diff --git "a/C\303\263digos/An\303\241lisis_Calibraci\303\263n_08-03.py" "b/C\303\263digos/An\303\241lisis_Calibraci\303\263n_08-03.py" new file mode 100644 index 0000000000000000000000000000000000000000..d6b00315f11d078eede5c66594cc5c9187c92e90 --- /dev/null +++ "b/C\303\263digos/An\303\241lisis_Calibraci\303\263n_08-03.py" @@ -0,0 +1,368 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Mon Nov 7 12:45:11 2022 + +@author: victor +""" + +import matplotlib +import numpy as np +import matplotlib.pyplot as plt +import math +import csv, operator +import scipy.stats as st +from numpy import random +import pandas as pd +from datetime import datetime +from pandas import * + +matplotlib.pyplot.savefig + +#df = df.rename(columns={'oldName1': 'newName1', 'oldName2': 'newName2'}) + + +##Este código Python servirá para analizar los datos correspondientes al WCD Characatito. +##Existen diferentes terminaciones de archivos que corresponden a datos de análisis distintos. +##Pero todos los archivos comparten el mismo nombre, salvo la terminación. + +##Luego de realizar el primer procesamiento de datos (Lo a L1) con ./raw en la terminal, +##procedemos a estudiar la data adquirida aquÃ. Las terminaciones de archivos que nos interesan +##son: .rte (pulsos detectados por unidad de tiempo fijada por el usuario), .flx (pulsos detec- +##tados por segundo) + +##Los histogramas de carga de los archivos .cal representan el número de conteos registrados +##en cada canal ACD. Se tienen dos picos caracterÃsticos: El de menor carga se genera por la +#componente electromagnética (electrones, positrones y gammas) y el de mayor por la +#componente muónica. Este último es utilizado para la calibración del instrumento (VEM). El VEM +#(por su siglas en inglés, Vertical Muon Equivalent) es la pérdida de energÃa que genera +#un muón vertical al pasar por el WCD. + + +##PARA MODIFICAR EL NÚMERO DE BINES, OPACIDAD DE LOS HISTOGRAMAS + +Bines = 50 +Opac = 0.08 +Rwidth = 0.80 + + +##--------ANALISIS DATOS "l1_v5_07_29_00h00.cal"-------------------------------------- + + +dfc0000=pd.read_csv('l1_v5_characatito_nogps_2022_07_29_00h00.cal', sep=' ',skiprows=6) +dfc0000.columns=['ch1','ch2','ch3','pk1', 'pk2','pk3',''] + + +dfc0000['ch1'].hist(bins = Bines, color = 'blue', alpha = Opac, rwidth = Rwidth) +plt.yscale('log') +plt.title("Histogramas de Carga - WCD Characatito (29/07 al 30/07)") +plt.xlabel("Carga [ADC.bin]") +plt.xticks(np.arange(0, 6000, 500)) +plt.axvline(x = 1300, color = 'red', linestyle = '-.') +plt.axvline(x = 1800, color = 'red', linestyle = '-.') +plt.text(2000, 120, '$\leftarrow$ Zona caracterÃstica del VEM', color = 'red') +#plt.ylabel("Logaritmo de Conteos registrados") + + + +##-------------ANÃLISIS DATOS "l1_v5_07_29_01h00.cal"--------------------------------- + + +dfc0100=pd.read_csv('l1_v5_characatito_nogps_2022_07_29_01h00.cal', sep=' ',skiprows=6) +dfc0100.columns=['ch1','ch2','ch3','pk1', 'pk2','pk3',''] + + +dfc0100['ch1'].hist(bins = Bines, color = 'red', alpha = Opac, rwidth = Rwidth) +plt.yscale('log') + +##-------------ANÃLISIS DATOS "l1_v5_07_29_02h00.cal"--------------------------------- + + +dfc0200=pd.read_csv('l1_v5_characatito_nogps_2022_07_29_02h00.cal', sep=' ',skiprows=6) +dfc0200.columns=['ch1','ch2','ch3','pk1', 'pk2','pk3',''] + + +dfc0200['ch1'].hist(bins = Bines, color = 'blue', alpha = Opac, rwidth = Rwidth) +plt.yscale('log') + +##-------------ANÃLISIS DATOS "l1_v5_07_29_03h00.cal"--------------------------------- + + +dfc0300=pd.read_csv('l1_v5_characatito_nogps_2022_07_29_03h00.cal', sep=' ',skiprows=6) +dfc0300.columns=['ch1','ch2','ch3','pk1', 'pk2','pk3',''] + + +dfc0300['ch1'].hist(bins = Bines, color = 'red', alpha = Opac, rwidth = Rwidth) +plt.yscale('log') + +##-------------ANÃLISIS DATOS "l1_v5_07_29_04h00.cal"--------------------------------- + + +dfc0400=pd.read_csv('l1_v5_characatito_nogps_2022_07_29_04h00.cal', sep=' ',skiprows=6) +dfc0400.columns=['ch1','ch2','ch3','pk1', 'pk2','pk3',''] + + +dfc0400['ch1'].hist(bins = Bines, color = 'blue', alpha = Opac, rwidth = Rwidth) +plt.yscale('log') + +##-------------ANÃLISIS DATOS "l1_v5_07_29_05h00.cal"--------------------------------- + + +dfc0500=pd.read_csv('l1_v5_characatito_nogps_2022_07_29_05h00.cal', sep=' ',skiprows=6) +dfc0500.columns=['ch1','ch2','ch3','pk1', 'pk2','pk3',''] + + +dfc0500['ch1'].hist(bins = Bines, color = 'red', alpha = Opac, rwidth = Rwidth) +plt.yscale('log') + +##-------------ANÃLISIS DATOS "l1_v5_07_29_06h00.cal"--------------------------------- + + +dfc0600=pd.read_csv('l1_v5_characatito_nogps_2022_07_29_06h00.cal', sep=' ',skiprows=6) +dfc0600.columns=['ch1','ch2','ch3','pk1', 'pk2','pk3',''] + + +dfc0600['ch1'].hist(bins = Bines, color = 'blue', alpha = Opac, rwidth = Rwidth) +plt.yscale('log') + +##-------------ANÃLISIS DATOS "l1_v5_07_29_07h00.cal"--------------------------------- + + +dfc0700=pd.read_csv('l1_v5_characatito_nogps_2022_07_29_07h00.cal', sep=' ',skiprows=6) +dfc0700.columns=['ch1','ch2','ch3','pk1', 'pk2','pk3',''] + + +dfc0700['ch1'].hist(bins = Bines, color = 'red', alpha = Opac, rwidth = Rwidth) +plt.yscale('log') + +##-------------ANÃLISIS DATOS "l1_v5_07_29_08h00.cal"--------------------------------- + + +dfc0800=pd.read_csv('l1_v5_characatito_nogps_2022_07_29_08h00.cal', sep=' ',skiprows=6) +dfc0800.columns=['ch1','ch2','ch3','pk1', 'pk2','pk3',''] + + +dfc0800['ch1'].hist(bins = Bines, color = 'blue', alpha = Opac, rwidth = Rwidth) +plt.yscale('log') + +##-------------ANÃLISIS DATOS "l1_v5_07_29_09h00.cal"--------------------------------- + + +dfc0900=pd.read_csv('l1_v5_characatito_nogps_2022_07_29_09h00.cal', sep=' ',skiprows=6) +dfc0900.columns=['ch1','ch2','ch3','pk1', 'pk2','pk3',''] + + +dfc0900['ch1'].hist(bins = Bines, color = 'red', alpha = Opac, rwidth = Rwidth) +plt.yscale('log') + +##-------------ANÃLISIS DATOS "l1_v5_07_29_10h00.cal"--------------------------------- + + +dfc1000=pd.read_csv('l1_v5_characatito_nogps_2022_07_29_10h00.cal', sep=' ',skiprows=6) +dfc1000.columns=['ch1','ch2','ch3','pk1', 'pk2','pk3',''] + + +dfc1000['ch1'].hist(bins = Bines, color = 'blue', alpha = Opac, rwidth = Rwidth) +plt.yscale('log') + +##-------------ANÃLISIS DATOS "l1_v5_07_29_11h00.cal"--------------------------------- + + +dfc1100=pd.read_csv('l1_v5_characatito_nogps_2022_07_29_11h00.cal', sep=' ',skiprows=6) +dfc1100.columns=['ch1','ch2','ch3','pk1', 'pk2','pk3',''] + + +dfc1100['ch1'].hist(bins = Bines, color = 'red', alpha = Opac, rwidth = Rwidth) +plt.yscale('log') + +##-------------ANÃLISIS DATOS "l1_v5_07_29_12h00.cal"--------------------------------- + + +dfc1200=pd.read_csv('l1_v5_characatito_nogps_2022_07_29_12h00.cal', sep=' ',skiprows=6) +dfc1200.columns=['ch1','ch2','ch3','pk1', 'pk2','pk3',''] + + +dfc1200['ch1'].hist(bins = Bines, color = 'blue', alpha = Opac, rwidth = Rwidth) +plt.yscale('log') + + +##--------ANALISIS DATOS "l1_v5_07_29_13h00.cal"-------------------------------------- + + +dfc1300=pd.read_csv('l1_v5_characatito_nogps_2022_07_29_13h00.cal', sep=' ',skiprows=6) +dfc1300.columns=['ch1','ch2','ch3','pk1', 'pk2','pk3',''] + + +dfc1300['ch1'].hist(bins = Bines, color = 'red', alpha = Opac, rwidth = Rwidth) +plt.yscale('log') + +##-------------ANÃLISIS DATOS "l1_v5_07_29_14h00.cal"--------------------------------- + + +dfc1400=pd.read_csv('l1_v5_characatito_nogps_2022_07_29_14h00.cal', sep=' ',skiprows=6) +dfc1400.columns=['ch1','ch2','ch3','pk1', 'pk2','pk3',''] + + +dfc1400['ch1'].hist(bins = Bines, color = 'blue', alpha = Opac, rwidth = Rwidth) +plt.yscale('log') + +##-------------ANÃLISIS DATOS "l1_v5_07_29_15h00.cal"--------------------------------- + + +dfc1500=pd.read_csv('l1_v5_characatito_nogps_2022_07_29_15h00.cal', sep=' ',skiprows=6) +dfc1500.columns=['ch1','ch2','ch3','pk1', 'pk2','pk3',''] + + +dfc1500['ch1'].hist(bins = Bines, color = 'red', alpha = Opac, rwidth = Rwidth) +plt.yscale('log') + +##-------------ANÃLISIS DATOS "l1_v5_07_29_16h00.cal"--------------------------------- + + +dfc1600=pd.read_csv('l1_v5_characatito_nogps_2022_07_29_16h00.cal', sep=' ',skiprows=6) +dfc1600.columns=['ch1','ch2','ch3','pk1', 'pk2','pk3',''] + + +dfc1600['ch1'].hist(bins = Bines, color = 'blue', alpha = Opac, rwidth = Rwidth) +plt.yscale('log') + +##-------------ANÃLISIS DATOS "l1_v5_07_29_17h00.cal"--------------------------------- + + +dfc1700=pd.read_csv('l1_v5_characatito_nogps_2022_07_29_17h00.cal', sep=' ',skiprows=6) +dfc1700.columns=['ch1','ch2','ch3','pk1', 'pk2','pk3',''] + + +dfc1700['ch1'].hist(bins = Bines, color = 'red', alpha = Opac, rwidth = Rwidth) +plt.yscale('log') + +##-------------ANÃLISIS DATOS "l1_v5_07_29_18h00.cal"--------------------------------- + + +dfc1800=pd.read_csv('l1_v5_characatito_nogps_2022_07_29_18h00.cal', sep=' ',skiprows=6) +dfc1800.columns=['ch1','ch2','ch3','pk1', 'pk2','pk3',''] + + +dfc1800['ch1'].hist(bins = Bines, color = 'blue', alpha = Opac, rwidth = Rwidth) +plt.yscale('log') + +##-------------ANÃLISIS DATOS "l1_v5_07_29_19h00.cal"--------------------------------- + + +dfc1900=pd.read_csv('l1_v5_characatito_nogps_2022_07_29_19h00.cal', sep=' ',skiprows=6) +dfc1900.columns=['ch1','ch2','ch3','pk1', 'pk2','pk3',''] + + +dfc1900['ch1'].hist(bins = Bines, color = 'red', alpha = Opac, rwidth = Rwidth) +plt.yscale('log') + +##-------------ANÃLISIS DATOS "l1_v5_07_29_20h00.cal"--------------------------------- + + +dfc2000=pd.read_csv('l1_v5_characatito_nogps_2022_07_29_20h00.cal', sep=' ',skiprows=6) +dfc2000.columns=['ch1','ch2','ch3','pk1', 'pk2','pk3',''] + + +dfc2000['ch1'].hist(bins = Bines, color = 'blue', alpha = Opac, rwidth = Rwidth) +plt.yscale('log') + +##-------------ANÃLISIS DATOS "l1_v5_07_29_21h00.cal"--------------------------------- + + +dfc2100=pd.read_csv('l1_v5_characatito_nogps_2022_07_29_21h00.cal', sep=' ',skiprows=6) +dfc2100.columns=['ch1','ch2','ch3','pk1', 'pk2','pk3',''] + + +dfc2100['ch1'].hist(bins = Bines, color = 'red', alpha = Opac, rwidth = Rwidth) +plt.yscale('log') + +##-------------ANÃLISIS DATOS "l1_v5_07_29_22h00.cal"--------------------------------- + + +dfc2200=pd.read_csv('l1_v5_characatito_nogps_2022_07_29_22h00.cal', sep=' ',skiprows=6) +dfc2200.columns=['ch1','ch2','ch3','pk1', 'pk2','pk3',''] + + +dfc2200['ch1'].hist(bins = Bines, color = 'blue', alpha = Opac, rwidth = Rwidth) +plt.yscale('log') + +##-------------ANÃLISIS DATOS "l1_v5_07_29_23h00.cal"--------------------------------- + + +dfc2300=pd.read_csv('l1_v5_characatito_nogps_2022_07_29_23h00.cal', sep=' ',skiprows=6) +dfc2300.columns=['ch1','ch2','ch3','pk1', 'pk2','pk3',''] + + +dfc2300['ch1'].hist(bins = Bines, color = 'red', alpha = Opac, rwidth = Rwidth) +plt.yscale('log') + +##-------------ANÃLISIS DATOS "l1_v5_07_30_00h00.cal"--------------------------------- + + +dfc00000=pd.read_csv('l1_v5_characatito_nogps_2022_07_30_00h00.cal', sep=' ',skiprows=6) +dfc00000.columns=['ch1','ch2','ch3','pk1', 'pk2','pk3',''] + + +dfc00000['ch1'].hist(bins = Bines, color = 'blue', alpha = Opac, rwidth = Rwidth) +plt.yscale('log') + +##-------------ANÃLISIS DATOS "l1_v5_07_30_*.cal"--------------------------------- + + +dfc00000=pd.read_csv('l1_v5_characatito_nogps_2022_07_30_01h00.cal', sep=' ',skiprows=6) +dfc00000.columns=['ch1','ch2','ch3','pk1', 'pk2','pk3',''] + + +dfc00000['ch1'].hist(bins = Bines, color = 'blue', alpha = Opac, rwidth = Rwidth) +plt.yscale('log') + +dfc00000=pd.read_csv('l1_v5_characatito_nogps_2022_07_30_02h00.cal', sep=' ',skiprows=6) +dfc00000.columns=['ch1','ch2','ch3','pk1', 'pk2','pk3',''] + + +dfc00000['ch1'].hist(bins = Bines, color = 'blue', alpha = Opac, rwidth = Rwidth) +plt.yscale('log') + +dfc00000=pd.read_csv('l1_v5_characatito_nogps_2022_07_30_03h00.cal', sep=' ',skiprows=6) +dfc00000.columns=['ch1','ch2','ch3','pk1', 'pk2','pk3',''] + + +dfc00000['ch1'].hist(bins = Bines, color = 'blue', alpha = Opac, rwidth = Rwidth) +plt.yscale('log') + +dfc00000=pd.read_csv('l1_v5_characatito_nogps_2022_07_30_04h00.cal', sep=' ',skiprows=6) +dfc00000.columns=['ch1','ch2','ch3','pk1', 'pk2','pk3',''] + + +dfc00000['ch1'].hist(bins = Bines, color = 'blue', alpha = Opac, rwidth = Rwidth) +plt.yscale('log') + +dfc00000=pd.read_csv('l1_v5_characatito_nogps_2022_07_30_05h00.cal', sep=' ',skiprows=6) +dfc00000.columns=['ch1','ch2','ch3','pk1', 'pk2','pk3',''] + + +dfc00000['ch1'].hist(bins = Bines, color = 'blue', alpha = Opac, rwidth = Rwidth) +plt.yscale('log') + +dfc00000=pd.read_csv('l1_v5_characatito_nogps_2022_07_30_06h00.cal', sep=' ',skiprows=6) +dfc00000.columns=['ch1','ch2','ch3','pk1', 'pk2','pk3',''] + + +dfc00000['ch1'].hist(bins = Bines, color = 'blue', alpha = Opac, rwidth = Rwidth) +plt.yscale('log') + +dfc00000=pd.read_csv('l1_v5_characatito_nogps_2022_07_30_07h00.cal', sep=' ',skiprows=6) +dfc00000.columns=['ch1','ch2','ch3','pk1', 'pk2','pk3',''] + + +dfc00000['ch1'].hist(bins = Bines, color = 'blue', alpha = Opac, rwidth = Rwidth) +plt.yscale('log') + +dfc00000=pd.read_csv('l1_v5_characatito_nogps_2022_07_30_08h00.cal', sep=' ',skiprows=6) +dfc00000.columns=['ch1','ch2','ch3','pk1', 'pk2','pk3',''] + + +dfc00000['ch1'].hist(bins = Bines, color = 'blue', alpha = Opac, rwidth = Rwidth) +plt.yscale('log') + +plt.savefig("superposicion.png", dpi=300) \ No newline at end of file