diff --git a/codigo/Tarea8.ipynb b/codigo/Tarea8.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..37d038018e26cc802361b74a8660fa9d945da43d --- /dev/null +++ b/codigo/Tarea8.ipynb @@ -0,0 +1,559 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Notebook de datos\n", + "# Tarea Clase 8\n", + "## @britod" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# Importamos las librerÃas básicas\n", + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Creamos el camini hacia los datos:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "path_data = './data/data_surveys.csv'" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>record_id</th>\n", + " <th>month</th>\n", + " <th>day</th>\n", + " <th>year</th>\n", + " <th>plot_id</th>\n", + " <th>species_id</th>\n", + " <th>sex</th>\n", + " <th>hindfoot_length</th>\n", + " <th>weight</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <td>0</td>\n", + " <td>1</td>\n", + " <td>7</td>\n", + " <td>16</td>\n", + " <td>1977</td>\n", + " <td>2</td>\n", + " <td>NL</td>\n", + " <td>M</td>\n", + " <td>32.0</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <td>1</td>\n", + " <td>2</td>\n", + " <td>7</td>\n", + " <td>16</td>\n", + " <td>1977</td>\n", + " <td>3</td>\n", + " <td>NL</td>\n", + " <td>M</td>\n", + " <td>33.0</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <td>2</td>\n", + " <td>3</td>\n", + " <td>7</td>\n", + " <td>16</td>\n", + " <td>1977</td>\n", + " <td>2</td>\n", + " <td>DM</td>\n", + " <td>F</td>\n", + " <td>37.0</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <td>3</td>\n", + " <td>4</td>\n", + " <td>7</td>\n", + " <td>16</td>\n", + " <td>1977</td>\n", + " <td>7</td>\n", + " <td>DM</td>\n", + " <td>M</td>\n", + " <td>36.0</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <td>4</td>\n", + " <td>5</td>\n", + " <td>7</td>\n", + " <td>16</td>\n", + " <td>1977</td>\n", + " <td>3</td>\n", + " <td>DM</td>\n", + " <td>M</td>\n", + " <td>35.0</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " </tr>\n", + " <tr>\n", + " <td>35544</td>\n", + " <td>35545</td>\n", + " <td>12</td>\n", + " <td>31</td>\n", + " <td>2002</td>\n", + " <td>15</td>\n", + " <td>AH</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <td>35545</td>\n", + " <td>35546</td>\n", + " <td>12</td>\n", + " <td>31</td>\n", + " <td>2002</td>\n", + " <td>15</td>\n", + " <td>AH</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <td>35546</td>\n", + " <td>35547</td>\n", + " <td>12</td>\n", + " <td>31</td>\n", + " <td>2002</td>\n", + " <td>10</td>\n", + " <td>RM</td>\n", + " <td>F</td>\n", + " <td>15.0</td>\n", + " <td>14.0</td>\n", + " </tr>\n", + " <tr>\n", + " <td>35547</td>\n", + " <td>35548</td>\n", + " <td>12</td>\n", + " <td>31</td>\n", + " <td>2002</td>\n", + " <td>7</td>\n", + " <td>DO</td>\n", + " <td>M</td>\n", + " <td>36.0</td>\n", + " <td>51.0</td>\n", + " </tr>\n", + " <tr>\n", + " <td>35548</td>\n", + " <td>35549</td>\n", + " <td>12</td>\n", + " <td>31</td>\n", + " <td>2002</td>\n", + " <td>5</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "<p>35549 rows × 9 columns</p>\n", + "</div>" + ], + "text/plain": [ + " record_id month day year plot_id species_id sex hindfoot_length \\\n", + "0 1 7 16 1977 2 NL M 32.0 \n", + "1 2 7 16 1977 3 NL M 33.0 \n", + "2 3 7 16 1977 2 DM F 37.0 \n", + "3 4 7 16 1977 7 DM M 36.0 \n", + "4 5 7 16 1977 3 DM M 35.0 \n", + "... ... ... ... ... ... ... ... ... \n", + "35544 35545 12 31 2002 15 AH NaN NaN \n", + "35545 35546 12 31 2002 15 AH NaN NaN \n", + "35546 35547 12 31 2002 10 RM F 15.0 \n", + "35547 35548 12 31 2002 7 DO M 36.0 \n", + "35548 35549 12 31 2002 5 NaN NaN NaN \n", + "\n", + " weight \n", + "0 NaN \n", + "1 NaN \n", + "2 NaN \n", + "3 NaN \n", + "4 NaN \n", + "... ... \n", + "35544 NaN \n", + "35545 NaN \n", + "35546 14.0 \n", + "35547 51.0 \n", + "35548 NaN \n", + "\n", + "[35549 rows x 9 columns]" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Leemos la data usando pandas\n", + "surveys_data = pd.DataFrame(pd.read_csv(path_data))\n", + "surveys_data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Vamos a definir la función que que calcule los promedios de las últimas dos colummas" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "def mean_values_hw(data_frame):\n", + " v = True\n", + " # Corroboramos que las entradas son correctas\n", + " if type(data_frame) == pd.DataFrame:\n", + " print('OK, Data frame aceptado')\n", + " else:\n", + " v = False\n", + " print('Por favor ingresar un data frame')\n", + "\n", + " \n", + " # Aqi viene el algoritmo para calculo de promedios:\n", + " no_value_weight = 0 # Contador de valores que no tienen información en el peso\n", + " for i in range(0,len(data_frame),1): # Recorremos cada uno de los Ãndices del data-frame\n", + " if pd.isnull(data_frame['weight'][i]) == True:\n", + " no_value_weight = no_value_weight +1\n", + " # Vamos a calcular el promedio de los pesos sin considerar los campos nulos\n", + " mean_value_weight = data_frame['weight'].sum()/(len(data_frame)-no_value_weight)\n", + " \n", + " \n", + " no_value_hindfoot = 0 # Contador de valores que no tienen información en el peso\n", + " for i in range(0,len(data_frame),1): # Recorremos cada uno de los Ãndices del data-frame\n", + " if pd.isnull(data_frame['hindfoot_length'][i]) == True:\n", + " no_value_hindfoot = no_value_hindfoot +1\n", + " # Vamos a calcular el promedio de los talones\n", + " mean_value_hindfoot = data_frame['hindfoot_length'].sum()/(len(data_frame)-no_value_hindfoot)\n", + "\n", + " if v == True:\n", + " return( print('Aquà tiene el promedio del peso', mean_value_weight ),\n", + " print('Aquà tiene el promedio del talón', mean_value_hindfoot ))\n", + " else:\n", + " return(print('Empieza otra vez.'))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Valores medios de las últimas dos columnas" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OK, Data frame aceptado\n", + "Aquà tiene el promedio del peso 42.672428212991356\n", + "Aquà tiene el promedio del talón 29.287931802277498\n" + ] + }, + { + "data": { + "text/plain": [ + "(None, None)" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mean_values_hw(surveys_data)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[<matplotlib.axes._subplots.AxesSubplot object at 0x000002B2C01FEDC8>]],\n", + " dtype=object)" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEICAYAAAC9E5gJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAXnUlEQVR4nO3df7DddZ3f8edribD4awmy3NKE2URNVTTVZW+Bra29lRUCWsPO6BaGkWDZSWtx63az44Y6LVaXjm7L0mVW3cku0eBYkaI7ZBdczCAX244goEhAFnPFFK5E0Akgka7upe/+cT6ph8u5uef+SG7O4fmYOXPP9/39fL/3877fzH3l+z3fc26qCknS89vPLfUEJElLzzCQJBkGkiTDQJKEYSBJwjCQJGEYSIsiyZ8k+fd9jv1Ukt8/2HOS5mLZUk9AGgZV9a8Wa19JClhTVROLtU9pNp4ZSJIMAynJu5P8RdfyRJJru5YfTvKGJK9OsiPJ3iQPJPmNrjHPuvST5P1J9iR5JMlvJqkkr+z6tsuT3JDkqSS3J3lF2+4rbf03k+xL8s8PXufSzxgGEtwK/OMkP5fkBOAFwBsBkrwceDGwC9gB/DfgeOA84ONJXjt9Z0nWAb8D/BrwSuCf9Pie5wH/EVgOTACXAVTVm9r611fVi6vqc4vVpHQghoGe96rqQeAp4A10fnHfBHwvyavb8v8A3gbsrqpPVtVUVX0d+Dzwjh67/A3gk1V1X1U9TeeX/nRfqKqvVdUU8Jn2vaUl4wvIUsetwBid/8nfCjxBJwh+tS3/EnBqkie6tlkGfLrHvv4ucGfX8sM9xny/6/nTdM4+pCVjGEgdtwL/DFgN/Cc6YXA+nTD4Y2ANcGtVvaWPfe0BVnYtn7i4U5UWn5eJpI5bgX8KHF1Vk3QuDa0DXgZ8A/hL4O8leVeSF7THP0jymh77uhZ4d5LXJHkh8B/mOJdHgZfPuxNpHgwDCaiqbwP76IQAVfUj4EHgf1XVM1X1FHAGcC7wCJ3LPB8Fjuqxry8CVwK30Hlx+Ktt1U/6nM4HgW1Jnui+Y0k6mOIft5EOrnb2cC9wVHvBWDrseGYgHQRJfj3JkUmW0zmD+AuDQIczw0A6OP4l8APgO8AzwHuWdjrSgXmZSJLkmYEkaYDfZ3DcccfVqlWr+hr74x//mBe96EUHd0JLxN4Gk70NpmHo7a677vphVf3i9PrAhsGqVau48847Zx8IjI+PMzY2dnAntETsbTDZ22Aaht6S/O9edS8TSZIMA0mSYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSSJAX4H8iBatfmGRd/nprVTXNjHfnd/5K2L/r0lDY9ZzwySbE3yWJJ7e6z73SSV5Li2nCRXJplIck+Sk7vGbkiyqz02dNV/JcnOts2VSbJYzUmS+tPPmcGn6PxB8Ku7i0lOBN4CPNRVPovOHw5fA5wKfAI4NcmxwKXAKFDAXUm2V9XjbcxG4DbgRjp/d/aL829pdgfjf+iSNMhmPTOoqq8Ae3usugJ4P51f7vutB66ujtuAY5KcAJwJ7KiqvS0AdgDr2rqXVtVXq/OHFa4GzllYS5KkuZrXawZJ3g58r6q+Oe2qzgrg4a7lyVY7UH2yR32m77uRzlkEIyMjjI+P9zXfffv2PWvsprXD89cHR47ur59+f1aHk+nHbZjY22Aa5t7mHAZJXgh8ADij1+oetZpHvaeq2gJsARgdHa1+P0p2+sfO9vOC66DYtHaKy3fOfhh3nz928CezyIbh44JnYm+DaZh7m8+tpa8AVgPfTLIbWAl8PcnfofM/+xO7xq4EHpmlvrJHXZJ0CM05DKpqZ1UdX1WrqmoVnV/oJ1fV94HtwAXtrqLTgCerag9wE3BGkuVJltM5q7iprXsqyWntLqILgOsXqTdJUp/6ubX0s8BXgVclmUxy0QGG3wg8CEwAfwr8a4Cq2gt8GLijPT7UagDvAf6sbfMdDvKdRJKk55r1YnNVnTfL+lVdzwu4eIZxW4GtPep3Aq+bbR6SpIPHj6OQJBkGkiTDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEmijzBIsjXJY0nu7ar95yR/neSeJH+e5JiudZckmUjyQJIzu+rrWm0iyeau+uoktyfZleRzSY5czAYlSbPr58zgU8C6abUdwOuq6u8D3wYuAUhyEnAu8Nq2zceTHJHkCOBjwFnAScB5bSzAR4ErqmoN8Dhw0YI6kiTN2axhUFVfAfZOq32pqqba4m3AyvZ8PXBNVf2kqr4LTACntMdEVT1YVT8FrgHWJwnwZuC6tv024JwF9iRJmqNli7CPfwF8rj1fQScc9ptsNYCHp9VPBV4GPNEVLN3jnyPJRmAjwMjICOPj431NcN++fc8au2nt1MyDB8zI0f310+/P6nAy/bgNE3sbTMPc24LCIMkHgCngM/tLPYYVvc9A6gDje6qqLcAWgNHR0RobG+trnuPj43SPvXDzDX1tNwg2rZ3i8p2zH8bd548d/MkssunHbZjY22Aa5t7mHQZJNgBvA06vqv2/wCeBE7uGrQQeac971X8IHJNkWTs76B4vSTpE5nVraZJ1wO8Bb6+qp7tWbQfOTXJUktXAGuBrwB3Amnbn0JF0XmTe3kLkFuAdbfsNwPXza0WSNF/93Fr6WeCrwKuSTCa5CPhj4CXAjiR3J/kTgKq6D7gW+BbwV8DFVfVM+1//e4GbgPuBa9tY6ITK7ySZoPMawlWL2qEkaVazXiaqqvN6lGf8hV1VlwGX9ajfCNzYo/4gnbuNJElLxHcgS5IMA0mSYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAk0UcYJNma5LEk93bVjk2yI8mu9nV5qyfJlUkmktyT5OSubTa08buSbOiq/0qSnW2bK5NksZuUJB1YP2cGnwLWTattBm6uqjXAzW0Z4CxgTXtsBD4BnfAALgVOBU4BLt0fIG3Mxq7tpn8vSdJBNmsYVNVXgL3TyuuBbe35NuCcrvrV1XEbcEySE4AzgR1VtbeqHgd2AOvaupdW1VerqoCru/YlSTpEls1zu5Gq2gNQVXuSHN/qK4CHu8ZNttqB6pM96j0l2UjnLIKRkRHGx8f7muy+ffueNXbT2qm+thsEI0f310+/P6vDyfTjNkzsbTANc2/zDYOZ9LreX/Oo91RVW4AtAKOjozU2NtbXpMbHx+kee+HmG/rabhBsWjvF5TtnP4y7zx87+JNZZNOP2zCxt8E0zL3N926iR9slHtrXx1p9Ejixa9xK4JFZ6it71CVJh9B8w2A7sP+OoA3A9V31C9pdRacBT7bLSTcBZyRZ3l44PgO4qa17Kslp7S6iC7r2JUk6RGa9vpDks8AYcFySSTp3BX0EuDbJRcBDwDvb8BuBs4EJ4Gng3QBVtTfJh4E72rgPVdX+F6XfQ+eOpaOBL7aHJOkQmjUMquq8GVad3mNsARfPsJ+twNYe9TuB1802D0nSweM7kCVJhoEkyTCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIklhgGCT5t0nuS3Jvks8m+fkkq5PcnmRXks8lObKNPaotT7T1q7r2c0mrP5DkzIW1JEmaq3mHQZIVwL8BRqvqdcARwLnAR4ErqmoN8DhwUdvkIuDxqnolcEUbR5KT2navBdYBH09yxHznJUmau4VeJloGHJ1kGfBCYA/wZuC6tn4bcE57vr4t09afniStfk1V/aSqvgtMAKcscF6SpDlYNt8Nq+p7Sf4L8BDwf4AvAXcBT1TVVBs2Caxoz1cAD7dtp5I8Cbys1W/r2nX3Ns+SZCOwEWBkZITx8fG+5rpv375njd20dmrmwQNm5Oj++un3Z3U4mX7chom9DaZh7m3eYZBkOZ3/1a8GngD+O3BWj6G1f5MZ1s1Uf26xaguwBWB0dLTGxsb6muv4+DjdYy/cfENf2w2CTWunuHzn7Idx9/ljB38yi2z6cRsm9jaYhrm3hVwm+jXgu1X1g6r6W+ALwD8EjmmXjQBWAo+055PAiQBt/S8Ae7vrPbaRJB0CCwmDh4DTkrywXfs/HfgWcAvwjjZmA3B9e769LdPWf7mqqtXPbXcbrQbWAF9bwLwkSXO0kNcMbk9yHfB1YAr4Bp1LODcA1yT5/Va7qm1yFfDpJBN0zgjObfu5L8m1dIJkCri4qp6Z77wkSXM37zAAqKpLgUunlR+kx91AVfU3wDtn2M9lwGULmYskaf58B7IkyTCQJBkGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRILDIMkxyS5LslfJ7k/ya8mOTbJjiS72tflbWySXJlkIsk9SU7u2s+GNn5Xkg0LbUqSNDcLPTP4I+CvqurVwOuB+4HNwM1VtQa4uS0DnAWsaY+NwCcAkhwLXAqcCpwCXLo/QCRJh8a8wyDJS4E3AVcBVNVPq+oJYD2wrQ3bBpzTnq8Hrq6O24BjkpwAnAnsqKq9VfU4sANYN995SZLmbtkCtn058APgk0leD9wFvA8Yqao9AFW1J8nxbfwK4OGu7Sdbbab6cyTZSOesgpGREcbHx/ua6L59+541dtPaqb62GwQjR/fXT78/q8PJ9OM2TOxtMA1zbwsJg2XAycBvVdXtSf6In10S6iU9anWA+nOLVVuALQCjo6M1NjbW10THx8fpHnvh5hv62m4QbFo7xeU7Zz+Mu88fO/iTWWTTj9swsbfBNMy9LeQ1g0lgsqpub8vX0QmHR9vlH9rXx7rGn9i1/UrgkQPUJUmHyLzDoKq+Dzyc5FWtdDrwLWA7sP+OoA3A9e35duCCdlfRacCT7XLSTcAZSZa3F47PaDVJ0iGykMtEAL8FfCbJkcCDwLvpBMy1SS4CHgLe2cbeCJwNTABPt7FU1d4kHwbuaOM+VFV7FzgvSdIcLCgMqupuYLTHqtN7jC3g4hn2sxXYupC5SJLmz3cgS5IMA0mSYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAksQhhkOSIJN9I8pdteXWS25PsSvK5JEe2+lFteaKtX9W1j0ta/YEkZy50TpKkuVmMM4P3Afd3LX8UuKKq1gCPAxe1+kXA41X1SuCKNo4kJwHnAq8F1gEfT3LEIsxLktSnBYVBkpXAW4E/a8sB3gxc14ZsA85pz9e3Zdr609v49cA1VfWTqvouMAGcspB5SZLmZtkCt/+vwPuBl7TllwFPVNVUW54EVrTnK4CHAapqKsmTbfwK4LaufXZv8yxJNgIbAUZGRhgfH+9rkvv27XvW2E1rp2YePGBGju6vn35/VoeT6cdtmNjbYBrm3uYdBkneBjxWVXclGdtf7jG0Zll3oG2eXazaAmwBGB0drbGxsV7DnmN8fJzusRduvqGv7QbBprVTXL5z9sO4+/yxgz+ZRTb9uA0TextMw9zbQs4M3gi8PcnZwM8DL6VzpnBMkmXt7GAl8EgbPwmcCEwmWQb8ArC3q75f9zaSpENg3q8ZVNUlVbWyqlbReQH4y1V1PnAL8I42bANwfXu+vS3T1n+5qqrVz213G60G1gBfm++8JElzt9DXDHr5PeCaJL8PfAO4qtWvAj6dZILOGcG5AFV1X5JrgW8BU8DFVfXMQZiXJGkGixIGVTUOjLfnD9LjbqCq+hvgnTNsfxlw2WLMRZI0d74DWZJkGEiSDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkiQWEQZITk9yS5P4k9yV5X6sfm2RHkl3t6/JWT5Irk0wkuSfJyV372tDG70qyYeFtSZLmYiFnBlPApqp6DXAacHGSk4DNwM1VtQa4uS0DnAWsaY+NwCegEx7ApcCpwCnApfsDRJJ0aMw7DKpqT1V9vT1/CrgfWAGsB7a1YduAc9rz9cDV1XEbcEySE4AzgR1VtbeqHgd2AOvmOy9J0twtW4ydJFkF/DJwOzBSVXugExhJjm/DVgAPd2022Woz1Xt9n410zioYGRlhfHy8r/nt27fvWWM3rZ3qa7tBMHJ0f/30+7M6nEw/bsPE3gbTMPe24DBI8mLg88BvV9WPksw4tEetDlB/brFqC7AFYHR0tMbGxvqa4/j4ON1jL9x8Q1/bDYJNa6e4fOfsh3H3+WMHfzKLbPpxGyb2NpiGubcF3U2U5AV0guAzVfWFVn60Xf6hfX2s1SeBE7s2Xwk8coC6JOkQWcjdRAGuAu6vqj/sWrUd2H9H0Abg+q76Be2uotOAJ9vlpJuAM5Isby8cn9FqkqRDZCGXid4IvAvYmeTuVvt3wEeAa5NcBDwEvLOtuxE4G5gAngbeDVBVe5N8GLijjftQVe1dwLwkSXM07zCoqv9J7+v9AKf3GF/AxTPsayuwdb5zkSQtjO9AliQZBpKkRXqfgXQ4WrVEtxDv/shbl+T7SgvhmYEkyTCQJBkGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEn4cRQ6yBbykRCb1k4N1V+lkw5nhoG0yPoJwIMVdH4ukubLMHieWKoPbZM0GHzNQJJkGEiSvEwkDRX/hoPmyzMDSdLhEwZJ1iV5IMlEks1LPR9Jej45LC4TJTkC+BjwFmASuCPJ9qr61tLOTFI/ui9PHcr3h3h5avEcFmEAnAJMVNWDAEmuAdYDhoGkGR3q10i6g27YgihVtdRzIMk7gHVV9Ztt+V3AqVX13mnjNgIb2+KrgAf6/BbHAT9cpOkebuxtMNnbYBqG3n6pqn5xevFwOTNIj9pzUqqqtgBb5rzz5M6qGp3PxA539jaY7G0wDXNvh8sLyJPAiV3LK4FHlmgukvS8c7iEwR3AmiSrkxwJnAtsX+I5SdLzxmFxmaiqppK8F7gJOALYWlX3LeK3mPOlpQFib4PJ3gbT0PZ2WLyALElaWofLZSJJ0hIyDCRJwx0Gw/YRF0l2J9mZ5O4kd7basUl2JNnVvi5f6nn2I8nWJI8luber1rOXdFzZjuM9SU5eupn3Z4b+Ppjke+343Z3k7K51l7T+Hkhy5tLMenZJTkxyS5L7k9yX5H2tPvDH7gC9Dfxx60tVDeWDzgvR3wFeDhwJfBM4aanntcCedgPHTav9AbC5Pd8MfHSp59lnL28CTgbuna0X4Gzgi3Tej3IacPtSz3+e/X0Q+N0eY09q/z6PAla3f7dHLHUPM/R1AnBye/4S4Ntt/gN/7A7Q28Aft34ew3xm8P8/4qKqfgrs/4iLYbMe2NaebwPOWcK59K2qvgLsnVaeqZf1wNXVcRtwTJITDs1M52eG/mayHrimqn5SVd8FJuj8+z3sVNWeqvp6e/4UcD+wgiE4dgfobSYDc9z6McxhsAJ4uGt5kgMf2EFQwJeS3NU+mgNgpKr2QOcfM3D8ks1u4WbqZZiO5Xvb5ZKtXZf0BrK/JKuAXwZuZ8iO3bTeYIiO20yGOQz6+oiLAfPGqjoZOAu4OMmblnpCh8iwHMtPAK8A3gDsAS5v9YHrL8mLgc8Dv11VPzrQ0B61QettaI7bgQxzGAzdR1xU1SPt62PAn9M5JX10/2l3+/rY0s1wwWbqZSiOZVU9WlXPVNX/Bf6Un11SGKj+kryAzi/Lz1TVF1p5KI5dr96G5bjNZpjDYKg+4iLJi5K8ZP9z4AzgXjo9bWjDNgDXL80MF8VMvWwHLmh3ppwGPLn/ksQgmXat/NfpHD/o9HdukqOSrAbWAF871PPrR5IAVwH3V9Ufdq0a+GM3U2/DcNz6stSvYB/MB507Gb5N51X+Dyz1fBbYy8vp3LnwTeC+/f0ALwNuBna1r8cu9Vz77OezdE65/5bO/7AumqkXOqfjH2vHcScwutTzn2d/n27zv4fOL5ITusZ/oPX3AHDWUs//AH39IzqXQu4B7m6Ps4fh2B2gt4E/bv08/DgKSdJQXyaSJPXJMJAkGQaSJMNAkoRhIEnCMJAkYRhIkoD/B1RbyADQHy/FAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "surveys_data.hist(column='weight')" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[<matplotlib.axes._subplots.AxesSubplot object at 0x000002B2BFF509C8>]],\n", + " dtype=object)" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEICAYAAAC9E5gJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAXEElEQVR4nO3df7RdZX3n8fdHIgKmEhB7ByEaHFMrNRUhBawz9kYsBqziH9LiYjQ4dGWtLupgV5wKM61YxSl2iSgzrWtlGlr8UQJSWxC0mInc5dhRlIg1IFKiRAjERJuABvBH9Dt/nCf1NDlJ7r3n/jgneb/Wuuuc/exnP/t7Tva5n7uffc5JqgpJ0sHtKbNdgCRp9hkGkiTDQJJkGEiSMAwkSRgGkiQMAw2wJBuTvLJH+39Mcl8f41aS57f7hyf5ZJLHkny8n3onsP8FrYY5M7G/3fZ9QZLPz/R+NfgMAw2dqvq/VfWCKRru9cAI8MyqOrefgfYWXrNlNkNHw8cw0MHuucA/V9XO2S5Emk2GgQbdSUm+1qZxrk9yWJLRJJt2dWh/kb9t935d6/9rks1JHknyn7va/wR4B/A7SXYkuTDJU5L8UZJvJ9ma5MNJjuza5rVJ7knyaJKxJC9s7R8BngN8so31h+N9gEmOTLKq1fhwksuTHNLWXZDk80nel2R7kgeSnNW17QlJPpfkB0n+T5I/T/LRtvpz7fbRVtNLu7brOZ4OXoaBBt1vA0uBE4BfBS6YSL8kS4G3Ab8JLAT+dRqnqi4D/gdwfVXNrapVbbsLgCXA84C5wP9qY/0ScB3wVuBZwKfo/PI/tKreCDwIvKaN9WcTeIzXAjuB5wMvAc4Efrdr/WnAfcAxwJ8Bq5Kkrfsb4EvAM4F3Am/s2u7l7XZeq+kL4xhPBynDQIPu6qp6pKq2AZ8ETppgv98G/qqq7q6qx+n8wtyX84H3V9W3qmoHcClwXpt3/x3g1qpaU1U/Ad4HHA78+mQfXJIR4CzgrVX1eFVtBa4Czuvq9u2q+t9V9VM6wXEsMJLkOcCvAe+oqh9X1eeBm8ex257jTfYx6MDghSUNuu903X8CePYE+z0bWNe17tv72d+zd+vzbTqvk5Hd11XVz5I8BBy3nzH35bnAU4HNXX+cPwV4qKvPvz62qnqi9ZtL5y/7bVX1RFffh4D5+9nn3sbTQcww0IFuM//2l+Nz9tP/ETq/oLv77wS2tHWLdq1oUyvzgYdb02S+Avgh4EfAMZO4iL0ZODrJEV2B0P1Y/UpijZvTRDrQ3QBckOTEJEcAl+2n/3XAH7QLs3P5+TWFnW2sVyc5I8lTgRV0fpH/v7btFjrXGcatqjYDnwGuTPKMdgH73yf5jXFs+23gTuCdSQ5tF4hf09Xlu8DPJlqTDk6GgQ5oVfVp4APAZ4EN7XZfrgE+QuedOA8APwTe0sa6D/hPwP8EvkfnF+9rqurHbds/Bf6ovdPobRMo803AocDXge3AjXTm8cfjfOClwL8AlwPX0wko2tnCe4B/bDWdPoGadJCJ/7mNdOBIcj3wjfZOKWncPDOQhliSX2vTSk9pb6M9B/j72a5Lw8cwkKZBkvPbB712/7lninf174AxYAdwNfB7VXXXFO9DBwGniSRJnhlIkob4cwbHHHNMLViwYI/2xx9/nKc//ekzX1Afhq3mYasXrHmmDFvNw1Yv9FfzunXrvldVz+q5sqqG8ueUU06pXm6//fae7YNs2GoetnqrrHmmDFvNw1ZvVX81A3fWXn6nOk0kSTIMJEmGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiSG+OsoNDELLrl1ysZasWgnF4xzvI1XvHrK9itp+nhmIEkyDCRJhoEkCcNAkoRhIEliHGGQ5JokW5Pc3dV2dJI1Se5vt0e19iS5OsmGJF9LcnLXNsta//uTLOtqPyXJ+rbN1Uky1Q9SkrRv4zkz+Gtg6W5tlwBrq2ohsLYtA5wFLGw/y4EPQSc8gMuA04BTgct2BUjrs7xru933JUmaZvsNg6r6HLBtt+ZzgGvb/WuB13W1f7j9pzpfBOYlORZ4FbCmqrZV1XZgDbC0rXtGVX2h/S88H+4aS5I0QyZ7zWCkqjYDtNtfbO3HAQ919dvU2vbVvqlHuyRpBk31J5B7zffXJNp7D54spzOlxMjICGNjY3v02bFjR8/2QTYTNa9YtHPKxho5fPzjDcq/hcfFzBi2moetXpi+micbBluSHFtVm9tUz9bWvgmY39XveOCR1j66W/tYaz++R/+eqmolsBJg8eLFNTo6ukefsbExerUPspmoebxfHzEeKxbt5Mr14zt0Np4/OmX77YfHxcwYtpqHrV6YvponO010M7DrHUHLgJu62t/U3lV0OvBYm0a6DTgzyVHtwvGZwG1t3Q+SnN7eRfSmrrEkSTNkv3/eJbmOzl/1xyTZROddQVcANyS5EHgQOLd1/xRwNrABeAJ4M0BVbUvybuDLrd+7qmrXRenfo/OOpcOBT7cfSdIM2m8YVNUb9rLqjB59C7hoL+NcA1zTo/1O4EX7q0OSNH38BLIkyTCQJBkGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSgDmzXYB0oFlwya1TMs6KRTu5YAJjbbzi1VOyXx2cPDOQJBkGkiTDQJKEYSBJwjCQJNFnGCT5gyT3JLk7yXVJDktyQpI7ktyf5Pokh7a+T2vLG9r6BV3jXNra70vyqv4ekiRpoiYdBkmOA/4LsLiqXgQcApwHvBe4qqoWAtuBC9smFwLbq+r5wFWtH0lObNv9CrAU+Iskh0y2LknSxPU7TTQHODzJHOAIYDPwCuDGtv5a4HXt/jltmbb+jCRp7aur6kdV9QCwATi1z7okSROQqpr8xsnFwHuAJ4HPABcDX2x//ZNkPvDpqnpRkruBpVW1qa37JnAa8M62zUdb+6q2zY099rccWA4wMjJyyurVq/eoaceOHcydO3fSj2k2zETN6x9+bMrGGjkctjw5vr6Ljjtyyvbbj5k8LqbquZ7I8wyD8VwP2+tv2OqF/mpesmTJuqpa3GvdpD+BnOQoOn/VnwA8CnwcOKtH111pk72s21v7no1VK4GVAIsXL67R0dE9+oyNjdGrfZDNRM0T+STr/qxYtJMr14/v0Nl4/uiU7bcfM3lcTNVzPZHnGQbjuR6219+w1QvTV3M/00SvBB6oqu9W1U+ATwC/Dsxr00YAxwOPtPubgPkAbf2RwLbu9h7bSJJmQD9h8CBwepIj2tz/GcDXgduB17c+y4Cb2v2b2zJt/WerM0d1M3Bee7fRCcBC4Et91CVJmqBJTxNV1R1JbgS+AuwE7qIzhXMrsDrJ5a1tVdtkFfCRJBvonBGc18a5J8kNdIJkJ3BRVf10snVJkiaur28trarLgMt2a/4WPd4NVFU/BM7dyzjvoXMhWpI0C/wEsiTJMJAkGQaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CSRJ9hkGRekhuTfCPJvUlemuToJGuS3N9uj2p9k+TqJBuSfC3JyV3jLGv970+yrN8HJUmamH7PDD4I/ENV/TLwYuBe4BJgbVUtBNa2ZYCzgIXtZznwIYAkRwOXAacBpwKX7QoQSdLMmHQYJHkG8HJgFUBV/biqHgXOAa5t3a4FXtfunwN8uDq+CMxLcizwKmBNVW2rqu3AGmDpZOuSJE1cqmpyGyYnASuBr9M5K1gHXAw8XFXzuvptr6qjktwCXFFVn2/ta4G3A6PAYVV1eWv/Y+DJqnpfj30up3NWwcjIyCmrV6/eo64dO3Ywd+7cST2m2TITNa9/+LEpG2vkcNjy5Pj6LjruyCnbbz9m8riYqud6Is8zDMZzPWyvv2GrF/qrecmSJeuqanGvdXP6qGkOcDLwlqq6I8kH+fmUUC/p0Vb7aN+zsWolnQBi8eLFNTo6ukefsbExerUPspmo+YJLbp2ysVYs2smV68d36Gw8f3TK9tuPmTwupuq5nsjzDIPxXA/b62/Y6oXpq7mfawabgE1VdUdbvpFOOGxp0z+0261d/ed3bX888Mg+2iVJM2TSYVBV3wEeSvKC1nQGnSmjm4Fd7whaBtzU7t8MvKm9q+h04LGq2gzcBpyZ5Kh24fjM1iZJmiH9TBMBvAX4WJJDgW8Bb6YTMDckuRB4EDi39f0UcDawAXii9aWqtiV5N/Dl1u9dVbWtz7okSRPQVxhU1VeBXhcjzujRt4CL9jLONcA1/dQiSZo8P4EsSTIMJEmGgSQJw0CShGEgSaL/t5ZKA2tB1yeBVyzaOaWfwpYONJ4ZSJIMA0mSYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJIkpCIMkhyS5K8ktbfmEJHckuT/J9UkObe1Pa8sb2voFXWNc2trvS/KqfmuSJE3MVJwZXAzc27X8XuCqqloIbAcubO0XAtur6vnAVa0fSU4EzgN+BVgK/EWSQ6agLknSOPUVBkmOB14N/GVbDvAK4MbW5Vrgde3+OW2Ztv6M1v8cYHVV/aiqHgA2AKf2U5ckaWJSVZPfOLkR+FPgF4C3ARcAX2x//ZNkPvDpqnpRkruBpVW1qa37JnAa8M62zUdb+6q2zY277Y4ky4HlACMjI6esXr16j5p27NjB3LlzJ/2YZsNM1Lz+4cembKyRw2HLk+Pru+i4I6dsvxPV/ZgnUvOgmGjNs/lc7zJsr79hqxf6q3nJkiXrqmpxr3VzJltQkt8CtlbVuiSju5p7dK39rNvXNv+2sWolsBJg8eLFNTo6ukefsbExerUPspmo+YJLbp2ysVYs2smV68d36Gw8f3TK9jtR3Y95IjUPionWPJvP9S7D9vobtnph+mru59XxMuC1Sc4GDgOeAXwAmJdkTlXtBI4HHmn9NwHzgU1J5gBHAtu62nfp3kaSNAMmHQZVdSlwKUA7M3hbVZ2f5OPA64HVwDLgprbJzW35C239Z6uqktwM/E2S9wPPBhYCX5psXRosC6bwjETS9JmO8+a3A6uTXA7cBaxq7auAjyTZQOeM4DyAqronyQ3A14GdwEVV9dNpqEuStBdTEgZVNQaMtfvfose7garqh8C5e9n+PcB7pqIWSdLE+QlkSZJhIEkyDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSSJPsIgyfwktye5N8k9SS5u7UcnWZPk/nZ7VGtPkquTbEjytSQnd421rPW/P8my/h+WJGki+jkz2AmsqKoXAqcDFyU5EbgEWFtVC4G1bRngLGBh+1kOfAg64QFcBpwGnApctitAJEkzY9JhUFWbq+or7f4PgHuB44BzgGtbt2uB17X75wAfro4vAvOSHAu8ClhTVduqajuwBlg62bokSROXqup/kGQB8DngRcCDVTWva932qjoqyS3AFVX1+da+Fng7MAocVlWXt/Y/Bp6sqvf12M9yOmcVjIyMnLJ69eo9atmxYwdz587t+zHNpJmoef3Dj03ZWCOHw5Ynp2y4GXEw1LzouCOnr5hxGrbX37DVC/3VvGTJknVVtbjXujl9VQUkmQv8LfDWqvp+kr127dFW+2jfs7FqJbASYPHixTU6OrpHn7GxMXq1D7KZqPmCS26dsrFWLNrJlev7PnRm1MFQ88bzR6evmHEattffsNUL01dzX+8mSvJUOkHwsar6RGve0qZ/aLdbW/smYH7X5scDj+yjXZI0Q/p5N1GAVcC9VfX+rlU3A7veEbQMuKmr/U3tXUWnA49V1WbgNuDMJEe1C8dntjZJ0gzp57z5ZcAbgfVJvtra/htwBXBDkguBB4Fz27pPAWcDG4AngDcDVNW2JO8Gvtz6vauqtvVRlyRpgiYdBu1C8N4uEJzRo38BF+1lrGuAayZbiySpP34CWZJkGEiSDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJTMG3lkrSgvatuCsW7ZzSb8jdn41XvHrG9nWg88xAkmQYSJIMA0kSXjOYUQv2Mpc60/OskrQ7zwwkSYaBJMkwkCThNQPpgLG3a1LSeHhmIEkyDCRJhoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJYoDCIMnSJPcl2ZDkktmuR5IOJgMRBkkOAf4cOAs4EXhDkhNntypJOngMRBgApwIbqupbVfVjYDVwzizXJEkHjVTVbNdAktcDS6vqd9vyG4HTqur3d+u3HFjeFl8A3NdjuGOA701judNh2GoetnrBmmfKsNU8bPVCfzU/t6qe1WvFoPxPZ+nRtkdKVdVKYOU+B0rurKrFU1XYTBi2moetXrDmmTJsNQ9bvTB9NQ/KNNEmYH7X8vHAI7NUiyQddAYlDL4MLExyQpJDgfOAm2e5Jkk6aAzENFFV7Uzy+8BtwCHANVV1zySH2+c00oAatpqHrV6w5pkybDUPW70wTTUPxAVkSdLsGpRpIknSLDIMJEkHThgMw9dZJLkmydYkd3e1HZ1kTZL72+1Rs1nj7pLMT3J7knuT3JPk4tY+sHUnOSzJl5L8U6v5T1r7CUnuaDVf396sMDCSHJLkriS3tOVBr3djkvVJvprkztY2sMcFQJJ5SW5M8o12TL90kGtO8oL2/O76+X6St05HzQdEGAzR11n8NbB0t7ZLgLVVtRBY25YHyU5gRVW9EDgduKg9t4Nc94+AV1TVi4GTgKVJTgfeC1zVat4OXDiLNfZyMXBv1/Kg1wuwpKpO6nrf+yAfFwAfBP6hqn4ZeDGd53tga66q+9rzexJwCvAE8HdMR81VNfQ/wEuB27qWLwUune269lLrAuDuruX7gGPb/WOB+2a7xv3UfxPwm8NSN3AE8BXgNDqf2pzT65iZ7R86n61ZC7wCuIXOBzEHtt5W00bgmN3aBva4AJ4BPEB748ww1LxbnWcC/zhdNR8QZwbAccBDXcubWtswGKmqzQDt9hdnuZ69SrIAeAlwBwNed5ty+SqwFVgDfBN4tKp2ti6Ddox8APhD4Gdt+ZkMdr3Q+ZaAzyRZ174qBgb7uHge8F3gr9p03F8meTqDXXO384Dr2v0pr/lACYNxfZ2FJi/JXOBvgbdW1fdnu579qaqfVufU+ng6X4T4wl7dZraq3pL8FrC1qtZ1N/foOhD1dnlZVZ1MZ3r2oiQvn+2C9mMOcDLwoap6CfA4AzQltC/tetFrgY9P1z4OlDAY5q+z2JLkWIB2u3WW69lDkqfSCYKPVdUnWvPA1w1QVY8CY3Sud8xLsuuDloN0jLwMeG2SjXS+sfcVdM4UBrVeAKrqkXa7lc489qkM9nGxCdhUVXe05RvphMMg17zLWcBXqmpLW57ymg+UMBjmr7O4GVjW7i+jMyc/MJIEWAXcW1Xv71o1sHUneVaSee3+4cAr6VwovB14fes2MDVX1aVVdXxVLaBz7H62qs5nQOsFSPL0JL+w6z6d+ey7GeDjoqq+AzyU5AWt6Qzg6wxwzV3ewM+niGA6ap7tiyJTeHHlbOCf6cwN//fZrmcvNV4HbAZ+QuevlAvpzA2vBe5vt0fPdp271fwf6ExPfA34avs5e5DrBn4VuKvVfDfwjtb+POBLwAY6p9tPm+1ae9Q+Ctwy6PW22v6p/dyz6zU3yMdFq+8k4M52bPw9cNQQ1HwE8C/AkV1tU16zX0chSTpgpokkSX0wDCRJhoEkyTCQJGEYSJIwDCRJGAaSJOD/A+oVC7JO9mK/AAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "surveys_data.hist(column='hindfoot_length')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Funcion que calcula valores promedios segun los años " + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Promedio del año 1977 46.47565543071161\n", + "Promedio del año 1978 67.8594470046083\n", + "Promedio del año 1979 63.291079812206576\n", + "Promedio del año 1980 62.401365705614566\n", + "Promedio del año 1981 65.81075110456554\n", + "Promedio del año 1982 53.74361759913091\n", + "Promedio del año 1983 55.08226221079691\n", + "Promedio del año 1984 50.93181818181818\n", + "Promedio del año 1985 46.659382064807836\n", + "Promedio del año 1986 54.98946135831382\n", + "Promedio del año 1987 49.41858932102834\n", + "Promedio del año 1988 45.0241145440844\n", + "Promedio del año 1989 35.72550382209868\n", + "Promedio del año 1990 35.47642679900744\n", + "Promedio del año 1991 32.03104575163399\n", + "Promedio del año 1992 33.29125138427464\n", + "Promedio del año 1993 34.205607476635514\n", + "Promedio del año 1994 34.48479427549195\n", + "Promedio del año 1995 29.50321987120515\n", + "Promedio del año 1996 28.20160791589363\n", + "Promedio del año 1997 31.748760330578513\n", + "Promedio del año 1998 34.805734767025086\n", + "Promedio del año 1999 36.46933085501859\n", + "Promedio del año 2000 32.37214137214137\n", + "Promedio del año 2001 36.444290657439446\n", + "25\n" + ] + }, + { + "data": { + "text/plain": [ + "43.857890384645245" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "year_sum_value = 0\n", + "\n", + "j=0 # Contador de campos nulos\n", + "index_interval = []\n", + "mean_value_list = []\n", + "\n", + "for i in range(1,len(surveys_data)-1):\n", + " \n", + " if surveys_data['year'][i-1] == surveys_data['year'][i]:\n", + " if pd.isnull(surveys_data['weight'][i-1]) == True:\n", + " j = j + 1\n", + " else:\n", + " year_sum_value = year_sum_value +surveys_data['weight'][i-1]\n", + " else:\n", + " if surveys_data['year'][i-1] != max(surveys_data['year']):\n", + " index_interval.append(i)\n", + " if len(index_interval) < 2:\n", + " year_mean_value = year_sum_value/(index_interval[-1] - j) \n", + " print('Promedio del año ', surveys_data['year'][i-1], year_mean_value )\n", + " mean_value_list.append(year_mean_value)\n", + " j = 0 \n", + " year_sum_value = 0\n", + " else:\n", + " year_mean_value = year_sum_value/(index_interval[-1] - index_interval[-2] - j) \n", + " print('Promedio del año ', surveys_data['year'][i-1], year_mean_value )\n", + " mean_value_list.append(year_mean_value)\n", + " j = 0 \n", + " year_sum_value = 0\n", + " else:\n", + " j = 0\n", + " year_sum_value = 0\n", + " if pd.isnull(surveys_data['weight'][i-1]) == True:\n", + " j = j + 1\n", + " else:\n", + " print('Aca estoy')\n", + " lastyear_sum_value = year_sum_value + surveys_data['year'][i]\n", + " index_interval.append(len(surveys_data))\n", + " lastyear_mean_value = lastyear_sum_value / (len(surveys_data) - index_interval[-2] - j)\n", + " print('Promedio del año ', surveys_data['year'][i], lastyear_mean_value )\n", + " mean_value_list.append(lastyear_mean_value)\n", + " \n", + " \n", + "print(len(mean_value_list)) \n", + "sum(mean_value_list)/(len(mean_value_list))" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2002" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "max(surveys_data['year'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.4" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}