuP/nsQ0OXkzvaaU9a3Ifkz/EDI+KBQha2B/J5HQ4DDpP0V0kzJI0vWHX5yWcfrgMmSFpBrofg5wtTWpva09+ZNtNuL9nQHEmPAAObeOqahiMREZKa7bKUfLLeCVwWEb7ITAFJmgBUAqcVu5Y9IakE+CHwiSKXsrfKyDX3nE7ur64nJR0VEeuLWdQeugT4eUTcmFz48U5JR/p3OT8dLvgj4szmnpO0WtKgiFiVBHuTf8JK6gE8AFyT/IlVbPlcxqJ+nhWSysj9ebuuMOXlJa9LcUg6k9yH9GkRsa1AteWrpX3YHzgSeDxpZRsI3Cfp/Iho3eVj214+r8MKcu3JNcBSSS+T+yB4tjAltiiffbgcGA8QEU9L6kru+jftrdlqd/L6nUlDZ2vquQ+4LBm+DLi38QzJZSJ+T65t7e4C1rY7+VzGouG+XQQ8Fsk3RO1Ei/sgaQzwE+D8dtiuDC3sQ0RsiIh+ETE0IoaS+56iPYU+5Pdeuofc0T6S+pFr+nmlgDW2JJ99eBU4A0DS4UBXoJqO5T7g40nvnhOBDQ2aqtNV7G++2/JBrs37UWAR8AjQJ5leCfwsGZ4A1ACzGzxGt4PazwFeJvd9wzXJtH8nFyyQe2NPAxYDzwDDil1zK/bhEWB1g//3+4pd857uQ6N5H6ed9erJ83UQuSar+cALwMXFrrkV+3AE8FdyPX5mA+8rds1N7MOvyfUarCH3V9blwKeATzV4HW5O9vGFQr6XfOaumVnGdLamHjMza4GD38wsYxz8ZmYZ4+A3M8sYB7+ZWcY4+M1SIqkiuZLq85JOLXY9ZvU63Jm7Zh3IGcALEXFFsQsxa8j9+M2aIOkG4LWIuDkZvw7YQe7S0r2BcuDaiLg3ef7jwFfJXTVyLnAjuTMzu5E7Df+kiNhS4N0wa5KD36wJyeUlfhQRpyXj84H3kzutfmNyqYMZ5K5xcwS5y4C8OyLWSuoTEW9K+gS5szE/V5y9MGuam3rMmhARz0vqL+kAcvdreIvcpb5vkvQeoI7cJXQHAOOAaRGxNll2d9dgNys6B79Z86aRuyDeQGAq8DFyHwLHRUSNpGXkrqFk1qG4V49Z86aSuzLkReQ+BHoCa5LQfy9Qf8/gx4B/ltQXcvd+LkaxZvnyEb9ZMyLiRUn7Aysjd4+HXwJ/kPQCUAW81GC+bwNPSKoldz/bTxSrbrOW+MtdM7OMcVOPmVnGOPjNzDLGwW9mljEOfjOzjHHwm5lljIPfzCxjHPxmZhnj4Dczy5j/BTDYoySy+v84AAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sns.distplot(df[\"vacf\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "La gráfica de los diagramas a pares son una gran herramienta para visualizar la dependencia y distribución de la data, pero para una mejor interpretación del significado de nuestros histogramas podemos usar `jointplot` y visualizar las densidades de las columnas del dataframe que nos insterese. A continuación presentamos la gráfica generada con este método y los gráficos de densidad de las variables." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiUAAAInCAYAAABHpSngAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAArjklEQVR4nO3dfXAkd33n8c+3tfIO6MFea/Xg7JMsMF4s4NbOFjGGDRsgh+AS+0KSxXChAufEhIcsKV2lznApH2cuRR4qOnBwKriC6w6OYCsQUk6yLATbghhszgsR2Gtie72I9RpWssc2etjMrqT+3h+aESN5JY2k6elfa96vKtU8tWY+6p6d/mz3r3vM3QUAAJC2KO0AAAAAEqUEAAAEglICAACCQCkBAABBoJQAAIAgUEoAAEAQNqUdYA04hhkAUCuWdoB6wpYSAAAQBEoJAAAIQl2Xkm07dsrMgv/ZtmNn2rNqw2CZ1x+WOZAdlsHTzFctsJnprZ/8ZrWeLjF3vPsqZXA5BYllXn9Y5lgnxpTUUF1vKQEAAOHI4tE39SfaJLOwy/rPbN+hJ584kXYM1NC2HTv1o5NPpB1j48jAv/OGxs2anT6TdowV8XmUXZSSLIhngt/8fMe7r0o7AmrsRyefCP59KWXovZmRf+ehZ5QytMzxPOy+AQAAQWBLCaojA5ueM4X5CaAOUUpQHRnY9CxlaLNuBuZnZuYlgMxg9w0AAAgCpQQAAASBUgIAAIJAKQEAAEGglAAAgCBQSgAAQBAoJQAAIAiUEgAAEARKCQAACAKlBAAABIFSAgAAgkApAQAAQaCUAACAIFBKAABAECglAAAgCJQSAAAQBEoJAAAIAqUEAAAEgVICAACCQCkBAABBoJQAAIAgUEoAAEAQKCUAACAIlBIAABAESgkAAAgCpQQAAASBUgIAAIJAKQEAAEGglAAAgCBQSgAAQBAoJQAAIAiUEgAAEARKCQAACAKlBAAABIFSAgAAgkApAQAAQaCUAACAIFBKAABAECglAAAgCJQSAAAQBEoJAAAIAqUEAAAEgVICAACCQCkBAABBoJQAAIAgUEoAAEAQKCUAACAIlBIAABAESgkAAAgCpQQAAASBUgIAAIJAKQEAAEGglAAAgCBQSgAAQBAoJQAAIAiUEgAAEARKCQAACAKlBAAABIFSAgAAgkApAQAAQaCUAACAIJi7p51hVczssKStVXq6rZKertJz1VqWs0vZzk/29GQ5P9nTs578T7t7XzXDYGmZKyXVZGZH3H1v2jnWIsvZpWznJ3t6spyf7OnJev56wu4bAAAQBEoJAAAIQr2XklvTDrAOWc4uZTs/2dOT5fxkT0/W89eNuh5TAgAAwlHvW0oAAEAgKCUAACAIlBIAABAESgkAAAgCpQQAAASBUgIAAIJAKQEAAEGglAAAgCBQSgAAQBAyV0r6+vpcEj/88MMPP/zU4mdNrrzyyrRzr+nnvvvuS3WeZq6UPP3002lHAABgWc8++2zaEdbkzJkzqb5+5koJAADYmCglAAAgCJQSAAAQBEoJAAAIAqUEAAAEgVICAACCQCkBAABBoJQAAIAgUEoAAEAQKCUAACAIlBIAABAESgkAAAgCpQQAAASBUgIAAIKwKe0AaYhj10h+SqPjBXW25tTd1qQosrRjAQBQ1+qulMSx6/DRU+ofHFZhOlauMdLAgT3q6+2imAAAkKK6230zkp+aLySSVJiO1T84rJH8VMrJAACob3VXSkbHC/OFpKQwHWtsopBSIgAAINVhKelszSnXuPDPzjVG6mjJpZQIAABIdVhKutuaNHBgz3wxKY0p6W5rSjkZAAD1re4GukaRqa+3S7sP7tPYREEdLRx9AwBACOqulEhzxaSnvVk97c1pRwEAAEV1t/sGAACEiVICAACCUJe7b0o4sysAAOGo21LCmV0BAAhL3e6+4cyuAACEpW5LCWd2BQAgLHVbSjizKwAAYanbUsKZXQEACEvdDnTlzK4AAISlbkuJxJldAQAISd3uvgEAAGGhlAAAgCBQSgAAQBAoJQAAIAiUEgAAEARKCQAACAKlBAAABIFSAgAAgkApAQAAQaCUAACAIFBKAABAEOr6u29K4tg1kp/S6HhBna18MR8AAGmo+1ISx67DR0+pf3BYhelYucZIAwf2qK+3i2ICAEAN1f3um5H81HwhkaTCdKz+wWGN5KdSTgYAQH2p+1IyOl6YLyQlhelYYxOFlBIBAFCf6r6UdLbmlGtcOBtyjZE6WnIpJQIAoD7VfSnpbmvSwIE988WkNKaku60p5WQAANSXuh/oGkWmvt4u7T64T2MTBXW0cPQNAABpqPtSIs0Vk572ZvW0N6cdBQCAupXo7hsz6zOzR8zsmJndcI7Hd5rZPWb2L2b2PTN7c5J5AABAuBIrJWbWIOkWSW+SdJmkt5nZZYsm+wNJg+5+uaRrJf1FUnkAAEDYktxS8kpJx9z9uLuflXS7pGsWTeOSWovXz5f0owTzAACAgCU5pmSbpCfKbp+U9HOLpvmwpK+Y2e9KapL0hgTzAACAgKU90PVtkv63u/+Zmb1K0mfM7GXuvuBsZmZ2vaTrJWnnzp0pxAQAYHnl66r29nYNDQ2lG2gNJicnE8+9f//+JR9LspQ8KWlH2e3txfvKXSepT5Lc/T4zy0naKmmsfCJ3v1XSrZK0d+9eTyowAABrVb6uuvTSS325lW+ohoaGli0NSUtyTMkDki4xs4vN7DzNDWS9c9E0JyS9XpLM7KWScpKeSjATAAAIVGKlxN1nJL1f0pclfV9zR9kcNbObzOzq4mT/RdJvm9l3JX1O0jvdnS0hAADUoUTHlLj7IUmHFt13Y9n1hyW9OskMAAAgG+r+u28AAEAYKCUAACAIlBIAABAESgkAAAgCpQQAAASBUgIAAIJAKQEAAEGglAAAgCCk/YV8QYlj10h+SqPjBXW25tTd1qQosrRjAQBQFyglRXHsOnz0lPoHh1WYjpVrjDRwYI/6ersoJgAA1AC7b4pG8lPzhUSSCtOx+geHNZKfSjkZACCL+Cq31aOUFI2OF+YLSUlhOtbYRCGlRACArDozM6vZ2dm0Y2QOpaSoszWnXOPC2ZFrjNTRkkspEQAgqzZvalBDQ0PaMTKHUlLU3dakgQN75otJaUxJd1tTyskAAFlkxnjE1WKga1EUmfp6u7T74D6NTRTU0cLRNwAA1BKlpEwUmXram9XT3px2FAAA6g67bwAAQBAoJQAAIAiUEgAAEARKCQAACAKlBAAABIFSAgAAgkApAQAAQaCUAACAIFBKAABAECglAAAgCJQSAAAQBEoJAAAIAqUEAAAEgVICAACCQCkBAABBoJQAAIAgUEoAAEAQKCUAACAIlBIAABAESgkAAAgCpQQAAASBUgIAAIJAKQEAAEHYlHaA0MSxayQ/pdHxgjpbc+pua1IUWdqxAADY8CglZeLYdfjoKfUPDqswHSvXGGngwB719XZRTAAASBi7b8qM5KfmC4kkFaZj9Q8OayQ/lXIyAEDWuHvaETKHUlJmdLwwX0hKCtOxxiYKKSUCAGTRmZlZzc7Oph0jcyglZTpbc8o1LpwlucZIHS25lBIBALJo86YGNTQ0pB0jcyglZbrbmjRwYM98MSmNKelua0o5GQAga8wYi7haDHQtE0Wmvt4u7T64T2MTBXW0cPQNAAC1QilZJIpMPe3N6mlvTjsKAAB1hd03AAAgCJQSAAAQBEoJAAAIAqUEAAAEgVICAACCQCkBAABBoJQAAIAgUEoAAEAQKCUAACAIlBIAABAESgkAAAgCpQQAAASBUgIAAIJAKQEAAEGglAAAgCBQSgAAQBAoJQAAIAiUEgAAEARKCQAACAKlBAAABIFSAgAAgkApAQAAQaCUAACAIFBKAABAECglAAAgCImWEjPrM7NHzOyYmd2wxDQHzOxhMztqZn+dZB4AABCuTUk9sZk1SLpF0i9KOinpATO7090fLpvmEkkflPRqd3/WzDqSyrNacewayU9pdLygztacutuaFEWWdiwAADasxEqJpFdKOubuxyXJzG6XdI2kh8um+W1Jt7j7s5Lk7mMJ5qlYHLsOHz2l/sFhFaZj5RojDRzYo77eLooJAAAJSXL3zTZJT5TdPlm8r9xLJL3EzL5hZvebWV+CeSo2kp+aLySSVJiO1T84rJH8VMrJAABZ4e5pR8icJLeUVPr6l0jaL2m7pK+b2cvd/bnyiczseknXS9LOnTsTDzU6XpgvJCWF6VhjEwX1tDcn/voAgOwpX1dtbW/X1772tZQTrd7k5KSGhoYSfY39+/cv+ViSpeRJSTvKbm8v3lfupKRvufu0pB+Y2aOaKykPlE/k7rdKulWS9u7dm3j17GzNKdcYLSgmucZIHS25pF8aAJBR5euqSy+91F/72tfKLFu7/IeGhpYtDUlLcvfNA5IuMbOLzew8SddKunPRNH+nua0kMrOtmtudczzBTBXpbmvSwIE9yjXOzZ7SmJLutqaUkwEAsiJrhSQEiW0pcfcZM3u/pC9LapB0m7sfNbObJB1x9zuLj/17M3tY0qyk33f3fFKZKhVFpr7eLu0+uE9jEwV1tHD0DQAASUt0TIm7H5J0aNF9N5Zdd0n9xZ+gRJGpp72ZMSQAANQIZ3QFAABBoJQAAIAgUEoAAEAQKCUAACAIlBIAABAESgkAAAgCpQQAAASBUgIAAIJAKQEAAEGglAAAgCBQSgAAQBAoJQAAIAiUEgAAEARKCQAACAKlBAAABIFSAgAAgkApAQAAQaCUAACAIFBKAABAECglAAAgCJQSAAAQBEoJAAAIAqUEAAAEgVICAACCQCkBAABBoJQAAIAgUEoAAEAQKCUAACAIm9IOELo4do3kpzQ6XlBna07dbU2KIks7FgAAGw6lZBlx7Dp89JT6B4dVmI6Va4w0cGCP+nq7KCYAAFQZu2+WMZKfmi8kklSYjtU/OKyR/FTKyQAA2HgoJcsYHS/MF5KSwnSssYlCSokAANi4KCXL6GzNKde4cBblGiN1tORSSgQAwMZFKVlGd1uTBg7smS8mpTEl3W1NKScDAGDjYaDrMqLI1Nfbpd0H92lsoqCOFo6+AQAgKZSSFUSRqae9WT3tzWlHAQBgQ2P3DQAACAKlBAAABIFSAgAAgkApAQAAQaCUAACAIFBKAABAECglAAAgCJQSAAAQBEoJAAAIAqUEAAAEgVICAACCQCkBAABBoJQAAIAgUEoAAEAQKCUAACAIlBIAABAESgkAAAgCpQQAAASBUgIAAIJAKQEAAEGglAAAgCAsWUrM7NXFy821iwMAAOrVcltKbi5e3leLIAAAoL5tWuaxaTO7VdI2M7t58YPufjC5WAAAoN4sV0p+SdIbJL1R0rdrEwcAANSrJUuJuz8t6XYz+767f7eGmQAAQB2q5OibfjO7oHTDzLaY2W3JRQIAAPVoud03Ja9w9+dKN9z9WTO7PLlIYYpj10h+SqPjBXW25tTd1qQosrRjAQCwYVRSSiIz2+Luz0qSmV1Y4e9tGHHsOnz0lPoHh1WYjpVrjDRwYI/6ersoJgAAVEklu2/+TNJ9ZvYRM/ufkr4p6U+SjRWWkfzUfCGRpMJ0rP7BYY3kp1JOBgDAxrFiKXH3T0v6VUmjkk5Jeou7fybpYCEZHS/MF5KSwnSssYlCSokAANh4KtoN4+5HzewpSTlJMrOd7n4i0WQB6WzNKdcYLSgmucZIHS25FFMBALCxrLilxMyuNrPHJP1A0tckjUj6UsK5gtLd1qSBA3uUa5ybXaUxJd1tTSknAwBg46hkS8lHJF0p6avufrmZ/YKk30g2VliiyNTX26XdB/dpbKKgjhaOvgEAoNoqKSXT7p43s8jMIne/x8w+lnSw0ESRqae9WT3tzWlHAQBgQ6qklDxnZs2S/lnSZ81sTBKHnQAAgKqq5JDgeySdL+kDkg5LelzSLycZCgAA1J9KSskmSV+RNCSpRdId7p6v5MnNrM/MHjGzY2Z2wzLT/aqZuZntreR5AQDAxlPJeUr+h7v3SnqfpIskfc3MvrrS75lZg6RbJL1J0mWS3mZml51juhbNbYX51iqzAwCADaSSLSUlY5o7eVpeUkcF079S0jF3P+7uZyXdLumac0z3EUl/LIkzkQEAUMcqOU/Je81sSNJdktok/ba7v6KC594m6Ymy2yeL95U/9xWSdrj7P1acGAAAbEiVHH2zQ9LvuftwNV/YzCJJA5LeWcG010u6XpJ27txZzRgAAFRF+bqqvb1dQ0ND6QZag8nJycRz79+/f8nHzN0TeVEze5WkD7v7G4u3PyhJ7v7R4u3zNXckz2TxV7okPSPpanc/stTz7t27148cWfJhAACqaU1nybz00kv9kUceqXaWxA0NDS1bGqpkyXm6mjElq/WApEvM7GIzO0/StZLuLD3o7j9x963u3u3u3ZLu1wqFBAAAbFyJlRJ3n5H0fklflvR9SYPFL/a7ycyuTup1AQBANlX0LcFr5e6HJB1adN+NS0y7P8ksAAAgbEnuvgEAAKgYpQQAAASBUgIAAIJAKQEAAEGglAAAgCBQSgAAQBAoJQAAIAiUEgAAEARKCQAACAKlBAAABIFSAgAAgkApAQAAQaCUAACAIFBKAABAEDalHSBr4tg1kp/S6HhBna05dbc1KYos7VgAAGQepWQV4th1+Ogp9Q8OqzAdK9cYaeDAHvX1dlFMAABYJ3bfrMJIfmq+kEhSYTpW/+CwRvJTKScDACD7KCWrMDpemC8kJYXpWGMThZQSAQCwcVBKVqGzNadc48JZlmuM1NGSSykRAAAbB6VkFbrbmjRwYM98MSmNKelua0o5GQAA2cdA11WIIlNfb5d2H9ynsYmCOlo4+gYAgGqhlKxSFJl62pvV096cdhQAADYUdt8AAIAgUEoAAEAQKCUAACAIlBIAABAESgkAAAgCpQQAAASBUgIAAIJAKQEAAEGglAAAgCBQSgAAQBAoJQAAIAiUEgAAEARKCQAACAKlBAAABIFSAgAAgkApAQAAQaCUAACAIFBKAABAECglAAAgCJQSAAAQBEoJAAAIAqUEAAAEgVICAACCsCntAFkVx66R/JRGxwvqbM2pu61JUWRpxwIAILMoJWsQx67DR0+pf3BYhelYucZIAwf2qK+3i2ICAJAkubvMWCesBrtv1mAkPzVfSCSpMB2rf3BYI/mplJMBAEJwZmZWs7OzacfIHErJGoyOF+YLSUlhOtbYRCGlRACAkGze1KCGhoa0Y2QOpWQNOltzyjUunHW5xkgdLbmUEgEAQsOum9WjlKxBd1uTBg7smS8mpTEl3W1NKScDACC7GOi6BlFk6uvt0u6D+zQ2UVBHC0ffAACwXpSSNYoiU097s3ram9OOAgDAhsDuGwAAEARKCQAACAKlBAAABIFSAgAAgkApAQAAQaCUAACAIFBKAABAECglAAAgCJQSAAAQBEoJAAAIAqUEAAAEgVICAACCQCkBAABBoJQAAIAgUEoAAEAQKCUAACAIlBIAABAESgkAAAgCpQQAAAQh0VJiZn1m9oiZHTOzG87xeL+ZPWxm3zOzu8xsV5J5khDHruNPTeq+x5/W8acmFceediQAADJpU1JPbGYNkm6R9IuSTkp6wMzudPeHyyb7F0l73f20mb1H0p9IemtSmaotjl2Hj55S/+CwCtOxco2RBg7sUV9vl6LI0o4HAECmJLml5JWSjrn7cXc/K+l2SdeUT+Du97j76eLN+yVtTzBP1Y3kp+YLiSQVpmP1Dw5rJD+VcjIAALInyVKyTdITZbdPFu9bynWSvpRgnqobHS/MF5KSwnSssYlCSokAAMiuxHbfrIaZ/YakvZJeu8Tj10u6XpJ27txZw2TL62zNKdcYLSgmucZIHS25FFMBANJQvq5qb2/X0NBQuoHWYHJyMvHc+/fvX/Ixc09mYKaZvUrSh939jcXbH5Qkd//oouneIOnPJb3W3cdWet69e/f6kSNHEki8eowpAYANb00f5pdeeqk/8sgj1c6SuKGhoWVLQ5UsOU+T3FLygKRLzOxiSU9KulbS2xekMrtc0icl9VVSSEITRaa+3i7tPrhPYxMFdbTk1N3WRCEBAGANEisl7j5jZu+X9GVJDZJuc/ejZnaTpCPufqekP5XULOlvzEySTrj71UllSkIUmXram9XT3px2FAAAMi3RMSXufkjSoUX33Vh2/Q1Jvj4AAMgOzugKAACCQCkBAABBoJQAAIAgUEoAAEAQKCUAACAIlBIAABAESgkAAAgCpQQAAASBUgIAAIJAKQEAAEGglAAAgCBQSgAAQBAoJQAAIAiUEgAAEARKCQAACMKmtANsFHHsGslPaXS8oM7WnLrbmhRFlnYsAAAyg1JSBXHsOnz0lPoHh1WYjpVrjDRwYI/6ersoJgAAVIjdN1Uwkp+aLySSVJiO1T84rJH8VMrJAADIDkpJFYyOF+YLSUlhOtbYRCGlRAAAZA+lpAo6W3PKNS6clbnGSB0tuZQSAQCQPZSSKuhua9LAgT3zxaQ0pqS7rSnlZAAAZAcDXasgikx9vV3afXCfxiYK6mjh6BsAAFaLUlIlUWTqaW9WT3tz2lEAAMgkdt8AAIAgUEoAAEAQKCUAACAIlBIAABAESgkAAAgCpQQAAASBUgIAAIJAKQEAAEGglAAAgCBQSgAAQBAoJQAAIAiUEgAAEAS+kK/K4tg1kp/S6HhBna18WzAAAJWilFRRHLsOHz2l/sFhFaZj5RojDRzYo77eLooJAAArYPdNFY3kp+YLiSQVpmP1Dw5rJD+VcjIAAMJHKami0fHCfCEpKUzHGpsopJQIAIDsoJRUUWdrTrnGhbM01xipoyWXUiIAALKDUlJF3W1NGjiwZ76YlMaUdLc1pZwMAIDwMdC1iqLI1Nfbpd0H92lsoqCOFo6+AQCgUpSSKosiU097s3ram9OOAgBAprD7BgAABIFSAgAAgkApAQAAQaCUAACAIFBKAABAECglAAAgCJQSAAAQBEoJAAAIAidPS0Acu0byUxodL6izlbO6AgBQCUpJlcWx6/DRU+ofHFZhOp7//pu+3i6KCQAAy2D3TZWN5KfmC4kkFaZj9Q8OayQ/lXIyAADCRimpstHxwnwhKSlMxxqbKKSUCACAbKCUVFlna065xoWzNdcYqaMll1IiAACygVJSZd1tTRo4sGe+mJTGlHS3NaWcDACAsDHQtcqiyNTX26XdB/dpbKKgjhaOvgEAoBKUkgREkamnvVk97c1pRwEAIDPYfQMAAIJAKQEAAEGglAAAgCBQSgAAQBAoJQAAIAgcfZMgvpgPAIDKUUoSwhfzAQCwOuy+SQhfzAcAwOpQShLCF/MBALA6lJKE8MV8AACsDqUkIXwxHwAAq8NA14TwxXwAAKwOpSRBfDEfAACVY/cNAAAIQqJbSsysT9LHJTVI+it3/6NFj2+W9GlJPyspL+mt7j6SZCYg62p5Ur44dp14Zkqj42d0dnZWrZsbdTaOdV5DpLOza7s8fXY28ycTLC2D/NQZvaCxQVNnZjV1dka7LmzSxVtr/3ctl2fXhS/UiWdPKz91ZtXLq/RcKy37jbBMEYbESomZNUi6RdIvSjop6QEzu9PdHy6b7DpJz7r7i83sWkl/LOmtSWVKC2d2RflKYz0rghc0NujR0Ul96IsPassLz9Ov792ul/3M+eps2XzOFUalK5Wlcvwwf1onnjmt2x84obfu3ak7jqz/8pdesU3n5xr08u0XqCEybd6UzIoyqecqLYOP3/Wo/vNVF+v09Kw+ftdjFS2PWud511W7tKVpsz5xz2OrXk6l51pp2d989/J/exrLi5KUXUluKXmlpGPuflySzOx2SddIKi8l10j6cPH65yV9wszM3T3BXDXFmV3XrpIVeTU+8JL+0Cxfaax3RVCYmdWtXz+uLS88T++4cpfuOHJCuU0N+sNDD695pbLUZWFmVpJ069eP67rX9Ojmux9b1+Xi57/hb7+X2IoyyecqLYPrXtOj/OmzFS+PNPJMnp3VwFcfWtPyKj3XStMu97ensbxuvvuxYD5rZ2ZmUnnd9Uoid0NDg8xWXg5JlpJtkp4ou31S0s8tNY27z5jZTyS1SXo6wVw1tdSZXXcf3Ff3A2CXKx2VrMir8YFXiw/N8pXGelcEv7WvR4XpWG+5YnvVVirLvZY09541W//lL71i27qLzXr/pmo8V2kZmEmxq+LlkUae8sdWe1l6rpWmXe5vT2N5hfJZe2ZmVgf+4muSVNHKeDnr/f3VPM+bOiZ1yyfvrcrrlcSzs7rjva/Vpk0rV45MHH1jZtdLul6Sdu7cmXKa1VnuzK4buZSsVDjOTMf6Qf60/vzuc5eOSlbk1fjAq8WH5mpWDCutCKS5c95Uc6Wy3Gs1mBaca2c9lw3R+ovNev+majzXgr/JKl8eaeRZ1/KqcNmHtrzK1fqztnxdtXVru97cOTl3v8rKwGr7hUsXtzdXpZhU8hSTk9L7etf9Uos06N57f1p09u/fv+SUSZaSJyXtKLu9vXjfuaY5aWabJJ2vuQGvC7j7rZJulaS9e/dmatdO6cyu5f9Yanlm12oPVKxkV8dyWzlKWxP+bXr50lHJirwaH3i1+NAsLfNKLldaEXzh2yd18HWX6MzMbNVWKsu91u/8fI8+8PpLdPsDJ3TwdZfojiNrv7yh76XrLzbVLElrfK7SMii9nz/w+ktUmF55eaSRp/yx1V6WnmulZb/cezGN5ZXWZ620cF3V/aIX+z88mZPHsT77O/vmtxJUsrVgsUp3fVTD0NDQsqUhaUmWkgckXWJmF2uufFwr6e2LprlT0m9Kuk/Sr0m6eyONJ5F+embXxWNKkj6za6mMHP3ReNUGKla6q2O5rRylrQkrlQ6pNiuoWnxormbFsNKK4Oa7H9Nn7v+h3nXVLn3kmpfpE/c8tu6VylKXN9/9mP7y68fnXysy6dUvulxn41ivfnGbzs6u7jJ210d/5eX62F2PJr6iTPK5Ssvg1/du10VbXqCfac3pzEysHRc26c/vrv3ftlyeP/i7B+cfe3Fns25+6+qW3wsaG3TFzi2anp1dctm/oLFBu9qa9PFzLNc0ltfiMSWpnUXbNV9INm/eLDOrabnIKkuyA5jZmyV9THOHBN/m7n9oZjdJOuLud5pZTtJnJF0u6RlJ15YGxi5l7969fuTIkcQyJ6G0KyPJM7suPiTw0dHJ+W8kLhWET927vsuGqLLn+q19PfrE3cf0/te9+HmXkuav/9U/z017rsvywXNZH1Oy4OiEbeers3n5IzNKW6OmZ2fVco6tUaUjC3ZumTvU85mpM2pc43PV+vDd0vt0ucyVbq1b699Ujec613xJ829bLk8tzii93N+exvKq8vt2TU/Q3fNif8V7blZjLiczUzw7q79+92uet6VkLVtOklSjLSVLztNE54a7H5J0aNF9N5ZdL0j69SQzhKB0ZtfutiaN5Kf0rR/kq/5Bf/joKf3x4e8v2FJR7YGKq9mnu9LWhJW2HpT/72+5/+FV8j+5avxvcD3Pdcf1VyZ2iGLWzhi8kc9yHNrfVss8of3tofjs7+xTY2Pj/O2GhoYU02RDWBVtA0vq0OA4dj345HPqHxx+3ngMKZ19ussVjtIm2I/ftXzpSHJFDgC1sHnzZp133nlpx8gUSkmNVPvQ4NKYke+ceE4j+alzbqmo9kDF1ezTXa5wlLYmnD47o50pnQETABLFR9qaUEpqpJqHBpe2uvzrqfH53TTn2lJR7YGKle7qYCsHAFTv/CL1hFJSI9U6NLh8d01pN83i3SWlLRXX/3yPXtLZopd2tbI1AgBqaPOmhuAGsWYBc6xGyg8NLh2J8ZKOFrnPFY2VCsO5dtdIc8Xmxz8p6DP3/1BvuWK7NkXS/73u5zQ9G7OlAgBSxJaS1aOU1EgUmfp6u3TZB/bpOyee04e++GDFA16X2l1Tvpvmxz8p6FP3HtfAgT26YucWiggAIHOitAPUkygyxa75QiL9dMBr6Zwii5XvrikdklsqI8+ePju/m+YTb79c//i7+/iiPwAIxAY7F2hNsKWkxsoHvF50fk5vuWK7zKSnJs88b1fLzEysf3zox3r8qclz7q4pndDs9bs79PJtF1BGACAQZ2ZmNTMzs+A8JVgZW0pqrDTg9aLzc3rHlbv0qXuP6wvfPqlvHHtahx78sR4fm9TMTKyRpyf1z48/rf/6he8p9oVH1ZSKyafuPa7dXa0UEgDAhsCWkhorDXj911Pj86cff8eVu+avv+uqXdrStFlPPHta0sLdNRxVAwDZsHlTA2dwXQNKSY2VBryWDg9+yxXbF5STybOzGvjqQ/OniGd3DQBkz5mZWZ09e3b+y/hQGXbfpCCKTN1tTco1RvNnYS2Vk9JgVkn6++8++bzdNS9qb6aQAEAGvP2T92p2djbtGJnClpKUlHbjPHJqfEE5kX46fqT0LbmlLSR7d12oq3raKCQAELjNmxo0+L797MJZJUpJSubPW3JRi3a1NemH+annnXuk9P0xjB8BgOzhjK6rxxxLURSZurc2a+eFTTrxzJR2tTXpQ198kMGsAIC6RCkJQHk52bPjAo1NFNTRwiniAQD1hVISkCgy9bQ3r/pbgwEA2Ag4+gYAAASBUgIAAIJAKQEAAEGglAAAgCBQSgAAQBAoJQAAIAiUEgAAEARKCQAACAKlBAAABIFSAgAAgkApAQAAQaCUAACAIFBKAABAECglAAAgCObuaWdYFTN7StIPq/R0WyU9XaXnqrUsZ5eynZ/s6clyfrKnZz35n3b3vtX+kpkdXsvv1bvMlZJqMrMj7r437RxrkeXsUrbzkz09Wc5P9vRkPX89YfcNAAAIAqUEAAAEod5Lya1pB1iHLGeXsp2f7OnJcn6ypyfr+etGXY8pAQAA4aj3LSUAACAQG7KUmFmfmT1iZsfM7IZzPL7ZzO4oPv4tM+sue+yDxfsfMbM31jT4TzOslL/fzB42s++Z2V1mtqvssVkzGy7+3Fnb5BVlf6eZPVWW8bfKHvtNM3us+PObtU1eUfb/VZb7UTN7ruyxtOf7bWY2ZmYPLfG4mdnNxb/te2Z2Rdljqc73YoaV8v+nYu4HzeybZvbvyh4bKd4/bGZHapd6/vVXyr7fzH5S9v64seyxZd9zSasg+++X5X6o+D6/sPhY2vN9h5ndU/wsPGpmHzjHNEG/73EO7r6hfiQ1SHpcUo+k8yR9V9Jli6Z5r6S/LF6/VtIdxeuXFaffLOni4vM0BJj/FyS9sHj9PaX8xduTgc/7d0r6xDl+90JJx4uXW4rXt4SUfdH0vyvpthDme/H1f17SFZIeWuLxN0v6kiSTdKWkb4Uw31eR/6pSLklvKuUv3h6RtDXgeb9f0j+s9z2XRvZF0/6ypLsDmu8XSbqieL1F0qPn+LwJ+n3Pz/N/NuKWkldKOubux939rKTbJV2zaJprJP2f4vXPS3q9mVnx/tvd/Yy7/0DSseLz1dKK+d39Hnc/Xbx5v6TtNc64lErm/VLeKOmf3P0Zd39W0j9JquWJh1ab/W2SPleTZBVw969LemaZSa6R9Gmfc7+kC8zsIqU/3yWtnN/dv1nMJ4X1nq9k3i9lPf9eqmKV2UN7z//Y3b9TvD4h6fuSti2aLOj3PZ5vI5aSbZKeKLt9Us9/o85P4+4zkn4iqa3C303aajNcp7n/CZTkzOyImd1vZv8xgXzLqTT7rxY3pX7ezHas8neTUvHrF3eXXSzp7rK705zvlVjq70t7vq/F4ve8S/qKmX3bzK5PKdNKXmVm3zWzL5lZb/G+zMx7M3uh5lbaXyi7O5j5bnO74C+X9K1FD22k931d2JR2AKydmf2GpL2SXlt29y53f9LMeiTdbWYPuvvj6SQ8p7+X9Dl3P2Nm79bcFqvXpZxpta6V9Hl3ny27L/T5viGY2S9orpS8puzu1xTnfYekfzKzfy1uAQjFdzT3/pg0szdL+jtJl6QbadV+WdI33L18q0oQ893MmjVXln7P3cdr/fqoro24peRJSTvKbm8v3nfOacxsk6TzJeUr/N2kVZTBzN4g6b9Jutrdz5Tud/cni5fHJQ1p7n8PtbJidnfPl+X9K0k/W+nvJmw1r3+tFm3GTnm+V2Kpvy/t+V4xM3uF5t4z17h7vnR/2bwfk/RF1X6X67LcfdzdJ4vXD0lqNLOtytC81/Lv+dTmu5k1aq6QfNbd//Yck2T+fV930h7UUu0fzW39Oa65zeulwWO9i6Z5nxYOdB0sXu/VwoGux1X7ga6V5L9ccwPkLll0/xZJm4vXt0p6TDUcOFdh9ovKrv+KpPuL1y+U9IPi37CleP3CkLIXp9utuQF+Fsp8L8vRraUHW/4HLRzw9/9CmO+ryL9Tc2O8rlp0f5OklrLr35TUF1j2rtL7RXMr7hPF5VDRey7N7MXHz9fcuJOmkOZ7cR5+WtLHlpkm+Pc9Pwt/NtzuG3efMbP3S/qy5ka33+buR83sJklH3P1OSZ+S9BkzO6a5f2zXFn/3qJkNSnpY0oyk9/nCTfSh5P9TSc2S/mZufK5OuPvVkl4q6ZNmFmtuK9gfufvDgWU/aGZXa27+PqO5o3Hk7s+Y2UckPVB8upt84abiELJLc++V2734yVaU6nyXJDP7nOaO8thqZicl/XdJjZLk7n8p6ZDmjkQ4Jum0pHcVH0t1vpdUkP9GzY37+ovie37G575grVPSF4v3bZL01+5+OLDsvybpPWY2I+nfJF1bfP+c8z0XWHZp7j8PX3H3qbJfTX2+S3q1pHdIetDMhov3fUhzBTYT73s8H2d0BQAAQdiIY0oAAEAGUUoAAEAQKCUAACAIlBIAABAESgkAAAgCpQTY4MzsAjN7b9o5AGAllBJg47tAc9+MDQBBo5QAG98fSXqRmQ2b2Z+mHQYAlsLJ04ANrvgNqv/g7i9LOwsALIctJQAAIAiUEgAAEARKCbDxTUhqSTsEAKyEUgJscO6el/QNM3uIga4AQsZAVwAAEAS2lAAAgCBQSgAAQBAoJQAAIAiUEgAAEARKCQAACAKlBAAABIFSAgAAgkApAQAAQfj/nKg9y85mh2QAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 576x576 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "prueba = sns.jointplot(x=\"t\",y=\"vacf\",data=df)\n", + "\n", + "prueba.fig.set_size_inches(8,8)\n", + "\n", + "plt.grid()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 5- Grafica de la Función de Autocorrelación de Velocidades a partir de nuestros datos\n", + "\n", + "\n", + "Usamos dos maneras diferentes de construÃr la gráfica explotando recursos de python" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAJcCAYAAACxEXM4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABEtElEQVR4nO3de5xcdX3/8fdnLruzl5nN5k4SIAGDyFU0FRWQQLWircBPRVCr0IrYWrUWa394+VlLqbXV3n5Fa6lSiwUj0qpYoWCV/EDuQVFuAiEIJBByz+4m2c3uzOf3xzmzmd3M7s7szpkzO/N6Ph7z2Jlzzpzz/Z6Z3Xnv9/ud8zV3FwAAAOorEXcBAAAAWhEhDAAAIAaEMAAAgBgQwgAAAGJACAMAAIgBIQwAACAGhDAgJmY2YGZHjFuWMLPvmdn7anicr5vZFbXaXzMys8+a2b/PcB+Hha9pctzyDjO708zOmlkpx+xzrZldXKv9VXjMi8zsJzPcx2lm9vgk66f9Xq3FawjUGyEMCJnZr8xsX/hBWrwtiep47t7t7hvGLb5C0o/c/WtRHbdaFthgZo9W+bzlZuZmloqqbI3E3Z8NX9P8uFX/LOlv3P2/4yhXkZllzGyXmZ1ZZt3fmdkNUZfB3e9w95dGfRxgtmiJP45AFd7i7v8T18Hd/ZNxHXsSr5O0UFLKzH7N3e+Pu0CTMbOUu4+MW5YsE47qwt3fG8dxx3P3QTP7lqT3SvpxcXnYcvdOSe+Pq2xAq6IlDJhC2EL2+pLHo90eJa09F5rZs2a2zcw+VbJt0sw+aWZPmVm/mT1gZoeG69zMXhLe7zGza8xsq5k9Y2afNrNEuO4iM/uJmX3RzHaa2dNm9qZJynuSmf00PN63JGXGrf8tM3swbBW5y8xOmOIUXCjpe5JuCu9XdG4k3R7+3BW2Kr4m7G79dFjHLWGde0qef2pYpl1m9pyZXVTh+bkzbM3ZLumzYbfWP5nZTWa2R9IZZrbEzP4j3MfTZvaRSc7ht81ss5ntNrPbzezYknUdZvY3YTl2h69Nx/iWv/B4N5rZDjNbb2bvL9nHZ83s+rBO/Wb2iJmtmqQ8bzCzX4bHu1KSjVv/u2b2WPj+uMXMDp9gV/8m6W1m1lmy7I0KPgtuDs/z18zsBTPbZGZX2Lju1ZJjvtbM7g/LdL+ZvbZk3Vwz+1czez4s03fD5avNbGPJdhO+V82s18z+K3y9dob3l5WsX2Fm/y987g8lzR9XvleXvJd+bmarS9ZdZEHrbn/4Xnj3BOcLiBQhDKiNUyW9VNKvS/qMmb0sXH6pglaGN0vKSfpdSXvLPP8fJfVIOkLS6QpaK36nZP3Jkh5X8EHz15K+ZmY2fidm1ibpu5K+IWmupG9LelvJ+pMkXS3pA5LmKegqu9HM2stVKvywfruka8PbBeExKvG68OecsJvubkkXhbczwrp2S7oyPNbhkm4Oz8UCSS+X9GC4j0rOzwZJiyT9RbjsXeH9rKS7JH1f0s8lLVXwOn3UzN44QdlvlrRSQQvgT8O6F31R0islvVbBOf4TSYUy+1gjaaOkJQrO4edsbFfg2eE2cyTdWDwP45nZfEn/KenTCl7/pySdUrL+HEmflPRWBeftDknfLLcvd79L0gvhtkXvkXRd2Hr4dUkjkl4i6SRJvyHpoLFnZjZX0g8k/V8F76O/lfQDM5sXbvINSZ2SjlVwDv+uzD4mfa8q+Hz6V0mHSzpM0j6NPUfXSXogPCd/rpJ/EMxsaVi+K8J9/7Gk/zCzBWbWFZb7Te6eVfA6PljufAGRc3du3Li5S9KvJA1I2hXevluy/PUl231W0r+H95dLcknLStbfJ+mC8P7jks6Z4Hiu4MMuKWm/pGNK1n1A0trw/kWS1pes6wyfu7jMPl8n6XlJVrLsLklXhPf/SdKfj3vO45JOn6CMvy1pq4KhCxlJuyX9r3HnbKpzkypZ/yNJHyx5/FJJw+H+PyHpO2XKUMn5eXbcc74u6ZqSxyeX2eYTkv51fLnLHH9OWI8eBcFgn6QTy2w3Wl9Jh0rKS8qWrP9LSV8vOd7/lKw7RtK+CY7/Xkn3lDw2BeHu4vDxzZLeV7I+oSDoHz7B/j4t6dbwfi7c9iQFAXZIUkfJtu+UdFvJef5JeP89ku4bt99iyD5EQSjtLXPs1ZI2VvJeLfPcl0vaGd4/TEFY7CpZf13Je+9/S/rGuOffoiCodSn4/X5baV25cYvjRksYMNa57j4nvJ1bxfM2l9zfq6CFRwo+jJ+a4rnzJaUlPVOy7BkFLTYH7d/diy1p3TrYEkmb3N3H7avocEkfC7todpnZrrCME30B4UJJ17v7iLsPSvoPjeuSrNISHVzPlIIAMNG5quT8PFfmeaXLDpe0ZFy9PxkedwwLupA/b0EXcp+CoFksx3wFYXSq13SJpB3u3j9Jmce/ZzJW/ksMS0rrEr624+v2DyX12qEgqJUeq9Q3FHbPKmihe8rdfxbuJy3phZJ9/bOClqxyZXpm3LJi/Q5VUPedExy/dB8TvlfNrNPM/jns9u1T0L09J+weXaIgkO0p99ywLueNe71PlXRI+JzzJf1eWNcfmNnRU5QViAQhDJjaHgWtT0WLq3juc5KOnGKbbQpag0rH8RwmaVMVxyl6QdLScV2Vh40rz1+UBM057t7p7gd1X4Xjb86U9NsWjI/arOBD+81hF5k0+bkp/XAtel4H13NE0oua+FxVcn7KHat02XOSnh5X76y7v7nM894l6RxJr1fQ+rU8XG5hWQYnKGep5yXNNbPsJGWu1AsKgk1QiOC1PbRk/XOSPjCubh0edD0exN2fUdBl+dsKWrT+rWQ/Q5Lml+wn5+7HltnN+NextH7PKaj7nArqNdl79WMKWkpPdvecDnRvW/jc3rBrsdxzn1PQElZ6Trrc/fPhObjF3d+goNXul5L+ZYqyApEghAFTe1DBWKh0OHj67VU896uS/tzMVlrghJJxM5IkD761d72kvzCzbDg26lJJ07nm0d0KQs1HwvK+VdKrStb/i6TfM7OTw/J0mdlvjgsLRe+R9ISCD8KXh7ejFHSFvTPc5kFNfG62KuiWKr0W2jcl/VE4qLpb0uckfcuD8UjXSnq9mb3DzFJmNs/MXl6j83OfpH4z+98WDKJPmtlxZvZrZbbNKggj2xUEzM8VV7h7QcGYur+1YOB90oIvHIwZU+fuzynoWvtLCy4NcYKk91VZ5qIfSDrWzN4atpR9RGPD7lckfcLCLw9YMLj+vCn2+W+SPqRgbNm1YZlfkHSrpL8xs5wFX6I40sxOL/P8myQdZWbvCl+r8xV0qf5XuJ+bJX3ZgsH1aTN7XZl9TPVezSro+t0VjkH70+KKMEiuk/RnZtZmZqdKekvJc/9d0lvM7I3ha5Sx4EsBy8xskZmdEwa4IQVDEMqN6QMiRwgDpvZ/FLR87JT0ZwrGnlTqbxUEiFsl9Un6mqSOMtt9WEGr0gZJPwmPcXW1BXX3/QoGXV+koFvqfAWDuovr1ym4FMGVCuqzPty2nAslfdndN5feFHzoF7skJzw3YbfpX0i6M+wSenVYp28o6Fp6WkGr0ofD7Z9V8AWGj4Vlf1DSieHuZnR+wiD3WwqC5NMKWrS+qqCla7xrFHRtbZL0qKR7xq3/Y0kPSbo/LOdfqfzf0ncqaEV7XtJ3JP2pT+PyJ+6+TdJ5kj6vIBiulHRnyfrvhGVYE3bbPSxpwm/Phv5DwYD1H4Whqei9ktoU1HunpBsUtBaNL9N2BefzY2GZ/kTSb4VllYIAP6yglWmLpI+W2cek71VJf6/gd2Wbgtdg/HXW3qVgrN8OBQHtmpJ9P6egNfOTCv4ZeE7SxxW8TgkFIf758LmnS/r98eUD6sHGdscDAACgHmgJAwAAiAEhDAAAIAaEMAAAgBgQwgAAAGIw6ybwnj9/vi9fvjzSY+zZs0ddXV1Tb9ikWr3+EueA+lN/6k/9W1Wt6//AAw9sc/cF5dbNuhC2fPlyrVu3LtJjrF27VqtXr470GI2s1esvcQ6oP/Wn/qvjLkZsqH9t629m42eXGEV3JAAAQAwIYQAAADEghAEAAMRg1o0JAwAA8RseHtbGjRs1ODgYd1FqqqenR4899ljVz8tkMlq2bJnS6XTFzyGEAQCAqm3cuFHZbFbLly+XmcVdnJrp7+9XNput6jnuru3bt2vjxo1asWJFxc+jOxIAAFRtcHBQ8+bNa6oANl1mpnnz5lXdKkgIAwAA00IAO2A654IQBgAAEANCGAAAQAwIYQAAoGVt3bpVJ598sk466STdcccdcnedeeaZ6uvr065du/TlL395zLZnnXVWzY5NCAMAAC3rRz/6kY4//nj97Gc/02mnnaZbbrlFJ554onK53EEhbMGCBTrkkEN055131uTYXKICAADMyJ99/xE9+nxfTfd5zJKc/vQtx066zWWXXaZDDz1Uf/AHfyBJ+uxnP6tUKqXbbrtNO3fu1PDwsK644gqdc845kqRrrrlGX/ziF2VmOuGEE/Sxj31Mf/Inf6J9+/Zp3bp1uvvuu3X99deP7u+yyy7TU089pZe//OV6wxveoC984Qs699xzde211+qUU06ZcR0JYQAAYFY6//zz9dGPfnQ0NF1//fW65ZZb9JGPfES5XE7btm3Tq1/9ap199tl69NFHdcUVV+iuu+7S/PnztWPHDs2dO1eXX3651q1bpyuvvFKSdO+99+rqq6+WJH3+85/Xww8/rAcffHD0mKtWrdKnP/3pmpSfEAYAAGZkqharqJx00knasmWLnn/+eW3dulW9vb1avHix/uiP/ki33367EomENm3apBdffFE//vGPdd5552n+/PmSpLlz55bd586dOye9WOvChQv1/PPP16T8hDAAADBrnXfeebrhhhu0efNmnX/++br22mu1detWPfDAA0qn01q+fHlVF1FNpVIqFApKJMoPmx8cHFRHR0dNys7AfAAAMGudf/75WrNmjW644Qadd9552r17txYuXKh0Oq3bbrtNzzzzjCTpzDPP1Le//W1t375dkrRjx46y+3vJS16iDRs2SJKy2az6+/vHrH/iiSd03HHH1aTshDAAADBrHXvsserv79fSpUt1yCGH6N3vfrfWrVun448/Xtdcc42OPvro0e0+9alP6fTTT9eJJ56oSy+9tOz+3vjGN2rt2rWSpHnz5umUU07Rcccdp49//OOSpNtuu02/+Zu/WZOy0x0JAABmtYceemj0/vz583X33XeX3e7CCy/UhRdeOGbZRRddpIsuumjMNh/84Ad18cUXS5Kuu+66MdvfeOON+t73vleTctMSBgAAEFq8eLHe//73q6/v4EtubN26VZdeeql6e3trcixawgAAwLS4e1NO4v2Od7yj7PIFCxbo3HPPLbvO3as+Di1hAACgaplMRtu3b59W+Gg27q7t27crk8lU9TxawgAAQNWWLVumjRs3auvWrXEXpaYGBwerDlNSEEqXLVtW1XMIYeP85Mlt+sQde/WNY/r1koUTX6wNAIBWlk6ntWLFiriLUXNr167VSSedVJdj0R05Tld7Ui/scT21dU/cRQEAAE2MEDbO0YtzMkmP1HgiUgAAgFKEsHE62pI6pNv0yKbdcRcFAAA0MUJYGYdnE7SEAQCASBHCyjgsl9TmvkFtHxiKuygAAKBJEcLKODwXnBZawwAAQFQIYWUcliWEAQCAaBHCyuhuMy2d06FHnmdwPgAAiAYhbALHLc3pUVrCAABARAhhEzh2SY+e3r5He4ZG4i4KAABoQoSwCRy7JCd36bEXaA0DAAC1RwibwLFLeiQxOB8AAESDEDaBRbl2zetqY3A+AACIBCFsAmamly7O6sktA3EXBQAANCFC2CQW92T04u7BuIsBAACaECFsEotzGW3pH1Kh4HEXBQAANBlC2CQW92Q0UnBt28MckgAAoLYIYZNYlMtIkl7cTQgDAAC1RQibxCE9QQjb3Me4MAAAUFuEsEkszhHCAABANAhhk5jX3a5kwviGJAAAqDlC2CSSCdPCbDstYQAAoOYIYVNYlMtoMy1hAACgxghhU1icy9ASBgAAao4QNgWumg8AAKJACJvColxG/UMj2jM0EndRAABAEyGETWFxT7skLlMBAABqixA2hQNXzSeEAQCA2iGETYELtgIAgCgQwqawmKmLAABABAhhU+hsSymbSdEdCQAAaooQVgGuFQYAAGqNEFaBxT0Zbe4birsYAACgiRDCKrA4xwVbAQBAbRHCKrC4J6OtA0PKFzzuogAAgCZBCKvAolxG+YJr2wBdkgAAoDYIYRUYvVYYXZIAAKBGCGEVKF4r7EW+IQkAAGqEEFaB3q42SdLOvftjLgkAAGgWhLAKzO0MQtiOPcMxlwQAADQLQlgFOtqSyqQTtIQBAICaIYRVqLezTTv3EMIAAEBtEMIq1NvZRksYAACoGUJYheZ2tWkHLWEAAKBGCGEVmtOZ1q69DMwHAAC1QQir0NyuNu2gOxIAANRIpCHMzM4ys8fNbL2ZXVZm/WFmdpuZ/czMfmFmb46yPDPR29mm3fuGmT8SAADURGQhzMySkr4k6U2SjpH0TjM7Ztxmn5Z0vbufJOkCSV+Oqjwz1duZlru0ex9dkgAAYOaibAl7laT17r7B3fdLWiPpnHHbuKRceL9H0vMRlmdGilfNZ3A+AACoBXOPpnvNzN4u6Sx3vzh8/B5JJ7v7h0q2OUTSrZJ6JXVJer27P1BmX5dIukSSFi1a9Mo1a9ZEUuaigYEBdXd3j1n28LYRfXHdkD55ckZH9SYjPX7cytW/1bT6OaD+1J/6U/9WVev6n3HGGQ+4+6py61I1O8r0vFPS1939b8zsNZK+YWbHuXuhdCN3v0rSVZK0atUqX716daSFWrt2rcYfY/6m3friup9o+VHHavWxiyM9ftzK1b/VtPo5oP7Un/qvjrsYsaH+9at/lN2RmyQdWvJ4Wbis1PskXS9J7n63pIyk+RGWadqYxBsAANRSlCHsfkkrzWyFmbUpGHh/47htnpX065JkZi9TEMK2RlimaevtTEtiEm8AAFAbkYUwdx+R9CFJt0h6TMG3IB8xs8vN7Oxws49Jer+Z/VzSNyVd5FENUpuhjnRS7amEdtESBgAAaiDSMWHufpOkm8Yt+0zJ/UclnRJlGWrFzJi6CAAA1AxXzK/CHCbxBgAANUIIq8LcrrR2Mn8kAACoAUJYFXo727ST7kgAAFADhLAq9HYyiTcAAKgNQlgVeruYxBsAANQGIawKc5nEGwAA1AghrApM4g0AAGqFEFaF3s4ghHHBVgAAMFOEsCrMpSUMAADUCCGsCnPC+SN3ca0wAAAwQ4SwKoy2hNEdCQAAZogQVoXiJN5csBUAAMwUIawKZhZcNZ+WMAAAMEOEsCr1drVpxx7GhAEAgJkhhFWptzNNSxgAAJgxQliVeruYxBsAAMwcIaxKczrSTFsEAABmjBBWpVxHWn2Dw3JnEm8AADB9hLAq5TJpDeddg8OFuIsCAABmMUJYlXo6gqvm0yUJAABmghBWpVxHSpLUN0gIAwAA00cIq1IuE7SE9dESBgAAZoAQViW6IwEAQC0QwqqUC0MY3ZEAAGAmCGFVymXCMWH7RmIuCQAAmM0IYVXK0R0JAABqgBBWpXQyoc62JAPzAQDAjBDCpiGXSTMmDAAAzAghbBp6mD8SAADMECFsGnIdKQbmAwCAGSGETQPdkQAAYKYIYdPQ00EIAwAAM0MIm4ZcR1q79xLCAADA9BHCpiGXSal/aESFgsddFAAAMEsRwqYh15GWuzSwn8H5AABgeghh0zB61Xy6JAEAwDQRwqYhl2ESbwAAMDOEsGnIdTCJNwAAmBlC2DT0MIk3AACYIULYNNAdCQAAZooQNg3Fgfl9tIQBAIBpIoRNQ7Y9JTNCGAAAmD5C2DQkEqZse0p9gwzMBwAA00MIm6ZcR5qWMAAAMG2EsGnq6Ujz7UgAADBthLBpymXSfDsSAABMGyFsmnIdKS7WCgAApo0QNk09HbSEAQCA6SOETVMuw5gwAAAwfYSwacp1pLV3f17D+ULcRQEAALMQIWyaivNH9nOtMAAAMA2EsGnKdaQkMYk3AACYHkLYNI1O4k0IAwAA00AIm6ZidyTfkAQAANNBCJumXBjC6I4EAADTQQibpgPdkQzMBwAA1SOETVNxYD7dkQAAYDoIYdPUkU4qmTANcIkKAAAwDYSwaTIzdben1E9LGAAAmAZC2Ax0t6fUP0RLGAAAqB4hbAaymRRXzAcAANNCCJuBXCZNdyQAAJgWQtgMdGdSGqA7EgAATAMhbAbojgQAANNFCJuB7vYUl6gAAADTQgibgWwmTUsYAACYFkLYDGQzKe3PFzQ0ko+7KAAAYJYhhM1ANhNMXURrGAAAqBYhbAYIYQAAYLoIYTPQ3Z6WJAbnAwCAqhHCZuBASxgXbAUAANUhhM3AaAjjgq0AAKBKhLAZyIbdkYwJAwAA1SKEzQDdkQAAYLoIYTPQHYYwBuYDAIBqEcJmIJ1MKJNOMCYMAABUjRA2Q0xdBAAApoMQNkPZ9hRjwgAAQNUIYTOUzaRoCQMAAFUjhM1QdyalAcaEAQCAKhHCZijbnqY7EgAAVI0QNkPdmRSXqAAAAFUjhM0QY8IAAMB0EMJmKJtJa2D/iAoFj7soAABgFiGEzVC2PSV3ac9+WsMAAEDlCGEzdGD+SEIYAACoHCFshkbnj+QyFQAAoAqEsBnKZtKSxGUqAABAVQhhM0R3JAAAmA5C2Axl2wlhAACgeoSwGTrQHUkIAwAAlSOEzdCBgfmMCQMAAJUjhM1QV1tSCaMlDAAAVIcQNkNmpu52pi4CAADVIYTVQDaTJoQBAICqEMJqIJjEmzFhAACgcoSwGuhuT3HFfAAAUJVIQ5iZnWVmj5vZejO7bIJt3mFmj5rZI2Z2XZTliUrQEkYIAwAAlUtFtWMzS0r6kqQ3SNoo6X4zu9HdHy3ZZqWkT0g6xd13mtnCqMoTpWwmrV9t3xt3MQAAwCwSZUvYqyStd/cN7r5f0hpJ54zb5v2SvuTuOyXJ3bdEWJ7IdDMmDAAAVMncPZodm71d0lnufnH4+D2STnb3D5Vs811JT0g6RVJS0mfd/b/L7OsSSZdI0qJFi165Zs2aSMpcNDAwoO7u7oq3v/7x/br1mWF99Te6IixV/VRb/2bU6ueA+lN/6k/9W1Wt63/GGWc84O6ryq2LrDuyQilJKyWtlrRM0u1mdry77yrdyN2vknSVJK1atcpXr14daaHWrl2rao7xcOFJ3fT0E3rNqaepPZWMrmB1Um39m1GrnwPqT/2p/+q4ixEb6l+/+kfZHblJ0qElj5eFy0ptlHSjuw+7+9MKWsVWRlimSBTnjxxgcD4AAKhQlCHsfkkrzWyFmbVJukDSjeO2+a6CVjCZ2XxJR0naEGGZItHdXpw/khAGAAAqE1kIc/cRSR+SdIukxyRd7+6PmNnlZnZ2uNktkrab2aOSbpP0cXffHlWZopINJ/HmMhUAAKBSkY4Jc/ebJN00btlnSu67pEvD26xV7I7s4xuSAACgQlwxvwaKLWGMCQMAAJUihNUA3ZEAAKBahLAaYGA+AACoFiGsBopjwrhqPgAAqBQhrAbaUgm1pxLqpyUMAABUiBBWI9lMijFhAACgYoSwGslm0oQwAABQMUJYjXS3pzTAmDAAAFAhQliN0B0JAACqQQirkWwmxSUqAABAxQhhNdLdzpgwAABQOUJYjWQzKeaOBAAAFSOE1UixOzKYkxwAAGByhLAayWZScpf27M/HXRQAADALEMJqpDh10QDjwgAAQAUIYTVSnMSb+SMBAEAlCGE1ks0EIayPljAAAFABQliNFEMY1woDAACVIITVSHFMGN2RAACgEoSwGhltCaM7EgAAVIAQViMHBuYTwgAAwNQIYTXS1ZaSGd2RAACgMoSwGkkkTN1tKfUzMB8AAFSAEFZD2UyK7kgAAFARQlgNdWdSDMwHAAAVIYTVUDaTVv8QY8IAAMDUCGE1lKUlDAAAVIgQVkPd7YwJAwAAlSGE1VA2k2buSAAAUBFCWA1lMykNMCYMAABUgBBWQ9n2lAaHCxrOF+IuCgAAaHCEsBpi/kgAAFApQlgNdWfSkpg/EgAATI0QVkPFlrA+5o8EAABTIITVULY97I5k/kgAADAFQlgNZemOBAAAFSKE1dDowHwuUwEAAKZACKuh7jCE0RIGAACmQgiroSwhDAAAVIgQVkPtqaTakgm+HQkAAKZECKuxbCbFxVoBAMCUCGE11p1JcYkKAAAwJUJYjWUzKcaEAQCAKRHCaqy7ne5IAAAwNUJYjWUzaQbmAwCAKRHCaizbzpgwAAAwNUJYjTEmDAAAVIIQVmPFb0e6e9xFAQAADYwQVmPZTFr5gmtwuBB3UQAAQAMjhNVYd3tx6iIG5wMAgIkRwmpsdP5IBucDAIBJEMJqjEm8AQBAJQhhNZbNpCWJC7YCAIBJEcJqjDFhAACgEoSwGmNMGAAAqAQhrMay7UF3JGPCAADAZAhhNdYdtoQxJgwAAEyGEFZjyYSpsy3JmDAAADApQlgEshkm8QYAAJMjhEWgu51JvAEAwOQIYRHozqT5diQAAJgUISwCuUyKMWEAAGBShLAIdLen+HYkAACYFCEsAtkMY8IAAMDkCGER6G5P8+1IAAAwKUJYBIqXqMgXPO6iAACABkUIi0Bx/sg9+2kNAwAA5RHCIjA6iTfjwgAAwAQIYRHoDifx5huSAABgIoSwCBRbwgaGuFYYAAAojxAWge4whPXREgYAACZACItArtgSRggDAAATIIRFoDgmjIH5AABgIoSwCDAmDAAATIUQFoHOtqQSRksYAACYGCEsAmam7nbmjwQAABObMISZWaqeBWk22UyaEAYAACY0WUvYfcU7ZvaPdShLUwnmj2RMGAAAKG+yEGYl90+JuiDNhu5IAAAwmclCmNetFE2oO5PSwBAhDAAAlDfZuK+jzewXClrEjgzvK3zs7n5C5KWbxbKZtJ7ZvjfuYgAAgAY1WQh7Wd1K0YTojgQAAJOZLISlJS1y9ztLF5rZKZI2R1qqJpDLpNQ/yMB8AABQ3mRjwv5eUl+Z5X3hOkyiuz2loZGC9o8U4i4KAABoQJOFsEXu/tD4heGy5ZGVqEkcmLqILkkAAHCwyULYnEnWddS4HE2nO1OcxJsuSQAAcLDJQtg6M3v/+IVmdrGkB6IrUnPIhS1hDM4HAADlTDYw/6OSvmNm79aB0LVKUpukt0ZcrlkvG7aE9dESBgAAypgwhLn7i5Jea2ZnSDouXPwDd/9xXUo2y2VpCQMAAJOYcpJud79N0m2SZGZHmtn/kXSBux8bdeFms9zomDBCGAAAONhkY8IkSWa2xMz+yMzul/RI+JwLIi/ZLHegJYzuSAAAcLAJQ5iZXWJmt0laK2mepPdJesHd/6zcpSswVjGE9e2jJQwAABxssu7IKyXdLeld7r5OksyMSb0rlEom1NmWpCUMAACUNVkIO0TSeZL+xswWS7pewVRGqFA2w/yRAACgvMnGhF0u6WF3P13Sr0vaJelFM3vMzD5Xj8LNdtlMWv1DtIQBAICDTRbCnpD0BTP7laSPSPqxu6+SdLakwTqUbdbLZlKMCQMAAGVNGMLc/R/c/TWSTpe0XdLVZvZLSe+StKaSnZvZWWb2uJmtN7PLJtnubWbmZraqyvI3tFwmzZgwAABQ1pSXqHD3Z9z9r9z9JEnvlHSupMemep6ZJSV9SdKbJB0j6Z1mdkyZ7bKS/lDSvdUVvfExJgwAAEykkuuEpczsLWZ2raSbJT2uyqYtepWk9e6+wd33K2g9O6fMdn8u6a/UhF2c2UxafYQwAABQhrmXv+qEmb1BQcvXmyXdpyBEfc/d91S0Y7O3SzrL3S8OH79H0snu/qGSbV4h6VPu/jYzWyvpj4uXwxi3r0skXSJJixYteuWaNRX1hk7bwMCAuru7Z7yfbz2+X//zzLD+5Te6alCq+qlV/WezVj8H1J/6U3/q36pqXf8zzjjjgXBM/UEmu0TFJyRdJ+lj7r6zZqUJmVlC0t9Kumiqbd39KklXSdKqVat89erVtS7OGGvXrlUtjvFw4Und/PQTes2pp6k9lZx5weqkVvWfzVr9HFB/6k/9V8ddjNhQ//rVf7IJvM+c4b43STq05PGycFlRVsHE4GvNTJIWS7rRzM4u1xo2G+U6Dswf2d49e0IYAACI3pRjwmbgfkkrzWyFmbUpmG/yxuJKd9/t7vPdfbm7L5d0j6SmCWBS6fyRjAsDAABjRRbC3H1E0ock3aLg25TXu/sjZna5mZ0d1XEbSba92BLGZSoAAMBYk40JmzF3v0nSTeOWfWaCbVdHWZY40BIGAAAmEmV3ZMsrjgnr20dLGAAAGIsQFiFawgAAwEQIYRHKZsKWMMaEAQCAcQhhEepupyUMAACURwiLUDJh6m5P0RIGAAAOQgiLWI5JvAEAQBmEsIhlM2muEwYAAA5CCItYlpYwAABQBiEsYoQwAABQDiEsYtlMmoH5AADgIISwiOU6aAkDAAAHI4RFrDgw393jLgoAAGgghLCIZTMpDeddQyOFuIsCAAAaCCEsYkxdBAAAyiGERSwXTuLdt49xYQAA4ABCWMRyYUsYF2wFAAClCGERy2aYxBsAAByMEBax7GhLGCEMAAAcQAiL2IGWMLojAQDAAYSwiOU6+HYkAAA4GCEsYl1tSSWM7kgAADAWISxiZqbudqYuAgAAYxHC6oBJvAEAwHiEsDrIdaS5WCsAABiDEFYHuUyKljAAADAGIawOgpYwQhgAADiAEFYHPYQwAAAwDiGsDnKZtPr4diQAAChBCKuDno60BoZGNJIvxF0UAADQIAhhdZDrYBJvAAAwFiGsDnrCqYt2My4MAACECGF1kMswfyQAABiLEFYHPZ20hAEAgLEIYXUw2hLGVfMBAECIEFYHjAkDAADjEcLqoPjtSMaEAQCAIkJYHXSkk0onjZYwAAAwihBWB2YWXDWfEAYAAEKEsDrp6UjTEgYAAEYRwuok28H8kQAA4ABCWJ3QEgYAAEoRwuokl0mpnxAGAABChLA6oSUMAACUIoTVSa4jrb7BYbl73EUBAAANgBBWJz0daQ3nXfuG83EXBQAANABCWJ0wfyQAAChFCKsT5o8EAAClCGF1wvyRAACgFCGsTordkbv3EsIAAAAhrG6K3ZG0hAEAAIkQVjc5xoQBAIAShLA6yWXCMWF8OxIAAIgQVjepZEJdbUlawgAAgCRCWF31hFfNBwAAIITVUa4jrT5awgAAgAhhdZVjEm8AABAihNVRLpNW3yAD8wEAACGsrnrojgQAACFCWB3lOlKEMAAAIIkQVlc9HWn1D40oX/C4iwIAAGJGCKuj4vyR/VymAgCAlkcIq6Mepi4CAAAhQlgdFeePZOoiAABACKujYkvYrn37Yy4JAACIGyGsjno7wxC2l+5IAABaHSGsjnqKIYwxYQAAtDxCWB3N6WiTJO3aQ3ckAACtjhBWR22phLrakrSEAQAAQli9zelsY0wYAAAghNXbnM60du2lOxIAgFZHCKuzOZ1puiMBAAAhrN7mdLZpJy1hAAC0PEJYnc3pSGs3Y8IAAGh5hLA6K3ZHunvcRQEAADEihNVZb2eb8gVX/xDzRwIA0MoIYXVWnD+SLkkAAFobIazOejuDq+YzOB8AgNZGCKuzOUziDQAARAiruzlM4g0AAEQIq7s5YXckV80HAKC1EcLqrDgwn+5IAABaGyGsztLJhLLtKQbmAwDQ4ghhMejp5Kr5AAC0OkJYDHo72xiYDwBAiyOExWBOZ5ruSAAAWhwhLAY9TOINAEDLI4TFoLezjZYwAABaHCEsBnM609q9b1iFgsddFAAAEBNCWAzmdLap4FL/0EjcRQEAADEhhMVgzugFW+mSBACgVRHCYtDbxVXzAQBodYSwGPR0BPNHMjgfAIDWRQiLwZzOoCVsNxdsBQCgZRHCYtDbGbaE7aElDACAVkUIi0Euk5Ikpi4CAKCFEcJikEomlMukGJgPAEALI4TFZE5nG5eoAACghUUawszsLDN73MzWm9llZdZfamaPmtkvzOxHZnZ4lOVpJL2dabojAQBoYZGFMDNLSvqSpDdJOkbSO83smHGb/UzSKnc/QdINkv46qvI0mp7ONu2kOxIAgJYVZUvYqyStd/cN7r5f0hpJ55Ru4O63ufve8OE9kpZFWJ6GMrczzbcjAQBoYeYezSTSZvZ2SWe5+8Xh4/dIOtndPzTB9ldK2uzuV5RZd4mkSyRp0aJFr1yzZk0kZS4aGBhQd3d3pMe47rEh3b5xRF95Q1ekx5mOetS/0bX6OaD+1J/6U/9WVev6n3HGGQ+4+6py61I1O8oMmNlvS1ol6fRy6939KklXSdKqVat89erVkZZn7dq1ivoYj/h63frM43r1Kacpk05Geqxq1aP+ja7VzwH1p/7Uf3XcxYgN9a9f/aPsjtwk6dCSx8vCZWOY2eslfUrS2e4+FGF5Gsq8ruCCrTvokgQAoCVFGcLul7TSzFaYWZukCyTdWLqBmZ0k6Z8VBLAtEZal4cwNQ9j2AUIYAACtKLIQ5u4jkj4k6RZJj0m63t0fMbPLzezscLMvSOqW9G0ze9DMbpxgd01nXne7JGn7npZp/AMAACUiHRPm7jdJumncss+U3H99lMdvZHRHAgDQ2rhifkzmdtMdCQBAKyOExSTbnlJbMqHttIQBANCSCGExMTPN7WrTDsaEAQDQkghhMZrb1UZ3JAAALYoQFqN53W10RwIA0KIIYTGa19XGtyMBAGhRhLAYze1q1/YBxoQBANCKCGExmtfdpj378xoczsddFAAAUGeEsBhxwVYAAFoXISxGzB8JAEDrIoTFiPkjAQBoXYSwGNEdCQBA6yKExYj5IwEAaF2EsBgxfyQAAK2LEBYj5o8EAKB1EcJixvyRAAC0JkJYzJg/EgCA1kQIixnzRwIA0JoIYTFj/kgAAFoTISxmzB8JAEBrIoTFrHjBVsaFAQDQWghhMSvOH7mDb0gCANBSCGExY/5IAABaEyEsZsXuyG20hAEA0FIIYTFbkA1awrb20xIGAEArIYTFrKs9pe72lLb0D8ZdFAAAUEeEsAawMNuuLbSEAQDQUghhDWBBtl1b+mgJAwCglRDCGsCiXIaWMAAAWgwhrAEszLZrS9+Q3D3uogAAgDohhDWAhbl27RvOq39oJO6iAACAOiGENYBFuYwkaUsfXZIAALQKQlgDKF4rjMtUAADQOghhDWBhlpYwAABaDSGsASzM0RIGAECrIYQ1gGx7Sh3pJC1hAAC0EEJYAzAzLcxx1XwAAFoJIaxBLMy260Wumg8AQMsghDWIhdmMttISBgBAyyCENQi6IwEAaC2EsAaxMJvRwNCI9nDVfAAAWgIhrEEsHL1gK61hAAC0AkJYgzgwdRGD8wEAaAWEsAZRvGDri7SEAQDQEghhDWK0O5KWMAAAWgIhrEH0dKTVlkpwmQoAAFoEIaxBmJkWZrlMBQAArYIQ1kC4aj4AAK2DENZAFmYztIQBANAiCGENZFGuXS/upiUMAIBWQAhrIEvmdKh/aER9g8NxFwUAAESMENZAlvZ2SJI27dwXc0kAAEDUCGENZOkcQhgAAK2CENZARlvCdhHCAABodoSwBjK/q11tqQQhDACAFkAIayCJhGnpnA66IwEAaAGEsAazdE6HNtISBgBA0yOENRhawgAAaA2EsAaztLdD2waGNDicj7soAAAgQoSwBlO8TMXzdEkCANDUCGENhstUAADQGghhDYYLtgIA0BoIYQ1mcU9GCaMlDACAZkcIazDpZEKLcxlawgAAaHKEsAa0tJdrhQEA0OwIYQ2Ia4UBAND8CGENaGlvhzb3DWokX4i7KAAAICKEsAa0dE6n8gXXi/1DcRcFAABEhBDWgEavFUaXJAAATYsQ1oBGrxW2a2/MJQEAAFEhhDWgYgjbuIOWMAAAmhUhrAF1tCW1OJfR09v2xF0UAAAQEUJYgzpiQZeeIoQBANC0CGEN6ogFXdqwdUDuHndRAABABAhhDeqI+d3qHxzRtoH9cRcFAABEgBDWoI5Y0CVJ2rB1IOaSAACAKBDCGtSRC7olSRsYFwYAQFMihDWoJXM61JZK0BIGAECTIoQ1qGTCtGJelzZspSUMAIBmRAhrYEcs6KI7EgCAJkUIa2BHLOjSszv2av9IIe6iAACAGiOENbAj5ncrX3A9u4M5JAEAaDaEsAbGZSoAAGhehLAGdgSXqQAAoGkRwhpYT0da87vbaAkDAKAJEcIa3Ir5XKYCAIBmRAhrcEfM76Y7EgCAJkQIa3BHLuzSjj37tX1gKO6iAACAGiKENbjjlvRIkh5+vi/mkgAAgFoihDW4Y5eGIWzT7phLAgAAaokQ1uB6OtJaPq9Tv9i4K+6iAACAGiKEzQLHLe3Rw5vojgQAoJkQwmaBE5b1aNOufQzOBwCgiRDCZoHjl86RJD3EuDAAAJoGIWwWOHZpTpL00EZCGAAAzYIQNgvkMmkdMb+LljAAAJoIIWyWOG5pDyEMAIAmEmkIM7OzzOxxM1tvZpeVWd9uZt8K199rZsujLM9sdsKyHr2we1Bb+xmcDwBAM0hFtWMzS0r6kqQ3SNoo6X4zu9HdHy3Z7H2Sdrr7S8zsAkl/Jen8qMo0mx1XctHWM45eGHNpAFQqX3AN5wsaKbiGRwoaLhQ0kneN5H30fnH9SL6g/flgmZmUSiSUTppSyeBnOplQKhH+TJpSiYTaUgl1pJNKJ01mFnd1Y+PuGs67hkbyGs67EiYlE6ZkwpQwUyq8P1vOUbE++/MFufvYdWW3D54zUnAVCsHPfMFVcA/WlezXS55TXFO6zcb+gn65ua9kG6ktlVC2PaWOtqQKBQXlkiudSCiZtOBnIjjPicTsOMeNILIQJulVkta7+wZJMrM1ks6RVBrCzpH02fD+DZKuNDPz8e846NglOZkF35AkhGG2c3cNjRS0Z2hEA0Mj6ts3ot37hsve+sos6x8cVsGl4uepSTKz8Gdwvz0ZBJTiLZ1MKGkmCz+cExZ8WCRMSlrxcbBu1859+tcN90mSCh58mBU/0PLhB9xwPghNI2HIGs6PD1RByKrXX7NkwtSRTiqTTqo9ldBkWSMZBrm2ZELpVEJtyaD+ZpLJtGvXPv3L+ntksgPnuPT8jnssWclyjT5vdJ8WnOeEmTLphDrSKXW1J9XRllRXW0rursGRgoaGCxocyZf9OTTB8tL1hQrOdWk4S5oduB/eUomERvYPqvfB29WWShz02ucLrry7CgWN3h/dJixAMnkg9KUSxcAcnvOS9+JQvqCh4bz254O67y99PFK/905Zd94x7acmwn8gEonwd6vkfCdKzvuY9XYgMCcTxWUas2zMejMlE2PXtyUTo+9/V/D6uIevl0uF0dcx+L0eKbjOOXGJXn/MotqdtypFGcKWSnqu5PFGSSdPtI27j5jZbknzJG0r3cjMLpF0iSQtWrRIa9eujajIgYGBgciPMR1Luky3/HS9TkhuivQ4jVr/eorjHBTcNVyQhvPSUD64P5R3Deel/QVpf94P/MwruBWC+8PhukL436y7Rj+QCvLRP+ZmUkLFD8TgNvp3vvhcScPDw7r64VuULygIFB58wKbCP5qphJRMSKniH0lJI+4aKSioQyEo90h4f39eGsxL+0ZcgyOufSNSfooPmJRJnWlTZ1rqSpm60qYl7dLKblNHKq3iP9vFf+ZLd1fw4LgjhYJGCoXwfrBNoSAV8sH9vAflLp63ggfnbjif174Xt8sVjNkoPV/F0JZJKPiQSEnJtvCcmEY/OJKWUDKRDM5RuCw4X8XHCj94DjwvFX7wpBJh+QpSPjyveQ8ej3jxwz9YNlzyPgjeG3kNF/ITnlcP32t5l0byUn5Y2hN+MBXX5/N5bdm2c/S95CXPLX2faPz68I3mJdsWdKA1peDBe3loxDWUL9+ikzSpLSmlE1I6YUonpbaEKZ0oLjd1J6XeNimdsdFl6WQ62CYRnNPi70Ch+AEcns9C8T2g8ENZCj+kg+3yhbwGUwUVCnuVHwzeh23F1z0pJVJjf4+S4ToLf0rFY4avUSEfBDUPfh/yQ9JgIThWKmHqSEi5pJROB3VMJaR0MqlUIjn6OKGDE3W5kJ0IlydNSiQOvHeD7Q88wcJb8YGVLJdJg4OD6shkxux7pBD8/g7lD7x/TQfelwUP/k4UvHRZ8J4olJyTwujrcuBv0+jjgkZfq0LJ72bp7+fYm49u6x7+7Qn/Fhb/IUhY8bwc+LtnOvC7PH9km1Jb0mPqWs+//1GGsJpx96skXSVJq1at8tWrV0d6vLVr1yrqY0zHG/sf1bX3PqNXn3KaMulkZMdp1PrXU6XnYO/+Ef1q215t2rVP/YPDGghbdgYGD/zsGxzRwNDw6OP9IwXtzwcBIeieClpPpvtfbzJhyqSC/wBHW3jC1odia0TxD/H4/+ALBR9tyZAOtHLs359Xpj2lhEnt6aTakokgJO4vaDg/tnttfz6vgrvawv/y21PJ8GdCbengZ086qe72VHDLBD+72lPKZlLqaksp15FWz7hbJp2Ireuo1X8H6lH/0tbQhJna08F7J9kAXVm8/tS/XvWPMoRtknRoyeNl4bJy22w0s5SkHknbIyzTrHbaUfN19Z1P676nd+h1Ry2IuzhNr39wWC/2DWrz7iFt7hsM7w+Oub9lgi9KpBI2GjKymbSy7SktzGZ0xPzUaHdEW3GMT8n9dCqhTCqhjragW2n0VroslVSmLTF6P4qxQK3+RxjRM7PR9zfQqqIMYfdLWmlmKxSErQskvWvcNjdKulDS3ZLeLunHjAeb2Mkr5qotmdAdT24lhM3ASL6gbQP7tTkMUi/2hcEqDFib+wb1/I49GvzvWw96bk9HWotzGS3qyejoxVkdNrdTK+Z369C5Hcpl0qOtPMGYnPj/owcANK7IQlg4xutDkm6RlJR0tbs/YmaXS1rn7jdK+pqkb5jZekk7FAQ1TKCzLaVfW9GrO57cNvXGMesbHNZTWwa0adc+bdq5T9v37FffvmH1D40onTC1p5LKpBNqDwdRtqcODKhsTyVHuybaw+6s0e1TwTZtqcRod9je/Xnt2hfsf9fecDD34LD2DOU1MDRSMvh7WJv7gst8jB/Am0qYFuUyWpRr19GLszqyc0irjnmJFvdktCiXCYJXLqOONv5rBwDURqRjwtz9Jkk3jVv2mZL7g5LOi7IMzea0lQv0+Zt/qS19g1qYy0z9hDrYP1LQ/b/aoQee2amfPrtTv3yhX5v7Bsds055KqKcjre72lPLuGhzOa6jk21C1bv9MJkxdbcnRsUdd7Sn1dLbpqEXZMcGqeH9eV9uYr1WvXbtWq08/sraFAgCgxKwYmI8DTls5X5+/WbrjyW162yuXxVqWZ7bv0XX3Pasb1m3U9j37JUlHLerWa4+cp5WLsjpyQZcOnduppb1BV91ESq/vMzRSGBPQhkbyGix+PX2kMLp+OF8Y/cp3Rzqpns605nS0hT/T6mxL0h0IAGhohLBZ5mWLc5rf3aY7ntwaWwh7eNNu/dPap3TTwy8oYaZfP3qh3v7KZTr5iHnq6Zg4bE3EzNSWsuBigBGUFwCARkQIm2USCdNpKxfo9ie2qlDwul6ZeEvfoP7s+4/qBw+9oGx7Sr9/+pG68LXLtahBukUBAJhNCGGz0OuOmq/v/GyTfvbcLr3y8N7Ij+fu+uZ9z+kvb35MQyMFffT1K/W7p66YtIsRAABMjhA2C73hmMXqantYa+57NvIQ1j84rI9/+xf670c26zVHzNPn3nq8VszvivSYAAC0gkTcBUD1uttTOvvlS/X9Xzyv3fuGIzvOLzf36ewr79QPH3tRn3zz0bru/ScTwAAAqBFC2Cz1rlcdpsHhgr77s2jmkfzPn27UuV+6UwNDI7ru4pN1yeuO5NuGAADUECFsljp+WY+OX9qj6+59VrWcZGBoJK9/e2RIl17/c52wbI5+8JFTdfIR82q2fwAAECCEzWLvOvkwPf5iv3767M6a7G/jzr16x1fu1m3PjegDrztC1118shZm+eYjAABRIITNYmefuETd7Sl9/a5nZryvtY9v0W/940+0Yeseffikdn3izS9TKsnbAwCAqPApO4t1tad04WsP1/d//rxuf2LrtPaRL7j+7odP6He+fr8W5zK68cOn6pWL+NIsAABRI4TNch8+c6WOXNClT/znQ+ofrO6bktsHhvQ7X79f//CjJ/XWk5bpOx88hW8/AgBQJ4SwWS6TTuoL552oF3bv01/e/MuKn3frI5v1xr+/Xfc8tV1/+dbj9cXzTlBHWzLCkgIAgFL0OzWBVxzWq/edukL/csfTOmJ+l9536ooJLyfx/K59+sItj+s7P9ukYw7J6dqLX66XLmbGRgAA6o0Q1iQ+9hsv1a+279UVP3hMd67fpr9++4lakG2XFEw7tGHbHn3z3md1zT3PSC59+MyX6MNnrlRbisZQAADiQAhrEpl0Ule955X6xj3P6IofPKZXfe5/tKy3Q4fP7dKTW/r1Yt+QEia97RXL9IevX6llvZ1xFxkAgJZGCGsiZqb3vma5XnPEPN388GY98WK/frV9j35t+Vy95sh5et3KBTp0LuELAIBGQAhrQisXZbVyEeO8AABoZAwIAgAAiAEhDAAAIAaEMAAAgBgQwgAAAGJACAMAAIgBIQwAACAGhDAAAIAYEMIAAABiQAgDAACIASEMAAAgBoQwAACAGBDCAAAAYkAIAwAAiAEhDAAAIAaEMAAAgBgQwgAAAGJACAMAAIgBIQwAACAGhDAAAIAYEMIAAABiQAgDAACIASEMAAAgBoQwAACAGJi7x12GqpjZVknPRHyY+ZK2RXyMRtbq9Zc4B9Sf+lP/1kX9a1v/w919QbkVsy6E1YOZrXP3VXGXIy6tXn+Jc0D9qT/1p/5xlyMu9aw/3ZEAAAAxIIQBAADEgBBW3lVxFyBmrV5/iXNA/Vsb9W9t1L9OGBMGAAAQA1rCAAAAYkAIAwAAiEHLhTAzO8vMHjez9WZ2WZn17Wb2rXD9vWa2vGTdJ8Llj5vZG+ta8BqpoP6XmtmjZvYLM/uRmR1esi5vZg+GtxvrW/LaqKD+F5nZ1pJ6Xlyy7kIzezK8XVjfktdGBfX/u5K6P2Fmu0rWNcPrf7WZbTGzhydYb2b2f8Pz8wsze0XJumZ4/aeq/7vDej9kZneZ2Ykl634VLn/QzNbVr9S1U0H9V5vZ7pL3+WdK1k36uzMbVFD/j5fU/eHwd35uuK4ZXv9Dzey28DPuETP7wzLb1PdvgLu3zE1SUtJTko6Q1Cbp55KOGbfNByV9Jbx/gaRvhfePCbdvl7Qi3E8y7jpFUP8zJHWG93+/WP/w8UDcdahD/S+SdGWZ586VtCH82Rve7427TrWu/7jtPyzp6mZ5/cM6vE7SKyQ9PMH6N0u6WZJJerWke5vl9a+w/q8t1kvSm4r1Dx//StL8uOsQcf1XS/qvMsur+t1p1NtU9R+37Vsk/bjJXv9DJL0ivJ+V9ESZz4C6/g1otZawV0la7+4b3H2/pDWSzhm3zTmS/i28f4OkXzczC5evcfchd39a0vpwf7PJlPV399vcfW/48B5Jy+pcxihV8vpP5I2SfujuO9x9p6QfSjoronJGpdr6v1PSN+tSsjpx99sl7Zhkk3MkXeOBeyTNMbND1Byv/5T1d/e7wvpJzff7X8nrP5GZ/O1oGFXWvxl//19w95+G9/slPSZp6bjN6vo3oNVC2FJJz5U83qiDX4DRbdx9RNJuSfMqfG6jq7YO71PwH0FRxszWmdk9ZnZuBOWLWqX1f1vYDH2DmR1a5XMbWcV1CLuhV0j6ccni2f76V2Kic9QMr3+1xv/+u6RbzewBM7skpjLVw2vM7OdmdrOZHRsua6nX38w6FQSM/yhZ3FSvvwVDjU6SdO+4VXX9G5Ca6Q7QnMzstyWtknR6yeLD3X2TmR0h6cdm9pC7PxVPCSPzfUnfdPchM/uAglbRM2MuUxwukHSDu+dLlrXC6w9JZnaGghB2asniU8PXf6GkH5rZL8OWlWbyUwXv8wEze7Ok70paGW+RYvEWSXe6e2mrWdO8/mbWrSBgftTd++IsS6u1hG2SdGjJ42XhsrLbmFlKUo+k7RU+t9FVVAcze72kT0k6292HisvdfVP4c4OktQr+i5hNpqy/u28vqfNXJb2y0ufOAtXU4QKN64pogte/EhOdo2Z4/StiZicoeO+f4+7bi8tLXv8tkr6j2TccY0ru3ufuA+H9mySlzWy+Wuj1D032+z+rX38zSysIYNe6+3+W2aS+fwPiHihXz5uClr8NCrpZioMrjx23zR9o7MD868P7x2rswPwNmn0D8yup/0kKBqCuHLe8V1J7eH++pCc1ywamVlj/Q0ru/y9J94T350p6OjwPveH9uXHXqdb1D7c7WsEgXGum17+kLss18cDs39TYQbn3NcvrX2H9D1Mw3vW145Z3ScqW3L9L0llx1yWC+i8uvu8VhIxnw/dCRb87s+E2Wf3D9T0Kxo11NdvrH76W10j6+0m2qevfgJbqjnT3ETP7kKRbFHzb5Wp3f8TMLpe0zt1vlPQ1Sd8ws/UK3ogXhM99xMyul/SopBFJf+Bju2oaXoX1/4KkbknfDr6PoGfd/WxJL5P0z2ZWUNCC+nl3fzSWikxThfX/iJmdreA13qHg25Jy9x1m9ueS7g93d7mPbapveBXWXwre82s8/MsTmvWvvySZ2TcVfANuvpltlPSnktKS5O5fkXSTgm9HrZe0V9LvhOtm/esvVVT/zygYA/vl8Pd/xN1XSVok6TvhspSk69z9v+tegRmqoP5vl/T7ZjYiaZ+kC8Lfg7K/OzFUYUYqqL8U/PN5q7vvKXlqU7z+kk6R9B5JD5nZg+GyTyr45yOWvwFMWwQAABCDVhsTBgAA0BAIYQAAADEghAEAAMSAEAYAABADQhgAAEAMCGEAZj0zm2NmHwzvLzGzG+IuEwBMhUtUAJj1wnng/svdj4u7LABQKVrCADSDz0s60sweNLNvm9nDkmRmSTP7gpndH07K/oFw+Woz+39m9j0z22Bmnzezd5vZfWb2kJkdGW73dTP7Sjhx+RNm9lvh8oyZ/Wu47c/CuRYBoCotdcV8AE3rMknHufvLi61i4fL3Sdrt7r9mZu2S7jSzW8N1JyqYCWCHgilpvururzKzP5T0YUkfDbdbrmAKmyMl3WZmL1EwvZm7+/FmdrSkW83sKHcfjLqiAJoHLWEAmtlvSHpvOEXJvQqm5FkZrrvf3V/wYML2pyQVw9lDCoJX0fXuXnD3JxWEtaMlnSrp3yXJ3X8p6RlJR0VbFQDNhpYwAM3MJH3Y3W8Zs9BstaShkkWFkscFjf3bOH7gLANpAdQELWEAmkG/pGyZ5bcomJA5LUlmdpSZdVW57/PMLBGOEztC0uOS7pD07uI+FUwA/Ph0Cw+gNdESBmDWc/ftZnZnOCD/sZJVX1XQtfhTMzNJWyWdW+Xun5V0n6ScpN9z90Ez+7KkfzKzhySNSLoo7NYEgIpxiQoAmICZfV3BpS+47hiAmqM7EgAAIAa0hAEAAMSAljAAAIAYEMIAAABiQAgDAACIASEMAAAgBoQwAACAGPx/v2ea+vkbzYEAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 720x720 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "import pylab as pl\n", + "import csv\n", + "\n", + "entrada = open(\"/home/student/ejercicios-clase-08-datos/data-used/VACF_liso_Hr-10-500.csv\")\n", + "\n", + "tabla = []\n", + "\n", + "for fila in csv.reader(entrada):\n", + " tabla.append(fila)\n", + "entrada.close()\n", + "\n", + "x = [0]\n", + "y = [0.893155]\n", + "\n", + "for fila in range(1, len(tabla)):\n", + " x.append(float(tabla[fila][0]))\n", + " y.append(float(tabla[fila][1]))\n", + " \n", + "pl.figure(figsize =(10,10))\n", + "\n", + "pl.plot(x,y)\n", + "pl.xlabel(\"tiempo\")\n", + "pl.ylabel(\"VACF\")\n", + "pl.grid()\n", + "pl.legend([\"vacf(t)\"])\n", + "pl.title(\"Función de Autocorrelación de Velocidades\")\n", + "pl.savefig(\"imagen.png\")\n", + "pl.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Función de autocorrelación de velocidades')" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfEAAAHwCAYAAAC2blbYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA4WUlEQVR4nO3de5xcdX3/8dcn95BkNyGBGBIMEPECFIUgul4XgwUtgtZLidYbtnhvvbUVtUqx/altaak/9ecN2nojXFSKCkYNWYuwaEABCQgGDBACCiEQAiQhyff3xzkTJsteZrNz5pzZfT0fj32c65z5fufMznu+33PmnEgpIUmS2s+4sgsgSZL2jCEuSVKbMsQlSWpThrgkSW3KEJckqU0Z4pIktSlDXJUWEZsj4qA+88ZFxP9ExNua+Dz/FRH/2KztjTYR0R0R65qwndUR0d3P/M9HxBkj3X7d9k6PiG80a3sNPudbIuJnI9zGCyPi5kGW7/H7tIzXRMUzxDUsEbE2Ih7Nw7X2t19Rz5dSmp5Suq3P7H8EVqSUzi7qeVslfz2PLbscrZJSOjSl1FM/LyJOBbamlD5eTqmqI6V0eUrpaWWXQ+1jQtkFUFt6RUrpJ2U9eUrpI2U992gQERNSStuHmtcqKaUvl/G80mhgS1xN0bdFWd91FxEHRESKiDdHxB0RcV9EfLRu3fER8ZGIuDUiHoqIayJi/3xZioin5OOdEfG1iLg3Im6PiI9FxLh82Vsi4mcR8a8RsTEifhcRLxukvEdExC/z5zsPmNJn+QkRcW1EPBARV0bE4YNs6z8i4s6I2JSX/YV1y3br/qzvlo6IrwNPBr6X92j8bT7/xLzb+YGI6ImIZ9Q9fv+I+E7+GmyIiM/l88flr8ftEfGH/HXq7PP6vy0i7gAuy1+vKyLi3yNiA3B6REzOX787IuL3EfHFiJg6QJ0/XLe/boyIV/VZ/pcRcVPd8iPz+bveJ/nznRUR6/O/syJicv3rFBEfzOtzd0S8dZB9cGBE/DR/vh8Dc/osf26+Hx+IiOuiny79fL2/i4gL+9m/n83HOyPi7Lw8d0XEP0bE+AG29byIWBURD+bD59Ut2zsi/jOv98aIuKi+3nXrDfg+jYhZEfH9/L2wMR9f0IzXJH9/3JY/9ncR8Yb+X3mVLqXkn38N/wFrgWOHmg+cDnwjHz8ASMBXgKnAM4GtwDPy5X8D/Bp4GhD58tn5sgQ8JR//GvA/wIx8m7cAb8uXvQV4DPhLYDzwTmA9EP2UdRJwO/B+YCLwmvyx/5gvPwL4A/CcfFtvzus3eYDX5M+B2WQ9Wx8E7gGm5Mv+q7bdfLobWDfI6/ZU4GHgpXnZ/hZYk5d5PHAd8O/ANLIP9BfkjzslX+8gYDrwHeDrfV7/r+WPm5q/XtuB9+blnppv92Jg7/w1/h7wqQHK/VpgP7KGwJ/lZZ5Xt+wu4Nn5/nwKsLBvfYEzgKuAfYF9gCuBT9Y93/Z8nYnAy4FHgFkD7INe4N+AycCLgId4/P03H9iQb2Nc/tpuAPbpZzsL8+eZkU+PB+4GnptPfxf4Uv467gv8Anh73XvwZ/n43sBG4I3567s0n669r38AnAfMyuv34r6vM0O/T2cDrwb2yvfXBcBFI31N8rptAp6WrzsPOLTszx7/BvhMLrsA/rXXX/4hvBl4IP+7qG7+UCG+oG75L4CT8/GbgZMGeL5EFgLjgW3AIXXL3g705ONvAdbULdsrf+yT+tnmi+gT8GQBUvtw/H/kYVK3/ObaB20Dr9FG4Jn5+H8xvBD/e+D8uulxZIHYDXQB9wIT+nnOFcC76qafln/gT6h7/Q+qW/4W4I666SAL4kV187qA3/VX7n6e/9raPgSWA389yPunFuK3Ai+vW3YcsLbu+R6tryvZF6vn9rPNJ5MF/rS6ed+qe//9HfkXmrrly4E3D1DGnwFvysdfCtyaj88l+/I5tW7dpcDKute0FuJvBH7RZ7u9+TrzgJ3084WE3UN80PdpP499FrBxpK8JWYg/QPYFYWp/z+Vfdf7sTteeeGVKaWb+98phPO6euvFHyFqMAPuTfaAPZg5Za+T2unm3k7UonrD9lNIj+eh0nmg/4K6Uf3LVbatmIfDBvJvxgYh4IC9jvyfwRcSH8q7jB/N1O+nTdTkM+9WXJaW0E7iTrJ77A7en/o9d7/a4fHwCWfDU3NnnMfXT+5B98bmmrs4/zOc/QUS8KR4/3PAAcBiP17mR/TlQmetf4w196lr/num7nY0ppYf7bKtmIfDaPvvzBWRh2p9vkYUzwOvz6dp2JgJ3123nS2Qt8qHqVitTbT/en1LaOMDz129jwPdpROwVEV+K7BDKJuB/gZl59/4evyb5Y/4MeEde1x9ExNOHKKtKYoirWR4mC4GaJw3jsXcCi4ZY5z6yluXCunlPJmulDtfdwPyIiD7bqi/PP9V9UZmZUtorpXRu3w1Fdvz7b4HXkbWsZgIPkrVsYejXpe9tBNdTV8e8jPuT1fNO4MkR0d8Jqbs9jsdbYr8f5Lnqp+8ja/keWlfnzpTSE0IzIhaSHRp5D1n38EzgBh6vcyP7c6Ayr2/gcX3dDcyKiGl9tlVzJ1mrs35/TkspfXqA7V0AdOfHl1/F4yF+J1lLfE7ddjpSSoc2ULdamWr7ce+ImNlAvQZ7n36QrMflOSmlDrKWO2T7YUSvSUppeUrppWRfdH5Dtr9VQYa4muVa4OSImBgRR5Edv2vUV4FPRsTBkTk8ImbXr5BS2gGcD/xTRMzIg+QDwJ787rWXLOD+Ki/vnwJH1y3/CvCOiHhOXp5pEfEnETGjn23NyLd1LzAhIj4OdNQtvxZ4eX4i05OA9/V5/O/JjmPXnA/8SUQsiYiJZB/UW8m6UX9B9uH86bxMUyLi+fnjzgXen5/MNB34P8B5A7TanyBv8X8F+PeI2BcgIuZHxHH9rD6N7AvAvfl6byVridd8FfhQRCzOX7+n5Purr3OBj0XEPhExB/g4e7A/U0q3A1cD/xARkyLiBcAr6lb5BvCKiDguspMop+QnkC0YYHv3Aj3Af5IdTrgpn3838CPgzIjoiOxkwkUR8eJ+NnMJ8NSIeH1ETIiIPwMOAb6fb+dS4AuRnZw2MSJe1M82hnqfziD74vVAROwNfKIZr0lEzI2Ik/IvAFvJDp/t7O+1UvkMcTXL35O1vjYC/8DjrZdG/BtZeP2I7ISas8lOtOrrvWQt29vIjlt+CzhnuAVNKW0D/pTs+OT9ZF2H36lbfjXZCXKfI6vPmnzd/iwn63a+hay7cgu7d1N/nexktLV5/c7r8/hPkQXZAxHxoZTSzWQnyv1fstbxK8h+0rct/yLzCrJzBO4A1uVlh+x1+DpZl+rv8nK8t7FXZJe/y+t6Vd49+xOylt5uUko3AmeShczvgT8CrqhbfgHwT2T75yHgIrITvfr6R7KguZ7sxMZf5vP2xOvJTkS8nyzMvlZXnjuBk4CPkH3xuJPsZMrBPv++BRzLE9/HbyI74exGsvfGhfTTLZ9S2gCcQPYlbANZb80JKaX78lXeSNaz9BuyY/3v62cbg75PgbPI/k/uIztB8Id9NrGnr8k4si/I6/PHvpjsRFFVUOx+uEWSJLULW+KSJLUpQ1ySpDZliEuS1KYMcUmS2pQhLklSm2q7u5jNmTMnHXDAAU3b3sMPP8y0adOGXrFNjKb6WJdqGk11gdFVH+tSTSOtyzXXXHNfSqnfqye2XYgfcMABXH311U3bXk9PD93d3U3bXtlGU32sSzWNprrA6KqPdammkdYlIvpewncXu9MlSWpThrgkSW3KEJckqU213TFxSVJ7euyxx1i3bh1btmwZct3Ozk5uuummFpSqeI3WZcqUKSxYsICJEyc2vG1DXJLUEuvWrWPGjBkccMAB7H6H1Sd66KGHmDGjvxsHtp9G6pJSYsOGDaxbt44DDzyw4W3bnS5JaoktW7Ywe/bsIQN8LIoIZs+e3VAvRT1DXJLUMgb4wPbktTHEJUlqU4a4JGlMOOaYY1i+fPlu88466yze+c53ct999zFx4kS++MUv7rb8nnvu4eSTT2bRokUsXryYl7/85dxyyy2sXbuWqVOn8qxnPWvX37Zt2wC46KKLOOOMM3aN/+Y3v9m1vQ996ENcdtllTauTIS5Jqq7eXvjUp7LhCC1dupRly5btNm/ZsmUsXbqUCy64gOc+97mce+65u5allHjVq15Fd3c3t956K9dccw2f+tSn+P3vfw/AokWLuPbaa3f9TZo0CYB//ud/5l3vehfwxBB/73vfy6c//ekR16XGs9MlSa33vvfBtdcOuHjqjh2weTNcfz3s3AnjxsHhh0Nn58DbfNaz4KyzBlz8mte8ho997GNs27aNSZMmsXbtWtavX88LX/hCPvaxj3HmmWfy+te/nnXr1rFgwQJWrlzJxIkTecc73rFrG8985jMBWLt2bb/PccsttzB58mTmzJnDlVdeycUXX0xPTw9nnnkm3/72t1m0aBEbNmzgnnvu4UlPetLAdWmQLXFJUjU9+GAW4JANH3xwRJvbe++9Ofroo7n00kuBrBX+ute9jnXr1nH33Xdz9NFH87rXvY7zzjsPgBtuuIHFixcPuL1bb711V1f6u9/9bgCuuOIKjjzySACe97znceKJJ/LJT36Sa6+9lkWLFgFw5JFHcsUVV4yoLjW2xCVJrTdIixng0YceYsYNN8CSJbBtG0yaBN/8JnR1jehpa13qJ510EsuWLePss8/mvPPO43Wvex0AJ598Mqeccgof/OAHh9xWrTu93t13380++/R7w7Fd9t13X9avX7/HdahniEuSqqmrC1asgJ4e6O4ecYADnHTSSbz//e/nl7/8JY888giLFy/m1FNP5Z577uGb3/wmAOvXr+e3v/0thx56KBdeeOGwtj916lQeHKLHYMuWLUydOnWP61DP7nRJUnV1dcFppzUlwAGmT5/OMcccwymnnMLSpUu55ZZb2Lx5M3fddRdr165l7dq1nHbaaZx77rm85CUvYevWrXz5y1/e9fjrr7+eyy+/fMDtP+MZz2DNmjW7pmfMmMHmzZt3W+eWW27hsMMOa0p9DHFJ0piydOlSrrvuOpYuXcq5557Lq171qt2Wv/rVr+bcc88lIvjud7/LT37yExYtWsShhx7KaaedNugJaS960Yv41a9+RUoJyLrn/+M//oMjjjiCW2+9lccee4w1a9Zw1FFHNaUuY7s7/corOfArX4HJk5v2LU+SVG2vfOUrd4XsJz7xiScsP/zww3fdsGS//fbj/PPP73c7N9xwwxPm7bXXXhx77LGsWLGCY489luc///msWrVq17XTv/vd7/Ka17yGCROaE79jtyXe2wvd3Sz81rfgJS9pym8QJUn6yEc+wiOPPNLvsu3btzd00lyjxm6I9/TAjh3Z+LZt2bQkSSM0d+5cTjzxxH6Xvfa1r2XmzJlNe66xG+Ld3Vk3OsD48dm0JKlQtW5sPdGevDZjN8Tzny48NmMGvOAFHhOXpIJNmTKFDRs2GOT9qN1PfMqUKcN63Ng+sa2riweOOIJ97rij7JJI0qi3YMEC1q1bx7333jvkulu2bBl2oFVVo3WZMmUKCxYsGNa2x3aIAw8dfDD7/O//ZpfzG+yavJKkEZk4cSIHHnhgQ+v29PRwxBFHFFyi1iiyLmO3Oz23+SlPyUauu67cgkiSNEyG+MEHZyO/+lW5BZEkaZjGfIhvmz0b5s41xCVJbWfMhzgABxwAy5d7wRdJUlsZ8yHesXo1XHMN3HNPdss7g1yS1CbGfIjPvPbax28675XbJEltZMyH+APPehZMnJhNeOU2SVIbGfMhvunQQ+Hcc7OJD3zAK7dJktrGmA9xAE44ASJglFwdSJI0NhjikHWn77sv3HVX2SWRJKlhhnjN/Pmwbl3ZpZAkqWGGeM38+bbEJUltxRCvMcQlSW3GEK+ZPx82bIAtW8ouiSRJDTHEa+bPz4br15dbDkmSGmSI19RC3C51SVKbMMRrDHFJUpsxxGsMcUlSmzHEazo7Ya+9DHFJUtswxGsi/JmZJKmtGOL1FiwwxCVJbcMQr2dLXJLURgzxevPnZ78TT6nskkiSNCRDvN62bdnfpZeWXRJJkoZkiNf09sLnP5+N/+mfZtOSJFWYIV7T0wPbt2fjjz2WTUuSVGGGeE13N0yalI1PmJBNS5JUYYZ4TVcXfOc72fi7351NS5JUYYZ4vT/+4+yiLx0dZZdEkqQhGeL1xo+HWbPgvvvKLokkSUMqNMQj4viIuDki1kTEh/tZ/uSIWBkRv4qI6yPi5UWWpyFz5hjikqS2UFiIR8R44PPAy4BDgKURcUif1T4GnJ9SOgI4GfhCUeVp2OzZsGFD2aWQJGlIRbbEjwbWpJRuSyltA5YBJ/VZJwG1A9CdwPoCy9MYW+KSpDZRZIjPB+6sm16Xz6t3OvDnEbEOuAR4b4Hlaczs2Ya4JKktRCroOuER8Rrg+JTSX+TTbwSek1J6T906H8jLcGZEdAFnA4ellHb22dapwKkAc+fOXbxs2bKmlXPz5s1Mnz591/RBX/wi8y+6iMt/+MOmPUcr9a1PO7Mu1TSa6gKjqz7WpZpGWpdjjjnmmpTSUf0uTCkV8gd0Acvrpk8DTuuzzmpg/7rp24B9B9vu4sWLUzOtXLly9xmf/nRKkNLDDzf1eVrlCfVpY9almkZTXVIaXfWxLtU00roAV6cBMrHI7vRVwMERcWBETCI7ce3iPuvcASwBiIhnAFOAewss09Bmz86GdqlLkiqusBBPKW0H3gMsB24iOwt9dUScEREn5qt9EPjLiLgOOBd4S/6tozxz5mRDz1CXJFXchCI3nlK6hOyEtfp5H68bvxF4fpFlGLZaiNsSlyRVnFds68vudElSmzDE+7I7XZLUJgzxvmbNym6CYktcklRxhnhfEybAzJmGuCSp8gzx/syZY3e6JKnyDPH+eP10SVIbMMT74/XTJUltwBDvj93pkqQ2YIj3x+50SVIbMMT7M3s2PPooPPJI2SWRJGlAhnh/ahd8+Yd/gN7ecssiSdIADPH+1LrS//VfYckSg1ySVEmGeH9+97tsuHMnbNsGPT2lFkeSpP4Y4v154Quz4bhxMGkSdHeXWhxJkvpjiPenFtonnQQrVkBXV6nFkSSpP4Z4f2bOzIZdXQa4JKmyDPH+TJuW3Qhl48aySyJJ0oAM8f5EZK3xBx4ouySSJA3IEB+IIS5JqjhDfCCGuCSp4gzxgcya5TFxSVKlGeIDsSUuSao4Q3wghrgkqeIM8YHYnS5JqjhDfCAzZ8LWrbBlS9klkSSpX4b4QGpXbbNLXZJUUYb4QGbNyoZ2qUuSKsoQH4gtcUlSxRniAzHEJUkVZ4gPxO50SVLFGeIDsSUuSao4Q3wghrgkqeIM8YFMngxTp9qdLkmqLEN8MF56VZJUYYb4YAxxSVKFGeKD8frpkqQKM8QHY0tcklRhhvhgDHFJUoUZ4oOZNcsQlyRVliE+mFpLPKWySyJJ0hMY4oOZORN27IDNm8suiSRJT2CID6Z2/XS71CVJFWSID6Z26VV/ZiZJqiBDfDC1EP/c56C3t9SiSJLUlyE+mDvuyIZnnw1LlhjkkqRKMcQHs3p1Nty5E7Ztg56eUosjSVI9Q3wwL3lJNhw3DiZNgu7uUosjSVI9Q3wwS5Zkw2OPhRUroKur3PJIklTHEB/M5MnZ37OeZYBLkirHEB9KZyc8+GDZpZAk6QkM8aF0dMCmTWWXQpKkJzDEh2JLXJJUUYb4UGyJS5IqyhAfii1xSVJFGeJDMcQlSRVliA/F7nRJUkUZ4kPp7MxCPKWySyJJ0m4M8aF0dGTXTn/44bJLIknSbgzxoXR2ZkOPi0uSKsYQH4ohLkmqKEN8KB0d2dCT2yRJFWOID8WWuCSpogzxodgSlyRVlCE+FFvikqSKMsSHUmuJG+KSpIoxxIcyYwZE2J0uSaocQ3wo48ZlQW5LXJJUMYZ4I7x+uiSpggzxRngnM0lSBRnijejoMMQlSZVjiDeidiczSZIqxBBvhN3pkqQKMsQb4YltkqQKMsQbYUtcklRBhngjOjrg0UfhscfKLokkSbsY4o2oXT/dLnVJUoUUGuIRcXxE3BwRayLiwwOs87qIuDEiVkfEt4oszx7z+umSpAqaUNSGI2I88HngpcA6YFVEXJxSurFunYOB04Dnp5Q2RsS+RZVnRGyJS5IqqMiW+NHAmpTSbSmlbcAy4KQ+6/wl8PmU0kaAlNIfCizPnquF+Be+AL295ZZFkqRckSE+H7izbnpdPq/eU4GnRsQVEXFVRBxfYHn23Nq12fDss2HJEoNcklQJhXWnD+P5Dwa6gQXA/0bEH6WUHqhfKSJOBU4FmDt3Lj09PU0rwObNm4fc3qIf/pD9AXbuZOfWraw95xzu2Lq1aWVopkbq0y6sSzWNprrA6KqPdammQuuSUirkD+gCltdNnwac1medLwJvrZteATx7sO0uXrw4NdPKlSuHXun7308JUho3LqWpU1O68sqmlqGZGqpPm7Au1TSa6pLS6KqPdammkdYFuDoNkIlFdqevAg6OiAMjYhJwMnBxn3UuImuFExFzyLrXbyuwTHtmyZJseOyxsGIFdHWVWx5JkijwmHhKaTvwHmA5cBNwfkppdUScEREn5qstBzZExI3ASuBvUkobiirTHpsyBSZNgiOOMMAlSZVR6DHxlNIlwCV95n28bjwBH8j/qs3bkUqSKsYrtjXK25FKkirGEG+ULXFJUsUY4o2yJS5JqhhDvFG2xCVJFWOIN8p7ikuSKsYQb5Td6ZKkijHEG9XRkYV4dmU5SZJKZ4g3qrMTduyARx4puySSJAGGeOM6OrKhx8UlSRVhiDeqdk9xj4tLkirCEG9ULcRtiUuSKsIQb5Td6ZKkijHEG2V3uiSpYgzxRtkSlyRVjCHeKFvikqSKMcQbNWNGNrQlLkmqCEO8UePHw/TphrgkqTIM8eHw+umSpAoxxIfD25FKkirEEB8OW+KSpAoxxIfDlrgkqUIM8eHo7DTEJUmVYYgPh93pkqQKMcSHw+50SVKFGOLD0dkJjzwC27eXXRJJkgzxYaldP90udUlSBRjiw+E9xSVJFWKID4ctcUlShRjiw2FLXJJUIYb4cHg7UklShRjiw1HrTv/616G3t9yySJLGPEN8OH7722x4wQWwZIlBLkkqlSE+HNdckw1Tgm3boKen1OJIksY2Q3w4XvrSbBgBkyZBd3epxZEkjW2G+HA873nZcfGjj4YVK6Crq+wSSZLGMEN8uObMgUWLDHBJUukM8eHydqSSpIowxIfLEJckVYQhPlyGuCSpIgzx4ero8IptkqRKMMSHy5a4JKkiDPHh6uzMWuIplV0SSdIYZ4gPV2cn7NwJmzeXXRJJ0hhniA+XtyOVJFWEIT5c3o5UklQRhvhw1W5HaktcklQyQ3y47E6XJFWEIT5chrgkqSIM8eEyxCVJFWGID5chLkmqCEN8uKZPhwjPTpcklc4QH66I7Ax1W+KSpJIZ4nvC66dLkirAEN8ThrgkqQIM8T1hiEuSKsAQ3xOGuCSpAgzxPVG7HakkSSUaMMQjYkIrC9JWPDtdklQBg7XEf1EbiYj/24KytI9ad3pKZZdEkjSGDRbiUTf+/KIL0lY6O+Gxx2DLlrJLIkkawwYLcZuZA/HSq5KkChjsuPfTI+J6shb5onycfDqllA4vvHRVVR/iT3pSuWWRJI1Zg4X4M1pWinZTC3HPUJcklWiwEJ8IzE0pXVE/MyKeD9xTaKmqrqMjG9qdLkkq0WDHxM8C+mtqbsqXjV0eE5ckVcBgIT43pfTrvjPzeQcUVqJ2YIhLkipgsBCfOciyqU0uR3uphfi3vw29veWWRZI0Zg0W4ldHxF/2nRkRfwFcU1yR2sDq1dnw0kthyRKDXJJUisFObHsf8N2IeAOPh/ZRwCTgTwsuV7Vdfnk2TAm2bYOeHujqKrVIkqSxZ8AQTyn9HnheRBwDHJbP/kFK6bKWlKzKursh8gvaTZqUTUuS1GJD3uQkpbQSWAkQEYsi4u+Bk1NKhxZduMrq6oInPxmmT4evfMVWuCSpFEPeijQi9ouI90fEKmB1/piTCy9Z1c2bl/0Z4JKkkgx2K9JTI2Il0APMBt4G3J1S+of+fno25tTuZCZJUkkG607/HNALvD6ldDVARHhTlJrOTli7tuxSSJLGsMFCfB7wWuDMiHgScD7ZpVgFtsQlSaUb7Jj4GcANKaUXA0uAB4DfR8RNEfF/Gtl4RBwfETdHxJqI+PAg6706IlJEHDWcwpfKEJcklWywEL8F+JeIWAv8FXBZSuko4ERgy1AbjojxwOeBlwGHAEsj4pB+1psB/DXw82GXvkwdHfDoo/DYY2WXRJI0Rg0Y4iml/0gpdQEvBjYA50TEb4DXA8sa2PbRwJqU0m0ppW35Y07qZ71PAp+hgS8GleL10yVJJRvyJ2YppdtTSp9JKR0BLAVeCdzUwLbnA3fWTa/L5+0SEUcC+6eUftBwiavCEJcklWzIi71ExASyLvGTyY6N9wCnj/SJI2Ic8G/AWxpY91TgVIC5c+fS09Mz0qffZfPmzXu0vTl33slhwNWXXcbmO+8ccv1W2dP6VJF1qabRVBcYXfWxLtVUaF1SSv3+AS8FzgHuAS4m60afNtD6/Ty+C1heN30acFrddCdwH7A2/9sCrAeOGmy7ixcvTs20cuXKPXvgZZelBCnt6eMLssf1qSDrUk2jqS4pja76WJdqGmldgKvTAJk4WEv8NOBbwAdTShv34PvBKuDgiDgQuIusJf/6ui8PDwJzatMR0QN8KOW/Sa88u9MlSSUb7AYoLxnJhlNK2yPiPcByYDxwTkppdUScQfat4uKRbL90HR3Z0BCXJJVkyGPiI5FSugS4pM+8jw+wbneRZWk6W+KSpJINeXa6BmCIS5JKZojvqUmTYMoU2LSp7JJIksYoQ3wkvPSqJKlEhvhIGOKSpBIZ4iPR0WGIS5JKY4iPhC1xSVKJDPGR6Oz0xDZJUmkM8ZGwJS5JKpEhPhKGuCSpRIb4SHR2wkMPwY4dZZdEkjQGGeIjUbtq20MPlVsOSdKYZIiPhDdBkSSVyBAfiVpL3DPUJUklMMRHwpugSJJKZIiPhCEuSSqRIT4ShrgkqUSG+EjUQvy886C3t9yySJLGHEN8JG66KRt+73uwZIlBLklqKUN8JGqhnRJs2wY9PaUWR5I0thjiI3HMMdkwAiZNgu7uUosjSRpbDPGR6OqC/feHww6DFSuyaUmSWmRC2QVoe/PmwaxZBrgkqeVsiY/UzJnwwANll0KSNAYZ4iM1axZs3Fh2KSRJY5AhPlK2xCVJJTHER6rWEk+p7JJIksYYQ3ykZs6Exx6DRx8tuySSpDHGEB+pWbOyocfFJUktZoiP1MyZ2dDj4pKkFjPER8qWuCSpJIb4SNkSlySVxBAfKVvikqSSGOIjZUtcklQSQ3ykOjuzoSEuSWoxQ3ykJk6E6dPtTpcktZwh3gxeelWSVAJDvBm8CYokqQSGeDPYEpcklcAQbwZb4pKkEhjizWBLXJJUAkO8GWyJS5JKYIg3w8yZsGkT7NhRdkkkSWOIId4MtUuvPvhgueWQJI0phngzeOlVSVIJDPFmqIW4x8UlSS1kiDdDrTvdlrgkqYUM8WawO12SVAJDvBm8p7gkqQSGeDPUWuLf+Q709pZaFEnS2GGIN8Ovf50Nf/hDWLLEIJcktYQh3gw//Wk2TAm2bYOenlKLI0kaGyaUXYBRobsbIrLxSZOyaUmSCmZLvBm6uuDQQ+Ggg2DFimxakqSCGeLNsnAhdHYa4JKkljHEm2XvvWHDhrJLIUkaQwzxZpk9G+6/v+xSSJLGEEO8WfbeGx56KDs7XZKkFjDEm2X27GzoVdskSS1iiDfL3ntnQ4+LS5JaxBBvllpL3OPikqQWMcSbpdYSN8QlSS1iiDeL3emSpBYzxJvF7nRJUosZ4s0yYwZMmGBLXJLUMoZ4s0RkXeq2xCVJLWKIN5OXXpUktZAh3kxeelWS1EKGeDPZEpcktZAh3ky2xCVJLWSIN5MntkmSWsgQb6a994aHH4atW8suiSRpDDDEm8kLvkiSWsgQbyYvvSpJaiFDvJlsiUuSWsgQbyZb4pKkFjLEm8mWuCSphQoN8Yg4PiJujog1EfHhfpZ/ICJujIjrI2JFRCwssjyFsyUuSWqhwkI8IsYDnwdeBhwCLI2IQ/qs9ivgqJTS4cCFwD8XVZ6WmDYNxo+HH/wAenvLLo0kaZQrsiV+NLAmpXRbSmkbsAw4qX6FlNLKlNIj+eRVwIICy1O8q66CHTvg8sthyRKDXJJUqCJDfD5wZ930unzeQN4GXFpgeYrX05MNU4Jt2x6fliSpABPKLgBARPw5cBTw4gGWnwqcCjB37lx6mhiOmzdvbtr2Ojo6OCICUmLnhAlc19HBphYHeTPrUzbrUk2jqS4wuupjXaqp0LqklAr5A7qA5XXTpwGn9bPescBNwL6NbHfx4sWpmVauXNnU7aUlS1KaPTulK69s7nYb1PT6lMi6VNNoqktKo6s+1qWaRloX4Oo0QCYW2Z2+Cjg4Ig6MiEnAycDF9StExBHAl4ATU0p/KLAsrXPIIbB9O3R1lV0SSdIoV1iIp5S2A+8BlpO1tM9PKa2OiDMi4sR8tX8BpgMXRMS1EXHxAJtrH/vsAw8+mB0TlySpQIUeE08pXQJc0mfex+vGjy3y+Uuxzz7Z8L77YL/9yi2LJGlU84ptzbbvvtnwD6Pj6IAkqboM8WartcTvvbfcckiSRj1DvNlqIW5LXJJUMEO82Wrd6bbEJUkFM8SbbebM7PrphrgkqWCGeLONGwdz5tidLkkqnCFehH33tSUuSSqcIV6EffYxxCVJhTPEi7DPPnanS5IKZ4gXwe50SVILGOJF8PrpkqQWMMSL4FXbJEktYIgXwQu+SJJawBAvgi1xSVILGOJF8PrpkqQWMMSLYHe6JKkFDPEizJyZXX71f/4HenvLLo0kaZQyxIvw85/Dzp3w05/CkiUGuSSpEIZ4EXp6smFK2W/Fa9OSJDWRIV6E7u6sOx1g0qRsWpKkJjPEi9DVBccfDx0dsGJFNi1JUpMZ4kV55jPh4YfhOc8puySSpFHKEC/KvHmwY4c/M5MkFcYQL8p++2XDu+8utxySpFHLEC/KvHnZ0BCXJBXEEC+KIS5JKpghXpRaiK9fX245JEmjliFelClTYNYsW+KSpMIY4kWaN88QlyQVxhAvkiEuSSqQIV6k/fbzmLgkqTCGeJHmzYN77sluhCJJUpMZ4kWaNy+7i9n995ddEknSKGSIF8mrtkmSCmSIF8nfikuSCmSIF8mrtkmSCmSIF8kQlyQVyBAv0rRpsNdecPHF0NtbdmkkSaOMIV6k3l549NFsuGSJQS5JaipDvEg9PY//RnzbtmxakqQmMcSL1N0N48dn45MmZdOSJDWJIV6kri5461uz8UsuyaYlSWoSQ7xoL3hBNpw/v9xySJJGHUO8aAsXZsPbby+3HJKkUccQL5ohLkkqiCFetAULYNw4Q1yS1HSGeNEmTsxuhGKIS5KazBBvhYULDXFJUtMZ4q1giEuSCmCIt8LChbBuHezYUXZJJEmjiCHeCgsXwvbt3ldcktRUhngr+DMzSVIBDPFWMMQlSQUwxFvhyU/Ohoa4JKmJDPFWmDYNOjvhoou8p7gkqWkM8Vbo7YVNm2DVKliyxCCXJDWFId4KPT2QUja+bVs2LUnSCBnirdDdDRMmZOOTJmXTkiSNkCHeCl1d8NGPZuNf+Uo2LUnSCBnirXLCCdlw6tRyyyFJGjUM8VZ56lOz4c03l1sOSdKoYYi3SkcHzJtniEuSmsYQb6WnPc0QlyQ1jSHeSrUQr/3cTJKkETDEW+lpT4ONG+G++8ouiSRpFDDEW+lpT8uGdqlLkprAEG8lQ1yS1ESGeCsdcEB25bb//m+vny5JGjFDvJV+8QvYsQMuv9wboUiSRswQbyVvhCJJaiJDvJW6u2HixGzcG6FIkkbIEG+lri74zGey8c98xhuhSJJGxBBvtTe+MRs++mi55ZAktT1DvNXmzIGFC+Gaa8ouiSSpzRniZTjqKLj66rJLIUlqc4WGeEQcHxE3R8SaiPhwP8snR8R5+fKfR8QBRZanMo46Cm67LbsEqyRJe6iwEI+I8cDngZcBhwBLI+KQPqu9DdiYUnoK8O/AZ4oqT6UsXpwN7VKXJI3AhAK3fTSwJqV0G0BELANOAm6sW+ck4PR8/ELgcxERKY3y23zVh/ixx5ZbFo1Ovb3ZdQhmz4YNG5o6fPKqVXDLLf0vr/1ssqDnbsqwTxkHrc+ebHuwX500ul/28HVsal328PVsyfuszDLW9nFtX/adbvS90CRFhvh84M666XXAcwZaJ6W0PSIeBGYDo/s2X3vvDfPmwTe+AS96kT81q5oCArApH0gDfRDddx90dMD69TB1Klx7LXzve7B9eyG3vT0Q4KtffeKCCBg3Lhtu3970522Kfso4YH32ZNsTJsBxx8HTnw6bN2f/6w8+CNOmwU03wQ9/2Nh+GT8+G+7YMawiNK0uwzEu79DdubOpm23qfqmVcZivZ7/bmjDh8dDesSPbV89+Nqxa9fi+jYApU2DFisI/36OoRm9EvAY4PqX0F/n0G4HnpJTeU7fODfk66/LpW/N17uuzrVOBUwHmzp27eNmyZU0r5+bNm5k+fXrTtteIjtWrOeKv/gp27mTn5Mlcd+aZbDr00KZsu4z6FKWRunSsXs3Ma6/lsY4OJm7a1Nhw40Z27LUXkzZuZPvUqUx+4AE2H3QQsW0bs6+6ir2vvpoY6T97ESKyYT//s9HgJlK+7kDDIgz1nM0ejga1PVxEvYt4/HDLOhbeEzvHjWPtKadwxxveMOLP5WOOOeaalNJR/S0rsiV+F7B/3fSCfF5/66yLiAlAJ7Ch74ZSSl8Gvgxw1FFHpe4mXumsp6eHZm6vIb29uz6Ix2/fzpGbNjXt6m2l1KcIvb3c9s1vctCzn/3EVul992Xfcq+4Ai6+uLqtvmbb0y/cEbtaBzHEkAaGuz4Y+y4fNy5rpUTAY49lLbMGnrPZw0HrUCsjZO+bnTsHrs+eDvdgv/QtY9S9jtHg60hKpAZeh5Hs+yc8bg/L2sgwNWk7A70vC93H48YxbvJkDjrlFA7q6ir0c7nIEF8FHBwRB5KF9cnA6/usczHwZqAXeA1w2ag/Hg5ZYE+eDFu2ZG+wqoVu32M9RWx7oC7jzs4snC+4gAMfe6x1XYMDtXKb9MHeyIdrQ+HTyAdRbd1TToEjjmj6cdDfrVrV/5erNj0mPmh9hjP81a/gP/9z4P0znP2yh69j0+pSgWPiTa1Ls8pY28fbt2fd6C9/OVx66ePT9fu2iM/PfhQW4vkx7vcAy4HxwDkppdURcQZwdUrpYuBs4OsRsQa4nyzoR7+uLrjsMjjhBHjGM8o7Jl4fqPfem81btQouueTxYz3HHw+HHgoPP5xdqGbzZth3X3joIZg7Fx54IJs/0Jt+/Xo4/PBs/e985/E3fAPf1YbdDdaMgOzvn7EqH0jD+SAq8APkjqc+lYOG+uLZDud55GVsqD6NetObBt8/w90vw3wdm1qX4WryPi+kLs0oY20f1/ZlkY2eBhTZEieldAlwSZ95H68b3wK8tsgyVFZXF5x8cnZv8W3bshuiFK32ZpsyBZYvh5/8ZPATPXbuzE6Q+t73ii9bP4bs5mxmi7M+IAv4Z2zqB1I7BORY1dXl/hnt+u7jkvd5oSGuIRx3HHzhC3DllcV2qff2Zl8Wzjkn6+prtYGOIw0RzuuPO475J5zQ2hanH8CS2oghXqbu7qzr9vTT4VOfKiZArrwSjjkma+0Ppm/rtnasZ6QnguxpV3V3N7/dupX5VTtfQJIqxBAv0+rVWdD99KewZEnzf1N40UVw6qn9B/hgXdF9j/U086SS4bSce3qa8CJI0uhliJepp+fxbuZt27LpZoR4by984hPw4x8/Pq+/0B4qUJt9rMeuaklqKkO8TPU/NYtoynHxzuuvhw9+cPffTo8bl13e9fTTDVJJGkW8FWmZaj81O/zw7IzxZz5zZNu7+GIO++hHdw/wiOyLggEuSaOOIV62ri747Gez31+/+c1ZV/hw9fbCiSfCSScxYfPmbN64cdnP1t7+9pZcv1eS1Hp2p1fBxIlZi/nCC+EHPxhe6F5xRXb2ef7TsQC7zyVpjLAlXgU//enj41u3Nn5W9o9+BK961W6//U52n0vSmGFLvAq6u7Nj4o8+mv0m+6absi7y/kK49rOvTZvgM595/Oz2+guknHaaAS5JY4AhXgVdXVkX+mc/C8uWwde/nnWt9+1W7+3Nfk++ZcvuV0Cr6z7/7datzDfAJWlMMMSroqsra2Gfd14W0I8+Cn/7t/DGN2a/6Z42Db70pWx+zYQJ2bqTJj3efe4FUiRpzDDEq6TWrV5raf/sZ9lfX+PGZce9zzqrpbe8kyRViyFeJbVu9dNPz+4wtnPnE9fxzHNJUs6z06umqysL6MmTs8CG7Odn8HgL3ACXJGFLvJpqLfL+bj5i17kkKWeIV1XJN5qXJFWf3emSJLUpQ1ySpDZliEuS1KYMcUmS2pQhLklSmzLEJUlqU4a4JEltyhCXJKlNGeKSJLUpQ1ySpDZliEuS1KYMcUmS2pQhLklSmzLEJUlqU4a4JEltyhCXJKlNRUqp7DIMS0TcC9zexE3OAe5r4vbKNprqY12qaTTVBUZXfaxLNY20LgtTSvv0t6DtQrzZIuLqlNJRZZejWUZTfaxLNY2musDoqo91qaYi62J3uiRJbcoQlySpTRni8OWyC9Bko6k+1qWaRlNdYHTVx7pUU2F1GfPHxCVJale2xCVJalOjOsQj4viIuDki1kTEh/tZPjkizsuX/zwiDqhbdlo+/+aIOK6lBe9HA3X5QETcGBHXR8SKiFhYt2xHRFyb/13c2pI/UQN1eUtE3FtX5r+oW/bmiPht/vfm1pa8fw3U59/r6nJLRDxQt6wy+yYizomIP0TEDQMsj4j4bF7P6yPiyLplVdwvQ9XnDXk9fh0RV0bEM+uWrc3nXxsRV7eu1P1roC7dEfFg3Xvp43XLBn1/tloDdfmbunrckP+P7J0vq9p+2T8iVuafvasj4q/7WafY/5uU0qj8A8YDtwIHAZOA64BD+qzzLuCL+fjJwHn5+CH5+pOBA/PtjK94XY4B9srH31mrSz69uez9Mcy6vAX4XD+P3Ru4LR/OysdnVb0+fdZ/L3BORffNi4AjgRsGWP5y4FIggOcCP6/qfmmwPs+rlRN4Wa0++fRaYE7ZdRhGXbqB7/czf1jvzyrUpc+6rwAuq/B+mQccmY/PAG7p5/Os0P+b0dwSPxpYk1K6LaW0DVgGnNRnnZOA/87HLwSWRETk85ellLamlH4HrMm3V5Yh65JSWplSeiSfvApY0OIyNqqR/TKQ44Afp5TuTyltBH4MHF9QORs13PosBc5tScmGKaX0v8D9g6xyEvC1lLkKmBkR86jmfhmyPimlK/PyQrX/ZxrZNwMZyf9bIYZZl8r+vwCklO5OKf0yH38IuAmY32e1Qv9vRnOIzwfurJtexxNf3F3rpJS2Aw8Csxt8bCsNtzxvI/vmVzMlIq6OiKsi4pUFlG84Gq3Lq/OupwsjYv9hPraVGi5TfojjQOCyutlV2jdDGaiuVdwvw9X3fyYBP4qIayLi1JLKNFxdEXFdRFwaEYfm89p230TEXmSh9u262ZXdL5Edjj0C+HmfRYX+30wY7gNUbRHx58BRwIvrZi9MKd0VEQcBl0XEr1NKt5ZTwoZ8Dzg3pbQ1It5O1lvykpLL1AwnAxemlHbUzWu3fTPqRMQxZCH+grrZL8j3y77AjyPiN3kLsqp+SfZe2hwRLwcuAg4ut0gj9grgipRSfau9kvslIqaTfdl4X0ppUyufezS3xO8C9q+bXpDP63ediJgAdAIbGnxsKzVUnog4FvgocGJKaWttfkrprnx4G9BD9m2xLEPWJaW0oa78XwUWN/rYEgynTCfTp2uwYvtmKAPVtYr7pSERcTjZe+yklNKG2vy6/fIH4LuUezhtSCmlTSmlzfn4JcDEiJhDG+8bBv9/qcx+iYiJZAH+zZTSd/pZpdj/m7JPDCjqj6yX4Tay7svaCR2H9lnn3ex+Ytv5+fih7H5i222Ue2JbI3U5guwEloP7zJ8FTM7H5wC/pcQTWxqsy7y68VcBV+XjewO/y+s0Kx/fu+rvs3y9p5OdlBNV3Td5OQ5g4JOn/oTdT9D5RVX3S4P1eTLZ+S7P6zN/GjCjbvxK4PiK1+VJtfcWWbDdke+nht6fVapLvryT7Lj5tCrvl/w1/hpw1iDrFPp/M2q701NK2yPiPcBysjM0z0kprY6IM4CrU0oXA2cDX4+INWRvmJPzx66OiPOBG4HtwLvT7l2gLdVgXf4FmA5ckJ2bxx0ppROBZwBfioidZD0vn04p3VhKRWi4Ln8VESeSvfb3k52tTkrp/oj4JLAq39wZafeutpZrsD6QvbeWpfy/N1epfRMR55Kd5TwnItYBnwAmAqSUvghcQnam7RrgEeCt+bLK7RdoqD4fJzsH5gv5/8z2lN2kYi7w3XzeBOBbKaUftrwCdRqoy2uAd0bEduBR4OT8vdbv+7OEKuzSQF0g+/L+o5TSw3UPrdx+AZ4PvBH4dURcm8/7CNkXxJb833jFNkmS2tRoPiYuSdKoZohLktSmDHFJktqUIS5JUpsyxCVJalOGuDQGRMTMiHhXPr5fRFxYdpkkjZw/MZPGgPy6zt9PKR1WdlkkNY8tcWls+DSwKL8P8wW1ezlHxPiI+JeIWJXfcObt+fzuiPhpRPxPRNwWEZ+O7P7bv8jv57woX++/IuKL+U1cbomIE/L5UyLiP/N1f5Vfn1xSk43aK7ZJ2s2HgcNSSs+qtcrz+W8DHkwpPTsiJgNXRMSP8mXPJLuq3P1kl+78akrp6Ij4a7L7or8vX+8Askt9LgJWRsRTyC5pnFJKfxQRTye789RTU0pbiq6oNJbYEpfGtj8G3pRfMvLnZJchrd39alXK7pe8ley6/LVw/zVZcNecn1LamVL6LVnYP53sjmDfAEgp/Qa4HXhqsVWRxh5b4tLYFsB7U0rLd5sZ0Q1srZu1s256J7t/dvQ9scYTbaQWsSUujQ0PATP6mb+c7MYZEwEi4qkRMW2Y235tRIzLj5MfBNwMXA68obZNshtC3LynhZfUP1vi0hiQUtoQEVfkJ7TdVLfoq2Rd47+M7PZQ9wKvHObm7wB+AXQA70gpbYmILwD/LyJ+TXY3urekunvcS2oOf2ImaY9FxH+R/XTN351LJbA7XZKkNmVLXJKkNmVLXJKkNmWIS5LUpgxxSZLalCEuSVKbMsQlSWpThrgkSW3q/wNy8wquY0jjdwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 576x576 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "#FDR_cilindro_liso_Hr-10.csv\n", + "\n", + "file = '/home/student/ejercicios-clase-08-datos/data-used/VACF_liso_Hr-10-500.csv'\n", + "\n", + "dataframe0 = pd.read_csv(file)\n", + "\n", + "x = dataframe0[\"t\"]\n", + "y = dataframe0[\"vacf\"]\n", + "\n", + "plt.figure(figsize =(8,8))\n", + "\n", + "#plt.scatter(x,y, marker = \"+\")\n", + "pl.plot(x,y, \"r.-\")\n", + "plt.savefig(\"vacf.png\")\n", + "\n", + "pl.xlabel(\"tiempo\")\n", + "pl.ylabel(\"VACF\")\n", + "pl.grid()\n", + "pl.legend([\"VACF(t)\"])\n", + "pl.title(\"Función de autocorrelación de velocidades\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 6- Gráfica de la Función de distribución radial\n", + "\n", + "- Partiremos inicialmente mostrando el gráfico de la Función de Distribución Radial *(FDR)* correspondiente a un cilindro con una superficie lisa. Esta función nos muestra la estructura y organización de las partÃculas del fluido confinadas dentro del cilindro con un radio de 10 diámetros moleculares. Los máximos de la función nos están indicando la distancia en la cual las partÃculas tienden a acumularse, dicho de una manera más formal: los máximos de probabilidad en la que conseguiremos distribuidas las partÃculas.\n", + "\n", + "- Veremos el tratamiento y la visualización estadÃstica de la distribución de los puntos de data en histogramas individuales para cada variable y luego la gráfica que nos resume ambos histogramas. \n", + "\n", + "- En la siguiente celda construimos a partir de la data la gráfica de la evolución de la estructura del fluido a medida que aumentamos la cantidad de obstáculos en las paredes del cilindro." + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Función de distribución radial')" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAegAAAHwCAYAAABt1fz6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABGa0lEQVR4nO3deZwcVbn/8e/TM5kkhCyyJCxBAl6Q3QC54ICEgQAiisQV3PAiGqK4sGh+bhdBFBUvyFW8CAoRNOKGgrIJAg3ItMgW0BiRLUJYDAQhJCaZSeb5/XG60tU91T0901vN5PN+vfpVvVRXnT7dXU8955yqMncXAABIl0yrCwAAAPojQAMAkEIEaAAAUogADQBAChGgAQBIIQI0AAApRIAGEpjZSjPbseS5jJldY2Yn1nE9PzSzr9RpWVkz+3D+/vvM7KZ6LDe/vEVm1pW/f6aZ/bhey46t4wYz+2DC85/J15PVe53VMrMlZnZY/v7nzewHVb6vbt8vNj7trS4AUA0zWyJpiqT1sad3dvdnGrE+d9804emvSLrF3S9txDrryd0XSFow0Hxm9kNJS939iwMsb/c6Fa3SOt5U+pyZvUnSPpLe7yk5aYO7n9PqMmDjQIDGcHK0u/++VSt398+3at2tYmbt7r6uVet39xsk3VDPZZpZm7uvH3hOoLVo4sawFm96zD/e0PxqZtPMzM3sg2b2pJm9YGZfiM3blm+ufMzMXjGz+8xsu/xrbmb/kb8/0cyuMLPnzewfZvZFM8vkX/svM/uDmf2Pmf3LzJ7IZ33lyru3md2fX9/PJI0pef0tZrbQzF4ys24z26vCsg43s7+Z2ctmdqEki732X2b2h/x9M7NvmdkyM1thZn82sz3MbI6k90mal2/S/22sTv+fmT0kaZWZtZfWs6QxZvaz/Oe438xeF1v3hrrLPy5q5jWzY/KfcUW+7o/MPx9vos/k6/kf+XJfYWYTq/leE+rph2Z2kZldb2arJB1iZm82swfyZXjKzM4sec8H8uteXrpsK2niN7NfmNlz+e/hDjNreGsDNg4EaGwM3iDptZJmSTrDzHbNP3+apPdIOkrSBEkfkvTvhPd/R9JESTtKOljS8ZJOiL2+v6SHJW0h6VxJl5r17y81sw5JV0v6kaTNJP1C0jtir+8t6TJJJ0naXNLFkn5jZqMTlrWFpF9J+mJ+vY9JOrDM5z9C0kxJO+c/x7slLXf3SxSawc91903d/ejYe94j6c2SJpXJoI/Jl38zST+RdLWZjSqz/ni595N0haTPSJqUL9eShFn/K387RKHeN5V0Yck85b7XJO+V9FVJ4yX9QdIqhe9xksLn/KiZzc6XcTdJF0n6gKRtFL6LqRWWfYOknSRNlnS/quhaAKpBgMZwcnU+s3zJzK4exPvOcvfV7v6gpAclRdnehyV90d0f9uBBd18ef6OZtUk6TtLn3P0Vd18i6TyFjXfkH+7+/Xyz6eWStlboLy/1ekmjJF3g7r3u/ktJ98RenyPpYne/293Xu/vlktbm31fqKEmL3P2X7t4r6QJJz5X5/L0KgWkXSebui9392TLzRr7t7k+5++oyr98XW/f5Ci0BSeUsdaKky9z9Znfvc/en3f1vCfO9T9L57v64u6+U9DlJx5lZvFuu3Pea5Bp3vyu/zjXunnX3P+cfPyTpSoWdL0l6p6Rr3f0Od18r6b8l9ZVbsLtflv9trJV0pqTXRdk+UAsCNIaT2e4+KX+bPYj3xQPXvxWyMUnaTiHzrGQLhaD6j9hz/5C0bdLy3T3KwJMGmW0j6emSwU7x5W4v6fTYTshL+TJuU2ZZT8XW6/HHce5+q0L2+V1Jy8zsEjObkDRvTOKykl539z5JS8uUs1Q1da78skrrvF3FOz7lvtckRZ/HzPY3s9vy3RYvS5qr8F1H645/vlWSinbcYstpM7Ov55vqV6jQGrBF0vzAYBCgMdytkrRJ7PFWg3jvU5JeM8A8LyhkoNvHnnu1pKcHsZ7Is5K2LWn+fnVJeb4a2wmZ5O6buPuVZZa1XfQgv8ztEuaTJLn7t919X0m7KTR1fyZ6qdxbBvgs8XVnFJqAoxH1/1b576SaOld+WaV1vk7SP6t4b5LSz/MTSb+RtJ27T5T0PRX68EvrdhOFZu4k71Vo7j9MoftgWvS2IZYT2IAAjeFuoULT5ygzm6HQPFmtH0g628x2yg+k2svMijbE+Wbrn0v6qpmNN7PtFfquh3IccE4hyHwyX963S9ov9vr3Jc3NZ3dmZuPyg5nGJyzrOkm7m9nb882+n1SZnRMz+8/8Mkcp7NCsUaHJ9p8KfbyDtW9s3acoNMX/Mf/aQknvzWeXR6rQdCxJl0o6wcxm5QeCbWtmuyQs/0pJp5rZDma2qaRzJP2sjiPKx0t60d3X5PvF3xt77ZeS3mJmb8iPG/iyym8rxyt89uUKOyUcgoW6IUBjuPtvhYzsX5LOUsiMqnW+QvC9SdIKheAxNmG+TygEtscVBhj9RGEw16C4e4+ktysMfnpR0rEKA72i1++V9BGF5uh/SXo0P2/Ssl6Q9C5JX1cIDjtJuqvMqicoBP9/KTQVL5f0zfxrl0rabQj9+tfky/8vhf74t+f7oyXpU5KOlvSSQl/yhuW6+58UBth9S9LLkm5XcaYcuUxhMN0dkp5Q2Kn4xCDKN5CPSfqymb0i6QyF30FUxkWSTlb4np9V+IxLyyznCoU6fVrSX1XYSQFqZik59h8AAMSQQQMAkEIEaAAAUogADQBAChGgAQBIIQI0AAAplKqrWW2xxRY+bdq0uixr1apVGjduXF2WtbGiDmtHHdYH9Vg76rB2jajD++677wV33zLptVQF6GnTpunee++ty7Ky2ay6urrqsqyNFXVYO+qwPqjH2lGHtWtEHZrZP8q9RhM3AAApRIAGACCFCNAAAKRQqvqgk/T29mrp0qVas2bNoN43ceJELV68uEGlao0xY8Zo6tSpGjVqVKuLAgBosNQH6KVLl2r8+PGaNm2aiq/SV9krr7yi8eOTLgI0PLm7li9frqVLl2qHHXZodXEAAA2W+ibuNWvWaPPNNx9UcB6JzEybb775oFsSAADDU+oDtKSNPjhHqAcA2HgMiwANAMDGhgBdhba2Nk2fPn3DbcmSJcpms5o4caL23ntvvfa1r9XMmTN17bXXbnjPmWeeqW233VbTp0/XbrvtpiuvvLJomaeccoruuOOOxPV9+tOf1q233trQzwQASLfUDxIbklxOHb/7nfTGN0qdnTUvbuzYsVq4cGHRc0uWLNFBBx20ISgvXLhQs2fP1tixYzVr1ixJ0qmnnqpPf/rTeuSRR7Tvvvvqne98p0aNGqXly5frj3/8oy644IJ+61q/fr0+8YlP6CMf+YgOPfTQmssOABiehleAPuUUqSRQ9vPyy9JDD6mjr086+2xpr72kiRPLzz99upQQKAdr+vTpOuOMM3ThhRduCNCRnXbaSZtsson+9a9/afLkybrqqqt05JFHbnh92rRpOvbYY3XzzTdr3rx5Ou6447R8+XI999xz2mqrrWouGwBg+Bl5Tdwvvyz19ckkqa8vPK7R6tWrNzRvv+1tbys73z777KO//e1v/Z6///77tdNOO2ny5MmSpLvuukv77rtv0Tybb7657r//fh133HEblnXXXXfVXHYAwPA0vDLoajLdXE6aNUve0yPr6JAWLKi5mTupiTuJuxc9/ta3vqX58+fr73//u377299ueP7ZZ5/VllsWX7zk2GOPLXo8efJkPfPMM0MvNABgWBt5GXRnp3TLLer54helW26pSx90tR544AHtuuuuGx6feuqpWrRoka666iqdeOKJG45hHjt2bL/jmUsvYbZmzRqNHTu28YUGAKTSyAvQktTZqZ7TT29qcH7ooYd09tln6+STT+732lvf+lbNmDFDl19+uSRp11131aOPPlpxeX//+9+1xx57NKSsAID0G5kBuknuvPPODYdZnXzyyfr2t7/db4BY5IwzztD555+vvr4+vfnNb1Y2my273N7eXj366KOaMWNGg0oOAEi74dUH3SIrV67s91xXV5derjAA7cwzzyx6vO++++rhhx+WJB100EH63Oc+p5deekmTJk3SkiVLiua99tpr9c53vlPt7Xw9AJAKuZxevWCBNHp001pnyaBb5LzzztOTTz6Z+Nq6det0+umnN7lEAIBEuZx0wAHa4Qc/kGbNCo+bgBStRfbff/+yr73rXe9qYkkAABXluyRNknp6wuMmZNHDIoMuPXxpY0U9AEALdHUV7nd0FD9uoNQH6DFjxmj58uUbfXCKrgc9ZsyYVhcFADYu8Wy5iYfvpr6Je+rUqVq6dKmef/75Qb1vzZo1Iy6YjRkzRlOnTm11MQBg49XEw3dTH6BHjRqlHXbYYdDvy2az2nvvvRtQIgAAGi/1TdwAAGyMCNAAAKQQARoAgBQiQAMAkEIEaAAAKmnRYb4EaAAAKlm/viWrJUADAFAJARoAgBQiQAMAkEIEaAAAUogADQBAChGgAQBIIQI0AAAptG5dS1ZLgAYAoBIyaAAAUogADQBAChGgAQBIIQI0AAApRIAGACCFCNAAAKRQPkB7prkhkwANAEAl+eOgCdAAAKQJGTQAACkU9UEToAEASBEyaAAAUijKoM2auloCNAAAlUQZdFtbU1dLgAYAoJIoQJNBAwCQIgwSAwAghaLjoGniBgAgRWjiBgAghWjiBgAghTgOGgCAFCJAAwCQQi1q4m5v5MLNbImkVyStl7TO3Wc0cn0AANRdizLohgbovEPc/YUmrAcAgPqjiRsAgBTKHwc9opq4Jbmkm8zMJV3s7peUzmBmcyTNkaQpU6Yom83WZcUrV66s27I2VtRh7ajD+qAea0cdDt02ixdrZ0nr3Ztah40O0G9w96fNbLKkm83sb+5+R3yGfNC+RJJmzJjhXV1ddVlxNptVvZa1saIOa0cd1gf1WDvqsAaLFkmSbNSoptZhQ/N1d386P10m6deS9mvk+gAAqLuRdrlJMxtnZuOj+5KOkPSXRq0PAICGaNHlJhvZxD1F0q8t7HG0S/qJu9/YwPUBAFB/LcqgGxag3f1xSa9r1PIBAGgKDrMCACCFCNAAAKRQi46DJkADAFAJGTQAACkUDRJrMgI0AACVRAHavamrJUADAFAJGTQAACmUD9BGBg0AQIqQQQMAkEL0QQMAkELRcdBNRoAGAKASmrgBAEghAjQAAClEHzQAAClEBg0AQApxHDQAAClEBg0AQAotWyZJalu5sqmrJUADAFBOLifdcYckadPHHw+Pm4QADQBAOdms1NcX7ruHx01CgAYAoJyuLimTD5Vm4XGTEKABACins1PaZx9J0soddgiPm4QADQBAJZtsIknqy0+bhQANAEAlvb0tWS0BGgCASqKrWXGiEgAAUoQMGgCAFCJAAwCQQlETd5MRoAEAqCTKoOmDBgAgRWjiBgAghfJN3FxuEgCANCGDBgAgheiDBgAghRjFDQBACtHEDQBAChGgAQBImb6+Qt8zfdAAAKRELHvmMCsAANKiRc3bEgEaAIDy4iO4yaABAEgJMmgAAFKIAA0AQAq16CQlEgEaAIDy4hk0fdAAAKQETdwAAKRQrImb46ABAEgLMmgAAFIoCtDt7fRBAwCQGlET96hRTV81ARoAgHKiDLqjo+mrJkADAFBOFKDJoAEASJF4Ezd90AAApAQZNAAAKRQL0BwHDQBAWjCKGwCAFIqP4iaDBgAgJeiDBgAghWjiBgAghWjiBgAghWjiBgAghWJN3BxmBQBAWozkDNrM2szsATO7ttHrAgCgrh57LExXrGj6qpuRQX9K0uImrAcAgPrJ5aT588P9P/xBmbVrm7r6hgZoM5sq6c2SftDI9QAAUHfZrLR+fbjf16fMmjVNXX2jM+gLJM2T1Nfg9QAAUF9dXVJbW7ifyahv9Oimrr69UQs2s7dIWubu95lZV4X55kiaI0lTpkxRNputy/pXrlxZt2VtrKjD2lGH9UE91o46HJrdDjxQm+dyennPPTX6mWeaWocNC9CSDpT0VjM7StIYSRPM7Mfu/v74TO5+iaRLJGnGjBne1dVVl5Vns1nVa1kbK+qwdtRhfVCPtaMOh2jXXaW//lWbvfa1+vdzzzW1DhvWxO3un3P3qe4+TdJxkm4tDc4AAKRaT084i5jEcdAAAKRGb28I0GZNX3Ujm7g3cPespGwz1gUAQN3EMuhmI4MGAKCcKEC3IIMmQAMAUE5PT+E0n/RBAwCQEvEMmgANAEBKtHCQGAEaAIByOMwKAIAUYpAYAAApFB8k1mQEaAAAyiGDBgAghaJBYlLTR3E35UxiAAAMS5xJDACAFIoHaEZxAwCQEtEgMfqgAQBIkVgfNMdBAwCQFoziBgAgZdwZJAYAQOqsWxem9EEDAJAiPT1hyihuAABSpLc3TOmDBgAgRcigAQBIoXiAJoMGACAlogCdv5oVx0EDAJAGZNAAAKQQg8QAAEghBokBAJBCNHEDAJBCJYPEyKABAEgDMmgAAFLooYfC9OGHJXGYFQAArZfLSZ//fLh/8snSP//Z9CIQoAEAKJXNFq5mtW6d9PTTTS8CARoAgFJdXVJ7e7g/apS07bZNLwIBGgCAUp2d0umnh/sLFkhbb80obgAAUmH77cO0s5NR3AAApAZnEgMAIIXiJyohgwYAICVKMmiOgwYAIA3IoAEASKHeXqmtLdxagAANAECSnp7CADEzBokBAJAKPT2FK1nRxA0AQErEM2iJDBoAgFTo7S1u4m4yAjQAAElKMmgOswIAIA1KB4k1GQEaAIAk8UFiLUCABgAgCRk0AAApFB8kJjGKGwCAVCCDBgAghTgOGgCAFOJMYgAApBDHQQMAkEKcSQwAgBQq7YNuMgI0AABJGMUNAEAKlZ5JjD5oAABSgAwaAIAU4kxiAACkUEkGzWFWAAC0mjsnKgEAIHXWrw9BmsOsAABIkZ6eMGWQGAAAKdLbG6YjcZCYmY0xsz+Z2YNmtsjMzmrUugAAqKsUZNDtDVz2WkmHuvtKMxsl6Q9mdoO7/7GB6wQAoHZRgP7976V99pE0gi6W4cHK/MNR+VtzPx0AAEPxx3wuec010qxZ0tKlTS9CIzNomVmbpPsk/Yek77r73QnzzJE0R5KmTJmibDZbl3WvXLmybsvaWFGHtaMO64N6rB11ODiv+elPtZ0kuatv7Vq9vHChXiU1tQ7Nq0zZzWyypAMlbSNptaS/SLrX3fuqeO8kSb+W9Al3/0u5+WbMmOH33ntvVeUZSDabVVdXV12WtbGiDmtHHdYH9Vg76nCQfvhD6YQTpExGGj1aes97pMsuq/tAMTO7z91nJL02YBO3mR1iZr+TdJ2kN0naWtJukr4o6c9mdpaZTai0DHd/SdJtko4cZNkBAGi+nXcO0+OPl265Rdpuu/C4if3Q1TRxHyXpI+7+ZOkLZtYu6S2SDpd0VclrW0rqdfeXzGxsfp5v1F5kAAAabPXqMD3hBKmzU7rppqYXYcAA7e6fMbOMmb3b3X9e8to6SVeXeevWki7P90NnJP3c3a+ttcAAADRcFKDHji1+3r1ph1xVNUjM3fvMbJ6knw84c+E9D0nae6gFAwCgZUoDdMrPJPZ7M/u0mW1nZptFt4aVDACAVokC9Jgxxc+nrA86cmx+enLsOZe0Y/2KAwBACqxZE6YtzKCrDtDuvkMjCwIAQGpU6oNukmoOs3rDAK9PMLM96lckAABarFwfdMqauN9hZudKulHhrGDPSxqjcHawQyRtL+n0hpUQAIBmK+2DTmMTt7ufmh8M9g5J71I4fGq1pMWSLnb3PzS2iAAANNnq1eEMYqWBOWUZtNz9RUnfz98AABjZ1qwp7n9O62FWZtZmZlvEHneY2RwzW9y4ogEA0CKrV/cfICalbpDYcZJelPSQmd1uZkdIelzhvNzva3D5AABovtIAncY+aIWLYuzr7o+a2T6ScpLe6e6/bWzRAABokeGQQUvqcfdHJcnd75f0CMEZADCirV5dfBaxlGbQk83stNjjSfHH7n5+/YsFAEALlQ4Si6RsFPf3JY2v8BgAgJFl9WppfCzUpTGDdvezmlEQAABSY/VqafLk/s+nrA9aZnaImV1lZovyt1+aWVdjiwYAQIukYBR3NYdZvVnSZZKulfRehUOrrpd0mZkd1djiAQDQAi+9JD3yiJTLFT+fsj7oz0ia7e4Pxp5baGb3SvqOQrAGAGBkyOWkZcuk55+XZs2SbrklnRm0pK1KgrMkyd0fkjSl/kUCAKCFstkwdZd6egqPo+eapJoAvWqIrwEAMPx0dYWpmdTRER6ncRS3pNeY2W8SnjdJO9a5PAAAtNb++4fpIYdIX/mK1Nkp3XVXeC5lfdDHVHjtf+pVEAAAUqGnJ0wPOywEZym1GfQT7v5kw0sCAEAarF0bpqNH938tZX3QV0d3zOyqxhUFAIAUWLMmTOMBOsqgUxag43k9fc4AgJEtKYNO6WFWXuY+AAAjT0qauKvpg36dma1QyKTH5u8r/9jdfULDSgcAQLOlJIOu5mIZbc0oCAAAqZCSDLqqi2UAALDRSEkGTYAGACAuCtBjxvR/jQwaAIAWIYMGACCF6IMGACCFyKABAEghMmgAAFKIDBoAgBQigwYAIIXIoAEASCEyaAAAUigK0B0dhefIoAEAaLG1a6VRo6RMQogkgwYAoEXWru3fvE0GDQBAiyUF6AgZNAAALVIpgyZAAwDQIjRxAwCQQmvW0MQNAEDqkEEDAJBC//yntHy5lMv1f40MGgCAFsjlpHvvlZYulWbNKgRpMmgAAFoom5X6+sL9np7wOI4MGgCAFujqKmTLHR3hsUQGDQBAS3V2SlttJU2fLt1yS3gcRwYNAECL9PVJ++1XHJzJoAEAaLFVq6Rx45JfI4MGAKAF3JMDNBk0AAAttHZtCNKbbJL8Ohk0AAAtsGpVmJJBAwCQIuUCdIQMGgCAFvj3v8O0tImbDBoAgBYigwYAIIUG6oMmQAMA0AI0cQMAkEIbQxO3mW1nZreZ2V/NbJGZfapR6wIAoC6iDDoFh1m1N3DZ6ySd7u73m9l4SfeZ2c3u/tcGrhMAgKGLMuiRfKISd3/W3e/P339F0mJJ2zZqfQAA1GxjO1GJmU2TtLeku5uxPgAAhqTcILFIEzPoRjZxS5LMbFNJV0k6xd1XJLw+R9IcSZoyZYqy2Wxd1rty5cq6LWtjRR3WjjqsD+qxdtRhdXa5805NzmS08OKLtWL33Tc8P3nxYu0m6e6779bqp59uSlnMG7g3YGajJF0r6Xfufv5A88+YMcPvvffeuqw7m82qq6urLsvaWFGHtaMO64N6rB11WIVcTpo5U1q3Tho7VrrllsI1oRcskN7/funhh6Wdd67bKs3sPnefkfRaI0dxm6RLJS2uJjgDANBS2ay0fn2439MTHkdGWB/0gZI+IOlQM1uYvx3VwPUBADB0XV1SJh8WOzrC41IjoQ/a3f8gqfm7HAAADEVnp/T610uPPy5ddVWheVsacRk0AADDy+jR0mteUxyc40bCcdAAAAw7q1YlH2JFBg0AQAutWlX+PNwSGTQAAC3x738nB2gyaAAAWqhcE3eEDBoAgBYo18RNBg0AQIu4l2/ijs/TJARoAAAkae1aqa+v8ihuAjQAAE0WXcmKJm4AAFIkuhY0g8QAAEiRKECTQQMAkCKVmrgjZNAAADRZpSZuMmgAAFqkUhN3hAwaAIAme+CBMH300f6vkUEDANACuZx05pnh/pw54XESMmgAAJoom5V6e8P93t7wOI4MGgCAFujqktrbw/2OjvA4CRk0AABN1NkpvetdIUjfckt4HEcGDQBAi4wbJ22xRf/gHEcGDQBAk730kjRpUvJrZNAAgI1KLid97WvlR003U6UAHWliBt3etDUBABCXy0mzZoXLPI4endz320wvvSRtvnnya2TQAICNRjYrrVkTrsG8Zo10xRWtLU/KMmgCNACgNbq6CgHPXZo/v7VN3dX0QROgAQAj3q23Fj9OOkFIs7gzSAwAAOVy0n//d/FzmUz5E4Q02urVYQeBJm4AwEbtxhv7B7sPfah1g8ReeilM//jH5GZ2MmgAwEZhp53C1Kxwis0ddmhdeaKm9d/8Jows52IZAICNUtSUPHeudMcd4fFVV7VukNjtt4dpX5/U08PFMgAAG6klS8L0jDPCdMUK6d57K2evjTRtWpi2tXGxDADARuwf/wgnJ5k8OWSrUeBLyl6bYbPNwvQzn0nNxTI4kxgAoLlyOelXv5LGjJHuvjtkq6NGheAslT+bVyM9/3yYnnVWyKDLIYMGAIxIuVwIyI8/Lr38snTIIeH5b34zTNevl045pfnN3MuWSRMnlg/O9EEDAEa0bLaQKUuFJu1Vq/o/10zPPx+a2wfCxTIAACNSV1fIRqNAFx+QlcmEUdSVBmk1yvPPS1tuWf51+qABACNaZ2c4pGrKlBCEjz++MCDrbW+Trr1W+v3vm3/CkmXLpNe8ZuD56IMGAIxIr7wi/etf0gc/KF10UXEgPuCAcOnJXXZpfrmefjrcyvV90wcNABjRHn88TJOy1R13DNMzzmjuILHubunFF6s7DpsMGgAwIl13XZjGB4VFVqwI04suau4JS268MUzdyw9QI4MGAIxYuZx05pnh/sc+1j8AP/ZYmJY73Waj7LVXmGYyAw9QI4MGAIw42ay0bl24nxSA3/jGMDVr7kju6DSf73tf8lnEojI1GQEaANAc0SFWUnIAPuAAafvtpd13Lx8oG+HFF8N07tyB10kGDQAYcTo7w8lApk8vH4B32kkaN665h1ktXx6m0fm4k0Q7FgRoAMCIc/vt0nPPhStGlTN1qrR0afPKJBUy6GoCdBMRoAEAjXfnnYUm7fvuC+fgLjdK+5lnwvzNEgXoV71q4HnJoAEAI8rVVxc/ThoklstJCxaEIHjEEc07zGr5cmn8+HBFrXLIoAEAI9LUqcWPkwaJZbPhalZScw+zevHF6i9xSQYNAKibXE6vXrCg+ZdwjBs9Okw/8IEwWvq22/oPBOvqKszn3rzrQj/2WNghqFQ/ZNAAgLrK5aRZs7TDD34gzZwpXXJJa8rx+OPSmDHSD3/Y/xzckc5O6YILCle7asZ1oXM56Y9/DP3e1Zy9jAwaAFAX2ay0erVMCicJ+fjHW5NJ33OPNGGCdPfdleeLDnmSmtPMnc2GM5cNtD4yaABAXZUe0rRuXfP6diO5XBiVvWzZwFlqV1dhsFZ7e+PPJhYtv9qzl5FBN1guJ33ta63tjwGARsvlpMsvL34uk2neKTQjN95YCGwDZcWdndL//m+4//WvN/6EJXvuGaZvfGPls5e1IINub/oaWy2Xkw49NPxIRo+u7+nkcrnww+vqav7FxgEgLpeTDj5Y6u2VJLkUmrk/8IHmb59eeCFMq7kYhSQdfniYVnNccq2efTZM3/ve6uqliRn0xhegs1lpzZpwP9qTq8ePNZcLB9739tY/8APAYP3P/2wIzpLkZiFAP/FE2F41a/uUyxUGpmUyYRDYQOveaqswjYJnI0XriNZZDn3QTRDfc6vn1VKyWWnt2uZfJg0A4nI56cQTpV//uuhpk0L2d/vtzb3WcvwKVu7Fg8DKGTcunDikmQF6662rm58+6AaK77n96Ef124vs6ioMxmjmZdIAIBI1a192WXEgMZNnYpv7tWvDdZmbEaQPOmhDGQa1bZw0KRwr3egyVhugyaAboNKAsNIz29Sis1Pae+9w/8Yb+wd+BqYBaLRzzy1q1pYURkSfdJIe+dSnCqOj+/qkm29uTib99NNhevDB1Xf95XLhfX/+c+PLeN99Ibl6+OHq5ieDrpP8Afr64heLv+Rx48L0zjvrGzSjPdTdd08uxxe+kPxjSwreBHQAg5HLSddc0//5E0+ULrpIzx59tHTWWYXn3aXVq6UrrmhsmY4/vnC/WtUem1yrXE668spwetHDDkvdmcRG9iCx/AH6kooHhG2yibRqlfTZz4Yfab0Gdb3ySmEaP0VdvBxr1xYPTMvlQhNQX184y84tt4Tnu7pCvw0DzoDhodVHcVxySf/sbvToQoAs59JLwzyNKHM2W8joo+Ovq1lPV1c4BnrdusZ2GSad+3ug8pFB10lXV2GvZ9SowpccZdDr19d3UNeKFcXTeDkibW3Fj6MfiHuhHNlsuN/XF0acN3IPF0DtoqM4Pv/55g7Aiq//Rz8qPM5kpNmz+5/vOgp8cY08cUl8GzyYQNvZKX3yk+H+z3/euB2eqHzV9I9Hn4MAXSednYWh89/7XvkvuV57aFEGXRqgr7uucD9qtokkjSqPBlVI4ccwf/7Q//C5nPTRj4bbIJcxYdGiIb+3qUq7A1rZPUDXRPOloc5/8IPQOiaF1rLoHNI1/P8G5dJLC5mgmTRnThjFXbrN6+yUvvvd4rOLmTXuohTr1oXl77HH4FsCo23j5MkNKZokaZ99wjb2kEMGLl8Lmrjl7g25SbpM0jJJf6n2Pfvuu6/Xy2233Rbu7LSTu+R+++2FF7fcMjwnuW+xhXt3d+0r7Otzz2TCMq+7rvB8d7e7WWF9Zu7nnBOeP+cc97vuKrz2k5+E9zz/fOE5yb2tLcw7WHfdFd4bX87FF1f33u5uXx9/76hR7nPn1qeuyqxvQ70Mxje/WajXsWPD5+voCJ917NjGlTdJd3eoJ7NQhu7uwu8QNSlbj93d7qNHF77/Zn/fc+e6v+lNxf/X+H+mvb3wePToxpSvu7v4f15mPUV12N3tfswxhfc0ou6i70ba8H8YlIULw3t/8Yv6livuZz8L6/jiFweeN5cL815/fV2LIOleLxMTG9kH/UNJF0pqbftstKf48suF5+IZ7gsvhJGPW21VuR9moP6lf/+7kB3Hl5/N9jvcQZtvHvbYov6VyHXXSdOm9T97zlAz/OuvL+xVS+H+xz8e7i9fXrmvLJuVxd/b2ytdfHE4bWDpnmatfW9DPbvbJZdI8+aF++4hg/nxj8NypPqeiKac+Gc/77xCf1tPT+iaOPbYxq17Y5bLhfq9//5C5tqM7zu+/q6uwm8tSelo6rVrQ5nrXb7584uz5xNOGHgdnZ3S/vtLv/lNcfdaPcsWddVJoXyDXf6rXx2m8+dL225b/3qLD2D75jelo45KXQbdsADt7neY2bRGLb9qUX9LFKD7+gp/6MjVV4fp/PnJ1yitJoDEg3L8/gEHFM/32teGPpX4RiXyk59Iv/hFcV/56NHStdcO7ce53Xb9n+vtDc1t7qFf/qijkndOor6Z+M5F0h852lDVMqCt2rO7xYOhJH3sY8Xla2srbrpr9PHo8Y306NH9mwmfey75PbXuzNQ6ECmXC02ymYz0oQ8NvwGI558vnX56/+ebcWEFKdTfmWdWDs7lzJ9f3wFZuVxYZqSjY+BBYZGoP7q3t3iMTr1E54YY6kCvxYvD9IYbwna53oNl4zsQgxnAtjGd6tPM5kiaI0lTpkxRtk6DFVauXKlsNqsZq1drU0l/v+cePTN1qjJr1mimpL62Ntn69YrvE3lPj5647DI9WRLAX71ggXbMB5C+tWu1JGGesU89pf3z9x9duFBL85+j48UXdYCk5zs7tekTT2jM3/4mLV68Yb19mYwy0d6vu7ynR3bTTeEzbLmlxi1Zohc+/Wn1braZnjvySK0oPYSrgq2eeEK7KHYO3vx99fXJ8p832jnxSy/Vwm99Syt2310TFi3SpIULNWXKFI2LBRmX1NfergcnTNCKbFYTFi3StPnztVn+R16ubkpNWLRIU373O0nSP9/4RmnCBO2Tf219bPml79n7k5+U+vrUN2qUVu24o8bnv7/o7/Kv3XfXq7LZDc+9sO++eur++7Vi7doNn+ml6dMHVYelZYgvY+dzz9U2+c/ua9eG68nG+HXXqf3AA5WNvX/6qafK1q2TZzJ65FOf0rNHH1112SYsWqTXnXaaMuvWqW/UKD143nll548vU1LR/emf+pQy69fLJfn8+Xr2qKPC9xCbb6h11CgrV67UYyedpK1uvFGbPPmkJKk0n1m5zTb6e/77jtTje5ekCX/5izbv7taarbfWTv/7v8WtS/myRL9DN5O5F//n8vP09fZW9R+p1qsXLNAO69aFZZvp2SOO0CPRkSIlom1i3JTTT9euX/+6XtxtNy0pqbt6mL7rrhq7dKkWnX12WPYgtu+vXrBAO0gy96q3LYMxYcIETc9kZOvXF23Xyhm/eLH2lfTQQw/pxU02qVs5KirX9l2Pm6RpanUf9D77hH6Dr341PF62LDw+7TT3/fbr32eU1E/y3e8W5hkzJnmee+8tzHPGGYXn//rX8NyCBe4779y/n+r885P7r6J+1fjjwfRhdXe7H3xwWEbUN17pFu8bHz3ava3N+8zct966eP1RH/aZZ/YvX0fHwP3U3d1hvvgy4/3wX/lKWEbpcs45Z+DPkHTr6Ahlzn+mIfe1Rf3L8WVMn1553W1t/tiHP1xYxpe/3P/3dvHF4TdVTT/gRz5S/P599imeP+rHj3/e9vYwzWTC8ufOTS5re3uYJ5MJdTZ7dvJ3OdSxAknuuit83wMtq7vbV+ywQ3Xfd7wOY7/lDeMThlL26LuPxnGUrjNeb3PnhvWUzhf9V9rbqx8HUm3ZomUPsH1I7Me/445C+RrRD73ttu577DH0/1y07WrU+IJZs9w326y6Zd99dyjLtdfWtQiq0Addl0BcduFpCNB77RU+5rx54fETT4THl10W/ijxP9HnPtd/QfE/p+T+hS8kr/DWWwvznHJK4fko+Fx/vfu++/b/c7/5zYU/16telfynjt/mzq38wbu73Y8+uvi9UWCptGGLgu9uu214rk/qv1MxerT7Jz5RfjlRICj3g08KEAcfXL5M0XJuuil5nqQ6Kr1Fv4GofNGAu8EEm89+trCMtrbwOQZad0eH33fhhYVlXH55/7o64oji5RxxRHJ5SgcCxZcxb14IqNHr8YFJpXU1e/bA9RW/RQMLo0FFUTCq9B3HdxSSdraieaL/VbSspO/je99zz2TCb7GaW/QZzznH/QMfKH4+ulW7sY/KM1Cd7bdf/3JHQToaMHjkkdX9PwYrmy36vQ06QMd3fIc6GHWgstUS/I85xn3cuMYN/ttvP/fDD69u3j/9KXweAnTtNvwYd9wxfMyTTgqPf/zj8Pjss92vuircnzw5/Ljf8Ib+P4TSrOXII4tfj/7E3/hGYZ599y0s59prw3Pf/37lDfo22yRu4CsGrVKl2Wn8j1duI5PJhNdnzkwu3y67JG8EB9qoJ/3Rr766uoAavx1xRNjYffSj5TfIA7UQ7Lln8eN589y//e1CQKtm4/F//1d4f3t7oWUm6bOffnoo1957+99OO60QrN797uJyR1ldaUBNKs9QWxCSfj8dHe4TJw7ufUnf28yZ/QPT7bcn70iU/m7jnycKqlHAjua9+OLyv5dMpngUcrl5yj0/UCAq919KupXLiOM7HP/v/xV/3oF2tKv1xjcO/L/LSwzQ3d2F31+9s9T4tnOowf+rXw3v//e/61euuC23dJ8zp7p5owD929/WtQgtCdCSrpT0rKReSUslnTjQexoSoKdMCR/zuONCc070p+3oKDRdT5xY2BDE9+bnznWfNKn4z3jQQeEL+upXwx8zkwnvLbeR/dGPwuPTTqscnErXE/3x584tymor/tDPOSd5HVGmlrThTNoxKA048RaEgQJs6d5yfCM1c2Z1G7yBAkPphn/evMLhTe3t4XF0eEc+UPb7TANtsKPvP8r+SrPfcmWN5s+XOzHz23zzcPhfVEelrRTxLDCa56KLBl93lerz/e+v3/KiJvFjjglNmuXm3XXXQv10d1f+nuMtAqX1OHNmeH+8m2UwO37t7QN3w5R2fyXd/uM/qm+uLm2tK9edNhilh3AOpYnbPXQzSO5vf3t9A/Shhxb+X0MN/tH28+GH61euyO9/H5Zd7c7SPfeE+UdCgB7KrSEBety48DHf9Cb3448v/JgzmeSs0iwE4XJ/+Ne/vjBfuabEKAicc07I1KRwbPTYseWbmpPWF99ZKG0OTJLUDBr9OS6+OExLs4qBss9MJvyA58wpX+74Os0KG63u7sI6OzpCYKq03mr6ykvXHf25SptH49nXQM37mUxxE+vFFxfvlIwa5f6hD1X+ruN90+V2lEq/28MPd3/LWyp/7rFj3T/5ycJvra0ttPQMpp6Sfl/VBKBG3UaPdj/33MrzRDvW+dt6KfxfS/vco/9UR0f1v58DDxx8K1TpbbABtvQ3EY35qMVb3pL8XyijbID+9a8LyxnK8cpJ7ryzPv3ut98elnHzzbWXKa67uzD2o9rPHAXo3/ymrkXZeAP0+vWFH8mrX10cZEaP7t98Xc2GJQr40Ya90oa1u9v9rLPC456e8PhLXyr+U5XejzLBaGMc/YmjQH/UUZV/TG96k/smmxQGq8SDVrxPrVzmYVac6cY3RPE+8niWV9ofG5W53IAkKfQ7l9ZffEBTNd9HpY1k6QYxWnbScvbcs7ipL2m+iROTN9zRQK/Ses7PW3XfabU3M/f3vjfc32yz6jLHTCZkr6XPxXdC2tpCy0NHRyErnjev//K32qp+n2MQ8y878MDk7zm+Y/axj1VeTjTgMd7KU7pjV6krId5aNtiAUxr4a8mgu7uLg7NU1QDSsgG69H86e/bQyhUXL18tfdvRmKF6Z/fnnFPYzlRbvmggMAG6drfddpv7ypXFP7z4BumMM4r3wAfKsuKBM7pV2tO+5ppQkFNOcd9000LBSpv24n9+yX377QtlimfLN9/cf+MSF21odt/d/ZBDKldO/HPHWwHiTbRRfcT3LidPTi5DtLzotahpvlILQ3t7/zMwRYOvoia3aHlRWeI7FQNtJEs3iGbu3/pWclkOPtj9da+r/P2X+wzlylDNILKhBq4TTuj/22lvL9+9MXZs/9ai6LsuHcSV1BIRDXaKgkA1A83a2kKWHgX9Wj57W1vxYLtyBtrh7uwsXtfs2eEzRfUXDYYrV4dDHQUe/02+731hmZ/5zNCXkTRCvIpm2qoDdFtbbcEwPvpaqu0Mao0aZR5vlSx3ZE6pKEBH2/Y62XgD9D//Wf7PGn0p8WbN0swtGjwVbcRK/7RHH11+I3PUUeE9r399yL7ie+ilG6L29sIAor33Th7NmjTaMl72MWMK5d9tt4F/cPH3lu4QnHNOYSMQX1d8/aWBqbs7DI6bOLFyYI7XX+no7fgfuVxAnDev+o1kUmZQ+v0OdrBUvCwD7SCMHevro41/FKzmzi3eUSz9/MceG+7HD28r/X0dfnjhNxSNL4h/j/HDfaK6im+QBrvRLP09RjtkSQE13s8cqTTYq/T7KJ0vk3G/+OLqTpmaFGjiy4tOARtfdun88UPnolaFeh1W5h5a9To6wpEFgzl1bjQmIjp1cfxWZTZe8XSppUG/lkFspQMA67Wseo8yf/e7Q93ddVd18993nxOg6+S2225zf+yxwo8kPi33Zc+YEZrCDzzQffz4/v1dpYEnqSm23MY33qRWuiHt7nafPz/Mt//+yR8o/ieKAlW0AUoqx2D2NstsgNfHB3dU0yQU7+MvF5Tjh+l88IPJf+RKrQyD+YOWZtGlfeXxpv7B3qrZWHR3h+Ogk1o75s4N649u0e8gGrhS7vPHxxOUtrIk7dglrbce51SPllVN0I//dkp3NuJBtExwdq8QXErLFJ2XOzps8Igjin+3pU39A/1e6xkQojKW/o4Gai4v3bkqrcMqm9sr1mHpsdu1ZL0DtfYNRjwbr/co82OOCS2O1YoC9NVX168M7htxgI5GAL72tWG6/faFjULSlz17duiPfOc7wx+51MknV/5Dm5UffBPfoCdtSKOBGjNnlv9QUfNY0sZsKAGkktLgEt+xKNfEnrQRiQ9Mi5qw41ld0jLLDbIaSr9dPKuK+l2j9c2d2z9wlB4/HjWBRq0pgzzhyaAvlnHNNf3Lk9RyMFAwbpZqgn65rqToc8V3WEubnPOqrsdy2X70nQ3mOPB6jLQuldTHHdsRqfo91Qb3mAHrMP5fqSXzjUasH3lkfepvMCcTGYy99gp95dW6//6mB+iWn+qzUSYsWiSdemp48MgjYfrUU+EE8W99a/K5jDfdNFwy8uWXpYkT+y/0wAPDpdqSZDLhfMwnnigtXNj/PL3xc9F2dvZf9+jRYfr00+H8uknnhI2fXtA9uRxRWWo9D3Vnp55cu1Y7RuXo7Aznwi13HuhsNpzPttRmm4ULkkTn4y09D3HSMru6pDFjwvnK+/rCOcHb2qQLLxz8uXiPPz5c4KOnJ6z/ggsKFwqRwmtr1hTqs/T85NFni8pXj3NhV/KXvxQ/PvzwcN7npMsGpuEc2tWUI/7bWbIkXORECnU+aVLxb0CqrX5Ly1P6u5Wk3/62+L+UZKi/t4F0dYXfYXz70NcnzZ0b7s+ZE6bR7+yll8J5qJPK93//V5i/Ho4/Ply2src3fDff/760996DW0cuV7ggTzYrnXFG7eXaZx/pD38I2+56cZcefTRc76Dc9rbSe5ulXORuxa2eGfTSpP5hqfgkIqU++tFw+cn99gsnACgVDfkv3ftNym4mTXKfNi3shSedAKVUdNnESk05lUZFx291Op3goLK/pC6AeCYy2GbVeB95rZlipWyzu7v4bF517ucadAYdb9IbKLMajrq7w3iJQZ52ta6X7Uw6FWd023PPxl5W1b38QLtMJhxpMm9e8n8pPl5iCL/TqurwpJNqa0VoRJ/xd74Tlvfcc7UvK3LDDYWWgmp/hw88EN7z61/XrxxeOYPONG9XoLnaVq1KfuH++6VZs5Ivnr7pptLKleUz6KlTw3TChMJzZiEL+NznCnthnZ3SQQeF+7290tFHD7yHtmZN4XJm0RWdSh1/fMjwksQvheYessRmii4EP2pU/8uyrVsXLh03mL3Uzs5Qp3PmFNftUMtWbhmdnSFDHTMmZCWNvgLWQDo7QwuPFL7HU05J/q0OV52d0q23SmefXf+rE1VrzhzpzjtD1rrffsW/18WL63u1qSSdndKvfy3Nnl38fF9faF0499zk1qgVK0JLWyN/px/8YOEKgFIoxxWDuGJwfLtZrzJGl5388pfr91/47W/D1L389racJmbQIzZAr9ppp3DHrPiay5W+kE03DYHyhReSA3T+KjobLidZqSl53LjQnCeF5tKBzJo1cJDo7JRuvz1sVEplMiE4tjLIzJkTynfSScU7Eq0OegOJmkFbGTTi9tmncKnPwW48hoNKO0zNLMNFF4Uuj/glSvv6mlff8+aV3+FOEl3ruZG/02hHO9ppcQ+Xs6wmMOZy0mmnhfttbaFu61HGl14K0+99r3xyNVjbbBOmg9lexuukSUZsgN5Qif/939J3vlP8Wrnrxo4fH6bLl4esuFT8h5HJSIcdlvxHyeWkq64qPH7xxYHLW22Q6OwMP/yxY/tnqiee2PogE234br89ZChz5yZfYztt0hA0Iocdlp6MfqSLt/xE40iaVd+VdrhLmYWyHX9843+nc+ZI73tf4XF0reSBZLOF69zXsxXv0UfDtK+vfjus0Y7RF75Q/faydHvbBCN2kNikhQtDU/SRRxZ/odFeaNIXsummhftJGXRXVwiM0YCjpME7UlhffBDK449XV+hqB/5EwfyKK8LebbkBWK2UlkFMw9FAA/JQX3PmSHvu2Zr6jna4Z82SVq8ufm3mzLD92nzzwsDGZpXtox+VfvzjQgtkNTst8aSmry+Uux6OPDIkHoMpy0CeeCIMYD3rrMG/t4kZ9MgM0LmcNrvnnlCRs2YVMs4osEajc0sNFKCr3XB2dYW93egPF/Wh1FMUAI8/ng35SMQOTnO1sr6j7copp0h/+lPh+d12C9lyKxxwgLTHHtKqVdKCBdXVzUMPFe5nMvXLoA84QJo2LXQbfv/79fmeHnggtFINZgR3CzLokdnEnc0W9nJ6esIPpZrm46iJW5LuuCO5r6OaptBorzhyxhmNG+iTpqZZAEMTbTM6OgqZYrlEolmmTZOWLatu3lyuEKDb2urfVbDLLiHJqsd2LpcLO0LPPDO0Pm36oGvU1aW+0tGO1QSyeAZ91VW1DUhYvjzsRUojc6APgPrq7Azbia9+NUxbudOdy0m/+13IoGfOLBy7Xm7eQw+VurvD46OPrv84mNGjwwj7eiQ6t95anMBVu20mg66Tzk49eN55gx8wFc+gax2QEDVzM9AHQLXS0iIWH0ezbl3oky4XpLPZcPRL5Lrr6luWXE66/vqws1CPUdw77xymQz2hExl07Vbsvvvgf+jxDLrWs3Gl7dAdAKhWV1ehBVAqnO3sbW/rHyB337348fr19W0xjO8s1KM1cty4MP3IRwa3bSaDbrGHHy7cz2RqP44vLXvDADAY0eFn8SDtLl19tXTIIYUgncsVxtu0tTXmULWursJhUW1ttS/7ppvC9JhjhrZtJoNukYULC/dbcTYuAEiLOXPCOQ0yJWFi7dpwzoWDDw7XJ4jOFZ7JhPfUu8Wws1O69tpw/0Mfqm3ZuVzhegrveMfgmsvJoFvs8MPDSEH6jQGgEKRLLV4cjnSJZ5NDOaVvtQ47TNpiizD6upY+6PhFfYbaXE4G3SL0GwNAsTlzqjvkK5NpXFKTy4UzMla6lkI1urpCJjyUk56QQacA/cYAUGzu3OJrGpTKZMLlLxu13Sw9t8VQB4rttVdYTrnTNFeDM4kBAFIjOkb7iiuk554rfi26dnojk5qurnANhd7eMGBsqJn6I4+E6Zw5gy8v5+IGAKRSq0+HetFF0oc/LH3pS0MvRzTYrPS854NBHzQAADHveU/IYm++eWh90JdcEoK7FC6JO9hl0AcNAECCBx8M01tvHfxAsVxOOvnkcMIVKRwqNtR+bDJoAABi4gF1zZrQHz6Y90aHV0lDO+FJlEEToAEAiImfUcxdmj+/+iy69NrUp546LAaJEaABAOnX2RnOJBZZt676Zuprrincz2SkSZOGXg4yaAAAShx/fDjcSgoZbWlmnCSXk264ofB4qIdpkUEDAFBGZ2cY7CWFK1ydcsrAzdxf+1oh6zWTTjihtsPFyKABAEgQZc3uA4/GzuUKxz5L4Wxo1Zy2NAkZNAAAFUyZUrjf11e5mfuWW+qbPUtk0AAAJFq+vDibveqq8s3cK1eGqZk0ZszQs+doGU1GgAYADB9dXSHYRm6+OfnEJZdcIn3zm+F+W5t0wQX1OVUpGTQAAAk6O0Owjbj3P3HJJZdIH/1o4cxhfX0h864FF8sAAGAAUTN3lM26SxdfLE2YIB19dLg8ZjzTHcqZw8rhcpMAAJQRNXOvWVMcpM89NxzzHA+iZtKFF9bevE0fNAAAA+jsDCO0Tzqpf+D885+LH7e3S3vuWb910wcNAEAF0TWiP/OZyvP19Q39ylVxZNAAAAzCN74hzZ6d/FomE05OUq/+Z4k+aAAAqjZvnnT99VJPT3jc1iadfnq4KEZXV30Or2IUNwAAg9TZGZqxo0Otjj++PkE5CRk0AACD0NnZuKAs0QcNAECqMYobAIAUiTJoAjQAAClCEzcAAClGBg0AQIqQQQMAkGJk0AAApAgZNAAAKUYGDQBAipBBAwCQYmTQAACkCBk0AAApRgYNAECKkEEDAJBiZNAAAKQIGTQAAClGBg0AQIqQQQMAkGIjJYM2syPN7GEze9TMPtvIdQEA0DBRBj0SArSZtUn6rqQ3SdpN0nvMbLdGrQ8AgIYZYU3c+0l61N0fd/ceST+VdEwD1wcAQGPddJOUyzVlVY0M0NtKeir2eGn+OQAAhpd77gnT66+XZs1qSpBub/gaBmBmcyTNkaQpU6Yom83WZbkrV66s27I2VtRh7ajD+qAea0cd1mb7K6/UNEnmrr61a7Xkssv05Nq1DV1nIwP005K2iz2emn+uiLtfIukSSZoxY4Z3dXXVZeXZbFb1WtbGijqsHXVYH9Rj7ajDGo0erfU//ana1q1TpqNDO37oQ9qxs7Ohq2xkgL5H0k5mtoNCYD5O0nsbuD4AABqjs1MPnnee9lmxQurqkhocnKUGBmh3X2dmH5f0O0ltki5z90WNWh8AAI20YvfdQ3Bukob2Qbv79ZKub+Q6AAAYiTiTGAAAKUSABgAghQjQAACkEAEaAIAUIkADAJBCBGgAAFKIAA0AQAoRoAEASCECNAAAKUSABgAghQjQAACkEAEaAIAUIkADAJBCBGgAAFKIAA0AQAqZu7e6DBuY2fOS/lGnxW0h6YU6LWtjRR3WjjqsD+qxdtRh7RpRh9u7+5ZJL6QqQNeTmd3r7jNaXY7hjDqsHXVYH9Rj7ajD2jW7DmniBgAghQjQAACk0EgO0Je0ugAjAHVYO+qwPqjH2lGHtWtqHY7YPmgAAIazkZxBAwAwbI24AG1mR5rZw2b2qJl9ttXlGY7MbDszu83M/mpmi8zsU60u03BlZm1m9oCZXdvqsgxHZjbJzH5pZn8zs8Vm1tnqMg03ZnZq/n/8FzO70szGtLpMw4GZXWZmy8zsL7HnNjOzm83skfz0VY0sw4gK0GbWJum7kt4kaTdJ7zGz3VpbqmFpnaTT3X03Sa+XdDL1OGSfkrS41YUYxv5X0o3uvouk14m6HBQz21bSJyXNcPc9JLVJOq61pRo2fijpyJLnPivpFnffSdIt+ccNM6ICtKT9JD3q7o+7e4+kn0o6psVlGnbc/Vl3vz9//xWFjeK2rS3V8GNmUyW9WdIPWl2W4cjMJkqaKelSSXL3Hnd/qaWFGp7aJY01s3ZJm0h6psXlGRbc/Q5JL5Y8fYyky/P3L5c0u5FlGGkBeltJT8UeLxWBpSZmNk3S3pLubnFRhqMLJM2T1NficgxXO0h6XtL8fDfBD8xsXKsLNZy4+9OS/kfSk5KelfSyu9/U2lINa1Pc/dn8/eckTWnkykZagEYdmdmmkq6SdIq7r2h1eYYTM3uLpGXufl+ryzKMtUvaR9JF7r63pFVqcJPiSJPvIz1GYWdnG0njzOz9rS3VyODhEKiGHgY10gL005K2iz2emn8Og2RmoxSC8wJ3/1WryzMMHSjprWa2RKGr5VAz+3FrizTsLJW01N2j1ptfKgRsVO8wSU+4+/Pu3ivpV5IOaHGZhrN/mtnWkpSfLmvkykZagL5H0k5mtoOZdSgMhvhNi8s07JiZKfT7LXb381tdnuHI3T/n7lPdfZrC7/BWdydzGQR3f07SU2b22vxTsyT9tYVFGo6elPR6M9sk/7+eJQba1eI3kj6Yv/9BSdc0cmXtjVx4s7n7OjP7uKTfKYxWvMzdF7W4WMPRgZI+IOnPZrYw/9zn3f361hUJG6lPSFqQ3+F+XNIJLS7PsOLud5vZLyXdr3B0xgPijGJVMbMrJXVJ2sLMlkr6kqSvS/q5mZ2ocOXFdze0DJxJDACA9BlpTdwAAIwIBGgAAFKIAA0AQAoRoAEASCECNAAAKUSABoYJM1tvZgvzVyZ60MxON7NM/rUZZvbtCu+dZmbvbUCZKq4XwNBxmBUwTJjZSnffNH9/sqSfSLrL3b9UxXu7JH3a3d/S0EICqBsyaGAYcvdlkuZI+rgFXdE1p83s4HymvTB/kYnxCidYOCj/3Kn5jPpOM7s/fzsg/94uM8vGrsG8IH8GKpnZf5pZdz57/5OZjS9Z735mlsuvszt2BjAAQzCiziQGbEzc/fH8NdAnl7z0aUknu/td+QuerFG4yMSGDNrMNpF0uLuvMbOdJF0paUb+/XtL2l3hsoR3STrQzP4k6WeSjnX3e8xsgqTVJev9m6SD8mf0O0zSOZLeUeePDWw0CNDAyHOXpPPNbIGkX7n70nwSHDdK0oVmNl3Sekk7x177k7svlaT8qV6nSXpZ0rPufo8kRVc3K1nuREmX5wO+59cBYIho4gaGKTPbUSG4Fl1Rx92/LunDksZKusvMdkl4+6mS/inpdQqZc0fstbWx++tV/Y782ZJuc/c9JB0taUyV7wOQgAANDENmtqWk70m60EtGeprZa9z9z+7+DYUrvO0i6RVJ42OzTVTIiPsULozSNsAqH5a0tZn9Z34d482sNHBPVOHyrv81+E8FII4ADQwfY6PDrCT9XtJNks5KmO8UM/uLmT0kqVfSDZIekrQ+P8DrVEn/J+mDZvagQgBfVWnF7t4j6VhJ38m/52b1z5DPlfQ1M3tAdJ8BNeMwKwAAUogMGgCAFCJAAwCQQgRoAABSiAANAEAKEaABAEghAjQAAClEgAYAIIUI0AAApND/B10L6UlH2l9gAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 576x576 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "#FDR_cilindro_liso_Hr-10.csv\n", + "\n", + "file = '/home/student/ejercicios-clase-08-datos/data-used/FDR_cilindro_liso_Hr-10.csv'\n", + "\n", + "dataframe0 = pd.read_csv(file)\n", + "\n", + "x = dataframe0[\"r\"]\n", + "y = dataframe0[\"g(r)\"]\n", + "\n", + "plt.figure(figsize =(8,8))\n", + "\n", + "#plt.scatter(x,y, marker = \"+\")\n", + "pl.plot(x,y, \"r.-\")\n", + "plt.savefig(\"fdr.png\")\n", + "\n", + "pl.xlabel(\"Distancia\")\n", + "pl.ylabel(\"FDR(r)\")\n", + "pl.grid()\n", + "pl.legend([\"FDR(r)\"])\n", + "pl.title(\"Función de distribución radial\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Al igual que con la data correspondiente a la Función de Autocorrelación de Velocidades, también podemos visualizar el perfil estadÃstico básico de la data que genera nuestra Función de Distribución Radial. A continuación se muestra los perfiles de densidad en cada uno de los ejes:" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/student/.local/lib/python3.6/site-packages/seaborn/distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).\n", + " warnings.warn(msg, FutureWarning)\n" + ] + }, + { + "data": { + "text/plain": [ + "<AxesSubplot:xlabel='r', ylabel='Density'>" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEGCAYAAAB/+QKOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAqJklEQVR4nO3deXhcd33v8fdX+77LmxZLXoOT2LHjOAsJ0IZAAiGGNpQEaFMKTTe60eUmvfdSoL0tdIFyn8ItKVACtA1pWOpCICGkkIUsXuIljmNblm1Jlm3t+z7zvX/MyMjK2JZsjc6M5vN6Hj2eOXOO9ZE9Ot85v+2YuyMiIjJdWtABREQkMalAiIhITCoQIiISkwqEiIjEpAIhIiIxZQQdYK5UVFR4XV1d0DFERJLKzp07O9y9MtZrC6ZA1NXVsWPHjqBjiIgkFTM7fq7X1MQkIiIxqUCIiEhMKhAiIhKTCoSIiMSkAiEiIjGpQIiISEwqECIiEpMKhIiIxBTXAmFmt5rZQTNrMLP7Yrz+BjPbZWYTZnbntNfuMbPD0a974plTREReK24zqc0sHfgccAvQAmw3s23u/sqU3ZqAXwX+eNqxZcCfA5sBB3ZGj+2OV96F4t9eaJqX7/Pea2vj/j3m42eZj59jviykf6+F9LMks3gutbEFaHD3RgAzewjYCpwpEO5+LPpaeNqxbwV+6O5d0dd/CNwK/Hsc80oA+kbGaWgb4GTPCJ2Do3T0j9IxOEbXwBhH2gcYDzkT4TDjoXDkcSiMO4QBd8cdnMifwFnPZ3KvxI9t2x/PH29ehWZ4d8g0A8MwI/IVfZxm0W387HGaGVkZaWSlp5GVkcbTh9vJy8qgIDudysJsFhXmsKgomxUVBVSX5pKWZvH9IWVexbNAVAHNU563ANdewrFV03cys3uBewFqa/VpINFNhMLsO9HLc42dvNDYxYGTfbT1j561jxmU52dRmpfF8HiIzPQ08rLSyUjLJDPdyEhPO+tEZlMfn/U88ueFrFtWFI8fNRCvtPZdcJ+zCqh7tND+rNiG3fEp20LujE+EGQ2FGR4P0dA2wNBYiP6RcfpGJs76u7Mz0lhZWcDVy0u5fmU5160opyw/Kz4/rMyLpF6sz90fAB4A2Lx5s26uPY9m0wRwsneYHce72d3Uw/B4CIBFhdlUl+aysbaURYXZlOZlkZ+dTn52BmkzObPLa9SU5s3r9xsPhRkYmaBneJyOgVHa+0c51TvCN7Y387XnI+u/LS/P46qaEq6qKSE7I31e88mli2eBOAHUTHleHd0202PfNO3YH89JKpkX7s6h0wM8+eppmruHSU8z1i0t4vJlRdRX5FOYkxl0RLlEmelplOZnUZqfRX1F/pntobBzonuIw+0D7Gvp5T93t/KDl09x/YpyblpdSW6WCkWyiGeB2A6sNrN6Iif8u4D3zvDYx4C/MrPS6PO3APfPfUSJh46BUbbtbqWhfYDSvEzefuVSNtaUkJed1BesMkPpaUZteT615fn8/NpFNHcN8UxDBz8+1M4LR7u49YolXL28VFeKSSBuv7HuPmFmHyZysk8Hvuzu+83sE8AOd99mZtcA3wZKgXeY2cfd/XJ37zKzvyBSZAA+MdlhLYnL3dlxrJv/2ttKeppx+/qlbKkvIyNN021SlVmkWLy3PJ+TvcP8155Wvv3SCV4+0cu7N9dQoA8NCc18hiMfEt3mzZtdNwyav2Gu04XCzndeOsHOpm5WLSrgzk3VFOWqGUnOFnZn+7Euvrf3JHlZ6fzK9XUsK8kNJIuGuUaY2U533xzrNX20k0s2NhHmq88dY2dTNz+3dhG/ekOdioPElGbGtfXl/NabVmJmPPB0Iw1tA0HHknNQgZBLMh4K8/UXjtPQNsAvbKzilnWL1bYsF7S0OJffeuNKyvKy+NrzxzjaMRh0JIlBBUIuWtidh3c009A2wC9uqmZzXVnQkSSJFOVm8ms31lOSl8WDzx3jZO9w0JFkGhUIuWg/OtDG/tY+3nblUjYtL73wASLTFGRn8GuvrycnI42vPX+cgdGJCx8k80YFQi7KgZN9/PfBNq5eXsrrV5YHHUeSWHFuJu+/bjkDIxM8tL2J8AIZOLMQqEDIrPWPjPPNXS0sLc5h64ZlmPoc5BJVl+bxjg3LaGwf5NmGjqDjSJQKhMyKu/OtXScYmwjzS5tryEjXW0jmxublpaxbWsTj+09zqm8k6DiCCoTM0v7WPg6e7uct6xazuCgn6DiygJgZ79pYRXZmGt956YSamhKACoTM2Mh4iO/ubWVpcQ7Xr6wIOo4sQPnZGdx2xVKauobYeUy3fwmaCoTM2FOH2+kbmeCdV1WRrnX/JU421ZZQV57P46+cYiS6+q8EQwVCZqR3eJxnGzpYX11MTdn8ListqcXMeNuVSxgcC/H04fag46Q0FQiZkR8dOE04DG9ZtyToKJICqkvzuLKqmGcaOugbGQ86TspSgZAL6h4cY1dTN1vqy3SHMJk3b1m3mFDYeeawhr0GRQVCLuipw+0YxhvWVAYdRVJIeUE266tLeOFoJ4OaYR0IFQg5r77hcXYc72bT8lKKtUKrzLM3rqlkIuQ8e0RXEUFQgZDzer6xk3DYecNqDWuV+be4KId1y4p4obGLsYlw0HFSjgqEnNN4KMyLx7p43dIiyguyg44jKeqGlRUMj4fY3dwTdJSUowIh57SnuYehsRDXazE+CVBdeR5Li3P46ZEOFsodMJOFCoTE5O4819jJ4qJsVlTkBx1HUpiZccPKctr6R2nUjYXmlQqExHSiZ5iTvSNcW1+u1VolcOurS8jJTGP7sa6go6QUFQiJacfxbjLSjA3VJUFHESEzPY2rakp4pbWP4TEtvzFfVCDkNcYmwuxp7uGKqmJys9KDjiMCwOblZUyEnd3NWsRvvqhAyGvsb+1ldCLMZt1GVBLIspJclpXksPO4CsR8UYGQ19jT0kNJXiZ16pyWBLOptpTW3hFO64ZC80IFQs4yMDpBQ9sAG6pLSFPntCSYK6uKMWBvS0/QUVKCCoScZd+JXsKOOqclIRXmZLJyUQF7Wno1J2IeqEDIWfY097C4KJslxbqdqCSmDdUldA2O0dI9HHSUBU8FQs7oHR6nqWuI9bp6kAR2+bIi0s3Yd6I36CgLngqEnPFKa+QX7vJlRQEnETm3nMx0Vi7KZ3+rmpniTQVCztjf2seiwmwWFap5SRLbFcuK6R4a52SvRjPFkwqEAJHRS0c7BnX1IEnhsqVFGPByq5qZ4kkFQgB49WQfDly+rDjoKCIXVJCdQX1FPvtb+4KOsqDFtUCY2a1mdtDMGszsvhivZ5vZN6Kvv2BmddHtmWb2oJntM7MDZnZ/PHMKHDzdT3FuJks1ekmSxGVLi2jvH6V7cCzoKAtW3AqEmaUDnwNuA9YBd5vZumm7fRDodvdVwGeAT0W3vxvIdvcrgauB35gsHjL3JsJhGtoGWLO4UCu3StJYu7gQiHy4kfiI5xXEFqDB3RvdfQx4CNg6bZ+twIPRx48AN1vkDOVAvpllALnAGKBryThp6hxidCLM2sUFQUcRmbGKgixK8zI5pAIRN/EsEFVA85TnLdFtMfdx9wmgFygnUiwGgZNAE/B37v6aheDN7F4z22FmO9rb2+f+J0gRh073k27GykoVCEkeZsaaxYUcaR9gPKT7VcdDonZSbwFCwDKgHvgjM1sxfSd3f8DdN7v75srKyvnOuGAcPN3P8oo8sjO1tLckl7VLChkPOcc6dae5eIhngTgB1Ex5Xh3dFnOfaHNSMdAJvBf4gbuPu3sb8CywOY5ZU1bP0Bin+0bPtOeKJJMVFQVkpBmHTqmZKR7iWSC2A6vNrN7MsoC7gG3T9tkG3BN9fCfwpEemRjYBPw9gZvnAdcCrccyasg6fHgBgjQqEJKGsjDTqK/I5GH0fy9yKW4GI9il8GHgMOAA87O77zewTZnZHdLcvAeVm1gB8BJgcCvs5oMDM9hMpNP/i7nvjlTWVTQ5vXVSYHXQUkYuyZnEhHQOjdGm465zLiOdf7u6PAo9O2/bRKY9HiAxpnX7cQKztMrcmwmEa2ge4qrpEw1slaa1dXMj39p3k0Ol+rltRHnScBSVRO6llHhzvHGJsIqzmJUlq5QVZlOVnabhrHKhApLDDpwdIM1hZqVuLSvKKDHct4Ej7ABNhDXedSyoQKayxY4CaUg1vleS3oqKA8ZBzQjcRmlMqEClqZDxEa88wK3T1IAvAiorI+7ixQ/Mh5pIKRIo63jlI2KG+QrOnJfnlZWewpCiHxnYNd51LKhApqrFjkPQ0o7YsL+goInNiRWU+TV1DTGjZjTmjApGijnYMUlOaS1aG3gKyMKyoyGc85DSrH2LO6OyQgkbGQ5zoHmaFFueTBaSuIh8DjnaomWmuqECkoGOdgzhQX6EOalk48rIyWFKcQ2O7OqrnigpECmpsV/+DLEwrKiL9EFr+e26oQKSgox2D1JblkZmu/35ZWFZUFjARdpq7h4KOsiDoDJFihsci8x/UvCQLUV15pB9CzUxzQwUixUz2P2iCnCxEuVnpLC3J4agmzM0JFYgUc7RjkIw0o6ZU/Q+yMK2oKFA/xBxRgUgxxzsHqS7NVf+DLFh15XmEwk5rj+ZDXCqdJVLIeChMa88ItWVqXpKFqyY6Ou94pzqqL5UKRApp6R4m5M7ycjUvycJVmJNJeX4Wx7tUIC6VCkQKaYr+wmj+gyx0tWV5NHUOErnFvVwsFYgUcrxzkIqCbPKz43qnWZHALS/PZ3AsRKfuU31JVCBShLvT1DXEcl09SAqYbEZtUj/EJVGBSBEdA2MMjYXU/yApobIwm5zMNI53aT7EpVCBSBHHOyO/KOp/kFSQZpG1xjSS6dKoQKSIpq4hcjPTqSjMDjqKyLxYXp5PW/8ow2OhoKMkLRWIFHG8c4jasjzSzIKOIjIvJq+Wm9TMdNFUIFLA0OgE7QOj6n+QlFJTmkeaofkQl0AFIgVMzn9YXq4Z1JI6sjLSWFqcq36IS6ACkQKOdw2RZlBVkht0FJF5VVueR0v3EKGwJsxdDBWIFNDcNcTS4lyyMvTfLamltiyP8ZBzum8k6ChJSWeMBS7sTkvPMDVlunqQ1DO5rL3uMHdxVCAWuPb+UcYmwlTr/g+SgkrzMsnLSqelS0t/XwwViAWuJfrJSTcIklRkFrk5lq4gLo4KxALX3DVMTmYa5QVZQUcRCUR1WS7t/aOMjGvC3GzFtUCY2a1mdtDMGszsvhivZ5vZN6Kvv2BmdVNeW29mz5nZfjPbZ2Y58cy6ULV0D1FdqglykrpqSvNw4ITuMDdrMyoQZvYtM3u7mc24oJhZOvA54DZgHXC3ma2bttsHgW53XwV8BvhU9NgM4OvAb7r75cCbgPGZfm+JGJsIc6pvhOpSdVBL6pp8/7dowtyszfSE/3ngvcBhM/ukma2dwTFbgAZ3b3T3MeAhYOu0fbYCD0YfPwLcbGYGvAXY6+57ANy90911fThLJ3uHCbv6HyS15WVlUJ6fRXO3riBma0YFwt2fcPf3AZuAY8ATZvZTM/uAmWWe47AqoHnK85botpj7uPsE0AuUA2sAN7PHzGyXmf1prG9gZvea2Q4z29He3j6THyWlNEc/MekKQlJdTVnemQEbMnOzaTIqB34V+BDwEvBZIgXjh3HIlQHcCLwv+ue7zOzm6Tu5+wPuvtndN1dWVsYhRnJr7h6mJDeTwpxz1XCR1FBdmkvfyAS9w2qpno2Z9kF8G3gayAPe4e53uPs33P13gYJzHHYCqJnyvDq6LeY+0X6HYqCTyNXGU+7e4e5DwKNEipHMQkv3ENW6/4PImXlAzeqHmJWZXkH8s7uvc/e/dveTEBmBBODum89xzHZgtZnVm1kWcBewbdo+24B7oo/vBJ70yF3GHwOuNLO8aOF4I/DKjH8qYWB0gu6hcWrUvCTC0uIc0s1oUT/ErMy0QPxljG3Pne+AaJ/Ch4mc7A8AD7v7fjP7hJndEd3tS0C5mTUAHwHuix7bDXyaSJHZDexy9+/NMKvwswlymkEtApnpaSwpzlE/xCxlnO9FM1tCpCM518w2ApOD6YuINDedl7s/SqR5aOq2j055PAK8+xzHfp3IUFe5CM1dw1rBVWSKmrJcdjX1EHbXvKAZOm+BAN5KpGO6msgn+kn9wJ/FKZPMgZbuIRYX5WgFV5Go6tI8nm/sor1/lMVFmnc7E+ctEO7+IPCgmf2iu39znjLJJXJ3WrqHuaKqKOgoIgmjZkpHtQrEzFyoien90aaeOjP7yPTX3f3TMQ6TgHUOjjE8HtIEOZEpyguyyMlMo6V7mM11QadJDhdqYpq8R+W5hrJKAvrZBDkVCJFJaWZUl2hl19m4UBPTF6J/fnx+4shcaOkeJis9jUVF2UFHEUko1WW5PHWonbGJcNBRksJMJ8r9jZkVmVmmmf3IzNrN7P3xDicXp7l7iKrSXI3UEJmmpjSPsEOrVnadkZkOcXmLu/cBtxNZi2kV8CfxCiUXbyIU5mTviCbIicRwZmVXNTPNyEwLxGRT1NuB/3D33jjlkUt0qm+EUNipUv+DyGsU5mRSkpuplV1n6EKd1JO+a2avAsPAb5lZJTASv1hysSbf+LqCEImtujRXVxAzNNPlvu8DbgA2u/s4MMhr7+0gCeBE9xAF2RkU52oFV5FYqkvz6B4ap2twLOgoCW+mVxAAlxGZDzH1mK/OcR65RM3dw1SX5mLqoBaJabIfYk9LDz+3dlHAaRLbTEcxfQ34OyL3Zrgm+nWuVVwlIP0j43T0j2r+g8h5VJXkYsCe5p6goyS8mV5BbAbWRZfilgS170Qvju4gJ3I+2ZnpVBZms7dFY20uZKajmF4GlsQziFy6Pc2RN7wKhMj5VZfmsae5B33mPb+ZXkFUAK+Y2YvA6ORGd7/j3IfIfNvb0kNZfhZ5WbPpWhJJPdWluexq6uZEz7CaZM9jpmeSj8UzhMyNPc09unoQmYEzHdXNvSoQ5zHTYa4/ITKDOjP6eDuwK465ZJba+kdo7R3Rm11kBpYU55CVnsbelp6goyS0mY5i+nXgEeAL0U1VwHfilEkuwt5o/4MmyIlcWEZaGq9bVsRujWQ6r5l2Uv8O8HqgD8DdDwMaQJxA9rb0kJ5mLC1WgRCZiQ3Vxbx8opdQWB3V5zLTAjHq7memHUYny+lfNYHsbullzeJC3WJUZIY2VJcwOBbiSPtA0FES1kzPJj8xsz8Dcs3sFuA/gP+KXyyZDXdnb0sPG6qLg44ikjQ21ER+X9TMdG4zLRD3Ae3APuA3gEeB/xWvUDI7TV1D9AyNs6GmJOgoIkljRUUBBdkZ6qg+jxkNc3X3sJl9B/iOu7fHN5LM1uQnoPXVxWcmy4nI+aWlGVdW6XfmfM57BWERHzOzDuAgcDB6N7mPzk88mYm9Lb3kZKaxZnFh0FFEksqGmhJePdXHyHgo6CgJ6UJNTH9IZPTSNe5e5u5lwLXA683sD+OeTmZkT3MPVywrJjNdHdQis3FVTTHjIefAyb6goySkC51Rfhm4292PTm5w90bg/cCvxDOYzMxEKMzLrb2sry4JOopI0pn8vdHCfbFdqEBkunvH9I3RfgjdkSYBHDo9wMh4+MyIDBGZuaXFOVQWZmvp73O4UIE43y2XdDumBDA5AmODriBEZs3M2FBdzB6NZIrpQqOYNphZrMY5A3LikEdmaU9LD8W5mSwv1xpMIhdjQ3UJTxxoo29knKIcNYxMdd4rCHdPd/eiGF+F7q5/yQSwp7mX9dXFusWoyEVaH50/9LL6IV5Dw16S2PBYiIOn+7lKE+RELtrkCgS71cz0GioQSWx/a2ShMY1gErl4JXlZLC/PU0d1DHEtEGZ2q5kdNLMGM7svxuvZZvaN6OsvmFndtNdrzWzAzP44njmT1Z7oJbHWYBK5NBuqSzTUNYa4FQgzSwc+B9wGrAPuNrN103b7INDt7quAzwCfmvb6p4HvxytjstvT3MPS4hwWFWm8gMilWF9dzMneEdr6RoKOklDieQWxBWhw98boUuEPAVun7bMVeDD6+BHgZov2tprZO4GjwP44ZkxqkRVcS4KOIZL0Jvvx9ugq4izxLBBVQPOU5y3RbTH3cfcJoBcoN7MC4H8AHz/fNzCze81sh5ntaG9PrTUEe4bGONY5xHpNkBO5ZJcvKyY9zdQPMU2idlJ/DPiMu5/3Th7u/oC7b3b3zZWVlfOTLEHsPdP/UBJsEJEFIDcrnTWLCzVhbpoZLfd9kU4ANVOeV0e3xdqnJXqXumKgk8iCgHea2d8AJUDYzEbc/R/jmDep7GrqxizSdioil+6qmhK+u7eVcNhJS9O8IojvFcR2YLWZ1ZtZFnAXsG3aPtuAe6KP7wSe9Iib3L3O3euAfwD+SsXhbLuaeli7uJBCzfwUmRObakvoH5mgQbcgPSNuBSLap/Bh4DHgAPCwu+83s0+Y2R3R3b5EpM+hAfgIkTvXyQWEw85LTd1srC0NOorIgrFpeeT36aWm7oCTJI54NjHh7o8SuT3p1G0fnfJ4BHj3Bf6Oj8UlXBI70j5A/8gEm2pLgo4ismCsqMinODeTXcd7eM81tUHHSQiJ2kkt5/FSUw+AriBE5pCZsbG2hF26gjhDBSIJ7Wrqpjg3kxUV+UFHEVlQNtWWcrhtgN7h8aCjJAQViCS0q6mbjbUlGmkhMsc2Ra/Kd2s+BKACkXT6RsY53DZw5o0sInNnQ00xZuqonqQCkWR2N/XgjgqESBwU5mSydnEhu6L9fKlOBSLJTE6Q0z2oReJjY20pLzV1Ew570FECpwKRZHY19bBmkSbIicTLxuiEuSOaMKcCkUzCYWd3UzeblpcEHUVkwZpsvtVwVxWIpNLYMUDfyITmP4jE0eSEuZfUD6ECkUx2Ho98olEHtUj8pKVFJsxN/r6lMhWIJPLi0W7K8rNYWakJciLxdE1dGYfbBugaHAs6SqBUIJLIi8c6uaaulOhN90QkTrbUlwGw/VhXwEmCpQKRJE72DtPcNcyW+vKgo4gseOuri8nKSGP7URUISQIvRt+o10Y/2YhI/GRnpLOxpoQXdQUhyeDFo10UZGfwuqVFQUcRSQnX1pfx8oleBkYngo4SGBWIJLH9WBdXLy8lXQv0icyLa+rLCDvsSuHRTCoQSaBrcIxDpwfOdJyJSPxtqo18IHsxhfshVCCSwORICvU/iMyf/OwMrqgqVoGQxPbi0S6yMtK4sloL9InMpy11pexu7mFkPBR0lECoQCSB7ce62FhTQnZGetBRRFLKlvpyxkJh9rb0Bh0lECoQCW5gdIKXT/SqeUkkANfURZa1efFoZ8BJgqECkeB2Hu8m7GiCnEgASvKyuGxJIS+kaD+ECkSCe+5IJxnRxcNEZP5tqS9j5/FuxibCQUeZdyoQCe6ZhnY21ZaSn50RdBSRlPT6VRUMjYVS8v4QKhAJrHNglP2tfdy0uiLoKCIp6/qV5aSnGc8c7gg6yrxTgUhgzx7pxB1uVIEQCUxRTiZX1ZTw9OH2oKPMOxWIBPbM4XaKcjJYX10SdBSRlHbjqgr2nuilZyi17g+hApGg3J1nDndww8oKrb8kErCbVlfgDj89klrDXVUgEtSR9kFae0e4aY2al0SCtqGmhMLsjJRrZlKBSFDPRN+IN62qDDiJiGSmp3HdynKePtyBuwcdZ96oQCSoZxo6qC3Lo7Y8L+goIkKkmamle5jjnUNBR5k3KhAJaDwU5rkjnRq9JJJAblwV+X18uiF1hrvGtUCY2a1mdtDMGszsvhivZ5vZN6Kvv2BmddHtt5jZTjPbF/3z5+OZM9G81NTD4FiIm1apQIgkivqKfKpKcnn6UOr0Q8StQJhZOvA54DZgHXC3ma2bttsHgW53XwV8BvhUdHsH8A53vxK4B/havHImoqcPt5NmcMNKFQiRRGFm3LS6gueOdDIeSo1lN+J5BbEFaHD3RncfAx4Ctk7bZyvwYPTxI8DNZmbu/pK7t0a37wdyzSw7jlkTyhMH2rh6eSnFeZlBRxGRKd60dhH9oxNsT5HF++JZIKqA5inPW6LbYu7j7hNALzB92dJfBHa5++j0b2Bm95rZDjPb0d6+MC77TvQMc+BkHze/bnHQUURkmptWV5CVnsYTB9qCjjIvErqT2swuJ9Ls9BuxXnf3B9x9s7tvrqxcGMNBnzxwGoA3q0CIJJz87AxuWFXOj149nRLDXeNZIE4ANVOeV0e3xdzHzDKAYqAz+rwa+DbwK+5+JI45E8oTB9qoK89jZWV+0FFEJIabX7eY451DHGkfCDpK3MWzQGwHVptZvZllAXcB26bts41IJzTAncCT7u5mVgJ8D7jP3Z+NY8aEMjA6wXNHOrn5dYsx0/IaIono5ssWAfD4K6cDThJ/cSsQ0T6FDwOPAQeAh919v5l9wszuiO72JaDczBqAjwCTQ2E/DKwCPmpmu6Nfi+KVNVE8+WobY6Ewb718SdBRROQclpXksqG6mMdePhV0lLiL611o3P1R4NFp2z465fEI8O4Yx/0l8JfxzJaIvr/vJJWF2Vy9vDToKCJyHrdduZRPfv9VWrqHqC5duKsdJHQndSoZGpvgvw+2cevlS7R6q0iCu+2KyFX+Dxb4VYQKRIL48cF2RsbDZ954IpK4lpfns25pEY/uOxl0lLhSgUgQ393bSnl+Flvqy4KOIiIz8Pb1S9nV1ENL98JdvE8FIgH0jYzzxIE2bl+/lIx0/ZeIJIN3rF8GwLY9rRfYM3npbJQAfrDvFGMTYd65cfpEcxFJVLXleVy9vJTvvHRiwU6aU4FIAN/ZfYK68jyuqikJOoqIzMI7N1Zx6PQAB072Bx0lLlQgAtbaM8xzjZ1svapKk+NEksztVy4lM9341q6WoKPEhQpEwB7eEVnP8M6rqwNOIiKzVZqfxZtft5hv7mphdCIUdJw5pwIRoFDYeXh7MzeuqqCmbOFOthFZyO7aUkv30DiP7194S2+oQAToqUPttPaOcPeW2qCjiMhFumlVBVUluTy0vSnoKHNOBSJA//rCcSoKsrS0t0gSS0sz7rqmhmcbOhfcCq8qEAE52jHIj15t473XLicrQ/8NIsnsri21ZKWn8ZVnjwUdZU7pzBSQrzx7lMy0NN5/nZqXRJJdZWE2W69axiM7W+gZGgs6zpxRgQhA79A4/7GzhXdsWMaiwpyg44jIHPjA6+sZHg/xby8unL4IFYgAfPnZowyNhfj1N9QHHUVE5si6ZUXctLqCLz9zlOGxhTHkVQVinvWNjPPlZ4/y1ssXc9mSoqDjiMgc+r2bV9MxMLZgriJUIObZV549Rv/IBL/786uDjiIic+yaujKuX1HOP/3kCCPjyX8VoQIxjzoGRnngqUZuWbeYK6qKg44jInHwh7esob1/lC89czToKJdMBWIefeaHhxgZD3HfbZcFHUVE4mRLfRm3rFvM5/+7gfb+0aDjXBIViHny6qk+HtrezPuurWVlZUHQcUQkju6/7TJGJ8L8/eMHg45ySVQg5kEo7Nz3zX0U52byB29eE3QcEYmzFZUF/NqN9Ty0vZkXGjuDjnPRVCDmwdeeO8bu5h4+evs6SvOzgo4jIvPgD968murSXO7/9r6k7bBWgYizQ6f7+eQPXuWNayrZetWyoOOIyDzJy8rgr951JY3tg3zy+68GHeeiqEDE0ch4iN/9t5coyM7gb9+9XjcEEkkxb1hTyQdvrOcrPz3G4/tPBR1n1lQg4iQcdv7oP/ZwqK2fv/+lq7SkhkiK+tNb13JlVTF/9PAeDp1OrluTqkDEyd89fpDv7T3JfbdexhvXVAYdR0QCkp2Rzhd++Wpys9L5wL9sp61vJOhIM6YCEQf/90eH+fyPj3D3llrufcOKoOOISMCWleTyxXs20z00xt3//Dxt/clRJFQg5lA47Pz1owf49A8P8QubqvjLd16hfgcRAWB9dQlf+cAWTvaO8J4vPM+xjsGgI12QCsQc6R0a5ze/vpMvPNXI+6+r5W/v3EB6moqDiPzMlvoyvvbBLfQMjfHOzz/LTw61Bx3pvFQg5sBPDrVz22ef4slX2/jft6/jL7ZeoeIgIjFdvbyMb//261lUmM09X36Rj23bz8DoRNCxYsoIOkAye/VUH59+/BCPv3KaFRX5fPO3bmBDTUnQsUQkwdVV5LPtwzfyV48e4MHnjvH9l0/yB29ewy9uqk6oWxCrQMzS0NgEP3j5FI/sbOGnRzopzM7gT966lg/dVE92RnrQ8UQkSeRkpvOJrVfwro1VfPy/XuH+b+3jH544xLs2VnPn1VWsWlQYdMT4FggzuxX4LJAOfNHdPznt9Wzgq8DVQCfwHnc/Fn3tfuCDQAj4PXd/LJ5Zz2U8FObgqX6eb+zkhaNd/LShg8GxELVleXzkljXcc30dxXmZQUQTkQVgY20p3/7tG/jxoXa+/txx/vnpRv7pJ0dYt7SIG1aWs6W+jM11ZZQFsExP3AqEmaUDnwNuAVqA7Wa2zd1fmbLbB4Fud19lZncBnwLeY2brgLuAy4FlwBNmtsbd53xBk4HRCV5p7aNzYJSOwTG6BsboHByltWeYxvZBjncNEQo7AHXledxxVRXv2ljFNXWlGqEkInPCzPi5tYv4ubWLaOsfYdvuVn74ymm++vxxvhi9r0RZfhYrK/NZXp5PRUE2FQVZlOVnUV6QTU1pLivisEp0PK8gtgAN7t4IYGYPAVuBqQViK/Cx6ONHgH+0yFl3K/CQu48CR82sIfr3PTfXIRvaBvilL5z91xbnZrKkKIe1Swp525VLWbOkkC11ZSwp1mxoEYmvRYU5fOimFXzophWMToTY29LL7qYeGjsGONI2yNOH2+kaHGM85GeOefv6pXzuvZvmPEs8C0QV0DzleQtw7bn2cfcJM+sFyqPbn592bNX0b2Bm9wL3Rp8OmNmcLb6+N/bmCqBjrr5HnCR6xkTPB8o4FxI9H+9LgozMMOPngc+/76K/x/JzvZDUndTu/gDwwHx9PzPb4e6b5+v7XYxEz5jo+UAZ50Ki5wNlnIl4jqc6AdRMeV4d3RZzHzPLAIqJdFbP5FgREYmjeBaI7cBqM6s3sywinc7bpu2zDbgn+vhO4El39+j2u8ws28zqgdXAi3HMKiIi08StiSnap/Bh4DEiw1y/7O77zewTwA533wZ8CfhatBO6i0gRIbrfw0Q6tCeA34nHCKaLMG/NWZcg0TMmej5QxrmQ6PlAGS/IIh/YRUREzpY4c7pFRCShqECIiEhMKhCzZGZ/a2avmtleM/u2mZUEnQkiy5qY2UEzazCz+4LOM52Z1ZjZf5vZK2a238x+P+hMsZhZupm9ZGbfDTpLLGZWYmaPRN+DB8zs+qAzTWdmfxj9P37ZzP7dzAKfYWpmXzazNjN7ecq2MjP7oZkdjv5ZmmD5Aj/XqEDM3g+BK9x9PXAIuD/gPFOXNbkNWAfcHV2uJJFMAH/k7uuA64DfScCMAL8PHAg6xHl8FviBu18GbCDBsppZFfB7wGZ3v4LIAJW7gk0FwFeAW6dtuw/4kbuvBn4UfR6Ur/DafIGfa1QgZsndH3f3ycXbnycyRyNoZ5Y1cfcxYHJZk4Th7ifdfVf0cT+RE9trZscHycyqgbcDXww6SyxmVgy8gcjoP9x9zN17Ag0VWwaQG53blAe0BpwHd3+KyEjJqbYCD0YfPwi8cz4zTRUrXyKca1QgLs2vAd8POgSxlzVJqJPvVGZWB2wEXgg4ynT/APwpEA44x7nUA+3Av0Sbwb5oZvlBh5rK3U8Afwc0ASeBXnd/PNhU57TY3U9GH58CFgcZ5gICOdeoQMRgZk9E20+nf22dss//JNJs8q/BJU0+ZlYAfBP4A3fvCzrPJDO7HWhz951BZzmPDGAT8P/cfSMwSLDNIq8RbcffSqSYLQPyzez9waa6sOgE3YQc8x/kuSap12KKF3d/8/leN7NfBW4HbvbEmEiSFEuTmFkmkeLwr+7+raDzTPN64A4zexuQAxSZ2dfdPZFObi1Ai7tPXnk9QoIVCODNwFF3bwcws28BNwBfDzRVbKfNbKm7nzSzpUBb0IGmC/pcoyuIWYreBOlPgTvcfSjoPFEzWdYkUNFl3L8EHHD3TwedZzp3v9/dq929jsi/35MJVhxw91NAs5mtjW66mbOXz08ETcB1ZpYX/T+/mQTrSJ9i6lI/9wD/GWCW10iEc41mUs9SdFmQbCKLCgI87+6/GWAkAKKffP+Bny1r8n+CTXQ2M7sReBrYx8/a+P/M3R8NLlVsZvYm4I/d/faAo7yGmV1FpBM9C2gEPuDu3YGGmsbMPg68h0izyEvAh6L3dgky078DbyKyfPZp4M+B7wAPA7XAceCX3H16R3aQ+e4n4HONCoSIiMSkJiYREYlJBUJERGJSgRARkZhUIEREJCYVCBERiUkFQkREYlKBEJlHFqHfO0kKeqOKxJmZ1UXv1fFV4GXOXhZFJGFpopxInEVXr20EbnD35wOOIzJjuoIQmR/HVRwk2ahAiMyPwaADiMyWCoSIiMSkAiEiIjGpk1pERGLSFYSIiMSkAiEiIjGpQIiISEwqECIiEpMKhIiIxKQCISIiMalAiIhITP8fnwQItf5jee8AAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sns.distplot(dataframe0[\"r\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/student/.local/lib/python3.6/site-packages/seaborn/distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).\n", + " warnings.warn(msg, FutureWarning)\n" + ] + }, + { + "data": { + "text/plain": [ + "<AxesSubplot:xlabel='g(r)', ylabel='Density'>" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEGCAYAAABvtY4XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAavElEQVR4nO3deZAkZ3nn8e9TVX1OXzPT3XOPenQNOoyukRAIg0IYJBsBSxBeDAjvEuxqd4PdAOwAA7HsmljvrsNrs3gPOxACr7AkC4NAtmWwEIeQsKWRZiSha3SgOaQ5+5iZrr6qu6vq2T8yq6dnpo/qI7uysn6fiI7uyqrMfGq659dvv/m+b5q7IyIiyZOqdAEiIhINBbyISEIp4EVEEkoBLyKSUAp4EZGEylS6gOk6Ozu9p6en0mWIiFSN3bt397t710zPxSrge3p62LVrV6XLEBGpGmZ2YLbn1EUjIpJQCngRkYRSwIuIJJQCXkQkoRTwIiIJpYAXEUkoBbyISEIp4EVEEkoBLyKSULGaySrlu3vna2dt+/CbtlagEhGJK7XgRUQSSgEvIpJQCngRkYRSwIuIJJQCXkQkoRTwIiIJpYAXEUkoBbyISEIp4EVEEkoBLyKSUAp4EZGEUsCLiCSUAl5EJKEU8CIiCaWAFxFJKAW8iEhCKeBFRBJKAS8iklAKeBGRhFLAi4gklAJeRCShIg94M0ub2VNmdn/U5xIRkVNWogX/SWDPCpxHRESmiTTgzWwz8G7g9ijPIyIiZ4u6Bf8V4LNAcbYXmNmtZrbLzHb19fVFXI6ISO2ILODN7Gag1913z/U6d7/N3Xe4+46urq6oyhERqTlRtuCvA95rZvuBe4AbzOzOCM8nIiLTRBbw7v55d9/s7j3AbwE/cfdbojqfiIicTuPgRUQSKrMSJ3H3h4CHVuJcIiISUAteRCShFPAiIgmlgBcRSSgFvIhIQingRUQSSgEvIpJQCngRkYRSwIuIJJQCXkQkoRTwIiIJpYAXEUkoBbyISEIp4EVEEkoBLyKSUAp4EZGEUsCLiCSUAl5EJKEU8CIiCaWAFxFJKAW8iEhCKeBFRBJKAS8iklAKeBGRhFLAi4gklAJeRCShFPAiIgmlgBcRSSgFvIhIQingRUQSSgEvIpJQCngRkYRSwIuIJJQCXkQkoRTwIiIJpYAXEUkoBbyISEJFFvBm1mhmj5vZL8zseTP7UlTnEhGRs2UiPPY4cIO7D5tZHfBzM/uBuz8W4TlFRCQUWcC7uwPD4cO68MOjOp+IiJwu0j54M0ub2dNAL/Cgu++c4TW3mtkuM9vV19cXZTkiIjUl0oB394K7Xw5sBq4xs0tneM1t7r7D3Xd0dXVFWY6ISE1ZkVE07n4S+Clw00qcT0REoh1F02VmHeHXTcA7gRejOp+IiJwuylE0G4A7zCxN8Ivkr939/gjPJyIi00Q5iuYZ4Iqoji8iInPTTFYRkYRSwIuIJJQCXkQkoRTwIiIJpYAXEUkoBbyISEKVFfBm9l0ze7eZ6ReCiEiVKDew/wz4MPCKmf2hmW2PsCYREVkGZQW8u//I3T8CXAnsB35kZv9kZh8L13oXEZGYKbvLxczWAv8S+FfAU8CfEgT+g5FUJiIiS1LWUgVm9j1gO/CXwHvc/Uj41LfMbFdUxYmIyOKVuxbN19z9+9M3mFmDu4+7+44I6hIRkSUqt4vmD2bY9uhyFiIiIstrzha8ma0HNgFNZnYFYOFTbUBzxLXJHL731CFGJ/L85lVbqM9o9KqInG2+LpobCS6sbga+PG37EPCFiGqSeQyOTbL7wHGKDkO5fXz8rduoSyvkReR0cwa8u99BcNOOD7j7vStUk8zjoZd6KTq8+dy1PLp3gJeODnHppvZKlyUiMTNfF80t7n4n0GNmv3Pm8+7+5Rl2k4g98PxRWhsy3HjJenbuG+DQyTEFvIicZb4umlXh55aoC5Hy5CYLPPRSH5dubKc+k2J9WyOHToxVuiwRiaH5umi+Gn7+0sqUI/N5fN9xRicKXLShDYBNq5t47lAWd69wZSISN+UuNvZHZtZmZnVm9mMz6zOzW6IuTs728rEhALasbgJgY0cTY5MFToxOVrIsEYmhcodevMvds8DNBGvRnA98JqqiZHb7+kfoaK6juSH442tzRzBa9eCJ0UqWJSIxVG7Al7py3g18290HI6pH5rGvf4RtnaumHq9rayCdMg6dVD+8iJyu3IC/38xeBK4CfmxmXUAuurJkNmcGfCYdXmhVwIvIGcpdLvhzwFuAHe4+CYwA74uyMDnb6ESeI4M5zp0W8ABdrQ0cH5moUFUiElflLjYG8AaC8fDT9/nmMtcjc9jfH/Szb+tsYXDs1EXVjuY6sgcnyReKZDSjVURC5S4X/JfAecDTQCHc7CjgV9S+/hEAtnWu4unXT05tX91cT9HhaDbH5tVaIkhEAuW24HcAF7sGW1fUvv5hAHo6m08L+I7m4KZaB0+MKeBFZEq5f88/B6yPshCZ397+ETa0N9Jcf/rv5dXN9QCa0Soipym3Bd8JvGBmjwPjpY3u/t5IqpIZnTmCpqS96VQLXkSkpNyA//0oi5DyHDoxxvXbu87aXpdO0dqY4dBJTXYSkVPKCnh3/5mZnQNc4O4/MrNmIB1taTJdvlCkf3ic9W2NMz6/urleLXgROU25a9H8a+A7wFfDTZuA+yKqSWbQPzxB0aF7loDvaK7TZCcROU25F1k/AVwHZAHc/RWgO6qi5GzHssHE4bla8IdPjlEsaqCTiATKDfhxd5+aKhlOdlKSrKBSwK+bowU/WXB6h8ZnfF5Eak+5Af8zM/sCwc233wl8G/i76MqSMx0Lg3tdW8OMz5eGSmpVSREpKTfgPwf0Ac8C/wb4PvAfoypKznZsMEc6ZaxtmTngS0MlDw9qDTgRCZQ7iqZoZvcB97l7X7QlyUyOZXN0tQRLA8+krTEI+N6sAl5EAnO24C3w+2bWD7wEvBTezek/zXdgM9tiZj81sxfM7Hkz++RyFV2Ljg2Nz9o9A9BYl6I+k6JPffAiEpqvi+bTBKNnrnb3Ne6+BngTcJ2ZfXqeffPA77r7xcC1wCfM7OIlV1yjerO5WYdIApgZ69oapi7GiojMF/AfBT7k7vtKG9x9L3AL8Ntz7ejuR9z9yfDrIWAPwfh5WYSj2dysQyRLulsbNYpGRKbMF/B17t5/5sawH76u3JOYWQ9wBbBzhuduNbNdZrarr0/d+zPJTRY4OTo5ZxcNQHdrgwJeRKbMF/Bz3SaorFsImVkLcC/wqfDG3adx99vcfYe77+jqOnudFWGqX32uLhoIA15dNCISmm8UzWVmdlYoAwbMnTaAmdURhPtd7v7dRdQnBN0zMPskp5LutkayuTy5yQKNdVoqSKTWzRnw7r7olDAzA74O7HH3Ly/2OLXu7p2v8czBkwDsPnBizjXfu1uDLpze7Dhb1+rGHyK1LsobeF5HcJH2BjN7Ovz4jQjPl1hDuTwAbY1z/8FV6sLpHVI3jYgs7KbbC+LuPyfoypElyuYmyaSMpnm6XaZa8LrQKiJE24KXZZIdm6S1MUPQ6zW7Uh+9xsKLCCjgq0I2l6etaf5Rqaub66hLm1rwIgIo4KvCUG5yaq2ZuZgZXS0N9GYV8CKigK8K2Vx+3gusJV1tjbrIKiKAAj72cpMFJvJFWstowUNpspNa8CKigI+9bG4SoKw+eAhuCKIWvIiAAj72yh0DX9Ld2siJ0UnG84UoyxKRKqCAj7nsWNiCX0AXDaB14UVEAR932bAF39pUZgu+TZOdRCSggI+5bG6ShkyKhkx5ywJ1t4bLFehCq0jNU8DH3NBYeWPgS0ot+D5daBWpeQr4mMvm8mV3zwCsXdVAyuCYWvAiNU8BH3PZ3CTtC2jBp1NGZ4uGSoqIAj7W3J2hsXzZk5xK1rXp3qwiooCPtROjkxTcaVtAFw1oNquIBBTwMXZ0MOhmWWgLvluzWUUEBXysHQtDur3MWawlXa2NDIxMkC8UoyhLRKqEAj7GesMbd7SWuQ5Nybq2Btyhf3giirJEpEoo4GPs6GDQj97asNA+eN2bVUQU8LF2bChHc32aTHph36bSejQaCy9S2xTwMdabzdG+wO4ZmL4ejVrwIrVMAR9jx7LjtC7wAitAZ0sDZlqPRqTWKeBj7Gg2t6B1aErq0inWrqrXZCeRGqeAj6l8oUj/8PiCx8CXdLU2To3CEZHapICPqf7hCdxZ8CzWku7WBrXgRWqcAj6mjoWt78V00UAp4NWCF6llCviYOrrEgF/X1kj/8ASFoi9nWSJSRRTwMXVqFusiu2jaGigUnYERddOI1CoFfEwdHsxRlzZaFjiLtaQ02UlDJUVqlwI+po6cHGNdWyMps0Xt3xUuV9CnC60iNUsBH1OHB3NsbG9a9P7rNJtVpOYp4GPqyOAYGzoaF71/l9ajEal5CvgYKhado4M5NiyhBd+QSdPRXKcWvEgNU8DHUP/wOJMFZ+MSWvCgW/eJ1DoFfAwdDm/Vt5QWPOjm2yK1TgEfQ0dOjgGwoX1pLfiu1oapGbEiUnsiC3gz+4aZ9ZrZc1GdI6lKLfiNHUtrwW9sb6J3aFz3ZhWpUVG24P8fcFOEx0+sIyfHaKxLsbp5ccsUlGzsaKJQdHXTiNSoyALe3R8Gjkd1/CQ7Eo6Bt0VOciopXaQ9FHb5iEhtqXgfvJndama7zGxXX19fpcuJhcNLHANfsnl10MVzWAEvUpMqHvDufpu773D3HV1dXZUuJxaOnFzaGPiS0jHUghepTRUPeDndeL7AsaEcm5Z4gRVgVUOGjuY6Dp1QwIvUIgV8zLx+fAx36OlsXpbjbepoUheNSI2KcpjkXwGPAtvN7KCZfTyqcyXJa8dHANi6ZtWyHG9jRxOHT2osvEgtWtxi42Vw9w9Fdewk298/CkDP2uVrwT/66gDuvuRROSJSXSILeFmcAwMjtDRkWLOqfsH73r3ztbO2bepoYng8TzaXp71paePqRaS6qA8+Zg4cH+Wctc3L1touzYZVP7xI7VHAx8yBgVF61i5P/zucmuykgBepPQr4GMkXirx+fJSty9T/DkwNtzyooZIiNUcBHyNHBnPki75sF1ghWFGyuT7Nvv6RZTumiFQHBXyM7B9Y3iGSAGbGts5VCniRGqSAj5H9A+EQyWWa5FSigBepTQr4GHm1d5jm+jTrWpe+0Nh053a1cPDEKOP5wrIeV0TiTQEfI3uOZNm+vpVUanknJJ3buYqiw+vHR5f1uCISbwr4mHB39hzJctGGtmU/9rbOoE9/b5+6aURqiQI+Jg4P5sjm8ly0vnXZj91TCnj1w4vUFAV8TLx4JAsQSQu+vamOzpZ69qkFL1JTFPAxsScM+O0RtOABzu1s0UgakRqjgI+JPUeH2LKmidbGaBYE29a5ir39w5EcW0TiSQEfE3uOZLlo/fJ3z5RcuL6V/uEJerNaG16kVijgY2B4PM/+/pFI+t9L3ri5HYBnDw1Gdg4RiRcFfAw8sf84RYdrtq2J7BwXb2jDTAEvUksU8DHw2KsD1KdTXLl1dWTnWNWQ4fyuFp5TwIvUDAV8DDy2d4DLt3TQVJ+O9Dy/sqmdZw4q4EVqhQK+wrK5SZ49NMi150bXPVNy6aZ2eofGdaFVpEYo4CvsiX1B//u1562N/Fy60CpSWxTwFfbIK/3UZ6Ltfy+5eGMb6ZTx5GsnIj+XiFSeAr6C8oUi9z9zmHe8oZvGumj73wGa6zNcubWDh1/uj/xcIlJ5CvgKeuSVfvqHJ3j/FZtW7JzXb+/m2UOD9A2Nr9g5RaQyMpUuoJbd++RBVjfXcf32bgDu3vla5Od8+4Vd/I8HXuLhl/v4wFWbIz+fiFSOWvAVMjA8zoMvHOPmN26kPrNy34aLN7TR2dLAQy/3rdg5RaQyFPAV8r9/8ksmC0X+xVvOWdHzplLG2y/s4uGX+5jIF1f03CKyshTwFbC/f4Q7HzvAB6/eyvnd0SwPPJeb37iBwbFJHnj+6IqfW0RWjvrgV9hkocjnvvsMdekUn/61CyI/30z9+kV3tq5p5puP7uc9l22MvAYRqQy14FeQu/PF+57jsb3H+a/vv5TutsaK1JEy47fffA5P7D/B84c16UkkqdSCXyazjYD58Ju2AjA4Nslnvv0LfvjCMa7f3kVusrgio2Zm85tXbeFPfvgyX/nRK9z20asws4rVIiLRUMBHbHg8zz2Pv8afPfQq2bFJvnjzxTSu4KiZ2bQ31/GpX7uA//6DF/nBc0f5jV/ZUOmSRGSZKeAjMjA8zj+9OsB/+/4ehsfz/OoFnfzeTW/g0k3tFW25T/fxt27j/meO8MX7nuOiDW1s61xV6ZJEZBkp4JfZ68dH+dnLfew5kiVlxvsu38hH33wOV6zAWjMLlUmn+J8fvIx//tXH+OBXH+UvPnY1l2xsr3RZIrJMFPDL5MToBA88f5RnDg7SVJfm7Rd2ce25a/m3159X6dLmdH53K9+69Vo+cvtO3vt//pGPvGkrH7pmK29Y36p+eZEqZ+5e6Rqm7Nixw3ft2lXpMhYkm5vkzx96la89vBeAX72gi7dd2ElDJvrFw5aidPG35PjIBP/uzt1Ttw9c1ZBhXWsD3W0N3HjJerasbmbLmmbOWdu8IgujiUh5zGy3u++Y6Tm14BdpIl/krp0H+F8/foUTo5NcvqWDd128jo7m+kqXtihrVtXzvss38Y6L1vH84UEOnhijN5vjqddO8tje41OvSxmc393CJRvbeePmdq7uWcNFG4JliEUkXiJtwZvZTcCfAmngdnf/w7leXw0t+KODOf7m6UN889EDHDo5xlvOW8vnf/2ixN5Ew90ZmShwYmSC46MT9GbHOTI4xvGRCXrDFSlbGjJcsbWDa3rWcPW2NVy2OfrbD4pIoCIteDNLA/8XeCdwEHjCzP7W3V+I6pwlxaKTLzqFolNwp1Bw8sUi+aIzkS8yUSgykS8yGX4ubSuU9intV3TyBad/eJz9AyM8/foge45kAbj23DX8wfsv5foLuzCzxAa8mdHSkKGlIcOWNc2nPXdydIL9A6McGBjh5WNDPPJKf7gPbF7dxHldLfSsXcXq5no6mutoa8qQMpv2ERzfLJh8ZeG+Vtoenj9lYNip55i2jzFtv4XtM1kIvseTxSL5gpMvBD8jpdenDJhWWyp16vilYxQ9+CVY9GCGcLHoOJBOGZmUkU4ZdenU1ONMOjW1vfS49HXKjHwx+Dks/fxOFk5/nJ9Wc7HoU8erzwSf69Ip6tIpMunS18Fng6mf+4l8kfFp/w8m8sH7LoY/88Vi8H5SKUhbUGtqWo3psP6UnXqPqZRNvTYdfp1KMfXYsKn/g6V/68li8H+z9O9/6r0WKRSDfevTKeoywXuoD99bXdqoy5x6HNVfj17KgGn/NjNlxEzbUhbU3JA5VXN9+HV9OkVqhf7ijbKL5hrgl+6+F8DM7gHeByx7wF/1Xx5keDw/9c2IQkdzHZdubOczN27nxkvWc353SyTnqSYdzfVc3lzP5Vs6ABidyPPawCgHT47RPzzOS0eHeGzvALlJLWom0UkZwS+xMDNLnRKnJcHUtlNbZ3pdqUfDpz0fhVO/+IIGRGdrPY989oZlP0+UAb8JeH3a44PAm858kZndCtwaPhw2s5cirGkuncCstzo6APwCuGvFylmUOd9DFaj2+qH630O11w9V+h7s96a+XGj9sy5JW/GLrO5+G3Bbpesws12z9WNVi2p/D9VeP1T/e6j2+qH638Ny1h/lnPlDwJZpjzeH20REZAVEGfBPABeY2TYzqwd+C/jbCM8nIiLTRNZF4+55M/v3wAMEwyS/4e7PR3W+ZVDxbqJlUO3vodrrh+p/D9VeP1T/e1i2+mM1k1VERJZP5detFRGRSCjgRUQSSgFPsKSCmb1kZr80s89Vup6FMrNvmFmvmT1X6VoWw8y2mNlPzewFM3vezD5Z6ZoWwswazexxM/tFWP+XKl3TYphZ2syeMrP7K13LYpjZfjN71syeNrN4r3kyCzPrMLPvmNmLZrbHzN68pOPVeh98uKTCy0xbUgH40EosqbBczOxtwDDwTXe/tNL1LJSZbQA2uPuTZtYK7Ab+WbV8DyxYV3mVuw+bWR3wc+CT7v5YhUtbEDP7HWAH0ObuN1e6noUys/3ADnevuklOJWZ2B/CIu98ejj5sdveTiz2eWvDTllRw9wmgtKRC1XD3h4Hj874wptz9iLs/GX49BOwhmAldFTwwHD6sCz+qquVkZpuBdwO3V7qWWmVm7cDbgK8DuPvEUsIdFPAw85IKVRMuSWNmPcAVwM4Kl7IgYffG00Av8KC7V1X9wFeAzwLVvHCQAz80s93hEijVZhvQB/xF2FV2u5kt6T6aCniJDTNrAe4FPuXu2UrXsxDuXnD3ywlmbF9jZlXTVWZmNwO97r670rUs0Vvd/Urg14FPhF2X1SQDXAn8ubtfAYwAS7omqIDXkgqxEPZd3wvc5e7frXQ9ixX+Sf1T4KYKl7IQ1wHvDfuw7wFuMLM7K1vSwrn7ofBzL/A9gu7XanIQODjtr7/vEAT+oingtaRCxYUXKb8O7HH3L1e6noUysy4z6wi/biK4YP9iRYtaAHf/vLtvdvcegp//n7j7LRUua0HMbFV4gZ6wW+NdQFWNKnP3o8DrZrY93PQOlri8esVXk6y0KlxS4Sxm9lfA9UCnmR0E/rO7f72yVS3IdcBHgWfDfmyAL7j79ytX0oJsAO4IR2SlgL9296ocaljF1gHfC28UnwHudvd/qGxJi/IfgLvCxuZe4GNLOVjND5MUEUkqddGIiCSUAl5EJKEU8CIiCaWAFxFJKAW8iEhCKeBF5mBmX5ltRqSZ/bGZ3bDSNYmUS8MkRWZhZmuBv3f3a2d4Lk0w6/lr7v6uFS9OpAw1P9FJBMDMvgjcQrDY0+sESxZngX+Y9pr9wLcIZqr+kbvfY2ZrzWx9OAtRJFbURSM1z8yuBj4AXEawUNWO8KnrCIJ+ugF3v9Ld7wkfPxm+TiR21IIXCQL6b9w9B+TM7O/C7RsIWvTTfeuMx73AxojrE1kUteBFZjcGNJ6xbeSMx43h60RiRwEvAv8IvCe8t2oLULpd3R7g/Hn2vZAqW7VQaocCXmqeuz9BsET0M8APgGeBQeDvCVbpnFG4hv35QFXe4FmSTwEvEvhjd78QuBE4B9jt7o8APaW13t2954wbOt8MfMfd8yterUgZdJFVJHCbmV1M0Kd+R+km4MDvAluBkzPskwH+ZGXKE1k4TXQSEUkoddGIiCSUAl5EJKEU8CIiCaWAFxFJKAW8iEhC/X/NhJ5kpRR96QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sns.distplot(dataframe0[\"g(r)\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhsAAAInCAYAAAAxn5trAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABWDUlEQVR4nO3deXxc1X338e+ZkeTRLlnWYmRLsmx5xxhHBHAwceyEOqlTklCWNIU8gdQlDTEtWYA0IQt92tCmfgJNmpSGtGnSFJykhEBSlxRwCE1IEGCMV7xgGxtbsmWtI4000j3PH6N7PWNJtiTrambkz/v18gs8luYeXc3M/d5zfuccY60VAACAXwLJbgAAAJjcCBsAAMBXhA0AAOArwgYAAPAVYQMAAPiKsAEAAHyVkewGnIZ5uACAiWCS3YDzCT0bAADAV4QNAADgq1QbRhkXlTOr9ObhN5LdjEGCmVPUH+1JdjMSpGKbpNRsVyq2SUrNdqVim6TUbFcqtklKzXZdMGOmjrxxKNnNwBiYFFuufFwaY4zR9f/06/F4qnH1yJ8uT7l2pWKbpNRsVyq2SUrNdqVim6TUbFcqtklKzXY98qfLNY7XLGo2JhDDKAAAwFeEDQAA4CvCBgAA8BVhAwAA+IqwAQAAfEXYAAAAviJsAAAAXxE2AACArwgbAADAV4QNAADgK8IGAADwFWEDAAD4irABAAB8RdgAAAC+ImwAAABfETYAAICvCBsAAMBXhA0AAOArwgYAAPAVYQMAAPiKsAEAAHxF2AAAAL4ibAAAAF8RNgAAgK8IGwAAwFeEDQAA4CvCBgAA8BVhAwAA+IqwAQAAfEXYAAAAviJsAAAAXxE2AACArwgbAADAV4QNAADgK8IGAADwFWEDAAD4irABAAB8RdgAAAC+ImwAAABfETYAAICvCBsAAMBXhA0AAOArwgYAAPAVYQMAAPiKsAEAAHxF2AAAAL4ibAAAAF8RNgAAgK8IGwAAwFeEDQAA4CvCBgAA8BVhAwAA+IqwAQAAfEXYAAAAviJsAAAAXxE2AACArwgbAADAV4QNAADgK8IGAADwFWEDAAD4irABAAB8RdgAAAC+ImwAAABfETYAAICvCBsAAMBXhA0AAOArwgYAAPCVsdYmuw0eY8wmSdPO8WmmSToxDs05H3CuRofzNXKcq5HjXI3ceJ6rE9baNeP0XDiLlAob48EY02CtrU92O9IB52p0OF8jx7kaOc7VyHGu0hfDKAAAwFeEDQAA4KvJGDYeTHYD0gjnanQ4XyPHuRo5ztXIca7S1KSr2QAAAKllMvZsAACAFELYAAAAviJsAAAAXxE2AACArwgbAADAV4QNAADgK8IGAADwFWEDAAD4irABAAB8lVJhY82aNVYSf/jDH/7whz9+/xmTyy67LNntHtGf3/zmNyl1XlMqbJw4cSLZTQAAYFgtLS3JbsKI9PT0JLsJCVIqbAAAgMmHsAEAAHxF2AAAAL4ibAAAAF8RNgAAgK8IGwAAwFeEDQAA4CvCBgAA8BVhAwAA+IqwAQAAfEXYAAAAviJsAAAAXxE2AACArwgbAADAVxnJbgAAAGfiOFYHmsNqbI+ovCCkmpJcBQIm2c3CKBA2AAApy3GsNm0/pjs2blEk6iiUGdCG65ZqzaIKAkcaYRgFAJCyDjSHvaAhSZGoozs2btGB5nDS2mStTdqx0xVhAwCQshrbI17QcEWijpo6IklpT0+0T62trUk5djojbAAAUlZ5QUihzMRLVSgzoLL8UJJahLEgbAAAUlZNSa42XLfUCxxuzUZNSW5S2pOVEVRRUVFSjp3OKBAFAKSsQMBozaIKzV+/Qk0dEZXlJ3c2ijFGxlCYOlqEDQBASgsEjGpL81RbmpfspmCMGEYBAAC+ImwAAABfETYAAICvCBsAAMBXhA0AAOArwgYAAPAVYQMAAPiKsAEAAHxF2AAAAL4ibAAAAF8RNgAAgK8IGwAAwFeEDQAA4CvCBgAA8BVhAwAA+IqwAQAAfEXYAAAAviJsAAAAXxE2AACArwgbAADAV4QNAADgK8IGAADwFWEDAAD4irABAAB8RdgAAAC+ImwAAABfETYAAICvCBsAAMBXhA0AAOArwgYAAPAVYQMAAPiKsAEAAHyV4eeTG2MOSOqQ1C+pz1pb7+fxAABA6vE1bAx4h7X2xAQcBwAApCCGUQAAgK/8DhtW0pPGmBeNMet8PhYAAEhBfg+jXGGtPWKMKZP0C2PMLmvts/FfMBBC1klSVVWVz80BAGB04q9TpaWl2rx5c3IbNAKdnZ1JaefKlSuHfNxYayekAcaYL0rqtNZ+dbivqa+vtw0NDRPSHgDAec2M5ZvmzZtnd+/ePd5tGXebN28e9sLvsyHPq2/DKMaYXGNMvvv/kq6StM2v4wEAgNTk5zBKuaRHjTHucX5grd3k4/EAAEAK8i1sWGv3S7rIr+cHAADpgamvAADAV4QNAADgK8IGAADwFWEDAAD4irABAAB8RdgAAAC+ImwAAABfETYAAICvCBsAAMBXhA0AAOArwgYAAPAVYQMAAPiKsAEAAHxF2AAAAL4ibAAAAF9lJLsBAAAMx3GsDjSH1dgeUXlBSDUluQoETLKbhVEibAAAUpLjWG3afkx3bNyiSNRRKDOgDdct1ZpFFUkLHNZaWWtlDIFnNBhGAQCkpAPNYS9oSFIk6uiOjVt0oDmctDb19PWrtbU1acdPV4QNAEBKamyPeEHDFYk6auqIJKlF0pSMoIqKipJ2/HRF2AAApKTygpBCmYmXqVBmQGX5oSS1SDLGMIQyBoQNAEBKqinJ1YbrlnqBw63ZqCnJTXLLMFoUiAIAUlIgYLRmUYXmr1+hpo6IyvKZjZKuCBsAgJQVCBjVluaptjQv2U3BOWAYBQAA+IqwAQAAfEXYAAAAviJsAAAAXxE2AACArwgbAADAV4QNAADgK8IGAADwFWEDAAD4irABAAB8RdgAAAC+ImwAAABfETYAAICvCBsAAMBXhA0AAOArwgYAAPAVYQMAAPiKsAEAAHxF2AAAAL4ibAAAAF8RNgAAgK8IGwAAwFeEDQAA4CvCBgAA8BVhAwAA+IqwAQAAfEXYAAAAviJsAAAAXxE2AACArwgbAADAV4QNAADgK8IGAADwFWEDAAD4irABAAB8RdgAAAC+ykh2AwAAGIrjWB1oDquxPaLygpBqSnIVCJhkNwtj4HvYMMYEJTVIOmKtXev38QAA6c9xrDZtP6Y7Nm5RJOoolBnQhuuWas2iiqQGDmutrLUyhtAzGhMxjHK7pJ0TcBwAwCRxoDnsBQ1JikQd3bFxiw40h5Part6+frW2tia1DenI17BhjJkh6fclfdvP4wAAJpfG9ogXNFyRqKOmjkiSWoRz4XfPxtckfUaSc5avAwDAU14QUigz8RIVygyoLD+UpBbFZGUEVVRUlNQ2pCPfajaMMWslNVlrXzTGrDzD162TtE6Sqqqq/GoOACCN1JTkasN1SwfVbNSU5E54W+KvU6WlpfrlL3854W0Yrc7OTm3evHnCj7ty5cohHzfWWl8OaIz5G0k3SuqTFJJUIOk/rbV/PNz31NfX24aGBl/aAwBIL+5slKaOiMryx302ypieaN68eXb37t3j1QbfbN68edgLv8+GPK++9WxYa++WdLckDfRsfOpMQQMAgHiBgFFtaZ5qS/OS3RScIxb1AgAAvpqQRb2stZslbZ6IYwEAgNRCzwYAAPAVYQMAAPiKsAEAAHxF2AAAAL4ibAAAAF8RNgAAgK8IGwAAwFeEDQAA4CvCBgAA8BVhAwAA+IqwAQAAfEXYAAAAviJsAAAAXxE2AACArwgbAADAV4QNAADgK8IGAADwFWEDAAD4irABAAB8RdgAAAC+ImwAAABfETYAAICvCBsAAMBXhA0AAOArwgYAAPBVRrIbAADA6RzH6kBzWI3tEZUXhFRTkqtAwCS7WRgjwgYAIKU4jtWm7cd0x8YtikQdhTID2nDdUq1ZVEHgSFMMowAAUsqB5rAXNCQpEnV0x8YtOtAcTnLLJGutrLXJbkbaIWwAAFJKY3vECxquSNRRU0ckSS06paevX62trcluRtohbAAAUkp5QUihzMTLUygzoLL8UJJadMqUjKCKioqS3Yy0Q9gAAKSUmpJcbbhuqRc43JqNmpLcJLdMMsbIGOpGRosCUQBASgkEjNYsqtD89SvU1BFRWT6zUdIdYQMAkHICAaPa0jzVluYluykYBwyjAAAAXxE2AACArwgbAADAV4QNAADgK8IGAADwFWEDAAD4irABAAB8RdgAAAC+ImwAAABfETYAAICvCBsAAMBXhA0AAOArwgYAAPAVYQMAAPiKsAEAAHxF2AAAAL4ibAAAAF8RNgAAgK8IGwAAwFeEDQAA4CvCBgAA8BVhAwAA+IqwAQAAfEXYAAAAviJsAAAAXxE2AACArzL8emJjTEjSs5KmDBznR9baL/h1PADA5OE4Vgeaw2psj6i8IKSaklwFAibZzcIY+RY2JPVIWmWt7TTGZEp6zhjzX9ba5308JgAgzTmO1abtx3THxi2KRB2FMgPacN1SrVlUQeBIU74No9iYzoG/Zg78sX4dDwAwORxoDntBQ5IiUUd3bNyiA83hJLdMstbKWi5lo+VrzYYxJmiM2SKpSdIvrLW/9fN4AID019ge8YKGKxJ11NQRSVKLTunt61dra2uym5F2/BxGkbW2X9JSY0yRpEeNMYuttdviv8YYs07SOkmqqqryszkAgDRQXhBSKDOQEDhCmQGV5YeS0p7469S0aaV66aWXFAwGk9KWkers7NTmzZsn/LgrV64c8nEzUd1Bxph7JHVZa7863NfU19fbhoaGCWkPACA1TVDNxpieaO7cuXb37t0yJrVrRzZv3jzshd9nQ54YP2ejlEqKWmtbjTHZkt4l6T6/jgcAmBwCAaM1iyo0f/0KNXVEVJafOrNRjDEpHzRSkZ/DKNMlfdcYE1SsNmSjtfYJH48HAJgkAgGj2tI81ZbmJbspGAe+hQ1r7VZJF/v1/AAAID2wgigAAPAVYQMAAPhqRMMoxpgySW+TdIGkbknbJDVYa50zfiMAADjvnTFsGGPeIekuSVMlvazY4lwhSe+TNNsY8yNJf2+tbfe5nQAAIE2drWfjPZL+xFp76PR/MMZkSFqr2JTWH/vQNgAAMAmcMWxYaz9tjAkYY66z1m487d/6JP3Ez8YBAID0d9YC0YG6jM9MQFsAAMAkNNLZKP9jjPmUMWamMWaq+8fXlgEAgElhpIt6XT/w34/HPWYl1Y5vcwAAwGQzorBhrZ3ld0MAAMDkdMZhFGPMFWf59wJjzOLxbRIAAJhMztazcY0x5m8lbZL0oqTjiq2zMUfSOyRVS/qkry0EAABp7WxTX/9ioBD0GknXSqpQbAXRnZK+Za39X/+bCAAA0tlZazastSeNMQWStkp61X1Y0nxjTNhau8XH9gEAgDQ30tkob5FUL+mnkoxiK4dulXSrMeaH1tq/9al9AIDzjONYHWgOq7E9ovKCkGpKchUImGQ3S5JkrZW1VsakRnvSxUjDxgxJy6y1nZJkjPmCpJ9JulKxWg7CBgDgnDmO1abtx3THxi2KRB2FMgPacN1SrVlUkRKBo7evX62trSouLk52U9LKSBf1KpPUE/f3qKRya233aY8DADBmB5rDXtCQpEjU0R0bt+hAczjJLcO5GGnPxr9L+q0x5rGBv79X0g+MMbmSdvjSMgDAeaexPeIFDVck6qipI6La0rwkteqUrIygioqKkt2MtDPSRb3uNcb8l6S3DTx0q7W2YeD/P+RLywAA553ygpBCmYGEwBHKDKgsP5TEVp1ijKFeYwxGOowia22Dtfb+gT8NZ/8OAABGp6YkVxuuW6pQZuzy5NZs1JTkJrllOBcjHUYBAMB3gYDRmkUVmr9+hZo6IirLT63ZKBgbwgYAIKUEAka1pXkpUaOB8THiYRQAAICxIGwAAABfETYAAICvCBsAAMBXhA0AAOArwgYAAPAVYQMAAPiKsAEAAHxF2AAAAL4ibAAAAF8RNgAAgK8IGwAAwFeEDQAA4CvCBgAA8BVhAwAA+IqwAQAAfEXYAAAAviJsAAAAXxE2AACArwgbAADAVxnJbgAAAC7HsTrQHFZje0TlBSHVlOQqEDDJbhbOEWEDAJASHMdq0/ZjumPjFkWijkKZAW24bqnWLKpImcBhrZW1VsakRnvSBcMoAICUcKA57AUNSYpEHd2xcYsONIeT3LJTevv61dramuxmpB3CBgAgJTS2R7yg4YpEHTV1RJLUIowXwgYAICWUF4QUyky8LIUyAyrLDyWpRYNlZQRVVFSU7GakHcIGACAl1JTkasN1S73A4dZs1JTkJrllpxhjqNcYAwpEAQApIRAwWrOoQvPXr1BTR0Rl+cxGmSwIGwCAlBEIGNWW5qm2NC/ZTcE4YhgFAAD4irABAAB8RdgAAAC+ImwAAABfETYAAICvCBsAAMBXhA0AAOArwgYAAPAVYQMAAPjKt7BhjJlpjHnGGLPDGLPdGHO7X8cCAACpy8/lyvskfdJa+5IxJl/Si8aYX1hrd/h4TAAAkGJ869mw1h611r408P8dknZKqvTreAAAIDVNyEZsxpgaSRdL+u1EHA8AkH4cx+pAc1iN7RGVF7Dj62Tie9gwxuRJ+rGkP7fWtg/x7+skrZOkqqoqv5sDAEhBjmO1afsx3bFxiyJRR6HMgDZct1RrFlUkPXDEX6dKS0u1efPmpLZnJDo7O5PSzpUrVw75uLHW+nZQY0ympCck/be1dsPZvr6+vt42NDT41h4AQGraf7xT73ngV4pEHe+xUGZAP1+/wq/t5seUYGpqZ9uXX2xQcXHxeLdnXG3evHnYC7/Phjyvfs5GMZIekrRzJEEDAHD+amyPJAQNSYpEHTV1RJLUIownP9fZeJukGyWtMsZsGfjzHh+PBwBIU+UFIYUyEy9JocyAyvJDSWrR0LIygioqKkp2M9KOn7NRnrPWGmvtEmvt0oE/P/freACA9FVTkqsN1y31Aodbs1FTkpvkliUyxijWcY/RmJDZKAAAnEkgYLRmUYXmr1+hpo6IyvKZjTKZEDYAACkhEDCqLc3zqyAUScTeKAAAwFeEDQAA4CvCBgAA8BVhAwAA+IqwAQAAfEXYAAAAviJsAAAAXxE2AACArwgbAADAV4QNAADgK5YrBwCkBMexOtAcVmN7ROUF7I0ymRA2AABJ5zhWm7Yf0x0btygSdbxdX9csqkipwGGtlbWWnV9HiWEUAEDSHWgOe0FDkiJRR3ds3KIDzeEktyxRb1+/Wltbk92MtEPYAAAkXWN7xAsarkjUUVNHJEktwngibAAAkq68IKRQZuIlKZQZUFl+KEktGlpWRlBFRUXJbkbaIWwAAJKupiRXG65b6gUOt2ajpiQ3yS1LZIyhXmMMKBAFACRdIGC0ZlGF5q9foaaOiMrymY0ymRA2AAApMe00EDCqLc1TbWnehB4X/iNsAMB5Ll2mnaYCpr6ODWEDAM5z7rTT4pwsfWDZDBkj7T7WroXT81UzjV6GeO7U1+Li4mQ3Ja0QNgDgPNfYHlFxTpZuvKxaDzy9x+vdqC7JVdVU6ibiWUmtra0qKiqid2MUmI0CAOe5srwpurZ+hhc0pNgaF5999NWUW1Qr2Yyk237wIgt7jRJhAwDOY45j1dTZo6qpOSyqNSJMfR0LhlEA4Dx2oDms3+xv1pSMgEKZgYTAMZGLaqXCbJiRsLL6hw8uY2GvUSJsAMB5rLE9IsdKGxve0PpVdXqk4ZDWLqlUMCC9papYVcU5vrch3WbDFBYW0rsxSgyjAMB5rLwgpMdfOaLr66v09K5jWnflbD303H498NRe/en3X9STOxvlONbXNqTLJmySpIGprxgdwgYAnMdqSnJ155oFeqThkG5aXqt7n9gx4Rf9tNqEjeXKx4RhFAA4zy2cnq+/veYiNYd7FIk6ml4Y8tbbkKST4R5fV/V0N2FLVr3IaBiJsDEGhA0AOE/19Tn62bajuvPHWxWJOrp99RxVl2Tr+vqqhPU26srytMyxvtVPuJuwnV6zkWqbsEns+jpWhA0AOA85jtWv9zd7QUOSNjYc1j1rF+ovTqufuPPHW3VhZaFvvRvptgmbu8YGC3uNHGEDAM5DB5rDajh4MmHo4mhbRHuaOoetn/BzKCVdNmHr7XN0y7/+Tr3dnfrex1axbPkIUSAKAOchd8prKDPxMtDvOIMeS9X6CaQPwgYAnIfcKa/rV9V54SKUGdCC6QXacN3ShMf8rp9wHKv9xzv1m30ntP94p+9Tbc9FZtDo2x++RN/72CpqN0aBYRQAOA+5U17v27RTt1xRq2BAqq+equW1JZKkR9ZdpqNtEU0vzNai6QW+1U+k24Je0X5HxhiGT0aJsAEA56FAwOiqBeWqLAoNhIqQFk0vVCBgJvTiP9yCXvPXr0jJ+g12fR0bhlEA4DzkOFZP7mzU9Q8+r1u//5Kuf/B5PbmzUa+fmNjVPNNqQS+x6+tYETYA4Dw0XI/CwZPhCb34uwt6xUvtglRWEB0LwgYAnIeG61HInZIxoRd/d0GviSxIPRdZGQGKQ8eAmg0AOA8Nt0R4ef6UCV3NM90W9KI4dGwIGwBwnnEcq2BA+uv3X6jPPvpqQqiompqrqqm5E3rxT5cFvTB2hA0AOI84jtXTuxu1p7FTD79waNC0VzdUuD0Zje0R7++p2tswkay1amlpYTbKKBE2AOA8cqA5rK2H2/Tgs/sViTr6xjN7JcWGUH4+MN003da+mEg9ff264e8f08OfvJrhlFGgQBQAziPuMuVnmnEy3EwVv6a/pptv3fJ2CkRHiZ4NAEgCx7E6dDKsxvYehXv7VD01V7Om+T9UUV4QUtBoyOJQd8aJO1NlemFIH1g2Q+5owclwz7jXVTiO1YHmsBrbIyovSO3iUFdhYSFDKKNE2ACACRZfN3H/U3smdKiipiRXF84o1O2r6wYd263TKC8IqbokW9fXV+mBp099TV1ZnpY5dtzax3DN+YOwAQAT7PS6CWlil+meU5qn4uwsPfThevX2Oao6rVelpiRX9159odZ9ryGhfXf+eKsurCwct/al21Llrra2toSeDYpFz46wAQAT7Gx1E35daIfrSTh9+CYQMMoMGt/bd6alylM1bBhJdzy62wsXvd2d+t7HVlEsehbnTYFoOm1hDGDychyrrGDAq5uI5/cy3aMp/JyIZcTTb6lyieXKx+a86NnwY1wwHYuaACRXX5+j/9nVqGi/o6k5WYPqJv76/Rf6ukz3aHoS3GXE/VxJdCKOMd6yMgJ66P+8NeExZqac3XkRNsZ7XJCiJgCj1dfn6Ll9J7TjaLuMpJ9sOaIbLqnS/TdcrMyA0cmuXs0p83fooCx/6CXKS/MG9yRMxDLi6bZUOcbuvAgb4z0umK5FTQCSw3Gsfr2/WS8dapFjpR+/eFg3Xlath184NGjGh583LsGABvWm3L66TsFhBtQnYhnxdFuqvKevXx/8hyeVEQxKkqLdnSzwNQLnRdgYbsOhsY4LpmNRE4Dkef1EWFsPt8qxUtBILV29+t7zB3X3exboMz96RcU5Wd56FruPtWvh9HzVTBv/z5KjbRH9228O6pYramWMZK30b785qIurioY9nt9Dxuk2JG0k2WhE/3Djld7wCcMoZzdpw0b8C3h6YWhcxwXPFl6Ge/Ok25sKwLnr63O0/Wibqkty9dUnd+nm5bO83oXXGjtUnJOl/7O8Rv/vf17zPp+qS2KboY3350NZfkgtXb3eEuXSmW+8/B4yTs8haaNAZuL5am1tTfg7U2EHM9amzqyM+vp629DQcM7PM9QL+Ot/dLFmleSppatHmcGAunr7x3zBP9MbRNKQ/3bVgnI9ubNxyMcPtXQRQACfJSPsO47Vc3tP6MWDJ5WbFVSfIz3ScEg3XFKlmcU5KsjO0PY323X/U3tUnJOlmy6v1oziHHX39ml+RYEWVxaO6wJao11IbP/xTr3ngV8NurH6+TgNGfv9/GcxphNbUzvbLr7lPmVm5w0ZKFJlKuzmzZu1cuXKZBx6yPM6KXs2hqqpuO0HL2vT7SvU1NF7zin6TEVN+5o6h6zneGTdZYMev2/TTgWMtONou9e9euGMQq2aV07gAMZRsu6gXz8RVsPBk/phw2Hds3ahvrJpp9YuqVS4t187j3Xot/uP6+YrZqs4J0u3Xlmrrmi/Pv2jV3xp44HmsG77wcsqzsnyhlECRlo4PX/Y5/d7yDg9h6SNAlNy1O8kttut4cDQJmXYGO4F3NjeM26FnUMVNTmO1c6j7UMe+2jb4DbdcEmVXj8R9lYRdIu15pTmjXi89lz2V3C7d4+2RTS9MFuLphcoIyP5S68w3DR5Jet3+/qJ2A3I6bURiy7IV78j39pzsDksx8ZqNL65ea/WXTlb9z6xIyFMTM3N0rX1M9Tc1asHn93vW/2G+7l4tC2SMIyyfHbJsM8/3vVuE/38/rByeroSHolGwrr/Zmo4zmRSho3hXsBdvX2+pujXT4S1p6ljyGNPL8we9PjM4hx9auAuxm3L/U/t0bKq4hF9uJzL/gp9fY5+8soRfe4n27zv+6v3Ldb7LqpMauA40xBYU8fEXKCStUHWZJeM3gX3d7njaLuKc7J042XVeqThkNYuqVTulKAaDrbqLx991bd6hIyg0eOvHNH6VXV64Ok9+vrTe7XuylrNKc3TogsKNWtarg6dDKtqao4ONHd5bYyfnTIe9RuOY9XXb0d9Yfd7HYyq4hzdd80S3fnjrWmzzobbsxEv0N+f8PfTazhc53Mth29hwxjzHUlrJTVZaxf7dZyhDPUG+fofXayMQEChzEDCnUPQSBUF45OiD54Ma2PDYe+DJRJ1VF2SrS++d7F6+/t13zVLtOEXu7V2SaWCASljmOWAu3r7RnS8+P0VRns3tP1omxc03J0dD53s0iuHW3VxVbH3wXYud6Jj+V73DtQ9L8U5WdrT2KnbfvCyrxcot63N4R41d/bq9RPhCd8ga7Jyz+3xjvHrWRyJvj5HP9t2VG1dvSotCOna+hl6pOGQbl4+S81dvZo5NVd/MUR75n1ihWaPw3oXr58Ia9fRdt1wSZUefuGQbrmiVsGAtKCiQAsvyFd1SewYVVNzdaS1W2+c7NK19TO8zw63TZ999FUtnVl0TufoQHNYn3vs1YTPplBmQPdds+SMF3Y/18FwHKsndzZqwy92e+emvnqqlteWpPj7bHDPRjAYTFjCfCipUsuRLH72bPyrpK9L+jcfjzGkod4g1ko3f/d3unvNfHVF+/XwC7G7G2ukN052a0ZRTsId/VgulLlZGd6UtluuqFV+KKj8UKY+9u8vKhJ1VF9dqPWr5+ovH31VxTlZ+sJ7Fw55p1E1dWSp3t1fIb6avTgnSx9ZXq2DzV1642TsTinc2z/oDt0d1pleGEq4k3rw2f1nLXYdyUV3pHex8ef5gqKQth9tSzgfH7q0yrvoS/5coNyL0p0/3qrb3jFHvf2Or93Z59rWVBz6Go67YuaOo+2qmpozIePzbm/G681d2vCL3frCexfpS49v123vqNMNl1SpK9qvx7Yc0dyr8ofcRv1oW9c5hw13SPVffn1Qt15Zq6uXVsrdIcGxVjOLT73HAwGjS2tK1BHpU2ePP72vje0RHWzu9j6b3GmvlUWhEV/Yx3suQXxtnTusM4HFoedgcM+GpEE1HIP+va8vocfjfOvl8C1sWGufNcbU+PX8Z3N6TcVv9p3QweZudfT06YcvvjFoIZ37rlmi9y65wJuiOpaLbHnBFG9K2zee2as718zzxmcl6dLaUi9o3HhZtf7mv3bqL945Vz/43UGtXVKpwlBQF84oUmN7RMborAGnvCCkoJFuurzaCxpukdk9P92mm5fPUle0fcg7dHdY5wPLBt9J3bdppyqLQt6FfSwX+pEsfBZ/nueW5Wn9O+dqX1On1/v0sbfXqjAna9w/fE+fFn3oZLfu/PFWFedkqaIwdNbubMexgy74gYAZUTg9l56i04e+Yr1mizQlI6iKwtSqbXEv+Idbu/X6ibAe23JEd61ZoOqSbK1dUuld2B9/5ci4jc+7x3zpUKsa2yPqjvZr7ZJKnejo0cHmbjV1RFQ9NVd/NzD9NHdKcMht1GunXSjnHLdRP9AcG1Jt6erVt57dnxBmFl1QMOi5MzICumphhba92ebLOXKHluPrNUKZAV2zrPKM3+fn0Fd6FodKVlbh5qNj+t5b/+23Msaor7tT/7xu1TnVdqRbWJmUNRtD8eo4+hytXVI56AIbv3Xy6V35I73IVk3NVV15ntZdWaucrKDKC0IJbyZjYs8Vf4H/2dY3te7K2Xr0pTf0/mUz9ZF/fWHEb+qq4hwtmF6gvn7rPa9bZHbLFbXe/w8VJBxrde/Vi703vHt3lx8KqjA7S9c/+Lz+bOWcIe/8ToZ7hjwP8bUOzeEe77jx33+8s8e7KLqBpDgnS7eunKOth1v1w4bDunvNfGVnBTQ1L6RXD7equiRbN1xSpRnFOerq6VNPX79yMoP6zb4TYxraif/wXL96jnduPnRpld442aWg0bDd2W+pLtILB1oSal3+7g+XKGAC+uQPz/yBHH+Xn5MV1IyiHO082q75FQWqnprjTYGeXhhSvyOd7OpRdmZQ4Z5Yz1RBKDNh6Ov6+ip98fHtuuGSKp0M5+j1E50qzw8N6smSNC5FmSMJSo5j9UZLWNuOtCtojPocq/uf2qNbrqjVQ8/t061XztGXntjunad7r16squKcQQGw39GoanTc3+uuY+16bMsR3b56rvafCCsYiL3mQpkBff/5Q/rL9yzQ2iWVau7qVU9fv+5as2DQUMp4DFs0tkcShlS/8cxeb++T4XouAwGjhRUF+sSqukG1VFXFg++kR2OstRF+rpacnsWhsXmd2XmF5/QcGXmFZx12OZN0HJJJetgwxqyTtE6SqqqqfDuOW8ex+1i7rBl+a+eaktxhZ5ScLXEHAkar5pWrdlqemjt79NzeEwk1IvPK8xXKDGhKxqk32Iq5ZXrw2X26c80C3bdpp9fFKUn3bdqp+RX5g44Z/4F+pKVL86cXeM/b2+8oEnVkjAZtYb2kskAfvLRa1z/4vCJRR1ctnKY/unRWwt3dp66aqy89vl1zy/K06IKCIe/86srytCzuzs8NGdvfbNehk126/6k9+sSqOd7PHl+U9797T6g36ujy2hIv6Hxg2YzYTrwDVfuOtcoPZWnr4VZt3tWkP189V8faI/r0wEqLN11erU88/LJX+3JJ9VRdWjNVh9u6z3pBPf3D0+3aDmUGVF4Q0oZfvKZbr6xVbihj6BlNbT3ehcB9bE9T51mHXRzH6oWDJ727/Ovrq/R3T+7SDZdUKXdKUFsOt3q9XjddXq2ndh7TBy+tVlN7j9czdd81F3rH/cCyGXp61zGtX12npvYe7279tcZOb4hwyxutWjWvVK+f6NLdZyiCPH0oqzUc1dH2xGGakRTuzijM1tOvNSkzaNTc2aOcKRnqHwjCUzICurS2VF96Yrt3nvJDQWVnBvX86yfUHI56vUs3XV494noZt+0nOmP1IB9dUau1SyqVlRHQ46/EelO+sinWg/j//uc1NbZHFAzEfu//8uuD+vTvzRtVoB4JtxgzfkjVnWa6rKrojMHpUEvXoNfX536yTcuqis+pPWOtjfCz9yGdNmGLv05Nm1aq983JGodn7R3zd1onoBdeeEHBM0y37erq0lNPPTXkv53p+87VcGt7JD1sWGsflPSgFFvUy49juB9IpflZqpparhOdvcMWip5pRklFQUj7j3d6F7Sq4pwhF+SqKcnVjjfbtXHgLr0r2u8t2vPZd89XaVyiN0Zau6RSh0+GB13U16+qG/Sh585AMZJ3Yf/zd9Z5z3vwRNjbstndwtodkqielqs//d6L3s89vyJfX/jpNt25ZoHXw1BRkO31NHz5ie3evw3XCxR/Rylp4K6yTmUDQ0qS9PALh/RHb61OWCHx/uuXqmJgKGdKRsBbXXH9qjqV5oe081hs7ZGV88v0evOp6cEfWDbD20/CDTAHmzt1vLNHnx3BrILTe3KWzijUvT/bobvXzNe0vCyv2/ue9y70urPzQ0FVFuXoREdExzt7Bn34unUzZ5pFcKA5rObOXu8u3y1UNEbq7nW8oHH3exbo75/cpTvXLNCuY+0JIWZ6Ycj7fc6viIVB92s+ddVcNXf16rEtR3Tz8lnq6etXXUW+ToajujsuxNSW5ikzYPTUrkbVTstT9dQcPbmzUfdt2qmPr5ytN052656fDp6hdKilK2HqaHlBllrCUd32g18lDOnsONquuWX5OhHulQn3KjszNlRRV5annccSZ4S4geuTV8337rhHU6Pjvva+89w+feiyGkWijoqzM9UWiepwS5eur6/SQ8/t07orZ+vBZ/fplitq1e84WlZVrJcPtailq1dH27q9QP30rmO6aXmtunv7FO236u3tV1bW6D+UTy/GdHs17rtmyVnrsfy4uJ9LbYSfvQ/ptAlb/HWqpna2/cnesQeF8ZJ51JExw18yf7/S6md7B082SFavSNLDht9OvyOrLsnWV6+9SH9/7UXexdp9/LLaEnVEogndn8U5sTnwC6cX6JXDbd6HYn11oT54ac2Q0+bix2s7evr09Wf2eh/SpfkhfeW/dmr9qjo90nBI88rztaepQ9OLcrzFfKTYB8wDT+/RI+suS/h53Bkoc8vyvbZ/99cH9eU/WKS/+vkOfX7tQt2+us67M/7su+dLkkrzQzrWFkm4KH50Ra0ONndrb1On90GvgSGEXcfadbC5W4eau4b88DsZ7pEkb4bBR1fUKm9KUNfXV6k72q+/fHSb5pbl6SNXzNK1b5npBY3phSHddHm1ToR79c+/2qevXrtE2ZkZ2tfU4QWIT101X46NjVXf9o46HTzZ5X1vVXEsALgXq0caDg0ZiNwLVE1JbsI01pLcKQkXl7fOKvaKBvc0dng1N998Zq9uffscfeuXe3V9fZUef+UNvWvhBQoGzKAP3/hhl/i79qxgQL98rUnVJbk61hZReKD4zw2YXdF+dUf7dSLc6/1eDjWHtXZJpXYNhC23Dqe5q1cHmsO675oL1dYVVVFOll44cFKOleaW5WlaXkit3Z264ZIqGSP1WynS63gX+FuvjN1d7z/e6QXfjyyv1kUzi3Tfpp26efksTS/M0Z98r2FQMHl6d5MyAsZr49O7junWlXW67Qcveefhxsuq9fIbsb0/wj193mZjt15Zq7vfvUB/8187ddeaBd55cgPX9fVV2tvU4R2zojA0oout41htO9Kq+zbFnnfXsXbVVxdqam6WLijO1q6j7frJliNau6RSHZGoPnnVfB1qDuvS2hItKC9QJNqv21fX6eEXYq+f7zy3T9csq9Jn4hbUuvfqxXr/0tFPBR+uGPOCERRjuhf38Zwxdy4Bxs/eh/RdT2foAtGJdraCVGulvtOm5EqDC1XP1UhrR/yc+vofklZKmmaMOSzpC9bah/w63nDiU707zn3jQ7/Tbe+Yox+++IY3a6S8IKQ9jR2aOTXH6/68fXWdCrIzde8TOwbGnPd7z3PzFbOHvcDFj9dG+voTZou4F/hN245q3ZWz9dUnd+muNQu073jnkB8IXb2JLxZ3Bko4rmr9aFtEO4916GBzt3a82aH/2XFM17+1Sg88tUefe89Cvfpmm06Ee1VXlj+oFiGUGRt6qS7JVnlBSIdburw5/9Ul2aouyRl0ca0uydaR1oj++KHfeXUdkjSjKLZuyEdX1MaGaRZV6MCJsC4oyvbO242XVat7YDbQzctnKSMQ0Jef2O51d69dUqnMgbUJrq+vUnNnj4JGXkB4s61bwYC8upvb3jFH+4c4d8U5WWoJ92rn0djQjju0UBgK6ot/sFhfHOjRefFgi37YcFh/vrpOX3tqj269slbrrqxVXVm+Pv2jV3TbO+bo6V3H9LGVdfryE9v18bfP1hfeu0jf+uVe3XBJlRZMz1dhdqYOt0QG3bW7a6jUVxfqtlVz1dLV6/U6FYaCKs6dooMnY1Po3GmZ3muhz1HQSB9ZXu3Nnli7pFIXFGZr3/Gw2iOnNvVad+Vs7WnqUNDE1m55ralDj205ojveNU+OlbdgVHZm0Asabvg40hrxahhCbd1DBpNI1NFda+Z5bbxzzQJtPdzqnfMllQWaXpit1u4Ob5Mx97/fena/PnnVXB1s7tY3N+/VR66Y5Q2ruL/Du9bM002Xx14XB06Ez1og6fbutXZFde1bZmrnsXb9sOGw7rtmidZ9r0Fzy/L04bfVxLZvP2045sLK2DDGVQsrdOhkWMuqinUy3Kubltd6QcN9733+sW2aW56ni2aO7g4wJytjyGLMqxaWnfV7a0py9fU/ulh74obDhpsxN1Kj2Vb+dH71PqTnniiuwVNfU5INyukZ3AMzkmm6IzWaXhLf5sxZaz9orZ1urc201s6Y6KDhOFb7j3fqtcaOhHFu90KbETQD3az71ddv9fqJsE6Ee72725auXvU71ptN4hZ3SrHpmLuODV/XUV4Q2+xo07ajekt1sTdbJP4Cv2Jume59Yof3IbxgoO5iemFIH3/HHN22ao5uXz1H0wsTPxDcGSjxFy5J6u13vOCwcn7suXv7rFq7o3JsrKv/aGuXN/1wemFIuVlBfX7tQj3+yhHduWaBDrd06T9+d0iFoUzvsa9sivXCuMcKZQb0pT9Y7I2vL6iI1aE8u7tJ/dZ6P6MbXjY2HFZZ/pSEmS+OlXeB23G03TsH666crYee268vPb5DH7o0dtG2kqpKcnTXmgV64Ok9emZXky6aUaRgIBYoygtCqi7JTTgXSyoLdNuqOfrdgZPa3djhDbs8sfWI+q3U1dOX0HvQ0tWrN1q7vYtjvxP7Gvf5b1peq1cOt2rtkkrd8/gOPbntqD551TyV5GaqpSuq5/efVEbQeEEuvgB5SWWBPr6qTl/46TZlZwZ1x7vm6vl9x7WoslCHW2LFqM/vO67aaXlau6RSX9m0UxfNKNLjrxzR1Jws1ZXnJ7S/ubM3VovT53hf02+tNjYc1tScLGmgVidWzxILbTOLc5STFdS0vCleD1ZzV69OhHuVlRHwahhysjK8YHIi3OsFkzvXzFN5YUhVU3MSzlsoM6AllQVa/865spLXnpysoErzp3jvowPNXQplBrT1SLvebO32hlXc32FlUY7ufyr2unhmV5NuvXKOnth6RNbG6hz+6n2L1e9Y/WbfCe0/3jmwg2qb3jjZpdL8Kd7v8NjAHfzWI+366n+/Jkn6uz+8SN/842X62SdWJFzIAgGjmml5urS2RPMq8tU9zIJ/x9oio/rMOdjcqWNt3YPeM+tX1Snaf+Y7Ubdds0ryEl+zjvTCwZP6330n1Nd39ucY9Jwmtq18fHvOtK38UG2qKclVWX5Ije0RHWgOy3HObcR7uMLTA83hc3reiRHr2Uj1PzLBYf+t33GG7PXw06QcRolPzR9dUevdKVUVZ3sv7sq4YYvSvCl6o7Vbkrx58Xe8s06lp80mcbs3ywtCOniya9ixzPi7k3se26ZPXzXf+7ofv3iqx8N9bOuRdt3/P6/p/75/cUJBYCgzoHkVBd64v+NYBQPS3PJ8NXf26I53zdWGX8RCzOOvHNG9Vy/W15/Zo9veUefVN7gXtJ8MjOUXZWd6vQTuxeTa+hmSYhesGy+r1j89G7vw7z/emdAdnB8K6oKiHG8l1g8sm6HXT3Tqs++er3Bvv462dnvB4/NrF+nVw61q6erVweawbl9dp+5o7GfOzgyop89JKM7ceqRdx5/e6xWwLZ9dotXzy3W8M+LV0hTnZGnN4un65uY9+tjKOmVnBnW4pUu5WUFvWOqWt83SjKk53roKB092ecMuH72iVp09fXqtsUPZAzOT3NUdH2k4lDDGfvvqObq2Pnb+LijKjvUiBGIfigsri7S3qVNzy/L1WlOHHnx2v/78nXWaWZyTEEyXVBbok783T8cHpl5+69n9+tjba3X9JdXafiRW03PrlbW65YrZOtgcmzlxsLlbrzXGhpS+8+vX9enfm58wbPRmW7f3+3S/5q/ed6EXlO69epGCRrJGevCXsdkfzZ09mlGcoz1NHaouydYFRdnafyL2oX64pUsLKmK1H9/99X798WWztPd4p6RTdSiSdPd/vqpPrJrjBZPHXzmiu9fMV3lhSFsPtyonK6gbLom154ZLqjS7NE+zS4P69k31kqzqymIzIb7//CHds3ahHnpunz62MlbT8+qbbd7rYuX8Mn3r2b1e/VJxTpayM4P63E+2eQXBCyoKvGGav37/Yv3j5r1av6pOOVlB7z15tC2i+zbtVigzoEfWXXbGdTNqSnLV2B4Zuk6rcGTDF25vS7TPatex2BBO/BDKIw2HtGZxxYieq6kjkvA7H26K/kjbtf3N9lFvK3/6c4x3L0S6TnuNSe+eDdfpS6yP1Ui/f1KGjfjU/OzuJm+63UdX1HofKK+fCHsv9pwpGQoOvGfcD+2737NA++IKRX/84mH9xTvnyrFWh1u6Ei5S7g6OoayAOrqj+u3rzSrLm+KtemkGCjXdD8HvPX9Qf/n7CxI+3LYeaU8IGlLiVNXefsdb2fLhFw55H+j/fGO9ov2OqktyVT01R2+pLlbzwFQ/Y+Rd0NwLwS1vm6UvvHeR/uzfX/La88OGw7rnvQu94aMPLJuhjkhUS2YUet3B//lSLIh85kev6O/+8CKvsLO9p1+9/darS3ELYncdbfeGkv7l1wd08/JZmjUtV9Ul2SoIZWpa/hRvXN29yB9ti+ih5/brvmuWaOH02G6X7kXCHQ5wi0KbwxFdUJitr2za5V281q+uU05mhra8EeuFcIdgrJGufctMHe/s0YPP7tfcsjzd/s65+vIT2xMKTTMC0nc+fImMiU3X3XakXf/35zv1t9cs0T9u3qu71izwzmt8bUIk6qizp1+yPd7dY3VJtm5dOUcd3X16YyCYHm2LqLGjVw89t0sfXVGbMMzw3d8c1D1rY4u8tXRH9fgrRwbaZBKGjdxhDndVyrVLKnXwRKe+fPVi3fPYNn3+se36+DtmqyRvih58dr/+43cH9fFVdert69fGhsP6/NqFcqz1Xu/dvf166Ll9+uCl1QplVqilK3bOsjODXk/Nl967SJGoo+8/f8irDbq+vkr91nqbCP7H72LDYlcvjW0ytu3NNi2cXqCrFlZ4QfnCykI1dUTU3duvS2tL9c3Ne/Shy2q073hs6CQvK0PlBRkJP6tbMBsfPtxA5QZZb4XOt83Sl/5gkb7w01NTa//qfYu1aPqZpykGAkZvmVnshXX3/RwIxHp7zrTmhjsT63hHj7YebpMk/XAgtMeHhL9+/4UjrnMoLwh5v/NHGg4lzFDb8IvdXnH2SMTXj410W/mhnmO8p7+m67TXmNSo2RhK/GZwJtCjrJwztNMYFRUVTVih6KQMG/GpecXcMm9ev9ur8MDTe7xhh0jU0ZHWLpXkxqYyuQWCrzV2eF/vBorK4pCi/VZ/u2m3VygXP/Xw+voq3fZ0LGCsX32qluGNli7veSNRRy1dvTrZ2aO/vWaJPhM37929M45f8yI/lKn1D7+sT141X3sH7qJjIWS3pMFV5bWleQnTfN0L2k2XV+tTV81Xd2+fHMcmvMk/sGyGV7QaXz3/teuXesVhH7r01B3WkdYu3b1mvsoKQ9p1tN2bbnu0LeIVxLoXUze8mEBsqOdz71moTzz8csK4evxSzsNNyaspydXiCwoVygh6BYYZgVMbXK1/51xtPdwqSV4vhJVUkpul0oKQ2rujeqOlW5GooxVzywYFjWBAmltRoLfWTPXGxfud2PN/57n9+rOVc/TQc/v0+bUL1dQe61rPDWV4M37cYki3OPfzaxdp6+FWVRZmJxQcu70e8a/FA81d3s/x+bUL9eCz+xIurl9470LtGJiOfbQtkvD7zAoGNKcsTzOLsjWvPE/H2iKqLM5WXlZQf/3+C/XZR1/Vn37vRd21Zp5aunq1t6lTWRlGU3OyvAvY6gUVeuCp2EW2sihH0/L6lZMVVEtXVJGoo7zQqRqEwy1d3u/sU1fN18muqFdf851fv+6dy2VVxbpi9rSEYQt3kb39xzv18hutajjYpnfM7/aG7O7YuMXrPXF7VY61dg8KWsbEfq+3rz4VZK9eWqmmzl5V5GfpXz5yidq6oppeGNKi6YUjqnPIygrq6iUXKDcrqIMnu/Svv96vm5bX6qVDLTrR2aO3zCweNDMlfm+iqblZXk/dWKa8nv5av6R6qnYebRvRDLUzOX29j7GEHz96IdJp2uvpzmVRr5EY6+6x0e6wHrrtPV5Pw0svvaSH3rXsjN8zkRvGTcqwEV8QFV9r4fYq3HJFrd5SVai6gUVuvvvrg/rY22sVifartjRP//hHy5SZEdC3f7XfK+RsbI/otcZOGZ36MLn7PQu8AHDLFbUJhZfumLY7W8QtPHQGxqEvKM7WyroyLR6423OXVI+fKfGJ1XN1z2PbdH19lQ4N7B45kje9W9S1cHq+qkty9dlHX/W6lDdct1SzpuUl3FUYoyGr56flZWlZ1VQtvH2Fth4+tYx4Z0+/rJW+8l+xWQxlhafOd6TPGXQx/cYze7V+9Rz99c936d6rFyeMq7sXzcygUV1Z/rAbngUCRuX5U7T+4VO9RfEfojvebPc+7N31FXYei3Uff+zttaouydWbA8M88T+vW/Hf70h5U4IJF6ZZ0059IDaHe7XuytnKzAho0fQCHWntVrgnqpppuV6Q/Naz+/XxlbX64KU12nX0VD1I/MXHXWsl/rVYMCWov3n/hbr70Vf19af36tr6GZpTnqdH/uQydUX7dUFRSNmZQw8RxAfNi2YW66KZp85ZVUmels4sUlNHbCiqqiRXu4+1q7s31hNxwyVVqi3NU05mQF987yL1O1azBqbD/mrvcTW2R1Rdku2N8d//1B41d0X14xcP6wPLZig3K+gFjfjQdvFA0BjuIu9eTN2Ftm68rNor8nWHWa6tn+EV5r4yUIzqLlrX3NWrHzYc9l47juOoNH+KMgaC11gLGA+3dWtXY4d+vff4iGamxO9N9PfXXuQNb41lymu8QMDo8toSBQNGN3/3hYSZKT19/QpljvxiVJYfOufw41cvxMLp+fruR96qrt4+VaXRZofjsajXcKKRsL51DkMb8TNDgsFgSi36NenCRl+foz1Np6YwSkp4o7hd9dcsi02LdLt2KwpiqxYe74xd+KuKc7ThuqXadaxd9z6xQ3+2MrZnRvxF9LXGDkkaFGokJXzd0baIvvPr13Xv1RcqM2i8FRJfOHhS5QUhvbWmxOtqvvfqC/XAU7t1zbIqvXiwxetKdaf3jfRN7xbAVU3N9S44bj2JpIS7CvfufKiljAMBI8fKu1AX52SpLC9LhTlZCXUI9169WJ9/bJv3vfEX02BAurCycOCDe+iL5nc/8taz7kfRFe1P+NnjP0RnTcvV3qYO/e/e47r1yjleTcCDz+7XPT/doS++d4F3NxyJ9g/7855+DoerxF8yo0iHTobV1hXVzOJsPXjjW9QTjV30bvjn5/XRFbV6/JVYnYxbW/ONZ/aquiTbO1fua3HDdUt11YJyXXTa7yn+g7eycPQrQJ6+ZH/V1FwtnJ6v7W+2DzlTI34MvrokV198PLbOypef2KGbl8/yZum4XfJ3vXtewnCOW09RO+3Msybci6n788QPKx5ti3izVuaU5XszlUKZAeVPyVDnwCaFLV29Xu+e+/s71z013Jle7syUoaYAzy6N9SK9drxDh1u6venJocyASnKzBvXUvaWqWG+L6+EZKff8nb4onjXSic5e9fU5Z+2xcRyr15s7E7ZQcH/Xowk/490LMVwNiLvabeobv2GUQb0YEzy0MZGMHe/ddc5BfX29bWhoGPP3O47Vc3tPaN3AWgHu4kPZmRn6/GPbhv1gPdPzbX6tSX/56Dbds3ahdh1r1z/FLbI0vyJfe5s69E/P7tdHV9Tq27/an3AxrC7J1gM3XKzuaH/Chf5MxVa/2XdCxzt79ZkfvaJPrJqjnj5H/Y70xNYj+vjbZ6tfRl96PHFMeizbwrtz3N2gteNoxxnbtOWNVuUOdCOHe/tlJH0trr5kemFsV8231hR7q0HGP9e88nz9/j/8Sn/+zjpZq4QL3e2r6/TuxRVnLVbbf7xT73ngVwnTaON31/3UVfOUEQh4U2jjf/fuwmaRaL+qp+WpratX98SN7Y/XtLvf7DuhD/7zb7WkskDXv7VKDz67z6sBCAaM6gbuvA+1dI16KmH87+xcpiDGLys/3F2le0HYf7xTX33ytUFDe/c+scM7pyfCvV6P3ZIZhVo1r3zUP8/pr8G71sxTcW6W7vzxq1pSWaB1b69VdmaGth5u9Ypjz6Vwcij7j3fqsS1HdEFRtr72P3u8IZtwb7/3er1q4TStvWiGWsOxnWR3HW2XlRIWU5telKPu3j5NL8rW5bNKxrxR3v7jnfrJliPeirOj/Xnd90t8z0jASB+4uHLUGwqO12svvl2n3zQlYQO2Mf0ANbWz7eJb7jvngw/XizFee55s3rx52NU8fTZk4ydVz8aB5rAaDp707prdosaHnnt9TFsYBwJG1VNzdW39DH1lYOGj+LsE9wLnLg50+rjonWsWePP6XfuPd56x2Kq8IKRDA7u15mVlqLY0pJ0D00ObOnu9tUHcoY5/eHrPmJYyHuqud7i59OUFIXVH+9Xv2IQdUeN/3pauXs2vKNDy2aWS5PUYnd6b4i4gFT+kVFeeN6I7rfg7rKNtET3ScEgP3livzKDxVnT91d7jOtjc7fVYTC8M6ZYrarWkskDzKvK93qt55Xn62SdWeD1Z47WgUGwqbrbWLJ6uB5/dp7VLKtUd7VdeKCNhaCH+3I/U6b+zsXJ7vc50wXF7dV490qavP7M3oReouiRbj6y7TN3R/kE9gqM5j2d6DVYUhHS0LeLNVArI6MtPbNfNy2eNuM5ntGpKcnXhjEJNyQh6U4AleXVS0wtD+uPLatVw8KQk6aevHNGHLq1Rv7VeL98Hls1Qe2OHrJVqS3PPaUfempJczS3LT6hZcUPD/uOdOnQyfMbfoVtrEf+7k2IzvUYbNtzpr+7zuu0byzlP75ko0mh7NoatwZjEvRhDmVRhw+0Gdbvp44sax7KFsdsNWTU1x/swuenyav3dH16krp4+1Zbm6uKZxTrS1qW3VBWrvSeq799yqaL9zrAr4p3tjeZOw7u2fob+ZtMuXT5rqm68vCb2M/U5CRdS13i8Sc90IXPH2F84eNKrG4kfJjFGWjFnmi6pmer9vEM915pFFZpfka+T4R5lBgPq6u0f1cqBI1lgyF1z4/Rhs5+vX+F9wMYP15zrVuKnqynJ1b1XX6h132sY8+suVQQCRhdWFg7qQh8qRI/HeTz9NXhBwakhp45IX8J78FNXzVdXT59mTM3W5bWjH6YY7vir5pXrcGtYJ8N52tPUqaxgwAsa96xdqKNt3V5t0KW1pfraU6/prncvGNGw3Fjas2B6gV4bWGH1TMvhn87dn2W8ai3Gc/pres9EkUYz9fVs00snskAz2SZV2CgvCCVMST1911VpdAn6QHNYt/3gZW9TMbfGQDp18QgEjLa/OXgI4tJZQ99pne2N5k7Da+ro8dZ0+MfNe7xZEMl4k7pj7I61eulQS0LNhTsO/IGLK8/6oTMed+Zne45kV7kHAkaZQZPmd26nJHP/iqysoN6/tFJzy/PUHVdnE/8efGTdZePalkDAqGpqnqLR2KKAtaWx6do3L5+lcG+fcrJOTZO3A4XGX358x6BezfF6zc2aFgv6kobchXi43WlP358lfvhlLO0az+mvyX6PnruhezaG7ME4z3ovzmRShY2q4hzd8a552vCL3frkVfMT1slwjebi7PZCfP/5wUMk7psjfpv04Xb8jDeSN1pWVlCLB1YUNUZqONimI609uunyan1+7UJvVdOJfJNmZAT0ttnT1D2wp8TpxYWp8kGRCps7pf+dW6LxGr4Zi4yMgC6aWay+Pkd/9b7Fg7ZeP9saGmM1qzRPF84oVHdvv7cp3smuXv3v3uP60KU16ohEvQ0VTy+GXj2/bFDPz1i5Qb+lu3dUAfZc9mcZyngOfaTCe/TcDO7ZOFMPxvnUe3EmkyZsxG+jvHZJpbp7+855fnn5CD5MGtsjo+riHOkbbVZpnrdWRvwd3fTCkNZdWauLZxapuiR3Qt+kGRmBhD0lUnXKWjIvjtJkuHNLPRkZAb3vokrVlcXWEqkYxRoaY+EOqWx7s03PvnbcW7H0xsuq9e+/PaA/uXKOCkNB/d/3X6i/fPTVhJlF4xU0XBkZAS2aXnjWPWPincv+LEPxK0Cn0PyEUYj1bCT0ZNCDcVaTZjbK6RXOt62ao2//av+IKrGH231wJOOUbsW4W0TmGo8xenfWwEuHWke0fTpSx3hW7yN5HMfqf/eeUMPBkwkz0dzPk2uWVarfke+/574+Rz955cignp2hZqI5jtX/7juuVw+3D1oQ7K2zilVfUzLq449nzUYKbcI2poNV1862NVffrvs/fKUKC2M9a4WFhSouLh6XWSTjhdkoPjm9m+/0RaWGm19+thf+2Xoh3IpxP8boz7RWBheu1Jbs3hWMD3cYI9zbN+R6FTOLc73ftZ8OtXTpcz/Z5q39MaM4Nr12x7F2Lb6g0Ps8cD/PDjWHE5Y6H+3+LKfzFgq8fYUa23sU7u1T9SjW6ojnx/LnE8lIyp92gb709DEZ0+jtfJpKQSMVTZqwcXo3nzs10p2iN9xF+mwv/LNdNNyKcT/H6LlwAcmTCsOH7nDtrVfWqiva720iefrN0YHmsDe9fKiF2851KO9M6/GM5mdJ7wJq4+2cipGbNGFjqHHyoabonW48Xvjxy1ozRg9MPiNZm8RP5QUhb+0Pd50bt4ejMxLVtjfbtPiCQjW2x3aM/ZtNu1Sck5WwRPnC6fnnFI7Gq0ci/QuoTxWInuvy4ueTSRM2xlLhPF5z0dO/uhpAKnOHa3c1diT0cHz1yV264ZIqHWuLqKunTz19joKBU2vhnOtiXvHGq0eiqnj0S++nllNTXwP9/UluS/qYNGFDGv1ww3jORWeoA4Bf3OHaPU0durZ+hrqi/Xr4hUO6efksBYNG+453akpGQN/9zQFvL5nx7jkYjx6J+FmD470C7MQ51bMRDAZ12w9e1Pf/jJkoZzOpwsZoDTcXvXKMc9EBwC+zpuV6a39Eoo7WLqlUV7Rf3V39emzLEX36qvk62Nytb27e68t6PDUlufr6H12srYfb5FgpaKQLZxSO6nnjh2LSd3XdxEW9ol0dam1tHbc9TSar8zpsxK+jMZ7LDAPAeHPX/nj5UIue3XNcwYA0NSdLb7R2a+2SSmlg9+atR9p1/Om9Xs/BFbOnqT5uK4Fz0dtnvWn+bogZjfQvDpVOX9SL3o2R8WdFnDThFpWGMmOnIf3GDgGcTwIBo95+RxsbDmtBRYFyQ7Hl04MB6XBLl25fXefdQD303H5lZwZVVjBlXILGcAWiB5rDI34O9wYvXnoVh0qSUVZOfsIfejTO7rzu2aCwE0C6KS8IqaWrV9/cvFef+r15KsnNUmlBSF/5r8E7Ks+aljuiHZVHYjx6JdK/OFSy1tFXr64b1IvBjJQzO6/DhkRhJ4D0Ej/N/6v/vVsffluNmjsiuu0ddfr6M3u0dkmlL4WXbq9E/CqqQSNVFIysV2JyFIeKpcnH6LwPGwCQTk7vka0oCKnfkVq6evTADRerq7c/YduF8eIWiO5p7ExYLGxeRcGwW93He/3EZCgOjWlra0u55clTHWEDANLM0D2y/l6wAwGjWSV5uu0HL494l2uX41jtPNo+CYpDY8uVUxA6eoQNAMCINHWMbpdr1+snwtrT1JHmK4e6jJz+fqXSJqbp4LyejQIAGDl32XQ3aEix3onPPvrqGWelHGwOa2NDbHPM+Nl/f/W+C9OqODTGyolGkt2ItEPPBgBgROJ3uZ5eGPKGUiTpZLhnyOEQx7HKCBq1dPUmLKAYMNKskpz0Kg6VJBllZudRrzFKhA0AwIi4y6ZXl2Tr+vqqhKGUurI8LXPsoPDw+omwdh1t1+2r63T/U3v0jWf2KpQZ0O2r61SSl5Wkn2TsrKz+4YPLmOo6SoQNAMCIzZqWq3uvvlCff+xVr5dCkjb8YrcurCxM6N1wC0P/5dcHdeuVtQlrgFRNzRm3NUCQ+qjZAACMWCBglJ0V0PX1VXrouf36+tN79e1f7df19VU6Ge5J+NoDzbHC0JauXn3r2f3qj5uMsuiCgjQcQon5029vVmtra7KbkVYIGwCAUckKBrwhlOmFId1yRa0iff0yMnKcU7M0GtsjXmFoS1evvvFMLJjUlIzfyqbJ8E8fXckwyigxjAIAGJWugZ1nl1QW6Pq3VunBZ/dp7ZJK/XLPcXX19uvygVVB+/rtkIWhy6qK0rZXw8VOr6ND2AAAjEp5QUjVJdm6deUc3bdp56Bi0a9dv1TTC0P63GOvav2qOj3w9KnC0PuuWZLWvRpG0h2P7lY0Etb3PraKhb1GiLABABiVmpJYkWjDwZNau6RSjzQc0u2r6zSjOEeO46ilK6q27qgONncn9GpYK5XkZqZ5r4ZRv+Oov6+P3o1RoGYDADAqgYBRZtDIsVJhKKibl8+SJH31yV3KygjqS49vV96UDG+7+288s1dff3qvHnpuvzKDwSS3/lxZOT1dCgaDuu0HL1IoOkKEDQDAqJUXhPT4K0e0YHqhmrt69fALh3Tz8lkK9/apOCfLW0sjfsXQ21fXqbxgSpJbfq6MAlNyFJiSw7Llo8AwCgBg1GpKcnXnmgXaebRdjpXWLqlUV7RfJ7t6dW39DH35iR26efmshLU1Zk1L71koMbGeDUksWz4K9GwAAEbN3er+0toSBY0UDEhTc7K0seGwZhbn6GBzd8LaGv2ONC0vK83rNSTJKCsnX1k5+SxbPgr0bAAAxiQQMLqwslDHOyOK9lv1O7Gprk0dkYR6DSk2jHLNssokt/jcWWv19++b662zwXobI0PPBgBgzAIBo1XzyrVwer6KczJ1++o6bWx4Y9AOrxuuW5qGO7wONiUzqJqaGhUXF6u4uJiejRGiZwMAcE4CAaPqkjxVFuaoI9Knq5dWKhCQvvqHF8kEpPnlBZo1LXcSDKFIxhgCxhgQNgAA4yIjI6CrFlZobnm+mjoiKssPqaZkcoQMnBvCBgBg3AQCRrWleQm7vwLUbAAAAF8RNgAAgK8IGwAAwFeEDQAA4CvCBgAA8BVhAwAA+IqwAQAAfEXYAAAAviJsAAAAXxE2AACArwgbAADAV4QNAADgK8IGAADwFWEDAAD4irABAAB8RdgAAAC+8jVsGGPWGGN2G2P2GmPu8vNYAAAgNWX49cTGmKCkb0h6l6TDkl4wxvzUWrvDr2MCACYfx7E60BxWY3tE5QUh1ZTkKhAwSWmLtVbWWhmTnOOnK9/ChqS3Stprrd0vScaYhyVdLYmwAQAYEcex2rT9mO7YuEWRqKNQZkAbrluqNYsqkhI4evv61draquLi4gk/djrzcxilUtIbcX8/PPAYAAAjcqA57AUNSYpEHd2xcYsONIeT3DKMhp89GyNijFknaZ0kVVVVJbk1AIBU0tge8YKGKxJ11NQRUW1p3oS0If46VVpaqldeeWVCjnsuOjs7tXnz5gk/7sqVK4d83M+wcUTSzLi/zxh4LIG19kFJD0pSfX299bE9AIA0U14QUigzkBA4QpkBleWHJqwN8depefPm2eEuqKlk8+bNw174k8HPYZQXJNUZY2YZY7Ik3SDppz4eDwAwydSU5GrDdUsVyoxdrtyajZqS3CS3DKPhW8+GtbbPGHObpP+WFJT0HWvtdr+OBwCYfAIBozWLKjR//Qo1dURUlp/c2SgYG19rNqy1P5f0cz+PAQCY3AIBo9rSvAmr0cD4YwVRAADgK8IGAADwFWEDAAD4irABAAB8RdgAAAC+ImwAAABfETYAAICvCBsAAMBXhA0AAOArwgYAAPAVYQMAAPiKsAEAAHxF2AAAAL4ibAAAAF8Za22y2+AxxhyXdPAcn2aapBPj0JzzAedqdDhfI8e5GjnO1ciN57k6Ya1dM9pvMsZsGsv3ne9SKmyMB2NMg7W2PtntSAecq9HhfI0c52rkOFcjx7lKXwyjAAAAXxE2AACAryZj2Hgw2Q1II5yr0eF8jRznauQ4VyPHuUpTk65mAwAApJbJ2LMBAABSyKQKG8aYNcaY3caYvcaYu5LdnlRljJlpjHnGGLPDGLPdGHN7stuU6owxQWPMy8aYJ5LdllRmjCkyxvzIGLPLGLPTGHN5stuUqowxfzHw/ttmjPkPY0wo2W1KJcaY7xhjmowx2+Iem2qM+YUxZs/Af4uT2UaM3KQJG8aYoKRvSHq3pIWSPmiMWZjcVqWsPkmftNYulHSZpI9zrs7qdkk7k92INHC/pE3W2vmSLhLnbEjGmEpJ6yXVW2sXSwpKuiG5rUo5/yrp9PUs7pL0lLW2TtJTA39HGpg0YUPSWyXttdbut9b2SnpY0tVJblNKstYetda+NPD/HYpdECqT26rUZYyZIen3JX072W1JZcaYQklXSnpIkqy1vdba1qQ2KrVlSMo2xmRIypH0ZpLbk1Kstc9KOnnaw1dL+u7A/39X0vsmsk0Yu8kUNiolvRH398PiAnpWxpgaSRdL+m2Sm5LKvibpM5KcJLcj1c2SdFzSvwwMOX3bGJOb7EalImvtEUlflXRI0lFJbdbaJ5PbqrRQbq09OvD/xySVJ7MxGLnJFDYwSsaYPEk/lvTn1tr2ZLcnFRlj1kpqsta+mOy2pIEMScskfdNae7GksOjmHtJArcHVigW0CyTlGmP+OLmtSi82NpWS6ZRpYjKFjSOSZsb9fcbAYxiCMSZTsaDx79ba/0x2e1LY2yT9gTHmgGJDc6uMMd9PbpNS1mFJh621bi/ZjxQLHxjsnZJet9Yet9ZGJf2npOVJblM6aDTGTJekgf82Jbk9GKHJFDZekFRnjJlljMlSrNjqp0luU0oyxhjFxtV3Wms3JLs9qcxae7e1doa1tkax19TT1lruQIdgrT0m6Q1jzLyBh1ZL2pHEJqWyQ5IuM8bkDLwfV4ti2pH4qaQPD/z/hyU9lsS2YBQykt2A8WKt7TPG3CbpvxWr7P6OtXZ7kpuVqt4m6UZJrxpjtgw89llr7c+T1yRMEp+Q9O8DgX+/pI8kuT0pyVr7W2PMjyS9pNjssJfF6pgJjDH/IWmlpGnGmMOSviDpK5I2GmNuUWyH8OuS10KMBiuIAgAAX02mYRQAAJCCCBsAAMBXhA0AAOArwgYAAPAVYQMAAPiKsAEAAHxF2AAmCRPDexpAyuGDCUhjxpgaY8xuY8y/SdqmxCX7ASAlsKgXkMYGdu3dL2m5tfb5JDcHAIZEzwaQ/g4SNACkMsIGkP7CyW4AAJwJYQMAAPiKsAEAAHxFgSgAAPAVPRsAAMBXhA0AAOArwgYAAPAVYQMAAPiKsAEAAHxF2AAAAL4ibAAAAF8RNgAAgK/+P53ItosO6Ar4AAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 576x576 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "#prueba = sns.jointplot(x=dataframe0[\"r\"],y=dataframe0[\"g(r)\"],data=df,kind=\"reg\",line_kws={\"color\":\"red\"},scatter_kws={\"alpha\":0.33})\n", + "\n", + "prueba = sns.jointplot(x=dataframe0[\"r\"],y=dataframe0[\"g(r)\"],data=df)\n", + "\n", + "print(\"\")\n", + "\n", + "print(\"\")\n", + "\n", + "prueba.fig.set_size_inches(8,8)\n", + "\n", + "pl.grid()" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " r g_liso g_2 g3 g5 g12 g15 g20\n", + "0 0.03 0.749559 1.067157 1.060624 1.086467 0.927405 1.010291 0.944136\n", + "1 0.05 0.820106 0.960441 0.954561 1.231928 1.008123 1.000188 0.825305\n", + "2 0.07 0.831444 0.961748 0.955860 1.173692 1.010822 0.962181 0.815073\n", + "3 0.09 1.087596 1.036667 1.030320 1.198206 1.022817 0.944809 0.860936\n", + "4 0.11 0.889851 1.129246 1.122333 1.048102 0.947701 0.910792 0.813170\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlcAAAJcCAYAAADU/IFHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAADo4UlEQVR4nOzdd5yU1dn/8c+ZspUtNClKF1aWsnQBBSmKBg2C0YAxUTTGKD8hefI8SkwxiU98QhITY2KiwUZiDBI0oLHETlODCAIiTUH6srAL26fP+f0xs+MuLGybYRf4vl8vXoGZ+77PmbnXcHGd676OsdYiIiIiIvHhaO4JiIiIiJxJFFyJiIiIxJGCKxEREZE4UnAlIiIiEkcKrkRERETiSMGViIiISBwpuBKpgzHGGmPOb+I1fmCMebyW1y8yxnxgjGndlOtXu1736HxdjTj3p8aYvzVy3A7GmBXGmDJjzG8ac416jvOqMeamWl6/yxizwBhj4jTOTGPMqjhdK/a9GmO6GmPKjTHOOF37UWPMj6O/H2eM2ReP6x4zxin52W2M6D3/efT3Y4wx2+p5Xtzur0htGvx/wCItlTFmF9ABCFV7eYG19s7mmdEXrLX/d+xrxpguwP8BV1lrj576WcXVbUAhkGkT2DzPWvulY18zxnwJGAJ8PZFjx4O1dg/Qqq7jjDEzgVuttRfXcb3b4zS1k41xWvzsWmtXAjnNPQ8RUHAlZ54vW2vfbO5J1Ie1di9wSXPPI066AZubI7ix1r4KvHqqx21uxhintTZU95Hxl4ifXWOMy1objOc1RZqLlgXljGeMSTbGFBtj+ld7rb0xxmOMOSf6528ZYz4zxhwxxrxojOl8gmstM8bcWu3PNZYXjDH9jDFvRK9TYIz5QfT1GktuxpgpxphPovNaZozpW+29XcaY/zHGbDTGlBhjFhljUk4wH6cx5gFjTKExZidw5THvZxljnjDG5Btj9htjfl7fJSljzGJjzMHoHFYYY/qd4LgFwE3A3dElr0urL9dEj6mxZFXXZzTGXG2MWW+MKTXG7DDGXBF9Pfb9G2McxpgfGWN2G2MOGWP+aozJir5XtTx6kzFmT/T7+eFJPmvb6H0vNcZ8APQ65v0Lqt3XbcaYr57kWj2MMctNZIn0DaBdtfdqLNtGf352Ro/93BhzQ/Rn4VFgVPT7LK76no0xjxhjXjHGVADjj/2eo8f9IPp5dxljbqj2ekv72Z1pjHnXGPOgMaYI+Kkxppcx5m1jTFH0MzxjjMmuds5gY8y66Pe1CKj+M3Psz9j3oz87ZcaYzcaYaSe6ZyLxpuBKznjWWh/wT+D6ai9/FVhurT1kjJkA/CL6WidgN/BsQ8cxxmQAbwL/BjoD5wNv1XJcH2Ah8F2gPfAK8C9jTNIx87sC6AEMBGaeYNhvAVcBg4FhwLXHvL8ACEbnMhiYBNxK/bwK9AbOAdYBz9R2kLV2ZvS9X1lrWzUgc1jrZzTGjAD+CtwFZANjgV21nD8z+ms80JPIctvDxxxzMZGloonAvdUDgWP8EfASuf+3RH8RnU868AbwdyLfxQzgT8aY3BNc6+/AWiJB1f8SCTyPE73u74EvWWszgNHAemvtFuB24P3o95ld7bSvAfcDGUBtNUMdo+OeGx13vjGmzqWyZvrZBbgQ2ElkOf9+wBD5b7Ez0BfoAvw0OnYSsBR4GmgDLAa+cpJr7wDGAFnAz4C/GWM6neR4kbhRcCVnmqXRf1FX/fpW9PW/E/lLscrXoq8B3AA8aa1dFw3E7iGSNejewLGvAg5aa39jrfVaa8ustatrOW468LK19g1rbQB4AEgl8pdrld9baw9Ya48A/wIGnWDMrwK/s9bujR77i6o3jDEdgMnAd621FdbaQ8CD1PweTsha+2T0M/iI/AWXV5UZipMTfcZvErkfb1hrw9ba/dbarbWcfwPwW2vtTmttOZH7NsPULOb/mbXWY63dAGwA8o69iIlk8r4C3Bv9njYBf6l2yFXALmvtU9baoLX2I+B54LpartUVGA782Frrs9auiH62EwkD/Y0xqdbafGvtJyc5FuAFa+270e/Fe4JjqsZeDrxM5GekLs3xswtwwFr7h+j36rHWfha9ts9aexj4LV8sP44E3ER+3gPW2ueANSe6sLV2cXQeYWvtIuBTYEQ9vguRJlNwJWeaqdba7Gq/Hou+/g6QZoy5MBo0DQKWRN/rTCRbBUD0L+oiIv/6b4guRP61XJdjxwsDe48Z72C131dy4iLoztFzq+yu9vtuRP4yyq8KNoE/E8m+nJSJLDfOiy6rlPJF5qjdSU5rqBN9xkZ9j9Hfu4hkQeoao7r20fNO9j1eWD1oJxLYdTzBnI5aaytOcK2Y6DHTiWSp8o0xLxtjLqjt2Gr21vF+bWPXusR9jOb42YVjPo+JPHX6rIksYZcCf+OLn7nOwP5j6vpq/W6j17rRRJaWq+5Zf+L78ytyQgqu5KwQLfz9B5GlweuBl6y1ZdG3DxD5CxSILde0BfbXcqkKIK3an6v/BbuXyPJUXY4dzxD5y6228eqSHz23Stdj5uMD2lULNjOttbXWTh3ja8DVwKVEllW6V023nvM62fdUl70cU/N0AjW+RyKfPQgUNGAsgMPR8072PS4/JmhvZa29o5Zr5QOtoz9DtV2rBmvta9bay4gsR24Fqv4xcKIHA+p6YKC2sQ9Ef9/Sfnbh+M/zf9HXBlhrM4Gv88XPXD5wbnTMKrV+t8aYbkS+yzuBttGl1U3U/+dXpEkUXMnZ5O9EMgU38MWSIERqSG42xgwyxiQT+T/41dbaXbVcYz1wjTEmzUR6X32z2nsvAZ2MMd81kSL6DGPMhbVc4x/AlcaYicYYN/DfRIKg9xrxmf4BzDHGnGci/Ya+X/WGtTYfeB34jTEm00QKwHsZY+rzlFdGdE5FRP5CPu5x/DqsByYbY9oYYzoSqdGpryeI3I+J0Tmfe4KMzkLgv0ykgLxVdI6LGvrEWTTw/ieRguq0aC1V9Tqpl4A+xphvGGPc0V/Da6vfstbuBj4EfmaMSTLGXAx8ubZxo1maq6PBkA8oJ7JMCJEA8bxjapnqq2rsMUSW+xZHX19Py/rZrU0Gke+hxBhzLpG6uyrvEwmC50TvwTWceJkvnUiQdhjAGHMzkcyVyCmh4ErONP8ykSesqn5VLf0RrSGpILK88Gq1198EfkykjiafSNbkRHVJDwJ+In/5/YVqRd7RTNhlRP4yPUikxmP8sRew1m4j8i/yPxDpDfVlIi0k/I34vI8BrxGpJ1pHJEio7kYgCdgMHAWeI5IlqctfiSy57I+e+58Gzuvp6Jx2EQnwFtX3RGvtB8DNRL7rEmA5NTNUVZ6MjrMC+JxIQfrsBs6zyp1Elq8OEnkI4Klq8ykj8iDADCKZm4PAL4HkE1zra0QKtY8APyHyXdbGAXwves0jRGqLqrJhbwOfAAeNMYUN+BwHidznA0R+Nm+vVq/W0n52a/MzIj3LSojUi8V+nqNjXEOkQP4IkX8oHfvzXnXsZuA3RAKyAmAA8G6c5ihSJ9MMbWlEREREzljKXImIiIjEkYIrERERkThScCUiIiISRwquREREROKoRW3c3K5dO9u9e/eEXLuiooL09PS6D5RTSvelZdJ9aXl0T1om3ZeW6VTdl7Vr1xZaa9sf+3qLCq66d+/Ohx9+mJBrL1u2jHHjxiXk2tJ4ui8tk+5Ly6N70jLpvrRMp+q+GGNq3SVAy4IiIiIicaTgSkRERCSOFFyJiIiIxFGLqrmqTSAQYN++fXi93iZdJysriy1btsRpVhIvzXVfUlJSOO+883C73ad8bBERObO1+OBq3759ZGRk0L17d2puht4wZWVlZGRkxHFmEg/NcV+stRQVFbFv3z569OhxSscWEZEzX4tfFvR6vbRt27ZJgZVIdcYY2rZt2+RsqIiISG1afHAFKLCSuNPPlIiIJMppEVyJiIiInC4UXNXDwYMHmTFjBr169WLo0KFMnjyZ7du3c+DAAa699log0rDsqquuAuDFF19k3rx5DRpj5syZPPfcc42e47hx42INWCdPnkxxcXGjryUiIiKN1+IL2pubtZZp06Zx00038eyzzwKwYcMGCgoK6NOnT60B0ZQpU5gyZUpcxg+FQjidzgad88orr8RlbBEREWk4Za7q8M477+B2u7n99ttjr+Xl5TFmzBh27dpF//79jztnwYIF3HnnnUAkIzVnzhxGjx5Nz549Y8GYtZY777yTnJwcLr30Ug4dOhQ7v3v37sydO5chQ4awePFiFi5cyIABA+jfvz9z586tc87du3ensLCQiooKrrzySvLy8ujfvz+LFi0C4K233mLw4MEMGDCAW265BZ/P16TvSERERL5wWmWufvavT9h8oLRR554oA5TbOZOffLnfCc/btGkTQ4cObdSYVfLz81m1ahVbt25lypQpXHvttSxZsoRt27axefNmCgoKyM3N5ZZbbomd07ZtW9atW8eBAwcYOXIka9eupXXr1kyaNImlS5cyderUOsf997//TefOnXn55ZcBKCkpwev1MnPmTN566y369OnDjTfeyCOPPMJ3v/vdJn1GERERiVDm6hSYOnUqDoeD3NxcCgoKAFixYgXXX389TqeTzp07M2HChBrnTJ8+HYA1a9Ywbtw42rdvj8vl4oYbbmDFihX1GnfAgAG88cYbzJ07l5UrV5KVlcW2bdvo0aMHffr0AeCmm26q9/VERESkbqdV5upkGaa6NLZZZb9+/ZpUaA6QnJwc+721tl7npKenN2lMgD59+rBu3TpeeeUVfvSjHzFx4kSuvvrqJl9XRERETkyZqzpMmDABn8/H/PnzY69t3LiRlStXNum6Y8eOZdGiRYRCIfLz83nnnXdqPW7EiBEsX76cwsJCQqEQCxcu5JJLLqnXGAcOHCAtLY2vf/3r3HXXXaxbt46cnBx27drFZ599BsDTTz9d7+uJiIhI3U6rzFVzMMawZMkSvvvd7/LLX/6SlJQUunfvzu9+97smXXfatGm8/fbb5Obm0rVrV0aNGlXrcZ06dWLevHmMHz8eay1XXnllvbNPH3/8MXfddRcOhwO3280jjzxCSkoKTz31FNdddx3BYJDhw4fXKNYXERGRpjH1XaY6FYYNG2arejVV2bJlC3379m3ytbW3YMvUnPclXj9bZ6Jly5Yxbty45p6GVKN70jLpvrRMp+q+GGPWWmuHHfu6lgVFRERE4kjBlYiIiEgcKbgSERERiSMFVyIiIiJxpOBKREREJI4UXImIiMgZ4cUNB/h/f1/X3NNQcFUfBw8eZMaMGfTq1YuhQ4cyefJktm/fzoEDB7j22muByGOfV111FQAvvvgi8+bNa9AYM2fObHIn+Hi74YYbyMnJoX///txyyy0EAoE6zxk3bhxV7TQmT55McXFxo8ZeunQpmzdvbtS5IiJydpqz8CNe3pjf3NNQcFUXay3Tpk1j3Lhx7Nixg7Vr1/KLX/yCgoICOnfuXGtANGXKFL7//e/HZfxQKBSX6zTGDTfcwNatW/n444/xeDw8/vjjDTr/lVdeITs7u1FjK7gSEZHTlYKrOrzzzju43e4aXczz8vIYM2YMu3bton///seds2DBAu68804gkpGaM2cOo0ePpmfPnrFgzFrLnXfeSU5ODpdeeimHDh2Knd+9e3fmzp3LkCFDWLx4MQsXLmTAgAH079+fuXPn1jrPNWvWMHr0aPLy8hgxYgRlZWV4vV5uvvlmBgwYwODBg2Nb7CxYsIBrrrmGK664gt69e3P33XfXes3JkydjjMEYw4gRI9i3b99xx3g8HmbMmEHfvn2ZNm0aHo+nxucoLCwE4G9/+xsjRoxg0KBBfPvb344FjZ06deKHP/wheXl5jBw5koKCAt577z1efPFF7rrrLgYNGsSOHTvYsWMHV1xxBUOHDmXMmDFs3boVgMWLF9O/f3/y8vIYO3bsCe6iiIjIqXN6bX/z6vfh4MeNOjU1FARnLR+34wD40omX8DZt2sTQoUMbNWaV/Px8Vq1axdatW5kyZQrXXnstS5YsYdu2bWzevJmCggJyc3O55ZZbYue0bduWdevWceDAAUaOHMnatWtp3bo1kyZNYunSpUydOjV2rN/vZ/r06SxatIjhw4dTWlpKamoqDz30EMYYPv74Y7Zu3cqkSZPYvn07AOvXr+ejjz4iOTmZnJwcZs+eTZcuXWqdfyAQ4Omnn+ahhx467r1HHnmEtLQ0tmzZwsaNGxkyZMhxx2zZsoVFixbx7rvv4na7mTVrFs888ww33ngjFRUVjBw5kvvvv5+7776bxx57jB/96EdMmTKFq666KrbsOnHiRB599FF69+7N6tWrmTVrFm+//Tb33Xcfr732Gueee26jlyBFRETi6fQKrk5TU6dOxeFwkJubS0FBAQArVqzg+uuvx+l00rlzZyZMmFDjnOnTpwORjNS4ceNo3749EFmqW7FiRY3gatu2bXTq1Inhw4cDkJmZCcCqVauYPXs2ABdccAHdunWLBVcTJ04kKysLgNzcXHbv3n3C4GrWrFmMHTuWMWPGHPfeihUrmDNnDgADBw5k4MCBxx3z1ltvsXbt2tj8PB4P55xzDgBJSUmxWrWhQ4fyxhtvHHd+eXk57733Htddd13sNZ/PB8BFF13EzJkz+epXv8o111xT6/xFREROpdMruDpJhqkunkbuYdevX78mF5onJyfHfl/fvRzT09ObNGZdqs/J6XQSDAZrPe5nP/sZhw8f5s9//nOjx7LWctNNN/GLX/ziuPfcbjfGmJPOIxwOk52dzfr1649779FHH2X16tW8/PLLDB06lLVr19K2bdtGz1VERKSpVHNVhwkTJuDz+Zg/f37stY0bN7Jy5comXXfs2LEsWrSIUChEfn5+rB7qWCNGjGD58uUUFhYSCoVYuHAhl1xySY1jcnJyyM/PZ82aNUBkM+RgMMiYMWN45plnANi+fTt79uwhJyen3nN8/PHHee2111i4cCEOR+0/KmPHjuXvf/87EFlC3bhx43HHTJw4keeeey5WV3bkyBF279590rEzMjIoKysDIpm4Hj16sHjxYiASrG3YsAGAHTt2cOGFF3LffffRvn179u7dW+/PJyIikggKrupgjGHJkiW8+eab9OrVi379+nHPPffQsWPHJl132rRp9O7dm9zcXG688UZGjRpV63GdOnVi3rx5jB8/nry8PIYOHcrVV19d45ikpCQWLVrE7NmzycvL47LLLsPr9TJr1izC4TADBgxg+vTpLFiwoEbGqi633347BQUFjBo1ikGDBnHfffcdd8wdd9xBeXk5ffv25d577621Pi03N5ef//znTJo0iYEDB3LZZZeRn3/yR2VnzJjBr3/9awYPHsyOHTt45plneOKJJ8jLy6Nfv3688MILANx1112xYv+qgn4REZHmZOq7THUqDBs2zFb1SKqyZcsW+vbt2+RrlzVyWVASqznvS7x+ts5Ey5YtY9y4cc09DalG96Rl0n1pWbp//2UAFlyRfkruizFmrbV22LGvK3MlIiIiEkcKrkRERETiSMGViIiISBwpuBIRERGJIwVXIiIiInGk4EpEREQkjhRc1cPBgweZMWMGvXr1YujQoUyePJnt27dz4MCB2N53y5Yti23j8uKLLzJvXsO6yc+cObPJneDj7Zvf/CZ5eXkMHDiQa6+9lvLy8jrPqb5Z8+jRoxs99oIFCzhw4ECjzxcREWkuCq7qYK1l2rRpjBs3jh07drB27Vp+8YtfUFBQQOfOnWsNiKZMmcL3v//9uIwfCoXicp3GePDBB9mwYQMbN26ka9euPPzwww06/7333mv02AquRETkdKXgqg7vvPMObreb22+/PfZaXl4eY8aMYdeuXfTv3/+4cxYsWMCdd94JRDJSc+bMYfTo0fTs2TMWjFlrufPOO8nJyeHSSy+NbQ0DkezP3LlzGTJkCIsXL2bhwoWxLuRz586tdZ5r1qyJdSgfMWIEZWVleL1ebr75ZgYMGMDgwYNjW+wsWLCAa665hiuuuILevXtz991313rNqg2grbV4PJ7YHoDVFRUVMWnSJPr168ett95aY+/EVq1axX7/61//muHDhzNw4EB+8pOfALBr1y6GDRvGt771Lfr168ekSZPweDw899xzfPjhh9xwww0MGjQIj8fD2rVrueSSSxg6dCiXX355rMP773//e3Jzcxk4cCAzZsyo9XOIiIicSqfVxs2//OCXbD2ytVHnhkIhnE7nca9f0OYC5o6oPWCByH55tW3p0hD5+fmsWrWKrVu3MmXKFK699lqWLFnCtm3b2Lx5MwUFBeTm5nLLLbfEzmnbti3r1q3jwIEDjBw5krVr19K6dWsmTZrE0qVLmTp1auxYv9/P9OnTWbRoEcOHD6e0tJTU1FQeeughjDF8/PHHbN26lUmTJrF9+3YA1q9fz0cffURycjI5OTnMnj2bLl26HDf3m2++mVdeeYXc3Fx+85vfHPf+z372My6++GLuvfdeXn75ZZ544onjjnn99df59NNP+eCDD7DWMmXKFFasWEHXrl3ZsWMHixYt4rHHHuOrX/0qzz//PF//+td5+OGHeeCBBxg2bBiBQIDZs2fzwgsv0L59exYtWsQPf/hDnnzySebNm8fnn39OcnIyxcXFTbpPIiIi8aDM1SkwdepUHA4Hubm5FBQUALBixQquv/56nE4nnTt3ZsKECTXOmT59OhDJSI0bN4727dvjcrm44YYbWLFiRY1jt23bRqdOnRg+fDgQyTi5XC5WrVrF17/+dQAuuOACunXrFguuJk6cSFZWFikpKeTm5p5wI+WnnnqKAwcO0LdvXxYtWnTc+ytWrIiNceWVV9K6devjjnn99dd5/fXXGTx4MEOGDGHr1q18+umnAHTr1o1BgwYBMHToUHbt2nXc+du2bWPTpk1cdtllDBo0iJ///Ofs27cPgIEDB3LDDTfwt7/9DZfrtPq3goiInKFOq7+NTpZhqktj97Dr169fkwvNq2+WXN+9HNPT05s0Zl2qz8npdBIMBk94rNPpZMaMGfzqV7/i5ptvbvBY1lruuecevv3tb9d4fdeuXcfNw+Px1Hp+v379eP/994977+WXX2bFihX861//4v777+fjjz9WkCUiIs1Kmas6TJgwAZ/Px/z582Ovbdy4kZUrVzbpumPHjmXRokWEQiHy8/Nj9VDHGjFiBMuXL6ewsJBQKMTChQu55JJLahyTk5NDfn4+a9asASKBZDAYZMyYMTzzzDMAbN++nT179pCTk1Ov+Vlr+eyzz2K/f/HFF7ngggtq/Rx///vfAXj11Vc5evToccdcfvnlPPnkk7GnDffv31+jxqw2GRkZlJWVxT7f4cOHY8FVIBDgk08+IRwOs3fvXsaPH88vf/lLSkpK6vVEo4iISCLpn/h1MMawZMkSvvvd7/LLX/6SlJQUunfvzu9+97smXXfatGm8/fbb5Obm0rVrV0aNGlXrcZ06dWLevHmMHz8eay1XXnklV199dY1jkpKSWLRoEbNnz8bj8ZCamsqbb77JrFmzuOOOOxgwYAAul4sFCxbUyBSdjLWWm266idLSUqy15OXl8cgjjxx33E9+8hOuv/56+vXrx+jRo+natetxx0yaNIktW7bEPmOrVq3429/+VmsNXJWZM2dy++23k5qayvvvv89zzz3HnDlzKCkpIRgM8t3vfpc+ffrw9a9/nZKSEqy1zJkzh+zs7Hp9PhERkUQx9V2mOhWGDRtmP/zwwxqvbdmyhb59+zb52o1dFpTEas77Eq+frTPRsmXLGDduXHNPQ6rRPWmZdF9alu7ffxmABVekn5L7YoxZa60dduzrWhYUERERiSMFVyIiIiJxpOBKREREJI4UXImIiIjEkYIrEREROaM098N6Cq5ERERE4kjBVT0cPHiQGTNm0KtXL4YOHcrkyZPZvn07Bw4c4NprrwUij+NeddVVALz44ovMmzevQWPMnDmzyZ3g423mzJn06NGDQYMGMWjQINavX1/nOePGjaOqncbkyZMbvd/f0qVL2bx5c6POFRGRs1tzN5lSE9E6WGuZNm0aN910E88++ywAGzZsoKCggD59+tQaEE2ZMoUpU6bEZfwTbTh9qvz617+OBZAN9corrzR63KVLl3LVVVeRm5vb6GuIiIg0B2Wu6vDOO+/gdru5/fbbY6/l5eUxZswYdu3aRf/+/Y87Z8GCBdx5551AJPszZ84cRo8eTc+ePWPBmLWWO++8k5ycHC699NIa28F0796duXPnMmTIEBYvXszChQsZMGAA/fv3Z+7c2vdXXLNmDaNHjyYvL48RI0ZQVlaG1+vl5ptvZsCAAQwePDi2xc6CBQu45ppruOKKK+jduzd33313o78fj8fDjBkz6Nu3L9OmTauxN2D37t0pLCwE4G9/+xsjRoxg0KBBfPvb3yYUCgGRDvQ//OEPycvLY+TIkRQUFPDee+/x4osvctdddzFo0CB27NjBjh07uOKKKxg6dChjxoxh69atACxevJj+/fuTl5fH2LFjG/05RERE4uW0ylwd/L//w7dla6PODYZCHKklA5Tc9wI6/uAHJzxv06ZNDB06tFFjVsnPz2fVqlVs3bqVKVOmcO2117JkyRK2bdvG5s2bKSgoIDc3l1tuuSV2Ttu2bVm3bh0HDhxg5MiRrF27ltatWzNp0iSWLl3K1KlTY8f6/X6mT5/OokWLGD58OKWlpaSmpvLQQw9hjOHjjz9m69atTJo0ie3btwOwfv16PvroI5KTk8nJyWH27Nl06dLluLn/8Ic/5L777mPixInMmzfvuO1zHnnkEdLS0tiyZQsbN25kyJAhx11jy5YtLFq0iHfffRe3282sWbN45plnuPHGG6moqGDkyJHcf//93H333Tz22GP86Ec/YsqUKVx11VWxrNnEiRN59NFH6d27N6tXr2bWrFm8/fbb3Hfffbz22muce+65jV6CFBERiSdlrk6BqVOn4nA4yM3NpaCgAIAVK1Zw/fXX43Q66dy5MxMmTKhxzvTp04FIRmrcuHG0b98el8vFDTfcwIoVK2ocu23bNjp16sTw4cMByMzMxOVysWrVKr7+9a8DcMEFF9CtW7dYcDVx4kSysrJISUkhNzeX3bt3HzfvX/ziF2zdupU1a9Zw5MgRfvnLXx53zIoVK2JjDBw4kIEDBx53zFtvvcXatWsZPnw4gwYN4q233mLnzp1AZF/Eqlq1oUOHsmvXruPOLy8v57333uO6666LZb7y8/MBuOiii5g5cyaPPfZYLBsmIiJnt+be2e+0ylydLMNUl8buYdevX78mF5pXz/bU9/HQ9PT0Jo1Zl+pzcjqdBIPB447p1KlT7Nibb76ZBx54oFFjVW0C/Ytf/OK499xuN8aYk84jHA6TnZ1da0H9o48+yurVq3n55ZcZOnQoa9eupW3bto2ap4iInBmau6Bdmas6TJgwAZ/Px/z582Ovbdy4kZUrVzbpumPHjmXRokWEQiHy8/Nj9VDHGjFiBMuXL6ewsJBQKMTChQu55JJLahyTk5NDfn4+a9asASKBZDAYZMyYMTzzzDMAbN++nT179pCTk1PvOVZlh6y1LF26tNb6srFjx/L3v/8diCyhbty48bhjJk6cyHPPPRerKzty5EitmbLqMjIyKCsrAyKZuB49erB48eLYfDZs2ADAjh07uPDCC7nvvvto3749e/furffnExGRM0dz97aqTsFVHYwxLFmyhDfffJNevXrRr18/7rnnHjp27Nik606bNo3evXuTm5vLjTfeyKhRo2o9rlOnTsybN4/x48eTl5fH0KFDufrqq2sck5SUxKJFi5g9ezZ5eXlcdtlleL1eZs2aRTgcZsCAAUyfPp0FCxYcVzN1MjfccAMDBgxgwIABFBYW8qMf/ei4Y+644w7Ky8vp27cv9957b631abm5ufz85z9n0qRJDBw4kMsuuywWuJ3IjBkz+PWvf83gwYPZsWMHzzzzDE888QR5eXn069ePF154AYC77rorVuxfVdAvIiJnn1C45QRXpiVFesOGDbNVPZKqbNmyhb59+zb52o1dFpTEas77Eq+frTPRsmXLGDduXHNPQ6rRPWmZdF9aDm8gxAU//jcAj09K49IJ4xM+pjFmrbV22LGvK3MlIiIip71wtWRRc6eNFFyJiIjIaa8lLQsquBIREZHTXjj8xe+bu+JJwZWIiIic9kLNHVFVo+BKRERETntaFhQRERGJo7AyV6eXgwcPMmPGDHr16sXQoUOZPHky27dv58CBA7G975YtWxbbxuXFF19k3rx5DRpj5syZTe4EH28PP/ww559/PsaY2AbMAM888wwDBw5kwIABjB49OtbQ82Sqb2b96KOP8te//rVRc9q1a1esaamIiEiV6pmr5g6zTqvtb5qDtZZp06Zx00038eyzzwKwYcMGCgoK6NOnT60B0ZQpU5gyZUpcxg+FQjhr2XD6VLjooou46qqrjuvh0qNHD5YvX07r1q159dVXue2221i9enW9r3v77bc3ek5VwdXXvva1Rl9DRETOPFoWPI288847uN3uGgFBXl4eY8aMYdeuXbVuCVM9SzNz5kzmzJnD6NGj6dmzZywYs9Zy5513kpOTw6WXXhrbGgage/fuzJ07lyFDhrB48WIWLlwY60I+d+7cWue5Zs2aWIfyESNGUFZWhtfr5eabb2bAgAEMHjw4tsXOggULuOaaa7jiiivo3bs3d999d63XHDx4MN27dz/u9dGjR9O6dWsARo4cyb59+2o9/6mnnqJPnz6MGDGCd999N/b6T3/609g+hTt37uSKK65g6NChjBkzhq1bt570e/v+97/PypUrGTRoEA8++CChUIi77rqL4cOHM3DgQP785z8Dka17xo4dy6BBg+jfv3+TtysSEZGWrUZwpY2b62/lP7ZTuLe8UeeeKAPUrksrxny1zwnP27RpU61bujREfn4+q1atYuvWrUyZMoVrr72WJUuWsG3bNjZv3kxBQQG5ubnccsstsXPatm3LunXrOHDgACNHjmTt2rW0bt2aSZMmsXTpUqZOnRo71u/3M336dBYtWsTw4cMpLS0lNTWVhx56CGMMH3/8MVu3bmXSpEls374dgPXr1/PRRx+RnJxMTk4Os2fPpkuXLg3+bE888QRf+tKXav3MP/nJT1i7di1ZWVmMHz+ewYMHH3fcd77zHR577DF69+7N6tWrmTVrFm+//fYJv7d58+bxwAMP8NJLLwEwf/58srKyWLNmDT6fj4suuohJkybxz3/+k8svv5wf/vCHhEIhKisrG/zZRETk9NGSnhY8rYKr09XUqVNxOBzk5uZSUFAAwIoVK7j++utxOp107tyZCRMm1Dhn+vTpQCQjNW7cONq3bw9E9vtbsWJFjeBq27ZtdOrUieHDhwORjY4BVq1axezZswG44IIL6NatWyy4mjhxIllZWUBk77/du3c3OLh65513eOKJJ1i1atVx761evbrGvKdPnx4bu0p5eTmrV6/muuuui73m8/liv6/tezvW66+/zsaNG2OZrZKSEj799FOGDx/OLbfcQiAQYOrUqQwaNKhBn01ERE4v4bOl5soYswsoA0JAsLb9dxriZBmmujR2D7t+/fo1udC8+mbJ9d3LMT09vUlj1qX6nJxOJ8FgsEHnb9y4kVtvvZVXX32Vtm3bNmoO4XCYrKws1q9fX+ccT/S9WWv5wx/+wOWXX37ceytWrODll19m5syZfO973+PGG29s1DxFRKTla0mZq1NRczXeWjuoqYFVc5kwYQI+n4/58+fHXtu4cWOTa3jGjh3LokWLCIVC5Ofnx+qhjjVixAiWL19OYWEhoVCIhQsXcskll9Q4Jicnh/z8fNasWQNEAslgMMiYMWN45plnANi+fTt79uwhJyenSfMG2LNnD9dccw1PP/00ffrUHvBeeOGFLF++nKKiIgKBAIsXLz7umMzMTLp16xZ7z1pb55OHGRkZlJWVxf58+eWX88gjjxAIBIDI56yoqGD37t106NCBb33rW9x6662sW7eusR9XREROAy3paUEVtNfBGMOSJUt488036dWrF/369eOee+6hY8eOTbrutGnT6N27N7m5udx4442MGjWq1uM6derEvHnzGD9+PHl5eQwdOpSrr766xjFJSUksWrSI2bNnk5eXx2WXXYbX62XWrFmEw2EGDBjA9OnTWbBgQY1sUF1+//vfc95557Fv3z4GDhzIrbfeCsB9991HUVERs2bNYtCgQQwbdnzc3KlTJ376058yatQoLrroIvr27VvrGI8//jhPPPEEeXl59OvXjxdeeOGkcxo4cCBOp5O8vDwefPBBbr31VnJzcxkyZAj9+/fn29/+NsFgkGXLlpGXl8fgwYNZtGgR3/nOd+r9uUVE5PRTffub5mbqu0zVqIsb8zlwlEgQ+Wdr7fxajrkNuA2gQ4cOQ6vaHVTJysri/PPPb/JcmrOlgZxYc96Xzz77jJKSkmYZu6UrLy+nVatWzT0NqUb3pGXSfWk5dhaHuO8/XgB+PdLSPjvx92X8+PFra1uZS3RB+8XW2v3GmHOAN4wxW621K6ofEA245gMMGzbMHttTacuWLY2qlTpWY2uuJLGa876kpKTU+gSjRJriHvvfojQv3ZOWSfel5cjYfQT+8z4QqVtuzvuS0GVBa+3+6P8eApYAIxI5noiIiJydQi1oWTBhwZUxJt0Yk1H1e2ASsClR44mIiMjZqyUVtCdyWbADsMQYUzXO3621/07geCIiInKWakkbNycsuLLW7gTyEnV9ERERkSraW1BEREQkjs62JqKnvYMHDzJjxgx69erF0KFDmTx5Mtu3b+fAgQNce+21QOSJkauuugqAF198kXnz5jVojJkzZza5E3y8Pfzww5x//vkYYygsLIy9vmzZMrKyshg0aBCDBg3ivvvuq/Na1TezfvTRR/nrX//aqDnt2rWLv//97406V0REzlw1tr/Rxs0tm7WWadOmcdNNN1HVg2vDhg0UFBTQp0+fWgOiKVOmMGXKlLiM35x9oC666CKuuuqqWh9nHTNmTGzz5Ia6/fbbGz2nquDqa1/7WqOvISIiZx4tC55G3nnnHdxud42AIC8vjzFjxrBr1y769+9/3DnVszQzZ85kzpw5jB49mp49e8aCMWstd955Jzk5OVx66aUcOnQodn737t2ZO3cuQ4YMYfHixSxcuJABAwbQv39/5s6dW+s816xZw+jRo8nLy2PEiBGUlZXh9Xq5+eabGTBgAIMHD45tsbNgwQKuueYarrjiCnr37s3dd99d6zUHDx5M9+7dG/W9ATz11FP06dOHESNG8O6778Ze/+lPf8oDDzwAwM6dO7niiisYOnQoY8aMYevWrSf93r7//e+zcuVKBg0axIMPPkgoFOKuu+5i+PDhDBw4kD//+c8A5OfnM3bsWAYNGkT//v2bvF2RiIi0bC0puDqtMlfvLJjPod07G3VuKBjC6To+A3ROt56Mn3nbCc/btGkTQ4cObdSYVfLz81m1ahVbt25lypQpXHvttSxZsoRt27axefNmCgoKyM3N5ZZbbomd07ZtW9atW8eBAwcYOXIka9eupXXr1kyaNImlS5cyderU2LF+v5/p06ezaNEihg8fTmlpKampqTz00EMYY/j444/ZunUrkyZNYvv27QCsX7+ejz76iOTkZHJycpg9ezZdunSp92d6//33ycvLo3PnzjzwwAP069fvuM/8k5/8hLVr15KVlcX48eNrbdj5ne98h8cee4zevXuzevVqZs2axdtvv33C723evHk88MADsazZ/PnzycrKYs2aNfh8Pi666CImTZrEP//5Ty6//HJ++MMfEgqFqKysrPdnExGR009Lqrk6rYKr09XUqVNxOBzk5uZSUFAAwIoVK7j++utxOp107tyZCRMm1Dhn+vTpQCQjNW7cONq3bw/ADTfcwIoVK2oEV9u2baNTp04MHz4ciGyIDLBq1Spmz54NwAUXXEC3bt1iwdXEiRPJysoCIDc3l927d9c7uBoyZAi7d++mVatWvPLKK0ydOpVPP/20xjGrV6+uMe/p06fHxq5SXl7O6tWrue6662Kv+Xy+k35vx3r99dfZuHFjLLNVUlLCp59+yvDhw7nlllsIBAJMnTqVQYMG1euziYjI6els6XMVdyfLMNWlsdus9OvXr8mF5tU3S67vXo7p6elNGrMu1efkdDoJBoP1PrcqeAOYPHkys2bNorCwkHbt2jVoDuFwmKysLNavX1/nHE/0vVlr+cMf/sDll19+3HsrVqzg5ZdfZubMmXzve9/jxhtvbND8RETk9NGS+lyp5qoOEyZMwOfzMX/+F3tOb9y4sck1PGPHjmXRokWEQiHy8/Nj9VDHGjFiBMuXL6ewsJBQKMTChQu55JJLahyTk5NDfn4+a9asASKBZDAYZMyYMTzzzDMAbN++nT179pCTk9OkeUPk6cmqYOeDDz4gHA7Ttm3bGsdceOGFLF++nKKiIgKBAIsXLz7uOpmZmXTr1i32nrWWDRs2nHTsjIwMysrKYn++/PLLeeSRRwgEAkDkc1ZUVLB79246dOjAt771LW699VbWrVvXpM8sIiItW/Xtb5o7zFJwVQdjDEuWLOHNN9+kV69e9OvXj3vuuYeOHTs26brTpk2jd+/e5ObmcuONNzJq1Khaj+vUqRPz5s1j/Pjx5OXlMXToUK6++uoaxyQlJbFo0SJmz55NXl4el112GV6vl1mzZhEOhxkwYADTp09nwYIFNbJBdfn973/Peeedx759+xg4cCC33norAM899xz9+/cnLy+POXPm8OyzzxLtxF9j3j/96U8ZNWoUF110EX379q11jMcff5wnnniCvLw8+vXrxwsvvHDSOQ0cOBCn00leXh4PPvggt956K7m5uQwZMoT+/fvz7W9/m2AwyLJly8jLy2Pw4MEsWrSI73znO/X+3CIicvoJt6CCdlPfZapTYdiwYfbDDz+s8dqWLVtO+BdzQzR2WVASqznvS7x+ts5Ey5Yta9Yd5eV4uictk+5Ly7Hwgz3c88+PAfj9+DSmXD4+4WMaY9Zaa4cd+7oyVyIiInLaa0mtGBRciYiIyGmvJT0tqOBKRERETns1g6vmDa8UXImIiMhpT60YREREROKoRs1VM8dZCq5ERETktNeStr9RcFUPBw8eZMaMGfTq1YuhQ4cyefJktm/fzoEDB7j22muByOO4V111FQAvvvgi8+bNa9AYM2fObHIn+Hi74YYbyMnJoX///rGtZCDS7HPOnDmcf/75DBw4sF4NOqtv1nzvvffy5ptvNmpO69ev55VXXmnUuSIicuYKq6D99GGtZdq0aYwbN44dO3awdu1afvGLX1BQUEDnzp1rDYimTJnC97///biMHwqF4nKdxrjhhhvYunUrH3/8MR6Ph8cffxyAV199lU8//ZRPP/2U+fPnc8cddzTouvfddx+XXnppo+ak4EpERGpTvUN7c1NwVYd33nkHt9vN7bffHnstLy+PMWPGsGvXLvr373/cOQsWLODOO+8EIhmpOXPmMHr0aHr27BkLxqy13HnnneTk5HDppZdy6NCh2Pndu3dn7ty5DBkyhMWLF7Nw4UIGDBhA//79mTt3bq3zXLNmDaNHjyYvL48RI0ZQVlaG1+vl5ptvZsCAAQwePDi2xc6CBQu45ppruOKKK+jduzd33313rdecPHkyxhiMMYwYMYJ9+/YB8MILL3DjjTdijGHkyJEUFxeTn59/3Pn3338/ffr04eKLL2bbtm2x16tn6T766CMuueQShg4dyuWXXx67zrhx45g7dy4jRoygT58+rFy5Er/fz7333suiRYsYNGgQixYtoqKigltuuYURI0YwePDgWIf3Tz75hBEjRjBo0CAGDhx43MbSIiJyZmlJy4Kn1cbNxf/agf9ARaPODYWCeJzHf9ykzulkf7nXCc/btGkTQ4cObdSYVfLz81m1ahVbt25lypQpXHvttSxZsoRt27axefNmCgoKyM3N5ZZbbomd07ZtW9atW8eBAwcYOXIka9eupXXr1kyaNImlS5cyderU2LF+v5/p06ezaNEihg8fTmlpKampqTz00EMYY/j444/ZunUrkyZNYvv27UAkA/TRRx+RnJxMTk4Os2fPpkuXLrXOPxAI8PTTT/PQQw8BsH///hrHnnfeeezfv59OnTrFXlu7di3PPvss69evJxgMMmTIkOO+x0AgwF133cVLL71E+/btWbRoET/84Q958sknAQgGg3zwwQe88sor/OxnP+PNN9/kvvvu48MPP+Thhx8G4Ac/+AETJkzgySefpLi4mBEjRnDppZfy6KOP8p3vfIcbbrgBv9/frBlAERFJvFC45aSuTqvg6nQ1depUHA4Hubm5FBQUALBixQquv/56nE4nnTt3ZsKECTXOmT59OhDJSI0bN4727dsDkaW6FStW1Aiutm3bRqdOnRg+fDgQ2RAZYNWqVcyePRuACy64gG7dusWCq4kTJ5KVlQVAbm4uu3fvPmFwNWvWLMaOHcuYMWPq/ZlXrlzJtGnTSEtLAyJLpcfatm0bW7Zs4bLLLgMiS6DVA7RrrrkGgKFDh7Jr165ax3n99dd58cUXY/VcXq+XPXv2MGrUKO6//3727dvHNddcQ+/eves9dxEROf20pI2bT6vg6mQZpro0dg+7fv36NbnQvPpmyfXdyzE9Pb1JY9al+pycTifBYLDW4372s59x+PBh/vznP8deO/fcc9m7d2/sz/v27ePcc89t8BystVxwwQV88MEHJ53jyeZnreX5558nJyenxut9+/blwgsv5OWXX2by5Mn8+c9/Pi6AFRGRM4f6XJ1GJkyYgM/nY/78+bHXNm7cyMqVK5t03bFjx7Jo0SJCoRD5+fmxeqhjjRgxguXLl1NYWEgoFGLhwoVccsklNY7JyckhPz+fNWvWAJFAMhgMMmbMGJ555hkAtm/fzp49e44LQk7m8ccf57XXXmPhwoU4HF/8qEyZMoW//vWvWGv5z3/+Q1ZWVo2MU9XnW7p0KR6Ph7KyMv71r38dd/2cnBwKCwt5//33gcgy4SeffHLSOWVkZFBWVhb78+WXX84f/vCHWND60UcfAbBz50569uzJnDlzuPrqq9m4cWO9P7eIiJx+anRoV5+rls0Yw5IlS3jzzTfp1asX/fr145577qFjx45Nuu60adPo3bs3ubm53HjjjYwaNarW4zp16sS8efMYP348eXl5DB06lKuvvrrGMUlJSSxatIjZs2eTl5fHZZddhtfrZdasWYTDYQYMGMD06dNZsGBBjYxVXW6//XYKCgoYNWoUgwYN4r777gMihe49e/bk/PPP51vf+hZ/+tOfjjt3yJAhTJ8+nby8PL70pS/FliyPnffTTz/N3LlzycvLY9CgQbz33nsnndP48ePZvHlzrKD9xz/+MYFAgIEDB9KvXz9+/OMfA/CPf/yD/v37M2jQIDZt2sSNN95Y788tIiKnn5a0cbOp7zLVqTBs2DD74Ycf1nhty5Yt9O3bt8nXbuyyoCRWc96XeP1snYmWLVvGuHHjmnsaUo3uScuk+9Jy/HjpJp7+z24AfnNJKl/5UuJLQYwxa621w459XZkrEREROe0FW1DmSsGViIiInPaC1R4XbO4w67QIrlrS0qWcGfQzJSJyZlHmqgFSUlIoKirSX4YSN9ZaioqKSElJae6piIhInARb0NOCLb7P1Xnnnce+ffs4fPhwk67j9Xr1l2kL1Fz3JSUlhfPOO++UjysiIokRbEGbC7b44MrtdtOjR48mX2fZsmUMHjw4DjOSeNJ9ERGReAiEWs4KV4tfFhQRERGpS/W9BZs7zFJwJSIiIqc9FbSLiIiIxFGgBdVcKbgSERGR015L2v5GwZWIiIic9qoXtDd3KwYFVyIiInLaC4a1LCgiIiISN8HqmatmnAcouBIREZFT4bO3oPRAwi6vpwVFRETk7PK3a+CxiQm7fEvq0K7gSkRERBKrqsK8LHGZq0DI4nKYhF2/IRRciYiISGKFgwzo0ZUH2mQnbIhQ2OJyRoIrPS0oIiIiZ7aQH4C/ZGUmbIhgOIzb0TLCmpYxCxERETljhQLehI8RCFXLXCV8tJNTcCUiIiIJFQwmPriKLAu2jLCmZcxCREREzliBYCUAzgQWQwVCYZIUXImIiMjZIBCIBFeuBI4RrFbQ3twUXImIiEhCBYM+AJwJSlxZayPLgg7VXImIiMhZIBD0AInLXFV1Z3dXLQuqFYOIiIicyaoK2l0kZtmual9Bt2quRERE5GwQiAVXiREMR7a+USsGEREROStUBVfuRGeu1ERUREREzgbBUKSgPVHLgoFo5srtUuZKREREzgKBBNdchaIF7S5lrkRERORsEIzuLegyiS5oV58rEREROQsEQlWZq8SEHYFQtKBdmSsRERE5GyQ6cxVbFqx6WjCB2+zUh4IrERERSahAVXCVsMyV+lyJiIjIWSQWXJnEhB1Vfa7c6nMlIiIiZ4NEB1dVmSuXMlciIiJyNgiGI8GV2zgTcv2qmiu3Q08LioiIyFkgEAoACVwWrHpaUJkrERERORtULQs6E5S5Chz3tGBChqk3BVciIiKSUEEbBBKXuQpVFbSrz5WIiIicDWLLgmrFICIiItJ0gXBVzVVit79xafsbERERORsEw5FlQUeCaqHU50pERETOKoFozVWigp7gMcuCCq5ERETkjFaVubIJCnuqMldqxSAiIiJnhUA4lNDrB49tIqpWDCIiInImq2rFkKioJ6jtb0RERORsErCRzFWiEkqBkAraRURE5CxSFVwlKuqJ7S2ozJWIiIicDYKxzFWiCtqjy4IOZa5ERETkLBCwkWW7xC8LtoywpmXMQkRERM5YwWhwlajwKhS2OAzEGsDraUERERE5kyU+c2VxORyYBG2v01AKrkRERCShAiQ2uAqGwjX2FVTNlYiIiJzRYsuCNnEF7S6HoWXkrU5BcGWMcRpjPjLGvJTosURERKTlCSQ4lxQMh1tMA1E4NZmr7wBbTsE4IiIi0gIFo8FVwloxhCxup6GFlFwlNrgyxpwHXAk8nshxREREpOUKJGg5sIo/FK7RhqG5a65cCb7+74C7gYwTHWCMuQ24DaBDhw4sW7YsIRMpLy9P2LWl8XRfWibdl5ZH96Rl0n2pn8iyoMHj9STk+9p/wEvQF2bjho0AeCoTM059JSy4MsZcBRyy1q41xow70XHW2vnAfIBhw4bZceNOeGiTLFu2jERdWxpP96Vl0n1peXRPWibdl/q5f2fkf5NTUhLyfT27dy1HbTl5ef3gw9WkpKY2631J5LLgRcAUY8wu4FlggjHmbwkcT0RERFqgQNVvErReFwxHlgXP+Jora+091trzrLXdgRnA29barydqPBEREWmZgtH/TVQtlD9kW8zWN6A+VyIiIpJI1hKIZpQS9bRgIBgmyemghex+k/CCdgCstcuAZadiLBEREWlBQgGCCW7vGQiFSXI5aCldRJW5EhERkYSxQW8sc5UogWNbMWjjZhERETlTBQMerEnsgl0gWnPVUjbAUXAlIiIiCRMIlMd+n6iEUmRZsGUEVqDgSkRERBLIH6iI/T5hBe2hs6QVg4iIiIjfX5nwMQIhi8vRcra/UXAlIiIiCVMjc5WgqKdqWbCFJK4UXImIiEji+ANfZK4SvSzYUrScmYiIiMgZJxA8NcuCkZqrlpG7UnAlIiIiCRMIeBI+hj8UxuX8IrBSnysRERE5Y/mD3tjvE7ksmKSnBUVERORs4A8mNnMVCluspWaH9oSOWDcFVyIiIpIwNTNX8RcIhQGiHdpbBgVXIiIikjCBULXgKgHRlT8WXFUPrZo3d6XgSkRERBKmKnPlspZEBD2BYLXMVQtJXSm4EhERkYTxh3wAJNvE5JOC4chVa9Rc6WlBEREROVP5g9HgCpOQ4MofrL4sGEldqaBdREREzlj+kB8AN4aELAtGa66SXFoWFBERkbNAMBwJrpIT9CxfIBQJ2Kpv3NzcWs5MRERE5IxTlblKItGtGLRxs4iIiJwF/OEAkPhlQbdLTURFRETkLOAPBXBHH99LTOYqctUkbdwsIiIiZwO/DZBkI8/xJaJFQvUO7VXUikFERETOWIFQkCQMiaqIqurQ7lLNlYiIiJwN/DaIO/p7m4CFwWC1ZcGWouXMRERERM44fhskCUeCytmP2bi5haSuFFyJiIhIwvjDIZJM4pbsArVs3KynBUVEROSMFbAhkhIYbvirb9zcQqquFFyJiIhIwgRsCLeJBD6JqLmqasXgVs2ViIiInA38Now7geFGMFytQ3vLSFwpuBIREZHE8RMmyTjBJKYWKrYs6FKfKxERETkL+AmT5HBGnxZM3LKgWjGIiIjIWSFgLUnGlfCnBV0OPS0oIiIiZwE/FrfDBZiEBD3BUBhjwOlQzZWIiIicBfyGLzJXCYiu/CEbbSDaQiIrFFyJiIhIAgUAtzOxy4JV9VZVfa5U0C4iIiJnLD+Q5IjsLpiYgvYwrmh39paSvFJwJSIiIokRDhEwVcFVYmquAqHwcQ1EVdAuIiIiZ6agF78xuJ3JCVwWtF8sCypzJSIiImeyoL+CsDEkOZOBxGSUIpmrFhJVRSm4EhERkYTw+0oBSHElJ7CJaBjXMQXtzU3BlYiIiCSEz18GQJIzJWFhjz9oVXMlIiIiZwefLxJcJbtSgcQEPcFwmCQ9LSgiIiJnA1+gHIAkV2rCmnzW9rRgc6euFFyJiIhIQvj8FQAku1Or2nvGfYxAtWXBFpK4UnAlIiIiieEPRIMrVzqQmISSv1oT0SqquRIREZEzki9QCUByUhpgErItTY3tb1pI6krBlYiIiCRELLhypydsyS4Y0tOCIiIicpbwBT0AJLkTtywYCIVxu6rCmZaRulJwJSIiIgnhC1YtC7ZKWBNRfyiM23FMUKWnBUVERORM5A96AUhOyiBRWaXqrRhUcyUiIiJnNF80uEqKZq4SIRiyuF16WlBERETOAv5QJLhKSc6KLgsmYoyw+lyJiIjI2cEX8gGQlJSWsDGqt2KoosyViIiInJF8IT8ASY4kwCSkoD0QsrEmoonaYqehFFyJiIhIQvhCflzW4nQ4MSb+GaVw2BIKa/sbEREROUv4wn6SoxHVFUsq6f1ZKK7XD4TDAMc3EU1EK/gGUHAlIiIiCeEPBUjGYK2lz5YAX3s+GNfrB0KRIErb34iIiMhZwReOBldeb0KuHwhGMlfHbtzc3BRciYiISEL4bZBkDOFocOV3xff6gVDNZUHTQqquFFyJiIhIQvjCQZKMA1sZ2QYn4I7v9f3R4EqtGEREROSs4LMhko2TsCeygXMwzpmrYLTmqqpDu2quRERE5IzmsyGSjJOwJ7IsGO/M1bHLglWa+WFBBVciIiKSGH7C0cxVdFnQFd/UUtWyoMvRssKZljUbEREROWP4rCXZ4Y49LRiIe0F7tBVDnIO2plJwJSIiIgnhw5JsXIQrIzVX8V4WDB77tGALibEUXImIiEhC+LEkOdyxgnZ/gp4WPK7mKr7DNJiCKxEREUkIr4FkpxvrjWauErQs6NbGzSIiInLGsxa/gWRHEuFKD2WtzsOXlBrXIao6tLe0zFWcY0gRERERIOTHZwxJziTCXg9rht2DCe2N6xDHd2hvGZS5EhERkbgL+8oIGEOyK4VQtKDdOrvEdYxAuGpZ8JhwRn2uRERE5Ezj85YAkOxKxV8ZiLxoQ3Edo2pZMOmYpwWbe1lQwZWIiIjEncdbDECqO52AJxpc4Y/rGFXLgq6qgvYWsjCo4EpERETizusrBqqCq2hQZRMTXB23LNjMWtZsRERE5Izg9ZUCkeAq6AsCYOIeXEU7tKuJqIiIiJzpPL5IzVVKUgYBX1WtVeDEJzRCLHN1zPY32rhZREREzjgefxkAKckZBPyR4Cr+mauaGze3kMSVgisRERGJP6+/HIDU5CxC/mgqycY3c+U/pkN7FT0tKCIiImccTzS4SknOIhCIhDuJyFy5neaLbW9aSOpKwZWIiIjEnTdQCUBqShbBqpKrOAdXwVC4xT0pCAquREREJAE8wQoAUlPaEApGM1dx73NlawRXZ3yfK2NMijHmA2PMBmPMJ8aYnyVqLBEREWlZPMHIljfJSRkEw9FwI+41V+Hj6q2g+WuuErlxsw+YYK0tN8a4gVXGmFettf9J4JgiIiLSAniDXgCSgxByuAEwCdj+pupJQWg5fa4SFlxZay1QHv2jO/qruYNJEREROQU8QS8ua3F6/IScSdFX4xv9+IJhkt3HL8I1d5+rRGauMMY4gbXA+cAfrbWraznmNuA2gA4dOrBs2bKEzKW8vDxh15bG031pmXRfWh7dk5ZJ9+XEisqOkOKE999+m5AjGYhkWOL5fe0/6CXkC8euWRpt+eDz+Zr1viQ0uLLWhoBBxphsYIkxpr+1dtMxx8wH5gMMGzbMjhs3LiFzWbZsGYm6tjSe7kvLpPvS8uietEy6Lye2bJ+LtICDYf3687JzFxApOI/n9/XUzg8Iuv2MG3cxAEXlPnj7TZKTk5v1vpySpwWttcXAO8AVp2I8ERERaV6V4QApGMLl5QlbFvQGQiS7nbE/mxZSdJXIpwXbRzNWGGNSgcuArYkaT0RERFoObzhIinESrqwg5Eiq+4TGjBEMk1ItuKrS3AXe9V4WNMacA1wEdAY8wCbgQ2tt+ASndAL+Eq27cgD/sNa+1MT5ioiIyGnAa4OkOpzRzFVy9NU4F7QHQqRkJMf+3DLyVvUIrowx44HvA22Aj4BDQAowFehljHkO+I21trT6edbajcDgeE9YREREWj6PDZHiSCZcUUG4alkwzimlY5cFY06DpwUnA9+y1u459g1jjAu4isiS3/NxnpuIiIicprw2TLbDTai8nJAjI/JinGuifMEwKa7j+1y1+GVBa+1dxhiHMear1tp/HPNeEFiaqMmJiIjI6clLmFRHEuGKCkLOdpEXE5C5ql5zdVptfxOtq7o7wXMRERGRM0QllhRnMuHyasuCcX9aMExKbU1E4zpKwzXkacE3jTH/Y4zpYoxpU/UrYTMTERGR05O1eA2kOJMJlVdUa8UQzyEs3mDNzFULSVw1qIno9Oj//r9qr1mgZ/ymIyIiIqe9oBevcZDqTCFYXok1VQFQ/KIffyiMtZDsOiUtOxuk3sGVtbZHIiciIiIiZ4aQvxy/w5DiSsVf6YcEtLnyBSOdoGrUXLWQzFWd4Z4x5uI63s80xvSP35RERETkdOb1HAUgzZ2GzxNIzBiBEECtrRhOh42bv2KM+RXwbyKbMB8m0ufqfGA80A3474TNUERERE4rHm8xACnuNPzeCsiKvB7Pp/l8gWjmqnorhrhdvWnq04rhv6KF618BriPSed0DbAH+bK1dldgpioiIyOnki+AqnYDvULV34hf+VGWuTtvtb6y1R4DHor9ERERETsjri2zakprUioD/RLvkNXGMaOYquUYT0ZaRu6pXib0xxmmMaVftz0nGmNuMMVsSNzURERE5HXn8JQCkuFsRCFZ/J47LgsETZ66aW30K2mcAR4CNxpjlxphJwE7gS8ANCZ6fiIiInGa8/jIAUm0KQUdkY2VHyBvfMQK1PC0Y1xEarz7Lgj8ChlprPzPGDAHeB6611v4rsVMTERGR05HXXwFAajiZImcKAM6wh8TUXNXWob15q67qsyzot9Z+BmCtXQd8qsBKRERETqQyUA5AcshN0JWCMRZHOL4tGby1LAu2kJKremWuzjHGfK/an7Or/9la+9v4T0tEREROV95AJQBJQRchZwputwGvJb6Zq+ML2mNOgz5XjwEZJ/mziIiISIw3EFkWTAq6CLpSSEoyRPJWiS1oj2cfraaoT5+rn52KiYiIiMiZwRP0AOD2QdCZgjvZSTDOlVCxgnZXy+tzVd9WDOONMc8bYz6J/nrOGDMusVMTERGR05E3GHky0OkNEHKlkpRa762M6z9GbPub6n2u4j5Mo9SnFcOVwJPAS8DXiLRfeAV40hgzObHTExERkdONJ+Ql2VqorCToTCE5zU0knxTP7W+iwVUtNVfNnbmqTyh5FzDVWruh2mvrjTEfAn8gEmiJiIiIAOAJ+UixhlB5OSFXK5LSkyJvxDHq8QbDJLsctXdlb+boqj7Lgh2PCawAsNZuBDrEf0oiIiJyOvOG/aRiCFdUEHSmfBFcxXHdzhcIHded/bRZFgQqGvmeiIiInIU84QApxkG4vIKgK5WkFBdg45u5CoRrbSAKzZ64qteyYC9jzIu1vG6AnnGej4iIiJzmvOEgqTgJllcSdibFCtrjubGyLxgi+ZgnBU+bVgzA1Sd574F4TURERETODN5wkFSnG3955KnBqsyVjWufq3DtDUQ5PTJXn1tr9yR8JiIiInJG8BCilSMVf2UAksCd4oyEVXGMevzBMEnHBFenU83V0qrfGGOeT9xURERE5EzgsWFSHUn4PZG+7LGaqzhGP/7Q8cFVS1GfWVX/JlRjJSIiIiflxZLiTMLvi/SiSkp1QlwXBSPLgknOYzJXcbx+U9QnuLIn+L2IiIjIcTwGUhxJ+P2RsCGSuYJ4hj+1LQtWsafBxs15xphSIt9IavT3RP9srbWZCZudiIiInF7CYbwGUl0pBP2R/f8SFVwdW9Aez6cRm6I+GzcfvyOiiIiISG2CXrzGkOpIJhCMBDtVy4LxdLrXXImIiIjUS8BXStAY0sLJBB3JALhTXNGcVZyXBU/jmisRERGRevF4jwKQHk4i6EoBwJ2cgMzVyWqu4jpSwym4EhERkbjxeosBSAu6CTlTcDktDkf8c0q1LQu2kJIrBVciIiISP55ocJUadBN0peBOqop4LPFfFqy9LLy5nxZUcCUiIiJx4/VHmgqkBl2EnKkkJSUmnVR7h/aWkbpScCUiIiJx4/GVAZAcdEUyVynVs0vxCX6stfhDJ95bsLm1zFmJiIjIacnji2SukgMOgs4UklPd0XfityzoC0b7Z6mgXURERM503kAFAO6gg5ArhaQ0dx1nNJw/FAmuastctYSVQQVXIiIiEjeeQDkALh8EnSkktYr0ujJxzFz5lbkSERGRs0UscxUgkrlKT477GLHgyllL5iruozWcgisRERGJG0+gEgDjC0cyV7GC9lOXuWru1FV9Nm4WERERqRdP0AuA9YTBOGKbNhdVvkCyMycuY1TVXNUWXLWEdgzKXImIiEjceIMejLUEK0MAJKe5CPh9APhC2+IyxsmWBaHZE1cKrkRERCR+vCEfKYCvMgBAcpobb1lZ9N34PDl4slYMzZ+3UnAlIiIiceQJ+Ui1Br8nmrlKdeEpi/S+csQpuKqz5qqZtcxZiYiIyGnJGw6QisHnjwZAqS685ZHMlTFJcRlDfa5ERETkrOEJ+0kxDvyBSJSTnObCE10WNLjjsqvyFzVX2rhZREREznAeGyTVOAlESq6imavIsqAxSdhwuMljnGxZ0LSAqisFVyIiIhI3XhsiBSeBUCSrFKm5qspcJWHj8CyfPxSp51KHdhERETnjeW2IjKCLoDMVpyOM0+2IZa4wDuIR+lRlrmqruWoBiSsFVyIiIhI/Hhsmy+ci4EolKdqq3BNrxUDClwVbgpY5KxERETktebFk+p2EXKm4kyJppKpWDGDjsiyoPlciIiJy1vAYyPA7CLhSSU6N1F15q2Wu4rIsGFKHdhERETkbhMN4DLTyuQi6UklOizQN9VTVXAHWxnFZsJbgSn2uRERE5IxhA5V4jSHV54gEV60iTUNrZK7ikFbyB8O4nQaHo/ZISn2uRERE5Izg8x7FGkOa1xB0pZGcmUo4FMJbWVHtqPg8LXiiJcFIn6vmja4UXImIiEhceCoLAUj2RjNXmSmRYvZoKskSp2XBUPiETwpqWVBERETOGBWVhwFI9ruxDhfJqS4qS4qrHRGnpwUDJw6uIqM0LwVXIiIiEhcVniMAOHzJACSnuaksKTnmqPg8LXjCzFWTr950Cq5EREQkLqqCK3yRpwRT0t1UlhbXOCZeTUSTXbVv2hwZpMlDNImCKxEREYmLcm8xANYXac2enPbFsqDhJMFQA1X6g6Ql1X490wKKrhRciYiISFxU+IoBCAaimzZHgyuH04kxbrDxqbmq9IdIcZ84WFPNlYiIiJwRKvyRZqFBf1Vw5aaytIS0zKzYMfF4WtAbCJ04c9XkqzedgisRERGJiwp/OY6wJRCOBD4p6ZHMVWpWNmDiFvlU+k8cXIEyVyIiInKGKA9UkO6FoCsNsCSlRIKr9KzsL+KqOGSuTros2AJSVwquREREJC4qgh7aV1oC7nSS3GAc5pQvC7YECq5EREQkLipCHtpGt75JSjZYa6ksKYktC8ajmB2qlgVdtb7XAhJXCq5EREQkPipC/lhwlZLqxO/xEPT7amaumhhghcMWT6COpwXV50pERETOBOVhP629TgKuVJLT3VSWHAUgPbt17JimNhH1BSPnq8+ViIiInPEqbJBMn4OgO53kjBQqiqsFV3F7UjAIQKr6XImIiMiZrsKGyPQ5CLjSSMlMjXVnT6tqxQBYmpa5qvSHAEg9YeaqSZePCwVXIiIiEhcVWNJ9jkjNVUZSjcxVVWhlm1gQ5Q1Egis9LSgiIiJnNmspN5DmS8Y6nLGtb4xxkJqZGbdhYpmrEywLtoDElYIrERERaTrrr6DSYXD70wBISXNTUXyU1MxMHI7qgVDTMld1LQs2fYSmU3AlIiIiTebzHCFoDE5/ChDZtLmipLjak4LRhcEmPi34xbLgCfpcGdPs0ZWCKxEREWmy8opDAJjQF8FVZUlxtJi9StOjHi0LioiIyFmh0lMIgA0kAZCcHlkWrNHjiqY3Ea1qxaCNm0VEROSMVl5ZCNYSCkWCq6RU5/GZK9v04KpqWVCtGEREROSMVuE9QnIAQs5UABz4CQUCsczVFefeSI+MXk3em6auZUE4gzNXxpguxph3jDGbjTGfGGO+k6ixREREpHlVeEvI8EDAlYYxFr+vDID0rGzC/hDprgyGtrkQa+PURPSEwVXzp65qL7WPjyDw39badcaYDGCtMeYNa+3mBI4pIiIizaDcV0xWBQRdaSQlmS+6s2e3JlzmB8Ab8pASh2XBZJcDh+MkQdSZ+rSgtTbfWrsu+vsyYAtwbqLGExERkeZT4S8js9IScKeRnOKIBVfpWdmEYsGVt8mBT6U/dNJi9pZQc5XIzFWMMaY7MBhYXct7twG3AXTo0IFly5YlZA7l5eUJu7Y0nu5Ly6T70vLonrRMui9f2HdoH5mVkcxVwPrYsOYTANZ/spmskjQ64cQX8rJmzWpS0w42epyde3w4wqETfu9+vx9/INys9yXhwZUxphXwPPBda23pse9ba+cD8wGGDRtmx40bl5B5LFu2jERdWxpP96Vl0n1peXRPWibdly9sPPw7siotAVca7Tq1o8057djncDDx8iuo+M9BitfvwBvyMmzYMNqf06/R4yzev47sQOkJv/fkd9/E7Q41631J6NOCxhg3kcDqGWvtPxM5loiIiDSfymAlbSsh6E4nJSM50uMqKxvjcMSWBf3WR9O3vwmesDt7lTP5aUEDPAFssdb+NlHjiIiISPMrD3ppHQ2uktPd0R5XkTYMVcEVWGwcWjGcbF/BllBzlcjM1UXAN4AJxpj10V+TEzieiIiINJOKsI/MSgcBZ0pkX8Hio6RnZwPEnhY0mLg0ET1Zj6uWIGE1V9baVbSEZhMiIiKScBXhAK28yWAcJKe5qSgppl2X7kD1zBVxaSLaOfskmasWEHqoQ7uIiIg0WYUNkhzMACA1w01lcXEsc/VFcGWwNL2J6MmWBaHJ8VuTKbgSERGRJiu3YRyhSHDldPkIh4Kkt26DDYUJlweA6HJWEwOfupYFz/SaKxERETlL+EJhwiYTABuKbH2T0a49wSPVG4camv604MmbiLYECq5ERESkacJhHB7wJ0WCq6CvBIDMtu0JFnljhxlDk/YWDIctnroyV5zBrRhERETk7GD95bg9Bn9SJg5j8ZQXAdHM1WEPACEbBNu0wMcXjARmqSfpc2VawLqggisRERFpEk/lYTI84EvKJCXNQVlRIS53EqkZmQSLPJgUF/6QN1IP1YRq80p/EKDOZUEVtIuIiMhprazsAJkV4E/OIj0zibKiQjLatccYQ7DQg6t9ajRj1bSnBSv9IYAW3+dKwZWIiIg0SUnZfjKjNVdp2SmUFR4io207AIKFHtxtUwAbaSLahLSSNxANrlTQLiIiImeykvJ8Mist/qRM0tumUVZ4mIx27bGBMKESH652qdU6szdlWTASXJ1sWbAFlFwpuBIREZGmOVpxiMxKg9/dipR0J+XFR8ls157gEQ9YcLVLBaJP8jWp5qp+y4J6WlBEREROa8WeQlp5W4Fx4HJVgrWRJwULI08KutrGJ3NVn2VBZa5ERETktFfiKyYtEG0gGi4HIKNte4KFkR5XVZmraKOrRo/zxbLgybdGburm0E2l4EpERESapNhfSmo0uAoFow1E27UnWOTBke7GkeoCa5vc4LOqFcPJm4g2f+pKwZWIiIg0SXGgAreNBFd+TzEAGW3bETjsiWWtYq0YTsXTgupzJSIiIqezUp8H64gEV76Ko6RmZOJOTiFY5MHVNiV6VDRz1YTtb/S0oIiIiJwVAhV+/ElZuJ1hyo8WktG2PWF/iHCp//jMVbjpwVWKnhYUERGRM1pFCH9SJqlpjliPq9iTglXF7DS9FYM3ECLZ5cDpOHF6qgUkrhRciYiISBOEwzgqLL6kTNIy3JQWHo4Usx8XXNno04JNy1y19O7soOBKREREmiDkKSK50uBPyiAl0+D3VJLRth3Boi96XEGkPYKhaW0SKv0h0upYEjQtoOhKwZWIiIg0WmnJXrLLDf6kLJzJkb5W2R06ESz04shIwpF8TDDUxGXB+mSumjBEXCi4EhERkUYrLt1H6wo3IVcKlkiPq+xOnQkWenC1S6l2ZGTjZppQ0F7uC9bZQLT581YKrkRERKQJSsoPkOmJtGEI+o4AkN2hI8EiD+52abHjqrJJ4SYEV2XeAFmp7jqP09OCIiIicto6WlFAK38GAL7KQlq1bYfTugiXB47PXJmmNREt9QbJTD155qolpK4UXImIiEijFVceJiW69U1l8SFad+hUY8PmKrGQKtT4zFWpJ0BmyskzVy0gtlJwJSIiIo1X4jmCy2YBUFZUEKu3gpo9rqpqrsJNylwFyNSyoIiIiJzJKoqPEnRnQNiDt7yU1h2jwZWh2tY3XwQ8jd3+xhcM4Q2EyUypo6BdrRhERETkdOYvLsWflInbVQxEnxQs8uLMSsbU6ElV9bRg4/JKZd4gQP0yV2rFICIiIqerUIkHf1ImLncpAK07diZQ6DlmSfALjW0iWuoJAKjmSkRERFquSn+QFdsPN+kJPsoC+JOyMI4yMCbaQNRTY0kQvgiqbCML2ktjmas6nhZsARRciYiInKUeX/k5Nz75AW9sLmj0NZzlIXxJmVjKyGjTDuMH6wniqtbjqkqkHirBmasWkLpScCUiInKWenljPgD3vbQZf7ARGSVrSaoAf1IGAd8RWnfqROBgBQDujscGV9HMVSObiJZ6o8GVnhYUERGRluizQ+VsKyhjaLfW7Dvq4bND5Q2+hvVXkOppBcaJr7yQ7I6dCeRXAuDulF7zWGhSQXupJ7osWGfNVfOnrhRciYiInGWstfz2jW04HYZZ43oBsOdIRYOvU1G6n3RfNjbsIeCriBSzH6zAkeHG2Srp2FGrBm/UnKsyV/XZ/qa5KbgSERFpScLhhPcSeO2Tg7zy8UH+Z1IOw7q3AWB3UWWDr1NcupuUYDtsuBiA7E7nEjhYgbtjeq3HR5qINm7OpZ4AbqchxX3y0EU1VyIiIvIFfwWFj46m+PcDYctLCRtm/d4S3E7DbWN7kpXqJjvNze4jDQ+ujhbvwUkbbKgYgOxzOhIoqDhuSRCa3kS01BvZ+qY+TULV50pEREQAOPzvu/lKSikTsmDBG9+F8kMJGWd/sYfO2ak4HZFApVubNPY0InN1tHA3waS2YAvBGFo5syFoT5C5imzcTGML2j3BehWztwQKrkRERFqCoI//3f8GlU43Q9oN4KHMFHa+PjchQ+07Wsm52V80+ezaNp3djai5KsvfhzelLQ5TTGa79oQL/QAnXBZsimJPoM6tb6roaUERERGhfNdKVqQm8bVOY/jVpQ+T6nDzQMEqOLor7mPtP+qpEVx1a5PGgWIvgQY2+PTmF+BJaQuURZ8UrACHwX3O8T2ubHT7m8a2YjhS4aNN+rFF8sfT3oIiIiICwLrtLxAyhtF9ptEmpQ239P0GK9NS+GT5/XEdxxcMcajMx3mtvwiAurdLJxS2fF7YsOxV8FAJ3pS2BAMlsScFXe1TMa4ThxeNLLniSLmfNunJjTv5FFNwJSIi0gJ8cGgtbgt5510EwIy828jEwV+LPozrOAeKvQCc2/qLzNXw7q0BeH9HUcMudsRByIQIBTy07hTJXNVWzF7FYBpVbG6tpajCT9vj2jvUNoYK2kVERCTg4YPAEQYltyPFFdmTr1VSKy5M6cTH1gtBX9yG2n/UA1BzWbBtOl3apLLqs8IGXctZno4NHwUgu01HQiW+k9RbWTAGa0MNnnOFP4QvGKZtvZYFG3z5uFNwJSIi0sxKdr7NVreLER2G1Xg9p00f9rpdVBzcELexdhyOdGI/r1rmCuDi89vxnx1FBBtQd+XyZsXaMGQ42wLHd2avYrEYS6M6tB8pjxTK16fmKjJW81JwJSIi0sw+/PRFrDGM6HN1jddzOl0IwKe7l8dlnI/3lTDv1a306dCKztk1g6sLe7SlzBfks8P13wbHFWxNOFyMMQ5S/JGMW9LJnhQ0jVsWLKqIZO7qtSyozJWIiIisPryeVAsDosFUlT5dxgCw/dD6uIzz0scHCIbDPHPryFiPqyo92kWCovr2uwoWFmCd2djQETLbtyd0yIsjzYUj88QBkAHCjahoL4pmrtqqoF1ERETqVLyX1cEShqR2wu2s2SSzU2YXMqxhW+nncRlq3xEPXVqn0T7j+CClS5vI04N7ozVZdSnZ9iG+5GywR2JtGNwd00/YCsFGt25uzJrdkYr6Lwtq42YREZGz3JYP/sjOJDfjel993HvGGPq4MtkWKI7LWHuOVHJem+N7UAG0TnPTKtnF3npug1OybT3epGzCoRKyO0TaMJzsSUGIZK4a06G9sAHLgqCaKxERkbPakl2vkGThS/2+Xuv7ORld2e40hEvzmzzW3qOVdG2TWut7xhjOa51a7+CqbMd2PMmpYAO0yz4PGwjXozN747JKR8r9pLqdpCXV3aFdNVciIiJnsfCRnbzqCjIxszdZyVm1HpPTfiAeh4N9TSxqL/EEKK4M0KV17ZkrgK5t0thTz+DKt/cAXlckR5SV1B448ZOCVYyJ9KxqqCMV/no/KQg0e+pKwZWIiEgz2brleYqdTsZ2v4KCeb/k6KJ/HHdMTtexAGw/8J8mjVWVkep6gmXBqvf2Hq2sVwAUPOTH2siThanBdDDgqmXbmyqxmqtGtGKobwNRaGxuLL7qtwOiiIiIxN0He5YBkLerFUcWPAiAcTnJ/spXYsf06jgEh7VsK9rKpU0Ya9/RSHDV5STBVZc2aXgDYQ6X+zgnI+Wk1wuXpxMOH8UYB84yA+1ScSQ5T3pOpEN7w4Or4ko/2Wn1z1yp5kpERORsZC2ry3bRO5SM96H5pPTrR/rFF5P/43spe/ud2GEprhS6mWS2eQuaNFzVct/JgquqxqL763hiMFRSgt/ZHhsqplXb9gQLPPWot4qEPLYRmatiT4DWae66D4QWUXSl4EpERKQZhIp3sc4N1+xsS7CggHP++3uc9/uHSLngAvJ/9CNCJSWxY89PbsPnYV+TNs3bVVRJ6zQ3WaknDlI6ZkWyVQWl3pNey79nL5VpHbHho7Tr1IXQEW89gqvG7y1YXBkg+yTzPpYyVyIiImehzz59lUDYMGBlCcm5fUkbNQpHWhqd7v85oeJiDv/h4dix3TO6sM/lIFC8p9HjfX64ItYo9EQ6ZUUyV/klJw+uAgfzqUg7Bxs+SqfsXgC4z2110nOsIbqrcsNaMYTCllJvgKx6Lgs2f95KwZWIiEiz2Lj/Xa5bGSapoIRz/ut7seabKX37knX11RQ//3wse9W9zQUEjWHf/tWNHm9XUQXd6wiuWqe5SXY5OFhHcBU8cIDy1GywAVo7O4CB5G6ZdczANqrmqtQTwFoalLlq7tSVgisREZFmsKVgO1eusWRefTWtxlxM4b4y8neUEAqFafONr2M9Hor/uQSA7p0iGzrvauQ2OJX+IPklXnrWEVwZY+iUlcKBOoKryl2fURlNJKX5WuHukI4jtT7PyJkG11wVewIAZNez5qoFlFzpaUEREZFTLhQk8Fk57hC0vu5aSgs9PP+rtQT9Ydp0TufyW/uTmpdHyYsv0vbmmXTvNBSAXUc+bdRwuwojxex1Za4gUnd1sOTkBe2F+w4TDmdgMDiOWJKG1JW1ijA0vM9VcWVk65vWDXpasHlTV8pciYiInGKVBZvoutPgT3eztbAdL/5+PcYYLvlaDp7yAEsfXIe55Ep8W7bg37ePzOQs2ljDrsoDDR7raIWfJ9+N7E1YV80VROqu6qq5Kim2hIMFtM3qAv4wyd3rF1zRiGXBqsxVVn0zVw26emIouBIRETnFPv38bQbvsBQPH8P7S3ficBgm3tSX/mPPZdr3BhMOW1YX9sRiKHvjTQC6O9PZ5S9t8Fh/XrGT59bui1yjbf0yVwWlXsInWb6r8KZjQ4fock5fAJLqEVxZLMYYbAP3FiypjC4LNqTmqpkpuBIRETnF9qxbSboPCs/5EkmpLq6dO4xeQ84BoHXHdC6+rjeHD/goGvhlKlauAKBHagd2OUIQ9DVorJ2HI13U//yNoaQn110N1CkrhUDIUlThr/V9GwxS6ciMPCmY3hNnVjKu7JM3HK15gcYtC9a3iagxprnr2RVciYiInGqeT/bgTW5NweE0+o89l6RjisFzRnSk7Xmt2HPOaDyfbMZaS/fsnhxxOikp2NigsfYe9TDxgnO4vF/Heh1f1WR0S37tWbLgoUOUpiQD0MqXWa+sFQAmsv1NAzsxcDSaucpMqV+ZuJYFm0Hg4EGChYXNPQ0RETmLpX9eyafnj8EC/cZ2Pu594zD0HnYOxcEMKr2GwL59dG/fH4BdDWjHYK1lT1HFSbuyH2tUz7akJTn59ycHa33fv2cPlUlh0lyZGC8NqLeqaiLawGVBT4CMFBcuZ/1Dlib0Wo2Lsy64+mzceD69eExzT0NERM5S/v1bOXe/4Ui70XTr35bMtqm1HtdzUHsACtsOxLtpEz3OHQXArsJP6j3WkQo/Ff7QSTdrPlaK28mEC87htU0HCdVSd1W2+TOClJKdEgkKk87LqNd1bS2/q4/iSn+DnhRsCa0YzrrgqkpjNo4UERGpUuEL8vctPn77+jbKvIF6n7fzb3+gMr0XIZPBeX0cPP397/DIbV/nL//z/1j36oux41p3TCerfQpF7frj/eQTzm3TG5e17CrZVe+xqvYTbEhwBTCpX0eKKvy1Lg0Wbc8nHDpEVquO4AB3x/pf22AIhxo0FYo9gZNu2dMSnVXBVfWAqnLNGgL5+c04GxERiZtQAAIn780Ub3985zNe3x3k929/xuuf1H9T5crX/8OOboMxrhD/ef4BSgsP02vYhbhTU3lnwXyW/fUxgv5IEXen87Mpy+5B5caPcTlcdMHNLu/heo9VFVx1a9uw4KpbNBirrSVD4d5ibKiItqnn4GqfhnE763lVG0krNXBZsLDcR9tWDchctYCqq7Oqiaj1fPEf3p4bb8LZujV93n+vGWckIiJNtuc/rH3xNirCfga2z6OispBzL5wF/a5J2BpRQamXx1d9zoiOTtYeCrOzsLxe5/k+/5yU/R6O9h7MOe0Psn9zEdfc8zN6DBpKOBzi7afms/blFyg9fJgp//0DzumWydb30yjetgcbCNA9qTW7KmuvharNnqJIcHVe64YFV+dkRgrWD5fVfDLRhsMcLq+AlDBtHOeQ1Pnk+wnWZBrVRPRQqY/cTvWv64Jm3/3m7AquQkePnvTPIiJymjm6m4f+9Q0ez0gB3CT5PsHvMlyyci4/+OAROve9BkbeEfcg643NBfiDYa4+P5XDQQefF1bU67yy117jSJu+OGwmnpLlZHfoRPeBgwFwOJxc+s07SM/O5r1/PMPeTzbSvls3AErdHfBu3Ub3Vueyyn+IUPkhnK3OqXO8dXuO0rN9OqlJ9c0uRbRrFQmuDpXVzFwF9u+n1O0k2ZFGajgdd+e6+2bFRJ8WpAGJq1DYUlju45yMBrR6aP7E1dm1LBg8Wlzjz8527ZpnIiIi0nSVR/j34ut4vFUKU7tM5PYB3+KKHpOZlXcHH6RncLmzgK9+/BCHnp4C7/0hbsMWlvtY+elhzs1OpXO6oUe7dHYerl9wVfzyC2zvPpJgYCVH9n/GsC9fg3HU/Kt42JevoVXbdvznn4tod24rjANKM7ri+WgdPdrkEDCGA/v/U+dY/mCY1Z8f4aJeDf+7zu100CY9iUPHZK5827dT6Q7SJuU8AJLOrV8xe5WGbtxcVOEjbL/IpNVXc5dVn1XBVejoEQA6P/AAWVdPIVRSctxNfmb1bv7vlS3NMT0REakva3nvH9fxg6RK8jK6c+8lv+b/DZnD/Zf8ijsGzeL5aS/y3SHfZXdKGhPtLr6y6WECez9o8rCvfXKQYT9/k9c+KWBsn3YYY+jZLp1dRRUn7WgO4N+3n/LdRyhP60So4kP6XXIpAy+94rjj3EnJDBg/iT2fbKSy9Ahtz21FWbs+VK77iO4dI1muz/PX1TnXDfuKqfSHuOj8to36rOdkJHOotGZw5dm2nYApJ7tVV6wDkrrUf1nQRjNKDQmuqsY/J6P+wVULSFydbcFVZBkwpV8uyX1yIBAgXFFZ4xjznwfpvu7uUxL2lvuCfPfZjygqb1i3XRGRs13JugV8P5xPj5T2PHju3ZQ+9Re8mzfH3u+S0YVvDvgmf73qWb7aayrbk5N4acVPmjRmKGz51b+3xv58SZ/IslyP9ul4A2HyS0++H1/Z66+z97zxBD3vk5SWzribbsVElysDhyvxbCkiHG2YmTt2AljLlpXv0KlnFiXpXancvIXunS8EYNfR7XXO973PijAGRvZsXHDVPiOZw8f8/VS0dS/hUCGtUzri7pzegGL2CIPB1hGEVldV89W+IcuCLcBZGVy5WrfG2bo1AMHXf8Unj45i75JvEcrfwL9SXuXPnXdw9MPHEz6fTftLWLr+AB/uVu2XiEi9eY7yuzW/IrvQwf0Fl1H0rTs59MBv+Py6r3L44T8SOPhFwXdOmxx+dNF95Ca14THP5wTzG9bdvLo3Nh9kx+EK/nD9YJ6/YzSX9+sAQM92kexN1TYzJ1L8+lvs7tADG9zNqK/MICW9FZ5tRyh+ZScFD66j6C+bOfSnDYTK/WR36EjnnFy2vb+STudnE8LF0aOWzHAKWRZ2le+vc74f7y+hV/tW9d425ljtM5I5fEzAuH9/IQZLR+c5pHTLauAVq54WbEDmKlrz1aDMVQtIXZ1VwVXw6FFwOnFkZuJsnQ3AnE8WMSO1nO8VrmLJ23PZlJLEEaeT3679HTRwc8mGqvAFASj3BhM6jojImWTDy//Drr0O7v8b2Eeext21Cz1ffYVW48dR+PDD7PzyFDyffNFo0xjDbcO+x163m1eX/6jB463fW8zlD67gobc+o0NmMpMHdGJot9axrFNup0yMgXW7i094Df++/RzYU4nft5pwiotBl19F+ep8ip76hPIV+0m5oA1tbriAYLGP4hd2AHD+8JEc3v05rbIjbRmKs3rh27aN7o40dvlPPFaVLfml9G3gU3bVnZORwuFyX2wZL+z3kx/w0ia5E27cJHVr4LUN0acF639K1bJg+wYEV9D8TwueVcFV6MhRnNnZGIcDZ3Y2AKnBFC7O6Ml2t5NnKndxrj+Z84524+UUQ/medxM6n/Kq4Mqn4EpEpD5CBbs5+rt3ufv5MCkdOtHzlVfouXQpyT160OXhh+n58ks4MzLY/bUb2P/f/8O+Od/h0G8fZFyvqzjflcljZdsJF+9p0Ji/+vdWthWUsSW/lGmDz8PpqJkayUpzM+DcLN797MRbq5W8sJTd53TGhg7R8eIcfOuLKF76GSk5ren8s9G0uzGXtAHtybioM55NhQSPejl/WGQJMP/TdWS0dlOS1Qvvlq10T23PLgIQOvHfHSWVAfYXexrcwqC6czKSCYQsxdGlSv/OnZQkBziv1UBChEjp3boRV21o5spHZoqLlAYsP7aEPldnV3B19GgsY+XKivzADQ61YUbvawkbQ94HTr72WhL7Si4hYAyrNi5I6HwUXIlIi1J+CPavTXjWvrGCR4+y9dYbaFdk2H3bOHouWUpyzx4Y1xddhZJ79aLbwr+TcemlVK5di/eTTyiaP5/KFSu5ZcCtfJ7k5oP3f1PvMd/9rJD3dhTx5bzO9OucyddGdK31uIvOb8cHu44w4v43jwuybDhM0ZKlHEo5TK/WFzF+35c5+vynJHXPpO3X++JI/iJwSB/VGQyUr9xP607n0va8rnz24Wo69GpNWVYPvFs20z2zO4ddTsoPn/jhqy0HI53V+3Zq2NN81VU9oVf1xGDJxo34HGV0TutJYXY+jtSGd3MymDoL/6s7VOblnMzTq94KzsLgypUdibTX7PscgK4HHeSEe9O21PKVd8MM2lyCt7wX2dbBW4c+rHmB4j2wdgEUfhqX+VTUI7gKhML8YMnHbD1YbQuCE0X9xXvAW/su5iIi1R37xFbJygd45PFh/HjJtbz36GDse3+EVQ/C2r9A4OSF2qdCqLyC3TfcgN1ZxJNXORk7+zcETBK7NxXx1l+3sPIf22Ofyd2hA+f+5gF6L3uHXv9+laQePTj0y19x2QXTycLB4r1vnjTrU6XUG+CuxRvo3jaNX31lIC/PGUPXE3Q6r2p3cKjMx8Nvf1bjvcoPP+QTk0yWO51h2ReT3DWLtjfm0v6bA44rCHdlJ5M+vCPl7x/A93kJ5w8fyb4tm2jdwYk3KZuSTZ/RI7qB8+4DJ97AuWrbmqZkrjpGg5r8kkgD7t0ffUimuy2ZrlZUnlvW8AuayBJtQzJXB0u8sXnUe5jmT1ydZU1ES0tJ6t4dgEUfvc+3DXRctZ+jq27m7s4GVxggTJ+j+zmXLqxyfk6weC++nW9T/NnrfOQv4i+VnzPqvQD/df3rmHbnN2k+5b7IBksnq7latu0wf1+9h0OlPh6/aRgEfax4dBgAw7tfStBXysMHh9Bj4CVUrJ9G345DGX3dswBs2FtMRoqLnu0b0kH3NLN+IaS3h64jwTggqWFdiEVOiYoiwu8+hGPYTGjTs7lnw+Hf/4HSV16h6//egSndRdlnu7nT/ouPW2eR7khmadhH90/+gN8YssJhZq1+kIuGzWLth48wfML9OC+YfMrnfPDee/F9/jn/N93B6InTwOPiH/PWUHbEi3FEnkAr2l9OWmYyF07pSVb7yGbIxu2m/XfmsP+7/4V/+btc3XE0f89fSeEnz9Nu4PSTjvn4ip3kl3r55x2j62zCOapXW+69KpfdRRX85f3dPPTmp8wc3Z2sNDeFzz3HntYuhmVfQsDhp/PX+p4065M1uQfeT4spfmEHPa8cweol/8Bf+RmQTtHhIN1a5QLw+aGP6XeCa3y8v4R2rZIbXKtUXefsyHd4oDgSXO/dd4COqX0ASMnJbvR16xtbWWvZWVjB1YM6J2yMRDmrgivzjUz8SdF0t92Do9qXf94RJx9c0YER/97PgKKd/OfA+ZSfu5utW57j2U0LeNMVJDMcpiw5laeSk+j18m1cfeNbTQqRq4Kqcl8Qyg/x4d+uYtCXHsLVbVTsmDc2R5566ZgV+Q/k4JYX+H8Z0K7E4st/nbIkB18Ovsf6d97j5W4p5BVvIO+9d3Fmt+bqv0ayc9t//iWSXCdJUvorIeSD1MasnyeODYUoevJJMi69lOQePY5/b/6DPL3hMfZcEGKA9WGwDE7vSt64n2L6TPri4KAPjBOc9ftx927bhnfTJ2R/5Zp4fpz6y99I4apf0zr3GpxdRkaCx3rOvUUrPxTJggy5ETIiT1nZYJCK994jdcgQnK3q+EfA5ysh69wWEZw0SNlBXvjrZcxLC/O9Xf/mupvehuTm+wdPxfvvU/inPwHw4Zy7CYWhbYnhax2dZN4xk+Ff+iavfvA3XvN/QJv0DnxS8BGzPQXkrn+AzenJXPLOHH5VcZC0obc0eS5/fOczLunTnv7nnvyps7K336H0lVd446IwaamX0m//9Sx9ax2VZV4m3tST8y5oz0u//xf5n+7B4e7BjrWHyL24M2Om98bhdJBx6aW4zzuPI088yVf++DP++tIqlq7/E7f2+8oJ/9sq9wX5y/u7mZTbgcFd6/7/RqfDcMvFPThS4efdHUU8+GakVcKsgVmsX7+R7A7n0TWtO0d7HqlzOc2R7CLz0q4c/cd22vi60Kp1Gwr3fAyMpKxVF/rt8eK0ll0lO094jY/2FDO4a3as6L4xzslIxukwHCiOZK4OeSsZ1iaHA64iOvUc0PALGhupNK/nsmBRhZ8ybzD2NGa9h1Hm6tT674pNdKlw8xBg+eJR3Z4v/Qv3eeeR43Lz1nuXMaxgK4vLv07fgjfZtPkvvH5BEI/DQYXDwbyh32Ph5qd5oHw/F73/EO1GfzcSIocC4GrY465Vy4Jl3iDrP3yUm1M9fOftu7j15lUA+Aq28/qm/OixISjZz1ub/kqbUsvDjxuOdmnNk1/P4qPQ53TJ/oAuh5JxFTvY8+CtgIOHu3Rka5+uPP9qNheWzKe08lMu6DCI5PMvx/S7GsoOQtDLey/dwadHtvG1i+7FPWxmHL7pOgT99fquCh99lMI/PEz5m2/R+Ve/xN2pEyX/egn/7t1UfrgGz7qPuAIHO7Y6ufcbKQRchl4HShn/yJ1MKzmPYIEh88vXsT1pEYQDjL75HXCefGf1cGUl++6YReDAAVJy+5LSt2+9PlIgP5+jC/5IYdZK+n71ibqzmuEweIvZ9fxMXA4nBkOnPlfiLcvngc1P8nyrNIat/A/9fT7GJHWle+grpA6/iPQLR3xxjaAfHC5wOAgWFeFIScGRnl7tPWfk14nGD1RAUqt6/z9RsKiI8hUrybp6ynEdpQMHDnDogd+QPmYMGePH4czOxh78BP+aN0ia8A0ql8/juR1LeDI9iXv3vsPEG17Gt2sX++6cjX/HDtJHj6bLY/MxztrnW7J8Hj/75DF6hgx3XHQvzoEzGvzfW5OEQ1BRiO9gKYd//3tScnPxfLyJjEsvxfr9ZF51Fc5W6ZH/ptb+hWBJEd5gD7YdXsB+/PyoFaSbZOZRif/RAUzqNJr2l/8qEiwmgA1FsuLHfp+hwgL2fOfblGaHeWyCi+krLa1Cbl6/ohUTPzI4f/I4n//vAi4Ihbj86b+SNmwYgVCA2a98g3ePfMKY9kNYeXgdd3z4C+ZueIbcq+dD216NmuO+o5X8+rVtvL31EM/fMbrWYyo++IAjTy2gfPlyCtpaXhrSgS+vH8bGLf8mKTUFp1nHy787iMPpJBz9zKOuu5lAoD+blu/HUx7gsm/m4nS5aHPLzRTc97902VzA8JQO/L18P30fH8VFt6wAd+pxYz/7wR5KPAFuv6Rhn69NehJvfu8Srv7juyzbfoirn3+Q/W3aM7HDVyhyF9Pl6gvrdZ20vHMofXMPFe/n06V/Hns+Xk9mu0soK+qOf90Gzj3HxS7PoVrPPVLh5/PCCr46rEuD5n4sl9NBx8wUDhR7qDyYj9cRon1KB15ttZJb21zZiCs2LOqp2lKoR/sGbLET1dxPC55VwdU5rnQKfCUABBxf9JZKPj/yF6Gn0s8bXYdx26Z/cce6N7lyV4gj6W66p2bRavC55HsOManv9fQ99yK++uI07vvgEX6ZMpySI++x8eX5TJr3UYP+RVrur8pcBXhz9xsA/NUe4Wufvs6BD/7IP4o2MMMM4VG+ib/0IH/8yzX8OzWJb6xOwhEK0/bzI/z3nwwcDrMmx83gXZDkC1OSBrt6BsnZvp/s4v1kvLeaIyHLb6c6+Dh5Jf/zwNtc0WMN77T5J4etj+fTkinKTufVdf/HH4p30H7cj8FbAq3an3DuFb4gRyr8dGlT+zKczd/I3rd+TNfJDwKG8lUP0Griz/AVbGbpizdxxcj/IWvk/4scXLSD8LqnI0smrbtHrv/BBxT+8U8kde+OZ8MGdlx+Bc4OmYQKSsEYghnw3KUQbt2Kry0u59lnziF55HAqlv4LE3ZS4sinMt3if/RP3HNHkIokw3PL7qP7xP896T0p+PWvCRw4gElOpnD+fNp961t4Nmwge8aMGv8CtOEwoeJiXG3aECopYc83b8W/cyd72sPBddcx6qb7KNn/NB2/9FtwuKHVOWAMFR98wP45s/H5Sii4wsV/XWAwIYs1hl7rf4XHODiYkc7l543njX3L+ciVTL8FRaQXzgfzGK0nX0y7b3+TYAW8+9qtJGe5GTXhAT6//ec4MzLovvgfOJKTWf3MVZiglxE3vRkLQqzfjy0vwux4lfc+fJhNvsOc78pmwpgfYXqMwbpSIbX2f+laaznwgx9QsXwFwcOHSR8+nLJ33gSnG2dWFp4NGyh79d+UvvIKB91unBdnUbT+EFlHHRT3fBRPscG0TWJAPyf/Ofo5/Up/TOlf3wKHgzbTp3Jk0VL23HQTnf77ZpL6jfpieffAeip3r2Lm9qfId6ayygUrPryfuzb+leEznmfjs9eSlpTJ+dc9A+4G1GV4jkJpPnTIxYZCNYKQwMGDeDdvIbmr4dMV98GWSirXHWHDRT4GrE4ic7eLsjfexJHipvzttwE4suApkru358j7ayhKM7Qug+QgvDDWwZKLHPRP7chDVz3DnH9/k3mOXfyycgO/evk2rvjay/WfcwPs/6/v4dm4kTZXXUw4aEkdPAK7dzk7nnoFVxk8eFMK54+8jKH3/oA2KW0YReQx+9KXXsa7eTPly5Zx4Ac/pOvjj5HUtSsPfukp1hWsY1TnUbz22Uv8+P17mW4P8Z1nr+Kbw/4LM+yWBmVXl28/zKcFkZqdtbuP8sHnRxjRo02NYyo/+og937wVZ1YW+4e6eLJHKyb/pxMB/2IAgh5ISk3lwmlfxVpLp94XsHn5W7y/+CmuvuvHZLU/n3ef+4xQMMylM/vS+tprOfLkUxT8Yh5z/ve/mbvt59zhL+GFNY/QY/T3aoztC4Z4bOVORvVsW6+sVW3G9WnPcy++x9rt2xne7xukOFP5Y5f5/L791fU63zgNaQPbUbZiH51H57Bl5Tuc2z/M4cM9qfzwGXpMzWZn5aHIP+6P+W/2oz2Rv9+GdM1u1Nyr65ydwv5iD3tWvMM5qV1xGSefp2/F7Tj5P1RPxobqF/p8Ht1SqGe7hgVXLeFpwbMquOqYlM02/xGwFo+rnPtvdvH4dS/E3q/0h1jSayztPCVcs2MFALvbZjJiayvuvHsB7pQUnA4n3Rzt+L/dw+jy9/fZ9eit7BzgoufHLvZf9y/OHX19vedTlbmynmLedhRybnIG+/Hwxze/y7MpDvxZGfRJ+YSbQ/uhfDWPtkln7MdhRn0UIuvqqWReOZnd//t/HK7wceG2UiDEhxdmsXFAKm+1L2Lgp3D96rFs7nIprUo+5AfP/ZO1V3Rm2Pt7OPL+83TKAm+HZIq+4uTWC77O2+8+w7x3FnPVpy9xIOzlhm9v+OIvZmshGKTkhRfY/8dHuaPv9Rxs3ZnV/zWElBULsd0uJjVvUOSpnXCIBS/fym/dHr7/j2kYHPw6JcCjb/+Ijw9v5KHWrXhpw0M8nL+R8s/f5qEVQQa/nIKn/2Im/d9i/rPoRrKf9pF0Thbt77mSxY8+TDkOJn1UStqQPEquTeMbpR/QM60j/zv+Qc4dvY/ipUupeOFlUi64gL23fYm3K1bzydb/8L9PBxi81cHnXZ38oeAfPDDiTkx0SSrGWig7SNEffkjxwvdp881bME4XRfPnU/bGmxAMEtj6T8L902g//lcECo+y/7//B/+uXXS+5zbyF/8Fu9vDSxfDsE3QcZWXXavuZnl/wzkHr2S3OcogupNZ6Sf92XIq0sKUpBiS3wxxc2kak94Lsue2K1jmW8+0xQVktO5A65wk7pr+R7wfrKG8cD5//LLhyp1+wq+s4PC/V+AKGc5xwMvDQ3y69nZG5jsJ5udT8PP7Sb6wOw/t20sIw//OnUrHCXfQauJlHLjzNkreW8N7gyy/v9xNBlnMWB4isOQnpLjCtN/rILlje3r+bT6pH33Arid/zqFzCuns6o7x9aBi+QpcHTpw+Le/5TBgsdHi1MjX6Lwwm/PGXcyWv75M2juFBDIdrL3AydCtITztHAw7ksnwpcUAHF3+PGS7SLu+G0/ahfQf66DH+x+y5UcfEJ6czJeuforyPe/xm/cfJG1HEsM8Tqatc0IoxCc9k/ntiANc/+NhvOpIYmv3/dz2p1zGdBnHeVMeJeTx4dmwEUf557gqduDoMwbXgAk1bvlbi77CR/t2ce2mHLyf7Cf5/F4QDmADPvx787GBECUdHWzPsAz91JJmnIx4Pg13CJ4fbTjUO8i2NtAtHwgY7li2G8e7u1hzvoOO7tYcyHTg2lfEte9bLjvUlnNHjaV02jd47O67yfft5NV3/8yRvTvZ9J8RZIzoTNcxczHdRn1RKNKAdY1wZSUmORljQ/g+/5y3n3mV7q+/jnXBocefixy04HkAyjLhtRs68LvZz9IxvWON6ziSksi+ZhpcM43KyV9i77dvZ+eUq8n+yldIzRtIr483cbTzp1w+/auMnn4J9y+fy0P57/LCxt/y++Id9Lj8l/Wa767CCm56MrINTVaqm2SXg9kL17HotlF0b5eOtZbXfzDv/7d31/F1VvcDxz/nuW5xd2+apkkldactLUWK63AGjCEDZrCNCYxtvxmD+YDh7lK01KhR96Zt3N2u2/P74yYphUrSNm1Hz/v12ms0ufd5TvLc3Od7v+d7voe4d18iGBFN3E/m8cF7HzO21AwaK1njLmHuDbPobm3GaLURlZTSf+z0olF0/7yZD/76B+bfdjdFs/RsW9bGKw+vY+Hdo0n4+c+pu/tuTLc8wDNP/5MF667j2R1P88DEuw7I8r69qZ6mbg+/v7h4wNfhq2blx1Hz+GZ6krJINGfxfOT7JCR8PUN2OMbh0fQsrSVeH9q8WattxqVE0l1aSb4hj5XeVnzdtejCD8xQbaruRKsIilIijnr8fZIiTGys7qCqbD2plny8+OgMG1wri34CUEPvHQNR1mpHpxGkRA6ulvZUmBYUg9njZ1AHFuJJ4BygWVXVwoE8p6SkRF2/fv2RH3gUli5dys6ep/hn23rWLPyEB//wOB6tgx/dejfagIeo5FTKWuzM+dNyjH4PT37yGyI9dlbnJNFhMXHxTx8isqYe+/IV+NvacKxY0X/soABFha6bJjLx+/895Bh8dXVok5JCNyRHK1c8sZvUPS5SsLM0420uGjaRtzufZVegm+y2YkTrCH7w8bN0pQk2jFjATvNmfvZcPbqxY0l77DH0EeEsKW3m139+k8eWPoIvMYWRn32MEIIl5dv5zuPbuaMtGoQGl7abhXVP4d9Vit0I2zIEI+oUwnoCvHbvSO6/5ll2zZ+DaGzl15cpbM8QLIq/mejkmXh3LKX5n0+jOlVUNUDQ7qVLb+EfY87nFu97RG4MZQO1cdHYrknCE2Hi8s51BPR6XGoAk1vFZRQUerxUabXEGKOo8nWiqCoE4MFnA2Q2hX6Hu8cE2GHUctEqlceuVOmKD7LdYOCs5Ons3LiMc7Ru3gnX4jbYeOuyJVj1+zOF/tZWFIsFxWTCH/Rz2avzueWxOlK/tCraMzKS4r/8HdGyGyLS2bXsQep7aqjx+8h5TtBlg5l//zPm3Lm0/t8D1Cx5k3ZfkOhWQVkiFNSCLjIKNFo0YSY8+6oAeHaWwrsTFUTDAuLMnzJzs4vzV6t0m2FlgcDqEuTVB7G44cfXK0xT07j0P9VofUGEXo9itRJ0OtHGxqJLSsKzdy+Bnh4IBDDMmMq9Z1RQ6WxinCOaUcubaAyH7G4d4zeFlkjXJ6iMGD+FjndWhV6THLgUOBAm0HSr1EdCUgfYx+Ri3VxGQFVpCxNY3EHW5wpmbFdpTAsQX60c8OkvaISGbC8d44M01+rZrdeydpjAZRBcscvNpG0afnKOFp0hiMuncENZPBd97990G1VeePpuLrj454yIL8K5YQNP1TxD6ZrlbMgRdFsEWgR+VK5YGmDhGpWyBAhTglTECkbsFth6F6qZSsZiGlFI5/vv4e5qR+tXUVQIKNBhgW4LpCeGoa9UCHxpk3a/VsUwLYa0+WdinPc9Opa9zMrf/YnseggKlc5cFb1b0CWCuDWCKpsGc7iPhFItkV4d4oypJHzrOvRvfIKjbA/Lri3g71UvMiNxEma9jb0tW9npqEMAPx79Pa4suhFf0Mfn694g9cFnEYEg3ooKUJTQ//y9GWsjWN2wrFBQPcPHr+b/jaWf/IAmTwdhGiOTcy8l6sxf9mfVli5dysyZMwFo/vMjCI2Ct7qG7g8+QAnX0aV3YGsMPbYjUuXu67QM74mkO+AjobWHYiWF3BvuIledwJo3y/F5ApxzRzGWcANelx+T7cBpVl9DAy1/eZSu998Hnw9hMKB6POgzM0l/7llUg54Pm5byfysfINHt5JmCWzFOvvOQU9Efbm9gfWUHrXYPb22uB2DeiHjumTuMy/69mmGRen6/9QVc9Q0Ey/axKmkkb407l4n2pzC2mrAlzEFlFFc/OBmTVYdrSwvusk6ETkEbaUSfHoYhPYzu1haeu+97uLq70Or0LLjztyx9sRGjRcvCu0djdLVTeemlaCIieOHmGN7q2MD7w79DQm8mPRBUmfunZZj0Gt67Y+oRa5a+fF2+rLu9ncdvuZYxsfPJtI3k0mH38nDJbcwuuv6wx/syNajS8PBa9BlhPP/Rz8gcM4Oa0kKKt/wV37ezuFPzEa+N+gHDiq854Hk3Pb2e6nYHH989Y8DnOpTffbibx1eUc1/Fs8xMuYltpnLWj3iLBy8dfNZ19f1PkBrMY3P0x5zzg8PPIgDc/Mx6ylsdfHrP4H6Oq59YS31zO4vvO2vQYxwsIcQGVVVLvvb1IQyupgN24JlTIbhasmQJez57kh12J+NsN9PdHEppRiYtpmHHFhSNnsjsPH7hncpdc/KwbV1P+6efYTHW4NbrKMwvJv2Ndwn6fLTEFNM2+Sqs1/uJuOJ+bG7oMunZkJ8OllTOf+AnJKcduLqh57PPqL3tu2jPP5c1niZaOmuIjE/H2Xk1LkMDJk8iAOZJlbzSuYhzdt0GQFb520R1lLJ+7A/BvZWJO17l3jPv5ap5o7hqVAof7mninle3cNfmV0meNY1Lf3wTAOsr2/n5o1+wwKmnLGoT2e2jueqBEpStq1jl3MbejiSKzSOJ+/31KCYTQq/H39CAM0xP0O9jUwZM27n/tVEVIzB5tcR1+1g900fxFg3mjtDt+5PRgl2p8N33gnxeoLA5D+56Q4X4WFpHJhO9eDN7r57AzxPWU9So5Sejfox7eDrvffwIY99tJ7milf+Mv5kRnk8oqFSI7Cylc/Jwnj5fy/q2HdyafxU3jLub77x3FWs7dhEuDPzfrL8xOfXwtQtuvxtnfQ3qZysJ6rS8/tH/MWZnPBvHZ1MZaUdr2c37SW6KyixM3m1h+rYGfnexQkqSl4W6WJb5u1jZZqO4JoIzK3oIr26nIQYS21RqFgZYFhvAWxXOiIQcfGfNZvfGCBxbolhjbSWjYCt3RifT8ui/6dYlYDcZSOy0E7hoFO1j07lmxHXYXBBoa8Pf1k71tddiHDGCuL/8jS1re0jNMtD27PNEJ1lI+vY1aML3F/z2eHtY17iO/Kh8InbVsXrtq/xUs4gUxceYTbl48JLl6aIkfQa/y9yMtrSOu94OElDg44cu4pxHv0Cpq8Fw6eVc35aKJjOT8pYerp+7i3G/e57MGh9r8wSbLs3nkqiz+G3F36iy+A/4OPj9kbcwf9glvLnnNZ7a9h8caoAxtkyizckUa8/g8hkL0Wl0VO9oo63OTu64eMKiQ5/anT4nv1n1c/JiRuLwO5mdNptIYyTB5jbaz78Cu0WhQesgoxnUwjxyH3gYJTkNXZgFRaPga2qm8qorcUVZsN72bcxb9tFRtZe9O1eQ1ODDGxbk5RkCt0/DGGMW4evKKC5X8WnAb1MxdQpcemi8fDrvhe1hhS0UfZsVHRoUZqRMZ1ntMlxBH28ufIuMiK8X0AeCATSKBq/bj0s4eH3v68xImUF2xNfrc1RVxbVpMwDV111HxGWXEfOd77CobRmxrywj4tkPCQqoSQ/ybqGW0hSBVwu/eypApMZA7E23EDZuGGt3NVAUEYV742rann11/+u82IKrzIESgDcnKZSmCpojDJxnnofp0934vV6isvLJGjkPRBqla0OBhsfpRQgNXsc6PI49XPngr6nb66Cz0cmwiQlYwg04e7zExQp8lZUYR4zAuX491d++GX1qKt6KCqKuvZbtF+TzvTU/JcXn48+2YvIvevZr9XA76rs4+9HP+3c+GZseGSoAn5LJ/MIE3n/6XRqfeobJDdvpTs/hTXMW8aMScZatw+jxoDXNZGb8BKK0AkOSlaDLj7/VhWLRovpUVG8ANILoqwsw5kbSUlNB/Z7dLH/uSWLS0ik841LWvutBp1eYfvkw4uyl1Hz72xhuu4FLwp5hnifAw5d/DOEpLN7VxI1Pr+evV47mnKIjr1I7WHClqipv/+EhqtZt4NyM79Gsb+fmnAdYcdkKwge5cKjjrX041jexRvsBTlcPPV0Lyap8l6xpRi5OeY+H42dw7vy/HvCcWX9YyvBEG3+/auygznUwz66p4hdvbOLXzcuYmnAhDyY+wegcHbee/Z9BH2v1T54gNZDHpqiPOPeHDx3x8fMfWU5KpInHrx03qPOcCsHVkE0Lqqq6XAiRMVTHHzRVxWwKJ31PB+2WzwmYJqALGGmv6U1viiTa9mxnYeQwwpZHEbCn4Mq4BG3bowDUr1+DKyuZ1sgwDBTT3lLOTUm3smPcS7BiKzUxEbiDKvTU8/K9d3LlLx4mYUQeqqoSaGuj+8MPAdi+ZRfemFiiRA41HVGE6VtpUH/P2PQbUD3jETXDme7SIswQbKmiNMaLPy4GnWMZfu8G1g3Po9KvZ+emJp5+pQqRbQMh+HvJZVyUm8LUvZ08v6mGar+PAq8GjVXLcn8O2UBjlYOgrYg4MZyqpRVs6nqDlKkTGNvahcZmQ3/mXDIvu4yySy9l/B43n44NEG1SKPeHETDEY+kKkpAeyV+HbYFxfqZtV0lsV/k07VrG+g18PKWbon1VjPxoLYH4KLTWSAxrWqnMu4imfeP40yeQ0PAFgWd+hR6VCwGnMZrPpvyGYYoev2EYW4tAEY1o9Ulc2RHPL6bFE3B1EnT7+evsJ1ndtJE7n29k1c4IJvdmwkvXNhIeZyIhM7z3Uoemq4xaI25jMo5Js1j/7nPoU89mnWE6BA2ktoHS7OW+7UtwaIpwR0SzLeEposbpebtzE+X7BFn1yUzxGBG+INpb78SYlciHjc+zvewLOnUW5uy7mix/NmecV8yGHa1kratHQVDQncgnNYnM+dYsPusKp/7NV9hhHQ7sYrx1FFePvS40cGNon0tDDmS8+iqd2jhe/8c+etrcbAJgPOYWPbmfNFMwWUtUUqjuwKa3cUZaaJqrIdKMJeUGrhPD2dKzFptyEZEWwXl/LiHCFMFTqkpNTw2tM1egcRn5x2ojbxTk8c7PUnm51kX2Wi+zPGb+ofPS2TaPOf+5jOqli2iPdvLnc+5BEQo/rs7l5Y1P8oMzHiKgBqjpqWFq0lR8bhe3jv4uxYEcPn/ySTIyLkX1p9FS3cOH23fg7PbSXh+qmVj/QRWR8WaGT07EEm7gZxN+g1avwdHpoGLj58SNHEtzSwSJr71HTY2PdlaTNbyAEfFF+H0BXvjFWrQ6hVlXDycxO46cRYtAqw0V1s8Ec6uLrm2V/GHbQ3TiIFWXxYWz5nFW/jzq7fVsWP8ujiefRjR3smGcYNh5V3Dj3J+yANjVtosOdwcTkyaiqioaRYPL76Ld3U6yNRmXvYd9X6ymvb6W8QsvprOxgYScPHaurGfJc7tJzvVjczbSM8HB5117sbd7aK7sxuvxMuHcROKzElm3RoPX5SfxgVdQk2xEGq2cl3s+/OR8eiaczSevPUziFw3c/l5oNbOq1eARsDvRg/rHR2kGooG+3eRaEoN484OstQheGukhwm5k3o4S4jpbCNrDidPFonPsIKiJRWvMpL1iK/bKf6EzT0UbnoXZvJHO2h0YrWm4OksBePGBh0CJQqM1svmjMhRNIoo2jmGTJzP9sgI2fFILagIJ136bnsf/jj4nm/annqI4/E6emPMobz5+Lz+M38aPn5xFUfjlmAuycWZMwWIN453N9WgVwZu3TeHB93dy+6wcpuXG4N23j/r7HyPrjTfIEILXi8+mdEQ+I6uWEdxZhlEbiWIq4cwFc7Ft7MY0IppApwdNmJ6wOWmYikJ1oUG7l5b/bKPtqR3okq3E3lJEXEYWOoOBJU/9m0//82vOuOEHlH6h58N/b+OKn0/AOmc2jqde4vqH5/Gvpo/If3EB19ywhpX72jBoFc4sOHDadDDqduwiqjKKzJgL0SsaloR9QL5iGXRgBWAZG49jTQO5SSUsXv4k0VkCh3cEhl1L0Ser7G0/sO+ixx+gut3JOUWJRz3+L0uOMDKyYw+p1ny8QT9rwzdxTuTlx3bQ4JHn7VRVpbbDxYSv1OIN1MkuaB+yzBVAb3D13uEyV0KIm4GbAeLj48e+9NJLQzIWu92OM1BJ7at7CQYrWTMqmpllV+HpfgyNrhitaTKerscR2kSMGQvRKwJ3Yw+erv9g9Ppx6/fHoQKBRuhInXMFccFOwjb0YA0r5P3al1BN4/E53iOvxUPEjdcR/tor6HbtQdVA25jxZCTd2J9mrnU148VL3Iq/oTrb2LfgDqqd+QB40nxkfvoPymP9IIygukGYQXWyKnISU8VE9AiCQuWvNjcxRh9pVoVJu1sQSiTbTFaKvVrMw+HBBhd3NG5AaxUoYjL4BKrqxdP5T8DP8Eu/TcATRtDXgaOllPZtm/B6XFSOVIne48fq3v+za4zDKRdOXJOmotHC8tp6rq7Px6jREBQ+jAEL6ZXvU56RDBSj6Z1a0ituvEEjfS/5KE0DKWktrGrLw9BtZG96gD0tAfJ8Ggp8WoQGgn6VgHcbfudiEHpQvWCwscQ6hinOaszCS0z+GDorczBGQGJJG607t9K+dxd6WxjxRXNp3GzE3flS6PenBlD08YSFQaQhns42Ky7TRNSgHZ/qJMEcR06kykZ1FT271/bugyUwRcfi6ezGmnQjsQWNbNpdjtMxgQzVhM4k8PXu1VqpCzBtmkL5R6U4PdsIj9TT09GKqppZmXchyTWfMMyxj9QpZ+BobgChEJaaTmRWHu17BU1bVLRGSBoncFepEC7oqlbxdIVq4jNnCwxh+9+UHE0qFUuCeLufBxQMEZcghA41AIklgshs+l9ralDlsU0e/Ps2Udizi2h/J6hBQI/edjaqLoOthgDz8rQ4WyBylBNbmAVPFzRs+Jz2sg1sLbyE+QkJOPe24Xetxd5QijFqBKq/CU93KyDQGNNQND7UYCaKtgutwQ6KH2PUNILeRNy960g0Jj+uzq0EXetBtaNoI9FZLkPRmVEDgIDEMQJTDPTUQcv20O8m4Ast+NRbIXGcwBguCPhU9r2v4v9Kn0utEfTxEADSRwl0JkGjrzFU/Kw/+I2nu7aapi3r0FttgEBnsdKwfnXv74pQSw81gDEqDViAGtyGp3Mt4AdhwhB+ITpzJEH/WpwtG0ENIJRIDBHz0FsNeLoMICxodHuJL9YSmZ2FUBS6/V38oeZXnGcfzrSOPHSVldSPTOf/It8ltcpFUpeCSwnQHaFSb9XQHibwacDgMxLpm0FBmZ60mq00ROWhdduJcbWgKJHEj7qIWJuZlFZBmEODP+hjb/cGmtxV2MN9eLs7ic4vpKu6G1fr/m7fOnMEPldXb7G0Cb11AkLJQShhaI0qSVH1WCcnEf70UxjXb0A1GFDcboJASwTEd4amqmtnq6zT3cHnrizSwxTuHhtadKB0dBLx2GPo6utRNRqcs2ezdco8tny0iIvNw9EKA+3BMCqNQWwWO7N8ebgjoG588JALzhQf2OoFMbsE9kSVpiIVBAS8XkrfehFPdxc5Cy6ndlUM1kTISK4h5re/pfPyS/hPzkbWBar4s24uv6mai0aB+ycMrD7Kbrdj/UobEc0He8kUoffyMq+Pu0feyXxtNmem3j2gYx5AhbTPFTy4WbT9UcIzzkftimfK5/fzyzs12AjwrbzH+h9eZw/yk89d3FxkYHLSsedPanuClD33EtemX0a96OCWgl9yX/S3SbIWDf5HeW8HudoilolXSZ53+FY3Dp/Kdxc7uWyYnrMyB1c8/4f1buweP7+YMvQtT2bNmnViM1cDparqv4F/Q2ha8GBz18fD0qVLGZ19Ea+//RY+Rxn4mkM33KAfRWNj5lWFLH9zBB2N25l/2zh6Fn1Abf12KoGCuhZez5vOjOkjyE7LoPGtPRRFjGR3/V7abGbCzDHoNSbiLAW0iiyENpU98Z3kvryL2C4dYuY9sOElEpOuoN3TwD6fifBgJfnhowHwzH4AvaKjoG4DynCBtWsPbWvfp9tgR9FEYIi+mTW+UnIMmUR1LGdixxoUk57c2RPZ+cmnXOANEuXYjhL04QOEEkWR8i2qtQF+evNM3v/NiwRdX+B1gcYoMIZPxaCvwdPpR6BQvbiUOGUM4cF6Ktu/wBofS5Q1FXVrKULREzdnGm0rVQhswO/eRToQY5nLxZecw8sPP05H579YFjOfzbYEFna78CfE4u/4DLehDl+glcKLb+GCc2ay4/NKHJ1BPO4A25bU0bRtIyZDBJvDkpk1M4/3395BjTaIRRWcP89C5dr3aNi7FVtiHq09ApsuHF93FbPalgJagtowGje+g9Y8G3sjlL6+FEXRkJBdREv1Xio/ewEhtAihISLlBhKzu6jZu5bOuio6aUIoCmPnFrFj6evgcDIh8nb0boXcLiu7bGlc/ouf4fe5qC9t47P//pKe+rforq4nDJVoazbxc8fTE6tnxbtlzNIqzDN5UFprCdgXYVQicLe40alutKbRnKdE8kj4JMZaHFSv+BSD2YJQFNp2b6MnczSdjeFkjppEyrBukpKz8G9vxiVcRHwnj6ayeta800nTmgimXRpBfGYyq96oo/zzFZhsAk9HaDm2XvMxZ1x/Mx+/0kjD+gCBFh+RcXW47GFUbtnIFHc9aqAVVROPRj+agC4Ng7IGb89bGNPPYnRXPs1bQQ06EZoeYoYPY9v7n+FzrAOCjN6zjqjaEUQHOyjraUTR5+Ju3w0E0JrnkjQceup3omi0tNWuxGixEhaeSE97N47qdzBabWQVjcPj8FC+eS2qvwu/IRmjMh6/ezkG/SL0YZeSOzaF1roOypb+FxQrihJFVEomGZdNY/d/X8BgtODqjKTsw0jSJqRgRuBzllOywMyj6x00uEJva9cZw+mudoc+AXfpsRYpBGvt5BYksWf5Jloq1qI3abDFxKNoIggSj7NjE87OJlRVi6p6QwG5LovI5FnoPD109qxEaNNxta9BKP9FDXrIGjOezDFnsub1f+K2vwo+HR6Hg7yJ0/G6I2kqW4m74xXc7aEAzRweg7OllYpPoWPHWGKzLiAhM423zl1KVMz+rUrGAPODP0FVVZoa2rnjgxsgTKVi50VEtUSSn6JHLVf4hdaCTvHSmTIJRRuGLkKhwRmgPBwW5Cbj3NyC0CtYZifQvaeB4TUTGc5EDHmRGDLD8Dc5Md+cQkN1FdHJcbRUVZA1ZhzBQID60p188Pcn6GldCixj2JS5NOxzUFU3mqKWFEY+9lfa//UvgvYebPPns/mDJXQuf5cdE3xMW+8i+KEgfc4jRDcu4Lzw4WQ1RdPz2WLcO3aiOp3EPvAzws48E21MDJZnfkOuqYBM60icAT+pGi3FAF6gIIrsi/PINR/5Jtu9pBrxURXRhjAsY+KxzExg/NgxvPCTe2j4/ANGzrqLLYvb0QyfgmH4cOI3buF3d/yDM99dwGbPGmrsc7luSgYzZw6sDctXpwU7dtTQAzR2bKdcl89e61p8iuCCqd9lXObMQxzl8Dp7yrCva0SrMxBm7aGlKws/BiZ3hfNWVAMzp07un4r9cHsDfL6R82aMO2L/sIHocfv48PWP0Cp6qqJL0agqF82/GYN28FvSrP50H/jBFhZ+0Dq1L9tR3wWLP2dGSSEzRw4uC/dk+Rc4m9qOeI6hdNKDqxPJ36VD0WUQFBDT5UANhlIO0akJFE5PZt2uDLwNmxGdHUSVhpEccyb+gJOO6HSao+fiKRqBBT2p1tAfeJ4jiz0NG4kKD80H59jyyNG5iIm6nE/rn6ItPgXD8DnohAbPrAfQI1jW8SZKwtV0Nb1BWdca9BoLY2Pm0S6cJKZMIHfli6zQ7qXTZACjmYyRRaRfUcIb/wzwMFa6dAv4tNGB37WMbe8tQ0UQ61HxGxLw69IxBIMEnetYo65iQ/gELl/2EVOr38ehC8NMAgH3OpT4DtqrSpmVciVa1cynDS9TlDkaY7CYRPNw9Gfl0tjuwuPbwsjpydTuMdFl6qTH5kBXtQGEka7PPqBrwhQ69ywDgkxs+xhFmYPPVYrXVY0qDBg9pehQqPnwP+yOcvHJvx7BaLbgTcjF270drerDF/wYsyEL/bZqrq1ZTHPcCNz2OlY/V0NezDgyL7yR7+420m4Mkm8z8cv26ShBOyadhSpUPJ0bqbOvwRtwoNPncGbyBSguwW7LZOoMa0kvDKPk3IXEpKajKILL/pVLTWA7aSY/C5w72fb+M2h1BsbHnIVeUahzlpEXXkKHYxSv/2EPakBFHwiSHjmDqo5lKLpcAv4qGgK7sFjHsm3PPkYbtMxFT8CjwV2WjGHepTzvyKa0rJoJYi8Xzj2Xte/UcbkuApd6CSPiHETmJtMRbWLRkregYjUA9Tu24toSg8OcQ6ZtJKYOEzV/XoXT10W8aMPUk8nWv5bSqHjwMQWfYxFee6i3z9TLr2Hly8/x1u/upccYQ1vMAtxbXqZa9fS//gNCj1Ybgz7sUrZbQFcUxR8vvZL3H/095RsWUWfaQ67GjU010LStDKVsJ0WmGHp0kxgWNh6jEnq7EEJQEDEJxaKDeCNVta1scQtyLZEUPnALilVL+8pywgqSCHZ6cZodfPLE3xBCsHPZu2h0Omr1CWhTz+ZtNZyf5Kfx3gYrt6t+XJ51xCRpaNz7GcFADWpQSzDoo3nf59Q//AJaNdD/83g1kZSvvhwl6CHoeYWVL9oZrjGRGJNHp8NDzCUL+efSdoY5epjWVIf/43bCdBEs3/BW6OfQZeP1mmit6SLTHEWsAVq9sUTGzCM8Mp5aRxeJwSC2+FiiUm24trZimz+NQIKFyreK2VD+CtNnf4fcK2ah6DXkjM1lzRsv4/d6KZozn6S8UObC3nERy559gsTcfHxuFzuXf0Zy4cWUr6+gs2EDnY1bKF9fxLr3ckgZnkVSbjJZo2KJTraiVbR0Nvew+JdPc7/1Vuyqg33BDmaZohAVfrSKFq/fRZ2rEpM+F5cXzEqQYSYN+V6wb2xGF2kk5sZCtOEGwudm8MvXt+He0MTtVd149oRSifYdbRhMWvw5WjLOGoUQAo1WS+qIIm589M9UbNzFnjUfsOvzj3vfM51s+bSZ2j15ZBReyJh56RitOl6uNvOufzSXjE3BXbiT6c89zDkvA3wCyz6hEdBEh2EeM56o66/HPGYMnoouGp/7EH39GDJtZrb6u2g3R3PZ90ZTvaOFW9/fzo356Vw+gMAKIGxWGkKnwb66no439uLvcGObkcL5P/o5L//8R1RueIr8yTey6eNq5p1/E77f3EvwipuYe20q73oqmcwqxqSNGsytpZ/f7qX9mR34/T52aKJRIgzUx71OWEAwJn32UR0TwJAVjn1VPTmZ42jurASK6Q5Lo6ApwONxGtrq1xOdFuoVtq85dF/LHGT7gkPqbifVlosr4GWV7SMyheGoAiugv25TDKCJaF1HqHFpcsTgVljCYLtpDY3TKrjqanEjhIGGaC8ZtSaChlCDzvxJoT5XwbA4psZfhO2ZaoJKaOnnmOjZfKSDGR4jFXvbMdX7GaNRaBI+gt4W8sPHoapB7P5O4g1R9CgeHLgYF38WWlWPP6jS4W8lzhBDpb2Ubr+eKVOTaFobz569OyBg57vBNs5vfJcL8+8mUDCDzppqvEVzCW5fzpiCeQQ1Chejx6uq2DQKxTGXYNb6aYjt4SONhvh6HZEuPRpVUBMhaG/porhrA2a9SvVrQSamnkXmwsls/bSemh0v0FFVyuwpNxBTH6pXGB89A2PQSIe1DbM9Gu3HlbQ5A7gCsax9z0OcyU96vJ777QXExkVzCRGMVzS8+rPbiTVEU5R6PUFHJ1fpE1jtbmWlyc+6mNlcFWvhjZZ6zqp7hw///meiU1JxhyXg2r2VOlMqJanTiW3czVgRjnmbwGvKZKzdR7nfRU7xtYzqTqC63kC7q4W7Z2TTs6yWZJ2OdmMkO9weCtAQGTUBR/hwdiubyY2ai7XDgz9CzxhFMH3W1UTMy8DX6mLLK7vwGTUkNrjAlEoRWs4wF+LODtCmqsT6FT5zlvIfRfALApSYNbSpKhFmPTpfEBGYSO64MVS7oinf+Sm3WEej/byTcZ5uwvSxVNi3oYyKIqM2FVtFFPcFVZ7KzuTqK84jWdEQs64drctPUFVRhAHqXcTWOjHbptBuGcVoqxXhB0WEFgl4EwM0mrRE7QsjypRARrD3xmJJo9PbQqOhkSZvGl3eVrLSR5PjHEnywgeo1Zez4pVnsdU+g0ZnomDWD+ms+4TNNW2sG3Yx79w6iTV/2MD5bhV1j4fWP21lcsS52NPaiW5yMiHuAmyKlWp3GUn6NLS9vWxqCLJXCfAvTxsPXDyeyV4FX4MDb62dMIzMUYJo6hxU/30z1jgz3vIu3B81AaCNN7Ng1u3oU204g920vlFPbbuLXDSkKz7M9d38yDqM+N71jVXP76C2bTspM67gbxU29GFa7sj3seijL2gOT2H08DTWbtjBnI61RATXEalXMBlLyIofh6u9g3ZPHft82/C8+gF/suSSaEpHMWeiItAIhZjUSezr7CRHH0e9L0hSlJGUHj9BRSXdWkBQI/B5/BRrrQRsOrTuAK6tregSzPQsrQUgjjDOSr4JdkHjH9fTHQiScsNIxn/r2zy/phpHj4ELgiqKIrBGRnH2nT/ofx+acMGlrNrXyp8q1zAmANNTdJStX0PAs5F9azSUr89izRuFFEcnIuLDqd27hBmRk/GrPmKEmVwlGYe/C4e/h4Dwsyv4BROuuozbP3IT1ePhZxcVQqKJq/61hitm53JLbxPMvlrEbc09rA96uPSKYvL1Om56aj3TvYLzhiXi3NqKu7SDsLlpWMYl4G9341jdQPqEDHLGfZ9Z19/CxkXvsOb1F4FNdNUXsKF+Ils+eZGZd17D4p1NZPsUDGva2GlOoP7Kn3KWbzmvuJazM1nF7IZoUyc/MfYQsXcdZW/XYPBE4Q5AvbOCumAcXYYI5l+ciy7KSNbUFOyf7+Hl9TVcUpKKRhnYbdM2NRnr5CQ6Xt1Dz5IaHOsaibwolwU3fZ+3//YQ0amLMdnGsr0tgjP+8Q/qvvMdrm69go/Ca7Amv8yYmFsGfX9RgyoVf16MXjWyrf0L7MapLJjn4a/7XKQ6U9EcqqHvAOh760mTI3LZV/kFGnMQV8YYEmrXwEjYW7OiP7jaXNNJWpQZi+H43N7XP/00WaZxVHhdbNe1MtmUeeQnHcFAipHqervCJ0cOPrga6DmG0pAFV0KIF4GZQIwQohb4uaqqTwzV+QbCtLKWsVaFnaNz4d0a/M5PAcgtCa0G8ttiSTCF0vKKUKh37iPJnMPkBA0ml5+PvujEHlDRhenwRYexYR9Y3T4SknbirGxgXMx8uudn89rGX3JH43UIVWFZ4yv4hcr4qLls71iKYi0kZ3w8dtdY2LsDV0IeNaYUInJGUNm+nSxzMWPmnMt74RPpChSiW+1H62pkLjoWCR/xqmCCQYsiDIR3GRgbhM+StJRmWVi9uYkONcjwUecSWP8yt2ryiItJgwD43mhieFBDbvJV7A12E1MfgSEnAqFTyNgV2p0q//Z5tDc4aX+xlDFCMO2qfDo8QXzv7cPqDvLPrFxiRk3B9E4FApiUfSGRIgqTYsZtM9DpaWNy9GwyTAq3ugLYOgRN0bnUxF/GmKZ1VCfP5dkmlcvHnMF0RceUFh9ExeNSwGzSkOII7VmVTxBDjwJaheQmN/ekxHDxug6CGOhMteCYn86P/rMGDTDTYuJXwUjGuqZDhwfr9BTC52fQ8Uop9mW1GDPDaX9pN7HO0PL376PDr+hQgyrNkXpiOrwkA78UTj4xh1LPf7AFmNbjJ0soTE+PxmjW4Wt2El3hJDZPR7ptLG1+Ozu9leQr0QTVAIw0MuXGy/A1OrGvqMNb28MNzR60L+2hU69B6wsQflYmbywtZ2eUhjsKU+jc2kxavZMsEcY+vSBnhJmwkSl8tqYWZ6aN+z/dw9nFSfz1itH0rKvDZwmg2n2YX3eTr8aSn9A7baGCp6wTnH5SDClMSLsdnepHmxJO8fxRfLgnhRc+3MlfZ+ahtQfJcat0pFlJTQ8n0OXBtbWVM6yXomoCeEWot07qLhURqyNqTg7O8i6uX1PK9dOzqV/mYpfDw7w5ef1/Vzc+uoId9T0MDyr8wm5Gb/cRNjcdoVNQzDp6ltbQ9UFoKyah16D1h7JPmgQLCxsd0BNkDUEexMWFMTbOYATp1hFQBVMUcNpVVmwN8r3oM7Gjsm1vgNH5Mylun4jypTorj8XEnm4XY81FZNhGoiDo8tup9tfjsqYwMtrGyw3tXOI0kqJPIJhoJrHBiabHT8PISEZdnM8/3t/NX76oYrhWR0lAwVwczT2Ts/Ds64SiaLT1oYBSsenpWVqDZWw8FWvrMXb5WP/0Nl7T+ilu82JEYeWOdkbGWLGUJKCx6VEDQboXV6OYdewOeKjUCyoZz61XTyO7ZCLPbWgkvqKTRH8tabogaYqNQLOPtLApdKpePnV8SFpcGimJRUTmR1I8ZT4arZZxXA3A/J5Setx+CieHVriFp9j4YHsjt87M4S+f7uWV9TU8d9MESvuad7b0sEuvZaXXw0ogfVQUs+ek0/HWPjrfKsO+og7VrxLo8mBfVY82xoQxP4oR1klk/GQ0tWXb+fylZwmyCwWVd37TzAXWmcTavyBgGElcpxuf/S22IBgXP5Xici+W8blULluDXzefTmMyAX8PXzhWUuf0oCSnc/YV00nMDsfQm6USQvDD+cO4++Ut3PXSJu6ZmzfgvVKFIoi8NA/LxETaXy6l7emdmIwaJp5zGWvee5mS8wrZvsLHx74wxoybiOaNz0g4dxLLYldTveMfxCX8ekDn6VP3ykZMDiu7GxZRZ5lDweQEPtn3bZyKwo6Ws2ize4i2Ht0+fxqLDm28mfBADH6vl7BEJw7TMHTL3kCZp1LavJmJhLbsWb63lasmpB3Veb6qu7WFztIuNDFaSrUeWrUa8qMHNl16UH2x8QAin7oOF0adQrRl8DsxnAp9roZyteDAu2meIAFvEJtByxn59/Hm0r8zunsrAJbIKH78+lZe/qKRM1UTOsWAisqnsWaucUBc7zLfTAEphVFQ3YMhLQz2dWNOD8M/YTJv1LzBupEWHp6eySM7u7k09/ukdkRQ6DPyvfueYPET/8BR18nbhnBGdznRxYeWumlzR0MtxEyeT/XLL5FrGUOhfgqitAuLJ/QG49/cggFBcHQs72xqYBI63FqBxR96hY7rCtBg1jPOC3tRua/TQGTiVfhQCb8oB0thLJ3vliG0Cs07Wkl1hKNMTybmzAzUoErnW/tACHQRJuIjTMTeN56mP2/A+3EVMSNj6HEH2aFXGVHtgNoKdEkWtHFmkjaHfq9RV+VhHhmLGghiX1VPx+e1rHV5mGYzc67bz4OeKO7UXoChSfAtrUDXpgI+luLj17g4qziJP1xQhGNdI9oYExtf2oHdoFCTaOLCXXYurPUiIgxELcwhuSCaRmdoqisAlBkFCbeNw7O3A02UMXRdgPBzsnDtbqf1ye2gV7gKO7EIYlC4X5hRgceMPnINfuI8QT7Bz+PXlNDl8pERY+bn7+zg33XdPDIqkh63jyvmZVDzfhne7a1ECA0PRFtZ2q2gqAGevyCKaRNmI4RAn2Ql6rJh+DvcdH9chaeiC1+nHevUZGwzUqhz9PDmykoeuHk8bwQ9/LWhiQfn5fOjj3bzUFYqKXr4XlkDlIWyqt1uH0IRhE3Y3yixvnMfqqub7OHjoMOPJtKIMTcSd2k71RsaadnhQYueMY0qzY9tYgzwnCGcrI9qaeoJBcb5lwxDFxvKzrZrS3HtbGNxupGnmjq4ozCMF1ureeb2uXywvYGfbdyHGyhKDicl0tQ/7QDgDwTZ2/vvXQS5DDtjY228dkYqQgh8gSAJJfEEHD5cW1voXlzNM7Yg2216XrxkOJV/XM8LQQ9PCQ/nj0rmgU11rNYbmBBjY2N9F34Bc00m5jk1NBKknSBFaEiod6OJMPB2lo4Xdjbwt+vHsbvHzQ9ea2LpbcXsfG4Hte1OHjMJtvzqqv4m1qv/vYZlFV3cVJzC2ZePwF5n57cvbub5bVXEVjbS5fRxdnESvzxvBD94bQvLV1fx3s4mrp2cwe9//Smf3TuTpKwIANy54aysbOdPWhdT8HJjl+DHQEBvpD4YIHVnF3a6sK+qB78Kmt6Gq6rKdAG/01h4JuBm6cZ6huuyyG0VzLelA8WoArx54NjdSV0gwJNJsdw65jzOmDXrkO9v95457IB/LxiZyG8/2E1Nu5OnVlXQ4fRxyT9X09O7p+nG6g4UIYizGeh2+1hT3sb8wgRibynCvaudnmW1+BodxFw/Al+zC/fuNuwrQ+sVNeEGMiOG4c29g46OPax01RLn2E5UeyUBVALeXfiFBrMlHkWbg7+zhZHhxaSuz2GmZTwIwbrWD6l0taENu5BJV+Qy9swMxEEyU+ePSmZ3Yw//XVmJ3ePnqevHf+0xhyKEwJAeRvwdo3HtaKPjtT2MSJjKztillK1/jckX3caq11upGHs9SetuoWjVKLrOgzcq3qdEfWhgd+kgtL6zG3WTg5rurQSTRyC6Barjhzxp6GSCIZNP3Tlsqe3kjPz4Ix/vEAyZ4fg3uBAIrBF2WhvjCbrcjG5U2KMJrXpfsrsZrz/IWYXHZ6Vg2Ya1ZFmL6Pb7qTBtBmB42rH0zur9fQ5gIV1dp4ukCNPR740oN24+cZz+IOGKwOkLsNeS3R9cabRaXlpXg14o6ETok4VIMdAcnUv7FjtRCFSNINOkYGoIfWrNOSudV7u7+f3eJvgQ0rJn8+j5oUWRZstNOII/YndsE83eeVzkNXLO937EY/95hZraKMpb7KTFZfJ+3DxunzQNXt1GR0QGC371I3Q7VRzL64lXwBYU6NPD8FZ1Y8iJIDE7glWbaig3gHlCAo8vL2c6Wqb6dIxo9TEKIz5UdI4Ai/QBGtMtPDAu9EcWdWnojbeiOIor/7OGR9LMJGkVxJe+10cxaYm8bBitT26n57Ma1utVPs4zMzEmGteudmKuHYFi1uHMjiDo9mMqjAn9zjQKtmkpeNPMPPL0euZNS8awqJJfY6Iblfi56Vj2dGIeHYenzcnf1+zF5YNoqwFFr8E2JbTP2se5FlbsbaVrVyfGcWnclB6LMTcSTe/m1fE2IzaDlh6Pn+YeDxqLDvOouAN+hjWN3UQszCSt288Kr4eqxZ2E2n0GuGdOKtvK2lhR3siSL839z8qP6592+O2FRZzz2Of85oNdNHV7OK84mb/rfbyn9hCPwsJx2SxdvJdrp2YzcULB194AtJFGoi4bRqDbi31NPbapoZ9tRl4s/15ezpLSZhq63IRZ9Vw6M4vfrihje10Xq8paiTDrMOs01He5aer+yhI4oGj+fADe3VLPstoW5obFM08jMBVEs83l4vs7KilIDCO220eeXofiDnCNzYbWqEEkWlF0Sn9gBRB5cR6RgSD5NZ1U/HsN97yyBYBr//sFG6s68Pf+jnLjreTEWtnXbKeqzUGXy4dZr8HrD3LbzGyW723hjGFxPPrZPjZWd2Izajnzz8t58roSzsiPp2NYBBGjY3nmV59wa1EW2mgT706L5cllZaRHmXng3AL2NPcwe3ImVoOWd57bQGFSGFOuG8f9j65m4tgkPqvpYHRaBHePz0AxarlSqDz5xzbu+3g3M/PiEAIS4yzEf288b2+u4y9hRoQQ/ffIv1w+ivpOF2PTQ8u7bSk2fnTHRIq3N/Lk5xU4PH7uW5BPpEXPd2Zm4/AEWF3exkPv70RV4eMdjUzPi+X7r25hR303Hn+oSP3y+fmUVjsoyIoiaVwCn6yt4u5FpZxXmMglPi2vlDZxVnoMI+ZnoTHreO0vaxmlavkbZrTLWwBIR8fqOB1L7U4euW0Sn7f1cMu+DSTHmvjnVaNp2L3ha6+Fw1lQGAqunltTRYfTR1FKOFtrQw1/E8KMbKjqwKLXMjotAocnwJryNiAUkJgKojEVRO9vazIMbNOSUYMq3spuWhaVs7e5B49fT7GtCKe1AJE2gYTEdtKKS3jn3c+I1LUx75Jr0W4N4NzaghpUqXFWEBRh1AQiaFVzyJ10LtMvLyYs5tBTP0II7jtrOLUdLrb1jn+wFJMWS0k8rm0tOFY1cualt/HOk7/j8+cfJH/699j9hYeavAVcXfoJ896z4mntpC7q1yRf+NPDHtdbbyfhMwdufwsVPVvRd62lxnIz0Qn1fM9YSbYpnh/P/Rsrtu/ko+1NxxZcZYXjWNNAlCkZvaEDjzeBbls6k+qaWRwX+r28t7WeGKuBselHt2XPV7Vu3MNw4zi2uQK4YjegqCoF6Wcc+YmHInrfbweSuep0HVW9FciaqxMuc2ICjnVNOD1+mgz7X+RBl58wBOG9l2S7fzXzvvsDrq/tgo5yRIOLmOtGUPPCDpqdPmZ8ewzPbKnnhX1NXDs5nVFpEZxVmIhRF5pTz4jM4IutNzEiYxVr7JOpaHVQmBxOedRI1LoGylsdbK7ppCU6jwVFyTz4/m5Km+xcN2UkZIBtcgo3PbmWEquRB68vpP3VPVinJJPs9xIAXh5m4Q9zMvlweSkOnWC6T8eo7Z3UECAZBU+YjrFXFBB5kBR0QVoEAY1gc00n8wsP3cfFmB1B9JXDcVV08uOVpdwYG0f4vEzC5++fb7eMO/jzx6ZHsfmBM1GDKus3NJLY5OatOC23z06H2aFtHKxAcUcn9dsbv5YqT4sy0+XyATB9XAqWr+ztpSiCF2+eyLtb6vnX8nLsHj/WL9UXdLl83PLsBnLirCwYmcB/11dh0WtweEPTUSlTktkbrce/r+GA4365niOp94+6qTuUJdvb3MOmmk4sVj3XzMzhuskZXDQmhbTow2/LoAnTE35mRv+/J2RGkR5t5j8rKog060gID938hyeGsbaindoOJ9dMyuCnZw/nNx/s5qlVlQR7a3fa7B6u++86zitO4upJ6fzgtS14/UEWbWvgg7umkR5toabdiRBw8dgUfvXeTpY5XHz/zDySz8g95BiFIkDRMCErmgtHJ/PB9kZK4gSrqzqYkBXFhaNT+GB7IxnRFnLirCwpbWHG75cCUJAYyhSeNyqJH87Pp7bDyaOf7aO0sQezPvT38N+VlWgVhWue/IKCxDACQZU5w0N/f5kJoWn4zBgLEWY9790xDQhl7HQawZi0SOJsRv5z/0yEENz0lbGHAQ+cW8DtL2xie1030RY9Bm3ovJeP//rUSGK4icTwA9+ww4w6Li1J5YLRyXS7fP2vx7HpUbx480SufmItK/a2ogj4ZFcTVe1Ottd1c9XENKbmxLCzvpsrp2RgnLm/pubiklQW727h39vrWRxroQwP+3Re/psWxsbqDn7sc/DrecOI2NjKhjY7W4N+zpuXi0cjeH/RLu5RA9zxwiZy4628cNNEws06GnYf5oV2EGnRZgqTw/jX8nIAfnp2ATc/u55Op49rJqfzfx+WAh4WjkpGqxH8/qNSatqdB+wX+tUPDUIRGLLCeavAyh8+rqcoJZwH46OZuqEV3DFQGQMV3VxECca8KLyvt+LzBrFOTKTFqmfvJxrGzk/H7PYzPaOYlPyB9zDKjLbwwbYGvP4geq1y5CccRPi52bT+eyuaj11cMut+3lrxR2q3P0fAdBYtSfPxxqsk71hNtwuafvUckalT0ERnYMj6ep1Rzxd1dL5Rhi6gY3PzW+TkRlKWfzeeXZ1sTXqWcKHlmQvexqa3cfHYbl5dX8vdc/NICD+6YnBDb91VRlwhzY56hFJAZ/YUhtW/x79KPLQ01fDZ7maunZQx4Nq0w1FVFWujDb/BR31Qpc1WSTYGzPpjKJTvez2pRx5fXYeLEUlHv9rxZNdcHd0r9H+UNtwAviAepw+E4IvCq6iYdCPtL+/mt5hI6A2uptx4LUIIilMjKLhqBDHfHokxO4IvJsVyk+pAiTFR1+HCotfwy4WFXDA6pT+wgtCnwp7uHDKNP4Gggcrenb33NodqHTZVd7JoeyPnj0rGqNOQG29jT28dBIA2wkCn24cn0oDQaYi+cjiG9DBSIkJverFWAya9hs9/NIt//Wh/ivZenDyMG+ecVMZmRh+0NsGo0zA8MYzNNR1f+95XmUZE0zkhHreqkhkz+H4hQhG0zEzi+zhJm/X1G13fDTbqK3Pqab1v7gatcsg/rsLkcIb13pibv5LdeWFtNXaPn+11XTy6eB++QJBbZmSTEGYkPsyAWa9l5JeWKL9yyyTW3HfgSp5Isw6jbv+fx9qKdvY127lhaiY3TM1EUcQRA6uD0WoUbp6exZaaTpaWtvTf6IcnhlHR6sAXUDmnKBEhBBnRFrz+IPVdocLOO1/axLa6Lh5dvJfPdjfj9gV58PxCNIrgwfd2oqoqlW0OEsOMTM/bv+n2jLy4g47lYH5/STErfjSLG0caKH3oLJ6/aSIXjU3h8WtL0GoUJmVHA3DHGTmcU5TIzoZuvjsrm/yEUJCVFG7CpNOwt7mHnt69M/c12/ndh6HIYGdDN+Mzovo3w82JC72usr7y+goz6njp5kncNTsUFB5uauDskYn9DROPZYWUTqMctCbm3jOHMWd4PNdMymBNeTtvb65nVn4sPz93BLOHx3PH7NwD/v4BIsx6Xrx5IvkJNsp6N59dua+NHrePX767kzibgYWTM+iamsSTQQ8bRID5JckUJIV+j3e8sAmn188jl40ifICr5A7m3rn7s9Jj0iL41oR0cuKsXFqS2n+fG5EUxoVjktEogufWVg3ouB/taGJMWgTv3D6VoovyibmpkLg7R2OdmkzEBTlYpybj3tWOJtJI/J2jiVyYQ97sNK777RRGzkxh7PyMQQVWELq2QRVqOpyDet6X6WJMxN5WHCrW393DtOybMHVH4Gh8GgMu9qVdjuHv79Dw8HV4NIKqq2+jfMECHKtX9x8j6HTS+f4XdL5RRpOrkm27H2PuH+/DM+laKnd2kjuhkc+iq7gp6wJs+tB71LenZRFQVab/fgmf7mw6qrFrbHq0sSaSLbnU7d5BbJqOtpiRxFS58APvrnobX0Dl4pKUIx5rINpKK0k25lHtaMSQZKLcqJKlO3LH+sPp/ys+QuTj9Pppc3hJOcpi9qOeSjyOTqvMldK3d5bDh1GnoMZl0KKquMu7KUBDBqE3SFPC/huvNtwQCsoAS28jUafXT4/bh8148De9vk8mO+q7Aahoc+ALBKnoDbK21YVSuJeNC9VdDYu38damuv4UPISyLxFfeVNNjDASY9WT3xtU9G1mqXx7JBs6HNS/tpl6fPwk5/Ap4VGpEby+oZZAUD3iJ5zyvl3JY4/upnXWqCTS460HDZLmjohn3AoNk7KiD/h6X9BSnBpx2E+ocbbQ77mlx0NTt4f4MANZsVZe31iLzailx+3H7vHzx0vHMm9EAm12D87e7FVqlIlwk44ul4/C5DDM+gP/FIQQJEWY+n/+F9aGahrGZxxdt+Avu2hMCr/7YDfdbj+Jva+V4b0ZoBirgeLezVb7AoXKVidmvZaV+9qYPyKBD3c0ctvzG9FrFC4YnUxzt4e/LN7L/EdWUNrUw/jMKLJjLcTZDASCKiN6b9gDoVEEMb0BxsFeG2fkx1P+8AIUReAPBLn9jJz+wApCWcXsOAv7mu392cSGLjcNXW7unZvHG5vquHvu/mL47Fgr6dHm/qDtywY6tSGE4LErRnPd5IyvBerHw6jUCB6/toTaDifvb2ugpSc0TTwQM4bFsruxh5RIE7UdLv6zooItNZ08uHAEVoOWUakRQCijGWczolVCr/edDd1cPDaF3HjbYY5+ZLPy41h05zS6XD60GoV75uZxz9w8FEVQkh7JusoORiSHkRhuYu7weF5eV8Pdc/Iw6jQsLW3mh69t5cHzC5k3Yn+WuqrNwba6Lu5fEGo1IRSBsfc9R5+0P0g2j4lDF2dGHGWW6asy+v8eHGQPsKj9YLQRRiIX5uCJMKD7oIKpMQvIsYygJmwv/u5IPvjnNsafewnPX/k2Jcs7GN8aQfMf/0Tk5ZfR/cGHuLbsRj/jJzhUF827nyfmyivpcuhZ8/Z20guj2aP9LYpf5Zwxtx0w9je+M5nbX9zI45+XM6fg6KYHrVOS8L/lItNciGKsotmfQNCjIaUlQJlzLTlxIw/4ezwWLYt2Y8HEHp+J2MhmejQK0cYRx3bQAcY8fW0Yjja4Apm5OqE0vcGV4vBj0WuJtRowdHrBG0CLYL7OQFCAJuzgKzr6lrY6vQF63H5sxoPHpn3B1e7GUDaqstVBVZsTX0DtD1IKEsP6G7zlJdjo8fhp6AplYDz+AC5fgHDTgcGVTqOw6sez+4OyPsbsCMxx+7Mo0dbD32BGpUbg8AYOKEwOBlUCX6o/entzHfe/uY3y1tBjso4yIyCEOGT2Kcyo47ujjAdMQwCkR4fOVXKEm2usLXSdGrvd3Pzsen7zwW7cvgDlLXYuGpOCEKDTCKbkhGrCfrmwkN9fUtw/rqKUcBLCjF8LrPr0zfdrFEFdpwubUcvIlGNvymfUaTiz92Zl6p06G54YuomekR+L0hvU9AVX33piLXe/vBmAayalc0XvdFdeghWzXsu3Jqaj1yiUt9q5YUomd8/JQwjBPXPzuPfMYf3HO176jqfVKAd9I8+JtVLWbD+gXmx6Xiy3n5HDku/PPCCQMuk1LPvBLOYe5c2mjxCCkoyoAa8kOxopkWZeunkid87OZU7BwLKBM3uzhjdOzcRm0PLfz0OrJqflhjKLefFWJmVFc8OU0LRTlEXPtZPS+d6cXB46f0Bbsh5RQVJY/+9cUUT/9btxaiZnFSaQEBZ6v7pmUjqdTh/vbgltqvzC2mqaezzc+twGGnqzpw1dLm55dgNmvYazj7Dvnj7JetwCK9j/99D3IfVYPeNysEDY8c5OIc6SyjjfeCZpYLq5g/Wvf0j2rimURQ1jTYGZqqpyyh58EE9bAO+Mm1G0JhotO5n3+ut06NJ4+5HNmMP0zLo8g8XuGkbpIoi2xB5wvuLUCC4cncLainaae75eSzkQlgmJ6LPCGRk9jZ7GrYCgMzyHwuognf4qCgfxQepwfD1uTE0GGrp24lHCceg2A+DXTTy2A/fXsx8+9KntPLbg6uTnrU6zzFVfcKV1+ZkktBQHFErtfujNWA3zCTQRBoTm4JfGYgg9zuHx0+PxEWY6ROaq983K21vsWtXmZHdjKIs1f0QCf19axuXj9wdIfZmoS/+1mievG9efsfpqcAUcMpPTNxazXnPIYKFP36flzTUd/VNrv3pvJzsbunnllkkAPPl5BVtqu5g5LJZYm4EI8/HPCBxKUriRh84v5MwRh7/hxvUGVyv3tdLj9rOttovyFgfB3o1ht9R2EmHSHVCP9WX3nTWcdof3MOMI/WFHW/Q093i4eVpWfz3PsbpsXCqvbajt/wQ+LN7GxWNTuG7y/tqO+DADk7OjWVXWxrI9oaLnwpRwJmVHMzo1ghHJoTfSWJuBP11WTJhRd8B04MFqjk6EnDgrb22up6LVQVFKOPeeOYxJWdGnRKr+WGXHWrnnS5m3I5mYFcVfLh/FmQUJrNzXxqe7moix6knvzc5qNQov3nzgDeuXC49PUHUk8wsTmf+lVWWTsqPJibPyzOoqzi5KZPneFkalRrC5ppMNVR3kxPm44G+rCKoqT1w77qiLjY9WpFmHRa/hofd3YdZrOac4kbBDzB4cyoaqDl76opo5BfEs3tXMuMwosuZm4h0VS9WH6+lorCO+NZnxNierWuuwqZG0OP348zMYFzMfkyEBE9AW3cLM7/2Yuj1dVC9XiUk1ctatI9mz5gfs1Wn5YfqZBz3/2UWJ/GXxXj7a3sjVkzIG/TsQQmCbkoS3vAvR5EGYnHSljKakZifvDO9gauKxB1eqqtLw1AYUFBpaqxFx+ZQrqzAHVdpdx/aeIhhYzVVtf+Zq8KUXp4rTKrjqmxbUuQPc6NRgrHIR9At8egWdNxQImYpiDvn8vqDF4QnQ7fIfMkMUH3ZgwWKbw8uy0haMOoVbZ2ZjMWi5ZOz+4GpMWiQ/mDeM339Uyqp9rUzs/ZQZZRl4T5S+N5kjZa0g9AkwzKhlc00nl40L/bGs2NtCdbuTNruHilYHW3pX5SwtbeHsQW49cKyEEHxrYvoRHxdh1qHTCBZtawRCGayV+1oByIu38d/rxh02a1NwhE95s/LjaHN4Obc4kd9/VMr1U4+9eV6fcRlRrPjhrP4blFaj8IferFofIQQvfHsij68o56H3d5EVa+m/zpd+JXt5zhGyCCdSXx3VusoO5hbEMyMv9gjP+OYSQrBwVGgKcUpONJ/uamJseuQpGWgKIbhpaiY/fmMbVz2+FrcvyF1zcrnl2Q1sre1iX7Mdtz/Akntn9k/RnejxjU6L5PN9rdz/5jYe/7ycN78zZVA1ac+sruTtzfW8uiHUDPanZ4d6NuljreRePROA9uXlKIsULsy7naacAM6N3aRrbbhVN5u6NmGyZtDpT+XzO5ej1WswhMFFPxiLt2oxP2v4lGSDjQsn3HvQ8+fF28iNs/Le1oajCq4AjPlRYFLIshay21RFByMYuVqlThugIObYb+nO9U0odUG2tC2hPbKElGGRLA3UkRq00NDlOfIBDkPtz1wd/nG1HU70GoXYo+wLJsSAuj0MqdNqWlAxa0EjSLAHiA0KbA4/U9BSa9XwJB40wyIJn5dxyOf3Z66OUHOl1yrE9AY5ub03mne31lOcEhGaCpuV0z8dBKFpp9tmZmPRa6hsc9LaE8qmxAwgUOrTN0UZM4AXoxCCCVnRvLWpnjc31dJq91DeW0x91eNrufifqw94/ISsY68zGgpCCAqSwrH3Fk4DvL6xFq0i+lefDfaT7ZfNL0zg8WtLWDgqmc9/dMYhM2BHKzXKPKApu756l75arFPdqNT907nxh5hiPx1Nyw19cBt3HOr2hspl41K5fFwqm6o7uWB0MtNyYhiRFNafvRoWbzspgVWfx68tYcvPz+TpG8ZT0+7k+69tGdTzN9d0MiMvlozezOEZ+V+f3o2ankX8nWPQhBmI2wZpljA26xr52B7g84gAHeEOUAQFU5IIizaSNEGgdJdz32d3UqPV8eCM32PRHfp3dHZRIl9Utn9tIc5ACY2CtSSRJEsuwl1BT9CKT0kksV4hyrP2qI7ZR/UF6PqkinZvA+11a3FpokjNVdmjFcSKNOo7j27M/WPvfbsTRwh86jpcJEUYj6Gk4eR/eDmtgishBMKio9ge7P9aBAorhZ9nNV7irx2B0Bz6V3JgQfuha65gf93VecVJxNoMuH1BSjIOXUMkhCAjxkJlm4MWe+gF3FdTNBBGnQaDViF6gNmuX19QSFashbtf3kLJQ5/2R/l9dWIZvcu4AcZnnro3g1/31qXkxlkRIjT+zBjLUS/VPhWlRpn52TkF3HgcM2dDKSHc2H/zircd5R5k30A5cTZeuGnCgLKyJ4sQgt9cOJINP53Dny8bhVajUJwSwZaaTtZXdhz2PexEMOo0hJt0zMiL5Xtz8vhkZxP/XVnB9rpD97+ye/xUtDrocHipanMyMSuav101hh/MG3bIGj19kpW47xQTdWU+KT+ZxLkPXcrC341kbf4zvBH3S86/Isisb+VzxQMTCAvr4bE3LuUzo44fFn6bcWkzD/sznD0yEVWFn729/ehrr0riUVCIctsQuKlPmsjEUpWyhiVHdbw+PSvrCXZ72dy2BNU6Gq1ewWP6nIAQxNhKaOhyERzAvoCH1BtdHekItR2uY54SlAXtJ1ipuj/LoWoFAVRe7+whxmo4YpTcl7mye0IF7YfLivTVXcWFGbhkbGhp7JFWP2VEW6hqc9LSE0q9Dia4glBvpvQBtgeIsxl567tT+Nk5BV/73g/nD2PRXdOYlhtLUriRvLhjW7E0lAqTw3nt1kn89/pxjO1d3l/cW1P2TXLj1MzjssP9iZLXu8rtWNoIfBNNzon5WtuGU40Q4oCWFBMyo/D4g7h8AUrST50PWjdMySTWZuCX7+7k+qfWsbeph03V+1vMvLWpju+/uoUL/raSWX9YyoTfLAZCNacjksL57qycwx5fMWoxF8Wi9GasU2wp/LjkB2w36Pjuom/R9fmf6PzkAbaV3sfjBj8XJUzhyrF3HHHcufE2bp2RzZLdLfzq3Z1H9bPr4i0QqyXbWkxEfDv18eOZsFtla8u2ozoeQKDHS8+SGtpEA12OGrqjZjFqThq7OlYCkJY0B19ApdV+9FODfQHPkTJXoeDq6Gv6ToVZ99Oq5kpVVX7mc/DbCBtFoxJxNtpZvruZlkCQ4rAjf8LuWy3Y4fDiDQQHlLmKshiYW5CARtm/au1Q0qPNfLSjkYYuN0adMuhpqJdvnjiozTp1GoXrJmfw4HuhP/Boi542h5fRqZGY9VrumZvHd2ZmH/fVZsdbSe80y4s3T6Sh002cnIo66eYWxPPxzqYBZ1KlU9f8wgTump3L6xtrmZzz9ZYZJ4tJr+GJa0t4dPE+Pt3VxMX/XI1eq/DF/bNZW9HO91/dQkBVsei13Dg1kyd6V2oWHcOK3/kjrsSh+nho/R9YsOdxujUasCnMixnNT+Y+NuBauh+flY/bF+CFtdW0O7xH1UIkck42vOgn3NNMhzYJoUnBtasWAn7QDP7W3vVRJUGvnzXV7xLhS8GuaCiencrLr5STLDRkx6UCTdR1uogbwP3yYERfOucwwZXbF6DV7jmm4OpUcFoFV612L3VuH/vmJjBtSgY2f4D7fxpqmjf5IH12vqqvoL2vZULY4YKrsL7gSk+URf+1fb8OJiPagj+osqWmkxirYdBFr0fzgtcogsX3zsDu9vPQ+ztpd3r72w3oNAq6w0yTnmp0GuWoGntKx9/FY1PIirUwJu3kTiNJx04Iwd1z8w7oT3aqKEqJ4A+XFFHy0Kf9uzrsbOjm52/vICXSxCu3TkKrKERZ9Jw/KpnqduegPoAezEWF15IdM4In1v2RgoRxqK1Gbpl3CxplcBnJK8an8dSqSt7cVHdUU/7mkbHUv7qRbHcSlYEumpJGk7+zjqaKz4jPOfhqxUPx1tlxrm9ir30T+kAPnqiFpA6PwmiErUEHY6xp/btW1He6GX20iwYHsHFzXW8bhuRjyVwd9TOPn/+dO+dx0NchPbd3mkvRagj0fq+vW/jhWHqL0Pv69xyqoB1CK6Y0ihjUcuW+QtGN1Z2DnhI8FtmxVopTI5iRF8usYXHHvXBbOv0IIRibHnVKroqTvlkizHqm58X2v9f+9K3tlDb1cNecXOJsxv6s0MiUcM4uOj4rn0cllPDYuS/ynXH3UGAqGHRgBTAswUZqlImNX5rKHAyhCCLPy8OqDSdLV09b6njG7lP5YtWzgzqOqqp0vleGT3jZ07OW7Eo3HkMU2SUJNFWtoEmroShm5JeCK9dRjRf2t2I43LvC8WrDcKReWkPttLqL9jXNzI3/ehHjqAHU6Wg1Cgat0t9QL8x06F/fmQUJLLl35qD2kcqLt/YvIT3aJajH4vbD7D8nSZJ0qvrL5aMIBFXO++tKNlV3khVj4dxTqD3JoeTF2djXZD/yAw+hOiGSat82RlmHU928BLs5HuenW+CagR/DuaEZb0U3W1o/IxtoTp+PzqCQNSqGJcvfBqAoaz5hRh02g7Y/s3RUektM1MP0uToe3dlPhc90p1fmqsmOzaDtbz4J8OR1JfzjqjED3ujSYtD2b+Z7uMzV0ew9F2HWU9jbzfxEZq4kSZL+l9mMOiLMeu5fkM9NUzND04H/AyUNufE2ylvt+ALBIz/4ID7a3sj/GfQoGg3Ftgx25BcxfIOPzrdfG9DzPVXdtL+xhyZXFe5oBxHb6miKHMnImSkYzDpWNn1BmAoF6aE9bJMiTMeUuRrI5oK1HU60iujf3ux/1WmVudrb3ENOvPWAqYoz8ge37YZZr+nPXB2uoP1oTciMYltdF2b9qb2iSJIk6VTz1a7zp7rcOCu+gEpVm7O/+e5grCprIz0jkvDsBJRPFMrs21mfFYn2/p+jT87AXFJy0Oepqoq3opu253fhCvSwW7ueSVVN7EqfiVAExbPTUD12Vvm7mGhNRauE7nVJEcb+jeSPSn/N1aGTGbUdLpIiTANOeBz8NCc/dXXqh/bHUVastX9Pr6NlNWhx+0KfMg6XuTpaRb3Tk30bDEuSJEnfTH0tS/Y29Qz6uS5vgF0N3YxJjyBsRhp+k2BCzAKssVOoSQij9o47cZfu+drzVF+Q9pdKafn3Vvw+L0vrXiIvLhb35s20pE8jNT8Kc5ievTtfo1mrYWrKjP7nhjJXR99ItD+2OkJB+/FYKSj7XJ1AD18wclD7gh3MlzNKh1steLTOKkzgjjNyuGu2rH+SJEn6JsuOCy1i2tU4+OBqe30X/qDKqNRIhFYh/oZivMLA5LjzSB71A/zWCKqvuw53aSm+Rgf2tQ0Eery0PL4N15YWWqKaeKvsUcxxVizPv4J36kIcboWcktBszsqy9wCYXPit/nMmRZhod3hxHe2Hf+XIBe1VbQ7Soo6tmP1UqLk6raYFj4e+ZbyK2N+x/XjSaZQBtW2QJEmS/reZ9VrGZ0TxwtoqbpqWOeDtup78vIJf9fYn7FuMZUq10TA8mt0b9jDGHI53zHfQVq6i4Vevoc+egepV6XynjGAwwJrm92ioLyctPYOcj5aii41ld+4FGJo8ZI0Oze6s7NpDrlZPfPj+vgt9KzLru1z9m84PRn9JziHSSl0uH612L1mxx77Fksxc/Y/pC6hGJoef8s01JUmSpFPbz84poM3h5a4XN/X36jocVVX7AyutIg5Y/DT27Ewag+F85FyNGlDQZy5AkzyJ7q56ylwbaHFW80ntM0QURnPp7PPIf+tDrBmZOO7+Kw0VDiaen43BpMXZsouNmiBTIg/cwaOvHUNfu4RB6w+uDn7vrGh1AJAZM/jA7WCnOZlk5uooHanbuiRJkiQdyciUcH513gh++e5O7n1lM49fO+6wj+9rKXTF+FQuLUk94HsRcWbGzs9g/SL4oH0tRs92HP4uDEB4lwO92UJRWTXWdavoBCwzphP49gOseqKU9MJoCqaG2ld8sfUZfEIwOW/hAcfPiAlN11W02JmRN/j65SMFPeUtoZ8t83hsDn6SU1cyuBqk7fWhDUJlcCVJkiQdD1dPysDuCfC7D3ezal8rE7KiUQQHbcL7+b5WAG6bmUPqQWqTJpyXhSG9i6X/Go3PqlJcFM2Uiy+l5Uc/xrl6DXE/+hGasHCCLifekrm8/ZetRKdYOfOmEf2zMZ/VLsOmQknugcFVrNWAzaClvDfDNGhHiK4qWh1oFHHsNVenwGpBGVwN0vjMKGo76o64CbMkSZIkDdT1UzJ4dnUljyzei+fD3SRFmPjblWMOKD9xev28vrGWtCjzQQOrPqOKR/NM1h1klp1H7V4jQWEm9R//INDVhTYydO9qquzmnUc2YbToOPu2YvS9C7T8jhaWBjqZZs1ApzmwBkwIQVashfKWowyujlCIVN7iIDXShF577BVLsubqf8zDF4xk7f2zT/md7SVJkqT/HUadhqsnZfBFRTtbarv4YHsjv/+4lJYeD/9dWcEr62q4/r/r2FnfzY/m5x/xeLNm5fNm4Z9x2l0s+vtWWmsdaCIi6Gh0sObtMhb9fStGq44Lvj8Ga+T+uq3NW56iQ6PhjOxzD3rcrFhr//TdoPXt3HyIyKe81UHWURTKf/08x36IYyUzV4Nk1GlkYCVJkiQdd5eWpPDnT/aQHGliTFok/1haxj+WlvV/XxHw58tGDWiPxPmjb+Zv2x9nd8aT6Oq/wysPr8MaZSDgV3F1ezGF6VlwWxG2qAM7oS8u/wC9qjKt8OqDHjcrxsKbm+pwev2YB7livm+aUxykoD0YVKlotTM5O3pQxzyUk525ksGVJEmSJJ0Coq0GHr1iFAnhJopTwjmrMIGqdifjMiKpaXdhNWoHXEiuU3Rck7WQ3/A6143djFF/CaVrG+locnL5A+OJTLB8bcW76nXxmaeRSaZ4zIaDZ5D6MkvlLQ4Kk8MH9fPt78Tw9eCqsduN2xc8Lm0YROgkJ5UMriRJkiTpFPHl7XvmFOzfnq0oJWLQx1o4/l4eLXud1yqf5eHr76RgahKqqh60UB5g58Z/U6/VcEv67EMes2+bnr3NPYMOrujPXH39W/vbMByH4OoU6MUga64kSZIk6RvIYrBxfsxoPlDclK76E3DowMPXuodfb/snNlUwa9TNhzxmVqwFvVZhV8Pgu8qLw/SG7KvjyjrGHld9Tva0oAyuJEmSJOkb6tbZjxCOhh/sepzti+4Ed/fXHuNr3MaP3riQbXotvyz5IZGWuEMeT6dRGBZvY2f9149zRP2B3deDrPJWB2a9hvgww9e+N+jTHPMRjp0MriRJkiTpGyrCFMVvp/8fXXojV7Qs4f6nJ+KsWRP6ZsBH5dKHuO6dS/jEIPh+3lXM/dJegodSkBjGzoZu1MPtwHwQ/ZmrgzytvMVBZozllJjSOx5kzZUkSZIkfYNNzJrH+ylTeGL1r3my4j32fngdd8dMpN3Txc/cezEYDPx+3H3ML7h8QMcrSArj5fU1NHV7SAg3HvkJvQ61t6DbF2BbXRfTc49Pc+5TIT6TwZUkSZIkfcNZ9VbumvEbRiVO5FdrHuSW7g0IVWWMMY4/LHyFGNPAA5uCpDAANlZ3sGDkkdtC9BHKwSfLnl9bTbvDyxXj0w76/aMha64kSZIkSTohZuQt5IOrVnF33pVMtWXxyMLXBhVYAYxKjSDOZuDV9TWDO/lBMkpef5B/Ly9jUlY0E7KOT4+rUyBxJTNXkiRJknQ60Wv03DDpPm44yufrNAqXj0vlsSX7qGl3HnYrngP0Zq6+vPffB9sbaOr28NuLio5yNAc3yHKw405mriRJkiRJGpRLSlJRVfhoR+OAn6P0FkN9Oe55cmUlWTEWZuQOrDnqQJwKRfEyuJIkSZIkaVBSo8xkxlhYXdY28CcpB25/s7G6gy01nVw3JeNr3eL/18ngSpIkSZKkQZuUHc3ainb8geCAHv/VhNJ/V1ZiM2i5aEzKcR3XqRCmyeBKkiRJkqRBm5Idg93jZ0tt14AeLxRN/3/va+7h/a31XD4+FYvh+Jd/y9WCkiRJkiT9z5mSE41OI1i0rWFAjxe9EYdA8PuPSjHrtXxnZs7xH9gpkLqSwZUkSZIkSYMWYdYzZ3g8b22qwzeAqUG1N7pSVfh0VzNXTUgjyqIfkrHJ1YKSJEmSJP1PunhsCm0OL8v3tBzxsUpvK4agqhIIqkzKPj59rb5KnAKpKxlcSZIkSZJ0VKblxmLWa1hS2nzkB/dGHIFgqLh9THrk0A7uJJLBlSRJkiRJR0WvVZiUFc2Kva1HfGxfQbsahGHxNsKMuiEZ0ynQ5koGV5IkSZIkHb3pebFUtTmZ9JvFrNh76OlB0dvLKqjChMyoIR2TXC0oSZIkSdL/rJnDQt3VG7rc3P7CJmo7nAd9nPhSxPHdWUOwSrDvPEN25IGTwZUkSZIkSUctPdrCih/O4tN7puP2Bfj70rIDvu/1BznrLyv4eFeoLkuvUYgLMw7ZeOS0oCRJkiRJ//NSo8zkxNk4f1Qyb2ysZfr/LeG9rfUALCltZldDN+uqQs1GNcrQhx6yFYMkSZIkSd8I107OwO0LUt3u5LHF+1BVldc21KIICPRO2ClDPHEnWzFIkiRJkvSNUZAUxju3T+Fn5xRQ2tTDL97ZweJdTVw/JZOkKPMJG8fJLmg//hv6SJIkSZJ02ipKiSA3zsYr62p4enUVY9MjuWduHq02B3zgHvLznwo1VzK4kiRJkiTpuDLpNXxw1zS21nWRF2/FrNfS1jdXdrLTSieADK4kSZIkSTruFEUwKjVi/781oSaiQ51aOhUyV7LmSpIkSZKkISd6VwmKE5C5OtnJMRlcSZIkSZI05ER/C4ahTi2d/NSVDK4kSZIkSRpyiiYU9JyIVgmyz5UkSZIkSd94QgmVeQ913CNrriRJkiRJOi30bdx8YmKfk5u6ksGVJEmSJElDTmh7VwsOcdxzCiSuZHAlSZIkSdLQ62vFIMQJ2FtwyM9weDK4kiRJkiRpyO0PqoY29JE1V5IkSZIknRaErq9v+QmIfuRqQUmSJEmSvumE0ldzNcQd2hEnO7aSwZUkSZIkSUOvv+ZqiM8jpwUlSZIkSTotKL2tGE5E9CMzV5IkSZIkfePtr7ka4vOckLMcngyuJEmSJEkackrfxs0neRwnggyuJEmSJEkacidq42ZxChRdyeBKkiRJkqQhJ7QnJrgCuXGzJEmSJEmngf5WDKcBGVxJkiRJkjTklN7MlTgBWSW5WlCSJEmSpG88cYJaMZwCJVcyuJIkSZIkaej17S14CsQ+Q04GV5IkSZIkDb2+zNVQrxY8BcI3GVxJkiRJkjTk+qcFTwC5WlCSJEmSpG+8/f2nZM2VJEmSJEnScaGq6ikwaTf0ZHAlSZIkSdIJoaIy9DVXJ58MriRJkiRJOkFOTOZK9rmSJEmSJOm0EAp6ZM3VMRFCzBdClAoh9gkhfjyU55IkSZIk6VR3YnJK39jMlRBCA/wNOAsoAK4QQhQM1fkkSZIkSTq1hQrahzpzJU56dKUdwmOPB/apqloOIIR4CVgI7BzCc0qSJEmSdAqLNyaz5o5nhuz4ZwAz1cCQHX8ghDpEnbaEEBcD81VVvan331cDE1RVvf0rj7sZuBkgPj5+7EsvvTQk47Hb7Vit1iE5tnT05HU5NcnrcuqR1+TUJK/L4OhfqyBCHz3k5wmoAdoWRg75eWbNmrVBVdWSr359KDNXA6Kq6r+BfwOUlJSoM2fOHJLzLF26lKE6tnT05HU5NcnrcuqR1+TUJK/LIJ2g39XJvi5DWdBeB6R+6d8pvV+TJEmSJEn6xhrK4GodkCuEyBRC6IHLgXeG8HySJEmSJEkn3ZBNC6qq6hdC3A58BGiAJ1VV3TFU55MkSZIkSToVDGnNlaqqi4BFQ3kOSZIkSZKkU4ns0C5JkiRJknQcyeBKkiRJkiTpOJLBlSRJkiRJ0nEkgytJkiRJkqTjSAZXkiRJkiRJx5EMriRJkiRJko4jGVxJkiRJkiQdRzK4kiRJkiRJOo5kcCVJkiRJknQcyeBKkiRJkiTpOJLBlSRJkiRJ0nEkgytJkiRJkqTjSAZXkiRJkiRJx5EMriRJkiRJko4jGVxJkiRJkiQdRzK4kiRJkiRJOo5kcCVJkiRJknQcyeBKkiRJkiTpOJLBlSRJkiRJ0nEkVFU92WPoJ4RoAaqG6PAxQOsQHVs6evK6nJrkdTn1yGtyapLX5dR0oq5LuqqqsV/94ikVXA0lIcR6VVVLTvY4pAPJ63Jqktfl1COvyalJXpdT08m+LnJaUJIkSZIk6TiSwZUkSZIkSdJxdDoFV/8+2QOQDkpel1OTvC6nHnlNTk3yupyaTup1OW1qriRJkiRJkk6E0ylzJUmSJEmSNORkcCVJkiRJknQcnRbBlRBivhCiVAixTwjx45M9HgmEEKlCiCVCiJ1CiB1CiLtO9pikECGERgixSQjx3skeixQihIgQQrwmhNgthNglhJh0ssckgRDi7t73r+1CiBeFEMaTPabTkRDiSSFEsxBi+5e+FiWE+EQIsbf3/yNP5Ji+8cGVEEID/A04CygArhBCFJzcUUmAH7hXVdUCYCLwXXldThl3AbtO9iCkA/wF+FBV1XygGHl9TjohRDJwJ1CiqmohoAEuP7mjOm09Bcz/ytd+DCxWVTUXWNz77xPmGx9cAeOBfaqqlquq6gVeAhae5DGd9lRVbVBVdWPvf/cQulkkn9xRSUKIFOBs4PGTPRYpRAgRDkwHngBQVdWrqmrnSR2U1EcLmIQQWsAM1J/k8ZyWVFVdDrR/5csLgad7//tp4PwTOabTIbhKBmq+9O9a5E38lCKEyABGA2tP8lAkeAT4IRA8yeOQ9ssEWoD/9k7XPi6EsJzsQZ3uVFWtA/4AVAMNQJeqqh+f3FFJXxKvqmpD7383AvEn8uSnQ3AlncKEEFbgdeB7qqp2n+zxnM6EEOcAzaqqbjjZY5EOoAXGAP9QVXU04OAET3FIX9dbw7OQUPCbBFiEEN86uaOSDkYN9Zw6oX2nTofgqg5I/dK/U3q/Jp1kQggdocDqeVVV3zjZ45GYApwnhKgkNH1+hhDiuZM7JIlQtr1WVdW+zO5rhIIt6eSaA1SoqtqiqqoPeAOYfJLHJO3XJIRIBOj9/+YTefLTIbhaB+QKITKFEHpCBYfvnOQxnfaEEIJQDckuVVX/dLLHI4GqqvepqpqiqmoGob+Tz1RVlZ/ETzJVVRuBGiHEsN4vzQZ2nsQhSSHVwEQhhLn3/Ww2cqHBqeQd4Nre/74WePtEnlx7Ik92Mqiq6hdC3A58RGg1x5Oqqu44ycOSQlmSq4FtQojNvV+7X1XVRSdvSJJ0yroDeL73A2I5cP1JHs9pT1XVtUKI14CNhFY/b0JuhXNSCCFeBGYCMUKIWuDnwG+BV4QQNwJVwKUndExy+xtJkiRJkqTj53SYFpQkSZIkSTphZHAlSZIkSZJ0HMngSpIkSZIk6TiSwZUkSZIkSdJxJIMrSZIkSZKk40gGV5IkSZIkSceRDK4kSTotiBD5nidJ0pCTbzSSJH1jCSEyhBClQohngO0cuBWWJEnSkJBNRCVJ+sYSQmQQ6mg+WVXVNSd5OJIknSZk5kqSpG+6KhlYSZJ0IsngSpKkbzrHyR6AJEmnFxlcSZIkSZIkHUcyuJIkSZIkSTqOZEG7JEmSJEnScSQzV5IkSZIkSceRDK4kSZIkSZKOIxlcSZIkSZIkHUcyuJIkSZIkSTqOZHAlSZIkSZJ0HMngSpIkSZIk6TiSwZUkSZIkSdJx9P/Z/cLmUXDXZQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 720x720 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Disponemos del archivo de data que almacena todas las funciones de distribución radial clasificadas por filas y columnas,\n", + "# esto nos permitirá construÃr el código para graficar la evolución de la función de distribución radial del fluido confinado\n", + "# dentro de un cilindro\n", + "\n", + "dataframe7=pd.read_csv(\"/home/student/ejercicios-clase-08-datos/data-used/FDR_evolucion_general.csv\")\n", + "print(dataframe7.head())\n", + "\n", + "plt.figure(figsize =(10,10))\n", + "ax = plt.gca()\n", + "\n", + "dataframe7.plot(kind=\"line\",x=\"r\",y=\"g_liso\",ax=ax, label=\"Cilindro liso\")\n", + "dataframe7.plot(kind=\"line\",x=\"r\",y=\"g_2\",ax=ax, label=\"Cilindro con 2 dientes\")\n", + "dataframe7.plot(kind=\"line\",x=\"r\",y=\"g3\",ax=ax, label =\"Cilindro con 3 dientes\")\n", + "dataframe7.plot(kind=\"line\",x=\"r\",y=\"g5\",ax=ax,label =\"Cilindro con 5 dientes\")\n", + "dataframe7.plot(kind=\"line\",x=\"r\",y=\"g12\",ax=ax, label =\"Cilindro con 12 dientes\")\n", + "dataframe7.plot(kind=\"line\",x=\"r\",y=\"g15\",ax=ax, label =\"Cilindro con 15 dientes\")\n", + "dataframe7.plot(kind=\"line\",x=\"r\",y=\"g20\",ax=ax, label =\"Cilindro con 20 dientes\")\n", + "\n", + "pl.xlabel(\"r\")\n", + "pl.ylabel(\"FDR(r)\")\n", + "pl.grid()\n", + "#pl.legend([\"FDR(r)\"])\n", + "pl.title(\"Evolución de la función de distribución radial\")\n", + "\n", + "pl.savefig(\"fdr_evolucion.png\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Presentar la evolución de la función de distribución radial en forma de gráfica *(estática)*, tiende a ser confusa, por lo que a continuación aplicaremos lo aprendido en las clases del ***Módulo de Ciencia de Datos** mostrando una representación *dinámica* de la variación de la Función de Distribución Radial a medida que cambian las caracterÃsticas del cilindro que contiene el fluido." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 7- Intentemos una animación" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [], + "source": [ + "from matplotlib import animation\n", + "from matplotlib.animation import FuncAnimation\n", + "#from Tkinter import *\n", + "from IPython.display import HTML\n", + "%matplotlib notebook" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A nosostros como humanos se nos hace más sencillo observar el comportamiento de la data mediante algún tipo de representación visual, esto nos permite explicar el fenómeno que registra nuestra data, pero en muchas ocasiones las imágenes estáticas no lo lo muestran. Es aquà donde las animaciones comienzan a tener sentido y demostrar su valor en la visualización de nuestros datos!\n", + "\n", + "Lo que haremos para la animación será tomar las gráficas de cada columna de datos de interés y grafiquémoslas de manera consecutiva dentro de un mismo marco de ejes coordenados. Por lo que debemos definir los datos y juntarlos en una lista que podamos manejar y graficar echando mano de la función `animate` y `FuncAnimation`." + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " primera_columna segunda_columna\n", + "0 0.03 0.944136\n", + "1 0.05 0.825305\n", + "2 0.07 0.815073\n", + "3 0.09 0.860936\n", + "4 0.11 0.813170\n", + ".. ... ...\n", + "495 9.93 0.000000\n", + "496 9.95 0.000000\n", + "497 9.97 0.000000\n", + "498 9.99 0.000000\n", + "499 10.01 0.000000\n", + "\n", + "[500 rows x 2 columns]\n" + ] + } + ], + "source": [ + "# r g_liso g_2 g3 g5 g12 g15 g20\n", + "\n", + "#dataframe7=pd.read_csv(\"/home/student/ejercicios-clase-08-datos/data-used/FDR_evolucion_general.csv\")\n", + "\n", + "#f0 = dataframe7[\"r\"], dataframe7[\"g_liso\"]\n", + "\n", + "f0 = pd.DataFrame({\"primera_columna\":dataframe7[\"r\"], \"segunda_columna\": dataframe7[\"g_liso\"]})\n", + "f1 = pd.DataFrame({\"primera_columna\":dataframe7[\"r\"], \"segunda_columna\": dataframe7[\"g_2\"]})\n", + "f2 = pd.DataFrame({\"primera_columna\":dataframe7[\"r\"], \"segunda_columna\": dataframe7[\"g3\"]})\n", + "f3 = pd.DataFrame({\"primera_columna\":dataframe7[\"r\"], \"segunda_columna\": dataframe7[\"g5\"]})\n", + "f4 = pd.DataFrame({\"primera_columna\":dataframe7[\"r\"], \"segunda_columna\": dataframe7[\"g12\"]})\n", + "f5 = pd.DataFrame({\"primera_columna\":dataframe7[\"r\"], \"segunda_columna\": dataframe7[\"g15\"]})\n", + "f6 = pd.DataFrame({\"primera_columna\":dataframe7[\"r\"], \"segunda_columna\": dataframe7[\"g20\"]})\n", + "\n", + "print(f6)" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "# Crearemos una variable global que almacene todos los dataframes que escogimos\n", + "global mylist\n", + "mylist=[f0,f1,f2,f3,f4,f5,f6]" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "/* global mpl */\n", + "window.mpl = {};\n", + "\n", + "mpl.get_websocket_type = function () {\n", + " if (typeof WebSocket !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof MozWebSocket !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert(\n", + " 'Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.'\n", + " );\n", + " }\n", + "};\n", + "\n", + "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = this.ws.binaryType !== undefined;\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById('mpl-warnings');\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent =\n", + " 'This browser does not support binary websocket messages. ' +\n", + " 'Performance may be slow.';\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = document.createElement('div');\n", + " this.root.setAttribute('style', 'display: inline-block');\n", + " this._root_extra_style(this.root);\n", + "\n", + " parent_element.appendChild(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message('supports_binary', { value: fig.supports_binary });\n", + " fig.send_message('send_image_mode', {});\n", + " if (fig.ratio !== 1) {\n", + " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n", + " }\n", + " fig.send_message('refresh', {});\n", + " };\n", + "\n", + " this.imageObj.onload = function () {\n", + " if (fig.image_mode === 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function () {\n", + " fig.ws.close();\n", + " };\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "};\n", + "\n", + "mpl.figure.prototype._init_header = function () {\n", + " var titlebar = document.createElement('div');\n", + " titlebar.classList =\n", + " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", + " var titletext = document.createElement('div');\n", + " titletext.classList = 'ui-dialog-title';\n", + " titletext.setAttribute(\n", + " 'style',\n", + " 'width: 100%; text-align: center; padding: 3px;'\n", + " );\n", + " titlebar.appendChild(titletext);\n", + " this.root.appendChild(titlebar);\n", + " this.header = titletext;\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._init_canvas = function () {\n", + " var fig = this;\n", + "\n", + " var canvas_div = (this.canvas_div = document.createElement('div'));\n", + " canvas_div.setAttribute(\n", + " 'style',\n", + " 'border: 1px solid #ddd;' +\n", + " 'box-sizing: content-box;' +\n", + " 'clear: both;' +\n", + " 'min-height: 1px;' +\n", + " 'min-width: 1px;' +\n", + " 'outline: 0;' +\n", + " 'overflow: hidden;' +\n", + " 'position: relative;' +\n", + " 'resize: both;'\n", + " );\n", + "\n", + " function on_keyboard_event_closure(name) {\n", + " return function (event) {\n", + " return fig.key_event(event, name);\n", + " };\n", + " }\n", + "\n", + " canvas_div.addEventListener(\n", + " 'keydown',\n", + " on_keyboard_event_closure('key_press')\n", + " );\n", + " canvas_div.addEventListener(\n", + " 'keyup',\n", + " on_keyboard_event_closure('key_release')\n", + " );\n", + "\n", + " this._canvas_extra_style(canvas_div);\n", + " this.root.appendChild(canvas_div);\n", + "\n", + " var canvas = (this.canvas = document.createElement('canvas'));\n", + " canvas.classList.add('mpl-canvas');\n", + " canvas.setAttribute('style', 'box-sizing: content-box;');\n", + "\n", + " this.context = canvas.getContext('2d');\n", + "\n", + " var backingStore =\n", + " this.context.backingStorePixelRatio ||\n", + " this.context.webkitBackingStorePixelRatio ||\n", + " this.context.mozBackingStorePixelRatio ||\n", + " this.context.msBackingStorePixelRatio ||\n", + " this.context.oBackingStorePixelRatio ||\n", + " this.context.backingStorePixelRatio ||\n", + " 1;\n", + "\n", + " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", + " 'canvas'\n", + " ));\n", + " rubberband_canvas.setAttribute(\n", + " 'style',\n", + " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n", + " );\n", + "\n", + " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n", + " if (this.ResizeObserver === undefined) {\n", + " if (window.ResizeObserver !== undefined) {\n", + " this.ResizeObserver = window.ResizeObserver;\n", + " } else {\n", + " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n", + " this.ResizeObserver = obs.ResizeObserver;\n", + " }\n", + " }\n", + "\n", + " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n", + " var nentries = entries.length;\n", + " for (var i = 0; i < nentries; i++) {\n", + " var entry = entries[i];\n", + " var width, height;\n", + " if (entry.contentBoxSize) {\n", + " if (entry.contentBoxSize instanceof Array) {\n", + " // Chrome 84 implements new version of spec.\n", + " width = entry.contentBoxSize[0].inlineSize;\n", + " height = entry.contentBoxSize[0].blockSize;\n", + " } else {\n", + " // Firefox implements old version of spec.\n", + " width = entry.contentBoxSize.inlineSize;\n", + " height = entry.contentBoxSize.blockSize;\n", + " }\n", + " } else {\n", + " // Chrome <84 implements even older version of spec.\n", + " width = entry.contentRect.width;\n", + " height = entry.contentRect.height;\n", + " }\n", + "\n", + " // Keep the size of the canvas and rubber band canvas in sync with\n", + " // the canvas container.\n", + " if (entry.devicePixelContentBoxSize) {\n", + " // Chrome 84 implements new version of spec.\n", + " canvas.setAttribute(\n", + " 'width',\n", + " entry.devicePixelContentBoxSize[0].inlineSize\n", + " );\n", + " canvas.setAttribute(\n", + " 'height',\n", + " entry.devicePixelContentBoxSize[0].blockSize\n", + " );\n", + " } else {\n", + " canvas.setAttribute('width', width * fig.ratio);\n", + " canvas.setAttribute('height', height * fig.ratio);\n", + " }\n", + " canvas.setAttribute(\n", + " 'style',\n", + " 'width: ' + width + 'px; height: ' + height + 'px;'\n", + " );\n", + "\n", + " rubberband_canvas.setAttribute('width', width);\n", + " rubberband_canvas.setAttribute('height', height);\n", + "\n", + " // And update the size in Python. We ignore the initial 0/0 size\n", + " // that occurs as the element is placed into the DOM, which should\n", + " // otherwise not happen due to the minimum size styling.\n", + " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n", + " fig.request_resize(width, height);\n", + " }\n", + " }\n", + " });\n", + " this.resizeObserverInstance.observe(canvas_div);\n", + "\n", + " function on_mouse_event_closure(name) {\n", + " return function (event) {\n", + " return fig.mouse_event(event, name);\n", + " };\n", + " }\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mousedown',\n", + " on_mouse_event_closure('button_press')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseup',\n", + " on_mouse_event_closure('button_release')\n", + " );\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband_canvas.addEventListener(\n", + " 'mousemove',\n", + " on_mouse_event_closure('motion_notify')\n", + " );\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseenter',\n", + " on_mouse_event_closure('figure_enter')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseleave',\n", + " on_mouse_event_closure('figure_leave')\n", + " );\n", + "\n", + " canvas_div.addEventListener('wheel', function (event) {\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " on_mouse_event_closure('scroll')(event);\n", + " });\n", + "\n", + " canvas_div.appendChild(canvas);\n", + " canvas_div.appendChild(rubberband_canvas);\n", + "\n", + " this.rubberband_context = rubberband_canvas.getContext('2d');\n", + " this.rubberband_context.strokeStyle = '#000000';\n", + "\n", + " this._resize_canvas = function (width, height, forward) {\n", + " if (forward) {\n", + " canvas_div.style.width = width + 'px';\n", + " canvas_div.style.height = height + 'px';\n", + " }\n", + " };\n", + "\n", + " // Disable right mouse context menu.\n", + " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n", + " event.preventDefault();\n", + " return false;\n", + " });\n", + "\n", + " function set_focus() {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'mpl-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " continue;\n", + " }\n", + "\n", + " var button = (fig.buttons[name] = document.createElement('button'));\n", + " button.classList = 'mpl-widget';\n", + " button.setAttribute('role', 'button');\n", + " button.setAttribute('aria-disabled', 'false');\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + "\n", + " var icon_img = document.createElement('img');\n", + " icon_img.src = '_images/' + image + '.png';\n", + " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", + " icon_img.alt = tooltip;\n", + " button.appendChild(icon_img);\n", + "\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " var fmt_picker = document.createElement('select');\n", + " fmt_picker.classList = 'mpl-widget';\n", + " toolbar.appendChild(fmt_picker);\n", + " this.format_dropdown = fmt_picker;\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = document.createElement('option');\n", + " option.selected = fmt === mpl.default_extension;\n", + " option.innerHTML = fmt;\n", + " fmt_picker.appendChild(option);\n", + " }\n", + "\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "};\n", + "\n", + "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", + "};\n", + "\n", + "mpl.figure.prototype.send_message = function (type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "};\n", + "\n", + "mpl.figure.prototype.send_draw_message = function () {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1], msg['forward']);\n", + " fig.send_message('refresh', {});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", + " var x0 = msg['x0'] / fig.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n", + " var x1 = msg['x1'] / fig.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0,\n", + " 0,\n", + " fig.canvas.width / fig.ratio,\n", + " fig.canvas.height / fig.ratio\n", + " );\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch (cursor) {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_message = function (fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", + " for (var key in msg) {\n", + " if (!(key in fig.buttons)) {\n", + " continue;\n", + " }\n", + " fig.buttons[key].disabled = !msg[key];\n", + " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", + " if (msg['mode'] === 'PAN') {\n", + " fig.buttons['Pan'].classList.add('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " } else if (msg['mode'] === 'ZOOM') {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.add('active');\n", + " } else {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message('ack', {});\n", + "};\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function (fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = 'image/png';\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src\n", + " );\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data\n", + " );\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " } else if (\n", + " typeof evt.data === 'string' &&\n", + " evt.data.slice(0, 21) === 'data:image/png;base64'\n", + " ) {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig['handle_' + msg_type];\n", + " } catch (e) {\n", + " console.log(\n", + " \"No handler for the '\" + msg_type + \"' message type: \",\n", + " msg\n", + " );\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\n", + " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", + " e,\n", + " e.stack,\n", + " msg\n", + " );\n", + " }\n", + " }\n", + " };\n", + "};\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function (e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e) {\n", + " e = window.event;\n", + " }\n", + " if (e.target) {\n", + " targ = e.target;\n", + " } else if (e.srcElement) {\n", + " targ = e.srcElement;\n", + " }\n", + " if (targ.nodeType === 3) {\n", + " // defeat Safari bug\n", + " targ = targ.parentNode;\n", + " }\n", + "\n", + " // pageX,Y are the mouse positions relative to the document\n", + " var boundingRect = targ.getBoundingClientRect();\n", + " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n", + " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n", + "\n", + " return { x: x, y: y };\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys(original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object') {\n", + " obj[key] = original[key];\n", + " }\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function (event, name) {\n", + " var canvas_pos = mpl.findpos(event);\n", + "\n", + " if (name === 'button_press') {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * this.ratio;\n", + " var y = canvas_pos.y * this.ratio;\n", + "\n", + " this.send_message(name, {\n", + " x: x,\n", + " y: y,\n", + " button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event),\n", + " });\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "};\n", + "\n", + "mpl.figure.prototype.key_event = function (event, name) {\n", + " // Prevent repeat events\n", + " if (name === 'key_press') {\n", + " if (event.which === this._key) {\n", + " return;\n", + " } else {\n", + " this._key = event.which;\n", + " }\n", + " }\n", + " if (name === 'key_release') {\n", + " this._key = null;\n", + " }\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which !== 17) {\n", + " value += 'ctrl+';\n", + " }\n", + " if (event.altKey && event.which !== 18) {\n", + " value += 'alt+';\n", + " }\n", + " if (event.shiftKey && event.which !== 16) {\n", + " value += 'shift+';\n", + " }\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", + " if (name === 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message('toolbar_button', { name: name });\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "\n", + "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n", + "// prettier-ignore\n", + "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "\n", + "mpl.default_extension = \"png\";/* global mpl */\n", + "\n", + "var comm_websocket_adapter = function (comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function () {\n", + " comm.close();\n", + " };\n", + " ws.send = function (m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function (msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data']);\n", + " });\n", + " return ws;\n", + "};\n", + "\n", + "mpl.mpl_figure_comm = function (comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = document.getElementById(id);\n", + " var ws_proxy = comm_websocket_adapter(comm);\n", + "\n", + " function ondownload(figure, _format) {\n", + " window.open(figure.canvas.toDataURL());\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element;\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error('Failed to find cell for figure', id, fig);\n", + " return;\n", + " }\n", + " fig.cell_info[0].output_area.element.on(\n", + " 'cleared',\n", + " { fig: fig },\n", + " fig._remove_fig_handler\n", + " );\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function (fig, msg) {\n", + " var width = fig.canvas.width / fig.ratio;\n", + " fig.cell_info[0].output_area.element.off(\n", + " 'cleared',\n", + " fig._remove_fig_handler\n", + " );\n", + " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable();\n", + " fig.parent_element.innerHTML =\n", + " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + " fig.close_ws(fig, msg);\n", + "};\n", + "\n", + "mpl.figure.prototype.close_ws = function (fig, msg) {\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "};\n", + "\n", + "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width / this.ratio;\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] =\n", + " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message('ack', {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () {\n", + " fig.push_to_output();\n", + " }, 1000);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'btn-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " var button;\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " continue;\n", + " }\n", + "\n", + " button = fig.buttons[name] = document.createElement('button');\n", + " button.classList = 'btn btn-default';\n", + " button.href = '#';\n", + " button.title = name;\n", + " button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message pull-right';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = document.createElement('div');\n", + " buttongrp.classList = 'btn-group inline pull-right';\n", + " button = document.createElement('button');\n", + " button.classList = 'btn btn-mini btn-primary';\n", + " button.href = '#';\n", + " button.title = 'Stop Interaction';\n", + " button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n", + " button.addEventListener('click', function (_evt) {\n", + " fig.handle_close(fig, {});\n", + " });\n", + " button.addEventListener(\n", + " 'mouseover',\n", + " on_mouseover_closure('Stop Interaction')\n", + " );\n", + " buttongrp.appendChild(button);\n", + " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", + " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", + "};\n", + "\n", + "mpl.figure.prototype._remove_fig_handler = function (event) {\n", + " var fig = event.data.fig;\n", + " if (event.target !== this) {\n", + " // Ignore bubbled events from children.\n", + " return;\n", + " }\n", + " fig.close_ws(fig, {});\n", + "};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (el) {\n", + " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (el) {\n", + " // this is important to make the div 'focusable\n", + " el.setAttribute('tabindex', 0);\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " } else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager) {\n", + " manager = IPython.keyboard_manager;\n", + " }\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which === 13) {\n", + " this.canvas_div.blur();\n", + " // select the cell after this one\n", + " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", + " IPython.notebook.select(index + 1);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " fig.ondownload(fig, null);\n", + "};\n", + "\n", + "mpl.find_output_cell = function (html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i = 0; i < ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code') {\n", + " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] === html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "};\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel !== null) {\n", + " IPython.notebook.kernel.comm_manager.register_target(\n", + " 'matplotlib',\n", + " mpl.mpl_figure_comm\n", + " );\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"640\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Configuramos la figura, los ejes, y la gráfica que queremos animar\n", + "fig = plt.figure()\n", + "ax = plt.axes(xlim=(0, 11), ylim=(0, 6))\n", + "line, = ax.plot([], [], lw=2)\n", + "\n", + "# función inicialización: grafica el fondo de cada frame\n", + "def init():\n", + " line.set_data([], [])\n", + " return line,\n", + "\n", + "# función animation para la lista de los dataframes\n", + "def animate(i):\n", + " line.set_data(mylist[i]['primera_columna'], mylist[i]['segunda_columna'])\n", + " return line,\n", + "\n", + "# Animamos usando FuncAnimation, en intervalos de 300 ms\n", + "# declaramos el set number of frames to the length of your list of dataframes\n", + "anim = animation.FuncAnimation(fig, animate, frames=len(mylist), init_func=init, interval=300, blit=True)\n", + "\n", + "writergif = animation.PillowWriter(fps=1000)\n", + "anim.save(\"animacion.gif\",writer=writergif)\n", + "\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/codigo/vacf.png b/codigo/vacf.png new file mode 100644 index 0000000000000000000000000000000000000000..5b008e9c156b961e718b91968d0e60937160d0d6 GIT binary patch literal 10577 zcmeHtcUY52*Y^ZaaCJr30!p(4*hp2nRLiOX0XM879R=w{y41wAu&xRkVnD!v4`wYi zrH5{V4G@Yz5CTLY6hVRnAp`<>=f-`$Yxnuy@B8ch^Yzlp`<^-X%$YO4bIxzh<i;tR z<KKU`^E&{*_t+ChaR7)}ApfM+0st<g_v*v{jKY698*Ufu6&`gi^a8Lx7k)7yI6T1j z{I19gp<%wkK{}c`n!4({e8R&oh8@(>3j99;n!%yoTAO}psf2^9yLiGO41o1pkbfwU zo+%5!kG0sNhkm(~IW-V_$IJU1Tfo*yC3`;lbid=4Mbt-vgQwh{G${j>KRW(AYq9&| zcOmPHUq)vB)|4I)fU|koa1BGW*0<`u9(wKlb-kILa#sm&?*^W`eEb&n;adMUF0aIP zOPtUjPe5HA{g=1MFgS;)oyxt>k8g`^6U06Hqczs3b2if~UeFrWx<tYGe-G;K<oU-! zO*>Txfbep&1*rcZwF|gkl-LBc4aKB@tUO8rY)ArPVC`{$0$29_uh{?BAo?YygaTGs zpp)rz^=zNwT5$61ZG*u}w)qjUtl>0WRQT4h2T`u`pL;v!wSoISON^U;?1s({n`Hk- z&E2l6p`k4LWUglgvi0Qp6zkp9HI%jD&J_i_g}%em3tZ^04zqH^2!{@c>uOX*sY-6t zE$4Fsx#A#ylSOAyMOq6(ue_%)_}>lB@5C*<reFV_-nNqW+6}btLFrnHz9^}*MceT5 zgG)_+0J6F$-9Q=VJ8`2r*!;j`39!}*ShLp1pruXj^e4o!_M!+cf3WC`e7T0f>&yy@ zk_X!EVm^Hd!p02y%j<RlpW7h4EXBr>A~*@{tMP+Hpy6a5$3rO$y8-yzfPGZz=mA-2 z^GxUPyHa9=?NZskPSMy~@k`D>hy%x6gg*j9_V-r2piL2FLHl=5m-XxEv20fVN~zoG z5SM}9>t<JSo>OY(#lwg;hu{?NpYM+5rKA{72gIU*_6e~k8r~EP0c0z~Cy0H=y@b9{ zrUUY{2R@D7r!VtWlTF^upFkYslvArou|xVAF~ZX=7J&{MvyHhv$g(Wp$6jy{y}u38 zgkdPbW!b3``ZzVPZ=2W?Yh>8ngg*3Nuci8^uQSQzh$*+Cy2w;2r%5fPQPE1Xwt^-N zPF@3k&D;U{WpTz-{8IW7sQ*POyG&hEMb1FK+#tXQZj>Dytmye2;mWi@Ieyk4<C~2B zRDZ9!t!e2%2&k`@%GTFNY%}GT7;gl!X|8KdVMd6!CJidd$qG|w{$_TJgfnxr6og|& z!l<Owvi+^otcv~jvt%rQ_Jx{t*|?@fbg&hVh#pgoK8+a>UOBVGK-+gaYMls;CW`b2 zepY<-^sx$mkTw4!a6c8Z#R98&GSokRuFP?A5N)qQ`<xx&N3_mi&0<#~e;+n331qbZ zR6QxsCl+{wdl7^4D)7gNV+tj$8N|2>60eYGf}y|d+|jo=fJKg*bP7y{L5OOrW05=a z42?hKZ>mPON~z8z@x-&P;F`8kNv7~`6g!^pd7K0N>7+}R*mx`2yRZV!9Di{yL79FU zi}QD}3_VW_l*DH{PO|*-js5bC%YxZv4?iXuN~{HTJ&!@<ZhEH`##V#cLN%fbCay3A zF~kR0oMp6EI!OPrwe4p_nI#rIC%Nq41|UlulsJ_ifhYE;(Ddmtoz;Dlf8d%jtT3rb zXO;}GD?edIim`(!oK(O3(g&N9)$3&LymklLdhrL>9V}(~6P?4_J%XJ>mPXO$MpGdQ z9c3MxD`L6WR>Pcu7ogtatJhi|uV@1wkaiH&RW`C?S7JSI_meoqI-@8i4*oa{N&_dE zUJ$aYjiaMP>kN4@aRTNC3zrX!O(^$g5~pM`W1a!A)u!ix8AsscKZ!kAk4Qa5q!2^h z0~2C0N7t-2d}%+z;Pv^l6ePihtH6)-4##7b>zCuXV+iPuuFEc)8hr4X&F&v8FGO%j zf-*zri$XlYVqae$H3Ql|i#<VnPigt*uqE~i>#wHunw3u+G~IS6g0vq|U2A4%8N8LH zzb2XZb#5|4?Unf#i&ekeWa086x)@P;Gkm&m6HysDq#A;iE~)H-O%RRHx75l4V76NA z(GQN?xCxxR0VaNDWTYf2B?v3sLH!#j`@WjyVD|M??rT8Ujf{K2syJMB15mL65pQ`L z?reF8avzd7We+o6+D=s0wvCs+O`$CgeRVIP^6+0%8VWd`%Q1-Uzk|}Gp_p$fS-~U; z9dm-H;k0UXIK%n1QpmPM+<^K&h3`X%eWAz?I#5^W^;Y`9HnsekQE8yPAHI<bCFeg} znMx7|F;FGCOO#&oWPv}7BJE*tg=8{Ow4jv1suMOd;(_}fIQQp&82>6<@!PkaK?Ss$ zb4S9IK$;X>1T_9Vd;M}ZekEf2&2SdiumAF*1v*s?0|I4>g-a-pj>WjHl?Gc>2$h}# zl^l{CF;USEhQM}zu_ykcV+^?LtLw50dQ0dV;0n{g#7;#05ZH;VI1|1jwt$xFNkfSd zZon};;JOj3GK6uwKld`${EQ;pfXml0XR9;BP^){<Tk_Q5pfnUa2F0N9p@nY19WFKz zU-i~of13r_>Nik<{cs<)s1hoV{q=72@v3J~>uzn3whPtuQ-S1Kutk|r`R5!|=3fx$ z_Yq|vsCCVQ5p_<0h>kz3VJLS06?Pgy|6Y~Gwy%QpCb<putaR!wu+W;@N3g`Cl5jy7 zYQLjp^zu2TfQD;gP)Qk<m}$zqto?<~KRET5IaTaH#7I_1LaiX-n5xlE#4MZ8<3u@2 zjD3$|u<MJ~&XnribX%t5v=%j!+3J&geq=<O^7T<<qZlyldb}fheM-Nhe@#BK(tv&s zt7+`>0DqSgSjt>VdBlwAAvIPUY({-0m!qw$rjpixm?yTVzv5ye62Z{)WEh}bEd@tm z+<tmHNP}Bl?65K)tZE$f`z|0`Y__J|FW?04EBYqZ^&UroN@7SB{$fe{7pdqmsc4K_ zHBI44rEr?vg2>6H<j(^cp9f8s_XCUMIShe&GIaj;CGXpcPM?y{a4r09$GUWmmG7_P z>-_SA3ro3AO1bZA<Cos7jXSG#=}@tAc>(Q!aA@djBLJq%zei1FnhCvIGJjUp*9(uc z>?M!hc^_yeKRhAqvej$0uin#Js^)OkC&Cc48^Dy}IJtr@v<?j<YN^nkF=Om7Bhc(t z$8%jWID>Etux9BT1HXKJna<GOvu5iS*Jy1r2imBb=pAvyF2_P_DC1CaO~~7+bWTK$ z`9K7Z&UiNhY1N(>9q}%;$sX0mnS0>&ABK)YQ-qEPF}BbCs^lu}E+7zrP`tMTI=?Kc z>om;AtM5p>fxel$3PKn|`bsbYZdA(h5=(I%_?iSJo{co0Gu*HictB)YBFJ17`UdU> z=mXu~!2JTcMd>$i-+BNiMqKFc;~qf34TH?Yn=L7~<<>yQBEYe6&eAYG9R(5hCt)x; zDwVCNgUIbBRJI_#2tB??5RD9l5_{6DAGkWmF4&1U1@!(4&8mlb`XE8cwwE}S%4kzv z`Zr@)ZCJGe9OFQbxcI7rLe`JOl~fHSv85We6`9<pupWH<4bH*}4kqKjNYYy$?2!Tu zP@=*&v7>b+G4y){+cAAyA%)Q&|fb|`R4ZDA<iyqUjI5-h^t*ZWq+pjoEo$8TF5 zWdho_KxLVQwl-!)(ahpE(%{xzFmVvk0Wp#))ZsIXC4mSRa&Li8h$ACC2IkY}p8#zy zu_u$rZoG#fVGCS(BzzwoOF6EHouBeYJW>uekPD@Pw?j?gmJSHxinl^JeWY3ZPqml8 zJ>YMn{(C;7bvpsFUk@MxWQ|c>5fA~$`#`^Q=+F(<HE@T~1h31@=Rp10b=eNPpmKQ< z?dtDKuuvCS*y0W$)L;o<fRg|o$^@^M!fJcCX@BqfRUqJeOiU4%>_fowD@b3{+#?>l z@G-Ix1x$DUH=`rj?Tnbuc6G@+sjtNA&q`%GJeRk?FC^06;i^1P1jS7j#UHHP{K(U> zZbe~_Ar&5mO1^w-)~)VuJ<qj{oDPD%r9BB1UHFt0M5dy{!stWib6=wf4ysUaHj7=o zW9XWUN>!xt`t^ayQUKvK+gN4Fwz268D8ha?{`pRoX$U%xJp`|7YEX&yP>J1e^#L*4 zETDH<V#;Bx)Sy<cNKG#1;4C$$pVLMcl5WC){^FB0xc4nErlO6^>A9AeF{Sf0c0}PM zIxCYam7MaIkTOl1o?psj`Q^u^IN#?K9m(TQrwGT;?2OS5Ni1Ppn8tHQ#NS$~VNkn| zt$i`HqL9;ATS($%qP=?@MRDokayP9rh>#%H&ORtRE(UZ8VX!<(B}HIYrqLp=ZIiA) zTlU&n_J;8XqHGf`=DvtK^h@GP@S)-#(Js=GsAN@CMGB22W}OI~duVgDptQDzS((GE z^jMmo+9J=}3CV$M2GrtvEXCC_+7EL<lRknia7`#;F1qJOIOWe(J5EMp&F*sEIZjd{ zuU8#IVDyIp>KFfkEKVu5z?%0KA<4n}sMR!5sBcw{oH&A);)heHTXy+#>F6H$ukYog zi@8I(4Z8X;{<j}lB?Q?9Iu<qMzIMgBa4#CI0pmL)=>|x&=RrF1Xe%<tE`rzF$_U0e zZTNyn{IKd$a0ib<gd)%>@=Zy7DPAuN9}#BKa2U!UA423I4CMtB^)w>*A!$v!6GEo9 z1k+otB^cx*aBYD{IxFW*+rEAFpF<;oRULkUkg)AyKIDMDE_L=Y*VFeY!dy3Ou_)#s zFjW$|e}gIFOLU4UqloD_J?P2jo=Fr3#n5?(H#PnKfl}y5@N~)}Jw~@BL>BqmLtb-M z2c_#z5pp=6i{DBEc}e(I7J%i})lK~j>QBO{yk<u^m!XfXSykE}2^Jx+xdDbud4q4# z5GJ1N+Et`j0Y*9_BZKO&3mAHd`7i@|->Jj+E04@V_9kRXeGeK>0tP~QF7`uvBQyjt z@Bh`14iBuOqpPz)Oa4Lf+WsdpBOK>uS-|R7hX7*_V!2`HOLq}p3fXK?yecFEg;u|W z4L;FppD<Td!ve;?ActLEN|}y(49Q9T$seFR%xNDg;2v^9Wx+*fXmlj(H~s|2MpQ%^ z94V-no+=`hiZBhG6L1tQJk25DgZQ`j%|u${f&<8<DzSW(s;KgV@*qtQh8dUepNrL% z?`K$TmvK_q2wHYRt+sC`>a?Dq%;kCZ6hI33+z;{{&^UfehZx9$v0GkT$D(+m%PwV! z>mR!nXs196^;PQ8_=9D~Q9uW-07-QhTUMJ(X<HjEizD>_uOyIu`Z1-iTKW!>+0tSB zERFDArQ=L!>}Mk&bdN5`yZ=o}9pRve43egkkVY>8_>cx0^vv1L8@i#HS4CltcPc|j zDB=sf%zWs3NtZ$T1%w+m9tDimM27^j`!L8Gsz96~xdmx}!t^WBDocFi$eo6PJsNd8 zhL-u|@NAs6AHLG|m;m`LDBWfxBPYQU#J52o*`pw*dPEAf!i+F+O_S0y!bwYvK`PG7 z-m>?!rBV6qkfhtIll}K6=5V4yDbrgy8c!7YSLVnUkL<|KEwKEScw6qk(<Jeq9MOq( zIDamulsTQmP1r+suu~kqG!SlAENo9CJ}~|XngIuoxh-h+*$`1uhezV98rDp=W3zQ% zqZ#ub89@!HOzD$wD_Eie*7Z`_SmBA#pNN@Ztwwh8y*o8DRjAP24SM<|LDDmL#*R`k ziha9Wd@R}Y5N2cuEz+b@OPR-|=Pv()4jx@=yd9o5*rFvmZ49OqJwA$%Ghqh??r=U) zNsr06QKB=2GjUIigws61i}f8EE7;y(m|z?02s7-EBw%L$zvAR4pVD%)kr92#5|f3Y zI>)C;8yMRdYtV9)G$cXiyWB8>Uw#joHk#cySTQvJ)=sJGQ6PKJd3^x8)^oU_?6^44 zc?bjOmD0E*qQMaf!f6-|xFwzG)YtA1(a`BN+Q2}36mllo0nzXPMngR)5+vA^1|JdW zph>3Zz`-$y!=2Fe%7a|OPG5q+h95tXwlTK;)^7H`b^ubZv*M^ONmh9V#FpMBi+JQz zod=JjSEg8qmmpx2hlgx&BogRthW*Id+*;z4l6o76R)(^_|E=?RoYd!Jk)ea5Uz9q4 zC(%<%{h?OH!dY|MNbc4{;Nn&|zuEi?F9-jksNka5C?vH*S``1hB8~K}pOWDZYe9+1 zghlsryJ=ruaawdzT&j?>`?+=5wT2?07bXFGcp`DiEi)m8#|T!D+*kq~VB7@NCF7mh z@dl|5{rmlK)}XqGJKYCs0WeZ^$-vxHj%RTV0VF<ftl?W;zKC~Pg1NVLly4yvuJYy< zn-gV05mFn#nL}WX{^>DdmDA8Fp$$8rd;ZmE43A^Ey9kS(f`M%R)nk>f*b`eDb5odq zRzryxc%VX9d=ra8)jyNUHk%1*2haCG5yTtM`~(LM1vO))f3c#CaQ(dAHvQ)0ICL+~ zP6Abb4t@h^ssl6q^T5(VJovCq;#3x_mrWk43Ww)qX&{6vQia%UcB5p5<G$sY1xTuc zDg0{A-Qz?h(F_uiA3#fv_J?JR^wcup%ClcfoMJ;pV7L#}Wia-jXEkq-!9+%<t*w3# zB%K!};1JAwt5!27h>*=ti-UY;m~xN9wVps))*&tZqrZQN<(DCbMx(lpk5O38(x2tn zJ_wn`iaklLmVs#ma^$_pmuSM`_~+t`5m-_wD(T{$1=&|1C<ZQh6jyUAJ;!V|O8`j- zs*+g#Ff8K655)ruF!v4?WfJ1UVprE1mjxzru3h8k75WB==vlhZOQ)g5=7u0o7YGn8 zssJaM*wN-gF7JPbEECS)w){ofU<?Iovxr#=M@Q48ey{*vARx0$hmoD!2)DOahjKSg z&`kG8MvB1WuyX0$cIg;zJcr&>H;5cV?4URTad{$`(1EK-gcE%(=_IO}Vxsv~E|6WE zfzX)0VT(>SA;$4i3ciyDYS3z|8sn#>w5exbz?XQjCvDqhQoff<XUQ2<?lS?mV87GZ z6N58Jqw{iuAE1o(9>OAb3~vSt1dwhc#4-Fjn5eofm*Q=1+*^!fQVZ{||8dOUO)-B+ z;th7pW~oy%dtPZjo~E@~2UT|{?+5OWU|h0v$l?TIU5Okax^N#g6W{JvN93$HPIeN7 zsc2DjWljJ+NrAEZxl`~ee%B#o0a=$c4%2Zm5Ecw+2j~~DL9ixp0XwK$xx9iFm6C9N zE(!UUY)$zzMra#_b3EbEz>D@^D=P*|BQwS?bh;+jO;b~mg<X^s#Woj)n~?Y4ijB@= zm4sF$jd|pa4lDV7rcan9H+#tU)VfVIetK7H);~6M$|JMO>;hwPtA)3UpyBtWD0KAT zN9NN~t`^lKjnjqZpS*B2&`2co4AK-lU}GtZzp&$q&*#^jI<s_h{GvHQn$J&~zd6dS z%7~I@7pq3Imx%F8ig?k}?jNbqRoAVwtP?&rruQ~MVzM+HOokQxmNr#sv-j#smv$MA zkT`#25Y3l6Jw+>{Y&B(vx>^TKb0&EtFoteL^fuEG%$H}hb-$KYZNn$b_BWbS0{Te( zQEtVi{K1UOxKN$}J|%Aa2vXUeuNICZ<8S3Vr6ej^mIcPf2|iq*&rdPNMj&8fxxQw> zQ3Ks^!m8;YGcK=D^h$<kzEu1gpJa(;-rl%T-tc+llu%N%i}vw)DSj|jw9@R#3>Z$W zB{|2>b(pvEWK;POGV1tcXnp!)v$=&8E6Rdi<+&rFbY%wqm{LN8Al-Fkabdn(iCxYr zH)vKhrwMlUR?~XRoyv5VLK9YI8kH_(3l7c{$6H&vshC@03QvY&^XIaXxuQ;VTW)D> z<lBR8viV_+<16;ZCi}zM8!PwFw_!tDjmAv){%%Wsq_XpeVNp+}I@?Hc{80+gr7A8* zzR+Wt&E<toGC3LSlbY4q(O)|__?0%5JsVe)EBf4iY&JiuRjn<UtTW?jmCsG4$kaT! z@e$VRRt5?a^aSr46TYO<d0Od?500#L(Qn9_qLSobVY@;5nayP9hV}>8R@V?w9%KfN zV@bHC>*!f5*K|R=+mTJ-Oks;W8k2gp-W;jfTLKQ2?7hY)ukAisPcfyJ_UP*<xcuy| zLrKO9$0w)QS#g}bxuS~W8EXtPaf%|hX+LtK|3IZ`D=?jZ-`A+k9l2|!<r4BGtta3A zd?jhr-%l^AF(<yoV}PINBs$w*I2B(j%p!7b=vbum@e|4l9UyJFj<$sm)w3RlBw<Y2 zaclxzm*$C~tED*iEY0GHqnjG~opm~&CoDf_Z(h83IgCfA&-JJ(E!2lgXXVXH4!u~} zW5j%KNOse0o?I!$lbtWVobY~Qw)}}xC*qfi_8527_1v31ys_LmR}iOJIQuSDznCz* zvZgM5xumacm>0=qvxNahgYk9b!iNQ)C-=r{x-L(sCe56!W7-$nj*VVlE?$=XI=bmB zk%V(i=j3By&Cff3PV^(S+K5hZob0BOwxm?6(br(PR-pnOwllF9TD0=9^z_47d;C4; zxDej&_PS%fB_B`C%)n%;N_j8eY&KQWm>g~XrG92vyK;=eiEgv1T^bl=n|!=Fn%L&H zGP2ON!*I~;XyW393TE2bDXo9yET1>)Vmmc!rN4bUli5<uoTXHbpKW{U*eq~vj4k3C zmWMen)iy7E^*J+3OS>F@kaWbo=DTd{xHV8_h<*&N$~UU>OfRT2i)OKixdjug>u%=m z=iW~$UD1lnH*ZJ6z=^sv?>QN1STp$zZMr_YyjD*z=VlvJXKKXnr;B1m!+5mlqj@;r z<w>$?z#Fl4yCX1>JrIA>QN8e%!Rx`B3U0I0`nA6Bt5u^rGtyH_6k8wJ9yRIuNbRO9 z?Fs-fw%~iZxU}w}FE6E4@G~;Qcq3s%k6y?et!?>37*)4NS+4P1&ahE6`XcxZ>?GGM z<~9Z=&nl-_S<#&a-(Br~dFFasuG@f3oRlKixQB4vbENrWPrh86l}ce<t-w&SPSr-{ zl_c1B1kUs7a9G;Jy~2|T<B7zqg&V_5mwH@Mg|D<s_9tAG20GaW_E)^`QA9#cd4igt z$)4!8+&%iG`$Yw>X*B*?t$;DQ!jlWB8P#JvEM*H6X2dPL*JbZsjKvo^tZ=7QjH3!P zekGIB9kT4}7H6Wix|SE**!@ww{?<jQfZu{DKF*}xES&cohZmL#SJ{Hr(Y{kuT^%!c z#oBC8gIxgHIuh-hG&J>7uP+Sp(+RZYd6kPvUzt-fE?s$b0RxqzCRt&vGw(v-iRp;@ zk&?IrU)zKy!$b<xhQf!>Ckt&0Du!;%6q_u~PS~pkU%Ik@avx1Y?R*B)`!%hT1vO<x zTj&4WOP6D(35W5*g^YEsVb-B@-L@t@-hv0Dnpf)yJ5&hQ148y2eR`ylKpeIFgcqbH zx<(0(dXFuFcJYmuzwd?iGrA>HS7DSFVMx^-+i*h(#2g0S54<|OMIS=Ag@;aVY;WSv z@8Czg2H8JtygajTvc2i%^~y^>0#g-&kGi^)0$BSR6662D9}<up{aGI4CAg*mY^{ES zG);qU>LI)oIN3S>o*Y!9G0^>Z>V-zKaXGUx-ucR>eJI@v@H()RsSud#;k;O4T1L$X zu!@@VjSXo2g534}`!@~NY!*wgJ`L%xGUz39Cy?<jhrkOZZ9{nGM1B+D@t+62byN~R zi6ZjEj8t!Ht2y^|0bZeI-JhtJKDUj<t6aT0XuF4tyoYObnd!fbYw|vZFQ9P$#JBG& z8%edqL>0=;n!C;PYmsraCX2H-I~4>E^UuewH2)qbz+px%Z)=P2Vv}%#4wf`{yLs)k ziJK*+&a|%;j!7vVqS;KPo(^c%x>fdZmP(qm!nC>0^iSn9n!{q3PR-9sgZs+7Uyyho zelMgN6kOu|=9bl21_!>qjWu(vga0S9BkVz+0hLs2g;7#i{#^4EUbITTXl;pOmlQB3 z+GJPIkoKry6AbCj#5NTpQFg>i54z5{GCrEfPYTL1cNASk+bYCo&MC0TGRlI79aDH( zwMNboJ17>P7vhwFq2o>8um{pPWgVf-<MZT#;I>1PqFnU!=kZ#>Q*;{^S&--*TFDYe z6donoMqa9u4|Jl`nKYoa90ti9%dC_De`KiG?J2_E-HL9VJ>D{9BiRvd6i#IUHv|1x zHM(_t9)qn7|1HZ~XEwfbUP;GdIP4tJ$v?lm+mWw=5HHF6FbAS2Dtu`f8%f4BjnAn0 z=O;6fI}K(>qkr?y<y7WkhvQ__@hJ1VoIFf&Na>kkw~b@o#5i~n<CZ_Sf>y$Y(yunq z9Q_9<_R7(1zZ@$&R?19PrcF!bI+Hol{=-|a`l&b@TS<O%M;VnFv+R?HEw6JU=J~PZ zTW8|xtl#V`rxvrd;GOewmE+{&W93RVuoCF4Ski~s+8W$$`>U=gc&XJgU1*1t3tyri z7x1QSIvpEl)qGbPUwnRpYog$qR3X(!t6yNAFJ<wPk9EF9ZkK8r>Wr;(6+6eDbL>)_ z%ZEN{PG#g6^_NA4)aAW>$=1@NCt6_)$hZO@-;<5!A<^x{H6>bN%n!x{c=4?<BZ==M zUP_)Z>F<rVOSk(Gp3do4C=-)>#(U&CzNHM;WR5M`OJ8qq5*L&|*NSVBR;3k?cml^s z`@S6?p9y`5{4Pf&SOivKs1N+4k?bq4Y0HD;`0}=7Mqllxd$^{X?<CsSpD_{s+F@p- zK|gMZ!Rw@#ju+Wd1&)i6m=P*=1x@c{DZC4bjV31dING;vj|hdRx3SscS9iug{>ju# z3oIlJhj|l=?fcFBzrNqygP{hTIFQ8|JiRjD>)3tC5+kE3h{9^-mzq@yFF`FkcxC9S zPN5c6<M;sCak56OK_o&)bNxg?>zN1sXbx)+PiUNHbjSxeRaLkpJtOh*blu!iyB()p z65`&P(bVXYo!pPpr=OOZ{o=noKR&OA)hFZ1E*#@C{=8f3cCa|u5+m37rcDVJpzDt0 zy~~}>xZ$^iepD;O>SRPZr61YYtSVX_KQt-yqg?vo>**YpdAce^BHpRbbX|-dEA&u$ zib7UG`>+!+Q@gT8gPz(sguRp7PwuquU+G0>$qo#rb8>S6`wmprluo*N=gh67>Z)EO zL(q2^wl;sXEs1xaTsko378OyKciyQL8y3W#m5vc&u{I7NON;2#k{XTN_ms!#_(1B7 zUkj7xJD=5>Rh4MujE!|>s(yW>Ii1llwjiBSJtsBU(#5yVz{`utrNA3FT$6u_bH?bs zP1AX$gTGithY?}i%uNv{5Towlf~;p5k%IAQ*g@MzXJF@51>K8pUT?Q6Z3>LGBBrEN z7aAoSyA_r~esmw304wxo(|0t8ikUHCYI4NW!OfyGmNZ?)*h;N#;dfT~bG5jpI@{3K z<F9LIW+5?g6K80q*xAyE3ku5|xldiS7;3dDBlkwxJskH0&k3uq0tt3higU{7HjQ!> zK@ibR(X@xQT=aWjv`6~v@(OEw=>k4b^NfIlR+2X@+fA?X&&Thd``+-+ePv_!uqziZ z7x2X6L}#-_M`KQp_xg-4@wxBGj|9nWiT?R)hZ*~-ir|C;baQK-014B{%hSGMv7@!Y ueWMSu;V+iHr2%->{okL#{q?)R6?{m;yO&+dvOfa&2m6!F(SpP7zy239QxiP^ literal 0 HcmV?d00001 -- GitLab